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Abstract 
 

Several researchers in biomedicine have described a reproducibility crisis. Various open science 

practices may maximize reproducibility. This thesis focuses on data sharing and its extent in the 

biomedical sciences. In the first part, we wanted to explore the implementation of the data 

sharing policy of the International Committee of Medical Journal Editors (ICMJE), which came 

into effect in July 2018. Implementation of the data sharing requirements in journal policies was 

suboptimal for ICMJE member journals and poor for ICMJE affiliated journals. In a second step, 

we conducted a scoping review to explore the impact of data-sharing initiatives on the intent to 

share data, actual data sharing, use of shared data, and research output and impact of shared data. 

We concluded that there is currently a gap in the evidence base regarding the impact of sharing 

individual patient data, resulting in uncertainties in implementing current data sharing policies. 

Researchers have high intentions to share data but rarely do so. 

In the third part of the thesis, the emphasis was on transparency regarding clinical trials in drug 

regulatory frameworks. We tried to reanalyze 62 studies marked as main trials in marketing 

authorization applications. Our results showed that individual patient data was available for only 

10 of 62 trials (16.1%). The clear message from this research is that clinical trial data for licensed 

drugs remains inaccessible to the public and the research community. Importantly, re-analyzes 

of the few trials with available data showed good reproducibility. In the final part, we suggest 

ideas on advancing open science methods in drug regulatory contexts.  

In summary, we concluded that sharing data in the biomedical literature is substandard. The main 

factors are the absence of mandatory data sharing policies on journals, publishers, and regulatory 

agencies. Adequate policies need to be implemented. 
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Substantial French Summary 
 

En 2016, 1576 chercheurs de disciplines scientifiques ont répondu à une courte enquête par 

questionnaire sur la reproductibilité de la recherche pour la revue Nature. 52 % des participants 

ont répondu qu'il y avait une « crise de reproductibilité importante » et 38 % ont dit qu'il y en 

avait une « légère ». Seulement 3 % ont indiqué qu'il n'y en avait pas. De plus, entre 60 et 90 

% des chercheurs ont admis avoir rencontré des difficultés à reproduire les résultats d'autres 

équipes de recherche dans différents domaines de recherche. Dans le même temps, l'enquête a 

montré que seul un petit nombre de chercheurs ont essayé de reproduire les résultats d’autres 

chercheurs et qu'il est compliqué de publier ces ré-analyses. 

Selon les chercheurs interrogés, la publication sélective des résultats, la pression pour publier 

des résultats nouveaux et significatifs ainsi qu’une faible puissance statistique sont les 

principales raisons des problèmes de reproductibilité. 

Depuis un influent article de 2005, cette thèse a attiré une importante attention avec la 

publication par John Ioannidis de l’article «Why most research findings are false ». Il explique 

pourquoi les résultats de la recherche sont majoritairement faux en raison de défauts majeurs 

de méthodologie, d’une trop grande importance des résultats « statistiquement significatifs » en 

présence de biais tels que la manipulation des analyses et la communication sélective des 

résultats.  

Il existe bien sûr d'autres opinions et une discussion est en cours sur la gravité et l’existence 

éventuelle de cette « crise » de la reproductibilité. Plusieurs chercheurs s'opposent à l'idée d'une 

réelle « crise » de la reproductibilité. Les problèmes de reproductibilité seraient inhérents à la 

science, et finalement une bonne chose pour avancer. Déjà Karl Popper a soutenu que les 

théories ne peuvent pas être vérifiées mais que l'on ne peut que réfuter une théorie. En quelque 

sorte, l'ir-reproductibilité est une chance d'améliorer la science : la science se corrige d’elle-

même.  

Quoi qu’il en soit, ce processus ne semble pas si bien se faire en pratique. L'absence de contrôle 

des biais lors de la spécification des hypothèses, la faible puissance statistique dans la 

conception de l'étude, le mauvais contrôle de la qualité et le p-hacking dans la collecte et 

l'analyse des données et les biais de publication dans la diffusion des résultats sont des 

problèmes majeurs qui rendent le processus d’autocorrection, parfois trop lent, parfois 

inefficace et qui, in fine renvoie ce processus au second plan dans un contexte ou la recherche 
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est compétitive et l’innovation survalorisée. Ces problèmes pourraient être soulignés par le fait 

que les résultats positifs ont augmenté de plus de 22 % entre 1990 et 2007. 

Des solutions actuelles de développement comme la science ouverte, qui permettrait de 

restaurer un cycle vertueux propre au raisonnement hypothético-déductif et propice à 

l’autocorrection.  

 

Parmi les outils de la science ouverte, nous nous intéresserons dans cette thèse à l’intérêt 

du partage des données. 

Premièrement, parce qu'aborder tous les points briserait la portée de cette thèse, et 

deuxièmement parce qu'en partageant les données, les risques mentionnés dans le modèle 

hypothético-déductif peuvent être contrôlés ou limités. Un mauvais contrôle de la qualité et un 

biais de publication peuvent être détectés lorsque les données sont librement disponibles et 

piratées, et donc indirectement, le HARKing (hypothesizing after results are known) peut être 

réduit lorsque des ré-analyses indépendantes sont possibles avec un protocole enregistré a priori 

et des données ouvertement partagées. 

Si les problèmes de transparence et de reproductibilité dans la recherche ont trouvé leur chemin 

très tôt dans des domaines comme la psychologie ou la physique, il a fallu du temps à la 

recherche biomédicale pour trouver sa voie. Bien que pionnière sur l’enregistrement a priori 

des essais thérapeutiques, la recherche biomédicale est en retard sur la question du partage des 

données.  

Certains experts voient aussi la crise actuelle un problème systémique, qui peut être évalué en 

partie en étudiant les politiques de partage des journaux, des financeurs et des autorités 

sanitaires. Ces intervenants sont en pratique en mesure d’établir les incitatifs pour améliorer la 

transparence des essais thérapeutiques.  

Cette thèse fait partie d'un projet financé par l'Agence Nationale de la Recherche (ANR-17-CE-

36-0010-01). L'idée était d'avoir deux doctorants travaillant sur des tâches similaires qui se 

complètent. 

Un doctorant étudie les politiques de partage de données des financeurs des essais cliniques et, 

dans un deuxième temps, la reproductibilité inférentielle des essais cliniques de phase III que 

l'on peut trouver sur les principales plateformes de partage de données. 
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Le deuxième doctorant, l'auteur de cette thèse, se concentre sur la manière dont les politiques 

de partage de données sont intégrées dans les revues biomédicales. Dans un autre projet, des 

ré-analyses d'essais cliniques qui ont conduit à une autorisation de mise sur le marché au sein 

de l'Union européenne sont menées. 

Impliqué dans un consortium international, ce projet devrait permettre de clarifier et de mieux 

comprendre la place actuelle du partage de données dans la recherche thérapeutique. 

Dans cette thèse, quatre questions de recherche seront abordées : 

1. Est-ce que les revues biomédicales implémentent les politiques recommandées de 

partage des données ? Et si oui, dans quelle mesure ? 

 

2. Quels éléments supportent le partage de données dans la littérature biomédicale ? 

 

3. Pouvons-nous obtenir les données et reproduire les principaux résultats de 62 essais 

pivots faisant partie des autorisations de mise sur le marché évaluées par l'agence 

Européenne du médicament ? 

 

4. Comment intégrer les méthodes de la science ouverte dans l'approbation des 

médicaments ? 

 

Question 1 :  

Est-ce que les revues biomédicales implémentent les politiques recommandées de partage 

des données ? Et si oui, dans quelle mesure ? 

Dans la première partie, nous voulions explorer la mise en œuvre de la politique de partage de 

données du Comité international des éditeurs de revues médicales (ICMJE) qui est entrée en 

vigueur le 1er juillet 2018 par les revues membres de l'ICMJE et par les revues affiliées à 

l'ICMJE déclarant suivre les recommandations de l'ICMJE.  

Une enquête transversale sur les politiques de partage de données en 2018 sur les sites Web des 

journaux biomédicaux a été menée. 

Étaient incluses les revues membres de l'ICMJE et 489 revues affiliées à l'ICMJE qui avaient : 

1/ publié un Essai Clinique Randomisé (ECR) en 2018, 2/ un site Web en ligne accessible, et 

qui n'étaient pas considérées comme des revues prédatrices selon la liste de Beall. Dans un 
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second temps ont été analysés 1/ 100 ECRs pour les revues membres et 2/ 100 ECRs pour les 

revues affiliées (échantillons tirés au sort). 

Le critère de jugement principal était l'existence d'une politique de partage de données 

(politique de partage de données explicite, aucune politique de partage de données, politique se 

référant simplement aux recommandations de l'ICMJE) comme indiqué sur le site Web de la 

revue, en particulier dans les instructions aux auteurs. Pour les ECRs, nous avons décrit 

l’intention de partager les données individuelles des participants comme exprimée dans la 

déclaration de partage des données de l’article. 

Huit (sur 14 ; 57 %) des revues membres avaient une politique de partage de données explicite 

sur leur site Web (trois étaient plus strictes que les exigences de l'ICMJE, une était moins 

exigeante et quatre étaient conformes), cinq (35 %) autres revues ont déclaré qu’ils suivaient 

les exigences de l'ICMJE et une (8 %) n'avait aucune politique en ligne. Dans les 98% des ECRs 

publiés dans ces revues, il y avait des déclarations de partage de données, avec une intention 

exprimée de partager les données dans 77 sur 100 ECRs (77 % ; IC à 95 % 67 % à 85 %). Cent 

quarante-cinq (sur 489) revues affiliées à l'ICMJE (30 % ; 26 % à 34 %) avaient une politique 

explicite de partage de données sur leur site Web (11 étaient plus strictes que les exigences de 

l'ICMJE, 85 étaient moins exigeantes et 49 étaient conformes) et 276 (56 % ; 52 % à 61 %) 

faisaient simplement référence aux exigences de l'ICMJE. Dans les ECR publiés dans des 

revues affiliées avec une politique explicite de partage de données, les déclarations de partage 

de données étaient rares (25 %) et des intentions exprimées de partager des données ont été 

trouvées dans 22 % (15 % à 32 %). 

La mise en œuvre des exigences de partage de données de l'ICMJE dans les politiques des 

revues en ligne était sous-optimale pour les revues membres de l'ICMJE et médiocre pour les 

revues affiliées à l'ICMJE. La mise en œuvre de la politique était bonne dans les revues 

membres et préoccupante pour les revues affiliées. Nous suggérons la conduite d'audits continus 

des politiques de partage des données des revues médicales à l'avenir. 

 

Question 2 :  

Quels éléments supportent le partage de données dans la littérature biomédicale ? 

Dans une deuxième étape, nous avons mené une « scoping review » pour explorer l'impact des 

initiatives de partage de données sur l'intention de partager des données, sur le partage réel des 
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données, sur l'utilisation des données partagées et sur les résultats de la recherche et l'impact 

des données partagées. 

Toutes les études portant sur les pratiques de partage de données pour les données des 

participants individuels provenant d'essais cliniques ont été sélectionnées. 

La base de données Medline, la bibliothèque Cochrane, le Science Citation Index Expanded et 

le Social Sciences Citation Index via Web of Science, ainsi que les prépublications et les 

abstracts de l’International Congress on Peer Review and Scientific Publication ont été 

consultés. 

De plus, nous avons inspecté les principales plateformes de partage de données d'essais 

cliniques, contacté les principaux éditeurs et groupes éditoriaux et certains bailleurs de fonds. 

Deux examinateurs ont extrait indépendamment des informations sur les méthodes et les 

résultats des ressources identifiées à l'aide d'un questionnaire standardisé. Une carte des 

données extraites a été construite et accompagnée d'un résumé narratif pour chaque domaine de 

résultats. 

Nous avons identifié 93 études dans la recherche documentaire (publiées entre 2001 et 2020, 

médiane : 2018) et 5 provenant de sources d'informations supplémentaires ont été incluses dans 

notre scoping review. La plupart des études étaient descriptives et se concentraient sur les 

premières phases du processus de partage des données. Alors que la volonté de partager les 

données individuelles des patients issues des essais cliniques est extrêmement élevée, les taux 

réels de partage des données sont sous-optimaux. L’analyse des pratiques des journaux 

médicaux suggère une application insuffisante des politiques par les éditeurs. Les métriques 

fournies par les plateformes suggèrent qu'une grande majorité des données restent non 

demandées. Lorsqu’elles sont demandées, la finalité de la réutilisation est le plus souvent des 

analyses secondaires et des méta-analyses, rarement des ré-analyses. Enfin, les études axées sur 

l'impact réel du partage de données étaient rares et utilisaient des critères intermédiaires tels 

que les métriques de citation. 

Nous avons conclu qu'il existe actuellement un manque de connaissance important concernant 

la pratique du partage des données issues des ECRs, en particulier en qui concerne l’impact de 

cette pratique. Il y a de grandes incertitudes sur l’impact potentiel des politiques actuelles de 

partage des données. Des preuves de haut niveau sont nécessaires pour évaluer si la valeur de 

la recherche médicale augmente avec les pratiques de partage de données. 
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Question 3 : 

Pouvons-nous obtenir les données et reproduire les principaux résultats de 62 essais pivots 

faisant partie des autorisations de mise sur le marché évaluées par l'agence Européenne 

du médicament ? 

Dans la troisième partie de la thèse, l'accent a été mis sur la transparence concernant les essais 

cliniques utilisés dans le cadre réglementaire de l’évaluation des thérapeutiques. 

La transparence et la reproductibilité devraient être des caractéristiques clés des ECRs utilisés 

pour la prise de décision concernant les autorisations de mise sur le marché de nouveaux 

médicaments. Nous avons réalisé une étude transversale visant à évaluer la reproductibilité 

inférentielle de ces ECRs. Deux chercheurs ont identifié de manière indépendante toutes les 

études pivots (études désignées comme études principales dans les rapports d'évaluation 

européens) concernant les nouveaux médicaments et les biosimilaires ayant reçu l'approbation 

de la Commission européenne entre le 1er janvier 2017 et le 31 décembre 2019. 

62 de ces études ont été échantillonnées au hasard, et un chercheur a tenté de récupérer les 

données individuelles des patients pour ces études ainsi que d'autres documents nécessaires 

pour une ré-analyse, en contactant les sponsors de l'étude. Pour chaque étude, il a préparé un 

dossier contenant les données, le protocole et les informations sur le déroulement de la conduite 

de l'étude. Un second chercheur qui n'avait pas accès aux rapports d'étude ou au code, a utilisé 

le dossier pour effectuer une ré-analyse indépendante de chaque essai. 

Nos résultats ont montré que pour seulement 10 des 62 essais (16,1 % ; 8% à 27.7%), les 

données individuelles des patients étaient disponibles. Dans tous les essais, nous sommes 

arrivés à la même conclusion en termes de significativité statistique. Cependant, nous n'avons 

pas encore pu reproduire le critère de jugement principal dans deux essais car les variables 

correspondantes aux critères de jugement étaient manquantes dans les données reçues. Nous 

laissant avec huit essais entièrement réalisés et résultant en un taux de reproductibilité de 12,9 

% (5.7% à 23.9%). 

Les données d'essais cliniques des médicaments autorisés restent largement inaccessibles au 

public et à la communauté des chercheurs. Lorsque ces données sont accessibles, les analyses 

sont reproduites dans leur grande majorité. 
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Question 4 :  

Comment intégrer les méthodes de la science ouverte dans l'approbation des médicaments 

?  

Dans la dernière partie, nous proposons d’aller un peu au-delà de la notion de partage des 

données et de réfléchir dans quelle mesure la science ouverte pourrait améliorer les pratiques 

des autorités sanitaires. Avant l'approbation des médicaments, les autorités sanitaires établissent 

un ensemble de règles a priori selon lesquelles les essais cliniques seront jugés « positifs » ou 

« négatifs ». Trop souvent, ils enfreignent ces règles post-hoc. Cela donne lieu à des débats 

controversés quant à savoir si les seuils appropriés de réussite ont été atteints. La voie de la 

science ouverte que nous proposons pour l'autorisation de mise sur le marché des médicaments 

- l'approbation enregistrée des médicaments (en anglais : registered drug approval) - vise à 

adapter le concept de rapports enregistrés (en anglais : registered reports) au processus 

d'approbation réglementaire des médicaments et d'autorisation de mise sur le marché. Il valorise 

l'importance clinique des questions de recherche, avec une approbation de principe accordée 

sur des critères de succès prédéfinis. Ceci est fait avant la collecte des données, empêchant toute 

altération post hoc des règles et permettant une transparence totale. Le partage des données et 

de tous les documents liés aux études pivots sera central.  

 

Conclusion 

En résumé, le partage des données dans la recherche thérapeutique est sous-optimal. Les 

politiques de partage, quand elles existent, sont laxistes et mal implémentées. Nous proposons 

plusieurs pistes pour aller vers un changement.  

Bien entendu, nous n’avons exploré qu’une petite partie de la notion de reproductibilité 

(reproductibilité inférentielle) dans les travaux de cette thèse, à la lumière du partage des 

données des essais cliniques. D’autres aspects comme la réplicabilité nécessitent d’autres 

approches. Très récemment, une étude d’envergure a montré que la reproductibilité de la 

recherche préclinique en biologie du cancer est là aussi décevante. 

Ainsi, pour mieux cerner les problèmes de reproductibilité, les efforts de méta-recherche 

devront trianguler les résultats de différents types de recherche. C’est d’ailleurs, selon Munafò, 

la protection essentielle face à la mauvaise science. L’idée est d'aborder la même question de 

recherche sous un angle différent. Chaque approche a ses hypothèses, ses forces et ses faiblesses 
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indépendantes. Une image complète d'une question de recherche est créée en combinant les 

différents aspects. 

Nous avons pris le parti dans cette thèse d’appliquer quelques recettes qui rendent la science le 

plus reproductible possible :  

• Avoir une vision claire de la littérature (scoping review) ;  

• Enregistrer nos questions a priori (l’étude sur les autorités sanitaires a été acceptée de 

principe à BMC Medicine en tant que registered report) ;  

• Partage de nos données, nos codes ; 

• Trianguler les recherches en collaborant autant que faire se peut à notre échelle.  

  

Néanmoins, le partage de données est une cible mouvante dans un environnement en évolution 

rapide et on ne peut qu'espérer que la situation s'améliorera avec le temps et que les parties 

prenantes s'adapteront aux changements suggérés. 
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CHAPTER I  

General Introduction 
 

1. What about the reproducibility crisis? 

In 2016, 1576 researchers from science disciplines replied to a short questionnaire survey on 

reproducibility in research in the journal Nature. 52% of the participants replied that there is a 

“significant reproducibility crisis,” and 38% said there is a slight one. Only 3% indicated that 

there is not any. Furthermore, between 60 and 90% of the researchers admitted that they 

encountered difficulties reproducing results of other research teams across different research 

domains. At the same time, the survey showed that only a small percentage of researchers tried 

to reproduce findings of others and that it is complicated to publish these reanalyzes (1). 

According to the researchers surveyed, selective reporting, pressure to publish novel, 

significant findings, and low statistical power are the main reasons for the found patterns.  

Thus, the question is, is there a real reproducibility crisis? And if so, to which extent? 

a) Types of reproducibility  

 

Talking about the reproducibility crisis without terminology is problematic. Every researcher 

is exposed to these terms; however, the concepts have been used differently due to their 

philosophical structure (2).  

One of the first times the term reproducibility was mentioned was in 1992 by the Stanford 

geophysicist Claerbout who described the phenomena when “an author attaches to every figure 

caption a pushbutton or a name tag usable to recalculate the figure from all its data, 

parameters, and programs “ (3). 

The definition and its use were then redeveloped by many others and amplified. Whereas 

Claerbout did not describe a situation where other researchers come to the same conclusion 

using newly collected data, Peng and colleagues defined this as replicability. They state: 

“Scientific evidence is strengthened when important findings are replicated by multiple 

independent investigators using independent data, analytical methods, laboratories, and 

instruments” (4). 
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Despite early efforts of researchers like Claerbout and Peng, other researchers approached the 

opposite way of describing these terms. 

Such, the Association for Computing Machinery (AMC) had the opposite definitions to 

Claerbout and Peng in terms of reproducibility and replicability but described repeatability as 

“the measurement that can be obtained with stated precision by the same team using the same 

measurement procedure, the same measuring system, under the same operating conditions, in 

the same location on multiple trials“(5). 

In biomedical research, probably the most accepted use of terms are the ones from Goodman 

and colleagues, which are in line with the definitions of Claerbout and Peng, adding a definition 

of inferential reproducibility (6). 

The authors distinguish between three different types: 

• Methods reproducibility which means to repeat the same analyses as the initial study 

with sufficient detail about the data and procedures.  

For the authors, this kind of reproducibility is not adding additional evidence as no new 

data is gathered but is only a quality check. 

• Results reproducibility which refers to obtaining the same results from the conduct of 

an independent study whose procedures are as closely matched. In other definitions, this 

is used as the term replicability. 

• Inferential reproducibility which refers to the ability to obtain qualitative similar 

conclusions from an independent replication of a study or a reanalysis of the original 

study. For the authors, the most important kind of reproducibility. 

 

Table 1  Comparison of terminologies before harmonization, adapted from Plesser, 2018 (2) 

 

Goodman Claerbout / Peng AMC 

  Repeatability 

Methods reproducibility Reproducibility Replicability 

Results reproducibility Replicability Reproducibility 

Inferential reproducibility   
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The conflict of terminology swept over to funding agencies enforcing different research cultures 

in reproducibility. Whereas in biomedical research, medicine, and epidemiology the terms of 

Goodman & Claerbout were used, in microbiology, immunology, and computer science, it was 

the opposite. According to findings from Barba from 2018, the fields of economics and political 

science don’t distinguish between replication and reproducibility (7) .   

However, after discussion with the National Information Standards Organization, the ACM 

swapped its definitions in 2020, and now terms are comparable to the ones of Claerbout (8). 

After large discussions on this topic, one can only hope that research culture will find consensus 

with these definitions as they created significant trouble in the past. 

b) History of Science in crisis narrative 

 

Years before the above-mentioned survey published in Nature, there were warnings that the 

current research system is likely to be flawed.  

In 2005 this narrative gained strong attention when John Ioannidis published his article “Why 

most published research findings are false”(9). 

Here he explains how, in his perception, research findings are false because of major flaws in 

methodology, the false and unjustified importance of statistically significant results, and biases 

such as manipulation in the analysis or selective reporting of findings. 

He claims that “a research finding is less likely to be true when the studies conducted in a field 

are smaller; when effect sizes are smaller; when there is a greater number and lesser 

preselection of tested relationships; where there is greater flexibility in designs, definitions, 

outcomes, and analytical models; when there is greater financial and other interest and 

prejudice; and when more teams are involved in a scientific field in chase of statistical 

significance.”  

Furthermore, as a corollary, he describes the Proteus phenomena, named after a Greek god1. 

This phenomenon is observed when the first published study in a certain field, mostly biased, 

is pointing to an extreme result. Follow-up studies might be biased against the result of the first 

one creating debates that receive a lot of attention. 

                                                           
1 Proteus : God from Greek mythology who rapidly metamorphosed himself to very different figures 
(https://doi.org/10.1016/j.jclinepi.2004.10.019) 

https://doi-org.proxy.insermbiblio.inist.fr/10.1016/j.jclinepi.2004.10.019
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In 2016 & 2017, he enlarged his criticism to specific fields with papers “Why most clinical 

research is useless” and “The Power of Bias in Economics Research”. 

In the former, one of his main arguments is that clinicians only read some specific medical 

journals such as the New England Journal of Medicine or the British Medical Journal. The 

problem with this is that these reviews only contain a few clinical trials out of all that have been 

conducted. Although these journals contain, on average, more trials, small trials in these 

journals tend to be more over-exaggerated than elsewhere. Furthermore, also data sharing is 

still uncommon in major medical journals. With his point, he argues that problems come from 

the physicians who are relying too much on certain medical reviews and the journals that are 

not showing enough transparency (10). 

But Ioannidis went beyond medical research and found that other areas were affected by this 

crisis as well. He showed that empirical economic research lacked methodology. In his survey 

of 159 meta-analyses, he found that “nearly half of the areas surveyed have 90% or more of 

their reported results stemming from underpowered studies”(11). 

Although his papers drew a lot of attention and created huge awareness on this topic, Ioannidis 

was by far not the first researcher describing problems in scientific findings. 

In his book “Little science big science” from 1963, 42 years before the article of Ioannidis, De 

Solla predicted that science would reach saturation under its own weight and that science is 

growing so quickly that it will reach senility (12). 

Eight years later, in 1971, Ravetz published his book on “Scientific Knowledge and its Social 

Problems.” (13).  He explains that science is lacking control. According to him, this happened 

because there was a transformation from little to big science, and science became a marketing 

product.  

In his opinion, this happened for two reasons. Firstly, researchers went from a Gemeinschaft to 

a Gesellschaft. Two very sociological, qualitative terms deriving from the German language, 

that are basically describing that a Gesellschaft is exposed to social norms, whereas a 

Gemeinschaft is more in the sense of interaction between researchers. A Gesellschaft has 

become an environment where corruption and falsifications are possible. As a second reason, 

he sees the industrialization of research itself, whereas the individual researcher is now working 

in a big team. However, since there is no product to present to customers, quality control is 

lacking or nonexistent in some areas. Finally, he indicates that science is coming to stagnation 
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and says that under hard job conditions, researchers are under a lot of pressure to publish and 

gain prestige. Manipulating data to get data published in high-impact journals is the logical 

consequence.  

Another big insight into this issue came when Brian Nosek started the reproducibility study and 

changed the direction of the discussion by putting a focus on irreproducible results. 

In 2015 Brian Nosek and his team of the Open Science Collaboration tried to replicate 100 

studies in the field of Psychology, published in the top three journals (14). In terms of p-values, 

only 36 studies had the same and were significant as to 97 in the original publication. Even 

though this study was conducted in the field of psychology, these findings shook the research 

community and brought up new questions. Now another problem was that reproducibility is not 

guaranteed even when data is shared. 

In an alternative study, Hardwicke and colleagues tried to reach methods reproducibility for 35 

papers from the journal Cognition. This endeavor proved to be difficult without assistance from 

the study authors and was even impossible for over one-third of the articles despite author 

assistance (15) . See Figure 1. 

 

Figure 1  Reproducibility rates in articles from the Journal Cognition   (15) 

31.5%37%

31.5% 

Reproducible

Reproducible with author
assistance

Not fully reproducible despite
author assistance
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This mediocre reproducibility also has consequences for the researcher themselves. Several 

surveys were carried out among scientists in biomedicine to see how they feel about research 

culture in their field (16, 17). In conclusion, the general feeling was that they are concerned and 

have critical views on the quality and validity of scientific research.  

 

c) Skepticism to the crisis narrative   

As an integral part of science, there are other opinions, and there is an ongoing discussion about 

the severity of the crisis. Several researchers are opposed to the idea of a reproducibility crisis.  

Penders and Janssens argue that “sloppy” science can be reproduced but is still lacking quality. 

At the same time, irreproducible science doesn’t mean that it is of bad quality. According to 

them, there are other causes to the crisis instead of bad quality research. They base their 

arguments on philosophical and sociological theories (18). 

Already Karl Popper argued that theories are not able to be verified but that one can only 

disprove a theory. According to his philosophy, irreproducibility is a chance for improving 

science. 

Kuhn has a different approach to the crisis and to science in general. He has a circular evolution 

in mind (Figure 2). He claims that there is something like normal science that entails pre-

science. Pre-science being the phase where there is not enough knowledge to fully seize the 

problems of a certain field and no ability to solve the issues. Normal science is built on the 

paradigms2 set in the pre-science phase, and the phase where problems are ignored. However, 

when problems appear there is a drift away from the model, which then, if not responded to, 

unrepairable or unsolved, will go into crisis. Kuhn says that once the normal science paradigm 

has entered crisis mode, it needs to run through the whole cycle, resulting in a revolution and a 

paradigm change (18-20). 

 

                                                           
2 Paradigm: Kuhn defines it as “universally recognized scientific achievements that, for a time, provide model 
problems and solutions for a community of researchers” 
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Figure 2 Kuhn cycle (20) 

The irreproducibility crisis would thus not be a problem but the result of natural development. 

Another skeptic of the reproducibility crisis is Daniele Fanelli, who says that reproducibility is 

not a binary outcome but rather a system-specific observation.  

In his piece from 2018, he explains why in his opinion, the “science in crisis” narrative is 

unjustified and even counterproductive as it might make early career researchers afraid of 

science and lead to anti scientific movements. 

For him, the crisis is not growing as opposed to what some researchers are suggesting (21, 22) 

. 

He goes by saying that small study bias is being made one of the reasons for this supposed 

crisis. However, this approach might be justified in some cases, such as if there has been careful 

planning. According to Fanelli, this bias is made up by meta-analysts who do not understand 

the context of the study. Furthermore, the non-publication of results might be justified as well 

since there are high costs of publishing included (23, 24).  

In his belief, this momentum should be described as a new opportunity or a revolution instead 

of a crisis. 
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Interestingly in this context is that other papers show higher estimations of reproducibility than 

the approach of Brian Nosek and his team. In some cases, reproducibility is proven to be as 

high as 60% across fields (25-28).  

Another viewpoint on this topic is coming from Jamieson, who is claiming that there are three 

ways of scientific news reporting: 1) good scientists producing breaking inventions, 2) immoral 

scandals of scientists, and 3) the science is broken narrative. The latter for her is a hoax as not 

science itself can be broken and is often wrongly negatively taken up by the media, which leads 

to downsizing science in general (29). 

Fiske et al. have the same opinion as Fanelli in the sense that there is no crisis, and if at all, that 

this is an opportunity for science. In 2016 they wrote the following: “First came a few tragic 

and well-publicized frauds; fortunately, they are rare—though never absent from science 

conducted by humans—and they were caught. Now the main concern is some well-publicized 

failures to replicate [...]. All this is normal science, not a crisis. A replication failure is not a 

scientific problem; it is an opportunity to find limiting conditions and contextual effects. Of 

course, studies don’t always replicate” (30)  

In a 2019 report titled Reproducibility and Replicability in Science, the National Academy of 

Sciences study committee also seemed to restrain the discussion of a replication crisis: “The 

advent of new scientific knowledge that displaces or reframes previous knowledge should not 

be interpreted as weakness in science” (31).  

Although these last arguments behold some truth, Sirmine Vazire argues that it is impossible to 

ask the public for a blank check and to build trust in science when there is no reason to do so. 

Furthermore, there needs to be a threshold until which errors can be accepted. If mistrust and 

fraud are normal, it is becoming a serious issue and can be behold against the whole community 

(32). 

As discussed, reproducibility and science-in-crisis narrative remains a highly debated topic that 

is not only limited to psychology or biomedical sciences anymore but has touched several other 

research domains. 
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d) Reasons for crisis  

When talking about reproducibility, the article of Munafò et al. Paper from 2017 needs to be 

brought into the discussion. If the crisis hadn’t been debated enough at that point in time, said 

paper pushed the boundaries in the different research domains and gave a broader overview of 

the problem. 

A team of researchers from different fields of science, including psychology, epidemiology as 

well as pre-clinical and clinical research, published the “Manifesto for reproducible science” 

(33) , where they present several challenges of reproducible science.  

In an ideal world, research follows the hypothetico-deductive model: a researcher generates a 

hypothesis based on existing literature, designs its research, collects data, and analyzes it, 

interprets the results, decides if his findings are meaningful, and finally publishes it (34).  

Unfortunately, things aren’t that easy in a real-life setting. 

Failure to control the threats in this model is a main part of the reproducibility crisis. 

Failure to control for bias when specifying hypotheses, low statistical power in study design, 

poor quality control, and p-hacking3 in data collection and analyzing and publication bias4 in 

disseminating the results are major issues (see Figure 3). These issues are underlined by the 

fact that positive results in published literature have increased over 22%from 1990 to 2007 (37). 

 

                                                           
3 P-hacking: when researchers try out several statistical analyses or data eligibility specifications and selectively 
report those that produce significant results (35) 35.Head ML, Holman L, Lanfear R, Kahn AT, Jennions MD. The 
Extent and Consequences of P-Hacking in Science. PLOS Biology. 2015;13(3):e1002106. 
 
4 Publication bias: failure to publish the results of a study, most likely due to lacking strength of the study 
findings. This non-publication introduces a bias which impacts the ability to accurately synthesize and describe 
the evidence (36) 36. Richards GC, Onakpoya IJ. Reporting bias 2019 [Available from: 
https://catalogofbias.org/biases/reporting-biases/, 36. Ibid. 
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Figure 3 Version of the hypothetico-deductive model and its threats in red (used under CC BY) (38) 

 

Other reasons for the misconduct and biases seem to be systematic. Some say that those in 

power are not interested in a change. To have a good position at a high-ranked university, 

publications in high-impact journals are important. However, usually, novel findings are 

necessary for this, including proven significance. 

These problems are not new and well known in biomedical research. Altman and Simera are 

showing that published literature from the early 20th century mentions poor research 

methodology in medical research (39) . 

Also, low statistical power in biomedical research has been described on several occasions. 

Whereas the accepted threshold for minimum power lies around 80%, Button showed recently 

that studies in the neuroscience literature have a median statistical power between 8 and 31% 

(40). A study by Dumas surveyed the statistical power in neurological, psychiatric, and somatic 

disease and found similar results. 50% of studies had statistical power in the 0 – 10% or 11 – 

20% range (41). 

Publication bias was described early in clinical research by Robert John Simes who found 

discrepancies in data reported to a cancer trial registry. He compared the data to the published 
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articles on the survival impact of two cancer therapies and found that results for the impact of 

the therapies either disappeared or were substantially less in the literature (42, 43). 

A more recent example is provided by Turner and colleagues on depression treatment.  They 

showed that 31% of a cohort of studies for antidepressant drugs registered and reported to the 

U.S. Food & Drug Administration (FDA) were never published. The literature included 94% 

positive articles, whereas the analysis of FDA documents only contained 51% positive studies 

(44). 

As stated above, besides problems Munafò and colleagues also indicate solutions to the 

problems in actual science (38).  

In their opinion, there need to be several improvements, like pre-registration or improving the 

quality of reporting to make science reproducible.  However, to promote transparency and Open 

Science, open methods and open data must be given and the new normal. 

Small study bias, underpowered sample sizes, statistical misinterpretation, p-hacking, or the 

publish-or-perish dogma might contribute to this problem. Nevertheless, this thesis will put a 

focus on the role of data sharing in the light of the reproducibility crisis.  

First, because addressing all points would break the scope of this thesis, and second because by 

sharing data, risks mentioned in the hypothetico-deductive model can be controlled or limited. 

Poor quality control and publication bias can be detected when data is openly available and p-

hacking, and thus indirectly HARKing, can be reduced when independent reanalyzes are 

possible with openly shared data. 

 

2. Data sharing in biomedical research 

a) Advantages of Data Sharing 

 

Data Sharing is crucial for reproducibility in research. It is the root of hypothesis planning and 

the base of research observations. Despite this fact, some researchers are still careful with data 

sharing. There is massive literature about both sides of the view. Below will follow positive 

opinions and, in a second step, concerns about data sharing. 
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Among several reasons, Ross and Krumholz claim that sharing data “maximizes the value of 

the collected data.” Thus, researchers can use the shared data for sequel analyses and provide 

new insights. Other researchers agree  and point out that there is a possibility of doing more 

digital comparative effectiveness research as clinical trial data becomes more open (45, 46). 

A perfect example of this was the SPRINT data reanalysis, an initiative launched by The New 

England Journal of Medicine trying to value data sharing in clinical trials. Therefore, the 

SPRINT trial data set, which compared intensive management of systolic blood pressure with 

standard management and was stopped early, was opened to investigators. The aim was to see 

if data sharing of a clinical trial data set could yield new findings. And it did (47). Over 100 

research teams from academia, industry, and agencies asked for the data and contributed to this 

project by submitting a new analysis. Three final winners were chosen. Several new clinical 

conclusions regarding benefits and risks for the different interventions could be drawn from 

already collected clinical data. This example demonstrates that research collectives can be 

mobilized to come up with novel findings from existing data sets (48). 

 

Another noted argument is that data sharing is helping to save money in the long run as no new 

initiatives must be formed if the data is available. The same goes for patients. There is no need 

to recruit more patients to check if the same hypothesis is confirmed. At this point, the Open 

Science initiatives are a sign of respect for the patients who consented to participate for them.  

A further opinion on data sharing is the point of self-correction. Data sharing allows researchers, 

patients, and the general audience to reproduce the results and thus have more confidence in 

the results, which is the primary goal of this thesis. This can be extrapolated to research in 

general, not only the biomedical field.  

Examinations are essential and trust enhancing in cases where fraud is supposed. This goes for 

the critical observation of drugs or other therapies that impact the lives of people. Moreover, 

this point would help get the reproducibility crisis back in control. 

In a recent survey , trialists state that they want to promote the culture of Open Science with 

data sharing (49).  

Data sharing is also named for some because of academic benefit and recognition, and indeed 

a study from 2020 has shown that data sharing goes with higher citation rates (50).  

Furthermore, patients feel reassured when they know that their participation in a trial has helped 

to advance scientific discoveries in their field. Only a minor part is unsure or opposed to data 
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sharing. Furthermore, patients affected by rare diseases are more willing to share their data with 

non-profit organizations (48) . 

 

Data sharing will never be perfect, and de-identification might happen. However, these risks 

are lower than imagined, stresses Barth-Jones as he says that identification issues are marginally 

small compared to the whole data sets out there (51).   

Also, data sharing has come a long way with guidelines like the HIPAA Safe-Harbor guidelines 

that make de-identification in 18 points mandatory (52). 

As to everything, there is a trade-off in data sharing: the more information shared, the better, 

but this comes with disclosure problems. However, if too little data is shared, bad decisions or 

lousy science results. 

Another argument for data sharing comes from Ioannidis, who says that errors in datasets are 

ubiquitous, and we must accept this fact and create a culture of awareness and not of attacks. 

Only then a fruitful data sharing culture can grow (53). 

 

b) Risks of Data Sharing  

Often investigators hesitate to share data since they are afraid that their data is misused. Many 

fear that secondary analyses might be misused, and external validity might not be given as data 

is too hard to interpret for outsiders. Concerns for data sharing from investigators’ sites are 

related to appropriate data use, such as misleading secondary analyses. Also, concerns related 

to publishing their results are typical. Investigators are afraid someone else might take the data 

and not get credit for it. 

Another point is that data sharing is a cost-intensive process. In order to be shared, data must 

be formatted, checked, re-written. Resources, personal and costs, need to be gathered. 

If a researcher wants to share biomedical data with his peers, several other obstacles could be 

hindering the process. Informed consent forms need to be signed to assure that the patients 

agree with sharing their personal information. Furthermore, privacy and confidentiality issues 

need to be organized. This goes especially for rare diseases where patients are eager to share 

data to advance the healing of their disease (54). 
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At the same time, there are risks such as identification of patients, which is particularly critical 

in these groups of patients. 

In a survey, half of the patients also said that they are afraid to share their data because it might 

be shared with third parties or used in a different context that they do not want it to be used 

(54). This is presumably one of the reasons why patients attended by rare diseases are more 

willing to share their data with non-profit organizations. 

Some argue that if there is an obligation to share data, research teams from low- and middle-

income countries that are already disadvantaged will be more penalized by these measurements. 

The publishing costs would rise, and the file-drawer problem could become even worse. The 

latter was the crucial point the 2017 ICMJE data sharing policy was finally not mandatory but 

instead became a declaration of whether or not data is shared (55).  

A team from Clinical Study Data Request, a data sharing platform for clinical trials, wrote that 

it is an "expensive and resource-intensive task for trial sponsors to provide access to data 

through this managed access model when it involves secure analysis environments with the 

licensed software." Furthermore, they argue that over half of the studies were never being 

requested and that more initiatives needed to happen to foster data reuse (56).  

This analysis imposes the further question of whether the difficult efforts made for data sharing 

were unnecessary and are not appreciated by the research community. 

 

c) Importance of Data Sharing during a Global Pandemic/ COVID 19 

 

If the advantages of data sharing have not become clear enough, the pandemic has brought more 

dynamic into the discussion. When discussing Open Science, the current pandemic is an 

example of the impact and importance of data sharing. 

On Jan 30th 2020, the WHO announced the COVID-19 infection as an outbreak of Public 

Health Emergency of International Concern (57). 

The genome sequence data of the virus was shared quickly through a public access platform. 

Thanks to this approach, the international research community could present a vaccine in less 

than a year (58).  
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Many are now using the argument that with the COVID-19 Pandemic, data sharing has entered 

a new phase (59). 

What followed was a wave of research in the form of clinical trials and other research on the 

new virus. A recent analysis from August 2021 investigated that there were 210 183 COVID-

19-related publications from 720 801 unique authors(60) . 

A team of researchers found that out of 535 COVID pre-prints, only 21% of authors included 

availability statements, and even less, 11%, made the data available in external repositories 

(61). 

This research was conducted in March 2020 and data mainly came from China. 

For an update, Weissgeber and colleagues screened 6,570 COVID-19 pre-prints from medRxiv 

and bioRxiv posted before July 2020. 13.6% of pre-prints shared data openly, and 14.3% of 

authors shared their code, showing similarly low rates in data sharing as the first study (62). 

In a recently published article in BMC Clinical Trials, Li and colleagues surveyed COVID-19 

trial registrations and articles for data sharing statements. They screened 924 registrations on 

ClinicalTrials.gov registered before June 30th, 2020, and COVID-19 publications were 

searched in May 2020. From the screening they found that 47.6% of trialists declared they were 

not willing to share. In twenty-six publications, 80.8% of authors did not include a data sharing 

statement (63). 

Research activity in biomedical research has risen during the pandemic, but that did not 

positively correlate with good research quality and data sharing. Such, the pandemic has shed 

light on the dishonest practices of some researchers. 

A prominent example of lack of data sharing when it came to vaccines, was the Sputnik V 

vaccine.  

Several researchers found uncertainties in the data coming from the Phase I / II trial (64).  

When the authors published interim results of the Phase III trial, inconsistencies were again 

found (65, 66). Nonetheless, data for this trial will only be available at the end of the study and 

only after demanding it from the security department of the Russian government. These barriers 

are diminishing chances to obtain the data as an independent researcher and stand in contrast to 

transparency (67).   

However, not only the Sputnik vaccine is lacking transparency. 
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After new revelations that there were problems during the Phase III trial from Pfizer, data for 

the respective vaccine will not be accessible until 2025 (68-70) . 

In their piece in BMJ Evidence-Based Medicine, Doshi and colleagues show that limited 

transparency comes with all COVID-19 vaccines. Furthermore, the most used vaccines, 

Sinopharm and Sinovac, lack openness, and experts are unsure if this will change since the 

FDA, or the European Medicines Agency (EMA) has not given authorization for these two 

agents. 

In his piece, “COVID-19 and the research scholarship ecosystem: help!”, David Moher sheds 

a negative light on the way data sharing has been handled in the first year of the pandemic (71). 

Furthermore, he suggests that publishers and funders should incentivize more open research 

practices. 

Another event that shook the biomedical world during the pandemic was the Surgisphere 

scandal.  

In 2020, Surgisphere claimed to have patient data from the hospitals, from which two articles 

were produced. In May 2021, an article published in The Lancet demonstrated higher mortality 

in hospitalized patients infected with COVID-19 and treated with Hydroxychloroquine. Two 

other articles followed, one pre-print and one article published in The New England Journal of 

Medicine. The issue with these articles was that the data probably never existed. Researchers 

expressed their concerns by pointing at high effect sizes in the articles, number of deaths 

exceeding national registries, and peer-reviewers never seeing raw data (72).  

However, not all outcome of COVID-19 was terrible, and more awareness of the importance of 

data sharing was created. Early in the pandemic, in January 2020, one of the biggest funders, 

Wellcome trust, enforced the need for data sharing (73).  

Publishing houses like Elsevier and Springer Nature made research articles related to COVID-

19 available on open access (74, 75) and the WHO Bulletin made data of COVID-19 research 

articles available (59). 

Moreover, several initiatives for data sharing came up during the crisis. One was the Data 

Sharing Working Group that “was convened to facilitate and promote effective, ethical, and 

equitable data sharing across geographies and disciplines.”(76) 
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The actual aftermath of this pandemic regarding data sharing will probably influence research 

still many years later and will need careful analysis of what achievements were made or 

ultimately missed. 

 

d) History of Data Sharing in Biomedical Journals 

 

If transparency and reproducibility issues in research found their way early in domains like 

psychology or physics, it took a longer run in biomedical. 

Some experts also see the actual crisis in part by the journals that did not act strict enough on 

these issues for a long time. 

Already in 2009, Chalmers and Glasziou estimated that around 85% of research funding in 

biomedicine was wasted, which could have been avoided. According to them, this is due to 

irrelevant questions in research, unappropriated designs and methods, unpublished research, 

and biased or unusable study reports (77).   

Nonetheless, retractions in this field are rare. However, there is a strong positive correlation 

between the impact factor and retractions (78) .  

Reasons for this correlation can only be assumed. One could be that authors might take more 

risks to falsify or manipulate data to get their results published in a high-impact journal resulting 

in higher chances of promotion and grant funding. However, another explanation could be that 

articles in those journals have more visibility, as Ioannidis said (10) and thus mistakes or 

irregularities might be detected faster.  

Data sharing policies and top journals in biomedicine remain a complex story. 

In 2007, Annals of Internal Medicine was one of the first major medical reviews to encourage 

data sharing but not require it. Since this date, the editors require a reproducible research 

statement to be included for clinical trials. This reproducible research statement indicates 

“whether the study protocol, data, or statistical code is available to readers, and under what 

terms authors will share this information.” (79). 

The BMJ introduced a similar policy in 2009 (80), which then became mandatory in 2013 for 

clinical trials from drugs and medical devices (81)  and finally mandatory for all research in 

2015 (82). 
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In March 2014, data sharing became mandatory for all research articles in the PLOS journals 

(83). 

The International Committee of Medical Journal Editors (ICMJE), formerly known as the 

Vancouver Group, is one of the prominent leaders and predominant policymakers in biomedical 

research. 

In 2016 they discussed the possibility of introducing a data sharing statement in journals 

following their guidelines, aware of the issues found in biomedical literature. As stated above, 

this approach was intended to mean mandatory data sharing first but then became a voluntary 

option in the final statement 2018. Authors should include a data sharing statement in their 

article and state its availability without making it mandatory (84, 85).  

In the last decade, much research has been surveying data sharing practices and their status quo 

in biomedical research. 

One of the first extensive studies surveyed 441 journal articles in the biomedical area, published 

between 2000 – 2014. The multicenter research team found that most studies did not share 

protocols, raw data or disclose funding or potential conflicts of interest (86). 

Rerunning the screening from 2015 – 2018 revealed that although there have been 

improvements, especially in data sharing, more progress is needed (87). 

Even in the BMJ, one of the top medical journals with strong transparency, data sharing was 

low in articles published from 2009 to 2015. Only 7/157 data sets were accessible when data 

was asked (88).  

In a study from 2018, Naudet and colleagues tried to see if they could reanalyze primary 

outcomes from 37 clinical trials published in PLOS Medicine and the BMJ. They received data 

from 17 (46%) trials and managed to reanalyze 14 (82%) of them successfully. Two contained 

errors, but similar conclusions were obtained, and for the last one, there was not enough 

information given to reproduce the analysis (89). 

In a recent study from Serghiou et al., they screened 2.75 million articles from the biomedical 

literature from 1959 – 2020 from 10 570 different journals to find out how transparency 

indicators progressed over the years. Data sharing statements were found in only 8.9% of 

articles and the rates did not increase as much as they did for the conflicts of interest’s 

declaration and funding disclosures (90). 
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Malički could prove with his recently published paper that Open Science instructions in journals 

for authors increased. In the study, he and his team studied instructions for authors from 1987 

– 2017 and checked how often data sharing was addressed. He showed that  from 1991 to 2010, 

there was an increase in addressing data sharing from 15% to 88% in the top journals (91).  

In a survey from 2020, Hamilton and colleagues found that only 15% of medical journal editors 

stated that their journals had declared mandatory data sharing policies (92). 

Despite several policies, data sharing in journals is still an issue that needs to be addressed and 

further advanced. 

 

e) Initiatives for Data Sharing and for transparency in biomedical research 

 

Despite problems and issues with data sharing in biomedical research and journals, many 

initiatives have been started to improve the situation. 

Jennifer Miller has created Good Pharma Scorecard, an initiative to survey ethics performance, 

including clinical trial transparency and data sharing criteria within pharmaceutical companies.  

Research shows that around a quarter of the biggest pharmaceutical companies met the data 

sharing item of the Scorecard. The median company data sharing score was 63%. After giving 

the companies feedback and the chance to improve their policies to meet this measure, three 

companies made amendments, raising the percentage of companies in full compliance to 33% 

and the median company data sharing score to 80%. This also shows that public pressure can 

help advance data sharing from clinical trials (93, 94). 

In addition, there has been a significant shift in data sharing with several platforms coming up. 

These platforms were launched to act in the calls for improved transparency in clinical trial data 

sharing and making data available to researchers.  Some of the websites provide access to study 

data without restrictions. However, most of these platforms require the data requestors to submit 

a formal research proposal before receiving the de-identified IPD. 

One of the first was Yale Open Data Access Project (YODA), run by Yale University since 

2011. Other platforms emerged quickly, such as Vivli and Clinical Study Data Request (CSDR).  

Nowadays, YODA, CSDR, and Vivli are the biggest platforms in terms of clinical trial data 

sharing; the three together contained around 8000 RCTs in 2020 (95).  
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Initiatives to make a sustainable future for IPD data sharing were in need. A stakeholder 

meeting of more than 40 leaders in institutions that deal with clinical trial data management 

proposed ten principles and 50 recommendations on how to share data from Clinical Trials 

properly. 

Amongst other things, they emphasize the importance of making data sharing a reality (e.g., 

through cultural change or academic incentives). Other areas are the consent for data sharing, 

protection of trial participants, data standards, rights, types and management of access, data 

management and repositories, discoverability, and metadata. These rules should help to 

promote data sharing and reuse among researchers (see Figure 4) (96). 

 

 

Figure 4 Principles for clinical trial data sharing (used under CC BY-NC) (96) 

 

Another big step towards tackling these issues has come from the Center for Open Science, 

established in 2013. The center has developed several guidelines in the following years, 

amongst others the Transparency and Openness guidelines (TOP). The latter should help to 

promote transparency and reproducibility policies in academic journals. There are eight 

transparency standards (such as sharing of materials, data sharing, etc.) covered by the 

guidelines in four different levels of severity. The journals decide for themselves what stage of 

openness they want to apply. In a new project, the Center created a tool to monitor how journals 

adopt the TOP guidelines (97) .   
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Another solution that was established were Open Science badges. The main goal is to 

demonstrate that a scientific article applies Open Science practices. If a researcher is sharing 

his data, a badge will appear on the article, indicating that data is available.  

Some studies have been conducted to find out the impact of this intervention. There are contrary 

findings regarding this measure; while an intervention in the journal Psychological Science had 

a positive effect and data sharing increased by more than tenfold, a study in BMJ Open showed 

no effect (98, 99). 

This contrast might be due to the different research domains, whereas Psychology is more 

advanced and exposed to Open Science and transparency. Furthermore, patient confidentiality 

might be more critical in the biomedical area than in psychology. 

A similar proposal came from Bielekova and Brownlee, discussing a new set of scores to 

improve biomedical research. Besides a methods score and a societal impact score, they suggest 

giving out a reproducibility score to scientific papers (100). 

Since research institutions are a part of this crisis, initiatives should not exclude them, and 

universities should rethink how to act appropriately and hire researchers substantially. 

Moher and colleagues have addressed these issues by including other aspects when hiring 

scientists for promotion. They recommend assessing Open Science practices used by the 

researcher when it comes to tenure or promotion (101). 

In the Hong Kong Principles, a petition for fostering research integrity, researchers are 

proposing five principles (responsible research practices; transparent reporting; Open Science 

/open research; valuing a diversity of types of research; and recognizing all contributions to 

research and scholarly activity) to assess researchers for scientific jobs (102). 

Noteworthy, Dan Quintana proposes that undergraduate students reanalyze studies instead of 

creating new hypotheses. He argues that most traditional undergrad research projects are never 

published due to low statistical power and unwell formulated research questions. A replication 

approach could solve these problems and educate students on Open Science practices (103).  

Another central role play funding agencies. They have a meaningful impact on data sharing 

since they make the rules for the researchers, they are giving money. They can decide if the 

funded research needs to be published in open access and if the data must be shared with the 

public.   One of our studies shows that there is room for improvement.  38% of non-commercial 

funding and 41% of commercial funders have a data sharing policy (104). 
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Although journals have already been addressed, new formats and new initiatives have come up. 

The following examples focus less on data sharing and more transparency and Open Science in 

the publishing system. 

As such, pre-prints, not peer-reviewed articles and uploaded prior to publication and to peer-

review, have become very popular in research culture. This is advantageous for researchers 

since articles can be shared before official publication and beneficial for readers since pre-print 

platforms are free to access. On the other hand, there are risks with this format as it is not peer-

reviewed, meaning that unscientific and even unethical research can be shared with the public 

pretending to be inclusive of qualitative standards. Although not improving data sharing, this 

approach still fosters transparency in science. 

Another initiative that appears in Chapter IV in this thesis is Registered Report, a new form of 

publishing made possible by Chris Chambers. Approaches differ in detail from journal to 

journal, but in general, in the first step, the authors are writing a protocol including introduction 

and background and presenting the methodological design of the study. This is peer-reviewed, 

like a regular submission. In a second step, data collection and discussion of results are added. 

After this stage, there will be a second peer-review before final publication. If changes in 

methodological approach apply, rejection is possible.  

A more descriptive scheme is pictured below (see Figure 5). 

 

 

Figure 5 Steps of a registered report approval (used under by CC-BY ND) (105) 

Advantages of this new form are control of publication bias, starkened transparency, and a peer-

reviewed approach that will help to make data analysis easier. 

On the other hand, this approach can be time-intense and might not suit every research project. 

Furthermore, quality depends on the peer-review and the methodological approach since a 

project recorded as a registered report itself does not guarantee quality or rigor. 
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When discussing journals and publishers regarding reproducibility and transparency crisis, 

some researchers are even arguing for the dissolution of academic publishers. 

They argue that large publishing houses possess articles, data, and code and that the power 

should be given back to the research institutions and to researchers interacting with each other 

(106).  

It will be interesting to see if the initiatives named above will bring change to Open Science 

and, if so, to which extent and at what pace.  

 

3. Clinical trial data sharing in Regulatory settings 

Despite a clear shift in transparency in biomedical research, the question remains:    

Do the patterns of irreproducibility and lack of transparency show up in trials for drug approval 

as well? 

One report that raised the alarm in terms of drug approval and transparency was the case of 

China’s State Food and Drug Administration (CFDA). According to a source, 80% of clinical 

trials were substandard. The agency hired around 300 staff members to run a one-year 

investigation to ensure the standards are met and to verify dossiers of clinical trials sent to the 

agency for marketing authorization. After examining data for 1622 drugs, their final report 

contained that severe issues, including falsifying or fabricating data, were found in the 

marketing authorization documents (107). 

If this report might have raised issues in the Eastern hemisphere, the Western world (especially 

the USA and Europe) had to fight with their own issues. 

One of the first studies that concerned stakeholders was Begley’s study describing that only six 

out of 53 so-called landmark pre-clinical studies were to be reproduced. Although the authors 

describe that this difference might come from altered techniques and distinctive machines used, 

researchers found proof in what was long supposed regarding pre-clinical drug research (108) 

.  

Another example confirmed these findings. The results were contradictory to the journal articles 

in 43 out of 67 oncology and cardiovascular target discovery studies from Bayer (109) .  
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Aware of the problem, two organizations representing the biopharmaceutical companies, 

Pharmaceutical Research and Manufacturers of America (PhRMA) and the European 

Federation of Pharmaceutical Industries and Associations (EFPIA), published a joint statement 

that intends to foster data sharing. For them, responsible data sharing is a must but needs to be 

in line with the principles of safeguarding patients' privacy, respecting the integrity of national 

regulatory systems, and maintaining incentives for investment in biomedical research (110).  

Despite this commitment from 2013, low rates for data sharing were found in an audit for 

clinical trials on medicines sponsored by the pharmaceutical industry published between 1 July 

2015 and 31 December 2015 in the top 10 general and internal medicine journals. For only 9/61 

(15%) trials, data were available (111). 

Moreover, even if data is available, published reanalyzes are still sparse (112). 

Nonetheless, some reanalyzes showed different results than the original article. One of the more 

famous examples is the “Restoring Study 329” by Le Noury et al., which contradicted the initial 

publication, a trial for depression that was already known to be misreported. The reanalysis 

found that the harms were much higher in the active drug than in the placebo group and that 

there was no clinical significance for superiority against placebo (113). 

Essentially for the studies mentioned above, the pharmaceutical industry now requests services 

to replicate scientific studies. Mainly because money is an essential factor when designing a 

new drug. If neither robustness nor replicability for previous studies is not given, the drug agent 

in question is not a good investment for the company in the long run (114). 

To advance this topic, the EMA released its policies 0043 and 0070. Policy 0043 active from 

2010 should make all documents ever received from the agency available on request (115). 

Policy 0070 went a step further to proactively publish Clinical Study Reports from 2015. A 

second stage foresees the sharing of Individual Patient Data (IPD) of the respective trials. Due 

to Brexit and the relocation of the EMA to the Netherlands, additional developments of the 

second stage have stopped (116).  

Concerns about decisions of the EMA remain. 

Non-disclosure of data raises concerns about the standards of research integrity of the European 

authority. This has been observed for the vaccines developed during the COVID-19 pandemic 

(70, 117). 
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Therefore, rests the question: Are trials that are part of marketing authorization applications 

reanalyzed by the agency?  

An official email exchange with the staff of the agency confirmed that the EMA is not, unlike 

the FDA, trying to reproduce the results of the data and, if in doubt, is asking for reanalyzes 

from the sponsor itself (118). 

Nonetheless, in a recent survey that compared the drug agencies of three regions, Health 

Canada, the FDA, and the EMA, the latter is more innovative and transparent than its American 

opponent, the FDA. Furthermore, the study found that the FDA lags behind the two other 

agencies in transparency for not publishing their clinical study report proactively (119).  

Drug regulation has come a long way regarding transparency. Nevertheless, there is still a long 

way to achieve full transparency, if ever reached.  
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4. Reproducibility in Therapeutic Research Project and Thesis 

objectives  

 

a) Project ReiTheR 

 

This thesis is part of a project funded by the French National Agency for Research (ANR). 

The idea is to have two PhD students working on similar tasks that complement each other. 

One PhD student is investigating the data sharing policies of funders of clinical trials and, in a 

second step, the inferential reproducibility of Phase III Clinical Trials that can be found on 

major data sharing platforms. 

The second PhD student, the author of this thesis, focuses on how data sharing policies are 

embedded in biomedical journals that follow the ICMJE guidelines. In a further project, 

reanalyzes of clinical trials that led to a marketing authorization inside the European Union are 

conducted.  

Involved in a multi-functional group, this project should give clearness and better understanding 

to which extent data sharing is advanced in therapeutic research. 

 

b) Objectives of this thesis 

 

In this thesis, four research questions are approached: 

1. Are Data Sharing agreements in journals that follow the ICMJE guidelines part of the 

author instructions and in the publication outcome? And if so, to which extent? 

2. What is the Status Quo of Data Sharing in biomedical literature? 

3. Can we get the data and reproduce the primary outcomes of 62 pivotal trials that were 

part of marketing authorizations assessed by the EMA? 

4. How to integrate Open Science into drug approval? 
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1. ABSTRACT 

 

Objective  

To explore the implementation of the International Committee of Medical Journal Editors 

(ICMJE) data-sharing policy which came into force 1st of July 2018 by ICMJE-member journals 

and by ICMJE-affiliated journals declaring they follow the ICMJE recommendations. 

Design  

A cross-sectional survey of data-sharing policies in 2018 on journal websites and in data-

sharing statements in Randomized Controlled Trials (RCTs) 

Setting  

ICMJE website; PubMed/Medline 

Eligibility criteria  

ICMJE-member journals and 489 ICMJE-affiliated journals that published an RCT in 2018, 

had an accessible online website and were not considered as predatory journals according to 

Beall’s List. One hundred RCTs for member journals and 100 RCTs for affiliated journals with 

a data-sharing policy, submitted after 1st of July 2018. 

Main Outcome Measures 

The primary outcome for the policies was the existence of a data-sharing policy (explicit data-

sharing policy, no data-sharing policy, policy merely referring to ICMJE recommendations) as 

reported on the journal website especially in the instructions for authors. For RCTs, our primary 

outcome was the intention to share individual participant data set out in the data-sharing 

statement. 

Results 

Eight (of 14; 57%) member journals had an explicit data-sharing policy on their website (3 were 

more stringent than the ICMJE requirements, 1 was less demanding and 4 were compliant), 5 

additional journals (35%) stated that they followed ICMJE requirements and one (8%) had no 

policy online. In RCTs published in these journals, there were data-sharing statements in 

98/100, with expressed intention to share individual patient data reaching 77/100 [77%; 95% 

confidence interval: 67% to 85%].  
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One hundred and forty-five (of 489) ICMJE-affiliated journals (30 % [26% to 34%]) had an 

explicit data-sharing policy on their website (11 were more stringent than the ICMJE 

requirements, 85 were less demanding and 49 were compliant) and 276 (56% [52% to 61%]) 

merely referred to ICMJE requirements. In RCTs published in affiliated journals with an 

explicit data-sharing policy, data-sharing statements were rare (25%) and expressed intentions 

to share data were found in 22% [15% to 32%].  

Conclusion 

The implementation of ICMJE data-sharing requirements in online journal policies was 

suboptimal for ICMJE-member journals and poor for ICMJE-affiliated journals. The 

implementation of the policy was good in member journals and of concern for affiliated 

journals. We suggest the conduct of continuous audits of medical journal data-sharing policies 

in the future. 

Registration 

https://osf.io/n6whd/ 
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2. INTRODUCTION 

 

In June 2017, the International Committee of Medical Journal Editors (ICMJE) published a 

statement supporting data-sharing practices for randomized controlled trials (RCTs). For the 

ICMJE, “there is an ethical obligation to responsibly share data generated by interventional 

clinical trials because trial participants have put themselves at risk” with the aim to “maximize 

the knowledge gained” from these outstanding studies. The ICMJE policy requires a specific 

data-sharing statement to be included in each newly submitted paper (and pre-specified in study 

registration) containing clinical trial data, starting from 1st of July 2018 (120) .  

Examples of medical journals having a data-sharing policy before this requirement were few. 

In 2007, the Annals of Internal Medicine was the first journal to adopt a policy encouraging 

data-sharing practices (121). The BMJ adopted a similar policy encouraging data-sharing in 

2009 (80) and went further by making it mandatory in 2013 for drugs and devices (81)  and for 

all RCTs in 2015 (82). PLOS journals also adopted a strict policy enforcing RCT data-sharing  

in 2014 (122). No other leading general medical journal has had a specific policy for data-

sharing in RCTs.  

The ICMJE policy could therefore have an impact on biomedical literature as a whole. At the 

time of the present research, the ICMJE included 2 organizations (the U.S. National Library of 

Medicine and the World Association of Medical Editors) and 14 journals, including leading 

medical journals such as The New England Journal of Medicine (NEJM) and The Lancet. In 

addition, about 5000 affiliated journals follow the ICMJE recommendations (123). As this 

policy is now in place, it is important to monitor its implementation both in the ICMJE-member 

journals and in the ICMJE-affiliated journals. It is also important to assess intentions to share 

data among RCTs published in the journals implementing a data-sharing policy. 

 

3. METHODS  

 

The protocol was registered before the start of the research on the Open Science Framework 

(OSF) (https://osf.io/n6whd/). This study was divided into two parts: a survey of journal data-

sharing policies and a survey of published RCTs. 

 

https://osf.io/n6whd/
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Survey of journal data-sharing policies 

Journal eligibility criteria 

Two samples of journals were surveyed: the 14 ICMJE-member journals at the time of the 

present research (Annals of Internal Medicine, British Medical Journal, Bulletin of the World 

Health Organization, German Medical Journal, Ethiopian Journal of Health Sciences, Iranian 

Journal of Medical Sciences, JAMA, Journal of Korean Medical Science, New England Journal 

of Medicine, New Zealand Medical Journal, PLOS Medicine, The Lancet, Medical Journal of 

Chile, Danish Medical Journal) and a sample of ICMJE-affiliated journals listed on the ICMJE 

website on 1st of February 2019. Journals were included if they 1/ had medical content, 2/ had 

published at least one RCT in 2018, 3/ published articles in English, German, French, Spanish 

or Portuguese, 4/ had an accessible online website and 5/ were not considered as "predatory" 

journals  according to Beall’s list (124). 

 

Search strategy for journals 

The ICJME website was consulted to copy the list of all ICMJE-member journals and all 4892 

ICMJE-affiliated journals. In cases where an affiliated journal changed its name after 

registration on the ICMJE website (e.g. Cancer Immunity changed to Cancer Immunology 

research), we checked whether the new name was also listed on the ICMJE website. If this was 

the case, the journal was considered as non-eligible and was marked as “discontinued”; 

otherwise it was included.  

All 4892 ICMJE-affiliated journals were assessed for eligibility in random order obtained using 

the statistical software R (9). The results of the randomization can be found in the 

supplementary (10).  The first 489 journals that met the selection criteria (10 % of affiliated 

journals) were included, enabling us to estimate a proportion of 50 % (the worst-case scenario 

for precision estimates) with a precision (boundaries of the 95 percent confidence interval) of 

about ± 4.5 %. 
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Journal selection and data extraction 

A data extraction sheet and a data extraction explanatory document were developed (10). Three 

investigators in charge of data extraction (MS, LC, HG) had a one-hour training session and 

completed a pilot data extraction on 10 journals. For each journal, pairs of these investigators 

independently assessed eligibility (with reasons in case of non-eligibility) and extracted the data 

on all the outcomes listed below from each included journal. Disagreements were resolved by 

consensus or in consultation with a third investigator (FN).  

 

Outcomes describing journal data-sharing policies 

Our primary outcome was the existence of a data-sharing policy (specific data-sharing policy, 

no data-sharing policy or a policy merely referring to ICMJE requirements) as reported on the 

journal website. This outcome had to be changed from our initial protocol due to non-response 

to our emails from the sample of ICMJE-affiliated journals, and because some email addresses 

could not be identified. The change took place before any analysis. For journals mentioning a 

specific data-sharing policy on their website,  the explicit statement and various features of 

these policies were collected: the start date of the data-sharing policy, the type of policy: ICMJE 

compliant, more stringent than required by ICMJE or less demanding than required by ICMJE 

(for instance, less demanding could mean that there was no obligation for a data-sharing 

statement and more stringent could mean that data was to be shared with other researchers). We 

also noted whether the policy was limited to clinical trials. Furthermore, the indication of one 

or more preferred data-sharing platform (and if so, which ones), the existence of any sanctions 

in case of non-compliance with data-sharing (and if so, what they were).  Any existing policy 

demanding trial registration was also extracted (and if there was one, we noted whether it 

mentioned prospective registration). The following features of the journals were also extracted: 

indexed on PubMed, ISSN (print ISSN), the number of issues per year, 2017 Journal Impact 

Factor (JIF), publisher or publishing group, gender of the editor in chief (“men”, “women” and 

“both genders represented ” if the co-editors in chief were men and women), the country of the 

journal head office, the wealth category of the country where the editorial office is located as 

defined by the World Bank (125) and the research domain covered by the journal.  
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Survey of RCTs published in journals with a data-sharing policy 

RCT eligibility criteria 

Eligible studies were RCTs published after 1st of January 2019 in a journal with an explicit 

data-sharing policy reported on its website and submitted after 1st of July 2018.  Any RCTs, 

including cluster trials and crossover trials, non-inferiority designs and superiority designs, 

were included. No distinction was made in terms of patients, interventions, comparators or 

outcomes. We had originally planned to include only Phase-III studies but realized that this 

information was not always reported in the publications. Consequently, no distinction in terms 

of study phase was applied.  

 

Search strategy for RCTs published in journals with a data-sharing policy 

ICMJE-member journals were contacted to gather the list of RCTs they published after the 1st 

of January 2019. This approach was not used for ICMJE-affiliated journals, due to non-response 

from most of the 14 member journals and because it was not possible to identify an email 

contact for all these journals. The following search strategy was applied to retrieve all RCTs. 

For journals indexed on PubMed/Medline, a search algorithm to identify RCTs was developed 

with the help of a librarian from Rennes 1 University using the Cochrane sensitivity maximizing 

approach (126) and  adding further key words. The exact filter can be found in the 

supplementary material (10). For journals not-indexed on PubMed, an investigator (MS) 

screened all articles published after 1st of January 2019 to identify RCTs.  

All identified RCTs published in ICMJE-member journals with a data-sharing policy were 

assessed in random order using R (10). The first 100 that met our selection criteria were 

included, enabling us to estimate a proportion of 50 % (the worst-case scenario for precision 

estimates) with a precision (boundaries of the 95 percent confidence interval) of ± 9.8 %. We 

followed the same approach to include a second sample of 100 RCTs published in ICMJE-

affiliated journals. 

 

RCT selection and data extraction 

As for the journal selection procedure, a data extraction sheet and a data extraction explanatory 

document were developed (10). Three investigators (MS, LC, JG) had a one-hour explanation 
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and were trained via a pilot data extraction performed on 10 RCTs. For each RCT, two of these 

investigators independently assessed eligibility (giving reasons in case of non-eligibility) and 

extracted the characteristics listed below from each included published article. Disagreements 

were resolved by consensus or in consultation with a third investigator (FN).  

 

Outcomes describing data-sharing statements in published RCTs 

For this part of our survey, the primary outcome was the intention to share individual patient 

data (IPD) expressed by the authors in the data-sharing statement (yes/no/unclear). The latter 

of the three response options, “unclear”, was recorded if the statement was written in a general 

tone without specifically mentioning that IPD would be available. Secondary outcomes were 

trial registrations: the existence of trial registration, prospective trial registration and 

registration of a data-sharing plan. If the trial report mentioned the existence of a data-sharing 

plan, we checked whether there was an intention to share data or not. For data-sharing under 

the secondary outcomes, we checked whether a statement was included in the article, whether 

the statistical code was shared, whether other data sets than IPD were available and if not, 

whether only parts were available, and lastly whether any other documents were available. 

Under the section data accessibility, we checked to see whether there was a time restriction for 

data access, whether it was freely accessible or with restrictions, whether the data could be used 

for any type of purpose, and if not, whether there was an aim for data use suggested in the 

proposal, whether there was a specific access mechanism and whether data requests were 

reviewed by an independent committee. 

 

Statistical analysis 

All outcomes were reported and described by counts, percentages, means (or medians) and 

standard deviation (or range) with all the corresponding 95 % confidence intervals. If available, 

verbatim quotes from journal policies were used (qualitative analysis). For ICMJE-affiliated 

journals, the features of the included journals were compared as part of an exploratory analysis 

between journals with and without a specific data-sharing policy using univariate logistic 

regression and multivariate logistic regression (which included covariates identified in 

univariate analyses at a threshold of p < 0.25). Due to complete separation observed in our data 

set,  the “brglm” package in R was used, implementing the bias-reduction method developed 
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by Firth (127). All analyses were conducted using R version 3.4.1. The supplementary material 

on the OSF page contains our statistical analysis plan (10). 

Changes to the initial protocol 

The definition of our primary outcome for journal policies was changed. Indeed, we had initially 

planned to contact journals with no explicit policy on their website to ask them about the 

existence of a data-sharing policy. Due to non-response from some of the 14 member journals, 

and because it was not possible to identify an email contact for all ICMJE-affiliated journals, 

we decided to rely only on the information presented on the journal websites. Some minor 

changes were also made. Our selection criteria were simplified, so that only one RCT in 2018 

was necessary (instead of 3 over the last three years as initially planned).  No distinction was 

made for RCTs in terms of clinical phase. Lastly, we added a secondary outcome, whether or 

not data requests were reviewed by an independent committee. 

Patient and public involvement 

We had no established contacts with specific patient groups in this project. No patients were 

involved in defining the research question or the outcome measures, nor were they involved in 

the design and implementation of the study. There are no plans to involve patients in the 

dissemination of results, nor will we disseminate results directly to patients. 

 

4. RESULTS 

 

Survey of journal data-sharing policies 

Journal selection and data extraction 

Search for and extraction of eligible journals started on 1st of February 2019, ended with a 

consensus on July 11th 2019 and resulted in 14 ICMJE-member journals and 4892 ICMJE-

affiliated journals. Of the affiliated journals, 2367 were randomly screened and 1878 (79%) 

were excluded, including 745 journals (31% of all screened journals), for which the journal 

and/or the publisher were listed as “predatory” on Beall’s list. 489 ICMJE-affiliated journals 

were therefore included in analyses as initially planned. The selection process is reported in 

Figure 1.  
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ICMJE-member journals 

The characteristics of the 14 ICMJE-member journals are detailed in Table 1.  

 

 ICMJE-member journals 

(n = 14) 

ICMJE-affiliated journals 

(n = 489) 

Type of data-sharing policy   

   Explicit 8 (57 %) 145 (30 % [26%; 34%]) 

   Not existing 1 (8 %) 68 (14 % [11%; 17%]) 

   International Committee of Medical Journal 

Editors (ICMJE) 

5 (35 %) 276 (56% [52%;61%]) 

Sanctions in non-compliance of data 

sharing 

2 (14 %) 0 

Trial registration demanded   

   Yes, with a specification that it must be 

prospective  

7 (50%) 178 (37 % [32%; 41%]) 

   Yes, without specification 3 (21%) 142 (29 % [25%; 33%]) 

   Referring to ICMJE 3 (21%) 114 (23 % [20%; 27%]) 

   No 1 (8 %) 55 (11 % [9%; 14%]) 

Issue/ Year ~ 16 (12; 51) 6 (4; 12) 

Impact Factor 2017 ° 11.7 (2.7; 35.6) 2.4 (1.5; 4) 

 

Table 1: Characteristics of journal policies for ICMJE-member and ICMJE-affiliated journals 

~  Not found for 2 journals; indicated in Median and Inter Quartile Range 

°   Not found for 258 journals; indicated in Median and Inter Quartile Range 

 

12/14 (86%) published an RCT in 2018. The New Zealand Medical Journal and the Ethiopian 

Journal of Health Sciences did not publish an RCT in 2018. Eight journals (57%) had a specific 

data-sharing policy on their website: 3/8 journals (38%) had a more stringent policy than 

required by the ICMJE  (IPD to be available for The BMJ and PLOS Medicine, or explicit 

demands of data for peer review for the Annals of Internal Medicine), 4/8 journals were ICMJE-

compliant (50%, The New England Journal of Medicine, the Danish Medical Journal, the 

Journal of the American Medical Association and the Lancet), and 1/8 (12%, Journal of Korean 

Medical Science) had a less demanding policy than required by the ICMJE that did not require 

a data-sharing statement, but merely encouraged it. 5/14 medical journals (35%, WHO Bulletin, 

German Medical Journal, Ethiopian Journal of Health Sciences) referred to the ICMJE 

guidelines and one (8%, The New Zealand Medical Journal) did not have any policy mentioned 

on its website (its editorial office said that they had no time to clarify this point with us). Only 

three journals had a data-sharing policy before 2017. The earliest was presented in 2007 by the 
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Annals of Internal Medicine, followed by PLOS Medicine and The BMJ in 2014 and 2015 

respectively. 

Three (of 14, 21%) journals (The BMJ, PLOS Medicine and The Lancet) indicated specific 

data-sharing platforms in their policy: Dryad and Mendeley. 

For the eight journals with specific data-sharing statements, five referred specifically to Clinical 

Trial data, and for the three others it was for all research data submitted.  

Sanctions were described in two journals, PLOS Medicine and the Annals of Internal Medicine: 

possible rejection of the manuscript if the data was not provided. 

Except for the Ethiopian Journal of Health Sciences and the Iranian Journal of Medical 

Sciences, all journals had their editorial office in high-income countries.  

 

ICMJE-affiliated journals   

The characteristics of the 489 ICMJE-affiliated journals are also presented in Table 1. 145 of 

them (30%, [95% Confidence Interval 26%; 34%]) had a specific data-sharing policy on their 

website. Two hundred and seventy-six journals (56% [52%; 61%]) merely referred to the 

ICMJE guidelines, without any specific mention of a data-sharing policy. 68 (14% [11%; 17%]) 

had no data-sharing policy and did not allude to the ICMJE in their recommendations. In 

contrast, 178 (37% [32%; 41%]) required prospective trial registration, 142 (29% [25%; 33%]) 

asked for trial registration without specifications, 114 (23% [20%; 27%]) referred to the ICMJE 

and 55 (11% [9%; 14%]) did not refer to any trial registration.  

Among the 145 journals with a specific data-sharing policy 11 (7% [4%; 13%]) had a more 

stringent policy than that required by the ICMJE, 49 (34% [26%; 42%]) journals were ICMJE-

compliant and 85 (59% [50%; 67%]) had a less demanding policy than required by the ICMJE 

that did not explicitly require a data-sharing statement. Nineteen (of 145; 13%) journals with 

data-sharing policies referred only to Clinical Trial data while for the rest, the statement 

comprised a more general statement. For 94 (of 145; 65%) journals no start date was found for 

the policy, 25/145 (17%) had a policy starting in early 2018 (January and February) and 26/145 

(18%) had a policy starting on 1st of July 2018.  



57 
 

One hundred and one (of 145; 70%) journals indicated a preferred data-sharing platform, 

Mendeley (81 journals), Figshare (79 journals) and Dryad (67 journals) being the three most 

often cited. 

Except for the gender of the editor, all features explored in univariate analyses were associated 

(p < 0.25) with the explicit mention of a data-sharing policy on the journal website and were 

therefore used in the multivariate analyses. Publisher and wealth category of country of journal 

offices remained associated with the explicit mention of a data-sharing policy in multivariate 

analysis. The respective adjusted Odds Ratios can be found in Table 2. 

 

 All 

journals 

(n = 

489) 

Journals 

with an 

explicit 

data-

sharing 

policy 

(n = 

145) 

Journals 

without 

an 

explicit 

data-

sharing 

policy 

(n = 

344) 

Univariate 

analysis 

OR [95% 

CI] 

p-

Value 

Multivariate 

analysis 

aOR [95% 

CI]§ 

p-

Value 

Number of Issues per year +        

  More than twelve 

(Reference) 

17 

(4 %) 

9 

(6 %) 

8  

(2 %) 

- - - - 

  One to five 241  

(49 %) 

45  

(31 %) 

196 

(57 %) 

0.21 [0.07; 

0.56]  

0.002 1 [0.25; 

4.17] 

0.83 

  Six to twelve 229  

(47 %) 

90 

(73 %) 

139 

(41 %) 

0.58 [0.21; 

1.56] 

0.28 0,88 [0.25; 

3] 

0.99 

Journal Impact Factor (JIF)        

  1st Quartile (Reference) 

[0.126 – 1.532] 

58  

(12 %) 

20  

(14 %) 

38 

(11 %) 

  - - 

  2nd Quartile [1.532 – 2.388] 58  

(12 %) 

25 

(17 %) 

33 

(10 %) 

1.43 [0.68; 

3.07] 

0.35 0.9 [0.35; 

2.32] 

0.82 

  3rd Quartile [2.388 – 3.993] 57  

(12 %) 

28 

(19 %) 

29 

(8 %) 

1.81 [0.87; 

3.92] 

0.12 0.77 [0.28; 

2.05] 

0.59 

  4th Quartile [3.993 – 20.871] 58  

(12 %) 

32 

(22 %) 

26 

(8 %) 

2.3 [1.11; 

5.01] 

0.03 1.7 [0.69; 

4.65] 

0.26 

  No Impact Factor 258  

(52 %) 

40 

(28 %) 

218 

(63 %) 

0.35 [0.19; 

0.67] 

0.001 0.52 [0.2; 

1.3] 

0.16 

Publisher ~        

  Big output 194  

(40 %) 

66 

(45 %) 

128 

(37 %) 

- - - - 

  Medium Output 39  

(8 %) 

32 

(22 %) 

7 

(2 %) 

8.37 [3.77; 

22.86] 

< 

0.001 

 

3.23 [1.23; 

11.33] 

0.02 

  Small Output 39  

(8 %) 

17 

(12 %) 

22 

(7 %) 

1.5 [0.74; 

3.01] 

0.25 

 

0.36 [0.08; 

1.09] 

0.09 

  Other 217  

(44 %) 

30 

(21 %) 

187 

(54 %) 

0.31 [0.19; 

0.51] 

< 

0.001 

 

0.35 [0.17; 

0.63] 

0.001 

Gender of Editor        

  Men (Reference) 403  

(82 %) 

120 

(83 %) 

283 

(82 %) 

- - - - 

  Women 63  

(13 %) 

16 

(11 %) 

47 

(14 %) 

0.82 [0.43; 

1.46] 

0.51 - - 
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  Both genders represented 23  

(5 %) 

9 

(6 %) 

14 

(4 %) 

1.54 [0.62; 

3.55] 

0.33 - - 

Country of Editorial Office 

* 

       

  North America (Reference) 114  

(24 %) 

          51 

      (40 

%) 

      63 

   (19 %) 

- - - - 

  Asia / Middle East /   

Oceania 

211 

(45 %) 

22 

(17 %) 

189 

(56 %) 

0.15 [0.08; 

0.26] 

< 

0.001 

 

0.96 [0.4; 

2.25] 

0.92 

  Europe 71 

(15 %) 

16 

(12 %) 

55 

(16 %) 

0.37 [0.18; 

0.7] 

0.003 

 

0.48 [0.21; 

1] 

0.06 

  UK 51 

(11 %) 

37 

(29 %) 

14 

(4 %) 

3.2 [1.6; 

6.86] 

0.001 1.82 [0.83; 

4.4] 

0.15 

  Other country / region 21 

(4 %) 

2 

(2 %) 

19 

(5 %) 

0.16 [0.02; 

0.53] 

0.01 3.01 [0.3; 

19.02]   

0.23 

Income Band of Country of 

Editorial Office* 

       

  High Income (Reference) 270  

(58 %) 

120  

(94 %) 

150 

(44 %) 

- - - - 

  Upper Middle Income 88 

(19 %) 

4  

(3 %) 

84 

(25 %) 

0.07 [0.2; 

0.16] 

< 

0.001 

 

0.12 [0.02; 

0.44] 

0.002 

  Lower Middle Income / Low 

Income 

110  

(23 %) 

4  

(3 %) 

106 

(31 %) 

0.05 [0.01; 

0.13] 

< 

0.001 

 

0.09 [0.02; 

0.27] 

< 

0.001 

 

Research Domain         

  General & Internal Medicine 

(Reference) 

110  

(22 %) 

19 

(13 %) 

91 

(26 %) 

- - - - 

  Surgery Specialty 71  

(15 %) 

23 

(16 %) 

48 

(14 %) 

2.27 [1.14; 

4.67] 

0.02 1.47 [0.6; 

3.84] 

0.4 

  Dentistry 30 

(6 %) 

3 

(2 %) 

27 

(8 %) 

0.6 [0.12; 

1.82] 

0.41 0.43 [0.04; 

2.02] 

0.33 

  Medical Specialty 220 

(45 %) 

75 

(52 %) 

145 

(43 %) 

2.43 [1.41; 

4.47] 

0.002 1.12 [0.53; 

2.51] 

0.76 

  Pharmacology & Pharmacy 23 

(5 %) 

12 

(8 %) 

11 

(3 %) 

5.1 [2; 

13.84] 

< 

0.001 

 

2.47 [0.66; 

11.29] 

0.19 

  Other Specialty 35 

(7 %) 

13 

(9 %) 

22 

(6 %) 

2.82 [1.2; 

6.6] 

0.02 1.35 [0.42; 

4.4] 

0.6 

 

Table 2: Journal characteristics associated with an explicit data-sharing policy 

§ aOR = adjusted Odds Ratio 

+  Missing data for 2 journals: 1 for journals without explicit data-sharing policy and 1 with explicit 

data-sharing policy 

*  Missing data for 21 journals: 4 for journals without explicit data Sharing policy and 17 with explicit 

data-sharing policy 

~ Journals that published over 15 journals in the medical domain; big output > 1000 journals, medium 

output 250-1000 journals, small output < 250 journals in publisher repertoire  

  other: Publishers that did publish under 15 journals in the medical domain 

 

 

 

 



59 
 

Survey of RCTs published in journals with a data-sharing policy 

RCT selection and data extraction  

 

Search for and extraction of eligible RCTs started on August 6th, 2019 and ended with a 

consensus on September 26th 2019. Among the 12 eligible ICMJE-member journals, the New 

Zealand Journal of Medicine and the Ethiopian Journal of Health Sciences did not present any 

RCT in 2018. PLOS Medicine and the WHO Bulletin provided a list of published articles. Two 

hundred and ninety-seven RCTs published in member journals were found (10). We could only 

confirm for 20 articles that they had been submitted after 1st of July 2018. For 6 articles without 

data-sharing statements in the NEJM and the Lancet, we were not sure if they were eligible 

with respect to the submission date. Authors were contacted and for two we were able to 

confirm that they had been submitted before 1st of July 2019. These were replaced, as were the 

four others where doubt persisted. Among the affiliated journals 722 RCTs were identified and 

were randomly sorted and assessed for eligibility criteria. Figure1 details the selection process 

for both ICMJE-member and ICMJE-affiliated journals. 
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RCTs published in ICMJE-member journals 

 

Results are displayed in Table 3 for the 100 selected articles. Among these, 30 were from 

NEJM, 28 from the Lancet, 17 from JAMA, 13 from PLOS Medicine, 5 from the Annals of 

Internal Medicine, 3 from the BMJ, 2 from the Journal of Korean Medical Sciences and 2 

from the German Medical Journal.  

 

 ICMJE-member journals 

(n = 100) 

ICMJE-affiliated journals 

(n = 100) 

Data-sharing statement in article 98 (98 % [92 %; 99 %]) 25 (25 % [17 %; 35 %]) 

Intentions to share Individual Patient 

Data in statement 

  

   Yes 67 (67 % [57 %; 76 %]) 17(17 % [10 %; 26 %]) 

   No 21 (21 % [14 %; 31 %]) 3 (3 % [0.1 %; 9 %]) 

   Unclear 10 (10 % [5 %; 18 %]) 5 (5 % [2 %; 12 %]) 

   Not available  2 (2 % [0.3%; 8 %]) 75 (75% [65 %; 82 %]) 

Type of Registration   

   Prospective 80 (80 % [71 %; 87 %]) 50 (50 % [40 %; 60 %]) 

   Retrospective 20 (20 % [13 %; 29 %]) 22 (22 % [15 %; 32 %]) 

   Unclear - 28 (28 % [20 %; 38 %]) 

Registration of a data-sharing plan   

   Yes 10 (10 % [5 %; 18 %]) 8 (8 % [4 %; 16 %]) 

   Yes, but not in original version 12 (12 % [7 %; 20 %]) 5 (5 % [2 %; 12 %]) 

   No 78 (78 % [68 %; 85 %]) 87 (87 % [78 %; 93 %]) 

 

Table 3: Characteristics for all published Randomized Controlled Trials included 

 

Almost all the articles (98% [92%; 99%]) had a data-sharing statement. The two articles without 

data-sharing statements were from the Journal of Korean Medical Science and were confirmed 

as having been submitted after 1st of July 2018. 67% [57%; 76%] of the statements indicated 

an intention to share data while the intention was unclear for an additional 10 (10% [5%; 18%]). 

Characteristics of the data-sharing plans are detailed in Table 4.  
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 Articles in ICMJE-member 

journals 

(n = 77) 

Articles in ICMJE-affiliated 

journals 

(n = 22) 

Intention to share code   

   Yes 9 (12 % [6 %; 22 %]) 0 

   No 17 (22 % [14 %; 33 %]) 0 

   Unclear 51 (66 % [54 %; 76 %]) 22 (100 %) 

Intention to share other research data    

   Yes 6 (8 % [3 %; 17 %]) 7 (32 % [15 %; 55 %]) 

   No 14 (18 % [11 %; 29 %]) 0 

   Unclear 57 (74 % [63 %; 84 %]) 15 (68 % [45 %; 85 %]) 

Intention to share any other documents    

   Yes 63 (82 % [71 %; 89 %]) 10 (46 % [25 %; 67 %]) 

   No 1 (1 % [0.1 %; 8 %]) 0 

   Unclear 13 (17 % [10 %; 28 %]) 12 (54% [33 %; 75 %]) 

Restriction of time for availability   

   Yes 34 (44 % [33 %; 56 %]) 10 (46 % [25 %; 67 %]) 

   No 22 (29 % [19 %; 40 %]) 8 (36 % [18 %, 59 %]) 

   Unclear 21 (27 % [18 %; 39 %] 4 (18 % [6 %; 41 %]) 

Free access   

   Yes 7 (9 % [4 %; 18 %]) 1 (4 % [0.2 %; 25 %]) 

   No 69 (90 % [80 %; 95 %]) 21 (96 % [75 %; 99 %]) 

   Unclear 1 (1 % [0.1 %; 8 %]) 0 

Possibility to use data for any type of 

purpose 

  

   Yes 7 (9 % [4 %; 18 %]) 1 (4 % [0.2 %; 25 %]) 

   No 60 (78 % [67%; 86 %]) 14 (64 % [41 %; 82 %]) 

   Unclear 10 (13 % [7 %; 23 %]) 7 (32 % [15 %; 55 %]) 

Specific kind of access mechanism   

   Yes 68 (88 % [78 %; 94 %]) 21 (96 % [75 %; 99 %]) 

   No 7 (9 % [4 %; 18 %]) 1 (4 % [0.2 %; 25 %]) 

   Unclear 2 (3 % [0.5 %; 10 %]) 0 

Reviewed by a committee that is 

independent of the sponsor/author? 

  

   Yes 18 (23 % [15 %; 35 %]) 4 (18 % [6 %; 41 %]) 

   No 22 (29 % [19 %; 40 %]) 0 

   Unclear 37 (48 % [37 %; 60 %]) 18 (82 % [59 %; 94 %]) 

 

Table 4: Characteristics of the data-sharing statements for articles with an intention to share 

Individual Patient Data (including those with unclear intentions) 

 

 

Of the 77 articles with data-sharing intentions, 7/77 (9%) mentioned access to other data from 

the study, besides IPD (e.g. data-frame for “unpublished data” / “medical coding dataset” / 

“non-patient-level data”). 63/77 (82%) mentioned sharing for the following supplementary 

documents: the study protocol (for 51), the statistical analysis plan (for 37), the informed 

consent form (for 15), the data dictionary (for 14), and the case report form (for 5). Time 

restriction for IPD was present in 34/77 (44%) of the data sets for either the start data of sharing, 
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the end date or both. In 2 data-sharing statements, it was clear that data was to be available 

directly after approval of the drug in the European Union and in the USA. In 28/30 other cases 

there was an embargo: 8 after two years, 2 after 18 months, 15 after 1 year, one after 9 months, 

and 2 after 3 months. A restricted access period was specified for 12 datasets: 6 of these 

specified restricted access for 2 years, three for 1 year, one for 5 years, one for 10 years and for 

one it was stated that the time would be defined by the committee. 60/77 (78%) data-sharing 

statements specified that data could only be used for specific reasons: 53 mentioned a scientific 

aim only, 6 indicated willingness to share data specifically for Meta-Analyses or Individual 

Meta-Analyses and one data-sharing statement specified that the aim of the re-use was to be 

focused on a particular disease (Herpes Zoster). A specific mechanism was detailed in 68/77 

(88%) data-sharing statements. 35 only mentioned the need to establish a data-sharing 

agreement and/or a formal data request, 20 indicated that an e-mail contact was necessary, and 

13 mentioned data-sharing platforms. 

22/100 (22%) had registered a data-sharing plan on registers such as clinicaltrials.gov. Of these, 

14 specified IPD data sharing, 6 did not, and for 2 it was unclear. 

 

RCTs published in ICMJE-affiliated journals 

 

The 100 selected RCTs were from 38 different journals (mean number of RCTs per journal = 

11 (±10)). We found 25 RCTs with data-sharing statements. 17 authors/teams (17% [10%; 

26%]) declared an intention to share, while the intention was unclear for an additional 5 (5% [ 

2%; 12%). The characteristics of the data-sharing plans are detailed in Tables 3 and 4. 7/22 

(32%) articles with a positive (or unclear) intention to share data expressed in a data-sharing 

statement indicated that other datasets, besides IPD, would be available.  Regarding the sharing 

of any other documents, authors stated they would share study protocols (for 7 studies), the 

statistical analysis plan and the study report (for 4), and the case report form (for 2). Time 

restriction was present for 10/22 (46%) data sets. Three datasets had a limitation for the start 

date of data-sharing, ranging from 12 months to18 months and up to 3 years. For the end date 

of data availability, the following time frames were collected: 5 years in two cases, 3 years for 

one, 2 years for one, 1 year for 3 and 3 months for one. For the question as to whether data 

could be used for any type of purpose, 14/22 (64%) eligible datasets were only available for 

specific purposes (i.e. research). For 10 of these cases the scientific aim was mentioned but not 
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detailed, and in 4 statements, no aim was specified at all. A specific kind of access mechanism 

was cited in 21/22 (96%) statements. Six of them mentioned a data-sharing agreement, one 

referred to a data platform, and 14 datasets could be requested by e-mail. For the 13/100 (13%) 

trials with registration of their data-sharing plan, two planned to share the data, six did not and 

for five it was unclear. 

 

5. DISCUSSION 

 

Statement of principal findings 

In our survey we found that 57% of ICMJE-member journals had an explicit data-sharing policy 

on their website and that approximately a third of the ICMJE-affiliated journals had one. 

Slightly more than a third of the member journals and most of the affiliated journals (around 

56%) referred to the ICMJE guidelines without specifying a specific data-sharing policy. In 

addition, nearly 60% of the affiliated journals with an explicit policy had a less demanding 

policy than that required by the ICMJE. In contrast, the former ICMJE policy of trial 

registration was better implemented, with more than 71% of member journals and 66% of the 

affiliated journals explicitly requiring it as part of their policies.  

For journals with a data-sharing policy, a data-sharing statement was frequent among member 

journals (98%), with rates of intention to share data of around 77%. These rates are in line with 

the intention to share previously reported  in the Annals of Internal Medicine (128). In contrast, 

among ICMJE-affiliated journals with a data-sharing policy, data-sharing statements were not 

frequent (25%) and the intention to share data was only found in 22% of RCTs published in 

journals with an explicit data-sharing policy. Importantly, the statements often refer to data-

sharing upon request, and rarely to a specific repository or to fully available datasets. We 

already know that, even under a strict data-sharing policy such as the policy in place at the BMJ 

and PLOS Medicine, data availability is suboptimal, even when researchers express an intention 

to share (89). And indeed, in a recent scoping review (129) we found that while the willingness 

to share data was generally high across trials, actual data-sharing rates were generally lower. In 

addition, there was considerable heterogeneity in data-sharing statements, with a focus on IPD 

data, and with very inconsistent information related to statistical codes and other documents 

(e.g. the study protocol or the study report) which are key elements for reproducible research 

(38). Our results therefore question whether the new ICMJE policy as implemented by journals 
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adequately supports clinical trial data-sharing, and they underline the need for efforts towards 

more reproducible research. Although data-sharing is only one aspect among others (e.g. 

registration / best practices in reporting), without data-sharing, reproducibility is not possible.   

 

Few characteristics were found to be associated with an explicit data-sharing policy. All were 

related to the publishers, and the World Bank wealth category of the country/region of the 

editorial offices. As observed in previous research (130), a positive association between the JIF 

and data-sharing was found in univariate analysis, but it did not survive in the multivariate 

analysis. While the journal JIF is often (incorrectly) thought to be a surrogate for journal quality, 

our study suggests that professionalism and characteristics of the publisher and the editorial 

office resources could be better markers of quality and the implementation of reproducible 

research policies.  

 

Findings in relation to other studies: 

A similar survey conducted in 2019 by our team also identified a lack of implementation of 

basic data-sharing instructions in surgery journals with a JIF over 2. Only 50% of the journals 

had a data-sharing policy on their website (131), and in general these policies were not as 

demanding as those required by the ICMJE. 

Furthermore, research done by Dal-Ré and Marušić found independently an alike number of 

predatory journals in the list of journals which claim to follow the ICMJE recommendations 

(20).  

It is important to note here that almost all the “big” publishing houses have different data-

sharing policies for their different journals (e.g. the BMJ group has 3 levels of data-sharing 

policy, and Taylor & Francis have 5 different types) (21; 22). A related analysis was conducted 

by Mellor on the various data-sharing policies of the 4 big publishing houses, Elsevier, Springer 

Nature, Taylor & Francis and Wiley (23). This survey compared the Transparency and 

Openness (TOP) guidelines with the data-sharing policies of the different journals (24). Similar 

definitions to the ones we used to define more or less stringent requirements were adopted and 

the authors found that most of the basic or level 1 data-sharing policies were not even TOP-

compliant. This confirms our impression that even if policies are in place, they are not 
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sufficiently demanding to be liable to change the data-sharing culture. A harmonization needs 

to be established, and previous successful experiences should be taken into account (15, 132).  

 

Limitations of this study 

In our study, we had to rely on online information, as it proved difficult to contact editors and 

ascertain the existence of data-sharing policies. While all included journals had an electronic 

format, we cannot exclude that some may have implemented a policy without mentioning its 

enforcement explicitly on its website. In addition, we are studying a moving target in a changing 

environment, and it is likely that some journals that had no explicit policy when we performed 

our search have now implemented one. Repeated monitoring of the implementation of data-

sharing policies therefore seems necessary. Another limitation was that we did not check 

specifically whether the datasets were actually made available when the authors indicated 

availability in the statement, nor did we request any data to ascertain data availability. Data 

availability rates could indeed be lower than suggested in an intention to share, as observed in 

the BMJ overall (88) and more particularly for clinical trial data, even after communicating 

with the study authors (89).  Moreover, it would be interesting to see how many funders or 

academic institutions really share their data after expiry of the time restrictions indicated. 

A further limitation was the language filter. Due to lack of resources we were not able to include 

every language. This might have caused a bias as for instance Russian journals might have 

presented a different data-sharing policy from journals that publish in English.  

A large range of journals was included, especially in terms of quality. We tried to limit the 

inclusion of “predatory journals” using Beall’s list. In this matter there is no real gold standard, 

as no exact definition existed when we planned our study. Other lists such as Cabell’s  blacklist 

show an overlap with Beall’s list (133). Recently, a new definition has been proposed (134) and 

it could help to better identify predatory journals. On the one hand, we were surprised by the 

large number of ICMJE-affiliated journals referenced on the ICMJE website and listed in 

Beall’s list. On the other hand, the investigators performing the data extraction had the 

impression that some of the selected journals had very poor editorial standards (in cases where 

instructions for authors were not clear and information was not given for all the steps of the 

editorial process) and could also fit the definition of predatory journals.  
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Finally, our identification of factors associated with an explicit data-sharing policy is only 

exploratory. Several unmeasured confounders, for instance the journal's income and/or the 

numbers of RCTs published by a given journal, could account for some of the associations 

found. Other unmeasured confounders may exist and great caution is warranted in interpreting 

these results, which naturally cannot be considered as reflecting any causal relationship.  

 

Perspectives 

It appears that data-sharing policies are infrequent and poorly enforced in most ICMJE-

affiliated journals. Perhaps the journals do not know how best to implement the policy, or they 

may be worried they will lose submissions if the policies are implemented. Other explanations 

could be the costs resulting from the process or the greater labour intensity. It is also possible 

that some authors, researchers and indeed editors may be opposed to data-sharing policies. In 

addition, there is no specific enforcement for an affiliated journal to follow the ICMJE 

guidelines. It can be noted that the ICMJE states on its website that they “cannot verify the 

completeness or accuracy of this list” and that “there may be some listed journals that do not 

follow all of the many recommendations and policies in the document” (123). Furthermore, the 

large proportion of presumed predatory journals we found, as well as the small proportion of 

journals enforcing the new policy is of concern for the impact and credibility of the ICMJE. We 

suggest that journals provide  audits and feedback (to readers), especially as the number of  

ICMJE-affiliated journals  is growing very fast, with  4725 in November 2018 (135) and already 

5504 in November 2019 (7) (+ 16 % in one year). Without such checks, journals with poor 

editorial practices could present affiliation with the committee as an endorsement of a sort of 

quality label in biomedical journals, while this is not the case. The ICMJE affiliation could be 

indeed perceived as a guarantee, since these standards have of course been endorsed by more 

than three quarters of the most prominent journals in biomedicine, as illustrated by Shamseer 

and colleagues in 2016 (136).  

In addition, continuous audits of journal policies and their enforcement could be used as a better 

indicator of journal quality than the current exclusive focus on the JIF. There is room for 

development of new responsible metrics in this area, encompassing other aspects of 

reproducible research practices, such as registration policies and the use of reporting guidelines 

(101). And indeed, data-sharing is only one facet of reproducible research policies.  
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Steps in the right direction have already been taken, such as the uniform guidelines for data-

sharing in journals that have been developed by the Data Policy Standardisation and 

Implementation Interest Group of the Research Data Alliance (137). This could help to reach 

the goal of full transparency and data-sharing for clinical trial results, since the implementation 

of the current ICMJE policy seems suboptimal.  
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1.  ABSTRACT 

 

Objectives 

To explore the impact of data-sharing initiatives on the intent to share data, on actual data-

sharing, on the use of shared data and on research output and impact of shared data. 

Eligibility criteria 

All studies investigating data-sharing practices for individual participant data (IPD) from 

clinical trials.  

Sources of evidence 

We searched the Medline database, the Cochrane Library, the Science Citation Index Expanded 

and the Social Sciences Citation Index via Web of Science, and preprints and proceedings of 

the International Congress on Peer Review and Scientific Publication. In addition, we inspected 

major clinical trial data-sharing platforms, contacted major journals/publishers, editorial groups 

and some funders. 

Charting methods 

Two reviewers independently extracted information on methods and results from resources 

identified using a standardised questionnaire. A map of the extracted data was constructed and 

accompanied by a narrative summary for each outcome domain. 

Results 

93 studies identified in the literature search (published between 2001-2020, median: 2018) and 

5 from additional information sources were included in the scoping review. Most studies were 

descriptive and focused on early phases of the data-sharing process. While the willingness to 

share IPD from clinical trials is extremely high, actual data-sharing rates are suboptimal. A 

survey of journal data suggests poor to moderate enforcement of the policies by publishers. 

Metrics provided by platforms suggest that a large majority of data remains unrequested. When 

requested, the purpose of the re-use is more often secondary analyses and meta-analyses, rarely 

re-analyses. Finally, studies focused on the real impact of data-sharing were rare and used 

surrogates such as citation metrics.  
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Conclusions 

There is currently a gap in the evidence base for the impact of IPD sharing, which entails 

uncertainties in the implementation of current data-sharing policies. High level evidence is 

needed to assess whether the value of medical research increases with data-sharing practices. 
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2.  INTRODUCTION 

 

Rationale 

Data sharing is increasingly recognized as a key requirement in clinical research.(138) In any 

discussion about clinical trial data-sharing the emphasis is naturally on the data sets 

themselves, but data-sharing is much broader. Besides the individual participant data (IPD) 

sets, other clinical trial data sources should be made available for sharing (e.g., protocols, 

clinical study reports, statistical analysis plans, blank consent forms) to enable a full 

understanding of any data set. In this scoping review, there is a focus on the sharing of 

individual participant data from clinical trials.  

Within clinical research, data-sharing can enhance reproducibility and the generation of new 

knowledge, but it also has an ethical and economic dimension.(139) Scientifically, sharing 

makes it possible to compare or combine the data from different studies, and to more easily 

aggregate it for meta-analysis. It enables conclusions to be re-examined and verified or, 

occasionally, corrected, and it can enable new hypotheses to be tested. Sharing can therefore 

increase data validity, but it also draws more value from the original research investment, as 

well as helping to avoid unnecessary repetition of studies. Agencies and funders are referring 

more and more to the economic advantages of data reuse. Ethically, data-sharing provides a 

better way to honour the generosity of clinical trial participants, because it increases the utility 

of the data they provide. Despite the high potential for sharing clinical trial data, the launch 

and implementation of several data-sharing initiatives and platforms, and outstanding 

examples related to the value of data-sharing,(113) to date data-sharing is not the norm in 

clinical research, unlike many other scientific disciplines.(140) One major hurdle is that 

clinical trial data concerns individuals and their health status, and as such requires specific 

measures to protect privacy. 

To support sharing of IPD in clinical trials, several organisations have developed generic 

principles, guidance and practical recommendations for implementation. In 2016, the 

International Committee of Medical Journal Editors (ICMJE), a small group of medical journal 

editors, published an editorial stating that “it is an ethical obligation to responsibly share data 

generated by interventional clinical trials because participants have put themselves at risk”. 

(141) The ICMJE considers that there is an implicit social contract imposing an ethical 

obligation for the results to lead to the greatest possible benefit to society. The ICMJE proposed 
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to require that de-identified IPD is made publicly available no later than 6 months after 

publication of the main trial results. This time lapse would be useless for public health 

emergencies like COVID-19. However, the ICMJE proposal triggered debate, and a large 

number of trialists were reluctant to adopt this new norm(142) on account of the feasibility of 

the proposed requirements, the resources required, the real or perceived risks to trial 

participants, and the need to protect the interests of patients and researchers.(143) 

Despite the cultural shift towards sharing clinical trial data and the major commitment of 

scientific organisations, funders and initiatives, overall there is still a lack of effective policies 

in the biomedical literature to ensure that underlying data is maximally available and reusable. 

The only requirement appears to be a data management plan or a data-sharing plan. A few 

journals require data-sharing and, for those who do require data-sharing, guidelines are 

heterogeneous and somewhat ambiguous.(130) Nevertheless, some innovative and progressive 

funders (e.g. Wellcome Trust, Bill & Melinda Gates Foundation), and publishers/journals (e.g. 

Public Library of Science (PLOS) [in 2014], The British Medical Journal (BMJ)) [2009-2015],  

have adopted strong data-sharing policies. As part of a wider cultural shift towards more open 

science, there have been various attempts to explore how clinical researchers can best plan for 

data-sharing and prepare their ‘raw’ IPD so that it becomes available to others(144) – albeit 

often under controlled access conditions rather than simply being publicly available on-

line(145)  - and can structure that data to make it FAIR (findable, accessible, interoperable and 

reusable).(146) Meanwhile several data-sharing platforms and repositories are available and in 

use to provide practical support for the data-sharing process in clinical research (e.g. Yale 

University Open Data Access (YODA) launched [in 2011], ClinicalStudyDataRequest.com 

(CSDR)  [launched in 2013], Vivli  [launched in 2018]. A considerable number of individual 

studies have been performed to access and explore the sharing of data from clinical trials under 

different circumstances and within different frameworks. What is strongly needed is a scoping 

review providing an overview of the status of implementation of data-sharing as a whole and 

the implications originating from the available evidence. 
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Objectives 

 

In this scoping review we explored the impact of data-sharing initiatives on the willingness to 

share data, the status of data-sharing, the use of shared data and the impact of research outputs 

from shared data.  

 

3. METHODS 

Protocol and registration 

The study protocol was registered on the Open Science Framework on September the 12th 2018 

(registration number: osf.io/pb8cj). The protocol followed the methodology manual published 

by the Joanna Briggs Institute for scoping reviews.(147) Methods and results are reported using 

the PRISMA (Preferred Reporting Items for systematic Reviews and Meta Analyses) extension 

for scoping reviews (PRISMA-ScR).(148)  

Eligibility criteria  

The following eligibility criteria for studies were used: 

All study designs were eligible, including case studies, surveys, metrics and experimental 

studies, using qualitative or quantitative methods. Only published or unpublished reports (e.g. 

pre-prints, congress presentations, non-indexed information such as websites) in English, 

German, French or Spanish were considered. 

We included all studies and reports 1/ providing information on current IPD data-sharing 

practices for clinical trials and 2/ reporting on one or more of five outcome domains defined 

according to the data-sharing process presented in Box 1. 
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1. Intention to share data  

There is an intention to share data, expressed by a stakeholder (e.g., sponsor/PI, funder). This 

can be done by a written data-sharing commitment or by a declaration included in the trial 

registration. This also includes surveys on attitudes towards data-sharing.  

 

2. Actual data-sharing 

Data is truly made available for data-sharing to secondary users. This is important because there 

are cases known where the data is offered for sharing but sharing does not take place, as a result 

of a possible hidden agenda or change in plans.  

 

3. Use of shared data 

Shared data can be used for various purposes. It can be used as background for research, usually 

not leading to research outputs. This covers use for education, researcher training and 

understanding of data. Study types that should lead to new research outputs include 1/ 

validation/reproducibility of results, 2/ further additional analyses (prognostic models, 

decision-support, subgroup analyses, etc.) and 3/ IPD meta-analyses. 

 

4. Research outputs from shared data 

Research outputs are scientific presentations, reports and publications.  

 

5. Impact of research output from shared data 

Research output from shared data can have an impact on medical research (e.g. development of 

new hypotheses and methods) and/or medical health (e.g. changes in treatment via guidelines). 

 

Box 1:  Definitions used for the 5 outcome domains 

 

In the scoping review only data-sharing of IPD from clinical trials was considered. We defined 

clinical trials following the ClinicalTrials.gov definition: “a clinical study is a research study 
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involving human volunteers (also called participants) that is intended to add to medical 

knowledge. There are two types of clinical studies: interventional studies (also called clinical 

trials) and observational studies. Clinical trial is another name for an interventional study."(149) 

We therefore considered any interventional clinical studies (no matter whether they were 

randomised), and we did not consider studies on data-sharing concerning observational and 

non-clinical studies (e.g. on genomics) nor different fields outside medicine (e.g. economics).  

We included studies that investigated and reported information on current data-sharing 

practices performed without restrictions in terms of promotional initiatives, type of repository 

or platform (see Box 2 for definitions) and that promoted data-sharing practices (e.g. at editorial 

level, at funder level, at research level etc.). We considered many different types of studies (e.g. 

experimental studies, surveys, metrics, quality assurance studies, qualitative research, reviews, 

reports), as the inclusion criteria were not method-specific but rather content-specific. 

 

Initiatives 

Major activities of an organization (or a network of several organizations) to actively promote 

data-sharing in this area (e.g. Pharmaceutical Research and Manufacturers of America 

(PHRMA)/European Federation of Pharmaceutical Industries and Associations (EFPIA), 

Nordic Trial Alliance, Institute of Medicine (IOM), ICMJE, Research Data Alliance (RDA)). 

Repository 

Large database infrastructures set up to manage, share, access and archive researchers’ 

datasets from clinical trials. Repositories can be specialised and dedicated to specific 

disciplines (e.g. FreeBird, Biological Specimen and Data Repository Information 

Coordination Center (BioLINCC) or more general (e.g. FigShare, Dryad). 

Platform 

A computer environment where researchers can find datasets from clinical trials across 

different repositories, and where additional functionalities (e.g. protected analysis 

environment) are provided (e.g. CSDR, YODA, Project Data Sphere, Github). 

Box 2:  Definitions used for initiatives, repository and platform 
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Information sources 

The identification of studies was performed in two complementary stages: 

a) A systematic literature search in bibliographic databases (MEDLINE databases, 

Cochrane Library, Science Citation Index Expanded and Social Science Citation Index). 

In addition, preprint servers and proceedings were searched  

b) Inspection of and if required contacts with known information sources (e.g. webpages, 

documents and reports from platforms, funder, publisher) to explore whether they had 

an evaluation component and provided detailed research output from shared data (see 

supplementary material 1). 

 

Between 25/01/2019 and 12/06/2019 (with an update on 02/11/2020), one researcher (MS) 

inspected (and when necessary contacted) major clinical trial data-sharing platforms to explore 

whether they had an evaluation component and provided details of research output from shared 

data (see Supplementary Material 1). Similarly, in the same time period, the researcher 

contacted major journals and/or publishers and/or editorial groups (The BMJ, PLOS, The 

Annals of Internal Medicine, BioMedCentral (Springer/Nature), Faculty of 1000 Research 

(F1000Research)). These journals/publishers were targeted because they had either an early or 

a robust data-sharing policy (NEJM, Lancet and JAMA had no data-sharing policy before the 

2018 ICMJE policy). Some funders (see Supplementary Material 1) were also contacted, and 

preprints repositories were explored (bioRxiv, PeerJ, Preprints.org, PsyArXiv and MedRxiv. 

For the sake of completeness, ASAPbio (Accelerating Science and Publication in biology) and 

the Center for Open Science were also contacted for the same information, as well as three 

International Congress on Peer Review and Scientific Publication conference abstracts. In 

addition, when relevant references were found in various papers these references were included 

(snowballing searches).  

 

Search 

On 29/10/2018 (update on 12/09/2020), one researcher (EM) searched the Medline databases 

for indexed and non-indexed citations via Ovid from Wolters Kluwer, the Cochrane Library via 

Wiley, Science Citation Index Expanded and Social Sciences Citation Index via Web of Science 

from Clarivate Analytics for articles meeting our inclusion criteria.  



79 
 

The detailed search terms for the MEDLINE databases, the Cochrane Library and the Web of 

Science databases can be found in Supplementary Material 2. The main search strategy 

developed by CO, DM und FN was peer-reviewed independently (by a senior medical 

documentalist, EM who joined the team subsequently) using evidence-based guidelines for Peer 

Review of Electronic Search Strategies (PRESS).(150) Discrepancies were resolved between 

the authors, and EM performed the search. All references were managed and de-duplicated 

using a reference manager system (Endnote).  

On 23/01/2019 (update on 02/11/2020), two researchers (MS and FN) independently searched 

for relevant pre-prints on OSF PREPRINTS using the search function to find all papers relevant 

to medicine with the following keyword (trial* OR random*). On 29/01/2019, the two 

researchers independently searched the proceedings of the three latest International Congress 

on Peer Review and Scientific Publication reports for relevant abstracts (2009, 2013 and 2017).  

 

Selection of sources of evidence 

The selection of sources of evidence was performed by two independent reviewers (CO and 

FN). Contact with initiatives/platforms/journals/publishers was made by a single reviewer 

(MS). In case of disagreements, these were resolved by consensus between CO and FN and, 

when necessary, in consultation with a third reviewer (DM).  

Data charting process 

We developed a data collection form and pilot-tested it on 10 randomly selected research papers 

which were later included in our final study. In case of disagreement, these were resolved by 

consensus and, when necessary, in consultation with a third reviewer (DM).  

 

Data items 

For each research paper included according to the selection criteria we extracted: 1/ basic 

information on the paper (type of study exploring data-sharing practices, authors, year, 

references, and type of initiative and/or repository and/or platform studied), 2/ information on 

the material shared (sharing of data, code, programs and material), 3/ whether it reported data 

about one or more of the five outcomes domains defined box 1, 4/ how these outcome domains 

were assessed, and 5/ a qualitative description of the main results observed on these outcomes.  
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For each data-sharing platform, publisher and funder providing detailed research output from 

shared data, we extracted the following information (authors, date of request, date of 

publication, type of re-use). We initially planned to describe the scale of re-use in qualitative 

terms and the observed results of the re-use (i.e. “positive” or “negative” study) but these two 

characteristics were difficult to extract with very poor inter-rater agreement and we decided not 

to detail them. 

 

Critical appraisal of individual sources of evidence 

The studies included were classified according to study type (e.g. survey, metrics, 

experimental). Potentially relevant characteristics of studies included with regard to their 

internal-external validity and risk of bias were not assessed systematically with a specific tool, 

but explored when one of the two reviewers considered it relevant, and in this case each study 

was thoroughly discussed between the reviewers.  

 

Synthesis of results 

No outcome was prioritized since there was no quantitative synthesis for this study. All 

outcomes were described separately in sections corresponding to the outcome domain and 

subsections corresponding to similar types of initiative. Our plan for the presentation of results 

was specified in our protocol and organized into 1/ different sections corresponding to the key 

concepts detailed in the data-sharing pipeline (intention to share data, actual data-sharing, 

results of re-use, output from data-sharing, impact of data-sharing) and 2/ different subsections 

corresponding to the different contexts and actors involved in the data-sharing pipeline (e.g. 

targeted group for intention to share data or type of use for re-use of shared data)). A summary 

of the data extracted from the papers included was constructed in tabular form with basic 

characteristics, and was accompanied by a narrative summary describing all results observed in 

the light of the review objective and question/s. Usually, individual studies were summarized 

in a short text with descriptive statistics of the main results (numbers, percentages), when 

appropriate visual representations of the data extracted were provided.  

 

Patient and public involvement 

There was no patient or public involvement in this scoping review. 
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Changes to the initial protocol 

We initially planned to contact leading authors in the field to ask whether they were aware of 

other unpublished initiatives, but this was not done as it was difficult to identify relevant 

authors. We found relevant references about data-sharing policies including both clinical trials 

and observational studies, without making a distinction. These references were included in the 

scoping review and this point was discussed in the text.  

 

4. RESULTS 

 

Selection of sources of evidence 

A total of 3024 records were identified, 3,005 records (1991 + 1014 in the update) were 

retrieved by database search (2141 without duplicates). An additional 8 records were identified 

by screening the proceedings of the last three International Congress on Peer Review and 

Scientific Publication conference abstracts and ten records by snowballing searches. One 

additional relevant record was identified after screening 630 identified pre-prints. We screened 

all irrelevant records by title and abstract, leaving 409 possibly relevant references which were 

eligible for full-text screening. Subsequently, 316 references were excluded, leaving 93 reports 

that met the inclusion criteria (Figure 1). We inspected websites and when needed contacted 

48 initiatives/platforms/journals (we actually screened 49 but Supporting Open Access for 

Research Initiative (SOAR) is now integrated into Vivli): 23 data-sharing platforms, 13 funding 

organisation, 5 journals, 5 pre-print repositories and 2 other initiatives. For 33 of these different 

sources, there was no evaluation component and for 10 additional contacts we received no 

answer as to whether they had an evaluation component and/or any data. 4 data-sharing 

platforms (CSDR, YODA, National Institute of Diabetes and Digestive and Kidney Diseases 

(NIDDK), Vivli) and 1 funding organisation (Medical Research Council United Kingdom 

(MRC UK)) provided some additional data (online metrics and or data about its policy) (Figure 

1) which was extracted in June 2019 and updated in December 2020. 
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Characteristics of sources of evidence 

 

Of the 93 reports, 5 were classified as experimental studies, 58 as surveys, 19 as metrics, 5 as 

qualitative research and 6 as other (4 case studies, 1 metrics & survey, 1 metrics and qualitative). 

The median year of publication was 2018 (range [2001-2020]). The vast majority of these 

studies were from North America (50, 54%), Europe (16, 17 %) and the UK (15, 16%). Eight 

(9%) were from Asia and 4 (4 %) from Australia. Most (78, 84 %) were focused on IPD data-

sharing while the remaining 15 (16 %) adopted a wider definition of the material shared (e.g. 

by including protocols, codes). Thirty-eight reports (41 %) were focused on data-sharing in 

publications/journals, 23 (25 %) on data repositories, 8 (9 %) on data-sharing by various 

institutions, 4 (4 %) on trial registries and 20 (21 %) in various other contexts (see 

Supplementary Material 3 which presents study characteristics in detail).  

 

Collating and summarising the data 

 

Figure 2 shows the proportion of the 93 references exploring each outcome domain. In an effort 

to create a useful synthesis of results, we collated results on each outcome from each publication 

and organised them into the pre-specified categories. Figure 3 presents a detailed overview of 

the different outcome domains and the related outcomes used in the 93 different references 

included, organised by type of research.  
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Figure 2: Proportion of the 93 references exploring each outcome domain 

Study designs considered: 

- Experimental:  prospective research that implies testing the impact a strategy (e.g. randomised controlled trial) 

- Survey: a general overview, exploration, or description of individuals and/or research objects; 

- Metrics: descriptive metrics from each initiative provided by the initiative; 

- Qualitative: research that relies on non-numerical data to understand concepts, opinions or experiences. 

- Other: any other research not covered above (e.g. case studies, environmental scans, etc.)” 
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Critical appraisal of sources of evidence 

In general, there was a high risk of bias, especially due to study design (e.g. surveys with low 

response rates and absence of experimental design). As stated in the methods, this was not 

assessed systematically. If available, we have tried to present this information in the narrative 

part of the review. 

 

Results for individual sources of evidence: intentions to share data  

Clinical Trialists 

 Surveys of attitudes 

Four surveys investigating intention to share data by trialists reported high data-sharing rates 

of around 75% or more (see Figure 4). These surveys targeted authors of published trials and 

in one study reviewers in a Cochrane group (where the majority of respondents had been 

involved in a randomised controlled trial (RCT)). The studies differed by different estimations 

of data-sharing rates, different selection criteria and/or survey methods. Response rates were 

comparable across the surveys (42-58%). Reviewers in the Cochrane IPD meta-analysis group 

were strongly in favour of a central repository and of providing IPD for central storage 

(83%)(151). In the survey by Rathi et al., 74% and 72% respectively thought that sharing de-

identified data through data repositories should be required and that investigators should be 

required to share de-identified data in response to individual requests. However, only 18% 

indicated that they were required by the trial funder to place the trial data in a repository. In this 

survey, support for data-sharing did not differ on trialist or trial characteristics. (152) Trialists 

in Western Europe indicated they had shared or would share data in order to receive academic 

benefits or recognition more frequently than those from the USA or Canada (58 versus 31%). 

The most academically productive trialists less frequently indicated they had withheld or would 

withhold data in order to protect research subjects (24 versus 40% for the least productive), as 

did those who had received industry funding compared to those who had not (24 versus 

43%).(153) The survey by Tannenbaum, 2018 suggested that willingness to share data could 

depend on the intended re-use of the data (97% of respondents were willing to share data for a 

meta-analysis versus 73% for a re-analysis).(154) For secondary analyses, the willingness to 

share was largely influenced by respondents' willingness to conduct a similar analysis. In 

addition, willingness to share was more marked after 1 year than after 6 months. In the fourth 
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survey on trials published in Chinese medical journals, the overwhelming majority (87%) stated 

that they endorsed data-sharing (155). 

Metrics of data-sharing statements in journal articles 

Intentions to share data for trialists were less clear for data-sharing statements in published 

journal articles (although this section is not specific to clinical trials) (see Figure 4). Depending 

on the journals considered, the rates vary from less than 5 % to around 25%. An analysis of the 

first year after the Annals of Internal Medicine policies encouraged data-sharing found that data 

was available without condition for 4%, with conditions for 57%, and unavailable for 38% 

.(156) Over the first 4 years data was available without condition for 7%, with conditions for 

47%, and unavailable for 46% of research articles.(157) 9% and 22 % of 160 randomly sampled 

research articles in the BMJ from 2009 to 2015 made data available or indicated the availability 

of their data sets.(88) Among 60 randomized cardiovascular interventional trials registered on 

ClinicalTrials.gov, up to 2015 with >5000 enrollment, sponsored by one of the top 20 

pharmaceutical companies in terms of 2014 global sales, IPD was available for 15 trials (25%) 

amounting to 204 452 patients, unavailable for 15 trials (25%) and undetermined for the 

remaining 50 %, because of either no response or requirements for a full proposal.(158) Reasons 

for non-availability were: co-sponsor did not agree to make IPD available (4 trials) and trials 

were not conducted within a specific time (5 trials); for the remaining 6 trials, no specific reason 

was provided. Of 619 RCTs published between 2014 - 2016 in 7 high-ranked anaesthesiology 

journals, only 24 (4%) had a data-sharing statement and none provided data in the manuscript 

or a link to data in a repository.(159) In a survey  targeting the authors of these RCTs, 86 (14%) 

responded and raw data was obtained from 24 participants. The authors conclude that 

willingness to share data among anaesthesiology RCTs is very low. From 1 July 2018, clinical 

trials submitted to ICMJE journals are required to contain a data-sharing statement. The 

reporting of the statement was investigated in a 2-month period before and after this date.(160) 

The proportion of articles with a data-sharing statement was 23% (32/137) before and 25% 

(38/150) after 1st July 2018, while the number of journals publishing data-sharing statements 

increased from 4/11 to 7/11. Few data-sharing statements complied fully with the ICMJE 

journal criteria, and the majority did not refer to individual participant data.  
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A total of 300 trials published in 2017-2018 and approximately equally distributed across 

orthodontics and periodontics were selected, assessed, and analysed with respect to 

transparency and reporting.(161) Open data-sharing (repository or appendix) was found in 5 % 

of the trials (11/150 orthodontics and 4/150 periodontics trials). Articles on reproducible 

research practices and transparency in reproductive endocrinology and infertility (REI) were 

investigated for original articles with a study type mix from REI journals (2013, 2018) and 

articles published in high-impact general journals between 2013 – 2018.(162) Raw data was 

available on request or via online database for 1/98 articles in reproductive endocrinology and 

infertility RCTs (2013), 0/90 in 2018 and 1/34 in high impact journals. In a random sample of 

151 empirical studies in 300 otolaryngology research publications, using a PubMed search for 

records published between 1 January 2014 and 31 December 2018, only 5 provided a data 

availability statement and 3 (2.0%) indicated that data was available.(163) 

  

  Metrics of data-sharing statements in clinical trial registries 

Intention to share could be even lower when considering data-sharing plans of trials registered 

at ClinicaTrials.gov. Here the willingness to share data is between 5 and 10%. In one study, 

25 551 trial records responded to the Plan to share IPD (72%). Of these, 10.9% of the records 

indicated "yes" and 25.3% indicated "undecided".(164) Differences were observed by key 

funder type, with 11% of NIH funders and 0% in the industry answering yes. Importantly, an 

in-depth review of 154 data-sharing plans suggested a possible misunderstanding of IPD 

sharing with discrepancies found between data-sharing plans and reports of actual data-sharing. 

In a survey, the prevalence and quality of IPD-sharing statements among 2,040 clinical trials 

first posted on ClinicalTrials.gov between 01 January 2018 and 06 June 2018 were 

investigated.(165) The vast majority of trials included in this study did not indicate an intention 

to share IPD (n = 1,928; 94.5%). Among the trials that did commit to sharing IPD (n = 112, 

5.5%), significant variability existed in the content and structure of the IPD sharing statements 

with a need for further clarification, enhanced clarification and better outreach. Data from 287 

626 clinical trials registered in ClinicalTrials.gov on 20 December 2018 were analysed with 

respect to sharing of IPD.(166) Overall, 10.8% of trials with a first registration date after 

December 1 2015 answered "Yes" to plans to share de-identified IPD data. The sharing rate 

ranged from 0% (biliary tract neoplasms) to 72.2% (meningitis, meningococcal infection) when 

analysed by disease. For the case of HIV, which was analysed separately, the sharing rate was 

higher on average (24.5%). In a prediction model, studies that deposit basic summary results 
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on ClinicalTrials.gov, large studies and phase 3 interventional studies are the most likely to 

declare intention to share IPD data.  

 

  Other data sources 

A 2015 survey focused on PCORnet (The National Patient-Centered Clinical Research 

Network), found that a possible barrier toward data-sharing intentions related to how data can 

be used when shared with institutions that have different levels of experience, and to the 

possibility of some “competition” between institutions on the marketplace of ideas.(167) 

 

  Experimental studies 

Experimental data suggests that estimations of intention to share data could differ depending 

on the formulation of the request. For instance, a small randomised prospective study conducted 

in 2001 including 29 corresponding authors of research publications published in the BMJ, 

explored their preparedness to share the data from their research.(168) The email contact, 

randomly allocated, was in one of two forms, a general request (asking if the author would "in 

general" be prepared to release data for re-analysis) and a specific request (a direct request for 

the data for re-analysis). Researchers receiving specific requests for data were less likely and 

slower to respond than researchers receiving general requests. Similarly, in 2019, a randomized 

controlled trial in conjunction with a Web-based survey included study authors to explore 

whether and how far a data-sharing agreement affected primary study authors’ willingness to 

share IPD. (169) The response rate was relatively low (21 %) in this study since more than 

1,200 individuals were initially contacted and 247 responded. Among the responders, study 

authors who received a data-sharing agreement were more willing to share their data set, with 

an estimated effect size of 0.65 (95% CI [0.39, 0.90]).  

Authors of published reports on prevention or treatment trials in stroke were asked to provide 

data for a systematic review and randomised to receive either a short email with a protocol of 

the systematic review attached (‘Short’) or a longer email that contained detailed information, 

without the protocol attached (‘Long’).(170) 88 trials with 76 primary authors were identified 

in the systematic review, and of these, 36 authors were randomised to Short (trials=45) and 40 

to Long (trials=43). Responses were received for 69 trials. There was no evidence of a 

difference in response rate between trial arms (Short vs Long, OR 1.10, 95% CI 0.36 to 3.33).  
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Trial participants 

Qualitative studies 

Perceptions of trial participants toward data-sharing and their intention to share were explored 

qualitatively. A systematic review with a thematic analysis of 9 qualitative studies from Africa, 

Asia, and North America identified four key themes emerging among patients: the benefits of 

data sharing (including benefit to participants or immediate community, benefits to the public 

and benefits to science or research), fears and harm (including fear of exploitation, 

stigmatization or repercussions, alongside concerns about confidentiality and misuse of data), 

data-sharing processes (mostly consent to the process), and the relationship between 

participants and research (e.g. trust in different types of research or organizations, relationships 

with the original research team).(171) Some qualitative reports provide data on heterogenous 

samples including patients and various stakeholders from low- and middle-income countries. 

In-depth interviews and focus group discussions involving 48 participants in Vietnam suggested 

that trial participants could be more willing to be involved in data-sharing than trialists.(172) A 

similar study on a range of relevant stakeholders in Thailand found that data-sharing was seen 

as something positive (e.g. a means to contribute to scientific progress, better use of resources, 

greater accountability, and more output) but it underlined considerable reservations, including 

potential harm to research participants, their communities, and the researchers themselves.(173)  

In a qualitative study with 16 in-depth interviews, cancer patients currently participating in a 

clinical trial indicated a general willingness to allow re-use of their clinical trial data and/or 

samples by the original research team, and supported a generally open approach to sharing data 

and/or samples with other research teams, but some would like to be informed in this case.(174) 

Despite divergent opinions about how patients prefer to be involved, ranging from passive 

contributors to those explicitly wanting more control, participants expressed positive opinions 

toward technical solutions that allow their preferences to be taken into account.  

 

Surveys 

Two surveys performed in the US and one in Italy assessed the intention-to-share rates among 

trial participants (see Figure 4). In one survey with a moderate response rate (47%), 463/799 

(58%)  patients favored or strongly favored data-sharing, while only 9% were against or 

strongly against it.(175) Most participants (84%) believed that disclosing the data-sharing plan 
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within the informed consent process was important or very important. A higher percentage of 

ethnic minority participants was against data-sharing (white, 6%, vs. “other”, 13). 

In a second survey with a high response rate (79%), 93% were very or somewhat likely to allow 

their own data to be shared with university scientists and less than 8% of respondents felt that 

the potential negative consequences of data-sharing outweighed the benefits.(176) Predictors 

of this outcome were  a low level of trust in others, concern about the risk of re-identification 

or about information theft, and having a college degree. 93% and 82 % respectively were very 

or somewhat likely to allow their data to be shared with academic scientists and scientists in 

for-profit companies. The purpose for which the data would be used did not influence 

willingness to share data except for use in litigation. However, patients were concerned that 

data-sharing might make others less willing to enroll in clinical trials, that data would be used 

for marketing purposes, or that data could be stolen. Less concern was expressed about 

discrimination and exploitation of data for profit.  

In a survey of Italian patient and citizen groups, 280/2003 (14%) contacts provided 

questionnaires eligible for analysis.(177) 144/280 (51%) had some knowledge about the IPD 

sharing debate and 60/280 (42%) had an official position. Of those who had an official position 

35/60 (58%) were in favour and 19/60 (32%) in favour with restrictions. 39% approved broad 

access by researchers and other professionals to identified information.  

 

  Other data sources 

While consent seems to be a crucial issue for trial participants, an analysis of 98 Informed 

Consent Forms (ICFs) found that only 6 (4%) indicated a commitment to share de-identified 

IPD with third party researchers.(178) Commitments to share were more common in publicly 

funded trials than in industry-funded trials (7% vs 3%).  

 

Publishers/funders 

Publishers 

  Metrics of data sharing statements and policies 

Several studies were found about the intentions (and data-sharing policies) of publishers. Many 

publishers have developed data-sharing policies (20-75%), however, less than 10% are 

mandatory (see Figure 4). In a 2009 survey of editors of different member journals of the World 
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Association of Medical Editors (WAME) (response rate 22%), 2% and 19% of journals 

respectively required provision of participant level data and specification by authors of their 

data-sharing plan.(179) A similar survey of 10 high-impact surgical journals in 2009 and 2012 

found only one journal that had a mandatory data-sharing policy.(180) Data-sharing statements 

were found only in 2/246 (1%) RCTs published in these 10 journals. Another study of a random 

sample of 60 journals found that 21 (35 %) provided instructions for patient-level data, but only 

4 (7 %) required sharing  of IPD (all were oncology journals).(181) A review of 88 websites of 

dental journals (182) suggested that 17 accepted raw data as complementary material. A 6-year 

cross-sectional investigation of the rates and methods of data-sharing in 15 high-impact 

addiction journals that published clinical trials between 2013 and 2018 was performed.(183) 

8/14 (57.1%) journals had data-sharing policies for published RCTs. Of the 394 RCTs included 

none shared their data publicly.  

40/60 clinical psychology journals had a specific policy for data-sharing (2017).(184) Only one 

journal made data-sharing mandatory, while 37 recommended it. The findings suggest great 

heterogeneity in journal policies and little enforcement. Online instructions for authors from 38 

high-impact addiction journals were reviewed for 6 publication procedures, including data-

sharing (2018). 28/38 (74%) of the addiction journals had a data-sharing policy, none was 

mandatory.(185) It was concluded that many addiction journals have adopted publication 

policies, but more stringent requirements have not been widely adopted. Instructions for authors 

in 43 high-impact nutrition and dietetics journals were reviewed with respect to procedures to 

increase research transparency (2017).(186) 25/33 (75%) journals publishing original research 

and 4/10 review journals had a data-sharing policy. 

Among 109 peer-reviewed and original research-oriented dental journals that were indexed in 

the MEDLINE and/or SCIE database in 2018, a data-sharing policy was present in 32/109 

(29.4%) and 2 of these had a mandatory policy.(187) This study  concluded that at present data-

sharing policies are not widely endorsed by dental journals. In a cross-sectional survey 14 

ICMJE-member journals and 489 ICMJE-affiliated journals that published an RCT in 2018 

were evaluated with respect to data-sharing recommendations.(188) 8/14 (57%) of member 

journals and 145/489 (30%) of affiliated journals had an explicit data-sharing policy on their 

website. In RCTs published in member journals with a data-sharing policy, there were data-

sharing statements in 98/100 (98 %) with expressed intention to share individual patient data in 

77/100 (77%). In RCTs published in affiliated journals with an explicit data-sharing policy, 
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data-sharing statements were rare 25/100 (25%), and expressed intentions to share individual 

participant data were found in 22/100 (22%). 

Changes in policies from 2013 to 2016 regarding public availability of published research data 

were investigated in 115 paediatric journals.(189) In 2012 77 /115 (67%) and in 2016 56/115 

(49%) accepted storage in thematic or institutional repositories. Publication of data on a website 

was accepted by 27/115 (23%) and 15/115 (13%). Most paediatric journals recommend that 

authors deposit their data in a repository but they do not provide clear instructions for doing so. 

 

Funders and clinical trial units 

Metrics of data sharing policies by funders 

Several studies investigated mandatory data-sharing policies of funders. 30-80% of the non-

commercial funders provided data-sharing policies, the highest rates were observed in the US. 

Only around 10-20% of these policies were mandatory (see Figure 4). In one study 50% of the 

top non-commercial funders had a data-sharing policy but it was found that in only 2/20 cases 

data-sharing was required. Six funders offered technical or financial resources to support IPD 

sharing.(190) Trial transparency policies were investigated for 9/10 top non-commercial 

funders in the US (May to November 2018).(191) 7/9 (78%) funders had a policy for individual 

patient data-sharing, for 1 it was mandatory. 6 offered data-sharing and 5 monitored 

compliance. Of 96 responders out of 190 non-commercial funders contacted in France, 31 were 

identified as funding clinical trials (2019).(192) 9/31 (29%) had implemented a data-sharing 

policy. Among these 9 funders, only one had a mandatory sharing policy and 8 a policy 

supporting but not enforcing data-sharing. Funders with a data-sharing policy were small 

funders in terms of total financial volume.  

Three studies investigated mandatory data sharing policies among commercial sponsors (see 

Figure 4). In a 2016 survey, 22/23 (96%) companies among the top 25 companies by revenue 

had a policy to share IPD. In a second sample of 42 unselected companies, 30 (71 %) had one. 

These policies generally did not cover unlicensed products or trials for an off-label use of a 

licensed product. 52 % of top companies, and 38 in the sample including all companies 

considered that requests for IPD for additional trials were not explicitly covered by their 

policy.(193) A second survey studied data availability for 56 publications reporting on 61 
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industry-sponsored clinical trials of medications.(111) Of these 61 studies, 32 (52%) had a 

public data-sharing policy/process.  

78 non-commercial funders and a sample of 100 leading commercial funders in terms of drug 

sales having funded at least one RCT in the years 2016 to 2018 were surveyed (15 February 

2019 – 10 September 2019).(194) 30/78 (38%) non-commercial funders had a data-sharing 

policy with 18/30 (60%) making data-sharing mandatory and 12/30 (40%) encouraging data-

sharing. 41/100 (41%) of the commercial funders had a data-sharing policy. Among funders 

with a data-sharing policy, a survey of two random samples of 100 RCTs registered on 

Clinicaltrial.gov found that data-sharing statements were present for 77/100 (77%) and 81/100 

(81%) of RCTs funded by non-commercial and commercial funders respectively. Intention to 

share data was expressed in 12/100 (12%) and 59/100 (59%) of RCTs funded by non-

commercial and commercial funders. The survey indicated suboptimal performance by funders 

in setting up data-sharing policies. 

 

  Metrics of data-sharing policies by CTUs 

Among 23 UK Clinical Research Collaboration (UKCRC) registered Clinical Trial Units 

(CTUs) (response rate = 51 %), 5 (22 %) had an established data-sharing policy and 8 (35%) 

specifically required consent to use patient data beyond the scope of the original trial (see 

table).(145) Concerns were raised about patient identification, misuse of data, and financial 

burden. No CTUs supported the use of an open access model for data-sharing. 

 

  Other data sources 

A 2005 survey of 107/122 accredited medical schools in the US (response rate = 88%) explored 

data-sharing in the context of contractual provisions that could restrict investigators' control 

over data in the context of industry-funded trials.(195) There was poor consensus among senior 

administrators in the offices of sponsored research at these institutions on the question of 

prohibiting investigators from sharing data with third parties after the trial is over (41 % allowed 

it, 34 % disallowed it, and 24 % were not sure whether they should allow it). 

In a survey targeting European heads of imaging departments and speakers at the clinical trials 

in radiology sessions (July – September 2018), the response rate was 132/460 (29%).(196) 

Responses were received from institutions in 29 countries, reporting 429 clinical trials. For 
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future trials, 98% of respondents (93/95) said they would be interested in sharing data, although 

only 34% had already shared data (23/68). The main barriers to data-sharing were data 

protection, ethical issues, and lack of a data-sharing platform.  

 

Results for individual sources of evidence: actual data-sharing 

 Re-users 

 Studies related to journal articles 

  Metrics of actual data-sharing  

Several studies have been performed investigating data-sharing rates for studies that have been 

published in journals, the majority with data-sharing policies and high impact (Figure 5). Even 

with strict data-sharing policies, the data-sharing rates are low or at most moderate, and vary 

between 10 and 46%, except for one study with a very high data-sharing rate due to a partly 

preselected sample of authors willing to share their data (154). In the 6-year cross-sectional 

investigation of the rates and methods of data-sharing in 15 high-impact addiction journals that 

published clinical trials between 2013 and 2018, none of the 394 clinical trials included shared 

their data publicly (183). Of 86 responders in a survey targeting the corresponding authors of 

619 RCTs published between 2014 - 2016 in 7 high-ranking anaesthesiology journals, raw data 

was obtained only for 24 studies.(159) 62 declined to share raw data. In a study targeting PLOS 

Medicine and PLOS Clinical Trials publications conducted in 2009, 1/10 (10%) of the data sets 

was made available after request (197). In articles in Chinese and international journals from 

2016, sharing practices were indicated for 29/247 (11%) of the articles.(155) Among the top 10 

general and internal medical journals investigated in 2016, IPD was provided after request for 

9/61 (15%) of pharmaceutical-sponsored studies (111). For BMJ research articles published 

between 2009 and 2015, data sets were made available in 7/157 (4%) of the articles(88). For 

the sub-sample of clinical trials, the rate was higher (5/21 (24%)). Of 317 clinical trials 

published in 6 general medical journals between 2011 and 2012, 115 (36%) granted access to 

data(152). The data availability for RCTs published in BMJ and PLOS Medicine between 2013 

and 2016 was 17/37 (46%)(89). 
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  Experimental studies 

In a parallel group RCT, an intervention group (offer of an Open Data Badge for data-sharing) 

was compared to a control group (no badge for data-sharing).(198) The primary outcome was 

the data-sharing rate. Of 160 research articles published in BMJ Open, 80 were randomised to 

the intervention and control groups, of which 57 could be analysed in the intervention group 

and 54 in the control group. In the intervention group data was available on a third-party 

repository for 2/57 (3.5%) and upon request for 32/57 (56.1%) respectively in the control group: 

3/54 (5.6%) and 30/54 (56%). Data-sharing rates were low in both groups and did not differ 

between groups.  

 Data sharing for IPD meta-analyses  

  Metrics of data-sharing for IPD meta-analyses 

Some examples demonstrate that data availability for IPD meta-analyses is still limited despite 

the various data-sharing initiatives/platforms (Figure 5). Availability can be increased under 

specific circumstances, such as the creation of a disease-specific repository for a scientific 

community, as demonstrated for a repository of IPD from multiple low back pain RCTs with 

IPD from 20/42 (48%) RCTs included (199) and a study on anti-epileptic drugs conducted by 

a Cochrane group with IPD for 15/39 (38%) studies included (200). In another study on 

different databases, 35 individual participant data meta-analyses with more than 10 eligible 

RCTs were identified (May 1, 2015 to February 13, 2017)(201). Of 774 eligible RCTs identified 

in these meta-analyses, 517 (66.8 %) contributed data. The country where RCTs are conducted 

(the UK versus the United States (US)), the impact factor of the journal (high versus low) and 

a recent RCT publication year were associated with higher sharing rates. In three other studies, 

the availability of datasets for IPD meta-analysis was limited (0-17%). In one study performed 

in 2014, devoted to one commercial sponsor with one specific medicinal product, IPD from 24 

trials was requested without success (202). Of 15 requests (13 direct to authors, 2 to a 

repository) in 2014/2016, IPD was received for 2/15 (13%) of the studies (203). Of 217 RCTs 

published since 2000 in orthopaedic surgery, agreement to send IPD was obtained for 37/217 

(17%)(204). 
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Experimental studies 

The low data availability for IPD-meta-analyses is underlined by two experimental studies. One 

experimental study covered the issue of actual data-sharing. In this small randomized 

prospective study where 29 corresponding authors of original research articles in a medical 

journal were contacted via two different modes (general versus specific request), only one 

author actually sent the data immediately in response to a specific request and one author, 

without caveats, reported willingness to send the data in response to a general request.(168)  

A randomized controlled trial investigated the effect of financial incentives on IPD 

sharing.(205) All study participants (129 in all) were asked to provide the IPD from their RCT. 

Those allocated to the intervention group received financial incentives, those from the control 

group did not. The primary outcome was the proportion of authors who provided IPD. None of 

the authors shared their IPD, whichever the group. 

 

  Other data sources 

Two studies investigated the completeness of data availability in IPD meta-analyses. Out of 30 

IPD meta-analyses included in a survey,(206) 16 did not have all the IPD data requested. The 

access rate for retrieving IPD for use in IPD-meta-analyses was investigated in a systematic 

review.(200) Only 188 (25%) of 760 IPD meta-analyses retrieved 100% of the eligible IPDs 

for analysis and there was poor evidence that IPD retrieval rates improved over time.  

 

 Access to repositories/platforms 

Only a few studies describe access to repositories/platforms from the viewpoint of the user 

(Figure 5). Experiences with two major platforms (CSDR, PDS) were reported.(207) In these 

very early-phase projects,  no data access was possible with CSDR, and faster data acquisition 

was achieved via the Project Data Sphere. High sharing rates were reported for academic 

repositories (MRC CTU, BioLINCC). Of 103 requests to MRC CTUs, access was granted in 

80/103 (78%) cases (208). In a survey of investigators 536/536 (100%) received access to 

BioLINCC over a time period between 2007 and 2014 (209). 
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Repositories/platforms 

 Commercial sponsors 

  Metrics of actual re-use 

Different initiatives and platforms were initially implemented for the pharmaceutical and 

medical device industry to support sharing of IPD from clinical trials (these platforms are now 

open to academic trials but this has not been used very often so far). This covers the YODA 

project, CSDR, Vivli and SOAR (which is now part of Vivli). For the different platforms and 

repositories, metrics describing the actual use of data are available (Figure 5).  

6 studies have accessed data-sharing rates for CSDR. From 2014 to the end of January 2019, 

there was a total of 473 research proposals submitted to CSDR.(210) Of these, 364 met initial 

administrative and data availability checks, and the independent review panel approved 291. 

222/473 (46.9%) of the requests gained access to the data (in progress and completed). Of the 

90 research teams that had completed their analyses by January 2018, 41 reported at least one 

resulting publication to CSDR. Less than half of the studies ever listed on CSDR have been 

requested. Between 2014 and 2017 CSDR received a total of 172 research proposals, of which 

105 (61%) were approved (211). In another study focusing on availability and use of shared 

data from cardiometabolic clinical trials in CSDR covering the time period between 2013 and 

2017, 198 (62%) were approved with or without conditions (212). In year one of the use of 

CSDR (2013-2014), 36 research proposals were approved with conditions, of these 23 (64%) 

progressed to a signed data-sharing agreement (213).From 2014 to 2017, Boehringer-Ingelheim 

listed 350 trials for potential data-sharing at CSDR.(214) 55 research proposals were submitted, 

of which 37 (67.3%) were approved. All approved research proposals submitted to Boehringer-

Ingelheim except one addressed new scientific questions or were structured to generate new 

hypotheses for further confirmatory research, rather than replicating analyses by the sponsor to 

confirm previous research. Between 2013 and 2015, 177 research proposals were submitted to 

CSDR, and access was granted for 144 (81%) of these proposals (215).  

In the first year following the launch in October 2014, YODA received 29 requests all of which 

were approved (100%) (216). In 2017 the YODA project reported 73 proposals of which 65 

were approved (217). A more recent publication reported the metrics for data-sharing of 

Johnson & Johnson clinical trials in the YODA project up to August 27, 2018.(218) 100 data 

requests were received from 89 principal investigators (PI) for a median of 3 trials per request. 

90/100 requests (90 %) were approved and a data use agreement was signed in 82/100 (82%).  
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The use of the open access platforms CSDR, YODA and SOAR together between 2013 and 

2015 was investigated in one study. Of the 234 proposals submitted, 154 (66%) were approved 

(219).  

The data available shows that the use of these platforms has increased steadily since their 

initiation and that 50% and more of the data requests lead to actual data-sharing. The reasons 

for not sharing are numerous but data access is rarely denied by the platforms. Our assessment 

of CSDR, YODA, NIDDK and Vivli websites is presented in Table 1. 

 

Platform Metrics date Available 

studies 

Number of 

requests 

Number of 

requests with 

data shared 

Number of 

requests with 

data leading to 

publication 

Number of 

publications 

CSDR 30/11/2020 3008 621 318 59* 79 

YODA 15/11/2019 334 196 173 29 35 

Vivli 02/11/2020 5203 215 123 8 9 

 

Table 1: Metrics of CSDR, YODA, and Vivli websites ; NIDDK also provided metrics concerning the 

number of requests (530) but no other information 

 *publication anticipated 

 

 

  Metrics of trial coverage for data-sharing 

Ethics approval in applications for open-access clinical trial data from CSDR was investigated 

in a survey.(211) Projects with and without ethics approval were applied to at roughly similar 

rates (62/111 and 43/61).  

The proportion of trials where the pharmaceutical and medical device industry provided IPD 

for secondary analyses and thus the completeness of trial data is still limited.(111) Only 15% 

of 61 industry-sponsored clinical trials were available 2 years after publication. For companies 

listing at least 100 studies on CSDR, a search was performed in ClinicalTrials. gov (January 

2016, studies terminated/ completed at least 18 months before search date).(220) Among 966 

RCTs registered in ClinicalTrials.gov, only 512 (53%) were available on CSDR and only 385 

(40%) of the RCTs were registered and listed on CSDR with all datasets and documents 

available. This was the case despite the time lapse of 18 months since the completion of the 
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drug trials by the company sponsor. Differences across sponsors were observed. Pharmaceutical 

repositories may cover only part of the trials with commercial sponsors needed for meta-

analyses. In a study investigating data availability for industry-sponsored cardiovascular RCTs 

with more than 5000 patients, performed by a top-20 pharmaceutical company and registered 

at ClinicalTrials.gov (up to Jan. 2015), only 25% of the identified trial data was confirmed to 

be available.(158) In 50% of cases availability could not be definitely confirmed.  

As part of the Good Pharma Scorecard project, data-sharing practices were assessed for large 

pharmaceutical companies with novel drugs approved by the FDA in 2015, using data from 

ClinicalTrials.gov, Drugs@FDA, corporate websites, data-sharing platforms and registries (e.g. 

YODA, CSDR)(93). 628 trials were analysed. 25% of the large pharmaceutical companies 

made IPD accessible to external investigators for new drug approvals, this proportion improved 

to 33% after applying a ranking tool.  

 

 Non-commercial sponsors 

Disease-specific academic clinical trial networks have a long history of IPD sharing, especially 

US-related NIH institutions. This is clearly demonstrated by the available literature; however, 

the metrics of data-sharing are not always as transparent as with the industry platforms, and 

data cannot be structured and documented easily in a table. 

In a survey on the use of the National Heart, Lung, and Blood institute Data Repository, access 

to 100 studies initiated between 1972 and 2010 was investigated.(221) A total of 88 trial 

datasets were requested at least once, and the median time from repository availability and the 

first request was 235 days.  

Since its inception in 2006 and through to October 2012, nearly 1700 downloads from 27 

clinical trials have been accessed from the Data Share website belonging to the National Drug 

Abuse Treatment Clinical Trial Network (CTN) in the US, with use increasing over the 

years.(222) Individuals from 31 countries have downloaded data so far.  

In a case study approach, the data-sharing platform Data Share of the National Institute of Drug 

Abuse (NIDA) was investigated in detail.(223) As of March 2017, the Data Share platform had 

included 51 studies from two trial networks (36 studies from CTN and 15 studies from NID 

Division of Therapeutics and Medical Consequences). From 2006 to March 2017, there have 
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been 5663 downloads from the Data Share website. Of these, 4111 downloads have been from 

the US.  

The Project Data Sphere (PDS) is an open-source data-sharing model that was launched in 2014 

as an independent, non-profit initiative of the CEO roundtable on cancer.(224) PDS contains 

data from 72 oncology trials, donated by academics, governments, and industry sponsors. More 

than 1400 researchers have accessed the PDS database more than 6500 times. As an example, 

a challenge to create a better prognostic model for advanced prostate cancer was issued in 2014, 

with 549 registrants from 58 teams and 21 countries.  

The Immune Tolerance Network (ITN) is a National Institute of Allergy and Infectious 

Diseases /National Institutes of Health-sponsored academic clinical trial network.(225) The 

trial sharing portal, which was released for public access in 2013, provides complete open 

access to clinical trial data and laboratory studies from ITN trials at the time of the primary 

study publication. Currently, data from 20 clinical trials is available and data for an additional 

17 will be released to the public at the timepoint of first publication. So far, more than 1000 

downloads have been registered.  

In the MRC Clinical Trials Transparency Review Final Report (November 2017), the MRC 

United Kingdom (UK) reported that 24/107 (22%) trials that started during the review period 

had created a database for sharing. Seven of these datasets (7/24, 29%) had already been shared 

with other researchers.(226) 

Of 215 requests submitted for PLCO (Prostate, Lung, Colorectal and Ovarian) cancer screening 

trial data, 199 (93%) were approved, and for NLST (National Lung Screening Trial) 214 (89%) 

out of 240 requests.(227) 

 

 Other stakeholders 

In a case study about experiences with data-sharing among data monitoring committees, access 

to five concurrent trials assessing the level of arterial oxygen, which should be targeted in the 

care of very premature neonates, was investigated.(228) The target of taking  all relevant 

evidence into account when monitoring clinical trials could be only partially  reached.  

One case-study directly addressed the issue of costs. Data from two UK publicly funded trials 

was used to assess the resource implications of preparing IPD from a clinical trial to share with 
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external researchers.(229) One trial, published in 2007, required 50 hours of staff time with a 

total estimated cost of £3185, and the other published in 2012 required 39.5 hours with £2540.  

 

Results of individual sources of evidence: re-use 

 Any type of re-use 

 

The majority of research projects using shared clinical trial data are dealing with new research. 

This covers studies on risk factors and biomarkers, methodological studies, studies on 

optimizing treatment and patient stratification and subgroup analyses. IPD meta-analyses were 

a less frequent reason for data-sharing requests to repositories and only a few have been 

reported. Re-analyses are only exceptionally applied. 

Early experiences with CSDR, involving GlaxoSmithKline trials found low rates of IPD meta-

analyses and re-analyses, the vast majority being secondary analyses (studies on risk factors or 

biomarkers, methodological studies, predictive toxicology or risk models, studies of optimizing 

treatments, subgroup analyses etc.).(213) Similar results were found in an update of the 

analysis.(215)  

In the YODA project, which had received 73 proposals for data-sharing as of June 2017 and 

had approved 65 proposals, the most common study purposes were to address secondary 

research questions (n=39), to combine data as part of larger meta-analyses (n=35) and/or to 

validate previously published studies (n=17) (217). 

Among the 172 requests to the National Heart, Lung and Blood Institute (NHLBI) data 

repository with online project descriptions and coded purpose, 72% of requests were initiated 

to address a new question or hypothesis, 7% to perform a meta-analysis or combined study 

analysis, 2% to test statistical methods, 9% to investigate methods relevant to clinical trials, and 

9% for other reasons.(221) In only two requests, the available description suggested a re-

analysis. 

From 2014 to the end of January 2019, 222/473 (46.9%) of the requests to CSDR gained access 

to the data (in progress and completed).(210) 90/222 (40.5 %) of the research teams had 

completed their analyses by January 2018. 41 published at least one paper, and another 28 that 

were expected to publish shortly. 
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In the SPRINT challenge, individuals or groups were invited to analyse the dataset underlying 

the SPRINT RCT and to identify novel scientific or clinical findings.(230) Among 200 

qualifying teams, 143 entries were received.   

 

 Further additional analyses 

 

There were few indications concerning the exact type of secondary analysis that was performed. 

Approved proposals per subject matter are available for the Cancer Data Access system 

(CDAS), covering two large cancer screening trials (PLCO, NLST).(227) Of the 199 approved 

requests to PLCO between November 2012 and October 2016, 84 (42%) were devoted to cancer 

etiology, 66 (33%) to trial-related screening, 29 (15%) to other areas, 14 (7%) to risk prediction 

and 6 (3%) to image analysis. Of the 214 approved requests to NLST, 95 (44%) were devoted 

to image analysis, 90 (42%) to trial-related screening, 14 (7%) to other subjects, 10 (5%) to 

cancer etiology and 5 (2%) to risk prediction. 

 

 IPD meta-analyses 

 

In one study, IPD meta-analyses proved to amount to a small proportion of data re-use. Among 

the 174 research proposals approved up to 31 August 2017 by CSDR, 12 proposals were IPD 

meta-analyses, including network meta-analyses.(203) All were retrospective IPD meta-

analyses (i.e. none was a prospective IPD meta-analysis). 

 

 Re-analyses 

 

A 2014 survey of published re-analyses (112) found that a small number of reanalyses of RCTs 

have been published (only 37 re-analyses of 36 initial RCTs) and only a few were conducted 

by entirely independent authors. 35% of these reanalyses led to changes in findings that implied 

conclusions different from those of the original article for the types and numbers of patients 

who should be treated. 
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In the survey of 37 RCTs in the BMJ and PLOS Medicine published between 2013 and 2016, 

14 out of 17 (82%, 95% IC: 59% to 94%) available studies were fully reproduced on all their 

primary outcomes.(89) Of the remaining RCTs, errors were identified in two, but reached 

similar conclusions, and one paper did not provide enough information in the Methods section 

to reproduce the analyses.  

 

Results for individual sources of evidence: output from data sharing 

Publications can be considered as the main research output of data-sharing. Publication activity 

in the re-use of clinical trial data was considered in several studies. Detailed data are available 

for academic clinical trial networks and disease-specific repositories in the US, some of them 

already practising data-sharing for a period longer than 10 years. Here, fair to moderate 

publication output has been observed depending on the individual repository. So far this is not 

the case for the repositories storing clinical trial data from commercial sponsors, taking into 

consideration that these repositories were established around five years ago and that there is 

usually a considerable time lag between request, approval, analysis and publication. Current 

statistics indicate improvement in publication output with time.  

 

 Non-commercial sponsors 

 

In a cross-sectional web-based survey about access to clinical research data from BioLINCC, 

covering the period from 2007 to 2014, 98 out of 195 responders (50%) reported that their 

projects had been completed, among which 66 (67%) had been published.(209) Of the 97 

respondents who had not yet completed their proposed projects, 81 (84%) explained that they 

planned to complete their project; 63 (65%) indicated that their project was in the 

analysis/manuscript draft phase.  

In a survey targeting European heads of imaging departments and speakers at the Clinical Trials 

in Radiology sessions (July – September 2018), 23/68 reported that they had already shared 

data.(196) At least 44 original studies were published based on the data shared by the 23 

institutions involved.  

In five studies (Table 2) the number of publications was reported, usually referring to the 

number of trials included in the repository/platform. 
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Reference Repository/ 

platform 

No. of trials 

included in 

repository/platform  

No. of published 

articles 

Assessment 

Shmueli-

Blumberg, 

2013 

CTN Data 

Share 

27 trials 

(1700 downloads) 

13 2012 

Zhu, 2017 CDAS 2 trials (PLCO, 

NLST) 

(455 requests) 

25% for PLCO 

projects, 19% for 

NLST projects 

2016 

Coady, 2017 BioLINCC 100 trials 

(88 requested at 

least once) 

35% of clinical 

trials at least 1 

publication 5 

years after 

availability in the 

repository 

5/2016 

Huser, 2018  NIDA Data 

Store 

51 trials 14  3/2017 

Pisani, 2017 WWARN 186 trials 18 2016 

 

Table 2: Studies reporting published outputs for non-commercial sponsors 
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Commercial sponsors 

 

Various studies explored metrics of both YODA and CSDR (Supplementary Material 4).  

Up to 2021, Vivli’s website indicates very little published output. We were not able to retrieve 

published output from NIDDK. Figure 6 presents publication metrics for CSDR (up to 31 

August 2019) and YODA (up to 1st July 2019). Among 88 published papers (62 from CSDR 

and 26 from YODA), 49 were secondary analyses (42 from CSDR and 7 from YODA), 30 were 

meta-analyses (13 from CSDR and 17 from YODA), 6 were methodological studies (5 from 

CSDR and 1 from YODA) and 3 were re-analyses (2 from CSDR and 1 from YODA). The 

details of these publications are presented in Supplementary Material 5. (212, 215, 217) 

 

Figure 6: Temporal trends, number and type of published output from CSDR and YODA  

(Blue YODA, Red CSDR) 
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Results of individual sources of evidence: impact of research output 

Evidence on the impact of research output from sharing IPD from clinical trials is still very 

sparse. So far only two studies, with inconsistent results dealing with this issue and focusing 

only on citation metrics could be identified.  

 

  Metrics on citations 

One study, already published in 2007, suggested that sharing detailed research data was 

associated with an increased citation rate.(231) Of 85 cancer microarray clinical trials published 

between January 1999 and April 2003 41 made their microarray data publicly available on the 

internet. For 2004 – 2005, the trials with publicly available data received 85% of the aggregate 

citations. Publicly available data was significantly associated with a 69% increase in citations, 

independently from journal impact factor, date of publication and the author's country of origin. 

Citation metrics for 224 publications based on repository data for clinical trials in the NHLBI 

Data Repository were compared with publications that used repository observational study data, 

as well as a 10%-random sample of all NHLBI-supported articles published in the same period 

(January 2000 – May 2015).(221) Half of the publications based on clinical trial data had 

cumulative citations that ranked in the top 34% normalized for subject category and year of 

publication, compared to 28.3% for publications based on observational studies and 29% for 

random samples. The differences were, however, not statistically significant.  

 

  Other data sources 

In the SPRINT challenge, individuals or groups were invited to analyse the dataset underlying 

the SPRINT RCT and to identify novel scientific or clinical findings.(230) Among 200 

qualifying teams, 143 entries were received. Entries were judged by a panel of experts on the 

basis of the utility of the findings to clinical medicine, the originality and novelty of the 

findings, and the quality and clarity of the methods used. All submissions were also open for 

crowd voting among the 16,000 individuals following the SPRINT Challenge. Cash prizes were 

awarded, and winners were invited to present their results. 143 entries to the SPRINT data 

challenge were received.  
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5. DISCUSSION 

 

Summary of evidence 

There are major differences with respect to the intention to share IPD from clinical trials across 

the different stakeholder groups. The studies available so far show that clinical trialists and to 

some extent study participants, as the two main actors of clinical trials, usually have great 

willingness to share data (60-80%). This is much less pronounced when it comes to data-sharing 

statements published in journal articles. Depending on the journals considered, the rates vary 

from less than 5% to around 25%. The situation is even worse when data-sharing plans 

documented in registries (e.g. ClinicalTrials.gov) are analysed. Here the willingness to share 

data is between 5 and 10%.  

As a consequence, considerable discrepancy between the positive attitude towards data-sharing 

in general and the intention to do so in an actual study needs to be ascertained. Publishers, 

enabling the publication of research output from clinical trials and funders/sponsors financing 

clinical trials, could be major drivers to change the situation. Meanwhile many publishers have 

developed data-sharing policies (20-75%), but less than 10% are mandatory and have thus not 

been enforced. There are differences between journals, with some of the high-impact journals 

being more involved in the data sharing movement than the others (e.g PLOS Medicine, the 

BMJ, Annals of Internal Medicine). For funders, the situation is similar, but differs between 

commercial and non-commercial funders. 30-80% of the non-commercial funders provide data-

sharing policies, with the US and NIH at the front. Only around 10 to 20% of these policies are 

mandatory. Data-sharing policies have been developed more often in the group of commercial 

funders (40-95%) but information on the proportion of mandatory policies is lacking. In short, 

the pressure by publishers and funders to share data is still limited and the situation is only 

slowly improving. Stronger policies on data sharing that include a strong evaluation component 

are needed. The situation is better for the pharmaceutical industry, which has not only promoted 

data-sharing policies in their organisations to a large degree but has also implemented platforms 

and repositories, providing practical support for the process of data-sharing (e.g. CSDR, Yoda, 

Vivli). 

Several studies have been performed investigating data-sharing rates for clinical studies that 

have been published in journals. The focus has been on high-impact journals with strict data-

sharing policies (e.g. PLOS Medicine, BMJ, Annals of Internal Medicine), demonstrating data-
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sharing rates between 10% and 46%, except for one study with a very high data-sharing rate 

due to a partly preselected sample of authors willing to share their data. Data availability for 

IPD meta-analyses is usually limited (0-20%), available only under specific circumstances 

(Cochrane group, disease-specific repository) and the availability can be increased to 50% and 

more. A few individual studies describe access to repositories/platforms from the viewpoint of 

the user, which does not enable identification of a general pattern. Different initiatives and 

platforms have been implemented for the pharmaceutical and medical device industry to 

support sharing of IPD from clinical trials (these platforms are now open to academic trials, but 

this has not been used very often so far). This covers the YODA project, CSDR, Vivli and 

SOAR (which is now part of Vivli). The data available shows that the use of these platforms 

has increased steadily since their initiation and that 50% and more of the data requests lead to 

actual data-sharing. The reasons for not sharing are numerous but data access is rarely denied 

by the platforms. One of the hurdles to better acceptance of data sharing is the time delay 

between a request for data sharing and receiving the requested data. This was not systematically 

investigated in the scoping review, but a few studies have demonstrated that there may be a 

considerable time lag between initial request and response (200, 205) and the time between 

request and receiving a data sharing agreement (207). 

The majority of research projects using shared clinical trial data deal with new research. This 

covers studies on risk factors and biomarkers, methodological studies, studies on optimizing 

treatment and patient stratification and subgroup analyses. This is important because new 

research may be easier to publish in peer-reviewed journals, which is a major driver of academic 

careers.  

So far only some IPD meta-analyses have been planned as part of data-sharing initiatives, and 

only a few have been reported. There are many hurdles for IPD meta-analyses, including the 

findability, the accessibility and the re-usability of datasets (F, A and R in FAIR). ECRIN has 

developed a metadata dictionary (MDR), able to identify clinical studies and data objects related 

to it (e.g. protocol, DMP, CRF).(232) This tool allow for identifying studies for which datasets 

are available and the conditions for access (ECRIN, MDR). Even if IPD datasets are accessible 

for meta-analyses, the studies are usually distributed across various repositories. This has been 

demonstrated in several studies in our scoping review. One central repository could simplify 

the situation, but instead, the number of repositories is steadily increasing.(139) The situation 

could be considerably improved with more standardisation and harmonisation of data and 

procedures and a federating approach between repositories.  
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Re-analysis of clinical trial data could help the scientific community to enhance the validity of 

reported trial results. An illustration is the “restoring study 329” initiative, investigating efficacy 

and harm of paroxetine and imipramine in the treatment of major depression in adolescence. 

The re-analysis reached different conclusions with important implications for both clinical 

practice and research.(113) RIAT (Restoring invisible & abandoned trials support center) was 

initiated as an international effort to tackle bias in the way research is reported with the goal of 

providing more accurate information to patients and other healthcare decision makers.(233) 

One of the problems that is tackled by RIAT is misreporting (inaccurately or incompletely 

reported trials). In our scoping review we found that re-analyses are only exceptionally applied. 

In one review, the majority of studies was reproduced on all primary outcomes, in another 

around one third of studies led to changes in findings different from the original articles. It 

seems that re-analysis is only attractive in a minority of cases deserving major public interest. 

Nevertheless, for these cases, repositories holding and sharing IPD could be very useful and 

speed up the process of data-sharing. It could be of interest to establish a link between RIAT 

and data-sharing platforms and initiatives. 

Publications can be considered as the main output from data-sharing. Usually, there is a 

considerable time lag between requesting data for re-use, receiving shared data, performing 

secondary analysis, writing a manuscript and publishing the secondary analysis. This has to be 

taken into consideration when the publication output of data-sharing initiatives and platforms 

is analysed. Repositories and platforms mainly devoted to commercial trials have now existed 

for around 5 years, so only a limited publication output can be expected. Fortunately, these 

repositories provide detailed metrics for data-sharing requests, including number and type of 

publications originating from data-sharing. As expected, the number of publications related to 

data-sharing for commercial studies is still limited, but current statistics indicate improvement 

over time. The situation with non-commercial sponsors is different. Academic clinical trial 

networks and disease-repositories have been successfully implemented (mainly in the US) and 

have already practised data-sharing for quite a long time, some for more than 10 years. Here 

data-sharing is part of the research culture and the exchange of data is based on elements such 

as trust, technical support and common benefit. Outstanding examples are BioLINCC,(209) 

NIDA (222) and World Wide Antimalarial resistance Network (WWARN).(234) (235) This is 

reflected in the data-sharing rates for IPD meta-analyses, which are rather low if data requests 

target authors directly, compared to data-sharing requests within communities (e.g. Cochrane 

groups) or related to specific repositories. Outside clinical trial networks and disease-specific 
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repositories, data-sharing of IPD is still very limited. Possible reasons could include the lack of 

widely accepted repositories for non-commercial clinical trials and insufficient incentives and 

benefits related to data-sharing. Some investigators may be reluctant to share their data, other 

may simply not know how to proceed.  

 

We describe secondary analyses as a very popular type of reuse. These analyses are however 

exploratory and carry a risk of alpha inflation (due to multiple comparisons). Not all results of 

these analyses have been published. Alpha inflation and selective reporting can be fertile ground 

for non-reproducible science and this phenomenon surely deserves attention. Improvements 

could be achieved with a prospective registration of any protocol for secondary data use similar 

to the trial registries (e.g. ClinicalTrials.gov), a mandatory link between the registration and the 

original publication or data set and the need to refer to the primary publication or dataset if the 

re-analysis is published. Existing approaches and tools could then be extended to automatically 

identify publications related to re-use of data and establish a link to the original work (e.g. see 

crossmark – crossref (236) , metadata repository (MDR) developed by ECRIN linking clinical 

studies with related data objects).(232) Another possibility could be to set up a register for 

secondary analyses. 

To be widely accepted, research output from shared data should have an impact on medical 

research (e.g. generation of new hypotheses) and medical health (e.g. changes in treatment via 

guidelines). Many interventions seek to maximise the benefit of trial data sharing (e.g. use of 

incentives for clinical trial data sharing, development of infrastructure for data sharing, etc.) but 

it is paramount that these interventions are evidence based. It is well known that the impact of 

primary studies on medical research and health often has a considerable time-lag and direct 

effects are not easy to demonstrate. So it is to be expected that evidence from research output 

from shared data is even more difficult to demonstrate. In this scoping review, taking into 

consideration the limited time available for data-sharing activities to generate an impact, no 

major effects were to be expected. As a consequence, the evidence on the impact of data-sharing 

is still very sparse. This could mean that it is still too early to measure any impact, or that the 

impact is very limited. So far, only surrogate measures have been considered (citation metrics) 

with inconclusive results. It is hoped that in the coming years, more studies with more relevant 

criteria and metrics will be performed. One option could be to closely follow up the SPRINT 

challenge, where 143 secondary analyses on a single clinical trial were performed, and it would 

be interesting to see whether one or more of these secondary analyses really had an impact.  
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Limitations  

Retrieving and synthesizing information for this study proved to be difficult because we 

operated in a very siloed landscape where each initiative platform operates with its own metrics. 

We have tried to be exhaustive by reviewing both the literature and the most important 

initiatives. However, it was hard to keep the review up-to date as we were studying a moving 

target in a rapidly changing environment with more and more new initiatives. Some 

pharmaceutical companies may operate in their own environment and not on larger data-sharing 

platforms. This makes these activities even more difficult to track. In addition, data-sharing has 

not had a long history and many of the initiatives and activities were launched in the recent 

past. Therefore, only a limited research output from data-sharing can be expected so far and 

indeed, the number of publications is disappointing. It is expected that the number of 

publications will increase, and indeed we are already seeing this.  

6. CONCLUSIONS 

There is currently a gap in the evidence base evaluating impact of IPD sharing, which causes 

uncertainties in the implementation and adoption of current data-sharing policies. Data-sharing 

faces many challenges including, for instance, the scepticism of trialists.(237) There is therefore 

a need to provide high-level evidence that the value of medical research liable to inform clinical 

practice increases with greater transparency, and with the opportunity for external researchers 

to re-analyse, synthesize, or build on previous data. First, a register (such as PROSPERO(238)) 

for any secondary use of shared data should be created. The inclusion in such a register could 

be mandatory for any data-sharing agreement/publication, as for the registration of clinical 

trials. This register would make it possible to build an observatory of data-sharing practices 

providing direct feedback, without the present silos we have to face. In addition, a register of 

this sort could help to prevent any selective publication of secondary analyses. Lastly, we 

suggest that interventional studies should be run to determine the optimal data-sharing policy 

and/or incentives that add value to clinical research. We do however need to take into 

consideration that the experimental studies performed so far were not very conclusive, 

indicating that experimental studies in this area are very demanding. 

The Supplementary material to this study can be found under this link: 

https://bmjopen.bmj.com/highwire/filestream/218043/field_highwire_adjunct_files/0/bmjope

n-2021-049228supp001_data_supplement.pdf  

https://bmjopen.bmj.com/highwire/filestream/218043/field_highwire_adjunct_files/0/bmjopen-2021-049228supp001_data_supplement.pdf
https://bmjopen.bmj.com/highwire/filestream/218043/field_highwire_adjunct_files/0/bmjopen-2021-049228supp001_data_supplement.pdf
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1. ABSTRACT 

Background 

Transparency and reproducibility are expected to be key features in clinical trials used for 

decision-making on Marketing Authorizations for new medicines. This registered report 

introduces a cross-sectional study aiming to assess inferential reproducibility for main trials 

assessed by the European Medicine Agency (EMA).  

Methods 

Two researchers independently identified all studies on new medicines and biosimilars given 

approval by the European Commission between January 2017 and December 2019 marked as 

main studies in the European Public Assessment Reports (EPAR). 62 of these studies were 

randomly sampled. One researcher retrieved the Individual Patient Data for these studies and 

prepared a dossier for each study, containing the IPD, the protocol and information on the 

conduct of the study. A second researcher who had no access to study reports, used the dossier 

to run an independent re-analysis of each trial. All results of these re-analyzes were reported in 

terms of each study’s conclusions, p-values, effect sizes and changes from the initial 

protocol.  A team of two researchers not involved in the re-analysis compared results of the 

reanalyzes with published results of the trial.  

Results 

292 main studies in 176 EPARs were identified. For 10/62 of randomly sampled studies, we 

received IPD (16.1% [95% CI 8%; 27.7%]). Median number of days between data request and 

data receival was 253 [Interquartile range 182 – 469].  For the ten trials, we identified 27 distinct 

outcomes eligible for reanalyzes. Conclusions of 8/62 trial (12.9% [95% CI 5.7%; 23.9%]) were 

reproduced. The two remaining studies were not reproducible because data concerning one of 

their principal outcomes were not available (deleted as part of the anonymization process).  

Conclusion 

Despite their results support decisions that affect millions of people's health across the European 

Union, most main studies used in EPARs lack transparency and their results are not 

reproducible for external researchers. Re-analyzes of the few trials with available data showed 

good inferential reproducibility. 

Registration: https://osf.io/mcw3t/ 

https://osf.io/mcw3t/
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2. BACKGROUND 

The influence of main trials (i.e. evidence used for drug marketing approval) as assessed by the 

European Medicine Agency (EMA) is paramount. These studies have a major impact on drug 

Marketing Authorizations and can change the practices of European medical practitioners and 

the care offered to millions of patients in the European Union. Because of the major financial 

conflicts of interest inherent in the evaluation of pharmaceuticals (239, 240), stakeholders are 

typically more confident when the results and conclusions of these studies can be verified. For 

a long time, however, transparency was lacking and the individual patient data (IPD) and 

accompanying material (code, protocol, data analysis plan, etc.) to reproduce these analyses 

were unavailable. An empirical analysis suggests that only a small number of re-analyzes of 

randomized controlled trials (RCTs) have been published to date; of these, only a minority were 

conducted by entirely independent authors (112). Data-sharing enabling such re-analyzes is 

being increasingly mandated in medicine.  

And indeed, the EMA aimed to pioneer transparency in this field when, in November 2010, it 

decided to share every piece of documentation received, in the wake of the first version of 

policy 0043 (115). As part of its transparency policy, the EMA publishes European Public 

Assessment Reports (EPAR) after the European Commission’s decision on the specific 

medicines. These reports include, amongst other documents, results of main trials (241). On 

October 2nd 2014 the EMA released its policy 0070 on “publication of clinical data for 

medicinal products for human use”(116). The agency describes a two-step approach. From 1st 

of January 2015 clinical reports on medicines submitted for Marketing Authorization have been 

published. A second step includes the publication of IPD. A date for the implementation of this 

step still needs to be fixed. However,  as a result of Brexit and the relocation of the EMA to the 

Netherlands, further developments and renovation have been stopped for the moment (117, 

242). Efforts are therefore still needed to reach full transparency in the EMA. 

On the other hand, biopharmaceutical companies (i.e. Pharmaceutical Research and 

Manufacturers of America [PhRMA] and the European Federation of Pharmaceutical Industries 

and Associations [EFPIA]) endorsed a commitment ‘to enhancing public health through 

responsible sharing of clinical trial data’ in a manner that is consistent with 3 main principles: 

safeguarding the privacy of patients, respecting the integrity of national regulatory systems, and 

maintaining incentives for investment in biomedical research (110). Despite this commitment 

from 2013, an audit found that data availability was reached for only 9/61 (15%) clinical trials 

on medicines sponsored by the pharmaceutical industry and first published between 1 July 2015 
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and 31 December 2015 in the top 10 journals of general and internal medicine (111). If such 

low rates of data-sharing were also to be observed for main trials, it would invalidate any efforts 

towards reproducibility for these important studies.  

 

However, the environment for data-sharing is changing fast. And indeed, data-sharing 

Platforms like ViVli, YODA project or Clinical Study Data Request are more and more widely 

used. In fall of 2019 these platforms gathered a large number of trials sponsored by the 

pharmaceutical industry. The three together reached about 8000 RCTs in November 2019 (129). 

Despite this available data, re-analyzes are still sparse. Among the 88 published outputs we 

identified (before our research) resulting from data-sharing on these platforms, only 3 were re-

analyzes: “Restoring Study 329” by Le Noury et al. which contradicted the initial publication, 

a trial that was already known to be misreported (113), a re-analysis of the TORCH trial 

suggesting an overestimation of the treatment effect in the original study (243), and the re-

analysis of the “SMART-AF” trial which came to similar conclusions to the original study 

(244). 

As part of a global research program on reproducibility in therapeutic research (ReiTheR, 

funded by the French National Research Agency), we designed the present cross-sectional study 

to assess inferential reproducibility (i.e. when IPD is available, whether qualitatively similar 

conclusions can be drawn from a re-analysis of the original trials) for main studies assessed by 

the EMA.  

 

Our hypothesis is that for most trials (> 95%) for which we obtain the data, the results observed 

on the primary outcome would be fully reproducible. However, although we planned one year 

for data collection, we are aware that after this time some data would still not be available and 

thus not be re-analyzable. Nevertheless, the worst-case scenario for precision estimates is that 

50% of the studies would be analyzable and reproduced. 
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3. METHODS 

This is a registered report: the research protocol was peer-reviewed before the actual research 

takes place, received in-principle acceptance on 20/12/2019 and was registered 14/01/2020 on 

the Open Science Framework (245). 

Once accepted, the editors undertake to publish the completed study if the protocol is validated 

even if there are statistically negative findings (i.e. study hypothesis not verified). This approach 

is expected to reduce issues such as publication bias (246).  

Eligibility criteria 

EPARs 

We collected all EPARs on new authorized human medications, biosimilars and orphan 

medicines given a positive opinion by the CHMP (Committee for Medicinal Products for 

Human Use) between 1st January 2017 and 31st December 2019 and approved by the European 

Commission. We excluded EPARs concerning generics and hybrid medicine. Definitions 

concerning the different types of drugs can be found in additional file 1 in the web appendix 

(245). The distinction between new biosimilars, new generics, new hybrid medicine, orphan 

medicines or new medicines followed the CHMP Meeting Highlights (247).   

Main Studies 

Pivotal trials are referred to as “main studies” in the different EPARs. Any main study was 

included, with no distinction in terms of study phase, study type, study design or intervention.  

If an indication for a drug has been refused and another indication authorized, we did not 

consider the main study for the non-authorized indication.  

Furthermore, studies with no primary outcome identified were not included and were listed as 

non-evaluable studies. 
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Search Strategy 

Eligible main trials 

Two reviewers (MS, JG) manually extracted all names of the new medicines, biosimilars and 

orphan medicines approved by the CHMP and enter the information on an Excel Sheet. 

Afterwards, a check was performed to verify that the CHMP opinion was adopted by the 

European Commission (248). Next, the reviewers identified the corresponding eligible EPARs 

on the EMA website (249) and extracted all main studies reported in these EPARs. In case of 

disagreement, a third reviewer (CL or FN) arbitrated.  

 

Sample size calculation 

A random sample of 62 of these main studies was selected using R (rnorm function) (250). This 

sample size ensured a precision of ± 12% to estimate our primary outcome (i.e. percentage of 

reproducible studies, see below for a definition) in the worst-case scenario for precision 

estimations (i.e. if the percentage is 50%). 

 

Main study document accessibility 

For all selected main studies, one reviewer (JG) searched for the EudraCT number and/or the 

Sponsor Protocol Number, and/or any other identification information in each EPAR, and 

identified the official Sponsor of the study. If this information was lacking, the same reviewer 

started a wildcard search using keywords (disease, drug) from the study in the European Union 

(EU) Clinical Trial Register (251). If this was not successful, the reviewer went on the websites 

ClinicalTrials.gov (252), International Clinical Trials Registry Portal (ICTRP), World Health 

Organization (253) and the International Standard Randomised Controlled Trial Number  

(ISRCTN) allocated by BioMedCentral (254). If information on sponsor and study number was 

still lacking the reviewer contacted the EMA.  

Once the sponsor and the study number were identified, the reviewer contacted the sponsor to 

collect all of the following main study documents: 1) IPD, 2) data analysis plan, 3) unpublished 

and/or published study protocols with any date-stamped amendments 4) all the following dates: 

date of the last visit of the last patient, date of database lock (if available) and date of study 

unblinding, 5) unpublished and/or published (scientific article) study reports. 
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To this end the reviewer sent a standardised email (additional file 2), presenting the research 

project with a link to the pre-registered protocol on the Open Science Framework. In order to 

improve the return rate, up to 4 emails were sent, the original and 3 reminder emails (with a 

two-week interval between e-mails). 

  

If we were asked for this information, we indicated  that the Data-Sharing of raw data is 

welcome in form of Study Data Tabulation Model (SDTM) which was created by the Clinical 

Data International Standard Consortium (CDISC) (255). 

In some cases, it was sufficient to contact the sponsor by e-mail, in other cases the sponsor 

asked us to retrieve the data on a data sharing platform.   

In parallel the same reviewer searched these documents on the EMA portal (256) and by 

inspecting the published reports (if available) identified using open trial (257, 258). This 

process is summarised in supplementary Figure 1 in the web appendix. 

 

Data Extraction 

The identification of main studies and the following trial characteristics were extracted on an 

Excel spreadsheet by two independent researchers (JG and FN).  

These characteristics included patient characteristics (e.g. percentage of women, mean age of 

participants, paediatric indication), study design (e.g. endpoint type, description for each 

primary endpoint) and intervention characteristics (e.g. drug).  

An exhaustive list of the trial characteristics extracted can be found in the additional file 3.  

Concerning the re-analysis, a first reviewer (JG, PhD Student) collected the information and 

collated data for the re-analysis. More specifically, the reviewer prepared a dossier with the 

following information for each study: 1/ the protocol, 2/ all amendments to the protocol (with 

their dates), 3/ all the following dates: date of the last visit of the last patient, date of database 

lock (if available) and date of study unblinding, and 4/ the IPD. In case of information was still 

lacking, the study authors were contacted. 
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Strategy for re-analyzes: 

In case the IPD were not available one year after our initial request, we initially planned to 

consider the study as non-reproducible (primary outcome of our study). However, we allowed 

some flexibility regarding deviations to this rule (in terms of delay) during the conduct of the 

study, since delays were in general longer than initially planned, including from the legal review 

on our side. We only considered studies as not reproducible when data was not shared entirely 

to reproduce the primary endpoint. 

Based on the dossier prepared by the first researcher, re-analyzes of the primary outcome(s) of 

each study were performed by a second researcher (MS, PhD student) who had no access to 

study reports, journal publications, statistical analysis plan, or analytical code, in order to ensure 

that the analysis was as blind as possible to the primary analysis. In addition, this reviewer was 

instructed not to try to find these documents or the published report.  

For single-blind studies or open-label studies, analyses were performed according to the first 

version of the protocol, because outcome switching were possible in these studies. For double-

blind studies, all re-analyzes were based on the latest version of the protocol issued before 

database lock and unblinding. If this information was not available, the date of the last visit of 

the last patient was used as a proxy.  

Although in therapeutic research statistical analysis is fairly simple, in some cases the re-

analyzes can involve difficult methodological choices. An independent senior statistician (AR) 

was available to discuss any difficult aspect or choice in the analysis plan before the re-analysis, 

so as to choose the most consensual analyses (e.g. Intention to Treat population for a superiority 

trial). 

If insufficient information concerning the main analysis were provided in the protocol, the best 

practices for clinical research were used, following the International Council for Harmonisation 

of Technical Requirements for Pharmaceuticals for Human Use (ICH Guidelines) (259).  

An analysis plan was developed for each study included and was recorded on the Open Science 

Framework. In the supplementary material a table is provided with details of what was taken 

from the ICH guidelines in case of missing information (additional file 4).  

Re-analyzes entailed the following different steps: 1/ identification of the primary outcome (and 

detection of outcome switching), 2/ definition of the study population, 3/ re-analysis of the 
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primary outcome.  Any change identified between the first version of the protocol and the 

version used for the re-analysis of the primary outcome was tracked and described.  

 

Procedure to assess reproducibility 

All results of these analyses were reported in terms of each study’s 1/ conclusion (positive or 

negative), 2/ p-value, 3/ effect size (and details about the outcome), 4/ changes from the initial 

protocol.  

These results were first compared with the results of the analyses reported in the EPARs and, 

if these were not available, with the study reports, and again if not available, with the 

publications. All results from all available documents were gathered (EPARs, study reports & 

publications) and were presented in the results section. 

Because interpreting an RCT involves clinical expertise, and cannot be reduced to solely 

quantitative factors, an in-depth discussion between two researchers not involved in the re-

analysis (JG and FN), based on both quantitative and qualitative (clinical judgment) factors 

enabled a decision on whether the changes in results described quantitatively could materialize 

into a change in conclusions.  

If these two reviewers judged that the conclusions are the same, the study was considered as 

reproduced. If these two researchers judged that the conclusions were not the same, then the 

researcher in charge of the analysis (MS) was be given the statistical analysis plan of the study 

and was asked to list the differences in terms of analysis. If he found a discrepancy between the 

study data analysis plan and his own analysis plan, then he corrected this discrepancy in his 

analysis (e.g. analysis population, use of covariates). Again, an in-depth discussion between 

two researchers not involved in the re-analysis (JG and FN) enabled a decision on whether the 

changes in results described quantitatively could materialize into a change in conclusions, and 

whether the differences in terms of analytical plan were understandable and acceptable. If these 

two researchers judged that the conclusions were the same, the study was considered as 

reproduced with verification. 

In case these two researchers judged that the conclusions were not the same or that the change 

in the analytical plan is neither justified nor desirable, we have foreseen to have a senior 

statistician performing his own re-analysis. Details on this step can be found in the protocol of 

the registered report (260). This process is described in supplementary Figure 2. 
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Outcomes  

The Primary outcome is the proportion of studies where the conclusions were reproduced 

(yes/no; reproduced and reproduced with verification, as defined above). In case of a divergence 

for two or more co-primary outcomes in the same study (i.e. one analysis is reproduced and not 

the other(s)) the different co-primary outcomes were described independently but the whole 

study was considered as not reproduced. All reasons for classifying studies as non-reproducible 

or not reproduced were described qualitatively using a taxonomy we developed during the 

research process.  

In addition, we described in what way the data-sharing required clarifications for which 

additional queries had to be presented to the authors to obtain the relevant information, to clarify 

labels or use, or both, and to reproduce the original analysis of the primary outcomes.  

A catalogue of these queries was created, and we grouped similar clarifications for descriptive 

purposes to generate a list of some common challenges, and to help tackle these challenges pre-

emptively in future published trials. 

Concerning secondary outcomes, we described and compared the main outcomes, p-values and 

effect sizes in the re-analyzes, and the analyses reported in the EPARs, the study reports and 

the publications, and we described discrepancies. In addition, for each paper we assessed the 

presence of the following key reporting biases: selective reporting of the primary outcome and 

"spin" (261). 

In case of outcome switching, meaning that a secondary outcome was considered as a primary 

outcome in the final analysis, both endpoints had to be re-analysed. 

To analyse ”spin” in the results observed for the primary outcome, we took the definition 

provided by Yavchitz et al. who described it as being “a specific way of reporting, intentional 

or not, to highlight that the beneficial effect of the experimental treatment in terms of efficacy 

or safety is greater than that shown by the results” (262).  

The Modalities of data sharing were described by the following categories: the type of data-

sharing, the time lapse for collecting the data, the reason for non-availability of data, the 

deidentification of data (i.e. 18 identifiers, as required by the Health Insurance Portability and 

Accountability Act) (52) and the type of the shared data (here we distinguish “computerized 

data” which is not formal or ordered, “cleaned data, categorized and ordered” and “analyzable 

data” meaning ready for analysis) (263). 
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Data Analysis 

We performed a descriptive analysis of the characteristics of the extracted main studies included 

in the EPARs selected. This included counts, percentages and their associated 95% confidence 

intervals (CIs).  

Effect estimates in the different studies were expressed as standardised mean differences 

(SMDs) and their associated 95% confidence intervals. For binary outcomes, odds ratios and 

their 95% CIs were calculated and converted into the standardised mean difference (264).  

In order to compare the results of our re-analyzes with the original results, the following steps 

were implemented: 1/ We compared the statistical significance in the form of the p-value. If 

different, the results were considered as not reproducible. If not different, 2/ we qualitatively 

compared effect sizes and their respective 95% CIs. In case of +/- 0.10 points difference in 

point estimates (expressed as standardised mean differences), the difference was discussed with 

a clinician in order to assess its clinical significance.  

All analyses were  performed using the open source statistical software R (R Development Core 

Team) (250) and SAS software™ . The code will be made public on the Open Science 

Framework, as well as a file summarizing the process to retrieve all data-sets (245).  

 

Changes to the initial protocol: 

We set a one-year deadline to obtain data. However, data demands were lengthy, and delays 

were in some cases produced from our side. Hence, study data that was sent after this date was 

included in the re-analysis process.  

Furthermore, although we said we only will use R as software for data analysis, SAS software 

was used in two studies due to a more potent approach in mixed model analyses. 

For one study we were unable to calculate the Odds Ratio. Starting with the Incidence Rate 

Ratio, we used Chinn conversion to receive the SMD (265) . This approach is justified in cases 

when events are rare and the Incidence Rate Ratio can be treated like an Odds Ratio. 
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4. RESULTS  

Study selection 

The searches and consensus finished on 27 February 2020 resulted in 317 main studies 

identified in 176 EPARs. Of these, 25 were excluded (duplicates and studies with no primary 

endpoint) resulting in 292 single studies that were included in an MAA of a drug with a positive 

opinion by the Committee for Medicinal Products for Human Use (CHMP) between the 1st of 

January 2017 and the 31st of December 2019. Of those, 62 were randomly selected (Figure 1) 

and respective data was requested from forty different sponsors. All sponsors were contacted 

via email and data was requested. After exchange with staff, for six datasets on Vivli, and for 

three on YODA, 2 requests were issued. 

 

 

Figure 1 Flow chart of the selection and analysis process for main trials  

(EPAR = European Public Assessment Report) 
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Data availability 

We received IPD for 10/62 studies (16.1% [95% CI 8%; 27.7%]) from six different sponsors. 

(266-275) For these studies, the median number of days before data were available was 253 

[Interquartile range 182 – 469]. For these ten studies, all sponsors were pharmaceutical 

companies and all but one of those companies had a data sharing policy on their website. IPD 

of four studies were provided via data sharing platforms (one was provided by one sponsor on 

Vivli and three by a single sponsor on YODA). Three studies were shared via a remote desktop 

that is monitored by the company in possession of the data. Another three data sets from three 

different sponsors were sent directly to us. All received IPD was analyzable and deidentified.  

For the remaining 52 studies, reasons for unavailability were heterogeneous (Figure 1). The 

main reason was restriction due to the study status, i.e. extension studies were ongoing (13/52). 

Other frequent reasons included confidentiality in 9/52 IPD or lack of scientific merit as judged 

by the companies’ procedures. The existence of possible privacy concerns was put forward for 

one study as a reason for not sharing data. Of the 52 studies who did not share, 37 (71.2%) 

belonged to a company that had a data sharing policy (Figure 2). 

 

 

Figure 2 Outcome of Data Sharing Demands in relation to Data sharing policy 



129 
 

F
ig

u
re

 3
 O

u
tc

o
m

e 
o
f 

st
u
d
y
 r

ea
n
al

y
ze

s 
in

 t
er

m
s 

o
f 

ef
fe

ct
 s

iz
e 

an
d

 p
-v

al
u

e,
 i

n
cl

u
d
in

g
 s

tu
d

y
 d

et
ai

ls
; 

*
 =

 M
is

si
n
g
 o

u
tc

o
m

e
 



130 
 

Study characteristics 

Characteristics of the ten studies with available IPD are presented in Table 1. Median sample 

size was 548 patients [Interquartile range 278 – 778]. Three were a single-arm study, one was 

a two-arm study, four were three-arm and two were four-arm studies. Two involved a non-

inferiority design and for all ten studies the main articles, the study protocols and the EPARs 

were retrieved. 

Reproducibility 

For the ten trials with available IPD, we identified 27 distinct outcomes eligible for reanalyzes 

(regarding different comparisons and/or different primary endpoints). Detailed results of those 

reanalyzes are presented in Figure 3. Sixteen reanalyzes (in six studies) were considered as 

reproduced, seven reanalyzes (in five studies) were considered as reproduced with verification, 

and four reanalyzes (in two studies) were considered as not reproducible because data was not 

available for a specific outcome. In these two three-arm studies from the same sponsor, 

comparing Semaglutide with Sitagpliptine and Placebo, on two primary outcomes (Change in 

HbA1c and bodyweight), data concerning bodyweight was not available (deleted as part of the 

anonymization process).  

The 52 studies without available data were considered as not reproducible. Therefore, regarding 

our primary outcome, conclusions of 8/62 trial (12.9% [95% CI 5.7%; 23.9%]) were reproduced 

(i.e. reproduced and reproduced with verification).  

We found no selective reporting of the primary outcome and no change from the original study 

protocol regarding the primary outcome in these ten studies. 
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Table 1 Summary of studies for which data was received 

 

We found no selective reporting of the primary outcome and no change from the original study 

protocol regarding the primary outcome in these ten studies. 

Spin was observed in one study (273). This study of Esketamine used a hierarchical testing 

approach and in case the 84mg dose was not positive, testing of the 56 mg dose should not have 

Study 

Acronym 

Study Study Drug Comparator 

Drug 

Sponso

r 

Design Study 

Duration 

(weeks) 

Number 

of Group 

Arms 

Participa

nts 

Percentage 

of Women 

Mean Age 

Participant

s (SD) 

ENDURANC
E-4 

 

Asselah, 
2018 

 

Glecaprevir/ 
Pibrentasvir 

 

NA AbbVi
e 

Deutsc

hland 
GmbH 

& Co. 

KG 

Non-
controlled 

cohort 

study 

12 1 121 36.4 52.66  (11) 

M41008−100

2, 

 

Mrowietz, 

2017 

 

Dimethyl 

fumarate 

 

Placebo/ 

Dimethyl 

fumarate +  
Ethyl 

hydrogen 

fumarate 

Almira

ll, S.A. 

Superiority 

and non-

inferiority 
(head to 

head) 

16 3 699 35.3 44.2 (14.5) 

ERC 231 

 

Archer, 2015 

 

Dehydroepian

drosterone 

(DHEA) 
 

Placebo Endocu

etics 

Superiority 

(head to 

head) 

12 3 255 100 58.5 (6) 

Clarity 

 
 

Giovannoni, 

2010 
 

 

Cladribine 

 

Placebo Merck 

Serono 
Interna

tional 

S.A. 

Superiority 

(head to 
head) 

96 3 1326 67.6 38.6 (10) 

NN7088-3885 

 

Trakymiene, 

2020 

 

Turoctocog 

Alfa pegol 

 

NA Novo 

Nordis

k A/S 

Non-

controlled 

cohort 
study 

26 1 68 0 6 (3.3) 

SUSTAIN 2 

 

Ahren, 2017 

 

Semaglutide 

 

Sitagliptine Novo 

Nordis

k A/S 

Superiority 

and non-

inferiority 
(head to 

head) 

56 4 1231 49.4 55.1 (10) 

SUSTAIN 5 
 

Rodbard, 
2018 

 

Semaglutide 
 

Placebo Novo 
Nordis

k A/S 

Superiority 
(head to 

head) 

30 4 397 43.9 58.8 (10.1) 
 

TRANSFOR

M-1 

Fedgchin,201

9 
 

Esketamine Placebo Janssen

-Cilag 
Interna

tional 

NV 

Superiority 

(head to 
head) 

4 3 346 70.3 46.3 (11.6) 

SUSTAIN-1 

 

Daly, 2019 

 

Esketamine Placebo 

 

Janssen

-Cilag 

Interna
tional 

NV 

Superiority 

(head to 

head) 

16 2 705 64.8 46.1 (11.1) 

SUSTAIN-2 
 

Wajs, 2019 
 

Esketamine NA  Janssen
-Cilag 

Interna

tional 
NV 

Non-
controlled 

cohort 

study 

52 1 802 62.6 52.2 (13.7) 
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been done and reported according to the protocol. Nonetheless, it was tested and presented in 

the paper despite a negative result on the 84 mg dose: « … Although esketamine 56 mg/ 

antidepressant could not be formally tested, the LS means difference was –4.1 [–7.67, –0.49] 

(nominal 2-sided P value=.027). » and “… Statistical significance was not achieved for the 

primary endpoint; nevertheless, the treatment effect (Montgomery-Asberg Depression Rating 

Scale) for both esketamine/antidepressant groups exceeded what has been considered clinically 

meaningful for approved antidepressants vs placebo [...] This study provides supportive 

evidence for the safety and efficacy of esketamine nasal spray as a new, rapid-acting 

antidepressant for patients with treatment- resistant depression.” 

For 9/10 studies, results reported in the EPAR, the study report, and the publication were 

identical (Figure 4). In one study (273) , small numerical differences were observed since the 

statistical approach required by the EMA for the EPAR (ANCOVA) was different from the 

approach required by the FDA (Mixed Model with Repeated Measures) and reported in the 

study report and the paper. In some cases, comparisons were not indicated in the paper nor in 

the study report (as detailed on Figure 4).  
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List of challenges 

Delay in data retrieval 

Data demands were long. Interactions with sponsors were, in some occasions, lengthy, 

especially if several ones were involved on the same data sharing platform. For example, on 

Vivli we submitted a data request concerning six studies from three sponsors. Various questions 

from the different sponsors came up. In one study (NCT00927498), the ownership of data 

created confusion. The trial data was purchased by Pfizer. However, Vivli informed us that 

Pfizer was not in possession of the data and referred us back to the original Principal 

Investigator of the study who did not have any rights over the data anymore. After clarification 

via the platform, access from Pfizer was denied for missing scientific merit.  

In a final step for the data acquisition process, the legal service of our unit had to confirm the 

data agreement and this step from our side was also lengthy. For two data sets we exceeded our 

one-year limit for data retrieval by two weeks. For three additional studies that were requested 

on YODA, additional 134 days were calculated. In this case, data was not available at the time 

of our initial request (18/05/2020) but YODA contacted us on (04/03/2021) to indicate that data 

was now on the platform and could be asked. After a request, we received those data on 

(14/10/2021). Those studies were included in our analysis as those long delays were considered 

as minor deviations to our initial protocol.  

Incomplete datasets, metadata and further clarifications 

In five studies, we had to contact the sponsor/platform to require additional data as data 

necessary to re-analyze the primary outcomes was missing (in three Esketamine trials and in 

two Semaglutide trials). We received additional data after 28 days in the case of the Esketamine 

trials but our request regarding the Semaglutide trials are still pending (data demanded 

21/12/2021), hampering reproduction of their outcomes. In addition, data dictionaries were 

available for 7/10 studies.  

Data analysis 

In 2/10 cases, while we reproduced the conclusion of the study, we did not define the same 

analysis population with respectively 303 and 434 vs 297 and 433 patients analyzed in studies 

Janssen SUSTAIN-1 and Merck Clarity. Among those two studies, the Esketamine study 

provided by Janssen had a very complex design involving randomized and non-randomized 



135 
 

patients. The absence of a clear randomization list as well as a data dictionary made the re-

analysis very challenging. The results of the re-analysis exceeded the fixed threshold for the 

effect size of the primary endpoint relapse of depressive symptoms (originally -0.45 vs -0.57 in 

the re-analysis) but this was judged as a minor clinical difference and the study was considered 

as reproduced. 

In studies using mixed models with repeated measures, we used SAS instead of R in order to 

reach similar conclusions (this was suggested by the sponsor). However, small numerical 

inconsistencies were present. Again, for three outcomes in those two studies, the re-analyzed 

effect size crossed the prefixed threshold of 0.10 points in the effect size. However, the referees 

in charge (FN and JG) concluded that the differences of -1.05 vs -0.82, -0.76 vs - 0.58 and -

1.31 vs -1.18 on the change in HbA1c did not affect the conclusions of the study demonstrating 

large effect sizes in reducing HbA1c. 

One study did not specify primary endpoints in its protocol but only objectives (274). We 

double checked reasons for inclusion. Despite being a single-arm safety study, the trial was 

eligible since it was labeled as a main study in the EPAR and had primary endpoints described 

on clinicaltrials.gov. The two researchers that were not involved in the study analysis decided 

to retain the first endpoint (treatment-emergent adverse events) over eleven primary outcomes 

listed on clinicaltrial.gov was retained for the analysis as it was in line with the study objectives. 

 

5. DISCUSSION 

Main results 

Eight out of 62 main trials (12.9 %) used by the EMA in its approval processes were reproduced. 

When IPD was available, all reanalyzes largely reproduced the original results. These results 

are in line with a precedent survey of RCTs published by PLOS Medicine and The BMJ (89). 

However, lack of IPD availability hampered our reproducibility effort for most of the trials, 

despite the fact that a large majority of sponsors had a data sharing policy. Certain trials had 

extension phases, excluding any data sharing in the sponsors view before study completion. 

Similar issues regarding timing of release of IPD has recently been described regarding 

COVID-19 vaccine trials (70).  

Such delays, similar to an embargo, could impact the possibility for independent researchers to 

perform timely reanalyzes. Even for trials sharing IPD, time for demands and receival of data 
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was quite long. Another reason for non-availability of sharing was “lack of scientific merit” as 

judged by the companies’ procedures. Interestingly, we decided on purpose to adopt the 

registered report format for this paper, in order to pre-emptively address this potential concern: 

this publication process allowed for a thorough and independent peer review of its “scientific 

merit” prior data collection and analysis. 

If scientific merit of any data re-use is surely important when it comes to responsible sharing 

of IPD, it is however a subjective and arbitrary notion. Furthermore, there was no agreement 

on this point regarding our request, as some sponsors, including those with independent 

procedures (e.g. those sharing on YODA), agreed to share their data. It is likely that sponsors 

are less inclined to share their data for the purpose of a re-analysis. A survey of trialists 

suggested that willingness to share data could depend on the intended reuse of the data with 

97% of respondents were willing to share data for a meta-analysis vs 73% for a re-analysis 

(276). One additional explanation could be the fear of data misuse (49). In addition, in the field 

of clinical trials, there is currently no systematic culture of reproducibility and independent 

reanalyzes of clinical trials remain sparse in published literature (112). 

 

Limitations 

Caution is needed before generalizing these results to other trials. Our results are focused on a 

very selected sample of trials, i.e. main studies submitted at the EMA. Those studies (mostly 

from Europe) are larger than the average published RCT in the medical literature (277) and all 

were sponsored by the pharmaceutical industry. Implementation of data sharing policies, 

although not optimal is likely better than implementation by public funders (104). In addition, 

we selected trials labeled as main studies (pivotal trials) in the EMA dossier and other studies 

could have been selected from the EPAR, i.e. the so-called supportive trials. Although less 

important, those supportive trials may have different characteristics that the main studies we 

included.  

Low rates of data sharing limited our ability to explore in details other inferential reproducibility 

issues. We are exploring these questions in a complementary registered report that received in 

principle acceptance at Royal Society Open Science (278). While this study is ongoing, we 

already received an agreement for 90 % of 62 studies randomly selected on the main data 

sharing platforms (Vivli, YODA and CSDR). 
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Another limitation of our study is that it was restricted to primary endpoints. While primary 

endpoints are paramount in main trials, other endpoints (e.g. secondary endpoints and/or safety 

endpoints) could also be of interest to regulators. 

Finally, while we tried to ensure as much as possible that the re-analyst was blind to study 

results, some bias might have applied to the researcher in charge of reanalyzing the data as he 

was aware that the studies were part of MAAs tend to be significantly “positive”, and indeed, 

all but one of the included studies were “positive” trials. 

 

Perspective 

Contrary to the FDA, the EMA is not conducting independent reanalyzes, making reanalyzes 

by independent researchers even more important. Possibly, for those trials, the application of 

data sharing policies should not rely only on the sponsor and appropriate policies should be 

adopted by the regulatory authorities. While EMA has demonstrated openness toward the idea 

of transparency with its implementation of policies 0043 and the first step of the even more 

progressive 0070 policy (119), more action is needed to ensure data to be effectively shared. 

Phase 2 of the EMA policy 0070 is foreseeing the sharing of IPD but there is no clear timeline 

yet. Our results support the urgent need to adopt, implement and monitor this policy. 

Nonetheless, in terms of transparency, FDA lags behind EMA. Despite a high amount of drug 

approval, the former agency does not make regulation documents available to the public, 

hindering open science regarding drug regulation (119). 

In addition, efforts toward transparency and data sharing may be incentivized. Success stories 

like the Good Pharma Score Card show that data sharing rates are rising when sponsors are 

made aware of inaccessibility (279). We have recently proposed the concept of registered drug 

approvals, an open science pathway for drug marketing authorization that may incentives data 

sharing among other open sciences practices (280).  

 

Conclusion 

Data sharing practices are rare for reanalyzes of clinical trials from authorized medicines in 

Europe, even for sponsors with data sharing policies. As a consequence, most main studies used 

in EPARs lack transparency and their results are not reproducible for external researchers, 

despite their results support decisions that affect millions of people's health across the European 
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Union. Nonetheless, re-analyzes of the few trials with available data showed good inferential 

reproducibility. 
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Furthermore, interested researchers can contact the corresponding author via mail. IPD of the 

respective reanalyzed studies cannot be shared directly but should be requested to the 

corresponding sponsor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



140 
 

CHAPTER V 

An open science pathway for drug marketing authorization—

Registered drug approval 

 

Published in PLOS Medicine 

Florian Naudet, Maximilian Siebert, Rémy Boussageon, Ioana A. Cristea, 

Erick H. Turner 
 

 

 

 

 

 

 

 

 

Maximilian Siebert was involved in the conception of the model and in the 

writing of the first draft of the final manuscript 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



141 
 

1. BACKGROUND 

Before drug approval, health authorities like the European Medicines Agency (EMA) and the 

United States Food and Drug Administration (FDA) evaluate findings from the relevant clinical 

trials to assess the balance between clinical benefit and safety. When requesting marketing 

authorization for their drug products, pharmaceutical companies are allowed to choose the 

indication, design the trials, and choose assessments. In the US, pharmaceutical companies and 

drug manufacturers must submit full trial protocols to the FDA before those trials can begin. In 

Europe, companies can, at their discretion, obtain prior scientific advice from the EMA. This 

consultative process between sponsor and regulator is not fit for purpose, as there is, in practice, 

no clear a priori consensus on the exact criteria that will be applied to adjudicate success. 

Although the FDA lays out a set of a priori rules, all too often, it later bends those rules post 

hoc. For instance, for Esketamine, for treatment of resistant depression, the FDA decided post 

hoc that a maintenance trial could substitute for a second positive short-term trial (281). Other 

examples include Nalmefene for alcohol use disorder (approved by the EMA), which was based 

on a post hoc subgroup analysis of the pivotal trials (282), or Eteplirsen for muscular dystrophy 

(approved by the FDA) despite a lack of clinical evidence (283). 

Even the initial standards agreed upon between the sponsor and regulator can be too lax. Too 

often, trials ask the wrong question: Trials may explore superiority over an inappropriately 

weak comparator such as placebo when superiority versus an already approved active 

comparator would be more clinically relevant (284). Trials can also be underpowered, focus on 

surrogate markers, or omit clinically relevant outcomes (285). Moreover, the regulator is 

laissez-faire with respect to trial publication in journal articles, allowing the sponsor to freely 

choose which findings to include and how to frame them, often diverging starkly from the 

regulator’s reviews. With few stakeholders aware of these reviews, the journal publication, 

often rife with selective reporting and spin, becomes the most influential source of information. 

Consequently, drugs approvals are frequently marred by inaccuracies and contradictions. 

Systematic investigations demonstrate that approvals based on weak and limited evidence are 

the rule rather than the exception (284, 285), although there are notable instances where 

approval was based on strong evidence, such as the recent case of Coronavirus Disease 2019 

(COVID-19) vaccines. As a result, more drugs with little, if any, added benefit are brought to 



142 
 

the market in a process increasingly reliant on disputable evidence (286) and divorced from 

public interest. 

Some regulators, like the EMA, do not attempt to replicate the sponsor’s analysis. Even the 

FDA, which reanalyzes individual patient data from the sponsor, does not make the data 

accessible to independent researchers. The combination of controversial approvals and lack of 

transparency nurtures justified criticism and decreases societal trust in medicine. 

2. AN OPEN SCIENCE PATHWAY FOR DRUG MARKETING AUTHORIZAION  

We propose to adapt the concept of “registered reports” to the process of regulatory drug 

approval and marketing authorization. It may provide an innovative, unambiguous, transparent, 

and trustworthy research pathway. 

Registered reports represent a publishing format premised on “the importance of the research 

question and on the quality of methodology by conducting peer review prior to data collection” 

(105). Transposed into the field of regulatory science, in a registered approval (Figure 1), health 

authorities would be required, a priori, to pose research questions that matter (in terms of 

patients, interventions, comparator, outcome, and study design) and define adequate criteria for 

success, with no possibility of bending the rules after data collection. 

 

 

Figure 1 Overview of the registered drug approval pathway 
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Any sponsor could propose a registered drug approval program contingent on the presentation 

of preclinical and early clinical phase evidence for the usefulness of the drug in the context of 

its research question. Development and peer review of the proposed research program would 

involve a dedicated committee assembled by the health authority involving multiple 

stakeholders, independent from the sponsor (e.g., clinicians, researchers, and patients). The 

FDA already has such advisory committees, but their meetings are scheduled close to the end 

of the approval process, after trial results are known, placing them at risk for spin and post hoc 

rule bending. In contrast, in the registered approval scheme, stakeholders will preemptively be 

involved in the process to provide insights into the value of the research question, as well as on 

the clinical relevance of the proposed intervention. Insights on appropriate comparators can be 

provided by living systematic reviews and meta-analyses. Important examples established 

during the COVID-19 pandemic (287) represent a blueprint for delineating the future agenda 

for evidence generation. Comparative effectiveness will be systematically considered, as will 

the use of core outcome sets (i.e., an agreed-upon standardized list of outcomes to be measured 

and reported in all trials for a specific clinical area (288). The required number of direct pivotal 

trials as well as study designs will be set a priori for the research program, including large 

simple trials and non-ambiguous criteria for success, e.g., 2 positive confirmatory studies with 

low risk of bias and a prospective meta-analysis. These criteria will not only define the 

prespecified analyses and criteria for statistical significance, but also the precise criteria for 

clinical relevance, i.e., a minimal clinically important difference defined on clinically relevant 

outcomes or net benefit. Health authorities will ensure a thorough peer review process of the 

protocols. 

Following a positive outcome of the peer review process, drugs would be provisionally granted 

approvals for specific use in the clinical trials of the registered drug approval research program. 

In case of any deviations from the protocol, the committee in charge of the registered approval 

would agree on the best way to handle them before unblinding and statistical analysis. 

Subsequently, an approval would be granted for clinical use and marketing authorization 

provided that  1/ the research program adhered to the registered methodology; and 2/ predefined 

criteria for success were met. Approval would require that both conditions have been met. 

Transparency would be paramount, with sharing of protocols, followed by aggregated data and 

individual patient data. Transparency would be guaranteed, regardless of whether the drug is 

approved or not. Clinical trial registries, such as ClinicalTrials.gov, could evolve to support the 

http://clinicaltrials.gov/
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uploading of all these documents. Prospective registration on these public registries is the norm 

for clinical trials. Moreover, they have evolved to also include trial results, and, thus, are in a 

privileged position to expand toward incorporating more comprehensive open science tools 

empowering Findability, Accessibility, Interoperability, and Reusability (FAIR) access to any 

study related data. Undoubtedly, such a radical push toward transparency in planning, 

conducting, and reporting research, if promoted by an influential national or transnational 

regulatory authority, would have profound consequences for the entire field of biomedicine. 

Last, all output of the research program would “feed” the living meta-analysis without delay so 

as to inform future registered drug approvals and to ensure the integrity of the entire scientific 

process from planning to publication of the results and data. 

3. IMPLEMENTATION CHALLENGES 

Practical implementation and acceptability of this pathway could be challenging. Owing to the 

complexity and resources needed for registered drug approvals, a centralized approach would 

be desirable. This approach requires the endorsement and harmonization of the pathway among 

the various health authorities, who currently follow distinct procedures. Nevertheless, the EMA 

and FDA have already initiated collaboration protocols on drugs (289). Joining forces on an 

initiative that fosters sound science and scientific integrity seems a compelling reason to 

strengthen such collaborations. 

The most obvious obstacle to this proposal is sponsor buy-in. Adopting such a pathway would 

require major structural changes in drug laws, which would almost certainly be met by heavily 

financed opposition and lobbying by drug companies. And because much agency funding 

comes from drug company user fees, sponsors may be reluctant to lose control over the process 

by which trial results, which they have long regarded as “trade secrets,” are disseminated. Other 

obstacles could include differences in ethics criteria and specialty-specific clinical guidelines 

across countries. Therefore, a first implementation initiative would be aimed at encouraging 

sponsor participation. We propose the pathway as optional for selected drugs that may be 

eligible, akin to a “golden” approval pathway that would be accompanied by additional and 

specific incentives. 

One such incentive for sponsors could be that, through a single application, this process 

simplifies the process of access to all markets, owing to the potential involvement of an 

international agency. A more important incentive is that approval via this pathway honors the 
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ethical duty of all stakeholders toward trial participants who altruistically put themselves at risk 

and can hence strengthen trust in science. Drugs approved via this pathway would thus gain a 

seal of quality, affording them a competitive advantage in the marketplace, resulting in a 

financial incentive for the sponsor. 

Nevertheless, it is also important that appropriate incentives be allocated to all involved 

stakeholders, independently of the results and with a particular focus on data generators. 

In such a pathway, one may balance the cost of an independent and robust system of evidence 

generation with the savings generated by ending the continuous flow of costly drugs, with little 

added value and concrete risks, approved within the current system. 

While these challenges are difficult to overcome, the minimum we believe can and should be 

achieved is that any trial intended to support drug approval should be submitted as a registered 

report. Such a publication would not prevent the regulatory agency from post hoc rule bending 

and approving a drug that shouldn’t have been approved, but, at least, clinicians, patients, and 

policymakers would be apprised of the true outcomes of all trials. Compared to trials 

disseminated through conventional publication pathways, stakeholders would likely find such 

registered report publications more credible and informative. 
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CHAPTER VI  

Discussion and conclusion 

 

1. Main results & conclusions of the papers 
 

In the first part of this thesis, we showed that 57% of ICMJE-member journals and around a 

third of the ICMJE-affiliated journals had an explicit data sharing policy on their website. 

However, most journals referred to the guidelines without explicitly mentioning a data sharing 

policy. Furthermore, we found that the publisher is one of the main factors incentivizing data 

sharing policies. 

When we screened 100 articles for each sample, we saw a high percentage of data sharing 

statements in member journals; yet, in articles of journals claiming to follow ICMJE guidelines, 

only 25% had a statement, and only 22% eventually intended to share data. Notably, the 

statements often refer to data sharing on request and rarely to a specific repository or fully 

available data sets. We already know that data availability is suboptimal even under a strict data 

sharing policy such as the policy in place at the BMJ and PLOS Medicine, and even when 

researchers express an intention to share. 

What also surprised, was how many alleged predatory journals claimed to follow ICMJE 

guidelines. They made up around 30% of the excluded journals. This is critical as these journals 

are prone to not following ethical publishing guidelines and including them probably would 

have enlarged the percentage of journals and articles without data sharing policy and data 

sharing statements. 

The question arises if the ICMJE guidelines are just a checkbox that researchers claim to follow. 

Even excluding predatory journals, low rates of data sharing were observed in clinical trials and 

statements. So, it is essential to know what steps are necessary to better implant the guidelines. 

Parallel to our paper, Danchev and colleagues screened 487 articles published in JAMA, The 

Lancet, and NEJM between July 1, 2018, and April 4, 2020. They found that 68.6% of the 

articles declared data sharing. However, less than one percent were de-identified and publicly 

available, and the remaining were supposedly accessible via a request to authors. Among the 

articles declaring that IPD would be stored in repositories, only around 20 % deposited data, 

primarily because of embargo and regulatory approval. The interpretation of their findings 
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confirms ours in the sense that there is a considerable gap between the intention of data sharing 

and the performance (290) . 

In the broader project of ReiTheR, we wanted to explore the extent of data sharing for 78 

funders that financed at least one randomized clinical trial between 2016 and 2018. On this 

approach, we distinguished between commercial and non-commercial funders. Around 40% 

had a data sharing policy on their website for both types of funders. In the 200 screened articles 

funded, 100 for each sample, 77%, and 81% respectively for non-commercial and commercial 

funders detailed a data sharing plan. Two percent and 59% respectively expressed an explicit 

intention to share data, exposing a lack of sharing by non-commercial funders (291). 

This first segment showed that data sharing in clinical trials was low, thus with a scoping 

review, we wanted to explore the impact of data sharing initiatives on the intent to share data, 

on actual data sharing, on the use of shared data, and on research output and impact of shared 

data in biomedical literature. Our results were that the willingness to share IPD from clinical 

trials is exceptionally high, but the actual data sharing rates are suboptimal. Depending on the 

journals considered, the sharing rates vary from less than 5% to around 25%. This conclusion 

derives from the fact that policies of journals are not applied well enough and data, if it is 

available, remains unrequested many times. Reanalyzes are rare in this context, and secondary 

use is more critical when data is requested. Finally, studies focused on the real impact of data 

sharing were scarce and used surrogates such as citation metrics. 

As emphasized in the first article, the publishers who oversee the publication process of 

research output from clinical trials and sponsors financing clinical trials could be the 

gamechanger in this crisis of non-available data. Despite this fact, the scoping review found 

that while many publishers had developed data sharing policies (20%–75%), only about 10% 

were mandatory. In summary, we concluded that data sharing in biomedical literature is 

substandard. The main factors are the lack of mandatory data sharing policies from journals and 

publishing houses.  

Moving away from journal articles, we wanted to explore the extent of data sharing and 

reproducibility in drug regulation in a second step. 

Planned as a registered report, the third study tried to inferentially reanalyze 62 studies that 

were included as pivotal trials in Marketing Authorization Applications. We only managed to 

get data for ten studies (16.1%). Reasons were heterogeneous. Most IPD was not shared because 
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of the ongoing study status. Nonetheless, some companies found no scientific merit in our 

approach. 

With this, the focus of our paper changed, as the low availability of data became the main 

research output. Nonetheless, results in the form of p-values were reproduced for all ten studies. 

Effect sizes varied slightly for some outcomes. The shared data had to be updated for five trials 

because several items necessary for reproducibility were missing (e.g., test scores to reanalyze 

the primary outcome).  

This study showed that inferential reproducibility was met when data is shared. At the same 

time, this project has shown that despite efforts on transparency by the EMA and 

pharmaceutical companies, it is still challenging to obtain all data and obtain full transparency 

in drug regulation. 

But there is hope. A similar project from our team that surveys data sharing from Phase III 

clinical trials available on data sharing platform reached a high percentage of available studies 

(278). It would be interesting to see how many of those studies played a role in marketing 

authorizations. If a high percentage were attained, new questions on disclosing trials that led to 

marketing authorization would arise. 

Similar studies on this topic are missing. Mainly because documents are not publicly made 

available by agencies and demands for trial data are lengthy and, in most cases, need to be 

justified, especially if part of a sponsored trial. In the USA these files are less available than in 

Europe, and Clinical Study Reports are not made publicly available despite the huge impact of 

one of the biggest regulators in the world.  

Trust in drug regulation is thus not reassured and we thought of a way to improve the situation. 

In the last piece, an essay, we wanted to stress the importance of new approaches for drug 

regulation. This approach should make drug marketing more open so that, among other aims, 

reproducibility checks post hoc would not be necessary.  

Before drug approval, health authorities lay out a set of a priori rules by which clinical trials 

will be judged as “positive” or “negative”. All too often, they bend those rules post-hoc. This 

results in contentious debates as to whether appropriate thresholds for success were met. 

The proposed Open Science pathway for drug marketing authorization, registered drug 

approval, aims to adapt the concept of registered reports to the process of regulatory drug 

approval and marketing authorization. It values the clinical importance of research questions, 
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with in-principle approval granted on pre-specified success criteria. This is done before data 

collection, precluding any post hoc rule-bending, and enabling full transparency. This project 

has won the essay prize from the Health Research Alliance and PLOS, and thus an expanded 

project in collaboration with the Center for Open Science is on the way. 

 

2. The reproducibility crisis isn’t over - will there be another one?  
 

Thinking that discussion about reproducibility and research findings in crisis will be over soon 

would be an illusion. 

Just recently, another extensive study showed that the replicability of preclinical research in 

cancer biology is substandard. The author team from the Center for Open Science aimed to 

replicate the results of 193 experiments from 53 high-impact papers. They only managed to 

repeat 50 experiments from 23 papers (25.9%). 

They explain further that they encountered several challenges when collecting the data. 

Although this approach, contrary to ours it did not focus on inferential reproducibility, a high 

percentage of study data was unavailable and effect sizes were in 92% of replications smaller 

than the original.  Likewise, no experiment was described sufficiently to design protocols for 

replicability. Nonetheless, over 40% of authors helped reanalyze the data (292). 

Even though irreproducibility is still existent in biomedical research, with the importance of 

data sharing being more highlighted, the question arises if there will be another issue. 

 

Some researchers claim that we are not having a reproducibility crisis, but the real issue is ill-

defined hypotheses.  

Thus, the question arises: will we switch from reproducibility to a hypothesis crisis? 

Andrew Gilman, a professor in statistics at Columbia University, writes in his online blog about 

issues of the replication crisis. 

There he presents several causes for this crisis. One of them is that “theories are so flexible that 

just about any comparison can be taken to be consistent with theory. Remember sociologist 

Jeremy Freese’s characterization of some hypotheses as “more vampirical than empirical—

unable to be killed by mere evidence” (293).  
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Also, Scheel explains in her piece “Why most psychological research findings are not even 

wrong” that most scientific claims in psychology are too vague. She argues that the claims are 

critically underspecified; thus, trying to reproduce them would not make any sense. For her, 

researchers must recognize that more reproducibility or rigor in data collection is not the remedy 

but a more thoughtful reconsideration of the conceptual basis of their hypotheses before trying 

to test them (294). 

Munafò further elaborates this point of moving beyond the focus of reproducibility. The first 

author of the piece ”A manifesto for reproducible science” published in 2017 (33) claims in a 

comment that replication of results is not enough (295).  He argues that the latter is not helpful 

and might provoke the contrary intention. Worth mentioning here is the argument by Penders 

and Janssens, who claim that when sloppy science is reproduced, meaning bad design and 

methods, it is not helpful to the research community and does not result in knowledge gain (18).  

According to Munafò, essential protection to bad science is the method of triangulation, which 

was described by Lawlor and colleagues (296) and has the idea of approaching the same 

research question from a different angle. Each approach has its unrelated assumptions, 

strengths, and weaknesses. A whole picture for a research question is created when combining 

the different aspects. 

In the opinion piece, Munafò argues that robustness coming from different sources, fixation on 

replication needs to go away and credit needs to be given for authors who create collaborations 

and enhance the idea to evaluate ideas from different angles. Results that agree across different 

methodologies are less likely to be artifacts (297).   

According to the authors, triangulation has not yet reached the attention it deserves. In research 

reigns the paradigm of Popper which describes that theories can never be proved, only falsified.  

However, in his opinion, not enough research projects, including replication attempts, are 

constructed to falsify a theory. He worries that an overemphasis on repeating experiments could 

provide an unjustified sense of certainty about findings that rely on a single approach instead 

of the whole picture. 
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3. Issues with Journals and Publisher 
 

When manifesting problems in research, several scientists argue that the problem lies within 

the journals and the publishing houses. 

The research community often mourns that career advancements depend on the number of 

publications. Scientists and publishers are aware of this fact, and it is often argued that 

transparency in journal editorials is missing. 

Researchers from our team screened 5,468 biomedical journals over a 5-year time frame. To 

describe editor-author relationships, amongst other items, they explored the Percentage of 

Papers by the Most Prolific author (PPMP). For articles published between 2015 and 2019, the 

median PPMP was 2.9%, and 5% of journals exhibited a PPMP of 10.6% or more. 

Furthermore, more than half of those prolific authors were typically members of the journal's 

editorial board (298).  

Their results show that scientific reviews have immense power, that some authors are favored, 

and that scientific methods are pushed into the background. 

Dumas, who wrote her PhD thesis on reproducibility and the role of medical journals, came to 

a similar deduction. Her conclusion is that journals are a primary factor for the reproducibility 

crisis (299).  

She takes the theory from Merton, who described the Matthew effect for publications5. A 

publication in a prestigious journal brings attention to certain researchers, making it easier to 

obtain funding for further research. This ends in publishing new results in these same 

prestigious journals. Furthermore, because of the high impact of the journal, their work is 

acknowledged by the media and, again, more attention is guaranteed.  

Indeed, studies have shown that articles published in journals with a high impact factor are more 

cited  (301, 302) and that media coverage of these publications further increased their likelihood 

of being cited (303). 

                                                           
5 Matthew Effect derives its name from a verse in the New Testament (Matthew 25:29) which reads, “For unto 
every one that hath shall be given, and he shall have abundance: but from him that hath not shall be taken 
away even that which he hath,” and roughly translates to, “Those who are successful are most likely to be given 
the special opportunities that lead to further success, and those who aren’t successful are most likely to be 
deprived of them.”(14)  300. Moss PG. The Mattew Effect 2019 [Available from: 
https://paulgmoss.com/2019/06/10/the-matthew-effect/. (  
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Furthermore, error detection and rectification in academic publishing is a significant issue. 

Allison and colleagues write that it is easy to spot errors in articles but hard to fix them (304).  

Expressions of concern are complicated to communicate. Often there is no clear guidance on 

whom to address, whether the editor, the authors, or the journal itself. The resulting problem is 

that many journals do not care about mistakes. Moreover, even retractions are complicated, 

although they would be necessary. Instead of retraction, a response letter to the article is 

published most of the time. This is advantageous for the journal and authors, creating higher 

citation rates. Another reason for non-retraction is, according to Allison, that journals charge 

researchers when making others aware of mistakes. Commentaries to flawed research articles 

need to be paid. This is delicate since the Committee on Publication Ethics, an independent 

body that provides advice on handling research misconduct, affirms that no one should pay to 

read retractions.  Likewise, detecting errors in post-publication is not as rewarding as publishing 

an original article. 

Another concern they raise is that data is often not available in the journal article. Even if 

researchers want to reanalyze the data independently, it is often impossible.  

This topic has again been stressed with our findings which confirm that data sharing in 

biomedical journals is suboptimal. 

 

4. Issues with Regulatory agencies 
 

Additionally, journals play a paramount role in drug regulation since main trials from marketing 

authorization applications, such as every other extensive trial, should generally be published in 

medical reviews. 

In this context, the general audience assumes that if a regulatory agency detected issues in trial 

sites, misreporting or selective reporting of findings, this would be reflected in the peer-

reviewed literature.  

However, in the case of antidepressant trials for 12 different drugs, a team of researchers found 

that out of 74 FDA-registered studies around a third (31%) were not published (44). 

The FDA inspects a hundred clinical trial sites every year and sometimes finds evidence of 

substantial departures from good clinical practice and research misconduct. However, the FDA 
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has no systematic method of communicating these findings to the scientific community, 

opening the possibility that research misconduct detected by a government agency goes 

unremarked in the peer-reviewed literature. 

In a cross-sectional survey of available documents from 1998 to 2003 describing the inspection 

of clinical trials sites, a team of researchers obtained the inspection documents and compared 

them to published output. Over 50 clinical trials were found where an FDA inspection had 

stated an issue in terms of research ethics. Twenty-two trials submitted false information and 

reporting adverse events, protocol violations, and inadequate record keeping was very common.  

More surprising was that only three out of 78 publications that contained trials identified by the 

FDA as a problem site mentioned the conditions found in inspections. No expressions of 

concern or other comments were mentioned (305). 

 

In an interview, the study's author detailed that the FDA is not feeding journals with this 

information, nor does it alert the public. Therefore, it is complicated to detect trials implicated 

in research misconduct. Also, he recommends that the FDA make unredacted information about 

its findings of research misconduct available and that journals should require authors to disclose 

any adverse findings during FDA inspections (306) . 

After Seife's study was completed, transparency in the FDA enhanced by releasing an 

"Inspections Classifications Database Search" (307). This list contains inspections for trials 

sites and includes the final inspection classification for inspections (308). 

However, there is room for improvement. An outstanding achievement would be if the FDA 

included clinical trial numbers (e.g.: NCTs) in the official documents.  

In an opinion piece, Dal-Ré and co-authors make several claims for journals and trial regulation. 

They agree with Seife on the aspect of linking inspection reports and clinical trial registries. 

They argue that when these kinds of documents are available, journal editors could 

independently assess the quality of reporting of trial elements and consider publication (309). 

Furthermore, an advantage would be that researchers who synthesize evidence for treatment 

could more easily detect the quality of evidence.  

Moreover, funders could better manage risks for patients in their field and improve standards 

when confronted with problems from similar trials. Finally, this documentation could be used 

by other regulatory agencies for better decision-making. 



154 
 

Even if the points discussed above are valid, we suggest a limitation as the discussion and our 

results only focus on two agencies. Indeed, a study from 2017 surveying different regulatory 

agencies has shown that the FDA has the highest budget followed by the EMA and the Japanese 

Regulatory Body and shows that EMA has the most experts (310).  

Nonetheless, it would be of interest to see how other agencies handle research integrity issues, 

especially those from emerging countries, like China or India. If these countries will be the 

future tone giving leaders in drug regulation, exclusion of research misconduct must be granted. 

In this context, it is worth mentioning that divergent decisions between agencies and issues 

around regulation persist (311, 312) .  

Hence, how will these issues be handled in the future, and will drug regulation become 

internationally comparable regarding transparency? 

 

5. Perspectives 
 

If something has become clear throughout this work, it is that publishers and journals need to 

start improving data sharing.  

The global output from our group efforts were synthesized to frame policies to advance data 

sharing in biomedical journals. We did so by first identifying the problem, then suggesting a 

change to the ICMJE policy, followed by a proposal for an evaluation component (313). 

Firstly, we identified the poor implementation of ICMJE policies by journals following them. 

A reproducibility editor could enforce such a change in the policy. The development of a 

monitoring software tool could help tackle these issues. 

Next, we found a suboptimal intention to share data from clinical trials. One possible suggestion 

would be to make data sharing mandatory, except if significant obstacles exist. As an example 

serves PLOS who mandates data sharing for their journals (122). Again, a software could help 

to monitor if implementation were established or not. In the same way, data sharing upon 

request should not be allowed as it is ambiguous and does not guarantee data sharing.  

Likewise, we found a low intention to share data from trials by funders who have registered 

trials on a clinical trial registry and have a data sharing policy. Thus, monitoring in the form of 
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initiatives like the EU clinical trials tracker and Good Pharma Score card should be widened 

(279, 314). 

Lastly, one of the most critical identified problems is that the real impact of clinical trial data 

sharing is insufficiently documented. The policies of ICMJE and funders for clinical trials 

should thus be evaluated regularly and emphasize the beneficial use of data sharing. This could 

be solved by tracking the re-use of shared data and surveying its impact. For this, all 

stakeholders, journals, policymakers, funders, and researchers must work closely together. 

An idea for future research would be to conduct an intervention trial, similar to the study that 

tested open data badges for journals (99). A sample of journals identified as not-following 

ICMJE guidelines would serve as a starting point. Two groups would be randomized. Whereas 

in the intervention group editors would be reminded of ICMJE guidelines, in a control group, 

no contact with editors would happen. The outcome of the intervention would be observed after 

a pre-fixed time frame. 

 

6. Conclusion 
 

In our research, we found that sharing data in biomedical literature and disclosure of clinical 

trial data from Marketing Authorization Applications is still suboptimal. 

This lack contributes to the current reproducibility crisis and is mainly driven by journals and 

publishing houses. 

Despite several initiatives in this field, more actions are necessary, more policies need to be 

implemented, and more monitoring is required. 

Data sharing is a moving target in a quickly changing environment and one can only hope that 

the situation will improve over time and that stakeholders will adapt suggested changes. 
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Titre :  Reproductibilité de la recherche thérapeutique – Une enquête sur le partage de données dans la littérature 

biomédicale et les essais cliniques dans les autorisations de mise sur le marché 

Mots clés : Reproductibilité, Transparence, Essais cliniques 

Abstract : Plusieurs chercheurs ont décrit l’existence potentielle de 

difficulté de reproductibilité des travaux scientifiques. Diverses 

pratiques de science ouverte pourraient néanmoins maximiser la 

reproductibilité. Cette thèse porte sur l'une de ces pratiques, le 

partage de données, dans les sciences biomédicales. Dans la 

première partie, nous voulions explorer la mise en œuvre de la 

politique de partage de données du Comité international des éditeurs 

de revues médicales (ICMJE), qui est entrée en vigueur en juillet 

2018. La mise en œuvre des exigences de partage de données n'était 

pas optimale pour les revues membres de l'ICMJE et médiocre pour 

les revues affiliées à l'ICMJE. Dans une deuxième étape, nous avons 

mené une « scoping review » pour explorer l'impact des initiatives 

de partage de données sur l'intention de partager des données, sur le 

partage réel des données, sur l'utilisation des données partagées et 

sur les résultats de la recherche et l'impact des données partagées. 

Nous avons conclu qu'il existe actuellement un manque de 

connaissance important concernant la pratique du partage des 

données issues des essais cliniques, en particulier en ce qui concerne 

l’impact de cette pratique. Il y a de grandes incertitudes sur l’impact 

potentiel des politiques actuelles de partage des données.  En outre, 

des preuves de bonne qualité sont nécessaires pour évaluer si la 

valeur de la recherche médicale augmente 

avec les pratiques de partage de données. Dans la troisième partie 

de la thèse, l'accent a été mis sur la transparence concernant les 

essais cliniques utilisés dans le cadre réglementaire de l’évaluation 

des thérapeutiques. Nous avons essayé de ré-analyser 62 études 

considérées comme des essais principaux par l'Agence 

Européenne du médicament dans les demandes d'autorisation de 

mise sur le marché. Nos résultats ont montré que les données 

individuelles des patients n'étaient disponibles que pour 10 des 62 

essais (16,1 %). Le message clair de cette recherche est que les 

données d'essais cliniques pour les médicaments mis sur le marché 

restent inaccessibles au public et à la communauté des chercheurs. 

Il est important de noter que les ré-analyses des quelques essais 

avec des données disponibles ont montré une bonne 

reproductibilité. Dans la dernière partie, nous proposons d’aller un 

peu au-delà de la notion de partage des données et de réfléchir dans 

quelle mesure la science ouverte pourrait améliorer les pratiques 

des autorités sanitaires. En résumé, le partage des données dans la 

recherche thérapeutique est sous-optimal. Les politiques de 

partage, quand elles existent, sont laxistes et mal implémentées. 

Nous proposons plusieurs pistes pour aller vers un changement.  
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Abstract: Several researchers in biomedicine have described a 

reproducibility crisis. Various open science practices may 

maximize reproducibility. This thesis focuses on data sharing and 

its extent in the biomedical sciences.    In the first part, we wanted 

to explore the implementation of the data sharing policy of the 

International Committee of Medical Journal Editors (ICMJE), 

which came into effect in July 2018. Implementation of the data 

sharing requirements in journal policies was suboptimal for 

ICMJE member journals and poor for ICMJE affiliated journals. 

In a second step, we conducted a scoping review to explore the 

impact of data-sharing initiatives on the intent to share data, actual 

data sharing, use of shared data, and research output and impact of 

shared data. We concluded that there is currently a gap in the 

evidence base regarding the impact of sharing individual patient 

data, resulting in uncertainties in implementing current data 

sharing policies. Researchers have high intentions to share data but 

rarely do so. 

In the third part of the thesis, the emphasis was on transparency 

regarding clinical trials in drug regulatory frameworks. We tried to 

reanalyze 62 studies marked as main trials in marketing 

authorization applications. Our results showed that individual 

patient data was available for only 10 of 62 trials (16.1%). The 

clear message from this research is that clinical trial data for 

licensed drugs remains inaccessible to the public and the research 

community. Importantly, re-analyzes of the few trials with 

available data showed good reproducibility. In the final part, we 

suggest ideas on advancing open science methods in drug 

regulatory contexts. In summary, we concluded that sharing data 

in the biomedical literature is substandard. The main factors are 

the absence of mandatory data sharing policies on journals, 

publishers, and regulatory agencies. Adequate policies need to be 

implemented. 




