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Abstract

The use of batteries as backup in case of power outages is common in telecommunications networks,
since they provide critical services and need to keep their services always online. These batteries
are used in conjunction with antennas and other equipment, and strict safety usage rules must be
considered in order to guarantee that they are always available in case of a power outage. Besides,
the telecommunications operator could use these batteries in order to participate in the electricity
market provided that the grid is reliable enough, as long as the safety usage rules are respected.
Indeed, since the energy price varies over time, batteries can be used to avoid buying energy when
this price is high, and recharged when the energy price is low, a behavior that will be denoted as a
peak-shaving strategy. A second pro table way for a company to use its batteries is by performing
load curtailments. Indeed, when the power demand of a country is greater than the production,
the Transmission System Operator must take steps in order to stabilize the grid such as ask power
plants to produce more energy. Another way is to ask energy-intensive consumers to reduce their
consumption during a given time period (in which case they are said to perform a load curtailment),
by oering them a reward in exchange. In this thesis, we consider the problem of optimizing the
total energy costs using batteries installed for backup in order to participate in the energy market by
performing peak-shaving and load curtailments, with the help of a proper batteries management. Our
goal is to reduce the total energy operational expenses for the company, and maximize the rewards
received by performing load curtailments. A study of the electricity market architecture in France is
conducted to understand the demand, exibility mechanisms and how the operational constraints in
the use of batteries of a telecommunications operator interact with the energy market. We identi ed
di erent challenges that were investigated individually to better understand the characteristics of the
underlying optimization problem and thus to develop more e cient solving methods. For each one,

mixed-integer linear programs and heuristics are then proposed to solve the related problem. Once we



ABSTRACT

investigated and understood the individual challenges, we proposed mixed-integer linear programs and
heuristics for the main problem of this thesis, which we prove to be NP-Hard, incorporating market
energy prices and the availability of batteries. Finally, simulations based on realistic data from the
French telecommunications operator Orange show the relevance of the models and heuristic proposed:
these prove to be computationally e cient in solving large scale instances, resulting in signi cant

savings and revenue through the optimized multi-battery energy storage management policies.

Keywords: Recherche Ogerationnelle, Syseme de Stockage d'Energiea Plusieurs Batteries, Me-
canisme de Reponsea la Demande, E acement de la Charge, Programmation Lireaire en Nombres

Entiers Mixtes, Algorithmes de Graphes, Reseaux de Teecommunications.
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Resune

L'utilisation de batteries de secours en cas de coupure de courant est fequente dans les eseaux de
ekecommunications, car ils fournissent des services critiques et doivent rester en ligne en permanence.
Ces batteries sont utili:es en conjonction avec des antennes et d'autres equipements, et des egles
strictes de scurite d'utilisation doivent &tre prises en compte a n de garantir qu'elles soient toujours
disponibles en cas de coupure de courant. En outre, I'ogerateur de eecommunications pourrait utiliser
ces batteries a n de participer au marcte de lelectriciea condition que le eseau soit su samment
able et que les egles de curit d'utilisation soient respeckes. En e et, puisque le prix de lenergie
varie dans le temps, les batteries peuvent etre utilisees poureviter d'acheter de lenergie lorsque ce
prix estelew, et etre rechargees lorsque le prix de lenergie est plus bas, un comportement appeé
strakegie decrétement des pointes (peak-shavingen anglais). Une deuxeme facon rentable pour une
entreprise d'utiliser ses batteries est d'e ectuer des e acements de charge. En e et, lorsque la demande
delectricie d'un pays est sugerieure a la production, le gestionnaire du eseau de transport doit
prendre des mesures an de stabiliser le eseau, par exemple en demandant aux centraleselectriques
de produire davantage denergie. Un autre moyen est de demander aux consommateurs intensifs en

energie de eduire leur consommation pendant une periode donree (on dit alors qu'ils e ectuent un
e acement de charge), en leur o rant une ecompense enechange. Dans cette these, nous consicerons
le probeme de l'optimisation des codlts totaux de lenergie en utilisant des batteries instalees pour la
sauvegarde a n de participer au marcte de lenergie en e ectuant desecrétements de pointe et des
e acements de charge, avec l'aide d'une gestion appropree des batteries. Notre objectif est de eduire
les cepenses totales d'exploitation de lenergie pour l'entreprise, et de maximiser les ecompenses
recues en e ectuant des e acements de charge. Uneetude de I'architecture du marcte de Ielectricie
en France est d'abord meree pour comprendre les necanismes de exibilie de la demande et comment

les contraintes operationnelles dans l'utilisation des batteries d'un ogerateur de ebcommunications

11
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interagissent avec le marcte de lenergie. Nous avons identie dierents e s qui onteke exploes
individuellement pour mieux comprendre les caraceristiques du probeme d'optimisation sous-jacent
et ainsi cevelopper des nethodes de esolution plus e caces. Pour chacun d'entre eux, des programmes
lireaires en nombres entiers mixtes et des heuristiqgues sont ensuite proposes pour esoudre le probeme
correspondant. Apes avoir exploe et compris les e s individuels, nous avons propos des programmes
lireaires en nombres entiers mixtes et des heuristiques pour le probeme principal de cette these,
gue nous prouvons étre NP-Dur, en incorporant les prix de lenergie du marcte et la disponibilie
des batteries. Enn, des simulations bases sur des donrees ealistes provenant de l'ogerateur de
ekcommunications frarcais Orange montrent la pertinence des moctles et de I'heuristique proposes :
ceux-ci se montrent e caces en termes de calcul pour esoudre des instancesa grandeechelle, et des
economies et des revenus signi catifs peuvent étre gerees grace aux politiques optimisees de gestion

du stockage denergiea plusieurs batteries.

Mots-cks: Recherche Ogerationnelle, Syseme de Stockage d'Energie de Multiples Batteries, Me-
canisme de Reponsea la Demande, E acements d'Energie, Programmation Lireaire en Nombres En-

tiers Mixtes, Algorithmes de Graphes, Reseaux de Teecommunications.
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Resumo

O uso de baterias como backup em caso de quedas de energiae comum em redes de telecomuni-
cacoes, p que elas fornecem servcos crticos e precisam manter seus servcos sempre online. Essas
baterias sao usadas em conjunto com antenas e outros equipamentos, e regras rgidas de segurarca
de uso devem ser consideradas para garantir que elas estejam sempre disponveis em caso de queda
de energia. Aem disso, 0 operador de telecomunicacees pode usar essas baterias para participar do
mercado de eletricidade, desde que a rede seja su cientemente conavel, e desde que as regras de
segurarca de uso sejam respeitadas. De fato, como o preco da energia varia com o tempo, as ba-
terias podem ser usadas para evitar a compra de energia quando este precoe alto, e recarregadas
guando o preco da energiae menor, um comportamento conhecido como estraegia de corte de pico
(peak-shavingem inglés). Uma segunda maneira lucrativa para uma empresae utilizar suas baterias
para realizar reduwcees de carga. De fato, quando a demanda de energia de um pase maior do que
a prodwao, o Operador do Sistema de Transmissao deve tomar medidas para estabilizar a rede, tais
como pediras usinas ektricas que produzam mais energia. Outra formae pedir aos consumidores in-
tensivos de energia que reduzam seu consumo durante um determinado perodo de tempo (nesse caso
se diz que eles realizam uma redwcao de carga), oferecendo-lhes uma recompensa em troca. Nesta tese
de doutorado, consideramos o problema de otimizar os custos totais na compra de energia utilizando
baterias instaladas para backup, a m de participar do mercado de energia realizando cortes de pico e
redwcees de carga, com a ajuda de um gerenciamento adequado das baterias. Nosso objetivoe reduzir
0S gastos operacionais totais de energia para a empresa, e maximizar as recompensas recebidas pela
realizacao de redwcees de carga. Um estudo da arquitetura do mercado de eletricidade na Frarcae re-
alizado primeiramente para entender os mecanismos de exibilidade da demanda e como as restrcees
operacionais no uso de baterias de um operador de telecomunicacees interagem com o mercado de

energia. ldenti camos diferentes desa os que foram explorados individualmente para entender melhor
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as caractersticas do problema de otimizacao subjacente e assim desenvolver nmetodos de solucao mais
e cientes. Para cada um deles, programas lineares inteiros mistos e heursticas sao entao propostos
como netodos de resolucao. Uma vez explorados e compreendidos os desa os individuais, propusemos
programas lineares inteiros mistos e heursticas para o problema principal desta tese, que provamaos ser
fortemente NP-Hard, incorporando os precos de mercado da energia e a disponibilidade de baterias.
Finalmente, simulacoes baseadas em dados realistas da operadora de telecomunicacees francesa Or-
ange mostram a relevancia dos modelos e heursticas propostos: estes provam ser computacionalmente
e cientes na solwcao de instancias de larga escala, e economias e recompensas signi cativas podem ser

geradas atrawes das polticas otimizadas de gerenciamento de armazenamento de energia das baterias.

Mots-cks: Pesquisa Operacional, Sistema de Armazenamento de Energia de Miltiplas Baterias,
Mecanismo de Respostaa Demanda, Peak-Shavings, Programacao Linear Inteira Mista, Algoritmos

em Grafos, Redes de Telecomunicacees.
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Glossary

The electricity market notations

In this report, the following notations concerning the electricity market that will be used:

~ Ampere (Amps): A unit of electricity current.

Battery : Two or more primary cells connected to provide a source of electric current.
Circuit : A complete path through which an electric current can ow.

Current (1) : Flow of electric charge. 1 Amp = 1 Coulomb per second.

E ciency : Ratio of output power to input power of a device.

Electrical Conductor: Material that can conduct electricity.

Electrical Energy: Energy required to push electrons through the components of a circuit.
Electricity : Type of energy that comes from electrical energy.

Energy: Ability to do work, and work is moving something against a force, like gravity. There

are many di erent types of energy: light, heat, gravity, chemical and electrical energy.

Energy E ciency : The achievement of using less energy without reducing the bene t provided

by the end-use service.

~ Kilowatt Hour (kwh) : Energy represented by 1 kilowatt of power consumed for a period of 1

hour.

Power (P): The rate at which energy is released, transmitted or converted to another form; the

rate of doing work. The unit of power is the Watt (W), equal to one Joule of energy per second.
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" Volt: The unit used to measure voltage in a circuit.
~ Voltage (V): The amount of energy carried by a unit of electrical charge. 1 Volt corresponds to

energy of 1 Joule per Coulomb.

The energy storage assets notations

Let us properly de ne the notations concerning the energy storage assets that will be used in this

report:

" Battery Power : the rate at which a battery can deliver energy, given in Watt.
" Battery Capacity : the amount of energy that the battery can store, given in Watt hours (Wh).

Battery Autonomy : the duration that a battery can provide its maximum power, usually given

in hours.

Battery Lifespan: represents the number of cycles (i.e., one discharge and one recharge) that the

battery can perform before its replacement.
Level of Discharge the percentage of the battery that has been discharged.

" Battery E ciency : the ratio of energy recovered from the battery, to the energy delivered to the

battery, when they return to the same state of charge.
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Introduction

Over the last few years, di erent aspects of the electricity market have been studied, especially with
the emergence of smart-grids| (Tuballa and Abundp, 2016). Such networks may involve multiple energy
sources, storage systems, smart-consumption and local energy production (Dang, 2009; Koutsopoulos
et al., 2011).

In this context, batteries can be used in di erent ways with the aim of reducing production and
transportation costs, reducing energy consumption, and increasing grid reliability when used as backup.
More precisely, the use of batteries as backup in case of power outages is common in telecommunica-
tions networks, since they provide critical services and need to keep their services always online (Kiehne
and Krakowski, [1984). These batteries are used in conjunction with antennas and other equipment,
and strict safety usage rules must be considered in order to guarantee that they are always available
in case of a power outage. Besides, the telecommunications operator (company) could use these bat-
teries in order to participate in the electricity market provided that the grid is reliable enough, as
long as the safety usage rules are respected. Indeed, since the energy price varies over time, batteries
can be used to avoid buying energy when this price is high, which is known as the demand response
mechanism (Daryanian et al|,|1989). The batteries will then be recharged when the energy price is
low. The energy production and demand de ne the energy prices over a day, which must be paid to
buy energy from a market. Such an electricity market is known as retail market, and the demand
response mechanism has been widely studied over the last decade (Torriti, 2015; Johnson et al., 2011;
Mishra et al., 2012;| Labidi,|2019). This mechanism is based on changes in electricity use by end-use

customers from their normal consumption patterns in response to changes in energy prices over time.

Recently, another pro table way for a company to use its batteries, has emerged. In order to
illustrate how it works, let us consider a typical energy production and demand system as shown in

Figure [I. In such a system, the energy is delivered to the customers by the electricity distributors.
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The energy is supplied from the generators to the distributors by the Transmission system Operator
(TO), which is also in charge of the network stability. Indeed, when the power demand is greater than
the production, the TO must take steps in order to stabilize the grid (i.e., ask power plants to produce
more energy). Another way is to ask energy-intensive consumers to reduce their consumption during
a given time period (in which case they are said to perform a load reduction or load curtailment),
by o ering them a reward in exchange (Brown and Johnson, 1969). Usually, such a reward depends
on the amount of energy not bought during a load curtailment, which is the case for the French
context (RTE-Portal,| 2020). In addition, performing load curtailments requires to establish rules that

must be contractualized between the company and the TO|(RTE-Portal,|2020).

Figure 1 { Electricity markets agents.

Since 2016, the French telecommunications operator Orange France uses its base stations batteries
installed for backup to adjust the power consumption and perform load curtailments through the so-
called Block Exchange Noti cation of demand response mechanism (NEBEF) | (RTE-Portal, 2020). In
this context, Orange France interacts directly with the TO thanks to its high load exibility capacity
by participating in the so-called curtailment market through the NEBEF mechanism. This is done
by using its batteries for which strict safety usage rules need to be respected anyway. However, no

optimization strategy in such a use is taken into account.

In this thesis, we consider the problem of optimizing the total energy costs by using batteries
installed for backup in order to participate in the retail and curtailment markets, with the help of
a proper batteries management. Our goal is to reduce the total energy operational expenses for the
company, known as OPerational EXpenditure (OPEX), and maximize the rewards received from the
curtailment market. Note that the OPEX and the rewards received are represented by monetary units

and are considered simultaneously. Hence, we have a single-objective optimization problem.
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Concerning the contributions of this thesis, which are detailed in Chapter{ 2, we rst conducted a
theoretical analysis of the problem and its properties, proving that it is a problem that aggregates dif-
ferent di culties to solve. Di erent mathematical models, either approaching parts of the problem or
considering the complete problem, have been proposed and evaluated. We also present di erent algo-
rithms and heuristics with good computational and economical performance that are useful for solving
large real instances. Dierent numerical experiments are performed and con rm the performance of

the proposed methods.

This report is organized as follows: In Chapter{1, Sectiof 1]1 presents the functioning of the elec-
tricity market, and Section [[.2] presents the battery storage assets and their use in telecommunication
networks. In the following, Chapter [2 presents a literature review, the positioning of this thesis and
the major challenges of the optimization problem. We detail three key aspects of the problem and
how we conducted the research by exploring these aspects in two individual sub-problems, reported
in Chapters [J and[4, before solving the main problem, presented in Chapter]5. For each problem
addressed in Chapterg B| 4, angl|5, we present the models and algorithms proposed to solve them as
well as the experimental results obtained. Finally, in Chapter[8, we summarize our contributions, and

provide some perspectives for future work.
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Chapter 1

Contextualization

In this chapter we introduce the electricity market we are going to interact with, and the energy
assets that are used. In fact, we present elements of context, the way the market works, and speci c
properties that are very important for understanding the subject, as well as the rules and constraints
considered in our work.
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1.1. THE ELECTRICITY MARKET

1.1 The electricity market

In this section we introduce the electricity market, its principles of operation and the way energy
prices are established, as well as the energy markets with which the customers can interact. We focus

on the balancing mechanism of the network and how the consumers can value their reserves of energy.

1.1.1 General functioning

1.1.1.1 Introduction

Energy is everywhere and can be divided into two main forms: kinetic energy and potential energy.
Kinetic energy is the energy contained in moving objects and potential energy is any form of energy
that can be stored for future use. We can cite many examples of energy, such as light, heat, gravity,
chemical and electrical energy. Note that one type of energy can be converted into another, but not

created or destroyed. In our work, we consider electrical energy.

Electrical energy is produced by moving particles, called electrons, with a negative charge. In
general, electrical energy moves through a wire in an electrical circuit. If electrons accumulate in an
object, but can no longer ow, it is said to be static electricity creating an electrical charge (Room,
2019). Batteries are an example of objects where electrons are stored. If an electrical conductor
touches the battery, the electrical charge is released, creating an electrical current as the electrical
energy is carried from the battery to another location by the electrons. Then we have electricity,
which is the type of energy caused by ow of electrons. The conventional direction of the electric

current is from the negative side of the charge to the positive side.

In fact, the negative side charged with an excess of electrons and the positive side with a lack
of electrons cause the electrical potential, called a voltage, to move the electrons. Such a voltage is
measured in Volts (V), and represents the pressure exerted by the charged side of an electric circuit

that pushes the charged electrons through a wire.

Another important metric in the context of electrical energy is the word current, which represents
the speed at which electrons ow through the conductor (usually a wire). Such a current is a physical
qguantity that can be measured and expressed numerically, and for which the standard metric is the

ampere (A).
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1.1. THE ELECTRICITY MARKET

1.1.1.2 Energy production, transmission and distribution

In this section we present the entire process from energy generation to energy consumption, and
the mechanisms involved. Understanding this process is important because the subject addressed in

this thesis is directly related to the transmission stage.

In the real world, energy is produced in power plants (nuclear, gas, hydroelectric, solar, etc.) and
has to be sent to the customer's location. Thus, the electrical power is transferred via transmission

wires.

Generation: Concerned with the process of power generation, based on the conversion of natural
energy into electrical energy, several energy sources have been used over the years. Historically, thermal
power plants for energy production have been widely used throughout the world. Examples include
petroleum, nuclear, geothermal, and waste incineration power stations. Close to half (45.5%) of the
net electricity generated in the EU in 2018 came from combustible fuels (such as natural gas, coal and

oil), while a quarter (25.8%) came from nuclear power stations|(Eurostat, 2020).

In some regions, the production of energy through hydroelectric power plants is an important
alternative to thermal power plants, being a production with fewer emissions of pollutants. In Europe,
13% of all energy production in 2018 comes from hydroelectric plants (Eurostat, 2020), while in some
countries, such as Brazil, energy production from hydroelectric plants is more intense (65%) (EPE,
2017).

Recently, there has been a worldwide e ort for the massive use of renewable energy production,
such as wind turbines and solar panels. The technological development of these technologies increases
e ciency, and also reduces their cost of production and installation. Consequently, the installation
of solar panels in homes and businesses is becoming increasingly common. Customers then become
'prosumers”, because they are consumers and producers of energy at the same time. As a result,
distributed energy production has been increasingly studied and is seen as a form of production for
future generations of electrical grids. However, only 15.4% of all energy production in Europe in 2018

comes from solar panels or wind power plants (Eurostat, 2020).
The agents responsible for the production are commonly called 'producers” or "generators”.
Transmission: Electric power transmission involves sending electricity from a power generation

site to an electrical substation where the voltage is transformed and distributed to consumers. When
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Figure 1.1 { General schema of power generation, transmission and distribution.

electric power is generated at a power plant, it has a tension typically between 11.7kV and 33KkV.
However, its voltage is stepped up to between 100kV and 700kV before it is sent to the distribution
centers via transmission lines to reduce transmission losses. Indeed, the current is frequently reduced
and the voltage is increased. On the one hand, current reduction means a lesser number of electrons
traveling at the same point of the conductor while at the same time reducing the friction. On the
other hand, voltage increasing means a higher di erential power pressure groups of electrons to ow
'more frequently”. The equipment responsible for such an increase of voltage is the transformer. Every
power plant uses a transformer to make the voltage level higher before transmission for long distances,
as illustrated in Figure [L.T. In the French context, Figure [1.7 illustrates transmission network in
December 2019. The illustrated panel shows in real time the hubs and transmission lines and their

working states.

A second aspect of utmost importance in power transmission is to keep the current in the trans-
mission network constant. Depending on whether production is higher or lower than consumption, the
frequency increases or decreases. However, for the smooth operation of all devices connected to the
network, it is essential that the frequency is extremely stable, which requires an almost perfect balance
at all times between production and consumption. The agent responsible for the power transmission
and at the same time of the balance of the network (i.e., keeping demand equal to production all the

time) is the "Transmission system Operator (TO)".

In this context, the TO must take action in real time to balance demand and production. Among

the mechanisms used, we can mention the modi cation of energy prices to encourage an increase or

38



1.1. THE ELECTRICITY MARKET

Figure 1.2 { The French transmission grid. December 2019. source (Ferriere, 2020).

reduction in consumption, the use of reserves to be activated in case of a peak in demand, or even the
possibility to ask a large consumer to reduce its demand for a period of time by o ering a nancial

reward.

Distribution:  Electricity distribution is the nal step in the delivery of electricity from the high-
voltage transmission system to the end consumers. Distribution substations connect to the transmis-
sion system and step down the transmission voltage to medium voltage ranging from 2 kV to 35 kV
with the use of transformers. So-called distribution lines then transport this medium-voltage power
to distribution transformers located close to the consumers' installations. The distribution transform-
ers are responsible for lowering the voltage so that the power can be used for lighting, industrial

equipment, and household appliances.

The agents responsible for the distribution are commonly called "distributors” or "suppliers".

1.1.2 Electricity commerce and pricing de nition

After the liberalization and opening of the electricity markets to competition, a market where

electricity is traded before nal delivery to the consumer between di erent actors was created. The
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wholesale market concerns negotiations between actors operating in the energy eld, while the retalil

market concerns negotiations between suppliers and end customers directly.

1.1.2.1 The French electricity market

Besides, France has one of the largest energy markets on the continent (Comission, 2020). In 2019,
79.1% of all energy produced came from nuclear sources, while only 20.2% was renewable. However,
there is a movement towards reducing the use of nuclear power plants and increasing the use of
renewable energy |(IEA,[2019). In the same year, renewable electricity generation exceeded fossil fuel
generation for the rst time in history. Around 40% of the energy produced in the European Union
was generated from renewable energies (wind, solar, hydro and bioenergy), while fossil fuels generated

34% (Energiewende and Sandbag, 2020).

Historically, the French energy market was marked by an absolute monopoly, with EDF Electricie
de France in French) and GDF (Gaz de France in French) being the main actors in energy production
and distribution (Marty and Reverdy,| 2017). It was only in 2007, following the liberalization of
the European energy market, that France restructured its energy market. Since 2010, when France
approved the NOME law (Nouvelle Organisation du Marchke de I'Electricie , in French) to promote
competition in the retail electricity market (Creti et al., |2013), any company can become an agent
in energy distribution or production. Indeed, prosumers can act in daily balance, as a reserve for
periods of greater demand such as winter, or as an immediate reserve to use when necessary (Kieny
et al., 2015). Only energy transmission does not have an open market because its management is
extremely complex. In this context, RTE (Reseau de transport délectricie , in French) was created,

and is responsible for transmitting the energy and maintaining the balance of the network.

1.1.2.2 Wholesale market

The wholesale electricity market plays a central role in the operation of the French electricity
system by allowing the supply of electricity to be balanced with demand. On the one hand, electricity
is injected into the grid via producers or imported from other countries, and on the other hand,

electricity is extracted from the grid to satisfy nal consumption and/or for export.

Concerning the agents that play a role in this part of the market, they are classi ed into four

di erent types: The generators trade and sell the output from their power plants, the suppliers trade
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electricity and then sell it to end-use customers for their consumption, the traders trade to purchase
and sell (or vice versa), thereby helping to ensure market liquidity, and the demand side management
(or load reduction) operators that pro t from their customers' lowered consumption. At any moment,
the TO ensures the real-time balance of the system if necessary. French intraday markets allow

exchanges within France up to ve minutes before delivery.

Two types of products can be traded. On the one hand, spot products are traded for same-day
or next-day delivery, and on the other hand, future contracts are traded for delivery at a certain
point in the future. Concerning the spot products, they are of two types: In the Day-Ahead market,
hourly products are traded for delivery on the next day, and in the Intraday market, half-hourly,
hourly products or blocks spanning several hours are traded for delivery on the same day. Concerning
the future products and contracts, the participants can sign buyer/seller contracts for the supply of

electricity in future at a price negotiated on the contract trade date (CRE/| 2018).

1.1.2.3 Retail market

Since the French electricity and natural gas markets are opened to competition, consumers are free
to choose their energy supplier. In this context, consumers can choose between two types of o ers: the
rst is the product market, where prices are set freely by suppliers; and the second, where regulated

sales tari s are set by the government and proposed by the incumbents.

The retail price of an electricity product, whether by regulated tari or market price, includes
xed costs that are identical for all suppliers and costs that vary. The xed costs consist of the grid
access costs set by the regulatory agency CRECommission de Regulation de I'Energie in French),
while the variable costs are related to the generation or supply of electricity, commercial costs, margin
or return taken by the supplier. By optimizing these costs, suppliers are able to o er lower prices to

their customers.

There exist two types of o ers for which consumers can contract: so-called 'Fixed price o ers",
where the price, excluding taxes, does not change during the duration of the contract, but is subject
to changes in taxes and contributions; and o ers called 'indexed price o ers", in which prices follow
changes in regulated sales taris or other wholesale market indices speci ed in the contract (CRE,
2018).
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Formally, the retail market rule considered in our study is the following one:

" There is a maximum amount of power that the distributor can supply and which is supported

by the distribution grid;

1.1.2.4 Demand side management

Considering that the customer can opt for a contract where the price of energy varies during the
day, it is natural to think of di erent strategies to adapt energy consumption according to prices. In
general terms, the consumer is always interested in consuming as little as possible in the periods when
energy costs are highest, shifting consumption to periods of the day when energy is cheapest. This
strategy is commonly known as Demand Side Management (DSM) (Strbac, 2008) or as Peak-Shaving,
and has been widely adopted by di erent types of customers, but it has also been a growing research

topic in recent years.

The DSM also plays an important role in the sustainable and low-carbon energy transition that
aims to optimize energy use and mitigate emissions. Several elements are used in such a management:
The reallocation of power demand (reallocating the production of a certain product for example) to
di erent periods, or the use of batteries to store energy and allow the use of di erent renewable energy

sources (solar panels, wind power plants, etc.) are widely adopted (Meyabadi and Deihimi, 2017).

The problem addressed in this thesis iterates with both the Wholesale and Retail markets by
adapting the energy consumption of telecommunications base stations. In this thesis, we consider the

base stations of the French telecommunications operator Orange.

1.1.3 The grid stability

One of the fundamental characteristics of electricity transmission is that the amount of energy
injected must equal the amount of energy extracted from the grid, which is why it is necessary to
constantly balance consumption and production. So it is necessary to ensure su ciently far in advance

that the available means of production will be able to meet demand at any given time.

In France, transmission is done in alternating current at a frequency of 50 Hertz (refereed to as
frequency of reference) in a situation of balance between supply and demand (Legifrance, 2021). In

the United States, transmission is at a frequency of 60 Hertz. Hence, transmission operators must
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then keep the frequency as close as possible to the reference values. If energy production is greater
than demand, the frequency increases, while the frequency decreases if production is unable to meet

demand.

1.1.3.1 Grid imbalances responses

To absorb grid imbalances between electricity production and consumption, RTE (in France),
accumulates and activates energy reserves (called balancing reserves) provided by di erent agents:
producers, consumers or other actors likely to inject or withdraw energy from the grid. They are of
three di erent types: primary, secondary, and tertiary (Portal)| Each one of them is used in specic

situations.

When there is an imbalance in the grid, RTE can activate the primary reserve. This is done at
the power plant level, automatically with a delay of a few seconds to a few minutes, and involves all
European power producers that are connected to the transmission system. In Europe, the primary
reserve must be able to respond to a power di erence of 3,000 MW. The French system is responsible

for 540 MW.

Then, RTE can activate the secondary reserve also automatically. In this case, only French power
producers with a production capacity exceeding 120 MW are considered. The secondary reserve in

France has a capacity of between 500 MW and 1,180 MW.

Finally, RTE has the possibility to activate the tertiary reserve (also called the adjustment mech-
anism in France), composed of French producers and consumers that are asked to participate in the
balancing mechanism, modifying very quickly their planned operational program |(RTE-Portal, [2020).
Note that they can be energy producers, or large consumers that are able to reduce their consumption

for a period (strategy called load reduction).

Companies and consumers can participate in the tertiary reserve in two di erent ways: through a
contractualized reserve, or through a non-contractualized reserve based on available capacity. In the
case of the contractualized reserve, RTE opens a bidding process, in accordance with Article L. 321-
11 of the French Energy Code, which customers bid for. In the case of non-contractualized reserves,
customers place their extra production or reduction capacity at the disposal of RTE, which can request

the activation of the reserve when needed. Note that, in the non-contractualized model, the client
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Figure 1.3 { General schema of actions taken by RTE in case of a power outage. Source: www.services-
rte.com

is compensated only when it is requested to use its reserve, while, in the contractualized model, the

client is compensated even if RTE decides not to use its reserve.

Figure [1.3 illustrates the actions taken by RTE in the event of a power outage. Note that, when a
generator has a problem, the reserves supply the power demand as quickly as possible. Consequently,

the system frequency drops and returns to the nominal level.

In this context, the problem addressed in this thesis is based on the interaction of a telecommuni-

cations operator with the transmission operator in the French context.

1.1.3.2 Valorization of the exibility in France

In France, there are some modalities that allow the customer to put his exible power, which can
be activated at any time, at the disposal of the transmission operator. He can value their power

capacities (in MW) or their stored energy (MWh).

Valorization of the capacities: This type of mechanism consists in making available to the trans-
mission operator a certain amount of power that can be activated at any time according to the type

of contract adopted.

The rst way to value capacities is through the tertiary reserve. The second one is through the
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capacity mechanism In this context, the capacity mechanism aims to ensure security of electricity
supply in France during winter peak periods. It is based on the obligation to cover consumption during
peak hours by obligated actors and on the certi cation and evaluation of generation and reduction

capacities. This mechanism has been in force since 2017 through the NOME law.

Valorization of the energy: In this context, the customer puts his energy (or ability to reduce
his consumption) available to the transmission operator for a certain period of time, that can be
used when needed. The consumer is then paid by the market for the energy sold (or consumption
reduction requested) in euros per MWh. Reducing consumption also contributes to the regulation of
energy prices (avoiding the variable costs associated with producing additional energy in periods of

high demand).

In this context, there exist two main mechanisms in France that allow the customers to valorize

their reserves: theNEBEF mechanism and the adjustment mechanism

Concerning the NEBEF mechanism (Noti cation d'Echanges de Blocs d'E acement, in French),
the consumer can sell the energy not consumed directly to the wholesale market. Each MWh reduced
by the consumer can be sold at the real market value. In concrete terms, this is selling the electricity
that will not be consumed on a given day, the day before (e.g., selling today the energy that will not
be consumed tomorrow). Once negotiated, the operator avoids requesting extra energy production to

balance the grid.

The consumer can participate directly to this mechanism if it has at least 100kW of capacity,
otherwise it is necessary to use an intermediate agent called aggregator. In addition, the maximum

duration of a load reduction is limited to 2 hours.

Concerning the adjustment mechanism, it assists in balancing the electric grid in real time by
allowing energy to be sold to RTE in real time for grid management purposes. Consumers make load
reduction o ers, specifying the price per MWh, duration, reduction power, and conditions of use. RTE

can, at any time, activate the o ers made respecting the conditions of use established in the contract.

Measurement of the e ective reduction of a load curtailment: Measuring how much energy was
actually reduced by a consumer during a call for load reduction is one of the extremely important
aspects in the valuation of exibility. In fact, it is di cult to verify that the energy e ectively reduced

is equal to the amount contracted in a load curtailment o er. Furthermore, it is necessary to be
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able to distinguish a reduction in consumption due to a usual demand variation from a reduction
in consumption due to the load curtailment requested by the transmission operator. To this end,
monitoring the amount of power reduced consists rstly in estimating a reference value corresponding
to the consumer's usual consumption before and during the power reduction call. Formally, the
reference value is the average of the power bought immediately before the load curtailment together

with the power demand forecast during the whole load curtailment (RTE-Portal, 2020).

Once the reference value is calculated, the e ective reduction realized is calculated as the di erence

between the reference value and the power purchased during the load curtailment.

The problem addressed in this thesis is based on the participation to the NEBEF mechanism in

the French context.

1.1.3.3 Curtailment market rules

To participate in the NEBEF mechanism, some rules are contracted between the transmission
system operator and the customer. Formally, the curtailment market rules considered in our study

are the following ones:

" Each load curtailment performed must respect a minimal and maximal duration;

~ During each load curtailment performed, the power consumption must be reduced by at least a

certain amount.

1.2 Energy storage assets

In this section we present the main types of energy storage, with emphasis on batteries. Infor-
mation about how they work, the main types, and the main use cases are also covered. Finally we
present the use of batteries in the telecommunication context and the battery inventory of the French

telecommunication operator Orange.

As such batteries are used as backup, safety usage rules must be respected for any additional uses.

These rules are also presented in this section.
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1.2.1 Introduction

Energy storage is a strategy that has been widely used around the world over the years and has
several economic, reliable, and environmental bene ts. Storing energy allows us to reduce the cost of
energy production, transportation, and consumption, and to increase the reliability of the grid when
used as backup. It also allows the integration of di erent devices and resources, and can be used to
reduce environmental impact. However, electricity to be stored needs to be transformed into other

types of energy, such as mechanical or chemical.

Energy can be stored in di erent ways using di erent technologies, for example:

" Hydroelectric pumping: Cost-e ective technology that provides stability to the electrical system
and can generate signi cant levels of clean energy with fast response times. Electricity is used to
pump water into a reservoir. When the water is released from the reservoir, it ows downward

through a turbine to generate electricity.

Thermal storage: This technology allows energy to be stored in materials that allow it to be
trapped and released when needed. An example is when electricity is used to produce chilled
water or ice during periods of low demand, which is later used for cooling during periods of peak

electricity consumption.

Batteries: Device that store energy in chemical compounds capable of generating an electrical
charge. There are many types, such as lead-acid, lithium-ion, or nickel-cadmium batteries.
The main advantages of batteries are their fast response, ease of installation, scalability, and

reliability.

We can also mention several other types of energy storage, such as compressed air, ywheels, ow

batteries and supercapacitors.

1.2.2 Battery assets

One of the most common energy storage resources are batteries. They come in di erent types,
capacities, and performances. Essentially, a battery is a device that stores chemical energy and converts

it into electrical energy through an electrochemical process, called electrolysis. A battery is composed
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Figure 1.4 { Electrochemical cell scheme. Source: www.science.org.au

of one or more electrochemical cells, each composed of two electrodes separated by an electrolyte, as
illustrated in Figure [.4] An electrode is a solid electrical conductor that carries electric current. In

a battery, the electrodes are made of di erent materials: one that reacts with the electrolyte that
produces a current of electrons (called the anode), and another that reacts with the electrolyte that
allows the electrode to accept the electrons (called the cathode) (Ferrese, 2015). Concerning the
electrolyte, it can be a liquid, gel, or a solid substance, but it must be able to allow the movement of

charged ions.

1.2.2.1 Battery properties

The properties of a battery, such as current, voltage, power, and range, are essential properties to

analyze before purchasing.

In the context of batteries, the voltage represents the force that the electrolysis process at the
electrodes pushes the electrons thought cells. Voltage is also known as the potential di erence given
by the chemical reaction that occurs at each electrode. The amount of work that the same number
of electrons can do increases as the voltage does. Another important property is current. the number
of electrons that is given by the battery per time. It can be seen as the capacity of the electrolysis

process to release electrons.

In addition, energy is characterized by the power rate at which a battery can operate. Battery
power is calculated from the multiplication of current (Amp) and voltage (Volts) and is given in Watt.

Note that both current and voltage are important in nding out what a battery is suitable for.
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In the context of batteries, autonomy is the duration that a battery can provide its maximum
power, usually given in hours. Note that a battery with 2 hours of autonomy giving 1200W can have
its autonomy increased to 4 hours if it operates at 600W. The capacity of the battery (i.e. the amount
of energy that the battery can store, given in Watt hours (Wh)) is obtained by multiplying its power
by its autonomy. A battery with a power of 1200W and 2 hours of autonomy has a capacity of 2400
Wh, or 2.4 kWh.

Finally, the lifetime of a battery represents the number of cycles that the battery can perform
before replacement. The lifetime depends on how the battery is used (discharge intensity, frequency of
use, if it is recharged immediately and with which power rate, and the temperature) and the material

it is made of.

1.2.2.2 Recharging process

Some common batteries can be used once and are non-rechargeable. In this case, when the elec-
trodes release all the positive or negative ions into the electrolyte, there is no more electric current and
the battery reaches the end of its useful life. Some electrodes and electrolytic materials are expected
to allow a reverse electrolysis process, recharging the battery, taking the battery back to its starting

point and giving it a new life.

The recharging process is characterized by connecting a source of electricity to the battery, reversing
the chemical reaction that occurred during the discharge. However, the recharging process is not
perfect. The sending of the ions from the electrolyte back to their initial electrodes is not as clean or
as well structured as the electrodes of a new battery. The electrodes degrade with each recharge of the
battery, which means that the battery loses performance over time. In fact, the battery has a lifetime
that is given in number of recharge cycles considering some usage patterns, such as frequency of use,
temperature, or average level of discharge. This last standard is known as depth of discharge (DoD)
and is de ned by the percentage of electrons passed from anode to cathode in relation to the total
number of electrons available in a complete electrolysis process. However, we will keep the notation

level of discharge instead of depth of discharge for sake of clarity.

During the recharging process, the current and voltage for recharging are key factors in keeping
batteries safe by minimizing energy loss. Each type of battery related to the technology used in its

manufacture requires a di erent power rate for recharging. In general, this power must be constant to
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preserve the chemical properties of the electrodes and electrolytes of a battery. Indeed, an important
aspect is the sulfation in the plate of lead-acid batteries that occurs when they are deprived of a
full charge. When too much sulfation occurs, it impacts the battery performance because it impedes
the conversion between chemical and electrical energy. Consequently, recharging lead-acid batteries

immediately after each use is commonly used (Catherino et all, 2004).

The battery recharge time is called the Neutralization Delay, representing the duration (in hours)
for recharging the battery to its full capacity. Note that such a delay depends on the level of discharge
performed, and that the energy level in the battery does not increase linearly until the end of the
recharge. In e ect, the battery recharges much faster at the beginning of the recharging delay and
slowly at the end, depending on the recharge strategy adopted and on the battery technology. In
this context, di erent strategies are proposed to recharge batteries while minimizing energy losses and
also keeping the recharge process safe (the internal temperature can increase considerably) (Pandzt
and Bobanac, 2018). Regarding lithium batteries, di erent fast recharge strategies have been widely
studied, as presented in the review by Tomaszewska et al. (2019). Regardless of the strategy adopted
or the type of battery, DoD-based recharge time predictions depending on the level of discharge have

been quite e ective (Dunstan, [1996; Guruacharya et al., 2018).

1.2.2.3 Types of batteries

Di erent conductive materials can be used in battery production. They are used in the electrodes
and electrolytes with an impact on e ciency, lifetime, recharge rate, energy density, and production
cost. In this section we provide more information about three types of batteries: GEL, AGM and
Lithium. In this thesis, only GEL and AGM batteries are taken into account in our experimentation.
However, lithium batteries are beginning to be used in the telecommunications context requiring

further studies, as presented in AppendiX B.

First, in AGM (Absorbent Glass Mat) batteries the electrolyte is absorbed by capillarity onto
a berglass mat placed between the electrodes. In GEL batteries, the electrolyte is a solid matrix
with silica gel and sulfuric acid. More recently, lithium ion batteries have been widely adopted due
to their safety and e ciency. In this context, lithium has excellent electrochemical properties and
batteries are manufactured by combining it with di erent materials such as manganese dioxide, carbon

mono uoride, iron disul de, silver chromate and others (Koksbang et al., [1994).
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AGM batteries are more capable of providing high currents for short periods of time than GEL
batteries. In addition, AGM batteries have a lower production cost than GEL batteries. However,
GEL batteries perform better for daily use with slow and deep discharges (Victron, 2021), while AGM
batteries perform better with a level of discharge up to 80% and are preferable for use in non-regular
scenarios. As a result, GEL batteries tend to have a slightly longer life than AGM batteries. The
lifetime of AGM and GEL batteries depends essentially on the average level of discharge and the
frequency of use. The lifetime of AGM and GEL batteries can vary from 450 cycles for AGM batteries
and 500 cycles for GEL batteries with an average of level of discharge of 80 % to 1500 and 1750,

respectively, with an average of the level of discharge of 35 %.

Lithium battery technology marks the beginning of a new energy era. It has signi cant advantages
over AGM and GEL batteries, such as: up to 3x higher energy density (amount of energy a device
can hold per unit volume); level of discharge does not a ect their lifetime, which is also longer; up to
15% higher charging e ciency; can be used in safety-critical contexts; are recyclable. Even though the
installation cost of a lithium battery is higher compared to GEL and AGM batteries, the cost per cycle
becomes lower thanks to its long lifetime. However, lithium batteries require optimal temperatures

for optimal performance, while AGM and GEL batteries are more exible in this aspect.

1.2.3 Batteries in telecommunications

1.2.3.1 Cases of use

Batteries are used not only in data-centers as backup to prevent network outages but also on sites
together with other devices such as antennas| (Kiehne and Krakowsk|, 1984; Nasiriani et al., 2017).
More recently, telecommunications operators are seeking to use the large collection of batteries in
other aspects, for example, they can be used with the objective of reducing the consumption of fuel

in site generators, as presented by Marquet et al.| (2006).

In Finland, the energy generator Fortum Power and Heat Oy is looking for di erent uses of telecom-
munications base station batteries as power reserves to interact with the energy markel (Alaperet al.,
2017), while the Italian telecommunications operator TIM explores the economic opportunities of us-
ing the batteries installed in its data centers in the demand-response mechanism (Bovera et al., 2018).
In France, the telecommunication operator Orange also uses its base station batteries to participate

in the French balancing mechanism.
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1.2.3.2 Batteries safety usage rules

Since the batteries are installed for backup use, the following safety usage rules must be respected
for any use other than for backup. These rules are given and endorsed by the team of experts of

Orange France. The safety usage rules considered in our study are the following ones:

" There is a minimum (and a maximum) power discharge rate for each battery in discharge;

" There is a minimum (and a maximum) amount of energy that can be stored in each battery;

" Each battery must be immediately fully recharged after each use with a constant power rate;

" Each battery must be fully charged at the beginning and at the end of the planning horizon;

" There is a maximum number of cycles that each battery can perform over the time horizon.

Note that the process of recharging a battery is not linear and depends on many factors such as
temperature, battery type and battery health. However, the team of experts of Orange France imposes

a constant power recharge that integrates a safe margin to simplify and assure that the battery will

be recharged at the end of the recharging period.
1.2.3.3 Orange France assets

The French telecom operator Orange has a large number of battery assets over the country on
its sites, i.e. base stations with antennas, each equipped with a battery for backup. In our work, we
have access to 5715 batteries among such sites, mainly of AGM and GEL technologies. The address of
each site is known, and the distance between two sites can be obtained by geolocating each one. We
observed that the power of each battery is equivalent to the power demand average of the site. This is
expected because the cost of maintenance of the batteries are elevate, and hence, sites have only the

backup power strictly necessary.

1.3 Summary of rules

This section summarizes all the rules that are taken into account in this thesis. They come from the

energy market and from the battery safety usage rules. The complete list of the rules is the following:
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R1 - At least a minimum amount of energy B™" | given in kWh, must remain in the battery at any

time period;

R2 - The battery must be immediately fully recharged after each use with a constant power rate

Pg, given in kW, up to its maximal capacity B™2*, given in kWh;
R3 - The battery must be fully charged at the beginning and at the end of the planning horizon;

R4 - A minimum power discharge ofD™", given in kW, is imposed when the battery is in discharge

mode;
R5 - The maximum power rate that the battery can deliver is limited to D™ and given in kW,
R6 - Each battery b cannot be used more thanN} times over the time horizon;
R7 - No more than P™M& kW can be bought from the distributor at any time period;
R8 - The duration of each curtailment performed is bounded by ™" and ™2 time periods;

R9 - No more than p'® kW can be bought from the distributor during the curtailment c if it is

performed.

R10 - The number of load curtailments that can be performed over the time horizon is limited toN .

Note that rules concern the safety usage rules, and rulgs {7-Rl10 to the energy market.

In Chapter B] only rules [RI{RE, and[R7fR9Y are considered, while only rules RI-R7 are considered in
Chapter [4. In Chapter 5] all rules[RI{R1Q are taken into account.
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Chapter 2

Positioning and major contributions

In this chapter, we present the main challenges addressed in this thesis and the outline of our

research. In addition, we review the literature, and present the industrial positioning of this thesis.
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65
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2.1. OPTIMIZING THE ENERGY COSTS BY USING BATTERIES IN THE
ENERGY MARKET

2.1 Optimizing the energy costs by using batteries in the energy market

The main problem addressed in this thesis is the optimization of total energy costs by using
batteries originally installed for backup in telecommunications base stations in order to participate in
energy markets, with the help of a proper battery management. In this context, batteries are used
to participate in the retail market by adapting the energy consumption of the network based on the
energy prices, but also to perform load curtailments, that help to maintain the network balance, in
exchange for a nancial reward. Our goal is to reduce the total operational energy expenses for the
company while maximizing the rewards received from the curtailment market. Currently, the batteries

are already used to participate in the energy markets, but no optimization strategy is explored.

The optimization problem in question must take into account some contractual rules and physical
limits of the batteries. These rules, summarized in Sectiofj 1]3, which will be formally presented in

more detail in Chapters[3,[4, and[5, can be classi ed into three distinct groups as follows:
"~ Safety usage rule$ RI{-R6 introduced in Sectioh 1.2.3.2.

" Retail market rule R7]presented in Section 1.1.2.8.

~ Curtailment market rules R8R10 introduced in Section[1.1.3.3.

Each of these groups of rules impacts the solution of the problem in di erent ways, and can make
the optimization problem more di cult or easier to solve. Among these three groups of rules, only the
retail market rule have been fully explored by other studies considering batteries| (Daryanian et al.,

1989;| Torriti, 2015;|Johnson et al.,| 2011} Mishra et al.| 2012; Labidi, 2019).

In Section[2.2, we present the major challenges identi ed that impact the problem solving, and

look for literature references and solving methods that may help in tackling them.

2.2 Major challenges

We identi ed three major challenges that make the problem potentially di cult to solve. The rst
major challenge is related to the particular rules of use for batteries installed for backup in the context
of telecommunications, the so-called safety usage rules. The second challenge is related to the impact

of energy market rules, more precisely rules from the curtailment market, on the optimization of the

56



2.2. MAJOR CHALLENGES

battery use. Finally, the third challenge is related to the large number of batteries to be optimized.
Having a large and diverse collection of batteries, such as that of telecom operators, can cause signif-

icant bottlenecks in solving the problem.

Impact of the safety usage rules

Concerning the impact of the safety usage rules on a single Battery Energy Storage System (BESS)
management, some related studies address them individually (Daryanian et al|, 1989; Alaperet al.,
2017; Bovera et al., 2018). More precisely, Alapex et al,| (2017) consider some physical aspects, such
as a maximum discharge rate, a constant recharge power rate, and a maximum amount of cycles, while
Bovera et al! (2018) consider the maximum amount of cycles that the battery can perform. Concerning
the rules such as recharging the batteries immediately after each use with a constant power rate and
imposing a minimum discharge power on the batteries, no previous studies have addressed them. Con-
sequently, the impact of these rules on battery management is not known, requiring further analysis

and study.

Impact of the curtailment market rules

Some studies have already addressed patrtially the curtailment market rules (presented in Section
[1.1.3.3) in other contexts (Zhang et al,,[ 2015} Lan et a).| 2018; Mkireb et &l 2019). In addition, the
use of batteries in order to perform load curtailments was treated in some studies (Zakeri et al., 2017;
Nasrolahpour et all,|2017; Schillemans et al., 2018). However, no previous studies have addressed
these rules in the scenario where batteries subject to safety usage rules are used to perform load cur-
tailments. Consequently, the impact of these rules on battery management is not known, requiring

further analysis and study.

Impact of the multi-battery management

Another challenge is the optimal management of a Multiple Battery Energy Storage Systems
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(MBESS), requiring more e cient control strategies. In this context, recent studies propose di erent
methods to treat the dimensionality e ciently (Babazadeh et al.,| 2014} Zhu et al., 2018;|Fan et all,
2019). In our case, we consider a MBESS for which the safety usage rules must be considered,
something that no previous studies have addressed. Consequently, the impact of these rules in the

management of a MBESS is not known, requiring further analysis and study.

2.3 Literature review

Evaluation of the reserves

Smart grids aim to o er high exibility, responsiveness and e ciency to electrical networks, and
have been widely studied |(Tuballa and Abundo,| 2015). In particular, they allow better integration
of renewable and decentralized energy sources while maintaining the security of the electricity grid,
allowing for greater collaboration between the agents. In this context, batteries can be used as backup
devices.| Kiehne and Krakowski [(1984) studied such a use of batteries in di erent parts of a telecommu-
nications system, to keep the network safe and the services active in case of a power outage. Moreover,
a study was conducted at Orange Company by Marquet et al. |(2006), in order to address the use of
batteries in telecommunications systems to reduce the use of fuel and the OPEX of remote power
plants and, if possible, to remove the diesel engines that are installed in remote stations. Such bat-
teries are used in conjunction with renewable energy devices, such as solar panels and wind turbines,
in remote areas where antennas are installed without an energy supplier. In addition, the reliability
of the energy grid has been improved over the years, allowing batteries primarily installed for backup
to be used for other purposes, when they are not being used for backup (Moslehi and Kumar, 2010).

Therefore, they can become valuable facilitators of fast controls in a smart grid.

The collaboration between the agents of a smart-grid is fundamental to the grid power balance
and can be pro table to both consumers and production agents. Prosumers, i.e., consumers who also
produce and share energy excess in the electrical network, have a fundamental role in the balancing
mechanism, as they can actively help to balance the network production and demand (Camarinha-
Matos|, |2016; Zafar et al.,| 2018) or nancially value their reserves |(Zafar et al., 2018; RTE-Portal,

2020;/ Iria, [2019). In this context, information and communication technologies, as well as optimiza-
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tion technigues are fundamental elements to interact with the energy market. In the French energy
system, i.e., in the rst European country to open all its national market structures to all consumers,
prosumers can act in daily balance, as a reserve for periods of greater demand such as winter, or as

an immediate reserve to use when necessary (Kieny et al., 2015; RTE-Portal, 2020).

Participation in the retail market

The exibility to re-schedule energy consumption allows prosumers to adapt their demand from
their normal consumption patterns in response to variations in the energy prices, generating savings
(Aghaei and Alizadeh, 2013).| Daryanian et al. (1989) introduced such a demand response mechanism
by using a single battery to reduce the electricity bill by exploiting the variation of the energy prices.

In their study, a battery is used in peak-time periods, where the energy costs more, and recharged in
periods where the energy is cheaper. They also consider that the batteries must be fully charged at the
beginning and at the end of the planning horizon and take into account some physical aspects, such as
a maximum discharge rate. Several later studies explore the demand response mechanism in di erent
usage scenarios and with various solving approaches (Hoke et|al., 2013; Mishra et al., 2012; Good jand
Mancarella,|2017; Huang et al.| 2014; Longe, 2016). Among them, linear programming is widely used
as a solution method in many studies related to reducing the energy cost by optimizing the battery
use, such as in Hoke et al. (2013); Good and Mancarella (2017); Marzband et al. (2017); Moreno et al.
(2015);|Yang et al! (2017). As an example, Hoke et al.| (201.3) study the use of a battery to minimize
the cost of operating a microgrid while meeting resource constraints from conventional generators,
solar panels, and wind turbines. To address the tie-line power uctuation and reduce the size of en-
ergy storage systems, a hierarchical control strategy for battery storage and demand-side resources is
proposed infWang et al. (2014). Moreover, Good and Mancarel|a (2017) treat the uncertainty in power
demand, renewable energy generation, and prices, through the use of a linear program with a robust
strategy. Another work related to the use of a battery in the demand response mechanism is the one
of |Mishra et al.| (2012), who studied the impact of using storage systems on the stability of the grid.

In this case, an uncoordinated massive adoption of a demand response mechanism can overcharge the
grid in the cheap time periods, since recharging the batteries of all consumers during such periods can

cause instability in the network. In the same vein, recent studies have proposed other methods like
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neural networks and heuristics based on particle swarms in order to optimize such a battery usage, as
well as transformations of future grids into decentralized and multi-dimensional systems|(Huang et al.,
2014; Longe,| 2016; Kerdphol et al., 2016). Some works evaluate with the help of simple simulation
models the potential gain and feasibility of using existing battery systems of telecommunications net-
works (Alapera et al/,|2017) and data-centers|(Bovera et al., 2018) in a demand response mechanism.
More recently, batteries are being used in a demand response mechanism (without participating in the
NEBEF mechanism) to help reduce carbon emissions (van Ackooij et ell, 2020; Wang et al., 2020). For
example,|van Ackoolj et al| (2020) study a bi-objective energy management problem to reduce total
energy operation costs and carbon emissions in thermal and hydro-thermal systems. They consider
a battery to store energy for future uses, where e ectiveness and e ciency are taken into account.
Indeed, batteries with high storage capacity can be very cost-e ective, not only by reducing operating

costs, but also by reducing carbon emissions.

Participation in the curtailment market

One way to interact with the energy markets is to perform curtailments. In this context, a prosumer
reduces his energy consumption over a period of time by relieving the load on the network, receiving
a reward in exchange. In order to reduce energy consumption over a time period, we can either
re-schedule production or stop services, Zhang et al| (2016) proposed a scheduling model for power-
intensive processes in order to be able to participate in the curtailment market. When performing a
curtailment, the production is re-scheduled to reduce power consumption during the curtailment. In
the same vein, Lan et al. (2018) present an integrated resource planning model that takes into account
the curtailments. In their work, the power demand is partially controllable since wind turbines, solar
cells, diesel generators, and batteries, are considered. However, batteries are used exclusively to store

the excess of energy produced locally.

Concerning the use of an energy storage system acting as reserves in the balancing mechanism,
some recent studies have started to explore these aspecis (Zakeri et|al., 2017; Schillemans et|al., 2018;
Nasrolahpour et al|,|2017). As an example, Zakeri et al.| (2017) examine the market value of electrical
energy storage in the German day-ahead and balancing markets considering pumped hydro storage,

compressed air energy storage, NaS, Lead-acid, and Li-ion battery storage systems. They also propose
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a mixed-integer optimization model for pro t maximization of storage in the day-ahead market. In the
same vein, Schillemans et al.|(2018) explore a strategic behavior of an ESS owner in a joint day-ahead
energy-reserve market in a bi-level optimization problem. They consider reserve activation constraints
when an energy storage system is used as a reserve and propose a framework that can be used by ESS
owners to optimize their bids to participate in the balancing mechanism. Similarly, Nasrolahpour et all
(2017) propose a decision-making tool based on stochastic bi-level model to determine the strategy for

using a storage system in the curtailment market, while considering uncertainties.

In the French context, in order to bene t from performing curtailments, prosumers can be agents
in the NEBEF mechanism, which is managed by the French transmission system operator RTE (RTE-
Portal| 2020). The economic potential of such a mechanism has been addressed in recent studies such
as|lria (2019); Mkireb et al| (2018, 2019). In particular, the work presented by Mkireb et al| {2019)
is the rst addressing the problem of evaluating the nancial gain of participating in the curtailment
market through the NEBEF mechanism in the context of water supply systems. This work takes into
account demand uncertainties through a robust optimization approach. However, the authors do not
consider the possibility of using an energy storage system. Concerning the rewards received when
performing a load curtailment, the reward depends on the amount of energy that is reduced during
the load curtailment, for which the rules are previously contracted (Chrysikou et al!,|2015%). In the
German context, the parliamentary chamber approved in 2016 the new legislation on energy, refereed
to as the Electricity Market Act 2.0 (BMWi, 2015), This act increases the competition in the Ger-

man balancing market by providing access to all sources of exibility, such as exible demand and EES.

Multi-battery management

Several works have addressed the multi-battery aspect (Shan et al., 2018; Babazadeh et al., 2014;
Zhu et al,, |2018; Fan et al.,|2019). As an example, Babazadeh et al, (2014) propose a multiple
battery management system with di erent types of battery, focusing on the minimization of the
total system cost, and considering the impact of the usage on the lifetime of the batteries. In the
same vein, Zhu et al. (2018) present an adaptive dynamic program, and Fan et al. (2019) a convex
guadratic optimization model to optimize a multiple battery storage system properly. Concerning

the participation in the curtailment market, Shan et al. (2018) considers green power sources and a
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Figure 2.1 { Major challenges and problems treated in this thesis, and some related works.

multi-storage system to perform load curtailments. However, in their work batteries are exclusively
used to store renewable energy, and no rules on the batteries usage are considered. As mentioned
before,| Zakeri et al, (2017), Schillemans et al.| (2018) and Nasrolahpour et al. (2017) have considered
a multi-battery energy storage system in their work. However, in all these studies, only rules related

to battery limits are considered (i.e., capacity, e ciency, power). In our case, since the batteries are

installed for backup, additional rules must be taken into account.

2.4 Research outline and major contributions

Once the major challenges have been identi ed, we outline our research outline to explore the
impact of each one. Since the basis of our study is the management of base station batteries for uses
other than their primary backup function, the adopted strategy consists in exploring individually the
impact of (i) the curtailment market rules and (ii) the multi-battery management, considering in both
cases the safety usage rules. Once we understand the impact of the curtailment market rules and of
the growth in the number of batteries whose use must respect the safety usage rules, we address all

rules in a single problem.

Figure [2.] illustrates the intersection of the di erent aspects that can render the problem more
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complex and either recalls some related works or refers to the chapters addressing these problems.

2.4.1 Exploring the curtailment market rules in a single battery context

In the rst part of this thesis, we explore exclusively the impact of curtailment market rules R8{R9]
together with safety usage rules RI[-Rp, without considering the multi-battery aspect. In this context,
we consider a problem with only one site and one battery so that we can understand exactly how
curtailment market rules impact battery management, and analyze what the impact on the solving
methods is. This problem is called Optimization of a Battery Storage system used by a company to

participate in the Curtailment market (referred to as OBSC), and is presented in Chapter|3.

We identify the key aspects of the curtailment market rules that make the problem more di cult or
easier to solve, and also identify two variants that can be solved in polynomial time. Then, we model
the problem as a mixed-integer linear program, and also propose an algorithm that solves the variants

to optimality in polynomial time and that can be used as a heuristic to solve the OBSC problem.

The main contributions of this rst part are:

Modeling the constraints of the French curtailment market and the safety usage rules in the

batteries of the French telecommunications operator Orange in the form of linear equations;

The analysis of the problem under study in order to identify the aspects that make the problem

more di cult to solve;
Identi cation of two practical variants that can be solved to optimality in polynomial time;

The proposal of an exact polynomial time algorithm, based on graph theory to solve the variants,
and that can also be used as a heuristic for OBSC. The problem can actually be reduced to the

computation of a longest path in a direct acyclic graph;

An experimental evaluation of the economic gains related to the use of a battery installed for

backup in the curtailment market for the telecommunications operator with realistic instances.

In terms of scienti ¢ publications, two papers were published in international conferences as part
of this rst study: Silva et al. (2019a), and Silva et al.|(2020d). In addition, two papers were presented

in national conferencesy Silva et al.|(2020c), and Silva et al, (2019b).
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2.4.2 Exploring the multi-battery system management in the context of the retail market

In the second part of this thesis, we explore exclusively the impact of managing multiple batteries
together under safety usage rule§ R[-R6, without considering load curtailments. In this context, we
consider only one site equipped with multiple batteries that are used only to participate in the retail
market, and load curtailments are not allowed. The goal is to understand exactly how increasing the
number of batteries has an impact on the optimization considering safety usage rules. The reason why
we do not consider several sites equipped with a battery each, as introduced in Chaptgr 1.1, is that the
coupling between the sites appears only when load curtailments are performed. Therefore, we can deal
optimally with each of the sites individually with an adaptation of the algorithm proposed to solve the
variants of the OBSC problem. Consequently, to explore the dimensionality aspect of the number of
batteries without load curtailments under the safety usage rules, it is necessary to consider all batteries
at the same site. This problem is so-called Optimization of a Multi-Battery Storage system in order

to participate in the Retail market (referred to as OMBSR), and is presented in Chapter|[4.

We model the problem as two di erent mixed-integer linear programs, and we also prove that
OMBSR is NP-Hard. Then, we propose two heuristics to solve the problem: one based on a graph

oriented approach, and the second one based on the meta-heuristic relax-and- x.

The main contributions of this second part are:
" The proposal of two mixed-integer linear programs for OMBSR,;
" The proof that OMBSR is NP-Hard;

The proposal of two heuristics economically and computationally e cient based on di erent
aspects for large-scale OMBSR instances: one heuristic based on graph theory inspired by the
properties of the realistic instances tested; and a second heuristic based on the relax-and- x

approach that gives better results for the general case;

The proposal of a reduction of the Maximum Weight Budgeted Independent Set Problem on
interval graphs into the Longest Budgeted Path Problem on direct acyclic graphs, and of a

pseudo-polynomial time algorithm to solve it;

An experimental evaluation of the economic gains related to the use of batteries installed for

backup in the retail market for the telecommunications operator.
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In terms of scienti ¢ publications, one paper was presented in an international conference (Silva
et al., [2020h) and published in an international journal (Silva et al.,2022). In addition, one paper was

presented in a national conference| (Silva et al/, 2021b).

2.4.3 Optimizing the complete optimization problem

Finally, once we understand the impact of the curtailment market rules|[R8fR10 and of the growth
in the number of batteries whose use must respect the safety usage rules|R1{R6, we address all aspects
in a single problem. In this context, we consider multiple sites each one equipped with a single battery
whose use must respect the safety usage rules to participate in the energy market by performing peak-
shavings and load curtailments. The whole problem is called Optimization of a Multi-Battery Storage

system participating in the Energy market (refereed to as OMBSE), and is presented in Chapte[]S.

Firstly we model the OMBSE problem as a mixed-integer linear program and we prove that OMBSE
is NP-Hard. In the following, we decompose the corresponding model using the Lagrangian relaxation
technique and solve it using the subgradient method. The resulting sub-problems of the Lagrangian
relaxation can be solved to optimality in polynomial time thanks to the algorithm proposed to solve
the variants of the OBSC problem, and the subgradient heuristic can run in polynomial time thanks
to the same algorithm. In addition, we propose a bidimensional relax-and- x heuristic that can also

be used to solve large scale instances.

The main contributions of this third part are:

The proposal of a mixed-integer linear program for OMBSE;
" The proof that OMBSE is NP-Hard,;

Two di erent decompositions of the proposed model based on the Lagrangian relaxation tech-

nique;

The proposal of a subgradient method to solve the relaxed model reusing the algorithms proposed

for sub-problems of OBSC;

The proposal of a bidimensional relax-and- x heuristic that can also be used to solve large scale

instances;
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~ A quanti cation of the economic and operational gains related to the use of batteries installed

for backup in the energy markets for the telecommunications operator.

In terms of scienti ¢ publications, one presentation was made at an international conference (Silva

et al., 2021a) as part of this study.
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Chapter 3

Optimization of a single battery storage
system to participate in the curtailment
market

In this chapter, we consider the problem of optimizing the total energy costs of a telecommuni-
cations site using a battery installed for backup in order to participate in the retail and curtailment
markets, with the help of a proper battery management. Our goal is to reduce the total energy costs

and maximize the rewards received from the curtailment market.

Formally, the problem treated in this chapter is the Optimization of a Battery Storage system used
by a company to participate in the Curtailment market (referred to as OBSC), in order to reduce its
energy costs. The main issue is to respect the market rules and the safety usage rules while minimizing

the net total energy cost.

This chapter allows us to understand in detail the impact of curtailment market rules on battery
management. The elements presented in this chapter are the base of the algorithm presented in

Chapter [§ for solving the problem in a multi-battery framework.

Concerning the scienti ¢ contributions, we identify the aspects that make the problem more di cult
to solve, and two practical variants that can be solved to optimality in polynomial time, are presented
in Section[3.]3. We also model the constraints of the energy market and the safety usage rules in
the form of linear equations and we propose a mathematical programming model for the problem,
presented Sectior] 3.2]1. In Sectiof 3.2]2, we propose an exact polynomial time algorithm, based on

graph theory to solve the variants, and that can also be used as a heuristic for OBSC. Furthermore,
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a complete technical analysis of the impact of curtailments on the battery management that allowed
the development of the graph oriented approach proposed is presented in Sectipn 3.2]2.3. Finally, an
experimental evaluation of the economic gains by solving OBSC using our solving approaches with

realistic instances is presented in Sectiofi 3]3.
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3.1. PROBLEM DESCRIPTION

3.1 Problem description
3.1.1 Problem statement

We consider the deterministic setting of OBSC that we now formally describe. Let us consider a
telecommunications operator with a power demandw, given in kW, at each periodt of a horizon of
T discrete equally-sized time periods of duration in hours. The cost (given in monetary units) for
purchasing one unit of energy at each time period is known. In the following, for the sake of simplicity,
we consider the power price at each time period denoted by E;, obtained from the energy price by
multiplying it by . Note that this cost is xed by the electricity distributor, and so is the maximum

amount of power P™ given in kW, that can be bought at any time period (i.e., rule R7).

For network security purposes, two rules must be respected: on the one hand, a minimum amount
of energy, denoted byB™" and given in kWh, must always remain in the battery (i.e., rule [R1); on
the other hand, in order to improve its lifespan, the battery must be immediately recharged after each
use, up to its maximum energy capacity, denoted byB ™# and given in kWh, with a constant power
rate Pg (i.e., rule [R2), given in kW. Besides, a minimum power discharge per time period, denoted
by D™M" and given in kW, is imposed when the battery is in discharge mode (i.e., rulﬁ4). Moreover,
the battery has a maximal power rate, denoted byD™# and given in kW, that it can release due
to current and voltage limitations (i.e., rule R5]. Note that D™" 2 [0;D™#], and that the power

demand W, is assumed to be greater tharD™" at any time period t over the horizon.

The battery must also be fully charged at the beginning and at the end of the planning horizon
(i.e., rule R3).

At each time period t, we assume that the rewardR; (given in monetary units), that will be received
by the telecommunications operator from the transmission system operator (TO) for each energy unit
not bought from the distributor during this period provided that it belongs to a curtailment, is known.
Each curtailment has a minimum (resp. maximum) duration ™" (resp. ™M) given as a number
of time periods, that must be respected (i.e., rule] RB). Moreover, during each time period of a
curtailment, the telecommunications operator must reduce the power bought from the distributor by
at least a given valuePro in kW. As a consequence, for each curtailment, a maximum amount of
power pi'®* (in kW) can be purchased from the distributor at each time period covered byc (i.e.,

rule [R9). The way such an amount is computed is imposed by the TO depending on the country.
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3.1. PROBLEM DESCRIPTION

Figure 3.1 { (a) Battery usage to perform a curtailment; (b) Battery power during recharge.

In France, the computation of pf'®* is based on the real power consumption immediately before the
curtailment and on the power consumption forecast during the curtailment. This setting is considered
in our study.

Let us consider a curtailment ¢, which starts at the time period f ( rst period ) and ends at the
time period I; (last period).

Let us also consideru; as the power bought from the distributor at each time periodt (in kW). In
order to compute pi'® for a given c, a reference valud ., which takes into account the average power
demand during the curtailment and the power u; purchased at the periodt just before curtailment c

begins (i.e.,t = f; 1), is needed. Such a reference value is computed as follows:

i |t°=f Wi + uf, 1
R P e S
Note that the value of us, 1 may depend on the curtailment performed beforec.
Once the reference powet  is known, pT'®* is then computed as follows:
pr® =max(0;!c: Pro) (3.2)

Figure [3.3-a illustrates a curtailment ¢; starting at time period 5 and ending at time period 8,
and a curtailment c, starting at time period 14 and ending at time period 17. In this gure, the
violet line represents the power demand over the planning horizon. The orange area represents the
amount of energy used from the battery, the blue one the amount of energy bought from the distributor
for consumption, and the green one the amount bought for recharge. In this example, the battery is

immediately charged afterc; with a constant power rate Pg until the end of time period 13. Note that,
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3.1. PROBLEM DESCRIPTION

the amount of power that can be bought is limited by pg;** (resp. pg.>*). Figure @—b illustrates
the energy stock level in the battery over the planning horizon. During each curtailment, the battery
power capacity decreases, and, during each recharge phase, this capacity increases until the battery is

fully charged.

Recall that our goal is to manage the use of the battery while respecting both the battery safety
usage and the energy markets rules, at minimal cost. The total amount of energy savings consists of
two parts. The rst part is provided by the di erence between the energy prices during battery use
and recharge (i.e., when participating in the retail market in a demand response mechanism), and the
second one by the reward paid for the amount of energy not bought from the distributor (i.e., when
performing curtailments). This second part is computed either by the On Time Reward (OTR) rule,
or by the First Time Reward (FTR) rule (RTE-Portal, 2020)., If we use OTR, a variable reward R;
is considered at each time period during each curtailment (see Equation (3.3)). If we use FTR, the
reward R¢_ given at the beginning of the curtailment c is considered for all time periods during the
curtailment, and then multiplied by the amount of energy not bought during this curtailment (see
Equation (@)). The amount of energy not bought during a given curtailment is equal to the battery
discharge over its duration. In the following, for the sake of simplicity, we consider the rewards price
per unit of power at each time periodt denoted by R, obtained from the rewards price per unit of

energy by multiplying it by

Furthermore, we consider a telecommunications operator with only one battery and only one energy
supplier without renewable energy sources. The battery is ready for use, and no installation or set up
costs are considered. In addition, the battery must be fully charged before performing any curtailment.
No battery losses are considered either, and any curtailment performed must respect the rules of the
energy market. We also consider that the decision of when a curtailment is performed is taken by the
telecommunications operator and not imposed by the transmission system operator.

Finally, the problem stated above is referred to as OBSC in the following, and any OBSC instance
is fully de ned by the following parameters: W, , E, PMa Bmin pmax pg, pmn pmax g min

max, Pro, and the reward policy (represented by a boolean value). The safety usage rul¢s R1-R5

and the market rules[R7fR9, de ned in Section[1.3, are also taken into account.
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3.1.2 Practical variants

In some cases, because of speci ¢ engineering rules or technical limitations, additional constraints
must be considered. Therefore, we study some variants of the general problem which can be classi ed
into two main families of problems. The rst one considers the case in which the possible battery
discharge levels are discrete (and will be referred to as OBSC-D). Usually, the measurement systems
used to monitor the battery charge have technical limitations that prevent from considering continuous
discharge levels. This induces a discretization of the discharge levels which depends on the accuracy

of these systems. The corresponding variants consider discharge levels given in percentagd38f*.

Secondly, additional engineering rules can also be imposed on the battery usage to improve its
lifespan. An example is the case where the battery must stay in rest mode for at least one time period
after its complete recharge. The second family of variants studied in this work precisely considers that
the battery must necessarily be in rest mode for at least a xed number of time periods after each
complete recharge (and will be referred to as OBSC-R). This assumption can be imposed in practice
to ensure, for instance, that the battery is indeed fully charged before being re-used, even though the

actual recharging rate is notPg (i.e., is not a constant power rate).

In such variants, the impact of the temporal correlation between two load curtailments induced
by the computation of ! ¢ (see Equation[3.]), as presented in Sectiop 3.2.2.3, can be handled more
easily. Thanks to this, they can be solved in polynomial time, and Sectioj 3]2 describes an e cient
algorithm to solve OBSC-D and OBSC-R. In addition, since any solution for one of these variants is
also a feasible solution for OBSC, such an algorithm can also be used as a heuristic method for solving

OBSC.

3.2 Solving approaches

In this section we present two approaches to solve the OBSC problem. First we present an exact
method based on a mixed-integer program, and later we present an algorithm for some particular

cases.
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3.2.1 Mathematical models

3.2.1.1 Mixed-integer nonlinear programming formulation

The formulation described in this section, that can be used to model OBSC as a mixed-integer
nonlinear program, will be referred to as(OBSC-MINLP) . Since a curtailment ¢ starts (resp. ends)
at a time period f (resp. I¢) called rst (resp. last) period, the goal is to identify, among the O(T?)
possible pairs(f¢;lc) over the horizon, the ones corresponding to the curtailments to be performed.
Such a decision is re ected by the value of a binary variabley.. Then, the battery discharge d. after
the curtailment ¢ has been performed is given by the di erence of energy stock in the battery between
the beginning of periodf ;. and the end of periodl.. Recall that we are looking for a set of curtailments

(fe;lg; dg) that can be performed without con ict, while minimizing the total energy cost.

Let us considerC the set of all possible pairs(f¢;Ic) such that min-o fo+1 max - A set
T = ftq;:::;trg representing the discrete planning horizon overT time periods is also considered, as
well as an auxiliary setG; 8t 2 T, representing the pairs(f¢;lc) of all possible curtailments that can
be performed at time periodt. In other words, G contains all the pairs (f¢; ) with f¢ <l such that

fe t e
Decision Variables
Firstly, a solution is determined by the values of the following variables:

- x¢ 2 [BMn:BMaX]. 8t 2 T : amount of energy available in the battery at the beginning of each
time period t, given in kWh. An additional variable xt.; represents the energy available at the

end of the planning horizon.
The following additional binary variables are used to control which curtailments are performed:

- Y¢; 8¢c2 C: equal to 1 if a curtailment c starting at time period f; and ending at time period |

is performed, and to O otherwise.
To model the power bought at each time periodt, the following variables are used:

- uP 2 [0;W,]; t 2 T : power bought for the demand consumption (in kW);
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- uP 2 [0;Pg]; t 2T : power bought for battery recharge (in kW).

Auxiliary variables can also be used to simplify the model writing. However, they are not strictly

necessary, and could be removed and replaced by their value, obtained from the corresponding equality

constraints (3.7) and (3.12):

-Z; t2T: equal to 1 if the pair (f¢;lc) of some curtailment ¢ performed is in G, and to 0

otherwise;

- pI®; ¢ 2 C: maximum amount of power in kW that can be bought at each time periodt 2

The objective function is de ned as follows:

« Re(Wy  uP); if OTR (3.3)
min  EquB+uw) _ ¥
t2T 2 Reye(x,=  Xi+1=) 5 ifFTR (3.4)
c2C
The rst part corresponds to the cost of buying energy, and the second one to the reward received for
each curtailment performed. The goal is to minimize the total cost. In the rst case, i.e., in the case
of the OTR reward policy, W; uP is larger than zero only if some curtailment is being performed at
each time periodt. In the second case, i.e., in the case of the FTR reward polic:. X .+1 gives the
amount of energy used from the battery during the curtailment, which is also the sum of the amount
of power not bought from the distributor at each time period during the curtailment. A solution is

given by the battery power capacity at each time period.

The following constraints de ne the state of the battery at each time period t:

X
Z = Ve 8t2T (3.5)
c2C
Xt Xt+1 DmaXZt 8t2T (36)
Xt + Xe1 (BT BMNY)1 Zz) 8t2T (3.7)

Constraints (3.5), together with the fact that z 2 f 0;1g for all t 2 T, guarantee that at most one

curtailment can be performed at each time period. Constraints [3.6) guarantee that, if the battery
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power capacity decreases, then one curtailment must be performed, but also that the power discharge
during any time period of a curtailment is at most D™, Constraints (8.7) ensure that, if the battery

power capacity increases, then no curtailment is being performed.

Note that, if the battery has the same power capacity during two consecutive time periods, then
the corresponding variablesz; are free. However, Constraints [(3.5) guarantee that, if a curtailment is

performed, then all z; are equal to 1 over the curtailment duration.

In the same vein, Constraints (3.8) guarantee the minimal battery discharge at each time period

where the battery is used, which ismin(W;; D™"):

Xt Xesa  min( Wy D™M)z Ps(1 z) 8t2T (3.8)

Constraints guarantee that a curtailment can start only if the battery is fully charged (and
hence that two consecutive curtailments cannot occur):
X
B max Yo o Xt 8t2T (3.9
c2C; j t=f
Since no losses are considered, the battery power balance is ensured by Constrairjts (3.10), while

Constraints (3.11)) express the limit conditions:

Xte1  Xe = uB+ uP owy 8t2T (3.10)

Xt1 = Xtr4q = B max (311)

The power purchased from the market is the sum of the power bought for charging the battery

(uf) and the power bought for consumption(up ), which is ensured by the following constraints:

ug =(1  z)min(B™*=  x;= ;Pg;P™* W) 8t2T (3.12)
(Wy D™z + Wy(1 z) up 8t2T (3.13)
X
up Wil z)+ Yo 8t2T (3.14)
c2C
P
toof, A Wiot Xeo= 0 X 17

pc ™ = max(0;

o2 Pro) 8c2C (3.15)

The power bought for charging the battery is min(Pg; P™®* W) when it is possible to buy energy
(i.e., if z = 0), if the capacity of the battery is not exceeded (see Constraints[(3.12)). The power
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bought for consumption uP? must be exactly the demand forecast when the battery is charging, which

is ensured by Constraints (3.18) and |(3.14). If a curtailment is being performed, this power cannot be

larger than min(W;; p'®) or smaller than W; D™ which is also guaranteed by Constraints |(3.1]3)

and ). Note that imposinguP W, D™ during a curtailment also guarantees that the battery
power discharge per time period is smaller tharD ™. The value of p®* is provided by (3.15). If the
battery is fully charged and not being used, Constraints [3.12) guarantee that the amount of power
bought for recharge is equal to 0, and once more Constraints (3.13) and (3.14) guarantee that the
amount of power bought for consumption will be exactly the power demand, since; and ycpg'®* for
eachc 2 C; are equal to 0 in this case. Note that Constraints [3.9) together with Constraints (3.12)
guarantee that, after a curtailment, the battery is fully charged before another curtailment can be
performed, at a constant power rate respecting the maximum poweP ™3 that can be bought from
the distributor at each time period. Furthermore, we assume that the value of PM#* is greater than

the power demandW; at any time period t 2 T .

Finally, the domains of the variables are:

ub 2 [0;W,]; ul 2 [0;Pg]; x¢ 2 [BMN; B™MaX] 8t2T (3.16)
z 210;1g 8t2T (3.17)
pmax 2 R* 8c2 C (3.18)
ye 2 f0;1g 8c2C (3.19)

All the rules de ned in Section are guaranteed: the safety usage rufe R1 by Constraint$ (3.1.6),

R2by EI3). @10 and (316)[R3 by [BID[RA by [38)[Rs by BH)[RY by [EIP), and the
market rule [R9| by Constraints (8.14) and (3.13). Note that [R8 is guaranteed by the construction of

the pairs (f¢;l¢) in C

The obtained model (3.3)-(3.19) is non-linear. However, it can be linearized following the approach
proposed by| McCormick (1976). The resulting model (referred to aqOBSC-MILP) ) is provided in
Section[3.2.1.3.

3.2.1.2 Mixed-integer programming formulation for the practical variants

In this section, we present the changes applied t{OBSC-MILP) to formulate the two variants

OBSC-D and OBSC-R. Firstly, let us de ne D as the set of all battery discharge levels allowed in each
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variant over all the possible curtailments. For OBSC-D, the subsetD is part of the input and all the
curtailments share the same set of possible discharge levels. In the caselb discharge levels, the set
D is f0:01B ™&; 0:02B M&; :::g. For OBSC-R, Section|3.2.2.2 derives such a subs& by using the fact

that the battery must necessarily be in rest mode for at leastN time periods after each recharge.

Concerning OBSC-D, a binary variablek.q for eachc2 C and d 2 D will be used to guarantee that
the battery discharge level when performing a curtailmentc belongs toD. The following constraints

then ensure this point:

X
Ye(Xfe  Xig+1) = Ke;qd 8c2 C (3.20)
d2D
X
Ked = Ye 8c2C (3.21)
d2D

Let us denote such an adaptation of(OBSC-MILP) to the variant OBSC-D, in which Con-
straints (B.20) are linearized following the instructions given in Section3.2.1.3, a§OBSC-D-MILP) .

Concerning OBSC-R, we make use of the following constraints to guarantee that the battery is in

rest mode for at leastN time periods between two consecutive curtailments:

X
B max Ve o Xt i 8i2f1;:::;Ng;8t2fi+1;:::;Tg (3.22)
C2C[jt:fc

Let us denote such an adaptation offOBSC-MILP) to the variant OBSC-R as (OBSC-R-MILP) .

As mentioned before, these variants can in fact be solved in polynomial time inDj, where Dj is

proved to be polynomial in T in the case of OBSC-R. Further details are provided in Sectiorj 3.2]2.
3.2.1.3 Linearization of the mathematical model

For a product between a binary and a oat variable b and f; 2 [0; F ™®] respectively, we can apply
the McCormick strategy (see| McCormick (1976)), which amounts to using a new variabldin ,bfij 2

[0; F™M&] to replace this product bif;, together with the following constraints:

lin_bfl pF™ (3.23)
lin_bfl f; (3.24)
lin bfl f; (1 B)F™ (3.25)
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The non-linearities of this type in (B.3)-(8.19) are the products x;yc (with x; 2 [0;B™2]), ycp®
(with pf™@ 2 [0;P™3]) and x;z in (B.4), (B.14) and (3.13), respectively. Thanks to [3.%), we need
to introduce only two new families of variables: lin xy¢ for all cin C t in T to linearize (3.4), and
lin _ypmax, for all cin Cto linearize ). Then, we can simply replacex;z; by P c2c, lin xy¢ in
(8-12).

Furthermore, to linearize x = min( a; b) for a;b2 [M % M ], we introduce a binary variabley 2 f 0; 1g

such that, if a>b, theny =1, otherwisey = 0. We can then rewrite x as follows:

X aXx b (3.26)
a b (M MYy, b a (M MYQ V) (3.27)
x a M MYy, x b (M MYQ v (3.28)

In our case, we have two new families of binary variablestin _side; for all t in T to linearize (3.13),
and lin _sidepmax. for all cin Cto linearize ). In the case of), we havey = (1 z)min(a;b),
where a = BM&= Xxt= and b= min( Pg;P™ W,). In order to linearize this expression, we
have to multiply all the terms a and bin (8.26) and (3.28) by 1  z. Hence, we derive the following

constraints, whereM °=0 and M = max(P™;BMmax=) :

u? (1 z)(B™*=  x=) ,ul (@ zZ)min(Pg;P™* W) (3.29)
(B™*= " x¢=) min(Pg;P™ W) Mlin _sidey,

min(Pg;P™ W) (B™*= Xt=) M (1 lin _sidey) (3.30)
u? 1 z)(BM™*=  xi=) M z)lin_side,

W (@ z)min(Pg;P™ W) M@ z)1 lin_side) (3.31)

Note that, since uf 2 [0; PB], Constraints (8.31) can be replaced by:

u? (1 z)(BM™*=  x=) Mlin_side;, u? (1 z)min(Pg;P™ W, M(1 lin_side)
(3.32)

Indeed, whenz = 0, (3.31) and (3.32) are equivalent, and, whenz; = 1, (3.29) together with
B.32) and uP 2 [0;PB] ensure thatuP =
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In the cgse of [3.1%), we can rewrite such constraints apf'™ = x =
Ic

. WiotXie=  Xig 1= . . Sy
min(0; —*=fe 1 P——— . + Pr0), and linearize them by considering the termsa = 0 and
lc
W, ot Xf .= Xt 1= .
b= el + Pro, with b2 [ P™X;pma],

The complete linear version of(OBSC-MINLP) , referred to as(OBSC-MILP) , can then be written

as follows:
8 X 5
3 R(W. u) (ﬁ)
min~ Equ®+uP) ¥ N
t2T § (Rt.=)( lin xyf, lin_xy; ;) (3.33)
c2C
X
Z = Ve 8t2T (@5
c2Cy
Xt Xt+1 Dmaxzt 8t2T @
X¢+ Xesr  (B™X BMNY1 z) 8t2T @7
Xt Xer1  min( Wi;D™)z Pg(l z) 8t2T (B9
X
B max Yo o Xt 8t2T (B9
c2C; j t=f¢
Xee Xe= (up +ug W) 8t2T (8.10)
Xty = Xty = B Max 4@
X .
u?  BMX  x, zZBM™* 4+ lin _xy¢ 8t2T (3.34)
c2C¢
u? (1 z)min(Pg;P™* W) 8t2T (3.35)
BMaX= X¢t= min(Pg;P™  W,) max(P™®;BM™*=) lin _side; 8t2T (3.36)
min(Pg;P™  W;) B™*=+ x= max(P™; BM=)(1  lin _side) 8t2T (3.37)
X
u?  BMX  x, zZBM™*+ lin_xyS max( P™:BM&)|in_side 8t2T (3.38)
c2C¢
u? (1 z)min(Pg;P™* W,) max(P™;BM*=)1 lin_side,) 8t2T (3.39)
(Wy D™z + Wy(1 z) uP 8t2T (B.13
X
u? W1 z)+ lin _ypmaxc 8t2T (3.40)
C2C[
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P
F;{:nax o, 1W|tz+ :Zfz Xfc 17 Pro 8c2 C (3.41)
It%:f° Wt Xi=  Xie 1= Pro 2P™|in _sidepmax 8c2 C (3.42)
lc fc+2

p

i aWOOH XeE X1 1= Pro  2P™X(1 lin_sidepmaxc) 8c2 C (3.43)
lc fc+2
p

pmax It%zfc = WIIO i :ffz Xte 17 Pro +2P™*(1 lin_sidepmax;) 8c2C (3.44)
pr* 2P M&in ,sicjepn:axc 8c2C (3.45)
lin xyZ y.B™ 8c2C;8t2T (3.46)
lin _xy& Xt 8c2C;8t2T (3.47)
lin xy¢ x¢ (1 y)B™ 8c2C;8t2T (3.48)
lin_ypmax., Yy.P™* 8c2C (3.49)
lin _ypmax; p@® 8c2C (3.50)
lin_ypmax, pI® (1 yo)P™ 8c2C (3.51)
uP 2 [0;W]; ub 2 [0;Pg]; x¢ 2 [B™"; BM3]: z 2 f 0;1g; lin _side; 2 f 0; 1g 82T (3.52)
praX 2 R*; ye 2 f 0;1g; lin _ypmax. 2 [0; P™®];lin _sidepmax. 2 f 0; 1g 8c2C (3.53)
lin xy¢ 2 [0;B™*] 8t2T;8c2C (3.54)

3.2.2 Variants solving approach

This section presents an exact graph-oriented solving method for OBSC-D and OBSC-R, based on
the enumeration of all possible curtailments that can be performed over the planning horizon. The
problem reduces to the computation of a longest path in a directed acyclic graph (DAG) whose nodes
correspond to the possible curtailments. The discrete seD of allowed battery discharge levels is an

input for this algorithm, and hence must be de ned in advance.
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3.2.2.1 Graph-oriented algorithm for a discrete discharge levels

As already mentioned, a curtailment c will be represented by a triple (f¢;l¢; dc), and a solution to
the problem will consist of the curtailments (f¢;l¢;dc) performed over the horizon such that ™"
le fc+1l max_ Qriginally, the amount d.; of energy not bought during the curtailment c is a
continuous variable, and all its possible values cannot be extensively enumerated. However, under
some general assumptions associated with practical cases, such as the ones mentioned in Se€tion]3.1.2,
where the variants OBSC-D and OBSC-R are de ned, the possible values of; over all curtailments

c actually belong to a discrete subsetD (note that, for OBSC-D, this is true by de nition).

Let us de ne t2 as the last recharging time period associated with curtailmentc, and r¢ = utBB as

the power bought for recharging during this period.

Property 1 For a given curtailment ¢ = (f;lc;dc), the time period t2 and the value ofr. can be

computed froml. and dc.

Proof. Since the battery is recharged with the power ratemin(Pg; P™®* W), the power that must
be bought for recharge at each time period 2 T is known. For a given curtailment ¢ = (f¢;l¢; dc),
the battery is necessarily in recharge at the time periodt, for eacht 2 T such thatt > | and

P §0:1,C+1 min(Pg; P™*  W,0) < d. (otherwise, the battery is already fully charged). The last
recharging time periodt2 > I . is the last time period t 2 T such that the battery is necessarily in
recharge, i.e.,tg is such that i :?ilclﬂ min(Pg; P™* W) < d. and ? ;?;ICH min(Pg ; PM&
W)  dc. Consequently,r¢ is computed as follows:

tg( 1
re= de= min(Pg; P™ W)
t=lc+1

Indeed, r¢ is the amount left to recharge the battery to its maximum energy capacity at the time
period t2. Note that t2 and r. depend only on the curtailment c itself, and that the curtailments

performed beforec do not have any impact on their computation. 2

If we consider two consecutive curtaiments, we have the following result:

Lemma 1 Given any two curtailments ¢; and ¢; performed consecutively in a given solution, the value

of I'¢; (and hence ofp{:'j‘ax) can be computed frothBi, re, fo andlg .
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Proof. Let ¢ and ¢ be two such curtailments. On the one hand, ifc; starts immediately after the

full battery recharge associated withg (i.e., if f¢ = tCBi +1), then the value of !  is computed using
Equation (. In this case, Uty 1= chj 1+ rg. On the other hand, if ¢ starts at least one period
of time after the full battery recharge associated with ¢ (i.e., if f¢ > tg + 1), then there exists only
one possible value of ¢ . Indeed, the power bought for recharging immediately before the curtailment

¢ is 0, and hence, in this casepr, 1 = chj 1. In both cases, the value ofpg;ax is derived using

Equation (B.2). 2

The following technical result allows to propose a reformulation of the objective function in the gen-
eral case (i.e.,D does not need to be discrete) for the sake of its e cient computation whenD is

discrete, as it constitutes a structural result which will in particular be used to prove Property 2 (see
Section|3.2.2.2):

Proposition 1 Let Fqp be the set of vector(yc)coc; (dc)coc) such that:

" foreachc2C,y.2f0;1gandd. O,

. . P (8 . P s .
eachc 2 C, tB > | . is the integer such thatd, 2] iglcil min(Pg; P™a W,); :C=|c+1 min(Pg;

P W],

P .
~ foreachc2C, if y. =1, then we must haved; 2 | {C:fc max(min( Wi; D™"); Wy pf®);
P .
min( 't;fc min( W;; D™Max); gmax gminy] ‘where the value op"® is computed using Propertﬂ.

and Lemmal[1.

In any feasible solution to an instance of OBSC, we hav€(yc)coc; (dc)coc) 2 F opt. Moreover, for any

((Ye)cac; (dc)coc) 2 F opt, One can obtain a feasible solution of value:

X X G
EtWt nyC (d(;, dc )
t2T c2C

wherefCG(dc; d; ) is a function that can be computed in linear time, and where, for each curtailment
such thaty. =1, ¢ is the only curtailment such thaty. =1 and there exists no curtailmentc® such
that yo=1 and . <f o Ilo<f¢ In other words, for each curtailment c, ¢ is the curtailment

that immediately precedesc.
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In particular, the optimal value of OBSC can be rewritten as follows:

X X G
E:W; max Yef & (de; dg )
t2T ((yC)CZC;(dC)CZC)ZF opt c2C
Furthermore, in the case where the value op'® depends only on the value of; for each c,

fS(de; dg ) is a continuous piecewise linear function ofd, having O(T) segments.

The proof of Proposition[1] is given in Sectio| 3.2.23, and shows, actually, that &(dc; d. ) is the
di erence between two functionsf S(de; d. ) and f B (dc). Intuitively, for each curtailment c performed,
the value of f &(d.; d. ) represents the economic gain associated with, while the values off & (d;) and
fS(dc; d. ) represent the recharging cost afterc and the savings obtained fromc, respectively. Fig-
ure illustrates the computation of the economic gainf & of a curtailment based on such functions
f8 andf3. In Figure @ f 2 is composed of two linear functions representing the battery recharging
cost over two intervals, [0; Pg] and [Pg; Pg + PM&  W,]. The function f 3(d¢; d. ) is composed of two
linear functions on intervals representing respectively the mandatory discharge imposed bW, p™M&*
and the optional discharge performed during the curtailment. For the function f &(dc;d; ), we can

observe in Figure the marginal economic gain for each unit of energy discharge unﬂgreak.

Figure 3.2 { lllustration of the marginal gain of a curtailment c starting at time period 2 and ending
at time period 3.

We now de ne a directed graph G = (V; A), where the set of hodesv corresponds to the set of

all possible curtailments. Note that the number of curtailments enumerated is bounded byT?jDj.
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An arc in A is de ned from a curtailment ¢ (represented by the triple (f¢ ;I ;dg)) to a curtailment
¢ (represented by the triple (f ;1 ;dg)) if ¢ can start after ¢, i.e., on the one hand, ifq starts
after the last recharging time period associated withg (i.e., fo > tg), and, on the other hand, if
d 2 ';ifcj max(min( We;D™"); W, pl@*); min( " ';ifcj min( W,;DMa): Bmax  Bminy| where
the value of ij“aX is computed from the one ofd. by using Property [} and Lemma[]r. Additionally,
two dummy curtailments vs =( 1; 1;0)andv;=(T +1;T +1;0), as well as arcqvs; V) and (v; ;)
for each vertexv 2 V nfvg; vig, are also added toG, to allow the computation of a longest path from
Vs to v¢. Finally, for each arc a; = (¢;q) in G, we de ne the weight of a; as the economic gain
fccf(dcj ,de). For any arc as; = (Vs;G) in G, the weight is obtained by setting uchj 1 = 0 to compute
pC”;aX. For any arc a; = (¢;Vv;) in G, the weight is set to 0. Since the weight of each arc oG is
known, the cumulative total gain of a path p can be computed as the sum of the weights of the arcs
in p, which corresponds to the economic gain of all curtailments performed along@. By construction,
there always exists a path fromvs to v; and from v; to v; for any v; 2 V nfvg; vig. We will show that
choosing the sequence of curtailments that results in the best nal economic gain without con icts is
equivalent to choosing the longest path fromvs to v; in G, and we will show how we can e ciently

compute such a path:

Proposition 2 The graph G is a DAG.

Proof. A topological ordering L of V can be obtained by sorting the vertices by increasing order of
the rst time period of the curtailment associated with each one of them. If two curtailments start at
the same time period, choose a random order. Firstly, there is no arc between two vertices starting
at the same time period (there exists a con ict between two curtailments starting at the same time
period). Secondly, for any arca = (vj;V;) of G, the curtailment associated with v; starts after the

complete recharge associated wittv;. This implies that v; is always afterv; in L. 2

Proposition 3 Whenever the setD is discrete, the optimal value of OBSC is equal to the length of a

longest path fromvs to v; in G.

Proof. Let us assume that we are given an optimal solution to an instance of OBSC, of valu®PT.
The corresponding values of the variabley. and dc = yc(Xt, Xj.+1) must belong to Fope as de ned in

Proposition , by de nition. Each such pair (y¢; dc) is associated with a vertex inG by de nition of G,

84



3.2. SOLVING APPROACHES

and all the pairs used in this optimal solution form a path from vg to v; in G from the de nition of the
arcs in G. Because the weight of each such artv;;v;) is exactlyfc?(dCj ;dg,), this yields a path from vs
to v; in G whose length isP o1 EtWr OPT from Proposition Il Conversely, let us consider any path
from vs to v; in G, of length : such a path is composed of tripleqf¢; l¢; dc), which are equivalent to
pairs (Yc; dc), and such pairs belong toF opt as de ned in Proposition @ by de nition of the arcs in G.

. , , . , . P
Hence, this provides a feasible solution to the associated instance of OBSC, of valug,,1 EtW; . 2

Since G is a DAG, one can use Bellman's algorithm to compute a longest path fromvs to v; in
linear time (e.g., see Dasgupta et al.|(2008)), i.e., in timeO(jVj + jAj), which is O(T#jDj?) in our
case. Furthermore, given a longest path fromvs to any vertex v in G, one can obtain a path fromvg
to v by adding the arc (v;v;). Such a path may not be a longest path, but it does provide a feasible
solution, from Proposition [I] This implies that we can limit the computation time and compare the

best intermediate solution obtained with the ones found by other solution methods.

As previously mentioned, the algorithm described in this section is based on the enumeration of
all triples (f¢;lc;dc), and hence the setD of all possible values ofd: over all curtailments ¢ must be
de ned. Under some general assumptions associated with practical cases, such as the ones mentioned
in Section[3.1.2, where the variants OBSC-D (for whichD is part of the input) and OBSC-R are

de ned, such a setD can be obtained as shown in the following section.

3.2.2.2 Computation of the discrete discharge levels for particular cases

In this section, we show that the setD is discrete for particular cases where the computation of
py'® depends only on the values of . and I, e.g., whenp'® is a constant. In addition, we show how

to compute such a set.

There exist (at least) two particular cases for which the setD can be assumed to be discrete: when
the battery is used only to participate in the retail market, and when the computation of p'®* does
not depend on the previous battery uses (i.e.p'® depends only on the values of ; and I¢). In the
rst case, since no curtailment is performed, the battery discharge level at each period during which
the battery is used must only be larger than or equal to D™". Hence, we can se@™ as a big

constant, and the Constraints (3.14) will never be saturated when the battery is in use (i.e., when
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z; = 1). In the second case, we consider the variant OBSC-R, where a rest time period is imposed after
each battery recharge. Since the battery stays at least one time period in rest mode, the amount of
power bought in the last recharging time period of a curtailmentc; has no impact on the computation

of pi® for the next curtailment c; (i.e., the value of Us,, 1 is alwaysWs,, 1 in Equation ().

In the following, we consider the variant OBSC-R to derive the setD. If we denote by D, the set

. . . S
of all possible values ofd. for a given curtailment c, we haveD = . De.

Property 2 There exists an optimal solution of OBSC-R such that, for each curtailment performed,

the value ofd; belongs to a known discrete subs@. such thatjD¢ = O(T).

(possibly up to some valuethax such that P {’;‘ﬁﬂ min(Pg; P™  W;) > min(P {;fc min( Wi;
Dmax).gmax  gmin) pheyond which from Proposition@ no feasible solution can exist), the valued;
in any feasible solution must satisfy the range conditions of Propositiorf [L. Therefore, there exists
dig such that fCG(dtg ;0) is the maximum value of f &(d¢; d; ) over all the dc's and d.. 's that satisfy
the range conditions of Proposition[]. Indeed, in this case, the value ofl, is irrelevant, as pf'® is

computed by settingus, 1 = Ws, 1 in Equation (, and hence one may choosd, = 0 for instance.

solution ((Yc)coc; (dc)coc) 2 F opt Where d = dtg will be at least as good as the value of any solution
such that the last recharging time period after c has been performed is stillt? and dw is unchanged
for any c® 6 ¢ such that yo = 1, but d; 6 die . Then, the set D¢ is composed of all such optimal

battery discharge levels, one for each possible value 0f . Note that the number of elements inD. is

Now, consider any optimal solution, a curtailment c; in this solution, and assume thatd;, 2D, .
Replaced, by the value in D¢, that yields the same value fortEl. From the previous paragraph, the
value of the obtained solution is at least as good. Moreover, this new solution is also feasible, and
hence optimal. Indeed, letc, be the curtailment performed after c; in the optimal solution (if c, does
not exist, then we are done): since the battery stays at least one time period in rest mode aftet,
this means that f, tCB1 > 1 (i.e., tCB1 2flg +1;::0f, 29 f g, +1;:::;Tg), and that the value
of ur., 1in Equation ( is Wi, 1 (a value on which the new value ofdc, has no impact, ast® did

not changed). Hence, this\local' change has not impact on the other curtailments of the considered
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optimal solution, and we can proceed in the same way for each such curtailments, including the last

one. 2

Obviously, if we consider the other variant (i.e., when the battery is used only to participate in the

Now, let us discuss some algorithmic issues. Thanks to Proposition| 1, we know that, in order to
compute the economic gains, we have to use the piecewise linear functioﬁ§, fcB and ff, which can
be computed in linear time (in T). Hence, the optimal value ofd. for a given curtailment ¢ and a
given value of t2 must necessarily be the endpoint of some segment of functioh® (the associated
value for d will be referred to as abreakpoint). Note, in particular, that the number of breakpoints
dPreak in f & is at most one plus the number of segments of the function® and f S, which are at
mostT Icandl. fc+1, respectively. Therefore, for a given curtailmentc starting at period f and
ending at period I (and using the fact that here, by assumption, p7'®* depends only onyc, i.e., onf¢
and I¢), one can use the functionf & in order to compute all the candidate valuesd. in D, (keeping
only the value d. that minimizes the objective function, if several of these values yield the same value

for t8) in time O((T 1)+ (le fc+1))= O(T).

It should be noticed that, when using the approach described in Sectioh 3.2.2.1 for solving OBSC-
R, an arc is de ned from a curtailment ¢ = (fq;lg;d;) to a curtailment ¢ = (fq ;lg ;dg) only if ¢
starts at least N + 1 time periods after the last recharging time period associated withg, i.e., only if

fo

. > tE‘i + N, in addition to the bound constraints on dg . Moreover, in this case, the running time

of the algorithm based on the computation of a longest path in a DAG isO(T*(max.jDj)?), which
yields O(T9).

Finally, we illustrate the computation of the set D. on the example of Figure[3.2, where the
curtailment c that is considered starts at the beginning of time period2 and ends at the end of the
same time period, and where we consider the value$ 2 f 3;4g (here, t8 cannot be larger than 4). In
this particular case, we simply haveD. = fd§"®¥g, becaused3™2 gives the highest economic gain for

dc both in the rst and in the second segments off &.
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3.2.2.3 Proof of Proposition|]

In this section, we provide the proof of Proposition[1. Beforehand, for the sake of a better under-
standing, we provide a reformulation of the objective function (3.3) and [3.4), that we now recall. In
order to do this, and for the sake of simplicity, we de ne the setF of all the feasible solutions, i.e.,
F=f(y;xz;p™;uP;uB)2f0;1g° R*T f 0;1g" R*C R*T R*Tj@B:5) (B:19) are satis edg.
Then, we have:

Re(W;  uP); if OTR

min EquB +uwP) _ X .
(yixzip™e uP P )2F or 2 ReYe(xr,=  Xie=) 1 MfFTR
" c2C
From Constraints (8.10), we have thatuf + uP = Wi + x.1=  x¢= for eacht.

Let us consider in what follows the following cases related to the three possible battery states at

each time periodt:

" Battery in discharge (X; Xt+1 > 0): from Constraints (B.6), we get zz = 1, and then, from
Constraints (8.12), we deriveu? = 0. Hence, we getu? + uP = uP = Wy  (Xx¢=  Xw@1=) .

" Battery in recharge (X; Xt+1 < 0): from Constraints (, we have that zz = 0, and, from

Constraints (8.13), uP ~ W,. Sinceu® Wi, we getuP = Wi, and thus uf + uP = u + W;.

" Battery in rest mode (x; X+1 = 0): from Constraints (B.8), (B.13) and (3.13), we have that
z =0, that uP = W, and that u? =0. In this case, we getu® + uP = w,.

Given that we are always in one of the three above cases for a givdénbut not in two at the same
time, and that the power demand W; is present in the sum utB + uP in all these cases, we can then

P i .
group the power demand terms overt as ,r W;. Additionally, for any curtailment c performed, the

term Xg41 = X¢= = (x¢= Xt+1 =) is present only during the battery discharge periods ofc
(i.e., fort 2 ff¢ :::;1.g), and the term uf is present only during the battery recharge periods ofc
(.e.,fort2flc+1;::: ;tE 0). Hence, we obtain:
|
5 o X e o
(U +ug)= Wi+ ye (Xt= Xte1 =) + Uy
t2T t2T c2C t=fc t=le+1
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. P . . — ,
By replacing  ,7 (uf + uP) by this new expression in the objective function, we get:

_ X X e % .
(y'X'Z'pmarp-IL?D ;uB)2F EcW: Ye Et(Xt: Xt :) Etut
2P U 2T 2C t=fc t=lc+1
T2y f {z . }
T1 T2
P D .
o1 Re(Wy  up); if OTR (3.55)
c2c RecYe(Xf = {7X|C+1:) , IfFTR
T3
Since Wy uP = x¢= Xi+1 = for any battery discharge periodt of any curtailment per-
. P P P
formed (and Wy uP = 0 otherwise), we have 1 Re(W: UP) = = ¢ Ve 't;fCRt(xtz
. P, P
Xt¢1=) , and, since Xr,  Xj41 = ¢ (Xt Xts1), We have ¢ Ri Ye(Xs = Xjg#1=) =

P P
coc Ve {;fc Ri.(X¢= Xt+1=) . Hence, we can merge the terms T2 and T3 in Equation5):

( !
X X XC Ei:+ R X;= X = %g
. t t)( Xt t+1
min E{W; Ye ( )( " ) EtUtB
(yXZ:p ™ ;uD UB )2F o 2 I:fc (Et + Re)(Xt=  Xt+17=) =1ty
—{z—1} {z z
m f1(yeixe;ze;pPa ;uP ;ub) fo(Yeixe;ze;pPa uP ;ub)

(3.56)

Note that, since the standard cost term T1 is a constant, minimizing this objective function can be
N o . P
seen as maximizing the objective function ¢ Ye(f1(Ye; Xt; 2, P uP;uB)  falye: Xe; ze; pIa; uP;

up)) overF.

Moreover, we introduce a new variabled; 0 for eachc 2 C, which represents the overall battery
discharge level during curtailment ¢, and which is not needed in our MIP formulation, but that will
be useful to rewrite the objective function. By de nition, the value of d. for each curtailment c is

Xt. Xj.+1 If cis performed (i.e., ifyc = 1), and O otherwise.

c

This yields the following new constraints:

dec = Ye(Xf,  Xio+1) 8c2C (3.57)

Note that, once the values of the variablesy. are known, so are the ones of the variableg; (and
vice-versa), thanks to Constraints (3.5). Similarly, once the values of the variablesi; are known, so
are the ones of the variablep?'®*, thanks to Constraints (8.15) and the fact that, from Property {]and

Lemma[], the value ofp{™ for eachc 2 C can be computed from the values of the variablesl. only.
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Furthermore, we de ne a new setF %as follows: F 9= f(dc)coc and ((Ye)eac; (Xt)t2t 5 (Z)t21 ; (PP*) coc;
(UP)eor 5 (UB )21 ) 2 F satisfying (3.57)0.

For each(y;d) = (( Yo)eac; (de)cac), let F (y;d) = f((Xt)tar ; (UP)i2T ; (UB)i27 ) such that ((dc)eac;
(Vo) ezes (Xt)t2T 5 (2021 ; (PT®)cac; (UP a1 5 (UB) o1 ) 2 F Q. We also de ne the setF = f((V.)c2c;
(d¢)cac) such that F (y;d) 6 ;g. Then, we have:

max Ve fa(YorXe;ze p?®ug;ul)  falye Xe ze pr*;up; up)
((Ye)eae i(xt) 2t i(zt)t2r ;(PT* )e2c; ©2C
(UP)iar ;(UB)i2r )2F
( !
B . X , X (Er+ RO(GE Xe1 =) % =8
- o] tYt
((yc)eoc ;(Xt)tar (Z)ear s(PT*™ )eac ; - (Et + Rf)(Xt= Xt+1=) _
(UP )it H(UB)or H(de)eac)2F 0 2C ETe t=le+1
( 1
X Xe E: + R)(x:= X = )@
= max max v (Et + Ro)(xt t+1=) EuP
(v:d)2F (x)ezt (U2 5 o0 t=fe (Et + R )(xt= Xt+1 =) t= 1o+l
(uB)i2r )2F (730)
X e > g "
¢ Et + Ry)(Xt= Xt+1 = ¢
Cma Ny max (Ec+ RO(X=  Xus1=) e
Wd2F e (X)ier (uP)eer =t. (Bt R )(xe= Xt+1 =) =+
(uB )izt )2F ¢ (V:0) i {z e P2
f&(xe;ul;ub) f8 (xe;ul;ub)

whereF . (y; d) is the restriction of the set F (y;d) to the variables x¢, uP? and uf forall t 2 T such
that ¢ 2 C;. Note that the last equality comes from the fact that, once the values of all the variablesy.

are known, it can be checked that the only constraints in [3.5)-(3.19) and [(3.5) linking the variables
associated with time periods of di erent curtailments that are performed are Constraints (3.14) and
). Hence, once the values of all the variableg. and of all the variables d; are known, there is no
remaining links between the variables associated with time periods of di erent curtailments that are

performed.

We now return to the proof of Proposition [I} that we rst recall:
Proposition [1
Let Fopt be the set of vectors((yc)cac; (dec)coc) such that :

" foreachc2C,y:.2f0;1gandd. O,
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3.2. SOLVING APPROACHES

B . . P t8 1 . max P tB .
c2C, tg >l is the integer such that d. 2] 21,41 MiN(Pg; P Wo); t21,+1 Min(Ps;

P max Wt )] ,

P .
"~ for eachc 2 C, if y. =1, then we must haved, 2 | 't;fc max(min( W;D™"); W, pl'®);
P .
min( 't;fc min( W;; DMax); Bmax BMM - where the value ofp"®* is computed using Prop-

erty l]and Lemma[].

In any feasible solution to an instance of OBSC, we havé(yc)coc; (dc)coc) 2 F opt. Moreover, for any

((Ye)cac: (de)coc) 2 F opt, ONe can obtain a feasible solution of value:

X X G
EtWt nyC (dc, dc )

t2T c2C

wherefCG(dc; d. ) is a function that can be computed in linear time, and where, for each curtailmentc
such that y. = 1, ¢ is the only curtailment such that y, =1 and there exists no curtailment c® such
that yo=1 andl, <fo lwo<f. In other words, for each curtailment ¢, ¢ is the curtailment

that immediately precedesc.

In particular, the optimal value of OBSC can be rewritten as follows:
X

t2T T (Yedeze (de)ezc )2F ont CZCYc ¢ (de;de )

Furthermore, in the case where the value ofp'® depends only on the value ofy. for each c,

fS(de; de ) is a continuous piecewise linear function ofl, having O(T) segments.

Proof.

Our goal is to show that, once the valuesy, of the variablesy; are known, the value

max fS(xe;uP;uB)  fB(x¢;uP;uB) for eachc can be written as a function

((xt)t:(uP )e;(uB 1) 2F ¢ (v;d)
f$ of the values de of the variables deo for all c®2 C. More precisely, for each curtailmentc with
y.=1,d;. andd. are the only ones needed to express®, wherec is the curtailment with y, =1
that directly precedes c in the solution. Moreover, for eachc, whenever the computation of pI'®* only
depends on the values/.o (see also Secti02), and not on the valuegw, for all °2 C, {8 is a

continuous piecewise linear function ofd. only.
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The rst part of the proof will show that, once the values y, of all the variables y. are known,
f 8 (x¢;uP;uB) for eachcis in fact in itself a function of d. (and of d. only). Hence, once the value
dc is xed, so is the value of f & (x¢; uP; uB). Intuitively, f2(x¢;uP;uB) isin fact equal to the battery
recharging cost (in monetary units) of curtailment c.

So, we begin by xing somec 2 C. At each recharging time periodt 2 flc+1;:::;t8g, no
curtailment is performed and thus z; = 0. In addition, Constraints (8.5), (8.13) and (B.14) impose
that uP = W;. Hence, summing Equations ) froml;+1 tot 1 yields:

X B
Xt = X|g+1 T U0 (3.58)
lc+1 tO<t

Note that, because of Constraints [3.9), the curtailmentc can start only if the battery is fully charged,
i.e., if Xy, = BM™X. Hence, from Constraints {3.57), we haved. = B™*  x,_,;. Using this relation

and replacing x; in (B.12) by its expression provided by [3.58), we have that:

B - X B
ug =min( dc= Up; Pg; P™ W) (3.59)
lc+1  tO<t
This yields:
B D.,B ; =1 X B
fo(Xuf;up) = Et min(de= upp; Pg; P™ W) (3.60)
t=lc+1 lc+1  tO<t

By de nition of t2 (see also the proof of PropertyDL), the value ofuP for each recharging time
period [c+1 t<t2 is min(Pg;P™* W), and, for all t >t B, no power bought for recharging
the battery is related to c. The value of u? depends on the value ofd. only at the last recharging
time period t8, as shown in Property[1. Thus, we can extend the sum from2 to T, and f & can be
rewritten as follows:

X h K1 [
f@(x;up;ul) = Et min Pg;P™ Wgde=  min(de= ; min(Pg; P™*  W,0))

t=|c+1 t0:|c+1

(3.61)

, . , P ,
Note that, at each time period t after the complete battery recharge (i.e., when i(&llcﬂ min(Pg;

— . - P . —
P™ W)  de= , meaning that min(de= ; (o ,; MiN(Pg;P™ W) = de= ), we have

min(Pg; PM*  W,; d.= d.=) =0 , and thus no power is bought for the recharge related tac, as
_ o P -
requested. Let us x a time periodt 2fl.+1;:::;Tg, and assume that the value ofd. 2 [ {: |1C+1

92



3.2. SOLVING APPROACHES

P —
min(Pg; P™  W,); {zlcﬂ min(Pg; P™  W,)]. Then, the sum in ) fort fromlc+1to T
can be decomposed into three parts:

“ fortfromlc+1tot 1,
~ fort=t,

" andfortfromt+1toT.

In the rst case, for any recharging time period t such that I + 1 t < t, we have d;
i EO=1|C+1 min(Pg; P™  W;o) P to= 1,41 MIN(Pg;P™ W), which implies, on the one hand,
that min(d.= ;P to-i.+1 MIN(Pg; PM* W) = P to-i.+1 MIN(Pg;P™* W), and, on the other
hand, that d.= P {ozllcﬂ min(Pg;P™* W) min(Pg;P™* W,). Hence, the sum in ) for

_ . P .
tfromlc+1tof 1lisequalto i, Exmin(Pg;P™ W,).

- = P . _ P: _
When t = t, we haved, §0:1,C+1 min(Pg; P™  W0) and d.= :0:1|c+1 min(Pg ; P Max
: . . — P:
W)  min(Pg;P™  W;). Hence, the term in ) fort = t is equal to E; (dc= Eozllcﬂ
min(Pg; P™  W;o) .
= = Pt . P _
When t > t, we haved, toz |, +1 MIN(Pg; P™  Wo) §0=l|c+1 min(Pg;P™* W),

which implies that each term of the sum in (3.63) fort from t +1 to T is equal to E; min(Psg;
PMX  Wide=  de=)=0 .

Hence, we can rewritef 2 by splitting the sum over t into three parts, as follows:

B D.,B X1 ; 5 Xt X
fo(xguf;up) = Et min(Pg;P™ W)+ Ef dc= min(Pg;P™ W) + 0
t=le+1 t=le+1 t=f+1
This yields:
_ K1
f 8 (xe;uP;ul) =( Ep)de= + (Ex  EP)min(Pg;P™* W) (3.62)
t=1c+1

Pz . . . . .
Note that ﬁz tﬂ (Et  Ep)min(Pg;P™* W) is a constant, and hencef  is a linear function
of d.. The same holds for anyt such that Ic+1 t© T. Furthermore, the union of the intervals
P: : P , i,
[ L Ilc+1 min(Pg; PM™*  W,); E=|c+1 min(Pg;P™  W,)] for Ic+1 t T covers all the

possible values ofd;, aslc + 1 tE T. As a consequence, since all parts cffCB are linear, fg‘ is in
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fact a piecewise linear function ofd., that we will simply denote by f2(d;). We can even show that

f 8 (dc) is continuous with respect to de.

_ P . o _
Indeed, assume thatd; = §=|C+l min(Pg;P™*  W,) for somet, which implies that d. 2
P: : Pt . -
[ iof. min(Pg;P™ W), t=1,+41 MIN(Pg;P™> W,)] on the one hand, and that d; 2
- P

P . T .
[ {=|C+1 min(Pg; P™*  W,); E:l|c+1 min(Pg; PM™*  W;)] on the other hand:

. . . - . P . P: .
(i) to begin with, fE(d.) is equal to Ef {z,cﬂ in(Pg;PM W)+ |10+1(Et Ey) min(Pg;
P P
PM W) = Ezmin(Pg;P™* W9+ i Exmin(Pg;P™* W)= i ,; Ermin(Pg;
PmaX W),

P P
(i) then, itis also equal to Eg,; =141 MIN(Pg;P™ W)+ (o .1 (Et Eg.q)min(Pg; P M

P .
Wi) = 1) 41 Ecmin(Pg;P™>  W,).

As we have just shown that the value off B (x.; uP; uf) for eachc no longer depends on the ones
: D B d. i ' =
of the variablesx;, u¢’, and uy once the valued; is known, we can rewrltemax((xt)t;(ut[,)t;(utB ))2F ¢ (7:9)

fS(xe;uPl;ul) B (x;uP;uf) as follows:

max Cf3(xg;uPuB) B (xe;ul;ub)
(x0)e;(up )e;(ug )t)2F ¢ (7:d)
= max Cf3(xg;uPuBy B (dy)
((xt)t5(uP )e;(UB )t)2F ¢ (y:d)
= f8(do)+ max f S(x¢;uP;ul)

(x0)6;(uP )ei(ug 1) 2F ¢ (v:d)

The second part of the proof will show that, once the valuesy. of all the variables y. are known,
S(y.-1D- B ; ; I 5 ;

MaX () (P )i s(uB ) )2F o (v:d) ¢ (XtUp;up) foreachc2 Cis a function of the valuesd; and d.  (while

fS(xt; uP; ul) is not), wherec is the curtailment with y, = 1 that directly precedesc in the solution.

- A H _ S ..D.

Hence, once the valuesl, and d; are xed, so is the value ofmax((Xt)t;(utD)t;(u[B)t)2F (v:d) fe(Xe; up;

B i S(y.- 11D (1BY ici ; i
ug) . Intuitively, M&X (4, ),:(uP )e;(uB )o)2F ¢ (7:3) fo(Xe;ur;up) is in fact equal to the optimal economic

gain associated with a curtailment c to be performed, which is composed of the savings induced by

not buying energy for consumption, and of the reward received when performing a curtailment.

GP= Et*Ric if the FTR reward policy is considered, then we can rewrite the value of
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S .yD. B .
MEX (@ w10 2F o (78) T (Xuibrsur) s follows:

max 3 (x;uP;uB)
((xt)t;(uP)e;(uB))2F ¢ (7;d)
Xe 0
= max Gi(Xt  Xt+1)

(x)t:(UP (U ))2F ¢ (7:d) =,

From Constraints (8.13), (3.14) and (3.12), we obtain thatW; D™ uP?  min(pl™;W;) and
that uy = 0 for all time periods during curtailment c. Therefore, from Constraints ) and ),
we derive that X;  Xt+1 max(min( W;;D™"); W, p™). Let us de ne such a lower bound on
Xt X1 for each time periodt 2 ff¢;:::;lcg asd™. In addition, from Constraints (8.6}, (8.12) and

(B.10), we derive that x;  Xt+1 min( Wy; D™, Let us de ne such an upper bound onx;  X¢+1

From Constraints (8.57), the battery discharge can be written asde = xf, Xj.+1. Hence, from

Constraints (8.9), we have that x;, = B™ and xj.s1 = B™ .

S P .
This implies that the value of M&X (5 ), 5(uP ) (U8 )0)2F ¢ (7:0) {‘;fc GYx¢ Xw+1) can be rewritten

as follows (and hence depends on the values of the variablgs only):

Xe
max  GXX; Xts1)
t=to

sit:

dn Xy Xpep AN 8t2ffc:::;leg (3.63)
Xf, = BM™*: x4 = B™  d, (3.64)
X; 2 [B™MN: BMaX] 8t2ffe:ii;lctlg (3.65)

; = P
Note that, from Constraints (, we must have that dc = Xf, Xj.+1 = {;fc(xt Xt+1)

P . _ P . .
¢, dMN and de 2, d™. In addition, from Constraints (8.64) and (B.65), we have that

de= Xr, X1 B™*  B™n. Thus, d. must belong to the interval [ 2 dM";min(" 2, dM;
B Max Bmin )]
Since d. belongs to such an interval, we have from Constraints[(3.64) thatxj.+1 = B™  dq

B™n. Hence, for eacht 2 ff¢:::;lcg, sinced™ > 0, the value of x; is also greater thanB™"

B™a from Constraints (8.64), the value of x; is smaller than B™® from Constraints (3.63). Thus,
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the value of d; belongs to such an interval.
Moreover, if we consider an optimal solutionx?to the problem obtained by relaxing Constraints
: L P — .
) while considering that X;,  Xj.+1 = {;fc(xt Xt+1) = d¢, a solution x of same value that

respects Constraints [3.644) can be obtained as follows:

Xf, = BM¥ (3.66)
X1 = Xe+ (X% x9) 8t2ffe::::leg (3.67)
P P 5 -
Indeed, we havex,«1 = X, 2¢ (%t Xts1) = Bmax 1o, (X0 X%1) = Bmax G, as desired.
Consequently, by setting { = X; X+ forall t 2 ffg;:::;1c.9, we obtain the following equivalent
problem:
Xe 0

max Gt t
t=fc

s:t:
X _
¢ = de (3.68)
t2f fepileg
¢ 2 [dMn; gmax] 8t2ffc:::;lg (3.69)

This problem can be solved in polynomial time using a greedy algorithm that considers a list

of time periodst ordered decreasingly byGY. In particular, in such a list, t; 2 L represents the time

by dening + = d{‘i"” + ¢ forall tj 2 L, where ¢, 0. Intuitively, the values of  are set to d"™

in the order de ned by L. However, Constraint ) imposes a total amount ofd., and hence this
. . . . . . — P ; P

will be possible up to a given time periodty for which {, = d 2L ko t2Ljj<k dg o

and, for the subsequent periodg;, i.e., such thatj >k , we will have { =0. Formally, we have:

o X ) X
t = max(0; min(dg™  di";dc d{‘j"” d{‘j‘ax)); 8t 2 L

tj2Ljj i tj 2Ljj<i
— . P min P max d — i max min . §
P - P . .
IR y2Lji<i df o) otherwise. Hence, v, can be rewritten as follows:
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o _ X ) X
g =min(di"™®  di";dc  min(dg; d{‘j”'” + d{‘j“ax)); 8ti 2 L
tj2Ljj i tj 2Ljj<i

.....

and (3.64) can be obtained as follows:

Xf. = Bmax
Xt+1 = Xt t 8t2ffg: ;10
: o Py P, _
Again, note that this implies X.+1 = Xt, S (Xt Xt+1) = Bmax 1. t= Bmax e

Finally, we can rewrite max ., .o y.(u8 ) )2F . (7:d) fS(xe;uP;uB) as follows:

max _f3(x;uP;uf)
((xt)t;(uP )5 (U 1) 2F ¢ (V:dz] )
X omn . X oM o X _ X [
= Gy di™m + Gy min di"®  d";dc  min(d; d{‘j“'” + d{?ax (3.70)
ti2L ti2L t2Ljj i tj 2Ljj<i

To simplify the writing, let us dene d™" as the lower bound imposed ond;, computed as
. P . P .
dmn = e dM", and d™® as the upper bound, computed agi™ = min( " 2, dP;Bma  gmin),
, , _ P . .
Now, let us x atime period tj 2 L, and assume thatdc 2 [d™ + = 5 ji; (df'™* df");d™ +
= : P . :
gacj i @E di'™)] whered™ + o) g (AT dE) = o i ATt govjic dE o

. P . P P _
and d™ + o (AP dMM) = s A+ o ¢ . Then, Equation ( can
be decomposed into three parts:

~ forall tjinL suchthati<i ,
T forti=t

~ and for all tj in L such thati>i

In the rst case, for any time period t; in L such that i < i , we have that d. dmin 4
. P , L o P
t2Lj< (dg ™ d{Tj"”)P d™+ e (dE® d™), which implies that mm(dcé)dm'n oL
(AP d™) = d™+ g (AP di™). Moreover, we have thatde  d™" + 5 g (A
: P o o — P
di'™)  d™ o (A dg™), sincei i 1, which implies that dc - d™" y2Lj<i (A

dM™)  dP dfin. Then, from Equation (,we have . Xy+1 = AN+ dPax gmin = gmax,

P
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- P , _ P .
Whent; = tj ,we haved. d™+ ;i (df™ di")anddc  d™+ " oy g (df d"),

o p . . _
ie., d. dmn y2Lj<i (AT d{‘j“'”)P @ d™. Hence, from Equation {3.70), we have
t = Xti Xti +1 = d{?in + ac dmin tj 2Ljj<i (d{?aX d{?m)

. . . . " = in, P
In the third case, for any time period t; in L suchthati>i ,we havedc d™+ 5 5 ; (df'™
P

d™)  d™+ o jig (AP di™), which implies from Equation B.70) that ¢, = x¢, Xy+1 = A"
Thus, we can rewrite max ., ) ..o ). ws)2r . 7:d@ ¢ (Xt U ;up) by splitting the sum over t; into
three parts, as follows:
max _ f3(x;uP;uB)
((xgtqu)tqu)JZFc(Vm)

. _ . X . X .
= Godr™ + Gy d™+d. d™ (dP® M) + God™  (3.71)

ti 2L ji<i ti 2L jii ti 2L ji>i
This yields:
max 2 (x;uP;uf)
((x0)t5(uP ) (U@ )1)2F ¢ (v:d) X X
= Godl™ + GY d. G d™ + (dr® diny + Gy (3.72)
ti2Lji<i ti2Lji<i ti2Lji i

Hence, we obtain that, for eachc, max ., o). ws))2r @ o (Xt:up:up) is a function of d
and d. , that we will simply denote by f3(dc;d; ), wherec is the curtailment with y, = 1 that
directly precedesc in the optimal solution. Note that the dependence ind is linear, but the one in d,

is not, asd, is implicitly used in the computation of p®, which in turn is used in the computation

However, in the case where the computation of the variablep'® only depends on the valuesy,

themselves, things are di erent. Indeed, in this case, all terms in Equation |(3.72) are constant, except
0~ S ..,D.,B H i i d

the term Gti dc. Thus, max((xt)t;(UP)t;(U?)t)ZFC(Ta) fe(X;up;up) is then a linear fFl)Jnctlon of d¢, and
the same holds for anyt; 2 L. Furthermore, the union of the intervals [d™" + t2Ljici (A

. . p . _ _
di™);d™ + oy (d® di'M)] for all ti 2 L covers all the possibles values ol in the range

in. : : S .5 . D.
[d™N: dMaX], As a consequence, since all parts of the funCtlomaX((xt)t;(uP)t;(utB)t)ZFC(y;a) fo(Xt; ze;up;
uf) arelinear, itis in fact, in this special case, a piecewise linear function al, in the range [d™" ; d™&X],
that we will simply denote by fS(d:). We can even show thatf $(d.) is continuous with respect to

. _ I ,
dc in such a range. Indeed, let us assume thatl; = d™ + 5 ;; ; (d"™® d"™") for somet; 2L,
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- P : P _
which implies that dc 2 [d™ + = 5 i (A d");d™ + (o5 5 (A7 di™)] and that
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_ p o p -
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0 _ 0 0 _
gocji 0 (@I dM) + o oioia GRdM™ = o 0 Grdi™ + (o 0w Grdi™" =

P P ;
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Summing up, we have managed to prove that, for eaclt, we have the following result:

max _ftuliu) e (xpupiud) = fO(deds ) fE(do)
((x0)e:(up e (ug )1)2F ¢ (7:d)
Let fS(de;d; ) = f3(de;d. ) fB(de) for eachc. Intuitively, for any curtailment ¢ such that
Y. = 1, the value of f & gives the best total economic gain associated witte. Moreover, as we have
discussed throughout the proof, we must have((Vc)coc; (dc)coc) 2 Fopt- In particular, for each c, dc
must belong to] Pilcil min(Pg ; P™  W,); Pilcﬂ min(Pg; PM™® W,)] because of the function
f8, and to [d™";d™¥] because of the functionf . Conversely, for any ((Y¢)cac: (do)cac) 2 F opt, We
have also shown how to compute((Xt)t; (TP )t; (UB)t) 2 F . (Y;d). In other words, we have essentially

proved that F = Fqpt, which, together with the computation of fS(de;d; ), implies the rst part of

the proposition.

Recall that, if the computation of the values of the variables p'® only depends on the values
y. themselves, thenf 3(de;d. ) = fS(de), and hence we havef &(d.) = f3(d.) f2(dc) for each
c. Moreover, in this case, sincef & and f$ are continuous piecewise linear functions ofl., f & is
also a continuous piecewise linear function fod; in such a range (Edelsbrunner et al. (1989)). The
subtraction of two piecewise linear functions can be done in linear time in function of the number of
parts of each function (Edelsbrunner et al, (1989)); this number is at mostT I for f & and at most

lc fe+1 for f3, and hencef & can be computed inO(T) time. 2
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3.3 Numerical experiments

In order to assess the e ciency and relevance of our models and algorithms for optimizing the
savings using the demand response mechanism, we performed some numerical experiments on realistic
instances, generated from public energy costs and data related to the curtailment market, as well as

internal data from the French telecommunications operator Orange.

The two variants OBSC-D and OBSC-R are solved with the Graph-Oriented Algorithm, described
in Section|[3.2, that will be denoted asOBSC-GOAhe formulation (OBSC-MILP) is solved using a
standard MILP solver, and the resulting solving method for OBSC will be denoted asOBSC-MILP

This section is organized as follows. Firstly, in Sectior] 3.3]1, we describe the instances and the
environment used in our tests. Then, in Section 3.32, we present some results for the following

problems and algorithms, for di erent values of the time horizon discretization

" OBSC, solved with OBSC-MILP
" OBSC-D with battery discharge level per % and 1%, solved with OBSC-GQA

" OBSC-R with one rest time period, solved with OBSC-GOA

We explore, in Section[3.3.2 as well, the impact of the reward policy and of the characteristics of

the battery on the obtained solutions.

3.3.1 Instances description

We based our testbed on 10 urban and rural sites from the mobile 4G network from the French
telecommunications operator Orange. Each site is equipped with a battery, whose main characteristics
are reporr]‘,ed in Table[3.]. The mean, or average value, of the power demand over the horizon, denoted
by W = %Wt is also given. Finally, the value ofB™" is set to 50% of the battery energy capacity
B™M and D™" corresponds t010% of D™&, Figure illustrates the pro le of power demand over
time for the site "S4" in the rst week of the considered month, as well as the mean values over such

a week. Such a pro le is also observed for all other sites.

Concerning the data related to the distributor, we consider the unit costs from the French distribu-

tor EDF, publicly available at data.gouv.fr (2020). Besides, the maximum amount of powerP M2 that
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Figure 3.3 { Power demand over the rst week of the consid-
Table 3.1 { Sites char-erEd month for the site "S4".

acteristics

Site| BM& | Pg (DM | W

S1 | 39.26|2.34| 5.38 | 3.93
S2 2.35|0.14| 0.64 | 0.47
S3 9.11/0.59| 2.49 | 1.82
S4 |106.33|6.38|14.50|10.63
S5 6.05/0.35| 1.64 | 1.21
S6 5.39/0.22| 1.48 | 1.08
S7 6.66/ 0.4 | 1.81 | 1.33
S8 | 26.36/0.81| 3.60 | 2.64
S9 8.64|0.52| 2.36 | 1.73
S10| 9.33|0.56| 2.51 | 1.87

can be purchased per time period is established by contract for each site. In our tests, to guarantee
that the value of P™M#* is greater than the power demandW; at any time period t 2 T, we set such a

value to 3W.

Concerning the data related to the transmission system operator, we consider rewards paid by the
French operator RTE, whose values are publicly available (see RTE-Portal). Besides, the minimum
and maximum curtailment duration are de ned by contracts and are 1 and 2 hours, respectively.
Similarly, the contractualized power Pro considered is50% of W. Note that the value of Py is
adjusted to the case where one battery is used to perform curtailments. In a real world setting where
multiple batteries are considered, this value is much higher. Lastly, the reward policy used in France is
FTR. However, we also considered the OTR policy in our experiments. Moreover, the input values of
the power demand, unit cost, and reward, over the time horizon, are taken as average values observed

over a month.

In addition, to simplify the writing, we present the time discretization in minutes. Hence, we
assume a daily time horizon with di erent time discretizations 2 f 15,30;60g in minutes (i.e., %, 3

and 1 hour respectively), which implies that T 2 f 96; 48; 24g, respectively.

All tests are performed on a server computer with 4GB of RAM and 1 Intel Xeon CPU running
at 2.2GHz. The OBSC-MILPnethod used to solve the(OBSC-MILP) formulation is the branch-and-
bound implemented in CPLEX 12.9, with default settings. A time limit of 15 minutes is also imposed

on the running time of each method, for all the tests performed.
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3.3.2 Experimental analysis

Numerical results for instances considering FTR as the reward method are displayed in Table 3.2,
both for OBSC-GGshd OBSC-MILPConcerning the variants OBSC-D and OBSC-R solved withOBSC-
GOAddischarge levels per 5% and 1% are considered for OBSC-D, and the associated results are
displayed under the labels OBSC-D-5% and OBSC-D-1%, respectively, while, for OBSC-R, only one
rest-time period is imposed between two curtailments, and the associated results are displayed under
the label OBSC-R. In this table, column 'Ref Cost" corresponds to the reference costP to1 EtWt
(given in e), obtained when no curtailment is performed. Column "CPU" reports the solving time
in seconds, and column "sol" the value of the best feasible solution obtained. In column "sol" for
labels OBSC-D-5% and OBSC-D-1%, the values in green correspond to cases where solving OBSC-D
with OBSC-GQ#ovides better solutions than solving OBSC with OBSC-MILPand signi cantly faster.
Besides, the optimality gap (in %) obtained for (OBSC-MILP) when using OBSC-MILRs provided in
column "gap". It corresponds to the relative gap between the best integer solution found and the best
lower bound obtained during the search. The optimal value of the continuous relaxation offOBSC-
MILP) obtained at the root of the search tree when usingOBSC-MILRs provided in column 'relax".
Note that, it is totally acceptable to have negative values in this column. In that case, the customer
is earning money from the market by performing curtailments. Finally, the column "savings" stands
for the percentage of savings obtained for the best feasible solution found witl©BSC-MILPor with
OBSC-GUOr the considered variants, with respect to the reference cost. The instances pre xed with

a" "are the ones for whichOBSC-MILProvides an optimal solution (i.e., is actually able to prove the
optimality of the best integer solution obtained). Additional tests were also performed considering the
OTR reward policy instead of the FTR one, both for OBSC-GGsd OBSC-MILPand will be discussed

in the sequel.

Computational e ciency of the methods

We begin by focusing on the algorithmic results and observe a signi cant impact of the time

discretization on the performance of the considered algorithms.

Concerning OBSC-MILPoptimal values are obtained for all instances where = 60 in less than one

second, while no optimality guarantee is observed for instances where = 15 within the CPU time
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Figure 3.4 { lllustration of an optimal solution for the OBSC instance S4 with =60 .

limit. This is due to the fact that the number of variables y; in (OBSC-MILP) grows quadratically
with the number of time periods T. Moreover, the optimality gap for instances with no optimality

guarantee is quite signi cant for = 15 (242% on average), while it is only 9.6% on average for

= 30 . We also observe a low-speed convergence for all the tested instances. However, even for

instances with no optimality guarantee, the best solution found gives a large reduction in the energy
bill (78.1% on average when FTR reward policy is considered). Furthermore, the reward policy also
has an impact on the computational performance since the structure of the optimal solutions can

change.

More precisely, if FTR is considered, then the curtailments tend to start in the time periods when
the reward prices are high. If OTR is considered, then the reward paid in a time period is the same
independently of when a curtailment starts (i.e, only the di erence of prices is taken into account to

decide whether a curtailment is to be performed or not).

Indeed, as expected, the additional computational experiments show that instances with an opti-
mality guarantee and = 30 were solved faster with the OTR policy than with the FTR one (15%
faster on average). In addition, for instances without optimality guarantee, considering the OTR
policy yields optimality gaps smaller than the ones obtained when considering the FTR policy (137%

and 154% on average, respectively).

Concerning OBSC-D and OBSC-R solved withOBSC-GQAll instances are solved in less than 30

seconds with the FTR policy. We observe that, as expected, the cardinality of the set of discrete
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Table 3.2 { OBSC-MILRnd OBSC-GOs&sults for instances considering FTR as the reward method.

Instances OBSC-MILP OBSC-D-5% OBSC-D-1% OBSC-R
Site Ref Cost | CPU(s) sol | gap(%) relax |sav(%) |CPU(s) sol sav(%) |CPU(s) sol sav(%) |CPU(s) sol sav(%)

*S1 (60| 3269 0.7 1464 0 -7870 55 3.7 1669 49 1.0 1506 54 1.0 1657 49
*S2 |60 393 0.6 176 0 -942 55 1.0 194 51 1.0 180 54 1.0 206 48
*S3 |60 1518 0.6 679 0 -3650 55 1.0 711 53 1.0 691 54 1.0 804 47
*S4 (60| 8866 0.8 3973 0 -21291 55 1.0 4478 49 1.0 4092 54 1.0 4790 46
*S5 [60] 1008 0.6 452 0 -2422 55 1.0 465 54 1.0 459 54 1.0 524 48
*S6 |60 899 0.6 402 0 -2161 55 1.0 415 54 1.0 409 54 1.0 481 47
*S7 [60 ] 1110 0.6 500 0 -2666 55 1.0 520 53 1.0 506 54 1.0 624 44
*S8 [60 [ 2197 0.6 983 0 -5280 55 1.0 1014 54 1.0 1000 54 1.0 1142 48
*S9 |60 1440 0.9 644 0 3461 55 1.0 664 54 1.0 656 54 1.0 748 48
*S10 |60 1556 0.7 695 0 -3734 55 1.0 718 54 1.0 709 54 1.0 806 48
S1[30] 3269 900.0 858 5.8 -13743 74 1.0 1070 67 2.1 914 72 1.0 1187 64
S2]30 393 900.0 105 12 -1645 73 1.0 125 68 2.1 109 72 1.0 143 64
S3(30 1518 900.0 398 11.0 -6374 74 1.0 453 70 3.1 408 73 1.0 570 62
S4130| 8866 900.0 [2339 | 11.4 [-37188 74 1.0 2861 68 2.1 2457 72 1.0 3339 62
*S5 [30 [ 1008 875.2 265 0 4230 74 1.0 298 70 3.1 271 73 1.0 395 61
S6 |30 899 900.0 235 6.9 3774 74 1.0 266 70 3.1 242 73 1.0 342 62
*S7 |30 1110 843.1 292 0 4656 74 1.0 331 70 3.1 298 73 1.0 418 62
*S8 [30 | 2197 812.4 575 0 9222 74 1.0 650 70 3.1 590 73 1.0 789 64
*S9 [30] 1440 692.1 375 0 6044 74 1.0 426 70 3.1 387 73 1.0 539 63
S10 |30 1556 900.0 408 10.3 6523 74 1.0 459 70 3.1 426 73 1.0 568 63
S1[15| 3269 900.0 309 252 14865 91 2.1 429 87 26.3 279 91 4.1 535 84
S2[15 393 900.0 46 215 1782 88 1.1 45 89 26.3 32 92 3.1 58 85
S3[15] 1518 900.0 147 257 6894 90 1.0 150 90 26.4 119 92 4.1 226 85
S4115 8866 900.0 927 245 40235 90 1.0 1148 87 26.2 743 92 3.1 1412 84
S5[15] 1008 900.0 125 221 4575 88 1.0 103 90 26.3 79 92 4.1 152 85
S6 15 899 900.0 100 236 4083 89 1.0 89 90 26.3 72 92 3.0 135 85
S7(15 1110 900.0 93 283 5037 92 1.0 113 90 26.3 90 92 3.1 182 84
S8[15| 2197 900.0 214 246 9975 90 1.1 217 90 26.3 176 92 3.2 313 86
S9[15| 1440 900.0 137 241 6537 91 1.0 143 90 26.2 116 92 4.1 230 84
S10 |15 1556 900.0 173 224 7057 89 1.0 140 91 26.2 124 92 3.1 242 84
mean |60 | 2225.6 0.67 996.8 0 -5347.7 55 1.27 1084.8 52.5 1 1020.8 54 1 1178.2 47.3
mean [30 | 2225.6 | 862.28 | 585 574 1-9339.9 [ 73.9 1 693.9 69.3 2.8 610.2 72.7 1 829 92.7
mean [15[ 2225.6 900 [227.1 242 -10104 | 89.8 1.13 257.7 89.4 26.28 183 91.9 35 348.5 84.6

*Instances with optimality guarantee

discharge levelsD directly impacts the solving time for OBSC-D. This is due to the fact that the
number of enumerated curtailments (and hence of vertices) grows linearly inDj, which means that

the number of arcs grows quadratically injDj.

Notice that one interesting aspect of theOBSC-GGsblving method is that we observe a fast increase
in the size of the graph used to compute the longest path, both in terms of the number of nodes and
arcs. A clever implementation of an algorithm computing the longest path in a DAG allowed us to
solve optimally instances with a number of nodes up to 87k and a number of arcs up to 3.1 billions.

However, the longest path in larger graphs could not be computed within 15 minutes.

Finally, to con rm the relevance of our approaches, we illustrate in Figure[3.4 the pro le of solu-
tions given by OBSC-MILIn the case of site S4, when = 60 . Such a pro le is also observed for all
other sites. The power demand over the time horizon is represented by the violet curve, the energy
prices by the red one, and the reward paid by the TO by the green curve. We observe that, in the
proposed optimal strategy, 5 curtailments are performed, and the cost of the energy bill is reduced by
55.18%6. Among such a reduction, 16.5%6 are obtained by exploiting the variations of the energy price,

i.e., by participating in the retail market through the demand response mechanism. Seemingly, the
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great variety of the curtailments involved in such an optimal solution con rms the practical relevance

of our approach.

Impact of the parameters on the economic gain

We now focus on the economic aspects of the solutions, and observe that a substantial gain is
obtained by participating in the curtailment market, as the average savings range from 5% for = 60
up to 90%for =15 , compared to the reference cost. Such values con rm that participating in the
curtailment market can generate signi cant gains for the company. Moreover, we observe that the
reward policy has a direct impact on the savings that can be generated. Tablp 3.3 shows the savings
obtained on average for OBSC and its variants considering FTR and OTR as reward policy. When the
FTR policy is considered instead of OTR, the economic gain obtained increases signi cantly, from 88%
to 105% on average. A similar but smaller increase is observed in the variants solved witBBSC-GOA
Note that, when the savings are higher than 100%, the cost of buying energy decreases to zero and
the telecommunications operator starts earning money by participating in the curtailment market.
The value of the time discretization  has also an impact on the total amount of savings, since a
better battery management policy can be obtained by a ner discretization of the time horizon. This
is observed in Table[3.2 for instances where = 15 , in comparison with the ones with = 60 ,
despite the fact that no optimality guarantee is achieved for such instances. The savings obtained
using OBSC-MILRre 89.8% (resp. 55%) on average for= 15 (resp. = 60 ) with respect to the

reference cost.

Concerning the OBSC-D variant solved with OBSC-GQAonsidering discharge levels per 5% gives
on average an economic gain 2.5% smaller than the one obtained witdBSC-MILPN the instances
with =60 , for which an optimality guarantee is always achieved. Note that such a gap increases
on average when the value of the time discretization decreases, and grows up to 4% for instances with
optimality guarantee and = 30 . Moreover, we observe that the battery discharge discretization
helps to reduce this gap, since more curtailments are enumerated. For battery discharge levels per
1%, the savings obtained are on average only 1% smaller than the ones obtained witbBSC-MILBN

the instances with optimality guarantee.

Concerning the instances solved withOBSC-MILRwvithout optimality guarantee, OBSC-D with

battery discharge levels per 1% always gives better savings whers 15 . Such savings are on average
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2.5% higher than the best ones obtained by solving these instances witdBSC-MILPIn some cases,
even with battery discharge levels per 5%, the savings obtained are higher. However, the solutions
obtained with OBSC-R always provide smaller savings than the ones provided by the best solutions

found with OBSC-MILP

Since any solution obtained by solving OBSC-D or OBSC-R is also a feasible solution for OBSC,
such a solution can be used as a heuristic solution. As observed in Talle 8.2, when the discretization
of the battery discharge becomes ner, the solutions obtained for the OBSC-D variant give higher
savings, but the solving time increases. To analyze the impact of the battery discharge discretization
on the savings obtained and on the computation time required, additional tests onOBSC-GOwith a
time limit extended to one hour were run. Figure[3.3 illustrates the pro le of savings obtained and
the running times for di erent battery discharge discretizations, ranging from 5% of B™#* to 0.01%
of B™ for 2 f 15;20;30;60g in the case of site S1. Such a pro le is also observed for all other
sites. In addition, the reward policy considered is FTR. We can observe that the savings obtained with
a battery discharge discretization smaller than 1% ofB ™ tends to stabilize, and the running time
tends to increase exponentially. Moreover, when the discretization of the battery discharge becomes
too small (i.e., discharge per 0.1% oB ™ or less), OBSC-GQA4 stopped after one hour, and the best
feasible solutions obtained give much less savings than the ones obtained with battery discharge levels
per 1% (from 89% to 14% when = 15 ). We conclude that solving OBSC using OBSC-D with battery
discharge levels per 1% or 0.5% gives a good trade-0 between the quality of the solutions obtained

and the solving time.

Furthermore, we explored the characteristics of the battery installed and their impact on the
economic gain obtained. Hence, additional tests were run considering the battery capacitd ™®* in
the range f5W; 10W g (5 and 10 hours supplyingW) and Pg in the range f 0:15B M@%; 0:30B "®*g. We
observed that a higherPg allows us to obtain better savings, which is due to the fact that we can make
a better use of time periods with lower prices, by recharging the battery faster during such periods.
Moreover, a lowerPg tends to increase the average recharging cost, because the unitary energy price
can increase during the recharging time. Concerning the battery capacity, we observed that a higher
value of B™® allows to take advantage of potential high energy prices during a curtailment, further
discharging the battery. Hence, a large amount of energy can be used from the battery and bought

cheaper to recharge the battery, increasing the savings obtained by performing curtailments.
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Figure 3.5 { Results obtained by solving OBSC
using di erent battery discharge discretizations
for the instance S1 with FTR reward policy.

Table 3.3 { Average of savings obtained for
di erent reward policies and problems.

ng"l‘;‘z‘;d OBSC-MILP* |OBSC-D-5 | OBSC-D-1 | OBSC-R
FTR 105% 105% 108% 101%
OTR 88% 96% 99% 93%

* Instances solved to optimality

3.4 Conclusion

This chapter focuses on the use of batteries that were originally installed as backup in the energy
market. In particular, we have considered the OBSC problem optimizing the total energy costs by
using a battery installed for backup in order to participate in the retail and curtailment markets, with
the help of a proper battery management. As a resolution method, a mixed-integer linear program is
proposed and solved using a standard solver, and any of its optimal solutions provides a strategy for
using the battery at optimum cost. We also identi ed two practical variants of the problem, and proved
them to be polynomial by providing an e cient graph-oriented algorithm to solve them. This solving
method, which can be used only with discrete battery discharge levels, is based on the enumeration
of all possible curtailments that can be performed over the planning horizon. Then, it computes a

longest path in a directed acyclic graph whose nodes correspond to the possible curtailments.

As a result, we observed that participating in the curtailment market generates great savings (88%
with FTR and 105% with OTR on average), hence reducing the energy OPEX of the company, and
proving the premise of this study. A series of tests on realistic instances coming from the French

context was performed, in order to analyze the mathematical model as well as the main properties of
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such instances. We observed in particular thatOBSC-MILRould not achieve an optimality guarantee
for all instances. However, even for instances without such an optimality guarantee, the best solution
obtained already generates savings from 55% up to 90% on average, which represents a substantial
reduction in electricity bill for the company. The reward policy and the battery capacity seem to

be the parameters that have the greatest impact on these potential savings. Concerning the variants
solved with the graph-oriented algorithm OBSC-GQAll the instances were solved to optimality, and
the results we obtained proved the economical relevance of such variants (only 2.5% worst than the
optimal solutions of OBSC on average for the instances for which the optimality guarantee is achieved),
by providing good approximate solutions for the general problem, and hence by being good and fast

heuristics to solve it.

Concerning the performance of our algorithms, we observed that for instances in our testbed, the
value of the time discretization and the reward policy are the parameters that have the most impact
on the solving time. We considered a time limit of 15 minutes for solving each instance, and, in this
aspect, OBSC-GOgroved to be computationally e cient, while we observed that the solving time of

OBSC-MILhcreases fast when some parameters increase.

Once we understand well the impact of curtailments on battery management, the issues that
make such management more complex, and how to solve them, we can use the knowledge acquired
in the management of an energy asset composed of several batteries. Note that, for the sake of
clarity, rules R6]and were not considered in this chapter because they are more pertinent when
multiple batteries are used to prevent that one battery is used much more than others. In addition, the
solving approaches proposed remains valid with minor changes. Indeed, we must change the Bellman's

algorithm to store at each node the value of the best path considering the number of steps.

In the following, we will explore the management of multiple batteries being used in the curtailment

market and reuse some of the algorithms and methods proposed in this chapter.
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Chapter 4

Optimization of a multi-battery storage
system to participate in the retail market

After studying in detail the impact of curtailment market rules on the management of a battery,
we are now interested in measuring and treating the dimensionality of the management of multiple
batteries that are subject to the safety usage rules. Hence, in this chapter we consider the problem
of optimizing total energy costs of a telecommunications site using the batteries installed for backup
to participate in the retail market. Our goal is therefore to reduce the total energy costs for the
company with a proper battery management. Note that the load curtailments are not considered, and

the batteries can only be used to perform peak-shavings.

Formally, the problem treated in this chapter is the Optimization of a Multi-Battery Storage system
participating in the Retail market (referred to as OMBSR), in order to reduce the total energy cost
for the company. The main issue is to manage multiple batteries while respecting the energy market

rules and the safety usage rules and minimizing the total energy cost.

This chapter allows us to understand in detail the impact of increasing the number of batteries
on the optimization problem. We also explore the strategy of decomposing the OMBSR problem
into sub-problems that can be solved more e ciently. Such a strategy is further incorporated in the

algorithm presented in Chapter[5 to solve the same problem with load curtailments.

Concerning the scienti ¢ contributions, we formally de ne the problem and we present two math-
ematical programming models for OMBSR in Section 4.2. We also give the proof that OMBSR is
NP-Hard, via a reduction from the 3-Partition problem, in Section £.3] We propose two heuristics

based on dierent aspects for large-scale OMBSR instances: one heuristic based on graph theory
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inspired by the properties of the realistic instances tested; and a second heuristic based on the relax-
and- x approach that gives better results for the general case. These heuristics are presented in
Section[4.4. In the same section, we present a reduction of the Maximum Weight Budgeted Inde-
pendent Set Problem on interval graphs into the Longest Budgeted Path Problem on direct acyclic

graphs, and we propose a pseudo-polynomial time algorithm to solve it. We also performed numerical

experiments with realistic instances, that are presented in Sectiof 4]5.
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4.1. PROBLEM STATEMENT

4.1 Problem statement

We consider a deterministic framework with a single telecommunication site similar to the one

described in Chapter[3, de ned by the parameters ;E;W, and P™Ma,

Concerning the battery assets, the site is equipped with a seB of batteries. Each battery b2 B is
de ned by the parameters BI""; B['®; Pg ; D™, and D"™* as described in Chaptel B, and is subject
to the same usage rules R[-R5, de ned in Sectioh 1.3. In addition to these usage rules, the number of
times that each battery can be used is limited to preserve its life time (i.e., rulf RB). The ruld Rb is

now relevant to avoid that one battery is used more often than the others.

Concerning the energy market rules, only the ruld RV, related to the retail market, is taken into

account.

Recall that our goal is to use the batteries while respecting the energy retail market rules, and
keeping the network safe (i.e. respecting the battery safety usage rules) at minimal cost. The total
amount of energy savings that can be obtained is provided by the di erence between the energy prices
during a battery use and its recharge. The amount of energy not bought during the battery use is

equal to the battery discharge.

The problem stated above is referred to OMBSR in the following, and any of its instances is fully
described by the following parameters (some of which are vectors or setsyv/, , E, PM B, B™Mn,
BM pg, DMN DM and N. The safety usage rules Rii-R6 and the market rulg R7 of the problem

are the same as the ones de ned in Chaptdr]3.

4.2 Mathematical formulations
4.2.1 Mixed-integer nonlinear program based on enumeration of batteries cycles

The formulation that models OMBSR described in this section is a mixed-integer nonlinear program
that will be referred to as (OMBSR-MINLP') . This formulation is inspired by the mathematical model

proposed for the OBSC problem presented in Chaptef |3, based on the enumeration of battery uses.

Since a battery discharge starts (resp. ends) at a time period (resp. |) called rst (resp. last)
period, the goal is to identify, among the O(jBjT?) possible triples (b;f;1) (b;c = (f;1)) over the

horizon, the ones to be performed. Such a decision is re ected by the value of a binary variabig,.
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4.2. MATHEMATICAL FORMULATIONS

for each battery b and for each discharge during the intervalc. Then, the battery discharge leveld
during the time period interval cis given by the di erence of energy stock in the battery between the
beginning of periodf and the end of periodl. Recall that we are looking for a set of dischargesf;|; d )
that can be performed for each battery while respecting the market and the battery safety usage rules

and such that total energy cost is minimized.

Let us consider C as the set of all possible pairg(f;l) suchthat 1 | f +1 T. The set

represents the pairs(f;1) of all possible battery discharges that can be performed at time period. In

other words, G contains all the pairs (f;1) with f <I suchthatf t 1.
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4.2. MATHEMATICAL FORMULATIONS

Decision Variables
Firstly, a solution is determined by the values of the following variables:
- Xpt 2 [BM;BMX]; 8b 2 B; 8t 2 T: amount of energy available in each batteryb at the

beginning of each time periodt, in kWh. An additional variable Xxp.t+1 represents the energy

available at the end of the planning horizon.

The following additional binary variables are used to control which discharge intervals are per-

formed:

- Voo 82 C; 8b2B: equal to 1 if the battery bis discharged during the time interval c = [f;1],

starting at time period f and ending at time period |, and to O otherwise.
To model the power bought at each time periodt, the following variables are used:

- uP 2 [0;W;];t 2 T : power bought for the demand consumption at time periodt (in kW);

- uE;t 2 [0;Pg,];8b2 B; t 2 T: power bought for the recharge of batteryb at time period t (in
kW).

Auxiliary variables can also be used to simplify the model writing. However, they are not strictly

necessary, and could be removed and replaced by their corresponding value:
- Zpy; 8t 2T ; 8b2 B: equal to 1 if the battery bis discharged at time periodt, and to O otherwise;

The objective function is de ned as follows:

X X B b
min Et( Upe+ Up) (4.1)
t2T 2B

The objective function minimizes the total cost of purchasing energy. A solution is given by the

stock of energy in each battery at each time period, provided by the values of they.; variables.

The following constraints de ne if each battery is in discharge or not at each time periodt:

X
Zpy = Yb:c 8b2B;8t2T (4.2)
c2C
Xpt  Xpit+l Dp'®zp 8b2B;8t2T (4.3)
Xbit + Xpit+1 Pe,(1 zpy) min( Wy;DIM)zp, 8b2B;8t2T (4.4)
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Constraints @) together with the fact that z,; 2 f 0;1g 8t 2 T, guarantee that for each battery
b, at most one discharge can be performed at each time period. Constraint§ (4.3) guarantee that,
if the energy stock of a battery decreases, then the battery is in discharge mode, i.ezy; = 1.
Constraints (4.4) ensure that, if the energy stock of a battery increases, then the battery cannot be
in discharge mode, i.e.,z,: = 0. Note that, together with Constraints ( to Constraints (, the
battery can have the same energy stock during two consecutive time periods only if the battery is fully
charged, otherwise a minimal discharge omin(W;; Dbmi”) or a recharge oqu‘;t is imposed. Besides,
Constraints @) guarantee a maximum power discharge per time period oD{'® when the battery

is in discharge mode.

Note that, if the battery has the same energy stock during two consecutive time periods, then the
corresponding variablesz,; are free. However, Constraints ) guarantee that, if a battery discharge

is performed, thenz, is equal to 1 for eacht over the discharge duration.

Constraints (4.5) guarantee that a battery can start being discharged only if the battery is fully

charged:
X
B rax Ybe  Xbi 8b2B;8t2T (4.5
c2C; j t=f
uE;t = (1 Zb;t) mm( Bg]élX: Xpit= PBb; p max Wt) 8b2B;82T (46)
X

(Xpi+1  Xbyt) = uE;t + UP Wi 8t2T (4.7)
b2B b2B
Xpit+1  Xpit Up D" zp; 8b2B;8t2T (4.8)
Xpte1  Xbit UE;t 8b2B;8t2T (4.9

The power bought for charging each battery ismin(Pg,; P™®*  W;) when it is possible to buy
energy (i.e., if zo4 = 0), if the capacity of the battery is not exceeded (see Constraints )). Note
that two batteries can be used at the same time: either both are in discharge mode; or one is in
discharge and another recharging; or both are in recharge mode. Constraint§ (4.8) together with
Constraints (§.9) guarantee that the power bought to recharge a battery is related to the corresponding
battery, preventing the exchange of power between two batteries (i.e., when the energy obtained from

the discharge of one battery is used to recharge another).

Since no losses are considered, the energy stock balance of the batteries are ensured by Con-

straints (4.7). Besides, Constraints [4.7) together with the bounds onuP impose a maximum cumu-
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lative discharge of all batteries at the same time period, equal to the power demanilV;. Indeed, note

that the domain of variables uP limits such a maximal discharge toW;.

The network capacity is modeled by Constraints [4.10).

X
upy+ up  Pm 8t2T (4.10)

b2B

Furthermore, Constraints (4.11) guarantee that each battery will be used at mostNy times over

the time horizon, while Constraints (4.12) express the limit conditions:

X
Yoie  Nbp 802 B (4.11)

c2C

Xbit; = Xbxray = Bpo 8b2B (4.12)

Finally, the domains of the variables are:

ul 2 [0; W] 8t2T (4.13)
Ubs 2 [0; Pg, ] Xpy 2 [B™; BY™T; zpy 2 f 0; 1g 802B;8t2T (4.14)
Ybie 2 T 0; 19 8b2B;8c2C (4.15)

The obtained model (4.1)-(4.14) is non-linear. However, it can be linearized following the approach
proposed by McCormick (1976). The resulting model (referred to aOMBSR-MILP") ) is provided in

Section[4.2.3.

4.2.2 Alternative mixed-integer nonlinear program

The main problem with the (OMBSR-MILP") formulation is that the number of (f;1) pairs enu-
merated can potentially be large and strongly impact the size of the model and hence the solving time.
Considering that curtailments are not allowed in OMBSR, it is possible to model the problem in an
implicit way without the need to enumerate all the discharge duration of batteries. Consequently, the

size of the model is reduced.

The formulation of OMBSR described in this section will be referred to as(OMBSR-MINLP) .
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Decision Variables

Firstly, the same families of variables xb;t;uP;uE.t; and z,; from the formulation presented in

Section[4.2.1 are considered.

In addition to those ones, the following additional variables are used to control the state of each

battery:

- bgt;?” 210;19;8b2B; 8t 2T : equal to 1 if the battery b starts being discharged at time period

t, and to O otherwise.

The objective function is de ned as follows:
X X
min  E¢(  ug+ uP) (4.16)
t2T b2B
The objective function minimizes the total cost of purchasing energy. A solution is given by the stock

of energy in the batteries at each time period, provided by the values of thex, variables.

The following constraints de ne if each battery is in discharge or not at each time periodt:

Xbit  Xbet+l Dp'®zp 8b2B;8t2T (4.17)

Xpit + Xpit+1 Pg,(1 zpt) min( We; DIM"M)zp 8b2B;8t2T (4.18)

Constraints (#.17) guarantee that, if the energy stock of a battery decreases, then the battery is
in discharge mode, i.e.,zp+ = 1. Constraints ) ensure that, if the energy stock of a battery
increases, then this battery cannot be in discharge mode, i.ez,+ = 0. Note that, together with
Constraints (4.24) and (4.25), these constraints ensure that the battery can have the same energy
stock during two consecutive time periods only if the battery is fully charged, otherwise a minimal
discharge ofmin(Wt;Dg‘i”) (if zpt = 1) or a recharge ofug‘;t (if zpx = 0) is imposed. Moreover,
Constraints ) guarantee a maximum power discharge per time period oD '®* when the battery

is in discharge mode.

In the same vein, Constraints ) and ) ensure thatd@" = 1 if the battery b starts being
discharged at time periodt; otherwise, this variable is free.
B zpy  Zpy 1 8b2B;8t 2 Tnflg (4.19)

@ = g 8b2B (4.20)

el
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Constraints (¢.21)) guarantee that each battery b can start being discharged only if it is fully charged
(and hence together with Constraints (4.22) that the battery starts being recharged immediately after

each use, up to its maximum capacity):
Btr)naxbgt;?rt Xbit 8b2B;82T (4.21)

The power purchased in the retail market at each time periodt is the sum of the power bought for
. . P . I
charging the batteries (g uE;t) and the power bought for consumption (uP), which is ensured by

the following constraints:

upy = (1 zp)Min(BF'™*= Xpi= ;Pg,;P™ W) 8b2B;8t2T (4.22)
X

(Xpite1  Xbyt) = Upe+ Up Wi 8t2T (4.23)
b2B b2B

Xpel  Xbt  Upy  Dp™zny 802 B;8t2T (4.24)

Xoite1  Xbt  Upy 8b2B;8t2T (4.25)

The power bought for charging each battery ismin(Pg,; P™®) when it is possible to buy energy
(i.e., if zpy = 0), if the capacity of the battery is not exceeded (see Constraints 2)). Note that
several batteries can be used at the same time: some of them can be in discharge mode and others
recharging. Constraints (4.24) together with Constraints (4.23) guarantee that the power bought to
recharge a battery is related to the corresponding battery, preventing the exchange of power between
two batteries (i.e., when the energy obtained from the discharge of one battery is used to recharge

another).

Since no losses are considered, the energy balance of the batteries is ensured by Constrai4.23).
Moreover, Constraints (4.23) impose a maximum cumulative discharge of all batteries at the same

time period equal to the power demandW.

The network capacity is modeled by Constraints [4.26).

X
Upy+ up  PM 8t2T (4.26)
b2B

Furthermore, Constraints (4.27) guarantee that each battery will be used at mostNy times over
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the time horizon, while Constraints (§.28) express the limit conditions:

X

bgt;tart Ny 8b2B (4.27)
t2T
Xbity = Xbitrs, = Bpo 8b2 B (4.28)

Finally, the domains of the variables are:

uP 2 [0; W] 8t2T (4.29)

UB; 2 [0; Pg,J; Xpx 2 [BI™™; B ]; zoy 2 f 0; 1g; 2" 2 0; 1g 8b2B;8t2T (4.30)
The obtained model (4.16)-[4.30) is non-linear. However, it can be linearized following the approach

proposed by |McCormick (1976). The resulting linear model (referred to as(OMBSR-MILP) ) is
provided in Section[4.2.3.

4.2.3 Mathematical model linearizations

In this section, we present the linearization of the mathematical models(OMBSR-MINLP) and
(OMBSR-MINLP") , which have a single nonlinear constraint (i.e., Constraint [4.6) in the case of
(OMBSR-MINLP') , and Constraint (%.22) in the case of(OMBSR-MINLP) ) that is the same in both

mathematical formulations.

Firstly, let us rewrite Constraints ( (i.e., also Constraints #.22) as follows:

uE;t =1 Zyt) min( Btr)nax: Xpt= ;Ps,; p max W)
=min(B™= xp= ;min(Pg,; P W)
min(B{)naXZb;t: XptZht= min(PBb; p max Wt)zb;t) (431)

For a product between a binary variable b and a variable f; 2 [0; F™®], we can apply the Mc-
Cormick strategy as described in Sectioff 3.2.1]3. The non-linearities of this type in Constraints (4.31)
(i.e., corresponding to Constraints and to Constraints) are the productsp:zp:t, With Xp:t 2
[0;B"®] for bin B, t in T. We de ne the new family of variables lin xz,.;8b2 B;8t 2 T and the

related constraints:

lin Xzpt zpBp™ 8b2B;8t2T (4.32)
liN _XZp:t  Xp:t 8b2B;8 2T (4.33)
lin xzpt Xpt (@ zp)BE™ 8b2B;8t2T (4.34)
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Furthermore, to linearize x = min( a; b) for a;b2 [M % M ], we introduce a binary variabley 2 f 0; 1g
as described in Sectiofi 3.2.1]3. In our case, we have the new family of binary variablés _sidey for
all tin T and bin B to linearize the min in Constraints (4.31) (i.e., corresponding to Constraints[4.6
and to Constraints ). We have uE;t = (1 zpy)min(a;b), where a = BJ"™*= Xpt= and
b=min(Pg,;P™ W,). In order to linearize this expression, we rst multiply all the terms a and
bin (8:26) and (3.2§) by 1  zy;. Hence, we derive the following constraints, whereM ® = 0 and

M = max(P™; B"®=)

upt (1 zp)(BE™=  Xxpt=) ,Upy (1 Zp)min(Pg,;P™* W) (4.35)
(B Xpi)  min( Pg,;P™ W) Mlin _sidey; ,

min(Pg,; P™ W) (By¥®= Xp:t=) M (1 lin _sidey;) (4.36)
upy (1 zZoe)(BP®=  Xpi=) M1  2zyy)lin_sidepy; ,

upy (1 Zo)min(Pg,;P™ W) ML zp)(1 lin_sideyy) (4.37)

Note that, since ug, 2 [0; Pg,], Constraints (#.37) can be replaced by:

Uy (1 zo)(BI™=  xpy=)  Mlin _sidey; ,
upy (1 Zo)min(Pg,;P™ W) M(L lin_sideyy) (4.38)

Indeed, whenz,; = 0, (¢.37) and (4.38) are equivalent, and, wherey, = 1, Constraints (¢.5) together
with Constraints (#.8) and ug, 2 [0; Pg,] ensure that ug, = 0.

Proposition 4 The continuous relaxation of (OMBSR  MILP ) and (OMBSR MILP 9 have the

same optimal value.

Proof To prove that the solutions sets of these continuous relaxation are equivalent, we present
two functions to transform any solution of the continuous relaxation version of(OMBSR  MILP ),
denoted by (OMBSR LP), into a feasible solution of the continuous relaxation of(OMBSR
MILP 9, denoted by (OMBSR® LP), and vice-versa.

Firstly, let us prove that any feasible solution of (OMBSR LP) can be transformed into a feasible

solution of (OMBSR?® LP) as follows:

1. Xpt Xpi, foreachb2B andt 2T ;
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2. Zpt  Zpy, foreachb2B andt 2T
3.ug, up,foreachb2B andt2T;
4. uP  uP,foreacht2T;

P P
5. Set values foryy, such that = ¢, Yoe = Zoe @nd g jr=t Yoie = oy -

. P P P P
Note that we can rewrite the expression ¢, Ybic @85 cocji=t Ybict  coc 1 Ybic  caci ajli=t 1 Ybic:
P P

. . P P
Rewriting such an expression we have that ¢, if=tYbc=  coc, Ybic 2C 1 Ybet ¢ 1ji=t 1Ybe

P P P _ _ : ,
Hence, the relation ¢, jf =t Ybic c2¢; Ybic 2, ; Ybe is valid for any t 2 T and is equivalent

. P P L . .
to Constraints (1.19) when ' o, Yie = Zox @nd  ocjr=1 Yie = By Which is already satis ed in
any solution of (OMBSR LP). We can conclude that Steps 1 to 5 produce a feasible solution for

(OMBSR? LP) and that Constraints (#.2), (8.5) and (#.11) are directly satis ed.

Secondly, let us prove that any solution of(OMBSR? LP) can be transformed into a feasible

solution of (OMBSR LP) as follows:

1. Xpt  Xpt, foreachb2B andt2T;
2. Zpt  Zpy, foreachb2B andt 2T ;
3.up, up, foreachb2B andt2T;
4. uP  uP,foreacht2T;

P
5. Bt c2Cijt=f Yo foreachb2B andt 2 T .

Note that Constraints (4.17}{4.18|4.23,4.24,4.25,4.266,4.128,4 [B2-4|38) are trivially satis ed because they
are present in (OMBSR® LP). In addition, Constraints (§.21) and (4.27) are satis ed because

. . P P . . P .
Constraints (4.5) are equivalent to (4.2]) and (o1 cac,ji=1 Ybic IS €quivalent to  co¢ Yoie, Which

. . P . P
is equivalent to 1 B . Moreover, from Constraints ), we have that zpy = = oc, Ybic for

eacht 2 T. Then, by performing an elementary operation between two constraints (i.e., for eachb,
. . P
subtracting (#.2) for t 1 from Constraints (f.2) for t), we have that zot  Zpt 1= coc, Yo HeNce,
. P . . . :
the relation zpy  Zpt 1= coc, Yo IS Valid, and Constraints (#.19) and (4.20) are satis ed.
Such transformations are valid and the transformed solutions are equivalent because the batteries

are used at the same time periods and with same discharge (resp. recharge) power levels as the original
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solutions. Consequently, the power bought for consumption and recharge at each time periods are the

same which gives the same solution value, i.e., savings.

The claimed result follows. 2

4.3 Complexity analysis

In this section we present a complexity proof for OMBSR. We reduce the 3-Partition problem,

which is a strongly NP-Complete problem, into a particular case of OMBSR.

Theorem 1 OMBSR is strongly NP-Hard.

Proof Let us consider an instance of the 3-Partition problem composed by a seA of 3m integers

a2a, @ = B forall Ay, such that, if there exist m partitions Ay such that for each one the sum of

its elements isB, then each subsetA must contain exactly 3 elements because o% <aj< %.

Now let us consider an OMBSR instance with a time horizonT composed by 2n time periods.
Moreover, let us consider a constant power demantlV of B over the horizon and an energy price equal
to 1 at the odd time periods and 0 at the even time periods, i.e.E =(1;0;1;0;:::;1;0). Then, let us
consider that 3m batteries with di erent capacities such that (B"® BMn)= D@ are installed
suchthat 2 <D N DM = a,< B We also consider thatFJ e Dp'& = mB. The others instance

parameters are:
© PMaX =28
" Pg,= B{"™= ,forall bin B

" Np=1,forall bin B

Let us consider a solution for such an instance which costs 0. In this case, the batteries are used to
supply all the power consumption in the time periods that energy costs 1 and recharged when it costs
0, otherwise the total cost would be strictly greater than 0. Hence, the total energy used from the

batteries over the horizon ismB. Since Ny = 1, together with P™& = 2B, if there exists a solution
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with cost 0, all the 3m batteries are used once and, more precisely, 3 batteries are used at odd time
periods with a discharge ofD'®*. In addition, if all batteries are used, each one is used during one

time period.

Hence, the set of batteries used at each odd time period gives us a solution to an instance of
the 3-Partition problem where the integers a, are equivalent to D'®. Similarly, from a 3-Partition
problem solution, a solution of cost 0 for the associated OMBSR instance can be constructed. Then,

OMBSR is by reduction a strongly NP-Hard problem. 2

For small and simple instances withT < 4 and with a constant power demand for example, a
similar proof can be obtained from a reduction of the Partition problem, which is NP-Complete. In

this case, pseudo-polynomial time dynamic programming can be used to solve the problem.

4.4 Solving heuristics

In this section we present two heuristics for solving large-scale instances of the OMBSR problem.
In fact, since OMBSR is an NP-Hard problem, large-scale instances cannot be solved to optimality in

polynomial time unlessP is equal toNP .

4.4.1 Graph oriented approach

This section presents a graph-oriented temporal decomposition heuristic, refereed to BMBSR-G-

HEU based on:

" The decompaosition of each OMBSR problem into sub-problems that are individually solved to

optimality;

" The selection of a subset of the solutions obtained for the sub-problems that respects the maximal

number of battery usesNy, and that yields a solution to the initial OMBSR instance.

Two integral parameters and ° (> 0) are considered in this heuristic: is the number of time
periods in each sub-problem, and %is used to de ne the rst time period of each sub-problem. More

precisely, the heuristic is composed of four steps:
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1. Decomposition of the OMBSR problem into sub-problems: We constructT= % 1 sub-problems

and with at most N2= dNy, =T e battery uses.

2. Resolution of each OMBSR sub-problem: From the (OMBSR-MILP) formulation based onT
and Ny, we derive the formulation for each OMBSR by considering T, and Nt?instead. Then, an
optimal solution S; for each OMBSR is obtained by solving this formulation with a mixed-integer

linear program solver.
3. Select a subset of solutionsS; that gives a feasible solution for OMBSR:

(a) Construction of a solution con ict graph: A graph G = (V;E) is created, where each node
v; in V represents the optimal solutionS; of OMBSR; found at Step 2, with a weight ! ,
equal to its value. An edgee = (v;;V;) is added if any battery in the corresponding solution
Si is used at a time periodt 2 T; \ T ; and if any battery (not necessarily the same) is used

in the solution S; at the same time period. Note that G is an interval graph.

(b) Computation of a Maximum Weight k-Budgeted Independent Set Problem (MWKBIS) of G:
We rely on an integer linear program for the MWkBIS problem (described in Sectior] 4.4.1]1)
on interval graphs, with jBj additional constraints limiting the number of use of each battery
b2 B to Ny, (i.e., the limit of use Ny, of each battery is considered as an arti cial budget) in
the selected nodes. The complete formulation, denoted byMWkBIS-MILP) , is presented
in Section[4.4.1.]. Then, an optimal solution is obtained by solving it with a standard
MILP solver. Note that such a computation can be done fast because we consider a small

number of batteries installed in our realistic instances.

4. Construction of a solution for OMBSR: Firstly, the heuristic solution to the initial OMBSR
problem is equal to a standard solution where no battery is used. Then, for each nodg of the
solution provided at Step 4 by solving (MWKBIS-MILP) , we replace the standard solution over
T; by the solution S; found at Step 2.

For the sake of clarity, we illustrate, in Figures[4.] and[4.2, the steps of the heuristic on an illustrative

OMBSR instance over a week (i.e., =1,and T =24 7 = 168) where N, = 3 for all b2 B,
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Figure 4.1 { Decomposition of an OMBSR in-
stance over a week (i.e.,T = 168) into sub-
problems OMBSR; to OMBSRg, assuming =
48 and °=24. The curves represent the power
demand observed (orange line) and the interpo-
lation (black line). In this instance, N, =3;8b2
B.

Figure 4.2 { Example of a con ict graph associ-
ated with the decomposition of the OMBSR in-
stance presented in Fig[ 4.]1, wheréN, = 3;8b 2
B, and of the resulting MWKBIS solution.

and for the following choice of parameters: = 48 and %= 24. Note that, the values of w of this
instances is illustrated by the orange curve. The interpolation (i.e., the black curve) is shown for
the sake of highlighting the periodicity of the data. A heuristic solution for this OMBSR instance is
thus obtained by considering the battery usage in the solutionsS;, S4 and Sg found for sub-problems

OMBSR;, OMBSR,4 and OMBSRg, respectively.

4.4.1.1 Maximum weight budgeted independent set problem

The Maximum Weight Budgeted Independent Set problem (MWBIS) consists in selecting the
independent setS of a graphG = (V; E), with weights ! ,; forv 2 V and cost ; forv 2 V, that gives
that highest total weight (i.e., P vos !v) and that respects a given budgetB (i.e., P vs v B).
Kalra et al.|(2017) proposes an integer linear program to solve the MWBIS problem. For interval
graphs, the MWBIS problem can be solved with a pseudo-polynomial time algorithm based on the
Bellman's algorithm to compute the longest path of a direct acyclic graph. Indeed, an interval graph
G’ = (V’;EY) can be described by the sequencd =
De Queiroz et al| (2016) for the computation ofJ from G). A direct acyclic graph G°= (V% A9 can

be obtained as follows:

1. For each vertexv; 2 V7, create a corresponding one/in V¢

2. For each maximal cliqueJ; 2 J, and for eachv; 2 Jj, add an arc in A9 from the vertex

v 2 V9 corresponding tov; to all vertices vy 2 V°with weight !,

, and cost ; such that the
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corresponding verticesvy 2 VY belongs to any sequencdy 2 J , such that J; Jx in J ;
3. Add two arti cial vertices v{ and v?in V@
4. Add an arc from v2 to each vertexv®2 V°n fv0g with weight 0 and cost 0;

5. Add an arc from each vertexv?2 V°nfv2 vl to v? with weight !, and cost ;;

The computation of the maximal independent set of G is equivalent to computing the longest
path from s to v in G% Indeed, by construction, any path in G° represents an independent set of
G’. The computation of the longest path of a direct acyclic graph can be done irO(jV{ + jAY) time
using the Bellman's algorithm (Dasgupta et all,|2008). In the case of the MWBIS problem when a
maximal budget B is given, a modi cation in the Bellman's algorithm can be done by storing at each
vertex v) 2 VOthe best known path from v to v with di erent weights up to B. Hence, such a
modi ed version of the algorithm is pseudo polynomial, in space and in CPU time, with complexity
O(jBj(jVy + jAY)). In our study, the budget B is bounded by the number of time periodsT, which

guarantees a polynomial complexity.

An extension of the MWBIS problem is to consider k-budgets, denoted as the Maximum Weight
k-Budgeted Independent Set problem (MWKBIS). Formally, it consists in selecting the independent
set S of a graph G = (V;E), with weights ! ; for v 2 V and k-cost K, dened as .,, for each
v 2 V;k 2 K, that gives that highest total weight (i.e., P vos !v) and that respects the budgetsBy for
eachk 2 K (i.e., P v2s kv By foreachk 2 K). The same reduction from the Maximal Independent
Set (MIS) of an interval graph to the computation of the longest path of a DAG can be done and
the Bellman's algorithm can be adapted to support k-budgets with complexity O(jBjXi (jVj + jAj)).
Since the number of budgets corresponds to the number of the batteries and that the values &y are
bounded by T, the algorithm is pseudo-polynomial. In this thesis, we chose to extend the formulation
proposed by Kalra et al| (2017) to considerk budgets (i.e., to consider multiple budgetsNy). Since
the sites of instances considered in our work do not have a high number of batteries installed, this

part of the problem can be solved e ciently with a conventional MILP solver.

We consider that the interval graph G = ( V;E), the list J of maximal cliques (i.e., the intervals)
of the topological increasing representation ofG on the start time of the intervals, the weights ! ,, and
the solutions S; for all v; 2 V are given, as well as the values oy, for all b2 B. Then, the following

auxiliary parameters are considered:
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b . the number of times that the battery bis used in the solutionS; (i.e., the "cost" of selecting

the nodev; in the budget Ny).

" Vj: set of nodesy; in the clique j 2J .
The following variables are considered:
" Xy, 210;1g: equal to 1 if the nodev; is taken into the nal solution, and to O otherwise.

Finally, (MWKBIS-MILP) can be written as follows:

X
max v Xy;
vi2V
s.t. Xy, 1 8j 2J (4.39)
Vi 2V
X
bvXv;  Nb 8b2 B (4.40)
vi2V
xy, 210;1g 8vi 2V (4.41)

4.4.1.2 Alternative con ict graph construction

The standard version of this heuristic considers that an edge is added between two nodes if at least
one battery is used in the solution of the corresponding nodes as described at Step 3a. However, such
an edge creation criteria can be modi ed by distinguishing which battery is used at each time period
to create a conict edge. Formally, an edgee = (v;;V;) is added if a battery b in the corresponding
solution S; is used at a time periodt 2 T; \ T j and if the same battery b is used in the solutionS; at
the same time periodt. However, the computation of the Maximum Weighted Budgeted Independent
Set at Step 4 can no longer be done in pseudo-polynomial time as presented in Sectjon 4.4.1.1 because

there is no guarantee thatG is an interval graph anymore.

Figure[4.3 illustrates the impact of such a modi cation in the edge creation criteria. In the example
illustrated the site is equipped with two identical batteries by and bp. In addition, we consider a
constant power demand over the time horizon of 1kW and the parameters =4 and 9= 2. Based on
these parameters, 4 sub-problems will be considered: OMBSROMBSR,, OMBSR3 and OMBSR4
with solutions S1, S2, S3 and S4, respectively (see Figure 4.3-d). Hence, the gra@tcreated in OMBSR-

G-HEUs composed by 4 nodes. For the standard edge creation criteriaC(1 in the example), an edge

126



4.4. SOLVING HEURISTICS

Figure 4.3 { lllustration of the edge creation criteria for OMBSR-G-HEWth =4 and °= 2 for a
given instance with 2 identical batteries.

will be added between solutions S1 and S2, because at time period 4, at least one battery is used in the
solutions of both sub-problems (i.e., the battery 1 is recharging at time period 4 in S1 and the battery
2 is in discharge at the same time period in S2). Note that no battery is used in S3 and in S4. In fact,
the energy prices are constant from time period 5 and using batteries is not pro table. Consequently,
the solution of C1 is composed exclusively by S1, giving savings df.5e (Figure [4.3-b illustrates the
power bought and the energy level of the batteries foIC1). However, with the modi ed edge creation
criteria (C2 in the example), the corresponding graphG has no edge because the batteries used in S1
and S2 are not the same one. Hence, the solution provided b MBSR-G-HE\ith C2 is composed by
S1 and S2, giving savings o2:0e (Figure 4.3-c illustrates the power bought and the energy level of
the batteries for C2). Note that the optimal solution for this example is the same one as the solution
obtained with C2. On the one hand, the solutions obtained with the modi ed edge creation criteria
tends to generate more savings. On the other hand, there is no guarantee that the resulting grapt

is an interval graph. Figure [4.4 illustrates an example considering =4 and =1 with 2 batteries
for which the graph G is not an interval graph when the modi ed edge creation criteria (criteria C2)

is considered instead of criteriaC1. In this example, the graph G obtained considering the criteria

Clis a complete graph and an interval graph. However, the graphG obtained whenC2 is considered
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Figure 4.4 { lllustration of the impact of the edge creation criteria on the chordal properties of the
graph G created by OMBSR-G-HEU

is no longer an interval graph.
4.4.2 Relax-and- x approach

This section presents a relax-and- x heuristic (Suerie and Stadtler| 2003) for solving OMBSR based

on:

" The partial relaxation of the binary variables of the mathematical model described in Section 4.p;

" The resolution of the resulting model in which the number of binary variables is small enough

to be solved with a conventional MILP solver through a branch-and-bound method;

" The xation of the values of a subset of variables from the optimal solution obtained in the

previous step.

Such steps compose one iteration of the heuristic, which is executed several times as described in
the following. The main idea is to de ne sets of variables, denoted asvindows, that will be relaxed

and xed in each iteration.

The proposed heuristic designates the time horizon in three windowstrozen, decision and relaxed
ones. In thefrozen window, the values of the variables are xed to the optimal values obtained in the
previous iterations. In the decision one, the integrity constraints are observed. In therelaxed window
the integrity constraints are relaxed. To this end, two integer parameters and °(0< © ) are
considered in this heuristic: is the number of time periods of thedecision window (i.e., for which
the integrity of the binary variables is maintained), and °represents the scrolling window, in number

of time periods, for which the values of the corresponding variables are xed in each iteration.
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Let us denote asT':T9 and T' the set of time periods of the frozen, decision and relaxed
windows, respectively. Formally, for a given OMBSR instance composed gfT j time periods, and its

mathematical model M , each iteration i of the heuristic is composed of four steps:

1. De nition of the sets T ;T9and T": Tf = f1;:::; 4 1)g8 2or; ifi=1,T9=

2. Relaxation of the integrality constraints in M in the relaxed window: for eacht in T" (in the

case of(OMBSR-MILP) all variables z,; and B'2" for eachbin B 2 f 0; 1g);
3. Solve the modelM ;

4. Setting the values of a subset of variables ifT ¢ in M : For each binary variable with index t in
f Y 1+1;:0 4 1)+ Y(ie, inthe case of(OMBSR-MILP) , all variables zy; and by

for eachbin B), x the value of the variable to its optimal value obtained at Step 3.

Concerning the iterations of the heuristic, Steps 1 to 4 will be executedi™e+ 1 times (i.e., for

and, in the last one, the relaxed one does not exist (i.e.,T" = ;). In the last iteration, if a feasible
solution for M is found, it is also a feasible solution for the whole problem due to the fact that in each

iteration Step 4 respects all the constraints of the model.

Figure 4.5 illustrates the three windows of the model obtained from Steps 1 and 2 of the relax-and-
X procedure for two consecutive iterations i and i +1. In this example the time horizon is composed
of 168 time periods and the parameter values are = 48 and °= 24. The frozen window at Step 3
in iteration i is composed by 24 time periods for which the optimal values of the variables previously
computed are xed. The decision window is composed by 48 time periods and theelaxed window
by 96 time periods. Note that at Step 4 of iteration i, the values of the rst ©time periods of the
decision window are xed at their optimal values obtained at Step 3. In the iteration i+ 1, the frozen

window at Step 3 is then composed by 48 time periods.

One of the advantages of the proposed heuristic is that it is able to produce good upper bounds
for the problem in a short running time. Note that the e ciency of this heuristic depends directly on

the values of the parameters and °
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Figure 4.5 { lllustration of the three windows obtained from Steps 1 and 2 of the relax-and- x procedure
on iterations i and i +1 of an instance containing 168 time periods, considering = 48 and %= 24.

4.5 Numerical experiments

In order to assess the e ciency and relevance of our solving approaches for optimizing the savings
that can be obtained from the demand-response mechanism, we performed some numerical experiments
on realistic instances. Several sites with di erent consumption pro les and settings are considered,
generated from internal data of the French telecommunications operator Orange. The energy costs

are taken from public historic data of the French retail market.

Three solving approaches are considered. Firstly, the default branch and bound algorithm of the
commercial solver CPLEX performed on the formulations (OMBSR-MILP) and (OMBSR-MILP’) ,
that will be denoted by OMBSR-MIL&nd OMBSR-MILPrespectively. Secondly, the general heuristic
presented in Section parameterized by ; 9 2 f (48;24);(36;12); (24;12)g, that will be de-
noted by OMBSR-G-HEHEinally, the relax-and- x heuristic presented in Section parameterized
by (; 9 2f(48;24);(24;12)g, that will be denoted by OMBSR-RF-HEThe arguments (essentially the
periodical structure of energy costs and demand of our data) for choosing these parameters for the
tested instances are given in Section 4.5.1.1. We observe that the recharging process of the batteries
takes on average between 12 and 20 hours when they are discharged upBg'™. Hence considering

=48 allows explore di erent discharge levels in di erent periods of the day.
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(b) Power demand generated with a randomness of

a) Power demand generated from observed data.
@ 9 25% of the observed data.

Figure 4.6 { Power demand over a week of two instances generated from data of a given site.

The numerical experiments are organized as follows. Firstly, in Sectiofi 4.5/1, we describe the
instances and the settings used in our tests. Then, in Sectiop 4.5.2 we present the results of OMBSR
instances solved usin@®@MBSR-MI.®MBSR-MILPOMBSR-G-HEdOd OMBSR-RF-HBWbte that, in this
section, we present and describe a synthetic table of results, grouped by the number of batteries and
number of time periods. The complete numerical results are available in (Silve, 2021). In the following,

we discuss the computational results and we analyse the economic impacts in Sectipn 4]5.3.

4.5.1 Instances description

We based our testbed on 100 urban and rural sites from the xed network of the French telecom-
munications operator Orange. The power %onsumption and the mean, or average value, of the power
demand over the horizon, denoted byw = %W‘ is also given. Moreover, the power demand of 50
sites is faithfully generated considering the observed data without any random variation. In contrast,
the power demand of 50 sites is generated with a randomness of 25% of the original observed data.
Figure [4.9 illustrates the power demand of two instances based on the data of a given site: Figure 4|6a
illustrates the power demand of an instance faithfully generated from original data, and Figurd 4.6p

the power demand with a randomness of 25%.

Each site is equipped with at most 5 batteries, whose main properties are provided in what follows.
The autonomy of the batteries varies between 20 and 60 hours. Besides, two types of batteries are

installed (GEL and AGM), the recharge power rate Pg, being dependent of each type:

1. Pg, = 1:95%of B{"®=for GEL batteries;

2. Pg, =3:34%o0of B{"™= for AGM batteries.
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In addition, the minimal power discharge D" is 10% of D", which is di erent for each battery b.
Finally, the value of Bg“” is 50% of the battery energy stock capacity, and each battery cannot be
used more than 144 times over a year. More precisely, the value &y, considered in our tests is 3

times the number of weeks.

Concerning the data related to the distributor, we consider the unit energy prices from the French
distributor EDF, publicly available at data.gouv.fr (2020). Besides, the maximum amount of power
that can be purchased per time periodP ™ is established in a contract. In our tests, to guarantee
that the value of P™# is greater than the power demandW; at any time period t 2 T , we set such a

value to 3W.

Moreover, we assume time horizons of length one, two or three weeks with time discretization
of 60 minutes (i.e., =1 and T 2 f 168 336 504g). The input values of the power demand, unit
energy price, and reward over the time horizon, are taken as average observed values. Our tests were

performed on 300 instances.

All tests were performed on a server computer with 4GB of RAM and 1 Intel Xeon 2.2GHz CPU.
The method used to solve the(OMBSR-MILP) and (OMBSR-MILP") formulations is the branch-
and-bound implemented in CPLEX 12.9, with default settings. The running time is limited to 30
minutes for each instance. We limited the running time to 30 minutes because no signi cant gains
were observed when running some instances for 3 hours, i.e., for those instances, we observe solutions
that give on average 0.114% more savings when the running time is extended. Moreover, the optimality
gap decreases on average by 19% when the running time is set to 3 hours (i.e., it decreases on average

from 50.84% when running time is set to 30 min to 40.53% with running time set to 3 hours).

4.5.1.1 Parameters tuning

The way the parameters values ofOMBSR-HEdUe set is based on the real observed data for the
instances considered in our testbed. Firstly, we observed a daily periodicity in the energy prices and
power demand over the time horizon. Figure§ 4]7 andl 4]8 illustrate such a periodicity for a site over
a week. We observe that the energy usually costs more in the afternoon which is also the period of
the day with the highest power demand. In addition, the energy tends to cost less during the night
following which is also the period where the power demand decreases. Hence, using batteries in the

day and recharging them during the night appears to be the best strategy to reduce the total energy
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Figure 4.7 { Power demand of a site over a week. Figure 4.8 { Energy prices of a site over a week .

cost for the company. Secondly, by analyzing the properties of the batteries we observe that they can
be used for 9 hours on average and they need about 17 hours on average to be fully recharged. Hence,

a complete battery cycle takes 26 hours on average.

Finally, for the graph based heuristic we consider the parameters =48 (we have that 26 < 48<
24 +26 =50) and °= 24 due to the daily periodicity observed. The value of the parameter = 48
is chosen because a complete cycle can be done in any time period of the periodicity of 24 hours. As
close isto 50, more exibility on the use of the batteries is allowed. The same periodicity is observed

for all sites over a week.

4.5.2 Numerical results

In this section we present the results concerning OMBSR instances solved witdMBSR-MI.PMBSR-
MILP', OMBSR-G-HEdd OMBSR-RF-HEA detailed version of the experiments is available in |(Silva,

2021). The experimental analysis will be provided in the next section.

Table [4.7 shows the numerical results concerning OMBSR instances solved witbMBSR-MILP
this table, each row stores the average of the results for a subset of instances, grouped by the numijigy
of batteries installed in the site and by the number of weeks considered. ColumiV randcorresponds
to the randomness variation in the power demand of instances. Columistand. Cost corresponds to
the average of the standard cost, i.e., the cost when no battery is used, equal t% to1 EtW¢. Column
W and Pg report the mean of W and Pg, respectively. Besides, the average running time, given
in seconds, and the average reduction in the total energy cost, given ifb, are provided in columns
CPU Timeand savings . In addition, column Final GAP reports the average optimality gap, i.e., the
relative gap between the value of the best integer solution obtained by CPLEX and the best lower
bound computed. Column LR savings and GAP at root reports the average savings achieved by

the continuous relaxation, and the average optimality gap reached at the root of the branch and bound
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tree, respectively. Furthermore, columns Nb of Var, Int Var and Nb of Const. report the mean

number of variables, the mean percentage of integer variables and the mean number of constraints,

respectively.
Table 4.1 { OMBSR-MILRsuUlts
W - Stand. W Ps CPU Final LR GAP Nb of | Int Nb of
rand IR Cost (kw) | (kw) | Time (s) | GAP | savings | savings | atroot | Var | Var | Const.
0% 1 1 634.6 € 3.74| 0.78 341 | 0.1% | 2.45% | 4.08% 69% | 1176 | 43% 2523
0% 1 2 585.1€ 3.45| 0.39 1800 | 33.8% | 2.50% | 4.19% 107% | 2184 | 46% 4710
0% 1 3 585.3 € 3.45| 0.23 1800 |41.7% | 2.41% | 4.02% 134% | 3192 | 47% 6897
0% 1 4 713.2€ 420 | 0.22 1800 |49.9% | 2.30% | 3.99% 144% | 4200 | 48% 9084
0% 1 5 507.4 € 299 | 0.14 1800 |54.3% | 2.44% | 4.27% 180% | 5208 | 48% | 11271
0% 2 1]1269.8€ 3.74| 0.78 1800 | 36.3% | 2.48% | 4.23% 127% | 2352 | 43% 5043
0% 2| 2[11699¢€ 345 | 0.39 1800 |528% | 251% | 4.35% | 132% | 4368 | 46% | 9414
0% 2| 3[11695€ 344 | 0.23 1800 |64.6% | 231% | 417% | 163% | 6384 | 47% | 13785
0% 2| 4]114265€ 420 | 0.22 1800 |68.2% | 2.26% | 4.13% | 165% | 8400 | 48% | 18156
0% 2| 5[10176€ 3.00 | 0.14 1800 |73.8% | 2.35% | 4.42% | 183% | 10416 | 48% | 22527
0% 3| 1[1904.8€ 3.74| 0.78 1800 |47.2% | 2.48% | 4.28% | 126% | 3528 | 43% | 7563
0% 3 2|17528¢€ 3.44 | 0.39 1800 | 65.0% | 2.45% | 4.40% 142% | 6552 | 46% | 14118
0% 3 3|1753.7€ 3.44 | 0.23 1800 | 70.2% | 2.31% | 4.22% 172% | 9576 | 47% | 20673
0% 3 412140.0€ 420 | 0.22 1800 | 72.4% | 2.26% | 4.18% 181% | 12600 | 48% | 27228
0% 3 5|15276€ 3.00| 0.14 1800 | 79.0% | 2.34% | 4.46% 239% | 15624 | 48% | 33783
25% 1 1 634.6 € 3.74| 0.78 1560 | 39.5% | 2.28% | 3.98% 116% | 1176 | 43% 2523
25% 1| 2| 5851¢€ 345 | 0.39 1459 |35.1% | 2.53% | 4.33% | 142% | 2184 | 46% | 4710
25% 1] 3| 5853¢€ 345 | 0.23 1483 |39.3% | 251% | 4.28% | 161% | 3192 | 47% | 6897
25% 1] 4| 7132¢€ 420 | 0.22 1545 36.3% | 2.30% | 3.90% | 137% | 4200 | 48% | 9084
25% 1 5 507.4€ 299 | 0.14 1800 | 50.4% | 2.52% | 4.37% 195% | 5208 | 48% | 11271
25% 2| 1[1269.8€ 3.74| 0.78 1800 |648% | 2.23% | 4.12% | 114% | 2352 | 43% | 5043
25% 2 2]111699¢€ 3.45| 0.39 1800 | 62.3% | 2.45% | 4.49% 210% | 4368 | 46% 9414
25% 2 3]|11695¢€ 3.44 | 0.23 1800 | 64.3% | 2.43% | 4.44% 159% | 6384 | 47% | 13785
25% 2 4114265€ 420 | 0.22 1800 | 63.7% | 2.21% | 4.05% 167% | 8400 | 48% | 18156
25% 2 5|/10176¢€ 3.00| 0.14 1800 | 72.0% | 2.41% | 4.52% 174% | 10416 | 48% | 22527
Table 4.2 { OMBSR-MILRith a warm-up results

w weeks | jBj Stand. W CPU Final savings CPU Time Final GAP savings
rand Cost (kW) Time (s) GAP Warmed (s) Warmed Warmed
0% 1 1 634.6 € 3.74 341 0.1% 2.45% 618 0.5% 2.45%
0% 1 2 585.1 € 3.45 1800 | 33.8% 2.50% 1800 33.0% 2.50%
0% 1 3 585.3 € 3.45 1800 | 41.7% 2.41% 1 800 41.7% 2.40%
0% 1 4 7132 € 4.20 1800 | 49.9% 2.30% 1800 52.0% 2.28%
0% 1 5 507.4€ 2.99 1800 | 54.3% 2.44% 1 800 54.4% 2.43%
0% 2 1| 1269.8€ 3.74 1800 | 36.3% 2.48% 1800 37.0% 2.48%
0% 2 2111699 3.45 1800 | 52.8% 2.51% 1800 57.3% 2.44%
0% 2 3| 11695€ 3.44 1800 | 64.6% 2.31% 1800 65.1% 2.31%
0% 2 4 | 1426.5€ 4.20 1800 | 68.2% 2.26% 1 800 74.5% 2.18%
0% 2 5| 10176<€ 3.00 1800 | 73.8% 2.35% 1 800 73.1% 2.37%

Table [4.7 stores the numerical results concerning the OMBSR instances solved witdMBSR-MILP
with a warm-up, i.e., when the solution from OMBSR-RF-HEJgiven to CPLEX as a starting solution.
In this table, each row stores the average of the results for a subset of instances, grouped by the number

jBj of batteries installed in the site and by the number of weeks considered in the optimization. Column
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W randcorresponds to the randomness variation in the power demand of instances. Colum@tand.
Cost corresponds to the average of the standard cost, i.e., the cost when no battery is used, equal to
P to1 EtWt. Column W reports the mean of W. Besides, the average running time, given in seconds,
and the average reduction in the total energy cost, given irto, when (OMBSR-MILP) is solved without

a warm-up are provided in columnsCPU Timeand savings . In addition, column Final GAP reports
the value of the average optimality gap, i.e., the relative gap between the value of the best integer
solution obtained by CPLEX and the best lower bound computed, when(OMBSR-MILP) is solved
without a warm-up. Column CPU Time WarmedFinal GAP Warme@nd savings Warmedreport
the mean CPU time, given in seconds, the mean optimality gap and the mean savings obtained when
(OMBSR-MILP) is solved with a warm-up, respectively. Note that columnsCPU Timeand Final GAP
are the same ones presented in Table 4.1.

Table 4.3 { OMBSR-MILR\umerical results

W oks | | Stand | w %i‘é Final LR | GAP Nb | Nbof | Int | Nbof
rand 15 Cost (kW) GAP savings | savings | at root | of Pairs Var Var | Cons.
0%

)

634.6 € 3.74 | 1 090 1.5% | 2.45% | 4.08% 71% 14112 | 15120 | 96% 2522
0%
0%

585.1€ 3.45 | 1 800 42.3% | 2.52% | 4.19% 86% 14112 | 30072 | 96% 4708
585.3€ 3.45 | 1 800 52.3% | 2.39% | 4.02% | 110% 14112 | 45024 | 96% 6894
0%
0%

713.2€ 4.20 | 1 800 67.4% | 2.21% | 3.99% 127% 14112 | 59976 | 96% 9080
507.4€ 2.99| 1800 | 1252.3% | 1.69% | 4.27% 109% 14112 | 74928 | 96% | 11266

0% 1269.8€ 3.74 - - - - - 56448 | 58464 | 98% 5042
0% 1169.9€ 3.45 - - - - - 56448 | 116592 | 98% 9412
0% 11695¢€ 3.44 - - - - - 56448 | 174720 | 98% | 13782
0% 14265<€ 4.20 - - - - - 56448 | 232848 | 98% | 18152
0% 1017.6€ 3.00 - - - - - 56448 | 290976 | 98% | 22522
0% 19048<€ 3.74 - - - - - | 127008 | 130032 | 98% 7562
0% 17528¢€ 3.44 - - - - - | 127008 | 259560 | 99% | 14116
0% 1753.7€ 3.44 - - - - - | 127008 | 389088 | 99% | 20670
0% 2140.0€ 4.20 - - - - - | 127008 | 518616 | 99% | 27224

15276€ 3.00 - - - - - | 127008 | 648144 | 99% | 33778
634.6 € 3.74 | 1 600 56.2% | 2.20% | 3.98% 86% 14112 | 15120 | 96% 2522
585.1 € 3.45| 1521 44.9% | 2.48% | 4.33% 118% 14112 | 30072 | 96% 4708
585.3 € 3.45 | 1 595 69.2% | 2.30% | 4.28% 64% 14112 | 45024 | 96% 6894
713.2€ 4.20 | 1 640 53.8% | 2.20% | 3.90% 99% 14112 | 59976 | 96% 9080
507.4€C 2.99 | 1800 69.6% | 2.41% | 4.37% 103% 14112 | 74928 | 96% | 11266

0%
25%
25%
25%
25%
25%

W[ W W W[ WINNNNN PR PR W W W w W NNDNNN PP PR
QB WN RO BRWN RO W N R OB W N RO AW N RO B W N -

25% 1269.8€ 3.74 - - - - - 56448 | 58464 | 98% 5042
25% 1169.9€ 3.45 - - - - - 56448 | 116592 | 98% 9412
25% 11695€ 3.44 - - - - - 56448 | 174720 | 98% | 13782
25% 14265€ 4.20 - - - - - 56448 | 232848 | 98% | 18152
25% 10176€ 3.00 - - - - - 56448 | 290976 | 98% | 22522
25% 1904.8€ 3.74 - - - - - | 127008 | 130032 | 98% 7562
25% 17528<€ 3.44 - - - - - | 127008 | 259560 | 99% | 14116
25% 1753.7€ 3.44 - - - - - | 127008 | 389088 | 99% | 20670
25% 21400<C 4.20 - - - - - | 127008 | 518616 | 99% | 27224
25% 15276<€ 3.00 - - - - - | 127008 | 648144 | 99% | 33778

Table [4.3 stores the numerical results concerning the OMBSR instances solved witBMBSR-MILP'
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In this table, each row stores the average of the results for a subset of instances, grouped by the number
jBj of batteries installed in the site and by the number of weeks considered in the optimization. Column
W randcorresponds to the randomness variation in the power demand of instances. ColumBtand.
Cost corresponds to the average of the standard cost, i.e., the cost when no battery is used, equal to
P o1 EtWi. Column W reports the mean of W. Besides, the average running time, given in seconds,
and the average reduction in the total energy cost, given irfo, are provided in columnsCPU Timend
savings , respectively. In addition, column Final GAP reports the value of the average optimality
gap, i.e., the relative gap between the value of the best integer solution obtained by CPLEX and the
best lower bound computed. Column LR savings and GAP at root reports the average savings
achieved by the continuous relaxation, and the average optimality gap reached at the root of the
branch and bound tree, respectively. Note that for some instances a feasible solution was not reached
at the root of the branch and bound tree. Furthermore, columns Nb of Pairs, Nb of Var, Int
Var and Nb of Const. report the mean number of pairs(f;1 ) in (OMBSR-MILP") , the mean number
of variables, the mean percentage of integer variables and the mean number of constraints, respectively.

Note that such tests were performed only for instances optimized over one week. For instances with

two or three weeks the creation time takes more than 30 minutes.
Table 4.4 { OMBSR-G-HEUmerical results

(48.24) (36.12) (24.12)
Time (s) Time (s) Time (S)
0% 1 1 634.6 € 3.74 2 2.19% 3 2.07% 2 1.60%
0% 1 2 585.1€ 3.45 8 2.44% 6 2.24% 4 1.96%
0% 1 3 585.3€ 3.45 41 2.36% 15 2.14% 7 1.86%
0% 1 4 713.2€ 4.20 193 2.29% 59 2.11% 11 1.85%
0% 1 5 507.4€ 2.99 252 2.45% 125 2.24% 17 2.04%
0% 2 1] 12698%€ 3.74 4 2.23% 6 2.12% 5 1.69%
0% 2 2 111699¢€ 3.45 16 2.41% 13 2.27% 9 1.97%
0% 2 3| 11695€ 3.44 81 2.36% 30 2.18% 14 1.88%
0% 2 4 | 14265€ 4.20 390 2.29% 119 2.14% 22 1.87%
0% 2 5] 10176€ 3.00 520 2.44% 229 2.29% 34 2.05%
0% 3 1] 19048€ 3.74 7 2.22% 8 2.21% 7 1.70%
0% 3 2 | 17528%€ 3.44 25 2.41% 20 2.36% 14 1.96%
0% 3 3| 1753.7¢€ 3.44 123 2.36% 48 2.27% 22 1.89%
0% 3 4 | 2140.0€ 4.20 580 2.29% 196 2.22% 34 1.86%
0% 3 5| 1527.6€ 3.00 791 2.44% 375 2.38% 53 2.05%
25% 1 1 634.6 € 3.74 125 2.25% 81 2.09% 9 1.79%
25% 1 2 585.1€ 3.45 81 2.43% 27 2.27% 8 1.97%
25% 1 3 585.3€ 3.45 163 2.48% 73 2.22% 12 1.83%
25% 1 4 7132 € 4.20 81 2.18% 27 2.02% 7 1.71%
25% 1 5 507.4 € 2.99 173 2.48% 65 2.32% 13 2.08%
25% 2 1| 1269.8€ 3.74 260 2.23% 158 2.11% 17 1.82%
25% 2 2| 11699€ 3.45 173 2.44% 55 2.29% 17 2.02%
25% 2 3| 11695€ 3.44 343 2.45% 130 2.27% 25 1.92%
25% 2 4| 14265<€ 4.20 170 2.19% 54 2.05% 14 1.73%
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Table 4.4 continued from previous page
(48.24) (36.12)

(24.12)

ana | veeks | B | G |y | CPU | g cPu | Gl | CPU | inee
Time (s) Time (s) Time (S)
25% 2 5] 10176€ 3.00 352 2.48% 129 2.34% 26 2.10%
25% 3 1] 19048€ 3.74 397 2.23% 254 2.18% 26 1.82%
25% 3 2 | 17528%€ 3.44 265 2.45% 92 2.39% 26 2.03%
25% 3 3| 1753.7€ 3.44 514 2.46% 211 2.37% 37 1.95%
25% 3 4 | 2140.0€ 4.20 262 2.17% 90 2.14% 21 1.75%
25% 3 5| 15276<€ 3.00 548 2.47% 210 2.43% 39 2.10%

Table [4.4 stores the numerical results concerning the OMBSR instances solved witbMBSR-G-HEU
considering the parameters(; 9 2 f (48;24);(36;12);(24;12)g. In this table, each row stores the
average of the results for a subset of instances, grouped by the numb@j of batteries installed in the
site and by the number of weeks considered in the optimization. Column W randcorresponds to the
randomness variation in the power demand of instances. Columistand. Cost corresponds to the
average of the standard cost, i.e., the cost when no battery is used, equal t% to1 EtWt. Column W
reports the mean ofW. Besides, the average running time, given in seconds, and the average reduction
in the total energy cost, given in %, are provided in columnsCPU Timeand savings for each pair of

values(; 9 considered, respectively.

Table [4.5 stores the numerical results concerning the OMBSR instances solved witbBMBSR-RF-HEU
considering the parameters(; 9 2 f (48;24);(24;12)g. In this table, each row stores the average of
the results for a subset of instances, grouped by the numbgBj of batteries installed in the site and by
the number of weeks considered in the optimization. Column W randcorresponds to the randomness
variation in the power demand of instances. ColumnStand. Cost corresponds to the average of the
standard cost, i.e., the cost when no battery is used, equal toP to1 EtWt. Column W reports the
mean of W. Besides, the average running time, given in seconds, and the average reduction in the
total energy cost, given in%, are provided in columnsCPU Timeand savings for each pair of values

(; 9 considered, respectively.

Table 4.5 { OMBSR-RF-HBEUmerical results

w . Stand. W (48.24) (48.24) (24.12) (24.12)

rand weeks| JBj Cost (kW) cPU savings CcPU savings
Time (s) Time (s)

0% 1 1 634.6€ 3.74 4| 2.14% 2| 2.02%

0% 1| 2 585.1€ 3.45 76 | 2.22% 7| 2.18%

0% 1] 3 585.3€ 3.45 340 | 2.13% 17 | 1.99%

0% 1| 4 713.2€ 4.20 792 | 2.10% 89| 1.96%
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Table 4.5 continued from previous page

W .| Stand. W Gl (48.24) (24.12) (24.12)
rand WiEE S| 2] Cost (kW) e savings CPU savings
Time (S) Time (S)
0% 1| 5 507.4€ 2.99 854 | 2.27% 161 | 2.16%
0% 2 1| 1269.8€ 3.74 10| 2.07% 8| 2.15%
0% 2| 2]1169.9€ 3.45 243 | 2.16% 26| 2.27%
0% 2| 3|11695¢€ 3.44 759 | 2.09% 67| 2.17%
0% 2| 4]1426.5€ 4.20 1211 2.01% 304 | 2.08%
0% 2 511017.6€ 3.00 1299 2.23% 642 | 2.27%
0% 3 1/|1904.8¢C 3.74 22| 2.20% 19| 2.25%
0% 3| 2]1752.8€ 3.44 409 | 2.28% 65| 2.34%
0% 3| 3]1753.7€ 3.44 1249| 2.24% 153 | 2.26%
0% 3| 4] 2140.0€ 4.20 1777 2.14% 504 | 2.17%
0% 3| 5]1527.6€ 3.00 1800| 2.32% 1063| 2.34%
25% 1 1 634.6€ 3.74 413 | 2.09% 109 | 1.99%
25% 1 2 585.1€ 3.45 402 | 2.25% 34| 2.18%
25% 1] 3 585.3€ 3.45 542 | 2.28% 85| 2.16%
25% 1 4 713.2€ 4.20 349 | 2.04% 42 | 1.94%
25% 1| 5 507.4€ 2.99 703 | 2.32% 105| 2.27%
25% 2 1| 1269.8€ 3.74 779 | 1.98% 343 | 2.04%
25% 2| 2]1169.9€ 3.45 683 | 2.20% 118 | 2.31%
25% 2| 3]1169.5€ 3.44 883 | 2.23% 301 | 2.29%
25% 2| 4]1426.5€ 4.20 700 | 1.96% 140 | 2.01%
25% 2| 5]1017.6€ 3.00 1156 2.25% 385 | 2.33%

4.5.3 Experimental analysis

In the following we analyse the results presented in the previous section.

We begin by focusing on the running time and observe a signi cant impact of the number of time
periods and number of batteries installed on the performance of all algorithms. Indeed, we observe
that the size of the problem increases as the number of batteries installed and the number of time

periods increase.

Concerning OMBSR-MIL.Bptimal values are obtained only for 19 instances where sites have a single
battery with a week time horizon, corresponding to 7.6% of all the tested instances. For all other
instances, no optimality guarantee is observed within the CPU time limit. Moreover, the optimality
gap observed is signi cant, varying from 33.8% on average for instances where the site is equipped

with 2 batteries for a one-week time horizon, up to 7% on average for larger instances where the site
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is equipped with 5 batteries for a three-week time horizon. However, the best solution found gives a
reduction in the energy bill (2.38% on average) even for the instances with no optimality guarantee.
In addition, the optimality gap found at the root of the branch and bound tree is higher than the nal
optimality gap obtained (153% and 54%, respectively), which shows that CPLEX is able to improve
the bounds over the iterations. We observe that 57.% of instances solved to optimality have a well
de ned periodicity, i.e., with no randomness in the power demand. In addition, the average gap for
those instances is smaller compared to instances with power randomness 0f%2%47.6% and 52.8% for
instances with one or two weeks, respectively). Henc&)MBSR-MILEends to perform slightly better for
instances with no randomness in the power demand. In spite of the fact that the number of variables
and constraints grows linearly with the number of time periods, even for instances with a single
battery installed for which we can use the algorithm proposed in Chapter B to solve in polynomial
time, OMBSR-MIL&annot reach an optimality guarantee within the CPU time limit for instances with

a single battery for a two-week time horizon or more.

Supplementary results are displayed in Tablg 4. foOMBSR-MIL®hen an initial solution is given
to CPLEX. In these tests, we set the initial solution as the solution obtained from OMBSR-RF-HEU
We aim to analyze if CPLEX is able to obtain a rst feasible solution or to converge to an optimal
solution. We tested only instances with one and two weeks time horizon with randomness of@, for a
total of 100 instances. We observe that the nal solution obtained by CPLEX when an initial solution
is given is better than the ones with no initial solution for 48% of the instances tested. The solutions
obtained are 1.486 better on average. However, no optimality guarantee is obtained for any instance

tested that is not solved to optimality with no initial solution.

Concerning OMBSR-MILPonly instances with one-week time horizon are tested. In this context,
optimal values are obtained only for 14 instances where the site has a single battery installed, corre-
sponding to 14% of all instances tested. For all other instances, no optimality guarantee is observed
within the CPU time limit. Moreover, the optimality gap observed is signi cant, varying from 1.5 %
on average for some instances where the site is equipped with a single battery, up to 126®n average
for larger instances where the site is equipped with 5 batteries. However, the best solution found gives
a reduction in the energy bill (2.2%% on average) even for the instances with no optimality guarantee.
In addition, the optimality gap found at the root of the branch and bound tree is higher than the

nal optimality gap obtained reached. However, no feasible solution is obtained at the beginning of
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the branch and bound method for some instances. Indeed, the values of ColumrFinal GAP can
be higher than the values of ColumnGAP at root because harder instances are not considered to
compute the value of ColumnGAP at root . In fact, for instances with two-weeks time horizon, the
model takes too much time to be created because of the computation of the sé&k. We can observe
that the number of variables and constraints increases much faster I{fOMBSR  MILP 9 than in

the (OMBSR  MILP ) model.

Concerning OMBSR-G-HE&IIl instances with one, two or three weeks time horizon are solved in
less than 30 minutes. We also observe that the number of batteries installed and the number of time
periods have an impact on the running time. Instances with 4 or 5 batteries with three-weeks time
horizon require more computational e ort because of the large number of sub-instances to be solved,
which are also harder to solve because of the combinatorial aspect related to the use of the batteries
installed. In addition, the parameters and Cimpact the running time of each sub-problem obtained
and the number of sub-problems. In fact, with a small value of , the number of sub-problems increases
but the running time required to solve each of one them decreases. Moreover, we observe that the
running time grows linearly with the number of time periods and quadratically with the number of

battery installed. Concerning © the number of sub-problems to solve increases as’increases.

Concerning OMBSR-RF-HEQ0% of all instances with one, two or three weeks time horizon tested
are solved in less than 30 minutes. Only instances with three-weeks time horizon with 5 batteries
could not be solved in 30 minutes. We also observe that the number of batteries installed and the
number of time periods have an impact on the running time. Instances with 4 or 5 batteries and
three-weeks time horizon require more computational e ort because of the large number of iterations
needed to be performed, as Step 2 is slower because of the combinatorial aspect related to the use of
the batteries installed. In addition, the parameters and Cimpact the running time of each iteration
and the number of iterations. We observe that the running time decreases as the values ofand °
decrease. In fact, with a small value of the number of iterations increases but the running time of
each one decreases because of the small number of integer variables considered at Step 2. Moreover,
the running time grows linearly with the number of time periods and quadratically with the number

of batteries installed.

Finally, to con rm the relevance of the approaches proposed, we illustrate in Fig[4.p the prole

of the best solution found by OMBSR-MILR the case of Site 7, where 3 batteries are installed, and
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Figure 4.9 { lllustration of the best solution found by OMBSR-MILf@r an OMBSR instance with 3
batteries with a week time horizon. a) Energy stock in each battery, and b) Power demand and power
bought over the time horizon.

must be with one-week time horizon. The variety of the use of the batteries is observed in all other
sites for OMBSR-MIL.RODMBSR-MILP'OMBSR-G-HEund OMBSR-RF-HEUhe power demand over the
time horizon is represented by the blue curve and the power e ectively bought by the orange one
(see Fig.b). The energy capacity of each battery installed is represented by the curves in green,
purple, and yellow (see Fig[4.9a). Firstly, we can observe that batteries can be used at di erent time
periods. In this context, their rst use and recharge are performed together, but, in the following,
they are used independently from each other. Even during the same battery discharge, there can be
di erent powers, such as in the second use of Battery-3. Moreover, a battery can be in discharge mode
while another one is recharging (e.g., the third use of Battery-1 and Battery-3), and the impact on the
maximal number of battery uses imposed (i.e.,N, = 3) is observed for Battery-2, that stays a long
time in rest mode for this reason. In this example, the energy bill is reduced by 2.7, con rming the
practical relevance of our approaches, and the large variety of battery uses illustrates the need for a

fast decision-making tool.

We now focus on the economic aspects of the solutions, and observe a reduction in the energy bill
for all solution approaches proposed, con rming that participating in the retail market can generate
savings for the company. Furthermore, no substantial gain is observed by increasing the number of
batteries installed in a site, since the sum of the powers of all batteries installed on the site is equivalent

N . . . . .
to W, ie, g D™ W. Indeed, the savings obtained are mainly limited by the maximal number
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of battery uses and by the fact that the sum of the powers of all batteries installed is equivalent to
the average of its power demand. Moreover, the impact oNy, in the savings is observed in all solving
methods. The number of times that each battery is used in any solution is exactlyNy, independently

of the solving method used.

Concerning the OMBSR-MILfesults, the savings obtained by the best solution found are of 2.3%

on average for instances with one, two or three weeks time horizon. Even for instances with 5 batteries,
the savings are quite the same and the gap is the same on average, such as represented in Tablg 4.1.
Furthermore, we observe similar savings and nal gaps on average for instances with a randomness in
the power demand, for instances without randomness in the power demand and when an initial solution

is given to CPLEX. However, when exploring instances having up to 24 weeks such as presented by
Silva et al. (2022) for which results are available in |(Silva,| 20211), we can observe that the savings
obtained by the best solution found decrease signi cantly when the time horizon and the number of
batteries installed increase. Such savings decrease from 2%80 0.26%, on average, for large instances

with 24 weeks time horizon.

Concerning the OMBSR-MILPesults, the savings obtained by the best solution found are slightly
smaller (2.28% on average) compared to the savings obtained b MBSR-MILPlowever, we can observe
that the di erence of savings obtained with OMBSR-MILRPand OMBSR-MIL§ows with the number of
batteries installed. In fact, there is no substantial gain, neither in CPU time nor in the savings, that

justi es the use of OMBSR-MILHhstead of OMBSR-MILP

Concerning OMBSR-G-HFile savings obtained are higher compared to the savings obtained with
OMBSR-MIL#s the number of batteries installed increases. For instances with a single battery installed
(for which optimality guarantee is obtained with OMBSR-MI)Psavings obtained usingOMBSR-G-HEU
are only 0.2%% smaller on average for =48 and °= 24, which seems acceptable for a heuristic that
performs 120 times faster, on average, for these instances. In addition, the parametersand Cimpact
the quality of the solutions obtained. We observe that large values of contributes to better savings,
which is totally expected because, as becomes smaller, the algorithm starts losing opportunities of
batteries usages that could give better savings. In our tests, the savings obtained with = 48 and

0= 24 are larger (0.1 larger on average compared to = 36 and °= 12, and 0.4%% larger on
average compared to =24 and °=12), and the combination =24 and °= 12 is more sensitive

to variations in the power demand (we observe savings 0.22 larger with a randomness of 256).
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Figure 4.10 { lllustration of the best solution found by OMBSR-G-HEtt di erent values of and °
for an OMBSR instance.

To illustrate the impact of the parameters and ©on the savings that can be obtained for an
OMBSR instance, Figure[4.10 provides the solution for di erent values of those parameters. In this
example, we consider a time horizon composed of 8 time periods and a constant power demand of 1kW.
In addition, only one battery is considered with D™ = D™ = Py = 0:5kW. In the rst scenario
(i.e., scenario S1 for =4 and °= 4), only two sub-problems will be considered byOMBSR-G-HEU
(i.e., from time periods 1 to 4 and from 5 to 8). In both sub-problems, the optimal solutions consist
in not using the battery. Then, the saving obtained is 0. In the scenario 2 and 4 (i.e., scenario S2 for

=4 and °=3 and scenario S4 for =2 and °=1), the sub-problems considered (i.e., from time
periods 1 to 4, 4 to 7, 7 to 8 for S2 and from time periods 1t0 2, 2t0 3,3to4,4to5,5t0 6, 6to 7 and
7 to 8 for S4) allow to use the battery at time period 4 and recharge it at time period 5, giving savings
of 0.5 in both cases. In the third scenario (i.e., scenario S3 for =4 and °=2), the sub-problems
considered (i.e., from time periods 1 to 4, 3to 6, 5 to 8 and 7 to 8) allow to use the battery at time
periods 3 and 4 by recharging it at time periods 5 and 6, giving savings ofel. We can observe in this
example the impact of the energy prices, of the power demand and of the battery properties on the
solution obtained for the values of the parameters and Cthat we consider. Indeed, for a given set of
parameters and © the solution obtained can be far from the optimal one in function of the energy
prices, power demand and batteries properties. To illustrate that, if an instance has high power prices
at the end of the time horizon of the sub-problems (i.e., scenario S2 of Figure 4.].0), the gap from the
solutions obtained to the optimal one depends mainly on the energy prices, and hence we can have

potentially low savings. For this example, the gap from the optimal solution is(E4s Es)Pge, which
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corresponds to(1 (E3+(Ej E?PEBG)PB )%.

Concerning OMBSR-RF-HRbe savings obtained are higher compared to the savings obtained with
OMBSR-MILd#s the number of batteries installed increases. Moreover, for instances with a single battery
installed (for which optimality guarantee is obtained with OMBSR-MI).Psavings obtained usingOMBSR-
RF-HEUare only 0.3%% smaller on average, which seems acceptable for a heuristic that performs 80
times faster, on average, for these instances. In addition, the parametersand ®impact the quality of
the solutions obtained. We observe that large values of contributes to better savings, which is totally
expected. Comparing the results obtained withOMBSR-G-HEdJd OMBSR-RF-HEME can observe that
OMBSR-G-HHlives better solutions (i.e., savings 0.1% larger on average) for the instances tested.
Moreover, we can observe that, even if both heuristics yield good saving®)MBSR-G-HEdrformed 3

times faster on average thanOMBSR-RF-HEdF the instances tested.

4.6 Conclusion

This chapter addresses the impact of managing multiple batteries. In particular, we have considered
the OMBSR problem that consists in optimizing the management of a multi-battery energy storage
system in order to reduce the total energy costs, by participating in the demand response mechanism
performing exclusively peak-shavings. We proposed two mixed-integer linear programs, and any of
their optimal solutions provides a strategy for using the batteries so as to reduce as much as possible
the total energy cost. We have shown that the OMBSR problem is NP-Hard, and two heuristics are
proposed to solve large-scale instances. Moreover, we have used these approaches to solve OMBSR on

realistic instances.

As aresult, we rstly observe that using batteries installed for backup to perform peak-shavings can
generate savings. Concerning the solving approaches, we observe in particular that both mathematical
models could achieve an optimality guarantee only for a small part of the instances within the time
limit. However, even for instances without such an optimality guarantee, the best solution obtained
already generates savings. The number of times that each battery can be used seems to be the
parameter that has the greatest impact on those savings. Indeed, the number of times that each
battery bis used in any solution is exactlyNy, independently of the solving method used. In contrast,

no substantial gain was observed by increasing the number of batteries available (since the sum of
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the powers D™ of all batteries is equivalent to the average power demand), the time horizon or
the average power demand, i.e., the value oWW. However, the use of multiple batteries is desirable
for safety reasons and to increase the lifetime of the batteries. Concerning the heuristics, the results
obtained proved their economical relevance, by providing better solutions compared to the best ones
obtained by the mixed-integer linear programs on large-scale instances. FurthermoréMBSR-G-HEU
proved to be more e cient for instances with a well de ned periodicity in the power demand and

prices, while OMBSR-RF-Hpbved to be more e cient for the general case.

Concerning the performance of our algorithms, we observe that the number of batteries installed
and the time horizon are the parameters that have the most impact on the solving time. We consider
a time limit of 30 minutes for solving each instance, and, in this aspect, the heuristics proved to be
computationally e cient, while we observe that the solving time for the mixed-integer linear programs

proposed increases fast.

In the following, we will explore the management of multiple batteries that are used to perform
load curtailments, and reuse some of the algorithms and methods proposed in this chapter to develop
fast solving approaches. Local search approaches could also be used to solve instances with periodicity

in the data (for instance, in the power demand), such as the ones that we have considered.
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Chapter 5

Optimization of a multi-battery storage
system to participate in the energy markets

In this chapter, we consider the complete problem of this thesis which is optimizing total energy
costs of telecommunications sites using batteries installed for backup to participate in the energy
market using proper battery management. We extend the problem de ned in Chapter[3 to a multi
site setting where the batteries are allowed to perform peak-shavings as well as load curtailments.
However, contrary to the problem treated in Chapter [4, each site is equipped with a single battery,

which is the case of the French telecommunications operator Orange.

Formally, the problem treated in this chapter is the Optimization of a Multi-Battery Storage system
in order to participate in the Energy market (referred to as OMBSE), in order to reduce the total
energy cost for the company. The main issue is to respect the market rules and the safety usage rules

while minimizing the net total energy cost by performing peak-shavings and load curtailments.

Concerning the scienti ¢ contributions, we formally de ne the problem and we present two math-
ematical programming models for OMBSE in Section[5.2. We also proof in Sectioh 5.3 that the
OMBSE problem is strongly NP-Hard, via a reduction from the 3-Partition problem. In the following,
we propose two solving heuristics for the problem: rstly we present in Sectiorf 54 a bidimensional
relax-and- X based on the solving approach presented in Sectiofi 44, and then, in Sectidn 5.5, a de-
composition solving method based on a Lagrangian relaxation and on the subgradient method that

integrates the approach proposed in Chaptef B. We also performed numerical experiments with real-
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istic instances that are provided in Section5.6.
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5.1. PROBLEM STATEMENT

5.1 Problem statement

We consider a deterministic framework, extending to the one considered in Chaptgr|3 to a multi
site setting composed by a set of telecommunication siteS, each equipped with a single battery. Each
site sin S has a power demandWs:, given in kW, for each time periodt 2 T, and the limit of power
pMax given in kW, that can be bought at any time period. The power costE; is the same for all sites

at each time periodt 2 T .

Concerning the battery assets, each site is equipped with a single battery. Since each site is
equipped with only one battery, we denote bybs the battery installed at site s. Indeed, each battery
bs of each sites 2 S is de ned by the parameters B&“‘”;Bgax; PBbS;Dgin andD{!® as described in
Chapter[3, and by Ny, as described in Chaptef #, and is subject to the same usage rules JRI{R6, de ned
in Section[1.3.

Concerning the energy market, the same rules R[/-R9 apply. In addition to these rules, the number
of curtailments that can be performed over the horizon is limited by a given numberN ¢ imposed by

the transmission system operator (RTE-Portal) (i.e., rule [R10).

Since batteries from multiple sites will be used to perform the same load curtailment, the customer
must reduce the total power bought from the distributor by Pto over all sites together (i.e., the
maximum amount of power pI'®* can be purchased from the distributor considering all sites together
at each time period during a load curtailment c). Hence, the value of! ¢ for a curtailment c, which
starts at the time period f. and ends at the time periodlc, is thus computed as follows:

P P,
s2s (121, Wsit + Usit, 1)

c” o fo+2

(5.1)

Note that Equation (5.1) is valid for all sites, including the ones for which the battery installed is
not used during a load curtailment (i.e., even if the battery of a site is recharging, the power bought
by the corresponding site will be considered in the computation oft ;). The computation of p'® is

the same one as in Equation[(32).

Recall that our goal is to use the batteries while respecting the electricity markets rules and keeping
the network safe (i.e., respecting the battery safety usage rules), at minimal cost. As described in

Chapter [3, the total amount of energy savings consists of two parts. The rst part is provided by
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the di erence between the energy prices during a battery use and its recharge, and the second one
by the reward paid the minimal reduction Py during each load curtailment. Note that, di erently
from Chapter [, the reward paid by the transmission system operator is not related to the total load
reduction, but only to the power contractualized. The customer can reduce more thanPy¢o if the

di erence of energy prices between the duration the curtailment and the recharge of the battery is
pro table. The reward policy considered to compute this second part is the First Time Reward (FTR),

which is the reward policy in the French context.

The problem stated above is referred to as OMBSE in the following, and any of its instances is
fully described by the following parameters (some of which are vectors or sets\W, , E, PM™ S,
BMn BMaX pg pmn pmax N - mnoomax p.. R N and the reward policy (represented by
a boolean value). The same safety usage rulgs R1-R6 and energy market rufes|R7-R10, as the ones

de ned in Section[1.3, are taken into account.

5.2 Mathematical formulation
5.2.1 Mixed-integer nonlinear program

The formulation that models OMBSE described in this section is a mixed-integer nonlinear program
that will be referred to as (OMBSE-MINLP) . Similarly to (OBSC-MINLP) , we will consider the same
set C and we are looking for a set of curtailments(f¢;l¢; dc) that can be performed without con ict,
while minimizing the total energy cost. Hence, the same family of variables; y; p™®; uP and u® used
in the model (OBSC-MILP) presented in Sectior] 3.2l is considered. In addition, since the batteries
can also be used to reduce the total energy cost by performing peak-shavings when they are not
being used to perform load curtailments, the same families of variablegz and b*@" used in the model
(OMBSR-MILP") presented in Sectior] 4.2.R to compute the number of times that each battery is used

are necessatry.
Decision Variables

Firstly, a solution is determined by the values of the following variables:

- Xt 2 [Bgi“ X BQ:""X]; 8s2S; 8t 2T: amount of energy, in kWh, available in the battery by of

each sites at the beginning of each time periodt. An additional variable Xy t+1 represents the
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energy stock at the end of the planning horizon.

The following binary variables are used to control which curtailments are performed as described
in Chapter

-y 2f0;1g; 8c2 C: equal to 1 if a curtailment c starting at time period f; and ending at time

period I is performed, and to O otherwise.

- p  0; 8c2 C: maximum amount of power (in kW) that can be bought at each time period

performed.

Note that variables z are related to peak-shavings, and variabley to the curtailments. Hence, the
batteries can be used when no curtailments are performed (i.e., the case where the values of variables
y are equal to 0 and the values of variableg for some batteries are set to 1). In the same vein, if a
curtailment is performed (i.e., the value of some variabley is equal to 1), a subset of batteries must

be in discharge mode (i.e., the values of variableg are equal to 1).

The following additional variables are used to control the state of each batterybs:

- 7,1 210;19;852S; 8t 2 T: equal to 1 if the battery installed at site s is in discharge mode at

time period t, and to O otherwise;

- bgf’;‘{‘ 210;19;8s2 S; 8t 2T : equal to 1 if the battery installed at site s starts being discharged

at time period t, and to O otherwise.

Note that variables z and b*@" are necessary to compute how many times each battery is used, as in

Chapter [, because the batteries can also be used to perform peak-shavings.

To model the power bought at each time periodt, the following variables are used:

- ug’;t 2 [0;Ws];852 S;t 2 T: power bought for the demand consumption of the sites at time
period t (in kW);

- uﬁs;t 2 [0;Pg, ];852S; t 2T : power bought for the recharge of the battery installed at sites
at time period t (in kW).
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Note that, the total power load reduction d; after the curtailment ¢ has been performed is given
by the sum of the di erence of pI'®* and the power bought at each sites at time t (i.e., ua;t + udy)

for eacht between the beginning of periodf ; and the end of periodlc.

The objective function is de ned as follows:
X X 5. X
min Et  (Upt * Usy) YeRt.Pro(lc fc+1) (5.2)
t2T s2S c2C
The objective function is composed of two parts: the rst one corresponds to the total energy cost
spent on purchasing energy, and the second one to the reward received for each curtailment performed.
A solution is given by the energy stock of the batteries at each time period (the values of they

variables) and by the curtailments performed (the values of they. variables).

The following constraints de ne the state of each battery at each time periodt:

Xt Xpaei DIz 852S:8t2T (5.3)

Xt + Xoite1  Peo. (1 Zot)  DE"Zny 852S:8t2T (5.4)

Constraints (5.3) guarantee that, if the energy stock of a battery decreases, then the battery is in
discharge mode, i.e.z,;t = 1. Constraints @ ensure that, if the energy stock of a battery increases,
then this battery cannot be in discharge mode, i.e.,z,.+ = 0. Moreover, Constraints ) guarantee

a maximum power discharge per time period oD ®* when the battery is in discharge mode.

In the same vein, Constraints ) and ) ensure thatlf'@" = 1 if the battery of the site s
starts being discharged at time periodt.
B Zot  Zn 1 852 S;8t 2 Tnfilg (5.5)
A = 74, 8s2S (5.6)

it

Constraints guarantee that the battery of each sites can start being discharged only if it is fully
charged (and hence together with Constraints|(5.8) that the battery starts being recharged immediately

after each use, up to its maximum capacity):
BB Xos 852S;8t2T (5.7)

The power purchased in the retail market at each time periodt is the sum of the power bought for

. . P . P .
charging the batteries ( ¢»g uES;t) and the power bought for consumption (4,5 uSD;t) of all sites,
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which is ensured by the following constraints:

Up =1 Z)Min(BE™= xpyu= ;Pg, ;PIM*  Wsy) 852S:8t2T (5.8)
Xosit+1  Xbt = Upg+ Ugp  Wag 8s2S;8t2T (5.9)
Wei(l  Znt) Ugy 852S;8t2T (5.10)

The power bought for charging each battery ismin(Pg,_; P{"™ W) when it is possible to buy
energy (i.e., if zp.x = 0), if the capacity of the battery is not exceeded (see Constraints[(5,8)). Note
that several batteries can be used at the same time: some of them can be in discharge mode and
others recharging. Since no losses are considered, the energy stock balance of each battery is ensured
by Constraints (5.9). Moreover, Constraints (5.9) impose a maximum power discharge rate of the
battery at the same time period equal to the power demandWs and Constraints ) guarantee
that if the battery is not used (i.e. z, = 0), the power bought for consumption is equal to the power
demand Ws;. In addition, together with Constraints (5.3) and ($.4), Constraints (5.8)] and (5.9)
ensure that the battery can have the same energy stock during two consecutive time periods only if
the battery is fully charged, otherwise a minimal discharge ongi” (if Zo,;x = 1) or a recharge ofuf
(if zp,+ = 0) is imposed.

If a curtailment c= (f;l¢) is being performed at a time periodt, Constraints ) guarantee that
the total power bought from the market respects the limit pI"®* imposed on such a curtailment in each

time period betweenf ¢ and Ic. The value of pT'® is provided by Constraints (5.17). Constraints (5.13)

guarantee that at most one curtailment is performed at each time period.

X X X X

(Ugy + Upy) P& (1 Yo+ YepI™ 8t2T (5.11)
s2S s2S c2Ct c2Ct

? (P lg Wst0+ Xpof,= X =)
+0 g = . =

P = max(0; —25° t=fe 1 TS0T T ife 1 Pro) 8c2C (5.12)
X le fc+2

ye 1 8t2T (5.13)
C2C[

The network capacity is modeled by Constraints [5.14).
Upy + Ugy PO 8s2S:8t2T (5.14)
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Furthermore, Constraints (b.15) guarantee that the battery of each sites will be used at mostNp,
times over the time horizon, while Constraint (5.16)) limits the maximum number of curtailments that

can be performed. In addition, Constraints (5.17) express the limit conditions.

X

B N, 8s2S (5.15)
B%T

Ye N°€ (5.16)
c2C
Xbsits = Xbsjtran — Bg;ax 8s2S (5.17)

Finally, the domains of the variables are:

ye 2 0;1g;pf® 2 R 8c2C (5.18)
uSy 2 [0, Wsl;up o 2 [0; P, T Xt 2 B B ]; zp; 27 0;1g; B3 2 0;1g 852S;8t2T
(5.19)

The obtained model (5.2)-(5.19) is non-linear. However, it can be linearized following the ap-
proach proposed by McCormick (1976). The resulting linear model (referred to agOMBSE-MILP) )

is provided in Section[5.2.2.
5.2.2 Linearization of the mathematical model

The rst non-linearity treated is between a binary and a oat variable, linearized using McCormick

strategy as described in Sectiofj 3.2.1]3. In the mode[ (§.2]-(5.19), they correspond to the products
XpeitYe @nd XpgtZpt (With Xpx 2 [0;B*]) in ( and (, respectively. We need to introduce
two new families of variables: lin )<ygs;t forall cin C, sin S, tin ffe 1;fcgto linearize ), and
lin _zxp+ for all sin Sandt in T to linearize ). Note that the non-linearity corresponding to
the product between the variablesx and y cannot be rewritten as we did in Chapter[3 because the

batteries can be used for peak-shavings. Indeed, the family of variabld@ xyg . is necessary.

The second non-linearity treated is the expressiorx = min( a;b) for a;b2 [M%M], such as de-
scribed in Section[3.2.1.8, and present in[(5]8) and[(5.]12). Hence, we introduce two new families of

variables: lin _sideUBy_ ¢ for all sin S, tin T to linearize ), and lin _sidepcmax; for all cin Cto

linearize ). In the case of), we haveif = (1 zp)min(a;b), wherea= BI®= xp =
and b = min( Pg,_;P"™  Wsy). In order to linearize this expression, we have to multiply all the

terms a and bin (8.26) and (3.28) by 1  z,,;x as we have done in Sectiof 3.2.1.3.
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In the case of ),vae cangntegrate the variabley. of the multiplication ycpg™® into (p.12) by
s2s(Ye L%:fc 1 W0t YeXbgif o= YeXbsifc 17)

lc het2

P pe” ] 8

s2s(Ye t0=f 1 Wt 0F YoXbsif ¢ = YeXbsifc 17)
lc fc+2

then use similar equations used to linearize the expressiox = min( a; b) in Section|3.2.1.3 to linearize

rewriting pg'®* as max(0;

ycPt0). Hence, we have that

p?ax = max(a;b), wherea = 0;b =

YcP10. We can

) P
the expressionx = max( a;b), whereM = 5 maxio1 Wst and M 0= Pro.

Finally, the complete linear version of OMBSE-MINLP (referred to (OMBSE  MILP )) can be

rewritten as follows:

XX 5. X
min Et  (Ug.+ Usy) YeRf . Pro(le fc+1)
t2T s2S c2C

Xbst  Xbg:t+1 D5 Zp, ¢ 8s2S;8t2T (5.20)

Xbot + Xpgt+1 Pe,, (1 Zny)  DE"zyy 852S;8t2T (5.21)
B Znt Znt 1 8s2S;8t2Tnflg (5.22)
BT = Zp ., 8s2S (5.23)
BB Xpst 852S;8t2T (5.24)
up . BI™=  Xpa=  zp4BO™=+ lin xzp= 8s2S;8t2T (5.25)
upy (1 zo)min(Pg, ;P& Wey) 852S:8t2T (5.26)
upy BR¥™=  Xp4=  Zp4BL¥™=+ lin xzh4=  Mlin _sideUBp; 8s2S;8t2T (5.27)
ug . (1 Zp.) min Pg, ;P& Wst) M(1 lin_sideUBp) 8s2S;8t2T (5.28)
(Bgax ) min( Ps,; P Ws) Mlin _sideUBy 8s2S:;8t2T (5.29)
min(Pe, ;PM™*  Wsy) (BI®™=  Xpy=) M(1 lin_sideUByy) 8s2S;8t2T (5.30)
Xosit+e1  Xbt = Ub+ Ugp  Way 8s2S;8t2T (5.31)
Wsi(1  zpy) U 8s2S:8t2T (5.32)

5 s X X X

(Ugy * Up ) P (1 Ye) + prax 8t2T (5.33)
s2S s2S c2Ct c2Ct
pr& 0 8c2 C (5.34)

P (yCP e Wagpo+ linxyS. = linxyS.. =)

pmax _$2SV¢ tEfe 1778 b fe bsife 1 yePTo 8c2 C (5.35)

lc fc+2
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(5.36)

lin _sidepcmaxc)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)
(5.45)
(5.46)
(5.47)
(5.48)
(5.49)
(5.50)

(5.51)

(5.52)
(5.53)
(5.54)

P (ycp'& Wago+ lin xyS .. = lin_xys. =)
s25 =fe 1778 bs:f e —Ibife 1 +yePro (M MYlin_sidepcmaxc
lc fc+2
8c2C
i (YCPI%_ Weio+ lin_xyS .. = lin_xyS.. ,=)
s2S t—fc 1 ’ - bs,fc bs,fc 1 yCPTO (M M()(l
le fc+2
8c2C
pmax (M MY lin_sidepcmaxc)
8c2C
P P|c i (- i c —
max s2s(Ye  {bog, 1 Wspot lin xyg ¢ = lin _xyg.f, 1=)
Pc YcPro+
le fc+2
(M M9Ylin _sidepcmax. 8c2C
X
ve 1 8t2T
c2Cy
B + Ul  PI 8s2S;8t2T
X
Bt N, 8s2S
.
Sg C
Ye N
c2C
lin xyg.: YeBp 8c2C;8s2S;8t2ff. 1;f.g
lin xyg .+ Xpx @ yo)BEY 8c2C;8s2S;8t2ff. 1;fcg
lin Xyg .« Xngt 8c2C;8s2S;8t2ff. 1;fcg
lin xyg, O 8c2C;8s28S;8t2ff. 1fcg
N XZpt  Xigt 8s2S;8t2T
lin XzZp;t  Zn 1 BL™ 8s2S;8t2T
lin XZpt  Xpx (1 Zn)BR™ 8s2S;8t2T
lin xzp;x O 8s2S;8t2T
Xbsity = Xbsitrsy = ng]ax 8s2S
yc 2f0;1g;pi™* 2 R" 8c2C
ud 2 [0, WsJ;up ¢ 2 [0; P, T Xt 2 B B ]; 2y 2 0;1g; B9 2 0;1g
lin Xzp,;x 2 [0; B ]; lin _sideUBy, 2 f 0; 1g 8s2S:8t2T
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lin xy§, .+ 2 [0;BL¥] 8c2C;8s2S;8t2ff. 1;f.g (5.56)

lin _sidepcmax; 2 f 0; 1g 8c2 C (5.57)

5.3 Complexity analysis

In this section we present a complexity proof for OMBSE. We reduce the 3-Partition problem,

which is a strongly NP-Complete problem, into a particular case of OMBSE.

Theorem 2 OMBSE is strongly NP-Hard even with constant energy prices and power demand.

Proof Let us consider an instance of the 3-Partition problem composed by a seA of 3m integers

P . . -
a2a, & = B forall Ag. Note that, if there exist m partitions Ay such that for each one the sum of

its elements isB, then each subsetA must contain exactly 3 elements because 0% <aj< %.

Now let us consider an OMBSE instance with a time horizonT composed by 6n time periods.
Moreover, let us consider that 3n sites equipped with di erent capacities DJ!® = ap = B!®=
Bgi“: are installed such that & <D gjn DI = ap < B . Then, let us consider a constant power
demandW = B over the horizon for each site and a constant energy pric&g, i.e., E = EéTj. We also

. P .
consider that 5,5 D™ = mB. The others instance parameters are:

" prax =2B for eachs2 S
Pg,, = BA™= ,forallsin S
Np, =1, forall sin S

" N¢=m

~min = max = q

" R =fE0;0;0;0;0g™

" Pro=B
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Let us consider a solution for such an instance which costsP s2s:t21 EtWst  MP1oEc. In this
case, since the energy pricel; are constant, the batteries are used to perfornm curtailments starting
at time periods where the reward prices are equal tE., otherwise the total cost would be strictly
greater than P s2st21 EtWst  mProEc. Since each battery can be used once, together with the
properties D@ = B/&= B["= and & <D™ D[¥ < 5 each battery can be in discharge
for at most one time period with a power discharge rate ofD®*. Furthermore, if m curtailments
are performed, at leastmB are discharged from the batteries. Note that, sinceP 25 Dgax = mB,
exactly 3 batteries are used to perform each curtailment, otherwise at least one curtailment would not
be performed. In the same vein, if a battery starts being discharged before the curtailment to increase
the value of pT'®*, at least 4 batteries would be needed to perform the curtailment. Hence, at mosin 1
curtailment could be performed. Then, if there exists a solution with costP s2s:t21 EtWst mProEg,

m curtailments are performed for which exactly three batteries are used to perform each one.

Hence, the set of batteries used to perform each curtailment gives us a solution to an instance
of the 3-Partition problem (where each integeray, is equal to Dg®). Similarly, from a 3-Partition
problem solution, a solution of costP s2s:t21 EtWst mMProE for the associated OMBSE instance
can be constructed using each battery once to perform curtailments starting at the time periods where

the reward price is equal toE.. Then, OMBSE is by reduction a strongly NP-Hard problem.

The OMBSE problem remains weakly NP-Hard even for small instances wheim 4, by a similar

reduction from the Partition Problem which is weakly NP-Complete.

5.4 Bidimensional relax-and- x heuristic

In this section we present a bidimensional relax-and- x heuristic for OMBSE, for which a model

M is considered, obtained by relaxing the integrity constraints on a subset of variables of the model.

Let us de ne the four windows considered in the approach that group the variables oM :
~ Frozen window: variables that have their values xed;

" Decision window: variables for which all constraints are preserved;

" Relaxed window: variables for which all constraints are relaxed.

In addition, we consider:
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" Fixing window: variables that have their values xed at the end of each iteration;

Firstly, as proposed in Chapter[4, we apply a decomposition based on the time horizon. We

consider a decision window composed byime time periods and a xing window of 2., time periods.

Secondly, to improve the computational e ciency of the approach, we also propose a decomposition

based on the number of sites. Indeed, the windows will be de ned not only by the parametersime

and 9., butalso by e and 2., de ned as the following:

time . Number of time periods of the decision window;

" tﬁ’me: number of time periods of each iteration;

site . NumMber of sites of the decision window;

~ 2.1 number of sites of the decision window for which variables will be xed at each iteration.

The time periods (resp. the sites) are partitioned into the subsetsT 7 ; T9; T9: T' (resp. S'; S9; S9: S7)

representing the variables in thefrozen, decision, xing and relaxed windows, respectively.
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The complete bidimensional relax-and- x heuristic used in our tests is formally described as follows:

for t5@ from 1to T time With step t(i)me do
~ Tf f 1.:::.tstart 1g

~ Td f tstart ..... tstart + tme0
~ d start .. ... start 0
T f t gy u e .,t + t|me g

STUOf ottt 41500 Tg
for s@ from1t0 S e with step 3, do
~stof 1 ssat g
~ Sd f Sstart S Sstart + sited
~ Sd f Sstart S Sstart + gite g
T ST f sSrt +15:::;Sg
Construct a model M st st , such that the variables:
- Xbgit: Zoy;t; BB ;uD;uB . are xed forall t2TT;s2S andforallt2T9%s2S";
- Ye; pM® are xed forall c2C;t2TF;
- Zp A 210 1gforall t 2T %5289
-yc2f0;1gforall c2C;t2T¢:;
- Zn; BB 2 [0;1]forall t 2T ;s2S, forall t 27T dnTd:s2 St and for all
t2T%s2S";
-yc2 [0;1]forall c2C;t2T".
" SolveM tstart -gstart
" Fix the variables Xp,:t; Zp,;t; B Ul uES;t forall t 2 T 9;s 2 SY to the obtained
optimal values

end

" Fix the variables yc; pT for all c2 G;;t 2 T 9 such that I is smaller than or equal to the
last time period of T9 to the obtained optimal values

end
return variables Xp,;t; Zog;t; YA 5 Dy UB 5 Vei PT™

Algorithm 1: Bidimensional relax-and- x heuristic

o o v o
Note that the number of iterations of the heuristic is 1—(time tme JISI (ste e )

time site

Figure illustrates the windows and the related variables for an instance composed by 7 sites

managed over a week. We can observe that the decision window scrolls over the time horizon and over

the sites for variablesx; z; uP; uB and b5 | and over the time horizon for variablesy.

. . 3 . B max — Bmin -
Lemma 2 Algorithm Halways returns a feasible solution if time max(dmm( P*;S X bsmax(w» €);8s2
bs' S
S.

Proof To ensure that we always return a feasible solution for the problem, two main aspects must be
analyzed: the feasibility of the curtailments that can be performed (i.e., if Constraints (5.11)-(5.13),
(5.16), and (5.18) are respected) and the feasibility of each battery management until the end of the

160



5.4. BIDIMENSIONAL RELAX-AND-FIX HEURISTIC

Figure 5.1 { lllustration of bidimensional relax-and- x heuristic windows.

time horizon (i.e., if Constraints (p.3)-(5.10), (6.14)-(5.15), (5.17), and (5.19) are respected).

Concerning the battery management, the only case where no feasible solution could be reached is

when the battery cannot be fully recharged until the end of the time horizon considering its initial
state at the beginning of the decision window of the last iteration. Indeed, if the number of time
periods in the decision window (i.e. the value of 4me ) is large enough to fully recharge the battery
until the time period T, there is always a solution that consists only of fully recharging the battery.

max — B min —
b,

Formally, ¢me must be larger than max(dmm(?;;S ._P X Sm;X(W)) €);8s 2 S (ifitis the case, the battery
bs' S

can always be fully charged until the time periodty).

Concerning the curtailments (i.e., variablesy and pl'®), their values are xed only for curtail-
ments that end at the end of the time horizon T 9. Since the variables corresponding to the batteries

management of all sites are already xed (i.e., variablesx; z; uP; uB and @), the values of variables
y are xed respecting Constraints (5.13)-(5.13), {5.16), and [5.1B).
Finally, we have that a feasible solution that respects the battery management (i.e., related to

Constraints (6.3)-(5.10), (5.14)-(5.13), (5.17), and [5.19)) and the curtailments performed (i.e., related
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to Constraints (5.11)-(5.13), (5.16), and (5.18)) is always reached, the heuristic always returns a feasible
solution for the model (5.3)-(5.19).

max — B min —
b

. B =
The de nition of me greater or equal to max(dmin( Pt: B max(W))
bs ' S

the numerical experiments presented in Sectiof 5]6.

€);8s 2 S is considered in

5.5 Lagrangian relaxation based solving method

Decomposition-based computational methods have been widely used to solve many large-scale
optimization problems, including mixed-integer linear programming problems and combinatorial opti-
mization problems. The key idea is usually to relax certain constraints (refereed to as hard constraints)
to make the relaxed problems relatively easier to solve in order to obtain approximations or bounds

for the original problem.

5.5.1 Lagrangian relaxation

A commonly used method is the Lagrangian relaxation where easy sub-problems are solved several
times, and a penalty related to the relaxed constraints is considered in the objective function of each

sub-problem. Such penalties are known as Lagrangian multipliers and are updated at each iteration.

Let us consider the following optimization problem:

Z =min X (5.58)
sit:

Ax b (5.59)
Dx e (5.60)
x 2 No (5.61)

where Constraints (5.59) make the problem harder to solve (i.e., the problem [(5.38) subject to
Constraints (6.60) and (5.61) can be solved in polynomial time). Let us also denote by 0 the
Lagrangian multipliers (also refereed to as dual variables) associated with Constraints[ (5.59). By

relaxing Constraints (5.59), the obtained Lagrangian problem is the following:
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Zp( )=min cx+ “(AXx b (5.62)
sit:

Dx e (5.63)
X 2 No; (5.64)

Note that, since the values of the multipliers are positive, if Constraints (5.59) are not satis ed,

it becomes a penalization in the objective function [5.6D).

Furthermore, it is well known that Zp gives a lower bound, refereed to a®V g , for (5.62)-(5.64)
(ile. Zp Z )forany > 0. Inthe same vein, any solutionx that satis es Constraints (5.59)-(5.61),
refereed to asZyg (x), yields an upper bound for [5.62)-[5.64) (i.e.Z  Zuyg). If Zp( ) = Zus(X)
for a solution x, then we have that x is an optimal solution for the problem (5.62)-(5.64). The key
aspect of the algorithm is to nd good upper and lower bounds. Such a relaxation can be used in a
model that is linear or not. In our case, we consider the mode(OMBSE  MILP ). One algorithm

that is commonly used is the Subgradient Algorithm, which is explained in next section.

5.5.1.1 Mathematical model decomposition

In the case of(OMBSE  MINLP ), Constraints (5.11) and (5.12) will be relaxed. In addition,
we can rewrite Constraints (5.12) and [5.11) as a single constraint and relax the formulation with only
one set of Lagrangian multipliers: ¢ 0for all t 2 T. Hence, the nonlinear version of the Lagrangian

optimization problem (refereed to as(OMBSE NL)) can be written as follows:
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X X X
min  E¢  (up.+ up) YRt Pro(le fc+1)
t2T .| s2S c2C
X th D B X max X
+ t (us;t + ubs;t) Ps (1 yC)
t2T s2S s2S c2Cy P
X 2s ( I?):f Wos:t0+ Xpg;f o= Xpgife 1) i
ye max(0; — =te 1 R Pro)
c2Ct ¢ ¢
sit:
Constraints (5.3{5.10),(5.13}5.19)
o 8t 2 T (5.65)

Note that such a relaxation can also be applied tf OMBSE  MILP ) in Constraints (.33 [5.39)
and (5.44f5.47), which is the model considered in our tests. In this case, the Lagrangian multipliers

are following ones:

~ ! for eacht in T for Constraints (5.33);
~ L2 for eachcin Cfor Constraints (;
~ L3 for eachcin Cfor Constraints (;
~ L4 for eachcin Cfor Constraints (5.37);
~ L5 for eachcin Cfor Constraints (5.38);
* L% for eachcin Cfor Constraints (5.39);
" Cst for eachcin C, sin Sandtin ff. 1;f.g for Constraints (-
8 foreachcin C sin Sandtin ffe 1;fcg for Constraints (-

B cst foreachcin C sin Sandtin ff; 1;fcg for Constraints (-

Note that Constraints (5.34) and (5.47)) are not relaxed since they are not linking constraints between
di erent sites and can be solved separately in the sub-problems of each site. Finally, the linear version
of the Lagrangian optimization problem applied to (OMBSE  MILP ) (refereed to as(OMBSE 1))

can be written as follows:
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XX o X
min - Er  (Upt Up) YeRi Pro(le fc+1)
t2T S c
X X X
11 D B
+ t ( (us;t + ubs;t) Psmax(l yC) p?ax)
t2T s2S P E’ZS c2Ct c2Ct
[ : _ : _
+ X 1,2 max s2s(Ye th:fC 1 Wsipo + lin )(ytcls;fc_ lin *thc)s;fc 1_) =
o ( pe TR YcPT0)
c2C b b ¢ ¢
[ : _ . _
X 13 s2s(Ye by, Wsiot lin XYgf = lin xy§ ¢ 1=)
c2C ¢ ¢
(M M9Ylin _sidepcmaxc)
P P : .
.\ X 14 s2s(Ye hor, 1 Wsio+ Ilnjygs;fcz Iln,xygs;fc 1=)
c ( yCPTO
oc le fc+2
(M M9Y@ lin_sidepcmaxc))
+ X e (M M9Y@  lin _sidepcmaxc))
C C -
c2C
X i Pl Weo# lin oy, = linxyS, .=
C (pC | f +2 yC TO
c2C ¢ ¢
(M M9Ylin _sidepcmaxc)
+ X L7 (lin xy§ BI®)=
c;s;t( — Ybs;t Ye bs )
c2C;sZS;§(2ffc 1:f g
1;8 . _
+ ost( lInxyg ¢+ Xpx (1 yo)BEY)=
c2C;s2S ;§(2f fe 1;fcg
1,9 /y: _
+ csit(lin Jygs;t Xpy:t)= (5.66)
c2C;s2S;t2f fo 1;fcg
st

Constraints (5.2015.32), (5.40-5.4B), [(5.48-5.57)

1 8t2T (5.67)
12 g 13 o 14 o L5 o 16 8c2 C (5.68)
ggt 0; g;?g;t o: g;g;t 0 8c2C;8s2S;8t2ff, 1;fcg (5.69)

In this thesis, we chose the linear Lagrangian decompositiofOMBSR ‘) because the sub-problems

obtained can be solved e ciently by reusing the approaches proposed in Chaptef]3.
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5.5.2 The subgradient optimization

The subgradient methodis an algorithm for minimizing a non-di erentiable convex function, and is
very similar to the regular gradient method for di erentiable functions ($Shor,/ 2012). The subgradient
method is much slower than Newton's method, but it is much simpler and can be applied to a much

larger variety of problems.

By combining the subgradient method with primal or dual decomposition techniques, it is some-
times possible to develop a simple algorithm for a problem. Such a use is well explored by Bertsekas
(1999), which is a good reference on the subgradient method combined with primal or dual decompo-
sition.

More precisely, when updating the values of , the goal is to maximize the lower bound (i.e., the

value of Z g ). Hence, we are solving the following problem:

maxZp( )
>0

We use a subgradient optimization method relying on the following scheme:

K*1 = maxf K+t (Ax® b);0g

wherety > 0 is a step size. The most popular choice of the step sizg is:

k(Zus  Zp( X))

K= A b2

where Z g is the best upper bound known and ¢ 2 (0; 2[ (Boyd et al., 2003). The value of x can

be xed for all iterations or it can vary in each iteration depending on the progress of the algorithm.
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The general scheme of the subgradient algorithm is as follows:

" Initialization // initial structures, Lagrangian multipliers, step-size, :
" BUP +1 // Best upper bound reached

" BLB -1 // Best lower bound reached

“k=0

while k 1M and stopping criteria is not reached do

" Solve the sub-problems presented in Section 5.5.2.1
" Run the Lagrangian heuristic (see Sectior 5.5.2]2)

" Update the best bounds reached (BUP and BLB)

" Update the best solution obtained (Bsol)

Update the Lagrangian multipliers

"k=k+1

end

return BUP;BLB; Bsol

~

Algorithm 2: Standard subgradient algorithm

5.5.2.1 Sub-problems structure

In order to compute the lower bound at each iteration of the subgradient method, the relaxed
problem (OMBSE 1) has to be solved to optimality. Fortunately, such a Lagrangian relaxation of the

formulation has a particular structure that allows us to solve it optimally in O(T?) time.
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Firstly, let us rewrite the objective function ($.66) by isolating each family of variables as follows:

min
X X
11 B D
(Ee+ ) (upt+ Ugy) (5.70a)
t2T t2T
X Xe X
11 max 1,2 13 1;4 1,6
+ Ye RfCPTO(Ic fc+l)+ t Ps + I:)TO( c t ¢ ¢ T ¢ )
c2C t="f¢ s2S
X X X W
max — L7 18 1;2 13 1,4 1,6 s;t
+ Bbs - c;s;t+ c;s;t)+(( c ot oc c ) | f +2)
s2S;t2f fo 1fcg s2S t=f, 1 © ¢
(5.70b)
X Xe
max 11 1;2 1,5 1,6
+ Pc t -t ot ¢ (5.70c)
c2C t=f¢
X X 1;2 1,3, L4 1,6
; c — c c ¢ [ 17 1.8 1;9
+ lin XYbif = | f +2 * o cisife csfe T cisife (5.70d)
c c
c2C s2S
X X 12, 13 144 16
; c — c c c [ 17 1,8 1,9
+ lin XYife 17 | f +2 toCsife 1 csfe 11 cisfe 1 (5.70e)
. c _ L7 18 19
+ lin XY e+l = c;sifc+l csferl T cisifol (5.70f)
C s2S
+  lin_sidepcmaxs(M MOY( L3+ L4y IS 16y (5.709)
c2C
+ X _ X 1,8 1;9 + X 1,8 1,9 + X 1;8 1;9
Xbg;t= cst cst) cst cist) cst o cisit
S2S;t2T c2Cjfc=t c2Cjf¢ 1=t c2Cjlc+1=t
(5.70h)
X X X
1,15 max 1,4 1,5 1,8 nmax— ;
CRI (M MY 8P 8 Bmax= (5.70i)
t2T ;s2S c2C c2C;s2S;t2f fc 1;fcg

Looking closely at this objective function, we can observe clearly that the whole problem can be solved

decomposed. Formally, we can split the whole problem into ve sub-problems:

1. Sub-problem 1.

min (5:70a) + (5 :70h)
sit:
Constraints (5:20 [5:37); (65:41 [5:42); (5:48 [5:57); and (5:55)

This sub-problem, concerning the variablesp, t; U ; UDy; Zo,t; B33 5 lin Xzp,r, and lin _sideU By,

foreacht 2T,s2S, and x,.T+1 for eachs 2 S, corresponds to solving the peak-shaving prob-

lem (i.e., formally the DSM problem) for each sites 2 S with the energy prices equal toE; + tl;l
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(i.e., (6.70d)) and with an additional penalty in the energy stock of the batteries ). In fact,
such a sub-problem for each sites considering a single battery can be solved with the algorithm

presented in Chapter[3 with some adaptations.

Essentially, for each sites, the algorithm must be initialized with the following parameters:

" Ry =[0IT]
~ min = 1

max —

- B =
max = b%{]nrc (or large enough)
S

" Pro=0

~ - max
.= P!

~ _ 1,1
Et=Et+ ¢

Number of rest time periods=0
and the following modi cations in GOA are needed:

" since the battery discharges at each time period during each curtailmentc = (f¢;l¢; dc)
enumerated are known, the penalty from ) must be considered at each time period

during the curtailment to compute the gain.

for each arca linking two curtailments c¢; = (f¢,;;l¢;;de;), andcy = (f,;le,; dc,), the penalty
from (6.70H) must be considered for each time period 2 f ¢, +1;:::;fc, 1g considering
that the battery will stay fully charged in this interval

Replace the computation of the longest path in the DAG G created by the computa-
tion of the Maximum Weighted Budgeted Independent Set (MWBIS) of the interval graph
GP obtained from G, using the modi cation of the Bellman's algorithm proposed in Sec-
tion A.4.1.7. The budget is the value ofNy,.

The complexity of the algorithm proposed isO(T?®). Since each sites can be treated separately
and since there is no correlation between the curtailments enumerated (i.e.!l . = P{¥), a

parallelization is allowed.
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2. Sub-problem 2:

min (5:700)
sit:

Constraints (5:40) and (5:43)
yc2f0;1g; 8¢c2C

This sub-problem, concerning the variablesy. for eachc 2 C, corresponds to selecting the most
pro table curtailments based on their coe cients imposed by the objective function (5.70Db).
Such a sub-problem can be translated into the Maximum Weighted Budgeted Independent Set
(MWBIS) of an interval graph, such as described in Sectior] 3.2.2]1, using the modi cation of
the Bellman's algorithm proposed in Section[4.4.1.]l with the budget set toN ©. The complete

algorithm to solve the second sub-problem is the following:

(a) for each curtailment ¢ 2 C, set the gain g(c), is the coe cient de ned in (5.70b)| for each
variable yc.

(b) for each curtailment ¢ 2 C, if g(c) is greater than or equal to zero, sety. = 0.

(c) compute the MWBIS with for which the budget is number of nodes with the remaining

curtailments considering g(c).
(d) the optimal value of this sub-problem is the one given by the algorithm multiplied by -1.

(e) the value of each variabley. is equal to 1 if the corresponding curtailment is selected by
(MWBIS), and to O otherwise.

3. Sub-problem 3:

min (5:70d)
sit:

X
pr®* 2 [0; max(Ws:)]; 8c2 C
s2S

This sub-problem, concerning the variablesp'®* for eachc 2 C, can be solved in linear time as

follows:

170



5.5. LAGRANGIAN RELAXATION BASED SOLVING METHOD

P
" Foreachc2 C, setp™ = ' 5 max(Ws;) if the coe cient of the variable in (5.70c) is

negative, and pg'® = 0 otherwise.
4. Sub-problem 4:
min (6:70d [5:70f]
sit:

lin xyg .« 2 [0;BL¥]; c2C;s2S;t2ff.  1;feg

This sub-problem, concerning the variableslin xyg , for eachc2 C;s2 S;t2ff; 1;fcg, can

be solved in linear time as follows:

" Foreachc2C;s2S;t2ff. 1;fcg, setlin J<ygs;t = B{J‘;ax if the coe cient of the variable

in (E.?Od), (|§.70§) or 15.70r) is negative, andin xyg . = 0 otherwise.

5. Sub-problem 5:

min (57709
st

lin _sidepcmax; 2 0;1g; 8¢c2 C

This sub-problem, concerning the variableslin _sidepcmax; for eachc 2 C, can be solved in

linear time as follows:
" For eachc 2 C, setlin _sidepcmax; = 1 if the coe cient of the variable in (§.70g) is negative,

and lin _sidepcmax.; = 0 otherwise.

Note that Equation (5.70i) is constant and can be computed independently.

5.5.2.2 Lagrangian heuristic
In order to compute a feasible solution for the problem at each iteration of the subgradient method,
which also gives an upper bound for the value of the optimal solution, a Lagrangian heuristic is used.
Firstly, the relaxed solution obtained by solving the sub-problems satis es all the Constraints

(6.20{5.33), [5.41), [5.42), [5.4B){(5.5p), and )5) related to the variableSp,;i; UE . ; USy; Zo;t
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and bg;?{t foreacht 2T ands 2 S, and xy,.7+1 for eachs 2 S. Hence, the values of such variables

are maintained in the Lagrangian heuristic.

The second step consists in computing the values of variableg, for which Constraints (5.34{5.40),

(6.43)-(5.47), (5.53),(5.56), and [5.57) are relaxed, implying that the solution obtained by solving the
sub-problems may not satisfy the original constraints. Hence, we aim to select a subset of curtailments

that can be performed (i.e., to x the values of variablesy), i.e., that satis es Constraints (5.345.40),
(5.43)-(5.47), (5.53).(5.56), and [5.57) which is satis es batteries safety usage rules (i.e., values of

variables x;uB;uP;z and b*@" obtained by solving the sub-problems), and that gives the highest

revenue.

The Lagrangian heuristic proposed runs inO(T?2) time, as described in the following steps:
keep the values of the variabley, 1; uES;t; USy; Zn,;t and 3" in the optimal solution obtained ;

for eachc = (f¢;l¢) 2 C, compute the value of! ¢ and the value of p'®* from the values of the
power demandWs and from the power boughtu? + uES for each sites 2 S at time period f¢ 1.
Then, sety. = 0 if there exists at least one time periodt 2 f f¢; l.g such that P 25 (ufjs;t + ug’;t) >
pmax;

for eachc = (f;l¢) 2 C such that the corresponding variabley. was not xed to 0 in the previous

step, set the economic gain of the curtailment toge = R¢ . Pro(lc fc+1);

compute a MWBIS with a budget equal to N ¢ with the remaining curtailments (i.e., the ones
for which the value of y; is not xed yet), considering the values of g;.. Then, for eachc, set the
value of the variable y. to 1 if the corresponding curtailment is in the MWBIS with a budget

equal to N¢, and to O otherwise. Note that the values of ally. computed in this way satisfy

Constraints (5.34{5.40), (5.43)-(5.47), [(5.5B)/(5.56), and[(5.57);

The value of the complete feasible solution is given by the following expression:

X B b X
Et(ubs;t + us;t) YO
s2S ;12T c2C
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Figure 5.2 { Example of the evolution of the bounds considering a xed step size

5.5.3 Bounds improvements

A key aspect of the Lagrangian relaxation is to ensure a good gap between the upper and lower
bounds. The di erence between them gives us an optimality gap. If both bounds are equal, we have

the guarantee that the feasible solution is an optimal solution of the problem.

5.5.3.1 Lower bound improvement

When analyzing the lower bound, the step size is a key point for its good improvement. On the
one hand, if the step size is too large, the lower bound value will vary between two intervals and, in
the general context, will not increase. On the other hand, if the step size is too small, it will tend
to increase slowly. Therefore, more iterations are needed to increase the value of the lower bound.
We observe (see Figuré¢ 5|2) a periodicity in the values of the lower bound because the value of the
step size is too large. Indeed, at each iteration, the algorithm computes a subgradient to update the
Lagrangian multipliers and updates them using the value of the step size. However, as the step size is
too big, in the next iteration, the algorithm tends to rectify the Lagrangian multipliers with a direction
that is opposite to the one computed in the previous iteration. Hence, the values of the Lagrangian

multipliers, and hence the value of the lower bound, do not converge.

One strategy to improve lower bounds is to adapt the step size dynamically during execution. One
of the best-known methods for performing such an adaptation is to consider a step size otp k in each
iteration k, wherecis a constant. Another way to update the step size is per every iterations, where
Y is a constant. Figure[5.3 illustrates the progressive increasing of the lower bound (orange line) on

an (OMBSE 1) instance, considering that the step-size is updated ai:p k after 10 iterations (i.e.,
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Figure 5.3 { Example of the evolution of the bounds considering a dynamic updated step-size dtp k
after 10 iterations, wherek is the number of the iteration.

Y =10). In this example, we still see the periodicity of the interval between each 10 iterations and
the impact of updating the step size after 10 iterations. Updating the step size values at each iteration
could potentially increase the value of the best lower reached (purple line), and hence, improve the

optimality gap. However, it requires a ne tuning of the constant c used to compute the step size.
5.5.3.2 Upper bound improvement

When analyzing the upper bound, the Lagrangian heuristic is the key point for its good improve-
ment. On the one hand, if the heuristic is not able to compute good feasible solutions, the ones
reached will be far from a potential optimal solution, and thus the gap between upper and lower
bounds increases. On the other hand, if the heuristic gives a near optimal solution to the problem, it

may require too much time and resources.

Figure illustrates the solutions obtained with CPLEX solving (OMBSE  MILP ) and with
the Lagrangian relaxation after 50 iterations for a small instance with 2 sites. For this example,
the solution (b) obtained with the subgradient costs 4% more than the solution (a) obtained with
CPLEX. Note that the batteries uses in the two solutions are quite similar for this example, and both
solutions perform 10 curtailments each, 4 of which in the same periods. These similarities indicate
that the Lagrangian heuristic can give good solutions from the structural point of view. However,
improvements can still be done concerning the periods where curtailments are performed. Looking
more closely at solution (a), 5 curtailments start at one of the 15 time periods that yield the greatest

rewards, compared to only 1 in solution (b).

One proposed improvement (refereed to a#nit ) is a better way to initialize the Lagrangian mul-
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Figure 5.4 { Solutions obtained with (a) CPLEX solving the (OMBSE MILP ) model, and (b) with
the Lagrangian relaxation for an instance with 2 sites managed over a week.
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tipliers tl;l in order to induce the battery discharges, and thus curtailments that could start at the
periods of highest rewards. Formally, the improvement proposed, applied in thenitialization proce-

dure of Algorithm P] can be described as follows:

Enumerate all pairs (f;1) for f;1 2T ;1 f +1 min.|f 49 max_The set of such pairs

will be refereed to asC".

Create a conict graph G = (V;E) where each nodev 2 V corresponds to a pairc 2 C*,

and there is an edgee = (v1;V2) betweenv; and v if there exists a temporal con ict between

Compute a MWBIS with a budget equal to N ¢, considering as weight of each vertex; the value
w(vi) = Rf,Pro(li fi+1). Note that G is an interval graph, and hence such a computation
can be done e ciently with the algorithm proposed in Section §.4.7. Let us de ne the set of

vertices in the solution asV ™.

and 0 otherwise. Note that we increase arti cially the interest of performing peak-shavings during

the time periods f; to [, that allows load curtailments to be performed.

Figure [5.5 illustrates a solution obtained with the Lagrangian relaxation using the Lagrangian
multipliers initialization for the same instance used in Figure[5.4. Firstly, the solution obtained costs
only 1% more than the one obtained in Figure[5.4-a, which corresponds to a reduction of 75% of
the gap obtained in solution illustrated in Figure 5.4}b (i.e., a reduction from 4% to 1%). Moreover,
7 of the 10 curtailments performed are also present in the solution of Figuré 5]4-a. In addition, 5

curtailments start at one of the 15 time periods that yield the greatest rewards.

However, the value of the lower bound is drastically a ected, and hence it takes many more
iterations to reach the same lower bound of Figurd 5]3. In the example of Figurg 5|6, the best lower
bound reached after 50 iterations (purple line) is smaller than the one obtained previously. A second
proposed improvement is to reset all Lagrange multipliers to zero at the end of the rst iteration (see

Algorithm 8), since in our tests the best upper bound is always reached at the rst iteration.

Finally, the complete Lagrangian based method used in our tests is formally described as follows:
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Figure 5.5 { Solution obtained with the Lagrangian relaxation using Lagrangian start for an instance
with 2 sites managed over a week.

Figure 5.6 { Example of the evolution of the bounds considering the Lagrangian relaxation withinit .
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" Init // initial structures, Lagrangian multipliers, step-size,
" BUP +1 // Best upper bound reached

" BLB -1 /I Best lower bound reached

k=0

while k 1 ™& and stop criteria is not reached do

" Solve the sub-problems presented in Section 5.5.2.1
" Run the Lagrangian heuristic (see Sectiorj 5.5.2|2)
" Update the best bounds reached (BUP and BLB)
~ Update the best solution obtained Bsol
if k==1 then
| set all the Lagrangian multipliers to 0
else
| update the Lagrangian multipliers
end D
~ o= 1= E1
“k=k+1
end

return BUP;BLB; Bsol

Algorithm 3: Lagrangian based heuristic

5.6 Numerical results

In order to assess the e ciency and relevance of our solving approaches for the OMBSE problem,
we performed some numerical experiments on realistic instances. Several instances composed by many
sites with di erent consumption pro les and settings are considered, generated from internal data of
the French telecommunications operator Orange. The energy costs are taken from public historic data

of the French retail market (RTE-Portal).

The three solving approaches presented are considered. Firstly, the default branch and bound
algorithm of the commercial solver CPLEX performed on the formulation (OMBSE-MILP) , that is
denoted by OMBSE-MILSecondly, the general relax-and- x heuristic presented in Sectiofi 5]4 param-
eterized by ( time; ome) 2 (36;12); (24;12)g, and ( site; %) = (1;1), that is denoted by OMBSE-HEU
The arguments (essentially the periodicity of energy costs and demand of our data) for choosing these
parameters me and &, for the instances tested are the sames as the ones presented in Chapftér 4.
Finally, the Lagrangian decomposition method with the subgradient method presented in Sectiofi 515

and with the improvements, that is denoted by OMBSE-LAG

The numerical experiments are organized as follows. Firstly, in Sectiof 5.6/1, we describe the
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instances and the settings used in our experiments. Then, in Section 5.6.2 we present the results of
OMBSE instances solved usin@®MBSE-MILP®MBSE-HE&hd OMBSE-LA®/e discuss the computational

results and we analyze the economic aspects of the solutions obtained in Sectipn 5]6.3.

5.6.1 Instances description

We based our testbed on urban and rural sites similar to the site considered in Chaptefr|4 for
which a random variation of 25% is considered in some sites. In addition, we assume a weekly time
horizon with time discretization = % (i.e., 30 minutes), which implies that T = 336. Such a time
discretization is the one considered by the transmission system operator that imposes the minimal

duration of 30 minutes, i.e., 1 time period in our tests.

Each site is equipped with one battery, whose main properties are provided in what follows. The
autonomy of each battery varies between 20 and 60 time periods. Besides, two types of batteries are

installed: GEL and AGM, for which the recharge power rate Pg,_ is as follows:

1. Pg, =1:95%o0f B{**=for GEL batteries;

2. P, =3:34%o0f B{®=for AGM batteries.

In addition, the minimal power discharge Dgi” is 10% of D™ which is di erent for each battery bs
in all instances. Finally, the value of Bg‘” is 50% of the battery energy stock capacityB{®, and each

battery cannot be used more than 2 times per day (i.e.Np, = 14) RTE-Portal.

Concerning the data related to the distributor, we consider the unit prices from the French distrib-
utor EDF, publicly available at data.gouv.fr (2020). Besides, the maximum amount of power P"
that can be purchased per time period is established by contract for each site. In our tests, to guar-
antee that the value of P{"® of each sites is greater than the power demandWs at any time period

t 2T, we set such a value to ¥s.

Concerning the data related to the transmission system operator, we consider rewards paid by the
French operator RTE, whose values are publicly available (see RTE-Portal). Besides, the minimum
and maximum curtailment duration are de ned by contract and are % and 2 hours (i.e., ™" =1
and ™M = 4 pecause we consider = 1 =2), respectively. Similarly, the contractualized power

Pto considered varies in function of the sum of the maximum powers of all sites together. In other
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P
words, Pro 2 f 25% 50% 75% 100%g of 5 DI® (denoted asD" ). Moreover, no more than 10

curtailments are allowed over a week (i.e.N ¢ = 10).

In addition, to simplify the writing, we present the time discretization in minutes. The input
values of the power demand, unit cost of energy, and reward over the time horizon, are taken as average

observed values. Our tests were performed on 240 instances.

All tests were performed on a server computer with 4GB of RAM and 1 Intel Xeon 2.2GHz
CPU. The method used to solve(OMBSE-MILP) formulation is the branch-and-bound implemented
in CPLEX 12.9, with default settings. The running time is limited to 1 hour for each instance. The
number of iterations of the Lagrangian relaxation is limited to 50. No improvements on the bounds and
on the solutions were observed considering more iterations in preliminary tests with some instances.
We also limit the CPLEX CPU time to solve each intermediate model at each iteration of OMBSE-HEU

to 3 minutes.

5.6.2 Numerical results

In this section we present the results for OMBSE instances solved wittOMBSE-MILROMBSE-HEU
and OMBSE-LAGhe analysis of the results is presented in Sectiop 5.6.3.

Table 5.1 { OMBSE-MILResults

Pro S Stand. |Lin Relax|sol reduc| Opt. GAP at |CPU Nb of |% of

@of ™) |12 lcost (e) ] (e) (e) |(%) |GAP (%) |root (%) |Time (s)|Var |bin var
2 ]18.0 15.1 155 |13.6 |25 11 3600 9387 |50.0
3 |42.6 35.7 37.3 |125 (3.8 16 3600 12075 |47.2
5 |118.1 99.8 104.3 |11.6 |4.0 15 3600 17451 |44.2

25 10 [287.6 |242.0 256.8 |10.7 (5.4 11 3600 30891 |41.3
25 |795.2 672.4 756.6 |4.9 |10.7 15 3600 71211 |39.1

50 (1980.8 |1673.5 |1980.40.0 |15.3 419 3600 138411 38.3
100{4 056.5 |3 423.6 |4 056.50.0 (154 578 3600 27281137.9

2 |18.0 12.7 142 |20.8 |9.7 23 3600 9387 |50.0
3 426 31.0 34.2 |19.7 |9.1 27 3600 12075 |47.2
5 |118.1 86.2 97.8 |17.2 |11.4 28 3600 17451 |44.2
50 10 |287.7 210.7 243.3 |15.4 |13.0 22 3600 30891 (41.3
25 |795.8 581.0 693.7 |12.8 |16.0 27 3600 71211 |39.1

50 (1979.4 |1437.6 |1979.10.0 |27.1 743 3600 138411 38.3
100|4 055.7 {2 962.8 |4 055.70.0 |26.7 1054 3600 272811437.9

2 |18.0 111 139 (22,6 |19.7 34 3600 9387 |50.0
3 |42.6 26.2 33.8 [20.6 [22.2 38 3600 12075 |47.2
5 |118.0 73.0 96.5 [18.2 |24.0 38 3600 17451 |44.2

75
180



5.6. NUMERICAL RESULTS

Table 5.1 continued from previous page

Pro ... |Stand. |Lin Relax |sol reduc|Opt. GAP at |CPU Nb of |% of

% of 0™’} | cost () |(e) (e) |(%) |GAP (%) |root (%) |Time (s)|Var |bin var
10 |287.6 176.9 245.7 |14.6 |27.7 33 3600 30891 (41.3
25 [796.2 499.8 709.7 |10.9 |29.3 37 3600 71211 |39.1

50 (1979.8 |1243.2 |1979.20.0 |36.9 1048 3600 138411 38.3
100|4 055.6 |2 530.5 |4 055.60.0 |37.4 1538 3600 272811437.9

2 |18.0 8.9 147 |18.0 |38.9 a7 3600 9387 |50.0
3 1426 21.3 36.8 |13.5 [41.8 50 3600 12075 |47.2
5 |118.2 59.4 104.4 |11.7 (42.7 49 3600 17451 [44.2
100 10 |287.7 145.4 272.2 |54 |46.2 46 3600 30891 (41.3
25 |795.8 401.5 769.5 |3.3 |47.6 49 3600 71211 |39.1

50 (1980.7 |1004.9 |1979.70.1 |49.0 1377 3600 138411 38.3
100{4 056.3 |2 054.0 |4 056.30.0 |49.1 2016 3600 27281137.9

Table 5.2 { OMBSE-HEBsults With ( time : dme ) 2 f (24:12):(36:12)g and ( site: ) = (1:1)

ISi{( time: fme) | ( site: Ste) | Stand. Cost (e)]sol (e) |reduc (%)|CPU Time (s) [Nb lIter
2 124.12 1.1 18.0 155 |13.7 9089 54
2 136.12 1.1 18.0 154 |14.2 8837 52
3 124.12 1.1 42.6 375 |11.9 14048 81
3 [36.12 1.1 42.6 36.5 |14.3 13583 78
4 |24.12 1.1 72.3 64.5 |[10.9 18841 108
4 |36.12 1.1 72.3 64.2 |11.2 18280 104

Table shows the numerical results concerning the OMBSE instances solved witdMBSE-MILP
In this table, each row stores the average of the results for a subset of instances, grouped by the number
jSj of sites of the instances, and by the power contractualized’to. Note that the results for both
types of power demandW (i.e., observed or randomized) are grouped because the results are similar
for both cases. ColumnStand. Cost corresponds to the average of the standard cost, i.e., the cost
when no batteries are used, equal toP t2T :s2s EtWs;t. Column Lin Relax reports the mean of the
optimal value of the continuous relaxation of (OMBSE MILP ). Columns sol and reduc store the
mean of the solution value in monetary units, and the average reduction in the total energy cost, given
in %, respectively. Besides, the average optimality gap, i.e., the value of the relative gap between the
value of the best integer solution obtained by CPLEX and the best lower bound computed, given in
%, and the average relative gap reached at the root of the branch and bound tree, given if%, are
provided in columns Opt. GAPand GAT at root. Column CPU Timeprovides the average running

time given in seconds. In addition, columnsNb of Var and % of bin var report the mean number
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of variables, and mean the percentage of binary variables, respectively.

Table 5.3 { OMBSE-LA@sults

Pro .. | Stand. |Sub LB|Sub UB| Opt CPU sol |reduc
% of 0™ |5V | cost €)| (e) | (e) |GAP (@) |Time (s)| (e) | (%)
2 |180 |152 [156 |2.50 147 1562 |13.2
3 426 [362 |37.1 |2.60 139 [37.14 |12.8
5 [118.1 |100.8 [103.4 |[2.60 160 10343 |12.4
25 10 [287.6 |2442 |2525 |3.30 240  |252.45 |[12.2

25 |795.2 678.3 |699.7 |3.10 575 699.71 |12.0
50 |1980.8 [1690.1/1 740.9|2.90 1019 |1740.8712.1
100|4 056.5 |3 460.2|3 591.4|3.70 2291 |3591.39115
2 |18.0 13.0 14.2 8.30 135 1415 |21.2
3 |42.6 314 33.3 5.70 142 33.33 |21.8
5 |118.1 87.4 93.3 6.30 175 93.25 |21.0

50 10 |287.7 213.8 |228.6 [6.50 297 228.57 |20.5
25 |795.8 589.7 |628.3 |6.10 77 628.22 |21.1
50 [1979.4 |1461.1/1554.0|6.00 1263 |1553.9621.5

100|4 055.7 |3 002.7|3 249.5|7.60 2661 |3249.7119.9

2 |18.0 11.3 13.7 17.60 135 13.72 |23.7
3 |42.6 26.7 30.2 11.60 151 30.21 |29.1
5 [118.0 74.3 82.3 9.70 196 82.27 |30.3
75 10 |287.6 180.2 [204.0 |11.70 333 203.99 |29.1

25 |796.2 508.0 |564.1 |10.00 788 564.13 |29.1
50 |1979.8 |1263.8|1429.4|11.60 1512 |1429.3927.8
1004 055.6 |2 577.5|2 921.5|11.80 3130 |2921.5828.0
2 |18.0 9.1 13.3 31.50 135 13.35 |25.7
3 |42.6 21.8 29.9 27.00 152 29.88 [29.9
5 |118.2 60.7 70.6 14.10 207 70.64 |40.2
100 10 |287.7 148.8 |176.8 |15.80 368 176.82 |38.5
25 |795.8 |410.3 [490.9 |16.40 856 490.93 (38.3
50 |1980.7 |1027.8|1 206.8|14.80 1578 |1206.7139.1
1004 056.3 |2 101.4|2 597.619.10 3446 |2597.9036.0

Table 5.2 stores the numerical results concerning the OMBSE instances solved witdMBSE-HEU
using the parameters( time; $me) 2 f (36;12); (24;12)g, and ( site; %) = (1;1). In this table, each
row stores the average of the results for a subset of instances, grouped by the numbi&j of sites of
the instances, and by the values of e and Sme . Column Stand. Cost corresponds to the average

. . P .
of the standard cost, i.e., the cost when no batteries are used, equal to ,1 .55 EtWs;t, While column
sol stores the mean of the solution values, given in monetary unit, obtained withOMBSE-HEBesides,

the average reduction in the total energy cost, given in%, and the average running time, given in
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seconds, are provided in columnseduc and CPU Time Furthermore, column Nb of It reports the
mean number of iterations of the algorithm. Note that only small instances (i.e., instances with up to

4 sites) were solved withOMBSE-HHi¢cause of the high CPU Time necessary.

Concerning the results obtained with OMBSE-LAGable stores these results, grouped by the
number jSj of sites of the instances, and by the power contractualizedPro. Note that the results
for both types of power demandW (i.e., observed or randomized) are grouped because the results
are similar for both cases. ColumnStand. Cost corresponds to the average of the standard cost,
i.e., the cost when no batteries are used, equal tg t2T :s2s EtWs;t. Besides, ColumnsSub LBand
Sub UBreport the mean value of the best lower and upper bounds obtained withOMBSE-LA@iven
in monetary units, respectively. In addition, the average running time, given in seconds, is provided
in column CPU Time Furthermore, columns sol and reduc store the mean of the solution values in

monetary units, and the average reduction in the total energy cost, given in%, respectively.

5.6.3 Experimental analysis

In the following we analyze the results presented in the previous section.

We begin by focusing on the running times and observe a signi cant impact of the number of
sites on the performance of all algorithms. Indeed, we observe that the size of the problem increases
in function of the number of sites, and that the problem becomes harder to solve because of the
combinatorial aspects and dependence of the sites (i.e., when batteries of multiple sites are used

together to perform a load curtailment).

Concerning OMBSE-MIL.Hor all instances, including the ones with only 2 sites, no optimality
guarantee is observed within the CPU time limit. Moreover, the optimality gap observed is signi cant,
varying from 2.5% on average for instances composed of 2 sites, up to ¥Pon average for larger
instances composed of 100 sites. We observe that the value of the best solution found gives a reduction
in the energy bill of 12.8% on average for small and medium instances. However, for large instances
composed of 100 sites, the best feasible solution given by CPLEX does not use the batteries (i.e. it is
the standard one). We observe that the mixed-integer linear formulation proposed has a continuous
relaxation quite good, when compared to the standard cost. The relative gap between both values
for the instances tested is in average about 3% for instances with 100 sites, and in average X% for

small instances. This implies that, in the worst scenario (that happens for large instances), the best
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lower bound given by CPLEX is exactly the optimal value of the continuous relaxation, and the best
upper bound (i.e., value of a feasible solution) is the standard solution when no batteries are used.
In addition, the optimality gap found at the root of the branch and bound tree is higher than the
nal optimality gap obtained (it varies from 11% for instances with 2 sites, to 2016% for instances
with 100 sites and Pro = 100% of D™), which shows that CPLEX is able to improve the bounds
over the iterations. We also observe that the randomness in the power demand has no impact on the
performance of the algorithm. Furthermore, the number of variables grows linearly in the number of
sites, and about 436 of those variables are binary ones, which makes the branch and bound method

implemented in CPLEX slower.

In the following, we analyze the results obtained with OMBSE-HEDased on the best heuristic
proposed in Chapter[4. However, it does not work as well a©MBSE-HE#Equires too much running
time. We observe that CPLEX is not able to solve to optimality the model partially relaxed obtained
at each iteration of the algorithm. This implies that each iteration of the algorithm takes at least 3
minutes. Hence, we could observe that, even for small instances composed of 2 sited|BSE-HEbkes

about 3 hours. Consequently, we tested only instances with up to 4 sites.

Concerning the results obtained with OMBSE-LA®@e observe rstly that much less CPU time is
required than for OMBSE-MILBnd OMBSE-HEENd that this time increases linearly in function of
the number of sites of the instance. This is to be expected because of the fact that the Lagrangian
heuristic runs in polynomial time, and that each site corresponds to one sub-problem to be solved at
each iteration. But, even for small instances composed of 2 sites, the subgradient algorithm does not
give an optimality guarantee (i.e., the lower and upper bounds obtained byOMBSE-LA@® not converge
to the same value). However, we observe optimality gaps smaller than wittOMBSE-MILRarying from
2.5%, for small instances, to 196 for instances with 100 sites, against optimality gaps varying from
2.5% to 49% for the same size of instances wittOMBSE-MILRAnother important aspect is that there is
no dependence between the sub-problems, which allows them to be solved separately and in parallel.
In our tests, we consider only one CPU, but the algorithm performance could be increased by solving

the sub-problems in parallel.

We now focus on the economic aspects of the solutions, and observe a reduction in the energy bill
for all solving approaches proposed, con rming that participating in the energy market can generate

savings for the company. Furthermore, we observe similar gains whether the power demand is ran-
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domized or not, because of the fact that the batteries properties and the number of load curtailments
that can be performed are the aspects that limit the most the savings that can be generated. Indeed,
the number of load curtailments performed in any solution obtained (except when CPLEX gives the

standard one) is exactlyN ¢, independently of the solving method.

Concerning OMBSE-MILRhe values of best solutions found give on average savings of %lfor
instances with at most 10 sites, with an optimality gap of 3.1% on average for such instances. However,
for larger instances, savings generated by the best solution obtained decrease signi cantly. In some
cases, for instances with 100 sites, the solution obtained does not give savings. We observe that the
value of Pt impacts directly the savings obtained, which is to be expected because of the fact that
the reward received per curtailment depends on the power contractualized®to. However, if the value
of Pro is too high, this implies that all the batteries must be used to perform each load curtailment.
This reduces the possibility of use of the batteries for peak-shaving, as well as the number of possible
load curtailments that can be performed. In our tests, we observe that having &Pto equal to 75% of
the total power asset yields savings at most 1% higher. Furthermore, we observe similar savings and
nal gaps on average for instances with a randomness in the power demand and for instances without

such a randomness.

Concerning OMBSE-HEthe savings obtained are similar to the ones obtained withOMBSE-MILP
for small instances. Such a reduction is 12% on average for the instances tested. However, even for
small instances, OMBSE-HE@quires much more CPU time (3600 seconds wittOMBSE-MILRgainst
13700 seconds on average witOMBSE-HEWowever, even for the instances tested, we observe that
adjusting the values of fme and 9. to 36 and 12, respectively, allows us to obtain solutions with
better savings (1% higher on average compared t0tme and $,. equal to 24 and 12, respectively).

Concerning OMBSE-LA®@e observe that it runs faster and gives better solutions thanOMBSE-MILP
and OMBSE-HEDhe savings obtained vary from 11.86 on average, for instances withPto=25% of
D™ and 100 sites, to 40.2 on average, wherP1o=100% of D™ and there are 5 sites. In addition,
the optimality gap obtained with  OMBSE-LAGcreases with the value ofPto, but is still smaller than
the ones obtained with OMBSE-MILRHowever, unlike OMBSE-MIL.Rhe savings obtained tend to be
larger when Pt is equal to 10@6 of the power asset. Analyzing the results, we observe that the
solutions obtained with OMBSE-LAtend to perform the maximal number of curtailments possible

and a small number of peak-shavings. Hence, the savings obtained come mainly from the rewards
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(a) Average reduction in % in the energy bill. (b) Average optimality GAP in %.

Figure 5.7 { Results obtained by solving OMBSE instances withOMBSE-MILEBnd OMBSE-LAG

received by performing curtailments. Furthermore, comparing the lower bounds ofOMBSE-MILBnd
OMBSE-LA®@e observe that the second method gives better lower bounds, and, consequently, better
optimality gaps. In short, having solutions with a quality guarantee as good as the solution itself is

fundamental to use such methods in a production environment.

To illustrate the impact of the parameter Pro on the savings and optimality gap, Figure[5.7a
illustrates the savings, given in %, for OMBSE-MILBnd OMBSE-LA@nd Figure illustrates the
optimality gap, given in %, for the same methods. Note that, asOMBSE-MILfequires too much CPU
time and only few tests were performed, there is not enough data to integrate in these gures. We can
observe that the savings obtained withOMBSE-MIL8ecrease wherPto=100% of D", which is not
the case with OMBSE-LA® addition, we can observe that the optimality gap increases as the value

of Pro increases in both methods, butOMBSE-LAgves smaller gaps thanOMBSE-MILP

To illustrate the impact of the number of sites on the savings and optimality gap given by OMBSE-
MILPand OMBSE-LAGigure illustrates the savings, given in%, for OMBSE-MILEnd OMBSE-LAG
and Figure [5.80 illustrates the optimality gap, given in %, for the same methods, in function of the
number of sites on the instances. Firstly, we can observe that the cost reductions obtained with
OMBSE-LA®e always higher than the ones obtained withOMBSE-MIL.even for small instances, when
Pro is higher than 50. In addition, OMBSE-MILB not able to nd other solution than the standard
one given to CPLEX as starting solution for instances with 50 sites or more. In fact, the best solution
obtained with OMBSE-MILIh these cases are the standard ones, i.e., when batteries are not used
to perform peak-shavings or load curtailments. Furthermore, savings obtained withOMBSE-LAS§ay

guite constant as the number of sites increases, which gives a perspective of savings for instances even
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(a) Reduction in the energy bill.

(b) Optimality GAP.

Figure 5.8 { Results obtained by solving OMBSE instances withOMBSE-MIL&d OMBSE-LAG

larger than 100 sites. Secondly, concerning the optimality gap fotOMBSE-LA@&d OMBSE-MILRve
can observe that the ones obtained withOMBSE-MILPcrease between instances with 0 and 50 sites.
For larger instances, such gaps stabilize because of the fact that the optimal value of the continuous
relaxation (i.e., the best lower bound given by CPLEX for such cases) also stabilizes compared to the
standard solution. Concerning the optimality gaps obtained with OMBSE-LA®ey are much smaller

than the ones obtained with OMBSE-MIL.RNnd tend to increase slowly as the number of sites increases.

5.7 Conclusion

This chapter addresses the OMBSE problem, that consists in optimizing the total energy cost using
batteries installed for backup to participate in the energy markets via a proper battery management.
We propose a mixed-integer linear program whose solutions provide a strategy for using the batteries
S0 as to reduce the total energy cost. We have shown that the OMBSE problem is strongly NP-Hard,
and two heuristics are proposed: the rst one is based on the relax-and- x strategy already explored
in Chapter [, and the second one is based on a Lagrangian relaxation which allows to decompose the
problem into sub-problems which are easier to solve. Moreover, we have used these approaches to

solve the OMBSE problem on realistic instances.

As a result, we rstly observe that using batteries installed for backup in the balancing mech-

anism may generate savings. Concerning the solving approaches, we observe in particular that the
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mathematical model solved with a branch and bound algorithm could not achieve an optimality guar-
antee for any instance within the time limit, even for the small ones. However, even without such
an optimality guarantee, the best solution obtained already generates savings. The number of times
that each battery can be used and the number of load curtailments that can be performed seem to
be the parameters that have the greatest impact on those savings. In contrast, no reduction in the
electricity bill compared to the standard value was observed by increasing the number of sites of the
instances. Concerning the heuristicOMBSE-HEI gives solutions with savings similar to the ones ob-
tained with OMBSE-MILPut requires much more CPU time. From a practical point of view, its use in
a production environment is not feasible. ConcerningOMBSE-LA®e results obtained proved its eco-
nomical relevance, by providing better solutions compared to the best ones obtained wit®MBSE-MILP
or OMBSE-HE#ENd with better optimality gaps. Furthermore, we observe that the power contrac-
tualized Pro has an important impact on the solutions obtained: with higher values, the solutions

max

yield more savings, but if it is too high (i.e., Pr0=100% of D "), it can limit the use of batteries to
perform peak-shavings. From a theoretical point of view,OMBSE-LAfBuses the algorithms proposed
in Chapters [ and[4, which allows us to solve large-scale instances faster while keeping good quality

of the solutions obtained.

Concerning the performance of our algorithms, we observe that the number of sites is the parameter
that impacts the most the solving time. We consider a time limit of 1 hour for solving each instance,
and, in this aspect, the Lagrangian heuristic OMBSE-LA@oves to be computationally e cient, while
we observe that the solving time for the mixed-integer linear program proposed and the bidimensional
relax-and- x heuristic increases fast. From a practical point of view, the use of OMBSE-LAS feasible

in a production context due to the fact that its sub-problems can be solved separately and in parallel.

From a research perspective, we observed that the best feasible solution obtained witbtMBSE-LAG
is obtained in the rst iterations and is not improved over the iterations. Exploring other Lagrangian
heuristics to improve the search for feasible solutions in the Lagrangian relaxation at each iteration
of the subgradient method is fundamental to obtain solutions better than the ones already obtained.
Furthermore, the problem treated in this chapter can be extended to a scenario where sites are equipped

with multiple batteries. The solving approaches proposed can be adapted and are still valid.
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Chapter 6

Conclusion and Perspectives

6.1 Conclusion

This Ph.D. thesis explored di erent possibilities for using batteries of a telecommunications opera-
tor primarily used as backup in energy markets. More precisely, we explored the use of such batteries
to perform peak-shavings, but also to perform load curtailments in order to reduce the total energy
cost for the company. First, we identi ed di erent challenges related to the use of batteries in di erent
contexts that needed a deeper analysis to better understand the di culties as well as the opportuni-
ties. Next, these challenges were investigated individually, and each time exact and heuristic methods
were proposed. Finally, the complete problem with all the rules and possibilities of battery use was

explored and solving methods based on the obtained results were designed.
For each one of the corresponding optimization problems, we have designed:
" For the OBSC problem:

{ A mathematical model considering the constraints of the French curtailment market and

the safety usage rules in the batteries;

{ An exact polynomial time algorithm based on graph theory to solve two variants, and that

can also be used as a heuristic.
" For the OMBSR problem:

{ Two mixed-integer linear programs: one based on the enumeration of all possibilities of

batteries use, and a second one without enumeration;
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{ The proof that OMBSR is strongly NP-Hard;

{ Two heuristics based on di erent aspects for OMBSR: one heuristic based on graph theory
inspired by the properties of the realistic tested instances, and a second heuristic based on

the relax-and- x approach, that gives better results for the general case.
" For the OMBSE problem:

{ A mixed-integer linear program;
{ The proof that OMBSE is strongly NP-Hard;

{ A Lagrangian based approach that reuses the algorithms proposed for sub-problems of

OBSC,

{ A bidimensional relax-and- x heuristic;

In order to assess the e ciency and relevance of the models and algorithms proposed, several numerical
experiments were performed on realistic instances, generated from public energy costs and data related
to the curtailment market, as well as internal data from the French telecommunications operator

Orange.

In the rst case study, i.e. the OBSC problem, we observed that participating in the curtailment
market generates large savings for the company. We also identi ed which rules make the problem
di cult to solve, and we observed that the methods proposed to solve the variants of the problem that

are polynomial are also economically suitable when used as heuristics for the OBSC problem.

In the second case study, i.e., the OMBSR problem, we analyzed the impact of managing multiple
batteries when they are used exclusively to perform peak-shavings. We have observed that increas-
ing the number of batteries installed makes the problem di cult to solve. In fact, we prove that it is
strongly NP-Hard. The proposed mathematical models are unable to solve realistic instances when us-
ing a standard MILP solver, and the proposed heuristics proved to be economically and algorithmically

e cient when the number of installed batteries increases.

In the third case study, i.e., the OMBSE problem, we returned to the initial problem of this
thesis where batteries can be used to perform both peak-shavings and load curtailments in a multi-
battery setting. We observed that using the batteries generates reductions in the energy bill and is

economically pro table for the company. We also observed that the proposed mathematical model is
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not able to solve realistic instances to optimality with a standard MILP solver. Hence, by applying
the Lagrangian relaxation to the proposed model, and using the subgradient algorithm along with
the methods proposed in Chaptel B to solve the sub-problems, it proved to be computationally and
economically e cient to solve realistic instances. Concerning the bidimensional relax-and- x heuristic,
it did not prove to be e cient in solving the OMBSE problem because each iteration remains di cult

to solve, requiring long computation times.

We can conclude that the use of batteries installed for backup of a telecommunications operator
in the energy market is economically pro table. If these batteries are used to perform peak-shavings
and load curtailments, the gains obtained can be considerably high. Moreover, even if the batteries
are used only for peak-shaving, the gains that can be obtained already represent an important value

for the company.

6.2 Research Perspectives
6.2.1 Scienti c Perspectives

During this thesis, several aspects were addressed and some of them require further research.
From a theoretical point of view, the complexity of the problem addressed in Chapterf B concerning
the management of a battery that is used to perform curtailments is still an open issue. Only two

polynomial variants have been identi ed.

In the same vein, several solving methods have been proposed for the di erent problems addressed
that strongly depend on the setup parameters. Exploring in detail such parameters, as well as identi-
fying the best values of these parameters for speci c classes of problems, is of fundamental importance

to obtain better results and computational performance.

In Chapters[4 and [§, heuristics based on the relax-and- x technique and Lagrangean decomposition
were proposed. However, other solving methods can be applied to the problem addressed in this thesis.

Dynamic programming in particular cases, alternative heuristics and nonlinear programs could be used.

Another perspective of research is the scenario where sites are equipped with multiple batteries.
In fact, Chapter B|treats the problem considering sites equipped with a single battery because it is the
current case at Orange France. However, data-centers and central base stations are frequently equipped

with a pool of batteries that could also be used in the energy markets, but they are not considered
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in this thesis. Along the same lines, the possibility of installing batteries, and thus considering a
set-up installation cost, to improve the ability to perform peak-shavings and load curtailments is also

a perspective of future research.

We describe some possible extensions in the following section.

6.2.2 Industrial Perspectives

During the course of this thesis some questions and opportunities have emerged, leading to three
perspectives of future works to explore the use of batteries of a telecommunications operator in the

energy market.

Firstly, sharing batteries between neighboring base stations is a topic discussed internally in the
company, for which research is ongoing (Foucault et al., 2016). In this context, adding to the problem
the decision of which base stations need to have a battery to supply neighboring stations is a challenge
to be explored and that can generate considerable cost savings for the company. Once a battery is
shared, the e ciency of sending power between two stations must be considered. Appendix]A reports
an in-depth analysis of sending power from one station to the other considering physical aspects in

the power transmission.

The second perspective is related to the use of lithium batteries, also installed for backup, to
participate in the energy markets. Lithium batteries are more e cient, more exible in their use and
better able to withstand di erent temperatures. After several conversations with the expert team of
Orange France, we report in Appendix/B an analysis of such a type of batteries and the changes to be

made in our models and algorithms to integrate them.

The third research perspective is related to the integration of renewable energy together with
batteries to perform peak-shavings and load curtailments. A large-scale integration of solar panels
and wind turbines changes signi cantly the net power load patterns of production and consumption,
requiring complex management systems (Luo et al., 2015; Shaker et al., 2016). Internally at Orange,
the use of solar panels and wind turbines is a subject of studies for the evolution of the energy network
of the base stations |(Marquet et all, 2006). Indeed, maintaining the stability and reliability of power
network, together with the battery safety usage rules in order to participate in the energy market, is

a real challenge that needs further research.
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Gestion optimale des sysemes de stockage
denergie dans les eseaux de
eecommunications pour l'inegration de
mesures incitatives des marcles de lenergie

7.1 Abstract

L'utilisation de batteries de secours en cas de coupure de courant est fequente dans les eseaux
de eEcommunications, car ils fournissent des services critiques qui doivent &tre toujours en ligne. De
plus, ces batteries peuvent &tre utilies pour participer au marcke de lenergie, a condition que les
egles de scurie d'utilisation des batteries soient respeckes. Dans cette these, nous consicrons le
probeme de l'optimisation des colts totaux de lenergie en utilisant des batteries instalees pour la
sauvegarde a n de participer au marcte de lenergie en e ectuant desecrétements de pointe et des
e acements, avec l'aide d'une gestion appropree des batteries. Dierents challenges ontee exploes
individuellement pour comprendre les proprees du probeme d'optimisation, et ainsi developper des
nethodes de esolution e caces. Des programmes lireaires mixtes et des heuristiques sont proposs,

et des simulations bases sur des donrees ealistes montrent leur pertinence.

7.2 Introduction

Au cours des derneres anrees, dierents aspects du marcte de IElectricie onteteetudes, notam-
ment avec lemergence des smart-grids|(Tuballa and Abundo} 2016). Ces eseaux peuvent impliquer de

multiples sources denergie, des sysemes de stockage, une consommation intelligente et une produc-
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tion locale denergie (Dang, [2009; Koutsopoulos et al.| 201]1). Dans ce contexte, les batteries peuvent
étre utilies de dierentes maneres dans le but de eduire les col0ts de production et de transport,
de eduire la consommation denergie et d'augmenter la abilie du eseau lorsqu'elles sont utiliees
comme syseme de secours. Plus peciement, I'utilisation de batteries comme syseme de secours en
cas de coupure de courant est courante dans les eseaux de eecommunications, car ils fournissent des
services critiques et doivent rester en permanence en ligne. (Kiehne and Krakowski, 1984). Ces bat-
teries sont utilies en conjonction avec des antennes et d'autresequipements, et des egles strictes de
$curie d'utilisation doivent &tre prises en compte a n de garantir qu'elles soient toujours disponibles

en cas de panne de courant.. En outre, l'ogerateur (entreprise) de eecommunications pourrait utiliser
ces batteries a n de participer au marche de Ilelectriciea condition que le eseau soit su samment
able et que les egles de =curie d'utilisation soient respeckes. En e et, puisque le prix de lenergie
varie dans le temps, les batteries peuvent &tre utilisees poureviter d'acheter de lenergie lorsque ce
prix estelewe, ce que I'on appelle le necanisme de eponsea la demande.|(Daryanian et al., 1989). The
batteries will then be recharged when the energy price is low. Les batteries seront ensuite rechargees
lorsque le prix de lenergie est bas. La production et la demande dénergie e nissent les prix de
lenergie sur une jourree, qui doivent étre payes pour acheter de lenergie sur un marcte. Un tel
marche de lelectricie est connu sous le nom de marcte de cetail, et le mecanisme de eponsea la
demande aet largementetude au cours de la dernere decennie ([Torriti, [2015; Johnson et al.| 2011
Mishra et al., 2012; Labidi,|2019). Ce mecanisme est bas sur les changements dans la consommation
delectricie des clients naux par rapporta leurs habitudes de consommation normales, en eponse

aux variations des prix de lenergie dans le temps.

Recemment, une autre facon rentable pour une entreprise d'utiliser ses batteries, est apparue.
Depuis 2016, l'operateur de ekcommunications frarcais Orange France utilise les batteries de ses sta-
tions de base instalees pour la sauvegarde a n d'ajuster la consommationelectrique et d'e ectuer des
eductions de charge par le biais du necanisme de eponsea la demande appeé Noti cation dechange
de blocs (NEBEF). (RTE-Portal,|2020). Dans ce contexte, Orange France interagit directement avec
la TO gracea sa grande capacite de exibilie de la charge en participant au marcte d'e acement via le
nmecanisme NEBEF. Pour ce faire, elle utilise ses batteries pour lesquelles des egles strictes de ®curie
d'utilisation doivent de toute facon étre respectes. Cependant, aucune strakgie d'optimisation dans

une telle utilisation n'est prise en compte.
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Dans cette these, nous consicerons le probeme de I'optimisation des codts totaux de lenergie en
utilisant des batteries instalees pour la sauvegarde an de participer aux marctes de cetail et de
eduction, avec l'aide d'une gestion appropree des batteries. Notre objectif est de eduire les cepenses
operationnelles totales de I'entreprise, connues sous le nom d'OPerational EXpenditure (OPEX), et
de maximiser les ecompenses recues du marcte d'e acement. Notez que les OPEX et les ecompenses
recues sont repesentes par des unies moretaires et sont consiceees simultarement. Par conequent,

nous avons un probeme d'optimisationa objectif unique.

Concernant les contributions de cette these, nous avons d'abord e ectie une analyse treorique
du probeme et de ses proprees, prouvant qu'il s'agit d'un probeme qui agege dierentes di cules
a esoudre. Dierents mockles mattematiques, abordant des parties du probeme ou consicerant le
probeme complet, ontet proposes etevalles. Nous pesentonsegalement dierents algorithmes et
heuristiques avec de bonnes performances en termes de calcul et deconomie, qui sont utiles pour
esoudre de grandes instances eelles. Dierentes exgeriences nuneriques sont ealisees et con rment

la performance des nethodes proposes.

7.3 Regles industrielles

Cette section esume l'ensemble des egles qui sont prises en compte dans cette ttese. Elles

proviennent du marcte de lenergie et des egles d'utilisation de la scurie des batteries.

R1 - Au moins une quantie minimale denergie B™" exprimee en kWh, doit rester dans la batterie

a tout moment;

R2 - La batterie doit €tre imnmediatement rechargee compktement apes chaque utilisation avec une

puissance constanteéPg , exprimee en kW, jusqua sa capacie maximale B™& exprinee en kWh;
R3 - La batterie doit étre enterement chargee au cebut eta la n de I'horizon de plani cation;

R4 - Une puissance minimale de decharge d® ™" donree en kW, est impose lorsque la batterie

est en mode de cecharge;
R5 - La puissance maximale que la batterie peut fournir est limieea DM et est exprimree en kW;
R6 - Chaque batterie b ne peut etre utilie plus de Ny, fois sur I'horizon temporel,
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R7 - Il n'est pas possible d'acheter plus deP ™3 kW au distributeur sur une pgeriode donree;
R8 - La duee de chaque eduction e ectiee est limiee par des periodes de temps de ™" et maX;
R9 - p'® kW peuvent étre achees au distributeur pendant I'e acement c s'il est e ectie;

R10 - Le nombre d'e acements qui peuvent &tre e ectiees sur I'horizon temporel est limiea N €.

Notez que les egles RI[-Rp concernent les egles d'utilisation de la ®curie, et les egle$ R[-R10 au

marche de lenergie. En Section[7.5, uniquement les egle§ R[[-Rb, ef R[[-R9 sont consicees, tandis
que seules les egles RI-R7 sont consicees dans la Sectipn 7.6. En section]7.7, toutes les edle3[R1I]R10

sont pris en compte.

7.4 Positionnement et principales contributions

Dans cette section, nous pesentons les principaux ¢ s aborces dans cette trese et le plan notre

recherche.

7.4.1 Optimiser les colts de lenergie en utilisant des batteries sur le marche de lenergie

Le probeme principal aborce dans cette these est I'optimisation des colts totaux de lenergie en
utilisant des batteries instaleesa l'origine pour le secours dans les stations de base de ekcommuni-
cations a n de participer aux marctes de Ienergie, avec l'aide d'une gestion appropree des batteries.
Dans ce contexte, les batteries sont utilies pour participer au marcte de cetail en adaptant la consom-
mation denergie du eseau en fonction des prix de lenergie, mais aussi pour e ectuer des eductions
de charge, qui aidenta maintenir lequilibre du eseau, enechange d'une ecompense nancere. Notre
objectif est de eduire les cepensesenergetiques operationnelles totales de I'entreprise tout en max-
imisant les ecompenses recues du marcte d'e acement. Actuellement, les batteries sont cep utilies

pour participer aux marctes de lenergie, mais aucune strakgie d'optimisation n'est exploee.

Le probeme d'optimisation en question doit tenir compte de certaines egles contractuelles et
des limites physiques des batteries. Ces egles, esunmees dans la Sectipn [7.3, qui seront pesenes
formellement de manere plus cetailee dans les Sectiond 7.5 7J6, € 7]7, peuvent étre clasees en trois

groupes distincts, comme suit:

208



7.4. POSITIONNEMENT ET PRINCIPALES CONTRIBUTIONS

" Regles de ®curie d'utilisation RI-RR6 |

" Regle du marcte de cetail R7]
" Regles du marcte d'e acements [R8{RI10.
7.4.2 Principaux ce's

Nous avons identie trois ce s majeurs qui rendent le probeme potentiellement di cilea esoudre.

Impact des egles d'utilisation de la fcurit

En ce qui concerne l'impact des egles d'utilisation de la scurie sur la gestion d'un seul sys-
eme de stockage denergie par batterie (BESS), certainesetudes connexes les abordent individuelle-
ment (Daryanian et al.| 1989;|Alapem et al., |2017;| Bovera et al.| 2018). Plus peciement, Alapesn
et al. (2017) prend en compte certains aspects physiques, tels qu'un taux de decharge maximal, un
taux de recharge constant et un nombre maximal de cycles, tandis que Bovera et al. (2018) il consicere
le nombre maximum de cycles que la batterie peut e ectuer. En ce qui concerne les egles telles que
recharger les batteries immediatement apes chaque utilisation avec un taux de puissance constant et
imposer une puissance de cecharge minimale aux batteries, aucuneetude antrieure ne les a aborcees.
Par consequent, I'impact de ces egles sur la gestion des batteries n'est pas connu, ce qui recessite une

analyse et uneetude plus approfondies.

Impact des egles du marcte d'e acement

Certaines etudes ont cep aborde partiellement les egles du marcte d'e acement dans d'autres
contextes (Zhang et al., 2016; Lan et al., 2018; Mkireb et al., 2019). En outre, l'utilisation de batteries
pour e ectuer des eductions de charge aet traiee dans certainesetudes (Zakeri et al., |2017; Nas-
rolahpour et al., |2017; Schillemans et al., 2018). Cependant, aucuneetude peedente n'a aborde ces
egles dans le senario ai les batteries soumisesa des egles d'utilisation de scurie sont utilisees pour
e ectuer des eductions de charge. Par conequent, I'impact de ces egles sur la gestion des batteries

n'est pas connu, ce qui recessite une analyse et uneetude plus approfondies.
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Impact de la gestion multi-batteries

Un autre ce est la gestion optimale d'un syseme de stockage denergie a batteries multiples
(MBESS), recessitant des strategies de controle plus e caces. Dans ce contexte, desetudes ecentes
proposent dierentes methodes pour traiter e cacement la dimensionnalie : (Babazadeh et al., [2014;
Zhu et al., |2018; Fan et al.,| 2019). Dans notre cas, nous consicerons un MBESS pour lequel les egles
d'utilisation de la scurie doivent étre consiccees, ce qu'aucune etude peedente n'a aborce. Par
congquent, l'impact de ces egles dans la gestion d'un MBESS n'est pas connu, ce qui recessite une

analyse et uneetude plus approfondie.

7.4.3 Apercu de la recherche et principales contributions

Une fois les principaux ¢ s identies, nous tracons les grandes lignes de notre recherche pour

explorer l'impact de chacun d'entre eux.

7.4.4 Exploration des egles du marche de lecrétement dans un contexte de batterie unique

Dans la premere partie de cette these, nous explorons exclusivement l'impact des egles du marcte
d'e acement R8}R9| ainsi que des egles d'utilisation de ®curie RIR5] sans consicerer I'aspect multi-
batteries. Dans ce contexte, nous consicerons un probeme avec un seul site et une seule batterie an
de comprendre exactement l'impact des egles du marcte d'e acement sur la gestion des batteries, et
d'analyser l'impact sur les methodes de esolution. Ce probeme s'appelle Optimisation d'un syseme
de stockage par batterie utili’e par une entreprise pour participer au marchke d'e acement (appek

OBSC), et est pesene dans la Section[7.5.

Les principales contributions de cette premere partie sont :

Mocklisation des contraintes du marcte frarcais d'e acement et des egles d'utilisation de la
fcurie dans les batteries de l'operateur frarcais de eecommunications Orange sous forme

dequations lireaires;

L'analyse du probemeetude a n d'identi er les aspects qui rendent le probeme plus di cilea

esoudre;
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Identi cation de deux variantes pratiqgues qui peuvent &tre esoluesa I'optimal en temps poly-

nomial;

La proposition d'un algorithme exact polynomial, bas sur la treorie des graphes pour esoudre
les variantes, et qui peutegalement étre utili'e comme une heuristique pour OBSC. Le probeme

peut en fait &tre eduit au calcul du plus long chemin dans un graphe oriene sans cycle;

Une evaluation experimentale des gainseconomiques lesa I'utilisation d'une batterie instalee
en secours sur le marcte de la eduction desemissions pour l'ogerateur de eecommunications

avec des instances ealistes.

En termes de publications scienti ques, deux articles ontet publes dans des conkrences interna-
tionales dans le cadre de cette premereetude | Silva et al.|(2019a), et Silva et al. (2020a). En outre,
deux articles ontet pesenes dans des congrences nationales :| Silva et al. (2020c), el Silva et al.
(2019h).

7.4.5 Explorer la gestion des sysemes multi-batteries dans le contexte du marcte de cktail

Dans la deuxeme partie de cette these, nous explorons exclusivement l'impact de la gestion de
plusieurs batteries ensemble sous les egles d'utilisation de ®curig RI[-R6, sans consicerer les e ace-
ments. Dans ce contexte, nous consicerons un seul site equipe de plusieurs batteries qui ne sont
utilies que pour participer au marcte de detail, et les e acements ne sont pas autoriees. Ce prob-
Eme est appek Optimisation d'un syseme de stockage multi-batteries a n de participer au marche

de cktail (appek OMBSR), et est pesent dans la section

Les principales contributions de cette deuxeme partie sont :
~ La proposition de deux programmes lireaires en nhombres entiers mixtes pour OMBSR,;

" La preuve que OMBSR est NP-Hard;

" La proposition de deux heuristiques economiquement et computationnellement e caces bases
sur dierents aspects pour les instances OMBSR a grande echelle : une heuristique base sur
la theorie des graphes inspiee par les proprees des instances ealistes tesees; et une seconde

heuristiqgue base sur I'approche relax-and- x qui donne de meilleurs esultats pour le cas gereral,
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" La proposition d'une eduction du Maximum Weight Budgeted Independent Set Problem sur les
graphes d'intervalles en Longest Budgeted Path Problem sur les graphes acycliques directs, et

d'un algorithme en temps pseudo-polynomial pour le esoudre;

~ Une evaluation experimentale des gains economiques lesa l'utilisation de batteries instalees

pour la sauvegarde sur le marche de cetail pour l'ogerateur de eecommunications.

En termes de publications scienti ques, un article aee pesent dans une conérence internationale
(Silva et al., 2020h) et puble dans une revue internationale (Silva et al|, 2022). En outre, un article

aek pesent lors d'une conkrence nationale ((Silva et al.,| 2021b)).

7.4.6 Le probeme d'optimisation complet

En n, une fois que nous avons compris I'impact des egles du marcte d'e acemen{ R§-RID et de
la croissance du nombre de batteries dont I'utilisation doit respecter les egles de scurie d'utilisation
[RT{RE, nous abordons tous les aspects dans un seul probeme. Dans ce contexte, nous consicerons
plusieurs sites, chacunequige d'une seule batterie dont l'utilisation doit respecter les egles de scurie
d'utilisation pour participer au marche de lenergie en e ectuant des ecrétements de pointe et des
e acements. L'ensemble du probeme est appek Optimisation d'un syseme de stockage multi-batteries

participant au marcte de lenergie (eErene@ comme OMBSE), et est pesent dans la section
Les principales contributions de cette troiseme partie sont :
~ La proposition d'un programme lireaire en hombres entiers mixtes pour OMBSE;
~ La preuve que OMBSE est NP-Hard;

Decompositions du mockle propos bases sur la technique de relaxation lagrangienne;

La proposition d'une nmethode de sous-gradient pour esoudre le mockle relae en eutilisant les

algorithmes proposes pour les sous-probemes d'OBSC,;

La proposition d'une heuristique bidimensionnelle de relaxation et de correction qui peutegale-

ment &tre utiliee pour esoudre des instancesa grandeechelle;

Une quanti cation des gainseconomiques et ogerationnels lesa l'utilisation des batteries instal-

kes en secours sur les marctes de lenergie pour l'operateur de eecommunications.
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En termes de publications scienti ques, une pesentation a et faite a une conkrence interna-

tionale (Silva et al., 2021a) dans le cadre de cetteetude.

7.5 Optimisation d'un syseme de stockage avec une batterie pour participer
au marche d'e acement.

Formellement, le probeme traie dans cette section est I'optimisation d'un syseme de stockage
par batterie utili®e par une entreprise pour participer au marche d'e acement (appek OBSC), an
de eduire ses coltsenergtiques. L'enjeu principal est de respecter les egles du marcte et les egles
d'utilisation de la scurit tout en minimisant le codt total net de lenergie. Cette section nous permet
de comprendre en cetail Iimpact des egles du marche d'e acement sur la gestion des batteries. Les
ekments pesenes dans cette section sont la base de I'algorithme pesene dans le Chapitre[ 7.7 pour

esoudre le probeme dans un cadre multi-batteries.

7.5.1 Description du probeme

7.5.1.1 Enone du probeme

Nous consicerons le cadre ceterministe de 'OBSC que nous cecrivons maintenant formellement.
Consicerons un ogerateur de eEcommunications ayant une demande de puissanceéVN;, exprinee en
kW,a chaque periode t d'un horizon de T periodes de temps discetes de tailleegale et de dueeDelta
en heures. Le colt (exprine en unies moretaires) de l'achat d'une unie denergiea chaque periode
est connu. Dans la suite, pour des raisons de simplicie, nous consicerons le prix de lelectricie a
chaque periodet, noe E, obtenua partir du prix de lenergie en le multipliant par . Notez que ce
colt est e par le distributeur delectricie, de m&me que la quantie maximale de puissance P ™,

donree en kW, qui peut étre acheeea n'importe quelle geriode (c'esta-dire la egle

Pour des raisons de scurie du eseau, deux egles doivent &tre respecees : d'une part, une
quantie minimale denergie, noee B™" et donree en kWh, doit toujours rester dans la batterie (ex,
egle ; d'autre part, a n d'aneliorer sa duee de vie, la batterie doit &tre rechargee immediatement
apes chaque utilisation, jusqua sa capacieenergetique maximale, cesigree par B ™ et exprinee en
kWh, avec un taux de puissance constantPg (c'esta-dire la egle R2), exprine en kW. En outre,

une puissance minimale de decharge par griode de temps, noe® ™" et donree en kW, est imposee
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lorsque la batterie est en mode de cecharge (c'esta-dire la eglg Rj). De plus, la batterie a un taux
de puissance maximal, noe D™ et donre en kW, qu'elle peut likerer en raison des limitations de
courant et de tension (c'esta-dire la egle . Notez que D™" 2 [0;D™&], et que la demande de
puissanceW; est suppose etre superieureaD ™" a n'importe quelle periode t de I'horizon. La batterie

doitegalement étre enterement chargee au cebut eta la n de I'horizon de plani cation (c'esta-dire
la egle R3).

A chaque periode de tempst, nous supposons que la ecompengg; (donree en unies moretaires),
qui sera recue par |'operateur de eecommunications de la part du gestionnaire de eseau de transport
(TO) pour chaque unike denergie non achete au distributeur pendant cette geriode,a condition qu'elle
fasse partie d'un e acement, est connue. Chaque e acement a une duee minimale (resp. maximale)

min (resp. ™), donree comme un nombre de periodes, qui doit tre respecee (c'esta-dire la egle
[R8). En outre, pendant chaque reriode d'e acement, |'operateur de eecommunications doit eduire
la puissance achete au distributeur d'au moins une valeur donreePto en kW. En consquence,
pour chague e acementc, une quantie maximale de puissancepl™ (en kW) peut étre achete au
distributeura chaque periode couverte par c (c'esta-dire la egle R9). Le mode de calcul de ce montant
est impos par I'OT selon le pays. En France, le calcul depl'® est bas sur la consommation eelle
delectricie immediatement avant I'e acement et sur la consommation pevue pendant I'e acement.
Ce paranetre est consicee dans notreetude. Consicerons un e acement ¢, qui commencea la geriode

f¢ (premere periode ) et se terminea la periode | (dernere periode ).

Consiceronsegalement u; comme la puissance acheee au distributeura chaque periode de temps
t (en kW). An de calculer p® pour un c donre, une valeur de etrence ! ;, qui prend en compte
la puissance moyenne appeke lors de I'e acement et la puissanag acheteea la periode t juste avant

le cebut de la eduction c (c'esta-dire t = f; 1), est recessaire. Une telle valeur de etrence est

calcuee comme suit : p
_ ItC:fc Wi + ug, 1
le= (7.1)
lc fc+2
Notez que la valeur deu;, ;1 peut cependre de la eduction e ectiee avant c.
Une fois la puissance de e&rence . connue,pg'® est alors calcue comme suit:
pe =max(0;!¢c Pro) (7.2)

Rappelons que notre objectif est de gerer I'utilisation de la batterie tout en respectanta la fois la
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fcurie d'utilisation de la batterie et les egles des marctes de lenergie,a moindre colt. Le montant
total des economies denergie se compose de deux parties. La premere partie est fournie par la
dierence entre les prix de lenergie lors de l'utilisation et de la recharge de la batterie (c'esta-dire lors
de la participation au marcte de cetail dans un nmecanisme de eponsea la demande), et la seconde
par la ecompense payee pour la quantie denergie non achete aupes de le distributeur (c'esta-dire
lorsqu'il e ectue des e acements). Cette seconde partie est calcuke soit par la egle On Time Reward
(OTR), soit par la egle First Time Reward (FTR) (RTE-Portal, 2020). | Si nous utilisons OTR, une
ecompense variableR; est consiceeea chaque periode t lors de chaque e acement. Si nous utilisons
FTR, la ecompense R, donree au cebut de I'e acement c est consiceee pour toutes les periodes
pendant I'e acement, puis multiplee par la quantie denergie non achete pendant cet e acement.
La quantie denergie non acheee lors d'un e acement donre estegalea la decharge de la batterie sur
sa duee. Dans ce qui suit, par souci de simplicie, nous consicerons le prix de ecompense par unie
de puissancea chaque eriode de temps not Ry, obtenua partir du prix de ecompense par unie

denergie en le multipliant par

De plus, nous consicerons un ogerateur de eecommunications avec une seule batterie et une seule
energie fournisseur sans sources denergie renouvelables. La batterie est prétea I'emploi, et aucun codt
d'installation ou de con guration n'est pris en compte. De plus, la batterie doit étre competement
chargee avant d'e ectuer toute eduction. Aucune perte de batterie n'est consiceee non plus et toute
eduction e ectiee doit respecter les egles du marcke de lenergie. Nous consiceronsegalement que
la decision d'e ectuer un e acement est prise par l'ogerateur de eecommunications et non impose

par le gestionnaire de eseau de transport.

Enn, le probeme enone ci-dessus est appek OBSC dans ce qui suit, et toute instance OBSC
est enterement ¢ nie par les paranetres suivants: W, , E, Pma Bmin gmax pg, pmin pmax
R, mn_  max p..- et la politique de ecompense (repesenee par une valeur bookenne). Les
egles d'utilisation de ®curie RI-R5 &t les egles de marcke R7R9] c nies dans la Section [7.3] sont

egalement prises en compte.

7.5.1.2 Variantes pratiques

Dans certains cas, en raison de egles d'ingenierie speci ques ou de limitations techniques, des

contraintes suppementaires doivent etre prises en compte. Par consequent, nous etudions quelques
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variantes du probeme gereral qui peuvent étre clasees en deux grandes familles de probemes. La
premere consicere le cas ai les niveaux de decharge possibles de la batterie sont discrets (et seront
appees OBSC-D). Habituellement, les sysemes de mesure utilises pour surveiller la charge de la
batterie ont des limitations techniques qui empéchent de consicerer des niveaux de decharge continus.
Ceci induit une discetisation des niveaux de decharge qui cepend de la pecision de ces sysemes. Les

variantes correspondantes consicerent les niveaux de rejet donres en pourcentage d"?.

Deuxemement, des egles d'ingenierie suppkementaires peuventegalement &tre imposees sur I'utilisation
de la batterie pour aneliorer sa duee de vie. Un exemple est le cas al la batterie doit rester en mode
repos pendant au moins une periode de temps apes sa recharge compkte. La deuxeme famille de
variantesetudee dans ce travail consicere peciement que la batterie doit recessairement étre au re-
pos pendant au moins un nombre de temps cetermire apes chaque recharge compete (et sera appeke
OBSC-R). Cette hypotlrese peut étre impose en pratique pour s'assurer, par exemple, que la batterie
est bien chargee avant d'étre eutiliee, méme si le taux de recharge eel n'est pasPg (c'esta-dire n'est

pas un taux de puissance constant).

Dans de telles variantes, l'impact de la corelation temporelle entre deux e acements de charge
induits par le calcul de ! ¢ (voir Equation .1), peut etre traie plus facilement. Gracea cela, ils
peuvent étre esolus en temps polynomial. De plus, etant donre que toute solution pour l'une de
ces variantes estegalement une solution ealisable pour OBSC, un tel algorithme peutegalement étre

utilie comme nethode heuristique pour esoudre OBSC.

7.5.2 Resultats expgerimentaux

En tant que nethode de esolution, a programme lireairea nombre entier mixte (appee OBSC-MILP
est propos et esolu le probéeme OBSCa l'aide d'un solveur standard, et chacune de ses solutions
optimales fournit une straegie d'utilisation la batteriea un coat optimal. Concernant les variantes,
nous avons prouwe qu'ellesetaient polynomiales en fournissant un algorithme oriente graphes e cace

(appek OBSC-GQAour les esoudre.

En conequence, nous avons obsene que participer au marcte d'e acement gerere de grandes
economies (88% avec FTR et 105% avec OTR en moyenne), eduisant ainsi 'OPEX energetique de
I'entreprise, et prouvant la pemisse de cette etude. Une rie de tests sur des instances ealistes

provenant du contexte frarcais aet eali®e, a n d'analyser le modctle matrematique ainsi que les
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principales proprees de telles instances. Nous avons notamment obsene quéOBSC-MILPe pouvait
pas atteindre une garantie d'optimalie pour toutes les instances. Cependant, méme pour les cas sans
une telle garantie d'optimalie, la meilleure solution obtenue gerere cep deseconomies de 55%a 90%
en moyenne, ce qui repesente une eduction substantielle de la facture delectricie pour I'entreprise.
La politique de ecompense et la capacie de la batterie semblent étre les paranetres qui ont le plus
d'impact sur ceseconomies potentielles. Concernant les variantes esolues avec l'algorithme oriene
graphesOBSC-GQ#outes les instances ontet esoluesa l'optimalie, et les esultats que nous avons
obtenus ont prouwe la pertinenceeconomique de telles variantes (seulement 2,5% pire que les solutions
optimales d'OBSC en moyenne pour les instances pour lesquelles la garantie d'optimalie est atteinte),
en fournissant de bonnes solutions approctees au probeme gereral, et donc enetant de bonnes et

rapides heuristiques pour le esoudre.

Concernant les performances de nos algorithmes, nous avons obsene que pour les instances de
notre banc de test, la valeur de la discetisation temporelle et la politique de ecompense sont les
paranetres qui ont le plus d'impact sur le temps de esolution. Nous avons consicee une limite de
temps de 15 minutes pour esoudre chaque instance, et, dans cet aspe@BSC-GQO#est aveke e cace
du point de vue informatique, tandis que nous avons obsene que le temps de esolution d®BSC-MILP

augmente rapidement lorsque certains paranetres augmentent.

Une fois que I'on a bien compris l'impact des coupures sur la gestion des batteries, les probeEmes qui
rendent cette gestion plus complexe, et comment les esoudre, nous pouvons utiliser les connaissances
acquises dans la gestion d'un actifenergetique compos de plusieurs batteries. Notez que, par souci de
clare, les egles R6|et|R1(0 n'ont paset prises en compte dans ce chapitre car elles sont plus pertinentes
lorsque plusieurs batteries sont utilies pour eviter qu'une batterie ne soit utilisee beaucoup plus
gue d'autres. De plus, les approches de esolution proposes restent valables avec des modi cations

mineures.

7.6 Optimisation d'un syseme de stockage multi-batteries pour participer
au marche de cetalil

Formellement, le probeme traie dans ce chapitre est l'optimisation d'un syseme de stockage
multi-batteries participant au marcte de cktail (appee OMBSR), an de eduire le colt total de

lenergie pour l'entreprise. L'enjeu principal est de cerer plusieurs batteries tout en respectant les
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egles du marcte de lenergie et les egles de scurie d'utilisation et en minimisant le coat total de

lenergie.

Ce chapitre nous permet de comprendre en cetail I'impact de I'augmentation du hombre de bat-
teries sur le probeme d'optimisation. Nous explorons egalement la stratgie de decomposition du
probeme OMBSR en sous-probemes pouvant étre esolus plus e cacement. Une telle strakgie est en
outre incorpoee dans l'algorithme pesene au chapitre [.7]pour esoudre le méme probeme avec les
e acements. Le probeme OMBSR et toutes ses instances sont enterement cecrits par les paranetres
suivants (dont certains sont des vecteurs ou des ensembles)¥, , E, P™*  mathcalB, B™n, B™Max,
Pg, D™, D™ et N. Les egles d'utilisation de scurie R1JR6 et la egle de marcte R7 du probeme

sont les mémes que celles & nies au chapitrg 7]5.

7.6.1 Resultats expgerimentaux

Nous avons propog deux programmes lireaires a nombres entiers mixtes, et chacune de leurs
solutions optimales fournit une strategie d'utilisation des batteries a n de eduire autant que possible
le coolt energetique total. Nous avons monte que le probeme OMBSR est NP-dicile, et deux
heuristiques sont proposes pour esoudre les instancesa grandeechelle. La premere est base sur la
strakgie Relax and Fix (appeke OMBSR-RF-HE Bt une seconde base sur la cecomposition temporelle
base sur la periodicie de la demande delectricie et des prix (appeke OMBSR-G-HEWDe plus, nous

avons utilise ces approches pour esoudre OMBSR sur des instances ealistes.

Concernant les approches de esolution, nous observons en particulier que les deux moctles math-
ematiques n'ont pu atteindre une garantie d'optimalie que pour une petite partie des instances dans
le celai imparti. Cependant, méme pour les instances sans une telle garantie d'optimalie, la meilleure
solution obtenue gerere cep deseconomies. Le nombre de fois que chaque batterie peut étre utiliee
semble étre le paranetre qui a le plus d'impact sur ceseconomies. En e et, le nombre de fois que
chaque batterieb est utilisee dans une solution est exactementNy, incdependamment de la nmethode de
esolution utilie. En revanche, aucun gain substantiel n'aet obsere en augmentant le nombre de
batteries disponibles (puisque la somme des puissancBd"® de toutes les batteriesequivauta la puis-
sance moyenne appeke), I'horizon temporel ou la puissance moyenne appeke , c'esta-dire la valeur
de W. Cependant, l'utilisation de plusieurs batteries est souhaitable pour des raisons de curie et

pour augmenter la duee de vie des batteries. Concernant les heuristiques, les esultats obtenus ont
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prouwe leur pertinenceeconomique, en fournissant de meilleures solutions par rapport aux meilleures
obtenues par les programmes lireaires en nombres entiers mixtes sur des instancesa grande echelle.
De plus, OMBSR-G-HE#st awe plus e cace pour les instances avec une eriodicie bien & nie de

la demande de puissance et des prix, tandis QUOMBSR-RF-HE#st awe plus e cace pour le cas

cereral.

Concernant les performances de nos algorithmes, nous observons que le nombre de batteries instal-
kes et I'horizon temporel sont les pararetres qui ont le plus d'impact sur le temps de esolution. Nous
consicerons une limite de temps de 30 minutes pour esoudre chaque instance, et, dans cet aspect,
I'heuristique s'est aveee e cace du point de vue informatique, tandis que nous observons que le temps

de esolution des programmes lireaires en nombres entiers propoes augmente rapidement.

7.7 Optimisation d'un syseme de stockage multi-batteries pour participer
aux marcles de lenergie

Dans cette section, nous consicerons le probeme complet de cette these qui consistea optimiser les
coltsenergetiques totaux des sites de ekcommunications utilisant des batteries instalees en secours

pour participer au marcte de lenergie en utilisant une bonne gestion des batteries.

Formellement, le probeme traie dans ce chapitre est l'optimisation d'un syseme de stockage

multi-batteries a n de participer au marche de lenergie (appee OMBSE), a n de eduire le coot total

de lenergie pour I'entreprise. L'enjeu principal est de respecter les egles du marcte et les egles
d'usage de curie tout en minimisant le codt total net de lenergie en e ectuant desecrétages et des
e acements. Le probeme OMBSE et toutes ses instances sont enterement cecrits par les paranetres
suivants (dont certains sont des vecteurs ou des ensembles)W, , E, P™  mathcalS, B™",

BMaX pg, DMn pmax N - mnoomax p. R NC et la poliique de ecompense (repesente par

une valeur bookenne). Les mémes egles d'utilisation de ®curie[RI[R6 et les egles du marcte de

lenergie R7}R10| que celles e nies dans la Sectior) 7]3, sont prises en compte.

7.7.1 Resultats expgerimentaux

Nous proposons un programme lireaire mixte en nombres entiers, etrene@ OMBSR-MIL.Riont

les solutions fournissent une strakgie d'utilisation des batteries an de eduire le colt energetique
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total. Nous avons monte que le probeme OMBSE est fortement NP-Dur, et deux heuristiques sont
proposees : la premere est base sur la strakgie relax-and- x cep exploee dans la Section [7.6,
etrence comme OMBSE-HEE! la seconde est base sur une relaxation lagrangienne qui permet de
tecomposer le probeme en sous-probemes plus facilesa esoudre, eerenesOMBSE-LAGe plus, nous

avons utilis ces approches pour esoudre le probbeme OMBSE sur des instances ealistes.

De ce fait, on observe tout d'abord que l'utilisation de batteries instalees en secours dans le
necanisme dequilibrage peut gererer deseconomies. Concernant les approches de esolution, nous
observons en particulier que le modtle matfematique esolu avec un algorithme de branchement et
de limite n'a pu atteindre une garantie d'optimalie pour aucune instance dans la limite de temps,
méme pour les plus petites. Cependant, m&me sans une telle garantie d'optimalie, la meilleure
solution obtenue gerere cep deseconomies. Le nombre de fois que chaque batterie peut étre utilise
et le nombre d'e acements qui peuvent étre e ecties semblent étre les paranetres qui ont le plus
d'impact sur ceseconomies. En revanche, aucune diminution de la facture delectricie par rapport
a la valeur standard n'aet obsenee en augmentant le nombre de sites des instances. Concernant
I'hneuristique OMBSE-HE®Ile donne des solutions avec deseconomies similairesa celles obtenues avec
OMBSE-MIL nais recessite beaucoup plus de temps CPU. D'un point de vue pratique, son utilisation
dans un environnement de production n'est pas envisageable. Concerna@MBSE-LAGs esultats
obtenus ont prouwe sa pertinenceeconomique, en fournissant de meilleures solutions par rapport aux
meilleures obtenues ave©OMBSE-MIL&U OMBSE-HEE&L avec de meilleursecarts d'optimalie. De plus,
on observe que la puissance contractuali®®to a un impact important sur les solutions obtenues :
avec des valeurs plus elewes, les solutions rapportent plus deconomies, mais si elle est trop elewee
(ie, Pt1o=100 % de Dmax), il peut limiter I'utilisation de batteries pour e ectuer desecrétements de
pointe. D'un point de vue treorique, OMBSE-LA&utilise les algorithmes proposs dans les sections 7|5
et[7.6, ce qui nous permet de esoudre plus rapidement les instancesa grandeechelle tout en gardant

de bonnes qualie des solutions obtenues.

Concernant les performances de nos algorithmes, nous observons que le nhombre de sites est le
paranetre qui impacte le plus le temps de esolution. Nous consicerons une limite de temps de 1
heure pour esoudre chaque instance, et, dans cet aspect, I'heuristique lagrangienf@VMBSE-LAGere
e cace du point de vue informatique, tandis que nous observons que le temps de esolution pour le

programme lireaire en nombres entiers mixte propo% et I'neuristique bidimensionnelle relax-and- x
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augmente rapidement. D'un point de vue pratique, l'utilisation de OMBSE-LAE&st faisable dans un

contexte de production du fait que ses sous-probemes peuvent étre esolus £paement et en paraléle.

7.8 Conclusion et perspectives
7.8.1 Conclusion

Cette these a exploe dierentes possibilies d'utilisation des batteries d'un operateur de tecom-
munications principalement utilisees comme sauvegarde sur les marches de lenergie. Plus peciement,
nous avons exploe I'utilisation de telles batteries pour e ectuer desecrétements de pointe, mais aussi
pour e ectuer des e acements de charge a n de eduire le cottenergetique total de I'entreprise. Pre-
merement, nous avons identie dierents e s lesa l'utilisation des batteries dans dierents contextes
qui recessitaient une analyse plus approfondie pour mieux comprendre les di cules ainsi que les op-
portunies. Ensuite, ces e s ontetetudes individuellement, eta chaque fois des nethodes exactes
et heuristigues ontet propo®es. Enn, le probeme complet avec toutes les egles et possibilies
d'utilisation de la batterie aet exploe et des nmethodes de esolution bages sur les esultats obtenus

ontet corcues.

Pour chacun des probemes d'optimisation correspondants, hous avons corcu:

" Pour le probeme OBSC :

{ Un mocktle matrematique tenant compte des contraintes du marcte frarcais de I'e acement

et des egles de scurie d'usage dans les batteries;

{ Un algorithme de temps polynomial exact base sur la theorie des graphes pour esoudre

deux variantes, et qui peutegalement &tre utilise comme heuristique.
" Pour le probeme OMBSR :

{ Deux programmes lireaires en nombres entiers mixtes : un base sur [enuneration de toutes

les possibilies d'utilisation des batteries, et un second sansenurneration;
{ La preuve que OMBSR est fortement NP-di cile;

{ Deux heuristiques bases sur des aspects dierents pour OMBSR : une basee sur la treorie
des graphes inspiee des proprees des instances ealistes tesees, et une seconde heuristique

base sur l'approche relax-and- x, qui donne de meilleurs esultats pour le cas greral.

221



7.8. CONCLUSION ET PERSPECTIVES

" Pour le probEme OMBSE

{ Un programme lireaire en nombres entiers mixtes ;
{ La preuve que OMBSE est fortement NP-Dur;

{ Une approche base sur la relaxation lagrangienne qui eutilise les algorithmes proposes

pour les sous-probemes d'OBSC ;

{ Une heuristique bidimensionnelle relax-and- x;

A n devaluer I'e cacike et la pertinence des mockles et algorithmes proposes, plusieurs experimen-
tations nunreriques ontek ealiees sur des instances ealistes, gereeesa partir des coats publics de
lenergie et des donrees lees au marcte de I'e acement, ainsi que des donrees internes de l'ogerateur

de ebcommunications frarcais Orange.

On peut conclure que I'utilisation des batteries instalees en secours d'un ogerateur de ekcommu-
nications sur le marcke de lenergie esteconomiquement rentable. Si ces batteries sont utilies pour
e ectuer desecrétages et des e acements de charge, les gains obtenus peuvent étre consicerablement
elewes. De plus, méme si les batteries ne sont utili’ees que pour lecrétement des pics, les gains qui

peuvent &tre obtenus repesentent cep une valeur importante pour l'entreprise.

7.8.2 Perspectives de recherche

7.8.2.1 Perspectives scienti ques

Au cours de cette trese, plusieurs aspects ontee abordes et certains d'entre eux recessitent des
recherches plus approfondies. D'un point de vue thkeorique, la complexie du probeme aborde dans
la Section[7.5 concernant la gestion d'une batterie qui est utilie pour e ectuer des e acements est

encore un probeme ouvert. Seuls deux variants polynomiaux ontet identies.

Dans la méme veine, plusieurs methodes de esolution ontee proposes pour les dierents prob-
Emes abordes qui cependent fortement des paranetres de con guration. L'exploration en cktail de
ces paranetres, ainsi que l'identi cation des meilleures valeurs de ces paranetres pour des classes
de probemes speci ques, sont d'une importance fondamentale pour obtenir de meilleurs esultats et

performances de calcul.

Dans les sectiong 716 et[ 7]7, des heuristiques bases sur la technique relax-and- x et la decom-
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position lagrangienne onteke proposes. Cependant, d'autres nethodes de esolution peuvent étre
appliqwees au probeme aborde dans cette these. La programmation dynamique dans des cas partic-

uliers, des heuristiques alternatives et des programmes non lireaires pourraient étre utilies.

Une autre perspective de recherche est le senario ai les sites sontequipes de plusieurs batteries.
En e et, la Section [7.7 traite le probeme en consicerant des sitesequiges d'une seule batterie car c'est
le cas actuel chez Orange France. Cependant, les data-centers et les stations de base centrales sont
fequemmentequipes d'un parc de batteries qui pourraientegalement étre utilies sur les marctes de
lenergie, mais ils ne sont pas pris en compte dans cette ttese. Dans le méme ordre d'icees, la possibilie
d'installer des batteries, et donc d'envisager un codt d'installation d'implantation, pour ameliorer
la capacit a e ectuer desecrétages et des e acements de charge estegalement une perspective de

recherche future.

7.8.2.2 Perspectives industrielles

Tout d'abord, le partage de batteries entre stations de base voisines est un sujet discue en interne
dans l'entreprise, pour lequel des recherches sont en couts (Foucault et|al., 2016). Dans ce contexte,
ajouter a la probematique le choix des stations de base qui doivent disposer d'une batterie pour
alimenter les stations voisines est un challengea explorer et qui peut gererer deseconomies de coats
consicerables pour I'entreprise. Une fois qu'une batterie est partagee, I'e cacit de I'envoi de puissance

entre deux stations doit &tre prise en compte.

La seconde perspective est leea l'utilisation de batteries au lithium,egalement instalees en secours,
pour participer aux marctes de lenergie. Les batteries au lithium sont plus e caces, plus exibles

dans leur utilisation et mieuxa méme de esistera dierentes temperatures.

La troiseme perspective de recherche est leea l'inegration desenergies renouvelables avec les bat-
teries. Une inegrationa grandeechelle de panneaux solaires et deoliennes modi e consicerablement
les mockles de chargeelectrique nette de production et de consommation, recessitant des sysemes de
gestion complexes|(Luo et al., 2015; Shaker et al., 2016). En interne chez Orange, l'utilisation de pan-
neaux solaires et deoliennes fait I'objet detudes pour levolution du eseauenergetique des stations
de base|(Marquet et al., 2006). En e et, maintenir la stabilie et la abilie du eseauelectrique, ainsi
gue les egles d'utilisation de la ®curite des batteries a n de participer au marcte de lenergie, est un

\eritable & qui recessite des recherches plus approfondies.
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Appendix A

Power transmission between base stations

In this appendix we introduce the possibility of performing power transfer between sites in the
context of telecommunications. Some essential elements such as transmission losses and equipment
needed to perform the transfer are presented. In fact, energy is produced in power plants (nuclear,
gas, hydroelectric, solar, etc.) and has to be sent to the customers location. Thus, the electrical power
is transferred via transmission wires over the country, and such a transfer is subject to the resistivity

of the wires, causing losses.

A.1 Transmission loss

Concerning the transmission loss, when an electron travels through a wire or other conductor
material it encounters resistance, i.e., an hindrance to the ow of electrons. Such a resistance appears
due to collisions of the electrons with xed atoms within the conducting material. In this context, each
conductor material has its own resistivity (i.e., the conducting ability of a material measured in Ohm
per meter). Most of the wires are made of copper which has a low resistivity:7 10 & Ohm-meter)
and low production cost compared to silver (:59 10 8 Ohm-meter) or gold (2:2 10 & Ohm-meter)

Bird|(2013). Hence, the longer the wire, the more resistance there will be, causing high losses.

To reduce transmission losses while maintaining the same power transmission rate, the current
is frequently reduced as much as possible and the voltage is increased. On the one hand, current
reduction means a smaller number of electrons traveling at the same point of the conductor at the
same time, reducing the friction. On the other hand, voltage increasing means a higher di erential

power that pressures groups of electrons to travel 'more frequently”. The equipment responsible for

225



A.1. TRANSMISSION LOSS

such an increase of voltage is called the Transformer. Every power plant uses a transformer to increase

the voltage level before transmission for long distances.

In the context of batteries, if a power from a battery is sent over a long distance, a transformer is
needed at the start and end points. The battery itself has a voltage limit imposed by the electrolysis
process, requiring such an additional equipment. Therefore, batteries are usually installed close to the

customer, eliminating the need for a transformer, which reduces the operational cost.
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Examples of transmission loss

Let us consider a power plant that must send 5kW from a start point to an end point which
are | = 1km away and connected by a copper wire. The copper line has a material constant of
0.017 %2 and a cross-section oA = 10mm? (Bird, 2013). The voltage for the transmission is 1kV

and the current () for transmission is % =5A.

We can also compute the total resistanceR of the wire asR =+ =0:017 mez 100 = 1:7 .
Hence, we have a total resistance of:7 per km of copper line considering a cross-section dfomm?.
Finally, we are able to compute the total transmission power loss considering a current 0bA. The
total power loss P is computed asP = 1°R, where| is the current and R the line resistance. This

implies that we have a power loss oP =25 1:7 = 42:5W, corresponding to 0:85% of S5kW.
Battery power transmission

Let us consider a typical AGM battery as a power source with a current of 19A and a voltage of
55V. The battery releases 1045W of power in one hour at its maximum power capacity. However, with
aresistance ofl:7 per km, 613W will be lost in transmission over 1km, corresponding t058:7% of the
total power sent. An alternative would be to either increase the wire diameter or reduce the current.
Considering a scenario where the same 1045W are transmitted in 5 hours instead of 1 hour (i.e., 3.8A
current), 24.54W (2:34%) would be lost in such a transmission. We can also consider another scenario
where these 1045W are sent with 19A current to the customer 20 meters away. In this context, the
line resistance is0:034 and the power lost in such transmission is12:2W, corresponding to 1:17%

loss.

If a transformer is installed together with the battery for power transmission, the transmission
losses are reduced. Let us consider a transformer where the voltage is transformed from 12V to 220V,
implying a reduction in current from 19A to 4.75A. In this case, to send the same 1045W in one hour
over a distance of 1km, approximately 38.4W will be lost, representing about 3.67%. This example

illustrates the importance of a transformer in electric power transmission.

A.2 Transmission in telecommunications networks

The network reliability of telecommunications sites has been improved over the years, allowing to

reduce the number of backup devices in sites of some regions (Foucault et|el., 2016). In this context,
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Figure A.1 { Power sharing grid considering transmission losses up to 26

installing a remote power solution for some sites with a shared power system dramatically reduces
costs of maintenance, since it decreases the intervention time needed to get to the site. Foucault etlal.
(2016) present remote power solutions, called Remote Feeding Telecom (RFT), with shared power
plants, as well as the physical and economic impacts on power transmission. In this context, base
stations equipped with a RFT system are connected to sites without an energy storage asset and have

the ability to send data and power over hybrid cables.
Energy assets sharing

In telecommunications context, the energy assets sharing between sites is desirable for future
networks, especially with the 5G network deployment. However, considering a battery that sends
1kW thought a 2:5mm? wire to another site 800 meters away, the power loss will be about0% For
sites close to each other, and such that the transmission loss is smaller than 25% considering the
battery installed, the power sharing of energy assets can be allowed. Figur¢ (A.1) illustrates the grid
of energy assets sharing between the Orange France sites considering a power transmission loss up
to 25%, which covers the whole French territory, and for which a large number of power sharing is
possible. In this context, some of the sites will be central power stations with direct connections with
remote power stations without a battery asset. The power transmission between sites is traditionally
performed through a copper wire of 2.5nm? with resistivity of 1:7 10 8 Ohm-meter (Foucault et al.|
2016).

Figure [A.Z]illustrates a possible case where batteries are shared between sites: sites in orange are
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Figure A.2 { Energy power sharing schema

equipped with one battery, the site in green is a central power station, and sites in blue are remote

sites without a battery. The edges represent the possibility of sharing energy between sites.
Perspectives of research

The use of hybrid ber-coaxial cables that can transport data and optical energy to powering
electric or electronic devices remotely, formally called Power Over Fiber (PoF), has recently become
a new subject of research|(Rosolem and Roka, 2017). The main interest of this technology is that
besides the advantages of optical bers such as immunity to electromagnetic interference and electrical
insulation, the PoF eliminates the use of metallic cable, which improves the reliability and the security
of the system. At Orange France, the use of the PoF technology is under study, as it seems to be the
reality in next years. Consequently, the possibility of sharing batteries between sites requires future

research to integrate such aspects in the models and solving approaches proposed in this thesis.
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Appendix B

Lithium batteries in telecommunications

In this appendix we introduce the use of lithium batteries in the telecommunications context. Some

essential elements such as the recharging pro le and the e ciency are presented.

In this thesis, we only considered GEL or AGM batteries in our tests. However, batteries of di erent
technologies, such as lithium, are increasingly present in our daily lives. In the telecommunications
context it is no di erent, and several applications using lithium batteries have been proposed thanks
to the advantages of this technology |(Eaves and Sha €r| 20G7). Lithium batteries are more e cient,

more exible in their use and better able to withstand di erent temperatures.

In this context, the team of experts from the French telecommunications company Orange has
explored the use of lithium batteries in base stations for backup. Consequently, it is important to
consider this type of batteries, and its rules and limits of use, in the models and algorithms proposed

in this thesis.

B.1 Recharging process

After several conversations with the expert team, we have concluded that the safety usage rules
R, summarized in Sectiorf 1.3 are still valid for lithium batteries. Concerning the rule[R2,
the battery must still be recharged with a constant power rate Pg, up to its maximal capacity B™&,
but its recharge can be delayed. Indeed, lithium batteries do not need to be recharged immediately
after each discharge for physical reasons, but delaying the recharging of the battery induces a risk to
the company since they are installed for backup purposes. However, delaying the recharge of some

batteries for some periods of time can increase the gains signi cantly since the recharge can benet
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from better power purchase prices.

Considering that the maximal delay of recharge of a batterybis given by R, the rule @ can be

rewritten as follows:

R2' - The battery must start being recharged at most R time periods after each discharge with a

constant power rate Pg, given in kW, up to its maximal capacity B™M®*, given in kWh;

To integrate these rules in the models proposed, we must change the constraints that de ne the
values of variablesuffs;t in the models proposed. Hence, for a given batterys in a site s, the following

new family of variables will be considered:

" Ot 210;1g;8t 2 T : equal to O if the recharge start of the battery bs is delayed (i.e., the value
of the variable uEs;t is equal to 0), and to 1 otherwise (i.e., the value of the variableuEs;t takes
the values de ned in[R2).

Note that variables z act on the activation of constraints of recharge (see Constraints[(B.]l) and
B.2) below).

In addition, the constraints that de ne the values of variables u,fjs;t must be replaced by the following

constraints:

Upy = (1 Zo)Gh MN(BE™= Xp= ;Pg, i P& Wey) 8t2T (B.1)
Obsit 1 Ot T Zosit 8t2T (B.2)
t°=ma%1 1)
Zpto+ Oht 1 8t2T (B.3)
t-=max(l;t R)

Note that Constraints B.1]and B.2|guarantee partially the rule R2']because the maximal delay R
to start the recharge is not guaranteed. Hence, Constraint$ B3 imposes that the recharging process

starts at most R time periods after the battery discharge.

Note that two new non-linearities are introduced in Constraints [B.1], namely the product between
two binary variables z and x, that can be easily linearized, and the product between the variableg

and x, that can be treated with the McCormick strategy (McCormick, 1976). Concerning the graph
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oriented approach proposed in Chapterl B, the number of nodes in the graph used to compute the

longest path will increase by a factor of R.
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Resune :

L'utilisation de batteries de secours en cas de coupure de courant est fequente dans les eseaux de
eecommunications, car ils fournissent des services critiques et doivent rester en ligne en permanence.
Ces batteries sont utilises en conjonction avec des antennes et d'autresequipements, et des egles strictes

de =curie d'utilisation doivent etre prises en compte a n de garantir qu'elles soient toujours disponibles

en cas de coupure de courant. En outre, I'ogerateur de eecommunications pourrait utiliser ces batteries
an de participer au marcte de Ielectricie a condition que le eseau soit susamment able et que

les egles de curie d'utilisation soient respeckees. En e et, puisque le prix de lenergie varie dans le

temps, les batteries peuvent étre utilisees poureviter d'acheter de lenergie lorsque ce prix estelew, et

gtre rechargees lorsque le prix de lenergie est plus bas, un comportement appek straegie decrétement
des pointes peak-shavingen anglais). Une deuxeme facon rentable pour une entreprise d'utiliser seg
batteries est d'e ectuer des e acements de charge. En e et, lorsque la demande delectricie d'un pays
est sugerieurea la production, le gestionnaire du eseau de transport doit prendre des mesures a n de

stabiliser le eseau, par exemple en demandant aux centraleselectriques de produire davantage dénergie.

Un autre moyen est de demander aux consommateurs intensifs enenergie de eduire leur consommatiq
pendant une periode donree (on dit alors qu'ils e ectuent un e acement de charge), en leur o rant une

ecompense en echange. Dans cette these, nous consicerons le probeme de l'optimisation des colts

totaux de lenergie en utilisant des batteries instalees pour la sauvegarde a n de participer au marche de
lenergie en e ectuant desecrétements de pointe et des e acements de charge, avec l'aide d'une gestio
appropree des batteries. Notre objectif est de eduire les depenses totales d'exploitation de lenergie
pour I'entreprise, et de maximiser les ecompenses recues en e ectuant des e acements de charge. Ur
etude de l'architecture du marche de lelectricie en France est d'abord meree pour comprendre les
nmecanismes de exibilie de la demande et comment les contraintes operationnelles dans l'utilisation des
batteries d'un operateur de eEcommunications interagissent avec le marcte de lenergie. Nous avons
identie dierents ce s qui ontee exploes individuellement pour mieux comprendre les caraceristiques

du probkeme d'optimisation sous-jacent et ainsi developper des methodes de esolution plus e caces.
Pour chacun d'entre eux, des programmes lireaires en nombres entiers mixtes et des heuristiques sq
ensuite proposs pour esoudre le probeme correspondant. Apes avoir exploe et compris les s
individuels, nous avons propo® des programmes lireaires en nombres entiers mixtes et des heuristiqu
pour le probeme principal de cette these, que nous prouvons étre NP-Dur, en incorporant les prix de
lenergie du marcte et la disponibilie des batteries. En n, des simulations bases sur des donrees ealistes
provenant de l'ogerateur de eecommunications frarcais Orange montrent la pertinence des moctles et
de I'heuristique proposs : ceux-ci se montrent e caces en termes de calcul pour esoudre des instance
a grandeechelle, et deseconomies et des revenus signi catifs peuvent étre gerees grace aux politiques
optimiees de gestion du stockage denergiea plusieurs batteries.
Mots-ces: Recherche Ogerationnelle, Syseme de Stockage d'Energie de Multiples Batteries, Mecanisme
de Reponsea la Demande, E acements d'Energie, Programmation Lireaire en Nombres Entiers Mixtes,
Algorithmes de Graphes, Reseaux de Teecommunications.
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Abstract : The use of batteries as backup in case of power outages is common in telecommunicatio
networks, since they provide critical services and need to keep their services always online. These bz
teries are used in conjunction with antennas and other equipment, and strict safety usage rules must b
considered in order to guarantee that they are always available in case of a power outage. Besides, t
telecommunications operator could use these batteries in order to participate in the electricity market
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provided that the grid is reliable enough, as long as the safety usage rules are respected. Indeed, since

the energy price varies over time, batteries can be used to avoid buying energy when this price is high
and recharged when the energy price is low, a behavior that will be denoted as a peak-shaving strateg
A second pro table way for a company to use its batteries is by performing load curtailments. Indeed,

when the power demand of a country is greater than the production, the Transmission System Operator

must take steps in order to stabilize the grid such as ask power plants to produce more energy. Anothe
way is to ask energy-intensive consumers to reduce their consumption during a given time period (if
which case they are said to perform a load curtailment), by o ering them a reward in exchange. In this
thesis, we consider the problem of optimizing the total energy costs using batteries installed for backuj
in order to participate in the energy market by performing peak-shaving and load curtailments, with
the help of a proper batteries management. Our goal is to reduce the total energy operational expense
for the company, and maximize the rewards received by performing load curtailments. A study of the
electricity market architecture in France is conducted to understand the demand, exibility mechanisms
and how the operational constraints in the use of batteries of a telecommunications operator interact
with the energy market. We identi ed di erent challenges that were investigated individually to better
understand the characteristics of the underlying optimization problem and thus to develop more e -
cient solving methods. For each one, mixed-integer linear programs and heuristics are then proposed

solve the related problem. Once we investigated and understood the individual challenges, we propose

mixed-integer linear programs and heuristics for the main problem of this thesis, which we prove to be
NP-Hard, incorporating market energy prices and the availability of batteries. Finally, simulations based

on realistic data from the French telecommunications operator Orange show the relevance of the mode
and heuristic proposed: these prove to be computationally e cient in solving large scale instances, result;
ing in signi cant savings and revenue through the optimized multi-battery energy storage management
policies.

Keywords: Recherche Operationnelle, Syseme de Stockage d'Energiea Plusieurs Batteries, Mecanisme
de Reponsea la Demande, E acement de la Charge, Programmation Lireaire en Nombres Entiers Mixtes,
Algorithmes de Graphes, Reseaux de Teecommunications.
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