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Abstract

The use of batteries as backup in case of power outages is common in telecommunications networks,

since they provide critical services and need to keep their services always online. These batteries

are used in conjunction with antennas and other equipment, and strict safety usage rules must be

considered in order to guarantee that they are always available in case of a power outage. Besides,

the telecommunications operator could use these batteries in order to participate in the electricity

market provided that the grid is reliable enough, as long as the safety usage rules are respected.

Indeed, since the energy price varies over time, batteries can be used to avoid buying energy when

this price is high, and recharged when the energy price is low, a behavior that will be denoted as a

peak-shaving strategy. A second profitable way for a company to use its batteries is by performing

load curtailments. Indeed, when the power demand of a country is greater than the production,

the Transmission System Operator must take steps in order to stabilize the grid such as ask power

plants to produce more energy. Another way is to ask energy-intensive consumers to reduce their

consumption during a given time period (in which case they are said to perform a load curtailment),

by offering them a reward in exchange. In this thesis, we consider the problem of optimizing the

total energy costs using batteries installed for backup in order to participate in the energy market by

performing peak-shaving and load curtailments, with the help of a proper batteries management. Our

goal is to reduce the total energy operational expenses for the company, and maximize the rewards

received by performing load curtailments. A study of the electricity market architecture in France is

conducted to understand the demand, flexibility mechanisms and how the operational constraints in

the use of batteries of a telecommunications operator interact with the energy market. We identified

different challenges that were investigated individually to better understand the characteristics of the

underlying optimization problem and thus to develop more efficient solving methods. For each one,

mixed-integer linear programs and heuristics are then proposed to solve the related problem. Once we
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ABSTRACT

investigated and understood the individual challenges, we proposed mixed-integer linear programs and

heuristics for the main problem of this thesis, which we prove to be NP-Hard, incorporating market

energy prices and the availability of batteries. Finally, simulations based on realistic data from the

French telecommunications operator Orange show the relevance of the models and heuristic proposed:

these prove to be computationally efficient in solving large scale instances, resulting in significant

savings and revenue through the optimized multi-battery energy storage management policies.

Keywords: Recherche Opérationnelle, Système de Stockage d’Energie à Plusieurs Batteries, Mé-

canisme de Réponse à la Demande, Effacement de la Charge, Programmation Linéaire en Nombres

Entiers Mixtes, Algorithmes de Graphes, Réseaux de Télécommunications.
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Résumé

L’utilisation de batteries de secours en cas de coupure de courant est fréquente dans les réseaux de

télécommunications, car ils fournissent des services critiques et doivent rester en ligne en permanence.

Ces batteries sont utilisées en conjonction avec des antennes et d’autres équipements, et des règles

strictes de sécurité d’utilisation doivent être prises en compte afin de garantir qu’elles soient toujours

disponibles en cas de coupure de courant. En outre, l’opérateur de télécommunications pourrait utiliser

ces batteries afin de participer au marché de l’électricité à condition que le réseau soit suffisamment

fiable et que les règles de sécurité d’utilisation soient respectées. En effet, puisque le prix de l’énergie

varie dans le temps, les batteries peuvent être utilisées pour éviter d’acheter de l’énergie lorsque ce

prix est élevé, et être rechargées lorsque le prix de l’énergie est plus bas, un comportement appelé

stratégie d’écrêtement des pointes (peak-shaving en anglais). Une deuxième façon rentable pour une

entreprise d’utiliser ses batteries est d’effectuer des effacements de charge. En effet, lorsque la demande

d’électricité d’un pays est supérieure à la production, le gestionnaire du réseau de transport doit

prendre des mesures afin de stabiliser le réseau, par exemple en demandant aux centrales électriques

de produire davantage d’énergie. Un autre moyen est de demander aux consommateurs intensifs en

énergie de réduire leur consommation pendant une période donnée (on dit alors qu’ils effectuent un

effacement de charge), en leur offrant une récompense en échange. Dans cette thèse, nous considérons

le problème de l’optimisation des coûts totaux de l’énergie en utilisant des batteries installées pour la

sauvegarde afin de participer au marché de l’énergie en effectuant des écrêtements de pointe et des

effacements de charge, avec l’aide d’une gestion appropriée des batteries. Notre objectif est de réduire

les dépenses totales d’exploitation de l’énergie pour l’entreprise, et de maximiser les récompenses

reçues en effectuant des effacements de charge. Une étude de l’architecture du marché de l’électricité

en France est d’abord menée pour comprendre les mécanismes de flexibilité de la demande et comment

les contraintes opérationnelles dans l’utilisation des batteries d’un opérateur de télécommunications
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RESUME

interagissent avec le marché de l’énergie. Nous avons identifié différents défis qui ont été explorés

individuellement pour mieux comprendre les caractéristiques du problème d’optimisation sous-jacent

et ainsi développer des méthodes de résolution plus efficaces. Pour chacun d’entre eux, des programmes

linéaires en nombres entiers mixtes et des heuristiques sont ensuite proposés pour résoudre le problème

correspondant. Après avoir exploré et compris les défis individuels, nous avons proposé des programmes

linéaires en nombres entiers mixtes et des heuristiques pour le problème principal de cette thèse,

que nous prouvons être NP-Dur, en incorporant les prix de l’énergie du marché et la disponibilité

des batteries. Enfin, des simulations basées sur des données réalistes provenant de l’opérateur de

télécommunications français Orange montrent la pertinence des modèles et de l’heuristique proposés :

ceux-ci se montrent efficaces en termes de calcul pour résoudre des instances à grande échelle, et des

économies et des revenus significatifs peuvent être générés grâce aux politiques optimisées de gestion

du stockage d’énergie à plusieurs batteries.

Mots-clés: Recherche Opérationnelle, Système de Stockage d’Energie de Multiples Batteries, Mé-

canisme de Réponse à la Demande, Effacements d’Energie, Programmation Linéaire en Nombres En-

tiers Mixtes, Algorithmes de Graphes, Réseaux de Télécommunications.
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Resumo

O uso de baterias como backup em caso de quedas de energia é comum em redes de telecomuni-

cações, já que elas fornecem serviços cŕıticos e precisam manter seus serviços sempre online. Essas

baterias são usadas em conjunto com antenas e outros equipamentos, e regras ŕıgidas de segurança

de uso devem ser consideradas para garantir que elas estejam sempre dispońıveis em caso de queda

de energia. Além disso, o operador de telecomunicações pode usar essas baterias para participar do

mercado de eletricidade, desde que a rede seja suficientemente confiável, e desde que as regras de

segurança de uso sejam respeitadas. De fato, como o preço da energia varia com o tempo, as ba-

terias podem ser usadas para evitar a compra de energia quando este preço é alto, e recarregadas

quando o preço da energia é menor, um comportamento conhecido como estratégia de corte de pico

(peak-shaving em inglês). Uma segunda maneira lucrativa para uma empresa é utilizar suas baterias

para realizar reduções de carga. De fato, quando a demanda de energia de um páıs é maior do que

a produção, o Operador do Sistema de Transmissão deve tomar medidas para estabilizar a rede, tais

como pedir às usinas elétricas que produzam mais energia. Outra forma é pedir aos consumidores in-

tensivos de energia que reduzam seu consumo durante um determinado peŕıodo de tempo (nesse caso

se diz que eles realizam uma redução de carga), oferecendo-lhes uma recompensa em troca. Nesta tese

de doutorado, consideramos o problema de otimizar os custos totais na compra de energia utilizando

baterias instaladas para backup, a fim de participar do mercado de energia realizando cortes de pico e

reduções de carga, com a ajuda de um gerenciamento adequado das baterias. Nosso objetivo é reduzir

os gastos operacionais totais de energia para a empresa, e maximizar as recompensas recebidas pela

realização de reduções de carga. Um estudo da arquitetura do mercado de eletricidade na França é re-

alizado primeiramente para entender os mecanismos de flexibilidade da demanda e como as restrições

operacionais no uso de baterias de um operador de telecomunicações interagem com o mercado de

energia. Identificamos diferentes desafios que foram explorados individualmente para entender melhor
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as caracteŕısticas do problema de otimização subjacente e assim desenvolver métodos de solução mais

eficientes. Para cada um deles, programas lineares inteiros mistos e heuŕısticas são então propostos

como métodos de resolução. Uma vez explorados e compreendidos os desafios individuais, propusemos

programas lineares inteiros mistos e heuŕısticas para o problema principal desta tese, que provamos ser

fortemente NP-Hard, incorporando os preços de mercado da energia e a disponibilidade de baterias.

Finalmente, simulações baseadas em dados realistas da operadora de telecomunicações francesa Or-

ange mostram a relevância dos modelos e heuŕısticas propostos: estes provam ser computacionalmente

eficientes na solução de instâncias de larga escala, e economias e recompensas significativas podem ser

geradas através das poĺıticas otimizadas de gerenciamento de armazenamento de energia das baterias.

Mots-clés: Pesquisa Operacional, Sistema de Armazenamento de Energia de Múltiplas Baterias,

Mecanismo de Resposta à Demanda, Peak-Shavings, Programação Linear Inteira Mista, Algoritmos

em Grafos, Redes de Telecomunicações.
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Glossary

The electricity market notations

In this report, the following notations concerning the electricity market that will be used:

• Ampere (Amps): A unit of electricity current.

• Battery: Two or more primary cells connected to provide a source of electric current.

• Circuit: A complete path through which an electric current can flow.

• Current (I): Flow of electric charge. 1 Amp = 1 Coulomb per second.

• Efficiency: Ratio of output power to input power of a device.

• Electrical Conductor: Material that can conduct electricity.

• Electrical Energy: Energy required to push electrons through the components of a circuit.

• Electricity: Type of energy that comes from electrical energy.

• Energy: Ability to do work, and work is moving something against a force, like gravity. There

are many different types of energy: light, heat, gravity, chemical and electrical energy.

• Energy Efficiency: The achievement of using less energy without reducing the benefit provided

by the end-use service.

• Kilowatt Hour (kWh): Energy represented by 1 kilowatt of power consumed for a period of 1

hour.

• Power (P): The rate at which energy is released, transmitted or converted to another form; the

rate of doing work. The unit of power is the Watt (W), equal to one Joule of energy per second.
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• Volt: The unit used to measure voltage in a circuit.

• Voltage (V): The amount of energy carried by a unit of electrical charge. 1 Volt corresponds to

energy of 1 Joule per Coulomb.

The energy storage assets notations

Let us properly define the notations concerning the energy storage assets that will be used in this

report:

• Battery Power: the rate at which a battery can deliver energy, given in Watt.

• Battery Capacity: the amount of energy that the battery can store, given in Watt hours (Wh).

• Battery Autonomy: the duration that a battery can provide its maximum power, usually given

in hours.

• Battery Lifespan: represents the number of cycles (i.e., one discharge and one recharge) that the

battery can perform before its replacement.

• Level of Discharge: the percentage of the battery that has been discharged.

• Battery Efficiency: the ratio of energy recovered from the battery, to the energy delivered to the

battery, when they return to the same state of charge.
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List of Acronyms

AGM Absorbent Glass Mat
BESS Battery Energy Storage System
BUB Best Upper Bound
BLB Best Lower Bound
DAG Directed Acyclic Graph
DSM Demand Side Management
ESS Energy Storage System
FTR First Time Reward
MBESS Multiple Battery Energy Storage System
MIP Mixed-Integer Program
MILP Mixed-Integer Linear Program
NEBEF Notification d’Echanges de Blocs d’Effacement, in French
OPEX Operational Expendure
OTR On Time Reward
RTE Réseau de Transport d’Electricité, in France
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Introduction

Over the last few years, different aspects of the electricity market have been studied, especially with

the emergence of smart-grids (Tuballa and Abundo, 2016). Such networks may involve multiple energy

sources, storage systems, smart-consumption and local energy production (Dang, 2009; Koutsopoulos

et al., 2011).

In this context, batteries can be used in different ways with the aim of reducing production and

transportation costs, reducing energy consumption, and increasing grid reliability when used as backup.

More precisely, the use of batteries as backup in case of power outages is common in telecommunica-

tions networks, since they provide critical services and need to keep their services always online (Kiehne

and Krakowski, 1984). These batteries are used in conjunction with antennas and other equipment,

and strict safety usage rules must be considered in order to guarantee that they are always available

in case of a power outage. Besides, the telecommunications operator (company) could use these bat-

teries in order to participate in the electricity market provided that the grid is reliable enough, as

long as the safety usage rules are respected. Indeed, since the energy price varies over time, batteries

can be used to avoid buying energy when this price is high, which is known as the demand response

mechanism (Daryanian et al., 1989). The batteries will then be recharged when the energy price is

low. The energy production and demand define the energy prices over a day, which must be paid to

buy energy from a market. Such an electricity market is known as retail market, and the demand

response mechanism has been widely studied over the last decade (Torriti, 2015; Johnson et al., 2011;

Mishra et al., 2012; Labidi, 2019). This mechanism is based on changes in electricity use by end-use

customers from their normal consumption patterns in response to changes in energy prices over time.

Recently, another profitable way for a company to use its batteries, has emerged. In order to

illustrate how it works, let us consider a typical energy production and demand system as shown in

Figure 1. In such a system, the energy is delivered to the customers by the electricity distributors.
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The energy is supplied from the generators to the distributors by the Transmission system Operator

(TO), which is also in charge of the network stability. Indeed, when the power demand is greater than

the production, the TO must take steps in order to stabilize the grid (i.e., ask power plants to produce

more energy). Another way is to ask energy-intensive consumers to reduce their consumption during

a given time period (in which case they are said to perform a load reduction or load curtailment),

by offering them a reward in exchange (Brown and Johnson, 1969). Usually, such a reward depends

on the amount of energy not bought during a load curtailment, which is the case for the French

context (RTE-Portal, 2020). In addition, performing load curtailments requires to establish rules that

must be contractualized between the company and the TO (RTE-Portal, 2020).

Figure 1 – Electricity markets agents.

Since 2016, the French telecommunications operator Orange France uses its base stations batteries

installed for backup to adjust the power consumption and perform load curtailments through the so-

called Block Exchange Notification of demand response mechanism (NEBEF) (RTE-Portal, 2020). In

this context, Orange France interacts directly with the TO thanks to its high load flexibility capacity

by participating in the so-called curtailment market through the NEBEF mechanism. This is done

by using its batteries for which strict safety usage rules need to be respected anyway. However, no

optimization strategy in such a use is taken into account.

In this thesis, we consider the problem of optimizing the total energy costs by using batteries

installed for backup in order to participate in the retail and curtailment markets, with the help of

a proper batteries management. Our goal is to reduce the total energy operational expenses for the

company, known as OPerational EXpenditure (OPEX), and maximize the rewards received from the

curtailment market. Note that the OPEX and the rewards received are represented by monetary units

and are considered simultaneously. Hence, we have a single-objective optimization problem.
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Concerning the contributions of this thesis, which are detailed in Chapter 2, we first conducted a

theoretical analysis of the problem and its properties, proving that it is a problem that aggregates dif-

ferent difficulties to solve. Different mathematical models, either approaching parts of the problem or

considering the complete problem, have been proposed and evaluated. We also present different algo-

rithms and heuristics with good computational and economical performance that are useful for solving

large real instances. Different numerical experiments are performed and confirm the performance of

the proposed methods.

This report is organized as follows: In Chapter 1, Section 1.1 presents the functioning of the elec-

tricity market, and Section 1.2 presents the battery storage assets and their use in telecommunication

networks. In the following, Chapter 2 presents a literature review, the positioning of this thesis and

the major challenges of the optimization problem. We detail three key aspects of the problem and

how we conducted the research by exploring these aspects in two individual sub-problems, reported

in Chapters 3 and 4, before solving the main problem, presented in Chapter 5. For each problem

addressed in Chapters 3, 4, and 5, we present the models and algorithms proposed to solve them as

well as the experimental results obtained. Finally, in Chapter 6, we summarize our contributions, and

provide some perspectives for future work.
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Chapter 1

Contextualization

In this chapter we introduce the electricity market we are going to interact with, and the energy
assets that are used. In fact, we present elements of context, the way the market works, and specific
properties that are very important for understanding the subject, as well as the rules and constraints
considered in our work.
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1.1. THE ELECTRICITY MARKET

1.1 The electricity market

In this section we introduce the electricity market, its principles of operation and the way energy

prices are established, as well as the energy markets with which the customers can interact. We focus

on the balancing mechanism of the network and how the consumers can value their reserves of energy.

1.1.1 General functioning

1.1.1.1 Introduction

Energy is everywhere and can be divided into two main forms: kinetic energy and potential energy.

Kinetic energy is the energy contained in moving objects and potential energy is any form of energy

that can be stored for future use. We can cite many examples of energy, such as light, heat, gravity,

chemical and electrical energy. Note that one type of energy can be converted into another, but not

created or destroyed. In our work, we consider electrical energy.

Electrical energy is produced by moving particles, called electrons, with a negative charge. In

general, electrical energy moves through a wire in an electrical circuit. If electrons accumulate in an

object, but can no longer flow, it is said to be static electricity creating an electrical charge (Room,

2019). Batteries are an example of objects where electrons are stored. If an electrical conductor

touches the battery, the electrical charge is released, creating an electrical current as the electrical

energy is carried from the battery to another location by the electrons. Then we have electricity,

which is the type of energy caused by flow of electrons. The conventional direction of the electric

current is from the negative side of the charge to the positive side.

In fact, the negative side charged with an excess of electrons and the positive side with a lack

of electrons cause the electrical potential, called a voltage, to move the electrons. Such a voltage is

measured in Volts (V), and represents the pressure exerted by the charged side of an electric circuit

that pushes the charged electrons through a wire.

Another important metric in the context of electrical energy is the word current, which represents

the speed at which electrons flow through the conductor (usually a wire). Such a current is a physical

quantity that can be measured and expressed numerically, and for which the standard metric is the

ampere (A).
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1.1.1.2 Energy production, transmission and distribution

In this section we present the entire process from energy generation to energy consumption, and

the mechanisms involved. Understanding this process is important because the subject addressed in

this thesis is directly related to the transmission stage.

In the real world, energy is produced in power plants (nuclear, gas, hydroelectric, solar, etc.) and

has to be sent to the customer’s location. Thus, the electrical power is transferred via transmission

wires.

Generation: Concerned with the process of power generation, based on the conversion of natural

energy into electrical energy, several energy sources have been used over the years. Historically, thermal

power plants for energy production have been widely used throughout the world. Examples include

petroleum, nuclear, geothermal, and waste incineration power stations. Close to half (45.5%) of the

net electricity generated in the EU in 2018 came from combustible fuels (such as natural gas, coal and

oil), while a quarter (25.8%) came from nuclear power stations (Eurostat, 2020).

In some regions, the production of energy through hydroelectric power plants is an important

alternative to thermal power plants, being a production with fewer emissions of pollutants. In Europe,

13% of all energy production in 2018 comes from hydroelectric plants (Eurostat, 2020), while in some

countries, such as Brazil, energy production from hydroelectric plants is more intense (65%) (EPE,

2017).

Recently, there has been a worldwide effort for the massive use of renewable energy production,

such as wind turbines and solar panels. The technological development of these technologies increases

efficiency, and also reduces their cost of production and installation. Consequently, the installation

of solar panels in homes and businesses is becoming increasingly common. Customers then become

”prosumers”, because they are consumers and producers of energy at the same time. As a result,

distributed energy production has been increasingly studied and is seen as a form of production for

future generations of electrical grids. However, only 15.4% of all energy production in Europe in 2018

comes from solar panels or wind power plants (Eurostat, 2020).

The agents responsible for the production are commonly called ”producers” or ”generators”.

Transmission: Electric power transmission involves sending electricity from a power generation

site to an electrical substation where the voltage is transformed and distributed to consumers. When
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Figure 1.1 – General schema of power generation, transmission and distribution.

electric power is generated at a power plant, it has a tension typically between 11.7kV and 33kV.

However, its voltage is stepped up to between 100kV and 700kV before it is sent to the distribution

centers via transmission lines to reduce transmission losses. Indeed, the current is frequently reduced

and the voltage is increased. On the one hand, current reduction means a lesser number of electrons

traveling at the same point of the conductor while at the same time reducing the friction. On the

other hand, voltage increasing means a higher differential power pressure groups of electrons to flow

”more frequently”. The equipment responsible for such an increase of voltage is the transformer. Every

power plant uses a transformer to make the voltage level higher before transmission for long distances,

as illustrated in Figure 1.1. In the French context, Figure 1.2 illustrates transmission network in

December 2019. The illustrated panel shows in real time the hubs and transmission lines and their

working states.

A second aspect of utmost importance in power transmission is to keep the current in the trans-

mission network constant. Depending on whether production is higher or lower than consumption, the

frequency increases or decreases. However, for the smooth operation of all devices connected to the

network, it is essential that the frequency is extremely stable, which requires an almost perfect balance

at all times between production and consumption. The agent responsible for the power transmission

and at the same time of the balance of the network (i.e., keeping demand equal to production all the

time) is the ”Transmission system Operator (TO)”.

In this context, the TO must take action in real time to balance demand and production. Among

the mechanisms used, we can mention the modification of energy prices to encourage an increase or
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Figure 1.2 – The French transmission grid. December 2019. source (Ferriere, 2020).

reduction in consumption, the use of reserves to be activated in case of a peak in demand, or even the

possibility to ask a large consumer to reduce its demand for a period of time by offering a financial

reward.

Distribution: Electricity distribution is the final step in the delivery of electricity from the high-

voltage transmission system to the end consumers. Distribution substations connect to the transmis-

sion system and step down the transmission voltage to medium voltage ranging from 2 kV to 35 kV

with the use of transformers. So-called distribution lines then transport this medium-voltage power

to distribution transformers located close to the consumers’ installations. The distribution transform-

ers are responsible for lowering the voltage so that the power can be used for lighting, industrial

equipment, and household appliances.

The agents responsible for the distribution are commonly called ”distributors” or ”suppliers”.

1.1.2 Electricity commerce and pricing definition

After the liberalization and opening of the electricity markets to competition, a market where

electricity is traded before final delivery to the consumer between different actors was created. The
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wholesale market concerns negotiations between actors operating in the energy field, while the retail

market concerns negotiations between suppliers and end customers directly.

1.1.2.1 The French electricity market

Besides, France has one of the largest energy markets on the continent (Comission, 2020). In 2019,

79.1% of all energy produced came from nuclear sources, while only 20.2% was renewable. However,

there is a movement towards reducing the use of nuclear power plants and increasing the use of

renewable energy (IEA, 2019). In the same year, renewable electricity generation exceeded fossil fuel

generation for the first time in history. Around 40% of the energy produced in the European Union

was generated from renewable energies (wind, solar, hydro and bioenergy), while fossil fuels generated

34% (Energiewende and Sandbag, 2020).

Historically, the French energy market was marked by an absolute monopoly, with EDF (Électricité

de France, in French) and GDF (Gaz de France, in French) being the main actors in energy production

and distribution (Marty and Reverdy, 2017). It was only in 2007, following the liberalization of

the European energy market, that France restructured its energy market. Since 2010, when France

approved the NOME law (Nouvelle Organisation du Marché de l’Electricité, in French) to promote

competition in the retail electricity market (Creti et al., 2013), any company can become an agent

in energy distribution or production. Indeed, prosumers can act in daily balance, as a reserve for

periods of greater demand such as winter, or as an immediate reserve to use when necessary (Kieny

et al., 2015). Only energy transmission does not have an open market because its management is

extremely complex. In this context, RTE (Réseau de transport d’électricité, in French) was created,

and is responsible for transmitting the energy and maintaining the balance of the network.

1.1.2.2 Wholesale market

The wholesale electricity market plays a central role in the operation of the French electricity

system by allowing the supply of electricity to be balanced with demand. On the one hand, electricity

is injected into the grid via producers or imported from other countries, and on the other hand,

electricity is extracted from the grid to satisfy final consumption and/or for export.

Concerning the agents that play a role in this part of the market, they are classified into four

different types: The generators trade and sell the output from their power plants, the suppliers trade
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electricity and then sell it to end-use customers for their consumption, the traders trade to purchase

and sell (or vice versa), thereby helping to ensure market liquidity, and the demand side management

(or load reduction) operators that profit from their customers’ lowered consumption. At any moment,

the TO ensures the real-time balance of the system if necessary. French intraday markets allow

exchanges within France up to five minutes before delivery.

Two types of products can be traded. On the one hand, spot products are traded for same-day

or next-day delivery, and on the other hand, future contracts are traded for delivery at a certain

point in the future. Concerning the spot products, they are of two types: In the Day-Ahead market,

hourly products are traded for delivery on the next day, and in the Intraday market, half-hourly,

hourly products or blocks spanning several hours are traded for delivery on the same day. Concerning

the future products and contracts, the participants can sign buyer/seller contracts for the supply of

electricity in future at a price negotiated on the contract trade date (CRE, 2018).

1.1.2.3 Retail market

Since the French electricity and natural gas markets are opened to competition, consumers are free

to choose their energy supplier. In this context, consumers can choose between two types of offers: the

first is the product market, where prices are set freely by suppliers; and the second, where regulated

sales tariffs are set by the government and proposed by the incumbents.

The retail price of an electricity product, whether by regulated tariff or market price, includes

fixed costs that are identical for all suppliers and costs that vary. The fixed costs consist of the grid

access costs set by the regulatory agency CRE (Commission de Régulation de l’Energie, in French),

while the variable costs are related to the generation or supply of electricity, commercial costs, margin

or return taken by the supplier. By optimizing these costs, suppliers are able to offer lower prices to

their customers.

There exist two types of offers for which consumers can contract: so-called ”Fixed price offers”,

where the price, excluding taxes, does not change during the duration of the contract, but is subject

to changes in taxes and contributions; and offers called ”indexed price offers”, in which prices follow

changes in regulated sales tariffs or other wholesale market indices specified in the contract (CRE,

2018).
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Formally, the retail market rule considered in our study is the following one:

• There is a maximum amount of power that the distributor can supply and which is supported

by the distribution grid;

1.1.2.4 Demand side management

Considering that the customer can opt for a contract where the price of energy varies during the

day, it is natural to think of different strategies to adapt energy consumption according to prices. In

general terms, the consumer is always interested in consuming as little as possible in the periods when

energy costs are highest, shifting consumption to periods of the day when energy is cheapest. This

strategy is commonly known as Demand Side Management (DSM) (Strbac, 2008) or as Peak-Shaving,

and has been widely adopted by different types of customers, but it has also been a growing research

topic in recent years.

The DSM also plays an important role in the sustainable and low-carbon energy transition that

aims to optimize energy use and mitigate emissions. Several elements are used in such a management:

The reallocation of power demand (reallocating the production of a certain product for example) to

different periods, or the use of batteries to store energy and allow the use of different renewable energy

sources (solar panels, wind power plants, etc.) are widely adopted (Meyabadi and Deihimi, 2017).

The problem addressed in this thesis iterates with both the Wholesale and Retail markets by

adapting the energy consumption of telecommunications base stations. In this thesis, we consider the

base stations of the French telecommunications operator Orange.

1.1.3 The grid stability

One of the fundamental characteristics of electricity transmission is that the amount of energy

injected must equal the amount of energy extracted from the grid, which is why it is necessary to

constantly balance consumption and production. So it is necessary to ensure sufficiently far in advance

that the available means of production will be able to meet demand at any given time.

In France, transmission is done in alternating current at a frequency of 50 Hertz (refereed to as

frequency of reference) in a situation of balance between supply and demand (Legifrance, 2021). In

the United States, transmission is at a frequency of 60 Hertz. Hence, transmission operators must
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then keep the frequency as close as possible to the reference values. If energy production is greater

than demand, the frequency increases, while the frequency decreases if production is unable to meet

demand.

1.1.3.1 Grid imbalances responses

To absorb grid imbalances between electricity production and consumption, RTE (in France),

accumulates and activates energy reserves (called balancing reserves) provided by different agents:

producers, consumers or other actors likely to inject or withdraw energy from the grid. They are of

three different types: primary, secondary, and tertiary (Portal). Each one of them is used in specific

situations.

When there is an imbalance in the grid, RTE can activate the primary reserve. This is done at

the power plant level, automatically with a delay of a few seconds to a few minutes, and involves all

European power producers that are connected to the transmission system. In Europe, the primary

reserve must be able to respond to a power difference of 3,000 MW. The French system is responsible

for 540 MW.

Then, RTE can activate the secondary reserve, also automatically. In this case, only French power

producers with a production capacity exceeding 120 MW are considered. The secondary reserve in

France has a capacity of between 500 MW and 1,180 MW.

Finally, RTE has the possibility to activate the tertiary reserve (also called the adjustment mech-

anism in France), composed of French producers and consumers that are asked to participate in the

balancing mechanism, modifying very quickly their planned operational program (RTE-Portal, 2020).

Note that they can be energy producers, or large consumers that are able to reduce their consumption

for a period (strategy called load reduction).

Companies and consumers can participate in the tertiary reserve in two different ways: through a

contractualized reserve, or through a non-contractualized reserve based on available capacity. In the

case of the contractualized reserve, RTE opens a bidding process, in accordance with Article L. 321-

11 of the French Energy Code, which customers bid for. In the case of non-contractualized reserves,

customers place their extra production or reduction capacity at the disposal of RTE, which can request

the activation of the reserve when needed. Note that, in the non-contractualized model, the client
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Figure 1.3 – General schema of actions taken by RTE in case of a power outage. Source: www.services-
rte.com

is compensated only when it is requested to use its reserve, while, in the contractualized model, the

client is compensated even if RTE decides not to use its reserve.

Figure 1.3 illustrates the actions taken by RTE in the event of a power outage. Note that, when a

generator has a problem, the reserves supply the power demand as quickly as possible. Consequently,

the system frequency drops and returns to the nominal level.

In this context, the problem addressed in this thesis is based on the interaction of a telecommuni-

cations operator with the transmission operator in the French context.

1.1.3.2 Valorization of the flexibility in France

In France, there are some modalities that allow the customer to put his flexible power, which can

be activated at any time, at the disposal of the transmission operator. He can value their power

capacities (in MW) or their stored energy (MWh).

Valorization of the capacities: This type of mechanism consists in making available to the trans-

mission operator a certain amount of power that can be activated at any time according to the type

of contract adopted.

The first way to value capacities is through the tertiary reserve. The second one is through the
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capacity mechanism. In this context, the capacity mechanism aims to ensure security of electricity

supply in France during winter peak periods. It is based on the obligation to cover consumption during

peak hours by obligated actors and on the certification and evaluation of generation and reduction

capacities. This mechanism has been in force since 2017 through the NOME law.

Valorization of the energy: In this context, the customer puts his energy (or ability to reduce

his consumption) available to the transmission operator for a certain period of time, that can be

used when needed. The consumer is then paid by the market for the energy sold (or consumption

reduction requested) in euros per MWh. Reducing consumption also contributes to the regulation of

energy prices (avoiding the variable costs associated with producing additional energy in periods of

high demand).

In this context, there exist two main mechanisms in France that allow the customers to valorize

their reserves: the NEBEF mechanism, and the adjustment mechanism.

Concerning the NEBEF mechanism (Notification d’Echanges de Blocs d’Effacement, in French),

the consumer can sell the energy not consumed directly to the wholesale market. Each MWh reduced

by the consumer can be sold at the real market value. In concrete terms, this is selling the electricity

that will not be consumed on a given day, the day before (e.g., selling today the energy that will not

be consumed tomorrow). Once negotiated, the operator avoids requesting extra energy production to

balance the grid.

The consumer can participate directly to this mechanism if it has at least 100kW of capacity,

otherwise it is necessary to use an intermediate agent called aggregator. In addition, the maximum

duration of a load reduction is limited to 2 hours.

Concerning the adjustment mechanism, it assists in balancing the electric grid in real time by

allowing energy to be sold to RTE in real time for grid management purposes. Consumers make load

reduction offers, specifying the price per MWh, duration, reduction power, and conditions of use. RTE

can, at any time, activate the offers made respecting the conditions of use established in the contract.

Measurement of the effective reduction of a load curtailment: Measuring how much energy was

actually reduced by a consumer during a call for load reduction is one of the extremely important

aspects in the valuation of flexibility. In fact, it is difficult to verify that the energy effectively reduced

is equal to the amount contracted in a load curtailment offer. Furthermore, it is necessary to be
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able to distinguish a reduction in consumption due to a usual demand variation from a reduction

in consumption due to the load curtailment requested by the transmission operator. To this end,

monitoring the amount of power reduced consists firstly in estimating a reference value corresponding

to the consumer’s usual consumption before and during the power reduction call. Formally, the

reference value is the average of the power bought immediately before the load curtailment together

with the power demand forecast during the whole load curtailment (RTE-Portal, 2020).

Once the reference value is calculated, the effective reduction realized is calculated as the difference

between the reference value and the power purchased during the load curtailment.

The problem addressed in this thesis is based on the participation to the NEBEF mechanism in

the French context.

1.1.3.3 Curtailment market rules

To participate in the NEBEF mechanism, some rules are contracted between the transmission

system operator and the customer. Formally, the curtailment market rules considered in our study

are the following ones:

• Each load curtailment performed must respect a minimal and maximal duration;

• During each load curtailment performed, the power consumption must be reduced by at least a

certain amount.

1.2 Energy storage assets

In this section we present the main types of energy storage, with emphasis on batteries. Infor-

mation about how they work, the main types, and the main use cases are also covered. Finally we

present the use of batteries in the telecommunication context and the battery inventory of the French

telecommunication operator Orange.

As such batteries are used as backup, safety usage rules must be respected for any additional uses.

These rules are also presented in this section.
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1.2.1 Introduction

Energy storage is a strategy that has been widely used around the world over the years and has

several economic, reliable, and environmental benefits. Storing energy allows us to reduce the cost of

energy production, transportation, and consumption, and to increase the reliability of the grid when

used as backup. It also allows the integration of different devices and resources, and can be used to

reduce environmental impact. However, electricity to be stored needs to be transformed into other

types of energy, such as mechanical or chemical.

Energy can be stored in different ways using different technologies, for example:

• Hydroelectric pumping: Cost-effective technology that provides stability to the electrical system

and can generate significant levels of clean energy with fast response times. Electricity is used to

pump water into a reservoir. When the water is released from the reservoir, it flows downward

through a turbine to generate electricity.

• Thermal storage: This technology allows energy to be stored in materials that allow it to be

trapped and released when needed. An example is when electricity is used to produce chilled

water or ice during periods of low demand, which is later used for cooling during periods of peak

electricity consumption.

• Batteries: Device that store energy in chemical compounds capable of generating an electrical

charge. There are many types, such as lead-acid, lithium-ion, or nickel-cadmium batteries.

The main advantages of batteries are their fast response, ease of installation, scalability, and

reliability.

We can also mention several other types of energy storage, such as compressed air, flywheels, flow

batteries and supercapacitors.

1.2.2 Battery assets

One of the most common energy storage resources are batteries. They come in different types,

capacities, and performances. Essentially, a battery is a device that stores chemical energy and converts

it into electrical energy through an electrochemical process, called electrolysis. A battery is composed
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Figure 1.4 – Electrochemical cell scheme. Source: www.science.org.au

of one or more electrochemical cells, each composed of two electrodes separated by an electrolyte, as

illustrated in Figure 1.4. An electrode is a solid electrical conductor that carries electric current. In

a battery, the electrodes are made of different materials: one that reacts with the electrolyte that

produces a current of electrons (called the anode), and another that reacts with the electrolyte that

allows the electrode to accept the electrons (called the cathode) (Ferrese, 2015). Concerning the

electrolyte, it can be a liquid, gel, or a solid substance, but it must be able to allow the movement of

charged ions.

1.2.2.1 Battery properties

The properties of a battery, such as current, voltage, power, and range, are essential properties to

analyze before purchasing.

In the context of batteries, the voltage represents the force that the electrolysis process at the

electrodes pushes the electrons thought cells. Voltage is also known as the potential difference given

by the chemical reaction that occurs at each electrode. The amount of work that the same number

of electrons can do increases as the voltage does. Another important property is current: the number

of electrons that is given by the battery per time. It can be seen as the capacity of the electrolysis

process to release electrons.

In addition, energy is characterized by the power rate at which a battery can operate. Battery

power is calculated from the multiplication of current (Amp) and voltage (Volts) and is given in Watt.

Note that both current and voltage are important in finding out what a battery is suitable for.
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In the context of batteries, autonomy is the duration that a battery can provide its maximum

power, usually given in hours. Note that a battery with 2 hours of autonomy giving 1200W can have

its autonomy increased to 4 hours if it operates at 600W. The capacity of the battery (i.e. the amount

of energy that the battery can store, given in Watt hours (Wh)) is obtained by multiplying its power

by its autonomy. A battery with a power of 1200W and 2 hours of autonomy has a capacity of 2400

Wh, or 2.4 kWh.

Finally, the lifetime of a battery represents the number of cycles that the battery can perform

before replacement. The lifetime depends on how the battery is used (discharge intensity, frequency of

use, if it is recharged immediately and with which power rate, and the temperature) and the material

it is made of.

1.2.2.2 Recharging process

Some common batteries can be used once and are non-rechargeable. In this case, when the elec-

trodes release all the positive or negative ions into the electrolyte, there is no more electric current and

the battery reaches the end of its useful life. Some electrodes and electrolytic materials are expected

to allow a reverse electrolysis process, recharging the battery, taking the battery back to its starting

point and giving it a new life.

The recharging process is characterized by connecting a source of electricity to the battery, reversing

the chemical reaction that occurred during the discharge. However, the recharging process is not

perfect. The sending of the ions from the electrolyte back to their initial electrodes is not as clean or

as well structured as the electrodes of a new battery. The electrodes degrade with each recharge of the

battery, which means that the battery loses performance over time. In fact, the battery has a lifetime

that is given in number of recharge cycles considering some usage patterns, such as frequency of use,

temperature, or average level of discharge. This last standard is known as depth of discharge (DoD)

and is defined by the percentage of electrons passed from anode to cathode in relation to the total

number of electrons available in a complete electrolysis process. However, we will keep the notation

level of discharge instead of depth of discharge for sake of clarity.

During the recharging process, the current and voltage for recharging are key factors in keeping

batteries safe by minimizing energy loss. Each type of battery related to the technology used in its

manufacture requires a different power rate for recharging. In general, this power must be constant to
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preserve the chemical properties of the electrodes and electrolytes of a battery. Indeed, an important

aspect is the sulfation in the plate of lead-acid batteries that occurs when they are deprived of a

full charge. When too much sulfation occurs, it impacts the battery performance because it impedes

the conversion between chemical and electrical energy. Consequently, recharging lead-acid batteries

immediately after each use is commonly used (Catherino et al., 2004).

The battery recharge time is called the Neutralization Delay, representing the duration (in hours)

for recharging the battery to its full capacity. Note that such a delay depends on the level of discharge

performed, and that the energy level in the battery does not increase linearly until the end of the

recharge. In effect, the battery recharges much faster at the beginning of the recharging delay and

slowly at the end, depending on the recharge strategy adopted and on the battery technology. In

this context, different strategies are proposed to recharge batteries while minimizing energy losses and

also keeping the recharge process safe (the internal temperature can increase considerably) (Pandžić

and Bobanac, 2018). Regarding lithium batteries, different fast recharge strategies have been widely

studied, as presented in the review by Tomaszewska et al. (2019). Regardless of the strategy adopted

or the type of battery, DoD-based recharge time predictions depending on the level of discharge have

been quite effective (Dunstan, 1996; Guruacharya et al., 2018).

1.2.2.3 Types of batteries

Different conductive materials can be used in battery production. They are used in the electrodes

and electrolytes with an impact on efficiency, lifetime, recharge rate, energy density, and production

cost. In this section we provide more information about three types of batteries: GEL, AGM and

Lithium. In this thesis, only GEL and AGM batteries are taken into account in our experimentation.

However, lithium batteries are beginning to be used in the telecommunications context requiring

further studies, as presented in Appendix B.

First, in AGM (Absorbent Glass Mat) batteries the electrolyte is absorbed by capillarity onto

a fiberglass mat placed between the electrodes. In GEL batteries, the electrolyte is a solid matrix

with silica gel and sulfuric acid. More recently, lithium ion batteries have been widely adopted due

to their safety and efficiency. In this context, lithium has excellent electrochemical properties and

batteries are manufactured by combining it with different materials such as manganese dioxide, carbon

monofluoride, iron disulfide, silver chromate and others (Koksbang et al., 1994).
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AGM batteries are more capable of providing high currents for short periods of time than GEL

batteries. In addition, AGM batteries have a lower production cost than GEL batteries. However,

GEL batteries perform better for daily use with slow and deep discharges (Victron, 2021), while AGM

batteries perform better with a level of discharge up to 80% and are preferable for use in non-regular

scenarios. As a result, GEL batteries tend to have a slightly longer life than AGM batteries. The

lifetime of AGM and GEL batteries depends essentially on the average level of discharge and the

frequency of use. The lifetime of AGM and GEL batteries can vary from 450 cycles for AGM batteries

and 500 cycles for GEL batteries with an average of level of discharge of 80 % to 1500 and 1750,

respectively, with an average of the level of discharge of 35 %.

Lithium battery technology marks the beginning of a new energy era. It has significant advantages

over AGM and GEL batteries, such as: up to 3x higher energy density (amount of energy a device

can hold per unit volume); level of discharge does not affect their lifetime, which is also longer; up to

15% higher charging efficiency; can be used in safety-critical contexts; are recyclable. Even though the

installation cost of a lithium battery is higher compared to GEL and AGM batteries, the cost per cycle

becomes lower thanks to its long lifetime. However, lithium batteries require optimal temperatures

for optimal performance, while AGM and GEL batteries are more flexible in this aspect.

1.2.3 Batteries in telecommunications

1.2.3.1 Cases of use

Batteries are used not only in data-centers as backup to prevent network outages but also on sites

together with other devices such as antennas (Kiehne and Krakowski, 1984; Nasiriani et al., 2017).

More recently, telecommunications operators are seeking to use the large collection of batteries in

other aspects, for example, they can be used with the objective of reducing the consumption of fuel

in site generators, as presented by Marquet et al. (2006).

In Finland, the energy generator Fortum Power and Heat Oy is looking for different uses of telecom-

munications base station batteries as power reserves to interact with the energy market (Alaperä et al.,

2017), while the Italian telecommunications operator TIM explores the economic opportunities of us-

ing the batteries installed in its data centers in the demand-response mechanism (Bovera et al., 2018).

In France, the telecommunication operator Orange also uses its base station batteries to participate

in the French balancing mechanism.
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1.2.3.2 Batteries safety usage rules

Since the batteries are installed for backup use, the following safety usage rules must be respected

for any use other than for backup. These rules are given and endorsed by the team of experts of

Orange France. The safety usage rules considered in our study are the following ones:

• There is a minimum (and a maximum) power discharge rate for each battery in discharge;

• There is a minimum (and a maximum) amount of energy that can be stored in each battery;

• Each battery must be immediately fully recharged after each use with a constant power rate;

• Each battery must be fully charged at the beginning and at the end of the planning horizon;

• There is a maximum number of cycles that each battery can perform over the time horizon.

Note that the process of recharging a battery is not linear and depends on many factors such as

temperature, battery type and battery health. However, the team of experts of Orange France imposes

a constant power recharge that integrates a safe margin to simplify and assure that the battery will

be recharged at the end of the recharging period.

1.2.3.3 Orange France assets

The French telecom operator Orange has a large number of battery assets over the country on

its sites, i.e. base stations with antennas, each equipped with a battery for backup. In our work, we

have access to 5715 batteries among such sites, mainly of AGM and GEL technologies. The address of

each site is known, and the distance between two sites can be obtained by geolocating each one. We

observed that the power of each battery is equivalent to the power demand average of the site. This is

expected because the cost of maintenance of the batteries are elevate, and hence, sites have only the

backup power strictly necessary.

1.3 Summary of rules

This section summarizes all the rules that are taken into account in this thesis. They come from the

energy market and from the battery safety usage rules. The complete list of the rules is the following:
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R1 - At least a minimum amount of energy Bmin, given in kWh, must remain in the battery at any

time period;

R2 - The battery must be immediately fully recharged after each use with a constant power rate

PB, given in kW, up to its maximal capacity Bmax, given in kWh;

R3 - The battery must be fully charged at the beginning and at the end of the planning horizon;

R4 - A minimum power discharge of Dmin, given in kW, is imposed when the battery is in discharge

mode;

R5 - The maximum power rate that the battery can deliver is limited to Dmax and given in kW;

R6 - Each battery b cannot be used more than Nb times over the time horizon;

R7 - No more than P max kW can be bought from the distributor at any time period;

R8 - The duration of each curtailment performed is bounded by ∆min and ∆max time periods;

R9 - No more than pmax
c kW can be bought from the distributor during the curtailment c if it is

performed.

R10 - The number of load curtailments that can be performed over the time horizon is limited to N c.

Note that rules R1-R6 concern the safety usage rules, and rules R7-R10 to the energy market.

In Chapter 3, only rules R1-R5, and R7-R9 are considered, while only rules R1-R7 are considered in

Chapter 4. In Chapter 5, all rules R1-R10 are taken into account.
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Chapter 2

Positioning and major contributions

In this chapter, we present the main challenges addressed in this thesis and the outline of our

research. In addition, we review the literature, and present the industrial positioning of this thesis.
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2.1. OPTIMIZING THE ENERGY COSTS BY USING BATTERIES IN THE
ENERGY MARKET

2.1 Optimizing the energy costs by using batteries in the energy market

The main problem addressed in this thesis is the optimization of total energy costs by using

batteries originally installed for backup in telecommunications base stations in order to participate in

energy markets, with the help of a proper battery management. In this context, batteries are used

to participate in the retail market by adapting the energy consumption of the network based on the

energy prices, but also to perform load curtailments, that help to maintain the network balance, in

exchange for a financial reward. Our goal is to reduce the total operational energy expenses for the

company while maximizing the rewards received from the curtailment market. Currently, the batteries

are already used to participate in the energy markets, but no optimization strategy is explored.

The optimization problem in question must take into account some contractual rules and physical

limits of the batteries. These rules, summarized in Section 1.3, which will be formally presented in

more detail in Chapters 3, 4, and 5, can be classified into three distinct groups as follows:

• Safety usage rules R1-R6 introduced in Section 1.2.3.2.

• Retail market rule R7 presented in Section 1.1.2.3.

• Curtailment market rules R8-R10 introduced in Section 1.1.3.3.

Each of these groups of rules impacts the solution of the problem in different ways, and can make

the optimization problem more difficult or easier to solve. Among these three groups of rules, only the

retail market rule have been fully explored by other studies considering batteries (Daryanian et al.,

1989; Torriti, 2015; Johnson et al., 2011; Mishra et al., 2012; Labidi, 2019).

In Section 2.2, we present the major challenges identified that impact the problem solving, and

look for literature references and solving methods that may help in tackling them.

2.2 Major challenges

We identified three major challenges that make the problem potentially difficult to solve. The first

major challenge is related to the particular rules of use for batteries installed for backup in the context

of telecommunications, the so-called safety usage rules. The second challenge is related to the impact

of energy market rules, more precisely rules from the curtailment market, on the optimization of the
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battery use. Finally, the third challenge is related to the large number of batteries to be optimized.

Having a large and diverse collection of batteries, such as that of telecom operators, can cause signif-

icant bottlenecks in solving the problem.

Impact of the safety usage rules

Concerning the impact of the safety usage rules on a single Battery Energy Storage System (BESS)

management, some related studies address them individually (Daryanian et al., 1989; Alaperä et al.,

2017; Bovera et al., 2018). More precisely, Alaperä et al. (2017) consider some physical aspects, such

as a maximum discharge rate, a constant recharge power rate, and a maximum amount of cycles, while

Bovera et al. (2018) consider the maximum amount of cycles that the battery can perform. Concerning

the rules such as recharging the batteries immediately after each use with a constant power rate and

imposing a minimum discharge power on the batteries, no previous studies have addressed them. Con-

sequently, the impact of these rules on battery management is not known, requiring further analysis

and study.

Impact of the curtailment market rules

Some studies have already addressed partially the curtailment market rules (presented in Section

1.1.3.3) in other contexts (Zhang et al., 2016; Lan et al., 2018; Mkireb et al., 2019). In addition, the

use of batteries in order to perform load curtailments was treated in some studies (Zakeri et al., 2017;

Nasrolahpour et al., 2017; Schillemans et al., 2018). However, no previous studies have addressed

these rules in the scenario where batteries subject to safety usage rules are used to perform load cur-

tailments. Consequently, the impact of these rules on battery management is not known, requiring

further analysis and study.

Impact of the multi-battery management

Another challenge is the optimal management of a Multiple Battery Energy Storage Systems
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(MBESS), requiring more efficient control strategies. In this context, recent studies propose different

methods to treat the dimensionality efficiently (Babazadeh et al., 2014; Zhu et al., 2018; Fan et al.,

2019). In our case, we consider a MBESS for which the safety usage rules must be considered,

something that no previous studies have addressed. Consequently, the impact of these rules in the

management of a MBESS is not known, requiring further analysis and study.

2.3 Literature review

Evaluation of the reserves

Smart grids aim to offer high flexibility, responsiveness and efficiency to electrical networks, and

have been widely studied (Tuballa and Abundo, 2016). In particular, they allow better integration

of renewable and decentralized energy sources while maintaining the security of the electricity grid,

allowing for greater collaboration between the agents. In this context, batteries can be used as backup

devices. Kiehne and Krakowski (1984) studied such a use of batteries in different parts of a telecommu-

nications system, to keep the network safe and the services active in case of a power outage. Moreover,

a study was conducted at Orange Company by Marquet et al. (2006), in order to address the use of

batteries in telecommunications systems to reduce the use of fuel and the OPEX of remote power

plants and, if possible, to remove the diesel engines that are installed in remote stations. Such bat-

teries are used in conjunction with renewable energy devices, such as solar panels and wind turbines,

in remote areas where antennas are installed without an energy supplier. In addition, the reliability

of the energy grid has been improved over the years, allowing batteries primarily installed for backup

to be used for other purposes, when they are not being used for backup (Moslehi and Kumar, 2010).

Therefore, they can become valuable facilitators of fast controls in a smart grid.

The collaboration between the agents of a smart-grid is fundamental to the grid power balance

and can be profitable to both consumers and production agents. Prosumers, i.e., consumers who also

produce and share energy excess in the electrical network, have a fundamental role in the balancing

mechanism, as they can actively help to balance the network production and demand (Camarinha-

Matos, 2016; Zafar et al., 2018) or financially value their reserves (Zafar et al., 2018; RTE-Portal,

2020; Iria, 2019). In this context, information and communication technologies, as well as optimiza-
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tion techniques are fundamental elements to interact with the energy market. In the French energy

system, i.e., in the first European country to open all its national market structures to all consumers,

prosumers can act in daily balance, as a reserve for periods of greater demand such as winter, or as

an immediate reserve to use when necessary (Kieny et al., 2015; RTE-Portal, 2020).

Participation in the retail market

The flexibility to re-schedule energy consumption allows prosumers to adapt their demand from

their normal consumption patterns in response to variations in the energy prices, generating savings

(Aghaei and Alizadeh, 2013). Daryanian et al. (1989) introduced such a demand response mechanism

by using a single battery to reduce the electricity bill by exploiting the variation of the energy prices.

In their study, a battery is used in peak-time periods, where the energy costs more, and recharged in

periods where the energy is cheaper. They also consider that the batteries must be fully charged at the

beginning and at the end of the planning horizon and take into account some physical aspects, such as

a maximum discharge rate. Several later studies explore the demand response mechanism in different

usage scenarios and with various solving approaches (Hoke et al., 2013; Mishra et al., 2012; Good and

Mancarella, 2017; Huang et al., 2014; Longe, 2016). Among them, linear programming is widely used

as a solution method in many studies related to reducing the energy cost by optimizing the battery

use, such as in Hoke et al. (2013); Good and Mancarella (2017); Marzband et al. (2017); Moreno et al.

(2015); Yang et al. (2017). As an example, Hoke et al. (2013) study the use of a battery to minimize

the cost of operating a microgrid while meeting resource constraints from conventional generators,

solar panels, and wind turbines. To address the tie-line power fluctuation and reduce the size of en-

ergy storage systems, a hierarchical control strategy for battery storage and demand-side resources is

proposed in Wang et al. (2014). Moreover, Good and Mancarella (2017) treat the uncertainty in power

demand, renewable energy generation, and prices, through the use of a linear program with a robust

strategy. Another work related to the use of a battery in the demand response mechanism is the one

of Mishra et al. (2012), who studied the impact of using storage systems on the stability of the grid.

In this case, an uncoordinated massive adoption of a demand response mechanism can overcharge the

grid in the cheap time periods, since recharging the batteries of all consumers during such periods can

cause instability in the network. In the same vein, recent studies have proposed other methods like
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neural networks and heuristics based on particle swarms in order to optimize such a battery usage, as

well as transformations of future grids into decentralized and multi-dimensional systems (Huang et al.,

2014; Longe, 2016; Kerdphol et al., 2016). Some works evaluate with the help of simple simulation

models the potential gain and feasibility of using existing battery systems of telecommunications net-

works (Alaperä et al., 2017) and data-centers (Bovera et al., 2018) in a demand response mechanism.

More recently, batteries are being used in a demand response mechanism (without participating in the

NEBEF mechanism) to help reduce carbon emissions (van Ackooij et al., 2020; Wang et al., 2020). For

example, van Ackooij et al. (2020) study a bi-objective energy management problem to reduce total

energy operation costs and carbon emissions in thermal and hydro-thermal systems. They consider

a battery to store energy for future uses, where effectiveness and efficiency are taken into account.

Indeed, batteries with high storage capacity can be very cost-effective, not only by reducing operating

costs, but also by reducing carbon emissions.

Participation in the curtailment market

One way to interact with the energy markets is to perform curtailments. In this context, a prosumer

reduces his energy consumption over a period of time by relieving the load on the network, receiving

a reward in exchange. In order to reduce energy consumption over a time period, we can either

re-schedule production or stop services. Zhang et al. (2016) proposed a scheduling model for power-

intensive processes in order to be able to participate in the curtailment market. When performing a

curtailment, the production is re-scheduled to reduce power consumption during the curtailment. In

the same vein, Lan et al. (2018) present an integrated resource planning model that takes into account

the curtailments. In their work, the power demand is partially controllable since wind turbines, solar

cells, diesel generators, and batteries, are considered. However, batteries are used exclusively to store

the excess of energy produced locally.

Concerning the use of an energy storage system acting as reserves in the balancing mechanism,

some recent studies have started to explore these aspects (Zakeri et al., 2017; Schillemans et al., 2018;

Nasrolahpour et al., 2017). As an example, Zakeri et al. (2017) examine the market value of electrical

energy storage in the German day-ahead and balancing markets considering pumped hydro storage,

compressed air energy storage, NaS, Lead-acid, and Li-ion battery storage systems. They also propose
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a mixed-integer optimization model for profit maximization of storage in the day-ahead market. In the

same vein, Schillemans et al. (2018) explore a strategic behavior of an ESS owner in a joint day-ahead

energy-reserve market in a bi-level optimization problem. They consider reserve activation constraints

when an energy storage system is used as a reserve and propose a framework that can be used by ESS

owners to optimize their bids to participate in the balancing mechanism. Similarly, Nasrolahpour et al.

(2017) propose a decision-making tool based on stochastic bi-level model to determine the strategy for

using a storage system in the curtailment market, while considering uncertainties.

In the French context, in order to benefit from performing curtailments, prosumers can be agents

in the NEBEF mechanism, which is managed by the French transmission system operator RTE (RTE-

Portal, 2020). The economic potential of such a mechanism has been addressed in recent studies such

as Iria (2019); Mkireb et al. (2018, 2019). In particular, the work presented by Mkireb et al. (2019)

is the first addressing the problem of evaluating the financial gain of participating in the curtailment

market through the NEBEF mechanism in the context of water supply systems. This work takes into

account demand uncertainties through a robust optimization approach. However, the authors do not

consider the possibility of using an energy storage system. Concerning the rewards received when

performing a load curtailment, the reward depends on the amount of energy that is reduced during

the load curtailment, for which the rules are previously contracted (Chrysikou et al., 2015). In the

German context, the parliamentary chamber approved in 2016 the new legislation on energy, refereed

to as the Electricity Market Act 2.0 (BMWi, 2015). This act increases the competition in the Ger-

man balancing market by providing access to all sources of flexibility, such as flexible demand and EES.

Multi-battery management

Several works have addressed the multi-battery aspect (Shan et al., 2018; Babazadeh et al., 2014;

Zhu et al., 2018; Fan et al., 2019). As an example, Babazadeh et al. (2014) propose a multiple

battery management system with different types of battery, focusing on the minimization of the

total system cost, and considering the impact of the usage on the lifetime of the batteries. In the

same vein, Zhu et al. (2018) present an adaptive dynamic program, and Fan et al. (2019) a convex

quadratic optimization model to optimize a multiple battery storage system properly. Concerning

the participation in the curtailment market, Shan et al. (2018) considers green power sources and a
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Figure 2.1 – Major challenges and problems treated in this thesis, and some related works.

multi-storage system to perform load curtailments. However, in their work batteries are exclusively

used to store renewable energy, and no rules on the batteries usage are considered. As mentioned

before, Zakeri et al. (2017), Schillemans et al. (2018) and Nasrolahpour et al. (2017) have considered

a multi-battery energy storage system in their work. However, in all these studies, only rules related

to battery limits are considered (i.e., capacity, efficiency, power). In our case, since the batteries are

installed for backup, additional rules must be taken into account.

2.4 Research outline and major contributions

Once the major challenges have been identified, we outline our research outline to explore the

impact of each one. Since the basis of our study is the management of base station batteries for uses

other than their primary backup function, the adopted strategy consists in exploring individually the

impact of (i) the curtailment market rules and (ii) the multi-battery management, considering in both

cases the safety usage rules. Once we understand the impact of the curtailment market rules and of

the growth in the number of batteries whose use must respect the safety usage rules, we address all

rules in a single problem.

Figure 2.1 illustrates the intersection of the different aspects that can render the problem more
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complex and either recalls some related works or refers to the chapters addressing these problems.

2.4.1 Exploring the curtailment market rules in a single battery context

In the first part of this thesis, we explore exclusively the impact of curtailment market rules R8-R9

together with safety usage rules R1-R5, without considering the multi-battery aspect. In this context,

we consider a problem with only one site and one battery so that we can understand exactly how

curtailment market rules impact battery management, and analyze what the impact on the solving

methods is. This problem is called Optimization of a Battery Storage system used by a company to

participate in the Curtailment market (referred to as OBSC), and is presented in Chapter 3.

We identify the key aspects of the curtailment market rules that make the problem more difficult or

easier to solve, and also identify two variants that can be solved in polynomial time. Then, we model

the problem as a mixed-integer linear program, and also propose an algorithm that solves the variants

to optimality in polynomial time and that can be used as a heuristic to solve the OBSC problem.

The main contributions of this first part are:

• Modeling the constraints of the French curtailment market and the safety usage rules in the

batteries of the French telecommunications operator Orange in the form of linear equations;

• The analysis of the problem under study in order to identify the aspects that make the problem

more difficult to solve;

• Identification of two practical variants that can be solved to optimality in polynomial time;

• The proposal of an exact polynomial time algorithm, based on graph theory to solve the variants,

and that can also be used as a heuristic for OBSC. The problem can actually be reduced to the

computation of a longest path in a direct acyclic graph;

• An experimental evaluation of the economic gains related to the use of a battery installed for

backup in the curtailment market for the telecommunications operator with realistic instances.

In terms of scientific publications, two papers were published in international conferences as part

of this first study: Silva et al. (2019a), and Silva et al. (2020a). In addition, two papers were presented

in national conferences: Silva et al. (2020c), and Silva et al. (2019b).
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2.4.2 Exploring the multi-battery system management in the context of the retail market

In the second part of this thesis, we explore exclusively the impact of managing multiple batteries

together under safety usage rules R1-R6, without considering load curtailments. In this context, we

consider only one site equipped with multiple batteries that are used only to participate in the retail

market, and load curtailments are not allowed. The goal is to understand exactly how increasing the

number of batteries has an impact on the optimization considering safety usage rules. The reason why

we do not consider several sites equipped with a battery each, as introduced in Chapter 1.1, is that the

coupling between the sites appears only when load curtailments are performed. Therefore, we can deal

optimally with each of the sites individually with an adaptation of the algorithm proposed to solve the

variants of the OBSC problem. Consequently, to explore the dimensionality aspect of the number of

batteries without load curtailments under the safety usage rules, it is necessary to consider all batteries

at the same site. This problem is so-called Optimization of a Multi-Battery Storage system in order

to participate in the Retail market (referred to as OMBSR), and is presented in Chapter 4.

We model the problem as two different mixed-integer linear programs, and we also prove that

OMBSR is NP-Hard. Then, we propose two heuristics to solve the problem: one based on a graph

oriented approach, and the second one based on the meta-heuristic relax-and-fix.

The main contributions of this second part are:

• The proposal of two mixed-integer linear programs for OMBSR;

• The proof that OMBSR is NP-Hard;

• The proposal of two heuristics economically and computationally efficient based on different

aspects for large-scale OMBSR instances: one heuristic based on graph theory inspired by the

properties of the realistic instances tested; and a second heuristic based on the relax-and-fix

approach that gives better results for the general case;

• The proposal of a reduction of the Maximum Weight Budgeted Independent Set Problem on

interval graphs into the Longest Budgeted Path Problem on direct acyclic graphs, and of a

pseudo-polynomial time algorithm to solve it;

• An experimental evaluation of the economic gains related to the use of batteries installed for

backup in the retail market for the telecommunications operator.
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In terms of scientific publications, one paper was presented in an international conference (Silva

et al., 2020b) and published in an international journal (Silva et al., 2022). In addition, one paper was

presented in a national conference (Silva et al., 2021b).

2.4.3 Optimizing the complete optimization problem

Finally, once we understand the impact of the curtailment market rules R8-R10 and of the growth

in the number of batteries whose use must respect the safety usage rules R1-R6, we address all aspects

in a single problem. In this context, we consider multiple sites each one equipped with a single battery

whose use must respect the safety usage rules to participate in the energy market by performing peak-

shavings and load curtailments. The whole problem is called Optimization of a Multi-Battery Storage

system participating in the Energy market (refereed to as OMBSE), and is presented in Chapter 5.

Firstly we model the OMBSE problem as a mixed-integer linear program and we prove that OMBSE

is NP-Hard. In the following, we decompose the corresponding model using the Lagrangian relaxation

technique and solve it using the subgradient method. The resulting sub-problems of the Lagrangian

relaxation can be solved to optimality in polynomial time thanks to the algorithm proposed to solve

the variants of the OBSC problem, and the subgradient heuristic can run in polynomial time thanks

to the same algorithm. In addition, we propose a bidimensional relax-and-fix heuristic that can also

be used to solve large scale instances.

The main contributions of this third part are:

• The proposal of a mixed-integer linear program for OMBSE;

• The proof that OMBSE is NP-Hard;

• Two different decompositions of the proposed model based on the Lagrangian relaxation tech-

nique;

• The proposal of a subgradient method to solve the relaxed model reusing the algorithms proposed

for sub-problems of OBSC;

• The proposal of a bidimensional relax-and-fix heuristic that can also be used to solve large scale

instances;
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• A quantification of the economic and operational gains related to the use of batteries installed

for backup in the energy markets for the telecommunications operator.

In terms of scientific publications, one presentation was made at an international conference (Silva

et al., 2021a) as part of this study.
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Chapter 3

Optimization of a single battery storage
system to participate in the curtailment
market

In this chapter, we consider the problem of optimizing the total energy costs of a telecommuni-

cations site using a battery installed for backup in order to participate in the retail and curtailment

markets, with the help of a proper battery management. Our goal is to reduce the total energy costs

and maximize the rewards received from the curtailment market.

Formally, the problem treated in this chapter is the Optimization of a Battery Storage system used

by a company to participate in the Curtailment market (referred to as OBSC), in order to reduce its

energy costs. The main issue is to respect the market rules and the safety usage rules while minimizing

the net total energy cost.

This chapter allows us to understand in detail the impact of curtailment market rules on battery

management. The elements presented in this chapter are the base of the algorithm presented in

Chapter 5 for solving the problem in a multi-battery framework.

Concerning the scientific contributions, we identify the aspects that make the problem more difficult

to solve, and two practical variants that can be solved to optimality in polynomial time, are presented

in Section 3.1. We also model the constraints of the energy market and the safety usage rules in

the form of linear equations and we propose a mathematical programming model for the problem,

presented Section 3.2.1. In Section 3.2.2, we propose an exact polynomial time algorithm, based on

graph theory to solve the variants, and that can also be used as a heuristic for OBSC. Furthermore,
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a complete technical analysis of the impact of curtailments on the battery management that allowed

the development of the graph oriented approach proposed is presented in Section 3.2.2.3. Finally, an

experimental evaluation of the economic gains by solving OBSC using our solving approaches with

realistic instances is presented in Section 3.3.
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3.1 Problem description

3.1.1 Problem statement

We consider the deterministic setting of OBSC that we now formally describe. Let us consider a

telecommunications operator with a power demand Wt, given in kW, at each period t of a horizon of

T discrete equally-sized time periods of duration ∆ in hours. The cost (given in monetary units) for

purchasing one unit of energy at each time period is known. In the following, for the sake of simplicity,

we consider the power price at each time period t denoted by Et, obtained from the energy price by

multiplying it by ∆. Note that this cost is fixed by the electricity distributor, and so is the maximum

amount of power P max, given in kW, that can be bought at any time period (i.e., rule R7).

For network security purposes, two rules must be respected: on the one hand, a minimum amount

of energy, denoted by Bmin and given in kWh, must always remain in the battery (i.e., rule R1); on

the other hand, in order to improve its lifespan, the battery must be immediately recharged after each

use, up to its maximum energy capacity, denoted by Bmax and given in kWh, with a constant power

rate PB (i.e., rule R2), given in kW. Besides, a minimum power discharge per time period, denoted

by Dmin and given in kW, is imposed when the battery is in discharge mode (i.e., rule R4). Moreover,

the battery has a maximal power rate, denoted by Dmax and given in kW, that it can release due

to current and voltage limitations (i.e., rule R5). Note that Dmin ∈ [0, Dmax], and that the power

demand Wt is assumed to be greater than Dmin at any time period t over the horizon.

The battery must also be fully charged at the beginning and at the end of the planning horizon

(i.e., rule R3).

At each time period t, we assume that the reward Rt (given in monetary units), that will be received

by the telecommunications operator from the transmission system operator (TO) for each energy unit

not bought from the distributor during this period provided that it belongs to a curtailment, is known.

Each curtailment has a minimum (resp. maximum) duration ∆min (resp. ∆max), given as a number

of time periods, that must be respected (i.e., rule R8). Moreover, during each time period of a

curtailment, the telecommunications operator must reduce the power bought from the distributor by

at least a given value PT O in kW. As a consequence, for each curtailment c, a maximum amount of

power pmax
c (in kW) can be purchased from the distributor at each time period covered by c (i.e.,

rule R9). The way such an amount is computed is imposed by the TO depending on the country.

69



3.1. PROBLEM DESCRIPTION

Figure 3.1 – (a) Battery usage to perform a curtailment; (b) Battery power during recharge.

In France, the computation of pmax
c is based on the real power consumption immediately before the

curtailment and on the power consumption forecast during the curtailment. This setting is considered

in our study.

Let us consider a curtailment c, which starts at the time period fc (first period) and ends at the

time period lc (last period).

Let us also consider ut as the power bought from the distributor at each time period t (in kW). In

order to compute pmax
c for a given c, a reference value ωc, which takes into account the average power

demand during the curtailment and the power ut purchased at the period t just before curtailment c

begins (i.e., t = fc − 1), is needed. Such a reference value is computed as follows:

ωc =
∑︁lc

t=fc
Wt + ufc−1

lc − fc + 2 (3.1)

Note that the value of ufc−1 may depend on the curtailment performed before c.

Once the reference power ωc is known, pmax
c is then computed as follows:

pmax
c = max(0, ωc − PT O) (3.2)

Figure 3.1-a illustrates a curtailment c1 starting at time period 5 and ending at time period 8,

and a curtailment c2 starting at time period 14 and ending at time period 17. In this figure, the

violet line represents the power demand over the planning horizon. The orange area represents the

amount of energy used from the battery, the blue one the amount of energy bought from the distributor

for consumption, and the green one the amount bought for recharge. In this example, the battery is

immediately charged after c1 with a constant power rate PB until the end of time period 13. Note that,
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during each time period t of c1 (resp. c2), i.e., for each t ∈ {5, . . . , 8} (resp. for each t ∈ {14, . . . , 17}),

the amount of power that can be bought is limited by pmax
c1 (resp. pmax

c2 ). Figure 3.1-b illustrates

the energy stock level in the battery over the planning horizon. During each curtailment, the battery

power capacity decreases, and, during each recharge phase, this capacity increases until the battery is

fully charged.

Recall that our goal is to manage the use of the battery while respecting both the battery safety

usage and the energy markets rules, at minimal cost. The total amount of energy savings consists of

two parts. The first part is provided by the difference between the energy prices during battery use

and recharge (i.e., when participating in the retail market in a demand response mechanism), and the

second one by the reward paid for the amount of energy not bought from the distributor (i.e., when

performing curtailments). This second part is computed either by the On Time Reward (OTR) rule,

or by the First Time Reward (FTR) rule (RTE-Portal, 2020). If we use OTR, a variable reward Rt

is considered at each time period t during each curtailment (see Equation (3.3)). If we use FTR, the

reward Rfc given at the beginning of the curtailment c is considered for all time periods during the

curtailment, and then multiplied by the amount of energy not bought during this curtailment (see

Equation (3.4)). The amount of energy not bought during a given curtailment is equal to the battery

discharge over its duration. In the following, for the sake of simplicity, we consider the rewards price

per unit of power at each time period t denoted by Rt, obtained from the rewards price per unit of

energy by multiplying it by ∆.

Furthermore, we consider a telecommunications operator with only one battery and only one energy

supplier without renewable energy sources. The battery is ready for use, and no installation or set up

costs are considered. In addition, the battery must be fully charged before performing any curtailment.

No battery losses are considered either, and any curtailment performed must respect the rules of the

energy market. We also consider that the decision of when a curtailment is performed is taken by the

telecommunications operator and not imposed by the transmission system operator.

Finally, the problem stated above is referred to as OBSC in the following, and any OBSC instance

is fully defined by the following parameters: W , ∆, E, P max, Bmin, Bmax, PB, Dmin, Dmax, R, ∆min,

∆max, PT O, and the reward policy (represented by a boolean value). The safety usage rules R1-R5

and the market rules R7-R9, defined in Section 1.3, are also taken into account.
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3.1.2 Practical variants

In some cases, because of specific engineering rules or technical limitations, additional constraints

must be considered. Therefore, we study some variants of the general problem which can be classified

into two main families of problems. The first one considers the case in which the possible battery

discharge levels are discrete (and will be referred to as OBSC-D). Usually, the measurement systems

used to monitor the battery charge have technical limitations that prevent from considering continuous

discharge levels. This induces a discretization of the discharge levels which depends on the accuracy

of these systems. The corresponding variants consider discharge levels given in percentage of Bmax.

Secondly, additional engineering rules can also be imposed on the battery usage to improve its

lifespan. An example is the case where the battery must stay in rest mode for at least one time period

after its complete recharge. The second family of variants studied in this work precisely considers that

the battery must necessarily be in rest mode for at least a fixed number of time periods after each

complete recharge (and will be referred to as OBSC-R). This assumption can be imposed in practice

to ensure, for instance, that the battery is indeed fully charged before being re-used, even though the

actual recharging rate is not PB (i.e., is not a constant power rate).

In such variants, the impact of the temporal correlation between two load curtailments induced

by the computation of ωc (see Equation 3.1), as presented in Section 3.2.2.3, can be handled more

easily. Thanks to this, they can be solved in polynomial time, and Section 3.2 describes an efficient

algorithm to solve OBSC-D and OBSC-R. In addition, since any solution for one of these variants is

also a feasible solution for OBSC, such an algorithm can also be used as a heuristic method for solving

OBSC.

3.2 Solving approaches

In this section we present two approaches to solve the OBSC problem. First we present an exact

method based on a mixed-integer program, and later we present an algorithm for some particular

cases.
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3.2.1 Mathematical models

3.2.1.1 Mixed-integer nonlinear programming formulation

The formulation described in this section, that can be used to model OBSC as a mixed-integer

nonlinear program, will be referred to as (OBSC-MINLP). Since a curtailment c starts (resp. ends)

at a time period fc (resp. lc) called first (resp. last) period, the goal is to identify, among the O(T 2)

possible pairs (fc, lc) over the horizon, the ones corresponding to the curtailments to be performed.

Such a decision is reflected by the value of a binary variable yc. Then, the battery discharge dc after

the curtailment c has been performed is given by the difference of energy stock in the battery between

the beginning of period fc and the end of period lc. Recall that we are looking for a set of curtailments

(fc, lc, dc) that can be performed without conflict, while minimizing the total energy cost.

Let us consider C the set of all possible pairs (fc, lc) such that ∆min ≤ lc − fc + 1 ≤ ∆max. A set

T = {t1, ..., tT } representing the discrete planning horizon over T time periods is also considered, as

well as an auxiliary set Ct, ∀t ∈ T , representing the pairs (fc, lc) of all possible curtailments that can

be performed at time period t. In other words, Ct contains all the pairs (fc, lc) with fc < lc such that

fc ≤ t ≤ lc.

Decision Variables

Firstly, a solution is determined by the values of the following variables:

- xt ∈ [Bmin, Bmax], ∀t ∈ T : amount of energy available in the battery at the beginning of each

time period t, given in kWh. An additional variable xT +1 represents the energy available at the

end of the planning horizon.

The following additional binary variables are used to control which curtailments are performed:

- yc, ∀c ∈ C: equal to 1 if a curtailment c starting at time period fc and ending at time period lc

is performed, and to 0 otherwise.

To model the power bought at each time period t, the following variables are used:

- uD
t ∈ [0, Wt], t ∈ T : power bought for the demand consumption (in kW);
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- uB
t ∈ [0, PB], t ∈ T : power bought for battery recharge (in kW).

Auxiliary variables can also be used to simplify the model writing. However, they are not strictly

necessary, and could be removed and replaced by their value, obtained from the corresponding equality

constraints (3.7) and (3.12):

- zt, t ∈ T : equal to 1 if the pair (fc, lc) of some curtailment c performed is in Ct, and to 0

otherwise;

- pmax
c , c ∈ C: maximum amount of power in kW that can be bought at each time period t ∈

{fc, . . . , lc}, if a curtailment c starting at time period fc and ending at time period lc is performed.

The objective function is defined as follows:

min
∑︂
t∈T

Et(uB
t + uD

t )−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︂
t∈T

Rt(Wt − uD
t ), if OTR (3.3)

∑︂
c∈C

Rfcyc(xfc/∆− xlc+1/∆), if FTR (3.4)

The first part corresponds to the cost of buying energy, and the second one to the reward received for

each curtailment performed. The goal is to minimize the total cost. In the first case, i.e., in the case

of the OTR reward policy, Wt− uD
t is larger than zero only if some curtailment is being performed at

each time period t. In the second case, i.e., in the case of the FTR reward policy, xfc −xlc+1 gives the

amount of energy used from the battery during the curtailment, which is also the sum of the amount

of power not bought from the distributor at each time period during the curtailment. A solution is

given by the battery power capacity at each time period.

The following constraints define the state of the battery at each time period t:

zt =
∑︂
c∈Ct

yc ∀t ∈ T (3.5)

xt − xt+1 ≤ ∆Dmaxzt ∀t ∈ T (3.6)

− xt + xt+1 ≤ (Bmax −Bmin)(1− zt) ∀t ∈ T (3.7)

Constraints (3.5), together with the fact that zt ∈ {0, 1} for all t ∈ T , guarantee that at most one

curtailment can be performed at each time period. Constraints (3.6) guarantee that, if the battery
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power capacity decreases, then one curtailment must be performed, but also that the power discharge

during any time period of a curtailment is at most Dmax. Constraints (3.7) ensure that, if the battery

power capacity increases, then no curtailment is being performed.

Note that, if the battery has the same power capacity during two consecutive time periods, then

the corresponding variables zt are free. However, Constraints (3.5) guarantee that, if a curtailment is

performed, then all zt are equal to 1 over the curtailment duration.

In the same vein, Constraints (3.8) guarantee the minimal battery discharge at each time period

where the battery is used, which is min(Wt, Dmin):

xt − xt+1 ≥ ∆ min(Wt, Dmin)zt −∆PB(1− zt) ∀t ∈ T (3.8)

Constraints (3.9) guarantee that a curtailment can start only if the battery is fully charged (and

hence that two consecutive curtailments cannot occur):

Bmax ∑︂
c∈Ct | t=fc

yc ≤ xt ∀t ∈ T (3.9)

Since no losses are considered, the battery power balance is ensured by Constraints (3.10), while

Constraints (3.11) express the limit conditions:

xt+1 − xt = ∆uB
t + ∆uD

t −∆Wt ∀t ∈ T (3.10)

xt1 = xtT +1 = Bmax (3.11)

The power purchased from the market is the sum of the power bought for charging the battery

(uB
t ) and the power bought for consumption (uD

t ), which is ensured by the following constraints:

uB
t = (1− zt) min(Bmax/∆− xt/∆, PB, P max −Wt) ∀t ∈ T (3.12)

(Wt −Dmax)zt + Wt(1− zt) ≤ uD
t ∀t ∈ T (3.13)

uD
t ≤Wt(1− zt) +

∑︂
c∈Ct

ycp
max
c ∀t ∈ T (3.14)

pmax
c = max(0,

∑︁lc
t′=fc−1 Wt′ + xfc/∆− xfc−1/∆

lc − fc + 2 − PT O) ∀c ∈ C (3.15)

The power bought for charging the battery is min(PB, P max−Wt) when it is possible to buy energy

(i.e., if zt = 0), if the capacity of the battery is not exceeded (see Constraints (3.12)). The power
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bought for consumption uD
t must be exactly the demand forecast when the battery is charging, which

is ensured by Constraints (3.13) and (3.14). If a curtailment is being performed, this power cannot be

larger than min(Wt, pmax
c ) or smaller than Wt −Dmax, which is also guaranteed by Constraints (3.13)

and (3.14). Note that imposing uD
t ≥Wt−Dmax during a curtailment also guarantees that the battery

power discharge per time period is smaller than Dmax. The value of pmax
c is provided by (3.15). If the

battery is fully charged and not being used, Constraints (3.12) guarantee that the amount of power

bought for recharge is equal to 0, and once more Constraints (3.13) and (3.14) guarantee that the

amount of power bought for consumption will be exactly the power demand, since zt and ycp
max
c for

each c ∈ Ct are equal to 0 in this case. Note that Constraints (3.9) together with Constraints (3.12)

guarantee that, after a curtailment, the battery is fully charged before another curtailment can be

performed, at a constant power rate respecting the maximum power P max that can be bought from

the distributor at each time period. Furthermore, we assume that the value of P max is greater than

the power demand Wt at any time period t ∈ T .

Finally, the domains of the variables are:

uD
t ∈ [0, Wt], uB

t ∈ [0, PB], xt ∈ [Bmin, Bmax] ∀t ∈ T (3.16)

zt ∈ {0, 1} ∀t ∈ T (3.17)

pmax
c ∈ R+ ∀c ∈ C (3.18)

yc ∈ {0, 1} ∀c ∈ C (3.19)

All the rules defined in Section 3.1.1 are guaranteed: the safety usage rule R1 by Constraints (3.16),

R2 by (3.12), (3.10) and (3.16), R3 by (3.11), R4 by (3.8), R5 by (3.6), R7 by (3.12), and the

market rule R9 by Constraints (3.14) and (3.15). Note that R8 is guaranteed by the construction of

the pairs (fc, lc) in C.

The obtained model (3.3)-(3.19) is non-linear. However, it can be linearized following the approach

proposed by McCormick (1976). The resulting model (referred to as (OBSC-MILP)) is provided in

Section 3.2.1.3.

3.2.1.2 Mixed-integer programming formulation for the practical variants

In this section, we present the changes applied to (OBSC-MILP) to formulate the two variants

OBSC-D and OBSC-R. Firstly, let us define D as the set of all battery discharge levels allowed in each
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variant over all the possible curtailments. For OBSC-D, the subset D is part of the input and all the

curtailments share the same set of possible discharge levels. In the case of 1% discharge levels, the set

D is {0.01Bmax, 0.02Bmax, ...}. For OBSC-R, Section 3.2.2.2 derives such a subset D by using the fact

that the battery must necessarily be in rest mode for at least N time periods after each recharge.

Concerning OBSC-D, a binary variable kc,d for each c ∈ C and d ∈ D will be used to guarantee that

the battery discharge level when performing a curtailment c belongs to D. The following constraints

then ensure this point:

yc(xfc − xlc+1) =
∑︂
d∈D

kc,dd ∀c ∈ C (3.20)

∑︂
d∈D

kc,d = yc ∀c ∈ C (3.21)

Let us denote such an adaptation of (OBSC-MILP) to the variant OBSC-D, in which Con-

straints (3.20) are linearized following the instructions given in Section 3.2.1.3, as (OBSC-D-MILP).

Concerning OBSC-R, we make use of the following constraints to guarantee that the battery is in

rest mode for at least N time periods between two consecutive curtailments:

Bmax ∑︂
c∈Ct | t=fc

yc ≤ xt−i ∀i ∈ {1, . . . , N}, ∀t ∈ {i + 1, . . . , T} (3.22)

Let us denote such an adaptation of (OBSC-MILP) to the variant OBSC-R as (OBSC-R-MILP).

As mentioned before, these variants can in fact be solved in polynomial time in |D|, where |D| is

proved to be polynomial in T in the case of OBSC-R. Further details are provided in Section 3.2.2.

3.2.1.3 Linearization of the mathematical model

For a product between a binary and a float variable bi and fj ∈ [0, F max] respectively, we can apply

the McCormick strategy (see McCormick (1976)), which amounts to using a new variable lin bf j
i ∈

[0, F max] to replace this product bifj , together with the following constraints:

lin bf j
i ≤ biF

max (3.23)

lin bf j
i ≤ fj (3.24)

lin bf j
i ≥ fj − (1− bi)F max (3.25)
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The non-linearities of this type in (3.3)-(3.19) are the products xtyc (with xt ∈ [0, Bmax]), ycp
max
c

(with pmax
c ∈ [0, P max]) and xtzt in (3.4), (3.14) and (3.12), respectively. Thanks to (3.5), we need

to introduce only two new families of variables: lin xyc
t for all c in C, t in T to linearize (3.4), and

lin ypmaxc for all c in C to linearize (3.14). Then, we can simply replace xtzt by
∑︁

c∈Ct
lin xyc

t in

(3.12).

Furthermore, to linearize x = min(a, b) for a, b ∈ [M ′, M ], we introduce a binary variable y ∈ {0, 1}

such that, if a > b, then y = 1, otherwise y = 0. We can then rewrite x as follows:

x ≤ a, x ≤ b (3.26)

a− b ≤ (M −M ′)y, b− a ≤ (M −M ′)(1− y) (3.27)

x ≥ a− (M −M ′)y, x ≥ b− (M −M ′)(1− y) (3.28)

In our case, we have two new families of binary variables: lin sidet for all t in T to linearize (3.12),

and lin sidepmaxc for all c in C to linearize (3.15). In the case of (3.12), we have uB
t = (1−zt) min(a, b),

where a = Bmax/∆ − xt/∆ and b = min(PB, P max −Wt). In order to linearize this expression, we

have to multiply all the terms a and b in (3.26) and (3.28) by 1 − zt. Hence, we derive the following

constraints, where M ′ = 0 and M = max(P max, Bmax/∆):

uB
t ≤ (1− zt)(Bmax/∆− xt/∆), uB

t ≤ (1− zt) min(PB, P max −Wt) (3.29)

(Bmax/∆− xt/∆)−min(PB, P max −Wt) ≤Mlin sidet,

min(PB, P max −Wt)− (Bmax/∆− xt/∆) ≤M(1− lin sidet) (3.30)

uB
t ≥ (1− zt)(Bmax/∆− xt/∆)−M(1− zt)lin sidet,

uB
t ≥ (1− zt) min(PB, P max −Wt)−M(1− zt)(1− lin sidet) (3.31)

Note that, since uB
t ∈ [0, P B], Constraints (3.31) can be replaced by:

uB
t ≥ (1− zt)(Bmax/∆− xt/∆)−Mlin sidet, uB

t ≥ (1− zt) min(PB, P max −Wt)−M(1− lin sidet)
(3.32)

Indeed, when zt = 0, (3.31) and (3.32) are equivalent, and, when zt = 1, (3.29) together with

(3.32) and uB
t ∈ [0, P B] ensure that uB

t = 0.
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In the case of (3.15), we can rewrite such constraints as pmax
c = −x =

−min(0,−
∑︁lc

t′=fc−1 Wt′ +xfc /∆−xfc−1/∆
lc−fc+2 + PT O), and linearize them by considering the terms a = 0 and

b = −
∑︁lc

t′=fc−1 Wt′ +xfc /∆−xfc−1/∆
lc−fc+2 + PT O, with b ∈ [−P max, P max].

The complete linear version of (OBSC-MINLP), referred to as (OBSC-MILP), can then be written

as follows:

min
∑︂
t∈T

Et(uB
t + uD

t )−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︂
t∈T

Rt(Wt − uD
t ) (3.3)

∑︂
c∈C

(Rfc/∆)(lin xyc
fc
− lin xyc

lc+1) (3.33)

zt =
∑︂
c∈Ct

yc ∀t ∈ T (3.5)

xt − xt+1 ≤ ∆Dmaxzt ∀t ∈ T (3.6)

− xt + xt+1 ≤ (Bmax −Bmin)(1− zt) ∀t ∈ T (3.7)

xt − xt+1 ≥ ∆ min(Wt, Dmin)zt −∆PB(1− zt) ∀t ∈ T (3.8)

Bmax ∑︂
c∈Ct | t=fc

yc ≤ xt ∀t ∈ T (3.9)

xt+1 − xt = ∆(uB
t + uD

t −Wt) ∀t ∈ T (3.10)

xt1 = xtT +1 = Bmax (3.11)

∆uB
t ≤ Bmax − xt − ztB

max +
∑︂
c∈Ct

lin xyc
t ∀t ∈ T (3.34)

uB
t ≤ (1− zt) min(PB, P max −Wt) ∀t ∈ T (3.35)

Bmax/∆− xt/∆−min(PB, P max −Wt) ≤ max(P max, Bmax/∆)lin sidet ∀t ∈ T (3.36)

min(PB, P max −Wt)−Bmax/∆ + xt/∆ ≤ max(P max, Bmax/∆)(1− lin sidet) ∀t ∈ T (3.37)

∆uB
t ≥ Bmax − xt − ztB

max +
∑︂
c∈Ct

lin xyc
t −max(∆P max, Bmax)lin sidet ∀t ∈ T (3.38)

uB
t ≥ (1− zt) min(PB, P max −Wt)−max(P max, Bmax/∆)(1− lin sidet) ∀t ∈ T (3.39)

(Wt −Dmax)zt + Wt(1− zt) ≤ uD
t ∀t ∈ T (3.13)

uD
t ≤Wt(1− zt) +

∑︂
c∈Ct

lin ypmaxc ∀t ∈ T (3.40)
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pmax
c ≥

∑︁lc
t′=fc−1 Wt′ + xfc/∆− xfc−1/∆

lc − fc + 2 − PT O ∀c ∈ C (3.41)∑︁lc
t′=fc−1 Wt′ + xfc/∆− xfc−1/∆

lc − fc + 2 − PT O ≤ 2P maxlin sidepmaxc ∀c ∈ C (3.42)

−
∑︁lc

t′=fc−1 Wt′ + xfc/∆− xfc−1/∆
lc − fc + 2 + PT O ≤ 2P max(1− lin sidepmaxc) ∀c ∈ C (3.43)

pmax
c ≤

∑︁lc
t′=fc−1 Wt′ + xfc/∆− xfc−1/∆

lc − fc + 2 − PT O + 2P max(1− lin sidepmaxc) ∀c ∈ C (3.44)

pmax
c ≤ 2P maxlin sidepmaxc ∀c ∈ C (3.45)

lin xyc
t ≤ ycB

max ∀c ∈ C,∀t ∈ T (3.46)

lin xyc
t ≤ xt ∀c ∈ C,∀t ∈ T (3.47)

lin xyc
t ≥ xt − (1− yc)Bmax ∀c ∈ C,∀t ∈ T (3.48)

lin ypmaxc ≤ ycP
max ∀c ∈ C (3.49)

lin ypmaxc ≤ pmax
c ∀c ∈ C (3.50)

lin ypmaxc ≥ pmax
c − (1− yc)P max ∀c ∈ C (3.51)

uD
t ∈ [0, Wt], uB

t ∈ [0, PB], xt ∈ [Bmin, Bmax], zt ∈ {0, 1}, lin sidet ∈ {0, 1} ∀t ∈ T (3.52)

pmax
c ∈ R+, yc ∈ {0, 1}, lin ypmaxc ∈ [0, P max], lin sidepmaxc ∈ {0, 1} ∀c ∈ C (3.53)

lin xyc
t ∈ [0, Bmax] ∀t ∈ T , ∀c ∈ C (3.54)

3.2.2 Variants solving approach

This section presents an exact graph-oriented solving method for OBSC-D and OBSC-R, based on

the enumeration of all possible curtailments that can be performed over the planning horizon. The

problem reduces to the computation of a longest path in a directed acyclic graph (DAG) whose nodes

correspond to the possible curtailments. The discrete set D of allowed battery discharge levels is an

input for this algorithm, and hence must be defined in advance.
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3.2.2.1 Graph-oriented algorithm for a discrete discharge levels

As already mentioned, a curtailment c will be represented by a triple (fc, lc, dc), and a solution to

the problem will consist of the curtailments (fc, lc, dc) performed over the horizon such that ∆min ≤

lc − fc + 1 ≤ ∆max. Originally, the amount dc of energy not bought during the curtailment c is a

continuous variable, and all its possible values cannot be extensively enumerated. However, under

some general assumptions associated with practical cases, such as the ones mentioned in Section 3.1.2,

where the variants OBSC-D and OBSC-R are defined, the possible values of dc over all curtailments

c actually belong to a discrete subset D (note that, for OBSC-D, this is true by definition).

Let us define tB
c as the last recharging time period associated with curtailment c, and rc = uB

tB
c
as

the power bought for recharging during this period.

Property 1 For a given curtailment c = (fc, lc, dc), the time period tB
c and the value of rc can be

computed from lc and dc.

Proof. Since the battery is recharged with the power rate min(PB, P max −Wt), the power that must

be bought for recharge at each time period t ∈ T is known. For a given curtailment c = (fc, lc, dc),

the battery is necessarily in recharge at the time period t, for each t ∈ T such that t > lc and

∆
∑︁t−1

t′=lc+1 min(PB, P max − Wt′) < dc (otherwise, the battery is already fully charged). The last

recharging time period tB
c > lc is the last time period t ∈ T such that the battery is necessarily in

recharge, i.e., tB
c is such that ∆

∑︁tB
c −1

t′=lc+1 min(PB, P max −Wt′) < dc and ∆
∑︁tB

c
t′=lc+1 min(PB, P max −

Wt′) ≥ dc. Consequently, rc is computed as follows:

rc = dc/∆−
tB
c −1∑︂

t=lc+1
min(PB, P max −Wt)

Indeed, rc is the amount left to recharge the battery to its maximum energy capacity at the time

period tB
c . Note that tB

c and rc depend only on the curtailment c itself, and that the curtailments

performed before c do not have any impact on their computation. □

If we consider two consecutive curtaiments, we have the following result:

Lemma 1 Given any two curtailments ci and cj performed consecutively in a given solution, the value

of ωcj (and hence of pmax
cj

) can be computed from tB
ci
, rci, fcj and lcj .
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Proof. Let ci and cj be two such curtailments. On the one hand, if cj starts immediately after the

full battery recharge associated with ci (i.e., if fcj = tB
ci

+ 1), then the value of ωcj is computed using

Equation (3.1). In this case, ufcj −1 = Wfcj −1 + rci . On the other hand, if cj starts at least one period

of time after the full battery recharge associated with ci (i.e., if fcj > tB
ci

+ 1), then there exists only

one possible value of ωcj . Indeed, the power bought for recharging immediately before the curtailment

cj is 0, and hence, in this case, ufcj −1 = Wfcj −1. In both cases, the value of pmax
cj

is derived using

Equation (3.2). □

The following technical result allows to propose a reformulation of the objective function in the gen-

eral case (i.e., D does not need to be discrete) for the sake of its efficient computation when D is

discrete, as it constitutes a structural result which will in particular be used to prove Property 2 (see

Section 3.2.2.2):

Proposition 1 Let Fopt be the set of vectors ((yc)c∈C , (dc)c∈C) such that:

• for each c ∈ C, yc ∈ {0, 1} and dc ≥ 0,

• for each c ∈ C and c′ ∈ C \ {c}, if yc = yc′ = 1, then {fc, . . . , tB
c } ∩ {fc′ , . . . , tB

c′} = ∅, where, for

each c ∈ C, tB
c > lc is the integer such that dc ∈]∆

∑︁tB
c −1

t=lc+1 min(PB, P max−Wt), ∆
∑︁tB

c
t=lc+1 min(PB,

P max −Wt)],

• for each c ∈ C, if yc = 1, then we must have dc ∈ [
∑︁lc

t=fc
∆ max(min(Wt, Dmin), Wt − pmax

c ),

min(
∑︁lc

t=fc
∆ min(Wt, Dmax), Bmax−Bmin)], where the value of pmax

c is computed using Property 1

and Lemma 1.

In any feasible solution to an instance of OBSC, we have ((yc)c∈C , (dc)c∈C) ∈ Fopt. Moreover, for any

((yc)c∈C , (dc)c∈C) ∈ Fopt, one can obtain a feasible solution of value:

∑︂
t∈T

EtWt −
∑︂
c∈C

ycf
G
c (dc, dc−)

where fG
c (dc, dc−) is a function that can be computed in linear time, and where, for each curtailment c

such that yc = 1, c− is the only curtailment such that yc− = 1 and there exists no curtailment c′ such

that yc′ = 1 and lc− < fc′ ≤ lc′ < fc. In other words, for each curtailment c, c− is the curtailment

that immediately precedes c.
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In particular, the optimal value of OBSC can be rewritten as follows:

∑︂
t∈T

EtWt − max
((yc)c∈C ,(dc)c∈C)∈Fopt

∑︂
c∈C

ycf
G
c (dc, dc−)

Furthermore, in the case where the value of pmax
c depends only on the value of yc for each c,

fG
c (dc, dc−) is a continuous piecewise linear function of dc having O(T ) segments.

The proof of Proposition 1 is given in Section 3.2.2.3, and shows, actually, that fG
c (dc, dc−) is the

difference between two functions fS
c (dc, dc−) and fB

c (dc). Intuitively, for each curtailment c performed,

the value of fG
c (dc, dc−) represents the economic gain associated with c, while the values of fB

c (dc) and

fS
c (dc, dc−) represent the recharging cost after c and the savings obtained from c, respectively. Fig-

ure 3.2 illustrates the computation of the economic gain fG
c of a curtailment based on such functions

fB
c and fS

c . In Figure 3.2, fB
c is composed of two linear functions representing the battery recharging

cost over two intervals, [0, PB] and [PB, PB +P max−W4]. The function fS
c (dc, dc−) is composed of two

linear functions on intervals representing respectively the mandatory discharge imposed by W2− pmax

and the optional discharge performed during the curtailment. For the function fG
c (dc, dc−), we can

observe in Figure 3.2 the marginal economic gain for each unit of energy discharge until dbreak3 .

Figure 3.2 – Illustration of the marginal gain of a curtailment c starting at time period 2 and ending
at time period 3.

We now define a directed graph G = (V, A), where the set of nodes V corresponds to the set of

all possible curtailments. Note that the number of curtailments enumerated is bounded by T 2|D|.
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An arc in A is defined from a curtailment ci (represented by the triple (fci , lci , dci)) to a curtailment

cj (represented by the triple (fcj , lcj , dcj )) if cj can start after ci, i.e., on the one hand, if cj starts

after the last recharging time period associated with ci (i.e., fcj > tB
ci
), and, on the other hand, if

dcj ∈ [
∑︁lcj

t=fcj
∆ max(min(Wt, Dmin), Wt − pmax

cj
), min(

∑︁lcj

t=fcj
∆ min(Wt, Dmax), Bmax − Bmin)], where

the value of pmax
cj

is computed from the one of dci by using Property 1 and Lemma 1. Additionally,

two dummy curtailments vs = (−1,−1, 0) and vt = (T + 1, T + 1, 0), as well as arcs (vs, v) and (v, vt)

for each vertex v ∈ V \ {vs, vt}, are also added to G, to allow the computation of a longest path from

vs to vt. Finally, for each arc aij = (ci, cj) in G, we define the weight of aij as the economic gain

fG
cj

(dcj , dci). For any arc asj = (vs, cj) in G, the weight is obtained by setting uB
fcj −1 = 0 to compute

pmax
cj

. For any arc ait = (ci, vt) in G, the weight is set to 0. Since the weight of each arc of G is

known, the cumulative total gain of a path p can be computed as the sum of the weights of the arcs

in p, which corresponds to the economic gain of all curtailments performed along p. By construction,

there always exists a path from vs to vi and from vi to vt for any vi ∈ V \ {vs, vt}. We will show that

choosing the sequence of curtailments that results in the best final economic gain without conflicts is

equivalent to choosing the longest path from vs to vt in G, and we will show how we can efficiently

compute such a path:

Proposition 2 The graph G is a DAG.

Proof. A topological ordering L of V can be obtained by sorting the vertices by increasing order of

the first time period of the curtailment associated with each one of them. If two curtailments start at

the same time period, choose a random order. Firstly, there is no arc between two vertices starting

at the same time period (there exists a conflict between two curtailments starting at the same time

period). Secondly, for any arc a = (vi, vj) of G, the curtailment associated with vj starts after the

complete recharge associated with vi. This implies that vj is always after vi in L. □

Proposition 3 Whenever the set D is discrete, the optimal value of OBSC is equal to the length of a

longest path from vs to vt in G.

Proof. Let us assume that we are given an optimal solution to an instance of OBSC, of value OPT .

The corresponding values of the variables yc and dc = yc(xfc−xlc+1) must belong to Fopt as defined in

Proposition 1, by definition. Each such pair (yc, dc) is associated with a vertex in G by definition of G,

84



3.2. SOLVING APPROACHES

and all the pairs used in this optimal solution form a path from vs to vt in G from the definition of the

arcs in G. Because the weight of each such arc (vi, vj) is exactly fG
cj

(dcj , dci), this yields a path from vs

to vt in G whose length is
∑︁

t∈T EtWt−OPT from Proposition 1. Conversely, let us consider any path

from vs to vt in G, of length λ: such a path is composed of triples (fc, lc, dc), which are equivalent to

pairs (yc, dc), and such pairs belong to Fopt as defined in Proposition 1, by definition of the arcs in G.

Hence, this provides a feasible solution to the associated instance of OBSC, of value
∑︁

t∈T EtWt−λ. □

Since G is a DAG, one can use Bellman’s algorithm to compute a longest path from vs to vt in

linear time (e.g., see Dasgupta et al. (2008)), i.e., in time O(|V | + |A|), which is O(T 4|D|2) in our

case. Furthermore, given a longest path from vs to any vertex v in G, one can obtain a path from vs

to vt by adding the arc (v, vt). Such a path may not be a longest path, but it does provide a feasible

solution, from Proposition 1. This implies that we can limit the computation time and compare the

best intermediate solution obtained with the ones found by other solution methods.

As previously mentioned, the algorithm described in this section is based on the enumeration of

all triples (fc, lc, dc), and hence the set D of all possible values of dc over all curtailments c must be

defined. Under some general assumptions associated with practical cases, such as the ones mentioned

in Section 3.1.2, where the variants OBSC-D (for which D is part of the input) and OBSC-R are

defined, such a set D can be obtained as shown in the following section.

3.2.2.2 Computation of the discrete discharge levels for particular cases

In this section, we show that the set D is discrete for particular cases where the computation of

pmax
c depends only on the values of fc and lc, e.g., when pmax

c is a constant. In addition, we show how

to compute such a set.

There exist (at least) two particular cases for which the set D can be assumed to be discrete: when

the battery is used only to participate in the retail market, and when the computation of pmax
c does

not depend on the previous battery uses (i.e., pmax
c depends only on the values of fc and lc). In the

first case, since no curtailment is performed, the battery discharge level at each period during which

the battery is used must only be larger than or equal to ∆Dmin. Hence, we can see pmax
c as a big

constant, and the Constraints (3.14) will never be saturated when the battery is in use (i.e., when
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zt = 1). In the second case, we consider the variant OBSC-R, where a rest time period is imposed after

each battery recharge. Since the battery stays at least one time period in rest mode, the amount of

power bought in the last recharging time period of a curtailment c1 has no impact on the computation

of pmax
c2 for the next curtailment c2 (i.e., the value of ufc2 −1 is always Wfc2 −1 in Equation (3.1)).

In the following, we consider the variant OBSC-R to derive the set D. If we denote by Dc the set

of all possible values of dc for a given curtailment c, we have D =
⋃︁

cDc.

Property 2 There exists an optimal solution of OBSC-R such that, for each curtailment c performed,

the value of dc belongs to a known discrete subset Dc such that |Dc| = O(T ).

Proof. For each curtailment c performed, we have tB
c ∈ {lc + 1, . . . , T}. For each value in this interval

(possibly up to some value tmax such that ∆
∑︁tmax

t=lc+1 min(PB, P max −Wt) > min(
∑︁lc

t=fc
∆ min(Wt,

Dmax), Bmax − Bmin), beyond which from Proposition 1 no feasible solution can exist), the value dc

in any feasible solution must satisfy the range conditions of Proposition 1. Therefore, there exists

dtB
c
such that fG

c (dtB
c

, 0) is the maximum value of fG
c (dc, dc−) over all the dc’s and dc− ’s that satisfy

the range conditions of Proposition 1. Indeed, in this case, the value of dc− is irrelevant, as pmax
c is

computed by setting ufc−1 = Wfc−1 in Equation (3.1), and hence one may choose dc− = 0 for instance.

From Proposition 1, for each c performed and each value tB
c ∈ {lc + 1, . . . , T}, the value of any

solution ((yc)c∈C , (dc)c∈C) ∈ Fopt where dc = dtB
c
will be at least as good as the value of any solution

such that the last recharging time period after c has been performed is still tB
c and dc′ is unchanged

for any c′ ̸= c such that yc′ = 1, but dc ̸= dtB
c
. Then, the set Dc is composed of all such optimal

battery discharge levels, one for each possible value of tB
c . Note that the number of elements in Dc is

upper bounded by the length of the interval {lc + 1, . . . , T}, and hence by O(T ).

Now, consider any optimal solution, a curtailment c1 in this solution, and assume that dc1 /∈ Dc1 .

Replace dc1 by the value in Dc1 that yields the same value for tB
c1 . From the previous paragraph, the

value of the obtained solution is at least as good. Moreover, this new solution is also feasible, and

hence optimal. Indeed, let c2 be the curtailment performed after c1 in the optimal solution (if c2 does

not exist, then we are done): since the battery stays at least one time period in rest mode after c1,

this means that fc2 − tB
c1 > 1 (i.e., tB

c1 ∈ {lc1 + 1, . . . , fc2 − 2} ⊆ {lc1 + 1, . . . , T}), and that the value

of ufc2 −1 in Equation (3.1) is Wfc2 −1 (a value on which the new value of dc1 has no impact, as tB
c1 did

not changed). Hence, this “local” change has not impact on the other curtailments of the considered
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optimal solution, and we can proceed in the same way for each such curtailments, including the last

one. □

Obviously, if we consider the other variant (i.e., when the battery is used only to participate in the

retail market), then the proof is similar, except that tB
c1 belongs to {lc1+1, . . . , fc2−1} ⊆ {lc1+1, . . . , T}.

Now, let us discuss some algorithmic issues. Thanks to Proposition 1, we know that, in order to

compute the economic gains, we have to use the piecewise linear functions fS
c , fB

c and fG
c , which can

be computed in linear time (in T ). Hence, the optimal value of dc for a given curtailment c and a

given value of tB
c must necessarily be the endpoint of some segment of function fG

c (the associated

value for d will be referred to as a breakpoint). Note, in particular, that the number of breakpoints

dbreakh in fG
c is at most one plus the number of segments of the functions fB

c and fS
c , which are at

most T − lc and lc− fc + 1, respectively. Therefore, for a given curtailment c starting at period fc and

ending at period lc (and using the fact that here, by assumption, pmax
c depends only on yc, i.e., on fc

and lc), one can use the function fG
c in order to compute all the candidate values dc in Dc (keeping

only the value dc that minimizes the objective function, if several of these values yield the same value

for tB
c ) in time O((T − lc) + (lc − fc + 1)) = O(T ).

It should be noticed that, when using the approach described in Section 3.2.2.1 for solving OBSC-

R, an arc is defined from a curtailment ci = (fci , lci , dci) to a curtailment cj = (fcj , lcj , dcj ) only if cj

starts at least N + 1 time periods after the last recharging time period associated with ci, i.e., only if

fcj > tB
ci

+ N , in addition to the bound constraints on dcj . Moreover, in this case, the running time

of the algorithm based on the computation of a longest path in a DAG is O(T 4(maxc |Dc|)2), which

yields O(T 6).

Finally, we illustrate the computation of the set Dc on the example of Figure 3.2, where the

curtailment c that is considered starts at the beginning of time period 2 and ends at the end of the

same time period, and where we consider the values tB
c ∈ {3, 4} (here, tB

c cannot be larger than 4). In

this particular case, we simply have Dc = {dbreak2 }, because dbreak2 gives the highest economic gain for

dc both in the first and in the second segments of fG
c .
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3.2.2.3 Proof of Proposition 1

In this section, we provide the proof of Proposition 1. Beforehand, for the sake of a better under-

standing, we provide a reformulation of the objective function (3.3) and (3.4), that we now recall. In

order to do this, and for the sake of simplicity, we define the set F of all the feasible solutions, i.e.,

F = {(y, x, z, pmax, uD, uB) ∈ {0, 1}C×R+T ×{0, 1}T ×R+C×R+T ×R+T | (3.5)− (3.19) are satisfied}.

Then, we have:

min
(y,x,z,pmax,uD,uB)∈F

∑︂
t∈T

Et(uB
t + uD

t )−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︂
t∈T

Rt(Wt − uD
t ), if OTR

∑︂
c∈C

Rfcyc(xfc/∆− xlc+1/∆), if FTR

From Constraints (3.10), we have that uB
t + uD

t = Wt + xt+1/∆− xt/∆ for each t.

Let us consider in what follows the following cases related to the three possible battery states at

each time period t:

• Battery in discharge (xt − xt+1 > 0): from Constraints (3.6), we get zt = 1, and then, from

Constraints (3.12), we derive uB
t = 0. Hence, we get uB

t + uD
t = uD

t = Wt − (xt/∆− xt+1/∆).

• Battery in recharge (xt − xt+1 < 0): from Constraints (3.7), we have that zt = 0, and, from

Constraints (3.13), uD
t ≥Wt. Since uD

t ≤Wt, we get uD
t = Wt, and thus uB

t + uD
t = uB

t + Wt.

• Battery in rest mode (xt − xt+1 = 0): from Constraints (3.8), (3.13) and (3.12), we have that

zt = 0, that uD
t = Wt, and that uB

t = 0. In this case, we get uB
t + uD

t = Wt.

Given that we are always in one of the three above cases for a given t, but not in two at the same

time, and that the power demand Wt is present in the sum uB
t + uD

t in all these cases, we can then

group the power demand terms over t as
∑︁

t∈T Wt. Additionally, for any curtailment c performed, the

term xt+1/∆ − xt/∆ = −(xt/∆ − xt+1/∆) is present only during the battery discharge periods of c

(i.e., for t ∈ {fc, . . . , lc}), and the term uB
t is present only during the battery recharge periods of c

(i.e., for t ∈ {lc + 1, . . . , tB
c }). Hence, we obtain:

∑︂
t∈T

(uB
t + uD

t ) =
∑︂
t∈T

Wt +
∑︂
c∈C

yc

(︄
−

lc∑︂
t=fc

(xt/∆− xt+1/∆) +
tB
c∑︂

t=lc+1
uB

t

)︄
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By replacing
∑︁

t∈T (uB
t + uD

t ) by this new expression in the objective function, we get:

min
(y,x,z,pmax,uD,uB)∈F

∑︂
t∈T

EtWt⏞ ⏟⏟ ⏞
T1

−
∑︂
c∈C

yc

(︄
lc∑︂

t=fc

Et(xt/∆− xt+1/∆)−
tB
c∑︂

t=lc+1
Etu

B
t

)︄
⏞ ⏟⏟ ⏞

T2

−
{︄∑︁

t∈T Rt(Wt − uD
t ), if OTR∑︁

c∈C Rfcyc(xfc/∆− xlc+1/∆), if FTR⏞ ⏟⏟ ⏞
T3

(3.55)

Since Wt − uD
t = xt/∆ − xt+1/∆ for any battery discharge period t of any curtailment per-

formed (and Wt − uD
t = 0 otherwise), we have

∑︁
t∈T Rt(Wt − uD

t ) =
∑︁

c∈C yc
∑︁lc

t=fc
Rt(xt/∆ −

xt+1/∆), and, since xfc − xlc+1 =
∑︁lc

t=fc
(xt − xt+1), we have

∑︁
c∈C Rfcyc(xfc/∆ − xlc+1/∆) =∑︁

c∈C yc
∑︁lc

t=fc
Rfc(xt/∆− xt+1/∆). Hence, we can merge the terms T2 and T3 in Equation (3.55):

min
(y,x,z,pmax,uD,uB)∈F

∑︂
t∈T

EtWt⏞ ⏟⏟ ⏞
T1

−
∑︂
c∈C

yc

(︄
lc∑︂

t=fc

{︄
(Et + Rt)(xt/∆− xt+1/∆)
(Et + Rfc)(xt/∆− xt+1/∆)⏞ ⏟⏟ ⏞

f1(yc,xt,zt,pmax
c ,uD

t ,uB
t )

−
tB
c∑︂

t=lc+1
Etu

B
t⏞ ⏟⏟ ⏞

f2(yc,xt,zt,pmax
c ,uD

t ,uB
t )

)︄

(3.56)

Note that, since the standard cost term T1 is a constant, minimizing this objective function can be

seen as maximizing the objective function
∑︁

c∈C yc(f1(yc, xt, zt, pmax
c , uD

t , uB
t )− f2(yc, xt, zt, pmax

c , uD
t ,

uB
t )) over F .

Moreover, we introduce a new variable dc ≥ 0 for each c ∈ C, which represents the overall battery

discharge level during curtailment c, and which is not needed in our MIP formulation, but that will

be useful to rewrite the objective function. By definition, the value of dc for each curtailment c is

xfc − xlc+1 if c is performed (i.e., if yc = 1), and 0 otherwise.

This yields the following new constraints:

dc = yc(xfc − xlc+1) ∀c ∈ C (3.57)

Note that, once the values of the variables yc are known, so are the ones of the variables zt (and

vice-versa), thanks to Constraints (3.5). Similarly, once the values of the variables dc are known, so

are the ones of the variables pmax
c , thanks to Constraints (3.15) and the fact that, from Property 1 and

Lemma 1, the value of pmax
c for each c ∈ C can be computed from the values of the variables dc only.
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Furthermore, we define a new set F ′ as follows: F ′ = {(dc)c∈C and ((yc)c∈C , (xt)t∈T , (zt)t∈T , (pmax
c )c∈C ,

(uD
t )t∈T , (uB

t )t∈T ) ∈ F satisfying (3.57)}.

For each (y, d) = ((yc)c∈C , (dc)c∈C), let F∗(y, d) = {((xt)t∈T , (uD
t )t∈T , (uB

t )t∈T ) such that ((dc)c∈C ,

(yc)c∈C , (xt)t∈T , (zt)t∈T , (pmax
c )c∈C , (uD

t )t∈T , (uB
t )t∈T ) ∈ F ′}. We also define the set F∗ = {((yc)c∈C ,

(dc)c∈C) such that F∗(y, d) ̸= ∅}. Then, we have:

max
((yc)c∈C ,(xt)t∈T ,(zt)t∈T ,(pmax

c )c∈C ,

(uD
t )t∈T ,(uB

t )t∈T )∈F

∑︂
c∈C

yc

(︄
f1(yc, xt, zt, pmax

c , uD
t , uB

t )− f2(yc, xt, zt, pmax
c , uD

t , uB
t )
)︄

= max
((yc)c∈C ,(xt)t∈T ,(zt)t∈T ,(pmax

c )c∈C ,

(uD
t )t∈T ,(uB

t )t∈T ,(dc)c∈C)∈F ′

∑︂
c∈C

yc

(︄
lc∑︂

t=fc

{︄
(Et + Rt)(xt/∆− xt+1/∆)
(Et + Rfc)(xt/∆− xt+1/∆)

−
tB
c∑︂

t=lc+1
Etu

B
t

)︄

= max
(y,d)∈F∗

(︄
max

((xt)t∈T ,(uD
t )t∈T ,

(uB
t )t∈T )∈F∗(y,d)

∑︂
c∈C

yc

(︄
lc∑︂

t=fc

{︄
(Et + Rt)(xt/∆− xt+1/∆)
(Et + Rfc)(xt/∆− xt+1/∆)

−
tB
c∑︂

t=lc+1
Etu

B
t

)︄)︄

= max
(y,d)∈F∗

(︄∑︂
c∈C

yc max
((xt)t∈T ,(uD

t )t∈T ,

(uB
t )t∈T )∈F∗

c (y,d)

(︄
lc∑︂

t=fc

{︄
(Et + Rt)(xt/∆− xt+1/∆)
(Et + Rfc)(xt/∆− xt+1/∆)⏞ ⏟⏟ ⏞

fS
c (xt,uD

t ,uB
t )

−
tB
c∑︂

t=lc+1
Etu

B
t⏞ ⏟⏟ ⏞

fB
c (xt,uD

t ,uB
t )

)︄)︄

where F∗
c (y, d) is the restriction of the set F∗(y, d) to the variables xt, uD

t and uB
t for all t ∈ T such

that c ∈ Ct. Note that the last equality comes from the fact that, once the values of all the variables yc

are known, it can be checked that the only constraints in (3.5)-(3.19) and (3.57) linking the variables

associated with time periods of different curtailments that are performed are Constraints (3.14) and

(3.15). Hence, once the values of all the variables yc and of all the variables dc are known, there is no

remaining links between the variables associated with time periods of different curtailments that are

performed.

We now return to the proof of Proposition 1, that we first recall:

Proposition 1.

Let Fopt be the set of vectors ((yc)c∈C , (dc)c∈C) such that :

• for each c ∈ C, yc ∈ {0, 1} and dc ≥ 0,
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• for each c ∈ C and c′ ∈ C\{c}, if yc = yc′ = 1, then {fc, . . . , tB
c }∩{fc′ , . . . , tB

c′} = ∅, where, for each

c ∈ C, tB
c > lc is the integer such that dc ∈]∆

∑︁tB
c −1

t=lc+1 min(PB, P max −Wt), ∆
∑︁tB

c
t=lc+1 min(PB,

P max −Wt)],

• for each c ∈ C, if yc = 1, then we must have dc ∈ [
∑︁lc

t=fc
∆ max(min(Wt, Dmin), Wt − pmax

c ),

min(
∑︁lc

t=fc
∆ min(Wt, Dmax), Bmax − Bmin)], where the value of pmax

c is computed using Prop-

erty 1 and Lemma 1.

In any feasible solution to an instance of OBSC, we have ((yc)c∈C , (dc)c∈C) ∈ Fopt. Moreover, for any

((yc)c∈C , (dc)c∈C) ∈ Fopt, one can obtain a feasible solution of value:

∑︂
t∈T

EtWt −
∑︂
c∈C

ycf
G
c (dc, dc−)

where fG
c (dc, dc−) is a function that can be computed in linear time, and where, for each curtailment c

such that yc = 1, c− is the only curtailment such that yc− = 1 and there exists no curtailment c′ such

that yc′ = 1 and lc− < fc′ ≤ lc′ < fc. In other words, for each curtailment c, c− is the curtailment

that immediately precedes c.

In particular, the optimal value of OBSC can be rewritten as follows:

∑︂
t∈T

EtWt − max
((yc)c∈C ,(dc)c∈C)∈Fopt

∑︂
c∈C

ycf
G
c (dc, dc−)

Furthermore, in the case where the value of pmax
c depends only on the value of yc for each c,

fG
c (dc, dc−) is a continuous piecewise linear function of dc having O(T ) segments.

Proof.

Our goal is to show that, once the values yc of the variables yc are known, the value

max((xt)t,(uD
t )t,(uB

t )t)∈F∗
c (y,d)

(︁
fS

c (xt, uD
t , uB

t ) − fB
c (xt, uD

t , uB
t )
)︁
for each c can be written as a function

fG
c of the values dc′ of the variables dc′ for all c′ ∈ C. More precisely, for each curtailment c with

yc = 1, dc− and dc are the only ones needed to express fG
c , where c− is the curtailment with yc− = 1

that directly precedes c in the solution. Moreover, for each c, whenever the computation of pmax
c only

depends on the values yc′ (see also Section 3.2.2.2), and not on the values dc′ , for all c′ ∈ C, fG
c is a

continuous piecewise linear function of dc only.
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The first part of the proof will show that, once the values yc of all the variables yc are known,

fB
c (xt, uD

t , uB
t ) for each c is in fact in itself a function of dc (and of dc only). Hence, once the value

dc is fixed, so is the value of fB
c (xt, uD

t , uB
t ). Intuitively, fB

c (xt, uD
t , uB

t ) is in fact equal to the battery

recharging cost (in monetary units) of curtailment c.

So, we begin by fixing some c ∈ C. At each recharging time period t ∈ {lc + 1, . . . , tB
c }, no

curtailment is performed and thus zt = 0. In addition, Constraints (3.5), (3.13) and (3.14) impose

that uD
t = Wt. Hence, summing Equations (3.10) from lc + 1 to t− 1 yields:

xt = xlc+1 + ∆
∑︂

lc+1≤t′<t

uB
t′ (3.58)

Note that, because of Constraints (3.9), the curtailment c can start only if the battery is fully charged,

i.e., if xfc = Bmax. Hence, from Constraints (3.57), we have dc = Bmax − xlc+1. Using this relation

and replacing xt in (3.12) by its expression provided by (3.58), we have that:

uB
t = min(dc/∆−

∑︂
lc+1≤t′<t

uB
t′ , PB, P max −Wt) (3.59)

This yields:

fB
c (xt, uD

t , uB
t ) =

tB
c∑︂

t=lc+1
Et min(dc/∆−

∑︂
lc+1≤t′<t

uB
t′ , PB, P max −Wt) (3.60)

By definition of tB
c (see also the proof of Property 1), the value of uB

t for each recharging time

period lc + 1 ≤ t < tB
c is min(PB, P max −Wt), and, for all t > tB

c , no power bought for recharging

the battery is related to c. The value of uB
t depends on the value of dc only at the last recharging

time period tB
c , as shown in Property 1. Thus, we can extend the sum from tB

c to T , and fB
c can be

rewritten as follows:

fB
c (xt, uD

t , uB
t ) =

T∑︂
t=lc+1

Et

[︂
min

(︁
PB, P max −Wt, dc/∆−min(dc/∆,

t−1∑︂
t′=lc+1

min(PB, P max −Wt′))
)︁]︂

(3.61)

Note that, at each time period t after the complete battery recharge (i.e., when
∑︁t−1

t′=lc+1 min(PB,

P max − Wt′) ≥ dc/∆, meaning that min(dc/∆,
∑︁t−1

t′=lc+1 min(PB, P max − Wt′)) = dc/∆), we have

min(PB, P max −Wt, dc/∆− dc/∆) = 0, and thus no power is bought for the recharge related to c, as

requested. Let us fix a time period t ∈ {lc + 1, . . . , T}, and assume that the value of dc ∈ [∆
∑︁t−1

t=lc+1
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min(PB, P max −Wt), ∆
∑︁t

t=lc+1 min(PB, P max −Wt)]. Then, the sum in (3.61) for t from lc + 1 to T

can be decomposed into three parts:

• for t from lc + 1 to t− 1,

• for t = t,

• and for t from t + 1 to T .

In the first case, for any recharging time period t such that lc + 1 ≤ t < t, we have dc ≥

∆
∑︁t−1

t′=lc+1 min(PB, P max −Wt′) ≥ ∆
∑︁t

t′=lc+1 min(PB, P max −Wt′), which implies, on the one hand,

that min(dc/∆,
∑︁t−1

t′=lc+1 min(PB, P max − Wt′)) =
∑︁t−1

t′=lc+1 min(PB, P max − Wt′), and, on the other

hand, that dc/∆−
∑︁t−1

t′=lc+1 min(PB, P max−Wt′) ≥ min(PB, P max−Wt). Hence, the sum in (3.61) for

t from lc + 1 to t− 1 is equal to
∑︁t−1

t=lc+1 Et min(PB, P max −Wt).

When t = t, we have dc ≥ ∆
∑︁t−1

t′=lc+1 min(PB, P max −Wt′) and dc/∆−
∑︁t−1

t′=lc+1 min(PB, P max −

Wt′) ≤ min(PB, P max −Wt). Hence, the term in (3.61) for t = t is equal to Et

(︁
(dc/∆ −

∑︁t−1
t′=lc+1

min(PB, P max −Wt′)
)︁
.

When t > t, we have dc ≤ ∆
∑︁t

t′=lc+1 min(PB, P max −Wt′) ≤ ∆
∑︁t−1

t′=lc+1 min(PB, P max −Wt′),

which implies that each term of the sum in (3.61) for t from t + 1 to T is equal to Et min(PB,

P max −Wt, dc/∆− dc/∆) = 0.

Hence, we can rewrite fB
c by splitting the sum over t into three parts, as follows:

fB
c (xt, uD

t , uB
t ) =

t−1∑︂
t=lc+1

Et min(PB, P max −Wt) + Et

(︁
dc/∆−

t−1∑︂
t=lc+1

min(PB, P max −Wt)
)︁

+
T∑︂

t=t+1

0

This yields:

fB
c (xt, uD

t , uB
t ) =(Et)dc/∆ +

t−1∑︂
t=lc+1

(Et − Et) min(PB, P max −Wt) (3.62)

Note that
∑︁t−1

t=lc+1(Et − Et) min(PB, P max −Wt) is a constant, and hence fB
c is a linear function

of dc. The same holds for any t such that lc + 1 ≤ t ≤ T . Furthermore, the union of the intervals

[∆
∑︁t−1

t=lc+1 min(PB, P max − Wt), ∆
∑︁t

t=lc+1 min(PB, P max − Wt)] for lc + 1 ≤ t ≤ T covers all the

possible values of dc, as lc + 1 ≤ tB
c ≤ T . As a consequence, since all parts of fB

c are linear, fB
c is in
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fact a piecewise linear function of dc, that we will simply denote by fB
c (dc). We can even show that

fB
c (dc) is continuous with respect to dc.

Indeed, assume that dc = ∆
∑︁t

t=lc+1 min(PB, P max − Wt) for some t, which implies that dc ∈

[∆
∑︁t−1

t=lc+1 min(PB, P max − Wt), ∆
∑︁t

t=lc+1 min(PB, P max − Wt)] on the one hand, and that dc ∈

[∆
∑︁t

t=lc+1 min(PB, P max −Wt), ∆
∑︁t+1

t=lc+1 min(PB, P max −Wt)] on the other hand:

(i) to begin with, fB
c (dc) is equal to Et

∑︁t
t=lc+1 min(PB, P max −Wt) +

∑︁t−1
t=lc+1(Et − Et) min(PB,

P max −Wt) = Et min(PB, P max −Wt) +
∑︁t−1

t=lc+1 Et min(PB, P max −Wt) =
∑︁t

t=lc+1 Et min(PB,

P max −Wt).

(ii) then, it is also equal to Et+1
∑︁t

t=lc+1 min(PB, P max−Wt) +
∑︁t

t=lc+1(Et−Et+1) min(PB, P max−

Wt) =
∑︁t

t=lc+1 Et min(PB, P max −Wt).

As we have just shown that the value of fB
c (xt, uD

t , uB
t ) for each c no longer depends on the ones

of the variables xt, uD
t , and uB

t once the value dc is known, we can rewrite max((xt)t,(uD
t )t,(uB

t )t)∈F∗
c (y,d)(︁

fS
c (xt, uD

t , uB
t )− fB

c (xt, uD
t , uB

t )
)︁
as follows:

max
((xt)t,(uD

t )t,(uB
t )t)∈F∗

c (y,d)

(︁
fS

c (xt, uD
t , uB

t )− fB
c (xt, uD

t , uB
t )
)︁

= max
((xt)t,(uD

t )t,(uB
t )t)∈F∗

c (y,d)

(︁
fS

c (xt, uD
t , uB

t )− fB
c (dc)

)︁
=− fB

c (dc) + max
((xt)t,(uD

t )t,(uB
t )t)∈F∗

c (y,d)

(︁
fS

c (xt, uD
t , uB

t )
)︁

The second part of the proof will show that, once the values yc of all the variables yc are known,

max((xt)t,(uD
t )t,(uB

t )t)∈F∗
c (y,d)

(︁
fS

c (xt, uD
t , uB

t )
)︁
for each c ∈ C is a function of the values dc and dc− (while

fS
c (xt, uD

t , uB
t ) is not), where c− is the curtailment with yc− = 1 that directly precedes c in the solution.

Hence, once the values dc− and dc are fixed, so is the value of max((xt)t,(uD
t )t,(uB

t )t)∈F∗
c (y,d)

(︁
fS

c (xt, uD
t ,

uB
t )
)︁
. Intuitively, max((xt)t,(uD

t )t,(uB
t )t)∈F∗

c (y,d)
(︁
fS

c (xt, uD
t , uB

t )
)︁
is in fact equal to the optimal economic

gain associated with a curtailment c to be performed, which is composed of the savings induced by

not buying energy for consumption, and of the reward received when performing a curtailment.

If, for each t ∈ {fc, . . . , lc}, we define G′
t = Et+Rt

∆ if the OTR reward policy is considered, and

G′
t = Et+Rfc

∆ if the FTR reward policy is considered, then we can rewrite the value of
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max((xt)t,(uD
t )t,(uB

t )t)∈F∗
c (y,d)

(︁
fS

c (xt, uD
t , uB

t )
)︁
as follows:

max
((xt)t,(uD

t )t,(uB
t )t)∈F∗

c (y,d)

(︁
fS

c (xt, uD
t , uB

t )
)︁

= max
((xt)t,(uD

t )t,(uB
t )t)∈F∗

c (y,d)

(︁ lc∑︂
t=fc

G′
t(xt − xt+1)

)︁

From Constraints (3.13), (3.14) and (3.12), we obtain that Wt −Dmax ≤ uD
t ≤ min(pmax

c , Wt) and

that uB
t = 0 for all time periods during curtailment c. Therefore, from Constraints (3.8) and (3.10),

we derive that xt − xt+1 ≥ ∆ max(min(Wt, Dmin), Wt − pmax
c ). Let us define such a lower bound on

xt − xt+1 for each time period t ∈ {fc, . . . , lc} as dmin
t . In addition, from Constraints (3.6), (3.12) and

(3.10), we derive that xt − xt+1 ≤ ∆ min(Wt, Dmax). Let us define such an upper bound on xt − xt+1

for each time period t ∈ {fc, . . . , lc} as dmax
t .

From Constraints (3.57), the battery discharge can be written as dc = xfc − xlc+1. Hence, from

Constraints (3.9), we have that xfc = Bmax and xlc+1 = Bmax − dc.

This implies that the value of max((xt)t,(uD
t )t,(uB

t )t)∈F∗
c (y,d)

(︁∑︁lc
t=fc

G′
t(xt − xt+1)

)︁
can be rewritten

as follows (and hence depends on the values of the variables xt only):

max
lc∑︂

t=fc

G′
t(xt − xt+1)

s.t.

dmin
t ≤ xt − xt+1 ≤ dmax

t ∀t ∈ {fc, . . . , lc} (3.63)

xfc = Bmax, xlc+1 = Bmax − dc (3.64)

xt ∈ [Bmin, Bmax] ∀t ∈ {fc, . . . , lc + 1} (3.65)

Note that, from Constraints (3.63), we must have that dc = xfc − xlc+1 =
∑︁lc

t=fc
(xt − xt+1) ≥∑︁lc

t=fc
dmin

t and dc ≤
∑︁lc

t=fc
dmax

t . In addition, from Constraints (3.64) and (3.65), we have that

dc = xfc − xlc+1 ≤ Bmax − Bmin. Thus, dc must belong to the interval [
∑︁lc

t=fc
dmin

t , min(
∑︁lc

t=fc
dmax

t ,

Bmax −Bmin)].

Since dc belongs to such an interval, we have from Constraints (3.64) that xlc+1 = Bmax − dc ≥

Bmin. Hence, for each t ∈ {fc, . . . , lc}, since dmin
t > 0, the value of xt is also greater than Bmin

from Constraints (3.63). Similarly, for each t ∈ {fc + 1, . . . , lc + 1}, since dmin
t > 0 and xfc =

Bmax from Constraints (3.64), the value of xt is smaller than Bmax from Constraints (3.63). Thus,
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Constraints (3.65) are always satisfied for each time period t ∈ {fc, . . . , lc + 1}, and can be relaxed if

the value of dc belongs to such an interval.

Moreover, if we consider an optimal solution x′ to the problem obtained by relaxing Constraints

(3.64) while considering that xfc − xlc+1 =
∑︁lc

t=fc
(xt − xt+1) = dc, a solution x of same value that

respects Constraints (3.64) can be obtained as follows:

xfc = Bmax (3.66)

xt+1 = xt + (x′
t+1 − x′

t) ∀t ∈ {fc, . . . , lc} (3.67)

Indeed, we have xlc+1 = xfc−
∑︁lc

t=fc
(xt−xt+1) = Bmax−

∑︁lc
t=fc

(x′
t−x′

t+1) = Bmax−dc, as desired.

Consequently, by setting ∆t = xt − xt+1 for all t ∈ {fc, . . . , lc}, we obtain the following equivalent

problem:

max
lc∑︂

t=fc

G′
t∆t

s.t.∑︂
t∈{fc,...,lc}

∆t = dc (3.68)

∆t ∈ [dmin
t , dmax

t ] ∀t ∈ {fc, . . . , lc} (3.69)

This problem can be solved in polynomial time using a greedy algorithm that considers a list L

of time periods t ordered decreasingly by G′
t. In particular, in such a list, t1 ∈ L represents the time

period t ∈ {fc, . . . , lc} for which G′
t is the largest. An optimal solution for this problem can be obtained

by defining ∆ti = dmin
ti

+ δti for all ti ∈ L, where δti ≥ 0. Intuitively, the values of ∆ti are set to dmax
ti

in the order defined by L. However, Constraint (3.68) imposes a total amount of dc, and hence this

will be possible up to a given time period tk for which δtk
= dc −

∑︁
tj∈L|j≥k dmin

tj
−
∑︁

tj∈L|j<k dmax
tj

,

and, for the subsequent periods tj , i.e., such that j > k, we will have δtj = 0. Formally, we have:

δti = max(0, min(dmax
ti
− dmin

ti
, dc −

∑︂
tj∈L|j≥i

dmin
tj
−

∑︂
tj∈L|j<i

dmax
tj

)), ∀ti ∈ L

Note that δti = 0 if
∑︁

tj∈L|j≥i dmin
tj

+
∑︁

tj∈L|j<i dmax
tj

≥ dc, and δti = min(dmax
ti
− dmin

ti
, dc −∑︁

tj∈L|j≥i dmin
tj
−
∑︁

tj∈L|j<i dmax
tj

) otherwise. Hence, δti can be rewritten as follows:
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δti = min(dmax
ti
− dmin

ti
, dc −min(dc,

∑︂
tj∈L|j≥i

dmin
tj

+
∑︂

tj∈L|j<i

dmax
tj

)), ∀ti ∈ L

Note that, given an optimal solution (∆t)t∈{fc,...,lc}, the values of xt that respect Constraints (3.63)

and (3.64) can be obtained as follows:

xfc = Bmax

xt+1 = xt −∆t ∀t ∈ {fc, . . . , lc}

Again, note that this implies xlc+1 = xfc −
∑︁lc

t=fc
(xt − xt+1) = Bmax −

∑︁lc
t=fc

∆t = Bmax − dc.

Finally, we can rewrite max((xt)t,(uD
t )t,(uB

t )t)∈F∗
c (y,d)

(︁
fS

c (xt, uD
t , uB

t )
)︁
as follows:

max
((xt)t,(uD

t )t,(uB
t )t)∈F∗

c (y,d)

(︁
fS

c (xt, uD
t , uB

t )
)︁

=
∑︂
ti∈L

G′
ti

dmin
ti

+
∑︂
ti∈L

G′
ti

[︂
min

(︁
dmax

ti
− dmin

ti
, dc −min(dc,

∑︂
tj∈L|j≥i

dmin
tj

+
∑︂

tj∈L|j<i

dmax
tj

)
)︁]︂

(3.70)

To simplify the writing, let us define dmin as the lower bound imposed on dc, computed as

dmin =
∑︁lc

t=fc
dmin

t , and dmax as the upper bound, computed as dmax = min(
∑︁lc

t=fc
dmax

t , Bmax−Bmin).

Now, let us fix a time period ti∗ ∈ L, and assume that dc ∈ [dmin +
∑︁

tj∈L|j<i∗(dmax
tj
− dmin

tj
), dmin +∑︁

tj∈L|j≤i∗(dmax
tj
− dmin

tj
)], where dmin +

∑︁
tj∈L|j<i∗(dmax

tj
− dmin

tj
) =

∑︁
tj∈L|j≥i∗ dmin

tj
+
∑︁

tj∈L|j<i∗ dmax
tj

and dmin +
∑︁

tj∈L|j≤i∗(dmax
tj
− dmin

tj
) =

∑︁
tj∈L|j>i∗ dmin

tj
+
∑︁

tj∈L|j≤i∗ dmax
tj

. Then, Equation (3.70) can

be decomposed into three parts:

• for all ti in L such that i < i∗,

• for ti = ti∗ ,

• and for all ti in L such that i > i∗.

In the first case, for any time period ti in L such that i < i∗, we have that dc ≥ dmin +∑︁
tj∈L|j<i∗(dmax

tj
− dmin

tj
) ≥ dmin +

∑︁
tj∈L|j<i(dmax

tj
− dmin

tj
), which implies that min(dc, dmin +

∑︁
tj∈L|j<i

(dmax
tj
−dmin

tj
)) = dmin +

∑︁
tj∈L|j<i(dmax

tj
−dmin

tj
). Moreover, we have that dc ≥ dmin +

∑︁
tj∈L|j<i∗(dmax

tj
−

dmin
tj

) ≥ dmin +
∑︁

tj∈L|j≤i(dmax
tj
−dmin

tj
), since i ≤ i∗−1, which implies that dc−dmin−

∑︁
tj∈L|j<i(dmax

tj
−

dmin
tj

) ≥ dmax
ti
−dmin

ti
. Then, from Equation (3.70), we have ∆ti = xti−xti+1 = dmin

ti
+dmax

ti
−dmin

ti
= dmax

ti
.

97



3.2. SOLVING APPROACHES

When ti = ti∗ , we have dc ≥ dmin+
∑︁

tj∈L|j<i∗(dmax
tj
−dmin

tj
) and dc ≤ dmin+

∑︁
tj∈L|j≤i∗(dmax

tj
−dmin

tj
),

i.e., dc − dmin −
∑︁

tj∈L|j<i∗(dmax
tj
− dmin

tj
) ≤ dmax

ti∗ − dmin
ti∗ . Hence, from Equation (3.70), we have

∆ti∗ = xti∗ − xti∗ +1 = dmin
ti∗ + dc − dmin −

∑︁
tj∈L|j<i∗(dmax

tj
− dmin

tj
).

In the third case, for any time period ti in L such that i > i∗, we have dc ≤ dmin+
∑︁

tj∈L|j≤i∗(dmax
tj
−

dmin
tj

) ≤ dmin+
∑︁

tj∈L|j<i(dmax
tj
−dmin

tj
), which implies from Equation (3.70) that ∆ti = xti−xti+1 = dmin

ti
.

Thus, we can rewrite max((xt)t,(uD
t )t,(uB

t )t)∈F∗
c (y,d)

(︁
fS

c (xt, uD
t , uB

t )
)︁
by splitting the sum over ti into

three parts, as follows:

max
((xt)t,(uD

t )t,(uB
t )t)∈F∗

c (y,d)

(︁
fS

c (xt, uD
t , uB

t )
)︁

=
∑︂

ti∈L|i<i∗

G′
ti

dmax
ti

+ G′
ti∗

(︂
dmin

ti∗ + dc − dmin −
∑︂

ti∈L|i<i∗

(dmax
ti
− dmin

ti
)
)︂

+
∑︂

ti∈L|i>i∗

G′
ti

dmin
ti

(3.71)

This yields:

max
((xt)t,(uD

t )t,(uB
t )t)∈F∗

c (y,d)

(︁
fS

c (xt, uD
t , uB

t )
)︁

=
∑︂

ti∈L|i<i∗

G′
ti

dmax
ti

+ G′
ti∗ dc −G′

ti∗

(︂
dmin +

∑︂
ti∈L|i<i∗

(dmax
ti
− dmin

ti
)
)︂

+
∑︂

ti∈L|i≥i∗

G′
ti

dmin
ti

(3.72)

Hence, we obtain that, for each c, max((xt)t,(uD
t )t,(uB

t )t)∈F∗
c (y,d)

(︁
fS

c (xt, uD
t , uB

t )
)︁
is a function of dc

and dc− , that we will simply denote by fS
c (dc, dc−), where c− is the curtailment with yc− = 1 that

directly precedes c in the optimal solution. Note that the dependence in dc is linear, but the one in dc−

is not, as dc− is implicitly used in the computation of pmax
c , which in turn is used in the computation

of dmin
t for each t ∈ {fc, . . . , lc}.

However, in the case where the computation of the variables pmax
c only depends on the values yc

themselves, things are different. Indeed, in this case, all terms in Equation (3.72) are constant, except

the term G′
ti∗ dc. Thus, max((xt)t,(uD

t )t,(uB
t )t)∈F∗

c (y,d)
(︁
fS

c (xt, uD
t , uB

t )
)︁
is then a linear function of dc, and

the same holds for any ti∗ ∈ L. Furthermore, the union of the intervals [dmin +
∑︁

ti∈L|i<i∗(dmax
ti
−

dmin
ti

), dmin +
∑︁

ti∈L|i≤i∗(dmax
ti
− dmin

ti
)] for all ti∗ ∈ L covers all the possibles values of dc in the range

[dmin, dmax]. As a consequence, since all parts of the function max((xt)t,(uD
t )t,(uB

t )t)∈F∗
c (y,d)

(︁
fS

c (xt, zt, uD
t ,

uB
t )
)︁
are linear, it is in fact, in this special case, a piecewise linear function of dc in the range [dmin, dmax],

that we will simply denote by fS
c (dc). We can even show that fS

c (dc) is continuous with respect to

dc in such a range. Indeed, let us assume that dc = dmin +
∑︁

ti∈L|i≤i∗(dmax
ti
− dmin

ti
) for some ti∗ ∈ L,
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which implies that dc ∈ [dmin +
∑︁

ti∈L|i<i∗(dmax
ti
− dmin

ti
), dmin +

∑︁
ti∈L|i≤i∗(dmax

ti
− dmin

ti
)] and that

dc ∈ [dmin +
∑︁

ti∈L|i≤i∗(dmax
ti
− dmin

ti
), dmin +

∑︁
ti∈L|i≤i∗+1(dmax

ti
− dmin

ti
)]:

(i) to begin with, fS
c (dc) is equal to

∑︁
ti∈L|i<i∗ G′

ti
dmax

ti
+ G′

ti∗ (dmin +
∑︁

ti∈L|i≤i∗(dmax
ti
− dmin

ti
)) −

G′
ti∗

(︂
dmin +

∑︁
ti∈L|i<i∗(dmax

ti
− dmin

ti
)
)︂

+
∑︁

ti∈L|i≥i∗ G′
ti

dmin
ti

=
∑︁

ti∈L|i<i∗ G′
ti

dmax
ti

+ G′
ti∗ (dmax

ti∗ −

dmin
ti∗ ) +

∑︁
ti∈L|i≥i∗ G′

ti
dmin

ti
=
∑︁

ti∈L|i≤i∗ G′
ti

dmax
ti

+
∑︁

ti∈L|i>i∗ G′
ti

dmin
ti

.

(ii) then, it is also equal to
∑︁

ti∈L|i≤i∗ G′
ti

dmax
ti

+G′
ti∗+1

(dmin+
∑︁

ti∈L|i≤i∗(dmax
ti
−dmin

ti
))−G′

ti∗+1

(︂
dmin+∑︁

ti∈L|i≤i∗(dmax
ti
− dmin

ti
)
)︂

+
∑︁

ti∈L|i≥i∗+1 G′
ti

dmin
ti

=
∑︁

ti∈L|i≤i∗ G′
ti

dmax
ti

+
∑︁

ti∈L|i≥i∗+1 G′
ti

dmin
ti

=∑︁
ti∈L|i≤i∗ G′

ti
dmax

ti
+
∑︁

ti∈L|i>i∗ G′
ti

dmin
ti

.

Summing up, we have managed to prove that, for each c, we have the following result:

max
((xt)t,(uD

t )t,(uB
t )t)∈F∗

c (y,d)

(︁
fS

c (xt, uD
t , uB

t )− fB
c (xt, uD

t , uB
t )
)︁

= fS
c (dc, dc−)− fB

c (dc)

Let fG
c (dc, dc−) = fS

c (dc, dc−) − fB
c (dc) for each c. Intuitively, for any curtailment c such that

yc = 1, the value of fG
c gives the best total economic gain associated with c. Moreover, as we have

discussed throughout the proof, we must have ((yc)c∈C , (dc)c∈C) ∈ Fopt. In particular, for each c, dc

must belong to ]∆
∑︁tB

c −1
t=lc+1 min(PB, P max−Wt), ∆

∑︁tB
c

t=lc+1 min(PB, P max−Wt)] because of the function

fB
c , and to [dmin, dmax] because of the function fS

c . Conversely, for any ((yc)c∈C , (dc)c∈C) ∈ Fopt, we

have also shown how to compute ((xt)t, (uD
t )t, (uB

t )t) ∈ F∗
c (y, d). In other words, we have essentially

proved that F∗ = Fopt, which, together with the computation of fG
c (dc, dc−), implies the first part of

the proposition.

Recall that, if the computation of the values of the variables pmax
c only depends on the values

yc themselves, then fS
c (dc, dc−) = fS

c (dc), and hence we have fG
c (dc) = fS

c (dc) − fB
c (dc) for each

c. Moreover, in this case, since fB
c and fS

c are continuous piecewise linear functions of dc, fG
c is

also a continuous piecewise linear function for dc in such a range (Edelsbrunner et al. (1989)). The

subtraction of two piecewise linear functions can be done in linear time in function of the number of

parts of each function (Edelsbrunner et al. (1989)); this number is at most T − lc for fB
c and at most

lc − fc + 1 for fS
c , and hence fG

c can be computed in O(T ) time. □

99



3.3. NUMERICAL EXPERIMENTS

3.3 Numerical experiments

In order to assess the efficiency and relevance of our models and algorithms for optimizing the

savings using the demand response mechanism, we performed some numerical experiments on realistic

instances, generated from public energy costs and data related to the curtailment market, as well as

internal data from the French telecommunications operator Orange.

The two variants OBSC-D and OBSC-R are solved with the Graph-Oriented Algorithm, described

in Section 3.2, that will be denoted as OBSC-GOA. The formulation (OBSC-MILP) is solved using a

standard MILP solver, and the resulting solving method for OBSC will be denoted as OBSC-MILP.

This section is organized as follows. Firstly, in Section 3.3.1, we describe the instances and the

environment used in our tests. Then, in Section 3.3.2, we present some results for the following

problems and algorithms, for different values of the time horizon discretization ∆:

• OBSC, solved with OBSC-MILP;

• OBSC-D with battery discharge level per 5% and 1%, solved with OBSC-GOA;

• OBSC-R with one rest time period, solved with OBSC-GOA.

We explore, in Section 3.3.2 as well, the impact of the reward policy and of the characteristics of

the battery on the obtained solutions.

3.3.1 Instances description

We based our testbed on 10 urban and rural sites from the mobile 4G network from the French

telecommunications operator Orange. Each site is equipped with a battery, whose main characteristics

are reported in Table 3.1. The mean, or average value, of the power demand over the horizon, denoted

by W̄ =
∑︁

t∈T Wt

T , is also given. Finally, the value of Bmin is set to 50% of the battery energy capacity

Bmax, and Dmin corresponds to 10% of Dmax. Figure 3.3 illustrates the profile of power demand over

time for the site ”S4” in the first week of the considered month, as well as the mean values over such

a week. Such a profile is also observed for all other sites.

Concerning the data related to the distributor, we consider the unit costs from the French distribu-

tor EDF, publicly available at data.gouv.fr (2020). Besides, the maximum amount of power P max that
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Table 3.1 – Sites char-
acteristics

Site Bmax PB Dmax W̄
S1 39.26 2.34 5.38 3.93
S2 2.35 0.14 0.64 0.47
S3 9.11 0.59 2.49 1.82
S4 106.33 6.38 14.50 10.63
S5 6.05 0.35 1.64 1.21
S6 5.39 0.22 1.48 1.08
S7 6.66 0.4 1.81 1.33
S8 26.36 0.81 3.60 2.64
S9 8.64 0.52 2.36 1.73
S10 9.33 0.56 2.51 1.87

Figure 3.3 – Power demand over the first week of the consid-
ered month for the site ”S4”.

can be purchased per time period is established by contract for each site. In our tests, to guarantee

that the value of P max is greater than the power demand Wt at any time period t ∈ T , we set such a

value to 3W̄ .

Concerning the data related to the transmission system operator, we consider rewards paid by the

French operator RTE, whose values are publicly available (see RTE-Portal). Besides, the minimum

and maximum curtailment duration are defined by contracts and are 1 and 2 hours, respectively.

Similarly, the contractualized power PT O considered is 50% of W̄ . Note that the value of PT O is

adjusted to the case where one battery is used to perform curtailments. In a real world setting where

multiple batteries are considered, this value is much higher. Lastly, the reward policy used in France is

FTR. However, we also considered the OTR policy in our experiments. Moreover, the input values of

the power demand, unit cost, and reward, over the time horizon, are taken as average values observed

over a month.

In addition, to simplify the writing, we present the time discretization ∆ in minutes. Hence, we

assume a daily time horizon with different time discretizations ∆ ∈ {15, 30, 60} in minutes (i.e., 1
4 ,

1
2

and 1 hour respectively), which implies that T ∈ {96, 48, 24}, respectively.

All tests are performed on a server computer with 4GB of RAM and 1 Intel Xeon CPU running

at 2.2GHz. The OBSC-MILP method used to solve the (OBSC-MILP) formulation is the branch-and-

bound implemented in CPLEX 12.9, with default settings. A time limit of 15 minutes is also imposed

on the running time of each method, for all the tests performed.
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3.3.2 Experimental analysis

Numerical results for instances considering FTR as the reward method are displayed in Table 3.2,

both for OBSC-GOA and OBSC-MILP. Concerning the variants OBSC-D and OBSC-R solved with OBSC-

GOA, discharge levels per 5% and 1% are considered for OBSC-D, and the associated results are

displayed under the labels OBSC-D-5% and OBSC-D-1%, respectively, while, for OBSC-R, only one

rest-time period is imposed between two curtailments, and the associated results are displayed under

the label OBSC-R. In this table, column ”Ref Cost” corresponds to the reference cost
∑︁

t∈T EtWt

(given in e), obtained when no curtailment is performed. Column ”CPU” reports the solving time

in seconds, and column ”sol” the value of the best feasible solution obtained. In column ”sol” for

labels OBSC-D-5% and OBSC-D-1%, the values in green correspond to cases where solving OBSC-D

with OBSC-GOA provides better solutions than solving OBSC with OBSC-MILP, and significantly faster.

Besides, the optimality gap (in %) obtained for (OBSC-MILP) when using OBSC-MILP is provided in

column ”gap”. It corresponds to the relative gap between the best integer solution found and the best

lower bound obtained during the search. The optimal value of the continuous relaxation of (OBSC-

MILP) obtained at the root of the search tree when using OBSC-MILP is provided in column ”relax”.

Note that, it is totally acceptable to have negative values in this column. In that case, the customer

is earning money from the market by performing curtailments. Finally, the column ”savings” stands

for the percentage of savings obtained for the best feasible solution found with OBSC-MILP, or with

OBSC-GOA for the considered variants, with respect to the reference cost. The instances prefixed with

a ”∗” are the ones for which OBSC-MILP provides an optimal solution (i.e., is actually able to prove the

optimality of the best integer solution obtained). Additional tests were also performed considering the

OTR reward policy instead of the FTR one, both for OBSC-GOA and OBSC-MILP, and will be discussed

in the sequel.

Computational efficiency of the methods

We begin by focusing on the algorithmic results and observe a significant impact of the time

discretization on the performance of the considered algorithms.

Concerning OBSC-MILP, optimal values are obtained for all instances where ∆ = 60 in less than one

second, while no optimality guarantee is observed for instances where ∆ = 15 within the CPU time
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Figure 3.4 – Illustration of an optimal solution for the OBSC instance S4 with ∆ = 60.

limit. This is due to the fact that the number of variables yc in (OBSC-MILP) grows quadratically

with the number of time periods T . Moreover, the optimality gap for instances with no optimality

guarantee is quite significant for ∆ = 15 (242% on average), while it is only 9.6% on average for

∆ = 30. We also observe a low-speed convergence for all the tested instances. However, even for

instances with no optimality guarantee, the best solution found gives a large reduction in the energy

bill (78.1% on average when FTR reward policy is considered). Furthermore, the reward policy also

has an impact on the computational performance since the structure of the optimal solutions can

change.

More precisely, if FTR is considered, then the curtailments tend to start in the time periods when

the reward prices are high. If OTR is considered, then the reward paid in a time period is the same

independently of when a curtailment starts (i.e, only the difference of prices is taken into account to

decide whether a curtailment is to be performed or not).

Indeed, as expected, the additional computational experiments show that instances with an opti-

mality guarantee and ∆ = 30 were solved faster with the OTR policy than with the FTR one (15%

faster on average). In addition, for instances without optimality guarantee, considering the OTR

policy yields optimality gaps smaller than the ones obtained when considering the FTR policy (137%

and 154% on average, respectively).

Concerning OBSC-D and OBSC-R solved with OBSC-GOA, all instances are solved in less than 30

seconds with the FTR policy. We observe that, as expected, the cardinality of the set of discrete
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Table 3.2 – OBSC-MILP and OBSC-GOA results for instances considering FTR as the reward method.

Instances OBSC-MILP OBSC-D-5% OBSC-D-1% OBSC-R
Site ∆ Ref Cost CPU(s) sol gap(%) relax sav(%) CPU(s) sol sav(%) CPU(s) sol sav(%) CPU(s) sol sav(%)
*S1 60 3269 0.7 1464 0 -7870 55 3.7 1669 49 1.0 1506 54 1.0 1657 49
*S2 60 393 0.6 176 0 -942 55 1.0 194 51 1.0 180 54 1.0 206 48
*S3 60 1518 0.6 679 0 -3650 55 1.0 711 53 1.0 691 54 1.0 804 47
*S4 60 8866 0.8 3973 0 -21291 55 1.0 4478 49 1.0 4092 54 1.0 4790 46
*S5 60 1008 0.6 452 0 -2422 55 1.0 465 54 1.0 459 54 1.0 524 48
*S6 60 899 0.6 402 0 -2161 55 1.0 415 54 1.0 409 54 1.0 481 47
*S7 60 1110 0.6 500 0 -2666 55 1.0 520 53 1.0 506 54 1.0 624 44
*S8 60 2197 0.6 983 0 -5280 55 1.0 1014 54 1.0 1000 54 1.0 1142 48
*S9 60 1440 0.9 644 0 -3461 55 1.0 664 54 1.0 656 54 1.0 748 48

*S10 60 1556 0.7 695 0 -3734 55 1.0 718 54 1.0 709 54 1.0 806 48
S1 30 3269 900.0 858 5.8 -13743 74 1.0 1070 67 2.1 914 72 1.0 1187 64
S2 30 393 900.0 105 12 -1645 73 1.0 125 68 2.1 109 72 1.0 143 64
S3 30 1518 900.0 398 11.0 -6374 74 1.0 453 70 3.1 408 73 1.0 570 62
S4 30 8866 900.0 2339 11.4 -37188 74 1.0 2861 68 2.1 2457 72 1.0 3339 62

*S5 30 1008 875.2 265 0 -4230 74 1.0 298 70 3.1 271 73 1.0 395 61
S6 30 899 900.0 235 6.9 -3774 74 1.0 266 70 3.1 242 73 1.0 342 62

*S7 30 1110 843.1 292 0 -4656 74 1.0 331 70 3.1 298 73 1.0 418 62
*S8 30 2197 812.4 575 0 -9222 74 1.0 650 70 3.1 590 73 1.0 789 64
*S9 30 1440 692.1 375 0 -6044 74 1.0 426 70 3.1 387 73 1.0 539 63
S10 30 1556 900.0 408 10.3 -6523 74 1.0 459 70 3.1 426 73 1.0 568 63
S1 15 3269 900.0 309 252 -14865 91 2.1 429 87 26.3 279 91 4.1 535 84
S2 15 393 900.0 46 215 -1782 88 1.1 45 89 26.3 32 92 3.1 58 85
S3 15 1518 900.0 147 257 -6894 90 1.0 150 90 26.4 119 92 4.1 226 85
S4 15 8866 900.0 927 245 -40235 90 1.0 1148 87 26.2 743 92 3.1 1412 84
S5 15 1008 900.0 125 221 -4575 88 1.0 103 90 26.3 79 92 4.1 152 85
S6 15 899 900.0 100 236 -4083 89 1.0 89 90 26.3 72 92 3.0 135 85
S7 15 1110 900.0 93 283 -5037 92 1.0 113 90 26.3 90 92 3.1 182 84
S8 15 2197 900.0 214 246 -9975 90 1.1 217 90 26.3 176 92 3.2 313 86
S9 15 1440 900.0 137 241 -6537 91 1.0 143 90 26.2 116 92 4.1 230 84

S10 15 1556 900.0 173 224 -7057 89 1.0 140 91 26.2 124 92 3.1 242 84
mean 60 2225.6 0.67 996.8 0 -5347.7 55 1.27 1084.8 52.5 1 1020.8 54 1 1178.2 47.3
mean 30 2225.6 862.28 585 5.74 -9339.9 73.9 1 693.9 69.3 2.8 610.2 72.7 1 829 92.7
mean 15 2225.6 900 227.1 242 -10104 89.8 1.13 257.7 89.4 26.28 183 91.9 3.5 348.5 84.6

*Instances with optimality guarantee

discharge levels D directly impacts the solving time for OBSC-D. This is due to the fact that the

number of enumerated curtailments (and hence of vertices) grows linearly in |D|, which means that

the number of arcs grows quadratically in |D|.

Notice that one interesting aspect of the OBSC-GOA solving method is that we observe a fast increase

in the size of the graph used to compute the longest path, both in terms of the number of nodes and

arcs. A clever implementation of an algorithm computing the longest path in a DAG allowed us to

solve optimally instances with a number of nodes up to 87k and a number of arcs up to 3.1 billions.

However, the longest path in larger graphs could not be computed within 15 minutes.

Finally, to confirm the relevance of our approaches, we illustrate in Figure 3.4 the profile of solu-

tions given by OBSC-MILP in the case of site S4, when ∆ = 60. Such a profile is also observed for all

other sites. The power demand over the time horizon is represented by the violet curve, the energy

prices by the red one, and the reward paid by the TO by the green curve. We observe that, in the

proposed optimal strategy, 5 curtailments are performed, and the cost of the energy bill is reduced by

55.18%. Among such a reduction, 16.55% are obtained by exploiting the variations of the energy price,

i.e., by participating in the retail market through the demand response mechanism. Seemingly, the
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great variety of the curtailments involved in such an optimal solution confirms the practical relevance

of our approach.

Impact of the parameters on the economic gain

We now focus on the economic aspects of the solutions, and observe that a substantial gain is

obtained by participating in the curtailment market, as the average savings range from 55% for ∆ = 60

up to 90% for ∆ = 15, compared to the reference cost. Such values confirm that participating in the

curtailment market can generate significant gains for the company. Moreover, we observe that the

reward policy has a direct impact on the savings that can be generated. Table 3.3 shows the savings

obtained on average for OBSC and its variants considering FTR and OTR as reward policy. When the

FTR policy is considered instead of OTR, the economic gain obtained increases significantly, from 88%

to 105% on average. A similar but smaller increase is observed in the variants solved with OBSC-GOA.

Note that, when the savings are higher than 100%, the cost of buying energy decreases to zero and

the telecommunications operator starts earning money by participating in the curtailment market.

The value of the time discretization ∆ has also an impact on the total amount of savings, since a

better battery management policy can be obtained by a finer discretization of the time horizon. This

is observed in Table 3.2 for instances where ∆ = 15, in comparison with the ones with ∆ = 60,

despite the fact that no optimality guarantee is achieved for such instances. The savings obtained

using OBSC-MILP are 89.8% (resp. 55%) on average for ∆ = 15 (resp. ∆ = 60) with respect to the

reference cost.

Concerning the OBSC-D variant solved with OBSC-GOA, considering discharge levels per 5% gives

on average an economic gain 2.5% smaller than the one obtained with OBSC-MILP on the instances

with ∆ = 60, for which an optimality guarantee is always achieved. Note that such a gap increases

on average when the value of the time discretization decreases, and grows up to 4% for instances with

optimality guarantee and ∆ = 30. Moreover, we observe that the battery discharge discretization

helps to reduce this gap, since more curtailments are enumerated. For battery discharge levels per

1%, the savings obtained are on average only 1% smaller than the ones obtained with OBSC-MILP on

the instances with optimality guarantee.

Concerning the instances solved with OBSC-MILP without optimality guarantee, OBSC-D with

battery discharge levels per 1% always gives better savings when ∆ = 15. Such savings are on average
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2.5% higher than the best ones obtained by solving these instances with OBSC-MILP. In some cases,

even with battery discharge levels per 5%, the savings obtained are higher. However, the solutions

obtained with OBSC-R always provide smaller savings than the ones provided by the best solutions

found with OBSC-MILP.

Since any solution obtained by solving OBSC-D or OBSC-R is also a feasible solution for OBSC,

such a solution can be used as a heuristic solution. As observed in Table 3.2, when the discretization

of the battery discharge becomes finer, the solutions obtained for the OBSC-D variant give higher

savings, but the solving time increases. To analyze the impact of the battery discharge discretization

on the savings obtained and on the computation time required, additional tests on OBSC-GOA with a

time limit extended to one hour were run. Figure 3.5 illustrates the profile of savings obtained and

the running times for different battery discharge discretizations, ranging from 5% of Bmax to 0.01%

of Bmax, for ∆ ∈ {15, 20, 30, 60} in the case of site S1. Such a profile is also observed for all other

sites. In addition, the reward policy considered is FTR. We can observe that the savings obtained with

a battery discharge discretization smaller than 1% of Bmax tends to stabilize, and the running time

tends to increase exponentially. Moreover, when the discretization of the battery discharge becomes

too small (i.e., discharge per 0.1% of Bmax or less), OBSC-GOA is stopped after one hour, and the best

feasible solutions obtained give much less savings than the ones obtained with battery discharge levels

per 1% (from 89% to 14% when ∆ = 15). We conclude that solving OBSC using OBSC-D with battery

discharge levels per 1% or 0.5% gives a good trade-off between the quality of the solutions obtained

and the solving time.

Furthermore, we explored the characteristics of the battery installed and their impact on the

economic gain obtained. Hence, additional tests were run considering the battery capacity Bmax in

the range {5W̄ , 10W̄} (5 and 10 hours supplying W̄ ) and PB in the range {0.15Bmax, 0.30Bmax}. We

observed that a higher PB allows us to obtain better savings, which is due to the fact that we can make

a better use of time periods with lower prices, by recharging the battery faster during such periods.

Moreover, a lower PB tends to increase the average recharging cost, because the unitary energy price

can increase during the recharging time. Concerning the battery capacity, we observed that a higher

value of Bmax allows to take advantage of potential high energy prices during a curtailment, further

discharging the battery. Hence, a large amount of energy can be used from the battery and bought

cheaper to recharge the battery, increasing the savings obtained by performing curtailments.
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Figure 3.5 – Results obtained by solving OBSC
using different battery discharge discretizations
for the instance S1 with FTR reward policy.

Table 3.3 – Average of savings obtained for
different reward policies and problems.

Reward
Policy

OBSC-MILP* OBSC-D-5 OBSC-D-1 OBSC-R

FTR 105% 105% 108% 101%
OTR 88% 96% 99% 93%

* Instances solved to optimality

3.4 Conclusion

This chapter focuses on the use of batteries that were originally installed as backup in the energy

market. In particular, we have considered the OBSC problem optimizing the total energy costs by

using a battery installed for backup in order to participate in the retail and curtailment markets, with

the help of a proper battery management. As a resolution method, a mixed-integer linear program is

proposed and solved using a standard solver, and any of its optimal solutions provides a strategy for

using the battery at optimum cost. We also identified two practical variants of the problem, and proved

them to be polynomial by providing an efficient graph-oriented algorithm to solve them. This solving

method, which can be used only with discrete battery discharge levels, is based on the enumeration

of all possible curtailments that can be performed over the planning horizon. Then, it computes a

longest path in a directed acyclic graph whose nodes correspond to the possible curtailments.

As a result, we observed that participating in the curtailment market generates great savings (88%

with FTR and 105% with OTR on average), hence reducing the energy OPEX of the company, and

proving the premise of this study. A series of tests on realistic instances coming from the French

context was performed, in order to analyze the mathematical model as well as the main properties of
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such instances. We observed in particular that OBSC-MILP could not achieve an optimality guarantee

for all instances. However, even for instances without such an optimality guarantee, the best solution

obtained already generates savings from 55% up to 90% on average, which represents a substantial

reduction in electricity bill for the company. The reward policy and the battery capacity seem to

be the parameters that have the greatest impact on these potential savings. Concerning the variants

solved with the graph-oriented algorithm OBSC-GOA, all the instances were solved to optimality, and

the results we obtained proved the economical relevance of such variants (only 2.5% worst than the

optimal solutions of OBSC on average for the instances for which the optimality guarantee is achieved),

by providing good approximate solutions for the general problem, and hence by being good and fast

heuristics to solve it.

Concerning the performance of our algorithms, we observed that for instances in our testbed, the

value of the time discretization and the reward policy are the parameters that have the most impact

on the solving time. We considered a time limit of 15 minutes for solving each instance, and, in this

aspect, OBSC-GOA proved to be computationally efficient, while we observed that the solving time of

OBSC-MILP increases fast when some parameters increase.

Once we understand well the impact of curtailments on battery management, the issues that

make such management more complex, and how to solve them, we can use the knowledge acquired

in the management of an energy asset composed of several batteries. Note that, for the sake of

clarity, rules R6 and R10 were not considered in this chapter because they are more pertinent when

multiple batteries are used to prevent that one battery is used much more than others. In addition, the

solving approaches proposed remains valid with minor changes. Indeed, we must change the Bellman’s

algorithm to store at each node the value of the best path considering the number of steps.

In the following, we will explore the management of multiple batteries being used in the curtailment

market and reuse some of the algorithms and methods proposed in this chapter.
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Chapter 4

Optimization of a multi-battery storage
system to participate in the retail market

After studying in detail the impact of curtailment market rules on the management of a battery,

we are now interested in measuring and treating the dimensionality of the management of multiple

batteries that are subject to the safety usage rules. Hence, in this chapter we consider the problem

of optimizing total energy costs of a telecommunications site using the batteries installed for backup

to participate in the retail market. Our goal is therefore to reduce the total energy costs for the

company with a proper battery management. Note that the load curtailments are not considered, and

the batteries can only be used to perform peak-shavings.

Formally, the problem treated in this chapter is the Optimization of a Multi-Battery Storage system

participating in the Retail market (referred to as OMBSR), in order to reduce the total energy cost

for the company. The main issue is to manage multiple batteries while respecting the energy market

rules and the safety usage rules and minimizing the total energy cost.

This chapter allows us to understand in detail the impact of increasing the number of batteries

on the optimization problem. We also explore the strategy of decomposing the OMBSR problem

into sub-problems that can be solved more efficiently. Such a strategy is further incorporated in the

algorithm presented in Chapter 5 to solve the same problem with load curtailments.

Concerning the scientific contributions, we formally define the problem and we present two math-

ematical programming models for OMBSR in Section 4.2. We also give the proof that OMBSR is

NP-Hard, via a reduction from the 3-Partition problem, in Section 4.3. We propose two heuristics

based on different aspects for large-scale OMBSR instances: one heuristic based on graph theory

109



inspired by the properties of the realistic instances tested; and a second heuristic based on the relax-

and-fix approach that gives better results for the general case. These heuristics are presented in

Section 4.4. In the same section, we present a reduction of the Maximum Weight Budgeted Inde-

pendent Set Problem on interval graphs into the Longest Budgeted Path Problem on direct acyclic

graphs, and we propose a pseudo-polynomial time algorithm to solve it. We also performed numerical

experiments with realistic instances, that are presented in Section 4.5.
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4.1. PROBLEM STATEMENT

4.1 Problem statement

We consider a deterministic framework with a single telecommunication site similar to the one

described in Chapter 3, defined by the parameters ∆, E, W , and P max.

Concerning the battery assets, the site is equipped with a set B of batteries. Each battery b ∈ B is

defined by the parameters Bmin
b , Bmax

b , PBb
, Dmin

b , and Dmax
b as described in Chapter 3, and is subject

to the same usage rules R1-R5, defined in Section 1.3. In addition to these usage rules, the number of

times that each battery can be used is limited to preserve its life time (i.e., rule R6). The rule R6 is

now relevant to avoid that one battery is used more often than the others.

Concerning the energy market rules, only the rule R7, related to the retail market, is taken into

account.

Recall that our goal is to use the batteries while respecting the energy retail market rules, and

keeping the network safe (i.e. respecting the battery safety usage rules) at minimal cost. The total

amount of energy savings that can be obtained is provided by the difference between the energy prices

during a battery use and its recharge. The amount of energy not bought during the battery use is

equal to the battery discharge.

The problem stated above is referred to OMBSR in the following, and any of its instances is fully

described by the following parameters (some of which are vectors or sets): W , ∆, E, P max, B, Bmin,

Bmax, PB, Dmin, Dmax and N . The safety usage rules R1-R6 and the market rule R7 of the problem

are the same as the ones defined in Chapter 3.

4.2 Mathematical formulations

4.2.1 Mixed-integer nonlinear program based on enumeration of batteries cycles

The formulation that models OMBSR described in this section is a mixed-integer nonlinear program

that will be referred to as (OMBSR-MINLP’). This formulation is inspired by the mathematical model

proposed for the OBSC problem presented in Chapter 3, based on the enumeration of battery uses.

Since a battery discharge starts (resp. ends) at a time period f (resp. l) called first (resp. last)

period, the goal is to identify, among the O(|B|T 2) possible triples (b, f, l) (b, c = (f, l)) over the

horizon, the ones to be performed. Such a decision is reflected by the value of a binary variable yb,c
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4.2. MATHEMATICAL FORMULATIONS

for each battery b and for each discharge during the interval c. Then, the battery discharge level d

during the time period interval c is given by the difference of energy stock in the battery between the

beginning of period f and the end of period l. Recall that we are looking for a set of discharges (f, l, d)

that can be performed for each battery while respecting the market and the battery safety usage rules

and such that total energy cost is minimized.

Let us consider C as the set of all possible pairs (f, l) such that 1 ≤ l − f + 1 ≤ T . The set

T = {t1, . . . , tT } represents the discrete planning horizon over T time periods, and the set Ct, ∀t ∈ T ,

represents the pairs (f, l) of all possible battery discharges that can be performed at time period t. In

other words, Ct contains all the pairs (f, l) with f < l such that f ≤ t ≤ l.
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4.2. MATHEMATICAL FORMULATIONS

Decision Variables

Firstly, a solution is determined by the values of the following variables:

- xb,t ∈ [Bmin
b , Bmax

b ], ∀b ∈ B, ∀t ∈ T : amount of energy available in each battery b at the

beginning of each time period t, in kWh. An additional variable xb,T +1 represents the energy

available at the end of the planning horizon.

The following additional binary variables are used to control which discharge intervals are per-

formed:

- yb,c, ∀c ∈ C, ∀b ∈ B: equal to 1 if the battery b is discharged during the time interval c = [f, l],

starting at time period f and ending at time period l, and to 0 otherwise.

To model the power bought at each time period t, the following variables are used:

- uD
t ∈ [0, Wt], t ∈ T : power bought for the demand consumption at time period t (in kW);

- uB
b,t ∈ [0, PBb

],∀b ∈ B, t ∈ T : power bought for the recharge of battery b at time period t (in

kW).

Auxiliary variables can also be used to simplify the model writing. However, they are not strictly

necessary, and could be removed and replaced by their corresponding value:

- zb,t, ∀t ∈ T , ∀b ∈ B: equal to 1 if the battery b is discharged at time period t, and to 0 otherwise;

The objective function is defined as follows:

min
∑︂
t∈T

Et(
∑︂
b∈B

uB
b,t + uD

t ) (4.1)

The objective function minimizes the total cost of purchasing energy. A solution is given by the

stock of energy in each battery at each time period, provided by the values of the xb,t variables.

The following constraints define if each battery is in discharge or not at each time period t:

zb,t =
∑︂
c∈Ct

yb,c ∀b ∈ B, ∀t ∈ T (4.2)

xb,t − xb,t+1 ≤ ∆Dmax
b zb,t ∀b ∈ B, ∀t ∈ T (4.3)

− xb,t + xb,t+1 ≤ ∆PBb
(1− zb,t)−∆ min(Wt, Dmin

b )zb,t ∀b ∈ B, ∀t ∈ T (4.4)
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Constraints (4.2), together with the fact that zb,t ∈ {0, 1} ∀t ∈ T , guarantee that for each battery

b, at most one discharge can be performed at each time period. Constraints (4.3) guarantee that,

if the energy stock of a battery decreases, then the battery is in discharge mode, i.e., zb,t = 1.

Constraints (4.4) ensure that, if the energy stock of a battery increases, then the battery cannot be

in discharge mode, i.e., zb,t = 0. Note that, together with Constraints (4.6) to Constraints (4.9), the

battery can have the same energy stock during two consecutive time periods only if the battery is fully

charged, otherwise a minimal discharge of min(Wt, Dmin
b ) or a recharge of uB

b,t is imposed. Besides,

Constraints (4.3) guarantee a maximum power discharge per time period of Dmax
b when the battery

is in discharge mode.

Note that, if the battery has the same energy stock during two consecutive time periods, then the

corresponding variables zb,t are free. However, Constraints (4.2) guarantee that, if a battery discharge

is performed, then zb,t is equal to 1 for each t over the discharge duration.

Constraints (4.5) guarantee that a battery can start being discharged only if the battery is fully

charged:

Bmax
b

∑︂
c∈Ct | t=f

yb,c ≤ xb,t ∀b ∈ B, ∀t ∈ T (4.5)

uB
b,t = (1− zb,t) min(Bmax

b /∆− xb,t/∆, PBb
, P max −Wt) ∀b ∈ B, ∀t ∈ T (4.6)∑︂

b∈B
(xb,t+1 − xb,t) =

∑︂
b∈B

∆uB
b,t + ∆uD

t −∆Wt ∀t ∈ T (4.7)

xb,t+1 − xb,t ≥ ∆uB
b,t −∆Dmax

b zb,t ∀b ∈ B, ∀t ∈ T (4.8)

xb,t+1 − xb,t ≤ ∆uB
b,t ∀b ∈ B, ∀t ∈ T (4.9)

The power bought for charging each battery is min(PBb
, P max −Wt) when it is possible to buy

energy (i.e., if zb,t = 0), if the capacity of the battery is not exceeded (see Constraints (4.6)). Note

that two batteries can be used at the same time: either both are in discharge mode; or one is in

discharge and another recharging; or both are in recharge mode. Constraints (4.8) together with

Constraints (4.9) guarantee that the power bought to recharge a battery is related to the corresponding

battery, preventing the exchange of power between two batteries (i.e., when the energy obtained from

the discharge of one battery is used to recharge another).

Since no losses are considered, the energy stock balance of the batteries are ensured by Con-

straints (4.7). Besides, Constraints (4.7) together with the bounds on uD
t impose a maximum cumu-
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lative discharge of all batteries at the same time period, equal to the power demand Wt. Indeed, note

that the domain of variables uD
t limits such a maximal discharge to Wt.

The network capacity is modeled by Constraints (4.10).

∑︂
b∈B

uB
b,t + uD

t ≤ P max ∀t ∈ T (4.10)

Furthermore, Constraints (4.11) guarantee that each battery will be used at most Nb times over

the time horizon, while Constraints (4.12) express the limit conditions:

∑︂
c∈C

yb,c ≤ Nb ∀b ∈ B (4.11)

xb,t1 = xb,xT +1 = Bmax
b ∀b ∈ B (4.12)

Finally, the domains of the variables are:

uD
t ∈ [0, Wt] ∀t ∈ T (4.13)

uB
b,t ∈ [0, PBb

], xb,t ∈ [Bmin
b , Bmax

b ], zb,t ∈ {0, 1} ∀b ∈ B,∀t ∈ T (4.14)

yb,c ∈ {0, 1} ∀b ∈ B,∀c ∈ C (4.15)

The obtained model (4.1)-(4.14) is non-linear. However, it can be linearized following the approach

proposed by McCormick (1976). The resulting model (referred to as (OMBSR-MILP’)) is provided in

Section 4.2.3.

4.2.2 Alternative mixed-integer nonlinear program

The main problem with the (OMBSR-MILP’) formulation is that the number of (f, l) pairs enu-

merated can potentially be large and strongly impact the size of the model and hence the solving time.

Considering that curtailments are not allowed in OMBSR, it is possible to model the problem in an

implicit way without the need to enumerate all the discharge duration of batteries. Consequently, the

size of the model is reduced.

The formulation of OMBSR described in this section will be referred to as (OMBSR-MINLP).
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Decision Variables

Firstly, the same families of variables xb,t, uD
t , uB

b,t, and zb,t from the formulation presented in

Section 4.2.1 are considered.

In addition to those ones, the following additional variables are used to control the state of each

battery:

- bstart
b,t ∈ {0, 1}, ∀b ∈ B, ∀t ∈ T : equal to 1 if the battery b starts being discharged at time period

t, and to 0 otherwise.

The objective function is defined as follows:

min
∑︂
t∈T

Et(
∑︂
b∈B

uB
b,t + uD

t ) (4.16)

The objective function minimizes the total cost of purchasing energy. A solution is given by the stock

of energy in the batteries at each time period, provided by the values of the xb,t variables.

The following constraints define if each battery is in discharge or not at each time period t:

xb,t − xb,t+1 ≤ ∆Dmax
b zb,t ∀b ∈ B,∀t ∈ T (4.17)

− xb,t + xb,t+1 ≤ ∆PBb
(1− zb,t)−∆ min(Wt, Dmin

b )zb,t ∀b ∈ B,∀t ∈ T (4.18)

Constraints (4.17) guarantee that, if the energy stock of a battery decreases, then the battery is

in discharge mode, i.e., zb,t = 1. Constraints (4.18) ensure that, if the energy stock of a battery

increases, then this battery cannot be in discharge mode, i.e., zb,t = 0. Note that, together with

Constraints (4.24) and (4.25), these constraints ensure that the battery can have the same energy

stock during two consecutive time periods only if the battery is fully charged, otherwise a minimal

discharge of min(Wt, Dmin
b ) (if zb,t = 1) or a recharge of uB

b,t (if zb,t = 0) is imposed. Moreover,

Constraints (4.17) guarantee a maximum power discharge per time period of Dmax
b when the battery

is in discharge mode.

In the same vein, Constraints (4.19) and (4.20) ensure that bstart
b,t = 1 if the battery b starts being

discharged at time period t; otherwise, this variable is free.

bstart
b,t ≥ zb,t − zb,t−1 ∀b ∈ B,∀t ∈ T \{1} (4.19)

bstart
b,t1 = zb,t1 ∀b ∈ B (4.20)
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Constraints (4.21) guarantee that each battery b can start being discharged only if it is fully charged

(and hence together with Constraints (4.22) that the battery starts being recharged immediately after

each use, up to its maximum capacity):

Bmax
b bstart

b,t ≤ xb,t ∀b ∈ B,∀t ∈ T (4.21)

The power purchased in the retail market at each time period t is the sum of the power bought for

charging the batteries (
∑︁

b∈B uB
b,t) and the power bought for consumption (uD

t ), which is ensured by

the following constraints:

uB
b,t = (1− zb,t) min(Bmax

b /∆− xb,t/∆, PBb
, P max −Wt) ∀b ∈ B,∀t ∈ T (4.22)

∑︂
b∈B

(xb,t+1 − xb,t) = ∆
∑︂
b∈B

uB
b,t + ∆uD

t −∆Wt ∀t ∈ T (4.23)

xb,t+1 − xb,t ≥ ∆uB
b,t −∆Dmax

b zb,t ∀b ∈ B,∀t ∈ T (4.24)

xb,t+1 − xb,t ≤ ∆uB
b,t ∀b ∈ B,∀t ∈ T (4.25)

The power bought for charging each battery is min(PBb
, P max) when it is possible to buy energy

(i.e., if zb,t = 0), if the capacity of the battery is not exceeded (see Constraints (4.22)). Note that

several batteries can be used at the same time: some of them can be in discharge mode and others

recharging. Constraints (4.24) together with Constraints (4.25) guarantee that the power bought to

recharge a battery is related to the corresponding battery, preventing the exchange of power between

two batteries (i.e., when the energy obtained from the discharge of one battery is used to recharge

another).

Since no losses are considered, the energy balance of the batteries is ensured by Constraints (4.23).

Moreover, Constraints (4.23) impose a maximum cumulative discharge of all batteries at the same

time period equal to the power demand Wt.

The network capacity is modeled by Constraints (4.26).

∑︂
b∈B

uB
b,t + uD

t ≤ P max ∀t ∈ T (4.26)

Furthermore, Constraints (4.27) guarantee that each battery will be used at most Nb times over
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the time horizon, while Constraints (4.28) express the limit conditions:∑︂
t∈T

bstart
b,t ≤ Nb ∀b ∈ B (4.27)

xb,t1 = xb,tT +1 = Bmax
b ∀b ∈ B (4.28)

Finally, the domains of the variables are:

uD
t ∈ [0, Wt] ∀t ∈ T (4.29)

uB
b,t ∈ [0, PBb

], xb,t ∈ [Bmin
b , Bmax

b ], zb,t ∈ {0, 1}, bstart
b,t ∈ {0, 1} ∀b ∈ B, ∀t ∈ T (4.30)

The obtained model (4.16)-(4.30) is non-linear. However, it can be linearized following the approach

proposed by McCormick (1976). The resulting linear model (referred to as (OMBSR-MILP)) is

provided in Section 4.2.3.

4.2.3 Mathematical model linearizations

In this section, we present the linearization of the mathematical models (OMBSR-MINLP) and

(OMBSR-MINLP’), which have a single nonlinear constraint (i.e., Constraint (4.6) in the case of

(OMBSR-MINLP’), and Constraint (4.22) in the case of (OMBSR-MINLP)) that is the same in both

mathematical formulations.

Firstly, let us rewrite Constraints (4.6) (i.e., also Constraints 4.22) as follows:

uB
b,t = (1− zb,t) min(Bmax

b /∆− xb,t/∆, PBb
, P max −Wt)

= min(Bmax
b /∆− xb,t/∆, min(PBb

, P max −Wt))

−min(Bmax
b zb,t/∆− xb,tzb,t/∆, min(PBb

, P max −Wt)zb,t) (4.31)

For a product between a binary variable bi and a variable fj ∈ [0, F max], we can apply the Mc-

Cormick strategy as described in Section 3.2.1.3. The non-linearities of this type in Constraints (4.31)

(i.e., corresponding to Constraints 4.6 and to Constraints 4.22) are the products xb,tzb,t, with xb,t ∈

[0, Bmax
b ] for b in B, t in T . We define the new family of variables lin xzb,t,∀b ∈ B, ∀t ∈ T and the

related constraints:

lin xzb,t ≤ zb,tB
max
b ∀b ∈ B,∀t ∈ T (4.32)

lin xzb,t ≤ xb,t ∀b ∈ B,∀t ∈ T (4.33)

lin xzb,t ≥ xb,t − (1− zb,t)Bmax
b ∀b ∈ B,∀t ∈ T (4.34)
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Furthermore, to linearize x = min(a, b) for a, b ∈ [M ′, M ], we introduce a binary variable y ∈ {0, 1}

as described in Section 3.2.1.3. In our case, we have the new family of binary variables lin sideb,t for

all t in T and b in B to linearize the min in Constraints (4.31) (i.e., corresponding to Constraints 4.6

and to Constraints 4.22). We have uB
b,t = (1 − zb,t) min(a, b), where a = Bmax

b /∆ − xb,t/∆ and

b = min(PBb
, P max −Wt). In order to linearize this expression, we first multiply all the terms a and

b in (3.26) and (3.28) by 1 − zb,t. Hence, we derive the following constraints, where M ′ = 0 and

M = max(P max, Bmax
b /∆) :

uB
b,t ≤ (1− zb,t)(Bmax

b /∆− xb,t/∆) , uB
b,t ≤ (1− zb,t) min(PBb

, P max −Wt) (4.35)

(Bmax
b − xb,t)−∆ min(PBb

, P max −Wt) ≤ ∆Mlin sideb,t ,

min(PBb
, P max −Wt)− (Bmax

b /∆− xb,t/∆) ≤M(1− lin sideb,t) (4.36)

uB
b,t ≥ (1− zb,t)(Bmax

b /∆− xb,t/∆)−M(1− zb,t)lin sideb,t ,

uB
b,t ≥ (1− zb,t) min(PBb

, P max −Wt)−M(1− zb,t)(1− lin sideb,t) (4.37)

Note that, since uB
b,t ∈ [0, PBb

], Constraints (4.37) can be replaced by:

uB
b,t ≥ (1− zb,t)(Bmax

b /∆− xb,t/∆)−Mlin sideb,t ,

uB
b,t ≥ (1− zb,t) min(PBb

, P max −Wt)−M(1− lin sideb,t) (4.38)

Indeed, when zb,t = 0, (4.37) and (4.38) are equivalent, and, when zb,t = 1, Constraints (4.5) together

with Constraints (4.8) and uB
b,t ∈ [0, PBb

] ensure that uB
b,t = 0.

Proposition 4 The continuous relaxation of (OMBSR−MILP ) and (OMBSR−MILP ′) have the

same optimal value.

Proof To prove that the solutions sets of these continuous relaxation are equivalent, we present

two functions to transform any solution of the continuous relaxation version of (OMBSR−MILP ),

denoted by (OMBSR − LP ), into a feasible solution of the continuous relaxation of (OMBSR −

MILP ′), denoted by (OMBSR′ − LP ), and vice-versa.

Firstly, let us prove that any feasible solution of (OMBSR−LP ) can be transformed into a feasible

solution of (OMBSR′ − LP ) as follows:

1. x̄b,t ← xb,t, for each b ∈ B and t ∈ T ;

119



4.2. MATHEMATICAL FORMULATIONS

2. z̄b,t ← zb,t, for each b ∈ B and t ∈ T ;

3. ūB
b,t ← uB

b,t, for each b ∈ B and t ∈ T ;

4. ūD
t ← uD

t , for each t ∈ T ;

5. Set values for ȳb,c such that
∑︁

c∈Ct
ȳb,c = zb,t and

∑︁
c∈Ct|f=t ȳb,c = bstart

b,t .

Note that we can rewrite the expression
∑︁

c∈Ct
yb,c as

∑︁
c∈Ct|f=t yb,c +

∑︁
c∈Ct−1 yb,c −

∑︁
c∈Ct−1|l=t−1 yb,c.

Rewriting such an expression we have that
∑︁

c∈Ct|f=t yb,c =
∑︁

c∈Ct
yb,c−

∑︁
c∈Ct−1 yb,c+

∑︁
c∈Ct−1|l=t−1 yb,c.

Hence, the relation
∑︁

c∈Ct|f=t yb,c ≥
∑︁

c∈Ct
yb,c −

∑︁
c∈Ct−1 yb,c is valid for any t ∈ T and is equivalent

to Constraints (4.19) when
∑︁

c∈Ct
ȳb,c = zb,t and

∑︁
c∈Ct|f=t ȳb,c = bstart

b,t which is already satisfied in

any solution of (OMBSR − LP ). We can conclude that Steps 1 to 5 produce a feasible solution for

(OMBSR′ − LP ) and that Constraints (4.2), (4.5) and (4.11) are directly satisfied.

Secondly, let us prove that any solution of (OMBSR′ − LP ) can be transformed into a feasible

solution of (OMBSR− LP ) as follows:

1. xb,t ← x̄b,t, for each b ∈ B and t ∈ T ;

2. zb,t ← z̄b,t, for each b ∈ B and t ∈ T ;

3. uB
b,t ← ūB

b,t, for each b ∈ B and t ∈ T ;

4. uD
t ← ūD

t , for each t ∈ T ;

5. bstart
b,t ←

∑︁
c∈Ct|t=f yb,c for each b ∈ B and t ∈ T .

Note that Constraints (4.17,4.18,4.23,4.24,4.25,4.26,4.28,4.32-4.38) are trivially satisfied because they

are present in (OMBSR′ − LP ). In addition, Constraints (4.21) and (4.27) are satisfied because

Constraints (4.5) are equivalent to (4.21) and
∑︁

t∈T
∑︁

c∈Ct|t=f yb,c is equivalent to
∑︁

c∈C yb,c, which

is equivalent to
∑︁

t∈T bstart
b,t . Moreover, from Constraints (4.2), we have that zb,t =

∑︁
c∈Ct

yb,c for

each t ∈ T . Then, by performing an elementary operation between two constraints (i.e., for each b,

subtracting (4.2) for t− 1 from Constraints (4.2) for t), we have that zb,t− zb,t−1 =
∑︁

c∈Ct
yb,c. Hence,

the relation zb,t − zb,t−1 =
∑︁

c∈Ct
yb,c is valid, and Constraints (4.19) and (4.20) are satisfied.

Such transformations are valid and the transformed solutions are equivalent because the batteries

are used at the same time periods and with same discharge (resp. recharge) power levels as the original
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solutions. Consequently, the power bought for consumption and recharge at each time periods are the

same which gives the same solution value, i.e., savings.

The claimed result follows. □

4.3 Complexity analysis

In this section we present a complexity proof for OMBSR. We reduce the 3-Partition problem,

which is a strongly NP-Complete problem, into a particular case of OMBSR.

Theorem 1 OMBSR is strongly NP-Hard.

Proof Let us consider an instance of the 3-Partition problem composed by a set A of 3m integers

a1, . . . , a3m and a bound B ∈ N such that B
4 < ai < B

2 , for all ai in A. Besides, let us consider that∑︁
ai∈A ai = mB. The question is whether A can be partitioned into m triplets A1, . . . ,Am, such that∑︁
ai∈Ak

ai = B for all Ak, such that, if there exist m partitions Ak such that for each one the sum of

its elements is B, then each subset Ak must contain exactly 3 elements because of B
4 < ai < B

2 .

Now let us consider an OMBSR instance with a time horizon T composed by 2m time periods.

Moreover, let us consider a constant power demand W of B over the horizon and an energy price equal

to 1 at the odd time periods and 0 at the even time periods, i.e., E = (1, 0, 1, 0, . . . , 1, 0). Then, let us

consider that 3m batteries with different capacities such that (Bmax
b −Bmin

b )/∆ ≥ Dmax
b are installed

such that B
4 < Dmin

b ≤ Dmax
b = ab < B

2 . We also consider that
∑︁

b∈B Dmax
b = mB. The others instance

parameters are:

• P max = 2B

• PBb
= Bmax

b /∆, for all b in B

• Nb = 1, for all b in B

Let us consider a solution for such an instance which costs 0. In this case, the batteries are used to

supply all the power consumption in the time periods that energy costs 1 and recharged when it costs

0, otherwise the total cost would be strictly greater than 0. Hence, the total energy used from the

batteries over the horizon is mB. Since Nb = 1, together with P max = 2B, if there exists a solution
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with cost 0, all the 3m batteries are used once and, more precisely, 3 batteries are used at odd time

periods with a discharge of Dmax
b . In addition, if all batteries are used, each one is used during one

time period.

Hence, the set of batteries used at each odd time period gives us a solution to an instance of

the 3-Partition problem where the integers ab are equivalent to Dmax
b . Similarly, from a 3-Partition

problem solution, a solution of cost 0 for the associated OMBSR instance can be constructed. Then,

OMBSR is by reduction a strongly NP-Hard problem. □

For small and simple instances with T < 4 and with a constant power demand for example, a

similar proof can be obtained from a reduction of the Partition problem, which is NP-Complete. In

this case, pseudo-polynomial time dynamic programming can be used to solve the problem.

4.4 Solving heuristics

In this section we present two heuristics for solving large-scale instances of the OMBSR problem.

In fact, since OMBSR is an NP-Hard problem, large-scale instances cannot be solved to optimality in

polynomial time unless P is equal to NP .

4.4.1 Graph oriented approach

This section presents a graph-oriented temporal decomposition heuristic, refereed to as OMBSR-G-

HEU, based on:

• The decomposition of each OMBSR problem into sub-problems that are individually solved to

optimality;

• The selection of a subset of the solutions obtained for the sub-problems that respects the maximal

number of battery uses Nb, and that yields a solution to the initial OMBSR instance.

Two integral parameters γ and γ′ (> 0) are considered in this heuristic: γ is the number of time

periods in each sub-problem, and γ′ is used to define the first time period of each sub-problem. More

precisely, the heuristic is composed of four steps:
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1. Decomposition of the OMBSR problem into sub-problems: We construct ⌈T/γ′⌉−1 sub-problems

OMBSRi for i in {1, . . . , (⌈T/γ′⌉−1)}, each one being defined over a reduced time horizon Ti of γ

time periods starting at a time period multiple of γ′, i.e., Ti = {((i−1)γ′ +1), . . . , ((i−1)γ′ +γ)}

and with at most N ′
b = ⌈Nbγ/T ⌉ battery uses.

2. Resolution of each OMBSRi sub-problem: From the (OMBSR-MILP) formulation based on T

and Nb, we derive the formulation for each OMBSRi by considering Ti and N ′
b instead. Then, an

optimal solution Si for each OMBSRi is obtained by solving this formulation with a mixed-integer

linear program solver.

3. Select a subset of solutions Si that gives a feasible solution for OMBSR:

(a) Construction of a solution conflict graph: A graph G = (V, E) is created, where each node

vi in V represents the optimal solution Si of OMBSRi found at Step 2, with a weight ωvi

equal to its value. An edge e = (vi, vj) is added if any battery in the corresponding solution

Si is used at a time period t ∈ Ti ∩ Tj and if any battery (not necessarily the same) is used

in the solution Sj at the same time period. Note that G is an interval graph.

(b) Computation of a MaximumWeight k-Budgeted Independent Set Problem (MWkBIS) of G:

We rely on an integer linear program for the MWkBIS problem (described in Section 4.4.1.1)

on interval graphs, with |B| additional constraints limiting the number of use of each battery

b ∈ B to Nb (i.e., the limit of use Nb of each battery is considered as an artificial budget) in

the selected nodes. The complete formulation, denoted by (MWkBIS-MILP), is presented

in Section 4.4.1.1. Then, an optimal solution is obtained by solving it with a standard

MILP solver. Note that such a computation can be done fast because we consider a small

number of batteries installed in our realistic instances.

4. Construction of a solution for OMBSR: Firstly, the heuristic solution to the initial OMBSR

problem is equal to a standard solution where no battery is used. Then, for each node vi of the

solution provided at Step 4 by solving (MWkBIS-MILP), we replace the standard solution over

Ti by the solution Si found at Step 2.

For the sake of clarity, we illustrate, in Figures 4.1 and 4.2, the steps of the heuristic on an illustrative

OMBSR instance over a week (i.e., γ = 1, and T = 24 × 7 = 168) where Nb = 3 for all b ∈ B,
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Figure 4.1 – Decomposition of an OMBSR in-
stance over a week (i.e., T = 168) into sub-
problems OMBSR1 to OMBSR6, assuming γ =
48 and γ′ = 24. The curves represent the power
demand observed (orange line) and the interpo-
lation (black line). In this instance, Nb = 3, ∀b ∈
B.

Figure 4.2 – Example of a conflict graph associ-
ated with the decomposition of the OMBSR in-
stance presented in Fig. 4.1, where Nb = 3,∀b ∈
B, and of the resulting MWkBIS solution.

and for the following choice of parameters: γ = 48 and γ′ = 24. Note that, the values of w of this

instances is illustrated by the orange curve. The interpolation (i.e., the black curve) is shown for

the sake of highlighting the periodicity of the data. A heuristic solution for this OMBSR instance is

thus obtained by considering the battery usage in the solutions S1, S4 and S6 found for sub-problems

OMBSR1, OMBSR4 and OMBSR6, respectively.

4.4.1.1 Maximum weight budgeted independent set problem

The Maximum Weight Budgeted Independent Set problem (MWBIS) consists in selecting the

independent set S∗ of a graph G = (V, E), with weights ωv, for v ∈ V and cost βv, for v ∈ V , that gives

that highest total weight (i.e.,
∑︁

v∈S∗ ωv) and that respects a given budget B (i.e.,
∑︁

v∈S∗ βv ≤ B).

Kalra et al. (2017) proposes an integer linear program to solve the MWBIS problem. For interval

graphs, the MWBIS problem can be solved with a pseudo-polynomial time algorithm based on the

Bellman’s algorithm to compute the longest path of a direct acyclic graph. Indeed, an interval graph

GJ = (V J , EJ) can be described by the sequence J = {J1, . . . , Jn} of its maximal cliques (see

De Queiroz et al. (2016) for the computation of J from G). A direct acyclic graph G′ = (V ′, A′) can

be obtained as follows:

1. For each vertex vi ∈ V J , create a corresponding one v′
i in V ′;

2. For each maximal clique Ji ∈ J , and for each vj ∈ Ji, add an arc in A′ from the vertex

v′
j ∈ V ′ corresponding to vj to all vertices v′

k ∈ V ′ with weight ωvj and cost βvj such that the
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corresponding vertices vk ∈ V J belongs to any sequence Jk ∈ J , such that Ji ≺ Jk in J ;

3. Add two artificial vertices v′
s and v′

t in V ′;

4. Add an arc from v′
s to each vertex v′

i ∈ V ′ \ {v′
s} with weight 0 and cost 0;

5. Add an arc from each vertex v′
i ∈ V ′ \ {v′

t, v′
s} to v′

t with weight ωvi and cost βvi ;

The computation of the maximal independent set of GJ is equivalent to computing the longest

path from s to v in G′. Indeed, by construction, any path in G′ represents an independent set of

GJ . The computation of the longest path of a direct acyclic graph can be done in O(|V ′|+ |A′|) time

using the Bellman’s algorithm (Dasgupta et al., 2008). In the case of the MWBIS problem when a

maximal budget B is given, a modification in the Bellman’s algorithm can be done by storing at each

vertex v′
j ∈ V ′ the best known path from v′

s to v′
j with different weights up to B. Hence, such a

modified version of the algorithm is pseudo polynomial, in space and in CPU time, with complexity

O(|B|(|V ′| + |A′|)). In our study, the budget B is bounded by the number of time periods T , which

guarantees a polynomial complexity.

An extension of the MWBIS problem is to consider k-budgets, denoted as the Maximum Weight

k-Budgeted Independent Set problem (MWkBIS). Formally, it consists in selecting the independent

set S∗ of a graph G = (V, E), with weights ωv, for v ∈ V and k-cost K, defined as βk,v, for each

v ∈ V, k ∈ K, that gives that highest total weight (i.e.,
∑︁

v∈S∗ ωv) and that respects the budgets Bk for

each k ∈ K (i.e.,
∑︁

v∈S∗ βk,v ≤ Bk for each k ∈ K). The same reduction from the Maximal Independent

Set (MIS) of an interval graph to the computation of the longest path of a DAG can be done and

the Bellman’s algorithm can be adapted to support k-budgets with complexity O(|B||K|(|V | + |A|)).

Since the number of budgets corresponds to the number of the batteries and that the values of Bk are

bounded by T , the algorithm is pseudo-polynomial. In this thesis, we chose to extend the formulation

proposed by Kalra et al. (2017) to consider k budgets (i.e., to consider multiple budgets Nb). Since

the sites of instances considered in our work do not have a high number of batteries installed, this

part of the problem can be solved efficiently with a conventional MILP solver.

We consider that the interval graph G = (V, E), the list J of maximal cliques (i.e., the intervals)

of the topological increasing representation of G on the start time of the intervals, the weights ωvi and

the solutions Si for all vi ∈ V are given, as well as the values of Nb for all b ∈ B. Then, the following

auxiliary parameters are considered:
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• βb,vi
: the number of times that the battery b is used in the solution Si (i.e., the ”cost” of selecting

the node vi in the budget Nb).

• Vj : set of nodes vi in the clique j ∈ J .

The following variables are considered:

• xvi ∈ {0, 1}: equal to 1 if the node vi is taken into the final solution, and to 0 otherwise.

Finally, (MWkBIS-MILP) can be written as follows:

max
∑︂

vi∈V

ωvixvi

s.t.
∑︂

vi∈Vj

xvi ≤ 1 ∀j ∈ J (4.39)

∑︂
vi∈V

βb,vi
xvi ≤ Nb ∀b ∈ B (4.40)

xvi ∈ {0, 1} ∀vi ∈ V (4.41)

4.4.1.2 Alternative conflict graph construction

The standard version of this heuristic considers that an edge is added between two nodes if at least

one battery is used in the solution of the corresponding nodes as described at Step 3a. However, such

an edge creation criteria can be modified by distinguishing which battery is used at each time period

to create a conflict edge. Formally, an edge e = (vi, vj) is added if a battery b in the corresponding

solution Si is used at a time period t ∈ Ti ∩ Tj and if the same battery b is used in the solution Sj at

the same time period t. However, the computation of the Maximum Weighted Budgeted Independent

Set at Step 4 can no longer be done in pseudo-polynomial time as presented in Section 4.4.1.1 because

there is no guarantee that G is an interval graph anymore.

Figure 4.3 illustrates the impact of such a modification in the edge creation criteria. In the example

illustrated the site is equipped with two identical batteries b1 and b2. In addition, we consider a

constant power demand over the time horizon of 1kW and the parameters γ = 4 and γ′ = 2. Based on

these parameters, 4 sub-problems will be considered: OMBSR1, OMBSR2, OMBSR3 and OMBSR4

with solutions S1, S2, S3 and S4, respectively (see Figure 4.3-d). Hence, the graph G created in OMBSR-

G-HEU is composed by 4 nodes. For the standard edge creation criteria (C1 in the example), an edge
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Figure 4.3 – Illustration of the edge creation criteria for OMBSR-G-HEU with γ = 4 and γ′ = 2 for a
given instance with 2 identical batteries.

will be added between solutions S1 and S2, because at time period 4, at least one battery is used in the

solutions of both sub-problems (i.e., the battery 1 is recharging at time period 4 in S1 and the battery

2 is in discharge at the same time period in S2). Note that no battery is used in S3 and in S4. In fact,

the energy prices are constant from time period 5 and using batteries is not profitable. Consequently,

the solution of C1 is composed exclusively by S1, giving savings of 1.5e (Figure 4.3-b illustrates the

power bought and the energy level of the batteries for C1). However, with the modified edge creation

criteria (C2 in the example), the corresponding graph G has no edge because the batteries used in S1

and S2 are not the same one. Hence, the solution provided by OMBSR-G-HEU with C2 is composed by

S1 and S2, giving savings of 2.0e (Figure 4.3-c illustrates the power bought and the energy level of

the batteries for C2). Note that the optimal solution for this example is the same one as the solution

obtained with C2. On the one hand, the solutions obtained with the modified edge creation criteria

tends to generate more savings. On the other hand, there is no guarantee that the resulting graph G

is an interval graph. Figure 4.4 illustrates an example considering γ = 4 and γ′ = 1 with 2 batteries

for which the graph G is not an interval graph when the modified edge creation criteria (criteria C2)

is considered instead of criteria C1. In this example, the graph G obtained considering the criteria

C1 is a complete graph and an interval graph. However, the graph G obtained when C2 is considered
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Figure 4.4 – Illustration of the impact of the edge creation criteria on the chordal properties of the
graph G created by OMBSR-G-HEU.

is no longer an interval graph.

4.4.2 Relax-and-fix approach

This section presents a relax-and-fix heuristic (Suerie and Stadtler, 2003) for solving OMBSR based

on:

• The partial relaxation of the binary variables of the mathematical model described in Section 4.2;

• The resolution of the resulting model in which the number of binary variables is small enough

to be solved with a conventional MILP solver through a branch-and-bound method;

• The fixation of the values of a subset of variables from the optimal solution obtained in the

previous step.

Such steps compose one iteration of the heuristic, which is executed several times as described in

the following. The main idea is to define sets of variables, denoted as windows, that will be relaxed

and fixed in each iteration.

The proposed heuristic designates the time horizon in three windows: frozen, decision and relaxed

ones. In the frozen window, the values of the variables are fixed to the optimal values obtained in the

previous iterations. In the decision one, the integrity constraints are observed. In the relaxed window

the integrity constraints are relaxed. To this end, two integer parameters δ and δ′ (0 < δ′ ≤ δ) are

considered in this heuristic: δ is the number of time periods of the decision window (i.e., for which

the integrity of the binary variables is maintained), and δ′ represents the scrolling window, in number

of time periods, for which the values of the corresponding variables are fixed in each iteration.
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Let us denote as T f , T d and T r the set of time periods of the frozen, decision and relaxed

windows, respectively. Formally, for a given OMBSR instance composed of |T | time periods, and its

mathematical modelM, each iteration i of the heuristic is composed of four steps:

1. Definition of the sets T f , T d and T r: T f = {1, . . . , δ′(i − 1)} ∀i ≥ 2 or ∅ if i = 1, T d =

{δ′(i− 1) + 1, . . . , δ′(i− 1) + δ} and T r = T \ (T f ∪ T d);

2. Relaxation of the integrality constraints inM in the relaxed window: for each t in T r (in the

case of (OMBSR-MILP) all variables zb,t and bstart
b,t for each b in B ∈ {0, 1});

3. Solve the modelM;

4. Setting the values of a subset of variables in T d inM: For each binary variable with index t in

{δ′(i− 1) + 1, . . . , δ′(i− 1) + δ′} (i.e., in the case of (OMBSR-MILP), all variables zb,t and bstart
b,t

for each b in B), fix the value of the variable to its optimal value obtained at Step 3.

Concerning the iterations of the heuristic, Steps 1 to 4 will be executed ⌈T −δ
δ′ ⌉+ 1 times (i.e., for

i ∈ {1, . . . , ⌈T −δ
δ′ ⌉+1}. Note that in the first iteration the frozen window does not exist (i.e., T f = ∅),

and, in the last one, the relaxed one does not exist (i.e., T r = ∅). In the last iteration, if a feasible

solution forM is found, it is also a feasible solution for the whole problem due to the fact that in each

iteration Step 4 respects all the constraints of the model.

Figure 4.5 illustrates the three windows of the model obtained from Steps 1 and 2 of the relax-and-

fix procedure for two consecutive iterations i and i + 1. In this example the time horizon is composed

of 168 time periods and the parameter values are δ = 48 and δ′ = 24. The frozen window at Step 3

in iteration i is composed by 24 time periods for which the optimal values of the variables previously

computed are fixed. The decision window is composed by 48 time periods and the relaxed window

by 96 time periods. Note that at Step 4 of iteration i, the values of the first δ′ time periods of the

decision window are fixed at their optimal values obtained at Step 3. In the iteration i + 1, the frozen

window at Step 3 is then composed by 48 time periods.

One of the advantages of the proposed heuristic is that it is able to produce good upper bounds

for the problem in a short running time. Note that the efficiency of this heuristic depends directly on

the values of the parameters δ and δ′.

129



4.5. NUMERICAL EXPERIMENTS

Figure 4.5 – Illustration of the three windows obtained from Steps 1 and 2 of the relax-and-fix procedure
on iterations i and i + 1 of an instance containing 168 time periods, considering δ = 48 and δ′ = 24.

4.5 Numerical experiments

In order to assess the efficiency and relevance of our solving approaches for optimizing the savings

that can be obtained from the demand-response mechanism, we performed some numerical experiments

on realistic instances. Several sites with different consumption profiles and settings are considered,

generated from internal data of the French telecommunications operator Orange. The energy costs

are taken from public historic data of the French retail market.

Three solving approaches are considered. Firstly, the default branch and bound algorithm of the

commercial solver CPLEX performed on the formulations (OMBSR-MILP) and (OMBSR-MILP’),

that will be denoted by OMBSR-MILP and OMBSR-MILP’, respectively. Secondly, the general heuristic

presented in Section 4.4.1 parameterized by (γ, γ′) ∈ {(48, 24), (36, 12), (24, 12)}, that will be de-

noted by OMBSR-G-HEU. Finally, the relax-and-fix heuristic presented in Section 4.4.2 parameterized

by (δ, δ′) ∈ {(48, 24), (24, 12)}, that will be denoted by OMBSR-RF-HEU. The arguments (essentially the

periodical structure of energy costs and demand of our data) for choosing these parameters for the

tested instances are given in Section 4.5.1.1. We observe that the recharging process of the batteries

takes on average between 12 and 20 hours when they are discharged up to Bmin
b . Hence considering

δ = 48 allows explore different discharge levels in different periods of the day.
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Figure 4.6 – Power demand over a week of two instances generated from data of a given site.

The numerical experiments are organized as follows. Firstly, in Section 4.5.1, we describe the

instances and the settings used in our tests. Then, in Section 4.5.2 we present the results of OMBSR

instances solved using OMBSR-MILP, OMBSR-MILP’, OMBSR-G-HEU and OMBSR-RF-HEU. Note that, in this

section, we present and describe a synthetic table of results, grouped by the number of batteries and

number of time periods. The complete numerical results are available in (Silva, 2021). In the following,

we discuss the computational results and we analyse the economic impacts in Section 4.5.3.

4.5.1 Instances description

We based our testbed on 100 urban and rural sites from the fixed network of the French telecom-

munications operator Orange. The power consumption and the mean, or average value, of the power

demand over the horizon, denoted by W̄ =
∑︁

t∈T Wt

T , is also given. Moreover, the power demand of 50

sites is faithfully generated considering the observed data without any random variation. In contrast,

the power demand of 50 sites is generated with a randomness of 25% of the original observed data.

Figure 4.6 illustrates the power demand of two instances based on the data of a given site: Figure 4.6a

illustrates the power demand of an instance faithfully generated from original data, and Figure 4.6b

the power demand with a randomness of 25%.

Each site is equipped with at most 5 batteries, whose main properties are provided in what follows.

The autonomy of the batteries varies between 20 and 60 hours. Besides, two types of batteries are

installed (GEL and AGM), the recharge power rate PBb
being dependent of each type:

1. PBb
= 1.95% of Bmax

b /∆ for GEL batteries;

2. PBb
= 3.34% of Bmax

b /∆ for AGM batteries.
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In addition, the minimal power discharge Dmin
b is 10% of Dmax

b , which is different for each battery b.

Finally, the value of Bmin
b is 50% of the battery energy stock capacity, and each battery cannot be

used more than 144 times over a year. More precisely, the value of Nb considered in our tests is 3

times the number of weeks.

Concerning the data related to the distributor, we consider the unit energy prices from the French

distributor EDF, publicly available at data.gouv.fr (2020). Besides, the maximum amount of power

that can be purchased per time period P max is established in a contract. In our tests, to guarantee

that the value of P max is greater than the power demand Wt at any time period t ∈ T , we set such a

value to 3W̄ .

Moreover, we assume time horizons of length one, two or three weeks with time discretization

of 60 minutes (i.e., ∆ = 1 and T ∈ {168, 336, 504}). The input values of the power demand, unit

energy price, and reward over the time horizon, are taken as average observed values. Our tests were

performed on 300 instances.

All tests were performed on a server computer with 4GB of RAM and 1 Intel Xeon 2.2GHz CPU.

The method used to solve the (OMBSR-MILP) and (OMBSR-MILP’) formulations is the branch-

and-bound implemented in CPLEX 12.9, with default settings. The running time is limited to 30

minutes for each instance. We limited the running time to 30 minutes because no significant gains

were observed when running some instances for 3 hours, i.e., for those instances, we observe solutions

that give on average 0.114% more savings when the running time is extended. Moreover, the optimality

gap decreases on average by 19% when the running time is set to 3 hours (i.e., it decreases on average

from 50.84% when running time is set to 30 min to 40.53% with running time set to 3 hours).

4.5.1.1 Parameters tuning

The way the parameters values of OMBSR-HEU are set is based on the real observed data for the

instances considered in our testbed. Firstly, we observed a daily periodicity in the energy prices and

power demand over the time horizon. Figures 4.7 and 4.8 illustrate such a periodicity for a site over

a week. We observe that the energy usually costs more in the afternoon which is also the period of

the day with the highest power demand. In addition, the energy tends to cost less during the night

following which is also the period where the power demand decreases. Hence, using batteries in the

day and recharging them during the night appears to be the best strategy to reduce the total energy
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Figure 4.7 – Power demand of a site over a week.
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Figure 4.8 – Energy prices of a site over a week .

cost for the company. Secondly, by analyzing the properties of the batteries we observe that they can

be used for 9 hours on average and they need about 17 hours on average to be fully recharged. Hence,

a complete battery cycle takes 26 hours on average.

Finally, for the graph based heuristic we consider the parameters γ = 48 (we have that 26 < 48 <

24 + 26 = 50) and γ′ = 24 due to the daily periodicity observed. The value of the parameter γ = 48

is chosen because a complete cycle can be done in any time period of the periodicity of 24 hours. As

close γ is to 50, more flexibility on the use of the batteries is allowed. The same periodicity is observed

for all sites over a week.

4.5.2 Numerical results

In this section we present the results concerning OMBSR instances solved with OMBSR-MILP, OMBSR-

MILP’, OMBSR-G-HEU and OMBSR-RF-HEU. A detailed version of the experiments is available in (Silva,

2021). The experimental analysis will be provided in the next section.

Table 4.1 shows the numerical results concerning OMBSR instances solved with OMBSR-MILP. In

this table, each row stores the average of the results for a subset of instances, grouped by the number |B|

of batteries installed in the site and by the number of weeks considered. Column W rand corresponds

to the randomness variation in the power demand of instances. Column Stand. Cost corresponds to

the average of the standard cost, i.e., the cost when no battery is used, equal to
∑︁

t∈T EtWt. Column

W̃ and PB̃ report the mean of W and PB, respectively. Besides, the average running time, given

in seconds, and the average reduction in the total energy cost, given in %, are provided in columns

CPU Time and savings. In addition, column Final GAP reports the average optimality gap, i.e., the

relative gap between the value of the best integer solution obtained by CPLEX and the best lower

bound computed. Column LR savings and GAP at root reports the average savings achieved by

the continuous relaxation, and the average optimality gap reached at the root of the branch and bound
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tree, respectively. Furthermore, columns Nb of Var, Int Var and Nb of Const. report the mean

number of variables, the mean percentage of integer variables and the mean number of constraints,

respectively.

Table 4.1 – OMBSR-MILP results

W
rand

weeks |B| Stand.
Cost

W̃
(kW)

PB̃

(kW)
CPU

Time (s)
Final
GAP savings

LR
savings

GAP
at root

Nb of
Var

Int
Var

Nb of
Const.

0% 1 1 634.6 =C 3.74 0.78 341 0.1% 2.45% 4.08% 69% 1176 43% 2523
0% 1 2 585.1 =C 3.45 0.39 1 800 33.8% 2.50% 4.19% 107% 2184 46% 4710
0% 1 3 585.3 =C 3.45 0.23 1 800 41.7% 2.41% 4.02% 134% 3192 47% 6897
0% 1 4 713.2 =C 4.20 0.22 1 800 49.9% 2.30% 3.99% 144% 4200 48% 9084
0% 1 5 507.4 =C 2.99 0.14 1 800 54.3% 2.44% 4.27% 180% 5208 48% 11271
0% 2 1 1 269.8 =C 3.74 0.78 1 800 36.3% 2.48% 4.23% 127% 2352 43% 5043
0% 2 2 1 169.9 =C 3.45 0.39 1 800 52.8% 2.51% 4.35% 132% 4368 46% 9414
0% 2 3 1 169.5 =C 3.44 0.23 1 800 64.6% 2.31% 4.17% 163% 6384 47% 13785
0% 2 4 1 426.5 =C 4.20 0.22 1 800 68.2% 2.26% 4.13% 165% 8400 48% 18156
0% 2 5 1 017.6 =C 3.00 0.14 1 800 73.8% 2.35% 4.42% 183% 10416 48% 22527
0% 3 1 1 904.8 =C 3.74 0.78 1 800 47.2% 2.48% 4.28% 126% 3528 43% 7563
0% 3 2 1 752.8 =C 3.44 0.39 1 800 65.0% 2.45% 4.40% 142% 6552 46% 14118
0% 3 3 1 753.7 =C 3.44 0.23 1 800 70.2% 2.31% 4.22% 172% 9576 47% 20673
0% 3 4 2 140.0 =C 4.20 0.22 1 800 72.4% 2.26% 4.18% 181% 12600 48% 27228
0% 3 5 1 527.6 =C 3.00 0.14 1 800 79.0% 2.34% 4.46% 239% 15624 48% 33783
25% 1 1 634.6 =C 3.74 0.78 1 560 39.5% 2.28% 3.98% 116% 1176 43% 2523
25% 1 2 585.1 =C 3.45 0.39 1 459 35.1% 2.53% 4.33% 142% 2184 46% 4710
25% 1 3 585.3 =C 3.45 0.23 1 483 39.3% 2.51% 4.28% 161% 3192 47% 6897
25% 1 4 713.2 =C 4.20 0.22 1 545 36.3% 2.30% 3.90% 137% 4200 48% 9084
25% 1 5 507.4 =C 2.99 0.14 1 800 50.4% 2.52% 4.37% 195% 5208 48% 11271
25% 2 1 1 269.8 =C 3.74 0.78 1 800 64.8% 2.23% 4.12% 114% 2352 43% 5043
25% 2 2 1 169.9 =C 3.45 0.39 1 800 62.3% 2.45% 4.49% 210% 4368 46% 9414
25% 2 3 1 169.5 =C 3.44 0.23 1 800 64.3% 2.43% 4.44% 159% 6384 47% 13785
25% 2 4 1 426.5 =C 4.20 0.22 1 800 63.7% 2.21% 4.05% 167% 8400 48% 18156
25% 2 5 1 017.6 =C 3.00 0.14 1 800 72.0% 2.41% 4.52% 174% 10416 48% 22527

Table 4.2 – OMBSR-MILP with a warm-up results

W
rand

weeks |B| Stand.
Cost

W̃
(kW)

CPU
Time (s)

Final
GAP

savings
CPU Time
Warmed (s)

Final GAP
Warmed

savings
Warmed

0% 1 1 634.6 =C 3.74 341 0.1% 2.45% 618 0.5% 2.45%
0% 1 2 585.1 =C 3.45 1 800 33.8% 2.50% 1 800 33.0% 2.50%
0% 1 3 585.3 =C 3.45 1 800 41.7% 2.41% 1 800 41.7% 2.40%
0% 1 4 713.2 =C 4.20 1 800 49.9% 2.30% 1 800 52.0% 2.28%
0% 1 5 507.4 =C 2.99 1 800 54.3% 2.44% 1 800 54.4% 2.43%
0% 2 1 1 269.8 =C 3.74 1 800 36.3% 2.48% 1 800 37.0% 2.48%
0% 2 2 1 169.9 =C 3.45 1 800 52.8% 2.51% 1 800 57.3% 2.44%
0% 2 3 1 169.5 =C 3.44 1 800 64.6% 2.31% 1 800 65.1% 2.31%
0% 2 4 1 426.5 =C 4.20 1 800 68.2% 2.26% 1 800 74.5% 2.18%
0% 2 5 1 017.6 =C 3.00 1 800 73.8% 2.35% 1 800 73.1% 2.37%

Table 4.2 stores the numerical results concerning the OMBSR instances solved with OMBSR-MILP

with a warm-up, i.e., when the solution from OMBSR-RF-HEU is given to CPLEX as a starting solution.

In this table, each row stores the average of the results for a subset of instances, grouped by the number

|B| of batteries installed in the site and by the number of weeks considered in the optimization. Column
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W rand corresponds to the randomness variation in the power demand of instances. Column Stand.

Cost corresponds to the average of the standard cost, i.e., the cost when no battery is used, equal to∑︁
t∈T EtWt. Column W̃ reports the mean of W . Besides, the average running time, given in seconds,

and the average reduction in the total energy cost, given in %, when (OMBSR-MILP) is solved without

a warm-up are provided in columns CPU Time and savings. In addition, column Final GAP reports

the value of the average optimality gap, i.e., the relative gap between the value of the best integer

solution obtained by CPLEX and the best lower bound computed, when (OMBSR-MILP) is solved

without a warm-up. Column CPU Time Warmed, Final GAP Warmed and savings Warmed report

the mean CPU time, given in seconds, the mean optimality gap and the mean savings obtained when

(OMBSR-MILP) is solved with a warm-up, respectively. Note that columns CPU Time and Final GAP

are the same ones presented in Table 4.1.

Table 4.3 – OMBSR-MILP’ numerical results

W
rand

weeks |B| Stand.
Cost

W̃
(kW)

CPU
Time
(s)

Final
GAP savings

LR
savings

GAP∗

at root
Nb

of Pairs
Nb of
Var

Int
Var

Nb of
Cons.

0% 1 1 634.6 =C 3.74 1 090 1.5% 2.45% 4.08% 71% 14112 15120 96% 2522
0% 1 2 585.1 =C 3.45 1 800 42.3% 2.52% 4.19% 86% 14112 30072 96% 4708
0% 1 3 585.3 =C 3.45 1 800 52.3% 2.39% 4.02% 110% 14112 45024 96% 6894
0% 1 4 713.2 =C 4.20 1 800 67.4% 2.21% 3.99% 127% 14112 59976 96% 9080
0% 1 5 507.4 =C 2.99 1 800 1252.3% 1.69% 4.27% 109% 14112 74928 96% 11266
0% 2 1 1 269.8 =C 3.74 - - - - - 56448 58464 98% 5042
0% 2 2 1 169.9 =C 3.45 - - - - - 56448 116592 98% 9412
0% 2 3 1 169.5 =C 3.44 - - - - - 56448 174720 98% 13782
0% 2 4 1 426.5 =C 4.20 - - - - - 56448 232848 98% 18152
0% 2 5 1 017.6 =C 3.00 - - - - - 56448 290976 98% 22522
0% 3 1 1 904.8 =C 3.74 - - - - - 127008 130032 98% 7562
0% 3 2 1 752.8 =C 3.44 - - - - - 127008 259560 99% 14116
0% 3 3 1 753.7 =C 3.44 - - - - - 127008 389088 99% 20670
0% 3 4 2 140.0 =C 4.20 - - - - - 127008 518616 99% 27224
0% 3 5 1 527.6 =C 3.00 - - - - - 127008 648144 99% 33778

25% 1 1 634.6 =C 3.74 1 600 56.2% 2.20% 3.98% 86% 14112 15120 96% 2522
25% 1 2 585.1 =C 3.45 1 521 44.9% 2.48% 4.33% 118% 14112 30072 96% 4708
25% 1 3 585.3 =C 3.45 1 595 69.2% 2.30% 4.28% 64% 14112 45024 96% 6894
25% 1 4 713.2 =C 4.20 1 640 53.8% 2.20% 3.90% 99% 14112 59976 96% 9080
25% 1 5 507.4 =C 2.99 1 800 69.6% 2.41% 4.37% 103% 14112 74928 96% 11266
25% 2 1 1 269.8 =C 3.74 - - - - - 56448 58464 98% 5042
25% 2 2 1 169.9 =C 3.45 - - - - - 56448 116592 98% 9412
25% 2 3 1 169.5 =C 3.44 - - - - - 56448 174720 98% 13782
25% 2 4 1 426.5 =C 4.20 - - - - - 56448 232848 98% 18152
25% 2 5 1 017.6 =C 3.00 - - - - - 56448 290976 98% 22522
25% 3 1 1 904.8 =C 3.74 - - - - - 127008 130032 98% 7562
25% 3 2 1 752.8 =C 3.44 - - - - - 127008 259560 99% 14116
25% 3 3 1 753.7 =C 3.44 - - - - - 127008 389088 99% 20670
25% 3 4 2 140.0 =C 4.20 - - - - - 127008 518616 99% 27224
25% 3 5 1 527.6 =C 3.00 - - - - - 127008 648144 99% 33778

Table 4.3 stores the numerical results concerning the OMBSR instances solved with OMBSR-MILP’.
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In this table, each row stores the average of the results for a subset of instances, grouped by the number

|B| of batteries installed in the site and by the number of weeks considered in the optimization. Column

W rand corresponds to the randomness variation in the power demand of instances. Column Stand.

Cost corresponds to the average of the standard cost, i.e., the cost when no battery is used, equal to∑︁
t∈T EtWt. Column W̃ reports the mean of W . Besides, the average running time, given in seconds,

and the average reduction in the total energy cost, given in %, are provided in columns CPU Time and

savings, respectively. In addition, column Final GAP reports the value of the average optimality

gap, i.e., the relative gap between the value of the best integer solution obtained by CPLEX and the

best lower bound computed. Column LR savings and GAP∗ at root reports the average savings

achieved by the continuous relaxation, and the average optimality gap reached at the root of the

branch and bound tree, respectively. Note that for some instances a feasible solution was not reached

at the root of the branch and bound tree. Furthermore, columns Nb of Pairs, Nb of Var, Int

Var and Nb of Const. report the mean number of pairs (f, l) in (OMBSR-MILP’), the mean number

of variables, the mean percentage of integer variables and the mean number of constraints, respectively.

Note that such tests were performed only for instances optimized over one week. For instances with

two or three weeks the creation time takes more than 30 minutes.

Table 4.4 – OMBSR-G-HEU numerical results

W
rand

weeks |B| Stand.
Cost

W̃
(kW)

(48.24)
CPU

Time (s)

(48.24)
savings

(36.12)
CPU

Time (s)

(36.12)
savings

(24.12)
CPU

Time (s)

(24.12)
savings

0% 1 1 634.6 =C 3.74 2 2.19% 3 2.07% 2 1.60%
0% 1 2 585.1 =C 3.45 8 2.44% 6 2.24% 4 1.96%
0% 1 3 585.3 =C 3.45 41 2.36% 15 2.14% 7 1.86%
0% 1 4 713.2 =C 4.20 193 2.29% 59 2.11% 11 1.85%
0% 1 5 507.4 =C 2.99 252 2.45% 125 2.24% 17 2.04%
0% 2 1 1 269.8 =C 3.74 4 2.23% 6 2.12% 5 1.69%
0% 2 2 1 169.9 =C 3.45 16 2.41% 13 2.27% 9 1.97%
0% 2 3 1 169.5 =C 3.44 81 2.36% 30 2.18% 14 1.88%
0% 2 4 1 426.5 =C 4.20 390 2.29% 119 2.14% 22 1.87%
0% 2 5 1 017.6 =C 3.00 520 2.44% 229 2.29% 34 2.05%
0% 3 1 1 904.8 =C 3.74 7 2.22% 8 2.21% 7 1.70%
0% 3 2 1 752.8 =C 3.44 25 2.41% 20 2.36% 14 1.96%
0% 3 3 1 753.7 =C 3.44 123 2.36% 48 2.27% 22 1.89%
0% 3 4 2 140.0 =C 4.20 580 2.29% 196 2.22% 34 1.86%
0% 3 5 1 527.6 =C 3.00 791 2.44% 375 2.38% 53 2.05%

25% 1 1 634.6 =C 3.74 125 2.25% 81 2.09% 9 1.79%
25% 1 2 585.1 =C 3.45 81 2.43% 27 2.27% 8 1.97%
25% 1 3 585.3 =C 3.45 163 2.48% 73 2.22% 12 1.83%
25% 1 4 713.2 =C 4.20 81 2.18% 27 2.02% 7 1.71%
25% 1 5 507.4 =C 2.99 173 2.48% 65 2.32% 13 2.08%
25% 2 1 1 269.8 =C 3.74 260 2.23% 158 2.11% 17 1.82%
25% 2 2 1 169.9 =C 3.45 173 2.44% 55 2.29% 17 2.02%
25% 2 3 1 169.5 =C 3.44 343 2.45% 130 2.27% 25 1.92%
25% 2 4 1 426.5 =C 4.20 170 2.19% 54 2.05% 14 1.73%
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Table 4.4 continued from previous page

W
rand

weeks |B| Stand.
Cost

W̃
(kW)

(48.24)
CPU

Time (s)

(48.24)
savings

(36.12)
CPU

Time (s)

(36.12)
savings

(24.12)
CPU

Time (s)

(24.12)
savings

25% 2 5 1 017.6 =C 3.00 352 2.48% 129 2.34% 26 2.10%
25% 3 1 1 904.8 =C 3.74 397 2.23% 254 2.18% 26 1.82%
25% 3 2 1 752.8 =C 3.44 265 2.45% 92 2.39% 26 2.03%
25% 3 3 1 753.7 =C 3.44 514 2.46% 211 2.37% 37 1.95%
25% 3 4 2 140.0 =C 4.20 262 2.17% 90 2.14% 21 1.75%
25% 3 5 1 527.6 =C 3.00 548 2.47% 210 2.43% 39 2.10%

Table 4.4 stores the numerical results concerning the OMBSR instances solved with OMBSR-G-HEU

considering the parameters (γ, γ′) ∈ {(48, 24), (36, 12), (24, 12)}. In this table, each row stores the

average of the results for a subset of instances, grouped by the number |B| of batteries installed in the

site and by the number of weeks considered in the optimization. Column W rand corresponds to the

randomness variation in the power demand of instances. Column Stand. Cost corresponds to the

average of the standard cost, i.e., the cost when no battery is used, equal to
∑︁

t∈T EtWt. Column W̃

reports the mean of W . Besides, the average running time, given in seconds, and the average reduction

in the total energy cost, given in %, are provided in columns CPU Time and savings for each pair of

values (γ, γ′) considered, respectively.

Table 4.5 stores the numerical results concerning the OMBSR instances solved with OMBSR-RF-HEU

considering the parameters (δ, δ′) ∈ {(48, 24), (24, 12)}. In this table, each row stores the average of

the results for a subset of instances, grouped by the number |B| of batteries installed in the site and by

the number of weeks considered in the optimization. Column W rand corresponds to the randomness

variation in the power demand of instances. Column Stand. Cost corresponds to the average of the

standard cost, i.e., the cost when no battery is used, equal to
∑︁

t∈T EtWt. Column W̃ reports the

mean of W̄ . Besides, the average running time, given in seconds, and the average reduction in the

total energy cost, given in %, are provided in columns CPU Time and savings for each pair of values

(δ, δ′) considered, respectively.

Table 4.5 – OMBSR-RF-HEU numerical results

W
rand

weeks |B| Stand.
Cost

W̃
(kW)

(48.24)
CPU

Time (s)

(48.24)
savings

(24.12)
CPU

Time (s)

(24.12)
savings

0% 1 1 634.6 =C 3.74 4 2.14% 2 2.02%

0% 1 2 585.1 =C 3.45 76 2.22% 7 2.18%

0% 1 3 585.3 =C 3.45 340 2.13% 17 1.99%

0% 1 4 713.2 =C 4.20 792 2.10% 89 1.96%
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Table 4.5 continued from previous page

W
rand

weeks |B| Stand.
Cost

W̃
(kW)

(48.24)
CPU

Time (s)

(48.24)
savings

(24.12)
CPU

Time (s)

(24.12)
savings

0% 1 5 507.4 =C 2.99 854 2.27% 161 2.16%

0% 2 1 1 269.8 =C 3.74 10 2.07% 8 2.15%

0% 2 2 1 169.9 =C 3.45 243 2.16% 26 2.27%

0% 2 3 1 169.5 =C 3.44 759 2.09% 67 2.17%

0% 2 4 1 426.5 =C 4.20 1 211 2.01% 304 2.08%

0% 2 5 1 017.6 =C 3.00 1 299 2.23% 642 2.27%

0% 3 1 1 904.8 =C 3.74 22 2.20% 19 2.25%

0% 3 2 1 752.8 =C 3.44 409 2.28% 65 2.34%

0% 3 3 1 753.7 =C 3.44 1 249 2.24% 153 2.26%

0% 3 4 2 140.0 =C 4.20 1 777 2.14% 594 2.17%

0% 3 5 1 527.6 =C 3.00 1 800 2.32% 1 063 2.34%

25% 1 1 634.6 =C 3.74 413 2.09% 109 1.99%

25% 1 2 585.1 =C 3.45 402 2.25% 34 2.18%

25% 1 3 585.3 =C 3.45 542 2.28% 85 2.16%

25% 1 4 713.2 =C 4.20 349 2.04% 42 1.94%

25% 1 5 507.4 =C 2.99 703 2.32% 105 2.27%

25% 2 1 1 269.8 =C 3.74 779 1.98% 343 2.04%

25% 2 2 1 169.9 =C 3.45 683 2.20% 118 2.31%

25% 2 3 1 169.5 =C 3.44 883 2.23% 301 2.29%

25% 2 4 1 426.5 =C 4.20 700 1.96% 140 2.01%

25% 2 5 1 017.6 =C 3.00 1 156 2.25% 385 2.33%

4.5.3 Experimental analysis

In the following we analyse the results presented in the previous section.

We begin by focusing on the running time and observe a significant impact of the number of time

periods and number of batteries installed on the performance of all algorithms. Indeed, we observe

that the size of the problem increases as the number of batteries installed and the number of time

periods increase.

Concerning OMBSR-MILP, optimal values are obtained only for 19 instances where sites have a single

battery with a week time horizon, corresponding to 7.6% of all the tested instances. For all other

instances, no optimality guarantee is observed within the CPU time limit. Moreover, the optimality

gap observed is significant, varying from 33.8% on average for instances where the site is equipped

with 2 batteries for a one-week time horizon, up to 79% on average for larger instances where the site
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is equipped with 5 batteries for a three-week time horizon. However, the best solution found gives a

reduction in the energy bill (2.38% on average) even for the instances with no optimality guarantee.

In addition, the optimality gap found at the root of the branch and bound tree is higher than the final

optimality gap obtained (153% and 54%, respectively), which shows that CPLEX is able to improve

the bounds over the iterations. We observe that 57.9% of instances solved to optimality have a well

defined periodicity, i.e., with no randomness in the power demand. In addition, the average gap for

those instances is smaller compared to instances with power randomness of 25% (47.6% and 52.8% for

instances with one or two weeks, respectively). Hence, OMBSR-MILP tends to perform slightly better for

instances with no randomness in the power demand. In spite of the fact that the number of variables

and constraints grows linearly with the number of time periods, even for instances with a single

battery installed for which we can use the algorithm proposed in Chapter 3 to solve in polynomial

time, OMBSR-MILP cannot reach an optimality guarantee within the CPU time limit for instances with

a single battery for a two-week time horizon or more.

Supplementary results are displayed in Table 4.2 for OMBSR-MILP when an initial solution is given

to CPLEX. In these tests, we set the initial solution as the solution obtained from OMBSR-RF-HEU.

We aim to analyze if CPLEX is able to obtain a first feasible solution or to converge to an optimal

solution. We tested only instances with one and two weeks time horizon with randomness of 0%, for a

total of 100 instances. We observe that the final solution obtained by CPLEX when an initial solution

is given is better than the ones with no initial solution for 48% of the instances tested. The solutions

obtained are 1.48% better on average. However, no optimality guarantee is obtained for any instance

tested that is not solved to optimality with no initial solution.

Concerning OMBSR-MILP’, only instances with one-week time horizon are tested. In this context,

optimal values are obtained only for 14 instances where the site has a single battery installed, corre-

sponding to 14% of all instances tested. For all other instances, no optimality guarantee is observed

within the CPU time limit. Moreover, the optimality gap observed is significant, varying from 1.5%

on average for some instances where the site is equipped with a single battery, up to 1250% on average

for larger instances where the site is equipped with 5 batteries. However, the best solution found gives

a reduction in the energy bill (2.29% on average) even for the instances with no optimality guarantee.

In addition, the optimality gap found at the root of the branch and bound tree is higher than the

final optimality gap obtained reached. However, no feasible solution is obtained at the beginning of

139



4.5. NUMERICAL EXPERIMENTS

the branch and bound method for some instances. Indeed, the values of Column Final GAP can

be higher than the values of Column GAP∗ at root because harder instances are not considered to

compute the value of Column GAP∗ at root. In fact, for instances with two-weeks time horizon, the

model takes too much time to be created because of the computation of the set Ct. We can observe

that the number of variables and constraints increases much faster in (OMBSR −MILP ′) than in

the (OMBSR−MILP ) model.

Concerning OMBSR-G-HEU, all instances with one, two or three weeks time horizon are solved in

less than 30 minutes. We also observe that the number of batteries installed and the number of time

periods have an impact on the running time. Instances with 4 or 5 batteries with three-weeks time

horizon require more computational effort because of the large number of sub-instances to be solved,

which are also harder to solve because of the combinatorial aspect related to the use of the batteries

installed. In addition, the parameters γ and γ′ impact the running time of each sub-problem obtained

and the number of sub-problems. In fact, with a small value of γ, the number of sub-problems increases

but the running time required to solve each of one them decreases. Moreover, we observe that the

running time grows linearly with the number of time periods and quadratically with the number of

battery installed. Concerning γ′, the number of sub-problems to solve increases as γ′ increases.

Concerning OMBSR-RF-HEU, 90% of all instances with one, two or three weeks time horizon tested

are solved in less than 30 minutes. Only instances with three-weeks time horizon with 5 batteries

could not be solved in 30 minutes. We also observe that the number of batteries installed and the

number of time periods have an impact on the running time. Instances with 4 or 5 batteries and

three-weeks time horizon require more computational effort because of the large number of iterations

needed to be performed, as Step 2 is slower because of the combinatorial aspect related to the use of

the batteries installed. In addition, the parameters δ and δ′ impact the running time of each iteration

and the number of iterations. We observe that the running time decreases as the values of δ and δ′

decrease. In fact, with a small value of δ the number of iterations increases but the running time of

each one decreases because of the small number of integer variables considered at Step 2. Moreover,

the running time grows linearly with the number of time periods and quadratically with the number

of batteries installed.

Finally, to confirm the relevance of the approaches proposed, we illustrate in Fig. 4.9 the profile

of the best solution found by OMBSR-MILP in the case of Site 7, where 3 batteries are installed, and
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Figure 4.9 – Illustration of the best solution found by OMBSR-MILP for an OMBSR instance with 3
batteries with a week time horizon. a) Energy stock in each battery, and b) Power demand and power
bought over the time horizon.

must be with one-week time horizon. The variety of the use of the batteries is observed in all other

sites for OMBSR-MILP, OMBSR-MILP’, OMBSR-G-HEU and OMBSR-RF-HEU. The power demand over the

time horizon is represented by the blue curve and the power effectively bought by the orange one

(see Fig. 4.9b). The energy capacity of each battery installed is represented by the curves in green,

purple, and yellow (see Fig. 4.9a). Firstly, we can observe that batteries can be used at different time

periods. In this context, their first use and recharge are performed together, but, in the following,

they are used independently from each other. Even during the same battery discharge, there can be

different powers, such as in the second use of Battery-3. Moreover, a battery can be in discharge mode

while another one is recharging (e.g., the third use of Battery-1 and Battery-3), and the impact on the

maximal number of battery uses imposed (i.e., Nb = 3) is observed for Battery-2, that stays a long

time in rest mode for this reason. In this example, the energy bill is reduced by 2.70%, confirming the

practical relevance of our approaches, and the large variety of battery uses illustrates the need for a

fast decision-making tool.

We now focus on the economic aspects of the solutions, and observe a reduction in the energy bill

for all solution approaches proposed, confirming that participating in the retail market can generate

savings for the company. Furthermore, no substantial gain is observed by increasing the number of

batteries installed in a site, since the sum of the powers of all batteries installed on the site is equivalent

to W̄ , i.e.,
∑︁

b∈B Dmax
b ≈ W̄ . Indeed, the savings obtained are mainly limited by the maximal number
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of battery uses and by the fact that the sum of the powers of all batteries installed is equivalent to

the average of its power demand. Moreover, the impact of Nb in the savings is observed in all solving

methods. The number of times that each battery is used in any solution is exactly Nb, independently

of the solving method used.

Concerning the OMBSR-MILP results, the savings obtained by the best solution found are of 2.39%

on average for instances with one, two or three weeks time horizon. Even for instances with 5 batteries,

the savings are quite the same and the gap is the same on average, such as represented in Table 4.1.

Furthermore, we observe similar savings and final gaps on average for instances with a randomness in

the power demand, for instances without randomness in the power demand and when an initial solution

is given to CPLEX. However, when exploring instances having up to 24 weeks such as presented by

Silva et al. (2022) for which results are available in (Silva, 2021), we can observe that the savings

obtained by the best solution found decrease significantly when the time horizon and the number of

batteries installed increase. Such savings decrease from 2.48% to 0.26%, on average, for large instances

with 24 weeks time horizon.

Concerning the OMBSR-MILP’ results, the savings obtained by the best solution found are slightly

smaller (2.28% on average) compared to the savings obtained by OMBSR-MILP. However, we can observe

that the difference of savings obtained with OMBSR-MILP’ and OMBSR-MILP grows with the number of

batteries installed. In fact, there is no substantial gain, neither in CPU time nor in the savings, that

justifies the use of OMBSR-MILP’ instead of OMBSR-MILP.

Concerning OMBSR-G-HEU, the savings obtained are higher compared to the savings obtained with

OMBSR-MILP as the number of batteries installed increases. For instances with a single battery installed

(for which optimality guarantee is obtained with OMBSR-MILP), savings obtained using OMBSR-G-HEU

are only 0.25% smaller on average for γ = 48 and γ′ = 24, which seems acceptable for a heuristic that

performs 120 times faster, on average, for these instances. In addition, the parameters γ and γ′ impact

the quality of the solutions obtained. We observe that large values of γ contributes to better savings,

which is totally expected because, as γ becomes smaller, the algorithm starts losing opportunities of

batteries usages that could give better savings. In our tests, the savings obtained with γ = 48 and

γ′ = 24 are larger (0.13% larger on average compared to γ = 36 and γ′ = 12, and 0.45% larger on

average compared to γ = 24 and γ′ = 12), and the combination γ = 24 and γ′ = 12 is more sensitive

to variations in the power demand (we observe savings 0.12% larger with a randomness of 25%).
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Figure 4.10 – Illustration of the best solution found by OMBSR-G-HEU for different values of γ and γ′

for an OMBSR instance.

To illustrate the impact of the parameters γ and γ′ on the savings that can be obtained for an

OMBSR instance, Figure 4.10 provides the solution for different values of those parameters. In this

example, we consider a time horizon composed of 8 time periods and a constant power demand of 1kW.

In addition, only one battery is considered with Dmax = Dmin = PB = 0.5kW. In the first scenario

(i.e., scenario S1 for γ = 4 and γ′ = 4), only two sub-problems will be considered by OMBSR-G-HEU

(i.e., from time periods 1 to 4 and from 5 to 8). In both sub-problems, the optimal solutions consist

in not using the battery. Then, the saving obtained is 0. In the scenario 2 and 4 (i.e., scenario S2 for

γ = 4 and γ′ = 3 and scenario S4 for γ = 2 and γ′ = 1), the sub-problems considered (i.e., from time

periods 1 to 4, 4 to 7, 7 to 8 for S2 and from time periods 1 to 2, 2 to 3, 3 to 4, 4 to 5, 5 to 6, 6 to 7 and

7 to 8 for S4) allow to use the battery at time period 4 and recharge it at time period 5, giving savings

of 0.5e in both cases. In the third scenario (i.e., scenario S3 for γ = 4 and γ′ = 2), the sub-problems

considered (i.e., from time periods 1 to 4, 3 to 6, 5 to 8 and 7 to 8) allow to use the battery at time

periods 3 and 4 by recharging it at time periods 5 and 6, giving savings of 1e. We can observe in this

example the impact of the energy prices, of the power demand and of the battery properties on the

solution obtained for the values of the parameters γ and γ′ that we consider. Indeed, for a given set of

parameters γ and γ′, the solution obtained can be far from the optimal one in function of the energy

prices, power demand and batteries properties. To illustrate that, if an instance has high power prices

at the end of the time horizon of the sub-problems (i.e., scenario S2 of Figure 4.10), the gap from the

solutions obtained to the optimal one depends mainly on the energy prices, and hence we can have

potentially low savings. For this example, the gap from the optimal solution is (E4 −E5)PBe, which
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corresponds to (1− (E4−E5)PB

(E3+E4−E5−E6)PB
)%.

Concerning OMBSR-RF-HEU, the savings obtained are higher compared to the savings obtained with

OMBSR-MILP as the number of batteries installed increases. Moreover, for instances with a single battery

installed (for which optimality guarantee is obtained with OMBSR-MILP), savings obtained using OMBSR-

RF-HEU are only 0.31% smaller on average, which seems acceptable for a heuristic that performs 80

times faster, on average, for these instances. In addition, the parameters δ and δ′ impact the quality of

the solutions obtained. We observe that large values of δ contributes to better savings, which is totally

expected. Comparing the results obtained with OMBSR-G-HEU and OMBSR-RF-HEU, we can observe that

OMBSR-G-HEU gives better solutions (i.e., savings 0.15% larger on average) for the instances tested.

Moreover, we can observe that, even if both heuristics yield good savings, OMBSR-G-HEU performed 3

times faster on average than OMBSR-RF-HEU for the instances tested.

4.6 Conclusion

This chapter addresses the impact of managing multiple batteries. In particular, we have considered

the OMBSR problem that consists in optimizing the management of a multi-battery energy storage

system in order to reduce the total energy costs, by participating in the demand response mechanism

performing exclusively peak-shavings. We proposed two mixed-integer linear programs, and any of

their optimal solutions provides a strategy for using the batteries so as to reduce as much as possible

the total energy cost. We have shown that the OMBSR problem is NP-Hard, and two heuristics are

proposed to solve large-scale instances. Moreover, we have used these approaches to solve OMBSR on

realistic instances.

As a result, we firstly observe that using batteries installed for backup to perform peak-shavings can

generate savings. Concerning the solving approaches, we observe in particular that both mathematical

models could achieve an optimality guarantee only for a small part of the instances within the time

limit. However, even for instances without such an optimality guarantee, the best solution obtained

already generates savings. The number of times that each battery can be used seems to be the

parameter that has the greatest impact on those savings. Indeed, the number of times that each

battery b is used in any solution is exactly Nb, independently of the solving method used. In contrast,

no substantial gain was observed by increasing the number of batteries available (since the sum of
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the powers Dmax of all batteries is equivalent to the average power demand), the time horizon or

the average power demand, i.e., the value of W̄ . However, the use of multiple batteries is desirable

for safety reasons and to increase the lifetime of the batteries. Concerning the heuristics, the results

obtained proved their economical relevance, by providing better solutions compared to the best ones

obtained by the mixed-integer linear programs on large-scale instances. Furthermore, OMBSR-G-HEU

proved to be more efficient for instances with a well defined periodicity in the power demand and

prices, while OMBSR-RF-HEU proved to be more efficient for the general case.

Concerning the performance of our algorithms, we observe that the number of batteries installed

and the time horizon are the parameters that have the most impact on the solving time. We consider

a time limit of 30 minutes for solving each instance, and, in this aspect, the heuristics proved to be

computationally efficient, while we observe that the solving time for the mixed-integer linear programs

proposed increases fast.

In the following, we will explore the management of multiple batteries that are used to perform

load curtailments, and reuse some of the algorithms and methods proposed in this chapter to develop

fast solving approaches. Local search approaches could also be used to solve instances with periodicity

in the data (for instance, in the power demand), such as the ones that we have considered.
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Chapter 5

Optimization of a multi-battery storage
system to participate in the energy markets

In this chapter, we consider the complete problem of this thesis which is optimizing total energy

costs of telecommunications sites using batteries installed for backup to participate in the energy

market using proper battery management. We extend the problem defined in Chapter 3 to a multi

site setting where the batteries are allowed to perform peak-shavings as well as load curtailments.

However, contrary to the problem treated in Chapter 4, each site is equipped with a single battery,

which is the case of the French telecommunications operator Orange.

Formally, the problem treated in this chapter is the Optimization of a Multi-Battery Storage system

in order to participate in the Energy market (referred to as OMBSE), in order to reduce the total

energy cost for the company. The main issue is to respect the market rules and the safety usage rules

while minimizing the net total energy cost by performing peak-shavings and load curtailments.

Concerning the scientific contributions, we formally define the problem and we present two math-

ematical programming models for OMBSE in Section 5.2. We also proof in Section 5.3 that the

OMBSE problem is strongly NP-Hard, via a reduction from the 3-Partition problem. In the following,

we propose two solving heuristics for the problem: firstly we present in Section 5.4 a bidimensional

relax-and-fix based on the solving approach presented in Section 4.4, and then, in Section 5.5, a de-

composition solving method based on a Lagrangian relaxation and on the subgradient method that

integrates the approach proposed in Chapter 3. We also performed numerical experiments with real-
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5.1. PROBLEM STATEMENT

5.1 Problem statement

We consider a deterministic framework, extending to the one considered in Chapter 3 to a multi

site setting composed by a set of telecommunication sites S, each equipped with a single battery. Each

site s in S has a power demand Ws,t, given in kW, for each time period t ∈ T , and the limit of power

P max
s , given in kW, that can be bought at any time period. The power cost Et is the same for all sites

at each time period t ∈ T .

Concerning the battery assets, each site is equipped with a single battery. Since each site is

equipped with only one battery, we denote by bs the battery installed at site s. Indeed, each battery

bs of each site s ∈ S is defined by the parameters Bmin
bs

, Bmax
bs

, PBbs
, Dmin

bs
andDmax

bs
as described in

Chapter 3, and by Nbs as described in Chapter 4, and is subject to the same usage rules R1-R6, defined

in Section 1.3.

Concerning the energy market, the same rules R7-R9 apply. In addition to these rules, the number

of curtailments that can be performed over the horizon is limited by a given number N c imposed by

the transmission system operator (RTE-Portal) (i.e., rule R10).

Since batteries from multiple sites will be used to perform the same load curtailment, the customer

must reduce the total power bought from the distributor by PT O over all sites together (i.e., the

maximum amount of power pmax
c can be purchased from the distributor considering all sites together

at each time period during a load curtailment c). Hence, the value of ωc for a curtailment c, which

starts at the time period fc and ends at the time period lc, is thus computed as follows:

ωc =
∑︁

s∈S(
∑︁lc

t=fc
Ws,t + us,fc−1)

lc − fc + 2 (5.1)

Note that Equation (5.1) is valid for all sites, including the ones for which the battery installed is

not used during a load curtailment (i.e., even if the battery of a site is recharging, the power bought

by the corresponding site will be considered in the computation of ωc). The computation of pmax
c is

the same one as in Equation (3.2).

Recall that our goal is to use the batteries while respecting the electricity markets rules and keeping

the network safe (i.e., respecting the battery safety usage rules), at minimal cost. As described in

Chapter 3, the total amount of energy savings consists of two parts. The first part is provided by
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the difference between the energy prices during a battery use and its recharge, and the second one

by the reward paid the minimal reduction PT O during each load curtailment. Note that, differently

from Chapter 3, the reward paid by the transmission system operator is not related to the total load

reduction, but only to the power contractualized. The customer can reduce more than PT O if the

difference of energy prices between the duration the curtailment and the recharge of the battery is

profitable. The reward policy considered to compute this second part is the First Time Reward (FTR),

which is the reward policy in the French context.

The problem stated above is referred to as OMBSE in the following, and any of its instances is

fully described by the following parameters (some of which are vectors or sets): W , ∆, E, P max, S,

Bmin, Bmax, PB, Dmin, Dmax, N , ∆min, ∆max, PT O, R, N c and the reward policy (represented by

a boolean value). The same safety usage rules R1-R6 and energy market rules R7-R10, as the ones

defined in Section 1.3, are taken into account.

5.2 Mathematical formulation

5.2.1 Mixed-integer nonlinear program

The formulation that models OMBSE described in this section is a mixed-integer nonlinear program

that will be referred to as (OMBSE-MINLP). Similarly to (OBSC-MINLP), we will consider the same

set C and we are looking for a set of curtailments (fc, lc, dc) that can be performed without conflict,

while minimizing the total energy cost. Hence, the same family of variables x, y, pmax, uD and uB used

in the model (OBSC-MILP) presented in Section 3.2.1 is considered. In addition, since the batteries

can also be used to reduce the total energy cost by performing peak-shavings when they are not

being used to perform load curtailments, the same families of variables z and bstart used in the model

(OMBSR-MILP’) presented in Section 4.2.2 to compute the number of times that each battery is used

are necessary.

Decision Variables

Firstly, a solution is determined by the values of the following variables:

- xbs,t ∈ [Bmin
bs

, Bmax
bs

], ∀s ∈ S, ∀t ∈ T : amount of energy, in kWh, available in the battery bs of

each site s at the beginning of each time period t. An additional variable xbs,t+1 represents the
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energy stock at the end of the planning horizon.

The following binary variables are used to control which curtailments are performed as described

in Chapter 3:

- yc ∈ {0, 1}, ∀c ∈ C: equal to 1 if a curtailment c starting at time period fc and ending at time

period lc is performed, and to 0 otherwise.

- pmax
c ≥ 0, ∀c ∈ C: maximum amount of power (in kW) that can be bought at each time period

t ∈ {fc, . . . , lc}, if a curtailment c starting at time period fc and ending at time period lc is

performed.

Note that variables z are related to peak-shavings, and variables y to the curtailments. Hence, the

batteries can be used when no curtailments are performed (i.e., the case where the values of variables

y are equal to 0 and the values of variables z for some batteries are set to 1). In the same vein, if a

curtailment is performed (i.e., the value of some variable y is equal to 1), a subset of batteries must

be in discharge mode (i.e., the values of variables z are equal to 1).

The following additional variables are used to control the state of each battery bs:

- zbs,t ∈ {0, 1}, ∀s ∈ S, ∀t ∈ T : equal to 1 if the battery installed at site s is in discharge mode at

time period t, and to 0 otherwise;

- bstart
bs,t ∈ {0, 1}, ∀s ∈ S, ∀t ∈ T : equal to 1 if the battery installed at site s starts being discharged

at time period t, and to 0 otherwise.

Note that variables z and bstart are necessary to compute how many times each battery is used, as in

Chapter 4, because the batteries can also be used to perform peak-shavings.

To model the power bought at each time period t, the following variables are used:

- uD
s,t ∈ [0, Ws,t],∀s ∈ S, t ∈ T : power bought for the demand consumption of the site s at time

period t (in kW);

- uB
bs,t ∈ [0, PBbs

], ∀s ∈ S, t ∈ T : power bought for the recharge of the battery installed at site s

at time period t (in kW).
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Note that, the total power load reduction dc after the curtailment c has been performed is given

by the sum of the difference of pmax
c and the power bought at each site s at time t (i.e., uB

bs,t + uD
s,t)

for each t between the beginning of period fc and the end of period lc.

The objective function is defined as follows:

min
∑︂
t∈T

Et

∑︂
s∈S

(uB
bs,t + uD

s,t)−
∑︂
c∈C

ycRfcPT O(lc − fc + 1) (5.2)

The objective function is composed of two parts: the first one corresponds to the total energy cost

spent on purchasing energy, and the second one to the reward received for each curtailment performed.

A solution is given by the energy stock of the batteries at each time period (the values of the xbs,t

variables) and by the curtailments performed (the values of the yc variables).

The following constraints define the state of each battery at each time period t:

xbs,t − xbs,t+1 ≤ ∆Dmax
bs

zbs,t ∀s ∈ S, ∀t ∈ T (5.3)

− xbs,t + xbs,t+1 ≤ ∆PBbs
(1− zbs,t)−∆Dmin

bs
zbs,t ∀s ∈ S, ∀t ∈ T (5.4)

Constraints (5.3) guarantee that, if the energy stock of a battery decreases, then the battery is in

discharge mode, i.e., zbs,t = 1. Constraints (5.4) ensure that, if the energy stock of a battery increases,

then this battery cannot be in discharge mode, i.e., zbs,t = 0. Moreover, Constraints (5.3) guarantee

a maximum power discharge per time period of Dmax
bs

when the battery is in discharge mode.

In the same vein, Constraints (5.5) and (5.6) ensure that bstart
bs,t = 1 if the battery of the site s

starts being discharged at time period t.

bstart
bs,t ≥ zbs,t − zbs,t−1 ∀s ∈ S, ∀t ∈ T \{1} (5.5)

bstart
bs,t1 = zbs,t1 ∀s ∈ S (5.6)

Constraints (5.7) guarantee that the battery of each site s can start being discharged only if it is fully

charged (and hence together with Constraints (5.8) that the battery starts being recharged immediately

after each use, up to its maximum capacity):

Bmax
bs

bstart
bs,t ≤ xbs,t ∀s ∈ S, ∀t ∈ T (5.7)

The power purchased in the retail market at each time period t is the sum of the power bought for

charging the batteries (
∑︁

s∈S uB
bs,t) and the power bought for consumption (

∑︁
s∈S uD

s,t) of all sites,
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which is ensured by the following constraints:

uB
bs,t = (1− zbs,t) min(Bmax

bs
/∆− xbs,t/∆, PBbs

, P max
s −Ws,t) ∀s ∈ S, ∀t ∈ T (5.8)

xbs,t+1 − xbs,t = ∆uB
bs,t + ∆uD

s,t −∆Ws,t ∀s ∈ S,∀t ∈ T (5.9)

Ws,t(1− zbs,t) ≤ uD
s,t ∀s ∈ S,∀t ∈ T (5.10)

The power bought for charging each battery is min(PBbs
, P max

s −Ws,t) when it is possible to buy

energy (i.e., if zbs,t = 0), if the capacity of the battery is not exceeded (see Constraints (5.8)). Note

that several batteries can be used at the same time: some of them can be in discharge mode and

others recharging. Since no losses are considered, the energy stock balance of each battery is ensured

by Constraints (5.9). Moreover, Constraints (5.9) impose a maximum power discharge rate of the

battery at the same time period equal to the power demand Ws,t and Constraints (5.10) guarantee

that if the battery is not used (i.e. zbs,t = 0), the power bought for consumption is equal to the power

demand Ws,t. In addition, together with Constraints (5.3) and (5.4), Constraints (5.8) and (5.9)

ensure that the battery can have the same energy stock during two consecutive time periods only if

the battery is fully charged, otherwise a minimal discharge of Dmin
bs

(if zbs,t = 1) or a recharge of uB
bs,t

(if zbs,t = 0) is imposed.

If a curtailment c = (fc, lc) is being performed at a time period t, Constraints (5.11) guarantee that

the total power bought from the market respects the limit pmax
c imposed on such a curtailment in each

time period between fc and lc. The value of pmax
c is provided by Constraints (5.12). Constraints (5.13)

guarantee that at most one curtailment is performed at each time period.

∑︂
s∈S

(uD
s,t + uB

bs,t) ≤
∑︂
s∈S

P max
s (1−

∑︂
c∈Ct

yc) +
∑︂
c∈Ct

ycp
max
c ∀t ∈ T (5.11)

pmax
c = max(0,

∑︁
s∈S(

∑︁lc
t′=fc−1 Ws,t′ + xbs,fc/∆− xbs,fc−1/∆)

lc − fc + 2 − PT O) ∀c ∈ C (5.12)∑︂
c∈Ct

yc ≤ 1 ∀t ∈ T (5.13)

The network capacity is modeled by Constraints (5.14).

uB
bs,t + uD

s,t ≤ P max
s ∀s ∈ S,∀t ∈ T (5.14)
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Furthermore, Constraints (5.15) guarantee that the battery of each site s will be used at most Nbs

times over the time horizon, while Constraint (5.16) limits the maximum number of curtailments that

can be performed. In addition, Constraints (5.17) express the limit conditions.

∑︂
t∈T

bstart
bs,t ≤ Nbs ∀s ∈ S (5.15)

∑︂
c∈C

yc ≤ N c (5.16)

xbs,t1 = xbs,tT +1 = Bmax
bs

∀s ∈ S (5.17)

Finally, the domains of the variables are:

yc ∈ {0, 1}, pmax
c ∈ R+ ∀c ∈ C (5.18)

uD
s,t ∈ [0, Ws,t], uB

bs,t ∈ [0, PBbs
], xbs,t ∈ [Bmin

bs
, Bmax

bs
], zbs,t ∈ {0, 1}, bstart

bs,t ∈ {0, 1} ∀s ∈ S,∀t ∈ T
(5.19)

The obtained model (5.2)-(5.19) is non-linear. However, it can be linearized following the ap-

proach proposed by McCormick (1976). The resulting linear model (referred to as (OMBSE-MILP))

is provided in Section 5.2.2.

5.2.2 Linearization of the mathematical model

The first non-linearity treated is between a binary and a float variable, linearized using McCormick

strategy as described in Section 3.2.1.3. In the model (5.2)-(5.19), they correspond to the products

xbs,tyc and xbs,tzbs,t (with xbs,t ∈ [0, Bmax
bs

]) in (5.8) and (5.11), respectively. We need to introduce

two new families of variables: lin xyc
bs,t for all c in C, s in S, t in {fc − 1, fc} to linearize (5.11), and

lin zxbs,t for all s in S and t in T to linearize (5.8). Note that the non-linearity corresponding to

the product between the variables x and y cannot be rewritten as we did in Chapter 3 because the

batteries can be used for peak-shavings. Indeed, the family of variables lin xyc
bs,t is necessary.

The second non-linearity treated is the expression x = min(a, b) for a, b ∈ [M ′, M ], such as de-

scribed in Section 3.2.1.3, and present in (5.8) and (5.12). Hence, we introduce two new families of

variables: lin sideUBbs,t for all s in S, t in T to linearize (5.8), and lin sidepcmaxc for all c in C to

linearize (5.12). In the case of (5.8), we have uB
bs,t = (1− zbs,t) min(a, b), where a = Bmax

bs
/∆− xbs,t/∆

and b = min(PBbs
, P max

s −Ws,t). In order to linearize this expression, we have to multiply all the

terms a and b in (3.26) and (3.28) by 1− zbs,t as we have done in Section 3.2.1.3.
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In the case of (5.11), we can integrate the variable yc of the multiplication ycp
max
c into (5.12) by

rewriting pmax
c as max(0,

∑︁
s∈S

(yc

∑︁lc
t′=fc−1 Ws,t′ +ycxbs,fc /∆−ycxbs,fc−1/∆)

lc−fc+2 − ycPT O). Hence, we have that

pmax
c = max(a, b), where a = 0, b =

∑︁
s∈S

(yc

∑︁lc
t′=fc−1 Ws,t′ +ycxbs,fc /∆−ycxbs,fc−1/∆)

lc−fc+2 − ycPT O. We can

then use similar equations used to linearize the expression x = min(a, b) in Section 3.2.1.3 to linearize

the expression x = max(a, b), where M =
∑︁

s∈S maxt∈T Ws,t and M ′ = −PT O.

Finally, the complete linear version of OMBSE-MINLP (referred to (OMBSE −MILP )) can be

rewritten as follows:

min
∑︂
t∈T

Et

∑︂
s∈S

(uB
bs,t + uD

s,t)−
∑︂
c∈C

ycRfcPT O(lc − fc + 1)

xbs,t − xbs,t+1 ≤ ∆Dmax
bs

zbs,t ∀s ∈ S,∀t ∈ T (5.20)

− xbs,t + xbs,t+1 ≤ ∆PBbs
(1− zbs,t)−∆Dmin

bs
zbs,t ∀s ∈ S,∀t ∈ T (5.21)

bstart
bs,t ≥ zbs,t − zbs,t−1 ∀s ∈ S, ∀t ∈ T \{1} (5.22)

bstart
bs,t1 = zbs,t1 ∀s ∈ S (5.23)

Bmax
bs

bstart
bs,t ≤ xbs,t ∀s ∈ S,∀t ∈ T (5.24)

uB
bs,t ≤ Bmax

bs
/∆− xbs,t/∆− zbs,tB

max
bs

/∆ + lin xzbs,t/∆ ∀s ∈ S,∀t ∈ T (5.25)

uB
bs,t ≤ (1− zbs,t) min(PBbs

, P max
s −Ws,t) ∀s ∈ S,∀t ∈ T (5.26)

uB
bs,t ≥ Bmax

bs
/∆− xbs,t/∆− zbs,tB

max
bs

/∆ + lin xzbs,t/∆−Mlin sideUBbs,t ∀s ∈ S,∀t ∈ T (5.27)

uB
bs,t ≥ (1− zbs,t) min(PBbs

, P max
s −Ws,t)−M(1− lin sideUBbs,t) ∀s ∈ S,∀t ∈ T (5.28)

(Bmax
bs
− xbs,t)−∆ min(PBbs

, P max
s −Ws,t) ≤Mlin sideUBbs,t ∀s ∈ S,∀t ∈ T (5.29)

min(PBbs
, P max

s −Ws,t)− (Bmax
bs

/∆− xbs,t/∆) ≤M(1− lin sideUBbs,t) ∀s ∈ S,∀t ∈ T (5.30)

xbs,t+1 − xbs,t = ∆uB
bs,t + ∆uD

s,t −∆Ws,t ∀s ∈ S,∀t ∈ T (5.31)

Ws,t(1− zbs,t) ≤ uD
s,t ∀s ∈ S,∀t ∈ T (5.32)

∑︂
s∈S

(uD
s,t + uB

bs,t) ≤
∑︂
s∈S

P max
s (1−

∑︂
c∈Ct

yc) +
∑︂
c∈Ct

pmax
c ∀t ∈ T (5.33)

pmax
c ≥ 0 ∀c ∈ C (5.34)

pmax
c ≥

∑︁
s∈S(yc

∑︁lc
t′=fc−1 Ws,t′ + lin xyc

bs,fc
/∆− lin xyc

bs,fc−1/∆)
lc − fc + 2 − ycPT O ∀c ∈ C (5.35)
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−
∑︁

s∈S(yc
∑︁lc

t′=fc−1 Ws,t′ + lin xyc
bs,fc

/∆− lin xyc
bs,fc−1/∆)

lc − fc + 2 + ycPT O ≤ (M −M ′)lin sidepcmaxc

∀c ∈ C (5.36)∑︁
s∈S(yc

∑︁lc
t′=fc−1 Ws,t′ + lin xyc

bs,fc
/∆− lin xyc

bs,fc−1/∆)
lc − fc + 2 − ycPT O ≤ (M −M ′)(1− lin sidepcmaxc)

∀c ∈ C (5.37)

pmax
c ≤ (M −M ′)(1− lin sidepcmaxc)

∀c ∈ C (5.38)

pmax
c ≤

∑︁
s∈S(yc

∑︁lc
t′=fc−1 Ws,t′ + lin xyc

bs,fc
/∆− lin xyc

bs,fc−1/∆)
lc − fc + 2 − ycPT O+

(M −M ′)lin sidepcmaxc ∀c ∈ C (5.39)

∑︂
c∈Ct

yc ≤ 1 ∀t ∈ T (5.40)

uB
bs,t + uD

s,t ≤ P max
s ∀s ∈ S, ∀t ∈ T (5.41)∑︂

t∈T
bstart

bs,t ≤ Nbs ∀s ∈ S (5.42)

∑︂
c∈C

yc ≤ N c (5.43)

lin xyc
bs,t ≤ ycB

max
bs

∀c ∈ C,∀s ∈ S,∀t ∈ {fc − 1, fc} (5.44)

lin xyc
bs,t ≥ xbs,t − (1− yc)Bmax

bs
∀c ∈ C,∀s ∈ S,∀t ∈ {fc − 1, fc} (5.45)

lin xyc
bs,t ≤ xbs,t ∀c ∈ C,∀s ∈ S,∀t ∈ {fc − 1, fc} (5.46)

lin xyc
bs,t ≥ 0 ∀c ∈ C,∀s ∈ S,∀t ∈ {fc − 1, fc} (5.47)

lin xzbs,t ≤ xbs,t ∀s ∈ S, ∀t ∈ T (5.48)

lin xzbs,t ≤ zbs,tB
max
bs

∀s ∈ S, ∀t ∈ T (5.49)

lin xzbs,t ≥ xbs,t − (1− zbs,t)Bmax
bs

∀s ∈ S, ∀t ∈ T (5.50)

lin xzbs,t ≥ 0 ∀s ∈ S, ∀t ∈ T (5.51)

xbs,t1 = xbs,tT +1 = Bmax
bs

∀s ∈ S (5.52)

yc ∈ {0, 1}, pmax
c ∈ R+ ∀c ∈ C (5.53)

uD
s,t ∈ [0, Ws,t], uB

bs,t ∈ [0, PBbs
], xbs,t ∈ [Bmin

bs
, Bmax

bs
], zbs,t ∈ {0, 1}, bstart

bs,t ∈ {0, 1} (5.54)

lin xzbs,t ∈ [0, Bmax
bs

], lin sideUBbs,t ∈ {0, 1} ∀s ∈ S,∀t ∈ T (5.55)
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lin xyc
bs,t ∈ [0, Bmax

bs
] ∀c ∈ C,∀s ∈ S,∀t ∈ {fc − 1, fc} (5.56)

lin sidepcmaxc ∈ {0, 1} ∀c ∈ C (5.57)

5.3 Complexity analysis

In this section we present a complexity proof for OMBSE. We reduce the 3-Partition problem,

which is a strongly NP-Complete problem, into a particular case of OMBSE.

Theorem 2 OMBSE is strongly NP-Hard even with constant energy prices and power demand.

Proof Let us consider an instance of the 3-Partition problem composed by a set A of 3m integers

a1, . . . , a3m and a bound B ∈ N such that B
4 < ai < B

2 , for all ai in A. Besides, let us consider that∑︁
ai∈A ai = mB. The question is whether A can be partitioned into m triplets A1, . . . ,Am, such that∑︁
ai∈Ak

ai = B for all Ak. Note that, if there exist m partitions Ak such that for each one the sum of

its elements is B, then each subset Ak must contain exactly 3 elements because of B
4 < ai < B

2 .

Now let us consider an OMBSE instance with a time horizon T composed by 6m time periods.

Moreover, let us consider that 3m sites equipped with different capacities Dmax
bs

= ab = Bmax
bs

/∆ −

Bmin
bs

/∆ are installed such that B
4 < Dmin

bs
≤ Dmax

bs
= ab < B

2 . Then, let us consider a constant power

demand W = B over the horizon for each site and a constant energy price Ec, i.e., E = E
|T |
c . We also

consider that
∑︁

s∈S Dmax
bs

= mB. The others instance parameters are:

• P max
s = 2B for each s ∈ S

• PBbs
= Bmax

bs
/∆, for all s in S

• Nbs = 1, for all s in S

• N c = m

• ∆min = ∆max = 1

• R = {Ec, 0, 0, 0, 0, 0}|m|

• PT O = B
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Let us consider a solution for such an instance which costs
∑︁

s∈S,t∈T EtWs,t −mPT OEc. In this

case, since the energy prices Et are constant, the batteries are used to perform m curtailments starting

at time periods where the reward prices are equal to Ec, otherwise the total cost would be strictly

greater than
∑︁

s∈S,t∈T EtWs,t − mPT OEc. Since each battery can be used once, together with the

properties Dmax
bs

= Bmax
bs

/∆−Bmin
bs

/∆ and B
4 < Dmin

bs
≤ Dmax

bs
< B

2 , each battery can be in discharge

for at most one time period with a power discharge rate of Dmax
bs

. Furthermore, if m curtailments

are performed, at least mB are discharged from the batteries. Note that, since
∑︁

s∈S Dmax
bs

= mB,

exactly 3 batteries are used to perform each curtailment, otherwise at least one curtailment would not

be performed. In the same vein, if a battery starts being discharged before the curtailment to increase

the value of pmax
c , at least 4 batteries would be needed to perform the curtailment. Hence, at most m−1

curtailment could be performed. Then, if there exists a solution with cost
∑︁

s∈S,t∈T EtWs,t−mPT OEc,

m curtailments are performed for which exactly three batteries are used to perform each one.

Hence, the set of batteries used to perform each curtailment gives us a solution to an instance

of the 3-Partition problem (where each integer abs is equal to Dmax
bs

). Similarly, from a 3-Partition

problem solution, a solution of cost
∑︁

s∈S,t∈T EtWs,t −mPT OEc for the associated OMBSE instance

can be constructed using each battery once to perform curtailments starting at the time periods where

the reward price is equal to Ec. Then, OMBSE is by reduction a strongly NP-Hard problem.

The OMBSE problem remains weakly NP-Hard even for small instances when T ≤ 4, by a similar

reduction from the Partition Problem which is weakly NP-Complete. □

5.4 Bidimensional relax-and-fix heuristic

In this section we present a bidimensional relax-and-fix heuristic for OMBSE, for which a model

M is considered, obtained by relaxing the integrity constraints on a subset of variables of the model.

Let us define the four windows considered in the approach that group the variables ofM:

• Frozen window: variables that have their values fixed;

• Decision window: variables for which all constraints are preserved;

• Relaxed window: variables for which all constraints are relaxed.

In addition, we consider:
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• Fixing window: variables that have their values fixed at the end of each iteration;

Firstly, as proposed in Chapter 4, we apply a decomposition based on the time horizon. We

consider a decision window composed by δtime time periods and a fixing window of δ′
time time periods.

Secondly, to improve the computational efficiency of the approach, we also propose a decomposition

based on the number of sites. Indeed, the windows will be defined not only by the parameters δtime

and δ′
time, but also by δsite and δ′

site, defined as the following:

• δtime: number of time periods of the decision window;

• δ′
time: number of time periods of each iteration;

• δsite: number of sites of the decision window;

• δ′
site: number of sites of the decision window for which variables will be fixed at each iteration.

The time periods (resp. the sites) are partitioned into the subsets T f , T d, T d̄, T r (resp. Sf ,Sd,S d̄,Sr)

representing the variables in the frozen, decision, fixing and relaxed windows, respectively.
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The complete bidimensional relax-and-fix heuristic used in our tests is formally described as follows:

for tstart from 1 to T − δtime with step δ′
time do

• T f ← {1, . . . , tstart − 1}
• T d ← {tstart, . . . , tstart + δtime}
• T d̄ ← {tstart, . . . , tstart + δ′

time}
• T r ← {tstart + 1, . . . , T}
for sstart from 1 to S − δsite with step δ′

site do
• Sf ← {1, . . . , sstart − 1}
• Sd ← {sstart, . . . , sstart + δsite}
• S d̄ ← {sstart, . . . , sstart + δ′

site}
• Sr ← {sstart + 1, . . . , S}
• Construct a modelMtstart,sstart , such that the variables:

- xbs,t, zbs,t, bstart
bs,t , uD

s,t, uB
bs,t are fixed for all t ∈ T f , s ∈ S and for all t ∈ T d̄, s ∈ Sf ;

- yc, pmax
c are fixed for all c ∈ Ct, t ∈ T f ;

- zbs,t, bstart
bs,t ∈ {0, 1} for all t ∈ T d, s ∈ Sd;

- yc ∈ {0, 1} for all c ∈ Ct, t ∈ T d;

- zbs,t, bstart
bs,t ∈ [0, 1] for all t ∈ T r, s ∈ S, for all t ∈ T d \ T d̄, s ∈ Sf , and for all

t ∈ T d, s ∈ Sr;
- yc ∈ [0, 1] for all c ∈ Ct, t ∈ T r.

• SolveMtstart,sstart

• Fix the variables xbs,t, zbs,t, bstart
bs,t , uD

s,t, uB
bs,t for all t ∈ T d̄, s ∈ S d̄ to the obtained

optimal values
end

• Fix the variables yc, pmax
c for all c ∈ Ct, t ∈ T d̄ such that lc is smaller than or equal to the

last time period of T d̄ to the obtained optimal values
end
return variables xbs,t, zbs,t, bstart

bs,t , uD
s,t, uB

bs,t, yc, pmax
c

Algorithm 1: Bidimensional relax-and-fix heuristic

Note that the number of iterations of the heuristic is
|T |−(δtime−δ′

time)
δ′

time

|S|−(δsite−δ′
site)

δ′
site

.

Figure 5.1 illustrates the windows and the related variables for an instance composed by 7 sites

managed over a week. We can observe that the decision window scrolls over the time horizon and over

the sites for variables x, z, uD, uB and bstart, and over the time horizon for variables y.

Lemma 2 Algorithm 1 always returns a feasible solution if δtime ≥ max(⌈ Bmax
bs

/∆−Bmin
bs

/∆
min(PBbs

,P max
s −max(W ))⌉), ∀s ∈

S.

Proof To ensure that we always return a feasible solution for the problem, two main aspects must be

analyzed: the feasibility of the curtailments that can be performed (i.e., if Constraints (5.11)-(5.13),

(5.16), and (5.18) are respected) and the feasibility of each battery management until the end of the
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Figure 5.1 – Illustration of bidimensional relax-and-fix heuristic windows.

time horizon (i.e., if Constraints (5.3)-(5.10), (5.14)-(5.15), (5.17), and (5.19) are respected).

Concerning the battery management, the only case where no feasible solution could be reached is

when the battery cannot be fully recharged until the end of the time horizon considering its initial

state at the beginning of the decision window of the last iteration. Indeed, if the number of time

periods in the decision window (i.e. the value of δtime) is large enough to fully recharge the battery

until the time period T , there is always a solution that consists only of fully recharging the battery.

Formally, δtime must be larger than max(⌈ Bmax
bs

/∆−Bmin
bs

/∆
min(PBbs

,P max
s −max(W ))⌉), ∀s ∈ S (if it is the case, the battery

can always be fully charged until the time period tT ).

Concerning the curtailments (i.e., variables y and pmax
c ), their values are fixed only for curtail-

ments that end at the end of the time horizon T d̄. Since the variables corresponding to the batteries

management of all sites are already fixed (i.e., variables x, z, uD, uB and bstart), the values of variables

y are fixed respecting Constraints (5.11)-(5.13), (5.16), and (5.18).

Finally, we have that a feasible solution that respects the battery management (i.e., related to

Constraints (5.3)-(5.10), (5.14)-(5.15), (5.17), and (5.19)) and the curtailments performed (i.e., related
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to Constraints (5.11)-(5.13), (5.16), and (5.18)) is always reached, the heuristic always returns a feasible

solution for the model (5.3)-(5.19). □

The definition of δtime greater or equal to max(⌈ Bmax
bs

/∆−Bmin
bs

/∆
min(PBbs

,P max
s −max(W ))⌉),∀s ∈ S is considered in

the numerical experiments presented in Section 5.6.

5.5 Lagrangian relaxation based solving method

Decomposition-based computational methods have been widely used to solve many large-scale

optimization problems, including mixed-integer linear programming problems and combinatorial opti-

mization problems. The key idea is usually to relax certain constraints (refereed to as hard constraints)

to make the relaxed problems relatively easier to solve in order to obtain approximations or bounds

for the original problem.

5.5.1 Lagrangian relaxation

A commonly used method is the Lagrangian relaxation where easy sub-problems are solved several

times, and a penalty related to the relaxed constraints is considered in the objective function of each

sub-problem. Such penalties are known as Lagrangian multipliers and are updated at each iteration.

Let us consider the following optimization problem:

Z∗ = min c⊤x (5.58)

s.t.

Ax ≤ b (5.59)

Dx ≤ e (5.60)

x ∈ N0 (5.61)

where Constraints (5.59) make the problem harder to solve (i.e., the problem (5.58) subject to

Constraints (5.60) and (5.61) can be solved in polynomial time). Let us also denote by λ ≥ 0 the

Lagrangian multipliers (also refereed to as dual variables) associated with Constraints (5.59). By

relaxing Constraints (5.59), the obtained Lagrangian problem is the following:
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ZD(λ) = min c⊤x + λ⊤(Ax− b) (5.62)

s.t.

Dx ≤ e (5.63)

x ∈ N0, (5.64)

Note that, since the values of the multipliers λ are positive, if Constraints (5.59) are not satisfied,

it becomes a penalization in the objective function (5.62).

Furthermore, it is well known that ZD gives a lower bound, refereed to as WLB, for (5.62)-(5.64)

(i.e. ZD ≤ Z∗) for any λ > 0. In the same vein, any solution x that satisfies Constraints (5.59)-(5.61),

refereed to as ZUB(x), yields an upper bound for (5.62)-(5.64) (i.e. Z∗ ≤ ZUB). If ZD(λ) = ZUB(x)

for a solution x, then we have that x is an optimal solution for the problem (5.62)-(5.64). The key

aspect of the algorithm is to find good upper and lower bounds. Such a relaxation can be used in a

model that is linear or not. In our case, we consider the model (OMBSE −MILP ). One algorithm

that is commonly used is the Subgradient Algorithm, which is explained in next section.

5.5.1.1 Mathematical model decomposition

In the case of (OMBSE −MINLP ), Constraints (5.11) and (5.12) will be relaxed. In addition,

we can rewrite Constraints (5.12) and (5.11) as a single constraint and relax the formulation with only

one set of Lagrangian multipliers: λ1
t ≥ 0 for all t ∈ T . Hence, the nonlinear version of the Lagrangian

optimization problem (refereed to as (OMBSENL)) can be written as follows:
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min
∑︂
t∈T

Et

∑︂
s∈S

(uB
bs,t + uD

t )−
∑︂
c∈C

ycRfcPT O(lc − fc + 1)

+
∑︂
t∈T

λ1
t

[︂∑︂
s∈S

(uD
s,t + uB

bs,t)−
∑︂
s∈S

P max
s (1−

∑︂
c∈Ct

yc)

−
∑︂
c∈Ct

yc max(0,

∑︁
s∈S(

∑︁lc
t′=fc−1 Ws,t′ + xbs,fc/∆− xbs,fc−1/∆)

lc − fc + 2 − PT O)
]︂

s.t.

Constraints (5.3-5.10),(5.13-5.19)

λ1
t ≥ 0 ∀t ∈ T (5.65)

Note that such a relaxation can also be applied to (OMBSE−MILP ) in Constraints (5.33- 5.39)

and (5.44-5.47), which is the model considered in our tests. In this case, the Lagrangian multipliers

are following ones:

• λ1,1
t for each t in T for Constraints (5.33);

• λ1,2
c for each c in C for Constraints (5.35);

• λ1,3
c for each c in C for Constraints (5.36);

• λ1,4
c for each c in C for Constraints (5.37);

• λ1,5
c for each c in C for Constraints (5.38);

• λ1,6
c for each c in C for Constraints (5.39);

• λ1,7
c,s,t for each c in C, s in S and t in {fc − 1, fc} for Constraints (5.44);

• λ1,8
c,s,t for each c in C, s in S and t in {fc − 1, fc} for Constraints (5.45);

• λ1,9
c,s,t for each c in C, s in S and t in {fc − 1, fc} for Constraints (5.46);

Note that Constraints (5.34) and (5.47) are not relaxed since they are not linking constraints between

different sites and can be solved separately in the sub-problems of each site. Finally, the linear version

of the Lagrangian optimization problem applied to (OMBSE−MILP ) (refereed to as (OMBSEL))

can be written as follows:
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min
∑︂
t∈T

Et

∑︂
s∈S

(uB
bs,t + uD

t )−
∑︂
c∈C

ycRfcPT O(lc − fc + 1)

+
∑︂
t∈T

λ1,1
t (

∑︂
s∈S

(uD
s,t + uB

bs,t)−
∑︂
s∈S

P max
s (1−

∑︂
c∈Ct

yc)−
∑︂
c∈Ct

pmax
c )

+
∑︂
c∈C

λ1,2
c (−pmax

c +
∑︁

s∈S(yc
∑︁lc

t′=fc−1 Ws,t′ + lin xyc
bs,fc

/∆− lin xyc
bs,fc−1/∆)

lc − fc + 2 − ycPT O)

+
∑︂
c∈C

λ1,3
c (−

∑︁
s∈S(yc

∑︁lc
t′=fc−1 Ws,t′ + lin xyc

bs,fc
/∆− lin xyc

bs,fc−1/∆)
lc − fc + 2 + ycPT O

− (M −M ′)lin sidepcmaxc)

+
∑︂
c∈C

λ1,4
c (

∑︁
s∈S(yc

∑︁lc
t′=fc−1 Ws,t′ + lin xyc

bs,fc
/∆− lin xyc

bs,fc−1/∆)
lc − fc + 2 − ycPT O

− (M −M ′)(1− lin sidepcmaxc))

+
∑︂
c∈C

λ1,5
c (pmax

c − (M −M ′)(1− lin sidepcmaxc))

+
∑︂
c∈C

λ1,6
c (pmax

c −
∑︁

s∈S(yc
∑︁lc

t′=fc−1 Ws,t′ + lin xyc
bs,fc

/∆− lin xyc
bs,fc−1/∆)

lc − fc + 2 + ycPT O

− (M −M ′)lin sidepcmaxc)

+
∑︂

c∈C,s∈S,t∈{fc−1,fc}
λ1,7

c,s,t(lin xyc
bs,t − ycB

max
bs

)/∆

+
∑︂

c∈C,s∈S,t∈{fc−1,fc}
λ1,8

c,s,t(−lin xyc
bs,t + xbs,t − (1− yc)Bmax

bs
)/∆

+
∑︂

c∈C,s∈S,t∈{fc−1,fc}
λ1,9

c,s,t(lin xyc
bs,t − xbs,t)/∆ (5.66)

s.t.

Constraints (5.20-5.32), (5.40-5.43), (5.48-5.57)

λ1,1
t ≥ 0 ∀t ∈ T (5.67)

λ1,2
c ≥ 0, λ1,3

c ≥ 0, λ1,4
c ≥ 0, λ1,5

c ≥ 0, λ1,6
c ≥ 0 ∀c ∈ C (5.68)

λ1,7
c,s,t ≥ 0, λ1,8

c,s,t ≥ 0, λ1,9
c,s,t ≥ 0 ∀c ∈ C,∀s ∈ S,∀t ∈ {fc − 1, fc} (5.69)

In this thesis, we chose the linear Lagrangian decomposition (OMBSRL) because the sub-problems

obtained can be solved efficiently by reusing the approaches proposed in Chapter 3.
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5.5.2 The subgradient optimization

The subgradient method is an algorithm for minimizing a non-differentiable convex function, and is

very similar to the regular gradient method for differentiable functions (Shor, 2012). The subgradient

method is much slower than Newton’s method, but it is much simpler and can be applied to a much

larger variety of problems.

By combining the subgradient method with primal or dual decomposition techniques, it is some-

times possible to develop a simple algorithm for a problem. Such a use is well explored by Bertsekas

(1999), which is a good reference on the subgradient method combined with primal or dual decompo-

sition.

More precisely, when updating the values of λ, the goal is to maximize the lower bound (i.e., the

value of ZLB). Hence, we are solving the following problem:

max
λ>0

ZD(λ)

We use a subgradient optimization method relying on the following scheme:

λk+1 = max{λk + tk(Axk − b), 0}

where tk > 0 is a step size. The most popular choice of the step size tk is:

tk = θk(ZUB − ZD(λk))
||Axk − b||2

where ZUB is the best upper bound known and θk ∈ (0, 2[ (Boyd et al., 2003). The value of θk can

be fixed for all iterations or it can vary in each iteration depending on the progress of the algorithm.
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The general scheme of the subgradient algorithm is as follows:

• Initialization // initial structures, Lagrangian multipliers, step-size, θ, . . .
• BUP ← +∞ // Best upper bound reached

• BLB ← -∞ // Best lower bound reached

• k = 0
while k ≤ Imax and stopping criteria is not reached do

• Solve the sub-problems presented in Section 5.5.2.1
• Run the Lagrangian heuristic (see Section 5.5.2.2)
• Update the best bounds reached (BUP and BLB)
• Update the best solution obtained (Bsol)
• Update the Lagrangian multipliers
• k = k + 1

end
return BUP, BLB, Bsol

Algorithm 2: Standard subgradient algorithm

5.5.2.1 Sub-problems structure

In order to compute the lower bound at each iteration of the subgradient method, the relaxed

problem (OMBSEL) has to be solved to optimality. Fortunately, such a Lagrangian relaxation of the

formulation has a particular structure that allows us to solve it optimally in O(T 2) time.
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Firstly, let us rewrite the objective function (5.66) by isolating each family of variables as follows:

min∑︂
t∈T

(Et + λ1,1
t )

∑︂
t∈T

(uB
bs,t + uD

s,t) (5.70a)

+
∑︂
c∈C

yc

(︂
−RfcPT O(lc − fc + 1) +

lc∑︂
t=fc

λ1,1
t

∑︂
s∈S

P max
s + PT O(−λ1,2

c + λ1,3
c − λ1,4

c + λ1,6
c )

+
∑︂

s∈S,t∈{fc−1,fc}
Bmax

bs
/∆(−λ1,7

c,s,t + λ1,8
c,s,t) + ((λ1,2

c − λ1,3
c + λ1,4

c − λ1,6
c )

∑︂
s∈S

lc∑︂
t=fc−1

Ws,t

lc − fc + 2)
)︂

(5.70b)

+
∑︂
c∈C

pmax
c

(︂
−

lc∑︂
t=fc

λ1,1
t − λ1,2

c + λ1,5
c + λ1,6

c

)︂
(5.70c)

+
∑︂
c∈C

∑︂
s∈S

lin xyc
bs,fc

/∆
(︂λ1,2

c − λ1,3
c + λ1,4

c − λ1,6
c

lc − fc + 2 + λ1,7
c,s,fc

− λ1,8
c,s,fc

+ λ1,9
c,s,fc

)︂
(5.70d)

+
∑︂
c∈C

∑︂
s∈S

lin xyc
bs,fc−1/∆

(︂−λ1,2
c + λ1,3

c − λ1,4
c + λ1,6

c

lc − fc + 2 + λ1,7
c,s,fc−1 − λ1,8

c,s,fc−1 + λ1,9
c,s,fc−1

)︂
(5.70e)

+
∑︂
c∈C

∑︂
s∈S

lin xyc
bs,fc+1/∆

(︂
λ1,7

c,s,fc+1 − λ1,8
c,s,fc+1 + λ1,9

c,s,fc+1

)︂
(5.70f)

+
∑︂
c∈C

lin sidepcmaxc(M −M ′)(−λ1,3
c + λ1,4

c + λ1,5
c − λ1,6

c ) (5.70g)

+
∑︂

s∈S,t∈T
xbs,t/∆

(︂ ∑︂
c∈C|fc=t

(λ1,8
c,s,t − λ1,9

c,s,t) +
∑︂

c∈C|fc−1=t

(λ1,8
c,s,t − λ1,9

c,s,t) +
∑︂

c∈C|lc+1=t

(λ1,8
c,s,t − λ1,9

c,s,t)
)︂
(5.70h)

−
∑︂

t∈T ,s∈S
λ1,1

t P max
s +

∑︂
c∈C

(M −M ′)(−λ1,4
c − λ1,5

c )−
∑︂

c∈C,s∈S,t∈{fc−1,fc}
λ1,8

c,s,tB
max
bs

/∆ (5.70i)

Looking closely at this objective function, we can observe clearly that the whole problem can be solved

decomposed. Formally, we can split the whole problem into five sub-problems:

1. Sub-problem 1:

min (5.70a) + (5.70h)

s.t.

Constraints (5.20− 5.32), (5.41− 5.42), (5.48− 5.52), and (5.55)

This sub-problem, concerning the variables xbs,t, uB
bs,t, uD

s,t, zbs,t, bstart
bs,t , lin xzbs,t, and lin sideUBbs,t

for each t ∈ T , s ∈ S, and xbs,T +1 for each s ∈ S, corresponds to solving the peak-shaving prob-

lem (i.e., formally the DSM problem) for each site s ∈ S with the energy prices equal to Et +λ1,1
t
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(i.e., (5.70a)) and with an additional penalty in the energy stock of the batteries (5.70h). In fact,

such a sub-problem for each site s considering a single battery can be solved with the algorithm

presented in Chapter 3 with some adaptations.

Essentially, for each site s, the algorithm must be initialized with the following parameters:

• Rt = [0|T |]

• ∆min = 1

• ∆max = ⌊Bmax
bs

/∆
Dmin

bs

⌋ (or large enough)

• PT O = 0

• ωc = P max
s

• Et = Et + λ1,1
t

• Number of rest time periods=0

and the following modifications in GOA are needed:

• since the battery discharges at each time period during each curtailment c = (fc, lc, dc)

enumerated are known, the penalty from (5.70h) must be considered at each time period t

during the curtailment to compute the gain.

• for each arc a linking two curtailments c1 = (fc1 , lc1 , dc1), and c2 = (fc2 , lc2 , dc2), the penalty

from (5.70h) must be considered for each time period t ∈ {lc1 + 1, . . . , fc2 − 1} considering

that the battery will stay fully charged in this interval

• Replace the computation of the longest path in the DAG G created by the computa-

tion of the Maximum Weighted Budgeted Independent Set (MWBIS) of the interval graph

G′ obtained from G, using the modification of the Bellman’s algorithm proposed in Sec-

tion 4.4.1.1. The budget is the value of Nb.

The complexity of the algorithm proposed is O(T 6). Since each site s can be treated separately

and since there is no correlation between the curtailments enumerated (i.e., ωc = P max
s ), a

parallelization is allowed.
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2. Sub-problem 2:

min (5.70b)

s.t.

Constraints (5.40) and (5.43)

yc ∈ {0, 1}, ∀c ∈ C

This sub-problem, concerning the variables yc for each c ∈ C, corresponds to selecting the most

profitable curtailments based on their coefficients imposed by the objective function (5.70b).

Such a sub-problem can be translated into the Maximum Weighted Budgeted Independent Set

(MWBIS) of an interval graph, such as described in Section 3.2.2.1, using the modification of

the Bellman’s algorithm proposed in Section 4.4.1.1 with the budget set to N c. The complete

algorithm to solve the second sub-problem is the following:

(a) for each curtailment c ∈ C, set the gain g(c), is the coefficient defined in (5.70b) for each

variable yc.

(b) for each curtailment c ∈ C, if g(c) is greater than or equal to zero, set yc = 0.

(c) compute the MWBIS with for which the budget is number of nodes with the remaining

curtailments considering −g(c).

(d) the optimal value of this sub-problem is the one given by the algorithm multiplied by -1.

(e) the value of each variable yc is equal to 1 if the corresponding curtailment is selected by

(MWBIS), and to 0 otherwise.

3. Sub-problem 3:

min (5.70c)

s.t.

pmax
c ∈ [0,

∑︂
s∈S

max(Ws,t)], ∀c ∈ C

This sub-problem, concerning the variables pmax
c for each c ∈ C, can be solved in linear time as

follows:

170



5.5. LAGRANGIAN RELAXATION BASED SOLVING METHOD

• For each c ∈ C, set pmax
c =

∑︁
s∈S max(Ws,t) if the coefficient of the variable in (5.70c) is

negative, and pmax
c = 0 otherwise.

4. Sub-problem 4:

min (5.70d− 5.70f)

s.t.

lin xyc
bs,t ∈ [0, Bmax

bs
], c ∈ C, s ∈ S, t ∈ {fc − 1, fc}

This sub-problem, concerning the variables lin xyc
bs,t for each c ∈ C, s ∈ S, t ∈ {fc − 1, fc}, can

be solved in linear time as follows:

• For each c ∈ C, s ∈ S, t ∈ {fc− 1, fc}, set lin xyc
bs,t = Bmax

bs
if the coefficient of the variable

in (5.70d), (5.70e) or (5.70f) is negative, and lin xyc
bs,t = 0 otherwise.

5. Sub-problem 5:

min (5.70g)

s.t.

lin sidepcmaxc ∈ {0, 1}, ∀c ∈ C

This sub-problem, concerning the variables lin sidepcmaxc for each c ∈ C, can be solved in

linear time as follows:

• For each c ∈ C, set lin sidepcmaxc = 1 if the coefficient of the variable in (5.70g) is negative,

and lin sidepcmaxc = 0 otherwise.

Note that Equation (5.70i) is constant and can be computed independently.

5.5.2.2 Lagrangian heuristic

In order to compute a feasible solution for the problem at each iteration of the subgradient method,

which also gives an upper bound for the value of the optimal solution, a Lagrangian heuristic is used.

Firstly, the relaxed solution obtained by solving the sub-problems satisfies all the Constraints

(5.20-5.33), (5.41), (5.42), (5.48)-(5.52), and (5.54)-(5.55) related to the variables xbs,t, uB
bs,t, uD

s,t, zbs,t
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and bstart
bs,t for each t ∈ T and s ∈ S, and xbs,T +1 for each s ∈ S. Hence, the values of such variables

are maintained in the Lagrangian heuristic.

The second step consists in computing the values of variables y, for which Constraints (5.34-5.40),

(5.43)-(5.47), (5.53),(5.56), and (5.57) are relaxed, implying that the solution obtained by solving the

sub-problems may not satisfy the original constraints. Hence, we aim to select a subset of curtailments

that can be performed (i.e., to fix the values of variables y), i.e., that satisfies Constraints (5.34-5.40),

(5.43)-(5.47), (5.53),(5.56), and (5.57) which is satisfies batteries safety usage rules (i.e., values of

variables x, uB, uD, z and bstart obtained by solving the sub-problems), and that gives the highest

revenue.

The Lagrangian heuristic proposed runs in O(T 2) time, as described in the following steps:

• keep the values of the variables xbs,t, uB
bs,t, uD

s,t, zbs,t and bstart
bs,t in the optimal solution obtained ;

• for each c = (fc, lc) ∈ C, compute the value of ωc and the value of pmax
c from the values of the

power demand Ws and from the power bought uD
s + uB

bs
for each site s ∈ S at time period fc−1.

Then, set yc = 0 if there exists at least one time period t ∈ {fc, lc} such that
∑︁

s∈S(uB
bs,t +uD

s,t) >

pmax
c ;

• for each c = (fc, lc) ∈ C such that the corresponding variable yc was not fixed to 0 in the previous

step, set the economic gain of the curtailment to gc = RfcPT O(lc − fc + 1);

• compute a MWBIS with a budget equal to N c with the remaining curtailments (i.e., the ones

for which the value of yc is not fixed yet), considering the values of gc. Then, for each c, set the

value of the variable yc to 1 if the corresponding curtailment is in the MWBIS with a budget

equal to N c, and to 0 otherwise. Note that the values of all yc computed in this way satisfy

Constraints (5.34-5.40), (5.43)-(5.47), (5.53),(5.56), and (5.57);

• The value of the complete feasible solution is given by the following expression:

∑︂
s∈S,t∈T

Et(uB
bs,t + uD

s,t)−
∑︂
c∈C

ycgc
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Figure 5.2 – Example of the evolution of the bounds considering a fixed step size

5.5.3 Bounds improvements

A key aspect of the Lagrangian relaxation is to ensure a good gap between the upper and lower

bounds. The difference between them gives us an optimality gap. If both bounds are equal, we have

the guarantee that the feasible solution is an optimal solution of the problem.

5.5.3.1 Lower bound improvement

When analyzing the lower bound, the step size is a key point for its good improvement. On the

one hand, if the step size is too large, the lower bound value will vary between two intervals and, in

the general context, will not increase. On the other hand, if the step size is too small, it will tend

to increase slowly. Therefore, more iterations are needed to increase the value of the lower bound.

We observe (see Figure 5.2) a periodicity in the values of the lower bound because the value of the

step size is too large. Indeed, at each iteration, the algorithm computes a subgradient to update the

Lagrangian multipliers and updates them using the value of the step size. However, as the step size is

too big, in the next iteration, the algorithm tends to rectify the Lagrangian multipliers with a direction

that is opposite to the one computed in the previous iteration. Hence, the values of the Lagrangian

multipliers, and hence the value of the lower bound, do not converge.

One strategy to improve lower bounds is to adapt the step size dynamically during execution. One

of the best-known methods for performing such an adaptation is to consider a step size of c/
√

k in each

iteration k, where c is a constant. Another way to update the step size is per every Y iterations, where

Y is a constant. Figure 5.3 illustrates the progressive increasing of the lower bound (orange line) on

an (OMBSEL) instance, considering that the step-size is updated as 1/
√

k after 10 iterations (i.e.,
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Figure 5.3 – Example of the evolution of the bounds considering a dynamic updated step-size of 1/
√

k
after 10 iterations, where k is the number of the iteration.

Y = 10). In this example, we still see the periodicity of the interval between each 10 iterations and

the impact of updating the step size after 10 iterations. Updating the step size values at each iteration

could potentially increase the value of the best lower reached (purple line), and hence, improve the

optimality gap. However, it requires a fine tuning of the constant c used to compute the step size.

5.5.3.2 Upper bound improvement

When analyzing the upper bound, the Lagrangian heuristic is the key point for its good improve-

ment. On the one hand, if the heuristic is not able to compute good feasible solutions, the ones

reached will be far from a potential optimal solution, and thus the gap between upper and lower

bounds increases. On the other hand, if the heuristic gives a near optimal solution to the problem, it

may require too much time and resources.

Figure 5.4 illustrates the solutions obtained with CPLEX solving (OMBSE −MILP ) and with

the Lagrangian relaxation after 50 iterations for a small instance with 2 sites. For this example,

the solution (b) obtained with the subgradient costs 4% more than the solution (a) obtained with

CPLEX. Note that the batteries uses in the two solutions are quite similar for this example, and both

solutions perform 10 curtailments each, 4 of which in the same periods. These similarities indicate

that the Lagrangian heuristic can give good solutions from the structural point of view. However,

improvements can still be done concerning the periods where curtailments are performed. Looking

more closely at solution (a), 5 curtailments start at one of the 15 time periods that yield the greatest

rewards, compared to only 1 in solution (b).

One proposed improvement (refereed to as Init) is a better way to initialize the Lagrangian mul-
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Figure 5.4 – Solutions obtained with (a) CPLEX solving the (OMBSE−MILP ) model, and (b) with
the Lagrangian relaxation for an instance with 2 sites managed over a week.
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tipliers λ1,1
t in order to induce the battery discharges, and thus curtailments that could start at the

periods of highest rewards. Formally, the improvement proposed, applied in the initialization proce-

dure of Algorithm 2, can be described as follows:

• Enumerate all pairs (f, l) for f, l ∈ T , l− f + 1 ≥ ∆min, l− f + 1 ≤ ∆max. The set of such pairs

will be refereed to as C+.

• Create a conflict graph G = (V, E) where each node v ∈ V corresponds to a pair c ∈ C+,

and there is an edge e = (v1, v2) between v1 and v2 if there exists a temporal conflict between

c1 = (f1, l1) and c2 = (f2, l2) (i.e., if {f1, . . . , l1} ∩ {f2, . . . , l2} ≠ ∅).

• Compute a MWBIS with a budget equal to N c, considering as weight of each vertex vi the value

w(vi) = Rfi
PT O(li − fi + 1). Note that G is an interval graph, and hence such a computation

can be done efficiently with the algorithm proposed in Section 4.4.1. Let us define the set of

vertices in the solution as V +.

• For each vi ∈ V +, update the Lagrangian multipliers by setting λ1,1
t = Et for each t ∈ {fi, . . . , li},

and 0 otherwise. Note that we increase artificially the interest of performing peak-shavings during

the time periods fi to li, that allows load curtailments to be performed.

Figure 5.5 illustrates a solution obtained with the Lagrangian relaxation using the Lagrangian

multipliers initialization for the same instance used in Figure 5.4. Firstly, the solution obtained costs

only 1% more than the one obtained in Figure 5.4-a, which corresponds to a reduction of 75% of

the gap obtained in solution illustrated in Figure 5.4-b (i.e., a reduction from 4% to 1%). Moreover,

7 of the 10 curtailments performed are also present in the solution of Figure 5.4-a. In addition, 5

curtailments start at one of the 15 time periods that yield the greatest rewards.

However, the value of the lower bound is drastically affected, and hence it takes many more

iterations to reach the same lower bound of Figure 5.3. In the example of Figure 5.6, the best lower

bound reached after 50 iterations (purple line) is smaller than the one obtained previously. A second

proposed improvement is to reset all Lagrange multipliers to zero at the end of the first iteration (see

Algorithm 3), since in our tests the best upper bound is always reached at the first iteration.

Finally, the complete Lagrangian based method used in our tests is formally described as follows:
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Figure 5.5 – Solution obtained with the Lagrangian relaxation using Lagrangian start for an instance
with 2 sites managed over a week.

Figure 5.6 – Example of the evolution of the bounds considering the Lagrangian relaxation with Init.
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• Init // initial structures, Lagrangian multipliers, step-size, θ, . . .
• BUP ← +∞ // Best upper bound reached

• BLB ← -∞ // Best lower bound reached

• k = 0
while k ≤ Imax and stop criteria is not reached do

• Solve the sub-problems presented in Section 5.5.2.1
• Run the Lagrangian heuristic (see Section 5.5.2.2)
• Update the best bounds reached (BUP and BLB)
• Update the best solution obtained Bsol
if k==1 then

set all the Lagrangian multipliers to 0
else

update the Lagrangian multipliers
end

• θ = 1/
√

k;
• k = k + 1

end
return BUP, BLB, Bsol

Algorithm 3: Lagrangian based heuristic

5.6 Numerical results

In order to assess the efficiency and relevance of our solving approaches for the OMBSE problem,

we performed some numerical experiments on realistic instances. Several instances composed by many

sites with different consumption profiles and settings are considered, generated from internal data of

the French telecommunications operator Orange. The energy costs are taken from public historic data

of the French retail market (RTE-Portal).

The three solving approaches presented are considered. Firstly, the default branch and bound

algorithm of the commercial solver CPLEX performed on the formulation (OMBSE-MILP), that is

denoted by OMBSE-MILP. Secondly, the general relax-and-fix heuristic presented in Section 5.4 param-

eterized by (δtime, δ′
time) ∈ {(36, 12), (24, 12)}, and (δsite, δ′

site) = (1, 1), that is denoted by OMBSE-HEU.

The arguments (essentially the periodicity of energy costs and demand of our data) for choosing these

parameters δtime and δ′
time, for the instances tested are the sames as the ones presented in Chapter 4.

Finally, the Lagrangian decomposition method with the subgradient method presented in Section 5.5

and with the improvements, that is denoted by OMBSE-LAG.

The numerical experiments are organized as follows. Firstly, in Section 5.6.1, we describe the
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instances and the settings used in our experiments. Then, in Section 5.6.2 we present the results of

OMBSE instances solved using OMBSE-MILP, OMBSE-HEU, and OMBSE-LAG. We discuss the computational

results and we analyze the economic aspects of the solutions obtained in Section 5.6.3.

5.6.1 Instances description

We based our testbed on urban and rural sites similar to the site considered in Chapter 4 for

which a random variation of 25% is considered in some sites. In addition, we assume a weekly time

horizon with time discretization ∆ = 1
2 (i.e., 30 minutes), which implies that T = 336. Such a time

discretization is the one considered by the transmission system operator that imposes the minimal

duration of 30 minutes, i.e., 1 time period in our tests.

Each site is equipped with one battery, whose main properties are provided in what follows. The

autonomy of each battery varies between 20 and 60 time periods. Besides, two types of batteries are

installed: GEL and AGM, for which the recharge power rate PBbs
is as follows:

1. PBbs
= 1.95% of Bmax

bs
/∆ for GEL batteries;

2. PBbs
= 3.34% of Bmax

bs
/∆ for AGM batteries.

In addition, the minimal power discharge Dmin
bs

is 10% of Dmax
bs

which is different for each battery bs

in all instances. Finally, the value of Bmin
bs

is 50% of the battery energy stock capacity Bmax
bs

, and each

battery cannot be used more than 2 times per day (i.e., Nbs = 14) RTE-Portal.

Concerning the data related to the distributor, we consider the unit prices from the French distrib-

utor EDF, publicly available at data.gouv.fr (2020). Besides, the maximum amount of power P max
s

that can be purchased per time period is established by contract for each site. In our tests, to guar-

antee that the value of P max
s of each site s is greater than the power demand Ws,t at any time period

t ∈ T , we set such a value to 3W̄ s.

Concerning the data related to the transmission system operator, we consider rewards paid by the

French operator RTE, whose values are publicly available (see RTE-Portal). Besides, the minimum

and maximum curtailment duration are defined by contract and are 1
2 and 2 hours (i.e., ∆min = 1

and ∆max = 4 because we consider ∆ = 1/2), respectively. Similarly, the contractualized power

PT O considered varies in function of the sum of the maximum powers of all sites together. In other
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words, PT O ∈ {25%, 50%, 75%, 100%} of
∑︁

s∈S Dmax
bs

(denoted as D̃
max

). Moreover, no more than 10

curtailments are allowed over a week (i.e., N c = 10).

In addition, to simplify the writing, we present the time discretization ∆ in minutes. The input

values of the power demand, unit cost of energy, and reward over the time horizon, are taken as average

observed values. Our tests were performed on 240 instances.

All tests were performed on a server computer with 4GB of RAM and 1 Intel Xeon 2.2GHz

CPU. The method used to solve (OMBSE-MILP) formulation is the branch-and-bound implemented

in CPLEX 12.9, with default settings. The running time is limited to 1 hour for each instance. The

number of iterations of the Lagrangian relaxation is limited to 50. No improvements on the bounds and

on the solutions were observed considering more iterations in preliminary tests with some instances.

We also limit the CPLEX CPU time to solve each intermediate model at each iteration of OMBSE-HEU

to 3 minutes.

5.6.2 Numerical results

In this section we present the results for OMBSE instances solved with OMBSE-MILP, OMBSE-HEU

and OMBSE-LAG. The analysis of the results is presented in Section 5.6.3.

Table 5.1 – OMBSE-MILP results

PT O

(% of D̃
max

)
|S| Stand.

Cost (e)
Lin Relax
(e)

sol
(e)

reduc
(%)

Opt.
GAP (%)

GAP at
root (%)

CPU
Time (s)

Nb of
Var

% of
bin var

25

2 18.0 15.1 15.5 13.6 2.5 11 3600 9387 50.0
3 42.6 35.7 37.3 12.5 3.8 16 3600 12075 47.2
5 118.1 99.8 104.3 11.6 4.0 15 3600 17451 44.2
10 287.6 242.0 256.8 10.7 5.4 11 3600 30891 41.3
25 795.2 672.4 756.6 4.9 10.7 15 3600 71211 39.1
50 1 980.8 1 673.5 1 980.4 0.0 15.3 419 3600 138411 38.3
100 4 056.5 3 423.6 4 056.5 0.0 15.4 578 3600 272811 37.9

50

2 18.0 12.7 14.2 20.8 9.7 23 3600 9387 50.0
3 42.6 31.0 34.2 19.7 9.1 27 3600 12075 47.2
5 118.1 86.2 97.8 17.2 11.4 28 3600 17451 44.2
10 287.7 210.7 243.3 15.4 13.0 22 3600 30891 41.3
25 795.8 581.0 693.7 12.8 16.0 27 3600 71211 39.1
50 1 979.4 1 437.6 1 979.1 0.0 27.1 743 3600 138411 38.3
100 4 055.7 2 962.8 4 055.7 0.0 26.7 1054 3600 272811 37.9

75

2 18.0 11.1 13.9 22.6 19.7 34 3600 9387 50.0
3 42.6 26.2 33.8 20.6 22.2 38 3600 12075 47.2
5 118.0 73.0 96.5 18.2 24.0 38 3600 17451 44.2
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Table 5.1 continued from previous page

PT O

(% of D̃
max

)
|S| Stand.

Cost (e)
Lin Relax
(e)

sol
(e)

reduc
(%)

Opt.
GAP (%)

GAP at
root (%)

CPU
Time (s)

Nb of
Var

% of
bin var

10 287.6 176.9 245.7 14.6 27.7 33 3600 30891 41.3
25 796.2 499.8 709.7 10.9 29.3 37 3600 71211 39.1
50 1 979.8 1 243.2 1 979.2 0.0 36.9 1048 3600 138411 38.3
100 4 055.6 2 530.5 4 055.6 0.0 37.4 1538 3600 272811 37.9

100

2 18.0 8.9 14.7 18.0 38.9 47 3600 9387 50.0
3 42.6 21.3 36.8 13.5 41.8 50 3600 12075 47.2
5 118.2 59.4 104.4 11.7 42.7 49 3600 17451 44.2
10 287.7 145.4 272.2 5.4 46.2 46 3600 30891 41.3
25 795.8 401.5 769.5 3.3 47.6 49 3600 71211 39.1
50 1 980.7 1 004.9 1 979.7 0.1 49.0 1377 3600 138411 38.3
100 4 056.3 2 054.0 4 056.3 0.0 49.1 2016 3600 272811 37.9

Table 5.2 – OMBSE-HEU results with (δtime.δ′
time) ∈ {(24.12).(36.12)} and (δsite.δ′

site) = (1.1)

|S| (δtime.δ′
time) (δsite.δ′

site) Stand. Cost (e) sol (e) reduc (%) CPU Time (s) Nb Iter

2 24.12 1.1 18.0 15.5 13.7 9089 54

2 36.12 1.1 18.0 15.4 14.2 8837 52

3 24.12 1.1 42.6 37.5 11.9 14048 81

3 36.12 1.1 42.6 36.5 14.3 13583 78

4 24.12 1.1 72.3 64.5 10.9 18841 108

4 36.12 1.1 72.3 64.2 11.2 18280 104

Table 5.1 shows the numerical results concerning the OMBSE instances solved with OMBSE-MILP.

In this table, each row stores the average of the results for a subset of instances, grouped by the number

|S| of sites of the instances, and by the power contractualized PT O. Note that the results for both

types of power demand W (i.e., observed or randomized) are grouped because the results are similar

for both cases. Column Stand. Cost corresponds to the average of the standard cost, i.e., the cost

when no batteries are used, equal to
∑︁

t∈T ,s∈S EtWs,t. Column Lin Relax reports the mean of the

optimal value of the continuous relaxation of (OMBSE−MILP ). Columns sol and reduc store the

mean of the solution value in monetary units, and the average reduction in the total energy cost, given

in %, respectively. Besides, the average optimality gap, i.e., the value of the relative gap between the

value of the best integer solution obtained by CPLEX and the best lower bound computed, given in

%, and the average relative gap reached at the root of the branch and bound tree, given in %, are

provided in columns Opt. GAP and GAT at root. Column CPU Time provides the average running

time given in seconds. In addition, columns Nb of Var and % of bin var report the mean number
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of variables, and mean the percentage of binary variables, respectively.

Table 5.3 – OMBSE-LAG results

PT O

(% of D̃
max

)
|S| Stand.

Cost (e)
Sub LB
(e)

Sub UB
(e)

Opt
GAP (%)

CPU
Time (s)

sol
(e)

reduc
(%)

25

2 18.0 15.2 15.6 2.50 147 15.62 13.2
3 42.6 36.2 37.1 2.60 139 37.14 12.8
5 118.1 100.8 103.4 2.60 160 103.43 12.4
10 287.6 244.2 252.5 3.30 240 252.45 12.2
25 795.2 678.3 699.7 3.10 575 699.71 12.0
50 1 980.8 1 690.1 1 740.9 2.90 1 019 1 740.87 12.1
100 4 056.5 3 460.2 3 591.4 3.70 2 291 3 591.39 11.5

50

2 18.0 13.0 14.2 8.30 135 14.15 21.2
3 42.6 31.4 33.3 5.70 142 33.33 21.8
5 118.1 87.4 93.3 6.30 175 93.25 21.0
10 287.7 213.8 228.6 6.50 297 228.57 20.5
25 795.8 589.7 628.3 6.10 777 628.22 21.1
50 1 979.4 1 461.1 1 554.0 6.00 1 263 1 553.96 21.5
100 4 055.7 3 002.7 3 249.5 7.60 2 661 3 249.71 19.9

75

2 18.0 11.3 13.7 17.60 135 13.72 23.7
3 42.6 26.7 30.2 11.60 151 30.21 29.1
5 118.0 74.3 82.3 9.70 196 82.27 30.3
10 287.6 180.2 204.0 11.70 333 203.99 29.1
25 796.2 508.0 564.1 10.00 788 564.13 29.1
50 1 979.8 1 263.8 1 429.4 11.60 1 512 1 429.39 27.8
100 4 055.6 2 577.5 2 921.5 11.80 3 130 2 921.58 28.0

100

2 18.0 9.1 13.3 31.50 135 13.35 25.7
3 42.6 21.8 29.9 27.00 152 29.88 29.9
5 118.2 60.7 70.6 14.10 207 70.64 40.2
10 287.7 148.8 176.8 15.80 368 176.82 38.5
25 795.8 410.3 490.9 16.40 856 490.93 38.3
50 1 980.7 1 027.8 1 206.8 14.80 1 578 1 206.71 39.1
100 4 056.3 2 101.4 2 597.6 19.10 3 446 2 597.90 36.0

Table 5.2 stores the numerical results concerning the OMBSE instances solved with OMBSE-HEU

using the parameters (δtime, δ′
time) ∈ {(36, 12), (24, 12)}, and (δsite, δ′

site) = (1, 1). In this table, each

row stores the average of the results for a subset of instances, grouped by the number |S| of sites of

the instances, and by the values of δtime and δ′
time. Column Stand. Cost corresponds to the average

of the standard cost, i.e., the cost when no batteries are used, equal to
∑︁

t∈T ,s∈S EtWs,t, while column

sol stores the mean of the solution values, given in monetary unit, obtained with OMBSE-HEU. Besides,

the average reduction in the total energy cost, given in %, and the average running time, given in

182



5.6. NUMERICAL RESULTS

seconds, are provided in columns reduc and CPU Time. Furthermore, column Nb of It reports the

mean number of iterations of the algorithm. Note that only small instances (i.e., instances with up to

4 sites) were solved with OMBSE-HEU because of the high CPU Time necessary.

Concerning the results obtained with OMBSE-LAG, Table 5.3 stores these results, grouped by the

number |S| of sites of the instances, and by the power contractualized PT O. Note that the results

for both types of power demand W (i.e., observed or randomized) are grouped because the results

are similar for both cases. Column Stand. Cost corresponds to the average of the standard cost,

i.e., the cost when no batteries are used, equal to
∑︁

t∈T ,s∈S EtWs,t. Besides, Columns Sub LB and

Sub UB, report the mean value of the best lower and upper bounds obtained with OMBSE-LAG, given

in monetary units, respectively. In addition, the average running time, given in seconds, is provided

in column CPU Time. Furthermore, columns sol and reduc store the mean of the solution values in

monetary units, and the average reduction in the total energy cost, given in %, respectively.

5.6.3 Experimental analysis

In the following we analyze the results presented in the previous section.

We begin by focusing on the running times and observe a significant impact of the number of

sites on the performance of all algorithms. Indeed, we observe that the size of the problem increases

in function of the number of sites, and that the problem becomes harder to solve because of the

combinatorial aspects and dependence of the sites (i.e., when batteries of multiple sites are used

together to perform a load curtailment).

Concerning OMBSE-MILP, for all instances, including the ones with only 2 sites, no optimality

guarantee is observed within the CPU time limit. Moreover, the optimality gap observed is significant,

varying from 2.5% on average for instances composed of 2 sites, up to 49% on average for larger

instances composed of 100 sites. We observe that the value of the best solution found gives a reduction

in the energy bill of 12.8% on average for small and medium instances. However, for large instances

composed of 100 sites, the best feasible solution given by CPLEX does not use the batteries (i.e. it is

the standard one). We observe that the mixed-integer linear formulation proposed has a continuous

relaxation quite good, when compared to the standard cost. The relative gap between both values

for the instances tested is in average about 50% for instances with 100 sites, and in average 17% for

small instances. This implies that, in the worst scenario (that happens for large instances), the best
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lower bound given by CPLEX is exactly the optimal value of the continuous relaxation, and the best

upper bound (i.e., value of a feasible solution) is the standard solution when no batteries are used.

In addition, the optimality gap found at the root of the branch and bound tree is higher than the

final optimality gap obtained (it varies from 11% for instances with 2 sites, to 2016% for instances

with 100 sites and PT O = 100% of D̄
max

), which shows that CPLEX is able to improve the bounds

over the iterations. We also observe that the randomness in the power demand has no impact on the

performance of the algorithm. Furthermore, the number of variables grows linearly in the number of

sites, and about 43% of those variables are binary ones, which makes the branch and bound method

implemented in CPLEX slower.

In the following, we analyze the results obtained with OMBSE-HEU, based on the best heuristic

proposed in Chapter 4. However, it does not work as well as OMBSE-HEU requires too much running

time. We observe that CPLEX is not able to solve to optimality the model partially relaxed obtained

at each iteration of the algorithm. This implies that each iteration of the algorithm takes at least 3

minutes. Hence, we could observe that, even for small instances composed of 2 sites, OMBSE-HEU takes

about 3 hours. Consequently, we tested only instances with up to 4 sites.

Concerning the results obtained with OMBSE-LAG, we observe firstly that much less CPU time is

required than for OMBSE-MILP and OMBSE-HEU, and that this time increases linearly in function of

the number of sites of the instance. This is to be expected because of the fact that the Lagrangian

heuristic runs in polynomial time, and that each site corresponds to one sub-problem to be solved at

each iteration. But, even for small instances composed of 2 sites, the subgradient algorithm does not

give an optimality guarantee (i.e., the lower and upper bounds obtained by OMBSE-LAG do not converge

to the same value). However, we observe optimality gaps smaller than with OMBSE-MILP, varying from

2.5%, for small instances, to 19% for instances with 100 sites, against optimality gaps varying from

2.5% to 49% for the same size of instances with OMBSE-MILP. Another important aspect is that there is

no dependence between the sub-problems, which allows them to be solved separately and in parallel.

In our tests, we consider only one CPU, but the algorithm performance could be increased by solving

the sub-problems in parallel.

We now focus on the economic aspects of the solutions, and observe a reduction in the energy bill

for all solving approaches proposed, confirming that participating in the energy market can generate

savings for the company. Furthermore, we observe similar gains whether the power demand is ran-
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domized or not, because of the fact that the batteries properties and the number of load curtailments

that can be performed are the aspects that limit the most the savings that can be generated. Indeed,

the number of load curtailments performed in any solution obtained (except when CPLEX gives the

standard one) is exactly N c, independently of the solving method.

Concerning OMBSE-MILP, the values of best solutions found give on average savings of 11% for

instances with at most 10 sites, with an optimality gap of 3.1% on average for such instances. However,

for larger instances, savings generated by the best solution obtained decrease significantly. In some

cases, for instances with 100 sites, the solution obtained does not give savings. We observe that the

value of PT O impacts directly the savings obtained, which is to be expected because of the fact that

the reward received per curtailment depends on the power contractualized PT O. However, if the value

of PT O is too high, this implies that all the batteries must be used to perform each load curtailment.

This reduces the possibility of use of the batteries for peak-shaving, as well as the number of possible

load curtailments that can be performed. In our tests, we observe that having a PT O equal to 75% of

the total power asset yields savings at most 11% higher. Furthermore, we observe similar savings and

final gaps on average for instances with a randomness in the power demand and for instances without

such a randomness.

Concerning OMBSE-HEU, the savings obtained are similar to the ones obtained with OMBSE-MILP

for small instances. Such a reduction is 12.3% on average for the instances tested. However, even for

small instances, OMBSE-HEU requires much more CPU time (3600 seconds with OMBSE-MILP against

13700 seconds on average with OMBSE-HEU). However, even for the instances tested, we observe that

adjusting the values of δtime and δ′
time to 36 and 12, respectively, allows us to obtain solutions with

better savings (1% higher on average compared to δtime and δ′
time equal to 24 and 12, respectively).

Concerning OMBSE-LAG, we observe that it runs faster and gives better solutions than OMBSE-MILP

and OMBSE-HEU. The savings obtained vary from 11.5% on average, for instances with PT O=25% of

D̃
max

and 100 sites, to 40.2% on average, when PT O=100% of D̃
max

and there are 5 sites. In addition,

the optimality gap obtained with OMBSE-LAG increases with the value of PT O, but is still smaller than

the ones obtained with OMBSE-MILP. However, unlike OMBSE-MILP, the savings obtained tend to be

larger when PT O is equal to 100% of the power asset. Analyzing the results, we observe that the

solutions obtained with OMBSE-LAG tend to perform the maximal number of curtailments possible

and a small number of peak-shavings. Hence, the savings obtained come mainly from the rewards
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Figure 5.7 – Results obtained by solving OMBSE instances with OMBSE-MILP and OMBSE-LAG.

received by performing curtailments. Furthermore, comparing the lower bounds of OMBSE-MILP and

OMBSE-LAG, we observe that the second method gives better lower bounds, and, consequently, better

optimality gaps. In short, having solutions with a quality guarantee as good as the solution itself is

fundamental to use such methods in a production environment.

To illustrate the impact of the parameter PT O on the savings and optimality gap, Figure 5.7a

illustrates the savings, given in %, for OMBSE-MILP and OMBSE-LAG, and Figure 5.7b illustrates the

optimality gap, given in %, for the same methods. Note that, as OMBSE-MILP requires too much CPU

time and only few tests were performed, there is not enough data to integrate in these figures. We can

observe that the savings obtained with OMBSE-MILP decrease when PT O=100% of D̃
max

, which is not

the case with OMBSE-LAG. In addition, we can observe that the optimality gap increases as the value

of PT O increases in both methods, but OMBSE-LAG gives smaller gaps than OMBSE-MILP.

To illustrate the impact of the number of sites on the savings and optimality gap given by OMBSE-

MILP and OMBSE-LAG, Figure 5.8a illustrates the savings, given in %, for OMBSE-MILP and OMBSE-LAG,

and Figure 5.8b illustrates the optimality gap, given in %, for the same methods, in function of the

number of sites on the instances. Firstly, we can observe that the cost reductions obtained with

OMBSE-LAG are always higher than the ones obtained with OMBSE-MILP, even for small instances, when

PT O is higher than 50%. In addition, OMBSE-MILP is not able to find other solution than the standard

one given to CPLEX as starting solution for instances with 50 sites or more. In fact, the best solution

obtained with OMBSE-MILP in these cases are the standard ones, i.e., when batteries are not used

to perform peak-shavings or load curtailments. Furthermore, savings obtained with OMBSE-LAG stay

quite constant as the number of sites increases, which gives a perspective of savings for instances even

186



5.7. CONCLUSION

(a) Reduction in the energy bill.

(b) Optimality GAP.

Figure 5.8 – Results obtained by solving OMBSE instances with OMBSE-MILP and OMBSE-LAG.

larger than 100 sites. Secondly, concerning the optimality gap for OMBSE-LAG and OMBSE-MILP, we

can observe that the ones obtained with OMBSE-MILP increase between instances with 0 and 50 sites.

For larger instances, such gaps stabilize because of the fact that the optimal value of the continuous

relaxation (i.e., the best lower bound given by CPLEX for such cases) also stabilizes compared to the

standard solution. Concerning the optimality gaps obtained with OMBSE-LAG, they are much smaller

than the ones obtained with OMBSE-MILP, and tend to increase slowly as the number of sites increases.

5.7 Conclusion

This chapter addresses the OMBSE problem, that consists in optimizing the total energy cost using

batteries installed for backup to participate in the energy markets via a proper battery management.

We propose a mixed-integer linear program whose solutions provide a strategy for using the batteries

so as to reduce the total energy cost. We have shown that the OMBSE problem is strongly NP-Hard,

and two heuristics are proposed: the first one is based on the relax-and-fix strategy already explored

in Chapter 4, and the second one is based on a Lagrangian relaxation which allows to decompose the

problem into sub-problems which are easier to solve. Moreover, we have used these approaches to

solve the OMBSE problem on realistic instances.

As a result, we firstly observe that using batteries installed for backup in the balancing mech-

anism may generate savings. Concerning the solving approaches, we observe in particular that the
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mathematical model solved with a branch and bound algorithm could not achieve an optimality guar-

antee for any instance within the time limit, even for the small ones. However, even without such

an optimality guarantee, the best solution obtained already generates savings. The number of times

that each battery can be used and the number of load curtailments that can be performed seem to

be the parameters that have the greatest impact on those savings. In contrast, no reduction in the

electricity bill compared to the standard value was observed by increasing the number of sites of the

instances. Concerning the heuristic OMBSE-HEU, it gives solutions with savings similar to the ones ob-

tained with OMBSE-MILP, but requires much more CPU time. From a practical point of view, its use in

a production environment is not feasible. Concerning OMBSE-LAG, the results obtained proved its eco-

nomical relevance, by providing better solutions compared to the best ones obtained with OMBSE-MILP

or OMBSE-HEU, and with better optimality gaps. Furthermore, we observe that the power contrac-

tualized PT O has an important impact on the solutions obtained: with higher values, the solutions

yield more savings, but if it is too high (i.e., PT O=100% of D̄
max

), it can limit the use of batteries to

perform peak-shavings. From a theoretical point of view, OMBSE-LAG reuses the algorithms proposed

in Chapters 3 and 4, which allows us to solve large-scale instances faster while keeping good quality

of the solutions obtained.

Concerning the performance of our algorithms, we observe that the number of sites is the parameter

that impacts the most the solving time. We consider a time limit of 1 hour for solving each instance,

and, in this aspect, the Lagrangian heuristic OMBSE-LAG proves to be computationally efficient, while

we observe that the solving time for the mixed-integer linear program proposed and the bidimensional

relax-and-fix heuristic increases fast. From a practical point of view, the use of OMBSE-LAG is feasible

in a production context due to the fact that its sub-problems can be solved separately and in parallel.

From a research perspective, we observed that the best feasible solution obtained with OMBSE-LAG

is obtained in the first iterations and is not improved over the iterations. Exploring other Lagrangian

heuristics to improve the search for feasible solutions in the Lagrangian relaxation at each iteration

of the subgradient method is fundamental to obtain solutions better than the ones already obtained.

Furthermore, the problem treated in this chapter can be extended to a scenario where sites are equipped

with multiple batteries. The solving approaches proposed can be adapted and are still valid.
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Chapter 6

Conclusion and Perspectives

6.1 Conclusion

This Ph.D. thesis explored different possibilities for using batteries of a telecommunications opera-

tor primarily used as backup in energy markets. More precisely, we explored the use of such batteries

to perform peak-shavings, but also to perform load curtailments in order to reduce the total energy

cost for the company. First, we identified different challenges related to the use of batteries in different

contexts that needed a deeper analysis to better understand the difficulties as well as the opportuni-

ties. Next, these challenges were investigated individually, and each time exact and heuristic methods

were proposed. Finally, the complete problem with all the rules and possibilities of battery use was

explored and solving methods based on the obtained results were designed.

For each one of the corresponding optimization problems, we have designed:

• For the OBSC problem:

– A mathematical model considering the constraints of the French curtailment market and

the safety usage rules in the batteries;

– An exact polynomial time algorithm based on graph theory to solve two variants, and that

can also be used as a heuristic.

• For the OMBSR problem:

– Two mixed-integer linear programs: one based on the enumeration of all possibilities of

batteries use, and a second one without enumeration;
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– The proof that OMBSR is strongly NP-Hard;

– Two heuristics based on different aspects for OMBSR: one heuristic based on graph theory

inspired by the properties of the realistic tested instances, and a second heuristic based on

the relax-and-fix approach, that gives better results for the general case.

• For the OMBSE problem:

– A mixed-integer linear program;

– The proof that OMBSE is strongly NP-Hard;

– A Lagrangian based approach that reuses the algorithms proposed for sub-problems of

OBSC;

– A bidimensional relax-and-fix heuristic;

In order to assess the efficiency and relevance of the models and algorithms proposed, several numerical

experiments were performed on realistic instances, generated from public energy costs and data related

to the curtailment market, as well as internal data from the French telecommunications operator

Orange.

In the first case study, i.e. the OBSC problem, we observed that participating in the curtailment

market generates large savings for the company. We also identified which rules make the problem

difficult to solve, and we observed that the methods proposed to solve the variants of the problem that

are polynomial are also economically suitable when used as heuristics for the OBSC problem.

In the second case study, i.e., the OMBSR problem, we analyzed the impact of managing multiple

batteries when they are used exclusively to perform peak-shavings. We have observed that increas-

ing the number of batteries installed makes the problem difficult to solve. In fact, we prove that it is

strongly NP-Hard. The proposed mathematical models are unable to solve realistic instances when us-

ing a standard MILP solver, and the proposed heuristics proved to be economically and algorithmically

efficient when the number of installed batteries increases.

In the third case study, i.e., the OMBSE problem, we returned to the initial problem of this

thesis where batteries can be used to perform both peak-shavings and load curtailments in a multi-

battery setting. We observed that using the batteries generates reductions in the energy bill and is

economically profitable for the company. We also observed that the proposed mathematical model is
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not able to solve realistic instances to optimality with a standard MILP solver. Hence, by applying

the Lagrangian relaxation to the proposed model, and using the subgradient algorithm along with

the methods proposed in Chapter 3 to solve the sub-problems, it proved to be computationally and

economically efficient to solve realistic instances. Concerning the bidimensional relax-and-fix heuristic,

it did not prove to be efficient in solving the OMBSE problem because each iteration remains difficult

to solve, requiring long computation times.

We can conclude that the use of batteries installed for backup of a telecommunications operator

in the energy market is economically profitable. If these batteries are used to perform peak-shavings

and load curtailments, the gains obtained can be considerably high. Moreover, even if the batteries

are used only for peak-shaving, the gains that can be obtained already represent an important value

for the company.

6.2 Research Perspectives

6.2.1 Scientific Perspectives

During this thesis, several aspects were addressed and some of them require further research.

From a theoretical point of view, the complexity of the problem addressed in Chapter 3 concerning

the management of a battery that is used to perform curtailments is still an open issue. Only two

polynomial variants have been identified.

In the same vein, several solving methods have been proposed for the different problems addressed

that strongly depend on the setup parameters. Exploring in detail such parameters, as well as identi-

fying the best values of these parameters for specific classes of problems, is of fundamental importance

to obtain better results and computational performance.

In Chapters 4 and 5, heuristics based on the relax-and-fix technique and Lagrangean decomposition

were proposed. However, other solving methods can be applied to the problem addressed in this thesis.

Dynamic programming in particular cases, alternative heuristics and nonlinear programs could be used.

Another perspective of research is the scenario where sites are equipped with multiple batteries.

In fact, Chapter 5 treats the problem considering sites equipped with a single battery because it is the

current case at Orange France. However, data-centers and central base stations are frequently equipped

with a pool of batteries that could also be used in the energy markets, but they are not considered
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in this thesis. Along the same lines, the possibility of installing batteries, and thus considering a

set-up installation cost, to improve the ability to perform peak-shavings and load curtailments is also

a perspective of future research.

We describe some possible extensions in the following section.

6.2.2 Industrial Perspectives

During the course of this thesis some questions and opportunities have emerged, leading to three

perspectives of future works to explore the use of batteries of a telecommunications operator in the

energy market.

Firstly, sharing batteries between neighboring base stations is a topic discussed internally in the

company, for which research is ongoing (Foucault et al., 2016). In this context, adding to the problem

the decision of which base stations need to have a battery to supply neighboring stations is a challenge

to be explored and that can generate considerable cost savings for the company. Once a battery is

shared, the efficiency of sending power between two stations must be considered. Appendix A reports

an in-depth analysis of sending power from one station to the other considering physical aspects in

the power transmission.

The second perspective is related to the use of lithium batteries, also installed for backup, to

participate in the energy markets. Lithium batteries are more efficient, more flexible in their use and

better able to withstand different temperatures. After several conversations with the expert team of

Orange France, we report in Appendix B an analysis of such a type of batteries and the changes to be

made in our models and algorithms to integrate them.

The third research perspective is related to the integration of renewable energy together with

batteries to perform peak-shavings and load curtailments. A large-scale integration of solar panels

and wind turbines changes significantly the net power load patterns of production and consumption,

requiring complex management systems (Luo et al., 2015; Shaker et al., 2016). Internally at Orange,

the use of solar panels and wind turbines is a subject of studies for the evolution of the energy network

of the base stations (Marquet et al., 2006). Indeed, maintaining the stability and reliability of power

network, together with the battery safety usage rules in order to participate in the energy market, is

a real challenge that needs further research.
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Marzband, M., Alavi, H., Ghazimirsaeid, S.S., Uppal, H., Fernando, T., 2017. Optimal energy man-

agement system based on stochastic approach for a home microgrid with integrated responsive load

demand and energy storage. Sustainable cities and society 28, 256–264.

McCormick, G.P., 1976. Computability of global solutions to factorable nonconvex programs: Part

i-convex underestimating problems. Mathematical programming 10, 147–175.

199

https://www.legifrance.gouv.fr/affichCode.do?cidTexte=LEGITEXT000023983208
https://www.legifrance.gouv.fr/affichCode.do?cidTexte=LEGITEXT000023983208


BIBLIOGRAPHY

Meyabadi, A.F., Deihimi, M.H., 2017. A review of demand-side management: Reconsidering theoret-

ical framework. Renewable and Sustainable Energy Reviews 80, 367–379.

Mishra, A., Irwin, D., Shenoy, P., Kurose, J., Zhu, T., 2012. Smartcharge: Cutting the electricity bill

in smart homes with energy storage, in: Proceedings of the 3rd International Conference on Future

Energy Systems: Where Energy, Computing and Communication Meet, pp. 1–10.

Mkireb, C., Dembele, A., Jouglet, A., Denoeux, T., 2018. A linear programming approach to opti-

mize demand response for water systems under water demand uncertainties, in: 2018 International

Conference on Smart Grid and Clean Energy Technologies (ICSGCE), IEEE. pp. 206–211.
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Gestion optimale des systèmes de stockage
d’énergie dans les réseaux de
télécommunications pour l’intégration de
mesures incitatives des marchés de l’énergie

7.1 Abstract

L’utilisation de batteries de secours en cas de coupure de courant est fréquente dans les réseaux

de télécommunications, car ils fournissent des services critiques qui doivent être toujours en ligne. De

plus, ces batteries peuvent être utilisées pour participer au marché de l’énergie, à condition que les

règles de sécurité d’utilisation des batteries soient respectées. Dans cette thèse, nous considérons le

problème de l’optimisation des coûts totaux de l’énergie en utilisant des batteries installées pour la

sauvegarde afin de participer au marché de l’énergie en effectuant des écrêtements de pointe et des

effacements, avec l’aide d’une gestion appropriée des batteries. Différents challenges ont été explorés

individuellement pour comprendre les propriétés du problème d’optimisation, et ainsi développer des

méthodes de résolution efficaces. Des programmes linéaires mixtes et des heuristiques sont proposés,

et des simulations basées sur des données réalistes montrent leur pertinence.

7.2 Introduction

Au cours des dernières années, différents aspects du marché de l’électricité ont été étudiés, notam-

ment avec l’émergence des smart-grids (Tuballa and Abundo, 2016). Ces réseaux peuvent impliquer de

multiples sources d’énergie, des systèmes de stockage, une consommation intelligente et une produc-
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tion locale d’énergie (Dang, 2009; Koutsopoulos et al., 2011). Dans ce contexte, les batteries peuvent

être utilisées de différentes manières dans le but de réduire les coûts de production et de transport,

de réduire la consommation d’énergie et d’augmenter la fiabilité du réseau lorsqu’elles sont utilisées

comme système de secours. Plus précisément, l’utilisation de batteries comme système de secours en

cas de coupure de courant est courante dans les réseaux de télécommunications, car ils fournissent des

services critiques et doivent rester en permanence en ligne. (Kiehne and Krakowski, 1984). Ces bat-

teries sont utilisées en conjonction avec des antennes et d’autres équipements, et des règles strictes de

sécurité d’utilisation doivent être prises en compte afin de garantir qu’elles soient toujours disponibles

en cas de panne de courant.. En outre, l’opérateur (entreprise) de télécommunications pourrait utiliser

ces batteries afin de participer au marché de l’électricité à condition que le réseau soit suffisamment

fiable et que les règles de sécurité d’utilisation soient respectées. En effet, puisque le prix de l’énergie

varie dans le temps, les batteries peuvent être utilisées pour éviter d’acheter de l’énergie lorsque ce

prix est élevé, ce que l’on appelle le mécanisme de réponse à la demande. (Daryanian et al., 1989). The

batteries will then be recharged when the energy price is low. Les batteries seront ensuite rechargées

lorsque le prix de l’énergie est bas. La production et la demande d’énergie définissent les prix de

l’énergie sur une journée, qui doivent être payés pour acheter de l’énergie sur un marché. Un tel

marché de l’électricité est connu sous le nom de marché de détail, et le mécanisme de réponse à la

demande a été largement étudié au cours de la dernière décennie (Torriti, 2015; Johnson et al., 2011;

Mishra et al., 2012; Labidi, 2019). Ce mécanisme est basé sur les changements dans la consommation

d’électricité des clients finaux par rapport à leurs habitudes de consommation normales, en réponse

aux variations des prix de l’énergie dans le temps.

Récemment, une autre façon rentable pour une entreprise d’utiliser ses batteries, est apparue.

Depuis 2016, l’opérateur de télécommunications français Orange France utilise les batteries de ses sta-

tions de base installées pour la sauvegarde afin d’ajuster la consommation électrique et d’effectuer des

réductions de charge par le biais du mécanisme de réponse à la demande appelé Notification d’échange

de blocs (NEBEF). (RTE-Portal, 2020). Dans ce contexte, Orange France interagit directement avec

la TO grâce à sa grande capacité de flexibilité de la charge en participant au marché d’effacement via le

mécanisme NEBEF. Pour ce faire, elle utilise ses batteries pour lesquelles des règles strictes de sécurité

d’utilisation doivent de toute façon être respectées. Cependant, aucune stratégie d’optimisation dans

une telle utilisation n’est prise en compte.
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Dans cette thèse, nous considérons le problème de l’optimisation des coûts totaux de l’énergie en

utilisant des batteries installées pour la sauvegarde afin de participer aux marchés de détail et de

réduction, avec l’aide d’une gestion appropriée des batteries. Notre objectif est de réduire les dépenses

opérationnelles totales de l’entreprise, connues sous le nom d’OPerational EXpenditure (OPEX), et

de maximiser les récompenses reçues du marché d’effacement. Notez que les OPEX et les récompenses

reçues sont représentées par des unités monétaires et sont considérées simultanément. Par conséquent,

nous avons un problème d’optimisation à objectif unique.

Concernant les contributions de cette thèse, nous avons d’abord effectué une analyse théorique

du problème et de ses propriétés, prouvant qu’il s’agit d’un problème qui agrège différentes difficultés

à résoudre. Différents modèles mathématiques, abordant des parties du problème ou considérant le

problème complet, ont été proposés et évalués. Nous présentons également différents algorithmes et

heuristiques avec de bonnes performances en termes de calcul et d’économie, qui sont utiles pour

résoudre de grandes instances réelles. Différentes expériences numériques sont réalisées et confirment

la performance des méthodes proposées.

7.3 Règles industrielles

Cette section résume l’ensemble des règles qui sont prises en compte dans cette thèse. Elles

proviennent du marché de l’énergie et des règles d’utilisation de la sécurité des batteries.

R1 - Au moins une quantité minimale d’énergie Bmin, exprimée en kWh, doit rester dans la batterie

à tout moment;

R2 - La batterie doit être immédiatement rechargée complètement après chaque utilisation avec une

puissance constante PB, exprimée en kW, jusqu’à sa capacité maximale Bmax, exprimée en kWh;

R3 - La batterie doit être entièrement chargée au début et à la fin de l’horizon de planification;

R4 - Une puissance minimale de décharge de Dmin, donnée en kW, est imposée lorsque la batterie

est en mode de décharge;

R5 - La puissance maximale que la batterie peut fournir est limitée à Dmax et est exprimée en kW;

R6 - Chaque batterie b ne peut être utilisée plus de Nb fois sur l’horizon temporel;
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R7 - Il n’est pas possible d’acheter plus de P max kW au distributeur sur une période donnée;

R8 - La durée de chaque réduction effectuée est limitée par des périodes de temps de ∆min et ∆max;

R9 - pmax
c kW peuvent être achetés au distributeur pendant l’effacement c s’il est effectué;

R10 - Le nombre d’effacements qui peuvent être effectuées sur l’horizon temporel est limité à N c.

Notez que les règles R1-R6 concernent les règles d’utilisation de la sécurité, et les règles R7-R10 au

marché de l’énergie. En Section 7.5, uniquement les règles R1-R5, et R7-R9 sont considérées, tandis

que seules les règles R1-R7 sont considérés dans la Section 7.6. En section 7.7, toutes les règles R1-R10

sont pris en compte.

7.4 Positionnement et principales contributions

Dans cette section, nous présentons les principaux défis abordés dans cette thèse et le plan notre

recherche.

7.4.1 Optimiser les coûts de l’énergie en utilisant des batteries sur le marché de l’énergie

Le problème principal abordé dans cette thèse est l’optimisation des coûts totaux de l’énergie en

utilisant des batteries installées à l’origine pour le secours dans les stations de base de télécommuni-

cations afin de participer aux marchés de l’énergie, avec l’aide d’une gestion appropriée des batteries.

Dans ce contexte, les batteries sont utilisées pour participer au marché de détail en adaptant la consom-

mation d’énergie du réseau en fonction des prix de l’énergie, mais aussi pour effectuer des réductions

de charge, qui aident à maintenir l’équilibre du réseau, en échange d’une récompense financière. Notre

objectif est de réduire les dépenses énergétiques opérationnelles totales de l’entreprise tout en max-

imisant les récompenses reçues du marché d’effacement. Actuellement, les batteries sont déjà utilisées

pour participer aux marchés de l’énergie, mais aucune stratégie d’optimisation n’est explorée.

Le problème d’optimisation en question doit tenir compte de certaines règles contractuelles et

des limites physiques des batteries. Ces règles, résumées dans la Section 7.3, qui seront présentés

formellement de manière plus détaillée dans les Sections 7.5, 7.6, et 7.7, peuvent être classées en trois

groupes distincts, comme suit:
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• Règles de sécurité d’utilisation R1-R6

• Règle du marché de détail R7.

• Règles du marché d’effacements R8-R10.

7.4.2 Principaux défis

Nous avons identifié trois défis majeurs qui rendent le problème potentiellement difficile à résoudre.

Impact des règles d’utilisation de la sécurité

En ce qui concerne l’impact des règles d’utilisation de la sécurité sur la gestion d’un seul sys-

tème de stockage d’énergie par batterie (BESS), certaines études connexes les abordent individuelle-

ment (Daryanian et al., 1989; Alaperä et al., 2017; Bovera et al., 2018). Plus précisément, Alaperä

et al. (2017) prend en compte certains aspects physiques, tels qu’un taux de décharge maximal, un

taux de recharge constant et un nombre maximal de cycles, tandis que Bovera et al. (2018) il considère

le nombre maximum de cycles que la batterie peut effectuer. En ce qui concerne les règles telles que

recharger les batteries immédiatement après chaque utilisation avec un taux de puissance constant et

imposer une puissance de décharge minimale aux batteries, aucune étude antérieure ne les a abordées.

Par conséquent, l’impact de ces règles sur la gestion des batteries n’est pas connu, ce qui nécessite une

analyse et une étude plus approfondies.

Impact des règles du marché d’effacement

Certaines études ont déjà abordé partiellement les règles du marché d’effacement dans d’autres

contextes (Zhang et al., 2016; Lan et al., 2018; Mkireb et al., 2019). En outre, l’utilisation de batteries

pour effectuer des réductions de charge a été traitée dans certaines études (Zakeri et al., 2017; Nas-

rolahpour et al., 2017; Schillemans et al., 2018). Cependant, aucune étude précédente n’a abordé ces

règles dans le scénario où les batteries soumises à des règles d’utilisation de sécurité sont utilisées pour

effectuer des réductions de charge. Par conséquent, l’impact de ces règles sur la gestion des batteries

n’est pas connu, ce qui nécessite une analyse et une étude plus approfondies.
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Impact de la gestion multi-batteries

Un autre défi est la gestion optimale d’un système de stockage d’énergie à batteries multiples

(MBESS), nécessitant des stratégies de contrôle plus efficaces. Dans ce contexte, des études récentes

proposent différentes méthodes pour traiter efficacement la dimensionnalité : (Babazadeh et al., 2014;

Zhu et al., 2018; Fan et al., 2019). Dans notre cas, nous considérons un MBESS pour lequel les règles

d’utilisation de la sécurité doivent être considérées, ce qu’aucune étude précédente n’a abordé. Par

conséquent, l’impact de ces règles dans la gestion d’un MBESS n’est pas connu, ce qui nécessite une

analyse et une étude plus approfondie.

7.4.3 Aperçu de la recherche et principales contributions

Une fois les principaux défis identifiés, nous traçons les grandes lignes de notre recherche pour

explorer l’impact de chacun d’entre eux.

7.4.4 Exploration des règles du marché de l’écrêtement dans un contexte de batterie unique

Dans la première partie de cette thèse, nous explorons exclusivement l’impact des règles du marché

d’effacement R8-R9 ainsi que des règles d’utilisation de sécurité R1R5, sans considérer l’aspect multi-

batteries. Dans ce contexte, nous considérons un problème avec un seul site et une seule batterie afin

de comprendre exactement l’impact des règles du marché d’effacement sur la gestion des batteries, et

d’analyser l’impact sur les méthodes de résolution. Ce problème s’appelle Optimisation d’un système

de stockage par batterie utilisé par une entreprise pour participer au marché d’effacement (appelé

OBSC), et est présenté dans la Section 7.5.

Les principales contributions de cette première partie sont :

• Modélisation des contraintes du marché français d’effacement et des règles d’utilisation de la

sécurité dans les batteries de l’opérateur français de télécommunications Orange sous forme

d’équations linéaires;

• L’analyse du problème étudié afin d’identifier les aspects qui rendent le problème plus difficile à

résoudre;
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• Identification de deux variantes pratiques qui peuvent être résolues à l’optimal en temps poly-

nomial;

• La proposition d’un algorithme exact polynomial, basé sur la théorie des graphes pour résoudre

les variantes, et qui peut également être utilisé comme une heuristique pour OBSC. Le problème

peut en fait être réduit au calcul du plus long chemin dans un graphe orienté sans cycle;

• Une évaluation expérimentale des gains économiques liés à l’utilisation d’une batterie installée

en secours sur le marché de la réduction des émissions pour l’opérateur de télécommunications

avec des instances réalistes.

En termes de publications scientifiques, deux articles ont été publiés dans des conférences interna-

tionales dans le cadre de cette première étude : Silva et al. (2019a), et Silva et al. (2020a). En outre,

deux articles ont été présentés dans des conférences nationales : Silva et al. (2020c), et Silva et al.

(2019b).

7.4.5 Explorer la gestion des systèmes multi-batteries dans le contexte du marché de détail

Dans la deuxième partie de cette thèse, nous explorons exclusivement l’impact de la gestion de

plusieurs batteries ensemble sous les règles d’utilisation de sécurité R1-R6, sans considérer les efface-

ments. Dans ce contexte, nous considérons un seul site équipé de plusieurs batteries qui ne sont

utilisées que pour participer au marché de détail, et les effacements ne sont pas autorisées. Ce prob-

lème est appelé Optimisation d’un système de stockage multi-batteries afin de participer au marché

de détail (appelé OMBSR), et est présenté dans la section 7.6.

Les principales contributions de cette deuxième partie sont :

• La proposition de deux programmes linéaires en nombres entiers mixtes pour OMBSR;

• La preuve que OMBSR est NP-Hard;

• La proposition de deux heuristiques économiquement et computationnellement efficaces basées

sur différents aspects pour les instances OMBSR à grande échelle : une heuristique basée sur

la théorie des graphes inspirée par les propriétés des instances réalistes testées; et une seconde

heuristique basée sur l’approche relax-and-fix qui donne de meilleurs résultats pour le cas général;
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• La proposition d’une réduction du Maximum Weight Budgeted Independent Set Problem sur les

graphes d’intervalles en Longest Budgeted Path Problem sur les graphes acycliques directs, et

d’un algorithme en temps pseudo-polynomial pour le résoudre;

• Une évaluation expérimentale des gains économiques liés à l’utilisation de batteries installées

pour la sauvegarde sur le marché de détail pour l’opérateur de télécommunications.

En termes de publications scientifiques, un article a été présenté dans une conférence internationale

(Silva et al., 2020b) et publié dans une revue internationale (Silva et al., 2022). En outre, un article

a été présenté lors d’une conférence nationale ((Silva et al., 2021b)).

7.4.6 Le problème d’optimisation complet

Enfin, une fois que nous avons compris l’impact des règles du marché d’effacement R8-R10 et de

la croissance du nombre de batteries dont l’utilisation doit respecter les règles de sécurité d’utilisation

R1-R6, nous abordons tous les aspects dans un seul problème. Dans ce contexte, nous considérons

plusieurs sites, chacun équipé d’une seule batterie dont l’utilisation doit respecter les règles de sécurité

d’utilisation pour participer au marché de l’énergie en effectuant des écrêtements de pointe et des

effacements. L’ensemble du problème est appelé Optimisation d’un système de stockage multi-batteries

participant au marché de l’énergie (référencé comme OMBSE), et est présenté dans la section 7.7.

Les principales contributions de cette troisième partie sont :

• La proposition d’un programme linéaire en nombres entiers mixtes pour OMBSE;

• La preuve que OMBSE est NP-Hard;

• Décompositions du modèle proposé basées sur la technique de relaxation lagrangienne;

• La proposition d’une méthode de sous-gradient pour résoudre le modèle relaxé en réutilisant les

algorithmes proposés pour les sous-problèmes d’OBSC;

• La proposition d’une heuristique bidimensionnelle de relaxation et de correction qui peut égale-

ment être utilisée pour résoudre des instances à grande échelle;

• Une quantification des gains économiques et opérationnels liés à l’utilisation des batteries instal-

lées en secours sur les marchés de l’énergie pour l’opérateur de télécommunications.
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En termes de publications scientifiques, une présentation a été faite à une conférence interna-

tionale (Silva et al., 2021a) dans le cadre de cette étude.

7.5 Optimisation d’un système de stockage avec une batterie pour participer
au marché d’effacement.

Formellement, le problème traité dans cette section est l’optimisation d’un système de stockage

par batterie utilisé par une entreprise pour participer au marché d’effacement (appelé OBSC), afin

de réduire ses coûts énergétiques. L’enjeu principal est de respecter les règles du marché et les règles

d’utilisation de la sécurité tout en minimisant le coût total net de l’énergie. Cette section nous permet

de comprendre en détail l’impact des règles du marché d’effacement sur la gestion des batteries. Les

éléments présentés dans cette section sont la base de l’algorithme présenté dans le Chapitre 7.7 pour

résoudre le problème dans un cadre multi-batteries.

7.5.1 Description du problème

7.5.1.1 Énoncé du problème

Nous considérons le cadre déterministe de l’OBSC que nous décrivons maintenant formellement.

Considérons un opérateur de télécommunications ayant une demande de puissance Wt, exprimée en

kW, à chaque période t d’un horizon de T périodes de temps discrètes de taille égale et de durée Delta

en heures. Le coût (exprimé en unités monétaires) de l’achat d’une unité d’énergie à chaque période

est connu. Dans la suite, pour des raisons de simplicité, nous considérons le prix de l’électricité à

chaque période t, noté Et, obtenu à partir du prix de l’énergie en le multipliant par ∆. Notez que ce

coût est fixé par le distributeur d’électricité, de même que la quantité maximale de puissance P max,

donnée en kW, qui peut être achetée à n’importe quelle période (c’est-à-dire la règle R7).

Pour des raisons de sécurité du réseau, deux règles doivent être respectées : d’une part, une

quantité minimale d’énergie, notée Bmin et donnée en kWh, doit toujours rester dans la batterie (ex,

règle R1); d’autre part, afin d’améliorer sa durée de vie, la batterie doit être rechargée immédiatement

après chaque utilisation, jusqu’à sa capacité énergétique maximale, désignée par Bmax et exprimée en

kWh, avec un taux de puissance constant PB (c’est-à-dire la règle R2), exprimé en kW. En outre,

une puissance minimale de décharge par période de temps, notée Dmin et donnée en kW, est imposée
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lorsque la batterie est en mode de décharge (c’est-à-dire la règle R4). De plus, la batterie a un taux

de puissance maximal, noté Dmax et donné en kW, qu’elle peut libérer en raison des limitations de

courant et de tension (c’est-à-dire la règle R5). Notez que Dmin ∈ [0, Dmax], et que la demande de

puissance Wt est supposée être supérieure à Dmin à n’importe quelle période t de l’horizon. La batterie

doit également être entièrement chargée au début et à la fin de l’horizon de planification (c’est-à-dire

la règle R3).

A chaque période de temps t, nous supposons que la récompense Rt (donnée en unités monétaires),

qui sera reçue par l’opérateur de télécommunications de la part du gestionnaire de réseau de transport

(TO) pour chaque unité d’énergie non achetée au distributeur pendant cette période, à condition qu’elle

fasse partie d’un effacement, est connue. Chaque effacement a une durée minimale (resp. maximale)

∆min (resp. ∆max), donnée comme un nombre de périodes, qui doit être respectée (c’est-à-dire la règle

R8). En outre, pendant chaque période d’effacement, l’opérateur de télécommunications doit réduire

la puissance achetée au distributeur d’au moins une valeur donnée PT O en kW. En conséquence,

pour chaque effacement c, une quantité maximale de puissance pmax
c (en kW) peut être achetée au

distributeur à chaque période couverte par c (c’est-à-dire la règle R9). Le mode de calcul de ce montant

est imposé par l’OT selon le pays. En France, le calcul de pmax
c est basé sur la consommation réelle

d’électricité immédiatement avant l’effacement et sur la consommation prévue pendant l’effacement.

Ce paramètre est considéré dans notre étude. Considérons un effacement c, qui commence à la période

fc (première période) et se termine à la période lc (dernière période).

Considérons également ut comme la puissance achetée au distributeur à chaque période de temps

t (en kW). Afin de calculer pmax
c pour un c donné, une valeur de référence ωc, qui prend en compte

la puissance moyenne appelée lors de l’effacement et la puissance ut achetée à la période t juste avant

le début de la réduction c (c’est-à-dire t = fc − 1), est nécessaire. Une telle valeur de référence est

calculée comme suit :

ωc =
∑︁lc

t=fc
Wt + ufc−1

lc − fc + 2 (7.1)

Notez que la valeur de ufc−1 peut dépendre de la réduction effectuée avant c.

Une fois la puissance de référence ωc connue, pmax
c est alors calculé comme suit:

pmax
c = max(0, ωc − PT O) (7.2)

Rappelons que notre objectif est de gérer l’utilisation de la batterie tout en respectant à la fois la

214
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sécurité d’utilisation de la batterie et les règles des marchés de l’énergie, à moindre coût. Le montant

total des économies d’énergie se compose de deux parties. La première partie est fournie par la

différence entre les prix de l’énergie lors de l’utilisation et de la recharge de la batterie (c’est-à-dire lors

de la participation au marché de détail dans un mécanisme de réponse à la demande), et la seconde

par la récompense payée pour la quantité d’énergie non achetée auprès de le distributeur (c’est-à-dire

lorsqu’il effectue des effacements). Cette seconde partie est calculée soit par la règle On Time Reward

(OTR), soit par la règle First Time Reward (FTR) (RTE-Portal, 2020). Si nous utilisons OTR, une

récompense variable Rt est considérée à chaque période t lors de chaque effacement. Si nous utilisons

FTR, la récompense Rfc donnée au début de l’effacement c est considérée pour toutes les périodes

pendant l’effacement, puis multipliée par la quantité d’énergie non achetée pendant cet effacement.

La quantité d’énergie non achetée lors d’un effacement donné est égale à la décharge de la batterie sur

sa durée. Dans ce qui suit, par souci de simplicité, nous considérons le prix de récompense par unité

de puissance à chaque période de temps t noté Rt, obtenu à partir du prix de récompense par unité

d’énergie en le multipliant par ∆.

De plus, nous considérons un opérateur de télécommunications avec une seule batterie et une seule

énergie fournisseur sans sources d’énergie renouvelables. La batterie est prête à l’emploi, et aucun coût

d’installation ou de configuration n’est pris en compte. De plus, la batterie doit être complètement

chargée avant d’effectuer toute réduction. Aucune perte de batterie n’est considérée non plus et toute

réduction effectuée doit respecter les règles du marché de l’énergie. Nous considérons également que

la décision d’effectuer un effacement est prise par l’opérateur de télécommunications et non imposée

par le gestionnaire de réseau de transport.

Enfin, le problème énoncé ci-dessus est appelé OBSC dans ce qui suit, et toute instance OBSC

est entièrement définie par les paramètres suivants: W , ∆, E, P max, Bmin, Bmax, PB, Dmin, Dmax,

R, ∆min, ∆max, PT O, et la politique de récompense (représentée par une valeur booléenne). Les

règles d’utilisation de sécurité R1-R5 et les règles de marché R7-R9, définies dans la Section 7.3, sont

également prises en compte.

7.5.1.2 Variantes pratiques

Dans certains cas, en raison de règles d’ingénierie spécifiques ou de limitations techniques, des

contraintes supplémentaires doivent être prises en compte. Par conséquent, nous étudions quelques

215
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variantes du problème général qui peuvent être classées en deux grandes familles de problèmes. La

première considère le cas où les niveaux de décharge possibles de la batterie sont discrets (et seront

appelés OBSC-D). Habituellement, les systèmes de mesure utilisés pour surveiller la charge de la

batterie ont des limitations techniques qui empêchent de considérer des niveaux de décharge continus.

Ceci induit une discrétisation des niveaux de décharge qui dépend de la précision de ces systèmes. Les

variantes correspondantes considèrent les niveaux de rejet donnés en pourcentage de Bmax.

Deuxièmement, des règles d’ingénierie supplémentaires peuvent également être imposées sur l’utilisation

de la batterie pour améliorer sa durée de vie. Un exemple est le cas où la batterie doit rester en mode

repos pendant au moins une période de temps après sa recharge complète. La deuxième famille de

variantes étudiée dans ce travail considère précisément que la batterie doit nécessairement être au re-

pos pendant au moins un nombre de temps déterminé après chaque recharge complète (et sera appelée

OBSC-R). Cette hypothèse peut être imposée en pratique pour s’assurer, par exemple, que la batterie

est bien chargée avant d’être réutilisée, même si le taux de recharge réel n’est pas PB (c’est-à-dire n’est

pas un taux de puissance constant).

Dans de telles variantes, l’impact de la corrélation temporelle entre deux effacements de charge

induits par le calcul de ωc (voir Equation 7.1), peut être traité plus facilement. Grâce à cela, ils

peuvent être résolus en temps polynomial. De plus, étant donné que toute solution pour l’une de

ces variantes est également une solution réalisable pour OBSC, un tel algorithme peut également être

utilisé comme méthode heuristique pour résoudre OBSC.

7.5.2 Résultats expérimentaux

En tant que méthode de résolution, a programme linéaire à nombre entier mixte (appelé OBSC-MILP)

est proposé et résolu le problème OBSC à l’aide d’un solveur standard, et chacune de ses solutions

optimales fournit une stratégie d’utilisation la batterie à un coût optimal. Concernant les variantes,

nous avons prouvé qu’elles étaient polynomiales en fournissant un algorithme orienté graphes efficace

(appelé OBSC-GOA) pour les résoudre.

En conséquence, nous avons observé que participer au marché d’effacement génère de grandes

économies (88% avec FTR et 105% avec OTR en moyenne), réduisant ainsi l’OPEX énergétique de

l’entreprise, et prouvant la prémisse de cette étude. Une série de tests sur des instances réalistes

provenant du contexte français a été réalisée, afin d’analyser le modèle mathématique ainsi que les
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principales propriétés de telles instances. Nous avons notamment observé que OBSC-MILP ne pouvait

pas atteindre une garantie d’optimalité pour toutes les instances. Cependant, même pour les cas sans

une telle garantie d’optimalité, la meilleure solution obtenue génère déjà des économies de 55% à 90%

en moyenne, ce qui représente une réduction substantielle de la facture d’électricité pour l’entreprise.

La politique de récompense et la capacité de la batterie semblent être les paramètres qui ont le plus

d’impact sur ces économies potentielles. Concernant les variantes résolues avec l’algorithme orienté

graphes OBSC-GOA, toutes les instances ont été résolues à l’optimalité, et les résultats que nous avons

obtenus ont prouvé la pertinence économique de telles variantes (seulement 2,5% pire que les solutions

optimales d’OBSC en moyenne pour les instances pour lesquelles la garantie d’optimalité est atteinte),

en fournissant de bonnes solutions approchées au problème général, et donc en étant de bonnes et

rapides heuristiques pour le résoudre.

Concernant les performances de nos algorithmes, nous avons observé que pour les instances de

notre banc de test, la valeur de la discrétisation temporelle et la politique de récompense sont les

paramètres qui ont le plus d’impact sur le temps de résolution. Nous avons considéré une limite de

temps de 15 minutes pour résoudre chaque instance, et, dans cet aspect, OBSC-GOA s’est avéré efficace

du point de vue informatique, tandis que nous avons observé que le temps de résolution de OBSC-MILP

augmente rapidement lorsque certains paramètres augmentent.

Une fois que l’on a bien compris l’impact des coupures sur la gestion des batteries, les problèmes qui

rendent cette gestion plus complexe, et comment les résoudre, nous pouvons utiliser les connaissances

acquises dans la gestion d’un actif énergétique composé de plusieurs batteries. Notez que, par souci de

clarté, les règles R6 et R10 n’ont pas été prises en compte dans ce chapitre car elles sont plus pertinentes

lorsque plusieurs batteries sont utilisées pour éviter qu’une batterie ne soit utilisée beaucoup plus

que d’autres. De plus, les approches de résolution proposées restent valables avec des modifications

mineures.

7.6 Optimisation d’un système de stockage multi-batteries pour participer
au marché de détail

Formellement, le problème traité dans ce chapitre est l’optimisation d’un système de stockage

multi-batteries participant au marché de détail (appelé OMBSR), afin de réduire le coût total de

l’énergie pour l’entreprise. L’enjeu principal est de gérer plusieurs batteries tout en respectant les
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règles du marché de l’énergie et les règles de sécurité d’utilisation et en minimisant le coût total de

l’énergie.

Ce chapitre nous permet de comprendre en détail l’impact de l’augmentation du nombre de bat-

teries sur le problème d’optimisation. Nous explorons également la stratégie de décomposition du

problème OMBSR en sous-problèmes pouvant être résolus plus efficacement. Une telle stratégie est en

outre incorporée dans l’algorithme présenté au chapitre 7.7 pour résoudre le même problème avec les

effacements. Le problème OMBSR et toutes ses instances sont entièrement décrits par les paramètres

suivants (dont certains sont des vecteurs ou des ensembles) : W , ∆, E, P max, mathcalB, Bmin, Bmax,

PB, Dmin, Dmax et N . Les règles d’utilisation de sécurité R1-R6 et la règle de marché R7 du problème

sont les mêmes que celles définies au chapitre 7.5.

7.6.1 Résultats expérimentaux

Nous avons proposé deux programmes linéaires à nombres entiers mixtes, et chacune de leurs

solutions optimales fournit une stratégie d’utilisation des batteries afin de réduire autant que possible

le coût énergétique total. Nous avons montré que le problème OMBSR est NP-difficile, et deux

heuristiques sont proposées pour résoudre les instances à grande échelle. La première est basée sur la

stratégie Relax and Fix (appelée OMBSR-RF-HEU), et une seconde basée sur la décomposition temporelle

basée sur la périodicité de la demande d’électricité et des prix (appelée OMBSR-G-HEU). De plus, nous

avons utilisé ces approches pour résoudre OMBSR sur des instances réalistes.

Concernant les approches de résolution, nous observons en particulier que les deux modèles math-

ématiques n’ont pu atteindre une garantie d’optimalité que pour une petite partie des instances dans

le délai imparti. Cependant, même pour les instances sans une telle garantie d’optimalité, la meilleure

solution obtenue génère déjà des économies. Le nombre de fois que chaque batterie peut être utilisée

semble être le paramètre qui a le plus d’impact sur ces économies. En effet, le nombre de fois que

chaque batterie b est utilisée dans une solution est exactement Nb, indépendamment de la méthode de

résolution utilisée. En revanche, aucun gain substantiel n’a été observé en augmentant le nombre de

batteries disponibles (puisque la somme des puissances Dmax de toutes les batteries équivaut à la puis-

sance moyenne appelée), l’horizon temporel ou la puissance moyenne appelée , c’est-à-dire la valeur

de W̄ . Cependant, l’utilisation de plusieurs batteries est souhaitable pour des raisons de sécurité et

pour augmenter la durée de vie des batteries. Concernant les heuristiques, les résultats obtenus ont
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prouvé leur pertinence économique, en fournissant de meilleures solutions par rapport aux meilleures

obtenues par les programmes linéaires en nombres entiers mixtes sur des instances à grande échelle.

De plus, OMBSR-G-HEU s’est avéré plus efficace pour les instances avec une périodicité bien définie de

la demande de puissance et des prix, tandis que OMBSR-RF-HEU s’est avéré plus efficace pour le cas

général.

Concernant les performances de nos algorithmes, nous observons que le nombre de batteries instal-

lées et l’horizon temporel sont les paramètres qui ont le plus d’impact sur le temps de résolution. Nous

considérons une limite de temps de 30 minutes pour résoudre chaque instance, et, dans cet aspect,

l’heuristique s’est avérée efficace du point de vue informatique, tandis que nous observons que le temps

de résolution des programmes linéaires en nombres entiers proposés augmente rapidement.

7.7 Optimisation d’un système de stockage multi-batteries pour participer
aux marchés de l’énergie

Dans cette section, nous considérons le problème complet de cette thèse qui consiste à optimiser les

coûts énergétiques totaux des sites de télécommunications utilisant des batteries installées en secours

pour participer au marché de l’énergie en utilisant une bonne gestion des batteries.

Formellement, le problème traité dans ce chapitre est l’optimisation d’un système de stockage

multi-batteries afin de participer au marché de l’énergie (appelé OMBSE), afin de réduire le coût total

de l’énergie pour l’entreprise. L’enjeu principal est de respecter les règles du marché et les règles

d’usage de sécurité tout en minimisant le coût total net de l’énergie en effectuant des écrêtages et des

effacements. Le problème OMBSE et toutes ses instances sont entièrement décrits par les paramètres

suivants (dont certains sont des vecteurs ou des ensembles) : W , ∆, E, P max, mathcalS, Bmin,

Bmax, PB, Dmin, Dmax, N , ∆min, ∆max, PT O, R, N c et la politique de récompense (représentée par

une valeur booléenne). Les mêmes règles d’utilisation de sécurité R1-R6 et les règles du marché de

l’énergie R7-R10, que celles définies dans la Section 7.3, sont prises en compte.

7.7.1 Résultats expérimentaux

Nous proposons un programme linéaire mixte en nombres entiers, référencé OMBSR-MILP, dont

les solutions fournissent une stratégie d’utilisation des batteries afin de réduire le coût énergétique
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total. Nous avons montré que le problème OMBSE est fortement NP-Dur, et deux heuristiques sont

proposées : la première est basée sur la stratégie relax-and-fix déjà explorée dans la Section 7.6,

référencée comme OMBSE-HEU, et la seconde est basée sur une relaxation lagrangienne qui permet de

décomposer le problème en sous-problèmes plus faciles à résoudre, référencés OMBSE-LAG. De plus, nous

avons utilisé ces approches pour résoudre le problème OMBSE sur des instances réalistes.

De ce fait, on observe tout d’abord que l’utilisation de batteries installées en secours dans le

mécanisme d’équilibrage peut générer des économies. Concernant les approches de résolution, nous

observons en particulier que le modèle mathématique résolu avec un algorithme de branchement et

de limite n’a pu atteindre une garantie d’optimalité pour aucune instance dans la limite de temps,

même pour les plus petites. Cependant, même sans une telle garantie d’optimalité, la meilleure

solution obtenue génère déjà des économies. Le nombre de fois que chaque batterie peut être utilisée

et le nombre d’effacements qui peuvent être effectués semblent être les paramètres qui ont le plus

d’impact sur ces économies. En revanche, aucune diminution de la facture d’électricité par rapport

à la valeur standard n’a été observée en augmentant le nombre de sites des instances. Concernant

l’heuristique OMBSE-HEU, elle donne des solutions avec des économies similaires à celles obtenues avec

OMBSE-MILP, mais nécessite beaucoup plus de temps CPU. D’un point de vue pratique, son utilisation

dans un environnement de production n’est pas envisageable. Concernant OMBSE-LAG, les résultats

obtenus ont prouvé sa pertinence économique, en fournissant de meilleures solutions par rapport aux

meilleures obtenues avec OMBSE-MILP ou OMBSE-HEU, et avec de meilleurs écarts d’optimalité. De plus,

on observe que la puissance contractualisée PT O a un impact important sur les solutions obtenues :

avec des valeurs plus élevées, les solutions rapportent plus d’économies, mais si elle est trop élevée

(ie, PT O=100 % de D̄
max

), il peut limiter l’utilisation de batteries pour effectuer des écrêtements de

pointe. D’un point de vue théorique, OMBSE-LAG réutilise les algorithmes proposés dans les sections 7.5

et 7.6, ce qui nous permet de résoudre plus rapidement les instances à grande échelle tout en gardant

de bonnes qualité des solutions obtenues.

Concernant les performances de nos algorithmes, nous observons que le nombre de sites est le

paramètre qui impacte le plus le temps de résolution. Nous considérons une limite de temps de 1

heure pour résoudre chaque instance, et, dans cet aspect, l’heuristique lagrangienne OMBSE-LAG s’avère

efficace du point de vue informatique, tandis que nous observons que le temps de résolution pour le

programme linéaire en nombres entiers mixte proposé et l’heuristique bidimensionnelle relax-and-fix
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augmente rapidement. D’un point de vue pratique, l’utilisation de OMBSE-LAG est faisable dans un

contexte de production du fait que ses sous-problèmes peuvent être résolus séparément et en parallèle.

7.8 Conclusion et perspectives

7.8.1 Conclusion

Cette thèse a exploré différentes possibilités d’utilisation des batteries d’un opérateur de télécom-

munications principalement utilisées comme sauvegarde sur les marchés de l’énergie. Plus précisément,

nous avons exploré l’utilisation de telles batteries pour effectuer des écrêtements de pointe, mais aussi

pour effectuer des effacements de charge afin de réduire le coût énergétique total de l’entreprise. Pre-

mièrement, nous avons identifié différents défis liés à l’utilisation des batteries dans différents contextes

qui nécessitaient une analyse plus approfondie pour mieux comprendre les difficultés ainsi que les op-

portunités. Ensuite, ces défis ont été étudiés individuellement, et à chaque fois des méthodes exactes

et heuristiques ont été proposées. Enfin, le problème complet avec toutes les règles et possibilités

d’utilisation de la batterie a été exploré et des méthodes de résolution basées sur les résultats obtenus

ont été conçues.

Pour chacun des problèmes d’optimisation correspondants, nous avons conçu:

• Pour le problème OBSC :

– Un modèle mathématique tenant compte des contraintes du marché français de l’effacement

et des règles de sécurité d’usage dans les batteries;

– Un algorithme de temps polynomial exact basé sur la théorie des graphes pour résoudre

deux variantes, et qui peut également être utilisé comme heuristique.

• Pour le problème OMBSR :

– Deux programmes linéaires en nombres entiers mixtes : un basé sur l’énumération de toutes

les possibilités d’utilisation des batteries, et un second sans énumération;

– La preuve que OMBSR est fortement NP-difficile;

– Deux heuristiques basées sur des aspects différents pour OMBSR : une basée sur la théorie

des graphes inspirée des propriétés des instances réalistes testées, et une seconde heuristique

basée sur l’approche relax-and-fix, qui donne de meilleurs résultats pour le cas général.
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• Pour le problème OMBSE :

– Un programme linéaire en nombres entiers mixtes ;

– La preuve que OMBSE est fortement NP-Dur;

– Une approche basée sur la relaxation lagrangienne qui réutilise les algorithmes proposés

pour les sous-problèmes d’OBSC ;

– Une heuristique bidimensionnelle relax-and-fix;

Afin d’évaluer l’efficacité et la pertinence des modèles et algorithmes proposés, plusieurs expérimen-

tations numériques ont été réalisées sur des instances réalistes, générées à partir des coûts publics de

l’énergie et des données liées au marché de l’effacement, ainsi que des données internes de l’opérateur

de télécommunications français Orange.

On peut conclure que l’utilisation des batteries installées en secours d’un opérateur de télécommu-

nications sur le marché de l’énergie est économiquement rentable. Si ces batteries sont utilisées pour

effectuer des écrêtages et des effacements de charge, les gains obtenus peuvent être considérablement

élevés. De plus, même si les batteries ne sont utilisées que pour l’écrêtement des pics, les gains qui

peuvent être obtenus représentent déjà une valeur importante pour l’entreprise.

7.8.2 Perspectives de recherche

7.8.2.1 Perspectives scientifiques

Au cours de cette thèse, plusieurs aspects ont été abordés et certains d’entre eux nécessitent des

recherches plus approfondies. D’un point de vue théorique, la complexité du problème abordé dans

la Section 7.5 concernant la gestion d’une batterie qui est utilisée pour effectuer des effacements est

encore un problème ouvert. Seuls deux variants polynomiaux ont été identifiés.

Dans la même veine, plusieurs méthodes de résolution ont été proposées pour les différents prob-

lèmes abordés qui dépendent fortement des paramètres de configuration. L’exploration en détail de

ces paramètres, ainsi que l’identification des meilleures valeurs de ces paramètres pour des classes

de problèmes spécifiques, sont d’une importance fondamentale pour obtenir de meilleurs résultats et

performances de calcul.

Dans les sections 7.6 et 7.7, des heuristiques basées sur la technique relax-and-fix et la décom-
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position lagrangienne ont été proposées. Cependant, d’autres méthodes de résolution peuvent être

appliquées au problème abordé dans cette thèse. La programmation dynamique dans des cas partic-

uliers, des heuristiques alternatives et des programmes non linéaires pourraient être utilisés.

Une autre perspective de recherche est le scénario où les sites sont équipés de plusieurs batteries.

En effet, la Section 7.7 traite le problème en considérant des sites équipés d’une seule batterie car c’est

le cas actuel chez Orange France. Cependant, les data-centers et les stations de base centrales sont

fréquemment équipés d’un parc de batteries qui pourraient également être utilisés sur les marchés de

l’énergie, mais ils ne sont pas pris en compte dans cette thèse. Dans le même ordre d’idées, la possibilité

d’installer des batteries, et donc d’envisager un coût d’installation d’implantation, pour améliorer

la capacité à effectuer des écrêtages et des effacements de charge est également une perspective de

recherche future.

7.8.2.2 Perspectives industrielles

Tout d’abord, le partage de batteries entre stations de base voisines est un sujet discuté en interne

dans l’entreprise, pour lequel des recherches sont en cours (Foucault et al., 2016). Dans ce contexte,

ajouter à la problématique le choix des stations de base qui doivent disposer d’une batterie pour

alimenter les stations voisines est un challenge à explorer et qui peut générer des économies de coûts

considérables pour l’entreprise. Une fois qu’une batterie est partagée, l’efficacité de l’envoi de puissance

entre deux stations doit être prise en compte.

La seconde perspective est liée à l’utilisation de batteries au lithium, également installées en secours,

pour participer aux marchés de l’énergie. Les batteries au lithium sont plus efficaces, plus flexibles

dans leur utilisation et mieux à même de résister à différentes températures.

La troisième perspective de recherche est liée à l’intégration des énergies renouvelables avec les bat-

teries. Une intégration à grande échelle de panneaux solaires et d’éoliennes modifie considérablement

les modèles de charge électrique nette de production et de consommation, nécessitant des systèmes de

gestion complexes (Luo et al., 2015; Shaker et al., 2016). En interne chez Orange, l’utilisation de pan-

neaux solaires et d’éoliennes fait l’objet d’études pour l’évolution du réseau énergétique des stations

de base (Marquet et al., 2006). En effet, maintenir la stabilité et la fiabilité du réseau électrique, ainsi

que les règles d’utilisation de la sécurité des batteries afin de participer au marché de l’énergie, est un

véritable défi qui nécessite des recherches plus approfondies.



7.8. CONCLUSION ET PERSPECTIVES

224



Appendix A

Power transmission between base stations

In this appendix we introduce the possibility of performing power transfer between sites in the

context of telecommunications. Some essential elements such as transmission losses and equipment

needed to perform the transfer are presented. In fact, energy is produced in power plants (nuclear,

gas, hydroelectric, solar, etc.) and has to be sent to the customers location. Thus, the electrical power

is transferred via transmission wires over the country, and such a transfer is subject to the resistivity

of the wires, causing losses.

A.1 Transmission loss

Concerning the transmission loss, when an electron travels through a wire or other conductor

material it encounters resistance, i.e., an hindrance to the flow of electrons. Such a resistance appears

due to collisions of the electrons with fixed atoms within the conducting material. In this context, each

conductor material has its own resistivity (i.e., the conducting ability of a material measured in Ohm

per meter). Most of the wires are made of copper which has a low resistivity (1.7× 10−8 Ohm-meter)

and low production cost compared to silver (1.59× 10−8 Ohm-meter) or gold (2.2× 10−8 Ohm-meter)

Bird (2013). Hence, the longer the wire, the more resistance there will be, causing high losses.

To reduce transmission losses while maintaining the same power transmission rate, the current

is frequently reduced as much as possible and the voltage is increased. On the one hand, current

reduction means a smaller number of electrons traveling at the same point of the conductor at the

same time, reducing the friction. On the other hand, voltage increasing means a higher differential

power that pressures groups of electrons to travel ”more frequently”. The equipment responsible for
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A.1. TRANSMISSION LOSS

such an increase of voltage is called the Transformer. Every power plant uses a transformer to increase

the voltage level before transmission for long distances.

In the context of batteries, if a power from a battery is sent over a long distance, a transformer is

needed at the start and end points. The battery itself has a voltage limit imposed by the electrolysis

process, requiring such an additional equipment. Therefore, batteries are usually installed close to the

customer, eliminating the need for a transformer, which reduces the operational cost.
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A.2. TRANSMISSION IN TELECOMMUNICATIONS NETWORKS

Examples of transmission loss

Let us consider a power plant that must send 5kW from a start point to an end point which

are l = 1km away and connected by a copper wire. The copper line has a material constant ρ of

0.017Ωmm2

m and a cross-section of A = 10mm2 (Bird, 2013). The voltage for the transmission is 1kV

and the current (I) for transmission is 5000(W )
1000(V ) = 5A.

We can also compute the total resistance R of the wire as R = ρ∗ l
A = 0.017Ωmm2

m ∗ 1000m
10mm2 = 1.7Ω.

Hence, we have a total resistance of 1.7Ω per km of copper line considering a cross-section of 10mm2.

Finally, we are able to compute the total transmission power loss considering a current of 5A. The

total power loss P is computed as P = I2R, where I is the current and R the line resistance. This

implies that we have a power loss of P = 25 ∗ 1.7 = 42.5W , corresponding to 0.85% of 5kW.

Battery power transmission

Let us consider a typical AGM battery as a power source with a current of 19A and a voltage of

55V. The battery releases 1045W of power in one hour at its maximum power capacity. However, with

a resistance of 1.7Ω per km, 613W will be lost in transmission over 1km, corresponding to 58.7% of the

total power sent. An alternative would be to either increase the wire diameter or reduce the current.

Considering a scenario where the same 1045W are transmitted in 5 hours instead of 1 hour (i.e., 3.8A

current), 24.54W (2.34%) would be lost in such a transmission. We can also consider another scenario

where these 1045W are sent with 19A current to the customer 20 meters away. In this context, the

line resistance is 0.034Ω and the power lost in such transmission is 12.2W , corresponding to 1.17%

loss.

If a transformer is installed together with the battery for power transmission, the transmission

losses are reduced. Let us consider a transformer where the voltage is transformed from 12V to 220V,

implying a reduction in current from 19A to 4.75A. In this case, to send the same 1045W in one hour

over a distance of 1km, approximately 38.4W will be lost, representing about 3.67%. This example

illustrates the importance of a transformer in electric power transmission.

A.2 Transmission in telecommunications networks

The network reliability of telecommunications sites has been improved over the years, allowing to

reduce the number of backup devices in sites of some regions (Foucault et al., 2016). In this context,
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A.2. TRANSMISSION IN TELECOMMUNICATIONS NETWORKS

Figure A.1 – Power sharing grid considering transmission losses up to 25%

installing a remote power solution for some sites with a shared power system dramatically reduces

costs of maintenance, since it decreases the intervention time needed to get to the site. Foucault et al.

(2016) present remote power solutions, called Remote Feeding Telecom (RFT), with shared power

plants, as well as the physical and economic impacts on power transmission. In this context, base

stations equipped with a RFT system are connected to sites without an energy storage asset and have

the ability to send data and power over hybrid cables.

Energy assets sharing

In telecommunications context, the energy assets sharing between sites is desirable for future

networks, especially with the 5G network deployment. However, considering a battery that sends

1kW thought a 2.5mm2 wire to another site 800 meters away, the power loss will be about 10%. For

sites close to each other, and such that the transmission loss is smaller than 25% considering the

battery installed, the power sharing of energy assets can be allowed. Figure (A.1) illustrates the grid

of energy assets sharing between the Orange France sites considering a power transmission loss up

to 25%, which covers the whole French territory, and for which a large number of power sharing is

possible. In this context, some of the sites will be central power stations with direct connections with

remote power stations without a battery asset. The power transmission between sites is traditionally

performed through a copper wire of 2.5mm2 with resistivity of 1.7×10−8 Ohm-meter (Foucault et al.,

2016).

Figure A.2 illustrates a possible case where batteries are shared between sites: sites in orange are

228
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Figure A.2 – Energy power sharing schema

equipped with one battery, the site in green is a central power station, and sites in blue are remote

sites without a battery. The edges represent the possibility of sharing energy between sites.

Perspectives of research

The use of hybrid fiber-coaxial cables that can transport data and optical energy to powering

electric or electronic devices remotely, formally called Power Over Fiber (PoF), has recently become

a new subject of research (Rosolem and Roka, 2017). The main interest of this technology is that

besides the advantages of optical fibers such as immunity to electromagnetic interference and electrical

insulation, the PoF eliminates the use of metallic cable, which improves the reliability and the security

of the system. At Orange France, the use of the PoF technology is under study, as it seems to be the

reality in next years. Consequently, the possibility of sharing batteries between sites requires future

research to integrate such aspects in the models and solving approaches proposed in this thesis.
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Appendix B

Lithium batteries in telecommunications

In this appendix we introduce the use of lithium batteries in the telecommunications context. Some

essential elements such as the recharging profile and the efficiency are presented.

In this thesis, we only considered GEL or AGM batteries in our tests. However, batteries of different

technologies, such as lithium, are increasingly present in our daily lives. In the telecommunications

context it is no different, and several applications using lithium batteries have been proposed thanks

to the advantages of this technology (Eaves and Shaffer, 2007). Lithium batteries are more efficient,

more flexible in their use and better able to withstand different temperatures.

In this context, the team of experts from the French telecommunications company Orange has

explored the use of lithium batteries in base stations for backup. Consequently, it is important to

consider this type of batteries, and its rules and limits of use, in the models and algorithms proposed

in this thesis.

B.1 Recharging process

After several conversations with the expert team, we have concluded that the safety usage rules

R1, R3-R6 summarized in Section 1.3 are still valid for lithium batteries. Concerning the rule R2,

the battery must still be recharged with a constant power rate PB, up to its maximal capacity Bmax,

but its recharge can be delayed. Indeed, lithium batteries do not need to be recharged immediately

after each discharge for physical reasons, but delaying the recharging of the battery induces a risk to

the company since they are installed for backup purposes. However, delaying the recharge of some

batteries for some periods of time can increase the gains significantly since the recharge can benefit
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from better power purchase prices.

Considering that the maximal delay of recharge of a battery b is given by ∆R, the rule R2 can be

rewritten as follows:

R2’ - The battery must start being recharged at most ∆R time periods after each discharge with a

constant power rate PB, given in kW, up to its maximal capacity Bmax, given in kWh;

To integrate these rules in the models proposed, we must change the constraints that define the

values of variables uB
bs,t in the models proposed. Hence, for a given battery bs in a site s, the following

new family of variables will be considered:

• qbs,t ∈ {0, 1}, ∀t ∈ T : equal to 0 if the recharge start of the battery bs is delayed (i.e., the value

of the variable uB
bs,t is equal to 0), and to 1 otherwise (i.e., the value of the variable uB

bs,t takes

the values defined in R2).

Note that variables z act on the activation of constraints of recharge (see Constraints (B.1) and

B.2) below).

In addition, the constraints that define the values of variables uB
bs,t must be replaced by the following

constraints:

uB
bs,t = (1− zbs,t)qbs,t min(Bmax

bs
/∆− xbs,t/∆, PBbs

, P max
s −Ws,t) ∀t ∈ T (B.1)

qbs,t−1 ≤ qbs,t + zbs,t ∀t ∈ T (B.2)

t′=max(1,t−1)∑︂
t′=max(1,t−∆R)

zbs,t′ + qbs,t ≥ 1 ∀t ∈ T (B.3)

Note that Constraints B.1 and B.2 guarantee partially the rule R2’ because the maximal delay ∆R

to start the recharge is not guaranteed. Hence, Constraints B.3 imposes that the recharging process

starts at most ∆R time periods after the battery discharge.

Note that two new non-linearities are introduced in Constraints B.1, namely the product between

two binary variables z and x, that can be easily linearized, and the product between the variables q

and x, that can be treated with the McCormick strategy (McCormick, 1976). Concerning the graph

232



B.1. RECHARGING PROCESS

oriented approach proposed in Chapter 3, the number of nodes in the graph used to compute the

longest path will increase by a factor of ∆R.
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Isáıas FARIA SILVA

Smart grid and optimization of flexible
network interactions with energy markets

Résumé :
L’utilisation de batteries de secours en cas de coupure de courant est fréquente dans les réseaux de
télécommunications, car ils fournissent des services critiques et doivent rester en ligne en permanence.
Ces batteries sont utilisées en conjonction avec des antennes et d’autres équipements, et des règles strictes
de sécurité d’utilisation doivent être prises en compte afin de garantir qu’elles soient toujours disponibles
en cas de coupure de courant. En outre, l’opérateur de télécommunications pourrait utiliser ces batteries
afin de participer au marché de l’électricité à condition que le réseau soit suffisamment fiable et que
les règles de sécurité d’utilisation soient respectées. En effet, puisque le prix de l’énergie varie dans le
temps, les batteries peuvent être utilisées pour éviter d’acheter de l’énergie lorsque ce prix est élevé, et
être rechargées lorsque le prix de l’énergie est plus bas, un comportement appelé stratégie d’écrêtement
des pointes (peak-shaving en anglais). Une deuxième façon rentable pour une entreprise d’utiliser ses
batteries est d’effectuer des effacements de charge. En effet, lorsque la demande d’électricité d’un pays
est supérieure à la production, le gestionnaire du réseau de transport doit prendre des mesures afin de
stabiliser le réseau, par exemple en demandant aux centrales électriques de produire davantage d’énergie.
Un autre moyen est de demander aux consommateurs intensifs en énergie de réduire leur consommation
pendant une période donnée (on dit alors qu’ils effectuent un effacement de charge), en leur offrant une
récompense en échange. Dans cette thèse, nous considérons le problème de l’optimisation des coûts
totaux de l’énergie en utilisant des batteries installées pour la sauvegarde afin de participer au marché de
l’énergie en effectuant des écrêtements de pointe et des effacements de charge, avec l’aide d’une gestion
appropriée des batteries. Notre objectif est de réduire les dépenses totales d’exploitation de l’énergie
pour l’entreprise, et de maximiser les récompenses reçues en effectuant des effacements de charge. Une
étude de l’architecture du marché de l’électricité en France est d’abord menée pour comprendre les
mécanismes de flexibilité de la demande et comment les contraintes opérationnelles dans l’utilisation des
batteries d’un opérateur de télécommunications interagissent avec le marché de l’énergie. Nous avons
identifié différents défis qui ont été explorés individuellement pour mieux comprendre les caractéristiques
du problème d’optimisation sous-jacent et ainsi développer des méthodes de résolution plus efficaces.
Pour chacun d’entre eux, des programmes linéaires en nombres entiers mixtes et des heuristiques sont
ensuite proposés pour résoudre le problème correspondant. Après avoir exploré et compris les défis
individuels, nous avons proposé des programmes linéaires en nombres entiers mixtes et des heuristiques
pour le problème principal de cette thèse, que nous prouvons être NP-Dur, en incorporant les prix de
l’énergie du marché et la disponibilité des batteries. Enfin, des simulations basées sur des données réalistes
provenant de l’opérateur de télécommunications français Orange montrent la pertinence des modèles et
de l’heuristique proposés : ceux-ci se montrent efficaces en termes de calcul pour résoudre des instances
à grande échelle, et des économies et des revenus significatifs peuvent être générés grâce aux politiques
optimisées de gestion du stockage d’énergie à plusieurs batteries.
Mots-clés: Recherche Opérationnelle, Système de Stockage d’Energie de Multiples Batteries, Mécanisme
de Réponse à la Demande, Effacements d’Energie, Programmation Linéaire en Nombres Entiers Mixtes,
Algorithmes de Graphes, Réseaux de Télécommunications.



Isáıas FARIA SILVA

Smart grid and optimization of flexible
network interactions with energy markets

Abstract : The use of batteries as backup in case of power outages is common in telecommunications
networks, since they provide critical services and need to keep their services always online. These bat-
teries are used in conjunction with antennas and other equipment, and strict safety usage rules must be
considered in order to guarantee that they are always available in case of a power outage. Besides, the
telecommunications operator could use these batteries in order to participate in the electricity market
provided that the grid is reliable enough, as long as the safety usage rules are respected. Indeed, since
the energy price varies over time, batteries can be used to avoid buying energy when this price is high,
and recharged when the energy price is low, a behavior that will be denoted as a peak-shaving strategy.
A second profitable way for a company to use its batteries is by performing load curtailments. Indeed,
when the power demand of a country is greater than the production, the Transmission System Operator
must take steps in order to stabilize the grid such as ask power plants to produce more energy. Another
way is to ask energy-intensive consumers to reduce their consumption during a given time period (in
which case they are said to perform a load curtailment), by offering them a reward in exchange. In this
thesis, we consider the problem of optimizing the total energy costs using batteries installed for backup
in order to participate in the energy market by performing peak-shaving and load curtailments, with
the help of a proper batteries management. Our goal is to reduce the total energy operational expenses
for the company, and maximize the rewards received by performing load curtailments. A study of the
electricity market architecture in France is conducted to understand the demand, flexibility mechanisms
and how the operational constraints in the use of batteries of a telecommunications operator interact
with the energy market. We identified different challenges that were investigated individually to better
understand the characteristics of the underlying optimization problem and thus to develop more effi-
cient solving methods. For each one, mixed-integer linear programs and heuristics are then proposed to
solve the related problem. Once we investigated and understood the individual challenges, we proposed
mixed-integer linear programs and heuristics for the main problem of this thesis, which we prove to be
NP-Hard, incorporating market energy prices and the availability of batteries. Finally, simulations based
on realistic data from the French telecommunications operator Orange show the relevance of the models
and heuristic proposed: these prove to be computationally efficient in solving large scale instances, result-
ing in significant savings and revenue through the optimized multi-battery energy storage management
policies.

Keywords: Recherche Opérationnelle, Système de Stockage d’Energie à Plusieurs Batteries, Mécanisme
de Réponse à la Demande, Effacement de la Charge, Programmation Linéaire en Nombres Entiers Mixtes,
Algorithmes de Graphes, Réseaux de Télécommunications.
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