
HAL Id: tel-03677442
https://theses.hal.science/tel-03677442

Submitted on 24 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The virtual network functions placement and routing
problem

Ahlam Mouaci

To cite this version:
Ahlam Mouaci. The virtual network functions placement and routing problem. Networking and Inter-
net Architecture [cs.NI]. Université Paris sciences et lettres, 2020. English. �NNT : 2020UPSLD048�.
�tel-03677442�

https://theses.hal.science/tel-03677442
https://hal.archives-ouvertes.fr

Préparée à Université Paris Dauphine

The Virtual Network Functions Placement and Routing
Problem

Soutenue par

Ahlam MOUACI
Le 30 November 2020

École doctorale no543

École Doctorale SDOSE

Spécialité

Informatique

Composition du jury :

Ivana LJUBIĆ
Professor, LAMSADE Directeur de thèse

Nancy PERROT
Ingénieur de recherche, Orange Labs Examinateur

Éric GOURDIN
Ingénieur de recherche, Orange Labs Examinateur

Ali Ridha MAHJOUB
Professeur des université, Université
Paris Dauphine

Président

Brigitte JAUMARD
Professor, Concordia University Rapporteur

Laurent ALFANDARI
Professor, ESSEC Business School Rapporteur

Fabio FURINI
Ingénieur de recherche, Consiglio
Nazionale delle Ricerche

Examinateur

Markus LEITNER
Associate Professor, Vrije Universiteit
Amsterdam

Examinateur

To my beloved family, dear husband, darling daughter,
friends, teachers and all the people I love.

Acknowledgements

I would like to convey my sincere gratitude to my supervisors Ivana Ljubi¢, Nancy
Perrot, and Éric Gourdin, for their advice, availability, and for providing me scien-
ti�c and moral support throughout this work. They were able to transmit to me the
knowledge, the rigor, the motivation, and the passion for research in general and com-
binatorial optimization in particular. I am grateful for all the e�orts that have been
deployed in order to make this project successful and for all the constructive remarks
and criticism that helped me improving my work and acquiring a lot of knowledge.

I was very honored that Mrs. Brigitte Jaumard, Professor at the Concordia Univer-
sity, Canada, and Mr. Laurent Alfandari, Professor at the ESSEC Business School of
Paris, accepted to review my thesis.

My deep gratitude goes to Mr. Ali Ridha Mahjoub, Professor at université Paris-
Dauphine, to Mr. Fabio Furini, Researcher at the Italian National Research Council
(CNR), and to Mr. Markus Leitner, Associate Professor at Vrije Universiteit Amster-
dam, for having accepted to examine my thesis.

I address, likewise, my warmly thanks to all my colleagues in Orange Labs and LAM-
SADE for the welcoming and friendly environment, for the lively discussions, for their
encouragement, their friendship, and the scienti�c exchanges that greatly contributed
to my scienti�c and personal development during these years of my thesis.

I would like to especially thank Abdelatif, Quentin, Adrien, Wesley, Fatma, Raja,
Ons, Rou�a, Amel, George, Aymen, Jalal and Isaias.

I would like to thank my husband �Youcef� for being a source of love, strength, inspi-
ration and permanent support during the last three years, also all the members of my
family and my husband's family, especially my parents for their help, encouragements
and lovely company.

Abstract

Network Functions Virtualization (NFV) and Software De�ned Networking (SDN)
are two promising techniques for the next generation of telecommunication networks.
Their introduction allows time, energy, and cost minimization. In this dissertation, we
study a problem faced by the network service providers, named, the Virtual Network
Functions Placement and Routing Problem (VNFPRP) in Software De�ned Networks.

In this problem, a set of Virtual Network Functions (VNFs) has to be installed in a
telecommunication network at minimum cost. For each given origin-destination pair of
nodes (commodities), a latency-constrained routing path has to be found visiting the
required VNFs. Placing VNFs on network nodes and routing data through these nodes
is a very challenging combinatorial optimization problem. Obviously, the problem
becomes even more di�cult if, in addition, data �ows have to be routed using the
concept of Service Functions Chaining (SFC) for which VNFs have to be encountered
in a pre-de�ned order.

In this thesis, we prove that the VNFPRP is NP-hard in a strong sense, even for a
single commodity and without node-capacity, VNF-capacity, latency, and precedence
constraints. We provide a compact Mixed Integer Linear Programming (MILP) for-
mulation to model it. This formulation does not seem to be strong enough for �nding
a solution using an o�-the-shelf solver. In order to tackle the problem from a compu-
tational perspective, we provide MILP-based heuristic. The obtained results indicate
that our MILP-heuristic provides high-quality solutions.

Moreover, we propose two extended formulations for the problem and derive two
Branch-and-Price algorithms. For each formulation, we present a column generation
procedure to solve the linear relaxation, the way to compute the dual bound, and the
branching scheme. We also provide several families of valid inequalities to strengthen
the LP-bounds. We present computational results and discuss the performance of each
algorithm.

Furthermore, we discuss a variant of the problem, and we provide theoretical re-
sults that allow us to derive Benders reformulation of the problem, along with several
families of valid inequalities. These ingredients are combined in a Branch-and-Benders-
Cut framework and computationally tested on a wide range of realistic instances and

iv Abstract

compared with the Automatic Benders decomposition provided by Cplex.

Computational results indicate that our decomposition and reformulation approaches
are more e�cient compared to the two methods (the MILP compact formulation and
the automatic Benders) provided by the o�-the-shelf solver on a set of realistic in-
stances, both in terms of CPU time and overall solution quality.

Key words : Combinatorial optimization, Column generation, Branch-and-Price,
Valid inequalities, Benders decomposition, Branch-and-Benders-cut, Heuristic, Virtual
Network Functions, Software-De�ned Networking, Service Functions Chaining.

Résumé

La Virtualisation des fonctions réseau et les réseaux dé�nis par logiciel sont deux nou-
velles technologies prometteuses qui émergent dans la nouvelle génération des réseaux
de télécommunication. Leur utilisation permet la minimisation du temps de traitement
des services et un gain en énergie et en coûts. Dans cette thèse, nous étudions un prob-
lème auquel sont confrontés les fournisseurs des services réseau, intitulé le problème de
placement des fonctions virtuelles et de routage des services dans les réseaux dé�nis
par logiciel.

Étant donnés un ensemble de fonctions de réseau virtuelles (VNF) et un ensemble de
paires de n÷uds origine-destination (commodités), le problème étudié dans cette thèse
consiste à trouver les installations optimales des fonctions virtuelles sur les noeuds
du réseau de télécommunication, et le chemin associé satisfaisant les contraintes de
latence et passant par les fonctions virtuelles installées. Ce problème est un problème
d'optimisation combinatoire di�cile à résoudre. Évidemment, le problème devient
encore plus di�cile, si en plus, les �ux de données doivent être acheminés en utilisant le
concept de Chaînage de fonctions de service (SFC) pour lequel les VNFs doivent être
traitées le long du chemin de routage dans un ordre prédé�ni. D'autres contraintes
techniques peuvent être considérées dans ce problème. L'objectif est de minimiser
les coûts d'installation des fonctions virtuelles sur les noeuds du réseau et les coûts
d'activation des noeuds.

Dans ce manuscrit, nous commençons par prouver que le problème est NP-Di�cile
au sens fort, même en considérant une seule commodité, et en relâchant les contrain-
tes de capacité sur les n÷uds et sur les fonctions virtuelles, et aussi les contraintes
de latence et de précédence. Nous proposons ensuite une formulation PLNE (Pro-
grammation linéaire en nombres entiers) compacte pour modéliser le problème. Cette
formulation ne semble pas être assez forte pour trouver des solutions réalisables en
un temps raisonnable à l'aide d'un solveur standard. A�n de remédier à cela, nous
fournissons, une heuristique basée sur une formulation PLNE.

Nous proposons également, deux formulations PLNE étendues pour modéliser le
problème et nous dé�nissons l'algorithme de Branch-and-Price associé. Pour chacune
de ces deux formulations, nous présentons, la procédure de génération de colonnes a�n

vi Résumé

de résoudre la relaxation linéaire, le calcul de la borne duale, et aussi le schéma de
branchement. De plus, nous dé�nissons plusieurs familles d'inégalités valides a�n de
renforcer la relaxation linéaire. Nous comparons les deux algorithmes proposés et nous
discutons leur performance.

Ensuite, nous étudions une variante du problème et nous présentons des résultats
théoriques qui nous permettent de le reformuler en appliquant la décomposition de
Benders. Nous renforçons cette reformulation par un ensemble d'inégalités valides.
Tout cela est combiné dans un algorithme de Branch-and-Benders-cut que nous avons
testé et comparé avec l'algorithme de Benders automatique inclus dans le solveur com-
mercial Cplex.

Les résultats numériques montrent que nos approches de décomposition et de re-
formulation sont plus e�caces que les deux méthodes (la formulation compacte et
l'algorithme de Benders automatique) fournies par un solveur standard sur un ensem-
ble d'instances réalistes, à la fois en terme de temps CPU et en terme de qualité de la
solution. Ces résultats montrent également que notre heuristique fournit des solutions
de grande qualité.

Mots clef : Optimisation combinatoire, Génération de colonnes, Branch-and-Price,
inégalités valides, décomposition de Benders, Branch-and-Benders-Cut, Heuristique,
Fonctions virtualisées de réseau, Réseaux dé�nis par logiciel, Chaînage de fonctions de
service.

Contents

Introduction 1

1 Preliminaries and State-of-the-Art 5

1.1 Polyhedra and Integer Linear Programming methods 7

1.1.1 Elements of polyhedral theory 7

1.1.2 Cutting plane method . 8

1.1.3 Branch-and-Cut algorithm . 10

1.1.4 Benders decomposition . 11

1.1.5 Dantzig-Wolfe decomposition 14

1.1.6 Column generation procedure 16

1.1.7 Branch-and-Price algorithm . 17

1.2 Graph theory . 18

1.2.1 Undirected graphs . 18

1.2.2 Directed graphs . 19

1.2.3 Shortest path algorithms . 19

1.3 Telecommunication Networks . 23

1.3.1 Network Structure . 23

1.3.2 Network devices . 24

1.3.3 Network Function (NF) . 25

1.3.4 Routing schemes . 26

1.3.5 Network Function Virtualization (NFV) 27

1.3.6 Software De�ned Networking (SDN) 30

1.3.7 Service Functions Chaining (SFC) 33

1.4 Literature review . 35

1.4.1 Overview of the related works 39

2 The Virtual Network Functions Placement and Routing Problem 41

viii CONTENTS

2.1 Motivations . 43

2.2 Problem de�nition . 44

2.2.1 Notation . 44

2.2.2 Problem de�nition . 45

2.3 Proprities of the VNFPRP . 46

2.4 Illustrative example . 48

2.5 Complexity analysis . 49

2.6 Compact MILP formulation . 50

2.6.1 Decision variables . 51

2.6.2 Mathematical model . 51

2.6.3 Model analysis . 55

2.7 Computational results . 56

2.7.1 Detailed results . 58

2.8 Conclusions . 63

3 MILP-based Heuristic 65

3.1 Path-based MILP Formulation . 67

3.1.1 Decision variables . 68

3.1.2 Linear constraints . 68

3.1.3 Mathematical model . 69

3.1.4 Getting the routing paths . 70

3.1.5 Linear relaxation of path variables λ 71

3.2 Computational results . 72

3.2.1 Benchmark instances . 72

3.2.2 Models analysis . 76

3.2.3 Obtained results . 77

3.2.4 Detailed results . 88

3.3 Conclusions . 94

4 Extended formulations 95

4.1 First extended formulation: the model PF 98

4.1.1 Decision variables . 98

4.1.2 The master problem formulation 99

4.1.3 The dual of the master problem 101

4.1.4 The pricing problem . 102

CONTENTS ix

4.1.5 Lagrangian bound . 103

4.2 Second extended formulation: the model DW 104

4.2.1 Decision variables . 105

4.2.2 The dual of the master problem 106

4.2.3 The pricing problem . 107

4.2.4 Lagrangian bound . 109

4.2.5 Branching on τ variables . 110

4.3 Strengthening inequalities . 113

4.3.1 Valid inequalities for the model PF 114

4.3.2 Strengthening inequalities for both models 117

4.3.3 Strengthening the model DW 119

4.4 Branch-and-Price algorithms . 119

4.4.1 Generic column generation framework 119

4.4.2 Branching . 120

4.4.3 Pricing strategy . 122

4.4.4 Heuristics . 129

4.5 Comparing the LP-relaxations . 129

4.6 Computational results . 131

4.6.1 Obtained results . 133

4.6.2 Detailed results . 146

4.7 Conclusions . 160

5 Benders reformulation for the node-capacitated VNFPRP 161

5.1 Adapted compact MILP formulation 163

5.1.1 MILP formulation for the uncapacitated VNFPRP 164

5.1.2 MILP formulation for the node-capacitated and con�ict con-
strained VNFPRP . 164

5.1.3 Unsplittable routing paths . 165

5.1.4 Strengthening inequalities . 167

5.2 Problem reformulation using Benders cuts 169

5.3 MILP-based Heuristic . 171

5.4 Computational results . 173

5.4.1 Benchmark instances . 174

5.4.2 Obtained results . 175

5.4.3 Detailed results . 191

x CONTENTS

5.5 Conclusions . 204

Conclusions 205

Bibliography 220

List of Figures

1.1 Example of a convex hull . 8

1.2 Example of valid and non valid inequalities and extreme points 9

1.3 A hyper-plane separating x∗ and P . 9

1.4 Network structure (�xed and wireless access networks, core networks
and data centers) [84]. 24

1.5 Network devices [3] . 25

1.6 Routing Schemes [96] . 27

1.7 NFV substitute the network functions by network applications. 29

1.8 NFV Architecture [4] . 31

1.9 Traditional network Vs. SDN network [97] 32

1.10 SDN architecture . 34

1.11 Example of Service Function Chain [71] 35

2.1 VNFPRP is composed of multiple subproblems and constraints. 44

2.2 Example . 48

2.3 Connected subgraph. 53

2.4 Disconnected subgraph. 54

2.5 Number of variables and constraints generated by the compact formula-
tion. 56

3.1 Comparison between the path-based MILP formulation and the compact
MILP formulation with respect to the number of variables and constraints. 77

3.2 GAP comparison between PF and C. 81

3.3 GAP comparison between PF and C. 81

3.4 Costs comparison between PF and C. 82

3.5 LP-relaxation improvement by the path formulation. 83

3.6 Costs comparison between path formulation with 500, 100 and 50 paths. 84

xii LIST OF FIGURES

3.7 Costs comparison between path formulation with 5000, 500, 100 and 50
paths. 85

3.8 Costs comparison between path formulations with 50 path and with/without
increasing node and functions capacities. 86

3.9 Costs comparison between the path formulations with 50 path and with
increasing function capacities, bandwidth and latency 87

4.1 Example of the Lagrangian bound evolution during the column gener-
ation procedure for the Dantzig-Wolfe formulation on �Pdh1� instance
without heuristic solution and with valid inequalities. 110

4.2 Example of the Lagrangian bound evolution during the column gener-
ation procedure for the Dantzig-Wolfe formulation on �Pdh1� instance
with heuristic solution and valid inequalities. 110

4.3 Branching scheme for Dantzig-Wolfe formulation. 113

4.4 Branch-and-Price algorithm. 122

4.5 Example of two solutions generated by the relaxed pricing problem. . . 128

4.6 Relative improvement of LP-relaxation bounds of the path formulation
by using Dantzig-Wolfe formulation on �Pdh� instances. 130

4.7 CPU time comparison between di�erent pricing methods proposed for
the relaxed path formulation. 134

4.8 Comparison between four di�erent pricing methods proposed for the
relaxed path formulation with respect to the number of added columns
and generated iterations. 135

4.9 CPU time needed to solve the LP-relaxation of the PF, C and DW formu-
lation. 137

4.10 CPU time needed to solve LP-relaxation at the root node for PF and DW

formulation with and without valid inequalities. 138

4.11 CPU time needed to solve LP-relaxation at the root node for PF and DW

formulation with and without valid inequalities. 138

4.12 Relative improvement of LP-relaxation bounds of C formulation by using
PF and DW formulation with and without valid inequalities. 139

4.13 Number of added columns by PF and DW formulation with and without
valid inequalities. 140

4.14 Number of added columns by PF and DW formulation with and without
valid inequalities. 140

4.15 Number of generated iterations by PF and DW formulation with and with-
out valid inequalities. 141

LIST OF FIGURES xiii

4.16 Number of generated iterations by PF and DW formulation with and with-
out valid inequalities. 141

4.17 Gap improvement comparison between the path formulation, Dantzig-
Wolfe formulation, the compact formulation and the Automatic Benders
of Cplex. 142

4.18 Gap improvement comparison between the path formulation, Dantzig-
Wolfe formulation, the compact formulation and the Automatic Benders
of Cplex. 143

4.19 Number of added columns comparison between the path formulation
and Dantzig-Wolfe formulation. 144

4.20 Number of branching nodes comparison between the path formulation
and Dantzig-Wolfe formulation. 145

4.21 Number of generated iterations comparison between the path formula-
tion and Dantzig-Wolfe formulation. 146

5.1 Explanation of node-precedence inequalities. 168

5.2 CPU time and GAP comparison between Branch-and-Benders-Cut algo-
rithms with and without valid inequalities and with and without MILP-
heuristic (|N | ∈ {25, 50} and d = 0.5). 176

5.3 CPU time and GAP comparison between Branch-and-Benders-Cut algo-
rithms with and without valid inequalities and with and without MILP-
heuristic (|N | ∈ {25, 50} and d = 0.9). 177

5.4 CPU time comparison between Branch-and-Benders-Cut algorithm, com-
pact and relaxed compact formulation and Automatic Benders for graphs
with 25 and 50 nodes and density 0.9 and 0.5. 178

5.5 GAP comparison between Branch-and-Benders-Cut algorithm, compact
and relaxed compact formulation and Automatic Benders for graphs
with 25 and 50 nodes and density 0.9 and 0.5. 179

5.6 CPU time and GAP comparison between Branch-and-Benders-Cut al-
gorithm with valid inequalities and MILP-heuristic and compact formu-
lation (|N | = 100 and d = 0.9). 181

5.7 CPU time and GAP comparison between Branch-and-Benders-Cut al-
gorithm with valid inequalities and MILP-heuristic and the compact
formulation (|N | = 100 and d = 0.5). 182

5.8 GAP and CPU time comparison between compact MILP formulation
and MILP-based Heuristic. 184

xiv LIST OF FIGURES

5.9 Number of branching nodes and bounds improvement of the Branch-and-
Benders-Cut approach with and without valid inequalities for graphs
with |N | = 100 and d = 0.9. 186

5.10 GAP comparison between Branch-and-Benders-Cut algorithm (B+VI+PH),
Compact (C) and Relaxed Compact formulation (RC) and Automatic
Benders (AB) for SNDlib instances with and without node-capacities
and con�ict constraints. 188

5.11 Average GAPs per instance-type for SNDlib instances with node-capacities
and con�ict constraints. 189

5.12 Average GAPs per instance-type for SNDlib instances without node-
capacities and con�ict constraints. 190

List of Tables

1.1 Overview of related works . 40

2.1 Main notation, parameters and sets. 45

2.2 Transformation details . 50

2.3 Decision variables of the compact MILP formulation 51

2.4 Average of CPU time, Gap, Cost and relaxation value. 57

2.5 Description of abbreviations used on Tables 2.6-2.9. 58

2.6 Obtained results for the compact MILP formulation. 59

2.7 Obtained results for the compact MILP formulation. 60

2.8 Obtained results for the compact MILP formulation. 61

2.9 Obtained results for the compact MILP formulation. 62

3.1 Decision variables of the path-based formulation 68

3.2 Virtual Network Functions . 73

3.3 Five services and their respective SFC and latency value. 74

3.4 Details about the instances. |N |: the number of nodes, |A|: the number
of arcs, |C|: the number of demands, |F |: the number of functions, #

AAC: the number of anti a�nity constraints. 75

3.5 Average demands per service for each instance type. 76

3.6 Nature of the path formulation (exact or heuristic) and a comparison be-
tween both formulations with respect to the number of instances solved
to optimality (#optimal) and the number of instances for which no fea-
sible solution is found. 79

3.7 Average CPU time, Gap, Cost and relaxation value comparison between
PF and C. 80

3.8 Description of Tables 3.9-3.13 abbreviations 88

3.9 Results comparison between MILP-Based Heuristic and compact MILP
formulation. 89

xvi LIST OF TABLES

3.10 Results comparison between MILP-Based Heuristic and compact MILP
formulation. 90

3.11 Results comparison between MILP-Based Heuristic and compact MILP
formulation. 91

3.12 Results comparison between MILP-Based Heuristic and compact MILP
formulation. 92

3.13 Results comparison between MILP-Based Heuristic and compact MILP
formulation. 93

4.1 Decision variables of the path formulation 99

4.2 Decision variables of the Dantzig-Wolfe formulation 105

4.3 Decision variables of the pricing problem for the model DW 107

4.4 Description of the tables abbreviations 147

4.5 Results for SNDlib instances with Path formulation in which di�erent
pricing problems are tested. 148

4.6 Results for SNDlib instances with Path formulation in which di�erent
pricing problems are tested. 149

4.7 Results for SNDlib instances with Path formulation in which di�erent
pricing problems are tested. 150

4.8 Results for SNDlib instances with Path formulation in which di�erent
pricing problems are tested. 151

4.9 Results for SNDlib instances with relaxed Path formulation, relaxed
Dantzig-Wolfe formulation and Relaxed Compact formulation. 152

4.10 Results for SNDlib instances with relaxed Path formulation, relaxed
Dantzig-Wolfe formulation and Relaxed Compact formulation. 153

4.11 Results for SNDlib instances with relaxed Path formulation, relaxed
Dantzig-Wolfe formulation and Relaxed Compact formulation. 154

4.12 Results for SNDlib instances with relaxed Path formulation, relaxed
Dantzig-Wolfe formulation with and without valid inequalities. 155

4.13 Results for SNDlib instances with relaxed Path formulation, relaxed
Dantzig-Wolfe formulation with and without valid inequalities. 156

4.14 Results for SNDlib instances with relaxed Path formulation, relaxed
Dantzig-Wolfe formulation with and without valid inequalities. 157

4.15 Bounds improvement results for SNDlib instances with Branch-and-
Price algorithms for the Path formulation and the Dantzig-Wolfe formu-
lation compared to the compact formulation and the automatic Benders.
. 158

LIST OF TABLES xvii

4.16 Bounds improvement results for SNDlib instances with Branch-and-
Price algorithms for the Path formulation and the Dantzig-Wolfe formu-
lation compared to the compact formulation and the automatic Benders.
. 159

5.1 Results for graphs with |N | = 25 and d = 0.5. 192

5.2 Results for graphs with |N | = 50 and d = 0.5. 193

5.3 Results for graphs with |N | = 100 and d = 0.5 194

5.4 Results for graphs with |N | = 25 and d = 0.9. 195

5.5 Results for graphs with |N | = 50 and d = 0.9. 196

5.6 Results for graphs with |N | = 100 and d = 0.9. 197

5.7 Results for SNDlib instances with node capacities and con�ict con-
straints (part 1) . 198

5.8 Results for SNDlib instances with node capacities and con�ict con-
straints (part 2). 199

5.9 Results for SNDlib instances with node capacities and con�ict con-
straints (part 3). 200

5.10 Results for SNDlib instances without node capacities and con�ict con-
straints (part1). 201

5.11 Results for SNDlib instances without node capacities and con�ict con-
straints (part 2). 202

5.12 Results for SNDlib instances without node capacities and con�ict con-
straints (part 3). 203

List of Abbreviations

API Application Programming Interface
B&B Branch-and-Bound
B&P Branch-and-Price
CAPEX Capital Expenditure
CG Column Generation
CLI Command Line Interface
COTS Commercial o�-the-shelf
CPU Central Processing Unit
DPI Deep Packet Inspection
ETSI European Telecommunications Standards Institute (ETSI)
FW Firewall
GB Gigabyte
ILP Integer Linear Program
IP Internet Protocol
LAN Local Area Network
LB Lower Bound
LP Linear Program
MILP Mixed Integer Linear Program
MIP Mixed Integer Program
NAT Network Address Translator
NF Network Function
NFV Network Functions Virtualisation
NFVI Network Functions Virtualisation Infrastructure
NFVI-PoP NFVI Point of Presence
NFV-MANO NFV Management and Orchestration
NFVO Network Functions Virtualisation Orchestrator
NS Network Service
OPEX Operational Expenditure
QoE Quality of Experience
QoS Quality of Service

xx List of Abbreviations

SDN Software-De�ned Networking
SFC Service Function Chain
SNDlib Survivable Network Design Library
UB Upper Bound
VNF Virtualised Network Function
VNFPRP Virtual Network Functions Placement and Routing Problem
VPN Virtual Private Network
WAN Wide Area Network

Introduction

Typically, telecommunication networks are composed of di�erent devices such as
switches, routers, and middleboxes, which are used in order to provide network func-
tions such as Proxies, Firewalls (FW), Intrusion Detection Systems (IDS), Load Bal-
ancers (LB), etc. The hardware middleboxes are costly, energy-intensive and have short
lifecycles [71]. Constantly, network service providers have to deal with a large number
of tra�c requests in order to satisfy customer demands. These tra�c requests represent
services such as video streaming, virtual private network (VPN), online gaming, etc.
Moreover, each service requires a speci�c Service Function Chain (SFC), representing a
sequence of hardware devices that must be traversed by the data �ows in a pre-de�ned
order. Routing packets through these �xed devices is very time consuming and re-
duces the QoS (e.g., end-to-end latency). Also, when a new service is required, new
hardware devices should be used, placed, and connected to the network elements [89].
Furthermore, in traditional telecommunication networks, no device has visibility of the
whole network. Each switch has its own data plane, to forward the tra�c, and its
own control plane, to decide where to send the data. Having a considerable number
of devices implies managing a considerable number of control and data planes. This
requires a manual con�guration, and makes packet forwarding very complicated within
a network [48, 111]. Therefore, network management becomes very challenging [110],
which is very expensive in terms of CAPEX and OPEX.

During the last decade, the legacy telecommunication networks have started their
transformation by introducing two promising technologies, namely, the Network Func-
tion Virtualization and Software-De�ned Networking. The Network Function Virtual-
ization allows the network functions to be executed as software on commercial o�-the-
shelf equipment, thus being instantiated on-demand without installing new equipment.
Software-de�ned networking is a new paradigm that simpli�es network management
and makes the deployment of new services easier by separating the data plane from
the control plane. This is done by creating one or multiple central controllers having a
global view of the whole network state.

2 Introduction

NFV and SDN provide various bene�ts: speci�cally, the VNFs could be installed on-
demand on network nodes, and the routing paths associated with the Service Function
Chains could be computed dynamically to encounter the installed VNFs [11]. These
two technologies bring new �exibility in network management. Nevertheless, their in-
troduction generates hard decision problems combining the choice of locations to deploy
the VNFs and the computation of e�cient routing paths meeting the installed VNFs in
the right order. Both problems are widely studied separately in the literature, but their
combination, speci�ed by the VNF chaining problem, introduces a new challenge [6].

In this thesis, we study the Virtual Network Functions Placement and Routing Prob-
lem faced by Network Service Providers (NSPs). Given a telecommunication network,
a set of VNFs and a set of tra�c requests (or commodities), the VNFPR problem con-
sists in determining the optimal VNFs placement at network nodes, and the associated
latency-constrained routing paths for each commodity, satisfying the SFC constraints.
The VNF-installation and the node activation costs are to be minimized. Further
technical constraints, allowing a better Quality of the Service (QoS) and Quality of
Experience (QoE), can be considered along with nodes capacities, VNFs capacities, or
con�ict between VNFs of the same service.

In the �rst part of the thesis, we investigate the problem's basic properties, we show
that the problem is strongly NP-hard even for its simplest version, and we propose an
MILP compact formulation to model it. This formulation does not seem to be strong
enough to �nd a solution using an o�-the-shelf solver in a reasonable time. To tackle
the problem from a computational perspective, we propose a path-based heuristic that
provides optimal solutions for realistic instances from the literature.

Afterwards, we propose two extended formulations based on Dantzig-Wolfe decom-
position to model the problem, namely: path formulation (PF) and Dantzig-Wolfe
(DW) formulation. In order to strengthen their LP-bounds, we propose several fami-
lies of valid inequalities and demonstrate their bene�ts. We show, theoretically, that
the Dantzig-Wolfe formulation is stronger than the path formulation in terms of linear
relaxation. We present a branching scheme for each one and develop a Branch-and-
Price algorithm. We compare both algorithms with the MILP compact formulation
and the automatic Benders of Cplex.

In the last part of the dissertation, we study a variant of the problem in which we
relax the VNF-capacity and con�ict constraints. We provide theoretical results that
allow us to reformulate the problem using Benders decomposition and three families
of valid inequalities to strengthen the LP-bounds. We combine all these ingredients in
a Branch-and-Benders-Cut framework, and we test it on a set of realistic benchmark

Introduction 3

instances.

This manuscript is organized as follows. In Chapter 1, we brie�y present the basic
notions of combinatorial optimization, its most important approaches, and de�ne some
notions of the telecommunication network. This chapter also includes a review of the
state-of-the-art methods for the VNFPRP. In Chapter 2, we present the VNFPRP, its
proprieties, and an MILP compact formulation to model it. Chapter 3 is dedicated to
the MILP-based heuristic. In Chapter 4, we present two extended formulations and
their Branch-and-Price algorithms. In Chapter 5, we discuss a variant of the problem,
and we provide theoretical results that allow us to derive Benders reformulation and
to develop a Branch-and-Benders-Cut algorithm.

Chapter 1

Preliminaries and State-of-the-Art

This chapter introduces and presents the main notions and de�nitions neces-
sary to ease the manuscript's understanding. First, we summarize the most important
methods in combinatorial optimizaion, such as cutting plane, Branch-and-Cut, Benders
reformulation, column generation, and the Branch-and-Price algorithms. Furthermore,
the principal graph theory's notions and the key de�nitions in the telecommunication
network are reported. The last section of the chapter is related to the review of the
literature on the Virtual Network Functions Placement and Routing problem.

6 Preliminaries and State-of-the-Art

Contents
1.1 Polyhedra and Integer Linear Programming methods . . . 7

1.1.1 Elements of polyhedral theory 7

1.1.2 Cutting plane method . 8

1.1.3 Branch-and-Cut algorithm . 10

1.1.4 Benders decomposition . 11

1.1.5 Dantzig-Wolfe decomposition 14

1.1.6 Column generation procedure 16

1.1.7 Branch-and-Price algorithm 17

1.2 Graph theory . 18

1.2.1 Undirected graphs . 18

1.2.2 Directed graphs . 19

1.2.3 Shortest path algorithms . 19

1.3 Telecommunication Networks 23

1.3.1 Network Structure . 23

1.3.2 Network devices . 24

1.3.3 Network Function (NF) . 25

1.3.4 Routing schemes . 26

1.3.5 Network Function Virtualization (NFV) 27

1.3.6 Software De�ned Networking (SDN) 30

1.3.7 Service Functions Chaining (SFC) 33

1.4 Literature review . 35

1.4.1 Overview of the related works 39

1.1 Polyhedra and Integer Linear Programming methods 7

Outline of the chapter. In Section 1.1, we present the most important reformula-
tion and resolution approaches used in combinatorial optimization. Some important
notions of graph theory are provided in Section 1.2. Section 1.3 is dedicated to the
telecommunication network notions and de�nitions. The last section summarizes the
literature review related to the VNFPRP.

1.1 Polyhedra and Integer Linear Programming meth-

ods

Some de�nitions in this section have been collected from the book chapter of A.R
Mahjoub [95].

1.1.1 Elements of polyhedral theory

Let x ∈ Rn be a vector, where n is a positive integer. We say that x is a linear
combination of x1, x2, . . ., xm ∈ Rn if there exist m scalars λ1, λ2, . . ., λm such that x
=

∑m
i=1 λixi. If

∑m
i=1 λi = 1, then x is said to be a a�ne combination of x1, x2, . . .,

xm. Moreover, if λi ≥ 0, for all i ∈ {1, . . . ,m}, we say that x is a convex combination
of x1, x2, . . ., xm.

Given a set S = {x1, . . . , xm} ∈ Rn×m, the convex hull of S is the set of points x ∈ Rn

which are convex combination of x1, . . ., xm (see Figure 1.1), that is

conv(S) = {x ∈ Rn|x is a convex combination of x1, . . . , xm}.

The points x1, . . ., xm ∈ Rn are linearly independent if the unique solution of the
system

∑m
i=1 λixi = 0, is λi = 0, for all i ∈ {1, . . . ,m}. Furthermore, they are a�nely

independent if the unique solution of the system
∑m

i=1 λixi = 0,
∑m

i=1 λi = 1, is λi = 0,
i = 1, . . ., m.

A polyhedron P is the set of solutions of a linear system Ax ≤ b, that is P =
{x ∈ Rn|Ax ≤ b}, where A is a m-row n-columns matrix and b is a vector, b ∈ Rm. A
polytope is a bounded polyhedron. A point x of P will be also called a solution of P .

An inequality ax ≤ α is valid for a polyhedron P ⊆ Rn if for every solution x ∈ P ,
ax ≤ α. This inequality is said to be tight for a solution x ∈ P , if ax = α.

8 Preliminaries and State-of-the-Art

Figure 1.1: Example of a convex hull

The inequality ax ≤ α is violated by x ∈ P , if ax > α. Let ax ≤ α be a valid
inequality for the polyhedron P . F = {x ∈ P |ax = α} is called a face of P .

An inequality ax ≤ α is redundant, if the system {A′x ≤ b′} obtained by removing
this inequality from Ax ≤ b de�nes the same polyhedron P . This is the case when
ax ≤ α can be written as a linear combination of inequalities of the system A′x ≤ b′.

A solution is an extreme point of the polyhedron P , if and only if it cannot be written
as the convex combination of two di�erent solutions of P . The polyhedron P can also
be described by its extreme points. In fact, every solution of P can be written as a
convex combination of some extreme points of P .

Figure 1.2 illustrates the main de�nitions given is this section.

1.1.2 Cutting plane method

Usually, the characterization of the convex hull of a combinatorial optimization problem
is done by de�ning a large number of inequalities, which is exponential in most of the
cases. De�ne all these linear inequalities is not always obvious. In order to overcome
this di�culty, the cutting plane method can be used.

1.1 Polyhedra and Integer Linear Programming methods 9

Figure 1.2: Example of valid and non valid inequalities and extreme points

The cutting plane method is based on the so-called separation problem. This consists,
given a polyhedron P of Rn and a point x∗ ∈ Rn, in verifying if x∗ belongs to P or not,
and if not, to identify an inequality aTx ≥ b, valid for P and violated by x∗. In the
latter case, we say that the hyper-plane aTx = b separates P and x∗ (see Figure 1.3).

Figure 1.3: A hyper-plane separating x∗ and P

The cutting plane method consists in solving successive linear programs, with pos-
sibly a large number of inequalities, as follows. Let LP = min{cx | Ax ≥ b} be a

10 Preliminaries and State-of-the-Art

linear program and LP ′ a linear program obtained by considering a small number of
inequalities among Ax ≥ b. Let x∗ be the optimal solution of the latter system. We
solve the separation problem associated with Ax ≥ b and x∗. This phase is called the
separation phase. If every inequality of Ax ≥ b is satis�ed by x∗, then x∗ is also optimal
for LP . If not, let ax ≥ α be an inequality violated by x∗. Then we add ax ≥ α to LP ′

and repeat this process until an optimal solution is found. Algorithm 1 summarizes
the di�erent cutting plane steps.

Algorithm 1: A cutting plane algorithm [94]
Data: A linear program LP and its system of inequalities Ax ≥ b

Result: Optimal solution x∗ of LP
1 : Consider a linear program LP ′ with a small number of inequalities of LP ;
2 : Solve LP ′ and let x∗ be an optimal solution;
3 : Solve the separation problem associated with Ax ≥ b and x∗;
if an inequality ax ≥ α of LP is violated by x∗ then

Add ax ≥ α to LP ′;
Go to step 2 ;

end

else

x∗ is optimal for LP ;
return x∗;

end

The cutting-plane algorithm aims to solve the LP-relaxation of a given problem. The
integrality of the provided solution has to be checked, if an integer solution is required
and the Branch-and-Bound algorithm must be applied if the solution is fractional. Some
inequalities have to be added to the problem during the Branch-and-Bound algorithm
to achieve the optimality. This means that we have to combine both algorithms in
order to get an optimal integer solution; the resulting algorithm is called Branch-and-
Cut algorithm.

1.1.3 Branch-and-Cut algorithm

Consider a combinatorial optimization problem P which can be stated as: min{cx|Ax ≥
b, x ∈ {0, 1}n}, where Ax ≥ b has a large number of inequalities. A Branch-and-Cut
algorithm starts by creating a Branch-and-Bound tree whose root node corresponds to
a linear program LP0 = min{cx|A0x ≥ b0, 0 ≤ x ≤ 1}, where A0x ≥ b0 is a subsystem
of Ax ≥ b having a small number of inequalities. Then, we solve the linear relaxation

1.1 Polyhedra and Integer Linear Programming methods 11

of the problem that is LP = {cx|Ax ≥ b, 0 ≤ x ≤ 1} using a cutting plane algorithm
starting from LP0. Let x∗0 denote its optimal solution and A′0x ≥ b′0 denote the set of
inequalities added to LP0 at the end of the cutting plane phase. If x∗0 is integral, then
it is optimal. Otherwise, if x∗0 is fractional, we perform a branching phase. This step
consists of choosing a variable, say x1, with a fractional value and adding two nodes P1

and P2 in the Branch-and-Cut tree. The node P1 corresponds to the linear program LP1

= min{cx|A0x ≥ b0, A
′
0x ≥ b′0, x

1 = 0} and LP2 = min{cx|A0x ≥ b0, A
′
0x ≥ b′0, x

1 = 1}.
We then solve the linear program LP 1 = min{cx|Ax ≥ b, x1 = 0} (resp., LP 2 =
min{cx|Ax ≥ b, x1 = 1}) by a cutting plane method, starting from LP1 (resp. LP2). If
the optimal solution of LP 1 (resp. LP 2) is integral then, it is feasible for the problem.
Its value is then an upper bound of the optimal solution, and the node P1 (resp. P2)
becomes a leaf of the Branch-and-Cut tree. If the solution is fractional, then we select
a variable with a fractional value and add two children to the node P1 (resp. P2), and
so on.

Similarly, as in the Branch-and-bound algorithm, infeasible nodes can be generated
by adding constraints of type xi = 0 and xi = 1, with xi fractional variable. Also, this
can generate nodes with a worst objective value than the best known lower bound.
Both types of nodes are pruned. The Branch-and-cut algorithm terminates when all
nodes have been explored.

A good upper bound can be used in the Branch-and-Cut algorithm in order to prune
nodes that do not allow its improvement. This allows reducing the size of the Branch-
and-Cut tree, and consequently, reduce the time used by the algorithm. Furthermore,
this upper bound may be improved by applying a primal heuristic which aims to
produce a feasible solution from the solution obtained at a given node of the Branch-
and-Cut tree when this later solution is fractional (and hence infeasible). When the
solution computed is better than the best known upper bound, it may signi�cantly
reduce the number of generated nodes, as well as the CPU time. Moreover, this
guarantees to have an approximation of the optimal solution before visiting all the
nodes of Branch-and-Cut tree, for example, when a CPU time limit has been reached.

1.1.4 Benders decomposition

Benders decomposition is one of the most famous decomposition tools for Mathemati-
cal Programming, proposed by JF Benders in [19,20], in order to reformulate and solve
speci�c large-scale optimization problems admitting a set of complicating variables.
Complicating variables can be de�ned as those variables that, when temporarily �xed,
make the remaining optimization problem considerably more tractable. This means

12 Preliminaries and State-of-the-Art

that �xing their values reduces the given problem to an ordinary linear program [59].
Benders method is based on the cutting-plane method and utilizes the duality theory
in order to derive families of cuts. Hence, instead of considering the problem with all
its decision variables and constraints of a large-scale problem, Benders decomposition
partitions the problem into multiple smaller problems called Benders subproblems and
one master problem called Benders master problem. The computational di�culty of
optimization problems increases signi�cantly with a large number of variables and con-
straints. Solving these smaller problems iteratively can be more e�cient than solving
a single large problem. The Benders method is generalized for MINLP by Geo�rion
in [59].

Let (P) be an MILP admitting two set of variables x and y. (P) is de�ned as follows:

(P) : min cx+ dy

s.t Ax+By ≥ b

x ∈ Rp
+

y ∈ Y,

where Y is a �complicated� polyhedron, A and B are matrices, b, c and d are vectors
with appropriate dimensions. Once complicated variables y are �xed, the problem
(P) becomes signi�cantly easier to solve. The obtained problem represents a linear
programming problem in x variables, which (depending on the structure of A) can
be decomposed into smaller subproblems for subsets of x. Benders decomposition
separates problem (P) into two problems: (i) a master problem that contains the y
variables, and (ii) subproblems that contain the x variables. We �rst note that problem
(P) can be written with �xed y variables as follows:

(P
′
) : min

ȳ∈Y
{dȳ + min

x≥0
{cx : Ax ≥ b−Bȳ}},

such that the Benders subproblem is de�ned by φ(ȳ) as follows:

(SP) : φ(ȳ) = min
x≥0
{cx : Ax ≥ b−Bȳ},

The Benders subproblem could be feasible, infeasible, or unbounded for a given value
of ȳ. In order to prevent infeasibility, we use the LP-duality theory. Let us denote by
(D) the dual formulation associated with (SP) such that:

(D) : φD(ȳ) = max
u≥0
{(b−Bȳ)tu : Atu ≤ c}

1.1 Polyhedra and Integer Linear Programming methods 13

For the feasible region of (D) we have:

F = {u : utA ≤ ct, u ≥ 0}

where :

� F represents a polyhedron independent of y.

� F is composed of extreme points up, p = 1, . . . , P and extreme rays rq, q =

1, . . . , Q

1) In the case where (D) is unbounded this means that the problem (SP) is infea-
sible. Therefore, there exists an unboundedness direction (extreme ray) r such
that:

(b−Bȳ)tr > 0⇒ φD(ȳ)→∞.

In order to eliminate ȳ ∈ Y which causes the Benders subproblem infeasibility, a
Benders feasibility cut is added to (P):

(b−Bȳ)tr ≤ 0.

All infeasible y ∈ Y can be eliminated by adding constraints

(b−By)trq ≤ 0, q = 1, . . . , Q.

2) (D) is feasible for ȳ ∈ Y , by LP-duality theory we have:

φ(ȳ) = φD(ȳ) = max
u≥0
{(b−Bȳ)tu : Atu ≤ c}.

As each problem can be expressed by its extreme points and the optimality is
attained at one of them, we have:

φ(ȳ) = φD(ȳ) = max
p∈{1,...,P}

{(b−Bȳ)tup}.

from which we can derive the Benders optimality cuts (see below). Then, (P)

can be reformulated by the following program:

(P) : min
y∈Y
{dy + max

p∈{1,...,P}
(b−By)tup}

s.t (b−By)trq ≤ 0, q = 1, . . . , Q

14 Preliminaries and State-of-the-Art

Using an auxiliry variables w to bound the inner maximization problem, the problem
(P) is equivalent to the following MIP:

min dy + w

s.t. w ≥ (b−By)tup, p = 1, . . . , P (OptCut)

0 ≥ (b−By)tur, r = 1, . . . , Q (FeasCut)

y ∈ Y,w ≥ 0

whereOptCut represent the Benders optimality cuts and FeasCut represent the Benders
feasibility cuts.

Since there is, typically, an exponential number of extreme points and extreme rays
associated with the dual formulation, the Benders formulation admits an exponential
number of constraints. Generating all constraints of type (OptCut) and (FeasCut) is
very time-consuming and implies adding non-e�cient constraints to the model. Instead,
using the Benders algorithm, Benders cuts are separated at each iteration. We start the
algorithm by solving the relaxed master problem with a subset of constraints. Let y∗ be
the optimal solution of this problem. Then we solve the associated dual problem based
on y∗ in order to generate Benders feasibility and optimality cuts. This procedure is
repeated until no further notated Benders cuts are found. This method converges to
an optimal solution in a �nite number of iterations [59].

There exist two ways to apply the Benders method, old and modern one. In the old
version, the relaxed master problem is solved as an MILP after adding cuts. Similarly to
the Branch-and-Cut algorithm, the modern version (also called Branch-and-Benders-
cut) consists in solving, at each node of the branching tree, the relaxed master problem
using Benders method.

Some successful applications using Benders method are: large-scale stochastic opti-
mization [132], network design, �xed-charge network design problems [41], linear and
quadratic facility location problems [50,52] and covering location problems [37].

1.1.5 Dantzig-Wolfe decomposition

The Dantzig-Wolfe decomposition de�nition have been collected from the paper of M.E.
Lübbecke and J. Desrosiers [92].

In this subsection, we brie�y introduce the Dantzig-Wolfe decomposition developed
by George Dantzig and Philip Wolfe in 1960. This decomposition aims to reformulate

1.1 Polyhedra and Integer Linear Programming methods 15

an original problem into a master program and one or multiple pricing problems. Let
us consider the following linear program representing a compact formulation (original
problem):

(C) : min cTx

s.t. Ax ≥ b

Dx ≥ d

x ≥ 0

Let P = {x ∈ Rn
+ | Dx ≥ d} 6= ∅ be a polyhedron, {pq}q∈Q its extreme points

and {pr}r∈R its extreme rays, with Q and R �nite. Each x ∈ P can be written as
convex combination of extreme points plus non-negative combination of extreme rays
as follows:

x =
∑
q∈Q

pqλq +
∑
r∈R

prλr,
∑
q∈Q

λq = 1, λ ∈ R|Q|+|R|+

By applying the linear transformation cj = cTpj and aj = Apj, j ∈ Q ∪ R we obtain
the following formulation:

(D −W) : min
∑
q∈Q

cqλq +
∑
r∈R

crλr (1.1)

s.t.
∑
q∈Q

aqλq +
∑
r∈R

arλr ≥ b (u) (1.2)∑
q∈Q

λq = 1 (v) (1.3)

λ ≥ 0 (1.4)

The (D-W) model admits a huge number of variables, but it possibly admits less
constraints than (C). Constraints (1.3) are called convexity constraints. The compact
formulation (C) and the extensive formulation (D-W) are equivalent and they give the
same optimal objective function value. Nevertheless, they respective polyhera are not
combinatorially equivalent [8, 92].

As the (D-W) formulation has a large number of variables, it should be solved using a
column generation procedure (see Subsection 1.1.6). First, the model is initialized by a
subset of variables, (it is called the restricted master problem, RMP), then the variables

16 Preliminaries and State-of-the-Art

needed to solve its linear relaxation are added at each iteration of the column generation
procedure. Given a dual optimal solution (ū, v̄) of the RMP, the subproblem in Dantzig-
Wolfe decomposition determines the column j which is optimal for min

j∈Q∪R
{cj−ūTaj−v̄}.

This objective function representing the minimum reduced cost c̄∗, which is, using the
linear transformation, equivalent to:

c̄∗ := min{(cT − ūTA)x− v̄|Dx ≥ d, x ≥ 0}

If c̄∗ ≥ 0, this means that no column with negative reduced cost exists and the column
generation procedure terminates. If c̄∗ < 0, this means that the optimal solution of
the pricing problem is either an extreme point or an extreme ray, and the respective
column is added to the RMP.

1.1.6 Column generation procedure

Some de�nitions in this section, Section 1.1.7 and Section 1.2 have been token from
the thesis of Y.Magnouche [94].

Generally, compact MILP formulations performance is fairly limited because they
often provide a weak linear relaxation. According to Sadykov and Vanderbeck [117],
working in an extended variable space allows one to develop tight reformulations for
mixed-integer programs. Those reformulations can admit an exponential number of
variables which cannot be considered explicitly in the model. In this section, we in-
troduce a method that allows for solving the LP-relaxation of extended formulations.
This method is called Column generation method.

The column generation method is utilized to solve linear programs admitting an
exponential number of variables. Only a small number of variables is considered at
the beginning of the procedure. This method was pioneered by Dantzig and Wolfe in
1960 [42] in order to solve problems that could not be managed e�ciently (in terms
of CPU time and memory consumption) because of their size. Column generation
is usually applied either for problems whose structure is suitable for a Dantzig-Wolfe
decomposition (see Subsection 1.1.5), or for problems with a large number of variables.
Gilmore and Gomory [62,63] utilized this method to solve a cutting stock problem with
a huge number of variables.

The column generation procedure aims to solve a sequence of linear programs with
a restricted number of variables (also referred to as columns). The algorithm starts by
solving a linear program having a small number of variables, and such that a feasible

1.1 Polyhedra and Integer Linear Programming methods 17

solution for the original problem may be identi�ed using this basis. At each iteration
of the algorithm, a so-called pricing problem is solved with the objective to identify
the variables which must enter the current base. A negative reduced cost characterizes
these variables. The reduced cost associated with a variable is computed using the dual
variables associated with the problem's constraints. Then, the linear program that is
obtained by adding the generated variables is solved; this procedure is repeated until
no variable with negative reduced cost can be identi�ed by the pricing problem. In this
case, the solution obtained from the last restricted program is optimal for the original
model. The main step of the column generation procedure is summarized in Algorithm
2.

Algorithm 2: A column generation algorithm [94]

Data : A linear program MP (Master Problem) with a huge number of variables
Output : An optimal solution x∗ of MP
1: Consider a linear program RMP (Restricted Master Problem) including only a
small subset of variables of the MP;
2: Solve RMP and let x∗ be its optimal solution;
3: Solve the pricing problem associated with the dual variables obtained by the
resolution of the RMP;
4: If there exists a variable x with a negative reduced cost then;
5: add x to RMP.
6: go to 2.
7: else
8: x∗ is optimal for MP.
9: return x∗.

The column generation procedure can be seen as the dual of the cutting plane method
since it adds columns (variables) instead of rows (inequalities) in the linear program.
Moreover, the pricing problem may be NP-hard. One can then use heuristic procedures
to solve it. For more details on column generation algorithms, the reader is suggested
to consult [43,91,133].

1.1.7 Branch-and-Price algorithm

The column generation procedure aims to solve the LP-relaxation of an optimization
problem, having a huge number of variables. The integrality of the solution provided is
not guaranteed. Hence to provide an optimal integer solution for an ILP formulation,

18 Preliminaries and State-of-the-Art

the column generation method has to be merged with a Branch-and-bound algorithm;
the resulting algorithm is called Branch-and-Price algorithm. This algorithm can be
considered as the dual of the Branch-and-Cut algorithm.

The Branch-and-Price algorithm consists of solving each node of the Branch-and-
Bound tree using the column generation procedure, all columns with negative reduced
cost are added to the model in order to improve its LP-relaxation. When no column
with negative reduced cost exists and the current solution is not integer, the algorithm
starts the branching phase.

The Branch-and-Price algorithm has been used on various �elds to solve large scale
integer programming problems, and even real-life problems such as Cutting stock prob-
lem [12], Generalized Assignment Problem (GAP) [120], Airline Crew Scheduling [16],
Multi-commodity Flow Problems [17], etc.

1.2 Graph theory

The current section is dedicated to introducing basic de�nitions in graph theory, which
will be used throughout the chapters of this dissertation. For more details, we refer
the reader to [122].

1.2.1 Undirected graphs

An undirected graph is denoted by G = (V,E) where V is the set of vertices or nodes
and E is the set of edges. If e is an edge between two vertices u and v, then u and v
are called the ends of e, and we write e = uv. If u is an end-point of e, then u (resp.
e) is said to be incident to e (resp. u). Similarly, two vertices u and v forming an edge
are said to be adjacent.

Let u and v be two vertices of V . A path p between u and v is an alternating
sequence of vertices (v0, v1, v2, ..., vk−1, vk), where v0 = u, vk = v; vi−1vi represents an
edge connecting vi−1 and vi in the path p for i = 1, . . . , k. p is called elementary if it
does not visit more than once the same node in G.

1.2 Graph theory 19

1.2.2 Directed graphs

A directed graph is denoted by D = (N,A) where N is the set of nodes and A the set
of arcs.

If a ∈ A is an arc connecting a node u to node v, then u will be called initial end
and v is called �nal end and we write a = (u, v). We say that a is an outgoing arc of
node u and an incoming arc of node v. The vertices u and v are called ends of a. If v
is an end (initial or �nal) of a, then v (resp. a) is said to be incident to a (resp. v).

1.2.3 Shortest path algorithms

In this subsection, we present the well-known algorithms proposed for �nding the short-
est path between two nodes in a graph.

1.2.3.1 Dijkstra's algorithm

Given a graph G = (V,A) (resp. G = (V,E)), with positive arc (resp. edge) length
luv ∈ R+, for each (u, v) ∈ A (resp. uv ∈ E) the Dijkstra's algorithm aims to �nd a
shortest path to all nodes from a single source in a network [44], [78]. The original
algorithm aims to �nd the shortest paths from a de�ned source to all nodes in the graph
(destinations). This algorithm can be adapted to provide the shortest path between a

20 Preliminaries and State-of-the-Art

source node and one destination node. Dijkstra algorithm is in O(|E|+ |V | × log|V |)

Algorithm 3: Dijkstra's algorithm(Graph, source, destination):

for each vertex v in the graph G do
dist[v] := +∞
previous[v] := ∅

end

dist[source] := 0

Q := the set of all nodes in the graph G
while destination is not reached do

u := node in Q with smallest distance
remove u from Q

for each neighbor v of u do
distuv := dist[u] + luv

if distuv < dist[v] then
dist[v] := distuv
previous[v] := u

end

end

end

return previous

1.2.3.2 Moore-Bellman-Ford's algorithm

Given a graph G = (V,A) (resp. G = (V,E)), with arc (resp. edge) length luv ∈ R,
for each (u, v) ∈ A (resp. uv ∈ E) the Moore-Bellman-Ford's algorithm aims to �nd a
shortest path from a single source to all nodes in a network, without negative length

1.2 Graph theory 21

cycles. The complexity of Moore-Bellman-Ford's algorithm is in O(|E| × |V |)

Algorithm 4: Moore-Bellman-Ford's algorithm(Graph, source):

for each vertex v in the graph G \ {s} do
dist[v] := +∞
predesessor[v] := ∅

end

dist[source] := 0

for i = 1 to |V | − 1 do

for each arc (v, w) ∈ A do

if dist[w] > luv + dist[v] then
dist[w] := luv + dist[v]

predesessor[w] := v

end

end

end

return predesessor

1.2.3.3 Yen's algorithm

Given a graph G = (V,A), Yen's algorithm aims to �nd K−shortest loopless paths in
the graph G between source and destination nodes [138]. Yen's algorithm employs any
shortest path algorithm (Dijkstra, for example) in order to �nd the shortest path, then
proceeds to �nd K − 1 deviations of this path, by deleting at each iteration one arc
belonging to the shortest path. The complexity of Yen's algorithm based on Djikstra

22 Preliminaries and State-of-the-Art

algorithm is in O(kn(m+ nlogn))

Algorithm 5: Yen's algorithm(Graph, source, destination, K):

SP = Get the shortest path using Dijkstra algorithm(Graph, source,
destination).
Initialize the set of solutions with the shortest path, Sol = [SP].
Initialize the set of potential paths, PotentialPaths = [].
for nbPath = 1 to K do

for each node i in Sol[nbPath− 1] do
SpurNode = current node i.
RootPath = subpath in Sol[nbPath− 1] from the source node to i.
for each path p in Sol do

if the same nodes are in path p and the RootPath then
Remove the edge (i, i+ 1) from the graph

end

end

for each node j in the RootPath, with j 6= SpurNode do
Remove the node j from the graph

end

SpurPath = Dijkstra algorithm(Graph, SpurNode, destination).
Create the new path TotalPath by concatenating the RootPath and
the SpurPath: TotalPath = RootPath ∪ SpurPath
if TotalPath /∈ PotentialPaths then

Add TotalPath to PotentialPaths
end

Restore edges to the graph.
Restore nodes in RootPath to Graph.

end

if PotentialPaths is empty then
Break

end

Sort paths in PotentialPaths from the smaller to the bigger cost.
Add the lowest path to the set of solutions Sol.
Delete the path from PotentialPaths.

end

Return the set of solutions Sol.

1.3 Telecommunication Networks 23

1.3 Telecommunication Networks

Some de�nitions in this section have been collected from the thesis of A. Tomassilli
[129].

This section is dedicated to introducing basic de�nitions and notations in the telecom-
munication networks, which will be used throughout the chapters of this dissertation.
First, we de�ne the network structure brie�y; we present some examples of network
functions. Then, we describe the notion of Network Function Virtualization (NFV),
we de�ne the Software-De�ned Networking (SDN) architecture and explain the Service
Functions Chaining (SFC).

1.3.1 Network Structure

The telecommunication network is composed of three parts, as shown in Figure 1.4:

� Access network is the part of a telecommunication network that gives the user
access to services.

� Core network (or backbone) is the part of a network that connects the di�erent
parts of the access network. The core network also provides the gateway to other
networks.

� Data center is a dedicated space within a building, or a group of buildings used
to house computer systems and associated components, such as telecommunica-
tions and storage systems.

24 Preliminaries and State-of-the-Art

Figure 1.4: Network structure (�xed and wireless access networks, core networks and
data centers) [84].

1.3.2 Network devices

Computer Networks consist of a large number of network devices such as routers,
switches, and many types of middleboxes and links connecting them. In the following,
we de�ne some network nodes.

� Network interface is a software or a hardware interface connecting two parts
of equipment. It has the ability to process low-level network information.

� Repeater and hub is an electronic equipment that receives a network signal,
cleans it of undesirable noise, and regenerates it. The signal is re-transmitted at
a higher power level, or to the other side of obstruction so that the signal can
traverse longer distances without degradation.

� Bridge is a network device that connects and �lters tra�c between two network
segments at the data link layer 2 of the OSI [1] model to create a single network.

� Switch: is a device that connects several segments (cables or �bers) in a com-
puter and telecommunication network, making it possible to create virtual cir-
cuits. Switching is one of two frame transport modes within computer and com-

1.3 Telecommunication Networks 25

munication networks. Switches can route data between two connected network
nodes only.

� Router is a device that aims to determine routes and forwards packets between
networks by processing the routing information included in the packets. They
have a total view of the network.

� Modem: (MOdulator-DEModulator) is a hardware device that transforms data
into a suitable format for a transmission medium so that it can be transmitted
from one computer to another.

� Firewall is a network device for controlling network security and access rules.
Firewalls are typically con�gured to reject access requests from unrecognized
sources.

Figure 1.5: Network devices [3]

1.3.3 Network Function (NF)

Network function also called, service function (SF), is a network appliance that runs on
the network application layer. SFs are used to treat, manipulate, or store data packages.
Typical examples include �rewalls, video optimizers, load balancers, parental control,
etc. Traditionally, SFs were implemented on physical middleboxes, which are inter-
mediary �devices� (such as applications, functions, machines, etc.) used to treat data
packages di�erently from standard routers. In the following, we will give de�nitions of
some network functions, published in memo [2] by Brian Edward Carpenter.

26 Preliminaries and State-of-the-Art

Network Address Translator (NAT) aims to dynamically assign a global and
unique address to a host that does not have one.

Application-level gateway (ALG) needs to keep state for the sessions they are
handling, and if the state is lost, the session will normally break irrevocably.

IP Firewall the simplest form of �rewall is a router that screens and rejects packets
based purely on �elds in the IP and transport headers.

Proxies Fielding et al. [49], de�ne a Web proxy as an intermediary program which
acts as both a server and a client for the purpose of making requests on behalf of other
clients.

1.3.4 Routing schemes

We can distinguish several routing schemes in order to route �ow packets through a
network. They change in how they transfer messages:

� Unicast transmits a message between a sender and a single destination.

� Broadcast transfers a message from one sender to all nodes in the network.

� Multicast transmits a message from one sender to a group of nodes that have
expressed interest in receiving the message.

� Anycast transfers a message from one sender to anyone out of a group of nodes.

� Geocast delivers a message from a source to a group of nodes in a network based
on their geographic location.

1.3 Telecommunication Networks 27

Figure 1.6: Routing Schemes [96]

Unicast is the dominant form of message delivery on the Internet. This thesis focuses
on unicast routing scheme.

1.3.5 Network Function Virtualization (NFV)

Typically, telecommunication networks are composed of diverse elements such as switches,
routers, and network appliances also called, middleboxes, that aim to transform, in-
vestigate, �lter, and manage the tra�c. The middleboxes are adopted in order to
provide network functions. Some examples of middleboxes are: Proxies, Tra�c Mon-
itor (TM), Firewalls (FW), Intrusion Detection Systems (IDS), Load Balancers (LB),
Network Address Translators (NAT), WAN Optimization Controller (WOC), Intrusion
Detection Prevention System (IDPS) and Video Optimization Controller (VOC).

The hardware middleboxes imply large capital expenditure (CAPEX), as well as
an operational expenditure (OPEX) [87], caused by the considerable number of these
devices in the network which is comparable with the number of switches and routers
[80]. Furthermore, the tra�c has to be conducted in such a way that tra�c �ows pass
through these devices, which causes long installation delays and high maintenance
costs. Moreover, they do not allow to add new features, are energy-intensive, and
have short life-cycles [71]. In average and for a large network, the middleboxes cost
can reach up a million dollars over �ve years [124]. Besides, each middlebox provides

28 Preliminaries and State-of-the-Art

a di�erent functionality i.e., there exists a heterogeneous set of these devices in the
network, which necessitates a large management team with di�erent expertises.

From 1990 to the year 2000, the network virtualization captivated the attention of
network service providers and network operators. Network virtualization can be seen
as a representation of one or more logical network topologies, which de�nes how the
data should be transferred, in the same infrastructure. Using virtualization, we can
use, for example, multiple logical routers on a single platform, and it also permits
resource isolation in terms of CPU and memory.

In addition, network virtualization o�ers the possibility to transform the way opera-
tors plan, use, and maintain their network infrastructures. Its purpose is to deal with
a signi�cant number of speci�c hardware devices deployed in the operator's networks
and the very high generated costs.

In network function virtualization technology the network functions are executed
as software on commercial o�-the-shelf equipment, this allows their instantiation on
demand without the installation of new equipment. For instance, an open-source
software-based �rewall can be run on an x86 platform in a virtual machine [68].

Network Function Virtualization (NFV) makes it possible for NSPs to employ various
Virtual Network Functions (VNFs) without installing new equipment [137]. In [35],
authors present the history and the state-of-the-art of network virtualization, they
present several layers (application, link, network) and levels (link, node) of virtualiza-
tion and give some examples of virtualized networks. Li and Chen [89] give an overview
of the history of NFV, presenting how middleboxes evolve to virtual network functions.

Chiosi et al. in [32] present a technical report in which they introduce the network
function virtualization, its bene�ts, enablers and challenges. They explain how soft-
ware replaced hardware in the network architecture. They also give some use cases
and raise the challenges of the virtualization. Some works in NFV resource allocation
emerged in very recent years. Exhaustive surveys are already given in [71] and [58].
Herrera and Botero [71] present a comprehensive state-of-the-art of Network Function
Virtualization and Resource Allocation (NFV-RA) problem. They give a classi�cation
of the problem by considering all its variants, optimization objectives, solution strate-
gies and application domain. The authors notice that the wide deployment of future
network architectures based on NFV will depend largely on the success of resource
allocation.

1.3 Telecommunication Networks 29

Figure 1.7: NFV substitute the network functions by network applications.

1.3.5.1 Network Function Virtualization architecture

The Network Function Virtualization architecture, de�ned by the European Telecom-
munications Standards Institute (ETSI), is composed of 4 layers, as shown in Figure
1.8, presented as follows:

1) Network Function Virtualization Infrastructure (NFVI) is the environ-
ment that provides the virtual resources required to support the execution of
the Virtual Network Functions [31]. It can be physical (servers and switches) or
virtual (virtual machines and virtual switches). This layer is divided into three
parts:

� Hardware resources it includes computing resources (servers and RAM),
storage (disks storage), and networking resources (switches, routers, and
�rewalls).

� Virtualization layer it decouples virtual from physical resources; it is re-
sponsible for abstracting physical resources into virtual resources. It permits
the software to grow separately from the hardware.

� Software resources it includes virtual computing resources, virtual stor-
age, and virtual networking resources.

2) Virtual Network Function (VNF) it represents the virtualized network ele-
ments such that vrouter, vbase station, v�rewall, vIDS, etc. It can be connected
or combined together to o�er service chains.

30 Preliminaries and State-of-the-Art

3) Management and Orchestration (MANO) it includes the orchestration and
life-cycle management of physical and/or software resources that support the
infrastructure virtualization, and the lifecycle management of VNFs [31]. It is
composed of three sotware parts:

� Virtualized Infrastructure Manager (VIM) it is responsible for con-
trolling and managing the NFVI computing, network, and storage resources.

� VNF Manager: it a software that aims to manage the life-cycle of VNF
instances, is responsible for initializing, updating, querying, scaling, and
terminating one or more VNF instances.

� NFV Orchestrator: it manages the life-cycle of network services, includ-
ing instantiation, policy management, performance management, and KPI
monitoring.

4) Operation Support System/Business Support System (OSS/BSS): OSS
handles network, fault, con�guration, service, and element management. BSS
deals with client, operations, order, billing, and revenue management. In the
NFV architecture, the current BSS/OSS of an operator may be combined with
the NFV Management and Orchestration using standard interfaces.

1.3.6 Software De�ned Networking (SDN)

In traditional telecommunication networks, each switch (device) has its own data plane,
to forward the tra�c, and its own control plane, to decide where to send the data. Also,
it has information only about the state of its neighbors to interact with them within
the network. No single device has visibility of the whole network. Each switch has to
work separately in order to decide where and how to send data, and then all devices
synchronize together at a given time slot to route packets through the network.

Supposing that the device uses a command-line interface, this necessitates a manual
con�guration, which is very costly and time-consuming. Furthermore, having a con-
siderable number of devices implies managing a considerable number of control and
data planes. Moreover, if each one has a di�erent operating system and interface, it
will be challenging to create one application that can be installed on each of them,
allowing us to change its control and data plane. Therefore, network management is
very challenging [110]. This leads to increasing costs in terms of CAPEX and OPEX,
in order to minimize the QoS (e.g., end-to-end latency), and makes packet forwarding
very complicated within a network [48,111].

1.3 Telecommunication Networks 31

Figure 1.8: NFV Architecture [4]

Software-de�ned networking is a new paradigm that simpli�es network management,
and makes the deployment of new services easier by separating the data plane from the
control plane. This is done by introducing one controller having a global view of the
network state. Several papers were proposed in order to de�ne, explain, and give exam-
ples of Software-De�ned Networking (SDN) architecture. A software-based controller
is responsible for managing the forwarding information of one or more switches [85].
As mentioned by Rao in [114], SDN is a technology that gives the network designer the
freedom to refactor the control plane. The author gives the relationship between Net-
work Virtualization, Network Function Virtualization, and Software-De�ned Network-
ing, showing how SND plays a signi�cant role in NV and NFV. A list of companies and
their SDN products/solutions is presented in [114]. Nunes et al. in [110], explain that
in SDN architecture, the network intelligence is logically centralized in software-based
controllers (the control plane), and network devices become simple packet forwarding
devices (the data plane) that can be programmed via an open interface.

According to authors in [56], Software-De�ned Networking provides a new dynamic

32 Preliminaries and State-of-the-Art

network architecture that transforms the traditional networks into service-delivery plat-
forms. They also show the bene�ts of OpenFlow-Based Software-De�ned Networks.
OpenFlow is the �rst standard protocol interface designed explicitly for SDN, provid-
ing high-performance and granular tra�c control. OpenFlow provides an open protocol
to program the �ow-table in di�erent switches and routers [100], and allow direct ac-
cess and manipulation of the forwarding plane of network devices. In [98] authors give
a list of the most important technical challenges for the development and deployment
of SDN. Guerzoni et al. in [66], present the relationship between NFV and SDN. Li
and Chen [89] propose a survey that investigates the development of NFV under the
software-de�ned NFV architecture.

Within an SDN architecture, the tra�c engineering mechanisms become much more
e�ciently implemented with respect to legacy network approaches (e.g., IP, ATM,
and MPLS) [129]. Furthermore, all network information are easily retrieved; network
elements are dynamically and proactively programmed without having to handle them
individually [9]. Moreover, SDN provides various bene�ts, namely, fast detection time
[123], re-routing [21] and shows its capacity to identify and grow from failure under
the requirement below 50 ms [14]. With SDN, the network becomes programmable,
dynamic, and �exible according to frequent network changes.

Examples of centralized controllers are: Beacon [47], Ryu [128], OpenDayLight [102],
and Maestro [28]. Nevertheless, having a single controller in the network signi�es having
a unique point of failure; if the node (controller) fails, there is no other point that
makes decisions and manages the data plane. Accordingly, the notion of a distributed
controller is proposed. It represents a set of nodes that can be either centralized or
physically distributed. Some distributed controllers are Onix [83], ONOS [21], and
DISCO [112].

Figure 1.9: Traditional network Vs. SDN network [97]

1.3 Telecommunication Networks 33

1.3.6.1 Software De�ned Networking architecture

SDN architecture is composed of three main layers (see Figure 1.10): Data Plane,
Control Plane, and Application Plane.

� Application plane allows network managers to quickly con�gure, manage, se-
cure and optimize network resources via dynamic automated SDN programs.

� Control plane exercises direct control over the data plane using an Application
Programming Interface (API), which de�nes the information exchange between
the two planes.

� Data plane is a set of network elements such as routers, switches, and middle-
boxes that o�er e�cient and programmable packet forwarding devices without
any software to make autonomous decisions.

OpenFlow is a protocol represented by an open interface that manages to update
the �ow table of the device.

1.3.7 Service Functions Chaining (SFC)

Service Function Chain (SFC) is de�ned as a sequence of network functions that should
be traversed by a given data �ow in a prede�ned order [113]. For example, the network
administrator may specify a policy that all HTTP tra�c should follow the policy chain:
��rewall → IDS → proxy� [87]; Also for instance, the Intrusion Detection System must
inspect packets before compressing or encrypting them [121].

For each service, a speci�c set of required functions needed to handle its packets, and
their order is de�ned by the service function chain; this allows �exible management
and classi�cation of services and permits to de�ne the requirements associated with
each one [101].

Traditionally, the service function chain represents an ordered sequence of hardware
devices that must be traversed by the data �ows to support some service. Nevertheless,
new hardware devices should be used, placed, and connected to the network elements
if a new service is required. This generates additional costs and is time-consuming [89].

Thanks to NFV and SDN, the VNFs could be installed on-demand on network nodes,
and the routing paths associated with the Service Function Chains could be computed

34 Preliminaries and State-of-the-Art

Figure 1.10: SDN architecture

dynamically to encounter the installed VNFs [11]. This new �exibility in network man-
agement generates hard decision problems combining the choice of locations to deploy
the VNFs, and the computation of e�cient routing paths meeting the VNFs in the right
order. In the Virtual Network Embedding problem, the service chains can be seen as
virtual graphs (paths) to embed into the original network. Each node in the virtual
graph represents a VNF, and the links between nodes represent the order. Bhamare
et al. in [22] de�ne Service Function Chaining as a mechanism that allows various
service functions to be connected to form a service allowing operators to bene�t from
the software-de�ned virtualized infrastructure. Medhat et al. in [101], explain that the
optimization models are needed for SFC con�guration and allocation to achieve opti-
mal network performance, satisfy user demands, accommodate SFCs dynamically, and
minimize network costs. Zhang et al. [139] proposes a typical SFC functional frame-
work integrating SDN and NFV including service modeling and resource allocation.

1.4 Literature review 35

Many works were also proposed for the Service Functions Chaining; for example, a
near-optimal solution is provided by a heuristic in [88] for the real-time NFV, aiming
to maximize the total number of requests assigned to the cloud for each SFC, while the
deadline constraints are satis�ed. Hantouti et al. in [69] present di�erent research prob-
lems related to SFC; they investigate several key challenges that should be addressed to
realize more reliable SFC operations. Examples include SFC path selection, placement
of service functions problem, tra�c steering problem, Resource allocation problem,
SFC orchestration and management problem, maximizing the Quality-of-service, and
security problem. Bhamare et al. in [23] present an analytical study of VNF and SFC.
Speci�cally, they study the problem of placing service function chains over the network
function virtualized platform in a multi-cloud scenario. The objective is to reduce the
total delays to the end-users and the total cost of deployment for service providers in
inter-cloud environments. They propose an ILP to model the problem and a novel
A�nity-based approach to overcome with limited applicability of the model.

Hantouti et al. [70] present a comprehensive analysis and classi�cation in three cat-
egories of the current SDN-based SFC approaches using e�ciency criteria such as de-
ployment cost, scalability, and �exibility.

Some studies have been proposed in the literature in order to de�ne how to place an
ordered chain of functions in a network. Di�erent objective functions were considered
such as: minimizing the number of activated nodes, the end-to-end latency [103], the
energy consumption [76], or the bandwidth [75].

Figure 1.11: Example of Service Function Chain [71]

1.4 Literature review

Although the Virtual Network Functions Placement and Routing Problem appeared
relatively recently in the telecommunication context, the problem can be related to
a few previously studied combinatorial optimization problems. The problem is com-
posed of two NP-hard problems, namely, the multi-commodity �ow problem and the
facility location problem, with some additional constraints, such as anti-a�nity rules,

36 Preliminaries and State-of-the-Art

chaining or precedence constraints, and linking constraints. The problem is also called
in the literature by: VNFs placement problem, VNFs placement and chaining problem,
VNFs service chaining problem, or VNFs placement and path selection with precedence
constraints.

Problem variants

Di�erent objective functions variants In the context of NFV and SDN, the
underlying problem consists of �nding an optimal installation of VNFs, so that the given
tra�c requests can be routed within the given network infrastructure while respecting
the SFC constraints [5, 67, 103, 105]. Many di�erent variants of the problem have
been studied in the recent literature. When it comes to the de�nition of the objective
function, some authors consider the minimization of the number of activated nodes, the
VNFs installation costs [11], the end-to-end latency [103], the energy consumption [76],
or the bandwidth [75].

Simplest variants Several straightforward variants of the problem were studied, for
example, in [7], authors consider the VNF chaining problem with a single type of VNFs
for all demands. Furthermore, they suppose that all tra�c requests represent exactly
the same service. They propose an extension of their work that allows using multiple
VNFs and di�erent services. Also, Casado et al. [29] consider the problem with a single
type of VNF and present a heuristic algorithm towards solving the placement problem.
Basta et al. [18] study the network functions placement problem. They analyze possible
placements of virtualized gateways or decomposed gateway functions with respect to
delay and impose network load in a mobile core network. The authors propose a path-
�ow model that minimizes the network load and satis�es the data-plane delay budget.
Similarly, Bouet et al. [27], consider the problem of placing the virtualized Deep Packet
Inspection in SDN networks. They propose a method based on genetic algorithms, that
optimizes the cost of DPI engine deployment, minimizing their number, the global
network load and the number of not analyzed �ows, while considering arc capacity
constraints. Moreover, Mijumbi et al. [104] de�ne the problem of online mapping and
scheduling functions in an NFV environment, but they ignore the routing aspect. They
consider objective functions involving the total processing time and the cost or revenue
of utilized resources. They propose a set of greedy algorithms and tabu search-based
heuristic. Furthermore, some variants deal with speci�c network topology, for example,

1.4 Literature review 37

Tomassilli [129], proposes two approximation algorithms for the tree network topology
to address the SFC placement problem.

Chainingless variants Adding the chaining (precedence) constraints to the problem
make it very di�cult to solve. In order to deal with the complexity of the problem,
some works propose methods that allow them ignoring this family of constraints. For
example, Sallam et al. [118] study The Shortest Path and Maximum Flow Problems
Under Service Function Chaining constraints for which physical and virtual network
functions are considered. The authors solve the SFC-constrained shortest path problem
by transforming the graph into a layered graph. This transformation aims to deal with
the precedence between VNFs; then, they search for the shortest path in the new
graph. They also solve the problem as a fractional multi-commodity maximum �ow
problem. They propose an ILP formulation to model the VNFs placement from a
maximum �ow perspective. Similarly, Gouareb et al. [64], propose an MILP to model
the Virtual Network Functions Placement and Routing problem while minimizing the
delay cost on the arcs. They consider that all VNFs associated to each SFC are located
at the same node to deal with precedence constraints, which means that the problem
reduces to the optimal routing and location of each service request. Whereas, Cohen
et al. [36], provide a near-optimal approximation algorithm to address the problem of
placing VNFs on the physical network without order constraints. Their objective is to
minimize installation and path costs. Moreover, in order to minimize the number of
used network functions, Sang et al. [119] �x the routing paths and focus their attention
on the placement of VNFs without considering any chaining constraints.

Closest variants Allybokus et al. [11] consider a generic version of the VNF place-
ment and routing problem in which many features (partial order on the functions,
bound on end-to-end latency, con�icts between network functions, resource limitations
and processing capacities) are already taken into account. They proposed several MILP
formulations, either to minimize the total deployment cost or to minimize the number
of rejected demands. A heuristic algorithm based on a continuous relaxation of one
formulation is also proposed and appears to be very e�cient on instances derived from
the Geant topology. However, the MILP models do not seem to be strong enough
for direct resolution with the Cplex solver. Similarly, Addis et al. [5] formulate the
VNFPRP as an MILP, taking into account �ow constraints, latency constraints, node
and function capacity constraints, while minimizing the number of used links to route
tra�c and the number of used nodes to install functions. The authors also propose a
math-heuristic approach for the problem. Contrary to our work, they allow for com-
pression/decompression at the VNF nodes.

38 Preliminaries and State-of-the-Art

Furthermore, Mehraghdam et al. [103] showed that the problem could be consid-
ered as the Location-Routing Problem [107], that aims to create several paths between
di�erent VNFs, and then connect them to get source-destination paths satisfying prece-
dence constraints. The location-routing problem can be seen as a multi-commodity �ow
problem in which commodities can share some VNFs while minimizing node, edge, or
path costs. The authors model the placement of chained VNFs problem as a Mixed
Integer Quadratically Constrained Program with three di�erent objectives: maximiz-
ing the remaining data rate, minimizing the number of activated nodes or the latency
of the paths. They consider �rst the placement part of the problem; then in order
to satisfy the chaining constraints, they create a path between installed VNFs. Their
model was tested on small instances and solved using Gurobi Optimizer. Moens and
De Turck in [105], study the Virtual Network Functions Placement problem. They
propose an ILP model where both physical and virtual resources are allocated to the
function chains. The resulting ILP is tested on very small instances using Cplex solver.
Contrary to Bari et al. [15] that provide a dynamic programming based heuristic to
solve large instances of VNF placement problem.

In order to deal with chaining constraints, Huin [74] uses a layered graph, and based
on that he proposed an ILP formulation to model a variant of the VNFPRP. In this
variant the routing constraints are de�ned using �ow constraints, and link and latency
constraints are considered. The objective function aims to minimize the bandwidth
requirements. The proposed formulation does not scale well for medium to large net-
works. Thus, the author proposes a column generation model.

In other works Tomassilli et al. [131], consider another variant of the problem for
which latency, precedence, �ow, link and node capacity constraints are considered.
Authors propose an ILP and a column generation based model to model the problem.

Variants for multicast service Similar works were proposed for the problem with
multicast service, for instance, Kiji et al. in [82], model the VNFPR problem as an
ILP for multicast service chaining based on merging multiple service paths. They min-
imize the cost associated with VNF placement and link usage in providing multicast
service chains. They also develop a heuristic algorithm that can �nd a feasible solution
within a reasonable time. Zhang et al. in [140], propose a routing algorithm with
approximation factor 2 to solve the Service Function Chain Enabled multicast Routing
Problem. In [30], the authors propose a Steiner tree-based algorithm for NFV-enabled
multicast communication. The proposed algorithm allows for reducing the number of
deployed VNFs and cost minimization. Alhussein et al. in [10] treat the VNF Place-
ment and Multicast Tra�c Routing problem, they propose an MILP formulation to

1.4 Literature review 39

model it while minimizing VNFs and arcs deployment under the physical network re-
source constraints, �ow conservation, and VNF placement constraints. To reduce the
computational complexity of the problem, heuristic algorithms are proposed, consid-
ering both the single path and multipath routing. In [81], Kiji et al. model the VNF
placement and routing model for multicast SC as an ILP problem that allows merging
SC paths of di�erent services.

Other variants Some variants propose to place VNFs in speci�c nodes of the net-
work, for example: Authors in [136], tackle the problem of �nding the optimal VNF
placement for VNF chaining in the packet/optical data-centers while minimizing the
number of performance-optimized data-center an NF chain needs to visit. They pro-
pose a binary linear program to model it and a heuristic that demonstrates its e�ective-
ness under various scenarios compared to a simple �rst-�t algorithm. Also, Nikam et
al. [109], study the VNF Service Chaining problem in Optical Data Center Networks.
They propose an ILP formulation composed of three sub-problems to model the prob-
lem and an e�cient heuristic to solve it. The problem of Placing VNFs in the cloud
for 5G networks is discussed in [116]. A multi-objective ILP formulation is proposed
to model the problem which aims to minimize the number of used VNFs and maximize
the Quality-of-Experience. The problem treats the relocation of VNFs. In order to
achieve sub-optimal placement of VNFs within polynomial time, an Ant Colony Op-
timization (ACO) algorithm was proposed. Whereas, In [93], authors formalize the
Network Functions Placement and Chaining problem on physical infrastructure as an
ILP model. They also propose a heuristic to guide the ILP solver towards feasible and
near-optimal solutions e�ciently. The objective is to minimize the number of deployed
VNFs. Lin et al. [90], study the network function virtualization with end-to-end request
realization (NFV-RR) problem; based on a use case proposed in [108], they evaluate
the performance of the placement of VNFs in terms of its ability to support end-to-end
requests with limited physical resources. They propose an MILP to model the problem.

1.4.1 Overview of the related works

In this subsection, we selected the most relevant papers from the literature related to
the VNFPRP that we compare in Table 1.1. The columns in Table 1.1 are de�ned as
follow:

40 Preliminaries and State-of-the-Art

Ref Reference PP Placement problem
RP Routing Problem PC Precedence constraints
FCC Function capacity constraints NCC Node capacity constraints
ACC Arc capacity constraints CC Con�ict constraints
LC Latency constraints E Exact method
H Heuristic method FC Minimizing functions costs
NC Minimizing node costs AC Minimizing arc costs
MC multicast communication

Ref PP RP PC FCC NCC ACC CC LC E H FC NC AC MC

Thesis x x x x x x x x x x x

[5] x x x x x x x x x x
[11] x x x x x x x x x x x x
[30] x x x x x x x
[39] x x x x x x x x x x
[61] x x x x x x x x x
[64] x x x x x x x x x
[74] x x x x x x x
[81] x x x x x x x x x x x
[82] x x x x x x x x x x x x
[90] x x x x x x x
[93] x x x x x x x x x x
[103] x x x x x x x x x x
[104] x x x x x x x x
[105] x x x x x x x
[127] x x x x x x x
[130] x x x x x x x x x
[131] x x x x x x x x

Table 1.1: Overview of related works

Chapter 2

The Virtual Network Functions

Placement and Routing Problem

This chapter is dedicated to the Virtual Network Functions Placement and
Routing Problem. We start this chapter by de�ning the problem, its basic properties,
and by giving an illustrative example. We show that the problem is strongly NP-hard
even in its simplest version, and propose an MILP compact formulation to model it.
We test the proposed model on a set of realistic instances derived from SNDlib.

42 The Virtual Network Functions Placement and Routing Problem

Contents
2.1 Motivations . 43

2.2 Problem de�nition . 44

2.2.1 Notation . 44

2.2.2 Problem de�nition . 45

2.3 Proprities of the VNFPRP 46

2.4 Illustrative example . 48

2.5 Complexity analysis . 49

2.6 Compact MILP formulation 50

2.6.1 Decision variables . 51

2.6.2 Mathematical model . 51

2.6.3 Model analysis . 55

2.7 Computational results . 56

2.7.1 Detailed results . 58

2.8 Conclusions . 63

2.1 Motivations 43

2.1 Motivations

The two new technologies, SDN and NFV, have being adopted very fast by most actors
in the telecommunication industry: they propose various advantages such as cost and
energy minimization, �exibility, and dynamic decisions in new networks. The combined
use of both SDN and NFV is gaining the attention of the Network Service Providers (a
company that owns, operates and sells access to internet backbone infrastructure and
services). Several academic and industrial teams are investigating ways to maximize
SDN and NFV bene�ts. For example, Orange introduced an SDN based coverage
o�er for 75 countries to help companies immediately provision branch o�ces with
Virtual Network Functions (VNFs) [99]. The leading US Telecommunication Operator
(AT&T), has �xed as an objective to virtualize up to 75% of its network by 2020 [126].
Also, Huawei, in the last years, deployed 560 SDN/NFV commercial projects around
the world [73]. Furthermore, in 2013, Google declared the use of SDN to interconnect
its data centers all over the planet [77]. Using this technology, Google was able to
achieve several advantages, including e�cient network control, more accessible and
faster innovation cycles of networks and services, better network exploitation, and a
decrease of both OPEX (Operating Expenditure) and CAPEX (Capital Expenditure).

Both technologies create new challenging problems and on eof them is the Virtual
Network Functions Placement and Routing problem. This problem can be decomposed
into two NP-hard problems, namely, the multi-Commodity Flow (MCF) problem with
unsplittable commodity paths and the Facility Location (FL) problem (as shown in
Figure 2.1). Further constraints can be added, such as, the service chain and con�ict
constraints. All these technical constraints make the problem very challenging. Specif-
ically, the challenges are: (i) where to install the required VNFs on network nodes at
minimum cost (ii) de�ning, for each demand, a routing path that traverses suitable
nodes in the correct order to satisfy the requirements of a given service chain, and
(iii) taking into account network load and other dynamic characteristics when routing
through existing VNFs [46].

The methods proposed in the literature to deal with the problem mainly consist
in heuristics, or two-stage methods, that solve the routing part and the installation
part of the problem separately. Alternatively compact MILP formulations have been
proposed that cannot solve large scale instances (see, [5, 11, 64, 72, 127]). Generally, to
overcome the fairly limited computational performance of compact formulations, and
to improve the capabilities of �nding exact solutions for larger instances, reformulation
and decomposition methods are recommended in the literature (see [24], [34], [117],
[133], [135]).

44 The Virtual Network Functions Placement and Routing Problem

Motivated by all of the above, the main objective of this thesis is to model and
solve the VNFPRP using exact and heuristic methods. To this end, we use some
decomposition and reformulation approaches from the literature in order to solve large
scale instances.

Figure 2.1: VNFPRP is composed of multiple subproblems and constraints.

Outline of the chapter The chapter is organized as follows. In Section 2.2, we
de�ne the problem and introduce the main notations. In Section 2.3, we present the
problem's properties. An illustrative example is shown in Section 2.4. Section 2.5
is devoted to the problem's complexity analysis. The compact MILP formulation is
introduced in Section 2.6. In Section 2.7, we present some computational results and
we end the chapter by some conclusions and remarks in Section 2.8.

2.2 Problem de�nition

2.2.1 Notation

The telecommunication network is modeled as a bi-directed graph G = (N,A). The set
of all physical locations equipped with hardware devices allowing VNFs installation is
denoted by N and called the set of nodes. The set representing all connections between
nodes is called the set of arcs and is denoted by A. At each node u ∈ N at most cu

2.2 Problem de�nition 45

(cu ∈ N) VNFs can be installed, and an activation cost ψu > 0 has to be paid. The arc
latency luv ≥ 0 is de�ned for each arc (u, v) ∈ A.

Let F denote the set of all virtual network functions. Each VNF f ∈ F has a
limited (bandwidth) capacity mf ∈ N to manage the tra�c demand. For installing
each single copy of f at a node u ∈ N , an installation cost ψf

u > 0 has to be paid.
For the set of all tra�c requests/commodities, denoted by C, each commodity k ∈ C
is characterized by: a source node sk; a destination node dk (sk 6= dk); a bandwidth
bk > 0; a maximum latency value lk > 0; a subset of VNFs, F k ⊆ F , and a set of
incompatibility constraints Ak between VNFs. Finally, recall that each commodity
requires a speci�c Service Function Chain to handle its data packages in a speci�c
order. The fact that the VNF f has to be executed before VNF g is expressed by
f ≺k g in the path associated to the commodity k. Table 2.1 summarizes our notation.

Sets

N : Set of all nodes.
A : Set of all arcs.
C : Set of all commodities (tra�c requests).
F : Set of all Virtual Network Functions.

(F k,≺k) : Ordered set of VNFs associated with commodity k, k ∈ C.
Ak : Set of pairs of VNFs which are in con�ict for commodity k, k ∈ C.

Parameters

mf : Capacity of VNF f , f ∈ F .
cu : Capacity of node u, u ∈ N .
luv : Latency of links (u, v), (u, v) ∈ A.
ψf
u : Installation cost of VNF f at node u, f ∈ F , u ∈ N .
ψu : Activation cost of node u, u ∈ N .
sk : Source node for commodity k, k ∈ C.
dk : Destination node for commodity k, k ∈ C.
lk : Maximum latency delay of commodity k, k ∈ C.
bk : Bandwidth of commodity k, k ∈ C.

Table 2.1: Main notation, parameters and sets.

2.2.2 Problem de�nition

De�nition 1 (VNFPRP) The Virtual Network Functions Placement and Routing
Problem consists of �nding for each commodity k ∈ C, the placement of VNFs f ∈ F k

at nodes, and the routing paths so that the sum of the VNF installation costs ψf
u plus

46 The Virtual Network Functions Placement and Routing Problem

the sum of node activation costs ψu is minimized. Moreover, the following constraints
have to be satis�ed:

� Node capacity constraints each node u ∈ N has an installation capacity cu,
which means that the number of VNFs installed at u should not exceed cu.

� VNF capacity constraints each function f ∈ F has a capacity mf to manage
the amount of data. The sum of bandwidths of all commodities handled by f

should be below mf .

� Routing constraints the sk − dk routing path associated with each commodity
k ∈ C should be elementary.

� End-to-end latency constraints the sum of arc latencies belonging to the
routing path of each commodity k ∈ C should not exceed the given upper-bound
lk ∈ R+.

� Installation constraints each VNF f ∈ F k required for commodity k ∈ C

should be installed at one of the nodes of the routing path, but not at the source node.

� Precedence constraints for each commodity k ∈ C, the VNFs composing its
Service Function Chain should be traversed in the right order by the routing path.

� Con�ict constraints (also called anti-a�nity/incompatibility constraints): For
di�erent reasons (e.g. resiliency, privacy) [130] VNFs pairs that are in con�ict
should not be installed at the same node.

The VNFPR problem aims to minimize the sum of VNF installation costs ψf
u plus the

sum of node activation costs ψu. A solution satisfying the constraints described above
is said to be feasible for the problem. Furthermore, if the associated cost is minimized,
then, it is called optimal.

2.3 Proprities of the VNFPRP

In this thesis, we consider the following assumptions:

� In NFV environment, several, heterogeneous and similar virtual network func-
tions can be installed at the same node in the graph.

2.3 Proprities of the VNFPRP 47

� Link capacities are omitted, due to the fact that we are not dealing with the
strategic network design phase (which has to be done much earlier in the plan-
ning process), but with a tactical planning. The network is designed (by making
decisions regarding which links need to be installed, and with which capacity) so
that it can accommodate a large amount of tra�c. This is a long term process
involving expensive investments and possible expansion of capacities (if it turns
out that some links are heavily loaded). On a shorter time range, various services
are managed to make the best possible use of existing resources, but the trans-
mission/transport network is usually not the bottleneck (as the service demands
are not of the same order of magnitude as the link capacity). Typically, network
capacities are huge and shared by many di�erent services. Thus, in this thesis
we safely assume that there are enough link capacities in the existing network to
handle all demands.

� We consider the unicast routing scheme.

� All routing paths should be elementary (without circuit). The use of elementary
paths is linked to the protocols used, and to a choice of operators to simplify the
supervision of �ows.

� Each commodity requires at least one VNF, otherwise, these commodities can be
eliminated (the routing problem can be seen as the shortest path problem).

48 The Virtual Network Functions Placement and Routing Problem

2.4 Illustrative example

Figure 2.2: Example

The bi-directed graph in the example represents a telecommunication network con-
taining 20 nodes, we suppose that we have a set of four virtual network functions,
F = {Firewall, Parental control, DPI, Video optimizer}. The example in Figure 2.2,
shows that there are three tra�c requests representing three di�erent services, such
as RA: �Reading news�, WV: �Watching video� and CM: �Checking mailbox�. Each
of these service requires a set of virtual network functions to handle its data pack-
ets: {Firewall, Parental control}, {Parental control, DPI} and {Firewall, DPI, Video
optimizer}, respectively. The associated service functions chain with each service are
�SFC1 : Firewall ≺RA Parental control�, �SFC2 : Parental control ≺WV DPI�, and
�SFC3 : Firewall ≺CM V ideo optimizer ≺CM DPI�, respectively.

2.5 Complexity analysis 49

Pairs of nodes (1, 20), (11, 19), and (10, 18) represent (source, destination) nodes
associated with RA, WV and CM, respectively. From Figure 2.2, the red routing path
associated with the service RA, represents an elementary path passing �rst through
the node 12 on which the VNF Firewall is installed �rst, and then through node 16 at
which the VNF Parental control is installed. In the same way, the green (resp. yellow)
path goes from the source node 11 (resp. 10) to the destination node 19 (resp. 18)
and passes through the nodes on which the VNFs are installed in the order satisfying
the SFC2 (resp. SFC3) constraints. Moreover, we can see that services RA and CM
share the same VNF Firewall. Also, services RA and WV share the VNF Parental
control. Furthermore, from the example, we observe that the VNFs associated to each
service cannot be installed on the source node, while these VNFs can be installed on
the destination node.

2.5 Complexity analysis

Problem complexity

In this section we show that the problem under consideration is strongly NP-hard,
even for the variant in which no con�icts between functions and no node and VNFs
capacities are imposed.

Theorem 2.1 The Uncapacitated Virtual Network Functions Placement and Routing
Problem is strongly NP-hard, even for a single commodity and without latency, con�ict,
and precedence constraints.

Proof. The proof is done by a polynomial reduction from the Uncapacitated Facil-
ity Location Problem (UFLP), which is an NP-hard problem in a strong sense (see,
Theorem 3.1 in [40]).

Given a set of n facilities (sites) and m customers, let ψi be the cost of opening
the facility i and ψj

i the cost of assigning customer j to facility i. We suppose that
all facilities have unlimited capacity. The UFLP consists in �nding which of the n
facilities to open and how to assign the customers to open facilities so that the facility
opening cost plus the assignment cost are minimized.

To reduce the UFLP to the uncapacitated VNFPR problem, we consider an arbitrary
connected graph G = (N,A) (G can be a complete graph) with |N | = n nodes (with a

50 The Virtual Network Functions Placement and Routing Problem

one-to-one correspondence between facilities from I and nodes in N) and a set F of m
virtual network functions. We use one commodity |C| = 1, and let s1 = 1 and d1 = n

be two distinct nodes from N . We set the latency l1 = +∞ and assume that there
are no precedence constraints (i.e., any ordering of functions from F is feasible). The
transformation details are given in Table 2.2.

UFLP 1-to-1 corresp. Uncapacitated VNFPR
− ⇐⇒ |C| = 1

I ⇐⇒ N

J ⇐⇒ F 1

Facility i ⇐⇒ Node i
Customer j ⇐⇒ Virtual network function j
Open facility i ⇐⇒ Activate node i
Customer j is supplied by facility i ⇐⇒ Function j is installed at node i
ψi cost of opening the facility i ⇐⇒ ψi activation cost at node i
ψj
i cost of assigning cust. j to facility i ⇐⇒ ψj

i installation cost of function j at i
− ⇐⇒ G=(N,A), connected graph
− ⇐⇒ s1 = 1, d1 = n, l1 = +∞

Table 2.2: Transformation details

This transformation is polynomial in the number of facilities and customers. An
instance of the uncapacitated VNFPR de�ned in this way consists of installing all vir-
tual network functions from F on a subset of nodes from N , while minimizing costs
of installation of VNF and node activation costs. Thus, there is a one-to-one corre-
spondence between an optimal solution of the uncapacitated VNFPR and the optimal
solution of the uncapacitated facility location problem with exactly the same solution
value. This proves that the Uncapacitated Virtual Network Functions Placement and
Routing problem is NP-hard.

2.6 Compact MILP formulation

In this section, we propose a compact (i.e., polynomial in size) MILP formulation to
model the VNFPRP. We �st describe the variables necessary to model it and then the
set of constraints.

2.6 Compact MILP formulation 51

2.6.1 Decision variables

The set of variables required in our MILP formulation is described in Table 2.3:

Variables Type

xfku 1, if the virtual network function f is installed at or before
node u for commodity k; 0, otherwise.

Binary

yfku 1, if virtual network function f is installed at node u for
commodity k; 0, otherwise.

Binary

wu 1, if node u is activated; 0, otherwise. Binary

tkuv 1, if arc (u, v) is taken in the path associated with commodity
k; 0, otherwise.

Binary

zfu number of VNF f installed at node u. Integer

Table 2.3: Decision variables of the compact MILP formulation

2.6.2 Mathematical model

The VNFPRP can then be modeled as follows:

(P) : min
∑
u∈N

∑
f∈F

ψf
u zfu +

∑
u∈N

ψu wu (2.1)

∑
(u,v)∈A

tkuv −
∑

(v,u)∈A

tkvu =

−1 if u = dk,

1 if u = sk,

0 otherwise.

k ∈ C, u ∈ N (2.2)

∑
(u,v)∈A

tkuvluv ≤ lk, k ∈ C (2.3)

∑
f∈F

zfu ≤ cu wu, u ∈ N (2.4)∑
k∈C

yfku bk ≤ mfz
f
u , f ∈ F, u ∈ N (2.5)

yfku + ygku ≤ 1, k ∈ C, (f, g) ∈ Ak, u ∈ N (2.6)

52 The Virtual Network Functions Placement and Routing Problem

(tkuv − 1) + (xfkv − xfku) ≤ yfkv , k ∈ C, f ∈ F k, (u, v) ∈ A (2.7)

xgku ≤ xfku , k ∈ C, f, g ∈ F k : f ≺k g, u ∈ N (2.8)

∑
u∈N

yfku = 1, k ∈ C, f ∈ F k (2.9)

yfku ≤
∑

(v,u)∈A

tkvu, k ∈ C, f ∈ F k, u ∈ N (2.10)

yfku ≤ xfku , k ∈ C, f ∈ F k, u ∈ N (2.11)

xfku =

{
1, if u = dk

0, if u = sk
k ∈ C, f ∈ F k (2.12)

yfku , x
fk
u ∈ {0, 1} u ∈ N, f ∈ F, k ∈ C (2.13)

wu ∈ {0, 1} u ∈ N (2.14)

tkuv ∈ {0, 1} (u, v) ∈ A, k ∈ C (2.15)

zfu ∈ N u ∈ N, f ∈ F (2.16)

The objective function (2.1) aims to minimize the sum of the VNF installation costs
and the node activation costs. Constraints (2.2) are the standard �ow conservation con-
straints which ensure that one unit of �ow is routed from sk to dk for each commodity
k ∈ C. Constraints (2.3) are the latency constraints: the sum of the arc latency values
along the routing path must be less or equal to lk, for each commodity k ∈ C. Con-
straints (2.4) represent the node capacity constraints; they guarantee that the number
of VNFs installed at each node u ∈ N is bounded enough by its capacity cu. Con-
straints (2.5) are the VNF capacity constraints; they ensure that the volume of data
treated by each function f ∈ F does not exceed its capacity mf . Constraints (2.6) are
the con�ict constraints and they guarantee that two VNFs in con�ict are not installed
at the same node u ∈ N . Constraints (2.7) are needed to link, the node-installation
variables (y), the precedence variables (x) and the arc variables (t): the left-hand-side
is forced to 1 (implying that the function f is installed at the node v) if and only if (i)
the arc (u, v) is taken in the path associated with the considered commodity k and (ii)
the function f is installed at or before the node v and it is not installed at or before
the node u. Constraints (2.8) impose the VNFs order for each commodity. Constraints
(2.9) guarantee that all required functions for commodity k ∈ C are installed at the
graph nodes. Constraints (2.10) ensure that if a VNF f ∈ F k is installed at a node
u for a given commodity k, then the associated routing path must enter that node.
Inequalities (2.11) link the precedence and the installation variables, x and y, and ex-
press the fact that if VNF f is installed at node u for the commodity k, then f is
installed at or before the node u. Finally, constraints (2.12) guarantee that, for each

2.6 Compact MILP formulation 53

commodity k ∈ C, no VNF is installed at or before the source node sk and all VNFs
are installed at or before the destination node dk. Constraints (2.13)-(2.16) are the
integrality constraints.

Theorem 2.2 The model (P) is valid. In particular, there always exists an optimal
solution of (P) such that for each k ∈ C, the �ow variables tk (representing the routing
of commodity k) correspond to an elementary path in G.

Proof. Let k ∈ C be a given commodity. Flow constraints (2.2) guarantee that
sk and dk are connected. Furthermore, latency limit lk cannot be violated due to
the constraint (2.3). It only remains to prove that there exists an optimal solution
of the compact model whose routing path for k is elementary, which will imply that
precedence constraints (2.8) are satis�ed (due to constraints (2.7)).

Let (x̂, ŷ, ŵ, t̂, ẑ) be an optimal solution of the compact model, and let Gk be the
subgraph of G induced by the arcs (u, v) ∈ A such that t̂kuv = 1. Assume that Gk is
not an elementary path connecting sk to dk. We distinguish the following two cases:

� Case 1: subgraph Gk is connected, but it contains cycles (see Figure 2.3). Assume
that the routing path is composed by an elementary path and (without loss of
generality) a single cycle. The nodes in the elementary path are denoted by
ui,∀i = 1, . . . , q + 1 (where uq+1 = dk) and all the other nodes are denoted by
vi, ∀i = 1, . . . , p.

Figure 2.3: Connected subgraph.

54 The Virtual Network Functions Placement and Routing Problem

Figure 2.4: Disconnected subgraph.

We will show that all VNFs f ∈ F k must be installed along the elementary
path, so that the nodes vi, i = 1, . . . , p can be removed from the routing path,
without violating feasibility and optimality of the solution. Indeed, in that case,
removing the cycle from Gk only reduces the latency of the routing path, the
�ow balance constraints remain valid and the VNFs are properly placed at the
remaining nodes.
Let f be an arbitrary VNF from F k and assume the contrary, i.e., that f is
installed at a node v and it is not installed at any node u. Therefore:

ŷfkui
= 0, ∀i = 1, . . . , q + 1.

Using the precedence constraints (2.7) t̂uv − 1 + x̂fkv − x̂fku ≤ ŷfkv we can now
calculate the values of x̂fkui

, for all i = 1, . . . , q + 1.
Let us start with the arc (sk, u1), the constraint (2.7) reads as follows:

t̂ksku1
− 1 + x̂fku1

− x̂fksk ≤ ŷfku1

Recall that VNFs cannot be installed at the source node, i.e., x̂fksk = 0 (cf. con-
straint (2.12)), and that the arc (sk, u1) is taken in the path so t̂ksku1

= 1. After
replacing the variables by the values we obtain:

1− 1 + x̂fku1
− 0 ≤ 0 ⇒ x̂fku1

≤ 0.

So, it follows that x̂fku1
= 0. By repeating these steps for all subsequent arcs

(ui, ui+1), i = 1, . . . , q, we obtain:

x̂fkui
= 0, ∀i = 2, . . . , q + 1.

This contradicts the constraint (2.12), which states that x̂fkdk = 1.

2.6 Compact MILP formulation 55

� Case 2: Subgraph Gk is disconnected (see Figure 2.4). In that case, following
similar arguments as for the Case 1, we conclude that VNFs from F k can be
installed only along the elementary path in Gk connecting sk to dk, so that
without loss of feasibility and optimality, the remaining nodes from Gk can be
removed (and the values of t̂ can be appropriately rede�ned).

According to this proof, we conclude that we can always �nd an optimal solution of
the compact model which is composed by elementary paths only.

2.6.3 Model analysis

In this subsection we analyze the proposed compact formulation in terms of the number
of variables and constraints generated by the MILP model.

Number of variables

The total number of variables is:

|C| × |A|+ 2× |N | × |C| × |F k|+ |N |+ |N | × |F | (2.17)

⇐⇒
O(|C| × |A|) +O(|N | × |C| × |F k|) +O(|N | × |F |)

which is equivalent to O(|C| × (|A|+ |N | × |F |)

Number of constraints

The total number of constraints is:

|C| × |N |+ |C|+ |N |+ |N | × |F |
+|N | × |C| × |Sk|+ 3× |C| × |F k|

+|C| × |A| × |F k|+ |N | × |C| × |F k|2

+3× |N | × |C| × |F k|

(2.18)

which is equivalent to O(|C| × |F | × (|A|+ |N | × |F |))

56 The Virtual Network Functions Placement and Routing Problem

2.7 Computational results

In this section, we test the capability and the performance of the compact MILP for-
mulation on a set of realistic instances derived from the SND library in terms of CPU
time, and �nal gaps. The instances creation is detailed in the next chapter. All the ex-
periments described in this section were made using a computer with Intel(R)Xeon(R)
CPU E5-2650 v2 processor clocked at 2.60GHz, 32 cores, two threads per core and
252GB RAM, under Linux operating system. The MILP compact formulation is im-
plemented using the Python API for CPLEX, which is run in single-thread mode and
a default memory limited to 20GB. All CPLEX parameters were set to their default
values. A default time limit of one hour is set for each tested instance.

In the following, we denote by C, The compact MILP formulation.

Figure 2.5 shows that the number of variables increases with the number of com-
modity, which this is caused by the variables indexed by k (x, y and t variables). The
number of constraints increases accordingly with the density of the graph: for example,
instances Pdh having 24 commodities and 68 bidirected arcs, the number of generated
variables is small compared to the number of variables. We can also observe that the
number of constraints generated by the compact formulation is in general very large
compared to the number of variables.

Figure 2.5: Number of variables and constraints generated by the compact formulation.

2.7 Computational results 57

Table 2.4 summarizes the more detailed results which are given in Tables 2.6-2.9
(see Subsection 2.7.1). Tables show the obtained results by solving 15 SNDlib instance
types with di�erent graph topologies and di�erent number of commodities, namely,
�Abilene�, �Atlanta�, �Dfn-bwin�, �Dfn-gwin�, �Di-yuan�, �France�, �Geant�, �Janos-us�,
�Newyork�, �Nobel-eu�, �Nobel-germany�, �Nobel-us�, �Pdh�, �Polska� and �Ta1�. For
each instance type, ten instances are generated randomly. From the tables, we observe
that only two �Abilene� instances and two �Pdh� instances are solved to optimality.
Also, we remark that no feasible solution is provided by the model for four �Nobel-eu�
instances and for one instance �Ta1�.

Table 2.4 represents the average value for the CPU time, �nal Gap, cost, and re-
laxation value of the ten instances associated with each instance type. A value in the
column CPU_time(s) represents the average of the CPU time of the instances solved
to optimality without exceeding the time limit, whereas TL in this column illustrates
the fact that the compact formulation needs more than 1 hour to �nd an optimal
solution for all instances. From the table, we observe that for some instance types,
�nding a good feasible solution is easier than for others, for example, for instance
types �Abilene�, �Dfn-bwin�, �Dfn-gwin�, �Janos-us� and �Pdh� the �nal gaps are below
10%, while, for �Atlanta�, �France�, �Geant�, �Newyork�, �Nobel-eu�, �Nobel-germany�,
�Nobel-us�, �Polska� and �Ta1� the �nal gaps are between 20% and 74%.

Instance_name CPU_time(s) GAP(%) Costs($) Relaxation value
Abilene 1688.92 4.85 79990.30 58929.67
Atlanta TL 58.37 278836.30 92640.77
Dfn-bwin TL 1.58 70656.50 48731.37
Dfn-gwin TL 8.79 131783.70 100959.17
Di-yuan TL 20.49 35104.00 25435.27
France TL 67.97 651469.10 187780.30
Geant TL 45.80 451038.30 109636.63
Janos-us TL 4.10 13775446.70 13204901.84
Newyork TL 50.11 342506.20 141291.17
Nobel-eu TL 74.45 600379.83 139001.24
Nobel-germany TL 45.11 124062.90 58908.65
Nobel-us TL 38.93 118642.50 63906.55
Pdh 1587.34 1.20 54561.60 38874.36
Polska TL 31.30 137285.30 88343.00
Ta1 TL 58.86 376160.33 78467.77

Table 2.4: Average of CPU time, Gap, Cost and relaxation value.

58 The Virtual Network Functions Placement and Routing Problem

2.7.1 Detailed results

In this subsection, we report detailed results obtained by solving the SNDlib instances
using the compact MILP formulation.

Abbreviations Description

CPU_C CPU time in seconds.
RC LP-relaxation value.

LB_C Best known lower bound, provided by Cplex.
Gap_C Relative gap, provided by Cplex.
UB_C Best known global upper bound, provided by cplex.

Table 2.5: Description of abbreviations used on Tables 2.6-2.9.

The �nal gap is calculated as GAP_C = (UB−LB)/LB ∗ 100%, where UB denotes
the best feasible solution, and LB the global lower bound found in each run.

2.7 Computational results 59

Instance CPU_C RC LB_C Gap_C UB_C

Abilene

TL 96349.60 121732 11.05 108280.35
TL 70104.38 102227 17.51 84325.84
TL 50815.42 68999 1.29 68106.14
TL 48503.40 68227 0.34 67997.68

1533.09 40452.10 55712 0.00 55712.00
TL 57305.83 74926 2.58 72989.17
TL 89779.21 111873 7.24 103773.29
TL 50181.90 67942 4.64 64787.33

1844.75 40260.73 58900 0.00 58900.00
TL 45544.12 69365 3.86 66684.41

Atlanta

TL 187685.36 455555 55.87 201047.36
TL 65595.14 171546 53.71 79415.00
TL 75171.64 270340 67.91 86748.61
TL 65463.21 140690 42.68 80637.43
TL 79399.97 244878 61.30 94777.48
TL 60813.42 152840 53.12 71651.54
TL 98220.61 473321 76.86 109548.74
TL 84582.53 361504 73.80 94728.71
TL 64238.76 128957 39.33 78239.26
TL 145237.07 388732 59.10 158977.90

Dfn-bwin

TL 48543.97 72194 1.71 70960.00
TL 43190.17 66269 2.36 64703.00
TL 51086.81 73695 1.26 72765.00
TL 42190.82 62340 2.76 60618.34
TL 59611.15 82931 2.45 80896.00
TL 42820.20 65148 0.60 64758.00
TL 43048.82 63340 2.22 61934.45
TL 60745.40 84250 0.41 83908.00
TL 52554.58 73317 0.50 72951.62
TL 43521.76 63081 1.50 62137.64

Dfn-gwin

TL 93821.72 129047 11.44 114280.35
TL 118367.32 151463 11.40 134192.26
TL 77911.29 113279 11.66 100072.27
TL 72339.77 105326 11.79 92910.44
TL 105110.36 132226 6.90 123096.30
TL 101920.72 130431 6.19 122360.65
TL 105783.60 133469 6.79 124406.07
TL 123237.29 152082 4.48 145263.03
TL 86216.46 116757 10.54 104454.14
TL 124883.21 153757 6.69 143469.36

Table 2.6: Obtained results for the compact MILP formulation.

60 The Virtual Network Functions Placement and Routing Problem

Instance CPU_C RC LB_C Gap_C UB_C

Di-yuan

TL 23367.81 30114 17.55 24829.23
TL 32295.12 43227 22.46 33518.40
TL 24334.12 33484 19.14 27076.03
TL 23803.91 31854 18.16 26069.27
TL 22808.12 34687 29.56 24431.85
TL 25128.40 37195 25.33 27773.67
TL 29156.42 40179 16.12 33700.80
TL 25619.04 39170 27.21 28510.55
TL 25561.37 32548 13.88 28031.58
TL 22278.40 28582 15.51 24148.23

France

TL 177774.80 673370 69.42 205891.57
TL 129220.07 646723 77.15 147748.06
TL 174563.06 704671 72.75 191988.23
TL 181826.41 637928 68.07 203678.70
TL 139979.59 690638 76.90 159531.84
TL 235734.13 743322 66.02 252556.79
TL 224804.23 693888 64.66 245227.88
TL 230949.85 609195 59.66 245733.54
TL 118290.50 463475 68.98 143772.28
TL 264660.39 651481 56.08 286114.53

Geant

TL 77238.42 147568 26.64 108253.33
TL 90112.74 167340 25.19 125190.60
TL 188864.38 1012275 78.06 222085.94
TL 86437.31 157715 23.96 119922.21
TL 111260.20 191529 25.49 142712.27
TL 123382.34 1090981 85.85 154365.54
TL 100105.48 676904 81.02 128477.31
TL 147328.25 778519 76.54 182635.56
TL 78866.47 142442 22.11 110949.97
TL 92770.69 145110 13.17 125993.68

Janos-us

TL 10887359.23 11382718 4.28 10895750.90
TL 11342337.18 13070200 13.13 11353640.23
TL 14005192.67 15379304 8.88 14014082.08
TL 11873470.30 13822127 14.00 11887417.16
TL 15534868.92 15570677 0.16 15545076.64
TL 14555386.83 14580575 0.10 14565999.76
TL 12625202.51 12648938 0.10 12636608.73
TL 12848111.78 12870288 0.09 12858854.98
TL 12537209.83 12570924 0.16 12550414.28
TL 15839879.13 15858716 0.06 15849306.31

Table 2.7: Obtained results for the compact MILP formulation.

2.7 Computational results 61

Instance CPU_C RC LB_C Gap_C UB_C

Newyork

TL 149337.54 466578 64.35 166338.93
TL 211270.08 460553 49.65 231888.21
TL 87961.14 359078 70.03 107602.64
TL 155144.28 456137 59.71 183782.67
TL 131163.4 233563 36.01 149449.93
TL 90660.41 184876 41.27 108584.56
TL 199250.03 417816 48.54 215000.02
TL 149434.14 391109 58.14 163720.47
TL 91031.13 184684 38.11 114305.83
TL 147659.6 270668 35.3 175110.97

Nobel-eu

TL 108330.18 − − −
TL 131278.09 − − −
TL 257646.79 − − −
TL 266694.08 − − −
TL 88728.3 411905 74.4 105456.84
TL 130476.89 639078 77.27 145238.05
TL 104054.56 628717 80.6 121959.23
TL 94211.05 475501 76.38 112290.76
TL 265906.49 753040 62.29 283984.67
TL 150630.18 694038 75.78 168085.82

Nobel-ger

TL 55711.09 104103 37.05 65532.57
TL 44959.19 86285 34.8 56257.18
TL 69743.46 134963 40.8 79896.42
TL 62029.7 130569 44.75 72136.98
TL 74763.61 150460 46.96 79805.52
TL 66893.27 150787 51.24 73518.01
TL 46931.61 119016 53.42 55433.86
TL 51239.35 112900 47.72 59023.63
TL 72577.69 138111 41.28 81097.6
TL 44237.53 113435 53.1 53199.58

Nobel-us

TL 51971.67 79287 23.87 60359.93
TL 44398.81 97496 46.5 52164.02
TL 103875.95 155983 26.39 114818.67
TL 68501.25 129906 41.59 75877.57
TL 117886.87 193246 33.18 129125.75
TL 46824.9 101846 40.4 60697.28
TL 47960.09 97320 41.07 57346.84
TL 62032.18 125415 44.64 69431.48
TL 43797.41 101285 50.18 50457.68
TL 51816.35 104641 41.49 61224.9

Table 2.8: Obtained results for the compact MILP formulation.

62 The Virtual Network Functions Placement and Routing Problem

Instance CPU_C RC LB_C Gap_C UB_C

Pdh

2141.91 38805.94 56518 0 56518
TL 45729.75 66862 0.49 66537.25
TL 38932.42 51989 1.05 51442.24
TL 36016.09 49517 1.5 48772.25
TL 30850.73 44116 3.33 42647.65
TL 32338.46 47046 1.6 46291.68

1032.78 39393.92 55876 0.0 55876
TL 37821.69 50606 1.82 49684.82
TL 38734.6 57071 1.64 56135.3
TL 50119.97 66015 0.54 65660

Polska

TL 82914.01 137978 37.29 86522.85
TL 106159.63 142278 21.88 111142.83
TL 85717.67 132934 31.35 91255.38
TL 85426.18 146856 35.6 94570.84
TL 81055.23 130412 32.72 87744.08
TL 94797.85 143218 28.64 102198.21
TL 95199.63 135530 26.05 100218.98
TL 91039.84 148651 34.62 97190.71
TL 92574.06 132398 26.11 97832.97
TL 68545.87 122598 38.7 75147.37

Ta1

TL 82715.84 − − −
TL 73074.28 148201 38.87 90592.97
TL 63090.38 126016 29.69 88602.56
TL 65060.97 207975 57.13 89154.76
TL 71865.36 294566 66.63 98300.08
TL 87691.33 306170 63.5 111764.07
TL 100768.98 925598 85.98 129798.82
TL 96286.92 960568 87.46 120413.5
TL 80692.01 250241 56.22 109551.25
TL 67679.75 166108 44.24 92618.86

Table 2.9: Obtained results for the compact MILP formulation.

2.8 Conclusions 63

2.8 Conclusions

In this chapter, we have presented the Virtual Network Functions Placement and Rout-
ing Problem, its properties, and an compact MILP formulation to model it. We have
tested the proposed compact MILP formulation on a set of realistic instances derived
from the SND library. The results showed that the model could �nd an optimal solu-
tion within 1 hour for some easy instances. However, it is no strong enough to �nd a
good feasible solution for harder instances.

Chapter 3

MILP-based Heuristic

In this chapter, we propose a path-based MILP formulation to model the VNFPR
problem. We also demonstrate how to e�ciently use it to derive high-quality heuristic
solutions in a reasonable computational time. The study is conducted on a set of real-
istic telecommunication instances derived from the SND library. To test the e�ciency
of our approach, we also compare the obtained results with the compact MILP formula-
tion introduced in Chapter 2. We vary the problem's parameters such as the node and
VNF capacities, the commodities bandwidth and latency, and we discuss the trade-o�s
between saved costs and (in)feasibility. The purpose of this chapter is to provide an
empirical study and evaluate the viability of the MIP-based heuristic, as an alternative
to the compact MILP formulation presented on Chapter 2.

66 MILP-based Heuristic

Contents
3.1 Path-based MILP Formulation 67

3.1.1 Decision variables . 68

3.1.2 Linear constraints . 68

3.1.3 Mathematical model . 69

3.1.4 Getting the routing paths . 70

3.1.5 Linear relaxation of path variables λ 71

3.2 Computational results . 72

3.2.1 Benchmark instances . 72

3.2.2 Models analysis . 76

3.2.3 Obtained results . 77

3.2.4 Detailed results . 88

3.3 Conclusions . 94

3.1 Path-based MILP Formulation 67

In Chapter 2, we have proposed an MILP compact formulation for the Virtual Net-
work Functions Placements and Routing Problem. Computational results showed that
the model could provide feasible solutions for some easy instances. Unfortunately, the
model cannot �nd any feasible solution or provides huge �nal gaps for some other in-
stances. This is due to the large number of variables and constraints in the formulation,
making its computational performance fairly limited.

To tackle this, some papers divide the problem into two parts and treat the VNFs
placement and the routing problems separately. A large body of the literature deals
with heuristics, in order to handle each part of the problem, or for their relaxed versions.
In this chapter, we propose a computationally e�ective path-based MILP formulation
to model the Virtual Network Functions Placement and Routing Problem. The Path-
based Formulation (PF) is established using Yen's algorithm, which aims to �nd a
�xed number of elementary shortest paths between two nodes. Based on that, the
latency-constrained routing paths associated with each commodity are obtained.

In the case where all feasible paths associated with each commodity are taken into
account in the model, the path formulation represents an exact method; thus, it pro-
vides optimal solutions. Alternatively, if only a subset of feasible paths is included in
the model, the path-based formulation provides heuristic solutions. We demonstrate
the path-based formulation's e�ectiveness by comparing it with the MILP compact for-
mulation presented in Chapter 2 on a set of realistic benchmark instances derived from
the SNDLib. In addition, we vary the problem's parameters, such as node and VNF
capacities and commodities latency and bandwidth, and analyze the computational
behavior and the cost saving achieved by enlarging the capacities.

Outline of the chapter. Section 3.1 is devoted to the path formulation. In Section
3.2, we present computational results and a sensitivity analysis in which we vary the
input parameters and discuss the results. In Section 3.3 we provide some concluding
remarks.

3.1 Path-based MILP Formulation

In this section, we present the path-based MILP formulation to model the VNFPRP.
We �rst describe the set of decision variables, and then the constraints de�ning the
model.

68 MILP-based Heuristic

3.1.1 Decision variables

The path formulation is characterized by �ve families of variables described in Table 3.1.
We keep the variables x, y, z and w already de�ned for the compact MILP formulation
in Chapter 2 and we de�ne a new family of variables representing the routing variables.
For each commodity k ∈ C, let Pk denote the set of all shortest sk-dk-paths whose total
length does not exceed lk, where the arc latency is used as the length measure. For
each commodity k, we suppose that all feasible paths in Pk are given. Let tpkuv be the
parameter that is equal to 1 if arc (u, v) belongs to path p for commodity k; and equal
to 0 otherwise.

Variables Type

λkp 1, if path p ∈ Pk associated with commodity k is chosen;
0, otherwise.

Binary

xfku 1, if the virtual network function f is installed at or
before node u for commodity k; 0, otherwise.

Binary

yfku 1, if virtual network function f is installed at node u for
commodity k; 0, otherwise.

Binary

wu 1, if node u is activated; 0, otherwise. Binary

zfu number of VNF f installed at node u. Integer

Table 3.1: Decision variables of the path-based formulation

3.1.2 Linear constraints

The constraints containing x, y, z and w variables are the same for the path-based
MILP formulation as in the compact formulation. As we replace the arc variables t in
the compact formulation, by the routing variables λ in the path formulation, the �ow
(2.2) constraints, the precedence constraints (2.7), and the linking constraints (2.10),
will be replaced by the following constraints:

Routing constraints

∑
p∈Pk

λkp = 1, k ∈ C (3.1)

For each commodity k, exactly one sk − dk elementary routing path p ∈ Pk satisfying
the latency constraints is chosen.

3.1 Path-based MILP Formulation 69

Precedence constraints

(
∑
p∈Pk

(u,v)∈p

tpkuv λkp − 1) + (xfkv − xfku) ≤ yfkv ,

k ∈ C, f ∈ F k, (u, v) ∈ A

(3.2)

Inequalities (3.2) represent the linking constraints between routing variables (λ), in-
stallation variables (y) and precedence variables (x), ensuring that for each commodity
k: (i) if the routing path p passes through the arc (u, v), and (ii) the VNF f is installed
at or before the node v and (iii) the VNF f is not installed at or before the node u,
then the left-hand-side is forced to be equal to 1 (imposing the installation of the VNF
f at the node v).

Linking constraints

yfku ≤
∑

(v,u)∈A

∑
p∈Pk

tpkvu λkp, k ∈ C, f ∈ F k, u ∈ N (3.3)

Constraints (3.3) impose that the chosen path for each commodity k passes through
the nodes where the required functions are installed.

3.1.3 Mathematical model

The Path-based formulation (PF) then reads as follows:

(PF): min
∑
u∈N

∑
f∈F

ψf
u zfu +

∑
u∈N

ψu wu

(λ, x, y, z, w) satisfy (3.1) - (3.3), (2.4)-(2.6), (2.8)-(2.9), (2.11)-(2.12)

λkp ∈ {0, 1} k ∈ C, p ∈ Pk

xfku , y
fk
u ∈ {0, 1} k ∈ C, u ∈ N, f ∈ F
wu ∈ {0, 1} u ∈ N
zfu ∈ N u ∈ N, f ∈ F

This model contains a possibly exponential number of variables. We therefore consider
a heuristic approach in which only a subset of the most promising feasible paths is
selected per each commodity.

70 MILP-based Heuristic

Theorem 3.1 If Yen's algorithm generates all elementary latency-constrained paths
for each commodity k ∈ C, then the path-based formulation gives optimal solutions;
otherwise it provides a heuristic solution for VNFPRP.

3.1.4 Getting the routing paths

In order to generate routing paths associated with each commodity k, we use Yen's al-
gorithm [138]. This algorithm aims to �nd a limited number of loopless shortest paths
between a pair of nodes. Yen's algorithm is based on Dijkstra's algorithm [44]. For rea-
sonably small instances, instead of recovering a �xed number of paths per commodity,
we run Yen's algorithm to get all sk − dk paths.

In order to consider the latency constraints 2.3 in the path formulation model using
Yen's algorithm, we keep only paths whose length is less or equal to lk, k ∈ C.

Remark: We used NetworkX graph library of Python to get all the paths associated
with each commodity. The used Python function is called �Shortest_simple_paths�,
which returns a list of all simple paths between a source node and a destination node,
ordered from the shortest to the longest one.

To �x the number of generated paths to κ we use the following Python command:

list(islice(nx.shortest_simple_paths(G, source, destination, weight = weight), κ))

We adapted the Python function �Shortest_simple_paths� to get only the latency
constrained paths. In what follows in this manuscript, when we say: we get all the
paths using Yen algorithm and we keep only the latency constrained one, we mean that
we use this adapted Python function �Shortest_simple_paths�.

By de�nition of the sets Pk, only elementary paths are considered in this model, and
hence, the formulation is correct. Unfortunately, the number of elementary paths can
be exponential, which makes this MILP formulation intractable, unless it is embedded
within a Branch-and-Price procedure. Nevertheless, this formulation can be e�ciently
used as an MILP heuristic, considering only a subset (polynomial in size) of elementary
paths in the model.

3.1 Path-based MILP Formulation 71

3.1.5 Linear relaxation of path variables λ

Constraints λkp ∈ {0, 1} are the integrality constraints guaranteeing that the latency-
constrained path cannot be split. Together with constraints (3.1), they ensure that
there is exactly one path used to route the �ow for each commodity. In the following,
we show that λkp ∈ {0, 1} can be relaxed. Let PF' denote the model PF for which
the integrality constraints associated with variables λ are replaced by: λkp ≥ 0, k ∈
C, p ∈ Pk.

Proposition 3.2 If the relaxed path formulation PF' has an optimal solution with
fractional λ values, then it must necessarily admit an integer solution with the same
objective value.

Proof. Let X̂ = (λ̂, x̂, ŷ, ẑ, ŵ) denotes the optimal solution of (PF ′) with λ̂ fractional,
i.e., there exists at least one commodity k ∈ C for which the path variable λ̂kp is
fractional. The proof aims to show that from the optimal fractional solution, X̂ a
totally integer solution can be constructed. Let X̄ = (λ̄, x̂, ŷ, ẑ, ŵ) be the integer
solution which is also feasible for (PF ′).

Variables ŷ and ŵ appear in the objective function with strictly positive cost and
are the same for both solutions X̂ and X̄; thus, the two solutions will have the same
objective value.

Let k ∈ C be the fractional commodity for which the associated vector λ̂ contains
fractional values in X̂. Let P′k = {p1, p2, . . . , pQ} be the set of fractional paths associ-
ated with commodity k, satisfying the path constraints (3.1). In that case, by setting
an arc upper bounds corresponding to constraints (3.2) and node capacity lower bounds
corresponding to constraints (3.3) as follows:

ˆcapuv := min
f∈Fk
{ŷfkv + 1− x̂fkv + x̂fku } (u, v) ∈ A (3.4)

ˆcapu := max
f∈Fk
{ŷfku } u ∈ N (3.5)

we obtain the following linear inequality system:

0 ≤
∑
p∈Pk

λkp tpkvu ≤ ˆcapuv (u, v) ∈ A (3.6)∑
(v,u)∈A

∑
p∈Pk

λkp tpkvu ≥ ˆcapu u ∈ N (3.7)

72 MILP-based Heuristic

For each node u ∈ N such that ˆcapu = 1, by the feasibility of λ̂, all paths p ∈ P′

must pass through the node u. Hence, to satisfy constraints (3.6) and (3.7), one could
take any of the paths p ∈ P′k as a feasible binary solution.

From the above, amid the fractional paths constituting λ̂, there exists at least one
(integer) path which can be used to replace λ̂. The same procedure can be reiterated
for each fractional commodity that admits a fractional λ̂kp in the solution X̂, keeping
the same structure of the binary component (x̂, ŷ, ẑ, ŵ), due to the fact that the routing
paths are chosen separately for each commodity.

Corollary 3.3 Without loss of generality, constraints λkp ∈ {0, 1}, for all k ∈ C, p ∈
Pk, can be replaced by λkp ≥ 0 in the Path-based formulation.

3.2 Computational results

The purpose of this section is to test the e�ciency and the sensitivity of the proposed
path formulation. We present some computational results to compare the path formu-
lation with the compact MILP formulation proposed in Chapter 2. To compare both
models, we focus on the CPU time, the quality of the obtained solutions, and the �nal
gaps between the global lower and the best known upper bound. We vary the problem
input parameters and conduct a sensitivity analysis to determine the most relevant
parameters that a�ect the model's empirical performance.

All the experiments described in this section were made using a computer with In-
tel(R)Xeon(R) CPU E5-2650 v2 processor clocked at 2.60GHz, 32 cores, 2 threads per
core and 252GB RAM, under Linux operating system. The path formulation is im-
plemented using the Python API for CPLEX, which is run in single-thread mode and
a default memory limited to 20GB. All CPLEX parameters were set to their default
values. A default time limit of one hour is set for each tested instance.

3.2.1 Benchmark instances

Our benchmark instances are generated using the SND library [125] (Survivable Net-
work Design), which is a repository of realistic telecommunication network design in-
stances. The number of nodes, arcs, and demands varies for each instance. SNDlib
provides the graph topology, along with the node coordinates and a set of demands

3.2 Computational results 73

with the associated source node, destination node, and a bandwidth. The remaining
parameters required for our setting are generated as follows:

To calculate the distance between two nodes u and v in km having only their longitude
ϕu, ϕv and latitude ςu, ςv, we use the Spherical Law of Cosine [106]. First we use the
following formula to calculate the angular distance in radians:

Suv = arc cos(cos ςu cos ςv + sin ςu sin ςv cos dϕ)

with, dϕ = ϕv − ϕu.

The distance in km is then obtained as:

duv = R× Suv,

where R is earth's radius (R = 6378137km). The �ber propagation delay per km is
roughly equal to 10µs/km, see, e.g., [33,86]. To de�ne the latency luv of an arc (u, v),
we multiply the distance between u and v by the �ber propagation delay, and we set
luv = lvu.

We consider the following set of six Virtual Network Functions, typically employed in
service function chaining [75,121] to construct our VNFs set, namely F = {NAT, FW,
TM, WOC, IDPS, VOC}. A detailed description of these VNFs is given in Table 3.2.
The maximum capacity rate associated with each VNF is given as an integer number
in [a, b], where a (resp. b) is the minimum (resp. maximum) bandwidth of all demands
in the same set of demand (i.e. a = min

k∈C
bk and b = max

k∈C
bk), the capacity is measured

on Mbits/s. The functions installation cost ψf
u ∈ N is chosen randomly as integer in

[50, 1000], and is expressed in dollars $.

id-VNF VNF name Capacity Cost
NAT Network Address Translator

[min
k∈C

bk,max
k∈C

bk] [50, 1000]

FW Firewall
TM Tra�c Monitor
WOC WAN Optimization Controller
IDPS Intrusion Detection Prevention System
VOC Video Optimization Controller

Table 3.2: Virtual Network Functions

The total number of demands varies for each SNDlib instance. For each commodity
k ∈ C the source node sk, destination node dk and the bandwidth bk in Mbits/s are
given.

74 MILP-based Heuristic

We divide the set of demands in �ve categories: Online Gaming, Video Streaming,
Voice over IP, Web Services, and Other Services. Each category is characterized by a
latency value and a set of chained service functions, as depicted in Table 3.3.

To de�ne the latency value lk and the set of chained VNFs associated with each
commodity k, the demands are �rst assigned to exactly one category. To do so, we
calculate the shortest path SPk between sk and dk, which is equal to the sum of the
arc latencies composing it. Based on its length, we randomly assign our demands in
one of the �ve categories, and so we set the value of lk and the set of chained VNFs.
For example, if the length of the shortest path is equal to l(SPk) = 40ms, then we can
assign the demand to any of the �ve categories, and we randomly choose one.

Latency value Service SFC
≤ 60 ms Online Gaming (O-G) NAT-FW-TM-WOC-IDPS

≤ 100 ms
Video Streaming (V-S) NAT-FW-TM-VOC-IDPS
VoIP NAT-FW-TM-FW-NAT

≤ 500 ms Web Services (W-S) NAT-FW-TM-WOC-IDPS
≤ ∞ ms Other services (O-S) NAT-FW-TM-WOC-VOC

Table 3.3: Five services and their respective SFC and latency value.

In order to generate feasible instances, the node capacity value is obtained based on
the number of demands and the number of VNFs per commodity, which is equal to

5, ∀k ∈ C. Thus, the node capacity is an integer chosen randomly cu ∈ [
|C| × 5

|N |
, 2 ×

|C| × 5

|N |
], ∀u ∈ N . Node activation cost ψu ∈ N is chosen uniformly at random from

[3000, 5000] [65].

For each commodity k ∈ C there is at most one anti-a�nity constraint (AAC)
between VNFs. We suppose that we cannot install Firewall and Network Address
Translator at the same node. The maximum number of AAC is �xed to �ve per instance
because adding multiple anti-a�nity constraints renders some instances infeasible.

3.2 Computational results 75

Instance_type |N | |A| / bi-directed |C| |F | # AAC
Abilene 12 15/ 30 132 6 5
Atlanta 15 22/ 44 210 6 4
Dfn-bwin 10 45/ 90 90 6 0
Dfn-gwin 11 47/ 94 110 6 0
Di-yuan 11 42/ 84 22 6 0
France 25 45 / 90 300 6 5
Geant 22 36/ 72 462 6 1
Janos-us 26 84/ 168 650 6 1
Newyork 16 49/ 98 240 6 0
Nobel-eu 28 41/ 82 378 6 0
Nobel-Germany 17 26/ 52 121 6 5
Nobel-us 14 21/ 42 91 6 0
Pdh 11 34/ 68 24 6 0
Polska 12 18/ 36 66 6 1
Ta1 24 55/ 110 396 6 0

Table 3.4: Details about the instances. |N |: the number of nodes, |A|: the number of
arcs, |C|: the number of demands, |F |: the number of functions, # AAC: the number
of anti a�nity constraints.

To test the e�ciency of the proposed path formulation, we consider �fteen di�erent
graphs from SNDlib, each of them corresponding to one �instance-type� in our bench-
mark. Table 3.4 summarizes the details about the graphs used in this study. In order
to vary the demand types per instance, we generated ten instances for each instance
type. Table 3.5 summarizes the average demand per service for each instance type.

76 MILP-based Heuristic

Instance_type O-G V-S VOIP W-S O-S
Abilene 4.2 6.2 7.4 57.6 55.6
Atlanta 1.7 6.1 4.9 98.7 97.6
Dfn-bwin 0.0 22.1 21.4 21.9 23.6
Dfn-gwin 0.0 23.6 23.5 31.0 30.9
Di-yuan 0.6 1.6 1.2 8.1 9.5
France 2.5 11.0 8.8 140.1 136.6
Geant 0.8 20.9 17.5 208.1 213.7
Janos-us 10.5 24.2 22.5 302.9 288.9
Newyork 4.5 12.8 11.3 105.6 104.8
Nobel-eu 0.3 10.8 9.4 168.9 187.6
Nobel-Germany 0.0 6.6 5.7 52.0 55.7
Nobel-us 1.6 5.3 6.2 39.0 37.9
Pdh 0.0 6.3 4.9 5.5 6.3
Polska 0.0 5.0 4.1 27.5 28.4
Ta1 6.5 20.5 20.1 169.2 178.7

Table 3.5: Average demands per service for each instance type.

3.2.2 Models analysis

In this subsection, we analyze the proposed path-based formulation in terms of the
number of variables and constraints. We compare them to the ones of the compact
MILP formulation introduced in Chapter 2. In the following, we show only the di�er-
ence in terms of number of variables and constraints between both models.

Variables: Both formulations have practically the same set of variables, except for
the routing part. For the path formulation there are |C| × |Pk| path variables, for the
compact MILP formulation there are |C| × |A| arc variables. The set Pk may contain
an exponential number of elements.

Constraints: The number of constraints in the path formulation is smaller than the
one in the compact MILP formulation. Accordingly, the compact MILP formulation
has |C| × |N | more constraints.

3.2 Computational results 77

Ab
ile

ne
At

la
nt
a

D
fn
-b
w
in

D
fn
-g
w
in

D
i-y

ua
n

Fr
an

ce
G
ea

nt
Ja
no

s-
us

N
ew

yo
rk

N
ob

el
-e
u

N
ob

el
-g
e

N
ob

el
-u
s

Pd
h

Po
ls
ka Ta
1

Instances

104

105

106

#
 v
ar
ia
bl
es

PF
C

(a) # Variables

Ab
ile

ne
At

la
nt
a

D
fn
-b
w
in

D
fn
-g
w
in

D
i-y

ua
n

Fr
an

ce
G
ea

nt
Ja
no

s-
us

N
ew

yo
rk

N
ob

el
-e
u

N
ob

el
-g
e

N
ob

el
-u
s

Pd
h

Po
ls
ka Ta
1

Instances

104

105

106

#
 c
on

st
ra
in
ts

PF
C

(b) # Constraints

Figure 3.1: Comparison between the path-based MILP formulation and the compact
MILP formulation with respect to the number of variables and constraints.

Figure 3.1 shows the average number of variables and constraints per instance-type.
We observe that the number of variables in the path formulation is, on average, more
signi�cant than the number of variables of the compact MILP formulation. This is due
to the number of feasible paths associated with each commodity. We can also observe
that the number of constraints in the compact MILP formulation is, on average higher
than the one in the path formulation � this number depends on the number of nodes
and demands.

3.2.3 Obtained results

The following two settings are compared in our computational study:

� C : The compact MILP formulation proposed in Chapter 2.

� PF : The path-based formulation proposed in Section 3.1.

Table 3.7 shows the results obtained by solving 10 instances for each instance type.
The CPU time, GAP , and the costs of each instance type are obtained by calculating
the average over all ten instances for which a feasible solution was found, otherwise these

78 MILP-based Heuristic

instances are not considered. We �xed the maximum number of latency-constrained
paths generated by Yen's algorithm to 5000 paths per commodity. In order to de�ne the
nature of the path formulation, for each instance type, we pre-calculate the maximum
number of latency constrained paths over all commodities. This number is shown in
column #paths in Table 3.6. Based on that, the second column denoted by PF(E/H),
describes the nature of the path formulation: exact �E� means that the maximum
number of feasible paths was below our threshold of 5000 paths per commodity; or
heuristic �H� method, meaning that not all feasible paths were taken into consideration
by the path formulation, which is the case only for two instance types: �Dfn-bwin� and
�Dfn-gwin�.

In Table 3.6, we also report the number of instances solved to optimality by the two
models. The path formulation solves eight instances to optimality within one hour,
whereas C manages to �nd the optimum for only 4 instances. Moreover, there are
�ve instances for which the compact MILP formulation cannot provide any feasible
solution within the given time limit. On the contrary, feasible solutions are found for
all instances, using the path formulation.

Table 3.7 summarizes the results obtained by solving 15 SNDlib instance types with
di�erent graph topologies and di�erent number of commodities. Columns one and two
in the table represent the average of the CPU time calculated from instances solved to
optimality by PF and C, respectively. We observe that for instances solved to optimality,
PF is outperforming C in terms of CPU time. However, for most of the instances, none
of the two methods manages to provide an optimal solution within one hour. Notion
�TL� in the CPU time column means that the time limit was reached. When the
optimal solution is not found after reaching the time limit, we report the average �nal
gaps, calculated as GAP (%) = ((UB −LB)/LB) ∗ 100, where UB represents the best
found feasible solution and the LB represent the global lower bound. The global upper
bound is shown in column Costs($), and the value of the LP-relaxation of the two
models is given in the last two columns.

Detailed results of this study are shown in Tables 3.9-3.13 in Subsection 3.2.4.

3.2 Computational results 79

Instance_type # paths PF(E/H)
optimal no feasible solution found
PF C PF C

Abilene 16 E 6 2 0 0
Atlanta 53 E 0 0 0 0
Dfn-bwin 9061 H 0 0 0 0
Dfn-gwin 8801 H 0 0 0 0
Di-yuan 1419 E 0 0 0 0
France 969 E 0 0 0 0
Geant 286 E 0 0 0 0
Janos-us 4316 E 0 0 0 0
Newyork 1588 E 0 0 0 0
Nobel-eu 977 E 0 0 0 4
Nobel-Germany 149 E 0 0 0 0
Nobel-us 45 E 0 0 0 0
Pdh 872 E 2 2 0 0
Polska 35 E 0 0 0 0
Ta1 440 E 0 0 0 1

Table 3.6: Nature of the path formulation (exact or heuristic) and a comparison be-
tween both formulations with respect to the number of instances solved to optimality
(#optimal) and the number of instances for which no feasible solution is found.

80 MILP-based Heuristic

Instance_name
CPU_time(s) GAP(%) Costs($) LP-Relaxation value

PF C PF C PF C PF C

Abilene 1123.64 1688.92 0.61 4.85 77158.50 79990.30 67547.38 58929.67

Atlanta TL TL 27.03 58.37 156865.60 278836.30 103478.55 92640.77

Dfn-bwin TL TL − 1.58 70717.00 70656.50 63927.16 48731.37

Dfn-gwin TL TL − 8.79 131284.00 131783.70 116131.98 100959.17

Di-yuan TL TL 8.81 20.49 30759.70 35104.00 26154.09 25435.27

France TL TL 54.87 67.97 497767.20 651469.10 213059.66 187780.30

Geant TL TL 37.50 45.80 284847.80 451038.30 127580.37 109636.63

Janos-us TL TL 0.04 4.10 13221546.20 13775446.70 13204901.84 13204901.84

Newyork TL TL 32.10 50.11 248954.50 342506.20 157088.98 141291.17

Nobel-eu TL TL 55.86 74.45 430106.33 600379.83 152708.92 139001.24

Nobel-germany TL TL 8.66 45.11 77152.50 124062.90 65700.13 58908.65

Nobel-us TL TL 21.91 38.93 97874.20 118642.50 70360.64 63906.55

Pdh 1279.91 1587.34 1.17 1.20 54508.10 54561.60 50051.47 38874.36

Polska TL TL 15.67 31.30 116640.40 137285.30 90635.47 88343.00

Ta1 TL TL 41.52 58.86 217968.22 376160.33 94323.52 78467.77

Table 3.7: Average CPU time, Gap, Cost and relaxation value comparison between PF

and C.

In Table 3.7 no �nal Gaps are shown for PF for instance types �Dfn-bwin� and �Dfn-
gwin� because PF is a heuristic for them, we are not generating all feasible paths for
these instances.

For all instances for which PF is an exact method, the �nal gap provided (CPLEX
exit gap) by PF is consistently better than the �nal gap provided by C (see Figure 3.2).

Each coordinate (x, y) in Figure 3.3 indicates that for y instance types, the average
�nal gap provided was bellow x. From Figure 3.3, we can observe that all instance
types solved by PF as an exact method (we exclude instance types �Dfn-bwin� and
�Dfn-gwin�) are solved within a gap less than 55%, while the same instances type are
solved within a �nal gaps up to 75% by the compact MILP formulation.

3.2 Computational results 81

Figure 3.2: GAP comparison between PF and C.

Figure 3.3: GAP comparison between PF and C.

Similarly, from Figure 3.4 we observe that PF consistently provides solutions of a
signi�cantly higher quality when compared with solutions given by the compact MILP
formulation. The di�erence between the two methods in terms of costs is very visible.

82 MILP-based Heuristic

Figure 3.4: Costs comparison between PF and C.

Figure 3.5 shows the relative improvement of the LP-relaxation value provided by
PF with respect to C. We notice that the path formulation provides a much better
relaxation bound compared with the compact MILP formulation. In Figure 3.5 we
observe that for all solved instances the value of the relaxation at the root node provided
by the PF formulation is always greater than or equal to the given LP-relaxation of
the compact MILP formulation, so closer to the optimal solution.

3.2 Computational results 83

Figure 3.5: LP-relaxation improvement by the path formulation.

3.2.3.1 Sensitivity analysis

For the sensitivity analysis we vary the instances parameters such as: latency value
lk, bandwidth bk, node capacities cu and functions capacities mf and observe how the
algorithm will behave, by putting lk = α× lk, bk = α×bk, cu = α×cu and mf = α×mf

with α ∈ {1.0, 1.5}. The aim of these tests is to show the parameters that a�ect directly
the solution, and so the costs.

Figures 3.6 and 3.7 show the obtained results by varying the number of paths gen-
erated by Yen algorithm, with max_paths ∈ {5000, 500, 100, 50} and α = 1.0. Fixing
the number of paths for Yen's algorithm means that the demands latency are tightened.
We compare the values of the best solutions found within one hour (averaged over 10
graphs per instance type) for each of these settings.

Instances used in Figure 3.6 need at most 500 paths to be solved to optimality. For
these instances, we varied the number of max_paths in {50, 100, 500}. We observe
that adding a small number of paths permits PF to converge quickly to a very good
solution for �Geant� and �Ta1� for which the number of required paths exceeds 200
paths. Conversely, for instances �Atlanta� and �Nobel-germany�, which required only

84 MILP-based Heuristic

53 and 149 paths, respectively, to be solved to optimality, 50 paths were insu�cient to
�nd a high-quality solution. This can be explained by the sparsity of their graphs and
the number of demands.

Instances used in Figure 3.7 require more than 500 paths to be solved to optimality.
We notice that for instances "Janos-us", the PF formulation was struggling to �nd
a good quality solution. For Géant and Ta1, the increasing of costs is explained by
the fact that Cplex reaches the time limit for all instances. Moreover, when there are
too many paths (variables), Cplex needs more time to �nd a good solution, while it is
faster with a fewer number of variables. We observe that in this case there is a trade-o�
between the quality of heuristic solution and the size of the underlying formulation.

For all other instances we can see that the number of �xed paths does not a�ect a
lot the behavior of PF.

Figure 3.6: Costs comparison between path formulation with 500, 100 and 50 paths.

3.2 Computational results 85

Figure 3.7: Costs comparison between path formulation with 5000, 500, 100 and 50
paths.

Figure 3.8 shows that increasing the function capacities allows for a signi�cant cost
reduction for all instances by -25,96 %. A similar e�ect can be achieved by increasing
node capacities up to -2,78 %.

86 MILP-based Heuristic

Figure 3.8: Costs comparison between path formulations with 50 path and
with/without increasing node and functions capacities.

3.2 Computational results 87

Figure 3.9: Costs comparison between the path formulations with 50 path and with
increasing function capacities, bandwidth and latency

From Figure 3.9 we notice that increasing bandwidth of demands increases costs for
all solved instances up to 46,34 %. On the other hand, increasing latency for "Dfn-
bwin" and "Pdh" allows cost reduction, both instances have almost the same sparse
graph topology. Increasing the bandwidth value for some instances like "Polska" and
"Dfn-gwin" makes them infeasible. Conversely increasing the latency value makes the
problem easy to solve, so we can have an optimal solution very quickly. Increasing the
latency increase the cost by +29,96 %.

88 MILP-based Heuristic

3.2.4 Detailed results

Abbreviations Description

CPU_H Heuristic CPU time in seconds.
RH Heuristic LP-relaxation value.

LB_H Heuristic best known lower bound, provided by Cplex.
Gap_H Heuristic relative gap, provided by Cplex.
UB_C Heuristic best known global upper bound, provided by Cplex.
CPU_C Compact formulation CPU time in seconds.
RC LP-relaxation value of the compact formulation.

LB_C Best known lower bound, provided by Cplex for the compact for-
mulation.

Gap_C Relative gap, provided by Cplex for the compact formulation.
UB_C Best known global upper bound, provided by Cplex for the compact

formulation.

Table 3.8: Description of Tables 3.9-3.13 abbreviations

Notation � `TL� in tables means that the time limit is exceeded and the sign �−� means
that no feasible solution is found by the model.

3.2 Computational results 89

In
st
a
n
ce

C
P
U
_
H

R
H

L
B
_
H

G
a
p
_
H

U
B
_
H

C
P
U
_
C

R
C

L
B
_
C

G
a
p
_
C

U
B
_
C

A
b
il
en
e

T
L

1
0
5
5
2
0
.0
2

1
1
4
6
7
5

3
.8
7

1
1
0
2
3
8
.1
9

T
L

9
6
3
4
9
.6
0

1
2
1
7
3
2

1
1
.0
5

1
0
82
8
0
.3
5

T
L

7
8
7
9
7
.5
2

8
9
9
9
9

1
.7
1

8
8
4
6
3
.9
6

T
L

7
0
1
0
4
.3
8

1
0
2
2
2
7

1
7
.5
1

8
4
3
2
5
.8
4

T
L

5
9
1
6
9
.5
4

6
8
8
1
1

0
.2
7

6
8
6
2
3
.0
6

T
L

5
0
8
1
5
.4
2

6
8
9
9
9

1
.2
9

6
8
1
0
6
.1
4

6
4
8
.8
9

5
7
4
5
1
.5
8

6
8
2
2
7

0
.0
0

6
8
2
2
7
.0
0

T
L

4
8
5
0
3
.4
0

6
8
2
2
7

0
.3
4

6
7
9
9
7
.6
8

3
1
4
.0
0

4
6
1
9
8
.0
9

5
5
7
1
2

0
.0
0

5
5
7
1
2
.0
0

1
5
3
3
.0
9

4
0
4
5
2
.1
0

5
5
7
1
2

0
.0
0

5
5
7
1
2
.0
0

2
6
5
0
.3
0

6
6
2
2
7
.7
5

7
3
6
9
6

0
.0
0

7
3
6
9
6
.0
0

T
L

5
7
3
0
5
.8
3

7
4
9
2
6

2
.5
8

7
2
9
8
9
.1
7

T
L

9
6
4
4
9
.2
1

1
0
7
2
8
2

0
.2
9

1
0
6
9
6
9
.3
6

T
L

8
9
7
7
9
.2
1

1
1
1
8
7
3

7
.2
4

1
0
3
7
7
3
.2
9

1
1
6
8
.3
2

5
8
4
0
1
.2
4

6
6
1
6
4

0
.0
0

6
6
1
6
4
.0
0

T
L

5
0
1
8
1
.9
0

6
7
9
4
2

4
.6
4

6
4
7
8
7
.3
3

7
3
6
.1
5

4
9
1
2
2
.6
1

5
8
9
0
0

0
.0
0

5
8
9
0
0
.0
0

1
8
4
4
.7
5

4
0
2
6
0
.7
3

5
8
9
0
0

0
.0
0

5
8
9
0
0
.0
0

1
2
2
4
.1
8

5
8
1
3
6
.2
8

6
8
1
1
9

0
.0
0

6
8
1
1
9
.0
0

T
L

4
5
5
4
4
.1
2

6
9
3
6
5

3
.8
6

6
6
6
8
4
.4
1

A
tl
a
n
ta

T
L

2
0
1
7
1
0
.8
8

3
4
2
8
0
9

3
6
.9
7

2
1
6
0
8
5
.2
5

T
L

1
8
7
6
8
5
.3
6

4
5
5
5
5
5

5
5
.8
7

2
01
0
4
7
.3
6

T
L

7
6
9
5
0
.2
0

1
3
4
3
1
6

3
8
.7
9

8
2
2
1
5
.0
3

T
L

6
5
5
9
5
.1
4

1
7
1
5
4
6

5
3
.7
1

7
9
4
1
5
.0
0

T
L

8
3
4
1
4
.3
8

1
3
9
6
1
8

3
6
.0
8

8
9
2
4
1
.7
0

T
L

7
5
1
7
1
.6
4

2
7
0
3
4
0

6
7
.9
1

8
6
7
4
8
.6
1

T
L

7
6
4
5
2
.7
5

9
8
3
9
2

1
6
.5
3

8
2
1
3
2
.5
1

T
L

6
5
4
6
3
.2
1

1
4
0
6
9
0

4
2
.6
8

8
0
6
3
7
.4
3

T
L

9
2
9
0
8
.9
4

1
1
2
9
3
6

1
2
.1
6

9
9
2
0
7
.0
1

T
L

7
9
3
9
9
.9
7

2
4
4
8
7
8

6
1
.3
0

9
4
7
7
7
.4
8

T
L

7
2
2
9
1
.2
4

1
1
2
7
6
6

2
9
.9
7

7
8
9
7
2
.2
4

T
L

6
0
8
1
3
.4
2

1
5
2
8
4
0

5
3
.1
2

7
1
6
5
1
.5
4

T
L

1
0
6
6
2
0
.3
6

1
5
7
2
9
2

2
7
.0
4

1
1
4
7
6
3
.1
6

T
L

9
8
2
2
0
.6
1

4
7
3
3
2
1

7
6
.8
6

1
0
95
4
8
.7
4

T
L

9
2
2
0
0
.1
4

1
2
4
3
2
7

1
9
.7
7

9
9
7
4
7
.2
2

T
L

8
4
5
8
2
.5
3

3
6
1
5
0
4

7
3
.8
0

9
4
7
2
8
.7
1

T
L

7
5
3
6
8
.6
5

9
9
4
2
7

1
9
.6
7

7
9
8
7
0
.8
7

T
L

6
4
2
3
8
.7
6

1
2
8
9
5
7

3
9
.3
3

7
8
2
3
9
.2
6

T
L

1
5
6
8
6
7
.9
4

2
4
6
7
7
3

3
3
.3
0

1
6
4
5
9
0
.2
5

T
L

1
4
5
2
3
7
.0
7

3
8
8
7
3
2

5
9
.1
0

1
58
9
7
7
.9
0

D
fn
-b
w
in

T
L

6
4
2
7
6
.9
6

7
1
9
3
8

1
.4
2

7
0
9
1
8
.2
9

T
L

4
8
5
4
3
.9
7

7
2
1
9
4

1
.7
1

7
0
9
6
0
.0
0

T
L

5
8
8
1
3
.4
6

6
6
6
5
8

2
.9
8

6
4
6
7
4
.0
6

T
L

4
3
1
9
0
.1
7

6
6
2
6
9

2
.3
6

6
4
7
0
3
.0
0

T
L

6
6
7
7
6
.5
7

7
3
8
0
4

1
.5
3

7
2
6
7
4
.6
6

T
L

5
1
0
8
6
.8
1

7
3
6
9
5

1
.2
6

7
2
7
6
5
.0
0

T
L

5
5
0
4
2
.2
1

6
2
5
5
0

3
.1
5

6
0
5
8
0
.7
4

T
L

4
2
1
9
0
.8
2

6
2
3
4
0

2
.7
6

6
0
6
1
8
.3
4

T
L

7
5
8
8
7
.3
7

8
2
9
4
6

2
.5
3

8
0
8
5
1
.3
0

T
L

5
9
6
1
1
.1
5

8
2
9
3
1

2
.4
5

8
0
8
9
6
.0
0

T
L

5
8
3
2
8
.0
0

6
5
1
4
8

0
.6
4

6
4
7
2
9
.0
0

T
L

4
2
8
2
0
.2
0

6
5
1
4
8

0
.6
0

6
4
7
5
8
.0
0

T
L

5
6
1
5
5
.0
5

6
3
6
7
4

2
.8
1

6
1
8
8
2
.6
4

T
L

4
3
0
4
8
.8
2

6
3
3
4
0

2
.2
2

6
1
9
3
4
.4
5

T
L

7
8
4
6
0
.8
9

8
4
0
3
6

0
.2
5

8
3
8
2
9
.4
5

T
L

6
0
7
4
5
.4
0

8
4
2
5
0

0
.4
1

8
3
9
0
8
.0
0

T
L

6
7
9
6
6
.6
6

7
3
4
2
6

0
.9
6

7
2
7
2
0
.0
0

T
L

5
2
5
5
4
.5
8

7
3
3
1
7

0
.5
0

7
2
9
5
1
.6
2

T
L

5
7
5
6
4
.4
6

6
2
9
9
0

1
.4
7

6
2
0
6
2
.6
9

T
L

4
3
5
2
1
.7
6

6
3
0
8
1

1
.5
0

6
2
1
3
7
.6
4

T
ab
le
3.
9:

R
es
ul
ts

co
m
pa
ri
so
n
b
et
w
ee
n
M
IL
P
-B
as
ed

H
eu
ri
st
ic
an
d
co
m
pa
ct

M
IL
P
fo
rm

ul
at
io
n.

90 MILP-based Heuristic

In
sta

n
ce

C
P
U
_
H

R
H

L
B
_
H

G
a
p
_
H

U
B
_
H

C
P
U
_
C

R
C

L
B
_
C

G
a
p
_
C

U
B
_
C

D
fn
-g
w
in

T
L

1
1
0
6
3
0
.8
5

1
2
4
5
3
6

8
.1
9

1
1
4
3
3
0
.4
6

T
L

9
3
8
2
1
.7
2

1
2
9
0
4
7

1
1
.4
4

1
1
4
28
0
.3
5

T
L

1
3
0
5
0
6
.5
5

1
5
7
0
3
8

1
4
.5
7

1
3
4
1
5
9
.4
5

T
L

1
1
8
3
6
7
.3
2

1
5
1
4
6
3

1
1
.4
0

1
34
1
9
2
.2
6

T
L

9
5
5
9
5
.6
8

1
1
1
4
8
8

1
0
.1
9

1
0
0
1
2
8
.5
0

T
L

7
7
9
1
1
.2
9

1
1
3
2
7
9

1
1
.6
6

1
0
0
07
2
.2
7

T
L

8
7
8
8
2
.5
6

1
0
2
5
2
1

9
.4
4

9
2
8
4
5
.3
2

T
L

7
2
3
3
9
.7
7

1
0
5
3
2
6

1
1
.7
9

9
2
9
1
0
.4
4

T
L

1
1
8
5
9
7
.7
7

1
2
9
0
4
3

4
.6
6

1
2
3
0
3
2
.8
4

T
L

1
0
5
1
1
0
.3
6

1
3
2
2
2
6

6
.9
0

1
2
3
0
9
6
.3
0

T
L

1
1
7
2
8
1
.2
3

1
3
5
7
5
5

9
.9
5

1
2
2
2
4
0
.8
0

T
L

1
0
1
9
2
0
.7
2

1
3
0
4
3
1

6
.1
9

1
2
2
3
6
0
.6
5

T
L

1
2
0
2
6
9
.4
5

1
3
2
7
2
1

6
.1
3

1
2
4
5
8
2
.5
8

T
L

1
0
5
7
8
3
.6
0

1
3
3
4
6
9

6
.7
9

1
2
4
4
0
6
.0
7

T
L

1
4
1
0
7
9
.2
9

1
5
4
4
5
6

5
.9
0

1
4
5
3
4
3
.1
6

T
L

1
2
3
2
3
7
.2
9

1
5
2
0
8
2

4
.4
8

1
4
5
2
6
3
.0
3

T
L

1
0
0
2
7
3
.4
0

1
1
3
7
6
1

8
.1
1

1
0
4
5
3
0
.4
5

T
L

8
6
2
1
6
.4
6

1
1
6
7
5
7

1
0
.5
4

1
0
4
45
4
.1
4

T
L

1
3
9
2
0
3
.0
6

1
5
1
5
2
1

5
.3
2

1
4
3
4
5
8
.9
8

T
L

1
2
4
8
8
3
.2
1

1
5
3
7
5
7

6
.6
9

1
4
3
4
6
9
.3
6

D
i-y

u
a
n

T
L

2
3
7
1
0
.3
1

2
6
4
3
4

5
.2
4

2
5
0
4
7
.5
4

T
L

2
3
3
6
7
.8
1

3
0
1
1
4

1
7
.5
5

2
4
8
2
9
.2
3

T
L

3
2
4
2
5
.3
4

3
7
2
1
8

9
.8
8

3
3
5
4
1
.8
0

T
L

3
2
2
9
5
.1
2

4
3
2
2
7

2
2
.4
6

3
3
5
1
8
.4
0

T
L

2
5
4
6
8
.1
1

2
8
7
1
6

3
.8
1

2
7
6
2
1
.7
4

T
L

2
4
3
3
4
.1
2

3
3
4
8
4

1
9
.1
4

2
7
0
7
6
.0
3

T
L

2
4
3
5
5
.0
2

2
9
7
7
4

1
2
.4
4

2
6
0
6
9
.7
0

T
L

2
3
8
0
3
.9
1

3
1
8
5
4

1
8
.1
6

2
6
0
6
9
.2
7

T
L

2
3
4
4
6
.3
2

2
8
3
0
0

1
2
.1
5

2
4
8
6
2
.3
5

T
L

2
2
8
0
8
.1
2

3
4
6
8
7

2
9
.5
6

2
4
4
3
1
.8
5

T
L

2
6
0
9
1
.3
3

2
9
1
2
2

2
.9
7

2
8
2
5
8
.2
0

T
L

2
5
1
2
8
.4
0

3
7
1
9
5

2
5
.3
3

2
7
7
7
3
.6
7

T
L

3
1
1
6
5
.5
9

3
5
6
1
7

5
.4
0

3
3
6
9
5
.4
0

T
L

2
9
1
5
6
.4
2

4
0
1
7
9

1
6
.1
2

3
3
7
0
0
.8
0

T
L

2
5
8
2
4
.9
1

3
4
3
2
5

1
8
.2
3

2
8
0
6
7
.0
4

T
L

2
5
6
1
9
.0
4

3
9
1
7
0

2
7
.2
1

2
8
5
1
0
.5
5

T
L

2
5
9
8
2
.1
0

3
1
0
7
5

1
0
.6
2

2
7
7
7
5
.3
3

T
L

2
5
5
6
1
.3
7

3
2
5
4
8

1
3
.8
8

2
8
0
3
1
.5
8

T
L

2
3
0
7
1
.9
1

2
7
0
1
6

7
.4
0

2
5
0
1
7
.7
5

T
L

2
2
2
7
8
.4
0

2
8
5
8
2

1
5
.5
1

2
4
1
4
8
.2
3

F
ra
n
ce

T
L

2
0
9
6
8
2
.8
0

5
0
3
4
4
7

5
6
.4
8

2
1
9
1
0
0
.1
2

T
L

1
7
7
7
7
4
.8
0

6
7
3
3
7
0

6
9
.4
2

2
05
8
9
1
.5
7

T
L

1
4
6
9
6
1
.8
9

4
5
5
0
8
8

6
5
.9
9

1
5
4
7
9
3
.9
8

T
L

1
2
9
2
2
0
.0
7

6
4
6
7
2
3

7
7
.1
5

1
47
7
4
8
.0
6

T
L

1
9
9
6
7
8
.9
3

5
8
5
0
9
2

6
4
.3
9

2
0
8
3
5
0
.0
4

T
L

1
7
4
5
6
3
.0
6

7
0
4
6
7
1

7
2
.7
5

1
91
9
8
8
.2
3

T
L

2
1
1
5
5
5
.6
3

4
5
6
5
3
0

5
1
.2
4

2
2
2
6
1
2
.1
7

T
L

1
8
1
8
2
6
.4
1

6
3
7
9
2
8

6
8
.0
7

2
03
6
7
8
.7
0

T
L

1
5
8
8
6
6
.7
8

5
5
3
1
8
5

7
0
.0
0

1
6
5
9
5
1
.8
0

T
L

1
3
9
9
7
9
.5
9

6
9
0
6
3
8

7
6
.9
0

1
59
5
3
1
.8
4

T
L

2
6
6
6
6
8
.0
7

6
1
5
8
9
6

5
5
.2
9

2
7
5
3
8
2
.7
3

T
L

2
3
5
7
3
4
.1
3

7
4
3
3
2
2

6
6
.0
2

2
52
5
5
6
.7
9

T
L

2
5
0
2
9
2
.2
1

4
2
8
4
0
0

3
9
.6
0

2
5
8
7
6
2
.1
9

T
L

2
2
4
8
0
4
.2
3

6
9
3
8
8
8

6
4
.6
6

2
45
2
2
7
.8
8

T
L

2
5
0
3
5
5
.7
6

5
4
2
7
9
9

5
2
.3
8

2
5
8
4
9
9
.6
4

T
L

2
3
0
9
4
9
.8
5

6
0
9
1
9
5

5
9
.6
6

2
45
7
3
3
.5
4

T
L

1
4
4
3
5
7
.6
3

3
2
6
3
7
5

5
2
.7
6

1
5
4
1
7
1
.0
6

T
L

1
1
8
2
9
0
.5
0

4
6
3
4
7
5

6
8
.9
8

1
43
7
7
2
.2
8

T
L

2
9
2
1
7
6
.8
6

5
1
0
8
6
0

4
0
.6
1

3
0
3
4
1
6
.5
1

T
L

2
6
4
6
6
0
.3
9

6
5
1
4
8
1

5
6
.0
8

2
86
1
1
4
.5
3

T
able

3.10:
R
esults

com
parison

b
etw

een
M
IL
P
-B
ased

H
euristic

and
com

pact
M
IL
P
form

ulation.

3.2 Computational results 91

In
st
a
n
ce

C
P
U
_
H

R
H

L
B
_
H

G
a
p
_
H

U
B
_
H

C
P
U
_
C

R
C

L
B
_
C

G
a
p
_
C

U
B
_
C

G
ea
n
t

T
L

9
1
4
7
6
.9
7

1
6
2
1
9
8

3
3
.2
6

1
0
8
2
4
5
.5
0

T
L

7
7
2
3
8
.4
2

1
4
7
5
6
8

2
6
.6
4

1
0
8
2
5
3
.3
3

T
L

1
1
1
1
6
7
.3
8

1
8
5
9
4
2

3
2
.2
7

1
2
5
9
3
7
.3
0

T
L

9
0
1
1
2
.7
4

1
6
7
3
4
0

2
5
.1
9

1
2
5
1
9
0
.6
0

T
L

2
0
7
9
9
1
.3
3

8
8
5
5
6
7

7
4
.9
2

2
2
2
0
8
7
.2
2

T
L

1
8
8
8
6
4
.3
8

1
0
1
2
2
7
5

7
8
.0
6

2
2
2
0
8
5
.9
4

T
L

1
0
3
7
1
4
.9
0

1
6
3
2
1
5

2
6
.8
5

1
1
9
3
9
7
.1
6

T
L

8
6
4
3
7
.3
1

1
5
7
7
1
5

2
3
.9
6

1
1
9
9
2
2
.2
1

T
L

1
2
7
8
8
3
.5
0

2
7
0
1
5
4

4
7
.1
9

1
4
2
6
7
1
.2
8

T
L

1
1
1
2
6
0
.2
0

1
9
1
5
2
9

2
5
.4
9

1
4
2
7
1
2
.2
7

T
L

1
4
1
8
9
0
.0
2

3
2
9
1
1
2

5
3
.1
3

1
5
4
2
4
8
.1
7

T
L

1
2
3
3
8
2
.3
4

1
0
9
0
9
8
1

8
5
.8
5

1
5
4
3
6
5
.5
4

T
L

1
1
8
2
3
1
.6
4

3
6
0
5
6
9

6
3
.9
0

1
3
0
1
7
9
.1
1

T
L

1
0
0
1
0
5
.4
8

6
7
6
9
0
4

8
1
.0
2

1
2
8
4
7
7
.3
1

T
L

1
6
7
2
4
3
.5
4

2
1
5
3
1
5

1
5
.1
0

1
8
2
8
0
7
.9
1

T
L

1
4
7
3
2
8
.2
5

7
7
8
5
1
9

7
6
.5
4

1
8
2
6
3
5
.5
6

T
L

9
5
4
1
3
.9
1

1
3
4
7
1
2

1
7
.5
5

1
1
1
0
6
3
.6
9

T
L

7
8
8
6
6
.4
7

1
4
2
4
4
2

2
2
.1
1

1
1
0
9
4
9
.9
7

T
L

1
1
0
7
9
0
.5
2

1
4
1
6
9
4

1
0
.8
2

1
2
6
3
6
0
.5
7

T
L

9
2
7
7
0
.6
9

1
4
5
1
1
0

1
3
.1
7

1
2
5
9
9
3
.6
8

J
a
n
o
s-
u
s

T
L

1
0
8
8
7
3
5
9
.2
3

1
0
9
0
4
8
0
6

0
.0
8

1
0
8
9
6
5
9
3
.3
0

T
L

1
0
8
8
7
3
5
9
.2
3

1
1
3
8
2
7
1
8

4
.2
8

1
0
8
9
5
7
5
0
.9
0

T
L

1
1
3
4
2
3
3
7
.1
8

1
1
3
6
0
4
2
8

0
.0
5

1
1
3
5
4
5
2
8
.7
7

T
L

1
1
3
4
2
3
3
7
.1
8

1
3
0
7
0
2
0
0

1
3
.1
3

1
1
3
5
3
6
4
0
.2
3

T
L

1
4
0
0
5
1
9
2
.6
7

1
4
0
1
9
1
8
8

0
.0
3

1
4
0
1
4
7
6
5
.6
3

T
L

1
4
0
0
5
1
9
2
.6
7

1
5
3
7
9
3
0
4

8
.8
8

1
4
0
1
4
0
8
2
.0
8

T
L

1
1
8
7
3
4
7
0
.3
0

1
1
8
9
2
6
9
0

0
.0
3

1
1
8
8
8
5
5
0
.0
7

T
L

1
1
8
7
3
4
7
0
.3
0

1
3
8
2
2
1
2
7

1
4
.0
0

1
1
8
8
7
4
1
7
.1
6

T
L

1
5
5
3
4
8
6
8
.9
2

1
5
5
5
1
3
6
2

0
.0
4

1
5
5
4
5
7
6
2
.8
5

T
L

1
5
5
3
4
8
6
8
.9
2

1
5
5
7
0
6
7
7

0
.1
6

1
5
5
4
5
0
7
6
.6
4

T
L

1
4
5
5
5
3
8
6
.8
3

1
4
5
7
2
5
1
4

0
.0
4

1
4
5
6
6
8
7
5
.5
6

T
L

1
4
5
5
5
3
8
6
.8
3

1
4
5
8
0
5
7
5

0
.1
0

1
4
5
6
5
9
9
9
.7
6

T
L

1
2
6
2
5
2
0
2
.5
1

1
2
6
4
3
2
2
9

0
.0
5

1
2
6
3
7
0
9
7
.0
0

T
L

1
2
6
2
5
2
0
2
.5
1

1
2
6
4
8
9
3
8

0
.1
0

1
2
6
3
6
6
0
8
.7
3

T
L

1
2
8
4
8
1
1
1
.7
8

1
2
8
6
2
4
9
9

0
.0
2

1
2
8
5
9
5
7
3
.3
3

T
L

1
2
8
4
8
1
1
1
.7
8

1
2
8
7
0
2
8
8

0
.0
9

1
2
8
5
8
8
5
4
.9
8

T
L

1
2
5
3
7
2
0
9
.8
3

1
2
5
5
5
3
5
0

0
.0
3

1
2
5
5
1
1
7
2
.3
5

T
L

1
2
5
3
7
2
0
9
.8
3

1
2
5
7
0
9
2
4

0
.1
6

1
2
5
5
0
4
1
4
.2
8

T
L

1
5
8
3
9
8
7
9
.1
3

1
5
8
5
3
3
9
6

0
.0
2

1
5
8
4
9
9
4
0
.5
8

T
L

1
5
8
3
9
8
7
9
.1
3

1
5
8
5
8
7
1
6

0
.0
6

1
5
8
4
9
3
0
6
.3
1

N
ew

yo
rk

T
L

1
6
2
1
7
8
.1
5

2
5
5
6
1
8

3
4
.4
4

1
6
7
5
9
0
.2
8

T
L

1
4
9
3
3
7
.5
4

4
6
6
5
7
8

6
4
.3
5

1
6
6
3
3
8
.9
3

T
L

2
2
6
2
6
6
.7
7

4
2
5
8
1
2

4
5
.7
7

2
3
0
9
0
2
.2
6

T
L

2
1
1
2
7
0
.0
8

4
6
0
5
5
3

4
9
.6
5

2
3
1
8
8
8
.2
1

T
L

1
0
4
4
4
9
.6
5

1
5
6
0
4
5

3
0
.7
8

1
0
8
0
1
9
.1
4

T
L

8
7
9
6
1
.1
4

3
5
9
0
7
8

7
0
.0
3

1
0
7
6
0
2
.6
4

T
L

1
7
7
0
7
7
.0
7

2
3
3
9
0
6

2
1
.3
9

1
8
3
8
6
5
.6
9

T
L

1
5
5
1
4
4
.2
8

4
5
6
1
3
7

5
9
.7
1

1
8
3
7
8
2
.6
7

T
L

1
4
6
3
1
6
.7
1

1
8
7
5
5
6

1
9
.1
6

1
5
1
6
1
9
.4
3

T
L

1
3
1
1
6
3
.4
0

2
3
3
5
6
3

3
6
.0
1

1
4
9
4
4
9
.9
3

T
L

1
0
4
3
6
7
.6
5

1
4
2
3
7
0

2
2
.0
6

1
1
0
9
5
6
.4
4

T
L

9
0
6
6
0
.4
1

1
8
4
8
7
6

4
1
.2
7

1
0
8
5
8
4
.5
6

T
L

2
1
0
3
1
7
.8
5

3
0
0
5
9
5

2
8
.4
3

2
1
5
1
3
5
.3
2

T
L

1
9
9
2
5
0
.0
3

4
1
7
8
1
6

4
8
.5
4

2
1
5
0
0
0
.0
2

T
L

1
6
0
8
3
1
.5
4

2
5
8
8
8
9

3
5
.7
6

1
6
6
3
2
1
.0
6

T
L

1
4
9
4
3
4
.1
4

3
9
1
1
0
9

5
8
.1
4

1
6
3
7
2
0
.4
7

T
L

1
0
9
3
0
3
.6
6

3
0
7
9
9
6

6
2
.7
4

1
1
4
7
4
4
.6
4

T
L

9
1
0
3
1
.1
3

1
8
4
6
8
4

3
8
.1
1

1
1
4
3
0
5
.8
3

T
L

1
6
9
7
8
0
.7
1

2
2
0
7
5
8

2
0
.4
5

1
7
5
6
1
3
.2
9

T
L

1
4
7
6
5
9
.6
0

2
7
0
6
6
8

3
5
.3
0

1
7
5
1
1
0
.9
7

T
ab
le
3.
11
:
R
es
ul
ts

co
m
pa
ri
so
n
b
et
w
ee
n
M
IL
P
-B
as
ed

H
eu
ri
st
ic
an
d
co
m
pa
ct

M
IL
P
fo
rm

ul
at
io
n.

92 MILP-based Heuristic

In
sta

n
ce

C
P
U
_
H

R
H

L
B
_
H

G
a
p
_
H

U
B
_
H

C
P
U
_
C

R
C

L
B
_
C

G
a
p
_
C

U
B
_
C

N
o
b
el-eu

T
L

1
2
0
6
7
0
.9
8

7
7
0
1
3
3

8
3
.4
2

1
2
7
6
8
4
.5
2

T
L

1
0
8
3
3
0
.1
8

−
−

−
T
L

1
5
2
7
3
6
.3
1

7
0
8
6
6
3

7
7
.7
2

1
5
7
8
7
3
.9
3

T
L

1
3
1
2
7
8
.0
9

−
−

−
T
L

2
7
3
7
7
4
.4
4

3
6
8
8
2
2

2
3
.9
6

2
8
0
4
5
0
.6
6

T
L

2
5
7
6
4
6
.7
9

−
−

−
T
L

2
7
9
5
5
3
.9
1

5
3
7
9
0
4

4
7
.3
2

2
8
3
3
7
8
.7
3

T
L

2
6
6
6
9
4
.0
8

−
−

−
T
L

9
9
6
1
0
.9
3

3
0
8
5
3
2

6
5
.3
5

10
6
9
1
4
.1
4

T
L

8
8
7
2
8
.3
0

4
1
1
9
0
5

7
4
.4
0

10
5
4
5
6
.8
4

T
L

1
4
3
4
6
5
.1
9

9
4
3
7
1
1

8
4
.1
9

1
4
9
2
1
6
.5
5

T
L

1
3
0
4
7
6
.8
9

6
3
9
0
7
8

7
7
.2
7

1
4
5
2
3
8
.0
5

T
L

1
1
6
3
0
7
.2
1

2
3
9
7
9
0

4
8
.8
1

1
2
2
7
5
7
.7
8

T
L

1
0
4
0
5
4
.5
6

6
2
8
7
1
7

8
0
.6
0

1
2
1
9
5
9
.2
3

T
L

1
1
1
6
2
1
.7
9

3
3
1
5
2
7

6
4
.1
3

1
1
8
9
1
0
.3
9

T
L

9
4
2
1
1
.0
5

4
7
5
5
0
1

7
6
.3
8

11
2
2
9
0
.7
6

T
L

2
7
9
7
2
2
.9
7

5
0
6
7
7
4

4
2
.2
1

2
9
2
8
6
9
.9
0

T
L

2
6
5
9
0
6
.4
9

7
5
3
0
4
0

6
2
.2
9

2
8
3
9
8
4
.6
7

T
L

1
6
5
5
2
5
.4
5

2
5
0
3
0
4

3
0
.4
9

1
7
3
9
8
6
.4
5

T
L

1
5
0
6
3
0
.1
8

6
9
4
0
3
8

7
5
.7
8

1
6
8
0
8
5
.8
2

N
o
b
el-g

er

T
L

6
2
6
1
5
.0
7

7
1
4
9
0

6
.9
7

6
6
5
0
5
.1
8

T
L

5
5
7
1
1
.0
9

1
0
4
1
0
3

3
7
.0
5

6
5
5
3
2
.5
7

T
L

5
2
7
0
6
.3
3

5
8
1
6
0

3
.2
5

5
6
2
7
0
.0
1

T
L

4
4
9
5
9
.1
9

8
6
2
8
5

3
4
.8
0

5
6
2
5
7
.1
8

T
L

7
8
9
4
7
.9
0

8
9
9
7
4

6
.5
0

8
4
1
2
7
.0
3

T
L

6
9
7
4
3
.4
6

1
3
4
9
6
3

4
0
.8
0

7
9
8
9
6
.4
2

T
L

6
9
5
1
4
.6
2

8
6
1
6
8

1
4
.4
1

7
3
7
5
4
.7
6

T
L

6
2
0
2
9
.7
0

1
3
0
5
6
9

4
4
.7
5

7
2
1
3
6
.9
8

T
L

7
8
4
4
9
.1
0

1
0
5
2
0
3

2
2
.7
2

8
1
3
0
0
.5
8

T
L

7
4
7
6
3
.6
1

1
5
0
4
6
0

4
6
.9
6

7
9
8
0
5
.5
2

T
L

7
3
7
2
3
.8
2

8
3
5
8
6

7
.1
2

7
7
6
3
3
.6
0

T
L

6
6
8
9
3
.2
7

1
5
0
7
8
7

5
1
.2
4

7
3
5
1
8
.0
1

T
L

5
4
2
8
5
.1
2

6
0
0
9
1

4
.1
2

5
7
6
1
5
.2
2

T
L

4
6
9
3
1
.6
1

1
1
9
0
1
6

5
3
.4
2

5
5
4
3
3
.8
6

T
L

5
6
8
4
1
.3
9

6
3
8
0
7

4
.0
3

6
1
2
3
7
.7
1

T
L

5
1
2
3
9
.3
5

1
1
2
9
0
0

4
7
.7
2

5
9
0
2
3
.6
3

T
L

7
8
5
9
4
.9
3

9
4
6
0
9

1
2
.1
6

8
3
1
0
7
.3
2

T
L

7
2
5
7
7
.6
9

1
3
8
1
1
1

4
1
.2
8

8
1
0
9
7
.6
0

T
L

5
1
3
2
3
.0
3

5
8
4
3
7

5
.2
8

5
5
3
5
1
.9
4

T
L

4
4
2
3
7
.5
3

1
1
3
4
3
5

5
3
.1
0

5
3
1
9
9
.5
8

N
o
b
el-u

s

T
L

5
7
8
6
6
.9
9

6
4
9
0
8

5
.3
7

6
1
4
1
9
.6
1

T
L

5
1
9
7
1
.6
7

7
9
2
8
7

2
3
.8
7

6
0
3
5
9
.9
3

T
L

5
0
5
6
3
.1
6

6
5
1
8
8

1
8
.1
1

5
3
3
8
0
.2
9

T
L

4
4
3
9
8
.8
1

9
7
4
9
6

4
6
.5
0

5
2
1
6
4
.0
2

T
L

1
1
1
1
2
9
.9
6

1
4
1
6
2
5

1
7
.5
8

1
1
6
7
3
0
.9
5

T
L

1
0
3
8
7
5
.9
5

1
5
5
9
8
3

2
6
.3
9

1
1
4
8
1
8
.6
7

T
L

7
4
3
2
9
.6
8

1
3
4
9
8
3

4
2
.3
2

7
7
8
5
8
.9
8

T
L

6
8
5
0
1
.2
5

1
2
9
9
0
6

4
1
.5
9

7
5
8
7
7
.5
7

T
L

1
2
4
6
0
7
.3
3

1
6
4
6
4
5

2
0
.4
0

1
3
1
0
5
3
.2
5

T
L

1
1
7
8
8
6
.8
7

1
9
3
2
4
6

3
3
.1
8

1
2
9
1
2
5
.7
5

T
L

5
7
6
9
2
.8
1

1
0
0
2
7
4

3
8
.0
7

6
2
0
9
8
.9
6

T
L

4
6
8
2
4
.9
0

1
0
1
8
4
6

4
0
.4
0

6
0
6
9
7
.2
8

T
L

5
4
5
5
3
.8
0

7
4
5
0
1

2
1
.5
3

5
8
4
5
9
.3
9

T
L

4
7
9
6
0
.0
9

9
7
3
2
0

4
1
.0
7

5
7
3
4
6
.8
4

T
L

6
6
3
2
0
.6
6

9
6
4
2
7

2
5
.0
7

7
2
2
5
5
.6
3

T
L

6
2
0
3
2
.1
8

1
2
5
4
1
5

4
4
.6
4

6
9
4
3
1
.4
8

T
L

4
8
0
6
2
.5
1

6
4
7
8
8

1
7
.5
9

5
3
3
9
2
.1
1

T
L

4
3
7
9
7
.4
1

1
0
1
2
8
5

5
0
.1
8

5
0
4
5
7
.6
8

T
L

5
8
4
7
9
.5
5

7
1
4
0
3

1
3
.0
6

6
2
0
7
9
.3
5

T
L

5
1
8
1
6
.3
5

1
0
4
6
4
1

4
1
.4
9

6
1
2
2
4
.9
0

T
able

3.12:
R
esults

com
parison

b
etw

een
M
IL
P
-B
ased

H
euristic

and
com

pact
M
IL
P
form

ulation.

3.2 Computational results 93

In
st
a
n
ce

C
P
U
_
H

R
H

L
B
_
H

G
a
p
_
H

U
B
_
H

C
P
U
_
C

R
C

L
B
_
C

G
a
p
_
C

U
B
_
C

P
d
h

1
4
0
7
.3
9

5
1
6
2
7
.2
4

5
6
5
1
8

0
.0
0

5
6
5
1
8
.0
0

2
1
4
1
.9
1

3
8
8
0
5
.9
4

5
6
5
1
8

0
.0
0

5
6
5
1
8
.0
0

T
L

6
1
1
8
1
.1
7

6
6
8
6
2

0
.5
0

6
6
5
2
6
.0
0

T
L

4
5
7
2
9
.7
5

6
6
8
6
2

0
.4
9

6
6
5
3
7
.2
5

T
L

4
8
7
6
8
.2
4

5
1
8
1
7

0
.7
2

5
1
4
4
2
.0
0

T
L

3
8
9
3
2
.4
2

5
1
9
8
9

1
.0
5

5
1
4
4
2
.2
4

T
L

4
5
0
4
6
.4
5

4
9
4
5
1

1
.6
0

4
8
6
6
1
.7
2

T
L

3
6
0
1
6
.0
9

4
9
5
1
7

1
.5
0

4
8
7
7
2
.2
5

T
L

3
9
6
5
9
.0
6

4
3
9
1
3

2
.9
4

4
2
6
2
3
.3
6

T
L

3
0
8
5
0
.7
3

4
4
1
1
6

3
.3
3

4
2
6
4
7
.6
5

T
L

4
3
5
7
6
.6
2

4
7
0
4
6

1
.6
4

4
6
2
7
2
.4
7

T
L

3
2
3
3
8
.4
6

4
7
0
4
6

1
.6
0

4
6
2
9
1
.6
8

1
1
5
2
.4
3

5
2
3
9
1
.9
4

5
5
8
7
6

0
.0
0

5
5
8
7
6
.0
0

1
0
3
2
.7
8

3
9
3
9
3
.9
2

5
5
8
7
6

0
.0
0

5
5
8
7
6
.0
0

T
L

4
5
9
1
2
.2
4

5
0
6
0
6

2
.2
5

4
9
4
6
5
.0
0

T
L

3
7
8
2
1
.6
9

5
0
6
0
6

1
.8
2

4
9
6
8
4
.8
2

T
L

5
1
4
3
5
.6
8

5
7
0
7
1

1
.5
9

5
6
1
6
1
.0
0

T
L

3
8
7
3
4
.6
0

5
7
0
7
1

1
.6
4

5
6
1
3
5
.3
0

T
L

6
0
9
1
6
.0
7

6
5
9
2
1

0
.4
9

6
5
6
0
0
.0
0

T
L

5
0
1
1
9
.9
7

6
6
0
1
5

0
.5
4

6
5
6
6
0
.0
0

P
o
ls
ka

T
L

8
4
1
9
8
.7
0

1
0
8
8
4
2

1
7
.6
7

8
9
6
0
8
.5
2

T
L

8
2
9
1
4
.0
1

1
3
7
9
7
8

3
7
.2
9

8
6
5
2
2
.8
5

T
L

1
0
7
9
4
5
.2
7

1
2
5
0
5
1

9
.8
8

1
1
2
6
9
7
.1
0

T
L

1
0
6
1
5
9
.6
3

1
4
2
2
7
8

2
1
.8
8

11
1
1
4
2
.8
3

T
L

8
8
4
4
4
.8
1

1
0
8
7
3
1

1
2
.8
8

9
4
7
2
5
.8
6

T
L

8
5
7
1
7
.6
7

1
3
2
9
3
4

3
1
.3
5

9
1
2
5
5
.3
8

T
L

8
9
8
0
5
.4
6

1
1
6
2
2
9

1
3
.2
3

1
0
0
8
5
5
.0
9

T
L

8
5
4
2
6
.1
8

1
4
6
8
5
6

3
5
.6
0

9
4
5
7
0
.8
4

T
L

8
2
8
6
6
.7
1

1
3
3
3
4
7

2
9
.3
9

9
4
1
5
4
.3
4

T
L

8
1
0
5
5
.2
3

1
3
0
4
1
2

3
2
.7
2

8
7
7
4
4
.0
8

T
L

9
7
4
0
8
.9
3

1
2
9
2
1
6

1
8
.0
0

1
0
5
9
6
1
.4
6

T
L

9
4
7
9
7
.8
5

1
4
3
2
1
8

2
8
.6
4

1
02
1
9
8
.2
1

T
L

9
6
2
9
7
.6
1

1
1
4
6
2
0

1
1
.0
6

1
0
1
9
4
7
.3
8

T
L

9
5
1
9
9
.6
3

1
3
5
5
3
0

2
6
.0
5

1
00
2
1
8
.9
8

T
L

9
3
8
9
3
.1
6

1
1
2
4
6
6

1
0
.4
3

1
0
0
7
3
2
.8
7

T
L

9
1
0
3
9
.8
4

1
4
8
6
5
1

3
4
.6
2

9
7
1
9
0
.7
1

T
L

9
4
5
7
5
.3
3

1
2
6
8
0
3

2
0
.5
7

1
0
0
7
1
4
.1
7

T
L

9
2
5
7
4
.0
6

1
3
2
3
9
8

2
6
.1
1

9
7
8
3
2
.9
7

T
L

7
0
9
1
8
.7
4

9
1
0
9
9

1
3
.5
9

7
8
7
1
4
.8
3

T
L

6
8
5
4
5
.8
7

1
2
2
5
9
8

3
8
.7
0

7
5
1
4
7
.3
7

T
a
1

T
L

1
0
0
8
6
8
.3
1

1
4
8
1
9
7

2
3
.7
3

1
1
3
0
3
0
.2
6

T
L

8
2
7
1
5
.8
4

−
−

−
T
L

8
0
9
3
2
.2
7

1
4
2
6
2
6

3
6
.3
1

9
0
8
4
5
.4
9

T
L

7
3
0
7
4
.2
8

1
4
8
2
0
1

3
8
.8
7

9
0
5
9
2
.9
7

T
L

7
9
9
5
3
.3
4

1
4
1
1
5
5

3
6
.9
8

8
8
9
6
0
.1
9

T
L

6
3
0
9
0
.3
8

1
2
6
0
1
6

2
9
.6
9

8
8
6
0
2
.5
6

T
L

8
0
1
1
5
.9
1

1
5
0
4
2
3

4
0
.7
0

8
9
2
0
2
.0
2

T
L

6
5
0
6
0
.9
7

2
0
7
9
7
5

5
7
.1
3

8
9
1
5
4
.7
6

T
L

8
8
8
1
2
.9
6

1
3
3
6
5
4

2
5
.6
0

9
9
4
3
7
.2
4

T
L

7
1
8
6
5
.3
6

2
9
4
5
6
6

6
6
.6
3

9
8
3
0
0
.0
8

T
L

1
0
4
6
3
7
.5
3

3
3
4
2
2
8

6
6
.4
9

1
1
1
9
8
4
.6
2

T
L

8
7
6
9
1
.3
3

3
0
6
1
7
0

6
3
.5
0

1
11
7
6
4
.0
7

T
L

1
1
8
0
7
5
.4
1

1
9
8
8
0
5

3
4
.8
1

1
2
9
6
0
7
.0
3

T
L

1
0
0
7
6
8
.9
8

9
2
5
5
9
8

8
5
.9
8

12
9
7
9
8
.8
2

T
L

1
1
3
6
2
1
.3
2

5
8
3
6
9
1

7
9
.1
1

1
2
1
9
2
5
.5
0

T
L

9
6
2
8
6
.9
2

9
6
0
5
6
8

8
7
.4
6

1
20
4
1
3
.5
0

T
L

9
8
0
4
5
.5
2

1
3
9
0
5
0

2
1
.0
0

1
0
9
8
4
9
.8
4

T
L

8
0
6
9
2
.0
1

2
5
0
2
4
1

5
6
.2
2

1
09
5
5
1
.2
5

T
L

8
4
7
1
7
.4
6

1
3
8
0
8
2

3
2
.6
8

9
2
9
5
3
.9
0

T
L

6
7
6
7
9
.7
5

1
6
6
1
0
8

4
4
.2
4

9
2
6
1
8
.8
6

T
ab
le
3.
13
:
R
es
ul
ts

co
m
pa
ri
so
n
b
et
w
ee
n
M
IL
P
-B
as
ed

H
eu
ri
st
ic
an
d
co
m
pa
ct

M
IL
P
fo
rm

ul
at
io
n.

94 MILP-based Heuristic

3.3 Conclusions

In this chapter, we have proposed a path-based MILP formulation for the VNFPRP.
With this formulation we were able to provide optimal solutions for additional instances
and to improve the gaps obtained from the compact formulation. We then derived an
MILP-based heuristic that we have compared to the compact MILP formulation, in
terms of the CPU time and the quality of the obtained solution. We have also tested
the path formulation with di�erent values of problem parameters and discussed the
di�erence in terms of costs and (in)feasibility.

The proposed Path-based formulation has shown its e�ectiveness for �nding high-
quality solutions. In the next chapter, we will apply a column generation algorithm
to the path formulation to solve its linear relaxation and derive a Branch-and-Price
algorithm to solve it.

Chapter 4

Extended formulations

In this chapter, we present two column generation approaches to tackle the
Virtual Network Functions Placement and Routing problem. First, we propose two
extended MILP formulations to model it, for which we then derive branch-and-price al-
gorithms. For each formulation, we present the pricing problem, its resolution method,
computation of the Lagrangian bound, and the branching scheme. Both approaches
are empirically compared, and experiments are conducted on realistic instances to show
their e�ciency.

96 Extended formulations

Contents
4.1 First extended formulation: the model PF 98

4.1.1 Decision variables . 98

4.1.2 The master problem formulation 99

4.1.3 The dual of the master problem 101

4.1.4 The pricing problem . 102

4.1.5 Lagrangian bound . 103

4.2 Second extended formulation: the model DW 104

4.2.1 Decision variables . 105

4.2.2 The dual of the master problem 106

4.2.3 The pricing problem . 107

4.2.4 Lagrangian bound . 109

4.2.5 Branching on τ variables . 110

4.3 Strengthening inequalities 113

4.3.1 Valid inequalities for the model PF 114

4.3.2 Strengthening inequalities for both models 117

4.3.3 Strengthening the model DW 119

4.4 Branch-and-Price algorithms 119

4.4.1 Generic column generation framework 119

4.4.2 Branching . 120

4.4.3 Pricing strategy . 122

4.4.4 Heuristics . 129

4.5 Comparing the LP-relaxations 129

4.6 Computational results . 131

4.6.1 Obtained results . 133

4.6.2 Detailed results . 146

4.7 Conclusions . 160

97

Previous studies related to the simultaneous placement of ordered VNFs and routing
of tra�c demands mainly rely on compact MILP formulations, whose computational
performance is fairly limited. To enhance the capabilities of �nding exact solutions
for larger instances of practical relevance, we focus in this part of the thesis, on the
extended formulations with an exponential number of variables. Several studies and
works were proposed to deal with MILP compact formulations performance limitation.
According to Sadykov and Vanderbeck [117], working in an extended variable space
allows one to develop tight reformulations for mixed-integer programs. Ford and Fulk-
erson [55] are the �rst that use an optimization sub-problem to price out an exponential
number of non-basic variables, which allow them to add only basic variables and re-
duce the model size. Bilde and Krarup [24] show that the extended facility location
reformulation for uncapacitated lot-sizing was integral, this means that solving the
linear relaxation of the reformulation can give an integer optimal solution without any
branching. Chopra et al. [34] propose an extended formulation for the Convex Recolor-
ing problem on a tree. They show that the LP-relaxation of the extended formulation
provides an integer optimum for all considered problem instances, which indicates that
the LP-relaxation of the extended formulation is a very good approximation of the
integer polytope. Vanderbeck and Wolsey [135] survey the main reformulations based
on decomposition methods, such as Lagrangian relaxation, Dantzig-Wolfe, and the re-
sulting branch-and-price algorithms and Benders' reformulation, they also discuss in
detail extended formulations.

in this part of the thesis, we propose two extended MIP formulations for the VNF-
PRP. In both cases, we consider an extended variable space admitting an exponential
number of variables which allows us to develop tighter MIP reformulations.

In the �rst reformulation, we separate the VNF placement problem, which is treated
at the master level, from the routing problem, which is solved separately for each
commodity in the pricing problem. The second extended formulation arises from an
alternative Dantzig-Wolfe decomposition approach. The problem is decomposed per
commodity in such a way that: the master problem ensures that exactly one path
with its associated VNF installations is chosen for each commodity, and that node and
VNFs capacity constraints are satis�ed. The routing and VNF placement constraints
associated for each commodity are managed in the pricing problems.

In order to improve the LP-relaxation bounds of our formulations, new families of
valid inequalities are also proposed. All these elements are combined in two e�cient
Branch-and-Price algorithms. A detailed computational comparison of the Branch-
and-Price algorithms against the compact MIP formulation and the automatic Benders
decomposition approach by the commercial solver Cplex is given.

98 Extended formulations

Outline of the chapter The chapter is organized as follows. In Sections 4.1 and
4.2, we present the two extended formulations. We discuss the associated pricing prob-
lems, detail the computation of the Lagrangian bound and present branching schemes.
In Section 4.3, we provide a new set of valid inequalities that aim to strengthen the
LP-relaxation bounds. In Section 4.4 we provide implementation details of Branch-
and-Price (B&P) algorithms for each formulation. In Section 4.5, we provide a theo-
retical result proving that the Dantzig-Wolfe formulation provides better LP-relaxation
bounds than the path formulation. In Section 4.6, we discuss the obtained numerical
results, and conclude with some remarks and perspectives in Section 4.7.

4.1 First extended formulation: the model PF

In this section, we present the �rst extended MILP formulation, denoted by PF (which
stands for �path-based formulation�) to model the VNFPRP. The formulation has been
introduced in Chapter 3 to generate heuristic solutions, by considering a compact model
obtained from choosing a small but promising number of columns. In this chapter
instead we focus on developing an exact method for solving the path formulation,
based on a Branch-and-Price procedure. In this model we use latency-constrained
elementary path variables associated to each commodity to model routing decisions.
In this section we discuss theoretical properties of this model, along with a derivation of
a valid Lagrangian bound, whereas the details related to the B&P implementation are
given in Section 4.4. The master problem aims to �nd the optimal VNFs installation
for a given routing path for each tra�c request. One pricing problem is de�ned per
commodity k ∈ C, and it consists on determining an sk − dk latency-constrained
elementary routing path.

4.1.1 Decision variables

The set of variables required for the path formulation is already de�ned in Chapter
3, Table 3.1. Similarly, the constraints modeling the path formulation are presented
in Chapter 3. We recall the path formulation variables and MILP model in order to
derive the associated dual formulation.

Let us denote by Pk the set of all latency-constrained elementary paths associated
with commodity k ∈ C. We assume that the set Pk is given and that, for each chosen
path, the arcs composing it are known. Let tpkuv be the parameter that is equal to 1 if
arc (u, v) belongs to path p, p ∈ Pk, and equal to 0 otherwise.

4.1 First extended formulation: the model PF 99

Variables Type

λkp 1, if path p ∈ Pk associated with commodity k is chosen; 0, otherwise. Binary

xfku 1, if the virtual network function f is installed at or before node u Binary
for commodity k; 0, otherwise.

yfku 1, if virtual network function f is installed at node u for commodity k; Binary
0, otherwise.

wu 1, if node u is activated; 0, otherwise. Binary

zfu number of VNF f installed at node u. Integer

Table 4.1: Decision variables of the path formulation

tpkuv =

{
1 if arc (u, v) ∈ A belongs to path p ∈ Pk associated to commodity k ∈ C,
0 otherwise.

4.1.2 The master problem formulation

The VNFPRP can be modeled as follows:

(PF) : min
∑
u∈N

∑
f∈F

ψf
uz

f
u +

∑
u∈N

ψuwu (4.1)

∑
p∈Pk

λkp = 1 k ∈ C (αk) (4.2)∑
f∈F

zfu ≤ cuwu u ∈ N (βu) (4.3)∑
k∈C

yfku bk ≤ mfz
f
u f ∈ F, u ∈ N (γfu) (4.4)

yfku + ygku ≤ 1 k ∈ C, (f, g) ∈ Ak, u ∈ N (δ(f,g)k
u) (4.5)

(
∑
p∈Pk

(u,v)∈p

tpkuvλ
k
p − 1) + (xfkv − xfku) ≤ yfkv k ∈ C, f ∈ F k, (u, v) ∈ A (ηfkuv) (4.6)

100 Extended formulations

xgku ≤ xfku k ∈ C, f, g ∈ F k : f ≺k g, u ∈ N (ϕ(f,g)k
u) (4.7)

yfku ≤ xfku k ∈ C, f ∈ F k, u ∈ N (θfku) (4.8)

yfku ≤
∑

(v,u)∈A

∑
p∈Pk

tpkvuλ
k
p k ∈ C, f ∈ F k, u ∈ N (πfk

u) (4.9)

∑
u∈N

yfku ≥ 1 k ∈ C, f ∈ F k (ϑfk) (4.10)

xfku =

{
0, u = sk

1, u = dk
k ∈ C, f ∈ F k (σfk

dk
) (4.11)

(λ, x, y, w) are binary (4.12)

z is integer (4.13)

Constraints (4.2) are the path constraints which ensure that exactly one elementary
latency-constrained path p ∈ Pk is chosen for each commodity k ∈ C. Constraints
(4.3) represent the node capacity constraints, which guarantee that the number of
VNFs installed at each node u ∈ N is bounded by its capacity cu. Constraints (4.4)
are the VNF capacity constraints. They ensure that the volume of data treated by
each function f ∈ F should not exceed its capacity mf . Constraints (4.5) are the
con�ict constraints and they guarantee that two VNFs in con�ict are not installed at
the same node u ∈ N . Constraints (4.6) are needed to link node installation variables
(y), precedence variables (x) and path variables (λ): the left-hand-side is forced to 1
(implying that the function f is installed at the node v) if and only if (i) the path p
passing through the arc (u, v) is chosen for the considered commodity k and (ii) the
function f is installed at or before the node v and it is not installed at or before the
node u. Constraints (4.7) impose the VNFs order for each commodity. Inequalities
(4.8) link the precedence and the installation variables, x and y, and express the fact
that if VNF f is installed at node u for the commodity k, then f is installed at or
before the node u. Constraints (4.9) ensure that if a VNF f ∈ F k is installed at a
node u for a given commodity k, then the associated routing path p must enter that
node. Constraints (4.10) guarantee that all required functions for commodity k ∈ C
are installed at the graph nodes. Finally, constraints (4.11) guarantee that, for each
commodity k ∈ C, no VNF is installed at or before the source node sk and all VNFs are
installed at or before the destination node dk. Model (4.1)-(4.13) admits an exponential
number of path variables; thus, a column generation (CG) procedure is needed to solve
its continuous relaxation. In the following, we describe the pricing problem and discuss
three possible procedures for its resolution.

The LP-relaxation of this model is obtained by replacing constraints (4.12)-(4.13)
with λ ≥ 0, 0 ≤ x ≤ 1, y ≥ 0, 0 ≤ w ≤ 1 and z ≥ 0.

4.1 First extended formulation: the model PF 101

4.1.3 The dual of the master problem

Let DPF denote the dual formulation of the LP-relaxation of the model PF. The
number of routing paths associated with each commodity can be exponential. Thus,
the number of constraints associated to the path variables is exponential in the dual.
The associate dual variables are shown next to each constraint from the formulation
given in Subsection 4.1.2, in particular, we associate α, η, and π to constraints (4.2),
(4.6) and (4.9), respectively.

The dual of the master problem is given by the following linear program:

(DPF) : max
∑
k∈C

αk −
∑
k∈C

∑
u∈N

∑
(f,g)∈Sk

δ(f,g)k
u −

∑
k∈C

∑
f∈Fk

∑
(u,v)∈A

ηfkuv

+
∑
k∈C

∑
f∈Fk

ϑfk +
∑
k∈C

∑
f∈Fk

σfk
dk
−
∑
k∈C

∑
f∈Fk

∑
u∈N

∆fk
u −

∑
u∈N

Ωu

αk −
∑

(u,v)∈A

∑
f∈Fk

tpkuv ηfkuv +
∑
u∈N

∑
v∈Γ−(u)

∑
f∈Fk

tpkvu πfk
u ≤ 0 k ∈ C, p ∈ Pk

cu βu − Ωu ≤ ψu u ∈ N
−βu +mfγ

f
u ≤ ψf

u f ∈ F, u ∈ N

−bkγfu −
∑
g∈Fk

(f,g)∈Sk

δ(f,g)k
u −

∑
g∈Fk

(g,f)∈Sk

δ(g,f)k
u

∑
v∈Γ+(u)

ηfkuv

−θfku − πfk
u + ϑfk ≤ 0 k ∈ C, f ∈ F k, u ∈ N

−
∑

v∈Γ−(u)

ηfkvu +
∑

v∈Γ+(u)

ηfkuv −
∑
g∈Fk

(f,g)∈Sk

ϕ(f,g)k
u +

∑
g∈Fk

(g,f)∈Ak

ϕ(g,f)k
u + θfku

−∆fk
u ≤ 0 k ∈ C, f ∈ F k, u ∈ N \ {sk, dk}

−
∑

v∈Γ−(sk)

ηfkvsk +
∑

v∈Γ+(sk)

ηfkskv −
∑
g∈Fk

(f,g)∈Sk

ϕ(f,g)k
u

+
∑
g∈Fk

(g,f)∈Ak

ϕ(g,f)k
sk

+ θfksk + σfk
sk
−∆fk

sk
≤ 0 k ∈ C, f ∈ F k

102 Extended formulations

−
∑

v∈Γ−(dk)

ηfkvdk +
∑

v∈Γ+(dk)

ηfkdkv −
∑
g∈Fk

(f,g)∈Sk

ϕ
(f,g)k
dk

+
∑
g∈Fk

(g,f)∈Ak

ϕ
(g,f)k
dk

+ θfkdk + σfk
dk
−∆fk

dk
≤ 0 k ∈ C, f ∈ F k

β, γ, δ, η, ϕ, θ, π, ϑ, σ,∆,Ω ≥ 0, αk ∈ R|C|

Then, for each k ∈ C and p ∈ Pk, the dual constraint associated with the path
variable λkp is given as follows:

αk −
∑
f∈Fk

[
∑

(u,v)∈A

tpkuvη
fk
uv +

∑
u∈N

∑
v∈Γ−(u)

tpkvuπ
fk
u] ≤ 0, k ∈ C, p ∈ Pk (4.14)

⇐⇒ αk +
∑

(u,v)∈A

∑
f∈Fk

(πfk
v − ηfkuv)tpkuv ≤ 0, k ∈ C, p ∈ Pk (4.15)

4.1.4 The pricing problem

As customary in column generation, the master problem is initialized with a subset of λ
variables (resulting in the so-called restricted master problem), and then the additional
variables necessary to solve the LP-relaxation of the model are generated on the �y by
separating the associated dual constraints (4.15). The pricing problem then consists of
�nding for each commodity k, a path p ∈ Pk with negative reduced costs, i.e., a path
p such that:

α∗k +
∑

(u,v)∈p

∑
f∈Fk

(π∗fkv − η∗fkuv) > 0, (4.16)

where (α∗, η∗, π∗) refers to a sub-vector of an optimal dual solution of the restricted
master problem. This dual solution will be used for de�ning the pricing problems and
computing the Lagrangian bound (cf. Section 4.1.5).

Thus, for each commodity k ∈ C, a separate pricing problem is de�ned in order to
�nd an sk − dk latency-constrained elementary path of minimum cost. Cost per each
arc is de�ned as

c̃uv =
∑
f∈Fk

(η∗fkuv − π∗fkv), (u, v) ∈ A. (4.17)

4.1 First extended formulation: the model PF 103

If we �nd a path p ∈ Pk such that
∑

(u,v)∈p c̃uv−α∗k < 0, the associated variable λkp will
be inserted in the restricted master problem. Based on the dual solution, the values
de�ned by (4.17) may be negative. Therefore the pricing problem consists of �nding
an elementary shortest path satisfying latency constraints on a graph that may contain
negative cycles. Hence, the pricing problem is strongly NP-hard [45]. Three di�erent
methods are proposed and computationally evaluated for solving this pricing problem
(cf. Sections 4.4.3 and 4.6, respectively).

4.1.5 Lagrangian bound

In the following, we describe how to derive the Lagrangian bound of the model PF
which can be used to minimize the number of iterations in the column generation
procedure. Let DRPF denote the LP-dual of the restricted master problem of the PF
model, let Υ∗ be its optimal solution, ZDRPF the associated objective value, and let
DPF denote the dual of the model PF (including all columns). We will slightly abuse
the notation and focus only on the (α, π, η) components of the vector Υ.

Υ∗ satis�es all constraints of DRPF, but not necessarily all constraints of DPF,
i.e., Υ∗ is optimal for DRPF, but not necessarily feasible for DPF, as the constraints
associated with the columns that are left out from the master are missing.

In what follows, we will show how to construct a feasible solution for DPF during
the column generation phase. Let Z∗k be de�ned as:

Z∗k = min
p∈Pk

[−α∗k −
∑

(u,v)∈p

∑
f∈Fk

(π∗fv − η∗fuv)] = −α∗k −max
p∈Pk

∑
(u,v)∈p

∑
f∈Fk

(π∗fv − η∗fuv).

So, Z∗k is the minimum reduced cost associated with commodity k (over all paths
p ∈ Pk). Therefore, for each commodity k ∈ C and each path p ∈ Pk, it holds:

Z∗k ≤ −α∗k −
∑

(u,v)∈p

∑
f∈Fk

(π∗fv − η∗fuv)

Consequently, constraints (4.15) in the DPF can be written as:

Z∗k + α∗k +
∑

(u,v)∈p

∑
f∈Fk

(π∗fv − η∗fuv) ≤ 0 k ∈ C, p ∈ Pk. (4.18)

104 Extended formulations

The feasible solution ΥD for the DPF is build based on Υ∗, and by using the following
variable change: ᾱk = α∗k +Z∗k , k ∈ C. It follows that for all k ∈ C and for all p ∈ Pk:

(4.18) ⇐⇒ ᾱk +
∑

(u,v)∈p

∑
f∈Fk

(π∗fv − η∗fuv) ≤ 0

Thus, ΥD = (ᾱ∗, η∗, π∗) is a feasible solution for DPF. Correspondingly, LB =

ZDRPF +
∑

k∈C Z
∗
k is the objective value of the DPF de�ning a valid lower bound

for the model PF.

The path formulation can be obtained by applying Dantzig-Wolfe decomposition on
the compact formulation proposed in Chapter 2. The pricing problem could gener-
ate cyclic graphs (columns). Therefore, these columns will not appear in any feasible
solution of the master problem because of precedence constraints. In the path formu-
lation, considered in this thesis, we have added sub-tour elimination cuts in the pricing
problem in such a way that it generates only elementary paths. The later formulation
cannot be obtained from Dantzig-Wolfe decomposition of the compact model given in
Chapter 2. This is due to the fact that sub-tour elimination cuts are needed in the ILP
pricing problem.

However, the model PF can be seen as a Dantzig-Wolfe problem reformulation ob-
tained from the compact model studied in Chapter 3 after enhancing the latter with
subtour elimination constraints imposed on the �ow variables. The lower bound derived
in this section corresponds to the Lagrangian bound of this Dantzig-Wolfe problem re-
formulation (we leave out further details and refer the reader to e.g., [92], for the general
theory of Dantzig-Wolfe decomposition).

Corollary 3.3 de�ned in Chapter 3 indicates that, when implementing a B&P proce-
dure to solve the model PF, we can sidestep branching on the exponential variables λ
and apply the regular branching scheme de�ned only for x, y, z, and w variables. In
particular, this means that (apart from the change of the coe�cients in the objective
function), the pricing problem will not be a�ected by branching decisions.

4.2 Second extended formulation: the model DW

In this section, we present an alternative extended formulation for the VNFPRP, to
which we refer as the model DW (where DW stands for Dantzig-Wolfe). First, we
introduce the master problem and then, based on the master problem's dual solution,

4.2 Second extended formulation: the model DW 105

we describe the pricing problem and show how to calculate the value of the Lagrangian
bound. At the end of this section, a branching scheme is proposed.

In the following, we use the term path-installation to indicate a path p with pre-
installed VNFs satisfying latency, con�ict, and precedence constraints. The master
problem aims to choose one path-installation per each commodity k while respecting
node and function capacity constraints.

4.2.1 Decision variables

Let us denote by Tk the set of all path-installations associated with commodity k. To
create our master problem, we need three families of variables, as described in Table
4.2.

Variables Type

τ kp 1, if path-installation p associated with commodity k Binary
is chosen; 0, otherwise.

wu 1, if node u is activated; 0, otherwise. Binary

zfu number of VNF f installed at node u. Integer

Table 4.2: Decision variables of the Dantzig-Wolfe formulation

The set Tk associated with each commodity k containing all feasible path-installations
is supposed to be known. Thus, the placement of each VNF for each path-installation
at network nodes is uniquely de�ned. Let us denote by afpku the parameter that is
equal to 1 if the VNF f is used at node u for the path-installation p associated with
commodity k; and that is equal to 0 otherwise.

afpku =

1, if VNF f is used at node u for the path-installation p associated

with commodity k,

0, otherwise.

4.2.1.1 ILP formulation

The model DW is then given as:

106 Extended formulations

(DW) : min
∑
u∈N

∑
f∈F

ψf
uz

f
u +

∑
u∈N

ψuwu (4.19)

∑
p∈Tk

τ kp = 1 k ∈ C (αk) (4.20)∑
f∈F

zfu ≤ cu wu u ∈ N (βu) (4.21)∑
k∈C

∑
p∈Tk

afpku τ kp bk ≤ mfz
f
u f ∈ F, u ∈ N (γfu) (4.22)

τ kp ∈ {0, 1} k ∈ C, p ∈ Tk (4.23)

wu ∈ {0, 1} u ∈ N (ηu) (4.24)

zfu ∈ N u ∈ N, f ∈ F (4.25)

Constraints (4.20) represent the routing constraints ensuring that one path-installation
is chosen for each commodity k ∈ C. Inequalities (4.21) represent the nodes capacity
constraints. Constraints (4.22) are the VNF-capacity constraints.

The LP-relaxation of this model is obtained by replacing (4.23) by τ kp ≥ 0, (4.24) by
0 ≤ wu ≤ 1, and (4.25) by zfu ≥ 0

4.2.2 The dual of the master problem

The dual of the master problem is given by the following linear program:

max
∑
k∈C

αk −
∑
u∈N

ηu

αk −
∑
u∈N

∑
f∈Fk

afpku bkγ
f
u ≤ 0 k ∈ C, p ∈ Tk

cu βu − ηu ≤ ψu u ∈ N
−βu +mfγ

f
u ≤ ψf

u f ∈ F, u ∈ N
β, γ, η ≥ 0, α ∈ R|C|

Inequalities (4.19)-(4.25) constitute the master problem which admits an exponential
number of variables. Therefore, a column generation procedure is needed to solve its

4.2 Second extended formulation: the model DW 107

continuous relaxation. The master problem is initialized with a subset of columns
(called the restricted master problem), and the missing variables necessary to solve its
linear relaxation are generated by separating the following dual constraints:

αk −
∑
u∈N

∑
f∈Fk

afpku bkγ
f
u ≤ 0 k ∈ C, p ∈ Tk, (4.26)

where we associate variables α and γ to constraints (4.20) and (4.22), respectively.
The separation of constraints (4.26) represents the pricing problem. Let (α∗, γ∗) be
components of the dual solution of the restricted master problem, the pricing problem
consists of �nding a commodity k and a path p ∈ Tk such that:

α∗k −
∑
u∈N

∑
f∈Fk

afpku bkγ
∗f
u > 0.

4.2.3 The pricing problem

For each commodity k, we have one pricing problem that aims to �nd a path-installation.
The left-hand-side in inequalities (4.26) characterizes the objective function of the pric-
ing problem. The set of variables required in the pricing problem is described in Table
4.3.

Variables Type

dfu 1, if virtual network function f is installed at or before node u; Binary
0, otherwise.

hfu 1, if virtual network function f is installed at node u; 0, otherwise. Binary

nuv 1, if arc (u, v) belongs to the routing path; 0, otherwise. Binary

Table 4.3: Decision variables of the pricing problem for the model DW

The MILP formulation of the pricing problem is given as follows:

max α∗k −
∑
u∈N

∑
f∈Fk

hfubkγ
∗f
u

108 Extended formulations

∑
(u,v)∈A

nuv −
∑

(v,u)∈A

nvu =

−1 if u = dk,

1 if u = sk,

0 otherwise.

u ∈ N (4.27a)

∑
(u,v)∈A

nuvluv ≤ lk (4.27b)

hfu + hgu ≤ 1 (f, g) ∈ Ak, u ∈ N (4.27c)

(nuv − 1) + (dfv − dfu) ≤ hfv f ∈ F k, (u, v) ∈ A (4.27d)

dgu ≤ dfu f, g ∈ F k : f ≺k g, u ∈ N (4.27e)

hfu ≤ dfu f ∈ F k, u ∈ N (4.27f)

hfu ≤
∑

(v,u)∈A

nvu f ∈ F k, u ∈ N (4.27g)

∑
u∈N

hfu ≥ 1 f ∈ F k (4.27h)

dfsk = 0 f ∈ F k (4.27i)

dfdk = 1 f ∈ F k (4.27j)

(d, h, n) is binary (4.27k)

Constraints (4.27a) are the �ow-preservation constraints ensuring that the path goes
from the source node sk to the destination node dk. Inequalities (4.27b) represent the la-
tency constraints. Inequalities (4.27c) are the anti-a�nity constraints which ensure that
two VNFs f and g in con�ict are not installed at the same node u. Constraints (4.27d),
(4.27e), (4.27i) and (4.27j) represent the precedence constraints. Constraints (4.27f)
are the linking constraints between variables d and h, the right-hand-site is forced to
1 in order to ensure that if VNF f is used at node u, then it is used at or before u.
Inequalities (4.27g) link variables h and n, they guarantee that the routing path enter
all nodes at which VNFs are installed. Finally, constraints (4.27h) guarantee that all
required VNFs for the current commodity are installed at nodes.

Proposition 4.1 The binary constraints imposed on the arc variables n in the pricing
problem (4.27a)-(4.27k) can be relaxed and replaced by nuv ≥ 0, for all (u, v) ∈ A.

Proof. Observe that variables n do not appear in the objective function, and that the
location variables h (which basically determine the value of the solution) remain binary.

4.2 Second extended formulation: the model DW 109

Therefore, if there exists a feasible solution of the pricing problem with fractional n
values, there also exists a latency constrained path (corresponding to binary n values)
which satis�es all the constraints (4.27a)-(4.27k). To show the latter result, one has to
follow similar arguments as those given in the proof of Proposition 3.2.

4.2.4 Lagrangian bound

In this subsection, we provide details on how we calculate a Lagrangian bound for
the DW formulation. Let DDW be the dual of the model DW and let DRDW be the
restricted master problem of the model DW. The Lagrangian bound computation is
made in the same way as for the model PF, i.e., by constructing a feasible solution
for the DDW from the optimal solution of the DRDW. In the following, we show
how to construct this feasible solution during the column generation procedure. Let
Υ∗ = (α∗, γ∗) be the relevant component of the dual vector obtained by solving DRDW,
ZDRDW the associated objective value, and Z∗k the optimal value of the pricing problem
(see previous section) associated with commodity k with respect to Υ∗.

Υ∗ is optimal for DRDW but not necessarily feasible for the DDW; this means that
there exists at least one constraint (4.26) in DDW which is violated by this solution.
For a �xed k ∈ C we have:

Z∗k = −α∗k + min
p∈Tk
{
∑
u∈N

∑
f∈Fk

afpku bkγ
∗f
u }

As Z∗k represents the minimum reduced cost (over all path installations p ∈ Tk), the
dual constraint (4.26) in DDW can be written as follows:

Z∗k ≤ −α∗k +
∑
u∈N

∑
f∈Fk

afpku bkγ
∗f
u ⇐⇒ Z∗k + α∗k −

∑
u∈N

∑
f∈Fk

afpku bkγ
∗f
u ≤ 0 (4.28)

To construct a feasible solution ΥD for the DDW, we can use the following trans-
formation: ᾱk = α∗k + Z∗k , for all k ∈ C. It follows that for all k ∈ C and for all
p ∈ Tk:

(4.28) ⇐⇒ ᾱk −
∑
u∈N

∑
f∈Fk

afpku bkγ
∗f
u ≤ 0

Thus, ΥD = (ᾱ∗, γ∗) is a feasible solution for DDW and the associated (Lagrangian)
bound is calculated as LB = ZDRDW +

∑
k∈C Z

∗
k .

110 Extended formulations

Given that, any value of LB during the column generation procedure represents a
lower bound for the relaxed master problem, in our code, at each iteration of the
column generation procedure, the value of the LB is saved and the maximum overall
its values is compared to the objective value of the restricted master problem, which
we call Primal bound in Figures 4.1 and 4.2. The CG procedure is stopped if the
di�erence between both values is smaller than ε = 10−4, i.e., if |LB − ZDRDW | < ε

holds. Figure 4.1 refers to the evolution of LB if the column generation is initialized
using an arti�cial column, and Figure 4.2 illustrates the improvement in the quality of
LB that can be achieved if columns building a heuristic solutions are used to initialize
the CG procedure. Moreover, both �gures indicate that at least 1/3 of CG iterations
can be saved and the pricing can be prematurely stopped when |LB − ZDRDW | < ε

stopping condition is met.

0 5 10 15 20 25 30 35 40

#Iterations

0

10000

20000

30000

40000

50000

60000

Va
lu
es

Lagrangian bound
Primal bound

Figure 4.1: Example of the Lagrangian
bound evolution during the column gen-
eration procedure for the Dantzig-Wolfe
formulation on �Pdh1� instance with-
out heuristic solution and with valid in-
equalities.

0 5 10 15 20
#Iterations

0

10000

20000

30000

40000

50000

60000

Va
lu
es

Lagrangian bound
Primal bound

Figure 4.2: Example of the Lagrangian
bound evolution during the column gen-
eration procedure for the Dantzig-Wolfe
formulation on �Pdh1� instance with
heuristic solution and valid inequalities.

4.2.5 Branching on τ variables

The LP-relaxation of the Dantzig-Wolfe formulation solved by column generation pro-
cedure is not necessarily integral. Furthermore, applying the Branch-and-Bound algo-
rithm on the restricted master problem with only the generated columns at the root
node will not guarantee a feasible solution and so an optimal solution. Moreover, at
each branching node, there may exist new columns with a negative reduced cost which

4.2 Second extended formulation: the model DW 111

should be added to the master problem. Therefore, in order to �nd an optimal integer
solution, we should generate columns at each branching node.

Various branching schemes, speci�c (like the one proposed below) or generic (see
e.g., [134]), can be used to generate integer solutions using column generation procedure
embedded within the Branch-and-Bound algorithm. The resulting algorithm is called
Branch-and-Price.

In the following, a commodity k ∈ C is called fractional if it admits a fractional τ
variable. For a path-installation p ∈ Tk, we use the notation u ∈ p to indicate that the
path-installation p passes through the node u. Furthermore, the notation afpku = 1 is
used to indicate that the path-installation p passes through the node u on which the
VNF f is installed for commodity k.

Proposition 4.2 For any given LP-solution of the (restricted) master problem with
fractional τ variables, at least one of the following cases is valid for each fractional
commodity k ∈ C:

Case 1. There exist two nodes u, v ∈ N \ {sk} satisfying:

0 <
∑
p∈Tk

u∈p,v∈p

τ kp < 1 (4.29)

Case 2. There exist a function f ∈ F k and a node u ∈ N \ {sk} satisfying:

0 <
∑
p∈Tk

afpku =1

τ kp < 1 (4.30)

Proof. Let us suppose that k is a fractional commodity but neither Case 1 nor Case
2 holds. Hence, we have:∑

p∈Tk
u∈p,v∈p

τ kp ∈ {0, 1} u, v ∈ N (4.31)

∑
p∈Tk

afpku =1

τ kp ∈ {0, 1} u ∈ N, f ∈ F k. (4.32)

From (4.32) we can distinguish two cases: (a) there exists a node u ∈ N and a function
f ∈ F k such that

∑
p∈Tk

afpku =1

τ kp = 1, or (b)
∑
p∈Tk

afpku =1

τ kp = 0, for each u ∈ N and f ∈ F k.

112 Extended formulations

(a) By constraints (4.20), and because k is a fractional commodity, all path-installations
of Tk in the solution are fractional. Let p1 ∈ Tk be a fractional path-installation
passing through node u on which VNF f is installed (i.e., 0 < τ kp1 < 1). As∑
p∈Tk

afpku =1

τ kp = 1, there must exist another fractional path-installation p2 ∈ Tk \ {p1}

passing through node u on which VNF f is installed. Since p1 6= p2, we have two
cases:

(I) p1 and p2 pass through the same nodes but with di�erent function installa-
tions, i.e., there exists at least one VNF g ∈ F k \{f} installed on a di�erent
node. Let denote by v (resp. w, v 6= w) the node belonging to the path-
installation p1 (resp. p2) on which g is installed. As the hypothesis (4.32) is
valid for any VNF in F k and any node in N \ {sk},

∑
p∈Tk

agpkv =1

τ kp ∈ {0, 1} must

hold. Given that τ kp1 > 0, then (1)
∑
p∈Tk

agpkv =1

τ kp > 0. Thus
∑
p∈Tk

agpkv =1

τ kp = 0 cannot

hold. Accordingly,
∑
p∈Tk

agpkv =1

τ kp = 1. We know that 0 < τ kp2 < 1 and that g is

not installed on v for p2, we will have: (2)
∑
p∈Tk

agpkv =1

τ kp < 1. Therefore, (1) and

(2) contradict hypothesis (4.32).

(I) p1 and p2 pass through at least one di�erent node, i.e., there should exist
another node v 6= u belonging to p2 and not to p1. We notice that VNF
f is installed only on node u for both p1 and p2, and that another VNF
g 6= f can or not be installed on node v belonging to the path-installation
p2. Since p2 contains u and v and τ kp2 > 0, this implies: (i)

∑
p∈Tk

u∈p,v∈p

τ kp > 0.

Moreover, as
∑
p∈Tk

afpku =1

τ kp = 1 and τ kp1 > 0 and we know that path-installation

p1 does not pass through node v, then the value τ kp1 can be deleted from the
following sum:

∑
p∈Tk

u∈p,v∈p

τ kp , which implies that (ii)
∑
p∈Tk

u∈p,v∈p

τ kp < 1. Therefore,

(i) and (ii) contradict hypothesis (4.31).

(a) Recall that for each commodity k, we assume that F k 6= ∅ (otherwise the com-
modity can be pre-processed and eliminated). This, together with constraints
(4.20), contradicts the assumption that for all functions f ∈ F k, no path-
installation p ∈ Tk is chosen such afpku = 1 (i.e., it contradicts the hypothesis

4.3 Strengthening inequalities 113

∑
p∈Tk

afpku =1

τ kp = 0).

Therefore, the result holds.

Figure 4.3: Branching scheme for Dantzig-Wolfe formulation.

A branching scheme is said to be complete, if it can generate any feasible solution.
From Proposition 4.2 we conclude that our branching scheme proposed for the model
DW is complete, as at least one of the two cases should hold for any fractional com-
modity.

4.3 Strengthening inequalities

In this section, we derive several families of valid inequalities that can strengthen
the LP-bounds of both proposed extended formulations. We �rst present inequalities
that can be used to directly enhance the model PF. We then present inequalities that
are valid for both models and that can be exploited in case a function's capacity is
smaller than the respective tra�c demand. We close this section by explaining how
some of inequalities proposed for the model PF can be used within the Dantzig-Wolfe
decomposition to strengthen the model DW.

114 Extended formulations

4.3.1 Valid inequalities for the model PF

Proposition 4.3 Inequalities (4.33) are valid for the VNFPRP:

yfku ≤ wu, u ∈ N, k ∈ C, f ∈ F k. (4.33)

Proof. For a given commodity k ∈ C, if the VNF f ∈ F k is installed at node u, then
node u should be activated.

Proposition 4.4 Inequalities (4.34) are valid for the VNFPRP:

yfku + ygku ≤ wu, u ∈ N, k ∈ C, (f, g) ∈ Ak. (4.34)

Proof. If two VNFs f and g are in con�ict for a commodity k ∈ C, then, both
functions cannot be installed at the same node u, if u is activated.

Let Dk = (F k, E) be the con�ict graph associated with commodity k, k ∈ C, where
nodes in Dk represent the VNFs f ∈ F k. An edge e ∈ E between two nodes f and g in
Dk represents the fact that f and g are in con�ict. Let Dk denote the set of all maximal
cliques in Dk and let ω(Dk) be the clique-number (i.e., the size of the maximum clique)
in the con�ict graph.

Proposition 4.5 Inequalities (4.35) are valid for the VNFPRP:∑
f∈Q

yfku ≤ 1, u ∈ N, k ∈ C, Q ∈ Dk. (4.35)

Proof. For a given commodity k ∈ C, nodes inQ represent the set of VNFs in con�ict,
i.e., they cannot be installed at the same node. Therefore, only one VNF in Q can be
installed at node u as otherwise the con�ict constraints (4.5) are violated.

Linear inequalities (4.34) and (4.35) can be combined and generalized for each clique
Q in Dk.

Proposition 4.6 Inequalities (4.36) are valid for the VNFPRP, and they also domi-
nate inequalities (4.35).∑

f∈Q

yfku ≤ wu, u ∈ N, k ∈ C, Q ∈ Dk. (4.36)

4.3 Strengthening inequalities 115

Proof. Trivial.

Given a commodity k ∈ C and a node u ∈ N , if there is a unique path p going from
sk to u in G, let Ap be the arcs belonging to the path p.

Proposition 4.7 For a given commodity k ∈ C, and a node u ∈ N , if there exists a
unique path from sk to u in G, then inequalities (4.37) are valid for the VNFPRP:∑

f∈Q

xfku ≤ |Ap|, u ∈ N, k ∈ C, Q ∈ Dk : |Ap| < |Q|. (4.37)

Proof. The proof is given for a �xed commodity k and is valid for all commodities.
Let u be the node for which we have a unique path p going from sk to u, and let Q
be a clique in the graph Dk, such that |Ap| < Q. The number of VNFs in con�ict
installed at or before node u should be less than or equal the number of arcs in the
path p; otherwise, two or more functions in con�ict need to be installed at the same
node, which leads to an infeasible solution.

Proposition 4.8 Inequalities (4.38) are valid for the VNFPRP.∑
u∈N

wu ≥ max{1,max
k∈C

ω(Dk)}. (4.38)

Proof. Recall that each commodity requires at least one VNF. As all required VNFs
should be installed at graph nodes, at least one node in the graph must be activated.
Furthermore, if there is a con�ict between VNFs associated with one commodity k,
then the number of activated nodes should be at least equal to the maximum number
of VNFs in con�ict, which is the clique number of Dk.

Proposition 4.9 Inequalities (4.39) are valid for the VNFPRP.∑
u∈N

∑
f∈Q

yfku ≥ |Q|, k ∈ C, Q ∈ Dk. (4.39)

Proof. From inequalities (4.10), all VNFs required for each commodity k ∈ C should
be installed at graph nodes, thus the number of nodes necessary to install VNFs in
con�ict should be at least equal to the number of VNFs in con�ict, which is equal to
the size of the cliques from Dk, k ∈ C.

116 Extended formulations

Let Cu ⊆ C be a subset of commodities for which there exists at least one latency-
constrained path visiting node u, (i.e., if k /∈ Cu, this means that all paths associated
with k do not enter the node u). Let Nk be the set of nodes belonging to at least one
latency-constrained path associated with commodity k ∈ C (this can be checked in
polynomial time using a min-cost �ow algorithm for example).

Proposition 4.10 The following inequalities are valid for the VNFPRP.∑
k∈C\Cu

∑
f∈Fk

yfku = 0, u ∈ N, (4.40)

∑
k∈C\Cu

∑
f∈Fk

xfku = 0, u ∈ N. (4.41)

Moreover, inequalities (4.42) are valid and dominate inequalities (4.10);∑
u∈Nk

yfku ≥ 1, k ∈ C, f ∈ F k, (4.42)

∑
f∈F

zfu = 0, u ∈ N \ {∪k∈CN
k}, (4.43)

∑
u∈N\{∪k∈CNk}

wu = 0. (4.44)

Proof. If there exists a node u ∈ N which is not visited by any commodity k ∈ C,
then no function f ∈ F k can be installed at u (4.40), thus at or before u (4.41).
Therefore, VNFs associated with commodity k ∈ C can be installed only at nodes
in Nk (4.42). In consequence, u cannot be activated (4.44), so the number of VNFs
installed on it is equal to zero (4.43).

Proposition 4.11 Inequalities (4.45) are valid for the VNFPRP:

zfu ≥ d
bk
mf

eyfku , k ∈ C, f ∈ F k, u ∈ N. (4.45)

Proof. The number of VNFs installed at node u is at least equal to the number of
VNFs needed to handle one commodity k ∈ C.

Proposition 4.12 Inequalities (4.46) are valid for the VNFPRP:

xfku ≤ 1− yfkdk , k ∈ C, u ∈ Γ−(dk), f ∈ F k, (4.46)

where Γ−(dk) denotes all incoming neighbors of dk.

4.3 Strengthening inequalities 117

Proof. If a VNF f associated with commodity k ∈ C is installed at the destination
node, then, this function cannot be installed at or before any predecessor of dk.

Inequalities (4.46) can be generalized by the following inequalities (4.47). Let us
consider a cut separating the source nodes sk from the destination node dk in G. We
denote by Nsk (resp. Ndk) the component containing sk (resp. dk) in G. Suppose
that arcs in the cut go from Nsk to Ndk . The following inequalities are valid for the
VNFPRP.

xfku ≤ 1−
∑

v∈Ndk

yfkv , k ∈ C, u ∈ Nsk , f ∈ F k (4.47)

Proof. For a given commodity k ∈ C, if a VNF f is installed at nodes in Ndk and
in addition we have no arc going from Ndk to Nsk , then f is not installed at or before
nodes in Nsk .

Proposition 4.13 Inequalities (4.46) can be generalized by inequalities (4.48) which
are valid for the VNFPRP. Let Sk be the node separator disconnecting Nsk from Ndk ,

xfku ≤ 1−
∑

v∈Ndk

yfkv +
∑
v∈Sk

xfkv , k ∈ C, u ∈ Nsk , f ∈ F k (4.48)

Proof. For a given commodity k ∈ C, if the VNF f is installed at nodes in Ndk and
it is not installed at or before nodes in the separator Sk, then, the chosen path does not
go from Ndk to Nsk ; This means that the function f cannot be installed at or before
nodes of Nsk . Note that arcs from Ndk to Nsk may exist.

4.3.2 Strengthening inequalities for both models

Besides inequalities (4.38), (4.43) and (4.44) which are also valid for the model DW, in
the following we propose additional inequalities that involve only z and w variables, and
are therefore valid for both formulations studied in this chapter. With valid inequalities
given in Proposition 4.11 we address the setting in which the capacity of a function is
not su�cient to handle the full demand of a given commodity (i.e., multiple copies of the
same function need to be installed). Proposition 4.14 provides further generalizations
of this setting.

118 Extended formulations

Proposition 4.14 Node capacity constraints (4.3) do not de�ne facets of the polyhe-
dron of the VNFPRP if there exists a node u, such that cu >

∑
k∈C

∑
f∈Fk

d bk
mf
e.

1) Therefore, inequalities (4.49) are valid for the VNFPRP and dominate inequali-
ties (4.3). ∑

f∈F

zfu ≤
∑
k∈C

∑
f∈Fk

d bk
mf

ewu, u ∈ N. (4.49)

2) Moreover, if |Cu| < |C|, then the linear inequalities (4.50) dominate (4.49):∑
f∈F

zfu ≤
∑
k∈Cu

∑
f∈Fk

d bk
mf

ewu, u ∈ N. (4.50)

3) In addition if there exists a con�ict between functions in F k for a given commodity
k ∈ C, with mf1 ≤ mf2 ≤ · · · ≤ mf|Q|, Q ∈ Dk and cu ≥

∑
k∈C

∑
f∈Fk

d bk
mf
e, then

inequalities (4.50) are dominated by the following inequalities.

∑
f∈F

zfu ≤
∑
k∈C

∑
Q∈Dk

[(
∑
f∈Fk

d bk
mf

e)−
|Q|∑
i=2
fi∈Q

d bk
mfi

e]wu, u ∈ N. (4.51)

Proof.

1) If there exists a node u having enough capacity to install VNFs required for all
commodities in C, then the number of functions needed to treat all commodi-
ties bandwidth is bounded by

∑
k∈C

∑
f∈Fkd bk

mf
e, which represents the maximum

number of VNFs necessary to handle all demands.

2) Only VNFs associated with commodities having at least one path passing through
a node u can be installed at node u.

3) The number of VNFs installed at node u when the con�ict constraints are con-
sidered is bounded by the maximum number of copies needed to install the VNFs
with the smallest capacity for each commodity (i.e., in the worst case we will
keep the VNFs with the maximum instantiation installed at node u and install
other VNFs at the other nodes).

4.4 Branch-and-Price algorithms 119

4.3.3 Strengthening the model DW

Valid inequalities proposed for the model PF can be �translated� into valid inequalities
for the model DW. In this subsection we illustrate how this can be done for inequalities
(4.33), (4.34) and (4.45). The remaining inequalities can be translated accordingly. In
order to add (4.33), (4.34) and (4.45) to the master problem of the model DW, we
rewrite them using parameters a as (4.52), (4.53) and (4.54), respectively:∑

p∈Tk

afpku τ kp ≤ wu, k ∈ C, u ∈ N, f ∈ F k (4.52)

∑
p∈Tk

(afpku + agpku)τ kp ≤ wu, k ∈ C, u ∈ N, (f, g) ∈ Ak (4.53)

zfu ≥ d
bk
mf

e
∑
p∈Tk

afpku τ kp , k ∈ C, f ∈ F k, u ∈ N (4.54)

Adding these valid inequalities generates new (non-negative) dual variables in the dual
of the master program, that we denote by δ, η and ϕ, respectively. Thus, dual con-
straints (4.26) need to be replaced by inequalities (4.55)

αk −
∑
u∈N

∑
f∈Fk

(bkγ
f
u + d bk

mf

eϕfk
u + δfku)afpku +

∑
(f,g)∈Ak

ηfgku (afpku + agpku)

 ≤ 0, k ∈ C, p ∈ Pk

(4.55)

4.4 Branch-and-Price algorithms

In this section, we present two B&P algorithms implemented for the models PF and
DW, respectively.

4.4.1 Generic column generation framework

Initialization The restricted master problem of both models is initialized by a subset
of columns building a heuristic solution which is obtained in the initialization phase of
the algorithm (see Section 4.4.4). If no solution has been found during a time-limit,
the CG framework is initialized with an arti�cial column whose cost is set to a very
large number.

120 Extended formulations

Bounding At each iteration of the column generation procedure, the restricted mas-
ter problem is solved, and a dual solution is provided. Accordingly, the objective func-
tion of the pricing problem for each commodity k is updated, and the pricing problem
is solved. Depending on the pricing strategy (see Section 4.4.3) multiple columns per
commodity having negative reduced costs (or at most one) are added to the restricted
master problem. During this process, to reduce the number of CG iterations, we keep
track of the Lagrangian bound and compare it to the objective value of the current
restricted master problem. If the di�erence between the two values is smaller than ε,
the column generation procedure is stopped and we resort to branching.

4.4.2 Branching

At the end of the column generation phase, the integrality of the solution of the re-
laxed master problem is veri�ed. If the current solution is not integer, we branch on
the most fractional variable, applying the BFS (Breadth-First Search) based branch-
ing strategy. Speci�cally, we explore all the nodes of the same level in the branching
tree before moving to the next level. In our implementation the algorithm explores
all nodes admitting a fractional feasible solution of the same level by applying the
respective branching scheme described below. For each branching node with a frac-
tional solution, two children nodes are created and saved in a queue. The nodes in the
queue are explored using the FIFO (First In First Out) method. A global lower bound
is calculated at each level. In our preliminary experiments, we also tried the diving
strategy as an alternative to the BFS-based branching. Whereas diving is very useful
when searching for feasible solutions (see e.g., [57,60,79]), in our case this strategy did
not prove useful, because a high-quality feasible solution is used to initialize the CG
procedure (see above).

Branching scheme for the model PF In Corollary 3.3 we showed that the binary
constraints on λ variables in the PF model can be relaxed to λ ≥ 0. Hence, in our BP
implementation of the PF model, we branch only on the (x, y, z, w) variables.

Di�erent branching schemes have been tested for the model PF; The one outperform-
ing all others is to branch �rst on the most fractional w variables (by imposing either
w ≥ 1 or w ≤ 0), secondly on z by setting either z ≥ dz∗e or z ≤ bz∗c, thirdly on y
which are forced to be y ≥ 1 or y ≤ 0 and �nally on x variables using x ≥ 1 or x ≤ 0.

4.4 Branch-and-Price algorithms 121

Branching scheme for the model DW In our branching scheme for the model
DW we start branching on z variables by setting z ≥ dze, or z ≤ bzc and then on
w variables by setting w ≤ 0, or w ≥ 1. When z and w variables are integers, we
continue by branching on the τ variables. Given that the path-installation variables
are generated as and when they are needed, we follow the speci�c branching scheme for
τ variables proposed in Proposition 4.2. Speci�cally, if we �nd a pair of two distinct
nodes u, v ∈ N such that

∑
p∈Tk:u∈p,v∈p

τ kp is fractional we create two branches by imposing

constraints that limit the respective sum to 0, or 1, respectively. If none such pair can
be found, we search for a node u ∈ N and a function f̄ ∈ F k such that

∑
p∈Tk:afpku =1

τ kp is

fractional, and create two branches correspondingly.

122 Extended formulations

Figure 4.4: Branch-and-Price algorithm.

4.4.3 Pricing strategy

In the sequel, we �rst propose three di�erent pricing strategies for the model PF.
These strategies are later computationally evaluated in Section 4.6. For the model DW,
the underlying pricing problem exhibits a rich combinatorial structure. We therefore
employ an o�-the-shelf MIP solver to price in the columns.

4.4 Branch-and-Price algorithms 123

4.4.3.1 Pricing the columns for the model PF

We consider three methods for solving the pricing problem for the formulation PF:
1) We utilize dynamic programming; 2) Based on Yen's algorithm [138], we derive a
reduced cost method, and use it in two di�erent ways; and 3) We model the pricing
problem as an ILP that we solve using an o�-the-shelf solver.

Dynamic programming Let k ∈ C be a given commodity and let, for each arc
(u, v) ∈ A, c̃uv given by (4.17) be the corresponding arc cost. We denote by Fv(S, l

′
v)

the minimal cost of the partial path going from source node sk to node v visiting all
nodes in S exactly once and ready to leave node v with latency value equal to l′v. The
following equations (see also [115]) illustrate the recursive function used for the pricing
problem associated with commodity k:

DP :

Fsk(∅, 0) = 0

Fv(S, l
′
v) = min

v∈Γ+(u)
{Fu(S − {v}, l′u) + c̃uv |

∑
(u′,v′)∈AS

lu′v′ ≤ lk}

where S is the set of nodes in the path, AS is the set of arcs connecting nodes in S,
l′u (resp. l′v) represents the sum of the latency of arcs in AS from source node sk until
node u (resp. v). We utilize the dynamic programming algorithm proposed in [25] (cf.

124 Extended formulations

Sections 2.2 and 2.3).

Algorithm 6: Labeling algorithm based on dynamic programming

- Inspired from Dijkstra algorithm proposed for the SPP.;
- The algorithm starts from the source node.;
for each iteration, i.e., going from node i to node j using arc (i, j) do

- A label lj is created for node j based on li, in order to store information
on the resources and the predecessor arc (i, j).;
- Only feasible labels are created, i.e., satisfying all resource constraints.;
for each node do

- Only the non-dominated labels (i.e., pareto-optimal) are kept
according to the following dominance rule: ;
if Both are at the same node then

if for each feasible extension of l2, there is also do
- A feasible extension of l1 where resl1r ≤ resl2r with r ∈ R, for
exactly the same resources.

end

then

- l1 dominates l2.;
end

end

end

end

- The algorithm stops when there are no more unprocessed labels for all nodes.;
- It then checks whether the destination node could be reached.;
- If yes, return all shortest paths from sk to dk satisfying the resource
constraints.

Remark: We must have at least one non-decreasing resources (without negative
cycles) to use this algorithm.

Reduced cost method For each commodity k ∈ C, we run Yen's algorithm [138]
in order to generate all latency-constrained elementary paths between sk and dk. We
keep all these columns in a column pool, denoted by Pk. First, the restricted master
problem is initialized by a subset of columns from Pk, which are then added to Pk and
removed from Pk. At each iteration of the CG procedure, the restricted master problem
is solved, and a dual solution is generated. Based on this solution, the reduced cost
RC(p) of each path p ∈ Pk is calculated. If the path p ∈ Pk has a negative reduced
cost, then p can be added to the restricted master (i.e., to the set Pk) and deleted from

4.4 Branch-and-Price algorithms 125

the set Pk. However, multiple columns with negative reduced cost can be added for
each commodity. We consider two settings: In the �rst one (that we refer to as Red
Cost 1), we add at most 10 columns with negative reduced cost per commodity; In
the second one (that we refer to as Red Cost 2), all columns from Pk with negative
reduced cost are added in each iteration. We tested both approaches, and the results
are shown in Section 4.6.

At the end of the column generation phase, and before resorting to branching, we
also try to �x some columns based on their reduced cost. Using an upper bound
UB (obtained from the incumbent solution), and the value Z of the current restricted
master problem, if there exists a commodity k ∈ C and a path p ∈ Pk such that
RC(p) + Z > UB, this means that the variable λkp can be �xed to zero. Therefore, in

126 Extended formulations

this case the path p is deleted from Pk.

Algorithm 7: Reduced cost method

for commodity k ∈ C do
- Get the set Pk of all latency-constrained elementary paths using Yen's
algorithm (Columns);

end

- Initialize the restricted master problem with a subset of columns;
- Remove the added columns associated with each commodity k ∈ C from Pk;
for each iteration of the column generation procedure do

- Solve the restricted master problem;
- Get the dual solution;
for commodity k ∈ C do

for each path (column) p, p ∈ Pk do

Calculate the reduced cost of p, RC(p);
if RC(p) is negative then

Add the column p to the restricted master problem;
Pk = Pk ∪ {p};
Pk = Pk \ {p};

end

end

end

end

- Get LB and UB;
for commodity k ∈ C such that Pk 6= ∅ do

for path p ∈ Pk do

Calculate the reduced cost of p, RC(p);
if LB +RC(p) > UB then

Pk = Pk \ {p};
end

end

end

Solving the pricing problem as an ILP The pricing problem can also be mod-
eled as a commodity �ow ILP problem with latency constraints and subtour elimination
cuts. We �rst solve the latency-constrained commodity �ow problem, called Relaxed
Pricing Problem (RPP) presented below. We then generate sub-tour elimination con-
straints on the �y (if needed) during the column generation procedure. To de�ne the

4.4 Branch-and-Price algorithms 127

relaxed pricing problem we introduce binary variables tuv which are set to one if arc
(u, v) ∈ A belongs to the path associated with the current commodity; and to 0, other-
wise. The RPP associated with commodity k ∈ C is equivalent to the following integer
linear program, in which constraints (4.56) ensure that the �ow goes from the source
node sk to the destination node dk, whereas (4.57) represents the latency constraint:

(RPP) : min
∑

(u,v)∈A
c̃uvtuv

∑
(u,v)∈A

tuv −
∑

(v,u)∈A

tvu =

−1 if u = dk,

1 if u = sk,

0 otherwise.

u ∈ N (4.56)

∑
(u,v)∈A

tuvluv ≤ lk (4.57)

tuv ∈ {0, 1} (u, v) ∈ A

Let C = (NC, AC) be the support graph obtained from the binary solution of the
RPP model. Since negative arc costs are allowed, C may contain subtours. Subtour
elimination cuts are added at each iteration of the column generation procedure if C
represents one of the two con�gurations illustrated in Figure 4.5. The connected path
shown in Figure 4.5(a) is eliminated by adding the inequality:

∑
v∈Γ+(u) tuv ≤ 1, which

aims to force the path to pass only one time through a node u, with degree(u) ≥ 3.
Disconnected paths like the one shown in Figure 4.5(b) are eliminated by the inequality∑

(u,v)∈AC
tuv ≤ |NC| − 1.

We point out that the e�ciency of this procedure highly depends on the underlying
cost function c̃. As we will see in Section 4.6, when there are very few negative cycles
in the graph, this procedure may outperform the other alternatives, including dynamic
programming.

128 Extended formulations

(a) Connected path

(b) Disconnected path

Figure 4.5: Example of two solutions generated by the relaxed pricing problem.

Algorithm 8: Implementation of pricing problem
- Solve the restricted master problem.
- Get the current dual solution.
for commodity k ∈ C do

{ Solve the relaxed pricing problem}
if The resulting graph C is not an elementary path then

if C is not connected then
- Delete the connected component that contains source node.
for each connected component c do

- Add cut
∑

(u,v)∈c
tuv ≤ |c| − 1

end

end

else if There exist a node u, δ(u) ≥ 3 then

- Add cut
∑

v∈Γ+(u)

tuv ≤ 1

end

end

end

4.5 Comparing the LP-relaxations 129

4.4.3.2 Pricing the columns for the DW model

In order to price the columns associated with the DW formulation, the MIP model
presented in Section 4.2.3, is solved for each commodity k ∈ C, using an o�-the-shelf
solver. Thus, at each iteration of the column generation procedure at most one column
per commodity with negative reduced cost is generated by the pricing problems. As
in the case of the model PF, the column generation phase terminates when no more
columns with a negative reduced cost are found, or when the gap between the current
value of the restricted master problem and the Lagrangian bound is smaller than ε.

4.4.4 Heuristics

Before entering the B&P phase, we generate a heuristic solution which provides a
high-quality upper bound and a promising set of columns that we use to initialize the
CG procedure. For the model PF, we employ the MIP-based heuristic presented in
Chapter 3. The heuristic solves a compact model derived from the formulation PF in
which only a small subset of latency-constrained paths is considered. To obtain this
subset, we run Yen's algorithm [138] which provides κ-elementary paths between two
nodes, sorted from the shortest to the longest one. The number of generated paths
per commodity is capped by κ, and we let κ ∈ {10, 15, 20, . . . , 50}. As soon as the
underlying MIP-based heuristic �nds a feasible solution for a �xed κ value, we stop.
However, for some instances, even for κ = 50 we fail to �nd a feasible solution.
For the model DW, we start with an arti�cial column, price-in the columns with neg-
ative reduced cost, and then convert the obtained linear program into a MIP.
In both cases, there is a time limit after which this MIP-based heuristic initialization
is aborted.

4.5 Comparing the LP-relaxations

In this section, we compare the LP-relaxation values of the path formulation (PF) and
Dantzig-Wolfe (DW) formulation. First, a graphic that shows that the LP-relaxation
bounds provided by the DW formulation are better than those given by the PF is
presented, followed by the LP-relaxation comparison proof.

Proposition 4.15 We have ZPF ≤ ZDW , where ZPF (resp. ZDW) is the LP-relaxation

130 Extended formulations

Pd
h_
1

Pd
h_
2

Pd
h_
3

Pd
h_
4

Pd
h_
5

Pd
h_
6

Pd
h_
7

Pd
h_
8

Pd
h_
9

Pd
h_
10

Instances

0

1

2

3

4
Im

pr
ov
em

en
t(
%
)

DW

Figure 4.6: Relative improvement of LP-relaxation bounds of the path formulation by
using Dantzig-Wolfe formulation on �Pdh� instances.

value of the path formulation (resp. the Dantzig-Wolfe formulation), and there exist
instances for which the strict inequality holds.

Proof. We prove that from any feasible solution of DW, we can construct a fea-
sible solution for PF. Let XDW = (τDW , zDW , wDW) be the feasible solution of the
relaxed DW associated with ZDW . From the solution XDW , a feasible solution XPF =

(λPF , xPF , yPF , zPF , wPF) for PF is built as follows :

� Variables τDW in Dantzig-Wolfe formulation represent the path-installation cho-
sen for each commodity k ∈ C. From τDW variables, the information concerning
the arcs belonging to each path and the associated VNFs installation and their
order are extracted. Therefore, from the values of τDW in the solution XDW , the
value of λPF variables in path formulation can be obtained. Furthermore, the set
of arcs belonging to each path are provided.

� Moreover, in order to get the value of variables xPF and yPF in the path formula-
tion we set xPF =

∑
p∈Tk τDWdDW and yPF =

∑
p∈Tk τDWhDW , with dDW , hDW ∈

{0, 1} are parameters extracted from the variables τDW (obtained from the pricing
problem associated with commodity k in DW formulation).

4.6 Computational results 131

� Finally, Variables zDW and wDW are exactly the same for both formulations,
therefore, their values are obtained by setting zPF = zDW and wPF = wDW

Now, we show that the solution XPF built from XDW is feasible for the path formula-
tion, i.e., satis�es all the constraints in the PF. From the DW formulation we can see
clearly that path constraints (4.2), node-capacity constraints (4.3) and VNF-capacity
constraints (4.4) are satis�ed; otherwise dDW is not feasible for DW. Furthermore, each
path-installation in DW formulation represents an sk − dk elementary path satisfying
�ow, latency, con�ict, installation and precedence constraints. Con�ict constraints
(4.5) are satis�ed by construction, we know from path constraints (4.20) that the sum
of τDW variables is equal to 1, as the parameter hDW ∈ {0, 1}, the con�ict constraints
are satis�ed in DW formulation, we conclude that variables yPF satisfy the con�ict con-
straints in the PF. Similarly, as the parameter dDW ∈ {0, 1} and from (4.20), we can
see clearly that precedence constraints (4.6), (4.7) and (4.8) are satis�ed. Each path-
installation passes through the VNFs installations, which means that constraints (4.9)
are satis�ed. Each path-installation guarantees that all VNFs associated with a given
commodity are installed at nodes, accordingly, and by transformation, yPF variables
in the path formulation satisfy the installation constraints (4.10). Therefore, from any
solution of the Dantzig-Wolfe formulation, a feasible solution for the path formulation
can be derived with ZPF ≤ ZDW . We refer the reader to our computational study,
where we report on the instances from which the LP-bound ZDW is strictly stronger
than ZPF .

4.6 Computational results

In this section we analyze the scalability and the e�ciency of the two proposed B&P
algorithms and show the bene�ts of the valid inequalities de�ned in Section 4.3. The
B&P algorithms are compared to two other exact methods using the commercial solver
CPLEX: the �rst one is a compact MIP formulation (denoted by C) proposed in Chap-
ter 2 and the second one is the Automatic Benders approach by CPLEX [26] applied
to the model C in which a family of �ow variables is linearly relaxed. Our experiments
are designed so as to evaluate the e�ectiveness and the performance of the proposed
extended formulations in terms of CPU time, quality of bounds and �nal gaps. Even-
tually we also measure the advantage of the proposed valid inequalities in improving
the LP-bounds and reducing the �nal gaps.

All the experiments described in this section were made using a computer with In-
tel(R)Xeon(R) CPU E5-2650 v2 processor clocked at 2.60GHz, 32 cores, 2 threads per

132 Extended formulations

core and 252GB RAM, under Linux operating system. All methods are implemented
using the Python API for CPLEX, which is run in single-thread mode with a default
memory limited to 20GB. All CPLEX parameters were set to their default values. A
default time limit of one hour is set for each tested instance. For the initialization
heuristic used within the B&P algorithm (cf. Section 4.4.4), the time limit is �xed to
900 seconds.

The following settings represent all tested methods in our computational experiments:

� DP: The model PF (introduced in Section 4.1) with the dynamic programming
algorithm proposed in Section 4.4.3.1 as pricing method;

� Red Cost 1: The model PF with the reduced-cost-based pricing proposed in
Section 4.4.3.1, in which a subset of up to 10 paths per commodity with negative
reduced cost is added at each iteration of the CG procedure;

� Red Cost 2: The model PF with the reduced-cost-based pricing proposed in
Section 4.4.3.1, in which all paths with negative reduced cost are added at each
iteration of the CG procedure;

� ILP: The model PF with the pricing method based on solving the ILP given in
Section 4.4.3.1;

� PF: The model PF with the best-performing pricing method;

� PF+VI: The setting PF in which Valid Inequalities (4.33), (4.34), (4.37) − (4.46)
and (4.49)−(4.51) presented in Section 4.3 are additionally used to initialize the
model;

� DW: The model DW presented in Section 4.2;

� DW+VI: The setting DW in which Valid Inequalities (4.38), (4.43), (4.44), (4.49)−(4.51)
and (4.52) − (4.54) from Section 4.3 are added to the model;

� C: The compact MIP formulation proposed in Chapter 2;

� AB: The Automatic Benders decomposition available in Cplex [26], applied to the
setting C in which binary �ow variables are linearly relaxed.

4.6 Computational results 133

Benchmark instances

In order to perform our experiments, we have generated a set of instances derived
from the SNDlib library [125] of telecommunication networks. The instances creation
is detailed in Chapter 3. The set of instance-type used to test our algorithms is de�ned
as follows: {�Abilene�, �Atlanta�, �Di-yuan�, �France�, �Geant�, �Newyork�, �Nobel-eu�,
�Nobel-germany�, �Nobel-us�, �Pdh�, �Polska�, �Ta1�}.

4.6.1 Obtained results

In the sequel we summarize the major results obtained by our computational study. Ta-
bles with more detailed information provided per each instance can be found in Section
4.6.2. This subsection is divided into two parts. The �rst part is devoted to comparing
the LP-relaxation bounds generated by applying the column generation algorithm to
the models PF and DW, respectively. We start by comparing four di�erent pricing
methods proposed for the model PF (namely, DP, ILP, Red Cost 1, Red Cost 2) in
terms of CPU time, number of added columns and generated iterations. Next, after
determining the best con�guration (i.e., the best pricing method) for the model PF,
we focus on the improvement of the LP-gap, with respect to the LP-relaxation bounds
provided by the compact formulation (C). We compare the two extended formulations,
with and without adding valid inequalities.

In the second part of this subsection, we compare the two proposed B&P algorithms
(PF and DW) with two others alternative MIP approaches, namely the Compact formu-
lation (C) and the Automatic Benders of Cplex (AB). We report the overall CPU time
in seconds, and compare the quality of lower bounds after reaching the time limit. We
also report the number of added columns and generated iterations during the B&P
algorithms.

4.6.1.1 Comparison between di�erent pricing methods for solving the LP-

relaxation of the model PF

Graphical summary of the obtained results comparing the four pricing methods pro-
posed for the model PF is given in Figures 4.7 and 4.8. Cumulative charts representing
the CPU times (Figure 4.7), the number of added columns (Figure 4.8(a)) and gener-
ated iterations (Figure 4.8(b)) during the column generation procedure are provided.
A point with coordinates (x, y) in Figure 4.7 indicates that for y instances, the CPU

134 Extended formulations

time needed to solve the LP-relaxation was x seconds or less. A similar representation
of the number of added columns and generated iterations is shown in Figures 4.8(a)
and 4.8(b), respectively.

0 500 1000 1500 2000 2500 3000
CPU time (s)

0

20

40

60

80

100

120

#
 s
ol
ve

d
Pr
ob

le
m
s

DP
ILP
Red Cost 1
Red Cost 2

Figure 4.7: CPU time comparison between di�erent pricing methods proposed for the
relaxed path formulation.

From Figure 4.7 we observe that all 120 instances are solved by the Red Cost 2

(resp. ILP) setting at the root node within less than 1000s (resp. 1534s). On the
contrary, the Red Cost 1 solves 108 instances with CPU time up to 2700s and the
DP setting solves only 71 instances without exceeding the time limit. The fact that
the DP consumes more time to �nd an elementary resource constrained shortest path,
compared to the ILP method, can be explained as follows. In the setting ILP, the
sub-tour elimination cuts are added to the pricing problem on the �y, only if they are
needed. Furthermore, from one CG iteration to the other, we only modify the objective
function of the underlying ILP, which allows Cplex to heavily exploit warm-starting
techniques.

In order to compare the number of added columns and iterations generated during
the CG procedure, we focus on 71 instances for which all four methods were able to
solve the problem at the root node without exceeding the time limit of one hour.

4.6 Computational results 135

(a) # Columns

(b) # Iterations

Figure 4.8: Comparison between four di�erent pricing methods proposed for the re-
laxed path formulation with respect to the number of added columns and generated
iterations.

Figure 4.8(a) shows the number of added columns for DP, ILP, Red Cost 1 and

136 Extended formulations

Red Cost 2 during the column generation procedure. We notice that settings DP and
ILP behave in the same way; this is explained by the fact that at each CG iteration, at
most one column (the most violated) is added per commodity. On the other hand, for
Red Cost 1 (resp. Red Cost 2) several (resp. all) columns having negative reduced
costs are added. This explains the huge number of added columns using Red Cost 2.

Figure 4.8(b) allows to compare the number of generated iterations between DP,

ILP, Red Cost 1 and Red Cost 2 during the CG procedure. We observe that, as all
columns with negative reduced cost are added at each CG iteration, the Red Cost 2

needs less than 5 iterations to �nd a solution at the root node. In comparison, the
setting DP (resp. ILP) needs up to 20 (resp. 23) iterations for all instances to �nd the
LP-bound. Finally, we observe that Red Cost 1 needs up to 25 CG iterations to solve
65 instances, and sometimes even more than 50 iterations to solve the LP-relaxation.
This can be accounted to the fact that we are adding a �xed number of columns, which
are not necessarily the most violated ones.

Based on the comparison of CPU times between the four pricing methods, in the
following, we will consider Red Cost 2 as our default pricing method for the model
PF. This setting which will be denoted by PF in the remainder of this section.

4.6.1.2 Comparison of LP-relaxation bounds

We now turn our attention to the comparison of the quality of LP-relaxation bounds
and the CPU time required for solving LP-relaxation of the formulations PF, DW and
C. We also show the relative improvement of lower bounds, with respect to the LP-
bounds provided by C, by both extended formulations with and without adding valid
inequalities.

Figure 4.9 provides a cumulative chart in which we report the CPU time for all 120
instances from our test bed. We observe that in less 31 seconds the LP-solution for
any of the considered 120 instances can be found by the compact formulation C. The
CPU time consumed by the model PF is below 1000 seconds. Finally, the model DW
can solve only 91 instances at the root node without exceeding the time limit.

4.6 Computational results 137

Figure 4.9: CPU time needed to solve the LP-relaxation of the PF, C and DW formulation.

Figures 4.10 and 4.11 depict the CPU time consumed by PF, PF+VI, DW and DW+VI

settings at the root node of the branching tree. We observe that adding valid inequal-
ities to both formulations increases the CPU time. Valid inequalities slow down the
resolution at the root node for the model PF; 75% of instances were solved with CPU
time below 300 seconds, whereas after adding valid inequalities, the same percentage of
instances needs up to 1025 seconds. Moreover, the overall number of solved instances
decreases from 120 to 109. Similarly, for the model DW, after adding valid inequalities
the number of instances for which LP-relaxation can be solved drops from 92 to 66

instances.

138 Extended formulations

PF

0

100

200

300

400

500

600

700

CP
U
 t
im

e
(s
)

PF+VI

0

500

1000

1500

2000

2500

CP
U
 t
im

e
(s
)

DW

0

500

1000

1500

2000

2500

3000

3500

CP
U
 t
im

e
(s
)

DW+VI

0

500

1000

1500

2000

2500

3000

3500

CP
U
 t
im

e
(s
)

PF
PF+VI
DW
DW+VI

Figure 4.10: CPU time needed to solve LP-relaxation at the root node for PF and DW

formulation with and without valid inequalities.

0 500 1000 1500 2000 2500 3000 3500 4000
CPU time (s)

0

20

40

60

80

100

120

#
 s
ol
ve
d
Pr
ob

le
m
s

PF
PF+VI
DW
DW+VI

Figure 4.11: CPU time needed to solve LP-relaxation at the root node for PF and DW

formulation with and without valid inequalities.

In the following, we focus on 52 instances whose LP-relaxation could be solved at
the root node by PF, PF+VI, DW, DW+VI without exceeding the time limit (2 among
54 instances solved by DW+VI are not solved by PF+VI). We compare the relative im-
provement of lower bounds with respect to the LP-bounds obtained by the compact
formulation C. Figure 4.12 illustrates the relative improvement of lower bounds, calcu-
lated as ((LBa - LBC) / LBC) * 100, with a ∈ {PF, PF+VI, DW, DW+VI}. We observe

4.6 Computational results 139

that the lower bound at the root node could be improved by between 1% to 14%

(resp. by between 3% to 29%) with PF (resp. DW) formulation for all considered in-
stances without adding valid inequalities. Moreover, the potential bene�ts of adding
the valid inequalities to both extended formulations are shown. We notice that adding
the valid inequalities further improves the quality of their bounds at the root node.
These improvements are signi�cant for all instances. The LP-relaxation bounds of the
C formulation are improved from 6% to 90% for 75% of instances solved by the model
PF. This improvement ranges between 14% and 100% for 75% of instances solved by
the model DW.

PF

2

4

6

8

10

Im
pr
ov
em

en
t
(%

)

PF+VI

0

25

50

75

100

125

150

175

Im
pr
ov
em

en
t
(%

)

DW

4

6

8

10

12

14

16

18

20

Im
pr
ov
em

en
t
(%

)

DW+VI
0

25

50

75

100

125

150

175

Im
pr
ov
em

en
t
(%

)

PF
PF+VI
DW
DW+VI

Figure 4.12: Relative improvement of LP-relaxation bounds of C formulation by using
PF and DW formulation with and without valid inequalities.

The number of added columns and generated iterations during the column generation
algorithms for PF, PF+VI, DW and DW+VI settings are presented in Figures 4.13-4.14
and 4.15-4.16, respectively. From these �gures we conclude that for path formulation
the number of priced-in columns reduces only moderately for most of the instances
(from 10000 to 7500 and the number of iterations from 3 to 2). Similarly, adding
these inequalities to Dantzig-Wolfe formulation increases the number of columns and
iterations from≈ 320 to≈ 2900 and from≈ 9 to≈ 41 for 75% of instances, respectively;
this is explained by the fact that inequalities (4.52)− (4.54) generate new dual variables
and then, the master problem becomes more di�cult to solve, thus, needs more columns
and iterations to �nd a lower bound at the root node

140 Extended formulations

PF

2000

3000

4000

5000

6000

7000

8000

#
 C
ol
um

ns

PF+VI

2000

3000

4000

5000

6000

7000

#
 C
ol
um

ns

DW
0

100

200

300

400

500

#
 C
ol
um

ns

DW+VI

0

1000

2000

3000

4000

5000

#
 C
ol
um

ns

PF
PF+VI
DW
DW+VI

Figure 4.13: Number of added columns by PF and DW formulation with and without
valid inequalities.

0 2000 4000 6000 8000 10000 12000
Columns

0

10

20

30

40

50

60

#
 s
ol
ve
d
Pr
ob

le
m
s

PF
PF+VI
DW
DW+VI

Figure 4.14: Number of added columns by PF and DW formulation with and without
valid inequalities.

4.6 Computational results 141

PF

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

#
 It
er
at
io
ns

PF+VI

1.0

1.2

1.4

1.6

1.8

2.0

#
 It
er
at
io
ns

DW

4

6

8

10

12

#
 It
er
at
io
ns

DW+VI

10

20

30

40

50

60

#
 It
er
at
io
ns

PF
PF+VI
DW
DW+VI

Figure 4.15: Number of generated iterations by PF and DW formulation with and without
valid inequalities.

0 10 20 30 40 50 60 70
Iterations

0

10

20

30

40

50

60

#
 s
ol
ve
d
Pr
ob

le
m
s

PF
PF+VI
DW
DW+VI

Figure 4.16: Number of generated iterations by PF and DW formulation with and without
valid inequalities.

4.6.1.3 Comparison between path formulation, Dantzig-Wolfe formulation,

Compact formulation and Automatic Benders

In what follows, we compare the two proposed Branch-and-Price algorithms associated
with path formulation and Dantzig-Wolfe formulation with the Compact formulation
and the Automatic Benders of Cplex.

142 Extended formulations

In our Branch-and-Price (B&P) algorithms we initialize UBs by using one of the two
heuristics de�ned above. Consequently, we implemented BFS (Breadth-First Search)
strategy-based branching in which a global lower bound is updated at each level of the
B&P tree.

All proposed methods reach the time limit for the 52 instances for which all methods
could solve the LP-relaxation. Thus, in what follows we show only the Gap improve-
ment for all methods, which is calculated as GAP = (GLB − LB)/LB ∗ 100%, where
GLB represents the global lower bound found by each setting listed above, (the best
known solution provided by Cplex for C and AB settings, and the best global lower
bound provided by the Branch-and-Price algorithm based BFS strategy for PF+VI and
DW+VI settings). Also, we compare the number of added columns and generated nodes
and iterations by both Branch-and-Price algorithms.

Figures 4.17 and 4.18 display the relative Gap improvement of lower bounds. We
notice that the relative Gap is improved by 5% for 75% of solved instances (i.e., 39

instances) by DW+VI, by 0.6% with PF+VI, by 2.5% with the Compact formulation and
by 2.1% with the Automatic Benders of Cplex. Moreover, for 50 out of 52 instances,
the Gap is improved by 10% with Dantzig-Wolfe formulation, whereas for 50 instances
the path formulation improves the gap only by 2.5%, the Compact formulation and
the automatic Benders by 5%. Therefore, Dantzig-Wolfe formulation provides a better
solution quality.

PF+VI

0.0

0.2

0.4

0.6

0.8

1.0

G
AP

 Im
pr
ov
em

en
t
(%

)

DW+VI

0

2

4

6

8

10

G
AP

 Im
pr
ov
em

en
t
(%

)

C

0

1

2

3

4

5

G
AP

 Im
pr
ov
em

en
t
(%

)

AB

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G
AP

 Im
pr
ov
em

en
t
(%

)

PF+VI
DW+VI
C
AB

Figure 4.17: Gap improvement comparison between the path formulation, Dantzig-
Wolfe formulation, the compact formulation and the Automatic Benders of Cplex.

4.6 Computational results 143

0 2 4 6 8 10 12 14 16
GAP Improvement(%)

0

10

20

30

40

50

60

#
 s
ol

ve
d

Pr
ob

le
m

s

PF+VI
DW+VI
C
AB

Figure 4.18: Gap improvement comparison between the path formulation, Dantzig-
Wolfe formulation, the compact formulation and the Automatic Benders of Cplex.

Box-plots and charts given in Figures 4.19, 4.20 and 4.21 compare the overall number
of added columns during the B&P algorithm, the number of branching nodes and the
number of generated iterations for PF+VI and DW+VI, respectively. We observe that the
setting PF+VI needs more columns and more iterations and also branches more than
DW+VI. The vast number of added columns for the setting PF+VI is explained by the
fact that we are adding all columns with negative reduced cost at each iteration of
the CG procedure. This is in contrast to DW+VI where we are using LP-based pricing
method to add only the most violated ones. Furthermore, the number of variables that
are required to be integer in the model PF is much larger compared to the model DW,
which also explains the larger number of branching nodes for the setting PF+VI.

144 Extended formulations

PF+VI

2000

4000

6000

8000

10000
#
 C
ol
um

ns

DW+VI

0

1000

2000

3000

4000

5000

6000

7000

8000

#
 C
ol
um

ns

PF+VI
DW+VI

0 2000 4000 6000 8000 10000
Columns

0

10

20

30

40

50

60

#
 s
ol
ve
d
Pr
ob

le
m
s

PF+VI
DW+VI

Figure 4.19: Number of added columns comparison between the path formulation and
Dantzig-Wolfe formulation.

4.6 Computational results 145

PF+VI
0

500

1000

1500

2000

2500
#
 B
ra
nc
hi
ng

 N
od

es

DW+VI

0

25

50

75

100

125

150

175

200

#
 B
ra
nc
hi
ng

 N
od

es

PF+VI
DW+VI

0 2000 4000 6000 8000 10000 12000 14000
Branching Nodes

0

10

20

30

40

50

60

PF+VI
DW+VI

Figure 4.20: Number of branching nodes comparison between the path formulation and
Dantzig-Wolfe formulation.

146 Extended formulations

PF+VI
0

500

1000

1500

2000

2500

#
 It
er
at
io
ns

DW+VI

50

100

150

200

250

300

350

#
 It
er
at
io
ns

PF+VI
DW+VI

0 2000 4000 6000 8000 10000 12000 14000
Iterations

0

10

20

30

40

50

60

#
 s
ol
ve
d
Pr
ob

le
m
s

PF+VI
DW+VI

Figure 4.21: Number of generated iterations comparison between the path formulation
and Dantzig-Wolfe formulation.

4.6.2 Detailed results

Tables provided in this subsection show more detailed results for each setting intro-
duced in Section 4.6. First, we describe abbreviations shown in each column in the
tables:

4.6 Computational results 147

Abbreviations Description

Col Number of added columns during the column generation procedure.
Iter Number of generated iteration by the column generation procedure.
t[s] CPU time in seconds.
Gap Relative gap improvement.
Nodes Number of generated nodes during the Branch-and-Price algorithm.

Table 4.4: Description of the tables abbreviations

Tables 4.5-4.8 present the results with Path formulation in which di�erent pricing
problems are tested. Tables 4.9-4.11 show the detailed results obtained by the relaxed
Path formulation, the relaxed Dantzig-Wolfe formulation and Relaxed Compact for-
mulation, for which we compare the CPU time. The results comparing both extended
formulations with and without the adding of valid inequalities are provided in Ta-
bles 4.12-4.14. Finally, Tables 4.15 and 4.16 display the bounds improvement of both
Branch-and-Price algorithms compared to the compact formulation and the automatic
Benders of Cplex.

Sign �−" in columns �Col", �Iter", �Gap" and �Nodes" in tables indicates that no
information can be provided and that no solution is found. Moreover, TL in �t[s]"
columns illustrates the fact that the time limit is reached. The relative gap improve-
ment is reported as Gap = (GLB − LB)/LB ∗ 100%, where GLB denotes the global
lower bound found by each setting and LB the worst known lower bound (the minimum
overall global lower bounds).

148 Extended formulations

In
sta

n
ces

P
a
th

fo
rm

u
la
tio

n

D
P

I
L
P

R
e
d

C
o
s
t

1
R
e
d

C
o
s
t

2

N
a
m
e

|N
|
|A
|
|C
|
|F
|

t[s]
C
o
l

Iter
t[s]

C
o
l

Iter
t[s]

C
o
l

Iter
t[s]

C
o
l

Iter

A
bilen

e
1

1
2

30
1
3
2

6
1
8
.9
9

8
5
5

3
1
0
.3
8

8
5
7

4
0
.7
0

1
7
1
8

3
0
.7
8

1
7
1
8

3

A
bilen

e
2

1
2

30
1
3
2

6
1
5
.3
7

8
4
7

3
1
1
.6
4

8
4
9

3
0
.4
8

1
7
1
8

2
0
.5
7

1
7
1
8

2

A
bilen

e
3

1
2

30
1
3
2

6
1
3
.8
0

8
3
9

3
1
5
.0
9

8
4
1

3
0
.4
5

1
6
8
7

2
0
.4
8

1
6
8
7

2

A
bilen

e
4

1
2

30
1
3
2

6
1
8
.6
2

8
4
3

3
1
6
.5
7

8
4
6

3
0
.6
1

1
6
9
8

2
0
.5
8

1
6
9
8

2

A
bilen

e
5

1
2

30
1
3
2

6
1
3
.8
2

8
3
3

3
9
.3
7

8
3
4

3
0
.5
7

1
6
8
3

3
0
.4
9

1
6
8
3

3

A
bilen

e
6

1
2

30
1
3
2

6
2
0
.3
6

8
3
2

4
9
.1
0

8
3
3

4
0
.4
3

1
6
8
9

2
0
.4
8

1
6
8
9

2

A
bilen

e
7

1
2

30
1
3
2

6
9
.1
1

8
2
7

2
1
2
.1
5

8
3
1

2
0
.4
0

1
6
8
0

2
0
.4
2

1
6
8
0

2

A
bilen

e
8

1
2

30
1
3
2

6
9
.5
5

8
2
8

2
9
.7
2

8
3
4

3
0
.5
2

1
6
9
5

2
0
.5
3

1
6
9
5

2

A
bilen

e
9

1
2

30
1
3
2

6
1
4
.7
2

8
2
6

3
1
5
.5
0

8
3
0

3
0
.4
0

1
6
7
9

2
0
.5
2

1
6
7
9

2

A
bilen

e
1
0

1
2

30
1
3
2

6
1
9
.3
5

8
5
5

4
1
8
.0
9

8
5
5

3
0
.4
7

1
7
1
7

3
0
.6
5

1
7
1
7

3

A
tla
n
ta

1
1
5

44
2
1
0

6
1
2
2
.1
0

3
6
7
6

5
6
5
.8
5

3
6
8
5

5
9
.3
9

7
3
9
2

2
1
1
.7
4

7
3
9
2

2

A
tla
n
ta

2
1
5

44
2
1
0

6
1
7
9
.5
7

1
6
7
0

1
0

1
0
9
.8
1

1
6
7
9

1
1

8
.7
5

4
2
3
3

6
1
0
.4
9

4
5
6
3

4

A
tla
n
ta

3
1
5

44
2
1
0

6
1
9
1
.6
8

1
7
6
2

7
9
0
.5
4

1
7
5
9

7
9
.0
1

4
6
1
6

5
6
.9
0

4
9
2
9

3

A
tla
n
ta

4
1
5

44
2
1
0

6
1
6
5
.4
1

1
7
6
6

9
7
6
.3
6

1
7
6
5

8
8
.7
7

4
6
1
6

6
6
.5
4

4
9
9
6

3

A
tla
n
ta

5
1
5

44
2
1
0

6
1
8
3
.7
0

1
5
8
6

9
7
2
.2
6

1
5
8
7

7
6
.5
9

3
7
9
4

5
5
.7
5

4
1
5
1

3

A
tla
n
ta

6
1
5

44
2
1
0

6
1
4
8
.6
2

1
6
8
7

7
9
1
.1
9

1
6
9
2

7
9
.2
1

4
5
4
2

6
1
0
.0
2

4
9
3
0

3

A
tla
n
ta

7
1
5

44
2
1
0

6
1
6
5
.2
7

1
7
3
3

8
7
8
.1
9

1
7
4
4

9
6
.7
4

4
6
2
8

5
7
.4
2

4
9
8
5

3

A
tla
n
ta

8
1
5

44
2
1
0

6
1
7
7
.1
5

1
7
8
7

8
1
1
4
.7
3

1
8
0
2

8
8
.7
3

4
6
6
2

6
8
.4
6

5
0
4
6

3

A
tla
n
ta

9
1
5

44
2
1
0

6
1
3
7
.6
3

1
6
9
3

7
8
1
.6
6

1
7
0
5

8
7
.6
9

4
5
3
0

5
5
.8
5

4
8
5
1

4

A
tla
n
ta

1
0

1
5

44
2
1
0

6
1
6
3
.0
4

1
7
5
7

7
8
7
.7
5

1
7
6
1

7
6
.3
9

4
7
6
2

5
7
.1
6

5
0
4
6

3

D
i−

y
u
a
n
1

1
1

8
4

2
2

6
1
7
2
.9
8

3
0
4

1
3

5
0
.7
8

2
8
6

9
1
0
4
.1
8

1
7
2
4

2
5

1
3
.5
1

7
3
6
1

2

D
i−

y
u
a
n
2

1
1

8
4

2
2

6
1
6
8
.1
0

2
7
3

1
1

4
3
.9
3

2
7
9

1
3

1
0
1
.0
3

1
4
7
9

2
3

1
3
.4
2

8
2
2
7

2

D
i−

y
u
a
n
3

1
1

8
4

2
2

6
2
7
6
.5
6

3
2
4

1
0

6
1
.8
7

3
3
1

1
4

1
2
8
.2
5

2
2
1
2

2
0

2
7
.9
7

1
4
2
7
7

2

D
i−

y
u
a
n
4

1
1

8
4

2
2

6
4
1
8
.3
9

3
2
4

2
0

7
5
.1
7

3
1
9

2
3

1
7
7
.3
3

2
8
1
9

2
9

2
2
.3
5

1
3
8
3
1

2

D
i−

y
u
a
n
5

1
1

8
4

2
2

6
2
7
2
.0
3

3
0
8

1
0

5
9
.2
0

3
0
7

1
1

3
4
4
.6
6

3
0
1
1

5
6

2
2
.1
4

1
3
5
4
9

2

D
i−

y
u
a
n
6

1
1

8
4

2
2

6
1
8
8
.9
7

2
9
7

1
1

4
8
.3
9

2
9
7

1
2

1
2
5
.0
5

2
1
2
9

2
8

1
6
.2
1

1
0
2
2
8

3

D
i−

y
u
a
n
7

1
1

8
4

2
2

6
1
4
8
.0
8

2
7
8

9
3
2
.0
5

2
8
2

9
2
1
8
.0
6

2
2
8
3

3
7

1
9
.9
5

1
3
0
5
3

2

D
i−

y
u
a
n
8

1
1

8
4

2
2

6
2
6
9
.0
0

2
8
6

1
1

3
6
.6
9

2
7
8

1
0

2
0
0
.3
2

2
1
2
3

4
1

1
6
.3
7

1
2
2
3
5

2

D
i−

y
u
a
n
9

1
1

8
4

2
2

6
2
7
2
.6
4

2
9
5

1
0

5
6
.7
2

2
9
4

1
2

1
7
8
.6
6

2
0
0
5

2
1

3
4
.8
4

1
7
6
0
8

2

D
i−

y
u
a
n
1
0

1
1

8
4

2
2

6
3
8
3
.2
9

3
0
1

1
0

4
4
.5
7

3
0
4

1
5

9
6
.9
0

2
1
4
1

1
7

2
0
.5
2

1
3
1
9
0

2

T
able

4.5:
R
esults

for
SN

D
lib

instances
w
ith

P
ath

form
ulation

in
w
hich

di�
erent

pricing
problem

s
are

tested.

4.6 Computational results 149

In
st
a
n
ce
s

P
a
th

fo
rm

u
la
ti
o
n

D
P

I
L
P

R
e
d

C
o
s
t

1
R
e
d

C
o
s
t

2

N
a
m
e

|N
|
|A
|
|C
|
|F
|

t[
s]

C
o
l

It
er

t[
s]

C
o
l

It
er

t[
s]

C
o
l

It
er

t[
s]

C
o
l

It
er

F
ra
n
ce

1
2
5

9
0

3
0
0

6
T
L

−
−

8
8
9
.8
0

4
9
8
2

1
2

1
1
4
7
.8
6

2
6
0
9
3

3
9

3
7
3
.1
8

5
5
9
6
4

3

F
ra
n
ce

2
2
5

9
0

3
0
0

6
T
L

−
−

8
4
7
.3
8

7
1
4
8

1
2

5
4
0
.2
5

2
4
9
8
5

2
0

2
7
2
.3
0

4
7
5
1
4

5

F
ra
n
ce

3
2
5

9
0

3
0
0

6
T
L

−
−

8
2
9
.9
9

3
7
8
8

1
1

8
5
5
.7
3

1
8
6
2
0

2
9

3
3
3
.0
1

5
4
3
5
5

3

F
ra
n
ce

4
2
5

9
0

3
0
0

6
T
L

−
−

5
3
6
.1
8

1
0
9
3
5

1
1

3
3
2
.8
1

3
2
8
4
4

1
1

2
4
1
.0
7

5
0
3
9
7

3

F
ra
n
ce

5
2
5

9
0

3
0
0

6
T
L

−
−

6
4
0
.8
3

7
9
6
6

1
1

5
1
1
.9
9

2
6
5
9
7

1
9

2
5
1
.8
9

4
7
5
0
9

3

F
ra
n
ce

6
2
5

9
0

3
0
0

6
T
L

−
−

7
1
2
.3
3

5
8
9
8

9
8
3
3
.9
9

2
3
6
1
2

2
9

3
2
6
.5
8

5
5
7
2
0

4

F
ra
n
ce

7
2
5

9
0

3
0
0

6
T
L

−
−

7
2
5
.8
5

1
0
9
8
8

1
2

3
3
5
.3
9

3
5
6
6
7

9
3
0
1
.5
6

5
5
3
7
9

3

F
ra
n
ce

8
2
5

9
0

3
0
0

6
2
3
6
9
.3
2

1
0
8
7
9

7
1
0
3
4
.7
0

1
1
0
6
3

1
2

3
8
7
.1
2

3
1
0
1
6

7
3
4
5
.9
8

4
6
7
4
5

4

F
ra
n
ce

9
2
5

9
0

3
0
0

6
T
L

−
−

7
2
7
.1
9

1
1
0
2
4

1
1

3
7
5
.0
6

3
1
5
6
1

9
2
9
9
.8
1

5
0
3
2
8

3

F
ra
n
ce

1
0

2
5

9
0

3
0
0

6
T
L

−
−

5
4
8
.8
9

3
6
3
6

1
1

1
3
5
9
.1
9

1
8
8
2
0

4
8

2
9
6
.7
1

5
0
4
0
3

3

G
ea
n
t 1

2
2

7
2

4
6
2

6
T
L

−
−

1
0
5
2
.8
2

6
1
9
3

1
7

4
5
9
.4
5

2
7
0
4
5

1
9

3
8
2
.8
7

5
0
8
7
7

3

G
ea
n
t 2

2
2

7
2

4
6
2

6
T
L

−
−

4
3
1
.2
3

5
5
4
9

9
3
3
3
.7
0

2
1
5
3
2

1
2

2
9
8
.1
5

4
8
6
5
2

3

G
ea
n
t 3

2
2

7
2

4
6
2

6
T
L

−
−

4
9
3
.9
4

5
8
5
4

1
1

4
2
2
.0
4

2
2
2
2
3

1
7

2
9
0
.9
8

4
7
7
4
1

3

G
ea
n
t 4

2
2

7
2

4
6
2

6
T
L

−
−

1
4
0
6
.7
3

6
0
1
9

1
2

4
4
1
.4
2

2
2
8
6
1

2
0

2
6
9
.4
3

4
5
1
6
4

4

G
ea
n
t 5

2
2

7
2

4
6
2

6
T
L

−
−

6
1
2
.3
8

5
8
4
3

1
2

4
4
3
.9
1

2
4
5
1
5

1
9

3
0
3
.1
4

4
9
1
9
7

3

G
ea
n
t 6

2
2

7
2

4
6
2

6
T
L

−
−

7
6
8
.7
0

6
1
2
1

1
1

4
1
7
.7
8

2
3
7
5
4

1
7

2
7
1
.8
1

4
5
7
0
7

4

G
ea
n
t 7

2
2

7
2

4
6
2

6
T
L

−
−

7
3
3
.6
8

6
1
3
0

1
3

3
6
3
.2
0

2
4
8
9
9

1
4

2
8
3
.3
4

4
9
4
1
8

3

G
ea
n
t 8

2
2

7
2

4
6
2

6
T
L

−
−

6
3
5
.9
9

5
8
3
1

1
0

3
7
7
.7
3

2
3
2
5
0

1
4

2
9
3
.4
7

5
1
4
3
6

3

G
ea
n
t 9

2
2

7
2

4
6
2

6
T
L

−
−

8
4
4
.3
8

5
7
6
8

1
1

4
7
3
.4
6

2
3
5
3
7

2
3

2
7
0
.5
0

4
6
6
9
5

4

G
ea
n
t 1

0
2
2

7
2

4
6
2

6
T
L

−
−

6
2
2
.0
4

5
9
3
1

1
2

4
5
0
.9
2

2
3
9
8
5

1
8

2
8
6
.7
8

5
0
3
8
2

3

N
ew
y
or
k
1

1
6

98
2
4
0

6
T
L

−
−

1
0
1
9
.8
3

3
6
3
4

1
9

T
L

−
−

8
2
3
.6
5

1
1
4
4
5
9

3

N
ew
y
or
k
2

1
6

98
2
4
0

6
T
L

−
−

5
9
4
.4
5

3
1
7
7

1
6

T
L

−
−

6
1
6
.6
5

1
0
7
8
5
9

3

N
ew
y
or
k
3

1
6

98
2
4
0

6
T
L

−
−

8
6
4
.9
9

3
6
1
1

1
4

T
L

−
−

6
4
9
.8
0

1
0
8
8
0
5

3

N
ew
y
or
k
4

1
6

98
2
4
0

6
T
L

−
−

5
9
2
.0
7

3
2
1
6

1
1

T
L

−
−

6
3
5
.6
5

1
0
9
4
2
9

3

N
ew
y
or
k
5

1
6

98
2
4
0

6
T
L

−
−

9
3
9
.1
3

3
5
6
7

1
8

T
L

−
−

7
5
6
.0
4

1
1
5
9
1
1

3

N
ew
y
or
k
6

1
6

98
2
4
0

6
T
L

−
−

4
9
3
.4
4

3
3
0
8

1
3

2
0
7
7
.5
4

1
8
7
4
8

3
4

6
3
4
.2
4

1
0
6
2
8
8

3

N
ew
y
or
k
7

1
6

98
2
4
0

6
T
L

−
−

4
6
0
.7
0

3
2
2
4

1
3

2
0
2
7
.6
4

2
2
7
6
4

3
5

6
9
1
.4
7

1
1
3
0
0
0

3

N
ew
y
or
k
8

1
6

98
2
4
0

6
T
L

−
−

1
1
1
7
.4
1

3
3
4
2

1
4

1
9
7
5
.4
6

2
1
2
5
0

3
1

6
7
5
.4
1

1
1
4
7
0
8

3

N
ew
y
or
k
9

1
6

98
2
4
0

6
T
L

−
−

5
8
3
.9
7

3
1
2
8

1
4

T
L

−
−

7
1
6
.5
1

1
2
1
5
3
7

3

N
ew
y
or
k
1
0

1
6

98
2
4
0

6
T
L

−
−

9
1
8
.9
8

3
4
4
2

1
9

2
6
5
7
.8
3

2
6
2
9
0

4
8

6
0
4
.9
6

1
1
2
7
8
1

3

T
ab
le
4.
6:

R
es
ul
ts

fo
r
SN

D
lib

in
st
an
ce
s
w
it
h
P
at
h
fo
rm

ul
at
io
n
in

w
hi
ch

di
�
er
en
t
pr
ic
in
g
pr
ob
le
m
s
ar
e
te
st
ed
.

150 Extended formulations

In
sta

n
ces

P
a
th

fo
rm

u
la
tio

n

D
P

I
L
P

R
e
d

C
o
s
t

1
R
e
d

C
o
s
t

2

N
a
m
e

|N
|
|A
|
|C
|
|F
|

t[s]
C
o
l

Iter
t[s]

C
o
l

Iter
t[s]

C
o
l

Iter
t[s]

C
o
l

Iter

N
obel−

eu
1

2
8

8
2

3
7
8

6
T
L

−
−

7
8
7
.7
2

4
3
6
0

1
2

T
L

−
−

9
8
2
.6
4

1
0
4
7
8
8

3

N
obel−

eu
2

2
8

8
2

3
7
8

6
T
L

−
−

8
3
2
.9
0

4
5
6
0

1
2

T
L

−
−

9
4
7
.0
6

1
0
9
2
5
3

4

N
obel−

eu
3

2
8

8
2

3
7
8

6
T
L

−
−

6
1
3
.8
9

5
4
2
7

1
1

1
9
1
2
.8
6

2
8
1
2
5

2
9

8
0
3
.6
3

1
0
0
8
0
4

3

N
obel−

eu
4

2
8

8
2

3
7
8

6
T
L

−
−

7
5
3
.6
3

1
1
8
6
5

1
4

1
2
9
5
.9
7

4
6
5
2
3

1
4

7
4
6
.1
6

7
9
1
1
3

4

N
obel−

eu
5

2
8

8
2

3
7
8

6
T
L

−
−

6
1
8
.7
2

3
8
9
6

1
0

T
L

−
−

9
5
0
.9
9

9
8
6
7
5

3

N
obel−

eu
6

2
8

8
2

3
7
8

6
T
L

−
−

6
9
6
.2
0

4
2
9
8

1
2

T
L

−
−

7
1
6
.7
8

9
2
7
8
9

3

N
obel−

eu
7

2
8

8
2

3
7
8

6
T
L

−
−

5
3
9
.1
8

4
2
6
0

1
1

2
3
2
5
.1
8

2
5
8
8
1

3
4

7
8
1
.8
2

1
0
2
4
2
6

3

N
obel−

eu
8

2
8

8
2

3
7
8

6
T
L

−
−

7
5
9
.5
0

4
1
8
0

1
4

T
L

−
−

5
9
7
.4
7

8
4
1
2
3

3

N
obel−

eu
9

2
8

8
2

3
7
8

6
T
L

−
−

6
8
2
.2
0

3
9
3
6

1
0

T
L

−
−

5
8
2
.0
9

8
8
6
5
7

3

N
obel−

eu
1
0

2
8

8
2

3
7
8

6
T
L

−
−

7
4
7
.6
0

6
4
2
3

1
4

1
9
4
1
.0
5

3
4
7
7
1

3
4

6
8
1
.5
4

9
2
4
4
9

3

N
obel−

g
er

1
1
7

5
2

1
2
1

6
2
4
3
.1
4

1
3
2
0

1
1

9
7
.4
1

1
3
0
2

1
0

1
4
.7
9

4
0
9
8

8
1
0
.1
8

5
9
0
0

3

N
obel−

g
er

2
1
7

5
2

1
2
1

6
2
4
8
.7
5

1
3
2
9

9
1
0
4
.8
8

1
3
2
4

8
1
8
.8
0

4
1
2
9

1
1

1
2
.5
0

5
7
0
5

3

N
obel−

g
er

3
1
7

5
2

1
2
1

6
1
8
1
.5
1

1
2
8
1

7
7
0
.1
2

1
2
8
4

8
1
8
.0
3

4
3
6
9

1
3

8
.8
2

5
7
8
3

3

N
obel−

g
er

4
1
7

5
2

1
2
1

6
1
4
2
.3
8

1
2
6
3

7
7
1
.2
4

1
2
6
0

7
1
5
.5
4

3
7
3
4

9
8
.5
8

5
0
2
8

3

N
obel−

g
er

5
1
7

5
2

1
2
1

6
2
3
6
.0
1

1
3
4
0

9
1
2
1
.1
4

1
3
7
4

1
1

1
9
.9
5

4
2
4
3

1
1

1
0
.3
6

5
7
2
4

3

N
obel−

g
er

6
1
7

5
2

1
2
1

6
1
9
2
.3
3

1
4
0
0

9
1
5
9
.2
3

1
4
0
8

1
0

2
0
.4
0

4
8
8
9

1
3

1
3
.7
7

5
8
0
9

4

N
obel−

g
er

7
1
7

5
2

1
2
1

6
1
5
4
.4
6

1
3
2
8

8
9
8
.0
2

1
3
3
8

8
2
3
.5
5

4
6
3
4

1
4

1
1
.5
1

6
0
3
2

3

N
obel−

g
er

8
1
7

5
2

1
2
1

6
1
8
3
.6
0

1
2
8
9

8
7
4
.0
9

1
2
9
9

8
1
2
.0
9

3
8
9
7

7
1
0
.1
9

5
3
0
0

3

N
obel−

g
er

9
1
7

5
2

1
2
1

6
1
2
9
.0
5

1
3
4
6

8
1
7
7
.7
7

1
3
5
8

8
2
1
.2
6

4
9
7
6

1
4

8
.4
2

6
0
2
6

3

N
obel−

g
er

1
0

1
7

5
2

1
2
1

6
2
0
4
.6
5

1
3
2
1

9
1
0
2
.3
4

1
3
0
8

1
0

1
5
.4
5

4
2
1
2

8
1
0
.9
9

6
0
5
1

3

N
obel−

u
s
1

1
4

4
2

9
1

6
8
8
.1
4

9
2
1

7
2
9
.1
9

9
1
8

6
1
.7
0

1
9
5
8

3
1
.7
6

2
0
1
3

3

N
obel−

u
s
2

1
4

4
2

9
1

6
1
0
6
.2
2

9
3
2

7
5
7
.4
2

9
3
0

7
3
.1
4

2
2
4
7

4
2
.7
3

2
3
8
5

3

N
obel−

u
s
3

1
4

4
2

9
1

6
5
0
.7
0

9
2
4

5
2
4
.7
5

9
2
9

5
1
.8
1

2
1
7
5

3
1
.8
7

2
3
2
2

3

N
obel−

u
s
4

1
4

4
2

9
1

6
9
6
.1
3

8
4
6

8
2
8
.2
7

8
3
7

7
2
.2
5

1
8
4
1

4
2
.2
7

1
9
6
7

4

N
obel−

u
s
5

1
4

4
2

9
1

6
9
0
.2
1

9
4
2

7
5
7
.3
8

9
4
8

9
2
.2
7

2
1
2
3

5
1
.7
5

2
2
7
1

3

N
obel−

u
s
6

1
4

4
2

9
1

6
1
0
2
.5
2

9
8
2

8
5
1
.0
8

1
0
0
5

8
4
.6
6

2
2
9
3

5
5
.0
1

2
4
8
2

3

N
obel−

u
s
7

1
4

4
2

9
1

6
9
5
.9
6

9
4
1

8
4
2
.9
8

9
4
9

8
2
.1
9

2
2
5
7

4
2
.0
6

2
4
0
2

3

N
obel−

u
s
8

1
4

4
2

9
1

6
8
6
.4
7

9
5
8

7
4
2
.3
9

9
6
2

8
2
.7
2

2
3
2
0

4
2
.5
9

2
4
8
3

3

N
obel−

u
s
9

1
4

4
2

9
1

6
6
3
.5
0

8
9
5

6
3
7
.0
2

8
9
4

6
2
.0
8

2
0
4
0

4
1
.9
6

2
1
6
0

3

N
obel−

u
s
1
0

1
4

4
2

9
1

6
8
9
.5
0

9
4
6

7
4
6
.8
7

9
4
1

7
1
.8
8

2
2
2
0

4
1
.6
6

2
3
2
4

3

T
able

4.7:
R
esults

for
SN

D
lib

instances
w
ith

P
ath

form
ulation

in
w
hich

di�
erent

pricing
problem

s
are

tested.

4.6 Computational results 151

In
st
a
n
ce
s

P
a
th

fo
rm

u
la
ti
o
n

D
P

I
L
P

R
e
d

C
o
s
t

1
R
e
d

C
o
s
t

2

N
a
m
e

|N
|
|A
|
|C
|
|F
|

t[
s]

C
o
l

It
er

t[
s]

C
o
l

It
er

t[
s]

C
o
l

It
er

t[
s]

C
o
l

It
er

P
d
h
1

1
1

6
8

2
4

6
2
5
.8
9

8
2

9
5
.7
3

8
5

1
1

6
.4
9

3
4
9

1
1

1
.6
9

1
7
7
6

2

P
d
h
2

1
1

6
8

2
4

6
9
3
.9
8

1
3
1

9
2
5
.3
4

1
3
8

9
2
6
.4
7

7
4
5

1
0

8
.2
8

6
4
6
0

2

P
d
h
3

1
1

6
8

2
4

6
3
8
.8
6

1
0
9

6
3
5
.4
0

1
0
2

2
1
2
.0
3

4
0
4

8
4
.5
8

4
3
2
3

2

P
d
h
4

1
1

6
8

2
4

6
9
2
.8
5

1
3
7

1
1

1
7
.0
3

1
4
0

1
0

2
6
.5
1

6
3
6

1
2

5
.6
3

5
0
6
1

2

P
d
h
5

1
1

6
8

2
4

6
1
0
6
.2
6

1
5
1

1
3

4
8
.2
8

1
5
8

1
2

8
4
.3
1

1
0
3
2

3
9

6
.6
2

5
7
5
1

3

P
d
h
6

1
1

6
8

2
4

6
1
1
0
.1
5

1
7
4

1
0

8
3
.3
2

1
7
5

1
0

3
0
.6
9

7
1
7

1
0

1
2
.1
8

7
3
7
8

2

P
d
h
7

1
1

6
8

2
4

6
5
5
.1
2

1
5
9

9
6
2
.8
1

1
6
1

7
2
0
.2
2

5
3
8

1
0

6
.2
0

5
7
1
9

2

P
d
h
8

1
1

6
8

2
4

6
2
9
.9
8

9
1

7
8
.8
2

9
0

6
1
6
.7
2

3
6
5

1
0

5
.5
7

2
8
6
7

2

P
d
h
9

1
1

6
8

2
4

6
2
1
.0
6

1
2
0

7
5
.0
7

1
2
0

6
1
0
.5
6

4
0
9

7
4
.2
7

3
1
8
2

2

P
d
h
1
0

1
1

6
8

2
4

6
1
4
.0
1

9
9

5
2
5
.2
0

1
0
1

7
6
.5
2

3
0
4

5
2
.7
7

3
2
4
1

2

P
ol
sk
a
1

1
2

3
6

6
6

6
3
3
.5
3

6
5
0

6
1
8
.4
8

6
5
8

6
1
.7
4

1
5
4
3

4
1
.5
5

1
6
1
9

3

P
ol
sk
a
2

1
2

3
6

6
6

6
2
5
.5
2

6
6
3

6
1
4
.4
5

6
6
2

5
1
.5
6

1
4
9
2

4
1
.4
0

1
5
2
3

3

P
ol
sk
a
3

1
2

3
6

6
6

6
4
2
.0
4

6
4
7

7
2
2
.4
9

6
4
9

7
1
.9
9

1
4
3
0

4
2
.0
1

1
4
6
8

3

P
ol
sk
a
4

1
2

3
6

6
6

6
2
2
.3
8

6
6
0

6
1
3
.8
2

6
5
8

6
1
.3
9

1
4
2
8

4
1
.6
0

1
4
7
7

4

P
ol
sk
a
5

1
2

3
6

6
6

6
2
6
.4
2

6
5
9

7
1
6
.1
8

6
5
8

7
1
.5
2

1
5
2
1

4
1
.3
7

1
5
9
3

3

P
ol
sk
a
6

1
2

3
6

6
6

6
2
3
.7
7

7
0
5

6
1
8
.1
5

7
0
7

6
1
.6
5

1
6
2
9

4
1
.5
8

1
7
0
4

3

P
ol
sk
a
7

1
2

3
6

6
6

6
2
6
.0
8

8
5
0

6
1
9
.7
6

8
4
1

6
1
.0
1

1
7
5
4

4
0
.9
7

1
7
5
5

3

P
ol
sk
a
8

1
2

3
6

6
6

6
2
4
.9
6

6
7
8

6
1
6
.6
0

6
7
9

6
1
.7
5

1
5
2
3

4
1
.7
3

1
5
9
6

4

P
ol
sk
a
9

1
2

3
6

6
6

6
2
6
.2
5

6
7
7

7
1
9
.4
2

6
8
7

8
1
.4
0

1
4
8
7

4
1
.3
8

1
5
3
5

3

P
ol
sk
a
1
0

1
2

3
6

6
6

6
2
3
.2
3

6
7
0

6
1
7
.5
4

6
8
1

8
2
.1
6

1
5
2
2

4
2
.0
9

1
6
1
2

3

T
a
1 1

2
4

1
0
2

3
9
6

6
T
L

−
−

1
1
5
4
.5
1

4
7
9
4

1
1

5
1
2
.3
4

2
0
1
3
2

1
7

3
0
2
.0
3

4
2
9
3
9

3

T
a
1 2

2
4

1
0
2

3
9
6

6
T
L

−
−

1
1
1
7
.8
7

4
8
5
4

9
3
9
2
.5
7

1
9
9
6
3

1
2

2
9
8
.0
2

4
5
9
9
4

3

T
a
1 3

2
4

1
0
2

3
9
6

6
T
L

−
−

7
7
4
.6
6

4
9
1
8

9
3
6
5
.9
9

2
0
5
8
3

1
2

2
7
3
.8
7

4
6
1
6
5

3

T
a
1 4

2
4

1
0
2

3
9
6

6
T
L

−
−

8
4
7
.8
0

4
7
5
0

9
3
1
4
.4
3

1
6
9
9
2

1
0

2
6
0
.8
1

4
2
0
8
3

3

T
a
1 5

2
4

1
0
2

3
9
6

6
T
L

−
−

6
9
7
.6
7

5
0
2
0

9
3
4
3
.7
7

2
0
0
5
0

1
1

2
8
0
.8
7

4
7
9
0
9

3

T
a
1 6

2
4

1
0
2

3
9
6

6
T
L

−
−

1
0
1
1
.5
2

5
1
2
7

1
2

3
9
7
.1
0

2
0
8
7
3

1
4

3
2
5
.5
7

4
7
5
2
8

3

T
a
1 7

2
4

1
0
2

3
9
6

6
T
L

−
−

9
7
9
.6
4

4
9
6
9

1
1

6
1
0
.3
5

2
1
8
2
0

2
6

2
6
6
.3
0

4
4
3
3
4

3

T
a
1 8

2
4

1
0
2

3
9
6

6
T
L

−
−

1
4
0
6
.7
5

5
1
7
3

1
6

4
0
1
.7
1

1
9
9
2
4

1
4

2
8
1
.8
8

4
3
6
6
2

4

T
a
1 9

2
4

1
0
2

3
9
6

6
T
L

−
−

1
0
6
7
.3
5

5
1
5
5

1
1

5
2
3
.6
5

2
0
3
2
5

2
0

2
9
3
.9
5

4
6
2
7
5

4

T
a
1 1

0
2
4

1
0
2

3
9
6

6
T
L

−
−

1
5
3
4
.3
9

5
2
6
0

1
4

4
6
0
.1
9

2
2
2
1
0

1
9

2
6
9
.4
0

4
4
5
9
8

3

T
ab
le
4.
8:

R
es
ul
ts

fo
r
SN

D
lib

in
st
an
ce
s
w
it
h
P
at
h
fo
rm

ul
at
io
n
in

w
hi
ch

di
�
er
en
t
pr
ic
in
g
pr
ob
le
m
s
ar
e
te
st
ed
.

152 Extended formulations

Instances PF DW C

Name |N | |A| |C| |F | t[s] Col Iter t[s] Col Iter t[s]

Abilene1 12 30 132 6 0.78 1718 3 133.49 330 8 2.40

Abilene2 12 30 132 6 0.57 1718 2 55.75 282 6 2.34

Abilene3 12 30 132 6 0.48 1687 2 51.87 218 5 2.16

Abilene4 12 30 132 6 0.58 1698 2 61.98 334 7 2.82

Abilene5 12 30 132 6 0.49 1683 3 72.64 214 5 2.33

Abilene6 12 30 132 6 0.48 1689 2 52.01 232 6 1.24

Abilene7 12 30 132 6 0.42 1680 2 57.97 220 7 1.14

Abilene8 12 30 132 6 0.53 1695 2 61.45 437 7 1.24

Abilene9 12 30 132 6 0.52 1679 2 57.34 308 5 1.20

Abilene10 12 30 132 6 0.65 1717 3 43.41 240 6 1.94

Atlanta1 15 44 210 6 11.74 7392 2 503.66 501 8 6.95

Atlanta2 15 44 210 6 10.49 4563 4 172.56 505 5 4.48

Atlanta3 15 44 210 6 6.90 4929 3 302.41 206 6 2.91

Atlanta4 15 44 210 6 6.54 4996 3 281.46 207 6 3.40

Atlanta5 15 44 210 6 5.75 4151 3 330.98 417 8 2.90

Atlanta6 15 44 210 6 10.02 4930 3 194.32 358 7 3.23

Atlanta7 15 44 210 6 7.42 4985 3 197.63 208 6 2.68

Atlanta8 15 44 210 6 8.46 5046 3 502.80 341 8 3.22

Atlanta9 15 44 210 6 5.85 4851 4 316.95 446 10 3.15

Atlanta10 15 44 210 6 7.16 5046 3 358.66 370 12 2.63

Di− yuan1 11 84 22 6 13.51 7361 2 228.98 117 10 0.85

Di− yuan2 11 84 22 6 13.42 8227 2 281.78 136 16 0.45

Di− yuan3 11 84 22 6 27.97 14277 2 384.60 135 11 0.81

Di− yuan4 11 84 22 6 22.35 13831 2 408.55 99 10 0.38

Di− yuan5 11 84 22 6 22.14 13549 2 216.27 103 9 0.46

Di− yuan6 11 84 22 6 16.21 10228 3 355.63 143 15 0.50

Di− yuan7 11 84 22 6 19.95 13053 2 237.66 114 10 0.42

Di− yuan8 11 84 22 6 16.37 12235 2 167.02 86 9 0.70

Di− yuan9 11 84 22 6 34.84 17608 2 567.53 110 10 0.84

Di− yuan10 11 84 22 6 20.52 13190 2 151.02 101 8 0.42

France1 25 90 300 6 373.18 55964 3 TL − − 19.65

France2 25 90 300 6 272.30 47514 5 TL − − 30.85

France3 25 90 300 6 333.01 54355 3 3586.68 500 6 11.13

France4 25 90 300 6 241.07 50397 3 TL − − 24.07

France5 25 90 300 6 251.89 47509 3 TL − − 19.36

France6 25 90 300 6 326.58 55720 4 3157.17 451 7 12.77

France7 25 90 300 6 301.56 55379 3 TL − − 18.51

France8 25 90 300 6 345.98 46745 4 TL − − 23.15

France9 25 90 300 6 299.81 50328 3 TL − − 25.30

France10 25 90 300 6 296.71 50403 3 2700.80 409 5 10.55

Table 4.9: Results for SNDlib instances with relaxed Path formulation, relaxed Dantzig-
Wolfe formulation and Relaxed Compact formulation.

4.6 Computational results 153

Instances PF DW C

Name |N | |A| |C| |F | t[s] Col Iter t[s] Col Iter t[s]

Geant1 22 72 462 6 382.87 50877 3 1510.34 414 4 12.95

Geant2 22 72 462 6 298.15 48652 3 TL − − 11.55

Geant3 22 72 462 6 290.98 47741 3 1310.94 430 3 11.69

Geant4 22 72 462 6 269.43 45164 4 1848.17 1306 7 16.15

Geant5 22 72 462 6 303.14 49197 3 2429.54 864 5 11.35

Geant6 22 72 462 6 271.81 45707 4 2346.37 784 5 13.15

Geant7 22 72 462 6 283.34 49418 3 TL − − 12.06

Geant8 22 72 462 6 293.47 51436 3 2779.17 436 5 11.75

Geant9 22 72 462 6 270.50 46695 4 1838.10 704 6 10.59

Geant10 22 72 462 6 286.78 50382 3 2312.52 423 4 11.66

Newyork1 16 98 240 6 823.65 114459 3 TL − − 9.29

Newyork2 16 98 240 6 616.65 107859 3 TL − − 8.97

Newyork3 16 98 240 6 649.80 108805 3 TL − − 9.89

Newyork4 16 98 240 6 635.65 109429 3 TL − − 6.41

Newyork5 16 98 240 6 756.04 115911 3 TL − − 7.03

Newyork6 16 98 240 6 634.24 106288 3 TL − − 8.94

Newyork7 16 98 240 6 691.47 113000 3 TL − − 6.84

Newyork8 16 98 240 6 675.41 114708 3 TL − − 11.29

Newyork9 16 98 240 6 716.51 121537 3 TL − − 7.01

Newyork10 16 98 240 6 604.96 112781 3 TL − − 6.96

Nobel − eu1 28 82 378 6 982.64 104788 3 TL − − 14.33

Nobel − eu2 28 82 378 6 947.06 109253 4 TL − − 17.76

Nobel − eu3 28 82 378 6 803.63 100804 3 TL − − 12.60

Nobel − eu4 28 82 378 6 746.16 79113 4 TL − − 15.93

Nobel − eu5 28 82 378 6 950.99 98675 3 TL − − 14.18

Nobel − eu6 28 82 378 6 716.78 92789 3 TL − − 11.92

Nobel − eu7 28 82 378 6 781.82 102426 3 TL − − 11.06

Nobel − eu8 28 82 378 6 597.47 84123 3 TL − − 11.46

Nobel − eu9 28 82 378 6 582.09 88657 3 TL − − 10.18

Nobel − eu10 28 82 378 6 681.54 92449 3 TL − − 16.89

Nobel − ger1 17 52 121 6 10.18 5900 3 443.90 602 8 2.73

Nobel − ger2 17 52 121 6 12.50 5705 3 749.74 650 11 2.07

Nobel − ger3 17 52 121 6 8.82 5783 3 312.16 904 8 3.23

Nobel − ger4 17 52 121 6 8.58 5028 3 642.54 775 8 1.92

Nobel − ger5 17 52 121 6 10.36 5724 3 492.78 517 9 2.13

Nobel − ger6 17 52 121 6 13.77 5809 4 605.83 1039 10 2.26

Nobel − ger7 17 52 121 6 11.51 6032 3 416.67 428 7 2.39

Nobel − ger8 17 52 121 6 10.19 5300 3 662.80 635 7 1.81

Nobel − ger9 17 52 121 6 8.42 6026 3 727.86 667 11 1.64

Nobel − ger10 17 52 121 6 10.99 6051 3 703.07 226 11 3.60

Table 4.10: Results for SNDlib instances with relaxed Path formulation, relaxed
Dantzig-Wolfe formulation and Relaxed Compact formulation.

154 Extended formulations

Instances PF DW C

Name |N | |A| |C| |F | t[s] Col Iter t[s] Col Iter t[s]

Nobel − us1 14 42 91 6 1.76 2013 3 264.27 325 12 1.27

Nobel − us2 14 42 91 6 2.73 2385 3 243.46 293 11 2.14

Nobel − us3 14 42 91 6 1.87 2322 3 82.76 291 7 1.31

Nobel − us4 14 42 91 6 2.27 1967 4 112.86 307 7 1.56

Nobel − us5 14 42 91 6 1.75 2271 3 212.29 270 8 1.33

Nobel − us6 14 42 91 6 5.01 2482 3 207.01 354 9 1.66

Nobel − us7 14 42 91 6 2.06 2402 3 121.12 195 6 1.40

Nobel − us8 14 42 91 6 2.59 2483 3 233.45 239 10 1.10

Nobel − us9 14 42 91 6 1.96 2160 3 92.59 273 6 1.27

Nobel − us10 14 42 91 6 1.66 2324 3 192.17 234 9 1.99

Pdh1 11 68 24 6 1.69 1776 2 14.57 17 4 0.56

Pdh2 11 68 24 6 8.28 6460 2 117.73 31 8 0.69

Pdh3 11 68 24 6 4.58 4323 2 38.35 32 6 0.33

Pdh4 11 68 24 6 5.63 5061 2 13.65 33 4 0.63

Pdh5 11 68 24 6 6.62 5751 3 55.70 30 3 0.45

Pdh6 11 68 24 6 12.18 7378 2 117.01 50 9 0.33

Pdh7 11 68 24 6 6.20 5719 2 124.73 46 10 0.58

Pdh8 11 68 24 6 5.57 2867 2 15.36 27 5 0.59

Pdh9 11 68 24 6 4.27 3182 2 34.53 25 6 0.50

Pdh10 11 68 24 6 2.77 3241 2 61.58 23 5 0.58

Polska1 12 36 66 6 1.55 1619 3 145.62 327 12 1.17

Polska2 12 36 66 6 1.40 1523 3 68.35 197 6 1.02

Polska3 12 36 66 6 2.01 1468 3 67.62 215 8 1.68

Polska4 12 36 66 6 1.60 1477 4 95.25 252 9 1.58

Polska5 12 36 66 6 1.37 1593 3 102.52 202 8 0.82

Polska6 12 36 66 6 1.58 1704 3 234.06 414 15 0.92

Polska7 12 36 66 6 0.97 1755 3 118.58 249 9 1.05

Polska8 12 36 66 6 1.73 1596 4 96.66 357 13 1.64

Polska9 12 36 66 6 1.38 1535 3 63.90 234 9 0.74

Polska10 12 36 66 6 2.09 1612 3 74.21 244 7 0.96

Ta11 24 102 396 6 302.03 42939 3 885.94 710 6 16.29

Ta12 24 102 396 6 298.02 45994 3 1907.67 714 6 11.84

Ta13 24 102 396 6 273.87 46165 3 1852.12 973 6 13.21

Ta14 24 102 396 6 260.81 42083 3 1476.28 712 5 13.71

Ta15 24 102 396 6 280.87 47909 3 1324.80 723 5 13.69

Ta16 24 102 396 6 325.57 47528 3 2062.59 730 5 13.55

Ta17 24 102 396 6 266.30 44334 3 2615.23 883 7 12.80

Ta18 24 102 396 6 281.88 43662 4 1411.45 1014 8 15.01

Ta19 24 102 396 6 293.95 46275 4 1206.72 708 5 11.98

Ta110 24 102 396 6 269.40 44598 3 1145.76 719 6 12.47

Table 4.11: Results for SNDlib instances with relaxed Path formulation, relaxed
Dantzig-Wolfe formulation and Relaxed Compact formulation.

In
st
a
n
ce
s

P
F

P
F
+
V
I

D
W

D
W
+
V
I

N
a
m
e

|N
|
|A
|
|C
|
|F
|

G
a
p

t[
s]

C
o
l

It
er

G
a
p

t[
s]

C
o
l

It
er

G
a
p

t[
s]

C
o
l

It
er

G
a
p

t[
s]

C
o
l

It
er

A
bi
le
n
e 1

1
2

3
0

1
3
2

6
3
.3
2

0
.7
8

1
7
1
8

3
4
7
.5
6

3
.1
9

1
7
9
4

1
7
.8
3

1
3
3
.4
9

3
3
0

8
4
8
.5
0

3
1
1
.3
2

2
0
9
7

3
5

A
bi
le
n
e 2

1
2

3
0

1
3
2

6
5
.7
7

0
.5
7

1
7
1
8

2
2
4
7
.0
7

2
.2
9

1
6
6
4

1
1
7
.0
3

5
5
.7
5

2
8
2

6
2
4
8
.8
6

1
5
3
.0
0

1
9
8
2

2
9

A
bi
le
n
e 3

1
2

3
0

1
3
2

6
4
.4
4

0
.4
8

1
6
8
7

2
8
9
.3
1

1
.8
6

1
7
6
4

1
1
2
.4
3

5
1
.8
7

2
1
8

5
9
5
.1
9

2
4
8
.1
4

1
7
4
8

3
5

A
bi
le
n
e 4

1
2

3
0

1
3
2

6
4
.6
0

0
.5
8

1
6
9
8

2
1
6
8
.6
1

1
.9
2

1
7
7
4

1
8
.5
8

6
1
.9
8

3
3
4

7
1
7
2
.3
8

1
7
1
.8
8

1
8
0
9

3
0

A
bi
le
n
e 5

1
2

3
0

1
3
2

6
1
3
.7
8

0
.4
9

1
6
8
3

3
4
7
8
.4
8

0
.6
9

1
7
4
8

1
1
7
.4
2

7
2
.6
4

2
1
4

5
4
7
8
.4
8

3
6
.0
6

9
1
7

1
0

A
bi
le
n
e 6

1
2

3
0

1
3
2

6
5
.1
2

0
.4
8

1
6
8
9

2
5
7
0
.4
3

0
.8
1

1
7
5
2

1
1
1
.3
0

5
2
.0
1

2
3
2

6
5
7
0
.4
3

2
3
6
.5
5

2
5
7
6

4
0

A
bi
le
n
e 7

1
2

3
0

1
3
2

6
5
.5
0

0
.4
2

1
6
8
0

2
1
6
0
.1
1

1
.0
4

1
7
4
0

1
8
.9
2

5
7
.9
7

2
2
0

7
1
6
1
.5
0

2
0
1
.5
5

2
0
8
0

3
2

A
bi
le
n
e 8

1
2

3
0

1
3
2

6
1
.0
4

0
.5
3

1
6
9
5

2
5
1
.7
7

1
.6
5

1
7
7
0

1
5
.0
5

6
1
.4
5

4
3
7

7
5
5
.9
1

2
2
5
.8
1

2
1
4
6

3
4

A
bi
le
n
e 9

1
2

3
0

1
3
2

6
8
.7
0

0
.5
2

1
6
7
9

2
2
2
0
.1
4

2
.1
5

1
7
6
2

1
1
9
.7
7

5
7
.3
4

3
0
8

5
2
2
2
.6
8

2
6
6
.5
6

3
0
3
1

4
1

A
bi
le
n
e 1

0
1
2

3
0

1
3
2

6
3
.6
1

0
.6
5

1
7
1
7

3
4
3
8
.2
8

0
.9
7

1
7
8
2

1
1
0
.5
2

4
3
.4
1

2
4
0

6
4
3
8
.5
7

1
8
8
.9
0

2
0
8
3

3
3

A
tl
a
n
ta

1
1
5

4
4

2
1
0

6
5
.4
8

1
1
.7
4

7
3
9
2

2
1
5
.9
3

4
5
.3
2

7
4
0
1

2
1
3
.6
9

5
0
3
.6
6

5
0
1

8
2
4
.7
1

1
8
4
5
.4
2

2
2
9
6

2
9

A
tl
a
n
ta

2
1
5

4
4

2
1
0

6
4
.4
9

1
0
.4
9

4
5
6
3

4
2
7
.1
7

2
4
.4
7

4
6
9
6

2
1
1
.3
9

1
7
2
.5
6

5
0
5

5
3
1
.9
0

2
3
0
3
.3
4

3
2
3
9

3
7

A
tl
a
n
ta

3
1
5

4
4

2
1
0

6
7
.8
1

6
.9
0

4
9
2
9

3
1
1
2
.1
0

3
0
.0
9

5
0
1
8

2
1
6
.6
8

3
0
2
.4
1

2
0
6

6
1
2
1
.4
2

2
4
2
2
.3
2

5
1
4
4

4
1

A
tl
a
n
ta

4
1
5

4
4

2
1
0

6
7
.0
1

6
.5
4

4
9
9
6

3
7
9
.8
3

1
5
.6
4

5
3
0
7

2
1
4
.1
3

2
8
1
.4
6

2
0
7

6
8
4
.5
9

1
7
7
9
.7
3

2
9
2
9

2
8

A
tl
a
n
ta

5
1
5

4
4

2
1
0

6
6
.8
5

5
.7
5

4
1
5
1

3
9
9
.3
2

4
.0
8

6
5
4
0

1
1
1
.0
9

3
3
0
.9
8

4
1
7

8
1
0
1
.4
4

2
7
8
2
.8
6

5
6
5
3

5
4

A
tl
a
n
ta

6
1
5

4
4

2
1
0

6
1
3
.0
5

1
0
.0
2

4
9
3
0

3
9
3
.8
3

2
1
.7
5

4
8
2
5

2
1
9
.7
6

1
9
4
.3
2

3
5
8

7
9
7
.7
1

2
8
3
3
.3
5

4
3
4
2

4
5

A
tl
a
n
ta

7
1
5

4
4

2
1
0

6
1
4
.5
7

7
.4
2

4
9
8
5

3
1
1
3
.6
9

3
0
.8
5

4
9
1
1

2
2
9
.0
5

1
9
7
.6
3

2
0
8

6
1
2
2
.6
5

1
3
8
3
.8
4

3
1
3
3

2
9

A
tl
a
n
ta

8
1
5

4
4

2
1
0

6
5
.6
2

8
.4
6

5
0
4
6

3
4
9
.8
4

2
6
.8
4

5
1
1
5

2
1
4
.3
4

5
0
2
.8
0

3
4
1

8
5
8
.5
0

1
6
0
2
.8
3

2
6
8
8

2
6

A
tl
a
n
ta

9
1
5

4
4

2
1
0

6
5
.2
2

5
.8
5

4
8
5
1

4
7
0
.1
8

2
4
.9
7

4
8
6
9

2
1
3
.5
4

3
1
6
.9
5

4
4
6

1
0

7
8
.3
7

1
4
0
9
.3
7

3
2
4
5

3
1

A
tl
a
n
ta

1
0

1
5

4
4

2
1
0

6
9
.8
5

7
.1
6

5
0
4
6

3
1
0
5
.5
6

3
1
.0
1

4
9
5
8

2
1
5
.4
8

3
5
8
.6
6

3
7
0

1
2

1
0
8
.9
2

2
0
2
5
.3
6

3
7
8
9

3
7

D
i
−

y
u
a
n
1

1
1

8
4

2
2

6
1
.3
7

1
3
.5
1

7
3
6
1

2
5
.9
6

7
.4
2

5
3
8
6

2
4
.9
8

2
2
8
.9
8

1
1
7

1
0

9
.3
7

1
0
3
7
.9
2

5
5
0

3
9

D
i
−

y
u
a
n
2

1
1

8
4

2
2

6
3
.4
3

1
3
.4
2

8
2
2
7

2
1
0
.8
7

9
.4
0

4
8
1
7

2
1
2
.8
5

2
8
1
.7
8

1
3
6

1
6

2
0
.0
1

2
0
2
5
.8
2

5
5
1

3
8

D
i
−

y
u
a
n
3

1
1

8
4

2
2

6
0
.3
9

2
7
.9
7

1
4
2
7
7

2
3
.9
6

2
0
.5
8

1
0
2
9
5

2
3
.8
1

3
8
4
.6
0

1
3
5

1
1

−
T
L

−
−

D
i
−

y
u
a
n
4

1
1

8
4

2
2

6
1
.5
8

2
2
.3
5

1
3
8
3
1

2
1
8
.7
1

1
3
.9
9

7
3
4
3

2
9
.3
6

4
0
8
.5
5

9
9

1
0

−
T
L

−
−

D
i
−

y
u
a
n
5

1
1

8
4

2
2

6
0
.9
7

2
2
.1
4

1
3
5
4
9

2
1
8
.5
3

1
4
.6
5

7
7
2
4

2
5
.8
2

2
1
6
.2
7

1
0
3

9
−

T
L

−
−

D
i
−

y
u
a
n
6

1
1

8
4

2
2

6
1
.1
1

1
6
.2
1

1
0
2
2
8

3
7
.5
8

1
3
.9
2

7
2
6
3

2
7
.2
0

3
5
5
.6
3

1
4
3

1
5

1
2
.1
6

2
3
8
9
.2
8

6
3
5

4
8

D
i
−

y
u
a
n
7

1
1

8
4

2
2

6
0
.9
1

1
9
.9
5

1
3
0
5
3

2
1
4
.0
0

1
3
.4
1

7
0
3
6

2
3
.8
6

2
3
7
.6
6

1
1
4

1
0

1
7
.2
6

2
6
5
2
.0
3

6
1
3

4
6

D
i
−

y
u
a
n
8

1
1

8
4

2
2

6
1
.7
4

1
6
.3
7

1
2
2
3
5

2
2
1
.0
3

1
4
.0
0

8
0
6
0

2
4
.7
5

1
6
7
.0
2

8
6

9
−

T
L

−
−

D
i
−

y
u
a
n
9

1
1

8
4

2
2

6
0
.3
9

3
4
.8
4

1
7
6
0
8

2
6
.5
7

2
8
.1
7

1
5
8
8
8

2
9
.8
8

5
6
7
.5
3

1
1
0

1
0

−
T
L

−
−

D
i
−

y
u
a
n
1
0

1
1

8
4

2
2

6
1
.9
4

2
0
.5
2

1
3
1
9
0

2
1
0
.4
1

1
8
.0
2

9
6
2
2

2
6
.2
5

1
5
1
.0
2

1
0
1

8
−

T
L

−
−

F
r
a
n
ce

1
2
5

9
0

3
0
0

6
1
0
.6
1

3
7
3
.1
8

5
5
9
6
4

3
4
4
.5
3

9
9
0
.7
1

5
6
8
9
9

2
−

T
L

−
−

−
T
L

−
−

F
r
a
n
ce

2
2
5

9
0

3
0
0

6
5
.1
0

2
7
2
.3
0

4
7
5
1
4

5
1
7
.2
2

1
6
4
0
.2
4

4
8
4
8
5

2
−

T
L

−
−

−
T
L

−
−

F
r
a
n
ce

3
2
5

9
0

3
0
0

6
6
.2
4

3
3
3
.0
1

5
4
3
5
5

3
4
8
.8
8

2
7
6
9
.0
4

5
7
2
0
7

1
1
4
.3
9

3
5
8
6
.6
8

5
0
0

6
−

T
L

−
−

F
r
a
n
ce

4
2
5

9
0

3
0
0

6
1
0
.9
0

2
4
1
.0
7

5
0
3
9
7

3
2
9
.3
8

5
0
0
.9
2

5
2
6
5
1

2
−

T
L

−
−

−
T
L

−
−

F
r
a
n
ce

5
2
5

9
0

3
0
0

6
9
.1
1

2
5
1
.8
9

4
7
5
0
9

3
3
2
.2
5

1
2
8
5
.4
8

5
0
9
3
6

2
−

T
L

−
−

−
T
L

−
−

F
r
a
n
ce

6
2
5

9
0

3
0
0

6
6
.6
1

3
2
6
.5
8

5
5
7
2
0

4
4
5
.3
0

2
5
5
8
.1
6

5
7
1
7
2

2
1
4
.5
7

3
1
5
7
.1
7

4
5
1

7
−

T
L

−
−

F
r
a
n
ce

7
2
5

9
0

3
0
0

6
1
0
.7
7

3
0
1
.5
6

5
5
3
7
9

3
2
1
.5
8

9
5
8
.7
5

5
7
8
3
7

2
−

T
L

−
−

4
4
0
2
.3
0

2
1
6
5
.8
0

1
1
2
1

9
8

F
r
a
n
ce

8
2
5

9
0

3
0
0

6
5
.8
6

3
4
5
.9
8

4
6
7
4
5

4
2
0
.7
9

4
2
0
.0
2

5
0
0
1
4

2
−

T
L

−
−

−
T
L

−
−

F
r
a
n
ce

9
2
5

9
0

3
0
0

6
5
.0
2

2
9
9
.8
1

5
0
3
2
8

3
1
4
.5
6

4
0
5
.8
0

4
9
5
7
0

2
−

T
L

−
−

4
4
0
3
.3
7

3
4
2
7
.4
2

2
1
0
3

2
3
9

F
r
a
n
ce

1
0

2
5

9
0

3
0
0

6
1
3
.1
0

2
9
6
.7
1

5
0
4
0
3

3
7
4
.5
7

5
0
3
.3
2

5
1
4
3
5

2
2
2
.4
6

2
7
0
0
.8
0

4
0
9

5
−

T
L

−
−

T
ab
le
4.
12
:
R
es
ul
ts
fo
r
SN

D
lib

in
st
an
ce
s
w
it
h
re
la
xe
d
P
at
h
fo
rm

ul
at
io
n,

re
la
xe
d
D
an
tz
ig
-W

ol
fe
fo
rm

ul
at
io
n
w
it
h
an
d
w
it
ho
ut

va
lid

in
eq
ua
lit
ie
s.

156 Extended formulations

In
st
a
n
ce
s

P
F

P
F
+
V
I

D
W

D
W
+
V
I

N
a
m
e

|N
|
|A
|
|C
|
|F
|

G
a
p

t[
s]

C
o
l

It
er

G
a
p

t[
s]

C
o
l

It
er

G
a
p

t[
s]

C
o
l

It
er

G
a
p

t[
s]

C
o
l

It
er

G
ea

n
t 1

2
2

7
2

4
6
2

6
2
.8
3

3
8
2
.8
7

5
0
8
7
7

3
4
8
4
.9
4

4
0
0
.5
6

4
1
0
0
9

2
1
4
.4
7

1
5
1
0
.3
4

4
1
4

4
−

T
L

−
−

G
ea

n
t 2

2
2

7
2

4
6
2

6
6
.6
5

2
9
8
.1
5

4
8
6
5
2

3
3
7
1
.9
3

7
0
7
.5
0

4
5
8
5
7

2
−

T
L

−
−

−
T
L

−
−

G
ea

n
t 3

2
2

7
2

4
6
2

6
7
.3
0

2
9
0
.9
8

4
7
7
4
1

3
3
1
9
.0
0

1
0
7
7
.0
1

4
4
6
5
6

2
1
6
.2
1

1
3
1
0
.9
4

4
3
0

3
−

T
L

−
−

G
ea

n
t 4

2
2

7
2

4
6
2

6
2
.5
9

2
6
9
.4
3

4
5
1
6
4

4
5
3
.4
9

7
2
3
.1
5

4
5
3
7
9

2
6
.0
0

1
8
4
8
.1
7

1
3
0
6

7
−

T
L

−
−

G
ea

n
t 5

2
2

7
2

4
6
2

6
4
.4
2

3
0
3
.1
4

4
9
1
9
7

3
4
3
1
.3
4

3
8
1
.1
1

3
4
9
6
1

2
1
7
.4
5

2
4
2
9
.5
4

8
6
4

5
−

T
L

−
−

G
ea

n
t 6

2
2

7
2

4
6
2

6
3
.9
2

2
7
1
.8
1

4
5
7
0
7

4
1
5
7
.9
4

7
2
8
.8
4

3
4
7
2
9

2
1
1
.2
7

2
3
4
6
.3
7

7
8
4

5
−

T
L

−
−

G
ea

n
t 7

2
2

7
2

4
6
2

6
3
.7
7

2
8
3
.3
4

4
9
4
1
8

3
1
3
0
.9
1

2
0
8
6
.8
2

4
9
9
3
3

2
−

T
L

−
−

−
T
L

−
−

G
ea

n
t 8

2
2

7
2

4
6
2

6
7
.7
7

2
9
3
.4
7

5
1
4
3
6

3
1
8
2
.5
6

1
6
4
7
.4
3

5
0
9
0
8

2
1
4
.2
4

2
7
7
9
.1
7

4
3
6

5
−

T
L

−
−

G
ea

n
t 9

2
2

7
2

4
6
2

6
2
.5
8

2
7
0
.5
0

4
6
6
9
5

4
1
1
0
.8
1

2
2
7
4
.0
9

4
3
0
6
5

2
5
.2
9

1
8
3
8
.1
0

7
0
4

6
−

T
L

−
−

G
ea

n
t 1

0
2
2

7
2

4
6
2

6
5
.1
5

2
8
6
.7
8

5
0
3
8
2

3
4
5
7
.6
7

3
8
3
.1
6

4
6
6
8
8

2
1
8
.5
7

2
3
1
2
.5
2

4
2
3

4
−

T
L

−
−

N
ew

y
o
r
k
1

1
6

9
8

2
4
0

6
3
.5
5

8
2
3
.6
5

1
1
4
4
5
9

3
2
0
.2
3

8
7
3
.5
7

1
1
7
2
8
3

2
−

T
L

−
−

−
T
L

−
−

N
ew

y
o
r
k
2

1
6

9
8

2
4
0

6
4
.5
4

6
1
6
.6
5

1
0
7
8
5
9

3
3
6
.7
7

1
3
7
1
.1
4

1
1
3
1
4
2

2
−

T
L

−
−

−
T
L

−
−

N
ew

y
o
r
k
3

1
6

9
8

2
4
0

6
2
.1
1

6
4
9
.8
0

1
0
8
8
0
5

3
1
7
.3
6

1
4
0
7
.3
6

1
1
3
1
5
8

2
−

T
L

−
−

−
T
L

−
−

N
ew

y
o
r
k
4

1
6

9
8

2
4
0

6
3
.7
8

6
3
5
.6
5

1
0
9
4
2
9

3
5
2
.1
8

1
2
6
0
.2
5

1
2
0
1
6
8

2
−

T
L

−
−

−
T
L

−
−

N
ew

y
o
r
k
5

1
6

9
8

2
4
0

6
2
.7
4

7
5
6
.0
4

1
1
5
9
1
1

3
3
3
.8
8

1
2
4
8
.9
1

1
1
9
3
6
6

2
−

T
L

−
−

−
T
L

−
−

N
ew

y
o
r
k
6

1
6

9
8

2
4
0

6
3
.4
6

6
3
4
.2
4

1
0
6
2
8
8

3
3
6
.6
7

2
5
3
4
.4
2

1
1
5
1
0
1

2
−

T
L

−
−

−
T
L

−
−

N
ew

y
o
r
k
7

1
6

9
8

2
4
0

6
2
.8
8

6
9
1
.4
7

1
1
3
0
0
0

3
8
2
.4
8

7
5
5
.6
4

1
1
5
8
1
1

2
−

T
L

−
−

−
T
L

−
−

N
ew

y
o
r
k
8

1
6

9
8

2
4
0

6
2
.3
6

6
7
5
.4
1

1
1
4
7
0
8

3
1
4
.7
8

1
0
5
5
.7
7

1
1
8
8
2
0

2
−

T
L

−
−

−
T
L

−
−

N
ew

y
o
r
k
9

1
6

9
8

2
4
0

6
3
.8
7

7
1
6
.5
1

1
2
1
5
3
7

3
2
0
.9
5

1
4
0
3
.3
2

1
2
4
6
4
8

2
−

T
L

−
−

−
T
L

−
−

N
ew

y
o
r
k
1
0

1
6

9
8

2
4
0

6
3
.4
9

6
0
4
.9
6

1
1
2
7
8
1

3
−

T
L

−
−

−
T
L

−
−

−
T
L

−
−

N
o
be
l
−

eu
1

2
8

8
2

3
7
8

6
5
.4
4

9
8
2
.6
4

1
0
4
7
8
8

3
−

T
L

−
−

−
T
L

−
−

−
T
L

−
−

N
o
be
l
−

eu
2

2
8

8
2

3
7
8

6
4
.9
2

9
4
7
.0
6

1
0
9
2
5
3

4
−

T
L

−
−

−
T
L

−
−

−
T
L

−
−

N
o
be
l
−

eu
3

2
8

8
2

3
7
8

6
8
.7
6

8
0
3
.6
3

1
0
0
8
0
4

3
−

T
L

−
−

−
T
L

−
−

−
T
L

−
−

N
o
be
l
−

eu
4

2
8

8
2

3
7
8

6
3
.3
0

7
4
6
.1
6

7
9
1
1
3

4
2
3
.2
8

1
2
2
2
.1
8

8
8
4
9
8

2
4
3
4
7
.3
8

1
2
8
1
.6
9

1
4
7

2
7

−
T
L

−
−

N
o
be
l
−

eu
5

2
8

8
2

3
7
8

6
2
.1
4

9
5
0
.9
9

9
8
6
7
5

3
−

T
L

−
−

−
T
L

−
−

−
T
L

−
−

N
o
be
l
−

eu
6

2
8

8
2

3
7
8

6
5
.4
1

7
1
6
.7
8

9
2
7
8
9

3
−

T
L

−
−

−
T
L

−
−

−
T
L

−
−

N
o
be
l
−

eu
7

2
8

8
2

3
7
8

6
6
.1
1

7
8
1
.8
2

1
0
2
4
2
6

3
−

T
L

−
−

−
T
L

−
−

−
T
L

−
−

N
o
be
l
−

eu
8

2
8

8
2

3
7
8

6
3
.4
7

5
9
7
.4
7

8
4
1
2
3

3
8
0
.5
0

1
3
9
6
.7
4

8
6
5
2
4

2
−

T
L

−
−

−
T
L

−
−

N
o
be
l
−

eu
9

2
8

8
2

3
7
8

6
9
.1
0

5
8
2
.0
9

8
8
6
5
7

3
1
0
7
.6
4

1
3
2
6
.3
4

8
9
3
6
5

2
−

T
L

−
−

−
T
L

−
−

N
o
be
l
−

eu
1
0

2
8

8
2

3
7
8

6
2
.5
7

6
8
1
.5
4

9
2
4
4
9

3
−

T
L

−
−

−
T
L

−
−

−
T
L

−
−

N
o
be
l
−

g
er

1
1
7

5
2

1
2
1

6
3
.2
6

1
0
.1
8

5
9
0
0

3
7
9
.4
5

5
.0
6

1
0
1
8
0

2
1
0
.2
1

4
4
3
.9
0

4
3
4

8
−

T
L

−
−

N
o
be
l
−

g
er

2
1
7

5
2

1
2
1

6
7
.7
1

1
2
.5
0

5
7
0
5

3
1
2
9
.0
4

9
.6
3

7
9
0
3

2
1
9
.6
1

7
4
9
.7
4

4
5
9

1
1

−
T
L

−
−

N
o
be
l
−

g
er

3
1
7

5
2

1
2
1

6
4
.4
4

8
.8
2

5
7
8
3

3
1
6
0
.8
3

9
.3
8

9
0
5
0

1
1
0
.9
5

3
1
2
.1
6

3
5
9

8
−

T
L

−
−

N
o
be
l
−

g
er

4
1
7

5
2

1
2
1

6
4
.0
5

8
.5
8

5
0
2
8

3
4
5
.3
3

7
.9
5

8
5
8
2

2
1
6
.8
0

6
4
2
.5
4

4
6
3

8
−

T
L

−
−

N
o
be
l
−

g
er

5
1
7

5
2

1
2
1

6
4
.1
5

1
0
.3
6

5
7
2
4

3
5
7
.8
3

7
.4
9

9
3
8
8

2
1
1
.1
2

4
9
2
.7
8

5
7
2

9
−

T
L

−
−

N
o
be
l
−

g
er

6
1
7

5
2

1
2
1

6
2
.8
2

1
3
.7
7

5
8
0
9

4
1
9
.4
8

3
9
.8
8

5
7
1
6

2
7
.1
8

6
0
5
.8
3

4
7
0

1
0

−
T
L

−
−

N
o
be
l
−

g
er

7
1
7

5
2

1
2
1

6
6
.3
8

1
1
.5
1

6
0
3
2

3
3
2
.3
5

1
4
.7
1

8
2
1
5

2
1
2
.9
7

4
1
6
.6
7

4
1
5

7
−

T
L

−
−

N
o
be
l
−

g
er

8
1
7

5
2

1
2
1

6
9
.3
3

1
0
.1
9

5
3
0
0

3
1
0
5
.0
1

3
1
.4
2

6
8
5
4

2
2
1
.3
6

6
6
2
.8
0

3
1
8

7
−

T
L

−
−

N
o
be
l
−

g
er

9
1
7

5
2

1
2
1

6
4
.4
5

8
.4
2

6
0
2
6

3
5
6
.4
6

4
.9
8

9
4
1
5

2
1
6
.2
8

7
2
7
.8
6

6
2
4

1
1

−
T
L

−
−

N
o
be
l
−

g
er

1
0

1
7

5
2

1
2
1

6
4
.8
9

1
0
.9
9

6
0
5
1

3
4
5
.5
0

3
0
.3
6

6
5
0
4

2
1
3
.2
3

7
0
3
.0
7

4
5
7

1
1

−
T
L

−
−

T
ab
le
4.
13
:
R
es
ul
ts
fo
r
SN

D
lib

in
st
an
ce
s
w
it
h
re
la
xe
d
P
at
h
fo
rm

ul
at
io
n,

re
la
xe
d
D
an
tz
ig
-W

ol
fe
fo
rm

ul
at
io
n
w
it
h
an
d
w
it
ho
ut

va
lid

in
eq
ua
lit
ie
s.

4.6 Computational results 157

In
st
a
n
ce
s

P
F

P
F
+
V
I

D
W

D
W
+
V
I

N
a
m
e

|N
|
|A
|
|C
|
|F
|

G
a
p

t[
s]

C
o
l

It
er

G
a
p

t[
s]

C
o
l

It
er

G
a
p

t[
s]

C
o
l

It
er

G
a
p

t[
s]

C
o
l

It
er

N
o
be
l
−

u
s 1

1
4

4
2

9
1

6
5
.0
6

1
.7
6

2
0
1
3

3
5
9
.5
9

2
.3
1

3
4
6
8

1
1
4
.1
0

2
6
4
.2
7

3
2
5

1
2

6
2
.7
0

2
1
5
0
.4
1

5
4
9
7

8
9

N
o
be
l
−

u
s 2

1
4

4
2

9
1

6
3
.1
3

2
.7
3

2
3
8
5

3
6
0
.2
9

1
.8
0

3
5
3
3

2
7
.2
9

2
4
3
.4
6

2
9
3

1
1

3
6
.9
7

2
3
6
7
.2
7

1
2
5
1

6
9

N
o
be
l
−

u
s 3

1
4

4
2

9
1

6
4
.5
4

1
.8
7

2
3
2
2

3
6
4
.6
4

5
.4
6

3
7
3
6

1
8
.3
3

8
2
.7
6

2
9
1

7
6
9
.7
5

3
4
8
6
.3
9

5
3
3
6

8
9

N
o
be
l
−

u
s 4

1
4

4
2

9
1

6
3
.1
9

2
.2
7

1
9
6
7

4
1
7
.1
4

6
.2
2

2
1
7
8

2
6
.6
8

1
1
2
.8
6

3
0
7

7
2
0
.4
0

9
2
1
.7
9

1
5
3
2

3
9

N
o
be
l
−

u
s 5

1
4

4
2

9
1

6
4
.5
9

1
.7
5

2
2
7
1

3
2
9
.6
7

2
0
.9
4

2
3
4
2

2
1
0
.9
5

2
1
2
.2
9

2
7
0

8
3
5
.8
4

2
2
1
4
.8
0

2
8
8
4

5
4

N
o
be
l
−

u
s 6

1
4

4
2

9
1

6
1
.9
5

5
.0
1

2
4
8
2

3
1
1
.9
4

1
1
.9
5

2
5
9
6

2
5
.2
9

2
0
7
.0
1

3
5
4

9
1
6
.1
4

9
2
9
.2
9

1
2
8
3

2
9

N
o
be
l
−

u
s 7

1
4

4
2

9
1

6
6
.1
4

2
.0
6

2
4
0
2

3
9
4
.4
2

4
.4
8

2
4
3
8

2
1
2
.6
2

1
2
1
.1
2

1
9
5

6
1
0
1
.4
8

1
9
8
3
.7
5

2
8
9
7

5
7

N
o
be
l
−

u
s 8

1
4

4
2

9
1

6
4
.6
2

2
.5
9

2
4
8
3

3
1
0
2
.6
9

3
.2
4

3
3
4
2

2
1
3
.3
8

2
3
3
.4
5

2
3
9

1
0

1
0
9
.8
0

1
9
1
8
.5
3

2
3
8
1

4
4

N
o
be
l
−

u
s 9

1
4

4
2

9
1

6
3
.4
0

1
.9
6

2
1
6
0

3
4
0
.7
6

8
.1
0

2
2
4
6

2
1
6
.0
3

9
2
.5
9

2
7
3

6
5
0
.8
8

1
1
7
9
.5
7

1
9
2
3

3
9

N
o
be
l
−

u
s 1

0
1
4

4
2

9
1

6
4
.1
1

1
.6
6

2
3
2
4

3
5
3
.7
0

4
.0
8

3
4
4
6

1
1
6
.5
5

1
9
2
.1
7

2
3
4

9
6
5
.3
5

1
9
0
4
.1
5

2
8
4
1

5
6

P
d
h
1

1
1

6
8

2
4

6
4
.5
2

1
.6
9

1
7
7
6

2
6
8
.1
7

1
.6
4

1
7
9
2

2
5
.7
5

1
4
.5
7

1
7

4
6
8
.8
0

2
8
4
.7
8

7
1

2
7

P
d
h
2

1
1

6
8

2
4

6
5
.9
7

8
.2
8

6
4
6
0

2
3
7
.7
0

6
.9
5

6
5
9
3

2
8
.8
0

1
1
7
.7
3

3
1

8
3
9
.0
7

1
1
6
5
.6
8

1
5
7

3
8

P
d
h
3

1
1

6
8

2
4

6
5
.5
2

4
.5
8

4
3
2
3

2
7
7
.9
1

4
.5
1

4
3
9
1

2
7
.6
6

3
8
.3
5

3
2

6
7
8
.6
6

5
5
2
.2
0

1
6
2

3
7

P
d
h
4

1
1

6
8

2
4

6
4
.7
0

5
.6
3

5
0
6
1

2
5
2
.8
4

4
.0
5

3
3
0
6

2
5
.9
1

1
3
.6
5

3
3

4
5
3
.7
1

1
0
3
0
.2
5

2
6
2

5
9

P
d
h
5

1
1

6
8

2
4

6
3
.8
3

6
.6
2

5
7
5
1

3
4
3
.9
6

6
.5
6

5
9
5
1

2
8
.4
2

5
5
.7
0

3
0

3
−

T
L

−
−

P
d
h
6

1
1

6
8

2
4

6
4
.1
3

1
2
.1
8

7
3
7
8

2
6
2
.2
6

5
.9
8

5
1
4
1

2
7
.4
7

1
1
7
.0
1

5
0

9
−

T
L

−
−

P
d
h
7

1
1

6
8

2
4

6
4
.2
0

6
.2
0

5
7
1
9

2
6
7
.2
1

6
.1
8

6
6
1
8

2
5
.8
3

1
2
4
.7
3

4
6

1
0

7
0
.5
6

1
6
2
2
.5
6

1
1
3

2
8

P
d
h
8

1
1

6
8

2
4

6
8
.2
8

5
.5
7

2
8
6
7

2
6
6
.9
2

2
.5
8

1
8
8
0

2
1
0
.5
0

1
5
.3
6

2
7

5
6
7
.7
2

3
4
3
.6
2

1
6
7

5
0

P
d
h
9

1
1

6
8

2
4

6
6
.9
9

4
.2
7

3
1
8
2

2
4
1
.2
8

3
.0
8

3
1
4
7

2
1
0
.3
9

3
4
.5
3

2
5

6
4
2
.7
7

1
4
3
1
.2
9

9
7

2
9

P
d
h
1
0

1
1

6
8

2
4

6
7
.0
4

2
.7
7

3
2
4
1

2
8
8
.0
7

2
.7
0

3
3
7
4

2
9
.2
5

6
1
.5
8

2
3

5
9
1
.8
5

5
6
0
.5
1

6
3

1
3

P
o
ls
k
a
1

1
2

3
6

6
6

6
1
.2
7

1
.5
5

1
6
1
9

3
2
.9
6

1
.3
2

2
1
5
5

2
8
.5
1

1
4
5
.6
2

3
2
7

1
2

1
0
.0
6

3
9
2
.4
3

1
0
0
7

2
8

P
o
ls
k
a
2

1
2

3
6

6
6

6
1
.4
2

1
.4
0

1
5
2
3

3
1
3
.4
5

4
.1
3

1
5
7
4

2
1
5
.4
2

6
8
.3
5

1
9
7

6
2
6
.6
9

2
6
9
.2
3

8
9
3

2
5

P
o
ls
k
a
3

1
2

3
6

6
6

6
1
.4
5

2
.0
1

1
4
6
8

3
4
.2
6

4
.5
9

1
5
2
0

2
5
.3
4

6
7
.6
2

2
1
5

8
8
.3
7

2
2
2
.0
8

6
6
0

2
0

P
o
ls
k
a
4

1
2

3
6

6
6

6
2
.0
9

1
.6
0

1
4
7
7

4
9
.2
4

1
.9
1

1
9
8
9

2
1
1
.3
9

9
5
.2
5

2
5
2

9
1
9
.1
6

3
9
2
.7
8

7
7
7

2
9

P
o
ls
k
a
5

1
2

3
6

6
6

6
2
.7
1

1
.3
7

1
5
9
3

3
1
0
.1
8

1
.0
7

2
2
9
0

1
1
4
.2
3

1
0
2
.5
2

2
0
2

8
2
2
.5
1

3
0
7
.5
1

8
5
1

2
4

P
o
ls
k
a
6

1
2

3
6

6
6

6
1
.5
5

1
.5
8

1
7
0
4

3
3
.8
2

9
.6
0

1
6
9
8

2
1
4
.9
3

2
3
4
.0
6

4
1
4

1
5

1
8
.7
7

4
2
5
.5
2

8
8
0

2
5

P
o
ls
k
a
7

1
2

3
6

6
6

6
1
.5
0

0
.9
7

1
7
5
5

3
7
.7
3

4
.5
5

1
5
5
0

2
9
.7
2

1
1
8
.5
8

2
4
9

9
1
6
.1
5

3
3
7
.7
5

7
3
1

2
2

P
o
ls
k
a
8

1
2

3
6

6
6

6
0
.9
7

1
.7
3

1
5
9
6

4
2
.2
3

9
.8
4

1
6
3
9

2
5
.1
2

9
6
.6
6

3
5
7

1
3

7
.6
9

2
6
7
.6
8

7
8
3

2
3

P
o
ls
k
a
9

1
2

3
6

6
6

6
1
.3
7

1
.3
8

1
5
3
5

3
5
.5
4

1
.0
9

2
2
2
4

1
7
.0
2

6
3
.9
0

2
3
4

9
1
2
.7
1

2
8
8
.8
0

8
0
6

2
4

P
o
ls
k
a
1
0

1
2

3
6

6
6

6
1
.6
2

2
.0
9

1
6
1
2

3
5
.8
9

5
.2
9

1
6
7
3

2
1
0
.1
5

7
4
.2
1

2
4
4

7
1
3
.6
4

3
6
0
.6
5

8
7
6

2
8

T
a
1
1

2
4

1
0
2

3
9
6

6
1
1
.9
7

3
0
2
.0
3

4
2
9
3
9

3
2
6
7
.8
7

7
6
2
.2
9

4
0
3
2
6

2
1
7
.6
5

8
8
5
.9
4

7
1
0

6
−

T
L

−
−

T
a
1
2

2
4

1
0
2

3
9
6

6
1
4
.6
8

2
9
8
.0
2

4
5
9
9
4

3
2
5
5
.4
7

1
9
9
4
.1
0

4
7
5
9
6

2
2
5
.6
0

1
9
0
7
.6
7

7
1
4

6
−

T
L

−
−

T
a
1
3

2
4

1
0
2

3
9
6

6
1
0
.0
4

2
7
3
.8
7

4
6
1
6
5

3
2
9
8
.2
8

8
9
1
.7
5

4
6
6
2
9

2
1
6
.8
2

1
8
5
2
.1
2

9
7
3

6
−

T
L

−
−

T
a
1
4

2
4

1
0
2

3
9
6

6
9
.3
8

2
6
0
.8
1

4
2
0
8
3

3
−

T
L

0
0

2
0
.3
9

1
4
7
6
.2
8

7
1
2

5
−

T
L

−
−

T
a
1
5

2
4

1
0
2

3
9
6

6
8
.5
9

2
8
0
.8
7

4
7
9
0
9

3
3
7
4
.7
2

1
3
3
5
.1
6

4
6
7
2
7

2
1
5
.9
9

1
3
2
4
.8
0

7
2
3

5
−

T
L

−
−

T
a
1
6

2
4

1
0
2

3
9
6

6
9
.7
5

3
2
5
.5
7

4
7
5
2
8

3
−

T
L

0
0

1
7
.3
8

2
0
6
2
.5
9

7
3
0

5
−

T
L

−
−

T
a
1
7

2
4

1
0
2

3
9
6

6
8
.1
5

2
6
6
.3
0

4
4
3
3
4

3
1
0
3
.3
2

1
4
8
3
.6
4

4
4
7
0
7

2
1
1
.6
3

2
6
1
5
.2
3

8
8
3

7
−

T
L

−
−

T
a
1
8

2
4

1
0
2

3
9
6

6
4
.4
1

2
8
1
.8
8

4
3
6
6
2

4
1
1
4
.9
5

1
1
0
7
.9
9

4
4
3
0
9

2
7
.8
5

1
4
1
1
.4
5

1
0
1
4

8
−

T
L

−
−

T
a
1
9

2
4

1
0
2

3
9
6

6
9
.8
2

2
9
3
.9
5

4
6
2
7
5

4
−

T
L

0
0

1
4
.3
2

1
2
0
6
.7
2

7
0
8

5
−

T
L

−
−

T
a
1
1
0

2
4

1
0
2

3
9
6

6
8
.3
1

2
6
9
.4
0

4
4
5
9
8

3
2
1
7
.0
6

1
4
1
0
.9
7

4
4
7
5
6

2
1
6
.1
6

1
1
4
5
.7
6

7
1
9

6
−

T
L

−
−

T
ab
le
4.
14
:
R
es
ul
ts
fo
r
SN

D
lib

in
st
an
ce
s
w
it
h
re
la
xe
d
P
at
h
fo
rm

ul
at
io
n,

re
la
xe
d
D
an
tz
ig
-W

ol
fe
fo
rm

ul
at
io
n
w
it
h
an
d
w
it
ho
ut

va
lid

in
eq
ua
lit
ie
s.

158 Extended formulations

Instances PF+VI DW+VI C AB

Name |N | |A| |C| |F | Gap Col Nodes Iter Gap Col Nodes Iter Gap Gap

Abilene1 12 30 132 6 0.83 1794 580 579 1.47 3662 128 380 0.00 1.43

Abilene2 12 30 132 6 0.00 1713 1790 1790 0.38 6054 196 694 1.35 2.52

Abilene3 12 30 132 6 1.09 1764 758 758 3.34 3425 232 491 0.00 1.38

Abilene4 12 30 132 6 0.00 1774 910 909 1.74 4634 272 614 1.83 1.43

Abilene5 12 30 132 6 0.11 1748 13998 13998 0.00 1224 336 362 1.74 1.90

Abilene6 12 30 132 6 0.00 1752 1330 1329 0.47 5839 324 723 2.44 2.04

Abilene7 12 30 132 6 0.00 1740 940 940 0.50 4719 276 654 1.76 1.09

Abilene8 12 30 132 6 0.00 1770 560 559 2.75 5781 156 529 1.29 0.69

Abilene9 12 30 132 6 0.00 1762 1798 1797 0.71 8113 128 539 0.36 1.50

Abilene10 12 30 132 6 0.30 1782 2512 2511 0.00 3059 84 160 2.73 1.88

Atlanta1 15 44 210 6 1.73 7452 86 89 8.93 2452 8 53 0.00 0.96

Atlanta2 15 44 210 6 0.91 4830 170 173 4.32 3376 4 51 0.00 0.38

Atlanta3 15 44 210 6 0.53 5097 106 108 5.02 5462 4 58 0.00 0.96

Atlanta4 15 44 210 6 0.38 5491 194 196 3.01 3238 8 50 0.00 0.51

Atlanta5 15 44 210 6 0.24 6540 88 88 1.31 5822 2 66 0.00 1.61

Atlanta6 15 44 210 6 2.32 5114 128 130 4.27 4546 4 55 0.00 1.75

Atlanta7 15 44 210 6 5.29 5087 122 132 9.82 4605 6 68 0.00 4.35

Atlanta8 15 44 210 6 0.78 5285 126 127 6.65 2937 8 51 0.00 0.47

Atlanta9 15 44 210 6 1.08 5071 110 113 5.96 4128 8 69 0.00 0.18

Atlanta10 15 44 210 6 0.35 5215 154 159 1.97 4434 6 61 0.00 0.78

Di− yuan1 11 84 22 6 0.00 9885 562 582 0.68 802 6 88 0.64 0.97

Di− yuan2 11 84 22 6 1.86 9765 564 584 4.77 605 2 54 0.00 3.05

Di− yuan3 11 84 22 6 0.00 15128 374 393 − − − − 2.75 2.90

Di− yuan4 11 84 22 6 0.00 10418 458 468 − − − − 0.68 1.30

Di− yuan5 11 84 22 6 0.00 13117 474 486 − − − − 1.71 2.82

Di− yuan6 11 84 22 6 0.00 10465 388 405 2.80 735 4 63 0.44 1.65

Di− yuan7 11 84 22 6 0.59 11694 388 402 0.00 678 2 58 0.64 1.05

Di− yuan8 11 84 22 6 0.00 9035 372 380 − − − − 0.37 1.00

Di− yuan9 11 84 22 6 0.00 17718 264 268 − − − − 1.25 6.39

Di− yuan10 11 84 22 6 7.62 13027 346 368 − − − − 0.00 5.67

Nobel− ger1 17 52 121 6 0.00 10394 192 192 − − − − 0.46 0.93

Nobel− ger2 17 52 121 6 0.91 8428 142 142 − − − − 0.00 0.27

Nobel− ger3 17 52 121 6 0.00 9050 62 61 − − − − 0.61 0.84

Nobel− ger4 17 52 121 6 0.55 8811 152 153 − − − − 0.00 0.39

Nobel− ger5 17 52 121 6 0.00 9507 174 175 − − − − 0.72 1.29

Nobel− ger6 17 52 121 6 0.19 6016 80 83 − − − − 0.00 0.50

Nobel− ger7 17 52 121 6 1.95 8938 176 180 − − − − 0.19 0.00

Nobel− ger8 17 52 121 6 1.06 7096 88 88 − − − − 0.32 0.00

Nobel− ger9 17 52 121 6 0.50 9447 122 122 − − − − 1.50 0.00

Nobel− ger10 17 52 121 6 0.07 6697 116 117 − − − − 0.00 0.09

Table 4.15: Bounds improvement results for SNDlib instances with Branch-and-Price
algorithms for the Path formulation and the Dantzig-Wolfe formulation compared to
the compact formulation and the automatic Benders.

4.6 Computational results 159

Instances PF+VI DW+VI C AB

Name |N | |A| |C| |F | Gap Col Nodes Iter Gap Col Nodes Iter Gap Gap

Nobel− us1 14 42 91 6 0.00 3468 160 159 1.94 6321 6 133 0.45 0.38

Nobel− us2 14 42 91 6 13.60 3551 318 322 0.00 1674 2 98 15.34 15.56

Nobel− us3 14 42 91 6 1.10 3736 248 247 4.13 5360 2 93 1.53 0.00

Nobel− us4 14 42 91 6 0.00 2276 214 221 2.70 1928 20 120 0.73 0.84

Nobel− us5 14 42 91 6 0.77 2488 226 232 4.72 3179 4 80 0.00 0.78

Nobel− us6 14 42 91 6 0.00 2736 182 188 3.14 1447 16 82 0.38 1.30

Nobel− us7 14 42 91 6 0.00 2492 338 339 3.59 3098 6 86 0.63 0.49

Nobel− us8 14 42 91 6 0.00 3473 454 458 3.58 2823 4 68 1.02 1.37

Nobel− us9 14 42 91 6 0.20 2368 254 256 6.97 2424 12 90 0.00 0.38

Nobel− us10 14 42 91 6 0.70 3446 180 179 8.38 3736 6 94 1.42 0.00

Pdh1 11 68 24 6 0.00 1822 12166 12167 1.14 170 196 306 6.45 6.64

Pdh2 11 68 24 6 0.00 6593 2272 2273 0.80 277 20 106 4.71 4.16

Pdh3 11 68 24 6 0.00 4400 4846 4846 0.31 340 20 151 4.90 4.83

Pdh4 11 68 24 6 0.00 4518 2492 2495 0.64 493 10 145 4.24 3.90

Pdh5 11 68 24 6 0.00 5997 4266 4266 − − − − 6.27 6.00

Pdh6 11 68 24 6 0.00 6218 1832 1833 − − − − 4.99 5.19

Pdh7 11 68 24 6 0.00 6671 10086 10087 1.94 149 8 54 3.84 3.94

Pdh8 11 68 24 6 0.00 3332 3820 3822 0.57 559 40 304 4.84 4.54

Pdh9 11 68 24 6 0.00 4759 6204 6206 1.36 137 10 67 4.82 5.19

Pdh10 11 68 24 6 0.00 3408 10444 10445 2.07 107 28 66 5.14 5.17

Polska1 12 36 66 6 0.00 2210 1100 1106 4.42 1549 44 176 0.29 0.67

Polska2 12 36 66 6 0.00 1697 568 574 11.07 1355 80 236 2.89 1.58

Polska3 12 36 66 6 0.00 1615 898 905 2.71 1020 114 250 0.88 1.14

Polska4 12 36 66 6 0.00 2030 968 974 8.31 1037 80 197 2.21 0.96

Polska5 12 36 66 6 0.00 2290 1414 1413 9.91 1531 60 214 1.49 0.69

Polska6 12 36 66 6 0.00 1802 636 645 14.28 1264 46 153 4.33 1.45

Polska7 12 36 66 6 0.00 1624 1220 1228 7.55 908 82 175 2.77 1.43

Polska8 12 36 66 6 0.00 1698 616 620 3.84 1171 64 186 2.41 2.29

Polska9 12 36 66 6 0.00 2224 914 913 6.09 1474 56 208 2.07 1.39

Polska10 12 36 66 6 0.00 1734 456 466 5.76 1372 82 218 0.93 1.39

Table 4.16: Bounds improvement results for SNDlib instances with Branch-and-Price
algorithms for the Path formulation and the Dantzig-Wolfe formulation compared to
the compact formulation and the automatic Benders.

160 Extended formulations

4.7 Conclusions

In this chapter we have proposed two extended formulations for solving the Virtual
Network Functions Placement and Routing problem. The variables of the �rst for-
mulation (denoted by PF) are latency-constrained paths, whereas the variables of the
second formulation (denoted by DW) are latency-constrained paths that also embed the
information regarding the function installations at their nodes. In order to strengthen
the LP-bounds, we have proposed several families of valid inequalities for both formu-
lations. Their bene�ts have been computationally demonstrated on a set of instances
derived from telecommunication networks. We have presented a branching scheme
for each formulation and have developed and implemented the associated Branch-and-
Price algorithms. The latter ones are computationally compared with the compact MIP
formulation presented in Chapter 2 and the automatic Benders decomposition applied
to it. The obtained results have shown that there is a trade-o� between the quality
of global lower bounds and the time needed to solve the LP-relaxations. Whereas the
overall best global lower bounds can be obtained by the model DW, its CPU time is
sacri�ced by the expensive MIP-based pricing procedure. Our results show that the
full potential of extended formulations is still to be exploited. This can be done by de-
veloping problem-tailored pricing procedures, alternative branching schemes, or more
advanced heuristics that can be used to initialize the upper bounds, or for solving the
pricing problem.

Chapter 5

Benders reformulation for the

node-capacitated VNFPRP

In this chapter, we study the Uncapacitated Virtual Network Functions Placement
and Routing problem, for which node-capacity, VNF-capacity, and con�ict constraints
are relaxed. We propose some valid inequalities and a Benders decomposition scheme,
allowing us to solve the problem, within a Branch-and-Benders-Cut algorithm. Finally,
we provide computational results to compare some variants of the proposed formulations
and show signi�cant improvements over an approach based on automatic Benders cuts
(generated with Cplex).

162 Benders reformulation for the node-capacitated VNFPRP

Contents
5.1 Adapted compact MILP formulation 163

5.1.1 MILP formulation for the uncapacitated VNFPRP 164

5.1.2 MILP formulation for the node-capacitated and con�ict con-

strained VNFPRP . 164

5.1.3 Unsplittable routing paths . 165

5.1.4 Strengthening inequalities . 167

5.2 Problem reformulation using Benders cuts 169

5.3 MILP-based Heuristic . 171

5.4 Computational results . 173

5.4.1 Benchmark instances . 174

5.4.2 Obtained results . 175

5.4.3 Detailed results . 191

5.5 Conclusions . 204

5.1 Adapted compact MILP formulation 163

In this chapter we assume that VNF capacity is su�ciently large, and that the only
capacity we have to consider at the nodes is the number of VNFs that we can install.
We call this problem variant the node-capacitated VNFPRP . To improve the capa-
bilities of �nding exact solutions for larger instances of practical relevance, we exploit
some theoretical properties of a compact model and develop a Benders decomposition
approach, in which the VNF placement problem is treated at the master level and the
routing problem (which becomes decomposable per commodity) is solved at the sub-
problem level. We also propose several new families of valid inequalities and use the
path-based MILP formulation to provide heuristic solutions. These elements are com-
bined into an e�cient Branch-and-Benders-Cut framework which is capable of beating
an o�-the-shelf solver (in terms of the CPU time and the overall solution quality) on
a set of realistic and random benchmark instances considered in our computational
study.

Outline of the chapter The chapter is organized as follows. In Section 5.1, we
propose a compact MILP formulation based on the model proposed in Chapter 2, study
its theoretical properties and introduce new valid inequalities. Section 5.2 is devoted to
the Benders reformulation, whereas the Uncapacitated MILP-based heuristic, already
de�ned in Chapter 3, is given in Section 5.3. In Section 5.4, detailed computational
results are provided, and some concluding remarks are derived in Section 5.5.

In this chapter, we consider two variants for the problem, in the �rst variant, we relax
only the VNF-capacity constraints, and we call the problem the node-capacitated and
con�ict-constrained VNFPRP. In the second variant, we relax VNF-capacity, node-
capacity and con�ict constraints, and we call it the Uncapacitated VNFPRP.

5.1 Adapted compact MILP formulation

In this section, we �rst adapt the compact (i.e., polynomial in size) MILP formulation
already introduced in Chapter 2 to model the node-capacitated and con�ict constrained
variant and the uncapacitated variant and the of the VNFPRP. We also show some
favorable theoretical properties of this model that allow us to decompose it using
Benders decomposition. We conclude this section by proposing three additional families
of strengthening inequalities.

164 Benders reformulation for the node-capacitated VNFPRP

5.1.1 MILP formulation for the uncapacitated VNFPRP

In the compact MILP formulation associated with the Uncapacitated version of the
problem, the binary decision variables (x, y, w, t) are the same as in the compact for-
mulation introduced in Chapter 2. Similarly, we keep the same set of constraints
except for the VNF-capacity, the node-capacity, and the con�ict constraints, which are
relaxed. The objective function aims to minimize the node activation and the VNF
installation costs.

The Uncapacitated VNFPR can then be modeled as follows:

(P) : min
∑
k∈C

∑
u∈N

∑
f∈Fk

ψf
u yfku +

∑
u∈N

ψu wu (5.1)

2.2− 2.3, 2.7− 2.12

yfku ≤ wu k ∈ C, f ∈ F k, u ∈ N (5.2)

yfku , x
fk
u ∈ {0, 1} u ∈ N, f ∈ F, k ∈ C (5.3)

wu ∈ {0, 1} u ∈ N (5.4)

tkuv ∈ {0, 1} (u, v) ∈ A, k ∈ C (5.5)

Inequalities (5.7) link y and w variables, enforcing that a function can be installed
at a node, only if the node is activated. Constraints (5.8)-(5.10) are the integrity
constraints.

5.1.2 MILP formulation for the node-capacitated and con�ict

constrained VNFPRP

In the compact MILP formulation associated with the node-capacitated and con�ict
constrained version of the problem, the binary decision variables (x, y, w, t) are the
same as in the compact formulation introduced in Chapter 2. Similarly, we keep the
same set of constraints except for the VNF-capacity constraints, which are relaxed.
The objective function aims to minimize the VNF installation and the node activation
costs.

The node-capacitated and con�ict constrained VNFPR can then be modeled as fol-
lows:

5.1 Adapted compact MILP formulation 165

(P) : min
∑
k∈C

∑
u∈N

∑
f∈Fk

ψf
u yfku +

∑
u∈N

ψu wu (5.6)

2.2− 2.4, 2.6− 2.12

yfku ≤ wu k ∈ C, f ∈ F k, u ∈ N (5.7)

yfku , x
fk
u ∈ {0, 1} u ∈ N, f ∈ F, k ∈ C (5.8)

wu ∈ {0, 1} u ∈ N (5.9)

tkuv ∈ {0, 1} (u, v) ∈ A, k ∈ C (5.10)

5.1.3 Unsplittable routing paths

Integrality constraints tkuv ∈ {0, 1} guarantee that the sk-dk �ow cannot be split, i.e.,
that there is a single path used for routing the �ow. In the following, we show that
this constraint can be relaxed. Let (P') denote the model (P) in which integrality
constraints (5.10) are replaced by

tkuv ≥ 0, k ∈ C, (u, v) ∈ A.

The major result of this section, which will also allow us to apply the Benders de-
composition scheme is summarized as follows:

Theorem 5.1 If the compact formulation (P ′) has an optimal fractional solution then
it must necessarily admit an integer solution with the same objective value.

The proof of this theorem is provided at the end of the section. We start by proving
Lemma 5.2, in which we focus on a single commodity, and assume that the capacity
upper bounds on arcs corresponding to constraints (2.7) and capacity lower bounds on
nodes corresponding to constraints (2.10) are pre-speci�ed.

Lemma 5.2 Let ĉuv ∈ N ∪ {0} be an arbitrary capacity function on arcs (u, v) ∈ A,
ĉu ∈ {0, 1} be an arbitrary lower bound capacity on nodes u ∈ N and l̂ ∈ N a �ow-
latency limit for a �ow to be sent from a given source s ∈ N to a destination d ∈ N ,
s 6= d. The following system of linear inequalities is either infeasible, or it admits a
feasible binary solution.

166 Benders reformulation for the node-capacitated VNFPRP

∑
(u,v)∈A

tuv −
∑

(v,u)∈A

tvu =

−1 if u = d,

1 if u = s,

0 otherwise.

∀u ∈ N (5.11)

∑
(u,v)∈A

tuvluv ≤ l̂ (5.12)

0 ≤ tuv ≤ ĉuv ∀(u, v) ∈ A (5.13)∑
(v,u)∈A

tvu ≥ ĉu ∀u ∈ N (5.14)

Proof. Assume that the system of linear inequalities is feasible, and let t̂ be its
fractional feasible solution. By the �ow decomposition theorem, we can decompose the
solution t̂ into t̂1, t̂2, . . . , t̂Q associated with fractional paths P′ = {p1, p2, . . . , pQ}, each
of them carrying rq units of �ow, such that

∑Q
q=1 rq = 1. Let t̂q,uv be the arc variables

that compose t̂q and the path pq and let t̄q,uv ∈ {0, 1} be obtained by applying the
ceiling function to values of t̂q,uv, i.e., t̄q,uv = dt̂q,uve, for all (u, v) ∈ pq, 1 ≤ q ≤ Q.

For each node u ∈ N such that ĉu = 1, by the feasibility of t̂, all paths pq ∈ P′ must
pass through node u.

The �ow preservation constraints (5.11) are clearly satis�ed by each t̂kq , 1 ≤ q ≤ Q. It
is easy to see that the �ow preservation constrains remain satis�ed for each individual
path de�ned by t̄kq , 1 ≤ q ≤ Q. Hence, to satisfy constraints (5.11), (5.13) and (5.14),
one could take any of the paths p1, . . . , pQ as a feasible binary solution.

What remains to show is that at least one of the paths {p1, . . . , pQ} must also satisfy
the latency constraint (5.12). We observe that t̂q,uv has the same value for each arc
(u, v) composing the path pq, for each 1 ≤ q ≤ Q, more precisely, this value is equal
to rq de�ned above. As the sum of the �ow is integer, at source and destination nodes
we must have at least two paths with fractional �ows. Suppose that none of the paths
from P′ satisfy the latency constraints, i.e.:

l(p) > l̂ ∀p ∈ P′,

where l(p) =
∑

uv∈p luv denotes the latency of the path p ∈ P′. Then:

∀pq ∈ P′ : l(pq) > l̂ ⇒
∑
pq∈P′

rql(pq) >
∑
pq∈P′

rq l̂

5.1 Adapted compact MILP formulation 167

Since from constraints (5.11) we have
∑

pq∈P′
rq = 1, it follows that:

∑
pq∈P′

rql(pq) > l̂,

which contradicts the fact that the system (5.11)-(5.14) admits a fractional feasible
solution. �

Proof. [Theorem 5.1] Let X̂ = (x̂, ŷ, ŵ, t̂) be an optimal solution of (P ′) such that
there exists at least one commodity k ∈ C for which the �ow t̂k is fractional. We will
show how to construct a purely integer solution X̄ = (x̂, ŷ, ŵ, t̄) which is also feasible
for (P ′). As the components ŷ and ŵ that appear in the objective function with non-
zero coe�cients are the same for both X̂ and X̄, it follows that the two solutions will
have the same objective value.

Let k ∈ C be a commodity such that in the solution X̂, the associated vector t̂k

contains fractional values. In that case, by setting l̂ := lk, s := sk, d := dk and

ĉuv := min
f∈Fk
{ŷfkv + 1− x̂fkv + x̂fku } ∀(u, v) ∈ A (5.15)

ĉu := max
f∈Fk
{ŷfku } ∀u ∈ N (5.16)

we obtain the linear inequality system (5.11)-(5.14).

By Lemma 5.2, among the fractional paths composing the �ow t̂k, there exists at
least one (integer) path which can be used to substitute t̂k. This procedure can be
repeated for all commodities k ∈ C that admit a fractional �ow solution t̂k in X̂,
without changing the structure of the binary component (x̂, ŷ, ŵ), due to the fact that
the �ows are routed separately for each commodity.

Corollary 5.3 Without loss of generality, constraints tkuv ∈ {0, 1}, for all (u, v) ∈ A,
k ∈ C can be relaxed into tkuv ≥ 0.

5.1.4 Strengthening inequalities

In the following, we derive three families of valid inequalities that can strengthen the
quality of the LP-bounds of the formulation (P). The two �rst families exploit the
precedence constraints imposed for a given commodity, the last one exploit the node-
capacity constraints imposed for each node.

168 Benders reformulation for the node-capacitated VNFPRP

Node-Precedence inequalities

Theorem 5.4 The constraints (5.17) are valid for (P):

yflku ≥ yfiku + yfjku − 1, k ∈ C, u ∈ N \ {sk},
i = 1, 2, . . . , |F k| − 2, j = i+ 2, . . . , |F k|, i < l < j (5.17)

Proof. For given positions i and j in the ordering of F k, with i = 1, 2, . . . , |F k| − 2

and j = i+2, . . . , |F k|, if both functions fi and fj are installed at node u for commodity
k, then to satisfy the precedence constraints, each function fl between fi and fj, with
l = i+1, i+2, . . . , j−1, must be installed at node u as well, otherwise we allow creation
of cycles, and hence the violation of precedence constraints (see Figure 5.1).

f1 ≺ f2 ≺ f3 ≺ · · · ≺ f|Fk|−2 ≺ f|Fk|−1 ≺ f|Fk|

1 2 3 . . . |F k| − 2 |F k| − 1 |F k|

i 1 1 1 j

Figure 5.1: Explanation of node-precedence inequalities.

We notice that even though these cuts are polynomial in number (there areO(|C||F |3|N |)
of these inequalities), they may impose a signi�cant burden to the MILP solvers because
of their size. We therefore also consider the aggregated version of these constraints.

Aggregated node-precedence inequalities

Theorem 5.5 The linear inequalities (5.18) are valid for (P):

j−1∑
l=i+1

yflku ≥ (j − i− 1)(yfiku + yfjku − 1) k ∈ C, u ∈ N \ {sk},

i = 1, 2, . . . , |F k| − 2, j = i+ 2, . . . , |F k| (5.18)

Proof. The constraints are obtained by summing up (5.18) over all l ∈ {i+1, . . . , j−
1}, and hence they are valid for (P).

5.2 Problem reformulation using Benders cuts 169

Node-capacity inequalities

Theorem 5.6 The linear inequalities (5.19) are valid for (P):

i−cu∑
l=1

yflku +

|Fk|∑
l=i+cu

yflku ≤ (1− yfiku)cu k ∈ C, u ∈ N \ {sk},

i = cu + 1, . . . , |F k| − cu. (5.19)

Proof. For a given position i in the ordering of F k, with i = cu + 1, . . . , |F k| − cu, if
the function fi is installed at node u for the commodity k, then the number of functions
that must be installed before and after fi must be less than or equal to the capacity cu
of node u, otherwise the node-capacity constraints are violated.

5.2 Problem reformulation using Benders cuts

The size of the compact MILP model presented in Section 5.1 easily becomes in-
tractable, due to the fact that the model contains O(|N ||F ||C| + |A||C|) variables
and constraints. Hence, to deal with instances of realistic size, it is necessary to rely on
a problem decomposition in which smaller and easier-to-solve components are solved
separately, and then the gained information is combined, and the process is repeated
in an iterative way until convergence.

In this chapter we focus on Benders decomposition approach, which can be e�ciently
exploited thanks to our result given in Section 5.1.3. Corollary 5.3 states that the inte-
grality condition of the �ow variables can be relaxed, and hence, using Benders decom-
position, we can project t variables out from the model. That way, Benders decomposi-
tion allows for a reduction of the total number of variables from O(|N ||F ||C|+ |A||C|)
to O(|N ||F ||C|). In dense networks, this means an order of magnitude reduction of the
number of variables. The telecommunication application that motivates our problem
may rely on network graphs G that are rather dense, whereas the number of virtual
network functions remains typically small. In this section we describe the basic steps
for designing an e�cient Benders decomposition approach.

The Benders master problem aims at �nding an optimal placement of virtual network
functions associated to each commodity and deciding in which order these functions
should be visited, while �guessing� that a feasible routing path can be found for such a
placement. Hence, in the master problem we decide on the value of (x, y, w) variables,

170 Benders reformulation for the node-capacitated VNFPRP

and once these values are �xed, we need to make sure that for each commodity k ∈ C
a routing path can be found such that the nodes are visited according to the order
speci�ed by x, and without violating the latency constraint. The master ILP model is
initialized as follows:

min
∑
k∈C

∑
u∈N

∑
f∈Fk

ψf
u yfku +

∑
u∈N

ψu wu

s.t. (x, y, w) satisfy (2.8)-(2.9), (2.11)-(2.12), (5.7)-(5.9)

Once a feasible solution (x̂, ŷ, ẑ) of the relaxed master problem is obtained, its feasibility
is checked by plugging in its values into the constraints (2.2), (2.3), (2.7) and (2.10). We
�rst observe that this linear system of inequalities is separable, so that the feasibility
check can be performed independently for each commodity k ∈ C. For a given binary
vector (x̂, ŷ), the feasibility subproblem for a commodity k ∈ C can be formulated as the
following linear program (we omit the superscript k for the sake of better readability):

min 0

∑
(u,v)∈A

tuv −
∑

(v,u)∈A

tvu =

1, if u = sk,

−1, if u = dk,

0. otherwise

∀u ∈ N (αu) (5.20)

−tuv ≥ x̂fv − x̂fu − ŷfv − 1 ∀f ∈ F k, ∀(u, v) ∈ A (βf
uv) (5.21)∑

(v,u)∈A

tvu ≥ ŷfu ∀f ∈ F k, ∀u ∈ N (γfu) (5.22)

−
∑

(u,v)∈A

luvtuv ≥ −lk (δ) (5.23)

tuv ≥ 0 ∀(u, v) ∈ A (5.24)

Hence, the solution (x̂, ŷ, ŵ) is feasible, i� for each k ∈ C, there are su�cient arc and
node capacities to route the sk-dk �ow and the latency of the routing path is at most
lk. According to LP duality, if the dual of the k-th Benders subproblem is unbounded,
its primal is infeasible, and correspondingly, the point (x̂, ŷ, ŵ) has to be cut o�.

After associating dual variables α, β, γ and δ to constraints (5.20)-(5.23), respectively,
the LP dual of the k-th Benders subproblem reads as follows:

5.3 MILP-based Heuristic 171

max αsk − αdk −
∑

f∈Fk

∑
(u,v)∈A

βf
uv(1− x̂fv + x̂fu + ŷfv) +

∑
u∈N

∑
f∈Fk

γfu ŷ
f
u − δlk

αu − αv −
∑
f∈Fk

βf
uv +

∑
f∈Fk

γfv − δluv ≤ 0 (u, v) ∈ A (5.25)

α free, (β, γ, δ) ≥ 0 (5.26)

Hence, any (extreme) ray (α̃, β̃, γ̃, δ̃) of the above dual induces a valid Benders feasi-
bility cut:

α̃sk − α̃dk −
∑
f∈Fk

∑
(u,v)∈A

β̃f
uv(1− xfv + xfu + yfv) +

∑
u∈N

∑
f∈Fk

γ̃fuy
f
u − δ̃lk ≤ 0 (5.27)

These Benders cuts are actively separated at every node of the branch-and-bound
tree, and added to the relaxed master problem. The resulting strategy is commonly
denoted as Branch-and-Benders-Cut (see, e.g., [38]). E�ective separation of Benders
cuts involves advanced stabilization techniques and proper selection of extreme rays.
To this end, we have decided to use the implementation of Benders feasibility cuts,
in an annotated Benders setting of CPLEX [13], which utilizes the major stabilization
and implementation techniques from [51,53,54].

Remark: This Benders reformulation can be applied on the node-capacitated and
the con�ict constrained version of the problem. This can be done by adding constraints
(2.4) and (2.6), respectively, to the Benders master problem. Furthermore, this Benders
reformulation can be applied on the compact MILP formulation presented in chapter 2
i.e., VNF-capacitated version of the problem. As the t variables do not appear in the
VNF capacity constraints.

5.3 MILP-based Heuristic

When models with an exponential number of constraints are implemented within a
Branch-and-Cut scheme (as this is the case with our Branch-and-Benders-Cut ap-
proach), general purpose solvers in general struggle with �nding feasible solutions.
This is because they are missing an important information concerning the structure
of feasible solutions, as majority of constraints are left out from the model and are
separated on the �y during the branching process. Hence, only after enumerating
many branching nodes, much deeper in the branching tree, a larger number of cuts
becomes available to the solver so that more useful feasible solutions can be found.
It is therefore crucial for the performance of Branch-and-Benders-Cut algorithms that

172 Benders reformulation for the node-capacitated VNFPRP

high-quality solutions are provided in the initialization phase. To this end, we use the
MILP-based heuristic introduced in Chapter 3, whose solution is handed over to the
solver immediately before solving the �rst LP of the relaxed master problem.

Path-based formulation

The path formulation has been introduced in Chapters 3 and 4. In the Uncapacitated
version of the problem the path formulation is a bit di�erent from the one already
introduced in previous chapters. The objective function is not the same, and the
constraints (5.7) should be added to the model. Also, the VNF-capacity, the node-
capacity and the con�ict constraints are relaxed. Then, the Uncapacitated VNFPR
problem can be modeled as the following MILP:

min
∑
k∈C

∑
u∈N

∑
f∈Fk

ψf
u yfku +

∑
u∈N

ψu wu

(x, y, w) satisfy (4.2), (4.6)-(4.11), (5.7)-(5.9)

λkp ∈ {0, 1} k ∈ C, p ∈ Pk

Remark: The MILP-based heuristic is adapted for the node-capacitated and con-
�ict constrained version of the problem by adding inequalities (2.4) and (2.6), respec-
tively.

Heuristic

We generate up to κ elementary shortest sk−dk-paths for each commodity k ∈ C, using
Yen's algorithm [138]. The paths whose length is below lk are added to the model in
the order from the shortest one to the longest one.

Obviously, if Yen's algorithm would generate all possible sk-dk-paths with latency
less or equal to lk and there would be less than κ of them, our resulting compact MILP
model would be an exact reformulation of the problem. This however does not happen
very often in practice (we usually keep κ ≤ 50). Nevertheless, the quality of solutions
obtained by this simple MILP heuristic is quite satisfying, as reported in the following
section.

5.4 Computational results 173

5.4 Computational results

The purpose of this section is to test the scalability and the e�ciency of the pro-
posed Branch-and-Benders-Cut computational framework and to compare it to other
exact methods, using an o�-the-shelf solver. To this end, we use the commercial solver
CPLEX and compare our approach to two available options: �rst, solving the prob-
lem as a compact formulation (P) introduced in Section 5.1, and second, applying
Automatic Benders decomposition [26] to the formulation (P').

Our tests are conducted so as to evaluate: the performance of Benders decomposi-
tion in terms of computing time; the size limit of realistic instances to be solved to
optimality in a reasonable time limit; the quality of the MILP-based heuristic, and,
�nally, the possible bene�t of valid inequalities proposed in Section 5.1.4 in improving
the computing times or reducing the �nal gaps. We also investigate the performance
of our models for problem instances with node-capacity and con�ict constraints.

All the tests reported in this section were made using a machine with Intel(R)
Xeon(R) CPU E5-2650 v2 processor clocked at 2.60GHz and 252GB RAM, under Linux
operating system. All methods are implemented using the Python API for CPLEX,
which is run in single-threaded mode and all CPLEX parameters were set to their
default values. A default time limit of three hours is set for each instance from the
benchmark set described in Section 5.4.1.1, and of one hour for each instance from the
benchmark set described in Section 5.2. The default memory limit was set to 20GB.

The following settings were tested in our computational experiments:

• C: the compact MILP formulation (P) proposed in Section 5.1;

• RC: the relaxed compact MILP formulation (P') in which the �ow variables t are
relaxed according to Corollary 5.3;

• AB: automatic Benders decomposition available in Cplex [26], applied to the model
(P');

• B: Branch-and-Benders-Cut obtained after decomposing the problem into |C|
subproblems and adding Benders feasibility cuts (as explained in Section 5.2);

• B+VI: setting B in which Valid Inequalities from Section 5.1.4 are additionally
used to initialize the model;

174 Benders reformulation for the node-capacitated VNFPRP

• B+PH: setting B in which initial solutions are obtained using the MILP-Heuristic
described in Section 5.3. The number of generated paths by Yen's algorithm
is limited to κ = 50 paths per commodity and the time limit for running the
MILP-heuristic is set to 900 seconds;

• B+VI+PH: setting B+PH in which Valid Inequalities from Section 5.1.4 are addi-
tionally used to initialize the model.

5.4.1 Benchmark instances

In order to test the performance of the proposed methods, we generate two set of
instances. The �rst set is generated using Erd®s-Rényi graphs, and the second set is
obtained from the well-known library of telecommunication network instances, called
SNDlib [125].

5.4.1.1 Instances derived from Erd®s-Rényi graphs

These instances are generated as Erd®s-Rényi graphs using the Python library Net-
workX. We vary the number of nodes |N | ∈ {25, 50, 100} and consider the graph
density d ∈ {0.5, 0.9}. For each arc (i, j) ∈ A, the latency lij ∈ N is chosen uniformly
at random from the interval [1, 25], and we set lij = lji. For each node u ∈ N , its
node activation cost ψu ∈ N is chosen uniformly at random from [50, 1000]. The total
number of VNFs |F | is set to 10, and for each u ∈ N, f ∈ F , the installation cost
ψf
u ∈ N is chosen uniformly at random from [10, 100] . We vary the total number of

commodities, by considering |C| ∈ {10, 15, . . . , 50}. For each commodity, its distinct
source and destination nodes are chosen randomly from N . To de�ne the set F k of
VNFs associated to each commodity, we randomly choose between {6, 8, 10} functions
from the set F and order them randomly. The latency lk is set to 1.5 times the length
of the shortest path (with respect to the values lij). .

5.4.1.2 Instances derived from the SNDlib

This benchmark set is described on Chapter 3. In this Chapter we test the Benders
reformulation on the following instances-type: {�Abilene�, �Atlanta�, �Dfn-bwin�, �Dfn-
gwin�, �Di-yuan�, �Newyork�, �Nobel-germany�, �Nobel-us�, �Pdh�, �Polska�}. For each
instance-type we have generated ten di�erent instances.

5.4 Computational results 175

5.4.2 Obtained results

Major results are summarized in this section, whereas more detailed results, given per
each instance, can be found in Section 5.4.3. For each of the di�erent settings listed
above, we report the overall CPU time in seconds and the percentage gap after reaching
the time or memory limit (in case the optimal solution has not been found). To �nal
gap is calculated as GAP = ((UB − LB)/LB) ∗ 100%, where UB denotes the best
feasible solution, and LB the global lower bound found in each run.

We start by comparing the four Branch-and-Benders-cut con�gurations (B, B+VI,
B+PH, B+VI+PH) on the set of Erd®s-Rényi graphs. After determining the best con�g-
uration, we compare it with three other alternative MILP approaches (namely, C, AB,
and RC). In Section 5.4.2.2 we then study the instances derived from SNDlib and com-
pare the best Branch-and-Benders-cut con�guration against the available alternatives,
and we also study the sensitivity of their performance with respect to the introduction
of node-capacity and con�ict constraints.

5.4.2.1 Results obtained on Erd®s-Rényi graphs

Graphical summary of the obtained results is given in Figures 5.2-5.7, where we provide
cumulative charts representing the CPU times and the GAPs for instances with |N | ∈
{25, 50, 100}. Tables 5.1-5.6 in Section 5.4.3 provide detailed results obtained for this
set of instances.

Comparing four Branch-and-Benders-cut con�gurations Figures 5.2(a) and
5.3(a) allow to compare the CPU times of the four Branch-and-Benders-Cut settings
for the instances with |N | ∈ {25, 50} and d ∈ {0.5, 0.9}. A point with coordinates (x, y)

in this chart indicates that for y instances, the CPU time needed to prove optimality
was below x seconds. A similar representation of the �nal gaps for the same group
of instances is shown in Figures 5.2(b) and 5.3(b). Figures 5.2 and 5.3 show that the
B+VI+PH setting is outperforming the remaining three Benders settings (B, B+VI, B+PH).
For example, the number of instances with |N | ∈ {25, 50}, d = 0.5 that can be solved
to optimality in less than ten minutes is equal to 20 for B+VI+PH, whereas it is only
14 (12, 11) for B+VI (B+PH, B, respectively). All 50 instances are solved with a GAP
smaller than or equal to 15% by B+VI+PH and B+PH, whereas, this is true for only 41 and
42 instances when settings B, respectively B+VI, are employed. A similar behavior can
be observed for instances with |N | ∈ {25, 50} and d = 0.9. These results clearly exhibit
the bene�ts of adding valid inequalities and path-based heuristic to the basic Benders

176 Benders reformulation for the node-capacitated VNFPRP

decomposition setting. Consequently, in the following we will consider B+VI+PH as our
default Benders setting and compare it with alternative MILP approaches.

(a) CPU time (s)

(b) GAP (%)

Figure 5.2: CPU time and GAP comparison between Branch-and-Benders-Cut al-
gorithms with and without valid inequalities and with and without MILP-heuristic
(|N | ∈ {25, 50} and d = 0.5).

5.4 Computational results 177

(a) CPU time (s)

(b) GAP (%)

Figure 5.3: CPU time and GAP comparison between Branch-and-Benders-Cut al-
gorithms with and without valid inequalities and with and without MILP-heuristic
(|N | ∈ {25, 50} and d = 0.9).

Comparison with alternative MILP approaches We now compare our Branch-
and-Benders-Cut (B+VI+PH) against three alternative MILP methods available by using
Cplex as an o�-the-shelf MILP solver: C, RC and AB. Cumulative charts for graphs with
|N | ∈ {25, 50} and for d = 0.9 and d = 0.5 are given in Figures 5.4 (CPU times) and 5.5
(GAPs). We notice that all models have more di�culties in �nding optimal solutions

178 Benders reformulation for the node-capacitated VNFPRP

for sparser graphs. Nevertheless, the setting B+VI+PH remains the best performing one,
followed by the compact formulation C. Figure 5.5 indicates that for sparser graphs, for
90% (respectively 100%) of the instances the �nal gaps obtained by the Branch-and-
Benders-Cut remain below 10% (respectively 15%), whereas the corresponding �gures
for the �nal gaps achieved by the compact model are 20% (respectively 40%).

(a) d = 0.9

(b) d = 0.5

Figure 5.4: CPU time comparison between Branch-and-Benders-Cut algorithm, com-
pact and relaxed compact formulation and Automatic Benders for graphs with 25 and
50 nodes and density 0.9 and 0.5.

5.4 Computational results 179

(a) d = 0.9

(b) d = 0.5

Figure 5.5: GAP comparison between Branch-and-Benders-Cut algorithm, compact
and relaxed compact formulation and Automatic Benders for graphs with 25 and 50
nodes and density 0.9 and 0.5.

We observe that 20 instances were solved with Branch-and-Benders-Cut in less than
500 seconds whereas the same number of instances was solved by the compact formula-
tion in less than 2000s. On the contrary, the relaxed compact formulation RC (resp. the
Automatic Benders) can solve only 19 (resp. 18) instances within the given time limit
of three hours. In terms of the �nal gap, Branch-and-Benders-Cut algorithm solves all

180 Benders reformulation for the node-capacitated VNFPRP

instances within the �nal gap which is below 15%, whereas the same instances were
solved with a gap as high as 40% for the compact formulation, 60% for the relaxed
compact model, and 75% for the automatic Benders.

Overall, we observe that RC and AB methods provide solutions of poor quality com-
pared to the Branch-and-Benders-Cut and the Compact model. Therefore, for larger
instances with 100 nodes, we compare only the B+VI+PH and C settings. Figures 5.6 and
5.7 summarize the results obtained by solving instances with 100 nodes and density
d = 0.9 and d = 0.5, respectively. We observe that in the few cases when the number
of commodities is rather small, the compact MILP formulation is outperforming (in
terms of the CPU time) B+VI+PH. However, by increasing the number of commodities,
the compact MILP model struggles with the size of the underlying LP-formulation.
On the contrary, the Branch-and-Benders-Cut algorithm provides relatively small �nal
gaps. For example, for d = 0.9 �nal gaps are below 3% for B+VI+PH, whereas for the
compact MILP formulation the �nal gaps can be as large as 16% (cf. Figure 5.6(b)).
Also, from Figure 5.6(a) we notice that 16 out of 22 instances with d = 0.9 are solved
within less than 2500 seconds by B+VI+PH, while this is true for only 9 instances when
solved using the Compact formulation.

5.4 Computational results 181

(a) CPU time (s)

(b) GAP (%)

Figure 5.6: CPU time and GAP comparison between Branch-and-Benders-Cut algo-
rithm with valid inequalities and MILP-heuristic and compact formulation (|N | = 100

and d = 0.9).

Similarly, Figure 5.7 shows that the number of instances with |N | = 100 and d = 0.5

solved by the Branch-and-Benders-Cut algorithm without exceeding the time limit is
18 (7 are solved to optimality and for 11, the memory limit was exceeded). From
Figure 5.7(b) we observe that the largest GAP for B+VI+PH was 17%, whereas the
same (or smaller) GAP is achieved for only 23 out of 27 instances using the Compact

182 Benders reformulation for the node-capacitated VNFPRP

formulation.

(a) CPU time (s)

(b) GAP (%)

Figure 5.7: CPU time and GAP comparison between Branch-and-Benders-Cut al-
gorithm with valid inequalities and MILP-heuristic and the compact formulation
(|N | = 100 and d = 0.5).

Quality of solutions found by the MILP-based heuristic In the following we
analyze the quality of solutions found by the MILP-based heuristic (PH) and its overall
e�ciency. Figure 5.8 provides boxplots in which we are comparing the quality of

5.4 Computational results 183

the solutions and the CPU times of the MILP-based heuristic (PH) and the Compact
formulation (C). The latter one is considered as an o�-the-shelf alternative for �nding
feasible solutions. In the provided boxplots, all instances derived from Erd®s-Rényi
graphs are taken into account. The relative gaps are calculated with respect to the
optimal solution or, alternatively, the best-known upper bound found by any of the
four exact methods (contrary to Tables 5.2-5.6 from Section 5.4.3 where CPLEX exit
gaps are reported). We observe that in most of the cases the heuristic provides feasible
solutions of almost the same (or even better) quality compared to those found by
the Compact formulation, but within a signi�cantly less CPU time. By comparing the
solution gaps, we notice that the heuristic performs particularly well on sparser graphs.
This can be explained by the fact that, by decreasing the graph density, the number of
feasible routing paths decreases too, hence the path-based MILP-formulation (which is
used within the heuristic) often captures the optimal routing paths. By enlarging the
number of nodes or increasing the density, this bene�t of the MILP-heuristic might be
lost, as it can be observed in Figure 5.8 (a), where e.g., for instances with 100 nodes
and d = 0.9 the solutions found by the Compact formulation are of better quality than
those found by the MILP-heuristic.

184 Benders reformulation for the node-capacitated VNFPRP

|N|=25,d=0.5 |N|=50,d=0.5 |N|=100,d=0.5

|N|=25,d=0.9 |N|=50,d=0.9 |N|=100,d=0.9

0

1

2

3

4

5

6

7

0

4

8

0

1

2

3

4

5

0

10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

10

20

30

40

Instances

G
A

P
 (

%
)

C

PH

(a) GAP (%)

|N|=25,d=0.5 |N|=50,d=0.5 |N=100|,d=0.5

|N|=25,d=0.9 |N|=50,d=0.9 |N=100|,d=0.9

10

100

1000

10000

100

1000

10000

1

10

100

1000

10000

10

100

1000

10000

10

100

1000

10000

100

1000

10000

Instances

C
P

U
 t

im
e
 (

s
)

C

PH

(b) CPU time (s)

Figure 5.8: GAP and CPU time comparison between compact MILP formulation and
MILP-based Heuristic.

5.4 Computational results 185

E�ect of adding valid inequalities Finally, we test the potential bene�ts of valid
inequalities proposed in Section 5.1.4. Figure 5.9(a) compares the size of the branching
tree for the basic setting B and the setting B+VI in which valid inequalities are added
to the model. We notice that adding the valid inequalities de�nitely helps our Benders
approach to reduce the number of branching nodes. These reductions can be signi�cant
(a few orders of magnitude). For 50% of the solved instances the number of branching
nodes was reduced from ≈ 105 to ≈ 104. In Figure 5.9(b) we also show the relative
improvement of lower bounds, calculated as (LBB+VI - LBB) / LBB * 100.

We observe that the lower bound at the root node could be improved by 1% to 3%
for majority of considered instances.

186 Benders reformulation for the node-capacitated VNFPRP

(a) The number of branching nodes for settings B and

B+VI .

(b) Relative improvement of lower bounds at the root

node after adding valid inequalities.

Figure 5.9: Number of branching nodes and bounds improvement of the Branch-and-
Benders-Cut approach with and without valid inequalities for graphs with |N | = 100

and d = 0.9.

5.4 Computational results 187

5.4.2.2 Results obtained on the set of SNDlib instances

Figure 5.10 compares GAPs of the Branch-and-Benders-Cut approach (B+VI+PH), with
those obtained using the Compact formulation, the Relaxed Compact formulation and
the Automatic Benders of Cplex. Instances with and without node-capacity and con-
�ict constraints are considered. Axis y represents the number of solved instances, and
axis x represents the �nal GAP (given in percentage). The gap is set to 100% if no
feasible solution is found.

Figure 5.10(a) shows results for SNDlib instances with node-capacity and con�ict
constraints. We notice that for 96 out of 100 instances, B+VI+PH �nds a feasible solution,
and the worst obtained gap is below 47%. On the contrary, less than half of the
instances could be solved within the same gap for the remaining three approaches (AB,
C and RC).

When it comes to SNDlib instances without node-capacity and con�ict constraints,
Figure 5.10(b) shows that for all instances B+VI+PH �nds a feasible solution and the
worst obtained gap is below 27%. On the contrary, only 86%, 55% and 36% of these
instances can be solved within the same gap using the Compact formulation C, the
Relaxed Compact formulation RC and the Automatic Benders AB, respectively.

188 Benders reformulation for the node-capacitated VNFPRP

(a) With node-capacity and con�ict

constraints.

(b) Without node-capacity and con�ict constraints.

Figure 5.10: GAP comparison between Branch-and-Benders-Cut algorithm (B+VI+PH),
Compact (C) and Relaxed Compact formulation (RC) and Automatic Benders (AB) for
SNDlib instances with and without node-capacities and con�ict constraints.

A more detailed comparison is provided in Figure 5.11 which shows the average �nal
gaps per instance-type for the instances with node-capacity and con�ict constraints.
Recall that each instance type contains ten associated instances. We observe that
no feasible solution is found by the Compact formulation, the Relaxed Compact for-

5.4 Computational results 189

mulation and the Automatic Benders for instance-types �Abilene�, �Atlanta�, �Nobel-
germany� and �Nobel-us� within the given time limit. On the other hand, the associ-
ated �nal gaps provided by the Branch-and-Benders-cut algorithm are 10.12%, 25.70%,
50.43% and 15.31%, respectively. Similarly, no feasible solutions are obtained by the
Compact formulation for instance-type �Newyork�, and no solutions are provided by
the Relaxed Compact formulation and the Automatic Benders for instance-type �Pol-
ska�. For these two instance-types, the Branch-and-Benders-cut algorithm provides
average �nal gaps of 30.85% (for �Newyork�) and 12.05% (for �Polska�). For instance-
types �Dfn-bwin� and �Dfn-gwin� the Compact and the Relaxed Compact formulations
slightly outperform the other proposed methods, which can be explained by the small
size of these instances (10, resp. 11 nodes and 45, resp. 47 edges). Finally, very small
gaps are obtained by all methods but AB for instance-type �Pdh�, which is comprised
by 11 nodes and 34 edges.

Figure 5.11: Average GAPs per instance-type for SNDlib instances with node-capacities
and con�ict constraints.

Figure 5.12 shows a similar comparison for the SNDlib instances without node-
capacity and con�ict constraints. We observe that the Branch-and-Benders-cut algo-
rithm (B+VI+PH) provides small �nal gaps compared to those obtained by the Compact
formulation for �Atlanta�, �Newyork�, �Nobel-germany�, �Nobel-us� and �Polska�. For

190 Benders reformulation for the node-capacitated VNFPRP

�Abilene� and �Dfn-gwin� the gaps obtained by the Compact formulation are slightly
better. Finally, for instance-types �Dfn-bwin�, �Di-yuan� and �Pdh�, the �nal gaps pro-
vided by both methods are almost the same. On the contrary, AB could not �nd any
feasible solution for �Abilene�, �Atlanta�, �Nobel-germany�, �Nobel-us� and �Polska�.
Similarly, Relaxed compact formulation did not �nd any feasible solution for �Atlanta�
and �Nobel-germany�.

From Figures 5.11 and 5.12 we also observe an interesting fact that in very few cases
the �nal gaps of the Compact formulation can be improved by relaxing the integrality
condition on the arc variables (cf. �Dfn-gwin�, �Newyork� and �Pdh�).

Figure 5.12: Average GAPs per instance-type for SNDlib instances without node-
capacities and con�ict constraints.

5.4 Computational results 191

5.4.3 Detailed results

For each of the di�erent settings listed in Section 5.4, we report the overall CPU time
in seconds (or TL/�−� if the time/memory limit is reached, respectively), and the �nal
gap in percent after reaching the time or memory limit (in case the optimal solution
has not been found). To �nal gap is reported as Gap = (UB−LB)/LB ∗ 100%, where
UB denotes the best feasible solution, and LB the global lower bound found in each
run.

In addition, for our MILP-heuristic, in the columns labeled by PH, we report the CPU
time of the heuristic (TL means that the time limit of 900 seconds was reached without
solving the model to optimality), and the gap with respect to the optimal solution (or,
the best known upper bound, in case the latter is not available).

Tables 5.1, 5.2 and 5.3 summarize the results obtained for the instances derived from
Erd®s-Rényi graphs with d = 0.5 and with 25, 50 and 100 nodes, respectively. Tables
5.4, 5.5 and 5.6 summarize the results obtained for the instances derived from Erd®s-
Rényi graphs with d = 0.9 and with 25, 50 and 100 nodes, respectively. In the last
two columns of Tables 5.2-5.6 we report the CPU time per instance required by the
MILP-based heuristic (PH) and the relative gap of the obtained solution with respect
to the optimal solution (or, alternatively, the best-known upper bound found by any
of the four exact methods).

Tables 5.7-5.9 (resp. Tables 5.10-5.12) show detailed results of 100 instances derived
from SNDlib with (resp. without) node-capacity and con�ict constraints. The CPU
time of all solved instances exceeds the time limit (this explains the removal of �t[s]�
column in tables). Sign − in �Gap� column in result tables indicates that no feasible
solution is found.

192 Benders reformulation for the node-capacitated VNFPRP
In
stan

ces
B
ran

ch
-an

d
-B
en
d
ers-C

u
t

C
R
C

A
B

P
H

B
B
+
V
I

B
+
P
H

B
+
V
I
+
P
H

|N
|
|A
|
|C
|
|F
|

t[s]
G
ap

t[s]
G
ap

t[s]
G
ap

t[s]
G
ap

t[s]
G
ap

t[s]
G
ap

t[s]
G
ap

t[s]
G
ap

25
290

10
6

11
0.0

15
0.0

18
0.0

18
0.0

3
0.0

22
0.0

24
0.0

9
0.0

25
296

10
8

7
0.0

57
0.0

25
0.0

8
0.0

1
0.0

15
0.0

7
0.0

1
0.0

25
326

10
10

13
0.0

21
0.0

37
0.0

89
0.0

2
0.0

12
0.0

11
0.0

1
0.0

25
280

15
6

6
0.0

6
0.0

8
0.0

6
0.0

2
0.0

13
0.0

5
0.0

2
0.0

25
310

15
8

T
L

0.9
1722

0.0
T
L

0.9
7443

0.0
6
9

0.0
9180

0.0
9083

0.0
17

0.0

25
302

15
10

624
0.0

211
0.0

600
0.0

189
0.0

3
0

0.0
311

0.0
708

0.0
63

0.0

25
286

20
6

110
0.0

157
0.0

161
0.0

152
0.0

5
9

0.0
300

0.0
124

0.0
53

0.0

25
292

20
8

239
0.0

309
0.0

255
0.0

247
0.0

2
1
3

0.0
6010

0.0
401

0.0
46

0.0

25
302

20
10

465
0.0

444
0.0

860
0.0

788
0.0

7
0.0

354
0.0

752
0.0

15
0.0

25
308

25
6

589
0.0

615
0.0

1010
0.0

728
0.0

2
8
8

0.0
1307

0.0
989

0.0
86

0.0

25
316

25
8

653
0.0

382
0.0

573
0.0

628
0.0

1
4
1

0.0
569

0.0
759

0.0
76

0.0

25
302

25
10

249
0.0

146
0.0

257
0.0

1
2
1

0.0
927

0.0
2181

0.0
338

0.0
17

0.0

25
312

30
6

925
0.0

870
0.0

1069
0.0

805
0.0

1
2
6

0.0
9423

0.0
1408

0.0
44

0.0

25
302

30
8

224
0.0

1
3
3

0.0
212

0.0
238

0.0
205

0.0
627

0.0
455

0.0
9

0.0

25
296

30
10

−
6.6

−
7.3

−
7.4

−
7.8

T
L

2
.3

T
L

12.1
T
L

4.7
128

8.5

25
280

35
6

T
L

1.8
T
L

0.6
T
L

1.4
T
L

0.7
T
L

0
.0

T
L

9.8
T
L

1.7
14

0.7

25
308

35
8

4319
0.0

1589
0.0

961
0.0

6
8
5

0.0
2789

0.0
5679

0.0
4213

0.0
82

0.7

25
286

35
10

T
L

72.0
T
L

73.3
T
L

15.5
T
L

13.1
T
L

3
.4

T
L

6.7
T
L

4.8
29

15.1

25
284

40
6

T
L

1.7
T
L

0
.5

T
L

1.6
T
L

0.7
T
L

33.4
T
L

−
T
L

100.0
T
L

192.0

25
294

40
8

T
L

9.1
−

9.8
T
L

7.9
−

8.2
−

5
.1

T
L

9.9
−

9.4
93

8.9

25
292

40
10

524
0.0

238
0.0

221
0.0

2
1
8

0.0
947

0.0
5386

0.0
220

0.0
8

0.0

25
312

45
6

T
L

2.5
T
L

2.2
−

2.6
T
L

1.6
T
L

1
.1

T
L

5.9
T
L

2.7
13

1.6

25
308

45
8

T
L

6.9
T
L

7.6
T
L

6.5
T
L

5
.8

T
L

6.8
T
L

15.4
T
L

7.1
49

6.2

25
328

45
10

T
L

12.4
T
L

10.3
T
L

8.1
−

8.9
T
L

4
.3

T
L

13.9
T
L

12.1
155

9.8

25
298

50
6

T
L

6.4
T
L

4.7
T
L

2.9
−

2
.7

T
L

3.5
T
L

15.6
T
L

6.2
219

2.8

25
270

50
8

T
L

9.9
T
L

8.5
−

6.3
T
L

5
.0

T
L

8.0
T
L

13.4
T
L

10.4
251

5.4

25
328

50
10

T
L

7.2
T
L

4.7
T
L

6.6
T
L

4.2
T
L

4
.1

T
L

9.3
T
L

11.3
309

4.4

T
able

5.1:
R
esults

for
graphs

w
ith
|N
|

=
25

and
d

=
0.5.

5.4 Computational results 193

In
st
an
ce
s

B
ra
n
ch
-a
n
d
-B
en
d
er
s-
C
u
t

C
R
C

A
B

P
H

B
B
+
V
I

B
+
P
H

B
+
V
I
+
P
H

|N
|
|A
|
|C
|
|F
|

t[
s]

G
ap

t[
s]

G
ap

t[
s]

G
ap

t[
s]

G
ap

t[
s]

G
ap

t[
s]

G
ap

t[
s]

G
ap

t[
s]

G
ap

50
12
22

10
6

1
0
4

0.
0

32
3

0.
0

25
2

0.
0

45
5

0.
0

17
6

0.
0

30
4

0.
0

21
1

0.
0

13
0.
0

50
12
44

10
8

T
L

12
.4

T
L

5.
1

T
L

12
.4

T
L

5.
1

2
9
9

0.
0

T
L

10
.0

T
L

12
.4

81
5.
3

50
12
66

10
10

T
L

17
.5

T
L

3.
3

T
L

14
.1

T
L

3.
1

T
L

0
.0

T
L

14
.5

T
L

14
.4

13
1

3.
2

50
12
60

15
6

T
L

14
.8

T
L

7.
2

T
L

9.
5

T
L

6.
5

T
L

4
.4

T
L

17
.7

T
L

16
.6

44
7.
0

50
11
92

15
8

28
9

0.
0

16
1

0.
0

17
3

0.
0
1
3
1

0.
0

51
1

0.
0

19
18

0.
0

61
7

0.
0

62
0.
0

50
12
34

15
10

T
L

2.
3

T
L

1.
2

T
L

2.
1

T
L

1
.1

T
L

2.
0

T
L

6.
6

T
L

3.
0

35
1.
2

50
12
76

20
6

T
L

0.
8

T
L

0.
2

T
L

0.
8

T
L

0.
2

6
4
9

0.
0

T
L

0.
9

T
L

0.
8

20
0.
2

50
12
20

20
8

T
L

15
.1

T
L

12
.2

T
L

11
.8

T
L

9
.4

T
L

11
.7

T
L

24
.9

T
L

13
.5

67
10
.4

50
12
88

20
10

18
60

0.
0

18
15

0.
0

57
0

0.
0
5
4
3

0.
0

63
63

0.
0

T
L

7.
1

29
21

0.
0

80
0.
0

50
12
52

25
6

T
L

20
.0

−
20
.2

T
L

12
.1

T
L

1
0
.4

T
L

13
.4

T
L

19
.1

T
L

25
.2

75
11
.7

50
12
14

25
8

T
L

6.
4

T
L

0.
9
−

5.
6

T
L

0
.0

T
L

3.
3

T
L

9.
3

T
L

6.
0

72
0.
0

50
11
70

30
6

T
L

6.
0

T
L

4.
6

T
L

5.
8

T
L

5.
2

T
L

2
.4

T
L

32
.9

−
6.
6

41
5.
5

50
12
04

30
8

T
L

2.
0

T
L

1.
4

T
L

1.
4

T
L

1.
4
2
0
9
6

0.
0

T
L

1.
4

T
L

1.
4

55
1.
4

50
12
34

30
10

T
L

14
.6

T
L

10
.3

−
10
.6

−
7.
9

T
L

7
.3

T
L

42
.3

T
L

23
.6

47
2

8.
5

50
11
64

35
6

T
L

6.
7

T
L

4.
2

T
L

4.
6

T
L

2
.5

T
L

6.
4

T
L

12
.8

T
L

7.
0

23
6

2.
6

50
12
04

35
8

T
L

9.
9

T
L

6.
7

T
L

6.
2

T
L

5
.5

T
L

7.
2

T
L

30
.5

T
L

10
.5

17
5

5.
8

50
12
26

35
10

T
L

23
.9

T
L

21
.0

T
L

11
.7

T
L

9
.2

T
L

28
.8

T
L

45
.8

T
L

26
.5

21
9

10
.2

50
11
98

40
6

T
L

49
.3

T
L

29
.5

T
L

15
.6

T
L

1
5
.2

T
L

41
.4

T
L

56
.5

T
L

48
.9

87
8

17
.9

50
11
98

40
8

T
L

67
.5

T
L

72
.6

T
L

16
.2

T
L

1
5
.0

T
L

19
.6

T
L

46
.8

T
L

75
.4

T
L

17
.7

50
12
08

40
10

T
L

7.
7

−
9.
0

T
L

5.
0

T
L

3
.9

T
L

9.
1

T
L

11
.0

T
L

11
.2

88
4.
1

50
12
44

45
6

−
32
.5

−
17
.5

−
8.
8

−
8
.7

T
L

8.
9

T
L

23
.6

T
L

18
.2

25
9.
5

50
12
42

45
8

T
L

31
.7

T
L

45
.4

T
L

1
2
.7

T
L

13
.3

T
L

14
.9

T
L

61
.6

T
L

50
.4

44
15
.3

50
13
30

45
10

−
45
.3

−
48
.3

−
1
3
.9

−
14
.5

T
L

23
.4

T
L

52
.4

−
23
.9

20
8

17
.0

T
ab
le
5.
2:

R
es
ul
ts

fo
r
gr
ap
hs

w
it
h
|N
|=

50
an
d
d

=
0.

5.

194 Benders reformulation for the node-capacitated VNFPRP
In
stan

ces
B
+
V
I
+
H

C
P
H

|N
|
|A
|
|C
|
|F
|
t[s]

G
ap

t[s]
G
ap

t[s]
G
ap

100
4996

10
6

1
0
1
.2
2

0.00
329.27

0.00
88.37

0.00

100
5058

10
8

6
4
.1
8

0.00
65.08

0.00
35.65

0.00

100
5026

10
10

7
8
.3
3

0.00
106.68

0.00
43.32

0.00

100
4974

15
6

3
7
7
.1
3

0.00
7081.53

0.00
61.22

0.00

100
5000

15
8

6
2
2
.4
0

0.00
855.60

0.00
32.49

0.40

100
4966

15
10

T
L

2.42
T
L

1
.1
4

31.95
0.35

100
5030

20
6

5
2
2
.7
6

0.00
T
L

0.40
60.61

1.65

100
4918

20
8

T
L

2
.2
7

T
L

2.77
48.25

2.30

100
4882

20
10

−
6
.2
6

T
L

9.38
63.97

0.00

100
4916

25
6

−
1
0
.4
7

T
L

24.34
110.61

0.42

100
4976

25
8

T
L

1.42
1
7
7
2
.4
6

0.00
25.23

0.00

100
4988

25
10

3
0
1
.0
3

0.00
6254.61

0.00
41.88

0.00

100
4896

30
6

T
L

4
.0
4

T
L

5.88
57.02

0.00

100
4984

30
8

T
L

8
.7
1

T
L

12.47
73.05

0.00

100
4866

30
10

−
1
1
.3
5

T
L

25.15
73.07

0.67

100
4966

35
6

T
L

6
.1
2

T
L

16.30
49.54

0.25

100
4878

35
8

−
7
.8
3

T
L

9.99
69.30

0.58

100
4820

35
10

T
L

5
.4
5

T
L

9.20
64.12

0.00

100
4986

40
6

−
7
.5
2

T
L

8.54
125.36

0.35

100
4946

40
8

−
2
.3
4

T
L

10.86
75.34

0.00

100
5060

40
10

T
L

5
.9
7

T
L

14.85
74.16

0.00

100
4910

45
6

−
1
3
.9
3

T
L

29.04
156.51

0.04

100
4954

45
8

T
L

0.58
T
L

0
.0
6

44.86
0.35

100
5050

45
10

−
6
.6
4

T
L

11.25
57.13

1.19

100
5026

50
6

−
1
6
.9
1

T
L

29.20
527.16

0.00

100
4954

50
8

−
1
4
.3
3

T
L

19.38
106.38

0.00

100
4974

50
10

−
1
0
.9
4

T
L

15.49
67.43

0.48

T
able

5.3:
R
esults

for
graphs

w
ith
|N
|

=
100

and
d

=
0.5

.

5.4 Computational results 195
In
st
an
ce
s

B
ra
n
ch
-a
n
d
-B
en
d
er
s-
C
u
t

C
R
C

A
B

P
H

B
B
+
V
I

B
+
P
H

B
+
V
I
+
P
H

|N
|
|A
|
|C
|
|F
|

t[
s]

G
ap

t[
s]

G
ap

t[
s]

G
ap

t[
s]

G
ap

t[
s]

G
ap

t[
s]

G
ap

t[
s]

G
ap

t[
s]

G
ap

25
53
8

10
6

74
0.
0

85
0.
0

51
0.
0

51
0.
0

7
0.
0

63
0.
0

38
0.
0

4
0.
0

25
53
8

10
8

38
0.
0

37
0.
0

56
0.
0

62
0.
0

1
5

0.
0

35
0.
0

44
0.
0

19
0.
0

25
53
6

10
10

35
0.
0

16
0.
0

79
0.
0

42
0.
0

6
0.
0

23
6

0.
0

28
1

0.
0

21
0.
0

25
53
4

15
6

15
0.
0

18
0.
0

14
0.
0

13
0.
0

1
2

0.
0

11
8

0.
0

33
0.
0

3
0.
0

25
54
2

15
8

53
0.
0

10
4

0.
0

12
1

0.
0

4
0

0.
0

45
2

0.
0

61
7

0.
0

96
0.
0

5
0.
0

25
54
2

15
10

17
7

0.
0

7
0.
0

16
0.
0

17
0.
0

15
0.
0

28
4

0.
0

93
0.
0

9
0.
0

25
54
8

20
6

25
0.
0

1
4

0.
0

43
0.
0

18
0.
0

18
0.
0

44
97

0.
0

21
2

0.
0

4
0.
0

25
55
4

20
8

1
2

0.
0

14
0.
0

15
0.
0

16
0.
0

17
0.
0

13
2

0.
0

22
0.
0

5
0.
0

25
52
6

20
10

T
L

2.
8

76
94

0.
0

T
L

2.
6

19
74

0.
0

9
1
5

0.
0

T
L

3.
5

T
L

3.
0

26
0.
0

25
54
2

25
6

T
L

2.
2

84
67

0.
0

T
L

2.
2

28
39

0.
0

1
1
2

0.
0

T
L

1.
8

T
L

2.
2

7
0.
0

25
55
4

25
8

48
9

0.
0

1
9
1

0.
0

32
5

0.
0

38
1

0.
0

25
45

0.
0

43
61

0.
0

92
3

0.
0

37
0.
0

25
54
8

25
10

63
0.
0

68
0.
0

51
0.
0

49
0.
0

3
5

0.
0

67
0.
0

16
3

0.
0

29
0.
0

25
53
0

30
6

T
L

0.
5

62
15

0.
0

T
L

0.
5

54
89

0.
0

8
7

0.
0

T
L

1.
0

T
L

0.
5

7
0.
0

25
55
6

30
8

32
03

0.
0

22
93

0.
0

28
59

0.
0
2
0
2
0

0.
0

34
22

0.
0

T
L

4.
8

45
02

0.
0

78
0.
0

25
54
4

30
10

T
L

2.
2

T
L

1.
5

T
L

1.
9

T
L

1.
7

T
L

0
.3

T
L

4.
1

T
L

1.
7

4
1.
7

25
54
4

35
6

53
80

0.
0

61
2

0.
0

62
84

0.
0

10
55

0.
0

4
3
0

0.
0

T
L

3.
1

T
L

0.
5

6
0.
0

25
56
0

35
8

T
L

2.
8

T
L

1.
6

T
L

2.
4

T
L

1
.2

T
L

1.
5

T
L

5.
4

T
L

2.
3

7
1.
3

25
55
0

35
10

T
L

0.
6

47
9

0.
0

T
L

0.
6

32
8

0.
0

2
2
6

0.
0

T
L

0.
7

T
L

0.
3

34
0.
0

25
55
4

40
6

T
L

2.
2

T
L

1.
5

T
L

2.
4

T
L

1.
6

T
L

0
.4

T
L

4.
1

T
L

2.
0

48
1.
6

25
54
0

40
8

T
L

6.
0

T
L

4.
4

T
L

5.
4

T
L

4
.2

T
L

6.
6

T
L

9.
9

T
L

7.
0

24
4.
4

25
53
2

40
10

T
L

1.
7

T
L

2.
5

T
L

1.
7

T
L

0
.8

T
L

1.
5

T
L

4.
5

T
L

2.
7

12
0.
9

25
52
8

45
6

T
L

7.
2

T
L

8.
8

1T
L

5.
0

T
L

3.
8

T
L

3
.8

T
L

15
.8

T
L

12
.5

25
4.
4

25
52
4

45
8

T
L

8.
3

T
L

6.
0

T
L

4.
7

T
L

2
.8

T
L

4.
4

T
L

8.
9

T
L

5.
2

68
3.
0

25
53
4

45
10

T
L

2.
6

T
L

0.
1

T
L

1.
7
6
7
4
8

0.
0

T
L

2.
2

T
L

5.
7

T
L

2.
3

9
0.
0

25
54
8

50
6

T
L

5.
1

T
L

5.
7

T
L

4.
9

T
L

4.
5

T
L

4
.0

T
L

7.
8

T
L

5.
0

9
4.
7

25
54
6

50
8

T
L

4.
7

T
L

2.
2

T
L

2.
7

T
L

0
.0

T
L

1.
5

T
L

8.
8

T
L

2.
4

11
7

0.
9

25
54
2

50
10

−
6.
2

−
6.
7

T
L

4
.6

−
5.
6

T
L

4.
7

T
L

17
.5

−
8.
0

15
6

5.
9

T
ab
le
5.
4:

R
es
ul
ts

fo
r
gr
ap
hs

w
it
h
|N
|=

25
an
d
d

=
0.

9.

196 Benders reformulation for the node-capacitated VNFPRP
In
stan

ces
B
ran

ch
-an

d
-B
en
d
ers-C

u
t

C
R
C

A
B

P
H

B
B
+
V
I

B
+
P
H

B
+
V
I
+
P
H

|N
|
|A
|
|C
|
|F
|

t[s]
G
ap

t[s]
G
ap

t[s]
G
ap

t[s]
G
ap

t[s]
G
ap

t[s]
G
ap

t[s]
G
ap

t[s]
G
ap

50
2208

10
6

171
0.0

207
0.0

103
0.0

52
0.0

2
0

0.0
234

0.0
237

0.0
14

0.0

50
2190

10
8

12
0.0

9
0.0

16
0.0

11
0.0

3
0.0

33
0.0

23
0.0

3
0.0

50
2216

10
10

34
0.0

28
0.0

37
0.0

2
7

0.0
56

0.0
273

0.0
62

0.0
9

0.0

50
2194

15
6

93
0.0

63
0.0

122
0.0

3
7

0.0
82

0.0
7322

0.0
263

0.0
12

0.0

50
2236

15
8

44
0.0

2
4

0.0
47

0.0
33

0.0
30

0.0
881

0.0
95

0.0
14

0.0

50
2222

15
10

134
0.0

230
0.0

88
0.0

8
6

0.0
165

0.0
1894

0.0
237

0.0
39

0.0

50
2204

20
6

−
0.9

2259
0.0

8048
0.0

3
3
4

0.0
5205

0.0
T
L

8.6
2788

3.8
21

0.0

50
2204

20
8

1509
4.4

524
0.0

T
L

2.7
4
6
3

0.0
T
L

7.3
T
L

13.4
T
L

2.7
20

3.4

50
2192

20
10

T
L

2.3
T
L

2.4
T
L

1.7
T
L

0
.3

T
L

3.3
T
L

9.6
T
L

3.0
25

1.2

50
2220

25
6

T
L

1.1
826

0.0
T
L

0.4
586

0.0
2
4
7

0.0
T
L

1.1
T
L

0.5
65

0.1

50
2180

25
8

78
0.0

115
0.0

6
3

0.0
65

0.0
140

0.0
1426

0.0
281

0.0
16

0.0

50
2222

25
10

520
0.0

677
0.0

486
0.0

601
0.0

4
8
3

0.0
8255

0.0
885

0.0
21

0.0

50
2206

30
6

4
3
1

0.0
626

0.0
1105

0.0
823

0.0
5144

0.0
T
L

9.1
1
4
4
7

0.0
22

0.0

50
2190

30
8

3226
0.0

175
0.0

2623
0.0

1
6
2

0.0
3557

0.0
T
L

1.3
5275

0.0
63

0.0

50
2212

30
10

−
6.8

−
9.3

−
5.1

−
3
.5

T
L

8.8
T
L

40.3
−

14.3
56

3.6

50
2216

35
6

−
9.2

−
8.9

−
6.8

−
3
.0

T
L

7.3
T
L

20.9
−

7.5
34

3.2

50
2208

35
8

−
1.0

2678
0.0

2136
0.0

1564
0.0

7
4
2

0.0
T
L

2.3
−

0.9
25

0.0

50
2192

35
10

−
1
.5

−
6.9

−
3.7

−
2.6

T
L

7.6
T
L

30.2
−

1.4
102

2.6

50
2188

40
6

−
11.4

−
10.8

T
L

6.2
T
L

2
.5

T
L

7.8
T
L

35.0
−

10.0
55

2.7

50
2190

40
8

T
L

4.0
T
L

2.4
T
L

3.4
T
L

2
.2

T
L

2.3
T
L

5.8
T
L

5.6
128

2.3

50
2204

40
10

T
L

3.9
T
L

4.2
T
L

3.5
T
L

3.9
T
L

3
.0

T
L

21.3
T
L

6.4
394

4.1

50
2192

45
6

−
17.7

T
L

8.7
−

6.4
T
L

5
.6

T
L

6.9
T
L

19.5
−

13.0
103

6.0

50
2178

45
8

T
L

0.4
T
L

0.1
T
L

0.4
T
L

0.1
8
5
6
6

0.0
T
L

19.3
T
L

0.4
60

0.1

50
2220

45
10

−
7.8

−
11.0

T
L

5
.5

T
L

5.6
T
L

7.4
T
L

25.8
T
L

15.2
709

5.9

50
2202

50
6

−
25.3

T
L

32.9
−

9.5
−

8
.1

T
L

17.8
T
L

54.3
T
L

32.6
182

8.9

50
2192

50
8

−
1.7

T
L

1
.1

T
L

1.5
T
L

1.8
T
L

3.1
T
L

27.2
T
L

6.6
96

1.8

50
2238

50
10

−
9.3

−
6.7

T
L

9.3
T
L

6.3
T
L

5
.7

T
L

15.9
T
L

12.0
348

7.5

T
able

5.5:
R
esults

for
graphs

w
ith
|N
|

=
50

and
d

=
0.9.

5.4 Computational results 197

In
st
an
ce
s

B
ra
n
ch
-a
n
d
-B
en
d
er
s-
C
u
t

C
R
C

A
B

P
H

B
B
+
V
I

B
+
P
H

B
+
V
I
+
P
H

|N
|
|A
|
|C
|
|F
|

t[
s]

G
ap

t[
s]

G
ap

t[
s]

G
ap

t[
s]

G
ap

t[
s]

G
ap

t[
s]

G
ap

t[
s]

G
ap

t[
s]

G
ap

10
0

89
46

10
6

12
6

0.
0

15
8

0.
0

19
5

0.
0

14
0

0.
0

1
2
3

0.
0

49
67

0.
0

54
2

0.
0

48
4.
1

10
0

88
94

10
8

10
2

0.
0

96
0.
0

11
8

0.
0

82
0.
0

7
5

0.
0

10
29

0.
0

44
2

0.
0

40
0.
0

10
0

88
76

10
10

54
6

0.
0

2
4
1

0.
0

52
3

0.
0

25
7

0.
0

58
0

0.
0

T
L

3.
1

39
21

0.
0

34
3.
8

10
0

89
46

15
6

T
L

1.
1

43
5

0.
0

T
L

1.
1

4
2
5

0.
0

17
52

0.
0

T
L

6.
0

T
L

1.
5

92
0.
0

10
0

89
14

15
8

50
2

0.
0

29
6

0.
0

55
1

0.
0

2
6
5

0.
0

15
22

0.
0

T
L

10
,8

33
68

0.
0

57
0.
0

10
0

89
02

15
10

22
5

0.
0

20
6

0.
0

23
0

0.
0

1
8
6

0.
0

13
50

0.
0

T
L

5.
4

11
51

0.
0

44
0.
0

10
0

90
10

20
6

11
24

0.
0

19
4

0.
0

61
6

0.
0

1
7
0

0.
0

65
4

0.
0

T
L

7.
4

47
49

0.
0

73
0.
0

10
0

89
60

20
8

53
4

0.
0

29
7

0.
0

51
8

0.
0

2
4
9

0.
0

29
56

0.
0

T
L

54
.8

33
30

0.
0

81
0.
0

10
0

89
38

20
10

12
11

0.
0

21
3

0.
0

10
12

0.
0

1
7
1

0.
0

55
0

0.
0

T
L

1.
1

58
89

0.
0

86
3.
2

10
0

89
36

25
6

T
L

4.
3

29
25

0.
0

T
L

3.
9
2
3
3
4

0.
0

78
06

0.
0

T
L

6.
2

T
L

4.
3

91
3.
0

10
0

88
40

25
8

T
L

3.
5

T
L

3.
0

T
L

4.
5

T
L

3
.0

T
L

3.
8

T
L

78
.7

T
L

13
.9

98
4.
9

10
0

89
54

25
10

21
2

0.
0

22
7

0.
0

25
3

0.
0

2
1
2

0.
0

58
2

0.
0

T
L

7.
6

15
16

0.
0

55
2.
1

10
0

89
74

30
6

47
71

0.
0

16
89

0.
0

18
49

0.
0
1
0
1
6

0.
0

50
76

0.
0

T
L

37
.2

89
59

0.
0

77
0.
0

10
0

88
60

30
8

T
L

0.
7

57
28

0.
0

T
L

0.
0
1
1
8
0

0.
0

T
L

1.
0

T
L

21
.4

T
L

5.
2

10
0

0.
4

10
0

89
90

30
10

T
L

1.
2

10
51

0.
0

T
L

0.
7

7
0
0

0.
0

93
17

0.
0

T
L

39
.3

T
L

0.
9

99
4.
1

10
0

89
42

35
6

T
L

0.
9

34
48

0.
0

T
L

0.
0
1
0
0
8

0.
0

T
L

4.
8

T
L

72
.6

T
L

1.
4

15
3

2.
9

10
0

89
36

35
8

T
L

5.
9

T
L

5.
7

T
L

5.
7

T
L

2
.6

T
L

16
.1

T
L

81
.5

T
L

45
.7

14
2

4.
1

10
0

89
22

35
10

T
L

1.
7

T
L

0.
7

T
L

1.
9

T
L

0
.9

T
L

14
.9

T
L

75
.8

T
L

26
.4

23
2

1.
6

10
0

89
04

40
6

T
L

0.
0

T
L

0.
0

T
L

0.
0

T
L

0
.0

T
L

0.
1

T
L

0.
8

T
L

0.
8

18
4

1.
4

10
0

89
24

40
8

T
L

0.
3

T
L

0.
1

T
L

0.
0

T
L

0
.0

T
L

0.
2

T
L

0.
8

T
L

0.
7

T
L

7.
8

10
0

89
04

40
10

T
L

0.
1

T
L

0.
0

T
L

0.
0

T
L

0
.0

T
L

0.
3

T
L

0.
7

T
L

0.
5

14
8

3.
4

10
0

89
26

45
6

32
65

0.
0

31
15

0.
0

19
27

0.
0
1
1
1
8

0.
0

48
04

0.
0

T
L

0.
8

78
59

0.
0

19
1

7.
4

T
ab
le
5.
6:

R
es
ul
ts

fo
r
gr
ap
hs

w
it
h
|N
|=

10
0
an
d
d

=
0.

9.

198 Benders reformulation for the node-capacitated VNFPRP
In
sta

n
ces

B
ra
n
ch
-a
n
d
-B

en
d
ers-C

u
t

C
R
C

A
B

P
H

B
B
+
V
I

B
+
P
H

B
+
V
I
+
P
H

N
a
m
e

|N
|
|A
|
|C
|
|F
|

G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]

A
bilen

e
1

1
2

3
0

1
3
2

6
−

−
8
.3
5

8
.3
5

−
−

−
0
.3
3

A
bilen

e
2

1
2

3
0

1
3
2

6
−

−
9
.4
5

9
.4
6

−
−

−
0
.0
9

A
bilen

e
3

1
2

3
0

1
3
2

6
−

−
9
.2
1

9
.2
2

−
−

−
0
.0
3

A
bilen

e
4

1
2

3
0

1
3
2

6
−

−
1
0
.0
3

1
0
.0
3

−
−

−
0
.2
0

A
bilen

e
5

1
2

3
0

1
3
2

6
−

−
1
0
.9
6

1
0
.9
6

−
−

−
0
.0
4

A
bilen

e
6

1
2

3
0

1
3
2

6
−

−
1
1
.8
2

1
1
.8
2

−
−

−
0
.0
5

A
bilen

e
7

1
2

3
0

1
3
2

6
−

−
7
.4
5

7
.4
5

−
−

−
0
.0
9

A
bilen

e
8

1
2

3
0

1
3
2

6
−

−
9
.4
8

9
.4
8

−
−

−
0
.1
1

A
bilen

e
9

1
2

3
0

1
3
2

6
−

−
1
4
.7
5

1
4
.7
6

−
−

−
0
.2
2

A
bilen

e
1
0

1
2

3
0

1
3
2

6
−

−
9
.7
8

9
.7
8

−
−

−
0
.0
3

A
tla

n
ta

1
1
5

4
4

2
1
0

6
−

−
2
1
.0
1

2
1
.0
1

−
−

−
1
.2
7

A
tla

n
ta

2
1
5

4
4

2
1
0

6
−

−
1
4
.7
7

1
4
.7
7

−
−

−
2
.0
5

A
tla

n
ta

3
1
5

4
4

2
1
0

6
−

−
1
7
.6
3

1
7
.6
3

−
−

−
1
.4
6

A
tla

n
ta

4
1
5

4
4

2
1
0

6
−

−
4
5
.8
2

4
5
.8
2

−
−

−
5
3
.6
1

A
tla

n
ta

5
1
5

4
4

2
1
0

6
−

−
2
6
.1
1

2
6
.1
1

−
−

−
1
3
.3
8

A
tla

n
ta

6
1
5

4
4

2
1
0

6
−

−
1
1
.5
6

1
1
.5
6

−
−

−
0
.8
1

A
tla

n
ta

7
1
5

4
4

2
1
0

6
−

−
4
2
.8
8

4
2
.8
8

−
−

−
4
8
.0
0

A
tla

n
ta

8
1
5

4
4

2
1
0

6
−

−
2
0
.0
8

2
0
.0
8

−
−

−
8
.3
8

A
tla

n
ta

9
1
5

4
4

2
1
0

6
−

−
4
1
.0
0

4
1
.0
0

−
−

−
4
2
.6
1

A
tla

n
ta

1
0

1
5

4
4

2
1
0

6
−

−
1
6
.1
9

1
6
.1
9

−
−

−
0
.4
3

D
f
n
−

bw
in

1
1
0

9
0

9
0

6
5
.0
6

5
.0
6

3
.4
9

3
.4
9

2
.6
7

4
.3
0

9
.0
5

2
.1
8

D
f
n
−

bw
in

2
1
0

9
0

9
0

6
3
.7
5

3
.8
4

2
.1
7

2
.1
8

1
.9
5

4
.6
7

6
.3
9

1
.0
2

D
f
n
−

bw
in

3
1
0

9
0

9
0

6
1
2
.8
2

1
2
.8
2

3
.8
1

3
.8
1

3
.6
0

6
.2
7

8
.8
0

1
.8
8

D
f
n
−

bw
in

4
1
0

9
0

9
0

6
6
.5
5

6
.5
5

2
.1
8

2
.3
5

1
.8
1

3
.1
8

6
.4
4

1
.6
8

D
f
n
−

bw
in

5
1
0

9
0

9
0

6
6
.7
1

6
.7
1

3
.7
1

3
.6
3

2
.8
4

4
.4
0

9
.4
7

2
.0
3

D
f
n
−

bw
in

6
1
0

9
0

9
0

6
4
.3
2

4
.3
2

2
.9
8

2
.9
8

2
.7
1

4
.3
6

6
.4
9

1
.4
5

D
f
n
−

bw
in

7
1
0

9
0

9
0

6
1
3
.1
3

1
3
.1
3

4
.4
7

4
.4
7

3
.1
7

5
.1
9

7
.1
6

1
.9
1

D
f
n
−

bw
in

8
1
0

9
0

9
0

6
4
.8
5

4
.8
6

5
.1
4

5
.1
4

3
.7
9

4
.4
5

6
.4
1

1
.6
9

D
f
n
−

bw
in

9
1
0

9
0

9
0

6
3
.0
2

2
.9
9

1
.4
9

1
.4
9

1
.4
7

1
.7
8

1
.9
6

0
.6
4

D
f
n
−

bw
in

1
0

1
0

9
0

9
0

6
1
4
.3
8

1
4
.3
8

5
.4
0

5
.4
0

4
.5
7

6
.0
5

1
1
.6
4

1
.1
9

D
f
n
−

g
w
in

1
1
1

9
4

1
1
0

6
1
9
.8
9

1
9
.9
1

9
.6
5

9
.6
5

5
.0
0

9
.1
9

1
9
.4
2

4
.7
5

D
f
n
−

g
w
in

2
1
1

9
4

1
1
0

6
1
9
.5
5

1
9
.5
5

7
.9
1

7
.9
3

−
5
.4
7

1
9
.0
5

3
.3
5

D
f
n
−

g
w
in

3
1
1

9
4

1
1
0

6
−

−
8
.4
5

8
.4
5

4
.7
9

6
.2
1

2
5
.7
8

4
.3
1

D
f
n
−

g
w
in

4
1
1

9
4

1
1
0

6
2
2
.0
3

2
2
.0
3

6
.5
3

6
.5
3

4
.7
1

7
.8
6

2
0
.3
6

1
.8
9

D
f
n
−

g
w
in

5
1
1

9
4

1
1
0

6
2
1
.3
0

2
1
.3
0

9
.6
0

9
.6
0

6
.8
3

1
0
.7
9

2
1
.0
7

2
.5
9

D
f
n
−

g
w
in

6
1
1

9
4

1
1
0

6
−

−
9
.0
2

9
.0
2

−
7
.9
5

2
4
.1
8

1
.6
6

D
f
n
−

g
w
in

7
1
1

9
4

1
1
0

6
−

−
8
.0
0

8
.0
0

4
.1
0

7
.4
9

2
2
.9
8

4
.4
5

D
f
n
−

g
w
in

8
1
1

9
4

1
1
0

6
1
8
.9
0

1
8
.9
0

5
.6
7

5
.6
7

3
.2
7

5
.4
9

1
7
.9
6

2
.3
5

D
f
n
−

g
w
in

9
1
1

9
4

1
1
0

6
−

−
7
.7
9

7
.7
9

5
.6
4

1
1
.2
1

2
1
.7
8

2
.3
5

D
f
n
−

g
w
in

1
0

1
1

9
4

1
1
0

6
2
5
.5
7

2
5
.5
7

9
.6
1

9
.6
1

8
.3
9

8
.6
9

2
4
.4
6

1
.3
1

T
able

5.7:
R
esults

for
SN

D
lib

instances
w
ith

node
capacities

and
con�ict

constraints
(part

1)
.

5.4 Computational results 199
In
st
a
n
ce
s

B
ra
n
ch
-a
n
d
-B

en
d
er
s-
C
u
t

C
R
C

A
B

P
H

B
B
+
V
I

B
+
P
H

B
+
V
I
+
P
H

N
a
m
e

|N
|
|A
|
|C
|
|F
|

G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]

D
i
−

y
u
a
n
1

1
1

8
4

2
2

6
3
9
.4
9

3
9
.4
9

1
0
.5
1

8
.3
9

1
1
.5
2

1
1
.7
5

3
0
.5
1

2
.8
8

D
i
−

y
u
a
n
2

1
1

8
4

2
2

6
3
7
.9
1

3
7
.7
1

1
1
.3
8

8
.3
9

1
5
.9
6

2
5
.5
7

3
4
.3
9

2
.9
6

D
i
−

y
u
a
n
3

1
1

8
4

2
2

6
3
4
.2
1

3
4
.2
1

8
.8
8

8
.8
9

8
.3
9

−
3
2
.7
6

5
.5
9

D
i
−

y
u
a
n
4

1
1

8
4

2
2

6
−

−
1
0
.0
9

1
0
.0
9

1
0
.3
0

−
−

3
.0
7

D
i
−

y
u
a
n
5

1
1

8
4

2
2

6
3
1
.8
9

3
1
.9
0

9
.3
5

9
.3
5

1
0
.8
2

1
0
.7
2

3
4
.9
7

4
.9
9

D
i
−

y
u
a
n
6

1
1

8
4

2
2

6
4
2
.1
8

4
2
.1
9

9
.1
2

9
.1
3

9
.8
5

2
0
.1
2

3
8
.3
3

2
.1
6

D
i
−

y
u
a
n
7

1
1

8
4

2
2

6
−

−
4
.8
5

4
.8
5

2
.2
5

9
.6
4

−
4
.1
8

D
i
−

y
u
a
n
8

1
1

8
4

2
2

6
3
9
.0
6

−
1
2
.1
5

1
1
.3
3

9
.8
9

1
8
.1
7

3
2
.5
5

6
.1
8

D
i
−

y
u
a
n
9

1
1

8
4

2
2

6
−

−
1
5
.1
2

1
5
.1
2

1
6
.8
8

2
0
.2
2

−
6
.0
1

D
i
−

y
u
a
n
1
0

1
1

8
4

2
2

6
3
5
.7
2

3
5
.7
2

1
0
.5
1

1
0
.5
1

1
3
.3
0

1
4
.9
2

3
3
.3
9

0
.0
0

N
ew

y
o
r
k
1

1
6

9
8

2
4
0

6
−

−
4
6
.6
6

4
6
.6
6

−
4
6
.8
2

4
6
.4
6

3
2
.7
0

N
ew

y
o
r
k
2

1
6

9
8

2
4
0

6
−

−
1
9
.9
2

1
9
.9
2

−
3
9
.5
4

3
9
.9
7

1
.6
0

N
ew

y
o
r
k
3

1
6

9
8

2
4
0

6
−

−
4
1
.5
3

4
1
.5
3

−
3
7
.9
3

4
1
.6
3

4
3
.0
5

N
ew

y
o
r
k
4

1
6

9
8

2
4
0

6
−

−
4
5
.5
6

4
5
.5
6

−
4
1
.6
7

4
5
.6
9

3
1
.8
2

N
ew

y
o
r
k
5

1
6

9
8

2
4
0

6
−

−
1
6
.0
1

1
6
.0
1

−
3
8
.5
4

4
2
.6
9

8
.1
5

N
ew

y
o
r
k
6

1
6

9
8

2
4
0

6
−

−
1
8
.6
3

1
8
.6
3

−
3
8
.6
4

4
0
.1
9

1
0
.0
5

N
ew

y
o
r
k
7

1
6

9
8

2
4
0

6
−

−
3
6
.9
7

3
6
.9
7

−
3
7
.3
6

3
6
.8
3

3
2
.4
0

N
ew

y
o
r
k
8

1
6

9
8

2
4
0

6
−

−
4
0
.0
2

4
0
.0
2

−
3
8
.4
6

3
9
.9
1

4
3
.5
7

N
ew

y
o
r
k
9

1
6

9
8

2
4
0

6
−

−
2
0
.7
8

2
0
.7
8

−
3
6
.6
5

4
6
.1
1

6
.9
4

N
ew

y
o
r
k
1
0

1
6

9
8

2
4
0

6
−

−
2
2
.4
2

2
2
.4
2

−
3
8
.1
3

4
3
.6
3

1
0
.2
3

N
o
be
l
−

g
er

1
1
7

5
2

1
2
1

6
−

−
−

−
−

−
−

−
N
o
be
l
−

g
er

2
1
7

5
2

1
2
1

6
−

−
1
8
.8
7

1
8
.8
7

−
−

−
1
.4
5

N
o
be
l
−

g
er

3
1
7

5
2

1
2
1

6
−

−
1
4
.1
8

1
4
.1
8

−
−

−
6
.3
5

N
o
be
l
−

g
er

4
1
7

5
2

1
2
1

6
−

−
−

−
−

−
−

−
N
o
be
l
−

g
er

5
1
7

5
2

1
2
1

6
−

−
1
8
.1
7

1
8
.1
7

−
−

−
4
.0
9

N
o
be
l
−

g
er

6
1
7

5
2

1
2
1

6
−

−
−

−
−

−
−

−
N
o
be
l
−

g
er

7
1
7

5
2

1
2
1

6
−

−
1
2
.3
3

1
2
.3
4

−
−

−
0
.4
7

N
o
be
l
−

g
er

8
1
7

5
2

1
2
1

6
−

−
1
8
.4
2

1
8
.4
2

−
−

−
1
.1
1

N
o
be
l
−

g
er

9
1
7

5
2

1
2
1

6
−

−
2
2
.3
3

2
2
.3
3

−
−

−
8
.5
4

N
o
be
l
−

g
er

1
0

1
7

5
2

1
2
1

6
−

−
−

−
−

−
−

−
N
o
be
l
−

u
s 1

1
4

4
2

9
1

6
−

−
1
5
.1
5

1
5
.1
5

−
−

−
1
.8
0

N
o
be
l
−

u
s 2

1
4

4
2

9
1

6
−

−
1
0
.5
8

1
0
.5
8

−
−

−
1
.2
1

N
o
be
l
−

u
s 3

1
4

4
2

9
1

6
−

−
5
.2
8

5
.2
8

−
−

−
1
.5
7

N
o
be
l
−

u
s 4

1
4

4
2

9
1

6
−

−
1
2
.2
9

1
2
.2
9

−
−

−
1
.7
1

N
o
be
l
−

u
s 5

1
4

4
2

9
1

6
−

−
1
3
.6
7

1
3
.6
7

−
−

−
1
.7
4

N
o
be
l
−

u
s 6

1
4

4
2

9
1

6
−

−
1
0
.2
9

1
0
.2
9

−
−

−
0
.8
7

N
o
be
l
−

u
s 7

1
4

4
2

9
1

6
−

−
1
4
.1
4

1
4
.1
4

−
−

−
1
.8
0

N
o
be
l
−

u
s 8

1
4

4
2

9
1

6
−

−
3
7
.3
4

3
7
.3
4

−
−

−
3
7
.9
8

N
o
be
l
−

u
s 9

1
4

4
2

9
1

6
−

−
1
5
.6
2

1
5
.6
2

−
−

−
4
.6
4

N
o
be
l
−

u
s 1

0
1
4

4
2

9
1

6
−

−
1
8
.8
2

1
8
.8
2

−
−

−
3
.0
7

T
ab
le
5.
8:

R
es
ul
ts

fo
r
SN

D
lib

in
st
an
ce
s
w
it
h
no
de

ca
pa
ci
ti
es

an
d
co
n�

ic
t
co
ns
tr
ai
nt
s
(p
ar
t
2)
.

200 Benders reformulation for the node-capacitated VNFPRP

In
sta

n
ces

B
ra
n
ch
-a
n
d
-B

en
d
ers-C

u
t

C
R
C

A
B

P
H

B
B
+
V
I

B
+
P
H

B
+
V
I
+
P
H

N
a
m
e

|N
|
|A
|
|C
|
|F
|

G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]

P
d
h
1

1
1

6
8

2
4

6
0
.4
5

0
.4
6

0
.5
1

0
.5
1

0
.5
1

0
.1
5

0
.4
9

0
.2
0

P
d
h
2

1
1

6
8

2
4

6
2
.4
8

2
.4
8

2
.0
3

2
.0
3

1
.8
2

1
.8
0

3
.1
9

0
.7
7

P
d
h
3

1
1

6
8

2
4

6
1
.3
6

1
.3
6

1
.8
0

1
.8
0

1
.2
2

0
.9
5

1
.6
4

0
.9
8

P
d
h
4

1
1

6
8

2
4

6
3
.9
0

3
.9
0

2
.7
4

2
.7
4

1
.8
9

2
.1
2

6
.0
4

0
.8
3

P
d
h
5

1
1

6
8

2
4

6
5
.0
5

5
.0
5

3
.9
1

3
.9
1

2
.8
9

3
.3
6

5
.4
4

1
.2
7

P
d
h
6

1
1

6
8

2
4

6
1
2
.8
8

1
2
.8
8

5
.6
2

5
.6
2

7
.0
6

4
.8
4

−
0
.8
3

P
d
h
7

1
1

6
8

2
4

6
3
.3
3

3
.3
3

2
.8
1

2
.8
1

2
.7
7

2
.8
6

3
.1
9

0
.1
3

P
d
h
8

1
1

6
8

2
4

6
0
.7
7

0
.7
7

0
.4
5

0
.4
5

0
.3
1

0
.2
8

0
.5
3

0
.3
4

P
d
h
9

1
1

6
8

2
4

6
3
.7
0

3
.7
0

2
.8
7

2
.8
7

2
.8
3

2
.5
5

3
.2
8

0
.3
1

P
d
h
1
0

1
1

6
8

2
4

6
2
.0
7

2
.0
7

2
.1
0

2
.1
1

2
.2
1

2
.0
3

2
.0
9

0
.0
0

P
o
lsk

a
1

1
2

3
6

6
6

6
−

−
9
.1
9

9
.1
9

1
8
.9
6

−
−

2
.2
5

P
o
lsk

a
2

1
2

3
6

6
6

6
−

−
1
4
.3
6

1
4
.3
6

1
8
.9
9

−
−

2
.3
6

P
o
lsk

a
3

1
2

3
6

6
6

6
−

−
7
.6
5

7
.6
5

1
4
.3
1

−
−

0
.6
7

P
o
lsk

a
4

1
2

3
6

6
6

6
−

−
1
3
.5
0

1
3
.5
0

1
9
.9
6

−
−

2
.6
0

P
o
lsk

a
5

1
2

3
6

6
6

6
−

−
1
5
.8
5

1
5
.8
5

1
9
.0
3

−
−

2
.0
2

P
o
lsk

a
6

1
2

3
6

6
6

6
−

−
1
7
.0
1

1
7
.0
1

2
5
.8
5

−
−

3
.3
0

P
o
lsk

a
7

1
2

3
6

6
6

6
−

−
1
3
.2
2

1
3
.2
2

1
2
.8
4

−
−

2
.4
2

P
o
lsk

a
8

1
2

3
6

6
6

6
−

−
7
.7
3

7
.7
3

8
.8
5

−
−

0
.8
7

P
o
lsk

a
9

1
2

3
6

6
6

6
−

−
9
.9
7

9
.9
7

1
1
.7
1

−
−

2
.1
6

P
o
lsk

a
1
0

1
2

3
6

6
6

6
−

−
1
2
.0
8

1
2
.0
8

1
5
.6
1

−
−

1
.7
6

T
able

5.9:
R
esults

for
SN

D
lib

instances
w
ith

node
capacities

and
con�ict

constraints
(part

3).

5.4 Computational results 201
In
st
a
n
ce
s

B
ra
n
ch
-a
n
d
-B

en
d
er
s-
C
u
t

C
R
C

A
B

P
H

B
B
+
V
I

B
+
P
H

B
+
V
I
+
P
H

N
a
m
e

|N
|
|A
|
|C
|
|F
|

G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]

A
bi
le
n
e 1

1
2

3
0

1
3
2

6
−

−
6
.4
2

6
.4
2

4
.4
9

8
.3
6

−
0
.0
0

A
bi
le
n
e 2

1
2

3
0

1
3
2

6
−

−
9
.4
5

9
.4
5

7
.1
4

−
−

0
.0
0

A
bi
le
n
e 3

1
2

3
0

1
3
2

6
−

−
7
.1
2

7
.1
2

6
.4
1

−
−

0
.0
4

A
bi
le
n
e 4

1
2

3
0

1
3
2

6
−

−
9
.9
6

9
.9
7

6
.5
8

−
−

0
.0
4

A
bi
le
n
e 5

1
2

3
0

1
3
2

6
−

−
5
.1
0

5
.1
1

3
.2
4

5
.6
6

−
0
.0
0

A
bi
le
n
e 6

1
2

3
0

1
3
2

6
−

−
8
.4
1

8
.4
1

6
.9
3

9
.9
0

−
0
.0
0

A
bi
le
n
e 7

1
2

3
0

1
3
2

6
−

−
7
.6
2

7
.6
3

5
.2
4

−
−

0
.0
0

A
bi
le
n
e 8

1
2

3
0

1
3
2

6
−

−
8
.1
8

8
.1
8

7
.4
1

1
1
.0
0

−
0
.0
0

A
bi
le
n
e 9

1
2

3
0

1
3
2

6
−

−
1
5
.9
8

1
5
.9
8

1
5
.4
6

−
−

0
.0
6

A
bi
le
n
e 1

0
1
2

3
0

1
3
2

6
−

−
7
.2
8

7
.2
8

4
.1
7

9
.1
0

−
0
.0
0

A
tl
a
n
ta

1
1
5

4
4

2
1
0

6
−

−
1
9
.0
2

1
9
.0
2

4
4
.2
0

−
−

0
.5
3

A
tl
a
n
ta

2
1
5

4
4

2
1
0

6
−

−
1
3
.6
5

1
3
.6
6

2
1
.7
2

−
−

0
.2
7

A
tl
a
n
ta

3
1
5

4
4

2
1
0

6
−

−
1
3
.4
1

1
3
.4
1

2
4
.5
3

−
−

0
.6
0

A
tl
a
n
ta

4
1
5

4
4

2
1
0

6
−

−
1
4
.3
5

1
4
.3
5

1
7
.9
8

−
−

1
.1
9

A
tl
a
n
ta

5
1
5

4
4

2
1
0

6
−

−
8
.6
9

8
.6
9

1
3
.8
1

−
−

0
.0
2

A
tl
a
n
ta

6
1
5

4
4

2
1
0

6
−

−
1
2
.5
2

1
2
.5
2

1
6
.0
2

−
−

0
.3
5

A
tl
a
n
ta

7
1
5

4
4

2
1
0

6
−

−
1
8
.2
9

1
8
.3
0

4
8
.8
6

−
−

0
.0
0

A
tl
a
n
ta

8
1
5

4
4

2
1
0

6
−

−
1
6
.6
3

1
6
.6
3

2
7
.4
9

−
−

0
.4
5

A
tl
a
n
ta

9
1
5

4
4

2
1
0

6
−

−
1
2
.7
3

1
2
.7
3

2
3
.0
8

−
−

0
.1
7

A
tl
a
n
ta

1
0

1
5

4
4

2
1
0

6
−

−
1
7
.7
6

1
7
.7
6

2
2
.5
0

−
−

0
.7
3

D
f
n
−

bw
in

1
1
0

9
0

9
0

6
7
.2
3

7
.2
8

3
.1
1

3
.1
6

2
.6
9

4
.3
2

6
.2
7

2
.1
6

D
f
n
−

bw
in

2
1
0

9
0

9
0

6
1
.6
0

1
.6
5

1
.6
3

1
.6
5

1
.4
6

3
.2
7

5
.0
3

0
.9
4

D
f
n
−

bw
in

3
1
0

9
0

9
0

6
5
.0
4

5
.0
4

3
.3
6

3
.3
6

3
.0
3

4
.8
6

8
.5
7

1
.3
8

D
f
n
−

bw
in

4
1
0

9
0

9
0

6
1
.2
7

1
.2
7

1
.1
0

1
.2
0

1
.1
3

1
.3
6

1
.1
4

0
.9
7

D
f
n
−

bw
in

5
1
0

9
0

9
0

6
8
.8
3

8
.8
3

2
.9
1

2
.9
1

2
.3
8

2
.4
4

2
1
.4
5

0
.6
0

D
f
n
−

bw
in

6
1
0

9
0

9
0

6
2
.8
8

3
.2
6

2
.5
7

2
.5
7

2
.4
6

4
.0
7

5
.1
3

1
.4
9

D
f
n
−

bw
in

7
1
0

9
0

9
0

6
1
5
.7
2

1
5
.7
2

3
.3
1

3
.7
7

2
.3
3

3
.3
8

6
.7
2

1
.9
5

D
f
n
−

bw
in

8
1
0

9
0

9
0

6
3
.0
7

3
.0
7

1
.8
5

1
.8
5

1
.4
3

1
.4
5

2
.6
9

1
.3
6

D
f
n
−

bw
in

9
1
0

9
0

9
0

6
1
.3
1

1
.3
1

1
.1
5

1
.1
6

1
.0
5

1
.3
7

1
.2
5

0
.5
4

D
f
n
−

bw
in

1
0

1
0

9
0

9
0

6
5
.3
9

5
.3
9

4
.8
1

4
.8
1

3
.2
4

4
.3
5

8
.4
7

1
.6
6

D
f
n
−

g
w
in

1
1
1

9
4

1
1
0

6
2
0
.0
5

2
0
.0
5

9
.3
5

9
.3
5

4
.1
3

5
.9
7

2
0
.0
5

5
.1
9

D
f
n
−

g
w
in

2
1
1

9
4

1
1
0

6
2
0
.6
3

2
0
.6
3

8
.1
3

8
.1
5

3
.7
5

4
.6
7

1
9
.6
7

4
.8
6

D
f
n
−

g
w
in

3
1
1

9
4

1
1
0

6
−

−
5
.4
1

5
.5
2

4
.2
6

4
.7
8

−
1
.4
2

D
f
n
−

g
w
in

4
1
1

9
4

1
1
0

6
1
.6
6

1
.6
6

1
.1
8

1
.1
8

0
.6
5

0
.8
6

6
.9
6

1
.9
8

D
f
n
−

g
w
in

5
1
1

9
4

1
1
0

6
2
1
.4
7

2
1
.4
7

7
.5
4

7
.5
4

5
.1
6

7
.4
3

2
1
.0
0

2
.2
8

D
f
n
−

g
w
in

6
1
1

9
4

1
1
0

6
1
0
.3
4

1
0
.2
8

6
.7
5

6
.7
5

3
.2
6

4
.1
0

−
3
.8
0

D
f
n
−

g
w
in

7
1
1

9
4

1
1
0

6
2
4
.1
4

2
3
.9
6

7
.5
2

7
.5
2

2
.5
8

3
.3
4

2
3
.6
9

5
.4
7

D
f
n
−

g
w
in

8
1
1

9
4

1
1
0

6
2
0
.0
6

2
0
.0
7

4
.0
9

4
.1
0

2
.6
0

3
.0
9

1
8
.9
6

1
.5
2

D
f
n
−

g
w
in

9
1
1

9
4

1
1
0

6
2
2
.5
0

2
2
.5
1

7
.8
5

7
.8
5

5
.1
9

6
.2
9

−
3
.0
2

D
f
n
−

g
w
in

1
0

1
1

9
4

1
1
0

6
2
5
.6
5

2
5
.6
5

8
.7
2

8
.7
2

6
.0
8

7
.2
2

2
4
.9
8

2
.6
5

T
ab
le
5.
10
:
R
es
ul
ts

fo
r
SN

D
lib

in
st
an
ce
s
w
it
ho
ut

no
de

ca
pa
ci
ti
es

an
d
co
n�

ic
t
co
ns
tr
ai
nt
s
(p
ar
t1
).

202 Benders reformulation for the node-capacitated VNFPRP
In
sta

n
ces

B
ra
n
ch
-a
n
d
-B

en
d
ers-C

u
t

C
R
C

A
B

P
H

B
B
+
V
I

B
+
P
H

B
+
V
I
+
P
H

N
a
m
e

|N
|
|A
|
|C
|
|F
|

G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]

D
i−

y
u
a
n
1

1
1

8
4

2
2

6
8
.0
1

8
.0
1

5
.7
0

5
.7
0

5
.0
5

5
.6
0

8
.0
7

1
.4
3

D
i−

y
u
a
n
2

1
1

8
4

2
2

6
−

−
7
.6
0

7
.6
5

7
.3
2

7
.8
0

−
0
.1
1

D
i−

y
u
a
n
3

1
1

8
4

2
2

6
1
4
.7
6

1
5
.0
3

3
.3
9

3
.3
9

2
.7
7

2
.9
4

5
.1
1

0
.9
0

D
i−

y
u
a
n
4

1
1

8
4

2
2

6
1
.4
9

1
.5
8

1
.1
6

1
.1
7

1
.1
7

1
.0
1

1
.2
8

1
.2
5

D
i−

y
u
a
n
5

1
1

8
4

2
2

6
2
0
.8
7

2
0
.3
1

1
2
.2
2

1
2
.4
3

1
1
.2
3

1
1
.1
9

1
2
.6
5

1
.5
1

D
i−

y
u
a
n
6

1
1

8
4

2
2

6
−

−
1
4
.4
6

1
4
.4
9

1
3
.9
1

1
3
.6
7

2
4
.1
1

1
.7
3

D
i−

y
u
a
n
7

1
1

8
4

2
2

6
1
.0
6

1
.0
6

0
.8
4

0
.8
3

0
.4
5

−
0
.4
5

7
.1
3

D
i−

y
u
a
n
8

1
1

8
4

2
2

6
1
9
.0
4

5
.0
8

5
.7
5

3
.2
8

3
.6
5

3
.7
1

2
4
.1
3

2
.5
1

D
i−

y
u
a
n
9

1
1

8
4

2
2

6
2
0
.2
7

2
0
.2
7

1
1
.8
3

1
1
.8
3

9
.8
3

9
.5
4

1
2
.3
2

2
.1
5

D
i−

y
u
a
n
1
0

1
1

8
4

2
2

6
−

−
5
.3
1

5
.3
0

6
.6
4

6
.7
8

−
3
.2
6

N
ew

y
o
r
k
1

1
6

9
8

2
4
0

6
5
3
.3
8

5
3
.3
8

2
6
.9
8

2
6
.9
8

−
4
5
.1
0

5
3
.3
8

2
.7
7

N
ew

y
o
r
k
2

1
6

9
8

2
4
0

6
−

−
1
7
.5
7

1
7
.5
7

2
6
.5
9

3
0
.2
8

−
7
.4
8

N
ew

y
o
r
k
3

1
6

9
8

2
4
0

6
−

−
1
3
.1
3

1
3
.1
3

2
2
.9
2

3
0
.1
3

−
7
.6
7

N
ew

y
o
r
k
4

1
6

9
8

2
4
0

6
−

−
1
5
.7
1

1
5
.7
1

−
2
9
.3
6

−
7
.9
7

N
ew

y
o
r
k
5

1
6

9
8

2
4
0

6
−

−
1
3
.8
5

1
3
.8
5

1
7
.8
5

2
7
.1
5

−
5
.7
6

N
ew

y
o
r
k
6

1
6

9
8

2
4
0

6
−

−
2
4
.5
8

2
4
.5
8

3
0
.4
1

3
6
.5
6

−
1
3
.6
2

N
ew

y
o
r
k
7

1
6

9
8

2
4
0

6
−

−
1
7
.4
8

1
7
.4
8

−
3
2
.5
7

−
7
.1
2

N
ew

y
o
r
k
8

1
6

9
8

2
4
0

6
−

−
2
2
.2
3

2
2
.2
3

2
4
.2
2

2
8
.8
2

−
1
4
.2
5

N
ew

y
o
r
k
9

1
6

9
8

2
4
0

6
5
0
.1
1

5
0
.1
1

1
9
.3
9

1
9
.3
9

−
3
5
.7
7

5
0
.1
5

7
.5
2

N
ew

y
o
r
k
1
0

1
6

9
8

2
4
0

6
4
5
.1
1

4
5
.1
1

2
0
.1
5

2
0
.1
5

2
0
.1
8

2
5
.9
2

4
5
.0
0

1
1
.3
6

N
o
bel−

g
er

1
1
7

5
2

1
2
1

6
−

−
1
4
.4
5

1
4
.4
5

1
5
.9
0

−
−

6
.1
6

N
o
bel−

g
er

2
1
7

5
2

1
2
1

6
−

−
1
8
.0
2

1
8
.0
2

3
0
.1
9

−
−

1
.3
2

N
o
bel−

g
er

3
1
7

5
2

1
2
1

6
−

−
8
.1
4

8
.1
4

1
1
.1
9

−
−

0
.4
3

N
o
bel−

g
er

4
1
7

5
2

1
2
1

6
−

−
1
9
.8
6

1
9
.8
6

2
8
.8
5

−
−

5
.0
1

N
o
bel−

g
er

5
1
7

5
2

1
2
1

6
−

−
1
5
.1
8

1
5
.1
8

2
3
.3
6

−
−

2
.5
7

N
o
bel−

g
er

6
1
7

5
2

1
2
1

6
−

−
1
1
.1
7

1
1
.1
7

1
7
.6
2

−
−

0
.7
4

N
o
bel−

g
er

7
1
7

5
2

1
2
1

6
−

−
1
4
.5
4

1
4
.5
5

2
8
.2
9

−
−

0
.8
8

N
o
bel−

g
er

8
1
7

5
2

1
2
1

6
−

−
2
4
.2
2

2
4
.2
3

3
4
.3
0

−
−

1
.2
1

N
o
bel−

g
er

9
1
7

5
2

1
2
1

6
−

−
1
4
.0
1

1
4
.0
1

1
5
.7
9

−
−

1
.7
7

N
o
bel−

g
er

1
0

1
7

5
2

1
2
1

6
−

−
1
4
.7
7

1
4
.7
7

2
6
.3
7

−
−

1
.1
9

N
o
bel−

u
s
1

1
4

4
2

9
1

6
−

−
1
0
.4
2

1
0
.4
2

1
4
.0
0

−
−

0
.0
0

N
o
bel−

u
s
2

1
4

4
2

9
1

6
−

−
5
.6
8

5
.6
8

1
6
.0
8

1
6
.9
5

−
0
.1
2

N
o
bel−

u
s
3

1
4

4
2

9
1

6
−

−
6
.8
6

6
.8
7

1
1
.5
8

1
7
.7
9

−
0
.7
2

N
o
bel−

u
s
4

1
4

4
2

9
1

6
3
6
.7
7

3
6
.7
7

1
0
.7
1

1
0
.7
1

1
3
.0
2

1
7
.6
4

−
0
.7
4

N
o
bel−

u
s
5

1
4

4
2

9
1

6
−

−
1
0
.5
9

1
0
.6
0

1
9
.1
0

−
−

0
.3
9

N
o
bel−

u
s
6

1
4

4
2

9
1

6
−

−
7
.6
3

7
.6
3

1
4
.1
2

−
−

1
.0
1

N
o
bel−

u
s
7

1
4

4
2

9
1

6
4
3
.3
9

4
3
.3
9

1
2
.4
3

1
2
.4
3

1
7
.6
6

−
−

1
.9
3

N
o
bel−

u
s
8

1
4

4
2

9
1

6
4
1
.1
0

4
1
.2
1

1
4
.0
3

1
4
.0
3

1
8
.7
8

−
−

0
.4
7

N
o
bel−

u
s
9

1
4

4
2

9
1

6
−

−
1
1
.4
6

1
1
.4
6

1
9
.3
6

2
4
.3
7

−
0
.1
1

N
o
bel−

u
s
1
0

1
4

4
2

9
1

6
−

−
2
3
.3
5

2
3
.3
5

2
9
.1
3

−
−

1
.2
5

T
able

5.11:
R
esults

for
SN

D
lib

instances
w
ithout

node
capacities

and
con�ict

constraints
(part

2).

5.4 Computational results 203

In
st
a
n
ce
s

B
ra
n
ch
-a
n
d
-B

en
d
er
s-
C
u
t

C
R
C

A
B

P
H

B
B
+
V
I

B
+
P
H

B
+
V
I
+
P
H

N
a
m
e

|N
|
|A
|
|C
|
|F
|

G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]
G
a
p
[%

]

P
d
h
1

1
1

6
8

2
4

6
0
.2
3

0
.2
4

0
.1
8

0
.1
9

0
.2
8

0
.2
3

0
.2
2

0
.2
1

P
d
h
2

1
1

6
8

2
4

6
1
.2
7

1
.2
7

1
.1
7

1
.1
7

0
.7
3

0
.8
2

1
.0
8

0
.7
5

P
d
h
3

1
1

6
8

2
4

6
0
.8
8

0
.8
9

0
.8
6

0
.8
6

0
.5
6

0
.6
1

0
.8
9

0
.9
0

P
d
h
4

1
1

6
8

2
4

6
1
.0
8

1
.0
8

1
.1
9

1
.2
0

1
.0
0

0
.8
3

1
.0
4

1
.1
8

P
d
h
5

1
1

6
8

2
4

6
2
.2
1

2
.2
3

2
.3
0

2
.3
2

2
.3
4

2
.3
3

2
.5
6

1
.2
1

P
d
h
6

1
1

6
8

2
4

6
4
.1
9

4
.1
9

3
.6
3

3
.6
3

3
.6
2

3
.5
1

3
.7
8

0
.3
8

P
d
h
7

1
1

6
8

2
4

6
1
.2
6

1
.2
6

1
.2
9

1
.3
0

1
.3
5

1
.2
6

1
.2
7

0
.0
8

P
d
h
8

1
1

6
8

2
4

6
0
.3
6

0
.3
6

0
.4
6

0
.4
6

0
.1
3

0
.2
5

0
.5
3

0
.2
1

P
d
h
9

1
1

6
8

2
4

6
0
.0
6

0
.0
6

0
.1
1

0
.1
3

0
.2
1

0
.1
5

0
.0
6

0
.0
9

P
d
h
1
0

1
1

6
8

2
4

6
0
.2
2

0
.2
5

0
.2
0

0
.2
0

0
.3
0

0
.3
0

0
.2
0

0
.0
0

P
o
ls
k
a
1

1
2

3
6

6
6

6
4
2
.8
2

4
2
.8
7

8
.1
2

8
.1
2

1
0
.1
2

1
6
.5
0

−
0
.0
0

P
o
ls
k
a
2

1
2

3
6

6
6

6
−

−
9
.8
4

9
.8
5

1
1
.3
7

1
8
.8
3

−
2
.0
4

P
o
ls
k
a
3

1
2

3
6

6
6

6
4
2
.7
8

4
2
.9
0

9
.2
0

9
.2
1

1
1
.1
1

−
4
3
.2
6

0
.0
0

P
o
ls
k
a
4

1
2

3
6

6
6

6
−

−
6
.5
8

6
.5
8

9
.6
7

−
−

0
.0
3

P
o
ls
k
a
5

1
2

3
6

6
6

6
−

−
1
3
.8
6

1
3
.8
7

9
.1
1

−
−

0
.0
0

P
o
ls
k
a
6

1
2

3
6

6
6

6
−

−
1
8
.4
8

1
8
.4
9

1
8
.8
2

−
−

0
.2
4

P
o
ls
k
a
7

1
2

3
6

6
6

6
2
9
.7
9

2
9
.7
9

4
.9
9

5
.0
0

3
.9
9

5
.3
0

−
0
.0
5

P
o
ls
k
a
8

1
2

3
6

6
6

6
−

−
3
.7
7

3
.7
8

2
.8
9

4
.7
8

−
0
.0
0

P
o
ls
k
a
9

1
2

3
6

6
6

6
−

−
5
.6
4

5
.6
5

9
.4
3

1
4
.9
2

−
0
.0
0

P
o
ls
k
a
1
0

1
2

3
6

6
6

6
−

−
8
.6
8

8
.6
8

8
.6
4

2
0
.6
7

−
0
.1
4

T
ab
le
5.
12
:
R
es
ul
ts

fo
r
SN

D
lib

in
st
an
ce
s
w
it
ho
ut

no
de

ca
pa
ci
ti
es

an
d
co
n�

ic
t
co
ns
tr
ai
nt
s
(p
ar
t
3)
.

204 Benders reformulation for the node-capacitated VNFPRP

5.5 Conclusions

In this chapter we studied two variants of the Virtual Network Functions Placement
and Routing problem (VNFPRP). We provided theoretical results that allowed us to
reformulate the problem using Benders decomposition. We proposed three families of
valid inequalities to strengthen the LP-bounds.

All these ingredients have been combined in a Branch-and-Benders-Cut framework
and tested on a set of realistic benchmark instances. The obtained results by Branch-
and-Benders-Cut algorithm and the compact MILP formulation have been compared
with the Automatic Benders decomposition provided by Cplex. Computational results
have shown that our Branch-and-Benders-Cut algorithm is more e�cient compared
to the compact MILP formulation and the Automatic Benders of Cplex, in terms of
solution quality and CPU time.

Conclusions

In this dissertation, we have studied the Virtual Network Functions Placement and
Routing Problem (VNFPRP), for which the sum of the function installation and node
activation costs has to be minimized. The studied problem was considered with routing
and latency constraints, node and function capacity constraints, incompatibility and
chaining constraints. We have shown that the problem is strongly NP-hard even for
its simplest version.

In the �rst part of the thesis, we have investigated the basic properties of the prob-
lem and proposed a compact MILP formulation. This formulation does not seem to
be strong enough for �nding a solution using an o�-the-shelf solver. To tackle the
problem from a computational perspective, we have proposed a path-based heuristic
that provides optimal solutions for some realistic instances from the literature.

Afterwards, we have proposed two extended formulations to model the problem: path
formulation and Dantzig-Wolfe formulation. In order to strengthen the LP-bounds,
we have proposed several families of valid inequalities and have demonstrated their
bene�ts. We have shown that the LP-bounds of Dantzig-Wolfe formulation are stronger
than the LP-bounds of the path formulation. We have presented a branching scheme
for each formulation and developed a respective Branch-and-Price algorithm. We have
computationally compared both algorithms with the MILP compact formulation and
the automatic Benders of Cplex.

In the last part of the dissertation, we have studied a variant of the problem in
which the VNFs-capacity and con�ict constraints are relaxed. We provided theoretical
results that allowed us to reformulate the problem using Benders decomposition and
three families of valid inequalities to strengthen the LP-bounds. All these ingredients
have been combined in a Branch-and-Benders-Cut framework and tested on a set of
realistic benchmark instances.

As perspectives, there are diverse directions for which our future research associated
with the VNFPRP can be conducted.

206 Conclusion

First, it would be interesting to formulate the problem using bi-level optimization.
The leader problem takes care of the VNFs-installation part, and the follower problems
routes the tra�c taking into account these installations. Also, we can tackle the prob-
lem using two-stage optimization either to �x the VNFs-installation on nodes, or to �x
the routing paths. This approach would allow a heuristic to obtain a larger instances,
high-quality solutions.

Moreover, more e�cient separation heuristics and more sophisticated preprocessing
methods can be developed in order to improve the resolution of the problem. Further-
more, some meta-heuristics can be used, such as the ant colony optimization algorithm
(ACO) or the genetic algorithm. Also, investigating new valid inequalities for the
problem would be of interest.

It would be also interesting to further investigate di�erent column generation strate-
gies and heuristics to solve the pricing problems, test di�erent branching schemes and
de�ne a gap value for the Lagrangian bound to improve the convergence of our Branch-
and-Price algorithms.

Finally, we can use robust optimization to deal with the uncertainty of some param-
eters, for example, the number of tra�c requests in a given period (hour, day, week,
...), in order to minimize the costs generated by the unplanned demands.

Bibliography

[1] https://www.networkworld.com/article/3239677/
the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.

html.

[2] https://tools.ietf.org/html/rfc3234.

[3] Network Devices-Hub, Switch, Router, etc, 2019. https://networkustad.com/
2019/05/27/network-devices-hub-switch-router/.

[4] A Cheat Sheet for Understanding �NFV Architecture�, March 17,
2015. https://telcocloudbridge.com/wp-content/uploads/2015/03/

NFA-Architecture.png.

[5] Bernardetta Addis, Dallal Belabed, Mathieu Bouet, and Stefano Secci. Virtual
network functions placement and routing optimization. In Cloud Networking
(CloudNet), 2015 IEEE 4th International Conference on, pages 171�177. IEEE,
2015.

[6] Bernardetta Addis, Giuliana Carello, Francesca De Bettin, and Meihui Gao. On
a Virtual Network Function Placement and Routing problem: properties and
formulations. working paper or preprint, November 2018.

[7] Bernardetta Addis, Giuliana Carello, and Meihui Gao. On a virtual network
functions placement and routing problem: Some properties and a comparison of
two formulations. Networks, 75(2):158�182, 2020.

[8] Ilan Adler and A Ulkücü. On the number of iterations in dantzig-wolfe decom-
position. Decomposition of large scale problems, pages 181�187, 1973.

[9] Ian F Akyildiz, Ahyoung Lee, Pu Wang, Min Luo, and Wu Chou. A roadmap
for tra�c engineering in sdn-open�ow networks. Computer Networks, 71:1�30,
2014.

https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://tools.ietf.org/html/rfc3234
https://networkustad.com/2019/05/27/network-devices-hub-switch-router/
https://networkustad.com/2019/05/27/network-devices-hub-switch-router/
https://telcocloudbridge.com/wp-content/uploads/2015/03/NFA-Architecture.png
https://telcocloudbridge.com/wp-content/uploads/2015/03/NFA-Architecture.png

208 BIBLIOGRAPHY

[10] Omar Alhussein, Phu Thinh Do, Junling Li, Qiang Ye, Weisen Shi, Weihua
Zhuang, Xuemin Shen, Xu Li, and Jaya Rao. Joint VNF placement and multi-
cast tra�c routing in 5G core networks. In 2018 IEEE Global Communications
Conference (GLOBECOM), pages 1�6. IEEE, 2018.

[11] Zaid Allybokus, Nancy Perrot, Jérémie Leguay, Lorenzo Maggi, and Eric Gour-
din. Virtual function placement for service chaining with partial orders and
anti-a�nity rules. Networks, 71(2):97�106, 2018.

[12] C. Alves and J.M. Valério de Carvalho. A stabilized branch-and-price-and-cut
algorithm for the multiple length cutting stock problem. Computers & Operations
Research, 35(4):1315 � 1328, 2008.

[13] Annotating a model for CPLEX, Sept 10, 2019. https://www.ibm.com/

support/knowledgecenter/en/SSSA5P_12.9.0/ilog.odms.cplex.help/

CPLEX/UsrMan/topics/discr_optim/benders/annotations.html.

[14] Niven-Jenkins B, D Brungard, M Betts, N Sprecher, and S Ueno. Requirements
of an mpls transport pro�le, 2009.

[15] Md Faizul Bari, Shihabur Rahman Chowdhury, Reaz Ahmed, and Raouf
Boutaba. On orchestrating virtual network functions. In 2015 11th Interna-
tional Conference on Network and Service Management (CNSM), pages 50�56.
IEEE, 2015.

[16] C. Barnhart, A. M. Cohn, E. L. Johnson, D. Klabjan, G. L. Nemhauser, and
P. H. Vance. Airline Crew Scheduling. In Handbook of Transportation Science,
volume 56 of International Series in Operations Research & Management Science,
pages 517�560. , 2003.

[17] C. Barnhart, C. A. Hane, and P. H. Vance. Using branch-and-price-and-cut
to solve origin-destination integer multicommodity �ow problems. Oper. Res.,
48(2):318�326, 2000.

[18] Arsany Basta, Wolfgang Kellerer, Marco Ho�mann, Hans Jochen Morper, and
Klaus Ho�mann. Applying NFV and SDN to LTE mobile core gateways, the
functions placement problem. In Proceedings of the 4th workshop on All things
cellular: operations, applications, & challenges, pages 33�38, 2014.

[19] JF Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238�252, 1962.

[20] JF Benders. Partitioning in mathematical programming. PhD thesis, Utrecht
university, July 4, 1960.

https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.9.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/discr_optim/benders/annotations.html
https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.9.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/discr_optim/benders/annotations.html
https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.9.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/discr_optim/benders/annotations.html

BIBLIOGRAPHY 209

[21] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi
Kobayashi, Toshio Koide, Bob Lantz, Brian O'Connor, Pavlin Radoslavov,
William Snow, et al. ONOS: towards an open, distributed SDN OS. In Proceed-
ings of the third workshop on Hot topics in software de�ned networking, pages
1�6, 2014.

[22] Deval Bhamare, Raj Jain, Mohammed Samaka, and Aiman Erbad. A survey
on service function chaining. Journal of Network and Computer Applications,
75:138�155, 2016.

[23] Deval Bhamare, Mohammed Samaka, Aiman Erbad, Raj Jain, Lav Gupta, and
H Anthony Chan. Optimal virtual network function placement in multi-cloud
service function chaining architecture. Computer Communications, 102:1�16,
2017.

[24] Ole Bilde and Jakob Krarup. Sharp lower bounds and e�cient algorithms for
the simple plant location problem. In Annals of Discrete Mathematics, volume 1,
pages 79�97. Elsevier, 1977.

[25] Natashia Boland, John Dethridge, and Irina Dumitrescu. Accelerated label set-
ting algorithms for the elementary resource constrained shortest path problem.
Operations Research Letters, 34(1):58�68, 2006.

[26] Pierre Bonami, Domenico Salvagnin, and Andrea Tramontani. Implementing
Automatic Benders Decomposition in a Modern MIP Solver. In International
Conference on Integer Programming and Combinatorial Optimization, pages 78�
90. Springer, 2020.

[27] Mathieu Bouet, Jérémie Leguay, Théo Combe, and Vania Conan. Cost-based
placement of vDPI functions in NFV infrastructures. International Journal of
Network Management, 25(6):490�506, 2015.

[28] Zheng Cai, Alan L Cox, and TS Ng. Maestro: A system for scalable open�ow
control. Technical report, , 2010.

[29] Martin Casado, Teemu Koponen, Rajiv Ramanathan, and Scott Shenker. Vir-
tualizing the network forwarding plane. In Proceedings of the Workshop on Pro-
grammable Routers for Extensible Services of Tomorrow, pages 1�6. ACM, 2010.

[30] Yulun Cheng and Longxiang Yang. VNF deployment and routing for nfv-enabled
multicast: A steiner tree-based approach. In 2017 9th International Conference
on Wireless Communications and Signal Processing (WCSP), pages 1�4. IEEE,
2017.

210 BIBLIOGRAPHY

[31] Margaret Chiosi, Don Clarke, Peter Cablelabs, Chris Donley, Lane Centurylink,
Michael Bugenhagen, James Feger, Waqar Khan, Chunfeng China, Hui Cui,
Clark Deng, Lei Baohua, Sun Zhenqiang, and Steven Wright. Network Func-
tions Virtualisation (NFV) Network Operator Perspectives on Industry Progress.
Technical report, ETSI, Tech, 2013.

[32] Margaret Chiosi, Don Clarke, Peter Willis, Andy Reid, James Feger, Michael
Bugenhagen, Waqar Khan, Michael Fargano, Chunfeng Cui, Hui Deng, et al.
Network functions virtualisation: An introduction, bene�ts, enablers, challenges
and call for action. In SDN and OpenFlow world congress, volume 48, pages 1�16.
Darmstadt-Germany, 2012.

[33] Divya Chitimalla, Koteswararao Kondepu, Luca Valcarenghi, Massimo Torna-
tore, and Biswanath Mukherjee. 5g fronthaul-latency and jitter studies of cpri
over ethernet. IEEE/OSA Journal of Optical Communications and Networking,
9(2):172�182, 2017.

[34] Sunil Chopra, Bartosz Filipecki, Kangbok Lee, Minseok Ryu, Sangho Shim, and
Mathieu Van Vyve. An extended formulation of the convex recoloring problem
on a tree. Mathematical Programming, 165(2):529�548, 2017.

[35] NM Mosharaf Kabir Chowdhury and Raouf Boutaba. A survey of network vir-
tualization. Computer Networks, 54(5):862�876, 2010.

[36] Rami Cohen, Liane Lewin-Eytan, Joseph Se� Naor, and Danny Raz. Near
optimal placement of virtual network functions. In Computer Communications
(INFOCOM), 2015 IEEE Conference on, pages 1346�1354. IEEE, 2015.

[37] Jean-François Cordeau, Fabio Furini, and Ivana Ljubi¢. Benders decomposition
for very large scale partial set covering and maximal covering location problems.
European Journal of Operational Research, 275(3):882�896, 2019.

[38] Jean-François Cordeau, Fabio Furini, and Ivana Ljubi¢. Benders decomposition
for very large scale partial set covering and maximal covering location problems.
European Journal of Operational Research, 275(3):882 � 896, 2019.

[39] Roberto Doriguzzi Corin, Sandra Scott-Hayward, Domenico Siracusa, Marco
Savi, and Elio Salvadori. Dynamic and application-aware provisioning of chained
virtual security network functions. CoRR, abs/1901.01704, 2019.

[40] Gérard Cornuéjols, George Nemhauser, and Laurence Wolsey. The uncapici-
tated facility location problem. Technical report, Cornell University Operations
Research and Industrial Engineering, 1983.

BIBLIOGRAPHY 211

[41] Alysson M Costa. A survey on Benders decomposition applied to �xed-charge
network design problems. Computers & operations research, 32(6):1429�1450,
2005.

[42] George B Dantzig and Philip Wolfe. Decomposition principle for linear programs.
Operations research, 8(1):101�111, 1960.

[43] Jacques Desrosiers and Marco E Lübbecke. A primer in column generation. In
Column generation, pages 1�32. Springer, 2005.

[44] Edsger W Dijkstra et al. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269�271, 1959.

[45] Moshe Dror. Note on the complexity of the shortest path models for column
generation in VRPTW. Operations Research, 42(5):977�978, 1994.

[46] Abhishek Dwaraki and Tilman Wolf. Adaptive service-chain routing for virtual
network functions in software-de�ned networks. In Proceedings of the 2016 work-
shop on Hot topics in Middleboxes and Network Function Virtualization, pages
32�37, 2016.

[47] David Erickson. The beacon open�ow controller. In Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software de�ned networking, pages
13�18, 2013.

[48] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to SDN: an intel-
lectual history of programmable networks. ACM SIGCOMM Computer Commu-
nication Review, 44(2):87�98, 2014.

[49] Roy Fielding, Jim Gettys, Je�rey Mogul, Henrik Frystyk, Larry Masinter, Paul
Leach, and Tim Berners-Lee. Hypertext transfer protocol�http/1.1. Technical
report, RFC 2616, june, 1999.

[50] Matteo Fischetti, Ivana Ljubi¢, and Markus Sinnl. Benders decomposition with-
out separability: A computational study for capacitated facility location prob-
lems. European Journal of Operational Research, 253(3):557�569, 2016.

[51] Matteo Fischetti, Ivana Ljubi¢, and Markus Sinnl. Benders decomposition with-
out separability: A computational study for capacitated facility location prob-
lems. European Journal of Operational Research, 253(3):557�569, 2016.

[52] Matteo Fischetti, Ivana Ljubi¢, and Markus Sinnl. Redesigning Benders decom-
position for large-scale facility location. Management Science, 63(7):2146�2162,
2017.

212 BIBLIOGRAPHY

[53] Matteo Fischetti, Ivana Ljubi¢, and Markus Sinnl. Redesigning Benders decom-
position for large-scale facility location. Management Science, 63(7):2146�2162,
2017.

[54] Matteo Fischetti, Domenico Salvagnin, and Arrigo Zanette. A note on the selec-
tion of Benders' cuts. Math. Program., 124(1-2):175�182, 2010.

[55] Lester Randolph Ford Jr and Delbert R Fulkerson. A suggested computation
for maximal multi-commodity network �ows. Management Science, 5(1):97�101,
1958.

[56] Open Networking Fundation. Software-de�ned networking: The new norm for
networks. ONF White Paper, 2:2�6, 2012.

[57] Fabio Furini, Enrico Malaguti, Rosa Medina Durán, Alfredo Persiani, and Paolo
Toth. A column generation heuristic for the two-dimensional two-staged guillotine
cutting stock problem with multiple stock size. European Journal of Operational
Research, 218(1):251�260, 2012.

[58] Jokin Garay, Jon Matias, Juanjo Unzilla, and Eduardo Jacob. Service description
in the NFV revolution: Trends, challenges and a way forward. IEEE Communi-
cations Magazine, 54(3):68�74, 2016.

[59] Arthur M Geo�rion. Generalized benders decomposition. Journal of optimization
theory and applications, 10(4):237�260, 1972.

[60] Matthieu Gérard, François Clautiaux, and Ruslan Sadykov. Column generation
based approaches for a tour scheduling problem with a multi-skill heterogeneous
workforce. European Journal of Operational Research, 252(3):1019�1030, 2016.

[61] Milad Ghaznavi, Nashid Shahriar, Reaz Ahmed, and Raouf Boutaba. Service
function chaining simpli�ed. arXiv preprint arXiv:1601.00751, 2016.

[62] Paul C Gilmore and Ralph E Gomory. A linear programming approach to the
cutting-stock problem. Operations research, 9(6):849�859, 1961.

[63] Paul C Gilmore and Ralph E Gomory. A linear programming approach to the
cutting stock problem�part ii. Operations research, 11(6):863�888, 1963.

[64] Racha Gouareb, Vasilis Friderikos, and A Hamid Aghvami. Delay sensitive virtual
network function placement and routing. In 2018 25th International Conference
on Telecommunications (ICT), pages 394�398. IEEE, 2018.

BIBLIOGRAPHY 213

[65] Albert Greenberg, James Hamilton, David A Maltz, and Parveen Patel. The
cost of a cloud: research problems in data center networks. ACM SIGCOMM
computer communication review, 39(1):68�73, 2008.

[66] R Guerzoni et al. Network functions virtualisation: an introduction, bene�ts,
enablers, challenges and call for action, introductory white paper. In SDN and
OpenFlow World Congress, volume 1, pages 5�7, 2012.

[67] Abhishek Gupta, M Farhan Habib, Pulak Chowdhury, Massimo Tornatore, and
Biswanath Mukherjee. Joint virtual network function placement and routing of
tra�c in operator networks. UC Davis, Davis, CA, USA, Tech. Rep, 2015.

[68] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. Network function
virtualization: Challenges and opportunities for innovations. IEEE Communica-
tions Magazine, 53(2):90�97, 2015.

[69] Hajar Hantouti, Nabil Benamar, and Tarik Taleb. Service Function Chaining in
5G and Beyond Networks: Challenges and Open Research Issues. IEEE Network,
2020.

[70] Hajar Hantouti, Nabil Benamar, Tarik Taleb, and Abdelquoddous Laghrissi.
Tra�c steering for service function chaining. IEEE Communications Surveys
& Tutorials, 21(1):487�507, 2018.

[71] Juliver Gil Herrera and Juan Felipe Botero. Resource allocation in NFV: A
comprehensive survey. IEEE Transactions on Network and Service Management,
13(3):518�532, 2016.

[72] Ali Hmaity, Marco Savi, Leila Askari, Francesco Musumeci, Massimo Tornatore,
and Achille Pattavina. Latency-and capacity-aware placement of chained virtual
network functions in fmc metro networks. Optical Switching and Networking,
35:100536, 2020.

[73] Huawei Releases SDN/NFV Commercial and Technological Innova-
tions, 2017. https://www.huawei.com/en/press-events/news/2017/10/

Huawei-SDN-NFV-Commercial-Technological-Innovations.

[74] Nicolas Huin. Energy e�cient software de�ned networks. PhD thesis, 2017.

[75] Nicolas Huin, Brigitte Jaumard, and Frédéric Giroire. Optimal network service
chain provisioning. IEEE/ACM Transactions on Networking, 26(3):1320�1333,
2018.

https://www.huawei.com/en/press-events/news/2017/10/Huawei-SDN-NFV-Commercial-Technological-Innovations
https://www.huawei.com/en/press-events/news/2017/10/Huawei-SDN-NFV-Commercial-Technological-Innovations

214 BIBLIOGRAPHY

[76] Nicolas Huin, Andrea Tomassilli, Frédéric Giroire, and Brigitte Jaumard. Energy-
e�cient service function chain provisioning. Journal of Optical Communications
and Networking, 10(3):114�124, 2018.

[77] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Ar-
jun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4:
Experience with a globally-deployed software de�ned wan. ACM SIGCOMM
Computer Communication Review, 43(4):3�14, 2013.

[78] Donald B Johnson. A note on dijkstra's shortest path algorithm. Journal of the
ACM (JACM), 20(3):385�388, 1973.

[79] Cédric Joncour, Sophie Michel, Ruslan Sadykov, Dmitry Sverdlov, and François
Vanderbeck. Column generation based primal heuristics. Electronic Notes in
Discrete Mathematics, 36:695�702, 2010.

[80] Sherry Justine and Ratnasamy Sylvia. A survey of enterprise middlebox deploy-
ments. Technical report, Citeseer, 2012.

[81] Narumi Kiji, Takehiro Sato, Ryoichi Shinkuma, and Eiji Oki. Virtual network
function placement and routing model for multicast service chaining based on
merging multiple service paths. In 2019 IEEE 20th International Conference on
High Performance Switching and Routing (HPSR), pages 1�6. IEEE, 2019.

[82] Narumi Kiji, Takehiro Sato, Ryoichi Shinkuma, and Eiji Oki. Virtual network
function placement and routing for multicast service chaining using merged paths.
Optical Switching and Networking, 36:100554, 2020.

[83] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon
Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue,
Takayuki Hama, et al. Onix: A distributed control platform for large-scale pro-
duction networks. In OSDI, volume 10, pages 1�6, 2010.

[84] So�e Lambert, Margot Deruyck, Ward Van Heddeghem, Bart Lannoo, Wout
Joseph, Didier Colle, Mario Pickavet, and Piet Demeester. Post-peak ict: Grace-
ful degradation for communication networks in an energy constrained future.
IEEE Communications Magazine, 53(11):166�174, 2015.

[85] Adrian Lara, Anisha Kolasani, and Byrav Ramamurthy. Network innovation
using open�ow: A survey. IEEE communications surveys & tutorials, 16(1):493�
512, 2013.

BIBLIOGRAPHY 215

[86] Line MP Larsen, Aleksandra Checko, and Henrik L Christiansen. A survey of
the functional splits proposed for 5G mobile crosshaul networks. IEEE Commu-
nications Surveys & Tutorials, 21(1):146�172, 2018.

[87] Xin Li and Chen Qian. The virtual network function placement problem. In
2015 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pages 69�70. IEEE, 2015.

[88] Yang Li, Linh Thi Xuan Phan, and Boon Thau Loo. Network functions vir-
tualization with soft real-time guarantees. In IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on Computer Communications, pages 1�
9. IEEE, 2016.

[89] Yong Li and Min Chen. Software-de�ned network function virtualization: A
survey. IEEE Access, 3:2542�2553, 2015.

[90] Tachun Lin, Zhili Zhou, Massimo Tornatore, and Biswanath Mukherjee. Opti-
mal network function virtualization realizing end-to-end requests. In 2015 IEEE
Global Communications Conference (GLOBECOM), pages 1�6. IEEE, 2015.

[91] M. E. Lübbecke and J. Desrosiers. Selected Topics in Column Generation. Op-
erations Research, 53(6):1007�1023, 2005.

[92] Marco E Lübbecke and Jacques Desrosiers. Selected topics in column generation.
Operations research, 53(6):1007�1023, 2005.

[93] Marcelo Caggiani Luizelli, Leonardo Richter Bays, Luciana Salete Buriol, Mar-
inho Pilla Barcellos, and Luciano Paschoal Gaspary. Piecing together the nfv pro-
visioning puzzle: E�cient placement and chaining of virtual network functions. In
2015 IFIP/IEEE International Symposium on Integrated Network Management
(IM), pages 98�106. IEEE, 2015.

[94] Youcef Magnouche. The multi-terminal vertex separator problem : Complexity,
Polyhedra and Algorithms. PhD thesis, Université Paris Dauphine, 2017.

[95] Ali Ridha Mahjoub. Polyhedral approaches. Concepts of Combinatorial Opti-
mization, pages 261�324, 2014.

[96] Toqeer Mahmood, Tabassam Nawaz, Rehan Ashraf, and Syed M Adnan Shah.
Gossip based routing protocol design for ad hoc networks. International Journal
of Computer Science Issues (IJCSI), 9(1):177, 2012.

216 BIBLIOGRAPHY

[97] Atefeh Maleki, Md Hossain, Jean-Philippe Georges, Eric Rondeau, and Thierry
Divoux. An SDN Perspective to Mitigate the Energy Consumption of Core
Networks�GÉANT2. In International Seeds Conference, Leeds, 2017.

[98] Antonio Manzalini, Roberto Saracco, Cagatay Buyukkoc, Prosper Chemouil, Sla-
womir Kuklinski, Andreas Gladisch, Masaki Fukui, E Dekel, D Soldani, M Ulema,
et al. Software-de�ned networks for future networks and services. InWhite Paper
based on the IEEE Workshop SDN4FNS, 2013.

[99] SDN and NFV transforming the network:where do we
go from here?, 2017. https://www.orange-business.

com/en/blogs/connecting-technology/networks/

sdn-and-nfv-transforming-the-network-where-do-we-go-from-here.

[100] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Open�ow: enabling
innovation in campus networks. ACM SIGCOMM Computer Communication
Review, 38(2):69�74, 2008.

[101] Ahmed M Medhat, Tarik Taleb, Asma Elmangoush, Giuseppe A Carella, Stefan
Covaci, and Thomas Magedanz. Service function chaining in next generation
networks: State of the art and research challenges. IEEE Communications Mag-
azine, 55(2):216�223, 2016.

[102] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. Opendaylight: To-
wards a model-driven SDN controller architecture. In Proceeding of IEEE Inter-
national Symposium on a World of Wireless, Mobile and Multimedia Networks
2014, pages 1�6. IEEE, 2014.

[103] Sevil Mehraghdam, Matthias Keller, and Holger Karl. Specifying and placing
chains of virtual network functions. In Cloud Networking (CloudNet), 2014 IEEE
3rd International Conference on, pages 7�13. IEEE, 2014.

[104] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck,
and Steven Davy. Design and evaluation of algorithms for mapping and schedul-
ing of virtual network functions. In Proceedings of the 2015 1st IEEE Conference
on Network Softwarization (NetSoft), pages 1�9. IEEE, 2015.

[105] Hendrik Moens and Filip De Turck. VNF-P: A model for e�cient placement of
virtualized network functions. In Network and Service Management (CNSM),
2014 10th International Conference on, pages 418�423. IEEE, 2014.

https://www.orange-business.com/en/blogs/connecting-technology/networks/sdn-and-nfv-transforming-the-network-where-do-we-go-from-here
https://www.orange-business.com/en/blogs/connecting-technology/networks/sdn-and-nfv-transforming-the-network-where-do-we-go-from-here
https://www.orange-business.com/en/blogs/connecting-technology/networks/sdn-and-nfv-transforming-the-network-where-do-we-go-from-here

BIBLIOGRAPHY 217

[106] Tareq Monawar, Shafayat Bin Mahmud, and Avijit Hira. Anti-theft vehicle
tracking and regaining system with automatic police notifying using haversine
formula. In 2017 4th International conference on Advances in Electrical Engi-
neering (ICAEE), pages 775�779. IEEE, 2017.

[107] Gábor Nagy and Saïd Salhi. Location-routing: Issues, models and methods.
European journal of operational research, 177(2):649�672, 2007.

[108] Network Functions Virtualisation NFV and Use Cases. Etsi gs nfv 001 v1. 1.1
(2013-10). , 2013.

[109] Vikrant Nikam, James Gross, and Ahmad Rostami. Vnf service chaining in
optical data center networks. In 2017 IEEE Conference on Network Function
Virtualization and Software De�ned Networks (NFV-SDN), pages 1�7. IEEE,
2017.

[110] Bruno Astuto A Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia Obraczka,
and Thierry Turletti. A survey of software-de�ned networking: Past, present, and
future of programmable networks. IEEE Communications Surveys & Tutorials,
16(3):1617�1634, 2014.

[111] Ben Pfa�, Justin Pettit, Keith Amidon, Martin Casado, Teemu Koponen, and
Scott Shenker. Extending networking into the virtualization layer. In Hotnets,
2009.

[112] Kevin Phemius, Mathieu Bouet, and Jérémie Leguay. Disco: Distributed multi-
domain SDN controllers. In 2014 IEEE Network Operations and Management
Symposium (NOMS), pages 1�4. IEEE, 2014.

[113] Paul Quinn and Tom Nadeau. Problem statement for service function chaining.
In RFC 7498. RFC Editor, 2015.

[114] Sridhar KN Rao. SDN and its use-cases-NV and NFV. Network, 2:H6, 2014.

[115] Giovanni Righini and Matteo Salani. New dynamic programming algorithms
for the resource constrained elementary shortest path problem. Networks: An
International Journal, 51(3):155�170, 2008.

[116] Palash Roy, Anika Tahsin, Sujan Sarker, Tamal Adhikary, Md Abdur Razzaque,
and Mohammad Mehedi Hassan. User mobility and Quality-of-Experience aware
placement of Virtual Network Functions in 5G. Computer Communications,
150:367�377, 2020.

218 BIBLIOGRAPHY

[117] Ruslan Sadykov and François Vanderbeck. Column generation for extended for-
mulations. Electronic Notes in Discrete Mathematics, 37:357�362, 2011.

[118] Gamal Sallam, Gagan R Gupta, Bin Li, and Bo Ji. Shortest path and maximum
�ow problems under service function chaining constraints. In IEEE INFOCOM
2018-IEEE Conference on Computer Communications, pages 2132�2140. IEEE,
2018.

[119] Yu Sang, Bo Ji, Gagan R Gupta, Xiaojiang Du, and Lin Ye. Provably e�cient
algorithms for joint placement and allocation of virtual network functions. In
IEEE INFOCOM 2017-IEEE Conference on Computer Communications, pages
1�9. IEEE, 2017.

[120] M. Savelsbergh. A Branch-And-Price Algorithm for the Generalized Assignment
Problem. Operations Research, 45(6):pp. 831�841, 1997.

[121] Marco Savi, Massimo Tornatore, and Giacomo Verticale. Impact of processing
costs on service chain placement in network functions virtualization. In 2015
IEEE Conference on Network Function Virtualization and Software De�ned Net-
work (NFV-SDN), pages 191�197. IEEE, 2015.

[122] Alexander Schrijver. Combinatorial optimization: polyhedra and e�ciency, vol-
ume 24. Springer Science & Business Media, 2003.

[123] Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, and Piet De-
meester. Open�ow: Meeting carrier-grade recovery requirements. Computer
Communications, 36(6):656�665, 2013.

[124] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Rat-
nasamy, and Vyas Sekar. Making middleboxes someone else's problem: network
processing as a cloud service. ACM SIGCOMM Computer Communication Re-
view, 42(4):13�24, 2012.

[125] SNDlib, Dec 10, 2019. http://sndlib.zib.de/.

[126] Update: AT&T's Stephens: More Than 40% of Network Functions
Are Virtualized, 2017. https://www.sdxcentral.com/articles/news/

atts-stephens-47-network-functions-virtualized/2017/07/.

[127] Farzad Tashtarian, Amir Varasteh, Ahmadreza Montazerolghaem, and Wolfgang
Kellerer. Distributed VNF scaling in large-scale datacenters: An ADMM-based
approach. In 2017 IEEE 17th International Conference on Communication Tech-
nology (ICCT), pages 471�480. IEEE, 2017.

http://sndlib.zib.de/
https://www.sdxcentral.com/articles/news/atts-stephens-47-network-functions-virtualized/2017/07/
https://www.sdxcentral.com/articles/news/atts-stephens-47-network-functions-virtualized/2017/07/

BIBLIOGRAPHY 219

[128] Nippon Telegraph. Telephone Corporation,�Ryu Network Operating System,�,
2012.

[129] Andrea Tomassilli. Towards Next Generation Networks with SDN and NFV. PhD
thesis, UCL-Université Côte d'Azur, 2019.

[130] Andrea Tomassilli, Nicolas Huin, Frédéric Giroire, and Brigitte Jaumard. Energy-
e�cient service chains with network function virtualization. 2016.

[131] Andrea Tomassilli, Nicolas Huin, Frederic Giroire, and Brigitte Jaumard. Re-
source requirements for reliable service function chaining. In 2018 IEEE Inter-
national Conference on Communications (ICC), pages 1�7. IEEE, 2018.

[132] Richard M Van Slyke and Roger Wets. L-shaped linear programs with applica-
tions to optimal control and stochastic programming. SIAM Journal on Applied
Mathematics, 17(4):638�663, 1969.

[133] François Vanderbeck. Decomposition and column generation for integer programs.
PhD thesis, UCL-Université Catholique de Louvain, 1994.

[134] François Vanderbeck. Branching in Branch-and-Price: a generic scheme. Math-
ematical Programming, 130(2):249�294, 2011.

[135] François Vanderbeck and Laurence A Wolsey. Reformulation and decomposition
of integer programs. In 50 Years of Integer Programming 1958-2008, pages 431�
502. Springer, 2010.

[136] Ming Xia, Meral Shirazipour, Ying Zhang, Howard Green, and Attila Takacs.
Network function placement for NFV chaining in packet/optical datacenters.
Journal of Lightwave Technology, 33(8):1565�1570, 2015.

[137] Yicheng Xu, Vincent Chau, Chenchen Wu, Yong Zhang, and Yifei Zou. Online
joint placement and allocation of virtual network functions with heterogeneous
servers. arXiv preprint arXiv:2001.02349, 2020.

[138] Jin Y Yen. Finding the k shortest loopless paths in a network. Management
Science, 17(11):712�716, 1971.

[139] Jiao Zhang, Zenan Wang, Ningning Ma, Tao Huang, and Yunjie Liu. Enabling
e�cient service function chaining by integrating NFV and SDN: architecture,
challenges and opportunities. IEEE Network, 32(6):152�159, 2018.

220 BIBLIOGRAPHY

[140] Sai Qian Zhang, Ali Tizghadam, Byungchul Park, Hadi Bannazadeh, and Alberto
Leon-Garcia. Joint NFV placement and routing for multicast service on SDN. In
NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium,
pages 333�341. IEEE, 2016.

MOTS CLÉS

Optimisation combinatoire, Génération de colonnes, Branch-and-Price, inégalités valides, décomposition de
Benders, Branch-and-Benders-Cut, Heuristique, Fonctions virtualisées de réseau, Réseaux définis par logi-
ciel, Chaînage de fonctions de service.

RÉSUMÉ

La virtualisation des fonctions réseau et les réseaux définis par logiciel sont deux nouvelles technologies prometteuses
qui émergent dans la nouvelle génération des réseaux de télécommunication. Leur introduction permet la minimisation
du temps de traitement des services, et un gain en énergie et en coûts. Dans cette thèse, nous étudions un problème
confronté par les fournisseurs des services réseau, intitulé le problème de placement des fonctions virtuelles et de routage
des services dans les réseaux définis par logiciel.

Nous commençons par prouver que le problème est NP-Difficile au sens fort, même en considérant une seule com-
modité, et en relâchant les contraintes de capacité sur les nœuds et sur les fonctions virtuelles, et aussi les contraintes de
latence et de précédence. Nous proposons ensuite une formulation PLNE (Programmation linéaire en nombres entiers)
compacte pour modéliser le problème. Cette formulation ne semble pas être assez forte pour trouver des solutions réalis-
ables en un temps raisonnable à l’aide d’un solveur standard. Afin de remédier à cela, nous fournissons, une heuristique
basée sur une formulation PLNE.

Nous proposons également, deux formulations PLNE étendues pour modéliser le problème et nous définissons
l’algorithme de Branch-and-Pricer associé. En plus, nous définissons plusieurs familles d’inégalités valides afin de ren-
forcer la relaxation linéaire. Nous comparons les deux algorithmes proposés et nous discutons leur performance.

Ensuite, nous étudions une variante du problème et nous présentons des résultats théoriques qui nous permettent
de la reformuler en appliquant la décomposition de Benders. Nous renforçons cette reformulation par un ensemble
d’inégalités valides. Tout cela est combiné dans algorithme de Branch-and-Benders-cut que nous avons testé et comparé
avec l’algorithme de Benders automatique inclus dans le solveur commercial Cplex.

Les résultats numériques indiquent que nos approches de décomposition et de reformulation sont plus efficaces par

rapport aux deux méthodes (la formulation compacte et l’algorithme de Benders automatique) fournies par un solveur

standard sur un ensemble d’instances réalistes, à la fois en terme de temps CPU et en terme de qualité de la solution.

Les résultats indiquent également que notre heuristique fournit des solutions de haute qualité.

ABSTRACT

Network Functions Virtualization (NFV) and Software Defined Networking (SDN) are two promising techniques for
the next generation of telecommunication networks. Their introduction allows time, energy, and cost minimization. In this
dissertation, we study a problem faced by network service providers, named, the Virtual Network Functions Placement
and Routing problem (VNFPRP) in Software Defined Networks.

We start proving that the VNFPRP is NP-hard in a strong sense, even for a single commodity and without node-
capacity, VNFs-capacity, latency, and precedence constraints. We provide a compact Mixed Integer Linear Programming
(MILP) formulation to model it. This formulation does not seem to be strong enough for finding a solution using an off-
the-shelf solver. In order to tackle the problem from a computational perspective, we provide MILP-based heuristic. The
obtained results indicate that our MILP-heuristic provides high-quality solutions.

Moreover, we propose two extended formulations for the problem and derive a Branch-and-Price algorithm. We also
provide several families of valid inequalities to strengthen the LP-bounds. We present computational results and discuss
the performance of each algorithm.

Furthermore, we discuss a variant of the problem, and we provide theoretical results that allow us to derive Benders
reformulation of the problem, along with several families of valid inequalities. These ingredients are combined in a Branch-
and-Benders-Cut framework and computationally tested on a wide range of realistic instances and compared with the
Automatic Benders decomposition provided by Cplex.

Computational results indicate that our decomposition and reformulation approaches are more efficient compared to

the two methods (the MILP compact formulation and the automatic Benders) provided by the off-the-shelf solver on a set

of realistic instances, both in terms of CPU time and overall solution quality.

KEYWORDS

Combinatorial optimization, Column generation, Branch-and-Price, Valid inequalities, Benders decomposi-
tion, Branch-and-Benders-cut, Heuristic, Virtual Network Functions, Software-Defined Networking, Service
Functions Chaining.

	Introduction
	Preliminaries and State-of-the-Art
	Polyhedra and Integer Linear Programming methods
	Elements of polyhedral theory
	Cutting plane method
	Branch-and-Cut algorithm
	Benders decomposition
	Dantzig-Wolfe decomposition
	Column generation procedure
	Branch-and-Price algorithm

	Graph theory
	Undirected graphs
	Directed graphs
	Shortest path algorithms

	Telecommunication Networks
	Network Structure
	Network devices
	Network Function (NF)
	Routing schemes
	Network Function Virtualization (NFV)
	Software Defined Networking (SDN)
	Service Functions Chaining (SFC)

	Literature review
	Overview of the related works

	The Virtual Network Functions Placement and Routing Problem
	Motivations
	Problem definition
	Notation
	Problem definition

	Proprities of the VNFPRP
	Illustrative example
	Complexity analysis
	Compact MILP formulation
	Decision variables
	Mathematical model
	Model analysis

	Computational results
	Detailed results

	Conclusions

	MILP-based Heuristic
	Path-based MILP Formulation
	Decision variables
	Linear constraints
	Mathematical model
	Getting the routing paths
	Linear relaxation of path variables

	Computational results
	Benchmark instances
	Models analysis
	Obtained results
	Detailed results

	Conclusions

	Extended formulations
	First extended formulation: the model PF
	Decision variables
	The master problem formulation
	The dual of the master problem
	The pricing problem
	Lagrangian bound

	 Second extended formulation: the model DW
	Decision variables
	The dual of the master problem
	The pricing problem
	Lagrangian bound
	Branching on variables

	Strengthening inequalities
	Valid inequalities for the model PF
	Strengthening inequalities for both models
	Strengthening the model DW

	Branch-and-Price algorithms
	Generic column generation framework
	Branching
	Pricing strategy
	Heuristics

	Comparing the LP-relaxations
	Computational results
	Obtained results
	Detailed results

	Conclusions

	Benders reformulation for the node-capacitated VNFPRP
	Adapted compact MILP formulation
	MILP formulation for the uncapacitated VNFPRP
	MILP formulation for the node-capacitated and conflict constrained VNFPRP
	Unsplittable routing paths
	Strengthening inequalities

	Problem reformulation using Benders cuts
	MILP-based Heuristic
	Computational results
	Benchmark instances
	Obtained results
	Detailed results

	Conclusions

	Conclusions
	Bibliography

