
HAL Id: tel-03677499
https://theses.hal.science/tel-03677499v1

Submitted on 24 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiobjective optimization for complex systems
Antoine Kerberenes

To cite this version:
Antoine Kerberenes. Multiobjective optimization for complex systems. Operations Research
[math.OC]. Université Paris sciences et lettres, 2021. English. �NNT : 2021UPSLD046�. �tel-03677499�

https://theses.hal.science/tel-03677499v1
https://hal.archives-ouvertes.fr

Préparée à l’Université Paris-Dauphine

Multiobjective Optimization for Complex
Systems

Soutenue par

Antoine KERBÉRÉNÈS
Le 03/12/2021

École doctorale no543
Ecole Doctorale SDOSE

Spécialité
Informatique

Composition du jury :

Laetitia JOURDAN
Professeure, Université de Lille Présidente du jury

Kathrin KLAMROTH
Professeure, Universität Wuppertal Rapporteure

Dominique QUADRI
Professeure, Université Paris-Saclay Examinatrice

Vincent T’KINDT
Professeur, Université de Tours Rapporteur

Daniel VANDERPOOTEN
Professeur, Université Paris Dauphine Directeur de thèse

Jean-Michel VANPEPERSTRAETE
Ingénieur, NAVAL GROUP Research Co-encadrant

À René Kerbérénès,

1

Remerciements

Je remercie tout d’abord Daniel Vanderpooten d’avoir accepté d’encadrer mes travaux de thèse, et
je le remercie pour ses contributions, ses suggestions, sa disponibilité, sa minutie et sa patience
pendant ces quatre années.

Je remercie Jean-Michel Vanpeperstraete de m’avoir proposé un sujet de thèse aussi passion-
nant qu’ouvert, me laissant explorer une variété d’approches, sanctionnées par des critères de
performance clairs. Je remercie également Jean-Michel pour ses nombreuses suggestions, pour
nos discussions philosophiques, littéraires et cinématographiques, ainsi que pour l’honnêteté de
ses conseils tant relativement à la conduite des travaux qu’à mon orientation dans un monde post-
doctoral dans lequel j’ai bien peu de repères.

Je remercie Kathrin Klamroth et Vincent T’Kindt d’avoir accepté d’être rapporteurs à ma sou-
tenance de thèse, et de se consacrer à nouveau à une lecture constructive de mon manuscrit. J’ai
bénéficié lors de la présoutenance de leurs remarques bienveillantes et de conseils dont j’ai taché
de tirer parti pour terminer ce document. Je remercie également Dominique Quadri et Laetitia
Vermeulen-Jourdan de l’intérêt qu’elles ont témoigné à ce sujet de thèse en acceptant d’être mem-
bres du jury de soutenance.

Je remercie ensuite Hélène et Marc Kerbérénès, mes parents, pour leur soutien tout au long
d’un parcours d’études long et aux revirements parfois difficiles à justifier. Je remercie Dana
Mukanova d’être à mes côtés chaque jour, de m’avoir convaincu de venir étudier à Paris, de
m’avoir soutenu quand j’ai connu des échecs. Je la remercie pour sa bienveillance, son intran-
sigeance et son bon goût en toutes choses.

Je remercie Satya Tamby pour son aide et le témoignage de son expérience. Je remercie
Thomas Pontoizeau pour les mêmes raisons ainsi que pour sa complicité tant intellectuelle qu’artis-
tique, et j’ai hâte de le retrouver sur scène. Je remercie Alex Savatovsky pour la série de mardi
après-midi que nous avons passés à discuter, débattre et définir des sujets de recherche parfois
sérieux, nous aventurant dans des régions situées de part et d’autre de la limite de nos domaines
de compétence respectifs.

Je tiens à dire ma grattitude et le respect que je porte aux instituteurs et professeurs qui m’ont
encouragé et orienté tout au long de ma scolarité et de mes études : Laurent Schnebelen, M.
Jourdain, M. Capitaine, Yves Rocher, Vincent Piquemal, Cédric Brun, Mickaël Cozic et Jérôme
Lang.

Enfin, mes amitiés fraternelles et mon allégeance définitive vont à Arthur Brière, Elliott Lancaster-
Kheireddine et Guillaume Sajus, braves parmi les braves et gardiens intangibles de mon sens des
priorités.

2

Abbreviations

MO Multiobjective Optimization

MOP Multiobjective Optimization Problem

IMOP Integer variable Multiobjecitve Optimization Problem

BIMOP Binary variable (or 0� 1) MOP

MOCO Multiobjective Combinatorial Optimization Problem

GCP Generic Coupled Problem

GUCP Generic Uncoupled Problem

MS Minkowski (set) sum

NDMSP Problem of computing the non-dominated subset of a MS

IF Intermediary Dominance Filtering

SqIF Sequential Pooling Algorithm with IF

UPool Unidirectional Pooling Algorithm

(MO)-REF (Multiobjective) REF problem, as defined in C.4.1.1

DP Dynamic Programming

KP Knapsack Problem

MKP Multiknapsack Problem

MCKP Multichoice Knapsack Problem

GAP Generalized Assignment Problem

CT Computing Time

TG Time Gain, as defined in 2.2.1

RS(LB) Restriction of a GCP obtained by fixing coupled variables of all s P S except σpkq
for each k P K (and associated lower bound set) as defined in 3.2.2

CS(UB) Copy-split relaxation of a GCP (and associated upper bound set) as defined in C.3.3.1

OC(UB) Relaxation of coupled variables in local constraints of a GCP (and associated upper
bound set) as defined in C.3.3.2

3

Notations

R,Z,N sets of real numbers, relative integers, and positive integers

p P N the number or objectives, or of decision criteria

Rp,Zp,Np sets of p-dimensional real-valued and relative or positive integer-valued vectors

I � t1, ..., nu � N a set of integers

X the feasible set of some optimization problem

Y a set of points in the objective space

x � px1, ..., xnq an n-dimensional vector with component xi, i P t1, ..., nu.

x � pxi | i P Iq an n-dimensional vector presented as a family indexed by I � N.

f pxq � p f1pxq, ..., fppxqq a vector valued function

f pXq The set of all images of elements of X by f , i.e. f pXq � t f pxq P R | x P Xu

y � y1 if and only if y j ¥ y1j for any j P t1, ..., pu (y weakly dominates y1)

y © y1 if and only if y � y1 and y , y1 (y dominates y1)

y ¡ y1 if and only if y ¡ y1 for any j P t1, ..., pu (y strongly dominates y1)

xR f x1 @R P t�,©,¡u if and only if f pxqR f px1q.

EpX, f q the set of efficient solutions of X according to objective functions f1, ..., fp

ẼpX, f q a subset of EpX, f q which is isomorphic to Np f pXqq

NpYq the set of non-dominated points in Y

0 for some contextual p P N, a vector such that 0i � 0 for all i P t1, ..., pu

tpxqrxi Ð as a term t where xi (either free or already valued) is assigned value a

x�i the subvector of x composed of all components except i, x�i � px1, ...xi�1, xi�1, ..., xnq

xI for I � N, the subvector of x composed of components with index in I.

xĪ for I � N, the subvector of x composed of components with index in NzI.

x � px�i, xiq x is equal up to some permutation to px�i, xiq

R
p
�,R

p
©
,R

p
©

resp. ty P Rp | y � 0u, ty P Rp | y © 0u, ty P Rp | y ¡ 0u

xλ, yy Inner product of λ P Rp and y P Rp, xλ, yy �
°p

j�1 λ jy j

In GUCP and GCP:

N a set of variable indices

S � PpNq a set of subsystems

K � PpNq a set of couplings

γpkq � S the set of subsystems coupled by coupling k P K

Xk for k P K the feasible set defined by coupling constraints alone

Xs for s P S the feasible set defined by local constraints of system s P S alone

4

In REF:

T a set of tasks

TC � T the subset of complex tasks

TL � T the subset of local tasks

M a set of machines

S a set of sites

S ptq the subset of sites which can perform task t P T

T psq the subset of tasks which can be performed on site s P S

Mpsq the subset of machines available on site s P S

MpS ptqq the subset of machines available to perform task t P T across all sites

TLpsq � TL X T psq the subset of tasks local to site s P S

S TC the set of all decouplings i.e. restrictions of each complex task t P TC to some s P S

σ P S TC a decoupling, i.e. a restriction of each complex task to some site s P S .

5

Contents

Introduction 9

1 Fundamental notions 13

1.1 Notions of Multiobjective optimization . 14

1.2 Coupled problems and decomposition . 22

1.3 The Generic Uncoupled Problem and the efficiency of decomposition 28

1.4 Conclusions . 31

2 Computing efficiently the non-dominated subset of the Minkowski set sum 33

2.1 The non-dominated subset of the Minkowski sum problem (NDMSP) 34

2.2 Intermediary filtering . 35

2.3 A unidirectional method for pooling . 40

2.4 Box-based methods . 47

2.5 Conclusions and discussion . 56

3 Decoupling a coupled problem to obtain bound sets 59

3.1 Introduction . 60

3.2 Decomposable restrictions and lower bound sets 63

3.3 Decomposable relaxations and upper bound sets 65

3.4 Experimental results . 68

3.5 Conclusions and discussion . 74

7

CONTENTS

4 Application Problem 77

4.1 Presentation of the REF problem . 78

4.2 Upper and lower bound sets for REF . 87

4.3 “Bottom-up” approaches based on Dynamic Programming 98

4.4 “Top-down” approaches for solving REF . 105

4.5 Conclusions and perspectives . 120

General conclusions and perspectives 121

Appendices 127

A The double bound as a solution concept in MOCO 129

A.1 Definitions . 129

A.2 Experimental Results . 131

B Weak lower bounds obtained from correcting weak upper bound solutions 133

B.1 Correction of solutions to the copy-split relaxation 133

B.2 Correction of solutions to the relaxation of coupled variables in subsystems knap-
sack constraints . 134

B.3 Experimental results . 135

C Résumé en Français 137

C.1 Notions fondamentales . 137

C.2 Calcul efficace du sous ensemble non-dominé d’une somme d’ensembles 140

C.3 Obtenir des ensembles bornant par décomposition 144

C.4 Problème d’application . 149

8

Introduction

Complex systems and their optimization

A complex system is a collection of subsystems, which are independent enough to be identified,
but still linked together in significant ways. A group of agents who share the ability to perform
some tasks, or share access to some resources, may be thought of as a complex system. Other
examples may be a firm producing on multiple sites with partially overlapping capabilities, or
a manufactured product made of several interacting components. In all of these cases, multiple
subsystems are to act or be acted upon, and this action has some consequences on the state of the
other subsystems.

When attempting to operate or design complex systems, a trade-off thus appears naturally
between, on the one hand, bottom-up reasoning - trying to infer the optimal state of the system
from the optimal states of subsystems obtained independently, and on the other hand, top-down
reasoning - assuming the position of a central planner. The first type of approach is usually com-
putationally easier than the second type, since individual subsystems are smaller than the whole
system. However, by not taking their interactions fully into account, one may propose either in-
feasible or suboptimal solutions.

The main challenge of complex systems optimization is, therefore, to take into account the
interrelations between subsystems, while never considering the problem of the whole system at
once. In bottom-up approaches, it can be done implicitly by adding, to the representation of the
state of a subsystem, information that accounts for some scenario of interaction with the other sys-
tems. Top-down approaches need not reduce themselves to solving the original formulation of the
problem using a generic method. If interactions between subsystems can be described as discrete,
and are in finite number, a top-down approach may attempt to enumerate them, and explore them
in an efficient way. Finally, some approaches may appear as hybrid between bottom-up and top-
down. Examples of hybrid approaches include iterative methods to achieve coordination between
the subsystems: the state of the interaction is fixed, subsystem problems are solved independently,
and the state of the interaction is then adapted, so as to improve the results of the next subsystems
optimization.

9

CONTENTS

Related work and contribution

The present study focuses on a representation of complex as coupled systems, in the sense that the
interaction between subsystems is modeled by coupling constraints in the mathematical represen-
tation of the optimization problem. Manipulation of these constraints and of the variables which
appear in them are key to the resolution of coupled system optimization problems. The goal of
these manipulations is to reduce, as much as possible, the resolution of the original, coupled prob-
lem, to the resolution of a sequence of decoupled problems that can be solved independently.

In the literature on the optimization of complex systems, this is called decomposition and
coordination. In such approaches, the state of the interaction can be represented explicitly, by
an upper level problem dedicated to making strategic decision coordinating subproblems, as in
multilevel optimization (Colson et al. (2007), Migdalas et al. (2013), Liu et al. (2021)). It can also
be represented more implicitly by the value of a penalty term in the objective function, measuring
the violation of coupling constraints, as in Lagrangian relaxation (see e.g. Bertsekas et al. (1995)).

We consider multiobjective integer optimization problems (MOIP), which distinguishes it
from most of the classical literature on complex system optimization. Recent work has used mul-
tiobjective optimization as a device for the optimization of complex systems, see, e.g., Yildiz et al.
(2018), Dietz et al. (2020). In these approaches, each subsystem problem can be either a single, or
a multiobjective problem, and the objective space of the global problem is the product of the ob-
jective spaces of the subproblems. The interaction between subsystems is represented in a higher
dimensional objective space in which the objective spaces of the subproblems are embedded. The
goal of such approaches is to find trade-offs between competing subsystem optimizations, which
is not what we pursue here. Rather, in our case, subsystems and the global system share the same
objective space, and the objective functions of the global systems are additively separable into the
objective functions of the subsystems, so that subsystems are not competing.

There exists, on the one hand, literature on the application of classical decomposition and
coordination methods such as Lagrangian relaxation to integer programming, e.g., Fisher (1981),
Lemaréchal (2001) or Geoffrion (2010). On the other hand, the multiobjective optimization of
complex systems is a well developed topic in the literature on metaheuristics, especially genetic
algorithms applied to multidisciplinary design. However, our work is aimed at exact methods, and
most existing work in exact methods using decomposition in the multiobjective case is dedicated
to continuous optimization (e.g., Nakayama (1984, 1985), TenHuisen and Wiecek (1994)) and the
characterization of the efficiency of single solutions. Thus, although work from these streams of
research could be built upon for the computation of supported solution to the linear relaxation of
a discrete multiobjective problem, and may be adapted to approach supported points, they cannot
be applied to enumerate all efficient solutions of a discrete multiobjective problem.

Some topics of interest in this study are related to work by Gardenghi (2009) and Gardenghi
et al. (2011) on the algebra of efficient sets, and pertain to the combination of efficient solutions
to multiobjective subsystem problems, as well as the conditions under which these operations can
yield efficient solutions to the global problem. We explore this topic in the particular case of

10

CONTENTS

combinatorial problems, and we study the algorithmic aspects of these operations in addition to
their algebraic aspects.

Layout of the thesis

In chapter C.1, we recall basic notions of multiobjective optimization, with a particular focus on
dominance filtering algorithms. We then formally introduce coupled problems, and we define the
key concept of decomposition, in the special case of uncoupled subproblems. Finally, we show
that in the uncoupled case, a simple implementation of decomposition already yields considerable
performance increase.

In chapter 2, we study the issue of combining solutions from subproblems of a decomposable
MOCO problem. We propose several ways of increasing the performance of this operation, which
is fundamental to all resolution approaches subsequently developed.

In chapter 3, we propose generic multiobjective upper and lower bounds (called bound sets)
to the non-dominated set of a coupled problem, and we show that they can be obtained by solv-
ing uncoupled variants of that problem. We detail several of these variants and evaluate them
experimentally.

In chapter 4, we present an application problem: a multiobjective ‘multi-site assignment prob-
lem denoted by REF. After having introduced the formal framework of Dynamic Programming,
we show that REF admits such a resolution method, and we show how decomposition can be used
to improve this initial resolution method, in a “bottom-up” approach. We also show how notions
of bound sets introduced in chapter 3 adapt to the resolution of REF, using dynamic program-
ming. We then turn to a “top-down” approach to solving REF and show that in some cases, all
possible ways to decouple the problem can be enumerated and solved using decomposition. We
speed this “top-down” approach by using dynamic programming to solve subproblems, by the pre-
computation of parts of the problem shared by all decouplings, and by applying branch & bound
tricks, using an original decoupling branching scheme.

Finally, our conclusions recall the contributions made in each chapter of the thesis, as well as
limitations of our results.

Acknowledgement

This work was partly funded by the French National Agency of Research and Technology (ANRT),
CIFRE grant number 2017/1000, and supported by NAVAL GROUP RESEARCH.

11

Chapter 1

Fundamental notions

Chapter Abstract

In this chapter, we begin with recalling basic notions of multiobjective optimization, and an
overview of dominance filtering algorithms. We then introduce the key concepts in this thesis:
complex system optimization problem, uncoupled problems and decomposition. We define a
generic coupled problem and a generic uncoupled problem, and illustrate the power of decom-
position as a means to solve generic uncoupled problems.

Contents
1.1 Notions of Multiobjective optimization . 14

1.1.1 Notations . 14
1.1.2 The specific difficulties of 0� 1 integer MO 16
1.1.3 Dominance filtering algorithms . 17
1.1.4 Choosing a dominance filtering algorithm 22

1.2 Coupled problems and decomposition . 22
1.2.1 Decomposable formulations . 23
1.2.2 Uncoupled optimization . 25

1.3 The Generic Uncoupled Problem and the efficiency of decomposition . . . 28
1.4 Conclusions . 31

13

CHAPTER 1. FUNDAMENTAL NOTIONS

1.1 Notions of Multiobjective optimization

A multiobjective optimization problem (MOP) is the problem of optimizing a vector-valued func-
tion f : Rn Ñ Rp, for n, p P N. We will call an element of the domain of f a solution, and
its image by f a point. In order to optimize a vector-valued function, one must specify the order
relation, the minima or maxima of which are to be computed. Usually, the component-wise order
over points, called the dominance relation, is used. It is only a partial order, and the set of optimal
elements of chains in this partial order defines the most common solution concept of multiobjec-
tive optimization: the Pareto set, or efficient set, and its image by f : the set of non-dominated
points.

In applicative contexts, the optimization of a vector-valued function is meant to solve a multi-
criteria decision problem. Thus, to the p dimensions of co-domain of f correspond p objective
functions which are usually given independently and explicitly. It will generally be assumed that
no point is optimal for all p functions, but rather, that the objectives are somewhat conflicting and
cannot be optimized simultaneously.

1.1.1 Notations

For N � t1, ..., nu a set of variable indices, let f : Rn Ñ Rp be a vector-valued function and
X � Rn be the feasible set. Thus, any feasible solution x � px1, ..., xnq P X is evaluated by f pxq �
p f1pxq, ..., fppxqq. Accordingly, the multiobjective optimization problem (MOP) associated with
function f and feasible set X can be written as:

max p f1pxq, ..., fppxqq

x P X

Feasible solutions to a MOP can be considered from the perspective of the decision space
Rn, as elements in X, or from the perspective of the objective space Rp, as feasible points, i.e.
elements of f pXq � t f pxq | x P Xu. We will write Y :� f pXq only when objective functions and
solution sets are fixed. For any x P Rp, we will write y :� py1, ..., ypq � f pxq for short. In the
MOP literature, comparisons in the decision and objective spaces are expressed in the following
terminology (in accordance with our application cases, we use maximization as the default case
for dominance):

Definition 1.1. Given y, y1 P Rp, y is said to dominate y1, written y © y1, if y is at least as good
as y1 according to all objectives, and is strictly better than y1 according to at least one objective.
Formally:

y © y1 ô

#
@ j P t1, ..., pu, y j ¥ y1j
Dk P t1, ..., pu, yk ¡ y1k

14

CHAPTER 1. FUNDAMENTAL NOTIONS

Variants of dominance in the objective space include the case where points can be equal,

y � y1 ô @ j P t1, ..., pu, y j ¥ y1j

and the case where strict inequalities are required on all objectives

y ¡ y1 ô @ j P t1, ..., pu, y j ¡ y1j

Definition 1.2. A point y P Y is non-dominated if and only if there is no y1 P Y such that y1 © y,
and is weakly non-dominated if and only if there is no y1 P Y such that y1 ¡ y.

Definition 1.3. A solution x P X is efficient with respect to f if and only if there is no x1 P X, x1 such
that f px1q © f pxq, and is weakly efficient if and only if there is no x1 P X such that f px1q ¡ f pxq.

Thus, the usual solution concept for multiobjective optimization is the enumeration of either
the set of efficient solutions defined as

EpX, f q :� tx P X | x is efficient with respect to f u

or the set of non dominated points defined as

NpYq :� ty P Y | y is non-dominatedu

in the latter case, the decision maker resorting to this solution concept is assumed to be indif-
ferent between solutions sharing the same value vector, while in the former case two solutions with
the same value vector will be returned, and discrimination between those two, if needed, should
be justified by other means. Finally, let us characterize a particular subset of efficient solutions.

Definition 1.4. An efficient solution x1 P EpX, f q is supported if and only if there exists some
λ � pλ j | j P t1, ..., puq P Rp

¡ such that x1 is an optimal solution for

max
xPX

p̧

j�1

λ j f jpxq

where Rp
¡ � ta P R

p | a j ¡ 0,@ j P t1, ..., puu. λ will be called a weight vector. A set of sup-
ported solutions can be found fairly easily by defining some policy for exploring the weight space.
In the bi-objective case, a dichotomic method introduced by Aneja and Nair (1979) makes it pos-
sible to exhaustively and efficiently enumerate the set of supported solutions (see also Ulungu and
Teghem (1995)). As is well known (see e.g. Ehrgott (2005)), all supported solutions are efficient,
but not all efficient solutions are supported. It has furthermore been observed, e.g. by Visée et al.
(1998) in the case of the bi-objective knapsack problem, that the number of unsupported solutions
actually grows faster than the number of supported solutions as the instance size increases.

Finally, let us define the lexicographic order relation ©Lex, which is often used in the context

15

CHAPTER 1. FUNDAMENTAL NOTIONS

of multiobjective optimization, and will appear in several of the methods we develop or employ.

Definition 1.5. For y � py1, y2, ...ypq and y1 � py11, y
1
2..., y

1
pq P R

p, y ©Lex y1 if and only if y1 ¡ y11,
or y1 � y11 and py2, ...ypq ©Lex py12, ..., y

1
pq.

1.1.2 The specific difficulties of 0� 1 integer MO

We take special interest in problems with binary decision variables, i.e. problems which admit a
formulation of the form:

max p f1pxq, ..., fppxqq

x P X

xi P t0, 1u @ i P t1, ..., nu

Such problems may be called binary integer multiobjective problems (BIMOP). We focus on
this type of problems because the application we study in chapter 4 is a generalized assignment
problem, in which individual assignments are best described as binary variables.

Most problems studied in the BIMOP literature, which include multiobjective combinatorial
optimization problems (MOCO), are NP-hard, even when their single-objective counterparts are of
lower complexity (see, e.g., Serafini (1987)). Several aspects of this difficulty can be highlighted,
which are of particular interest to our work.

In a multiobjective problem with sufficiently conflicting objectives, there are not one but many
solutions to be outputted, according to the non-dominated set solution concept. It has been shown
(see, e.g., Bazgan et al. (2013)) that the number of efficient solutions to an integer MOP (IMOP)
grows exponentially with two factors. On the one hand, with the number of dimensions of the
objective space, which impacts the filtering strength of the dominance relation: the higher the
number of dimensions, the lower the likelihood that two random solutions will be comparable.
Thus, algorithms requiring multiple dominance tests between feasible or partial solutions may be
viable in the bi-objective case. But beyond, as dominance loses its ability to discriminate between
solutions, one should be mindful of the size of sets one attemps to compute the efficient subset of.
On the other hand in the case of IMOP, the discreteness of the decision space is reflected in the
set of feasible points: the magnitude of the coefficients determines the number of possible vector
values, and thus the sheer number of different points. This in turn affects the potential number of
non-dominated points. When a MOP problem admits a family of instances for which the number of
non-dominated points is exponential with respect to the number of variables, the problem is said to
be intractable (Ehrgott (2005)). In this case, no algorithm can enumerate the non-dominated set in
polynomial time with respect to the size of the instance. In particular, the multiobjective versions
of combinatorial optimization problems like shortest path, minimum spanning tree, assignment,
knapsack, traveling salesperson are intractable.

The current literature in IMOP algorithmics may roughly be divided between decision space

16

CHAPTER 1. FUNDAMENTAL NOTIONS

methods and objective space methods. The former focus on the constructive search of solutions,
trying to shorten this search by eliminating as many as possible of the candidate partial solutions
being constructed using bounding reasoning, comparisons between partial solutions, and between
partial solutions and already complete and feasible solutions. Branch & Bound (see the survey
by Przybylski and Gandibleux (2017) and Sourd and Spanjaard (2008)) and Dynamic Programing
(see e.g. Klamroth and Wiecek (2000), Bazgan et al. (2009), Delort and Spanjaard (2013)) are
examples of such decision space methods, and they tend to run into the first previously described
difficulty: comparisons in higher dimension spaces are rarely possible.

Objective space methods, rather than constructing and comparing partial solutions, attempt to
modify the original problem so that each non-dominated point can be obtained with as few calls to
a single objective solver as possible. To this end, two main tools are used: scalarizations, and the
addition of constraints. Whereas weighted sums can only yield supported points, more complex
scalarizations, such as Tchebychev distance to a reference point, can yield any non-dominated
point. This was the basis for some early generic integer MOP methods, such as Eswaran et al.
(1989) and Sayın and Kouvelis (2005). To avoid the optimization of a nonlinear function such
as Tchebychev distance and still deliver non-supported solutions, one can restrict the scalarized
problem to subregions of the criterion space so that the desired unsupported solution becomes
locally supported, or a solution to a local lexicographic optimization, or even the local optimization
of one objective only. In the bi-objective case, this gives rise to the most competitive generic
integer MOP methods: the e-constraint method, first introduced by Haimes et al. (1971). For more
than two objectives, recent literature is seeing the rise of generic algorithms, e.g. generalizations
of the ε-constraint method by Laumanns et al. (2006), Kirlik and Sayın (2014) and improvements
on the constrained exploration of the objective space by Lokman and Köksalan (2013), Boland
et al. (2017) as well as Tamby and Vanderpooten (2021), based on the notion of search region
introduced by Klamroth et al. (2015).

1.1.3 Dominance filtering algorithms

1.1.3.1 Algorithms over linear list solution archives

The most basic of dominance filtering algorithms is one which iterates through a list of input
points Y , comparing each y P Y to every point in rY , a set of candidate points, i.e. points which
have not yet been found to be dominated by any point in Y . For each y1 P rY such that y © y1, y1

is removed from rY . If there is no y1 P rY such that y1 © y, then y is added to rY . In the worst case,
i.e. if Y is an independent set with respect to ¨, this algorithm requires |Y|2 dominance tests. In
practice, move to front-type heuristics as introduced by Bentley et al. (1993) can be used to bring
about conclusive dominace tests sooner in the loop over rY .

The main heuristic described by Bentley et al. (1993) consists in moving the candidate point
y1 found to dominate some input y to the front of rY . We denote it as MCtF for Move Candidate To
Front. This is based on the intuition that the next input point should be compared first to candidates

17

CHAPTER 1. FUNDAMENTAL NOTIONS

found to dominate previous inputs. Points that are often found to dominate other points have good
chances to be non-dominated, thus, comparing them early to each input should be profitable.
Cornu (2017) interpreted this heuristic as also prescribing an insertion of a non-dominated input
at the front of rY , which we also consider, and denote by MItF, for Move Incumbent to Front.

The basic algorithm can also be improved upon very significantly by taking advantage of
a prior ordering of the input set, as has been described by Kung et al. (1975). Indeed, if Y is
sorted according to ©Lex, a point cannot dominate any of its predecessors. Thus, half of the
dominace tests required for filtering can be saved, as it is only necessary to check whether an
input is dominated by no candidate. In the biobjective case, a crucial observation is that, if Y
is sorted lexicographically, then input solution y is dominated by an element in rY if and only if
it is dominated by the last element of rY . We call a dominance filtering algorithm based on this
principle a unidirectional dominance filtering algorithm (UF). Using the unidirectional algorithm
described as Algorithm 7, MCtF can still be used if p ¥ 3. However MItF becomes irrelevant,
since an input point cannot dominate a candidate point.

Algorithm 1: Unidirectional DominanceFilter
input : Y � Rp

output: NpYq
1 S ortpY,©Lexq

2 rY Ð ty1u
3 /*The for loop iterates according to ©Lex order */
4 for y P Y do
5 Dominated Ð False
6 if p � 2 then
7 /*Assume rY � ty1, ..., ymu */
8 if ym

© y then
9 Dominated Ð True

10 else
11 /*p ¥ 3 */

12 for y1 P rY do
13 if y1 © y then
14 Y Ð moveToFrontpY, y1q
15 Dominated Ð True

16 if Dominated � False then
17 rY Ð Y Y tyu
18 /*If p � 2, this means an insertion at the back. If p ¥ 2,

depending on the heuristic used, this could mean an
insertion at the front, or at the back of rY. */

19 return rY

18

CHAPTER 1. FUNDAMENTAL NOTIONS

1.1.3.2 Algorithms over binary trees with p-dimensional intermediary node data (KDTrees)

The first type of alternative to list-based dominance filtering algorithms is filtering by insertion
into a KDTree in the sense of Chen et al. (2012), which these authors incorporate into a two phase
method of dominance filtering, which is described as Algorithm 2. We present this algorithm in
details, because we will later adapt it to dominance filtering for sets of more complex objects than
mere points.

Assume the points set is structured into a list, and initialize a second list of candidate points.
Considering points in order, check whether each incoming point is dominated by one of the previ-
ously considered candidates. If it is not, add it to the list of candidates. It is now guaranteed that
no point is dominated by its predecessors. Reverse the list. Now, by repeating the same operation,
we will make sure that no remaining point is dominated by any of its former successors, and thus
that no remaining point is dominated at all.

Algorithm 2: Two-phase dominance filtering algorithm using KD-Trees
input : Y � Rp

output: NpYq
1 /*Assume that Y � ty1, ...ynu. */
2 Initialize Tree1

3 s Ð y1

4 k � 0
5 for y P Yzty1u do
6 if s � y then
7 if ||s||2 ||y||2 then
8 s Ð y

9 if DominatedpTree1, yq � False then
10 InsertpTree1, yq

11 if k �
Y
|Y|δ

]
then

12 /*when
Y
|Y|δ

]
input points have been considered */

13 PruningpTree1q

14 k Ð k � 1

15 Initialize Tree2

16 Assume ContentpTree1q � ty1, ..., ymu
17 for y P tym, ..., y1u do
18 if DominatedpTree2, yq � False then
19 InsertpTree2, yq

20 return ContentpTree2q

Chen et al. (2012) improve this method in three main ways. First, by embedding the lists
built in each of the two phases into KDTrees. A KDTree is a binary tree, in which each node has
therefore two children, denoted LChild and RChild, and is associated with a point y P Rp, and two
bounds. uy, ly denote respectively the multiobjective upperbound and lower bound to the subtree

19

CHAPTER 1. FUNDAMENTAL NOTIONS

rooted in y, meaning that for all point y1 in the subtree, uy
© y1 © ly. As is well known, binary

trees allow one to speed up the verification that a point is non-dominated, by avoiding tests using
bound reasoning, and Chen et al. (2012) use them in a classic fashion, described by Algorithm 3.
If a point is found to be non-dominated, it is inserted in the KDTree using Algorithm 4.

Second, Chen et al. (2012) use a sieve point to try and perform first dominance tests which
are likely to succeed. This is essentially the same trick as in move-to-front heurisitc. In this case
the dominance power of a point is heuristically evaluated by its l2 norm. For each input point y
considered in the first phase, first check whether it is dominated by the sieve point, and if it has
greater l2 norm than the current sieve point, make y the new sieve point. Finally, Chen et al. (2012)
use pruning, a common concept in search algorithms over tree-like structure: within the first phase
of their algorithm, they sometimes check whether some nodes of the tree, seen as points, dominate
previously inserted nodes, thus performing in advance some operation belonging to phase two by
taking advantage of the implicit dominance relations induced by the tree structure. According to
the authors, pruning is to be performed after k �

Y
|Y|δ

]
points have been considered in the first

phase, for some δ P R. In the following, we use parameter values recommended by the authors.

Algorithm 3: (Dominated) Check whether a point y is dominated in the subtree rooted
in y1

input : Tree node r, y P Rp

output: True if y is dominated by an element in the subtree rooted in r, False otherwise
1 /*Since a point is one of the attributes of an intermediary node of
a KDTree, nodes can be represented by points */

2 /*If a node is a leaf node, its LChild and RChild pointers link to to
a particular lea f Pt object */

3 if r © y then
4 return True

5 if LChildprq , lea f Pt then
6 z Ð LChildprq
7 if uz

© y then
8 if Dominatedpz, yq then
9 return True

10 if RChildprq , lea f Pt then
11 z Ð RChildprq
12 if uz

© y then
13 if Dominatedpz, yq then
14 return True

15 return False

1.1.3.3 Algorithms over n-ary trees with p-dimensional leaf data (NDTrees)

Another alternative to list-based dominance filtering algorithms, is filtering by insertion into an
NDTree, as described by Jaszkiewicz and Lust (2018), which we now introduce, following Cornu

20

CHAPTER 1. FUNDAMENTAL NOTIONS

Algorithm 4: (Insert) Insert point y in a KDTree
input : Tree node r, coordinate l, y P Rp

output: Updated Tree
1 for j P t1, ..., pu do
2 ur

j Ð maxty j, yr
ju

3 if yl ¥ rl & RChildprq , lea f Ptr then
4 InsertpRChildprq, l� 1 mod p, yq

5 if yl ¥ rl & RChildprq � lea f Ptr then
6 /*Create new node in leaf position */
7 LChildpyq Ð lea f Ptr
8 RChildpyq Ð lea f Ptr
9 uy Ð y

10 RChildprq Ð y

11 if yl rl & LChildprq , lea f Ptr then
12 InsertpLChildprq, l� 1 mod p, yq

13 if yl rl & LChildprq � lea f Ptr then
14 /*Create new node in leaf position */
15 LChildpyq Ð lea f Ptr
16 RChildpyq Ð lea f Ptr
17 uy Ð y
18 LChildprq Ð y

(2017). An NDTree is a tree which is used as an archive to store non-dominated points. Leaf-nodes
in the tree are associated with sets of points, and internal nodes are associated with points which
are respectively upper and lower bounds to the elements associated with the leaf-nodes of their
subtrees. An NDTree is generally used in procedures where individual candidate points, which
may be dominated, are presented successively. Usage of NDTrees can be broken down into two
main procedures.

The first procedure tests whether an incoming candidate is dominated by some point in the
leaf-nodes. Because of the tree-like structure of the archive, an incoming point needs not be
compared to every point in the archive. At each node, the incoming point may be dominated
by the lower bound of the internal node, then it is known to be dominated, and it is rejected. It
may dominate the upper bound of the internal node, and then it can eliminate that node and its
subtree, and be accepted. If the candidate point weakly dominates the lower bound of a node, and
is weakly dominated by the upper bound of a node, then one of three cases occurs. 1. If the node
is a leaf node, then the candidate point is compared to points in the associated subset, the points it
dominates are removed from it, and if it is found to be non-dominated within that set, it is added
to it. 2. If the node is an internal node, the candidate is passed down to the child nodes. 3. If the
candidate point is neither within the bounds of the node, nor dominated by it, nor dominating is,
we stop the testing of the candidate in this subtree.

If the candidate was not found to be dominated during the previous procedure, a second proce-
dure inserts it into the leaf node which it is closest to, for some notion of distance between a point

21

CHAPTER 1. FUNDAMENTAL NOTIONS

and a node. Since each leaf node has a maximum storage capacity, they have to be split when the
capacity is exceeded by the entry of a new point. Then, upper and lower bounds of nodes in paths
of the tree which end with modified leaf nodes must be updated.

We implement this method using parameter values recommended by the authors, and within
the frame of the following, straightforward algorithm: for each point in Y , insert it in the NDTree.
When all input points have been inserted, “harvest” the contents of the leaf-nodes of the NDTree,
the union of which is NpYq.

1.1.4 Choosing a dominance filtering algorithm

Throughout this document, we propose to tackle optimization problems with specialized methods
which, we intend to show, perform better than their generic counterparts. In doing so, we use
dominance filtering as a basic algorithmic building block. In order for the performance improve-
ments we exhibit to represent as faithfully as possible the contributions we put forth, we need to
be assured that we use the best dominance filtering method available.

When p � 2, we will use a unidirectional algorithm described by Kung et al. (1975) in which
the set Y to be filtered is first sorted in decreasing order of value of the first component. Because
points are in this case of dimension 2, if an input point is dominated by a previously considered
point, then it is dominated by the last point found to be non-dominated. When p ¥ 4, we use the
two phase method together with insertion into a KDTree, both proposed by Chen et al. (2012). We
conducted additional preliminary experiments comparing their approach to Jaszkiewicz and Lust
(2018), and found that Chen et al. (2012) performed better. When p � 3, the picture is less clear
and we will have to experiment with both unidirectional dominance filtering algorithms and Chen
et al. (2012), and always consider the one that allows the best performance for the method we are
challenging.

1.2 Coupled problems and decomposition

Decomposing an optimization problem means replacing it with several simpler subproblems, and
then combine their optimal solutions in some way, so as to obtain the set of optimal solutions
to the original problem. This notion has frequently been investigated in the context of the opti-
mization of continuous complex systems (e.g., by Gardenghi (2009); Ishibuchi et al. (2015)) in
which the intuition justifying decomposition is that the sum of the computational efforts spent to
solve the subsystem problems and to combine their solutions should be significantly less than the
effort required to solve the whole problem. The question is then of whether we can guarantee
the optimality of the combined solutions for the original problem, or at least their approximate
optimality.

In the formal context of optimization problems, decomposition has two aspects: one related

22

CHAPTER 1. FUNDAMENTAL NOTIONS

to the functions to be optimized (we will call it separability), one related to the feasible set (we
will call it structural decomposability). Separability has to do with how the optimization of the
subsystems is reflected in that of the global system: the global evaluation of the system is obtained
by aggregating the objective functions of the subsytems. Decomposition is possible when this
aggregation operator satisfies a separability property. Structural decomposability has to do with
how feasible solutions for the subsystems relate to feasible solutions for the original problem:
feasible solutions to the global system problem should be obtained by combining feasible solutions
to the subsystem problems as straightforwardly as possible.

The combination of these two aspects allows for decomposition, i.e. the computation of the
desired solution by solving subproblems and combining their solutions. A complex system is,
however, generally not straightforwardly decomposable. For example, it can be the case that some
constraints induce such an interdependence between subsystem solutions, that the optimum for one
subproblem cannot be obtained independently from those of other subproblems, or that combining
solutions obtained independently in subproblems yields an infeasible solution.

Decomposition and coordination approaches, which are classical in the single objective contin-
uous case, are usually not applicable in the multiobjective case. Informally the reason is that these
approaches critically rest on the ability to define a sequence of optimizations which converges to a
unique optimal value. This can be done either by finding, from a feasible solution to the problem,
a direction of improvement for the evaluation of variables involved in the interaction between sub-
system, or, from an infeasible solution to the problem, by a modification of the objective function
that will reduce the violation of coupling constraints. In the multiobjective case, because there is
no such thing as a unique optimal value, and because for each feasible solution there would be
as many directions of improvement as there are objective functions, such a converging sequence
cannot be defined.

1.2.1 Decomposable formulations

Let us set the stage for a generic formulation of coupled optimization problems. The subproblems
into which a coupled optimization problem is to be decomposed should reflect such structural
features of a complex system as: the division into technical components in the case of the design
of a technical device, distinct geographic areas in a planning problem with a spatial aspect, etc.
Formally, the vector of decision variables should be split into subsystem-wise subvectors. The
models we study here are such that all decision variables are local to some subsystems, at least in
the basic formulations. This is to restrict ourselves to the case where the existence of a coupling
is the consequence of the presence of a coupling constraint.

Thus let N � t1, ..., nu be the set of decision variable indices. Let a partition S of N represent
the set of subsystems. A subsystem s P S is thus identified with the subset of decision variable
indices involved in the constraints defining this subsystem. Thus, x, the vector of all decision
variables, can be seen as px1, ..., xnq, or pxs|s P S q, where xs � pxi | i P sq � pxs

1, ..., x
s
ns
q regroups

the decision variables associated with subsystem s. In this framework, interactions between sub-

23

CHAPTER 1. FUNDAMENTAL NOTIONS

systems are modeled by constraints involving local variables belonging to different coupled sub-
systems.

Example 1.1. Let S � ts1, s2u, with |si| � ni, i P t1, 2u, since N � s1 Y s2 and s1 X s2 � H

variable vector x can be described as pxs1
1 , ..., x

s1
n1 , x

s2
1 , ..., x

s2
n2q, which we will rather denote by

pxs1 , xs2q.

Let K � PpNq be a set of couplings between subsystems, represented by the set of indices
of the variables it couples. We assume that any coupling constraint involves variables from at
least two subsystems. In the following, each coupling k P K corresponds to a unique coupling
constraint indexed by k.

Definition 1.6. Two subsystems s, s1, s , s1 will be said to be coupled by constraint k if there exist
i P s X k and j P s1 X k. An optimization problem will be said to be uncoupled if and only if
K � H.

Note that for some k P K, the associated coupling constraint may not involve all the variables
of the subsystems which are coupled by k. We denote by xk the vector of decision variables
involved in constraint k, and by xs

k the vector of decision variables from subsystem s involved in
constraint k, i.e. xs

k � pxi | i P sX kq.

Finally, we will denote by Xs the feasible set of the suproblem associated with each s P S ,
defined over variable subvector xs, and for each k P K, Xk will denote the feasible set, defined
by coupling constraint k over variable subvector xk. Using these notations, we can express the
coupling structure in the following formulation of a coupled system optimization problem.

max f pxq � p f1pxq, ..., fppxqq

s.t. xk P Xk @ k P K

xs P Xs @ s P S

(P)

where for all j P t1, ..., pu, f jpxq �
°

sPS f s
j px

sq. Assume that |S | � m and pxs|s P S q �
px1, ..., xmq. A well-known example of a coupled problem is the block-angular structure displayed
below, with, for all s P S , f spxq :

±
iPs Xi Ñ Rp, where Xi is the domain of variable xi:

max f 1px1q � f 2px2q � . . . � f mpxmq

s.t. A1
k x1

k �A2
k x2

k � . . . �Am
k xm

k ¤ bk @ k P K

C1x1 ¤ d1

C2x2 ¤ d2

. . .
...

Cmxm ¤ dm

xi P Xi @ i P N

24

CHAPTER 1. FUNDAMENTAL NOTIONS

x1
k

x1
k̄

x2
k

x2
k̄

k

Figure 1.1: Graph representation of a coupled system described in Example 1.2

In the following, for some decision variable vector x of which a variable subvector is xs, we
denote by xs̄ the variable subvector defined by all components of x other than those of xs. We
slightly abuse notation to do this irrespective of the actual order of components in x, when it
causes no confusion. In short, when we write x � pxs, xs̄q, we mean that pxs, xs̄q is equal to x up
to a permutation, so that we can isolate the part of it that is related to s.

Example 1.2. Figure 1.1 provides a toy example which will illustrate the modifications later ap-
plied to obtain either restrictions or relaxations of the problem. Consider a graph G � pV, Eq
where vertex v P V is a subset of decision variables and each edge e � pvi, v jq represents the
existence of constraints binding variables belonging to vertices vi and v j P V. In the following
graph, xs

k for s P t1, 2u denotes the vector of variables of subsystem s coupled by constraint k,
while xs

k̄
denotes the vector of variables of subsystem s which are not coupled by constraint k. We

only label coupling constraints, i.e. constraints which link variables from different subsystems.

Observation 1.1. If problem pPq is uncoupled, then its feasible set X is such that

X �
¹
sPS

Xs (1.1)

where
±

is the cartesian product of a family of sets.

Proof. Each feasible solution x P X is decomposed according to S , i.e. x � pxs | s P S q, with S
a partition of N and xs P Xs for each s P S . If K � H, any x � pxs | s P S q with xs P Xs for all
s P S is feasible, that is x P

±
sPS Xs is equivalent to x P X.

�

Now that we have defined what it means to be uncoupled for a problem formulation (i.e.
K � H) and established the link between formulation decomposability and feasible set de-
composability pi.e. X �

±
sPS Xsq, we will look at how optimization can take advantage of this

property.

1.2.2 Uncoupled optimization

Crucial to uncoupled optimization is the fact that the objective function can be computed straight-
forwardly from subterms that relate to the independent subsystems. Recall that f j is the j-th

25

CHAPTER 1. FUNDAMENTAL NOTIONS

objective function for the optimization of the global system over set X. Under the assumption
that f jpxq is additively separable for all j P t1, ..., pu, the objective function of the subprob-
lem associated with each s P S is straightforwardly given as f spxsq � p f s

1 px
sq, ... f s

ppx
sqq, with

f s
j :

±
iPs Xi Ñ R for j P t1, ..., pu. Thus each subsystem is associated with a multiobjective

problem maxxsPXs f spxsq.

Definition 1.7. Given j P t1, ..., pu, f j :
±

iPN Xi Ñ Rp, and for all s P S f s
j :

±
iPs Xi Ñ Rp, f j

is said to be additively separable along S if, for all x � pxs | s P S q with xs � pxi | i P sq,

f jpxq �
¸
sPS

f s
j px

sq

For an uncoupled problem, assuming that objective functions f j are additively separable along
S for j P t1, ..., pu, we wish to investigate the relation between the global non-dominated set
Np f pXqq and the non-dominated sets of all subsystem problems Np f spXsqq, for s P S . In partic-
ular, a natural question is whether the following equality is valid:

EpX, f q ?
�

¹
sPS

pEpXs, f sqq (1.2)

that is, we want to be able to obtain the efficient set of the original problem by simply com-
bining solutions obtained by solving the subsystems problems. In Equation (C.1.2.2), decompos-
ability of optimization is expressed in the decision space. The corresponding property, expressed
in the objective space, would be:

Np f pXqq ?
�

˚̧

sPS

N p f spXsqq

where
°̊

sPS Y s is the Minkowski or set sum. We recall that for p P N, and A, B � Rp, the
Minkowski sum of A and B is defined as

A` B :� ta� b | a P A, b P Bu

then for S � t1, ...,mu, we define the Minkowski sum (MS) of a finite family pY s | s P S q of
finite subsets of Rp as

˚̧

sPS

Y s :� p...pY1 ` Y2q ` ...` Ym�1q ` Ym

Proposition 1.1. If
±

sPS Xs � X and for all j P t1, ..., pu, f j is additively separable along S ,
then

Np f pXqq � ˚̧

sPS

Np f spXsqq

26

CHAPTER 1. FUNDAMENTAL NOTIONS

Proof. Let f pxq P Np f pXqq, with x � pxs | s P S q. We prove that f spxsq P Np f spXsqq for all
s P S . If there is s P S and xs P Xs such that f spxsq < Np f spXsqq, then there is x1s P Xs such that
f spx1sq © f spxsq. Since X �

±
sPS Xs and x1s P Xs, x� � px1s, xs̄q is feasible. Moreover, since for

1 ¤ j ¤ p, f jpxq �
°

sPS f s
j px

sq, we get that f px�q © f pxq, contradicting f pxq P Np f pxqq �

When p � 1, the converse is true, i.e. we have maxxPX
°

sPS f spxsq �
°

sPS maxxsPXs f spxsq.
However, this is no longer the case when p ¥ 2, and we have

°
sPS Np f spXsqq * Np f pXqq.

In other words the combination of non-dominated solutions with cartesian product can generate
dominated solutions. For a counter-example, let S � t1, 2u, Xs � txs, x1su for s P S . In the
following we write y1sj for f s

j px
1q. Let x � px1, x2q, x1 � px11, x12q P X � X1 � X2, with the

following values:
y1 �p0, 1q, y2 �p1, 0q

y11 �p2, 0q, y12 �p0, 2q

we have Np f 1pX1qq � ty1, y11u and Np f 2pX2qq � ty2, y12u. Therefore y1 � y2 P pNp f 1pX1qq `

pNp f 2pX2qqq. However y11� y12 © y1� y2, and so y1� y2 < Np f pXqq. Thus, since
°̊
sPS
Np f spXsqq

may contain dominated points, only the following result holds:

Corollary 1.1. If X �
±

sPS Xs and for j P t1, ..., pu, f j is additively separable, then

Np f pXqq � Np ˚̧

sPS

Np f spXsqqq

In other words, filtering by dominance the Minkowski sum of non-dominated sets of the sub-
problems yields the solution of the global, uncoupled problem.

Finally, an important remark. In further applications, the process of combining solutions of
subproblems, and then filtering the set of combinations, which we call a pooling process, inter-
venes at different stages of complex computations. In somes cases, we want to produce only the
non-dominated points which are the result of pooling. Sometimes, even if pooling is the final stage
of the computation, which can be the case for a decomposable problem, we may want to exhibit
the efficient solutions associated with non-dominated points. And in some other cases, when pool-
ing is an intermediary step in the computation, we may need to consider solutions rather than their
values, in order to perform operations which demand that structural constraints be satisfied.

When the objective function is additively separable along S , the operation of combining two
solutions is equivalent, in the objective space, to computing the sum of their values. In the decision
space, this operation is a concatenation. For simplicity, we will consider that we combine objects
which have two attributes: a solution vector (or matrix), and a value vector, which we will note,
for object e, solpeq and valpeq. This way we can also make it apparent that computing the value of
a combination of solutions can be done quicker than by iterating over the solution vector: we can
simply compute the sum of their value attributes.

Thus, we can use the same algorithm to perform the Minkowski sum or the cartesian product
of two sets of points or of solutions, and the dominance algorithm we use apply to these solution

27

CHAPTER 1. FUNDAMENTAL NOTIONS

objects irrespective of whether one wants to retrieve the solution or the value of a solution, but
in mathematical notations, we will still write

±
and E when operating explicitly over sets of

solutions, and
°̊

and N when operating explicitly over points.

1.3 The Generic Uncoupled Problem and the efficiency of decompo-
sition

The first question we will adress empirically is that of whether decomposing an uncoupled prob-
lem, i.e. solving the subproblems independently, then pooling the solutions to the subproblems,
leads to faster resolution than solving the uncoupled problem at once and as a whole. We study
the case where solutions are retrieved, rather than values only.

The number of decision variables in the original problem is the sum of the number of deci-
sion variables in each subproblem. Thus, if the complexity of the resolution method applied to
the whole problem is higher than linear in the number of decision variables, and if the pooling
algorithm applied to the sets of efficient solutions of the subproblems is sufficiently fast, one can
expect that decomposition in itself will yield a decrease in the time required to solve the problem.

We test this hypothesis by comparing the running time for solving a generic uncoupled (GUCP)
MOCO problem using a generic MOCO method, with the running time for solving each subprob-
lem using the same generic method, and pooling the obtained local non-dominated sets. Through-
out this document, the generic MOCO method used is the e-constraint method. For p � 2 we
use our own implementation of the classic algorithm by Changkong and Haimes (1983), and for
p ¥ 3, we use the generalized method by Tamby and Vanderpooten (2021). We will refer to them
indistinctly as e-constraint methods, and the algorithm we use will be clear from the number of
criteria in context.

GUCP is to be regarded as a particular case of a generic coupled GCP MOCO problem, the
latter being formulated as follows :

max f pxq � p
¸
sPS

¸
iPs

πi
1xi, ...,

¸
sPS

¸
iPs

πi
pxiq¸

sPS

¸
iPsXk

aixi ¤ bk @ k P K¸
iPs

cixi ¤ ds @ s P S

xi P t0, 1u @ i P N

(GCP)

where for all i P N, ai, ci, bk, ds P R¥ and π
j
i P R¥ for all j P t1, ..., pu, so that f pxq :

t0, 1un Ñ Np. Thus GUCP is formulated as

28

CHAPTER 1. FUNDAMENTAL NOTIONS

max f pxq �
¸
sPS

¸
iPs

πixi¸
iPs

cixi ¤ ds @ s P S

xi P t0, 1u @ i P N

(GUCP)

In each of trial of the next experiment, an instance of the GUCP is generated randomly ac-
cording to a set of parameters. Instances are generated as follows. Each variable is assigned
to a random subsystem according to a uniform law, which results in the number of variables
in each subsystems being, on average, n

s . Then for every i P t1, ..., nu, we randomly choose

πi, ai, ci, P r0, 1000s, and for each s P S , ds �
Q°

iPS ci
2

U
.

We solve GUCP instances using two methods. First, we solve the whole problem using the
generic method. Second, we decompose the instance into m :� |S | subproblems, solve the in-
stances using the same generic algorithm, and perform the pooling of the m non-dominated sets
using a naive pooling Algorithm (NA) described by Algorithm 5, where Es denotes the set of effi-
cient solutions of subproblem s P S , and E

ÝÑs denotes the result of successive pooling operations
up to subproblem s P S .

We simply concatenate solutions subproblem after subproblem, and then we filter the set of all
combinations by dominance, using the dominance filtering algorithm we found to perform best for
each value of p. Note that if we wanted to retrieve only the non-dominated points of the problem,
rather than the efficient solutions, we would not need to perform line 7 of Algorithm 5.

Algorithm 5: Naive sequential pooling of solutions sets (NA)
input : pEs | s P S q
output: Ep

±
sPS Esq

1 E
ÝÑ1 Ð E1

2 for s P t2, ...,mu do
3 Pooled :� H

4 for e P E
ÝÝÑs � 1 do

5 for e1 P Es do
6 /*ē is a new solution object */
7 solpēq Ð psolpeq, solpe1qq
8 valpēq Ð valpeq � valpe1q
9 Pooled Ð Pooled Y tēu

10 E
ÝÑs Ð Pooled

11 return EpEÝÑm q

Each line of Table 1.1 reports parameter values and average measurements for 10 trials of
the experiment. The number of criteria is denoted by p, n stands for the number of variables,
|S | denotes the number of subproblems, and av. s the average number, over trials, of vari-
ables per subproblem. |E| denotes the number of efficient solutions of the problem. Then, av.

29

CHAPTER 1. FUNDAMENTAL NOTIONS

p n |S | av |s| |E| av |Es| T. NoDec T. Dec av T.Es T.Pool

2 100 2 50 134.8 [18.4] 47.25 [5.63] 10.19 [2.25] 4.71 [0.77] 2.353 [0.385] 0.005 [0.001]
2 100 3 33.3 124.8 [31.5] 23.91 [4.96] 9.92 [3.55] 3.06 [0.92] 1.011 [0.303] 0.026 [0.014]
2 100 4 25 106.1 [29.0] 14.13 [3.50] 8.81 [3.03] 2.15 [0.72] 0.505 [0.154] 0.125 [0.124]
2 120 2 60 199.4 [58.4] 67.45 [18.59] 22.74 [18.49] 8.37 [3.34] 4.181 [1.664] 0.011 [0.008]
2 120 2 60 191.3 [54.1] 65.15 [17.58] 28.64 [15.39] 11.89 [5.84] 5.940 [2.920] 0.011 [0.006]
2 120 4 30 160.3 [30.0] 19.33 [2.84] 15.69 [6.01] 3.12 [0.79] 0.693 [0.146] 0.351 [0.241]
3 30 2 15 65.9 [24.9] 18.22 [6.34] 4.52 [1.94] 1.95 [0.63] 0.971 [0.315] 0.001 [0.001]
3 30 3 10 59.9 [27.3] 8.67 [3.22] 3.96 [2.37] 1.63 [0.39] 0.544 [0.131] 0.001 [0.001]
3 30 4 7.5 66.2 [37.3] 5.52 [1.28] 3.82 [2.12] 1.80 [0.07] 0.449 [0.016] 0.002 [0.001]
3 40 2 20 218.2 [80.4] 44.75 [14.85] 22.55 [11.18] 5.03 [2.22] 2.509 [1.105] 0.008 [0.005]
3 40 2 20 202.6 [119.7] 40.50 [20.77] 19.63 [14.38] 4.37 [2.57] 2.178 [1.281] 0.008 [0.009]
3 40 4 10 180.1 [113.8] 10.05 [4.42] 15.81 [11.49] 2.49 [0.80] 0.619 [0.199] 0.013 [0.010]
4 20 2 10 70.5 [37.5] 18.65 [8.48] 6.39 [4.14] 2.55 [1.25] 1.273 [0.626] 0.001 [0.001]
4 20 3 6.7 73.1 [60.6] 6.24 [2.27] 6.13 [5.72] 1.51 [0.19] 0.503 [0.064] 0.002 [0.002]
4 20 4 5 37.9 [19.5] 3.71 [0.76] 2.50 [1.36] 1.73 [0.08] 0.432 [0.020] 0.001 [0.001]
4 25 2 12.5 230.1 [196.2] 35.80 [25.08] 36.07 [41.15] 5.50 [4.79] 2.744 [2.391] 0.007 [0.008]
4 25 2 12.5 217.9 [98.3] 29.95 [9.65] 30.92 [18.84] 3.86 [1.86] 1.927 [0.927] 0.006 [0.004]
4 25 4 6.25 84.6 [44.7] 5.38 [1.40] 8.05 [4.59] 1.98 [0.23] 0.494 [0.059] 0.002 [0.001]

Table 1.1: Running time (in seconds) for solving an uncoupled problem without, or with decom-
position (average values for 10 trials).

|Es| :� p
°
sPS
|Es|q{|S | denotes the average number of non-dominated points over subproblems, and

av. T. Es denotes the average time, over subproblems, for solving a subproblem. The T. No Dec
column records the time spent computing the non-dominated set for the whole problem with the
e-constraint method. Finally, T.Dec denotes the time spent solving the same problem using de-
composition as previously described, and T. Pool is the time spent combining efficient solutions of
the subproblems, and filtering it for dominance over the p original criteria.

All experiments throughout this document are performed on a computer equipped with a 2.11
GHz processor and 32,0 GB RAM. All implementations of algorithms were done in C++, except
for the algorithm by Tamby and Vanderpooten (2021) which was implemented and Java an inter-
faced with our C++ methods. Solver IBM Ilog Cplex(TM) 12.9.0 was called to solve any integer
or continuous problem, in particular within e-constraint methods.

The results of this first experiment suffice to show that decomposition yields a significant
performance improvement for any value of p, even when pooling is done in the most naive way,
applying dominance filtering only after having combined the solutions of all subproblems.

This performance improvement seems to scale both with the number of variables increases,
and with the number of subsystems increases. The latter is explained by the fact that as we keep
the number of variables fixed and further divide the problem in smaller subsystem problems, those
subproblems are solved much faster, so that the time spent solving the problem with decomposition
exceeds greatly the sum of the durations required to solve the subproblems. However, even if
smaller subproblems have fewer efficient solutions, the time required by the dominance filtering
of the set of combinations of solutions also grows very fast with the number of subproblems, as
can be observed in column T.Pool.

For larger values of p, as computing time with the generic algorithm grows very fast, we had

30

CHAPTER 1. FUNDAMENTAL NOTIONS

to consider smaller values of n. As a consequence, the size of sets to be pooled are on average
much smaller, so that filtering time is negligible, and its increase with |S | is not apparent.

1.4 Conclusions

After recalling basics notions and challenges in integer multiobjective optimization, a swell as
defining basic tools, such as dominance filtering algorithms, we have introduced the topic of this
work: the optimization of coupled problems, which are models for complex systems.

We identified the conditions under which a problem that is composed of several subproblems
can be solved by solving the subproblems independently. Our work ranges beyond the case of
uncoupled problems, however our strategy for solving coupled problems requires us to be able to
solves uncoupled problems as fast as possible. The reason for this requirement is that, for solving
a coupled problem, we will reduce it to several uncoupled problems.

In chapter 2 we will see that multiobjective upper and lower bounds of a coupled problem
can be obtained by solving uncoupled variants of that problem. Approaches developed in further
chapters will attempt to reduce the main problem, or parts of it, to collections of uncoupled sub-
problems. In each of theses cases, the same methods for pooling sets of solutions of subproblems
will be applied. In the next chapter we consider the algorithmic details of the pooling operation,
and investigate ways to further increase the advantage yielded by decomposition.

31

Chapter 2

Computing efficiently the non-dominated subset of the
Minkowski set sum 1

Chapter Abstract

In this chapter, we study the computation of the non-dominated subset of the Minkowski sum (or
set sum) of a finite family of finite sets of multidimensional, real-valued points. At first sight, this
computation may be thought of as computing all combinations of points and applying dominance
filtering to the resulting set of points. However, structural properties can be exploited algorithmi-
cally to perform this task more efficiently, by avoiding the comparison of some points. We propose
two main approaches of doing so. First, we show that using lexicographic ordering over each set
to be added to the sum, we can speed up the sorting phase required to efficiently apply dominance
filtering to elements of the set sum. Second, we introduce box-based methods, defining dominance
relations between sets of combinations of points.

Contents
2.1 The non-dominated subset of the Minkowski sum problem (NDMSP) . . . 34
2.2 Intermediary filtering . 35

2.2.1 Sequential Pooling . 35
2.2.2 Experimental Results . 36
2.2.3 Pairwise Pooling . 37

2.3 A unidirectional method for pooling . 40
2.3.1 Definition and proof of correction . 40
2.3.2 Experimental Results . 45

2.4 Box-based methods . 47
2.4.1 Box-based dominance relations . 47
2.4.2 Algorithms for box-based dominance filtering 48
2.4.3 An algorithm for creating a family of boxes 51
2.4.4 Experimental Results . 52

2.5 Conclusions and discussion . 56

1This chapter is based on submitted article Kerbérénès et al. (2021b)

33

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

2.1 The non-dominated subset of the Minkowski sum problem (NDMSP)

We adress the problem of computing Np
°̊

sPS Y sq, for Y s � Rp for each s P S , where
°̊

denotes
the set sum as defined in Section C.1.2.2. It is a multiobjective problem in the sense that it requires
us to output the optima of a partial order relation on a set. However it is not defined as the
optimization of a vector valued function of some variables, rather, each set of points in the family
is given explictly. For a set A � Rp given explicitly, one may consider that this optimization is the
mere filtering out of dominated points in A. This is true for a set that has no particular structure
that we can exploit. However, the set

°̊
sPS Y s is the result of the MS operation over a family of

sets, which induces some structure that can be exploited algorithmically. This operation consists
in pairing and summing up points from sets of the family. Dominance filterings, pairings and
summations, together with other algorithmic devices, should be organized in a way that makes
computation faster than first computing the MS, and then filtering. To the best of our knowledge,
this is a problem that has not yet been addressed.

Considering two finite sets Y,Z � Rp, computing NpY ` Zq requires tackling efficiently two
computational challenges.

First, filtering Y ` Z takes up to |Y ` Z|2 dominance tests using a naive algorithm. However
we can improve on this, either by taking inspiration from algorithms which transfer part of the
filtering effort to a prior lexicographical ordering, and then perform a unidirectional filtering as in
Kung et al. (1975) (an approach further denoted as UA), or by using tree-like data structures which
reduce the number of tests necessary to determine whether a point is dominated or not, as in
Chen et al. (2012). We can also impose a partial ordering on Y � Z, based on the lexicographical
orderings of Y and of Z, and use it to save dominance tests when filtering Y ` Z. This will be
developed in Section C.2.1.3.

Second, Y ` Z cannot be obtained in fewer than |Y| � |Z| steps. However, it may not be
necessary to compute all of this set sum, since we are only interested in NpY ` Zq � Y ` Z. To
avoid the computation of dominated sums of points, we do not test dominance between sums of
points, but between sets of sums of points. These sets of sums of points can be represented by
combinations of boxes, where a box delimits a subset of either Y or Z, using an upper bound and a
lower bound. One comparison between sums of box bounds can eliminate many dominated sums
of points. This approach will be developed in Section C.2.2.

Algorithms implementing these methods outperform the naive approach of computing the set
sum of two sets, and then filtering it. Because solving NDMSP for an arbitrary family of sets can
be reduced to a sequence of summing pairs of sets and filtering the results, tricks that improve the
computing time NpY ` Zq can have significant repercussions on the computing time for a family
of arbitrary length. Next, Section C.2.1.1 details a simple, but crucial improvement on the most
naive approach of first computing the whole of

°̊
sPS Y s and then applying dominance filtering to

the result, a pair of operations we refer to as pooling the family of sets pY s | s P S q.

34

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

2.2 Intermediary filtering

Consider a finite family pY s | s P S q of finite sets of points in Rp. The first algorithm we consider
for solving NDMSP, Algorithm 6, is a sequential algorithm in the sense that it considers sets Y s to
be summed one after the other. At step s P S , it generates all combinations between points from
Y s and points obtained by combining points from subproblems 1 to s� 1. The latter set is denoted
by Y

ÝÝÑs� 1. The most naive sequential algorithm generates the whole of Y
ÝÝÑs� 1 ` Y s at each step

s P S of the computation.

2.2.1 Sequential Pooling

The first algorithm we consider, Algorithm 6, is a sequential algorithm in the sense that it considers
sets Y s to be summed one after the other. At step s P S , it generates all combinations between
points from Y s and points obtained by combining points from subproblems 1 to s � 1. The latter
set is denoted by Y

ÝÝÑs � 1. The most naive sequential algorithm, as shown by Algorithm 6 generates
the whole of Y

ÝÝÑs � 1 ` Y s at each step s P S of the computation.

However, we can avoid the computation of the whole of
°̊
sPS

Y s by applying dominance filtering

after adding each term of the set sum. The next result guarantees that this intermediary filtering
removes no non-dominated element of

°̊
sPS

Y s.

Proposition 2.1. For any family pY s | s P S q with Y s finite for any s P S and S � t1, ..., nu, for
all s1 ¤ n,

N

�
˚̧

1¤s¤s1
Y s

�
� N

�
N

�
˚̧

1¤s¤s1�1

Y s

�
` Y s1

�

Proof. We first prove the following lemma used twice in the proof of the proposition:

Lemma 1. Let A �
°̊

1¤s¤s1
Y s and B � Np

°̊
1¤s¤s1�1

Y sq ` Y s1 . Let y P AzB. Then there is some

y1 P B such that y1 © y.

Proof of Lemma 1. If y P AzB, then y � y j � ys1 , with y j P
°̊

1¤s¤s1�1
Y szNp

°̊
1¤s¤s1�1

Y sq and

ys1 P Y s1 . Then there is some y1 j P
°̊

1¤s¤s1�1
Y s such that y1 j

© y j. Because Y s is finite for any

s P S ,
°̊

1¤s¤s1�1
Y s is also finite, so we can assume that y1 j P Np

°̊
1¤s¤s1�1

Y sq. Then there is some

y1 � y1 j � ys1 such that y1 © y. And because y1 j P Np
°̊

1¤s¤s1�1
Y sq, we have that y1 P B. �

Using notations of Lemma 1, let us show that NpAq � NpBq. Let y P NpAq, and assume, by
contradiction, that y < NpBq. Either y P B, or y < B. If y P B, then there is y1 P B, y1 © y. Because
B � A, we have that y1 P A, and then y < NpAq, which contradicts our assumption. If y < B, by
Lemma 1, there is some y1 P B such that y1 © y, which yields the same contradiction.

35

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

Now let us show that NpBq � NpAq. Let y P NpBq, and assume, by contradiction, that
y < NpAq. Because B � A, there must be some y1 P AzB such that y1 © y. This implies, because
of Lemma 1, that there is some y2 P B such that y2 © y1. By transitivity, we get y2 © y, which
means that y < NpBq, in contradiction with our assumption. �

Algorithm 6 uses this fact to apply an intermediary dominance filtering after combining points
from each new subset considered, so that YÝÑs � NpY

ÝÝÑs � 1`Y sq. In pseudo-code, this is controlled
by the boolean variable FiltEachS tep.

The filtering strength of the dominance relation is clearly impacted by the number of dimen-
sions of the objective space: the higher the number of dimensions, the lower the likelihood that
two randomly chosen points will be comparable. When the number of criteria is low, the cost of
intermediary filtering is certainly worth paying, since the filtered set may be far smaller than the
original set, profitably limiting the number of combinations to consider at the next step. When the
number of criteria increases, the size of the filtered set tends to get closer to that of the original
set. In spite of that, we observe that intermediary filtering remains quite profitable.

Algorithm 6: Sequential Pooling algorithm without (NA) or with (IF) intermediary fil-
tering.

input : pY s | s P S q, FiltEachS tep
output: Np

°̊
sPS Y sq

1 Y
ÝÑ1 Ð Y1

2 for s P t2, ..., |S |u do
3 YÝÑs ÐH

4 for y P Y
ÝÝÑs� 1 do

5 for y1 P Y s do
6 YÝÑs Ð YÝÑs Y ty� y1u

7 if FiltEachS tep then
8 YÝÑs Ð NpYÝÑs q

9 if not(FiltEachStep) then
10 Y

ÝÑ
|S | Ð NpY

ÝÑ
|S |q

11 return Y
ÝÑ
|S |

2.2.2 Experimental Results

The results of the next experiment measure the effectiveness of applying dominance filtering after
each step of adding a set to the set sum, and whether it is impacted by the number of objectives.
We generate families of |S | sets of size |Y s| each. Every point is drawn randomly according to a
uniform distribution over a p-dimensional hypercube of width 1000. We keep each newly drawn
point only if it is not dominated by, and does not dominate, any previously kept point. The reason
for this requirement is that, if some point y P Y s is dominated by y1 P Y s, then any sum of points

36

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

involving point y would be dominated by the same sum where y is replaced by y1. Here, the specific
computational challenge we address is the elimination of dominated combinations of points in°̊

sPS Y s, rather than that of points already dominated in some Y s, which would necessarily be
eliminated more efficiently by prior filterings of sets Y s, for s P S . We generate 20 instances for
each parameter set, and compare the computation time of the naive sequential pooling algorithm
(NA) when dominance filtering is applied only after having computed the MS entirely, and when
it is applied after each addition of an individual set to the set sum (IF).

Algorithm 7: Unidirectional Dominance Filtering for p � 2
input : Y � Rp

output: NpYq
1 S ortpY,¥Lexq
2 /*The for loop iterates according to ¥Lex order */
3 for y P Y do
4 /*Assume rY � ty1, ..., ymu */
5 if ym � y then
6 rY Ð Y Y tyu

7 return rY
Table 2.1 reports these two values, as well as the time gain (TG), defined as 100 T.NA�T.IF

T.NA ,
where T.NA denotes the computing time when filtering once at the end, and T.IF when filtering
at each step. SR denotes, in percentage, the reduction in size from the MS to its non-dominated
subset. For example, in a trial with p � 2, |S | � 3, and |Y s| � 100, the MS has a size |

°̊
sPS Y s| �

106, whereas the average size of the non-dominated set, denoted |ND|, is 561.9, corresponding to
a size reduction of 99.94%. Values between squared brackets correspond to standard deviations.

Table 2.2 reports step-wise measurements for the IF version, on the same instances. For s P S ,
IF Time Step s denotes dominance filtering time at step s (so that, e.g., for 3 sets, there are 2
such steps, when filtering Y1 ` Y2 and then filtering Y

ÝÑ2 ` Y3). For s P S , IF Size Reduction
Step s denotes the reduction in size from YÝÑs to NpYÝÑs q. As regards to these measurements,
experimental results suggest that the computational burden rests heavily on later stages of the
computation. This is apparent in the fact that step wise size reduction increases from one step to
the next. This imbalance increases significantly with p: for 5 objectives and 4 sets, step 2 takes
approximately 29 times longer than step 1, and step 3 approximately 9 times longer than step 2.
Meanwhile, for 4 objectives and 4 sets, step 2 takes approximately 16 times longer than step 1,
and step 3 approximately 5 times longer than step 2.

2.2.3 Pairwise Pooling

As an alternative to the sequential structure of the sequential pooling algorithm with intermediary
filtering (SqIF), we investigate whether solving NDMSP by summing and filtering separately pairs
of sets, and then iterating the summing and filtering on the results of this operation, could lead to
better results. A similar line of inquiry was developed by in the context of a particular dynamic

37

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

p |S | |Y s| |ND| S R p%q NA Time
IF

Time TG p%q
2 3 100 552.60 [125.96] 99.95 [0.01] 3.17 [0.08] 0.06 [0.01] 98.22 [0.31]
3 3 100 1523.82 [295.30] 99.85 [0.03] 4.28 [0.62] 0.41 [0.11] 90.54 [2.16]
4 3 100 5265.10 [1038.13] 99.47 [0.10] 7.27 [0.93] 1.17 [0.28] 83.76 [3.96]
5 3 100 14798.60 [3610.59] 98.52 [0.36] 12.55 [1.70] 3.48 [0.86] 72.42 [4.87]
2 3 125 654.18 [153.81] 99.97 [0.01] 10.11 [0.24] 0.16 [0.02] 98.42 [0.23]
3 3 125 1821.82 [367.57] 99.91 [0.02] 14.53 [1.36] 0.74 [0.13] 94.92 [0.92]
4 3 125 7752.73 [1595.51] 99.60 [0.08] 21.40 [2.16] 2.40 [0.59] 88.81 [2.42]
5 3 125 21380.10 [4460.15] 98.91 [0.23] 32.81 [2.92] 6.73 [1.45] 79.55 [3.45]
2 4 60 544.08 [150.59] 100.00 [0.00] 165.89 [26.25] 0.18 [0.06] 99.89 [0.03]
3 4 60 2486.45 [584.10] 99.98 [0.01] 277.19 [11.55] 1.14 [0.25] 99.59 [0.09]
4 4 60 9846.20 [2872.89] 99.92 [0.02] 309.14 [13.56] 3.82 [1.13] 98.77 [0.33]
5 4 60 35223.10 [9897.77] 99.73 [0.08] 435.65 [63.42] 15.65 [4.92] 96.39 [1.06]

Table 2.1: Global performance improvement due to filtering at each step, as a function of the
number of objectives, the number of sets and the number of points in each set. Average values for
20 trials.

p |S | |Y s|
IF Time IF S ize Reduction

Step 1 Step 2 Step 3 Step 0 Step 1 Step 2
2 3 100 0.012 [0.002] 0.037 [0.009] 97.178 [0.540] 98.020 [0.414]
3 3 100 0.045 [0.009] 0.351 [0.101] 94.604 [0.914] 97.164 [0.349]
4 3 100 0.078 [0.013] 1.065 [0.271] 89.014 [2.025] 95.177 [0.674]
5 3 100 0.136 [0.026] 3.219 [0.817] 80.228 [3.030] 92.563 [1.166]
2 3 125 0.028 [0.002] 0.088 [0.018] 97.814 [0.358] 98.469 [0.247]
3 3 125 0.083 [0.013] 0.573 [0.124] 95.902 [0.619] 97.724 [0.284]
4 3 125 0.143 [0.018] 2.053 [0.546] 90.302 [1.726] 95.898 [0.495]
5 3 125 0.233 [0.027] 6.020 [1.370] 83.333 [2.460] 93.432 [0.915]
2 4 60 0.007 [0.003] 0.034 [0.012] 0.071 [0.026] 95.215 [1.251] 96.646 [0.574] 97.341 [0.333]
3 4 60 0.025 [0.005] 0.194 [0.048] 0.704 [0.164] 90.114 [1.812] 94.843 [0.759] 96.210 [0.418]
4 4 60 0.032 [0.008] 0.500 [0.162] 2.673 [0.849] 82.689 [3.257] 91.881 [1.127] 94.589 [0.871]
5 4 60 0.045 [0.009] 1.312 [0.297] 11.864 [3.998] 72.479 [4.155] 87.243 [1.571] 92.334 [1.193]

Table 2.2: Step-wise increase in performance due to filtering at each step, as a function of the
number of objectives, the number of sets and the number of points in each set. Average values for
20 trials.

38

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

programming algorithm by Stiglmayr et al. (2014), who named this alternative pooling scheme
“cascadic”. The implementation of this approach is described by Algorithm 8.

We iterate through the family of sets using an iterator incremented by two at each step. This
iterator defines a pair of sets, of which we compute the MS, before to filter the latter by dominance.
The result is appended to the family of sets that will be subjected to the same operation at the next
step of the algorithm. If, at any step of the algorithm, the current family of sets to be pooled is of
odd length, then there is one set remaining after iterating through the family with the twin iterator.
This remaining set is added to the next family of sets to be pooled. If the current family of sets to
be pooled has only one element, it is the result. Intuitively, pairwise pooling should perform very
similarly to the SqIF for |S | � 2, 3, since the sequence of pooling operations will be the same in
both approaches.

Algorithm 8: Pairwise Pooling
input : pY s | s P S q
output: Np

°̊
sPS Y sq

1 Q Ð tY1,Y2, ...,Y |S |u
2 i Ð 1
3 while |Q| ¡ 1 do
4 Q1 ÐH
5 while i� 1 |Q| do
6 Y 1 Ð NpY i ` Y i�1q
7 Q1 Ð Q1 Y tY 1u
8 i Ð i� 2

9 if i � |Q| then
10 Q1 Ð Q1 Y tY iu

11 Q Ð Q1

12 return Y 1 P Q

We test this approach against the SqIF. Instances are generated in the same way as in the
previous experiment. Results are provided in Table 2.3. In this experiment, variability was high,
and only for the case of p � 2, |S | � 3 and |Y s| � 100 did we find average time gain relative
to SqIF which remained positive within one standard deviation. It was not, however, part of any
apparent trend. In the context of their application problem, Stiglmayr et al. (2014) had found
pairwise, or cascadic pooling to perform worse than the sequential alternative. For these reasons,
we doubt that pairwise pooling can constitute a reliable alternative to sequential pooling, and we
do not consider it anymore.

In this section, we have seen that when computing Np
°̊

sPS Y sq for |S | ¡ 2, the enumeration
of many elements of

°̊
sPS Y s can be avoided by filtering after each step. But it still requires us

to compute all of Y
ÝÝÑs� 1 � Y s at each step s, which cannot be done in less than Op|Y

ÝÝÑs� 1| � |Y s|q

steps. However because we are aiming at NpY
ÝÝÑs� 1 ` Y sq � Y

ÝÝÑs� 1 ` Y s, we can hope to avoid
enumerating the combinations of points that we can prove in advance will lead to dominated points
at step s. We present two types of approaches to achieve that end: a unidirectional pooling method,
and box-based methods.

39

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

p |S | |Y s| |ND| S qIF
PW Pool

T ime Time Gain (%)
2 2 400 1133.3 [275.1] 1.376 [0.172] 1.373 [0.188] 0.292 [4.254]
3 2 400 2055.2 [361.7] 2.86 [0.645] 2.794 [0.574] 1.874 [3.904]
4 2 400 4712.4 [536.8] 10.879 [2.85] 10.809 [2.691] -0.785 [15.921]
2 3 100 550.7 [120.5] 0.248 [0.058] 0.244 [0.053] 1.519 [3.647]
3 3 100 1540.5 [264.4] 1.371 [0.359] 1.357 [0.354] 0.91 [2.132]
4 3 100 5859.8 [1005.5] 14.218 [5.493] 14.02 [5.24] 0.824 [3.511]
2 4 40 329.8 [77.6] 0.078 [0.014] 0.082 [0.018] -5.065 [14.5]
3 4 40 1589 [446.6] 1.431 [0.681] 1.381 [0.634] 1.897 [10.61]
4 4 40 6000.9 [1360.4] 15.401 [6.486] 15.157 [6.277] 1.308 [4.646]
2 5 20 280.4 [85.9] 0.042 [0.011] 0.043 [0.01] -2.726 [11.01]
3 5 20 1384.1 [216.1] 0.971 [0.302] 0.965 [0.287] 0.247 [2.989]
4 5 20 5295.7 [1155.9] 12.898 [5.379] 12.776 [5.255] 0.312 [7.079]

Table 2.3: Time Gain for Pairwise Pooling relative to Sequential Pooling with filtering at each
step. Average values for 20 trials.

2.3 A unidirectional method for pooling

2.3.1 Definition and proof of correction

The application of a unidirectional dominance filtering algorithm (UF) requires that the input ele-
ments y P Y be presented in a dominance preserving order, and one such order is the lexicographic
order ©Lex. Given two sets of points Y,Z � Rp, in order to obtain NpY ` Zq, we could compute
all of Y ` Z and sort it according to ©Lex, obviously producing a sequence over Y ` Z, which
would allow the use of a UF algorithm. However, this section presents an alternative procedure to
generate such a sequence over Y`Z without requiring the sorting and prior computation of Y`Z.
Rather, it requires only that Y and Z be sorted in a dominance preserving order.

Assume Y and Z are both sorted lexicographically, and indexed according to their rank in each
respective lexicographic order. We define a structure in which yi � z j P Y ` Z can either have
two children, yi�1 � z j and yi � z j�1, if i � 1 ¤ |Y| and j � 1 ¤ |Z| respectively, or only one
child if only one of these conditions is met, or no child if none of the conditions is met. Similarly,
any element yi � z j has at most two parents: yi�1 � z j and yi � z j�1, if i � 1 ¡ 0 and j � 1 ¡ 0
respectively.

This parenthood relation defines a lattice over Y ` Z which is a subset of ©Lex over Y ` Z,
as illustrated in Figure C.2. We use a table of size |Y| � |Z|, denoted by T , to record, at entry
pi, jq, the number of parents of yi � z j P Y ` Z which have not yet been tested for insertion at any
iteration of the procedure. By definition, at the beginning of the procedure, the entry for the top
of the lattice reads 0, entries for elements of the leftmost and rightmost paths in the lattice read 1,
and all others read 2.

Example 2.1. Let Y � tp6, 3q, p3, 5q, p2, 7q, p1, 10qu, and Z � tp7, 4q, p6, 5q, p5, 6q, p2, 9qu, sorted
by decreasing lexicographic order and indexed accordingly. Let T stand for the matrix repre-
sentation of the parenthood relation. Figure C.3 exhibits table T and Figure C.2 the parenthood

40

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

p1,1q
p13, 7q

p1,2q
p12, 8q

p2,1q
p10, 9q

p1,3q
p11, 9q

p2,2q
p9, 10q

p3,1q
p9, 11q

p1,4q
p8, 12q

p2,3q
p8, 11q

p3,2q
p8, 12q

p4,1q
p8, 14q

p2,4q
p5, 14q

p3,3q
p7, 13q

p4,2q
p7, 15q

p3,4q
p4, 16q

p4,3q
p6, 16q

p4,4q
p3, 19q

Figure 2.1: Lattice-representation of the parenthood relation over Y ` Z in Example C.1

T �

1 2 3 4
1 0 1 1 1
2 1 2 2 2
3 1 2 2 2
4 1 2 2 2

Figure 2.2: Table representation of the parenthood relation over Y ` Z in Example C.1

relationship as a lattice.

Let P � NpY ` Zq denote the set NpY ` Zq being constructed. Let H denote the subset of
elements of Y`Z whose associated entry in T is 0. H is structured as a heap ordered by decreasing
lexicographic order. It will be used to determine the next point to be tested for insertion, so as to
ensure that the sequence of insertions is the ©Lex order over Y ` Z.

Algorithm 9 (UPool) describes the unidirectional pooling process. The general idea is to
guarantee that sum points are tested in decreasing lexicographic order. First, Y1 is sorted. As in
Algorithm 6, each iteration of the procedure adds set Y s to set sum Y

ÝÝÑs� 1. In the case of UPool, this
set sum is also being kept sorted, so we do not need to sort Y

ÝÝÑs� 1 before computingNpY
ÝÝÑs� 1`Y sq.

At initialization, we know that point y1 � z1 belongs to NpY
ÝÝÑs� 1 ` Y sq, and can be inserted

into P (line 6). The next two largest elements are its children, y1� z2 and y2� z1, which now have
no untested parents, and are inserted into heap H in lexicographic order (line 7). Parenthood table
T is initialized accordingly (lines 8 to 15). We continue inserting elements h which appear at the
root of H into P and update H and T until H � H.

We check whether h is dominated in P (line 18), using a generic procedure notDominatedInpy, Aq
which determines whether point y is non-dominated by an element of set A. In practice, if p � 2,
it is sufficient to compare the incoming point with the last inserted point, as in Kung et al. (1975).
If p ¥ 4, previously accepted points are stored into a KDTree and we check whether the incoming
point is dominated in the KDTree, adapting the approach by Chen et al. (2012). If p � 3, we
may use either a generalized unidirectional method of dominance testing with heuristics such as

41

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

move-to-front and insertion at the front of P, or we may use our adaptation of Chen et al. (2012).

If h is not dominated, we add it to P (line 19). We then have to update H and T , as described
in Algorithm 10. We remove h from H (line 2) and for each child of h, if it exists (line 3 or 7), we
decrement its entry in T (lines 4 and 8). If any of these has its two parents already tested (lines 5
or 9), we insert it into H in the correct place according to ©Lex (line 6 or 10).

Algorithm 9: Unidirectional Pooling Algorithm (UPool)
input : pY s | s P S q
output: Np

°̊
sPS Y sq

1 sortpY1,©Lexq

2 Y
ÝÑ1 Ð Y1

3 for s P t2, ..., |S |u do
4 Y Ð Y

ÝÝÑs� 1; Z Ð Y s

5 sortpZ,©Lexq
6 P Ð ty1 � z1u
7 H Ð ty1 � z2, y2 � z1u /*inserted according to ©Lex */
8 T p1, 1q Ð 0; T p1, 2q Ð 0; T p2, 1q Ð 0
9 for i P t3, ..., |Y|u do

10 T pi, 1q Ð 1

11 for j P t3, ..., |Z|u do
12 T p1, jq Ð 1

13 for i P t2, ..., |Y|u do
14 for j P t2, ..., |Z| do
15 T pi, jq Ð 2

16 while H ,H do
17 h Ð rootpHq
18 if notDominatedIn(h, P) then
19 P Ð PY thu /*For p � 2, insertion is at the back. For

p ¥ 3, it may be at the front or at the back depending on
the chosen heuristic */

20 updateph,H,T,Y,Zq

21 YÝÑs Ð P

22 return Y
ÝÑ
|S |

Example 2.2 shows an execution of Algorithm 9.

Example 2.2. In the following, using the same sets Y and Z and notations as in Example C.1, we
develop an execution of the algorithm for illustrative purposes. Let H represent the heap, and P
represent the set NpY ` Zq being constructed.

0. We begin with P � t
p1,1q
p13, 7qu and H � t

p1,2q
p12, 8q,

p2,1q
p10, 9qu. We also have T p1, 1q � 0, and

since its children are in H, T p1, 2q � 0 and T p2, 1q � 0.

1. p12, 8q is at the top of the heap and is tested for insertion in P. As it is not dominated by any

42

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

Algorithm 10: Update heap H and tree T (update)
input : h,H,T,Y,Z

1 /*Assume that h � yi � z j */
2 H Ð Hzthu
3 if i� 1 ¤ |Y| then
4 T pi� 1, jq Ð T pi� 1, jq � 1
5 if T pi� 1, jq � 0 then
6 H Ð H Y tyi�1 � z ju

7 if j� 1 ¤ |Z| then
8 T pi, j� 1q Ð T pi, j� 1q � 1
9 if T pi, j� 1q � 0 then

10 H Ð H Y tyi � z j�1u

element of P, P Ð P Y tp13, 7q, p12, 8qu. We decrement entries of T associated with both

children of p1, 2q, i.e. T p2, 2q Ð 2� 1 � 1 and T p1, 3q Ð 1� 1 � 0. Thus only
p1,3q
p11, 9q is

inserted into H, while
p1,2q
p12, 8q is removed.

2. H � t
p1,3q
p11, 9q,

p2,1q
p10, 9qu. p11, 9q is at the top of the heap and is tested for insertion in P.

It is not dominated in P, and thus P Ð tp13, 7q, p12, 8q, p11, 9qu. T p2, 3q Ð 2 � 1 and
T p1, 4q Ð 1� 1 � 0.

3. H � t
p2,1q
p10, 9q,

p1,4q
p8, 12qu. p10, 9q is at the top of the heap and is tested for insertion in P. It is

dominated in P by p11, 9q, and thus P � tp13, 7q, p12, 8q, p11, 9qu. T p3, 1q Ð 1 � 1 � 0,
and T p2, 2q � 1� 1 � 0.

4. H � t
p3,1q
p9, 11q,

p2,2q
p9, 10q,

p1,4q
p8, 12qu. p9, 11q is not dominated in P and thus

P Ð tp13, 7q, p12, 8q, p11, 9q, p9, 11qu. T p4, 1q Ð 1� 1 � 0, T p3, 2q Ð 2� 1 � 1.

5. H � t
p2,2q
p9, 10q,

p4,1q
p8, 14q,

p1,4q
p8, 12qu. p9, 10q is dominated by p9, 11q and thus P is unchanged.

T p3, 2q Ð 1� 1 � 0,T p2, 3q Ð 1� 1 � 0.

6. H � t
p4,1q
p8, 14q,

p1,4q
p8, 12q,

p3,2q
p8, 12q,

p2,3q
p8, 11qu. p8, 14q is not dominated in P, thus P Ð P Y

tp8, 14qu.
p4, 2q is the only child of p4, 1q, and thus T p4, 2q Ð 2� 1 � 1.

7. H � t
p1,4q
p8, 12q,

p3,2q
p8, 12q,

p2,3q
p8, 11qu. p8, 12q is dominated by p8, 14q, so that P remains un-

changed. p2, 4q is the only child of p1, 4q, thus T p2, 4q Ð 2� 1 � 1

8. H � t
p3,2q
p8, 12q,

p2,3q
p8, 11qu. p8, 12q is dominated by p8, 14q, so that P remains unchanged.

T p4, 2q Ð 1� 1 � 0, T p3, 3q Ð 2� 1 � 1

9. H � t
p2,3q
p8, 11q,

p4,2q
p7, 15qu. p8, 11q is dominated by p8, 14q, so that P remains unchanged.

T p3, 3q Ð 1� 1 � 0, T p2, 4q Ð 1� 1 � 0.

43

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

10. H � t
p4,2q
p7, 15q,

p3,3q
p7, 13q,

p2,4q
p5, 14qu. p7, 15q is not dominated in P, so that P Ð P Y tp7, 15qu.

T p4, 3q Ð 2� 1 � 1.

11. H � t
p3,3q
p7, 13q,

p2,4q
p5, 14qu. p7, 13q is dominated by p7, 15q, so that P remains unchanged.

T p4, 3q Ð 1� 1 � 0, T p3, 4q Ð 2� 1 � 1

12. H � t
p4,3q
p6, 16q,

p2,4q
p5, 14qu. p6, 16q is not dominated in P, so that P Ð PY tp6, 16qu.

T p4, 4q Ð 2� 1 � 1.

13. H � t
p2,4q
p5, 14qu. p5, 14q is dominated by p6, 16q, so that P is unchanged. T p3, 4q Ð 1�1 � 0.

14. H � t
p3,4q
p4, 16qu. p4, 16q is dominated by p6, 16q, so that P is unchanged. T p4, 4q Ð 1�1 � 0.

15. H � t
p4,4q
p3, 19qu. p3, 19q is not dominated in P so that

P Ð tp13, 7q, p12, 8q, p9, 11q, p8, 14q, p7, 15q, p6, 16q, p3, 19qu

16. H � H, end.

Next, we prove that Algorithm 9 yields the correct result, by showing that it fulfills the condi-
tions for being a unidirectional dominance filtering algorithm.

Proposition 2.2. Let Y and Z be two subsets of points. Algorithm 9 generates NpY ` Zq.

Proof. Algorithm 9 is a unidirectional dominance filtering algorithm. Therefore, correctness is
established if all elements of Y ` Z are tested by decreasing lexicographic order ©Lex. For this
purpose, we need to show that, p1q except for y1 � z1, all elements of Y ` Z are inserted into H at
some iteration, and will thus be tested, and p2q the root of H at any iteration is lexicographically
larger than all untested points.

For p1q let us assume by contradiction that g P Y ` Z never appeared in H. This means
that at least one of the parents of g has not been tested either, which means it did not appear in
H. Reiterating this, we exhibit a chain of elements that never appeared in H, leading to the root
element of the parenthood relation. This means that either y1� z2 or y2� z1 was never in H, which
contradicts line 7 of Algorithm 9.

For p2q, let us assume by contradiction that, at some iteration of the while loop (lines 15-20),
h P Y`Z is the root of H as in line 17, while there exists an untested element h1 P Y`Z such that
h1 ©Lex h. By line 7, we know that this may not occur at the first iteration. Therefore, we consider
the earliest iteration where such a point h1 might exist. Clearly h1 is an untested point that does
not belong to H, since H is sorted according to ©Lex. However, there must exist h2 P H which
is an ancestor of h1. If it were not the case, h1 could never itself be brought into H, because h2

would not be tested, implying that none of its descendants, among which h1, would never join H
either. This would contradict p1q. H being sorted lexicographically, we have h ©Lex h2. Because
h2 is an ancestor of h1, we have h2 ©Lex h1, which, by transitivity of ©Lex, implies that h ©Lex h1,
contradicting the assumption. �

44

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

We now compare IF and UPool from a computational complexity point of view. For this
purpose, we consider both algorithms at a given iteration of the global for loop, when combining
two sets Y and Z. Assume that |Y| � m, |Z| � n, with m ¥ n. IF and UPool differ on the prior
sorting. IF requires the sorting of Y `Z, performed in Opmn log mnq � Opmn log mq steps. UPool
requires the sorting of Y and of Z, performed in Opm log m�n log nq � Opm log mq steps, followed
by the insertion of the mn elements into the intermediary heap structure H. By Proposition 2.3, we
prove that the size of H is always less than n. Therefore, this second operation requires, in total,
Opmn log nq steps.

Proposition 2.3. Given two sets Y and Z to be combined by Algorithm 9, the heap H used in this
algorithm never contains more than mint|Y|, |Z|u elements.

Proof. Let Y � ty1, ..., ymu and Z � tz1, ..., znu, with m ¥ n. Assume by contradiction that
|H| ¡ n. Then, H must contain at least two elements of the form yi � z j and yk � z j. Assume,
wlog, that i k, meaning that yi � z j is an ancestor of yk � z j in the parenthood lattice. An
element is introduced in H when its entry in T is decremented to 0. The entry of an element in T is
decremented only when both its father nodes, and thus all its ancestor nodes, have been removed
from H. Thus, if yk � z j P H, then yi � z j < H, contradicting the assumption. �

Both algorithms require filtering the mn elements of Y ` Z, which involves mn operations
in the biobjective case, and at least Opmn log mnq � Opmn log mq operations for more than two
objectives. In the latter case, this term will in all likelihood dominate the one associated with
sorting. Thus we cannot guarantee that UPool will perform better than IF, but we showed that
the structure of NDMSP can be taken advantage of to shorten significantly the sorting phase. In
the biobjective case, sorting corresponds to the dominant term, with an overall complexity of
Opmn log mq for IF, versus Opmn log nq for UPool. Therefore, we can expect UPool to perform
better than IF in that case.

2.3.2 Experimental Results

We generate families pY s | s P S q in the same way as in the experiment about intermediary
filtering (cf. Section C.2.1.2), and we measure time gain (TG) yielded by UPool relative to IF,
using the dominance filtering algorithm which allows IF to perform best. It can be either UF with
move-to-front heuristic and insertion of new non-dominated elements at the front, denoted by UF,
or the two-phase algorithm by Chen et al. (2012), denoted by CH.

For p � 2 and p � 3, we found that IF performs best using UF for intermediary filtering (cf.
bold-titled column), and thus we consider TG when testing and inserting elements into P using
UF as well. We find significant TG, up to 81, 65 % for p � 2 with a monotonous increase as |Y s|

increases, and low variability. For p � 3, we find the same monotonous increase, but only 49.33%
TG at best. In both cases we observe a very slight increase of TG as |S | increases, suggesting the
performance of the algorithm scales well with the size of the sets being handled. These results are
reported in Table 2.4.

45

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

p |S | |Y s|
IF UF UPool UF IF CH UPool CH
Time Time TG{UF(%) Time Time TG{CH(%)

2 2 200 0.197 [0.05] 0.072 [0.02] 63.322 [8.87] 0.383 [0.11] 0.086 [0.02] 77.668 [5.67]
2 2 400 0.466 [0.12] 0.132 [0.03] 71.675 [6.70] 0.717 [0.14] 0.171 [0.04] 76.100 [6.61]
2 2 600 0.923 [0.06] 0.230 [0.02] 75.085 [1.27] 1.305 [0.25] 0.334 [0.02] 74.372 [4.97]
2 3 200 0.314 [0.06] 0.099 [0.02] 68.635 [4.21] 0.805 [0.27] 0.121 [0.02] 85.014 [4.42]
2 3 400 1.294 [0.30] 0.346 [0.07] 73.268 [2.38] 3.171 [0.83] 0.485 [0.11] 84.712 [3.23]
2 3 600 4.357 [1.59] 0.861 [0.17] 80.247 [6.30] 7.467 [1.64] 1.342 [0.22] 82.030 [3.68]
2 4 200 0.952 [0.38] 0.241 [0.05] 74.690 [4.99] 2.764 [1.00] 0.316 [0.08] 88.573 [2.66]
2 4 400 5.178 [2.16] 1.056 [0.39] 79.604 [4.17] 13.173 [6.09] 1.580 [0.64] 88.008 [2.49]
2 4 600 11.534 [3.19] 2.117 [0.62] 81.648 [2.27] 30.086 [14.25] 3.518 [1.21] 88.308 [2.91]
3 2 200 0.158 [0.03] 0.115 [0.02] 26.872 [7.92] 0.192 [0.04] 0.387 [0.06] �101.879 [39.44]
3 2 300 0.339 [0.04] 0.220 [0.05] 34.976 [7.04] 0.400 [0.07] 0.859 [0.13] �114.893 [39.70]
3 2 400 0.668 [0.09] 0.393 [0.08] 41.138 [6.90] 0.715 [0.11] 1.774 [0.42] �148.161 [53.44]
3 3 200 1.366 [0.51] 0.906 [0.39] 33.664 [5.96] 1.736 [0.47] 3.393 [1.03] �95.447 [41.16]
3 3 300 2.902 [0.85] 1.546 [0.54] 46.716 [4.69] 3.731 [1.04] 7.536 [2.18] �101.997 [35.78]
3 3 400 5.886 [1.77] 3.013 [1.23] 48.815 [6.19] 7.048 [1.48] 14.754 [4.72] �109.355 [43.69]
3 4 200 7.049 [3.11] 4.522 [2.43] 35.852 [4.64] 8.131 [2.51] 16.123 [6.80] �98.289 [39.88]
3 4 300 15.396 [4.78] 8.342 [3.68] 45.813 [5.15] 17.755 [4.01] 37.823 [10.29] �113.029 [27.41]
3 4 400 29.178 [12.22] 14.785 [9.27] 49.328 [6.68] 34.559 [10.53] 67.384 [25.11] �94.984 [30.92]

Table 2.4: Computing time for the sequential method with intermediary filtering, the UPool
method, and relative time gain as a function of |Y s| and |S |, for p � 2, 3. Average values for
20 trials.

p |S | |Y s|
IF UF UPool UF IF CH UPool CH
Time Time TG{UF(%) Time Time TG{CH(%)

4 2 100 0.089 [0.02] 0.109 [0.02] �22.409 [11.36] 0.082 [0.02] 0.097 [0.01] �17.112 [18.30]
4 2 150 0.249 [0.06] 0.268 [0.07] �7.712 [8.90] 0.184 [0.03] 0.215 [0.02] �17.053 [22.79]
4 2 200 0.436 [0.09] 0.440 [0.09] �0.976 [7.68] 0.320 [0.05] 0.368 [0.05] �15.029 [27.05]
4 3 100 2.247 [0.94] 2.034 [0.88] 9.484 [5.21] 1.206 [0.33] 1.229 [0.30] �1.953 [12.71]
4 3 150 6.420 [2.20] 5.771 [2.04] 10.115 [5.08] 2.866 [0.61] 3.239 [0.65] �13.003 [10.57]
4 3 200 10.247 [4.41] 9.316 [4.11] 9.087 [2.46] 4.733 [1.12] 5.850 [1.29] �23.590 [13.96]
4 4 100 20.134 [9.85] 19.295 [9.65] 4.170 [2.30] 6.324 [1.93] 7.752 [2.11] �22.588 [16.89]
4 4 150 92.005 [36.06] 89.073 [37.87] 3.188 [5.69] 25.035 [5.68] 27.216 [6.02] �8.713 [14.92]
4 4 200 149.676 [128.74] 138.579 [129.90] 7.414 [3.94] 42.377 [15.59] 43.912 [15.47] �3.622 [10.94]
5 2 50 0.046 [0.01] 0.099 [0.02] �113.898 [20.57] 0.029 [0.00] 0.073 [0.01] �154.276 [38.12]
5 2 100 0.277 [0.07] 0.358 [0.08] �29.349 [11.60] 0.142 [0.02] 0.173 [0.01] �22.214 [17.77]
5 2 150 0.784 [0.19] 0.861 [0.18] �9.923 [9.57] 0.327 [0.04] 0.307 [0.03] 6.249 [16.69]
5 3 50 2.363 [0.80] 2.287 [0.79] 3.229 [5.90] 0.786 [0.20] 0.572 [0.09] 27.146 [17.02]
5 3 100 14.074 [6.50] 13.593 [6.26] 3.413 [3.15] 3.564 [1.01] 2.657 [0.59] 25.442 [11.07]
5 3 150 55.894 [25.22] 57.550 [27.14] �2.963 [2.08] 8.430 [1.68] 7.642 [1.39] 9.348 [8.24]
5 4 50 72.060 [59.94] 77.700 [71.43] �7.827 [14.81] 7.346 [4.79] 6.175 [3.16] 15.942 [16.57]
5 4 100 ¡ 500 ¡ 500 n.a. 35.241 [8.89] 35.016 [9.33] 0.638 [13.80]
5 4 150 ¡ 500 ¡ 500 n.a. 111.945 [34.36] 118.006 [27.95] �5.414 [17.37]

Table 2.5: Computing time for the sequential method with intermediary filtering, the UPool
method, and relative time gain as a function of |Y s| and |S |, for p � 4, 5. Average values for
20 trials.

46

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

For p � 4 and p � 5, IF benefits more from dominance filtering with CH, and we thus
measure the performance improvement of UPool by considering column TG{CH. In this case,
we found no positive TG, much higher variability and no monotonous trend in TG. Results using
UF within UPool performed even more poorly as compared to IF using CH, and are not reported
here. Thus, for these higher values of p, we cannot advise using UPool. To summarize, for p ¤ 3,
UPoolUF is the clear winner, whereas for p ¥ 4, IFCH should be prefered.

2.4 Box-based methods

Box-based methods for speeding up the resolution of NDMSP rely on dominance relations involv-
ing combinations of bounded boxes. We present two dominance relations involving combinations
of boxes. The first one is a relation between a point and a combination of boxes, and thus will be
called point-to-box dominance (with a slight abuse since we compare the point to a combination
of boxes, and not to a box). The second one is a relation between combinations of boxes, and will
accordingly be called box-to-box dominance.

2.4.1 Box-based dominance relations

Given some set Y � Rp, let a box B be defined by a subset of Y , an upper bound u such that for
all y in the box, u � y and a lower bound l such that for all y in the box, y � l. The tightest value
for u is the ideal point of B and the tightest value for l is the anti-ideal point of B. For simplicity,
we will write y P B to say that y is contained in the subset of box B, and B � Y to state that all
points in box B belong to Y . Let B � tB1, ..., Bmu be a family of boxes associated with Y � Rp.
Correction of box-based filtering methods require that

�
1¤i¤m Bi � Y .

Consider two sets Y and Z which we want to pool together. Point-to-box dominance is defined
as follows:

Definition 2.1. Let ȳ P Rp, and two boxes Bi
Y � Y, B j

Z � Z, with corresponding upper bounds ui
Y

and u j
Z . ȳ point-to-box dominates pB j

Y , B
j
Zq if and only if ȳ � ui

Y � u j
Z .

Observation 2.1. If ȳ point-to-box dominates pBi
Y , B

j
Zq, then for all y P Bi

Y`B j
Z , ȳ � y (see Figure

2.3). Therefore, if ȳ P Y ` Z, then no point of Bi
Y ` B j

Z belongs to NpY ` Zq.

We turn to the box-to-box relation. If combining the upper bounds of two boxes yields a point
that is dominated by the combinations of lower bounds of two others boxes, then all combinations
of points from the latter two boxes dominate all combinations of points from the former two boxes.
Formally, we have:

Definition 2.2. Let Bi
Y , B

j
Y � Y and Bk

Z , B
l
Z � Z, with associated lower and upper bounds. pBi

Y ,
Bk

Zq box-to-box dominates pB j
Y , Bl

Zq if and only if liY � lkZ � u j
Y � ul

Z

Observation 2.2. If pBi
Y , Bk

Zq box-to-box dominates pB j
Y , Bl

Zq, then for all y P Bi
Y ` Bk

Z , for all
y1 P B j

Y ` Bl
Z , y � y1 (see Figure C.4)

47

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

B1
Y

B1
Z

4

4

4

u1
Y

u1
Z

u1
Y � u1

Z

ȳ

Figure 2.3: Bi-objective illustration of point-to-box dominance.

B1
Y

B2
Y

B1
Z

B2
Z

�

�

4

4

4

�

l2Y

l1Z

u1
Y

u2
Z

u1
Y � u2

Z

l2Y � l1Z

Figure 2.4: Bi-objective illustration of box-to-box dominance.

For efficiency, it may be desirable that the boxes be disjoint, so that dominated combinations
of points are eliminated only once.

2.4.2 Algorithms for box-based dominance filtering

In a sequential approach to pooling, as described by Algorithm 11 at each step s P S , we apply
two boxing operations: on the one hand on Y

ÝÝÑs� 1, the result of the previous steps, and on the
other hand on Y s, the s-th set that we want to add to the MS under construction. After removing
potential combinations of points by applying either one of the box dominance relations, we apply
regular dominance filtering over sums of points associated with the remaining combinations.

First, a boxing algorithm is called to determine how to group the contents of Y
ÝÝÑs� 1 and of

Y s into two families of boxes, using a parameter ε as explained in the next subsection. Then we

48

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

Algorithm 11: PoolNextSetBox

input : Y
ÝÝÑs� 1,Y s, BtB, PtB, nλ, ε

output: NpY
ÝÝÑs� 1 ` Y sq

1 Pooled ÐH

2 pB1
ÝÝÑs� 1

, ..., Bn
ÝÝÑs� 1

q Ð BoxingpY
ÝÝÑs� 1, εq

3 pB1
s , ..., B

m
s q Ð BoxingpY s, εq

4 BoxCombinations Ð tB1
ÝÝÑs� 1

, .., Bn
ÝÝÑs� 1

u � tB1
s , ..., B

m
s u

5 if PtB then
6 PointFiltBoxpBoxCombinations, nλq

7 if BtB then
8 BoxFiltBoxpBoxCombinationsq

9 for pBi
ÝÝÑs� 1

, B j
sq P BoxCombinations do

10 for y P Bi
ÝÝÑs� 1

do
11 for z P B j

s do
12 Pooled Ð Pooled Y ty� zu

apply either point-to-box or box-to-box filtering, depending on the values of booleans PtB and BtB
respectively.

2.4.2.1 Point-to-box dominance

To filter according to the point-to-box dominance relation, we need a pool P � Y
ÝÝÑs� 1 ` Y s of

point combinations. As described in Algorithm 12, we propose to use supported points, by opti-
mizing positively weighted sums for each sets, using weight set Λ � R

p
¡0 generated according to

parameter nλ, to produce supported points. Points of the resulting pool will be compared to the
combinations of upper bounds of boxes in Algorithm 13.

The points whose values maximize some positive weight sum are of course non-dominated
in the sets in which they are found. Combining two points which are non-dominated in their
respective sets Y and Z can yield a dominated point in the set sum Y ` Z. In this case, however,
we use the fact that for any sets Y , Z and λ P Λ,

maxtλpy� zq | y� z P Y ` Zu � maxtλy | y P Yu �maxtλz | z P Zu

to guarantee that these points are not only feasible but also non-dominated, i.e. they belong to
NpY

ÝÝÑs� 1 ` Y sq and can be immediately included in the set sum under construction.

A key step in producing supported points is generating the set of weights defining the scalar-
izations for which supported points are optimal. A good set of weights would produce points
which evenly cover Y

ÝÝÑs� 1`Y s, and do not lead to too many redundant points. Because generating
those supported points takes place within a box-based dominance filtering algorithm which must

49

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

be quick, we must also bound the number of weight vectors we want to consider.

In the bi-objective case, we can easily generate the set of supported points exhaustively using
the dichotomic method by Aneja and Nair (1979), and an ε-dominance based threshold to stop
the exploration of a weight-space interval and thus control for the desired number of weights vec-
tors. Beyond the bi-objective case, there is no systematic and scalable method enumerating the
whole set of supported points. Following Borges and Hansen (2002), we could generate sets of
maximally dispersed weights, so as to hopefully reduce the number of redundant points. How-
ever, experimentally, we found that this approach did not yield better performance than generating
random weight vectors.

The number of weight vectors to be generated is denoted by nλ, which we tuned manually. We
produce supported points according to the computed set of weights, and we remove duplicates, i.e.
points that were supported by several different weight vectors. Then for each box combination,
we iterate over these supported points and test for point-to-box dominance between the supported
point and the box combination, as described by Algorithm 13.

Algorithm 12: getSupported

input : Y
ÝÝÑs� 1,Y s,Λ

output: S upported
1 S upported ÐH
2 for λ P Λ do
3 y1 Ð maxtxλ, yy | y P Y

ÝÝÑs� 1u
4 y2 Ð maxtxλ, yy | y P Y su
5 y� Ð y1 � y2

6 if y� < S upported then
7 S upported Ð S upported Y ty�u

8 return S upported

Algorithm 13: PointFiltBox
input : BoxCombinations, nλ
output: BoxCombinations

1 Λ Ð generateWeightSetpnλq
2 P Ð getS upportedpY

ÝÝÑs� 1,Y s,Λq
3 for pi, jq P BoxCombinations do
4 for ȳ P P do

5 if ȳ © uY
ÝÝÑs � 1
i � uY s

j then
6 BoxCombinations Ð BoxCombinationszpi, jq

7 return BoxCombinations

50

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

2.4.2.2 Box-to-box dominance

For filtering according to the box-to-box dominance relation, we adapt the unidirectional domi-
nance filtering algorithm (UF) to the case of comparing box combinations. Correction of a UF
requires the input to be ordered in a dominance preserving order. It is easily seen that the de-
creasing lexicographic order over sums of upper bounds of combinations of boxes is a dominance
preserving order for box-to-box dominance:

Observation 2.3. Let B1
Y , B

2
Y � Y, and B1

Z , B
2
Z � Z. If u1

Y�u1
Z ©Lex u2

Y�u2
Z , then l2Y�l2Z � u1

Y�u1
Z

Algorithm 13 describes the pseudo-code for the box-to-box filtering procedure. ©u
Lex denotes

the decreasing lexicographic order over the sums of upper bounds of combinations of boxes, i.e.
for pB1

Y , B
1
Zq, and pB2

Y , B
2
Zq two pairs of boxes, by definition, pB1

Y , B
1
Zq ©

u
Lex pB

2
Y , B

2
Zq if and only if

u1
Y � u1

Z ©Lex u2
Y � u2

Z .

If p � 2, we use UF with a unique dominance comparison with the last combination of
boxes found to be non-dominated. For p ¥ 3, we adapt the approach by Chen et al. (2012) of
insertion into a KDTree to check whether an input box combination is dominated or dominates
previously considered box combinations. We will denote generically by CheckDtdInpy, Aq an
algorithm which determines whether some box combination y is dominated by an element of set
A.

Once box-to-box filtering has been performed, we are left with a set of non-dominated pairs
representing combinations of boxes. We iterate over these pairs, and for each pair of boxes, we
compute the MS of their contents, and append it to Pooled. Finally we apply a dominance filtering
algorithm to Pooled before returning it.

2.4.3 An algorithm for creating a family of boxes

A variety of algorithms can be used to produce a family of boxes from an input set of points. As
preliminary work, we have compared five approaches to achieve that end. The first one consists in
a quantization of each set: for each dimension, a desired coarseness is defined, and the orthogonal
projection of the set onto this dimension is divided into intervals of equal length. Each point
then belongs to a unique box which is defined by an interval on each dimension. The second one
consists in defining a desired number of boxes, and using either ascendant hierarchical or k-means
clustering to define k boxes. The third one consists in defining a minimum and a maximum number
of points per box, and inserting points into their closest box until the closest box is full. When a
box is full, we split it according to a rule that ensures that the new boxes contain the minimum
number of points, and makes the two new boxes as distinct as possible. The fourth approach
consists in defining a threshold distance, considering each point in the input set in turn, and adding
it to the closest already defined box which lies at a distance smaller than the threshold. If such a
box does not exist, a new box is created for the current point and the process continues. A fifth
approach would be similar to the fourth one, using not a distance threshold but ε-dominance to

51

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

Algorithm 14: BoxFiltBox
input : BoxCombinations
output: NDBoxComb

1 /*Assume that pi, jq P BoxCombinations is the combination of BY a box of
elements of Y, and BZ a box of elements of elements of Z, where
Y Ð Y

ÝÝÑs� 1 and Z Ð Y s. */
2 NDBoxComb ÐH
3 sortpBoxCombinations,©Lexq
4 for pi, jq P BoxCombinations do
5 Dtd Ð False
6 if p � 2 then
7 /*Assume that NDBoxComb � tpB1

Y , B
1
Zq, ..., pB

m
Y , B

n
Zqu */

8 if lmY � lnZ © ui
Y � u j

Z then
9 Dtd Ð True

10 else
11 Dtd Ð CheckDtdInppBi

Y , B
j
Zq,NDBoxCombq

12 if notpDtdq then
13 NDBoxComb Ð NDBoxCombY pBi

Y , B
j
Zq

14 return NDBoxComb

determine whether two points should belong to the same box.

We will only describe in details, and provide experimental results for the fifth approach to
creating boxes, based on ε-dominance, and we begin with defining the notion.

Definition 2.3. For all y, y1 P Y, y is said to ε-dominate y1, written y ©ε y1 if and only if

y jp1� εq ¥ y1j @ j P t1, ..., pu

Moreover, y is said to be ε-indifferent to y1, written y �ε y1 if and only if

y ©ε y1 and y1 ©ε y

The boxing algorithm operates as follows. Consider a first point y P Y , and create a box
containing y. Then for each remaining point y1 P Y , check whether y �ε y1 . If it is the case, add
y1 to the box associated with y, and remove y1 from Y . If not, do nothing. When all of Yztyu has
been examined, remove y from Y and repeat the process with a new head of list. This procedure is
formally described as Algorithm 15.

2.4.4 Experimental Results

In the next experiment, we measure the time gain (TG) yielded by the use of box-based methods
in solving NDMSP, and the average number of points eliminated by each box � based test (av.

52

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

Algorithm 15: Boxing using ε-dominance
input : Y � Rp, ε P R
output: pB1, ..., Bmq

1 Boxes ÐH
2 while Y ,H do
3 Choose y P Y
4 Let By be a new box containing y.
5 for y1 P Yztyu do
6 if y �ε y1 then
7 By Ð By Y ty1u

8 Y Ð Yzty1u

9 Boxes Ð BoxesY tByu
10 Y Ð Yztyu

11 return Boxes

Av). The goal of the latter measurement is to contrast the ways in which box-to-box and point-to-
box dominance filtering yield time gain. We consider box-to-box and point-to-box independently.
Instances are identical to those used in the previous experiment.

We tuned ε so as to get the best possible results. Preliminary experiments suggest that decreas-
ing the value of ε as |Y| increases allows better results. However, as we were not able to analyze
this dependency compellingly, we resorted to the use a single value of ε for each value of p. In
this case, for box-to-box dominance we used ε � 0.001 for p � 2, ε � 0.02 for p � 3, ε � 0.06
for p � 4 and ε � 0.1 for p � 5. For point-to-box dominance, we used ε � 0.015 for p � 2 and
ε � 0.03 for p � 3. This dominance relation requires us to choose a number of weight vectors
to compute. Intuitively, it seems that nλ should vary with the number of “feasible points” at one
step of the computation, i.e. with |Y

ÝÝÑs � 1 � Y s|. However we were not able to find a relationship
between |Y

ÝÝÑs � 1 � Y s| and nλ for which performance was significantly better than when using a
fixed value of nλ.

Results for box-to-box dominance, in Tables 2.6 and 2.7, suggest that TG does increase as |Y s|

increases. For p � 2, we found maximum TGs ranging from about 40.51 to about 60.74%, sug-
gesting that box-to-box dominance is effective at speeding up the resolution of NDMSP. However,
an increase in |S | appears to “flatten” the TG profile, and limit performance especially for higher
values of |Y s|. This is most likely due to the use of a single parameter for boxing, which becomes
unfit to larger set sizes. For p � 3, we find more moderate TG. We observe, however, a more
pronounced increase of performance as |Y s| increases, which suggests that scaling is probably still
good, and thus the approach viable, for this number of criteria. For p � 4 however, we find small
TG, high variability, and no clear trend as S or |Y s| increases, thus cannot claim that the method
is viable in this case. For p � 5, we found no positive time gain.

Note that for p � 2 and p � 3 (Table 2.6), box-based filtering with box-to-box dominance
performed worse than the best version of UPool in this case (column TG{UPUF), by a large
margin. However, for p � 4 (Table 2.7), where UPool tended to perform rather worse than IF,

53

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

p |S | |Y s|
IF UF Box� to� Box
Time Time TG{UF av.Av TG{UPUF (%)

2 2 200 0.197 [0.05] 0.117 [0.03] 40.513 [10.79] 1.686 [0.10] �62.188 [23.45]
2 2 400 0.466 [0.12] 0.184 [0.06] 60.586 [14.60] 3.040 [0.17] �39.152 [44.54]
2 2 600 0.923 [0.06] 0.362 [0.06] 60.737 [7.26] 4.572 [0.36] �57.590 [27.38]
2 3 200 0.314 [0.06] 0.166 [0.04] 47.056 [8.93] 2.348 [0.18] �68.798 [25.70]
2 3 400 1.294 [0.30] 0.620 [0.34] 52.112 [14.42] 4.322 [0.45] �79.141 [51.54]
2 3 600 4.357 [1.59] 1.802 [0.56] 58.649 [11.43] 6.770 [0.80] �109.336 [46.55]
2 4 200 0.952 [0.38] 0.562 [0.22] 40.980 [13.07] 3.183 [0.39] �133.188 [41.00]
2 4 400 5.178 [2.16] 2.850 [1.94] 44.959 [23.14] 5.972 [1.00] �169.858 [95.96]
2 4 600 11.534 [3.19] 6.700 [3.02] 41.914 [12.05] 8.716 [1.07] �216.514 [63.98]
3 2 200 0.158 [0.03] 0.163 [0.03] �3.141 [9.95] 2.244 [0.15] �41.041 [11.24]
3 2 300 0.339 [0.04] 0.305 [0.06] 9.873 [10.32] 3.054 [0.22] �38.606 [12.43]
3 2 400 0.668 [0.09] 0.498 [0.13] 25.496 [11.08] 3.874 [0.28] �26.574 [12.87]
3 3 200 1.366 [0.51] 1.339 [0.51] 1.922 [12.48] 5.123 [0.69] �47.850 [23.87]
3 3 300 2.902 [0.85] 2.196 [0.77] 24.325 [9.91] 7.363 [1.06] �42.022 [13.67]
3 3 400 5.886 [1.77] 4.046 [1.82] 31.261 [11.71] 9.381 [1.03] �34.296 [13.83]
3 4 200 7.049 [3.11] 6.870 [3.42] 2.534 [9.91] 9.464 [2.02] �51.938 [16.54]
3 4 300 15.396 [4.78] 12.854 [5.87] 16.509 [14.76] 13.467 [2.46] �54.079 [17.40]
3 4 400 29.178 [12.22] 23.715 [14.31] 18.723 [14.29] 15.829 [3.62] �60.398 [15.73]

Table 2.6: Computing time for the sequential method with intermediary filtering, for box-to-box
dominance, and relative time gain as a function of |Y s|, for p � 2, 3. Average values for 20 trials.

p |S | |Y s|
IFCH Box� to� Box
Time Time TG{CH av.Av TG{UPCH (%)

4 2 100 0.082 [0.02] 0.081 [0.01] 0.081 [11.74] 2.346 [0.13] 16.477 [11.25]
4 2 150 0.184 [0.03] 0.174 [0.03] 0.174 [14.12] 2.803 [0.25] 19.223 [13.30]
4 2 200 0.320 [0.05] 0.293 [0.09] 0.293 [19.14] 3.404 [0.43] 20.426 [16.97]
4 3 100 1.206 [0.33] 1.214 [0.37] 1.214 [17.04] 3.490 [0.67] 1.273 [19.42]
4 3 150 2.866 [0.61] 2.746 [0.62] 2.746 [11.10] 3.881 [0.97] 15.222 [8.97]
4 3 200 4.733 [1.12] 4.667 [1.17] 4.667 [12.20] 3.846 [1.27] 20.221 [10.24]
4 4 100 6.324 [1.93] 6.384 [1.80] 6.384 [10.63] 2.328 [0.46] 17.646 [11.06]
4 4 150 25.035 [5.68] 24.228 [5.26] 24.228 [11.74] 2.458 [0.65] 10.981 [11.05]
4 4 200 42.377 [15.59] 41.476 [16.14] 41.476 [6.96] 2.979 [1.18] 5.548 [11.44]

Table 2.7: Computing time for the sequential method with intermediary filtering, for box-to-box
dominance, and relative time gain as a function of |Y s|, for p � 4. Average values for 20 trials.

54

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

|S | |Y s|
IF UA Point � to� Box
Time Time TG{UF av. Av nλ TG{UPUF (%)

2 200 0.197 [0.05] 0.100 [0.05] 49.098 [19.05] 30.667 [6.82] 9.150 [2.61] �38.781 [51.13]
2 400 0.466 [0.12] 0.207 [0.07] 55.545 [18.76] 102.907 [32.94] 10.350 [2.51] �56.948 [45.88]
2 600 0.923 [0.06] 0.401 [0.14] 56.581 [15.94] 159.007 [48.80] 10.550 [2.72] �74.271 [63.22]
3 200 0.314 [0.06] 0.140 [0.05] 55.379 [11.93] 64.344 [12.70] 13.350 [2.59] �42.263 [33.19]
3 400 1.294 [0.30] 0.552 [0.21] 57.367 [12.26] 172.334 [53.46] 14.400 [3.08] �59.483 [42.72]
3 600 4.357 [1.59] 1.420 [0.48] 67.419 [14.60] 381.415 [103.48] 14.900 [2.35] �64.939 [48.52]
4 200 0.952 [0.38] 0.443 [0.14] 53.467 [13.17] 109.464 [28.79] 15.800 [3.57] �83.852 [33.32]
4 400 5.178 [2.16] 1.987 [1.08] 61.633 [12.08] 344.285 [118.76] 17.700 [2.93] �88.108 [44.97]
4 600 11.534 [3.19] 5.148 [2.15] 55.368 [9.49] 655.786 [188.35] 18.150 [3.73] �143.201 [43.58]

Table 2.8: Computing time for the sequential method with intermediary filtering, for point-to-box
dominance, and relative time gain as a function of |Y s|, for p � 2. S up E f � 100 in each case.
Average values for 20 trials.

|S | |Y s|
IF UA Point � to� Box
Time Time TG{UF av. Av S up E f TG{UPUF (%)

2 200 0.158 [0.03] 0.168 [0.03] �6.345 [12.77] 3.172 [0.61] 21.050 [5.06] �45.423 [15.16]
2 300 0.339 [0.04] 0.310 [0.07] 8.604 [12.96] 5.310 [1.20] 20.450 [4.03] �40.558 [19.40]
2 400 0.668 [0.09] 0.600 [0.13] 10.146 [11.92] 6.463 [1.46] 20.350 [4.03] �52.652 [19.84]
3 200 1.366 [0.51] 1.313 [0.52] 3.892 [4.95] 8.697 [2.08] 29.400 [6.03] �44.881 [9.77]
3 300 2.902 [0.85] 2.592 [0.86] 10.675 [9.14] 11.960 [3.49] 29.200 [5.22] �67.640 [16.74]
3 400 5.886 [1.77] 5.003 [1.92] 15.003 [11.37] 18.678 [4.96] 28.650 [5.07] �66.059 [19.23]
4 200 7.049 [3.11] 6.840 [3.18] 2.956 [5.01] 14.164 [3.93] 41.050 [5.47] �51.281 [10.41]
4 300 15.396 [4.78] 14.240 [4.96] 7.504 [5.72] 21.873 [9.11] 40.100 [4.78] �70.698 [11.06]
4 400 29.178 [12.22] 26.724 [12.64] 8.409 [6.78] 28.136 [9.50] 37.850 [4.70] �80.751 [18.89]

Table 2.9: Computing time for the sequential method with intermediary filtering, for point-to-box
dominance, and relative time gain as a function of |Y s|, for p � 3. nλ � 100 in all instances.
Average values for 20 trials.

we found that it is also supplanted by box-to-box (column TG{UPCH). However, box-to-box
itself performs very similarly to IF or worse, so that IF should still be considered the most reliable
approach for p � 4.

Turning to results for point-to-box dominance, in Tables 2.8 and 2.9, when p � 2, we found the
best results when successful box-based-dominance tests tend to eliminate many points, suggesting
that the optimal box size is larger. We found point-to-box dominance filtering to yield significant
TG, from about 49.1 up to about 67.42%. Performance did not appear to vary significantly with
increases in |Y s| or in |S |. It remains to be investigated whether this is due to tuning issues or a
need for adapting the parameter values with increasing |Y s| and |S |. For p � 3, we found slightly
positive TG, although variability remained too high to warrant that this TG will always be positive.
For p � 4, TG was always negative is not reported.

Although one may expect the optimal number of boxes to be closely dependent on the number
of supported points generated, we found that for p � 2, it was nearly always beneficial to generate
the complete set of supported points using the dichotomic method. For p ¥ 3, we were not able to
find a very stable relationship between nλ and TG. We tuned nλ by hand and measured the ratio of
unique supported points to the number of generated weight vectors, and we found that about 20%
of successful generation (column Sup. Ef) of supported points was associated with highest TG.
Smaller nλ will yield higher Sup. Ef but smaller TG, probably by lack of diversity or coverage by

55

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

supported points necessary for point-to-box filtering. Higher nλ will put additional burden on the
filtering operation. Whether we should expect optimal nλ to increase with |Y

ÝÝÑs � 1 � Y s| is in our
opinion not obvious - as the proportion of supported points depends on other factors than the sheer
number of points, and we could not confidently confirm it.

In all reported cases, box-based dominance filtering using point-to-box dominance performed
worse than UPool (column TG{UPUF). Thus as a conclusion to this subsection, we note that both
box-to-box and point-to-box dominance filtering appear to be promising tools for speeding up the
resolution of NDMSP when p � 2, and that box-to-box dominance filtering remains reliable when
p � 3, but beyond, it is beaten by the simple IF approach.

UPool lost only against box-to-box for p � 4, but in this context, both methods performed
slightly worse than IF. In all other cases, UPool performed similarly or better than box-based
dominance approaches, and should thus be preferred.

2.5 Conclusions and discussion

When computing the non-dominated subset of the Minkowski Sum of a family of set, a great
proportion of the sums of points generated at intermediary steps of computing the MS end up
being dominated in the final result. This is why, as we have seen, filtering after having added each
individual set reduces computing time hugely. We have sought to further decrease the resolution
time of NDMSP by reducing the number of comparisons made at each intermediary step of the
pooling process.

To this end, we proposed a unidirectional pooling algorithm, UPool, based on the lexico-
graphic sorting of the input sets. This approach seeks to improve computation time relative to
unidirectional dominance filtering algorithms by significantly saving on the initial sorting of the
set sum. We also proposed using bound reasoning over boxes, i.e. subsets of the sets to be summed
together. We defined two dominance relations: point-to-box and box-to-box. For p � 2, filtering
methods based on these two dominance relations have shown promising results, and the methods
appeared to scale with the size of the sets. For p � 3 however, only box-to-box dominance showed
reliable benefits, and beyond, no box-based approach performed better than UPool or IF. Although
we investigated the combining of both dominance relations, because optimal parameter values for
creating boxes seem to differ between the two, we could not, so far, draw conclusive results, and
further research on this topic is needed.

The main advantage of UPool as opposed to box-based methods is that it requires no param-
eter tuning on which the scaling of performance improvement with regards to size or number of
criteria would depend. Moreover, in all presented experiments, UPool appeared to be the prefer-
able option, as it performed better than box-based approaches in all cases but for p � 4, the basic
approach IF performed slightly better. In the next chapters, we will use UPool (adapted to the
combination of solutions, not just points) as our default pooling method.

56

CHAPTER 2. COMPUTING EFFICIENTLY THE NON-DOMINATED SUBSET OF THE
MINKOWSKI SET SUM

An immediate development of our work on box-based dominance relations should provide
a boxing algorithm with parameters that are independent of the value of p. One line of research
would consider a trade-off between two criteria. The first one would be a desired minimum number
of points per box, so as to control the number of points eliminated per box-based dominance test.
The second one would be the maximum acceptable distance, over criteria, between a point and the
box it belongs to, so as to keep the upper bound of a box tight enough.

57

Chapter 3

Decoupling a coupled problem to obtain bound sets 1

Chapter Abstract

In this chapter, we explore the notion of decomposition in multiobjective optimization. Because
we deal with complex system problems which are not straightforwardly decomposable, we have
to modify their original formulation to decouple them. This results in restricted problems, which
provide lower bound sets to the non-dominated set, and relaxations, which provide upper bound
sets to the non-dominated set. Decomposition allows the resolution of these decomposable vari-
ants in a fraction of the time needed to solve the original problem, an advantage that increases
significantly with the number of dimensions of the objective space.

Contents
3.1 Introduction . 60

3.1.1 Bound sets . 60
3.1.2 Multiobjective relaxations and restrictions 61

3.2 Decomposable restrictions and lower bound sets 63
3.2.1 Admissible variable values, neutral variable values and restrictions . . 63
3.2.2 Restrict-splitting coupling constraints 64

3.3 Decomposable relaxations and upper bound sets 65
3.3.1 Copy-splitting coupling constraints 66
3.3.2 Local relaxation of coupled variables in subproblem constraints 66

3.4 Experimental results . 68
3.5 Conclusions and discussion . 74

1This chapter is based on submitted article Kerbérénès et al. (2021a)

59

CHAPTER 3. DECOUPLING A COUPLED PROBLEM TO OBTAIN BOUND SETS

3.1 Introduction

In this chapter, we show how decomposability can be exploited in solving coupled MOCO prob-
lems. This is not straightforward since, typically, a coupled system is not such that

±
sPS Xs � X,

where S is the set of subsystems and Xs the feasible set of the subproblem associated with sub-
system s P S . While the original formulation may not be uncoupled, we can obtain decoupled
variants of it by generic modifications. This chapter describes a number of these variants. Each
of them is based either on a relaxation X1 � X or a restriction X2 � X of the feasible set X. The
following enumerates these variants:

• Ignoring coupling constraints yields a relaxation of the original problem.

• Restricting the original problem to non-coupled variables yields a restriction of the original
problem.

• Restrict-splitting coupling constraints, by which we mean fixing, for each coupling, the
variables associated with each subsystem except one, yields a restriction of the original
problem.

• Copy-splitting coupling constraints, by which we mean replacing each coupling constraint
with |S | restrictions of itself, one to each subsystem s P S , yields a relaxation of the original
problem.

• More surprisingly, ignoring coupled variables in subsystems local constraints also yields an
uncoupled problem. In this variant, the subsystems problems become uncoupled, and the
coupled variables, bound only by coupling constraints, form a new, independent subprob-
lem. The result is a relaxation of the original problem.

3.1.1 Bound sets

While the original formulation of an MOP may not be uncoupled, we can obtain decoupled variants
of it through generic modifications. The set of non-dominated points associated with each of these
variants will bound the set of images of efficient solutions of the original problem from either
above or below.

3.1.1.1 Definitions

An application of relaxations is to obtain upper bound sets, and an application of restrictions is
to obtain lower bound sets, which we will now define. The image y of an efficient solution of a
relaxation delineates a zone of the objective space which is “unreachable”, in the sense that no
feasible solution can be found to dominate y. Assuming we are maximizing we give the following
definitions, for Rp

©
� ty P Rp | y © 0u:

60

CHAPTER 3. DECOUPLING A COUPLED PROBLEM TO OBTAIN BOUND SETS

Definition 3.1. Point y P Rp is an upper bound point on Y � Rp if and only if

@y1 P Y, y1 © y

or equivalently if YXy`Rp
©
� H. A set of upper bound points will be called a weak upper bound

set.

The union of the unreachable zones defined by the elements of a weak upper bound set defines
an unreachable region, which is especially useful in the context of Branch & Bound dominance
relations.

Definition 3.2. Point y P Rp is a lower bound point on Y � Rp if an only if

@y1 P Y, y © y1

or equivalently if YXyaRp
©
� H. A set of lower bound points will be called a weak lower bound

set.

Definition 3.3. (Ehrgott and Gandibleux (2001)) Given Y � Rp, UB is a strong upper bound set
to Y (in the maximization case) if and only if#

@y P Y Dy1 P UB, y1 © y
@y P UB, y is an upper bound point to Y

(3.1)

or equivalently if Y � UBa R
p
©

In other words, in addition to ensuring that a strong upper bound set delineates an unreach-
able region, we also require that every point of the set which we want to bound from above be
dominated by or equal to some element of the strong upper bound set.

Definition 3.4. (Ehrgott and Gandibleux (2001)) For any Y � Rp, LB is a strong lower bound set
to Y (in the maximization case) if and only if#

@y P Y Dy1 P LB, y © y1

@y P LB, y is a lower bound point to Y
(3.2)

or equivalently if Y � LB` R
p
©

.

Example 3.1. Figure C.5 provides an example of a set N � tni | i � 1, ..., 5u which is weakly
bounded from below by set L � tli | i � 1, ..., 5u, because n3 dominates no element in L. However
U � tui | i � 1, ..., 5u is a strong upper bound on N.

3.1.2 Multiobjective relaxations and restrictions

Upper bound sets can be obtained by solving relaxations of the original problem, and lower bound
sets by solving restrictions of the same problem. Informally, a relaxation is defined by replacing a
collection of constraints of the original problem with a less constraining collection of constraints.

61

CHAPTER 3. DECOUPLING A COUPLED PROBLEM TO OBTAIN BOUND SETS

f1

f2

n1

n2

n3

n4

n5

l1

l2
l3

l4

l5

u1

u2

u3

u4

u5

Figure 3.1: Let N � tni | i � 1, ..., 5u, L � tli | i � 1, ..., 5u, U � tui | i � 1, ..., 5u. L is a
weak lower bound on N, U is a strong upper bound on N

Definition 3.5. (Nemhauser and Wolsey, 1998) For f and f 1 taking values in R, maxx1PX1 f 1px1q is
a relaxation of maxxPX f pxq if and only if X � X1 and for any x P X, f pxq ¤ f 1pxq.

We propose the following extension of the notion to the multiobjective case:

Definition 3.6. maxx1PX1p f 11px
1q, ..., f 1ppx

1qq is a multiobjective relaxation of maxxPXp f1pxq, ..., fppxqq
if and only if for all j P t1, ..., pu, maxx1PX1 f 1jpx

1q is a relaxation of maxxPX f jpxq

A multiobjective relaxation yields a feasible set that is a superset of the original feasible set, so
that no efficient solution of the relaxation can be dominated by a solution in the original problem.

Proposition 3.1. Let f pxq � p f1pxq, ..., fppxqq where f j takes values in R for each j P t1, ..., pu. If
maxx1PX1 f 1px1q is a relaxation of maxxPX f pxq, thenNp f 1pX1qq is an upper bound set onNp f pXqq.

Proof. Assume by contradiction that there exists y1 � f 1px1q P Np f 1pX1qq and y � f pxq P
Np f pXqq, such that y © y1. Then because X � X1, we have x P X1, and thus f 1pxq ¡= f pxq © f 1px1q,
so that y1 < Np f 1pX1qq, contradicting our assumption. �

A restriction of a problem with feasible set X is simply a variant with feasible set X1 � X.

Observation 3.1. For any X1 � X, Np f pX1qq is a lower bound set to Np f pXqq.

Proof. Assume that there is y1 � f px1q P Np f pX1qq, and y � f pxq P Np f pXqq such that y1 © y.
Because X1 � X, we have x1 P X, contradicting the assumption that y P Np f pXqq. �

62

CHAPTER 3. DECOUPLING A COUPLED PROBLEM TO OBTAIN BOUND SETS

In the next two sections, we formally describe methods for obtaining variants of the original
problem, each of which being either a relaxation, with a feasible set X1 � X, or a restriction, with
a feasible set X2 � X, of the original feasible set X, while leading to a decomposable problem.

3.2 Decomposable restrictions and lower bound sets

3.2.1 Admissible variable values, neutral variable values and restrictions

In order to obtain an uncoupled restriction of the original problem, we need to fix all, or, as we
shall see, most coupling variables to some admissible or neutral values. Given a feasible solution
x P X, we denote by x�i the vector decision variables where variable xi is omitted. Therefore, up
to some permutation, we have x � px�i, xiq. When focusing on a subset of I � N of variables, we
write x � pxĪ , xIq.

Definition 3.7. Value ei is an admissible value for variable xi if there exists x P X such that
xi � ei, or equivalently px�i, eiq P X.

Put simply, a value is admissible for a decision variable if we know that there exists a feasible
solution in which the decision variable takes this value. This will help us fix the coupling to
one possible interaction between the subsystems, considering one of the possible ways in which
this interaction could occur, while maintaining the feasibility of solutions obtained under this
assumption. A stronger notion is that of a neutral value assignment, by which we denote a value
assignment that is feasible for any other variables assignment:

Definition 3.8. Value ei is a neutral value for variable xi if, for all x P X, px�i, eiq P X.

Observation 3.2. Let ei be a neutral value for variable xi, then eN :� pei | i P Nq P X.

For example, in the knapsack problem (KP), it is easily seen that some variable assignments
do not alter the feasibility of a solution, and are thus neutral. Consider a partial feasible solution
to KP, and an item i for which no decision has been made. Not taking the item, i.e. setting the
corresponding decision variable xi to 0, can never yield an infeasible solution. But in general, we
cannot assume that assigning the value 0 to a variable preserves feasibility.

Obviously, as long as the feasible set is non-empty, any neutral value is also an admissible
value. Admissible values always exist, but must be determined as the corresponding variable
value of a feasible solution, which implies that we find such a feasible solution. On the contrary,
neutral values may not always exist, but can be substituted into the original problem formulation
without having to first find a feasible solution. This is an advantage when a neutral value is known
for a whole class of problem, such as 0 for any variable in an instance of KP.

63

CHAPTER 3. DECOUPLING A COUPLED PROBLEM TO OBTAIN BOUND SETS

3.2.2 Restrict-splitting coupling constraints

Consider again the formulation of the original problem, with feasible set X:

max f pxq

s.t. xk P Xk @ k P K

xs P Xs @ s P S

(P)

Let xs
K � pxs

k | k P Kq denote the vector of variables in subsystem s which are coupled by
some coupling constraint. Thus xs � pxs

K , x
s
K̄
q, with xs

K̄
the vector of uncoupled variables in s.

Then we will denote by xK̄ the vector of all uncoupled variables.

The simplest way to obtain a decomposable restriction to the original problem is to fix all
variables which appear in coupling constraints to an admissible value, or possibly a neutral value.
Then, because no free variable remains linked by some constraint to free variables from other sub-
systems, the problem is obviously decomposable. However, the larger the proportion of coupled
variables in the original problem, the poorer the quality of approximation of the non-dominated
set of this original problem provided by the non-dominated set of this modified problem.

Intuitively, by fixing all coupled variables, we prevent any interaction between subsystems,
we will call this weak lower bound the local restriction or LocRes lower bound. We can however,
obtain decomposition by fixing only a subset of the set of coupled variables. Thus, in restrict-split
variants of the original problem, we choose, for each k P K, one subsystem s coupled by constraint
k. We fix all coupled variables appearing in coupling constraint k, except those which belong to
subsystem s. In this case, even if there were no strictly local variables, the restriction would not
be reduced to a single feasible solution.

Let Ks � K be the subset of coupling constraints which involve variables from subsystem s,
and in which we have chosen to keep free variables xs, while all other variables are set to some
admissible value. For k P Ks, we denote by xs

k the variables of subsystem s which appear in
constraint k, and by xs̄

k the variables of all subsystems except s, which appear in constraint k. Let
xK f be the subvector of coupled variables which are left free. The restrict-split variant of problem
pPq is:

max f pxK̄ , xK f , e�K f
q

s.t. pxs
k, e

ss
kq P Xk @s P S ,@ k P Ks

xs P Xs @ s P S

which can be reformulated as

max f pxsK , xK f , e�K f
q

s.t. pxs
sK , x

s
Ks
q P X1s @s P S

64

CHAPTER 3. DECOUPLING A COUPLED PROBLEM TO OBTAIN BOUND SETS

Figure 3.2: Graph representation of the modification yielding the restrict split variant.

where X1s � Xs X
�

kPKs
X1k, and X1k is a set such that xs

k P X1k if and only if pxs
k, e

ss
kq P Xk. In

this restriction of the problem the constraints indexed by k are not coupling constraints anymore,
because there is a single subsystem to which variables remaining free in the coupling constraint
belong. Thus, because that S is a partition of N, we have that X1 �

±
sPS X1s. Finally, assum-

ing that f pxq is separable along S , Corollary C.1 implies that this restriction of the problem is
decomposable.

Example 3.2. The following illustrates the restrict split uncoupled variant of the original prob-
lem, obtained by fixing variables from subsystems other than s1 which also appear in coupling
constraint k.

3.3 Decomposable relaxations and upper bound sets

As specified by Definition 3.6, a multiobjective relaxation can be obtained either by replacing some
objective functions f j by “relaxed” functions f 1j or by considering a superset X1 of the original
feasible set X. We focus here on the latter possibility, which is to be achieved by relaxing the
constraints defining X. The simplest way to achieve this is to simply ignore these constraints. The
relaxations we wish to consider must also allow us to reach decomposability. For this purpose we
need to ignore, in these constraints, only terms which are associated with some coupling variables,
while ensuring that the resulting feasible set X1 is a superset of X.

Consider N � t1, ..., nu a set of variable indices, b P R, gpxi | i P Nq the function defining the
left-handside of a coupling constraint, and feasible set X � tx P Rn | gpxi | i P Nq ¤ bu. Further
consider I � N. We denote pxi | i P Nq by x, pxi | i P Iq by xI and pxi | i P NzIq by xĪ . We
say that g is relaxable for I if and only if there exists some function g1pxIq such that g1pxIq ¤ gpxq
for all x in the domain of g. If g1 relaxes g for I � N, then for any b1 P R such that b1 ¥ b,
X1 � tx P Rn | g1pxIq ¤ b1u � X.

Linear budget constraints (with positive coefficients) are common relaxable constraints: omit-
ting any variable yields a relaxation of the original constraint.

Example 3.3. In the case of the knapsack problem, where N is a set of items, wi is the weight of
item i P N and b is the capacity, the budget constraint gpxq �

°
iPN wixi ¤ b is relaxable for

any subset I of objects. The relaxing constraint is that obtained by omitting all variables xĪ , so
g1pxIq �

°
iPI wixi.

65

CHAPTER 3. DECOUPLING A COUPLED PROBLEM TO OBTAIN BOUND SETS

Figure 3.3: Graph representation of the modification yielding the copy split variant.

3.3.1 Copy-splitting coupling constraints

For each k P K, let γpkq be the set of subsystems which have variables appearing in constraint k.
We consider a variant of the original problem obtained by producing as many relaxations of each
coupling constraint k, as there are subsystems in γpkq. Each relaxation involves only variables
from one of these subsystems.

Formally, assuming that coupling constraint k is relaxable for each s P γpkq, we denote by
g1sk px

s
kq ¤ bk the relaxation of gkpxkq ¤ bk associated with s P |γpkq|. Then the following problem

is a relaxation of problem pPq, in the sense that its feasible set X1 is such that X � X1.

max f pxq

s.t. g1sk px
s
kq ¤ bk @ k P K, s P γpkq

xs P Xs @ s P S

Setting X1s � tx P Xs | gs
kpx

sq ¤ bk @k P K, s P γpkqu the relaxation can be rewritten as:

max f pxq

s.t. xs P X1s

Thus, we have X1 �
±

sPS X1s. Then, under the assumption that f is separable along S ,
Corollary C.1 implies that this relaxation is decomposable along S .

Example 3.4. The following illustrates the uncoupled variant of the original problem obtained by
replacing coupling constraint k by two constraints k1 and k2, which are copies of k which have
been restricted to variables of each of the subsystems.

3.3.2 Local relaxation of coupled variables in subproblem constraints

In the next decouplable variant of the original problem pPq, we assume that each constraint xs P Xs

is of the form gspxsq ¤ bs and is relaxable for s X
�

kPK k. In other words, for K̄ the set of non-
coupled variables, gspxsq ¤ bs is relaxed into g1spxs

K̄
q ¤ bs. Applying this relaxation to all s P S ,

we obtain the following relaxation:

66

CHAPTER 3. DECOUPLING A COUPLED PROBLEM TO OBTAIN BOUND SETS

Figure 3.4: Graph representation of the modification yielding the local relaxation variant.

max f pxq

s.t. xk P Xk @ k P K

g1spxs
K̄q ¤ bs @ s P S

Although the constraints for the subproblems now involve only strictly local variables, coupled
variables still appear free in the objective function, and their assignments are still constrained by
the coupling constraint, so the following formulation is a relaxation of the original problem.

The set #
K, (variables appearing in coupling constraints)
K̄ s @s P S (uncoupled variables local to subsystem s)

+

defines a partition of N, with each set of constraints involving variables from one element of the
partition, and thus

X1 � XK �
¹
sPS

Xs
K̄

Assume that for all j P t1, ..., pu, f j is separable along tK, K̄u, and that the term associated
with K̄ can be further separated along S , i.e.

f jpxq � f K
j pxKq �

¸
sPS

f s
j,K̄px

s
K̄q

Then, Corollary C.1 implies that this variant is decomposable along S and along tK, K̄u.

Example 3.5. Figure C.8 illustrates the uncoupled variant of the original problem obtained by
removing terms associated with coupled variables from non-coupling constraints in subsystem
local constraints.

67

CHAPTER 3. DECOUPLING A COUPLED PROBLEM TO OBTAIN BOUND SETS

3.4 Experimental results

In this section, we report the results of an experiment serving two purposes. First, to report the
computation times for our lower bound (LB) and upper bound (UB) concepts, and compare the-
ses results with the computation time of the actual non-dominated set of the problem. Second,
to evaluate how well they approximate this non-dominated set. We make these measurements as
functions of the number of objectives (column p), the number of variables in the instance (column
n), the number of subsystems in which the instance is subdivided (column (|S |), the number of
coupling constraints in the instance (column |K|), and the proportion of variables in each subprob-
lem that are coupled by each coupling constraint (column DV). We assume that when a constraint
is coupling, it couples variables from all systems, at the rate defined by DV .

Experiments are conducted solving instances of the following generic coupled problem (GCP),
which is formulated as:

max f pxq � p
¸
iPN

π1
i xi, ...,

¸
iPN

π
p
i xiq � p

¸
sPS

¸
iPs

π1
i xi, ...,

¸
sPS

¸
iPs

π
p
i xiq

s.t.
¸
sPS

¸
iPsXk

aixi ¤ bk @ k P K¸
iPs

cixi ¤ ds @ s P S

xi P t0, 1u @ i P N

(GCP)

With f pxq : t0, 1un Ñ Np. Because all constraints in the problem are budget constraints, for
all i P N, 0 is a neutral value for xi, which can then be used in all restrictions.

For every i P N, we randomly choose π j
i , ai, ci, P r1, 1000s. For each k P K, bk �

Q°
sPS
°

iPsXk ai
2

U
,

and for each s P S , ds �
Q°

iPS ci
2

U
. For each subsytem s P S , we choose

Q
DV�|s|

100

U
variables to

appear in coupling constraint k P K, where |s| is the number of variables involved in subsystem s.

When p � 2, non decomposed original problems and subsystem problems are solved using
a straightforward implementation of the bi-objective e-constraint method: while the problem is
feasible we optimize lexicographically the first, then the second objective, under the constraint
that each new solution is better than the previous one on the second objective. This is achieved by
simply updating the lower bound of the same constraint. For p ¥ 3, we use the generic MOCO
algorithm by Tamby and Vanderpooten (2021). Once solutions to subsystem problems have been
obtained, they are pooled together according to Algorithm 6. At each step of the pooling process,
some explicit dominance filtering needs to be performed. Figure C.9 exhibits the enframing of the
original non-dominated set between the various notions of bounds presented in this article.

First, we study the increase in performance yielded by decomposition alone, in the case where
the original optimization problem is uncoupled. In Table 3.1, we report the results of an experi-
ment where we solved uncoupled instances without decomposition, and then using decomposition.
Computing time for each of these operations is respectively denoted as T.NoDec, and T.Dec. Val-

68

CHAPTER 3. DECOUPLING A COUPLED PROBLEM TO OBTAIN BOUND SETS

Figure 3.5: Plot representation of the original non-dominated set and bound sets. Instance param-
eters are p � 3, n � 75, |S | � 2, |K| � 1, DV = 10

p n |S | |ND| T.NoDec T.Dec T.Dec
T.NoDec (%)

2 150 3 239.80 [67.28] 28.82 [20.71] 5.11 [2.12] 17.71 [10.24]
2 200 3 422.00 [71.49] 54.62 [21.05] 7.60 [1.44] 13.91 [6.82]
3 75 3 1339.70 [402.18] 259.26 [103.79] 14.50 [4.13] 5.59 [3.98]
3 100 3 2964.20 [1190.81] 1057.01 [554.71] 33.43 [12.93] 3.16 [2.33]
4 50 3 452.70 [319.79] 1486.30 [865.19] 14.22 [6.33] 0.96 [0.73]
4 60 3 2296.18 [1377.80] 4001.50 [1321.01] 38.45 [14.39] 0.96 [1.09]

Table 3.1: Effect of decomposition on the resolution of an uncoupled problem. Average values for
10 trials.

69

CHAPTER 3. DECOUPLING A COUPLED PROBLEM TO OBTAIN BOUND SETS

ues reported between squared brackets are standard deviations. We found that decomposition
yields an improvement in computing time which increases with the number of criteria and with
the number of variables when p � 2, 3. For p � 4, n � 60 and |S | � 3, resolution using
decomposition took, on average, less than 1% of the time needed to solve the problem without
decomposition.

We then consider uncoupled restrictions and relaxations of coupled instances. Solving a re-
strict split restriction of (GCP) requires us to produce some assignment of couplings to subsys-
tems. For any k P K, we need to select a subsystem s P γpkq. The selection is made according to
the following heuristic:

sk � arg max
sPγpkq

¸
iPkXs

°p
j�1 π

j
i

ci

In other words, we choose the subsystem coupled by k such that the variables of this subsystem
which are coupled by coupling k maximize the average sum of profit-cost ratios over criteria.

Relaxed constraints for the copy split variant are obtained as follows. For any k P K, if°
sPS

°
iPsXk aixi ¤ bk, then because coefficients ai are positive, for any s P S , we have

°
iPsXk aixi ¤

bk, so that for any k P K and s P S , the latter constraint is a relaxation of the former. The copy
split relaxation will thus be:

max f pxq

s.t.
¸

iPsXk

aixi ¤ bk @ s P S ,@k P K¸
iPs

cixi ¤ ds @ s P S

xi P t0, 1u @ i P N

(CS GCP)

Relaxed constraints for the locally relaxed variant are obtained by considering that, because
coefficients ci are positive, we have

°
iPsXsK cixi ¤

°
iPs cixi, where s X sK stands for sz

�
kPK k.

Thus
°

iPsXsK cixi ¤ ds is a relaxation of
°

iPs cixi ¤ ds, which will be substituted to the latter in
the locally relaxed variant. The locally relaxed variant will thus be:

max f pxq

s.t.
¸
sPS

¸
iPsXk

aixi ¤ bk @ k P K¸
iPsXK̄

cixi ¤ ds @ s P S

xi P t0, 1u @ i P N

(LR GCP)

To measure the quality of the approximation provided by a bound set, we use a posteriori
ε-dominance, defined as follows :

70

CHAPTER 3. DECOUPLING A COUPLED PROBLEM TO OBTAIN BOUND SETS

Definition 3.9. Given y, y1 P Y, y is said to ε-dominate y1, written y ©ε y1 if and only if

y jp1� εq ¥ y1j @ j P t1, ..., pu

Definition 3.10. A is an ε-approximation of B for ©ε if and only if

@y P B Dy1 P A, y1 ©ε y

Here, we use this notion to evaluate the quality of approximation of a set A by a set B a
posteriori. This is achieved by computing the smallest ε such that, for all y P A, there is a point in
the approximation B set which ε-dominates it. Formally, we compute

ε�pA, Bq :� mintε P R | @y1 P A Dy P B, y1 ©ε yu

To measure how well a lower bound set L on a set Y approximates Y , we compute ε�pY, Lq. To
measure how well an upper bound set U to a set Y approximates Y , we compute ε�pU,Yq. Another
way to measure approximation quality is to measure the actual proportion of the non-dominated
set of the original problem which is already contained in the bound set, which we will denote, e.g.
in the case of an LB set, by |NDXLB|

|ND| .

In the following tables, RS denotes the restrict split restriction (Section 3.2.2) of the original
problem, which provides a lower bound set. CS denotes the copy split relaxation (Section C.3.3.1)
of the problem, which provides an upper bound set. LR denotes the relaxation obtained by omitting
coupled variables in local subproblem constraints (Section C.3.3.2), which also provides an upper
bound set. T. denotes computing time, |.| denotes the size of a set of points, and ApQ.pεq denotes
the quality of approximation in terms of a posteriori ε dominance.

Let us begin by observing that in the bi-objective case, computing the bounds may not be
relevant, because the whole non-dominated set is computed quickly. For more than two objectives
however, as T.ND increases strongly, computing these bounds becomes worthwhile.

In Table 3.2, we report the average computing time T.ND and size of the non-dominated sets
of the instances for which we computed bound sets, as well as their number of variables. This
will serve as a reference to measure the advantages of computing bound sets using decomposition,
rather than computing the original non-dominated sets.

From Table 3.3, we can observe the impact of varying instance parameter values on the time
required to compute the RS lower bound. Increasing the number of subsytems while keeping
n fixed makes the computation of the bound significantly faster, as the problem is divided into
smaller subproblems, with an RS lower bound obtained in less than 2% of the time required to
obtain the original non-dominated set when |S | � 4. An increase in the number of coupling
constraints |K| or in the proportion of coupling variables also speeds up the computation of the
lower bound, because the greater the proportion of coupled variables in a problem, the smaller the
number of variables in the restrict split variant.

71

CHAPTER 3. DECOUPLING A COUPLED PROBLEM TO OBTAIN BOUND SETS

p n |S | |K| DV T.ND |ND|
2 200 2 1 10 49.99 [13.16] 426.80 [54.63]
2 200 3 1 10 59.27 [14.79] 382.60 [39.54]
2 200 4 1 10 70.87 [23.50] 419.00 [65.95]
2 200 2 2 10 90.80 [41.41] 420.20 [69.15]
2 200 2 3 10 89.24 [20.39] 427.04 [59.82]
2 200 2 1 20 82.04 [24.73] 450.50 [76.25]

3 100 2 1 10 1663.06 [502.95] 3452.58 [577.36]
3 100 3 1 10 933.32 [461.91] 2601.62 [886.65]
3 100 4 1 10 859.59 [262.40] 2751.31 [556.69]
3 100 2 2 10 1647.33 [1042.60] 3179.33 [1281.37]
3 100 2 3 10 2727.04 [1192.15] 4372.53 [893.25]
3 100 2 1 20 1971.90 [866.14] 3363.50 [997.37]

4 60 2 1 10 2304.04 [1740.95] 3836.13 [1421.05]
4 60 3 1 10 1908.62 [1735.73] 3858.21 [2565.50]
4 60 2 2 10 2334.97 [1276.06] 3929.67 [1650.62]

Table 3.2: Computation of the set of non-dominated points for the original reference instance.
Average values for 10 trials.

p n |S | |K| DV T.RS T.RS
T.ND (%) |RS | ApQ.(ε) |NDXRS |

|ND|
2 200 2 1 10 12.62 [2.33] 25.25 [17.71] 393.82 [62.68] 0.02 [0.01] 0.02 [0.06]
2 200 3 1 10 6.69 [0.66] 11.29 [4.46] 361.72 [35.38] 0.03 [0.01] 0 [0]
2 200 4 1 10 6.64 [1.69] 9.37 [7.19] 394.68 [70.39] 0.03 [0.01] 0 [0]
2 200 2 2 10 13.40 [2.21] 14.76 [5.34] 364.44 [73.81] 0.04 [0.01] 0 [0]
2 200 2 3 10 15.64 [3.38] 17.53 [16.56] 360.03 [57.99] 0.06 [0.02] 0 [0]
2 200 2 1 20 13.91 [4.39] 16.96 [17.75] 394.15 [66.44] 0.05 [0.01] 0 [0]

3 100 2 1 10 92.68 [23.08] 5.57 [4.59] 3148.90 [645.92] 0.02 [0.01] 0.26 [0.26]
3 100 3 1 10 29.49 [15.74] 3.16 [3.41] 2258.62 [842.79] 0.03 [0.01] 0.24 [0.31]
3 100 4 1 10 16.77 [5.52] 1.95 [2.10] 2559.37 [627.78] 0.03 [0.01] 0.17 [0.30]
3 100 2 2 10 73.80 [28.27] 4.48 [2.71] 2703.27 [1086.52 0.05 [0.02] 0 [0]
3 100 2 3 10 112.53 [51.92] 4.13 [4.36] 3350.13 [965.83] 0.06 [0.02] 0 [0]
3 100 2 1 20 68.26 [20.07] 3.46 [2.32] 2492.41 [770.68] 0.05 [0.02] 0 [0]

4 60 2 1 10 128.87 [58.60] 5.59 [3.37] 3910.98 [1697.70] 0.03 [0.02] 0.31 [0.36]
4 60 3 1 10 30.29 [17.59] 1.59 [1.01] 3222.32 [1938.03] 0.03 [0.02] 0.25 [0.28]
4 60 2 2 10 102.67 [61.53] 4.40 [4.82] 2456.53 [648.04] 0.04 [0.02] 0.18 [0.25]

Table 3.3: Computation of the lower bound set associated with the restrict split restriction (RS
lower bound). Average values for 10 trials.

72

CHAPTER 3. DECOUPLING A COUPLED PROBLEM TO OBTAIN BOUND SETS

p n |S | |K| DV T.CS T.CS
T.ND (%) |CS | ApQ. (ε) |NDXCS |

|ND|

2 200 2 1 10 14.13 [1.74] 28.27 [13.22] 439.90 [62.97] 0.01 [0] 0.28 [0.34]
2 200 3 1 10 7.52 [0.73] 12.69 [4.94] 396.63 [35] 0.01 [0] 0.21 [0.35]
2 200 4 1 10 6.81 [1.58] 9.61 [6.72] 400.49 [78.36] 0.01 [0] 0.17 [0.22]
2 200 2 2 10 17.31 [2.63] 19.06 [6.35] 444.11 [57.59] 0.01 [0] 0 [0.01]
2 200 2 3 10 23.31 [4.99] 26.12 [24.45] 456.12 [60.25] 0.01 [0.01] 0 [0.00]
2 200 2 1 20 16.85 [4.46] 20.54 [18.03] 453.32 [83.70] 0.01 [0.01] 0.03 [0.07]

3 100 2 1 10 104.62 [21.90] 6.29 [4.35] 3741.15 [694.08] 0.01 [0.01] 0.35 [0.34]
3 100 3 1 10 34.49 [14.35] 3.69 [3.11] 2930.96 [924.46] 0.01 [0.01] 0.29 [0.23]
3 100 4 1 10 20.03 [5.14] 2.33 [1.96] 2888.02 [538.25] 0.01 [0.01] 0.47 [0.37]
3 100 2 2 10 107.08 [38.20] 6.50 [3.66] 3639.71 [1304.65] 0.02 [0.01] 0.06 [0.07]
3 100 2 3 10 146.64 [43.17] 5.38 [3.62] 4588.33 [968.82] 0.02 [0.01] 0.09 [0.16]
3 100 2 1 20 113.28 [46.60] 5.74 [5.38] 3842.65 [1237.79] 0.01 [0.01] 0.26 [0.20]

4 60 2 1 10 126.15 [45.67] 5.48 [2.62] 3913.12 [1385.05] 0.02 [0.01] 0.64 [0.38]
4 60 3 1 10 33.85 [19.53] 1.77 [1.13] 4126.19 [2848.88] 0.01 [0.01] 0.75 [0.28]
4 60 2 2 10 154.95 [66.09] 6.64 [5.18] 3924.00 [1480.57] 0.03 [0.01] 0.28 [0.36]

Table 3.4: Computation of the upper bound set associated with the copy split relaxation (CS upper
bound). Average values for 10 trials.

Approximation quality appears to be very good when |K| � 1 and DV � 10, with between 17
and 26% of non-dominated points contained in the RS lower bound when p � 3 and between 27
and 51% when p � 4. A slight deterioration in approximation quality is observed as |K| and DV
increase, which is more readily explained by the neutralization of a higher number of variables.

Now we turn to experiments with upper bounds. Results for the CS upper bound are reported
in Table 3.4. The computation of this bound appears to require more time than does the RS lower
bound. However, it benefits very similarly from an increase in n and in |S |, with a CS upper bound
obtained in 1.2% of the time required to compute the original non-dominated set, for p � 3 and
|S | � 4. An increase in |K| or in DV does not appear to have a significant impact, however, on
computation time for the CS upper bound.

We observe that this upper bound consistently provides an excellent approximation quality of
1% when |K| � 1 and DV � 10, with on average between 34% and 47% of the non-dominated
points already contained in the CS upper bound for p � 3, and between 41% and 54% when
p � 4. Approximation quality decreases but remains good when |K| or DV increase.

Finally, turning to Table 3.5, we can observe that the LR upper bound is obtained strikingly
faster than the set of non-dominated points: it required less than 1 % of the time in all our ex-
periments. This most likely illustrates the power of dividing the original problem into a larger
number of subsystems. Indeed in this case, instead of being associated with one of the |S | sub-
systems, the coupled variables constitute a separate, small subsystem. The impact of increasing
n is similar to what was previously observed. An increase in |K| appears to have a detrimental
effect on computing time for the LR upper bound, while an increase in DV has an unclear effect.
Surprisingly, an increase in |S | does not decrease the ratio between the computing time of the LR
upper bound and that of the original non-dominated set. Indeed, it seems that increasing |S | also
makes the global resolution of the original problem faster, albeit not to the same proportion as

73

CHAPTER 3. DECOUPLING A COUPLED PROBLEM TO OBTAIN BOUND SETS

p n |S | |K| DV T.LR T.LR
T.ND (%) |LR| ApQ.(ε)

2 200 2 1 10 11.08 [1.73] 22.16 [13.15] 426.44 [61.71] 0.05 [0.01]
2 200 3 1 10 6.54 [0.89] 11.03 [6.02] 416.20 [51.26] 0.04 [0.01]
2 200 4 1 10 6.56 [2.23] 9.26 [9.49] 452.54 [88.52] 0.04 [0.01]
2 200 2 2 10 11.01 [2.14] 12.13 [5.17] 421.10 [85.76] 0.09 [0.01]
2 200 2 3 10 10.82 [2.57] 12.12 [12.61] 351.91 [53.51] 0.12 [0.02]
2 200 2 1 20 9.62 [2.77] 11.73 [11.20] 419.91 [94.16] 0.09 [0.02]

3 100 2 1 10 1.21 [0.40] 0.07 [0.08] 3354.34 [787.92] 0.06 [0.01]
3 100 3 1 10 0.97 [0.49] 0.10 [0.10] 2690.81 [1067.95] 0.04 [0.01]
3 100 4 1 10 0.94 [0.35] 0.11 [0.13] 2749.46 [776.61] 0.05 [0.01]
3 100 2 2 10 1.84 [0.63] 0.11 [0.06] 3251.36 [1013.56] 0.09 [0.02]
3 100 2 3 10 2.37 [1.13] 0.09 [0.09] 3355.25 [1065.60] 0.14 [0.01]
3 100 2 1 20 2.33 [1.08] 0.12 [0.12] 2932.84 [1195.43] 0.11 [0.02]

4 60 2 1 10 1.88 [1.37] 0.08 [0.08] 4128.46 [1761.28] 0.05 [0.01]
4 60 3 1 10 1.80 [1.52] 0.09 [0.09] 3720.42 [2406.99] 0.06 [0.02]
4 60 2 2 10 1.19 [0.57] 0.05 [0.04] 2920.16 [1112.89] 0.09 [0.02]

Table 3.5: Computation of the upper bound set associated with the locally relaxed relaxation (LR
upper bound). Average values for 10 trials.

decomposition. However in the case of the LR upper bound, it appears that this effect was not as
beneficial to computing the LR upper bound using decomposition.

On the downside, the LR upper bound provides a way poorer upper approximation of the non-
dominated set than the CS upper bound does. In all our experiments, the proportion of points from
the original non-dominated set in the LR upper bound was 0, and the a posteriori value of ε was
more than twice and up to ten times larger than for the CS upper bound.

In Appendix A, we propose the definition of a solution concept base on computing a lower
bound and an upper bound on the non-dominated set of a MO problem. This double bound can
either be used on it’s own as an approximation of the non-dominated set of the original problem.
The accuracy of this approximation can be defined either by ε-approximation, or by the difference
in hypervolume dominated by the bounds. Alternatively, this double bound can be used as an
element in a wider decision making process, providing information regarding the levels of per-
formance that can be reached on each criterion. In the next chapter, we introduce an application
problem that is a coupled problem, as well as the theoretical notions which are relevant to the
study of its structure.

3.5 Conclusions and discussion

In this chapter, we have defined a collection of restrictions and relaxations of a coupled problem,
which provide upper and lower bound sets to the non-dominated set of a coupled problem. The
restrictions and relaxations were designed to be decomposable, and solved by solving independent
subproblems and pooling the results.

On the one hand, we found that the restrict split and copy split bound provide very good

74

CHAPTER 3. DECOUPLING A COUPLED PROBLEM TO OBTAIN BOUND SETS

approximations of the non-dominated set. The availability of decomposition to compute them
provides a sizable advantage in terms of computation time, which increases as the number of
variables and the number of subsystems increases. However, it may be argued that these bounds
are still too expensive to compute.

On the other hand, we found that the locally relaxed upper bound can be obtained dramatically
faster than the original non-dominated set, because it not only decomposes the problem along
subsystems lines but also separates the coupled part of the problem from the rest. However, it
provides a poorer approximation of the non-dominated set. A natural development of the work
presented in this paper is to find ways to improve the quality of this upper bound concept while
retaining the structural property that makes its computation very fast.

Part of the cost of computing bound sets comes from the sheer number of non-dominated
points to be found, even for subproblems. When the goal is to produce an approximation of the
non-dominated set of a problem, generating all solutions of the restriction or relaxation may not
be useful. A priori ε-approximation (see e.g. Vassilvitskii and Yannakakis (2005), Bazgan et al.
(2015)) could generate approximations of smaller size, but because it may contain dominated
points, it cannot be used to approximate upper bound sets. Methods developed by Kaddani et al.
(2017) can generate a subset of the non-dominated set of any problem, but to do so, it requires
additional preference information from the decision maker. Knowing these challenges, further
work should pursue the generation of subsets of decomposable upper bound sets.

75

Chapter 4

Application Problem 1

Chapter Abstract

In this chapter, we will study an application problem called REF, a particular case of the generic
coupled problem. REF is a multi-site assignment problem with coupling constraints, and admits
a dynamic programming resolution algorithm. We apply the various notions of uncoupled lower
and upper bounds to REF, and provide dynamic programming algorithms to compute them. We
show that decomposition as well as other computational tricks can improve the initial dynamic
programming approach. Facing some intrinsic limitations of the initial “bottom-up” approach, we
switch the perspective and use dynamic programming as a subprocedure in a “top-down” approach
which tries to enumerate, as efficiently as possible, all ways of decoupling the problem.

Contents
4.1 Presentation of the REF problem . 78

4.1.1 Formulation . 78
4.1.2 Relation to other problems and degenerate variants 80
4.1.3 A basic dynamic programming resolution method 82

4.2 Upper and lower bound sets for REF . 87
4.2.1 Weak upper bound sets and a strong singleton upper bound 87
4.2.2 Strong and weak lower bound sets . 92
4.2.3 Experimental Results . 97

4.3 “Bottom-up” approaches based on Dynamic Programming 98
4.3.1 Filtering with a set of incumbent solutions 99
4.3.2 Partial filtering . 99
4.3.3 “Kickstarting” . 101
4.3.4 Experimental Results . 102

4.4 “Top-down” approaches for solving REF 105
4.4.1 Enumerating all ways of decoupling REF 106
4.4.2 Pre-computation of independent dynamic programming states 108
4.4.3 Towards a branch and bound method for solving coupled problems . . . 111

4.5 Conclusions and perspectives . 120

1Earlier versions of this chapter were presented orally at the RAMOO 2018 and ROADEF 2019 conferences.

77

CHAPTER 4. APPLICATION PROBLEM

4.1 Presentation of the REF problem

Original concepts developed in this work are intended to be applied to the resolution of a particular
application problem, which we will refer to as REF. REF is an assignment problem where, to use
classical terminology, tasks have to be assigned to machines in order to maximize some profit value
associated with performing each task on some machine. Furthermore, machines are to be thought
of as located on sites, with each site having limited capacity, which is consumed by assignments
of tasks to machines located on it. The decision maker assumes the position of a central planner,
who has to allocate tasks to machines on the different sites.

4.1.1 Formulation

REF can be dressed up as a multi-site production problem. Let T be a set of tasks, S a set of sites
and M a set of machines. We will say that S ptq � S is the set of sites on which task t can be
performed. Symmetrically T psq � T will be the set of tasks that can be performed on site s P S .
We assume that t P T can in general be assigned to any machine of a site it can be performed on.
Therefore, given Mpsq � M the set of machines located on site s, we will denote by MpS ptqq the
set of machines on which task t can be performed, i.e. for all t P T,MpS ptqq �

�
sPS ptq Mpsq.

Finally, N :� tpt,mq P T � M | m P MpS ptqqu will denote the set of all variable indices, with
|N| �: n.

Each assignment of a task t to a machine m yields profits g j
tm, for j P t1, ..., pu, and consumes

an amount wtm of resources available on the unique site s P S such that m P Mpsq. This resource
should be thought of as time or energy available to a manufacturing site. Each of the p objectives
is to be maximized under the constraints that each task should be assigned at most once, and that
for each site, resource consumption does not exceed some bound. Example C.5 provides a graph
illustration of the assignment problem and examples of feasible and unfeasible solutions.

Example 4.1. Consider and instance of REF defined by T � tt1, t2, t3u, M � tm1,m2,m3,m4u

and S � ts1, s2u, such that S pt1q � ts1, s2u, S pt2q � ts1u, S pt3q � ts2u, Mps1q � tm1,m2u,
Mps2q � tm3,m4u. The following table records the weights associated with each assignment of a
task to a machine. Assume that the capacity of each site is 1.

wtm t1 t2 t3

s1
m1 0.6 0.5
m2 0.5 0.5

s2
m3 0.6 0.5
m4 0.5 0.6

78

CHAPTER 4. APPLICATION PROBLEM

t1

t2

t3

 m1

 m2

p1q

 m3

 m4

s1

s2

s1

s2

t1

t2

t3

 m1

 m2

p2q

 m3

 m4

t1

t2

t3

 m1

 m2

p3q

 m3

 m4

s1

s2

s1

s2

t1

t2

t3

 m1

 m2

p4q

 m3

 m4

Figure 4.1: Graph p1q provides a representation of all possible assignments, as well as the group-
ing of machines m1 and m2 on site s1, and machines m3 and m4 on site s2. Task t1 can be performed
either on s1 or on s2, task t2 is local to site s1, and task t3 is local to site s2. Graph p2q shows a
feasible solution, and Graph p3q and p4q show two unfeasible solutions. Solution p3q is unfeasi-
ble because task t1 is assigned twice. Solution p4q in unfeasible because the sum of weights of
assignments to machines of site s2 is 1.1, which is larger than 1.

The REF problem can be written as the following 0-1 linear program.

max
¸
tPT

¸
mPMpS ptqq

g j
tmxtm @ j P t1, ..., pu

s.t.
¸

mPMpS ptqq

xtm ¤ 1 @ t P T

¸
tPTpsq

¸
mPMpS ptqq

wtmxtm ¤ bs @ s P S

xtm P t0, 1u @ pt,mq P N

A feature of this problem which captures our interest is that for some t P T, |S ptq| � 1, i.e.
these tasks can be performed on one site only. We refer to the set of such tasks as TL, and to TzTL

as TC . We will often call TL the set of local tasks, and TC the set of complex tasks. We will denote
by TLpsq the set TL X T psq of local tasks which can be performed on site s. These observations
allow the following reformulation:

79

CHAPTER 4. APPLICATION PROBLEM

max
¸
sPS

¸
tPTpsq

¸
mPMpS ptqq

g j
tmxtm @ j P t1, ..., pu

s.t.
¸

mPMpS ptqq

xtm ¤ 1 @ t P TC p1q

¸
mPMpS ptqq

xtm ¤ 1 @ s P S ,@ t P TLpsq p2q

¸
tPTpsq

¸
mPMpS ptqq

wtmxtm ¤ bs @ s P S p3q

xtm P t0, 1u @ pt,mq P N

REF is a coupled system MOCO, for which the set of decisions is N � tpt,mq | t P T,m P

MpS ptqqu which corresponds to the set of indices of decision variables. The set p1q of inequalities
describe the coupling constraints, indexed by TC , which corresponds to the set of couplings K
in problems formulated in Section C.1.2.1. S naturally corresponds to the set of subsystems.
Thus we will say that subsystems or sites s and s1 are coupled if there is a task t P TC such
that ps, s1q P S ptq2. Sets of inequalities p2q and p3q represent local constraints, which involve
only assignments of tasks which can be performed on one site only, and limit the consumption of
resources on each site.

4.1.2 Relation to other problems and degenerate variants

4.1.2.1 REF and GAP

At first sight, REF bears a resemblance to the generalized assignment problem (GAP). Both prob-
lems combine assignment constraints and knapsack constraints. We temporarily focus on the
single objective case, so as to use the complexity of single-objective GAP to characterize the com-
plexity of REF. Let us recall the classical formulation of single objective GAP (cf. e.g. Kellerer
et al. (2004)):

max
ņ

k�1

m̧

i�1

gkixki

m̧

i�1

xki ¤ 1 @ k P t1, ..., nu

ņ

k�1

wkixki ¤ bi @ i P t1, ...,mu

xki P t0, 1u @ i P t1, ...,mu, @ k P t1, ..., nu

Closer comparison between GAP and REF reveals the following difference. Consider, as
illustrated in Figure 4.2, a bipartite graph with set T , i.e. vertices corresponding to tasks on the
lefthandside, and set M, i.e. vertices corresponding to machines on the right hand side. Each

80

CHAPTER 4. APPLICATION PROBLEM

t1

t2

t3

 m1

 m2

 m3

 m4

REF

x1,1 � x1,2

�x2,1 � x2,2 ¤ b1

x1,3 � x1,4

�x3,3 � x3,4 ¤ b2

x1,1 � x2,1 ¤ b1

x1,2 � x2,2 ¤ b2

x1,3 � x3,3 ¤ b3

x1,4 � x3,4 ¤ b4

t1

t2

t3

m1

m2

m3

m4

GAP

Figure 4.2: Assignment graphs with knapsack constraints for REF (left) and GAP (right). REF
has one knapsack constraint per site, while GAP has one knapsack constraint per machine.

edge represents an assignment which is performed by paying some weight. In GAP, a knapsack
constraint is associated to each element of the right hand side. However, in REF, a knapsack
constraint is associated with a subset of elements of the right hand side, i.e. with Mpsq, rather than
to an element m P M. Still, by degenerating REF to a case where each site has only one machine,
we produce instances of GAP, meaning that GAP reduces to REF, which proves at the same time
that

Proposition 4.1. The single objective variant of REF is NP-hard.

Proof. Assume |Mpsq| � 1 for each s P S . Then for any t P T , s P S ptq, we denote by xts, (resp.
gts, wts) the unique elements of sets txtm | m P Mpsqu (resp. tgtm | m P Mpsqu, twtm | m P Mpsqu).
We get the following formulation:

max
¸
tPT

¸
sPS ptq

gtsxts¸
sPS ptq

xts ¤ 1 @ t P T

¸
tPTpsq

wtsxts ¤ bs @ s P S

xts P t0, 1u @ t P T, s P S

which defines an instance of GAP. Thus, GAP reduces to REF, and is therefore NP-hard. �

4.1.2.2 Multiple knapsack variant

Another particular case of REF is obtained when the assignments of some task yields the same
profits and consume the same amount of resources for all machines on which the task can be
performed. The problem then becomes that of selecting objects endowed with intrinsic value and
weight, as in KP. Formally, we state that for any t P T , m,m1 P MpS ptqq, we have gtm � gtm1 �: gt

and wtm � wtm1 :� wt. We then get the following formulation:

81

CHAPTER 4. APPLICATION PROBLEM

max
¸
tPT

¸
sPS ptq

g j
t xts @ j P t1, ..., pu

¸
sPS ptq

xts ¤ 1 @ t P T

¸
tPTpsq

wt xts ¤ bs @ s P S

xts P t0, 1u @ t P T, s P S

Which defines an instance of the multiple knapsack problem (MKP, Kellerer et al. (2004)).

4.1.2.3 Multi-Choice Knapsack variant

For any s P S , the problem of assigning tasks t P T psq to machines m P Mpsq is a Multi-Choice
Knapsack Problem (MCKP), formulated as follows :

max
¸

tPTpsq

¸
mPMpsq

g j
tmxtm @ j P t1, ..., pu

¸
mPMpS ptqq

xtm ¤ 1 @ t P T psq

¸
tPTpsq

¸
mPMpS ptqq

wtmxtm ¤ bs @ s P S

xtm P t0, 1u @ pt,mq P N

Thus when TC � H, since for all t P T , and tsu � S ptq, we have MpS ptqq � Mpsq, REF can
be decomposed into |S | instances of MCKP. This variant is of interest because in practice, when
we produce an uncoupled variant of an instance of REF, we obtain a collection of such MCKP
instances.

4.1.3 A basic dynamic programming resolution method

Dynamic programming (DP), as introduced by Bellman (1952), is an algorithmic approach to
solving decision problems which can be represented by multi-stage models of some decision pro-
cess. The key feature of a DP algorithm is to build partial solutions incrementally at each decision
stage. Stages can be organized in a sequence or a directed states graph (Escoffier and Spanjaard
(2005)). At each stage, all previous stages having been performed, a small optimization problem
is solved, taking previous stages as input to generate new partial solutions. This optimization
eliminates partial solutions which will not be built upon in later stages. On the one hand, this
implies that some feasible solutions of the original problem cannot be reached anymore. On the
other hand, this is a way to avoid considering all solutions to the original problem, and allows for
a quicker resolution. The main challenge of DP is thus to define a sequential decision structure

82

CHAPTER 4. APPLICATION PROBLEM

and intermediary optimization problems which allow the elimination of as many partial solutions
as possible, while guaranteeing that efficient solutions remain accessible and are indeed outputted
by the algorithm.

For simplicity, we will not define partial solutions on projections of the domain of complete
solutions over subsets of variables. Rather we use the fact that 0 is an admissible value for any
decision variable of REF. Recall that N :� tpt,mq P T � M | m P MpS ptqqu, and let 0N be the
solution such that for any i P N, 0i � 0. By definition of an admissible value, 0N is feasible. We
set Q0 :� t0Nu to be the initial stage of the decision process. At each subsequent stage, build-
ing solutions according to decisions available at this step will amount to making an assignment
of variables which previously took value 0. Thus, solutions generated during the sequential deci-
sion process are of equal dimensionality, and we can evaluate them without having to define one
objective function per decision stage.

Let T � t1, ..., t̃u, the set of tasks in REF, be used as the set of stages of the decision process,
where t̃ will denote the last decision stage. To each step t P T , a DP algorithm must associate a set
of decisions. In our case, decisions available for task t correspond to the machines m P MpS ptqq
to which t can be assigned. Additionally, the decision to assign task t to no machine must be
available, and we denote it by et. At step t P T , taking decision m P MpS ptqq boils down to
assigning value 1 to variable xtm, and if decision et is taken, no assignment is done, as xtm is set
to 0 by default. Assigning value 1 to decision variable xtm in partial solution x will be denoted by
xrxtm Ð 1s. Let Qt � t0, 1un be a subset of solutions built by taking decisions in periods 1 to t
included, where only variables with indices pt1,m1q, for t1 P t1, ..., tu and m P MpS pt1qq have been
fixed according to decisions taken at these steps, while other variables keep value 0.

In general, for t P T , consider x P Qt and for ∆t̃
t :�

±t̃
t1�t�1 MpS pt1qq Y tet1u, let δ P

∆t̃
t denote a sequence of decisions from step t � 1 to step t̃. We denote by τpx, δq the solution

obtained by taking decisions prescribed by decision sequence δ. Finally Comppxq and Extpxq
denote respectively the set of completions and the set of extensions of partial solution x:

Comppxq :�
!
δ P ∆t̃

t | τpx, δq P X
)

Extpxq :� tx̃ P X | Dδ P Comppxq, x̃ � τpx, δqu

To the final step t̃ we associate the multiobjective function f � p f1, ..., fpq, and to each step
t P t1, ..., t̃ � 1u we associate objective function p f , w̄q, where f is the multiobjective function
in the original formulation of REF, and for any x P X, w̄pxq � b � wpxq P R|S |, is the function
evaluating the residual capacity associated with solution x, where with b � pbs|s P S q is the bound
vector of subsystem capacities.

Observation 4.1. For any t ¤ t̃, x, x1 P Qt, any δ P Comppxq XComppx1q,

f jpxq ¥ f jpx1q ñ f jpτpx, δqq ¥ f jpτpx1, δqq @ j P t1, ..., pu

83

CHAPTER 4. APPLICATION PROBLEM

and
w̄spxq ¥ w̄spx1q ñ w̄spτpx, δqq ¥ w̄spτpx1, δqq @s P S

Since several solutions can have the same value vector, a solution is not defined by its value
vector. Iin a DP decision sequence however, the only information relevant to the sequential con-
struction of a non-dominated set is the information defining which assignments it can still receive,
and which value it can attain, and these will be inferred from additional criteria, as in Bazgan et al.
(2009). Thus two solutions with the same evaluation by the objective functions associated with the
step at which they are generated are interchangeable from the point of view of DP. For this reason,
Ẽ denotes a function that associates, to a each point of a non-dominated set, a single pre-image of
this point.

Example 4.2 illustrates the general form and execution of a dynamic programming decision
process.

Example 4.2. The following example illustrates a dynamic programming decision process, through
the state-space graphs. At decision stages t1 and t2, states Q1 and Q2 are generated by making
feasible decisions from previously generated partial solutions, and then keeping only the non-
dominated newly completed partial solutions.

eN

p0, 0q

Q0

Q1

x3 � τpeN , δ3q

p3, 3q

x2 � τpeN , δ2q

p2, 2q

x1 � τpeN , δ1q

p4, 1q

δ3
�p3, 3q

δ2
�p2, 2q

δ1
�p4, 1q

©

Q2

x6 � τpx3, δ6q

p6, 8q

x5 � τpx1, δ5q

p5, 5q

x4 � τpx1, δ4q

p7, 6q

δ4 is not feasible in x3

δ5
�p3, 5q

δ5
�p1, 4q

δ4
�p3, 5q

©

Figure 4.3: Visualization of state-space graph of a dynamic programming decision process. T �
tt1, t2u. At stage t1, x3 dominates x2, meaning that all the extensions of x3 will dominate extensions
of x2, so we avoid considering extensions of x2. We assume that decision δ4 cannot be made from
x3, so that Q2 contains no element τpx3, δ4q. At stage 2, x5 is dominated by x4. Since t2 is, in this
case, the final stage, tx4, x6u is the set of efficient solutions.

Algorithm 16 describes the resolution of REF using dynamic programming. First, we initialize
Q0 with the zero partial solution teNu. Then for each task t P T , we initialize Qt with value Qt�1,
since in REF, the decision of not assigning task t is always feasible. Then for each partial solution
x P Qt�1, we generate all assignments of tasks t which extend x and do not violate the resource
constraint, i.e. have non-negative residual capacity w̄. Qt must then be filtered by dominance.
If t is not the last step, we need to preserve state-elements which are not dominated for residual
capacities. Only if t � t̃ do we eliminate elements dominated according to f .

84

CHAPTER 4. APPLICATION PROBLEM

Algorithm 16: Dynamic Programming Algorithm for REF
input : Q0 Ð teNu

output: ẼpX, f q

1 for t P t1, ..., t̃u do
2 Qt Ð Qt�1

3 for x P Qt�1 do
4 for m P MpS ptqq do
5 x̃ Ð x̃rxtm Ð 1s

6 /*Recall that for m1 P MpS ptqqztmu we already have xtm � 0 */

7 if w̄px̃q � 0 then
8 Qt Ð Qt Y tx̃u

9 if t t̃ then
10 Qt Ð ẼpQt, p f , w̄qq

11 else
12 Qt Ð ẼpQt, f q

13 return Qt̃

Note that because 0 is the default value of any variable, we do not have to explicitly generate
partial solutions obtained by taking the neutral decision, as long as we begin each step t P T by
setting Qt Ð Qt�1. Next we show the correctness of this algorithm, i.e. that its produces the
desired result:

Proposition 4.2. Algorithm 16 returns the set Qt̃ such that

Qt̃ � ẼpX, f q

Proof. � : Let x P ẼpX, f q, assume x < Qt̃. Then there is some t1 such that t1 is the last step of
the decision process at which some solution x1 such that x P Extpx1q also belongs to Qt1 . If x1

does not belong to Qt1�1, then there is some x2 P Qt1 such that p f , w̄qpx2q © p f , w̄qpx1q. Consider
δ P Comppx1q such that τpx1, δq � x. Because w̄px2q © w̄px1q, we also have δ P Comppx1q. Then
because f px2q © f px1q, by Observation C.4, we also have, for x� � τpx2, δq, that f px�q © f pxq.
And thus, x < ẼpX, f q, contradicting our assumption.
� : Let x P Qt̃, and assume x < ẼpX, f q. This means that there exists x1 P X such that f px1q © f pxq.
We can assume that x1 P ẼpX, f q, otherwise we replace it with the maximal element of a © chain
it belongs to. Because ẼpX, f q � Qt̃, x1 P Qt̃, and thus x < Qt̃, being eliminated at line 12,
contradicting our assumption. �

Algorithm 16 will be used as a subprocedure within many algorithms that are presented in
this work. Thus, we use the following notation to describe an instance of REF and an application

85

CHAPTER 4. APPLICATION PROBLEM

p |Mpsq| |TC | |S | |N| |ND| T. e� const T. DP
NoDec Basic

2 4 2 2 48 17.950 [8.056] 0.640 [0.541] 0.434 [0.273]
2 5 2 2 70 23.150 [7.107] 0.976 [0.536] 3.316 [2.262]
2 6 2 2 96 39.050 [10.737] 2.519 [0.788] 12.896 [8.228]
2 4 3 2 56 19.100 [6.718] 0.662 [0.352] 1.390 [0.521]
2 4 4 2 64 24.800 [5.877] 0.846 [0.340] 2.420 [0.792]
2 4 5 2 72 29.350 [10.143] 1.333 [0.818] 5.299 [2.085]
2 4 2 3 72 25.500 [11.826] 1.314 [0.780] 20.940 [11.469]
2 3 1 4 48 11 [5.560] 0.317 [0.275] 5.010 [1.954]
2 3 2 4 60 25 [11.152] 1.006 [0.657] 35.278 [14.205]
3 5 2 2 70 173.800 [57.036] 19.534 [5.435] 8.633 [3.488]
3 5 3 2 80 467.800 [278.135] 60.296 [31.120] 28.138 [17.006]
3 4 2 3 72 203 [113.837] 27.269 [16.142] 136.061 [115.563]

Table 4.1: Computing time (in seconds) using e-constraint and using Direct DP, for various in-
stance parameter values and p � 2, 3, 4. Average values for 10 trials.

of Algorithm 16. We denote an instance by the tuple pQ0,TC ,TL,M, S q, and we write B Ð

DPpQ0,TC ,TL,M, S q when we obtain a pre-image ẼpX, f q of Np f pXqq by solving the instance
using Algorithm 16.

4.1.3.1 Experimental results

In all our experiments on problem REF, instances are generated as follows. We ensure that if
|S ptq| ¡ 1, then S ptq � S for any t P T . In other words, if a task is complex, it can be performed
on all sites. This is a way to both avoid considering cases where intermediary decomposition into
several coupled subproblems would be possible, and to make sure that our performance measure-
ments pertain to hard instances. For each pt,mq P N and j P t1, ..., pu, g j

tm and wtm are both drawn
uniformly randomly from interval r0, 1000s. Finally, we compute bs the bound of the capacity of
site s P S so as to adapt the notion of “hard” knapsack constraints, setting

bs �
1
2

°
tPTpsq,mPMpS ptqq

wtm

|T psq|

In the experiment reported in Table 4.1, we solve instances of REF for various values of p and
instance parameters |Mpsq|, |TLpsq|, |TC|, and |S |. Unless otherwise stated, we will assume that
|Mpsq| has the same value for all s P S , and that |Mpsq| � |TLpsq|, i.e. that the subsystem assign-
ment matrix is square. T.e � const denotes the computing time to solve the instance using either
biobjective e-constraint method for p � 2 or the generic algorithm by Tamby and Vanderpooten
(2021) for p ¥ 3. Finally, T.DP Basic denotes computing time for the dynamic programming
algorithm.

Experiments reveal the execution of this method to yield contrasted results. It performs well
relatively to e � const when p increases, but way more poorly as |TC| or |S | increase. The main
reason for the increased computational cost, in the latter case, is the p� |S | dimensionality of DP

86

CHAPTER 4. APPLICATION PROBLEM

states, which results in the procedure generating a high number of mostly incomparable states until
the very last stage of the process, where dimensionality is reduced to p. Several improvements
can be made upon it to gain some speed, as will be demonstrated later by an experimental protocol
comparing this basic approach to resolution methods that benefit from some improvements using
decomposition. But as these tricks use upper and lower bound sets, we need first to define those
for REF, and describe algorithms to obtain them.

4.2 Upper and lower bound sets for REF

Weak upper and lower bound notions developped in Chapter 3 can be straightforwardly applied to
REF. Furthermore, these bound sets can be computed using dynamic programming algorithms.

4.2.1 Weak upper bound sets and a strong singleton upper bound

4.2.1.1 Copy-split relaxation

We recall that in the copy-split relaxation, each subsytem problem inherits a copy of each coupling
constraints, which is restricted to variables associated with complex tasks assignments than can
be made in it. In the notation introduced in Section C.3.3.1, we assume that coupling constraints
imposed by coupling k P K can be reformulated as gkpxkq ¤ bk for some real valued function g.
We further assume that for j P t1, ..., pu, f j is additively separable along S and that so is gk for
any k P K. Recall that for any k P K, γpkq � ts P S | s X k , Hu. Recall that assuming that
coupling constraint k is relaxable for each s P |γpkq|, we denote by g1sk px

s
kq ¤ bk the relaxation of

gkpxkq ¤ bk associated with s P |γpkq|. Then the copy split relaxation can be expressed as:

max f pxq

s.t. g1sk px
s
kq ¤ bk @ k P K, s P γpkq

xs P Xs @ s P S

In REF, K � tpt,mq | t P TC ,m P MpS ptqqu and gs
kpx

s
kq �

°
mPMpS ptqq xtm for t P TC . For any

t P T , bt � 1 . Then the copy-split relaxation of REF can be formulated as follows:

max
¸
tPT

¸
mPMpS ptqq

g j
tmxtm @ j P t1, ..., pu

s.t.
¸

mPMpS ptqq

xtm ¤ 1 @ t P T, s P S ptq

¸
tPTpsq

¸
mPMpS ptqq

wtmxtm ¤ bs @ s P S

xtm P t0, 1u @ t P T, m P MpS ptqq

87

CHAPTER 4. APPLICATION PROBLEM

t1

t2

t3

 m1

 m2

 m3

 m4

t1

t11

t2

t3

 m1

 m2

 m3

 m4

s1

s2

s3

s4

Figure 4.4: Visualization of the copy-split relaxation as applied to REF: assignments of complex
task t1 are duplicated and made simple tasks assignments in each subsystem

Because the copy-split relaxation is separable, this is equivalent to solving |S | different in-
stances of REF for each s P S , having copied each complex task so that a copy of it appears as a
local task in each subproblem, as is illustrated by Figure C.11. We are left with |S | subproblems
of the form:

max
¸

tPTpsq

¸
mPMpS ptqq

g j
tmxtm @ j P t1, ..., pu

s.t.
¸

mPMpsq

xtm ¤ 1 @ t P T psq

¸
tPTpsq

¸
mPMpS ptqq

wtmxtm ¤ bs

xtm P t0, 1u @ t P T psq, m P MpS ptqq

As this subproblem is itself an instance of REF, it can be solved using Algorithm 16. Then,
we compute copy-split relaxation using Algorithm 17.

Algorithm 17: Dynamic Programming Algorithm for solving the copy-split relaxation

of REF with decomposition.
input : pteNu,TC ,TL,M, S q

1 S ubRes Ð pH1, ...,H|S |q

2 for s P S do
3 T 1

Lpsq Ð T psq

4 S ubRess Ð DPpteNu,H,T 1
Lpsq,Mpsq, tsuq

5 return PoolpS ubResq

4.2.1.2 Relaxation of complex task assignment variables from non-coupling constraints

As shown in Section C.3.3.2, a less obvious way to relax the problem is to relax, from local
constraints, decision variables which appear in coupling constraints, a relaxation which we have

88

CHAPTER 4. APPLICATION PROBLEM

called the LR relaxation. We recall that for K̄ the set of non-coupled variables, gspxsq ¤ bs is
relaxed into g1spxs

K̄
q ¤ bs. Applying this relaxation to all s P S , this variant is formulated as

follows,

max f pxq

s.t. xk P Xk @ k P K

g1spxs
K̄q ¤ bs @ s P S

Thus, for s P S , xs
K is not constrained in subproblem associated with site s. In REF, K �

tpt,mq | t P TC ,m P MpS ptqqu, and K̄ � tpt,mq | t P TL,m P MpS ptqqu, Applied to problem REF,
this relaxation scheme yields the following problem:

max
¸
tPT

¸
mPMpS ptqq

g j
tmxtm @ j P t1, ..., pu

s.t.
¸

mPMpS ptqq

xtm ¤ 1 @ t P TC¸
mPMpS ptqq

xtm ¤ 1 @ s P S , t P TLpsq¸
tPTLpsq

¸
mPMpS ptqq

wtmxtm ¤ bs @ s P S

xtm P t0, 1u @ t P T, m P MpS ptqq

This problem is separated in |S | � 1 subproblems, the first |S | of which involve only tasks
local to system s P S . Each of these tasks must be assigned to at most one machine of site s under
the budged constraints of s :

max
¸

tPTLpsq

¸
mPMpsq

g j
tmxtm @ j P t1, ..., pu

s.t.
¸

mPMpsq

xtm ¤ 1 @ t P TLpsq¸
tPTLpsq

¸
mPMpS ptqq

wtmxtm ¤ bs

xtm P t0, 1u @ t P TLpsq, m P MpS ptqq

Each of these problems can be solved using DP, computing DPpteNu,H,TLpsq,Mpsq, tsuq,
for s P S . Then, there remains the now-independent problem of assigning each complex task to at
most one machine, under no budget constraint:

89

CHAPTER 4. APPLICATION PROBLEM

max
¸

tPTC

¸
mPMpS ptqq

g j
tmxtm @ j P t1, ..., pu

s.t.
¸

mPMpS ptqq

xtm ¤ 1 @ t P TC

xtm P t0, 1u @ t P TC , m P MpS ptqq

This problem, the complex task relaxation problem, can also be solved using a DP algorithm,
albeit a much simpler one that the one used for solving subproblems, because there is no need to
check for the feasibility of partial solutions with regards to budget constraints. This simplified pro-
cedure is presented as Algorithm 18, the application of which is denoted by DPpteNu,TC ,H,M, S q.

Algorithm 18: Dynamic Programming Algorithm for the complex tasks assignemnts in

the LR relaxation of REF
input : pteTCu,TC ,H,M, S q

1 Q0 � teTCu

2 /*Assume |TC| � t̃ */

3 for t P t1, ..., t̃u do
4 for x P Qt�1 do
5 for m P MpS ptqq do
6 x̃ Ð x̃rxtm Ð 1s

7 Qt Ð Qt Y tx̃u

8 Qt Ð ẼpQt, f q

9 return Qt̃

Thus, Algorithm 19 solves the LR relaxation by pooling results of the locally restricted sub-
problems and the complex tasks problem, using any pooling algorithm, here denoted generically
by Pool.

Algorithm 19: Dynamic Programming Algorithm for solving the LR relaxation of REF
input : pteNu,TC ,TL,M, S q

1 Complex Ð DPpteNu,TC ,H,M, S q /*Compute non-dominated complex tasks

assignments */

2 Local ÐH

3 S ubRes Ð pH1, ...,H|S |q

4 for s P S do
5 S ubRess Ð DPpteNu,H,TLpsq,Mpsq, tsuq

6 Local � PoolpS ubResq

7 return PoolpLocal,Complexq

90

CHAPTER 4. APPLICATION PROBLEM

4.2.1.3 Singleton strong upper bound

Improvements on the basic resolution method for REF can be made by eliminating partial solu-
tions when a strong upper bound on the value of their extensions is found to be dominated by an
incumbent point. Because these must be computed quite often, we look for a greedy algorithm to
obtain them.

In the case of the single objective knapsack problem, it is well known (see e.g. Kellerer et al.
(2004)) that the linear relaxation upper bound can be obtained using the following greedy algo-
rithm. Objects t P t1, ..., t̃u are ranked in decreasing order of ratio gt

wt
. Objects are added in order

until residual capacity becomes negative, and the resulting sum of profits is an upper bound on
the value of the optimal knapsack. This can be improved further using Martello and Toth (1990)’s
concept of upper bound. This concept of singleton upper bound can be applied to any partial so-
lution where objects t1, ..., tu have been previously decided upon, for t t̃. Objects upon which
no decision has yet been taken are then added, in an order determined by the previously defined
ratio. Finally, point puG

1 , ..., u
G
1 q obtained by computing the objective-wise greedy upper bounds is

a strong upper bound on all non-dominated knapsacks, or extensions of a partial knapsack.

However none of these bound concepts straightforwardly applies to our case, even when as-
suming that |S | � 1, as is evident from the following counter example.

Example 4.3. Let T � t1, 2u, S � tsu, Mpsq � ta, bu, assume that bs � 6 and consider the
following matrix, where an entry reads as gtm{wtm, for t P T and m P Mpsq.

1 2
a 20 / 4 2/4
b 24/ 6 1/4

The following sequence of pairs describes the ranking of assignments in decreasing order of
ratio gtm

wtm
: p1, aq, p1, bq, p2, aq, p2, bq. The greedy algorithm takes p1, aq, after which the knapsack

has value of 20 and a residual capacity of 2. p1, bq cannot be added to the knapsack because task
1 has already been assigned to machine b. Then, all remaining assignments would violate the
knapsack contraints, so the knapsack is full. The candidate upper bound value of 22 is obtained
by further adding the value of p2, aq, the split assignment. However, the optimal solution to this
instance of the problem is to select p1, bq, for a profit of 24, which is higher than 22. Thus, the
greedy algorithm failed to yield an upper bound solution.

We propose a greedy heuristic which gets around the issue of the assignment constraint. First,
we copy complex tasks, so that we can decouple the problem as in the copy-split relaxation. This
yields T 1 such that, for each t P TC , for each s P S ptq, and m P Mpsq, we have t1 P T 1

Lpsq with
wt1m � wtm and g j

t1m � g j
tm for each j P t1, ..., pu. Then we replace T 1 with a set of artificial tasks

91

CHAPTER 4. APPLICATION PROBLEM

1 2
g j�

t {w
�
t 24 / 4 2/4

Figure 4.5: Profits and weights associated with T� when applied to Example 4.3

T�, such that for all t P T 1, m P Mpt1q,

g j�
t � max

m1PMptq
g j

tm1

w�
t � min

m1PMptq
wtm1

For each j P t1, ..., pu, we compute the j-th component of the objective-wise optimum as

follows. For each s P S , we rank T�psq in decreasing order of g j�
t

w�
t

, and we compute a candidate
objective-wise upper bound by making assignments in order, until the assignment which exceeds
capacity of site s has been made. We denote by u�j the objective value of this greedy solution on
component j.

Proposition 4.3. pu�1 , ..., u
�
pq computed by the previously described procedure is a singleton strong

upper bound to the set of extensions of a partial solution.

Proof. Consider, for any instance of REF, its copy-split relaxation, with feasible set X1 and objec-
tive function f 1. Then consider the variant of the copy-split relaxation where for any pt,mq P N,
g j

tm is replaced by g j�
t and wtm by w�

t . Since for any pt,mq P N, we have w�
t ¤ wtm and g j�

t ¥ g j
tm,

this variant with feasible set X2 and objective function f 2 is a relaxation of the instance with feasi-
ble set X1. maxxPX1p f 11pxq, ..., f 1jpxqq is itself a relaxation of the instance of REF, and by transitivity
maxxPX2p f 21 pxq, ..., f 2j pxqq is a relaxation of X.

Now, let us show that pu�1 , ..., u
�
pq is a singleton strong upper bound over the set Np f 2pX2qq.

Indeed, for s P S , the subproblem associated with s of the problem with feasible set X2 is equiva-
lent to an instance of the knapsack problem, since the assignments of a task t P T now all yield the
same profit and have the weight value for any accessible machines in Mptq. For each j P t1, ..., pu,

component u�j of greedy assignments according to decreasing order of g j�
t

w�
t

(where the limit item
is taken in the knapsack) is an upper bound to the linear relaxation of the same knapsack prob-
lem. Therefore, u�j ¥ maxxPX1 f 2j pxq, and by transitivity applied twice, u�j ¥ maxxPX f jpxq for all
j P t1, ..., pu. �

4.2.2 Strong and weak lower bound sets

4.2.2.1 A strong lower bound set

We consider the feasible set XL of the restriction of the original problem to local task variables,
i.e. XL � tx P X | xtm � 0 @t P TC ,m P MpS ptqqu As a particular case of the notions we

92

CHAPTER 4. APPLICATION PROBLEM

t1

t2

t3

 m1

 m2

 m3

 m4

s1

s2

s1

s2

t1

t2

t3

 m1

 m2

 m3

 m4

Figure 4.6: Visualization of the local restriction as applied to REF: assignments of complex task
t1 are removed from all subsystems

studied in Chapter 3, it is clear that Np f pXLqq is a weak lower bound on Np f pXqq. Furthermore,
the computation of ẼpXL, p f , w̄qq is separable, since XL � ΠsPS XLpsq for XLpsq � txs P Xs | xs

tm �

0 @t P TC ,m P Mpsqu. When computing the efficient subset of XL for f , we eliminate all solutions
dominated for the p original criteria, even if these solutions are non-dominated when residual
capacity is taken into account. If, to the contrary, we keep the latter solutions, but still evaluate
them according to the p original criteria, we obtain set f pẼpXL, p f , w̄qqq � Rp, which lies in the
same objective space as Np f pXqq and has the following property:

Proposition 4.4. f pẼpXL, p f , w̄qqq is a strong lower bound set to Np f pXqq.

Proof. Assuming TL � t1, ..., lu, ẼpXL, p f , w̄qq corresponds to Ql in Algorithm 16. This means
that for any x P ẼpX, f q, there exists x1 P Ql such that x P Extpx1q. Therefore, we have f pxq ©
f px1q. Thus for any f pxq P Np f pXqq, there exists f px1q P f pẼpXL, p f , w̄qq such that f pxq © f px1q,
establishing the result. �

Further on, we will call this strong lower bound Strong LocRes, as opposed to the weak variant
of the same restriction, which has the same set of feasible solutions, but is solved only for the main
p criteria. Let us recall that a strong lower bound set is not necessarily better than a weak lower
bound set when used as an incumbent set. Rather, it is a guarantee that all non-dominated points
lie in the union of the upper orthants associated with its elements, rather than in the incomparable
regions around it. In practice, because EpXLq contains close-to-empty-solutions which maximize
residual capacity, its image Np f pXLqq is not a very useful strong lower bound set. However,
using singleton upper bounds, computed by taking into account all remaining complex tasks, i.e.
all t P TC , we can improve on it significantly. Namely, we can remove from ẼpXL, p f , w̄qq any
solution, such that a strong upper bound on its set of extensions is dominated by another solution
from the same set. Formally:

Proposition 4.5. Let x P EpXL, p f , w̄qq, ux a singleton strong upper bound on Extpxq, and ©u:�
tpx1, xq P X2 | f px1q © uxu. Then f pEpẼpXL, p f , w̄qq,©uqq is a strong lower bound set on
Np f pXqq. In other words, filtering EpXL, p f , w̄qq by©u yields a strong lower bound set toNp f pXqq.

Proof. By Proposition 4.4, for each x P ẼpX, f q, there exists x1 P ẼpXL, p f , w̄qq such that x P

93

CHAPTER 4. APPLICATION PROBLEM

t1

t2

t3

 m1

 m2

 m3

 m4

t1

t2

t3

 m1

 m2

 m3

 m4

s1

s2

s1

s2

Figure 4.7: Visualization of the restrict-split restriction as applied to REF: assignments of complex
task t1 are restricted to site s1. In this case, we have T�

s1
� tt1u and T�

s2
� H

.

Extpx1q. For x P EpX, f q, let Restpx, Lq :� tx1 P XL | x P Extpx1qu, and RestpEpX, f q, Lq ��
xPEpX, f q Restpx, Lq. As long as filtering by ©u removes no element from RestpEpX, f q, Lq, it

yields a strong lower bound set. For any x1 P EpXL, p f , w̄qq, ux1 is a strong upper bound on Extpx1q,
meaning that for any x P Extpx1q, ux1

© x. Thus for any x1, x2 P EpXL, p f , w̄qq if f px2q © ux1 , then
there cannot be any x P EpX, f q such that x P Extpx1q, and thus x1 < RestpEpX, f q, Lq. �

4.2.2.2 Weak lower bound obtained from solving the Restrict-split variant

The adaptation of the restrict-split variant is fairly straightforward. For each t P TC , we choose
one s P S , and thus for each s P S we obtain a subset of T�

s � TC of complex tasks which become
local tasks for s and are thus added to the set of tasks TLpsq, as seen line 4 in Algorithm 20 and
illustrated by Figure 4.7. Profits and weights of assignments which are kept from the original
instance by this operation remain unchanged.

Algorithm 20 describes the computation of the restrict-split variant of REF using dynamic
programming. Once we have computed the heuristic assignment of complex tasks to subsystems,
we modify each subsystem instance, solve them independently, and pool the resulting solution sets
together.

Algorithm 20: Dynamic Programming Algorithm for solving the copy-split relaxation

of REF with decomposition.
input : pteNu,TC ,TL,M, S q

output: Np f pX1qq

1 S ubRes Ð pH1, ...,H|S |q

2 Let pT�
s | s P S q be the list of subsets of complex tasks restriced to each s P S

3 for s P S do
4 S ubRess Ð DPpteNu,H,TLpsq Y T�

s ,Mpsq, tsuq

5 return PoolpS ubResq

94

CHAPTER 4. APPLICATION PROBLEM

4.2.2.3 Weak lower bound sets obtained from greedily completing partial solutions

As a weak LB, the image of weak LocRes, i.e. f pẼpXL, f qq (or alternatively Np f pXLqq) would
perform poorly, but it can easily be improved. Indeed, it may contain solutions which still have
enough residual capacity to receive assignments of complex tasks. Even more such assignments
could be made on solutions of some subset of strong LocRes, i.e. some subset of ẼpXL, p f , w̄qq,
but doing all possible non-dominated assignments on the whole strong LocRes would amount to
solving the original problem, and our goal here is only to obtain a weak LB. We need to strike
the right balance between the richness of the set from which we complete solutions, the speed of
computing extensions, and the tightness of the obtained weak LB.

Let κpBq denote the set of solutions obtained by completing partial solutions from some set
B with further feasible assignments. In order to obtain an incumbent set quickly, κ should be
computable by a greedy algorithm. We use a ranking of complex tasks assignments variables
to complete, when possible, solutions obtained after combining solutions of the local problems.

Following Bazgan et al. (2009), we sort assignments by decreasing order of g j
tm

wtm
, for each objective

j P t1, ..., pu. We then globally sort the assignments in increasing order of the sum of their ranks
in objective-wise orders, as described by Algorithm 21.

For each solution x P B, we make feasible assignments of tasks to machine according to the
previously defined ranking. Because a task can be assigned only once and within site budget con-
straint, when a task has been assigned, we can clear the ranked list of its other assignments. We
remove all assignments to other machines of the task having just been assigned, and all assign-
ments to machines on a site that would have been saturated at that step.

It appears, from preliminary experiments, that κpẼpXL, p f , w̄qqq yields a far richer incumbent
set than κpẼpXL, f qq, because the solutions it contains admit more completions from additional
variable assignments, since they belong to this set because of their low budgets consumption.
However, computing κpẼpXL, p f , w̄qqq without a preliminary filtering proves very expensive, while
many quasi-empty solutions cannot get good enough completions. We can modulate the richness
of the set on which to apply greedy completions in three ways.

First, remembering that XL �
±

sPS XL, we may compute, for each s P S , ẼpXs
L, f q rather

than ẼpXs
L, p f , w̄qq. Second, for Bs the set of solutions computed for decomposable steps associ-

ated with s P S , rather than computing Npp f , w̄qp
±

sPS Bsqq, we may compute Np f p
±

sPS Bsqq.
Note that even if we have computed ẼpXs

L, f q as suproblem solutions, we can still compute
Ẽpp

±
sPS Bsq, p f , w̄qq, which will be richer than Ẽpp

±
sPS Bsq, f q.

Third, we can require that the f -dominated solutions to be completed by the greedy algorithm
still score better than some minimal f values. Indeed, many solutions from a sufficiently rich set,
be it either Epp

±
sPS ẼpX

s
L, f qq, p f , w̄qq or Epp

±
sPS ẼpX

s
L, p f , w̄qq, p f , w̄qq must still have too low

values on f for their completions to yield non-dominated solutions. We can filter them out using
an approach akin to ε � dominance. We will say that x α�dominates x1 if for all j P t1, ..., pu,
f jpxq ¥ f jpx1q � α � M, where M could be the maximum possible profit value, or could be f jpx1q.

95

CHAPTER 4. APPLICATION PROBLEM

Algorithm 21: Greedy wLB from completions of solutions to LocRes
input : B � XL, Asg

1 /*Asg denotes the list of ranked assignment variable indices */

output: κpBq
2 OutS et � tu

3 for x P B do
4 while x̃ P X & Asg ,H do
5 for pt,mq P Asg do
6 x̃ Ð x̃rx̃tm Ð 1s

7 Asg Ð Asgztpt1,mq P Asg | t1 � tu /*Remove all assignments of task t

to other machines to preserve feasibility */

8 for s P S do
9 if x̄s 0 then

10 Asg Ð Asgztpt,mq P Asg | m P Mpsqu /*If capacity of site s is

exceeded, remove all assignments of remaining tasks to

machines of site s. */

11 OutS et Ð OutS et Y tx̃u

12 return OutS et

96

CHAPTER 4. APPLICATION PROBLEM

We denote this filtering operation by ẼpB�, αp f qq. Finally one has to choose an α. A relevant
value is one such that the obtained incumbent, κpEpB�, αp f qqq, is nearly as rich as κpẼpB�, p f , w̄qq,
but is obtained in a sufficiently short time.

4.2.3 Experimental Results

The following experiments compare the time necessary to compute two weak lower bounds: the
solution of the restrict-split variant of REF, and the greedy lower bounds described in the previous
section. We will also assess the quality of these bounds as approximations of the original REF
instance. |Mpsq| will denote the number of machines on each site s, assuming that all s, s1 P S ,
|Mpsq| � |Mps1q|. Once again, the matrix of assignments of local tasks to machines of each site
is square, with, for all s P S , |TLpsq| � |Mpsq|. |S | denotes the number of subsystems, hence of
subproblems. |N| is the number de decision variables in the instance.

In Table 4.2, ApQ.(ε) denotes, as in Section C.3.4, the approximation quality of a set as mea-
sured by a posteriori ε-dominance. We did not perform experiments using the greedy completions
of ẼpXL, p f , w̄qq, because computing time for this weak lower bound proved to be prohibitive for
the instance sizes considered. Rather, we compared weak lower bounds obtained by greedily
completings three types of base solutions sets.

First, GrS LocRP denotes Ep
±

sPS ẼpX
s
L, f q, p f , w̄qq, which is obtained by solving the subprob-

lems for criteria f , but keeping the combinations of subsystem solutions which are non-dominated
for p f , w̄q. Second, GrS LocRPα denotes EpEp

±
sPS ẼpX

s
L, f q, p f , w̄qq, αp f qq, which is the same as

the previous one, where the result of the pooling is further filtered according to α-dominance as
described in Section 4.2.2.3. We use α � |TC |

|TL|
, and relation x ©α x1 ô f pxq © f px1q � α� gMax

where, for j P t1, ..., pu, gMax j � 1000 is the upper bound of the interval in which g j
tm is ran-

domly drawn, for any pt,mq P N. Third, GrWLocR denotes the greedy completions of ẼpXL, f q,
which is simply the weak LocRes lower bound.

p |Mpsq| |TC | |S | GrS LocRP GrS LocRPα GrWLocR
Time ApQ. (ε) Time ApQ. (ε) Time ApQ. (ε)

2 7 1 2 0.312 [0.08] 0.037 [0.02] 0.227 [0.06] 0.044 [0.03] 0.192 [0.04] 0.047 [0.02]
2 8 1 2 0.708 [0.23] 0.033 [0.02] 0.559 [0.15] 0.037 [0.02] 0.466 [0.10] 0.039 [0.02]
2 9 1 2 1.531 [0.50] 0.030 [0.01] 1.162 [0.39] 0.035 [0.02] 1.008 [0.31] 0.038 [0.02]
2 6 1 2 0.102 [0.03] 0.043 [0.02] 0.075 [0.01] 0.047 [0.03] 0.067 [0.01] 0.050 [0.03]
2 6 1 3 0.956 [0.52] 0.031 [0.02] 0.341 [0.14] 0.033 [0.02] 0.233 [0.06] 0.036 [0.02]
2 6 1 4 6.762 [3.76] 0.020 [0.01] 1.063 [0.41] 0.025 [0.01] 0.588 [0.11] 0.026 [0.01]
2 7 2 2 0.434 [0.13] 0.062 [0.02] 0.334 [0.10] 0.069 [0.03] 0.251 [0.06] 0.078 [0.03]
2 7 3 2 0.483 [0.17] 0.099 [0.02] 0.427 [0.18] 0.104 [0.02] 0.282 [0.07] 0.115 [0.03]
3 4 2 2 0.164 [0.15] 0.127 [0.05] 0.133 [0.11] 0.129 [0.05] 0.077 [0.05] 0.143 [0.05]
4 4 2 2 1.159 [0.52] 0.135 [0.04] 0.939 [0.48] 0.137 [0.04] 0.545 [0.28] 0.148 [0.04]

Table 4.2: Computing time (second) and approximation quality of the weak lower bound using
greedy completions of elements of the strong LocRes lower bound. Average values for 10 trials.

From Table 4.2, we can observe, first, the expected: the richer the set from which the com-
pletions are computed, the better the approximation quality (ApQ.(ε), to be minimized), but the
more expensive the computation becomes. Because the tradeoff between these two measurement

97

CHAPTER 4. APPLICATION PROBLEM

appears to be rather balanced, it is difficult to decide in advance which of these variants of greedy
weak lower bound is the best.

p |Mpsq| |TC | |S | RS LB
Time DP ApQ. (ε)

2 7 1 2 0.194 [0.058] 0.019 [0.018]
2 8 1 2 0.524 [0.109] 0.017 [0.013]
2 9 1 2 1.120 [0.330] 0.006 [0.007]
2 6 1 2 0.063 [0.011] 0.022 [0.020]
2 6 1 3 0.166 [0.033] 0.019 [0.014]
2 6 1 4 0.396 [0.082] 0.017 [0.009]
2 7 2 2 0.286 [0.067] 0.024 [0.018]
2 7 3 2 0.412 [0.120] 0.035 [0.015]
3 4 2 2 0.016 [0.006] 0.095 [0.051]
4 4 2 2 0.030 [0.010] 0.105 [0.046]

Table 4.3: Computing time (second) and approximation quality of the weak lower bound obtained
from solving the restrict-split restriction using DP. Average values for 10 trials.

Comparing results for the greedy lower bounds with results for the restrict-split variant in
Table 4.3, it appears that the latter dominates the former, in the sense that it provided a better
approximation quality, and was computed quicker for all considered instance parameters. It is
particularily interesting that it was computed even faster than the GrWLocR greedy lower bound,
which was obtained from greedily completing the solution of a uncoupled restriction with fewer
variables, and therefore solved faster than the restrict-split variant. This gives us good reasons to
believe that in applications, the latter will perform better than the former. However, this remains
to be tested empirically.

In Appendix B, we present additionnal lower bound concepts, which are based on correcting
upper bound solutions obtained by solving either the CS or the LR relaxations. These corrections
are performed according to greedy heuristics, removing in priority assignments which minimize
the aggregated profit to weight ratio, until constraints of REF that were violated by the solutions
to the relaxation become satisfied again.

In the next sections, we investigate ways in which the DP approach to solving REF can be
improved, using, among other devices, decomposition in independent decision sequences, incum-
bent sets and singleton upper bounds. In Section C.4.3, we propose improvements over the basic
DP method which we characterize as “Bottom-up” approaches, based on using decomposition in
the treatment of local tasks first, and delaying as much as possible the consideration of all resid-
ual capacity criteria at once. In Section C.4.4, we tackle choices associated with complex tasks
first, so as to decouple the problem entirely before solving instances defined by these decoupling
choices. Hence we characterize those approaches as “top-down”.

4.3 “Bottom-up” approaches based on Dynamic Programming

In this section, we present improvements of the DP algorithm which take advantage of the fact that
some subsequences of steps in the decision process are independent. In our case, subsequences

98

CHAPTER 4. APPLICATION PROBLEM

of steps associated with local tasks from each subsystem. This can take several forms. First,
the precomputation of an incumbent set from a decomposable restriction, which can be used in
bound reasoning to eliminate partial solutions. Second, a preliminary filtering of each state of the
decision sequence can be done considering only p � 1 criteria, by partitioning the set of partial
solutions according to the site in which the last assignment has been made. Third, we can initialize
the DP process with a strong lower bound set obtained from the decomposable restriction of the
problem to local tasks, effectively ignoring |S | � 1 criteria in all decision steps associated with
local tasks.

4.3.1 Filtering with a set of incumbent solutions

At each step of the decision sequence, partial solutions can be eliminated by comparing strong
upper bounds to the values of their extensions to the values of already known solutions. This is
similar to fathoming a node in branch and bound, where a subtree can be avoided if it is shown
that an upper bound over all solutions in this subtree is dominated by an incumbent solution. If
an incumbent solution is found to dominate the strong upper bound on extensions of a partial
solution, then all the extensions of this partial solution will be dominated by the known incumbent
solution. It is thus useless to pursue extensions of this partial solution, and we filter it out.

This procedure, akin to what was proposed by Figueira et al. (2013), is described in its applica-
tion to REF by Algorithm 22. The better the precomputed incumbent solutions, the more powerful
this filtering mechanism, in terms of the number of extensions eliminated by a successful test.
However, the cost of computing the incumbent has to be taken into consideration, as it weighs on
the overall performance.

4.3.2 Partial filtering

When generating new feasible solutions during the DP process, it is possible to filter subsets
of these new solutions without considering all |S | residual capacity criteria. In particular this
is the case when two solutions which did not previously dominate each other are modified by
assignments consuming resources in the same subsystem. Consider, for t P T , s P S ptq, Qtpsq the
set of states where task t was assigned to a machine of site s.

Proposition 4.6. for x, x1 P ẼpQt�1, p f , w̄qq such that τpx, δq, τpx1, δ1q P Qtpsq,

p f , w̄qpτpx, δqq ¨ p f , w̄qpτpx1, δ1qq if and only if p f , w̄sqpτpx, δqq ¨ p f , w̄sqpτpx1, δ1qq

Proof. Left to right is trivial. For right to left, consider that if τpx, δq, τpx1, δ1q P Qtpsq, then
for all s1 , s, w̄s1pτpx, δqq � w̄s1pxq and w̄s1pτpx1, δ1qq � w̄s1px1q. In other words, on the one
hand, if w̄spτpx, δqq ¨ w̄spτpx1, δ1qq, then w̄pτpx, δqq ¨ w̄pτpx1, δ1qq, and on the other hand, if
p f pτpx, δqq, w̄spτpx, δqq ¨ p f pτpx1, δ1qq, w̄spτpx1, δ1qqq, then in particular f pτpx, δqq ¨ f pτpx1, δ1qq.
The conjunction of these two facts yields the result. �

99

CHAPTER 4. APPLICATION PROBLEM

Algorithm 22: DP algorithm for solving REF with filtering using a set of incumbent

solutions and a strong upper bounds on extensions of partial solutions.
input : pTC ,TL,M, S q, I

1 /*I denotes the precomputed incumbent set */

output: Np f pXqq

2 Q0 Ð teNu

3 for t P t1, ..., t̃u do
4 for x P Qt�1 do
5 ux Ð a strong upper bound on Extpx,T q.

6 if Dx1 P I s.t. f px1q © ux then
7 for m P MpS ptqq do
8 x̃ Ð xrxtm Ð 1s

9 if w̄px̃q � 0 then
10 Qt Ð Qt Y tx̃u

11 if t t̃ then
12 Qt Ð ẼpQt, p f , w̄qq

13 else
14 Qt Ð ẼpQt, f q

15 return Qt̃

100

CHAPTER 4. APPLICATION PROBLEM

This observation allows the following modification of the DP procedure, described as Algo-
rithm 23, to produce the correct result. In essence this modification applies a sort of divide and
conquer heuristic to filtering set of states Qt, the latter being partitioned into |S | sets of states, to
which preliminary filterings are to be applied.

Algorithm 23: Partial filtering in the DP formulation of REF
input : pTC ,TL,M, S q

output: ẼpX, f q

1 for t P t1, ..., t̃u do
2 for x P Qt�1 do
3 for s P S ptq do
4 for m P Mpsq do
5 x̃ Ð xrxtm Ð 1s

6 if w̄px̃q ¡= 0 then
7 Qtpsq Ð Qtpsq Y tx̃u

8 Qtpsq Ð ẼpQtpsq, p f , w̄sqq

9 Qt Ð
�

sPS Qt

10 if t t̃ then
11 Qt Ð ẼpQt, p f , w̄qq

12 else
13 Qt Ð ẼpQt, f q

14 return Qt̃

4.3.3 “Kickstarting”

Assume that T , which is both the set of tasks and the set of steps in the DP decision process, is
ordered in such a way that all t P TL come before all t P TC , and that tC is the first complex
task. QtC can be computed by solving the subproblems associated with each s P S for criteria
p f , w̄sq and pooling the results together. Let l denote the last element of the set of local tasks, then
according to Algorithm 16,

Qtc � Ẽptτpx,mq P Xtc | x P Ql,m P MpS ptcqq Y etCu, p f , w̄qq

What we propose is a way to compute Ql using decomposition. The subsequence of the DP
decision process associated with TL can be seen as a DP process where both the intermediary and
target objective function are p f , w̄q. Thus Proposition C.3 implies that

Npp f , w̄qpXLqq � p f , w̄qpQlq

101

CHAPTER 4. APPLICATION PROBLEM

XL is exactly the feasible set of the local restriction of REF, and we know from section 3.2.2
that XL �

±
sPS Xs

L. Again by Proposition C.3, for any s P S , TLpsq � t1s, ..., lsu the set of local
tasks associated with site s, we have that

Npp f , w̄qpXs
Lqq � p f , w̄qpQlsq

Algorithm 24: “Kickstarted” dynamic programming for solving REF
input : pTC ,TL,M, S q

output: ẼpX, f q

1 for s P S do
2 Qls Ð DPpH,TLpsq,Mpsq, tsuq

3 QtC Ð Ep
±

sPS Qls , p f , w̄qq

4 /*Assume TC � ttC , ..., t̃u */

5 for t P ttC , ..., t̃u do
6 for x P Qt�1 do
7 for m P MpS ptqq do
8 x̃ Ð x̃rxtm Ð 1s

9 if w̄px̃q � 0 then
10 Qt Ð Qt Y tx̃u

11 if t |TC| � 1 then Qt Ð ẼpQt, p f , w̄qq

12 else Qt Ð ẼpQt, f q

13 return Q|TC |

4.3.4 Experimental Results

In experiments reported in Tables 4.4 to 4.6, we measure the performance improvement yielded
by implementing the modifications of the DP algorithm which we described in the previous sub-
sections. The implementation of partial filtering (denoted by Pt.Filt) in these experiments does
not require additional clarifications.

However, to apply the filtering of partial solutions using an incumbent set (denoted LB.Filt),
as described in Section C.4.3.1, we first need to choose among of the available notions of strong
upper bounds and weak lower bounds to constitute our incumbent. Our chosen notion of strong
upper bound over the extensions of a partial solution will be the greedy singleton upper bound
which we described in Section C.4.2.2 and proven to be an strong upper bound in Proposition
C.4. We used the two types of lower bound which we have already experimented with in Section
4.2.3. Namely, the GrS LocRα lower bound, and the RS lower bound, which is the solution of the
restrict-split restriction.

102

CHAPTER 4. APPLICATION PROBLEM

p |Mpsq| |TC | |S | |N| T. DP LB Time T. DP LB.Filt
Basic Greedy LB RS LB Greedy LB RS LB

2 4 2 2 48 0.434 [0.273] 0.014 [0.010] 0.021 [0.018] 0.343 [0.249] 0.220 [0.124]
2 5 2 2 70 3.316 [2.262] 0.037 [0.026] 0.035 [0.008] 0.942 [0.493] 0.822 [0.589]
2 6 2 2 96 12.896 [8.228] 0.089 [0.053] 0.088 [0.025] 2.594 [1.754] 1.950 [1.500]
2 4 3 2 56 1.390 [0.521] 0.014 [0.007] 0.015 [0.006] 0.638 [0.300] 0.600 [0.317]
2 4 4 2 64 2.420 [0.792] 0.014 [0.005] 0.034 [0.032] 0.808 [0.465] 0.593 [0.305]
2 4 5 2 72 5.299 [2.085] 0.021 [0.019] 0.028 [0.009] 2.200 [1.281] 1.217 [0.646]
2 4 2 3 72 20.940 [11.469] 0.027 [0.022] 0.018 [0.002] 4.884 [5.025] 2.457 [1.179]
2 3 1 4 48 5.010 [1.954] 0.010 [0.012] 0.005 [0.001] 1.053 [0.651] 0.870 [0.659]
2 3 2 4 60 35.278 [14.205] 0.011 [0.007] 0.007 [0.002] 2.848 [1.591] 2.258 [1.220]
3 5 2 2 70 8.633 [3.488] 0.087 [0.027] 0.087 [0.031] 3.504 [1.524] 4.259 [0.824]
3 5 3 2 80 28.138 [17.006] 0.316 [0.131] 0.158 [0.041] 14.468 [7.539] 11.951 [5.936]
3 4 2 3 72 136.061 [115.563] 0.131 [0.058] 0.040 [0.009] 29.965 [13.391] 33.937 [16.313]

Table 4.4: Filtering at each step using bound reasoning with the greedy UB over extensions of
partial solutions, and, as LB, either greedy extensions of LocRes solutions or the RS lower bound.
Average values for 10 trials.

p |Mpsq| |TC | |S | |N| |ND| T. DP
Basic Pt.Filt

2 4 2 2 48 17.950 [8.056] 0.434 [0.273] 0.380 [0.206]
2 5 2 2 70 23.150 [7.107] 3.316 [2.262] 2.702 [1.948]
2 6 2 2 96 39.050 [10.737] 12.896 [8.228] 12.327 [8.504]
2 4 3 2 56 19.100 [6.718] 1.390 [0.521] 1.145 [0.382]
2 4 4 2 64 24.800 [5.877] 2.420 [0.792] 2.004 [0.810]
2 4 5 2 72 29.350 [10.143] 5.299 [2.085] 4.712 [2.063]
2 4 2 3 72 25.500 [11.826] 20.940 [11.469] 20.503 [12.113]
2 3 1 4 48 11 [5.560] 5.010 [1.954] 4.392 [1.847]
2 3 2 4 60 25 [11.152] 35.278 [14.205] 33.487 [14.392]
3 5 2 2 70 173.800 [57.036] 8.633 [3.488] 8.835 [3.484]
3 5 3 2 80 467.800 [278.135] 28.138 [17.006] 28.375 [15.177]
3 4 2 3 72 203 [113.837] 136.061 [115.563] 157.179 [154.695]

Table 4.5: Using partial filtering over extensions built from tasks assignments in the same site, at
each step of the DP process. Average values for 10 trials.

Results reported in table 4.4 show that our DP algorithm benefits most from using filtering
using the RS lower bound as incumbent. Although it was in several cases more costly to compute,
it led in all cases to a quicker resolution of the problem, which, in the biobjective case, led to
solving the problem up to 15.6 times faster than the basic DP algorithm, and about 4 times faster
for p � 3 on the tested instances. Thus, filtering using an incumbent set obtained from a weak
lower bound seems to be a very reliable way to improve the performance of the DP based approach.

Experiments on partial filtering presented in Table 4.5 showed that, for p � 2, this trick
provides a slight but systematic improvement of average performance. For p � 3 however we did
not see an advantage to partial filtering. In any case, the average improvement yielded by partial
filtering was smaller than the standard deviation and thus probably not reliable in practice. We
believe there may be ways of further improving this idea by keeping in memory, from the first
partial dominance test, which dominance tests will lead to an incomparability when all partitions
of the set of states are pooled together for the main dominance filtering.

Finally, experiments reported in Table 4.6 reveal that kickstarting the DP process by initializ-
ing it with the strong LocRes lower bound computed by decomposition (the computation of this

103

CHAPTER 4. APPLICATION PROBLEM

p |Mpsq| |TC | |S | |N| T. DP T. DP. KS
Basic Basic LB.Filt

2 4 2 2 48 0.434 [0.273] 0.343 [0.154] 0.251 [0.122]
2 5 2 2 70 3.316 [2.262] 2.289 [0.937] 1.288 [0.530]
2 6 2 2 96 12.896 [8.228] 7.690 [1.734] 3.139 [0.876]
2 4 3 2 56 1.390 [0.521] 0.924 [0.596] 0.754 [0.400]
2 4 4 2 64 2.420 [0.792] 2.006 [0.791] 1.449 [0.467]
2 4 5 2 72 5.299 [2.085] 5.163 [1.197] 3.371 [0.945]
2 4 2 3 72 20.940 [11.469] 20.942 [9.059] 14.681 [6.392]
2 3 1 4 48 5.010 [1.954] 2.775 [0.866] 2.020 [0.647]
2 3 2 4 60 35.278 [14.205] 26.662 [12.918] 23.506 [11.313]
3 5 2 2 70 8.633 [3.488] 6.072 [2.047] 4.357 [1.276]
3 5 3 2 80 28.138 [17.006] 27.498 [12.885] 27.259 [12.702]
3 4 2 3 72 136.061 [115.563] 119.844 [59.523] 114.802 [56.841]

Table 4.6: “Kickstarted” dynamic programming algorithm, with bound reasoning and partial fil-
tering improvements. Average values for 10 trials.

p |Mpsq| |TC | |S | T. e� const T. DP T. DP LB.Filt T. DP. KS
NoDec Basic RS LB LB.Filt

2 4 2 2 0.640 [0.541] 0.434 [0.273] 0.220 [0.124] 0.251 [0.122]
2 5 2 2 0.976 [0.536] 3.316 [2.262] 0.822 [0.589] 1.288 [0.530]
2 6 2 2 2.519 [0.788] 12.896 [8.228] 1.950 [1.500] 3.139 [0.876]
2 4 3 2 0.662 [0.352] 1.390 [0.521] 0.600 [0.317] 0.754 [0.400]
2 4 4 2 0.846 [0.340] 2.420 [0.792] 0.593 [0.305] 1.449 [0.467]
2 4 5 2 1.333 [0.818] 5.299 [2.085] 1.217 [0.646] 3.371 [0.945]
2 4 2 3 1.314 [0.780] 20.940 [11.469] 2.457 [1.179] 14.681 [6.392]
2 3 1 4 0.317 [0.275] 5.010 [1.954] 0.870 [0.659] 2.020 [0.647]
2 3 2 4 1.006 [0.657] 35.278 [14.205] 2.258 [1.220] 23.506 [11.313]
3 5 2 2 19.534 [5.435] 8.633 [3.488] 4.259 [0.824] 4.357 [1.276]
3 5 3 2 60.296 [31.120] 28.138 [17.006] 11.951 [5.936] 27.259 [12.702]
3 4 2 3 27.269 [16.142] 136.061 [115.563] 33.937 [16.313] 114.802 [56.841]

Table 4.7: Comparing DP-based approaches to solving REF. Average values for 10 trials.

bound being of course counted in the computing time for KS DP) does allow some performance
improvement. We achieved additional performance improvements by combining kickstarting with
the use of filtering using the RS LB as set of incumbent solutions, and applying filtering both in
the local subproblems and when assigning complex tasks. Kickstarted DP works especially well
when the number of complex tasks is small in proportion of the number of local tasks. However,
in the opposite case, it appears to perform very similarly to the basic DP algorithm, especially so
when the number of criteria increases.

Table 4.7 summarizes the results obtained in this subsection, to determine the best “bottom-
up” method available. The clear winner is the approach filtering with the RS LB incumbent set
over the basic DP sequence, rather than the kickstarted one.

This may be surprising at first, but to understand it, one may note that occurrences of filtering
of partial solutions using the incumbent set in the decoupled subproblems of the KS approach were
virtually inexistent. Indeed, as partial solutions receive assignments, the upper bound over their
extensions becomes tighter. In a short experiment reported in Table 4.8 we consider an instance
with |Mpsq| � |TLpsq| � 4, |S | � 3 and |TC| � 2. We solved the basic, unisequential DP
algorithm with filtering using the RS LB. Elimination almost never happened before step 5, and
local subproblems only assign 4 tasks. Partial solutions of subproblem simply do not go through

104

CHAPTER 4. APPLICATION PROBLEM

S tp idx 1 2 3 4 5 6 7
El 0 [0] 0 [0] 0 [0] 0.4 [0.5] 9.4 [6.9] 65.6 [44.6] 90.2 [44.6]

S tp idx 8 9 10 11 12 13 14
El 187.6 [60.0] 345.4 [146.9] 569.4 [331.7] 799 [434.7] 1538.8 [984.1] 1840.2 [1182.2] 1865.2 [1050.8]

Table 4.8: Number of partial solutions eliminated at each step of the basic DP process, using
greedy UB and RS LB incumbent set. Average values for 5 trials.

enough assignments for the upper bound dominance test to succeed.

Further work is required for filtering using an incumbent set in the kickstarted approach, using
an upper bound that can eliminate partial solutions in earlier steps of the decision process. We have
observed that using the objective-wise optimum of the LP relaxation of the completion problem
tends to eliminate partial solutions earlier (and fewer in later stages), but it appeared too costly in
preliminary experiments. Yet, it hints at a possible way of improving this method.

To summarize, all dynamic programming-based approaches suffer major impairments when
|S | increases. This reflects the fact that an increasing |S | generates more incomparabilities between
partial solutions, which increases the number of partial solutions to be handled until the very last
stage. This remains the main flaw of the “bottom-up” approach to solving REF, which we have
not yet found a way to overcome. As a consequence, we will now explore methods which use
DP when only one residual capacity criterion is involved, i.e. when the problem is reduced to a
collection of restrict-split variants, as will be investigated in the last section of this work.

In the next section, we shift the perspective on solving the REF problem. We started by solving
it from the bottom up, starting from local task assignments and keeping sufficient residual capacity
to assign complex tasks. Next, we will investigate how preliminary coordination of the assignment
of complex task may allow for a faster resolution of REF than that available with generic methods.

4.4 “Top-down” approaches for solving REF

A central hypothesis in the decomposition approach to the optimization of complex systems is
that a collection of independent subsystem problems is significantly easier to solve than the whole
problem. If this discrepancy is sufficiently large, in particular if subproblems can be solved using
methods which specifically exploit their structural properties to reach higher efficiency, it may be
possible to solve not just the collection of subproblems associated with one variant, but several
of such collections, and in less time than a generic algorithm requires to solve the whole original
problem. Under some conditions, solving such collections of variants can lead to an exact solution
to the original MOIP problem.

105

CHAPTER 4. APPLICATION PROBLEM

4.4.1 Enumerating all ways of decoupling REF

Recall from Section 3.2.2 that the restrict-split variant of any instance of the GCP is defined by
assigning each coupling constraint to some subsystem s P S , yielding subset Ks � K of coupling
constraints involving variables from subsystem s, and in which we keep only variables xs free.
The restriction is thus formulated as

max f pxK̄ , xK f , e�K f
q

s.t. pxs
k, e

ss
kq P Xk @s P S ,@ k P Ks

xs P Xs @ s P S

or equivalently,

max f pxsK , xK f , e�K f
q

s.t. pxs
sK , x

s
Ks
q P X1s @s P S

where X1s � Xs X
�

kPKs
X1k, and X1k is a set such that xs

k P X1k if and only if pxs
k, e

ss
kq P Xk.

Note that the set S K of applications of K into S defines the set of all possible assignments of
couplings constraints to subsystems. Thus to each σ P S K corresponds one restrict-split variant,
and for Xσ the feasible set of any such variant, we have that Xσ � X. If we can prove, for a
particular coupled problem, that

�
σPS K Xσ � X, then the following fact ensures that we can solve

the original problem by solving all possible decoupled variants of the problem.

Observation 4.2. Let pXi |P Iq be a family of sets with Xi � X for each i P I, and f : X Ñ Rp. If�
iPI Xi � X, then

Ep
¤
iPI

EpX, f qq � EpX, f q

or equivalently for pY i | i P Iq with Y i � Y � Rp for each i P I, if
�

iPI Y i � Y, then

Np
¤
iPI

NpY iqq � NpYq

We consider the case of REF, with σ P S TC , the restrict split restriction of which is formulated
as follow. Further on, Xσ will denote the feasible set of a restrict split variant of REF for σ.

106

CHAPTER 4. APPLICATION PROBLEM

max
¸
tPT

¸
mPMpS ptqq

g j
tmxtm @ j P t1, ..., pu

s.t.
¸

mPMpS ptqq

xtm ¤ 1 @ t P T

¸
tPTpsq

¸
mPMpS ptqq

wtmxtm ¤ bs @ s P S

xtm P t0, 1u @ t P T, m P MpS ptqq

xtm � 0 @ t P TC ,m < Mpσptqq

Proposition 4.7. For some instance of REF with feasible set X and σ P S TC defining a restrict
split variant of REF with feasible set Xσ,

�
σPS K Xσ � X

Proof. � : This follows straightforwardly from the fact that 0 is an admissible value for xtm.

� : Let x P X. For each t, either for all m P MpS ptqq, xtm � 0, or not. If not, then consider t̄
and m P Mpt̄q such that xt̄m � 1. Then, x P X implies that for all m1 , m, xtm1 � 0. Thus for each
t P TC , there is a unique s P S such that for all m < Mpsq, xtm � 0. This means that for each x,
there is some σ P S TC such that x P Xσ. �

Thus we can solve an instance of REF with the simple procedure described by Algorithm 31:

Algorithm 25: Resolution algorithm enumerating all decouplings of REF

1 Out ÐH

2 for σ P S TC do
3 Out Ð Out Y ẼpXσ, f q

4 return ẼpOutq

To summarize, decoupling a problem amounts to fixing some variables to admissible values,
effectively turning coupling constraints into non-coupling, local constraints. Using notation previ-
ously introduced for restrict-split variants of coupled problems, we saw that the set S K of functions
σ associating each coupling to a particular subsystem describes an exhaustive exploration of all
ways of decoupling the original problem.

Tables 4.9 and 4.10 present results of an experiment where an instance of REF is solved by
enumerating all of S TC (since K � TC in this case). Instances are such that each site has the
same number |Mpsq| of machines. For each σ P S TC is solved as a whole (NoDec), and then
enumerating all restrict-split variants (Enum), which are solved by decomposition, subproblems
being solved using e-constraint method for p � 2, and the generic algorithm by Tamby and Van-
derpooten (2021) for p ¥ 3. This experiment shows that even in the biobjective case, enumeration
of S TC (column Enum&Dec) can be competitive and even faster than generic resolution when the
number of subsystems is relatively low compared to the size of subsystems. However, for smaller
subsystems but a larger value of S TC , this approach performs worse than the generic method.

107

CHAPTER 4. APPLICATION PROBLEM

p |Mpsq| |TLpsq| |TC | |S | |N| |S TC | |ND| T.e� const
NoDec Enum&Dec

2 5 5 2 2 70 4 25.725 [10.08] 0.826 [0.405] 0.713 [0.233]
2 6 5 2 2 84 4 32.25 [10.539] 1.031 [0.441] 0.866 [0.302]
2 6 6 2 2 96 4 37.775 [13.339] 1.688 [0.696] 1.425 [0.484]
2 7 6 2 2 112 4 41.05 [15.717] 1.609 [0.707] 1.535 [0.625]
2 7 7 2 2 126 4 53.775 [15.94] 2.415 [1.138] 2.248 [0.816]
2 5 5 3 2 80 8 27.925 [10.088] 0.946 [0.372] 1.639 [0.536]
2 5 5 2 3 105 9 44.525 [13.478] 2.123 [0.934] 1.904 [0.488]
3 5 5 2 2 70 4 203.325 [106.873] 23.567 [12.061] 7.699 [3.419]
4 4 4 2 2 48 4 234.9 [122.423] 45.449 [30.068] 14.632 [4.992]

Table 4.9: Instances with few “big” subsystems (average time for 10 trials)

p |Mpsq| |TLpsq| |TC | |S | |N| |S TC | |ND| T.e� const
NoDec Enum&Dec

2 2 2 2 4 32 16 9.075 [5.47] 0.096 [0.084] 0.47 [0.045]
2 2 2 1 6 36 6 8.425 [5.254] 0.06 [0.047] 0.216 [0.021]
2 3 3 2 4 60 16 21.675 [10.047] 0.565 [0.253] 0.77 [0.11]
2 3 3 1 5 60 5 18.625 [8.72] 0.398 [0.249] 0.236 [0.031]
3 3 3 2 4 60 16 131.475 [72.204] 10.293 [6.849] 1.929 [0.647]
4 3 3 2 4 60 16 483.6 [264.622] 117.289 [83.511] 37.164 [5.005]

Table 4.10: Greater number of ‘small’ subsystems (average time for 10 trials)

4.4.2 Pre-computation of independent dynamic programming states

The restrict-split variant can be solved by decomposition, and each of the subsystem problems
of this variant can be solved by DP. Thus, solving all possible restrict-split restrictions of the
original problem boils down to solving only DP subproblems with p � 1 criteria. By definition,
these subproblems are restricted to local tasks of some subsystem of the original formulation, in
addition to the new local tasks obtained by assigning complex tasks to a particular subsystem
according to σ P S TC .

Since most of the tasks in the original problem are not complex but local tasks, their treatment
will be the same in each node. It is well known that the output of a DP algorithm does not depend
on the order in which the decisions are taken. Without loss of generality, we can assume that
local tasks are always taken care of first, so that the |TL| first steps of the resolution of decoupled
problems are the same in each leaf-node of the decoupling branching scheme. Thus, these steps
can be precomputed: each of the subsystem specific subproblem in a leaf-node problem could
be kickstarted to the first task step corresponding to a complex tasks having been assigned to this
subsystem in the restrict-split variant. But contrary to the kickstarted method considered in Section
C.4.3.2, we now solve problems with only one residual capacity criterion.

We recall that TLpsq � T psq X TL, and we consider the feasible set Xs
L of subproblem s

restricted to local task variables, defined as :

Xs
L :� tx P t0, 1u|TLpsq| |

¸
tPTLpsq

¸
mPMpsq

xtm ¤ 1 &
¸

tPTLpsq

¸
mPMpsq

wtmxtm ¤ bsu (4.1)

Algorithm 26 describes the computation ofNp f pXqq. First, we compute Qs
L � ẼpX

s
L, p f s, w̄sqq

108

CHAPTER 4. APPLICATION PROBLEM

for all s P S , i.e. the solutions of the restriction of subproblems to local tasks which are non-
dominated for f and for w̄s, the residual capacity criterion local to their subproblem. Then for
each σ P S TC , we complete the resolution of the |S | independent subproblem with the tasks made
local to each of them by decoupling σ, and we compute the non-dominated subset of the cartesian
product of these solutions. Since the restrict-split problem has no coupling, this yields all the
efficient solutions of this decoupled version of the problem. We then compute the union of all the
non-dominated sets obtained in restrict-split variants, and the non-dominated subset of this union
is Np f pXqq.

Algorithm 26: Resolution algorithm enumerating all decouplings of REF with pre-

computation of local steps)

1 Qs
L Ð ẼpX

s
L, p f s, w̄sqq for each s P S

2 Out ÐH

3 for σ P S TC do
4 Outσ ÐH

5 for s P S do
6 Outs Ð DPpQs

L,H,T
σpsq,Mpsqq

7 /*DP is initialized with precomputed state Qs
0 */

8 Outσ Ð ẼpOutσ � Outsq

9 Out Ð Out Y Outσ

10 return EpOutq

4.4.2.1 Experimental Results

Table 4.11 reports |S TC | the total number of decouplings, |ND| the size of the non-dominated
set, T.Enum.DP the computing time of the enumerative method where the subproblems of each
restrict-split decoupling are solved using the DP, and T.Enum.DP.PreC the enumerative method
where the local parts are precomputed and passed to subproblems, at which point the DP procedure
is merely completed for remaining tasks.

As is apparent from results in Table 4.11, the joint use of dynamic programming and the pre-
computation of the DP subsequence which is common to all restrict-split variants leads to very
significant performance improvements. In the bi-objective case, for weakly coupled instances, we
solved some instances of the problem 4 to 8 times faster than the generic algorithm, and for p � 3,
we find 18 to 52-fold speed-ups relative to the generic method.

Finally, we compare the performance of the best methods obtained in Section C.4.3 with the
best “top-down” approach. Considering first instances solved in the previous section, we observe,
from results presented in Table 4.12 that in all cases, the top-down approach denoted Dec DP
PreC performs significantly better than the bottom-up approach denoted DP LB.Filt.

109

CHAPTER 4. APPLICATION PROBLEM

p |Mpsq| |Tpsq| |TC | |S | |S TC | |N| |ND| T.e� const T.Enum. DP T.EnDPPrec

2 5 5 2 2 4 70 22.3 [8.48] 0.692 [0.283] 0.607 [0.227] 0.132 [0.028]
2 6 6 2 2 4 96 38.7 [14.37] 1.495 [0.679] 1.211 [0.433] 0.452 [0.121]
2 4 4 2 3 9 72 23.55 [5.728] 0.87 [0.305] 0.763 [0.253] 0.151 [0.029]
2 3 3 3 3 27 54 21.3 [8.542] 0.684 [0.399] 1.344 [0.336] 0.157 [0.044]
3 4 4 2 2 4 48 78.5 [30.299] 5.256 [2.156] 1.413 [0.614] 0.075 [0.031]
3 4 5 2 2 4 56 128.2 [74.695] 11.943 [8.067] 3.705 [2.254] 0.216 [0.133]
3 4 4 2 3 9 72 213.1 [103.515] 20.346 [11.787] 4.331 [1.11] 0.387 [0.098]

Table 4.11: Computing time (in seconds) for solving the global problem with a generic method
(T.e � const), solving all restrict split variants with DP (T. Enum DP), and solving restrict split
variants with DP and using a pre-computation of shared subsequence (T.EnDPPrec). Average
values for 10 trials.

p |Mpsq| |TC | |S | |N| |S TC | |ND| T. e� const T. DP LB.Filt T. Enum
NoDec RS LB Dec DP PreC

2 4 2 2 48 4 17.950 [8.056] 0.640 [0.541] 0.220 [0.124] 0.026 [0.009]
2 5 2 2 70 4 23.150 [7.107] 0.976 [0.536] 0.822 [0.589] 0.146 [0.059]
2 6 2 2 96 4 39.050 [10.737] 2.519 [0.788] 1.950 [1.500] 0.319 [0.171]
2 4 3 2 56 8 19.100 [6.718] 0.662 [0.352] 0.600 [0.317] 0.130 [0.061]
2 4 4 2 64 16 24.800 [5.877] 0.846 [0.340] 0.593 [0.305] 0.462 [0.136]
2 4 5 2 72 32 29.350 [10.143] 1.333 [0.818] 1.217 [0.646] 0.794 [0.254]
2 4 2 3 72 9 25.500 [11.826] 1.314 [0.780] 2.457 [1.179] 0.208 [0.063]
2 3 1 4 48 4 11 [5.560] 0.317 [0.275] 0.870 [0.659] 0.027 [0.013]
2 3 2 4 60 16 25 [11.152] 1.006 [0.657] 2.258 [1.220] 0.155 [0.082]
3 5 2 2 70 4 173.800 [57.036] 19.534 [5.435] 4.259 [0.824] 0.430 [0.183]
3 5 3 2 80 8 467.800 [278.135] 60.296 [31.120] 11.951 [5.936] 1.032 [0.339]
3 4 2 3 72 9 203 [113.837] 27.269 [16.142] 33.937 [16.313] 0.585 [0.383]

Table 4.12: Comparing computing time (in seconds) with the best bottom-up approach and the
best top-down approach. Average values for 10 trials.

p |Mpsq| |TC | |S | |N| |S TC | |ND| T. e� const T. DP LB.Filt T. Enum
NoDec RS LB Dec DP Precomp

2 7 2 2 126 4 51.700 [18.723] 2.752 [1.216] 6.849 [3.758] 0.636 [0.175]
2 8 2 2 160 4 63 [10.745] 3.155 [0.432] 12.406 [3.793] 1.123 [0.181]
2 9 2 2 198 4 107.800 [39.524] 6.532 [3.688] 63.682 [51.077] 3.295 [1.214]
2 4 3 3 84 27 41.400 [21.188] 1.656 [0.843] 6.705 [4.812] 0.647 [0.151]
2 5 3 3 120 27 51.200 [12.127] 2.690 [0.766] 23.678 [10.855] 1.382 [0.280]
2 4 4 3 96 81 45.800 [15.284] 2.960 [1.427] 26.657 [17.241] 2.150 [0.643]
2 5 4 3 135 81 70.500 [17.079] 5.480 [3.206] 116.698 [83.236] 7.241 [1.799]
2 3 4 4 84 256 39.500 [14.354] 2.104 [1.191] 42.145 [34.344] 3.134 [0.539]
2 4 4 4 128 256 62.300 [21.617] 5.285 [1.865] 445.941 [419.369] 11.060 [2.721]
3 6 2 2 96 4 481.500 [203.468] 65.729 [27.388] 14.297 [7.151] 1.108 [0.497]

Table 4.13: Comparing computing time (in seconds) with the best bottom-up approach and the
best top-down approach, on harder instances. Average values for 10 trials.

110

CHAPTER 4. APPLICATION PROBLEM

We further considered “harder” instances, where we increased either the number of local tasks
and machines |Mpsq|, or the degree of coupling between the subproblems, with more subsystems
and more complex tasks. The superiority of the top-down approach, relative to the bottom-up
approach, was confirmed by results obtained on these instances and reported in Table 4.13. When
|Mpsq| increases, the top-down approach maintains an advantage over the e� constraint method.
However, for p � 2, when the degree of coupling increases, it is overcome, and e � constraint
remains the quicker method. In the next and last section, we pursue final improvements of the
top-down approach aiming at staying competitive with e� constraint.

4.4.3 Towards a branch and bound method for solving coupled problems

4.4.3.1 Dominance between decouplings

We have seen that in some cases, the full enumeration of S TC is already competitive with a generic
method. Thus, we can expect to reach good results by embedding it in a branch and bound ap-
proach, where branching is done not over the binary decision variables of the initial formulation,
but over additional decision variables restricting a coupling to a particular subsystem. That being
said, we remain wary of the two following facts:

1. a tree defined by branching over all possible restrictions of some coupling grows faster in
width than a binary tree.

2. a leaf of the tree enumerating the values of decoupling variables does not define a solu-
tion because, it merely restrict the possible values of the variables of the original problem.
Rather, it defines a decomposable instance of the problem, that is assumed to be solvable
quickly.

Single objective approaches to the optimization of complex systems rely on the notion of coor-
dination, i.e. of modifications of the subproblems which allow the independent resolution of these
subproblems to yield a feasible solution to the global problem. Decouplings, which correspond to
restrict-split variants in the generic form of the integer coupled optimization problem, consist in
such coordinations. When solving single objective REF, we may consider the optimal value of an
instance, and deduce the decoupled variant from which it is obtained. If for each instance, there is
a best decoupling, that which is associated with the optimal value, then we may look for ways to
either make a guess about which decoupling to pursue first, or to use branch and bound techniques
to eliminate decouplings which we could prove would not lead to the optimal solution.

In the multiobjective case, what would a best decoupling mean? Conversely, would we be
able to eliminate some decouplings in hopes to shorten the enumeration of S TC ? Because we will
compare sets of non-dominated points obtained by solving various restrict-split instances, let us
define the notion of set dominance.

Definition 4.1. Let p P N, A, B � Rp. A dominates B if and only if for all y P B, there exists some
y1 P A such that y1 © y.

111

CHAPTER 4. APPLICATION PROBLEM

p |Mpsq| |Tpsq| |TC | |S | |N| |S TC | Lvs dtd ND (%) Lvs dtd Lvs (%)
2 4 3 3 4 96 64 88.906 [6.050] 82.969 [9.937]
2 4 3 4 3 84 81 89.383 [4.773] 84.444 [6.473]
2 3 3 4 4 84 256 96.836 [0.978] 95.117 [2.102]
2 3 2 4 5 90 625 98.224 [0.837] 95.552 [3.528]
2 4 4 5 4 144 1024 98.315 [0.373] 95.850 [1.436]
3 3 3 2 4 60 16 48.625 [14.432] 41.634 [18.246]
3 3 3 3 4 72 64 71.914 [10.503] 62.711 [14.929]

Table 4.14: Proportion of dominated decouplings as a function of various instance parameters.
Average values for 40 trials.

Let σ P S TC identify one of the possible restrict-split instances, with feasible set denoted Xσ,
a restriction of the original feasible set X. If it was the case that for all σ P S TC , Np f pXσqq

dominates Np f pXτqq, then σ would obviously be the best decoupling. However, this is extremely
unlikely if the profits associated for each criterion with task assignments are uncorrelated.

Conversely, we can determine a decoupling σ P S TC to be undesirable a posteriori, either if
it is dominated by Np f pXqq, or if there exists τ P S TC such that Np f pXτqq dominates Np f pXσqq.
The second case of course implies the first case by transitivity. In both case, we may be able to
use multiobjective branch and bound reasoning to avoid enumerating all decouplings. However, if
only the first case is met, because it may be that only the union of non-dominated sets associated
with a subset of leaf-instances can dominate Np f pXσqq, a heavier computational effort will be
required for a successful bound test.

In the following experiment, we will solve a number of instances and measure a posteri-
ori the proportion of leaf instances such that their non-dominated set is dominated by the non-
dominated set of the whole problem (column Lvs dtd ND), and proportions of leaf instances
such that their non-dominated set is dominated by the non-dominated set of another leaf-instance
(column Lvs dtd Lvs).

Results are reported in Table 4.14. We found, as is necessary, that Lvs dtd Lvs is always
smaller than Lvs dtd ND, but Lvs dtd ND was surprisingly large, although profit coefficients
were chosen randomly and uncorrelated, it appears that an overwhelming majority (up to about
96% in our experiments) of decouplings can be dominated by a single other decoupling.

This makes possible to consider a branch and bound (BB) approach to REF in which we would
branch over the decisions to assign complex tasks to sites, rather than to machines. Thus, we now
present branch and bound (BB) notions directly in the multiobjective case, and in a way that will
allow us to easily introduce the unusual ‘decoupling” branching scheme particularily suited for
decomposition.

112

CHAPTER 4. APPLICATION PROBLEM

4.4.3.2 Arborescent search and branching

Let T � PpNq be a set of subsets of variables indices. These will define, for each level of the BB
tree, the subset of variables which will be fixed to some values. In general, T needs not define a
partition of N, however it must be the case that

�
tPT t � H, so that we do not assign values to

variables more than once. Let G � pV, Eq be a tree of depth |T |, where ν P V is called a node. To
each node is associated a restriction of the original optimization problem, with Xν the feasible set
at node ν. E is such that for all ν, ν1 P V , if pν, ν1q P E then Xν1 � Xν. For each ν in the tree such
that depthpνq � t, for each ν1 such that pν, ν1q P E, and u an evaluation of all decisions variables
in t,

Xν1 P tX P PpXνq | @x P Xν,@i P t, xi � uiu

In other words, each child of a given node of depth t has the subvector of variables correspond-
ing to t fixed to some value. Let us now explain how these valuations are defined.

When formalizing a branch and bound resolution method with branching over subsets of vari-
ables, one can make use of additional variables subvectors xt for t P T representing sets of vari-
ables. At each level t P T , a branching decision must be made, i.e. an assignment of the variables
xi for i P t. Borrowing notation from DP (cf. Section C.4.1.2), the set of branching decisions that
can be made at level t will be written ∆t, and τpx, δq will be the solution obtained by modifying
x according to decision δ, i.e. to each δ P ∆t corresponds one assignments of the whole variable
subvector xt � pxi | i P tq. Thus, children node of node ν of depth t, as defined by the feasible sets
of their associated problems, are

Xν1rxtÐτpxt ,δqs | δ P ∆t
(

where Xν1rxtÐas �

x P Xν | xt � a
(

Example 4.4. Consider a coupled problem with feasible set X �, S a set of subsystems, TC a set
of complex tasks. The partition TC is defined so that each of its elements is the set of variables
associated with a coupling. Thus TC � ttpt,mq | m P MpS ptqqu | t P TCu, i.e. each depth of the
tree is associated with a complex task, and more precisely with the subset of variables coupled by
the coupling. Let us define ∆t � S ptq the set of branching decisions associated with each t P TC .
Taking decision s P S ptq will be represented by τpxt, sq � xrxtm Ð 0 | m P MpS ptqqzMpsqs, i.e.
all assignments of task t to machines which are not in the chosen s are set to 0. Then given node ν
at depth t � 1, children nodes ν are defined by tXνs | s P δtu, with Xνs :� tx P Xν | xt � τpxt, squ.
Figure C.13 contrasts this sort of decoupling branching with the binary branching that is classical
in branch and bound.

The decoupling branching scheme thus defined is not, in the case of REF, such that all variables
are fixed in the problems associated with its leaf nodes. This is no problem per se, as long as we
have a method to solve efficiently the leaf node instances. Because, in our cases, these instances
are restrict-split variants of REF, we can solve them using decomposition, DP and precomputation
of DP subsequences for subproblems, as previously described.

Two properties are of particular interest for BB resolution methods, exhaustivity and exclusiv-

113

CHAPTER 4. APPLICATION PROBLEM

Figure 4.8: Binary branching (top) versus decoupling branching (bottom)

ity of branching, defined as follows:

Definition 4.2. E is exhaustive if and only if for all ν P V¤
ν1s.t.pν,ν1qPE

Xν1 � Xν (4.2)

Definition 4.3. E is exclusive if and only if for all ν1, ν2 such that pν, ν1q P E, pν, ν2q P E

Xν1 X Xν2 � H (4.3)

A BB algorithm is correct if the branching scheme is exhaustive. It needs not be exclusive,
but exclusivity generally allows for better performance as it avoids redundancy. However, in cases
where a particular branching scheme can yield a significantly smaller tree than usual exclusive
branching schemes (e.g. branching over binary variable evaluations), with still sufficiently easy
node-problems, it may be worth considering a non-exclusive branching scheme. This challenge is
undertaken by designing sets of decisions which perform the adequate coordinations.

4.4.3.3 Fathoming a node in the branch and bound search

Let us introduce the implicit enumeration trick used in BB (without loss of generality we consider
maximization). Consider LB � Rp a set of values of feasible solutions, such that for all y P LB,
there does not exist any y1 P LB, y1 © y. At any given moment in the development of the method,

114

CHAPTER 4. APPLICATION PROBLEM

(a) Single objective case (b) Biobjective case

Figure 4.9: The notions of search region, search zones and separation illustrated in single and
biobjective cases. In case (b), search zones are defined by knee points n1 to n5, deduced from the
lower bound tl1, ..., l4u and some objective-wise upper bounds

LB (a weak lower bound) will be the set of the best solution values discovered so far, called the
incumbent set. We note S R the subset of Rp in which there may still be solutions of interest to be
found, i.e. solutions which are not dominated by elements of LB. Formally S R � ty P Rp Dy1 P
L, y ¨ y1u � pLB � R

p
¡q, where Rp

¡ � tx P Rp | x ¡ 0u. This notion was introduced as the
search region by Klamroth et al. (2015). If p � 1, |LB| � 1, so S R is simply the real half-line
anchored in some l P R such that LB � tlu. If p ¥ 2, S R is defined as the union of subsets of Rp

called zones. These are anchored in knee points defined by p-uples of incumbent points or partial
solutions. They are the smallest set Z of points in Rp such that

�
zPZptzu ` R

p
¡q � S R.

The branch and bound principle is then the following: if one can prove that f pXνq X S R � H,
one shows that searching Gpνq, the subtree rooted in node ν, cannot lead to the discovery of
new non-dominated points. Therefore, ignoring this subtree will not prevent the enumeration of
Np f pXqq. This is called a separation problem. Ehrgott and Gandibleux (2001), following Sourd
and Spanjaard (2008), proposed to prove the absence of interesting solution in the subtree by
enclosing f pXνq in an upper bound set U, thus proving that pUB � R

p
¡q X S R � H. This is

illustrated in both single and multiobjective cases by Figure C.14.

For each node ν, let UBν be an upper bound set to Np f pXνqq. Then by transitivity of domi-
nance, it is an upper bound to f pXνq. Since for all ν1 with pν, ν1q P E, it is the case that Xν1 � Xν,
we also have f pXν1q � f pXνq. Thus we know that no solution x found in the subtree rooted in ν
can be such that f pxq P ty P R | Dy1 P UBν, y ¡ y1u �: UB � R

p
¡. In other words, for Gpνq the

subtree of G rooted in ν,

@ν1 P Gpνq, f pX1νq X UBν � R
p
¡ � H (4.4)

The separation problem has been presented by Sourd and Spanjaard (2008) as that of finding
a separating function h : Rp Ñ R separating the feasible set as bounded by the upper bound set
from the search region, in the sense that

115

CHAPTER 4. APPLICATION PROBLEM

#
hpyq ¥ 0 @y P f pXνq
hpyq 0 @y P S R

(4.5)

A separating function is in general non-convex, reflecting the complexity of an hypersurface
separating f pXνq from the current incumbent set may, when such a surface exists. In practice, the
separating function will be computed piece by piece. Each of these pieces defines a cone - which
in extreme cases can be a half-space, such that there can be no feasible solutions within that cone.
One way to ensure this condition is to generate these cones together with upper bound points. If
these upper bound points are supported by hyperplanes, the pieces will be hyperplanes. Thus the
following is a separating function (Sourd and Spanjaard (2008)):

hνΛpyq � min
λPΛ
pmax

xPXν
xλ f pxqy � xλyyq (4.6)

where Λ � Rp and xλ, yy �
°p

j�1 λ jy j. The image of a supported solution is an upper bound
point, so any y P Rp such that hν

Λ
pyq 0 is above the hyperplane supporting the optimum of

maxxPXνxλ f pxqy for some λ P Λ. In other words it is unfeasible at node ν. Note that it would
also be the case for supported solutions of the linear programming relaxation of the problem under
consideration at node ν. Non-supported upper bound points still provide a set of cones that can be
used for separation, using the following separating function:

hνpyq �

#
1 if Dy1 P UB, y1 ¨ y

�1 otherwise
(4.7)

The reasoning is even clearer in this case. Given that no solution down in the subtree rooted at
ν can dominate an upper bound point y1 computed at ν, any point that would dominate y1 is to be
considered unattainable at ν, in the sense that there exists no solution x P Xν such that y1 ¨ f pxq,
or in other words, such that y1 P t f pxqu `Rp

¥. In any case, to state that a point y in unattainable at
ν, all we need is one piece of the separating function, either a λ such that maxxPXνxλ f pxqy ¤ xλyy,
or maxxPXRν xλ f pxqy ¤ xλyy, or one upperbound solution y1 such that y © y1, where XR

ν is the
feasible set of the linear programming relaxation the problem associated with node ν.

The approach to fathoming by bound that is exemplified by both Sourd and Spanjaard (2008)
and Parragh and Tricoire (2019) is the following: if a separation function is found between S R
and UB, the node is fathomed. The emptiness of S R X f pXνq is guaranteed by the fact that
f pXνq � pUB � R

p
¥q. If no separating function is found, branching must occur. Parragh and

Tricoire (2019) note that even when separation is not possible, the hyperplanes generated while
searching for a separating function provide information restricting the subspace of the objective
space where non-dominated points may lie. This leads, in their line of work, to objective space
branching.

Our own approach also aims at using information gained by generating segments of a separat-

116

CHAPTER 4. APPLICATION PROBLEM

ing function, but it differs from the other approaches in how it defines fathoming. We rely on the
notion of search zone elimination that aims at providing two advantages. First, search zone elimi-
nation is valid for a whole subtree, and thus any child node will inherit only the zones which were
not found to be unattainable at its parent node. Second, the set of upper bound points necessary to
show that some zone is unattainable needs not constitute a strong upper bound set.

Given a node ν, consider Zν the set of zones to be investigated at node ν. We call these zones
active at node ν, and will see that oftentimes, S Rν :�

�
zPZνptzu ` R

p
¡q is a lot smaller than S R.

As hinted at earlier, in practice, we do not compute the whole separating function at every node.
Rather, we generate pieces of the separating function, and for each piece, we try to eliminate as
many search zones as possible. We do this until either separation is achieved, or the procedure for
generating pieces of the separating function terminates.

For the purpose of our implementation, let us define the function hpc, yq : PpRpq�Rp. Where
c � Rp is a piece of the separating function that is a cone: either the upper-right quadrant of a
non-supported upper-bound solution, or the halfspace above the supporting hyperplane of an upper
bound solution.

hpC, yq �

#
1 if y P C

�1 otherwise

Algorithm 27 describes the process of generating cone-like pieces of the separating function and
using them to prove that S RY Xν � H.

Algorithm 27: Separation Algorithm (Separate)
input : ν a node, Cν a set of cones generated as node ν

output: 1 if the separation succeeds, 0 otherwise

1 Zν Ð Zν� where ν� is the father node of ν in G

2 for c P C do
3 for z P Zν do
4 if hpc, zq � 1 then
5 Zν Ð Zνzz

6 if Zν � H then
7 return 1

8 return 0

Note that even when we fail to separate Xν and S R, we may still be able to delete some zones
from Zν. This information is useful, because for any ν1 such that pν, ν1q P E, Xν1 � Xν. So, if for
some z P Zν, tzu ` R

p
¡ X Xν � H, then tzu ` R

p
¡ X Xν1 � H. Thus there is no point in further

investigating, in Gpνq, a zone that has been proven unattainable at node ν. The zones which remain
active after the procedure has been applied are passed on to the children nodes ν1 of ν.

117

CHAPTER 4. APPLICATION PROBLEM

4.4.3.4 Application to the resolution of biobjective REF

The enumeration of all decouplings described in Section C.4.4.1 will be performed as an arbores-
cent search, in which leaf-nodes are associated with feasible sets Xσ for σ P S TC . First, we
compute, as an incumbent set, the non-dominated set of one restrict-split variant, that which max-
imizes the heuristic described in Section C.3.4. Of course, we will not be solving this variant
again during the arborescent search. We also pre-compute, as in Section C.4.4.2, the local restric-
tion which we will use to initialize each leaf-node problem. To use our BB approach, the following
assertion is needed:

Observation 4.3. Proposition C.5 implies that the decoupling branching scheme is exhaustive.

We explore this arborescence with a depth first strategy. At each intermediary node, we try to
eliminate active search zones at this node, separating them with the supporting hyperplanes of so-
lutions to weighted sum scalarizations of the linear programming relaxation of the node problem.
The weight vectors orienting these hyperplanes are generated according to the dichotomic method
for the generation of supported solutions. Because we need to limit the number of supported so-
lution we compute at each node, we defined an ε-dominance threshold. When two consecutively
generated supported solutions ε-dominate one another for a value of ε smaller than this threshold,
we stop. We tuned the value of the threshold manually so as to maximize the ratio of the number
of zone eliminations over the number of generated supported points.

Note that we do not update the search regions when new feasible solutions are found in leaf
nodes, because this process proved too costly in preliminary experiments. The overall procedure
is described by Algorithm 28, where σν P S TC denotes the assignment of complex tasks to sites
which is associated with leaf node ν, and DPpreComp denotes the sub-procedure associated with
lines 6 to 9 of Algorithm 26, where a restrict-split variant is solved using DP initialized with the
precomputed decision subsequences associated with local tasks.

In the following experiment, we compare the time needed to solve REF using the e-constraint
method, enumerating all restrict-split variants with precomputation of the local subproblems as in
C.4.4.2, with the running time of the decoupling branching approach. This experiment is limited
to the biobjective case, so as to take advantage of the dichotomic scheme for generating pieces of
the separating hypersurface. Instances are generated in the same way as for previous experiments
with REF. In Table 4.15, T. Enum. BB denotes the decoupling branch and bound approach, with
#S aved denoting the sum of the number of leaf nodes in the subtrees which were avoided thanks
to bounding.

We can observe that for all tested series of parameters except the last one, we found the ap-
proach with bounding to perform slightly better than the enumeration of restrict-split variants with
partially precomputed dynamic programming. In cases where the number of restrict-split variants
to be solved was too high to allow the enumerative approach to beat the e-constraint method, us-
ing BB tricks could not reverse the tide, and e-constraint remains superior. Because we did not
attempt to enrich the search region with feasible solutions obtained at leaf-nodes, we were limited

118

CHAPTER 4. APPLICATION PROBLEM

Algorithm 28: Decoupling branch and bound
input : L an incumbent set, QL � pQ

s
L | s P S q the precomputed last steps of each local

tasks subproblem

output: ẼpX, f q

1 H Ð ν0 /*H is list nodes to be explored, ν0 the node associated with

feasible set X of the original problem */

2 S R Ð InitializeS RpLq /*The search region is initiliazed using the

incumbent set L */

3 Out � L /*The set of results is initialized with the solution of the

already computed restrict-split variant */

4 while H ,H do
5 νÐ headpHq

6 if ActiveZonespνq ,H then
7 if Childrenpνq ,H then
8 /*This is an intermediary node */

9 if S eparatepν, S R, L, S q � 0 then
10 for ν1 P Childrenpνq do
11 ActivesZonespν1q � ActiveZonespνq

12 H Ð H YChildrenpνq

13 else
14 /*This is a leaf node */

15 if This decoupling doesn’t define the restrict-split solved as L then
16 Outν � DPpreComppQL, σνq

17 Out Ð EpOut Y Outνq

18 H Ð Hztνu

19 return Out

|Mpsq| |Tpsq| |TC | |S | |N| |S TC | |ND| T.e� const T.Enum. DP.PreC T.Enum. BB
NoDec Time #S aved Time

4 3 3 4 96 64 40.10 [12.11] 2.50 [0.91] 1.41 [0.18] 7.20 [10.73] 1.13 [0.17]
4 3 4 3 84 81 35.85 [9.80] 1.97 [0.68] 1.72 [0.13] 28.35 [30.23] 1.19 [0.24]
3 3 4 4 84 256 40.90 [16.70] 2.02 [1.20] 3.76 [0.25] 56.11 [74.31] 2.99 [0.73]
3 2 4 5 90 625 38.70 [11.85] 1.19 [0.74] 5.36 [0.56] 152.32 [218.91] 4.41 [1.46]
4 4 5 4 144 1024 78.05 [18.56] 5.53 [1.73] 78.89 [10.09] 272.80 [326.90] 72.67 [17.74]
4 4 4 5 160 625 105.75 [36.21] 8.62 [3.13] 59.56 [8.85] 101.25 [179.18] 60.81 [16.98]

Table 4.15: Computation time (in seconds) for the decoupling branch and bound approach to solv-
ing biobjective REF, as compared with the e-const approach and the enumeration of all restrict-
split variants. Average values for 20 trials.

119

CHAPTER 4. APPLICATION PROBLEM

in our abilities to fathom nodes by the initial incumbent, and because of the experiment performed
in Section 4.4.3.1, we have reasons to believe that we, in fact, only managed to eliminate a small
portion of dominated leaves. Further work is thus required, both beyond the biobjective case, and
thus using other upper bound notions, and to integrate quicker or more selective update of the
search region when feasible solutions are obtained.

4.5 Conclusions and perspectives

In this chapter, we have explored a wide array of methods aimed at efficiently solving a discrete,
multiobjective complex systems problem we called REF. Starting from the definition of a dynamic
programming algorithm to solve REF, we observed that this approach suffered from an increase
in the number of sites, corresponding to additional criteria introducing incomparabilities between
states of the DP process. We proposed to tackle this issue in two ways.

First “bottom-up”, trying to eliminate as much partial solutions as possible while relying only
on local information. We used filtering using lower bound computed from the local restriction
of the problem, and a kickstarted method in which we obtained the first step of the DP process
associated with a complex task by aggregating results of subproblems which were solved using
only local information.

Second, we proposed a “top-down” approach, the basic version of which is an exploration of
all possible assignments of complex tasks to sites, which are sufficient to decouple an instance
of REF. The number of instances to solve in this approach obviously grows quickly with the
number of complex tasks and of sites. To compensate for this, we used DP, which efficiently
solves instances with p � 1 criteria, and we precomputed the final stage of the local part of the
problem, used to solve as many very small p� 1 criteria DP problems as there are decouplings.

In both cases, we precompute the local part of REF, and we pass it on the a second phase of
the computation. The duality between the two approaches is clear: the number of criteria, and thus
of tests between incomparable DP states in the bottom-up approach is traded for the number of
instances to solve in top-down approach. Our experiments revealed the best top-down approach to
perform significantly better than the best bottom-up approach.

We attempted to improve the top-down approach further by presenting the enumeration of
decouplings in the form of a branch and bound search, where branching is done on the decision of
assigning a complex task to a site. We obtained encouraging but contrasted and limited results in
the biobjective case, which invite further research.

120

General conclusions and perspectives

This work has explored the multiobjective optimization of complex systems. We have broken
down the subject into three main topics. First the combination of solutions obtained from the
resolution of independent subproblems, then the use of decomposition to provide lower and upper
bounds to the non-dominated set of a complex system MO problem, and finally we have developed
applications of decompositions for the resolution of a particular complex system optimization
problem, named REF.

In Chapter 2, we achieve significant performance improvements in combining and filtering sets
of solutions to optimization problems. This operation is a cornerstone of methods we developed
further on. We put forth two main approaches to solving this problem. The first attempted to avoid
the sorting of the whole set sum, and deduce, from the sorting of individual sets, a dominance
preserving order over combinations of solutions, which allows for faster dominance filtering of
the set of combinations. Another approach, which did not perform as well as the previous one,
involved grouping points in the sets to be combined into boxes. Although we have considered
multiple algorithms to produce these boxes - some of which allowed for good results in applying
box-based dominance relations, there is room for improvement in this matter. We have managed
to provide a box-building algorithm, the parameters of which had to be tuned so as to provide
good overall performance, albeit within to confines of a particular number of criteria. Further
work should investigate whether such a box-based method could be devised without parameters,
or with parameters, the values of which would remain relevant across any number of criteria.

Decomposable relaxations and restrictions of the original problem, presented in Chapter 3,
proved to provide a very good approximation of the set of non-dominated solutions of the generic
coupled problem. We also showed that the speed up of the computation of the bounds which is
allowed by decomposition scales well with both the size of the instances and the number of cri-
teria. This strand of research should be pursued by putting forth more refined notions of lower
and upper bounds, that could be adapted to problems in which the coupling between subsystems
is more complex than the one we assumed. These would include using partially relaxed or mixed
constraints such as surrogate relaxations, or supported solutions which could be computed using
existing methods in single objective Lagrangean relaxations. We left untouched the subject of
multiobjective Lagrangean duality, because it has been developed mostly in the continuous case,
which seemed more foreign to our application cases that methods we could readily develop. How-
ever, intersections between this line of inquiry and our own work are to be pursued.

121

CHAPTER 4. APPLICATION PROBLEM

Chapter 4 provided several approaches to integrating decomposable optimization and dynamic
programming in a “bottom-up” fashion, both breaking down the DP process into several indepen-
dent subsequence, and to quickly obtain lower and upper bounds that allow the elimination of
partial solutions in large number. For p ¥ 3, the relevance of DP was supported by the cur-
rent limitations of generic algorithms. Although in most cases we achieved competitiveness for
p � 2 as well, we observed that as the number of subsystems, and thus the size of DP states, in-
creased, only approaches which used DP for fully decoupled problems could beat the e-constraint
method. This motivated so called “Top-down” approaches, where we enumerated fully decoupled
variants of the original problem so as to exhaustively cover its feasible set. We initiated a strand
of work combining this enumeration of decouplings with multi-objective branch & bound, which
gave promising but limited results in the biobjective case, and which we hope to pursue in future
research.

122

Bibliography

Aneja, Y. P. and Nair, K. P. (1979). Bicriteria transportation problem. Management Science,
25(1):73–78.

Bazgan, C., Hugot, H., and Vanderpooten, D. (2009). Solving efficiently the 0–1 multi-objective
knapsack problem. Computers & Operations Research, 36(1):260–279.

Bazgan, C., Jamain, F., and Vanderpooten, D. (2013). On the number of non-dominated points of
a multicriteria optimization problem. Discrete Applied Mathematics, 161(18):2841–2850.

Bazgan, C., Jamain, F., and Vanderpooten, D. (2015). Approximate Pareto sets of minimal size
for multi-objective optimization problems. Operations Research Letters, 43(1):1–6.

Bellman, R. (1952). On the theory of dynamic programming. Proceedings of the National
Academy of Sciences of the United States of America, 38(8):716.

Bentley, J. L., Clarkson, K. L., and Levine, D. B. (1993). Fast linear expected-time algorithms for
computing maxima and convex hulls. Algorithmica, 9(2):168–183.

Bertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P., and Bertsekas, D. P. (1995). Dynamic pro-
gramming and optimal control, volume 1. Athena scientific Belmont, MA.

Boland, N., Charkhgard, H., and Savelsbergh, M. (2017). A new method for optimizing a lin-
ear function over the efficient set of a multiobjective integer program. European journal of
operational research, 260(3):904–919.

Borges, P. C. and Hansen, M. P. (2002). A study of global convexity for a multiple objective
travelling salesman problem. In Essays and surveys in metaheuristics, pages 129–150. Springer.

Changkong, Y. and Haimes, Y. (1983). Multiobjective decision making. amsterdam: Ed.

Chen, W.-M., Hwang, H.-K., and Tsai, T.-H. (2012). Maxima-finding algorithms for multidimen-
sional samples: A two-phase approach. Computational Geometry, 45(1-2):33–53.

Colson, B., Marcotte, P., and Savard, G. (2007). An overview of bilevel optimization. Annals of
operations research, 153(1):235–256.

Cornu, M. (2017). Local Search, data structures and Monte Carlo Search for Multi-Objective
Combinatorial Optimization Problems. PhD thesis, PSL Research University.

123

BIBLIOGRAPHY

Delort, C. and Spanjaard, O. (2013). A hybrid dynamic programming approach to the biobjective
binary knapsack problem. Journal of Experimental Algorithmics (JEA), 18:1–1.

Dietz, T., Klamroth, K., Kraus, K., Ruzika, S., Schäfer, L. E., Schulze, B., Stiglmayr, M., and
Wiecek, M. M. (2020). Introducing multiobjective complex systems. European Journal of
Operational Research, 280(2):581–596.

Ehrgott, M. (2005). Multicriteria Optimization. Springer, Berlin-Heidelberg„ 2nd edition edition.

Ehrgott, M. and Gandibleux, X. (2001). Bounds and bound sets for biobjective combinatorial
optimization problems. In Multiple Criteria Decision Making in the New Millennium, pages
241–253. Springer.

Escoffier, B. and Spanjaard, O. (2005). Programmation dynamique, pages 95–123. Lavoisier,
Paris,.

Eswaran, P., Ravindran, A., and Moskowitz, H. (1989). Algorithms for nonlinear integer bicrite-
rion problems. Journal of Optimization Theory and Applications, 63(2):261–279.

Figueira, J. R., Paquete, L., Simões, M., and Vanderpooten, D. (2013). Algorithmic improve-
ments on dynamic programming for the bi-objective t0, 1u knapsack problem. Computational
Optimization and Applications, 56(1):97–111.

Fisher, M. L. (1981). The lagrangian relaxation method for solving integer programming prob-
lems. Management science, 27(1):1–18.

Gardenghi, M. (2009). Multiobjective Optimization for Complex Systems. PhD thesis, Clemson
University.

Gardenghi, M., Gómez, T., Miguel, F., and Wiecek, M. M. (2011). Algebra of efficient
sets for multiobjective complex systems. Journal of Optimization Theory and Applications,
149(2):385–410.

Geoffrion, A. M. (2010). Lagrangian relaxation for integer programming. In 50 Years of Integer
Programming 1958-2008, pages 243–281. Springer.

Haimes, Y. Y., Lasdon, L., and Wismer, D. (1971). On a bicriterion formulation of the problems of
integrated system identification and system optimization. IEEE transactions on systems, man,
and cybernetics, 1(3):296–297.

Ishibuchi, H., Klamroth, K., Mostaghim, S., Naujoks, B., Poles, S., Purshouse, R., Rudolph, G.,
Ruzika, Stafan & Sayin, S., Wiecek, M. M., and Yao, X. (2015). Multiobjective optimization
for interwoven systems. In Report from Dagstuhl Seminar 15031: Understanding Complexity
in Multiobjective Optimization.

Jaszkiewicz, A. and Lust, T. (2018). Nd-tree-based update: a fast algorithm for the dynamic
nondominance problem. IEEE Transactions on Evolutionary Computation, 22(5):778–791.

124

BIBLIOGRAPHY

Kaddani, S., Vanderpooten, D., Vanpeperstraete, J.-M., and Aissi, H. (2017). Weighted sum
model with partial preference information: application to multi-objective optimization. Eu-
ropean Journal of Operational Research, 260(2):665–679.

Kellerer, H., Pferschy, U., and Pisinger, D. (2004). Knapsack Problems. Springer-Verlag.

Kerbérénès, A., Vanderpooten, D., and Vanpeperstraete, J.-M. (2021a). Bound sets for multiob-
jective optimization of complex systems. Submitted.

Kerbérénès, A., Vanderpooten, D., and Vanpeperstraete, J.-M. (2021b). Computing efficiently the
non-dominated subset of the minkowski set sum. Submitted.

Kirlik, G. and Sayın, S. (2014). A new algorithm for generating all nondominated solutions of
multiobjective discrete optimization problems. European Journal of Operational Research,
232(3):479–488.

Klamroth, K., Lacour, R., and Vanderpooten, D. (2015). On the representation of the search region
in multi-objective optimization. European Journal of Operations Research, 245(3):767–778.

Klamroth, K. and Wiecek, M. M. (2000). Dynamic programming approaches to the multiple
criteria knapsack problem. Naval Research Logistics (NRL), 47(1):57–76.

Kung, H.-T., Luccio, F., and Preparata, F. P. (1975). On finding the maxima of a set of vectors.
Journal of the ACM (JACM), 22(4):469–476.

Laumanns, M., Thiele, L., and Zitzler, E. (2006). An efficient, adaptive parameter variation scheme
for metaheuristics based on the epsilon-constraint method. European Journal of Operational
Research, 169(3):932–942.

Lemaréchal, C. (2001). Lagrangian relaxation. In Computational combinatorial optimization,
pages 112–156. Springer.

Liu, B., Bissuel, C., Courtot, F., Gicquel, C., and Quadri, D. (2021). A hierarchical decomposition
approach for the optimal design of a district cooling system. In ICORES, pages 317–328.

Lokman, B. and Köksalan, M. (2013). Finding all nondominated points of multi-objective integer
programs. Journal of Global Optimization, 57(2):347–365.

Martello, S. and Toth, P. (1990). Lower bounds and reduction procedures for the bin packing
problem. Discrete applied mathematics, 28(1):59–70.

Migdalas, A., Pardalos, P. M., and Värbrand, P. (2013). Multilevel optimization: algorithms and
applications, volume 20. Springer Science & Business Media.

Nakayama, H. (1984). Geometric consideration of duality in vector optimization. Journal of
Optimization Theory and Applications, 44(4):625–655.

Nakayama, H. (1985). Duality theory in vector optimization: an overview. In Decision making
with multiple objectives, pages 109–125. Springer.

125

BIBLIOGRAPHY

Nemhauser, G. L. and Wolsey, L. A. (1998). Integer and Combinatorial Optimization. Wiley-
Interscience, New York,.

Parragh, S. N. and Tricoire, F. (2019). Branch-and-bound for bi-objective integer programming.
INFORMS Journal on Computing, 31(4):805–822.

Przybylski, A. and Gandibleux, X. (2017). Multi-objective branch and bound. European Journal
of Operational Research, 260(3):856–872.

Sayın, S. and Kouvelis, P. (2005). The multiobjective discrete optimization problem: A weighted
min-max two-stage optimization approach and a bicriteria algorithm. Management Science,
51(10):1572–1581.

Serafini, P. (1987). Some considerations about computational complexity for multi objective com-
binatorial problems. In Recent advances and historical development of vector optimization,
pages 222–232. Springer.

Sourd, F. and Spanjaard, O. (2008). A multiobjective branch-and-bound framework: Application
to the biobjective spanning tree problem. INFORMS Journal on Computing, 20(3):472–484.

Stiglmayr, M., Figueira, J. R., and Klamroth, K. (2014). On the multicriteria allocation problem.
Annals of Operations Research, 222(1):535–549.

Tamby, S. and Vanderpooten, D. (2021). Enumeration of the nondominated set of multiobjective
discrete optimization problems. INFORMS Journal on Computing, 33(1):72–85.

TenHuisen, M. L. and Wiecek, M. M. (1994). Vector optimization and generalized lagrangian
duality. Annals of Operations Research, 51(1):15–32.

Ulungu, E. L. and Teghem, J. (1995). The two phases method: An effcient procedure to solve
bi-objective combinatorial optimization problems. Foundations of Computing and Decision,
20(2):149–165.

Vassilvitskii, S. and Yannakakis, M. (2005). Efficiently computing succinct trade-off curves. The-
oretical Computer Science, 348(2-3):334–356.

Visée, M., Teghem, J., Pirlot, M., and Ulungu, E. L. (1998). Two-phases method and branch and
bound procedures to solve the bi–objective knapsack problem. Journal of Global Optimization,
12(2):139–155.

Yildiz, B., Boland, N., and Savelsbergh, M. (2018). Decomposition branching for mixed in-
teger programming. Technical report, Tech. rep. 2018. url: http://www. optimizationonline.
org/DB_HTML/2018/08

126

Appendices

127

Appendix A

The double bound as a solution concept in MOCO

A.1 Definitions

In some operational situations, knowledge of all non-dominated points may not be the most useful
information to a decision maker, especially in contexts that require quick decision making. In
such contexts, the decision maker may be interested in being presented with bounds to the non-
dominated set, so that she can use this information to trigger another multicriteria decision method.

For example, the information provided by either a strong or weak upper bound, and by either
a weak or strong lower bound, may help the decision maker select an aspiration point to be ap-
proached by means of a scalarized method, knowing which level of performance are atteinable. In
other contexts, when both a feasible, lower bound solution and an upper bound point are provided,
the latter may be used as a quality estimate of the former. The decision maker may decide to settle
for the feasible point if the closest upper bound point that dominates is sufficiently close to it.

Such a double bound materializes the uncertainty of the decision maker regarding the loca-
tion of the non-dominated set, in the form of an area or hypervolume. One way to quantify this
uncertainty, given X the feasible set of the problem and f the vector valued objective function, is
to produce an estimate of the probability that a point drawn randomly and bounded by an upper
bound and a lower bound on f pXq will fall “between” the LB set and the UB set we computed.

What we mean by “between” needs to be made precise and depends on whether the UB and
LB sets are weak or strong bounds to Np f pXqq.

Definition A.1. If LB is a weak lower bound (wLB) to Np f pXqq, then y P Rp is above LB if

y < LBa R
p
©

If LB is a strong lower bound (sLB), then y P Rp is above LB if

y P LB` R
p
©

129

APPENDIX A. THE DOUBLE BOUND AS A SOLUTION CONCEPT IN MOCO

Figure A.1: An example of a double bound and a sample of points drawn randomly to measure
area of uncertainty after computing the RS wLB and the LRUB

Definition A.2. If UB is a weak upper bound (wUB), then y P Rp is below UB if

y < UB` R
p
©

If UB is a strong upper bound (sUB), then y P Rp is below UB if

y P UBa R
p
©

Definition A.3. GivenNp f pXqq, UB either a strong or weak upper bound set toNp f pXqq and LB
either a strong or weak lower bound on Np f pXqq, y P Rp falls between LB and UB if it is above
LB and below UB.

Within this section, we do not present any strong lower bound concept for the GCP. However,
for application problems presented in later sections of this work, we will.

Figure A.1 features a graphical representation of the local restriction (LocR) and restrict-split
(RS) weak lower bounds in purple and orange respectively, and the copy-split (CS) and local omis-
sion of coupled variables (LR) upper bounds in light blue and green respectively. Secondly, we
plot the randomly sampled points used to quantify the decision maker’s uncertainty, conditioned
on the computation of the RS and LR bounds only. Dark blue points are those which are either
dominated by a point in the RS wLB, or dominate a point in the LR UB, while yellow points are
those which fall in the area of uncertainty. Computing RS and CS yields much lower uncertainty,
but plotting the resulting area of uncertainty would produce a less visible an thus unclear example.
Next, we give further details on the computation which provides this result.

130

APPENDIX A. THE DOUBLE BOUND AS A SOLUTION CONCEPT IN MOCO

p n |S | |K| DV LocR/CS LocR/LR LocR+CS LocR+LR Idl/(LcR+CS) Idl/(LcR+LR)

2 100 2 1 10 1.571 [0.65] 2.342 [0.83] 3.118 [1.11] 2.707 [0.98] 1.874 [0.75] 2.152 [0.82]
2 120 2 1 10 1.59 [0.42] 2.33 [0.49] 4.167 [0.92] 3.581 [1.04] 1.509 [0.59] 1.84 [0.88]
2 140 2 1 10 2.135 [0.76] 2.961 [0.67] 6.812 [1.64] 6.172 [1.55] 1.085 [0.38] 1.214 [0.48]
2 100 3 1 10 1.733 [0.78] 2.347 [0.64] 1.894 [0.58] 1.685 [0.53] 2.996 [1.03] 3.431 [1.29]
2 100 4 1 10 1.454 [0.63] 2.007 [0.62] 1.172 [0.46] 1.056 [0.42] 5.352 [1.83] 6.019 [2.12]
2 100 5 1 10 1.21 [0.54] 1.76 [0.61] 0.904 [0.3] 0.776 [0.28] 6.611 [2] 7.854 [2.63]
2 100 2 2 10 2.987 [0.75] 3.599 [1.05] 2.597 [0.72] 1.945 [0.47] 2.469 [0.76] 3.232 [0.85]
2 100 2 3 10 3.286 [0.89] 3.948 [1.13] 2.4 [0.77] 1.501 [0.54] 2.789 [1.62] 4.705 [3.62]
2 100 2 4 10 4.08 [1.39] 4.604 [1.5] 2.285 [0.67] 1.288 [0.51] 3.298 [1.38] 6.224 [2.99]
2 100 2 1 20 3.511 [0.89] 4.484 [1.14] 3.204 [0.81] 2.352 [0.64] 2.161 [0.89] 2.959 [1.24]
2 100 2 1 30 4.106 [1.02] 4.874 [1.37] 2.128 [0.61] 1.36 [0.44] 3.059 [0.96] 4.933 [2.07]
2 100 2 1 40 4.791 [1.51] 5.452 [1.73] 2.2 [0.56] 1.222 [0.43] 3.46 [1.11] 6.598 [2.81]
2 40 2 1 10 1.108 [0.49] 1.731 [0.55] 0.331 [0.1] 0.287 [0.09] 8.83 [3.59] 10.55 [5.18]
3 40 2 1 10 2.433 [1.57] 3.97 [1.73] 3.666 [2.66] 3.224 [2.31] 1.603 [1.12] 1.852 [1.32]
4 40 2 1 10 4.384 [2.61] 7.423 [1.89] 119.2 [143.3] 68.28 [72.79] 0.159 [0.18] 0.205 [0.21]

Table A.1: Quality of the double bound, as hypervolume difference and as a posteriori ε-
dominance. Average values for 20 trials.

The correctness of our measurement requires that the lower bound of the hyperrectangle in
which we sample points be a lower bound point to f pXq, and accordingly that the upper bound
of the same hyperrectangle be an upper bound on f pXq. Assuming that for each j P t1, ..., pu, f j

is linear with positive coefficients, we can take 0 as a lower bound. As for the upper bound on
the hyperrectangle, we propose two alternatives. They differ with regards to the sort of a priori
information about f pXq that they require from the decision maker. In the first case, under the same
hypotheses about f pXq, the only required information are that coefficients pi

j be known. Then we
set umax such that for each j P t1, ..., pu, umax

j �
°n

i�1 pi
j. It is easily seen that this is the maximum

of f jpxq for x P t0, 1un, i.e. if the optimization of f j was unconstrained, and thus y ¨ umax for
any y P f pXq. In the second case, we use the ideal point of f pXq as upper bound.

The use of the ideal point as an upper bound on random points is well suited to the case where
our measurement is meant to quantify the decision maker’s uncertainty, but it is not well suited
when it is meant to quantify the quality of bound concepts that do not involve the ideal point itself.
Indeed, in some cases, the ideal point may be dominated by some point in the upper bound set,
and thus constitute by itself a tighter upper bound, the knowledge of which reduces uncertainty.
In much the same way, the lexicographic optima obtained by computing the ideal point constitute
lower bound points which may dominate points in the (weak) lower bound under scrutiny. In a
context when uncertainty is to be quantified, one should add these points to the bound sets, and
add the time spent computing the ideal point to the time spent computing the double bound.

A.2 Experimental Results

In practice, we draw 10000 points uniformly randomly in a hypersquare box of lower bound 0 and
upper bound umax or ideal point. In this experiment, LB is always a weak lower bound set, so for
each random point r drawn, we call the draw a success if there is no y P LB such that r ¨ y, and if
there is a y1 P UB such that r ¨ y1. Our metric is then simply the proportion of successful draws

131

APPENDIX A. THE DOUBLE BOUND AS A SOLUTION CONCEPT IN MOCO

p n |S | |K| DV RS/CS RS/LR RS+CS RS+LR Idl/(RS+CS) Idl/(RS+LR)

2 100 2 1 10 0.436 [0.42] 1.192 [0.54] 3.302 [1.3] 2.891 [1.13] 1.818 [0.81] 2.054 [0.85]
2 120 2 1 10 0.693 [0.33] 1.444 [0.47] 4.402 [1.02] 3.816 [1.05] 1.433 [0.57] 1.69 [0.72]
2 140 2 1 10 0.691 [0.40] 1.468 [0.27] 7.097 [1.83] 6.457 [1.69] 1.045 [0.36] 1.159 [0.44]
2 100 3 1 10 0.89 [0.46] 1.538 [0.42] 1.899 [0.58] 1.691 [0.52] 2.998 [1.04] 3.402 [1.23]
2 100 4 1 10 0.69 [0.34] 1.254 [0.4] 1.213 [0.44] 1.098 [0.4] 5.145 [1.94] 5.72 [2.11]
2 100 5 1 10 0.588 [0.28] 1.145 [0.28] 0.951 [0.32] 0.824 [0.29] 6.256 [1.82] 7.319 [2.29]
2 100 2 2 10 1.214 [0.48] 1.898 [0.62] 2.869 [0.85] 2.216 [0.54] 2.265 [0.79] 2.853 [0.84]
2 100 2 3 10 1.534 [0.46] 2.142 [0.67] 2.772 [1.04] 1.873 [0.76] 2.454 [1.31] 3.69 [2.17]
2 100 2 4 10 2.214 [0.71] 2.787 [0.8] 2.758 [0.81] 1.761 [0.55] 2.78 [1.28] 4.365 [1.94]
2 100 2 1 20 1.624 [0.81] 2.579 [0.82] 3.51 [0.91] 2.658 [0.66] 1.948 [0.7] 2.549 [0.89]
2 100 2 1 30 2.496 [0.91] 3.227 [1.01] 2.613 [0.76] 1.845 [0.51] 2.491 [0.78] 3.438 [0.81]
2 100 2 1 40 2.908 [1.06] 3.64 [1.28] 2.878 [0.83] 1.9 [0.49] 2.705 [0.96] 4.024 [1.29]
2 40 2 1 10 0.204 [0.36] 0.862 [0.29] 0.363 [0.11] 0.319 [0.1] 8.296 [3.86] 9.679 [5.48]
3 40 2 1 10 0.612 [0.82] 2.13 [1.2] 3.858 [2.86] 3.416 [2.48] 1.479 [0.98] 1.639 [1.02]
4 40 2 1 10 1.101 [1.53] 4.097 [1.54] 149.1 [188] 98.22 [113] 0.153 [0.18] 0.173 [0.19]

Table A.2: Quality of the double bound, as hypervolume difference and as a posteriori ε-
dominance. Average values for 20 trials.

expressed as percentage. In Tables A.1 and A.2, results for this metric are denoted by LB/UB,
where LB stands in turn for LocR and RS, and UB for CS and LR. LB�UB denotes the computing
time of the two bounds. Idl{pLB� UBq denotes the proportion of the total computing time spent
computing the ideal point.

For any value of p, and any parameter set, we find that a double bound obtained using the RS
and lexicographic optima weak lower bound, and the CS and ideal point upper bound yielded the
smallest area of uncertainty of all four combinations of bound notions. Expectedly, the size of the
area of uncertainty for any notion of double bound clearly increases with an increase in |K| and in
DV , while it appears to slightly increase with an increase of n, although for RS {CS , this trend it
tainted with great variability.

132

Appendix B

Weak lower bounds obtained from correcting weak upper
bound solutions

B.1 Correction of solutions to the copy-split relaxation

Recall that the copy-split relaxation of REF, which is equivalent to a variant in which for each t P
TC , the collection of assignments variables pxtm | m P MpS ptqq is replaced by ppxtm | m P MpS ptqqq | s P S q
i.e. by a collection of copies of the complex task assignments, each restricted to a subsystem. This
relaxation is formulated as

max
¸
tPT

¸
mPMpS ptqq

g j
tmxtm @ j P t1, ..., pu

s.t.
¸

mPMpS ptqq

xtm ¤ 1 @ t P T, s P S

¸
tPTpsq

¸
mPMpS ptqq

wtmxtm ¤ bs @ s P S

xtm P t0, 1u @ t P T, m P MpS ptqq

This relaxation, in practice, gives an upperbound which is a lot looser than the relaxation of
coupled variables from local knapsack constraints, and contrary to the latter, its quality decreases
as the number of subsystems increases. However we can use it to another end. Solutions to this
problem may be infeasible as they violate the assignment constraints of complex tasks assignment
variables, but they can be made feasible easily by just choosing one among the several assign-
ments of a complex task. Given a solution for the relaxation, we make the choice of which task
assignment to undo in the following way. Contrarily to greedy approaches where we want to add

assignments, here we sort assignment, for each j P t1, ..., pu, by increasing order of g j
tm

wtm
, and

then by increasing sum of their objective-wise ranks. Thus, we undo the “worst” assignments
first, freeing more budget by sacrificing less profit. Until all complex tasks are assigned at most
once, we consider in order each assignment pt,mq. If it has been made in the solution, while the
task has also be assigned to another machine m1, we undo assignment pt,mq. This is described by

133

APPENDIX B. WEAK LOWER BOUNDS OBTAINED FROM CORRECTING WEAK
UPPER BOUND SOLUTIONS

Algorithm 29.

Algorithm 29: Greedy correction of solutions of the copy-split relaxation
input : Asg, EpX1, f q

output: Corrected � X

1 Corrected ÐH

2 for x P EpX1, f q do
3 while x < X do
4 for pt,mq P Asg do
5 if

°
mPMpS ptqq xtm ¥ 1 then

6 x Ð xrxtm Ð 0s

7 Corrected Ð Corrected Y txu

8 return Corrected

B.2 Correction of solutions to the relaxation of coupled variables in
subsystems knapsack constraints

We recall that the relaxation of coupled variables in subsystems knapsack constraints yields the
following problem, the feasible set X1 of which has been proven to be a superset of the feasible set
X of the original problem.

max
¸
tPT

¸
mPMpS ptqq

g j
tmxtm @ j P t1, ..., pu

s.t.
¸

mPMpS ptqq

xtm ¤ 1 @ t P T

¸
tPTLpsq

¸
mPMpS ptqq

wtmxtm ¤ 1 @ s P S

xtm P t0, 1u @ t P T, m P MpS ptqq

Solutions to this relaxation may be such that the original knapsack constraint, taking into
account the coupled variables, are violated. To obtain a feasible solution, we therefore need to
undo some of the assignments done in these solutions. Since we want to obtain a feasible solution
that is as close as possible to the Pareto set, we wish to undo assignments so as to decrease
objective value as little as possible. Here consider assignments pt,mq for t P T,m P MpS ptqq in
the same order as for the previous correction concept, yielding sequence Asg. Until the knapsack
constraint for each of the subsystems is satisfied, we consider in order each assignment, and if it is
done in a subsystem for which the knapsack constraint is violated, we remove it. This procedure
is described by Algorithm 30.

134

APPENDIX B. WEAK LOWER BOUNDS OBTAINED FROM CORRECTING WEAK
UPPER BOUND SOLUTIONS

Algorithm 30: Greedy correction of solutions of the LR relaxation
input : Asg, EpX1, f q the set of efficient solutions of the LR Relaxation.

1 Corrected ÐH

2 for x P EpX1, f q do
3 while x < X do
4 for pt,mq P Asg do
5 Let s be the unique s P S ptq such that m P MpS ptqq

6 if w̄spxq 0 then
7 xtm Ð 0

8 Corrected Ð Corrected Y txu

9 return Corrected

B.3 Experimental results

We perform experiment regarding the computation of an incumbent set from corrections of solu-
tions to the CS and LR upper bounds, a process which we have described in Sections B.1 and B.2
respectively. We compare the time required to obtain these incumbent sets from the upper bound
computed either with the e-constraint method or the DP method, and we measure how well they
approximate the efficient set of the original problem.

p |Mpsq| |TC | |S | CorLR CorCS
T.e� cst&Dec T.DP&Dec ApQ.(ε) T.e� cst&Dec T.DP&Dec ApQ.(ε)

2 7 1 2 1.092 [0.494] 0.205 [0.052] 0.069 [0.021] 1.363 [0.589] 0.285 [0.066] 0.044 [0.016]
2 8 1 2 1.777 [0.52] 0.516 [0.156] 0.065 [0.019] 1.888 [0.584] 0.721 [0.205] 0.033 [0.011]
2 9 1 2 2.821 [1.566] 1.201 [0.331] 0.057 [0.018] 3.343 [1.548] 1.76 [0.528] 0.028 [0.008]
2 6 1 2 0.525 [0.198] 0.081 [0.02] 0.075 [0.026] 0.735 [0.265] 0.114 [0.032] 0.047 [0.023]
2 6 1 3 0.844 [0.339] 0.277 [0.098] 0.047 [0.023] 1.093 [0.402] 0.27 [0.039] 0.06 [0.019]
2 6 1 4 1.266 [0.69] 1.09 [0.535] 0.04 [0.013] 1.774 [1.143] 0.586 [0.124] 0.051 [0.014]
2 7 2 2 1.443 [0.956] 0.286 [0.073] 0.092 [0.039] 1.99 [0.985] 0.482 [0.112] 0.088 [0.035]
2 7 3 2 1.97 [1.344] 0.407 [0.152] 0.124 [0.035] 2.719 [1.177] 0.857 [0.277] 0.138 [0.054]
3 4 2 2 0.653 [0.14] 0.069 [0.04] 0.159 [0.041] 2.479 [0.809] 0.041 [0.013] 0.172 [0.057]
4 4 2 2 0.789 [0.161] 0.281 [0.194] 0.124 [0.052] 5.528 [2.433] 0.074 [0.025] 0.146 [0.053]

Table B.1: Computation of LBs obtained by greedily correcting solution from the CS and LR
upper bounds. Average values for 20 trials.

From Table B.1 we can observe that, because the correction process is quick and linear, these
incumbents are obtained in virtually the same time as the bound sets they originate from. However,
this time is itself rather long, and generally less than 10 times quicker than the resolution of the
whole problem, except of course when p ¥ 3. Finally, we can observe that correcting solutions
from the LRUB usually provides a tighter bound, which makes it the better of the two options in
cases the LRUB is computed quicker than CS UB (i.e. for low values of |S |).

135

Appendix C

Résumé en Français

C.1 Notions fondamentales

C.1.1 Notions d’optimisation multiobjectifs

Pour un ensemble d’indices de variables N � t1, ..., nu, X � Rn un ensemble contraint f : Rn Ñ

Rp une fonction à valeur vectorielle, le problème d’optimisation multiobjectif associé avec f et X
s’écrit

max p f1pxq, ..., fppxqq

x P X

Un point image de x par f peut être désigné pary :� py1, ..., ypq � f pxq

Definition C.1. Pour y, y1 P Rp, y © y1, si y est au moins aussi bon quey1 sur tous les objcetifs et
meilleur un un objectif au moins.

y © y1 ô

#
@ j P t1, ..., pu, y j ¥ y1j
Dk P t1, ..., pu, yk ¡ y1k

Definition C.2. Un point y P Y est non dominé s’il existe aucun y1 P Y tel que y1 © y, faiblement
non dominé si il n’existe aucun y1 P Y tel que y1 ¡ y.

Definition C.3. Une solution x P X est efficace par rapport à f si et seulement si il n’existe acun
x1 P X, x1 tel que f px1q © f pxq, et est faiblement efficace si et seulement si il n’existe aucun x1 P X
tel que f px1q ¡ f pxq.

Ainsi, il est fréquent de considérer comme concept de solution l’énumération de l’ensemble
des solutions effiaces ou l’ensemble de ponts non dominés:

EpX, f q :� tx P X | x est efficace relati f uNpYq :� ty P Y | y is non-dominatedu

137

APPENDIX C. RÉSUMÉ EN FRANÇAIS

Definition C.4. Une solution efficace x1 P EpX, f q est supportée s’il existe λ � pλ j | j P
t1, ..., puq P Rp

¡ tel que x1 � arg maxxPX
°p

j�1 λ j f jpxq. Quand p � 2, la méthode dichotomique
de Aneja and Nair (1979) énumère tous les points supportés.

Definition C.5. Pour y � py1, y2, ...ypq et y1 � py11, y
1
2..., y

1
pq P R

p, y ©Lex y1 si et seulement si
y1 ¡ y11, ou y1 � y11 et py2, ...ypq ©Lex py12, ..., y

1
pq.

C.1.1.1 Algorithms de filtrage par dominance

L’algorithme de filtrage par dominance le plus simple parcours une liste de points Y et en compare
chaque élément à ceux de l’ensemble de candidats Ỹ , points jusqu’ici non dominés. Si aucun y1 P rY
ne domine y, il est ajouté à rY . Cet algorithme peut être amélioré en triant Y lexicographiquement
(see Kung et al. (1975)). Alors, un point ne peut dominer son prédécesseur, et la moitié des tests
dominance sont évités. Quand p � 2, un seul test est nécessaire car si y est dominé dans rY , il est
dominé par son dernier élément.

Alternativement, le filtrage peut être fait par insertion dans un KDTree au sens de Chen et al.
(2012), au sein d’une méthode en deux phases décrite par l’Algorithme 2. Un point dénommé sieve
permet de commencer la série de tests par un test ayant de bonnes chance de réussir. Une routine
de pruning permet un filtrage intermédiaire du KDTree et une amélioration des performances.

C.1.1.2 Choix d’un algorithme de filtrage par dominance

Quand p � 2, on utilise l’algorithme unidirectionnel décrit par Kung et al. (1975), avec filtrage
en temps constant. Quand p ¥ 4, on utilise la méthode en deux phases avec insertion dans un
KDTree de Chen et al. (2012). Qand p � 3, il faudra décider au cas par cas entre unidirectionnel
et insertion dans un KDTree.

C.1.2 Problèmes coupés et décomposition

C.1.2.1 Formulations décomposables

Soit N � t1, ..., nu l’ensemble des variables décisions partionné par S . Un sous-système s P S
est identifié par un sous-sytèmes de variables. Thus, x � px1, ..., xnq, ou pxs|s P S q, où xs � pxi |

i P sq � pxs
1, ..., x

s
ns
q. Les interactions entre sous-systèmes sous représentées par des contraintes

associant des variables de différents sous-systèmesL Soit K � PpNq un ensemble de couplages
représentés par les ensembles d’indices de variables couplées.

Definition C.6. s, s1 P S , s , s1 sont couplés par la contrainte k s’il existe i P sX k et j P s1 X k.
Un problème d’optimisation est non couplés si et seulement si K � H.

138

APPENDIX C. RÉSUMÉ EN FRANÇAIS

x1
k

x1
k̄

x2
k

x2
k̄

k

Figure C.1: Graph representation of a coupled system

Soit xk le vecteur des variables de décision couplées par k, et xs
k les variables de sous-système

s couplées par k, i.e. xs
k � pxi | i P s X kq. Xs dénote l’ensemble réalisable du sous-problème

associé avec le sous-système s P S . Xk dénote le sous-ensemble réalisé défini par la contrainte k
sur le sous-vecteur de variables xk. Ainsi, le problèle d’optimisation de système couplés est:

max f pxq � p f1pxq, ..., fppxqq

s.t. xk P Xk @ k P K

xs P Xs @ s P S

(P)

avec, pour tout j P t1, ..., pu, f jpxq �
°

sPS f s
j px

sq. Si |S | � m et pxs|s P S q � px1, ..., xmq, on
dénote par xs̄ les sous-vecteurs de variables n’appartenant pas à s.

Observation C.1. Si un problème pPq est non couplés, son ensemble réalisable X est tel que

X �
¹
sPS

Xs (C.1)

C.1.2.2 Optimisation découplée

Si f jpxq est additivement séparable pour tout j P t1, ..., pu, la fonction objectif du sous-problème
associé à s P S est donné par f spxsq � p f s

1 px
sq, ... f s

ppx
sqq, avec f s

j :
±

iPs Xi Ñ R pour j P
t1, ..., pu. Chaque sous-système est associé avec le problème maxxsPXs f spxsq.

Definition C.7. Pour j P t1, ..., pu, f j :
±

iPN Xi Ñ Rp, et pour tout s P S f s
j :

±
iPs Xi Ñ Rp, f j

est additivement separable selon S si, pour tout x � pxs | s P S q avec xs � pxi | i P sq,

f jpxq �
¸
sPS

f s
j px

sq

Une question d’intérêt pour la généralisation multiobjectif de la décomposition est la suivante,
où

°̊
sPS Y s dénote la somme de Minkowski.

EpX, f q ?
�

¹
sPS

pEpXs, f sqq

ou, dans l’espace des objectifs

Np f pXqq ?
�

˚̧

sPS

N p f spXsqq

139

APPENDIX C. RÉSUMÉ EN FRANÇAIS

Proposition C.1. Si
±

sPS Xs � X et si pour tout j P t1, ..., pu, f j est séparable selon S , alors

Np f pXqq � ˚̧

sPS

Np f spXsqq

Si p � 1, on a aussi maxxPX
°

sPS f spxsq �
°

sPS maxxsPXs f spxsq. Mais pour p ¥ 2,°
sPS Np f spXsqq * Np f pXqq. Un autre filtrage par dominance est donc nécessaire.

C.1.3 Efficacité de la décomposition

L’efficacité de la décomposition est testée en résolvant un problème générique non couplés, d’abord
en utilisant un algorithme générique sur le problème entier, puis en résolvant les sous-problèmes
séparément, en combinant les solutions et en filtrant le résultat par dominance. Les résultats de
cette expérience suffisent à montrer que la décomposition permet une amélioration significative de
la performance pour n’importe quel nombre de critères, et pour une augmentation du nombre de
sous-systèmes et du nombre de variables.

C.2 Calcul efficace du sous ensemble non-dominé d’une somme d’ensembles

C.2.1 Définition du problème

Il s’agit de calculer efficacement Np
°̊

sPS Y sq, avec Y s � Rp pour tout s P S . Le défi principal
de ce calcul est d’organiser correctement la sommation et le filtrage afin de générer le point de
combinaisons dominées possible.

C.2.1.1 Filtrage intermédiaire

Un algorithme séquentiel considère les ensembles Y s l’un après l’autre, et à chaque étape s P S ,
génère les combinaisons entre points de Y s et points de Y

ÝÝÑs � 1. Plutôt que de générer la somme
pour les tous les s P S puis filtrer, le résultat suivant assure qu’il est correct d’appliquer un filtrage
par dominance à chaque étape.

Proposition C.2. Pour toute famille pY s | s P S q avec Y s fini pour chaque s P S et S � t1, ..., nu,
pour tout s1 ¤ n,

N

�
˚̧

1¤s¤s1
Y s

�
� N

�
N

�
˚̧

1¤s¤s1�1

Y s

�
` Y s1

�

140

APPENDIX C. RÉSUMÉ EN FRANÇAIS

p1,1q
p13, 7q

p1,2q
p12, 8q

p2,1q
p10, 9q

p1,3q
p11, 9q

p2,2q
p9, 10q

p3,1q
p9, 11q

p1,4q
p8, 12q

p2,3q
p8, 11q

p3,2q
p8, 12q

p4,1q
p8, 14q

p2,4q
p5, 14q

p3,3q
p7, 13q

p4,2q
p7, 15q

p3,4q
p4, 16q

p4,3q
p6, 16q

p4,4q
p3, 19q

Figure C.2: Lattice représentant la relation de parenté sur Y ` Z dans l’Exemple C.1

T �

1 2 3 4
1 0 1 1 1
2 1 2 2 2
3 1 2 2 2
4 1 2 2 2

Figure C.3: Tableau représentant la relation de parenté sur Y ` Z dans l’Exemple C.1

C.2.1.2 Résultats expérimentaux

L’expérience suivante mesure l’efficacité de l’application du filtrage intermédiaire à chaque étape
de la résolution de NDMSP par un algorithme séquentiel. Le gain de temps (TG), est défini comme
100 T.NA�T.IF

T.NA , où T.NA dénote le temps de calcul lorsqu’un seul filtrage est fait après la somme,
et T.IF en filtrant à chaque étape. L’écart type est rapporté entre crochets.

C.2.1.3 Un algorithme de pooling unidirectionnal

C.2.1.4 Définition et preuve de correction

Supposant que Y et Z sont triés lexicographiquement et leurs éléments respectifs indicés d’après
leurs rangs. On définit un treillis tel que chaque yi� z j P Y ` Z a au plus deux enfatns yi�1� z j et
yi� z j�1, if i�1 ¤ |Y| et j�1 ¤ |Z| et au plus deux parents yi�1� z j et yi� z j�1, if i�1 ¡ 0 and
j� 1 ¡ 0. Ce treillis est un sous ensemble de ©Lex sur Y ` Z. Le tableau T enrgistre, en chaque
entrée pi, jq, le nombre de parents de yi � z j P Y ` Z non testés pour insertion.

Example C.1. Soit Y � tp6, 3q, p3, 5q, p2, 7q, p1, 10qu et Z � tp7, 4q, p6, 5q, p5, 6q, p2, 9qu, triés
lexicographiquement et indicés. T représente par un tableau la relation du treillis, cf. Figure C.3.

P � NpY`Zq représente l’ensembleNpY`Zq en construction et H, trié lexicographiquement,
le sous ensemble de Y ` Z dont les entrées dans T sont à 0. L’élément au sommet de H est le
prochain élément à insérer dans P de sorte à respecter un ordre lexicographique sur Y ` Z.

141

APPENDIX C. RÉSUMÉ EN FRANÇAIS

IF et UPool peuvent être comparés du point de vue de la complexité. Supposons que |Y| � m,
|Z| � n, with m ¥ n. IF et UPool diffèrent dans la phase de tri préalable au filtrage par algorithme
unidirectionnel. IF nécessite de trier Y ` Z, en temps Opmn log mnq � Opmn log mq. UPool
nécessite de trier Y et Z indépendamment, en temps Opm log m � n log nq � Opm log mq, puis
d’insérer les mn elements dans H. Il est possible de prouver que H est toujours de taille inférieure
à n. L’opération est donc réalisée en temps Opmn log nq. Comme dans le cas biobjectif, le tri
représente la majorité de temps de calcul (l’insertion étant en temps constant) UPool a de bonnes
chances d’être plus performant que IF dans ce cas, où UPool a une complexité de Opmn log nq et
IF de Opmn log mq.

C.2.1.5 Résultats expérimentaux

Pour p � 2 on trouve expérimentalement que UPool offre des performances jusqu’à 81, 65 %
supérieures à IF, augmentant avec une augmentation de |Y s|. De même pour p � 3, mais seule-
ment jusqu’à 49.33%. Pour p � 4, 5, UPool n’offre pas de meilleures performances que IF.

C.2.2 Approches par boîtes

Une boîte B est définie par un sous ensemble de points, une borne supérieure u dominant tous
les points de la boite, et une borne inférieure l dominée par tous les points de la boîte. Soit
B � tB1, ..., Bmu une famille de boîte associée à Y � Rp.

Definition C.8. Soient Bi
Y , B

j
Y � Y et Bk

Z , B
l
Z � Z, et leurs bornes inférieures et supérieures

associées. pBi
Y , Bk

Zq box-to-box domine pB j
Y , Bl

Zq si et seulement si liY � lkZ � u j
Y � ul

Z

Observation C.2. Si pBi
Y , Bk

Zq box-to-box domine pB j
Y , Bl

Zq, alors pour tout y P Bi
Y ` Bk

Z et tout
y1 P B j

Y ` Bl
Z , y � y1 (see Figure C.4)

C.2.2.1 Algorithme pour le filtrage par dominance par boîte

A chaque étape de filtrage intermédiaire, Y
ÝÝÑs� 1, le résultat des étapes précédentes, et Y s sont

mis en boîte. On applique d’abord la dominance box-to-box, puis la dominance classique sur les
combinaisons de points issues des boîtes restantes. Le filtrage box-to-box est réalisé de manière
unidirectionnelle, sur la base du tri lexicographique décroissant des sommes de bornes supérieures
des combinaisons de boîte, ordre qui préserve la dominance:

Observation C.3. Soient B1
Y , B

2
Y � Y, et B1

Z , B
2
Z � Z. Si u1

Y � u1
Z ©Lex u2

Y � u2
Z , alors l2Y � l2Z �

u1
Y � u1

Z

142

APPENDIX C. RÉSUMÉ EN FRANÇAIS

B1
Y

B2
Y

B1
Z

B2
Z

�

�

4

4

4

�

l2Y

l1Z

u1
Y

u2
Z

u1
Y � u2

Z

l2Y � l1Z

Figure C.4: Bi-objective illustration of box-to-box dominance.

C.2.2.2 Algorithme pour la création d’une famille de boîtes

Definition C.9. Pour tous y, y1 P Y, y ε-domine y1, noté y ©ε y1 si et seulement si

y jp1� εq ¥ y1j @ j P t1, ..., pu

y est ε-indifferent à y1, noté y �ε y1 si et seulement si

y ©ε y1 and y1 ©ε y

L’algorithme de mise en boûte considère un point y P Y et crée une boîte contenant y. Pour
tout autre y1 P Y , on vérifie si y �ε y1. Si oui, on ajoute y1 à la boîte asocciée à y, et on supprime y1

de Y . Sinon, on ne fait rien. Quand tout Yztyu a été examiné, on supprime y de Y et on répète la
procédure.

C.2.2.3 Résultats expérimentaux

Empiriquement, on constate que UPool n’est battu par la dominance box-to-box que pour p � 4,
mais dans ce contexte il est aussi battu par IF. Donc les méthodes fondées sur les boîtes ne semblent
pas viables.

143

APPENDIX C. RÉSUMÉ EN FRANÇAIS

C.3 Obtenir des ensembles bornant par décomposition

C.3.1 Ensembles bornants

Definition C.10. Un point y P Rp borne supérieurement Y � Rp si et seulement si

@y1 P Y, y1 © y

Un ensemble de points bornant supérieurement est appelé borne supérieure faible.

Definition C.11. Un point y P Rp borne inférieurement Y � Rp si et seulement si

@y1 P Y, y © y1

Un ensemble de points bornant inférieurement est appelé borne inférieure faible.

Definition C.12. (Ehrgott and Gandibleux (2001)) Pour Y � Rp, UB est un ensemble bornant
supérieurement fortement Y (pour la maximisation) si et seulement si#

@y P Y Dy1 P UB, y1 © y
@y P UB, y is an upper bound point to Y

(C.2)

Definition C.13. (Ehrgott and Gandibleux (2001)) Pour Y � Rp, UB est un ensemble bornant
inférieurement fortement Y (pour la maximisation) si et seulement si#

@y P Y Dy1 P LB, y © y1

@y P LB, y is a lower bound point to Y
(C.3)

Les ensembles bornant supérieurs sont les ensembles de points non-dominés de relaxations du
problème original, et les ensembles bornant inférieurs, de restrictions du problème original.

C.3.2 Restrictions décomposables

Pour obtenir une restriction non-couplée du problème original, on fixe toutes, ou certaines vari-
ables couplées, à des valeurs admissibles ou neutres.

Definition C.14. ei est une valeur admissible pour xi si il existe x P X tel que xi � ei, i.e. t.q.
px�i, eiq P X.

Definition C.15. ei est une valeur neutre pour xi si pour tout x P X, px�i, eiq P X.

xs
K � px

s
k | k P Kq dénote les variables du système s couplées par la contrainte couplante k.

xs � pxs
K , x

s
K̄
q, avec xs

K̄
le vecteur des variables non couplées de s. Soit xK̄ le vecteur des variables

non couplées. On obtient la restriction LocRes et la borne inférieure associée en fixant toutes les

144

APPENDIX C. RÉSUMÉ EN FRANÇAIS

f1

f2

n1

n2

n3

n4

n5

l1

l2
l3

l4

l5

u1

u2

u3

u4

u5

Figure C.5: N � tni | i � 1, ..., 5u, L � tli | i � 1, ..., 5u, U � tui | i � 1, ..., 5u. L borne
inférieurement faiblement N, U borne supérieurement fortement N

Figure C.6: Représentation graphique de la modification produisant la variante restrict split.

variables couplées. Dans la variante restrict-split on choisit pour chaque k P K, un s couplé par k.
On fixe les variables apparaissant dans la contrainte k, sauf celles de s.

Example C.2. L’exemple suivant illustre la variante restrict split découplée du problème original,
obtenue en fixant les variables des sous-systèmes autres que s1 qui apparaissent aussi dans la
contrainte couplate k.

C.3.3 Relaxations décomposables

Une relaxation est obtenue en remplaçant les fonctions objectif f j par des fonctions relâchées f 1j ou
en considérant un sur-ensemble X1 de X, obtenu en relâchant les contraintes de X. Le plus simple
est d’ignorer ces contraintes. Pour obtenir la décomposabilité, l’on peut se limiter à ignorer les
termes de fonctions de contraintes additives associées avec certains sous-systèmes. Ces contraintes
sont “relâchabels” en ce sens. Par exemple les contraintes de budget linéaires sont relachable en
ignorant un sous ensemble quelconque de variables.

145

APPENDIX C. RÉSUMÉ EN FRANÇAIS

Figure C.7: Représentation graphique de la modification produisant la variante copy split.

Example C.4.

Figure C.8: Représentation gaphique de la modification produisant la variante relaxation locale.

C.3.3.1 Copy-splitting des contraintes couplantes

Si la contrainte couplante k est relâchable pour chaque s P γpkq, soit g1sk px
s
kq ¤ bk la relaxation de

gkpxkq ¤ bk associée à s P |γpkq|. Alors le problème suivant est une relaxation de pPq, décompos-
able selon S .

max f pxq

s.t. g1sk px
s
kq ¤ bk @ k P K, s P γpkq

xs P Xs @ s P S

Example C.3. Le schéma suivant illustre le remplacement de la contrainte k par deux contraintes
k1 and k2, copies de k restreinte à chaque sous-système.

C.3.3.2 Relaxations locales des variables couplées

On suppose que chaque xs P Xs est du type gspxsq ¤ bs. Pour K̄ l’ensemble de variables non
couplées gspxsq ¤ bs est relâchée en g1spxs

K̄
q ¤ bs. On obtient:

max f pxq

s.t. xk P Xk @ k P K

g1spxs
K̄q ¤ bs @ s P S

Le problème est alors décomposé d’une part en la partie ne comprenant que les variables
couplées, et d’autre part en chaque sous-système du problème original.

146

APPENDIX C. RÉSUMÉ EN FRANÇAIS

Figure C.9: Plot representation of the original non-dominated set and bound sets. Instance param-
eters are p � 3, n � 75, |S | � 2, |K| � 1, DV = 10

C.3.4 Résultats expérimentaux

On résout un problème générique couplé, puis on calcule à la fois des ensembles bornant supérieurs
et inférieurs par décomposition. Le but est de comparer le temps de calcul nécessaire à l’obtention
de ces bornes avec le temps de calcul nécessaire à la résolution du problème et d’estimer la qual-
ité d’approximation de la solution du problème original permise par les ensemble bornants issues
des relaxations et restrictions. La Figure C.9 montre l’encadrement de l’ensemble de solutions
non-dominées original par des ensembles bornant inférieurs et supérieurs faibles.

Résoudre une variante restrict-split demande de produire une affectation des contraintes cou-
plantes aux sous-systèmes. Ce choix est réalisé de manière heuristique en calculant:

sk � arg max
sPγpkq

¸
iPkXs

°p
j�1 π

j
i

ci

Concernant les contraintes relâchées de la variante copy-split, pour tout k P K, si
°

sPS
°

iPsXk aixi ¤

bk, alors, comme les ai sont positifs, on a pour tout s P S ,
°

iPsXk aixi ¤ bk. D’où l’expression:

147

APPENDIX C. RÉSUMÉ EN FRANÇAIS

max f pxq

s.t.
¸

iPsXk

aixi ¤ bk @ s P S ,@k P K¸
iPs

cixi ¤ ds @ s P S

xi P t0, 1u @ i P N

(CS GCP)

Les contraintes de la variante locallement relachée on considérant que du fait de la positivité
des ci on a

°
iPsXsK cixi ¤

°
iPs cixi, où s X sK signifie z

�
kPK k. Ainsi

°
iPsXsK cixi ¤ ds est une

relaxation de
°

iPs cixi ¤ ds, qu’on lui substitue dans la variante:

max f pxq

s.t.
¸
sPS

¸
iPsXk

aixi ¤ bk @ k P K¸
iPsXK̄

cixi ¤ ds @ s P S

xi P t0, 1u @ i P N

(LR GCP)

Pour mesurer la qualité d’approximation permise par un ensemble bornant, on utilise la notion
de ε-dominance a posteriori:

Definition C.16. A est une ε-approximation de B pour ©ε si et seulement si

@y P B Dy1 P A, y1 ©ε y

Formellement, on calcule.

ε�pA, Bq :� mintε P R | @y1 P A Dy P B, y1 ©ε yu

ε�pND, Lq donne la mesure de l’approximation de ND par la borne inférieure L, et ε�pU,NDq
de l’approximation de ND par la borne supérieure U. On calcule aussi la proportion de l’ensemble
non dominé du problème original déjà contenu dans l’ensemble bornant, dénoté |NDXLB|

|ND| pour une
LB.

In the following tables, RS denotes the restrict split restriction (Section 3.2.2) of the original
problem, which provides a lower bound set. CS denotes the copy split relaxation (Section C.3.3.1)
of the problem, which provides an upper bound set. LR denotes the relaxation obtained by omitting
coupled variables in local subproblem constraints (Section C.3.3.2), which also provides an upper
bound set. T. denotes computing time, |.| denotes the size of a set of points, and ApQ.pεq denotes
the quality of approximation in terms of a posteriori ε dominance.

Dans le cas bi-objectif, la solution est calculée rapidement, donc le coût du calcul des ensem-

148

APPENDIX C. RÉSUMÉ EN FRANÇAIS

bles bornant peut être considéré comme trop lourd. Au delà cependant, il devient négligeable.

Empiriquement, on observe que si le nombre de sous-systèmes augmente à nombre total de
variables constant, le temps de calcul de toute variante décomposable diminue, puisque ces vari-
antes se divisent en plus petit problèmes. Ainsi la borne inférieure associée à restrict-split est
obtenue en moins de 2% du temps nécessaire à la résolution du problèmes quand |S | � 4.
Une augmentation du nombre de contraintes couplantes à le même effet puisque une proportion
supérieure des variables se trouvent fixées dans restrict-split. Quand |K| � 1, entre 17 et 26%
de l’ensemble de points non dominés est déjà contenu dans la borne inférieure restrict-split pour
p � 3, et entre 27 et 51% pour p � 4.

La borne supérieure copy-split paraît plus coûteuse que la borne inférieure restrict-split mais le
gain de temps relativement à la résolution du problème original bénéficie aussi d’une augmentation
de n et |S |, ainsi elle est obtenue en 1.2% du temps pour p � 3 et |S | � 4. Cette borne supérieure
fournit une approximation d’excellente qualit, avec en moyenne 34% et 47% de la solution déjà
contenue dans la borne supérieure pour p � 3, et entre 41% et 54% pour p � 4.

La borne supérieure issue de la relaxation locale est obtenue beaucoup plus rapidement que
l’ensemble de solutions non dominées: en moins de 1 % du temps dans toutes les expériences.
Toutefois, la qualité d’approximation qu’elle permet est largement moins bonne que celle la borne
supérieure copy-split.

C.4 Problème d’application

C.4.1 Presentation of the REF problem

C.4.1.1 Formulation

REF est présenté comme un problème de production multi-site. Soit T un ensemble de tâches, S un
ensemble de sites et M un ensemble de machines. S ptq est l’ensemble des sites sur lesquels la tâche
t peut être réalisée. T psq l’ensemble des tâches qui peuvent être réalisées sur le site s. Mpsq � M
est l’ensemble des machines disponibles sur le site s, et par conséquent, MpS ptqq l’ensemble des
machines sur lesquelles la tâche t peut être réalisée. N :� tpt,mq P T � M | m P MpS ptqqu
dénote l’ensemble des variables, avec |N| �: n. L’affectation de t à m génère un profit g j

tm, for
j P t1, ..., pu, et consomme une quantité wtm de ressource disponibel à chaque s P S tel que
m P Mpsq. L’exemple C.5 fournit une représentation graphique de l’affectation de tâches aux
machines.

Example C.5. Admettons T � tt1, t2, t3u, M � tm1,m2,m3,m4u et S � ts1, s2u, tels que S pt1q �
ts1, s2u, S pt2q � ts1u, S pt3q � ts2u, Mps1q � tm1,m2u, Mps2q � tm3,m4u. Supposons que le
budget de ressource de chaque site est de 1.

149

APPENDIX C. RÉSUMÉ EN FRANÇAIS

wtm t1 t2 t3

s1
m1 0.6 0.5
m2 0.5 0.5

s2
m3 0.6 0.5
m4 0.5 0.6

t1

t2

t3

 m1

 m2

p1q

 m3

 m4

s1

s2

s1

s2

t1

t2

t3

 m1

 m2

p2q

 m3

 m4

t1

t2

t3

 m1

 m2

p3q

 m3

 m4

s1

s2

s1

s2

t1

t2

t3

 m1

 m2

p4q

 m3

 m4

Figure C.10: Le graphe p1q représentes toutes les affecations possibles ainsi que les groupements
de machines en sites. Le graphe p2q montre une solution réalisable, et les graphes p3q et p4q des
solutions irréalisables

Soit TL � tt P T, |S ptq| � 1u l’ensemble des tâches locales et TC � TzTL des tâches
complexes. TLpsq � TL X T psq Le problème REF peut donc être écrit comme le programme
mathématique suivant:

max
¸
sPS

¸
tPTpsq

¸
mPMpS ptqq

g j
tmxtm @ j P t1, ..., pu

s.t.
¸

mPMpS ptqq

xtm ¤ 1 @ t P TC p1q

¸
mPMpS ptqq

xtm ¤ 1 @ s P S ,@ t P TLpsq p2q

¸
tPTpsq

¸
mPMpS ptqq

wtmxtm ¤ bs @ s P S p3q

xtm P t0, 1u @ pt,mq P N

150

APPENDIX C. RÉSUMÉ EN FRANÇAIS

C.4.1.2 Algorithme de programmation dynamique

Soit 0N la solution telle que pour tout i P N, 0i � 0, faisable par définition. T � t1, ..., t̃u,
l’ensemble des tâches dans REF, correspond à l’nesemble des étapes de décision. Soit Q0 :� t0Nu

l’état initial du processus de décision. Les états des étapes suivantes associées à chaque t P T
sont obtenus en construisant les solutions réalisables par affectation de chaque t aux machines
m P MpS ptqq. τpx, δq désigne la solution obtenue en prenant la séquence de décisions δ.

Comppxq :�
!
δ P ∆t̃

t | τpx, δq P X
)

Extpxq :� tx̃ P X | Dδ P Comppxq, x̃ � τpx, δqu

A l’étape finale de décision, l’ensemble des états est filtré par dominance selon la fonction
f � p f1, ..., fpq, et aux étapes t P t1, ..., t̃� 1u selon p f , w̄q, où pour tout x P X, w̄pxq � b�wpxq P
R|S |, appelée capacité résiduelle, avec b � pbs|s P S q la borne de budget de ressource pour s.

Observation C.4. Pour tout t ¤ t̃, x, x1 P Qt, tout δ P Comppxq XComppx1q,

f jpxq ¥ f jpx1q ñ f jpτpx, δqq ¥ f jpτpx1, δqq @ j P t1, ..., pu

and
w̄spxq ¥ w̄spx1q ñ w̄spτpx, δqq ¥ w̄spτpx1, δqq @s P S

La correction de l’algorithme de programmation dynamique est garantie par

Proposition C.3. L’algorithme de programmation dynamique produit l’ensemble Qt̃ tel que

Qt̃ � ẼpX, f q

Une instance d’un problème de programmatino dynamique est décrite par pQ0,TC ,TL,M, S q,
et on écrit B Ð DPpQ0,TC ,TL,M, S q quand on obtient la préimage ẼpX, f q de Np f pXqq par
programmation dynamique.

C.4.1.3 Experimental results

On teste l’algorithme basique de programmation dynamique sur des instances où les taches com-
plexes ont accès à tous les sites. Les budget de ressources des sites sont définis de manière à
correspondre à des instances de sac à dos difficiles.

On trouve que l’algorithme de programmation dynamique est préférable à la méthode générique
e-contrainte quand p augmente, mais pour p � 2, quand |TC| ou |S | augmente, il devient beau-
coup plus lent, du fait de la p � |S | dimensionalité des états du processus de DP, qui induit de
nombreuses incomparabilités et l’accumulation du nombre de solutions partielles.

151

APPENDIX C. RÉSUMÉ EN FRANÇAIS

t1

t2

t3

 m1

 m2

 m3

 m4

t1

t11

t2

t3

 m1

 m2

 m3

 m4

s1

s2

s3

s4

Figure C.11: Représentation graphique de copy split appliquée à REF

C.4.2 Ensembles bornants pour REF

C.4.2.1 Relaxation Copy-split

Dans le cas de REF, cette relaxation revient à remplacer chaque affectation de tâche complexe
par |S | copies de cette affectation, une chaque sous-système, comme illustré par la Figure C.11.
On obtient alors un problèmes décomposable en |S | problèmes de la forme suivante, pouvant être
résolu par programmation dynamique.

max
¸

tPTpsq

¸
mPMpS ptqq

g j
tmxtm @ j P t1, ..., pu

s.t.
¸

mPMpsq

xtm ¤ 1 @ t P T psq

¸
tPTpsq

¸
mPMpS ptqq

wtmxtm ¤ bs

xtm P t0, 1u @ t P T psq, m P MpS ptqq

C.4.2.2 Singleton borne supérieure forte.

On propose une heuristique gloutonne pour générer un point bornant fortement toutes les com-
pletions d’une solution partielle. Comme dans la relaxation copy-split, les tâches sont copiées,
donnant un ensemble T 1 de tâches. Puis pour T 1 est remplacé par un ensemble de tâches “idéales”
T� tel que pour tous t P T 1, m P Mpt1q,

g j�
t � max

m1PMptq
g j

tm1

w�
t � min

m1PMptq
wtm1

Pour chaque j P t1, ..., pu, on calcule la j-th composante du point bornant comme suit. Pour

tous s P S , on trie T�psq en ordre décroissant de g j�
t

w�
t

, et on réalise toutes les affectations possible

152

APPENDIX C. RÉSUMÉ EN FRANÇAIS

1 2
g j�

t {w
�
t 24 / 4 2/4

Figure C.12: Exemple de profits et poids associés à T�

jusqu’à l’objet limite compris.

Proposition C.4. pu�1 , ..., u
�
pq calculé de la manière précédemment décrite est une borne supérieure

forte de l’ensemble des extensions d’une solution partielle.

C.4.3 Approches “Bottom-up” fondées sur la programmation dynamique

C.4.3.1 Filtrage à l’aide de solutions précalculées

De manière similaire aux méthodes de Branch & Bound et à une approche proposée par Figueira
et al. (2013), on compare un point bornant fortement supérieure les extensions d’une solution
partielle à une solution réalisable précalculée. Si la solution précalculée domine cette borne, il
est inutile de poursuivre les extensions de la soluiont partielle. Des expériences sont menées avec
le solution de la variante restrict-split comme ensemble de solutions précalculées, et la borne
supérieure forte singleton.

C.4.3.2 “Kickstarting”

Les sous-séquences d’étapes de décision associées à des tâches locales étant indépendantes les
unes des autres, et l’ordre des étapes de décision étant indifférent, on peut séparer la sous séquence
associée avec TL en |S | sous séquences associées avec TLpsq pour chaque s P S . On résout |S |
problèmes de DP à p�1 critères, puis on combine et filtre les solutions avec p�|S | critères, avant
de finir la résolution du problème par DP.

C.4.3.3 Résultats expérimentaux

Empiriquement, l’algorithme de DP bénéfie le plus du filtrage par ensemble de solutions précal-
culées avec la variante restrict-split. Dans le cas p � 2, le résultat est ainsi obtenu jusqu’à 15.6
fois plus vite qu’avec l’algorithme basique, et jusqu’à 4 fois plus vite pour p � 3. Bien que
l’application du Kickstarting permette une amélioration de la performance, elle est bien inférieure
à celle obtenue avec le filtrage par ensemble précalculé.

De plus, la combinaison de cette dernière approche avec le Kickstarting amène à une diminu-
tion de la performance. En général, l’approche par programmation dynamique est très sensible à
l’augmentation du nombre de critères, donc tout approche nécessitant de manipuler des états de
taille p� |S | à un moment donné du calcul est handicapée.

153

APPENDIX C. RÉSUMÉ EN FRANÇAIS

C.4.4 Approches “top-down” pour résoudre REF

C.4.4.1 Enumeration de toutes les manières de découpler REF

Chaque instance restrict-split de REF représente un manière de découpler le problème original
en associant chaque tâche complexe à un sous-problème. Une telle association s’identifie à un
élément de σ P S TC . L’ensemble réalisable Xσ de toute variante restrict split est inclus dans X
l’ensemble réalisable original.

Observation C.5. Soit pXi |P Iq une famille d’ensembles avec Xi � X pour tout i P I, et f : X Ñ
Rp. Si

�
iPI Xi � X, alors

Ep
¤
iPI

EpX, f qq � EpX, f q

Proposition C.5. Pour une instance X et σ P S TC définissant une variante restrict REF with
feasible set Xσ,

�
σPS K Xσ � X

On résout donc REF par la simple procédure décrite par l’Algorithme 31:

Algorithm 31: Algorithme de résolution énumérant les découplages de REF

1 Out ÐH

2 for σ P S TC do
3 Out Ð Out Y ẼpXσ, f q

4 return ẼpOutq

Empiriquement, on observe que même l’énumération de S TC peut être compétitive et plus
rapide que l’exécution d’une méthode générique, quand le nombre de sous-système est relative-
ment faible relativement à la taille des sous-systèmes.

C.4.4.2 Pre-computation of independent dynamic programming states

La variante restrict-split est résolue par décomposition, et chacun de ses sous-problèmes est résolu
par programmation dynamique avec p � 1 critèrs seulement, et le filtrage des combinaison se
limite à p critères. Ces variantes comprennent certaines tâches complexes devenues simples, mais
les tâches déjà simple dans le problème original devraient être traitées de la même manière dans
toutes les variantes. La sous-séquence de programmation dynamique associée avec ces tâches
peut donc être précalculée et utilisée pour initialiser chaque variante découplée considérée. On
considère l’ensemble réalisable Xs

L du sous-problème s réstreint à ses tâches locales, défini comme
:

Xs
L :� tx P t0, 1u|TLpsq| |

¸
tPTLpsq

¸
mPMpsq

xtm ¤ 1 &
¸

tPTLpsq

¸
mPMpsq

wtmxtm ¤ bsu (C.4)

154

APPENDIX C. RÉSUMÉ EN FRANÇAIS

On calcule d’abord Qs
L � ẼpX

s
L, p f s, w̄sqq pour tout s P S . Puis tout tous σ P S TC , on

complète l’ensemble des |S | sous-problèmes indépendants avec les tâches rendues simples pour
chaque sous-problème par σ. On combine et filtre les solutions des sous-problèmes pour obtenir
la solution de la variant restrict split. On calcule ensuite l’union des ensembles non-dominés pour
tous les σ P S TC , que l’on filtre.

Empiriquement, on observe que l’utilisatino de la programmation dynamique et du précalcul
amène à une amélioration significative de la performance: pour des instances faiblement couplées,
même dans le cas bi-objectif, le problème est résolu 4 à 8 fois plus vite qu’avec le l’algorithme
générique. Pour p � 3, de 18 à 52 fois plus vite. Cette approche permet également une réso-
lution beaucoup plus rapide qu’avec l’algorithme de programmation dynamique classique, même
amélioré par le filtrage par une borne inférieure. Toutefois, si le degré de couplage de problème
augmente (nombre de contraintes couplantes ou de sous-problèmes, donc valeur de S TC), la méth-
ode générique redevient préférable dans le cas biobjectif.

C.4.4.3 Recherche arborescente et branching

Pour améliorer la méthode d’énumération des découplages, on la représente sous forme d’une
arborescence, telle que chaque niveau correspond à une tâche complexe, et chaque décision de
branchement à un sous-système auquel associer la tâche complexe. Les feuilles de cette arbores-
cence correspondent à l’ensemble réalisable d’une variante restrict split du problème original, que
l’on peut résoudre par décomposition et programmation dynamique.

Example C.6. La Figure C.13 contraste branchement découplant et branchement binaire, clas-
sique en branch & bound.

Un algorithme de branch & bound est correct si le schéma de branchement est exhaustif au
sens suivant (ce qui est impliqué par la proposition C.5).

Definition C.17. E is exhaustive if and only if for all ν P V¤
ν1s.t.pν,ν1qPE

Xν1 � Xν (C.5)

L’énumération est faite en profondeur d’abord. On calcul d’abord un ensemble de solutions
candidates, qui correspondent à la solution de la variante restrict-split choisie par l’heuristique de
la Section C.3.4, qui sera exclue de la recherche arborescente. On tire aussi partie du précalcul
des sous-séquences de programmation dynamique décrit précédemment. La question est de savoir
si des élimination de sous-arbre de type branch & bound peuvent être effectuées dans de telles
arborescences.

Dans le branch & bound monocritère, il s’agit de montrer qu’une solution réalisable déjà con-
nue est meilleure qu’une borne supérieure sur les solutions réalisables d’un sous arbre. La général-
isation de cette notion au cas multiobjectif nécessite la définition de la “région de recherche”, qui

155

APPENDIX C. RÉSUMÉ EN FRANÇAIS

Figure C.13: Binary branching (top) versus decoupling branching (bottom)

est l’ensemble des points non dominés par les solutions déjà connues, et est constituée de “zones
de recherches” définies par des points charnières situés au minimum des paires de points réalis-
ables déjà connus. En monocritère, cette région de recherche est simplement la demidroite réelle
supérieure à la valeur de la meilleure solution connue.

Montrer que les solutions réalisables connues sont meilleures que les solutions d’un sous ar-
bre revient à “séparer” la région de recherche de l’ensemble réalisable de ce sous arbre, ensemble
réalisable borné par des ensembles bornant supérieurs, ou des hyperplans définis par des scalari-
sations, comme illustré dans la Figure C.14.

La séparation est réalisée en éliminant des zones de recherche à l’aide d’hyperplans définissant
un demi-espace inaccessible. Si une zone de recherche est contenue dans ce demi espace, elle peut
être supprimée du noeud actuel et de ses descendants. Ainsi la séparation n’a pas à être réalisée
en un coup.

C.4.4.4 Application à la résolution de REF

On se limite dans cette expérience au cas biobjectif. L’arbre est exploré en profondeur jusqu’aux
noeuds feuille, auxquels la variante restrict-split correspondante est résolue par programmation
dynamique et décomposition. Aux noeuds intermédiaire, on génère une série d’hyerplans par la
méthode dichotomique, pour essayer d’éliminer autant de zones de recherches actives que possi-
ble, en stoppant l’exploration à un certain seuil de précision défini par ε-dominance. La région de

156

APPENDIX C. RÉSUMÉ EN FRANÇAIS

(a) Single objective case (b) Biobjective case

Figure C.14: Notion de région de recherche, de zone de recherche et de séparation illustrées dans
le cas mono et multicritères. tn1, ...n4u are the points defining the seach zones

recherche n’est pas mise à jour par la découverte de solutions réalisables aux problèmes feuilles,
car cette opération est trop coûteuse et son implémentation doit être optimisée.

Pour toutes les instances testées à part une, l’approche branch & bound est légèrement plus
rapide que l’approche énumérant les découplages avec décomposition, programmation dynamique
et précalcul. Dans tous les cas, on voit qu’une proportion significative des noeuds feuilles de
l’arborescence ont été évités. Des travaux supplémentaires sont nécessaires pour rendre cette
exploration plus efficace et généraliser la séparation au delà de deux critères.

157

MOTS CLÉS

Optimisation Multiobjectifs, optimisation combinatoire, systèmes complexes, programmation dynamique, dé-
composition

RÉSUMÉ

Un système complexe peut être vu comme une collection de sous-systèmes irréductiblement liés mais assez indépen-
dants pour être distingués. Cette thèse considère l’optimisation de systèmes complexes dans le cadre multi-objectifs.
L’interaction entre sous-systèmes d’un système complexe y prend la forme de contraintes couplantes, c’est-à-dire faisant
intervenir des variables issues de différents sous-systèmes.
Après avoir rappelé les fondements de l’optimisation multi-objectifs et de l’algorithmique de filtrage par dominance, nous
présentons la notion de système couplé, et définissons dans le cas multi-objectifs celle, centrale, de décomposition. Une
implémentation simple de la décomposition suffit à améliorer le temps de résolution de problèmes non-couplés. Nous
proposons de surcroit des méthodes algorithmiques avancées pour la combinaison de solutions de sous-problèmes et
l’élimination des combinaison dominées, utilisant les notions de boîte bornante et d’algorithme unidirectionnel de filtrage
par dominance.
Le défi principal de l’optimisation de systèmes complexes reste de prendre en compte les contraintes couplantes, tout
en évitant de considérer l’entièreté du problème original en même temps. Nous proposons des restrictions et relaxations
génériques des contraintes couplantes de problèmes couplés, permettant d’obtenir des ensembles bornant supérieure-
ment et inférieurement l’ensemble de solutions non-dominées. Nous montrons que ceux-ci peuvent être calculés en tirant
parti de la décomposition.
Enfin, nous présentons un problème d’application : une affectation multi-site multi-objectifs sous contraintes de
ressources. Nous montrons que ce problème admet un algorithme de résolution par la programmation dynamique,
et comment la décomposition peut être utilisée pour améliorer cette méthode initiale. D’une part, le processus séquentiel
de décision peut lui-même être décomposé en sous-séquences indépendantes. D’autre part, des bornes ou des ensem-
bles bornants obtenus par décomposition peuvent être utilisés pour accélérer le processus séquentiel de décision par
l’élimination précoce de solutions partielles.

ABSTRACT

A complex system is a collection of subsystems which are independent enough to be distinguished but linked together
in significant ways. This thesis considers the optimization of complex systems within the framework of multiobjective
optimization and focuses on a representation of complex systems as coupled systems, meaning that the interaction
between subsystems is modeled by coupling constraints, i.e. constraints involving variables from different subsystems.
After having recalled the basic notions of multiobjective optimization and of dominance filtering algorithms, we introduce
coupled problems, and define the key concept of decomposition in the multiobjective case. A simple implementation of
decomposition already yields performance improvement in the resolution of uncoupled problems, but we provide further
algorithmic improvements to the combination of solutions from subproblems and the elimination of dominated combina-
tions, using notions of bounding boxes and of unidirectional dominance filtering algorithms.
Beyond the uncoupled case, the main challenge of complex systems optimization remains to take coupling constraints
into account, while never having to consider whole complex system optimization problem at once. We propose generic
restrictions and relaxations of coupling constraints, which yield upper and lower bounds set on the set non-dominated set
of a coupled problem. We show that bound sets can be obtained using decomposition.
Finally, we present an application problem: a multiobjective multilocation assignment problem. We show that it admits
a dynamic programming resolution method, and we show how decomposition can be used to improve on this initial
resolution method. On the one hand, the sequential decision process can itself be broken down into independent subse-
quences. On the other hand, reasoning using bounds or bound sets obtained by decomposition can be used to speed up
the sequential decision process by eliminating partial solutions early.

KEYWORDS

Multiobjecitve Opitmization, combinatorial optimization, complex systems, dynamic programming, decompo-
sition

	Introduction
	Fundamental notions
	Notions of Multiobjective optimization
	Coupled problems and decomposition
	The Generic Uncoupled Problem and the efficiency of decomposition
	Conclusions

	Computing efficiently the non-dominated subset of the Minkowski set sum
	The non-dominated subset of the Minkowski sum problem (NDMSP)
	Intermediary filtering
	A unidirectional method for pooling
	Box-based methods
	Conclusions and discussion

	Decoupling a coupled problem to obtain bound sets
	Introduction
	Decomposable restrictions and lower bound sets
	Decomposable relaxations and upper bound sets
	Experimental results
	Conclusions and discussion

	Application Problem
	Presentation of the REF problem
	Upper and lower bound sets for REF
	``Bottom-up'' approaches based on Dynamic Programming
	``Top-down'' approaches for solving REF
	Conclusions and perspectives

	General conclusions and perspectives
	Appendices
	The double bound as a solution concept in MOCO
	Definitions
	Experimental Results

	Weak lower bounds obtained from correcting weak upper bound solutions
	Correction of solutions to the copy-split relaxation
	Correction of solutions to the relaxation of coupled variables in subsystems knapsack constraints
	Experimental results

	Résumé en Français
	Notions fondamentales
	Calcul efficace du sous ensemble non-dominé d'une somme d'ensembles
	Obtenir des ensembles bornant par décomposition
	Problème d'application

