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Abstract

In the past decades, our knowledge of the magnetism of cool stars has largely grown
thanks to tomographic imaging techniques that allow reconstructing large-scale surface
fields of stars. The collection of maps obtained for stars with different spectral classes,
rotating rates, and age unveiled a link between the complexity of the large-scale magnetic
topology and the star’s internal structure. The large-scale magnetic field evolution is
thought of as indirect observational evidence of dynamo action adjustments throughout
the stellar evolution. Thus, the study of stellar magnetic fields has been closely associated
with theoretical analysis of the magnetic field generation inside stars. In particular,
magnetohydrodynamic numerical simulations have been performed in 3D to study how
rotating turbulent convection generates and sustains magnetic fields.

This thesis is dedicated to the study of the magnetic morphology of cool stars. We
extend the sample of stars with reconstructed large-scale magnetic fields by studying
the active companion of the close-binary system V471 Tau: a K2 dwarf main-sequence
star that is rapidly rotating with a period of about 0.5 days. We use the information
acquired to discuss the feasibility of some scenarios proposed to explain the eclipse timing
variations observed in V471 Tau. Further, guided by the wealth of information provided
by observations of the magnetic morphology of stars, we perform dynamo simulations to
explore the possible parameters controlling the magnetic morphology of stars. Based on
our parametric studies, we propose an energy ratio proxy that seems able to consistently
classify the magnetic field complexity of early-M dwarfs as mainly dipolar or mainly
multipolar.
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Resumé

Au cours des dernières décennies notre connaissance du magnétisme des étoiles froides
a largement progressé grâce aux techniques d’imagerie tomographique qui permettent de
reconstruire les champs de surface à grande échelle. Les cartes de champ magnétique
obtenues pour des étoiles ayant des classes spectrales, des taux de rotation et des âges
différents a révélé un lien entre la complexité de la topologie magnétique à grande échelle
et la structure interne de l’étoile. L’évolution du champ magnétique à grande échelle est
considérée comme une preuve observationnelle indirecte des ajustements de la dynamo
tout au long de l’évolution stellaire. Ainsi, l’étude des champs magnétiques stellaires a
été étroitement associée à l’analyse théorique de la génération du champ magnétique à
l’intérieur des étoiles.

Cette thèse est consacrée à l’étude de la morphologie magnétique des étoiles froides.
Nous étendons l’échantillon d’étoiles dont le champ magnétique à grande échelle a été
reconstruit en étudiant le compagnon actif du système binaire proche V471 Tau: la naine K2.
Nous utilisons ces informations pour discuter de certains scénarios proposés pour expliquer
les variations dans la fréquence des éclipse observées dans V471 Tau. De plus, guidés par
la richesse des informations fournies par les observations de la morphologie magnétique
des étoiles, nous réalisons des simulations de dynamo afin de déterminer les paramètres
contrôlant cette topologie. Sur la base de nos études paramétriques, nous proposons
un nouveau critère permettant de classer de manière cohérente la complexité du champ
magnétique des naines M précoces comme principalement dipolaire ou principalement
multipolaire.
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Foreword

Stellar magnetic fields have been at the center of a large number of investigations for
many years now. Magnetic fields govern various physical processes as the star evolves from
the pre-main sequence (PMS) to the main sequence (MS). During the first stages of stellar
evolution (≲ 10 Myr, Hillenbrand, 2005), magnetic fields control the star-disk interaction
and the accretion/ejection process (Koenigl, 1991; Bouvier et al., 1999; Alencar, 2007). As
the star evolves towards the MS, magnetic fields power stellar winds that remove angular
momentum from the star (Gallet & Bouvier, 2013) and even play a critical role in the
search for habitable planets (Cohen et al., 2014; Strugarek et al., 2015). Therefore, it is
vitally important to understand the impact of magnetism on the long-term evolution of
stars.

Nowadays, it is well known that cool stars with significant convective envelopes (with
spectral types later than G0) have time-dependent magnetic fields that are powered by
turbulent motions in a process called dynamo action (Brun & Browning, 2017). The
nature of magnetism in intermediate-mass and massive stars is more debatable (see Donati
& Landstreet, 2009, for a review of the magnetism in several classes of stars). As these
stars possess a radiative envelope and a convective core, it is more difficult to interpret
the observed magnetic fields as a consequence of a convective core dynamo. The most
plausible explanation is that they carry a fossil field remnant from the star formation
(Braithwaite & Spruit, 2017).

Recently, high-resolution spectropolarimeters such as ESPaDOnS (Donati, 2003), NAR-
VAL (Aurière, 2003), and HARPS-Pol (Snik et al., 2011) in the optical and SPIRou (Donati
et al., 2020) in the near-infrared (nIR) domain enabled us to investigate inhomogeneities at
the stellar surface. Using the tomographic Zeeman-Doppler Imaging technique, time-series
spectra have been successfully inverted into brightness and magnetic field maps at the
surface of stars (e.g., Donati et al., 2008b; Morin et al., 2010; Folsom et al., 2018). These
maps provided important clues about the magnetism of stars, offering a unique view of how
stellar parameters such as the rotation rate, mass, and internal stratification can modify
the dynamo at play in the convective envelope of cool stars (e.g., Marsden et al., 2011;
Brun & Browning, 2017). In this thesis, we contribute to the study of the magnetism of
cool stars by performing the first reconstructions of the magnetic topology of the K2 dwarf
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V471 Tau using ESPaDOnS observations. We use these magnetic maps to discuss possible
implications for the dynamics of the binary system V471 Tau. Furthermore, we perform
3D numerical simulations to better comprehend the influence of different parameters on
the magnetic field generation within the star and, ultimately, to understand what controls
the magnetic field configuration that emerges at the stellar surface and is probed by
observations.



Avant propos

Les champs magnétiques stellaires font l’objet d’une multitude d’études depuis de
nombreuses années. Les champs magnétiques régissent divers processus physiques lors de
l’évolution de l’étoile depuis la pré-séquence principale (PMS pour Pre-Main Sequence)
jusqu’à la séquence principale (MS pour Main Sequence). Pendant les premiers stades
de l’évolution stellaire (≲ 10 Myr, Hillenbrand, 2005), les champs magnétiques contrôlent
l’interaction étoile-disque et les processus d’accrétion (Koenigl, 1991; Alencar, 2007).
Lorsque l’étoile évolue vers la MS, les champs magnétiques alimentent les vents stellaires
qui extraient du moment cinétique de l’étoile (Gallet & Bouvier, 2013) et jouent même
un rôle critique dans la recherche de planètes habitables (Cohen et al., 2014; Strugarek
et al., 2015). Il est donc d’une importance vitale de comprendre l’impact du magnétisme
sur l’évolution à long terme des étoiles.

Aujourd’hui, il est bien connu que les étoiles froides ayant une enveloppe convective
assez étendue (de type spectral ultérieurs à G0) ont des champs magnétiques dynamiques
alimentés par des mouvements turbulents dans un processus appelé le mécanism de dynamo
(Brun & Browning, 2017). La nature du magnétisme dans les étoiles de masse intermédiaire
et les étoiles massives est plus discutable (Donati & Landstreet, 2009, pour une revue
sur le magnétisme dans les étoiles de différentes classes spectrales). Comme ces étoiles
possèdent une enveloppe radiative et un coeur convectif, il est plus difficile d’interpréter
les champs magnétiques observés comme la conséquence d’une dynamo dans le coeur
convectif. L’explication la plus plausible est qu’elles possèdent un champ fossile résiduel
de la formation de l’étoile (Braithwaite & Spruit, 2017).

Récemment, les spectropolarimètres à haute résolution tels que ESPaDOnS (Donati,
2003), NARVAL (Aurière, 2003), et HARPS-Pol (Snik et al., 2011) dans le domaine
visible et SPIRou (Donati et al., 2020) dans le domaine proche-infrarouge nous ont permis
d’étudier les inhomogénéités à la surface des étoiles. En utilisant la technique d’imagerie
tomographique Zeeman-Doppler, des séries temporelles de spectres ont été inversées avec
succès en cartes de brillance et de champ magnétique à la surface des étoiles (e.g., Donati
et al., 2008b; Morin et al., 2010; Folsom et al., 2018). Ces cartes ont fourni des indices
importants sur le magnétisme des étoiles, offrant une vue unique sur la façon dont les
paramètres stellaires tels que le taux de rotation, la masse et la stratification interne
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peuvent modifier la dynamo en jeu dans l’enveloppe convective des étoiles froides (Marsden
et al., 2011; Brun & Browning, 2017).

Dans cette thèse, nous contribuons à l’étude du magnétisme des étoiles froides en
effectuant les premières reconstructions de la topologie magnétique de la naine K2 V471
Tau à partir d’observations ESPaDOnS. Nous utilisons ces cartes magnétiques pour discuter
des implications possibles pour la dynamique du système binaire V471 Tau. De plus, nous
effectuons des simulations numériques 3D pour mieux comprendre l’influence de différents
paramètres sur la génération du champ magnétique à l’intérieur des étoiles et, finalement,
pour comprendre les mécanismes physiques à l’origine de la morphologie magnétique à
grande échelle observée à la surface des étoiles.



Chapter 1

Introduction

In this thesis, we focus our attention to cool, low-mass stars with typically ≲ 1.1 M⊙,
whose magnetism is believed to be generated by a dynamo mechanism powered by rotating
convection. Our investigations will be mainly dedicated to understand the characteristics
of the large-scale stellar magnetic field, both from an observational and theoretical point
of view. We start this chapter by discussing the example of our Sun. As the closest star
to us, the Sun offers the greatest amount of information about its magnetism from large
to small scales. We then move to the magnetism of low-mass stars other than the Sun,
which can help understand how parameters such as the stellar mass, rotation, and age
influence dynamo action. Finally, we address the dynamo mechanism from a theoretical
point of view.

1.1 Activity & magnetic fields - the case of the Sun

Since the earliest known drawing from naked-eye observations by John of Worcester in
1128, dark spots are known to exist at the surface of the Sun. With the advent of the
telescope at the dawn of the 17th century, sunspots started to be monitored regularly (Arlt
& Vaquero, 2020). These extended records revealed long-term modulations in the number
of spots at the surface of the Sun, with the increase and decrease of the sunspot number
happening in 11-year cycles. Fig. 1.1 illustrates the sunspot number time series for the last
six cycles to date, corresponding to cycles 19 to 24 (the reference cycle 1 dates from 1755
to 1766). It is clear from this figure that the maximum sunspot number varies irregularly,
with the occurrence of sunspots being considerably lower in some cycles. Furthermore, the
solar cycle period may also vary from its mean value of 11 years, with typical variations
since cycle 1 ranging from about 8 to 14 years.

Beyond the temporal modulation of the number of spots seen at the solar surface,
Maunder (1904) found that the position of the emergence of sunspots changes as the cycle
progresses (Hathaway, 2015). The latitudinal and time dependence of the sunspot number
revealed a striking symmetry with respect to the equator. At the beginning of a cycle,
when the sunspot number is the lowest, the spot emergence occurs around a latitude of 30◦
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Figure 1.1. Sunspot number evolution for the last six solar cycles, adapted from Veronig et al.
(2021). The monthly mean spot number is shown in blue and the 13-month smoothed profile
in red. The insert plot illustrates the active (left-half) and inactive (right-half) Sun during the
maximum and minimum of last the cycle (credits: NASA/SDO).

in the Northern hemisphere and −30◦ in the Southern hemisphere. However, as the cycle
progresses, the spot location drifts from mid-latitude towards the equator. Once the 11-yr
cycle finishes, the entire process repeats, with sunspots emerging again at mid-latitudes.
For all the recorded cycles, sunspots appear confined to latitudinal bands of about ±35◦.

Although sunspots have been tracked for centuries, their magnetic nature was only
unveiled in 1908 after the seminal work of Hale (1908). Hale detected polarised light emitted
by sunspots and correctly attributed it to the presence of magnetic fields at the solar
surface. Using the Zeeman effect proposed few years before by the physicist Pieter Zeeman
(Zeeman, 1897), he inferred that strong (few kilo Gauss) fields exist in a sunspot. Dark
spots at the surface of the Sun were then understood as local concentrations of magnetic
fields. The detailed structure of a sunspot can be seen in Fig. 1.2, corresponding to the
highest resolution image available to date. It is possible to identify convective structures
of different sizes around the dark central region, a trait typical of turbulent convective
flows. However, in the dark region itself, the interaction between strong magnetic fields
and the plasma inhibits convective motions creating a region cooler than its surroundings
(Biermann, 1941) - the dark central region has a temperature of about 3700 K, while the
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Figure 1.2. Sunspot image at the wavelength of 530 nm, as seen by the Inouye Solar Telescope
on 28 January 2019 (Rimmele et al., 2020). The dark central region corresponds to the umbra
and the ring with radial filaments to the penumbra.

temperature of the unspotted solar surface is 5777 K. Cool spots virtually translate into
dark spots as less energy is emitted in that portion of the surface.

It became clear in the years following Hale’s discovery that the spatio-temporal
behaviour of the sunspots is linked to a modulation in the solar magnetic field. The
quietest magnetic state of the Sun is observed when the sunspot number is the lowest,
while the most active Sun corresponds to sunspot maximum (see insert graph in Fig. 1.1).
Further studies revealed that the global large-scale solar magnetic field switches polarity
every 11-yr when the sunspot number is maximum (Babcock, 1961; Stix, 2002; Hathaway,
2015), making the complete magnetic cycle 22-yr long. The temporal coherence of the
large-scale magnetic field is therefore much longer than the typical timescale of convection
(ranging from minutes to a few days – Rieutord & Rincon, 2010; Hathaway et al., 2015).
Thus far, astrophysicists broadly agree that a dynamo mechanism acts in the interior of
the Sun generating a large-scale magnetic field; however, reproducing all the observable
features rising from the solar activity has proven to be a very challenging task (see recent
reviews by Charbonneau, 2020; Nandy, 2021). Further discussion about the dynamo theory
is left for Sec.1.3.
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1.2 Activity & magnetic fields - stars other than the Sun

1.2.1 Coronal and chromospheric tracers of stellar activity

The study of magnetic activity in stars other than the Sun was introduced with indirect
traces/proxies of the magnetic flux, e.g., coronal X-rays (Fisher et al., 1998; Pevtsov
et al., 2003) or chromospheric emission lines as Hα (Reiners & Basri, 2007, 2010; Newton
et al., 2017) and Ca ii H&K (Frazier, 1971; Skumanich et al., 1975; Schrijver et al., 1989).
Magnetic fields have been studied for stars covering a wide range of spectral classes.
Observations identified the magnetic activity as a ubiquitous feature of stars that present
an outer convective layer like our Sun, which corroborates the hypothesis of dynamo-
generated magnetic fields powered by convective motions. Hence, detecting activity proxies
for many stars allows one to investigate how dynamo processes depend on key stellar
parameters such as the mass, age, rotation rate, metallicity, and characteristics of the
convective motions.

Perhaps one of the most well-known results was obtained by Skumanich (1972). Analys-
ing a sample of G-type main-sequence stars, he showed that both the emission in Ca ii and
projected angular velocity v sin i of these stars decreased with age t, following a power-law
∝ t−0.5. His results evidenced the mutual impact of dynamo-generated magnetic fields
and the stellar rotation. On the one hand, magnetic fields have been identified as the
prime cause of the spin-down of stars with age, with magnetised winds extracting angular
momentum from the star (Wood et al., 2005; Romanova et al., 2009; Matt et al., 2015;
Réville et al., 2015; Finley & Matt, 2018). On the other hand, magnetic activity was found
to anticorrelate with the rotational period (see also Walter & Bowyer, 1981; Hempelmann
et al., 1995; Pizzolato et al., 2003). Later on, the study of stars with different spectral
types and ages (e.g., Irwin & Bouvier, 2009) shed light on the role of rotation on magnetic
activity. It was noted that the stellar activity trend saturates for rotational periods below
a certain threshold. This can be seen on Fig. 1.3 a) where stellar activity, measured in
terms of coronal X-ray emission, is plotted as a function of the rotational period for a
large number of cool stars. However, the period at which activity becomes constant with
decreasing rotational period was found to vary for stars with different spectral types,
creating a scattered trend in the unsaturated regime of activity (Pizzolato et al., 2003).

Following Durney & Latour (1978), studies started to explore the combined effect
of rotation and convection on dynamo-driven magnetic fields (e.g., Noyes et al., 1984a;
Mangeney & Praderie, 1984; Güdel et al., 1997; Pizzolato et al., 2003; Wright et al.,
2011, 2018; Pizzocaro et al., 2019). The impact of rotation on convection is traditionally
measured through the non-dimensional Rossby number, defined as the ratio of inertial
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Figure 1.3. Stellar activity as measured from the fractional X-ray, adapted from Wright &
Drake (2016). a) stellar activity vs rotational period. b) stellar activity vs Rossby number
for fully convective (red circles) and partly convective (grey circles) stars. The best-fit of the
saturated (horizontal) and unsaturated (diagonal) activity regimes are shown as black dashed
lines.

to Coriolis forces. A practical definition used in the stellar community for the Rossby
number is Ro = τc/Prot, where τc is the convective turnover time, computed through 1D
stellar evolution models, and Prot is the rotation period of the star. Fig. 1.3 (b) shows the
activity plotted against the Rossby number for a large set of fully and partly convective
stars (comprising stars with spectral types F to M). The important role of the Rossby
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number in the magnetic field generation becomes obvious in these measurements. Stars
with Ro > 0.13 show a decrease in activity as the Rossby number increases, whereas,
for stars with Ro ≲ 0.13, the activity becomes independent of the Rossby number. The
scatter in the activity-rotation relationship is minimised when using the Rossby number
instead of the rotational period – however, see also Reiners et al. (2014) for a discussion
about which quantity better encodes the activity-rotation relation. Moreover, the activity-
rotation relationship is surprisingly identical for fully and partly convective stars, as
shown in Fig. 1.3 (Wright & Drake, 2016; Wright et al., 2018). This finding has raised
many discussions among dynamo theoreticians because the underlying shear layer at
the radiative-convective interface of partly convective stars is expected to dominate the
generation of toroidal fields (as we shall discuss in Sec. 1.3), hence modifying dynamo
action when compared to fully convective stars (Charbonneau, 2016).

Figure 1.4. Similar to Fig.1.3, but assuming instead Hα as a proxy of the stellar activity. The
fractional Hα luminosity is computed with respect to a template inactive star. The stellar mass
is represented as shades of green. Adapted from Newton et al. (2017).

Other chromospheric activity proxies yield a similar activity-rotation relationship
obtained with coronal X-rays (Douglas et al., 2014; Newton et al., 2017; Fang et al.,
2018), as illustrated for the Hα emission in Fig. 1.4. Again, the stellar activity level
is anticorrelated with the Rossby number for stars with large Ro, and it saturates for
fastly-rotating stars. Interestingly, though, the transition from saturated and decaying
emission regimes can vary for different activity proxies; in particular, the Rossby number
at which the transition occurs seems slightly larger when using Hα.

Beyond the activity-rotation relationship discussed in the paragraphs above, long-term
monitoring of activity indicators revealed that about 60% of the cool stars display regular
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activity cycles similar to the Sun, whereas the remaining stars have no apparent activity
cycle or display irregular variability (Wilson, 1978; Baliunas & Vaughan, 1985; Saar, 1990;
Saar & Brandenburg, 1999; Brandenburg et al., 2017). Among those stars displaying
regular cyclic activity, a large range of activity cycle periods was detected with values
ranging from months to decades. Several studies proposed the existence of activity branches
where activity cycle periods correlate with the rotation period of the star (Noyes et al.,
1984b; Brandenburg et al., 1998; Böhm-Vitense, 2007; Brandenburg et al., 2017). However,
such dependency has been the subject of intense debate within the scientific community –
e.g., see Guerrero et al. 2019 for arguments in favor of such correlation and Strugarek et al.
2017; Warnecke 2018; Viviani et al. 2018 for arguments contrary to it. Activity indicators
can by no means replace direct measurements of magnetic fields (e.g., Kochukhov et al.,
2020). Still, they offer valuable information to understand the origin and evolution of
stellar magnetic fields, notably because coronal and chromospheric tracers are more readily
available for a large sample of stars.

1.2.2 Magnetic field strength from intensity spectra
Spectral lines result from the emission or absorption of photons when electrons transit
between different energy levels in an atom (or molecule). In the case of the normal Zeeman
effect, a spectral line of central wavelength λ0 splits into three symmetric components: one
π-component that is unshifted with respect to the central wavelength and two σ-components
that are either red-shifted or blue-shifted by

∆λB(Å) = 4.67 × 10−13gλ2
0(Å2)B(G). (1.1)

Hence the splitting of energy levels due to the Zeeman effect leaves an imprint in the
spectra of active stars. It becomes evident from Eq. 1.1 that the Zeeman effect can
be used to measure the averaged surface magnetic field strength B (in Gauss) as the
wavelength separation between σ and π-components increases linearly with B (although
such a measurement is extremely difficult in practice, as discussed below). The wavelength
separation also depends on the magnetic sensitivity g (effective Landé factor) and central
wavelength (in Å) of the specific spectral line being investigated. Directly measuring the
wavelength separation in the stellar spectra proved to be a complicated task, however.
For instance, in the visible band at λ0 = 5000 Å, the Zeeman splitting for a magnetically
sensitive spectral line under the influence of kG fields yields ∆λB ∼ 0.02 Å, which is
smaller than other line broadening effects (for instance, the rotational broadening of a star
with v sin i = 6 km s−1 is ∆λrot = λ0v sin i/c ∼ 0.1 Å). Thus, the Zeeman splitting is often
not enough to resolve the three components (Donati & Landstreet, 2009), but it rather
makes the spectral line broader. Of course, looking for lines in the near-infrared can help
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in the magnetic field detection, as the Zeeman splitting increases with the square of the
central wavelength λ0 (Valenti et al., 1995).

The first direct measurement of the magnetic field strength in cool stars other than the
Sun was obtained in 1980 (Robinson et al., 1980). The method explored the Zeeman effect
on absorption lines to measure the averaged surface magnetic strength (Robinson, 1980).
By comparing lines with low-Landé factor g ∼ 0 (low magnetic sensitivity) and high-Landé
factor, the Zeeman broadening was disentangled from other line broadening effects (as
thermal and rotational broadening). The Zeeman broadening method was updated in
the following years to include radiative transfer effects (Saar, 1996; Rueedi et al., 1997;
Johns-Krull & Valenti, 2000). It proved successful when applied to stars with strong
fields and narrow line widths, yielding measurements for Sun-like stars (Johns-Krull, 2007;
Anderson et al., 2010; Yang & Johns-Krull, 2011; Lavail et al., 2017) and M dwarfs (Saar,
1994; Johns-Krull & Valenti, 1996; Reiners & Basri, 2007; Reiners et al., 2009; Reiners,
2012; Shulyak et al., 2019). We refer to Reiners (2012) for a more in-depth discussion
about the Zeeman broadening technique.

Figure 1.5. Magnetic flux density vs Rossby number (from Reiners, 2012). Sun-like stars are
shown as black crosses, M dwarfs of spectral class M6 and earlier as black circles, and M dwarfs
of spectral class M7-M9 as red squares.
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Fig. 1.5 summarises the field strength derived from Zeeman broadening for stars with
different spectral types. Sun-like stars (black crosses) and M dwarfs of spectral class M6
and earlier (black circles) follow the activity-rotation relationship derived using X-rays
(Reiners et al., 2009). However, fully convective M7–M9 stars (red squares) do not follow
this trend. Rather than displaying a constant field strength at Ro ≲ 0.1, a large scatter is
seen for these late-M dwarfs. Reiners & Basri (2010) argued that this behaviour suggested
a breakdown of the rotation-activity relationship for late-M dwarfs (see also Morin, 2012;
McLean et al., 2012). However, it is still unclear what would cause such a breakdown.
For one, the internal structure transition from partly to fully convective stars is likely not
the source of the breakdown, as mid-M dwarfs (M4-M6) are already expected to be fully
convective (Landin et al., 2006) but still obey the activity-rotation relationship.

In summary, unpolarised spectroscopy can be used to detect the Zeeman broadening
of magnetically sensitive lines. The Zeeman broadening technique gives access to the
average surface magnetic field of stars that accounts for both large- and small-scale field
contributions (usually the small-scale field is much stronger than the large-scale field).
However, one caveat of the method is that the Zeeman broadening becomes undetectable
for medium to fast rotators, with typically v sin i ≳ 20 km s−1 (Johns-Krull et al., 1999;
Kochukhov, 2021), as rotational broadening dominates the line profile broadening. Another
issue is that the method is mainly insensitive to the magnetic field configuration.

The large-scale magnetic field topology of stars can be recovered using another technique
called Zeeman-Doppler Imaging (Semel, 1989). The method uses phase-resolved sets of
(most of the time circularly) polarised stellar spectra to access the vector properties of the
field and therefore reconstruct the magnetic field morphology at the stellar surface. This
technique has been successfully applied to a large sample of Sun-like stars (Donati et al.,
2007, 2008a; Petit et al., 2008; Hussain et al., 2009; Carroll et al., 2012; Folsom et al.,
2018; Yu et al., 2019) and M dwarfs (Donati et al., 2008b; Morin et al., 2008a, 2010; Klein
et al., 2021). However, the Zeeman-Doppler Imaging technique is limited to reconstructing
the large-scale magnetic field because polarisation signatures of small-scale fields cancel
out as a result of the tangled field structure whose average vector magnetic field is close
to zero. Thus, Zeeman-Doppler Imaging misses information from the small-scale magnetic
field that accounts for most of the magnetic energy at the star’s surface – often more than
80% of the total magnetic energy inferred from the Zeeman broadening technique (Morin
et al., 2010; See et al., 2019a). Nonetheless, knowing the topology of the large-scale field
is critical for modelling the magnetospheric accretion/winds (Romanova et al., 2011; Long
et al., 2011), studying habitable zone conditions (Vidotto et al. 2013, Strugarek 2018,
Kavanagh et al. 2021, and see review by Vidotto 2021), and guiding numerical simulations
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of dynamo action in the stellar interior (see reviews by Brun & Browning, 2017; Rincon,
2019). Finally, monitoring the large-scale magnetic field of stars over the years can help in
the search of magnetic cycles (e.g., See et al., 2016; Boro Saikia et al., 2016, 2018; Jeffers
et al., 2017, 2018; Brown et al., 2021). We discuss Zeeman-Doppler Imaging in detail in
Chapter 2.

1.3 Basic notions of dynamo theory

We just discussed the various aspects of cool star magnetism revealed by observations.
We may now wonder what are the physical processes responsible for the production and
maintenance of magnetic fields in those stars. Dynamo processes, similar in nature to those
thought to generate the magnetic field within the Earth and the Sun, have been suggested
to take place in the convective envelopes of low-mass stars as well. Dynamo action is
defined as the mechanism through which turbulent motions within the conducting plasma
enable to amplify and sustain magnetic fields against Ohmic dissipation. One of the goals
of dynamo theory is thus to understand the interaction between magnetic and velocity
fields in such a conducting plasma and how magnetic fields could, as a consequence, exhibit
all the characteristics observed at the stellar surface and discussed in the previous sections.

1.3.1 Governing equations
To understand such interactions, we first focus on the various equations governing a
conducting fluid in the conditions of the stellar interior. A valid approximation in the
collisonal plasmas we are considering in this thesis is the so-called magnetohydrodynamics
(MHD) limit in which the mean free path of particles is significantly smaller than any
dynamical scales of interest. We give here the main equations constituting a full MHD
system.

Induction equation. The evolution of the magnetic field is governed by the induction
equation:

∂B⃗
∂t

= ∇ ×
(
u⃗ × B⃗

)
− ∇ ×

(
λ∇ × B⃗

)
, (1.2)

where u⃗ is the velocity field, B⃗ is the magnetic field, and λ is the magnetic diffusivity. It
is insightful here to analyse the different terms in the right-hand-side (RHS) of Eq. 1.2.

First, in the absence of a velocity field, u⃗ = 0, the induction equation becomes a
diffusion equation, i.e.,

∂B⃗
∂t

= − ∇ ×
(
λ∇ × B⃗

)
︸ ︷︷ ︸

Magnetic diffusion

. (1.3)
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This condition implies that any initial magnetic field would fade away on a long enough
timescale and, as a consequence, that dynamo action would not be able to take place
without fluid motion. The magnetic diffusion timescale is typically many Gyr for a Sun-like
star (Brun & Browning, 2017) and a few tens of thousand years in the Earth’s core (Tobias,
2021).

The second interesting limit occurs in the case of a perfect conductor when λ → 0.
Under this limit, the diffusive term in Eq. 1.2 disappears and, after using vector identities
and the solenoidal condition of the magnetic field (∇ · B⃗ = 0), the induction equation
reduces to

∂B⃗
∂t

+ (u⃗ · ∇)B⃗︸ ︷︷ ︸
Magnetic advection

= (B⃗ · ∇)u⃗︸ ︷︷ ︸
Magnetic stretching

− B⃗(∇ · u⃗)︸ ︷︷ ︸
Magnetic compression/

expansion

. (1.4)

This equation corresponds to the flux freezing limit, where magnetic field lines are “frozen-
in” the fluid (Alfvén, 1942). It is possible to identify from the induction term ∇×

(
u⃗ × B⃗

)
that, in the comoving fluid frame, the field strength is modified either by stretching the
magnetic field or compressing a fluid volume.

Of course, astrophysical objects are not perfect conductors, and for a dynamo mechanism
to take place, one needs induction to overcome diffusion in Eq. 1.2. The magnetic Reynolds
number is the non-dimensional number capturing the competition between these two
terms,

Rm =
∇ ×

(
u⃗ × B⃗

)
∇ ×

(
λ∇ × B⃗

) ∼ LU
λ

, (1.5)

where L and U are characteristic values of length scale and velocity. In stars Rm

is always large, reaching 1010 at the base of the solar convective zone (Ossendrijver,
2003), implying that induction dominates by orders of magnitude over diffusion. Whilst
Rm > 1 is a necessary condition for dynamo action, it alone is insufficient to guarantee
self-sustained magnetic fields (Moffatt et al., 1978). In fact, a couple of anti-dynamo
theorems have unveiled symmetry restrictions on the magnetic (Cowling, 1933) and velocity
(Bullard & Gellman, 1954; Backus, 1958) fields for the dynamo mechanism to possibly
occur. Of particular importance, it was identified that dynamo action cannot sustain
purely axisymmetric magnetic fields and that planar 2D motions cannot excite a dynamo
(Zeldovich & Ruzmaikin, 1980). To be an efficient dynamo, a velocity field thus needs to
be fully 3D and thus possess non vanishing azimuthal, meridional and radial components
depending on all three spatial coordinates. In this respect, the turbulent convective
motions in the outer layers of cool stars constitute a perfect candidate to produce powerful
dynamo action.
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Several authors have focused on the kinematic dynamo problem, when magnetic fields
play a passive role in the flow. In the kinematic problem the magnetic field evolution is
studied for different kinds of velocity fields prescriptions (potentially steady flows but not
necessarily) and the induction equation becomes linear in B⃗. Even though the kinematic
approach offers some intuition about the magnetic field generation (and is by itself quite
challenging already), it lacks the important ingredient of the magnetic backreaction on
the flow. While kinematic dynamos can be of great utility to understand the response
of magnetic fields to a prescribed velocity field, we choose in this thesis to focus on the
more self-consistent approach which consists in considering the evolution equation for the
velocity field and thus the backreaction of B⃗ on u⃗.

Navier-Stokes equation. The equation of motion of a magnetized fluid is given by the
Navier-Stokes equation including the dynamical modification due to the Lorentz force. In
a rotating frame, the (non-relativistic) equation of motion writes

ρ
∂u⃗
∂t

+ ρ(u⃗ · ∇)u⃗︸ ︷︷ ︸
Inertia

= −∇p︸ ︷︷ ︸
Pressure

+ ρg⃗︸︷︷︸
Buoyancy

+ 1
µ

(∇ × B⃗) × B⃗︸ ︷︷ ︸
Lorentz

− 2ρΩ⃗ × u⃗︸ ︷︷ ︸
Coriolis

+ ∇ · τ︸ ︷︷ ︸
Viscous

, (1.6)

where µ is the magnetic permeability, ρ is the density, p is the gas pressure, g⃗ is the
gravitational acceleration, Ω⃗ is the angular velocity of the rotating frame, and τ is the
viscous stress tensor. For a Newtonian fluid the viscous stress tensor is linearly related to
the rate-of-strain tensor S (e.g., Tritton, 1988; Batchelor, 2000). The viscous stress tensor
components are thus expressed as τij = 2νρSij, where ν is the kinematic viscosity. The
components of the rate-of-strain tensor are

Sij = 1
2

(
∂ui

∂xj

+ ∂uj

∂xi

)
− 1

3δij∇ · u⃗, (1.7)

with suffixes refering to the different coordinates xi and δij to the Kronecker delta.
The Coriolis force also greatly influences convection (Brun & Toomre, 2002; Brun et al.,

2017; Hindman et al., 2020), and consequently dynamo action (Varela et al., 2016). As
discussed before, the influence of rotation over convection is measured through the Rossby
number, which is defined here as the ratio of inertial to Coriolis forces:

Ro = ρ(u⃗ · ∇)u⃗
2ρΩ⃗ × u⃗

∼ U
LΩ . (1.8)
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Finally, the magnetic feedback on the flow can be physically understood when rewriting
the Lorentz force as

FL = 1
µ

(∇ × B⃗) × B⃗ = −∇
(

B⃗2

2µ

)
︸ ︷︷ ︸

Magnetic pressure

+ 1
µ

(B⃗ · ∇)B⃗︸ ︷︷ ︸
Magnetic tension

. (1.9)

It results that the Lorentz force contributes to the total pressure force acting on the
flow. The total pressure in the MHD case then consists of the thermodynamic pressure p

added to the magnetic pressure B⃗2/2µ. The second contribution from the Lorentz force is
the magnetic tension; this force appears whenever magnetic field lines are bent (creating
tension) in order to resist against the curvature of the field lines.

To be complete, we now need to formulate the last two equations of the MHD system
for a conducting fluid, namely the energy and the continuity equations.

Energy equation. Viscous fluids undergo irreversible thermodynamic processes that
dissipate energy and lead to an increase in entropy. Using thermodynamic principles, the
equation describing the entropy generation is given by

ρT

(
∂s

∂t
+ u⃗ · ∇s

)
= ∇ · (κρcp∇T ) + Qν + λ

µ
(∇ × B⃗)2, (1.10)

where s is the entropy, T is the temperature, κ is the thermal diffusivity, cp is the specific
heat at constant pressure, and Qν is the viscous heating, with components expressed as

Qνij = 2ρν

1
4

(
∂ui

∂xj

+ ∂uj

∂xi

)2

− 1
3(∇ · u⃗)2

 . (1.11)

The right-hand-side of Eq. 1.10 represents the heat transfer from thermal conduction,
viscous dissipation, and Ohmic dissipation, respectively. These terms are responsible for
increasing the total entropy of the fluid. The competition between viscous dissipation and
thermal conductivity is characterized by the Prandtl number,

Pr = ν

κ
. (1.12)

Similarly, the competition between viscous and Ohmic dissipation is quantified by the
magnetic Prandtl number,

Pm = ν

λ
. (1.13)

Thermal convection is naturally driven by buoyancy (represented by the term ρg⃗ in
Eq. 1.6). However, for a convective instability to take place the destabilizing effect of
buoyancy must overcome the stabilizing effect of viscosity and thermal diffusivity. The
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Rayleigh number quantifies the competition between the two effects and is given by

Ra = TαgL3δs

cpνκ
, (1.14)

where α is the thermal expansion coefficient of the fluid, and δs is the vertical entropy
difference across the characteristic length scale L. The minimum value characterizing the
onset of convection is the critical Rayleigh number (Rac); the higher the supercriticality
of a system, the higher the vigour of convection.

Continuity equation. The remaining equation is the continuity equation, which states
that matter can neither be created or destroyed:

∂ρ

∂t
+ ∇ · (ρu⃗) = 0. (1.15)

Or equivalently
∂ρ

∂t
+ (u⃗ · ∇)ρ + ρ∇ · u⃗ = 0. (1.16)

Along with the equation of state, which tells how intrinsic thermodynamic properties relate
(i.e., p, ρ, and T ), the set of equations described above defines a self-consistent description
of the MHD problem.

1.3.2 Small and large-scale dynamos
Dynamo action can amplify magnetic fields at various spatial scales in stars and planets.
Dynamo action can operate at small or large scales and we usually distinguish small-scale
and large-scale dynamos (Brandenburg & Subramanian, 2005; Weiss & Thompson, 2009).
Large-scale convective dynamos are defined as dynamos for which the production of
magnetic energy occurs at scales larger than the typical scale of convective flows, whereas
small-scale dynamos excite magnetic fields at spatial scales of convective eddies or smaller.

We know that a large-scale dynamo operates in the Sun and creates large-scale global
magnetic fields with spatial scales comparable to the scale of the Sun itself. Long-term
monitoring of F, G, and K type stars – e.g., using chromospheric proxies (Baliunas &
Vaughan, 1985; Frick et al., 2004; Lockwood et al., 2007) – demonstrates that similar
to the Sun, cool stars display cyclic large-scale magnetic fields that are generated by
large-scale dynamos. Large-scale magnetic fields have been intensively studied under the
mean-field approach (e.g., Moffatt et al., 1978; Krause & Raedler, 1980) in an attempt to
identify the main ingredients in the global magnetic field generation, but its applicability
to astrophysical objects is debatable as it does not take into account the evolution of
magnetic fields at small-scales (Brandenburg & Subramanian, 2005; Brun & Browning,
2017; Tobias, 2021) and it is usually studied in the kinematic regime, i.e. when the velocity
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field is prescribed and the back-reaction of the Lorentz force is ignored. Nevertheless, the
mean-field formalism offers an insightful description in the context of large-scale dynamos,
with global rotating shear and helical motions playing an important role on the field
generation (see next section).

Small-scale dynamos on the other hand are held responsible for instance for the small-
scale fields observed in the quiet photosphere of the Sun (Lin, 1995; Otsuji et al., 2007; Lites
et al., 2008). They create random magnetic fields averaging to zero that are superimposed
on the mean background large-scale magnetic field (Cattaneo, 1999; Vögler et al., 2005).
Small-scale dynamos are believed to be independent of the mechanism of production and
maintenance of large-scale fields (Trujillo Bueno et al., 2004; Cattaneo & Tobias, 2005;
Tobias & Cattaneo, 2008; Buehler et al., 2013) and are thought to exist in any turbulent
(large Rm) system, not requiring rotation nor shears to operate (Rincon, 2019). Yet, it
is difficult to disentangle small- and large-scale dynamos in cool stars as both normally
coexist creating a whole spectrum of scales. In this thesis, we will study the generation of
magnetic fields at all scales but will focus mainly on the physical mechanism at the origin
of the morphology of the large-scale field, the only one accessible to observations so far.

1.3.3 Phenomenological aspects of large-scale dynamos
Perhaps the most intuitive picture of large-scale dynamo action in stars and planets is
given through the mean-field treatment of the induction equation1. The electromotive
force (E = u⃗ × B⃗) entering the induction equation leads to the well-known Ω-effect and
α-effect under the mean-field formalism, both of which are responsible for amplifying
large-scale magnetic fields (Steenbeck et al., 1966; Moffatt et al., 1978; Krause & Raedler,
1980; Raedler, 1980; Brandenburg & Subramanian, 2005).

The Ω-effect rises from the inductive term causing the stretch of magnetic field lines.
Its effect is to wind up an original magnetic field pointing in the direction of the velocity
gradient into a magnetic field pointing along the direction of the velocity vector itself.
However, as explored through the mean-field formalism, this effect can only amplify large-
scale toroidal magnetic fields (i.e., the azimuthal component of the field, Btor). Therefore,
it cannot sustain a dynamo mechanism by itself, which requires the regeneration of large-
scale poloidal magnetic fields (i.e., both radial and meridional components of the field,
Bpol) to sustain the cycle. Fig. 1.6 shows how the Ω-effect acts for a differentially rotating
sphere with a more fastly rotating interior. Under the presence of shears in the angular
velocity, an initially large-scale poloidal magnetic field is sheared, thereby generating a
toroidal component.

1We refer to the reviews of Dormy & Soward (2007), Rincon (2019), and Moffatt & Dormy (2019) for
an extensive discussion about mean-field dynamo action in astrophysical objects.
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Figure 1.6. Example of magnetic field stretching caused by a differentially rotating fluid that
rotates faster in the inner portion of the sphere, adapted from Jones (2008). a) Initial axial-dipole
field configuration. b) The initial poloidal field is stretched in the differential rotating region,
generating a toroidal field component. c) Final toroidal field configuration.

Figure 1.7. Illustration of the α-effect, adapted from Dormy & Soward (2007). From a) to
b): an initial large-scale magnetic tube rises due to turbulent motions. c) Small-scale cyclonic
motions twist the tube. d) The tube reconnects creating a magnetic loop perpendicular to the
initial tube.

To close the dynamo loop, we now need a process which transforms a toroidal field back
into a poloidal field. A possible way to do so, as proposed by Parker (1955), is the so-called
α-effect. The idea behind Parker’s effect is that turbulent flows with non-zero helicity at
small scale (ω⃗′ = ∇ × u⃗′ ≠ 0) can twist large-scale magnetic fields changing their direction.
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Fig. 1.7 illustrates how turbulence can give rise to a magnetic tube and twist it, generating
a field component perpendicular to the initial field line. This effect can, contrary to the
Ω-effect, induce both poloidal and toroidal fields. Therefore, the combination of the two
potential sources of toroidal field can yield different flavours of dynamo action. Fig. 1.8
shows the different dynamo loops leading to self-sustained magnetic fields in the mean-field
treatment. Three possible dynamo loops exist depending on whether one effect dominates

Figure 1.8. Illustration of the possible dynamo mechanisms, adapted from Rincon (2019). Left:
α2-dynamo. Right: αΩ or α2Ω dynamos.

over the other, or if they have similar contribution; they are: α2, αΩ, or α2Ω dynamos.
However, we highlight that other dynamo loops might exist when considering alternative

mechanisms to the α-effect. One of such possibilities is, for instance, the empirical
mechanism proposed by Babcock 1961 and Leighton 1969 to explain features from the
solar magnetic field. Fig. 1.9 illustrates the generation of a large-scale poloidal field from
an initial large-scale toroidal field under the Babcock-Leighton mechanism. From a) to b),
tubes of toroidal magnetic field are transported by magnetic buoyancy from the base of the
convective zone to the stellar surface. These tubes emerge at the surface as bipolar regions
and produce spots at the stellar surface (see discussion in Sec. 1.1). Further, turbulent
flows play an important role in diffusing and reconnecting the magnetic field in the bipolar
regions (c). This process creates a poloidal field component that in turn is advected to
polar regions by meridional circulation (d) building a large-scale poloidal field (e). We
refer to Charbonneau (2020) for a discussion about the Babcock-Leighton mechanism and
its potential application in the Sun.

In this thesis however we focus on solving the full MHD system without assuming a
particular expression for the velocity fields. We thus do not rely on the phenomenological
description discussed here since both the magnetic and the velocity fields will be free
to evolve and interact with each other. However, we highlight that this self-consistent
approach does not prevent one to analyse the evolution of large-scale fields and (carefully)
establish a parallel with the intuitive view brought by the mean-field treatment.
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Figure 1.9. Illustration of the Babcock-Leighton mechanism, adapted from Sanchez et al. (2014).
From a) to b): an initial large-scale toroidal magnetic field rises to the surface creating stellar
spots. In c) the magnetic field diffuse and starts to reconnect creating a poloidal fields d). These
poloidal field lines are then advected to polar regions by meridional circulation, resulting on a
large-scale poloidal field e).

1.4 Thesis overview

The thesis is structured as follows. In Chapter 2 we present state of the art observations
and simulations focusing on the magnetic morphology of stars. We recall the basic
physical concepts behind the tomographic technique (called Zeeman-Doppler Imaging
(ZDI), Semel, 1989; Donati et al., 1989; Donati & Brown, 1997; Hussain et al., 2000b) used
to infer the large-scale magnetic morphology from sets of phase-resolved spectropolarimetric
observations, and we present the main properties of the maps recovered for a sample of cool
stars. We also discuss within this chapter how 3D numerical simulations have been used
as complementary information to investigate dynamo processes that are inaccessible to
observations. Recent debates about the extent to which numerical simulations can be relied
upon are mentioned and further considered, along with propositions to overcome some of
the limitations. Chapter 3 is dedicated to an in-depth analysis of a large spectropolarimetric
data set, collected over 3 different epochs, of the binary system V471 Tau. We present
tomographic maps of brightness distribution and magnetic topology of the active companion
of V471 Tau at these epochs. We use the reconstructed maps to investigate whether the
activity behaviour of the companion can explain the eclipse timing variations observed
in V471 Tau, in the framework of the so-called Applegate mechanism where dynamo-
induced periodic exchanges between magnetic and kinetic energy within the active star
generate changes in the quadrupolar moment of the star and thereby of the system orbital
period (Applegate, 1992; Lanza, 2006). Chapter 4 focuses on our self-consistent dynamo
simulations. We explore the mechanisms potentially responsible for setting the magnetic
morphology in cool stars by numerically solving the full set of MHD equations in a 3D
spherical shell. We propose an observational proxy that can potentially be used to predict
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some aspects of the large-scale magnetic morphology of partly convective M dwarf stars. In
Chapter 5 we draw our final conclusions and present prospects of our work in the context
of this research field.



Chapter 2

Observing and modelling the magnetism of cool stars

The development of high-resolution spectropolarimeters, e.g. ESPaDOnS (Donati,
2003), NARVAL (Aurière, 2003), HARPS-Pol (Snik et al., 2011), and SPIRou (Donati
et al., 2020), and indirect imaging techniques (Semel, 1989; Donati & Brown, 1997; Hussain
et al., 2000b; Piskunov & Kochukhov, 2002) in the past decades have made possible to
reconstruct the magnetic topology of stars. In this chapter, we give an overview of the
techniques to map stellar surfaces and the variety of magnetic topologies reconstructed
for cool stars in the literature (e.g., Donati & Landstreet, 2009; Folsom et al., 2016,
2018; Kochukhov, 2021). After discussing the implication of these observations for the
understanding of dynamo action (e.g., Morin et al., 2011; Gastine et al., 2013), we present
recent efforts from 3D dynamo simulations to better grasp what dictates some key features
of the large-scale magnetic topologies in stars.

2.1 Observing cool stars magnetic fields

2.1.1 Mapping stellar surfaces
Deutsch (1958) was the first to suggest using the Doppler broadening of spectral lines to
map stellar surfaces of fast rotating stars. The technique, named Doppler imaging, was
initially designed to map brightness or chemical abundance inhomogeneities at the surface
of stars using time-series spectroscopy (e.g., Vogt & Penrod, 1983; Rice et al., 1989). The
tomography of magnetic fields came only years later when Semel (1989) proposed an
extension of Doppler imaging to include the modelling of Zeeman signatures in spectral
lines, the technique being commonly referred to as Zeeman-Doppler Imaging.

2.1.1.1 Recovering brightness maps
Vogt & Penrod (1983) were the first to apply Doppler imaging to map the brightness

distribution at the surface of a star. The presence of a cool spot at the stellar surface
leaves a signature in the disk-integrated absorption line profile that is equivalent to a
“bump”. As illustrated in Fig. 2.1, the bump signature is Doppler-shifted from the line
centre depending on the spot location at the stellar surface. That dependence leads to a
one to one relationship between the Doppler-shifted signature and the projected location

24
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of the spotted region in the stellar disk, creating rotationally modulated signatures over
time (Rice, 2002). Therefore, from time-series spectra spread over different rotational
cycles, one can track how the bump propagates in a broadened profile and pinpoint the
spot at the stellar surface (Vogt et al., 1987; Rice et al., 1989). Of course, the spatial
resolution of the Doppler image depends directly on the equatorial projected rotational
velocity of the star v sin i (Morin et al., 2008a), on the instrumental spectral resolution
(Piskunov & Wehlau, 1990; Järvinen et al., 2018), and on the rotational phase coverage of
the time-series spectra (Rice, 2002; Petit et al., 2002). Thus, Doppler imaging inversions
are most effective when applied to high-resolution spectra of stars with v sin i ≳ 20 km s−1.

Figure 2.1. Spot distortion on absorption spectra. Extracted from http://www.ast.obs-mip.
fr/article.php3?id_article=457. Credit: Dr Jean-François Donati.

The inverse problem of going from a time-series of 1D spectra to a 2D surface brightness
map is solved iteratively to search for the spot distribution that fits the data down to
the noise level. Essentially, Doppler imaging performs a χ2 minimisation to fit time-series
synthetic spectra (Isyn = {Isyn

1 , . . . , Isyn
Nobs

}) to the observations (Iobs = {Iobs
1 , . . . , Iobs

Nobs
}).

The χ2 statistic associated with a given brightness map M is given by

χ2(M) =
Nobs∑
i=1

Ii
syn − Ii

obs

σi

, (2.1)

where σi is the uncertainty of the ith observation and Ii
syn is the disk-integrated synthetic

spectra calculated with analytical formulations of the radiative transfer equation (Isyn =
R(M), where R is a functional representing the radiative transfer calculations). However,
Doppler imaging is an ill-posed problem, meaning that multiple brightness maps can fit
the data down to the noise level (yielding a reduced-χ2 of unity). The degeneracy of the
problem can be lifted if one assumes that the map with the least amount of information
(or, equivalently, the least spotted map) is the most reliable solution. Using the Maximum

http://www.ast.obs-mip.fr/article.php3?id_article=457
http://www.ast.obs-mip.fr/article.php3?id_article=457
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Entropy Method (see Skilling & Bryan, 1984), the problem reduces then to finding the
Lagrange multiplier λ that leads to

max{S(M) − λχ2(M)}, (2.2)

where the Shannon entropy S is used to quantify the information contained in a brightness
map M (see Brown et al., 1991, for the functional expression of S). The brightness map
of highest-entropy is the one that bears the lowest information (Shannon & Weaver, 1949)
while fitting the data to the noise level.

Doppler imaging has been successfully applied to single stars (e.g., Donati et al., 1992b;
Collier Cameron & Hilditch, 1997; Hussain et al., 1997; Donati et al., 2000; Marsden et al.,
2005; Piluso et al., 2008; Morin et al., 2008a; Xiang et al., 2014; Cang et al., 2021) and
to components of binary systems (e.g., Donati, 1999; Strassmeier & Rice, 2000; Hussain
et al., 2006; Dunstone et al., 2008; Kochukhov & Shulyak, 2019). The collection of surface
brightness maps can help us to understand for instance whether the spot emergence vary
for stars with different parameters. Fig. 2.2 shows an example of a surface brightness
map reconstructed for the young K0 dwarf AB Dor (Donati et al., 1999), a fast-rotating
star with v sin i = 89 km s−1 and rotation period of about 0.5 d (Donati et al., 2003a).
Different from the sunspots emergence, which are confined to latitudinal bands of about

Figure 2.2. Surface brightness map of the K0 dwarf AB Dor at December 1996 (Donati et al.,
1999). Shades of brown represent the spot occupancy. Extracted from http://star-www.st-and.
ac.uk/~acc4/abdorpix.html. Credit: Dr. Jean-Francois Donati.

http://star-www.st-and.ac.uk/~acc4/abdorpix.html
http://star-www.st-and.ac.uk/~acc4/abdorpix.html
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±35◦ (see Sec. 1.1), this map evidences a prominent cool spot covering the entire polar cap
of AB Dor. Indeed numerical simulations (e.g., Işık et al., 2011) succeeded at reproducing
the emergence of high-latitude spots when increasing the rotation period of the star (for
reference AB Dor rotates about 40 times faster than the Sun). We refer the reader to
Strassmeier (2009) for a review of starspots.

2.1.1.2 Recovering magnetic maps
The polarisation of spectral lines also contains information on the magnetic field at

the surface of the star. Contrary to the Zeeman broadening technique that is subject
to model-dependent assumptions to disentangle different effects causing the broadening
of spectral lines (see Sec. 1.2.2), the presence of polarisation signatures (called Zeeman
signatures) offers an unequivocal detection of magnetic fields (Donati et al., 1990, 1992a).
The polarisation of photons emitted through π or σ transitions varies depending on their
propagation direction with respect to the magnetic field orientation. Fig. 2.3 illustrates the
polarisation of each Zeeman component when the observer is at different orientations with
respect to the magnetic field. When the magnetic field is along the observer’s line-of-sight,
only circularly polarised photons emitted from σ transitions are visible. On the contrary,
only linearly polarised photons are seen when the magnetic field is transverse to the
line-of-sight (here, they result from both π and σ transitions).

Figure 2.3. Zeeman polarisation under presence of a magnetic field B⃗ pointing to the z-direction.
Left: sketch of the energy level with and without magnetic field. The photon wavelength is
shown for each possible transition. Right: illustration of the photon polarisation at different
directions of propagation. Colours encode the wavelength of the photons. Figure adapted from
Dr Lisa Lehmann’s PhD thesis (https://doi.org/10.17630/10023-20354).

The polarisation state of the light is characterised through the Stokes vector ⟨I, V, Q, U⟩
(Stokes, 1851). The Stokes I component of that vector represents the intensity of the

https://doi.org/10.17630/10023-20354
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unpolarised light beam. The other Stokes components measure light beams with distinct
polarisation states. Stokes V measures circular polarisation states and it is defined as
the intensity difference of left and right circularly polarised light beams. Stokes Q and
U measure linear polarisation states. Stokes Q (Stokes U) is defined as the intensity
difference of light beams passing through linear polarisers with transmission axis at 0◦

and 90◦ (at 45◦ and 135◦). Or visually,

V = ⟳ − ⟲
Q = ↕ − ↔
U = ↗↙ − ↖↘ .

In practice, measuring Stokes parameters requires sophisticated methods to avoid creating
spurious signatures (e.g., Landi Degl’Innocenti & Landolfi, 2004). We refer the reader to
Donati et al. (1997) for a complete discussion of the method used in the spectropolarimeters
of interest to this manuscript.

Similar to the principles of Doppler imaging, ZDI (Semel, 1989) explores rotationally-
modulated signatures traced by the Stokes profiles to reconstruct the brightness distribution
and the large-scale magnetic field vector at the stellar surface. Semel (1989) proposed to
use circularly polarised Zeeman signatures (Stokes V ) to extract the information about
the magnetic field geometry at the surface of stars. As shown in Fig. 2.4, the Stokes V

polarisation has different signatures for each magnetic field component (Donati & Brown,
1997). Spots caused by pure radial magnetic fields leave an “S”-shape signature in the
Stokes V profile with a peak-to-peak amplitude that varies as the star rotates, reaching
its highest value at the disk center. Spots caused by purely toroidal fields also show an
S-shape Stokes V profile that switches polarity when the spot crosses the disk centre
entirely. However, the Stokes V loses its S-shape signature at the disk centre and reaches
the lowest peak-to-peak amplitude. Stokes V profiles also depend on the latitude at which
magnetic structures appear in the stellar surface and on inclination of the star. The
distinctive rotationally-modulated Stokes V signatures of radial and toroidal fields are
what makes it possible for ZDI to unveil the magnetic field vector at the surface of the
star.

In practice, ZDI operates similarly to Doppler imaging except that it fits time-series
Stokes I and Stokes V profiles simultaneously (alternatively, one could choose to fit only
Stokes V profiles – e.g. in slow rotators, where Stokes I profiles do not vary in time span
of observation). The χ2 statistic associated with a given set of brightness and magnetic
maps reads

χ2 =
Nobs∑
i=1

Ii
syn − Ii

obs

σI
i

+
Nobs∑
i=1

Vi
syn − Vi

obs

σV
i

. (2.3)
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Figure 2.4. Stokes V modulation for a star with one spot. a) the spot is permeated by
a radial magnetic field. b) the spot is permeated by a toroidal magnetic field. Extracted
from http://www.ast.obs-mip.fr/article.php3?id_article=457. Credit: Dr Jean-François
Donati.

Here, disk-integrated synthetic Stokes profiles (Isyn and Vsyn) are computed from local
profiles at the stellar surface given by the analytical formulation of the polarised radiative
transfer equations1. Again, the Maximum Entropy Method (Skilling & Bryan, 1984) is
used to search for brightness and magnetic maps that maximise the total entropy (similar
to Eq. 2.2), where the total entropy is defined as the sum of the entropy associated with
the brightness and magnetic maps (Brown et al., 1991; Hussain et al., 2000b). Today, most
of the ZDI codes available use a spherical harmonic (SH) description of the magnetic field
(Hussain et al., 2000a; Donati, 2001; Hussain et al., 2002a; Donati et al., 2006a; Kochukhov
et al., 2014; Folsom et al., 2018). The field components are then defined through the set

1The reconstructions performed in this thesis use the solution of Unno-Rachkovsky in a Milne-Eddington
model atmosphere (Landi Degl’Innocenti & Landolfi, 2004).

http://www.ast.obs-mip.fr/article.php3?id_article=457
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of SH coefficients αℓ,m,βℓ,m, and γℓ,m, where ℓ and m are the order and the degree of the
SH mode (the reconstructions performed in Chapter 3 use the decomposition of Donati
et al., 2006a). The entropy associated with the magnetic map is therefore a function of
the magnetic coefficients αℓ,m,βℓ,m, and γℓ,m (see the PhD thesis of Dr Baptiste Klein2).
This entropy makes it possible to add some penalisation to favour low-order spherical
harmonics that help to avoid spurious small-scale magnetic structures (Donati et al., 2007;
Morin et al., 2008b; Folsom et al., 2018).

The characterisation of the magnetic topology formally requires all four Stokes compon-
ents. However, Stokes Q and U signatures reach a peak-to-peak amplitude that is typically
one order of magnitude smaller than Stokes V (Donati et al., 1997). The problem persists
even when using multi-line techniques to create “averaged” Stokes profiles with higher
signal-to-noise ratios (e.g. when using a least-squares-deconvolution of the line profiles –
Semel, 1989; Donati et al., 1997; Wade et al., 2000; Kochukhov et al., 2010). Nevertheless,
magnetic inversions are still possible using Stokes I and V parameters, but the main
drawback is the crosstalk between radial and meridional field components (Donati &
Brown, 1997). Despite that, ZDI is one of a kind tool to obtain the magnetic tomography
of stars, offering valuable information to understand stellar activity and its implications
over different evolutionary stages.

Moreover, recent numerical studies explored the ability of ZDI in reconstructing the
large-scale magnetic topology of solar-like stars (Lehmann et al., 2018, 2019, 2021). These
works used surface magnetic fields obtained from simulations to create time-series Stokes
profiles to input ZDI (equivalent to the observational dataset). The ZDI-reconstructed
magnetic maps showed that ZDI does a good job at reconstructing several properties of the
large-scale magnetic topology of solar-like stars. For instance, ZDI seems to be particularly
successful at recovering the fraction of energy stored in the axisymmetric magnetic field
and at detecting temporal modulations in the large-scale field driven by solar-like activity
cycles (Lehmann et al., 2021).

2.1.1.3 Measuring surface shears
Thanks to the ability of ZDI to recover spatial information from sets of phase-resolved

spectropolarimetric observations, it is possible to retrieve information on differential
rotation at the star’s surface by finding out the recurrence rates of reconstructed features
(spots or magnetic structures) as a function of latitude. The procedure, firstly described by
Donati et al. (2000), considers an a priori dependence of the angular velocity with latitude
in the image reconstruction process. The vast majority of the studies in the literature
adopt a Sun-like differential rotation law that, without any priors, was also found to apply

2http://thesesups.ups-tlse.fr/5052/

http://thesesups.ups-tlse.fr/5052/
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for other stars, e.g. AB Dor (Donati & Collier Cameron, 1997), the G8 post T Tauri
star LQ Lup (Donati et al., 2000), and the K1 dwarf LQ Hya (Kovári et al., 2004). The
differential rotation law we use is as follows:

Ω(θ) = Ωeq − dΩ cos2(θ), (2.4)

where θ is the colatitude, Ωeq is the angular velocity at the equator, and dΩ is the difference
between Ωeq and the angular velocity at the pole. Because this functional form depends
on two free parameters, the reconstructed tomography likewise relies on the choice of Ωeq

and dΩ.
Several studies explored this differential rotation dependence in the image reconstruction

process to search for the pair (Ωeq,dΩ) that yields the best fit to the Stokes profiles (Barnes
et al., 2005; Donati et al., 2006a; Collier Cameron, 2007; Dunstone et al., 2008; Marsden
et al., 2011; Folsom et al., 2018). This shear-imaging technique revealed secular variations
in the surface shear of some stars – e.g. AB Dor (Donati et al., 2003b), LQ Hya (Donati
et al., 2003b), HR 1099 (Donati et al., 2003b), and K2 dwarf V471 Tau (Paper I). Such
shear fluctuations might be driven by the interplay of cyclic magnetic fields and convective
motions, as discussed in Chapter 3 (Applegate, 1992).
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Figure 2.5. a) Surface shear as a function of the effective temperature (data compiled from
Barnes et al. 2005,Reiners 2006 and Collier Cameron 2007). b) Surface shear as a function of
the stellar convective zone depth, taken from Marsden et al. (2011). Dots represent differential
rotation measurements using brightness features and stars those using magnetic features.

Further, the analysis of the differential rotation measurements for stars with different
spectral types revealed the shear dependence with the stellar temperature and convective
zone depth (Barnes et al., 2005; Collier Cameron, 2007; Marsden et al., 2011; Folsom et al.,
2018). As illustrated in Fig. 2.5 (a), the rotational shear increases for stars with increasing
effective temperature (Barnes et al., 2005; Reiners, 2006; Collier Cameron, 2007). This
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trend is in agreement with the theoretical predictions of Küker & Rüdiger (2005), who
suggested that differential rotation strongly depends on the effective temperature, and with
photometric (Reinhold et al., 2013) and spectroscopic (Reiners, 2006) shear measurements.

Finally, the differential rotation is smoothly enhanced for decreasing stellar convective
zone depth (Marsden et al., 2011). However, the differential rotation shows a sharp
increase with a large dispersion of values for convective envelops of depth smaller than
20% of the stellar radius. This finding is partly supported by the numerical investigation
of Küker et al. (2011), which obtained that the shear increases for shallower convective
envelopes and that high-levels of differential rotation of dΩ ∼ 0.5 rad d−1 are only attained
in simulations with convective zones depths of about 10% of the stellar radius.

2.1.2 Evolution of large-scale surface magnetic fields

Fig. 2.6 shows the magnetic field-Rossby number relationship when using the properties of
the large-scale magnetic field derived with ZDI (e.g., Donati et al., 2008b; Morin et al.,
2008b; Morgenthaler et al., 2012; Fares et al., 2013; Boro Saikia et al., 2016; Folsom et al.,
2016, 2018). The averaged large-scale surface field strength ⟨BV ⟩ shows two clear trends
with the Rossby number (Fig. 2.6 a). For Ro > 0.1, spectropolarimetric observations
show that the large-scale magnetic field of cool stars weakens with increasing Rossby
number (Vidotto et al., 2014; Folsom et al., 2016), following ⟨BV ⟩ ∝ Ro−1.40±0.10 (See et al.,
2019a). This slope agrees with the one derived from the total field strength using Zeeman
broadening (⟨BI⟩ ∝ Ro−1.41±0.22, Vidotto, 2021). Moreover, the toroidal component of
the large-scale field is reported to weaken faster than the poloidal component in the
unsaturated regime (Petit et al., 2008), as illustrated in panels c) and d) of Fig. 2.6. As
the Rossby number decreases below Ro ∼ 0.1, cool stars enter the “saturated regime”
where the large-scale field strength is roughly constant (Donati et al., 2008b). However,
the magnetic saturation does not occur at the same magnetic strength for early, mid, and
late M dwarfs (Vidotto et al., 2014). Instead, these stars feature a variety of large-scale
magnetic field strengths, ranging from 50 to 2000 G. Early-M dwarfs saturate around
180 G (Donati et al., 2008b) and mid-M dwarfs around 600 G (Donati et al., 2008b; Morin
et al., 2008b). However, late M dwarfs (M ≤ 0.2M⊙) display a bimodal behaviour in
the strength of the large-scale magnetic field, with some stars hosting strong kG fields
and others showing field strengths of only 50 G (Morin et al., 2010). Morin et al. (2011)
proposed that the scatter seen in the field strength of late M dwarfs is linked to a bimodal
behaviour in which the history of the star can modify the dynamo efficiency in generating
large-scale magnetic fields. In particular, this concerns the ability to generate large-scale
poloidal fields as the authors observed that stars with strong fields (∼ kG) have dipole
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dominated morphologies, whereas stars with weak large-scale surface fields (∼ 100 G)
feature multipolar morphologies (Morin et al., 2010; Gastine et al., 2013).

Figure 2.6. Trends of the large-scale magnetic field, adapted from See et al. (2015) and See
et al. (2019a). a) Distribution of the large-scale surface field strength ⟨BV ⟩ with the Rossby
number. b) Toroidal energy against poloidal energy. c) Poloidal energy as a function of the
Rossby number. d) Toroidal energy as a function of the Rossby number. In all panels, symbols
are coloured according to the stellar mass.

We gathered from the literature the information about the large-scale surface magnetic
field of a sample of M dwarf stars (Donati et al., 2008b; Morin et al., 2008b, 2010; Moutou
et al., 2017; Kochukhov & Shulyak, 2019; Kochukhov, 2021). Fig. 2.7 illustrates how some
of the properties of the large-scale field vary for stars with different masses and periods.
We focus particularly

(1) on the magnetic field strength (symbol size), which provides hints about how the
dynamo efficiency vary in these stars (Christensen et al., 2009);
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(2) on the degree of axisymmetry of field (symbol shape), which is an important
ingredient to comprehend the angular momentum-loss by magnetised winds
(Réville et al., 2015; Finley & Matt, 2018; See et al., 2019b)

(3) and on the fraction of energy stored in the poloidal field (symbol color), which can
help to identify solar-like magnetic cycles when measured over multiple epochs
(e.g., Boro Saikia et al., 2016, 2018; Jeffers et al., 2017, 2018; Brown et al., 2021).
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Figure 2.7. Properties of the large-scale magnetic field of M dwarf stars reconstructed with
the Zeeman-Doppler imaging technique. The symbol size correspond to the field strength at
the surface ⟨B⟩, the shape corresponds to the degree of axisymmetry of the magnetic field, and
colors represent the amount of energy stored in the poloidal field. Dashed lines correspond to
iso-contours of Rossby numbers of 0.01, 0.1, and 1, calculated with empirical mass-rotation
relationship of Wright et al. (2018). The continuous horizontal line represents the theoretical
mass below which all stars display a convective interior (Landin et al., 2006). Data from the
K2 dwarf of V471 Tau is included for completeness (Zaire et al., 2021). M dwarfs properties
come from Donati et al. (2008b); Morin et al. (2008b, 2010); Moutou et al. (2017); Kochukhov &
Shulyak (2019); Klein et al. (2021); Kochukhov (2021).

It is possible to note a connection between the mass-period plot and the magnetic
field complexity seen at the surface of M dwarfs. Typically, stars harbouring strong
axisymmetric poloidal fields (i.e., the largest, reddish, rounder symbols) are situated below
the horizontal grey line marking the fully convective limit. On the other hand, stars
hosting more complex magnetic topologies, consisting of non-axisymmetric multipolar
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poloidal fields and significant toroidal fields, are mostly partly convective (Donati &
Landstreet, 2009). The magnetic morphology dependence on M dwarfs with the stellar
mass and rotational period provides further evidence that the dynamo mechanism at play
in stellar convective envelopes is affected by rotation and possibly by the presence of a
radiative interior. Indeed, the internal structure is expected to significantly impact the
dynamo action as, contrary to fully convective stars, partially convective stars feature
strong rotational shears at the radiative and convective zones interface (Miesch, 2005;
Browning et al., 2006; Guerrero et al., 2016; Bice & Toomre, 2020).

Based on these observational results, it has been argued that stellar magnetic fields
increase in complexity for stars with higher Rossby numbers (see dashed lines in Fig. 2.7).
However, several outlier stars harbouring complex field structures are found to exist at
low Ro and a handful of stars hosting axisymmetric poloidal fields have been reported at
large Ro. While these stars may have a cyclic magnetic field that modifies the magnetic
topology over time – as it is the case for instance of 61 Cyg A (Boro Saikia et al., 2016,
2018), ϵ Eridani (Jeffers et al., 2017), τ Boo (Jeffers et al., 2018), and HD 75332 (Brown
et al., 2021), such outliers indicate that other proxies besides the Rossby number need to
be invoked to clearly understand what sets the magnetic field complexity in stars.

2.2 What can we learn from numerical simulations?

As explored in the previous sections, the magnetism of cool stars has been the subject of
many studies in the past decades (Donati & Landstreet, 2009; Reiners, 2012). Observations
revealed different aspects of stellar magnetism that include stars with periodic activity
(Baliunas & Vaughan, 1985; Lockwood et al., 2007; Lehtinen et al., 2016), polarity
reversals in the magnetic dipole (Boro Saikia et al., 2018; Brown et al., 2021), and various
field configurations (Donati et al., 2008b; Morin et al., 2010; Folsom et al., 2016, 2018).
However, despite such advances, the link between the magnetic manifestations observed
at the stellar surface and the self-excited dynamo acting in the stellar interior remains
poorly understood. Because direct observations of the magnetic field within the stars are
unattainable, numerical attempts have been made to model the complex fluid motions
responsible for inducing and sustaining magnetic fields over the lifetime of an active star
(Brun & Browning, 2017; Charbonneau, 2020).

In Sec. 2.2.1, we quickly overview important findings obtained with convective dynamo
simulations. Next, to lay the ground for the numerical simulations and analysis presented in
Chapter 4, we address in Sec. 2.2.2 the current status of numerical simulations exploring the
underlying mechanism responsible for setting the magnetic field morphology in astrophysical
plasmas.
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2.2.1 Recent progress on convective dynamo simulations
Simulations of rotating convection in spherical geometry have been conducted in the
past decades to understand the magnetism of stars (e.g., Brun et al., 2004; Browning
et al., 2006; Brown et al., 2010; Ghizaru et al., 2010; Käpylä et al., 2012; Guerrero et al.,
2016; Warnecke et al., 2018) and planets (e.g., Christensen & Aubert, 2006; Aubert et al.,
2008; Gastine et al., 2014a; Meduri et al., 2021). Most of the dynamo codes available
in the literature (MagIC, EULAG-MHD, Parody, Rayleigh, etc.) simulate spherical shells
instead of the entire sphere (see Fig. 2.8). This is a consequence of the radial coordinate
singularity at r = 0. However, there are few numerical codes where the full-sphere can be
considered (Alvan et al., 2014; Hotta et al., 2016; Emeriau-Viard & Brun, 2017; Brown
et al., 2020), through the use of various numerical techniques, as for example the Yin-Yang
grid (Kageyama & Sato, 2004). In any case, global dynamo simulations solve the full set of
MHD equations stated in Chapter 1 to study the self-consistent generation and evolution
of magnetic fields and their interactions with turbulent convective motions.

Figure 2.8. Sketch of spherical shell simulations and its system of coordinates. The radial
domain spans from ri to ro.

In the context of planetary simulations, many works adopted the Boussinesq approxim-
ation. Within this approximation, the effect of density stratification disappears everywhere
in the MHD equations except in the buoyancy term of the Navier-Stokes equation (Eq. 1.6),
where small density fluctuations drive convective motions (e.g. the pioneering work of
Glatzmaier & Roberts, 1995). Boussinesq simulations (thus with a constant background
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density) succeeded in reproducing some geomagnetic features revealed by paleomagnetism
(Valet & Meynadier, 1993; Merrill & McFadden, 1994), such as the dipole-dominated
magnetic morphology (Christensen et al., 1998; Christensen & Aubert, 2006) and the
reversals/excursions of the magnetic dipole (Kutzner & Christensen, 2002; Sreenivasan
& Jones, 2006). Exploring different regimes of influence of Coriolis and Lorentz forces
on the convective flow, Boussinesq simulations also found exciting results regarding the
magnetism of other planets (Christensen & Aubert, 2006; Menu et al., 2020; Tassin et al.,
2021). These findings are used as a guide for the numerical study performed in this thesis,
and we highlight them in Sec. 2.2.2.

Nevertheless, Boussinesq convection is not thought to represent the interior of cool
stars as the effect of density stratification strongly modifies the flow configuration in
the convective envelope of stars (Brummell et al., 1998; Brun et al., 2004; Käpylä et al.,
2013). Instead, stellar dynamo simulations often employ the less restrictive anelastic
approximation (Braginsky & Roberts, 1995; Lantz & Fan, 1999; Glatzmaier, 2013), where
sound waves are filtered out but the effect of density stratification is retained (see Chapter 4).
Simulations mimicking the interior of the Sun (Brun et al., 2004; Brun & Zahn, 2006;
Browning et al., 2006; Strugarek et al., 2011; Fan & Fang, 2014), young cool stars (Bessolaz
& Brun, 2011; Brown et al., 2011; Zaire et al., 2016; Emeriau-Viard & Brun, 2017), early
M dwarfs (Bice & Toomre, 2020), and late M dwarfs (Browning, 2008; Yadav et al., 2015b;
Brown et al., 2020) have been performed using this approximation. Broadly speaking, most
simulations at sufficiently high magnetic Reynolds number yield self-sustained magnetic
fields through dynamo action (e.g., Brun et al., 2004). Those fields can be at various scales
so that most of the time, small and large-scale dynamos coexist, as expected in stars. It is
only recently that some cyclic behaviours started to be identified in global simulations, as
we will discuss now.

Regular magnetic cycles are difficult to obtain in numerical simulations and are sensitive
to the stellar rotational period (Ghizaru et al., 2010; Strugarek et al., 2017, 2018; Guerrero
et al., 2019). In general, magnetic cycles occur at Rossby numbers smaller than unity and
steady magnetic fields are obtained otherwise (Strugarek et al., 2018; Brun et al., 2022).
Moreover, there is some evidence that magnetic cycles tend to have longer periodicity
when the convective envelope is coupled to an underlying stable layer (radiative zone) in
the numerical domain (Browning et al., 2006; Ghizaru et al., 2010; Guerrero et al., 2016;
Beaudoin et al., 2018; Charbonneau, 2020). A common feature in those simulations is the
creation of a shear layer roughly similar to the solar tachocline (Brun et al., 2011; Guerrero
et al., 2019; Matilsky & Toomre, 2021). This shear layer is expected to influence the
magnetic field generation through the Ω-effect, creating large-scale wreaths of toroidal field



38 2 Observing and modelling the magnetism of cool stars

(Browning et al., 2006) that can potentially be stored in the radiative zone (Browning et al.,
2006; Beaudoin et al., 2018; Guerrero et al., 2019; Bice & Toomre, 2020). Nevertheless, the
precise influence of a tachocline-like shear layer on the dynamo mechanism is not yet fully
understood, and recent observations have challenged whether this layer modifies dynamo
action in partly convective stars when compared to fully convective stars (see discussion
in Sec. 1.2).

In the past decades, the formation of starspots by a rising magnetic loop has also drawn
attention. Self-consistent 3D numerical simulations succeeded at reproducing buoyant
magnetic loops capable of crossing the entire convective zone (Nelson et al., 2011, 2014).
These numerical results suggested that low magnetic diffusivity and Rossby number are
key ingredients to trigger rising magnetic loops (Brun et al., 2015). However, there is still
no consensus in the literature on whether the magnetic loops causing starspots form at the
base of the convective zone or at the near surface shear layer (e.g., Brandenburg, 2005).

2.2.2 Surface magnetic field geometry
In the last two decades, numerical simulations mimicking the interior of planets and stars
have focused on understanding the origins of the large-scale magnetic morphology produced
by convective dynamos (e.g., Christensen & Aubert, 2006; Gastine et al., 2012; Schrinner
et al., 2014; Yadav et al., 2016b; Menu et al., 2020; Tassin et al., 2021). Parametric studies
of 3D convective simulations were conducted varying, among others, the rotation period,
the vigour of convection, the level of stratification, and the size of the convective zone.
These numerical models succeeded in producing self-consistent dynamo action for a broad
range of parameters, which were used to investigate the physical mechanisms controlling
the magnetic field morphology.

2.2.2.1 Dipolar and multipolar branches

It is only since the work of Kutzner & Christensen (2002) that different regimes of
surface magnetic field morphology were identified in numerical simulations, yielding either
dipole-dominated or complex multipolar-dominated field topologies. Christensen & Aubert
(2006) formalized this line of study using the relative strength of the axial dipole (fdip) as
a topological diagnostic of the large-scale magnetic field.

Fig. 2.9 illustrates the dipolarity trend obtained with their simulations, which assumed
a constant density profile to mimic the Earth’s core. The magnetic field complexity of their
simulations (measured by fdip) varied with the relative importance of the inertial force
to the Coriolis force (measured by the Rossby number, Ro). Simulations with Ro ≲ 0.12
showed dipole dominated surface magnetic fields (commonly referred to as “the dipolar
branch”), while simulations at high Rossby numbers displayed complex surface fields
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Figure 2.9. Relative strength of the axial dipole vs local Rossby number as computed by
Christensen & Aubert (2006); Christensen (2010) (see definitions in Chapter 4). Simulations with
dipole-dominated morphology are shown in red and those with multipolar-dominated structure
are given in blue.

(“the multipolar branch”). Independent geodynamo works, e.g. Olson & Christensen
(2006); Sreenivasan & Jones (2006); Soderlund et al. (2012); Oruba & Dormy (2014),
also advocated that the Rossby number is important in describing the transition between
dipolar and multipolar solutions (see review by Christensen, 2010).

2.2.2.2 Effects of stratification
Unlike the Earth, stars have huge density contrasts that play a major role in the flow

structure; as a consequence, the field generation of stars is also likely modified when
compared to the unstratified geodynamo model. Therefore, the natural step to investigate
the validity of the Rossby number in regulating the magnetic morphology of stars was to
include stratification effects in the modelling.

It was only after the serial simulations of Dobler et al. (2006) and Browning (2008)
that stratification effects were checked in the context of the magnetic topology of stars.
Whereas both simulations corresponded to a rather low Rossby number (falling in the
dipolar branch proposed by the geodynamo simulations), the weakly stratified simulation
of Dobler et al. (2006) yielded a dipole-dominated morphology and the strongly stratified
simulation of Browning (2008) resulted in a complex magnetic field configuration. It was
then tempting to conclude that the effect of stratification was to destabilize the dipole.
However, because density contrasts as high as those seen in stars cannot be incorporated
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in numerical simulations (as a result of computational limitations), systematic parametric
explorations were performed to investigate the limit of increasing density stratification
(Gastine et al., 2012).
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Figure 2.10. Relative strength of the axial dipole vs local Rossby number for stratified simulations,
adapted from Gastine et al. (2012). Shape and colors refer to simulations with different density
contrasts Nρ = ln ρi/ρo, where ρi and ρo are the densities at the bottom and top of the convective
envelop, respectively. Red shades correspond to the lowest levels of stratification and blue shades
to the highest ones considered in Gastine et al. (2012).

Fig. 2.10 summarises the findings of Gastine et al. (2012), whose simulations included
different density scale heights Nρ = ln ρi/ρo, where ρi and ρo are the densities at the inner
and outer boundaries of the convective shell, respectively. They found that simulations
with weak density contrasts (Nρ = 0.5 and 1) displayed well defined dipolar and multipolar
branches, similar to what was seen in geodynamo simulations (Nρ = 0). However, as
the stratification was further increased, their dipolarity trend started to break down.
The Rossby number-interval corresponding to the dipolar branch became smaller for the
simulations with Nρ = 1.5 and it finally disappeared for the runs with Nρ = 2 and 3,
where no dipolar dynamo was found.

Altogether, these numerical studies suggested that dipole-dominated morphologies
were harder to obtain for higher density contrasts (Gastine et al., 2012; Jones, 2014).
Hence, numerical experiments would anticipate only multipolar configurations for stars,
as they have huge density contrasts. However, this conclusion is at odds with the strong
dipoles observed in stars (Donati et al., 2008b; Donati & Landstreet, 2009). We leave for
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Sec. 2.2.3 the discussion of the possible numerical aspects causing such discrepancies with
respect to observations and how they can potentially be mitigated.

2.2.2.3 Effects of extended convective envelops

Another key aspect that varies as the star evolves is the size of the convective envelope.
Addressing how the extension of the convective zone impacts the magnetic morphology,
Gastine et al. (2012) considered simulations with thick and thin convective shells (with
the later corresponding to the results already shown in Fig. 2.10). Fig. 2.11 shows the
results obtained in their dynamo simulations with radius ratio ri/ro = 0.2 and 0.6, where
ri inner is the radius of the spherical shell and ro is outer radius. The stratification
effect to suppress the dipole component was very much alike in the simulations with
different geometries (cf. Sec. 2.2.2.2). Besides, the exact Rossby number beyond which
all simulations are multipolar differed; in the thin shell simulations they obtained the
transition at Roℓ ≃ 0.15, while for the thick shells it occurred at Roℓ ≃ 0.08. Precisely,
the constant density models shown in Fig. 2.9 also lead to a slightly different transitional
Rossby number (Roℓ ≃ 0.12) that is likely attributed to the distinct radius ratio (ri/ro =
0.35 in the geodynamo explorations of Christensen & Aubert, 2006).
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Figure 2.11. Similar to Fig. 2.11, but for stratified simulations of thick (brown) or thin (grey)
convective zones (ri/ro = 0.2 and 0.6, respectively). Red (black) vertical dashed line mark the
transitional Rossby number obtained for the thick (thin) shell simulations. Adapted from Gastine
et al. (2012).
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2.2.2.4 Bistability in the dipolar branch
Geodynamo and stellar dynamo numerical experiments reported a bimodal regime at

the dipolar branch, where dipolar and multipolar dynamos coexist (Simitev & Busse, 2009;
Schrinner et al., 2012; Yadav et al., 2013; Gastine et al., 2013; Schrinner et al., 2014). Such
bistable states of magnetic field configuration have been found after varying the initial
seed magnetic field strength of the simulations. It was seen that some dipolar dynamos
switched to multipolar dynamos when lowering the amplitude of the seed magnetic field.
Bistability is suggested as a potential explanation for the bimodal regime observed for M
dwarf stars with Ro ≲ 0.1 (e.g., Morin et al., 2011; Gastine et al., 2013).

We highlight that the entire set of simulations in Figs. 2.9-2.11 were initialized with
a strong dipolar field to isolate the effect of magnetic bistability from the corresponding
impact of stratification and shell gap.

2.2.3 Guiding simulations using observations
The apparent disagreement between the magnetic morphology observed in stars and those
obtained in simulations of stratified flows raised the important question of why numerical
experiments of stratified flows are apparently preventing dipoles from existing even at
Roℓ ≲ 0.1 (Petitdemange & Raynaud, 2019). Further explorations of stratified flows with
different physical properties showed that dipoles could be recovered at small Roℓ when
modifying the relative importance of the forces acting on the flow. Considering density
contrasts up to Nρ ∼ 3, Schrinner et al. (2014) and Raynaud et al. (2015) showed that
dipoles appeared when increasing the amplitude of the Lorentz force in the momentum
equation (by increasing the ratio of viscous to magnetic diffusions, namely the magnetic
Prandtl number). Similarly, Yadav et al. (2015b) obtained a strong dipole for a simulation
with Nρ = 5 when considering a reduced influence of the inertial force by adopting a high
ratio of viscous to thermal diffusions, the Prandtl number (leading to Roℓ = 0.04). To
our knowledge, this simulation of Yadav et al. (2015b) with Nρ = 5 corresponds to the
strongest density contrast in which dipolar dynamos are reported to date3.

Fig. 2.12 shows the surface magnetic map obtained by Yadav et al. (2015b), where
a dipole-dominated is clearly identified. The left map shows the fully resolved magnetic
map and the right map represents the magnetic morphology in the limit of resolution
accessible using ZDI (i.e., limited to low-order SH). In a follow up study, Yadav et al.
(2016b) continued running the simulation of Yadav et al. (2015b) with a reduced rotational

3Stellar dynamo simulations with density contrasts of as high as Nρ = 5.9 have already been reported
in the literature (Bessolaz & Brun, 2011), however these simulations displayed complex magnetic fields
with a weak dipolar component.
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Figure 2.12. Surface radial magnetic field maps from Yadav et al. (2015b). Maps correspond to
the a) fully resolved simulation and b) filtered magnetic field up to SH of order ℓ = 10.

velocity, which lead to an increase in the Rossby number from 0.04 to 0.25. They observed
that while the low-Rossby number simulation had non-cyclic, dipole dominated magnetic
fields (Yadav et al., 2015b), the simulation with Roℓ = 0.25 developed cyclic, multipolar
magnetic fields (Yadav et al., 2016b). The transition in magnetic morphology of these two
simulations is consistent with the existence of dipolar and multipolar branches.

These various numerical experiments (Schrinner et al., 2014; Raynaud et al., 2015;
Yadav et al., 2015b) suggested that the dipole collapse in stratified simulations with
Roℓ ≲ 0.1 could be an artificial bias of the parameter space explored, which highlighted
the need for a close look at the force balance relevant for stars.

2.2.3.1 Magnetic feedback on flow

Following this line of thinking, it has been suggested that the parameter space explored
in early simulations may have prevented dipoles from occurring at Ro > 0.1 because
magnetic forces were too weak to play a dynamical role on the fluid (e.g., Dormy, 2016;
Dormy et al., 2018; Schwaiger et al., 2019). Very recently, Menu et al. (2020) and Tassin
et al. (2021) performed geodynamo simulations to explore the influence of the Lorentz force
on the dipole breakdown by systematically varying the magnetic Prandtl number over a
broad parameter range that covers the dipole-multipole transition. Fig. 2.13 shows the
dependence of fdip with the Rossby number for sets of simulations with different magnetic
Prandtl numbers (Menu et al., 2020). Menu et al. found that strong dipoles can be
recovered at high-Rossby numbers (Ro > 0.1) provided that a significant Lorentz force is
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acting on the fluid (which in their models translates into increasing the magnetic Prandtl
number). This finding challenged the canonical use of the Rossby number to distinguish

Figure 2.13. Effect of varying magnetic the Prandtl number (Pm) on the stability of axial
dipoles, adapted from Menu et al. (2020).

between dipolar and multipolar field geometries (as firstly suggested by Christensen &
Aubert, 2006). However, the studies of Menu et al. (2020) and Tassin et al. (2021) used
the Boussinesq approximation (constant density throughout the convective shell) lacking,
therefore, an important ingredient of stellar magnetism that is the density stratification.

In summary, it remains to be investigated if the canonical description of the magnetic
morphology as a function of the Rossby number may also fail for systems with a strong
density contrast and in the Lorentz-force dominated regime. It is also interesting to explore
whether this regime may help generating dipoles even for large density stratifications, which
would help to bring models in better agreement with observations. Those investigations
are the subject of the theoretical and numerical part of this thesis (see Chapter 4).



Chapter 3

Imaging the magnetic topology of the K2 dwarf V471 Tau

In this chapter, we apply the ZDI technique to reconstruct the surface maps of the
active companion of the binary system V471 Tau. The results described below are part of
Paper I and Paper II.

3.1 Context

Several binary systems display periodic eclipse timing variations (ETVs) when considering
a linear ephemeris to predict the time of mid-eclipse. The main explanations that have
been proposed for the existence of period variations are the possible presence of a third
body perturbing the orbit of the system or magnetically induced gravitational modulations
caused by an active star in the system (Applegate, 1992; Völschow et al., 2016, 2018;
Navarrete et al., 2018; Lanza, 2020). Although ETVs are more often attributed to the
presence of a third body – e.g., NN Ser (Marsh et al., 2014), QS Vir (Parsons et al., 2010),
and V1200 Cen (Marcadon et al., 2020), direct imaging of some systems disclaimed the
existence of a third body (e.g. V471 Tau, Hardy et al., 2015).

Eclipse timing measurements over the last 50 years give a unique opportunity to
determine the orbital period (Porb) of V471 Tau and its temporal variation with ex-
treme accuracy. V471 Tau displays ETVs with typical period modulations of amplitude
∆P/Porb ≈ 8.5 × 10−7 (Lanza, 2020) and a periodicity of Pmod = 35 yr (Kundra & Hric,
2011; Vaccaro et al., 2015; Marchioni et al., 2018). Guinan & Ribas (2001) analysed
whether the gravity influence of a hypothetical third body could lead to the ETVs of the
system; they found that V471 Tau would need a brown dwarf companion with a mass of
≈ 0.0393 ± 0.0038 M⊙ and a semi-major axis of ≈ 11.2 ± 0.4 AU to reconcile the amplitude
and periodicty of the ETV cycle. However, an image of V471 Tau obtained with SPHERE
at the VLT refuted the existence of the brown dwarf (Hardy et al., 2015).

Alternative effects of magnetic origin are thus the most probable cause of the ETVs in
V471 Tau. In the past few decades different mechanisms of magnetic origin have been put
forward to explain ETVs of V471 Tau and other binary systems. These models rely on
the spin-orbit angular momentum exchange and on the existence of magnetically driven
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modulations in the gravitational quadrupole moment of the active companion to explain
the ETVs. Among the possibilities, two models stand out: the Applegate Effect (Applegate,
1992) and the Lanza effect (Lanza, 2020). While the Applegate mechanism requires a
cyclic behaviour in the magnetic field and a significant variation in the differential rotation
for its feasibility, the alternative Lanza’s mechanism requires smaller fluctuations in the
differential rotation and a stable non-axisymmetric magnetic field that either librate or
circulate in the azimuthal direction with a constant period. The information needed to
determine whether any of these mechanisms are at play requires detailed analysis of the
active component in V471 Tau, with magnetic maps and differential rotation measurements
at different phases of the ETVs modulation cycle being key parameters to disentangle the
two effects.

Following, we reconstruct the distribution of brightness map and large-scale magnetic
field of the active component in V471 Tau, as well as the amount of differential rotation
by which the surface maps are sheared at 3 different epochs (2004.9, 2005.9 and 2014.9).
We start discussing the evolutionary status of the system in Sec. 3.2 and present the
observational data sets in Sec. 3.3. The results of Paper I and Paper II are presented in
Sec. 3.4. Finally, the implications of our findings are discussed in Sec. 3.6.

3.2 Evolutionary status of V471 Tau

V471 Tau is an eclipsing binary system and member of the 625 Myr old Hyades open
cluster (Perryman et al., 1998) with a Gaia distance of 47.51 ± 0.03 pc (Gaia Collaboration
et al., 2020; Bailer-Jones et al., 2021). The current scenario indicates that the system
is a pre-cataclysmic variable (pre-CV) that has undergone a common-envelope phase in
the early stages of evolution. The system consists of a hot white dwarf (WD) star and a
K2 dwarf main-sequence star not yet overfilling its Roche lobe (Nelson & Young, 1970).
Self-consistent analysis handling simultaneously radial velocity curves, light curves, and
eclipse timings of the system yielded a WD mass of 0.8778 ± 0.0011 M⊙ and a K2 dwarf
mass of 0.9971 ± 0.0012 M⊙, orbiting with a short-period of Porb = 0.5211833875 days and
a separation distance of a = 3.586 R⋆, where R⋆ is the radius of the K2 dwarf (Vaccaro
et al., 2015). Moreover, because of the proximity of the two companions, tides force the K2
dwarf star to rotate nearly synchronously with the orbital period of the system, implying
that Prot ≃ Porb. The K2 dwarf V471 Tau is a twin of another well-known dwarf, the
fastly-rotating single star AB Dor (Hussain et al., 1997; Donati et al., 1999; Hussain et al.,
2002b; Donati, 2003). We summarise the quantities relevant for the scope of this thesis in
Table 3.1.
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Table 3.1. Parameters of the K2 dwarf component of the V471 Tau system. From top to
bottom: age, distance from the Earth d, separation distance to the companion a, mass M⋆,
radius R⋆, effective temperature Teff , logarithm of the surface gravity log g, rotational period
Prot, inclination i, and line-of-sight projected equatorial rotation velocity v sin(i).

Parameter Value† Reference
Age (Myr) 625 (50) Perryman et al. (1998).
d (pc) 47.51 (03) Bailer-Jones et al. (2021)
a (R⋆) 3.586 (11) Vaccaro et al. (2015)
M⋆ (M⊙) 0.9971 (12) Vaccaro et al. (2015)
R⋆ (R⊙) 0.93709 (93) Vaccaro et al. (2015)
Teff (K) 5,066 (04) Vaccaro et al. (2015)
log g (cm s−1) 4.49331 (87) Vaccaro et al. (2015)
Prot = Porb (d) 0.5211833875 (27) Vaccaro et al. (2015)
i (◦) 78.755 (30) Vaccaro et al. (2015)
v sin(i) (km s−1) 89.30 (11) Vaccaro et al. (2015)
† Standard error of the last two digits is shown inside the parenthesis.

Photometric studies reveal an apparent magnitude ranging from V = 9.30 to 9.42 for
the K2 dwarf star (cf. Fig. 6 in Vaccaro et al., 2015). Given the distance modulus of
−3.384 ± 0.002 and the V-band bolometric correction at the effective temperature of the
K2 dwarf star, BCV = −0.29±0.02 (Pecaut & Mamajek, 2013), we estimate minimum and
maximum bolometric magnitudes of Mbol,min = 5.626 ± 0.063 and Mbol,max = 5.746 ± 0.063,
respectively. Additionally, using the radius and effective temperature listed in Table 3.1, as
well the reference bolometric magnitude for the Sun, Mbol,⊙ = 4.74, we infer the bolometric
magnitude for the unspotted star, Mbol,u = 5.451 ± 0.004. The fraction of spots at the
surface of the K2 dwarf star is then given by fspot = 1 − 10 2

5 (Mbol,u−Mbol) that, within
the observed range of bolometric magnitudes, corresponds to fspot ≈ 0.15–0.25. This
spottedness of 15–25 per cent is typical for active stars, although some stars like LkCa 4
are much more spotted than that (fspot ∼ 0.80, Gully-Santiago et al., 2017). Previous
brightness reconstructions of the K2 dwarf star with Doppler imaging retrieved spot
coverage of ≈ 0.20 in 1992/1993 (Ramseyer et al., 1995) and 0.09 in 2002 (Hussain et al.,
2006).

Figure 3.1 shows the K2 dwarf V471 Tau’s position in the Hertzsprung-Russell diagram.
Among the two evolutionary models considered, the 0.9 M⊙ track of Siess et al. (2000) is
the one that best reproduces the stellar parameters of the K2 star. Still, we can notice the
anomalous mass for its K2V spectral type that has been the subject of investigations in
the past years (e.g., O’Brien et al., 2001). Some authors suggested that a metal enrichment
during the common-envelope phase could potentially explain the excess mass; however, no
conclusive answer exists yet (see discussion in Vaccaro et al., 2015). Using the evolutionary
model of Siess et al. (2000), we infer that the radiative core of the K2 star reaches a
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radius of 0.68 R⋆ at 625 Myr (or, in other words, that it posses a convective envelope
corresponding to the outer 32% of the stellar radius) that is similar to that of AB Dor
and not far from that of the Sun.
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Figure 3.1. Positions of the K2 dwarf V471 Tau (red square) and the single-star analog AB Dor
(green square) in the Hertzsprung-Russell diagram. Siess et al. (2000) evolutionary tracks for
masses 0.8 − 1.0 M⊙ are shown in dashed black lines (Z = 0.0020 + overshooting model), except
the 0.9 M⊙ track shown in continuous black line, which we chose to represent the K2 dwarf star.
Siess isochrones for 10, 30, and 625 Myr are represented as dotted blue lines. Evolutionary tracks
from Baraffe et al. (2015) models (dashed magenta) are included for comparison.

3.3 Observational data

We use spectropolarimetric observations of V471 Tau collected at three different epochs
(2004.9, 2005.9, and 2014.9) with ESPaDOnS at the Canada-France-Hawaii Telescope.
The optical spectropolarimeter ESPaDOnS covers wavelengths from 370 to 1, 000 nm at a
resolving power of 65, 000 (Donati, 2003; Donati et al., 2006b). Our first data set totalizes
230 unpolarised (Stokes I) and 56 circularly polarized (Stokes V ) spectra spread in three
non-consecutive days in November/December 2004; the second data set consists of 400
unpolarised and 98 circularly polarized spectra spread in four days (every other day for 7
days) in December 2005; and the third set of observations corresponds to 236 unpolarised
and 59 circularly polarised profiles acquired in 11 nights spread between 20 December 2014
and 12 January 2015. Circularly polarised spectra are computed combining 4 sub-exposures
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of 200 s each taken at different orientations of the polarimeter retarders that are ideal
for minimizing spurious signatures and removing systematics in the circularly polarised
spectra (see Donati et al., 1997, for more details). We refer to Donati (2003) for further
details about the Stokes parameters acquisition with ESPaDOnS.

Raw data frames are reduced with the Libre-ESpRIT package, which is optimised
for ESPaDOnS (Donati et al., 1997). The spectra have peak signal-to-noise ratios (SNRs)
ranging from 75 to 191 (median 147) in the data collected in 2004, from 75 to 188 (median
158) in December 2005, and from 122 to 212 (median 184) in December 2014/January 2015.
Circularly polarised spectra with peak SNRs lower than 75 were rejected in this work,
corresponding to four sequences in the first season of observation (November/December
2004) and three sequences in the second one (December 2005). Rotational cycles E are
computed according to the ephemeris of Vaccaro et al. (2015):

HJED = 2445821.898291 + 0.5211833875 × E, (3.1)

where phase 0.5 corresponds to the primary eclipse of the system (i.e., when the WD is in
front of the K2 star).

Least-Squares Deconvolution (LSD) is used to produce an average profile of photospheric
lines of the K2 dwarf star (Donati et al., 1997), with the SNRs boosted by a factor of
30 from the peak SNR of the individual spectra with respect to an average spectral line.
We constructed the line mask using the Vienna Atomic Line Database (VALD; Piskunov
et al., 1995; Kurucz, 1993) for an effective temperature Teff = 5,000 K and a surface gravity
log g = 4.5, in agreement with Vaccaro et al. (2015) (see Table 3.1). We chose to include in
our absorption line list only lines deeper than 10% to the continuum level (Ic), resulting in
roughly 6,000 atomic lines. The average line profile features a mean wavelength λ = 625 nm,
a mean relative depth d = 0.677, and a mean effective Landé factor w = 1.2.

3.4 Zeeman-Doppler Imaging of the K2 dwarf V471 Tau

We analyze the time series of the spectropolarimetric data set using ZDI to obtain
information on the brightness and magnetic field distributions at the surface of the K2
dwarf of V471 Tau. We use ZDI as described in a suite of papers (Donati et al., 1989;
Brown et al., 1991; Donati & Brown, 1997), using the implementation of Donati (2001);
Donati et al. (2006c) and adopting a spherical harmonic decomposition for the magnetic
field.
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3.4.1 System parameters
We take advantage of the maximum-entropy fitting process to simultaneously estimate
the orbital parameters describing the RV of the K2 dwarf of the binary system; since
the orbit of V471 Tau is circular, there are 3 such parameters, the semi-amplitude of the
orbital motion of the K2 dwarf (KdK), the systemic velocity (vγ), and the phase offset
with respect to the ephemeris of Eq. 3.1 (ϕ0).

For our data sets of November/December 2004 and December 2005 (Paper I), we
perform a 3D search in the parameter space {KdK, vγ, ϕ0} to find out how χ2 varies (at
constant reconstructed information at the surface of the star) with these parameters. By
fitting a 3D paraboloid around the minimum of the derived χ2 values, we compute the best
estimates of the parameters and their uncertainties. An inspection of these parameters
shows that slightly different systemic velocities (by about 3σ) minimize phase-coherent
patterns present in the residuals (observed minus modelled Stokes profiles) at both epochs.
We adopt then KdK = 149.3 ± 0.2 km s−1 and vγ = 35.0 ± 0.1 km s−1. For the phase offset,
we obtain for our November/December 2004 data set ϕ0 = 0.0040 ± 0.0002 and for the
December 2005 data ϕ0 = 0.0035 ± 0.0002 (here a positive value in the phase offset, ϕ0 > 0,
indicates a conjunction occurring later than the prediction from the ephemeris in Eq. 3.1).
These phase offsets correspond to ETVs of 180 ± 9 s and 158 ± 9 s, respectively. Both
values of ϕ0 agree within 1.5 error bars.

For the data set of December 2014/January 2015, we fix the semi-amplitude to KdK =
149.3 km s−1 and we perform a 2D search in the space of parameter {vγ, ϕ0}. We find that
the best parameters reproducing the observations at this epoch are vγ = 35.0 ± 0.10 km s−1

and ϕ0 = 0.0025 ± 0.0005, corresponding to an ETV of 113 ± 23 s.
Likewise, once the data are corrected for the orbital motion, we search for the projected

rotational velocity v sin(i) that allows our synthetic profiles to match best the times series
of Stokes I LSD profiles. We found that for the three data sets, the line-of-sight projected
equatorial rotation velocity associated with the lowest χ2 is consistent within 2.5 σ with
Vaccaro et al. (2015), i.e., v sin(i) = 89.30 ± 0.11 km s−1.

Next, we carry out reconstructions of brightness and magnetic maps of the K2 dwarf
of V471 Tau using the orbital and stellar parameters obtained for the three epochs of
observations. As we discuss in Sec. 3.4.4, differential rotation is detected at the surface of
the K2 dwarf star, and we take it into account in the imaging process.

3.4.2 Brightness inhomogeneities
The reconstructed brightness maps are shown in Figure 3.2. In 2004, the spot distribution
exhibited a cool polar spot off-centered towards phase 0.15, extending down to a colatitude
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of ∼ 50◦. We likewise identify the cool polar cap in the following years, although it presents
a higher contrast with the quiet photosphere and is now off-centered towards phase 0.35
in 2005 and phase 0.30 in 2014/2015. Overall, the polar spot distributions exhibit similar
structures but different phase shifts. Furthermore, all three spot maps show a partial ring
of low-contrast warm features encircling the polar cap at the equatorial regions. Because
warm equatorial rings are sometimes an artefact of an imprecise v sin i determination
(lower than the actual value, Unruh & Collier Cameron, 1995), we inspected the images
reconstructed using a slightly higher v sin i than the one determined in the previous section
to generate the image with minimum spot coverage. We found that the warm ring persisted
in all of the brightness maps, which corroborates that this feature is an actual brightness
inhomogeneity at the surface of the K2 dwarf. This warm ring has a latitudinal extension
of about 40◦ and it is disrupted mainly around phase 0.5, corresponding to the side of the
K2 dwarf that is facing the WD. The disruption at phase 0.5 is consistent with Roche
tomography maps of secondary stars of cataclysmic variables (CVs) – e.g., for the K4
dwarf AE Aqr, the surface hemisphere facing the WD companion irradiates less than its
surroundings (Hill et al., 2016).

a) b) c)

Figure 3.2. Brightness maps obtained in a) November/December 2004, b) December 2005, and
c) December 2014/January 2015. The logarithm of the relative brightness is shown in colors,
with brown shades representing cool spots and blue shades depicting bright plages. In each plot,
concentric circles denote parallels plotted in steps of 30◦ from the inner to the outermost circle.
Outer ticks indicate the rotation phase of the observations used to recover the maps.

We find that, in 2004, cool spots and warm plages covered 8% and 6% of the stellar
surface, respectively; in 2005, the spot coverage was 10% for cool spots and 7% for warm
plages; in 2014/2015, 10% of the stellar surface was covered by cool spots and 8% by
warm plages. While the increase in spot coverage between 2004 and the other two epochs
possibly relate to the denser phase coverage of 2005 and 2014/2015 data sets, we find clear
hints of short-term variability in our 2014/2015 data set (see Paper II, for further details).
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3.4.3 Magnetic topology
The topology of the K dwarf’s large-scale magnetic field is depicted in Fig. 3.3. We find a
maximum radial field strength of 250 G in 2004, 230 G in 2005, and 500 G in 2014/2015.
While the root-mean-square magnetic field is ∼160 G for the two early epochs, and 360 G
for the 3rd epoch. In 2004, the magnetic field topology shows a complex configuration

a) November/December 2004

b) December 2005

c) December 2014/January 2015

Figure 3.3. Polar view of magnetic field topology for a) November/December 2004, b) December
2005, and c) December 2014/January 2015. From left to right, the columns show respectively
the radial, azimuthal (i.e., toroidal), and meridional components of the large-scale magnetic field
(with concentric circles and ticks as in Fig. 3.2). Positive magnetic field strengths are represented
as red shades and negative as blue shades.
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with 60% of the magnetic energy reconstructed in modes with ℓ ≥ 4, whereas, in 2005
and 2014/2015 the energy stored in these modes dropped to 30% and 35%, respectively.
The remaining energy in 2005 and 2014/2015 is mostly stored in the dipolar component
(ℓ = 1), representing 45% and 55% of the magnetic energy. In 2004, the magnetic field
featured a −90 G dipole tilted at 20◦ to the rotation axis towards phase 0.08 ± 0.03. In
2005, the intensity of the dipole component was −105 G and the 64◦ tilt goes towards
phase 0.41 ± 0.03. For 2014/2015, the dipolar component has a polar strength of -335 G
that is tilted by 7◦ towards phase 0.87 ± 0.03.

To assess the uncertainties of the image reconstruction, we performed 120 magnetic
inversions at each epoch from bootstrapped data sets constructed by randomly choosing
spectra from the original data, allowing for duplicates to match the original size of the
sample (e.g., see Wang et al., 2017, 2018). Table 3.2 lists the main properties of the
reconstructed large-scale magnetic topology along with the standard deviations obtained
in the bootstrapping analysis.

Table 3.2. Magnetic field proprieties of the K2 dwarf star at November/December 2004, December
2005, and December 2014/January 2015. Brms is the root-mean-square field, Bdip is the dipolar
strength, and Epol is the fractional energy in the poloidal field. Eℓ=1, Eℓ=2, Eℓ=3 and Eℓ≥4
are, respectively, the fractional energies of the dipolar, quadrupolar, octupolar, and multipolar
(defined as ℓ ≥ 4) components.

Epoch Brms Bdip θdip Epol Eℓ=1 Eℓ=2 Eℓ=3 Eℓ≥4

(G) (G) (◦) (%) (%) (%) (%) (%)
Nov/Dec 2004 160 ± 3 −90 ± 20 20 ± 10 70 ± 5 15 ± 6 10 ± 2 15 ± 2 60 ± 7
Dec 2005 160 ± 1 −105 ± 5 64 ± 5 60 ± 2 45 ± 3 10 ± 1 15 ± 2 30 ± 2
Dec 2014/Jan 2015 360 ± 7 −335 ± 20 7 ± 5 75 ± 5 55 ± 5 5 ± 5 5 ± 2 35 ± 4

3.4.4 Surface differential rotation
As discussed in Sec. 2.1.1.3, the image reconstruction process can be used to search for the
differential rotation parameters (Ωeq,dΩ) that yield the image with the lowest χ2 for a fixed
information content. Figure 3.4 shows χ2 maps in the Ωeq – dΩ plane for reconstructions
using Stokes I (left column) and Stokes V (right column) signatures. We again assume
a simple paraboloid approximation for the χ2 maps close to the minimum to determine
the optimal differential rotation parameters (circles) and their associated error bars (see
Eqs. 2 and 3 in Donati et al., 2003b). We summarise the differential parameters found
for each case in Table 3.3. In all cases, we find equatorial regions spinning faster than the
polar ones, which corresponds to a solar-like shear. We additionally list in Table 3.3 the
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b) December 2005
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c) December 2014/January 2015
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Figure 3.4. χ2 maps in the differential rotation plane obtained with reconstructions of the
brightness distribution (left panels) and magnetic topology (right panels). Reconstructions use
data from a) 2004, b) 2005, and c) 2014/2015. Confidence levels up to 5 σ (11 σ for Stokes I
data collected in 2005) are shown in colors and are computed with respect to the χ2 minima.
Circles and 1-σ error bars indicate the center of the χ2 distribution given by Eqs. 2 and 3 in
Donati et al. (2003b), with the measurements of 2004 shown in red, 2005 in blue, and those of
2014/2015 in orange. Note that we repeated the 6 differential rotation measurements in each
panel to aid comparisons.

colatitude θc at which the system rotates with the orbital period and the colatitude and
rotation rate of the spots’ gravity center (θs and Ωs).

For an independent check that the error bars on the differential rotation parameters
we derived are reliable, we constructed ten bootstrapped data sets for each epoch of
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observation. We repeated the procedure described in this section for the bootstrapped
data sets and derived ten differential rotation measurements for each Stokes profile. We
find that the mean values of Ωeq and dΩ agree within error bars with the values quoted
in Table 3.3 and that the dispersion on these two parameters is consistent with the error
bars derived from the χ2 maps. Moreover, the mean value of the error bars derived from
the χ2 maps is similar to those quoted in Table 3.3.

Table 3.3. Differential rotation parameters derived from our November/December 2004, Decem-
ber 2005, and December 2014/January 2015 observations. Equatorial rates Ωeq are listed in
column 2, while differential rotation rates dΩ are shown in column 3 along with 1σ error bars
for both quantities. For future reference, we also provide the colatitude of co-rotation (θc), the
colatitude of the gravity centre of the spot/magnetic distribution (θs; Donati et al., 2000), and
the rotation rate at this colatitude (Ωs). The number of data points (n) used in each image
reconstruction is provided in column 7.

Stokes I / Brightness reconstruction
Epoch Ωeq dΩ θc θs Ωs n

(rad d−1) (mrad d−1) (◦) (◦) (rad d−1)
Nov/Dec 2004 12.106 ± 0.001 100 ± 5 44 ± 2 65 12.088 27572
Dec 2005 12.091 ± 0.001 73 ± 2 46 ± 1 57 12.069 48800
Dec 2014/Jan 2015 12.084 ± 0.001 60 ± 1 46 ± 1 87 12.084 28840

Stokes V / Magnetic field reconstruction
Epoch Ωeq dΩ θc θs Ωs n

(rad d−1) (mrad d−1) (◦) (◦) (rad d−1)
Nov/Dec 2004 12.116 ± 0.008 129 ± 23 46 ± 8 57 12.078 6344
Dec 2005 12.083 ± 0.004 48 ± 12 40 ± 15 59 12.070 11590
Dec 2014/Jan 2015 12.077 ± 0.001 42 ± 3 45 ± 2 68 12.071 7210

3.5 Activity proxy: Balmer lines

The Hα line is often used as tracer of magnetic activity in stars. Figure 3.5 displays the
dynamical spectra of Hα for all observing epochs. We find that Hα is modulated with
orbital phase. It is weakest at phase 1.0, i.e., when the WD is behind the K2 star, and
strongest at phase 0.5, i.e., when the WD is in front of the K2 star. The equivalent width
reveals a peak-to-peak modulation amplitude of about 1.6 Å with a maximum emission
reaching −0.5 Å in late 2004 and −0.6 Å in December 2005. Further analysis (see Paper I)
shows that a similar modulation pattern exists in the core of other active lines, such as
Hβ, Ca ii H&K, and Ca ii infrared triplet.

By comparing the dynamical spectra of Hα at both epochs, we detect an additional
emission component moving in phase with the orbital motion of the WD star in the 2004
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Figure 3.5. Dynamical spectra of Hα line, in the rest frame of the K2 dwarf, for observations in
late 2004 (left panel), December 2005 (center), and December 2014/January 2015 (right). The
vertical dashed lines correspond to the stellar rotational broadening of ±v sin(i). Sine waves of
amplitudes 150 km s−1 (center of mass), 210 km s−1 (prominence position), and 320 km s−1 (WD
position) are over-plotted on the 2004 and 2014/2015 dynamical spectrum. Weak features from
telluric lines, noticeable by its sinusoidal behavior, remained after the removal procedure.

and 2014/2015 data sets. Such emission is not observed in 2005. A Gaussian fit to the
spectral Hα signature around phase 0.75 yields an equivalent width of about −0.33 Å and a
full width at half maximum of 1.95 Å for the prominence in 2004, and of −0.17 Å and 1.89 Å
for the one seen in 2014/2015. We interpret this extra emission as a prominence trapped
far from the K2 dwarf surface and stable for several days (at least 3 weeks in 2014/2015).
From the semi-amplitude of its signature in the dynamic spectrum (210 ± 38 km s−1 in
the rest frame of the K2 star), we can infer that the corresponding plasma is located at
a distance of 2.35 ± 0.43 R⋆ from the center of the K2 star towards the WD, i.e., at a
distance of only 1.23 R⋆ from the WD.

Although less obvious, we find that a similar prominence signature can also be identified
in Hβ after the removal of the stellar contribution (here assumed to be well represented by
the prominence free spectra obtained in 2005). Fig. 3.6 shows the resulting spectra, where
regions within ±v sin i were masked to emphasize the prominence signature. From the
isolated profile around phase 0.75, we estimate an Hβ equivalent width of about −0.096 Å
in 2004, implying a Balmer Hα to Hβ decrement factor of 3.4. In contrast, the prominence
signature in Hβ was much fainter in 2014/2015 yielding an equivalent width of about
−0.042 Å and a Balmer decrement of I(Hα)/I(Hβ) = 4.
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Figure 3.6. Dynamical spectra of Hβ in 2004 (left) and 2014/2015 (right) after the removal of
the stellar contribution (see text). Sine waves match the ones described in Fig. 3.5 and regions
within ±v sin i were masked for clarity.

3.6 Discussion

We summarize our main results below, and discuss their implication for our understanding
of the various physical effects we aimed at studying.

3.6.1 Spot and magnetic structures
Our brightness maps exhibit a cool off-centered polar spot and a hot ring-like structure
at low-latitude. Along with previous brightness maps obtained with similar techniques
in 1992/1993 (Ramseyer et al., 1995) and 2002 (Hussain et al., 2006), we find that the
polar spots are long-lived at the surface of the K2 dwarf, as they are on the single-star
analog AB Dor (e.g., Donati et al., 2003a). The spot coverage we derive (14%, 17%, and
18% in November/December 2004, December 2005, and December 2014/January 2015
respectively) is in good agreement with what is expected from photometry (in the range
15–25%, see Sec. 3.2) suggesting that most of the brightness spots generating photometric
fluctuations in V471 Tau are large enough to be detected and resolved by Doppler imaging.
Moreover, the brightness maps that we derived for the 2005 and 2014/2015 data sets have
been corroborated by an independent Doppler imaging reconstruction using a different
inversion code (Kővári et al., 2021).

The magnetic maps we obtained in this work are the first ones reconstructed for the
K2 dwarf V471 Tau (Fig. 3.3). The unsigned average magnetic flux at the surface of the
star is ∼200 G, including a ∼100 G dipole component inclined at 20–60◦ to the rotation
axis. We note changes in the field topology between the 3 epochs, e.g., variations in the
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strength of the toroidal component (from 25 to up to 40% of the reconstructed magnetic
energy) and in the fractional energy of the dipolar component (from 15 to 55%). However,
we caution that the improved phase coverage in the last 2 observing seasons may at least
partly account for the changes observed.

3.6.2 Differential rotation and angular momentum distribution

We detect differential rotation at the surface of the K2 dwarf at the three epochs of
observation (Table 3.3). In 2004, we find that the brightness and magnetic maps are
sheared by dΩ = 100±5 and 129±23 mrad d−1, respectively; in 2005, these shears dropped
to dΩ = 73 ± 2 and 48 ± 12 mrad d−1; and, in 2014/2015, dΩ = 60 ± 1 and 42 ± 3 mrad d−1.
These results differ from that of Hussain et al. (2006), who found an almost solid body
rotation (dΩ = 1.6 ± 6 mrad d−1) for the star in 2002, already offering some tentative
evidence for fluctuations in the surface shear on a short timescale (∼2-yr). Furthermore,
this finding reflects those of Donati et al. (2003b) who identified similar fluctuations in
the single-star analog AB Dor.

Our results show at all epochs that the magnetic topology suffers a different shear than
the brightness distribution, which may reflect that brightness and magnetic features are
anchored at different depths within the convective zone. Following Donati et al. (2003b),
we propose to interpret the temporal fluctuations in the surface differential rotation of
the K2 dwarf in terms of redistribution of angular momentum within the convective zone
as the star progresses on its activity cycle. Assuming angular momentum conservation
in the convective zone, they found that variations in Ωeq and dΩ should be correlated.
For instance, in stars with a Sun-like angular rotation profile (varying with latitude and
independent of radius), the correlation shows up as:

Ωeq = 0.2dΩ + Ω0, (3.2)

where Ω0 = 2π/Prot. On rapid rotators however, where angular rotation is constant along
cylinders according to Taylor-Proudman theorem, the correlation takes the following form:

Ωeq = λdΩ + Ω0, (3.3)

where λ is a parameter related to the second and fourth-order moment of the fractional
radius. For AB Dor and the K2 component of V471 Tau, λ is expected to be about 0.52
(Donati et al., 2003b).

Figure 3.7 shows the various existing estimates of differential rotation obtained so far
for the K2 dwarf of V471 Tau. The linear fit to these values (in rad d−1), including a
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Figure 3.7. Differential rotation at the K2 dwarf’s surface obtained with our 2004 (red), 2005
(blue), and 2014/2015 (orange) data sets with ±1–σ level provided. The measurement of Hussain
et al. (2006) in 2002 (Ωeq = 12.0547 ± 0.001 rad d−1 and dΩ = 1.6 ± 6 mrad d−1) is the green cross
and the angular velocity if the star was rotating as a solid body at the orbital angular velocity of
the binary system, i.e., Ω = 2π/Porb, the black dot. A linear fit of these eight quantities (dashed
line) returns the following relationship Ωeq = (0.48 ± 0.02)dΩ + (12.056 ± 0.002) rad d−1. For
comparison, we include shear measurements reported for the analog AB Dor (purple circles;
Donati et al., 2003b; Jeffers et al., 2007), after scaling the x-axis to the same rotation rate so
that measurements for both stars can be compared.

solid-body rotation at the orbital period, yields the following trend:

Ωeq = (0.48 ± 0.02)dΩ + (12.056 ± 0.002) rad d−1. (3.4)

The slope we get, λ = 0.48 ± 0.02, is consistent with expectations that rotation is constant
on cylinders in stars rotating as fast as the K2 dwarf, as expected from the Taylor-Proudman
theorem.

In previous theoretical studies on close binaries, tides were claimed to be capable
of quenching surface differential rotation (e.g., Scharlemann, 1981, 1982). However, the
shears reported in this work, as well as those of the HD 155555 binary system (Dunstone
et al., 2008), do not confirm this conclusion. In particular, our result indicates that surface
differential rotation in close binary stars is not specific to young stars like HD 155555. We
also note that temporal fluctuations in the surface differential rotation of the K2 dwarf of
V471 Tau tend to be larger than those reported for AB Dor (see purple circles in Fig. 3.7;
Donati et al., 2003b; Jeffers et al., 2007), which may reflect the impact of tidal forces on
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dynamo processes. Nevertheless, it is noteworthy that in both stars shear variations follow
the same trend in the Ωeq − dΩ plane (Fig. 3.7), which is further evidence in favor of our
interpretation that angular rotation is constant along cylinders in the convective zone of
these two similar active stars.

3.6.3 Origin of ETV in V471 Tau

Studying the evolution of the time of mid-eclipse with respect to an ephemeris is often
used to extract information of binary systems (Bours et al., 2016). Fig. 3.8 illustrates
the observed minus computed (O-C) eclipse timings available in the literature for V471
Tau. This data evidence the periodic behaviour of the ETVs in V471 Tau with current
observations yielding a modulation period of 30-40 yr (Guinan & Ribas, 2001; İbanoǧlu
et al., 2005; Kundra & Hric, 2011; Marchioni et al., 2018) and an O-C amplitude ranging
from 130 to 200 s (Kundra & Hric, 2011; Marchioni et al., 2018). We observed that the O-C
values derived from the phase offset measurements, expected to scale as O-C = ϕ0 × Porb,
agree with the O-C values derived from the direct determination of the eclipse time. That
is an important result as our independent measurements (and also the one of Hussain
et al. 2006) take into account the presence of spots at the surface of the stars that may
otherwise affect measurements of eclipse times (Kalimeris et al., 2002). Moreover, even
though eclipse timings are not available around the observational campaign of 2014/2015,
we can for instance use the latter relation to infer from our phase offset measurement an
O-C of roughly 113 ± 23 s at this epoch, further corroborating the modulated behaviour of
the ETVs.

In the Applegate (1992) mechanism, period modulations are an outcome of a cyclic
redistribution of angular momentum induced by a dynamo mechanism operating within
the active companion. The exchange of angular momentum throughout the activity
cycle affects the star’s oblateness, causing a modulation in the quadrupole moment and,
therefore, changing the gravity in the orbital plane. When the quadrupole moment of the
K2 star increases, the WD approaches the companion and the system’s orbital period
decreases to conserve angular momentum (and vice versa).

Several authors questioned whether the Applegate mechanism could explain the ETVs
of close binaries (Lanza, 2005, 2006; Völschow et al., 2018), since the cyclic exchange of
angular momentum required in this model demands large shear fluctuations to explain
typical period modulations (e.g., ∆P/Porb ≃ 8.5 × 10−7 for V471 Tau, cf. Lanza, 2020).
In particular, for post-common envelope binary systems in which the active companion
has a radiative core, Völschow et al. (2018) found that a relative differential rotation
dΩ/Ω ≲ 1% (compatible with our results range 0.4 − 1.1 per cent) can only lead to period
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Figure 3.8. Observed minus computed eclipse timing variations of V471 Tau assuming a linear
ephemeris given by Eq. 3.1. Crosses represent O-C measurements and circles the phase offset
(measured with ZDI) multiplied by the orbital period. The gray area represents the region where
the O-C is expected to reach negative values. The vertical dashed line marks the next campaign
in 2021 B scheduled to observe V471 Tau at ESPaDOnS (PI: B. Zaire, run ID 21BF99).

variations ≲10−7, thus making it unlikely to explain what we seen in V471 Tau. However,
because our observations were undertaken during a phase in the ETV cycle when the
O-C eclipse timings are around their maximum, and therefore when the orbital period
is more or less nominal (i.e., equal to the mean orbital period quoted in Table 3.1), our
measurements would have sampled intermediate values of the shear (expected to scale
with the orbital period) rather than the maximum possible value for the K2 dwarf in
the context of the Applegate framework. We recall that a fairly large O-C was inferred
from our 2014/2015 data set (O-C ∼ 113 ± 23 s). This suggests that, despite the shorter
orbital period when compared to 2004 and 2005, the period was still longer in 2014/2015
than the minimum period observed for V471 Tau (which took place around 1980, i.e.
when O-C crosses 0 going to negative values). Surface shears larger by almost an order
of magnitude than those we detected are thus expected to be present when the orbital
period is minimum if the Applegate mechanism is to explain the reported orbital period
fluctuations, which remains to be investigated with more observations. As highlighted
by the vertical dashed line in Fig. 3.8, observations at late 2021 might probe V471 Tau
when the rotational period is close to its shortest value. These new observations will help
confirming if the significantly stronger dipole field observed for the 3rd epoch may be a
sign that the large-scale field is indeed changing in a long-term way as the ETVs.
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An alternative mechanism requiring weak shear fluctuations (dΩ/Ω ∼ 0.004%) was
recently suggested to operate in V471 Tau (Lanza, 2020). Like in the Applegate model,
the new mechanism proposes that ETVs are caused by gravity changes in the orbital plane,
with the main difference being the nature of the variations. Lanza (2020) showed that if
the K2 dwarf harbors a stationary non-axisymmetric magnetic field (instead of the dynamo
modulated field invoked in the Applegate model), then an internal torque is introduced
in the system forcing the magnetic structures to oscillate. Two possible solutions were
found for the magnetic structures whose orientation changes with respect to the star.
Magnetic structures could either librate around phase 0.5 or circulate at a constant rate in
the azimuthal direction. In V471 Tau, Lanza (2020) found a 70-yr modulation period for
the magnetic field for both libration and circulation models to account for the observed
orbital period fluctuations of ∼35-yr. These models require magnetic field strengths at
the base of the convective zone in the range of 8 to 17 kG, implying surface fields of a few
kG. In order to assess whether this model is quantitatively compatible with observations,
additional data similar to those analysed in this work must be acquired over the time span
of the orbital period modulation.

3.6.4 Magnetic activity and prominences

We find that in our spectra of V471 Tau, Hα exhibits a behaviour similar to that reported
in the literature (e.g., Young et al., 1991; Bois et al., 1991; Vaccaro & Wilson, 2002;
Kamiński et al., 2007), i.e. strongest when the WD is in front of the K2 star. Rottler
et al. (2002) suggested that tidal forces in the binary system are able to trigger active
longitudes at the surface of the K2 dwarf where the activity is enhanced with respect to
the other side of the star. Potential field extrapolation of the surface radial field can help
us visualize the magnetic field topologies obtained in our study (Fig. 3.9). Indeed, in 2005,
the dipole field component, which largely dictates the overall geometry of the corona at
a distance of a few stellar radii, seems to be oriented towards the azimuth of the WD.
However, in 2004 and 2014/2015, nothing obvious shows up from the distribution of field
lines. Admittedly, these potential field extrapolations are likely to be no more than rough
descriptions of the magnetosphere, since we did not take in to account the gravitational
impact of the WD.

In our late 2004 and 2014/2015 observations, the Hα dynamical spectrum reveals the
presence of a prominence at a stable location in the rotation frame over several rotation
cycles for both observing runs. Similar results are reported in previous studies on the
activity of V471 Tau (e.g., Young et al., 1991; Rottler et al., 2002). Figure 3.10 shows the
schematic view of the system. We find the prominence to be located at 2.35 ± 0.43 R⋆ from
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a) November/December 2004 b) December 2005

c) December 2014/January 2015

Figure 3.9. Potential field extrapolations of the large scale radial field obtained with ZDI recon-
structions in a) November/December 2004, b) December 2005, and c) December 2014/January
2015. Field lines are seen at rotational phase 0.75. The local strength of the magnetic field (G)
at the surface of the star is shown in colours and open/closed lines are depicted in yellow/black.
For this extrapolation, we assumed a source surface located 3.5 R⋆ beyond which all field lines
break open, e.g., under the impact of centrifugal forces. The WD star (black circle) and the
prominence detected in 2004 and 2014/2015 (red circle) are also shown. Field lines crossing the
prominence are coloured in magenta.

the centre of the K2 dwarf, farther away towards the WD than the center of mass (CM) of
the system (located at 1.679 ± 0.004 R⋆ from the centre of the K2 dwarf) and the Lagrange
point L1 (located at 1.84 ± 0.02 R⋆). Therefore, closed loops of the stellar magnetosphere
likely extend out to few stellar radii maintaining the slingshot prominence for at least 7
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and 44 rotation cycles at 2004 and 2014/2015, respectively (Steeghs et al., 1996; Jardine
et al., 2020). Indeed, we can identify from the potential field reconstruction some closed
field lines that reach, and are potentially able to confine, the observed prominence (see
Fig. 3.9).

K2 dwarf

WD
`

Prominence

L1L3

CM
x̂

Figure 3.10. Schematic view of the binary system V471 Tau in the presence of a prominence.
Distances to the center of mass and to the Lagrange points L1 and L3 are indicated by CM, L1,
and L3 (= −2.58 R⋆ x̂), respectively. The size of the binaries and the prominence were kept in
scale, where the prominence was approximated by a spherical blob with radius ℓ ∼ 0.50R⋆ (see
text).

The spectral signature of the prominence indicates a Balmer decrement I(Hα)/I(Hβ)≈
3.4 in 2004 and of about 4.0 in 2014/2015. Although the assumption of optically thin
emission is not strictly true given the Balmer decrement we measure, we nonetheless
use it to derive a lower estimate for the mass density of the detected prominence, whose
emission is mostly due to radiative recombination of hydrogen atoms. Assuming that the
prominence can be approximated at first order by a spherical blob with radius ℓ, one can
then write (Steeghs et al., 1996):

ρ =
√

3fHαd2

κℓ3 mH . (3.5)

Here, fHα is the prominence flux in Hα, mH is the hydrogen mass, and κ is the trans-
mission coefficient for the case-B of hydrogen recombination (for information, κ =
6.71 × 10−25 erg cm3 s−1 at 5000 K; taken from Osterbrock & Ferland, 2006).

Using ℓ ∼ 0.50 R⋆, estimated from the FWHM of Hα at both epochs, and knowing
the prominence flux in 2004 and 2014/2015 (fHα = 2.1 × 10−13 erg s−1 cm−2 and 1.1 ×
10−13 erg s−1 cm−2, respectively), we infer the mass density of ρ = 4 × 10−14 g cm−3 and
3 × 10−14 g cm−3. Accordingly, we can use the volume of the blob to derive an estimate of
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the prominence mass of 6 × 1018 g and 4 × 1018 g. Our mass estimation is three to four
orders of magnitude greater than large prominences in the Sun (≈ 1015 g, Hudson et al.,
2006) and one order of magnitude greater than the mass range derived for the prominences
around AB Dor (2-10×1017 g, e.g., Collier Cameron & Robinson, 1989; Collier Cameron
et al., 1990).

We estimate the minimum magnetic tension in the loop necessary to hold the prominence
through the inequality

B2

4πRc

≥ ρgeff , (3.6)

where B and Rc are respectively the field strength and the curvature radius at the top
of the loop, ρ is the prominence density, and geff is the effective gravity acting on the
gas accounting also for the centrifugal acceleration (see Steeghs et al., 1996). We follow
previous authors and adopt a typical field curvature radius of Rc = 0.30 R⋆ (e.g., Donati
et al., 2000), keeping in mind that if the loop is further bended a lower field strength
would be required to hold the prominence. The effective gravity inside the prominence
features a sharp gradient, ranging from g⃗eff = 2.5 m s−2 x̂ in the prominence regions closest
to the L1 point up to g⃗eff = 485 m s−2 x̂ in the prominence regions facing the WD, with
an intermediate value of g⃗eff = 132 m s−2 x̂ in the prominence central regions. With
ρ = 4 × 10−14 g cm−3, we find that the B field requested to hold the prominence material
ranges from 2 to 22 G depending on whether the magnetic loop crosses the orbital plane
on the sides of the prominence that are closest to or farthest from the K2 star, and to a
strength of 11 G at the center of the prominence. These field estimates tend to be larger
than the values of the extrapolated field (see Fig. 3.9) we derive within the prominence
(ranging from 8 to 2 G for the sides of the prominence that are closest to or farthest from
the K2 star, respectively), especially in the prominence section closest to the WD. This
suggests that the prominence region closest to the L1 point is the most stable against
centrifugal ejection, unless the field lines at the top of the loop are bent to a larger extent
than what we assumed here. Our results therefore suggest that the observed prominence
is indeed likely sustained against centrifugal ejection by a slingshot mechanism, as already
documented for several CVs in the past (Steeghs et al., 1996).

As the WD is known to be magnetic we can expect magnetosphere from both system
stars to interact. Previous studies explored possible signatures from reconnection events
at the magnetosphere interface (Patterson et al., 1993; Lim et al., 1996; Nicholls & Storey,
1999). In the light of our result and given the dipole field of 350 kG reported for the WD
(Sion et al., 1998, 2012), we can estimate the location of the magnetosphere interface
between both components of V471 Tau. We find it to be located at a distance of about
3.07 R⋆ from the K2 star and 0.516 R⋆ from the WD (given the dipole field of the order
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of 102 G found on the K2 star). The magnetosphere interface is beyond the prominece
location seen at both epochs (2.35 ± 0.43 R⋆). From this magnetospheric interaction, we
can expect increased activity at the surface of the K2 dwarf when the WD is in front of
the K2 star (phase 0.5), in qualitative agreement with what is observed (see Fig. 3.5).



Chapter 4

Modelling the magnetic field generation of cool stars

I realized I had no real idea of what I was
doing and turned to Navier–Stokes as a non-
linear field problem where experiment could
confront speculation. After initial surprise
that turbulence did not succumb rapidly to
field-theoretic attack, I have been trapped ever
since.

Robert Harry Kraichnan

This chapter presents the results of a numerical study performed during this thesis.
We computed 42 simulations with the MagIC code of a convective dynamo acting in a
rotating convective shell with and without a radiative interior where a density contrast
exists between the top and the bottom of the shell and where the vigour of convection is
varied. We focus in particular on the existence of dynamos producing a large-scale dipole,
on the physical mechanisms at the origin of the destabilization of this dipolar solution and
on the possible implications for cool stars. The results are part of Paper III (submitted to
MNRAS) and Paper IV (in preparation).

4.1 Context

Observations of the surface magnetic field of cool stars reveal a large diversity of magnetic
configurations (Donati et al., 2008b; Morin et al., 2008b, 2010; Folsom et al., 2016).
Although there is now a consensus that these fields are generated through dynamo processes
occurring within the outer convective zones (e.g., Brun & Browning, 2017), the physical
mechanism driving such a variety of large-scale field topologies is still debated. Over the
past two decades, numerical simulations attempted at understanding the link between
dynamo action and magnetic field morphology in spherical shell dynamos (Christensen
& Aubert, 2006; Gastine et al., 2012; Schrinner et al., 2014; Yadav et al., 2016b). While
recent propositions were made about the physical mechanism responsible for controlling
the magnetic morphology obtained in numerical simulations (Menu et al., 2020; Tassin
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et al., 2021), most of these efforts focused on the planetary context and lacked important
ingredients to understand the stellar magnetism, such as the density contrast between the
bottom and the top of the domain or the existence of a stable zone below the convective
zone.

In this chapter, we address the possible origins of dipole and multipole dominated
morphologies in stars using three-dimensional numerical simulations where the density
contrast is taken into account. We start defining our dynamo model and the selected
control parameters, focusing on regimes where the Lorentz force will be dynamically active,
in Sec. 4.2. We then proceed by detailing the magnetic field morphology of our simulations
and the possible physical mechanisms controlling it. Section 4.3 is dedicated to the results
and implications of Paper III, while Sec. 4.4 shows preliminary results of Paper IV.

4.2 Dynamo model

4.2.1 Governing equations
We model a stratified fluid in a spherical shell that rotates with angular velocity Ωo about
the axis êz. We solve the non-dimensional MHD equations under the anelastic formulation
of Braginsky & Roberts (1995) and Lantz & Fan (1999), expressed by

E

[
∂u⃗
∂t

+ (u⃗ · ∇)u⃗
]

+ 2êz × u⃗ = −∇
(

p′

ρ̃

)
+ RaE

Pr
gs′êr + 1

Pmρ̃
(∇ × B⃗) × B⃗ + E

ρ̃
∇ · τ ,

(4.1)

∂B⃗
∂t

= ∇ ×
(
u⃗ × B⃗

)
− 1

Pm
∇ ×

(
∇ × B⃗

)
, (4.2)

ρ̃T̃

[
∂s′

∂t
+ (u⃗ · ∇)s′ + ur

ds̃

dr

]
= 1

Pr
∇ ·

(
ρ̃T̃∇s′

)
+ PrDi

Ra
Qν + PrDi

Pm2ERa
(∇ × B⃗)2, (4.3)

∇ · (ρ̃u⃗) = 0, (4.4)

∇ · B⃗ = 0, (4.5)

where pressure and entropy fluctuations (p′ and s′, respectively) are defined with respect
to the reference state (p̃ and s̃, see Subsec. 4.2.2). We adopt a dimensionless formulation
where the reference length scale is ro and the time is given in units of r2

o/ν, where ν is the
fluid viscosity. The entropy scale is set to ro|ds̃/dr|ro , where |ds̃/dr|ro is the normalized
background entropy gradient at the outer boundary (see Sec. 4.2.2). The magnetic field is
given in units of

√
ρoµλΩo, where µ is the magnetic permeability and λ is the magnetic
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diffusivity. The gravity, density, and temperature are normalised by their outer radius
values given by go, ρo, and To, respectively.

The dimensionless control parameters that appear in the equations above are the
Ekman number (E), Rayleigh number (Ra), Prandtl number (Pr), magnetic Prandtl
number (Pm), and dissipation number (Di). They are defined as

E = ν

Ωor2
o

, Ra = gor
4
o

cpκν

∣∣∣∣∣ds̃

dr

∣∣∣∣∣
ro

, P r = ν

κ
, Pm = ν

λ
, and Di = goro

cpTo

. (4.6)

We note that in the anelastic formulation adopted here, a non-adiabatic reference state
is used. This translates into the appearance of a non-zero background entropy gradient
ds̃/dr in the entropy equation (Eq. 4.3). The details of this reference state are discussed
below.

4.2.2 Reference state

Thermodynamical quantities in Eqs. 4.1 to 4.3 are expressed in terms of a reference (static)
state and fluctuations around it. We adopt as reference state a nearly adiabatic ideal
gas for which we prescribe the background entropy gradient ds̃/dr. We then deduce the
reference temperature and density by solving the following equations:

1
T̃

∂T̃

∂r
= ϵs

ds̃

dr
− Di

To
g(r) (4.7)

and
1
ρ̃

∂ρ̃

∂r
= ϵs

ds̃

dr
− Dicv

(cp − cv)To
g(r), (4.8)

where we set the control parameter ϵs = 10−4 ≪ 1, which is a necessary condition to ensure
that we are still close to an adiabatic state (see Appendix A). This formulation with a
prescribed non-adiabaticity ds̃/dr allows us to control the energy transport inside the
star (notice its presence in Eq. 4.3) and has been previously adopted in numerical models
of gas giant planets (Dietrich & Wicht, 2018; Gastine & Wicht, 2021). The background
entropy sets radiative regions whenever ds̃/dr > 0 and convectively-unstable regions when
ds̃/dr < 0. Throughout this chapter two different prescriptions for ds̃/dr are considered:

(1) As a first approach to simulate the convective envelope of stars, we consider a
fixed background entropy gradient ds̃/dr = −1 to simulate fully convective shells
(FCS) of radius ratio ri/ro = 0.6 (see Sec. 4.3). We note that the entropy gradient
found in 1D stellar evolution models of Sun-like stars is indeed approximately
constant in the bulk of the convection zone (i.e., excluding the outer 5% of the
star in radius), which is the region we aim at modelling.
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(2) Next, with the aim to disentangle the effect of adding a stable inner layer to the
computational domain on the magnetic field generation and evolution. To do
that, we increase the radial extension of our simulations to perform simulations
of partly convective shells (PCS) of radius ratio ri/ro = 0.4 (see Sec. 4.4). The
entropy gradient is then set to be positive in the interior (r < 0.6 ro, radiative
zone) and to smoothly vary to match a negative gradient (ds̃/dr = −1) in the
outer radial domain (i.e., matching the convective envelope prescription used in
the FCS simulation).

The prescription of the background entropy profile also modifies the exact forcing
at which convection is driven and the structure of the unstable modes at the onset
of convection. The values of the critical Rayleigh number and the critical azimuthal
wavenumber are listed for both FCS and PCS setups in Table 4.1, whose values were
determined numerically at the different density contrasts used in our simulations and for
the values of E and Pr adopted in all our calculations and which are specified next (see
Subsec. 4.3.1).

Table 4.1. Critical Rayleigh numbers and azimuthal wavenumbers for our fully and partly
convective shell setups, for the three different density contrasts used in our simulations. These
numbers are determined without taking into account the presence of a magnetic field.

FCS PCS
Nρ Rac mc Rac mc

1 1.92 × 107 32 2.11 × 107 34
1.5 2.40 × 107 37 2.62 × 107 37
3 3.56 × 107 39 3.95 × 107 42

Many parametric studies investigating dynamo action in planets and stars relied on
a gravity profile based on a point mass approximation when performing their numerical
simulations. Figure 4.1 compares the gravity profile in a point mass approximation with
the Sun’s gravity. It can be seen that the diverging behaviour of g(r) ∝ 1/r2 for r −→ 0 is
increasingly problematic for stellar simulations with radius ratios ri/ro < 0.6. This issue is
of particular relevance for our goals, as we also perform thick shell simulations going down
to r = 0.4 ro when adding an inner radiative zone (see Sec. 4.4). Therefore, although we
do not wish to simulate a specific star (as we vary the density contrast in our simulations),
we choose to adopt a physically-motivated gravity, based on the Sun’s normalized gravity
(black dots in Fig. 4.1), that reads:

g(r) = −7.36 r

ro
+ 4.99 r2

r2
o

+ 3.71 ro

r
− 0.34 r2

o
r2 . (4.9)
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Figure 4.1. Normalised gravity in a point mass approximation, g(r) ∝ 1/r2 (black line), and
inside the Sun as provided by the 1D stellar model obtained with the ATON code (orange line,
Landin et al., 2006). The dotted line shows the fit to the solar gravity (see Eq. 4.9), which we
adopt in the simulations considered this paper. The vertical dashed line marks the inner radial
boundary of FCS simulations and the transition between radiative and convective zones in the
PCS simulations.

4.2.3 Numerical model and boundary conditions

We use the anelastic version of the open-source code MagIC (Gastine & Wicht, 2012, freely
available at https://github.com/magic-sph/magic) to solve Eqs. 4.1 to 4.5 in spherical
coordinates. MagIC has been validated through several anelastic benchmarks (Jones et al.,
2011). To evolve the Eqs. 4.1-4.3 in time a mixed algorithm is adopted, where linear
terms (except for the Coriolis one) are treated implicitly and non-linear terms are handled
explicitly. Spherical harmonics are used as basis functions of the angular coordinates (θ, ϕ)
and are truncated at a maximum degree ℓmax, sufficient to capture physical processes at
play (typically ranging from 213 to 682 in our simulations). Chebyshev polynomials are
used in the radial direction along with a mapping that alleviates the grid refinement created
near inner and outer boundaries in the standard formulation of the Chebyshev-collocation
points. Distinct collocation methods are selected for the fully and partly convective models.
In the fully convective simulations, we employ the mapping proposed by Kosloff & Tal-Ezer
(1993), which distributes the points in a more homogeneous way throughout the convective
zone. On the other hand, in the partly convective simulations we adopt tangent mapping
that refines the grid at a specific location (Bayliss & Turkel, 1992), which we chose to
lie at the transition between strably stratified and convective regions. This choice is of

https://github.com/magic-sph/magic
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particular importance since a shear layer (known as tachocline) is expected to form at this
location. We refer to Appendix A for additional details of MagIC and its implementation.

In the full set of simulations, we adopt impenetrable, stress-free boundary conditions
on the velocity field,

ur = ∂

∂r

(
uθ

r

)
= ∂

∂r

(
uϕ

r

)
= 0 on r = ri and r = ro, (4.10)

potential field boundaries on the magnetic field,

J⃗ = ∇ × B⃗ = 0 on r = ri and r = ro, (4.11)

and fixed entropy values, set to 0, at both boundaries. We initialize the velocity field with
a small-amplitude random perturbation. The initial magnetic field is set to a dipole of
strength Λ = 0.44 at the bottom of the convective zone (i.e., at r = ri), where Λ = ⟨B2⟩ is
the Elsasser number expressed in terms of the dimensionless magnetic field. This dipole
strength is of the same order of magnitude of typical stellar strengths (e.g., Morin et al.,
2008b; Gastine et al., 2013).

Throughout this chapter, we employ overbars · to represent averages over time,
brackets ⟨·⟩ to represent a volume average throughout the convective zone (CZ) region,
and ⟨·⟩i to represent a spatial average in direction êi.

4.3 Magnetic field generation in stellar convective envelopes

In this section, we present numerical simulations of fully convective shells whose results
are part of our Paper III.

4.3.1 Astrophysical application: choice of parameters
In order to perform stellar dynamo simulations one important ingredient to take into
account is the density stratification. Cool stars show a decrease in the radial extent of the
CZ and in the density contrast between the bottom (ρi) and the top (ρo) of the CZ as
they evolve in the PMS phase, finally stabilizing when they reach the MS. For instance,
a star with 1 M⊙ has a density contrast that goes from Nρ = ln ρi/ρo ∼ 15 during the
PMS phase, when the star is fully convective, to Nρ ∼ 11 on the MS, when the star
has a outer convective envelope covering about 30% of the radial domain (according to
models generated with the ATON code, Landin et al., 2006). However, density contrasts
as high as those seen in stars cannot be attained by numerical simulations as it drives
fast small-scale motions that are too computationally demanding. In order to bypass this
limitation, some authors chose to exclude from the numerical domain the outer few per
cent of the stellar radii where sharp density gradients exist (Dobler et al., 2006; Browning,
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2008; Brown et al., 2011; Bessolaz & Brun, 2011; Zaire et al., 2016; Emeriau-Viard &
Brun, 2017; Guerrero et al., 2019). However, it remains important to assess the influence
of an increase of the density contrast on the magnetic field generation and flow dynamics
using systematic approaches (e.g., Gastine et al., 2012; Schrinner et al., 2014; Raynaud
et al., 2015). We here also exclude this sharp gradient region from our domain and study
the effect of varying Nρ from 1 to 3 to assess the influence of an increase of the density
contrast on the magnetic field generation and flow dynamics.

We simulate convective shells with size Dcz = ro − ri and radius ratio ri/ro = 0.6.
To take into account the effect of density stratification on the magnetic field generation,
we consider three different setups with Nρ = ln ρi/ρo = 1.0, 1.5, and 3.0. These density
contrasts are in practice achieved in our formulation after fixing the dissipation number
Di = 1.53, 2.7, and 10, respectively. Following previous studies, we adopt moderate values
of E = 1.6 × 10−5 and Pr = 1 that reduce the numerical cost of each simulation, allowing
us to perform a parametric study varying the Rayleigh number for the three different
density contrasts. We increase the Rayleigh number from 1.3 to 32.7 Rac to explore the
implications of distinct turbulence levels on the magnetic field morphology, where the
convective onset Rac varies depending on the density contrast over the convective zone
(see Table 4.1).

We are thus left with the choice of the magnetic Prandtl number Pm. Recent studies
(e.g., Dormy, 2016; Dormy et al., 2018; Schwaiger et al., 2019) have advocated that pushing
a single parameter closer to the values observed in astrophysical objects may not represent
the correct force balance at stake (e.g., E ≈ 10−13, Pr ≈ 10−7, and Pm ≈ 10−3 at the
bottom of the Solar convective zone; Ossendrijver, 2003). There is considerable evidence
from numerical simulations with/without density contrast that there is a critical magnetic
Prandtl number Pmc below which dipolar dynamo solutions cannot be achieved for a fixed
Ekman number. This brings some concerns as strong dipoles are observed in stars (e.g.,
Donati & Landstreet, 2009). One potential way to overcome this limitation is to adopt
Pm > Pmc. However, previous works showed that Pmc varies with E and Nρ. For the
value adopted in this work of E = 1.6 × 10−5, it was shown that the critical magnetic
Prandtl number obeys the relation Pmc = 2Nρ − 2 (Schrinner et al., 2014). Therefore, we
choose to fix Pm = 5 for the entire set of simulations, which is greater than the critical
value obtained for the highest stratified setup Nρ = 3.0. The simulations parameters are
summarized in Table 4.2.
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Table 4.2. Journal of fully convective simulations.

Run ID Nρ ρi/ρo Ra Ra/Rac (Nr, Nθ, Nϕ) Roℓ fdip fdip,Tot.

FCS01 1.0 2.7 4.77 × 107 2.5 (73, 320, 640) 0.023 ± 0.004 0.84 ± 0.06 0.84 ± 0.06
FCS02 1.0 2.7 6.25 × 107 3.3 (73, 320, 640) 0.036 ± 0.007 0.87 ± 0.02 0.87 ± 0.02
FCS03 1.0 2.7 7.81 × 107 4.1 (73, 320, 640) 0.05 ± 0.01 0.87 ± 0.02 0.87 ± 0.01
FCS04 1.0 2.7 1.04 × 108 5.5 (73, 512, 1024) 0.09 ± 0.02 0.87 ± 0.01 0.87 ± 0.01
FCS05 1.0 2.7 1.25 × 108 6.5 (73, 512, 1024) 0.12 ± 0.03 0.87 ± 0.02 0.88 ± 0.02
FCS06 1.0 2.7 1.56 × 108 8.2 (73, 512, 1024) 0.18 ± 0.05 0.12 ± 0.03 0.13 ± 0.03
FCS07 1.0 2.7 3.12 × 108 16.3 (73, 512, 1024) 0.32 ± 0.09 0.11 ± 0.03 0.12 ± 0.02
FCS08 1.0 2.7 6.25 × 108 32.7 (73, 512, 1024) 0.53 ± 0.12 0.12 ± 0.03 0.18 ± 0.03
FCS09 1.5 4.4 4.77 × 107 2.0 (73, 320, 640) 0.031 ± 0.007 0.71 ± 0.06 0.67 ± 0.05
FCS10 1.5 4.4 6.25 × 107 2.6 (73, 320, 640) 0.05 ± 0.01 0.62 ± 0.04 0.62 ± 0.04
FCS11 1.5 4.4 7.81 × 107 3.3 (73, 320, 640) 0.07 ± 0.02 0.44 ± 0.11 0.42 ± 0.12
FCS12 1.5 4.4 1.04 × 108 4.3 (73, 512, 1024) 0.11 ± 0.04 0.15 ± 0.04 0.45 ± 0.03
FCS13 1.5 4.4 1.56 × 108 6.5 (73, 512, 1024) 0.17 ± 0.06 0.46 ± 0.14 0.47 ± 0.08
FCS14 1.5 4.4 3.12 × 108 13.0 (73, 512, 1024) 0.31 ± 0.12 0.12 ± 0.03 0.14 ± 0.03
FCS15 1.5 4.4 6.25 × 108 26.0 (73, 512, 1024) 0.52 ± 0.19 0.13 ± 0.03 0.17 ± 0.03
FCS16 3.0 19.3 4.77 × 107 1.3 (73, 320, 640) 0.013 ± 0.003 0.04 ± 0.02 0.12 ± 0.04
FCS17 3.0 19.3 7.81 × 107 2.2 (73, 320, 640) 0.037 ± 0.008 0.63 ± 0.03 0.63 ± 0.03
FCS18 3.0 19.3 1.56 × 108 4.4 (73, 512, 1024) 0.11 ± 0.05 0.54 ± 0.03 0.55 ± 0.03
FCS19 3.0 19.3 2.08 × 108 5.8 (73, 512, 1024) 0.15 ± 0.08 0.53 ± 0.03 0.54 ± 0.03
FCS20 3.0 19.3 3.12 × 108 8.8 (73, 512, 1024) 0.21 ± 0.13 0.63 ± 0.05 0.63 ± 0.05
FCS21 3.0 19.3 6.25 × 108 17.6 (73, 512, 1024) 0.38 ± 0.25 0.75 ± 0.03 0.75 ± 0.03
FCS22 3.0 19.3 7.44 × 108 20.9 (73, 512, 1024) 0.41 ± 0.26 0.77 ± 0.02 0.77 ± 0.02
FCS23 3.0 19.3 9.20 × 108 25.8 (73, 512, 1024) 0.51 ± 0.32 0.23 ± 0.05 0.25 ± 0.05

4.3.2 Magnetic morphology
Since the physical origin of the various magnetic field morphologies observed in cool stars
is still debated, we particularly focus on the field topology achieved in our simulations.
Traditionally, the magnetic field morphology has been assessed by measuring the relative
importance of the axial-dipole at the stellar surface. This quantity, named dipolarity, is
defined as the relative strength of the axial-dipole1 (Christensen & Aubert, 2006):

fdip =

√√√√√ ∫∫
B⃗2

ℓ=1,m=0(r = ro, θ, ϕ) sin θ dθ dϕ∑11
ℓ=1

∑ℓ
m=0

∫∫
B⃗2

ℓ,m(r = ro, θ, ϕ) sin θ dθ dϕ
. (4.12)

1A different definition of ‘dipolarity’ based on the relative energy of the axial dipole also appears in
the literature, in which the right-hand-side of Eq. 4.12 is squared.
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Here, the normalization factor corresponds to the square root of the total surface magnetic
energy stored in the largest spatial scales, i.e. in modes with order ℓ < 12. It thus matches
the typical resolution achieved in the surface magnetic field reconstruction of stars other
than the Sun (e.g., Donati et al., 2008b; Morin et al., 2010; Folsom et al., 2016, 2018).
We remind the reader that toroidal fields vanish at the outer boundary because of our
magnetic boundary condition (and, therefore, only poloidal fields contribute in Eq. 4.12).

Although the dipolarity is not the only characteristic of the magnetic topology, this
quantity offers an intuitive measure of the complexity of the magnetic field configuration.
Following previous authors (e.g., Oruba & Dormy, 2014; Menu et al., 2020; Tassin et al.,
2021), we define simulations with fdip ≥ 0.5 (or equivalently, with an axial-dipole containing
25% of the magnetic energy stored at modes up to ℓ = 11) as dipolar dynamos. Conversely,
simulations in which fdip < 0.5 are defined as “multipolar” dynamos. The dipolarity
measurements are given in Table 4.2 along with an alternative estimate based on the total
dipole (axial + equatorial). We note that none of our simulations would change their
classification as dipolar or multipolar dynamos if considering a dipolarity based on the
total dipole. We thus stick to the dipolarity definition given by Eq. 4.12 throughout this
work.

Figure 4.2 shows how the dipolarity varies with the Rayleigh number. This figure shows
three panels with fdip as a function of Ra, each at a particular Nρ. Starting from the set of
simulations with Nρ = 1 (Fig. 4.2 a), we identify dipolar dynamos at low Rayleigh numbers
followed by a sharp transition to multipolar dynamos as Ra increases. This finding is in
line with earlier simulations of Gastine et al. (2012, 2013)2 using Pm = 1 (purple symbols),
which showed that the morphology transitions to a more complex configuration around
Ra = 7Rac. It also extends Rayleigh’s parameter space coverage by about a factor of three
when compared to Gastine et al. (2012, 2013), corroborating the hypothesis that only
multipolar dynamos exist for forcings above the threshold leading to the dipole collapse
(i.e., Ra ≳ 7Rac for Nρ = 1.0). Figure 4.3 shows the radial component of the magnetic
field at the outer boundary for a dipole-dominated dynamo (upper panel) and a multipolar
dynamo (lower panel). It is rather clear from this figure that a large-scale dipolar structure
is present in the upper panel, with a negative North pole and positive South pole. On
the contrary, in the bottom panel, the magnetic field is dominated by a salt and pepper
like structure with the strongest field concentrations located in narrow bands more or
less extended in latitude, which closely correspond to the organisation of the convective
downflows.

2The control parameters adopted by Gastine et al. (2012, 2013) coincide with those employed in this
work with the exception of Pm. However, with also different formulations of convective forcing, caution
must be applied when attributing possible differences between the models to Pm.
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(c) Nρ = 3.0

Figure 4.2. Surface dipolar fraction as a function of the Rayleigh number for the 23 runs listed
in Table 4.2 (grey symbols). The shape of the symbols distinguishes between dipolar dynamos
(circle) and multipolar dynamos (cross). Simulations with density contrast Nρ = log ρi/ρo = 1.0,
1.5, and 3.0, are separated respectively in panels (a), (b), and (c). Error bars represent one
standard deviation about the time averaged dipolarity. Stratified dynamos with the same radius
ratio (ri/ro = 0.6) and density contrasts, but Pm = 1 are included for comparison (purple
symbols; Gastine et al., 2012, 2013).

The dipolarity trend, however, changes for the models with Nρ = 1.5 (Fig. 4.2 b).
While the plateau with strong dipolar dynamos seen for the runs with Nρ = 1.0 no longer
exists, intermediate values of fdip appear, defining a rather continuous transition to the
multipolar branch. We highlight that two of our multipolar cases are compatible with
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Figure 4.3. Mollweide projections of the surface radial magnetic field for a dipolar (top) and
a multipolar (bottom) case with Nρ = 1.0, corresponding to the run IDs FCS05 and FCS08,
respectively. Red shades correspond to radial fields point outward and blue shades inward.

a dipole within error bars (estimated as one standard deviation over the time averaged
value). An inspection of the simulations around 5 Rac reveals one case with polarity
reversals (FCS11) and two with excursions (FCS12 and FCS13) of the dipole field, thus
explaining why large error bars are found in those cases where the dipolar field strongly
varies in time. This finding is in accordance with previous studies evaluating reversing
dipoles, which observed a tendency for its occurrence at Rayleigh numbers close to the
transition between dipolar and multipolar dynamos (Kutzner & Christensen, 2002; Olson
& Christensen, 2006; Wicht & Tilgner, 2010).

The most striking result to emerge from the data is seen for the density contrast Nρ = 3.0
(Fig. 4.2 c). Contrary to the other setups considered in this work, a multipolar dynamo
is found close to the dynamo onset (Ra = 1.3Rac). The dipolarity then shows a marked
rise going from 0 to 0.64 as the forcing reaches about twice the critical Rayleigh number.
Dipolar dynamos are then consistently sustained for a wide range of supercriticality until
the morphology finally transitions to a multipolar configuration at Ra ∼ 25Rac. Further
simulations are needed to confirm whether only multipolar configurations exist at higher
forcing. Yet, compared to the previous simulations of Gastine et al. (2012, 2013) with
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Pm = 1 and covering a parameter space of Ra < 5Rac, we note that dipolar dynamos are
already kept for a much wider range of forcing.

Figure 4.4. Similar to Fig. 4.3, but for dipolar (top) and multipolar (bottom) simulations with
Nρ = 3.0, corresponding to the run IDs FCS22 and FCS23, respectively.

Figure 4.4 shows the surface radial magnetic field for the last dipole before the transition
(FCS22) and the multipolar case after the collapse (FCS23). Compared to the Nρ = 1 case,
smaller scales now seem to dominate the structure of the surface radial magnetic field in
both cases. Fig. 4.5 enables us to proceed to a closer inspection of the relationship between
the flow and field morphologies. This figure shows a 3D rendering of the radial velocity
field (left panel) and of the radial magnetic field (right panel) in the dipolar run shown
in the top panel of Figure 4.4. It is rather clear from these 3D snapshots that narrow
downwelling flows create intense magnetic flux concentrations, while broad upwelling flows
diffuse the magnetic field. The spatial correlation between localised small scale magnetic
structures and downflow lanes has also been observed in previous simulations (Olson &
Christensen, 2002; Yadav et al., 2015b). Nonetheless, despite these small structures, the
underlying dipolar morphology is still clearly visible in the dipolar case of the top panel
of Figure 4.4, with a positive North pole and negative South pole. Interestingly, the
red patches dominant in the Northern hemisphere seem to extend slightly beyond the
equator. This may indicate that the dipolar dynamo features an asymmetric magnetic
field with respect to the equator that differs, for instance, from our findings for Nρ = 1.0
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(e.g., Fig. 4.3, top). This equatorial asymmetry results from similar strengths of the axial
dipolar and quadrupolar dynamo modes (Bℓ=1/Bℓ=2 ∼ 2.4), which act cancelling each
other in the Southern hemisphere and adding up in the Northern hemisphere.

Figure 4.5. Snapshot of the radial velocity (left) and radial magnetic field (right) in the dipolar
run shown in Fig.4.4 (run IDs FCS22).

Another interesting feature visible in Fig. 4.2 is the relationship between dipolar
dynamos and the density contrast. Comparing Nρ = 1.0 and Nρ = 1.5 simulations, we
see that the range of Ra numbers where the dipolar branch can be obtained shrinks as
the density contrast increases. Although this result seems to reflect those of Gastine
et al. (2012, 2013), Jones (2014), and Raynaud et al. (2015), who pointed out that dipolar
dynamos would ultimately disappear for Nρ ≳ 2, the strong dipoles obtained for Nρ = 3.0
do not support this early conclusion. In fact, these results substantiate the previously
unique simulation of Yadav et al. (2015b), which yielded a strong dipole (fdip ≈ 0.55)
despite the high density contrast of Nρ = 5.0, reinforcing the idea that dipolar dynamos are
only harder to obtain for high density contrasts. As argued by Petitdemange & Raynaud
(2019), one possibility is that the dipolarity loss found in previous works resulted from
the restricted parameter space explored, which had a significant contribution from inertia
to the force balance, rather than being caused by a real modification of the dynamo
action taking place in stars with different density contrasts. Indeed as we shall explore in
Sec. 4.3.3.2, our setup with Pm = 5 increases the contribution of the Lorentz force to the
force balance, sustaining dipolar dynamos even for stratification as high as Nρ = 3.0.

4.3.3 The dipolar-multipolar transition
Many studies interpreted the transition from the dipolar dynamos to multipolar dynamos
in terms of the balance between inertia and Coriolis forces in the Navier-Stokes equation
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(Eq. 4.1). A proxy to estimate this force ratio is the local Rossby number Roℓ introduced
by Christensen & Aubert (2006). They suggested that the dipole-multipole transition is
well captured by

Roℓ = urms

ΩoDcz

ℓu

π
, where ℓu = ⟨∑ℓ ℓu2

ℓ⟩
⟨∑ℓ u2

ℓ⟩
(4.13)

is the mean spherical harmonic degree of the flow and urms is the time and volume averaged
root-mean-squared velocity. The global picture suggested that axial-dipole dominated
solutions could only exist at low-Rossby numbers because of the ordering role played by the
Coriolis force (with typically Roℓ ≲ 0.12, Christensen & Aubert, 2006). Beyond this limit,
the increased importance of inertia compared to Coriolis would cause the dipole collapse
(with the star thus joining the multipolar branch). We recall the reader that although we
see changes from mainly axisymmetric poloidal fields to mainly non-axisymmetric fields
(e.g. when moving from mostly convective to mostly radiative stars), such changes do not
correlate well with the Rossby number (see confusogram in Sec. 2.1.2).
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Figure 4.6. Surface dipolar fraction as a function of the local Rossby number Roℓ (Eq. 4.13).
Colours group different levels of stratification (see legend), whereas symbols distinguish dipolar
dynamos (circle) from multipolar dynamos (cross). The horizontal dashed black line marks
the dipolar-multipolar transition, and the vertical one indicates the standard dipolar collapse
predicted from geodynamo simulations (Christensen & Aubert, 2006).
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We plot fdip as a function of the radially averaged Roℓ in Fig. 4.6. Simulations with
Nρ = 1.0 display a dipolar-multipolar transition at Roℓ ∼ 0.12 (vertical dashed line), in
agreement with Boussinesq results (Nρ = 0) and arguments of Christensen & Aubert
(2006). However, if we now turn to the runs with Nρ = 1.5 or 3.0, there is no clear evidence
that Roℓ influences the dipole collapse. Multipolar solutions are identified at low-Roℓ

for both density contrasts (Nρ = 1.5 and 3.0), therefore falling under the dipolar branch.
It should be noted that these findings are not linked to the bistability scenario often
invoked in numerical studies, as this phenomenon occurs when the initial (seed) magnetic
field strength required to ignite dynamo action is varied, while we always initialize the
simulations with a strong dipole in this work.

The presence of dipolar dynamos at Roℓ > 0.12 is the most interesting aspect of
Fig. 4.6. Not only these axial-dipole dominated solutions occur within the Rossby regime
where multipolar fields are predicted, but they show strong values of fdip similar to those
observed where mainly dipolar fields are predicted (Roℓ ≲ 0.12). It is interesting that the
dipolar solutions persist for large Rossby numbers precisely for the highest stratification
setup (Nρ = 3.0), which corresponds to the most realistic model in the stellar context.
The existence of dipoles in the multipolar branch has been likewise obtained in recent
Boussinesq simulations (Menu et al., 2020; Tassin et al., 2021). In an attempt to create a
more general description for the dipolar transition, new proxies were then discussed, as
the flow structure, the importance of the Lorentz force in the Navier Stokes equations
(Eq. 4.1), and the ratio of kinetic to magnetic energy in the system. However, it is not
clear whether those analyses still hold in anelastic dynamos. We explore next the possible
causes for the dipole breakdown.

4.3.3.1 Flow configuration

To explore a possible link between flow arrangement and the dipole collapse, we
characterise the structure of convective flows in the simulations with three main quantities:

(1) the columnarity Cωz which offers a quantitative way to define columnar flows and
is expressed by

Cωz =
∑

s,ϕ

∣∣∣〈ω⃗′ · êz
〉

z

∣∣∣∑
s,ϕ

〈∣∣∣ω⃗′
∣∣∣〉

z

, (4.14)

where ω⃗′ is the vorticity generated by the non-axisymmetric velocity field (Soder-
lund et al., 2012). The summation occurs in the equatorial plane and ⟨·⟩z represents
an average in the axial direction êz;

(2) the relative axial helicity of the flow
∣∣∣Hrel

z

∣∣∣ computed as the average of the
absolute contribution from the Northern and Southern hemispheres:

∣∣∣Hrel
z

∣∣∣ =
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z NH

∣∣∣+ ∣∣∣Hrel
z SH

∣∣∣)/2, where each hemispheric contribution is given by

Hrel
z NH/SH =

⟨uzωz⟩NH/SH√
⟨u2

z⟩NH/SH ⟨ω2
z⟩NH/SH

; (4.15)

(3) and, finally, the relative equatorial symmetry of the non-zonal flow ζ (Garcia
et al., 2017) defined by

ζ =
Es

K,P

EK,P
. (4.16)

Here, EK,P is the poloidal kinetic energy, and Es
K,P is the energy stored in the

equatorially-symmetric part of the non-zonal flow (computed with a summation
over spherical harmonic coefficients with even ℓ + m).

The top panel of Fig. 4.7 shows fdip as a function of Cωz for our data set. The overall
result shows a homogeneous distribution of dipole-dominated and complex multipolar
surface fields for the explored range of Cωz (going from 0.4 to 1). It also evidences the lack
of correlation between fdip and Cωz. A possible explanation for this might be the high
values of columnarity attained in this work. Prior Boussinesq simulations of Soderlund
et al. (2012) found that columnar flows with Cωz > 0.5 can generate either dipolar or
multipolar surface magnetic fields, while flows with Cωz ≲ 0.5 only results in multipolar
fields. Indeed if we restrain ourselves to the runs with columnarity around the threshold
of 0.5, we identify three runs FCS08, FCS15, and FCS23, giving hints of a transition to a
multipolar branch (all three with fdip < 0.25). However, the diversity of magnetic field
complexities obtained at high–Cωz makes the columnarity a poor proxy to describe the
dipolar collapse.

Often associated with the magnetic field amplification in the dynamo framework
(through the so-called α–effect), the decrease in the flow’s relative axial helicity has also
been suggested to cause the dipole breakdown (Soderlund et al., 2012). The middle panel
of Fig. 4.7 shows the dependency of

∣∣∣Hrel
z

∣∣∣ with the different magnetic morphologies. The
simulations yield weak to moderate relative helicity values,

∣∣∣Hrel
z

∣∣∣ < 0.6, that are consistent
with the values obtained in previous works (Takahashi, 2014; Garcia et al., 2017). It is
apparent from Fig. 4.7 that the only case displaying fdip ≈ 0 features the highest helicity
in our sample. On the other hand, the strongest dipoles possess weak helicity values with∣∣∣Hrel

z

∣∣∣ spread around 0.28 (corresponding to five dipolar dynamos obtained for Nρ = 1.0
and the two strongest dipoles for Nρ = 3.0). These results suggest that the magnetic
morphology is unaffected by

∣∣∣Hrel
z

∣∣∣ for the parameter space we explored. Although these
findings differ from some published studies (e.g., Soderlund et al., 2012), they are consistent
with mean-field simulations of Livermore et al. (2007) and the 3D simulations of Browning
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Figure 4.7. Dipolarity as a function of the flow columnarity (top), relative axial helicity (middle),
and relative equatorial symmetry (bottom). Symbols are defined as in Fig. 4.6.

(2008) mimicking the interior of a fully convective M dwarf. The likely cause for these
differences is that the mean-helicity becomes a poor approximation for the α–effect in
some cases (Schrinner et al., 2007; Warnecke et al., 2018).

More recently, Garcia et al. (2017) argued that the dipolar-multipolar transition would
be associated with the breaking in the equatorial symmetry of the flow ζ. The results
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obtained from the analysis of ζ in our simulations are summarised in the bottom panel of
Fig. 4.7. The scatter diagram shows dipolar and multipolar dynamos independent of the
value of ζ, signalling that this proxy also fails to explain the field topology. As pointed
out by Garcia et al. (2017) and recently corroborated by Boussinesq simulations of Tassin
et al. (2021), the efficiency of ζ in capturing the dipole-multipole transition falls apart for
simulations with significant influence of the Lorentz force, which played a minor role in
flow transitions seen in Garcia et al. (2017). These findings indicate that the flow structure
may not be enough to explain the transition from dipoles to multipoles. We discuss in
the following subsection the possible role of magnetic fields in the dipolar collapse by
investigating the importance of the Lorentz force to the force balance.

4.3.3.2 Criteria to distinguish dipolar and multipolar dynamos

We now analyse the dipole-multipole transition considering the balance between the
forces entering the Navier-Stokes equations. Following previous studies (Aubert et al.,
2017; Schwaiger et al., 2019; Tassin et al., 2021; Gastine & Wicht, 2021), we compute the
time-averaged root-mean-square (RMS) force spectra of the individual forces identified
below

E

[
∂u⃗
∂t

+ (u⃗ · ∇)u⃗
]

︸ ︷︷ ︸
Inertia

+ 2êz × u⃗︸ ︷︷ ︸
Coriolis

= − ∇
(

p

ρ̃

)
︸ ︷︷ ︸
Pressure

+ RaE

Pr
gs′êr︸ ︷︷ ︸

Buoyancy

+ 1
Pmρ̃

(∇ × B⃗) × B⃗︸ ︷︷ ︸
Lorentz

+ E

ρ̃
∇ · S︸ ︷︷ ︸

Viscous

.

Here, time-averaged RMS force spectra are given by

FRMS(ℓ) =

√√√√〈 ℓ∑
m=−ℓ

∣∣∣F⃗ℓ,m(r, θ, ϕ, t)
∣∣∣2〉. (4.17)

where F⃗ℓ,m is the vector spherical harmonic transform of the force at stake.
Figure 4.8 illustrates the force balance spectra for a dipolar and a multipolar run

with Nρ = 3.0 (corresponding to the same runs shown in Fig. 4.4). Both models display
forces whose respective contributions vary depending on the spatial scale. At scales up
to ℓ ∼ 40, the Coriolis (black) and pressure (blue) forces balance each other at first
order resulting in a quasi-geostrophic balance (QG, for further details, see Calkins, 2018),
whereas buoyancy (green), Lorentz (red), and inertial (yellow) forces show a marginal
contribution at second-order. On the other hand, at small scales (ℓ ≳ 40) the Lorentz force
becomes dominant and starts to balance the pressure force in the place of the Coriolis
force. Comparing both models, we can identify an increase in the inertial contribution
from the dipolar to the multipolar case, with the inertial force reaching values comparable
to the Lorentz force in the latter.
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Figure 4.8. Force balance spectra for the same dipolar (left) and multipolar (right) models
shown in Fig. 4.4. Solid lines correspond to time-averaged force spectra, with colours representing
the different forces entering the Navier-Stokes equation. Shaded regions represent one standard
deviation from the time-averaged value. The vertical dashed line marks the integral scale ℓpeak
defined in the text.

To track the relative contribution of each force in our parametric study, we look for a
particular lengthscale defined as the dominant scale of the convective flow. We compute
the dominant scale of convection as the peak of the time-averaged poloidal kinetic energy
spectra (Schwaiger et al., 2019, 2021), defined as

ℓpeak = argmax(EK,P (ℓ)). (4.18)

Figure 4.9 shows examples of poloidal kinetic energy spectra for one dipolar case (red
line) and one multipolar case (purple line). The degree at which the spectra is maximum,
ℓpeak, is indicated by a dashed vertical line. These reference dipole and multipole models
feature convective flows with similar dominant length scale. Considering the entire set of
simulations, we find ℓpeak ranging from 14 to 45 with a median value of 30.

We proceed then by computing the RMS forces at the integral scale ℓpeak, namely,
Coriolis force FC , pressure gradient force FP , buoyancy (or Archimedes) force FB, Lorentz
force FL, inertial force FI , and the viscous force FV . Figure 4.10 shows these forces as a
function of Ra/Rac for models with Nρ = 1.0 (panel a), 1.5 (panel b), and 3.0 (panel c).
While the entire data set features a QG balance at first order, the ageostrophic part of
the Coriolis force, defined as FAgeo = |FC − FP |, enters a second-order force balance that
varies depending on Nρ and Ra.

For Nρ = 1.0 (Fig. 4.10 a), we identify two kinds of second-order balance depending
on the Rayleigh number. At Ra < 7Rac, the ageostrophic Coriolis force is balanced by FL
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Figure 4.9. Time-averaged dimensionless poloidal kinetic energy spectra for the dipolar (red
solid line) and multipolar (purple solid line) cases given in Fig. 4.8. Shaded areas correspond to
one standard deviation about the time-averaged spectra and the dashed vertical lines mark the
location of the peak.

and FB forces, which dominate over FI and FV by roughly an order of magnitude. This
flow state, devised by Davidson (2013), is frequently referred to as the quasi-geostrophic
Magneto-Archimedean-Coriolis (QG-MAC) balance, and it has been obtained in geodynamo
models (Yadav et al., 2016a; Aubert et al., 2017; Schaeffer et al., 2017) and in anelastic
models of massive A-type stars (Featherstone et al., 2009) and gas giant planets (Gastine
& Wicht, 2021). At Ra > 7Rac, inertial forces become important and contribute to the
second-order balance of the Navier-Stokes equation. We observe that the breakdown of the
dipole occurs at this point. The role played by inertia in destabilizing dipoles was likewise
found before in Boussinesq simulations (e.g., Sreenivasan & Jones, 2006; Christensen &
Aubert, 2006).

For Nρ = 1.5, we find again that a QG-MAC balance holds for the two dipolar solutions
(run IDs FCS09 and FCS10) obtained. Nevertheless, we note that the dominance of Lorentz
and buoyancy forces compared to FI and FV is less significant than for Nρ = 1.0. At
Ra > 3Rac, only multipolar solutions are obtained (cross symbols in Fig. 4.10 b), although
we note that two of them are compatible with a dipole within error bars (Ra = 3.3Rac and
6.5Rac). We identify a smooth increase of FI with the system forcing, which correlates
with the complexity gain in the magnetic field morphology. This finding suggests that
the relative importance of inertia to the second-order force balance plays a key role in
destabilizing dipolar dynamos, in alignment with what has been observed for Nρ = 1.0.

Similar conclusions can be drawn for the Nρ = 3.0 data set (Fig. 4.10 c), with the main
difference relying on the isolated multipolar solution at Ra = 1.3Rac, i.e., very close to the
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Figure 4.10. Force contributions at the integral scale ℓpeak (Eq. 4.17) as a function of Ra/Rac.
From top to bottom, panels show runs with Nρ = 1.0 (a), 1.5 (b), and 3.0 (c). The legend FC ,
FP , FAgeo, FL, FI , FB, and FV stands for the coriolis force, pressure gradient force, ageostrophic
force, Lorentz force, inertial force, buoyancy force, and the viscous force, respectively.

convective onset. Among the entire set of simulations performed, this case is the only one
that does not display a dominant Lorentz contribution to the flow dynamics. Instead, it
yields a strong contribution of FB and a marginal one of FV . This flow adjustment is often
called quasi-geostrophic Viscous-Archimedean-Coriolis (QG-VAC) balance (Yadav et al.,
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2016a; Schwaiger et al., 2021). The QG-VAC balance is quickly destroyed as turbulence
builds-up due to a sharp rise in the FL with Ra. It is clear from Fig. 4.10 that with
this stratification, dipolar dynamos prevail for higher Ra/Rac than for the other two
setups described before. The transition in the surface field morphology is finally seen at
Ra = 25.8Rac. Akin to what has been described for Nρ = 1.0 and 1.5, the morphology
transition occurs as the gap between FL and FI decreases.
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Figure 4.11. Surface dipolar fraction as a function of the ratio between inertia and Lorentz force
at the integral scale. Symbols are defined as in Fig. 4.6. The vertical dashed black line indicates
the tentative threshold FI/FL = 0.4 for the dipole breakdown. The error bars correspond to one
standard deviation about the time-averaged quantities. Shaded areas indicate the dipolar (cyan)
and multipolar (coral) branches proposed in this work.

To test the hypothesis that the importance of inertia in the 2nd-order force balance
is the main factor responsible for destabilising dipolar solutions, we plot in Fig. 4.11
the dependence between fdip and FI/FL for the three setups considered in this work.
Dipolar and multipolar branches are identified using this proxy. We find that simulations
with FL ≫ FI develop strong dipolar dynamos, while a sharp transition to multipolar
dynamos is obtained as inertia increases in intensity. A tentative description for the
dipolar-multipolar transition gives FI/FL ≃ 0.3 − 0.5 (grey zone). It follows that FI/FL

provides a more unified view of the dipolar-multipolar transition than Roℓ (Fig. 4.6),
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independently of the density contrast Nρ.This result agrees with those of Menu et al.
(2020) and Tassin et al. (2021), who also found that the competition between inertial and
Lorentz forces at the dominant convective lengthscale can capture the dipole collapse in
Boussinesq simulations. However, their transition threshold (FI/FL ≃ 0.5) slightly differs
from the value found in our anelastic simulations (FI/FL ≃ 0.4). Similarly to what has
been explored by previous works describing the dipolar collapse in terms of Roℓ (Gastine
et al., 2012), it might be that the threshold is sensitive to the radius ratio investigated
(ri/ro = 0.35 in Tassin et al., 2021). To exclude possible effects from the density contrast,
anelastic simulations with different radius ratios are needed to ascertain if the radius ratio
can explain the different transitional values of FI/FL.

4.3.3.3 Energy distribution

Following Tassin et al. (2021), we now try to look for an alternative quantity to the
ratio FI/FL that is more accessible to observations and yet incorporates the physics behind
the dipole collapse. To establish this new measure, we use the kinetic energy stored in the
convective motions (EK) as a proxy of the inertial force and the magnetic energy (EM)
as a proxy of the Lorentz force. The rough approximation of FI/FL is then given by the
time and volume-averaged energy ratio

EK

EM

= EPm
⟨ρ̃u⃗2⟩
⟨B⃗2⟩

. (4.19)

Figure 4.12 shows the dipolarity in our simulations as a function of this new proxy
EK/EM . We find dipolar morphologies at low-EK/EM and complex multipolar morpho-
logies below equipartition (i.e., EK/EM > 1). These findings suggest that the energy
ratio can likewise capture the dipolar-multipolar transition. It stands out that the energy
ratio EK/EM in the dipolar cases with Nρ = 1.0 are significantly smaller than those
obtained for the other density contrasts. This behaviour reflects what was already seen in
Fig. 4.11 using the force ratio, providing further evidence that FI/FL and EK/EM are
indeed correlated. This occurs because the magnetic energy generated in these models
is 2-6 times larger than the ones reached by other dipolar simulations in the same range
of supercriticality (and hence with similar EK). The shaded areas in Fig. 4.12 show the
tentative dipolar (cyan) and multipolar (coral) branches, along with a transitional region
(grey) set to match the uncertainties of EK/EM in the runs falling in the transition. From
the data, we derive that the dipole breakdown occurs around EK/EM ≃ 0.7 (vertical
dashed line).
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Figure 4.12. Surface dipolar fraction as a function of the ratio of the time and volume-integrated
kinetic energy stored in the convective motions and magnetic energy. The vertical dashed black
line indicates the tentative threshold EK/EM = 0.7 for the dipole collapse. Shaded areas indicate
the dipolar (cyan) and multipolar (coral) branches proposed in this work.

4.3.4 Differential rotation
The generation of large-scale fields has been vastly explored in the literature under the
mean-field formalism (e.g., see Steenbeck et al., 1966; Moffatt et al., 1978; Raedler, 1980;
Moffatt & Dormy, 2019). The evolution of poloidal (B⃗P ) and toroidal (B⃗T ) magnetic fields
show that different types of dynamo action can exist. The classification between these
dynamo mechanisms solely depends on the competition between source terms of large-scale
B⃗T , as the large-scale B⃗P is only generated by turbulent motions via the α–effect (Parker,
1955). Toroidal magnetic fields can be induced by the α–effect and/or the Ω–effect, where
differential rotation stretches the large-scale B⃗P in the azimuthal direction creating a
large-scale B⃗T . In order to distinguish between the different potential dynamo mechanisms
(e.g., α2, αΩ, or α2Ω), we focus on the source term of B⃗T linked to the Ω–effect that is
proportional to (⟨B⃗P ⟩ϕ · ∇)⟨Ω⟩ϕ.

Figure 4.13 illustrates the relative angular velocity in the reference frame as well as
the poloidal field lines in dipolar (left-column) and multipolar (right-column) models with
different Nρ. Our simulations naturally develop differential rotation profiles where parts
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Figure 4.13. The right portion of each panel corresponds to the relative rotation rates (Ω−Ωo)/Ωo

averaged in time and longitude and the left portion to the streamlines of the poloidal field
component, with clockwise given by continuous line and anti-clockwise by dashed lines. Rows:
from top to bottom, simulations with different density contrast Nρ = 1.0, 1.5, and 3.0. Columns:
example of a dipolar (left) and multipolar (right) runs achieved in each setup. Relative shears
are saturated at ±0.8% to aid comparison, with red shades corresponding to prograde flows and
blue shades to retrograde flows. Note that Ωo is constant for the parameter space explored in
this work.

of the fluid are prograde and others are retrograde with respect to the reference frame. It
shows up that simulations with simpler axial-dipole dominated fields (left-column) have
lower contrasts in the rotation rates in the whole convective zone when compared to the
simulations with complex, large-scale magnetic fields (right-column). This is consistent
with the fact that a large-scale poloidal magnetic field threading the whole convection
zone, as a dipolar-like structure, will tend to impose solid-body rotation along field lines
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(Ferraro, 1937). On the contrary, magnetic tension due to a smaller-scale field will quench
the differential rotation only locally and patches of potentially strong differential rotation
can still exist. To illustrate this tendency of a large-scale field to produce a more uniform
rotation, we can focus on the poloidal field lines shown on the left panels of Fig. 4.13. The
isocontours of angular velocity are indeed more aligned with the streamlines of ⟨B⃗P ⟩ϕ in
our dipolar dynamos. This configuration of large-scale poloidal field and angular velocity
will, in turn, act to reduce the Ω–effect in our simulations with strong dipoles. Yet, we
observe a residual differential rotation in the dipolar cases whose pattern differs from
those seen in the multipolar dynamos. We find that axial-dipole dominated simulations
build weak, slightly antisolar differential rotation profiles (i.e., with polar regions rotating
faster than equatorial ones). In contrast, simulations with more complex magnetic field
configurations display solar-like differential rotation (where equatorial regions are the
fastest).

To look more closely at the amplitude and sign of the differential rotation in our
simulations, we choose to focus on the latitudinal shear close to the top of our domain.
The motivation to do so is also that the surface differential rotation is accessible through
stellar observations (e.g., Donati et al., 2008b; Morin et al., 2008b). Although numerical
studies usually compute the latitudinal shear as the difference between the angular velocity
at the equator minus an arbitrary latitude close to the poles, this parameter strongly
depends on the chosen polar latitude as fast zonal flow variations may exist (see Fig. 4.13).
Therefore, we compute the relative surface shear using a less dependent definition based
on the difference between the angular velocity averaged on the near-surface layer (NSL) at
equatorial regions and polar regions:

χΩ = ⟨Ω⟩NSL,|θ|<40o − ⟨Ω⟩NSL,40o<|θ|<80o

Ωo

. (4.20)

Here, we define as NSL the outer shell with thickness 0.05 ro and we exclude high latitudes
with |θ| > 80o from our computations (where small scale features are observed but should
likely average out if considering longer time averages).

Figure 4.14 shows the dipolarity as a function of the relative latitudinal shear at the
near-surface layer (cf. Eq. 4.20). The first striking feature is that all simulations exhibit a
rather weak level of differential rotation with χΩ < 2%. This quenching on the differential
rotation can be understood because magnetic stresses are always active in our calculations
as Lorentz forces significantly impact the flow (Christensen et al., 1999; Busse, 2002; Varela
et al., 2016). Another important result is that the level of surface differential rotation is not
negligible in dipolar cases, especially at Nρ = 3, compared to the multipolar ones. However,
an important difference between dipolar and multipolar simulations is the differential
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Figure 4.14. Dipolarity as a function of the differential rotation measured at the surface. The
dashed vertical line represents a solid body rotation using our shear definition in Eq. 4.20.
Simulations with negative (positive) χΩ display antisolar differential rotation profiles, while those
with positive χΩ have solar-like differential rotation profiles.

rotation sign. Figure 4.14 indeed reveals that all simulations with dipole dominated
morphology build an antisolar differential rotation profile. These antisolar profiles are
consistent with what we observe from the meridional view of the angular velocity for the
three dipolar cases illustrated in Fig. 4.13. We find that non-negligible relative shears exist
in our dipolar cases, with χΩ ranging from −0.48 to −0.03%. We note that these antisolar
profiles were also observed in the strong-field geodynamo simulations of Aubert (2005) and
only illustrate the fact that the Lorentz force plays a significant role here in the angular
momentum transport. On the other hand, solar-like differential rotation profiles only show
up in the multipolar simulations. The only three multipolar cases developing antisolar
profiles are those with Nρ = 1.5, whose dipoles are either reversing or excursioning. The
equatorial acceleration seen in the multipolar cases is consistent with the fact that it is
only in this situation that inertia becomes comparable to Lorentz forces, as discussed
in Sec. 4.3.3. This finding is in line with the non-magnetic simulations of Gastine et al.
(2014b), where solar-like profiles are found when Reynolds stresses are enhanced. Indeed,
the Reynolds stresses, associated with inertial forces, are known to be responsible for the
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equatorial acceleration of the flow (Miesch, 2005). They thus need to be significant enough
to counteract the angular momentum transport by magnetic fields. When considering the
multipolar simulations with solar-like differential rotation, we find that equatorial regions
indeed accelerate, with values going up to 1.5% in the Nρ = 1 case illustrated on the top
right panel of Fig. 4.13.

4.3.5 Discussion

Our simulations demonstrate for the first time that axial dipole dominated solutions
can be achieved at large Rossby numbers in stratified systems (Roℓ > 0.1). Even more
important is the fact that these dipoles at high Roℓ are obtained for simulations with a
large density contrast between the top and bottom of the convective zone, at Nρ = 3. This
finding differs from previous numerical studies suggesting that dipolar dynamos would
only exist at low-Rossby numbers (e.g., Christensen & Aubert, 2006; Gastine & Wicht,
2012) and that strong stratification may make it more difficult for dipoles to survive. In
particular, it represents a step forward in understanding some observational properties of
real stars, as the dominant axial dipoles that were observed in some stars with Roℓ > 0.1,
e.g., TYC 5164-567-1 (fdip = 0.77; Folsom et al., 2016), V439 And (fdip = 0.60; Folsom
et al., 2016), HD 6569 (fdip = 0.53; Folsom et al., 2018), and CE Boo (fdip = 0.76;
Donati et al., 2008b). We note that we also find solutions at Nρ = 1.5 with flipping or
excursioning dipoles, producing measures of the dipolar fraction which can significantly
vary in time. This could potentially be reminiscent to the strong variations in the dipolar
and quadrupolar modes observed in the Sun (DeRosa et al., 2012) or other solar-like stars
over their magnetic cycle (e.g., Petit et al., 2008; Boro Saikia et al., 2018), all falling under
the high Rossby regime.

Taken together, our parameter survey evidenced that the Rossby number alone cannot
capture the transition in the surface field morphology, especially when the Lorentz force is
strong. We explored the possible mechanisms causing the axial dipole collapse using the
relative amplitude of the axial dipole at the surface as a proxy of the magnetic morphology
in the simulations (cf. Eq. 4.12). From the investigation of the flow helicity, equatorial
symmetry, and columnarity, there was no evidence of its influence on the field dipolarity.
For instance, we find that most of our simulations display highly columnar and equatorially
symmetric flows, regardless of the field dipolarity. Moreover, no clear trend was obtained
when considering the relative axial helicity, an outcome at odds with that of Soderlund
et al. (2012). These findings can be understood by the significant back reaction of the
magnetic field on the flow through the Lorentz force. As argued in the early study of Garcia
et al. (2017), the flow configuration only emerges as a good proxy of the field dipolarity
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when the flow transitions are similar to those observed in hydrodynamical simulations.
Indeed the force balance analysis shows a significant Lorentz force contribution to the flow
dynamics in our calculations.

An important finding that emerged from the force balance study is that the ratio
between the inertial and magnetic forces can describe the dipole-multipole transition of
dynamo models with a background density contrast. We found that the dipole branch
is recovered when the Lorentz force dominates over the initial force, with the transition
to multipolar branch occurring around FI/FL ≃ 0.4. Similar to the conclusions obtained
in past studies, it remains valid that the increased influence of inertia on the flow is
responsible for destabilizing the axial dipoles. However, our work shows that instead of
the traditional comparison with the Coriolis force (through the Rossby number), it is the
relative importance of inertia compared to the Lorentz force that controls the transition
if the magnetic back reaction on the flow is strong. With similar conclusions drawn by
recent geodynamo simulations with Nρ = 0 (Menu et al., 2020; Tassin et al., 2021), FI/FL

emerges as a reliable predictor of the magnetic field dipolarity of stars and planets.
However, because a direct estimate of the actual forces at play is not practical in

stellar interiors, we explored an alternative proxy based on the ratio of kinetic to magnetic
energies. The investigation of EK/EM revealed dipolar and multipolar branches confirming
the ability of EK/EM to describe the dipole collapse (Kutzner & Christensen, 2002; Tassin
et al., 2021). From our data set, we found that stratified systems emerge as multipolar
dynamos whenever EK/EM ≳ 0.7.

4.3.5.1 Application to a sample of M dwarfs

To tentatively test this proxy with observations, we gathered from the literature
partly-convective stars with large-scale surface magnetic fields reconstructed using the
Zeeman-Doppler imaging technique (for details of the technique see, e.g., Donati et al.,
1997; Donati & Brown, 1997; Donati et al., 2006c). Given that our simulations correspond
to a convective shell spanning the outer 40% of the radial domain, i.e. with an aspect
ratio ri/ro = 0.6, we focused on partly convective M dwarfs with masses ranging from
0.38 to 0.60 M⊙, whose convective zones are expected to feature radius ratios (between
the bottom and top of the convective zone) ranging from 0.50 to 0.66 (estimated with the
ATON code, described in Landin et al., 2006), i.e., with roughly the same extension as
those modeled in our simulations. We consider for consistency the homogeneous sample
of stars published by Donati et al. (2008b) and Morin et al. (2008b), which had their
surface magnetic maps reconstructed with the same Zeeman-Doppler imaging code. We
find eight stars obeying the mass condition described above: GJ 182, DT Vir, DS Leo,
GJ 49, OT Ser, CE Boo, AD Leo, and EQ Peg A. We also take into account multiple
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magnetic field reconstructions available for DT Vir, DS Leo, and OT Ser (with each star
being observed at two different epochs).

From their magnetic surface maps, we directly derive EM based on the averaged
surface magnetic field (Brms in Gauss) and a modified dipolarity that is comparable to our
definition in Eq. 4.12 but with a maximum spherical harmonic degree that varies depending
on the spatial resolution achieved for each star (typically ℓmax ranging from 6 to 10). We
find that under our morphology classification CE Boo, AD Leo, and EQ Peg A fall in the
criteria of mainly dipolar dynamos (fdip = 0.76, 0.57, and 0.57, respectively), while the
other stars harbour a mainly multipolar dynamo. Because observations only have access to
the magnetic energy at the surface, we accordingly estimate the surface kinetic energy EK

to compute the energy ratio of each star. We use published values of mass M⋆ and radius
R⋆ from the original Zeeman-Doppler imaging study. We adopt a rough approximation
for the turbulent velocity urms = R⋆/τc and photospheric density ρ⋆,pho = ρ̄⋆

ρ̄⊙
ρ⊙,pho, where

τc = 10(2.33−1.5M⋆+0.31M2
⋆ ) d is the convective turnover time derived with the empirical

relationships based on the stellar mass M⋆ (Wright et al., 2018), ρ̄⊙,⋆ = M⊙,⋆/(4πR3
⊙,⋆/3)

is the mean solar/stellar density, and ρ⊙,pho ≈ 10−6 g cm−3 is the Sun’s photospheric
density (Brandenburg & Subramanian, 2005). We thus estimate

EK

EM

= ρ⋆,phou
2
rms

2
8π

B2
rms

≈ 4π

B2
rms

(
M⋆

M⊙

)(
R⊙

R⋆

)3 (R⋆

τc

)2
ρ⊙,pho. (4.21)

Figure 4.15 illustrates the magnetic properties of M dwarfs as a function of the energy
ratio computed with Eq. 4.21. The sharp transition in the magnetic morphology is
apparent from this plot. We find that M dwarfs with EK/EM ≲ 0.35 have surface large-
scale magnetic fields that are mostly poloidal and with strong axisymmetric dipoles. In
contrast, M dwarf stars with higher energy ratios EK/EM host large-scale fields with
strong toroidal fields and weak axial dipoles. We infer a dipolar-multipolar transition
around EK/EM ≃ 0.35 (dashed vertical line) from the observational data. Although the
exact energy ratio leading to the dipole collapse is relatively lower than the one predicted
with our simulations (EK/EM ∼ 0.7), it is encouraging to see that this proxy seems to
describe the transition in the magnetic morphology of M dwarfs. Future simulations with
different sizes of the convective envelope will help assess whether the value of EK/EM at
which the dipole collapses is sensitive to this parameter and, therefore, if it is a potential
source of uncertainties when determining the EK/EM threshold.

Finally, we explored the angular velocity profiles achieved in our simulations, which are
linked to the magnetic field generation through the Ω-effect. We identified that, although
quite weak, the overall shear increases with the vigour of convection our simulations,
similarly to what has been observed in stars (Reinhold et al., 2013; Distefano et al., 2016).
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Figure 4.15. Observational counterpart of Fig. 4.12. Symbols show the magnetic properties of
the M dwarfs derived with the Zeeman-Doppler imaging technique (Donati et al., 2008b; Morin
et al., 2008b). The symbol size correspond to the field strength at the surface ⟨B⟩, the shape
corresponds to the degree of axisymmetry of the magnetic field, and colors represent the amount
of energy stored in the poloidal field. Shaded areas are similar to Fig. 4.12, with cyan representing
strong dipoles axisymmetric fields (top left) and coral the multipolar non-axisymmetric fields
(bottom right). However, we use a dipole-multipole transition of EK/EM = 0.35 (vertical dashed
line) that is lower than the one obtained with simulations (EK/EM = 0.6).

An investigation of the latitudinal surface shear showed that simulations with multipolar
surface magnetic fields favour solar-like differential rotation profiles. In contrast, all dipole
dominated simulations yield antisolar differential rotation (similar to Aubert, 2005; Dobler
et al., 2006). Here, we can also draw an observational parallel as surface shears have been
measured for some of the stars in Fig. 4.15 (Donati et al., 2008b; Morin et al., 2008b).
Fig. 4.16 shows the link between the axial dipole contribution to the large-scale magnetic
morphology and the measured latitudinal surface shear for M dwarf stars. We use the
latitudinal surface shear dΩ instead of the relative surface shear, which is likely to be
the relevant parameter to consider for observations when the rotation period varies from
star to star (from 1 to 9 d in the case of our sample). Although we looked at the relative
(rather than the absolute) surface shear in our numerical work (see Sec. 4.3.4), there is in
fact no difference since the rotation rate is assumed to be the same for all simulated cases.
The data in Fig. 4.16 suggest that the field dipolarity of M dwarfs prevent significant
differential rotation to build up, while multipoles co-exist with large shears. We note that
this observational trend also extends to fully convective stars, with those harboring strong
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Figure 4.16. Dipolarity as a function of the surface differential rotation dΩ measured for a
sample of M dwarfs (Donati et al., 2008b; Morin et al., 2008b). The surface differential rotation
is defined as dΩ = Ωeq − Ωpol, where Ωeq is the angular velocity at the equator and Ωpol at the
pole. Symbols are defined as in Fig. 4.15.

dipoles almost rotating as solid bodies, i.e., dΩ ∼ 0 (Donati et al., 2006a; Morin et al.,
2008b). However, contrary to the trend in our simulations, we find that the dipole collapses
at positive shears for M dwarfs (dΩ ∼ 55 mrad d−1). Moreover, none of the stars from
Donati et al. (2008b) or Morin et al. (2008b) had an antisolar differential rotation (akin to
other shear detection in M dwarfs, e.g., Hébrard et al., 2016; Zaleski et al., 2020). The
direct comparison between observations and simulations is thus slightly less straightforward
when shear profiles are concerned. It remains therefore to be investigated whether lowering
the viscosity and magnetic diffusivity in our simulations can modify the differential rotation
profile. For instance, it would be important to test if the antisolar regime found in the
present calculations survives in more realistic parameter ranges. Further research is thus
necessary to investigate how smaller Ekman numbers and/or larger magnetic Reynolds
numbers can impact the transition seen in the differential rotation profile and amplitude.

4.4 The impact of an internal radiative zone

As a follow-up study of Paper III, we also explored whether the inclusion of an inner
radiative zone in the numerical domain modifies the conclusions drawn above. In this
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section, we present preliminary results of the magnetic field generation in partly convective
simulations (Paper IV, in preparation).

4.4.1 Setting the inner radiative zone
As mentioned in Sec. 4.2.2, a radial dependence in the prescribed non-adiabatic entropy
profile is used to set our partly convective simulations. We consider simulations with a
radius ratio ri/ro = 0.4. The inner part of the shell is a stably stratified layer defined
by a positive, constant gradient of entropy of amplitude A, whereas the outer shell is a
convectively unstable envelope defined by the negative, constant gradient ds̃/dr = −1.
To create a continuous first derivative profile for the background entropy, we match both
layers with a smooth transition that writes

ds̃

dr
= −1 + 1

2 (A + 1)
[
1 − tanh

(
r − rt

0.01ro

)]
. (4.22)

The radius at which stable layer transits to a convective region is chosen to be rt = 0.6ro,
which makes the convective envelope in the PCS models geometrically similar to those in
the FCS models.

As discussed by Takehiro & Lister (2001), for a constant amplitude of stratification at
the radiative zone (RZ) we can express A as a function of the non-dimensional numbers
defined in Eq. 4.6 and the non-dimensional ratio between the Brunt-Väisälä frequency (N)
and angular velocity, i.e.,

A =
(

N

Ωo

)2 Pr

RaE2 . (4.23)

Following the parameter exploration of the fiductial FCS simulations, we fix in our PCS
simulations Pr = 1, E = 1.6 × 10−5, and Pm = 5, and vary the Rayleigh number. Finally,
we only need to specify the N/Ωo parameter, which dictates the penetration of convection
in the stable layer (Takehiro & Lister, 2001; Brun et al., 2017), to completely define
the PCS model. To meet the numerical requirements of a parametric study, we adopt
a moderate value of N/Ωo = 2. We recall the reader that N/Ωo is estimated to be of
the order of ∼ 102 at the top of the solar radiative zone (Lignières, 2020; Pinçon et al.,
2021). This implies that the Sun has a much stiffer stable layer than our simulations and,
therefore, that the penetration length of convective motions into the radiative interior
should be smaller than what we obtain in the simulations.

Figure 4.17 illustrates the radial dependence of the background entropy gradient for the
various Rayleigh numbers considered in our simulations. Note that conform to Eq. 4.23,
the amplitude of stratification A follows the variations in Rayleigh number to keep the
stiffness in the stable layer (N/Ωo) fixed throughout our parametric study. We leave for
future works exploring the influence of N/Ωo in our simulations.
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Figure 4.17. Non-adiabaticity profiles in the PCS setup (radiative zone + convective envelope)
for varying Rayleigh number. These profiles correspond to Pr = 1, E = 1.6×10−5, and N/Ω = 2.

Table 4.3. Journal of partly convective shell simulations.
Run ID Nρ ρt/ρo Ra Ra/Rac A (Nr, Nθ, Nϕ)
PCS01 1.0 2.7 4.77×107 2.3 328 (129, 320, 640)
PCS02 1.0 2.7 6.25×107 3.0 250 (129, 320, 640)
PCS03 1.0 2.7 7.81×107 3.7 200 (129, 320, 640)
PCS04 1.0 2.7 1.04×108 4.9 150 (129, 512, 1024)
PCS05 1.0 2.7 1.56×108 7.4 100 (129, 512, 1024)
PCS06 1.0 2.7 3.12×108 14.8 50 (129, 512, 1024)
PCS07 1.0 2.7 6.25×108 29.6 25 (129, 512, 1024)
PCS08 1.5 4.4 4.77×107 1.8 328 (129, 320, 640)
PCS09 1.5 4.4 6.25×107 2.4 250 (129, 320, 640)
PCS10 1.5 4.4 7.81×107 3.0 200 (129, 320, 640)
PCS11 1.5 4.4 1.04×108 4.0 150 (129, 512, 1024)
PCS12 1.5 4.4 1.56×108 6.0 100 (129, 512, 1024)
PCS13 1.5 4.4 3.12×108 11.9 50 (129, 512, 1024)
PCS14 1.5 4.4 6.25×108 23.9 25 (129, 512, 1024)
PCS15 3.0 19.3 7.81×107 2.0 200 (129, 320, 640)
PCS16 3.0 19.3 1.56×108 3.9 100 (129, 512, 1024)
PCS17 3.0 19.3 2.08×108 5.3 75 (129, 512, 1024)
PCS18 3.0 19.3 3.12×108 7.9 50 (129, 512, 1024)
PCS19 3.0 19.3 6.25×108 15.8 25 (129, 512, 1024)

4.4.2 Results
We performed magnetohydrodynamic simulations of a conducting fluid in a partly convect-
ive shell (radiative zone + convective envelope) to assess the impact of an inner stable zone
in the magnetic field generation. To meet this goal, we carefully select partly convective
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simulations that always have a fully convective counterpart detailed in Sec. 4.3. We use the
Rayleigh number as a control parameter and explore the influence of the internal structure
by imposing as density contrasts at the convective zone the same values investigated with
the FCS model (note that for the PCS models Nρ = ln ρt/ρo, where ρt is the density at
the transitional radius rt = 0.6ro). Table 4.3 summarizes the new simulations performed
under the PCS model.

4.4.2.1 Convective patterns
Figure 4.18 shows the snapshot of the radial velocity for simulations with same Rayleigh

number but different Nρ. The presence of the stable radiative interior gets clear in these
simulations. We find that the background entropy prescription of the PCS setup indeed
makes vr ∼ 0 in the RZ, while it drives fast vertical fluid motions in the CZ. We observe
that the flow speed does not change much among simulations with different Nρ but similar
supercriticality. Their convective patterns also show a similar radial extension with upflow
and downflow lanes crossing the entire CZ. However, we identify that the horizontal
extension of the lanes slightly decreases for simulations with higher density contrasts.

N =  1.0, Ra = 29.6 Rac N =  1.5, Ra = 23.9 Rac N =  3.0, Ra = 15.8 Rac

200 100 0 100 200

vr

Figure 4.18. Snapshot of the radial velocity component at the equatorial plane. From left
to right, panels show run IDs PCS07, PCS14, and PCS19. The dashed circle represents the
transitional radius rt marking the transition from the RZ to the CZ.

It is insightful to compare how the rotational influence on convection, measured through
the Rossby number, varies between FCS and PCS simulations. As illustrated in Fig. 4.19,
the inclusion of a RZ results in a overall decrease of Roℓ when comparing PCS simulations
(solid lines) to their FCS counterparts (dashed lines). Such behaviour is linked to the
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increase of Rac from FCS to PCS models, which ends up reducing the vigour of convection
in the PCS setup for the same Rayleigh number. Furthermore, our PCS simulations show
an abrupt decrease of Roℓ in the tachocline region, in line with the radial velocity pattern
see in Fig. 4.18. The Rossby number is 10 to 100 times lower in the RZ than in the CZ.
Throughout the rest of this chapter, we consider the Rossby number of our PCS models
as the averaged value in the convective zone.
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100
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N = 1.0
N = 1.5
N = 3.0

Figure 4.19. Rossby number as a function of radius for both PCS (continuous lines) and
FCS (dashed lines) models with Ra = 6.25 × 108. Colors indicate the density contrast across
the convective zone of each simulation (see legend). The density contrast is computed as
Nρ = log ρt/ρo in the PCS setup.

4.4.2.2 Dipolar-multipolar transition
We focus now on the behaviour of the magnetic field morphology in our PCS simulations.

Figure 4.20 shows how the magnetic field dipolarity (Eq. 4.12), varies with respect to the
Rayleigh number. These data show that both dipolar and multipolar configurations exist
among the simulations performed for a given density contrast. We identify that magnetic
configurations dominated by the dipole component are limited to a narrow interval of
supercriticality (Ra ≲ 5Rac). The only exception to this trend is the dipolar dynamo
achieved for the simulation with Nρ = 1.0 and Ra ∼ 15Rac (run ID PCS06), which reaches
fdip ∼ 0.5. However, we highlight that this run is still consistent with a multipolar dynamo
within the errorbar.

We also note in Fig. 4.20 that the large-scale field configuration is different for FCS and
PCS simulations. The most striking differences are seen for the simulations with Nρ = 1.0
and 3.0. For these stratification levels, the trend derived for fdip as the supercriticality
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Figure 4.20. Surface dipolar fraction as a function of the Rayleigh number for the PCS runs
listed in Table 4.3 (orange symbols). The shape of the symbols distinguishes between dipolar
dynamos (circle) and multipolar dynamos (cross). Simulations with density contrast across
the convective zone Nρ = 1.0, 1.5, and 3.0, are separated respectively in panels (a), (b), and
(c). Error bars represent one standard deviation about the time averaged dipolarity. The fully
convective counterparts previously described in Sec. 4.3 are displayed as gray symbols.

increases (from left to right in Fig. 4.20) shows that the inclusion of a RZ in the numerical
domain has a global impact on the magnetic field configuration. The large-scale surface
magnetic field indicates that the field geometry is more complex for PCS simulations
(orange symbols) than FCS (grey symbols). However, this finding is not supported by
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our simulations with Nρ = 1.5. Although the field dipolarity of our PCS simulations with
Nρ = 1.5 does not precisely match their FCS counterparts, these PCS simulations still
display a dipolarity dependence with the supercriticality of the system that reflects the
variations obtained with the FCS simulations. The transition to multipolar morphologies
occurs around the same supercriticality and even the atypical increase in fdip around
Ra ∼ 7Rac is mirrored.

Next, we test how well the different proxies proposed to describe the field dipolarity
can describe the magnetic configurations of our PCS simulations. In particular, we focus
on the canonical description with the Rossby number and the new proxy based on the
force ratio proposed in Sec. 4.3.
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Figure 4.21. Similar to Fig. 4.6, but for the surface dipolar fraction of our PCS simulations.

Rossby number. One of the main findings of our Paper III was the existence of
strong large-scale axial dipoles at Roℓ > 0.12, where previous simulations suggested
that only multipolar dynamos could exist (multipolar branch). This result questioned
whether the Rossby number is indeed the correct quantity to classify the field dipolarity
of stars. Figure 4.21 shows the dipolarity as a function of the Rossby number for our PCS
simulations. We find that strong dipoles at Roℓ > 0.12 are less evident when including
the RZ. Although we observe one simulation with dipole-dominated magnetic field at
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Roℓ ∼ 0.16, the majority of the dipolar dynamos are indeed located in the low-Rossby
regime (Roℓ ≲ 0.12). However, contrary to previous simulations, these dipolar solutions
are not homogeneously distributed in the low-Rossby regime. Instead, we find that our
PCS dipoles are rather constrained to Roℓ ≲ 0.06, which represents a shorter range of
stability when compared to previous FCS simulations in the literature (where dipoles were
found for Roℓ ≲ 0.12, e.g., Gastine et al., 2012, Paper III).

Inertial over Lorentz forces. Our analysis in Sec. 4.3 showed that the balance between
the forces at the dominant scale of convection could be used to understand the transition
in the magnetic morphology of FCS simulations. However, this procedure poses some
issues when applied to PCS simulations because the relevant scale and forces describing
the dynamics in the radiative and convective zones differ greatly (e.g., Fig. 4.18).

The significant difference between the forces acting in the RZ and CZ are illustrated
for a few simulations in Fig. 4.22. Each force spectrum is computed in a similar manner
as Eq. 4.17, except that spatial averages are now restricted to latitudinal and longitudinal
directions. We thus end up with 2D maps showing the averaged forces as a function
of harmonic degree ℓ and radius r. From the resulting 2D spectra, we find that the
ageostrophic force is balanced by buoyancy and inertial forces in the RZ, whereas a
QG-MAC balance takes place in the CZ. In particular, at the same time that Lorentz
forces have a tiny contribution in the RZ (mostly located at the lower tachocline), it is
the dominant force counterbalancing the ageostrophic force at small scales (large ℓ) in the
CZ. The strong radial dependence of the forces in Fig. 4.22 suggests that it is necessary to
exclude the RZ of the volume averages entering the analysis of the force balance in PCS
simulations (i.e., when computing the RMS force spectra with Eq. 4.17 and determining
the dominant scale of convection with Eq. 4.18).

Figure 4.23 shows how the dipolarity varies with the ratio between inertial to Lorentz
forces. For our PCS this ratio is computed after radially averaging the forces in the CZ and
at the dominant scale of the flow in the bulk of the CZ. We find that simulations displaying
dipole dominated magnetic fields are again located at FI/FL ≲ 0.4, similar to what was
obtained in the FCS runs. However, no particular trend is seen for the PCS simulations
harbouring multipolar configurations. Seven multipolar simulations have a force ratio
below FI/FL = 0.4, appearing in the domain where our FCS simulations suggested that
only dipolar dynamos would occur (cf. Fig. 4.11). It seems that, for PCS simulations,
FI/FL is not a better proxy than Roℓ to describe the transition from dipole to multipole
dominated topologies (see Fig. 4.21). This result suggests that the force balance in the
CZ is not enough to describe the transition of the large-scale magnetic field morphology
of PCS simulations. Moreover, further analysis (not shown here) reveals that the energy
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Figure 4.22. 2D force balance spectra of the simulations shown in Fig. 4.18. Rows show the 2D
spectra of each force component, whose values are normalised by the maximum of the forces
for a better comparison. The vertical dashed line marks the radiative core-convective envelope
transition.

ratio does not capture the dipole-multipole transition, which is expected as EK/EM serves
as a proxy of FI/FL.

4.4.2.3 Mean flows and fields

The impact of coupling the stable radiative core to the convective envelope is shown
for the azimuthally averaged angular velocity and magnetic field in Fig. 4.24. Looking for
the dipolar dynamos (left-column), we identify that toroidal fields mostly concentrate in
the CZ. In contrast, large-scale poloidal fields extend all over the domain penetrating the
radiative interior. Similar to what was seen in the FCS dipoles, the simple structure seen
for streamlines of ⟨B⃗P ⟩ϕ helps to impose solid-body rotation. PCS dipolar dynamos have
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Figure 4.23. Similar to Fig. 4.11 but for our PCS simulations.

the differential rotation almost completely quenched all over the shell (RZ+CZ). However,
this condition relaxes as the Rayleigh number increases leading to more complex magnetic
configurations in the interior of our models.

It is apparent from Fig. 4.24 that multipolar dynamos (right-column) enforce a solar-
like differential rotation in the CZ. However, in contrast to previous simulations coupling
RZ and CZ (Brun & Zahn, 2006; Strugarek et al., 2011), the differential rotation is not
strongly imprinted in the radiative interior in the timescales considered here. Instead,
we find that the RZ rotates faster than the reference frame and nearly as a solid-body.
This configuration naturally results in a tachocline region confined in a relatively thin
radial extension at the interface of the RZ to the CZ for the time-scale of the runs (as
illustrated in Fig. 4.25 for the run PCS14). We note that we do not choose to impose
here a lower value of the viscosity in the RZ compared to the CZ. For the rather short
time-scales considered here, we find that this is not necessary to maintain the tachocline
region confined in a small extent in radius.

Simultaneous to the acceleration of the RZ for increasing Rayleigh number, toroidal
magnetic fields start to leak and get trapped into the RZ. The storage of magnetic fields
in the stable radiative interior is expected to happen in stars possessing a tachocline
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Figure 4.24. The right portion of each panel corresponds to the relative rotation rates (Ω−Ωo)/Ωo

averaged in time and longitude. The left portion contains both streamlines of the poloidal field
component, with clockwise given by continuous line and anti-clockwise by dashed lines, and
the toroidal field averaged in time and longitude. Rows: from top to bottom, simulations with
different density contrast Nρ = 1.0, 1.5, and 3.0. Columns: example of a dipolar (left) and
multipolar (right) runs achieved in each setup. To aid comparison toroidal mangetic fields are
saturated at ±2, with red shades corresponding to positive and blue shades to negative values,
and relative shears at ±0.8%. Note that Ωo is constant for the parameter space explored in this
chapter.

because of an efficient magnetic pumping but it has been observed in few self-consistent
3D models (e.g., Browning et al., 2006; Beaudoin et al., 2018; Guerrero et al., 2019; Bice &
Toomre, 2020). We are currently investigating the detailed process responsible for trapping
magnetic fields in the stable layer.
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Figure 4.25. Radial profiles of the mean angular velocity in the run PCS14. Profiles at different
altitudes are distinguished by colors.

4.4.3 Discussion
Our preliminary results show that dynamo action is modified after including the coupling
between the convective envelope and the radiative interior. We identify that the radiative
interior starts to act as a magnetic reservoir for increasing Rayleigh number, with strong
toroidal fields getting trapped in the stable zone. Simultaneously, a tachocline region starts
to build up and be maintained. We are currently investigating the mechanism responsible
for the transport of angular momentum and consequent confinement of the tachocline in
our simulations (e.g., Brun & Strugarek, 2019; Matilsky & Toomre, 2021).

Moreover, the magnetic morphology obtained for our PCS simulations is, in general,
more complex than what is seen in the FCS counterpart. However, we do not find that the
force ratio can describe the transition in the magnetic morphology of our PCS simulations.

Although these new results raise some doubts about the proxies proposed using the
FCS simulations, the good agreement between the energy ratio proxy and the description
of the field dipolarity for a small sample of partly convective M dwarfs makes us wonder
whether a higher (and more realistic) value of N/Ωo would modify the results of our
PCS simulations. Therefore, it remains to be investigated whether increasing N/Ωo (or
equivalently, increasing the stiffness of the stable layer) would modify the field dipolarity
of our simulations and perhaps reconcile the results of our FCS and PCS runs.



Chapter 5

Conclusion and perspectives

This thesis focused on studying the large-scale magnetic field of cool stars. We used
spectropolarimetric observations to reconstruct the surface magnetic field of the K2 dwarf
V471 Tau at 3 different epochs. Our analysis of the K2 dwarf V471 Tau brought new
observational constraints that can guide theories to understand the dynamics of V471 Tau
and can help unveil the role of binarity on the dynamo mechanism at play in the outer
convective envelope of the active companion. We also performed numerical simulations to
understand how different parameters influence the magnetic morphology observed at the
surfaces of stars. Based on these simulations, we propose a proxy to quantify the level of
dipolarity of the large-scale fields of partly convective M dwarfs. Our study suggests that
such a proxy seems able to consistently classify the magnetic field complexity of early-M
dwarfs as mainly dipolar or mainly multipolar.

5.1 Investigating the binary system V471 Tau

5.1.1 Brightness maps, magnetic field topology, and potential
field extrapolations

We presented the first reconstructions of the large-scale magnetic field and new maps of
the brightness inhomogeneities at the surface of the K2 dwarf at 3 different epochs (2004.9,
2005.9, and 2014.9). The magnetic maps give hints of magnetic field variability on a scale
of few years, e.g. showing a 3× increase in the dipole field strength from the first to the
last epoch of observation (10 yr gap). The K2 dwarf’s brightness maps reveal a cool polar
cap stable in a timescale of years. It has been suggested that long-lived cool spots may be
linked to an active longitude triggered by the white dwarf’s presence (Kővári et al., 2021).
However, it is unclear from the magnetic topologies that we derived if an active longitude
exists in the K2 dwarf.

Moreover, we detected a prominence within the magnetosphere of V471 Tau, that
is stable for at least a few days in two of the three observed epochs. By fitting the Hα

equivalent width emitted by the prominence, we derived a prominence mass of 4–6×1018 g
that is broadly consistent with the mass-range derived for other stars hosting prominences
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– e.g. K0 dwarf AB Dor (2-10×1017 g, e.g., Collier Cameron & Robinson, 1989; Collier
Cameron et al., 1990) and the K3 dwarf Speedy Mic (0.5–2.3×1017 g, Dunstone et al., 2006).
Potential field extrapolations of the magnetic maps derived in this thesis corroborate
that a slingshot mechanism (Jardine et al., 2020) might be responsible for holding the
prominence at a few stellar radii from the K2 dwarf surface.

5.1.2 Differential rotation and the effect of binarity
Our study also enabled the detection of the differential rotation at the surface of the
K2 dwarf at multiple epochs. We found a strong shear of about twice the solar value
that demonstrates the K2 dwarf is differentially rotating and is not always rotating as
a solid body, as previous observations suggested (Hussain et al., 2006). Although this
outcome contradicts the theoretical predictions of Scharlemann (1981, 1982), who suggest
that shears would be suppressed in close binary systems, they are consistent with those of
Kővári et al. (2017), who found that members of fast-rotating close-binaries with Prot < 3 d
can indeed display strong shears.

Moreover, our results provide evidence for temporal variations in the surface shear of
the K2 dwarf V471 Tau. This finding makes the K2 dwarf V471 Tau even more similar to
its single-star analog AB Dor (Donati et al., 2003a). Comparing the temporal fluctuations
in the angular velocity of the K2 dwarf V471 Tau and AB Dor star suggests that convective
motions in the envelope of both stars obey the Taylor–Proudman theorem (Proudman,
1916; Taylor, 1917). In particular, as differential rotation is expected to amplify toroidal
magnetic fields, these results highlight the importance of further investigation of the
V471 Tau system in order to understand the impact of binary companions on the dynamo
processes operating in the convective layers of low-mass stars.

5.1.3 Eclipse timing variations
We used the magnetic maps and shear measurements obtained in this thesis to investigate
if the ETVs of V471 Tau have a magnetic origin. We explored the Applegate (1992) and
Lanza (2020) mechanisms proposed to explain the ETVs observed in V471 Tau and whose
operation relies on magnetically driven modulations of the quadrupole moment of the
K2 dwarf companion. We found that the Applegate effect can most probably not explain
the ETVs of V471 Tau considering the available shear measurements, which are lower
than the needed values. Nevertheless, the fluctuating nature of the differential rotation
in the K2 dwarf suggests that large shear values may exist at different epochs of the
ETV cycle, still making it possible for the Applegate effect to quantitatively explain the
observed ETVs. In comparison, the Lanza effect requires a significantly weaker shear
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that is compatible with our measurements. However, for the Lanza effect to take place
in V471 Tau, strong kilo Gauss field strengths must exist within the convective zone of
the K2 dwarf. Although these fields strengths are much stronger than the typical values
found in our surface magnetic field reconstructions, it is difficult to determine how field
strengths required within the star translate into field strengths emerging at the stellar
surface. Future observations will help investigating if a stationary magnetic field indeed
exists at the surface of the K2 dwarf perhaps driving the ETVs of V471 Tau through the
Lanza effect.

5.1.4 Perspectives on V471 Tau

As a follow-up study, we plan to monitor the V471 Tau system at several complementary
phases of the ETV modulation cycle. In particular, we plan to observe at epochs where
the orbital period gets close to its minimum and maximum values, expected to correspond
to the phase of the maximum and minimum shear in the framework of the Applegate
mechanism (Applegate, 1992). Additional spectropolarimetric observations will allow the
reconstruction of new magnetic maps and, therefore, to probe the long-term effects of the
K2 dwarf’s magnetism on the V471 Tau system, invoked as the potential cause of the
observed ETVs (e.g., Applegate, 1992; Lanza, 2020).

To meet these goals, we recently secured new spectropolarimetric observations at
ESPaDOnS during the second semester of 2021 (PI: B. Zaire, run ID 21BF99). This new
campaign represents an ideal time to re-visit V471 Tau as it should probe the system
close to its minimum orbital period. Moreover, monitoring the temporal evolution of the
large-scale magnetic topology of the K2 dwarf of V471 Tau (and in particular of its dipolar
component) will also allow us to improve our understanding of the prominence stability
and lifetime and determine their impact on the overall rate at which such prominences
participate in the angular momentum loss of the whole system.

5.2 What does set the magnetic dipolarity of cool stars?

In an attempt to understand the physical mechanisms controlling the magnetic morphology
of partly convective cool stars, we performed a series of 3D dynamo simulations in Chapter 4.
Our parametric simulations focused on systems where the Lorentz force has a leading
role in the flow dynamics. Our dataset corresponds to the first systematic study of the
magnetic dipolarity of stratified systems in that regime.
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5.2.1 Fully convective shell simulations

Starting with 3D convective dynamo simulations, we carried out 23 simulations of a
spherical fully convective rotating shell with a radius ratio of 0.6 between the bottom and
the top of the shell. Our modelling strategy follows recent geodynamo studies of Menu
et al. (2020) and Tassin et al. (2021), who suggested that having a significant Lorentz
force contribution in the force balance when simulating convective dynamos could modify
conclusions about the magnetic morphology of planets. However, unlike their study, we
considered a fluid layer with a density contrast between the top and bottom of the CZ
to model conditions applicable to stellar interiors. We have investigated the influence of
stratification and rotation on the magnetic field dipolarity by considering configurations
with different density contrasts across the CZ for various Rayleigh numbers (i.e., varying
the vigour of convection). Varying the Rayleigh number in our simulations also enabled us
to modify the impact of rotation on convection and thus the fluid Rossby number achieved
in the domain.

Our simulations suggest that the Rossby number cannot explain the different large-scale
magnetic field morphology seen in stars. This finding is contrary to conclusions drawn by
early parametric studies with weaker influence of the Lorentz force on flow (e.g., Gastine
et al., 2012), which suggested a sharp transition in the surface magnetic dipolarity as the
stellar Rossby number increases. Although we stress that our simulations did not consider
different convective zone depths, to some extent, they bring stellar dynamo simulations
in better terms with observations as stars with low (high) dipolarity are also seen at low
(high) Rossby number (Donati et al., 2008b; Morin et al., 2008b, 2010).

We showed that the field dipolarity varies with the dynamical influence of the Lorentz
force on the flow. This dependence was in fact first identified in the Boussinesq simulations
of (Menu et al., 2020), but here we extend its validity to anelastic simulations of stratified
fluids. We found that dipolar dynamos occur when the Lorentz force supersedes the
inertial force by at least a factor of 2, while multipolar configurations occur otherwise.
As the comparison between Lorentz and inertial forces is not accessible to observations,
we propose using the ratio between kinetic and magnetic energy as a proxy for the force
ratio. Indeed, we find that the energy proxy succeeds at describing the level of dipolarity
of the large-scale magnetic topology for a small sample of M dwarfs featuring similar
convective zone geometries to our simulations, and for which a homogeneous collection of
ZDI measurements is available in the literature.
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5.2.2 Partly convective shell simulations
As a follow-up study, we aimed at testing whether coupling the convective envelope to
a radiative interior in the numerical domain modifies the conclusions reached with FCS
simulations regarding the proxies that best describe the transition in the field dipolarity.
To investigate this matter, we performed 19 simulations of a spherical partly convective
rotating shell with a radius ratio of 0.4, and for which the convective shell still features an
aspect ratio of 0.6. The setup of these PCS simulations corresponded to an inner RZ and
outer CZ, with the radial extent of the latter being selected to match the CZ of our FCS
simulations. We considered simulations with different density contrasts across the CZ and
Rayleigh number, where each simulation was selected to have an FCS counterpart.

Our preliminary results show that adding the RZ impacts the topology of the large-scale
field. In particular, we find that the RZ-CZ coupling decreases the field dipolarity of our
PCS simulations compared to those of the FCS runs. This result is not a surprise as
other 3D numerical simulations show that the enhanced Ω-effect at the tachocline region
efficiently produces and sustains complex fields (Browning, 2008).

The transition from a mainly dipolar to a mainly multipolar structure is also modified
in the PCS simulations. Contrary to our FCS simulations, it is unclear whether the Rossby
number is able (or not) to dictate the field dipolarity in the partly convective runs. While
it is possible to identify one run with dipole-dominate topology among our simulations at
a high-Rossby number (Roℓ ∼ 0.16), the simulation is also compatible with a multipolar
dynamo within error bars. The global trend of the PCS simulations with respect to the
Rossby number indicates that dipole-dominated morphology is restricted to a narrow
window of Roℓ < 0.06. In that regard, our PCS simulations seem to be less adequate than
our FCS simulations to explain the large-scale magnetic field observed in stars. Finally,
we found that the force ratio FI/FL and its energy ratio proxy EK/EM cannot describe
the transition from dipole to multipole dominated field configuration.

5.2.3 Perspectives
Observations suggest that the convective zone depth might play a key role in regulating
the magnetic morphology of stars (Donati & Landstreet, 2009; Marsden et al., 2011;
Gregory et al., 2012). However, the first results presented in this thesis did not explore
this feature and leave room for further numerical explorations to study the impact of
the convective zone depth on the magnetic field morphology. These new simulations
can broaden potential comparisons with stars of different spectral types than the ones
considered in this thesis (that roughly represent partly convective stars from 0.38 to 0.60
M⊙), and therefore to investigate further whether the EK/EM proxy can be used in a
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more general context. In particular, it is important to perform parametric studies of fully
convective spheres going down to r = 0 (using for example the Dedalus pseudospectral
framework, Burns et al., 2020). To date, only a limited number of studies meant to address
the global dynamo in fully convective stars (Dobler et al., 2006; Browning, 2008; Yadav
et al., 2015b,a, 2016b; Emeriau-Viard & Brun, 2017; Brown et al., 2020). However, none
of these studies consisted of parametric explorations to understand the extent to which
the control parameters influenced the magnetic field generation and the flow behaviour.
Moreover, the scope of this thesis was limited in terms of number of varied parameters.
Although we explored the effect of increasing density stratification and vigour of convection
on the field dipolarity, our study did not evaluate how lower (and more realistic) Ekman
numbers can modify our conclusions. This next step is also essential to probe the influence
of rotation (through the Ekman number) in the magnetic field dipolarity.

Regarding the PCS simulations, future studies using the same numerical set up are
important to check to which extent the stable layer stiffness modifies the magnetic topology
of our simulations. Recent activity-proxy observations suggest that dynamo action might
occur similarly in fully and partly convective stars (Wright & Drake, 2016), regardless
of the existence of a tachocline region in the latter (Charbonneau, 2016). It is then
particularly interesting to investigate if the magnetic dipolarity achieved with the PCS
setup would converge to those derived with the FCS runs in the limit of increasing stiffness
(controlled by N/Ωo). Furthermore, detailed studies of the angular momentum transport
are needed to establish what causes the fast-spinning core observed in some simulations.
This study could have direct implications for the Sun (and potentially other stars), as
the existence of a fastly-rotating nuclear core is currently a source of debate among the
helioseismic community (e.g., García et al., 2004; Fossat et al., 2017; Appourchaux et al.,
2018; Appourchaux & Corbard, 2019).

Finally, the numerical investigations of the magnetic morphology should go hand-in-
hand with the study of the large-scale surface magnetic field of stars via ZDI. Instruments
in the nIR like SPIRou at CFHT and SPIP at Pic du Midi Observatory will extend the
survey of stars with reconstructed large-scale magnetic fields to fainter M dwarfs and
low-mass PMS stars that before could not be analysed in the visible domain (Donati
et al., 2020). These new reconstructions should be able to increase our knowledge of how
different stellar parameters impact the large-scale magnetic morphology, which can guide
numerical studies. Particularly relevant is the study of the magnetism of young low-mass
stars, which experience drastic internal structure changes throughout the PMS phase that
can help constrain the effect of density stratification and varying convective zone depth
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(e.g. initial observational studies by Folsom et al. 2016, 2018 or numerical simulations of
Bessolaz & Brun 2011, Zaire et al. 2016, and Emeriau-Viard & Brun 2017).
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Conclusion et perspectives

Cette thèse s’est concentrée sur l’étude du champ magnétique à grande échelle des
étoiles froides. Nous avons utilisé des observations spectropolarimétriques pour reconstruire
le champ magnétique de surface de la naine K2 V471 Tau. Notre analyse de la naine
K2 V471 Tau a apporté de nouvelles contraintes observationnelles qui peuvent guider
les théories pour comprendre la dynamique de V471 Tau et peuvent aider à dévoiler le
rôle de la binarité sur le mécanisme de dynamo en jeu sur le compagnon actif. Nous
avons également réalisé des simulations numériques pour comprendre comment différents
paramètres influencent la morphologie magnétique établie dans les étoiles. Sur la base de
ces simulations, nous proposons un proxy pour quantifier la dipolarité du champ de surface
des étoiles. Notre étude suggère qu’un tel indicateur permet de classer la complexité
du champ magnétique des naines de type M précoce comme principalement dipolaire ou
principalement multipolaire.

5.1 Étude du système binaire V471 Tau

5.1.1 Cartes de luminosité, topologie du champ magnétique et
extrapolations du champ magnétique

Nous avons présenté les premières reconstructions du champ magnétique à grande échelle
et de nouvelles cartes des inhomogénéités de luminosité à la surface de la naine K2. Les
cartes magnétiques donnent des indications sur la variabilité du champ magnétique à
l’échelle de quelques années, montrant par exemple une augmentation d’un facteur 3 de
l’intensité du champ dipolaire entre la première et la dernière époque d’observation (écart
de 10 ans). Les cartes de luminosité de la naine K2 révèlent une calotte polaire froide
stable sur une échelle de temps de plusieurs années. Il a été suggéré que les taches froides
persistantes pourraient être liées à une longitude active déclenchée par la présence de la
naine blanche (Kővári et al., 2021). Cependant, les topologies magnétiques que nous avons
dérivées ne permettent pas de savoir si une longitude active existe dans la naine K2.

Nous avons trouvé une protubérance stable pendant au moins quelques jours dans
deux des trois époques observées. En ajustant la largeur équivalente de Hα émise par
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la prominence, nous avons obtenu une masse de protubérances de 4–6×1018 g qui est
cohérente avec la gamme de masse dérivée pour d’autres étoiles abritant des prominences
- par exemple la naine K0 AB Dor (2-10×1017 g, Collier Cameron & Robinson, 1989;
Collier Cameron et al., 1990) et la naine K3 Speedy Mic (0.5–2.3×1017 g, Dunstone et al.,
2006). Les extrapolations potentielles du champ magnétiques dérivées dans cette thèse
corroborent qu’un mécanisme slingshot (Jardine et al., 2020) pourrait être responsable du
maintien de la protubérance à quelques rayons stellaires de la surface de la naine K2.

5.1.2 La rotation différentielle et l’effet de la binarité
Notre étude a également permis de détecter la rotation différentielle à la surface de la naine
K2 à plusieurs époques. Le fort cisaillement que nous avons trouvé démontre que la naine
K2 peut être en rotation différentielle et ne tourne pas toujours de manière solide, comme
les observations précédentes ont pu le suggérer (Hussain et al., 2006). Bien que ces résultats
soient contraires aux prédictions théoriques de Scharlemann (1981, 1982), qui suggère que
les cisaillements seraient supprimés dans les systèmes binaires, ils sont cohérents avec ceux
de Kővári et al. (2017), qui a découvert que les membres de binaires proches à rotation
rapide avec Prot < 3 d peuvent effectivement présenter de forts cisaillements.

De plus, nos résultats fournissent des preuves de variations temporelles dans le cisaille-
ment de surface de la naine K2 V471 Tau. Cette découverte rend la naine K2 V471 Tau
encore plus similaire à son analogue (non binaire) AB Dor (Donati et al., 2003a). La
comparaison des fluctuations temporelles de la vitesse angulaire de la naine K2 V471 Tau et
de l’étoile AB Dor suggère que les deux étoiles obéissent au théorème de Taylor-Proudman
(Proudman, 1916; Taylor, 1917). En particulier, comme la rotation différentielle est censée
amplifier les champs magnétiques toroïdaux, ces résultats soulignent l’importance d’une
étude plus approfondie du système V471 Tau afin de comprendre l’impact des compagnons
binaires sur les processus dynamo opérant dans les couches convectives des étoiles de faible
masse.

5.1.3 Variations dans la fréquence des éclipse
Nous avons utilisé les cartes magnétiques et les mesures de cisaillement obtenues dans
cette thèse pour étudier si les ETVs de V471 Tau ont une origine magnétique. Nous avons
exploré les mécanismes Applegate (1992) et Lanza (2020) proposés pour opérer dans V471
Tau et dont l’effet repose sur des modulations magnétiques sur le moment quadripolaire
du compagnon nain K2. Nous avons trouvé que l’effet Applegate ne peut pas expliquer les
ETVs de V471 Tau en considérant les mesures de cisaillement disponibles. Néanmoins,
la nature fluctuante de la rotation différentielle dans la naine K2 suggère que de grandes
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valeurs de cisaillement peuvent exister à différents moments du cycle ETV, justifiant
peut-être un effet Applegate. En comparaison, l’effet Lanza nécessite un cisaillement relatif
nettement plus faible que celui atteint dans toutes nos mesures. Pour que l’effet Lanza se
produise dans V471 Tau, de forts champs de surface de quelques kG doivent exister à la
surface de la naine K2. Cependant, ces champs ne correspondent pas aux valeurs trouvées
dans nos reconstructions du champ magnétique. Les observations actuelles ne permettent
donc pas de déterminer ce qui produit les ETV de V471 Tau.

5.1.4 Perspectives sur V471 Tau
Dans le cadre d’une étude de suivi, nous prévoyons d’observer le système V471 Tau
à différentes phases du cycle de modulation des ETV. En particulier, nous prévoyons
d’observer aux moments où la période orbitale se rapproche de ses valeurs minimale et
maximale, ce qui devrait correspondre à la phase du cisaillement maximal et minimal dans
le cadre du mécanisme d’Applegate (Applegate, 1992). Des observations spectropolar-
imétriques supplémentaires permettront de reconstruire de nouvelles cartes magnétiques
et, par conséquent, de sonder les effets à long terme du magnétisme de la naine K2 sur le
système V471 Tau, invoqué comme la cause potentielle des ETVs observés (Applegate,
1992; Lanza, 2020). Pour atteindre ces objectifs, nous avons récemment obtenu de nouvelles
observations spectropolarimétriques sur ESPaDOnS pendant le second semestre de 2021 (PI
: B. Zaire, run ID 21BF99). Cette nouvelle campagne représente un moment idéal pour
une nouvelle observation de V471 Tau car elle sondera le système à proximité de sa période
orbitale minimale. De plus, le suivi de l’évolution temporelle de la topologie magnétique à
grande échelle de la naine K2 de V471 Tau (et en particulier de sa composante dipolaire)
nous permettra également d’améliorer notre compréhension de la stabilité et de la durée
de vie des protubérances et de déterminer leur impact sur le taux global auquel ces
protubérances participent à la perte de moment cinétique du système entier.

5.2 Qu’est-ce qui détermine la morphologie magnétique des
étoiles froides?

Pour tenter de comprendre les mécanismes physiques qui contrôlent la morphologie
magnétique des étoiles froides partiellement convectives, nous avons réalisé une série
de simulations de dynamo 3D dans le Chapitre 4. Nos simulations paramétriques se
sont concentrées sur des systèmes où la force de Lorentz joue un rôle prépondérant dans
la dynamique de l’écoulement. Notre jeu de données correspond à la première étude
systématique de la morphologie magnétique des systèmes stratifiés en densité dans ce
régime.
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5.2.1 Simulations entièrement convectives

En commençant par des simulations de dynamo 3D entièrement convectives, nous avons
effectué 23 simulations d’une coquille sphérique entièrement convective en rotation avec
un rapport de rayon de 0,6 entre le bas et le haut de la coquille. Notre stratégie de
modélisation suit les études géodynamo récentes de Menu et al. (2020) et Tassin et al.
(2021), qui ont suggéré que le fait d’avoir une contribution significative de la force de
Lorentz dans l’équilibre des forces pourrait modifier les conclusions sur la morphologie
magnétique des planètes. Cependant, contrairement à leur étude, nous avons considéré une
couche fluide avec un contraste de densité entre le haut et le bas de la zone convective (CZ
pour convective zone) pour modéliser les conditions applicables aux intérieurs stellaires.
Nous avons étudié l’influence de la stratification et de la rotation sur la morphologie du
champ magnétique en considérant des configurations avec différents contrastes de densité
à travers la CZ pour différents nombres de Rayleigh (c’est-à-dire en faisant varier la
vigueur de la convection). La variation du nombre de Rayleigh dans nos simulations nous
a également permis de modifier l’impact de la rotation sur la convection et donc le nombre
de Rossby fluide atteint dans le domaine.

Nos simulations suggèrent que le nombre de Rossby ne peut pas expliquer la différente
morphologie du champ magnétique à grande échelle observée dans les étoiles. Ce résultat
est contraire aux conclusions tirées par les premières études paramétriques avec une
influence plus faible de la force de Lorentz sur l’écoulement (Gastine et al., 2012), qui
suggéraient une transition nette dans la morphologie magnétique de surface lorsque le
nombre de Rossby augmente. Bien qu’il soit important de garder à l’esprit que ont toute
la même taille de zone convective, semblent être comparable à certaines observations car
les étoiles à faible (forte) dipolarité sont également observées à faible (forte) nombre de
Rossby (Donati et al., 2008b; Morin et al., 2008b, 2010).

Nous avons montré que la dipolarité du champ varie avec l’influence dynamique de
la force de Lorentz sur l’écoulement. Cette dépendance a d’abord été identifiée dans
les simulations Boussinesq de (Menu et al., 2020), mais ici nous étendons sa validité
aux simulations anélastiques de fluides stratifiés. Nous avons constaté que les dynamos
dipolaires se produisent lorsque le rapport entre force de Lorentz et force d’inertie est
supérieur à environ 2. Comme la comparaison entre les forces de Lorentz et d’inertie n’est
pas accessible aux observateurs, nous proposons d’utiliser le rapport entre l’énergie cinétique
et magnétique comme un proxy pour le rapport de force. En effet, nous constatons que ce
rapport d’énergie évalué à la surcface des étoiles réussit à décrire la topologie magnétique
variable à grande échelle d’un petit échantillon de naines M présentant des géométries de
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zones convectives similaires à nos simulations, et pour lesquelles une collection homogène
de mesures ZDI est disponible dans la littérature.

5.2.2 Simulations partiellement convectives
Dans le cadre d’une étude complémentaire, nous avons voulu vérifier si le couplage de
l’enveloppe convective à un intérieur radiatif modifie les conclusions obtenues avec les
simulations FCS concernant les proxies qui décrivent le mieux la transition de la dipolarité
du champ. Pour étudier cette question, nous avons effectué 19 simulations d’une enveloppe
sphérique partiellement convective en rotation avec un rapport d’aspect de 0,4. La
configuration de ces simulations PCS correspond à une zone radiative (RZ pour radiative
zone) interne et une CZ externe, l’étendue radiale de cette dernière étant choisie pour
correspondre à la ZC de nos simulations FCS. Nous avons considéré des simulations avec
différents contrastes de densité à travers la ZC et le nombre de Rayleigh, où chaque
simulation a été sélectionnée pour avoir une contrepartie FCS.

Nos résultats préliminaires montrent que l’ajout de la RZ a un impact sur la topologie
du champ à grande échelle. En particulier, nous constatons que le couplage RZ-CZ diminue
la dipolarité du champ de nos simulations PCS par rapport à celles des simulations FCS.
Ce résultat n’est pas une surprise car d’autres simulations numériques 3D montrent que
l’effet Omega renforcé dans la région de la tachocline produit et maintient efficacement
des champs complexes (Browning, 2008).

La transition d’une structure principalement dipolaire à une structure principalement
multipolaire est également modifiée dans les simulations PCS. Contrairement à nos simula-
tions FCS, la capacité du nombre de Rossby à expliquer la transition dipolaire/multipolaire
semble être meilleure dans nos runs PCS. Toutefois, la fenêtre de solutions dipolaires
semble être limitée à Roℓ < 0.06. À cet égard, nos simulations PCS semblent être moins
adéquates que nos simulations FCS pour expliquer le champ magnétique à grande échelle
observé dans les étoiles. Enfin, nous avons constaté que le rapport de force FI/FL et son
proxy de rapport d’énergie EK/EM semblent moins pertinents pour décrire la transition
d’une configuration dipolaire à multipolaire.

5.2.3 Perspectives
Les observations suggèrent que la taille de la zone convective pourrait jouer un rôle clé dans
la régulation de la morphologie magnétique des étoiles (Marsden et al., 2011). Cependant,
les premiers résultats présentés dans cette thèse n’ont pas exploré cette caractéristique
et laissent place à d’autres explorations numériques pour étudier l’impact de la taille de
la zone convective sur la morphologie du champ magnétique. De plus, ces simulations
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permettront d’élargir les comparaisons potentielles avec des étoiles de types spectraux
différents de ceux considérés dans cette thèse (représentant grossièrement les étoiles de
0.38 à 0.60 M⊙), et donc d’étudier plus avant si le proxy EK/EM peut être utilisé dans un
contexte plus général.

En ce qui concerne les simulations PCS, il reste important de vérifier dans quelle mesure
la rigidité de la couche stable modifie la topologie magnétique de nos simulations. Il est donc
particulièrement intéressant d’étudier si la morphologie magnétique de nos simulations
PCS convergera vers celles dérivées des simulations FCS dans la limite d’une rigidité
croissante (contrôlée par N/Ωo). Des observations récentes de l’activité stellaire suggèrent
que la dynamo pourrait se produire de manière similaire dans les étoiles entièrement et
partiellement convectives (Wright & Drake, 2016), indépendamment de l’existence d’une
tachocline dans ces dernières (Charbonneau, 2016).

En outre, des études détaillées du transport du moment cinétique sont nécessaires
pour établir ce qui cause le coeur à rotation rapide observé dans certaines simulations.
Cette étude pourrait avoir des implications directes pour le Soleil (et potentiellement dans
autres étoiles), car l’existence d’un intérieur radiatif à rotation rapide est actuellement une
source de débat au milieu de la communauté héliosismique (par exemple, García et al.,
2004; Fossat et al., 2017; Appourchaux et al., 2018; Appourchaux & Corbard, 2019).

Enfin, les investigations numériques de la morphologie magnétique devraient aller de
pair avec l’étude du champ magnétique de surface à grande échelle des étoiles via ZDI. Les
instruments dans le proche infrarouge, comme SPIRou au CFHT et SPIP à l’Observatoire
du Pic du Midi, permettront d’étendre l’étude des étoiles dont le champ magnétique à
grande échelle a été reconstitué à des naines M moins lumineuses et à des étoiles PMS
de faible masse qui ne pouvaient pas être analysées dans le domaine visible auparavant
(Donatiet al., 2020). Ces nouvelles reconstructions devraient permettre d’améliorer notre
connaissance de l’impact des différents paramètres stellaires sur la morphologie magnétique
à grande échelle, ce qui peut guider les études numériques. L’étude du magnétisme des
jeunes étoiles de faible masse, qui subissent des changements radicaux de leur structure
interne tout au long de la phase PMS, est particulièrement importante et peut contribuer
à déterminer l’effet de la stratification de la densité et de la modification de la taille de la
zone convective (par exemple, les études initiales de Folsom et al., 2016, 2018).
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Glossary

CM: center of mass. 63, 64
CV: cataclysmic variable. 51, 65
CZ: convective zone. 72, 101, 102, 105–107, 113, 114, 120, 121

ETV: eclipse timing variation. 45, 46, 50, 60–62, 111, 112, 118, 119

FCS: fully convective shells. 69–71, 99, 101–106, 109, 114, 115, 121, 122

LSD: Least-Squares Deconvolution. 49, 50

MHD: magnetohydrodynamics. 14, 17, 18, 21, 22, 36, 68
MS: main sequence. 1, 72

nIR: near-infrared. 1
NSL: near-surface layer. 92

O-C: observed minus computed. 60, 61

PCS: partly convective shells. 70, 71, 99–107, 109, 114, 115, 121, 122
PMS: pre-main sequence. 1, 72, 115

QG-MAC: quasi-geostrophic Magneto-Archimedean-Coriolis. 86, 105
QG-VAC: quasi-geostrophic Viscous-Archimedean-Coriolis. 87, 88

RZ: radiative zone. 99, 101–105, 107, 114, 121

SNR: signal-to-noise ratio. 49

WD: white dwarf. 46, 49, 51, 55, 56, 60, 62, 63, 65, 66

ZDI: Zeeman-Doppler Imaging. 22, 28–30, 32, 42, 115
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Appendix A

The MagIC code

MagIC is an open-source code used to simulate the dynamics of a fluid in a spherical
shell1. MagIC solves the equations of Navier Stokes, energy, continuity, and induction under
either anelastic or Boussinesq approximations. While both approximations filter sound
waves making the numerical simulations more affordable, the Boussinesq approximation is
not valid when modelling the interior of stars because it additionally assumes that density
is roughly constant (with density variations appearing only in the buoyancy term of the
Navier-Stokes equation). Therefore, we focus below on the anelastic implementation of
MagIC that has been validated through several anelastic benchmarks (Jones et al., 2011)
and that was used to compute the stellar dynamo models presented in Chapter 4.

1 Anelastic equations

As mentioned above, the anelastic formulation has the advantage of filtering out sound
waves without neglecting the effects of the density stratification. Under the anelastic
approximation the convective speed is assumed to be much smaller than the sound speed
(low Mach regime) and the thermodynamic variables are represented by the sum of a
spherically symmetric reference state and small perturbations around it, e.g.,

ρ = ρ̃(r) + ρ′(r, θ, ϕ, t). (A.1)

These conditions take the form of

ϵ ∼ |ρ′|
ρ̃

∼ |T ′|
T̃

∼ |P ′|
P̃

∼ |s′|
s̃

≪ 1, (A.2)

where ϵ measures the characteristic convection speed over the sound speed. The linear
formulation of the thermodynamic quantities simplify the full compressible MHD problem
(Sec. 1.3.1) to the set of equations given in Chapter 4 (Eqs. 4.1 to 4.4). We refer to
Sec. 4.2.2 for the definition of the reference state in our simulations, which takes different
forms for fully and partly convective setups.

1freely available at https://github.com/magic-sph/magic
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MagIC also uses a poloidal-toroidal formulation to handle the divergence free fields
present in the anelastic equations (see Eq. 4.4). The mass flux and the magnetic field are
then written

ρ̃u⃗ = ∇ × (∇ × W êz) + ∇ × Z êz, and (A.3)

B⃗ = ∇ × (∇ × G êz) + ∇ × H êz, (A.4)

where W and g are poloidal potentials and Z and h are toroidal potentials. This formulation
directly satisfies Eq. 4.4 reducing the equations necessary to describe the MHD problem
to six. It also reduces the number of depended variables, which now consist of W , Z, G,
H, s, and P .

2 Numerical methods

MagIC is a pseudo-spectral numerical code that uses spherical harmonics (SH) as basis
functions of the angular coordinates (θ, ϕ) and Chebyshev polynomials in the radial
direction (e.g., Thompson, 1994). The SH expansion of the unknown scalar fields is
truncated at a degree ℓmax that is sufficient to capture the physical process at play. As an
example, the representation for the magnetic poloidal potential reads

G(r, θ, ϕ, t) ≃
ℓmax∑
ℓ=0

ℓ∑
m=−ℓ

gℓm(r, t)Y m
ℓ (θ, ϕ), (A.5)

where gℓm(r, t) is the coefficient associated to the SP of degree ℓ and order m. This
coefficients are in turn further expanded in Chebyshev polynomials and truncated at a
degree nmax:

gℓm(r, t) ≃
nmax∑
n=0

gℓmn(t)Cn(r), (A.6)

where the Chebyshev polynomial of degree n is defined as

Cn(r) = cos
[
n arccos

(
2r − (ri + ro)

ro − ri

)]
. (A.7)

Radial mapping. MagIC allows for three different non-linear mappings of the Nr grid
points inside the radial domain {ri, ro}.

(1) The first mapping uses the collocation method of Gauss-Lobatto (e.g., Boyd,
2001), where the kth point is given by

rGL
k = (ro − ri)

2 cos
(

π
k − 1

Nr − 1

)
+ ro + ri

2 . (A.8)
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(2) The second mapping uses the collocation method of Kosloff & Tal-Ezer (1993).
Under this mapping the collocations points are given by

rKTE
k = (ro − ri)

2 arcsin(α0)
arcsin

[
α0 cos

(
π

k − 1
Nr − 1

)]
+ ro + ri

2 , (A.9)

where α0 is a stretching parameter limited to 0 < α0 < 1. Note that this
collocation method recovers the Gauss-Lobatto grid when α0 → 0 and yields a
regular grid for α0 → 1.

(3) Finally, MagIC also offers the collocation method of Bayliss & Turkel (1992):

rBT
k = (ro − ri)

2

{
α2 + 1

α1
tan

[
(A + B)

2 cos
(

π
k − 1

Nr − 1

)
− (A − B)

2

]}
+ ro + ri

2 , (A.10)

where A = arctan[α1(1+α2)] and B = arctan[α1(1−α2)] are defined in terms of the
free parameters α1 and α2. In this mapping, α1 is responsible for dispersing or con-
centrating the grid around the transitional radius rt = α2(ro − ri)/2 + (ro + ri)/2.
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Figure A.1. Histogram distribution of the radial grid points for the three non-linear mappings
implemented in MagIC.

Figure A.1 illustrates the radial mesh for a shell with ri/ro = 0.4 (i.e., matching the
shell size of our PC setup) and using the different mappings described above. It is clear
that the mapping of Gauss-Lobatto (black curve) creates a dense grid near the boundaries.
This effect is mitigated when using collocation points of Kosloff & Tal-Ezer (1993) with
an α0 = 0.88 (blue curve). The latter setup yields a regular grid in the bulk of the domain
and it is the selected choice for the fully convective simulations presented in Sec. 4.3.
Finally, the radial mapping of Bayliss & Turkel (1992) is shown in red. To apply this grid
to the scientific goals of our PC simulations (Sec. 4.4), we match the transitional radius at
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which the grid refines to the base of the convective zone, i.e., rt = 0.6 ro. This leads to
α2 = −1

3 . Additionally, we fix α1 = 1.5 to create a moderate grid refinement around rt.
We highlight that to ensure the spectral convergence of each of the non-linear mappings,

different conditions may apply when setting the free parameters (e.g., see Gastine & Wicht,
2021).

Time scheme. To evolve the Eqs. 4.1-4.3 in time a mixed algorithm is adopted, where
linear terms (except for the Coriolis one) are treated implicitly and non-linear terms are
handled explicitly. Still using the magnetic poloidal potential as example, we write

∂G(⃗r, t)
∂t

= I (⃗r, t) + E (⃗r, t). (A.11)

where I and E stand for implicit and explicit terms respectively. Expanding each scalar
field in their basis and taking advantage of the orthogonality relation for the SH, one can
find

∂

∂t

[
nmax∑
n=0

gℓmn(t)Cnk

]
=

nmax∑
n=0

Iℓmnk(t) + Eℓmk(t).

Using the linear relation for the implicit terms, Iℓmnk(t) = Lℓmn(t)Cnk, this leads to

∂

∂t

[
nmax∑
n=0

gℓmn(t)Cnk

]
=

nmax∑
n=0

Lℓmn(t)Cnk + Eℓmk(t),

nmax∑
n=0

Cnk

[
∂gℓmn(t)

∂t
− Lℓmn(t)

]
= Eℓmk(t). (A.12)

MagIC adopts a Crank-Nicolson algorithm for the implicit terms (linear) and a second
order Adams-Bashforth scheme for the explicit terms, yielding
nmax∑
n=0

Cnk

{
gℓmn(t + δt) − gℓmn(t)

δt
− 1

2 [Lℓmn(t + δt) + Lℓmn(t)]
}

= 3
2Eℓmk(t)−1

2Eℓmk(t−δt).

(A.13)



Appendix B

Paper I: Zaire et al. (2021)

144



MNRAS 504, 1969–1988 (2021) doi:10.1093/mnras/stab1019
Advance Access publication 2021 April 14

Magnetic field and activity phenomena of the K2 dwarf V471 Tau

B. Zaire ,‹ J.-F. Donati and B. Klein
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ABSTRACT
We analyse spectropolarimetric data of the pre-cataclysmic variable binary system V471 Tau obtained with ESPaDOnS at the
Canada–France–Hawaii Telescope in two observational campaigns (in 2004 November/December and 2005 December). Using
Zeeman–Doppler imaging, we reconstruct the distribution of brightness map and large-scale magnetic field of the K2 dwarf at
both epochs, as well as the amount of differential rotation by which surface maps are sheared. We detect significant fluctuations
in the surface shear between the two campaigns. It goes from about twice the solar differential rotation rate to less than the solar
value in a 1-yr interval. We conclude that the differential rotation fluctuations obtained for the K2 dwarf resemble those detected
on the single-star analogue AB Dor, although even larger amplitudes of variation are seen in the K2 dwarf of V471 Tau. Finally,
we show that the differential rotation results obtained in this work do not favour an Applegate mechanism operating in the V471
Tau system, at least in its standard form, but leave room for explaining the observed orbital period fluctuations with exotic forms
of similar phenomena based on dynamo processes operating within the convective zone of the K2 star.

Key words: magnetic fields – techniques: polarimetric – binaries: eclipsing – stars: imaging – stars: individual: V471 Tau – stars:
magnetic field.

1 IN T RO D U C T I O N

Over the past decade, magnetic fields have been studied for stars in
a wide range of spectral classes, with a specific focus on solar-like
stars of various masses, rotation rates, and ages. It has conclusively
been shown that the field strength decays with age for solar-type
stars (Vidotto et al. 2014), obeying a similar power law to what
has been obtained for the rotational period (Skumanich 1972). This
dependence between the magnetic properties and evolutionary state
implies that the dynamo mechanisms that are at play in the convective
zone also evolve and adjust throughout the star’s life.

Thanks to its ability to reconstruct large-scale surface magnetic
fields, Zeeman–Doppler imaging technique (hereafter ZDI; Donati &
Brown 1997) brought new insights to the subject establishing the
critical role of the stellar internal structure in the overall topology of
the large-scale field (Gregory et al. 2012). Typically, fully convective
stars were found to harbour strong poloidal magnetic fields with
a high degree of axisymmetry, while partly convective stars dis-
played weaker surface fields with a predominantly non-axisymmetric
poloidal component and a significant (sometimes dominant) toroidal
component (e.g. Donati et al. 2008; Morin et al. 2008, 2010; Folsom
et al. 2016, 2018). This scenario gives hints on how dynamo processes
may be acting for a range of stellar parameters – with mostly single
stars studied so far.

AB Dor is the first star on which differential rotation was detected,
and it has been the subject of a large number of dedicated observing
campaigns due to its key role in addressing the dynamo action in
stars (e.g. Donati, Collier Cameron & Petit 2003b; Jeffers, Donati &
Collier Cameron 2007). The K2 dwarf of the V471 Tau binary system

� E-mail: bonnie.zaire@irap.omp.eu

is a twin version of the single-star AB Dor. As a member of a close
binary system, involving a white dwarf (WD) of mass similar to the
K2 dwarf (Vaccaro et al. 2015), tidal forces are expected to directly
impact the angular momentum evolution, aiming to synchronize the
rotational period with the orbital period of the system (Zahn 1989).
It has been argued that tidal effects would weaken the differential
rotation of the active star (Scharlemann 1981, 1982); however,
the strong shear detected in the pre-main-sequence binary system
HD 155555 opposes this claim (Dunstone et al. 2008). It is still
unknown whether the young age of the HD 155555 system (18 Myr)
could explain the observed shear. Nevertheless, observations suggest
the existence of a preferential longitude for the spots’ manifestation
in short-period binaries, likely due to the influence of the tides on
the dynamo action (see Holzwarth & Schüssler 2002, 2003a, b, for a
discussion on the formation of preferential longitudes).

Being also an eclipsing binary, V471 Tau allows studying the
potential impact of dynamo action and activity cycles on the observed
eclipse timing variations (ETVs). Although the ETVs of compact
binaries are commonly associated with a third body, e.g. for NN
Ser (Beuermann, Dreizler & Hessman 2013; Marsh et al. 2014) and
QS Vir (Parsons et al. 2010; Bours et al. 2016), in V471 Tau some
authors questioned the presence of the brown dwarf necessary to
explain the ETVs (Hardy et al. 2015; Vanderbosch et al. 2017).
As first proposed by Applegate (1992), stars exhibiting magnetic
cycles might be capable of changing the internal mass distribution
(or equivalently the quadrupole moment of the star) by redistributing
angular momentum in the convective envelope. This effect is of
particular interest for close binary systems, where the resulting
gravity change of a companion propagates to the system, culminating
in orbital period modulations. However, improvements in Applegate
models challenged its feasibility to drive ETV (Lanza 2005, 2006;
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Völschow et al. 2018). Specifically, the inclusion of more realistic
angular velocities (with radial and latitudinal dependencies) limited
the Applegate effect to systems with large shear fluctuations, thus
making it unlikely for most binary systems.

An alternative mechanism requiring low levels of fluctuation
in the differential rotation was recently suggested to operate in
V471 Tau (Lanza 2020). The mechanism relies on the existence
of a stationary non-axisymmetric quadrupole moment in the K2
dwarf that either librates or circulates in the orbital plane. Contrary
to the Applegate effect, Lanza’s model requires a stationary non-
axisymmetric magnetic field to sustain the quadrupole moment and
drive ETV (a result of a torque introduced by magnetic structures
misaligned with the line joining both companions). For V471 Tau,
Lanza (2020) showed that both libration and circulation scenarios
could be operating in the system.

In this work, we investigate the magnetism of the cool companion
of the close binary system V471 Tau by analysing spectropolari-
metric observations collected with ESPaDOnS in 2004 Novem-
ber/December and 2005 December. This study offers a unique
opportunity to examine how tides affect the magnetic topology and
differential rotation compared to the single-star analogue AB Dor
(similar mass, temperature, and rotational period). The evolutionary
status of the system is discussed in Section 2 and our data set is pre-
sented in Section 3. After describing the ZDI technique in Section 4,
we present the reconstructed maps of brightness inhomogeneities
and large-scale magnetic field in Section 5. Section 6 is dedicated to
the positive detection of differential rotation at the surface of the star,
and Section 7 to the periodic behaviour observed in the H α emission
line for both epochs of observation. Finally, we discuss our results
in Section 8.

2 EVO LUTIONA RY STAG E O F V 4 7 1 TAU

V471 Tau is an eclipsing binary system and member of the 625-
Myr-old Hyades open cluster (Perryman et al. 1998) with a Gaia
distance of 47.51 ± 0.03 pc (Gaia Collaboration 2020; Bailer-Jones
et al. 2021). Over the last 50 yr, V471 Tau has been extensively
observed to understand the evolution of binary systems with the
eclipses giving a unique opportunity to measure the orbital period
of the system and its temporal variation with extreme accuracy.
The current scenario indicates that the system is a pre-cataclysmic
variable that has undergone a common-envelope phase in the early
stages of evolution. The system consists of a hot WD star and a K2
dwarf main-sequence star not yet overfilling its Roche lobe (Nelson &
Young 1970). Self-consistent analysis handling simultaneously radial
velocity curves, light curves, and eclipse timings of the system
yielded a WD mass of 0.8778 ± 0.0011 M� and a K2 dwarf mass
of 0.9971 ± 0.0012 M�, orbiting with a short-period of Porb =
0.521 183 3875 d and a separation distance of a = 3.586 R�, where
R� is the radius of the K2 dwarf (Vaccaro et al. 2015). Moreover,
because of the proximity of the two companions, tides compel the
K2 dwarf star to rotate synchronously with the orbital period of
the system, implying that Prot � Porb. We summarize the quantities
relevant for the scope of this paper in Table 1.

Photometric studies reveal an apparent magnitude ranging from
V = 9.30 to 9.42 for the K2 dwarf star (cf. fig. 6 in Vaccaro et al.
2015). Given the distance modulus of −3.384 ± 0.002 and the
V-band bolometric correction at the effective temperature of the
K2 dwarf star, BCV = −0.29 ± 0.02 (Pecaut & Mamajek 2013),
we estimate minimum and maximum bolometric magnitudes of
Mbol,min = 5.626 ± 0.063 and Mbol,max = 5.746 ± 0.063, respectively.
Additionally, using the radius and effective temperature listed in

Table 1. Parameters of the K2 dwarf component of the V471 Tau system.
From top to bottom: age, distance from the Earth d, separation distance to
the companion a, mass M�, radius R�, effective temperature Teff, logarithm of
the surface gravity log g, rotational period Prot, inclination i, and line-of-sight
projected equatorial rotation velocity v sin (i).

Parameter Valuea Reference

Age (Myr) 625(50) Perryman et al. (1998)
d (pc) 47.51(03) Bailer-Jones et al. (2021)
a (R�) 3.586(11) Vaccaro et al. (2015)
M� (M�) 0.9971(12) Vaccaro et al. (2015)
R� (R�) 0.93709(93) Vaccaro et al. (2015)
Teff (K) 5066(04) Vaccaro et al. (2015)
log g (cm s−1) 4.493 31(87) Vaccaro et al. (2015)
Prot = Porb (d) 0.521 183 3875(27) Vaccaro et al. (2015)
i (◦) 78.755(30) Vaccaro et al. (2015)
v sin (i) (km s−1) 89.30(11) Vaccaro et al. (2015)

aStandard error of the last two digits is shown inside the parenthesis.

Figure 1. Positions of the K2 dwarf V471 Tau (red square) and the single-
star analogue AB Dor1 (green square) in the Hertzsprung–Russell diagram.
Siess et al. (2000) evolutionary tracks for masses 0.8–1.0 M� are shown in
dashed black lines (Z = 0.0020 + overshooting model), except the 0.9 M�
track shown in continuous black line, which we chose to represent the K2
dwarf star. Siess isochrones for 10, 30, and 625 Myr are represented as dotted
blue lines. Evolutionary tracks from Baraffe et al. (2015) models (dashed
magenta) are included for comparison.

Table 1, as well the reference bolometric magnitude for the Sun,
Mbol,� = 4.74, we infer the bolometric magnitude for the unspotted
star, Mbol,u = 5.451 ± 0.004. The fraction of spots at the surface of the
K2 dwarf star is then given by fspot = 1 − 10(2/5)(Mbol,u−Mbol) ≈ 0.15–
0.25, which falls within the observed range of magnitudes. This
spottedness of 15–25 per cent is typical for active stars. Previous
brightness reconstructions of the K2 dwarf star with Doppler imaging
retrieved spot coverage of ≈0.20 in 1992/1993 (Ramseyer, Hatzes &
Jablonski 1995) and 0.09 in 2002 (Hussain et al. 2006).

Fig. 1 shows the K2 dwarf V471 Tau’s position in the Hertzsprung–
Russell diagram. Among the two evolutionary models considered,
the 0.9 M� track of Siess, Dufour & Forestini (2000) is the one that
best reproduces the stellar parameters of the K2 star. Still, we can
notice the anomalous mass for its K2V spectral type that has been

1For the single-star analog AB Dor, we adopt a luminosity based on the
effective temperature of Close et al. (2007), 5081 ± 50 K, and the radius
estimate of 1.05 ± 0.10 R� derived from Doppler imaging (Donati et al.
2003a), compatible with the estimate derived from interferometry (0.96 ±
0.06 R�; Guirado et al. 2011).
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subject of investigations in the past years (e.g. O’Brien, Bond &
Sion 2001). Some authors suggested that a metal enrichment during
the common-envelope phase could potentially explain the overmass;
however, no conclusive answer exists yet (see discussion in Vaccaro
et al. 2015). Using the evolutionary model of Siess et al. (2000), we
infer that the radiative core of the K2 star reaches a radius of 0.68 R�

at 625 Myr (or, in other words, that it posses a convective envelope
corresponding to the outer 32 per cent of the stellar radius).

3 O BSERVATIONA L DATA

We use spectropolarimetric data collected in two different seasons
with ESPaDOnS at the Canada–France–Hawaii Telescope (Donati
et al. 2006a). Our data set totalizes 230 unpolarized (Stokes I)
and 56 circularly polarized (Stokes V) spectra spread in three non-
consecutive days in 2004, and 400 unpolarized and 98 circularly
polarized spectra spread in 4 d (separated by 1-d gaps) in 2005.
Observations cover wavelengths from 370 to 1000 nm at a resolving
power of 65 000. We refer to Donati (2003) for further details about
the Stokes parameters acquisition with ESPaDOnS. We note that
circularly polarized spectra typically require four sub-exposures,
obtained at different orientations of the polarimeter retarders, to
be combined in an optimal way to minimize potential spurious
signatures (see Donati et al. 1997, for more details).

Raw data frames are reduced with the LIBRE-ESPRIT package,
which is optimized for ESPaDOnS (Donati et al. 1997). The spectra
collected in 2004 have peak signal-to-noise ratios (SNRs) ranging
from 75 to 191 (median 147), while in 2005 it ranged from 75 to
188 (median 158). Circularly polarized spectra with peak SNRs lower
than 75 were rejected in this work, corresponding to four sequences in
the first season of observation (2004 November/December) and three
sequences in the second one (2005 December). The complete log of
our observations can be found in Tables A1 and A2 (Appendix A). We
use the ephemeris of Vaccaro et al. (2015) to compute the rotational
cycle E of each observation2

HJED = 2445821.898291 + 0.5211833875 × E, (1)

where phase 0.5 corresponds to the primary eclipse of the system
(i.e. when the WD is in front of the K2 star).

3.1 Least-squares deconvolved profiles

Least-squares deconvolution (LSD; Donati et al. 1997) is used to
produce an average profile of photospheric lines of the K2 dwarf
star, with the SNRs boosted by a factor of 30 from the peak SNR
of the individual spectra (see Tables A1 and A2) with respect to an
average spectral line. We constructed the line mask using the Vienna
Atomic Line Database (VALD; Kurucz 1993; Piskunov et al. 1995)
for an effective temperature Teff = 5000 K and a surface gravity
log g = 4.5, in agreement with Vaccaro et al. (2015) (see Table 1).
We chose to include in our absorption line list only lines deeper than
10 per cent to the continuum level (Ic), resulting in roughly 6000
atomic lines. The average line profile features a mean wavelength
λ = 625 nm, a mean relative depth d = 0.677, and a mean effective
Landé factor w = 1.2.

2We follow the convention proposed by Bastian (2000) and express timings
in Terrestrial Time scale.

4 ZEEMAN–DOPPLER I MAG I NG O F V 471 TAU

We analyse the time series of the spectropolarimetric data using
ZDI to obtain information on the brightness and magnetic field
distributions at the surface of the K2 dwarf of V471 Tau. First
introduced by Semel (1989), ZDI traces how distortions in Stokes I
and V profiles retrieve maps of the stellar surface.

We use ZDI as described in a suite of papers (Donati, Semel &
Praderie 1989; Brown et al. 1991; Donati & Brown 1997), using the
implementation of Donati (2001) and adopting a spherical harmonic
decomposition for the magnetic field. In short, ZDI decomposes
the stellar surface in a grid of N cells (N being typically 10 000).
Synthetic profiles are computed locally in each cell, using the
analytical solution of Unno-Rachkovsky to the polarized radiative
transfer equations in a Milne–Eddington model of atmosphere (Landi
Degl’Innocenti & Landolfi 2004). Then, local profiles from each
grid cell are Doppler-shifted according to the radial velocity (RV) of
the cell position and weighted by a linear limb-darkening law. The
local RV of each cell is related to the geometry of the system (see
Section 4.1) and to the rotation profile assumed at the stellar surface
(either a simple solid-body rotation or a solar-like square-cosine-type
latitudinal differential rotation, see Section 6). These local profiles
are then combined into global synthetic Stokes I and V line profiles
that are directly compared to the time series of the Stokes I and V
LSD profiles.

In the next step, maximum-entropy principles are applied to
both brightness and magnetic reconstructions (Skilling & Bryan
1984). The code reconstructs surface maps with a conjugate gradient
algorithm that searches for the lowest amount of information capable
of fitting the data at a given χ2 level (similarly, one can minimize
the χ2 at given information content using an iterative procedure).
For brightness reconstructions, the principle is directly applied to the
local brightness of the grid cells, while in magnetic reconstructions,
the entropy is a function of the spherical harmonics coefficients
(Donati et al. 2006b). In this study, we truncate the spherical harmonic
representation of the magnetic field at order � = 15, which is
enough to extract most spatial information available in the line
profiles.

4.1 System parameters

We take advantage of the maximum-entropy fitting process to
simultaneously estimate the orbital parameters describing the RV
of the K2 dwarf of the binary system; since the orbit of V471 Tau is
circular, there are three such parameters, the semi-amplitude of the
orbital motion of the K2 dwarf (KdK), the systemic velocity (vγ ), and
the phase offset with respect to the ephemeris of equation (1) (φ0).
We perform a 3D search in the parameter space KdK, vγ , and φ0 to
find out how χ2 varies (at constant reconstructed information at the
surface of the star) with these parameters. By fitting a 3D paraboloid
around the minimum of the derived χ2 values, we compute the best
estimates of the parameters and their uncertainties. An inspection of
these parameters shows that slightly different systemic velocities (by
about 3σ ) minimize phase-coherent patterns present in the residuals
(observed minus modelled Stokes profiles) at both epochs. We adopt
then KdK = 149.3 ± 0.2 km s−1 and vγ = 35.0 ± 0.1 km s−1. For
the phase offset, we obtain for our 2004 November/December data
set φ0 = 0.0040 ± 0.0002 and for the 2005 December data φ0 =
0.0035 ± 0.0002 (here a positive value in the phase offset, φ0 > 0,
indicates a later conjunction when compared to the prediction from
ephemeris in equation 1). Both values of φ0 agree within the error
bars.
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Likewise, once the data are corrected for the orbital motion, we
search for the projected rotational velocity v sin (i) that allows our
synthetic profiles to match best the times series of Stokes I LSD
profiles. For both data sets, the line-of-sight projected equatorial
rotation velocity associated with the lowest χ2 is consistent within
2.5σ with Vaccaro et al. (2015), i.e. v sin (i) = 89.30 ± 0.11 km s−1.

5 SU R FAC E MA P S

We carry out reconstructions of brightness and magnetic maps of
the K2 dwarf of V471 Tau for both data sets using the orbital and
stellar parameters obtained in the previous section. As we discuss in
Section 6, differential rotation is detected at the surface of the K2
dwarf star, and we take it into account in the imaging process.

5.1 Brightness maps

Fig. 2 shows the dynamical spectra of Stokes I profiles (for the
individual profiles, see Appendix B). These dynamical spectra exhibit
obvious signatures crossing the spectral line from the blue wing
to the red wing, generated by surface brightness features being
carried across the visible hemisphere as the star rotates. The few
low-level features still present in the residuals, for instance, the blue
and red vertical bands located at ±v sin i, reflect the fact that the
width of the LSD profile slightly varies with phase as a result of
the finite integration time (blurring the spectral lines at conjunction
phases, i.e. when they move fastest, and thereby making them slightly
wider). However, the typical amplitude of these residuals (∼10−3)
is low enough not to cause any significant spurious features in the
reconstructed images.

The reconstructed brightness maps are shown in Fig. 3. In 2004, the
spot distribution exhibited a cool polar spot off-centred towards phase

Figure 2. Dynamical spectra of the intensity flux (Stokes I) of the K2 dwarf of V471 Tau for our 2004 November/December (top) and 2005 December (bottom)
data sets. From left to right, we show the observed LSD profiles, the modelled observations, and the residuals (i.e. observations minus model). LSD and modelled
spectra were divided by the synthetic line profile of an unspotted star to emphasize spot signatures. We multiplied the residuals by a factor of 104 for display
purposes.
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Figure 3. Brightness maps obtained in 2004 November/December (top
panel) and 2005 December (bottom panel). The logarithm of the relative
brightness is shown in colours, with brown shades representing cool spots and
blue shades depicting bright plages. In each polar representation, concentric
circles denote regions of iso-latitude plotted in steps of 30◦ from the inner
to the outermost circle. Ticks outside the polar representation indicate the
rotation phase of the observations used to recover the maps.

0.15, extending down to a colatitude of ∼50◦. We likewise identify
in 2005 a cool polar cap, although it presents a higher contrast with
the quiet photosphere and is now off-centred towards phase 0.35.
Besides, both spot maps show a partial ring of low-contrast warm
features encircling the polar region with a latitudinal extension of
∼40◦. The ring disrupts at phase 0.5, corresponding to the face
turned to the WD companion. Overall, the polar spot distributions
exhibit similar structures but with a phase shift of 0.20 ± 0.05 from
2004 to 2005 (a result also noticeable in the dynamical spectra of
both epochs Fig. 2). We find that, in 2004, cool spots and warm plages
covered 8 per cent and 6 per cent of the stellar surface, respectively,
whereas, in 2005, the spot coverage was 10 per cent for cool spots and
7 per cent for warm plages. The increase in spot coverage between
the two epochs possibly relates to the denser phase coverage of our
2005 data.

Table 2. Magnetic field proprieties of the K dwarf star at 2004 Novem-
ber/December and December 2005. Brms is the root-mean-square field, Bdip

is the dipolar strength, and Epol is the fractional energy in the poloidal field.
E� = 1, E� = 2, E� = 3, and E� ≥ 4 are, respectively, the fractional energies of the
dipolar, quadrupolar, octupolar, and multipolar (defined as �≥ 4) components.

Date Brms Bdip θdip Epol E� = 1 E� = 2 E� = 3 E� ≥ 4

(G) (G) (◦) (per cent) (per cent) (per cent) (per cent) (per cent)

2004 160 ± 3 −90 ± 20 20 ± 10 70 ± 5 15 ± 6 10 ± 2 15 ± 2 60 ± 7
2005 160 ± 1 −105 ± 5 64 ± 5 60 ± 2 45 ± 3 10 ± 1 15 ± 2 30 ± 2

5.2 Magnetic topology

Observed Stokes V profiles, with the ZDI fit down to a unit reduced χ2

level, are shown in Appendix B (Figs B3 and B4). The topology of the
K dwarf’s large-scale magnetic field is depicted in Fig. 4. We found
a maximum radial field strength of 250 G in 2004 and 230 G in 2005,
while the root-mean-square magnetic field was ∼160 G. In 2004
November/December, the magnetic field topology shows a complex
configuration with 60 per cent of the magnetic energy reconstructed
in modes with � ≥ 4, whereas, in 2005, the energy stored in these
modes dropped to 30 per cent. The remaining energy is mostly
stored in the dipolar (� = 1) and octupolar (� = 3) components,
but quadrupolar components totalling up to ∼10 per cent of the
magnetic energy are also present in the reconstructed topology.
In 2004, the magnetic field featured a −90 G dipole tilted by
20◦ to the rotation axis towards phase 0.08 ± 0.03. In 2005, the
intensity of the dipole component was −105 G and the 64◦ tilt
goes towards phase 0.41 ± 0.03. To assess the uncertainties of
the image reconstruction, we performed 120 magnetic inversions
at each epoch from bootstrapped data sets constructed by randomly
choosing spectra from the original data, allowing for duplicates to
match the original size of the sample (see e.g. Wang et al. 2017,
2018). Table 2 lists the main properties of the reconstructed large-
scale magnetic topology along with the standard deviations obtained
in the bootstrapping analysis.

6 SURFAC E D I FFERENTIAL ROTATI ON

Thanks to the ability of ZDI to recover spatial information from sets
of phase-resolved spectropolarimetric observations, it is possible to
retrieve information on differential rotation at the star’s surface by
finding out the recurrence rates of reconstructed features as a function
of latitude. The procedure we use here, first described by Donati
et al. (2000), takes into account an a priori dependence of the angular
velocity with latitude in the image reconstruction process. We adopt
a Sun-like differential rotation law, written as

�(θ ) = �eq − d� cos2(θ ), (2)

where θ is the colatitude, �eq is the angular velocity at the equator,
and d� is the difference between �eq and the angular velocity at the
pole. Because this functional form depends on two free parameters,
the reconstructed tomography likewise relies on the choice of �eq and
d�. The differential rotation parameters therefore correspond to the
set of parameters leading to the images with the lowest information
content (similar to the procedure outlined in Section 4.1).

Fig. 5 shows χ2 maps in the �eq – d� plane for reconstructions
using Stokes I (left column) and Stokes V (right column) signatures.
We again assume a simple paraboloid approximation for the χ2

maps close to the minimum to determine the optimal differential
rotation parameters (circles) and their associated error bars (see
equations 2 and 3 in Donati et al. 2003b). We summarize the
differential parameters found for each case in Table 3. The four
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Figure 4. Polar view of magnetic field topology for November/December 2004 (top panels) and December 2005 (bottom panels). From left to right, the columns
show, respectively, the radial, azimuthal (i.e. toroidal), and meridional components of the large-scale magnetic field (with concentric circles and ticks as in
Fig. 3). Magnetic field strengths are saturated at 350 G, with red shades representing positive values and blue shades negative values.

detections reveal equatorial regions spinning faster than the polar
ones, which correspond to a solar-like shear. We additionally list in
Table 3 the colatitude θ c at which the system rotates with the orbital
period and the colatitude and rotation rate of the spots’ gravity centre
(θ s and �s).

For an independent check that the error bars on the differential
rotation parameters we derived are reliable, we constructed 10
bootstrapped data sets for both epochs of observation (2004 Novem-
ber/December and 2005 December). We repeated the procedure
described in this section for the bootstrapped data sets and derived
10 differential rotation measurements for each Stokes profile. We
find that the mean values of �eq and d� agree within error bars
with the values quoted in Table 3 and that the dispersion on these
two parameters is consistent with the error bars derived from the χ2

maps. Moreover, the mean value of the error bars derived from the
χ2 maps is similar to those quoted in Table 3.

7 BALM ER LIN ES

The H α line is often used as tracer of magnetic activity in stars. Fig. 6
displays the dynamical spectra of H α for both observing epochs. We
find that in both data sets, H α is modulated with orbital phase, being
weakest at phase 1.0, i.e. when the WD is behind the K2 star, and
strongest at phase 0.5, i.e. when the WD is in front of the K2 star.
The equivalent width reveals a peak-to-peak modulation amplitude
of about 1.6 Å with a maximum emission reaching −0.5 Å in 2004
November/December and −0.6 Å in 2005 December (see Fig. 7). A
similar modulation pattern is also visible in the core of other active
lines (see Appendix C).

By comparing the dynamical spectra of H α at both epochs, we
detect an additional emission component moving in phase with the
WD star in the 2004 data set. A Gaussian fit to the spectral signature
around phase 0.75 yields an equivalent width of about −0.33 Å and
a full width at half-maximum of 1.95 Å. We interpret this extra
emission as a prominence trapped in the magnetic field of the K2
dwarf. From the semi-amplitude of its signature in the dynamic
spectrum (210 ± 38 km s−1 in the rest frame of the K2 star), we
can infer that the corresponding plasma is located at a distance of
2.35 ± 0.43 R� from the centre of the K2 star towards the WD, i.e.
at a distance of only 1.23 R� from the WD. Although less obvious,
a similar signature can also be identified in H β after the removal of
the stellar contribution (here assumed to be well represented by the
prominence free spectra obtained in 2005 – see Fig. C1). Fig. 8 shows
the resulting spectra, where regions within ±v sin i were masked
to emphasize the prominence signature. From the isolated profile
around phase 0.75, we estimate an H β equivalent width of about
−0.096 Å, implying a Balmer H α to H β decrement factor of 3.4.

8 D ISCUSSION

We analysed spectropolarimetric data of the close binary system
V471 Tau acquired in 2004 November/December and 2005 Decem-
ber. Photospheric lines of the K2 dwarf companion were identified
after correcting for the orbital motion of the system (Section 4.1).
We used ZDI to characterize the surface distribution of brightness
and magnetic features at the surface of the K2 dwarf from the shapes
and rotational modulation of Stokes I and V profiles. We discuss
below the main results of this paper and how they contribute to the
understanding of the various physical effects we aimed at studying.
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Magnetic field of the K2 dwarf V471 Tau 1975

Figure 5. χ2 maps in the differential rotation plane obtained with reconstructions of the brightness distribution (left-hand panels) and with reconstructions of
the magnetic topology (right-hand panels). Top plots show the results for 2004 November/December data and bottom ones for 2005 December data. Confidence
levels up to 5σ (11σ for Stokes I data collected in 2005) are shown in colours and are computed with respect to the χ2 minima. The circles and 1σ error bars
indicate the centre of the χ2 distribution given by equations 2 and 3 in Donati et al. (2003b), with the measurements of 2004 shown in red and those of 2005 in
blue. Note that we repeated the four differential rotation measurements in each panel to aid comparisons.

Table 3. Differential rotation parameters derived from our 2004 November/December and 2005 December observations. Columns 2–7 show results obtained
from Stokes I data and columns 8–13 those obtained with Stokes V data. Equatorial rates �eq are listed in columns 2 and 8, while differential rotation rates d�

are shown in columns 3 and 9 along with 1σ error bars for both quantities. For future reference, we also provide the colatitude of co-rotation (θ c), the colatitude
of the gravity centre of the spot/magnetic distribution (θ s; Donati et al. 2000), and the rotation rate at this colatitude (�s). The number of data points (n) used in
each image reconstruction is provided in columns 7 and 13.

Stokes I / Brightness reconstruction Stokes V / Magnetic field reconstruction
Epoch �eq d� θ c θ s �s n �eq d� θ c θ s �s n

(rad d−1) (mrad d−1) (◦) (◦) (rad d−1) (rad d−1) (mrad d−1) (◦) (◦) (rad d−1)

2004 12.106 ± 0.001 100 ± 5 44 ± 2 65 12.088 27572 12.116 ± 0.008 129 ± 23 46 ± 8 57 12.078 6344
2005 12.091 ± 0.001 73 ± 2 46 ± 1 57 12.069 48800 12.083 ± 0.004 48 ± 12 40 ± 15 59 12.070 11590

8.1 Spot and magnetic structures

We applied ZDI to our 2004 November/December and 2005 De-
cember data sets to reconstruct the brightness and magnetic maps at
the surface of the K2 dwarf component of V471 Tau. Our brightness
maps exhibit a cool off-centred polar spot and a hot ring-like structure
at low-latitude. The brightness maps we reconstruct resemble previ-
ous results obtained with similar techniques in 1992/1993 (Ramseyer

et al. 1995) and 2002 (Hussain et al. 2006), especially at high
latitudes. This implies that polar spots are long-lived at the surface
of the K2 dwarf, as they are on the single-star analogue AB Dor
(e.g. Donati et al. 2003a). The spot coverage we derive (14 per cent
and 17 per cent in 2004 November/December and 2005 December,
respectively) are in good agreement with what is expected from
photometry (in the range 15–25 per cent, see Section 2) suggesting
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1976 B. Zaire, J.-F. Donati and B. Klein

Figure 6. Dynamical spectra of H α line, in the rest frame of the K2
dwarf, for observations in late 2004 (top) and December 2005 (bottom).
The vertical dashed lines correspond to the stellar rotational broadening of
±v sin (i). Sine waves of amplitudes 150 km s−1 (centre of mass), 210 km s−1

(prominence position), and 320 km s−1 (WD position) are overplotted on the
2004 dynamical spectrum. Weak features from telluric lines, noticeable by
its sinusoidal behaviour, remained after the removal procedure.

that most of the brightness spots generating photometric fluctuations
in V471 Tau are large enough to be detected and resolved by Doppler
imaging.

The magnetic maps we obtained in this work are the first recon-
structions achieved for the K2 dwarf V471 Tau (Fig. 4). The unsigned
average magnetic flux at the surface of the star is ∼200 G, including
a ∼100 G dipole component inclined at 20–60◦ to the rotation axis.
We note changes in the field topology between the 2 epochs, e.g. an

Figure 7. Rotational modulation in the H α equivalent width. Red symbols
show the data collected in 2004 November/December and the blue ones the
data from 2005 December.

Figure 8. Dynamical spectra of H β in 2004 after the removal of the stellar
contribution (see text). Sine waves match the ones described in Fig. 6 and
regions within ±v sin i were masked for clarity.

increase in the strength of the toroidal component (from 30 to 40
per cent of the reconstructed magnetic energy) and in the fractional
energy of the dipolar component (from 15 to 45 per cent). However,
we caution that such changes may at least partly reflect the improved
phase coverage in our second observing session.

8.2 Differential rotation and angular momentum distribution

We detect differential rotation at the surface of the K2 dwarf at
both epochs of observation (Table 3). In 2004, we found that the
brightness and magnetic maps are sheared by d� = 100 ± 5 and
129 ± 23 mrad d−1, respectively; whereas, in 2005, these shears
dropped to d� = 73 ± 2 and 48 ± 12 mrad d−1. These results differ
from that of Hussain et al. (2006), who found an almost solid body
rotation (d�= 1.6 ± 6 mrad d−1) for the star in 2002, already offering
some tentative evidence for fluctuations in the surface shear on a short
time-scale (∼2 yr). Furthermore, this finding reflects those of Donati
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Magnetic field of the K2 dwarf V471 Tau 1977

Figure 9. Differential rotation at the K2 dwarf’s surface obtained with our
2004 November/December (red) and 2005 December (blue) data sets with
±1σ level provided. The measurement of Hussain et al. (2006) in 2002 (�eq =
12.0547 ± 0.001 rad d−1 and d� = 1.6 ± 6 mrad d−1) is the green cross and
the angular velocity if the star was rotating as a solid body at the orbital angular
velocity of the binary system, i.e. � = 2π /Porb, the black dot. A linear fit
of these six quantities (dashed line) returns the following relationship �eq =
(0.48 ± 0.02)d� + (12.056 ± 0.002) rad d−1. For comparison, we include
shear measurements reported for the analogue AB Dor (purple circles; Donati
et al. 2003b; Jeffers et al. 2007), after scaling the x-axis to the same rotation
rate so that measurements for both stars can be compared.

et al. (2003b) who identified similar fluctuations in the single-star
analogue AB Dor.

Our results show at both epochs that the magnetic topology
suffers a different shear than the brightness distribution, which may
reflect that brightness and magnetic features are anchored at different
depths within the convective zone. Following Donati et al. (2003b),
we propose to interpret the temporal fluctuations in the surface
differential rotation of the K2 dwarf in terms of redistribution of
angular momentum within the convective zone as the star progresses
on its activity cycle. Assuming angular momentum conservation
in the convective zone, they found that variations in �eq and d�

should be correlated. For instance, in stars with a Sun-like angular
rotation profile (varying with latitude and independent of radius), the
correlation shows up as

�eq = 0.2d� + �0, (3)

where �0 = 2π /Prot. On rapid rotators, however, where angular
rotation is constant along cylinders according to Taylor–Proudman
theorem, the correlation takes the following form:

�eq = λd� + �0, (4)

where λ is a parameter related to the second and fourth-order moment
of the fractional radius. For AB Dor and the K2 component of V471
Tau, λ is expected to be about 0.52 (Donati et al. 2003b).

Fig. 9 shows the various existing estimates of differential rotation
obtained so far for the K2 dwarf of V471 Tau. The linear fit to these
values (in rad d−1), including a solid-body rotation at the orbital

period, yields the following trend:

�eq = (0.48 ± 0.02)d� + (12.056 ± 0.002) rad d−1. (5)

The slope we get, λ = 0.48 ± 0.02, is consistent with expectations
that rotation is constant on cylinders in stars rotating as fast as the
K2 dwarf, as expected from the Taylor–Proudman theorem.

In previous theoretical studies on close binaries, tides were
claimed to be capable of quenching surface differential rotation
(e.g. Scharlemann 1981, 1982). However, the shears reported in this
work, as well as those of the HD 155555 binary system (Dunstone
et al. 2008), do not confirm this conclusion. In particular, our result
indicates that surface differential rotation in close binary stars is not
specific to young stars like HD 155555. We also note that temporal
fluctuations in the surface differential rotation of the K2 dwarf of
V471 Tau tend to be larger than those reported for AB Dor (see purple
circles in Fig. 9; Donati et al. 2003b; Jeffers et al. 2007), which may
reflect the impact of tidal forces on dynamo processes. Nevertheless,
it is noteworthy that in both stars shear variations follow the same
trend in the �eq − d� plane (Fig. 9), which is further evidence in
favour of our interpretation that angular rotation is constant along
cylinders in the convective zone of these two similar active stars.

8.3 Origin of ETV in V471 Tau

We consider the different models proposed to explain the ETVs
observed in the V471 Tau system in light of our results. Whereas the
existence of a third body to explain ETVs is not completely ruled
out, its existence currently seems unlikely (Hardy et al. 2015).

In the Applegate (1992) mechanism, period modulations are an
outcome of a cyclic redistribution of angular momentum induced by
a dynamo mechanism operating within the active companion. The
exchange of angular momentum throughout the activity cycle affects
the star’s oblateness, causing a modulation in the quadrupole moment
and, therefore changing the gravity in the orbital plane. When the
quadrupole moment of the K2 star increases, the WD approaches
the companion and the system’s orbital period decreases to conserve
angular momentum (and vice versa).

Several authors questioned whether the Applegate mechanism
could explain the ETVs of close binaries (Lanza 2005, 2006;
Völschow et al. 2018), since the cyclic exchange of angular mo-
mentum required in this model demands large shear fluctuations
to explain typical period modulations (e.g. �P/Porb � 8.5 × 10−7

for V471 Tau; cf. Lanza 2020). In particular, for post-common-
envelope binary systems in which the active companion has a
radiative core, Völschow et al. (2018) found that a relative differential
rotation d�/� � 1 per cent (compatible with our results range 0.4–
1.1 per cent) can only lead to period variations �10−7, thus making
it unlikely to occur in V471 Tau. However, because our observations
were undertaken during a phase in the ETV cycle when the observed
minus predicted eclipse timings are maximum, and therefore when
the orbital period is more or less nominal (i.e. equal to the mean
orbital period quoted in Table 1), our measurements would have
sampled intermediate values of the shear (expected to scale with
the orbital period) rather than the maximum possible value for
the K2 dwarf in the context of the Applegate framework. Surface
shears larger by almost an order of magnitude than those we
detected are thus expected to be present when the orbital period
is minimum if the Applegate mechanism is to explain the reported
orbital period fluctuations, which remains to be investigated with
more observations.

An alternative mechanism requiring weak shear fluctuations
(d�/� ∼ 0.004 per cent) was recently suggested to operate in
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1978 B. Zaire, J.-F. Donati and B. Klein

Figure 10. Potential field extrapolations of the large-scale radial field
obtained with ZDI reconstructions in 2004 (top panel) and 2005 (bottom
panel). Field lines are seen at rotational phase 0.75. The local strength of
the magnetic field (G) at the surface of the star is shown in colours and
open/closed lines are depicted in yellow/black. For this extrapolation, we
assumed a source surface located 3.5 R� beyond which all field lines break
open, e.g. under the impact of centrifugal forces. The WD star (black circle)
and the prominence detected in 2004 (red circle) are also shown. Field lines
crossing the prominence are coloured in magenta.

V471 Tau (Lanza 2020). Like in the Applegate model, the new
mechanism proposes that ETVs are caused by gravity changes in
the orbital plane, with the main difference being the nature of the
variations. Lanza (2020) showed that if the K2 dwarf harbours a
stationary non-axisymmetric magnetic field (instead of the dynamo
modulated field invoked in the Applegate model), then an internal
torque is introduced in the system forcing the magnetic structures
to oscillate. Two distinct solutions were found for the magnetic
structures whose orientation changes with respect to the star, a
libration around phase 0.5 or circulation at a constant rate. In
V471 Tau, Lanza (2020) found a 70-yr modulation period for the
magnetic field for both libration and circulation models to account
for the observed orbital period fluctuations of 35 yr. These models
required magnetic field strengths at the base of the convective zone
in the range of 8–17 kG, implying surface fields of a few kG. In
order to assess whether this model is quantitatively compatible with

Figure 11. Schematic view of the binary system V471 Tau in the presence
of a prominence. Distances to the centre of mass and to the Lagrange points
L1 and L3 are indicated by CM, L1, and L3 (= −2.58 R�x̂), respectively.
The size of the binaries and the prominence were kept in scale, where the
prominence was approximated by a spherical blob with radius � ∼ 0.50 R�

(see text).

observations, additional data similar to those analysed in this work
must be acquired over the time span of the orbital period modulation.

8.4 Magnetic activity and prominences

We find that in our spectra of V471 Tau, H α exhibits a behaviour
similar to that reported in the literature (e.g. Bois, Lanning &
Mochnacki 1991; Young, Rottler & Skumanich 1991; Vaccaro &
Wilson 2002; Kaminski et al. 2007), i.e. strongest when the WD is in
front of the K2 star. Rottler et al. (2002) suggested that tidal forces in
the binary system are able to trigger active longitudes at the surface of
the K2 dwarf where the activity is enhanced with respect to the other
side of the star. Potential field extrapolation of the surface radial field
can help us visualize the magnetic field topologies obtained in our
study (Fig. 10). Indeed, in 2005, the dipole field component, which
largely dictates the overall geometry of the corona at a distance of a
few stellar radii, seems to be oriented towards the azimuth of the WD.
However, in 2004, nothing obvious shows up from the distribution of
field lines. Admittedly, these potential field extrapolations are likely
to be no more than rough descriptions of the magnetosphere, since
we did not take in to account the gravitational impact of the WD.

Fig. 11 shows the schematic view of the system. In our 2004
November/December observations, the H α dynamical spectrum
reveals the presence of a prominence at a stable location in the
rotation frame over the seven rotation cycles of our observing run.
Similar results are reported in previous studies on the activity of
V471 Tau (e.g. Young et al. 1991; Rottler et al. 2002). We find the
prominence to be located at 2.35 ± 0.43 R� from the centre of the
K2 dwarf, farther away towards the WD than the centre of mass
of the system (located at 1.679 ± 0.004 R� from the centre of the
K2 dwarf) and the Lagrange point L1 (located at 1.84 ± 0.02 R�).
Therefore, closed loops of the stellar magnetosphere likely extend
out to few stellar radii and can maintain the slingshot prominence
for at least seven rotation cycles (Steeghs et al. 1996; Jardine et al.
2020). Indeed, we can identify from the potential field reconstruction
in 2004 some closed field lines that reach, and are potentially able to
confine, the observed prominence (see Fig. 10).

The spectral signature of the prominence indicates a Balmer
decrement I(H α)/I(H β) ≈ 3.4. Although the assumption of optically
thin emission is not strictly true given the Balmer decrement we
measure, we none the less use it to derive a lower estimate for the
mass density of the detected prominence, whose emission is mostly
due to radiative recombination of hydrogen atoms. We assume that
the prominence is a spherical blob with radius l = 0.50 R� (computed
from the FWHM of H α) and a temperature of 5000 K. From the
prominence flux fH α = 2.1 × 10−13 erg s−1 cm−2, we use the mass
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Magnetic field of the K2 dwarf V471 Tau 1979

density expression derived by Steeghs et al. (1996; their equation
3) to compute ρ = 4 × 10−14 g cm−3. Accordingly, we can use
the volume of the blob to derive an estimate of the prominence
mass of 6 × 1018 g. Our mass estimation is three to four orders
of magnitude greater than large prominences in the Sun (≈1015 g;
Hudson, Bougeret & Burkepile 2006) and one order of magnitude
greater than the mass range derived for the prominences around
AB Dor (2–10 × 1017 g; e.g. Collier Cameron & Robinson 1989;
Collier Cameron et al. 1990).

We estimate the minimum magnetic tension in the loop necessary
to hold the prominence through the inequality

B2

4πRc
≥ ρgeff, (6)

where B and Rc are, respectively, the field strength and the curvature
radius at the top of the loop, ρ is the prominence density, and geff is the
effective gravity acting on the gas accounting also for the centrifugal
acceleration (see Steeghs et al. 1996). We follow previous authors
and adopt a typical field curvature radius of Rc = 0.30 R� (e.g. Donati
et al. 2000), keeping in mind that if the loop is further bended a lower
field strength would be required to hold the prominence. The effective
gravity inside the prominence features a sharp gradient, ranging from
	geff = 2.5 m s−2 x̂ in the prominence regions closest to the L1 point

up to 	geff = 485 m s−2 x̂ in the prominence regions facing the WD,
with an intermediate value of 	geff = 132 m s−2 x̂ in the prominence
central regions. With ρ = 4 × 10−14 g cm−3, we find that the B
field required to hold the prominence material ranges from 2 to 22 G
depending on whether the magnetic loop crosses the orbital plane on
the sides of the prominence that are closest to or farthest from the K2
star, and to a strength of 11 G at the centre of the prominence. These
field estimates tend to be larger than the values of the extrapolated
field (see Fig. 10) we derive within the prominence (ranging from 8
to 2 G for the sides of the prominence that are closest to or farthest
from the K2 star, respectively), especially in the prominence section
closest to the WD. This suggests that the prominence region closest
to the L1 point is the most stable against centrifugal ejection, unless
the field lines at the top of the loop are bent to a larger extent
than what we assumed here. Our results therefore suggest that the
observed prominence is indeed likely sustained against centrifugal
ejection by a slingshot mechanism, as already documented for several
cataclysmic variables in the past (Steeghs et al. 1996).

As the WD is known to be magnetic, we can expect magnetosphere
from both system stars to interact. Previous studies explored possible
signatures from reconnection events at the magnetosphere interface
(Patterson, Caillault & Skillman 1993; Lim, White & Cully 1996;
Nicholls & Storey 1999). In the light of our result and given the
dipole field of 350 kG reported for the WD (Sion et al. 1998, 2012),
we can estimate the location of the magnetosphere interface between
both components of V471 Tau, which we find to be located at a
distance of about 3.07 R� from the K2 star and 0.516 R� from the
WD (given the dipole field of ∼100 G found on the K2 star). From
this magnetospheric interaction, we can expect increased activity at
the surface of the K2 dwarf when the WD is in front of the K2
star (phase 0.5), in qualitative agreement with what is observed (see
Fig. 7).

9 SU M M A RY

In our work, we reconstructed for the first time the large-scale
magnetic field at the surface of the K2 dwarf and reported new de-
tection of its surface differential rotation. The strong shear we found
demonstrates that the K2 dwarf can be differentially rotating and is

not always rotating as a solid body, as previous observations may
have suggested (Hussain et al. 2006). Moreover, our results provide
evidence for temporal variations in the surface shear of the K2 dwarf,
making it even more similar to its single-star analogue AB Dor.
Our findings highlight the importance of further investigation of
the V471 Tau system in order to understand the impact of binary
companions on the dynamo processes operating in the convective
layers of low-mass stars. In particular, as differential rotation is
expected to amplify toroidal magnetic fields, new spectropolarimetric
observations of V471 Tau should allow us to study a potential
connection between temporal variations in differential rotation and
the underlying dynamo processes (e.g. through observations of
polarity changes in the magnetic topology).

Furthermore, additional magnetic maps will probe the long-term
effects of the K2 dwarf’s magnetism on the V471 Tau system, invoked
as the potential cause of the observed ETVs (e.g. Applegate 1992;
Lanza 2020). As a follow-up study, we plan to monitor the system
at a number of different phases of the ETV modulation cycle, in
particular those at which the orbital period gets close to its minimum
and maximum values, expected to correspond to the phase of the
maximum and minimum shear in the framework of the Applegate
mechanism. Monitoring the temporal evolution of the large-scale
magnetic topology of the K2 dwarf of V471 Tau will also allow
us to improve our understanding of the prominence stability and
lifetime and determine their impact on the overall rate at which such
prominences participate in the angular momentum loss of the whole
system.
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A P P E N D I X A : J O U R NA L O F O B S E RVAT I O N S

This appendix contains the information on the V471 Tau spectropo-
larimetric data used in this study. Table A1 shows the summary
of observations for the 2004 November/December campaign and
Table A2 shows the information for the observational campaign in
2005 December.
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Magnetic field of the K2 dwarf V471 Tau 1981

Table A1. Summary of ESPaDOnS/CFHT observations for V471 Tau in 2004. Columns 1 to 4, respectively, record
(i) the date of observation, (ii) the UT time at mid sub-exposure, (iii) the time in Heliocentric Julian Date (HJD) in
excess of 2453 337 d, and (iv) the rotation cycle of each observation (computed using equation 1). Total exposure
times (texp) correspond to the sum of the four sub-exposures times used to compute each circularly polarization profile.
Column 5 illustrates peak SNR values for the Stokes V spectrum (per 1.8 km s−1 spectral pixel) and column 6 indicates
the profiles excluded in the ZDI analysis. The root-mean-square (rms) noise level in the circular polarization profiles
produced by LSD is given in column 8. The last two columns list the longitudinal field B� and its corresponding 1σ

error bar.

Date UT HJD E texp SNR Comment σLSD B� σB�

(2004) (h:m:s) (2, 453, 337+) (s) (10−4) (G) (G)

Nov 28 08:53:48 0.87674 0.986 220 4 × 200 180 1.6 −40 29
Nov 28 09:16:41 0.89262 1.016 689 4 × 200 178 1.6 5 30
Nov 28 09:34:47 0.90520 1.040 826 4 × 200 185 1.6 5 28
Nov 29 05:54:13 1.75200 2.665 590 4 × 200 172 1.8 25 32
Nov 29 06:11:40 1.76412 2.688 845 4 × 200 172 1.8 −9 31
Nov 29 06:29:11 1.77627 2.712 157 4 × 200 178 1.7 −24 30
Nov 29 06:46:46 1.78849 2.735 604 4 × 200 182 1.7 24 30
Nov 29 07:07:13 1.80269 2.762 849 4 × 200 185 1.6 7 28
Nov 29 07:24:39 1.81479 2.786 066 4 × 200 180 1.6 15 28
Nov 29 07:42:06 1.82691 2.809 321 4 × 200 191 1.5 −38 27
Nov 29 07:59:31 1.83901 2.832 537 4 × 200 182 1.6 −3 28
Nov 29 08:16:56 1.85110 2.855 734 4 × 200 181 1.6 0 28
Nov 29 08:59:03 1.88035 2.911 857 4 × 200 173 1.7 −82 30
Nov 29 09:16:28 1.89244 2.935 054 4 × 200 181 1.6 −60 28
Nov 29 09:33:52 1.90453 2.958 251 4 × 200 165 1.8 −46 32
Nov 29 10:05:09 1.92625 2.999 925 4 × 200 148 2.1 18 38
Nov 29 10:24:18 1.93954 3.025 425 4 × 200 103 3.0 −92 55
Nov 29 10:41:50 1.95172 3.048 795 4 × 200 113 2.7 31 49
Nov 29 10:59:22 1.96390 3.072 165 4 × 200 127 2.3 0 42
Nov 29 11:21:27 1.97923 3.101 579 4 × 200 48 Bad SNR
Nov 29 11:38:58 1.99139 3.124 910 4 × 200 75 4.3 34 78
Nov 29 11:56:27 2.00354 3.148 222 4 × 200 95 3.4 115 61
Nov 29 12:14:41 2.01620 3.172 513 4 × 200 90 3.6 −48 65
Nov 29 12:32:12 2.02837 3.195 864 4 × 200 39 Bad SNR
Nov 29 12:49:45 2.04056 3.219 253 4 × 200 75 4.9 −76 89
Nov 29 13:42:45 2.07736 3.289 862 4 × 200 72 Bad SNR
Nov 29 14:00:22 2.08959 3.313 327 4 × 200 117 2.6 20 48
Nov 29 14:17:56 2.10178 3.336 717 4 × 200 106 3.2 −93 58
Dec 01 06:13:29 3.76531 6.528 549 4 × 200 134 2.4 −32 44
Dec 01 06:31:03 3.77751 6.551 957 4 × 200 163 1.9 17 34
Dec 01 06:48:43 3.78978 6.575 500 4 × 120 113 2.9 66 53
Dec 01 07:00:50 3.79820 6.591 655 4 × 120 109 2.9 −78 52
Dec 01 07:12:58 3.80662 6.607 811 4 × 120 85 3.8 33 69
Dec 01 07:25:07 3.81505 6.623 986 4 × 120 69 Bad SNR
Dec 01 07:37:14 3.82347 6.640 141 4 × 120 100 3.2 −20 57
Dec 01 07:51:09 3.83313 6.658 676 4 × 120 138 2.1 35 38
Dec 01 08:03:16 3.84154 6.674 812 4 × 120 143 2.1 21 38
Dec 01 08:39:43 3.86686 6.723 394 4 × 200 164 1.8 −55 32
Dec 01 08:57:12 3.87900 6.746 687 4 × 200 127 2.5 −32 45
Dec 01 09:14:40 3.89113 6.769 961 4 × 200 150 2.0 40 36
Dec 01 09:32:09 3.90326 6.793 235 4 × 200 143 2.1 −52 37
Dec 01 09:49:36 3.91539 6.816 509 4 × 200 133 2.3 −4 41
Dec 01 10:07:36 3.92789 6.840 493 4 × 200 76 4.4 −63 80
Dec 01 10:25:03 3.94000 6.863 728 4 × 200 91 3.8 27 68
Dec 01 10:42:27 3.95209 6.886 926 4 × 200 173 1.7 −41 30
Dec 01 10:59:52 3.96418 6.910 123 4 × 200 165 1.8 −81 32
Dec 01 11:17:19 3.97629 6.933 358 4 × 200 164 1.8 −74 32
Dec 01 11:35:34 3.98897 6.957 688 4 × 200 166 1.7 −59 31
Dec 01 11:53:00 4.00108 6.980 923 4 × 200 157 1.8 2 33
Dec 01 12:10:27 4.01320 7.004 178 4 × 200 147 2.0 −32 36
Dec 01 12:27:53 4.02531 7.027 414 4 × 200 146 1.9 3 35
Dec 01 12:45:18 4.03740 7.050 611 4 × 200 136 2.0 34 36
Dec 01 13:06:35 4.05217 7.078 950 4 × 200 135 2.4 −10 43
Dec 01 13:24:11 4.06440 7.102 416 4 × 200 149 2.0 −1 36
Dec 01 13:41:52 4.07668 7.125 978 4 × 200 146 2.0 37 36
Dec 01 14:09:47 4.09607 7.163 182 4 × 200 139 2.2 −50 39
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1982 B. Zaire, J.-F. Donati and B. Klein

Table A2. Same as Table A1 but for acquisitions in 2005..

Date UT HJD E texp SNR Comment σLSD B� σB�

(2005) (h:m:s) (2, 453, 337+) (s) (10−4) (G) (G)

Dec 14 05:16:29 381.72517 731.724 073 4 × 200 138 2.3 12 41
Dec 14 05:35:60 381.73872 731.750 072 4 × 200 142 2.2 60 39
Dec 14 05:52:50 381.75041 731.772 502 4 × 200 146 2.1 49 38
Dec 14 06:09:39 381.76209 731.794 912 4 × 200 144 2.1 28 38
Dec 14 06:26:27 381.77375 731.817 284 4 × 200 141 2.2 71 39
Dec 14 06:46:03 381.78737 731.843 417 4 × 200 107 3.1 88 56
Dec 14 07:02:52 381.79904 731.865 808 4 × 200 122 2.7 131 48
Dec 14 07:19:39 381.81070 731.888 181 4 × 200 145 2.1 40 38
Dec 14 07:36:27 381.82236 731.910 553 4 × 200 140 2.2 5 40
Dec 14 07:55:41 381.83572 731.936 187 4 × 200 139 2.3 1 40
Dec 14 08:30:56 381.86019 731.983 138 4 × 200 141 2.3 −8 40
Dec 14 08:47:52 381.87196 732.005 721 4 × 200 131 2.5 14 45
Dec 14 09:04:40 381.88362 732.028 093 4 × 200 138 2.3 11 41
Dec 14 09:21:37 381.89539 732.050 676 4 × 200 122 2.5 5 46
Dec 14 09:49:16 381.91459 732.087 515 4 × 200 131 2.4 −69 43
Dec 14 10:06:11 381.92634 732.110 060 4 × 200 134 2.3 −69 42
Dec 14 10:23:14 381.93817 732.132 759 4 × 200 123 2.6 48 47
Dec 14 10:40:13 381.94997 732.155 399 4 × 200 128 2.6 −101 46
Dec 14 10:57:48 381.96218 732.178 827 4 × 200 113 2.8 −42 51
Dec 14 11:14:36 381.97385 732.201 218 4 × 200 105 3.1 −12 56
Dec 14 11:31:38 381.98567 732.223 897 4 × 200 75 4.8 −140 87
Dec 14 11:48:25 381.99734 732.246 289 4 × 200 73 Bad SRN
Dec 14 12:06:04 382.00958 732.269 774 4 × 200 104 3.3 −91 60
Dec 14 12:22:54 382.02127 732.292 203 4 × 200 104 3.2 −67 58
Dec 14 12:40:28 382.03348 732.315 631 4 × 200 73 Bad SNR
Dec 14 12:58:17 382.04585 732.339 365 4 × 200 61 Bad SNR
Dec 16 04:45:48 383.70375 735.520 395 4 × 200 140 2.3 −26 41
Dec 16 05:02:23 383.71527 735.542 499 4 × 200 161 1.9 −25 35
Dec 16 05:19:00 383.72681 735.564 641 4 × 200 167 1.8 −69 33
Dec 16 05:35:39 383.73837 735.586 821 4 × 200 172 1.8 −32 31
Dec 16 05:55:51 383.75239 735.613 721 4 × 200 173 1.8 −20 31
Dec 16 06:12:37 383.76404 735.636 074 4 × 200 174 1.7 9 30
Dec 16 06:29:28 383.77574 735.658 523 4 × 200 177 1.7 26 30
Dec 16 06:46:11 383.78735 735.680 800 4 × 200 179 1.7 21 29
Dec 16 07:06:05 383.80116 735.707 297 4 × 200 180 1.7 61 29
Dec 16 07:22:42 383.81270 735.729 439 4 × 200 184 1.6 14 29
Dec 16 07:39:25 383.82431 735.751 715 4 × 200 179 1.6 −17 29
Dec 16 08:03:45 383.84121 735.784 141 4 × 200 182 1.6 52 29
Dec 16 08:20:29 383.85283 735.806 437 4 × 200 177 1.7 −6 30
Dec 16 08:37:06 383.86437 735.828 579 4 × 200 166 1.8 28 32
Dec 16 08:54:00 383.87610 735.851 085 4 × 200 172 1.8 −14 32
Dec 16 09:13:16 383.88949 735.876 777 4 × 200 165 1.8 90 33
Dec 16 09:30:07 383.90119 735.899 226 4 × 200 160 1.9 −7 34
Dec 16 09:46:45 383.91273 735.921 368 4 × 200 154 2.0 34 35
Dec 16 10:03:21 383.92427 735.943 509 4 × 200 155 2.0 27 35
Dec 16 10:20:51 383.93642 735.966 822 4 × 200 151 2.0 80 36
Dec 16 10:37:39 383.94808 735.989 194 4 × 200 159 1.9 65 35
Dec 16 10:54:16 383.95962 736.011 336 4 × 200 147 2.1 30 38
Dec 16 11:10:54 383.97117 736.033 497 4 × 200 141 2.2 2 40
Dec 16 11:28:23 383.98331 736.056 790 4 × 200 136 2.2 16 40
Dec 16 11:45:09 383.99495 736.079 124 4 × 200 138 2.2 6 40
Dec 16 12:01:47 384.00650 736.101 285 4 × 200 133 2.4 −25 43
Dec 16 12:18:27 384.01807 736.123 484 4 × 200 124 2.6 −25 47
Dec 16 12:45:17 384.03670 736.159 230 4 × 200 126 2.6 −7 47
Dec 16 13:02:10 384.04843 736.181737 4 × 200 122 2.7 −42 50
Dec 18 04:31:44 385.69386 739.338 840 4 × 200 143 2.2 −26 40
Dec 18 04:48:25 385.70546 739.361 097 4 × 200 151 2.0 −83 36
Dec 18 05:07:34 385.71875 739.386 597 4 × 200 158 1.9 5 35
Dec 18 05:24:13 385.73032 739.408 796 4 × 200 165 1.8 −52 33
Dec 18 05:41:03 385.74201 739.431 226 4 × 200 173 1.7 −42 31
Dec 18 05:57:45 385.75360 739.453 464 4 × 200 174 1.7 −22 31
Dec 18 06:15:15 385.76576 739.476 795 4 × 200 171 1.8 −28 32
Dec 18 06:31:60 385.77738 739.499 091 4 × 200 170 1.8 5 32
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Magnetic field of the K2 dwarf V471 Tau 1983

Table A2 – continued

Date UT HJD E texp SNR Comment σLSD B� σB�

(2005) (h:m:s) (2, 453, 337+) (s) (10−4) (G) (G)

Dec 18 06:49:04 385.78923 739.521 828 4 × 200 175 1.7 −32 31
Dec 18 07:05:53 385.80091 739.544 238 4 × 200 163 1.8 −26 33
Dec 18 07:27:07 385.81566 739.572 539 4 × 200 163 1.8 −50 32
Dec 18 08:04:07 385.84135 739.621 831 4 × 200 180 1.6 9 29
Dec 18 08:20:48 385.85293 739.644 049 4 × 200 178 1.6 −10 29
Dec 18 08:37:23 385.86445 739.666 153 4 × 200 179 1.6 −10 29
Dec 18 08:54:12 385.87613 739.688 564 4 × 200 185 1.6 12 29
Dec 18 09:12:37 385.88891 739.713 085 4 × 200 184 1.6 12 28
Dec 18 09:29:21 385.90054 739.735 399 4 × 200 188 1.6 69 28
Dec 18 09:46:12 385.91224 739.757 848 4 × 200 183 1.6 6 29
Dec 18 10:02:51 385.92380 739.780 028 4 × 200 179 1.7 1 30
Dec 18 10:20:26 385.93600 739.803 437 4 × 200 178 1.7 8 30
Dec 18 10:37:09 385.94762 739.825 732 4 × 200 178 1.7 92 30
Dec 18 10:53:49 385.95919 739.847 932 4 × 200 180 1.7 −20 30
Dec 18 11:10:31 385.97078 739.870 169 4 × 200 181 1.7 −14 30
Dec 18 11:28:13 385.98307 739.893 750 4 × 200 181 1.7 20 30
Dec 18 11:44:54 385.99466 739.915 988 4 × 200 179 1.7 58 29
Dec 18 12:01:42 386.00632 739.938 360 4 × 200 179 1.7 −4 30
Dec 18 12:18:29 386.01798 739.960 733 4 × 200 175 1.7 0 30
Dec 18 12:35:59 386.03014 739.984 064 4 × 200 163 1.9 6 33
Dec 20 04:29:28 387.69218 743.173 038 4 × 200 150 2.1 −36 38
Dec 20 04:47:10 387.70447 743.196 619 4 × 200 150 2.1 −104 37
Dec 20 05:03:45 387.71598 743.218 703 4 × 200 156 2.0 −113 36
Dec 20 05:20:31 387.72763 743.241 056 4 × 200 164 1.9 −172 34
Dec 20 05:37:32 387.73944 743.263 716 4 × 200 162 1.9 −81 34
Dec 20 05:55:18 387.75178 743.287 393 4 × 200 157 2.0 −60 35
Dec 20 06:11:58 387.76335 743.309 592 4 × 200 154 2.0 −115 36
Dec 20 06:28:41 387.77495 743.331 849 4 × 200 144 2.1 −42 39
Dec 20 06:45:27 387.78660 743.354 202 4 × 200 155 2.0 −1 36
Dec 20 07:03:14 387.79895 743.377 898 4 × 200 158 1.9 −56 34
Dec 20 07:43:06 387.82664 743.431 027 4 × 200 161 1.9 −54 34
Dec 20 08:00:32 387.83874 743.454 244 4 × 200 159 1.9 −18 34
Dec 20 08:18:17 387.85107 743.477 902 4 × 200 153 2.0 24 36
Dec 20 08:35:51 387.86326 743.501 291 4 × 200 172 1.8 −52 32
Dec 20 08:53:22 387.87543 743.524 641 4 × 200 157 1.9 −18 34
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APPENDIX B: FIT TO STOKES PRO FILES

Figs B1 and B2 show the variations of the unpolarized profiles
for 2004 November/December and 2005 December, respectively.

The observed profiles are shown as black lines and the maximum-
entropy fit as red lines. Similarly, circularly polarized profiles are
shown in Figs B3 (2004 November/December) and B4 (2005
December).

Figure B1. Observed (black line) and modelled (red line) Stokes I profiles of the V471 Tau K2 dwarf component, collected in 2004 November/December.
Individual observations are shifted vertically for display purposes. The rotation cycle of each observation is indicated on the right and the velocities of ±v sin i
are illustrated as dashed vertical lines.
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Magnetic field of the K2 dwarf V471 Tau 1985

Figure B2. Same as Fig. B1 but for the 400 Stokes I spectra collected in 2005 December.
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Figure B3. Observed (black line) and modelled (red line) Stokes V profiles of the V471 Tau K2 dwarf component, collected in 2004 November/December.
Individual observations are shifted vertically for display purposes. The rotation cycle of each observation is indicated on the right and ±1σ error bars on the left
of each profile.
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Figure B4. Same as Fig. B3 but for the 95 Stokes V spectra collected in 2005 December.

MNRAS 504, 1969–1988 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/504/2/1969/6225809 by guest on 12 O
ctober 2021



1988 B. Zaire, J.-F. Donati and B. Klein

APPEN D IX C : PROX I ES OF MAG N E T IC
AC TIV ITY

Fig. C1 displays the activity indicators H β, ca II H and K and ca II

infrared triplet for both observing epochs.

Figure C1. Dynamical spectra collected in 2004 November/December (top panel) and 2005 December (bottom panel). From left to right, H β, Ca II H and K,
and Ca II IRT lines are shown in the rest frame of the K2 dwarf. The dashed vertical lines illustrate velocities of ±v sin i. Note that H β is blended with two
emission lines located at −240 km s−1 (∼485.7 nm) and 300 km s−1 (∼486.7 nm).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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ABSTRACT
Observations of the eclipsing binary system V471 Tau show that the time of the primary eclipses varies in an apparent periodic
way.With growing evidence that the magnetically active K2 dwarf component might be responsible for driving the eclipse timing
variations (ETVs), it is necessary to monitor the star throughout the predicted ∼ 35 yr activity cycle that putatively fuels the
observed ETVs. We contribute to this goal with this paper by analysing spectropolarimetric data obtained with ESPaDOnS at
the Canada-France-Hawaii Telescope in December 2014 and January 2015. Using Zeeman-Doppler Imaging, we reconstruct the
distribution of brightness inhomogeneities and large-scale magnetic field at the surface of the K2 dwarf. Compared to previous
tomographic reconstructions of the star carried out with the same code, we probe a new phase of the ETVs cycle, offering new
constraints for future works exploring whether a magnetic mechanism operating in K2 dwarf star is indeed able to induce the
observed ETVs of V471 Tau.
Key words: Magnetic fields – stars: magnetic field – stars: imaging – stars: individual: V471 Tau – binaries: eclipsing –
techniques: polarimetric

1 INTRODUCTION

Several eclipse binary systems display periodic eclipse timing varia-
tions (ETVs) when considering a linear ephemeris to predict the time
of mid-eclipse (Lanza et al. 1998; Lanza & Rodonò 1999; Zorotovic
& Schreiber 2013; Bours et al. 2016). It is estimated that around 90
per cent of the post-common-envelope binary (PCEB) systems dis-
play ETVs (Zorotovic& Schreiber 2013). Themain explanations that
have been proposed to account for the existence of ETVs are associ-
ated with the presence of circumbinary bodies perturbing the orbit of
the system (Irwin 1952) or magnetically induced gravitational modu-
lations caused by an active star in the system (Applegate & Patterson
1987; Applegate 1992; Lanza et al. 1998; Lanza 2005, 2006, 2020;
Völschow et al. 2016, 2018). In most cases, ETVs are attributed to
circumbinary planet/sub-stellar components that, given their mass
and orbital distance, can explain the periodicity and amplitude of
ETVs (Parsons et al. 2010; Rappaport et al. 2013; Conroy et al.
2014; Marsh et al. 2014; Hajdu et al. 2019; Marcadon et al. 2020;
Papageorgiou et al. 2021). However, recent investigations showed
that caution must be taken when interpreting ETVs as caused by
circumbinary objects (e.g., Marsh 2018). In particular, some of the
circumbinary objects inferred from the ETVs have been refuted after-
wards using dynamical stability analysis (Horner et al. 2011, 2012,
2014; Wittenmyer et al. 2012; Marsh 2018; Mai & Mutel 2021) or
high-resolution direct imaging of the systems (e.g. V471 Tau, Hardy
et al. 2015).
V471 Tau is a close binary system consisting of a K2 dwarf main-

sequence star and a hot white dwarf (Nelson & Young 1970). The
system has a short orbital period of %orb = 0.5211833875 day (Vac-

★ E-mail: bonnie.zaire@irap.omp.eu

caro et al. 2015) and due to tides the K2 dwarf is forced to rotate
nearly synchronously with the orbital period (%rot ≈ %orb). As in
most PCEBs, cyclic ETVs are observed in V471 Tau with typical
modulations of semi-amplitude Δ%/%orb ≈ 8.5 × 10−7 (where
Δ% is the difference between the observed orbital period minus the
mean orbital period %orb) and periodicity of 30–35 yr (Kundra &
Hric 2011; Vaccaro et al. 2015; Marchioni et al. 2018; Lanza 2020).
Guinan & Ribas (2001) analysed whether the gravity influence of a
hypothetical third body could lead to the ETVs of the system. The
authors found that V471 Tau would need a brown dwarf component
with a mass of ≈ 0.0393 ± 0.0038M� and a semi-major axis of
11.2± 0.4AU to reconcile the amplitude and periodicity of the ETV
cycle. However, an image of V471 Tau obtained with SPHERE at the
Very Large Telescope (VLT) refuted the existence of the brown dwarf
(Hardy et al. 2015). This view is supported by Vanderbosch et al.
(2017), who dismissed the brown dwarf component using different
arguments based on the lack of temporal variations of the rotational
period of the white dwarf (that otherwise should vary with the same
periodicity of the ETVs due to the barycenter wobbling).

Alternative effects of magnetic origin have thus been put forward
as the most probable cause of ETVs in V471 Tau (e.g., Applegate
1992;Völschow et al. 2016;Navarrete et al. 2018, 2020; Lanza 2020).
Despite differences between the proposed models, a common feature
that they all share relies on the magnetism of the active component in
V471 Tau – i.e., the K2 dwarf star. The Applegate effect (Applegate
1992) explains ETVs as an indirect outcome of the redistribution
of angular momentum within the convective zone of the K2 dwarf
throughout a magnetic cycle. The main idea behind the model is
that the redistribution of angular momentum causes temporal mod-
ulation of the gravitational quadrupole moment of the K2 dwarf.
This increases (resp. decreases) the gravitational field at the orbital
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plane forcing the white dwarf component to orbit closer to (resp.
further from) the K2 dwarf and with shorter (resp. longer) periods
to conserve the total angular momentum of the system (thus creat-
ing ETVs). Besides, activity studies suggest a cyclic nature for the
magnetism of the K2 dwarf yielding a putative period of about 13 yr
(İbanoǧlu et al. 2005; Kamiński et al. 2007; Pandey & Singh 2008;
Kővári et al. 2021). However, the feasibility of the Applegate mech-
anism in V471 Tau has been debated ever since Applegate (1992) as
it requires significant variations of the differential rotation that are
yet to be detected at the surface of the K2 dwarf (see discussions of
Lanza 2005, 2006; Völschow et al. 2016, 2018; Zaire et al. 2021).

Lanza (2020) proposed a new mechanism that requires lower vari-
ations of the differential rotation at the surface of the K2 dwarf to
explain the ETVs. This new model is based on the existence of a
non-axisymmetric gravitational quadrupole moment induced by a
non-axisymmetric stationary field throughout the convective zone of
the K2 dwarf. Similar to the Applegate effect, the idea behind the
Lanza effect is that the modulation of the gravitational field along the
line joining both stars generates ETVs.However, theLanza effect pro-
vides a novel approach to the source of variation of the gravitational
field, which results from a non-axisymmetric stationary magnetic
field that is forced to librate around the Lagrange L1 point of the
system or to circulate monotonically in the orbital plane. The Lanza
mechanism has been shown to reduce by at least an order of mag-
nitude the required fluctuation amplitude of the differential rotation
with respect to the Applegate effect. Nevertheless, in order for the
Lanza effect to explain the ETVs of V471 Tau the non-axisymmetric
field needs to librate/circulate with a period of 70 yr, which disagrees
with the 13 yr activity cycle proposed with current observations of
the K2 dwarf (Kővári et al. 2021). Therefore, the origin of ETVs on
V471 Tau is still unclear and the demonstratingwhether anApplegate
effect, a Lanza effect, or another effect of magnetic origin operates
in the system requires dedicated studies of the K2 dwarf magnetism.

Recently, Zaire et al. (2021, hereafter Paper I) reported first large
scale surface magnetic maps and offered new differential rotation
measurements of the K2 dwarf for two different epochs (Novem-
ber/December 2004 and December 2005). They found that the
K2 dwarf exhibits significant fluctuations in its differential rotation
amplitude (ranging from the solar value to about twice the solar dif-
ferential rotation in a year) and it is not always rotating as a solid
body as it was reported to in an early study (Hussain et al. 2006). De-
spite providing key information to disentangle the magnetic effects
proposed to explain ETVs in V471 Tau, this initial study only probed
a maximum of the ETVs cycle at which differential rotation is not
expected to peak in the Applegate scenario. Additional surface maps
and shear measurements probing different phases of the ETV cycle
are thus still needed to determine the fluctuation amplitude of the
surface shear and to search for a possible long term evolution, per-
haps following the prediction of Applegate or Lanza, of the surface
magnetic field of the K2 dwarf.

In this study, we reconstruct new large-scale magnetic field maps
and perform new differential rotation measurements of the K2 dwarf
of V471 Tau in December 2014/January 2015, probing a new phase
of the ETV modulation cycle in which the observed orbital period is
close to the mean orbital period %orb = 0.5211833875 day (Vaccaro
et al. 2015). Section 2 describes the spectropolarimetric observations
and, Section 3, presents the tomographic reconstructions and the
differential rotation measurements. Finally, we discuss our results
and conclude in Section 4.
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Figure 1. Observed Stokes � LSD profiles at the rotational phase 0.6 (dotted
lines) and absorption line profile computed for an unspotted star with E sin 8 =
89.3±0.1 (black continuous line). The two profiles correspond to observations
at the same rotational phase in 2014.9 (red) and 2015.1 (blue). Rotational
cycles (starting from cycle 21470) are indicated.

2 OBSERVATIONS

We use spectropolarimetric observations of V471 Tau collected with
ESPaDOnS at theCanada-France-Hawaii Telescope. The optical spec-
tropolarimeter ESPaDOnS covers wavelengths from 370 to 1, 000 nm
at a resolving power of 65, 000 (Donati 2003; Donati et al. 2006a).
Our data set consists of 236 unpolarised (Stokes �), and 59 circularly
polarised (Stokes +) profiles acquired in 11 nights spread between
20 December 2014 and 12 January 2015. Circularly polarised spec-
tra are computed combining 4 sub-exposures of 200 s each taken
at different orientations of the polarimeter retarders combined in an
optimal way to minimize potential spurious signatures and to remove
systematics in the circularly polarised spectra (Donati et al. 1997).
The data reduction was carried out with the pipeline Libre-ESpRIT
optimized for ESPaDOnS observations (Donati et al. 1997). The ob-
servational logbook is given in Table A1. Circularly polarised spectra
showpeak signal-to-noise ratios (SNRs) ranging from122 to 212 (per
1.8 km s−1 spectral pixel), with a median of 184. Orbital cycles � are
computed according to the ephemeris of Vaccaro et al. (2015):

HJED = 2445821.898291 + 0.5211833875 × �, (1)

where phase 0.5 corresponds to the K2 dwarf mid-eclipse (i.e., when
the white dwarf is in front of the K2 star). Moreover, because the
K2 dwarf rotates nearly synchronously, its rotational cycle is equal
to the orbital cycle � .
In order to generate averaged photospheric lines of the K2 dwarf

with enhanced SNRs, we applied Least-Squares Deconvolution
(LSD) (LSD ) on all absorption lines with a relative depth of at
least 10% with respect to the continuum. Figure 1 shows two ex-
ample Stokes � LSD profiles obtained at rotational phase 0.6 using
the same K2 dwarf absorption line mask detailed in Paper I. Ob-
served Stokes � LSD profiles show clear distortions with respect to
the absorption line shape of an unspotted stellar surface assuming a
light-of-sight projected equatorial velocity of E sin 8 = 89.3 ± 0.11
(Vaccaro et al. 2015, Paper I). These Stokes � signatures provide ev-
idence for brightness inhomogeneities at the surface of the K2 dwarf
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Figure 2. Tomographic reconstruction of the K2 dwarf surface using both 2014.9 and 2015.1 data sets. The star is shown in a flattened polar view with concentric
circles representing 30◦ steps in latitude. Ticks outside the star indicate the rotational phase of our observations. The first plot shows the brightness distribution,
where cool spots are shown as brown shades and warm plages as blue shades. The following plots show respectively the radial, azimuthal, and meridional
components of the large-scale mangetic field in spherical coordinates. Magnetic fields are expressed in Gauss, with positive values represented in red shades and
negative in blue.

star (i.e., signatures within±E sin 8), similar to what was found in pre-
viousDoppler images of this star (Ramseyer et al. 1995; Hussain et al.
2006; Paper I; Kővári et al. 2021). Moreover, the shape difference
of line profiles collected at the same rotational phase but different
rotation cycles suggests that the brightness distribution evolves on a
timescale of a few weeks.

3 RESULTS

We apply ZDI to the time series of Stokes � or Stokes+ LSD profiles
to simultaneously reconstruct the surface brightness distribution and
the large-scale magnetic field topology. To do so, ZDI models the
stellar surface as a grid of a few thousand cells, whose individual
contributions for the total synthetic Stokes profiles are computed
using the analytical solution of Unno-Rachkovsky to the polarised
radiative transfer equations in a Milne-Eddington atmosphere (see
Landi Degl’Innocenti & Landolfi 2004). The ZDI code inverts the
observed LSD profiles into surface images using a conjugate gradient
algorithm that searches for the maximum-entropy image that repro-
duces the data down to a reduced j2 of about unity (Donati et al.
1989; Brown et al. 1991; Donati & Brown 1997; Donati et al. 2006b).
The entropy of each image is computed considering individual cells
for the brightness maps, while it is a function of spherical harmonics
coefficients for the magnetic maps. As in Paper I, the magnetic field
expansion is limited to spherical harmonics with ℓ ≤ 15.
Our tomographic reconstruction follows closely the procedures

described in Paper I, where we reconstructed brightness and large-
scale magnetic surface maps of the K2 dwarf V471 Tau at two early
epochs (2004.9 and 2005.9). In a first step, we use ZDI to optimise
the orbital motion correction by reconstructing surface spots from
our set of Stokes � profiles. Using a fixed semi-amplitude of  =
149.3 km s−1 (Paper I), we reconstruct several brightness surface
maps by varying the systemic velocity (EW) and phase offset (q0)
assuming the ephemeris of Equation 1. We find that, at constant
information at the surface of the star, the best parameters reproducing
the observations are EW = 35.0 ± 0.10 km s−1 and q0 = 0.0025 ±
0.0005.
In all the image reconstructions that follow, we use the orbital

parameters derived above to correct the spectra from Doppler shifts
before applying ZDI.

3.1 Brightness and magnetic imaging

We first attempt at reconstructing the surface maps of the K2 dwarf
star using the LSD profiles collected in 2014.9 and 2015.1. Applying
ZDI to the Stokes � LSD profiles (Stokes+ LSD) shows that the data
can only be fitted down to a reduced j2 of 1.47 (1.15) when assuming
that the star rotates as a solid body. When assuming differential
rotation (see Section 3.2), the Stokes � data can now be fitted down
to a reduced j2 of 1.10 and Stokes + data to 1.07.
Figure 2 shows the maps obtained after including differential rota-

tion in our image reconstruction process. The brightness map recov-
ered for the combined 2014.9 and 2015.1 data set shows inhomoge-
nieties with respect to the unperturbed photosphere (with an effective
temperature of 5066K). It features a cool polar cap with low-latitude
appendages that extend down to 30◦ latitude. As in Paper I, we find
that warm low-contrast plages forming a partial ring structure are
also present at low latitudes. We find that 10% of the stellar surface
is covered with cool spots and 8% with warm plages.
The reconstructed large-scale magnetic field is also shown in Fig-

ure 2. We find an average magnetic field strength of 360G. It shows
up from the surface maps that strong negative radial fields (reach-
ing strengths up to 500G) overlap with the high-contrast cool spots
forming the polar cap. The overall magnetic topology that we ob-
tain is dominated by the poloidal component, whereas the toroidal
magnetic energy accounts for 25% of the total energy. The poloidal
field features a strong dipole mode (containing 60% of the poloidal
energy), while other spherical harmonics modes with order ℓ ≥ 4
contribute altogether to 30% of the poloidal energy. We also find that
75% of the poloidal energy is stored in axisymmetric modes with
< < ℓ/2. The dipolar component has a polar strength of 335G and
is tilted by 7◦ towards phase 0.87.

3.1.1 Short-term variability

We find that even after including differential rotation in our image
reconstruction process, the total data set can only be fitted down to a
reduced j2 of 1.1 when using Stokes � profiles and 1.07 when using
Stokes + . This suggests that the surface brightness and magnetic
maps evolve on a timescale of a few weeks. To explore whether a
short-term evolution indeed occurs, we split the total data set in two.
The first subset gathers spectra from 2014.9 (totalling 132 Stokes �
profiles and 33 Stokes + spread over 6 non-consecutive nights) and
the other combines spectra from 2015.1 (104 Stokes � profiles and
26 Stokes + collected over 5 nights).
Figure 3 shows the spot coverage at different iterations of the ZDI
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Figure 3. Spot coverage ( 5spot) as a function of the reduced j2 for a to-
mographic reconstruction process aiming at a low value of reduced j2 and
including differential rotation (see Section 3.2). Curves with different colors
show reconstructions using different Stokes � data sets (see legend). Black cir-
cles highlight the values when the spot coverage sharply rises for a decreasing
reduced j2.

reconstruction processwhenwe aim at fitting the time series of Stokes
� profiles at a progressively lower reduced j2. The data illustrates
how ZDI adds spots at the stellar surface to better fit the observations.
We can see in this figure is that the spot coverage sharply increases
below a given reduced j2 (whose value depends on the data set).
This behavior suggests that below this reduced j2 threshold, the
tomographic imaging process starts to fit noise features present in
the data. Using the slope of the curves in Figure 3 as a criteria to
define the reduced j2 at which the ZDI reconstruction process aims,
we find that the Stokes � subsets of 2014.9 and 2015.1 can be fitted
down to a reduced j2 of 1.0 and 0.9, respectively.
Figure 4 shows the brightness and magnetic maps obtained for the

individual subsets including differential rotation. Whereas the maps
derived in 2014.9 and 2015.1 look similar at first order, we observe
small differences reflecting an intrinsic evolution of the brightness
and magnetic field of the K2 dwarf. Starting from the brightness
maps, we note a visible decrease in the contrast of the cool spot at
the polar cap and tiny azimuthal rearrangements in the distribution
of warm plages. As a result, the K2 dwarf surface appears slightly
less spotted in 2015.1. We find that warm plages cover 7% of the
surface in both maps, while dark spots covered 10% of the stellar
surface in 2014.9 and 9% in 2015.1. Regarding magnetic maps,
we find that the negative radial field covers a larger portion of the
North pole in 2014.9 than 2015.1 (see Figure 4). As expected, the
brightness and magnetic maps derived from the original data set
(Figure 2) resemble an average of the individual maps derived from
the subsets. Table 1 summarises the magnetic properties derived
from the split and original data sets. We assess the uncertainties
in the image reconstruction process using the bootstrap technique
detailed in Paper I.

Table 1. Magnetic field proprieties of the K2 dwarf star. Brms is the root-
mean-square field, Bdip is the dipolar strength, and Epol is the fractional
energy in the poloidal field. Eℓ=1, Eℓ=2, Eℓ=3 and Eℓ≥4 are, respectively,
the fractional energies of the dipolar, quadrupolar, octupolar, and multipolar
(defined as ℓ ≥ 4) components.

Data set
2014.9/2015.1 2014.9 2015.1

Brms (G) 360 ± 7 415 ± 5 335 ± 6
Bdip (G) −335 ± 20 −440 ± 35 −250 ± 26
\dip (◦) 7 ± 5 9 ± 2 9 ± 3
Epol (%) 75 ± 5 80 ± 5 70 ± 3
Eℓ=1 (%) 55 ± 5 60 ± 9 45 ± 7
Eℓ=2 (%) 5 ± 5 5 ± 2 5 ± 2
Eℓ=3 (%) 5 ± 2 5 ± 2 5 ± 2
Eℓ≥4 (%) 35 ± 4 30 ± 9 45 ± 7

3.2 Differential rotation

As mentioned in Subsection 3.1, the global data set 2014.9/2015.1
cannot be fitted down to a reduced j2 of 1 as a result of tempo-
ral evolution of surface maps. One of the potential sources for this
evolution is the presence of differential rotation at the surface of the
K2 dwarf star.
The ZDI code allows one to explore whether stars rotate differ-

entially by searching for recurrent distortions in the line profiles of
our spectropolarimetric time series (Donati et al. 2000). To do so,
ZDI incorporates in the image reconstruction process a predefined
latitudinal differential rotation law given by

Ω(\) = Ωeq − dΩ sin2 (\), (2)

where Ω is the latitudinal angular velocity profile, \ is the lati-
tude, Ωeq is the angular velocity at the equator, and dΩ is the dif-
ference between Ωeq and the angular velocity at the pole. Bright-
ness and magnetic maps are thus individually reconstructed for each
pair of (Ωeq, dΩ) values, with a j2 value attributed to each tomo-
graphic reconstruction (carried out at constant information content
for all pairs of differential rotation parameters). Figure 5 shows the
resulting confidence levels for the differential rotation parameters,
when reconstructing the brightness surface distribution (i.e., using
Stokes � alone) and the magnetic topology (i.e., using Stokes +
alone). Using the minimum of the paraboloid and its local curva-
ture to retrieve the optimal shear parameters and corresponding error
bars (Donati et al. 2003), we obtain dΩ = 60 ± 1mrad d−1 and
Ωeq = 12.084 ± 0.001 rad d−1 from the j2 distribution using Stokes
�, and dΩ = 42±3mrad d−1 andΩeq = 12.077±0.001 rad d−1 from
the j2 distribution using Stokes + . As in Paper I, these results again
suggest that brightness inhomogeneities and magnetic structures are
sheared by different amounts.

3.3 HU variability

The variability of HU in V471 Tau has been reported by several au-
thors (Young et al. 1991; Rottler et al. 2002; Kővári et al. 2021,Paper
I). The dynamical spectra of the HU line in 2014.9/2015.1 is plotted
in Figure 6. Starting with the radial velocity range within ±E sin(8),
we identify that HU exhibits the typical rotational modulation at the
the K2 dwarf surface. HU is in emission on the stellar hemisphere that
faces the white dwarf and in absorption on the opposite hemisphere.
The HU equivalent width reveals a peak-to-peak amplitude of about
1.2Å with a maximum emission of −0.5Å at phase 0.5.
Further, we observe a modulated emission with an amplitude of
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Figure 4. ZDI reconstruction of the individual subsets of 2014.9 (top panels) and 2015.1 (bottom panels). Surface maps are illustrated in a similar fashion to
Figure 2.
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Figure 5. Differential rotation measurements obtained with the sheared-
imagingmethod using Stokes � or Stokes+ profiles. Contour levels represent
confidence levels up to 5 f. Black circles represent the best-fit obtained after
assuming a paraboloid distribution.

205± 40 km s−1 in the rest frame of the K2 dwarf (see Figure 6). We
speculate that this emission is due to a stable prominence trapped
at 2.30 ± 0.45R★ from the K2 dwarf (or, equivalently, at 1.29 ±
0.45R★ from the white dwarf component). We find a full width
at half maximum (FWHM) of 1.89Å and an equivalent width of
about −0.17Å when fitting a Gaussian to the prominence emission
at phase 0.75. Assuming that the prominence is spherical, we estimate
a prominence radius of about 0.50R★ from its FWHM emission in
HU.

Figure 6. Dynamical spectra of HU shown in the rest frame of the K2 dwarf.
Red shades indicate that HU is in emission and green shades in absorption.
The vertical dashed lines correspond to the stellar rotational broadening of
±E sin(8) . Sine waves of amplitudes 150 km s−1 (center of mass), 205 km s−1

(prominence position), and 320 km s−1 (white dwarf position) are over-plotted
as dashed-dotted lines.
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4 DISCUSSIONS AND CONCLUSIONS

In this paper, we analysed new spectropolarimetric data of the binary
system V471 Tau collected from 20 December 2014 to 12 January
2015with ESPaDOnS. Using Zeeman-Doppler imaging, wemodelled
time series of LSD Stokes � and+ profiles to recover new brightness
and magnetic maps of the K2 dwarf component of V471 Tau.

4.1 Brightness map, magnetic field topology, and differential
rotation

Our brightness image reveals a strong cool polar cap in
2014.9/2015.1. This result is confirmed by an independent Doppler
imaging reconstruction using a different inversion code (Kővári et al.
2021). Along with previous brightness maps (Ramseyer et al. 1995;
Hussain et al. 2006; Paper I), we find that the cool polar cap seen in
the star surface is stable in a timescale of years. The spot coverage
of ≈ 18% derived in 2014.9/2015.1 is in good agreement with what
is expected from photometry (in the range 15–25%, see Paper I)
suggesting that most of the brightness spots generating photometric
fluctuations in V471 Tau are large enough to be detected and resolved
by Doppler imaging.
The reconstructed large scale magnetic field shows a dominant

poloidal component that accounts for about 75% of the magnetic
energy in 2014.9/2015.1. This value is slightly larger than those
observed in 2004.9 and 2005.9, whose fractional poloidal energy
corresponded to 70% and 60%, respectively. Moreover, we find that
the dipole strength in 2014.9/2015.1 is about 3.6 times stronger than
that in 2004.9 and 2005.9.
We also confirmed that the surface of the K2 dwarf is differen-

tially rotating. We measured an equatorial to pole angular velocity
difference of 60 and 42mrad d−1 from spot and magnetic structures,
respectively. This finding confirms the solar-like differential rota-
tion profile obtained for the star in 2004.9 and 2005.9 (Paper I).
Interestingly, the shear level inferred from our 2014.9/2015.1 data
set resembles closely those obtained nine years before (73 and 48
mrad d−1 in 2005.9; Paper I).

4.2 Magnetic activity

Studies of chromospheric/coronal activity indicators (Rottler et al.
2002;Kamiński et al. 2007; Pandey&Singh 2008;Kővári et al. 2021)
and long-term photometry (Skillman & Patterson 1988; İbanoǧlu
et al. 2005) of the K2 dwarf suggest an activity cycle of about 13 yr.
This potential activity cycle indicates that the two data sets analysed
in Paper I (2004.9 and 2005.9) occurred at activity minimum (span-
ning from late-2004 to late-2007), whereas the data set analysed in
this paper (2014.9/2015.1) took place close to activity maximum
(spanning from late-2011 to late-2014). Such scenario is indeed cor-
roborated by our large-scale magnetic field maps. We find that the
averaged unsigned magnetic field strength increased by about 2.2
times from the two first epochs (at activity minimum) to the last
epoch (at activity maximum). No such modulation is visible in the
brightness maps, which display a spot coverage of 14%, 17%, and
18% in 2004.9, 2005.9, and 2014.9/2015.1, respectively. This result
emphasizes that spot coverage may not always be an appropriate
observable to study activity cycles in very active rapidly rotating
stars.
The analysis of the HU emission in 2014.9/2015.1 shows a promi-

nence located farther than the Lagrange point L1 towards the white
dwarf component, and that remained stable during the entire observa-
tion window (44 rotation cycles). The prominence size and location

Figure 7. Potential field extrapolation of the large-scale radial magnetic field
reconstruction of the K2 dwarf obtained with ZDI in 2014.9/2015.1. Field
lines are seen at rotational phase 0.75 and are shown in yellow/black when the
lines are open/closed. The prominence is illustrated as a red circle, and the
field lines crossing the prominence are coloured in magenta. The local surface
field strength (G) of the star is shown in colours and follows the colour scale
on the right. A black circle indicates the white dwarf (WD) position; however,
its magnetic field is not considered in the potential field extrapolation.

we infer are consistent within error bars with the prominence prop-
erties derived in 2004.9 (Paper I). Using the prominence flux in
HU of 1.1 × 10−13 erg s−1 cm−2, we derive a prominence mass of
4 × 1018 g in 2014.9/2015.1 slightly smaller than that identified in
2004.9 of 6 × 1018 g (see Equation 3 in Steeghs et al. 1996). The
prominence mass-range of 4–6×1018 g is broadly consistent with
those derived for other K dwarf stars hosting prominences – e.g. K0
dwarf AB Dor (2-10×1017 g, e.g., Collier Cameron & Robinson
1989; Collier Cameron et al. 1990) and the K3 dwarf Speedy Mic
(0.5–2.3×1017 g, Dunstone et al. 2006).
As illustrated in Figure 7, the potential field extrapolation of the

radial magnetic field map that we derived for the K2 dwarf shows
closed loops of magnetic field that extend out from the surface and
reach the prominence location. This result is consistent with that of
Paper I and offers further qualitative proof that a slingshotmechanism
is likely responsible for confining the prominence further away from
the center of mass of the system and from the Lagrange point L1
(located at 1.679±0.004 R★ and 1.84±0.02 R★ from the center of the
K2 dwarf star, respectively). Slingshot mechanisms have been also
suggested to operate in single fast-rotating stars hosting prominences
at a few stellar radii above the stellar surface (see discussion in
Jardine & Collier Cameron 2019), such as AB Dor (Collier Cameron
& Robinson 1989; Waugh & Jardine 2019), HK Aqu (Byrne et al.
1996), LQ Lup (Donati et al. 2000), Speedy Mic (Dunstone et al.
2006; Waugh & Jardine 2019), V374 Peg (Vida et al. 2016), and
V530 Per (Cang et al. 2020, 2021).
Altogether, the potential field extrapolations available for the

K2 dwarf V471 Tau show that when a prominence is seen in the sys-
tem (2004.9 and 2014.9/2015.1) close loops of magnetic lines reach
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Figure 8. Observed minus computed eclipse timing variations of V471 Tau assuming the linear ephemeris given by Equation 1. Crosses represent O-C
measurements from eclipse timings and circles the O-C values estimated from the phase offset q0 multiplied by the orbital period (shown with 1-f errorbars).
The black square gives the single eclipse timing measure using K2 data (Muirhead et al. 2021), corresponding to HJD 2457097.1816484 in Terrestrial Time
(TT) scale (see Eastman et al. 2010). The vertical dashed line marks the next campaign scheduled to observe V471 Tau at ESPaDOnS.

the prominence location, whereas when no prominence is detected
(2005.9) only open field lines are found at the expected prominence
location (see details about previous reconstructions in Paper I). This
finding indicates that the evolution of the large-scale scale magnetic
field controls the rate at which stable prominences are generated in
V471 Tau.

4.3 ETVs in V471 Tau

The observed minus computed (O-C) eclipse timings available in the
literature for V471 Tau (cross symbols) are illustrated in Figure 8.
The data evidence the periodic behaviour of the ETVs in V471 Tau
with current observations yielding a modulation period of 30-40 yr
(Guinan & Ribas 2001; İbanoǧlu et al. 2005; Kundra & Hric 2011;
Marchioni et al. 2018) and an O-C amplitude ranging from 130 to
200 s (Kundra & Hric 2011; Marchioni et al. 2018) depending on
the ephemeris employed. To compare this trend with independent
measures, we use the phase offsets q0 available in the literature for
V471Tau to infer theO-C amplitude. This two quantities are expected
to scale as

O-C = q0 × %orb. (3)

We find an O-C amplitude of 158 ± 90 s in 2002.9 (green circle,
Hussain et al. 2006), 180 ± 9 s in 2004.9 (red, Paper I), 158 ± 9 s in
2005.9 (blue, Paper I), and 113 ± 23 s in 2014.9/2015.1 (yellow, this
paper).
The O-C values that we infer from Equation 3 agree with the

trend found using long-term photometry. They offer an independent
validation of the ETVs in V471 Tau as all the four phase offset
measurements considered take into account the presence of spots at
the surface of the K2 dwarf (see Section 3) that may otherwise affect
the eclipse timing measurements from photometry (Kalimeris et al.
2002). Furthermore, the intermediate value of O-C that we infer in
2014.9/2015.1 suggests that although the orbital period of the system
was decreasing from 2002.9 to 2015.1, it did not reach the minimum
orbital period recorded for V471 Tau (which took place around 1980,
i.e. when O-C crosses 0 going to negative values). As a result, the
observation reported in this paper did not probe the ETV cycle at
the phase of largest surface differential rotation as predicted if an

Applegate mechanism is indeed operating on V471 Tau. This result
is corroborated by the eclipse timing measure using photometric data
from the  2 mission acquired around 2015.2, which yields O-C =
169 s.
Similar to the findings of Paper I, we detect a relative differen-

tial rotation in 2014.9/2015.1 of dΩ/Ωeq = 0.5% and 0.4% using
Stokes � and Stokes + , respectively. These values are weaker than
what is needed for the feasibility of an Applegate mechanism in
V471 Tau. Considering the range of shears currently measured at
the surface of the K2 dwarf (ranging from 0.4 to 1.1%), the Ap-
plegate mechanism would drive ETVs with a semi-amplitude of
Δ%/%orb . 10−7 (Völschow et al. 2018) whereas V471 Tau displays
Δ%/%orb ≈ 8.5 × 10−7. Nevertheless, as our O-C estimation in
2014.9/2015.1 indicates that the system was not orbiting at the min-
imum orbital period expected for V471 Tau (i.e., when the largest
surface shear is expected in the framework of the Applegate mecha-
nism). It may be possible that higher values of dΩ/Ωeq occur at the
surface of the K2 dwarf and thus that the Applegate mechanism may
indeed be at work.
We suggest that spectropolarimetric observations in the upcom-

ing years will help understand whether the ETVs in V471 Tau are
magnetically-driven especially if they can probe the ETV cycle at the
expected phase of largest differential rotation. Forthcoming observa-
tions of V471 Tau with ESPaDOnS in 2021B were collected in this
purpose. Along with the tomographic maps already reconstructed
for the K2 dwarf, it will be possible to further investigate whether
the ETVs of V471 Tau are caused by the mechanism proposed by
Applegate (1992) or by Lanza (2020).
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APPENDIX A: JOURNAL OF OBSERVATIONS

The logbook of the spectropolarimetric observations of V471 Tau
used in this study is shown in Table A1.

APPENDIX B: STOKES SIGNATURES

Stokes � and Stokes+ profiles are given in Figures B1 andB2, respec-
tively. Observed Stokes LSD profiles are shown in red, and modelled
Stokes profiles are given in black. Modelled Stokes signatures are
associated with the surface maps obtained through independent ZDI
reconstructions using either the spectropolarimetric data set of De-
cember 2014 (top panels in Figure 4) or January 2015 (bottom panels
in Figure 4).
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Table A1. Summary of ESPaDOnS/CFHT observations for V471 Tau from December 2014 to January 2015. Columns 1 to 4 respectively record (i) the date of
observation, (ii) the UT time at mid sub-exposure, (iii) the time in Heliocentric Julian Date (HJD), and (iv) the rotation cycle of each observation. Column 5
illustrates peak SNR values for the Stokes + spectrum (per 1.8 km/s spectral pixel). Column 6 shows the RMS noise level of the Stokes + LSD profile.

Date UT HJD � SNR f!(�
(h:m:s) (2, 453, 337+) (21, 470+) (10−4)

20 Dec 2014 06:17:40 3674.76735 0.118441 202 1.5
20 Dec 2014 06:35:24 3674.77967 0.142079 207 1.5
20 Dec 2014 06:53:09 3674.79199 0.165718 200 1.5
20 Dec 2014 12:05:19 3675.00877 0.581656 137 2.5
20 Dec 2014 12:23:04 3675.02109 0.605294 134 2.5
20 Dec 2014 12:40:48 3675.03340 0.628914 122 2.9
21 Dec 2014 05:41:49 3675.74239 1.989260 194 1.6
21 Dec 2014 05:59:33 3675.75471 2.012899 195 1.6
21 Dec 2014 06:17:18 3675.76704 2.036556 193 1.6
21 Dec 2014 11:29:48 3675.98404 2.452917 182 1.8
21 Dec 2014 11:47:33 3675.99636 2.476555 179 1.8
21 Dec 2014 12:05:17 3676.00868 2.500194 165 2.0
22 Dec 2014 06:40:09 3676.78284 3.985582 187 1.7
22 Dec 2014 06:57:53 3676.79515 4.009202 196 1.6
22 Dec 2014 07:15:38 3676.80748 4.032859 198 1.6
22 Dec 2014 12:26:57 3677.02366 4.447646 176 1.9
22 Dec 2014 12:44:42 3677.03598 4.471285 178 1.9
22 Dec 2014 13:02:26 3677.04830 4.494923 157 2.1
28 Dec 2014 08:56:52 3682.87737 15.679221 205 1.5
28 Dec 2014 09:14:36 3682.88968 15.702840 209 1.5
28 Dec 2014 09:32:20 3682.90200 15.726479 184 1.7
29 Dec 2014 06:02:07 3683.75595 17.364961 196 1.6
29 Dec 2014 06:19:52 3683.76827 17.388600 198 1.6
29 Dec 2014 06:37:36 3683.78059 17.412238 189 1.6
29 Dec 2014 11:46:02 3683.99477 17.823188 194 1.6
29 Dec 2014 12:03:47 3684.00709 17.846826 191 1.7
29 Dec 2014 12:21:32 3684.01941 17.870465 182 1.8
30 Dec 2014 04:34:15 3684.69486 19.166458 193 1.6
30 Dec 2014 04:52:01 3684.70719 19.190115 196 1.6
30 Dec 2014 05:09:45 3684.71951 19.213754 203 1.6
30 Dec 2014 10:24:43 3684.93823 19.633414 210 1.5
30 Dec 2014 10:42:28 3684.95055 19.657053 210 1.5
30 Dec 2014 11:00:12 3684.96287 19.680691 212 1.5
07 Jan 2015 05:43:50 3692.74255 34.607644 133 2.5
07 Jan 2015 06:01:37 3692.75490 34.631341 138 2.4
07 Jan 2015 06:19:24 3692.76725 34.655037 168 1.9
07 Jan 2015 11:29:05 3692.98230 35.067655 162 2.0
07 Jan 2015 11:46:50 3692.99461 35.091275 152 2.2
07 Jan 2015 12:04:35 3693.00694 35.114932 144 2.3
08 Jan 2015 04:44:36 3693.70134 36.447285 202 1.6
08 Jan 2015 05:02:30 3693.71377 36.471134 202 1.6
08 Jan 2015 05:20:14 3693.72609 36.494773 202 1.5
08 Jan 2015 10:30:48 3693.94174 36.908543 191 1.7
08 Jan 2015 10:48:33 3693.95406 36.932181 188 1.7
08 Jan 2015 11:06:18 3693.96639 36.955839 191 1.7
09 Jan 2015 04:39:52 3694.69797 38.359529 189 1.7
09 Jan 2015 04:57:37 3694.71030 38.383187 189 1.7
09 Jan 2015 05:15:22 3694.72262 38.406825 193 1.6
09 Jan 2015 10:24:48 3694.93749 38.819099 191 1.7
09 Jan 2015 10:42:34 3694.94982 38.842756 190 1.7
09 Jan 2015 11:00:19 3694.96215 38.866414 178 1.8
10 Jan 2015 04:40:42 3695.69846 40.279180 182 1.7
10 Jan 2015 04:58:27 3695.71079 40.302838 177 1.8
10 Jan 2015 05:16:11 3695.72311 40.326476 183 1.8
10 Jan 2015 10:26:58 3695.93890 40.740515 190 1.7
10 Jan 2015 10:44:43 3695.95123 40.764172 190 1.7
10 Jan 2015 11:02:29 3695.96356 40.787830 180 1.8
12 Jan 2015 10:25:28 3697.93769 44.575614 198 1.6
12 Jan 2015 10:43:13 3697.95002 44.599271 195 1.7
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Figure B1. Stokes � profiles in 2014.9 (left) and 2015.1 (right) data sets.
Observed Stokes � LSD profiles are shown in red, whereas modelled obser-
vations are shown in black (see Section 3.1.1 for further details). All profiles
are equally shifted for illustration purposes. The rotation cycle of each obser-
vation is shown in the right.
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Figure B2. Stokes + profiles in 2014.9 (left) and 2015.1 (right) data sets.
Observed Stokes + LSD profiles are shown in red, whereas modelled obser-
vations are shown in black (see Section 3.1.1 for further details). All profiles
are equally shifted for illustration purposes. The rotation cycle of each obser-
vation is shown in the right and 1 f error bars in the left.
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ABSTRACT
Observations of surface magnetic fields of cool stars reveal a large diversity of configurations. Although there is now a consensus
that these fields are generated through dynamo processes occurring within the convective zone, the physical mechanism driving
such a variety of field topologies is still debated. This paper discusses the possible origins of dipole and multipole dominated
morphologies using three-dimensional numerical simulations of stratified systems where the magnetic feedback on the fluid
motion is significant. Our main result is that dipolar solutions are found at Rossby numbers up to 0.4 in strongly stratified
simulations, where previous works suggested that only multipolar fields should exist. We argue that these simulations are
reminiscent of the outlier stars observed at Rossby numbers larger than 0.1, whose large-scale magnetic field is dominated by
their axisymmetric poloidal component. As suggested in previous Boussinesq calculations, the relative importance of inertial
over Lorentz forces is again controlling the dipolar to multipolar transition. However, we find that this transition happens at a
higher level of turbulence in strongly stratified systems. Alternatively, we find that the ratio of kinetic to magnetic energies can
equally well capture the transition in the field morphology. Finally, we test the ability of this new proxy to predict the magnetic
morphology of a few M-dwarf stars whose internal structure matches that of our simulations and for which homogeneous
magnetic field characterization is available. The magnitude of the differential rotation obtained in our simulations is compared
to actual measurements reported in the literature for M-dwarfs.

Key words: magnetic fields – dynamo – MHD – convection – turbulence – methods: numerical

1 INTRODUCTION

Over the last decade, spectropolarimetric observations coupled to
tomographic inversion techniques enabled the reconstruction of the
large-scale magnetic topology that stars host at their surfaces. Cool
stars with significant convective envelopes (with spectral types later
thanG0) revealed a large diversity ofmagneticmorphologies (Donati
et al. 2008; Morin et al. 2010; Folsom et al. 2016, 2018). Fully con-
vective stars typically are found to harbour strong poloidal fields with
a significant dipolar component, while partly convective stars host
more complex magnetic topologies, consisting of non-axisymmetric
multipolar poloidal fields and significant toroidal fields (Donati &
Landstreet 2009). Although there is now a consensus that the mag-
netism of cool stars are generated through dynamo processes occur-
ring within the outer convective zones (see Brun & Browning 2017,
for a recent review on the subject), the physical mechanism driving
such a variety of large-scale field topologies is still debated.
The fact that both rotation and convection play a major role in the

stellar dynamo process is, however, well established (see e.g. activity
proxy studies of Mangeney & Praderie 1984; Noyes et al. 1984;
Pizzolato et al. 2003; Wright et al. 2011, 2018). Their joint effect
on the magnetic field generation becomes obvious when considering

★ E-mail: bonnie.zaire@irap.omp.eu

observational measurements of the large-scale fields of low-mass
stars as a function of the non-dimensional Rossby number (defined
as the ratio of inertial to Coriolis forces and traditionally computed
as '> = %rot/g, where g is the convective turnover time and %rot is
the rotation period of the star). The averaged surface field strength
〈�〉 shows two clear trends with the Rossby number. For '> > 0.1,
spectropolarimetric observations show that the large-scale magnetic
field of cool stars weakens with increasing Rossby number (Vidotto
et al. 2014; Folsom et al. 2016). This parameter region is often
called "the unsaturated regime" and follows 〈�〉 ∝ '>−1.40±0.10

(See et al. 2019), where the toroidal component of the large-scale
field is reported to weaken faster than the poloidal component (Petit
et al. 2008; See et al. 2015). As the Rossby number decreases below
the '> ∼ 0.1 threshold, cool stars enter the "saturated regime" in
which the large-scale field strength is roughly constant (Donati et al.
2008).

The Rossby number has also proved to be quite successful at distin-
guishing various magnetic field morphologies in stellar observations
(Morin et al. 2010; Folsom et al. 2018). Stars with masses lower
than 0.5M� and '> . 0.1 happen to have simple (dipole domi-
nated) surface magnetic fields, whereas most stars featuring more
complex surface fields tend to have larger Rossby numbers. Based on
these observational results, it has been argued that stellar magnetic
fields increase in complexity for stars with higher Rossby numbers.

© 2022 The Authors
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However, several stars harbouring complex field structures are found
to exist at low '> and a handful of stars hosting dipole-dominated
magnetic morphologies have been reported at large '> (with Rossby
numbers ranging from 0.2 to 0.3 – Donati et al. 2008; Folsom et al.
2016, 2018). These results indicate that although the Rossby number
may help at distinguishing between various generation mechanisms
for the stellar magnetic fields, other proxies need to be invoked to
clearly understand the transition between dipole-dominated andmore
complex field structures.
In the last two decades, numerical simulations mimicking the in-

terior of planets (and, to a lesser extent, stars) have focused on un-
derstanding the origins of the magnetic morphology produced by
convective dynamos. Parametric studies were conducted, using the
relative strength of the axial dipole as a topological diagnostic to char-
acterize the large-scale magnetic field. Geodynamo simulations with
a constant density across the convective zone (e.g., Christensen &
Aubert 2006; Olson & Christensen 2006; Sreenivasan & Jones 2006;
Soderlund et al. 2012) advocated that the Rossby number is indeed
a key factor regulating the magnetic morphology. These initial nu-
merical experiments suggested that dipole dominated morphologies
only occur when '> . 0.1 (commonly referred to as "the dipo-
lar branch"), while complex surface fields could exist at both low
and high Rossby numbers. Nevertheless, very recently Menu et al.
(2020) and Tassin et al. (2021) performed geodynamo simulations
to explore the influence of the Lorentz force on the dipole break-
down. The authors found that strong dipoles can be recovered at
high-Rossby numbers (up to '> = 0.18) provided that a significant
Lorentz force is acting on the fluid, challenging the canonical use
of the Rossby number to distinguish between dipolar and multipolar
field geometries. They suggested the ratio of inertial over Lorentz
forces as an alternative proxy to capture the dipolar-multipolar tran-
sition. We propose to test this appealing hypothesis when the effect
of a density contrast is introduced in the system.
Similar to what was initially found in geodynamo studies, stel-

lar dynamo simulations showed a dipolar-multipolar transition with
the Rossby number when considering weak density contrasts (Gas-
tine et al. 2012; Jones 2014). However, these studies found that the
dipolar branch disappeared for increasing density contrast. The ap-
parent disagreement between the magnetic morphology observed in
stars and those obtained in simulations of stratified flows raised the
important question of why numerical experiments were apparently
preventing dipoles from existing when the density contrast is more
realistic (Petitdemange & Raynaud 2019). Further explorations of
stratified flows with different physical properties showed that dipoles
could be recovered at '> . 0.1 when modifying the relative impor-
tance of the forces acting on the flow (Schrinner et al. 2014; Raynaud
et al. 2015). To our knowledge, the simulation of Yadav et al. (2015)
with '> = 0.04 corresponds to the highest density contrast in which
dipolar dynamos are reported to date. The authors obtained a strong
dipole after considering a reduced influence of the inertial force by
adopting a high ratio of viscous to thermal diffusions in a simulation
with a density contrast of #d = ln d8/d> = 5 (where d8 and d> are
the density at the bottom and top of the convective zone, respec-
tively). These various numerical experiments suggest that the dipole
collapse could be an artificial bias of the parameter space explored
with simulations. Thus, a close look at the force balance is needed to
assess if the chosen parameter regime is indeed relevant for stars.
In this work, we attempt at reproducing for the first time the dipole-

dominated field morphologies observed in some stars with '> >
0.1. To do so, we perform a systematic parametric study of 3D
convective dynamo simulations with different Rossby numbers and
density contrasts, both of which are important ingredients in the

stellar dynamo context. Guided by previous geodynamo studies, we
focus on regime where the Lorentz force is dynamically active on
the flow. The paper is organized as follows: we discuss our dynamo
model and the selected control parameters in Sec. 2. The magnetic
fieldmorphology obtained in our simulations is presented in Sec. 3.1,
while the physical mechanisms controlling it are explored in Sec. 3.2.
In Sec. 3.3.2, we examine more closely the magnetic field generation
in our simulations. Finally, we compare our results with previous
stellar and geodynamo simulations and explore their implications in
light of stellar observations in Sec. 4.

2 DYNAMO MODEL

2.1 Governing equations

Wemodel a stratified fluid in a spherical shell with inner radius Ai and
outer radius Ao that rotates with angular velocity Ω> about the axis
êz. We solve the non-dimensional magneto-hydrodynamics (MHD)
equations under the anelastic formulation of Braginsky & Roberts
(1995) and Lantz & Fan (1999), expressed by

�

[
mu
mC
+ (u · ∇)u

]
+ 2êI × u = −∇

(
?′

d̃

)
+ '0�

%A
6B′êr

+ 1
%<d̃

(∇ × B) × B + �
d̃
∇ · (,

(1)

mB
mC

= ∇ × (u × B) − 1
%<
∇ × (∇ × B), (2)

d̃)̃

[
mB′

mC
+ (u · ∇)B′ + Dr

dB̃
dA

]
=

1
%A
∇ · (d̃)̃∇B′) + %A�8

'0
&a

+ %A�8

%<2�'0
(∇ × B)2,

(3)

∇ · ( d̃u) = 0, (4)
∇ · B = 0, (5)

where u is the velocity field, B is the magnetic field, ( is the strain-
rate tensor, and &a is the viscous heating. Pressure and entropy
fluctuations (?′ and B′, respectively) are defined with respect to the
reference state (see Subsec. 2.2). We adopt a dimensionless formu-
lation where the reference length scale is Ao and the time is given in
units of ga = A2

o/a, where a is the fluid viscosity. The entropy scale
is set to Ao |dB̃/dA |A> , where |dB̃/dA |A> is the normalized background
entropy gradient at the outer boundary (see Sec. 2.2). The magnetic
field is given in units of

√
d>`_Ω>, where ` is the magnetic per-

meability and _ is the magnetic diffusivity. The gravity, density, and
temperature are normalised by their outer radius values given by 6>,
d>, and )>, respectively.
The dimensionless control parameters that appear in the equations

above are the Ekman number (�), Rayleigh number ('0), Prandtl
number (%A), magnetic Prandtl number (%<), and dissipation num-
ber (�8). They are defined as

� =
a

Ω>A2
o
, '0 =

6>A
4
o

2p^a

����dB̃dA

����
Ao

, %A =
a

^
, %< =

a

_
, �8 =

6>Ao
2p)>

,

where ^ is the thermal diffusivity and 2p is the specific heat at
constant pressure. We note that in the anelastic formulation adopted
here, a non-adiabatic reference state is used. This translates into
the appearance of a non-zero background entropy gradient dB̃

dA in
the entropy equation (Eq. 3). The details of this reference state are
discussed below.

MNRAS 000, 1–15 (2022)



Transition from multipolar to dipolar dynamos 3

Table 1.Critical Rayleigh numbers and azimuthal wavenumbers for our setup,
for the three different density contrasts used in our simulations. These numbers
are determined without taking into account the presence of a magnetic field.

#d Rac <2

1 1.92 × 107 32
1.5 2.40 × 107 37
3 3.56 × 107 39

2.2 Reference state

Thermodynamical quantities in Eqs. 1 to 3 are expressed in terms
of a reference (static) state and fluctuations around it. We adopt as
reference state a nearly adiabatic ideal gas for which we prescribe
the background entropy gradient dB̃

dA . We then deduce the reference
temperature and density by solving the following equations:

1
)̃

m)̃

mA
= ns

dB̃
dA
− �8
)o
6(A) (6)

and
1
d̃

m d̃

mA
= ns

dB̃
dA
− �82v
(2p − 2v))o

6(A), (7)

where we set the control parameter ns = 10−4 � 1, which is a nec-
essary condition to ensure that we are still close to an adiabatic state.
This formulation with a prescribed non-adiabaticity dB̃/dA allows us
to control the energy transport inside the star (notice its presence
in Eq. 3) and has been previously adopted in numerical models of
gas giant planets (Dietrich & Wicht 2018; Gastine & Wicht 2021).
The background entropy sets radiative regions whenever dB̃/dA > 0,
while convectively-unstable regions occur when dB̃/dA < 0.
In the present work, we simulate convective shells with Ai/Ao = 0.6

and a fixed background entropy gradient dB̃/dA = −1. We note that
this choice is motivated by the fact that the entropy gradient calcu-
lated from 1D stellar evolution models of Sun-like stars is indeed
approximately constant in the bulk of the convection zone (i.e., ex-
cluding the outer 5% of the star in radius), which is the region we
aim at modelling in this work. Our background entropy profile thus
differs from previous anelastic studies, like the ones presented in the
anelastic benchmark of Jones et al. (2011), where the reference state
entropy is the solution of a conduction equation on which conditions
of fixed entropy are applied. This leads to a solution with a gradi-
ent varying with radius, the maximal values of which being located
in the outer part of the spherical shell. In our case, the gradient is
constant throughout the shell, leading to a more homogeneous forc-
ing of convection. This difference is illustrated in Figure 1, where
the structure of the most unstable mode at the onset of convection
is shown for our present work (left) and for an adiabatic reference
state as used in Jones et al. (2009) (right) with the same values of
#d, � and %A. At onset, our forcing of convection results in unsta-
ble modes located close to the bottom boundary (see also Cuff &
Heimpel 2018, for similar results with an adiabatic reference state
but different boundary conditions). When the Rayleigh number is in-
creased however, strong convective velocities build close to the outer
shell, as expected in stratified systems. To be more specific, we now
give in Table 1 the values of the critical Rayleigh number and the
critical azimuthal wavenumber in our setup, determined numerically
at the different density contrasts used in our simulations and for the
values of � and %A adopted in all our calculations and which are
specified in the next Subsection 2.4.
Many parametric studies investigating dynamo action in planets

Figure 1. Structure of the most unstable mode for convection forced through
our background entropy profile (left) and through a more traditional entropy
profile (right) for a density contrast #d = 3. Represented on the figure is an
equatorial cut of the radial velocity close to the onset of convection at the
values of � = 1.6 × 105 and %A = 1.

and stars relied on a gravity profile based on a point mass approxi-
mation when performing their numerical simulations. Nevertheless,
stellar models of cool stars show that the diverging behaviour of
6(A) ∝ 1/A2 for A −→ 0 becomes increasingly problematic for stellar
simulations with radius ratios Ai/Ao < 0.6 (as obtained, for instance,
with the ATON code, Landin et al. 2006). This issue does not affect
the goals of this paper as we perform simulations with Ai/Ao = 0.6.
However, it is important in our follow-up study aiming to understand
the effect of adding a stable inner layer to the computational domain
(down to Ai/Ao = 0.4) on the magnetic field generation and evolution
(Zaire et al., in preparation). Because this follow-up study requires
a direct comparison with the simulations described in this paper, we
adopt a physically-motivated gravity that accounts for the decrease
with diminishing radius. Using the reference state of amain-sequence
cool star, we obtain a polynomial fit of the normalized gravity profile
that reads

6(A) = −7.36 A
Ao

+ 4.99 A2

A2
o
+ 3.71 Ao

A
− 0.34 A2

o
A2 . (8)

We highlight that, for the radial domain explored in this paper, the
gravity profile given by Eq. 8 is virtually identical to 6(A) ∝ 1/A2.
We expect thus that any differences between our simulations and
other similar ones in the literature with Ai/Ao = 0.6 but employing
6(A) ∝ 1/A2 are most likely caused by differences in the background
entropy profile or control parameters (see Sec. 2.4) rather than in the
gravity profile.

2.3 Numerical model and boundary conditions

We use the anelastic version of the open-source code MagIC (Gas-
tine & Wicht 2012, freely available at https://github.com/
magic-sph/magic) to solve Eqs. 1 to 5 in spherical coordinates.
MagIC has been validated through several anelastic benchmarks
(Jones et al. 2011). To evolve the Eqs. 1-3 in time a mixed algo-
rithm is adopted, where linear terms (except for the Coriolis one) are
treated implicitly and non-linear terms are handled explicitly. Spher-
ical harmonics are used as basis functions of the angular coordinates
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(\, q) and are handled using the SHTns library (Schaeffer 2013,
freely available at https://bitbucket.org/nschaeff/shtns).
These functions are truncated at a maximum degree ℓmax, sufficient
to capture physical processes at play (typically ranging from 213
to 341 in our simulations). Chebyshev polynomials are used in the
radial direction along with the mapping proposed by Kosloff & Tal-
Ezer (1993), which alleviates the grid refinement created near inner
and outer boundaries in the standard formulation of the Chebyshev-
collocation points. We refer to Gastine &Wicht (2021) for additional
details of this implementation in MagIC.
In the full set of simulations, we adopt stress-free boundary con-

ditions on the velocity field,

DA =
m

mA

( D\
A

)
=
m

mA

( Dq
A

)
= 0 on A = Ai and A = Ao, (9)

potential field boundaries on the magnetic field,

J = ∇ × B = 0 on A = Ai and A = Ao, (10)

and fixed entropy values, set to 0, at both boundaries. We initialize
the velocity field with a small-amplitude random perturbation. The
initial magnetic field is set to a dipole of strength Λ = 0.44 at the
bottom of the convective zone (i.e., at A = Ai), where Λ =

〈
�2〉 is the

Elsasser number expressed in terms of the dimensionless magnetic
field.

2.4 Choice of parameters

In order to perform stellar dynamo simulations, a crucial ingredient
to take into account is the density stratification. In themain-sequence,
cool stars show a density contrast between the bottom (d8) and the
top (d>) of the convective zone that can reach #d ∼ 11 (according to
models generatedwith theATONcode, Landin et al. 2006). However,
density contrasts as high as those seen in stars cannot be attained by
numerical simulations as it drives fast small-scale motions that are
too computationally demanding. In order to bypass this limitation,
some authors chose to exclude from the numerical domain the outer
few per cent of the stellar radii where the sharpest density gradients
exist (Dobler et al. 2006; Browning 2008; Brown et al. 2011; Zaire
et al. 2016; Emeriau-Viard & Brun 2017; Guerrero et al. 2019). We
here also exclude this sharp gradient region from our domain and
study the effect of varying #d from 1 to 3 to assess the influence of
an increase of the density contrast on the magnetic field generation
and flow dynamics.
We consider three different setups with #d = 1, 1.5, and 3. These

density contrasts are practically achieved in our formulation after
fixing the dissipation number �8 = 1.53, 2.7, and 10, respectively.
Following previous studies, we adopt moderate values of � = 1.6 ×
10−5 and %A = 1 that reduce the numerical cost of each simulation,
allowing us to perform a parametric study varying the Rayleigh
number for the three different density contrasts. We increase the
Rayleigh number from 1.3 to 32.7 '0c to explore the implications of
distinct turbulence levels on the magnetic field morphology, where
the convective onset '0c varies depending on the density contrast
over the convective zone (see Table 1).
We are thus left with the choice of the magnetic Prandtl number

%<. Recent studies (e.g., Dormy 2016; Dormy et al. 2018; Schwaiger
et al. 2019) have advocated that pushing a single parameter closer
to the values observed in astrophysical objects may not represent
the correct force balance at stake (e.g., � ≈ 10−13, %A ≈ 10−7, and
%< ≈ 10−3 at the bottom of the Solar convective zone; Ossendri-
jver 2003). There is considerable evidence from numerical simula-
tions with/without density contrast that there is a critical magnetic

Prandtl number %<2 below which dipolar dynamo solutions cannot
be achieved for a fixed Ekman number. This brings some concerns
as strong dipoles are observed in stars (e.g., Donati & Landstreet
2009). One potential way to overcome this limitation is to adopt
%< > %<2 . However, previous works showed that %<2 varies with
� and #d. For the value adopted in this work of � = 1.6 × 10−5, it
was shown that the critical magnetic Prandtl number obeys the rela-
tion %<2 = 2#d −2 (Schrinner et al. 2014). Therefore, we choose to
fix %< = 5 for the entire set of simulations, which is greater than the
critical value obtained for the highest stratified setup #d = 3. More-
over, we initialize our simulations with a dipole of strengthΛ = 0.44,
which has the same order of magnitude of typical stellar strengths
(e.g., Morin et al. 2008; Gastine et al. 2013).

3 RESULTS

We performed altogether 23 dynamo simulations with different den-
sity contrasts and Rayleigh numbers. We ran numerical models for a
few magnetic diffusion times to achieve meaningful dynamo steady-
states, which resulted here in rather costly simulations. The journal
of simulations is summarized in Table 2. We provide the total simu-
lation time gend in units of magnetic diffusion time, which we defined
as

g_ =
�2

cz
_

= %<

(
�cz
Ao

)2
ga (11)

using the convective shell size �cz = Ao − Ai as the relevant length
scale. Throughout this work, we employ overbars · to represent
averages over time, brackets 〈·〉 to represent volume averages, and
〈·〉8 to represent spatial averages in the direction êi. Time averages are
performed only after the solutions have reached a well-established
steady-state and typically cover a few magnetic diffusion times (for
more information see Appendix B).

3.1 Magnetic morphology

Since the physical origin of the various magnetic field morphologies
observed in cool stars is still debated, in this study we particularly
focus on the field topology achieved in our simulations. Traditionally,
the magnetic field morphology has been assessed by measuring the
relative importance of the axial-dipole at the stellar surface. This
quantity, named dipolarity, is defined as the relative strength of the
axial-dipole1 (Christensen & Aubert 2006):

5dip =

√√√√ ∬
B2
ℓ=1,<=0 (A = Ao, \, q) sin \ d\ dq∑11

ℓ=1
∑ℓ
<=0

∬
B2
ℓ,<
(A = Ao, \, q) sin \ d\ dq

. (12)

Here, the normalization factor corresponds to the square root of the
total surface magnetic energy stored in the largest spatial scales, i.e.
in modes with order ℓ < 12. It thus matches the typical resolution
achieved in the surface magnetic field reconstruction of stars other
than the Sun (e.g., Donati et al. 2008; Morin et al. 2010; Folsom
et al. 2016, 2018). We recall the reader that toroidal fields vanish
at the outer boundary because of our magnetic boundary condition
(and, therefore, only poloidal fields contribute in Eq. 12). Following
previous authors (e.g., Oruba & Dormy 2014; Menu et al. 2020;

1 A different definition of ‘dipolarity’ based on the relative energy of the
axial dipole also appears in the literature, in which the right-hand-side of
Eq. 12 is squared.
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Table 2. Journal of simulations. First column yields the run ID. Columns 2-6 indicate the parameters imposed in each simulation (see Sec. 2.4). Column 7 and
8 show the total simulation time gend and the averaging time gavg (both expressed in units of magnetic diffusion time g_ as defined in Eq. 11), respectively.
Column 9 gives the dominant scale of convection ℓpeak (Eq. A1). Column 10 displays the local Rossby number (Eq. 13). Column 11 shows the Inertia over
Lorentz force ratio (see Sec. 3.2.1) and column 12 the kinetic over magnetic energy ratio (Eq. 15). Column 13 shows the dipolarity computed using Eq. 12,
whereas column 14 gives a variation of the dipolarity measure based on the total dipole 5dip,Tot. (see discussion in Sec. 3.1).

Run ID #d d8/d> '0 '0/'0c (#A , #\ , #q) gend gavg ℓpeak '>ℓ FI/FL � /�" 5dip 5dip,Tot.
(g_) (g_)

FC01 1.0 2.7 4.77 × 107 2.5 (73, 320, 640) 5.1 2.0 17 0.023 ± 0.004 0.03 ± 0.25 0.11 ± 0.17 0.84 ± 0.06 0.84 ± 0.06
FC02 1.0 2.7 6.25 × 107 3.3 (73, 320, 640) 4.3 2.0 18 0.036 ± 0.007 0.05 ± 0.39 0.05 ± 0.01 0.87 ± 0.02 0.87 ± 0.02
FC03 1.0 2.7 7.81 × 107 4.1 (73, 320, 640) 4.1 2.0 19 0.05 ± 0.01 0.07 ± 0.30 0.08 ± 0.01 0.87 ± 0.02 0.87 ± 0.01
FC04 1.0 2.7 1.04 × 108 5.5 (73, 512, 1024) 4.1 2.0 22 0.09 ± 0.02 0.12 ± 0.11 0.15 ± 0.02 0.87 ± 0.01 0.87 ± 0.01
FC05 1.0 2.7 1.25 × 108 6.5 (73, 512, 1024) 0.9 0.3 28 0.12 ± 0.03 0.16 ± 0.12 0.26 ± 0.03 0.87 ± 0.02 0.88 ± 0.02
FC06 1.0 2.7 1.56 × 108 8.2 (73, 512, 1024) 4.6 1.5 24 0.18 ± 0.05 0.49 ± 0.09 1.05 ± 0.08 0.12 ± 0.03 0.13 ± 0.03
FC07 1.0 2.7 3.12 × 108 16.3 (73, 512, 1024) 3.1 1.0 19 0.32 ± 0.09 0.57 ± 0.09 1.10 ± 0.09 0.11 ± 0.03 0.12 ± 0.02
FC08 1.0 2.7 6.25 × 108 32.7 (73, 1024, 2048) 1.3 0.5 14 0.53 ± 0.12 0.58 ± 0.08 1.36 ± 0.10 0.12 ± 0.03 0.18 ± 0.03

FC09 1.5 4.4 4.77 × 107 2.0 (73, 320, 640) 4.3 1.0 45 0.031 ± 0.007 0.25 ± 0.13 0.59 ± 0.30 0.71 ± 0.06 0.71 ± 0.06
FC10 1.5 4.4 6.25 × 107 2.6 (73, 320, 640) 4.5 1.4 38 0.05 ± 0.01 0.19 ± 0.19 0.58 ± 0.25 0.62 ± 0.04 0.62 ± 0.04
FC11 1.5 4.4 7.81 × 107 3.3 (73, 320, 640) 6.5 2.5 38 0.07 ± 0.02 0.33 ± 0.13 0.70 ± 0.19 0.44 ± 0.11 0.45 ± 0.11
FC12 1.5 4.4 1.04 × 108 4.3 (73, 512, 1024) 4.9 1.9 35 0.11 ± 0.04 0.28 ± 0.11 0.59 ± 0.08 0.15 ± 0.04 0.45 ± 0.04
FC13 1.5 4.4 1.56 × 108 6.5 (73, 512, 1024) 5.1 1.5 35 0.17 ± 0.06 0.34 ± 0.11 0.70 ± 0.09 0.46 ± 0.14 0.56 ± 0.08
FC14 1.5 4.4 3.12 × 108 13.0 (73, 512, 1024) 3.8 1.0 25 0.31 ± 0.12 0.57 ± 0.09 1.05 ± 0.09 0.12 ± 0.03 0.14 ± 0.03
FC15 1.5 4.4 6.25 × 108 26.0 (73, 512, 1024) 1.5 0.5 20 0.52 ± 0.19 0.64 ± 0.08 1.35 ± 0.09 0.13 ± 0.03 0.17 ± 0.03

FC16 3.0 19.3 4.77 × 107 1.3 (73, 320, 640) 8.1 1.9 42 0.013 ± 0.003 1.78 ± 0.54 1.17 ± 0.18 0.04 ± 0.02 0.12 ± 0.04
FC17 3.0 19.3 7.81 × 107 2.2 (73, 320, 640) 5.4 1.5 38 0.037 ± 0.008 0.33 ± 0.19 0.41 ± 0.10 0.63 ± 0.03 0.63 ± 0.03
FC18 3.0 19.3 1.56 × 108 4.4 (73, 512, 1024) 6.0 1.4 36 0.11 ± 0.05 0.36 ± 0.11 0.54 ± 0.05 0.54 ± 0.03 0.55 ± 0.03
FC19 3.0 19.3 2.08 × 108 5.8 (73, 512, 1024) 2.4 1.0 39 0.15 ± 0.08 0.35 ± 0.10 0.58 ± 0.06 0.53 ± 0.03 0.54 ± 0.03
FC20 3.0 19.3 3.12 × 108 8.8 (73, 512, 1024) 4.1 1.3 34 0.21 ± 0.13 0.36 ± 0.09 0.52 ± 0.04 0.63 ± 0.05 0.63 ± 0.05
FC21 3.0 19.3 6.25 × 108 17.6 (73, 512, 1024) 1.6 0.5 31 0.38 ± 0.25 0.47 ± 0.07 0.64 ± 0.06 0.75 ± 0.03 0.75 ± 0.03
FC22 3.0 19.3 7.44 × 108 20.9 (73, 1024, 2048) 1.1 0.4 30 0.41 ± 0.26 0.45 ± 0.05 0.68 ± 0.05 0.77 ± 0.02 0.77 ± 0.02
FC23 3.0 19.3 9.20 × 108 25.8 (73, 1024, 2048) 1.3 0.4 29 0.51 ± 0.32 0.70 ± 0.07 1.20 ± 0.08 0.23 ± 0.05 0.25 ± 0.05

Tassin et al. 2021), we define simulations with 5dip ≥ 0.5 (or equiv-
alently, with an axial-dipole containing 25% of the magnetic energy
stored at modes up to ℓ = 11) as dipolar dynamos. Conversely, sim-
ulations in which 5dip < 0.5 are defined as “multipolar” dynamos.
The dipolarity measurements are given in Table 2 along with an al-
ternative estimate based on the total dipole 5dip,Tot. (i.e., including
the equatorial dipole contribution in the summation at the numera-
tor of Eq. 12). We note that none of our simulations would change
their classification as dipolar or multipolar dynamos if considering
a dipolarity based on the total dipole. We thus stick to the dipolarity
definition given by Eq. 12 throughout this work.
Figure 2 shows how the dipolarity varies with the Rayleigh num-

ber. This figure shows three panels with 5dip as a function of '0,
each at a particular #d. Starting from the set of simulations with
#d = 1 (Figure 2 a), we identify dipolar dynamos at low Rayleigh
numbers followed by a sharp transition to multipolar dynamos as '0
increases. This finding is in line with earlier simulations of Gastine
et al. (2012, 2013)2 using %< = 1 (purple symbols), which showed
that the morphology transitions to a more complex configuration
around '0 = 7'0c. It also extends Rayleigh’s parameter space cov-
erage by about a factor of three when compared to Gastine et al.
(2012, 2013), corroborating the hypothesis that only multipolar dy-

2 The control parameters adopted by Gastine et al. (2012, 2013) coincide
with those employed in this work with the exception of %<. However, with
also different formulations of convective forcing (similar to what has been
described in Figure 1), caution must be applied when attributing possible
differences between the models to %<.

namos exist for forcings above the threshold leading to the dipole
collapse (i.e., '0 & 7'0c for #d = 1).
The dipolarity trend, however, changes for the models with

#d = 1.5 (Figure 2 b). While the plateau with strong dipolar dy-
namos seen for the runs with #d = 1 no longer exists, intermediate
values of 5dip appear, defining a rather continuous transition to the
multipolar branch. We highlight that two of our multipolar cases are
compatible with a dipole within error bars (estimated as one stan-
dard deviation over the time averaged value). An inspection of the
simulations around 5 '0c reveals one case with polarity reversals
(FC11) and two with excursions (FC12 and FC13) of the dipole
field, thus explaining why large error bars are found in those cases
where the dipolar field strongly varies in time. This finding is in ac-
cordance with previous studies evaluating reversing dipoles, which
observed a tendency for its occurrence at Rayleigh numbers close
to the transition between dipolar and multipolar dynamos (Kutzner
& Christensen 2002; Olson & Christensen 2006; Wicht & Tilgner
2010).
The most striking result to emerge from the data is seen for the

density contrast #d = 3 (Figure 2 c). Contrary to the other setups
considered in this work, a multipolar dynamo is found close to the
dynamo onset ('0 = 1.3'0c). The dipolarity then shows a marked
rise going fromalmost 0 to 0.62 as the forcing reaches about two times
the critical Rayleigh number. Dipolar dynamos are then consistently
sustained for a wide range of supercriticality until the morphology
finally transitions to a multipolar configuration at '0 ∼ 25'0c.
Compared to the previous simulations of Gastine et al. (2012, 2013)
with %< = 1 and covering a parameter space of '0 < 5'0c, we note
that dipolar dynamos are kept for a much wider range of forcing.
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Figure 2. Surface dipolar fraction as a function of the Rayleigh number for
the 23 runs listed in Table 2 (grey symbols). The shape of the symbols distin-
guishes between dipolar dynamos (circle) and multipolar dynamos (cross).
Simulations with density contrast Nd = log d8/d> = 1, 1.5, and 3, are sepa-
rated respectively in panels (a), (b), and (c). Error bars represent one standard
deviation about the time averaged dipolarity. Stratified dynamoswith the same
radius ratio (Ai/Ao = 0.6) and density contrasts, but %< = 1 are included for
comparison (purple symbols; Gastine et al. 2012, 2013).

Comparing #d = 1 and #d = 1.5 simulations, we see that the range
of '0 numbers where the dipolar branch can be obtained shrinks as
the density contrast increases. Although this result seems to reflect
those of Gastine et al. (2012, 2013), Jones (2014), and Raynaud
et al. (2015), who pointed out that dipolar dynamos would ultimately
disappear for #d & 2, the strong dipoles obtained for #d = 3 do not

Figure 3. Mollweide projections of the surface radial magnetic field for a
dipolar (top) and a multipolar (bottom) case with #d = 3, corresponding to
the run IDs FC22 and FC23, respectively. Red shades correspond to radial
fields point outward and blue shades inward.

support this early conclusion. In fact, these results substantiate the
previously unique simulation of Yadav et al. (2015), which yielded a
strong dipole ( 5dip ≈ 0.55) despite the high density contrast of #d =
5, reinforcing the idea that dipolar dynamos are only harder to obtain
for high density contrasts. As argued by Petitdemange & Raynaud
(2019), one possibility is that the dipolarity loss found in previous
works resulted from the restricted parameter space explored rather
than being caused by a real modification of the dynamo mechanisms
taking place in stars with different density contrasts. Indeed as we
shall explore in Sec. 3.2.1, our setup with %< = 5 increases the
contribution of the Lorentz force to the force balance, sustaining
dipolar dynamos even for stratification as high as #d = 3.
Figure 3 shows the surface radial magnetic field for the last dipole

before the transition (FC22) and themultipolar case after the collapse
(FC23). Compared to the runs with #d = 1 (not shown here), smaller
scales dominate the structure of the surface radial magnetic field in
both cases. Indeed, a well-known effect of increasing the density
stratification is to decrease the typical flow length scale, which in
turn decreases the typical size of magnetic structures. We come back
to this point when we discuss the scale at which the kinetic energy
peaks in our simulations (see Sec. 3.2.1). It is rather clear from this
figure that a large-scale dipolar structure is present in the upper panel,
with a positive North pole and negative South pole. On the contrary,
in the bottom panel, the magnetic field is dominated by a salt and
pepper like structure with the strongest field concentrations located
in narrow bands more or less extended in latitude. Figure 4 enables
us to proceed to a closer inspection of the relationship between the
flow and field morphologies. This figure shows a 3D rendering of the
radial velocity field (left panel) and of the radial magnetic field (right
panel) in the dipolar run shown in the top panel of Figure 3. It is
rather clear from these 3D snapshots that narrow downwelling flows
create intense magnetic flux concentrations, while broad upwelling
flows diffuse the magnetic field. We also note that in this strongly
stratified case and at this level of supercriticality ('0 = 20.9 '0c),
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Figure 4. Snapshot of the radial velocity (left) and radial magnetic field (right) in the dipolar run shown in Figure3 (FC22).

the amplitude of the convective velocities is strongest at the outer
shell, as expected for strongly stratified systems.

3.2 The dipolar-multipolar transition

Many studies interpreted the transition from the dipolar dynamos
to multipolar dynamos in terms of the balance between inertia and
Coriolis forces in the Navier-Stokes equation (Eq. 1). A proxy to
estimate this force ratio is the local Rossby number '>ℓ introduced
by Christensen & Aubert (2006). They suggested that the dipole-
multipole transition is well captured by

'>ℓ =

〈
Drms
Ω>�cz

ℓD
c

〉
, where ℓD =

∑
ℓ ℓD

2
ℓ∑

ℓ D
2
ℓ

(13)

is the mean spherical harmonic degree of the flow. The global picture
suggested that axial-dipole dominated solutions could only exist at
low-Rossby numbers because of the ordering role played by the Cori-
olis force (with typically '>ℓ . 0.12, Christensen & Aubert 2006).
Beyond this limit, the increased importance of inertia compared to
Coriolis would cause the dipole collapse (with the star thus joining
the multipolar branch).
We plot 5dip as a function of '>ℓ in Figure 5. Simulations with

#d = 1 display a dipolar-multipolar transition at '>ℓ ∼ 0.12 (vertical
dashed line), in agreement with Boussinesq results and arguments of
Christensen & Aubert (2006). However, if we now turn to the runs
with #d = 1.5 or 3, there is no clear evidence that '>ℓ influences
the dipole collapse. For these density contrasts, multipolar solutions
are identified in the Rossby regime where mainly dipolar fields are
predicted and vice-versa.
Perhaps one of the most interesting aspect evidenced by our sim-

ulations is that axial-dipole dominated simulations might display
similar values of 5dip regardless of whether it falls in the dipolar or
multipolar branch as initially advised from Boussinesq simulations
(Christensen & Aubert 2006). Another key aspect is that dipolar so-
lutions persist for large Rossby numbers precisely for the setup of
highest density contrast (#d = 3), which corresponds to the most
realistic model in the stellar context.
In an attempt to create a more general description for the dipolar

transition, other proxies besides the Rossby number were explored in
the literature to explain the possible causes for the dipole breakdown.
As we discuss in Appendix C, the change on the flow structure
(Soderlund et al. 2012; Garcia et al. 2017) is not enough to explain the
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Figure 5. Surface dipolar fraction as a function of the local Rossby number
'>ℓ (Eq. 13). Colours group different levels of stratification (see legend),
whereas symbols distinguish dipolar dynamos (circle) from multipolar dy-
namos (cross). The horizontal dashed black line marks the dipolar-multipolar
transition, and the vertical one indicates the standard dipolar collapse pre-
dicted from geodynamo simulations (Christensen & Aubert 2006).

transition from dipoles to multipoles in our numerical simulations.
In particular, it seems that the magnetic morphology can only be
described by a change on the flow arrangement when considering
systemswhere themagnetic feedback on the flow is small/nonexistent
(essentially behaving as a hydrodynamic flow).
Recently, Boussinesq simulations have shown that for systems in

which the magnetic feedback is significant the relative importance
of the Lorentz force in the Navier Stokes equation can describe the
dipole breakdown (Menu et al. 2020; Tassin et al. 2021). However,
it is not clear whether those analyses still hold in anelastic dynamos.
We explore next whether the balance between the forces entering the
Navier-Stokes equation control themagneticmorphology in stratified
systems.
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Figure 6. Force balance spectra for the same dipolar (top) andmultipolar (bot-
tom) models shown in Figure 3. Solid lines correspond to time-averaged force
spectra, with colours representing the different forces entering the Navier-
Stokes equation. Shaded regions represent one standard deviation from the
time-averaged value. The vertical dashed line marks the integral scale ℓpeak
defined in Appendix A.

3.2.1 Force balance: inertia vs Lorentz force

Following previous studies (Aubert et al. 2017; Schwaiger et al. 2019;
Tassin et al. 2021; Gastine & Wicht 2021), we compute the time-
averaged root-mean-square (RMS) force spectra of the individual
forces identified below

�

[
mu
mC
+ (u · ∇)u

]
︸                  ︷︷                  ︸

Inertia

+ 2êI × u︸  ︷︷  ︸
Coriolis

=

− ∇
(
?

d̃

)
︸ ︷︷ ︸
Pressure

+ '0�
%A

6B′êr︸       ︷︷       ︸
Buoyancy

+ 1
%<d̃

(∇ × B) × B
︸                 ︷︷                 ︸

Lorentz

+ �
d̃
∇ · (

︸  ︷︷  ︸
Viscous

.

Here, time-averaged RMS force spectra are given by

FRMS (ℓ) =
√√√〈

ℓ∑
<=−ℓ

��Lℓ,< (A, \, q, C)��2
〉
. (14)

where Lℓ,< is the vector spherical harmonic transform of the force
at stake.
Figure 6 illustrates the force balance spectra for a dipolar and a

multipolar runwith #d = 3 (corresponding to the same runs shown in
Figure 3). Bothmodels display forces whose respective contributions

vary depending on the spatial scale. At scales up to ℓ ∼ 40, the
Coriolis (black) and pressure (blue) forces balance each other at
first order resulting in a quasi-geostrophic balance (QG, for further
details, see Calkins 2018), whereas buoyancy (green), Lorentz (red),
and inertial (yellow) forces show a marginal contribution at second-
order. On the other hand, at small scales (ℓ & 40) the Lorentz
force becomes dominant and starts to balance the pressure force
in the place of the Coriolis force. Comparing both models, we can
identify an increase in the inertial contribution from the dipolar to the
multipolar case, with the inertial force reaching values comparable
to the Lorentz force in the latter.
To track the relative contribution of each force in our parametric

study, we look for a particular length scale ℓpeak defined as the dom-
inant scale of the convective flow (for more details on its calculation,
see appendix A and Schwaiger et al. 2021). The values of ℓpeak are
given in Table 2 for each simulation. We note here that the impact
of the density stratification is reflected in the strong increase of ℓpeak
with #d. Indeed, from #d = 1 to #d = 3, ℓpeak is typically multi-
plied by a factor 2. We now compute the RMS forces at the integral
scale ℓpeak, namely, Coriolis force F� , pressure gradient force F% ,
buoyancy (or Archimedes) force F� , Lorentz force F! , inertial force
F� , and the viscous force F+ .
Figure 7 shows these forces as a function of '0/'0c for models

with #d = 1 and 3. While the entire data set features a QG balance
at first order, the ageostrophic part of the Coriolis force, defined as
FAgeo = |F� − F% |, enters a second-order force balance that varies
depending on #d and '0.
For #d = 1 (top panel), we identify two kinds of second-order

balance depending on the Rayleigh number. At '0 < 7'0c, the
ageostrophic Coriolis force is balanced by F! and F� forces, which
dominate over F� and F+ by roughly an order of magnitude. This
flow state, devised byDavidson (2013), is frequently referred to as the
quasi-geostrophic Magneto-Archimedean-Coriolis (QG-MAC) bal-
ance, and it has been obtained in geodynamo models (Yadav et al.
2016; Aubert et al. 2017; Schaeffer et al. 2017) and in anelastic mod-
els of gas giant planets (Gastine & Wicht 2021). At '0 > 7'0c,
inertial forces become important and contribute to the second-order
balance of the Navier-Stokes equation. We observe that the break-
down of the dipole occurs at this point. The role played by inertia
in destabilizing dipoles was likewise found before in Boussinesq
simulations (e.g., Sreenivasan & Jones 2006; Christensen & Aubert
2006).
Similar conclusions can be drawn for the #d = 3 data set (bottom

panel), with the main difference relying on the isolated multipolar
solution at '0 = 1.3'0c, i.e., very close to the convective onset.
Among the entire set of simulations performed, this case is the only
one that does not display a dominant Lorentz contribution to the
flow dynamics. Instead, it yields a strong contribution of F� and
a marginal one of F+ . This flow adjustment is often called quasi-
geostrophic Viscous-Archimedean-Coriolis (QG-VAC) balance (Ya-
dav et al. 2016; Schwaiger et al. 2021). The QG-VAC balance is
quickly destroyed as turbulence builds-up due to a sharp rise in the
F! with '0. One of the main conclusions we can extract from Fig-
ure 7 is that with this stratification, dipolar dynamos prevail for much
higher '0/'0c than for the less stratified cases. The transition in the
surface field morphology is indeed seen at '0 = 25.8'0c. Akin to
what has been described for #d = 1, the morphology transition oc-
curs as the gap between F! and F� decreases. This finding suggests
that, in the Lorentz force dominated regime, the effect of the density
stratification is to increase the level of turbulence at which inertial
forces become comparable to the Lorentz forces.
To test the hypothesis that the importance of inertia in the 2nd-
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Figure 7. Force contributions at the integral scale ℓpeak (Eq. 14) as a func-
tion of '0/'0c. Top and bottom panels show runs with Nd = 1 and 3,
respectively.

order force balance is the main factor responsible for destabilising
dipolar solutions, we plot in Figure 8 the dependence between 5dip
and F� /F! for the three setups considered in this work. Dipolar and
multipolar branches are identified using this proxy.We find that simu-
lations with F! � F� develop strong dipolar dynamos, while a sharp
transition to multipolar dynamos is obtained as inertia increases in
intensity. A tentative description for the dipolar-multipolar transition
gives F� /F! ' 0.4 (vertical dashed line). It follows that F� /F! pro-
vides a more unified view of the dipolar-multipolar transition than
'>ℓ (Figure 5), independently of the density contrast #d. This result
agrees with those of Menu et al. (2020) and Tassin et al. (2021), who
also found that the competition between inertial and Lorentz forces
can capture the dipole collapse in Boussinesq simulations. We thus
confirm that these results still hold in stratified systems, and even
argue that the transition may occur at larger levels of turbulence for
strongly stratified cases, opening the possibility that stars harbouring
strong dipoles may indeed operate in this Lorentz force-dominated
regime.
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Figure 8. Surface dipolar fraction as a function of the ratio between inertia
and Lorentz force at the integral scale. Symbols are defined as in Figure 5.
The vertical dashed black line indicates the tentative threshold F� /F! = 0.4
for the dipole breakdown. The error bars correspond to one standard deviation
about the time-averaged quantities. Shaded areas indicate the dipolar (cyan)
and multipolar (coral) branches proposed in this work.

3.3 Possible proxies for stellar observations

3.3.1 Energy distribution

Following Tassin et al. (2021), we now try to look for an alternative
quantity to the ratio F� /F! that is more accessible to observations
and yet incorporates the physics behind the dipole collapse. To estab-
lish this newmeasure, we use the kinetic energy stored in the convec-
tive motions (� ) as a proxy of the inertial force and the magnetic
energy (�" ) as a proxy of the Lorentz force. The rough approxima-
tion of F� /F! is then given by the time and volume-averaged energy
ratio

� 
�"

= �%<

〈
d̃u2〉〈
B2〉 . (15)

Figure 9 shows the dipolarity in our simulations as a function
of this new proxy � /�" . We find dipolar morphologies at low-
� /�" and complex multipolar morphologies below equipartition
(i.e., � /�" > 1). These findings suggest that the energy ratio can
likewise capture the dipolar-multipolar transition. It stands out that
the energy ratio � /�" in the dipolar cases with #d = 1 are sig-
nificantly smaller than those obtained for the other density contrasts.
This behaviour reflects what was already seen in Figure 8 using the
force ratio, providing further evidence that F� /F! and � /�" are
indeed correlated. This occurs because the magnetic energy gener-
ated in these models is 2-6 times larger than the ones reached by other
dipolar simulations in the same range of supercriticality (and hence
with similar � ). The shaded areas in Figure 9 show the tentative
dipolar (cyan) and multipolar (coral) branches, along with a transi-
tional region (grey) set to match the uncertainties of � /�" in the
runs falling in the transition. From the data, we derive that the dipole
breakdown occurs around � /�" ' 0.7 (vertical dashed line).
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Figure 9. Surface dipolar fraction in terms of the ratio of the time and
volume-integrated kinetic energy stored in the convective motions and mag-
netic energy. The vertical dashed black line indicates the tentative threshold
� /�" = 0.7 for the dipole collapse. Shaded areas indicate the dipolar
(cyan) and multipolar (coral) branches proposed in this work.

3.3.2 Differential rotation

Stellar observations can give access not only to the surface magnetic
fields in stars but also on some flow caracteristics, like the surface
differential rotation (e.g., Donati et al. 2008; Morin et al. 2008).
Since we can measure in detail the differential rotation obtained in
our calculations, we propose here to determine the amplitude and
sign of the latitudinal differential rotation obtained in our dipolar
and multipolar dynamo simulations. This will be used mostly for a
comparison to the observations discussed in the following section.
Although numerical studies usually compute the latitudinal shear

as the difference between the angular velocity at the equator minus an
arbitrary latitude close to the poles, this parameter strongly depends
on the chosen polar latitude as fast zonal flow variations may exist.
Therefore, we compute the relative surface shear using a less depen-
dent definition based on the difference between the angular velocity
averaged on the near-surface layer (NSL) at equatorial regions and
polar regions:

jΩ =
〈Ω〉NSL, |\ |<40> − 〈Ω〉NSL,40>< |\ |<80>

Ω>
. (16)

Here, we define as NSL the outer shell with thickness 0.05 Ao and
we exclude high latitudes with |\ | > 80> from our computations
(where small scale features are observed but should likely average
out if considering longer time averages).
Figure 10 shows the dipolarity as a function of the relative lati-

tudinal shear at the near-surface layer (cf. Eq. 16). The first striking
feature is that all simulations exhibit a rather weak level of differ-
ential rotation with jΩ < 2%. This quenching on the differential
rotation can be understood because magnetic stresses are always ac-
tive in our calculations as Lorentz forces significantly impact the
flow (Christensen et al. 1999; Busse 2002). Another important re-
sult is that the level of surface differential rotation is not negligible
in dipolar cases, especially at #d = 3, compared to the multipolar
ones. However, an important difference between dipolar and multi-
polar simulations is the differential rotation sign. Figure 10 indeed
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Figure 10.Dipolarity as a function of the differential rotation measured at the
surface. The dashed vertical line represents a solid body rotation using our
shear definition in Eq. 16. Simulations with negative (positive) jΩ display
antisolar differential rotation profiles, while those with positive jΩ have solar-
like differential rotation profiles.

reveals that all simulations with dipole dominated morphology build
an antisolar differential rotation profile. We find that non-negligible
relative shears exist in our dipolar cases, with jΩ ranging from−0.57
to −0.03%. We note that these antisolar profiles were also observed
in the strong-field geodynamo simulations of Aubert (2005) and only
illustrate the fact that the Lorentz force plays a significant role here
in the angular momentum transport. On the other hand, solar-like
differential rotation profiles only show up in the multipolar simula-
tions. The only three multipolar cases developing antisolar profiles
are those with #d = 1.5, whose dipoles are either reversing or ex-
cursioning. The equatorial acceleration seen in the multipolar cases
is consistent with the fact that it is only in this situation that inertia
becomes comparable to Lorentz forces, as discussed in Sec. 3.2. This
finding is in line with the non-magnetic simulations of Gastine et al.
(2014), where solar-like profiles are found when Reynolds stresses
are enhanced. Indeed, the Reynolds stresses, associated with inertial
forces, are known to be responsible for the equatorial acceleration
of the flow (Miesch 2005). They thus need to be significant enough
to counteract the angular momentum transport by magnetic fields.
When considering the multipolar simulations with solar-like differ-
ential rotation, we find that equatorial regions indeed accelerate, with
values going up to 1.5%.

4 DISCUSSION AND CONCLUSIONS

This paper explored through 3D dynamo simulations the physical
mechanisms responsible for controlling the magnetic morphology of
large-scale fields in partly convective cool stars. To address this point,
we carried out 23 simulations of a spherical convective rotating shell
with a radius ratio of 0.6 between the bottom and the top of the shell.
Our modelling strategy follows recent geodynamo studies of Menu
et al. (2020) and Tassin et al. (2021), who suggested that having
a significant Lorentz force contribution in the force balance when
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simulating convective dynamos could modify conclusions about the
magnetic morphology. However, unlike their study, we considered a
fluid layer with a density contrast between the top and bottom of the
convective zone to model conditions applicable to stellar interiors.
Our simulations demonstrate for the first time that axial dipole

dominated solutions can be achieved at large Rossby numbers in
stratified systems (up to '>ℓ = 0.4). Even more important maybe
is the fact that these dipoles at high '>ℓ are obtained for simula-
tions with a large density contrast between the top and bottom of
the convective zone, at #d = 3. This finding differs from previous
numerical studies suggesting that dipolar dynamos would only exist
at low-Rossby numbers (e.g., Christensen & Aubert 2006; Gastine &
Wicht 2012) and that strong stratification may make it more difficult
for dipoles to survive. In particular, it represents an important step
towards the understanding of the magnetic morphology of stars, as
strong axial dipoles have been likewise observed in some stars with
'>ℓ > 0.1, e.g., TYC 5164-567-1 ( 5dip = 0.77; Folsom et al. 2016),
V439 And ( 5dip = 0.60; Folsom et al. 2016), HD 6569 ( 5dip = 0.53;
Folsom et al. 2018), and CE Boo ( 5dip = 0.76; Donati et al. 2008).
We note that we also find solutions at #d = 1.5 with flipping or ex-
cursioning dipoles, producing measures of the dipolar fraction which
can significantly vary in time. This could potentially be reminiscent
to the strong variations in the dipolar and quadrupolar modes ob-
served in the Sun (DeRosa et al. 2012) or other solar-like stars over
their magnetic cycle (e.g., Petit et al. 2008; Boro Saikia et al. 2018),
all falling under the high Rossby regime.
Taken together, our parameter survey evidenced that the Rossby

number cannot capture the transition in the surface field morphology
when the Lorentz force is strong. We explored the possible mecha-
nisms causing the axial dipole collapse using the relative amplitude
of the axial dipole at the surface to measure the magnetic morphol-
ogy in our simulations (cf. Eq. 12). From the investigation of the
flow configuration, there was no evidence of its influence on the
magnetic morphology. These findings can be understood by the sig-
nificant back reaction of the magnetic field on the flow through the
Lorentz force. As argued in the early study of Garcia et al. (2017),
the flow configuration only emerges as a good proxy of the magnetic
morphology when the flow transitions are similar to those observed
in hydrodynamical simulations. Indeed the force balance analysis
shows a significant Lorentz force contribution to the flow dynamics
in our calculations.
An important finding that emerged from the force balance study is

that the ratio between the inertial and magnetic forces can describe
the dipole-multipole transition of dynamomodels with a background
density contrast. We found that the dipole branch is recovered when
the Lorentz force dominates over the initial force, with the transi-
tion to multipolar branch occurring around F� /F! ' 0.4. Similar
to the conclusions obtained in past anelastic studies, it remains valid
that the increased influence of inertia on the flow is responsible for
destabilizing the axial dipoles. However, our work shows that instead
of the traditional comparison with the Coriolis force (through the
Rossby number), it is the relative importance of inertia compared
to the Lorentz force that controls the transition if the magnetic back
reaction on the flow is strong. With similar conclusions drawn by re-
cent geodynamo simulations with #d = 0 (Menu et al. 2020), F� /F!
emerges as a reliable predictor of the magnetic field morphology of
stars and planets.
However, because a direct estimate of the actual forces at play is not

practical in stellar interiors, we explored an alternative proxy based
on the ratio of kinetic to magnetic energies (Tassin et al. 2021). The
investigation of � /�" revealed dipolar and multipolar branches
confirming the ability of � /�" to describe the dipole collapse

(Kutzner & Christensen 2002; Tassin et al. 2021). From our data
set, we found that stratified systems emerge as multipolar dynamos
whenever � /�" & 0.7.
To tentatively test this proxy with observations, we gathered from

the literature partly-convective stars with large-scale surface mag-
netic fields reconstructed using the Zeeman-Doppler imaging tech-
nique (for details of the technique see, e.g., Donati et al. 1997; Donati
& Brown 1997; Donati et al. 2006b). Given that our simulations cor-
respond to a convective shell spanning the outer 40% of the radial
domain, we focused on partly convectiveM dwarfs withmasses rang-
ing from 0.38 to 0.60"� , whose convective zones are expected to
feature radius ratios (between the bottom and top of the convective
zone) ranging from 0.50 to 0.66 (estimated with the ATON code, de-
scribed in Landin et al. 2006), i.e., with roughly the same extension
as those modeled in our simulations. We consider for consistency the
homogeneous sample of stars published by Donati et al. (2008) and
Morin et al. (2008), which had their surface magnetic maps recon-
structed with the same Zeeman-Doppler imaging code. We find eight
stars obeying the mass condition described above: GJ 182, DT Vir,
DS Leo, GJ 49, OT Ser, CE Boo, AD Leo, and EQ Peg A. We also
take into account multiple magnetic field reconstructions existent for
DT Vir, DS Leo, and OT Ser (with each star being observed at two
different epochs).
From their magnetic surface maps, we directly derive �" based

on the averaged surface magnetic field (�rms) and a modified dipo-
larity that is comparable to our definition in Eq. 12 but with a maxi-
mum spherical harmonic degree that varies depending on the spatial
resolution achieved for each star (typically ℓmax ranged from 6 to
10). We find that under our morphology classification CE Boo, AD
Leo, and EQ Peg A fall in the criteria of dipolar dynamos ( 5dip =
0.76, 0.57, and 0.57, respectively), while the other stars harbour a
multipolar dynamo. Because observations only have access to the
magnetic energy at the surface, we accordingly estimate the surface
kinetic energy � to compute the energy ratio of each star. We use
published values of mass "★ and radius '★ present in the original
Zeeman-Doppler imaging study. We adopt a rough approximation
for the turbulent velocity Drms = '★/g2 and photospheric density
d★,pho =

d̄★
d̄� d�,pho, where g2 is the convective turnover time de-

rived with the empirical relationships based in the stellar mass "★
(Wright et al. 2018), d̄�,★ = "�,★/(4c'3

�,★/3) is the mean den-
sity, and d�,pho ≈ 10−6 6 2<−3 is the Sun’s photospheric density
(Brandenburg & Subramanian 2005). We thus estimate

� 
�"

=
d★,phoD

2
rms
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8c
�2

rms
≈ 4c
�2

rms

(
"★
"�

) (
'�
'★

)3 (
'★
g2

)2
d�,pho.

(17)

Figure 11 illustrates themagnetic properties ofM dwarfs as a func-
tion of the energy ratio computed with Eq. 17. The sharp transition
in the magnetic morphology is apparent from this plot. We find that
M dwarfs with � /�" . 0.35 have surface large-scale magnetic
fields that are mostly poloidal and with strong axisymmetric dipoles.
In contrast, M dwarf stars with higher energy ratios � /�" host
large-scale fields with strong toroidal fields and weak axial dipoles.
We infer a dipolar-multipolar transition around � /�" ' 0.35
(dashed vertical line) from the observational data. Although the ex-
act energy ratio leading to the dipole collapse is relatively lower
than the one predicted with our simulations (� /�" ∼ 0.7), it is
encouraging to see that this proxy seems to describe the transition
in the magnetic morphology of M dwarfs. Future simulations with
different sizes of the convective envelope will help assess whether
the dipole collapse is sensitive to this parameter and, therefore, if it
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Figure 11. Observational counterpart of Figure 9. Symbols show the mag-
netic properties of the M dwarfs derived with the Zeeman-Doppler imaging
technique (Donati et al. 2008; Morin et al. 2008). The symbol size corre-
spond to the field strength at the surface 〈�〉, the shape corresponds to the
degree of axisymmetry of the magnetic field, and colors represent the amount
of energy stored in the poloidal field. Shaded areas are similar to Figure 9,
with cyan representing strong dipoles axisymmetric fields (top left) and coral
the multipolar non-axisymmetric fields (bottom right). However, we use a
dipole-multipole transition of � /�" = 0.35 (vertical dashed line) that is
lower than the one obtained with simulations (� /�" = 0.7).
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Figure 12. Dipolarity as a function of the surface differential rotation 3Ω
measured for a sample of M dwarfs (Donati et al. 2008; Morin et al. 2008).
The surface differential rotation is defined as 3Ω = Ωeq −Ωpol, where Ωeq is
the angular velocity at the equator and Ωpol at the pole. Symbols are defined
as in Figure 11.

is a potential source of uncertainties when determining the � /�"
threshold.
Finally, we explored the surface shear achieved in our simulations.

We identified that, although quite weak, simulations with multipolar
surface magnetic fields favour solar-like differential rotation profiles.
In contrast, all dipole dominated simulations yield antisolar differ-
ential rotation (similar to Aubert 2005; Dobler et al. 2006). Here, we
can also draw an observational parallel as surface shears have been
measured for some of the stars in Figure 11 (Donati et al. 2008;Morin
et al. 2008). Figure 12 shows the link between the axial dipole con-
tribution to the large-scale magnetic morphology and the measured
latitudinal surface shear for M dwarf stars. We use the latitudinal
surface shear 3Ω instead of the relative surface shear, which is likely
to be the relevant parameter to consider for observations when the

rotation period varies from star to star (from 1 to 9 d in the case
of our sample). Although we looked at the relative (rather than the
absolute) surface shear in our numerical work (see Sec. 3.3.2), there
is in fact no difference since the rotation rate is assumed to be the
same for all simulated cases. The data in Figure 12 give hints of a
sharp transition in the magnetic complexity of M dwarfs with the
increase of 3Ω, with strong dipoles preventing significant latitudinal
differential rotation at the surface and multipoles co-existing with
large latitudinal surface shears. We note that this observational trend
also extends to fully convective stars, with those harboring strong
dipoles almost rotating as solid bodies, i.e., 3Ω ∼ 0 (Donati et al.
2006a; Morin et al. 2008). However, contrary to the trend in our
simulations, we find that the dipole collapses at positive shears for
M dwarfs (3Ω ∼ 55mrad d−1). Moreover, none of the stars from
Donati et al. (2008) or Morin et al. (2008) had an antisolar differen-
tial rotation (akin to other shear detection in M dwarfs, e.g., Hébrard
et al. 2016; Zaleski et al. 2020). The direct comparison between ob-
servations and simulations is thus slightly less straightforward when
shear profiles are concerned. It remains therefore to be investigated
whether lowering the viscosity and magnetic diffusivity in our sim-
ulations can modify the differential rotation profile. For instance, it
would be important to test if the antisolar regime found in the present
calculations survives in more realistic parameter ranges. Further re-
search is thus necessary to investigate how smaller Ekman numbers
and/or larger magnetic Reynolds numbers can impact the transition
seen in the differential rotation profile and amplitude.
The parameter space explored in this study offers new insights into

the mechanisms controlling the magnetic morphology of stars. Our
3D dynamo simulations show that the magnetic morphology of the
large-scale field depends on how much the Lorentz force is able to
impact the flow.We found that the energy ratio proxy proposed in our
work to describe the transition in the magnetic morphology indeed
succeeds at describing the varying large-scale magnetic topology of
a small sample ofM dwarfs featuring similar convective zone geome-
tries, and for which a homogeneous collection of ZDI measurements
is available in the literature. This first result leaves room for further
numerical explorations aimed at studying the impact of more param-
eters, such as the size of the convective zone and the rotation rate.
These simulations will broaden potential comparisons with stars of
different spectral types than the ones considered here, and therefore
to further investigate whether the proxy that we propose can be used
in a more general context. We also leave for a forthcoming paper the
study of whether a radiative interior in the numerical domain is also
able to impact the magnetic morphology of the large-scale field and
its transition from a mainly dipolar to a mainly multipolar structure,
and tomodify the conclusions reached here regarding the proxies that
best describe where this transition occurs in the parameter space.
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APPENDIX A: KINETIC ENERGY LENGTH-SCALE

We compute the dominant scale of convection as the peak of the
time-averaged poloidal kinetic energy spectra (Schwaiger et al. 2019,
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Figure A1. Time-averaged dimensionless poloidal kinetic energy spectra for
the dipolar (red solid line) and multipolar (purple solid line) cases given in
Fig. 6. Shaded areas correspond to one standard deviation about the time-
averaged spectra and the dashed vertical lines mark the location of the peak.

2021), defined as

ℓpeak = argmax(� ,% (ℓ)). (A1)

Figure A1 shows examples of poloidal kinetic energy spectra for one
dipolar case (red line) and one multipolar case (purple line). The
degree at which the spectra is maximum, ℓpeak, is indicated by a
dashed vertical line. These reference dipole and multipole models
feature convective flows with similar dominant length scale. Consid-
ering the entire set of simulations, we find ℓpeak ranging from 14 to
45 with a median value of 30.

APPENDIX B: TIME EVOLUTION AND AVERAGING
STRATEGY

Figure B1 illustrates the time dependence of the dipolarity (Eq. 12)
and the dipole tilt angle (\dip) for two simulations with #d = 1.5 in
our sample. The simulation FC10 (top panel) shows an axial-dipole
that is anti-aligned with the rotation axis (\dip ∼ 180◦) and whose
field strength is stable through out the time span of the simulation. For
this simulation, we find 5dip = 0.62 ± 0.04 when using an averaging
interval gavg that is defined as the difference between the time at the
end of the run (gend) minus a predefined initial time (represented by
the blue dashed line in top plot).
The bottom panel of Figure B1 corresponds to the simulation

FC11. The evolution of \dip evidences a reversing dipole with peri-
odic switches in polarity that occur at irregular intervals of time. We
find 5dip = 0.41±0.12 when considering a large number of reversals
to compute the time average (achieved after setting gavg = 2.5g_).

APPENDIX C: FLOW CONFIGURATION

It was proposed in the literature that the dipole collapse is directly
linked to a arrangement in the convective flow. Two main quantities
characterising the structure of convective flows in the simulations
were explored:

(i) the columnarity Clz which offers a quantitative way to define
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Figure B1. Dipolarity (black line) and tilt angle of the total dipole (purple
line) as a function of time (given in units of magnetic diffusion time g_). The
top plot corresponds to the simulation FC10 and the bottom one to FC11. The
vertical blue line indicates the initial time used to compute the time-averaged
dipolarity in the top panel. For illustrative purposes only the time-averaged
window is shown in the bottom plot.

columnar flows and is expressed by

Clz =

∑
B,q

��〈8′ · êz〉I
��∑

B,q 〈|8′ |〉I
, (C1)

where8′ is the vorticity generated by the non-axisymmetric velocity
field (Soderlund et al. 2012). The summation occurs in the equatorial
plane and 〈·〉I represents an average in the axial direction êz;
(ii) the relative axial helicity of the flow

��H rel
z

�� computed as the
average of the absolute contribution from the Northern and Southern
hemispheres:

��H rel
z

�� = (��H rel
z NH

�� + ��H rel
z SH

��)/2, where each hemi-
spheric contribution is given by

H rel
z NH/SH =

〈DIlI〉NH/SH√〈
D2
I

〉
NH/SH

〈
l2
I

〉
NH/SH

. (C2)

The top panel of Fig. C1 shows 5dip as a function of Clz for
our data set. The overall result shows a homogeneous distribution
of dipole-dominated and complex multipolar surface fields for the
explored range of Clz (going from 0.4 to 1). It also evidences the
lack of correlation between 5dip and Clz. A possible explanation
for this might be the high values of columnarity attained in this
work. Prior Boussinesq simulations of Soderlund et al. (2012) found
that columnar flows with Clz > 0.5 can generate either dipolar
or multipolar surface magnetic fields, while flows with Clz . 0.5
only results in multipolar fields. Indeed if we restrain ourselves to
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Figure C1.Dipolarity as a function of the flow columnarity (top) and relative
axial helicity (bottom). Symbols are defined as in Fig. 5.

the runs with columnarity around the threshold of 0.5, we identify
three runs FC08, FC15, and FC23, giving hints of a transition to
a multipolar branch (all three with 5dip < 0.25). Nevertheless, the
diversity of magnetic field complexities obtained at high–Clz makes
the columnarity a poor proxy to describe the dipolar collapse.
Often associated with the magnetic field amplification in the dy-

namo framework (through the so-called U–effect), the decrease in
the flow’s relative axial helicity has also been suggested to cause
the dipole breakdown (Soderlund et al. 2012). The bottom panel
of Fig. C1 shows the dependency of

��H rel
z

�� with the different mag-
netic morphologies. The simulations yield weak to moderate relative
helicity values,

��H rel
z

�� < 0.6, that are consistent with the values ob-
tained in previous works (Takahashi 2014; Garcia et al. 2017). It is
apparent from Fig. C1 that the only case displaying 5dip ≈ 0 features
the highest helicity in our sample. On the other hand, the strongest
dipoles possess weak helicity values with

��H rel
z

�� spread around 0.28
(corresponding to five dipolar dynamos obtained for #d = 1.0 and
the two strongest dipoles for #d = 3.0). These results suggest that
the magnetic morphology is unaffected by

��H rel
z

�� for the parame-
ter space we explored. Although these findings differ from some
published studies (e.g., Soderlund et al. 2012), they are consistent
with mean-field simulations of Livermore et al. (2007) and the 3D
simulations of Browning (2008) mimicking the interior of a fully
convective M dwarf. The likely cause for these differences is that
the mean-helicity becomes a poor approximation for the U–effect in
some cases (Schrinner et al. 2007; Warnecke et al. 2018).
These results corroborate earlier suggestions of Garcia et al.

(2017), who argued that hydrodynamic transitions in the flow (e.g.

measured by Clz or H rel
z ) would only capture the dipole collapse

in systems where the Lorentz force plays a minor role in the flow
dynamics.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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