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Résumé détaillé

Dans cette thèse nous étudions deux modèles issus de la physique statistique :
la percolation bootstrap et les modèles cinétiquement contraints (KCM).
Nous nous placerons principalement sur la grille Z2 avec condition initiale
aléatoire, ce qui nous amènera à des considérations probabilistes et combina-
toires. Néanmoins, il convient de signaler que ces modèles ont de nombreuses
connections à d'autres domaines, aussi bien des mathématiques et de la phy-
sique que d'autres disciplines telles que l'informatique et les sciences sociales
(voir Section 1.1).

1 Dé�nition des modèles

1.1 Percolation bootstrap

Un modèle de percolation bootstrap est dé�ni par un entier positif d (di-
mension) et une famille de mise à jour U qui est une famille �nie non-vide
de sous-ensembles �nis non-vides de Zdzt0u appelés règles de mise à jour.
Etant donné un ensemble A � Zd, on dé�nit l'action de bootstrap

BU pAq � AY
!
x P Zd : DU P U , x� U � A

)
avec B �C � tb� c : b P B, c P Cu et b�C � tbu �C pour tous B,C � Rd
et b P Rd. En mots, étant donné que l'ensemble A de sites est infecté, à
la prochaine étape, on infecte de plus tout site tel qu'au moins une règle
translatée en ce site est déjà entièrement infectée. Ce processus peut na-
turellement être vu comme un système dynamique en temps discret. Etant
donné un ensemble de sites initialement infectés A � Zd, sa clôture est

rAsU �
¤
nPN

Bn
U pAq,

où Bn
U signi�e BU itéré n fois et N � t0, 1, . . .u est l'ensemble des entiers

naturels. Puisque U sera souvent �xé, nous l'omettons de toute notation,
sauf si cela engendre de confusion. On dit que A est stable si A � rAs.

Pour donner un exemple, considérons le modèle à r voisins. Là on a
BpAq � AYtx P Zd : |ty P A : y � xu| ¥ ru avec y � x si x et y sont voisins

vii



viii Résumé détaillé

dans la structure de graph usuelle de Zd. Alternativement, on peut voir ceci
comme BU pAq avec U la famille de

�
2d
r

�
ensembles de r voisins de l'origine.

C'est-à-dire si n'importe quels r voisins d'un site sont tous infectés, ce site
le devient également.

Jusqu'alors le processus est entièrement déterministe. On introduit l'aléa
seulement dans la condition initiale, en prenant x P A indépendamment pour
chaque x P Zd avec probabilité q. On note la loi de A par µq et laisse q impli-
cite lorsqu'il est clair du contexte. Habituellement en physique statistique,
on peut à présent introduire la probabilité critique

qc � inf
!
q P r0, 1s : µq

�
rAs � Zd

	
¡ 0

)
.

Puisque l'évènement ci-dessus est invariant par translation, l'ergodicité im-
plique qu'en fait µqprAs � Zdq P t0, 1u pour tout q P r0, 1s. Tandis que pour
q   qc on peut étudier la géométrie de ZdzrAs, dans le régime q ¥ qc on peut
souhaiter être plus quantitatif. A cette �n on introduit le temps d'infection
(de percolation bootstrap)

τBP
0 � min tn P N : 0 P BnpAqu P NY t8u,

qui est une variable aléatoire, en posant min∅ � 8 de manière usuelle.

1.2 KCM

Les KCM sont dé�nis également par leurs dimension d ¥ 1, famille de mise
à jour U comme dans Section 1.1 et paramètre q P r0, 1s. Le U-KCM est

un processus de Markov à temps continu avec espace d'états Ω � t0, 1uZd ,
les zéros correspondant à des infections. On peut naturellement identi�er
toute con�guration η P Ω avec l'ensemble de ses infections (appelé A dans
Section 1.1). La contrainte en x est donnée par

cxpηq � 1DUPU ,ηx�U�0,

en écrivant ηX pour la restriction de η P Ω à X � Zd et 0X (resp. 1X)
pour la con�guration entièrement infectée (resp. saine) sur X. On omet X
de la notation s'il est clair du contexte. Si X � txu pour un x P Zd, on écrit
simplement x pour concision, de sorte que ηx est l'état du site x P Zd dans la
con�guration η P Ω. On écrit ηx pour la con�guration obtenue en retournant
l'état du site x dans la con�guration η, c'est-à-dire pηxqy � ηy pour tout
y P Zdztxu et pηxqx � 1� ηx.

On note µq � µ la mesure produit de Bernoulli, telle que µpηx � 0q �
q, η étant une con�guration aléatoire de loi µ. On note µXpfq l'espérance
conditionnelle µpfpηq|ηZdzXq sur les états dans X pour tout ensemble �ni

X � Zd et fonction réelle f : Ω Ñ R. Les variances par rapport à µ et µX
sont notées Var et VarX respectivement.
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On peut maintenant dé�nir le U-KCM par l'action de son générateur sur
les fonctions f : Ω Ñ R dépendant seulement des états d'un nombre �ni de
sites

LU pfqpηq �
¸
xPZd

cxpηq � pµxpfq � fqpηq

�
¸
xPZd

cxpηq � pqηx � p1� qqp1� ηxqq � pfpηxq � fpηqq,

où µx est une abréviation de µtxu et de même pour Varx. Ce processus peut
également être dé�ni par une construction graphique plus intuitive comme
suit (voir [258] pour plus de contexte). Chaque site est muni d'un proces-
sus de Poisson standard (horloge) indépendant, dont les atomes sont appelés
sonneries. Lorsque l'horloge en x sonne, on se donne de plus une variable
aléatoire indépendante de loi (de Bernoulli) µx. Si la contrainte cx est satis-
faite, la mise à jour est dite légale et elle remplace l'état de x par celui de la
variable. Dans le cas contraire (mise à jour illégale) la con�guration reste in-
changée après la sonnerie. Puisque le nombre de sonneries est localement �ni
et les contraintes ont une portée �nie, ceci ne pose pas de problème [258].
Il est clair de chacune des deux dé�nitions que la mesure µ est réversible
et invariante pour le KCM, comme cxpηq ne dépend pas de ηx. Pour cette
raison on appelle µ la mesure d'équilibre. Par contre, il faut remarquer que,
par exemple, la mesure de Dirac sur la con�guration entièrement saine 1 est
invariante aussi.

La quantité d'intérêt principal est le temps (aléatoire) d'infection de l'ori-
gine

τ0 � min tt ¥ 0 : η0ptq � 0u ,
ηptq étant l'état du KCM en temps t P r0,8q. On s'intéressera à Eµpτ0q, l'es-
pérance du temps d'infection pour le processus stationnaire (avec condition
initiale de loi µ). Une quantité plus analytique, mais tout aussi importante,
de la vitesse de la dynamique est son temps de relaxation Trel dé�ni comme
l'inverse du trou spectral de LU . Heureusement, on ne sera jamais amené à
considérer le spectre d'opérateurs, grâce à la dé�nition plus abordable

pTrelq�1 � inf
f�const

DU pfq
Varpfq , (1)

où DU est la forme de Dirichlet associée à LU

DU pfq �
¸
xPZd

µpcx �Varxpfqq � �µpfLU pfqq.

2 Modèle à r voisins

Commençons par le modèle à r voisins provenant de [100, 155], qui est le
plus classique à la fois en percolation bootstrap et KCM. Nous ne nous
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intéresserons qu'aux cas r � 1 et d � r � 2 (voir Section 1.4 pour les
autres).

2.1 Modèle à un voisin

Le cas r � 1 étant trivial en percolation bootstrap, on se concentre à pré-
sent sur le KCM à un voisin appelé FA-1f en hommage à ses inventeurs,
Fredrickson et Andersen [155]. Dans ce modèle lorsque q Ñ 0 le comporte-
ment typique d'une infection est le suivant. Avec taux q elle crée une autre
infection à côté. Après, très rapidement l'une des deux infections disparait,
résultant en un mouvement net de l'infection initiale correspondant à une
marche aléatoire simple paresseuse. A des échelles de temps plus longues
on peut également observer des branchements résultant de la création d'une
troisième infection avant que la seconde ne soit détruite. En outre, deux in-
fections e�ectuant leurs marches aléatoires qui arrivent à des sites voisins
typiquement coalescent rapidement avant de pouvoir se déplacer. Ceci nous
amène à introduire le modèle suivant au comportement identique, mais qui
se prête bien plus facilement à l'analyse.

CBSEP

Soit G � pV,Eq un graphe connexe. Ses degrés minimal, maximal et moyen
sont notés dmin, dmax et davg respectivement. Le degré de x P V est noté dx.
Pour tout ω P Ω � t0, 1uV et sommet x P V on dit que x est rempli/vide,
ou qu'il y a une particule/trou en x, si ωx � 1{0. On dé�nit Ω� � Ωzt0u
comme l'évènement qu'il existe au moins une particule. De même, pour une
arête e � tx, yu P E on appelle pωx, ωyq P t0, 1utx,yu l'état de e dans ω et on
écrit Ee � tω P Ω : ωx � ωy � 0u pour l'évènement que e n'est pas vide.

Etant donné p P p0, 1q, soit π �Â
xPV πx la mesure produit de Bernoulli

pour laquelle chaque sommet est rempli avec probabilité p et soit µp�q :�
πp�|Ω�q. Etant donné une arête e � tx, yu, on écrit πe :� πx b πy et λppq :�
πpEeq � pp2� pq.

Le processus d'exclusion simple avec branchement et coalescence (CBSEP)
est une chaîne de Markov en temps continu sur Ω� pour laquelle l'état de
chaque arête e P E telle que Ee arrive est remise à jour à taux 1 avec
le mesure πep�|Eeq. Ainsi, toute arête ayant exactement une particule dé-
place la particule à l'autre extrémité de l'arête (mouvement d'échange) à
taux p1� pq{p2� pq et crée une particule supplémentaire à son sommet vide
(mouvement branchant) à taux p{p2� pq. De plus, une arête contenant deux
particules en tue une choisie uniformément (mouvement coalescent) à taux
2p1�pq{p2�pq. Il est facile de voir que la chaîne est réversible par rapport à
µ et ergodique sur Ω�, comme elle peut rejoindre la con�guration avec une
particule dans chaque sommet. Si cpω, ω1q est le taux de saut de ω à ω1, la
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forme de Dirichlet DCBSEPpfq de la chaîne s'exprime comme

DCBSEPpfq � 1

2

¸
ω,ω1

µpωqcpω, ω1q �fpω1q � fpωq�2 �
¸
ePE

µp1Ee Varepf |Eeqq.

Notons que les mouvements branchant et coalescent de CBSEP sont exac-
tement ceux autorisés dans FA-1f. De surcroît, le mouvement d'échange pour
l'arête tx, yu de p1, 0q à p0, 1q peut être reconstruit, en utilisant deux mou-
vement successifs de FA-1f, le premier remplissant le trou en y et le second
vidant x. Si l'on prend en compte aussi le taux de chaque mouvement, on
obtient facilement la comparaison entre les formes de Dirichlet respectives :
il existe une constante absolue c ¡ 0 telle que pour tout f : Ω� Ñ R on a

c�1DFA�1fpfq ¤ DCBSEPpfq ¤ cdmaxp
�1DFA�1fpfq,

en posant le paramètre q de FA-1f égal au paramètre p de CBSEP. Dans
notre application à FA-1f pour p Ñ 0 uniquement la borne supérieure, que
nous croyons plus précise, comptera.

Malgré le fait que les deux modèles sont clairement étroitement liés, il
convient de souligner que CBSEP a de nombreux avantages comparé à FA-1f,
rendant son étude plus accessible. Particulièrement, CBSEP est attractif au
sens qu'il existe un grand couplage (voir e.g. [256]) préservant l'ordre partiel
sur Ω donné par ω   ω1 ssi ωx ¤ ω1x pour tout x P V . De plus, on peut
naturellement implanter dans CBSEP une marche aléatoire en temps continu
pWtqt¥0 sur G telle que CBSEP a une particule enWt pour tout t ¥ 0. Cette
propriété particulièrement fructueuse sera utilisée dans Section 3.5 et est
di�cile à reproduire pour FA-1f [59].

Dans Chapitre 3 nous établissons des bornes inférieures et supérieures sur
le temps de relaxation et la constante de Sobolev logarithmique1 de CBSEP
sur des graphes �nis arbitraires. Notre intérêt principal est pour le régime
où p � Θp1q{|V | et nos bornes sont exactes à corrections logarithmiques
près pour de nombreux graphes usuels. Ces résultats entraînent des bornes
supérieures correspondantes sur les temps de relaxation et la constante de
Sobolev logarithmique du modèle FA-1f. A titre d'exemple, on obtient le
résultat suivant, qui renforce des résultats de Pillai et Smith [299,300] sur le
temps de mélange, tout en en fournissant une preuve plus directe.

Proposition 2.1. Considérons FA-1f dans sa composante ergodique Ω� sur
le tore pZ{nZqd avec sa structure de graphe usuelle et avec paramètre q �
Θp1{ndq. Sa constante de Sobolev logarithmique α satisfait

α�1 ¤ Op1q �

$'&'%
logp1{qq{q3 d � 1

log2p1{qq{q2 d � 2

logp1{qq{q2 d ¥ 3.
1Cette constante est dé�nie comme le trou spectral dans Eq. (1) avec Varpfq remplacé

par l'entropie µpf2 logpf2{µpf2qqq.
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Des bornes inférieures identiques à des facteurs logarithmiques près sont
connues [88,299], démontrant l'exactitude de ce résultat.

De plus, en utilisant Proposition 2.1, on établit des bornes similaires pour
une généralisation de CBSEP avec t0, 1u remplacé par un espace d'états �ni
quelconque et sur le tore de taille arbitraire telle que |V |q Ñ8. Ces résultats
démontrés dans Chapitre 3 et Section 5.B nous seront utiles par la suite pour
l'étude du modèle FA-2f dans Chapitre 5.

2.2 Modèle à deux voisins

Percolation bootstrap à deux voisins

Passons à présent à la percolation bootstrap à deux voisins en deux dimen-
sions, qui sera un prérequis pour l'étude de FA-2f.

Ce modèle a été très étudié, les premiers résultats rigoureux datant des
années 80 [7, 358]. Les études les plus poussées [187,190] ont établi

exp

�
π2 �Op?q � log3p1{qqq

18q

�
¤ τBP

0 ¤ exp

�
π2 � Ωp?qq

18q



avec grande probabilité lorsque q Ñ 0. Nous renforçons la borne inférieure
pour retrouver le second terme à un facteur multiplicatif borné près.

Théorème 2.2. La percolation bootstrap à deux voisins en deux dimensions
satisfait avec grande probabilité lorsque q Ñ 0

τBP
0 � exp

�
π2 �Θp?qq

18q



. (2)

Ce théorème fait l'objet du Chapitre 10. En plus de ra�nements des
idées apportées par [7,190,225], nous sommes amenés à introduire un nombre
d'avancées techniques aboutissant à une compréhension très �ne de la crois-
sance typique menant à la création d'une �gouttelette critique� (voir Sec-
tion 1.4.3). Il convient de mentionner que Théorème 2.2 réfute des prédictions
basées sur des simulations [337].

FA-2f

Considérons maintenant le KCM à deux voisins, FA-2f, toujours en deux
dimensions. En raison de la di�culté de ce modèle la plupart des résultats
sont restés heuristiques et seulement deux travaux [88,272] ont fait un progrès
rigoureux. Leur résultat est

exp

�
π2 � op1q

18q



¤ Eµpτ0q ¤ exp

�
Oplog2p1{qqq

q



. (3)

Malheureusement, ces bornes sont trop écartées pour discerner les bonnes
prédictions non-rigoureuses. En e�et, dans les dernièrs 35 ans de nombreuses
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conjectures con�ictuelles sur l'asymptotique de Eµpτ0q se sont accumulées
[86,154,157,179,180,289,306,338,345] et Eq. (3) ne permet pas de trancher
cette controverse.

Notre résultat montre que seule la prédiction de [306, 345] est correcte.
De plus, des conjectures plus �nes sur le comportement à l'intérieur d'une
gouttelette critique s'avèrent être justes dans [345], mais non pas dans [306].

Théorème 2.3. Lorsque q Ñ 0, FA-2f à l'équilibre sur Z2 véri�e :

Eµpτ0q ¥ exp

�
π2

9q
p1�?q �Op1qq



, (4)

Eµpτ0q ¤ exp

�
π2

9q

�
1�?q � plogp1{qqqOp1q

	

. (5)

De plus, ces bornes valent aussi pour τ0 avec grande probabilité.

Ceci constitue la première asymptotique exacte de logEµpτ0q dans toute
la classe de KCM �critiques�. Elle est établie dans Chapitre 5.

Remarque 2.4. Malgré les apparences, Théorème 2.3 n'est aucunement un
corollaire du Théorème 2.2. Alors que la borne inférieure Eq. (4) découle
assez directement d'Eq. (2), la preuve de la borne supérieure Eq. (5) est bien
plus di�cile. En particulier, elle demande d'intuiter un mécanisme e�cace
d'infection/guérison pour infecter l'origine sans analogue dans la percolation
bootstrap à deux voisins, qui est monotone.

Heuristique L'intuition principale derrière Théorème 2.3 est que pour
q Ñ 0 la relaxation à l'équilibre de FA-2f est dominée par le mouvement
lent de groupements d'infection très improbables appelés gouttelettes mo-
biles ou simplement gouttelettes. Par analogie avec les gouttelettes critiques
en percolation bootstrap, les gouttelettes mobiles ont une taille linéaire qui
croît de manière polynomiale en q, i.e. elles vivent sur une échelle beaucoup
plus petite que l'échelle métastable eΘp1{qq apparaissant en percolation boots-
trap. L'une des considérations principales déterminant le choix d'échelle des
gouttelettes mobiles est le fait que l'environnement d'infections typique au-
tour de la gouttelette doit avec haute probabilité lui permettre de se déplacer
sous la dynamique FA-2f en toute direction. Dans cette optique la contribu-
tion principale au temps d'infection de l'origine de FA-2f stationnaire devrait
venir du temps qu'il faut pour que la gouttelette atteigne l'origine.

A�n de transformer cette intuition en preuve, on s'a�ronte à deux pro-
blèmes fondamentaux :

(1) une dé�nition des gouttelettes mobiles précise, mais maniable ;

(2) un modèle e�cace de leur évolution aléatoire �e�ective�.
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Dans [269, 272] et Chapitre 4 les gouttelettes mobiles (dites régions �super-
bonnes� là) ont été dé�nies de manière plutôt rigide comme des régions
complètement infectées de forme et taille appropriée et leur mouvement a été
modélisé comme un FA-1f généralisé sur Z [269, Section 3.1]. Dans ce dernier
les gouttelettes sont librement créées et détruites avec les taux d'équilibre,
mais uniquement aux positions voisines d'une gouttelette déjà existante.

Même si elle est puissante et robuste, cette approche ne peut donner accès
à l'asymptotique exacte ni de (1), ni de (2) ci-dessus. En e�et, une gouttelette
mobile doit être autorisée à se déformer et se déplacer dans son voisinage
comme une amibe, en réagençant ses infections, en utilisant les mouvements
FA-2f. Ce mouvement �à l'amibe� entre positions voisines devra s'e�ectuer à
une échelle de temps très inférieure à l'échelle globale nécessaire pour amener
une gouttelette de très loin à l'origine. En particulier, il ne nécessite pas la
création préalable d'une nouvelle gouttelette à partir de l'originelle pour
détruire l'initiale seulement après (le mécanisme principal de la dynamique
des gouttelettes sous le processus FA-1f généralisé).

Avec cette image à l'esprit, on propose une nouvelle solution à (1) et
(2) ci-dessus qui donne accès à l'asymptotique exacte du temps d'infection.
Concernant (1), notre raisonnement dans Section 5.2 se fait en deux étapes.
D'abord on propose une dé�nition multi-échelle sophistiquée des gouttelettes
mobiles. En particulier, elle introduit un degré essentiel de mollesse dans la
con�guration microscopique d'infections.2 La seconde étape est technique-
ment beaucoup plus di�cile et consiste à développer les outils nécessaires
pour l'analyse de la dynamique FA-2f à l'intérieur d'une gouttelette mobile.
Notamment, nous démontrons deux propriétés clé (voir Propositions 5.2.7
et 5.2.9) :

(1.a) à l'ordre principal la probabilité ρD d'une gouttelette mobile est celle
de percolation bootstrap :

ρD ¥ exp

�
�π

2

9q
� Oplog2p1{qqq?

q



,

(1.b) le mouvement local �à l'amibe� des gouttelettes s'e�ectue à l'échelle
de temps exppOplogp1{qq3q{?qq ce qui est sous-dominant par rapport
à l'échelle de temps principale du problème et ne se manifeste que
dans le second terme d'Eq. (5).

Propriété (1.a) découle relativement facilement de techniques de percolation
bootstrap, tandis que la preuve de propriété (1.b), l'un des pas cruciaux de
cette thèse, demande une quantité substantielle de nouvelles idées.

2Cette construction est inspirée par celle suggérée par P. Balister en 2017, qu'il
conjecturait enlever les corrections logarithmiques redondantes dans Eq. (3) disponible
à l'époque.
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Alors que les propriétés (1.a) et (1.b) ci-dessus sont essentielles, elles
ne su�sent pas à elles seules pour résoudre le problème (2) ci-dessus. En
Section 5.4 nous proposons une modélisation (quoique seulement au niveau
d'une inégalité de Poincaré, su�sante pour nos besoins) de l'évolution des
gouttelettes mobiles par un CBSEP généralisé (mentionné dans Section 2.1),
étudié dans Chapitre 3 à cette �n. En�n, le fait que CBSEP relaxe à une
échelle de temps proportionnelle à l'inverse de la densité des gouttelettes
mobiles (modulo corrections logarithmiques � voir Proposition 5.4.1) donne
l'asymptotique du Théorème 2.3. Nous tenons à insister sur le fait que la
modélisation du mouvement à grande échelle des gouttelettes par un CBSEP
généralisé plutôt qu'un FA-1f généralisé est une nouveauté absolue, y compris
par rapport à la littérature de physique.

3 Universalité grossière

Lorsqu'on parle d'universalité pour les modèles de percolation bootstrap
(resp. KCM) notre but ultime est de pouvoir répartir toutes les familles
U en classes des sorte à ce que les représentants de chaque classe aient un
comportement identique si l'on les regarde de loin. Ici par comportement
identique on entendra notamment avoir des µ

�
τBP

0

�
(resp. Eµpτ0q) de gran-

deur similaire lorsque q Ñ 0. Bien entendu, une telle classi�cation est satis-
faisante seulement si elle permet, étant donnée une famille de mise à jour U ,
de pouvoir déterminer à quelle classe elle appartient seulement à partir de
sa géométrie et combinatoire. Nous nous placerons exclusivement en deux
dimensions, même si la quasi-totalité de nos arguments ne est pas restreinte
à ce cas. Laissant l'histoire de l'universalité à Section 1.5.1, nous procédons
directement à la dé�nition des classes d'universalité grossière.

Soit } � } et x�, �y les norme et produit scalaire Euclidiens respectivement.
Soit S1 � tu P R2 : }u} � 1u le cercle unité que l'on identi�e à R{2πZ
lorsque nécessaire. On appelle ses éléments directions. Les demi-plans ouvert
et fermé de normale extérieure u P S1 et décalage l P R sont

Huplq �
 
x P R2 : xx, uy   l

(
, Huplq �

 
x P R2 : xx, uy ¤ l

(
.

On omet l quand il est égal à 0. Sauf si cela engendre de confusion, on
identi�e tout sous-ensemble de R2, tel que Hu, avec son intersection avec Z2.

Dé�nition 3.1 (Direction stable). Fixons une famille de mise à jour U . Une
direction u P S1 est instable s'il existe U P U tel que U � Hu et stable sinon.

L'intérêt de cette dé�nition vient du fait que rHusU � Hu si u est stable
(i.e. u est stable ssi Hu l'est) et rHusU � Z2 si u est instable. On dit qu'une
direction u P S1 est rationnelle si RuXZ2 � ∅. Il n'est pas di�cile de véri�er
que l'ensemble de directions stables est une union �nie d'intervalles fermés
de S1 aux extrémités rationnelles. Les extrémités d'intervalles de directions
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stables sont appelées isolées si l'intervalle est réduit à un point et semi-
isolées sinon. Toute direction stable qui n'est ni isolée, ni semi-isolée est dite
fortement stable. Pour des exemples illustratifs voir Fig. 1.2.

On est à présent en mesure de dé�nir les classes d'universalité grossière.

Dé�nition 3.2 (Partition d'universalité grossière). Soit C � tHu X S1 : u P
S1u l'ensemble des demi-cercles ouverts de S1. Une famille U est :

• surcritique s'il existe un demi-cercle ouvert C P C dont toutes les directions
u P C sont instables. Si de plus

� il existe deux directions stables non opposées, U est enraciné ;

� il n'existe pas deux directions stables non opposées, U est déraciné.

• critique si tout demi-cercle ouvert contient une direction stable et il existe
un demi-cercle contenant un nombre �ni de directions stables.

• souscritique si tout demi-cercle contient une in�nité de directions stables.
Elle est

� non triviale s'il existe une direction instable ;

� triviale si toutes les directions sont stables.

L'intérêt de ces classes devient apparent avec le résultat suivant résumé
dans Tableau 1.2.

Théorème 3.3 (Universalité grossière [28, 74, 265, 267, 269]). Soit U une
famille de mise à jour bidimensionnelle. Si U est

• surcritique déraciné, alors qc � 0, µ
�
τBP

0

� � q�Θp1q et Eµpτ0q � q�Θp1q.

• surcritique enraciné, alors qc � 0, µ
�
τBP

0

� � q�Θp1q et Eµpτ0q �
exppΘplog2p1{qqqq.
• critique, alors qc � 0, µ

�
τBP

0

� � exppq�Θp1qq et Eµpτ0q � exppq�Θp1qq.
• souscritique non triviale, alors qc P p0, 1q, µ

�
τBP

0

� � Eµpτ0q � 8 pour q
assez petit.

• souscritique triviale, alors qc � 1, µ
�
τBP

0

� � Eµpτ0q � 8 pour tout q P
p0, 1q.

Les mêmes asymptotiques s'appliquent à τBP
0 et τ0 avec grande probabilité et

à Trel lorsque q Ñ 0.

Nous reviendrons à des ra�nements du résultat assez grossier sur les
modèles critiques dans Section 4 et aux souscritiques dans Section 5.
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4 Universalité ra�née des modèles critiques

4.1 Classes d'universalité ra�née

Pour pouvoir déterminer l'asymptotique de µ
�
τBP

0

�
et Eµpτ0q plus précisé-

ment que ce que nous fournit Théorème 3.3 pour les modèles critiques, on a
besoin d'a�ner notre partition et la notion de direction stable (voir Fig. 1.2
pour des exemples).

Dé�nition 4.1 (Di�culté). La di�culté αpuq de u P S1 est

• 0 si u est instable ;

• 8 si u est stable, mais pas isolé ;

• mintn : DZ � Z2, |Z| � n, |rHu Y ZsUzHu| � 8u sinon.
La di�culté de U est

α � αpUq � min
CPC

max
uPC

αpuq.

On dit qu'une direction u P S1 est di�cile si αpuq ¡ α.

Les di�cultés a�nent non seulement la notion de direction stable, mais
aussi celle des classes d'universalité grossière. Plus précisément, il n'est pas
di�cile de véri�er qu'un modèle est surcritique ssi sa di�culté α est 0 ;
critique ssi α est un entier strictement positif ; souscritique ssi α � 8.

Notons de plus que la tâche de déterminer les directions stables ou la
classe d'universalité grossière d'une famille de mise à jour est facile, tandis
que calculer les di�cultés des directions stables ou la di�culté globale d'une
famille critique est moins immédiat. Nous examinons cette question du point
de vue de la complexité dans Chapitre 9, en démontrant qu'il est possible
de calculer α en temps �ni, étant donné U , mais il est NP-di�cile de le
faire. Notre algorithme en temps �ni repose sur des bornes quantitatives sur
la distance que peut parcourir l'infection d'un ensemble initial de α infec-
tions ajouté à un demi-plan, si elle ne s'étend pas à l'in�ni. Le résultat de
NP-di�culté, quant à lui, découle de l'immersion d'instances du problème
classique de recouvrement d'ensemble. Malgré la di�culté pour déterminer
les di�cultés, on les considérera données par la suite.

Avec Dé�nition 4.1 à notre disposition, on peut dé�nir toutes les notions
qui apparaitront dans la partition d'universalité ra�née.

Dé�nition 4.2 (Types ra�nés). Une famille de mise à jour bidimensionnelle
est

• enracinée s'il existe deux directions di�ciles non opposées ;

• déracinée si elle n'est pas enracinée ;
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• déséquilibrée s'il existe deux directions di�ciles opposées ;

• équilibrée si elle n'est pas déséquilibrée, soit, il existe un demi-cercle fermé
ne contenant aucune direction di�cile.

On partitionne les familles équilibrées déracinées davantage en

• semi-dirigées s'il y a exactement une direction di�cile ;

• isotropes s'il n'y a aucune direction di�cile.

On sera amené à considérer de plus la distinction entre modèles à nombre
�ni ou in�ni de directions stables (soit, sans ou avec une direction fortement
stable). Les derniers sont nécessairement enracinés, mais peuvent être équi-
librés ou non. Ainsi on se retrouve avec une partition de toutes les familles
de mise à jour critiques en deux dimensions en sept classes représentées en
Fig. 1.2 que nous étudions par la suite.

4.2 Résultats d'universalité ra�née

L'universalité ra�née en percolation bootstrap étant connue de [70], on se fo-
calise sur les KCM qui ont un comportement beaucoup plus riche et intriqué.
En e�et, nos résultats excluent des conjectures faites dans [269] sur l'asymp-
totique de Eµpτ0q. Le résultat principal de la thèse résumé dans Tableau 1.3
s'énonce ainsi.

Théorème 4.3 (Universalité ra�née des KCM). Soit U une famille de mise
à jour critique en deux dimensions avec di�culté α. Si U est

(a) déséquilibré avec nombre in�ni de directions stables (donc enraciné),
alors

Eµpτ0q � exp

��Θ
�
plogp1{qqq4

	
q2α

�;

(b) équilibré avec nombre in�ni de directions stables (donc enraciné), alors

Eµpτ0q � exp

�
Θp1q
q2α



;

(c) déséquilibré enraciné avec nombre �ni de directions stables, alors

Eµpτ0q � exp

��Θ
�
plogp1{qqq3

	
qα

�;



4. UNIVERSALITÉ RAFFINÉE DES MODÈLES CRITIQUES xix

(d) déséquilibré déraciné (donc avec nombre �ni de directions stables), alors

Eµpτ0q � exp

��Θ
�
plogp1{qqq2

	
qα

�;

(e) équilibré enraciné avec nombre �ni de directions stables, alors

Eµpτ0q � exp

�
Θ plogp1{qqq

qα



;

(f) semi-dirigé (donc équilibré déraciné avec nombre �ni de directions
stables), alors

Eµpτ0q � exp

�
Θ plog logp1{qqq

qα



;

(g) isotrope (donc équilibré déraciné avec nombre �ni de directions stables),
alors

Eµpτ0q � exp

�
Θp1q
qα



.

Il convient de souligner que, contrairement à ce qui était le cas en per-
colation bootstrap, ce résultat est l'état de l'art pour toute famille critique
à l'exception de FA-2f, pour lequel l'unique résultat de précision supérieure
(ou égale) est Théorème 2.3. Le seul KCM pour lequel le résultat fourni par
Théorème 4.3 était connu précédemment est le celui de Duarte [267,269].

La preuve du Théorème 4.3 a été e�ectuée en plusieurs étapes. Notam-
ment, la borne inférieure à corrections logarithmiques près pour les modèles
avec nombre �ni de directions stables découle de [88] et résultats de perco-
lation bootstrap [70]. En fait, il en est de même pour les bornes inférieures
exactes du Théorème 4.3 pour les classes (d) et (g). La borne inférieure à
corrections logarithmiques près pour les familles à nombre in�ni de direc-
tions stables est établie dans Chapitre 7 et donne de plus la borne inférieure
exacte pour la classe (b). Les techniques en sont repris et développées da-
vantage dans Chapitre 8 pour démontrer toutes les bornes inférieures du
Théorème 4.3 dans un cadre uni�cateur.

Quant aux bornes supérieures, celles du Théorème 1.6.4 pour la classe (a)
et à corrections logarithmiques près pour toutes les familles avec nombre in-
�ni de directions stables ont été obtenues dans [269]. La borne supérieure
à corrections logarithmiques près pour les familles avec nombre �ni de di-
rections stables ainsi que la borne supérieure exacte pour la classe (c) sont
prouvées dans Chapitre 4. Les bornes supérieures exactes restantes du Théo-
rème 4.3 sont démontrées dans Chapitre 6, les classes (e) et (f) étant le dé�
le plus important.

Chacun des Chapitres 4 et 6-8 apporte de nombreuses nouvelles idées
et techniques dont la présentation est laissée à Section 1.6 et aux chapitres
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correspondants. Nous ne signalons ci-dessous qu'une seule de ces avancées
qui est particulièrement intéressante de manière indépendante et fait l'objet
du Chapitre 2.

4.3 Dynamique microscopique et KCM inhomogènes

La démonstration de certaines des bornes supérieures du Théorème 4.3 dans
Chapitre 6 fait apparaitre le problème suivant. On souhaite pouvoir remettre
à l'équilibre l'état des sites sur la frontière d'une grande région infectée de
forme polygonale. Vu de près, ceci revient à étudier la dynamique du KCM
bidimensionnel d'origine restreint à un segment unidimensionnel avec une
condition au bord dans le reste du plan. Quitte à identi�er le segment à un
sous-ensemble de Z, ceci nous amène au cadre suivant (voir Section 2.1 pour
les dé�nitions formelles). Considérons un KCM

• sur un volume arbitraire L � Z, 1 ¤ |L| ¤ 8, qui n'a pas besoin d'être un
intervalle ;

• avec conditions au bord arbitraires dans Z ;

• conditionné à appartenir à une composante irréductible de l'espace d'états
arbitrairement choisie ;

• avec espaces d'états �nis arbitraires pour chaque site, qui peuvent di�érer
d'un site à l'autre et n'ont pas besoin d'être uniformément bornés en taille
ou probabilités des atomes, mais la probabilité d'être infecté est bornée
inférieurement par q ¡ 0 ;

• avec des familles de mise à jour qui peuvent varier d'un site à l'autre,
pourvu qu'elles aient une portée uniformément bornée par R   8. Cer-
tains sites peuvent être complétement �gés ou, inversement, libres de chan-
ger d'état sans contrainte.

Dans Chapitre 2 nous prouvons que dans ce cadre pour un certain CR ¡ 0
dépendant seulement de R

Trel ¤ p2{qqCR logpminp2{q,|L|qq.

Comme on l'a vu dans Théorème 3.3, cette borne est la meilleure possible
pour tout KCM unidimensionnel homogène surcritique enraciné aux états bi-
naires lorsque q Ñ 0. De manière surprenante, elle est également la meilleure
possible pour certains KCM binaires homogènes surcritiques déracinés sur
des intervalles, malgré le fait que sur Z leur temps de relaxation est seulement
q�Θp1q d'après Théorème 3.3.

Notons que de tels KCM généraux possèdent souvent de nombreuses
composantes irréductibles (il y en a toujours au moins deux sauf trivialités)
et leur structure combinatoire peut être très intriquée. Elles se sont avérées
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di�ciles à traiter à cause des dépendances de longue portée qu'elles induisent.
Par conséquent, l'unique cas non trivial où le temps de relaxation sur une
composante irréductible est contrôlé [59] (voir aussi [88,89]) est FA-1f sur un
intervalle dans sa composante ergodique � la seule composante irréductible
non triviale de ce KCM, donnée par Ωzt1u.

Le lecteur peut consulter [321, 324, 326] pour des KCM inhomogènes,
[88,89,342] pour des KCM homogènes avec diverses règles et conditions aux
bord et [269] et Chapitre 3 pour des espaces d'état généraux. Néanmoins,
il convient de souligner qu'aucune paire d'aspects parmi les suivants n'a été
considérée simultanément par le passé : espaces d'état généraux, règles in-
homogènes, composantes irréductibles. Formellement, comme on le verra,
les domaines non-intervalles, les conditions au bord et les composantes irré-
ductibles autres que l'ergodique peuvent être absorbés dans l'inhomogénéité
des règles, mais de tels KCM arbitrairement inhomogènes n'ont jamais été
considérés avant.

5 Modèles souscritiques

Pour �nir, abordons les familles souscritiques, qui sont le moins bien com-
prises, à la fois en percolation bootstrap et en KCM. Pour simpli�er le pro-
pos on exclue d'emblée les modèles souscritiques triviaux et dit simplement
�souscritique� pour un modèle souscritique non trivial.

5.1 Transition de phase et percolation orientée

Avant de nous occuper des modèles souscritiques généraux, concentrons-nous
sur le premier et le plus fondamental parmi eux. Il est dé�ni par UOP �
ttp1, 0q, p0, 1quu (voir Fig. 1.2b) et on l'appellera percolation orientée (OP)
pour de raisons qui s'éclairciront par la suite, tandis que sa version KCM
est connue sous le nom Nord-Est (NE). En percolation bootstrap OP a été
considéré en premier dans [313] et NE � dans [307] immédiatement après.
Néanmoins, OP était déjà très bien étudié en tant que modèle de percolation
(voir [131,258], ainsi que Chapitre 11).

L'équivalence entre percolation bootstrap avec la famille de mise à jour
ci-dessus et OP est la suivante (observée dans [313, 315]). Un site x P Z2

devient infecté en temps t ssi le chemin initialement sain le plus long, faisant
des pas vers le haut ou vers la droite, commençant en x, a longueur t. En
particulier, τBP

0 � 8 ssi l'origine appartient à un tel chemin in�ni sain. Ainsi,
entre autres, il est bien connu que 0   qcpUOPq   1. Schonmann a noté aussi
que ceci implique directement qcpUq   1 pour tout U � UOP.

Cette observation se généralise à tous les modèles souscritiques comme
suit. Par dé�nition toute famille souscritique (non triviale) U a une direction
instable u P S1. Alors, il existe une règle de mise à jour U P U contenue dans
le demi-plan ouvert correspondant Hu. On appelle la percolation bootstrap
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associée à la famille (à une règle) tUu une percolation orientée par sites
généralisée (GOSP) pour tout U contenu dans un demi-plan ouvert tel que U
engendre R2 en tant qu'espace vectoriel (sinon U serait surcritique). Comme
le nom le suggère, GOSP se comporte comme OP et respecte la même relation
d'équivalence avec une représentation par percolation de chemins aux pas
dans U . Il est alors facile de voir que qc   1 pour GOSP (par exemple par
comparaison avec un processus de branchement) et donc aussi pour le modèle
d'origine souscritique U .

L'inégalité complémentaire, qc ¡ 0 pour les modèles souscritiques est
sensiblement plus di�cile et constitue la di�culté principale du Théorème 3.3
pour cette classe. Elle a été résolue dans [28] via une renormalisation multi-
échelle assez technique.

Pour conclure, notons que pour les KCM souscritiques en général, es-
sentiellement rien n'est connu de plus que ce qui relève de la percolation
bootstrap. Plus précisémment l'intégralité des études se limite au modèle
NE [88,108,246,355] très spécial. Dans le cadre général, les uniques résultats
pour les KCM souscritiques sont ceux valides pour tout KCM (souscritique
ou non) :

• La transition d'ergodicité/mélange du U-KCM intervient à qcpUq de la
U-percolation bootstrap correspondante, c'est-à-dire la probabilité critique
de µpτBP

0 � 8q. Ceci est démontré dans [88].

• La transition d'annulation du trou spectral du U-KCM intervient à q̃cpUq
de la U-percolation bootstrap, c'est-à-dire la probabilité critique de dé-
croissance exponentielle de µpτBP

0 ¡ tq (voir Chapitre 12). Ceci est dé-
montré dans Théorème 12.3.7.

En vue de ceci, on restreint notre attention par la suite à la percolation
bootstrap avec famille souscritique non triviale.

5.2 De GOSP aux modèles de percolation bootstrap souscri-
tiques généraux

GOSP

La discussion ci-dessus de la non trivialité de la transition de phase des mo-
dèles souscritiques fournit au moins deux raisons d'étudier GOSP en détail.
D'abord, ce sont les modèles souscritiques les plus simples et donc un point
de départ convenable. Deuxièmement, la compréhension de GOSP peut être
répercutée vers les familles générales. De plus, GOSP est intéressante par
elle-même en tant que modèle de percolation et automate cellulaire probabi-
liste (voir Section 11.2). Pour ces raisons, dans Chapitre 11, on étudie GOSP
en dimension arbitraire d ¥ 2, en nous concentrant sur la phase q   qc, soit
la surcritique en langage de percolation.
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Les résultats du Chapitre 11 que nous énonçons informellement par la
suite peuvent heureusement être vues comme des boîtes noires. Pour com-
mencer, en employant le langage de percolation, on dit que a P Z2 est
connecté à b P Z2 s'il existe un chemin sain de a à b avec pas dans la
règle U � Hu qui dé�nit notre GOSP pour un u P S1. Considérons GOSP
restreint à Hv pour un certain v P S1, c'est-à-dire, les chemins doivent être
contenus dans Hv. On s'intéresse si 0 est connecté à l'in�ni avec probabilité
positive en fonction de q et v. Il s'avère que l'ensemble de directions v telles
que ceci arrive est un intervalle qui varie avec q d'une manière continue et
strictement monotone pour q P r0, qcq. A q Ñ qc� l'intervalle converge vers
un demi-cercle et pour q ¥ qc il est vide. De plus, pour v hors de la clôture
(topologique) de cet intervalle, la longueur du chemin le plus long depuis 0
(qui est p.s. �ni par dé�nition) a une queue qui décroît exponentiellement.

Approche directionnelle aux modèles souscritiques

Pour pouvoir faire un usage plus sophistiqué de GOSP que la simple compa-
raison qcpU 1q ¤ qcpUq lorsque U 1 � U , on aura besoin d'une décomposition
directionnelle de qc (ou plutôt q̃c, la probabilité de décroissance exponentielle
de µpτBP

0 ¡ tq). A cette �n on introduit la notion suivante, dont la dé�nition
précise est laissée au Chapitre 12. La densité critique de u P S1 (pour une
famille de mise à jour U) est moralement

du � inf tq P r0, 1s : µp0 R rAYHusU q � 0u .
Le lecteur attentif aura remarqué que ceci est exactement la notion que
nous venons de considérer pour GOSP. Ainsi, on considérera que les densités
critiques de GOSP sont des fonctions du cercle bien comprises, certes non
explicites. Il est clair aussi que du � 0 pour toute direction instable ou stable
isolée u, donc cette notion est adaptée aux directions fortement stables.

Avec les densités critiques à notre disposition, le résultat central du Cha-
pitre 12 s'énonce

q̃c � inf
CPC1

sup
uPC

du, (6)

où C1 est l'ensemble des demi-cercles fermés. Pour transformer Eq. (6) en
une version ra�née de la comparaison basique q̃cpU 1q ¤ q̃cpUq pour U 1 � U ,
il su�t d'observer que, de même, dupU 1q ¤ dupUq sous la même condition.
Ainsi,

q̃cpUq ¤ inf
CPC1

sup
uPC

min
UPU

duptUuq,

ce qui nous permet de transférer des bornes sur les densités critiques de
GOSP à des modèles souscritiques arbitraires (les densités critiques des fa-
milles non surcritiques à une règle qui ne sont pas des GOSP sont identique-
ment 1). Dans Chapitre 12 nous illustrerons que ceci donne e�ectivement de
meilleures bornes dans des situations génériques.
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Dans le cadre des densités critiques nous retrouvons aussi des résultats
connus sur la famille Spiral de [344], basés sur une application moins directe
d'Eq. (6). Spiral est essentiellement l'unique modèle de percolation bootstrap
souscritique autre que GOSP, qui est relativement bien compris, grâce à ses
connections fortes à OP (voir aussi [235,236,346,347] pour d'autres modèles
étroitement liés). Il est particulièrement intéressant en vue de la discontinuité
de sa transition de phase [344,346] : il satisfait

µqc
�
τBP

0 � 8� ¡ 0,

comme attendu pour la transition de blocage dans des milieux granulaires
[320].

Nous laissons les résultats supplémentaires concernant la décroissance
exponentielle (en particulier redémontrant des résultats de [315]), sensitivité
au bruit et réponses à certaines questions de [28] au Chapitre 12.

6 Organisation

La thèse est structurée comme suit. Hormis l'introduction indispensable,
chaque chapitre est basé sur un papier di�érent parmi [207,209,210,213�216,
218�220, 222]. Les chapitres sont regroupés dans des parties relativement
indépendantes appropriées pour des lecteurs de di�érentes communautés ou
goût.

Partie I (Chapitres 2-6) contient des bornes supérieurs sur des KCM. Elle
est appropriée pour les lecteurs compétents en chaînes de Markov et, plus
spéci�quement, la dynamique de systèmes de particules en interaction.

Partie II (Chapitres 7-10) présente des bornes inférieures sur des KCM cri-
tiques (Chapitres 7 et 8) suivies de résultats de percolation bootstrap cri-
tique. Tous deux sont adéquats pour les lecteurs habiles en combinatoire
(probabiliste).

Partie III (Chapitres 11 et 12) traite la percolation bootstrap souscritique,
ce qui la rend appropriée pour les lecteurs expérimentés en percolation.

Le contenu de chaque chapitre est le suivant.

Chapitre 1 est une introduction générale à la thèse ainsi qu'à la percolation
bootstrap et KCM. On s'y e�orce d'être pédagogique et complet. Il inclue
un survol de la littérature et contexte de la thèse, ainsi que de l'histoire des
résultats que nous présentons et ceux étroitement liés. Cette introduction est
supposée connue dans tous les autres chapitres.

Chapitre 2 [207] traite les KCM généraux inhomogènes arbitraires sur vo-
lumes �nis ou in�nis unidimensionnels conditionnés à une composante irré-
ductible (voir Section 4.3). Nous établissons une borne sur leur temps de
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relaxation sans imposer de condition, en développant une approche de bis-
section révisée.

Chapitre 3 [218] coécrit avec Fabio Martinelli et Cristina Toninelli étudie
CBSEP (voir Section 2.1) et une généralisation naturelle sur des graphes �nis
arbitraires. Nous démontrons des bornes sur les temps de relaxation, mélange
et Sobolev logarithmique en toute généralité, qui sont souvent exactes à
corrections logarithmiques près. On s'intéresse particulièrement à la limite
où le nombre de sommets du graphe diverge comme l'inverse de la densité de
particules à l'équilibre q et aux applications à FA-1f, en particulier retrouvant
des résultats de Pillai�Smith [299,300].

Chapitre 4 [216] coécrit avec Fabio Martinelli et Cristina Toninelli montre
la borne supérieure du Théorème 4.3 à corrections logarithmiques près pour
les modèles critiques à nombre �ni de directions stables (voir Section 4).

Chapitre 5 [215] coécrit avec Fabio Martinelli et Cristina Toninelli montre
Théorème 2.3 sur FA-2f sur Z2, ainsi établissant la première asymptotique
exacte pour un KCM critique et tranchant les conjectures con�ictuelles en
physique (voir Section 2.2). La preuve repose de manière cruciale sur Cha-
pitres 3 et 10 pour les bornes supérieure et inférieure respectivement et
contient une version adaptée de Section 4.4.

Chapitre 6 [210] montre les bornes supérieures sur Eµpτ0q du Théorème 4.3
pour toutes les classes ra�nées de familles bidimensionnelles critiques sauf
les déséquilibrées au nombre in�ni de directions stables (a) traitées par [269]
(voir Section 4). On se �e aux Chapitres 2 et 5.

Chapitre 7 [214] coécrit avec Laure Marêché et Cristina Toninelli montre la
borne inférieure du Théorème 4.3 à corrections logarithmiques près pour les
modèles critiques à nombre in�ni de directions stables (voir Section 4).

Chapitre 8 [213] coécrit avec Laure Marêché montre les bornes inférieures
sur Eµpτ0q du Théorème 4.3 pour toutes les classes ra�nées de familles bidi-
mensionnelles critiques, en se basant sur Chapitre 7. Ainsi, avec Chapitre 6
nous achevons l'universalité ra�née des KCM critiques en deux dimensions
(voir Section 4).

Chapitre 9 [219] coécrit avec Tamás Mezei examine le paramètre clé de l'uni-
versalité en deux dimensions à la fois pour la percolation bootstrap et KCM
� la di�culté α � d'un point de vue computationnel (voir Section 4.1). Nous
démontrons que la tâche de la déterminer, étant donné U est NP-di�cile et
fournissons un algorithme pour la trouver en temps �ni.

Chapitre 10 [220] coécrit avec Robert Morris établit la borne inférieure du
Théorème 2.2, déterminant l'ordre de grandeur du second terme de τBP

0 pour
la percolation bootstrap à deux voisins sur Z2 (voir Section 2.2). La preuve
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requiert une compréhension �ne de la croissance typique d'une gouttelette
critique et demande une quantité d'innovations techniques.

Chapitre 11 [222] coécrit avec Réka Szabó montre que GOSP se comporte
comme la percolation orientée ordinaire dans sa phase surcritique (voir Sec-
tion 5.2).

Chapitre 12 [209] fournit des résultats généraux sur les familles souscritiques
(voir Section 5). Notamment, nous répondons à plusieurs questions posées
dans [28]. La sortie du Chapitre 11 s'insère naturellement dans Chapitre 12
pour en étendre certains résultats à la généralité complète recherchée.



Chapter 1

Introduction

The present thesis concerns rigorous aspects of two classes of statistical me-
chanics models: bootstrap percolation and kinetically constrained models.
Both models are located at the interface between statistical physics, proba-
bility and combinatorics, while the former is also studied from the viewpoint
of computer and social sciences. Our work is probabilistic and combinatorial,
mostly leaving out the other sides of the subject. The topic is at the border
of several domains as diverse as interacting particle systems, probabilistic
combinatorics, percolation, graph theory, cellular automata, computational
complexity, glassy dynamics, social network phenomena and many more, so
it is likely that the reader may come from one area or the other. There-
fore, in the present chapter we provide a light and accessible introduction to
the �eld assuming only knowledge of basic probability and giving heuristics
rather than proofs. Our focus is on the two models on the square grid Z2

with random i.i.d. initial condition at low density and, more precisely, their
universality.

The introduction is intended for linear reading and the readers should
familiarise themselves with it before venturing to later chapters, which may
be read in a more disordered and selective fashion. We provide a correspon-
ding roadmap in Section 1.7, once we know what we are talking about, but
before diving into details.

1.1 Motivation and background

In view of the volume and technicality of the manuscript, we owe the reader
a furnished justi�cation of our study. Our main motivation for the present
work is the following universal proposition.

Proposition 1.1.1. Everything is useful.

Proof. This follows immediately from �C'est véritablement utile, puisque
c'est joli,� as remarked by the little prince, in conjunction with the exclama-
tion �C'est bien plus beau lorsque c'est inutile!� of Cyrano de Bergerac.

1
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The rest of Section 1.1 is devoted to an alternative, more cumbersome,
less elegant, nonrigorous and chronologically posterior proof of a particu-
lar case of the above assertion in the setting of bootstrap percolation and
kinetically constrained models provided for the sake of completeness. The
mathematically predisposed reader, who would surely be satis�ed with Pro-
position 1.1.1, is advised to skip ahead to Section 1.2.

1.1.1 Bootstrap percolation

Let us begin with the elder bootstrap percolation. To introduce the model
informally, let us recall a folklore exercise. Consider an n�n bar of chocolate,
certain of whose pieces are mouldy. Every day the edible pieces with at least
2 neighbouring mouldy pieces also perish. What is the smallest number of
initially spoiled pieces needed to eventually spoil the entire bar?

The dynamics described above is what we call 2-neighbour bootstrap per-
colation. It is more commonly phrased in terms of certain vertices of a graph
G being initially infected, while healthy vertices become infected when they
have at least r infected neighbours, and infections never heal. This results
in the r-neighbour bootstrap percolation model on G.

The present thesis is only concerned with the typical infection time of,
say, the origin in r-neighbour bootstrap percolation (and kinetically con-
strained models to be discussed in Section 1.1.2) and its generalisations with
random initial set of infections on G � Zd with its standard nearest neig-
hbour graph structure. Before restricting ourselves to this setting, in which
bootstrap percolation �rst emerged, let us discuss several other domains and
settings in which it appears or is closely related to. These mentions are
necessarily simplistic and likely abusive, taking into account that bootstrap
percolation has long grown beyond the possibility of an exhaustive survey.

Other viewpoints on bootstrap percolation

Cellular automata�computer science A cellular automaton is a pro-
cess which evolves in discrete time by updating simultaneously all the sites
(vertices) of Zd according to a rule, which depends on the current state of the
process, but only on vertices within a certain distance of the site. The rule
is assumed to be translation invariant. We further assume cellular automata
to be binary, that is, each site has two possible states (healthy/infected).
Thus, r-neighbour bootstrap percolation is a cellular automaton. The fe-
ature of bootstrap percolation that healing never occurs is referred to as
freezing property. The fact that it inspects the total number of infections
among the neighbours and that adding infections favours further propaga-
tion of infection then leads to calling it a freezing totalistic monotone cellular
automaton. Alternatively, one may say threshold instead of totalistic or even
majority, when r is exactly half of the number of neighbours, 2d.
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One viewpoint on cellular automata is the computational universality
one. Namely, one asks whether it is possible to embed a Turing machine
in them in order to perform arbitrary computations. Related questions are
whether certain problems can be solved in �nite time and, if so, in polynomial
time. For instance, one may try to decide whether the state of the origin will
ever change, given the initial state. We direct the reader to the recent thesis
[262] on the subject and the references therein for such considerations. We
also brie�y examine this viewpoint in Chapter 9 for problems more related
to our probabilistic perspective.

Cores�statistical physics In statistical physics and graph theory, a
k-core is a subset of the vertices of a graph G which induces a graph of
minimal degree at least k. In other words, each of the vertices has to have
at least k neighbours in the subset. If G is d-regular, k-cores are equivalent
to pd� k � 1q-neighbour bootstrap percolation in the following sense. For
any set of infected vertices, run the bootstrap dynamics until it becomes
stationary. It is not hard to check that the resulting set of infections is the
complement of a k-core and any k-core can be obtained this way. In parti-
cular, if k � 1, we recover the hard-core model: all vertices become infected
if and only if the initially healthy sites form an independent set.

The k-core model can be viewed as a constraint satisfaction problem and,
as such, is related to spin glasses on one side and computational phase tran-
sitions in computer science on the other. Several questions become natural
from this thermodynamics perspective. Firstly, one would like to know pos-
sible sizes of k-cores and, more generally, the number of such cores given
their size, how to e�ciently sample such con�gurations from a Boltzmann
distribution, etc. Similarly, one may rather look at sets of initial infections
which infect the entire graph (i.e. sets whose complement has no k-core) and
investigate their thermodyniamics. We direct the reader to [198] and the
references therein for this line of research and to its section II.D for more
related models. Further see [302, 320] concerning the discontinuity of the
phase transition of k-cores.

Propagation of contagion/opinion�computer and social sciences
The bootstrap percolation dynamics and appropriate generalisations are used
directly to model the propagation of infection, in�uence, opinions, etc. in
networks. One is then usually interested in extremal questions such as what
is the minimal size of a dynamic monopoly, i.e. a target set of customers
(represented by vertices) one needs to convince (bribe, bombard with spam,
etc.), so that their opinion can spread to the entire population or a large
portion of it. How long does the spreading take? How can one determine
such an optimal choice or approximate it algorithmically? We direct the
reader to the survey [42].
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Moving closer to our setting of interest, the same extremal questions may
be asked for boxes or tori of Zd as in the folklore exercise recalled above.
Some notable references on the subject are [40, 45, 46, 201, 206, 278, 282, 304,
308].

Probabilistic viewpoint beyond lattices Moving still closer to our
point of view, one may select the initial infected set randomly and ask whet-
her the entire graph or large portion thereof becomes infected at a given `den-
sity' of initial infections. This matter has been addressed on various graphs
such as trees [39, 54, 72, 79, 150, 200, 322], random regular graphs [41, 233],
(Gilbert�)Erd®s�Rényi graphs [21, 234, 241, 351], hyperbolic lattices [311],
Hamming tori [186, 328] and many more. Particularly interesting from the
point of view of applications are graphs with `real world' features such as
sparsity, small diameter, heavy-tailed degree distributions, community struc-
ture, geometry etc. [1, 15�17, 78, 95, 147, 151, 164, 352, 363]. Yet closer to our
setting are works on high dimensional hypercubes [31, 34,35].

A somewhat di�erent setting on lattices is the one of polluted bootstrap
percolation. This may be seen as bootstrap percolation on the in�nite su-
percritical cluster obtained from Bernoulli site percolation on the lattice.
Alternatively, one may think of working on the entire lattice, but some sites
are declared immune to infection from the start at random. Works in this
setting include [165,189,191,192].

Related models

Ising The (Lenz�)Ising model [228,254] is perhaps the most studied model
of magnetism together with its mean-�eld Curie�Weiss version. It so happens
that bootstrap percolation was originally introduced [100, 303] precisely to
model magnetic materials under appropriate conditions. It is therefore not
surprising that the two are related. Firstly, bootstrap percolation was viewed
in [7] as a �rst step towards understanding the metastability of the Glauber
dynamics of the Ising model at (very) low temperature [77, 174, 268, 293].
Indeed, progress on bootstrap percolation did propagate to the Ising model
[71,99,119,120,316,317]. A further connection exists with the �xation of the
zero-temperature dynamics of stochastic Ising [55,149,279] (also see [249]).

Graph bootstrap percolation Graph bootstrap percolation, also known
as weak saturation, [67] sets out with two graphs G,H and a subset F of
the edges of G viewed as initially infected. At each step one infects edges of
G which complete an isomorphic copy of H. This model is often similarly
�avoured to r-neighbour bootstrap percolation (corresponding to H being
an pr � 1q-star) and has sometimes been instrumental for the study of the
latter, owing to the connections of the former to linear algebraic problems
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[201,282]. See [13,36,38,73,152,239,247,273] for some combinatorial works
and [22,37,44,199] for probabilistic ones.

And more Let us also mention connections to the abelian sandpile [148,
280], two-way bootstrap percolation [368] (also see [314]), graph burning [75]
and the recently introduced elliptic bootstrap percolation [14]. We ask the
kind reader's forgiveness for other relatives having escaped our attention and
refer to the references in [2, 4, 117,359] for a few more.

1.1.2 Kinetically constrained models

Paradigmatic models

Although they were introduced independently, kinetically constrained mo-
dels (KCM) are natural stochastic nonmonotone versions, canonically associ-
ated to any bootstrap percolation model. For the r-neighbour bootstrap per-
colation considered above the companion KCM is the Fredrickson�Andersen
r-spin facilitated model (FA-rf) [155, 156], the parameter r being traditio-
nally denoted j. The formal de�nitions can wait until Section 1.2.2, but let
us give an informal one. Consider the lattice Zd with some vertices initially
infected. For each vertex we attempt to update its state at rate 1 (i.e. at
random intervals of time with exponentially distributed mean 1 length). We
are only allowed to do so if the site has at least j infected neighbours. If
this constraint is satis�ed, we �ip a coin to decide what the new state will
be, the coin yielding infection with probability q and health with probability
1� q. Thus, infections can now heal and updates are no longer synchronous,
but still have the same facilitation constraint as in bootstrap percolation.
Another fundamental KCM is the East model [231] on Z. There we may
only update sites whose left neighbour is infected, but still do so at rate 1
w.r.t. a Bernoulli law with parameter q.

A model of glass

The FA-jf models were developed to model the glass transition, a brief intro-
duction to which is in order. Yet, the domain of glassy physics is signi�cantly
more vast than bootstrap percolation and KCM together, so we do not even
dream of providing a detailed account. We wholeheartedly recommend the
very informative survey [23] including everything we relate, along with sco-
res of references supporting it (see also [24, 255, 309, 341] for more emphasis
on KCM). It is important to note that a great number of models of glasses
have been proposed and physicists are nowhere near a consensus on which,
if any, is `correct.' KCM are but one of these theories with its virtues and
sins, which we only partially account for.

A glass is obtained experimentally from a liquid by cooling it suddenly
below its freezing temperature. Essentially every material can form a glass
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if asked gently, including SiO2, yielding many of the everyday objects com-
monly called `glass,' but by far not limited to it. Glasses are rigid, but not
solid. The former means that they practically do not �ow or do so extre-
mely slowly and have mechanical properties of solid bodies. They are not
solid, however, in the sense that they do not have the microscopic structure
of solid state matter, namely a crystalline lattice. Instead, microscopically
they are disordered and essentially indistinguishable from their �uid form.
The `transition' between liquid and glassy phases occurs very suddenly, with
decreasing the temperature. It is uncertain whether one should speak of a
proper thermodynamical phase transition at non-zero temperature, but it is
clear that if a material takes a year for 1% of its molecules to move by a mi-
cron, only a mathematician would call it a liquid. As a matter of fact, glassy
phenomenology goes well beyond the realm of the glasses de�ned above (usu-
ally called structural glasses to distinguish) and extends to various objects
such as mesoscopic particles, grains, but also people (in a crowd) and more
abstract entities such as solutions to constraint satisfaction problems (such
as constructing a timetable or a thesis committee).

The idea behind the FA-jf models and KCM more generally is the fol-
lowing simple observation. If a person is in a dense crowd, so that there
are people all around, he cannot move out of the `cage' created by his neig-
hbours. On the other hand, if somewhere in the crowd there is a little space,
e.g. a person `missing,' that is where movement can occur. From this per-
spective one thinks of infections as bits of free volume needed for anything
to happen. In fact, from this microscopic perspective, it is more natural to
consider conservative KCM (discussed below) to avoid people disappearing
or popping up out of thin air. Indeed, FA-jf models are more appropriate
from a coarse-grained vision of the material, some zones being sparser/better
arranged than others, which can be viewed as excitations able to appear and
disappear. The appeal of KCM comes from this intuitive explanation and
their simplicity. Yet, from what we have said so far it is unclear whether they
produce adequate glassy phenomenology known to occur in real materials.

If this thesis is being written, it is doubtlessly because this is the case.
Indeed, KCM are capable of producing various emergent qualitative features
(not hard-coded in the model's de�nition) characteristic of glasses. Such are
the sharp divergence of relaxation time scales as the temperature (density of
infections) decreases, dynamical heterogeneity (some regions move relatively
fast, while others remain completely frozen for a long time), aging e�ects (the
dynamics after a quench from high to low temperature becomes increasingly
slower with time, retaining the `age' of the system) and so on.

More convincingly yet, as we will see in detail, even one-dimensional
KCM can exhibit two types of behaviour, which quantitatively match mea-
surements in real glasses. Of course, it is delusive to think that the viscosity
of any concrete glass is accurately predicted at a given temperature by the
FA-1f model. However, some universal features are strikingly reproduced
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by KCM. More speci�cally, experimental studies have revealed two rough
types of behaviours of (e.g. the relaxation times of) glasses called strong and
fragile. Strong glasses, such as windows, feature Arrhenius behaviour, which
may be explained by the existence of some local relaxation mechanism (think
of swapping two molecules), which requires some �xed energy. Such mecha-
nisms and quantitative divergence forms are exactly the ones associated to
the simplest class of KCM we will call supercritical unrooted, whose simplest
representative is none other than the FA-1f model.

Fragile glasses exhibit sharper super-Arrhenius divergences, as the (ex-
perimental) glass transition is approached, which appear to roughly follow a
universal law. There are several simple expressions which give good �ts for it
and one of them is the one exhibited by another class of KCM called super-
critical rooted, such as the East model. In contrast to supercritical unrooted
models, for supercritical rooted ones many infections need to be created in
order for macroscopically distant regions to interact. As we will see, for
more di�cult models even sharper divergences can occur, owing to `coope-
rative' relaxation mechanisms requiring many particles to move collectively
in a coordinated fashion. Depending on the choice of constraint, KCM can
exhibit a �nite-temperature dynamical phase transition to the freezing of a
fraction of the system, as observed in jamming.

To be certain, all of this is quite remarkable to uncover in a model one
can de�ne in 3 lines. Yet, KCM are not `the' widely accepted solution to
the glass problem. The most straightforward objection is `How do these
constraints emerge from a �rst-principle microscopic description and what is
the exact coarse-graining procedure giving rise to them?' (see [93,94,169,353]
for progress in this direction). Moreover, one of the most crucial features
of KCM is the fact that their equilibrium measure is trivial, there is no
static interaction between infections. This was done on purpose in order to
see how much glassy behaviour one can recover only based on dynamical
constraints devoid of static interaction and static phase transition. Instead,
other theories argue that precisely static interactions are at the heart of
glassy behaviour and, perhaps, a complex type of order should appear at the
transition. Since such theories have their own supporting evidence, it is not
surprising that KCM have little chance of capturing the full picture. Yet,
even capturing a fragment of this complex problem is ample justi�cation for
the study of KCM, if any is needed.

Mathematical challenges

Even if the physical motivation of KCM is sound and the models are simple,
that is not enough to make them easy to handle mathematically. Indeed,
one of the main reasons for their special mathematical treatment is that they
lack almost every nice feature one may hope for in an interacting particle
system. The good properties of KCM are exhausted by the availability of
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a simple explicit reversible measure, the �nite range of interactions and the
dynamics being of Glauber type. The other side of the scale is more copious.

Non-attractiveness A spin system is called `attractive' if infections fa-
vour infections. That is, one can couple the dynamical evolution starting
with di�erent initial conditions in such a way that if we add infections to an
initial con�guration, this will not lead to having fewer infections at a later
time than if evolving from the original initial condition (see e.g. [258]). This
crucial feature is lacking for KCM. Indeed, adding an infection may enable
the healing of another site through an update which would otherwise violate
the constraint.

The consequences of attractiveness in other interacting particle systems
such as bootstrap percolation, the contact process, the voter and stochas-
tic Ising models, to name a few, are numerous and heavily relied on. For
instance, it is often su�cient to understand the behaviour of the system
starting from the fully infected and fully healthy states and those evolve in
a stochastically monotone way. In many cases one of the two states leads
to a trivial dynamics or the two play symmetric roles, narrowing the study
down to a single very simple initial condition. Furthermore, attractiveness
is known to enable the use of censoring [298]�we may disregard certain pre-
selected updates. This is particularly convenient to ensure that some parts
of space have relaxed individually before having them interact with the rest
of the system.

Degenerate rates The very de�nition of KCM imposes hard constraints
on the dynamics. This means that we cannot modify the state of a given
site at a �nite cost. Moreover, the dynamics cannot relax locally (e.g. a
fully healthy region cannot change on its own). This is an intrinsic di�culty
related to the dynamical heterogeneity of KCM (and glasses): some regions
are forced to remain inactive for long periods of time.

Consequently, another common tool, the (modi�ed) logarithmic Sobo-
lev constant, degenerates in in�nite volume [88]. Indeed, mixing in �nite
volume, even with fully infected boundary condition is necessarily at least
polynomially slow in the volume, since infections can only propagate at �nite
speed. In fact, it is not clear and not always true that relaxation occurs at
all in KCM. Indeed, as already mentioned, some undergo a dynamical phase
transition causing a portion of the volume to freeze at �nite temperature
and breaking ergodicity.

Cooperative dynamics In conservative dynamics as opposed to Glauber
ones, it is common to need to move something in order to relax rather than
relaxing locally throughout the volume and appropriate tools are not lacking.
A problem in implementing them (other than non-attractiveness) is that it
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turns out to be hard to conveniently embed random walks even in the simple
FA-1f model [59]. As we will see in Chapter 3, having random walks and
attractiveness at our disposal for a model makes a real di�erence.

However, it is the cooperative behaviour of many KCM, which poses a
real challenge. For them it is not su�cient to move a single microscopic
object throughout the volume of the system, but rather necessary to create
and move many infections in a coordinated fashion. This is quite uncommon
and entails uncommonly sharply diverging relaxation times.

Putting these di�culties together makes even the study of the equili-
brium dynamics of KCM particularly challenging. As a result, our task is
three-fold. Firstly, we need to identify bottlenecks, which involve signi�cant
combinatorial di�culties (owing to the degenerate rates), even if the appro-
ach is standard in dynamics of interacting particle systems. Secondly, we
need to develop an heuristic understanding of the intricate e�cient relaxa-
tion mechanisms used by the dynamics (particularly due to the cooperative
dynamics). Finally, we need to develop appropriate tools for translating the
heuristics into mathematical results, where standard methods fail (because
of non-attractiveness and the like).

Mathematical works beyond the standard setting

Before turning to our setting of interest for KCM, namely those on Zd at
equilibrium (with initial condition distributed according to the product Ber-
noulli measure with parameter q) in the low temperature limit q Ñ 0, let
us review other mathematical viewpoints on KCM. Since they are somewhat
less studied than bootstrap percolation, we may attempt to supply the re-
ader with an exhaustive bibliography. Accounts of nonrigorous studies can
be found in [24,53,173,255,309,341]. We further recommend the recent mo-
nograph [342] as an excellent reference, particularly for mathematical works
in the �eld.

Other graphs Appropriate versions of FA-jf and East models have been
studied on graphs other than Zd, including hyperbolic lattices [311], trees
[91,271] and arbitrary graphs [89] (see also Chapter 3).

Out of equilibrium While we will be almost exclusively interested in
equilibrium properties of KCM at low temperature, from the physics point
of view it is very relevant to study these models subjected to a temperature
quench. That is to start with an initial condition e.g. distributed according
to a product measure with given infection density di�erent from the invariant
one, q. Exponential convergence to equilibrium is studied in [59,92,105,283]
and generalised in [263,266]. The next step are results on the front of the East
and FA-1f models in one dimension [57,60] (e.g. with only negative integers
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initially infected). Finally, based on the above, cuto�s have been proved for
East and FA-1f in one dimension [140, 162]. Unfortunately, all these results
are either speci�c to the East model or only valid in the high temperature
regime�a most undesirable restriction in models whose glassy behaviour is
exhibited when approaching zero temperature. For the very special East
model additional results out of equilibrium can be found in [104, 143, 145]
and in [105, 106, 114] for its higher dimensional analogue. A KCM of a very
di�erent type, the North-East model, is studied out of equilibrium in [108].

Let us further mention that out-of-equilibrium results of a di�erent kind
[299, 300] concerning �nite graphs whose size diverges jointly with tempe-
rature going to 0, are the only ones of use to us and will be discussed and
derived in Section 1.4.2 and Chapter 3.

Finally, large deviations in trajectory space have been studied for East
and FA-1f in [66], since physicists proposed viewing the behaviour of KCM
as an ordinary static phase transition in the space of trajectories, driven by
a `dynamical activity' parameter [65,171,172,230].

Di�usion One may wish to study the way a tagged particle di�uses within
a KCM. For works on the subject see [58, 63]. This is all the more natural
for conservative KCM discussed in the next paragraph [49,64,142,343].

Related models

Conservative KCM As mentioned above, in some cases conservative ver-
sions of KCM may be more appropriate. The �rst and most classical such
models are the Kob�Andersen ones [244], in which one is allowed to move a
particle to an unoccupied neighbouring position, provided that a constraint
similar to the one of FA-jf models is satis�ed. More precisely, the particle
(healthy site) should have at least j empty (infected) neighbours both be-
fore and after the transition. These models and their variants also known
as kinetically constrained lattice gases have attracted signi�cant attention
[64, 90, 142, 270, 288, 323, 343, 345]. They turn out to be very closely re-
lated to non-conservative ones, yet none of the results presented in this
thesis for non-conservative KCM has a conservative analogue as of now.
Some other related kinetically constrained lattice gases can be found in
[49,61,62,76,118,139,176�178,232] and are currently quite active.

Interacting KCM Another natural modi�cation of KCM is to introduce
static interaction between particles. This may be achieved by updating each
site w.r.t. a measure depening on the current state of other sites. This
venue has only been explored in [89] for high-temperature Gibbs measures.
One reason for very systematically considering non-interacting infections is
that KCM were introduced precisely to investigate the e�ects of dynamical
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constraints in the absence of interesting static interactions. Besides, the non-
interacting case is already mathematically very challenging and its product
invariant measure is one of the very few useful properties available to work
with.

Inhomogeneous KCM As in polluted bootstrap percolation, it is possi-
ble to introduce non-homogeneous versions of KCM. For instance, one may
consider some sites in Zd having FA-2f constraint, while others have FA-1f
constraint. Such models are studied in [324, 326]. Generalisations thereof,
albeit in one dimension, are studied in Chapter 2 as a tool for higher dimen-
sional homogeneous KCM.

East-related models The East model being one of the simplest KCM
with very useful additional features (namely it is oriented), it has been ex-
tensively studied and relates to other models of interest. For instance, a
certain upper triangular matrix walk projects to an East process if one looks
at the last column [163, 297]. A model of hierarchical coalescence was used
for studying aging in East [144,146]. Also, East being quite well understood,
it has been possible to study random walks with East as random environment
[26].

Plaquette models Plaquette models are also spin models with Glauber
dynamics but, contrary to KCM have (local) static interactions instead of
kinetic constraints. These were introduced to show that kinetic constraints
can emerge from static interactions at low temperatures [169,290]. Rigorous
works on these can be found in [107,109,110].

And more Quantum versions of KCM are being studied lately as models
for many-body localisation [170,296], though mathematical treatment seems
to be lacking for the moment. Finally, let us mention that some techniques
developed in KCM are exported to other settings [52,96].

To conclude, let us gather all PhD theses dedicated to KCM we are aware
of [24, 56, 141, 255, 264, 321, 341], which the reader having reached this point
may wish to consult.

1.2 Setup

Now that we are hopefully convinced of the importance of bootstrap per-
colation and KCM, let us formally de�ne our models of interest, starting
with the less technical bootstrap percolation. We leave the history of the
emergence of U-bootstrap percolation and KCM from the r-neighbour case
to Section 1.5.3.
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1.2.1 Bootstrap percolation

A bootstrap percolation model is de�ned by a positive integer d (dimension)
and an update family U which is a �nite non-empty family of �nite non-
empty subsets of Zdzt0u called update rules. Given a set A � Zd, we de�ne
the bootstrap map

BU pAq � AY
!
x P Zd : DU P U , x� U � A

)
with B�C � tb�c : b P B, c P Cu and b�C � tbu�C for any B,C � Rd and
b P Rd. In words, given that A is infected, at the next step we additionally
infect each site such that some rule translated at it is already fully infected.
This process is naturally viewed as a dynamical system in discrete time.
Given an initial set of infected sites A � Zd, its closure is

rAsU �
¤
nPN

Bn
U pAq,

where Bn
U stands for BU iterated n times and N � t0, 1, . . .u is the set of

non-negative integers. Since U will usually be �xed, we will omit it from all
notation, unless confusion may arise. We say that A is stable if A � rAs.

Let us make a few observations. By de�nition bootstrap percolation is
monotone in two distinct ways. Firstly, A � BpAq for any A � Zd, making it
monotone in time. Secondly, the rules are monotone in the sense that A � B
implies BpAq � BpBq for any A,B � Zd. In other words, they only ask for
`enough' infections, rather than `exactly' some amount of infections. Up to
these monotonicity properties and the assumptions that rules are translation
invariant and �nite range, the family of models de�ned by all U is as general
as possible. Indeed, any infection condition can be readily recast in this
language by writing it in its disjunctive normal form, which is only subject
to the restriction not to contain negations (in other words, every increasing
set can be written as the union of the increasing sets induced by its minimal
elements). To give an example, let us take the r-neighbour model. Here we
have BpAq � AY tx P Zd : |ty P A : y � xu| ¥ ru with y � x if x and y are
neighbours in the usual graph structure on Zd. Yet, we may also view this
as BU pAq with U the family of

�
2d
r

�
sets of r neighbours of the origin. That

is, if any r of the neighbours of a given site are all infected, it also becomes
infected.

So far the process is purely deterministic. We introduce randomness only
in the initial condition, by taking x P A independently for each x P Zd with
probability q. We denote the law of A by µq and drop q whenever it is clear
from the context. As usual in statistical physics, we can then introduce the
critical probability

qc � inf
!
q P r0, 1s : µq

�
rAs � Zd

	
¡ 0

)
. (1.1)
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Since the event above is translation invariant, ergodicity says that in fact
µqprAs � Zdq P t0, 1u for all q P r0, 1s. While for q   qc one can study the
geometry of ZdzrAs, in the regime q ¥ qc one may want to be more quanti-
tative. For this purpose we introduce the (bootstrap percolation) infection
time

τBP
0 � min tn P N : 0 P BnpAqu P NY t8u,

which is a random variable, setting min∅ � 8 as usual.

Let us note that in bootstrap percolation results are usually sought for
τBP

0 w.h.p. That is, one seeks to prove that for some real functions apqq, bpqq
it holds that

lim
qÑqc�

µq
�
τBP

0 P rapqq, bpqqs� � 1.

However, it is equally meaningful to (approximately) determine the mean,
µ
�
τBP

0

�
, or, perhaps, the rate of decay of the tail of the distribution of τBP

0 for
q ¥ qc. As we will see, it is quite systematically possible to enhance results
holding w.h.p. to results in expectation, while decay rates are somewhat
di�erently behaved. We will preferentially state results for µ

�
τBP

0

�
for the

sake of consistency with KCM tradition.

Furthermore, results in bootstrap percolation are often stated in terms
of a critical probability in �nite volume, but we will prefer infection times in
in�nite volume again for compatibility with KCM. While there is no general
result saying that determining �nite volume critical probabilities and the
distribution of τBP

0 is equivalent, in practice all proofs available in the domain
work for both quantities and it is a matter of personal taste whether both
or just one is explicitly stated and/or proved.

1.2.2 KCM

KCM are similarly de�ned by their dimension d ¥ 1, update family U as
in Section 1.2.1 and parameter q P r0, 1s. The U-KCM is a continuous

time Markov process with state space Ω � t0, 1uZd , zeros corresponding to
infections. We naturally identify any con�guration η P Ω with the set of its
infections (called A in Section 1.2.1). The constraint at x is given by

cxpηq � 1DUPU ,ηx�U�0, (1.2)

writing ηX for the restriction of η P Ω to X � Zd and 0X (resp. 1X) for the
fully infected (resp. healthy) con�guration on X, omitting X when it is clear
from the context. If X � txu is a singleton, we may write just x for brevity,
so that ηx is the state of the site x P Zd in the con�guration η P Ω. We
further write ηx for the con�guration obtained from η by �ipping the state
of site x, that is, pηxqy � ηy for all y P Zdztxu and pηxqx � 1� ηx.

We denote by µq � µ the product Bernoulli measure, such that µpηx �
0q � q, η denoting a random con�guration with law µ. We further denote
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by µXpfq the conditional average µpfpηq|ηZdzXq over the states in X for any

�nite set X � Zd and any real function f : Ω Ñ R. The variances w.r.t. µ
and µX are denoted by Var and VarX respectively.

We are then ready to de�ne the U-KCM by the action of its generator
on functions f : Ω Ñ R depending on the states of �nitely many sites

LU pfqpηq �
¸
xPZd

cxpηq � pµxpfq � fqpηq

�
¸
xPZd

cxpηq � pqηx � p1� qqp1� ηxqq � pfpηxq � fpηqq,

where µx stands for µtxu and similarly for Varx. This process can also be
de�ned via a more intuitive graphical construction as follows (see [258] for
background). Each site is equipped with an independent standard Poisson
process (clock) whose atoms are called clock rings. When the clock at x rings,
we are additionally given an independent random variable with (Bernoulli)
law µx. If the constraint cx is satis�ed, we call the update legal, change the
state of x to that variable and do nothing otherwise (illegal update). Since
the number of clock rings is locally �nite and the constraints have �nite
range, this poses no problems [258]. It is clear from either description that
µ is a reversible invariant measure for the KCM, due to the fact that cxpηq
does not depend on ηx. For this reason we call µ the equilibrium measure.
It should be noted, however, that e.g. the Dirac measure on the healthy
con�guration 1 is also invariant.

The most intuitive quantity of interest is the (random) infection time of
the origin

τ0 � min tt ¥ 0 : η0ptq � 0u ,
denoting the state of the KCM at time t P r0,8q by ηptq. We will then be
interested in Eµpτ0q, the expected infection time for the stationary process
(with initial state distributed according to µ). A more analytic but equally
important measure of the speed of the dynamics is its relaxation time Trel

de�ned as the inverse of the spectral gap of LU . Fortunately, we will never
need to consider the spectrum of operators, thanks to the more manageable
de�nition

pTrelq�1 � inf
f�const

DU pfq
Varpfq , (1.3)

where DU is the Dirichlet form associated to LU

DU pfq �
¸
xPZd

µpcx �Varxpfqq � �µpfLU pfqq. (1.4)

As for τBP
0 , one may seek results for τ0 w.h.p., in expectation (for Eµpτ0q),

in large deviations rate (the rate of decay of the tail of τ0). For our purposes
all three approaches, as well as Trel, are essentially equivalent. Of course, they
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(a) FA-1f/1-neighbour BP (b) East (c) FA-2f/2-neighbour BP

Figure 1.1 � The three paradigmatic update families in one dimension. The
sites of each rule are represented by dots and the origin is marked by a cross.
The arrows indicate in which direction infection can travel via the rule.

are not equivalent a priori and sometimes more work is needed to control
all of them. Occasionally, in order to avoid some technicality, we do not
pursue results for Trel, but these can probably also be recovered with some
more work. This is important, as we will often use Trel for simple models, in
which case we will make sure to prove corresponding bounds.

1.3 One dimension

As an instructive warm-up let us start by examining the one-dimensional
case. For bootstrap percolation it is nearly trivial, while for KCM there
are already interesting phenomena. In view of the results in two dimensions
we are aiming for, the results presented in this section are out of fashion,
but would have been quite interesting 5-10 years ago. Indeed, any one-
dimensional model is readily embedded in two dimensions.

Let us begin by recalling three paradigmatic models�FA-1f, East and
FA-2f (see Fig. 1.1). In FA-1f an infection is needed in at least one of the
neighbours, in East we only look at the left neighbour, while FA-2f requires
both neighbours to be infected in order to legally update the vertex. We
call the corresponding bootstrap percolation models 1-neighbour, East and
2-neighbour respectively.

1.3.1 Bootstrap percolation

A complete solution to the bootstrap percolation problem is a simple exercise
in all three cases.

Proposition 1.3.1. In one dimension we have µpτBP
0 � 0q � q and, condi-

tionally on τBP
0 ¡ 0,

(1) τBP
0 has the geometric distribution with parameter q and mean 1{q for
the East bootstrap percolation.

(2) τBP
0 has the geometric distribution with parameter 1�p1� qq2 � 2q� q2

and mean 1{p2q � q2q for the 1-neighbour bootstrap percolation.

(3) τBP
0 � 1 with probability q2 and τBP

0 � 8 otherwise for 2-neighbour
bootstrap percolation.
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Proof. We treat each update family independently.

(1) The infection time equals the distance to the �rst initially infected site
to the left of the origin. Indeed, each infection propagates one to the
right at each step.

(2) The infection time equals the distance to the closest initially infected
site (on either side). Indeed, on each step each infection propagates by
one in both directions.

(3) Two consecutive healthy vertices remain healthy forever. Hence, if the
origin is to become infected, either it or both its neighbours are initially
infected.

Remark 1.3.2. In order to dissipate a natural conjecture, we leave it as an
exercise for the inquisitive reader to construct an update family U such that
τBP

0 has full support NY t8u and for the lazy or busy reader to verify that
tt�1, 1, 2uu is such a family.

Since such explicit results are beyond reach in general, unless otherwise
stated, we consider the limit q Ñ 0 and use the following asymptotic nota-
tion. For any real functions fpqq and gpqq de�ned for q ¡ 0 su�ciently small
such that g ¡ 0, we write

• f � Θpgq when cgpqq ¤ fpqq ¤ Cgpqq,
• f � Ωpgq when cgpqq ¤ fpqq,
• f � Opgq when |fpqq| ¤ Cgpqq
for some constants 0   c ¤ C   8 and all q ¡ 0 su�ciently small. Such
implicit constants are allowed to depend on U but not on q. We further write
f � opgq if fpqqgpqq Ñ 0 and f � g if fpqqgpqq Ñ 1 as q Ñ 0. We use the symbol �
more vaguely for the purposes of heuristics in the present chapter.

Proposition 1.3.1 admits the following natural generalisation.

De�nition 1.3.3. Let U be a one-dimensional update family and let

ζ � ζpUq � min t|A| : A � Z, |rAsU | � 8u
be the minimum number of infections required to infect in�nitely many sites.
We say that U is supercritical if ζ   8 and trivial subcritical otherwise.

Proposition 1.3.4 (Bootstrap percolation universality in one dimension).
For any one-dimensional update family U one of the following alternatives
holds.

(1) U is supercritical and µ
�
τBP

0

� � Θpq�ζq.
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(2) U is trivial subcritical and µ
�
τBP

0

� � 8 for all q P p0, 1q.
Proof. Consider a large infected segment. Either it is able to extend in one
direction (if the model is supercritical) or a large healthy segment will remain
such forever (if the model is trivial subcritical), since it cannot be disrupted
from either side. Thus, for trivial subcritical models µpτBP

0 � 8q ¥ p1� qqC
for C large enough.

Turning to supercritical models, using that U has �nite range, it is not
hard to see that any �nite set of infections either infects �nitely many sites or
creates a periodic infection pattern to its left or right. This periodic pattern
propagates linearly in time. Thus, the time needed to infect the origin is
at most the distance to the closest set generating in�nitely many infections
on the correct side of the origin and with the correct remainder modulo the
period. Then for small q this is dominated by sets of infections of minimal
size, entailing the desired upper bound.

To see that µ
�
τBP

0

� ¥ Ωpq�ζq, observe that up to such distance from the
origin with probability Ωp1q there are only sets of nearby infections genera-
ting �nitely many infections. Since two such patches of infection do not in-
teract until the infection they generate meets, one can prove uniform bounds
on how far their infection can spread, concluding the proof (see Lemma 9.2.1
for more details).

It is possible to re�ne the above result by observing that for small q
the positions of sets of infections with in�nite closure converge to a Poisson
point process. Under suitable assumptions it then su�ces to examine the
number of such sets of size ζ modulo translation, governing the intensity
of the process, and the speed at which a large infected interval expands in
each direction. Such considerations were carried out in [181�184], but we
will not pursue this direction further and consider bootstrap percolation in
one dimension as completely resolved by Proposition 1.3.4.

However, it is worth mentioning that this probabilistic viewpoint com-
pletely disregards e.g. the computational complexity of determining ζ, given
U . We will return to closely related questions in Chapter 9.

1.3.2 KCM

For KCM the situation is signi�cantly more intricate. Nevertheless, De�-
nition 1.3.3 and Proposition 1.3.4 are still relevant, as they show that for
trivial subcritical models Eµpτ0q � 8 for any q   1. Indeed, if bootstrap
percolation cannot infect the origin, neither can the corresponding KCM. At
this point it is good to note that KCM with q � 1 degenerate into a continu-
ous time version of bootstrap percolation, which can be treated identically
to the discrete time one modulo technical details.

It then remains to determine the scaling of Eµpτ0q for supercritical models
as q Ñ 0. Before doing this, let us consider the FA-1f and East models, which
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will turn out to be behave very di�erently (like a strong and a fragile glass
respectively).

FA-1f

In order to gain some intuition, let us examine the typical evolution of the
FA-1f dynamics on Z starting from a single infection at 0, when q is small.
The only allowed move from the initial condition is infecting 1 or �1, which
occurs at time of order 1{q. W.l.o.g., assume we obtain infections at 0
and 1. Each one can disappear at rate 1 � q, much more than the rate of
creating additional infections. Hence, w.h.p. we quickly either return to the
original con�guration or reach the one with only 1 infected. This sequence
of moves nets a move of the central infection to the left or right with equal
probability at rate roughly 1{q. The result over larger lapses of time is
a symmetric random walk slowed down by a factor q. The �rst deviation
from this behaviour is observed w.h.p. at times of order 1{q2, at which point
we may create a third infection before eliminating one of the two present
when attempting to perform a move of the random walk. If, say, �1, 0, 1
are infected, several things may happen, all at rate of order 1. We may
eliminate �1 or 1 and then reach a state with a single infection; or 0 may
heal �rst, leading to two separated infections. In the latter case the two
infections typically remain intact for a long time: a branching has occurred.
When two (or more) infections are present, each one typically performs an
independent random walk, until they come next to each other, at which point
they typically coalesce.

With this picture in mind, let us begin our quantitative study of the
model. For FA-1f, we have Eµpτ0q ¥ p1 � op1qq{q, since w.h.p. the origin is
not initially infected and the rate at which it becomes infected is either 0
or q, depending on the current con�guration. Providing an upper bound is
a bit harder. From our consideration of 1-neighbour bootstrap percolation,
we recall that we should take into account the infection closest to the origin,
which is typically at distance 1{q at equilibrium. The most naive idea would
be to simply proceed as in bootstrap percolation and infect successively the
sites from it to the origin. Let us see why this is not an e�cient infection
mechanism for FA-1f. As we are working with the stationary process, at all
times the con�guration is distributed according to µ. Therefore, witnessing
a very unlikely event, such as roughly 1{q infections next to the origin, is not
likely before a given time horizon T . More precisely, we would need to wait
at least until time of order q�1{q to have a good chance to see this event.

Hence, we need to re�ne our infection mechanism to have fewer infections
close to the origin at any given time. Fortunately, a simple solution is avai-
lable, as suggested by the typical evolution of a lone infection. Starting from
the infection closest to the origin, we infect its neighbour in the direction of
the origin and then remove the original one and repeat until we reach the
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origin. The total e�ect of this is moving the infection by one site, but not
creating anomalously many infections. This simple argument is formalised
via cannonical paths (originating from [237], see [256, 310] for background)
in [325] to show Eµpτ0q ¤ Op1{q3q (also see [88]). Indeed, starting from
most con�gurations, we go through each con�guration with two consecutive
infections at positions 0 ¤ x ¤ 1{q and x� 1. There are 1{q such positions
and the corresponding con�gurations restricted to the p1{qq-neighbourhood
of the origin have probability roughly 1{q2, leading to the bound claimed.
We would like to keep the present chapter free from technical details, so we
will not provide more details and appeal to the reader's intuitive understan-
ding. Let us reassure the overly suspicious reader that they will have ample
opportunity to savour formal proofs in the remaining chapters.

Since, heuristically, 1{q3 also corresponds to the time needed for an in-
fection performing a random walk with steps with rate q, we would expect
this upper bound to be sharp. This is indeed the case, leading to the follo-
wing recent result, more di�cult than the heuristics suggests.

Theorem 1.3.5 (FA-1f in one dimension [325]). Eµpτ0q � Θp1{q3q.
The same result holds for Trel [88] and, using this, some physics predicti-

ons [48,362] were ruled out.

East

We next examine the East model, which, contrary to FA-1f, was originally
introduced precisely in one dimension [231] and this is the setting in which
it is the most studied. Let us begin by considering the typical microscopic
evolution starting from a single infection at 0. We �rst infect 1 at time of
order 1{q. However, instead of propagating further we typically hurry to
undo this, since 1 heals at rate 1� q and 2 is infected at rate only q. After
repeating this attempt roughly 1{q times, we eventually create infections at
0, 1, 2 and the infection at 1 heals before the one at 2. This happens on
time scale roughly 1{q2. Though 2 remains infected for quite some time,
we have not made great progress. Indeed, even if we manage to infect 3,
it will typically heal immediately and long before we manage to infect both
3 and 4, we tend to infect 1 again, leading to the healing of 2 and then
1. So we are quite likely to end up at our starting point at time only 1{q
after we eventually managed to infect 2. Reaching 4 is then much harder
and requires waiting for the above procedure to be repeated 1{q times until
time 1{q3, at which point we may infect simultaneously 0, 2, 3, 4 and be lucky
enough for 3 to heal before 4 does. Ending up with 0, 2, 4 infected, we have
some chance of healing 2 before it destroys the infection at 4, thus ensuring
that 4 stays infected for a time of order 1{q2, which might su�ce to infect
6 or even 7. It should then be clear that the dynamics of the East model
is much slower that FA-1f and features hierarchical back-and-forth motion,
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which only rarely manages to expel an infection far from the origin, often
to be pulled back soon after, but sometimes becoming metastable for a long
time.

With this image in mind, let us try to determine the typical timescales
of East. Here the rough lower bound of 1{q above is still valid (and in fact
so is Ωp1{q3q). However, the upper bound argument clearly breaks down,
because we can no longer simply move an infection, leaving nothing behind.
Should we then expect Eµpτ0q � q�1{q? The answer is negative, but we do
have to create many infections. To be precise, it is a cute exercise to show
that, starting from only one infection at 0 and using at most n additional
infections at any single time, the East process can infect the site 2n � 1
(rather than the trivial n that we saw), but nothing further away from the
origin. As the expression suggests, this can be achieved by an inductive
procedure as follows. Use n� 1 infections to place an infection at 2n�1 � 1.
Then infect 2n�1 and remove all other infections. This is possible, since the
dynamics is reversible. Now imagine 2n�1 is the origin and proceed in the
same way with n� 1 infections, starting from it. Hence, we only need about
log2 L infections to reach distance L and this is optimal, as stated below.

De�nition 1.3.6 (Legal path). Given an update family U in any dimension,
a legal path γ is a �nite sequence ωp0q, . . . , ωpkq of con�gurations in Ω such

that for each i P t1, . . . , ku there exists v � vpωpi�1q, ωpiqq P Zd, such that
ωpiq � pωpi�1qqv and cvpωpiqq � 1. That is, successive con�gurations di�er by
a single legal spin �ip.

Proposition 1.3.7 (Combinatorial bottleneck for East). Consider the East
model on t1, . . . ,Mu de�ned by �xing ω0 � 0 at all time. Then any legal path
γ connecting the fully healthy con�guration 1 to a con�guration ω such that
ωM � 0 goes through a con�guration with at least rlog2pM � 1qs infections.

The above `hierarchical' relaxation mechanism was noticed in [274, 329]
and [112] examined the combinatorics (and in particular the number) of con-
�gurations reachable with a given number of infections more closely. From
this one can easily obtain Eµpτ0q ¥ q�c logp1{qq for c small enough as q Ñ 0.
Indeed, by Proposition 1.3.7, with probability at least 1{2 we need to witness
exactly logp1{?qq infections at distance at most 1{?q from the origin to its
left to infect it. The number of such con�gurations (restricted to the 1{?q
sites left of to the origin) is at most p1{?qqlogp1{?qq and thus subdominant

w.r.t. their probability which is at most qlogp1{?qq. A more involved argument
[8] was used to show that

exp
�
log2p1{qq p1{p2 log 2q � op1qq� ¤ Eµpτ0q

¤ exp
�
log2p1{qq p1{ log 2� op1qq� .

The upper bound matched the physics conjecture [329] and was achieved by
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comparison with a di�erent process and using canonical paths based on the
iterative procedure above.

Surprisingly, it turned out that the lower bound was the sharp one [88].
The proof of this fact introduced the bisection technique, which we present
next. The idea is to establish bounds on Eµpτ0q (rather Trel, but the two are
related, so that the �nal result holds for both) on �nite segments by induction
on their size. More precisely, one decomposes a segment essentially into its
left and right halves (hence the name) and uses the following crucial two-
block lemma to e�ectively bring an infection at the boundary of the right
half, using the left half.

Lemma 1.3.8 (Two-block dynamics). Let pX, πq be the product of two �nite
probability spaces pX1, π1q and pX2, π2q. Let Var1pfq � VarpfpX1, X2q|X2q
and similarly for Var2pfq. Fix an event X � X1. Then for any f : XÑ R

Varπpfq ¤ EπpVar1pfq � 1X Var2pfqq
1�a

1� πpX q ¤ 2

πpX qEπ pVar1pfq � 1X Var2pfqq .

A way to interpret this is as a Poincaré inequality (i.e. bound on the
relaxation time) for a chain which updates X1 at rate 1 and updates X2

at rate 1, provided that X occurs. The original proof of [88] is simple but
spectral, so we prefer to provide a probabilistic one which will be extended
in Chapter 2.

Proof. Couple two copies of the above chain, by attempting the same updates
in both (see [256] for background on Markov chains). For this, use a graphical
representation as in Section 1.2.2 attempting updates atX1 andX2 with rate
1, but deeming those in X2 illegal if X does not occur. The two chains clearly
coalesce as soon as we update X1 so that X occurs and then immediately
update X2. Consider (legal or illegal) updates on X2 preceded by an update
atX1. Their number up to time T is tN{2u withN a Poisson random variable
with mean T . Each one succeeds in coupling the chains independently with
probability πpX q. The result then follows directly from the elementary fact
that EpλN q � e�T p1�λq for any λ P p0,8q.

Returning to the upper bound on Trel of East, we apply Lemma 1.3.8 with
X1 and X2 the states of the halves of our current segment and X requiring
the presence of an infection in the left half close to the right one. Taking
into account that πpX q quickly becomes close to 1 when the volume grows
beyond 1{q, this can be turned into a proof [88] of

Trel � exp
�
log2p1{qqp1{p2 log 2q � op1qq� .

Since [88] more precise results have been established [104] (see also [145]
for a review on the East model). We will not require even the precise constant
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Model Timescale
Supercritical

Trivial subcritical
Unrooted Rooted

BP µ
�
τBP

0

�
Θ
�
q�ζ

� 8
KCM Eµpτ0q q�Θp1q eΘplog2p1{qqq 8

Table 1.1 � Summary of one-dimensional universality Proposition 1.3.4
and Theorem 1.3.10.

in the exponent above for our purposes, but the bisection technique and two-
block lemma will prove essential. In addition, we should point out that they
have been successfully applied beyond the realm of KCM [52, 96]. A more
detailed exposition of this technique can be found in [342], while its origins
lie in [268, Proposition 3.5].

Universality

The di�erence in the behaviour of FA-1f and East imposes a further rami�-
cation of De�nition 1.3.3 introduced in [269].

De�nition 1.3.9. A one-dimensional supercritical update family U is unroo-
ted if there exists a �nite set A � Z such that rAs � Z and rooted otherwise.

That is, for rooted families infection can propagate inde�nitely in one
of the two directions. The importance of this distinction is captured in the
following result summarised together with Proposition 1.3.4 in Table 1.1.

Theorem 1.3.10 (KCM universality in one dimension [265, 267, 269]). For
any one-dimensional update family U one of the following alternatives holds.

(1) U is supercritical unrooted and Eµpτ0q � q�Θp1q.

(2) U is supercritical rooted and Eµpτ0q � eΘplog2p1{qqq.

(3) U is trivial subcritical and Eµpτ0q � 8 for all q   1.

This result can be proved essentially following what we did for our three
example models above (recall Fig. 1.1). For the upper bound of (1) it su�ces
to move a su�ciently long infected segment instead of a single infection and
proceed as for FA-1f. Similarly, for the upper bound in (2) we replace single
infections by sequences of infections in the bisection proof for East. These
are due to Martinelli, Morris and Toninelli [269]. The lower bound in (2)
was deduced by Martinelli, Marêché and Toninelli [267] from a combinatorial
result of Marêché [265] generalising Proposition 1.3.7. Conveniently, for the
reader, she did write out a proof speci�cally for the one-dimensional case.
We will outline her argument directly in two dimensions in Section 1.5.2, as
it is at the base of Chapter 8.
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Inhomogeneity

Before closing our warm-up one-dimensional Section 1.3, let us present the
result of an improved bisection technique we develop in Chapter 2 [207].
As explained above, our focus is on homogeneous (i.e. translation invariant)
models, but the inhomogeneous one-dimensional setting will prove useful for
two-dimensional homogeneous models in Section 6.A.1, which is our motiva-
tion for introducing them. Nevertheless, the result and especially its quite
simple proof are of independent interest.

Our setting is the following (see Section 2.1 for the formal de�nitions).
Consider KCM

• on an arbitrary volume L � Z, 1 ¤ |L| ¤ 8, which need not be an interval;

• with arbitrary boundary conditions;

• conditioned to belong to an arbitrarily chosen irreducible component of
the state space;

• with arbitrary on-site �nite state spaces, which may vary from site to site
and need not have uniformly bounded size or atom probabilities, but the
probability of being infected is uniformly bounded from below by q ¡ 0;

• with arbitrary update rules, which may vary from site to site, but have
a range uniformly bounded by R   8. Some sites may be completely
unconstrained or, inversely, frozen.

In Chapter 2 [207] we prove in this setting that for some CR ¡ 0 depending
only on R

Trel ¤ p2{qqCR logpminp2{q,|L|qq.

As we saw in Theorem 1.3.10(2), this is sharp for all homogeneous supercri-
tical rooted KCM as q Ñ 0. In addition, it may come as a surprise that this
is also sharp for some homogeneous supercritical unrooted KCM on intervals
with binary states, despite the fact that on Z their relaxation time is only
q�Θp1q (recall Theorem 1.3.10(1)).

Let us note that for such general KCM there are usually many irreducible
components (there are always at least two, save for trivialities) and their
combinatorial structure can be very intricate. They have proved hard to deal
with due to the long-range dependencies they introduce, like those present
in conservative KCM. Consequently, the only nontrivial case in which the
relaxation in an irreducible component is under control [59] (see also [88,89])
is the FA-1f model on an interval in its so-called ergodic component�the only
nontrivial component for this KCM (corresponding to Ωzt1u).

We direct the reader to [321, 324, 326] for inhomogeneous KCM, to [88,
89, 342] for KCM with various homogeneous rules and boundary conditions
and to [269] and Chapter 3 for general state spaces. Yet, we emphasise that
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no two among: general state spaces, inhomogeneous rules and irreducible
components have featured simultaneously until present. Formally, as we will
see, non-interval domains, boundary conditions and irreducible components
other than the ergodic one can be absorbed in the inhomogeneity of the
rules but such arbitrarily inhomogeneous KCM have not been considered
previously.

1.4 r-neighbour bootstrap percolation and FA-jf

We may now turn our attention to the most classical, central and, per-
haps, instructive of all bootstrap percolation models and KCM. Namely the
r-neighbour bootstrap percolation and associated FA-rf in d dimensions with
2d ¥ r ¥ 1 and d ¥ 2. Recall that their constraint is to have at least r
infected neighbours. These models were introduced in [100]1 and [155] re-
spectively. The most interesting case is d � r � 2 and, more generally,
d ¥ r ¥ 2 and that is where attention has been primarily directed. But
before it, let us eliminate the remaining cases, which are similar to what we
saw in one dimension.

1.4.1 High thresholds

The least relevant models are those with 2d ¥ r ¡ d. We already saw
an instance with 2-neighbour bootstrap and FA-2f in one dimension. The
phenomenology in higher dimensions is no di�erent�the models with 2d ¥
r ¡ d should still be called trivial subcritical, as with positive probability τ0

and τBP
0 are in�nite for any value of q   1. The reason is the same as in one

dimension: a hypercube of healthy vertices remains such for all times.
It is worth mentioning that these parameter values are actually being

investigated until present. The viewpoint is, of course, di�erent, making
them the only `interesting' ones. Namely, one is interested in the presence of
an in�nite connected component in ZdzrAs. To summarise in a few words,
the main conclusion is that they behave exactly like ordinary percolation. We
direct the reader to [82,83,102,111,275] for (nonrigorous) work on the topic
(see also [14]) and disregard these models for the rest of our considerations.

1.4.2 FA-1f

1-neighbour bootstrap percolation with d ¥ 2 is no harder than it is in one
dimension�the infection time is equal to the distance to the closest initial
infection. FA-1f on the other hand is both harder to analyse and more
useful. Initial results on it were obtained in [88] focusing on the relaxation
time. There it was proved that Trel is q

�2 up to a logarithmic factor in two

1Let us note that, as far as the closure is concerned, this model is de�ned earlier, for
instance in [303].
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dimensions, but in higher dimensions non-matching powers of q were given
as lower and upper bounds. Lower bounds were subsequently improved in
[325] to show that Trel � Θpq�2q in d ¥ 3. The latter paper also shows that
Eµpτ0q is equal to Trel up to a Θp1q factor in all dimensions d � 2 and up to
the unknown logarithmic factor in two dimensions.

Before discussing the ideas behind these results, let us mention that the
value of the exponent in higher dimensions has a clear intuitive interpretation
making the debate prior to [325] attractive for physicists. Indeed, several
authors made predictions about this exponent based on various nonrigorous
techniques including simulations, renormalisation group and �eld theory. We
will not attempt to give a full list, but we may indicate that di�erent false
predictions were given in [330, 362] and the correct one as above in [229].
One heuristic suggests that, as in one dimension, the infection time of the
origin is the time needed for a random walk moving at rate q to travel the
typical distance between the origin and the closest infection. This would give
Trel � Eµpτ0q � 1{q1�2{d for d ¥ 2. An alternative argument stipulates that
we rather need to wait until the walk has had the time to visit a number of
sites equal to the inverse of the infection density, giving the correct result
1{q2 for d ¥ 2 (up to logarithmic corrections).

Turning to the idea behind this result, since the argument is more in-
volved for Eµpτ0q, we focus on Trel. The lower bound of [325] consists in
examining the number of connected clusters of infections truncated at dis-
tance 1{q from the origin as test function f in Eq. (1.3). Since infections
are rare, they are mostly isolated and Varpfq scales like q1�d. Moreover, the
number of clusters changes by at most 2d after a �ip and only changes if the
�ip occurs at a site with two or more adjacent infections. Thus, contribu-
tions to the Dirichlet form only come from transitions with three infections
at or around a given vertex, yielding Dpfq � q3�d. Hence, Eq. (1.3) gives
Trel ¥ 1{q2.

Rather than explaining the upper bound's original proof from [88], we
will take a simpler but less direct route by de�ning a closely related model
of coalescing and branching simple exclusion process (CBSEP) and then de-
ducing the result on FA-1f. Essentially, FA-1f is CBSEP's evil twin lacking
nice properties, but behaving exactly the same way.

An auxiliary model: CBSEP

Let G � pV,Eq be a connected graph. Minimum, maximum, and average
degrees in G are denoted by dmin, dmax and davg, respectively. The degree
of x P V is denoted by dx. For any ω P Ω � t0, 1uV and any vertex x P V
we say that x is �lled (resp. empty), or that there is a particle (resp. hole)
at x, if ωx � 1 (resp. 0). We de�ne Ω� � Ωzt0u to be the event that there
exists at least one particle. Similarly, for any edge e � tx, yu P E we refer to
pωx, ωyq P t0, 1utx,yu as the state of e in ω and write Ee � tω P Ω : ωx�ωy �
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0u for the event that e is not empty (its vertices are not both empty).

Given p P p0, 1q, let π � Â
xPV πx be the product Bernoulli measure in

which each vertex is �lled with probability p and let µp�q :� πp�|Ω�q (if G is
in�nite, then simply µ � π). Given an edge e � tx, yu, we write πe :� πxbπy
and λppq :� πpEeq � pp2� pq.

CBSEP is a continuous time Markov chain on Ω� for which the state of
any edge e P E such that Ee occurs is resampled with rate one w.r.t. πep�|Eeq.
Thus, any edge containing exactly one particle moves the particle to the
opposite endpoint (the SEP move) with rate p1� pq{p2� pq and creates an
extra particle at its empty endpoint (the branching move) with rate p{p2�pq.
Moreover, any edge containing two particles kills one of the two particles
chosen uniformly (the coalescing move) with rate 2p1�pq{p2�pq. The chain
is readily seen to be reversible w.r.t. µ and ergodic on Ω�, because it can
reach the con�guration with a particle at each vertex. If cpω, ω1q denotes the
jump rate from ω to ω1, the Dirichlet form DCBSEPpfq of the chain has the
expression

DCBSEPpfq � 1

2

¸
ω,ω1

µpωqcpω, ω1q �fpω1q � fpωq�2 �
¸
ePE

µp1Ee Varepf |Eeqq.
(1.5)

Notice that the branching and coalescing moves of CBSEP are exactly
the moves allowed in FA-1f. Moreover, the SEP move for the edge tx, yu from
p1, 0q to p0, 1q can be reconstructed using two consecutive FA-1f moves, the
�rst one �lling the hole at y and the second one emptying x. If we also take
into account the rate for each move, we easily get the following comparison
between the respective Dirichlet forms (see Eq. (1.4) and e.g. [256, Chapter
13.4]): there exists an absolute constant c ¡ 0 such that for all f : Ω� Ñ R
it holds that

c�1DFA�1fpfq ¤ DCBSEPpfq ¤ cdmaxp
�1DFA�1fpfq, (1.6)

setting the parameter q of FA-1f equal to the parameter p of CBSEP. In our
application to FA-1f for p Ñ 0 only the upper bound, which we believe to
be sharper, counts.

Although the two models are clearly closely related, we would like to
emphasise that CBSEP has many advantages over FA-1f, making its study
simpler. Most notably, CBSEP is attractive in the sense that there exists a
grand-coupling (see e.g. [256]) which preserves the partial order on Ω given
by ω   ω1 i� ωx ¤ ω1x for all x P V (as it can be readily veri�ed via the
construction of Section 3.5.1). Furthermore, it is also natural to embed in
CBSEP a continuous time random walk pWtqt¥0 on G such that CBSEP has
a particle at Wt for all t ¥ 0. The latter is a particularly fruitful feature,
which we will use in Section 3.5, and which is challenging to reproduce for
FA-1f [59].



1.4. R-NEIGHBOUR BOOTSTRAP PERCOLATION AND FA-JF 27

In view of the lower bounds of [325] explained above, Eqs. (1.3) and (1.6),
in order to upper bound TFA�1f

rel and recover the results of [88] it su�ces to
prove the following.

Proposition 1.4.1. Let G � Zd. If d � 2, then TCBSEP
rel ¤ Oplogp1{pq{pq,

while TCBSEP
rel ¤ Op1{pq for d ¥ 3.

A proof is supplied in Chapter 3 and Section 5.B jointly with Fabio
Martinelli and Cristina Toninelli [215, 218] (up to minor modi�cations). In
fact, we will prove much more. Namely, we will treat CBSEP on arbitrary
graphs, establishing often sharp bounds on Trel, but, more importantly, also
on its logarithmic Sobolev constant.2 A corollary of such stronger results
and Eq. (1.6) is control of the mixing and L2-mixing times of FA-1f. This
recovers, strengthens and generalises results of Pillai and Smith [299, 300]
proved in a di�erent and somewhat more involved way.

In addition, in Chapter 3 and Section 5.B we study a generalised version
of CBSEP with with general state spaces per site instead of t0, 1u. For this
generalised model we establish appropriate mixing time bounds crucial for
Chapter 5. This is our original motivation for considering CBSEP in the
�rst place.

1.4.3 2-neighbour bootstrap percolation

Returning to r-neighbour bootstrap percolation and FA-rf in d dimensions,
the remaining values, d ¥ r ¥ 2, are called critical. Since they are the
most studied, we will need to review the literature on them. We begin with
bootstrap percolation as usual, since it is a prerequisite for FA-rf. More
speci�cally, we focus on d � r � 2, leaving higher dimensions to Section 1.4.5.

As already noted, the 2-neighbour bootstrap percolation originates from
[100] (see also [245,303]). Initially it was believed that qc ¡ 0 based on simu-
lations (see [3] and references therein) with estimated values in p0.035, 0.17q.
However, it was proved soon after [358] that in fact qc � 0. This was the �rst
manifestation of what would grow to be called the bootstrap percolation para-
dox we will keep returning to. To give it in a somewhat simplistic sentence,
it refers to the observation that predictions on bootstrap percolation based
on simulations always fail, no matter how advanced rigorous results they
take into account. An early discussion of this paradox concerning the above
can be found in [360], while subsequent reassessments include [116,187].

Coarse threshold

The �rst quantitative statement in the domain of bootstrap percolation,
which naturally laid its foundations is due to Aizenman and Lebowitz [7]

2This constant is de�ned like the spectral gap in Eq. (1.3) with Varpfq replaced by the
entropy µpf2 logpf2{µpf2qqq (see Section 3.2.1).
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(for nonrigorous precursors see [253]). They proved that

τBP
0 � exppΘp1{qqq (1.7)

w.h.p. We provide a sketch of the argument, as it introduces ingredients es-
sential to us. The �rst thing to note about 2-neighbour bootstrap percolation
is that the closure of any set of infections is the smallest (in terms of inclu-
sion) collection of rectangles (with sides parallel to the axes of the lattice)
at graph distance at least 3 from each other containing the infections. Thus,
the closure of any set can be determined via the following rectangles process.
We start o� with a collection of rectangles consisting of each of the initial
infections. At each step we merge two of them at graph distance 2 or less,
replacing them by the smallest rectangle containing their union. Repeating
this until the process becomes stationary yields the collection of rectangles in
the closure. A corollary of this process is the following fundamental lemma.

Lemma 1.4.2 (Aizenman�Lebowitz [7]). We say that a rectangle R is in-
ternally �lled (by the set A of initial infections), if rA X Rs � R. If R is
internally �lled, then for every k ¤ longpRq there exists an internally �lled
rectangle S � R such that k ¤ longpSq ¤ 2k, where longpRq denotes the
number of sites on the longer side of R.

Clearly, τBP
0   exppc{qq implies that the origin belongs to an internally

�lled rectangle with long side at most exppc{qq with c to be chosen appro-
priately later. Then Lemma 1.4.2 shows that within distance exppc{qq of
the origin there should be an internally �lled rectangle R of long side of our
choice up to a factor 2. The right side length to choose, which we refer to
as critical scale, is 1{q. Observing that such an internally �lled rectangle
cannot contain two consecutive healthy rows/columns, we get

µprAXRs � Rq ¤
�

1� p1� qq2 longpRq
	tlongpRq{2u � exp p�Θp1{qqq ,

concluding the proof that τBP
0 ¥ exppΩp1{qqq w.h.p. by the union bound on

all possible positions of R, choosing c small enough.
A matching upper bound is guided by a similar idea (explaining the title

`Metastability e�ects in bootstrap percolation' of [7]). We �rst make sure to
internally �ll a square of (supercritical) side, say, q�3 and then this critical
droplet is likely to grow and infect the entire grid at roughly linear speed.
The internal �lling can be directly forced starting from one infection and
asking for it to �nd another one on its right and top side on each line as it
progressively infects a growing square. This has probability

q
8¹
k�1

�
1� p1� qqk

	2 � exp

�
2

» 8

0
log

�
1� e�qx

�
dx



� exp p�Θp1{qqq

(1.8)
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and thus is likely to occur within distance exppC{qq of the origin for C large
enough. We may then ensure that with overwhelming probability every
vertical or horizontal line of length q�3 at distance at most exppC{qq from
the origin contains an infection, so that the critical droplet does grow roughly
linearly until it engulfs the origin after time exppOp1{qqq, proving Eq. (1.7).

Let us now see how to enhance Eq. (1.7) to µ
�
τBP

0

� � exppΘp1{qqq in the
way we will systematically handle such improvements. Notice that the above
argument in fact gives the upper bound on τBP

0 not only with probability
1 � op1q but 1 � expp�c{q2q for some c ¡ 0. It therefore su�ces to show a
very mild bound on the tail of τBP

0 :

µ
�
τBP

0 ¡ t2
� ¤ C

�
e�ctq

3 � e�ct
2 expp�C{qq

	
(1.9)

for some C, c ¡ 0. To see this, simply note that the origin becomes infected
in time at most t2 if it is contained in an internally �lled square of size t. The
latter event can be guaranteed by the presence of an internally �lled square
of size 1{q3 and two paths of boxes of size 1{q3 containing an infection in
every line, such that the paths cross the square of size t from top to bottom
and left to right respectively. Since each box contains the required infections
with high probability, the existence of such paths from a positive fraction
of the boxes contained in the square of size t is exponentially likely in tq3

(by standard percolation results, see e.g. [196]). Resorting to the Harris
inequality [202] (see Section 6.1.1), we obtain the desired Eq. (1.9) from
Eq. (1.8). In fact, it is not hard to improve the above argument to obtain
exponential decay rather than stretched exponential and improve the q3 rate.
Arguments along these lines will be provided in more detail in Chapters 4
and 5 in the KCM setting (and in [272] for the rest of the argument), but
the reader may also want to consult [18,19,284,315] for more precise results
on such decay rates in bootstrap percolation.

Sharp threshold

Naturally, following Eq. (1.7) the question of the day became determining
the implicit constant. This came about in a breakthrough of Holroyd 15
years later [225], proving that

µ
�
τBP

0

� � exp

�
π2 � op1q

18q



. (1.10)

We will prove stronger lower and upper bounds in the sequel, so it is useful
to give an idea of the proof, which introduced several crucial techniques
commonly used thereafter. As in the Aizenman�Lebowitz result, the main
di�culty is controlling the probability of a rectangle of size roughly 1{q being
internally �lled. More precisely, Eq. (1.10) follows once we show that for R
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of size C{q for C large

µprAXRs � Rq � e�π
2{p9qq. (1.11)

To be precise, a version of Eq. (1.10) w.h.p. follows and one can deduce
Eq. (1.10), recalling the crude Eq. (1.9).

The lower bound in Eq. (1.11) is not hard. Once again we start from a
single infection and make it infect progressively larger rectangles. However,
it grows by an amount larger than 1 in each direction before switching to the
other. Namely, the right choice is to grow in steps of 1{?q. The use of this
is that we do not need an infection on every line, but on every second line.
This is the origin of the constant π2{9: it arises like the integral in Eq. (1.8),
but for a function corresponding to the lack of two consecutive rows/columns
of healthy sites. If one thinks about the two-term recurrence relation this
function should come from (we only need to remember if an infection was
found on the previous line or the one before it), it is not surprising that it
appears as the root of a certain quadratic equation. The reader interested in
the links of this function and its integral with integer partitions may consult
[84,227]. Actually, the sketch above is not quite the way the result is proved
in [225], but anticipates [187] and Chapter 5 discussed below.

The converse bound is much harder. Roughly speaking, the basic idea
of the proof in [225] is that, given an internally �lled rectangle R, we would
like to associate with R a `hierarchy:' a constant-size rooted unary-binary
tree of sub-rectangles that `encodes' the way in which the set A X R grows
to infect the rest of R. The leaves of this tree correspond to small internally
�lled rectangles (`seeds'), a vertex with two children corresponds to two (not
too small) rectangles merging to form a larger rectangle, and a vertex with
one child corresponds to a rectangle `growing on its sides' to �ll a slightly
larger rectangle. Crucially, we would like all of these (increasing) events to
occur disjointly, so that we can apply the van den Berg�Kesten inequality
[357] (see Section 10.2.3) to bound the probability of their intersection. Since
there are few possible such hierarchies (since their size is bounded and there
are few choices for each sub-rectangle), and each is (roughly speaking) at
least as as unlikely as a single `seed' growing to �ll R, one can deduce a
su�ciently strong bound on the probability that R is internally �lled. This
translates the idea that the least costly way for infecting a large rectangle
is to start from a small one and build up the infection little by little, rather
than starting from several places. Indeed, one may consider a rectangle called
`pod' with dimensions essentially given by the sum of dimensions of all seeds
in the hierarchy and show that the probability of the hierarchy occurring is
at most the product of the costs of all seeds multiplied by the probability of
the pod expanding gradually to �ll R.
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Threshold window

Equation (1.10) might as well have been the end of the story, had it not
been a new manifestation of the bootstrap percolation paradox. Numerical
estimates [2,5,289] of the constant π2{18 above had yielded less than half the
correct value. This naturally leads to the question of how fast the conver-
gence in Eq. (1.10) is (i.e. quantify the op1q) and how sharp the transition is.
Let us start with the latter, addressed contemporaneously with Eq. (1.10).
In [30] it was noticed that a general result on the sharpness of transitions
of Boolean functions [158] directly applies to bootstrap percolation on the
torus to show that the probability of the entire torus becoming infected has
a transition much sharper than what is displayed in Eq. (1.10).3 With some
work, unfortunately speci�c to the 2-neighbour model due to Lemma 1.4.2,
results could be transferred to the grid [30]. A window in terms of the size of
the box instead of q was established in [187] similarly to what we do below
for the transition window for the infection time.

Proposition 1.4.3 (Time window). Let ε P p0, 1{2q, Tε � mintt : µpτBP
0  

tq ¥ εu and T1�ε � maxtt : µpτBP
0   tq ¤ 1� εu. For 2-neighbour bootstrap

percolation in two dimensions for q ¡ 0 small enough T1�ε{Tε ¤ q�3.

Sketch proof. Observe that exppc{qq   τBP
0 ¤ Tε with probability at least

ε{2 as q Ñ 0 for c small enough (not depending on ε) by Eq. (1.7). But this
event implies (recall Lemma 1.4.2) the existence of a very large internally
�lled rectangle containing the origin fully infected in time at most 2Tε. This
in turn implies that with probability at least 1� ε{2 at time expp2c{qq there
is an infected rectangle of size exppc{qq at distance at most CεTε from the
origin for some Cε large enough. Since with probability 1� op1q it grows at
speed at least 1{q3 until reaching the origin, we are done.

Remark 1.4.4. We would expect that for some positive constants cε, Cε
we have cε ¤ T1�ε{Tε ¤ Cε, as in [187], but this would require more work.
Indeed, one possibility is to establish a limit shape theorem for the infection
induced by a large infected rectangle (see [188] for a related model along
these lines). Such matters have been addressed abundantly for supercritical
models under additional restrictive conditions in [183�185]. A statement
along these lines features in [184, Theorem 4.2], but the proof seems to have
never appeared.

Speed of convergence

In view of Eq. (1.7), Proposition 1.4.3, and Remark 1.4.4, the transition win-
dow is tiny compared to its location, so this does not provide an explanation
of the discrepancy of Eq. (1.10) with simulation results. For that reason we

3See [43] for related considerations of noise sensitivity.
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quantify the error term in Eq. (1.10), again contradicting simulation pre-
dictions [337] (see also [190] for more) and showing that the convergence is
very slow.

Theorem 1.4.5 (Second term). For 2-neighbour bootstrap percolation in two
dimensions it holds

µ
�
τBP

0

� � exp

�
π2 �Θp?qq

18q



.

The upper bound was established by Gravner and Holroyd [187] and is
based on the mechanism presented for Eq. (1.10). Roughly speaking, the
main di�erence, which is at the origin of the negative sign of the second
term, is taking entropy into account. More precisely, rather than growing
our squares in steps of 1{?q, we allow the exact length of these increments
to vary, while being of order 1{?q. The entropy gained from this is su�cient
to outweigh the energetic cost of deviating from a square shape.

The lower bound is signi�cantly harder and is the subject of Chapter 10
joint with Robert Morris [220]. It was preceded by a bound with an addi-
tional polylogarithmic factor due to Gravner, Holroyd and Morris [190] (see
also [84] for partial progress on decreasing the exponent of the redundant
factor, without removing it). They required two additional ideas w.r.t. Hol-
royd's work [225]. Firstly, they needed their seeds to be much smaller (of
size 1{?q, rather than op1{qq), and rectangles to grow geometrically (rather
than linearly) as a function of their height in the tree (hierarchy). As a re-
sult, the number of possible hierarchies became very large (too large to use a
naive union bound), and to deal with this issue they partitioned the family
of hierarchies according to the number of `big' seeds. We will use re�nements
of both of these ideas in Chapter 10.

In order to prove the lower bound of Theorem 1.4.5, we can only a�ord
to lose a factor of exp

�
Op1{?qq� (in the expected number of `satis�ed' hier-

archies), and since our hierarchies will typically have height Θp1{?qq, this
means that we can only allow ourselves a constant number of choices at each
step, unless we `pay' for extra choices via some unlikely event occurring.
Fortunately, this is intuitively possible: the only things that could prevent
us from choosing the next rectangle in an almost unique way are: (a) the ex-
istence of a `double gap' of consecutive healthy rows or columns blocking the
growth of the critical droplet, or (b) the merging of two reasonably large in-
ternally �lled rectangles. Our challenge will be to show that we gain enough
from these events to compensate for the extra choices we are forced to make.

To do so, we will need to encode the existence of double gaps in our
hierarchies, which causes two immediate problems: the events cease to be
increasing, and cease to occur disjointly. To avoid these issues we only use the
fact that the double gaps are healthy in a single path through the hierarchy
(which we call the `trunk'); outside the trunk we use increasing events de�ned
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on the complement of the double gaps. In Section 10.3 we will state (and
sketch the proofs of) a pair of technical `crossing' lemmas which provide
su�ciently strong bounds on the probabilities of these events. We remark
that we gain from the existence of these double gaps in two distinct ways:
they force us to �nd either two infected sites close together, or one infected
site in a relatively small region, and when the rectangle is very large they
are themselves unlikely to exist.

Bounding the expected number of `satis�ed' hierarchies with height at
most Op1{?qq will then be relatively straightforward; unfortunately, howe-
ver, the height is not always so small. In Section 10.5 we will have to deal
with various other types of hierarchy: those with too many vertices, with too
many (or too large) seeds, and those whose growth deviates from the diagonal
by a macroscopic amount (see Lemma 10.4.12). One additional innovation
that we will need in order to deal with this last case is Lemma 10.4.16, which
provides us with two `pods,' instead of the single pod required by Holroyd.

1.4.4 FA-2f

Moving on to FA-2f (again in two dimensions), the story is much shorter.
Indeed, the analogues of all the results for 2-neighbour bootstrap were not
known before the present contribution�from the 1988 Aizenman�Lebowitz
[7] one, Eq. (1.7), to Theorem 1.4.5 completed here. Our task is then to re-
view the only two previous rigorous results [88,272] and copious nonrigorous
ones. The reader may have already noticed the abundant occurrence of refe-
rences to the work of Cancrini, Martinelli, Roberto and Toninelli [88], which
supplied the �rst rigorous results for various KCM and the most central
model, FA-2f, is no exception.

Background

As for bootstrap percolation, the initial expectation was that FA-2f would
exhibit a nontrivial transition [155]. We should emphasise that here and
in the other works to be quoted below, predictions were made, taking into
account bootstrap percolation results already available. In particular, a tran-
sition was expected despite its absence in bootstrap percolation [156]. This
was quickly dissipated by physicists [157, 306], though rigorous results in
this direction came only two decades later [88] (see also [87]) along with the
bisection technique. Denoting the semigroup of the KCM by pPtqt¥0, the
ergodicity critical parameter is de�ned as

qc � inf
!
q ¡ 0 : @f P L2pµq, lim

tÑ8Ptf � µpfq
)
.

It was proved in [88] that for all U-KCM this transition coincides with the
corresponding U-bootstrap percolation transition (Eq. (1.1)), which is why
we still denote it qc. It also coincides with the more standard ergodic theory
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de�nition: for q ¡ qc the eigenvalue 0 of LU is simple and, therefore, by the
ergodic theorem we also have

qc � inftq ¡ 0 : Pµpτ0   8q � 1u.
The same paper also discarded the possibility that for FA-2f (and many

other models, but not all U-KCM, as we will see) e.g. the tail Pµpτ0 ¥ tq
of the infection time would decay as a stretched exponential.4 The pure
exponential decay they established was quite unexpected as numerous non-
rigorous works had exhibited evidence of stretching, though with various
stretching exponents [11,86,153,154,156,157,179,180,205,306] according to
[87, 309]. The exponential decay of the above quantity follows rather easily,
once it is established that Trel   8, though this had seemingly eluded phy-
sicists, who also had various predictions for the scaling of Trel as q Ñ 0, as
we will see.

The last results of [88] for FA-2f are the quantitative bounds on Trel

exp

�
π2 � op1q

18q



� Ω

�
µ
�
τBP

0

�� ¤ Eµpτ0q ¤ Trel{q ¤ exp
�
O
�
1{q5

��
,

(1.12)
in particular establishing that it is �nite. The �rst two inequalities hold
for any U-KCM and are not hard. The upper bound is both harder and
not useful to us, so we do not discuss it further. Unfortunately, Eq. (1.12)
does not give the correct scaling of Eµpτ0q and leaves discriminating between
the con�icting expressions suggested by physicists [86,154,157,179,180,289,
306, 338, 345] remained an open problem (e.g. [309] asked for settling this
controversy). Progress in this direction was made recently by Martinelli and
Toninelli [272], who improved the upper bound to

exp

�
Oplog2p1{qqq

q



, (1.13)

much closer to the lower one, but still inconclusive. Indeed, by 2019, when
[272] was published, several (di�erent) predictions not only for the presence
or absence of a logarithmic factor but also on the potential sharp constant,
based on Eq. (1.10), had been accumulated in 35 years. The proof of [272]
is again not very useful to us, so we do not discuss it.

Before settling the matter, let us explain the di�erent predictions. The
�rst one appeared in [289], where, based on numerical simulations, a faster
than exponential divergence in 1{q was conjectured. The �rst to claim an
exponential scaling exppΘp1q{qq was Reiter [306]. He argued that the in-
fection process of the origin is dominated by the motion of `macro-defects,'
i.e. rare regions having probability expp�Θp1q{qq and size q�Θp1q that move

4They worked rather with the �rst time when the origin changes state rather than
becomes infected, but this is unimportant.
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at an exponentially small rate expp�Θp1q{qq. Later Biroli, Fisher and Toni-
nelli [345] considerably re�ned the above picture. They argued that macro-
defects should coincide with the critical droplets of 2n-BP having probabi-
lity expp�π2{p9qqq and that the time scale of the relaxation process inside
a macro-defect should be exppc{?qq, i.e. sub-dominant with respect to the
inverse of their density, in sharp contrast with the prediction of [306]. Based
on this and on the idea that macro-defects move di�usively, the relaxation
time scale of FA-2f in d � 2 was conjectured to diverge as exppπ2{p9qqq
[345, Section 6.3]. Yet, a di�erent prediction was later made in [338] im-
plying a di�erent scaling of the form expp2π2{p9qqq.

Result

Our result proved in Chapter 5 jointly with Fabio Martinelli and Cristina
Toninelli [215] shows that the scaling prediction of [306,345] is correct, con-
trary to those of [289, 338]. Moreover, our result on the characteristic time
scale of the relaxation process inside a macro-defect (see Proposition 5.2.9)
agrees with the prediction of [345] and disproves the one of [306].

Theorem 1.4.6. As q Ñ 0 the stationary FA-2f model on Z2 satis�es:

Eµpτ0q ¥ exp

�
π2

9q
p1�?q �Op1qq



, (1.14)

Eµpτ0q ¤ exp

�
π2

9q

�
1�?q � plogp1{qqqOp1q

	

. (1.15)

Moreover, these also hold for τ0 w.h.p.

In particular, recalling Theorem 1.4.5, we have w.h.p.

Eµpτ0q � τ
1�op1q
0 � �

µ
�
τBP

0

��2�op1q � �
τBP

0

�2�op1q
.

This is the �rst sharp asymptotics of logEµpτ0q within the whole class of
`critical' KCM. It is established in Chapter 5.

Remark 1.4.7. Despite the resemblance, Theorem 1.4.6 is by no means a
corollary of Theorem 1.4.5. While the lower bound Eq. (1.14) does indeed
follow rather easily from Theorem 1.4.5 together with an improvement of
the `automatic' lower bound Eµpτ0q ¥ Ω

�
µ
�
τBP

0

��
from Eq. (1.12), the

proof of Eq. (1.15) is much more involved. In particular, it requires guessing
an e�cient infection/healing mechanism to infect the origin, which has no
counterpart in the monotone 2-neighbour bootstrap percolation model.

Behind Theorem 1.4.6: high-level ideas

The main intuition behind Theorem 1.4.6 is that for q Ñ 0 the relaxation
to equilibrium of the stationary FA-2f process is dominated by the slow mo-
tion of unusually unlikely patches of infection, dubbed mobile droplets or
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just droplets. In analogy with the critical droplets of bootstrap percolation,
mobile droplets have a linear size which is polynomially increasing in q (with
some arbitrariness), i.e. they live on a much smaller scale than the metas-
table length scale eΘp1{qq arising in bootstrap percolation. One of the main
requirements dictating the choice of the scale of mobile droplets is the re-
quirement that the typical infection environment around a droplet is w.h.p.
such that the droplet is able to move under the FA-2f dynamics in any di-
rection. Within this scenario the main contribution to the infection time
of the origin for the stationary FA-2f process should come from the time it
takes for a droplet to reach the origin.

In order to translate the above intuition into a mathematically rigorous
proof, one is faced with two di�erent fundamental problems:

(1) a precise, yet workable, de�nition of mobile droplets;

(2) an e�cient model for their `e�ective' random evolution.

In [269, 272] and Chapter 4 mobile droplets (dubbed `super-good' regions
there) have been de�ned rather rigidly as fully infected regions of suitable
shape and size and their motion has been modelled as a generalised FA-1f
process on Z [269, Section 3.1]. In the latter process mobile droplets are
freely created or destroyed with the correct heat-bath equilibrium rates but
only at locations which are adjacent to an already existing droplet.

While rather powerful and robust, this solution has no chance to give
the exact asymptotics of either (1), or (2) above. Indeed, a mobile droplet
should be allowed to deform itself and move to a nearby position like an
amoeba, by rearranging its infection using the FA-2f moves. This `amoeba
motion' between nearby locations should occur on a time scale much smaller
than the global time scale necessary to bring a droplet from far away to the
origin. In particular, it should not require to �rst create a new droplet from
the initial one and only later destroy the original one (the main mechanism
of the droplet dynamics under the generalised FA-1f process).

With this in mind we o�er a new solution to (1) and (2) above which
indeed leads to determining the exact asymptotics of the infection time.
Concerning (1), our treatment in Section 5.2 consists of two steps. We �rst
propose a sophisticated multiscale de�nition of mobile droplets which, in par-
ticular, introduces a crucial degree of softness in their microscopic infection's
con�guration.5 The second and much more technically involved step is de-
veloping the tools necessary to analyse the FA-2f dynamics inside a mobile
droplet. In particular, we then prove two key features (see Propositions 5.2.7
and 5.2.9):

5This construction is inspired by one suggested by P. Balister in 2017, which he con-
jectured would remove the spurious log-corrections in Eq. (1.13) available at that time.
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(1.a) to the leading order the probability ρD of mobile droplets matches
Eq. (1.11):

ρD ¥ exp

�
�π

2

9q
� Oplog2p1{qqq?

q



,

(1.b) the `amoeba motion' of mobile droplets between nearby locations
occurs on a time scale exppOplogp1{qq3q{?qq which is sub-leading
w.r.t. the main time scale of the problem and only manifests in the
second term of Eq. (1.15).

Property (1.a) follows rather easily essentially as explained for Eq. (1.11),
while proving property (1.b), one of the pivotal steps of this thesis, requires
a substantial amount of new ideas.

While properties (1.a) and (1.b) above are essential, they are not su�-
cient on their own for solving problem (2) above. In Section 5.4 we propose to
model (admittedly only at the level of a Poincaré inequality, which however
su�ces for our purposes) the random evolution of mobile droplets as a ge-
neralised CBSEP process (recall Section 1.4.2), studied in Chapter 3 for this
purpose. Finally, the fact that CBSEP relaxes on a time scale proportional to
the inverse density of mobile droplets (modulo logarithmic corrections�see
Proposition 5.4.1) yields the scaling of Theorem 1.4.6. We emphasise that
modeling the large-scale motion of droplets by generalised CBSEP instead
of a generalised FA-1f process is an absolute novelty, also with respect to the
physics literature.

1.4.5 Higher dimensions

For completeness, let us also mention progress for the cases d ¥ r ¡ 2 and
d ¡ r � 2, which fall outside the scope of our work. To begin with, d ¡ r � 2
bootstrap percolation and FA can usually be treated in exactly the same way
as the d � r � 2 case discussed above (particularly because Lemma 1.4.2
is still correct and stable infected sets are boxes). This is particularly true
for upper bounds, where the only di�erence is that we look for one infection
in a pd� 1q-dimensional slice instead of a row/column. In terms of lower
bounds, deducing FA-2f ones from 2-neighbour bootstrap percolation ones
works identically. Bootstrap percolation lower bounds o�er more di�culty,
in particular because a box now has several aspect ratios. As a result, upper
bounds corresponding to the Gravner�Holroyd and lower ones on the level
of Holroyd's are the state of the art [32,354], though it seems plausible that
a lower bound as in Theorem 1.4.5 might be accessible using the techniques
already available in [32] and Chapter 10.

For r ¡ 2 bootstrap percolation matters are more di�cult, but the same
level of precision as for d ¡ r � 2 has been attained [32, 354]. The intuition
to keep in mind (particularly relevant for upper bounds) is that on the side of
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a large infected cube we see essentially a pr � 1q-neighbour bootstrap perco-
lation process, albeit with certain sites further helped by slices neighbouring
the side. The bounds are then unsurprisingly r�1 times iterated exponential
in a power of q. Historically, the nontriviality of the transition was proved
in [315], the iterated exponential upper bound in [360], the coarse threshold
in [97,98], the sharp threshold in [32,33] (also see [226]) and �nally a second
order upper bound in [354].

For FA-jf the situation is quite favourable due to the low precision as-
sociated to an iterated exponential scaling (error terms are in the top ex-
ponent). Indeed, lower bounds follow from those in bootstrap percolation
already using the trivial bound Eµpτ0q ¥ Ω

�
µ
�
τBP

0

��
from Eq. (1.12) wit-

hout the need of the re�nement of Chapter 5. Upper bounds are also much
easier and paradoxically more precise than for FA-2f. Namely, in an upco-
ming work [217] we prove upper bounds of the exact same shape as those
for bootstrap percolation, improving previous bounds from [88,272]. Additi-
onally, the proofs are simpler, as it is possible to use rigid droplets like [272]
and for r ¥ 4 it is even possible to move them very brutally without a�ecting
the �nal result.

1.5 Rough universality in two dimensions

We already saw our �rst universality results in Section 1.3. Ideally, we
would like to have similar results in all dimensions determining the scaling
of µ

�
τBP

0

�
and Eµpτ0q as q Ñ 0 for all models in terms of the geometry

and combinatorics of the rules. Since any model can be embedded in higher
dimensions the classi�cation necessarily becomes more and more rami�ed
as the dimension increases. Consequently, we will recover our supercritical
and trivial subcritical classes in all dimensions, along with various other
classes absent in one dimension. As of now, only the two-dimensional case
is treated and that is the one we will focus on. Nevertheless, some results
in higher dimensions can be obtained with the same techniques. Indeed,
on the bootstrap percolation side universality results have been announced
as upcoming since the early 2010s and conjectures can be found in [70, 74,
280, 281]. For KCM, we expect that relatively little work will be needed to
complete the rough universality picture once bootstrap percolation is dealt
with. Of course, re�ned universality for critical models in dimension 3 and
higher is currently well beyond �ction for bootstrap percolation, let alone
KCM. Therefore, for the remainder of Chapter 1 we work in two dimensions.

We next de�ne the rough universality classes. Let }�} and x�, �y denote the
Euclidean norm and scalar product respectively. Let S1 � tu P R2 : }u} � 1u
be the unit circle identi�ed with R{2πZ when needed, whose elements we call
directions. The open and closed half-planes with outer normal u P S1 and
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o�set l P R are

Huplq �
 
x P R2 : xx, uy   l

(
, Huplq �

 
x P R2 : xx, uy ¤ l

(
.

We omit l if it is equal to 0. Unless confusion arises, we will identify all
subsets of R2, such as Hu, with their intersection with Z2.

De�nition 1.5.1 (Stable directions). Fix an update family U . A direction
u P S1 is unstable if there exists U P U such that U � Hu and stable
otherwise.

The relevance of this de�nition and the terminology come from the fact
that rHusU � Hu if u is stable (i.e. u is stable i� Hu is) and rHusU � Z2 if
u is unstable. We say that a direction u P S1 is rational if Ru X Z2 � ∅.
It is also not hard to check that the set of stable directions is a �nite union
of closed intervals of S1 with rational endpoints. Endpoints of intervals of
stable directions are called isolated if the interval is reduced to a point and
semi-isolated otherwise. All stable directions which are neither isolated nor
semi-isolated are called strongly stable. An illustration of the above in eleven
examples can be found in Fig. 1.2, which we will explain progressively up to
Section 1.6.1. Note that unstable directions can be determined by looking
at each rule separately and taking the union.

We are ready for the rough universality classes consistent with De�ni-
tions 1.3.3 and 1.3.9. Indeed, one may consider stable/unstable directions
also in one dimension, but, since there are only two meaningful directions,
it would be somewhat less natural to de�ne classes this way.

De�nition 1.5.2 (Rough universality partition). Let C � tHuXS1 : u P S1u
denote the set of open semicircles of S1. An update family U is:

• supercritical if there exists an open semicircle C P C whose directions u P C
are all unstable. If additionally

� there exist two non-opposite stable directions, U is rooted ;

� there do not exist two non-opposite stable directions, U is unrooted.

• critical if every open semicircle contains a stable direction and there exists
a semicircle containing �nitely many stable directions.

• subcritical if every semicircle contains in�nitely many stable directions. It
is

� nontrivial if there exists an unstable direction;

� trivial if all directions are stable.

Their relevance is clear from the following result generalising Proposi-
tion 1.3.4 and Theorem 1.3.10. It is summarised in Table 1.2.
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8

(a) Subcritical trivial (4-nBP/FA-4f).

8

(b) Subcritical nontrivial (OP/NE).

2

1

8

(c) Critical unbalanced (rooted)
in�nite.

1

1

8

(d) Critical balanced (rooted)
in�nite.

2

12

2

(e) Critical unbalanced rooted �nite.

1

12

2

(f) Critical balanced rooted �nite.

2

2

11

(g) Critical unbalanced unrooted
(�nite) (modi�ed anisotropic).

1

11

2

(h) Semi-directed
(critical balanced unrooted �nite).

1

1

11

(i) Isotropic
(critical balanced unrooted �nite)
(modi�ed 2-nBP/FA-2f).

8

(j) Supercritical rooted (2d East).

1

1

(k) Supercritical unrooted
(1d FA-1f/1-nBP).

Figure 1.2 � Representatives of universality classes of U-KCM. Update rules
are depicted on the left with 0 marked by a cross and the sites of the rule
denoted by dots. Stable directions are thickened on the right with their dif-
�culties indicated. Isolated stable directions are marked by dots. All critical
models have di�culty α � 1 witnessed by the right-hand open semicircle.
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Supercritical
Critical

Subcritical
Unrooted Rooted Nontrivial Trivial

qc 0 0 0 P p0, 1q 1

µ
�
τBP

0

�
, τBP

0 q�Θp1q q�Θp1q eq
�Θp1q 8 8

Eµpτ0q, τ0, Trel q�Θp1q eΘplog2p1{qqq eq
�Θp1q 8 8

Table 1.2 � Summary of Theorem 1.5.3. Critical parameter and characteristic
timescale of rough universality classes as q Ñ 0. Cf. Table 1.1.

Theorem 1.5.3 (Rough universality [28,74,265,267,269]). Let U be a two-
dimensional update family. If U is

• supercritical unrooted, then qc � 0, µ
�
τBP

0

� � q�Θp1q and Eµpτ0q � q�Θp1q.

• supercritical rooted, then qc � 0, µ
�
τBP

0

� � q�Θp1q and Eµpτ0q �
exppΘplog2p1{qqqq.
• critical, then qc � 0, µ

�
τBP

0

� � exppq�Θp1qq and Eµpτ0q � exppq�Θp1qq.
• subcritical nontrivial, then qc P p0, 1q, µ

�
τBP

0

� � Eµpτ0q � 8 for q small
enough.

• subcritical trivial, then qc � 1, µ
�
τBP

0

� � Eµpτ0q � 8 for all q P p0, 1q.
The same asymptotics hold for τBP

0 and τ0 w.h.p. as q Ñ 0. The same
asymptotics as for Eµpτ0q apply to Trel, while

lim sup
tÑ8

logµ
�
τBP

0 ¡ t
�

t
¤ �qOp1q (1.16)

for all critical and supercritical families.

Remark 1.5.4. To be precise, in bootstrap percolation [74] only w.h.p.
bounds were proved, while those in expectation and exponential decay rates
are new. In fact, the corresponding qualitative statement is discussed in
Chapter 12 and a few particular cases in [315]. It is interesting to note that
for supercritical or critical models with two opposite stable directions it is
easy to prove a lower bound for lim inf instead of lim sup matching Eq. (1.16)
(consider a healthy strip perpendicular to those directions). However, for
models without such directions we rather expect logµpτBP

0 ¡ tq � �t2,
though we will not prove such upper bounds. For example, the 1-neighbour
model clearly satis�es µpτBP

0 ¡ tq � p1� qq2t2�2t�1.

Sections 1.5.2 to 1.5.4 are dedicated to supercritical, critical and subcri-
tical models respectively, also discussing the proofs of Theorem 1.5.3. Howe-
ver, before that, in Section 1.5.1, we outline the history of the universality
setting.
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1.5.1 History of universality

Bootstrap percolation

Initially, variants of the original r-neighbour model from [100] were introdu-
ced to explore the e�ect of rules on the behaviours, beyond simply varying
the parameter r, e.g. [123]. Schonmann [313, 315] studied U-bootstrap per-
colation with rules U P U contained in the set of nearest neighbours of the
origin. He appears to have been the �rst to deal with arbitrary U-bootstrap
percolation models in two and more dimensions in search of universality.
Although nearest neighbour rules do provide representatives of many of the
various classes we will be led to consider, the picture is quite degenerate.
Moreover, his treatment is based to some extent on exhaustively treating
models one by one (or comparing them when possible) and does not provide
major insight on what general principles govern their behaviour. Neverthe-
less, Schonmann [315] did correctly discern the distinction between trivial
subcritical and other models in general. He further contributed to the �rst
insight on representatives of both the subcritical nontrivial class and critical
`unbalanced' one we will consider below [313,360].

A further step was made by Gravner and Gri�eath in the series of works
we already mentioned [181�185]. They not only considered the U-bootstrap
percolation model with arbitrary range, but also introduced certain univer-
sality classes and some of the crucial notions we use in Section 1.6.1 [184].
An additional motivation [183] were well-known systematic phenomenologi-
cal explorations of cellular automata, whose taxonomy is still used today (see
[295, 366]), classifying them according to qualitative features observed. Un-
fortunately, Gravner and Gri�eath focused mostly on update families de�ned
by a neighbourhood and a threshold number of infections in that neighbour-
hood needed for infection and would impose symmetry and more technical
conditions. Their emphasis was on the combinatorics of supercritical models,
which were not the ones of central interest for physicists. They made little
progress on critical ones and essentially excluded subcritical ones from their
studies.

This general setting for critical models was revived by Duminil-Copin
and Holroyd [125] in a preprint claiming sharp thresholds for a somewhat
general class of models resembling the 2-neighbour one. To quote their ab-
stract, `This article represents a further step towards an understanding of
universality of two dimensional bootstrap models.' and indeed this was the
case. Nevertheless, their work only concerned a `small' subclass of what
we will call `isotropic' critical models in the sequel (further generalisations
remain open).

The �rst truly universal results were those of Bollobás, Smith and Uzzell
[74], who insisted on not imposing any additional assumption, most nota-
bly symmetry, on their update families U (other than being composed of a
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�nite number of �nite rules). This was natural, since a number of speci�c
models studied over the years [123, 184, 235, 236, 315, 346, 347] were neither
supercritical, nor trivial subcritical, nor isotropic, often due to their lack of
symmetry. Thus, [74] sought to unify all existing models in a single theorem.

Sadly, the results of [74], based on the proof scheme of [7], were much
weaker than a coarse threshold in general. Namely, for each concerned model
previously considered in the literature the very �rst results beyond qc � 0,
were systematically more precise than the universal one [7, 286, 360, 361].6

Hence, the universal result was interesting mostly for its generality and its
simple classi�cation, signi�cantly clarifying the now obsolete one of [184]. In
fact the classi�cation suggested in [74] into supercritical, critical and subcriti-
cal models did not become fully legitimate until Balister, Bollobás, Przykucki
and Smith [28] supplied a proof that it indeed correctly identi�es the distinct
rough behaviours possible.

Universality was brought to an entirely di�erent level by the work of Bol-
lobás, Duminil-Copin, Morris and Smith [70], who proved a coarse threshold
result for all critical models (see Section 1.6). This required subdividing the
critical class in two re�ned classes, again clarifying considerations of Grav-
ner and Gri�eath. Thus, only models for which a sharp threshold or more is
established, [69, 84, 128, 129, 225, 227] and Theorem 1.4.5, remain uncovered
by their general result. While these are again essentially all common models,
it should be noted that sharp thresholds are much more recent, harder and
model-speci�c, leaving relatively little hope of a universal statement at that
level. As noted above, the only step in this direction was made in [125], some
of whose ideas were incorporated into [70] (as well as [32]).

KCM

U-KCM were �rst considered by Cancrini, Martinelli, Roberto and Toninelli
[88]. In addition to providing essentially the �rst rigorous results beyond
the East model and several indispensable techniques such as the bisection
one. Interestingly, though they were unaware of universality considerations
of Gravner and Gri�eath, they sought to treat representatives of as many
di�erent behaviours as possible (e.g. all those in Table 1.2). However, uni-
versality results were not sought until after all bootstrap percolation ones
[28, 70, 74] were available. Indeed, we will see that a good understanding of
those is a prerequisite for KCM universality.

The quest for establishing universality for KCM was taken up by Mar-
tinelli and Toninelli [272]. At the time subcritical models were quite auto-
matically identi�ed as a rough universality class for KCM by the results of
[28, 74, 88], so the focus was on the remaining supercritical and critical mo-
dels. Together with Morris [269] and with Marêché [265, 267] they did esta-

6We thank Aernout van Enter for pointing out that for the Duarte model both [286,360]
were aided by Schonmann.
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blish an analogue of the rough result of [74], con�rming the one-dimensional
partition of supercritical models into rooted and unrooted (established pre-
cisely at this point together with its two-dimensional version).

1.5.2 Supercritical models

Supercritical models are dealt with quite similarly to Section 1.3 in one di-
mension. This is not surprising given that no further rami�cation arises in
two (or more) dimensions. Additionally, the de�nition of supercritical fami-
lies says precisely that there is a direction in which they can propagate (the
midpoint of a semicircle of unstable directions), like in the one-dimensional
case.

The lower bound τBP
0 ¥ Ωp1{?qq w.h.p. is immediate, given that infecti-

ons can only propagate at linear speed and typically none is present closer
than that. Upper bounds for bootstrap percolation are also immediate�it
su�ces to observe that a conveniently shaped polygon of infections can re-
produce itself translated in a rational direction which is the midpoint of an
open semicircle of unstable directions (see [74] for details). This readily en-
tails that τBP

0 is upper bounded by a geometric random variable with mean
q�Op1q and upper bounds w.h.p., expectation and Eq. (1.16) follow. As men-
tioned above, more advanced results related to limit shapes, precise scaling
or combinatorial problems (e.g. determining the smallest number of infecti-
ons able to create in�nitely many) for supercritical models can be found in
[181�185].

The proof of the upper bounds in Theorem 1.5.3 for KCM are also quite
straightforward, given those of Theorem 1.3.10, which do require some work.
Indeed, for unrooted models we can �nd two opposite open semicircles of un-
stable directions (recall that we view S1 both as the unit circle and R{2πZ).
Restricting our attention to a thick strip parallel to their midpoints, we may
reason exactly as in one dimension (that is, as for the FA-1f model). The
upper bound for supercritical rooted families can be proved in the same
way, considering a strip parallel to the midpoint of a semicircle of unstable
directions. See [269] for more details.

The lower bound for supercritical unrooted KCM follows from bootstrap
percolation via the automatic bound Eµpτ0q ¥ Ωpµ �τBP

0

�q from Eq. (1.12).
Thus, we are left with proving that τ0 ¥ exppΩplog2p1{qqqq w.h.p. for super-
critical rooted KCM. Here again we can copy the proof for the East model
sketched in Section 1.3.2 to see that only one di�culty remains�proving
an analogue of the combinatorial bottleneck Proposition 1.3.7. This is the
hardest and most novel part of Theorem 1.5.3 for supercritical families w.r.t.
Theorem 1.3.10 and was proved by Marêché [265]. As we will need a substan-
tially more sophisticated version of her argument in Chapter 8 to deal with
critical KCM (see Section 1.6), we provide a sketch of her proof in the case
of the two-dimensional East model depicted in Fig. 1.2j for concreteness.
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We aim to show that in order for an infection to reach the center of a box
R of size 3n initially fully healthy it is necessary to visit a con�guration with
at least n infections simultaneously present in the box. This is achieved by
an inductive argument that we describe next. It is enough to show that if R
is initially fully healthy and we can only have strictly less than n infections
at the same time in R, we cannot reach a con�guration with all infections
in the middle of R. Indeed, this implies that there are strictly less than
n � 1 infections at the same time in the middle of R, and one can make
an induction on n. To show that we cannot reach a con�guration with all
infections in the middle of R, by reversibility we may instead prove that if
we start with infections only in the middle of R, but we are never allowed to
have n infections simultaneously in R, we cannot reach a con�guration fully
healthy in R. The idea is to ensure that for any legal path of the dynamics
(recall De�nition 1.3.6) starting with all infections in the middle of R in
which we never have n infections at the same time in R, the following two
conditions remain true at all times. Firstly, a bu�er zone (see the shaded
frame B in Fig. 8.1) with no infections remains intact. Secondly, there is
always an infection in the internal region encircled by the bu�er, so the
dynamics cannot reach a con�guration completely healthy in R.

In order to achieve that, we use a second induction, on the number of
updates along the path already performed. We know that so far an infection
remains trapped in the internal region encircled by the bu�er, so we only
have n � 1 infections available for disrupting the bu�er from the outside,
which is impossible by induction on n. Therefore, it su�ces to show that we
may not disrupt the bu�er from the inside either. By projecting the two-
dimensional East model on each axis it is clear that no infection can enter
the left and bottom parts of the bu�er from the inside, and the projections
of the lowest and leftmost particles in the region inside the bu�er need to
remain where they were initially. The right part of the bu�er (and similarly
the top one) cannot be reached from the inside, because at least one infection
needs to remain as far left as the leftmost initial one was, so we only have
n � 1 infections with which to reach the right part of the bu�er, which is
impossible by induction on n. This completes the sketch of the result of [265]
and, therefore, of Theorem 1.5.3 for supercritical models.

1.5.3 Critical models

For the moment we restrict our goal to sketching the proof of Theorem 1.5.3
for critical families, leaving stronger results to Section 1.6, of course, reusing
some of the techniques, primarily those from bootstrap percolation. The in-
tuition about critical families should be roughly the following, especially for
bootstrap percolation. The behaviour is the same as for supercritical ones
except that now we need infected droplets (polygons) of size 1{qΘp1q rather
than constant, able to propagate in the direction of the midpoint of a semici-
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rcle with �nitely many stable directions. Thus, zooming the picture out, so
as not to notice microscopic details and so that droplets look like �nite-sized
regions, we recover to a large extent the phenomenology of a corresponding
supercritical model with all isolated stable directions removed. The expres-
sions of µ

�
τBP

0

�
and Eµpτ0q are then intuitive, as the supercritical model to

which the critical model morally renormalises has infections (representing
polynomially sized infected regions) with density qeff � expp�1{qΘp1qq.

The upper bound τBP
0 ¤ exppq�Op1qq follows similarly to 2-neighbour

bootstrap percolation discussed in Eq. (1.7). Starting from a large constant-
sized infected polygon (with appropriately chosen sides), we can make it grow
in a direction given by the midpoint of a semicircle with �nitely many stable
directions. However, since some of the directions are stable a little help is
needed. Namely, to append a line of sites of Z2 to the side of the polygon
perpendicular to an isolated stable direction, it su�ces to �nd several con-
secutive infections along that line. However, notice that if both endpoints of
the semicircle are semi-isolated stable directions, the growing droplet only
grows in one direction and the sides to which we want to append lines remain
constant, obstructing the direct application of Eq. (1.8). To remedy this, we
note that every now and then a group of infections will be found allowing
the extension of the side perpendicular to the last direction of the semicircle.
Taking this into account, the proof for 2-neighbour goes through, since drop-
lets now do grow to in�nity with probability expp�1{qOp1qq (see [74] for the
details). It should be noted that, though not needed there, the mechanism
of �nding infections on the side of the growing droplet in order to make it
grow a bit more than one-dimensionally is also applicable to supercritical
models.

To prove Eq. (1.16), from which the bound in expectation also follows,
one may consider boxes of size q�Θp1q, elongated polynomially in q in the
direction of growth, arranged in a brick wall fashion (see [269]). Then it
su�ces to �nd one which is entirely infected and such that a thick oriented
path of boxes containing typical amounts of sets of consecutive infections
su�cient to sustain the growth, emanates from this initial droplet. Any two
such paths forming a wedge become infected and everything between them
also does in roughly linear time.

This mechanism is the driving principle of the proof of the upper bound
of Theorem 1.5.3 for critical KCM in [269, 272]. The proof was really com-
pleted in [269], but most of the e�ort there was directed to obtaining the
correct power of q in the upper bound, which as we will see was mostly
unsuccessful. Instead, the sketch we present is, perhaps, more in the spirit
of the earlier [272]. The idea is to concentrate on a path as above starting
from a fully infected box and propagate that box along the path. Each
step of this movement can be performed as in bootstrap percolation. Ho-
wever, we cannot a�ord to infect the entire path, as that is too unlikely.
Instead, we can proceed in an East-like fashion, leading to an upper bound
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of exppOplog2p1{qeffqqq with qeff � expp�1{qOp1qq the density of fully infected
boxes.

Turning to lower bounds (for bootstrap percolation and thus for KCM,
using the comparison), a generalisation of the rectangles process is needed.
It was introduced in [74] under the name of covering algorithm and proceeds
roughly as follows. Consider each initial infection and cover it by a large
constant-sized polygon (with appropriate shape, as usual). Then merge any
two polygons which are close to each other into the smallest polygon with
sides parallel to the original ones containing both. The outcome of this
process should then contain the closure of the original set of infections. To
conclude two ingredients are needed. First, an analogue of the Aizenman�
Lebowitz Lemma 1.4.2, based on the fact that the result of merging two
polygons is not much bigger than the sum of the two for an appropriate
notion of size (think of the diameter). The other ingredient, which also
follows from this subadditivity, is that the number of infections required to
obtain a large polygon in the output is at least linear in the size of the �nal
polygon. With this at hand, we have both the necessity of the presence of a
large covered droplet (produced by the covering algorithm) and a bound on
its probability of occurrence, which conclude the proof by the union bound
as for 2-neighbour bootstrap percolation. This proof scheme will be of use
to us in Chapters 7 and 8.

1.5.4 Subcritical models

Let us rid ourselves also of trivial subcritical models, which, as the name
indicates, are not of interest to us and are very easy to handle. Since all
directions are stable, it is not hard to check that there exist �nite polygons,
which remain healthy forever if they are such initially. Hence, nothing new
is gained w.r.t. the one-dimensional case.

Phase transition and oriented percolation

Nontrivial subcritical models, which we will call subcritical for short, as-
suming nontriviality unless otherwise stated, only arise in two and more
dimensions. Before studying them in general, let us focus on the �rst and
most fundamental example of subcritical model. It is de�ned by UOP �
ttp1, 0q, p0, 1quu (see Fig. 1.2b) and we will call it oriented percolation (OP)
for reasons to become apparent, while its KCM version is known as the North-
East model (NE). In bootstrap percolation OP was �rst considered in [313]
and NE in [307] immediately after. Yet, OP was already very well studied
as an ordinary percolation model (see [131,258], as well as Chapter 11).

The equivalence between bootstrap percolation with the above update
family and OP is the following (noticed in [313,315]). A site x P Z2 becomes
infected at time t i� the longest path of initially healthy vertices going up
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or right at each step, starting at x, has length t. In particular, τBP
0 � 8

i� the origin belongs to such an in�nite healthy path. In particular, among
many other things, it is well known that 0   qcpUOPq   1. Schonmann also
observed that this immediately implies that qcpUq   1 for any U � UOP.

This observation generalises to all subcritical models as follows. By de�-
nition any (nontrivial) subcritical family U has an unstable direction u P S1.
Thus, there exists an update rule U P U contained in the corresponding
open half-plane Hu. We call the bootstrap percolation model associated to
the (one-rule) update family tUu a generalised oriented site percolation mo-
del (GOSP) for any U contained in some open half-plane satisfying that U
generates R2 as a vector space (otherwise the original model must be super-
critical). As the name suggests, GOSP behaves like OP and respects the
same equivalence with a percolation representation with paths with steps in
U . It is then easy to see that qc   1 for GOSP (e.g. by comparison with a
branching process) and consequently for the original subcritical family U .

The converse inequality, qc ¡ 0 for subcritical models is signi�cantly
harder and constitutes the prime di�culty of Theorem 1.5.3 for this class. It
was resolved in [28] via a fairly technical multiscale renormalisation scheme,
which we will not describe, as we will not use any of it. It should be noted
that here the importance of opposite stable directions is apparent (recall
Remark 1.5.4 on critical and supercritical models). More precisely, what
matters for subcritical models are strongly stable directions and, accordingly,
it is important whether the model has two opposite strongly stable directions.
If this is the case, the proof of qc ¡ 0 is simple. It su�ces to partition the
lattice into large rhombi, whose sides are close to being orthogonal to the
two opposite strongly stable directions. If there is a bi-in�nite oriented path
of initially healthy rhombi, they do remain so at all times (see [28,313]).

This argument reveals the relevance of strongly stable directions�they
make slightly curved healthy regions stable. This will be of use to us also
in Chapter 7. Indeed, the multiscale argument of [28] for models without
opposite strongly stable directions proceeds by encapsulating infections in
triangular contours with wiggling boundary, so as to be able to avoid other
rare infections, preventing the use of straight lines.

Let us conclude the discussion by saying that for subcritical KCM es-
sentially nothing is known beyond bootstrap percolation results. To give an
exhaustive list of rigorous references on the subject, the reader may consult
[355] for a combinatorial consideration in the spirit of [112], [246] superceded
by [88] for ergodicity, positivity of the spectral gap and decay of correlations
and [108] for mixing times. However, crucially, all these works only con-
cern the simplest and very special NE model. Though it may be possible to
generalise to GOSP, based on Chapter 11, treating subcritical KCM corre-
spondingly is a very distant goal. In general, the only results are those valid
for any KCM (subcritical or not):
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• The ergodicity/mixing transition of the U-KCM occurs at qcpUq of the
corresponding U-bootstrap percolation, that is, the critical probability of
µpτBP

0 � 8q. This is proved in [88].

• The non-zero spectral gap transition of the U-KCM occurs at q̃cpUq of the
corresponding U-bootstrap percolation, that is, the critical probability of
exponential decay of µpτBP

0 ¡ tq (see Chapter 12). We prove this in
Theorem 12.3.7.

We therefore restrict our attention to (nontrivial subcritical) bootstrap per-
colation for the rest of Section 1.5.4.

From GOSP to general subcritical bootstrap percolation models

GOSP The above study of the nontriviality of the phase transition of
subcritical models provides at least two reasons to study GOSP in detail.
Firstly, they are the simplest of subcritical models and thus a good starting
point. Secondly, the understanding of GOSP may be used to directly infer
information on general families. Moreover, the models are interesting in their
own right as percolation models, as well as probabilistic cellular automata
(see Section 11.2). For these reasons, in Chapter 11, together with Réka
Szabó [222], we study GOSP in arbitrary dimension d ¥ 2, focusing on the
phase q   qc, that is, the supercritical phase in percolation jargon.

The results from Chapter 11 relevant for the rest of our discussion of
subcritical models can fortunately be taken as black boxes, allowing us to
disregard most of the chapter if we are willing to accept them. Let us state
them informally here. Firstly, assuming percolation language, we say that
a P Z2 is connected to b P Z2 if there exists a healthy path from a to b with
steps in the rule U � Hu de�ning our GOSP for some u P S1, which we take
equal to p0, 1q for concreteness. Consider GOSP restricted to Hv for some
v P S1, that is, paths have to be contained in Hv. We are interested whether
0 is connected to in�nity with positive probability as a function of q and v.
It turns out that the set of directions v such that this happens is an interval
varying with q in a continuous and strictly monotone fashion for q P r0, qcq.
At q Ñ qc� the interval converges to a half-circle and for q ¥ qc it is empty.
Moreover, for v strictly outside of the (topological) closure of this interval,
the length of the longest path from 0 (which is a.s. �nite by de�nition) has
an exponentially decaying tail.

Directional approach to subcritical models Before we can make bet-
ter use of GOSP models than the bare comparison qcpU 1q ¤ qcpUq when
U 1 � U , we will need a directional decomposition of qc (or rather q̃c, the cri-
tical probability of exponential decay of µpτBP

0 ¡ tq). For that purpose we
introduce the following notion, whose precise de�nition is left to Chapter 12.
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The critical density of u P S1 (for an update family U) is morally

du � inf tq P r0, 1s : µp0 R rAYHusU q � 0u ,
where A still denotes the random set of infections with law µ. The vigilant
reader has doubtlessly noticed that this is the exact same notion we just
discussed for GOSP. Hence, we will consider GOSP critical densities as well-
understood, though not explicit, functions on the circle. It is also clear that
du � 0 for unstable directions and isolated stable ones, so this notion is
tailored for strongly stable directions.

With critical densities at hand our central result of Chapter 12 reads

q̃c � inf
CPC1

sup
uPC

du, (1.17)

where C1 denotes the set of closed semicircles. The proof is not hard and
proceeds again by considering droplets growing in the middle direction of
the semicircle above. In order to transform Eq. (1.17) into a re�ned version
of the basic comparison q̃cpU 1q ¤ q̃cpUq for U 1 � U , it su�ces to observe that,
likewise, dupU 1q ¤ dupUq under the same condition. Hence,

q̃cpUq ¤ inf
CPC1

sup
uPC

min
UPU

duptUuq,

allowing us to fruitfully transfer bounds on the critical densities of GOSP
to arbitrary subcritical models (critical densities for non-supercritical one-
rule families which are not GOSP are identically 1). In Chapter 12 we will
illustrate that this indeed gives better bounds in generic situations.

We further recover known results about the Spiral family from [344],
based on a less straightforward application of Eq. (1.17). Spiral is essentially
the only subcritical bootstrap percolation model other than GOSP, which
is relatively well understood, owing to its close relation to OP (see also
[235,236,346,347] for closely related models). It is is particularly interesting
in view of the discontinuity of its phase transition[344,346]: it satis�es

µqc
�
τBP

0 � 8� ¡ 0,

as expected for the jamming transition of granular systems [320].
We leave further results concerning exponential decay (in particular re-

covering results from [315]), noise sensitivity and answers to some questions
of [28] to Chapter 12. To conclude our discussion of subcritical models, let
us mention the following conjecture rectifying a question of [28], although
the proper question whether it holds was already asked in [315].

Conjecture 1.5.5. For all update families it holds that qc � q̃c.

As we already discussed, this is true for all supercritical, critical, trivial
subcritical models and GOSP, as well as Spiral, amounting to all models
currently understood (see [208] for subsequent progress).
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1.6 Re�ned universality for critical models in two

dimensions

We may now turn to re�ned universality of critical bootstrap percolation
models and KCM. Our ultimate goal are coarse thresholds�Aizenman�
Lebowitz precision level for all of them.

1.6.1 Re�ned universality classes

To state the universality partition, we need another re�nement of the notion
of stable direction (see Fig. 1.2 for examples).

De�nition 1.6.1 (Di�culty). The di�culty αpuq of u P S1 is

• 0 if u is unstable;

• 8 if u is stable, but not isolated;

• mintn : DZ � Z2, |Z| � n, |rHu Y ZsUzHu| � 8u otherwise.
The di�culty of U is

α � αpUq � min
CPC

max
uPC

αpuq.

We say that a direction u P S1 is hard if αpuq ¡ α.

The de�nition implies that there is always an open semi-circle C P C con-
taining no hard direction. It is interesting to note that the above de�nition
may be viewed as an analogue of critical densities adapted to critical families,
making α the analogue of q̃c (or qc, accepting Conjecture 1.5.5). Of course,
in reality di�culties were introduced much earlier by Gravner and Gri�eath
(see e.g. [184]) and served as inspiration for critical densities of Chapter 12.
Inversely, looking back at De�nition 1.3.3, it is clear that di�culties should
be interpreted as directional analogues of the parameter ζ appropriate for
supercritical models.

Di�culties not only re�ne the de�nition of stable direction, but that of
the rough universality classes. Namely, it is not hard to check that a model
is supercritical i� its di�culty α is 0; critical i� α is a positive integer;
subcritical i� α � 8. Consequently, for supercritical models directions are
hard i� they are stable.

Further note that, while determining the stable directions or rough uni-
versality class of a family is an easy task, determining the di�culties of stable
directions or the overall di�culty of the family is not. With Tamás Mezei
[219] in Chapter 9, we examine this from a complexity viewpoint, showing
that it is possible to determine α in �nite time, given U , but doing so is
NP-hard. Providing a �nite time algorithm relies on quantitative bounds on
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how far infection can travel from an initial set of α infections added to a
half-plane, if it does not reach in�nity, while the hardness result follows from
embedding instances of the classical set cover problem. Regardless of the
di�culty of determining di�culties, we will take them for granted in what
follows.

With De�nition 1.6.1 at our disposal, we can de�ne all the notions which
will appear in the re�ned universality partition. Although they may look
arbitrary or zoological at �rst sight, we will see that they do correspond to
di�erent and sensible behaviours.

De�nition 1.6.2 (Re�ned types). A critical or supercritical two-dimensional
update family is

• rooted if there exist two non-opposite hard directions;

• unrooted if it is not rooted;

• unbalanced if there exist two opposite hard directions;

• balanced if it is not unbalanced, that is, there exists a closed semicircle
containing no hard direction.

We further partition balanced unrooted update families into

• semi-directed if there is exactly one hard direction;

• isotropic if there are no hard directions.

Of course, the reader may verify that rooted and unrooted supercritical
models are (re)de�ned consistently with De�nitions 1.3.9 and 1.5.2.

We will further consider the distinction between models with �nite and
in�nite number of stable directions (that is, without or with a strongly stable
direction). The latter are necessarily rooted but possibly balanced or unba-
lanced. Hence, we end up with a partition of all two-dimensional update
families into the eleven classes represented in Fig. 1.2, seven of which are the
critical ones we study below.

Let us remark that models in each class may have one axial symme-
try, but non-subcritical models invariant under rotation by π are necessarily
either isotropic or unbalanced unrooted (thus with �nite number of stable
directions), while invariance by rotation by π{2 implies isotropy.

Before stating the re�ned universality theorem, let us give a vague idea
as to why De�nition 1.6.2 may be relevant. Firstly, the distinction between
balanced and unbalanced models was already apparent in the proof of The-
orem 1.5.3. More precisely, we saw that we may be constrained to a one
dimensional growth if the model is unbalanced, having to �nd rare sets al-
ong the side of the growing droplet, which tends to make it very elongated.
The distinction between rooted and unrooted models was already apparent
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in one dimensional KCM and is related to the question whether or not we
can move back and forth. This is also clearly relevant in view of the proof of
Theorem 1.5.3, where the East-like motion we performed may be suboptimal
for unrooted models. The presence or absence of strongly stable directions
is also not absurd to take into account. That is because for those not even
rare sets of infections can help us, making it `impossible' for a droplet, howe-
ver large or mobile, to move signi�cantly in those directions. On the other
hand, hard isolated stable directions are not `impossible,' since rare sets of
infections are su�cient for growing in those directions. Indeed, that was the
procedure we used to prove rough bounds for critical models�we did not
take di�culty into account, but only the fact that directions are not strongly
stable. Sadly, we are unable to provide a simple and convincing explanation
as to why semi-directed and isotropic models are very di�erent but this will
become clear with a bit more e�ort.

1.6.2 Re�ned universality results

Let us begin with the simpler case of bootstrap percolation, which already
requires a substantial e�ort to prove.

Theorem 1.6.3 (Re�ned universality for bootstrap percolation [70]). Let U
be a two-dimensional critical update family with di�culty α. If U is

• unbalanced, then

µ
�
τBP

0

� � exp

�
Θplog2p1{qqq

qα



;

• balanced, then

µ
�
τBP

0

� � exp

�
Θp1q
qα



.

Once again, results in [70] were proved in terms of the probability of
infecting a large torus, but can be recast into the above bounds on τBP

0

w.h.p. and then improved to bounds in expectation, using rough decay rates
as in Theorem 1.5.3. This theorem was relatively natural to conjecture,
given that the relevance of di�culties and the balanced character of families
was known to be important [184] and that several representatives of each
class were studied and all shared these two scaling forms. Nevertheless, the
proof and particularly the lower bound for unbalanced models was quite a
challenge.

For KCM the picture was far less clear a priori. As testimony, we should
point out that in the upper bounds provided in [269] were conjectured to be
sharp up to logarithmic corrections. This was based on the intuition coming
from a supercritical renormalisation point of view: if the model is unbalan-
ced, then its droplets should be more costly as in bootstrap percolation; if the
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In�nite stable directions
Finite stable directions
Rooted Unrooted

Unbalanced (a) 2, 4, 0 (c) 1, 3, 0 (d) 1, 2, 0

Balanced (b) 2, 0, 0 (e) 1, 1, 0
(f) 1, 0, 1
S.-dir. Iso.

(g) 1, 0, 0

Table 1.3 � Classi�cation of critical U-KCM with di�culty α from Theo-

rem 1.6.4. For each class Eµpτ0q � exp

�
Θp1q

�
1
qα

	β �
log 1

q

	γ �
log log 1

q

	δ

as q Ñ 0. The label of the class and the exponents β, γ, δ are indicated in

that order. For comparison, µ
�
τBP

0

� � exp

�
Θp1q
qα

�
log 1

q

	γ1

with γ1 � 2 for

unbalanced U and γ1 � 0 for balanced U by Theorem 1.6.3.

model is rooted, then it is obliged to move in an East-like way. This intuition
was supported by the fact that their bounds did match automatic bootstrap
percolation lower bounds in some cases and, more importantly, were proved
to be sharp even with the logarithmic corrections for the speci�c case of the
Duarte-KCM with U � ttp0, 1q, p�1, 0qu, tp0,�1q, p�1, 0qu, tp0, 1q, p0,�1quu
in [267], establishing the �rst coarse threshold for a critical KCM. As it will
become apparent in the following result, even the power of q given by the
above heuristic was incorrect, making the distinction between �nite and in�-
nite number of stable directions unexpected. Including logarithmic correcti-
ons then uncovered yet another unpredicted and more intricate phenomenon
leading to the following outcome summarised in Table 1.3.

Theorem 1.6.4 (Re�ned universality for KCM). Let U be a two-dimensional
critical update family with di�culty α. If U is

(a) unbalanced with in�nite number of stable directions (so rooted), then

Eµpτ0q � exp

��Θ
�
plogp1{qqq4

	
q2α

�;

(b) balanced with in�nite number of stable directions (so rooted), then

Eµpτ0q � exp

�
Θp1q
q2α



;

(c) unbalanced rooted with �nite number of stable directions, then

Eµpτ0q � exp

��Θ
�
plogp1{qqq3

	
qα

�;
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(d) unbalanced unrooted (so with �nite number of stable directions), then

Eµpτ0q � exp

��Θ
�
plogp1{qqq2

	
qα

�;

(e) balanced rooted with �nite number of stable directions, then

Eµpτ0q � exp

�
Θ plogp1{qqq

qα



;

(f) semi-directed (so balanced unrooted with �nite number of stable directi-
ons), then

Eµpτ0q � exp

�
Θ plog logp1{qqq

qα



;

(g) isotropic (so balanced unrooted with �nite number of stable directions),
then

Eµpτ0q � exp

�
Θp1q
qα



.

We should emphasise that, at stark contrast with bootstrap percolation,
this result is the state of the art for all critical update families except FA-2f,
for which the only result of higher (or equal) precision is Theorem 1.4.6. The
only KCM for which such a coarse threshold was known previously is the
Duarte one [267,269].

The proof of Theorem 1.6.4 could not be taken in one serving. Indeed,
the following weaker statement was established as an intermediate step.

Corollary 1.6.5. For two-dimensional critical update families

logEµpτ0q �
#�

logµ
�
τBP

0

��1�op1q
�nite number of stable directions,�

logµ
�
τBP

0

��2�op1q
in�nite number of stable directions.

The lower bound of Corollary 1.6.5 for models with �nite number of stable
directions follows directly from Theorem 1.6.3 and the automatic comparison
Eµpτ0q ¥ Ω

�
µ
�
τBP

0

��
from Eq. (1.12). Actually, the same holds for the sharp

lower bounds of Theorem 1.6.4 for classes (d) and (g). The remaining lower
bound of Corollary 1.6.5 is proved in Chapter 7 jointly with Laure Marêché
and Cristina Toninelli [214]. The proof incidentally giving the sharp scaling
of Theorem 1.6.4 for class (b). The techniques there are developed further
in Chapter 8 jointly with Laure Marêché [213] to prove all the lower bounds
of Theorem 1.6.4 in a uni�ed way.

Turning to upper bounds, the ones of Theorem 1.6.4 for class (a) and
Corollary 1.6.5 for families with in�nite number of stable directions were
given in [269], the heuristic of which was already discussed in Section 1.5.3.
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The remaining one in Corollary 1.6.5 along with Theorem 1.6.4(c) are proved
in Chapter 4 jointly with Fabio Martinelli and Cristina Toninelli [216]. We
prove the remaining upper bounds of Theorem 1.6.4 in Chapter 6, classes
(e) and (f) being the most challenging.

It is worth mentioning that it is possible to optimise the proof of The-
orem 1.6.4, so that some parts of Chapters 4 and 7 are not required (see
Remark 6.0.2 and note that Section 7.4 is not used in Chapter 8). We have
kept the original proofs in order to allow one to back out at the level of
Corollary 1.6.5 and shun the fairly technical Chapters 6 and 8 if necessary.

1.6.3 Aspects of the proof for bootstrap percolation

Upper bounds

Let us begin with the upper bounds in Theorem 1.6.3, which are simpler and
provide the intuition of the dominant infection mechanisms.

Balanced families For balanced models one proceeds very similarly to [7,
74], considering progressively growing infected droplets with polygonal shape
and ensuring that, once they are large enough, they invade space roughly
linearly. The latter assertion requires no new input w.r.t. Theorem 1.5.3, so
we focus on the probability that a droplet of size 1{qC for C large enough
is internally �lled. Our goal is to show that this probability is at least
expp�Op1q{qαq, where α is the di�culty of the balanced update family under
consideration.

To obtain the desired bound, [70] proceeds as follows. Start from a large
constant-sized infected droplet with a suitable polygonal shape as for The-
orem 1.5.3 and demand the occurrence for each line of lattice sites we wish
to append to the droplet a less unlikely event than the one in Section 1.5.3.
Namely, we ask the presence of `clusters' of at most α initial infections close
to each other rather than some large constant. Fortunately, a few such clus-
ters are enough to infect a line. Indeed, by De�nition 1.6.1 for each direction
u with αpuq ¤ α there exists a cluster of α infections, which generates in-
�nitely many infections if placed next to an infected half-plane directed by
u. As in one-dimension, it is not hard to see that the infections necessarily
contain a periodic pattern along the line in at least one of the two directi-
ons. Hence, a bounded number of clusters, called a `helping set' su�ce to
infect a half-line. This half-line in turn infects the entire line, as it contains
arbitrarily large sequences of consecutive infections. Using this mechanism
leads to the desired bound without additional e�ort w.r.t. Theorem 1.5.3.

Unbalanced families For unbalanced models we no longer need to pay
any attention to the mechanism for infecting a `critical' droplet. Namely,
for such families a critical droplet may be taken to be a fully infected thick
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frame with polygonal shape. As we saw in Section 1.5.3, such a droplet oc-
casionally �nds sequences of infected sites allowing it to grow transversally.
However, to reach them, it should be able to sustain its growth in the di-
rection corresponding to the midpoint of a semicircle of di�culty at most α
for a distance of order 1{qC . This can be achieved if the initial critical drop-
let has size C 1 logp1{qq{qα with C 1 su�ciently large compared to C. Indeed,
for such sizes the probability that there is no helping set for a given line is
roughly 1{qC1 . Hence, by the time the �rst missing helping set is reached
the droplet is already of size 1{qC and helping sets are now exponentially
likely to be present. Thus, the probability that a large droplet becomes in-
fected by sites at distance at most 1{qC1 from it is essentially bounded by
the probability of the initial frame being fully infected, leading to the desired
qC

1 logp1{qq{qα .

Lower bounds

The lower bounds for Theorem 1.6.3 are the main di�culty, especially in
the unbalanced case, for which we direct the reader to [70]. The simpler
µ
�
τBP

0

� ¥ exppΩp1q{qαq bound, valid for all critical update families, can be
proved essentially as in Section 1.5.3. More precisely, it su�ces to `cover'
clusters of α sites close to each other rather than single infections. Since
De�nition 1.6.1 (with some work) guarantees that fewer than α sites cannot
create arbitrarily large amounts of infection at the boundary of a droplet,
covered droplets contain the closure of the initial infections. Hence, we may
proceed identically to what was described in Section 1.5.3 to obtain the
desired bound. We will see a more sophisticated version of this argument in
Chapter 7.

1.6.4 KCM lower bounds: combinatorial bottleneck

Let us now discuss the proof of the lower bounds of Theorem 1.6.4. They
are all treated in Chapters 7 and 8 in a systematic and comprehensive way,
by showing that the main obstacle for the dynamics in all cases corresponds
to a combinatorial bottleneck similar to the one of the two-dimensional East
model (see Section 1.5.2 and Fig. 1.2j). For the sake of concreteness, we
focus on the model from Fig. 1.2f, for which α � 1.

Morally speaking, in this model the smallest mobile entity (`droplet') is
an infected square of size roughly 1{q. Indeed, typically on its right and top
sides one can �nd an infection, which allows it to infect the column of sites on
its right and the row of sites above it. However, it is essentially impossible for
the infection to grow down or left, as this requires two consecutive infections
and those are typically only available at distance 1{q2 from the droplet. We
will only work in a region R of size 1{q7{4 around the origin, so, morally,
such couples of infections are not available. Thus, the droplets follow the
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dynamics of the two-dimensional East model.
On a very high level we will proceed in the same way as for this super-

critical rooted model in [265] (see Section 1.5.2). However, there are several
obvious problems in making the above reasoning rigorous. Firstly, we said
above that the smallest mobile entities, `droplets,' were infected squares of
size 1{q, but the smallest mobile entities are actually more complicated.
One needs to identify an event which says whether or not something is a
droplet and this event should be deterministically necessary for infection to
spread. Moreover, the event should be su�ciently unlikely, so that having
many droplets at the same time has probability small enough to be a good
bottleneck. It turns out that the notion of `spanning' introduced in [70] for
the proof of the lower bound of Theorem 1.6.3 for unbalanced models, follo-
wing [97], is �exible enough for us. Roughly speaking (see De�nition 8.1.1),
a droplet is spanned if the infections present inside it are su�cient to infect
a connected set touching all its sides. We call a droplet critical if it has size
roughly 1{q. It is known from [70] and obtained again in Section 8.A in a
more adapted form that the probability of a speci�c critical droplet being
spanned is roughly expp�1{qq. Unfortunately, given a con�guration, span-
ned critical droplets may overlap and, in order to obtain good bounds on the
probability of the con�guration, one needs to consider disjointly occurring
ones. We may then de�ne the number of spanned critical droplets as the
maximal number of disjointly occurring ones.

Having �xed these notions, we encounter a more signi�cant issue: by
changing their internal structure the (spanned critical) droplets may move a
bit without creating another droplet. Worse yet, they are not really forbidden
to move left or down, but simply are not likely to be able to do so wherever
they want: it depends on the dynamic environment. Indeed, being able
to move by a single step down is allowed by the presence of a couple of
infections on the side of the droplet, which has probability only as small
as q and is by far not something we can ensure never happens up to time
T � expplogp1{qq{qq.

In order to handle these problems, we introduce the crucial notion of
crossing (not to be confused e.g. with the one of [70]). Consider a vertical
strip S of width 1{q3{2 of our domain, R, which is a square of size 1{q7{4.
Roughly speaking (see De�nition 8.1.5 for a more precise statement), we say
that S has a crossing if the following two events occur. Firstly, the infections
in S together with the entire half-plane to the right of S are enough to infect
a path from right to left in S (this is essentially the notion of crossing in [70]).
Secondly, S does not contain a spanned critical droplet. Notice that these
two events go opposite ways�the former is favoured by infections, while the
latter is not. In Section 8.B we show that the probability of a crossing decays
exponentially with the width of S at our scales.

Having established such a bound on the probability of crossings, we may
safely assume (it happens with high probability) that they never occur until
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time T and this is the property we use to formalise the intuition that `mo-
ving down or left is impossible.' More precisely, assume that initially the
only critical droplet is on the right of S and S never has a crossing. Then,
simply because the KCM dynamics can never infect more than what boot-
strap percolation can, starting from the same initial condition, the droplet
will not be able to reach the left side of S. Indeed, if it could, there would be
a `trail' of infectable sites from the right of S to its left, which would imply
a crossing.

To conclude, let us emphasise a key aspect of the proof of upper bounds
on spanning (and crossing, which are based on those for spanning), which we
do not obtain like [70]. Indeed, in [70] one could not transfer analogous but
easier bounds on covering, which were established there anyway, to spanning.
That is because the covering algorithm in [70] lacks the key property of
being closure-invariant: the collections of droplets associated to the closure
of the initial infections being equal to the collection for the initial infections.
Gaining an approximate version of this property is highly nontrivial, as in
order not to overshoot in de�ning the droplets, one is forced to ignore small
patches of infections (larger than the ones in [70]), which can possibly grow
signi�cantly when we take the closure for the bootstrap percolation process
and especially so if they are close to a large infected droplet. In order to
remedy this problem, we introduce a relatively intrinsic notion of `crumb' (see
De�nition 7.3.1) such that its closure is still a crumb and does not di�er too
much from the original. A further advantage of our covering algorithm over
the one of [70] is that it is somewhat canonical, with a well-de�ned unique
output, which has particularly nice `algebraic' description and properties (see
Remark 7.3.10). Moreover, the closure property now allows us to directly
transport probability bounds from covering to spanning.

1.6.5 KCM upper bounds: relaxation mechanisms

We �nally attempt an heuristic explanation of Theorem 1.6.4 from the vie-
wpoint of mechanisms, which is mostly related to upper bound proofs of
Chapter 6. Instead of outlining the mechanism used by each class, we fo-
cus on techniques which are somewhat generic and then apply combinations
thereof to each class. In �gurative terms, we will develop several computer
hardware components (three processors, four RAMs, etc.), give a general
scheme of how to compose a generic computer out of generic components
and, �nally, assemble seven concrete computer con�gurations using the ap-
propriate components for each, sometimes changing a single component from
a machine to the other. Moreover, within each component type, di�erent in-
stances will be strictly comparable, so, at the assembly stage, we might
simply choose the best possible component �tting with the requirements of
model at hand. The purpose is twofold. Firstly, this enables us to highlight
the robust tools we develop, which correspond to the components and how
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they are manufactured, as well as give a clean universal proof scheme which
they are plugged into. Secondly, on the technical level, the modular struc-
ture will allow us to create each component only once and force us to make
it as multipurpose as possible. Indeed, as it is clear from Table 1.4b, procee-
ding component-wise (row by row) is much easier than model-wise (column
by column). We hope that the reader will be able to navigate through this
more e�cient albeit less straightforward procedure.

Our di�erent components are called themicroscopic, internal, mesoscopic
and global dynamics and correspond to progressively increasing length scales
on which we are able to relax, given a suitable infection con�guration. As
the notion of `suitable,' which we call super good (SG), depends on the class
and lower scale mechanisms used, we will mostly use it as a black box input
extended progressively over scales in a recursive fashion. When we say that
a convex polygonal region, called droplet and systematically equipped with
a SG event (which makes the KCM inside the droplet ergodic), `relaxes,' we
mean that in a certain `relaxation time' the dynamics restricted to the SG
event and to this region `mixes.' Formally, this translates to a constrained
Poincaré inequality for the conditional measure, but this is unimportant for
our discussion.

One should think of droplets as extremely unlikely objects, which are
able to move within a (slightly) favourable environment. Indeed, at all sta-
ges of our treatment, we need to control the inverse probability of droplets
(being SG) and their relaxation times, keeping them as small as feasible.
Furthermore, due to their inductive de�nition, the favourable environment
required for their movement should not be too costly. Indeed, that would
result in the deterioration of the probability of larger scale droplets, as those
incorporate the lower scale environment in their internal structure.

Scales

Microscopic dynamics is about modifying infections at the level of the lattice
along the boundary of a droplet, while respecting the KCM constraint.

Internal dynamics is about relaxation on scales from the lattice level to
the internal scale `i � C2 logp1{qq{qα, where C is a large constant depending
on U . This is the most delicate and novel step. Up to `i we account for the
main contribution to the probability of droplets, which then saturates at a
certain value ρD. Thus, it is important to only very occasionally ask for more
than α infections to appear close to each other (helping sets). This means
that up to the internal scale hard directions are practically impenetrable.

Mesoscopic dynamics is about relaxation on scales from `i to themesoscopic
scale `m � 1{qC . As our droplets grow to the mesoscopic scale and past it, it
becomes possible to require larger helping sets, which we callW -helping sets.
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These allow droplets to move also in hard directions of �nite di�culty, while
nonisolated stable directions are still blocking.

Global dynamics is about relaxation on scales from `m to in�nity. The
extension to in�nity being fairly standard (and not hard), one should rather
focus on scales up to the global scale given by `g � expp1{q3αq, which is
notably much larger than all time scales we are aiming for.

Roughly speaking, on each of the last three scales, one should decide how
to move a droplet of the lower scale in a domain on the larger scale.

For simplicity, in the remainder of Section 1.6.5, we assume that all up-
date rules are contained in the axes of the lattice. This allows considering
rectangular droplets (see Section 6.1.3). We further assume that all directi-
ons in the right-hand semicircle have di�culties at most α (under the above
assumption only the four axis directions can be isolated or semi-isolated),
while the down direction is hard, unless there are no hard directions (isotro-
pic class), as in all critical examples in Fig. 1.2.

Microscopic dynamics

The microscopic dynamics is the only place where we actually deal with the
KCM directly and is the same, regardless of the size of the droplet and the
universality class. Roughly speaking, from the outside of the droplet, we
may think of it as fully infected, since it is able to relax and, therefore, bring
infections where they are needed. Thus, it is as though we are working on
a single line of lattice sites, say column, next to an infected region. For an
isolated (or semi-isolated) stable direction this induces a supercritical one-
dimensional KCM on the column. Hence, provided a few suitable helping
sets close to the column, we can apply results on one-dimensional inhomoge-
neous KCM from Chapter 2 to establish that the column can relax in time
exppOplogp1{qqq2q. Assuming we know how to relax on the droplet itself,
this allows us to relax on a droplet with one column appended. However,
applying this procedure recursively line by line is not e�cient enough to be
useful for extending droplets more signi�cantly.

One-directional extensions

We next explain two fundamental techniques beyond the microscopic dyna-
mics which we use to extend droplets on any scale in a single direction, say,
right. Each of them can be viewed as a large scale version of either CBSEP
or East in one dimension.

As mentioned above, our droplets have three aspects: geometry, SG event
and relaxation mechanism bounding the relaxation time conditionally on
the SG event. An extension takes as input a droplet with all its aspects
and produces a larger (wider or taller), extended, one. While extending
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the geometry and SG event is a matter of de�nition and the relaxation
mechanism is an heuristic image of the dynamics, bounds on the probability
of the event and the relaxation time require a proof. This proof re�ects
the nature of the extension of the geometry and event, itself guided by the
intuition of the underlying one-dimensional spin model and enabling the use
of the proof technique for its relaxation time. We thus collectively refer to
the procedure of extending the geometry, event and relaxation of a droplet
as extension.

CBSEP-extension Recall CBSEP from Section 1.4.2. The relaxation
time of this model on volume V is roughly at most minpV, 1{qq2 in one
dimension and minpV, 1{qq in two and more dimensions, as we will see in
Chapter 3.

For us particles will represent SG droplets, which we would like to move
within a larger volume. However, as we would like them to be able to move
possibly by an amount smaller than the size of the droplet, we need to
generalise the model a bit. We equip each site of Z with a state space
corresponding to the state of a column of the height of our droplet of interest
in the original lattice Z2. Then the event `there is a SG droplet' may occur
on a group of ` sites (columns). The long range generalised CBSEP (which is
actually a generalisation of what we call generalised CBSEP in Chapter 3),
which we will call CBSEP by abuse in the present section, �xes some range
R ¡ ` and resamples groups of R consecutive sites if they contain a SG
droplet, preserving this feature. Thus, one move of this process essentially
delocalises the droplet within the range.

It is important to note (and this is crucial in Chapter 5) that CBSEP
does not have to create a droplet in order to evolve. Indeed, conditionally on
having a droplet within a certain domain, its position will be approximately
uniform owing to the symmetric construction, so that, as long as it is able to
move easily by one line both right and left, its position will quickly mix. It is
for this initial step that we rely on the microscopic dynamics and helping sets.
However, in order to achieve the displacement by one line we further need
to be able to internally shu�e the SG event in an amoeba-like manner, so as
to contract most of its internal structure in the direction we are moving to.
Then, together with a suitable structure on the additional column granted
by the microscopic dynamics, it becomes a droplet shifted by one step.

Below CBSEP-extension (De�nition 6.2.4) refers to the procedure of ex-
tending a droplet's geometry, event and relaxation with CBSEP as under-
lying toy model. Geometry is simply extended both right and left, while
the extended SG event requires the presence of the original SG droplet in-
side the extended one, in addition to helping sets throughout the rest of the
extended droplet su�cient to catalyse the motion of the original droplet in
both directions. The relaxation of the extended droplet via this mechanism
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is very swift. Indeed, the time needed to move the droplet is roughly a po-
wer of the volume times the inverse rate of the microscopic dynamics, which
is itself fast, and the inverse rate of contraction, which is small, as we will
discuss later. However, CBSEP-extensions can only be used for su�ciently
symmetric update families. That is, the droplet needs to be able to move
indi�erently in both directions and its position should not be biased in one
direction or the other.

East-extension Recall the East model from Section 1.3.2 and Fig. 1.1b
with relaxation time q�Oplog minpL,1{qqq on a segment of length L. Its long
range generalised version is de�ned similarly to the one of CBSEP. The only
di�erence is that now R ¡ ` consecutive columns are resampled together if
there is a SG droplet on their extreme left. It is clear that this does not
allow moving the droplet, but rather forces us to recreate a new droplet
at a shifted position before we can progress. The associated East-extension
(De�nition 6.2.2) of a droplet corresponds to extending its geometry to the
right, while the extended SG event requires that the original SG droplet is
present in the leftmost position and helping sets are available in the rest of
the extended droplet to allow its (long range generalised) East evolution.

The generalised East process goes back to [269], while the long range
version is implicitly used in Chapter 4. However, both use a brutal strategy
consisting of creating the new droplet from scratch. Instead, in Chapter 6
we will have to be much more careful, particularly in view of semi-directed
models. Indeed, take ` large and R � ` � 5. Then it is intuitively clear
that the presence of the original leftmost droplet overlaps greatly with the
occurrence of the shifted SG one we would like to craft. Hence, the idea
is to take advantage of this and only pay the conditional probability of the
droplet we are creating, given the presence of the original one.

This is not as easy as it sounds for several reasons. Firstly, we should
make the SG structure soft enough, as in Chapter 5 and in contrast with
[269] and Chapter 4, so that small shifts do not change it much. Secondly,
we need to actually have a quantitative estimate of the conditional proba-
bility of a complicated multi-scale event, given its translated version, which
necessarily does not quite respect the same multi-scale geometry. To make
matters worse, we do not have at our disposal a very sharp estimate of the
probability of SG events (contrary to what is the case in Chapter 5), so di-
rectly computing the ratio of two rough estimates would yield a very poor
bound on the conditional probability. In fact, this problem is also present
when contracting an amoeba in the CBSEP-extension�we need to evaluate
the probability of a contracted version of the amoeba conditionally on the
original amoeba being present.

We deal with these issues in Section 6.B. We establish that, as intuition
may suggest, to create a droplet shifted by R� `, given the original one, we
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roughly only need to pay the probability of a droplet on scale R � ` rather
than `, which provides a substantial gain. Hence, the time necessary for an
East-extension of a droplet to relax is essentially the product of the inverse
probabilities of a droplet on scales of the form 2m up to the extension length.

Internal dynamics

The internal dynamics is where most of our work will go. This is not sur-
prising, as the probability of SG events will saturate at its �nal value ρD

(expp�Θp1q{qαq for balanced models and exppΘp� log2p1{qqq{qαq for un-
balanced ones) at the internal scale. These are the values familiar from
bootstrap percolation.

Unbalanced internal dynamics Let us begin with the simplest case of
unbalanced models. If U has unbalanced with in�nite number of stable
directions (class (a)), droplets in [269] on the internal scale consist of several
consecutive infected columns, so that no relaxation is needed (the SG event
is a singleton). The columns have size `i, which justi�es the value of ρD.

If U is unbalanced with �nite number of stable directions (classes (c)
and (d)), droplets on the internal scale are fully infected square frames of
thickness Op1q and size `i, which gives a similar value of ρD. In order to relax
inside the frame, one can infect several columns next to the frame (inside it)
and move them throughout the area enclosed in the frame with the help of
the frame. This can be done similarly to a CBSEP-extension, by infecting
the next column and removing the previous one (see Fig. 4.7). The time

necessary for this relaxation is easily seen to be ρ
Op1q
D (the cost for creating

the infected columns).

CBSEP internal dynamics If U is isotropic (class (g)), up to the condi-
tioning problems of Section 6.B described above, we need only minor adap-
tations of the strategy of Chapter 5 for FA-2f. Droplets on the internal scale
will have an internal structure as obtained by iterating Fig. 6.5a (see also
Fig. 5.2). Our droplets will be extended little by little alternating between
the horizontal and vertical directions, so that their size is multiplied essenti-
ally by a constant at each extension. Thus, roughly logp1{qq extensions are
required to reach `i. As isotropic models do not have any hard directions,
we can move in all directions and thus the symmetry required for CBSEP-
extensions is granted. Hence, this mechanism leads to a very fast relaxation
of droplets in time exppq�op1qq.
Remark 1.6.6. The vigilant reader may have noticed that CBSEP requi-
res an actual symmetry, while for a general isotropic model we only know
that there are no hard directions. We circumvent this issue by arti�cially
symmetrising our droplets and events, asking for helping sets in directions
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which do not need any and asking for the symmetric of the helping set of the
opposite direction. Although these are totally useless for the dynamics, they
are important to ensure that the positions of droplets are indeed uniform
rather than su�ering from a drift towards an `easier' non-hard direction.

East internal dynamics The most challenging case is the balanced non-
isotropic one (classes (b), (e) and (f)). Indeed, the hard direction prevents
us from using CBSEP-extensions. To be precise, for semi-directed models
(class (f)) it is possible to perform CBSEP-extensions horizontally, but the
gain is insigni�cant, so we treat all balanced non-isotropic models identically
up to the internal scale.

We still extend droplets, starting from a microscopic one, by a constant
factor alternating between the horizontal and vertical directions. However,
in contrast with the isotropic case, extensions are done in an oriented fashion,
so that the original microscopic droplet remains anchored at the corner of
larger ones (see Fig. 6.3b). Thus, we may apply East-extensions on each step
and obtain that the cost is given by the product of conditional probabilities
for East extensions over all scales and shifts of the form 2n. In total, a
droplet of size 2n needs to be paid once per scale larger than 2n. A careful
computation shows that only droplets larger than q�α provide the dominant
contribution and those all have probability essentially ρD. Thus, the total

cost would be ρ
Θplog logp1{qqq2
D , since there are log logp1{qq scales from q�α to `i,

as they increase exponentially. This is unfortunately a bit too rough for the
semi-directed class. However, the solution is simple�it su�ces to introduce
scales growing double-exponentially above q�α, so that the product becomes

dominated by its last term, giving the �nal cost ρ
Θplog logp1{qqq
D .

Mesoscopic dynamics

For the mesoscopic dynamics we are given as input a SG event for droplets
on scale `i and a bound on their relaxation time.

CBSEP mesoscopic dynamics If U is unrooted (classes (d), (f) and (g)),
recall that the hard directions (if any) are vertical. Then we can perform a
horizontal CBSEP-extension directly from `i to `m, since `i � logp1{qq{qα
makes it likely for helping sets to appear along all segments of length `i until
we reach scale `m � q�C . The resulting droplet is very wide, but short (see
Fig. 6.6). However, this is enough for us to be able to perform a vertical
CBSEP-extension, requiring W -helping sets, since they are now likely to be
found. Again, CBSEP dynamics being very e�cient, its cost is negligible.

East mesoscopic dynamics If U is rooted (classes (a)-(c) and (e)), then
CBSEP-extensions are still inaccessible. We may instead East-extend rig-
htwards from `i to `m in a single step. Once again we obtain a very wide
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but short droplet. If the model has �nite number of stable directions or
it is balanced (classes (b), (c) and (e)) we may perform an East-extension
upwards, since W -helping sets are now likely to be found as in the CBSEP

mesoscopic dynamics. This leads to a droplet of size `m in time ρ
Θplogp1{qqq
D .

If the family has �nite number of stable directions (classes (c) and (e)), we
may afterwards CBSEP-extend (vertically or horizontally) as we did for un-
rooted models above. Note that for balanced models with in�nite number
of stable directions we can only move rightwards and upwards, while for un-
balanced families with in�nite number of stable directions we can only move
rightwards and the following additional mechanism is needed.

Stair mesoscopic dynamics For unbalanced families with in�nite num-
ber of stable directions (class (a)) the following stair mesoscopic dynamics
was introduced in [269]. Recall that in this case the internal droplet is simply
a few infected columns. While moving the droplet right via an East motion,
we pick up W -helping sets above or below the droplet (as in Section 1.5.3).
These sets allow us to make all droplets to their right shifted up or down
by one row. Hence, we manage to create a copy of the droplet far to its
right but also slightly shifted up or down (see [269, Fig. 6]). Repeating this
(with many steps in our staircase) in a two-dimensional East-like motion,
we can now relax on a mesoscopic droplet with horizontal dimension much
larger than `m but still polynomial in 1{q and vertical dimension `m in time

ρ
Θplogp1{qqq
D .

Global dynamics

The global dynamics receives as input a SG event for a droplet on scale `m

with probability roughly ρD and a bound on its relaxation time, as provided
by the mesoscopic dynamics. Its goal is to move such a droplet e�ciently to

the origin from its typical initial position at distance roughly ρ
�1{2
D .

CBSEP global dynamics If U has a �nite number of stable directions
(classes (c)-(g)), since the mesoscopic droplet is large enough, it can per-
form a CBSEP motion in a typical environment. Therefore, the cost of
this mechanism is given by the relaxation time of CBSEP on large volumes
with density of droplets given by ρD. Performing this strategy carefully and
using the two-dimensional CBSEP, this yields roughly 1{ρD. Preferring a
two-dimensional over a one-dimensional CBSEP strategy is not of particular
importance for Theorem 1.6.4, since we only know log ρD up to a constant
factor. However, this is crucial in Chapter 5 for Theorem 1.4.6.

East global dynamics If U has in�nite number of stable directions (clas-
ses (a) and (b)), the strategy is identical to the CBSEP global dynamics, but



1.7. ORGANISATION 67

Global Mesoscopic Internal
CBSEP East CBSEP East, Stair CBSEP East Unbal.

ρ
�1�op1q
D ρ

�Oplogp1{ρDqq
D eq

�op1q
ρ
�Oplogp1{qqq
D eq

�op1q
ρ
�Oplog logp1{qqq
D ρ

�Op1q
D

(a)The relaxation time cost associated to each choice of dynamics mechanism
on each scale in terms of the probability of a droplet ρD.

(a) (b) (c) (d) (e) (f) (g)

Global East* East* CBSEP CBSEP* CBSEP CBSEP CBSEP*

Mesoscopic Stair East East* CBSEP East* CBSEP CBSEP

Internal � East Unbal. Unbal.* East East* CBSEP

(b) The fastest mechanism available to each re�ned universality class of The-
orem 1.6.4 on each scale. The * indicates a leading contribution for the class.

Table 1.4 � Summary of the mechanisms and their costs. The microscopic
one common to all classes and with negligible cost is not shown.

employs an East dynamics. Now the cost becomes the relaxation time of an
East model with density of infections ρD, which yields exppOplogp1{ρDqq2q.

Assembling the components

To conclude, in Table 1.4a we provide a summary of the mechanisms for each
scale and their cost to the relaxation time. The results are expressed in terms
of the probability of a droplet ρD, which equals expp�Oplogp1{qqq2{qαq for
unbalanced models and expp�Op1q{qαq for balanced ones. The �nal bound
on Eµpτ0q for each class then corresponds to the product of the costs of
the mechanism employed at each scale. To complement this, in Table 1.4b
we indicate the fastest mechanism available for each class on each scale and
further indicate which one gives the dominant contribution to the �nal result
appearing in Theorem 1.6.4, once the bill is footed.

Finally, let us avert the reader that, for the sake of concision, the proofs
in Chapter 6 do not systematically implement the optimal strategy for each
class as indicated in Table 1.4b if that does not deteriorate the �nal result.
Similarly, when that is unimportant, we may give weaker bounds than the
ones in Table 1.4a.

1.7 Organisation

The remainder of the thesis is structured as follows, illustrated in Fig. 1.3.
Each chapter is based on a di�erent paper or preprint among [207, 209, 210,
213�216, 218�220, 222]. The reader will be pleased to learn that they are
already completely familiar with the introductory material of [207, 210, 213,
215, 219, 220] and partially for the remaining works [209, 214, 216, 218, 222].
Each chapter is self-contained enough to be read independently of all others
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Figure 1.3 � Organisation of the thesis. Vertices represent chapters. Solid
arrows indicate that some results are imported, while dashed ones indicate
less explicit in�uence or inspiration.

(except the present Chapter 1, familiarity with which is assumed throug-
hout). We have not altered the published or pre-published originals for the
sake of veri�ability, with the exception of removing parts already covered
in Chapter 1, acknowledgements and open problems solved by subsequent
chapters. In particular, we have left the notation of each chapter as in the
corresponding original, so any notation de�ned there primes over Chapter 1,
but in most cases the notation is precisely the one we have seen already.

Though they are self-contained, many dependencies are present between
chapters, as results from other chapters are occasionally used (see Fig. 1.3).
Chapters are presented from supercritical through critical to subcritical mo-
dels, covering KCM before addressing bootstrap percolation. Naturally, the
reader may choose a di�erent order and even subset. Indeed, the graph in
Fig. 1.3 is divided into relatively independent parts suitable for readers with
di�erent backgrounds or tastes.

Part I (Chapters 2 to 6) contains upper bounds for KCM. It is appropriate
for readers pro�cient in Markov chains and, more speci�cally, dynamics of
interacting particle systems.

Part II (Chapters 7 to 10) presents lower bounds for critical KCM (Chap-
ters 7 and 8) followed by critical bootstrap percolation results. Both are
appropriate for readers adept at (probabilistic) combinatorics.
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Part III (Chapters 11 and 12) treats subcritical bootstrap percolation mo-
dels, making it appropriate for readers versed in percolation theory.

We regard Chapters 6, 8 and 12 as the core of each part in decreasing
level of importance and di�culty. We view the rest as prerequisites, though
all of them are of independent interest and some specialists would doubtlessly
�nd Chapters 5 and 10 of greater importance, Chapter 11 of greater interest
and Chapters 2 and 3 of greater use.

We should acknowledge that Chapters 10 and 12 (i.e. [209, 220]) were
essentially completed during the author's Master degree, the latter being
the author's Master thesis. They are included, since they are tightly linked
to the remainder of the study. Instead, we do not include works unrelated
to our main subject, completed both prior to the beginning of the thesis
[115,206,211] and during its course [212].

The content of each chapter is as follows.

Chapter 2 [207] treats arbitrary general inhomogeneous KCM on �nite or
in�nite one-dimensional volumes conditioned to an irreducible component,
as discussed in Section 1.3.2. We establish an East-like bound on their relax-
ation times without imposing any condition via a revised bisection approach.

Chapter 3 [218] joint with Fabio Martinelli and Cristina Toninelli studies
CBSEP discussed in Section 1.4.2 on arbitrary �nite graphs and a natu-
ral generalisation thereof. We provide bounds on relaxation, mixing and
logarithmic Sobolev times in full generality, often sharp up to logarithmic
corrections. We are particularly interested in the limit of the number of ver-
tices of the graph diverging as the inverse of the equilibrium particle density
p and implications for FA-1f in particular recovering results of Pillai�Smith
[299,300].

Chapter 4 [216] joint with Fabio Martinelli and Cristina Toninelli proves the
upper bound on Eµpτ0q in Corollary 1.6.5 for critical models with �nite num-
ber of stable directions.

Chapter 5 [215] joint with Fabio Martinelli and Cristina Toninelli proves
Theorem 1.4.6 on FA-2f on Z2, thus establishing the �rst sharp threshold
for a critical KCM and settling con�icting conjectures from physics, as ex-
plained in Section 1.4.4. The proof crucially relies on input from Chapters 3
and 10 for the upper and lower bounds respectively and includes an adapted
version of Section 4.4.

Chapter 6 [210] proves the upper bounds on Eµpτ0q in Theorem 1.6.4 for
all critical two-dimensional re�ned universality classes except unbalanced
families with in�nitely many stable directions (a) handled by [269]. The me-
chanisms involved were duly outlined in Section 1.6.5. We rely on Chapters 2
and 5.
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Chapter 7 [214] joint with Laure Marêché and Cristina Toninelli proves the
lower bound on Eµpτ0q in Corollary 1.6.5 for critical models with in�nite
number of stable directions.

Chapter 8 [213] joint with Laure Marêché proves the lower bounds on Eµpτ0q
in Theorem 1.6.4 for all critical two-dimensional re�ned universality classes,
relying on Chapter 7. Thus, together with Chapter 6 we complete the (re�-
ned) universality of critical two-dimensional KCM. The ideas were detailed
in Section 1.6.4.

Chapter 9 [219] joint with Tamás Mezei examines the key parameter of two-
dimensional universality of both bootstrap percolation and KCM�the di�-
culty α�from a computational perspective. As mentioned in Section 1.6.1,
we show that determining it, given U , is NP-hard and exhibit an algorithm
for �nding it in �nite time.

Chapter 10 [220] joint with Robert Morris establishes the lower bound in
Theorem 1.4.5, determining the order of magnitude of the second term of
µ
�
τBP

0

�
for 2-neighbour bootstrap percolation on Z2 discussed in Section 1.4.3.

The proof requires a very precise understanding of the typical growth of a
critical droplet, and involves a number of technical innovations.

Chapter 11 [222] joint with Réka Szabó shows that GOSP behaves like ordi-
nary oriented percolation in its supercritical phase, as noted in Section 1.5.4.

Chapter 12 [209] provides general results on subcritical families, as mentio-
ned in Section 1.5.4. In particular, we answer several questions posed in [28].
The output of Chapter 11 naturally plugs into Chapter 12 to extend some
of its results to the desired complete generality.
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Chapter 2

Bisection for KCM revisited

This chapter is based on [207]. Recall Section 1.3.2.

2.1 Formal statement

For all sites x P Z �x a �nite positive probability space pSx, πxq called state
space and Ix � Sx satisfying πxpIxq ¥ q ¡ 0. We say that x P Z is
infected when the event Ix occurs and healthy otherwise. Thus, we refer
to q � infxPZ πxpIxq as the infection probability. The volume L � Z is
a �nite or in�nite set. Consider the corresponding product space SL �±
xPL Sx and measure πL �Â

xPL πx. We will usually denote elements of SL
(con�gurations) by η, ω, ξ, etc. and corresponding restrictions to any X � L
by ηX and ηx when X � txu. A boundary condition is any ω P SZzL or an
appropriate restriction, when some of the states of ω are unimportant. Given
two con�gurations ηL P SL and η1L1 P SL1 for volumes L,L1 with LXL1 � ∅,
we denote by ηL � η1L1 P SLYL1 the con�guration equal to ηx if x P L and to
η1x if x P L1.

For all x P L we �x an update family Ux that is a �nite family of �nite
subsets of Zztxu. Its elements are called update rules. We assume that there
exists a range R P r1,8q such that for all x P L, U P Ux and y P U we have
|x� y| ¤ R. For x P L we say that the constraint at x is satis�ed if

cωx pηq � 1DUPUx,@yPU,pη�ωqyPIy

equals 1. In words, we require that for at least one of the rules all its sites
are infected, taking into account the boundary condition. The transitions
allowed for the KCM are those changing the state of a single site whose
constraint is satis�ed (before and, equivalently, after the transition, since
rules for x do not contain x). In these terms, Ux � ∅ corresponds to a site
unable to update under any circumstances, while Ux Q ∅ corresponds to a
site whose constraint is always satis�ed. The transitions de�ne an oriented
graph with vertex set SL and symmetric edge set (containing the reverses of
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its edges). We call its connected components irreducible components of the
KCM and view them as events. Given an irreducible component C � SL, we
set µL � πLp�|Cq. We further write µX � µLp�|ηLzXq, µx � µtxu for x P Z
and X � Z and denote by VarX and Varx the corresponding variances.

The general KCM de�ned by L, Sx, πx, Ix, ω, Ux and C is the continuous
time Markov process with generator and Dirichlet form acting on functions
f : C Ñ R depending on the states of �nitely many sites given by

LLpfqpηq �
¸
xPL

cωx pηq � pµxpfpηqq � fpηqq,

DLpfq �
¸
xPL

µL pcωx �Varxpfqq

respectively. In other words, this is the continuous time Markov process
which resamples the state of each site at rate 1 w.r.t. µx, provided its con-
straint is satis�ed. It is useful to note that when cωx � 1, we have µx � πx.
For the existence of such in�nite-volume processes see [258] and for basic
background refer to [88,89]. It is also not hard to check that πL and, there-
fore, µL is a reversible invariant measure for the process. Finally,

pTrelq�1 � inf
f�const.

DLpfq
VarLpfq P r0, 1s

is the spectral gap of LL or inverse relaxation time.

Theorem 2.1.1. There exists an absolute constant C ¡ 0 such that for any
range R P r1,8q, infection probability q P p0, 1s, volume L and general KCM
with these parameters it holds that

Trel ¤ p2{qqCR2 minplog |L|,R logp2{qqq. (2.1)

Remark 2.1.2. Equation (2.1) and its proof apply to general KCM on a
circle Z{nZ (uniformly on n). For trees of maximum degree ∆ and diameter
D we can only retrieve that for some C depending on ∆ and R,

Trel ¤ p2{qqC logD.

As mentioned in Section 1.3.2, Theorem 2.1.1 is sharp not only for all
homogeneous rooted supercritical models, but also for some unrooted ones.
Indeed, an unrooted KCM in �nite volume may lack clusters of infections mo-
bile in both directions, but only be able to create them, using ones mobile in
a single direction. Such is the case of the homogeneous tt�2u, t1, 2uu-KCM
on L � t1, . . . , 2nu with healthy boundary condition, only 1 and |L| infected
initially (so that it is in its �ergodic component,� able to infect the entire
volume). As usual, a test function showing that Trel ¥ exppΩplog2p1{qqqq for
|L| � 1{q Ñ 8 is the indicator of con�gurations reachable from the initial
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state above without creating logp1{qq{10 infections simultaneously. The phe-
nomenon is not related to the lack of symmetry�a similar reasoning applies
to the tt�9,�8,�6u, t�7,�6,�4u, t�6,�5,�3u, t3, 5, 6u, t4, 6, 7u, t6, 8, 9uu-
KCM on L � t1, . . . , 6n� 3u with the ergodic initial condition t1, 2, 4, 6n�
1, 6n, 6n� 3u.

2.2 Proof

Let us begin with a straightforward but important corollary of reversibility.

Observation 2.2.1. The irreducible component of a general KCM naturally
identi�es with the set of sites which can be eventually updated, together
with the state of all remaining sites. We call the set of the sites that can be
updated in L closure1 and denote it by tηuωL � L. We denote the state of
the remaining sites by η0 :� ηLztηuωL and refer to it as initial condition.

Since sites in LztηuωL can never be updated, we may remove them from
L and replace ω by ω � ηLztηuωL . With this reduction, we may assume that
tηuωL � L for the original general KCM and omit this condition. Further note
that we may absorb any boundary condition in the inhomogeneous update
rules by removing infected sites in ω from update rules and removing update
rules containing non-infected sites in ω. Thus, we may further assume that
our initial general KCM is de�ned so that its rules do not depend on the
boundary condition and therefore discard ω. Moreover, once the boundary
condition is irrelevant, we may replace L by an interval of length |L|, if
L is �nite, or N or Z if L is in�nite in one or two directions. Finally,
approximating L by large �nite segments if it is in�nite (see [88, Section
2] and [258, Chapter 4]), we may assume |L|   8. Note that during the
proof we will consider smaller domains and will then specify the closure and
boundary condition.

Henceforth, we �x a general KCM subject to the above simpli�cations
speci�ed by its volume L � t1, . . . , |L|u, state spaces pSx, πxq, infection
events Ix, and update families Ux. We will prove Theorem 2.1.1 by in-
duction on |L|. The induction step is provided by the following two-block
result, which is the core of the argument.

Proposition 2.2.2. Let L1 � t1, . . . , `u and L2 � t`�∆� 1, . . . , |L|u with
` P r1, |L|s and ∆ P r0, `s. Then

VarLpfq ¤ γp∆q
¸

iPt1,2u
µL

�
VarLi

�
f |tηuηLzLiLi

, η0
Li

		
, (2.2)

1Note that this is smaller than the bootstrap percolation closure denoted r�s in Chap-
ter 1, which will not be used in the present chapter to avoid confusion.
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setting for some absolute constant C ¡ 0

γp∆q �
#

1� exp
��∆qCR{ �CR2

��
∆ ¥ CR2{qCR

p2{qqCR2
otherwise.

Remark 2.2.3. This statement can be viewed as a Poincaré inequality for a
Markov process with two symmetric moves performed at rate 1. We update
the state ηL1 from the measure πL1 conditioned on the irreducible component
of the current state in L1. Crucially, the closure is taken only inside L1,
without infecting sites in L2 and going back to L1, but using ηL2 as a (frozen)
boundary condition. In particular, the variance in Eq. (2.2) is not VarLipfq.

Before proving Proposition 2.2.2, let brie�y recall how to deduce The-
orem 2.1.1, referring to [88, Theorem 6.1] for more details. We average
Eq. (2.2) over N � |L|1{3 choices of ` so that the L1 X L2 for di�erent
choices are disjoint and ∆ � |L|1{3 is �xed. All ` are chosen so that
` � |L|{2 P r�N∆{2, N∆{2s. Denoting by Γl the maximum of Trel over
all general KCM of range (at most) R and infection probability (at least) q
on volume with cardinal at most l, this yields the recurrence relation

Γ|L| ¤ p1� 1{Nqγp∆qΓ|L|{2�N∆.

Iterating this, we derive the desired Eq. (2.1).
Thus, our task is to prove Proposition 2.2.2, for which we need the follo-

wing.

Claim 2.2.4. Let Λ be a volume. Then for any irreducible component
C � ptηuωΛ, η0q, under πΛp�|Cq the infections in the closure p1IxqxPtηuωΛ sto-
chastically dominate i.i.d. Bernoulli variables with parameter q.

Proof. Indeed, for any x in the closure, conditionally on ηΛztxu and C, either
Ix has to occur to obtain the correct closure or ηx has the law πx.

Sketch of the easier case of Proposition 2.2.2. As a warm-up, let us sketch
the proof of Eq. (2.2) with γp∆q � p2{qqCR2

, which is valid for all values of
∆.

We aim to couple two copies η and η1 of the chain in Remark 2.2.3,
so that they meet with appropriate rate. To do this, we require that the
following sequence of events all occur in both chains uninterrupted by any
other updates. Each chain is updated on L1 to a state such that the R sites
in L1zL2 closest to L2 (if |L1zL2|   R, take all sites in L1zL2) which are in
the closure tηuηLzL1

L1
of the current state in L1 are infected. Then do the same

in L2, infecting all possible sites at distance at most R from L1 in L2zL1.
Repeat this couple of operations R � 1 times. The con�gurations provided
to η and η1 so far are chosen independently, but updates occur at the same
times for both. Next update L1 in both η and η1 to the same con�guration
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still with infections next to L2 as above and �nally update L2 in both chains
to the same con�guration, forcing them to meet.

In order for this to work, we need two ingredients. Firstly, we need
to check that the rate at which this sequence of updates occurs is at least
pq{2qCR2

, which is clear from Claim 2.2.4. Secondly, we need to check that
this is a valid coupling, namely that in the last two steps the two chains are
indeed resampled from the same distribution. For this it su�ces to see that
after R � 1 repetitions of the alternating updates in L1 and L2, necessarily
the R sites in L2zL1 closest to L1 are all infected. This is not surprising,
since each time we provide the best possible boundary condition and so the
sequence of these boundary conditions is nondecreasing.

Therefore, it remains to see that after a couple of updates as above
either the boundary condition is already fully infected or it increases strictly.
Assume the last R sites in L1zL2 remain unchanged after updating L2 and
then L1 as above. Then none of the remaining non-infected sites could be
updated at all, since even the best boundary condition L2 can provide does
not allow L1 to infect them. Since it was assumed that tηuL � L, this implies
that all R sites are infected, as desired.

Note that the above is su�cient to obtain Theorem 2.1.1 for |L| ¤
p2{qqCR.

Proof of the harder case of Proposition 2.2.2. We consider two copies of the
process from Remark 2.2.3 denoted pηptqqt¥0, pη1ptqqt¥0. It is well known
[256] that it su�ces to couple them so the probability that they do not meet
before time T is at most Ce�T {γp∆q for any T large enough. Observe that
whenever several successive updates are performed at L1 (and similarly for
L2), the �nal result is preserved if we discard all but the last update, since
the dynamics of Remark 2.2.3 is of Glauber type. Hence, we may consider
a discrete time chain with the same state space which updates L1 at odd
steps and L2 at even ones (so the update from time 0 to time 1 is in L1).
Conditionally on the number of alternating updates N up to time T , after
removing redundant ones as indicated above, the two chains η and η1 meet
if their discrete time versions do. We denote the latter by ω and ω1.

We assume that ∆ ¥ CR2{qCR, the alternative being treated in a similar
but simpler way as sketched above. We call any set B � L1 X L2 of 2R � 1
consecutive sites a block and say it is infected if Ix occurs for all x P B.
Claim 2.2.5. Fix θ P SL such that tθuL � L and an infected block B �
x� t1, . . . , 2R� 1u. Then tθuθBt1,...,xu � t1, . . . , xu.

Proof. This follows immediately from the fact that the closure is increasing
in the set of infections (since constraints are), since an infected block is the
maximal possible boundary condition.
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Let us denote by M � ` � t∆{2u � t�R, . . . , Ru the middle block. Our
coupling of ω and ω1 is the following for integer t ¥ 0.

• The two chains evolve independently between 2t and 2t� 2, unless

tωp2tqupωp2tqqLzL1
L1

X  
ω1p2tq(pω1p2tqqLzL1

L1
�M. (2.3)

• If Eq. (2.3) occurs, we �rst sample a two independent con�gurations ξ, ξ1 P
SL1 with the laws of pωp2t�1qqL1 and pω1p2t�1qqL1 , given ωp2tq and ω1p2tq.
Let x � t�R, . . . , Ru be the rightmost block which is infected in both ξ
and ξ1, if it exists. We set ωp2t� 1q � ξ � pωp2tqqLzL1

and

ω1p2t� 1q � ξt1,...,xu � ξ1tx�1,...,`u � pω1p2tqqLzL1

and sample ωp2t � 2q � ω1p2t � 2q with their (common) law given the
state at time 2t � 1. If no such block exists, pωp2t � 1qqL1 � ξ and
pωp2t � 1qqL1 � ξ1 and the two evolve independently between 2t � 1 and
2t� 2.

This is a legitimate Markov coupling of the homogeneous chains pωp2tqqt¥0

and pω1p2tqqt¥0. Indeed, by Claim 2.2.5, conditionally on x � t�R, . . . , Ru
being the rightmost infected block, ξt1,...,xu and ξ1t1,...,xu are identically dis-

tributed. Let us de�ne Xptq �
���M X tωp2tqupωp2tqqLzL1

L1

��� and similarly for ω1.
Equation (2.3) then reads Xptq � X 1ptq � 2R � 1. We will lower bound
minpXptq, X 1ptqq by the discrete time Markov chain Y ptq on t0, . . . , 2R� 2u
started at 0, which increments by 1 with probability�

1� �
1� q4R�2

�∆{p4R�3q	4
(2.4)

and jumps to 0 otherwise with an absorbing state 2R� 2 assigned only if ω
and ω1 have already met. We call a transition of Y to 0 a failure.

Lemma 2.2.6. For all t ¥ 0, we have

PpY is not absorbedq ¥ Ppω and ω1 have not metq.

Proof. It su�ces to prove that if Eq. (2.3) holds, ω and ω1 meet in two steps
at least with the probability in Eq. (2.4), while if Eq. (2.3) fails, at least with
the probability in Eq. (2.4) each of X and X 1 not equal to 2R� 1 increases.

Assume that Xptq � X 1ptq � 2R�1. By Claim 2.2.5 (note that if Xptq �
2R � 1, then M can be infected inside L1) we have tpωp2tqqL1upωp2tqqLzL1

L1
�

t1, . . . , `� r∆{2su. Recalling Claim 2.2.4 and the fact that the con�gurations
ξ and ξ1 are chosen independently, we obtain that the probability that ωp2t�
2q � ω1p2t� 2q is at most p1� q4R�2q∆{p4R�3q ¤ (2.4), since ∆ ¥ CR2{qCR.
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Next assume w.l.o.g. that Xptq   2R� 1. Then ωp2t� 2q and ω1p2t� 2q
are independent conditionally on ωp2tq, ω1p2tq, so it su�ces to establish that

P pXpt� 1q ¡ Xptq|ωp2tq � ηq ¥
�

1� �
1� q2R�1

�∆{p4R�3q	2
(2.5)

for any η compatible withXptq   2R�1. Consider the event E that in ωp2t�
1q for at least one block B to the left of M all sites in B X tωp2tqupωp2tqqLzL1

L1

are infected and likewise for ωp2t � 2q, a block B1 to the right of M and

B1 X tωp2t � 1qupωp2t�1qqLzL2
L2

. By Claim 2.2.4, PpE |ωp2tq � ηq is bounded
by the r.h.s. of Eq. (2.5). Thus, Lemma 2.2.7 below concludes the proof of
Lemma 2.2.6.

Lemma 2.2.7. In the above setting E implies Xpt� 1q ¡ Xptq.
Proof. Fix blocks B � x�t�R, . . . , Ru and B1 � x1�t�R, . . . , Ru witnessing
the occurrence of E and denote θ � pωp2t � 1qqL1 , ζ � pωp2t � 1qqLzL1

,
θ1 � pωp2t� 2qqL2 and ζ 1 � pωp2t� 2qqLzL2

for shortness.

We know that tθuζL1
XB is infected. Therefore,

tθuθtx�R,...,x�1u�ζ
tx,...,`u � tθuζL1

X tx, . . . , `u,
tθuθtx�1,...,x�Ru

t1,...,xu � tθuζL1
X t1, . . . , xu, (2.6)

by Claim 2.2.5 applied to the general KCM restricted to L1 after performing
the reductions from the beginning of Section 2.2. Consequently,

M :�M X tωp2tquζL1
�M X tθuζL1

�M X tθuθtx�R,...,x�1u�ζ
tx,...,`u

�M X tθL1XL2 � ζuζ
1

L2
�M X tωp2t� 1quζ1L2

. (2.7)

Using the analogous relation for the second transition, we obtain Xpt�1q ¥
Xptq and equality holds i� Eq. (2.7) and its analogue are equalities.

Assume that Xpt� 1q � Xptq. Then, for an augmented con�guration ω̄
equal to ωp2t � 1q with additionally all sites inM infected, neither update
can modify states in MzM. Thus, for ω̄ the block M simultaneously has
the isolation property Eq. (2.6) of B and its analogue for B1. Hence,

tω̄uL � tω̄uω̄Mt1,...,`�t∆{2u�R�1u YMY tω̄uω̄Mt`�t∆{2u�R�1,...,|L|u,

since the update rules of each site in M cannot look both to the left of M
and to its right. Recalling that tω̄uL � tωp2t � 1quL � L, we get M � M
yielding the desired contradiction, since Xptq � |M|.

Returning to the proof of Proposition 2.2.2, clearly, in order for Y not
to be absorbed at least one failure must occur in every 2R� 2 steps. Hence,
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the probability that η and η1 have not met by time T ¥ 2 is at most

e�T
8̧

n�0

Tn

n!

�
1�

�
1� �

1� q4R�2
�∆{p4R�3q	8R�8


tn{p4R�4qu

¤ e�TT 9R � exp
�
�T

�
1�A1{p9Rq

		
,

since N has the Poisson distribution with parameter T , setting

A � 1�
�

1� �
1� q4R�2

�∆{p4R�3q	8R�8 ¤ p8R� 8q exp

��∆q4R�2

4R� 3



.



Chapter 3

Coalescing and branching

simple symmetric exclusion

process

This chapter is based on joint work with Fabio Martinelli and Cristina To-
ninelli [218].

3.1 Introduction

In this chapter we study a coalescing and branching simple symmetric ex-
clusion process (CBSEP) on a general �nite graph G � pV,Eq. The model
was �rst introduced by Schwartz [319] in 1977 (also see Harris [204]) as fol-
lows. Consider a system of particles performing independent continuous time
random walks on the vertex set of a (�nite or in�nite) graph G by jumping
along each edge with rate 1, which coalesce when they meet (a particle jum-
ping on top of another one is destroyed) and which branch with rate β ¡ 0 by
creating an additional particle at an empty neighbouring vertex. The process
is readily seen to be reversible w.r.t. the Bernoulli(p)-product measure with
p � β

1�β . Initially the model was introduced in order to study the biased
voter model [319] (also known as Williams�Bjerknes tumour growth model
[365]), which turns out to be its dual additive interacting particle system
[194].1 A further duality in between the two processes in the Sudbury�Lloyd
sense [332] has been established since then, which shows that the law of
CBSEP at a �xed time can be obtained as a p-thinning of the biased voter
model (see [334, Exercise 3.6]). When β � 0 this model reduces to coalescing
random walks, additive dual to the standard voter model, which have both
been extensively studied (see e.g. [257,258]).

1In fact, biased voter and Williams�Bjerknes models slightly di�er on non-regular
graphs. For such graphs CBSEP is the additive dual of the former.
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When the graph is the d-dimensional hypercubic lattice, the �rst results
were obtained by Bramson and Gri�eath [80,81]. In particular, they showed
that the law of CBSEP converges weakly to its unique invariant measure
starting from any non-empty set of particles and for any dimension d. Mo-
reover, building on their work, Durrett and Gri�eath [133] proved a shape
theorem for this process, which easily implies that CBSEP on the discrete
torus of side length L Ñ 8 exhibits mixing time cuto� (but without any
control on the critical window). In the case of the regular tree a complete
convergence result is due to Louidor, Tessler, and Vandenberg-Rodes [260].
In the particular setting of Z a key observation is that the rightmost (or left-
most) particle performs a biased random walk with explicit constant drift
(see Gri�eath [194]). For more advanced results see e.g. the work by Sun
and Swart [333].

While the main focus of the above-mentioned works was the long-time
behaviour of the process on in�nite graphs, our interest will concentrate
instead on the mixing time for �nite graphs. We determine the logarithmic
Sobolev constant and relaxation time of the model quite precisely on a wide
spectrum of relatively sparse �nite graphs and for values of the branching
rate β which are o(1) as |V | Ñ 8 (see Theorem 3.3.1 and Corollary 3.3.2).
For instance, our results imply that for transitive bounded degree graphs
the inverse of the logarithmic Sobolev constant and relaxation time when
β � 1{|V | are, up to a logarithmic correction, equal to the cover time of the
graph. We will then use these results to strengthen and extend the �ndings
of Pillai and Smith [299, 300] on the mixing time for the FA-1f kinetically
constrained model in the same regime (see Corollary 3.3.3). Motivated by a
di�erent application to the kinetically constrained models FA-jf with j ¡ 1
(see Chapter 5), we then investigate a version of the model in which the
single vertex state space t0, 1u is replaced by an arbitrary �nite set and we
bound its mixing time (see Theorem 3.3.5).

3.1.1 The CBSEP and g-CBSEP models

Recall CBSEP and the associated notation from Section 1.4.2, which can be
seen to be equivalent to the coalescing and branching random walks described
above up to a global time-rescaling. In the sequel we will always assume for
simplicity that p is bounded away from 1 (e.g. p ¤ 1{2).

We will also consider a generalised version of CBSEP, in the sequel g-
CBSEP, de�ned as follows. We are given a graph G as above together with
a probability space pS, ρq, where S is a �nite set and ρ a probability measure
on S. We still write ρ �Â

xPV ρx for the product probability on Ωpgq :� SV .
In the state space S, we are given a bipartition S1 \ S0 � S, and we write
p :� ρpS1q P p0, 1q. We de�ne the projection ϕ : Ωpgq Ñ Ω � t0, 1uV by

ϕpωq � p1tωxPS1uqxPV and we let Ω
pgq
� � tω P Ω :

°
xpϕpωqqx ¥ 1u �
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ϕ�1pΩ�q. For any edge e � tx, yu P E we also let E
pgq
e be the event that

there exists a particle at x or at y for ϕpωq. In g-CBSEP every edge e � tx, yu
such that E

pgq
e is satis�ed is resampled with rate 1 w.r.t. ρx b ρyp�|Epgq

e q. A
key property is that its projection chain onto the variables ϕpωq coincides
with CBSEP on G with parameter p. As with CBSEP, the g-CBSEP is

reversible w.r.t. ρ� � ρp�|Ωpgq
� q and ergodic on Ω

pgq
� .

3.1.2 The FA-1f KCM

Of particular relevance for us are the beautiful works of Pillai and Smith
[299,300] on FA-1f that we present next. For any positive integers d and L,
set n � Ld, and let ZL � t0, 1, . . . , L � 1u be the set of remainders modulo
L. The d-dimensional discrete torus with n vertices, Tdn in the sequel, is
the set ZdL endowed with the graph structure inherited from Zd. For the
discrete time version of FA-1f on Tdn with p � c{n [299,300] provide a rather
precise bound for the (total variation) mixing time TFA

mix. Translated into the
continuous time setting described above, their results read

C�1n2 ¤ TFA
mix ¤ Cn2 log14pnq d � 2

C�1n2 ¤ TFA
mix ¤ Cn2 logpnq d ¥ 3,

(3.1)

where C ¡ 0 may depend on d but not on n.

Remark 3.1.1. In [299, Section 2] it was argued that TFA
mix should be lo-

wer bounded by the time necessary to get two well-separated particles star-
ting from one. By reversibility, and since to move an isolated particle by
one step, we should �rst create a particle at a neighbouring site at rate
p, this time should correspond p�1T rw

meet, where T
rw
meet is the meeting time

of two independent continuous time random walks on T2
n with independent

uniformly distributed starting points. In particular, since in two dimen-
sions T rw

meet � Θpn logpnqq, in [300, Remark 1.1] it was conjectured that
TFA

mix � Ωpp�1n logpnqq � Ωpn2 logpnqq in the regime p � Θp1{nq and this
was recently con�rmed by Shapira [325, Theorem 1.2]. As it will be apparent
in the proof of Theorem 3.3.1(d), this heuristics together with the attracti-
veness of CBSEP will allow us to prove a lower bound on the logarithmic
Sobolev constant and relaxation time of CBSEP on a general graph.

3.2 Preliminaries

In order to state our results we need �rst to recall some classical material
on mixing times for �nite Markov chains (see e.g. [223, 310]) and on the
resistance distance on �nite graphs (see [101,339], [256, Ch. 9] and [261, Ch.
2]).
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3.2.1 Mixing times and logarithmic Sobolev constant

Given a �nite state space Ω and a uniformly positive probability measure µ on
Ω, let pωptqqt¥0 be a continuous time ergodic Markov chain on Ω reversible
w.r.t. µ, and write P tωpω1q � Ppωptq � ω1|ωp0q � ωq. Let also htωp�q �
P tωp�q{µp�q be the relative density of the law P tωp�q w.r.t. µ. The total variation
mixing time of the chain, Tmix, is de�ned as

Tmix � inf

"
t ¡ 0 : max

ωPΩ�

}P tωp�q � µp�q}TV ¤ 1{p2eq
*
,

where } � }TV denotes the total variation distance de�ned as

}P tωp�q � µp�q}TV � 1

2
}htωp�q � 1}1,

where }g}αα � µp|g|αq, α ¥ 1. The `2-mixing time T2 or, more generally, the
`q-mixing times Tq, q ¥ 1, are de�ned by

Tq � inf

"
t ¡ 0 : max

ωPΩ�

}htωp�q � 1}q ¤ 1{e
*
.

Clearly Tmix ¤ Tq for q ¡ 1 and it is known that for all 1   q ¤ 8
the `q-convergence pro�le is determined entirely by that for q � 2 (see e.g.
[310, Lemma 2.4.6]). Moreover, (see e.g. [310, Corollary 2.2.7],

1

2
α�1 ¤ T2 ¤ α�1p1� 1

4
log logp1{µ�qq, (3.2)

where µ� � minωPΩ� µpωq and α is the logarithmic Sobolev constant de�ned
as the inverse of the best constant C in the logarithmic Sobolev inequality
valid for any f : Ω� Ñ R

Entpf2q :� µpf2 logpf2{µpf2qqq ¤ CDpfq. (3.3)

Recalling the de�nition Eq. (1.3) of Trel, it is not di�cult to prove that
Trel ¤ Tmix and that (see e.g. [122, Corollary 2.11])

2Trel ¤ α�1 ¤ p2� logp1{µ�qq � Trel. (3.4)

Notation warning. In the sequel, unless otherwise indicated, all the quan-
tities introduced above will not carry any additional label when referring to
CBSEP. On the contrary, the same quantities referring to other chains, e.g.
the FA-1f KCM or g-CBSEP, will always carry an appropriate superscript.
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3.2.2 Resistance distance

Given a �nite connected simple graph G � pV,Eq, let ~E denote the set
of ordered pairs of vertices forming an edge of E. For ~e � pu, vq P ~E we
set �~e � pv, uq. Given an anti-symmetric function θ on ~E (that is θp~eq �
�θp�~eq) and two vertices x, y we say that θ is a unit �ow from x to y i�°
v:pu,vqP ~E θppu, vqq � 0 for all u R tx, yu and

°
v:px,vqP ~E θppx, vqq � 1. The

energy of the �ow θ is the quantity Epθq � 1
2

°
~eP ~E θp~eq2 and we set

Rx,y � inftEpθq : θ is a unit �ow from x to yu. (3.5)

The Thomson principle [340] states that the in�mum in (3.5) is actually
attained at a unique unit �ow.

The quantity Rx,y can be interpreted as the e�ective resistance in the
electrical network obtained by replacing the vertices of G with nodes and
the edges with unit resistances. In graph theory it is sometimes referred
to as the resistance distance. It is also connected to the behaviour of the
simple random walk on G via the formula 2|E|Rx,y � Cx,y, where Cx,y is the
expected commute time between x and y. Furthermore, if we let T rw

rel be the
relaxation time of the random walk, the bound maxx,yRx,y ¤ c

a
T rw

rel {dmin

holds [292, Corollary 1.1] where c ¡ 0 is a universal constant (see also [9,
Corollary 6.21] for regular graphs). Finally, by taking the shortest path
between x, y and the �ow θ which assigns unit �ow to each edge of the path,
Rx,y ¤ dpx, yq, where dp�, �q is the graph distance, with equality i� x, y are
linked by a unique path. In the sequel and for notation convenience we shall
write R̄y for the spatial average 1

n

°
xRx,y.

Remark 3.2.1. For later use we present bounds on maxy R̄y for certain
special graphs. If G is the d-hypercube (n :� |V | � 2d) it follows from [301]
that R̄y � Θp1{ log nq for all y P V . If instead G is the regular b-ary tree
with b ¥ 2 then maxy R̄y � Θplog nq. If G is a uniform random d-regular
graph with nÑ8, and d independent of n, then w.h.p. T rw

rel � Op1q [85,159],
and therefore w.h.p. R̄y � Θp1q for all y P V . Finally, if G is the discrete
d-dimensional torus Tdn � Zd with n vertices, then, as nÑ8 and d is �xed,
it follows from [261, Proposition 2.15] that

max
y
R̄y � Θp1q �

$'&'%
n if d � 1,

logpnq if d � 2,

1 if d ¥ 3.

3.3 Main results

Our �rst theorem establishes upper and lower bounds for the inverse of the
logarithmic Sobolev constant, α�1, and relaxation time, Trel, of CBSEP in
the general setting described in the introduction.
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Let T rw
meet denote the expected meeting time for two continuous time

random walks jumping along each edge at rate 1 and started from two uni-
formly chosen vertices of G. We refer the reader to [9, 240] for the close
connections between T rw

meet and Rx,y. Let also T rw
mix denote the mixing time

of the discrete time lazy simple random walk on G (i.e. staying at its position
with probability 1{2).
Theorem 3.3.1. Let pn P p0, 1q and consider CBSEP with parameter pn on
a sequence of graphs G � Gn � pVn, Enq with |Vn| � n, maximum degree
dmax � dmaxpnq, minimum degree dmin � dminpnq, and average degree davg �
davgpnq.
(a) If pn � Ωp1q, then

α�1 ¤ Opnq (3.6)

Trel ¤ Op1q. (3.7)

(b) If pn Ñ 0, then for some absolute constant c ¡ 0

α�1 ¤ cmax

�
davgd

2
max

d2
min

T rw
mix logpnq,

�
max
y
R̄y



n| logppnq|



(3.8)

Trel ¤ cnmax
y
R̄y. (3.9)

(c) There exists an absolute constant c ¡ 0 such that for all pn P p0, 1q

α�1 ¥ cn

davg
(3.10)

Trel ¥ 1� µp°x ωx � 1q
pdavg

. (3.11)

(d) If pn � Op1{nq, then we have the stronger bound

α�1 ¥ T rw
meetΩp1� | logpnpnq|q (3.12)

Trel ¥ T rw
meetΩp1q. (3.13)

For the reader's convenience, and in view of our application to the FA-1f
KCM, we detail the above bounds for the graphs discussed in Remark 3.2.1
when pn � Θp1{nq.
Corollary 3.3.2. In the setting of Theorem 3.3.1 assume that pn � Θp1{nq.
Then:

(1) hypercube:

Θ

�
n

log n



� 2Trel ¤ α�1 ¤ Opnq,
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(2) regular b-ary tree, b ¥ 2 independent of n:

Θpn logpnqq � 2Trel ¤ α�1 ¤ Opn log2pnqq,
(3) uniform random d-regular graph, d independent of n: w.h.p.

Θpnq � 2Trel ¤ α�1 ¤ Opn logpnqq,
(4) discrete torus Tdn with d independent of n:

α�1 ¤ Op1q �

$'&'%
n2 logpnq d � 1,

n log2pnq d � 2,

n logpnq d ¥ 3,

and

α�1 ¥ 2Trel � Θp1q �

$'&'%
n2 d � 1,

n logpnq d � 2,

n d ¥ 3.

The corollary follows immediately from Theorem 3.3.1(b) and (d) toget-
her with Remark 3.2.1, the well-known results on T rw

mix for each graph and
the fact that (see [10,101,240]) for the graphs in Remark 3.2.1 it holds that

T rw
meet � Θpnqmax

y
R̄y.

Indeed, the upper bounds on T rw
mix are only needed to see that for these

graphs the maximum in the r.h.s. of (3.8) is achieved by the second term.
Using Corollary 3.3.2 together with (1.6) and (3.2), we immediately get the
following consequences for the FA-1f KCM to be compared with the r.h.s. of
(3.1).

Corollary 3.3.3. Consider the FA-1f KCM on G � Tdn with parameter
pn � Θp1{nq and let TFA

mix and TFA
2 be its mixing time and `2-mixing time

respectively. Then

TFA
mix ¤ TFA

2 ¤ �
αFA

��1
logpnq ¤ cn logpnqα�1 (3.14)

¤ Op1q �

$'&'%
n3 log2pnq d � 1

n2 log3pnq d � 2

n2 log2pnq d ¥ 3.

Remark 3.3.4. Our results in d ¥ 2, besides being more directly proved
than in [299,300], hold in the stronger logarithmic Sobolev sense, and extend
to other graphs, e.g. all the graphs discussed in Corollary 3.3.2. Furthermore,
contrary to the approach followed in [299, 300], our methods can be easily
adapted to cover other regimes of pn. For d � 1 the above upper bound on
TFA

mix can be proved to also be sharp up to logarithmic corrections, using the
technique discussed in [88, Section 6.2].
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Our second theorem concerns the total variation mixing time of the ge-
neralised model, g-CBSEP.

Let τcov denote the cover time of the simple random walk on G (see e.g.
[256, Ch. 11] and also [101] for a close connection between the average cover
time and the resistance distance), and let

T rw
cov � inf

"
t ¡ 0 : max

xPV
Pxpτcov ¡ tq ¤ 1{e

*
.

Theorem 3.3.5. Consider g-CBSEP on a �nite connected graph G of mini-
mum degree dmin with parameter p � ρpS1q and let Tmix be the mixing time
of CBSEP on G with parameter p. Then there exists a universal constant
c ¡ 0 such that

Tmix ¤ T g-CBSEPmix ¤ cpTmix � T rw
cov{dminq.

The main reason to bound the total variation mixing time of g-CBSEP,
instead of the `q-mixing times as for CBSEP, is that the scaling of the lo-
garithmic Sobolev constant for g-CBSEP is very di�erent from that of the
CBSEP, as the following example shows.

Example 3.3.6. Let G � T2
n, pn � 1{n, S � t0, 1, 2u, and ρp1q � p, ρp0q �

ρp2q � p1� pq{2. Then, �
αg-CBSEP

��1 � n3{2�op1q. (3.15)

In the same setting Corollary 3.3.2 gives α�1 � Opn log2pnqq. To prove (3.15)
it is enough to take as test function in the logarithmic Sobolev inequality for
g-CBSEP the indicator that a vertical strip of width t

?
n{2u of the torus is

in state 0.

3.4 CBSEP�Proof of Theorem 3.3.1

For this section we work with CBSEP in the setting of Theorem 3.3.1 and
abbreviate p � pn. In the sequel c shall denote an absolute constant whose
value may change from line to line.

3.4.1 Upper bounds�Proof of Theorem 3.3.1(a) and (b)

Let us �rst prove the easy upper bound Theorem 3.3.1(a), assuming that
p � Ωp1q. We know from [89, Theorem 6.4] that TFA

rel � Op1q. Recalling (1.6)
and the de�nition of the relaxation time, we get that for CBSEP Trel � Op1q,
yielding (3.7). By (3.4) this gives α�1 � Opnq and concludes the proof of
Theorem 3.3.1(a).
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The rest of this section is dedicated to the proof of the main upper
bound�Theorem 3.3.1(b). The starting point is the following decomposition
of the entropy of any f : Ω� Ñ R

Entpf2q � µ
�
Entpf2|Nq�� Ent

�
µpf2|Nq� , (3.16)

where Npωq � °
xPV ωx is the number of particles and Entpf2|Nq is the

entropy of f2 w.r.t. the conditional measure µp�|Nq (see (3.3)). The �rst
term in the r.h.s. above is bounded from above using the logarithmic Sobolev
constant of the SEP on G with a �xed number of particles.

Proposition 3.4.1. There exists an absolute constant c ¡ 0 such that

µ
�
Entpf2|Nq� ¤ c logpnqdavgd

2
max

d2
min

T rw
mixDpfq,

Proof. Let

DSEP
G pfq � 1

2

¸
ePE

µ
�
pfpωeq � fpωqq2

	
,

where ωe is the con�guration obtained from ω by swapping the states at the
endpoints of the edge e, denote the Dirichlet form of the symmetric simple
exclusion process on G. Similarly let

DBL
Knpfq �

1

2n

¸
ePEpKnq

µ
�
pfpωeq � fpωqq2

	
be the Dirichlet form of the Bernoulli-Laplace process on the complete graph
Kn. The main result of [12, Theorem 1] implies that2

DBL
Knpfq ¤ c

2|E|
n

d2
max

d2
min

T rw
mixDSEP

G pfq.

Using 2|E| � °
x dx we get, in particular, that

DBL
Knpfq ¤ c

davgd
2
max

d2
min

T rw
mixDSEP

G pfq.

On other hand, the logarithmic Sobolev constant of the Bernoulli-Laplace
process onKn with k P t1, . . . , n�1u particles is bounded by c log n uniformly
in k [252, Theorem 5]. Hence,

µ
�
Entpf2|Nq� ¤ c logpnqDBL

Knpfq ¤ c logpnqdavgd
2
max

d2
min

T rw
mixDSEP

G pfq.

The proposition then follows using p ¤ 1{2 and

DSEP
G pfq ¤ p2� pq

p1� pqDpfq.
2Actually the comparison result proved in [12] is much stronger, since it concerns

weighted exchange processes on G and on Kn.
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We now examine the second term Entpµpf2|Nqq in the r.h.s. of (3.16).
Let

gpkq :� µ
�
f2|N � k

�1{2

for k ¥ 1, so that Entpµpf2|Nqq � Entγpg2q, where γ is the probability law
of N on t1, . . . , nu. Clearly, γ is Binpn, pq conditioned to be positive, so that
for any 2 ¤ k ¤ n we have

γpkqp1� pqk � γpk � 1qppn� k � 1q. (3.17)

Proposition 3.4.2. There exists an absolute constant c ¡ 0 such that

Entγpg2q ¤ c logp1{pq � p
¸
yPV

µ
�
rfpωyq � fpωqs2 p1� ωyq

	
.

where we recall that ωy denotes the con�guration ω �ipped at y.

Proof. The proof starts with a logarithmic Sobolev inequality for γ w.r.t. a
suitably chosen reversible death and birth process on t1, . . . , nu.
Lemma 3.4.3. There exists an absolute constant c ¡ 0 such that for any
non-negative function g : t1, . . . , nu Ñ R

Entγpg2q ¤ c logp1{pq �
ņ

k�2

γpkqkrgpkq � gpk � 1qs2.

Leaving the tedious proof to Section 3.A, we move on to bounding the
r.h.s. above for the special choice g � µpf2|Nq1{2.
Claim 3.4.4. For any 2 ¤ k ¤ n we have

pgpkq � gpk � 1qq2 ¤ A2
k

g2pk � 1q � g2pkq ,

where

Ak � 1

n� k � 1

¸
yPV

µ
�p1� ωyq

�
f2pωq � f2pωyq� |N � k � 1

�
.

Proof. We �rst observe that

rgpkq � gpk � 1qs2 � rg2pkq � g2pk � 1qs2
rgpkq � gpk � 1qs2 ¤ rg2pkq � g2pk � 1qs2

g2pkq � g2pk � 1q . (3.18)

Next we write

g2pk � 1q �
¸

ω: Npωq�k�1

µpωq
γpk � 1qf

2pωq

� 1

n� k � 1

1

γpk � 1q
¸
yPV

¸
ω: Npωq�k�1

µpωqp1� ωyqf2pωq.



3.4. CBSEP�PROOF OF THEOREM 3.3.1 91

With the change of variable η � ωy we get that the r.h.s. above is equal to

1

n� k � 1

1

γpk � 1q
¸
yPV

¸
ω: Npωq�k�1

µpωqp1� ωyq
�
f2pωq � f2pωyq�

� γpkqp1� pq
ppn� k � 1qγpk � 1q

¸
yPV

¸
η: Npηq�k

µpηq
γpkqηyf

2pηq,

the second line being equal to g2pkq by (3.17). In conclusion g2pk � 1q �
g2pkq �Ak and the claim follows from (3.18).

Claim 3.4.5. For any 2 ¤ k ¤ n we have

A2
k ¤

2
�
g2pk � 1q � g2pkq�

n� k � 1

¸
yPV

µ
�
rfpωq � fpωyqs2 p1� ωyq|N � k � 1

	
.

Proof. Using f2pωq�f2pωyq � pfpωq�fpωyqqpfpωq�fpωyq and the Cauchy-
Schwarz inequality w.r.t. µ p�|N � k � 1, ωy � 0q, we get

Ak ¤ Av
�
µprfpωq � fpωyqs2|N � k � 1, ωy � 0q1{2�

µprfpωq � fpωyqs2|N � k � 1, ωy � 0q1{2
	
,

where for any h : V Ñ R

Avphq :� 1

n� k � 1

¸
yPV

µ pp1� ωyq|N � k � 1qhpyq.

Another application of the Cauchy-Schwarz inequality, this time w.r.t. Avp�q,
gives

A2
k ¤

1

n� k � 1

¸
yPV

µ
�
rfpωq � fpωyqs2 p1� ωyq|N � k � 1

	
�

2

n� k � 1

¸
zPV

µ
��
f2pωq � f2pωzq� p1� ωzq|N � k � 1

�
.

Inside the second factor in the above r.h.s. the term containing f2pωq is equal
to 2µpf2|N � k � 1q � 2g2pk � 1q. Similarly, the term containing f2pωyq,
after the change of variable η � ωy and recalling (3.17), equals

2

n� k � 1

γpkqkp1� pq
pγpk � 1q µ

�
f2pηq|N � k

� � 2g2pkq.



92 Chapter 3: CBSEP

Combining Claims 3.4.4 and 3.4.5, we get that

pgpkq � gpk � 1qq2 ¤ A2
k

g2pk � 1q � g2pkq

¤
¸
yPV

2µ
�
rfpωq � fpωyqs2 p1� ωyq|N � k � 1

	
n� k � 1

. (3.19)

Using (3.19) together with (3.17), we get

ņ

k�2

γpkqkrgpkq � gpk � 1qs2

¤
ņ

k�2

2kγpkq
n� k � 1

¸
yPV

µ
�
rfpωq � fpωyqs2 p1� ωyq|N � k � 1

	
� 2

1� p
p
¸
yPV

µ
�
rfpωq � fpωyqs2 p1� ωyq

	
.

Using the above bound together with Lemma 3.4.3 we get the statement of
Proposition 3.4.2.

The �nal step in the proof of (3.8) is the following comparison be-

tween the quantity p
°
yPV µ

�
rfpωq � fpωyqs2 p1� ωyq

	
and the Dirichlet

form Dpfq using electrical networks. Recall the de�nition of the resistance
distance and of maxy R̄y given in Section 3.2.2.

Proposition 3.4.6.

p
¸
xPV

µppfpωxq � fpωqq2p1� ωxqq ¤ 4nmax
yPV
R̄y �Dpfq.

Proof. We will identify ω P t0, 1uV with its set of particles tx P V : ωx � 1u
and we set Fωpuq :� fpω Y tuuq, u P V. For each ~e � pu, vq P ~E we also
write ∇~eFω :� Fωpvq � Fωpuq. Given x P V and ω P Ω�, let yω P V be an
arbitrarily chosen vertex such that ωyω � 1, and let θ� be the optimal (i.e.
with the smallest energy) unit �ow from x to yω. By applying [261, Lemma
2.9] to the function Fω and using the Cauchy-Schwarz inequality, we get that
for any ω P Ω� and x P V such that ωx � 0

pfpωxq � fpωqq2 � pFωpxq � Fωpyωqq2

�
��1

2

¸
~eP ~E

θ�p~eq∇~eFω
�2

¤ Ex,yω � 1

2

¸
~eP ~E

p∇~eFωq2.
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Hence, ¸
xPV

pfpωxq � fpωqq2 p1� ωxq ¤ n

�
max
yPV
R̄y



� 1

2

¸
~e

p∇~eFωq2.

We next transform the generic term in the sum above into a Dirichlet form
term for CBSEP. For any ~e � pu, vq P ~E we have

pµpωqp∇~eFωq2

� µpω Y tuuq �

$'&'%
0 tu, vu � ω

ppfpω Y tvuq � fpωqq2 u P ω S v
p1� pqpfpω Y tvuq � fpω Y tuuqq2 tu, vu X ω � ∅.

Comparing with the expression of Dpfq, (1.5), we get immediately that

1

2

¸
ωPΩ�

pµpωq
¸
~eP ~E

p∇~eFωq2 ¤ 4Dpfq.

We are now ready to prove (3.8). Using Proposition 3.4.1 the �rst term
in the r.h.s. of (3.16) is bounded from above by

c logpnqdavgd
2
max

d2
min

T rw
mixDpfq.

In turn, Proposition 3.4.2 combined with Proposition 3.4.6 gives that the
second term in the r.h.s. of (3.16) is bounded from above by

c logp1{pq � 4nmax
yPV
R̄y �Dpfq.

In conclusion,

Entpf2q ¤ cmax

�
logpnqdavgd

2
max

d2
min

T rw
mix, logp1{pq � 4nmax

yPV
R̄y



�Dpfq,

so that the best constant in the logarithmic Sobolev inequality (3.3) satis�es
(3.8).

Turning to (3.9), Proposition 3.4.6 alone is enough to conclude. Indeed,
using the two-block argument of [59, Lemma 6.6] (see also Lemma 6.5 and
Proposition 6.2 therein) and the well-known fact that the variance w.r.t. a
product measure is at most the average of the sum of variances over single
spins (see e.g. [20, Chapter 1]), we get

Varpfq ¤ cp
¸
xPV

µppfpωxq � fpωqq2p1� ωxqq.

The desired bound (3.9) then follows from (1.3) and Proposition 3.4.6.
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3.4.2 Lower bounds�Proof of Theorem 3.3.1(c) and (d)

Inject f � 1tN�1u, the indicator of having exactly one particle, in the loga-
rithmic Sobolev inequality (3.3). For c ¡ 0 small enough we have

Entpf2q
Dpfq � µpN � 1q| logpµpN � 1qq|

2|E|µpN�1q
n � p

2�p
¥ | logµpN � 1q|

pdavg
¥ c

n

davg
,

since µpN � 1q � npp1�pqn�1{p1�p1�pqnq. To check the last inequality, one
may distinguish the cases np su�ciently large/of order 1/su�ciently small.
This proves (3.10). Using the same function, so that Varpfq � µpN �
1qp1 � µpN � 1qq, we obtain (3.11) in the same way. This concludes the
proof of Theorem 3.3.1(c).

The rest of this subsection is dedicated to the proof of the main lower
bound�Theorem 3.3.1(d), so we assume that pn � Op1{nq. Let λ0 ¡ 0 be
the smallest eigenvalue, restricted to the event tN ¥ 2u that there are at least
two particles, of �L, where L is the generator of CBSEP. By [175, Lemma
4.2, Equation (1.4)] we have that

α�1 ¥ λ�1
0 | logpµpN ¥ 2qq|,

Trel ¥ λ�1
0 p1� µpN ¥ 2qq,

the second inequality being easy to check from the de�nition. It is well
known (see e.g. [223, Section 3.4]) that

λ�1
0 ¥ Eµp�|N¥2qpτq,

where τ is the �rst time when N � 1. Putting these together and recalling
that pn � Op1{nq, we obtain

α�1 ¥ Eµp�|N¥2qpτq| logpµpN ¥ 2qq| ¥ Eµp�|N¥2qpτqΩp1� | logpnpnq|q,
Trel ¥ Eµp�|N¥2qpτqµpN � 1q ¥ Eµp�|N¥2qpτqΩp1q.

In turn, again using that pn � Op1{nq, we get

Eµp�|N¥2qpτq ¥ µpN � 2|N ¥ 2qEµp�|N�2qpτq ¥ Ωp1qEµp�|N�2qpτq.

It is not hard to see (e.g. via a graphical construction�see Section 3.5.1)
that CBSEP stochastically dominates a process of coalescing random walks
with birth rate 0, which we will call CSEP. Therefore, Eωpτq ¥ ECSEP

ω pτq for
any ω P Ω�. Furthermore, CSEP started with two particles has the law of
two independent continuous time random walks which jump along each edge
with rate p1 � pq{p2 � pq and coalesce when they meet. Hence, we obtain
(3.12) and (3.13), concluding the proof of Theorem 3.3.1(d).
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3.5 g-CBSEP�Proof of Theorem 3.3.5

3.5.1 Graphical construction

We start by introducing a graphical construction of g-CBSEP for all initial
conditions. The graphical construction of CBSEP can then be immediately
deduced by considering the special case S1 :� t1u and S0 :� t0u.

To each edge e P E we associate a Poisson process of rate p{p2 � pq of
arrival times ptenq8n�1. Similarly, to each oriented edge ~e P ~E we associate a
Poisson process of rate p1�pq{p2�pq of arrival times pt~enq8n�1. All the above
processes are independent as e,~e vary in E, ~E respectively. Furthermore, for
e P E, ~e P ~E and n ¥ 1, we de�ne Xe

n and X~e
n to be mutually independent

random variables taking values in S2. We assume that for all n and pu, vq P
~E, the law of X

pu,vq
n is ρup�|S1qbρvp�|S0q. Similarly, for tu, vu P E, the law of

X
tu,vu
n is ρup�|S1qbρvp�|S1q. Given an initial con�guration ωp0q P Ωpgq and a

realization of the above variables, we de�ne the realization of g-CBSEP ωptq
as follows.

Fix t ¥ 0, let t� be the �rst arrival time after t, and let tx, yu be the
endpoints of the edge where it occurs. We set ωzpt�q � ωzptq for all z P
V ztx, yu. If Epgq

tx,yu does not occur, that is ωxptq P S0 and ωyptq P S0, we set

ωpt�q � ωptq. Otherwise, we set

pωxpt�q, ωypt�qq �
#
X
tx,yu
n if t� � t

tx,yu
n ,

X
px,yq
n if t� � t

px,yq
n .

Observation 3.5.1. Let ωptq and ω1ptq be two g-CBSEP processes con-
structed using the same Poisson processes ptenq8n�1, pt~enq8n�1 and variables
Xe
n, X

~e
n above, but with di�erent initial conditions ω, ω1 P Ωpgq satisfying

ϕpωq � ϕpω1q � η P Ω. Fix t ¥ 0 and let Ft be the sigma-algebra generated
by the arrival times smaller than or equal to t (but not the Xe

n and X~e
n vari-

ables). Then ϕpωptqq � ϕpω1ptqq �: ηptq is Ft-measurable and only depends
on ω through its projection η.

We say that a vertex v P V is updated if v P e P E so that there exists

0 ¤ t� ¤ t and n such that t� P tten, t~en, t�~en u and the event E
pgq
e occurs

for ωpt�q, i.e. a successful update occurs at v. Denoting the set of updated
vertices by ξt, we have

• ξt is Ft-measurable and only depends on ω through its projection η,

• if x P ξt, then ωxptq � ω1xptq and, conditionally on Ft, the law of ωxptq is
ρp�|Sηxptqq,
• if x P V zξt, then ωxptq � ωxp0q and, in particular, ηxptq � ηx.

In particular, for all x P V such that there exists tx ¤ t with pϕpωptxqqqx �
pϕpωp0qqqx, we have ωxptq � ω1xptq (since x P ξt).
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3.5.2 Proof of Theorem 3.3.5

We are now ready to prove Theorem 3.3.5. The lower bound is an immedi-
ate consequence of the fact that the projection chain on the variables ϕpωq
coincides with CBSEP.

For the upper bound, let µηt be the law of the CBSEP ηt at time t with
parameter p � ρpS1q and starting point η P Ω�. Further denote νη �
ρp�|ϕpωq � ηq, the measure ρ conditioned on whether or not a particle is
present at each site. Since ρ is itself product, we have

νη � â
xPV

ρxp�|Sηxq �
â

x:ηx�1

ρxp�|S1q b
â

x:ηx�0

ρxp�|S0q. (3.20)

Claim 3.5.2. The law ρν
η

t of g-CBSEP with initial law νη at time t takes
the form

ρν
η

t p�q � µηt
�
νηtp�q�, (3.21)

i.e. it is the average of νη
1
over η1 distributed as the CBSEP con�guration ηt

started from η at time t.

Proof. Fix ω satisfying ϕpωq � η. Denote by Pω the probability w.r.t. the
graphical construction of g-CBSEP of Section 3.5.1 with initial condition ω,
by Ft the sigma-algebra generated by the arrival times up to time t, as in
Observation 3.5.1, and by EFt the corresponding expectation. Then for any
ω1 P Ωpgq

ρωt pω1q � EFt
�
Pωpωptq � ω1|Ftq

�
� EFt

��¹
xRξt

1ω1x�ωx
¹
xPξt

ρxpω1x|Spϕpωptqqqxq
�� , (3.22)

the last equality re�ecting that by Observation 3.5.1 ξt and ϕpωptqq are
Ft-measurable. Again by Observation 3.5.1, ξt and ϕpωptqq are the same
for all ω in the support of νη, so we denote the latter by ηptq. If we now
average (3.22) over the initial condition ω w.r.t. νη and use (3.20), we obtain
ρν

ηpω1q � EFtrνηptqpω1qs, which is exactly (3.21), since ηptq has the law µηt of
CBSEP with initial state η, as it is the projection of g-CBSEP with initial
condition ω such that ϕpωq � η.

Next we write

max
ωPΩ

pgq
�

}ρωt � ρ�}TV ¤ max
ηPΩ�

�
max

ω:ϕpωq�η
��ρωt � ρν

η

t

��
TV

� ��ρνηt � ρ�
��
TV



,

(3.23)
where ρ� was de�ned in Section 3.1.1. Using Claim 3.5.2, it follows that

max
ηPΩ�

��ρνηt � ρ�
��
TV

� max
ηPΩ�

}µηt � µ}TV, (3.24)
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where µ is the reversible measure of CBSEP with parameter p.

To bound the �rst term in the r.h.s. of (3.23) the key ingredient is to use
the graphical construction to embed into g-CBSEP of a suitable continuous
time simple random walk pWtqt¥0 on G with the property that g-CBSEP at
time t has a "particle" at the location of Wt.

Given ω P Ω
pgq
� , let v P V be such that ϕpωvq � 1, and let t� �

minttpu,vqn ¡ 0u be the �rst time an edge of the form pu, vq is resampled
to produce a con�guration ω1 with ω1u P S1 and ω1v P S0. We then set
Ws � v for s   t� and Wt� � u. By iterating the construction we construct
pWtqt¥0 with W0 � v. It is clear that ϕpωWtpωqptqq � 1 for all t and that the
law Pvp�q of pWtqt¥0 is that of a continuous-time random walk started at v
and jumping to a uniformly chosen neighbour at rate dWtp1�pq{p2�pq. We
denote by σcov the cover time of pWtqt¥0.

3

Observation 3.5.1 then implies

max
ηPΩ�

max
ω:ϕpωq�η

��ρωt � ρν
η

t

��
TV

¤ max
ω,ω1PΩ

pgq
�

ϕpωq�ϕpω1q

}ρωt � ρω
1

t }TV ¤ max
vPV

Pvpσcov ¡ tq.

(3.25)
The upper bound given in the theorem now follows immediately from (3.23),
(3.24), and (3.25) together with a standard comparison between σcov and
the cover time of the discrete time simple random walk on G.

Appendix

3.A Proof of Lemma 3.4.3

Recall that

γpkq �
�
n

k



pk

p1� pqk
p1� pqn

1� p1� pqn
and consider the birth and death process on t1, . . . , nu reversible w.r.t. the
measure γ with Dirichlet form

Dγpgq �
ņ

k�2

γpkqkrgpkq � gpk � 1qs2,

corresponding to the jump rates cp1, 0q � 0 and

cpk, k � 1q � k k � 2, . . . , n

cpk, k � 1q � pn� kq p

1� p
k � 1, . . . , n� 1.

3We use σcov to distinguish it from the cover time τcov of the discrete time simple
random walk on G.
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Let m � rpns and i � maxp2,mq. Using [277, Proposition 4] (see also [367])
the logarithmic Sobolev constant of the above chain is bounded from above,
up to an absolute multiplicative constant, by the number C� � C� _ C�,
where

C� � max
j¥i�1

�
j̧

k�i�1

1

γpkqcpk, k � 1q

�
γpN ¥ jq| log pγpN ¥ jqq |,

C� � max
j¤i�1

��i�1̧

k�j

1

γpkqcpk, k � 1q

�γpN ¤ jq| log pγpN ¤ jqq |. (3.26)

Assume �rst that i � m and let us start with C�. For ` ¥ 1 write a` �
1

pm�`qγpm�`q and Sk �
°k
`�1 a`. We have

a`�1

a`
� 1� p

p

m� `

n�m� `
¥ 1,

from which it follows that for 0   δ   1 we have
a`�1

a`
� 1�Θp`{mq � eΘp`{mq ` ¤ m,

a`�1

a`
¥ p1� pqpm� δmq

ppn�mq ¥ 1� δ ` ¥ δm. (3.27)

In particular, for any two integers s ¤ t ¤ m such that t�s ¥ minp?m,m{sq,
it holds that for some absolute constant β ¡ 1

at
as
�

t�1¹
`�s

a`�1

a`
� eΘppt�sqt{mq ¥ β. (3.28)

We �rst analyse the behaviour of SkγpN ¥ m� kq| logpγpN ¥ m� kqq| for
k ¤ δm where δ ¡ 0 is a su�ciently small constant depending on β.

Lemma 3.A.1. There exists a constant c ¡ 0 such that for δ ¡ 0 small
enough and k ¤ δm we have

SkγpN ¥ m� kq| logpγpN ¥ m� kqq| ¤ c

Proof. Let 0   δ   1. De�ne recursively

k0 � 1, k1 � r
?
m s, kt�1 � kt � rm{kts,

and let T be the �rst index such that kT ¥ δm. Using (3.28) together with
a`�1 ¥ a`, kt�1 � kt ¤ kt � kt�1, and kt{m ¤ δ, we claim that for any
2 ¤ t ¤ T � 1

pSkt�1 � Sktq
pSkt � Skt�1q

�
°kt�1

`�kt�1 a`°kt
`�kt�1�1 a`

¥ β
kt�1 � kt
kt � kt�1

¥ β

�
kt
kt�1

� kt
m


�1

¥ β

�
kt
kt�1

� δ


�1

.

(3.29)
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To prove the �rst inequality in (3.29), observe that for any positive non-
decreasing sequence pajq8j�1 and positive integers m ¤ n,

an�1 � � � � � an�m
a1 � � � � � an

¥ min
j

�
aj�m
aj


�
an�m�1 � � � � � an
a1 � � � � � an



¥ min

j

�
aj�m
aj


� °n
j�n�m�1 aj

pn�mqan�m �°n
j�n�m�1 aj

�

¥ min
j

�
aj�m
aj



m

n
,

because
°n
j�n�m�1 aj ¥ an�mm.

If now δ, t are chosen small enough and large enough, respectively, de-
pending on the constant β above, the r.h.s. of (3.29) is greater than e.g.
β1{2 ¡ 1. In other words, �xing δ small enough and t0 large enough, the

sequence
��
Skt�1 � Skt

��T
t�t0 , t0 " 1, is exponentially increasing.

Now �x k ¤ δm and t such that kt ¤ k   kt�1. Assume �rst that
t0 ¤ t   T . Then, for some positive constant c allowed to depend on β and
t0 and to change from line to line, we have

Sk ¤
t�1̧

s�t0

�
Sks � Sks�1

�� St0 ¤ c
�
Skt�1 � Skt

�� St0

¤ c
kt�1 � kt

mγpm� kt�1q ¤ c
kt�1 � kt
mγpm� kq .

If instead 0 ¤ t   t0, we directly have that

Sk ¤ kak ¤ c
kt�1 � kt
mγpm� kq .

Using the bounds

γpN ¥ m� kq ¤ c
m� k

k
γpm� kq, | log pγpN ¥ m� kqq | ¤ ck2{m,

we �nally get that kt ¤ k   kt�1, t   T,

SkγpN ¥ m� kq| logpγpN ¥ m� kqq| ¤ c
pkt�1 � ktqkt�1

m
¤ c.

Let δ be as in Lemma 3.A.1. We next consider the easier case, k ¥ δm.
By (3.27), for c large enough depending on δ and allowed to change from line
to line, we have that Sk ¤ SkT � cak ¤ cak and γpN ¥ m� kq ¤ cγpm� kq.
Thus, for k ¥ δm, we have that

SkγpN ¥ m� kq| logpγpN ¥ m� kqq| ¤ c

m� k
| logpγpN ¥ m� kqq|

¤ c logp1{pq,
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since for all k we trivially have γpm � kq ¥ pm�k. In conclusion, we have
proved that C� ¤ Oplogp1{pqq if m ¥ 2. If instead m � 1, then the very
same computations still give C� ¤ Oplogp1{pqq, Lemma 3.A.1 being void.

The bound of C� follows the same pattern. If m � Op1q, the reader may
readily check that C� � Op1q because all terms in (3.26) are Op1q. If instead
m " 1, we still obtain C� � Op1q, concluding the proof of Lemma 3.4.3.



Chapter 4

Universality for critical KCM:

�nite number of stable

directions

This chapter is based on joint work with Fabio Martinelli and Cristina To-
ninelli [216], establishing the following result, proving the upper bound of
Theorem 1.6.4 for class (c) and Corollary 1.6.5 for families with �nite number
of stable directions (recall Section 1.6).

Theorem 4.0.1. Let U be a critical update family with �nite set of stable
directions S and di�culty α. Then

Eµpτ0q � eOplogp1{qq3{qαq. (4.1)

We start by providing a heuristic explanation of the relaxation mecha-
nism underlying our main result in Section 4.1. In Section 4.2 we �x some
notation and gather some preliminary tools from bootstrap percolation that
are by now well established in the literature. We will not dwell on the
technical aspects of the de�nitions and invite the reader to refer to Section
4.3 of [269], which we follow closely, for more details. For reader's conve-
nience we have collected in Section 4.2.2 three useful technical lemmas on
certain one-dimensional kinetically constrained Markov processes. Although
the proof of these lemmas can be found or derived from the existing literature
on KCM, we have added the most advanced one in Section 4.A for complete-
ness. Section 4.3 contains the main new technical Poincaré inequality, while
Theorem 4.0.1 is proved in Section 4.4.

4.1 Some heuristics behind Theorem 4.0.1

For a high-level and accessible introduction to the main general ideas and
techniques involved in bounding from above Eµpτ0q we refer to [269, Section

101
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2.4]. There, in particular, it was stressed that while the necessary intuition
is developed using dynamical considerations (e.g. by guessing some e�cient
mechanism to create/heal infection inside the system), the actual mathema-
tical tools are mostly analytic and based on suitable (and, unfortunately,
sometimes very technical) Poincaré inequalities. This chapter makes no ex-
ception.

In order to go beyond the results of [269] and get the sharp scaling of
Theorem 4.0.1 in the case of a �nite set of stable directions, the following
new key input is needed.

For simplicity imagine that U has only four stable directions coinciding
with the four natural directions of Z2. For a generic model with |S|  
8 the mechanism is the same, the only di�erence being that in general
`droplets' have a more complex geometry. Assume further that αp~e1q � 1
and αp�~e1q � αp�~e2q � 2 (see Figure 1.2e). Consider now a critical droplet,
i.e. a square frame D, centered at the origin, of side length � C logp1{qq{q,
C " 1, and Op1q-thickness, and suppose that D is infected. Then, w.h.p.
(w.r.t. µ) there will be extra infected sites next to D in the ~e1-direction
allowing D to infect D � ~e1. However, it will be extremely unlikely to �nd
a pair of infected sites near each other and next to the other three sides of
D because of the choice of the side length of D. We conclude that w.h.p.
it is easy for D to advance forward in the ~e1-direction but not in the other
directions. Moreover, as explained in detail in [269, Section 2.4], an e�cient
way to e�ectively realize the motion in the ~e1-direction is via a generalised
East path. In its essence the latter can be described by the following game.
At every integer time a token is added or removed (if already present) at
some integer point according to the following rules:

• each integer can accommodate at most one token;

• a token can be freely added or removed at 1;

• for any j ¥ 2 the operation of adding/removing a token at j is allowed i�
there is already a token at j � 1.

Given n P N, by an e�cient path reaching distance n we mean a way of
adding tokens to the original empty con�guration to �nally place one at n
which uses a minimal number of tokens. A combinatorial result (see [112])
says that the optimal number grows like log2pnq.

The main new idea now is that, while w.h.p. the droplet D will not �nd a
pair of infected sites (which are necessary to grow an extra layer of infection
in the ~e2-direction) next to e.g. its top side, w.h.p. it will �nd it at the right
height within distance C logp1{qq{q2 in the ~e1-direction (see Figure 4.1).
Hence, a possible e�cient way for D to move one step in the ~e2-direction is
to:
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C logp1{qq{q2

C
q logp1

q q

(a) The infected droplet (black frame with width Op1q) progressively moves to
the right in an East-like way using the extra infected sites present w.h.p. in each
column of the gray rectangle. This progression stops when reaching the �rst infected
horizontal pair of sites at the correct height (red pair).

(b) The infected droplet on the right grows into an e2-extended droplet thanks to
the infected pair of sites. The movement is then reverted, progressively retracting
the extended droplet in an East way until reaching the original position.

Figure 4.1 � The mechanism for the droplet to grow in the ~e2-direction.

(a) travel in the ~e1-direction in a East-like way until �nding the necessary
pair of infected sites within distance C logp1{qq{q2 from the origin;

(b) grow there an extra layer in the ~e2-direction and retrace back to its
original position while keeping the acquired extra layer of infection.

A similar mechanism applies to the �~e2-direction. Slightly more involved is
the way in which D can advance in the �~e1-direction. In this case the extra
infected pair needs to be found within distance C logp1{qq{q2 from the origin
in the vertical direction (see Figure 4.2). In order to reach it, D performs
an East-like movement upwards, each of whose steps is itself realised by the
back-and-forth East motion in the e1 direction described above.
Using the result for the typical time scales of the generalised East process
(see [269, formula (3.5)]) it is easy to see that the typical excursion of D for
a distance ` � C logp1{qq{q2 in the ~e1-direction requires a time lag

∆t � q�|D|Oplogp`qq � eOplog3p1{qqq{q.

This time scale also bounds from above the time scale necessary to advance
by one step in the �hard� directions �~e1,�~e2.

In conclusion, by making a �quasi-local� (i.e on a length scale `) East-like
motion in the easy direction ~e1, the infected critical droplet D can actually
perform a sort of random walk in which each step requires a time ∆t. The
result of Theorem 4.0.1 becomes now plausible provided that one proves that
anomalous regions of missing helping infected sites do not really constitute
a serious obstacle.
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C
q2 logp1{qq

Figure 4.2 � The mechanism for the droplet growth in the �~e1-direction. The
droplet moves in an East way in the ~e2-direction by making long excursions
in the ~e1-direction as in Figure 4.1.

C logp1{qq
q2

C logp1{qq
q B

T0T�1 T�1

D

Figure 4.3 � The geometric setting for the toy model of Figure 1.2e.

The above dynamic heuristics can be turned into a rigorous argument
using canonical paths. However, a much neater approach is to prove a Poi-
ncaré inequality for the U-KCM restricted to a suitable �nite domain of Z2

(see Theorem 4.3.6). More precisely, in the toy example discussed above the
inequality that we establish is as follows.

Let V � B Y T0 Y T�1 Y T�1 where B, T0, T
�
1 are as in Figure 4.3. The

set V is an example of a more general geometric construction developed in
Section 4.3 and denoted snail with base B and trapezoids T0, T

�
1 . The ratio

of the sides of the rectangle B is Θpqq while for the other rectangles it is
Θp1q.

Let Ω0 consist of all con�gurations of t0, 1uV such that:

• each column of B contains an infected site;
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• each row of T0 contains a pair of adjacent infected sites;

• each column of T�1 contains a pair of adjacent infected sites.

Notice that by choosing C large enough µpΩ0q � 1 � op1q as q Ñ 0. Then,
in the key Theorem 4.3.6, we prove that for any f : t0, 1uV Ñ R

1tD is infectedu VarV pf |Ω0q ¤ eOplogp1{qq3q{q �Dpfq,

where Dpfq is the Dirichlet form of f (see (4.4)). One can interpret the
above inequality as saying that the KCM in V restricted to the good set Ω0

has a relaxation time at most eOplogp1{qq3q{q. We prove this by an inductive
procedure over T0, T

�
1 which, in some sense, makes rigorous the dynamic

heuristics described above.

4.2 Notation and preliminaries

In this section we gather the relevant notation and basic inputs from boot-
strap percolation and KCM theories. We shall always denote spatial regions
(either in Z2 or in R2) with capital letters and events in the various proba-
bility spaces with calligraphic capital letters.

4.2.1 Bootstrap percolation

Stable and quasi-stable directions

For every integer n, we write rns :� t0, 1, . . . , n�1u. We �x a critical update
family U with di�culty α � αpUq and with a �nite set S of stable directions.1
Using De�nition 1.6.1 of αpUq one can �x an open semicircle C with midpoint
u0, one of whose endpoints is in S and such that maxuPC αpuq � α. Using [74,
Lemma 5.3] (see also [70, Lemma 3.5] and [269, Lemma 4.6]) one can choose a
set of rational directions2 S 1 � S, so that for every two consecutive elements
u and v of S 1 there exists an update rule X P U such that X � Hu X Hv.
The elements of S 1 are usually referred to as quasi-stable directions. Then
our fundamental set of directions will be

pS � ¤
uPS1

ptu, u0 � pu� u0qu � t0, π{2, π, 3π{2uq. (4.2)

In other words, we start with the stable directions, add to them the quasi-
stable ones, re�ect them at u0 and �nally make the set obtained invariant
by rotation by π{2. By construction the cardinality of pS is a multiple of 4.

1By Lemmas 2.6 and 2.8 of [70] this is equivalent to the fact that all (stable) directions
have �nite di�culty.

2A direction u P S1 is rational if tanpuq P Q or, equivalently, if su P Z2u for some s ¡ 0.
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Remark 4.2.1. Let us note that invariance by rotation and re�ection is
cosmetic and one could in fact deal directly with the set of quasi-stable
directions from [74], though notation would be more laborious and drawings
less aesthetic.

We write u0, u1, . . . u4k�1 for the elements of pS ordered clockwise starting
with u0 and pS0 for those elements of pS belonging to the semicircle C. For all
�gures we shall take pS � tiπ{4, i P t0, 1, . . . , 7uu and u0 � π. When referring
to ui, the index i will be considered modulo 4k. With this convention pS0 �
tu�k�1, . . . , uk�1u.

U-bootstrap percolation restricted to Λ � Z2

In the sequel, we will sometimes need the following slight variation of the
U-bootstrap percolation. Given Λ � Z2 and a set A � Λ of initial infection,
we will write rAsΛU for the closure

�
t¥0A

Λ
t of the U-bootstrap percolation

restricted to Λ, pAΛ
t qt¥0, de�ned by

AΛ
t�1 � AΛ

t Y tx P Λ, DU P U , x� U � AΛ
t u.

Geometric setup

We next turn to de�ning the various geometric domains we will need to
consider. As the notation is a bit cumbersome, the reader is invited to
systematically consult the relevant �gures. We �x a large integer w and
a small positive number δ depending on U (e.g. w much larger than the
diameter of U and of the largest di�culty of stable directions), but not
depending on q. When using asymptotic notation (as q Ñ 0) we will assume
that the implicit constants do not depend on w, δ and q. Throughout the
entire chapter we shall consider that q is small, as we are interested in the
q Ñ 0 limit. In particular, we shall assume that q is so small that any length
scale diverging to �8 as q Ñ 0 will be (much) larger than the constant w.

De�nition 4.2.2. Consider a closed convex polygon P in R2. Assume that
the outward normal vectors to the sides of P belong to pS and that u is one
of them. Then we write BuP for the side whose outward normal is ui.

We can now de�ne the notion of droplet that will be relevant for our
setting (see Figure 4.4). In the sequel for u P S1 we set `u � HuzHu for the
boundary of Hu. Moreover, given x P R2 and s P R, we set Hupxq � Hu� x,
Hupsq � Hupsuq and similarly for Hu and `u. Finally, for any ui P Ŝ we set
ρi � inftρ ¡ 0, Dx P Z2, xx, uiy � ρu for the smallest positive s such that
`uipsq � `ui and `uipsq X Z2 � ∅.

De�nition 4.2.3 (Quasi-stable annulus and half-annulus). Fix a radius R �
Rpqq such that limqÑ0Rpqq � �8 and let Ri � ρi

Y
R
ρi

]
for i P r4ks. We call
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R3 � wu0

w

Figure 4.4 � The shaded region is the quasi-stable an-
nulus A, while the hatched one is the quasi-stable half-
annulus HA. As anticipated all the radii Ri are much
larger than the width w.

the subset of R2

A �
£
iPr4ks

HuipRiqz
£
iPr4ks

HuipRi � wq

the quasi-stable annulus (or simply the annulus) with radius R and width
w centered at the origin. We write Aint for the region

�
iPr4ksHuipRi � wq

enclosed by A. Clearly, the outer boundary of A is a closed convex polygon
P satisfying the assumption of De�nition 4.2.2 and we write BuiA for BuiP .
We also let

B pS0
A �

¤
uP pS0

BuA, (4.3)

and we call

HA �
k£

i��k
HuipRiqz

k�1£
i��k�1

HuipRi � wq

the quasi-stable half-annulus of radius R and width w.

Our approach will consist in building progressively larger domains for
which we can bound the Poincaré constant of the �nite volume KCM process
conditionally on the simultaneous occurrence of a certain likely event and
the presence of an infected annulus. We next de�ne these domains (see
Figure 4.5). Recall that δ is a small constant depending on the update
family U .

De�nition 4.2.4 (Snails). Recall R and Ri from De�nition 4.2.3. Let L �
Lpqq ¡ 0 be such that limqÑ0 Lpqq � �8 and assume that

Lxu0,uk�1y
ρk�1

P N
(i.e. `uk�1

pLu0q contains lattice sites). We call a sequence of non-negative
numbers r � pr0, r1, . . . , r2kq admissible if

0 ¤ r0 ¤ δL, ri ¤ δri�1, r2k � 0.

Given an admissible r we call the set

V R,�
L prq �

k�1£
i��k�1

HuipRi � Lxu0, uiyq X
3k£
i�k

HuipRi � ri�kq

the right-snail with parameters pR,L, rq. Using the symmetric construction
of pS, the left-snail V R,�

L prq with parameters pR,L, rq is simply de�ned as
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HA� Lu0 A

T�0

B

T�1T�1

T�2 T�2

r0

r1r1

r2r2

L

2R

Figure 4.5 � A snail V � V � Y V � with its base B and its trapezoids
T�0 , T

�
1 , . . . . The right-snail of V is V � � B Y�

i T
�
i while the left-snail is

V � � BY�
i T

�
i . In Section 4.3 the shaded quasi-stable annulus A and the

half-annulus HA� Lu0 will act as an infected boundary condition.

the re�ection of the right-snail w.r.t. the line orthogonal to u0 and passing
through the point 1

2Lu0. Finally the snail with parameters pR,L, rq is the
set

V R
L prq � V R,�

L prq Y V R,�
L prq.

We systematically drop the parameters R, L, and r from our notation when
no ambiguity arises.

De�nition 4.2.5. We observe that any right-snail V R,�
L prq can be thought

of as the set obtained by stacking together as in Figure 4.5 its base de�ned
as

B � V R
L pp0, . . . , 0qq

and its trapezoids de�ned as

T�i � V R,�
L pr0, . . . , ri, 0, . . . , 0qzV R,�

L pr0, . . . , ri�1, 0, . . . , 0q
� pHuk�ipRk�i � riqzHuk�ipRk�iqq

XHuk�i�1
pRk�i�1 � ri�1q XHuk�i�1

pRk�i�1q
with the convention r�1 � Lxu0, uk�1y. Notice that the base B is characte-
rized by two parameters R,L called radius and length respectively.

With this picture in mind the positive values of r coincide with the heights
of the corresponding non-empty trapezoids. A similar decomposition holds
for the left-snail. In the sequel, it will be convenient to partition the lattice
sites in each trapezoid T�i into disjoint slices ST�i,j , j � 1, 2, . . . , with each
slice consisting of all the lattice sites of the trapezoid lying on a common
line of R2 orthogonal to the direction uk�i. Similarly for the lattice sites
contained in the truncated base B� :� BzpA Y Aint Y pHA � Lu0qq. In
this case each slice, denoted SBj , j � 1, 2, . . . , will consist of all the sites
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belonging to a common suitable translate in the u0-direction of B pS0
A de�ned

in (4.3). Recall from De�nition 4.2.3 ρi and Ri � ρitR{ρiu, where R is the
radius of the annulus A.

De�nition 4.2.6. Fix a snail and suppose that its trapezoid T�i , i P r2ks is
non-empty. The jth slice of T�i X Z2 is the set

ST�i,j � T�i X `uk�ipRk�i � jρk�iq X Z2,

so that T�i X Z2 � �
j¡0 ST

�
i,j . Similarly, for the left trapezoid T�i if non-

empty.
Turning to the truncated base B�, we �rst set λj�1 � inftλ ¡ λj , pλu0�

B pS0
Aq X Z2 � ∅u with λ0 � 0. Then we de�ne the jth slice of the truncated

base B� of the snail, SBj , and its ith-side, SBi,j , as

SBj � pλj � B pS0
Aq XB� X Z2,

SBi,j � pλj � BuiAq XB� X Z2.

Note that for any admissible sequence r a non-empty slice of the trapezoid
T�i consists of all lattice points of a segment I � R2 orthogonal to uk�i with
length Ωpri�1q and such that I X Z2 � H. Similarly, the number of lattice
sites in each slice of B� is ΘpRq. In the sequel we will only consider non-
empty slices without explicitly specifying the range of the index j ¡ 0.

Helping sets

Recall De�nition 1.6.1. If u is a stable direction, then the infected half-
plane Hu needs �nitely many (exactly αpuq) extra infected sites in R2zHu in
order to infect in�nitely many sites on the line `u. If only a �nite portion
of Hu is infected, e.g. the dashed region in Figure 4.6, then the propagation
of infection to some portion of the line `u is a delicate problem. A special
case which su�ces for our purposes is covered in the next lemma (see [70,
Lemma 3.4] and [74, Lemma 5.2]).

Lemma 4.2.7. Fix u � ui, i P r4ks and recall that w is a large enough
integer (depending on U) and let r ¥ w2. Let

Λ :� Λpu,w, rq � Hui�1prq XHui XHui�1prq XHui�2k
pwq

be the (closed) trapezoid in Figure 4.6 of height w and bases orthogonal to u.
Note that BuΛ � `u.

(a) Let Z � Z2zHu be a set of αpuq sites at distance at most
?
w from the

origin such that rHuYZsUX`u is in�nite. Then there exist �nitely many
lattice points a1, . . . , am, b, on the line `u such that the following holds.
If ΛzBuΛ and

�m
j�1pZ � aj � kjbq are infected, where k1, . . . , km P Z
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ui�1

ui BuiΛ � `ui

ui�1

(a) An example helping set (the black dots) consisting of three disjoint copies of Z
shifted along `ui . In the �gure αpuiq � 2 with Z � tp0, 0q, p1, 1qu and m � 3.

w

ui�1

ui BuiΛ � `ui

ui�1

(b) Illustration of w consecutive sites of BuiΛ.

Figure 4.6 � The setting of Lemma 4.2.7. In the �gure ui is the upwards
direction and the hatched trapezoid represents the lattice sites in ΛzBuiΛ.
The lemma states that if the hatched region and the black sites are infected,
BuiΛ also becomes infected (in the U bootstrap percolation process restricted
to a suitable region).

are such that ta1 � k1b, a2 � k2b, . . . , am � kmbu form m distinct lattice
sites of BuΛ at distance at least w from the endpoints of BuΛ, then the
U-bootstrap percolation restricted to the larger trapezoid

Λ � Hui�1prq XHuipw{2q XHui�1prq XHui�2k
pwq

is able to infect BuΛ.

(b) If ΛzBuΛ and w consecutive lattice sites in BuΛ are infected, then the
U-bootstrap percolation restricted to Λ is able to infect BuΛ.

De�nition 4.2.8 (u-helping sets). Let i P r�k � 1, k � 1s. Any collection
of lattice sites of the form ta1 � k1b, a2 � k2b, . . . , am � kmbu satisfying the
assumption in (a) above will be referred to as ui-helping set for BuiΛ or
simply ui-helping set.

4.2.2 Some KCM tools

For reader's convenience we next collect some general tools from KCM theory
that will be applied several times throughout the proof of the main result.

Notation

For every statement P de�ne 1tPu � 1 if P holds and 1tPu � 0 otherwise.
For any subset Λ of R2 we write pΩΛ, µΛq for the product probability space
pt0, 1uΛXZ2

,
Â

xPΛXZ2 µqq. If Λ � R2, we simply write pΩ, µq. Given f :
ΩΛ Ñ R we shall write µΛpfq and VarΛpfq for the mean and variance of
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f w.r.t. µΛ respectively whenever they exist. For any ω P Ω and Λ � R2

we write ωΛ for the collection pωxqxPΛXZ2 . Given a function f : Ω Ñ R
depending on �nitely many variables we write

Dpfq �
¸
xPZ2

µpcx Varxpfqq, (4.4)

for the KCM Dirichlet form of f , where cxpωq is the indicator of the event
tDX P U : @y P X,ωx�y � 0u and Varxpfq :� Vartxupfq denotes the condi-
tional variance Varpf | pωzqz�xq. Finally, we shall write Pµp�q for the law of
the U-KCM process on Z2 with initial law µ and Eµp�q for the expectation
w.r.t. Pµp�q.

Poincaré inequalities

We begin with a well-known general fact on product measures which we state
here in ready-to-use form.

Lemma 4.2.9. Let Λi, i P t1, 2, 3u be three disjoint �nite subsets of Z2 and
νi be a probability measures on ΩΛi . Let ν be the product measure

Â3
i�1 νi

on
Â3

i�1 ΩΛi . Then for any function f we have

ν1pVarν2bν3pfqq ¤ Varνpfq ¤ ν1pVarν2bν3pfqq � ν2pVarν1bν3pfqq.
Proof of Lemma 4.2.9. The �rst inequality follows from the total variance
formula

Varνpfq � ν1pVarν2bν3pfqq �Varν1pν2 b ν3pfqq.
For the second inequality we observe that

Varν1pν2 b ν3pfqq � ν1ppν2 b ν3pf � νpfqq2q
¤ νppf � ν1 b ν3pfqq2q � ν2pVarν1bν3pfqq

by Jensen's inequality.

In order to understand the general framework for the last two results, we
begin by recalling a standard Poincaré inequality for n independent random
variables X1, . . . , Xn (for simplicity each one taking �nitely many values).
For any f � fpX1, . . . , Xnq

Varpfq ¤
¸
i

EpVaripfqq,

where Varipfq is the conditional variance computed w.r.t. the variable Xi

given all the other variables. The sum in the r.h.s. above can be interpreted as
the Dirichlet form of the continuous time Gibbs sampler, reversible w.r.t. the
product law of pXiqi, which with rate n chooses a random index i P rns and
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resamples Xi w.r.t. its marginal. From this perspective, the above inequality
tells us that the relaxation time (see e.g. [256]) of the Gibbs sampler is
bounded from above by 1.

Now consider n events pHiqni�1, in the sequel facilitating events, and
suppose that each Hi depends only on the variables pXjqj�i. An example
of a constrained Poincaré inequality with facilitating events pHiqni�1 is the
inequality

Varpf |ΩHq ¤ C
¸
i

Ep1Hi Varipfqq
PpΩHq , (4.5)

where ΩH � �n
i�1Hi and C P r1,�8s. Notice that the sum in the r.h.s.

above can be interpreted as the Dirichlet form of the continuous time con-
strained Gibbs sampler on ΩH, which with rate n chooses a random index
i P rns and resamples Xi w.r.t. its marginal i� Hi holds. If the facilitating
events are such that the constrained Gibbs sampler on ΩH is ergodic then
C   �8.

Each one of the two results we are about to discuss next is just a special
instance of the above general problem.

Lemma 4.2.10. Let X1, X2 be two independent random variable taking va-
lues in two �nite sets X1,X2. Let also H � X1 with PpX1 P Hq ¡ 0. Then
for any function fpX1, X2q

Varpfq ¤ 2PpX1 P Hq�1E
�
Var1pfq � 1tX1PHu Var2pfq

�
.

Remark 4.2.11. The above inequality coincides with (4.5) with H1 � X2,
H2 � tX1 P Hu and C � 2{PpX1 P Hq. Clearly the constrained Gibbs
sampler is irreducible because P1pX1 P Hq ¡ 0.

Proof of Lemma 4.2.10. It follows from [88, Proof of Proposition 4.4] that

Varpfq ¤ 1

1�a
1� PpX1 P Hq

E
�
Var1pfq � 1tX1PHu Var2pfq

�
¤ 2PpX1 P Hq�1E

�
Var1pfq � 1tX1PHu Var2pfq

�
.

The second result concerns a generalisation of the standard (�nite vo-
lume) constrained Poincaré inequality for the 1-neighbour KCM process, or
FA1f KCM, [88].

Let ppS, pνq be a �nite probability space with pν a positive probability mea-
sure, let Ωn � pSrns and ν �Â

iPrns νi, where νi � pν for all i P rns. Elements

of Ωn are denoted ω � pω0, . . . , ωn�1q with ωi P pS. Fix a single site event
H � pS and a positive integer κ   n. Then, according to whether we view the
set rns as the n-cycle or not, we de�ne the facilitating event Hi as follows.
If rns is the n-cycle

Hi �
i�κ£
j�i�1

tωj P Hu Y
i�κ£
j�i�1

tωj P Hu.
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If instead rns is linear

Hi �

$'&'%
�i�κ
j�i�1tωj P Hu if i� κ ¥ n�i�κ
j�i�1tωj P Hu if i� κ   0�i�κ
j�i�1tωj P Hu Y

�i�κ
j�i�1tωj P Hu otherwise.

In words, in the periodic case Hi requires the κ variables immediately after
or before i (in the clockwise order) to be in a state belonging to H, while in
the linear case the same requirement holds when i is farther than κ from the
boundary points of rns. When i is closer than κ to e.g. the the right boundary
of rns, then Hi requires the κ variables immediately before i to be in states
belonging to H. The case when pS � t0, 1u, pν is the Bernoullip1�qq-measure,
H � t0u and κ � 1 is the usual 1-neighbour KCM setting.

Lemma 4.2.12. Assume that p1�pνpHqkqn{p3κq   1
16 and set ΩH � �n�1

i�0 Hi.
Then, for all f : Ωn Ñ R

Varνpf |ΩHq ¤
�

2pνpHq

Opκq ņ

i�1

ν p1Hi Varνipfqq . (4.6)

The proof is left to Section 4.A.

Remark 4.2.13. We will apply the lemma with ppS, pνq equal to the pro-
bability space given by t0, 1um equipped with the Bernoullip1 � qq product
measure conditioned on some event whose probability tends to one as q Ñ 0.
The integers 1 ! m ! n may diverge to in�nity as q Ñ 0 while the integer κ
will be large but independent of q.

4.3 The core of the proof

In this section we prove a Poincaré inequality which will represent the key
step in the proof of Theorem 4.0.1.

4.3.1 Roadmap

Before we dive into the technical details, let us give a hands-on roadmap of
the argument. Although it is underlain by the dynamical intuition explained
in Section 4.1, the latter is not very transparent in the Poincaré language of
the formal proof.

The goal of this section is to prove Theorem 4.3.6. It says that the U-
KCM (U being a �xed critical update family with a �nite number of stable
directions) on a snail V � V R

L prq (recall De�nition 4.2.4 and Figure 4.5),
conditioned on a well-chosen super good event SGpV q is able to relax in a time
expplog3p1{qq{qαq, which is the dominating contribution leading to (4.1). For
the purposes of the roadmap the reader should think of the snail as having
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dimensions R � w2 logp1{qq{qα, L � q�3w and ri � δi�p2k�1qq�2w, i P r2ks
for some small positive δ. Let us explain the De�nition 4.3.2 of SGpV q before
outlining the proof of Theorem 4.3.6.

Good and super good events

The super good event SGpV q will decompose as a product w.r.t. the parti-
tion of V into its annulus A, half-annulus HA� Lu0, annulus interior A

int,
truncated base B� and trapezoids T�i from De�nitions 4.2.3 to 4.2.5. On A
(HA) we require the event A (HA) that A (HA) is fully infected. These
are the only unlikely events involved in SGpV q and we will denote by SG
only events requiring the occurrence of (spatial translates of) A and HA.
Events of type SG will all have very small probability µpSGq of the order of
expp� log2p1{qq{qαq.

In turn, we will write G for good events, which are likely and only involve
the presence of appropriate helping sets as in De�nition 4.2.8 or sets of
w consecutive infections as in Lemma 4.2.7(b). Recall the decomposition
of B� into slices SBj from De�nition 4.2.6. We say that the event SBj
occurs if each side of SBj (which consists of at most one segment in each
direction) has a helping set for the corresponding direction. We then de�ne
GpB�q � �

j SBj and it is not hard to see that this way the occurrence of
SGpBq � AXHAX GpB�q implies that the infections in B are su�cient to
fully infect B.

Notice that in general the event SBj depends on the values of ω in the

set
�k
i�0 SBj�i for some k ¥ 0 depending only on U . In order to avoid this

(annoying) technical detail we will use the following simplifying Assumption
4.3.1 implying that k � 0.

Assumption 4.3.1. For every stable direction u P pS0 there exists a subset
Zu of the line `u of cardinality α such that rHu Y ZusU X `u has in�nite
cardinality.

This is by no means restrictive, as the proof applies directly without
this assumption up to changing SBi,j in De�nition 4.3.2, following [269, Sec.
7]. We will spare the reader the tedious details, as they already appeared
previously in the above-mentioned paper. This assumption is only relevant
for treating the base B, for which we will import the result from [269], where
the assumption was introduced.

Having de�ned the good event for the base B, we now de�ne the good
event for the trapezoids of the snail V . Let ST �i,j be the event that the

slice ST�i,j in the decomposition of T�i from De�nition 4.2.6 contains a set

of w consecutive infected sites. We then de�ne GpT�i q �
�
j ST

�
i,j . Again,

by Lemma 4.2.7 it is not hard to see that if B and T�i1 for i1   i are fully
infected and GpT�i q occurs, then the U-bootstrap percolation can also infect
T�i (and similarly for T�i ).
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Finally, the super good event SGpV q is de�ned as SGpBq X�
ipGpT�i q X

GpT�i qq and it clearly implies that the entire snail V can be infected from
within.

Structure of the proof

The fact that V can be fully infected on SGpV q is reassuring and implies
that the relaxation time we are after in Theorem 4.3.6 is �nite, but we need
an e�cient relaxation mechanism to prove the theorem. It is not hard to
see that it su�ces to treat the right-snail V �, so we concentrate on it and
drop all � superscripts. In the sequel, whenever we refer to the relaxation in
a given region Λ mathematically this will translate into proving a Poincaré
inequality like the one in (4.8) with V replaced by Λ.

The proof proceeds by proving an e�cient relaxation in progressively
larger and larger volumes always conditioned on a corresponding SG event.
In the process we will often rely on auxiliary constrained block dynamics of
several types like those in Section 4.2.2. These auxiliary dynamics allow us
to relate the relaxation in a given region to the relaxation in smaller sub-
regions, each subregion having an additional convenient constraint on the
con�guration outside it. The auxiliary dynamics we will use are of FA1f type
(like the one in Lemma 4.2.12) or two-blocks type (like the one in Lemma
4.2.10). By performing such reductions, we reduce the problem of proving an
e�cient relaxation on a large region to a similar problem on suitable smaller
regions. The base case of the above inductive procedure is then treated
directly. We now describe the various steps of the above iterative reduction.

The base case: the annulus interior Aint First, in Lemma 4.3.10 we
treat Aint on the event A that the annulus is fully infected, which serves as
a boundary condition. This is fairly easy and can be done in various ways.
To give a formal argument, we split Aint into strips of bounded width (see
Figure 4.7). Fully infected strips perform an FA1f auxiliary dynamics. The
boundary condition provides all the sets of w consecutive infections needed
for an infected strip to infect its neighbour using Lemma 4.2.7 (see Figure
4.6a).

From Aint to the base B Up to now we have a Poincaré inequality on
the annulus and its interior. In Proposition 4.3.9 we extend that to a base
B. We will not insist on this step, as it was essentially done already in
[269]. Indeed, using an East-like dynamics in direction u0 the relaxation
time of B� (on GpB�q) with infected boundary condition in A was shown to
be roughly expplog3p1{qq{qαq. Combining this with the result for Aint, we
obtain a Poincaré inequality for B.
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Adding the �rst trapezoid to B Our next goal is to consider the relax-
ation in B Y T0. In turn, this step is split into two distinct parts.

Adding the �rst slice ST0,1 to B This is achieved in Lemma 4.3.13
(see Figure 4.8). Relaxation in B has already been established in the previous
step, so we focus on the relaxation in ST0,1. In doing this we are allowed our
knowledge of the relaxation in B. We use the FA1f-like dynamics of Lemma
4.2.12, asking for w consecutive infections in ST0,1 next to the site to be
updated. In other words we have to understand how to e�ciently resample
a site x P ST0,1 using the U-KCM dynamics when its neighbouring w sites
are infected. Using a two-block dynamics (Lemma 4.2.10), resampling B
roughly q�Op1q times, we may further impose the condition that the site we
wish to resample has a fully infected neighbourhood in B in addition to the
next w sites in ST0,1, which are already infected. This is exactly the situation
in Figure 4.8 and makes the �ip of the site we want to update legal for the
original U-KCM. Thus, this step produces terms of the Dirichlet form of the
U-KCM in (4.4), as well as a term VarBpf |SGpBqq, which we already know
how to control.

Adding more slices to B In a sense this part embodies the East-like
motion of droplets in direction u1 hinted in Section 4.1. This connection is
rather indirect in the sense that the bisection method used to analyse the
relaxation in the union of B with several slices of the �rst trapezoid coincides
with the bisection method used to e�ciently bound from above the relaxation
time of the standard East model in [88].

Consider the problem of the relaxation in a snail consisting of B and 2n
slices of the �rst trapezoid. Our aim is to reduce it to the same problem
on two similar snails, each one with essentially the same base B but with
only n slices. This is achieved in Lemma 4.3.14. We start by introducing an
auxiliary constrained two-block dynamics in which B and the �rst n slices
form the �rst block rV , while the second group of n slices form the second
block T 0 (see Figure 4.9). The constraint of the two-blocks dynamics is that
a translated base B (corresponding to V i�1 in Figure 4.9) is super good.
The base B is constructed so that together with T 0 it forms a snail V with
size similar to that of rV . The relaxation to equilibrium on rV is dealt with
by induction on the number of slices, so it remains to analyse the relaxation
to equilibrium on T 0 under the above constraint. The relaxation time of the
auxiliary model is 1{µpSGq (the number of times one needs to update the
�rst block until the constraint becomes satis�ed). Then in order to relax on
T 0 it su�ces to do so on the larger region V . We are done since V and rV
are already treated by the induction.

In Corollary 4.3.16, repeating the above bisection several times, we ma-
nage to reproduce the relaxation on a snail with base B and arbitrary number
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r0 of slices of the �rst trapezoid. Indeed, starting from the snail with a single
slice in T0 provided above, we double its height logp1{qq times to reach the
desired r0 � δ�2k�1q�2w. Thus, the Poincaré constant of B is multiplied by
1{µpSGqlogp1{qq in this process.

Adding all trapezoids of the original snail V Finally, repeating the
above steps for each trapezoid, we obtain the desired Poincaré constant for
the entire snail, concluding Theorem 4.3.6.

4.3.2 Setup

Given a snail V � V R
L prq, we shall work in the associated probability space

ΩV � t0, 1uVXZ2
endowed with the probability measure µV p� |SGpV qq con-

ditioned to the simultaneous occurrence of the following events on ΩV .

De�nition 4.3.2 (Good and super good events).

• Recalling De�nition 4.2.3, we de�ne A as the event that A is infected and
HA as the event that HA� Lu0 is infected.

• Recalling De�nitions 4.2.6 and 4.2.8, for each SBj and ui P pS0, let SBi,j
denote the event that SBi,j � ∅ or SBi,j contains an infected ui-helping
set. Then set SBj � �

uiP pS0
SBi,j .

• Recalling De�nition 4.2.5, for each non-empty ST�i,j let ST
�
i,j be the event

that there exist w consecutive infected sites in ST�i,j .

Using the above events, we then de�ne

GpB�q �
£
j¡0

SBj , SGpBq � AXHAX GpB�q, GpT�i q �
£
j¡0

ST �i,j .

Finally, we set SGpV �q � SGpBq X�
iPr2ks GpT�i q and SGpV q � SGpV �q X

SGpV �q, with SGpV �q the analogue of SGpV �q for the left-snail.
We note that the event HA is there only to ensure the easy removal of

the simplifying Assumption 4.3.1.

Remark 4.3.3. The events above are de�ned so as to preserve as much
as possible the original product structure of µ in the conditional measure
µV p� |SGpV qq. In fact,

µV �p� |SGpV �qq � µBp� |SGpBqq b
� â
iPr2ks

µT�i
p� |GpT�i qq

�
,

µT�i
p� |GpT�i qq �

â
j¡0

µST�i,j
p� |ST �i,jq,

µBp� |SGpBqq � µAint b δωAYpHA�Lu0q
�0 b µB�p� |GpB�qq,

µB�p� |GpB�qq �â
j¡0

µSBj p� |SBjq,
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since trapezoids and the base are pairwise disjoint by construction and like-
wise for the slices of the trapezoids, the slices of the base, the annulus, its
interior and the translated half-annulus.

Taking into account this product structure, in the next observations we
establish that, as claimed in Section 4.3.1, all G events we will use are likely
and all SG events have roughly the same probability, qΘpRwq.

Observation 4.3.4. Let R ¥ w2 logp1{qq{qα and L ¤ q4w, let r be ad-
missible (see De�nition 4.2.4) and ri�1 ¥ q�2w for some i P r2ks. Then
µpGpT�i qq ¥ 1� op1q and µpGpB�qq ¥ 1� op1q.
Proof. For the �rst assertion notice that the condition implies that for all
j ¡ 0, ST�i,j is either empty or has cardinality at least Ωpq�2wq. Then by
Remark 4.3.3

µpGpT�i qq �
¹
j

µpST �i,jq ¥
�

1� p1� qwqΩpq�2w{wq
	Opriq ¥ 1� op1q,

since ri ¤ L ¤ q4w by De�nition 4.2.4 and by assumption.
The second assertion is proved similarly (see e.g. [269, Lemma 6.5]).

Observation 4.3.5. Let R ¥ w2 logp1{qq{qα, L ¤ q�4w, let rbe admissible
such that for some i P r2ks, ri�1 � 0 and ri�1 ¥ q�2w with the convention
r�1 � L. Then

µpSGpV R
L prqqq � qΘpRwq. (4.7)

Proof. Using Remark 4.3.3 and Observation 4.3.4, it su�ces to note that

µpAXHAq ¥ q|A|�|HA| � qΘpRwq.

4.3.3 Key step

We are ready to state the main result of this section. In the sequel, for
any Λ � Z2, any x P Λ and any ωΛ P ΩΛ we shall write cΛ

x pωΛq for the
constraint cxpωq computed for the con�guration ω equal to ωΛ in Λ and
equal to 1 elsewhere. By construction, cΛ

x pωΛq ¤ cxpω1q for any ω1 P Ω such
that ω1Λ � ωΛ and cΛ

x ¥ cΛ1
x for any Λ1 � Λ. Then for any snail V (or base)

we write γV for the smallest constant γ P r1,8s such that the Poincaré
inequality

VarV pf |SGpV qq ¤ γ
¸
xPV

µV
�
cVx Varxpfq

�
(4.8)

holds for every function f : Ω Ñ R.

Theorem 4.3.6. There exist w0, δ0 ¡ 0 not depending on q such that for any
0   δ ¤ δ0 and w ¥ w0 the following holds for any R � Θpw2 logp1{qq{qαq.
Consider the snail V � V R

L prq for admissible L, r such that r2k�1 ¥ q�2w

and L ¤ q�4w. Then

γV ¤ e�Opw
4 log3p1{qq{qαq. (4.9)
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Claim 4.3.7. We have γV ¤ 3 maxpγV � , γV �q.
Proof. Set Λ1 � V �zpBYT�0 q, Λ2 � V �zpBYT�0 q, Λ3 � BYT�0 � BYT�0 ,

ν1 � µΛ1p� |
�2k�1
i�1 GpT�i qq, similarly for ν2 and ν3 � µΛ3p� |SGpBqXGpT�0 qq.

By Remark 4.3.3 we can apply Lemma 4.2.9 to obtain

VarV pf |SGpV qq ¤ γV �
¸
xPV �

ν1

�
µV �

�
cV

�

x Varxpfq
		

� γV �
¸
xPV �

ν2

�
µV �

�
cV

�

x Varxpfq
		

¤ p1� op1qqpγV � � γV �q
¸
xPV

µ
�
cVx Varxpfq

�
,

where in the last inequality we used Observation 4.3.4 to remove the condi-
tioning of ν1 and ν2.

Therefore, in order to prove (4.9) it su�ces to prove the analogous state-
ment with V replaced by V �. In the sequel we will concentrate on proving
(4.9) for the best constant γV � in the Poincaré inequality (4.8) with V re-
placed by its right-snail V �. The proof is based on comparison methods
between Markov processes and induction over right-snails with di�erent L
and r as outlined in Section 4.3.1. If we exchange right-snails with left-snails
the same proof will then apply to the left-snail V � as well. Since our ar-
guments no longer require a left-snail, for lightness of notation, we drop the
superscript ��� from our notation whenever possible.

The proof of the theorem is decomposed into two quite di�erent steps (see
Propositions 4.3.9 and 4.3.12 below). In the �rst one, labelled the base case,
we consider a right-snail V with no trapezoids (r=0). In the second step,
labelled reduction step, roughly speaking we compare the Poincaré constant
γV of a generic right-snail V with the same constant computed for its base
B.

The conclusion of Theorem 4.3.6 follows at once from (4.7), Proposition
4.3.9 and Proposition 4.3.12. In the sequel �x δ, w,R as in the statement of
the theorem and recall that B � V R

L p0q.
Remark 4.3.8. For future purposes (see Chapter 6) it is very important to
emphasise that it is only in the �rst step that we use directly the de�nition
of the event SGpBq entering in the event SGpV q (cf. De�nition 4.3.2). In the
second step the only property of the event SGpBq that is needed is that it is
a decreasing event in ΩB w.r.t. the partial order ω   ω1 i� ωx ¤ ω1x for all
x P B.

4.3.4 Base case

Proposition 4.3.9. For any f : ΩB Ñ R

VarBpf |SGpBqq ¤ q�OpRw logLq ¸
xPB

µB
�
cBx Varxpfq

�
.
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K2 K4

Figure 4.7 � Setting of the proof of Lemma
4.3.10. Every second strip Ki of A

int is hat-
ched. The annulus A is shaded.

Proof of Proposition 4.3.9. We �rst observe that, up to minor modi�cations,
in [269, Proposition 6.6] it was proved that for all f : ΩB� Ñ R

1AXHA VarB�pf |GpB�qqq ¤ q�OpRw logLq
1A

¸
xPB�

µB�
�
cBx Varxpfq

�
. (4.10)

The next step in the proof is an analogous result for Aint.

Lemma 4.3.10. For any f : ΩAint Ñ R

1A VarAintpfq ¤ q�OpRwq1A
¸

xPAint

µAint

�
cAYA

int

x Varxpfq
	
.

Proof of Lemma 4.3.10. Let us partition Aint into disjoint strips Ki of width
w perpendicular to u0 and number them from left to right (see Figure 4.7).

We can then apply [269, Proposition 3.4] on the generalised FA1f KCM
to obtain

VarAintpfq ¤ q�OpRwq
¸
i

µpp1H�
i
� 1H�

i
qVarKipfqq,

where H�
i are the events that Ki�1 is fully infected and we use the con-

vention that H�
i occurs for the last strip and H�

i does for the �rst one,
which corresponds to the boundary condition provided by A. W.l.o.g. it
then su�ces to bound the generic term µp1H�

i
VarKipfqq. But this can be

done using Lemma 5.2 of [269] and Lemma 4.2.7(b), which guarantees that
if A and Ki�1 are infected, then Ki can also be infected by the U-bootstrap
percolation restricted to Ki YKi�1 YA.

Using Lemma 4.2.9 with parameters Λ1 � B�, Λ2 � Aint, Λ3 � H,
ν1 � µB�p� |GpB�qq, and ν2 � µAint , we obtain

1AXHA VarB�YAintpf |GpB�qq
¤ 1AXHA pµAint pVarB�pf |GpB�qqq � µB� pVarAintpfq |GpB�qqq .
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The �rst term in the r.h.s. above is bounded by

q�OpRw logLq
1AXHA

¸
xPB�

µB�YAintpcBx Varxpfqq,

using (4.10), while the second one is bounded by

q�OpRw logLq
1AXHA

¸
xPAint

µB�YAint

�
cAYA

int

x Varxpfq |GpB�q
	
.

by Lemma 4.3.10. By Remark 4.3.3 we immediately get that

VarBpf |SGpBqq � µBpVarB�YAintpf |GpB�qq |AXHAq
¤ µpSGpBqq�1q�OpRw logLq ¸

xPB
µBpcBx Varxpfqq

and the proposition follows from Observation 4.3.5.

4.3.5 Reduction step

Before we can state a relationship between γV and γB, we need the following
notion, which will cover all snail shapes that may arise during the reduction.
Recall that δ, w, V � V R,�

L prq are �xed as in the statement of Theorem
4.3.6 and that we do not write the � index, though all snails we refer to are
right-snails. Also recall that all snails are de�ned by admissible sequences
(see De�nition 4.2.4).

De�nition 4.3.11. Let C be a constant chosen su�ciently large depending
on pS, but much smaller than 1{δ0 in Theorem 4.3.6. We say that a snailpV � V RpL pprq is of type i P r2ks if
(a) pri�1 � 0,

(b) pri ¤ ri,

(c) for all j   i it holds that 0 ¤ rj � prj ¤ C
�
ri � pri �°2k�1

l�i�1 rl

	
,

(d) 0 ¤ L� pL ¤ C
�
ri � pri �°2k�1

l�i�1 rl

	
.

We say that pV is relevant if there exists i P r2ks such that pV is of type i. In
particular, a base pB � V RpL p0q is relevant i� 0 ¤ L� pL � Opr0q.

In words, pV is relevant if all trapezoids except the last one are only
slightly shorter than the corresponding ones for V and similarly for the base,
while the last trapezoid may be as much shorter as needed. Indeed, observe
that by admissibility

°2k�1
l�i�1 rl   2ri�1 for any i P r2ks.
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x

rV

Λx

yST i,1
w

Figure 4.8 � The geometric setting of Lemma 4.3.13. The snail is rV , whilexST i,1 � pV zrV is the remaining slice on the top-right. The site x to be

updated in (4.13) is marked by a cross. The event rHx corresponds to the
shaded trapezoid Λx being infected and the event Hx corresponds to the w
consecutive sites next to x on one of its sides being infected.

Let us mention that the technical second inequalities in conditions (c)
and (d) in the de�nition above are only needed for the inductive procedure
below to always yield relevant snails. We invite the reader to ignore those
conditions and admit that all smaller snails arising in our argument have
sizes which can be treated by induction.

Proposition 4.3.12. Let σ � 1{minpV µpV pSGppV qq and Γ � max pB γ pB, where
the min and max run over relevant snails and relevant bases respectively.
Then

γV ¤
�
q�w

4
σ
	OplogLq

Γ.

In the rest of the section we slowly build the proof of this proposition. The
�rst step of reduction consists in removing a trapezoid consisting of a single
slice. This is done using Lemma 4.2.12 and may be intuitively understood
as an FA1f dynamics of w consecutive infected sites in the slice. Recall ρi
de�ned above De�nition 4.2.3.

Lemma 4.3.13 (Removing a single slice). Let pV � V RpL pprq be a snail of
type i such that pri � λρk�i for λ P N. In other words, the last non-empty
trapezoid, pTi of pV consists of λ segments orthogonal to ui�k. Then, settingrr � ppr0, . . . , pri�1, 0, . . . , 0q, rV � V RpL prrq, we have

γpV ¤
�
q�w

4
	Opλq

max
�
γrV , 1{µpV pSGppV qq	 .

Proof of Lemma 4.3.13. By induction on λ it su�ces to prove the lemma for
λ � 1, in which case the last trapezoid is simply pTi � xST i,1.

We will proceed in two steps. First, we will divide pV into rV and xST i,1.
The rV part is harmless, as it directly relates to γrV appearing in the r.h.s. of
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the statement of the lemma. In order to reproduce a `resampling' of xST i,1
we will proceed in two steps. First, using the FA1f-like dynamics, Lemma
4.2.12, we will reduce the problem to resampling a single site in xST i,1 given

that next to it there are w consecutive infections. Then we will use rV to
provide additional infections to ensure that c

pV
x is satis�ed and this will yield

the x term of the Dirichlet form from (4.4). The lemma is illustrated in
Figure 4.8.

Recalling Remark 4.3.3, for any f : ΩpV Ñ R Lemma 4.2.9 gives

VarpV pf |SGppV qq
¤ µpV

�
VarrV pf |SGprV qq �VaryST i,1pf |yST i,1q |SGppV q	 . (4.11)

Since SGppV q � SGprV q � xST i,1, the �rst term in the r.h.s. above is

µyST i,1
�

VarrV pf |SGprV qq |yST i,1	 ¤ γrV
µyST i,1pyST i,1qµpV

��¸
xPrV

c
pV
x Varxpfq

�
� p1� op1qqγrV

¸
xPrV

µpV pcpVx Varxpfqq

by the de�nition (4.8) of γrV , Observation 4.3.4, and the fact that c
rV
x ¤ c

pV
x .

To bound the second term in (4.11), we use Lemma 4.2.12 for µyST i,1p� |yST i,1q
with κ � w and constraining event H � t0u � t0, 1u � pS, the hypothesis of
the lemma following from Observation 4.3.4. This gives

VaryST i,1pf |yST i,1q ¤ q�Opwq
¸

xPyST i,1
µyST i,1p1Hx Varxpfqq, (4.12)

where Hx is the event that w consecutive sites immediately to the left or to
the right of x in xST i,1 are infected. Plugging this back in (4.11), we see that
we need to bound from above a generic term

µpV
�
1Hx Varxpfq |SGprV q	 , x P xST i,1. (4.13)

At this point we have succeeded in bringing w consecutive infected sites
next to the site x, which we want to update. In order to be sure that the

constraint c
pV
x is satis�ed, we would like to also bring some infections next to

x in rV . To do that we �rst use Lemma 4.2.9 to include rV in the variance,
so that we are allowed to `resample' it and then use the two-block dyna-
mics, Lemma 4.2.10, to indeed obtain the desired infections by resamplingrV enough times.

Applying Lemma 4.2.9 with parameters Λ1 � rV , Λ2 � txu, Λ3 � ∅,
ν1 � µrV p� |SGprV qq, and ν2 � µx, we bound the generic term (4.13) from
above by

µyST i,1ztxu
�
1Hx VarrVYtxupf |SGprV qq	 .
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We next apply Lemma 4.2.10 to the product space

pΩrV , µrV p� |GrV qq b pΩtxu, µxq

with constraining event rHx � ΩrV that the trapezoid

Λx � x� �
Hui�k�1

pw2q XHui�k XHui�k�1
pw2q XHui�3k

pwq�X rV
being infected. It is not hard to check that Bui�kΛx contains x and the
w infected sites guaranteed by Hx. In other words, we are in the setting
of Figure 4.8. Using |Λx X Z2| � Opw4q and noticing that by the Harris
inequality [202] µrV p rHx |SGprV qq ¥ µrV p rHxq, Lemma 4.2.10 gives

1Hx VarrVYtxupf |SGprV qq ¤ q�Opw
4qµrVYtxu

�
VarrV pf |SGprV qq
� 1HxX rHx

Varxpfq |SGprV q�.
Finally, since ui�k is an isolated (quasi-)stable direction, it is easily seen (see

Figure 4.8 and Lemma 4.2.7) that 1HxX rHx
¤ c

pV
x . Recalling the de�nition of

the Poincaré constant γpV (see (4.8)), we conclude that

µyST i,1ztxu
�
1Hx VarrVYtxupf |SGprV qq	

¤ q�Opw
4q
�
γrV � 1{µpSGprV qq	 ¸

yPrVYtxu
µpV pcpVy Varypfqq.

Putting all together, we �nally get

VarpV pf |SGppV qq ¤ |xST i,1|q�Opw4q max
�
γrV , 1{µrV pSGprV qq	

�
¸
xPpV

µpV
�
c
pV
x Varxpfq

	
,

where the factor |xST i,1| � OppLq � Opq�4wq comes from the fact that each

vertex x P xST i,1 produces a term of the form
°
yPrV µpV pcpVy Varypfqq.

The remaining induction step allows us to reduce the size of the last
non-empty trapezoid pTi twice. The proof is illustrated in Figure 4.9.

Lemma 4.3.14 (Bisection of a trapezoid). Let pV � V RpL pprq be a snail of
type i such that pri is larger than some su�ciently large constant. Let λ �
mint` ¡ 0, `ui�1 P Z2u � Op1q and let x � ui�1λtpri{p2λxui�k, ui�1yqu. With
this choice xui�k, xy � pri{2. In other words, x is the vector by which the
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x

rV
V i�1

T i

Figure 4.9 � The geometric setting of Lemma 4.3.14. The snail rV is hatched,
V is dotted and their union is the original snail rV . The dotted-hatched
region is V i�1, while the dotted trapezoid is T i.

ring should be translated so that half of the last trapezoid, pTi, remains above
it (see Figure 4.9). Then we set:

rr � ppr0, . . . , pri�1, xui�k, xy, 0, . . . , 0q,
r � ppr0 � xuk, xy, . . . , pri � xuk�i, xy, 0, . . . , 0q,
L � min

�pL, pL� xuk�1, xy
xuk�1, u0y



,

rV � V RpL prrq,
V � x� V R

L
prq.

In words, rV is pV with half of pTi removed, while V is the snail such that
its last trapezoid T i is exactly that missing half, but with length eventually
shortened, so that V �ts inside pV (see Figure 4.9). With these notations,

γpV ¤ γrV {µpGV q � γV {µpGrV q
and rV and V are snails of type i.

Proof of Lemma 4.3.14. The proof goes as follows. In Claim 4.3.15 we show
that the two polygons rV and V are indeed snails (de�ned by admissible
sequences) of type i and that they do correspond to their informal de�nitions
in the statement of the lemma. Though technical, this claim hides no subtlety
and we invite the reader to skip it. Then we apply Lemma 4.2.10 to reduce
the problem of relaxation on pV to the one on rV and on V which yields the
desired result. The event SGprV q is implied by SGppV q by construction, but
the second block, V , of the dynamics corresponding to Lemma 4.2.10, is
updated only when the part of SGpV q witnessed in rV occurs.

We begin with some geometric observations following directly from De-
�nitions 4.2.4 and 4.2.5.
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Claim 4.3.15. rV and V are snails of type i. Furthermore, we have rV YV �pV and pV zrV � T i (the last trapezoid of V ).

Proof of the claim. The statement that rV is a snail of type i follows from
the de�nition of rr and the same fact for pV , since rri ¤ pri.

Turning to V , notice that xuj , xy ¥ 0 for all i P r2ks and j P rk, k � is
with equality i� i � 2k� 1 and j � k. Thus, for all j P r2ks we have prj ¥ rj
and clearly pL ¥ L. Thus, recalling the de�nition of V and that pV is of type
i, conditions (a) and (b) and the left inequalities in (c) and (d) of De�nition
4.3.11 are satis�ed. Moreover, for 0 ¤ j   i we have

prj � rj � xuk�j , xy � xui�1, uk�jy
xui�1, uk�iy ppri � riq ¤ Cppri � riq, (4.14)

so the right inequality of (c) for V follows from the one for pV . Similarly,

pL� L ¤ |xuk�1, xy|
xuk�1, u0y ¤ Cppri � riq, (4.15)

gives that (d) of De�nition 4.3.11 holds for V .
We next prove that V is a snail (with admissible L and r). Recalling

from De�nition 4.2.4 that we need to prove that

(i) rj ¥ 0 for all j P r2ks,
(ii) rj ¤ δrj�1 for all 1 ¤ j   2k,

(iii) r0 ¤ δL, and

(iv) ppL� Lqxu0, uk�1y{ρk�1 P N.

To check (i), observe that rj � prj �Oppriq ¡ 0 for j   i by admissibility

of pr and ri � rri{2 ¡ 0. By admissibility of pV , prj � rj � xuk�j , xy � Θppriq
and C   1{δ we get (ii). For the last two properties we consider two cases.

First assume that i P t2k � 2, 2k � 1u (i.e. x corresponds to a horizontal
translation to the right�in direction u2k). It is easy to check from the
de�nition of L that in this case L � pL, so that (iv) is trivial and (iii) follows
from r0 ¤ pr0 ¤ δpL. This concludes the proof that V is a snail of type i in
this case.

Assume that, on the contrary, i   2k�2, so that the pL�L � xuk�1,xy
xuk�1,u0y �

Θppriq. Then (iii) follows from the fact that pr0 � r0 � Θppriq as above. For
(iv) simply observe that

ppL� Lqxu0, uk�1y � xuk�1, xy P ρk�1N,

since x P Z2 by the de�nition of x and λ. This concludes the proof that V
is a snail of type i.
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By De�nition 4.2.5 it is clear that

pV zV � �
Huk�ipRk�i � priqzHuk�ipRk�i � xuk�i, xyq

�
XHuk�i�1

pRk�i�1 � pri�1q XHuk�i�1
pRk�i�1q.

It also follows from De�nition 4.2.5 that the above trapezoid pV zV is also
equal to T i as claimed. Finally, we have that V � pV using De�nition 4.2.4,
which completes the proof of the claim.

Let now

V i�1 � V R
L
pr0, . . . , ri�1, 0, . . . , 0q � V zT i � V X rV .

By Claim 4.3.15 and Remark 4.3.3 we have

pΩV , µpV p� |GpV qq � pΩrV , µrV p� |SGprV qqq b pΩT i
, µT ip� |GpT iqqq (4.16)

and we can apply Lemma 4.2.10 with the facilitating event

SGpV i�1q � SGpBq X
£
j i
GpT jq � ΩrV ,

where B and T j are the base and trapezoids of V . We get

VarpV pf |SGppV qq ¤ µpSGpV i�1qq�1µpV
�

VarrV pf |SGprV qq
� 1SGpV i�1q VarT ipf |GpT iqq |SGppV q�, (4.17)

where we used that µrV pSGpV i�1q |SGprV qq ¥ µpSGpV i�1qq by the Harris
inequality. Using the de�nition of the Poincaré constant γrV , the fact that

c
rV
x ¤ cVx together with µpSGpV i�1qq ¥ µpSGpV qq the �rst term is bounded
from above by

γrV
µpSGpV qqµpV

��¸
xPrV

c
pV
x Varxpfq

�. (4.18)

The term µpSGpV i�1qq�1µpV
�
1SGpV i�1q VarT ipf |GpT iqq |SGppV q	 from the

r.h.s. of (4.17) can be bounded from above by

µpSGprV qq�1µrV
�
µV i�1

pVarT ipf |GpT iqq |SGpV i�1qq
	

¤ µpSGprV qq�1µrV
�
VarV pf |SGpV qq

�
¤ γV

µpGppV qqµrV
��¸
xPV

c
pV
x Varxpfq

�,
(4.19)

using (4.16), Lemma 4.2.9, the de�nition of γV and the fact that cVx ¤ c
pV
x .

If we now combine (4.17), (4.18) and (4.19) we get the statement of the
lemma.
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We can now assemble our main induction step from Lemmas 4.3.13 and
4.3.14. Namely, we repeatedly use Lemma 4.3.14 until the last trapezoid
is reduced to a bounded number of lines and then apply Lemma 4.3.13 to
remove them as well.

Corollary 4.3.16 (Removing a trapezoid). Let σi � 1{minVi µpSGpV iqq
with min running over all snails of type i. Let Γi � maxV 1i γV 1i , where the

max runs over all snails of type i with ri � 0. Let pV � V RpL pprq be a snail of
type i. Then

γpV ¤ q�Opw
4qσOpmaxp1,log priqq

i Γi.

Proof of Corollary 4.3.16. Let c be a su�ciently large constant. We prove
by induction on pri that

γpV ¤ q�cw
4
σ
cmaxp1,log priq
i Γi.

The base of the induction, pri ¤ ?
c, follows from Lemma 4.3.13, since

γrV ¥ 1 by de�nition. Assume that pri ¡ ?
c. Then Lemma 4.3.14 and the

induction hypothesis applied to both rV and V from that lemma give

γpV ¤ σiq
�cw4

σ
c logp2pri{3q
i Γi ¤ q�cw

4
σc log pri
i Γi,

since both rri and ri in Lemma 4.3.14 are smaller than 2pri{3. This completes
the proof of the induction step and the corollary.

We are now ready to conclude the proof of Proposition 4.3.12 and of
Theorem 4.3.6.

Proof of Proposition 4.3.12. Applying Corollary 4.3.16 successively to each
non-zero coordinate of r, we obtain

γV ¤
�
q�Opw

4qσ
	OplogLq

Γ

with the notation of the statement of Proposition 4.3.12.

Proof of Theorem 4.3.6. Combining Propositions 4.3.9 and 4.3.12 we get

γV ¤
�
q�w

4
σq�Rw

	OplogLq ¤ e�Opw
4 log3p1{qq{qαq,

where the last equality follows from Observation 4.3.5.
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4.4 Proof of Theorem 4.0.1

Recall that w is a large constant much bigger than the constants in any Op�q
notation. Let t� � 1

we
w5 log3p1{qq{qα and T � e1{q3α

. Then we have

Eµpτ0q �
» �8

0
Pµpτ0 ¡ sq

�
» t�

0
Pµpτ0 ¡ sq �

» T
t�

Pµpτ0 ¡ sq �
» �8

T
Pµpτ0 ¡ sq

¤ t� � TPµpτ0 ¡ t�q �
» �8

T
Pµpτ0 ¡ sq.

The term t� has exactly the form required in Theorem 4.0.1. The last term
in the r.h.s. above tends to zero as q Ñ 0. Indeed, using [269, Theorem
2] we have that @s ¡ 0,Pµpτ0 ¡ sq ¤ e�sλ0 with λ0 ¥ e�Ωpplog qq4{q2αq and
therefore » �8

T
Pµpτ0 ¡ sq ¤ λ�1

0 e�Tλ0 Ñ 0 as q Ñ 0.

In conclusion, the proof of the upper bound in Theorem 4.0.1 boils down to
proving

lim
qÑ0

TPµpτ0 ¡ t�q � 0. (4.20)

That requires a sequence of simple steps ((a)-(d) below) and a more involved
part ((e) below). Before turning to the details of the proof of Theorem 4.0.1,
let us sketch our approach.

4.4.1 Roadmap

(a) In order to prove that w.h.p. τ0 ¤ t�, it su�ces to prove the result
for the (stationary) U-KCM process on to the torus Λ and with side

K � 2ew
5 log3p1{qq{qα (see (4.21)).

(b) Let L � Θpλq{q3w for a large positive constant λ � λpU , δq, let R �
w2 logp1{qq{qα, and recall the good and super good events described
in Section 4.3.1 and De�nition 4.3.2. Given a snail V � V R

L prq �
BY�

iPr2ks T
�
i � Λ (recall De�nitions 4.2.4 and 4.2.5) with base B and

trapezoids T�i , we will construct a new event E � ΩΛXZ2 which will
guarantee that (in particular) the following occurs.

(i) For any (translate of) V � Λ as above, the good events GpT�i q
occur for all i P r2ks.

(ii) In every strip of Λ parallel to u0 and of width 2R there exists a
translate of the base B for which the super good event holds.
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(c) We will prove that µpEq ¥ 1 � e�1{qw , which will allow us to conclude
that it is su�cient to analyse the infection time of the origin of the
stationary U-KCM in Λ restricted to E (see (4.25)).

(d) For the latter process we will follow the standard �variational� approach
(see [25, Theorem 2] and also [269, Section 2.2]) and get that

TPµpτ0 ¥ t�q ¤ Te�t�λF p1� op1qq.
Here λF is related to the Dirichlet problem for the U-KCM on the
torus and restricted to E with boundary condition f

��
tωPE:ω0�0u � 0. In

particular (see (4.27))

λF ¥ inf
f
q
Dper

Λ pfq
VarΛpf | Eq ,

where Dper
Λ pfq is the Dirichlet form of the U-KCM on the torus Λ and

the supremum is taken over all f : E Ñ R.

(e) The last and most important step will be to prove that

VarΛpf | Eq ¤ eOpw
4 log3p1{qqq{qαDper

Λ pfq,
implying that t�λF diverges as q Ñ 0 rapidly enough. The high-level
intuition behind the above Poincaré inequality is as follows. A super
good base (i.e. a base B for which the super good SGpBq event holds),
whose presence is guaranteed by (b.ii), will be able to move in Λ using
an FA1f-like dynamics as in Lemma 4.2.12 with pνpHq given by

eΘpw3 log2p1{qqq{qα .

Indeed, we will reproduce each step of that dynamics with a resampling
of an appropriate super good translate of the snail V , since (b.i) gua-
rantees that the super good base does extend to a super good translate
of the snail V . Indeed, the snail (see Figure 4.5) does extend on both
sides of the base for a distance Θpr2k�1q, so taking r2k�1 of order L,
one can induce a change on both sides of the base by resampling the
con�guration inside the snail. Thanks to Theorem 4.3.6, the relaxa-
tion time of the super good snail is eOpw4 log3p1{qqq{qα . The conclusion of
Theorem 4.0.1 then follows rather naturally.

4.4.2 Proof

Let K � 2 exppw5 log3p1{qq{qαq and let Λ � R2{pKu0Z � KukZq be the
torus in R2 of side K directed by u0, which we think of as centred at 0.
Further set

R �w2 logp1{qq{qα, W �1{q3w, M �K{p2R0 �W q,
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Λ
p2q
i

Λ
p1q
i�1

W � 1
q3w

W � 2R0

2R0 � 2w2

qα
log 1

q

Figure 4.10 � The partition of Λ into strips Λi � Λ
p1q
i Y Λ

p2q
i , i P rM s. The

hatched region represents a square Qi,j , which we would like to resample.
The thick polygon is the snail V with its trapezoids. Note that its base B
does not intersect Qi,j and (almost) spans the squares Qi,j�1, . . . , Qi,j�λ.

recalling the notation R0 � ρ0tR{ρ0u from De�nition 4.2.3. For simplicity
we assume that u0p2R0 �W q P Z2 and that M is an even integer (W and
K can be modi�ed by Op1q and Op1{q3wq respectively, so that these both
hold).

We partition Λ into alternating strips Λ
p1q
i ,Λ

p2q
i , i P rM s, of length K

and parallel to u0 (see Figure 4.10). The strips Λ
p1q
i have width 2R0 while

the strips Λ
p2q
i have width W . We write Λi � Λ

p1q
i Y Λ

p2q
i and we think of

the thin strip Λ
p1q
i as being just below the thick one Λ

p2q
i , when u0 points

left. In turn, we partition Λi into consecutive squares Qi,j , j P rM s, of
side length equal to 2R0 �W and sides parallel to u0 and uk and we write

Q
paq
i,j � Qi,j X Λ

paq
i , a P t1, 2u.

Remark 4.4.1. Recalling De�nition 4.2.3, the width of the thin strips is
chosen so that an annulus A of radius R would �t tightly inside.

We are now ready to detail the steps (a)-(e) sketched in the roadmap
above.

Step (a)

Notice that t� � K{p2wq and let τ0, τ
Λ
0 denote the infection times of the

origin for the U-KCM process on Z2 and for the U-KCM process on the
discrete torus Λ X Z2 respectively. Using the fact that the jump rates of
the KCM are bounded, a standard argument of �nite speed of information
propagation (see e.g. [258]) implies that

Pµ pτ0 ¥ t�q ¤ PµΛ

�
τΛ

0 ¥ t�
�� e�ΩpKq as q Ñ 0. (4.21)
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Step (b)

Given a small positive constant ε � εpUq � Ωp1q and a large one λ � λpU , δq
to be speci�ed later (recall the constant δ from De�nition 4.2.4) let

(i) SG
�
Q
p1q
i,j

	
be the event that the rightmost and leftmost annuli A in

Q
p1q
i,j are infected and any segment I � Q

p1q
i,j intersecting Z2, of length

εR and orthogonal to some ui P pS0 contains an infected ui-helping set

in Q
p1q
i,j ;

(ii) GpQi,jq be the event that any segment I � Qi,j intersecting Z2, of

length εW and orthogonal to some u P pS contains w infected consecu-
tive sites;

(iii) Ei be the event that for all the squares Qi,j � Λi the event GpQi,jq
holds and moreover there exists j P rM s such that

�j�λ
j1�j�1 SG

�
Q
p1q
i,j1

	
also holds;

(iv) E � �
iPrMs Ei.

Remark 4.4.2. Similarly to De�nition 4.3.2, (i) needs to be modi�ed slig-
htly if Assumption 4.3.1 is not satis�ed, but we keep working under that
assumption.

Step (c)

With our choice ofK,R,W , as in Observation 4.3.5, we get µ
�
SG

�
Q
p1q
i,j

		
�

qOpRwq. Moreover, using the Harris inequality

µ

�� £
jPrλs
SG

�
Q
p1q
i,j

	�¥ qOpλRwq. (4.22)

Also,

µ

�� £
jPrMs

GpQi,jq
�¥ 1�O

�
MW 2

�
e�q

wεW {w2 ¥ 1� e�q
�2w�op1q

.

In conclusion,

1� µpEiq ¤ e�q
�2w�op1q �

�
1� qOpλRwq

	tM{λu ¤ e�q
�2w�op1q

(4.23)

and µpEq ¥ 1 � Mp1 � µpEiqq ¥ 1 � e�q�2w�op1q
. Therefore, writing τΛ

Ec
for the hitting time of Ec for the U-KCM process in Λ and recalling that
t� � K{p2wq, we obtain

PµΛpτΛ
Ec ¤ t�q ¤ OpK2t�qµpEcq � e�ΩpK2t�q ¤ e�q

�2w�op1q
. (4.24)
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In the second inequality above we used a simple union bound over the upda-
tes for the U-KCM in Λ together with the fact that the law of the U-KCM
process in Λ started from µΛ is equal to µΛ at any given time and a simple
large deviations result on the number of updates.

Thus, if F � tω : ω0 � 0u Y Ec then (4.21) together with (4.24) imply
that

Pµpτ0 ¥ t�q ¤ PµpτΛ
0 ¥ t�q � e�ΩpKq

¤ PµΛpτΛ
F ¥ t�q � PµΛpτΛ

Ec ¤ t�q � e�ΩpKq

¤ PµΛpτΛ
F ¥ t�q � e�q

�2w�op1q
.

(4.25)

Step (d)

As in [25, Theorem 2],

PµΛpτΛ
F ¥ t�q ¤ e�λF t� , (4.26)

with

λF � inf

"
Dper

Λ pfq
µΛpf2q , f |F � 0

*
,

where Dper
Λ pfq denotes the Dirichlet form of the U-KCM process on the torus

Λ (see (4.4)). Observe now that for any f : ΩΛ Ñ R such that f |F � 0

VarΛpf | Eq � 1

2

¸
ω

¸
ω1

µΛpω | EqµΛpω1 | Eqpfpωq � fpω1qq2

¥ µΛpω0 � 0 | EqµΛpf2 | Eq ¥ qµΛpf2q,
where for the last inequality we used the Harris inequality (tω : ω0 � 0u and
E are both decreasing events) and the fact that f2

1E � f2. Hence,

λF ¥ q inf
f

Dper
Λ pfq

VarΛpf | Eq . (4.27)

Notice the absence of the conditioning event E in the Dirichlet form Dper
Λ pfq.

Step (e)

Our main result on the above variational problem is as follows.

Theorem 4.4.3. For all w ¡ 0 large enough, all ε ¡ 0 small enough and
all f : ΩΛ Ñ R

VarΛpf | Eq ¤ eOpw
4plogp1{qqq3q{qαDper

Λ pfq, (4.28)

i.e.
λF ¥ e�Opw

4plogp1{qqq3q{qα . (4.29)
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Before proving this theorem, let us �rst complete the proof of (4.20).
Using t� � w�1 exppw5plogp1{qqq3{qαq and (4.29) we get that for any w
large enough

t�λF ¥ 1{qw
which, together with (4.25) and (4.26) and the choice of T � e1{q3α

, gives

TPµpτ0 ¥ t�q ¤ T
�
e�λF t� � e�q

�2w�op1q
	
Ñ 0. (4.30)

This proves (4.20) and therefore Theorem 4.0.1 modulo Theorem 4.4.3.

Proof of Theorem 4.4.3. The two main ingredients of the proof are Lemma
4.2.12 and Theorem 4.3.6. The de�nition of the event E � �

i Ei and the fact
that the strips Λi are disjoint imply that µΛp� | Eq � Â

i µΛip� | Eiq. In turn,
Lemma 4.2.9 gives

VarΛpf | Eq ¤
¸
i

µΛpVarΛipf | Eiq | Eq. (4.31)

Hence, it is enough to analyse a generic term µΛpVarΛipf | Eiq | Eq and for this
purpose we plan to apply Lemma 4.2.12 to bound from above VarΛipf | Eiq.

Recall that the strip Λi is the disjoint union of M squares pQi,jqMj�1 and

recall the de�nition of the �single square� events SG
�
Q
p1q
i,j

	
and GpQi,jq given

in (i) and (ii) above. Those de�nitions allow us to write (in what follows the
index i of the strip is �xed)

µΛip� | Eiq � νi

��� | ¤
j

j�λ£
j1�j�1

SG
�
Q
p1q
i,j1

	�
where νi,j � µQi,j p� |GpQi,jqq and νi �

Â
j νi,j . We can now apply Lemma

4.2.12 to the product measure νi with SG
�
Q
p1q
i,j

	
as the event H, M as the

parameter n, and λ as the parameter κ. The choice of the key parameter κ
entering the de�nition of the associated facilitating eventsHi,j in the periodic
case,

Hi,j �
j�k£

j1�j�1

SG
�
Q
p1q
i,j1

	
Y

j�k£
j1�j�1

SG
�
Q
p1q
i,j1

	
,

will be postponed to Lemma 4.4.4 below. There κ will be chosen to be
large enough but independent of q. The requirement of Lemma 4.2.12 that
p1� pνpHqκqn{p3κq   1{16 is implied by (4.23).

In the above setting, Lemma 4.2.12 gives

VarΛipf | Eiq ¤ q�OpRwλq
¸
j

νi
�
1Hi,j VarQi,j pf |GpQi,jqq

�
.
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By combining the above with (4.31) we �nally get

VarΛpf | Eq ¤ q�OpRwλq
¸
i,j

µΛ

��1Hi,j VarQi,j pf |GpQi,jqq |
£

i1,j1PrMs
GpQi1,j1q

�.
We shall now analyse a generic term in the sum above with the help of
Theorem 4.3.6.

Lemma 4.4.4. There exists an constant λ � λpU , δq such that the following
holds. If the parameter κ of the facilitating events Hi,j is taken equal to λ
then, for any function f : ΩΛ Ñ R and any i, j,

µΛ

��1Hi,j VarQi,j pf |GpQi,jqq |
£
i1,j1

GpQi1,j1q
�

¤ q�Opw
4 log3p1{qq{qαq ¸

xPΛ
dpx,Qi,jq¤OpλW q

µΛ pcx Varxpfqq .

If we assume the lemma, we immediately recover (4.28), concluding the
proof of Theorem 4.4.3.

Proof of Lemma 4.4.4. We assume that 1Hi,j � 1 and that w.l.o.g. the event

H�
i,j �

�j�λ
j1�j�1 SG

�
Q
p1q
i,j1

	
occurs. Next, we recall De�nition 4.2.4 of the

snail V R
L prq and we choose rl � ρk�ltδrl�1{ρk�lu for all l P r2ks, setting

r�1 � L � λpW � 2R0q � 2R0. We choose λ su�ciently large, depending on
δ and U but not on w and q, in such a way that Qi,j � x� V R

L prq, where x
is the center of the rightmost annulus in Q

p1q
i,j�λ. We write V � x � V R

L prq
and observe that, by construction, Qi,j X B � ∅, where B is the base V .
Finally, we recall De�nition 4.3.2 of the events SGpBq,GpT�l q and SGpV q �
SGpBq X �

lPr2kspGpT�l q X GpT�l qq for the snail V . It is easy to verify the
following implications (see Figure 4.10):

H�
i,j � SGpBq

£
i1,j1

GpQi1,j1q �
£
lPr2ks

pGpT�l q X GpT�l qq. (4.32)

Indeed, for the �rst inclusion, recalling (i) it is clear that A and HA occur
(since the leftmost annulus in Qi,j�1 contains HA and the rightmost one
in Qi,j�λ contains A) and that all SBm,p occur (for SBm,p contained in two
consecutive squares Qi,j1 , Qi,j1�1 at least in one of them we are guaranteed to
have the helping sets; for SB0,p close to the left boundary of Qi,j1 the infected
rightmost annulus provides the desired helping sets). To see the second one,
observe that for all l,m, ST�l,m intersects at least one of the squares Qi1,j1 in
a segment of length at least εW .
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Using (4.32) and µΛpEq � 1� op1q, we have that

µΛ

��1H�
i,j

VarQi,j pf |GpQi,jqq |
£
i1,j1

GpQi1,j1q
�

¤ p1� op1qqµΛ

�
1SGpBq1�i1,j1 GpQi1,j1 q inf

a
µQi,j

�
1GpQi,jqpf � aq2

		
¤ p1� op1qqµΛ

�
inf
a
µQi,j

�
1SGpV qpf � aq2�	

¤ µΛ

�
1SGpV q pf � µV pf |SGpV qqq2

	
{µpSGpV qq

� µΛ pVarV pf |SGpV qqq .
If we now apply the bound (4.9) of Theorem 4.3.6 and use the fact that

V is contained in a deterministic OpλW q-neighborhood of the square Qi,j
we get the conclusion of the lemma, once we observe that cVx ¤ cx, where cx
are the constraints on the torus Λ.

Appendix

4.A Proof of Lemma 4.2.12

We will consider the linear case�the periodic one is treated identically. For
simplicity we assume that 2k divides n. Partition rns into blocks I0, . . . , IN�1

where Ii :� tiκ, . . . , pi� 1qκ� 1u and N � n{κ. Let Hp`q be the event that
there exists i in the left half rN sp`q :� rN{2s of rN s such that ωj P H for
all j P Ii. Let Hprq be de�ned similarly but for the blocks with index in
the right half rN sprq :� rN szrN sp`q. Using the assumption of the lemma
νpHp`qq � νpHprqq ¡ 15{16 and [59, Lemma 6.5], we get

Varνpf |ΩHq ¤ 24ν
�
1Hprq Varp`qpfq � 1Hp`q Varprqpfq |ΩH

	
,

where Varp`q denotes the variance computed w.r.t. the variables correspon-
ding to the blocks in the left half and similarly for Varprq.

Given Hp`q, let ξ be the smallest label in rN sp`q such that ωj P H for all
j P Iξ. Using Lemma 4.2.9 and the fact that the event tξ � iu is independent
of the variables pωjqj¥pi�1qκ, we get that

ν
�
1Hp`q Varprqpfq |ΩH

	
¤

¸
iPrNsp`q

ν
�
1tξ�iu Var¥pi�1qκpfq |ΩH

�
¤ 1pνpHqκ ¸

iPrNsp`q
ν
�
1tξ�iu Var¥pi�1qκpfq

�
,

(4.33)

where Var¥pi�1qκpfq is the variance w.r.t. the variables pωjqj¥pi�1qκ. The
r.h.s. above can now be bounded above using [269, Proposition 3.4]. If HIj
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is the event that ωl P H for all l P Ij , with the convention that HIN and
HI�1 do not occur, we get that

1tξ�iu Varj¥pi�1qκpfq ¤ 1pνpHqOpκq
N�1̧

j�i�1

ν¥pi�1qκ
�
1tξ�iu1H�

j
VarIj pfq

	
,

where H�
j � HIj�1 Y HIj�1 and VarIj is the variance w.r.t. the variables

in Ij . By inserting the r.h.s. above into the r.h.s. of (4.33), we obtain that

ν
�
1Hp`q Varprqpfq |ΩH

	
is smaller than

1pνpHqOpκq ν
��N�1̧

j�1

j�2̧

i�0

1tξ�iu1H�
j

VarIj pfq �
¸

iPrNs`
1tξ�iu1H�

i�1
VarIi�1pfq

�
¤ 2pνpHqOpκq

N�1̧

j�1

ν
�
1H�

j
VarIj pfq

	
,

where we have isolated the term j � i � 1 and used
°
i 1tξ�iu ¤ 1 and

1tξ�iu ¤ 1 for the two terms respectively. Exactly the same argument can

be applied to the term ν
�
1Hprq Varp`qpfq |ΩH

	
to conclude that

Varνpf |ΩHq ¤ 96pνpHqOpκq
N�1̧

j�0

ν
��
1HIj�1

� 1HIj�1

	
VarIj pfq

	
. (4.34)

We �nally bound from above a generic term, considering ν
�
1HI1

VarI0pfq
	

for concreteness.
We apply Lemma 4.2.10 with X1 � ωκ�1, X2 � pω0, ω1, . . . , ωκ�2q and

facilitating event tωκ�1 P Hu to VarI0pfq in order to get

VarI0pfq ¤
2pνpHqνI0 �Varκ�1pfq � 1tωκ�1PHu VarI0ztκ�1upfq

�
. (4.35)

Thus, we obtain

ν
�
1HI1

VarI0pfq
	

¤ 2pνpHq �ν �1HI1
Varκ�1pfq

	
� ν

�
1HI1

1tωκ�1PHu VarI0ztκ�1upfq
		

¤ 2pνpHq �ν �1Hκ�1 Varκ�1pfq
�� ν

�
1Hκ�2 VarI0ztκ�1upfq

��
We can repeat the step leading to (4.35) for X1 � ωκ�2, X2 � pω0, . . . , ωκ�3q
and facilitating event tωκ�2 P Hu and so on. At the end of the iteration we
�nally get that

ν
�
1HI1

VarI0pfq
	
¤

�
2pνpHq


κ ¸
iPI0

ν p1Hi Varipfqq .
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Putting all together, we have �nally proved that

Varνpfq ¤ 96pνpHqOpκq ¸
jPrNs

ν
��
1HIj�1

� 1HIj�1

	
VarIj pfq

	

¤
�

2pνpHq

Opκq¸

j

¸
iPIj

ν p1Hi Varipfqq .



Chapter 5

Sharp threshold for the FA-2f

kinetically constrained model

This chapter is based on joint work with Fabio Martinelli and Cristina To-
ninelli [215], proving Theorem 1.4.6 (recall Section 1.4.4).

5.1 Proof of Theorem 1.4.6: lower bound

In this section we establish the lower bounds (1.14) of Theorem 1.4.6. Our
proof is actually a procedure to establish a general lower bound for Eµpτ0q
based on bootstrap percolation which improves upon a previous general re-
sult [272, Lemma 4.3] which lower bounds Eµpτ0q with the mean infection
time for the corresponding bootstrap percolation model.

We begin with an auxiliary statement. For a rectangle R � Z2 and η P Ω
we denote by rηsR the set of sites x P R which can become infected by
legal moves only using infections in R. Note that rηsR is a union of disjoint
cuboids with sides parallel to the lattice directions. For x, y P R we write

tx RÐÑ yu for the event that rηsR contains a rectangle containing x and y.

Proposition 5.1.1. Let V � r�`, `s2 with ` � `pqq be such that

µp0 P rηsV q � op1q (5.1)

and let

ρ :� sup
xPV :dpx,V cq�1

µ
�tx VÐÑ 0u�. (5.2)

Then

Eµpτ0q ¥ Ωp1q
ρ|V |

and τ0 ¥ q{p|V |ρq w.h.p.

139
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Proof. Let tηtut¥0 denote the stationary KCM on Z2 and let I � tω : 0 P
rωsV u. By assumption µpIq � op1q. Let τ � inftt ¥ 0, ηt P Iu and observe
that τ ¤ τ0 and that Pµpτ ¡ 0q � 1 � op1q. Notice also that at t � τ a
�ip at a site x P V with dpx, V cq � 1 which is pivotal for I must occur. In

particular, ητ P tx VÐÑ 0u. For s ¡ 0 let NV psq be the number of clock rings
in V up to time s as de�ned in Section 1.2.2. By stationarity, at each of
those updates the KCM con�guration is distributed according to µ. Thus,

Pµpτ ¤ sq � E
�
Pµpτ ¤ s |NV psqq

� ¤ Pµpτ � 0q�EpNV psqqρ ¤ op1q�s|V |ρ.
Above we used a union bound to write

Pµp0   τ ¤ s |NV psqq ¤ NV psqρ,
together with EpNV psqq � s|V |. In conclusion,

lim
εÑ0

lim sup
qÑ0

Pµ
�
τ0|V |ρ   ε

� � 0,

which concludes the proof by Markov's inequality.

We can now easily deduce the lower bound of Theorem 1.4.6 from Pro-
position 5.1.1 and bootstrap percolation results.

Proof of the lower bound (1.14) in Theorem 1.4.6. Let ` � logp1{qq
4q . Condi-

tion (5.1) of Proposition 5.1.1 holds by Eq. (1.7) due to [7]. Then The-

orem 10.5.1 and Lemma 10.2.9 give ρ ¤ expp�π2

9q � Op1q?
q q and (1.14) fol-

lows.

5.2 Mobile droplets

This section, which represents the core of the chapter, is split into two distinct
parts:

• the de�nition of mobile droplets together with the choice of the mesoscopic
critical length scale LD characterising their linear size;

• the analysis of two key properties of mobile droplets namely:

� their equilibrium probability ρD;

� the relaxation time of FA-2f in a box of linear size ΘpLDq conditionally
on the presence of a mobile droplet.

Mobile droplets are de�ned as boxes of suitable linear size in which the con�-
guration of infection is super-good (see De�nition 5.2.6). In turn, the super-
good event (see Section 5.2.2) is constructed recursively via a multi-scale
procedure on a sequence of exponentially increasing length scales p`nqNn�1
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(see De�nition 5.2.3). While clearly inspired by the classical procedure used
in bootstrap percolation [225], an important novelty in our construction is
the freedom that we allow for the position of the super-good core of scale
`n inside the super-good region of scale `n�1. The �nal scale `N corre-
sponds to the critical scale LD mentioned above and a convenient choice is
LD � q�17{2 (see (5.6)). There is nothing special in the exponent 17{2: as
long as we choose a su�ciently large exponent our results would not change.
The choice of LD is in fact only dictated by the requirement that w.h.p.
there exist no LD consecutive lattice sites at distance eOplogp1{qqqΘp1q{q from
the origin which are healthy and LD ! eop1{qq. Finally, similarly to their
bootstrap percolation counterparts, the probability ρD of mobile droplets
crucially satis�es ρD � pτBP

0 q�2 (see Proposition 5.2.7).

The extra degree of freedom in the construction of the super-good event
provides a much more �exible structure that can be moved around using
the FA-2f moves without going through the bottleneck corresponding to the
creation of a brand new additional droplet nearby. The main consequence of
this feature (see Proposition 5.2.9) is that the relaxation time of the FA-2f
dynamics in a box of side LD conditioned on being super-good is sub-leading
w.r.t. ρ�1

D as q Ñ 0 and it contributes only to the second order term in
Theorem 1.4.6.

5.2.1 Notation

For any integer n, we write rns for the set t1, . . . , nu. We denote by ~e1, ~e2 the
standard basis of Z2, and write dpx, yq for the Euclidean distance between
x, y P Z2. Given a set Λ � Z2, we set BΛ :� ty P ZdzΛ, dpy,Λq � 1u.
Given two positive integers a1, a2, we write Rpa1, a2q � Z2 for the rectangle
ra1s�ra2s and we refer to a1, a2 as the width and height of R respectively. We
also write BrR (BlR) for the column ta1 � 1u � ra2s (the column t0u � ra2s),
and BuR (BdR) for the the row ra1s�ta2�1u (the row ra1s�t0u). Similarly
for any rectangle of the form R� x, x P Z2.

Given Λ � Z2 and ω P Ω, we write ωΛ P ΩΛ :� t0, 1uΛ for the restriction
of ω to Λ. The con�guration (in Ω or ΩΛ) identically equal to one is denoted
by 1. Given disjoint Λ1,Λ2 � Z2, ωp1q P ΩΛ1 and ωp2q P ΩΛ2 , we write
ωp1q � ωp2q P ΩΛ1YΛ2 for the con�guration equal to ωp1q in Λ1 and to ωp2q in
Λ2. We write µΛ for the marginal of µ on ΩΛ and VarΛpfq for the variance
of f w.r.t. µΛ, given the variables pωxqxRΛ.

5.2.2 Super-good event and mobile droplets

As anticipated, mobile droplets will be de�ned as square regions of a certain
side length in which the infection con�guration satis�es a speci�c condition
dubbed super-good. The latter requires in turn the de�nition of a key event
for rectangles�ω-traversability (see also [225])�together with a sequence of
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R

Figure 5.1 � Black circles denote infected sites. The
boundary condition ω in the �gure is fully infected on
BrR and fully healthy elsewhere. The rectangle R is
quasi-right-traversable under ω but neither quasi-up-,
nor quasi-left-traversable. It is also down-traversable
but not traversable in any other direction.

exponentially increasing length scales.

De�nition 5.2.1 (ω-Traversability). Fix a rectangle R � Rpa1, a2q � x
together with η P ΩR and a boundary con�guration ω P ΩBR. We say that
R is ω-right-traversable (ω-left-traversable) for η if each couple of adjacent
columns of RY BrR (of RY BlR) contains at least one infection. We denote
the corresponding event by T ωÑpRq (T ωÐpRq) and we depict it in our drawings
with a dashed horizontal right (left) arrow (see Figure 5.1). The ω-up(down)-
traversability is de�ned similarly by looking at couples of adjacent rows of
R Y BuR (R Y BdR). The corresponding events will be denoted by T ωÒ pRq
(T ωÓ pRq) and they will be depicted in our drawings with a dashed up (down)
arrow.

We say that R is right-traversable for η if it is 1-right-traversable or, equi-
valently, if it is ω-right-traversable for all ω. We denote the corresponding
event by TÑpRq � T 1ÑpRq and we depict it in our drawings with a solid hori-
zontal right arrow. We de�ne analogously the left-traversable, up-traversable
and down-traversable events, TÐpRq, TÒpRq and TÓpRq respectively (see Fi-
gure 5.1).

Remark 5.2.2. Notice that right-traversability requires that the rightmost
column contains an infection. Similarly for the other directions.

De�nition 5.2.3 (Length scales and nested rectangles). For all integer n
we set1

`n �
#

1 if n � 0,X exp pn?qq?
q

\
if n ¥ 1

(5.3)

and

Λpnq �
#
Rp`n{2, `n{2q if n is even,

Rp`pn�1q{2, `pn�1q{2q if n is odd.
(5.4)

Notice that pΛp2mqqm¥0 is a sequence of squares, while pΛp2m�1qqm¥0 is a
sequence of rectangles elongated in the horizontal direction and Λpn1q � Λpn2q

1This choice of geometrically increasing length scales is inspired by [190].
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`3`1 `2

Figure 5.2 � An example of super-good con�guration in the square Λp6q.
The black square, of type Λp2q � x, is completely infected and it is a super-
good core for the rectangle of type Λp3q formed by it together with the two
hatched rectangles. This Λp3q-type rectangle is also super-good because of
the right/left-traversability of the hatched parts (black arrows) and it is a
super-good core for the square containing it and so on.

if n1   n2. We also say that a rectangle R is of class n if there exist w, z P Z2

such that Λpn�1q � w � R � Λpnq � z. Thus, for n � 0 R is a single site, for
n � 2m ¡ 0 it is a rectangle of width `m and height a2 P p`m�1, `ms and for
n � 2m� 1, it is a rectangle of height `m and width a1 P p`m, `m�1s.

We are now ready to introduce the key notion of the ω-super-good
event on di�erent scales. This event is de�ned recursively on n and it
has a hierarchical structure. Roughly speaking, a rectangle R of the form
R � Λpnq�x, x P Z2, is ω-super-good if it contains a 1-super-good rectangle
R1 of the form R1 � Λpn�1q�x1 called the core and outside the core it satis�es
certain ω-traversability conditions (see Figure 5.2).

De�nition 5.2.4 (ω-Super-good rectangles). Let us �x an integer n ¥ 0,
a rectangle R � Rpa1, a2q � x of class n and ω P ΩBR. We say that R is
ω-super-good and denote the corresponding event by SGωpRq if the following
occurs.

• n � 0. In this case R consists of a single site and SGωpRq is the event
that this site is infected.

• n � 2m. For any s P r0, `m�`m�1s write R � CsYpΛpn�1q�x�s~e2qYDs,
where Cs (Ds) is the part of R below (above) Λpn�1q� x� s~e2. With this
notation we set

SGωs pRq :� T ωÓ pCsq X SG1pΛpn�1q � x� s~e2q X T ωÒ pDsq
and let SGωpRq � �

sPr0,`m�`m�1s SG
ω
s pRq.

• n � 2m� 1. In this case SGωpRq requires that there is a core in R of the
form Λpn�1q � x � s~e1, s P r0, `m�1 � `ms, which is 1-super-good and the
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two remaining rectangles forming R to the left and to the right of the core
are ω-left-traversable and ω-right-traversable respectively.

We will say that R is super-good if it is 1-super-good and denote the corre-
sponding event by SGpRq. We have monotonicity in the boundary condition
in the sense that if R is super-good then R is ω-super-good for all ω P ΩBR.

Remark 5.2.5 (Irreducibility of the FA-2f chain in SGωpRq). It is not di�-
cult to verify that for all η P SGωpRq, there exists a path of legal moves that
connects η to the fully infected con�guration. The above property implies
in particular that if we consider the FA-2f chain in R restricted to SGωpRq,
then the chain is irreducible.

Now let

N :�
Q8 logp1{qq?

q

U
(5.5)

and observe that

`N � q�17{2�op1q. (5.6)

In the sequel we will refer to `N as the droplet scale.

De�nition 5.2.6 (Mobile droplets). Given ω P Ω, a mobile droplet for ω is
any square R of the form R � Λp2Nq � x for which ωR P SGpRq.

The two key properties of mobile droplets are the following.

Proposition 5.2.7 (Probability of mobile droplets). For all n ¤ 2N ,

µΛpnqpSGq ¥ exp
�
� π2

9q

�
1�O

�?
q log2p1{qq��	.

In particular, this holds for ρD :� µpΛp2Nq is a mobile dropletq.
Remark 5.2.8. The lower bound of Proposition 5.2.7 is saturated on the
droplet scale. Indeed, it is essentially sharp for n � 2N .

The proof of Proposition 5.2.7 follows from standard 2-neighbour boot-
strap percolation techniques and it is deferred to Appendix 5.A. The second
property of mobile droplets requires a bit of preparation.

Given R of class n and ω P ΩZ2zR, let γωpRq be the best constant C in
the Poincaré inequality

VarRpf |SGωpRqq ¤ C
¸
xPR

µRpcR,ωx Varxpfq |SGωpRqq, (5.7)

where, for all Λ � Z2, all ω P ΩBΛ and x P Λ

cΛ,ω
x pηq � cxpη � ωq,
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and

cxpωq �
#

1 if
°
y�xp1� ωyq ¥ 2

0 otherwise
(5.8)

with y � x i� x, y are nearest neighbours. The fact that FA-2f restricted
to SGωpRq is irreducible (see Remark 5.2.5) implies that γωpRq is �nite.
However, proving a good upper bound on γωpRq is quite hard. In the sequel
we will sometimes refer to γωpRq as the relaxation time of SGωpRq.
Proposition 5.2.9 (Relaxation time of mobile droplets). For all n ¤ 2N

max
ω

γωpΛpnqq ¤ exp
�
Oplog2p1{qqnq�.

In particular, on the droplet scale we get

max
ω

γωpΛp2Nqq ¤ eOplog3p1{qqq{?q.

Remark 5.2.10. We stress an important di�erence in the de�nition of
γωpΛpnqq w.r.t. a similar de�nition in (4.8). Indeed, in (5.7) the conditi-
oning w.r.t. the super-good event SGωpRq appears in the l.h.s. and in the
r.h.s. of the inequality, while in (4.8) the conditioning was absent in the r.h.s.
Keeping the conditioning also in the r.h.s. is a delicate and important point
if one wants to get a Poincaré constant which is sub-leading w.r.t. ρ�1

D . The-
orem 4.3.6 in the context of FA-2f would give a Poincaré constant bounded
from above by expplogp1{qq3{qq, much bigger than ρ�1

D .

5.2.3 Proof of Proposition 5.2.9

The proof is unfortunately rather long and technical but the main idea and
technical ingredients can be explained as follows.

Given the recursive de�nition of the super-good event SGωpΛpnqq it is
quite natural to try bounding from above its relaxation time in progressively
larger and larger volumes. A high-level �dynamical intuition� here goes as
follows. After every time interval Θpγ1pΛpn�1qqq the core of Λpnq, namely a
super-good rectangle of type Λpn�1q inside Λpnq, will equilibrate under the
FA-2f dynamics. Therefore, the relaxation time of SGpΛpnqq should be at

most T
pnq
eff � γ1pΛpn�1qq, where T pnqeff is the time that it takes for the core to

equilibrate its position inside Λpnq, assuming that at each time the infections
inside it are at equilibrium. The main step necessary to transform this rather
vague idea into a proof is as follows.

In order to analyse the characteristic time scale of the e�ective dynamics
of a core, we need to improve and expand a well established mathemati-
cal technique for KCM to relate the relaxation times of two ω-super-good
regions on di�erent scales. Such a technique introduces various types of auxi-
liary constrained block chains and a large part of our argument is devoted
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to proving good bounds on their relaxation times (see Section 5.3). The
main application of this technique to our concrete problem is summarised in
Lemmas 5.2.11 and 5.2.12 below which easily imply Proposition 5.2.9. Let

Λpn,�q �
#
Rp`m � 1, `mq if n � 2m,

Rp`m�1, `m � 1q if n � 2m� 1.

The two key steps connecting the relaxation times of super-good rectangles
of increasing length scale are as follows.

Lemma 5.2.11 (From `tn{2u � 1 to `tn{2u�1). For all 0 ¤ n ¤ 2N � 1

max
ω

γωpΛpn�1qq ¤ max
ω

γωpΛpn,�qq exppOplog2pqqqq.

Lemma 5.2.12 (From `tn{2u to `tn{2u � 1). For all 0 ¤ n ¤ 2N � 1

max
ω

γωpΛpn,�qq ¤ q�Op1q max
ω

γωpΛpnqq.

The lemmas imply that

max
ω

γωpΛpn�1qq ¤ exppOplogpqq2qqmax
ω

γωpΛpnqq

and Proposition 5.2.9 follows by induction over n.

Proof of Lemma 5.2.11. Given n ¤ 2N � 1 let Kn be the smallest integer
K such that rp2{3qKp`tn{2u�1 � `tn{2uqs � 1. De�nition (5.3) and (5.5) imply
that maxn¤2N�1Kn ¤ Oplogp1{qqq. Consider the (exponentially increasing)
sequence

dk � rp2{3qKn�kp`tn{2u�1 � `tn{2uqs, k ¤ Kn, (5.9)

and let sk � dk�1�dk for k ¤ Kn�1. Next consider the collection pRpkqqKnk�0

of rectangles of class n� 1 interpolating between Λpn,�q and Λpn�1q de�ned
by

Rpkq �
#
Rp`m � dk, `mq if n � 2m,

Rp`m�1, `m � dkq if n � 2m� 1.

By construction, Rpkq � Rpk�1q, Rp0q � Λpn,�q and RpKnq � Λpn�1q. Finally,
recall the events SGωpRq and SGωs pRq constructed in De�nition 5.2.4) for
any rectangle R of class n� 1 ¤ 2N and let

ak � max
ω

�
µRpkqpSG1dk |SGωq

��2
max
ω

�
µRpkqpSGω0 |SGωq

��1
, (5.10)

where maxω is over all ω P ΩBRpkq . In Corollary 5.A.3 we prove that

µR
�
SGωs pRq |SGω1pRq

� ¥ qOp1q
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V1 V3Λpnq � sk~e1

Rk

V2

Figure 5.3 � The partition of Rpk�1q into the rectangles V1, V2, V3. We
illustrate here the event F1,2. The grey region Λpnq�sk~e1 to the left boundary
of V2 is SG and the dashed arrow in V1 indicates its ω-traversability. The solid
arrow in V2zpΛpnq� sk~e1q indicates instead the 1-traversability of V2zpΛpnq�
sk~e1q. Clearly the entire con�guration belongs to the events H and K de�ned
in (5.14), (5.15).

uniformly over all rectangles R of class n � 1 ¤ 2N , all possible values of
the o�set s and all choices of the boundary con�gurations ω, ω1 P ΩBR. As a
consequence

max
n¤2N�1

max
k¤Kn

ak ¤ p1{qqOp1q. (5.11)

With the above notation the key inequality for proving Lemma 5.2.11 is

max
ω

γωpRpk�1qq ¤ Cak �max
ω

γωpRpkqq, k P r0,Kn � 1s, (5.12)

for some universal constant C ¡ 0. Recalling that Rp0q � Λpn,�q and RpKnq �
Λpn�1q, from (5.12) it follows that

max
ω

γωpΛpn�1qq ¤
�
CKn

Kn�1¹
k�0

ak

	
�max

ω
γωpΛpn,�qq (5.13)

which in turn implies Lemma 5.2.11 by (5.11) and Kn ¤ Oplogp1{qqq.
The proof of (5.12), which is detailed for simplicity only in the even case

n � 2m, relies on the Poincaré inequality for a properly chosen auxiliary
block chain proved in Proposition 5.3.5. In order to exploit that proposition
we partition Rpk�1q into three disjoint rectangles V1, V2, V3 as follows (see
Figure 5.3):

V1 � Rpsk, `mq, V2 � RpkqzV1, V3 � Rpk�1qzRpkq.
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Then, given a boundary con�guration ω P ΩBRpk�1q , let

H � tη : η3 P T ωÑpV3q and η1 � η2 P SGη�ωpV1 Y V2qu, (5.14)

K � tη : η1 P T ωÐpV1q and η2 � η3 P SGη�ωpV2 Y V3qu, (5.15)

ηi :� ηVi and η �ω denotes the con�guration equal to ω on BRpk�1q and equal
to η on Rpk�1q. Notice that H Y K � SGωpRpk�1qq. The width of V2 is in
fact `m � 2dk � dk�1 ¥ `m and therefore any con�guration in SGωpRk�1q
necessarily contains a super-good core in either V1 Y V2 or V2 Y V3.

We next introduce two additional events

F1,2 � SG1�ωsk pV1 Y V2q F2,3 � SG1�ω0 pV2 Y V3q,
where, with a slight abuse of notation, 1 � ω equals 1Rpk�1q � ω. In words,
F1,2 (F2,3) consists of super-good con�gurations in V1 Y V2 (V2 Y V3) with
a super-good core of type Λpnq inside V2 in the leftmost possible position.
Monotonicity in the boundary condition easily implies that

tη : η3 P T ωÑpV3q and η1 � η2 P F1,2u � HXK,
and similarly for F2,3.

At this stage we can apply Proposition 5.3.5 with parameters Ωi � ΩVi

for i P t1, 2, 3u, A1 � T ωÐpV1q, A3 � T ωÑpV3q, Bη3
1,2 � SGη�ωpV1 Y V2q and

Bη1
2,3 � SGη�ωpV2 Y V3q to get

VarRpk�1q

�
f |SGωpRpk�1qq� � VarRpk�1q

�
f |HYK�

¤ cT p1qaux � µRpk�1q

�
1H Varpf |H, η3q � 1K Varpf |K, η1q |HYK

�
, (5.16)

for some universal constant c ¡ 0, where

T p1qaux � max
ηV1

PT ωÐpV1q
ηV3

PT ωÑpV3q

�µRpk�1q

�
SGη�ωpV1 Y V2q

�
µRpk�1q

�
F1,2

� 	2 � µRpk�1q

�
SGη�ωpV2 Y V3q

�
µRpk�1q

�
F2,3

� .

Using (5.10) and the fact that V1YV2 � Rpkq, V2YV3 � Rpkq�sk, one easily
sees that T

p1q
aux ¤ ak.

In order to conclude the proof of (5.12) we are left with the analysis of
the average w.r.t. µRpk�1qp� |H Y Kq in the r.h.s. of (5.16). Recalling (5.7),
for any η P ΩRpk�1q such that η3 P T ωÑpV3q we get

Varpf |H, η3q ¤ max
ω1PΩ

BRpkq

γω
1pRpkqq

�
¸

yPRpkq
µRpkq

�
cR

pkq,η3�ω
y Varypfq|SGη�ωpRpkqq�. (5.17)
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An analogous inequality holds for Varpf |K, η1q when η1 P T ωÐ. Finally,

µRpk�1q

�
1HµRpkq

�
cR

pkq,η3�ω
y Varypfq |SGη�ωpRpkqq� |SGωpRpk�1qq�

� µRpk�1q

�
1Hc

Rpk�1q,ω
y Varypfq |SGωpRpk�1qq�

and the similarly for K. Inserting the above into (5.16), we get

VarRpk�1q

�
f |SGωpRpk�1qq� ¤ Opakq �max

ω1
γω

1pRpkqq
�

¸
xPRpk�1q

µRpk�1

�
cR

pk�1q,ω
x Varxpfq |SGωpRpk�1qq�,

which proves (5.12).

Proof of Lemma 5.2.12. The proof is similar to the proof of Lemma 5.2.11,
but in this case we plan to use Proposition 5.3.7. Again we provide the
details only in the case n � 2m.

The result for the case m � 0 follows immediately since Λp0,�q contains
only two sites. If m ¥ 1 we begin by writing Λpn,�q � Rp`m � 1, `mq �
V1YV2YV3, where V1 denotes the leftmost column, V3 the rightmost column
and V2 all the remaining columns (see Fig 5.4). By construction V1YV2 and
V2YV3 are translates of Λpnq. Then, for any given ω P ΩBΛpn,�q , we introduce
the events

M � T ωÑpV3q X SGpV1 Y V2q N � T ωÐpV1q X SGpV2 Y V3q

and observe that SGωpΛpn,�qq �MYN . In order to be able to use Propo-
sition 5.3.7 we need some further events. The �rst one is the event SGpV2q
which is best explained by Figure 5.4. It corresponds to requiring that in-
side the rectangle V2 � Rp`m�1, `mq�~e1 there exists a 1-super-good square
Rp`m�1, `m�1q � x and the remaining rectangles in V2zRp`m�1, `m�1q � x
which sandwich Rp`m�1, `m�1q � x are 1-traversable. The formal De�nition
5.A.4 is left to Appendix 5.A.

It is immediate to verify that for any η2 P SGpV2q there exist two vertical
intervals I1 � I1pη2q � V1 and I3 � I3pη2q � V3 such that ηI1 � 1 implies
that η1 � η2 P SGpV1YV2q and similarly if ηI3 � 1. Here, as before, ηi :� ηVi .
We then set

Ĉ1,2 :�  
η : η2 P SGpV2q, ηI1pη2q � 1

(
(5.18)

and for η P Ĉ1,2 we let

Aη1�η2
3 � tηI3pη2q � 1u.

By construction 
η : η1 � η2 P Ĉ1,2 and η3 P Aη1�η2

3

( �MXN .
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V1

V2

I3I1

V3

Figure 5.4 � The partition of Λpn,�q into the rectangle V2 and the two
columns V1 and V3. Here we illustrate the event SGpV2q: the grey region is a
super-good rectangle of the type Λpn�2q, while the patterned rectangles are
1-traversable in the arrow directions. If there is at least one infection in I3

then the rectangle V2 Y V3 is super-good. Analogously for I1.

We can �nally apply Proposition 5.3.7 with parameters C1,2 � SGpV1 Y V2q,
C2,3 � SGpV2 Y V3q, A1 � T ωÐpV1q and A3 � T ωÑpV3q to get that

VarΛpn,�qpf |MYN q
¤ cT p2qaux � µΛpn,�q

�
1M Varpf | C1,2, η3q � 1N Varpf | C2,3, η1q

� 1M Varpf |A3, η1, η2q � 1N Varpf |A1, η2, η3q |MYN
	
, (5.19)

for some universal constant c ¡ 0, with

T p2qaux � max
ηPĈ1,2

µΛpn,�qpA3q
µΛpn,�qpAη1,η2

3 q �
µΛpn,�qpC1,2q
µΛpn,�qpĈ1,2q

.

Clearly, minηPĈ1,2
µΛpn,�qpAη1,η2

3 q ¥ q. Furthermore, in Lemma 5.A.5 we will

establish that µV1YV2pĈ1,2 | C1,2q ¥ qOp1q. All together

T p2qaux ¤ q�Op1q. (5.20)

We now turn to examine the four averages w.r.t. µΛpn,�qp� |MYN q ap-
pearing in the r.h.s. of (5.19). Recall thatM YN � SGωpΛpn,�qq. For the
�rst and second average we can mimic what we did for (5.17) and get that
they are both bounded from above by

max
ω1

γω
1pΛpnqq

¸
xPV1YV2

µΛpn,�q
�
cΛpn,�q,ω
x Varxpfq |SGωpΛpn,�qq�. (5.21)
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We will now explain how to upper bound the third average,

µΛpn,�q

�
1M Varpf |A3, η1, η2q |MYN

	
,

the forth one being similar. We need to distinguish two cases, according to
whether the boundary condition ω has an infection on the column V3 � ~e1

or not.

Assume ωV3�~e1 � 1 In this case A3 � TÑpV3q � ΩV3zt1u and Proposition
5.3.2 (1), gives that

Varpf |A3, η1, η2q � VarV3pf | TÑpV3qq
¤ q�Op1q

¸
xPV3

µV3

�
c̃x Varxpfq | TÑpV3q

�
, (5.22)

with c̃xpηq � 1 if x has at least one infected neighbour inside V3 and c̃xpηq � 0
otherwise. For x P V3 let

Ax � µΛpn,�q

�
1M µV3

�
c̃x Varxpfq | TÑpV3q

� |MYN
	
.

UsingM � SGωpΛpn,�qq, µΛpn,�qpTÑpV3q |SGωpΛpn,�qqq � 1, V1 Y V2 � Λpnq

and the fact that the average of a conditional variance is not more than the
total variance, we get

Ax � µΛpn,�q
�
1Mc̃x Varxpfq |SGωpΛpn,�qq�

¤ µΛpn,�q
�
1Mc̃x VartxuYΛpnqpf |SGpΛpnqqq |SGωpΛpn,�qq�.

Next, we use Proposition 5.3.3 to write

VartxuYΛpnqpf |SGpΛpnqqq ¤ 2

q

�
VarΛpnqpf |SGpΛpnqqq � 1tηx�~e1�0u Varxpfq

�
.

Recalling (5.7), we get

VarΛpnqpf |SGpΛpnqqq ¤ γ1pΛpnqq
¸

yPΛpnq

µΛpnq
�
cΛpnq1
y Varypfq |SGpΛpnqq�

¤ γ1pΛpnqq
¸

yPΛpnq

µΛpnq
�
cΛpn,�q,ω

y Varypfq |SGpΛpnqq�,
because cΛpnq,1

y ¤ cΛpn,�q,ω
y . Finally, observe that 1tηx�~e1�0uc̃x ¤ cΛpn,�q,ω

x ,

because if x P V3 has an infected neighbour in V3 (the constraint c̃x) and
x � ~e1 P V2 is also infected then x has two infected neighbours in Λpn,�q.
Putting all together, we conclude that

Ax ¤ 2

q
γ1pΛpnqq

� µΛpn,�q

�
cΛpn,�q,ω
x Varxpfq �

¸
yPΛpnq

cΛpn,�q,ω
y Varypfq |SGωpΛpn,�qq

	
.
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In conclusion, using |V3| � `m � q�Op1q we get that when ωV3�~e1 � 1 the
third average in the r.h.s. of (5.19) satis�es

µΛpn,�q

�
1M Varpf |A3, η1, η2q |MYN

	
¤

¸
xPV3

Ax

¤ γ1pΛpnqq
q�Op1q

¸
yPΛpn,�q

µΛpn,�q

�
cΛpn,�q,ω
y Varypfq |SGωpΛpn,�qq

	
. (5.23)

Combining (5.19), (5.20), (5.21) and (5.23) (and its analogue for the forth
average in the r.h.s. of (5.19)), we conclude the proof of Lemma 5.2.12 in
this case.

Assume ωV3�~e1 � 1 In this case T ωÑpV3q � ΩV3 , so VarV3pf | T ωÑpV3qq �
VarV3pfq. The proof is then identical to the previous one except for inequa-
lity (5.22) which now follows from Proposition 5.3.2 (2) with any site in V3

neighbouring an infection of ωV3�~e1 being unconstrained.

5.3 Constrained Poincaré inequalities

In this section we state and prove various Poincaré inequalities for the auxi-
liary chains that were instrumental for the proofs of Lemmas 5.2.11 and
5.2.12.

5.3.1 FA-1f-type Poincaré inequalities

Fix Λ � Z2 a connected set and let rΩΛ � ΩΛz1. Given x P Λ let NΛ
x be

the set of neighbours of x in Λ and let NΛ
x be the event that NΛ

x contains at
least one infection. For any z P Λ consider the two Dirichlet forms

DFA-1f
Λ pfq � µΛ

� ¸
xPΛ

1NΛ
x

Varxpfq | rΩΛ

	
, f : rΩΛ Ñ R,

DFA-1f,z
Λ pfq � µΛ

� ¸
xPΛ
x�z

1NΛ
x

Varxpfq �Varzpfq
	
, f : ΩΛ Ñ R.

Remark 5.3.1. The alert reader will recognise the above expressions as
the Dirichlet forms of the FA-1f process on rΩΛ or on ΩΛ with the site z
unconstrained.

Our �rst tool is a Poincaré inequality for these Dirichlet forms.

Proposition 5.3.2. Let Λ be a connected subset of Z2 and let z P Λ be an
arbitrary site. Then:
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(1) for any f : rΩΛ Ñ R,

VarΛpf | rΩΛq ¤ 1

qOp1q
DFA�1f

Λ pfq; (5.24)

(2) for any f : ΩΛ Ñ R,

VarΛpfq ¤ 1

qOp1q
DFA�1f,z

Λ pfq, (5.25)

where the constants in the Op1q do not depend on z or Λ.

Proof. Inequality (5.24) is proved in [59, Theorem 6.1]. In order to prove
(5.25), consider the auxiliary Dirichlet form

µΛpVarzpfqq � µΛ

�
1rΩΛ

VarΛpf | rΩΛq
�
.

The corresponding ergodic, continuous time Markov chain on ΩΛ, reversible
w.r.t. µΛ, updates the state of z at rate 1 and, if ω P rΩΛ, it updates the
entire con�guration w.r.t. πp� | rΩΛq. Since the chain enters rΩΛ at rate q (by
�ipping ωz), a simple coupling argument shows that its relaxation time is
Op1{qq. Hence,

VarΛpfq ¤ Op1q{q
�
µΛpVarzpfqq � µΛ

�
1rΩΛ

VarΛpf | rΩΛq
�	

¤ 1

qOp1q
�
µΛpVarzpfqq � µΛprΩΛqDFA�1f

Λ pfq
	
,

where the second inequality follows from (5.24). We may then conclude by

observing that µΛpVarzpfqq � µΛprΩΛqDFA�1f
Λ pfq ¤ 2DFA�1f,z

Λ pfq.
Our second tool is a general constrained Poincaré inequality for two in-

dependent random variables.

Proposition 5.3.3 (See Lemma 4.2.10). Let X1, X2 be two independent
random variable taking values in two �nite sets X1,X2 respectively. Let also
H � X1 with PpX1 P Hq ¡ 0. Then for any f : X1 � X2 Ñ R it holds

Varpfq ¤ 2PpX1 P Hq�1E
�

Var1pfq � 1tX1PHu Var2pfq
�
.

with Varipfq � VarpfpX1, X2q |Xiq.

5.3.2 Constrained block chains

In this section we de�ne two auxiliary constrained reversible Markov chains
and give an upper bound for the corresponding Poincaré constants (Lemmas
5.3.5 and 5.3.7).
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Let pΩi, πiq3i�1 be �nite probability spaces and let pΩ, πq denote the asso-
ciated product space. For ω P Ω we write ωi P Ωi for its i

th coordinate and
we assume for simplicity that πipωiq ¡ 0 for each ωi. Fix A3 � Ω3 and for
each ω3 P A3 consider an event Bω3

1,2 � Ω1 � Ω2. Analogously, �x A1 � Ω1

and for each ω1 P A1 consider an event Bω1
2,3 � Ω2 � Ω3. We then set

H �  
ω : ω3 P A3 and pω1, ω2q P Bω3

1,2

(
,

K �  
ω : ω1 P A1 and pω2, ω3q P Bω1

2,3

(
and let for any f : HYKÑ R

Dp1qauxpfq � π
�
1H Varπpf |H, ω3q � 1K Varπpf |K, ω1q |HYK

�
.

Remark 5.3.4. It is easy to check that Dp1qauxpfq is the Dirichlet form of the
continuous time Markov chain on HYK in which if ω P H the pair pω1, ω2q is
resampled with rate one from π1bπ2p� |Bω3

1,2q and if ω P K the pair pω2, ω3q is
resampled with rate one from π2 b π3p� |Bω1

2,3q. This chain is reversible w.r.t.
πp� |HYKq and its constraints, contrary to what happens for general KCM,
depend on the to-be-updated variables.

Proposition 5.3.5. There exists a universal constant c such that the follo-
wing holds. Suppose that there exist two events F1,2, F2,3 such that 

ω : ω3 P A3 and pω1, ω2q P F1,2

( � HXK, (5.26) 
ω : ω1 P A1 and pω2, ω3q P F2,3

( � HXK (5.27)

and let

T p1qaux � max
ω3PA3,

�πpBω3
1,2q

πpF1,2q
	2

max
ω1PA1

πpBω1
2,3q

πpF2,3q .

Then, for all f : HYKÑ R,

Varπpf |HYKq ¤ cT p1qauxDp1qauxpfq.
Proof. Consider the Markov chain pωptqqt¥0 determined by the Dirichlet form

Dp1qaux as described in Remark 5.3.4. Given two arbitrary initial conditions
ωp0q an ω1p0q we will construct a coupling of the two chains such that with

probability Ωp1q we have ωptq � ω1ptq for any t ¡ T
p1q
aux. Standard argu-

ments [256] then prove that the mixing time of the chain is OpT p1qauxq and the
conclusion of the proposition follows. To construct our coupling we use the
following representation of the Markov chain.

We are given two independent Poisson clocks with rate one and the chain
transitions occur only at the clock rings. Suppose that the �rst clock rings.
If the current con�guration ω does not belong to H the ring is ignored.
Otherwise, a Bernoulli variable ξ with probability of success πpF1,2 |Bω3

1,2q is
sampled. If ξ � 1, then the pair pω1, ω2q is resampled w.r.t. the measure
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πp� |F1,2,Bω3
1,2q, while if ξ � 0, then pω1, ω2q is resampled w.r.t. the measure

πp� |Fc1,2,Bω3
1,2q. Clearly, in doing so the couple pω1, ω2q is resampled w.r.t.

πp� |Bω3
1,2q. Similarly if the second clock rings but with H, pω1, ω2q, F1,2 and

Bω3
1,2 replaced by K, pω2, ω3q, F2,3 and Bω1

2,3 respectively. It is important to
notice that πp� |F1,2,Bω3

1,2q � πp� |F1,2q for all ω3 P A3, as, by assumption,
F1,2 � �

ω3PA3
Bω3

1,2. Similarly, πp� |F2,3,Bω1
2,3q � πp� |F2,3q for all ω1 P A1.

In our coupling both chains use the same clocks. Suppose that the �rst
clock rings and that the current pair of con�gurations is pω, ω1q. Assume also
that at least one of them, say ω, is in H (otherwise, both remain unchanged).
In order to construct the coupling update we proceed as follows.

• If ω1 R H then ω is updated as described above, while ω1 stays still.

• If ω1 P H we �rst maximally couple the two Bernoulli variables ξ, ξ1 corre-
sponding to ω, ω1 respectively. Then:

� if ξ � ξ1 � 1, we update both pω1, ω2q and pω11, ω12q to the same couple
pη1, η2q P F1,2 with probability πppη1, η2q |F1,2q;

� otherwise we resample pω1, ω2q and pω11, ω12q independently from their
respective law given ξ, ξ1.

Similarly if the ring comes from the second clock. The �nal coupling is
then equal to the Markov chain on Ω�Ω with the transition rates described
above. Suppose now that there are three consecutive rings occurring at times
t1   t2   t3 such that:

• the �rst and last ring come from the �rst clock while the second ring comes
from the second clock, and

• the sampling of the Bernoulli variables (if any) at times t1, t2 and t3 all
produce the value one.

Then we claim that at time t3 the two copies are coupled.

To prove the claim, we begin by observing that after the �rst update
at t1 both copies of the coupled chain belong to K. Here we use (5.26).
Indeed, if the �rst update is successful for ω (i.e. ω P H) then the updated
con�guration belongs to F1,2 � tω3u � K, because of our assumption ξ � 1.
If, on the contrary, the �rst update fails (i.e. ω R H) then ω P KzH before
and after the update. The same applies to ω1.

Next, using again the assumption on the Bernoulli variables together with
the previous observation, we get that after the second ring the new pair of
current con�gurations agree on the second and third coordinate. Moreover
both copies belong toH thanks to (5.27). Finally, after the third ring the two
copies couple on the �rst and second coordinates using again the assumption
on the outcome for the Bernoulli variables.
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In order to conclude the proof of the proposition it is enough to observe
that for any given time interval ∆ of length one the probability that there
exist t1   t2   t3 in ∆ satisfying the requirements of the claim is bounded
from below by

c min
ω3PA3

π
�
F1,2|Bω3

1,2

�2
min
ω1PA1

π
�
F2,3|Bω1

2,3

�
,

for some constant c ¡ 0.

In the same setting consider two other events C1,2 � Ω1 b Ω2, C2,3 �
Ω2 b Ω3 and let

M � A3 X C1,2, N � A1 X C2,3.

The Dirichlet form of our second Markov chain onMYN is then

Dp2qauxpfq � π
�
1M Varpf | C1,2, ω3q � 1M Varpf |A3, ω1, ω2q

� 1N Varpf | C2,3, ω1q � 1N Varpf |A1, ω2, ω3q |MYN
	
. (5.28)

Remark 5.3.6. Similarly to the �rst case, the continuous time chain de�ned
by (5.28) is reversible w.r.t. πp� |MYN q and it can be described as follows.
If ω P M then with rate one pω1, ω2q is resampled w.r.t. π1 b π2p� | C1,2q
and, independently at unit rate, ω3 is resampled w.r.t. π3p� |A3q. Similarly,
independently from the previous updates at rate one, if ω P N then pω2, ω3q
is resampled w.r.t. π2 b π3p� | C2,3q and, independently, ω1 is resampled from
π1p� |A1q.
Proposition 5.3.7. There exists a universal constant c such that the fol-
lowing holds. Suppose that there exist an event Ĉ1,2 � C1,2 and a collection
pAω1,ω2

3 qpω1,ω2qPĈ1,2
of subsets of A3 such that 

ω : pω1, ω2q P Ĉ1,2 and ω3 P Aω1,ω2
3

( �MXN , (5.29)

and let

T p2qaux � max
pω1,ω2qPĈ1,2

πpA3q
πpAω1,ω2

3 q �
πpC1,2q
πpĈ1,2q

.

Then there exists c ¡ 0 such that for all f :MYN Ñ R,

Varpf |MYN q ¤ cT p2qauxDp2qauxpfq.
Proof. We proceed as in the proof of Proposition 5.3.5 with the following
representation for the Markov chain. We are given four independent Poisson
clocks of rate one and each clock comes equipped with a collection of i.i.d.
random variables. The four independent collections, the �rst being for the
�rst clock, etc., are�pωpiq1 , ω

piq
2 q�8

i�1
,

�
η
piq
3

�8
i�1
,

�pωpiq2 , ω
piq
3 q�8

i�1
,

�
η
piq
1

�8
i�1
,
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where the laws of the collections are π1bπ2p� | C1,2q, π3p� |A3q, π2bπ3p� | C2,3q
and π1p� |A1q respectively.

At each ring of the �rst and second clocks the con�guration is updated
with the variables from the corresponding collection i� ω PM. Similarly for
the third and fourth clocks with N . In order to couple di�erent initial con-
ditions, we use the same collections of clock rings and update con�gurations.

Suppose now that there are four consecutive rings t1   t2   t3   t4,
coming from the �rst, second, third and forth clocks in that order, such
that:

• at t1 the proposed update pη1, η2q of the �rst two coordinates belongs to
Ĉ1,2, and

• at t2 the proposed update η3 of the third coordinate belongs to Apη1,η2q
3 .

We then claim that after t4 all initial conditions ω are coupled. To prove this,
we �rst observe that after the second ring each chain belongs to N . Indeed, if
ω RM, then the �rst two proposed updates are ignored and the con�guration
ω P N zM. If, on the contrary, ω P M, then both updates are successful
and the con�guration is updated to pη1, η2, η3q P Ĉ1,2 �Aη1,η2

3 �MXN by
(5.29).

Since after t2 the state of the chain is necessarily in N , the third and
fourth updates to states pη12, η13q and η11 respectively are both successful and
thus any initial condition leads to the state pη11, η12, η13q after t4, which proves
the claim. The proof is then completed as in Proposition 5.3.5.

5.4 Proof of Theorem 1.4.6: upper bound

The starting point is as in Section 4.4. Let κ be a large enough constant, let

t� � exp
�π2

9q

�
1� κ

?
q log3p1{qq�	 (5.30)

and let T � texpplog4p1{qq{qqu. Then

Eµpτ0q �
» �8

0
dsPµpτ0 ¡ sq

�
» t�

0
dsPµpτ0 ¡ sq �

» T
t�

dsPµpτ0 ¡ sq �
» �8

T
dsPµpτ0 ¡ sq

¤ t� � TPµpτ0 ¡ t�q �
» �8

T
dsPµpτ0 ¡ sq.

The term t� has exactly the form required in (1.15). The last term in the
r.h.s. above tends to zero as q Ñ 0 if c is large enough. Indeed, using
[269, Theorem 2] (see also [269] and Chapter 4) we have that for any s ¥ 0



158 Chapter 5: Sharp threshold for FA-2f

Pµpτ0 ¡ sq ¤ e�sλ0 with λ0 ¥ e�Ωpplog qq3{qq. In conclusion, the proof of
(1.15) boils down to proving

lim
qÑ0

TPµpτ0 ¡ t�q � 0. (5.31)

The key ingredients to prove (5.31) are Propositions 5.2.7 and 5.2.9 and
Proposition 5.4.1 below. The latter is a Poincaré inequality for an auxili-
ary process, the generalised coalescencing and branching symmetric exclusion
process (g-CBSEP), preliminarily studied in Chapter 3. Once we have these
key ingredients, the strategy to prove (5.31) is similar to the one in Section
4.4. In particular, for the �rst part of the proof (Section 5.4.2) we will omit
most of the details and refer to Section 4.4 for a more detailed explanation.

5.4.1 The g-CBSEP process

Given a �nite connected graph G � pV,Eq and a �nite probability space
pS, πq, assign a variable σx P S to each vertex x P V and write σ � pσxqxPV
and πGpσq �±

x πpσxq. Fix also a bipartition S1\S0 � S such that πpS1q ¡
0 and de�ne the projection ϕ : SV Ñ t0, 1uV by ϕpσq � p1tσxPS1uqxPV . We
will say that a vertex x is occupied by a particle if σx P S1 and we will write
Ω�
G � ΩG � SV for the set of con�gurations σ with at least one particle.

Finally, for any edge e � tx, yu P E let Ee be the event that there exists a
particle at x or at y.

The g-CBSEP continuous time Markov chain on Ω�
G with parameters

pS,S1, πq runs as follows. The state tσx, σyu of every edge e � tx, yu for
which Ee holds is resampled with rate one (independently of all the other
edges) w.r.t. πx b πyp� | Eeq. Thus, an edge containing exactly one particle
can swap the position of the particle between its endpoints or can create
a new particle at the empty endpoint (a branching transition). An edge
with two particles can kill one of them (a coalescing transition) with equal
probability or keep them untouched. It is immediate to check that g-CBSEP
is ergodic on Ω�

G with reversible stationary measure π�G :� πGp� |Ω�
Gq and

that its Dirichlet form Dg-CBSEPpfq for f : Ω�
G Ñ R, takes the form

Dg-CBSEPpfq �
¸
ePE

π�G
�
1Ee Varepf | Eeq

�
,

where Varepf | Eeq is the variance w.r.t. σx, σy conditioned on Ee if e � tx, yu.
Let now T g-CBSEPrel be the relaxation time of g-CBSEP on Ω�

G de�ned as the
best constant C in the Poincaré inequality

Varπ�G
pfq ¤ CDg-CBSEPpfq.

In the above setting the main result needed to prove (5.31) is as follows. For
any positive integers d and L set n � Ld and let ZL � t0, 1, . . . , L � 1u be
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the set of remainders modulo L. The d- dimensional discrete torus with n
vertices, Tdn in the sequel, is the set ZdL endowed with the graph structure
inherited from Zd.

Proposition 5.4.1. Let G � Tdn and assume that S, S1 and π depend on n
in such a way that limnÑ8 πpS1q � 0 and limnÑ8 nπpS1q � �8. Then, as
nÑ8,

T g-CBSEPrel ¤ O
�
πpS1q�1 log

�
πpS1q�1

��
.

5.4.2 Transforming (5.31) into a Poincaré inequality

Using standard ��nite speed of propagation� bounds (see Step (a) in Section
4.4.2) it is enough to prove (5.31) for FA-2f on the discrete torus T2

n with
linear size

?
n � 2T . Next we �x a small positive constant δ   1{2 and

choose Nδ � N � tlogp1{δq{?qu where N � r8 logp1{qq?
q s is the �nal scale in the

droplet construction (see (5.5)). With this choice `Nδ � δ`N � δ{q17{2�op1q

(cf. (5.3)) and w.l.o.g. we assume that `Nδ divides 2T .

We partition the torus T2
n into M � n{`2Nδ equal mesoscopic disjoint

boxes pQjqMj�1, where each Qj is a suitable lattice translation by a vector in

T2
n of the box Q � r`Nδ s2 � Λp2Nδq (see (5.4)). The labels of the boxes can

be thought of as belonging to the new torus T2
M and we assume that Qi, Qj

are neighbouring boxes in T2
n i� i, j are neighbouring sites in T2

M . In ΩT2
n

we consider the event

E �
¤
jPT2

M

SGj X
£
iPT2

M

Gi

where SGi is the event that Qi is super-good (see De�nition 5.2.6) and Gi is
the event that any row and any column (of lattice sites) of Qi contains an
infected site.

In order to apply the same strategy as Section 4.4 it is crucial to have
that the �environment� characterised by E is so likely that (cf. (4.24))

lim
qÑ0

µpEcqT 3t� � 0. (5.32)

It is such a requirement that guided us in the choice of the side length
`Nδ of the mesoscopic boxes. Using Proposition 5.2.7 together with trivial
bounds on the probability that a row/column of a box Qi does not contain
an infection it is immediate to verify (5.32). An easy consequence of (5.32)
(see Step (c) in Section 4.4.2) is that it is su�cient to prove (5.31) for the
stationary FA-2f in T2

n restricted to E . For the latter process we follow the
standard �variational� approach (see Step (d) in Section 4.4.2) and the overall
conclusion is that

TPµpτ0 ¥ t�q ¤ Te�t�λF � op1q,
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with

λF ¥ inf
f
q
DT2

n
pfq

VarT2
n
pf | Eq ,

where DT2
n
pfq is the Dirichlet form of FA-2f on the torus T2

n and the supre-
mum is taken over all f : E Ñ R.

5.4.3 Bounding λF from below

The last and most important step is to prove that

λF ¥ e�Oplog3p1{qq{?qqρD, (5.33)

where ρD ¥ expp�π2

9q p1 � Op?q log2p1{qqqqq is the probability that a box

r`N s2 is super-good (cf. Proposition 5.2.7). Once (5.33) is established, the
proof of (5.31) is complete because t�λF diverges rapidly enough as q Ñ 0
if the constant κ in the de�nition (5.30) of t� is chosen large enough.

The proof of (5.33) is crucially based on Propositions 5.2.9 and 5.4.1 and
is divided into two parts.

Application of Proposition 5.4.1 Write G for the graph T2
M , S for the

state space Gi � ΩQi with i P T2
M , π for µQip� |Giq and S1 � S for the event

SGi X Gi. Then, using limqÑ0 µpGiq � 1 and Proposition 5.2.7, it is easy to
check that

πpS1q � exp
�
� π2

9q

�
1�O

�?
q log2p1{qq��	.

Recalling M � n{`2Nδ with n � 4T 2, limqÑ0MρpS1q � �8 and the require-
ment of Proposition 5.4.1 holds.

With this notation we consider the g-CBSEP on Ω�
G with parameters

pS,S1, πq and we identify any function f : E Ñ R with a function fG : Ω�
G Ñ

R via the obvious bijection between E and Ω�
G: fpωq � fGpωQ1 , . . . , ωQM q.

Under this bijection

Varπ�G
pfGq � VarT2

n
pf | Eq,

Dg-CBSEPpfGq �
¸
i�j

µT2
n

�
1SGi,j VarQiYQj pf |SGi,jq | E

�
,

where SGi,j is a shorthand notation for the event pSGi Y SGjq X Gi X Gj
and

°
i�j denotes the sum over pairs, each counted once, of adjacent boxes.

Using Proposition 5.4.1 we conclude that

VarT2
n
pf | Eq � Varπ�G

pfGq ¤ OpπpS1q�1 logp1{πpS1qq
�
Dg-CBSEPpfGq

� exp
�π2

9q
p1�Op?q log2p1{qqqq

	
�

¸
i�j

µT2
n

�
1SGi,j VarQiYQj pf |SGi,jq | E

�
.

(5.34)
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Application of Proposition 5.2.9 We next compare the sum appea-
ring in the r.h.s. of (5.34) to the FA-2f Dirichlet form DT2

n
pf | Eq and prove

that the �comparison cost� is at most exp
�
O
�

log3p1{qq{?q��, so sub-leading
w.r.t. the main term exppπ2

9q q above.

Lemma 5.4.2.

¸
i�j

µT2
n

�
1SGi,j VarQiYQj pf |SGi,jq | E

�
¤ eOplog3p1{qq{?qq ¸

xPT2
n

µT2
n

�
cT

2
n
x Varxpfq

�
,

where c
T2
n
x is the FA-2f constraint at x for the torus T2

n (see (5.8)).

Remark 5.4.3. As it will be clear from the proof, we actually prove a

stronger statement, namely the constraint c
T2
n
x above will appear multip-

lied by the indicator that x belongs to a droplet. While for many choices
of f the presence of this additional constraint may completely change the

average µT2
n
pcT2

n
x Varxpfqq, it is possible to exhibit choices of f , for which

1tx belongs to a "droplet"uc
T2
n
x Varxpfq � c

T2
n
x Varxpfq.

Proof of Lemma 5.4.2. The lemma follows by summing Claim 5.4.4.

Claim 5.4.4. Fix two adjacent boxes Qi, Qj and let Λi,j � Qi Y Qj be a
translate of the box Λp2Nq. Then

µT2
n

�
1SGi,j VarQiYQj pf |SGi,jq | E

�
¤ eOplog3p1{qq{?qq ¸

xPΛi,j

µT2
n

�
1SGpΛi,jqc

T2
n
x Varxpfq

�
.

Proof Claim 5.4.4. Let G � �
kPT2

M
Gk � E and recall that µpEq � 1� op1q.

Next, let GpΛi,jq be the event that any `Nδ lattice sites contained in Λi,j
forming either a row or a column of some Qk contain an infection.

Observation 5.4.5. The event SGi,j X GpΛi,jq implies the event SGpΛi,jq.

The formal proof of this observation, as illustrated in Figure 5.5 is left
to the reader.

Write ρi,j for µpSGi,j |Gq and observe that the term VarQiYQj p�q does
not depend on the variables ωQi , ωQj . This fact together with the Cauchy-
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Qi

Λi,j

Figure 5.5 � Illustration of Observation 5.4.5. The
shaded square of shape Λp2Nδq is SG and the ar-
rows indicate the presence of an infection in each
row/column, as guaranteed by GpΛi,jq with Λi,j
being the larger square of shape Λp2Nq. Observa-
tion 5.4.5 asserts that these events combined imply
SGpΛi,jq (see Figure 5.2).

Schwartz inequality allows us to write

µT2
n

�
1SGi,j VarQiYQj pf |SGi,jq | E

�
� p1� op1qqµT2

n

�
1SGi,j VarQiYQj pf |SGi,jq |G

�
� p1� op1qqρi,jµT2

n

�
µΛi,j

�
VarQiYQj pf |SGi,jq |GpΛi,jq

� |G�
¤ p1� op1qqρi,jµT2

n

�
VarΛi,j pf |SGi,j X GpΛi,jqq |G

�
¤ p1� op1qqρi,j

µT2
n
pSGpΛi,jq |Gq

µT2
n
pSGi,j X GpΛi,jq |GqµT2

n

�
VarΛi,j pf |SGpΛi,jqq |G

�
� p1� op1qqµT2

n
pSGpΛi,jq |GqµT2

n

�
VarΛi,j pf |SGpΛi,jqq |G

�
.

In the last inequality we used Observation 5.4.5 together with the inequality
VarpX |Aq ¤ PpBq{PpAqVarpX |Bq valid for any (�nite) random variable X
and any two events A � B with PpAq ¡ 0. By applying now Proposition

5.2.9 to the term VarΛi,j pf |SGpΛi,jqq and, using cΛi,j
x ¤ c

T2
n
x , we conclude

that

µT2
n

�
1SGi,j VarQiYQj pf |SGi,jq | E

�
¤ eOplog3p1{qq{?qqµT2

n
pSGpΛi,jq |Gq

�
¸

xPΛi,j

µT2
n

�
µΛi,j

�
c

Λi,j
x Varxpfq |SGpΛi,jq

� |G�
� eOplog3p1{qq{?qq ¸

xPΛi,j

µT2
n

�
1SGpΛi,jqc

T2
n
x Varxpfq |G

�
.

The proof is complete because µT2
n
pGq � 1� op1q.

Appendix

5.A Probability of super-good events

In this appendix we prove Proposition 5.2.7 and we gather several more
technical and relatively standard bootstrap percolation estimates on the pro-
bability of super-good events used in Section 5.2.
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For z ¡ 0 we de�ne

gpzq � � log
�
βp1� e�zq�,

where βpuq � pu�a
up4� 3uqq{2. It is known [225, Proposition 5(ii)] that³8

0 gpzq dz � π2{18. We next recall some straightforward properties of g.

Fact 5.A.1. The function g is positive, decreasing, di�erentiable and convex
on p0,8q. Moreover, the following asymptotic behaviour holds:

gpzq � 1

2
logp1{zq, g1pzq � �1

2z
, as z Ñ 0,

gpzq � e�2z, g1pzq � � 2e�2z, as z Ñ8,
where x � y stands for x � p1� op1qqy.

The relevance of this function comes from its link to the probability of
traversability. Recalling De�nition 5.2.1, for any positive integers a and b we
set

T 1pa, bq � µpT 1
ÑpRpa, bqqq, T 0pa, bq � µpT 0

ÑpRpa, bqq,
where 0 stands for the fully infected con�guration. Note that these probabi-
lities are the same for left-traversability, while for up or down-traversability
a and b are inverted in the r.h.s. The next lemma follows easily from
[225, Lemma 8]. Let q1 � � logp1� qq � q �Opq2q.
Lemma 5.A.2. For any positive integers a and b and ω P t0,1u we have

Tωpa, bq � qOp1qe�agpbq
1q.

Corollary 5.A.3. For any positive integers a and b we have

max
0¤s,s1¤b

T 0pa, sqT 0pa, b� sq
T 1pa, s1qT 1pa, b� s1q ¤ q�Op1q. (5.35)

In particular, for any boundary conditions ω, ω1 and rectangle R of class
1 ¤ n ¤ 2N with n odd, we have

µRpSGωs pRq |SGω1pRqq ¥ qOp1q (5.36)

uniformly over all possible values of s and boundary conditions ω, ω1 and
similarly for even n.

Proof. (5.35) follows immediately from Lemma 5.A.2. To obtain (5.36), re-
call that

SGω1pRq �
¤
s1

SGω1s1 pRq;

there are q�Op1q possible values of s1; by (5.35), for all s, s1, ω and ω1,

µRpSGωs q{µRpSGω1s1 q ¥ qOp1q.
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We are now ready for the main result of this appendix.

Proof of Proposition 5.2.7. We will prove the same bound for the super-good
event occurring with all s � 0 in De�nition 5.2.4 on all scales, i.e. the initial
infection Λp0q being in the bottom-left corner of Λpnq. Once the o�sets are
�xed, it su�ces to prove the bound on this probability for n � 2N , in which
case it reads

q
N¹
m�1

T 1p`m � `m�1, `mqT 1p`m � `m�1, `m�1q

� qOpNq exp
�
�

Ņ

m�1

p`m � `m�1qpgpq1`mq � gpq1`m�1qq
	
,

by Lemma 5.A.2 and symmetry. Since g is decreasing, the last sum is at
most

2
8̧

m�1

p`m � `m�1qgpq1`m�1q.

The term for m � 1 is Oplogp1{qq{?qq by Fact 5.A.1. For the other terms
we use that by convexity for any 0   a   b

pb� aqgpaq ¤
» b
a
gpzq dz �Oppb� aq2g1paqq.

Using Fact 5.A.1, we get

�pb� aq2g1paq ¤ Oppb� aqq2 �
#

1{a if a � Op1q
e�a if a � Ωp1q.

Finally, we have `m � `m�1 ¤ 2
?
q`m�1 by (5.3), so

q1
m0̧

m�2

p`m � `m�1q2
`m�1

¤ Opq1?q`m0q � Op?qq

pq1q2
8̧

m�m0

p`m � `m�1q2e�q1`m�1 � Op?qq,

setting m0 � maxtm, `m ¤ 1{qu � Oplogp1{qqq{?qq. Putting these bounds
together and recalling (5.5), we conclude the proof of Proposition 5.2.7.

We next turn to de�ning the event SGpV2q required in the proof of Lemma
5.2.12, so we �x n � 2m P r2, 2Nq and R � Rp`m � 1, `mq � V2 � ~e1.
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De�nition 5.A.4. We say that SGpRq occurs if there exist integers 0 ¤
s1 ¤ `m � `m�1 � 1 and 0 ¤ s2 ¤ `m � `m�1 such that the intersection of
the following events, in the sequel SGs1,s2pRq, occurs (see Figure 5.4)

SGpΛpn�2q � s1~e1 � s2~e2q;
TÐpRps1, `m�1q � s2~e2q;
TÑpRp`m � `m�1 � 1� s1, `m�1q � ps1 � `m�1q~e1 � s2~e2q;
TÓpRp`m � 1, s2qq;
TÒpRp`m � 1, `m � `m�1 � s2q � ps2 � `m�1q~e2q.

The event SGpV2q is de�ned by translation of SGpRq. Then for any ω2 P
SGs1,s2pV2q, the segments I1 and I3 are given by

I1pη2q � Rp1, `m�1q � s2pω2q~e2 � V1 � Rp1, `mq,
I3pη2q � Rp1, `m�1q � s2pω2q~e2 � `m~e1 � V3 � V1 � `m~e1.

Lemma 5.A.5. Recalling (5.18), we have

µV1YV2pĈ1,2 |SGq ¥ q�Op1q.

Proof. Recall that V1 Y V2 � Λpnq and assume SGpΛpnqq occurs. For any
0 ¤ s1, s2 ¤ `m � `m�1 we write

SGs1,s2pΛpnqq � SGs2pΛpnqq X SGs1pΛpn�1q � s2~e2q.
Then by Corollary 5.A.3 for any such s1, s2 we have

µΛpnqpSGs1,s2pΛpnqqq � µΛpnqpSGpΛpnqqqqOp1q,
so it su�ces to show that

µV2pSG0,0pV2qq ¥ µΛpnqpSG1,0pΛpnqqqqOp1q,
since µpTÐpI1pηV2qqq ¥ q for any ωV2 P SGpV2q.

However, by De�nitions 5.2.4 and 5.A.4 and symmetry we have

µV2pSG0,0pV2qq
µΛpnqpSG1,0pΛpnqqq

� T 1p`m � `m�1 � 1, `m�1qT 1p`m � `m�1, `m � 1q
T 1p`m � `m�1 � 1, `m�1qT 1p`m � `m�1, `mqT 1p1, `m�1q

¥ T 1p`m � `m�1, `m � 1q
T 1p`m � `m�1, `mq � qOp1qe�p`m�`m�1qpgpp`m�1qq1q�gp`mq1qq,

the last equality following from Lemma 5.A.2.
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By convexity of g we get

gpp`m � 1qq1q � gp`mq1q ¤ �q1g1pp`m � 1qq1q. (5.37)

By Fact 5.A.1 we have that the r.h.s. of (5.37) is Op1{`mq. Putting this
together we obtain

µV2pSG0,0pV2qq
µΛpnqpSG1,0pΛpnqqq ¥ qOp1qe�Op`m�`m�1q{`m � qOp1q, (5.38)

as desired, the last equality coming from (5.3).

5.B Proof of Proposition 5.4.1

Let pS,S1, πq be the parameters of the g-CBSEP on Tdn and ` � rπpS1q�1{ds.
For simplicity we assume that n1{d{` P N and we partition the torus Tdn
into M � pn{`qd equal boxes pBjqMj�1, where each Bj is a suitable lattice

translation by a vector in Tdn of the box B � r`sd. The labels of the boxes can
be thought of as belonging to TdM and we assume thatBi, Bj are neighbouring
boxes in Tdn i� i � j in TdM .

We then set Ŝ � SB, π̂ppσxqxPBq � Â
xPB πpσxq, Ŝ1 � �

xPBtσx P S1u
and we consider the auxiliary renormalized g-CBSEP (denoted ĝ-CBSEP in
the sequel) on the graph Ĝ � TdM with parameters pŜ, Ŝ1, π̂q. Using the

assumption limnÑ8 πpS1q � 0, we have that π̂pŜ1q � p1�πpS1qq`d Ñ 1{e as
nÑ �8.

Lemma 5.B.1. Let T ĝ-CBSEPrel be the relaxation time of ĝ-CBSEP on pG.
Then there exists a constant C ¡ 0 depending on d such that T ĝ-CBSEPrel ¤ C.

Proof. This follows by comparison between g-CBSEP and generalised FA-1f
analogous to (1.6) combined with [269, Proposition 3.5].

Proof of Proposition 5.4.1. For any pair of neighbouring boxes Bi and Bj
write Êi,j for the event

�
xPBiYBjtσx P S1u. Using Lemma 5.B.1 and the

de�nition of T ĝ-CBSEPrel we get that that

Varπ�
Tdn
pfq ¤ C

¸
i�j

π�Tdn
�
1Êi,j VarBiYBj pf | Êi,jq

�
,

where the sum in the r.h.s. is an equivalent way to express the Dirichlet form
of ĝ-CBSEP. Now �x a pair of adjacent boxes Bi, Bj and let T g-CBSEPrel pi, jq
be the relaxation time of our original g-CBSEP with parameters pS,S1, πq
on Bi Y Bj . By symmetry T g-CBSEPrel pi, jq does not depend on i, j and the

common value will be denoted by rTrel. If we plug the Poincaré inequality for
g-CBSEP on Bi YBj

VarBiYBj pf | Êi,jq ¤ rTrel

¸
x�yPBiYBj

π�BiYBj
�
1Ex,y Varx,ypf | Ex,yq

�
.
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into the r.h.s. above of we get

Varπ�
Tdn
pfq ¤ C rTrel

¸
i�j

¸
x�yPBiYBj

π�Tdn
�
1Êi,jπ

�
BiYBj

�
1Ex,y Varx,ypf | Ex,yq

��
¤ Cd rTrel

¸
x�yPTdn

π�Tdn
�
1Ex,y Varx,ypf | Ex,yq

�
� Cd rTrelDg-CBSEPpfq,

i.e. T g-CBSEPrel ¤ O
� rTrel

�
. It remains to bound rTrel from above.

Let TCBSEP
mix be the mixing time of g-CBSEP on Gi,j with parameters

S 1 � t0, 1u,S 11 � t1u and π1p1q � πpS1q � 1 � π1p0q. Let T rw
cov be the

cover time of the continuous-time random walk on Gi,j . Theorem 3.3.5

implies that rTrel ¤ OpTCBSEP
mix � T rw

covq. It is well known (see e.g. [256]) that
T rw

cov ¤ O
�
`d logp`q� � O

�
πpS1q�1 logp1{πpS1qq

�
and Corollary 3.3.2 proves2

the same bound for TCBSEP
mix . In conclusion,

rTrel ¤ O
�
πpS1q�1 logp1{πpS1qq

�
.

2Strictly speaking Corollary 3.3.2 deals with the torus of cardinality πpS1q
�1 but the

same proof extends to our case of the graph Gi,j .
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Chapter 6

Re�ned universality for critical

KCM: upper bounds

This chapter is based on [210], proving the upper bound of Theorem 1.6.4
for classes (b) and (d)-(g) (recall Section 1.6 and particularly Section 1.6.5).
Before embarking on the proof, let us make a few remarks.

Remark 6.0.1. Firstly, for reasons of extremely technical nature, we do
not provide a full proof of (the upper bound of) Theorem 1.6.4(e). More
precisely, we prove it as stated for models with rules contained in the axes
of the lattice. We also prove a fully general upper bound of the form

exp

�
Oplogp1{qqq log log logp1{qq

qα



.

Furthermore, with very minor modi�cations (see Remark 6.3.1), the error
factor can be reduced from log log log to log�, where log� denotes the number
of iterations of the logarithm before the result becomes negative (the inverse
of the tower function). Unfortunately, removing this minuscule error term
requires further work, which we omit for the sake of concision. Instead, we
provide a sketch of how to achieve this at the end of Section 6.3.1.

Remark 6.0.2. Secondly, although we will not do this, it is possible to
circumvent the use of the core of Chapter 4 and establish the upper bounds
of Theorem 1.6.4(c) and (e) independently. This approach has the merit of
making all but Lemma 4.3.10 and Section 4.4 of Chapter 4 redundant in
the proof of Theorem 1.6.4, a considerable gain. However, since the present
chapter is already su�ciently involved, we have chosen to directly import all
of Chapter 4 in Section 6.5.3.

Remark 6.0.3. Finally, for the sake of veri�ablity, in Section 6.A.1 we have
left the rather cumbersome approach to microscopic dynamics used to prove
Lemma 6.A.1 originally in [210]. However, Lemma 6.A.1 can be seen as a
direct corollary of the more elegant Theorem 2.1.1 developed for this purpose.
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170 Chapter 6: Re�ned universality for critical KCM I

The chapter is organised as follows. In Section 6.2 we formally state
the two fundamental techniques we use to move from one scale to the next,
namely East-extensions and CBSEP-extensions, which import and generalise
ideas of Chapter 5. They will be used in various combinations throughout
the rest of the chapter. The proofs of the results about those extensions,
including the microscopic dynamics are deferred to Section 6.A, since they
are quite technical and do not require new ideas. Sections 6.3 and 6.4 are
the core of this chapter and establish estimates on the relaxation times of
�super good droplets� from microscopic scales up to and past the �critical�
scale by means of East-extensions and CBSEP-extensions respectively. In
Section 6.5 we recall, adapt and apply mechansims from Chapters 4 and 5,
allowing us to go from �post-critical� to in�nite scales. It is only at that
point that we assemble Theorem 1.6.4 class by class from the general tools
gathered in the previous sections. Finally, in Section 6.B we establish bounds
on conditional probabilities, which, although technical and not particularly
conceptual, serve a key role in both Sections 6.3 and 6.4. They establish
general analogues of Section 5.A in an entirely new way and may be of
independent interest for bootstrap percolation.

6.1 Preliminaries

6.1.1 Correlation inequalities

Let us recall two well-known correlation inequalities due to Harris [202] and
van den Berg�Kesten [357]. The Harris inequality will be used throughout
and we state some particular formulations that will be useful for us. The
BK inequality is not natural to use for an upper bound in our setting and
has not been employed to this purpose until now. Nevertheless, it will prove
crucial in Section 6.B to estimate certain conditional probabilities.

For Section 6.1.1 we �x a �nite Λ � Z2. We say that an event A � ΩΛ

is decreasing if adding infections does not destroy its occurrence.

Proposition 6.1.1 (Harris inequality). Let A,B � ΩΛ be decreasing. Then

µpAX Bq ¥ µpAqµpBq.
We collectively refer to this proposition and the following corollaries as

Harris inequality.

Corollary 6.1.2. Let A,B, C,D � ΩΛ be nonempty and decreasing events1

such that B and D are independent, then

µpA|B XDq ¥ µpA|Bq ¥ µpAq,
µpAX C|B XDq ¥ µpA|BqµpC|Dq.

1Though we will not mention this, events we consider are assumed nonempty.
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Given two decreasing events A,B � ΩΛ, we say that A and B occur
disjointly in ω P ΩΛ if there exist disjoint sets X,Y � Λ, such that ωXYY �
0; ω1X � 0 implies ω1 P A; and ω1Y � 0 implies ω1 P B for ω1 P ΩΛ.

Proposition 6.1.3 (BK inequality). Let A,B � ΩΛ be decreasing events.
Then

µpA and B occur disjointlyq ¤ µpAqµpBq.

6.1.2 Directions

Throughout this chapter we �x a critical update family U with di�culty α.
We call a direction u P S1 rational if uR X Z2 � ∅. By the de�nition of α
there exists a semicircle with rational midpoint u0 such that all directions
in the semicircle have di�culty at most α. We may assume without loss
of generality that the direction u0 � π{2 is hard unless U is isotropic. It is
not di�cult to show (see e.g. [74, Lemma 5.3]) that one can �nd a set S 1 of
rational directions such that:

• all isolated and semi-isolated stable directions are in S 1;

• u0 P S 1;
• for every two consecutive directions u, v in S 1 there exists a rule X P U
such that X � Hu XHv.

We further consider the set pS � S 1 � t0, π{2, π, 3π{2u obtained by making
S 1 invariant by rotation by π{2. We will refer to the elements of pS as quasi-
stable directions or simply directions, as they are the only ones of interest
to us. We label the elements of pS � puiqiPr4ks clockwise and consider their
indices modulo 4k (we write rns for t0, . . . , n � 1u), so that ui�2k � �ui is
perpendicular to ui�k. In �gures we take pS � π

4Z and u0 � p�1, 0q. Further
observe that if all U P U are contained in the axes of Z2, then pS � π

2Z.
For i P r4ks we introduce ρi � mintρ ¡ 0 : Dx P Z2, xx, uiy � ρu and

λi � mintλ ¡ 0 : λui P Z2u, which are both well-de�ned, as the directions are
rational (in fact ρiλi � 1, but we will use both notations for transparency).

6.1.3 Droplets

We next de�ne the geometry of the droplets we will use.

De�nition 6.1.4 (Droplet). A droplet is a set of the form

Λprq �
£
iPr4ks

Huipriq

for r with positive coordinates (see the black regions in Fig. 6.2). We say
that a droplet is symmetric if it is of the form x � Λprq with 2x P Z2 and
ri � ri�2k for all i P r2ks. For a set of radii r we de�ne the side lengths
s � psiqiPr4ks with si the length of the side of Λprq with outer normal ui.
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Note that if all U P U are contained in the axes of Z2, then droplets are
simply rectangles with sides parallel to the axes.

We write peiqiPr4ks for the canonical basis of R4k and we write 1 �°
iPr4ks ei, so that Λpr1q is a polygon with inscribed circle of radius r and

sides perpendicular to pS. It will often be more convenient to parametrise
dimensions of droplets di�erently. For i P r4ks we set

vi �
i�k�1¸
j�i�k�1

xui, ujyej .

This way Λpr� viq is obtained from Λprq by extending the two sides parallel
to ui by 1 in direction ui and leaving all other sides unchanged. Note that
if Λprq is symmetric, then so is Λpr � λiviq for i P r4ks.

De�nition 6.1.5 (Tube). Given i P r4ks, r and a multiple l of λi, we de�ne
the tube of length l, direction i and radii r (see the thickened regions in
Fig. 6.2)

T pr, l, iq � Λpr � lviqzΛprq.

We will often need to consider boundary conditions for our events on
droplets and tubes. Given two disjoint �nite regions A,B � Z2 and two
con�gurations η P ΩA and ω P ΩB, we de�ne η � ω P ΩAYB as

pη � ωqx �
#
ηx x P A,
ωx x P B.

6.1.4 Scales

Throughout the chapter we consider the positive integer constants

1{ε " 1{δ " C "W.

Each one is assumed to be large enough depending on U and, therefore, pS
and α (e.g.W ¡ α), and much larger than the next. These constants are not
allowed to depend on q. Whenever asymptotic notation is used, its implicit
constants are not allowed to depend on the above ones, but only on U .

The following are our main scales corresponding to the mesoscopic and
internal dynamics.

`m� � q�C{?δ, `m � q�C ,

`m� � q�C � ?δ, `i � C2 logp1{qq{qα.
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(a) The �ve update rules U P U given as
dots. The cross marks the origin.

2

22

3

u2

u1

u0

u3

(b) The four stable directions, which

coincide with pS, and their di�culties.

u0

u1
u2

x3 u3

Z3Z3 � k1x3 � λ0u0

. . .

(c) Possible choice of ui-helping sets. The hatched region represents Hui X Z.

u2

u0

u1 u3

Wω

(d) Tubes traversable in the horizontal and vertical directions respectively. Note
that for non-rectangular geometry, i.e. k ¡ 1, a tube's shape uniquely determines
the direction (see Fig. 6.2). Without the highlighted infection traversability is lost
in both directions. Only the left tube is ST (ST � T for u0 and u2). The right
one is T ω in direction u3, but not T � T 1. Boundary conditions are irrelevant in
other directions. The C2 � d o�set (see Fig. 6.2) of De�nition 6.2.1 is omitted.

Figure 6.1 � An intricate semi-directed example.
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6.1.5 Helping sets

We next introduce various constant-sized sets of infections su�cient to induce
growth. As the de�nitions are quite technical in general, in Fig. 6.1 we
introduce a deliberately complicated example, on which to illustrate them.

Let us �x a direction ui P pS with αpuiq   8. Let S be a nonempty
discrete segment perpendicular to ui. We will assume that S is of the form 

x P Z2 : xx, uiy � 0, }x} ¤ r
(

for some r ¥W , but all de�nitions are extended by translation.

De�nition 6.1.6 (W -helping set). A W -helping set for S is any set of W
consecutive infected sites in S, that is a set of the form x� rW sλi�kui�k for
some x P S. We denote by HWd pSq the event that there is a W -helping set
for S at distance at least d from its endpoints.

The relevance ofW -helping sets is that, sinceW is large enough, together
with a suitable neighbourhood of S in Hui they fully infect S by expanding
the infected interval one site at a time. We next de�ne some smaller sets
which are su�cient to induce such growth but have the annoying feature that
they are not necessarily contained in S and do not necessarily induce growth
in a simple sequential way like W -helping sets. Let us note that except in
Section 6.A.1 the reader will not lose anything conceptual by thinking that
ui and α-helping sets de�ned below are simply single infected sites in S.

De�nition 6.1.7 (ui-helping set). Assume that αpuiq ¤ α. By De�ni-
tion 1.6.1 (see [70, Lemma 3.3]) we may �x a set Zi � Z2zHui and xi P Z2zt0u
such that xxi, uiy � 0 such that |Zi| � α, rZi Y HuisU � xiN, where
N � t0, 1, . . .u, and |rZi Y HuisUzHui |   8. A ui-helping set is a set of
the form ¤

jP
�
}xi}

λi�k

�pZi � jλi�kui�k � kjxiq, (6.1)

for some integers kj . Moreover, we choose xi so that the period

Q :� }xi}
λi�k

is independent of i and su�ciently large so that for all i P r4ks with αpuiq ¤
α, the diameter of t0uYZi is much smaller than Q. We may choose Q � Op1q
and all Zi within distance Op1q from the origin.

In the example of Fig. 6.1 only the u3 direction has Z3 such that rZ3 Y
Hu3sU only contains every second site of the line HuizHui . This is indeed
necessary, since at least 4 sites are needed to infect the full line. For this
model we might take Q � 2, corresponding to the fact that we need two
translates of Z3 with suitable residues modulo 2, in order to infect the entire
line.
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De�nition 6.1.8 (α-helping set).

• If αpuiq ¤ α and αpui�2kq ¡ α, then a α-helping set is a ui-helping set.

• If αpuiq ¤ α and αpui�2kq ¤ α, then a α-helping set for S is a set of
the form H Y H 1 with H a ui-helping set and �H 1 � t�h : h P H 1u a
ui�2k-helping set.

• If α   αpuiq ¤ 8, there are no α-helping sets.

If αpuiq   8, any set which is either a W -helping set or a α-helping set is
called helping set. If αpuiq � 8, there are no helping sets.

In the example of Fig. 6.1 u0 and u2 are both of di�culty α � 2, so
α-helping sets correspond to a pair of consecutive infections and a pair of
infections at distance 2. These two pairs may be distant from each other
within S. The consecutive infections are not u0-helping sets, but we include
them in α-helping sets in order for α-helping sets in direction u0 to be the
symmetric ones of those in direction u2.

De�nition 6.1.9. Let ω P ΩZ2zS be a boundary condition. The eventHωd pSq
occurs if S has a helping set such that the vectors by which the sets Zi (and,
possibly, �Zi�2k) are translated in Eq. (6.1) are contained in S and are at
distance at least d from the endpoints of S. It will be convenient, given a
domain Λ � S and a boundary condition ω P ΩZ2zΛ to de�ne Hωd pSq � tη P
ΩΛ : ηS P Hω�ηΛzS

d pSqu by abuse. We write simply HpSq if d � 0 and the
domain Λ is such that the boundary condition ω is irrelevant.

The following observation will be used systematically in probability es-
timates. It follows easily from the de�nitions above (see e.g. [70, Lemma
4.2]).

Observation 6.1.10. For any ω we have: if αpuiq   8, then

µ pHωpSqq ¥ µ
�
HW pSq� ¥ 1� �

1� qW
�t|S|{W u ¥ qW ;

if αpuiq ¤ α, then

µpHpSqq ¥
�

1� p1� qαqΩp|S|q
	Op1q

.

6.1.6 Super good events

Throughout the chapter we will refer to SG events for various droplets but
we will usually not need to know exactly how they are constructed. However,
we will systematically assume that for any sequence of radii r and boundary
condition ω it holds that

• for x P Z2 we de�ne SGωpx� Λprqq by translating SGωp��xqpΛprqq by x;
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• any SG event is nonempty and decreasing both in the con�guration and
in the boundary condition;

• µpSGωpΛprqqq ¤ q�OpW qµpSGpΛprqqq, systematically writing SG for SG1.

6.1.7 Constrained Poincaré inequalities

Finally, we de�ne (constrained) the Poincaré constants of various regions.
Henceforth we will use the shorthand notation µΛp�|SGωq � µΛp�|SGωpΛqq
and similarly for traversable tubes (see De�nition 6.2.1 below), as well as for
conditional variances. Given a �nite Λ � Z2 such that SGpΛq is de�ned, let
γpΛq be the smallest constant γ ¥ 1 such that the inequality

VarΛpf |SGq ¤ γ
¸
xPΛ

µΛ

�
c1x Varxpfq

�
, (6.2)

holds for all f : Ω Ñ R, where cΛ,ω
x pηq � cxpηΛ �ωZ2zΛq (recall Eq. (1.2)) and

we omit Λ, when cΛ,ω
x is inside µΛ like we do for SG, etc.

Remark 6.1.11. It is important to take note of the absence of conditioning
on SG in the r.h.s. of Eq. (6.2). This de�nition follows Chapter 4 and di�ers
from the one in Chapter 5. Although this nuance is not important most of
the time, this choice is crucial for the proof of Theorem 6.3.8 below. Unfor-
tunately, this enforces some minor adaptations when importing intermediate
results from Chapter 5, as dealt with by the following observation.

Observation 6.1.12. Let A � B � Z2 be �nite sets, A � ΩA and B � ΩB

be events and f : ΩB Ñ r0,8q be a function. Then

µB p1AµApfq|Bq ¤ µpAq
µpBqµBpfq.

Typically, in Chapter 5 we transform terms of the form µBp1AµApf |Aq|Bq
into µBpf |Bq, relying on additional information about the relative structure
of A and B, which will not always be available to us in the present chapter.
Instead, in Chapter 4 we would simply disregard the numerator in Observa-
tion 6.1.12, which is too rough for our purposes. Therefore, corresponding
amendments are needed for adapting arguments from the latter chapter as
well, although the de�nition Eq. (6.2) is unchanged.

6.2 One-directional extensions

We �rst need the following traversability T and symmetric traversability
ST events, for which we make the same conventions as for SG events (see
Section 6.1.6). The de�nition is illustrated in Figs. 6.1 and 6.2.
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De�nition 6.2.1 (Traversability). Fix i P r4ks, r and l multiple of ρi.
Assume that αpujq   8 for all j P pi�k, i�kq. Form ¥ 0 and j P pi�k, i�kq
write Sj,m � Λpr � mvi � ρjejqzΛpr � mviq and implicitly always assume
that the indices are such that Sj,m � T pr, l, iq �: T . For ω P ΩZ2zΛpr�lviq
we say that T is pω, dq-traversable if for all m and j the event HωC2�dpSj,mq
occurs. We denote by T ωd pT q the event that the tube is pω, dq-traversable
and omit ω if it is 1 and d if it is 0.

We de�ne ST ωd pT q (the tube is pω, dq-symmetrically traversable) identi-
cally to T ωd pT q, except that we replace HωC2�dpSj,mq by HWd pSj,mq for all
j such that maxpαpujq, αpuj�2kqq ¡ α. In particular, if no such j exist,
ST � T .

We will use two di�erent ways to enlarge droplets to larger scales based
on the East and CBSEP-extensions from De�nitions 6.2.2 and 6.2.4. Both
share the following setting.

Let r � q�OpCq, i P r4ks and l P p0, `m�s be a multiple of λi. Following
Chapter 5, de�ne

dm � λitp3{2qmu
for m P r1,Mq and M � mintm : λip3{2qm ¥ lu. Let dM � l, Λm �
Λpr � dmviq and sm�1 � dm � dm�1 for m P r2,M s.

6.2.1 East-extension

De�nition 6.2.2 (East-extension). Fix i P r4ks, r and l multiple of λi.
Assume that SGpΛprqq is de�ned2 and that αpujq   8 for all j P pi�k, i�kq.
We say that we East-extend Λprq by l in direction ui (see Fig. 6.2a) if for all
s P p0, ls divisible by λi and ω P ΩZ2zΛpr�sviq we have η P SGωpΛpr� sviqq i�

ηΛprq P SGpΛprqq, ηT pr,s,iq P T ωpT pr, s, iqq.

Recall γ from Section 6.1.7. The following is proved in Section 6.A.3.

Proposition 6.2.3. Assume that we East-extend Λprq by l in direction ui.
Then

γpΛpr � lviqq ¤ max
�
γpΛprqq, µ�1

ΛprqpSGq
	
eOpC

2q log2p1{qq
M�1¹
m�1

am,

with

am � µ�1 pSG pΛm � smuiq|SGpΛmqq . (6.3)

2Note that we do not require SGω
1

prq to be de�ned for ω1 P ΩZ2zΛprq, but, if it is, as
noted in Section 6.1.6, we always write SGpΛprqq for SG1pΛprqq.
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ω

ui

s
Λprq

T pr, s, iq

(a) East-extension. The thickened tube
is traversable (T ).

ω ω

ui ui�2k

s� x x
Λprq � xui

T pr, s� x, iq � xui T pr, x, i� 2kq � xui

(b) CBSEP-extension. Thickened tubes
are symmetrically traversable (ST ).

Figure 6.2 � One-directional extensions. The black droplet is SG. Helping
sets appear in the shaded parallelograms. White strips have width ΘpC2q.

6.2.2 CBSEP-extension

De�nition 6.2.4 (CBSEP-extension). Fix i P r4ks, r and l divisible by λi.
Assume that SGpΛprqq is de�ned2 and that U has a �nite number of stable
directions. We say that we CBSEP-extend Λprq by l in direction ui (see
Fig. 6.2b) if for all s P p0, ls divisible by λi and ω P ΩZ2zΛpr�sviq we have
SGωpΛpr� sviqq �

�
x SG

ω
x pΛpr� sviqq and for o�sets x P r0, ss divisible by

λi we de�ne η P SGωx pΛpr � sviqq i� the following all hold:

ηT pr,s�x,iq�xui P ST ωpT pr, s� x, iq � xuiq;
ηΛprq�xui P SGpΛprq � xuiq;

ηT pr,x,i�2kq�xui P ST ωpT pr, x, i� 2kq � xuiq.

The following is proved in Section 6.A.3 based on Chapter 5.

Proposition 6.2.5. Assume that we CBSEP-extend Λprq by l in direction
ui. Denote Λ1 � T pr, λi, i�2kq, Λ2 � Λpr�λiviq and Λ3 � T pr�λivi, λi, iq,
so that Λpr�λiviq�λiui � Λ1\Λ2\Λ3 and Λ2YΛ3 � Λprq � pΛ1YΛ2q�λiui.
Suppose that events SGpΛ2q, ST η2pΛ1q and ST η2pΛ3q are de�ned for all
η2 P SGpΛ2q so that!

η : ηΛ1 P ST ηΛ2
pΛ1q, ηΛ2 P SGpΛ2q, ηΛ3 P ST ηΛ2

pΛ3q
)

� SGpΛ1 Y Λ2q X SGpΛ2 Y Λ3q. (6.4)

Then

γpΛpr � lviqq ¤
µΛprqpSGqmaxpµ�1

ΛprqpSGq, γpΛprqqqeOpC
2q log2p1{qq

µΛpr�lviqpSGqµΛ1YΛ2pSG|SGqminη2PSGpΛ2q µΛ3pST η2 |ST 0q ,

where SGpΛ1 X Λ2q � tη : ηΛ2 P SGpΛ2q, ηΛ1 P ST ηΛ2
u.
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6.3 East-type dynamics

In this section we treat various East-type dynamics on all scales. This is the
most novel and central part of this chapter, albeit the most technical.

6.3.1 Internal East dynamics

For this section we assume that U is balanced and without loss of generality
that we may �x i P p0, 2kq such that αpujq ¤ α for all j P p�k, i � kq. Let

rp0q � prp0qj qjPr4ks be a symmetric sequence of radii such that rj � Θp1{εq is
a multiple of λj for all j, the vertices of Λprp0qq are in λiuiZ � λ0u0Z and
the corresponding side lengths sp0q are also Θp1{εq. We de�ne

s
pnq
j �

#
s
p0q
j `pnq �k   j   i� k,

s
p0q
j i� k   j   3k

(6.5)

and s
pnq
�k and s

pnq
i�k as required to be the sides of a droplet, where

`pnq �
#
Wn n ¤ N c,P
W exppn�Ncq{qαT N c   n ¤ N i,

(6.6)

N c � mintn : Wn ¥ q�αu
N i � min

!
n : `pnq ¥ `iε

)
� N c � log log logp1{qq �Oplog logW q.

We denote Λpnq � Λprpnqq, where rpnq is the sequence of radii corresponding
to spnq such that r

pnq
�k � r

p0q
�k and r

pnq
i�k � r

p0q
i�k (see Fig. 6.3a).

Remark 6.3.1. Note that despite the extremely fast divergence of `pnqqα,
for n P pN c, N is it holds that W ¤ `pn�1q{`pnq   p`pnqqαq2   log4p1{qq.
The sharp divergence will ensure that some error terms below sum to the
largest one, so as to avoid additional factors of the order of N i �N c in the
�nal answer, particularly for the semi-directed class (f). This technique was
introduced in Eq. (10.14), while the geometrically increasing scale choice
relevant for small n originates from [190]. It should be noted that this
divergence can be further ampli�ed up to a tower of exponentials of height
linear in n�N c. In that case the log log logp1{qq error term in Theorem 6.3.8
becomes log�p1{qq, but is, alas, still divergent.

Semi-directed models

We now assume that U is semi-directed. In that case we may set i � 2k� 1.
This is the only feature of semi-directed models used in this subsection.
Hence, the reasoning applies equally well to all balanced models with rules
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lp1�1{4q

lp1�2{4q

lp1�3{4q

lp2q
Λp2q

Λp1q

Λp0q

(a) Case case i � 2k � 1 of semi-directed
models in Section 6.3.1. For n P N droplets
are symmetric and homothetic to the black
Λp0q. Intermediate ones Λp1�1{4q, Λp1�2{4q

and Λp1�3{4q obtained by East-extensions
(see Fig. 6.2a) in directions u0, u1 and
u2 respectively are drawn in progressive
shades of grey.

Λp2q

Λp1q

Λp0q

(b) Case i � 1 of balanced roo-
ted models in Section 6.3.1. The
black, grey and white droplets are
Λp0q, Λp1q and Λp2q respectively. In
this case no fractional scales are in-
troduced.

Figure 6.3 � Geometry of the nested droplets Λpnq used in Section 6.3.1 for
k � 2.

contained in the axes of the lattice, since then k � 1 and we can always set
i � 1 for balanced models.

Observe that, since i � 2k � 1, we may obtain Λpn�1q from Λpnq by 2k
successive extensions in directions u0 through ui (see Fig. 6.3a). We denote
the droplets obtained this way by Λpn�j{p2kqq for j P p0, 2kq and denote
their radii and side lengths by rpn�j{p2kqq and spn�j{p2kqq respectively. We

write lpn�j{p2kqq � s
pn�1q
j�k � s

pnq
j�k � Θp`pn�1q{εq for the length l such that

rpn�pj�1q{p2kqq � rpn�j{p2kqq � lvj .

De�nition 6.3.2 (Semi-directed internal SG). Let U be semi-directed. Let
SGpΛp0qq be the event that Λp0q is fully infected. Recursively, for n P rN is
and j P r2ks, we de�ne SGpΛpn�pj�1q{p2kqqq by East-extending Λpn�j{p2kqq in
direction uj by l

pn�j{p2kqq (recall De�nition 6.2.2).

Theorem 6.3.3. Let U be semi-directed. Then

γ
�

ΛpN iq
	
¤ exp

�
log logp1{qq

ε6qα



, µ

ΛpN
iqpSGq ¥ exp

� �1

ε2qα



.

Proof of Theorem 6.3.3. For n P 1{p2kqN, j P r2ks and m ¥ 2, such that
n   N i and pn� j{p2kqq P N set

apnqm � µ�1
�
SG

�
Λpnq � �

tp3{2qm�1u� tp3{2qmu�λjuj	���SG �Λpnq
		

. (6.7)
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For the sake of simplifying expressions we will abusively assume that for all
lpnq are of the form λjtp3{2qmu with integerm. Without this assumption, one
would need to treat the term corresponding tom �M�1 in Proposition 6.2.3
separately, but identically.

From Proposition 6.2.3 we get

γ
�

ΛpN iq
	
¤ expplogOp1qp1{qqq

µ2
ΛpN

iq
pSGq

N i�1{p2kq¹
n�0

Mpnq¹
m�1

apnqm , (6.8)

where the product is over n P 1{p2kqN and M pnq � log lpnq{ logp3{2q �Op1q.
Indeed, by the Harris inequality am in Eq. (6.3) for r � rpnq is at most

apnqm {µ
�
T
�
T prpnq, �tp3{2qm�1u� tp3{2qmuqλj , j

�		
,

while by De�nition 6.2.2

Mpnq¹
m�1

µ
�
T
�
T
�
rpnq, ptp3{2qm�1u� tp3{2qmuqλj , j

			
¥ qOpWMpnqqµpSGpΛpn�1{p2kqqqq

µpSGpΛpnqqq .

To evaluate the r.h.s. of Eq. (6.8) we will need the following lemma.

Lemma 6.3.4. Let n P 1{p2kqN be such that n ¤ N i and m ¥ 1. Then

apnqm ¤ µ�1
Λpnq

pSGq ¤ min
�
pδqαWnq�Wn{ε2 , e1{pε2qαq

	
. (6.9)

Moreover, if

`ptnuq ¥ 1{ �qα logW p1{qq� , M pnq ¥ m�W, p3{2qm ¤ 1{qα,

setting

nm � min
!
n1 P N : `pn

1q ¥ 1{ �qα logW p1{qq� ,M pn1q ¥ m�W
)
¤ n,

(6.10)
the following improvements holds

apnqm ¤ exp

�p3{2qm
ε4

�
pN c � nmq2 � 1n¥Nc log2{3 logp1{qq

	

(6.11)

�
$&%exp

�
1{

�
qα logW�Op1qp1{qq

		
if m ¤ logp1{pqα logW p1{qqqq

logp3{2q
exp

�
1{

�
qα logW�Op1q logp1{qq

		
otherwise.
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Let us �nish the proof of Theorem 6.3.3 before proving Lemma 6.3.4.

Using the trivial bound a
pnq
m ¤ expp1{pε2qαqq from Eq. (6.9) we get

N i�1{p2kq¹
n�Nc�r1{εs

Mpnq¹
m�

Q
logp1{qαq
logp3{2q

U apnqm ¤ exp

�
1�°N i

n�Nc en�1�Nc

ε4qα

�

� exp

�
log logp1{qq

ε5qα



, (6.12)

which is the main contribution. Note that n   N c � 1{ε implies M pnq  
logp1{qαq{ logp3{2q, so the above product exhausts the terms in Eq. (6.8)
with large m.

Next, using the �rst bound on a
pnq
m from Eq. (6.9), we obtain

� logpqα logW p1{qqq
logW¹
n�0

Mpnq¹
m�1

apnqm ¤ exp
�

1{
�
qα logW�Op1qp1{qq

		
; (6.13)

logp1{qαq
logp3{2q¹
m�1

nm�1{p2kq¹
n�

Q
logp1{pqα logW p1{qqqq

logW

U a
pnq
m ¤ exp

����
logp1{qαq
logp3{2q¸
m�1

p3{2qm logpδqαp3{2qmq
ε3

��
¤ e1{pqαε4q. (6.14)

Finally, we use Eq. (6.11) to show

logp1{qαq
logp3{2q¸
m�1

N i�1{p2kq¸
n�nm

log apnqm ¤ log log logp1{qq
logp1{qαq
logp3{2q¸
m�1

p3{2qmpN c � nmq3
ε4

�

log log logp1{qq log2{3 logp1{qq
logp1{qαq
logp3{2q¸
m�1

p3{2qm
ε4

�

N i

qα logW�Op1qp1{qq
logp1{pqα logW p1{qqqq

logp3{2q �

logOp1q logp1{qqq
qα logW�Op1q logp1{qq

¤ log log logp1{qq
qαεOp1q

� log log logp1{qq log2{3 logp1{qq
qαεOp1q

�
1

qα logW�Op1qp1{qq �
1

qα logW�Op1q logp1{qq
¤ log3{4 logp1{qq

qα
.
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Plugging the last result and Eqs. (6.12) to (6.14) in Eq. (6.8) and recalling
Eq. (6.9), we conclude the proof of Theorem 6.3.3.

Proof of Lemma 6.3.4. Let us �x m and n as in the statement for Eq. (6.9).

The bound a
pnq
m ¤ µ�1

Λpnq
pSGq follows from the Harris inequality. To upper

bound the latter term we note that by De�nition 6.2.2,

µΛpnqpSGq � µΛp0qpSGq
n�1{p2kq¹
p�0

µT prppq,lppq,jppqqpT q, (6.15)

setting jppq P r2ks such that p� jppq{p2kq P N. Clearly,

µΛp0qpSGq � q|Λ
p0q| � qΘp1{ε2q. (6.16)

Let us �x p P 1{p2kqN, p   N i. Then, using De�nition 6.2.1, Observa-
tion 6.1.10 and the Harris inequality, we get

µT prppq,lppq,jppqqpT q ¥ qOpW q
�

1� e�q
α`ppq{Opεq

	Oplppqq
(6.17)

¥ qOpW q �
#
pδqαW pqW p{pδεq p ¤ N c,

exp
��1{ �qα exp

�
W exppp�Ncq{δ��� p ¡ N c,

the last inequality taking into account 1{ε " 1{δ "W " 1, `pNcq �WOp1q{qα
and the explicit expressions Eq. (6.6). From Eqs. (6.15) to (6.17) it is ele-
mentary to check Eq. (6.9).

We next turn to proving Eq. (6.11), so we �x n and m satisfying the
corresponding hypotheses of Lemma 6.3.4. Denote sm � ptp3{2qm�1u �
tp3{2qmuqλjuj for j � jpnq as in Eq. (6.7), so that

apnqm � µ�1
�
SG

�
Λpnq � sm

	���SG �Λpnq
		

.

By the Harris inequality, De�nitions 6.2.2 and 6.3.2 we have

apnqm ¤ µ�1
ΛpnmqpSGq (6.18)

�
n�1{p2kq¹
p�nm

µ�1
�
T
�
T
�
rppq, lppq, jppq

	
� sm

	��� T �
T
�
rppq, lppq, jppq

			
.

Our goal is then to bound the last factor, using Corollary 6.B.4, which quanti-
�es the fact that �small perturbations sm do not modify traversability much.�

Let us �x p as above, denote T � T prppq, lppq, jppqq and T 1 � T � sm.
From Eq. (6.10) it is not hard to check that the hypotheses of Corollary 6.B.4
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are satis�ed, so that

µpT pT 1q|T pT qq ¥ q�OpW q �
�

1� p1� qαq`ptpuq{Opεq
	Opp3{2qmq

(6.19)

�
�

1�OpWεqp3{2qm{`ptpuq � q1�op1q
	Op`ptpu�1q{εq

¥ q�OpW q �
#
pδqαW pqOpp3{2qmq p ¤ N c

expp�p3{2qm exp
��W exppp�Ncq{δq� p ¡ N c

�
#

exp
��q�α�1{2�op1q� p3{2qm ¤ q�α�1{2�op1q

exp
�
�W 2p3{2qm `ptpu�1q

`ptpuq

	
otherwise.

Further notice that if p3{2qm ¤ q�α�1{2�op1q or p ¡ N c, the third term
dominates, while otherwise the second one does. Moreover, if p ¡ N c � ∆
with

∆ :� log
log log logp1{qq

3 logW
,

then the Harris inequality and Eq. (6.17) directly give the bound

µpT pT 1q|T pT qq ¥ exp
��1{ �qα logW logp1{qq�� . (6.20)

Finally, we can plug Eqs. (6.9), (6.19) and (6.20) in Eq. (6.18) to obtain
the following bounds. If p3{2qm ¤ q�α�1{2�op1q, then

apnqm ¤ exp
�
1{ �qα logW p1{qq�� .

Otherwise,

apnqm ¤
#

exp
�

1{
�
qα logW�Op1qp1{qq

		
p3{2qm ¤ 1{ �qα logW p1{qq�

pδqαWnmq�p3{2qm{ε3 otherwise

�
minpn,Ncq¹
p�nm

pδqαW pq�Opp3{2qmq

�
#

1 n ¤ N c

exp
�p3{2qmW 2 expp∆q{δ� n ¡ N c

�
$&%exp

�
1{

�
qα logW�Op1qp1{qq

		
p3{2qm ¤ 1{ �qα logW p1{qq�

exp
�

1{
�
qα logW�Op1q logp1{qq

		
otherwise,

the terms corresponding to µ�1
ΛpnmqpSGq and to values of p in the intervals

rnm, N cs, pN c, N c � ∆s and pN c � ∆, N iq respectively. Indeed, in the last
term for small m we used Eq. (6.19), while for large m, we directly applied
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Eq. (6.20). Observing that the product of the second case for the �rst term,
the second term and the third term can be bounded by

exp

�p3{2qm
ε4

�
pN c � nmq2 � 1n¥Nc log2{3 logp1{qq

	

,

we obtain the desired Eq. (6.11).

Balanced rooted models

We now assume that U is balanced rooted (the rooted character is assumed
only in order not to override de�nitions for semi-directed families above and
isotropic ones in Section 6.4.1 below, but is not needed otherwise). We set
i � 1 in this case, which is always valid, since the model is balanced (recall
i from the beginning of Section 6.3.1).

We need to de�ne a two-directional East-extension which is morally the
concatenation of one in direction u0 and one in direction u1, but whose actual
de�nition is much more technical, so as to respect the homothetic relation
between the Λpnq and yet maintain a product structure.

We begin with some geometric preparations. Fix n P rN is (since the
de�nitions for semi-directed models no longer apply, but only the ones from
the beginning of Section 6.3.1 do, n is an integer here). Observe that we can
cover Λpn�1q with droplets pDκqκPrKs so that the following conditions hold
(see Fig. 6.4).

• For all κ P rKs, Dκ � Λpn�1q;

•
�K�1
κ�2 Dκ � Λpn�1q;

• K � Op`pn�1q{`pnqq;
• any segment of length `pnq{pCεq perpendicular to uj for some j P p�k, ks
intersects at most Op1q of the Dκ;

• droplets are assigned a generation g P t0, 1, 2u, so that only D0 :� Λpnq

is of generation g � 0, only D1 :� Λprpnq � l1v1q is of generation g � 1,
where

l1 � r
pn�1q
k � r

pnq
k

xu1, uky ,

so that D1 spans the uk�1-side of Λpn�1q;

• if κ ¥ 2, then Dκ is of generation g � 2, and is of the form

Dκ � yκu1 � Λprpnq � lκv0q
for certain lκ ¥ 0 and yκ P r0, l1s multiple of λ1.
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lκ

l1
D1

D0

(a) The droplets Dκ corresponding to
corners of Λpn�1q. The generation 0
droplet is given in black, while the one
of generation 1 is shaded.

(b) All droplets Dκ. In the second
generation, for visibility, droplets al-
ternate between shaded, thickened and
hatched.

Figure 6.4 � Geometry of the droplets pDκqκPrKs used in the two-dimensional
East-extension in De�nition 6.3.5. Also recall Fig. 6.3b.

To construct the Dκ of generation 2, it essentially su�ces to increment yκ
by Θp`pnq{εq and de�ne lκ to be the largest possible, so that Dκ � Λpn�1q.
Finally, we add to our collection of droplets the ones with yκ corresponding
to a corner of Λpn�1q and again take lκ maximal (see Fig. 6.4).

De�nition 6.3.5 (Two-dimensional East-extension). Fix n P rN is and let
R � Λpn�1q be a region of the form

¤
IPI

��£
κPI

Dκz
¤

κPrKszI
Dκ

� (6.21)

for some family I of subsets of rKs. We say that R is n-traversable (TnpRq
occurs) if for all j P p�k, kq and every segment S � R perpendicular to uj
of length at least δ`pnq{ε at distance
• at least W from the boundary of all Dκ, the event HpSq occurs;
• at most W from a side of a Dκ parallel to S for some κ P rKs, but S does
not intersect any non-parallel side of any Dκ1 , the event HW pSq occurs.

We say that we East-extend Λpnq to Λpn�1q if the event SGpD1q is de�ned
by East-extending Λpnq by l1 in direction u1 and SGpΛpn�1qq is de�ned as
SGpD1q X TnpΛpn�1qzD1q. Indeed,

Λpn�1qzD1 �
¤
κPrKs

DκzD1 �
¤

I�rKszt0,1u

�£
κPI

Dκz
¤
κRI

Dκ

�
.
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Remark 6.3.6. Note that these n-traversability events are product over the
disjoint regions into which all the boundaries of pDκqκPrKs partition Λpn�1q.

Armed with this notion, we are ready to de�ne our SG events up to the
internal scale for our models of interest.

De�nition 6.3.7 (Balanced rooted internal SG). Let U be balanced rooted.
Let SGpΛp0qq be the event that Λp0q is fully infected. We de�ne SGpΛpnqq for
n P rN is by successively East-extending Λppq to Λpp�1q.

Theorem 6.3.8. Let U be balanced rooted. Then

γ
�

ΛpN iq
	
¤ exp

�
logp1{qq log log logp1{qq

ε3qα



, µ

ΛpN
iqpSGq ¥ exp

� �1

ε2qα



.

Proof of Theorem 6.3.8. For m ¥ 1 and n P rN is denote

apnqm � max
jPt0,1u

µ�1
�
SG

�
Λpnq � �

tp3{2qm�1u� tp3{2qmu�λjuj	���SG �Λpnq
		

.

(6.22)
For the sake of simplifying expressions we will abusively assume that for all
κ P rKs the length lκ is of the form λ0tp3{2qmu with integer m. Without this
assumption, one would need to treat the term corresponding tom �M�1 in
Proposition 6.2.3 separately, but identically. We next deduce Theorem 6.3.8
from the following two lemmas.

Lemma 6.3.9. For n   N i we have

γ
�

Λpn�1q
	
¤ γpΛpnqqeOpC2q log2p1{qq

pµΛpn�1qpSGqµΛpn�1qpTnqqOp1q
Mpnq¹
m�1

apnqm ,

where M pnq � r1{εs� rlog `pn�1q{ logp3{2qs.
Lemma 6.3.10. For any n ¤ N i and m ¥ 1 we have

apnqm ¤ µ�1
Λpnq

pSGq ¤ µ�1
Λpnq

pSGqµ�1
Λpnq

pTn�1q
¤ min

�
pδqαWnq�Wn{ε2 , e1{pε2qαq

	
. (6.23)

From Lemmas 6.3.9 and 6.3.10 we get

γ
�

ΛpN iq
	
¤ elogOp1qp1{qq

N i�1¹
n�0

pµΛpn�1qpSGqµΛpn�1qpTnqq�Op1q
Mpnq¹
m�1

apnqm

¤ elogOp1qp1{qq
N i�1¹
n�0

pµΛpn�1qpSGqµΛpn�1qpTnqq�Oplogp1{qqq

¤ exp

�
logp1{qq log log logp1{qq

ε3qα



.
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Proof of Lemma 6.3.9. Let us start with a general observation. Consider
two regions A,B � Z2 and a measure ν on ΩAYB. The law of total variance
reads

VarνAYB pfq � νBzA pVarνApfqq �VarνBzA pνApfqq .
The latter term can be bounded from above by

VarνBzA pνApfqq ¤ νA

�
VarνBzApfq

	
� νAzB

�
νAXBpVarνBzApfqq

	
¤ νAzB pVarνB pfqq ,

using the convexity of the variance and the law of total variance. Hence,

VarνAYB ¤ νAYB pVarνA �VarνB q . (6.24)

Fix n P rN is. Applying the above inequality several times, we obtain that

VarΛpn�1qpf |SGq ¤
K�1̧

κ�2

µΛpn�1q

�
VarDκ

�
f |SG

�
Λpn�1q

		
|SG

	
(6.25)

and turn to bounding a generic summand.

We East-extend Λpnq in direction u0 by an arbitrarily large amount, which
de�nes SGpDκq for all κ ¥ 2 (it was already de�ned in De�nition 6.3.5 for D1

by East-extending in direction u1). Observe that by the Harris inequality and
the product structure of De�nition 6.2.2, as in Eq. (6.8), for any κ P r2,Kq
Proposition 6.2.3 gives

γpDκq ¤ max
�
γ
�

Λpnq
	
, µ�1

Λpnq
pSGq

	
eOpC

2q log2p1{qqµΛpnqpSGq
µDκpSGq

Mpκq¹
m�1

apnqm

(6.26)
with Mpκq � mintm : λ0p3{2qm ¥ lκu and the same holds for D1 with
Mp1q � mintm : λ1p3{2qm ¥ l1u. Without loss of generality �x κ � 2, since
all droplets of generation 2 are treated identically. Our goal is to show

µΛpn�1q

�
VarD2

�
f |SG

�
Λpn�1q

		���SG	 ¤ γpΛpnqqeOpC2q log2p1{qq

pµΛpn�1qpSGqµΛpn�1qpTnqqOp1q

�
Mpnq¹
m�1

apnqm

¸
yPΛpn�1q

µΛpn�1q

�
c1y Varypfq

�
, (6.27)

from which Lemma 6.3.9 clearly follows in view of Eq. (6.25).

Let V � D1 YD2 (that is a %-shaped region in Fig. 6.4) and

SGpV q :� SGpD1q X TnpD2zD1q.
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By the product structure of traversability (see De�nition 6.3.5), it is clear
that

µV

�
�|SG

�
Λpn�1q

		
� µV p�|SGpV qq � µD2zD1

p�|Tnq b µD1p�|SGq,
so that by convexity of the variance

µΛpn�1q

�
VarD2

�
f |SG

�
Λpn�1q

		���SG	 ¤ µΛpn�1q pVarV pf |SGq|SGq .
(6.28)

Further using a two-block dynamics (see e.g. Lemma 6.A.3), we have

VarV pf |SGq ¤
µV pVarD1pf |SGq � 1E VarD2zD1

pf |Tnq|SGq
ΩpµV pE |SGqq , (6.29)

where
E � SGpΛpnq � y2u1q X TnpD1 XD2q.

By convexity of the variance and the fact that

E X TnpD2zD1q � SGpΛpnq � y2u1q X T pD2zpΛpnq � y2u1qq � SGpD2q
(6.30)

(recall De�nitions 6.2.2 and 6.3.5 and the fact that each segment of length
`pnq{pεCq " δ`pnq{ε intersects at most Op1q droplets), we have

µV
�
1E VarD2zD1

pf |Tnq
��SG� ¤ µpEq

µV pSGqµV pVarD2pf |E X TnpD2zD1qqq

¤ µpEqµD2pSGqµV pVarD2pf |SGqq
µV pSGqµpE X TnpD2zD1qq (6.31)

¤ µV pVarD2pf |SGqq
µ2

Λpn�1qpTnq
.

Indeed, in the last line we recalled the de�nitions of SGpD2q and SGpV q,
while in the second one we took into account that for any events A � B with
µpAq ¡ 0 it holds that

Varpf |Aq � min
cPR

µ
�pf � cq2��A� ¤ µppf � µpf |Bqq21Aq

µpAq ¤ µpBq
µpAq Varpf |Bq

(6.32)
and Eq. (6.30). Plugging Eq. (6.31) in Eq. (6.29) and noting again that by
the Harris inequality µV pE |SGq ¥ µpEq ¥ µΛpnqpSGqµΛpn�1qpTnq, to get

VarV pf |SGq ¤ Op1qµV pVarD1pf |SGq �VarD2pf |SGqq
µΛpnqpSGqµ3

Λpn�1qpTnq
. (6.33)

Applying Eq. (6.26), we obtain

γpV q ¤ γpΛpnqqeOpC2q log2p1{qq

µ2
Λpnq

pSGqµ4
Λpn�1qpTnq

Mpnq¹
m�1

apnqm ,
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since M pnq ¥ maxκPrKsMpκq. Inserting this in Eq. (6.28), we complete the
proof of Eq. (6.27) and of Lemma 6.3.9.

Proof of Lemma 6.3.10. The �rst inequality in Eq. (6.23) follows from the
Harris inequality, while the second one is trivial, so we turn to the last one
and �x n P rN is. Note that by De�nition 6.3.5

µΛpn�1qpSGq ¥ µΛpnqpSGqµΛpn�1qpTnqµD1zD0
pT q. (6.34)

We will therefore proceed by induction starting with

µΛp0qpSGq � q|Λ
p0q| � qΘp1{ε2q. (6.35)

Moreover, from De�nition 6.3.5, to ensure the occurrence of TnpΛpn�1qq, it
su�ces to have OpWK`pn�1qq{p`pnqδq well-placed W -helping sets, as well as
Opp`pn�1qq2q{p`pnqδεq helping sets for segments of length δ`pnq{p3εq. Indeed,
we may split lines perpendicular to each uj for j P p�k, kq into successive
disjoint segments of length δ`pnq{p3εq with a possible smaller leftover and
placeW -helping sets or helping sets depending on whether the segment under
consideration is close to a parallel boundary of one of the Dκ. Recalling
that 1{ε " 1{δ " W " 1, `pNcq � WOp1qqα, K � Op`pn�1q{`pnqq, the explicit
expressions Eq. (6.6), the Harris inequality and Observation 6.1.10, we obtain

µΛpn�1qpTnq ¥ qOpW
2K`pn�1qq{p`pnqδq

�
1� p1� qαqδ`pnq{Opεq

	Opp`pn�1qq2{p`pnqδεqq

¥ e� logOp1qp1{qq
�

1� e�q
αδ`pnq{Opεq

	Opp`pn�1qq2{p`pnqδεqq
(6.36)

¥ e� logOp1qp1{qq �
#
pδqαWnqWn{pδ2εq n ¤ N c

exp
��1{ �qα exp

�
W exppn�Ncq��� n ¡ N c.

Essentially the same computation leads to the same bound for µD1zD0
pT q, the

only di�erence being that only Op1q W -helping sets and Op`pn�1q{εq helping
sets are needed. Further recalling Eqs. (6.34) and (6.35), it is elementary to
check Eq. (6.23).

Removing the surplus factor To conclude, let us brie�y sketch how to
remove the log log logp1{qq factor appearing in Theorem 6.3.8, which would
also propagate to pollute Theorem 1.6.4(e).

Theorem 6.3.11. Let U be balanced rooted. Instead of De�nition 6.3.7, it
is possible to de�ne SGpΛpN iqq in such a way that

γ
�

ΛpN iq
	
¤ exp

�
logOp1q logp1{qq

qα

�
, µ

ΛpN
iqpSGq ¥ exp

� �1

ε2qα



.



6.3. EAST-TYPE DYNAMICS 191

Sketch proof of Theorem 6.3.11. For a proof one should combine the techni-
ques of both parts of Section 6.3.1. More precisely, a less crude bound on

a
pnq
m than Eq. (6.23) should be established along the lines of Eq. (6.11).

As in Eq. (6.18), we may further decompose a
pnq
m into a product over sca-

les p ¤ n. The relevant values of the parameters correspond to p3{2qm ¤
1{plogW p1{qqqαq, say, and p P rN c, ns, as other cases can be dealt with using
the crude bound Eq. (6.23). Further, as in Eq. (6.20), we can also discard
p ¥ N c � ∆. Hence, we need to focus for the remaining values of m and p
on lower bounding

µ
�
Tp

��
Λpp�1qzD1

	
� sm

	��� Tp �Λpp�1qzD1

		
and µpT ppD1zD0q � smq|T pD1zD0qq, the latter being treated exactly like
µpT pT 1q|T pT qq in Eq. (6.19). Turning to the former conditional probability,
it can be further decomposed as a product over elementary regions delimited
by the boundaries of the pDκqκPrKs.

Unfortunately, for such (non-convex) polygonal regions R, bounding

µ pTp pR� smq| TppRqq
is no easy feat. Indeed, Corollary 6.B.4 only treats tubes and, more impor-
tantly deals with helping sets for one direction only in each part of the tube
(recall Fig. 6.2a), while TppRq requires helping sets in various directions,
which are all dependent. To make matters worse, for certain families U it
may happen that a single set of α infections is simultaneously a helping set
for di�erent directions and this would create complex and heavy dependency
among di�erent directions, which could, a priori, make boundary regions at-
tract such sets.

To deal with this issue, one could further elaborate De�nition 6.3.5. In-
deed, we may split Λpp�1qzD1 into disjoint horizontal strips (recall Fig. 6.4b)
of width `ppq{pWεq. Each strip is assigned a direction uj , j P p�k, kq and
we will only ask for helping sets for this direction to be present. These
requirements are again cut essentially along the boundaries of all Dκ into
parallelograms as in Lemma 6.B.3, placingW -helping sets on segments close
to the boundaries. Naturally, some leftover regions remain without helping
sets as in De�nition 6.3.5, but they are unimportant as in for balanced rooted
models.

By doing this, we make the event TnpRq the intersection of traversability
events of parallelograms in the sense of Lemma 6.B.3, so that its result can
be applied as in the proof of Corollary 6.B.4, leading to a calculation similar
to the one in Theorem 6.3.3. The only signi�cant change is that now there
are OpW`pp�1q{`ppqq parallelograms instead of a constant number. This is
not really a problem, but, if one wishes to avoid careful computations, given
that we are interested in the range p P pN c, N c�∆q, we can brutally bound
this by its maximum, which is logOp1q logp1{qq by the de�nition of ∆.
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6.3.2 Mesoscopic East dynamics

We next treat the East mesoscopic dynamics, which is essentially an ex-
tension of the internal one. Although they actually apply to all balanced
models, the results of this section will only be used for balanced models with
in�nite stable directions, so the de�nitions will only apply to that class. As
for that class there is a lot of margin, our reasoning will be far from tight
for the sake of simplicity.

Extending the notation from Section 6.3.1 for balanced rooted models, for
n ¡ N i, we set `pnq �Wn�N i

`pN iq and de�ne spnq, rpnq,Λpnq as in that section.
Further let Nm � inftn : `pnq{ε ¥ `m � q�Cu � ΘpC logp1{qq{ logW q and
assume for simplicity that `pNmq � q�Cε. We will only be interested in
n ¤ Nm and De�nitions 6.3.5 and 6.3.7 remain unchanged for such n.

Theorem 6.3.12. Let U be a balanced model with in�nitely many stable
directions (class (b)). Then

γ
�

ΛpNmq
	
¤ exp

�
log2p1{qq
ε3qα



, µΛpN

mqpSGq ¥ exp

� �2

ε2qα



.

Proof. The proof is essentially identical to the one of Theorem 6.3.8, so we
will only indicate the necessary changes. To start with, Lemma 6.3.9 applies
without change for n P rN i, Nmq. Also, the Harris inequality still implies

that a
pnq
m ¤ µ�1

Λpnq
pSGq ¤ µ�1

ΛpN
mqpSGq. Therefore,

γ
�

ΛpNmq
	
¤ γpΛpN iqqelogOp1qp1{qq

pµΛpN
mqpSGqminnPrNms µΛn�1pTnqqOpNmMpNm�1qq .

Recalling the bound of γpΛpN iqq established in Theorem 6.3.8, together with
the fact that Nm ¤ C logp1{qq and M pNm�1q ¤ OpC logp1{qqq, it su�ces to
prove that

µΛpN
mqpSGq min

nPrNms
µΛn�1pTnq ¥ expp�2{pε2qαqq, (6.37)

in order to conclude the proof of Theorem 6.3.12.
Once again, the proof of Eq. (6.37) proceeds similarly to the one of

Eq. (6.23) in Lemma 6.3.10. Indeed, the same computation as Eq. (6.36)
in the present setting gives that for n P rN i, Nmq we have

µΛpn�1qpTnq ¥ qOpW
3{δq exp

�
�e�qαδ`pnq{OpεqO

�
W 2`pnq{pδεq

		
. (6.38)

From Eq. (6.34) it follows that

µΛpN
mqpSGq ¥ µ

ΛpN
iqpSGq

Nm�1¹
n�N i

µΛpn�1qzΛpnqpTnq.

Plugging Eqs. (6.23) and (6.38) in the r.h.s., this yields Eq. (6.37) as desired.
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6.4 CBSEP-type dynamics

In this section we establish results involving CBSEP-type dynamics. It is
relevant only for isotropic models up to the internal scale and for unrooted
models on mesoscopic level.

6.4.1 Isotropic internal and mesoscopic dynamics

Let U be isotropic. We follow and generalise Chapter 5.

Let rp0q be a symmetric sequence of radii with r
p0q
i � r

p0q
i�2k for all i P

r2ks, such that r
p0q
i � Θp1{εq is a multiple of λi for all i P r4ks and the

corresponding side lengths s
p0q
i are also Θp1{εq. For any i P r2ks and n �

2km� r with r P r2ks we de�ne

s
pnq
i � s

pnq
i�2k � s

p0q
i 2m �

#
2 k ¤ i   k � r

1 otherwise

and Λpnq � Λprpnqq with rpnq the sequence of radii associated to spnq sa-

tisfying r
pnq
i � r

pnq
i�2k for all i P r2ks. Further set Nm� � 2krlogpε`m�q{ log 2s

(recall `m� from Section 6.1.4, where m is not a variable and stands for
`mesoscopic').

Note that Λpnq are nested symmetric droplets extended in one direction at
each step satisfying Λp2kmq � 2mΛp0q. Recall De�nition 6.2.4 and Fig. 6.2b.

De�nition 6.4.1 (Isotropic SG). Let U be isotropic. We say that Λp0q is
SG if it is fully infected. We then recursively de�ne SGpΛpn�1qq for n ¥ 0 by

CBSEP-extending Λpnq in direction un by lpnq :� s
pnq
n�k � Θp2n{2k{εq (recall

that indices of directions and sequences are considered modulo 4k as needed
and see Fig. 6.5a).

Theorem 6.4.2. Let U be isotropic. Then for all n ¤ Nm�

γ
�

ΛpNm�q
	
¤ expp1{plogC{2p1{qqqαqq

µpSGpΛpNm�qqq , µ
�
SG

�
Λpnq

		
¥ exp

�
1{pqαε2q� .

Proof of Theorem 6.4.2. We seek to apply Proposition 6.2.5, in order to re-
cursively upper bound γpΛpnqq for all n ¤ Nm�. To that end, we need the
following de�nition.

De�nition 6.4.3. Fix 2km � r � n ¤ Nm� with r P r2ks and let Λ
pnq
1 �

T prpnq, λr, r � 2kq, Λ
pnq
2 � Λprpnq � λrvrq and Λ

pnq
3 � T prpnq, λr, rq � λrur

(as in Proposition 6.2.5 with r � rpnq, l � lpnq and i � r). If n   2k, we

de�ne SGpΛpnq
2 q to occur if Λ

pnq
2 is fully infected and similarly for ST pΛpnq

1 q
and ST pΛpnq

3 q.
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(a) A generic realisation of SGpΛpnqq
depicting the SG translates of
Λpnq, . . . ,Λpn�2kq involved in pro-
gressive shades of grey. Each exten-
sion is as in Fig. 6.2b.

Λ
pnq
1

Λ
pnq
2

Λ
pnq
3

(b) The setting of De�nition 6.4.3. The tu-

bes Λ
pnq
1 and Λ

pnq
3 of width λr are hatched,

Λ
pnq
2 � ΛpnqzΛ

pnq
3 is thickened, while the

droplets Λpriq, 0 ¤ i ¤ 2k are in progres-
sive shades of grey, starting from the black
Λpr0q � Λpn�2kq.

Figure 6.5 � Geometry of isotropic SG and SG events.

For n ¥ 2k, we de�ne ST pΛpnq
1 q to be the event that for every segment

S � Λ
pnq
1 perpendicular to some uj with j � r � k of length 2m{pWεq the

event HW pSq occurs. ST pΛpnq
3 q is de�ned analogously and also does not

depends on the con�guration outside of Λ
pnq
3 . Finally, for n ¥ 2k, we de�ne

SGpΛpnq
2 q as the intersection of the following events (see Fig. 6.5b).

• SGpΛpr0qq, where r0 � rpn�2kq;

• ST W pT pr0, lpn�2kq{2� λr, rqq X ST W pT pr0, lpn�2kq{2� λr, r � 2kqq;
• for all i P p0, 2kq

ST W
�
T
�
rpn�2k�iq � λrpvr � vr�2kq, lpn�2k�iq{2, r � i

		
X ST W

�
T
�
rpn�2k�iq � λrpvr � vr�2kq, lpn�2k�iq{2, r � i� 2k

		
.

• for every i P rn � 2k, ns, j P r4ks and segment S � Λ
pnq
2 perpendicular to

uj of length 2m{pWεq at distance at most W from the uj-side (parallel to
S) of Λprpiqq, the event HW pSq holds.
In words, SGpΛpnq

2 q is close to being the event that the central copy of

Λpn�2kq in Λ
pnq
2 is SG, the two tubes of equal length around it corresponding

to a CBSEP-extension by lpn�2kq in direction ur and so on until we reach
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Λpnq after 2k extensions. However, we have modi�ed this event in the follo-
wing ways. Firstly, the �rst extension is shortened by 2λr, so that the �nal

result after the 2k extensions �ts inside Λ
pnq
2 and actually only its ur�k and

ur�k-sides are shorter than those of Λ
pnq
2 by λr. Secondly, the traversability

events for tubes are required to occur with segments shortened by W (recall
De�nition 6.2.1) on each side. Finally, we require W helping sets for the last
OpW q lines of each tube, as well as the �rst OpW q outside the tube.

Taking this into account, we claim that Eq. (6.4) is veri�ed. Indeed, if

SGpΛpnq
2 q and ST pΛpnq

3 q occur, then the droplets Λpiq for i P rn � 2k, ns are
all SG. To see this, proceed by induction and observe that each traversabi-
lity appearing in De�nition 6.4.3 together with the W -helping sets implies
the corresponding traversability for the droplets Λpiq, since the droplets are
perturbed (shifted position and modi�ed side lengths) by Op1q, which is
less than the amount, W , by which we the segments required in ST W are
contracted compared to those in ST . In total, for each segment appearing
implicitly in the ST events de�ning SGpΛpiqq (via De�nition 6.2.4), we have
asked either for aW -helping set or a helping set in a slightly shorter segment.

Hence, we may apply Proposition 6.2.5 to get

γ
�

Λpn�1q
	

¤ maxp1, µΛpnqpSGqγpΛpnqqqeOpC2q log2p1{qq

µΛpn�1qpSGqµ
Λ
pnq
1 YΛ

pnq
2
pST pΛpnq

1 q X SGpΛpnq
2 q|SGqµ

Λ
pnq
3
pST |ST 0q

(6.39)

for n ¥ 2k and γpΛpnqq ¤ eOpC2q log2p1{qq for n   2k. By the Harris inequality

and the fact that both ST pΛpnq
1 q and ST pΛpnq

3 q can be guaranteed by OpW 2q
W -helping sets, we have

µ
Λ
pnq
3

�
ST

��ST 0
� ¥ qW

Op1q
, (6.40)

µ
Λ
pnq
1 YΛ

pnq
2

�
ST

�
Λ
pnq
1

	
X SG

�
Λ
pnq
2

	���SG	
¥ qW

Op1q
µ
�
SG

�
Λ
pnq
2

	���SG �Λ
pnq
1 Y Λ

pnq
2

		
. (6.41)

Furthermore, by the Harris inequality, Lemma 6.B.1 and Corollary 6.B.4,

µ
�
SG

�
Λ
pnq
2

	���SG �Λ
pnq
1 Y Λ

pnq
2

		

¥

$'''&'''%
µ
�
SG

�
Λ
pnq
2

		
2m ¤ 1{ �logCp1{qqqα� ,

qOpCq µpSGpΛpnq2 qq
µpSGpΛpn�2kqqq 2m ¥ logCp1{qq{qα,

expp�2mq1�op1qq otherwise.

(6.42)
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Indeed, applying Lemma 6.B.1 2k times gives that, conditionally on the

event SGpΛpnq
1 YΛ

pnq
2 q, with probability qOpCq we have SGpΛpn�2kqq and the

traversability events corresponding to symmetrically extending it in 2k steps

to Λ
pnq
1 YΛ

pnq
2 all occur; in the range ofm for which it applies, Corollary 6.B.4

deals with the conditional probability of the more restrictive traversability
events required in De�nition 6.4.3 given the original ones; W -helping sets
in De�nition 6.4.3 are paid for directly via the Harris inequality, since only
OpW 2q of them are needed. We direct the reader to Section 5.A for the
details of an analogous argument in a simpler setting.

Iterating Eq. (6.39) and plugging Eqs. (6.40) to (6.42), we obtain

γ
�

ΛpNm�q
	
¤ eq

�α�1�op1q

µ
ΛpN

m�qpSGq
2m¤1{plogCp1{qqqαq¹

n�2k

µ�1
�
SG

�
Λ
pnq
2

		
�

Nm�¹
n:2m¥logCp1{qq{qα

µpSGpΛpn�2kqqq
µpSGpΛpnq

2 qq
.

Hence, Theorem 6.4.2 follows immediately from Lemma 6.4.4 below.

Lemma 6.4.4. The following bounds hold for n P r2k,Nm�s and m �
tn{p2kqu.

µ
�
SG

�
Λ
pnq
2

		
¥ exp

� �1

logC�3p1{qqqα



if 2 ¤ 2m ¤ 1

logCp1{qqqα ,

(6.43)

µpSGpΛpnq
2 qq

µpSGpΛpn�2kqqq ¥ qW
Op1q

if 2m ¥ logCp1{qq
qα

, (6.44)

µ
�
SG

�
Λpnq

		
¥ exp

� �1

qαε2



. (6.45)

Proof. Let us �rst bound µpSGpΛpnqqq for n ¤ Nm� before easily deducing

a bound on µpSGpΛpnq
2 qq. From Lemma 6.B.1 and De�nition 6.2.4 we have

µΛpn�1qpSGq � qOpCqµΛpnqpSGqµT prpnq,lpnq,nq pST q , (6.46)

so we need to bound the last term. Applying Observation 6.1.10 and De�-
nition 6.2.1 as in Eq. (6.17), we get

µT prpnq,lpnq,nqpST q ¥ qOpW q
�

1� e�q
α2m{Opεq

	Op2m{εq
(6.47)

¥ qOpW q
#
pδqα2mq2m{pδεq 2m ¤ 1{qα,
exp p�2m exp p�qα2mqq otherwise.
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Plugging this in Eq. (6.46) and iterating, we get

µ
�

Λpnq
	
¤

#
exp

��1{ �logC�2p1{qqqα�� 2m ¤ 1{ �logCp1{qqqα� ,
exp

��1{ �qαε2
��

otherwise,

proving Eq. (6.45).

Recalling De�nition 6.4.3, we have that for any n P r2k,Nm�s

µ
�
SG

�
Λ
pnq
2

		
� qW

Op1q
µ
�
SG

�
Λpn�2kq

		
�

¹
iPr2ks

µ2
�
ST W

�
T
�
ri, lpn�2k�iq{2, n� i

			
.

However, the terms in the product can be bounded exactly as in Eq. (6.47),
entailing Eqs. (6.43) and (6.44).

6.4.2 Unbalanced unrooted models

Unbalanced internal dynamics

For unbalanced U with �nite number of stable directions the internal dyna-
mics is essentially trivial and so is the SG event up to the internal scale.

De�nition 6.4.5 (Unbalanced internal SG). If U is unbalanced with �nite
number of stable directions, we say that Λp0q :� Λprp0qq, de�ned by the side

lengths s
p0q
j � λjr`

i{λjs, is super good if all sites in Λp0qzΛprp0q �W1q are
infected.

The following straightforward result was proved in Lemma 4.3.10.

Proposition 6.4.6. For unbalanced U with �nite number of stable directions
we have

max
�
γ
�

Λp0q
	
, µ�1

�
SG

�
Λp0q

			
¤ q�OpW`iq ¤ exp

��C3 log2p1{qq{qα� .
CBSEP mesoscopic dynamics

Let U be unbalanced unrooted with �nite number of stable directions (the
unbalanced character is only assumed, so as not to override de�nitions for
semi-directed and isotropic models). W.l.o.g. let αpujq ¤ α for all j � �k
and minpαpukq, αpu�kqq ¡ α. We will only use 4k scales for the mesoscopic
dynamics. Recall Section 6.1.4. For i P r0, 2ks let Λpiq � Λprpiqq be centered
at 0 with rpiq de�ned by

s
piq
j � s

piq
j�2k �

#
λjr`

i{λjs i� k ¤ j   k

λjr`
m�{λjs �k ¤ j   i� k.



198 Chapter 6: Re�ned universality for critical KCM I

For i P p2k, 4ks, we de�ne Λpiq similarly by

s
piq
j � s

piq
j�2k �

#
λjr`

m�{λjs i� 3k ¤ j   k

λjr`
m�{λjs �k ¤ j   i� 3k.

(6.48)

These droplets are exactly as in Fig. 6.5a, except that the extensions are
much longer. More precisely, we have Λpi�1q � Λprpiq � lpiqpvi � vi�2kq{2q
with lpiq � p1� op1qq`m� if i P r2ks and lpiq � p1�Opδqq`m� if i P r2k, 4kq.
Theorem 6.4.7. Let U be unbalanced unrooted with �nite number of stable
directions. Then

max
�
γ
�

Λp4kq
	
, µ�1

�
SG

�
Λp2kq

			
¤ exp

�
log2p1{qq
δqα



.

Proof. We will proceed similarly to Theorem 6.4.2, but the �rst two steps
are more special (see Fig. 6.6). For i P r4ks, as in Proposition 6.2.5, let

Λ
piq
1 � T

�
rpiq, λi, i� 2k

	
Λ
piq
2 � Λ

�
rpiq � λivi

	
(6.49)

Λ
piq
3 � T

�
rpiq, λi, i

	
� λrur.

De�nition 6.4.8. Let ST pΛp0q
1 q (resp. ST pΛp0q

3 q) be the events that Λ
p0q
1

(resp. Λ
p0q
3 ) is fully infected and SGpΛp0q

2 q be the event that Λ
p0q
2 zΛprp0q �

2W1q is fully infected.

Let SGpΛp1q
2 q occur if:

• ST W pT prp0q � λ1v1, l
p0q{2, 0qq occurs,

• pΛpp`i �W q1qzΛpp`i � 2W q1qq X Λ
p1q
2 is fully infected,

• ST W pT prp0q � λ1v1, l
p0q{2, 2kqq occurs,

• for all j � �k and segment S � Λ
p1q
2 perpendicular to uj at distance at

most W from the uj-side of Λ
p1q
2 and of length `i{W the event HW pSq

occurs.

Further let ST pΛp1q
1 q occur if Λpp`i�W q1qXΛ

p1q
1 is fully infected and for all

j � �k and segment S � Λ
p1q
1 perpendicular to uj of length `

i{W the event

HW pSq occurs. We de�ne ST pΛp1q
3 q analogously.

Let i P r2, 4kq. We say that ST pΛpiq
1 q occurs if for all j P r4ks and

m P ti, i � 1u every segment S � Λ
piq
1 perpendicular to uj at distance at

most W from the uj-side of Λpmq of length spmqj {W the event HW pSq occurs.
We de�ne ST pΛpiq

3 q similarly and let SGpΛpiq
2 q occur if:
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(a) Case i � 1.

(b) Case i ¡ 1. Regions around all boundaries contain W -helping sets.

Figure 6.6 � The events SGpΛpiq
2 q and ST pΛpiq

3 q of De�nition 6.4.8. Λ
piq
3

is thickened. Black regions are entirely infected. Shaded tubes are W -
symmetrically traversable.

• SGpΛpi�2qq occurs;
• for each m P t0, 2ku the following occurs

ST W
�
T
�
rpi�2q, lpi�2q{2�?W, i� 2�m

		
X ST W

�
T
�
rpi�1q �?W �

vi � vi�2k

�
, lpi�1q{2�?W, i� 1�m

		
;

• for all j P r4ks, m P ti� 1, iu and segment S � Λ
piq
2 perpendicular to uj of

length s
pmq
j {W at distance at most W from the uj-side of Λpmq the event

HW pSq holds.
With these de�nitions it is again not hard to verify Eq. (6.4) (see Fig. 6.6),

so that Proposition 6.2.5, Proposition 6.4.6 and the Harris inequality give

γ
�

Λp4kq
	
¤ exppCOp1q log2p1{qq{qαq±

iPr4ks µΛpi�1qpSGqµ
Λ
piq
1
pST qµ

Λ
piq
2
pSGqµ

Λ
piq
3
pST q . (6.50)

It is not hard to check from De�nition 6.4.8 that each SG, SG and ST
event in Eq. (6.50) requires at most C`i �xed infections, WOp1q W -helping
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sets and Op1q W -symmetrically traversable tubes. We claim that the proba-
bility of each tube beingW -symmetrically traversable is qOpW q, which allows
us to conclude, given Eq. (6.50). Indeed, as in Eq. (6.46), we have e.g.

µT prp0q�λ1v1,l
p0q,0q pST W q ¥ qOpW q exp

��Op`m�q exp
��qα`i{W �� ¥ qOpW q

by the choice of scales in Section 6.1.4. Traversability for i ¡ 1 is slightly
more subtle, since some of the parallelograms (recall Fig. 6.2b) require W -
helping sets, since αpukq ¡ α and αpu�kq ¡ α. However, the uk-side of Λpiq

for i ¡ 0 has length Ωp`m�q, which is much larger than q�W , so we can still
conclude the proof of our claim in the same way, using Observation 6.1.10.

6.4.3 Semi-directed mesoscopic dynamics

Let U be semi-directed and w.l.o.g. αpuiq ¤ α for all i � �k. Recall from
Section 6.3.1 that we de�ned ΛpN iq, a symmetric droplet with side lengths
spN iq equal to Θp`pN iq{εq, as well as SGpΛpN iqq in De�nition 6.3.2. As in
Section 6.4.2 for unbalanced unrooted models with �nite number of stable
directions, for i P rN i � 1, N i � 2ks we de�ne

s
piq
j � s

piq
j�2k �

#
s
pN iq
j i�N i � k ¤ j   k,

λjr`
m�{λjs �k ¤ j   i�N i � k,

while for i P pN i � 2k,N i � 4ks, spiq is given by Eq. (6.48). We then de�ne
ΛpN i�iq � ΛprpN i�iqq with rpN i�iq the sequence of radii associated to spN i�iq

satisfying

Λ
�
rpNi�iq

	
� Λ

�
rpN

i�i�1q � lpN
i�i�1q �vi�1 � vi�2k�1

� {2	 ,
with lpN i�i�1q � s

pN i�iq
i�k�1 � s

pN i�i�1q
i�k�1 , which is p1 � op1qq`m� for i P r1, 2ks

and p1�Opδqq`m� for i P p2k, 4ks.
Theorem 6.4.9. Let U be semi-directed. Then

γ
�

ΛpN i�4kq
	
¤ exp

�
log logp1{qq
εOp1qqα



, µ

ΛpN
i�2kqpSGq ¥ exp

� �1

εOp1qqα



.

Proof. The proof proceeds exactly like Theorem 6.4.7, except that the �rst
two steps are much more delicate and require taking into account the internal
structure of SGpΛpN iqq on all scales down to 0, which is, alas, rather complex
(recall Fig. 6.3a) and also not symmetric w.r.t. Λ1 and Λ3. This is not
unexpected and is to some extent the crux of semi-directed models. As

previously, for i P rN i, N i � 4kq we de�ne Λ
piq
1 ,Λ

piq
2 ,Λ

piq
3 by Eq. (6.49). The

next de�nitions are illustrated in Fig. 6.7.
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Λ
piq
3

Λ
piq
1

(a) Case i � N i of De�nition 6.4.10.

Λ
piq
3

Λ
piq
1

(b) Case i � N i � 1 of De�nition 6.4.11.

Figure 6.7 � The events ST pΛpiq
1 q, SGpΛpiq

2 q and ST pΛpiq
3 q. The microscopic

black regions are entirely infected. Shaded tubes are W -traversable. W -
helping sets are required close to all all boundaries.
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De�nition 6.4.10. Let ST pΛpN iq
3 q be the event that for all j � �k every

segment S � Λ
pN iq
3 perpendicular to uj of length s

pN iq
j {W the event HW pSq

occurs.
Let ST pΛpN iq

1 q be the event that for all j P p�k, k � 1q every segment

S � Λ
pN iq
1 of length s

pN iq
j {W perpendicular to uj the event HW pSq occurs

and all sites in Λ
pN iq
1 at distance at most

?
W {ε from the origin are infected.

For n P r0, N is such that 2kn P N let Λ1pnq � Λprpnq � λ0pv0 � v2kqq and
de�ne SG1pΛ1pnqq recursively exactly like SGpΛpnqq in De�nition 6.3.2 with all
droplets replaced by their contracted versions Λ1 and all traversability events
required in East-extensions replaced by the corresponding W -traversability
events (TW , see De�nition 6.2.1). Let W 1 be the event that for every n P
r0, N is, j P r4ks and segment S � Λ

pN iq
2 perpendicular to uj of length s

pnq
j {W

at distance at most W from the uj-side of Λpnq the event HW pSq holds. Let
I 1 be the event that all sites in Λ

pN iq
2 at distance at most

?
W {ε from the

origin are infected. Finally, set

SG
�

Λ
pN iq
2

	
� SG1

�
Λ1pN iq

	
XW 1 X I 1.

De�nition 6.4.11. Let ST pΛpN i�1q
1 q be the event that for all j P p�k�1, kq

and every segment S � Λ
pN i�1q
1 perpendicular to uj of length s

pN iq
j {W the

event HW pSq occurs and all sites in Λ
pN i�1q
1 at distance at most

?
W {ε from

the origin are infected. Further let ST pΛpN i�1q
3 q be the event that for all

j P r4ks, m P tN i, N i � 1u and every segment S � Λ
pN i�1q
3 perpendicular

to uj of length s
pmq
j {W at distance at most W from the uj-side of Λpmq the

event HW pSq occurs.
For n P r0, N is such that 2kn P N let

Λ2pnq � Λ
�
r2pnq

	
� Λ

�
rpnq � λ1

�
v1 � v2k�1

�	
and de�ne SG2pΛ2pnqq like SG1pΛ1pnqq in De�nition 6.4.10. Further let

SG2
�

Λ2pN i�1q
	
� SG2

�
Λ2pN iq

	
X

£
jPt0,2ku

ST W
�
T
�
r2pN

iq, lpN
iq{2, j

		
.

Let W2 (resp. I2) be de�ned like W 1 (resp. I 1) in De�nition 6.4.10 with Λ1

replaced by Λ2 and N i replaced by N i � 1. Finally, we set

SG
�

Λ
pN i�1q
2

	
� SG2

�
Λ2pN i�1q

	
XW2 X I2.

Furthermore, since De�nition 6.4.8 for i P r2, 4kq does not inspect the
internal structure of SGpΛp0qq (see Fig. 6.6b), we may use the exact same
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de�nition for ST pΛpN i�iq
1 q, SGpΛpN i�iq

2 q and ST pΛpN i�iq
3 q with i P p1, 4kq.

Once again we can check from De�nitions 6.4.10 and 6.4.11 and Fig. 6.7 that
Eq. (6.4) holds. Hence, Proposition 6.2.5, Theorem 6.3.3 and the Harris
inequality give

γ
�

ΛpN i�4kq
	
¤ expplog logp1{qq{pεOp1qqαqq±N i�4k�1

i�N i µΛpi�1qpSGqµ
Λ
piq
1
pST qµ

Λ
piq
2
pSGqµ

Λ
piq
3
pST q

.

(6.51)
It therefore remains to bound each of the terms in the denominator by
expp�1{pεOp1qqαqq in order to conclude the proof of Theorem 6.4.9.

Notice that a total of ε�Op1q �xed infections and WOp1qN i � qop1q W -
helping sets are required in all the events in Eq. (6.51), which amounts to
a negligible factor. The probability of SG1pΛ1pN iqq and SG2pΛ2pN iqq can be
bounded exactly like SGpΛpN iqq in Lemma 6.3.4, yielding a contribution of
expp�1{pεOp1qqαqq. Finally, the remaining bounded number of ST W events
are treated as in Theorem 6.4.7 to give a negligible q�OpW q factor.

6.5 Global dynamics: assembly of Theorem 1.6.4

In this section we recall and adapt global dynamics mechanisms from Chap-
ters 4 and 5 and assemble the pieces to prove our main result Theorem 1.6.4
for each re�ned universality class. As already noted, all lower bounds are
proved in Chapter 8 and the upper ones for classes (a) and (c) were proved
in [269] and Chapter 4 respectively, so we only need to establish the upper
bounds for classes (b) and (d)-(g).

6.5.1 Global CBSEP dynamics

Let us recall the global CBSEP mechanism introduced in Chapter 5.
Let Λm� and Λm� be droplets with sides Θp`m�q and Θp`m�q respecti-

vely. Consider a tiling of R2 with square boxes Qi,j � r0, `mq � r0, `mq �
`mpi, jq. We say that the box Qi,j is good if for every segment S � Qi,j
perpendicular to some u P pS of length at least ε`m�, HW pSq occurs and
denote the corresponding event by Gi,j . We say that it is super good if Qi,j
contains a super good translate of Λm� and denote the corresponding event
by SGi,j .
Proposition 6.5.1. Let T � expp� log4p1{qq{qαq. Assume that SGpΛm�q
and SGpΛm�q are de�ned so that p1 � µpSGpΛm�qqqTT 4 � op1q and for all
x P Z2 such that x � Λm� � Λm� we have SGpx � Λm�q X GpΛm�q �
SGpΛm�q, where GpΛm�q stands for the event that for every segment S �
Λm� perpendicular to some u P pS of length at least 3ε`m� the event HW pSq
occurs. Then

Eµpτ0q ¤ γ
�
Λm�� logp1{µpSGpΛm�qqq

qOpCq
.
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We omit the proof, which is identical to Section 5.4,3 and turn to the
proof of Theorem 1.6.4 for classes (d), (f) and (g).

Proof of Theorem 1.6.4(d). Let U be an unbalanced unrooted update family
with �nite number of stable directions. Recalling Section 6.4.2 for such fa-
milies, let Λm� � Λp4kq and Λm� � Λp2kq. By Theorem 6.4.7 (and De�niti-
ons 6.2.1 and 6.2.4) the hypotheses of Proposition 6.5.1 are satis�ed and it
yields

Eµpτ0q ¤ exp

�
log2p1{qq
εqα



,

concluding the proof.

Proof of Theorem 1.6.4(f). Let U be semi-directed. Recalling Section 6.4.3,
let Λm� � ΛpN i�4kq and Λm� � ΛpN i�2kq. By Theorem 6.4.9 (and De�niti-
ons 6.2.1 and 6.2.4) the hypotheses of Proposition 6.5.1 are satis�ed and it
yields

Eµpτ0q ¤ exp

�
log logp1{qq
εOp1qqα



,

concluding the proof.

Proof of Theorem 1.6.4(g). Let U be isotropic. Recalling Section 6.4.1, let
Λm� � ΛpNm�q, nm� � 2krlogpε`m�q{ log 2s and Λm� � Λpnm�q. By Theo-
rem 6.4.2 (and De�nitions 6.2.1 and 6.2.4) the hypotheses of Proposition 6.5.1
are satis�ed and it yields

Eµpτ0q ¤ expp1{plogC{3p1{qqqαqq
µpSGpΛpNm�qqq � exp

�
1� op1q
ε2qα



,

concluding the proof.

6.5.2 Global FA-1f dynamics

We next import the global FA-1f dynamics together with much of the me-
soscopic multi-directional East one simultaneously from Chapter 4.

Proposition 6.5.2. Let U have a �nite number of stable directions, T �
expp� log4p1{qq{qαq and ri be such that the associated side lengths satisfy
C ¤ si

j ¤ Op`iq for all j P r4ks. Assume that for all l � Θp`mq multiple of λ0

the event SGpΛpri � lv0qq is de�ned so that p1� µpSGpΛpri � lv0qqqqTTW �
op1q. Then,

Eµpτ0q ¤
maxl�Θp`mq γpΛpri � lv0qq

pq1{δ minl�Θp`mq µpSGpΛpri � lv0qqqqlogp1{qq{δ .

3Due to the di�erence between Eq. (6.2) and Eq. (5.7), the factor µpSGpΛi,j |Gqq in the
last display of Section 5.4 cancels out with πpS1q

�1 in Eq. (5.34) up to a qOpCq factor,
rather than compensating the conditioning in the last display of Section 5.4, which is
absent in our setting.
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The proof is as in Chapter 4, the only di�erence being that one needs
to replace the base of the snail there by Λm :� Λpri � λ0r`

m{λ0sv0q, which
has a similar shape by hypothesis; the corresponding event that the base
is super good by SGpΛmq; and Proposition 4.3.9 by the de�nition Eq. (6.2)
of γpΛmq. As this proposition is essentially the entire content of Chapter 4
(see particularly Proposition 4.3.12 and Remark 4.3.8), we refer the reader
to that chapter for the details.

Proof of Theorem 1.6.4(e). Let U be balanced rooted with �nite number of
stable directions. Recall ΛpN iq � ΛprpN iqq and rpN iq �: ri from Section 6.3.1.
Fix l � Θp`mq multiple of λ0 and East-extend ΛpN iq by l in direction u0. It
is easy to check from De�nition 6.2.2 and Observation 6.1.10 that

µpSGpΛpri � lv0qqq
µpSGpΛpriqqq � µ

�
T
�
T
�
ri, l, 0

��� � qOpW q.

Then, by Proposition 6.2.3, Theorem 6.3.11 and the Harris inequality, we
obtain

γ
�
Λpri � lv0q

� ¤ exp

�
logp1{qq
ε3qα



, µΛpri�lv0qpSGq ¥ exp

� �2

ε2qα



.

Plugging this in Proposition 6.5.2, we obtain

Eµpτ0q ¤ exp

�
2 logp1{qq
ε3qα



,

which concludes the proof.

6.5.3 Global East dynamics

Finally, for class (b) we will need a simpler version of the procedure of
Section 4.4 with East dynamics instead of FA-1f.

Proof of Theorem 1.6.4(b). Let U be balanced with in�nite number of sta-
ble directions, T � expp1{q3αq and sm � spNmq, rm � rpNmq and Λm �
ΛpNmq with the notation of Section 6.3.2. In particular, sm

j � Θp`mq for
j P r�k, k � 1s and sm

j � Op`mq for j P rk � 2, 3k � 1s. We East-extend
Λm by 2l � 2pλ0 � rm

0 � rm
2kq in direction u0 to obtain Λ � Λprm � 2lv0q.

Proposition 6.2.3, Theorem 6.3.12, the Harris inequality and the simple fact
that µpT pT prm, 2l, 0qqq � qOpW q (recall Observation 6.1.10) give

γpΛq ¤ exp

�
log2p1{qq
εOp1qqα



, µΛpSGq ¥ exp

� �3

ε2qα



. (6.52)

A similar argument to the rest of the proof was already discussed tho-
roughly in Section 4.4 and then in Section 5.4, so we will only provide a
sketch. The adapted approach of Section 4.4 proceeds as follows.
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Qi�1 Qi

Qi�1

Λm

l � Θp`mq

Λ

Figure 6.8 � Illustration of the global East dynamics (Section 6.5.3). The
shaded droplet Λm inscribed in the box Q is extended by 2l to the thickened
one Λ.

(1) Denoting t� � expp�1{pεW q2αqq, by the main result of [269] it su�ces
to show that TPµpτ0 ¡ t�q � op1q, in order to deduce Eµpτ0q ¤ t��op1q.

(2) By �nite speed of propagation we may work with the U-KCM on a large
the discrete torus of size T " t�.

(3) We partition the torus into strips and the strips into translates of the
box Q � Hu0pλ0 � rm

0 q X Hukpρk � rm
k q X Hu�kprm

�kq X Hu2k
prm

2kq as
shown in Fig. 6.8. We say Q is good (GpQq occurs) if for each segment
S � Q perpendicular to some u P pS of length ε`m the event HW pSq
occurs. Further de�ne SGpQq to occur if the (only integer) translate of
Λm contained in Q is SG. We say that the environment is good (E occurs)
if all boxes are and in each strip at least one box is super good. The sizes
are chosen so that it is su�ciently likely for this event to always occur up
to t�. Indeed, we have p1� µpSGpΛmqqqTTW � op1q by Theorem 6.3.12
and p1� µQpGqqTW � op1q by Observation 6.1.10.

(4) By a standard variational technique it then su�ces to prove a Poincaré
inequality, bounding the variance of a function conditionally on E by the
Dirichlet form on the torus. Moreover, since µ and E are product w.r.t.
the partition of Fig. 6.8, it su�ces to prove this inequality on a single
strip.

(5) Finally, we prove such a bound, using an auxiliary East dynamics for the
boxes and the de�nition of γ to reproduce the resampling of the state of
a box by moves of the original U-KCM.

Let us explain the last step above in more detail, as it is the only one that
genuinely di�ers from Chapter 4.

Let Qi � Q� ilu0 and T � �
iPrT sQi be our strip of interest (indices are

considered modulo T , since the strip is on the torus). As explained above,
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our goal is to prove that for all f : ΩT Ñ R it holds that

VarTpf |Eq ¤ exp
�

1{
�
εOp1qq2α

		 ¸
xPT

µT
�
c1x Varxpfq

�
, (6.53)

where cT,1x takes into account the circular geometry of T.
By [269, Proposition 3.4] on the generalised East chain we have

VarTpf |Eq ¤ exp
�
1{ �ε5q2α

�� ¸
iPrT s

µT
�
1SGpQi�1q VarQipf |Gq

�� E� , (6.54)

since Theorem 6.3.12 gives µQpSGq ¥ expp�2{pε2qαqq.4
Next observe that Λi � Qi, where Λi :� Λ � pi � 1qlu0 (see Fig. 6.8).

Hence, by convexity of the variance and the fact that µpEq � 1 � op1q and
we have

µT
�
1SGpQi�1q VarQipf |Gq

�� E�
¤ p1� op1qqµT pVarΛipf |SGpQi�1q X GpQiq X GpΛizQiqqq ,
¤ p1� op1qqµT pVarΛipf |SGqq ,

writing GpΛizQiq � GpQi�1q X GpQi�1q for the event that HW pSq holds
for all segments S � ΛizQi of length 2ε`m perpendicular to some u P pS
and using Eq. (6.32) and SGpQi�1q X GpQiq X GpΛizQiq � SGpΛiq (recall
De�nition 6.2.2) for the second inequality. Finally, recalling Eqs. (6.2), (6.52)
and (6.54), we obtain Eq. (6.53) as desired.

Appendix

6.A Extensions

Recall De�nition 6.1.7. Let r be a sequence of radii and Λ � Λprq. Given
ω P ΩZ2zΛ and i P r4ks, we de�ne Λ � Λωi � Λpr �Op1qviq as

Λωi �
#

Λ αpuiq ¡ α,

ΛY�
x

��rZi YHuisU zHui

�� x
� z  y P Z2zΛ : ωy � 0

(
otherwise,

the union being over x P Λ such that: ωx�ZizΛ � 0 and x is at distance at
least C from all sides of Λ except the ui-side. In words, we essentially look
at pieces of ui-helping sets for the last few lines of the droplet and add to
Λ the sites which each piece can infect. The reason for introducing this is
that helping sets may need to infect a few sites outside Λ before creating
their periodic infections on the corresponding line and it is those sites that
we wish to include in Λωi . We set ΛωI �

�
iPI Λωi for I � r4ks.

4Strictly speaking [269] does not deal with the torus conditioned on having an infection,
but this issue is easily dealt with by the method of [59].
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6.A.1 Microscopic dynamics

Let i P r4ks be such that αpujq   8 for all j P I � ti� k� 1, . . . , i� k� 1u.
Fix Λ � Λprq with sides at least Ωp1{δq and at most q�OpCq. Let l P r0, Op1qs,
ω P ΩZ2zΛpr�lviq, Λ� � pΛpr�lviqqωI and T � T pr, l, iq. Our goal is to provide
a relaxation mechanism for an East-extension of bounded length.

Lemma 6.A.1. In the above setting we have

µΛ�zΛpVarT pf |T ωqq ¤ exp
�
O
�
C2

�
log2p1{qq�

�
¸

xPΛ�zΛ
µΛ�zΛ

�
c
0Λ�ωZ2zΛ�

x Varxpfq
	

(6.55)

and the same holds for ST instead of T .

The proof is both standard and messy, so we only provide a sketch.

Sketch proof. By convexity of the variance, it is enough to upper bound
VarΛ�zΛpf |T ωpT qq. We will use the canonical path technique (see e.g. [310,
Theorem 4.2.1]), so we need to de�ne for any two con�gurations η, η1 P
ΩΛ�zΛ X T ωpT q �: A a sequence Γpη, η1q of con�gurations in A di�ering
by single legal updates of the U-KCM with boundary condition 0Λ � ωZ2zΛ� ,
leading from η to η1. We call such sequences canonical paths.

Recalling the notation of De�nition 6.1.7, for j P I such that αpujq ¤ α
let Xj denote the intersection of rZjYHuj sU with a su�ciently long segment

of HujzHuj such that for all x P Xj we have that
?
W ¤ xx, xjy ¤ 2

?
W . It

is easy to see that if Huj is fully infected, then Xj can infect Xj �Qxj only
modifying states in HujzHuj . Moreover, if Zj YHuj is infected, then Xj can

be infected in at most Op?W q steps. Finally, observe that a W -helping set
in HujzHuj can move freely in both directions along the line.

Let us �rst describe the path in the case when T consists of a single
line perpendicular to, say, uj . Our paths will proceed in four stages. First,
starting from η, we infect Op?W q sites until we infect translates of Xj with
all possible residues modulo Q along the line. We next infect the lastW sites
of the line. Then we change η with that W -helping set to η1 with the same
W -helping set. Finally, we reach η1, which can be done as in the reverse
of the �rst two stages, so we will only describe the �rst three stages. Note
that if αpujq ¡ α, the �rst two stages are not needed, as W -helping sets are
guaranteed by T ω (which does not depend on ω in that case).

In the �rst stage we simply add the infections of rZj YHuj sUzHuj trans-

lated appropriately one by one until we infect the translate of Xj in Op
?
W q

steps. Naturally, we do this for Q di�erent translates, so as to obtain each
residue.

In the second stage we perform an East motion of translates of Xj , star-
ting from the ones we infected in the �rst stage. As noted above, thinking



6.A. EXTENSIONS 209

of Huj as infected, using Xj we can infect Xj � Qxj (which may intersect
Xj or other infected sites of η, in which case we only infect the additional
sites), then use Xj �Qxj to infect Xj � 2Qxj , then use Xj �Qxj to remove
any infections in Xj �Qxj which are not in Xj , Xj �2Qj or η. We continue
similarly, as described for the East model in Section 1.6.5 (also see [8, Fig.
2]). Doing this, we can eventually infect the last W {Q translates of Xj of
the form Xj � kQxj in T . Repeating this for all Q translates with di�erent
residues modulo Q, we obtain the desired last W infections in the line. We
�nally remove all other auxiliary infections by reversing the same path. Note
that by our choice of directions pS, it is indi�erent whether Huj is infected or
only Λ.

In the third stage we move the W -helping set to the other extremity
of the segment, leaving behind η1. More precisely, if the W infections are
currently at position x, we infect x�λj�kuj�k and then remove the infection
at x � pW � 1qλj�kuj�k (the last site of the W -helping set) if and only if
it is not present in η1. Moreover, with a �nite number of infections we can
also infect any site Λωj zΛ at distance Op1q from the W -helping set, but at
large enough distance from its extremities. Thus, as we move the W -helping
set, we can ensure that all sites in Λωj zΛ on one side of its midpoint have the
state η1 and the others have state η. Finally, when η is completely replaced
by η1, we move the W infections back to the end of the segment, still leaving
η1 behind.

To prove the lemma in the case of a single line, it su�ces to bound the
length of these paths, as well as

max
η2PA

¸
η2PΓpη,η1q

µpηqµpη1q
µpη2q , (6.56)

where we neglected |T | (which is only polynomial in q) and used that by the
Harris inequality and Observation 6.1.10 µpηq � qOpW qµpη|Aq. The length
of the paths is polynomial in |T |, as for the East process (see [8]). Hence,
we turn to upper bounding (6.56). Observe that in the �rst and second
stages the con�gurations η2 only di�er from η in at most |Xj |Oplog |T |q sites
(this is the fundamental property of East paths), so µpηq{µpη2q ¤ q�Oplog |T |q

and there are at most pOp|T |qqOplog |T |q possible choices for the discrepancies,
hence the contribution to Eq. (6.56) is at most exppOpC2q log2p1{qqq. In
the third stage at all times there are at most OpW q sites on which the
con�guration di�ers from both η and η1 and Op|T |q possible positions of the
W -helping set (we know that on one of its sides we have η and η1 on the
other). Recalling that µ is product, we obtain a contribution of only qOpCq

to Eq. (6.56), which concludes the proof.

In order to treat an arbitrary number of lines and take into account
that the tube T is composed of segments in di�erent directions, we proceed
iteratively. Firstly, the structure of T ω (recall Fig. 6.2) makes di�erent
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directions independent, and they do not overlap, so we may proceed one
direction at a time. To treat several consecutive lines in the same direction,
we �rst produce the W -helping set for the �rst line as above, then use it
to act as an infected boundary condition for the second line, which we may
place next to the site we want to update. This way we can also create a
W -helping set for the second line and so on. Eventually, we have W -helping
sets for all lines and we may perform the third stage, moving all of them
simultaneously to change η into η1. We �nally remove these W -helping sets
by reversing the path from η1 that would create them. The computation of
the congestion of the path identical to the simpler one-line case.

Corollary 6.A.2. In the same setting as above, we have

µΛ� pVarT pf |T ωq|SGpΛqq ¤ exp
�
O
�
C2

�
log2p1{qq�

�max
�
γpΛq, µ�1

Λ pSGq� ¸
xPΛ�

µΛ� pcωx Varxpfqq

and the same holds with ST instead of T .

Proof. By a standard two-block result (see e.g. Lemma 4.2.10) and convexity
of the variance, for x P Λ�zΛ we get

c
Λ�zΛ,0Λ�ωZ2zΛ�

x µΛYtxu pVarxpfq|SGpΛqq
¤ qOp1qµΛYtxu

�
VarΛpf |SGq � cΛ�,ω

x Varxpfq
���SGpΛq	 ,

since it su�ces to infect aOp1q neighbourhood of x in Λ (see e.g. Lemma 4.3.13
for an analogous reasoning). Plugging this in Eq. (6.55) and recalling Eq. (6.2),
this gives exactly the desired result.

6.A.2 Auxiliary three-block chain

We next prove a non-product variant of the standard two-block technique
for the purposes of the proof of the East-extension Proposition 6.2.3. Let
pΩi, πiq3i�1 be �nite positive probability spaces, pΩ, πq denote the associated
product space and ν � πp�|Hq for some event H � Ω. For ω P Ω we write
ωi P Ωi for its i

th coordinate. Consider an event F � Ω1 � Ω2 and set

Dpfq � ν pVarνpf |ω3q � 1F Varνpf |ω1, ω2qq

for any f : H Ñ R. Observe that D is the Dirichlet form of the continuous
time Markov chain on H in which the couple pω1, ω2q is resampled at rate
one from νp�|ω3q and, if pω1, ω2q P F , then ω3 is resampled with rate one
from νp�|ω1, ω2q. This chain is reversible w.r.t. ν.
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Lemma 6.A.3. Assume that F�Ω3 � H. Then, for all f : HÑ R we have

Varνpfq ¤ Op1q max
ω3PΩ3

ν�1pF |ω3qDpfq.
Proof. We follow Proposition 5.3.5. Consider the Markov chain pωptqqt¥0

described above. Given two arbitrary initial conditions ωp0q an ω1p0q we will
construct a coupling of the two chains such that with probability Ωp1q we
have ωptq � ω1ptq for t ¡ T :� maxω3PΩ3 ν

�1pF |ω3q. Standard arguments
[256] then prove that the mixing time of the chain is OpT q and the lemma
follows.

To construct our coupling, we use the following representation of the
Markov chain. We are given two independent Poisson clocks with rate one
and the chain transitions occur only at the clock rings. When the �rst
clock rings, a Bernoulli variable ξ with probability of success νpF |ω3q is
sampled. If ξ � 1, then the couple pω1, ω2q is resampled w.r.t. the measure
πp�|Fq � νp�|F , ω3q, while if ξ � 0, then pω1, ω2q is resampled w.r.t. the
measure νp�|Fc, ω3q. Clearly, in doing so the couple pω1, ω2q is resampled
w.r.t. νp�|ω3q. If the second clock rings, we resample ω3 from π3 if ω P F
and ignore the ring otherwise.

Both chains will use the same clocks. When the �rst clock rings and the
current couple of con�gurations is pω, ω1q, we �rst maximally couple the two
Bernoulli variables ξ, ξ1 corresponding to ω, ω1 respectively. Then:

• if ξ � ξ1 � 1, we update both pω1, ω2q and pω11, ω12q to the same couple
pη1, η2q P F with probability πppη1, η2q|Fq;
• otherwise, we resample pω1, ω2q and pω11, ω12q independently from their re-
spective law given ξ, ξ1.

When the second clock rings, the two chins attempt to update to two maxi-
mally coupled couples of con�gurations with the corresponding distributions.

Suppose now that two consecutive rings occur at times t1   t2 at the
�rst and second clocks respectively and the Bernoulli variables at time t1 are
both 1. Then the two con�gurations are clearly identical at t2. To conclude
the proof, observe that for any time interval ∆ of length one the probability
that there exist t1   t2 in ∆ as above is at least 1{p4T q.

6.A.3 Proofs of the one-directional extensions

We will require a more technical version of Eq. (6.2) accounting for a boun-
dary condition. Let γωI pΛq be the smallest constant γ ¥ 1 such that for all
f : Ω Ñ R

µΛωI
pVarΛ pf |SGωqq ¤ γ

¸
xPΛωI

µΛωI
pcωx Varxpfqq . (6.57)

For the rest of the section we assume the setting of Section 6.2 and set
I � ti� k � 1, . . . , i� k � 1u.
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Lemma 6.A.4. Assume that we East-extend Λprq by l in direction ui. Then

γ
�
ΛM

� ¤ max
ω

γωI
�
Λ1

�M�1¹
m�1

am

qOpW q

where am is de�ned in Eq. (6.3).

Proof. We will loosely follow Eq. (5.13). Proceeding by induction it su�ces
to prove that for any m P r1,Mq and ω P ΩZ2zΛm�1

γωI
�
Λm�1

� ¤ max
ω1PΩZ2zΛm

γω
1

I pΛmq am

qOpW q . (6.58)

Let us �x m and ω as above. We partition Λm�1 � V1\V2\V3, so that

V1 Y V2 � Λm, V2 Y V3 � Λm � smui.

In order to apply Lemma 6.A.3, we de�ne Ω1 � ΩV1 , Ω2 � ΩV2 , Ω3 � T ωpV3q
(note that V3 is a translate of T pr, sm, iq) and equip them with π1 � µV1 ,
π2 � µV2 and π3 � µV3p�|T ωq respectively. We set H � SGωpΛm�1q and
F � SGpΛmqXSGpV2q (which were de�ned by East-extending Λprq). Indeed,
it holds that F � Ω3 � H, so Lemma 6.A.3 gives

VarΛm�1pf |SGωq ¤ max
ω1

O
�
µ�1

�
SGpV2q|SGω1pΛmq

		
� µΛm�1

�
VarΛm pf |SGηV3

�ωq � 1SGpV2q VarV3 pf |T ωq
��SGω �Λm�1

��
. (6.59)

From Eq. (6.57) we have

µpΛpm�1qqωI pVarΛm pf |SGηV3
�ωqq

¤ max
ω1

γω
1

I pΛmq
¸

xPpΛm�1qωI
µpΛm�1qωI pcωx Varxpfqq .

On the other hand, recalling Observation 6.1.12,

µpΛpm�1qqωI
�
1SGpV2q VarV3pf |T ωq

��SGω �Λm�1
��

¤ µpSGpV2q X T ωpV3qq
SGωpΛm�1q µpΛm�1qωI pVarV3pf |T ωq|SGpV2q X T ωpV3qq

¤ µpΛm�1qωI pVarΛm�smuipf |SGpV2q X T ωpV3qqq
µpT pV3qqqOpW q

¤ γωI pΛmq
µpT pV3qqqOpW q

¸
xPpΛm�smuiqωI

µpΛm�1qωI

�
c
pΛm�smuiqωI ,ω
x Varxpfq

	
,
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where we used De�nition 6.2.2 in the second inequality and Eqs. (6.32)
and (6.57) in the third one. Plugging these bounds into Eq. (6.59), we
obtain

γωI
�
Λm�1

� ¤ maxω1 γ
ω1

I pΛmq
qOpW qµpT pV3qqminω1 µpSGpV2q|SGω1pΛmqq

.

Since by De�nition 6.2.2 (and Section 6.1.6) we have

µ pT pV3qqµ
�
SGpV2q|SGω1 pΛmq

	
� qOpW q{am

for all ω1, the proof of Eq. (6.58) and the lemma are complete.

Proof of Proposition 6.2.3. By Lemma 6.A.4 it su�ces to relate γpΛprqq and
maxω γ

ω
I pΛ1q, using Corollary 6.A.2. Notice that by De�nition 6.2.2 we have

SGωpΛ1q � SGpΛprqq � T ωpT pr, λi, iqq. (6.60)

Therefore,

VarΛ1 pf |SGωq ¤ µΛprq
�

VarT pr,λi,iq pf |T ωq
��SG�

� µT pr,λi,iq
�

VarΛprqpf |SGq
�� T ω�

(this is a straightforward property of conditional variances w.r.t. a product
measure, see e.g. Lemma 4.2.9 or Eq. (6.24)). The former term above is
treated by Corollary 6.A.2, while the latter is dealt with by Eq. (6.2).

We next turn to CBSEP-extensions, setting J � r4kszti� k, i� ku.
Lemma 6.A.5. Assume we CBSEP-extend Λprq by l in direction ui. Then

γ pΛpr � lviqq ¤ max
ω

γωJ pΛpr � λiviqq
µΛpr�λiviqpSGq
µΛpr�lviqpSGq

eOpC
2q log2p1{qq.

Proof. As in Eq. (5.13) (with minor amendments as in Lemma 6.A.4), we
have

γ
�
ΛM

� ¤ max
ω

γωJ
�
Λ1

� µΛ1pSGq
µΛM pSGq

M�1¹
m�1

bm

qOpW q

with
bm � max

ω
µ�2

Λm�1 pSGsm |SGωqmax
ω

µ�1
Λm�1 pSGω0 |SGωq ,

so we are left with proving bm ¤ q�OpCq for all m. The last statement is
simply Lemma 6.B.1�the analogue of Corollary 5.A.3.

Proof of Proposition 6.2.5. By Lemma 6.A.5 it su�ces to relate γωJ pΛ1q and
γ pΛprqq. This is done exactly as in Lemma 5.2.12 (see particularly Eq. (5.19)
there), replacing Eq. (5.23) by Corollary 6.A.2.
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6.B Conditional probabilities

Recall De�nition 6.2.4. The next result generalises Corollary 5.A.3, which
relied on explicit computations unavailable in our setting. This result is
the reason for the somewhat arti�cial De�nition 6.1.8 of helping sets and
De�nition 6.2.1 of ST .

Lemma 6.B.1. Let U have a �nite number of stable directions. Fix i P r4ks
and a symmetric droplet Λ � Λpr � lviq obtained by CBSEP-extension by l
in direction ui. Assume that l ¤ `m� is divisible by λi. Then for all s P r0, ls
divisible by λi and ω, ω

1 P ΩZ2zΛ

µ
�
SGωs pΛq|SGω1pΛq

	
¥ qOpCq.

Proof. We will prove that for all s, s1 P r0, ls divisible by λi and ω, ω1 P ΩZ2zΛ
we have

µΛpSGωs q
µΛpSGω1s1 q

� qOpW q. (6.61)

Once this is established, given that

max
s1

µΛ

�
SGω1s1

	
¤ µΛ

�
SGω1

	
� µΛ

�¤
s1

SGω1s1

�
¤ Oplqmax

s1
µΛ

�
SGω1s1

	
,

we immediately deduce the desired result. Moreover, it clearly su�ces to
establish Eq. (6.61) for s1 � 0.

To prove Eq. (6.61), let us �rst observe that by the symmetry of De�ni-
tions 6.1.8 and 6.2.4,

µΛpSGωs q
µΛpSGω10 q

� µTspST ωsqµTl�spST ωl�sq
µTlpST ωlq

, (6.62)

where Tx � T pr, x, iq and the ωx are certain boundary conditions that can
be expressed in terms of ω, ω1. Further note that for any x and ω2

µTx

�
ST ω2

	
� qOpW qµTxpST q, (6.63)

by the Harris inequality, since it su�ces to add W -helping sets on the last
Op1q lines of the tube. Finally, observing that TsYpTl�s� suiq � Tl, we get

µTspST qµTl�spST q ¤ µTlpST q ¤ µTspST 0qµTl�spST q. (6.64)

Putting Eqs. (6.62) to (6.64) together, we obtain Eq. (6.61) as desired.

We next treat certain perturbations of traversability events, building
them progressively from segments and parallelograms in the next lemmas.
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Lemma 6.B.2. Fix i P r4ks such that αpuiq ¤ α. Let S be a segment
perpendicular to ui and S

1, S2 � S be segments partitioning S. Assume that
|S| ¥W |S2| and |S| � q�α�op1q. Then

µ
�
HpS1q|HpSq� ¥ 1� W 1{3|S2|

|S| � q1�op1q.

Proof. Let us note that a stronger version of this result can be proved more
easily by counting circular shifts of the con�guration in a Op1q neighbour-
hood of S such that a given helping set remains at distance at least some
constant from S2. We prefer to give the proof below as a preparation for
Lemma 6.B.3.

For concreteness, let us assume that αpui�2kq ¡ α, other cases being
treated similarly. Thus, helping sets are just ui-helping sets or W -helping
sets. Recall from De�nition 6.1.7 that a ui-helping set is composed of Q
translates of the set Zi. Further let S � HuizHui . For r P rQs we denote
by HrpSq the event that S has a translate of Zi by a vector of the form
pr � krQqλi�kui�k with kr P Z and similarly de�ne HrpS1q. In words, we
look for the part of the helping set with a speci�ed reminder r modulo Q.

Since |S| � q�α�op1q, the probability that there are α � 1 infected sites
at distance Op1q from each other and from S is q1�op1q. Furthermore, if
this does not happen, but HpSq occurs, then all HrpSq for r P rQs occur
disjointly. Therefore, by the BK inequality Proposition 6.1.3,

µpHpSqq ¤ q1�op1q �
¹
rPrQs

µpHrpSqq ¤
�

1� q1�op1q
	 ¹
rPrQs

µpHrpSqq, (6.65)

since, as in Observation 6.1.10, we have

µpHrpSqq ¥ 1� p1� qαqΩp|S|q ¥ qop1q. (6.66)

Using Eq. (6.65) and applying the Harris inequality, we get

µpHpS1qq
µpHpSqq ¥

�
1� q1�op1q

	 ¹
rPrQs

µpHrpS1qq
µpHrpSqq

¥
�

1� q1�op1q
	� |S1| �Op1q

|S|

Q

,

where in the last inequality we used that HrpSq and HrpS1q can be expressed
in terms of the i.i.d. (and therefore exchangeable) Bernoulli variables corre-
sponding to each translate of the helping set being infected. Recalling that
|S| ¥W |S2|, this concludes the proof.
Lemma 6.B.3. Let i, j P r4ks be such that αpuiq ¤ α and j R ti, i � 2ku.
Consider the parallelogram

R � Rpl, hq � Huiplq XHuj phq XHuj�2k
p0q XHui�2k

p0q



216 Chapter 6: Re�ned universality for critical KCM I

for l P rρi, eq�op1qs and h � q�α�op1q. We say that R is traversable in di-
rection ui (T pRq occurs), if for each nonempty segment of the form

S � RXHuiph1qzHuiph1q

the event H
1Z2zRpl�W,hq

C2 pSq occurs. Let R1 � Rpl, h1q with 1 ¡ h1{h ¥ 1�1{W .
Then

µ
�
T pR1q|T pRq� ¥ �

1�W 1{2
�

1� h1

h



� q1�op1q


Oplq
Proof. Let us write simply Hm for H

1Z2zR

C2 pRXHpmρiqzHuipmρiqq and simi-
larly de�ne H1

m for R1. Let m take its values in rM s for some integer M .
Separate R into its lower and upper halves R1 and R2, consisting of tM{2u
and rM{2s segments perpendicular to ui respectively. If T pRq occurs, then
one of the following occurs.

• There is a set of α � 1 infections at distance Op1q from each other and
from both R1 and R2, and the rectangles, formed by removing in each
of R1 and R2 the Op1q lines closest to their common boundary, are both
traversable.

• The rectangles R1 and R2 are disjointly traversable.

Using the BK inequality Proposition 6.1.3, this gives

µpT pRqq ¤ q1�op1qµ2 pT pRpl{2�Op1q, hqqq � µ pT pR1qqµpT pR2qq
�

�
1� q1�op1q

	
µpT pR1qqµpT pR2qq,

the last estimate following as in Eq. (6.66) from the fact that traversing the
Op1q lines at the boundary of R1 and R2 happens with probability qop1q.
Iterating the same reasoning, we obtain

T pRq ¤
�

1� q1�op1q
	 ¹
mPrMs

µpHmq,

since l � eq
�op1q

. Hence, by the Harris inequality

µpT pR1qq
µpT pRqq ¥

�
1� q1�op1q

	 ¹
mPrMs

µpH1
mq

µpHmq .

The last fraction can be bounded, using Lemma 6.B.2, to obtain

µ
�
T pR1q|T pRq� ¥ �

1�W 1{3
�

1� h1

h



� q1�op1q


M
.

As a result, we are able to prove the following result, which vastly gene-
ralises Lemma 5.A.5.
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l

l1

T 1

T

Rj

R1
j

ui

uj

Figure 6.9 � Illustration of the perturbation of Corollary 6.B.4. The two
thickened tubes are T and T 1. The parallelograms Rj are North-West hat-
ched, while R1

j are North-East hatched. Thus, R
2
j are double hatched. The

shaded rectangles are R2
j , while R

1
j are the remainder of the area which is

North-East but not double hatched.

Corollary 6.B.4 (Perturbation cost). Let T � T pr, l, iq be a tube with i P
r4ks such that αpujq ¤ α for all j P pi� k, i� kq. Denote the side lengths of
Λprq by s as usual. Assume that l P rΩp1q, eq�op1qs, s :� mini�k j i�k sj �
q�α�op1q and maxi�k j i�k sj � q�α�op1q. For some ∆ P p0, s{?W s, let
r1 and l1 be such that 0 ¤ sj � s1j ¤ Op∆q for all j P ri � k, i � ks and
0 ¤ l � l1 ¤ Op∆q. Further let x P R2 be such that }x} � Op∆q and
d, d1 P r0, Op∆qs with d ¤ d1. Denoting T 1 � T pr1, l1, iq�x, for any boundary
conditions ω, P ΩZ2zT and ω1 P ΩZ2zT 1 , we have

µ
�
T ω1d1 pT 1q

��� T ωd pT q	 ¥ q�OpW q
�

1� p1� qαqΩpsjq
	Op∆q

�
�

1�W∆{s� q1�op1q
	Oplq

and the same holds for ST instead of T .

Proof. Recalling De�nition 6.2.1, it is clear that T ωd pT q is the intersection of
2k� 1 independent traversability events for parallelograms of length l in the
sense of Lemma 6.B.3. Let us denote them by pRjqi�k�1

j�i�k�1 and, similarly,

pR1
jqi�k�1
j�i�k�1 for T 1 with Rj and R1

j having sides perpendicular to uj (see

Fig. 6.9). Finally, set R2
j � Rj X R1

j � Rpl � Op∆q, sj � Op∆ � C2qq for
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j P pi�k, i�kq and observe that R1
jzR2

j consists of two disjoint parallelograms

R1
j � RpOp∆q, sj � Op∆ � C2qq and R2

j � Rpl � Op∆q, Op∆qq with the
notation of Lemma 6.B.3 (up to translation).

Observe that that T ω1d1 pT 1q is implied by the presence of W -helping sets
on the last Op1q lines of each R1

j and R
1
j and the traversability of all R1

j and
R2
j . Then by the Harris inequality and the independence of T pRjq we have

that

µ
�
T ω1d1 pT 1q

��� T ωd pT q	 ¥ qOpW q¹
j

µ
�
T
�
R1
j

��
µ
�
T
�
R2
j

��� T pRjq� .
We may then conclude, using Lemma 6.B.3 and that by Observation 6.1.10

µ
�
T
�
R1
j

�� ¥ �
1� p1� qαqΩpsjq

	Op∆q
.
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Chapter 7

Universality for critical KCM:

in�nite number of stable

directions

This chapter is based on joint work with Laure Marêché and Cristina To-
ninelli [214], establishing the following result, proving the lower bound of
Theorem 1.6.4 for class (b) and Corollary 1.6.5 for families with in�nite
number of stable directions (recall Section 1.6).

Theorem 7.0.1. Let U be a critical update family with an in�nite number
of stable directions and di�culty α. Then

Eµpτ0q ¥ eΩp1q{q2α

and the same holds for Trel.

7.1 Sketch of the proof

In this section we outline roughly the strategy to derive our main result,
Theorem 7.0.1. The hypothesis of in�nite number of stable directions pro-
vides us with an interval of stable directions. We can then construct stable
`droplets' of shape as in Figure 7.3 (see De�nitions 7.3.5 and 7.3.6), where
we recall from Section 1.2.1 that a set is stable if it coincides with its closure.
Thus, if all infections are initially inside a droplet, this will be true at any
time under the KCM dynamics. The relevance and advantage of such shapes
come from the fact that only infections situated to the left of a droplet can
induce growth left. This is manifestly not feasible without the hypothesis of
having an interval of stable directions. It is worth noting that these shapes,
which may seem strange at �rst sight, are actually very natural and intrin-
sically present in the dynamics. Indeed, such is the shape of the stable sets
for a representative model of this class�the modi�ed 2-neighbour model

221
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with one (any) rule removed, that is the three-rule update family with rules
tp�1, 0q, p0, 1qu,tp�1, 0q, p0,�1qu,tp0,�1q, p1, 0qu (it can also be seen as the
modi�ed Duarte model with an additional rule). The stable sets in this case
are actually Young diagrams.

We construct a collection of such droplets covering the initial con�gura-
tion of infections, so that it gives an upper bound on the closure. To do this,
we devise an improvement of the α-covering algorithm of Bollobás, Duminil-
Copin, Morris and Smith [70]. It is important for us not to overestimate
the closure as brutally. Indeed, a key step and the main di�culty of the
present chapter is the Closure Proposition 7.3.20, which roughly states that
the collections of droplets associated to the closure of the initial infections
is equal to the collection for the initial infections. This is highly non-trivial,
as in order not to overshoot in de�ning the droplets, one is forced to ignore
small patches of infections (larger than the ones in [70]), which can possibly
grow signi�cantly when we take the closure for the bootstrap percolation
process and especially so if they are close to a large infected droplet. In
order to remedy this problem, we introduce a relatively intrinsic notion of
`crumb' (see De�nition 7.3.1) such that its closure remains one and does not
di�er too much from it. A further advantage of our algorithm for creating
the droplets over the one of [70] is that it is somewhat canonical, with a
well-de�ned unique output, which has particularly nice `algebraic' descrip-
tion and properties (see Remark 7.3.10). Another notable di�culty we face
is systematically working in roughly a half-plane (see Remark 7.3.21 for ge-
neralisations) with a fully infected boundary condition, but we manage to
extend our reasoning to this setting very coherently.

Finally, having established the Closure Proposition 7.3.20 alongside stan-
dard and straightforward results like an Aizenman�Lebowitz Lemma 7.3.13
and an exponential decay of the probability of occurrence of large droplets
(Lemma 7.3.15), we �nish the proof via the following approach, inspired by
the one developed by Marêché, Martinelli and Toninelli [267] for the Duarte
model. The key step here (see Section 7.4) is mapping the KCM legal paths
to those of an East dynamics via a suitable renormalisation. Roughly spea-
king, we say that a renormalised site is infected if it contains a large droplet
of infections. However, for the renormalised con�guration to be mostly in-
variant under the original KCM dynamics, we rather look for the droplets
in the closure of the original set of infections instead. This is where the
Closure Proposition 7.3.20 is used to compensate the fact that the closure
of equilibrium is not equilibrium. In turn, this mapping together with the
combinatorial result for the East model recalled in Section 1.3.2 (Proposi-
tion 1.3.7), yield a bottleneck for our dynamics corresponding to the creation
of logp1{qeffq droplets, where 1{qeff is the equilibrium distance between two
infected sites in the renormalized lattice, and qeff � e�1{qα . This provides for
the time scales the desired lower bound q

logpqeffq
eff � e1{q2α

of Theorem 7.0.1.
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u1

u2

v11

v12

u1 � π

u2 � π

1

2

3

Figure 7.1 � Illustration of Lemma 7.2.1 and
its proof. Thickened arcs represent intervals
of strongly stable directions. Solid dots repre-
sent isolated and semi-isolated stable directi-
ons. The di�culties of the isolated stable di-
rections are indicated next to them and yield
that the di�culty of the model is α � 2. The
directions chosen in Lemma 7.2.1 are the solid
vectors u1, u2, v1 � v11 and a direction v2 in the
strongly stable interval ending at v12 su�ciently
close to v12. Note that the de�nition of v12 (and
v11) disregards stable directions with di�culty
smaller than α as present on the �gure.

The last part of the proof follows very closely the ideas put forward in [267]
for the Duarte model. However, in [267], there was no need to develop a
subtle droplet algorithm since, owing to the oriented character of the Duarte
constraint, droplets could simply be identi�ed with some large infected ver-
tical segments. It is also worth noting that, thanks to the less rigid notion of
droplets that we develop in the general setting, some of the di�culties faced
in [267] for Duarte are no longer present here.

7.2 Preliminaries and notation

Let us �x a critical update family U with an in�nite number of stable di-
rections for the rest of the chapter. We will omit U from all notation, such
as αpUq.

Directions The next lemma establishes that one can make a suitable
choice of 4 stable directions, which we will use for all our droplets. At
this point the statement should look very odd and technical, but it simply
re�ects the fact that we have a lot of freedom for the choice and we make
one which will simplify a few of the more technical points in later stages.
Nevertheless, this is to a large extent not needed besides for concision and
clarity.

A direction u P S1 is called rational if tanu P QY t8u.
Lemma 7.2.1. There exist rational stable directions S � tu1, u2, v1, v2u (see
Figure 7.1) with di�culty at least α such that

• The directions appear in counter-clockwise order u1, u2, v1, v2.

• No u P S is a semi-isolated stable direction.
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• u3�i belongs to the cone spanned by vi and ui for i P t1, 2u i.e. the strictly
smaller interval among rvi, uis and rui, vis contains u3�i.

• 0 is contained in the interior of the convex envelope of S.

• Either u2   v1 � π{2 or u1 ¡ v2 � π{2.
• pHu1 YHu2q X Z2 is stable or, equivalently, EU P U , U � Hu1 YHu2.

• the directions

u1 �pu1 � u2q{2,
u11 �p3u1 � u2q{4,
u12 �pu1 � 3u2q{4

are rational.

Proof. Since U has an in�nite number of stable directions and they form a
�nite union of closed intervals with rational endpoints [74, Theorem 1.10],
there exists a non-empty open interval I3 of stable directions. Further note
that the set J of directions u such that there exists a rule U P U and x P U
with xx, uy � 0 is �nite, so one can �nd a non-trivial closed subinterval
I2 � I3 which does not intersect J . The directions u1 and u2 will be chosen
in I2, which clearly implies that they are strongly stable and thus with
in�nite di�culty. Moreover, if there exists U P U with U � Hu1 Y Hu2 , by
stability of u2, we have U X pHu1zHu2q � ∅, which contradicts I2 X J � ∅.

Since U is critical it does not have two opposite strongly stable directions,
so there is no strongly stable direction in I2�π. If there are any (isolated or
semi-isolated) stable directions in I2�π, we can further choose a non-trivial
open subinterval I 1 � I2, for which this is not the case (there is a �nite
number of isolated and semi-isolated stable directions). Let π ¡ δ ¡ 0 be
such that the angle between any two consecutive directions of di�culty at
least α is at most π � δ (it is well de�ned by De�nition 1.6.1). We then
choose a non-trivial closed subinterval I 1 � I � ru1, u2s with u1 rational and
u11 � p3u1 � u2q{4 rational and with 0   u2 � u1   δ   π. It easily follows
from the sum and di�erence formulas for the tangent function that u1, u12
and u2 are also rational.

Let

v11 �maxtv P pu2, u1 � πq : αpvq ¥ αu,
v12 �mintv P pu2 � π, u1q : αpvq ¥ αu.

These both exist, since I�π does not contain stable directions, both pu2, u2�
πq and pu1 � π, u1q contain directions with di�culty at least α by De�ni-
tion 1.6.1 and the set of such directions is closed. If v11 is not semi-isolated,
we set v1 � v11 and similarly for v2. Otherwise, we choose a rational strongly
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stable direction su�ciently close to v11 as v1 and similarly for v2. We claim
that this choice satis�es all the desired conditions. Indeed, all directions in
S are stable non-semi-isolated rational with di�culty at least α and the last
but one condition was already veri�ed.

One does have that u1 is in the cone spanned by v2 and u2, which is
implied by v2 P pu2�π, u1q and similarly for u2, so the third condition is also
veri�ed. If v12� v11 ¥ π, then there is an open half circle contained in pv11, v12q
with no direction of di�culty at least α, which contradicts De�nition 1.6.1,
so v2 � v1   π and the same holds for u1 � v2, u2 � u1 and v1 � u2 by the
de�nition of v11 and v12, the fact that v1 and v2 are su�ciently close to them
and the fact that I was chosen smaller than π. Thus 0 is in the convex
envelope of S.

Finally, if one has both v1�u2 ¤ π{2 and u1�v2 ¤ π{2, then one obtains
v12�v11 ¡ π�δ, since I is smaller than δ. However, v11 and v

1
2 are consecutive

directions of di�culty at least α, which contradicts the de�nition of δ.

Notation For the rest of the chapter we �x directions S � tu1, u2, v1, v2u
as in Lemma 7.2.1 and assume without loss of generality that u2   v1�π{2.

Let us �x large constants

1 ! C1 ! C 1
2 ! C2 ! C3 ! C 1

4 ! C4 ! C5,

each of which can depend on previous ones as well as on U and S. We will
also use asymptotic notation whose constants can depend on U and S, but
not on C1 or the other constants above. All asymptotic notation is with
respect to q Ñ 0, so we assume throughout that q ¡ 0 is su�ciently small.

For any two sets K, B � R2 we de�ne rKsB � rpK Y Bq X Z2szB.
Finally, we make the convention that throughout the chapter all distan-

ces, balls and diameters are Euclidean unless otherwise stated. We say that
a set X � R2 is within distance δ of a set Y � R2 if dpx, Y q ¤ δ for all x P X
where d is the Euclidean distance.

7.3 Droplet algorithm

In this section we de�ne our main tool�the droplet algorithm. It can be seen
as a signi�cant improvement on the α-covering and u-iceberg algorithms [70,
De�nitions 6.6 and 6.22], many of whose techniques we adapt to our setting.

We will work in an in�nite domain Λ de�ned as follows (see Figure 7.2).
Fix some vector a0 P R2 and let

B �Hu1 YHu11
pa0q YHu12

pa0q,
Λ �R2zB, (7.1)

where the directions u1, u11 and u12 are those de�ned in Lemma 7.2.1. In
other words, Λ is a cone with sides perpendicular to u11 and u12 cut along a
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a0

B

Λ
u1

u11

u12

Figure 7.2 � The open domain B de�ned in (7.1) is shaded,
while its complement Λ is not. The lines are the boundaries
of the three half-planes de�ning B. Note that if a0 R Hu1 , then
Λ becomes simply a cone.

line perpendicular to u1. The reader is invited to simply think that B is a
half-plane directed by u1, which will not change the reasoning.

7.3.1 Clusters and crumbs

Let Γ be the graph with vertex set Z2 but with x � y if and only if }x�y} ¤
C2. Let Γ1 be de�ned similarly with C2 replaced by C 1

2. Given a �nite
K � Λ X Z2, we say that κ � K is a connected component of K in Γ if the
subgraph of Γ induced by the vertex set κ is connected and there do not
exist vertices x P Kzκ and y P κ such that x � y in Γ.

Crumbs For a given �nite set K � Λ X Z2 of infections we would like
to have a notion of a connected component being `big' or `small.' `Small'
components will be dubbed `crumbs' and will play a negligible perturbative
role in the bootstrap percolation process, by inducing only `very localised'
growth and being `well isolated' from the rest of the infections. A su�cient
condition for this, as identi�ed in [70], is that |κ|   α. However, contrary
to what was the case in [70], we need the notion of `crumb' to be stable
under the closure (with respect to the bootstrap percolation process), i.e.
the closure of a `crumb' to still be a `crumb.' We thus identify as `crumb'
any component, which is the closure of a set of size less than α. Also taking
into account the boundary, this leads us to the following notion.

De�nition 7.3.1 (Crumb). Fix a �nite set K � Λ X Z2 and let κ be a
connected component of K in Γ. We say that κ is a crumb for K if the
following conditions hold.

• For all x P κ we have dpx, Bq ¡ C2.

• There exists a set Pκ � Z2 such that rPκs � κ and |Pκ| � α� 1.

First properties of crumbs It follows from the de�nition that a crumb
κ for K is at distance more than C2 from B Y pKzκq. Moreover, the closure
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of a crumb is within bounded distance from the crumb, as we shall see in
Corollary 7.3.17 (see Figure 7.5a). Also, crumbs have diameters much smaller
than C3, as we shall see in Corollary 7.3.17. The proofs of this corollary and
Observation 7.3.16, which it follows from, are both independent of the rest
of the argument and are only postponed for convenience. Nevertheless, we
allow ourselves to use these (easy) results ahead of their proofs.

These properties justify and quantify the idea that crumbs are `small,'
that they only grow `locally,' and it is clear that (if we disregard the boun-
dary) the closure of a crumb is a crumb.

Modi�ed crumbs Unfortunately, if K is the union of two crumbs at dis-
tance slightly larger than C2, it is not necessarily true that rKs is still com-
posed of crumbs (recall that, albeit locally, crumbs can grow under the boot-
strap percolation process), which can be disastrous. This is the reason for
introducing `modi�ed crumbs' with C 1

2 ! C2, so that in the scenario above
all connected components of rKs in Γ1 are `modi�ed crumbs' (there may now
be more than two of them).

De�nition 7.3.2 (Modi�ed crumb). We de�ne a modi�ed crumb by repla-
cing in De�nition 7.3.1 Γ by Γ1 and C2 by C 1

2.

In the sequel we will encounter more `modi�ed' notions and constants
(like C 1

2). These will be applied to K equal to the closure rK 1sB of some
K 1, which is our initial set of infections. Our ultimate goal is to ensure
that simply using these modi�ed notions based on (much smaller) modi�ed
constants will compensate the closure operation.

Clusters We next consider connected components which are not crumbs.
Since they can be very large (particularly so if we are working with the
closure of a set), we cut them up into (possibly overlapping) pieces termed
`clusters,' which have bounded size. Roughly speaking, a `cluster' is any `big,
but not too big' connected set of infections.

De�nition 7.3.3 (Cluster). Fix a �nite set K � Λ X Z2. Let κ be a
connected component of K in Γ which is not a crumb. We say that a subset
C of κ is a cluster for K if the following conditions hold.

• diampCq ¤ C3.

• C is connected in Γ (i.e. C is a connected component of C in Γ).

• Either C � κ or for all x P κzC and y P C such that x � y in Γ we have
diampC Y txuq ¡ C3.

A cluster is called boundary cluster if it is at distance at most C2 from B. For
a cluster C we denote by QpCq the smallest open quadrilateral with sides
perpendicular to S containing the set tx P R2 : dpx,Cq   C4u.
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We similarly de�ne modi�ed cluster and modi�ed boundary cluster by
replacing Γ by Γ1 and C2 by C 1

2. For a cluster or modi�ed cluster C we
denote by Q1pCq the smallest open quadrilateral with sides perpendicular to
S containing the set tx P R2 : dpx,Cq   C 1

4u.

Identifying clusters and crumbs In order to identify the clusters and
crumbs of K, one may proceed as follows. Determine the connected compo-
nents of K in Γ and consider each of them separately. For a given component
κ �rst check if it is at distance at most C2 from B. If so, then it is not a
crumb and will give rise to clusters. If not, then check if κ is the closure of
at most α�1 sites. If this second veri�cation succeeds, then κ is determined
to be a crumb and, as mentioned above, it must have diameter much smaller
than C3.

If κ is thus determined not to be a crumb, we proceed to identify its
clusters. If diampκq ¤ C3, then there is a single cluster�κ�and we are
done. If not, we construct the clusters of κ by the following algorithm.
Initialise the set C � ∅. If there exists y P κzC such that C Y tyu is
connected in Γ and has diameter at most C3, then replace C by CYtyu and
repeat. If several such y exist, then we do this for each possible y in parallel.
The clusters containing x are all possible sets C obtained via this algorithm
to which no y can be added.

In particular, this provides us with a partition of K into well separated
crumbs, single clusters equal to their corresponding connected component
and sets of overlapping clusters whose union is a connected component of
diameter larger than C3.

First properties of clusters Following the algorithm above, we obtain
some basic properties of clusters.

Observation 7.3.4. Let C be a non-boundary cluster or non-boundary
modi�ed cluster for a �nite K � ΛX Z2. Then |C| ¥ α.

Proof. Let κ be the connected component of K in Γ containing C. If
diampκq ¤ C3, then C � κ and κ would be a crumb if we had |κ| ¤ α�1, by
taking Pκ � κ. If, on the contrary, diampκq ¡ C3, then diampCq ¥ C3 � C2

(by the third condition of De�nition 7.3.3) and we can choose C3 large enough
to have C3�C2

C2
¥ α.

Finally, for every cluster C we have diampCq ¤ C3, so C intersects
at most 25C2

3 other clusters. Also, QpCq � rCs, since QpCq X Z2 � C is
stable. Furthermore, diampQpCqq � ΘpC4q, as diampCq ¤ C3. Analogous
statements hold for modi�ed clusters.
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Figure 7.3 � The shaded region D is a distorted Young diagram (DYD) as
in De�nition 7.3.5. The larger quadrilateral with vertices x, x1, y and x5

is QpDq. Note that QpDq can degenerate into a triangle, but we call it a
quadrilateral nevertheless. On the �gure |D| is the length of the v1 side, but
this is not always the case. The thickened region is the cut distorted Young
diagram (CDYD) CpDq of D. The vertical line is the boundary between Λ
on its left and B on its right.
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7.3.2 Distorted Young diagrams

We now de�ne the shape that our `droplets' will have, which resembles Young
diagrams1. The following de�nitions are illustrated in Figure 7.3.

De�nition 7.3.5 (DYD). A distorted Young diagram (DYD) is a subset of
R2 of the form

pHv1pxq XHv2pxqq X
£
iPI
pHu1pxiq YHu2pxiqq (7.2)

for a �nite set I, some set X � txi : i P Iu of vectors xi P R2 and x P R2.
The vectors xi and x are uniquely de�ned up to redundancy (and up to
the convention that all xi are on the topological boundary of the DYD).
Alternatively, a DYD can also be de�ned by

pHv1pxq XHv2pxqq X
¤
iPI
pHu1pyiq XHu2pyiqq, (7.3)

where yi are the convex corners of the diagram rather than the concave ones.

For any DYD D we denote by y the vector such that

xy, ujy � sup
aPD

xa, ujy � max
iPI

xyi, ujy

for j P t1, 2u. We further denote

QpDq � Hu1pyq XHu2pyq XHv1pxq XHv2pxq,
i.e. the minimal open quadrilateral containing D with sides directed by S.
In these terms, for any cluster or modi�ed cluster C we have that QpCq and
Q1pCq are DYD, QpQpCqq � QpCq and QpQ1pCqq � Q1pCq.
De�nition 7.3.6 (CDYD). A cut distorted Young diagram (CDYD) is a
subset of R2 of the form

ΛX pHu1pyq XHu2pyqq X
£
iPI
pHu1pxiq YHu2pxiqq

for a �nite set I and some vectors xi P R2 and y P Λ. Alternatively, one can
write

ΛX
¤
iPI
pHu1pyiq XHu2pyiqq,

where yi P Λ are the convex corners.

1For the 3-rule model alluded to in Section 7.1 stable sets consist precisely of Young
diagrams and the directions S provided by Lemma 7.2.1 can be arbitrarily close to the
four axis directions, yielding Young diagrams.
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For a DYD, D, we denote by CpDq the CDYD de�ned by the same xi
and y or the same yi. We extend the notation CpDq to CDYD by setting
CpDq � D if D is a CDYD. Note that by Lemma 7.2.1 all DYD and CDYD
are stable for the bootstrap percolation dynamics (restricted to Λ). Also pay
attention to the fact that CDYD are not necessarily connected, contrary to
DYD.

De�nition 7.3.7 (Size). For a DYD D we set πpDq � tx P R : D y P
D, xy, v1�π{2y � xu to be its projection (parallel to v1) and |D| � supπpDq�
inf πpDq to be its size�the length of the projection. For a CDYD D we de-
note its size diampDq{C1 by |D|.

Note that if D is a DYD, then |D| � |QpDq| by Lemma 7.2.1 and
the assumption we made that u2   v1 � π{2. Furthermore, for all DYD
diampDq � Θp|D|q again by Lemma 7.2.1 with constants depending only on
S. One should be careful with the meaning of size for disconnected CDYD,
but it will not cause problems, as all CDYD arising in our forthcoming al-
gorithm are connected.

Observation 7.3.8. Note that for any d ¥ 1 the number of discretised
DYD and CDYD (i.e. intersections of a DYD or CDYD with Z2) containing
a �xed point a P R2 of diameter at most d is less than cd for some constant
c depending only on S.

Proof. Note that a DYD or CDYD is uniquely determined by its rugged
edge formed by its u1 and u2-sides. However, this edge injectively de�nes an
oriented percolation path with directions perpendicular to u1 and u2 on the
lattice

tx P R2 : Dx1, x2 P Z2, xx, u1y � xx1, u1y, xx, u2y � xx2, u2yu

(except its endpoints, which lie on similar lattices). Since the graph-length
of this path is bounded by Opdq and its endpoints are within distance d from
a, the result follows.

7.3.3 Span

We next introduce a procedure of merging DYD and CDYD. This will be
used only for couples of intersecting ones, but can be de�ned regardless of
whether they intersect. The operation is illustrated in Figure 7.4.

Lemma 7.3.9. For any two DYD, D1 and D2, the minimal DYD containing
D1 Y D2 is well de�ned. We denote it by D1 _ D2 and call it their span.
The operation _ is associative2 and commutative.

2Associativity was referred to as commutativity by previous authors [74].
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Figure 7.4 � The shaded region D1 and thickened region D2 are DYD. Their
respective quadrilaterals QpDiq are completed by dashed lines. Their span
D1 _D2 is hatched and its quadrilateral QpD1 _D2q is also completed by
dashed lines.
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Proof. Let D1 be de�ned by Y 1 � ty1
i : i P Iu, x1 (see (7.3)) and similarly

for D2. Let x P R2 be the vector such that Hvipx1q Y Hvipx2q � Hvipxq for
i P t1, 2u. Let Y be the set of yi P Y 1 Y Y 2 such that for all yj P Y 1 Y Y 2

with yi � yj we have Hu1pyjq XHu2pyjq � Hu1pyiq XHu2pyiq. We denote by
D the DYD de�ned by Y, x and claim that for any DYD D1 � D1 YD2 we
have D1 � D, which is enough to conclude that D � D1_D2 is well de�ned.
Let D1 be de�ned by Y 1, x1.

Note that for each yi P Y (and in fact in Y1 Y Y2) there is a sequence of
points in D1 or D2 converging to yi, so that (by extraction of a subsequence)
there exists y1j with Hu1py1jq XHu2py1jq � Hu1pyiq XHu2pyiq. Similarly, there
is a sequence of points in D1 or D2 converging to the boundary of Hv1pxq,
so that Hv1px1q � Hv1pxq and similarly for v2. Thus, we do have D1 � D.

Finally, the commutativity is obvious and the associativity follows from
the characterisation of D1 _ D2 as the minimal DYD containing both D1

and D2.

We analogously de�ne the span D1 _D2 of two CDYD D1 and D2�the
minimal CDYD containing both�and note that it coincides with their union
(which is also commutative and associative). We also de�ne the span C_D
of a DYD D and a CDYD C as the minimal CDYD containing pC YDqzB,
which coincides with C_CpDq. The proof that it is well de�ned is analogous
to Lemma 7.3.9.

We have thus de�ned an associative and commutative binary operation
_ on all DYD and CDYD. Moreover, the idempotent unary operation Cp�q is
distributive with respect to _ and CpD1q_D2 � CpD1_D2q. Furthermore,
the span of several DYD is the minimal DYD containing all of them, while
the span of several DYD and at least one CDYD is the minimal CDYD
containing all the corresponding CDYD.

7.3.4 Droplet algorithm and spanned droplets

A droplet is any DYD contained in Λ or CDYD. We are now ready to de�ne
our droplet algorithm, which takes as input a �nite set K � Λ X Z2 of
infections and outputs a set D of disjoint connected droplets. It proceeds as
follows.

• Form an initial collection of DYD D consisting of QpCq for all clusters C
of K. If a DYD D P D intersects B, replace it by its CDYD, CpDq, to
obtain a droplet.

• As long as it is possible, replace two intersecting droplets of D by their
span. If the span intersects B, replace it by its CDYD to obtain a droplet.

• Output the collection D obtained when all droplets are disjoint.
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We similarly de�ne the modi�ed droplet algorithm by replacing QpCq by
Q1pCq and clusters by modi�ed clusters above.

The output D is clearly a collection of disjoint connected droplets. In-
deed, by induction all xi corners of droplets remain in Λ (see Figure 7.4), so
that DYD remain connected when replaced by CDYD.

Remark 7.3.10. From the results of Section 7.3.3 it is clear that the order
of merging does not impact the output of the algorithm, which is thus well
de�ned. It can also be expressed as the minimal collection of disjoint droplets
containing the intersection with Λ of the original collection of quadrilaterals.
This minimal collection is well de�ned. Consequently, the union of the output
is increasing in the input.

De�nition 7.3.11 (Spanned droplets). Let D be a droplet and K � Z2.
We say that D is spanned for K with boundary B if the output of the droplet
algorithm for K XD has a droplet containing D. We omit K and B if they
are clear from the context. Similarly, D is modi�ed spanned if the output of
the modi�ed droplet algorithm for K XD has a droplet containing D.

Note that, when seen as an event, a droplet being spanned is monotone.
It is also clear that each droplet appearing in (the intermediate or �nal
stages of) the droplet algorithm is spanned and similarly for the modi�ed
droplet algorithm. Indeed, the clusters responsible for creating a droplet in
the course of the algorithm are contained in the droplet, so each of them is
still a cluster of KXD (recall that crumbs have diameter much smaller than
C3).

7.3.5 Properties of the algorithm

We next establish several properties of the algorithm. The approach is simi-
lar to the one of [70] with the notable exception of the key Closure Proposi-
tion 7.3.20. We start with the following purely geometric statement.

Lemma 7.3.12 (Subadditivity). Let D1 and D2 be two DYD or CDYD with
non-empty intersection. Then

|D1 _D2| ¤ |D1| � |D2|.
Furthermore, if D is a DYD intersecting B, then |CpDq| ¤ |D|.
Proof. First assume that D1 and D2 are DYD. Since |D| � |QpDq| for any
DYD D and D1_D2 � QpQpD1q_QpD2qq, it su�ces to prove the assertion
for merging quadrilaterals instead of DYD. But in that case it is not hard to
check directly and is a particular case of Lemma 15 of the �rst arXiv version
of [74] (or Lemma 23 of the second version). Since similar (but actually
slightly more involved) details were omitted in the proof of the corresponding
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Lemma 4.6 of [74] and di�ered to earlier versions, we will not go into useless
detail here either. To give a sketch of a possible argument, one can check
that for �xed shapes of QpD1q and QpD2q the maximal QpQpD1q _QpD2qq
is achieved when their intersection is reduced to a vertex. Yet, in those
con�gurations one can obtain the v1 and v2 sides of QpQpD1q _ QpD2qq as
the union of those of QpD1q and translates of those of QpD2q (see Figure 7.4).
This concludes the proof, as only v1 and (possibly) v2 sides contribute to | � |
by Lemma 7.2.1.

Next assume thatD1 is a DYD andD2 is a CDYD. Let Y � tyi : i P Iu be
the set of vectors de�ning CpD1q and let a P D1XD2. Since Y � D1, we have
that dpyi, aq ¤ diampD1q. It then easily follows that the CDYD de�ned by
only one corner, yi, which we denote Cpyiq, is within distance OpdiampD1qq
from Cpaq. But then CpD1q � �

iPI Cpyiq is within distance OpdiampD1qq
from Cpaq. Thus, |D1_D2| ¤ pdiampD2q�OpdiampD1qqq{C1 ¤ |D2|�|D1|,
since diampD1q � Op|D1|q and all implicit constants depend only on S and
are thus much smaller than C1.

Next assume that D1 and D2 are CDYD. Then the statement is trivial,
because D1_D2 � D1YD2, so diampD1q� diampD2q ¥ diampD1_D2q by
the triangle inequality.

Finally, let D be a DYD intersecting B. Then, |CpQpDqq| ¥ |CpDq| and
|QpDq| � |D|, so we may assume that D � QpDq and prove |CpDq| ¤ |D|.
But in this case it is easy to see that diampCpDqq � OpdiampDqq � Op|D|q
with constants depending only on S, which concludes the proof.

The subadditivity lemma will be used to prove the next two adaptations
of classical results.

Lemma 7.3.13 (Aizenman�Lebowitz). Let K be a �nite set and let D be a
spanned droplet with |D| ¥ C2

4 . Then for all C2
4{C1 ¤ k ¤ |D|{C1 there exists

a connected spanned droplet D1 with k ¤ |D1| ¤ 2k. The same statement
holds for modi�ed spanned droplets.

Proof. By Lemma 7.3.12 at each step of the droplet algorithm the largest size
of a droplet appearing in the collection at most doubles. Initially the largest
size is at most C1C4 and in the end there is a (unique) droplet D2 � D, so
that |D2| ¥ |D|{C1 ¥ C2

4{C1 ¡ C1C4. Then there is a stage of the algorithm
at which the maximal size of a droplet in D is between k and 2k, which is
enough since all droplets appearing in the droplet algorithm are connected
and spanned. The proof for modi�ed spanned droplets is identical, using the
modi�ed droplet algorithm.

Lemma 7.3.14 (Extremal). Let K � Z2 and let D be a droplet spanned for
K. Then the total number of disjoint clusters for K X D in D is at least
diampDq{C2

4 .
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Proof. In this proof all clusters will be clusters for K XD. Assume that at
the initial stage of the algorithm there are k clusters (not disjoint). One can
then �nd k{C 1

4 disjoint ones, since their diameter is at most C3. Furthermore,
by Lemma 7.3.12 the total size of droplets in the collection D is decreasing,
so that |D|{C1 ¤ |D1| ¤ kC1C4, where D

1 � D is some droplet in the output
of the algorithm. Indeed, |QpCq| ¤ C1C4 for all clusters C. This concludes
the proof, since |D| ¥ diampDq{C1 for all DYD and CDYD.

We next transform this extremal bound into an exponential decay of the
probability that a droplet is spanned until saturation at the critical size. In
the following lemma, we identify the con�guration ω having law µ and the
set of its zeroes.

Lemma 7.3.15 (Exponential decay). Let D be a droplet such that |D| ¤
2{pC5q

αq. Then

µpD is spanned for ωq   expp�C4|D|q.

Proof. Let D be a droplet with |D| ¤ 2{pC5q
αq, so that diampDq � d ¤

2C1{pC5q
αq. By Lemma 7.3.14 if D is spanned for ω, it contains at least

d{C2
4 disjoint clusters for ω X D, each one having diameter at most C3.

Each non-boundary cluster has at least α sites by Observation 7.3.4, while
boundary clusters are non-empty and located at distance at most C2 from
B. Thus, we have the union bound

µpD is spanned for ωq

¤
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recalling that C5 is su�ciently large depending on C4, C
1
4 and C1.

Our next aim is to prove that the closure of a set is contained in its
droplet collection up to very local infections next to initial ones. To that
end we will need some preliminary results, similar to those used by Bollobás,
Duminil-Copin, Morris and Smith [70].
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Observation 7.3.16 (Lemma 6.5 of [70]). Let u be a rational non-semi-
isolated stable direction. Let K � Z2 with |K|   αpuq (if αpuq � 8 the
condition is that K is �nite, but there is no a priori bound on its size). Then
there exists a constant CpU , u, |K|q not depending on K such that rKsHu is
within distance CpU , u, |K|q from K.

Since we will require some improvements later, we spell out a proof of
the above result for completeness (actually our proof is slightly di�erent from
the one in [70]).

Proof of Observation 7.3.16. We prove the statement by induction on |K|.
For a K � txu this is easy, since if xx, uy is su�ciently large rKsHu � K
and otherwise there is a single possible con�guration for each value of xx, uy
up to translation. Assume the result holds for |K|   n. If one can write
K � K1 \ K2 with K1,K2 � ∅ and dpK1,K2q ¡ 2CpU , u, n � 1q � Op1q,
then rKsHu � rK1sHu \ rK2sHu , since rK1sHu and rK2sHu are at su�ciently
large distance, hence no site can use both to become infected. Assume that,
on the contrary, there are no large gaps between parts of K. There is a �nite
number of such K up to translation and for each of these rKs is �nite (e.g.
since K is contained in a quadrilateral with sides perpendicular to S), so
within uniformly bounded distance from K. Therefore, if Hu is su�ciently
far from K, rKsHu � rKs. Otherwise, there is a �nite number of possible K
up to translation perpendicular to u and for each of them rKsHu is �nite, so
that one can indeed �nd a �nite uniform constant CpU , u, nq as claimed.

A quantitative version of this result was proved in Chapter 9. An easy
corollary of Observation 7.3.16 is the fact that crumbs can only grow very
locally (see Figure 7.5a).

Corollary 7.3.17. Let C1 be su�ciently large depending on U . Let K � Z2

with |K|   α. Then rKs is within distance C1{p6αq from K. Also, for a
(modi�ed) crumb κ we have that diamprκsq ¤ αC2 and rκs is within distance
C1 from κ.

Proof. The �rst assertion follows from Observation 7.3.16, since if it were
wrong, one could simply translate a set K su�ciently far from a half-plane
yielding a contradiction with the observation.

Next consider a (modi�ed) crumb κ and Pκ minimal with |Pκ|   α and
rPκs � κ. Then rκs � rPκs is within distance C1{p6αq from Pκ. If the
sites of Pκ are not connected in the graph Γ2 on Z2 with connections at
distance at most C1 � C2, then either κ is not connected in Γ or Pκ is
not minimal, which are both contradictions. Similarly, if there is no site of
κ at distance smaller than C1{p2αq from a C1{p2αq-connected component
of Pκ, that component can be removed from Pκ, contradicting minimality.
Hence, Pκ is within distance C1{2 from κ. The result is then immediate, as
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C1

¤ C2

(a) The dots represent the sites of
a crumb. The (disconnected) cir-
cled shape bounds its closure. Note
that crumbs may have gaps of size
C2 while the growth allowed is only
C1 ! C2.

ẙ1

ẙ2

x̊ x
y1

y2

C4u0{C1

C4v0{C1

2C3

D̊

D

(b) The shaded region is the shrunken
DYD D̊ of the largest DYD D. The so-
lid circles represent crumbs and the das-
hed arcs are the bound for their growth
provided by Lemma 7.3.19. The modi-
�ed clusters of the closure are included
in the dotted DYD.

Figure 7.5 � Illustrations of Corollary 7.3.17, Lemma 7.3.19 and Proposi-
tion 7.3.20.

rκs is within distance C1{2 � C1{p6αq from κ and its diameter is at most
C1{p3αq � diampPκq, while diampPκq ¤ pα� 1qpC1 � C2q.

In order to treat infection at the concave corners of droplets we will need
the following modi�cation of Observation 7.3.16.

Corollary 7.3.18. Let u1 and u2 be rational strongly stable directions such
that Hu1 Y Hu2 is stable for the bootstrap percolation dynamics i.e. EU P
U , U � Hu1 Y Hu2. Let K � Z2 with |K| ¤ α � 1. Then rKsHu1YHu2

is
within distance CpU , u1, u2q from K.

Proof. We apply a similar induction to the one in the proof of Observa-
tion 7.3.16. The only di�erence is that we can no longer use translation
invariance. If dpK,Hu2q ¡ CpU , u1, |K|q � Op1q, by Observation 7.3.16, we
have rKsHu1YHu2

� rKsHu1
and similarly for u1 and u2 interchanged. We can

thus assume thatK is within distance C 1pU , u1, u2q from the origin. But then
rKYHu1YHu2s � Hu1YHu2YHu1pC2pU , u1, u2qu1q, where u1 � pu1�u2q{2,
since the latter region is stable by the hypothesis on u1, u2.

We next transform these results for in�nite regions into a result for drop-
lets. It states that a crumb next to a droplet cannot grow signi�cantly (see
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Figure 7.5b).

Lemma 7.3.19. Let C1 be su�ciently large depending on U and S. Let D
be a DYD at distance at least C3 from B or be a CDYD and let κ be a crumb.
Then rκsDYB � rκsD is within distance C1 of κ.

Proof. Assume that D is a DYD at distance at least C3 from B. The proof
of [70, Lemma 6.10] applies using (7.2), Observation 7.3.16, Corollary 7.3.18
and the arguments in the proof of Corollary 7.3.17 to give the result for rκsD,
which is therefore at distance at least C2 � C1 from B since dpκ, Bq ¥ C2, so
that in fact rκsD � rκsDYB.

Assume next that D is a CDYD. Then actually DYB can be viewed as a
DYD on the entire plane without boundary speci�ed by an in�nite number of
vectors xi, so that we are in the previous case. In order to avoid introducing
the corresponding notion of in�nite DYD, one can consider an increasing
exhaustive sequence of DYD Di converging to DYB in the product topology
and apply the previous result for rκsDi , which will thereby apply to D Y B.
Finally, rκsD � rκsDYB follows, since dprκsDYB, Bq ¥ C2 � C1.

The next proposition is key to making the output of the algorithm es-
sentially invariant under the KCM dynamics without having to pay for the
fact that the closure for the bootstrap percolation dynamics of infections
at equilibrium is not at all at equilibrium itself. The proof is illustrated in
Figure 7.5b.

Proposition 7.3.20 (Closure). Let K be a �nite set and D1 be the collection
of droplets given by the modi�ed droplet algorithm with input rKsB. Let D be
the output of the droplet algorithm for K. Then

@D1 P D1 DD P D, D1 � D.

Proof. Let K be the set of crumbs for K. Set κ0 � �
κPK κ.

Claim 1. For each crumb κ P K its closure rκs � rκsB consists of at most
α� 1 modi�ed crumbs of rκs all contained within distance C1 from κ.

Proof of Claim 1. There exists a set Pκ as in De�nition 7.3.1, such that
rPκs � κ and thus rPκs � rκs, which proves that all connected components
of rκs for Γ1 are modi�ed crumbs. The fact that rκs is within distance C1 of
κ (and thus at distance at least C 1

2 from B) was proved in Corollary 7.3.17,
which also shows that rκs � rκsB, since κ is at distance more than C2 from
B.

We can thus de�ne K1pκq to be the set of modi�ed crumbs of rκsB, so
that their union is disjoint and equal to rκsB. Moreover, crumbs in K are at
distance at least C2 from each other, so for any two of them κ1 � κ2 we have
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that any κ11 P K1pκ1q and κ12 P K1pκ2q are at distance at least C2� 2C1 " C 1
2

and also at such distance from B, so that rκ0sB � �
κPKrκsB has no modi�ed

cluster and consists of modi�ed crumbs at distance at most C1 from κ0.
For a droplet D P D consider the set of vectors Y and x (x is absent for

CDYD) de�ning it. Then de�ne Y̊ � Y � C4u0{C1 and x̊ � x � C4v0{C1,
where u0 P R2 is the vector such that xu0, u1y � xu0, u2y � �1 and v0

is de�ned identically in terms of v1 and v2. We denote by D̊ the droplet
de�ned by Y̊ and x̊ and call it a shrunken droplet. Let D0 � �

DPDD and

D̊0 � �
DPD D̊. It is clear that D̊ is at distance at least C4{C1 from ΛzD for

all droplets D. In particular, all shrunken droplets are at distance at least
C4{C1 from each other and shrunken DYD are at distance at least C4{C1

from B, so that Lemma 7.3.19 applies to them and rD̊0sB � D̊0.

Claim 2. D̊0 Y κ0 � K.

Proof of Claim 2. Note that it is enough to prove that the clusters of K are
contained in D̊0. Assume that there exists a P KzD̊0 and a P C for some
cluster. Then, QpCq X Λ is contained in some D P D, which is de�ned by
Y and x (x is absent for CDYD). Then since a R D̊, either for all ẙi P Y̊
we have a R Hu1pẙiq X Hu2pẙiq or a R Hv1 p̊xq X Hv2 p̊xq. In the former case,
a�C4u0{C1 R Hu1pyiq XHu2pyiq for all yi P Y . However, QpCq contains the
ball of radius C4 centered at a and }u0} � Op1q, so we get a contradiction.
If a R Hv1 p̊xqXHv2 p̊xq, the �rst point on the segment from a to a�C4v0{C1

that is not in D is in Λ and in QpCq, hence a contradiction.

Claim 3. The set rKsBzrκ0sB is within distance C3 of D̊0.

Proof of Claim 3. By Claim 2 we have K0 � D̊0 Y κ0 � K. It then clearly
su�ces to prove that rK0sBzrκ0sB is within distance C3 of D̊0.

Consider a crumb κ P K at distance at most C2 from D̊0, so at distance
at most C2 from a shrunken droplet D̊ and necessarily at distance at least
C4{C1�C2�C3 from any other shrunken droplet and from B if D is a DYD.
By Lemma 7.3.19 rκsD̊ � rκsD̊YB is within distance C1 of κ. Hence,

rK0 Y Bs � D̊0 Y B Y rκ0s Y
¤
κ,D

rκsD̊, (7.4)

where the last union is on couples pκ,Dq as above. Indeed, all rκsD̊ and rκs
(for di�erent κ) are at distance at least C2 � 2C1 from each other and from
D̊0zD̊ (by the reasoning above), so for each site of Λ the intersection of the
ball of radius Op1q centered at it with the set on the right-hand side of (7.4)
coincides with the intersection with one of the sets rκ Y D̊s, rκs or D̊0 Y B,
which are all stable, so no infections occur, which proves (7.4).

The claim follows easily from (7.4), since for every couple κ,D the set
rκsD̊ is within distance C1 of κ, which is itself at distance at most C2 from

D̊0, and κ has diameter much smaller than C3 by Corollary 7.3.17.
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Let C 1 be a modi�ed cluster of rKsB and assume for a contradiction that
C 1 � rκ0sB. From De�nition 7.3.3 we get that C 1 is also a modi�ed cluster
of rκ0sB, but this is a contradiction, since rκ0sB only consists of modi�ed
crumbs.

Since any modi�ed cluster C 1 of rKsB has diameter at most C3 (by
De�nition 7.3.3) and intersects rKsBzrκ0sB, which is within distance C3 of
D̊0 by Claim 3, we get that C 1 is within distance 2C3 of D̊0. Therefore,�
C1PC1prKsBqQ

1pC 1q � D0 Y B, where the union is over all modi�ed clusters

of rKsB, since diampQ1pC 1qq ! C4{C1 ¤ dpD̊0,ΛzD0q. As D is the output
of the droplet algorithm, D0 is the union of disjoint DYD non-intersecting B
and CDYD, so it necessarily contains

�
D1PD1 D1 (see Remark 7.3.10), which

concludes the proof.

Remark 7.3.21. It should be noted that the algorithm is more easily and
naturally de�ned with no boundary, but that will not be su�cient for our
purposes. However, this `free' algorithm is trivially obtained as a specialisa-
tion of ours. It is also possible to deal with more general boundaries, with
in�nite input sets, as well as with droplets de�ned by more directions and
possibly with several rugged sides.

7.4 Renormalised East dynamics

In this section we map the original dynamics into an East one and conclude
the proof of our main result. In Section 7.4.1 we introduce the necessary
notation for the relevant geometry. In Section 7.4.2 we consider a renor-
malised dynamics on the slices of Figure 7.6 by algorithmically selecting
certain modi�ed spanned droplets of size Ωp1{qαq. In Section 7.4.3 we furt-
her renormalise to recover an exact East dynamics where q is replaced by
qeff corresponding to the probability of spanning such a droplet. Finally, in
Section 7.4.4 we prove Theorem 7.0.1 roughly as in [267].

7.4.1 Geometric setup

Let us start by de�ning the domain V we will work in, recalling the notation
from Lemma 7.2.1. Roughly speaking, V is an isosceles triangle with height
e1{pC5qαq directed by u1 (see Figure 7.6). It is divided into `columns' Ci
perpendicular to u1 of width roughly 1{qα, so that the origin of Z2 is in the
middle of the last column, close to the tip of V .

More formally, set L � 1{pC5q
αq and let ι be the smallest x ¥ 1 such

that the site x
2qαu

1 is in Z2, so that ι � 1 � Opqαq. This way our columns
will have width ι{qα and be separated along rational lines. We de�ne the
domain

V � Hu1peLu1qz
�
Hu12

p�ι{p2qαqu1q YHu11
p�ι{p2qαqu1q

	
.
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u1

u2

v1

v2

u1

u12

u11

C1

Figure 7.6 � The domain V is the thickened triangle, a portion of which is
displayed. Solid lines separate columns Ci. Inside the domain is drawn a
DYD, which witnesses Φpωq3 �Ò.

Let us choose C5 so that half the number of columns

N � eLqα{p2ιq � 1{4 � eLqαp1{2�Opqαqq
is an integer. We then partition the domain V � �2N

i�1 Ci into columns with

Ci � tx P V : eL � ιpi� 1q{qα ¡ xx, u1y ¥ eL � ιi{qαu,
so that 0 is in the middle of C2N and eLu1 P Z2. We shall refer to Ci as the i-th
column. Finally, de�ne the half-plane containing Ci�1, but not intersecting
Ci

Hi � Hu1ppeL � ιi{qαqu1q
and the natural boundary for Ci

Bi � Hi Y B̄,
obtained by considering Cj , j ¥ i� 1 as fully infected, where

B̄ � Hu12
p�ι{p2qαqu1q YHu11

p�ι{p2qαqu1q.
Note that these boundaries are of the form considered in Section 7.3.

7.4.2 Arrow variables

Let ω P Ω. We will now de�ne a collection of arrow variables which depend
only on the restriction of ω to V . We naturally identify the restriction of ω
to V with the subset of V where ω is 0 and we use the notation ω � ∅ to
indicate that all sites are �lled (healthy) in V , namely ωx � 1 for all x P V .
Let ωp0q � ωXV . We de�ne the position of the �rst up-arrow as the smallest
index i1pωq P t1, 2, . . . , 2Nu such that there is a modi�ed spanned droplet



7.4. RENORMALISED EAST DYNAMICS 243

of size at least L for rωp0qsBi1pωq with boundary Bi1pωq. If no such i1 exists,
we say that there are no up-arrows and set i1pωq � 8. We further denote
ωp1q � ωp0q XHi1pωq as soon as i1pωq   8, while otherwise ωp1q � ∅.

We de�ne the set Ipωq � ti1pωq, i2pωq, . . .u � t1, . . . , 2Nu containing the
positions of up-arrows recursively as follows. If there are no up-arrows, then
I � ∅. Otherwise, we set Ipωq � ti1pωqu Y Ipωp1qq and ωpkq � pωpk�1qqp1q,
which de�nes ωpkq for all k. Let us note that if i1pωq � 8, then i1pωq  
i1pωp1qq, since by de�nition rωp1qsBi1pωq � ∅. Finally, we may de�ne Φpωq P
tÒ, Óut1,...,2Nu as

Φpωqk �
#
Ò if k P Ipωq,
Ó otherwise.

The next Lemma states that the probability to �nd at least one up-arrow
decays as

qeff � e�L.

Lemma 7.4.1.
µpi1   8q ¤ qeff .

Proof. Fix 1 ¤ i ¤ 2N and consider the event i1 � i. It is clearly included
in the event Ei that there is a modi�ed spanned droplet of size at least L
for rωp0qsBi with boundary Bi. By Proposition 7.3.20 there is also a spanned
droplet of size at least L{C1 for ωp0qzBi with boundary Bi. By Lemma 7.3.13
this implies that there is also a spanned connected droplet of size between
L{C2

1 and 2L{C2
1 . Then one can rewrite Ei as the union over all such droplets

D of the event that D is spanned. Note that for each discretised DYD DXZ2

the event that there exists a spanned DYD D1 with D1 X Z2 � D X Z2

coincides with the event that a suitably chosen such D1
0 is spanned. Indeed,

the intersection of two DYD is a DYD by (7.2) and the spanning of all D1

depend only on the �nite number of sites in D X Z2, so there is a �nite
number of possible events associated to di�erent D1 and one can consider
the intersection of a D1 de�ning each of these events. The same reasoning
holds for CDYD and so for each discretised droplet DXZ2 one can bound the
probability that there exists a spanned droplet with such discretisation using
Lemma 7.3.15. Thus, by the union bound on discretised droplets counted in
Observation 7.3.8, one obtains

µpEiq ¤ |V |.eL2e�C4L{C2
1 ¤ qeff{p2Nq.

We next consider the event of having at least n up-arrows

Bpnq � tω P Ω : |Ipωq| ¥ nu.
Corollary 7.4.2. For any 1 ¤ n ¤ 2N we have

µpBpnqq ¤ qneff .
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Proof. We prove the statement by induction on n. The base, n � 1, is given
by Lemma 7.4.1. For n ¡ 1 we have

µp|I| ¥ nq �
2Ņ

i�1

µpi1pωq � i; |Ipω XHiq| ¥ n� 1q

¤
2Ņ

i�1

µpi1 � iqµp|I| ¥ n� 1q

¤qneff ,

where we used that the event i1 � i only depends on ωzHi (i1 is a stopping
time for the �ltration induced by the columns) and that the event |I| ¥ n�1
is increasing for the order de�ned by ω ¨ ω1 when ω � ω1.

We will now state a key deterministic property of the arrows under legal
moves of the KCM dynamics.

Lemma 7.4.3. Let ω P Ω. Let x P Ci be such that ωx � 1 and the
constraint at x is satis�ed by ω Y B̄. Assume that Φpωq � Φpωxq. Let
j � maxtk : Φpωqk � Φpωxqku. Then

Φpωqr0,i�1s � Φpωxqr0,i�1s, Φpωqri�1,js � pÒ, Ó, Ò, Ó, Ò, . . . q,
Φpωqrj�1,2Ns � Φpωxqrj�1,2Ns, Φpωxqri�1,js � pÒ, Ò, Ó, Ò, Ó, . . . q

with the convention that Φpωq0 �Ò for all ω.

Proof. We denote Φ :� Φpωq and Φ1 :� Φpωxq. Clearly, Φr0,i�1s � Φ1
r0,i�1s,

since those values do not depend on ω XHi�1.
Claim 1. Let k ¥ i. If Φk �Ò, then Φrk�1,2Ns ¥ Φ1

rk�1,2Ns for the

lexicographic order associated to Ò Ó. If Φ1
k �Ò, then Φrk�1,2Ns ¤ Φ1

rk�1,2Ns.

Proof of Claim 1. The two assertions being analogous, we only prove the
�rst one, so assume that Φk �Ò. Let j1 � mintl ¡ k : Φl �Òu. Then there is
a modi�ed spanned droplet of size at least L for rωp0qXHksBj1 with boundary
Bj1 . But this is also true for ωx instead of ω, as they coincide in Hk, and in
particular the position of the �rst up-arrow of Φ1 after k is at most j1.

Claim 2. Let k ¥ i � 1 be such that Φk � Φ1
k �Ó. Then k ¡ j i.e.

Φrk,2Ns � Φ1
rk,2Ns.

Proof of Claim 2. We can clearly assume that k   2N . Further assume for
a contradiction that Φk�1 �Ò and Φ1

k�1 �Ó. Let i1 � maxtl   k : Φl �Òu.
Then there exists a modi�ed spanned droplet D of size at least L for rωp0qX
Hi1sBk�1

with boundary Bk�1. By Lemma 7.3.13 we can assume that L ¤
|D| ¤ C1L. However, if dpD, Ck�1q ¡ C5, then D is also modi�ed spanned
for rωp0qXHi1sBk with boundary Bk, contradicting the de�nition of i1. Indeed,
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from the output of the modi�ed droplet algorithm for rωp0qXHi1sBkXD with
boundary Bk we can create a collection D̂ of droplets for Bk�1 by extending
CDYD appropriately, thus D̂ contains Q1pC 1qzBk � Q1pC 1qzBk�1 for every
modi�ed cluster C 1 of rωp0q X Hi1sBk XD with boundary Bk. Moreover, the
modi�ed clusters of rωp0qXHi1sBk�1

XD with boundary Bk�1 are contained in

the modi�ed clusters of rωp0q XHi1sBk XD with boundary Bk, so D̂ contains
the output of the modi�ed droplet algorithm for rωp0q X Hi1sBk�1

X D with
boundary Bk�1 by Remark 7.3.10, itself containing D.

Therefore, dpD, Ck�1q ¤ C5. Moreover, D is not modi�ed spanned for
rpωxqp0q XHk�1sBk�1

with boundary Bk�1 (otherwise Φ1
rk,k�1s � pÓ, Óq). The-

refore, there exists a site y P D such that

y P rωp0q XHi1sBk�1
zrpωxqp0q XHk�1sBk�1

.

We consider two subcases. First assume that dpx,R2zHi�1q ¥ C1. Then,
the constraint at x is satis�ed by pω X Hi�1q Y B̄, so rωp0q X Hk�1sBk�1

�
rpωxqp0q XHk�1sBk�1

, and there is a path

P � rωp0q XHi1sBk�1
zrpωxqp0q XHk�1sBk�1

from R2zHk�1 to y such that each two consecutive sites are at distance at
most Op1q. But dpy,R2zHk�1q ¥ ι{qα � diampDq � C5 ¥ C2pL� 1q, so one
can �nd a subpath P 1 � Ck X P of diameter at least C2L. Yet, it is clear
that P 1 � rωp0q XHi1sBk implies the existence of a modi�ed spanned droplet
of size larger than L with boundary Bk, so one would have an up-arrow of Φ
in ri1 � 1, ks�a contradiction. If, on the contrary, dpx,R2zHi�1q ¤ C1, we
can redo the same reasoning, but P needs to extend to either R2zHk�1 or x,
both of which are su�ciently far from y.

Thus, Φk�1 � Φ1
k�1, as the case Φk�1 �Ó,Φ1

k�1 �Ò is treated identically.
But then either both are Ò, in which case we are done by Claim 1 or both
are Ó and we are done by induction.

It is easy to see that the only non-identical arrow sequences Φri�1,js and
Φ1
ri�1,js satisfying the two claims are pÒ, Ó, Ò, Ó, . . . q and pÒ, Ò, Ó, Ò, . . . q (in

this order using that ωx � 1). Indeed, by Claims 1 and 2 Φk � Φ1
k for all

i ¤ k ¤ j, by Claim 1 one cannot have two consecutive up arrows neither in
Φ nor in Φ1 in the interval ri, js and by Claim 2 Φi�1 � Φ1

i�1 �Ò.

7.4.3 Renormalised East dynamics

We partition t1, . . . , 2Nu into blocks Bi � t2i� 1, 2iu for 1 ¤ i ¤ N . Given
ω P Ω, we de�ne ηpωq P t0, 1ut1,...,Nu by

ηpωqi � 1t@jPBi:Φpωqj�Óu



246 Chapter 7: Universality for critical KCM II

for all i P t1, . . . Nu. Let

n � tLu �
Z

1

C5qα

^
  tlog2N u.

Recall the de�nition of legal paths, De�nition 1.3.6. Given an event
E � Ω and a legal path γ � pωp0q, . . . , ωpkqq we will say that γ X E � ∅ if
ωpiq R E for all i P t0, . . . , ku. Also, given ω P Ω and A � Ω, we say that γ
connects ω to A if ωp0q � ω and ωpkq P A. Recall that Bpnq � Ω is the set of
con�gurations with at least n up-arrows. The following is a straightforward
but important corollary of Lemma 7.4.3.

Corollary 7.4.4. For any legal path pωp0q, . . . , ωpkqq, the path formed by
pηpωp0qq, . . . , ηpωpkqqq is legal for the East model on t1, . . . , Nu with �xing
η0 � 0.

Proof. Lemma 7.4.3 gives that ηpωpjqq � ηpωpj�1qq implies that Φpωpjqq
and Φpωpj�1qq only di�er on an alternating chain of arrows ending in some
Bi, preceded by Ò. Then clearly ηpωpjqql � ηpωpj�1qql for all l � i and
ηpωpjqqi�1 � 0.

Let ΩÓ and Ω2N
Ò be respectively the set of con�gurations which do not

have up-arrows, and the set of con�gurations with an up-arrow in the 2N -th
column, namely

ΩÓ � tω P Ω : Φpωq � pÓ, . . . , Óqu,
Ω2N
Ò � tω P Ω : Φpωq2N �Òu.

Combining the last corollary with Proposition 1.3.7, we obtain the most
important input for the proof of the main result.

Corollary 7.4.5. For any ω P ΩÓ there does not exist a legal path γ with
γ X Bpn� 1q � ∅ connecting ω to Ω2N

Ò .

7.4.4 Proof of Theorem 7.0.1

To prove Theorem 7.0.1 it is su�cient to prove the lower bound for the mean
infection time and use the following inequality (see [89, Theorem 4.4] and
also [269, Section 2.2])

Trel ¥ qEµpτ0q. (7.5)

However, it is instructive to construct at this stage a test function that
directly gives the desired lower bound on Trel without going through the
comparison with the mean infection time. Indeed, the mechanism will appear
more clearly this way.
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Proof of Theorem 7.0.1 for Trel We de�ne the event Ã as

� tω P Ω: D legal path γ with γ X Bpnq � ∅ connecting ω Y pZ2zV q to ΩÓu
and the test function f : Ω Ñ t0, 1u

f � 1Ã.

Then, by De�nition 1.3 we get

Trel ¥ µpÃqp1� µpÃqq
Dpfq , (7.6)

where the Dirichlet form Dpfq is de�ned in (1.4).

Lemma 7.4.6 (Bounds on µpÃq).

µpÃq
�

1� µpÃq
	
¥ exp

�
log q

C4qα



.

Proof. By Lemma 7.4.1 we have

µpÃq ¥ µpΩÓq ¥ 1� qeff ¥ 1{2.
On the other hand,

1� µpÃq ¥ µpΩ2N
Ò q ¥ qC1L ¥ exppC1 log q{pC5q

αqq,
where we used Corollary 7.4.5 for the �rst inequality as well as the fact that if
pωp0q, . . . , ωpkqq is a legal path, then pωpkq, . . . , ωp0qq is one as well, and for the
second inequality we notice that for the 2N -th arrow to be up it is su�cient
to have an infected segment of length C1L in C2N .

Lemma 7.4.7 (Estimate of the Dirichlet form). Dpfq ¤ exp
��1{pC3

5q
2αq�.

Proof. Using the fact that fpωq depends only on the values of ω in V , we
get

Dpfq �
¸
xPV

µpcxVarxpfqq (7.7)

� qp1� qq
¸
xPV

µ
�
cx1tωPÃ, ωxRÃu � cx1tωRÃ,ωxPÃu

	
¤ |V |µpBpn� 1qq,

since, by Lemma 7.4.3 ||Ipωq| � |Ipωxq|| ¤ 1 when cx � 1, so the indicators
both imply ω P Bpn � 1q. Indeed, ω P Ã implies the existence of a legal
path γ from ΩÓ to ω Y pZ2zV q with each con�guration not in Bpnq. Since
cx � 1, the path γ̄ obtained by adding the transition from ω Y pZ2zV q to
ωx Y pZ2zV q is also legal, thus the hypothesis ωx R Ã is not satis�ed unless
ωx P Bpnq (and similarly for ω R Ã, ωx P Ã). Thus, the result follows by
using Corollary 7.4.2.
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Then the lower bound for Trel of Theorem 7.0.1 follows from (7.6), Lemma
7.4.6 and Lemma 7.4.7.

The above proof, together with the matching upper bound of Theo-
rem 2(a) of [269] indicate that the bottleneck dominating the time scales
is the creation of Θplogp1{qeffqq simultaneous droplets of probability qeff .

Proof of Theorem 7.0.1 for Eµpτ0q The proof of the lower bound for the
infection time follows a similar route, with some complications due to the
fact that we have to identify a (su�ciently likely) initial set starting from
which we have to go through the bottleneck con�gurations before infecting
the origin.

By [267, Corollary 3.4], to prove the desired lower bound on Eµpτ0q it
su�ces to construct a local function φ � φq such that

(i) µpφ2q � 1,

(ii) µpφq4
Dpφq ¥ expp1{pC4

5q
2αqq,

(iii) φpωq � 0 if ω0 � 0.

Inspired by [267] we let

Ωg � ΩÓ X tω P Ω : ωΛ0 � 1u
where Λ0 � tx P Z2 : dpx, 0q ¤ 1{p4qαqu � C2N and A be the event

tω P Ω: D a legal path γ with γ X Bpnq � ∅ connecting ω Y pZ2zV q to Ωgu.
Then we set

φp�q � 1Ap�q{µpAq1{2. (7.8)

We are now left with proving that this function satis�es (i)-(iii) above.
Property (i) follows immediately from (7.8). In order to verify (ii) we

start by establishing a lower bound on µpAq. By de�nition it holds that

µpAq ¥ µpΩgq ¥ µpωΛ0 � 1qµpΩÓq ¥ e�Op1q{q
2α�1p1� qeffq � e�Op1q{q

2α�1
,

(7.9)
where we used Harris' inequality [202] (tωΛ0 � 1u and ΩÓ are increasing
events if we consider that ω ¤ ω1 when ωx ¤ ω1x for all x P Z2), Lemma 7.4.1
and |Λ0| � Op1{q2αq.

Furthermore, one can repeat the proof of Lemma 7.4.7 to obtain

Dpφq ¤ e�1{pC3
5q

2αq. (7.10)

Thus, recalling (7.9), Property (ii) holds.
We are therefore only left with proving the next lemma establishing Pro-

perty (iii), completing the proof of Theorem 7.0.1.
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Lemma 7.4.8. Let ω be such that ω0 � 0. Then any legal path connecting
Ωg to ω intersects Bpnq.

As in the lower bound on 1 � µpÃq for Trel, the proof relies on Corol-
lary 7.4.5, but an additional complication arises due to the fact that infecting
the origin does not a priori require creating a critical droplet nearby.

Proof of Lemma 7.4.8. Suppose for a contradiction that there exists a con-
�guration ω with ω0 � 0, a con�guration ωp0q P Ωg and a legal path
γ � pωp0q, . . . , ωpkqq with ωpkq � ω and ωpjq R Bpnq for all j P t0, . . . , ku.
Assuming without loss of generality that ωpjq � ωpj�1q for all j, let xj be
such that ωpjq � pωpj�1qqxj . Consider the path γ̃ � pω̃p0q, . . . , ω̃pkqq obtai-
ned by performing the same updates as for γ except for �ips in the column
C2N , which are performed only if they correspond to infecting sites. More
precisely, we let ω̃p0q � ωp0q and

ω̃pjq �
#
pω̃pj�1qqxj if xj R C2N or pω̃pj�1qqxj � 1,

ω̃pj�1q otherwise.

It is not di�cult to verify by induction that γ̃ is also a legal path with
ω̃pjq ¤ ωpjq for all j (where ω ¤ ω1 when ωx ¤ ω1x for all x P Z2) and
that ω̃pjq and ωpjq coincide outside of C2N . Then pω̃pkqq0 ¤ pωpkqq0 � 0
and by de�nition pω̃p0qqΛ0 � 1. Therefore, since inside C2N each site that
has been infected in γ is also infected in ω̃pkq, we conclude that necessarily
ω̃pkqXC2N contains a (modi�ed) spanned droplet of size 1{p4C1q

αq ¡ L with
boundary B2N � B̄. Indeed, there is a path of sites x with steps of size
Op1q from Z2zΛ0 to 0 such that pω̃pkqqx � 0. This means that ω̃pkq P Ω2N

Ò .
Furthermore, for all j we have Φpω̃pjqqr1,2N�1s � Φpωpjqqr1,2N�1s, as those do
not depend on the sites in C2N . Thus, using Corollary 7.4.5, together with
the facts that ω̃p0q P Ωg � ΩÓ, ω̃pkq P Ω2N

Ò and γ̃ X Bpn� 1q � ∅, we reach a
contradiction.
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Chapter 8

Re�ned universality for critical

KCM: lower bounds

This chapter is based on joint work with Laure Marêché [213], proving
the lower bounds of Theorem 1.6.4, leaving out the classes (d) and (g),
which follow directly from Theorem 1.6.3 (recall Section 1.6 and particularly
Section 1.6.4).

8.1 Supercritical rooted dynamics of droplets

8.1.1 Setting and preliminaries

Let U be an update family. Assuming they exist, we further �x two non-
collinear rational stable directions u1 and u2. We set u3 � u1�π, u4 � u2�π
and T � tu1, u2, u3, u4u. We will simply call parallelogram a set of the form

Rpa, b; c, dq �  
x P R2 | xx, u3y P ra, cs, xx, u4y P rb, ds

(
� Hu1p�aq XHu2p�bq XHu3pcq XHu4pdq

for real numbers a ¤ b, c ¤ d and denote by R̊pa, b; c, dq its topological
interior. For parallelograms we will systematically extend de�nitions by
translation and interchange of u1 and u2 (resp. u3 and u4).

Finally,

C6 " C5 " C 1
2 " C1 " r � maxt}s� s1} | s, s1 P U Y t0u, U P Uu

are constants not depending on q, but only on U and T , each one su�ciently
large with respect to functions of the next.1 Furthermore, we systematically
assume that q is small enough, as we are interested in q Ñ 0.

1We use C 1
2 instead of C2 and avoid C3 and C4 for coherence with the appendices.

251
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De�nition 8.1.1 ([70, De�nitions 2.3 and 2.4]). A set Z � Z2 is strongly
connected if it is connected in the graph with vertex set Z2 de�ned by x � y
if }x� y} ¤ C 1

2.
Given K ¥ C2

1C
1
2 to be speci�ed in Section 8.2, we say a parallelogram

is critical when its diameter is contained between K{C1 and K.
A parallelogram D is spanned in η if there exists a strongly connected

set X � rD X ηs such that the smallest parallelogram containing X is D.

If η, η1 are two con�gurations, we say that η ¤ η1 when ηs ¤ η1s for all s.
For instance, if a parallelogram D is spanned for η, then is is also spanned
for any η1 ¤ η. This order should not be confused with the (inverted) one
induced by inclusion when viewing η as its set of infections.

Notice that the event that a given parallelogram D is spanned depends
only on ηD and does not occur when ηD contains no infections. We further
state two immediate consequences of De�nition 8.1.1 for future reference.

Observation 8.1.2. Let R � R2. Then every parallelogram D spanned in
ηR intersects R.

Observation 8.1.3. Let η be a con�guration and X be a strongly connected
component of rηs. Then X � rη XXs.
Proof. By maximality of a strongly connected component, rη X Xs � X is
at distance at least C 1

2 ¡ 2r from other strongly connected components X
of rηs. Thus,

rηs �
§
Y

rη X Y s,

where the union is on all strongly connected components of rηs.
Another standard fact is the following Aizenman-Lebowitz lemma origi-

nating from [7], whose proof can be found in the appendix (Lemma 8.A.9).

Lemma 8.1.4. Let D be a spanned parallelogram with diameter d ¥ C1C
1
2

and let C1d ¥ k ¥ C1C
1
2. Then there exists a spanned parallelogram with

diameter d1 such that k{C1 ¤ d1 ¤ k. In particular, if d ¥ K{C1, then there
exists a spanned critical parallelogram.

We next import and adapt the notion of crossing from [70, De�nition
8.17].

De�nition 8.1.5 (Crossing). We say that a parallelogram R � Rpa, b; 0, dq
is u1-crossed if there exists a strongly connected set in rHu1 Y pR X ηqs
intersecting both Hu1 and Hu3paq.

Let Cu1
R denote the event that there exists η1 ¥ η such that R is u1-

crossed for η1, but there is no spanned critical parallelogram for η1R.
We say that a parallelogram Λ � Rp0, 0;L,Hq has no p`, hq-crossing (or

simply crossing) if the event Cu1
R does not occur for any R � Λ of the form
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Rpa, 0; a� `,Hq and the event Cu2
R does not occur for any R � Λ of the form

Rp0, b;L, b� hq.
Finally, we say that a site s P Z2 is locally infectable in a con�guration η

if s P rηXps�Rp�2K,�2K; 2K, 2Kqqs. We also denote ηs the con�guration
that is equal to η everywhere except at s, i.e. ηss � 1�ηs and ηss1 � ηs1 for any
s1 � s. We then have the following property, originating from Section 5.1.

Lemma 8.1.6. Let η P t0, 1uZ2
, s P Z2, U P U be such that s�U � η and let

R � Rp�2K,�2K; 2K, 2Kq. Assume that the origin is not locally infectable
in η, but is locally infectable in ηs. Then there exists a critical parallelogram
D spanned in ηsR such that D � Rp�3K,�3K; 3K, 3Kq.
Proof. By de�nition, 0 P rηs XRszrηXRs. Therefore, s P R and s�U � R.
In particular, dps, 0q ¡ K. Let X be the strongly connected component of
0 in rηs X Rs. By Observation 8.1.3 we have that s P X, since otherwise
we would have 0 P rXs � rη X Rs. Therefore, the smallest parallelogram
containing X is spanned and has diameter at least K. In particular, by
Lemma 8.1.4 there exists a critical parallelogram D spanned in ηsR and we
are done by Observation 8.1.2, since diampDq ¤ K by De�nition 8.1.1.

8.1.2 The combinatorial bottleneck

With the notation above we are ready to prove a very general deterministic
bottleneck (Lemma 8.1.10 below), constituting the core this chapter, which
relatively straightforwardly translates into the following bound on Eµpτ0q.
Proposition 8.1.7. Let T, L,H,K, `, h be positive real numbers su�ciently
large with respect to C 1

2. Denote

ρ � max
D

µpD is spannedq,
where the max is over all critical parallelograms. Also set

pÐ � max
a,bPR

µ
�
Cu1

Rpa,b;a�`,b�Hq
	

pÓ � max
a,bPR

µ
�
Cu2

Rpa,b;a�L,b�hq
	
.

Assume that for some integer n ¥ 0 we have the following inequalities on
geometry:

L ¥ 3np11K � `q H ¥ 3np11K � hq,
and probability:

1{8 ¥ µp0 is locally infectableq
1 ¥ T pLHq2 maxppÓ, pÐq
1 ¥ TLHpLHK3ρqn�1.

Then the U-KCM on Z2 satis�es Eµpτ0q ¥ T .
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Remark 8.1.8. Although the bootstrap percolation estimates needed to
make use of this statement in higher dimensions are not yet available, let us
mention that our argument is not dimension sensitive.

The proof of Proposition 8.1.7 will occupy the rest of the present section.
We start by �xing `, h,K as in the statement and introducing the following
de�nitions.

Recall that for any R � Z2, we identify con�gurations η P t0, 1uR with
their zero set tx P R, ηx � 0u. Unless otherwise speci�ed, con�gurations
η P t0, 1uR are extended to t0, 1uZ2

by keeping the same zero set.

De�nition 8.1.9 (Good paths and con�gurations). For any parallelogram
R � R2, con�guration η P t0, 1uRXZ2

and integer n ¥ 0, we say that η
is n-good when the maximum number of critical parallelograms that are
disjointly2 spanned in η is at most n and R has no crossing for η.

A legal path in R is a sequence pηpjqq0¤j¤m of con�gurations in t0, 1uRXZ2

such that for every j P t0, . . . ,m � 1u, there exists s P R X Z2 such that
ηpj�1q � pηpjqqs and ps � Uq X R � ηpjq for some U P U . For any integer
n ¥ 0, the path is n-good if for every j P t0, . . . ,mu, ηpjq is n-good. For any
A,B � t0, 1uRXZ2

, we say pηpjqq0¤j¤m is a path from A to B when ηp0q P A
and ηpmq P B (if A or B � tηu, we will write η to simplify).

We denote by GpRq the set of con�gurations in t0, 1uRXZ2
that contain

no spanned critical parallelogram and such that R contains no crossing, i.e.
the 0-good con�gurations. For any n P N, we de�ne

V pn,Rq � tη P t0, 1uRXZ2 | there is an n-good legal path from GpRq to ηu.
Finally, we de�ne our domain sizes for the induction to come:

Ln � 3n � 1

2
p9K � `q � 3nK Hn � 3n � 1

2
p9K � hq � 3nK,

so that Ln � Ln�1 � 2Ln�1 � 9K � ` and Hn �Hn�1 � 2Hn�1 � 9K � h.

Lemma 8.1.10. For any non-negative integer n, for any parallelogram R �
Rpa, b; c, dq such that c � a ¥ 2Ln and d � b ¥ 2Hn, we have that for
all η P V pn,Rq, there is no spanned critical parallelogram in η intersecting
Rpa� Ln, b�Hn; c� Ln, d�Hnq.

We �rst deduce Proposition 8.1.7 from Lemma 8.1.10.

Proof of Proposition 8.1.7, assuming Lemma 8.1.10. It su�ces to prove that
Pµpτ0 ¥ 2T q ¥ 1{2. Let τ 1 � inftt ¥ 0, 0 is locally infectable in ηptqu. Cle-
arly, τ 1 ¤ τ0. We denote R � Rp�L{2,�H{2;L{2, H{2q. By Lemmas 8.1.6
and 8.1.10 and De�nition 8.1.9 it follows that the event τ 1 ¥ 2T contains the
event G de�ned as the intersection of the following.

2As is standard [357], we say that the parallelograms R1, . . . , Rk are disjointly spanned
in η if one can �nd disjoint sets X1, . . . , Xk � η such that η1Xi � 0 implies that Ri is
spanned in η1 for all 1 ¤ i ¤ k.
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G1: τ
1 ¡ 0, i.e. 0 is not locally infectable in ηp0q.

G2: There is no critical parallelogram spanned in pηp0qqR.
G3: For all 0 ¤ t ¤ 2T , no n� 1 critical parallelograms are disjointly spanned

in pηptqqR.
G4: For all 0 ¤ t ¤ 2T , R has no crossing for pηptqqR.
We next brutally bound the probability of these four events.

By assumption 1� PµpG1q ¤ 1{8. By the union bound on all (discrete)
critical parallelograms intersecting R (recall Observation 8.1.2) we have

1� PµpG2q ¤ OpLHK2qρ ¤ LHK3ρ

8
¤ 1

8pTLHq1{pn�1q ¤
1

8
.

Let N denote the number of clock rings in R between 0 and 2T (the clock
rings are the times at which updates are attempted by the KCM, see Section
1.2.2, at each site these times form a Poisson point process of parameter 1
independent from those of other sites). Let ηpjq denote the restriction of the
con�guration to R X Z2 after the j-th such clock ring. By the weak law of
large numbers we have PµpN ¥ OpTLHqq ¤ 1{16. If for any η P t0, 1uRXZ2

we write Dn�1pηq � tthere are n�1 parallelograms disjointly spanned in ηu,
then by stationarity, the BK inequality [357] and the union bound, we get

1� PµpG3q ¤ PµpN ¥ OpTLHqq �
OpTLHq¸
j�0

PµpDn�1pηpjqqq

¤ 1

16
�OpTLHqµpDn�1ppηqRqq

¤ 1

16
� TLHpOpLHK2qρqn�1 ¤ 1

8
.

Similarly, we have

1� PµpG4q ¤ 1

16
� TLH.OpL�HqmaxppÓ, pÐq ¤ 1

8
.

We then conclude that

1� Pµpτ0 ¥ 2T q ¤
4̧

i�1

p1� PµpGiqq ¤ 1

2

by the assumptions of the proposition.

Proof of Lemma 8.1.10. We will prove the lemma by induction on n. For any
n let us call Hn the statement of the lemma for n. H0 holds by de�nition.
Let n ¥ 1 and assume that Hn�1 holds. Let R � Rpa, b; c, dq be such that
c� a ¥ 2Ln and d� b ¥ 2Hn. We will prove Lemma 8.1.10 by showing Hn
using the following result, whose proof we postpone for the moment.
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Lemma 8.1.11. For all η P V pn,RqzGpRq, there exists a critical parallelo-
gram not intersecting

R1 � Rpa� Ln � Ln�1, b�Hn �Hn�1; c� pLn � Ln�1q, d� pHn �Hn�1qq
that is spanned in η (see Figure 8.1).

From Lemma 8.1.11 we have that a spanned critical parallelogram re-
mains outside R1, so there are at most n�1 critical parallelograms disjointly
spanned in ηR1 for any η P V pn,Rq. Hence, for any η P V pn,Rq we have
ηR1 P V pn � 1, R1q, so we can apply Hn�1 to R1, which directly yields Hn
and concludes the proof of Lemma 8.1.10.

Consequently, it is enough to prove Lemma 8.1.11.

Proof of Lemma 8.1.11. Let us start by introducing the following geometric
regions, represented in Figure 8.1.

R` � R̊pa� 2Ln�1 � 7K, b� 2Hn�1 � 7K;
c� Ln�1 � 7K, d� 2Hn�1 � 7Kq

R`,Ó � Rpa, b; a� 2Ln�1 � 7K, dq
R`,Ò � Rpc� 2Ln�1 � 7K, b; c, dq
R1
`,Ó � Rpa� Ln�1, b�Hn�1, a� Ln�1 � 7K, d�Hn�1q

R1
`,Ò � Rpc� Ln�1 � 7K, b�Hn�1, c� Ln�1, d�Hn�1q

We also de�ne similar regions with index h instead of `. Moreover, we recall
R1 from the statement of Lemma 8.1.11. We further de�ne the two frames
(see Figure 8.1)

B � R1
`,Ó YR1

`,Ò YR1
h,Ó YR1

h,Ò
B1 � Rpa� Ln�1 � 3K, b�Hn�1 � 3K; c� Ln�1 � 3K, d�Hn�1 � 3Kqz

R̊pa� Ln�1 � 4K, b�Hn�1 � 4K; c� Ln�1 � 4K, d�Hn�1 � 4Kq.
We next de�ne some more subtle regions depending on the con�guration.

Claim 8.1.12. Let η P t0, 1uRXZ2
be such that every critical parallelogram

spanned in η intersects R1. Then there exists a closed contour γ � R2

(that is, a self-avoiding and closed path obtained by connecting sites of Z2

by straight lines linking a site to its left, top, right or bottom neighbour)
satisfying the following properties:

• γ � B1.

• dpγ,RzB1q ¥ C2
1 .

• Every s P γ̄ is not locally infectable in η, where

γ̄ � ts P Z2|dps, γq ¤ C1u.
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R

Rh

R`

R1
R`,Ó

Rh,Ó

R`,Ò

Rh,Ò

γ

R1
`,Ó

R1
h,Ó

R1
`,Ò

R1
h,Ò

B1

B

u1

u2

u3

u4

Ln�1 3K K 3K Ln�1 2K�` Ln�13KK3KLn�12K�`
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3K
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Figure 8.1 � The setting of the proof of Lemma 8.1.11. For the �gure we
assume that u3 � 0 and u4 � π{2. B1 is the frame with thickened boundary,
R` and Rh are the overlapping regions in dark gray. The regions R1

`,Ó, R
1
h,Ó,

R1
`,Ò and R

1
h,Ò are in lighter gray and the frame formed by their union is B.

The horizontally (resp. vertically) hatched regions are Rh,Ó and Rh,Ò (resp.
R`,Ó and R`,Ò). The contour inside B1 is γ and its diagonally hatched interior
is γ̊. All the regions drawn are closed subsets of R2 with the exception of R`,
Rh and γ̊, which are open. The thicker version, γ̄, of γ and the set F � Z2

de�ned in (8.1) are not drawn.
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• The (topologically open) interior, γ̊ � R2, de�ned by γ contains R1.

Proof. We proceed by renormalization. Let H denote the regular hexagon
centred at the origin with diameter C3

1 and having two horizontal sides.
Consider the tiling of the plane with translates of H and denote by T the
triangular lattice formed by their centres. Let T � tt P T|H � t � B1u be
the sites of T corresponding to B1. We say that a site t P T is open if no site
in pt�Hq X Z2 is locally infectable in η.

If there exists a contour of open sites in T surrounding R1 (where a
contour in T is a self-avoiding and closed path in the graph pT, tpt, t1q P
T2|t � H and t1 � H share a sideu), we may choose γ approximating this
contour, which clearly satis�es the conditions of the claim. Assume that
such a contour does not exist. Then there is a path of closed sites in T
from the inner to the outer boundary of T . In particular, this path yields a
strongly connected set X of sites of Z2 that are locally infectable in η, with
diameter at least K � 4C3

1 , contained in either the �left part� of the frame
B1, de�ned as

R2
`,Ó � Rpa� Ln�1 � 3K, b�Hn�1 � 3K; a� Ln�1 � 4K, d�Hn�1 � 3Kq,

(see Figure 8.1) or in the top, right or bottom part of B1, de�ned similarly.
Without loss of generality, assume that X is contained in R2

`,Ó. Since the
sites of X are locally infectable in η, they are infectable in ηR3`,Ó , where

R3
`,Ó � Rpa� Ln�1 �K, b�Hn�1 �K; a� Ln�1 � 6K, d�Hn�1 �Kq.

We denote X 1 the strongly connected component of rηR3`,Ós containing X,

and we consider the smallest parallelogram containing X 1. By Observation
8.1.3, it is spanned in ηR3`,Ó , thus by Lemma 8.1.4 there exists a critical

parallelogram spanned in ηR3`,Ó , hence spanned in η and contained in R
1
`,Ó. We

deduce the existence of a critical parallelogram spanned in η not intersecting
R1, hence a contradiction.

We �x η P t0, 1uRXZ2zGpRq such that R has no crossing and every critical
parallelogram spanned in η intersects R1. Let

F � ts P B1 X Z2|s is not locally infectable in ηu (8.1)

and �x a contour γ, its thickened version γ̄ � F and its interior γ̊ as provided
by Claim 8.1.12 (see Figure 8.1).

We will prove that there is no n-good legal path from η to GpRq. Since
legal paths can be reversed, this implies that there η R V pn,Rq, which proves
Lemma 8.1.11.

Let pηpjqq0¤j¤m be an n-good legal path with ηp0q � η. We will use
an induction on j P t0, . . . ,mu to prove that ηpmq R GpRq. More precisely,
we will prove by induction on j that the following properties hold for j P
t0, . . . ,mu.
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P1
j For every ζ P t`, hu, there exists a critical parallelogram contained in Rζ

spanned in ηpjq.

P2
j The sites of F are not locally infectable in ηpjq.

P3
j For every pζ, ξq P t`, hu � tÓ, Òu, ηpjqRζ,ξ P V pn� 1, Rζ,ξq.

P4
j rηpjqγ̊ s � rηp0qγ̊ s.

If P1
m is satis�ed, then there exists a critical parallelogram spanned in ηpmq,

so ηpmq R GpRq, which proves Lemma 8.1.11, so it su�ces to establish the
induction.

Base: j=0. Firstly, by assumption, every critical parallelogram spanned
in η intersects R1, so it is contained in R`XRh and therefore P1

0 holds, since
η R GpRq. Secondly, the de�nition of F , (8.1), implies P2

0 . In addition, P4
0

is trivial, so we only need to prove P3
0 .

Let pζ, ξq P t`, hu�tÓ, Òu. By the assumption on η and Observation 8.1.2
there is no critical parallelogram spanned in ηRζ,ξ . Moreover, ηRζ,ξ has no
crossing in Rζ,ξ, since η has no crossing in R. Thus, ηRζ,ξ P GpRζ,ξq, hence
ηRζ,ξ P V pn� 1, Rζ,ξq, so P3

0 holds.

Induction step. Let j P t0, . . . ,m � 1u, and suppose that P1
j , P2

j , P3
j

and P4
j hold. Since pηpkqq0¤k¤m is a legal path, we have ηpj�1q � pηpjqqs and

ps� Uq XR � ηpjq for some s P RX Z2 and U P U .
Our �rst claim means that �F shields γ̊ from the in�uence of the exterior.�

Claim 8.1.13. P4
j�1 holds.

Proof. If s R γ̊, then η
pj�1q
γ̊ � η

pjq
γ̊ , so rηpj�1q

γ̊ s � rηpjqγ̊ s � rηp0qγ̊ s by P4
j .

Moreover, if s P γ̊, then s�U � γ̊Y γ̄. Furthermore, the sites of γ̄ are in F ,

so by P2
j they are not locally infectable in ηpjq and, in particular, η

pjq
γ̄ � 1.

Thus, s� U � γ̊ and so rηpj�1q
γ̊ s � rηpjqγ̊ s � rηp0qγ̊ s by P4

j .

We next establish that at least one spanned critical parallelogram of

η
pj�1q
γ̊ remains �to the left� of R`,Ò (see Figure 8.1), as well as one �below�
Rh,Ò (these two parallelograms may be the same).

Claim 8.1.14. There exists a critical parallelogram contained in Hu3pc �
2Ln�1�7Kq that is spanned in ηpj�1q

γ̊ and similarly for Hu4pd�2Hn�1�7Kq.
Proof. We will only treat H � Hu3pc � 2Ln�1 � 7Kq as the argument for
the other half-plane is the same. Assume for a contradiction that there is no

critical parallelogram contained in H that is spanned in η
pj�1q
γ̊ .

By Claim 8.1.13 we have that rηpj�1q
γ̊ s � rηp0qγ̊ s and by assumption there

exists a critical parallelogram D spanned in ηp0q intersecting R1. D is then
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contained in γ̊, hence spanned in η
p0q
γ̊ . We consider X a strongly connected

set of rDXηp0qγ̊ s such that the smallest parallelogram containing X is D, then

X intersects Hu3pc� 2Ln�1 � 9K � `q. Therefore, if we call X 1 the strongly
connected component of rηpj�1q

γ̊ s containing X, then X 1 intersects Hu3pc �
2Ln�1 � 9K � `q, and the smallest parallelogram D1 containing X 1 contains
X, thus it contains D hence it has diameter at least K{C1, since D is critical.

By Observation 8.1.3, D1 is then spanned in η
pj�1q
γ̊XX 1 , hence by Lemma 8.1.4

there exists a critical parallelogram spanned for η
pj�1q
γ̊XX 1 . By the assumption it

cannot be contained in H, so X 1 intersects Hu1p�pc�2Ln�1�8Kqq. Now, if
we denote a0 � maxta1 |X 1 � Hu1p�a1qu, then a0 ¥ a, as X 1 � rηpj�1q

γ̊ s and
u1 is a stable direction, and a0 ¤ c�2Ln�1�9K�`. However, by Observation
8.1.3, X 1 � rηpj�1q

γ̊XX 1 s, so RX 1 � Rpa0, b, a0 � `, dq is u1-crossed for η
pj�1q
γ̊ .

Furthermore, any critical parallelogram intersecting RX 1 is contained in H,
so by Observation 8.1.2 and the assumption, there is no critical parallelogram

spanned for η
pj�1q
γ̊ X RX 1 . This yields that Cu1

RX1
occurs for ηpj�1q, which is

impossible since ηpj�1q has no crossing as a con�guration in a n-good legal
path.

Since at least one spanned critical parallelogram is �to the left� of R`,Ò,
we will see that there are at most n � 1 inside it (and similarly for Rh,Ò),
which will yield the following.

Claim 8.1.15. η
pj�1q
R`,Ò

P V pn� 1, R`,Òq and ηpj�1q
Rh,Ò

P V pn� 1, Rh,Òq.

Proof. We will only prove η
pj�1q
R`,Ò

P V pn�1, R`,Òq, as the other proof is similar.

By P3
j it su�ces to prove that η

pj�1q
R`,Ò

is pn� 1q-good.
R`,Ò has no crossing for η

pj�1q
R`,Ò

because R has no crossing for ηpj�1q. Let

D1, . . . , Dk be critical parallelograms that are disjointly spanned in η
pj�1q
R`,Ò

with maximal k. By Claim 8.1.14, there exists a critical parallelogram

D � Hu3pc � 2Ln�1 � 7Kq that is spanned in η
pj�1q
γ̊ and, therefore, also

in ηpj�1q. Since D is disjoint from R`,Ò, we deduce that D1, . . . , Dk, D are
disjointly spanned in ηpj�1q, so ηpj�1q contains k � 1 disjointly spanned cri-
tical parallelograms. Since ηpj�1q is n-good, we get k ¤ n� 1.

We are now ready to prove that a spanned critical parallelogram in
Hu4pd � 2Hn�1 � 7Kq provided by Claim 8.1.14 is in fact in R` (and si-
milarly for Rh). In a nutshell, Claim 8.1.14 prevents the parallelogram from
being �too far up,� being �too far left or down� induces a crossing and if the
parallelogram is �too far right� we may apply Hn�1 by Claim 8.1.15.

Claim 8.1.16. P1
j�1 holds.
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Proof. We only treat R`, as Rh is similar. Assume for a contradiction that
there is no critical parallelogram contained in R` spanned in ηpj�1q.

By Claim 8.1.14, there exists a critical parallelogram D such that D X
Rh,Ò � ∅ that is spanned in η

pj�1q
γ̊ . By assumption D � R`. There are three

possibilities:

a) D XR`,Ó � ∅, i.e. D is �too far left;�

b) D XRh,Ó � ∅, i.e. D is �too far down;�

c) D XHu1p�pc� Ln�1 � 7Kqq � ∅, i.e. D is �too far right.�

We �rst assume for a contradiction that case c) occurs. Since D is span-

ned in η
pj�1q
γ̊ , by Observation 8.1.2 D intersects γ̊, hence since D is critical,

the intersection of D and Hu1p�pc � Ln�1 � 7Kqq is in R1
`,Ò. However, this

contradicts Hn�1 applied to η
pj�1q
R`,Ò

P V pn� 1, R`,Òq by Claim 8.1.15.

Cases a) and b) being analogous, we assume for a contradiction that case

a) occurs. Since D is spanned in η
pj�1q
γ̊ , there exists a strongly connected

set X � rD X η
pj�1q
γ̊ s such that D is the smallest parallelogram containing

X. Let X 1 be the strongly connected component of rηpj�1q
γ̊ s containing X,

and D1 be the smallest parallelogram containing X 1. Then D1 contains X,
hence it contains D and diampD1q ¥ K{C1, since D is critical. Furthermore,

X 1 is a strongly connected component of rηpj�1q
γ̊ s � rηp0qγ̊ s by Claim 8.1.13,

so X 1 � rηp0qγ̊ X X 1s by Observation 8.1.3, hence D1 is spanned in η
p0q
γ̊XX 1 .

By Lemma 8.1.4 there exists a critical parallelogram D2 that is spanned

in η
p0q
γ̊XX 1 . Then D2 is spanned in ηp0q � η and therefore intersects R1, so

by Observation 8.1.2, X 1 intersects Hu1p�a � 2Ln�1 � 8K � `q. Since D
intersects R`,Ó by assumption, X intersects Hu3pa � 2Ln�1 � 7Kq, thus X 1

intersects this half-plane as well. Now, if we denote a0 � maxta1 |X 1 �
Hu1p�a1qu, then a0 ¥ a, as X 1 � rηp0qγ̊ s and u1 is a stable direction, and

a0 ¤ a� 2Ln�1� 7K. However, X 1 � rηp0qγ̊XX 1s, so RX 1 � Rpa0, b, a0� `, dq is
u1-crossed for ηp0q. However, ηp0q has no crossing, so Cu1

RX1
does not occur for

ηp0q. Hence, recalling De�nition 8.1.5 and Observation 8.1.2, there exists a

critical parallelogram spanned in η
p0q
RX1

, hence in ηp0q, intersecting RX 1 . Since
critical parallelograms have diameter at most K, this contradicts the fact
that all critical parallelograms spanned in ηp0q � η intersect R1.

We are now able to use an argument similar to that of Claim 8.1.15:
having a spanned critical parallelogram in R` entails that at most n � 1 of
them are in R`,Ó (and similarly for Rh,Ó), hence the following.

Claim 8.1.17. P3
j�1 holds.
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Proof. Thanks to Claim 8.1.15, it remains only to prove η
pj�1q
R`,Ó

P V pn �
1, R`,Óq and η

pj�1q
Rh,Ó

P V pn � 1, Rh,Óq. The proof is actually the same as in

Claim 8.1.15, replacing Hu3pc � 2Ln�1 � 7Kq by R` and Claim 8.1.14 by
Claim 8.1.16.

Finally, we will see that for a site of F to be locally infectable in ηpj�1q,
by Lemma 8.1.6 one would need a critical parallelogram spanned in ηpj�1q

near the site, which is impossible by Hn�1 since F is contained in the middle
parts of the Rζ,ξ and P3

j�1 holds.

Claim 8.1.18. P2
j�1 holds.

Proof. Assume for a contradiction that there exists s1 P F � B1 that is
locally infectable in ηpj�1q. Then P2

j and Lemma 8.1.6 imply that there
exist ζ P t`, hu, ξ P tÓ, Òu and a critical parallelogram D � R1

ζ,ξ spanned in

η
pj�1q
Rζ,ξ

. However, by Claim 8.1.17 η
pj�1q
Rζ,ξ

P V pn� 1, Rζ,ξq, so Hn�1 yields the
desired contradiction.

Claims 8.1.13, 8.1.16, 8.1.17 and 8.1.18 together establish the induction
step, which completes the proof of Lemma 8.1.11.

8.2 Application of Proposition 8.1.7

In this section we derive the lower bounds of Theorem 1.6.4 from Proposition
8.1.7. For that purpose we require some estimates on the probabilities appea-
ring in the statement of the proposition, which are mostly proved in the ap-
pendices. We restate those results below as needed. Throughout the section
U is a critical update family with di�culty α subject to further assumptions
recalled in each subsection. Such a family admits two non-collinear rational
stable directions. We set u1 and u2 to be two arbitrary such directions, which
will be chosen di�erently for each class of update families. We will use the
de�nitions of Section 8.1 with u1 and u2.

Let us start with the easiest estimate.

Lemma 8.2.1. Let q�1{2 ¤ K ¤ q�2α. Then,

µp0 is locally infectableq ¤ 1{8.
Proof. Let R � Rp�2K,�2K; 2K, 2Kq. Since U is critical, diamprηRsq ¤
C1K, so, starting the bootstrap percolation dynamics with ηR, the origin is
either infected in time at most C3

1K
2 or not at all. We conclude using e.g.

[74, Theorem 1.4].

Turning to the probability of spanning there are two cases to consider.
For unbalanced models the following is essentially a reformulation of the
most di�cult result of [70].
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Lemma 8.2.2. Assume that U is unbalanced and K � q�α�1{4. Then, for
any critical parallelogram D we have

µpD is spannedq ¤ exp

�
�plogp1{qqq2

C5qα



.

Proof. By de�nition ifD is a spanned critical parallelogram, then there exists
a strongly connected set X � rηXDs with diameter at least diampDq{C1. If
X 1 is the strongly connected component of X in rηXDs, then by Observation
8.1.3, X 1 � rη XD XX 1s. Therefore, if D1 is the smallest SU -droplet in the
sense of [70, De�nition 2.1] with the SU de�ned in [70, Lemma 6.2] such
that D1 contains X 1, then D1 is internally spanned by ηXD (in the sense of
[70, De�nition 2.4]3), and diampD1q ¥ diampDq{C1 ¥ K{C2

1 . Repeating the
proof of [70, Lemma 8.37], we get that there is a critical droplet in the sense
of [70, De�nition 2.5] internally spanned by η XD. Then the union bound
over such droplets and [70, Lemma 8.36] yield the desired result.

Concerning balanced models, in Appendix 8.A (Corollary 8.A.11) we
establish the following.

Lemma 8.2.3. Assume that U is balanced and q�α{C5 ¤ K ¤ q�2α. Then
for any critical parallelogram D we have

µpD is spannedq ¤ exp

�
� 1

qαC5



.

For the remaining conditions of Proposition 8.1.7 we need to distinguish
the di�erent classes of models.

8.2.1 In�nite number of stable directions

In this section we assume that U has an in�nite number of stable directions.
We then choose two rational directions u1   u2   u1�π su�ciently close to
each other, such that all directions in r2u1 � u2, 2u2 � u1s are stable and u1,
u2 satisfy a technical condition which the reader is advised to ignore, namely
that u1 and u2 are constructed like the eponymous directions in the proof of
Lemma 7.2.1.

3Technically, it is not exactly the case, as [70] uses a di�erent choice of constants.
However, their results that we use still hold in our setting.
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Proof of Theorem 1.6.4(a)

For this section we further assume that U is unbalanced. We �x the values
of the parameters of Proposition 8.1.7 as follows.

K � q�α�1{4 ` � q�4α L � exp

�plogp1{qqq2
C6qα



T � exp

�plogp1{qqq4
C2

6q
2α



h � q�4α H � exp

�plogp1{qqq2
C6qα



.

Then Theorem 1.6.4(a) follows directly from Proposition 8.1.7 and the
upper bound of [269, Theorem 2(a)]. The hypotheses of the proposition fol-
low from the choice of parameters, Lemmas 8.2.1 and 8.2.2, and the following
bound on the crossing probabilities proved in Appendix 8.B (Lemma 8.B.4).

Lemma 8.2.4. With the notation and assumptions above we have

maxppÐ, pÓq ¤ exp
��q�3α

�
.

Proof of Theorem 1.6.4(b)

For this section we further assume that U is balanced. We �x the values of
the parameters of Proposition 8.1.7 as follows.

K � q�α ` � q�4α L � exp

�
1

C6qα



T � exp

�
1

C2
6q

2α



h � q�4α H � exp

�
1

C6qα



.

Then Theorem 1.6.4(b) follows directly from Proposition 8.1.7. The
hypotheses of the proposition follow from the choice of parameters, Lem-
mas 8.2.1 and 8.2.3, and Lemma 8.2.4, which still applies.

8.2.2 Finite number of stable directions

Proof of Theorem 1.6.4(c)

In this section we assume that U is unbalanced, rooted and has a �nite num-
ber of stable directions. Therefore, we can �nd rational directions u1, u2, u3

such that u1 � π � u3, u2 P pu1, u3q and αpuiq ¥ α� 1 for all i P t1, 2, 3u.
We �x the values of the parameters of Proposition 8.1.7 as follows.

K � q�α�1{4 ` � q�α�5{8 L � q�α�3{4

T � exp

�plogp1{qqq3
C6qα



h � q�α�5{8 H � q�α�3{4.

Then Theorem 1.6.4(c) follows directly from Proposition 8.1.7 and the
upper bound of Theorem 4.0.1. The hypotheses of the proposition follow
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from the choice of parameters, Lemmas 8.2.1 and 8.2.2, and the following
bound on the crossing probabilities proved in Appendix 8.B (Lemma 8.B.3).

Lemma 8.2.5. With the notation and assumptions above we have

maxppÐ, pÓq ¤ exp
�
�q�α�1{4

	
.

Proof of Theorem 1.6.4(e)

In this section we assume that U is balanced, rooted and with a �nite number
of stable directions. Therefore, we can �nd non-opposite rational directions
u1, u2 such that αpu1q ¥ α� 1 and αpu2q ¥ α� 1. We �x the values of the
parameters of Proposition 8.1.7 as follows.

K � 1{pC5q
αq ` � q�α�1{2 L � q�α�3{4

T � exp

�
logp1{qq
C6qα



h � q�α�1{2 H � q�α�3{4.

Then Theorem 1.6.4(e) follows directly from Proposition 8.1.7. The
hypotheses of the proposition follow from the choice of parameters, Lem-
mas 8.2.1 and 8.2.3, and Lemma 8.2.5, which still holds.

Proof of Theorem 1.6.4(f)

In this section we assume that U is semi-directed. Therefore, we can �nd non-
opposite rational directions u1, u2 such that αpu1q � α and αpu2q ¥ α � 1.
We �x the values of the parameters of Proposition 8.1.7 as follows.

K � 1{pC5q
αq ` � q�α�1{2 L � q�α�3{4

T � exp

�
log logp1{qq

C3
6q
α



h � log logp1{qq

qα
H � plogp1{qqq1{4

qα
.

Then Theorem 1.6.4(f) follows directly from Proposition 8.1.7. The
hypotheses of the proposition follow immediately from the choice of para-
meters, Lemmas 8.2.1 and 8.2.3, and the following bound on the crossing
probabilities proved in Appendix 8.B (Lemma 8.B.3).

Lemma 8.2.6. With the notation and assumptions above we have

pÐ ¤ exp
�
�q�α�1{4

	
pÓ ¤ exp

�
� log logp1{qq

2C2
6q
α



.

Appendix

8.A Bounds on spanning

Relation to previous works Let us start by explaining why additional
arguments are needed, as specialists would probably expect such bounds to
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be automatic. In [70] two main algorithms were used�the covering and the
spanning ones. The former provides bounds of the type we need but for a no-
tion of covered droplet invoking only the initial con�guration. Furthermore,
its treatment involves a somewhat technical geometric result on subadditi-
vity of the size of droplets. On the other hand, the spanning algorithm works
with the closure of the initial con�guration inside droplets, which obstructs
obtaining results analogous to those for the covering algorithm in the same
way. Yet, it is the spanning algorithm which is the most useful and particu-
larly so for unbalanced models. In [70] an inductive multi-scale scheme was
used to bootstrap the bounds on the probability of droplets being spanned
from a size which is easily controlled by the more rudimentary predecessor
of the covering algorithm developed in [74]. This fairly technical procedure
can be circumvented using our method. Indeed, if one has bounds analogous
to the ones for covered droplets up to size 1{qαpUq, one can directly prove
the result of [70] in one step, which was made there as well.

The reason why in [70] one could not directly transfer the easier bounds
on covering, which were established there anyway, to spanning is that the
covering algorithm there lacks the key property of being essentially closure-
invariant in a sense made precise below. This property was one of the main
features gained in Chapter 7 by using a less wasteful notion of cluster. The-
refore, we accomplish our goal as follows. We carry through (a simpli�ed
version of) the scheme of Chapter 7 to obtain general bounds for droplets
covered in the sense of Chapter 7 and we use the key closure lemma (see
below) to directly transfer those to spanning. On the more technical level,
we should mention that analogous bounds on spanning were established in
[70] in the course of their induction, but the proof needlessly uses that the
model is unbalanced and constrains the choice of directions used for de�ning
droplets, which we will need to choose freely. Moreover, Chapter 7 made
unnecessary use of the existence of strongly stable directions4, which is only
needed for treating the algorithm with boundary condition. We are thus
obliged to review the proofs. The reader familiar with the details of Chap-
ter 7 would probably be satis�ed by skipping directly to Appendix 8.B and
consulting the statements as needed there.

Outline The appendix is structured as follows. In section 8.A.1 we re-
call several results from Chapter 7, leading up to Lemma 8.A.6 providing
good bounds on the probability of being covered (in a sense made precise
below) and to the Closure lemma 8.A.7 relating the results of the covering
algorithm for a set and for its closure. In section 8.A.2, using the latter
lemma we transfer the bounds of the former one to the notion of spanning
used throughout the body of the chapter. Section 8.A.3 establishes, yet

4Strongly stable directions are those contained in the topological interior of the set of
stable directions.



8.A. BOUNDS ON SPANNING 267

again, the same bounds on the probability of spanned droplets occurring,
but in the presence of an infected boundary, following the same reasoning
and relying more closely on Chapter 7.

Notation For the remainder of the chapter we �x an arbitrary critical
update family U with di�culty α. Following Chapter 7 we consider constants

1 ! C1 ! C 1
2 ! C2 ! C3 ! C 1

4 ! C4 ! C5 ! C6

such that each one is larger than a suitable function of the previous ones, de-
pending on T , T0, Su, etc. to be de�ned below and on U . These constants do
not depend on q, which is always assumed small enough, as we are interested
in q Ñ 0.

For any �nite set of directions V � S1 a V-droplet is a set of the form�
vPV Hvpavq for some av P R.

8.A.1 Covering and closure

We start by studying the covering algorithm in the spirit of Section 7.3
(but without the boundary and rugged edge present there). The reader is
invited to consult that chapter for most proofs and more details, as indicated
below. By de�nition 1.6.1 we can �x a set of non semi-isolated rational stable
directions5 T0 with di�culty at least α, such that the convex envelope of the
elements of T0 contain 0 in its interior and either

• |T0| � 3 or

• |T0| � 4 and one has T0 � tu, v, u� π, v � πu for some u, v P S1.

Let Γ be the graph with vertex set Z2 but with x � y i� }x� y} ¤ C2.

De�nition 8.A.1 (De�nitions 7.3.1 and 7.3.3). Fix a �nite set Z � Z2. Let
κ be a connected component of the subgraph of Γ induced by the vertex set
Z.

• κ is a crumb for Z if there exists a set Pκ � Z2 such that rPκs � κ and
|Pκ| � α� 1.

• If κ is not a crumb for Z, we say that a C � κ is a α-cluster (or simply
cluster) of Z if the following conditions hold

� diampCq ¤ C3.

� C is connected in Γ.

� For all x P κzC and y P C such that x � y in Γ we have diampCYtxuq ¡
C3.

5Semi-isolated stable directions are the endpoints of intervals of stable directions with
nonempty interior.



268 Chapter 8: Re�ned universality for critical KCM II

It can be proved Observation 7.3.4 that any cluster contains at least α
sites. Moreover, Corollary 7.3.17 yields that a crumb has diameter at most
αC2. For a cluster C we denote by QpCq the smallest T0-droplet containing
the set tx P R2 : dpx,Cq ¤ C4u.

We next de�ne the covering algorithm we will use. It is an adaptation
of the droplet algorithm of Chapter 7 and should not be confused with the
covering algorithms of [70, 74].

De�nition 8.A.2 (Covering algorithm). Given a �nite set Z � Z2 of in-
fections the covering algorithm outputs a set D of disjoint T0-droplets as
follows.

• Form an initial collection D of T0-droplets consisting of QpCq for all clus-
ters C of Z.

• Whenever there existD1, D2 P D withD1XD2 � ∅, replace them with the
smallest T0-droplet containing their union, which we denote by D1 _D2.

• Output the collection D obtained when all T0 droplets in D are disjoint.

Equivalently, D is the minimal collection (with respect to inclusion of the
union of its elements) of disjoint T0-droplets containing the union of QpCq
for all clusters C of Z. In particular, D does not depend on the order in
which droplets are merged.

We say that a T0-droplet D is covered by a set Z of infections if the above
algorithm for Z XD outputs a T0-droplet containing D.

We make the convention that all T0-droplets have diameter at least C 1
4

and contain a site of Z2.
We next state some properties of the covering algorithm.

Lemma 8.A.3 (Lemma 4.6 of [74]). Let D1 and D2 be T0-droplets such that
D1 XD2 � ∅. Then

diampD1 _D2q ¤ diampD1q � diampD2q.
This immediately implies the Aizenman-Lebowitz lemma (see e.g. [74,

Lemma 4.8]).

Lemma 8.A.4 (Aizenman-Lebowitz). Let Z be a set of infections and D be
a T0-droplet covered by Z. Then for all C1C4 ¤ k ¤ diampDq there exists a
T0-droplet D

1 covered by Z with k ¤ diampD1q ¤ 2k.

A further consequence of Lemma 8.A.3 is the following.

Lemma 8.A.5 (Lemma 7.3.14). Let Z be a set of infections and D be a
T0-droplet covered by Z. Then D contains at least rdiampDq{C2

4 s disjoint
clusters of Z XD.
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We are now able to deduce the relevant bounds on covering following
Lemma 7.3.15.

Lemma 8.A.6. Let D be a T0-droplet with d � diampDq. Let 1 ¡ ε ¡ 0.
Then we have

µpD is coveredq ¤

$'''&'''%
qdε{p3C2

4 q if d ¤ C1
qα�ε

e�C1C4d if 1
C1qα�ε

¤ d ¤ C1

eC
4
4 qα

d2e�C1{pC5qαq if 1

C1e
C4

4 qα
¤ d.

(8.2)

Proof. Let Z be the (random) set of infections in D. By Lemma 8.A.5 we
have that if D is covered, it contains at least rd{C2

4 s disjoint clusters of Z,
each one having diameter at most C3 and at least α sites. Thus, the union
bound gives

µpD is coveredq ¤
�
C2α

3 d2

rd{C2
4 s



qαrd{C2

4 s.

For d ¤ C2
4 this gives C2α

3 d2qα, which concludes the proof. For C2
4 ¤

d ¤ C1{peC4
4 qαq we use the inequality

�
n
k

� ¤ pne{kqk to obtain the de-

sired bounds. For the case d ¥ 1{peC4
4 qαq we use Lemma 8.A.4 to ex-

tract a smaller T0-droplet D
1 covered by Z (hence intersecting D) with

1{p2eC4
4 qαq ¤ diampD1q ¤ 1{peC4

4 qαq. We then apply the second bound
to D1 and use the union bound to conclude.

We would now like to use analogous bounds on the probability of T0-
droplets being covered with initial condition rZs instead of Z. Unfortunately,
we do not have access to the law of rZs when Z follows µ. Therefore, we
rather bound the output of the covering algorithm for the closure using the
original output. For that purpose, we de�ne parallel notions of Γ1, modi�ed
clusters and modi�ed covering, by replacing C2 by C 1

2 and C4 by C 1
4.

We then have the following key property, whose proof is identical to the
one of Proposition 7.3.20, up to the relevant simpli�cations (we do not have
rugged edges and there is no boundary).

Lemma 8.A.7 (Closure). Let Z � Z2 be a �nite set and let D1 be the
collection of T0-droplets given by the modi�ed covering algorithm with input
rZs. Let D be the output of the covering algorithm for Z. Then

@D1 P D1 DD P D, D1 � D.

8.A.2 Spanning

Let T be an arbitrary �nite set of rational directions containing the origin in
the interior of its convex envelope. We then generalise the notion of spanning
from De�nition 8.1.1.
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De�nition 8.A.8 (Spanning). Let D be a T -droplet. We say that D is
spanned by Z � Z2 if there exists a set C � rZ XDs connected in Γ1 such
that the smallest T -droplet containing C is D.

We will need the following Aizenman-Lebowitz type lemma. Though this
is a very classical result, some additional arguments are needed to prove it,
because T is not composed of stable directions.

Lemma 8.A.9 (Aizenman-Lebowitz). Let Z � Z2 and D be a T -droplet
spanned by Z with diampDq ¥ C1C

1
2. Then for any C 1

2 ¤ k ¤ diampDq,
there exists a T -droplet D1 spanned by Z XD with k ¤ diampD1q ¤ C1k.

Proof. If k ¥ diampDq{C1 there is nothing to prove, as D
1 � D is as desired.

Assume k ¤ diampDq{C1. Let C be a connected component of rZ XDs in
Γ1 with maximal diameter. By De�nition 8.A.8 diampCq ¥ diampDq{?C1.
By Observation 8.1.3 and [70, Lemma 6.18] (we use it although de�nitions
slightly di�er from [70], see Footnote 3) there exists C 1 � C connected in Γ1

such that C 1 � rC 1 X Z XDs and k ¤ diampC 1q ¤ ?
C1k. Denoting D

1 the
smallest T -droplet containing C 1, we are done.

Observation 8.A.10. Let D be a T -droplet spanned by Z � Z2 with
diampDq ¥ C4. Then there exists a T0-droplet D̄ covered by Z, intersecting
D and such that diampD̄q � ΘpdiampDqq.

Proof. Let C be as in De�nition 8.A.8. Notice that, since diampDq ¥ C3,
we can �nd modi�ed clusters for rZ XDs whose union is a connected set in
Γ1 containing C. Then there is a T0-droplet in the output of the modi�ed
covering algorithm for rZXDs containing C. By Lemma 8.A.7 there is also a
T0-droplet D̄ in the output of the covering algorithm for ZXD containing C,
so that diampD̄q ¥ diampCq � ΩpdiampDqq. But D̄ is at most the smallest
T0-droplet containing tx P R2 : dpx,Dq ¤ C4u, so diampD̄q � ΘpdiampDqq.
Moreover, since D̄ is in the output of the covering algorithm for Z XD, it is
covered by Z and intersects D.

We immediately deduce from this observation and Lemma 8.A.6 the de-
sired bounds on spanning.

Corollary 8.A.11. Let D be a T -droplet with d � diampDq and let 1 ¡ ε ¡
0. Then

µpD is spannedq ¤

$'&'%
qdε{C5 if d ¤ q�α�ε

e�2C4d if q�α�ε ¤ d ¤ C1
C5qα

dOp1qe�2{pC5qαq if 1
C5qα

¤ d.

(8.3)
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8.A.3 Boundary and spanning

We next turn to the treatment of an in�nite infected boundary condition,
following Chapter 7, which is applicable only for models with an in�nite
number of stable directions. Indeed, for a model with a �nite number of
stable directions a bounded set of infections next to the boundary can induce
a set of supplementary infections and, thereby, a droplet of the size of the
boundary, making similar algorithms useless. We therefore �x an update
family U with an in�nite number of stable directions and di�culty α, to
which the treatment of Chapter 7 applies.

For the rest of this section let Su � tu�, u�, v1, v2u be a set of 4 directi-
ons chosen as in Lemma 7.2.16 (we rename pu1, u2q from that chapter into
pu�, u�q to avoid notational con�ict) with u � pu� � u�q{2. The proof of
Chapter 7 allows us to choose u� and u� as close as we want, even depen-
ding on v1 and v2. We will choose them close enough for our results to hold.
Let B � Hu. For any set Z � Z2 we write rZsB � rZ Y BszB. We will use
the term cluster in the sense of De�nition 7.3.3, extending De�nition 8.A.1
(crumbs close to B are considered as clusters instead and Z is replaced by
ZzB). We replace the notion of DYD from Chapter 7 by that of Su-droplet
and the notion of CDYD becomes that of cut Su-droplet�a nonempty set
of the form �

Hu�pxq XHu�pyq
� zB (8.4)

for some x, y P R, which is a geometric triangle. We further replace the use
of the diameter by considering the size | � | from De�nition 7.3.7. Namely for
a cut Su-droplet D we denote |D| � diampDq{C1, while for an Su-droplet D,
|D| denotes the length of its projection parallel to v1. We then de�ne cor-
respondingly an extension of the covering algorithm as in Section 7.3.4 and
a notion of covered (cut) Su-droplet. For the reader unfamiliar with Chap-
ter 7, let us indicate that the change with respect to the covering algorithm
of De�nition 8.A.2 corresponds to replacing at each stage of the algorithm
any Su-droplet D intersecting B by the smallest cut Su-droplet containing
DzB. The properties of Section 7.3.5, analogous to Lemmas 8.A.3-8.A.5 and
8.A.7, remain valid for this setting. Furthermore, combining the proofs of
Lemma 8.A.6 and Lemma 7.3.15 shows that the following holds.

Lemma 8.A.12. Let D be a cut Su-droplet or an Su-droplet not intersecting
B with d � |D|. Let 1 ¡ ε ¡ 0. Then (8.2) holds.

We similarly extend De�nition 8.A.8 to the setting with boundary.

De�nition 8.A.13 (Spanning with boundary). We call whole Su-droplet
any Su-droplet at distance at least C3 from B and, by abuse, we call collecti-
vely Su-droplet any cut or whole Su-droplet. We say that an Su-droplet D is

6It is not hard to see that in Lemma 7.2.1, with a �nite number of exceptions, given
any rational strongly stable direction u P S1 we can de�ne Su correspondingly.
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spanned by Z � Z2 if there exists a set C � rZ XDsB connected in Γ1 such
that the smallest Su-droplet containing C is D.

We next recall several properties of the spanning algorithm following
closely [70].

De�nition 8.A.14 (De�nition 6.15 of [70]). Let Z � tz1, . . . , zk0u be a �nite
set of infections. Set Z0 � tZ0

1 , . . . , Z
0
k0
u with Z0

i � tziu. For each t ¥ 0 do
the following.

• If there exist Zti and Z
t
j such that rZti sB Y rZtjsB is connected in Γ1, then

set Zt�1 � pZtztZti , Ztjuq Y tZti Y Ztju.
• Otherwise, de�ne the span of Z by xZy � tDpZtq, Zt P Ztu, where DpZ 1q
denotes the smallest Su-droplet containing Z 1, and terminate the algo-
rithm.

Similarly, for any A � R2 we denote xAy � xAX Z2y.
Observation 8.A.15 (Lemma 6.16 of [70]). Writing κi for the connected
components of rZsB in Γ1, we have xZy � tDpκ1q, . . . , Dpκkqu.
Observation 8.A.16 (Lemma 6.17 of [70]). A nonempty Su-droplet is span-
ned i� D P xD X Zy.
Lemma 8.A.17 (Lemma 6.21 of [70]). Let Z be a �nite set of at least two
infections such that rZsB is connected in Γ1. Then there exists a nontrivial
partition Z � Z1\Z2 such that rZ1sB, rZ2sB and rZ1sBYrZ2sB are connected
in Γ1.

The next lemma follows from the de�nition of size and Lemma 7.3.12.

Lemma 8.A.18. For any Su-droplets D,D1, D2 with |D1| ¥ C3 or |D2| ¥
C3 such that xD1y � tD1u, xD2y � tD2u and xD1 Y D2y � tDu we have
|D1|{C1 ¤ |D| ¤ |D1| � |D2| �OpC 1

2q.
This standardly implies (see e.g. [70, Lemma 6.18]) the following.

Lemma 8.A.19 (Aizenman-Lebowitz). Let D be a spanned Su-droplet and
C3 ¤ k ¤ |D|. Then there exists a spanned Su-droplet D1 � D with k ¤
|D1| ¤ 3k.

Similarly to Corollary 8.A.11 we obtain the following.

Corollary 8.A.20. Let D be an Su-droplet with d � |D| ¥ 1{pC5q
αq. Then

µpD is spannedq ¤ dOp1qe�2{pC5qαq.
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Remark 8.A.21. Let us note that the results of this section remain valid
if B is replaced by any su�ciently regular boundary condition. Namely, if
uK � u� π{2 and f is a δ-Lipschitz function for δ   tanppu�� u�q{2q, then
we can use any B with topological interior

tx P R2, xx, uy   fpxx, uKyqu
such that B, B YD are stable for any cut Su-droplet.

Finally, one can also remove the boundary by considering infections suf-
�ciently far from it to recover the setting of the previous section for the
directions under consideration.

8.B Bound on crossing

For this appendix we place ourselves in the context of Section 8.1 (in particu-
lar, T -droplets will be parallelograms). In sections 8.B.1 and 8.B.2 we show
that crossings are unlikely in directions with respectively �nite and in�nite
di�culty. Of course, though we treat u1, the results are also valid for u2.

8.B.1 Crossing in a direction with �nite di�culty

One can use Corollary 8.A.11 to show that if u1 has �nite di�culty, a u1-
crossing without large droplets is extremely unlikely. To do that, we will use
a concept of partition close to the one from [70, De�nition 8.20].

De�nition 8.B.1. Assume that 0   αpu1q   8. Let R � Rpa, b; c, dq be a
parallelogram and Z � RX Z2. Set m � tpc� aq{pC1C6qu ¥ 1 and

Si � Hu1p�pc� iC1C6qq XHu2p�bq XHu3pc� pi� 1qC1C6q XHu4pdq
for 1 ¤ i ¤ m � 1 and Sm � Rpa, b; c � pm � 1qC1C6, dq. A u1-partition of
R for Z is a sequence a1, . . . , ak of positive integers with m � a1 � � � � � ak
such that, setting tj � a1 � � � � � aj , we have either

• aj � 1 and Stj contains an αpu1q-cluster for Z (see De�nition 8.A.1) or

• there exists a T -droplet D spanned by Z X�tj
i�tj�1�1 Si, with C1C6aj ¥

diampDq ¥ ajC6.

The following lemma is close to [70, Lemma 8.21].

Lemma 8.B.2. Let R be a parallelogram. If 0   αpu1q   8 and R is
u1-crossed then there exists a u1-partition for η XR.

Proof. For notational convenience we assume that R � Rp�a, 0; 0, dq. In
this proof, all clusters and crumbs are with respect to αpu1q. The proof is
by induction on m.
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Suppose that the property holds for any m1 ¤ m � 1. If S1 contains a
cluster of η X R, we set a1 � 1 and we are done, since Rp�a, 0;�C1C6, dq
is u1-crossed. Let us assume S1 contains no cluster of η X R. Then S11 �
Rp�C1C6 � C1C3, 0; 0, dq intersects no cluster of η XR, so if K is the set of
connected components of η X S11 in Γ, each κ P K is a crumb of η X S11. In
particular, all elements of rκs and rκYHu1szHu1 are at distance at most C1

of κ (see Observation 7.3.16 and the proof of Corollary 7.3.17). As elements
of K are at distance at least C2 from one another, this means that rηXS11s ��
κPKrκs, and that Z̄ � �

κPK1rκ Y Hu1s is closed, where K1 � tκ P K :
dpκ,Hu1q ¤ C2u. Moreover, the diameter of a crumb is at most αpu1qC2, so
all elements of Z̄ are at distance at most pαpu1q � 2qC2 of Hu1 . Since R is
u1-crossed, this implies that there exists z P Z̄ and w P rpη X RqzZ̄s such
that dpz, wq ¤ C 1

2. Then dpw,Hu1q ¤ pαpu1q � 2qC2 � C 1
2.

Let X be the connected component in Γ1 of rpηXRqzZ̄s containing w. If
X � rηXS11s, then X � �

κPKrκs, so X � rκs for some κ P K, since they are
at distance more than C 1

2 from one another. Moreover, by Observation 8.1.3,
X � rppηXRqzZ̄q XXs, so X � Z̄, so κ R K1. However, this contradicts the
fact that dpw, zq ¤ C 1

2, as dpZ̄, rκsq ¥ C2 � 2C1.

Therefore, X � rη X S11s, so X intersects RzS11. Let a1 � maxti ¥
1, X X Si � ∅u and D be the smallest T -droplet containing X. Clearly,
diampDq ¥ diampXq ¥ a1C6, since dpw,Hu1q ¤ C3. Furthermore, since
X � rppηXRqzZ̄q XXs, D is spanned by ηX�a1

i�1 Si. We then conclude by
Lemma 8.A.9 and the induction hypothesis for Rp�a, 0;�a1C1C6, bq.

We next require a more sophisticated version of [70, Lemma 8.23].

Lemma 8.B.3. Fix K in De�nitions 8.1.1 and 8.1.5 by

K �
#

1{pC5q
αq if U is balanced

q�α�1{4 if U is unbalanced.

Assume that 0   αpu1q   8. Let R � Rpa, b; c, dq with d� b ¤ logp1{qq
C3

6q
αpu1q

and

1{qC1 ¥ c� a ¥ 1{q. Then

µpCu1
R q ¤

#
exp

��pc� aq exp
��2C2

6 pd� bqqαpu1q� {C2
6

�
if U is balanced

exp
��pc� aqq1{4{C6

�
if U is unbalanced.

Proof. For notational convenience, we assume that R � Rp�a, 0; 0, dq. If
Cu1
R holds, there exists η1 ¥ η such that R is u1-crossed for η1 and there

is no spanned critical T -droplet for η1 X R. By Lemma 8.B.2, there exists
a u1-partition for η1 X R and, by Lemma 8.A.9, all corresponding spanned
T -droplets have diameter at most K{C1. We notice that any infected site
or spanned droplet for η1 is still an infected site or spanned droplet for η.
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We �rst assume that U is balanced. Given a partition P we de�ne its
numbers and total sizes of big/small/cluster parts by

B � tj : 1{?q   aj ¤ 1{pC5C6q
αqu b � |B| B �

¸
jPB

aj

S � tj : 1   aj ¤ 1{?qu s � |S| S �
¸
jPS

aj

C � tj : aj � 1u c � |C|.
We denote by Ppb, s, c, B, Sq the set of partitions P with the corresponding
numbers and total sizes of parts.

Then, using Corollary 8.A.11, we get that the probability of a given P
occurring is at most

ΠpPq �
¹
jPC
p1� p1� qαpu1qqC2

6dq
¹
jPS

qaj
?
C6

¹
jPB

e�C3C6aj

� p1� p1� qαpu1qqC2
6dqcqS

?
C6e�C3C6B

by the union bound on all possible droplets and their positions, recalling
that d � q�Op1q. Indeed, the probability that there is no set of αpu1q zeroes
connected in Γ1 in a given Si is the probability that for any possible such
set C, ηC � 0, which, by the Harris inequality, is bigger than the product of
this probability for each set C.

Assuming for simplicity that 1{?q and 1{pC5C6q
αq are integers, we can

count Ppb, s, c, B, Sq in the following way (the �rst binomial coe�cient cor-
responds to the decomposition of B into ordered parts, the second one to the
decomposition of S, and the last two to the ordering of the parts of B, S, C):

|Ppb, s, c, B, Sq| ¤
�
B � b{?q � 1

b� 1


�
S � s� 1

s� 1


�
b� s� c

b


�
s� c

s



¤ 2B�Spb� s� cqbps� cqs ¤ eB�Sq�C1s,

recalling that C6pB � S � cq   a ¤ 1{qC1 . Therefore, denoting by m �
ta{pC1C6qu � B � S � c the total number of strips, we have¸

B,S,b,s

¸
PPPpb,s,m�B�S,B,Sq

ΠpPq

¤ m4 max
B,S

�
1�

�
1� qαpu1q

	C2
6d

m�B�S

qS
?
C6{2e�C3C6B{2

¤ m4 max
0¤c¤m

e�c expp�2C2
6dq

αpu1qqe�C2C6pm�cq

¤ exp
�
�m

2
exp

�
�2C2

6dq
αpu1q

		
,

which concludes the proof in the balanced case, recalling the hypotheses of
the lemma.
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We next consider U to be unbalanced. Notice that, since K � q�α�1{4,
there may be droplets with diameter larger than 1{pC5q

αq. Therefore, we
further set

H �
!
j : 1{pC5C6q

αq   aj ¤ 1{pC6q
α�1{4q

)
h � |H| H �

¸
jPH

aj .

Then Corollary 8.A.11 gives that the probability of a given P occurring is
at most

ΠpPq �
�
qOp1qe�2{pC5qαq

	h ¤ ΠpPq � exp
�
�Hq1{4C6{C5

	
.

We further easily check that�
H � h{pC5C6q

αq � 1

h� 1



¤ eH

?
q

�
h� b� s� c

h



¤ eH

?
q,

so, as above the probability of any P occurring is at most

m6 exp
�
�m.min

�
C6q

1{4{p2C5q, exp
�
�2C2

6dq
αpu1q

			
¤ exp

�
�C6mq

1{4

3C5

�
,

which concludes the proof.

8.B.2 Crossing in a direction with in�nite di�culty

If U has an in�nite number of stable directions, we need to treat an infected
boundary condition. This is essential, as we will work in exponentially large
regions, for which the bounds from the previous section cannot be applied.

We place ourselves in the setting of Section 8.2.1. We will write (cut,
whole or either) droplet for (cut, whole or either) Su1-droplet in the sense of
De�nition 8.A.13, with u�1 and u�1 su�ciently close to u1. These should not
be confused with T -droplets, which are called parallelograms to avoid any
confusion.

We will seek to apply Corollary 8.A.20 rather than 8.A.11 to prove the
following.

Lemma 8.B.4. Fix

K �
#
q�α if U is balanced

q�α�1{4 if U is unbalanced

for De�nitions 8.1.1 and 8.1.5. Let R � Rpa, b; c, dq with C1 ¤ d � b ¤
exppq�3αq and c� a ¥ q�4α. Then

µpCu1
R q ¤ exp

��q�3α
�
.
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Our strategy is as follows. Instead of considering u1-partitions, we di-
rectly retrace the spanning algorithm to obtain a hierarchy of droplets rea-
ching a cut droplet of size roughly c�a. We reassure the reader familiar with
[225] that our hierarchies will be very simple and imprecise, as the a priori
hypothesis that there are no critical parallelograms removes the metastabi-
lity (it is no longer easy for large droplets to grow) together with the need
of �ne tuning. Namely, their seeds will be of size roughly K which will also
be the increment of the size of unary vertices (the reader unfamiliar with
hierarchies is invited to consult the de�nitions below). The lack of critical
parallelograms entails that all droplets in the hierarchy are cut (so they are
simply very �at triangles). The bound on the probability of seeds being
spanned is provided by Corollary 8.A.20 and entropy is easily subdominant,
so we can focus on the probability that the infections around a cut droplet
are such that if that droplet is infected, the infection can expand to �ll a
slightly larger cut droplet. However, this would imply that there is a (smaller
scale) u�1 -crossing from the side of the smaller one to side of the larger one
(see Figure 8.2b). The probability of this event is again bounded directly by
Corollary 8.A.20, taking into account Remark 8.A.21.

Let us begin by introducing our hierarchies following Holroyd [225]. Let
T � q�α�1{4. Fix a droplet D. A hierarchy H for D is a rooted unary-
binary tree with each vertex x labelled by a droplet Dx � D, so that the
label of the root is D. We denote by Npxq the set of children of x P V pHq,
so that |Npxq| P t0, 1, 2u for all x. The leaves are called seeds and the binary
vertices are called splitters. We alert the reader that in reality there will only
be cut droplets in our hierarchies, but for technical reasons we de�ne them
in general. A hierarchy is de�ned to satisfy the following conditions.

• If y P Npxq, then Dy � Dx.

• If Dx is a whole droplet, then x is a seed and T {3 ¤ |Dx|.
• If Dx is a cut droplet, then T {3 ¤ |Dx| ¤ T if and only if x is a seed.

• If Npxq � tyu and |Npyq| � 1, then T   |Dx| � |Dy| ¤ 2T .

• If Npxq � tyu, then |Dx| � |Dy| ¤ 2T .

• If Npxq � ty, zu, then |Dx| � |Dy| ¡ T and xDy YDzy � tDxu.
We set

SpHq � tx P V pHq : |Npxq| � 0u
NpHq � tpx, yq P pV pHqq2 : Npxq � tyu, |Npyq| � 1u

and remark that |SpHq|�1 is the number of splitters. We say that a hierarchy
H occurs if the following events occur disjointly (are witnessed by disjoint
sets of infections, see [357]).
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• For every seed x P SpHq we have that Dx is spanned.

• For every x P V pHq such that Npxq � tyu we have Dx P xDy Y pηXDxqy.
Lemma 8.B.5. If D is a spanned droplet with |D| ¥ T {3, then some hier-
archy for D occurs.

Proof. The proof is very similar e.g. to [70, Lemma 8.7]. Assuming that D0

is a spanned droplet with |D0| ¥ T {3, we construct an occurring hierarchy
by induction on D0 with respect to inclusion. If |D0| ¤ T or D0 is a whole
droplet, the hierarchy with only vertex labelled by D0 is as desired.

Assume that D0 is a cut droplet and |D0| ¡ T . Let Z be a connected
component for Γ1 of rD0X ηsB such that the smallest droplet containing Z is
D0, and let Z0 � Z X η. We then have rZ0sB � Z. By Lemma 8.A.17 there
exist sequences Z1, . . . , Zm and Z 11, . . . , Z

1
m of subsets of Z0 and D1, . . . , Dm

and D1
1, . . . , D

1
m such that the following conditions hold for all 0   i ¤ m.

• Zi�1 � Zi \ Z 1i, rZisB, rZ 1isB and rZisB Y rZ 1isB are connected in Γ1.

• Di � DprZisBq and D1
i � DprZ 1isBq.

• xDi YD1
iy � tDi�1u and |Di| ¥ |D1

i|
• m ¥ 1 is the minimal index such that one of the following holds:

(1) |D0| � |Dm| ¡ T ;

(2) Dm is a whole droplet;

(3) |Dm| ¤ T .

If (1) does not hold, then we attach a seed labelled by Dm to the root and
we are done, as |Dm| ¥ |Dm�1|{3 ¡ T {3 by Lemma 8.A.18 and minimality
of m. Indeed, Dm being spanned is witnessed by Zm, while D0 P xDmYpηX
D0qy is witnessed by Z0zZm.

Assume that (1) holds. Then we consider two cases. If T   |D0|�|Dm| ¤
2T , we attach a hierarchy for Dm (occurring for Zm) to the root D0 and we
are done using Lemma 8.A.18 to get that |Dm| ¡ T {3 as above. Otherwise
we attach a splitter labelled byDm�1 to the rootD0 (ifm � 1, thenD0 is the
splitter) and hierarchies for Dm and D1

m to that splitter. Then we are done,
recalling Lemma 8.A.18, to get that |Dm| ¥ |D1

m| ¥ |Dm�1|�|Dm|�OpC 1
2q ¥

T �OpC 1
2q.

In order to bound the probability that a hierarchy occurs, we will need
the following result.

Lemma 8.B.6. Let D1 � D2 be two cut droplets for B � Hu1 such that
T   |D2| � |D1| ¤ 2T and |D2| ¤ q�4α. Then

µpD2 P xD1 Y pη XD2qyq ¤ e�q
�α{C5 .
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u�1

u��1

u�1

u1

v1

v2 u4

u2

u3

(a) We recall all directions in the context of
Lemma 8.B.6, stable ones being thickened. The
only relevant ones for a u1-crossing are u1, u

�
1 ,

u�1 and u��1 (or similarly u��1 ). Indeed, v1 and
v2 are only used for whole droplets and to bound
the probability of a u1-crossing we consider cut
droplets with directions u�1 , u

�
1 . Note that u1

and u2 should be very close and u�1 even closer,
but this is avoided here for visibility.

u�1
u�1

u�1 u��1
u1D1

D2

(b) Growth of the infection in the hatched cut droplet D1 to the thickened one,
D2, requires a path of infections such as the one on the right, inducing the shaded
spanned cut Su�1 -droplet.

Figure 8.2 � Illustration of the proof of Lemma 8.B.6 bounding the proba-
bility that the infections around a cut droplet, D1, allow an infection �lling
D1 to grow and �ll the slightly larger cut droplet, D2.

Proof. The proof is illustrated in Figure 8.2. Let us denote Di � pHu�1
pxiqX

Hu�1
pyiqqzHu1 for i P t1, 2u. De�ne the strips X � Hu�1

px2qzHu�1
px1q and

Y � Hu�1
py2qzHu�1

py1q and assume without loss of generality that y2 � y1 �
ΩpT q. Assume that D2 P xD1 Y pη XD2qy occurs. Setting η1 � η X Y XD2,
this implies D2 P xpD2zY q Y η1y. We consider two cases.

Assume that D2 P xη1y. By Corollary 8.A.20 the probability of this event
is at most q�Op1qe�2{pC5qαq.

Assume that, on the contrary, D2 R xη1y and set B1 � Hu1 Y Hu�1
py1q.

Then by Observation 8.1.3 there exists a set C � rD2 X ηsB1 connected in Γ1

such that dpC,Hu�1
py1qq ¤ C 1

2 and C � Hu�1
py2q. By de�nition this implies

the existence of a cut Su�1 -droplet spanned by D2 X η with boundary B1,
where the two directions of cut droplets in Su�1 are u�1 and u��1 � 2u�1 �u�1
(recall Remark 8.A.21). Hence, by the union bound over all possible such
droplets and Corollary 8.A.20 we obtain the desired result.

We are now ready to assemble the proof of Lemma 8.B.4 as outlined at
the beginning of the section.

Proof of Lemma 8.B.4. Assume that Cu1
R occurs and let η1 ¥ η be as in

De�nition 8.1.5. Then there exists a spanned cut droplet for η1 X R with
boundary Hu1 of diameter at least c� a. By Lemma 8.A.19 this implies the
existence of a droplet D spanned for η1XR with q�4α{C1 ¤ |D| ¤ 3q�4α{C1.
We set Z � η1 XRXD.
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Let us assume for a contradiction that there exists a whole droplet of
size at least q�α�1{4{3 spanned for Z. It is easy to check that there exists
a parallelogram of diameter at least q�α�1{4{C1 spanned by Z (consider a
connected component satisfying De�nition 8.A.13, take the smallest paral-
lelogram containing it and use Observation 8.1.3). By Lemma 8.1.4 this
contradicts the absence of spanned critical parallelograms for η1 XR.

Therefore, D is a cut droplet and by Lemma 8.B.5 there exists a hierarchy
for D occurring for the zero set Z, whose labels are all cut droplets. Let
H pDq denote the set of such hierarchies. Now, by the BK inequality [357],
for any hierarchy H we have the following analogue of [225, Equation (37)]:

µpH occursq ¤
¹

xPSpHq
µpDx is spannedq

¹
px,yqPNpHq

µpDx P xDy Y pη XDxqyq.

Thanks to Corollary 8.A.20 and Lemma 8.B.6, we deduce

µpCu1
R q ¤

¸
D

¸
HPH pDq

exp
��q�αp|SpHq| � |NpHq|q{C5

�
.

The number of choices for D is Oppd � bqq�4αq. We separate the sum over
hierarchies according to their number of vertices vpHq � Θp|SpHq|�|NpHq|q.
By Lemma 8.A.18 we have that vpHq � Ωp|D|{T q � Ωpq�3α�1{4{C1q. Fi-
nally, the number of hierarchies for a given cut droplet D with v vertices is
at most q�Opvq. Combining these bounds we have

µpCu1
R q ¤ pd� bq

¸
v�Ωpq�3α�1{4{C1q

exp
��q�αΩpvq{C5

�
,

which concludes the proof.



Chapter 9

Complexity of two-dimensional

bootstrap percolation di�culty:

algorithm and NP-hardness

This chapter is based on joint work with Tamás Mezei [219].
For convenience we introduce the notation

Z̄ :� rZ YHuszHu, (9.1)

whenever the direction u is clear from the context, and lu � HuzHu � tx P
Z2 : xx, uy � 0u.

9.1 Results

So far it has not been investigated how one could determine the di�culty α
in practice (recall Section 1.6.1), mainly owing to the simple de�nition and
to the fact that for simple models such as the ones in Figure 1.2 this is straig-
htforward. In this chapter we consider α from a computational perspective.

Throughout the chapter, we assume that U is described as a family of
sets of pairs of integer coordinates represented in binary. Therefore the size
of the input is proportional to

}U} :� logD �
¸
UPU

|U |, (9.2)

where D is the �diameter� of U :

D � 2 �max

#
}x}8 : x P

¤
UPU

U

+
. (9.3)

A further justi�cation of the need to takeD into account in }U} is provided in
Section 9.A showing that the di�culty α is not bounded in terms of

°
UPU |U |

281
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only. Our �rst result is that α is computable. We prove this by giving an
explicit algorithm and bounding its complexity.

Theorem 9.1.1. There exists an algorithm which, given a critical bootstrap
percolation update family U , computes its di�culty α.1

Remark 9.1.2. In fact, it is not hard to check that our algorithm runs in
time at most

|U |2 � 2D2p1�op1qq � exppOpD2qq,

which is in the worst case at most doubly exponential in }U}. This bound
is as sharp as a bound in terms of D only can be. Indeed, |U | � eOpD2q and
|U | can be as large as 2D

2
.

Explicit bounds analogous to the ones derived in the proof of Theo-
rem 9.1.1 are the only missing ingredient causing the constants appearing in
the main results of [70] and Chapter 7 to be implicit (cf [70, Lemma 6.5] and
Observation 7.3.16).

Moreover, a corresponding uncomputability result in higher dimensions
based on supercritical models in two dimensions has been announced by
Balister, Bollobás, Morris and Smith [27] prior to our work. As that could
lead one to expect, Theorem 9.1.1 is not at all automatic.

On a high level, the main idea behind our proof is that if a half-plane
Hu is infected, the process restricted to the line lu is a 1-dimensional boot-
strap percolation process. Owing to the bounded range of the rules and
translation invariance, the �nal state of this process is either periodic with
bounded period or �nite, which two possibilities can be distinguished in a
correspondingly bounded time.

On the other hand, we also prove the following negative result.

Theorem 9.1.3. The problem of computing the di�culty α of a critical
bootstrap percolation update family U is NP-hard.

This result is proved by a fairly technical reduction to the Set Cover

decision problem in Section 9.3. Besides the result of [27], another reason to
expect that the problem of determining α is hard in a sense made clear in
Theorem 9.1.3 is a recent parallel notion of di�culties adapted to subcriti-
cal models termed �critical densities.� Those are introduced by the author
in Chapter 12 and they are clearly far too complicated for one to expect to be
able to compute them. From this point of view the result of Theorem 9.1.3
is not unexpected.

1This result is proved independently by Balister, Bollobás, Morris and Smith [27].
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9.2 Decidability: proof of Theorem 9.1.1

In this section we provide an algorithm to compute the di�culty of a critical
model. Let us stress that it is not optimized and is only meant to prove
Theorem 9.1.1.

Proof of Theorem 9.1.1. Fix an update family U . To start, let us see how
to determine the set of stable directions in time polynomial in the size of
the input }U}. Indeed, for each site x in each rule U we determine its polar
coordinates prx, θxq � p}x}2, x{}x}2q P R��S1. On the practical side, rx can
be represented as the square root of an integer bounded by D2 and θx can be
encoded by its tangent, which is rational with numerator and denominator
bounded by D, and one boolean indicating whether θx P p�π{2, π{2q. Then
for each rule U we take an arbitrary x0 P U and compute θx � θx0 for
all x P U (its tangent is still rational and its numerator and denominator
are bounded by D2). We determine the largest and smallest such values,
δ�, δ�, considering di�erences in p�π, πs. Finally, the unstable interval of U
is pθx0 � δ� � π{2, θx0 � δ� � 3π{2q � S1 (which is empty if δ� � δ� ¥ π).
The set of unstable directions is then the union of these intervals for all
U P U . In particular, the isolated stable directions and, more generally, the
endpoints of the intervals of stable directions for U are among the endpoints
of the intervals for di�erent U , so there are at most 2|U | of them. In order to
determine this union in practice it su�ces to check for each of these endpoints
whether it is stable (not contained in any of the unstable intervals for other
U P U) and keep the information whether it was a left or right endpoint
of the associated interval. Hence, the preliminary step of determining the
(isolated) stable directions is completed in polynomial time in }U}. It is
also not hard to verify for each of the |U | right-endpoints whether there
exists a stable direction in the half-circle starting there and whether there
are �nitely many of them (i.e. all are isolated), which allows one to decide if
U is supercritical, critical or subcritical in polynomial time.

Assuming that U is determined to be critical, we can use De�nition 1.6.1
to compute the di�culty, α, once we know all αpuq P t1, 2, . . .u for isolated
stable directions. Indeed, for each of the open semi-circles with one endpoint
among those considered above, we only need to calculate the maximum of
αpuq for isolated stable directions u (if there are any non-isolated directions,
we do not need to consider the semi-circle). As this can also be done in time
polynomial in }U}, we will now �x an isolated stable direction u and provide
an algorithm for determining αpuq.

We shall assume thatD is su�ciently large throughout the proof. Indeed,
given D, all U P U are distinct subsets of t�D{2, . . . , D{2u2, so there are

at most 22pD�1q2

possible U and |U | ¤ 2pD�1q2 . Therefore, the algorithm's
asymptotic complexity is only determined by families with large values of
D, as one can directly list the di�culties for isolated stable directions with
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�small� values of D in constant time.

Recall the notation Z̄ from (9.1), which we shall use without specifying
u, as it will be clear from the context. In order to determine αpuq we will use
the following lemmas to bound the size of the set Z in De�nition 1.6.1. The
�rst of these is a one-dimensional result which we shall reduce the problem
to.

Lemma 9.2.1. Let U be an update family, let u P S1 be an isolated stable
direction and let A be a �nite subset of lu. Then the set Ā is either in�nite
or its maximal distance from A is at most D3 � 2D.
Proof. Observe that by stability of u we have Ā � lu. Then the dynamics
started from Hu Y A can be viewed as a dynamics on lu only. Note that lu
consists of integer sites on a line, so it is naturally identi�ed with Z by the
composition of a homothety and a rotation. Furthermore, we know that u is
an isolated stable direction and, thereby, lu�π{2 (which is simply a rotation
of lu) contains a site x in some U P U with }x}8 ¤ D{2 by (9.3). Hence, the
homothety ratio is between 1{D and 1.

Notice that the dynamics restricted to lu is simply a 1-dimensional boot-
strap percolation process, where each rule U P U is replaced by U X lu if
U � pHu Y luq and removed otherwise. It therefore su�ces to prove the
following claim, which concludes the proof.

Claim. For a one-dimensional bootstrap percolation family and a �nite set
A � Z, we have that Ā is either in�nite or its maximal distance from A is
at most D2 � 2D.
Proof. Denote A � ta1, . . . , anu with a1   � � �   an. Let us denote by P the
property that the following three conditions hold:

• |rAs|   8, dps,Aq ¤ D � 2D�1 for all s P rAs,
• maxrAs � an ¤ D � 2D�1 �D,

• a1 �minrAs ¤ D � 2D�1 �D.

Let A be minimal with respect to inclusion violating P . We next prove that
|rAs| � 8.

Base. Assume that |A| � 1, without loss of generality A � t0u. If rAs � A,
we have nothing to prove, as P clearly holds. Otherwise, assume that x P Z
becomes infected on the �rst step. Then, since t0u is the only infected site
initially, txu is a rule in the update family. However, that entails that k.x
becomes infected on the k-th iteration at the latest and, in particular, rAs is
in�nite.
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Step. Assume that |A| ¡ 1. Assume for a contradiction that there exists
0   i   n and b P rAs such that ai�1 ¡ b ¡ ai and minpb � ai, ai�1 � bq ¡
D � 2D�1. Then, by minimality of A, both A1 � ta1, . . . , aiu and A2 � AzA1
satisfy P . Therefore,

minrA2s �maxrA1s ¡ D � 2D�2 � 2pD � 2D�1 �Dq ¡ D,

so that rAs � rA1sYrA2s, which contradicts the existence of b P rAs. Indeed,
there is no site in Z such that a rule translated by it intersects both rA1s and
rA2s and by de�nition of the closure those do not evolve under the dynamics.

Assume next that maxprAsq ¡ an � D � 2D�1 � D (the corresponding
case for minprAsq is treated identically). Then, by the pigeon-hole principle,
there exist b, c P Z with an �D   b   c�D   maxprAsq � 2D such that

∅ � rAs X rb, b�D � 1s � prAs X rc, c�D � 1sq � pc� bq
(since no infection can cross a region of size D not intersecting rAs to reach
maxprAsq). Therefore, rAs X rb, b�D � 1s infects a translate of itself, since
the dynamics to the right of b�D is not a�ected by infections to the left of
b, once we �x the state of b, . . . , b � D � 1. Similarly to the case |A| � 1,
this is a contradiction with |rAs|   8, which concludes the proof.

The next lemma is an application of the covering algorithm of [74]. For
the sake of completeness, we will include a sketch of it in the proof.

Lemma 9.2.2. Let U be a critical update family and u be an isolated stable
direction. Let Z � Hu�π be a set of size at most D. Then for every z P rZs
we have xz, uy ¥ �OpD4q.
Proof. First, we prove the following claim.

Claim. There exists a set T � tuu of three or four stable directions con-
taining the origin in their convex envelope (if viewed as a subset of R2) such
that for each v P T there exists x P Z2X vR such that }x}8 ¤ D{2 and such
that for every v, w P T we have |v � w � π| ¥ 2{D2.

Proof. First assume that u�π is unstable. Let T consist of u and the stable
directions, u� π � δ� and u� π � δ� (δ� P p0, πs), closest to u� π in both
semi-circles with endpoint u � π (these exist as the set of stable directions
is closed). Furthermore, recalling that U is not supercritical, there is no
semi-circle of unstable directions, so δ� � δ�   π. This implies that indeed
T contains 0 in its convex envelope.

Assume that, on the contrary, u � π is stable. Consider the semi-circle
pu, u � πq � S1. In it there exists a stable direction (since U is not su-
percritical). If there are no unstable directions, we pick u� � u � π{2,
otherwise, we set u� to be an isolated or semi-isolated stable direction in
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that semi-circle. We de�ne u� similarly in the opposite semi-circle. We set
T � tu, u� π, u�, u�u. It is clear that 0 is in the convex envelope of T .

In both cases T consists of directions which are either isolated, semi-
isolated or a rotation by π{2 of such a direction. Therefore, as in the proof
of Lemma 9.2.1, there exists a site x as in the statement of the claim.

Finally, let us bound the di�erence between two directions v � w such
that there exist x P Z2X vR and y P Z2XwR with maxp}x}8, }y}8q ¤ D{2.
Indeed, detpx, yq P Zzt0u, so

| sinpv � wq| � |detpx, yq|
}x}2}y}2 ¥ 2

D2

and therefore |v � w| ¥ 2{D2.

We �x a set T as in the claim. We call a T -droplet a polygon with
sides perpendicular to the directions in T . Since T contains 0 in its convex
envelope there exist T -droplets. Since the di�erence between consecutive
directions in T are at most π�2{D2, we can �nd a T -droplet P with diameter
OpD3q containing r�D{2, D{2s2 � �

UPU U (e.g. a T -droplet circumscribed
around a circle with D).

We can then directly apply the covering algorithm of [74] to conclude the
proof. Let us outline that algorithm in our setting. We start with a set of
translates of P , namely tz � P, z P Zu. At each step if two of the current
droplets P1, P2 satisfy that there exists x P Z2 such that pP � xq X P1 � ∅
and pP � xq X P2 � ∅, then we replace them by the smallest T -droplet
containing their union. We repeat this as long as possible.

By Lemma 4.6 of [74] (stating that the diameter of the smallest droplet
containing two intersecting ones is at most the sum of their respective dia-
meters) the sum of diameters of droplets increases by at most diampP q �
OpD3q. Therefore, in the �nal set of droplets the total diameter is OpD4q, as
the number of droplets decreases by 1 at each step. Moreover, by Lemma 4.5
of [74] the union of the �nal droplets contains rZs, so the proof is complete,
as each of the output droplets contains at least one site of Z � H�u.

Algorithm. Let us �rst describe an algorithm to determine αpuq and pos-
tpone its analysis. For each integer k from 1 to D we successively perform
the following operations to determine if there exists a set Z of size k as in
De�nition 1.6.1. We stop as soon as such a set is found and return the cor-
responding (minimal) value of k. For each �xed k we start by choosing a set
Z0. The �rst site is 0 and each new one z is picked within distance D11 � 2D
from some of the previous ones and such that

0 ¤ xz1 � z, uy � OpD4q (9.4)
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for some z1 among the previous ones. There are at most�
DOp1q � 2D

D



� 2D

2�opD2q � exppOpD2qq

such choices. For each of them we successively inspect di�erent translations
t P Z2, such that 0 ¤ xt, uy � OpD5q and

0 ¤ xt, p�y, xqy   x2 � y2, (9.5)

where p�y, xq P Z2 is such that px, yq P uR and x and y are co-prime, in the
(total) order given by xt, uy starting from t � 0. Finally, �x Z � Z0 � t.

For each Z we run the bootstrap dynamics with initial set of infections
ZYHu until it either stops infecting new sites or infects a site s with }s}8 ¥
D13 � 2D and xs, uy � OpD5q. This can be done by checking at each step
each site at distance D13 �2D�D from the origin for each rule and repeating
this for 5D time steps. If the dynamics becomes stationary, we continue to
the next choice of Z, while otherwise we return |Z| for the value of αpuq.

Correctness. We now turn to proving that the algorithm does return an
output and it is precisely αpuq. The �rst assertion is easy. Indeed, as u is
an isolated stable direction, (by [70, Lemma 2.8]) there exists a rule U P U
with

U � Hu Y tx P lu, xx, u� π{2y ¡ 0u,
so that adding D consecutive sites on lu to Hu is enough to infect a half-line
of lu, only taking U into account. Thus, we know that αpuq ¤ D and the
algorithm will eventually check such a con�guration when k � D, unless
it has returned a smaller value, and infections will propagate to distance
D13 � 2D (and in fact to in�nity). Let us then prove that the output is αpuq.

Denote by tj the values of t considered by the algorithm, so that t0 � 0.
Note that by (9.5) there exists a single t P Z2 with a given value of xt, uy, so
that this scalar product indeed de�nes a total order on the values of t and
we can also extend our notation to j   0 for convenience, though those are
not examined by the algorithm. Further de�ne lj :� ts P Z2, xs, uy � xtj , uyu
and Zj � Z0 � tj for some Z0 considered by the algorithm, so that l0 � lu
by abuse of notation.2

Claim. Assume that a set Zi considered by the algorithm is of size k ¤
αpuq and such that Z̄j (recall (9.1)) is �nite for all 0 ¤ j ¤ i. Then the max-
imal distance between a site from Z̄i and Zi is at most D5 �2D maxp0, xti, uyq.

2Here we view 0 as an element of Z, possible value of j, while u is an element of S1.
As we will not make reference to lv with v � 0 P S1, we hope that this will not lead to
confusion.
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Proof. We prove the statement by induction on i P Z. For i   0, i.e. xti, uy  
0, then Zi � Hu by (9.4) and there is nothing to prove, since Z̄i � ∅ � no
additional infections take place. Assume the property to hold for all tj with
j ¤ i. We aim prove the same for i� 1.

Observe that for each 0   j ¤ i� 1 we have that

Z̄i�1 X lj � pZ̄i�1�j X l0q � ti�1 � ti�1�j . (9.6)

Indeed, Zi�1 Y Hu � pZi�1�j Y Huq � ti�1 � ti�1�j , since Zi�1 � Zi�1�j �
ti�1 � ti�1�j and Hu � ti�1 � ti�1�j � Hu. Furthermore, by stability of u
we have that Z̄i�1 X lj � ∅ for j ¡ i � 1. Also, by (9.6) and the induction
hypothesis we have that Z̄i�1zl0 is at distance at most D5 � 2Dxti, uy from
Zi�1, so we are left with proving that sites in Z̄i�1 X l0 are at distance at
most D5 � 2Dxti�1, uy from Zi�1.

Consider the set

Z 1 � tz P Z̄i�1 X l0, dpz, Zi�1q ¤ D �D5 � 2Dxti, uyu.
By the reasoning above we have that Z̄i�1 X l0 � Z 1 Y Z̄ 1. However, by
Lemma 9.2.1, Z̄ 1 cannot be at distance more than 2D �D3 from Z 1, as Zi�1zl0
is at distance at least D from all sites in Z̄i�1zZ 1. Recalling the de�nition of
Z 1, we get that Z̄i�1 is at distance at most D�D3 �2D�D5 �2Dxti, uy and we
are done. Indeed, xti�1 � ti, uy ¥ 1{D, since there exists a site x P Z2 X uR
with }x}8 ¤ D{2 and xti�1 � ti, xy ¡ 0 is an integer.

The claim clearly implies that the algorithm cannot return a value smaller
than αpuq. In order to conclude, we need to show that when k � αpuq among
the sets examined by the algorithm there will be a set Z such that there exists
z P Z̄ with }z}8 ¥ D13 � 2D and therefore the output will be αpuq.

Consider a set Z � Z2zHu as in De�nition 1.6.1 of size αpuq (and therefore
minimal). Recall that by Lemma 9.2.2 every z P Z satis�es xz, uy � OpD4q
(otherwise Z̄ � rZs is �nite, as U is not supercritical) and, by stability of
u, the same holds for Z̄. Let P � tx P R, Dz P Z, xz, uy � xu and de�ne P̄
similarly for Z̄. These are discrete subsets of R. Note that by minimality of
Z and Lemma 9.2.2, P � R cannot have a gap of length larger than OpD4q.
Indeed, there exists x P P̄ such that in�nitely many points of Z̄ project to it
and those are all in Z̄ 1 where Z 1 are the sites in Z that project to x1 P P such
that there exist n and x0 � x, x1, . . . , xn � x1 in P with |xj�1�xj | � OpD4q
and if Z 1 � Z, we obtain a contradiction with the minimality of Z.

Analogously, let PK � tx P R, Dz P Z, xz, pu� π{2qy � xu and de�ne P̄K
similarly for Z̄. We claim that its PK cannot have a gap of length larger than
OpD10 � 2Dq. This time P̄K is necessarily in�nite, as only a �nite number
of points z P Z2 with xz, uy � OpD4q have the same pu � π{2q-projection.
Considering a set Z 1 � Z inducing the corresponding distance OpD10 � 2Dq-
connected component of PK and using the claim instead of Lemma 9.2.2 as
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in the previous paragraph, we reach a contradiction with the minimality of
Z.

Hence, all Z of size αpuq as in De�nition 1.6.1 are in fact considered by
the algorithm. Since such a Z with in�nite Z̄ exists, the algorithm does
indeed output αpuq.

9.3 NP-hardness: proof of Theorem 9.1.3

In this section we prove Theorem 9.1.3 by providing a reduction from Set

Cover to 2D Critical Bootstrap Difficulty. For the Set Cover

problem we consider a universe t1, . . . , Nu and a collection S of subsets of the
universe and assume that |S| ¥ 4 and N ¥ 4. The Set Cover problem asks
for determining the minimum cardinality of a subset of S which covers the
universe. It is one of the �rst NP-complete problems described by Karp [242].

We �x an instance

S � tSi : i P Z, 1 ¤ i ¤ |S|u .
Our goal is to de�ne a critical bootstrap percolation update family whose
di�culty α is (up to a simple transformation) the solution to Set Cover.
Let the set of rules associated to S be

US � tU0, U1u Y tUki,j : 1 ¤ i ¤ |S|, 1 ¤ k ¤ |S|2, i, k P Z, j P Siu,
where

U0 �
 p�k, 0q, p0,�kq : 1 ¤ k ¤ N |S|2( ,

U1 �
 p�k, 0q, p0,�kq : 1 ¤ k ¤ N |S|2(

and the rules Uki,j , de�ned as follows, share a large portion of their structure
(see Figure 9.1).

T �  p0,�yq : 1 ¤ y ¤ N � |S|2( ,
W �tpx, 0q : 1 ¤ x ¤ |S|2u Y tpl � |S|, 1q : 1 ¤ l ¤ |S|u,
Uki,j �T Y

�pW Y tpi � |S|, 2quq � pk � pN � jq � |S|2, 0q� .
First we claim that the only isolated stable direction is u � π{2 and

r�π, 0s contains the rest of the stable directions. The unstable intervals
corresponding to the rules U0 and U1 are p0, π{2q and pπ{2, πq, respectively.
The unstable interval of Uki,j is contained in p0, π{2q for all i, j, k. Thus, US
is indeed critical and αpUSq � αpuq, so that we can focus on this direction.

Let M � t1, . . . , |S|u be an optimal solution to the Set Cover problem
given by S i.e. a set of minimal size such that¤

iPM
Si � t1, . . . , Nu.
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W Y tpi � |S|, 2qu region of j P r1, Ns

2 . . . |S| . . . 2|S| . . . i|S| . . . |S|2 . . . k � pN � jq|S|2x � 1

y � 0

1

2

Figure 9.1 � A visualisation of pUki,jzT q � pk � pN � jq|S|2, 0q; the shaded
cell indicates where the origin is shifted to.

We �rst claim that, setting

Z0 �W Y tpi � |S|, 2q : i PMu
we have rZ0 YHus � lu, so that

αpuq ¤ |Z0| � |W | � |M | � |S|2 � |S| � |M |. (9.7)

Indeed, using once each of the rules Uki,j for all i PM , j P Si and 1 ¤ k ¤ |S|2,
one infects all sites in�

1� pN � 1q � |S|2, p2N � 1q � |S|2�� t0u,
since M is a cover, and those are enough to infect lu using U0 and U1.

For any Z � Z2 recall the notation Z̄ � rZ Y HuszHu from (9.1). To
prove that (9.7) is actually an equality, we suppose that there exists a set
Z � Z2zHu for which |Z̄| � 8 and |Z|   |Z0|. Fix a minimal such set Z.

First note that |U0zHu| � N |S|2 and similarly for U1. Therefore, if there
exists p P Z2zHu such that one of p� U0 and p� U1 is a subset of Z YHu,
then |Z| ¥ N |S|2 ¡ |Z0| � a contradiction. However, in order not to have
Z̄ � ∅ some of the rules must be applicable to Z Y Hu and therefore there
exists p P Z2zHu such that p�W � Z.

Observation 9.3.1. For any q P Z2zt0u we have |pq �W qzW | ¡ |S|.
Although the veri�cation is immediate, calling this fact an observation is

deceptive, since W is designed to possess this property. It follows that p is
unique, otherwise |Z| ¡ |W | � |S| ¥ |Z0| (since any minimal cover is smaller
than the universe), a contradiction.

Lemma 9.3.2. Every point q P Z̄zZ has the same y-coordinate as p.

Proof. Suppose that there exists q P Z̄zZ contradicting the statement of the
lemma and consider such a q with minimal infection time for the process
with initial set of infections ZYHu. Then Z contains at least |W |� |S| sites
on the row of q, as all rules contain at least as many and by minimality of
q. Therefore, |Z| ¥ 2p|W | � |S|q ¡ |Z0|, a contradiction.
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By Lemma 9.3.2 and the fact that pZ YHuq � p0, 1q � pZ � p0, 1qq YHu

and pZ Y Huq � p1, 0q � pZ � p1, 0qq Y Hu, we can assume without loss of
generality that p � 0.

By the minimality of Z and Lemma 9.3.2, the y-coordinate of any site in
Z is 0, 1, or 2. Indeed, in order to infect each of the sites q P Z̄ � lu, we use
one of the rules, but those are all contained in tx P Z2, xx, uy ¤ 2u, so one
can remove any other sites from Z without changing Z̄.

Lemma 9.3.3. There does not exist q P Z2zt0u such that q �W � Z̄.

Proof. Let q be as in the statement of the lemma such that no other q1�W
becomes fully infected before q �W for the process with initial infections
Z YHu. By Lemma 9.3.2 we have that q P lu.

If |x| ¥ |S|2, then by Lemma 9.3.2 the set ZzW contains at least |W zlu| �
|S| elements (with y-coordinate 1), therefore |Z| ¥ |W | � |S| ¥ |Z0|, a
contradiction.

Assume that |x|   |S|2. If luXpq�W qzW � Z, then by Observation 9.3.1
we have |Z| ¥ |W | � |S| � a contradiction. Therefore, some of the sites in
lu X pq �W qzW � Z̄ are infected by the process. However, by minimality
of q they can only be infected using U0 or U1. Yet, as soon as one can use
rule U0 or U1 to infect a site in lu, the entire lu can be infected using those
rules only. Thus, removing from Z every site in ZzW with y-coordinate 1
(and in particular pq �W qzplu YW q � ∅) does not prevent the infection of
in�nitely many sites, which contradicts the minimality of Z.

By Lemma 9.3.3 we have that until a rule U0 or U1 is used the only
possible infections are of the form �k�pN � jq|S|2 becomes infected via rule
Uki,j�. Therefore, all sites px, 2q P Z are either redundant (which contradicts
the minimality of Z) or satisfy x � i � |S| with 1 ¤ i ¤ |S|.

Finally, set I � ti : pi � |S|, 2q P Zu and
J � t1, . . . , Nuz

¤
iPI
Si.

Then, in order to have |Z̄| � 8, it is necessary (and su�cient) to have a
sequence of N |S|2 consecutive sites in

pZ X luq Y tpk � pN � jq|S|2, 0q : i P I, 1 ¤ k ¤ |S|2, j P Siu.
However, such a sequence is either disjoint from the infections of the form
pk � pN � jq|S|2, 0q, in which case |Z| ¥ N |S|2 ¡ |Z0| � a contradiction, or
disjoint from W . In the latter case the sequence contains at most

|Z| � |W | � |I| � pN � |J |q � |S|2   p|Z0| � |W |q � pN � |J |q|S|2

infected sites. If |J | � N , i.e. I is not a cover, the number of sites is at
most |S| � pN � 1q|S|2   N |S|2 � a contradiction. Otherwise, I is a cover
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and |Z| ¥ |W | � |I| ¥ |Z0|, as M is a minimal cover. This contradiction
completes the proof that αpuq is indeed equal to |W |�|M | � |S|2�|S|�|M |
as claimed.

The set US (to which we reduced the Set Cover problem S) contains
|S|3 °SiPS |Si| rules, each of which has cardinality at mostOpN |S|2q, thus the
reduction is indeed polynomial. This concludes the proof of Theorem 9.1.3,
because αpUSq � |S|2 � |S| is the size of an optimal set cover from S.

9.4 Open problems

Let us conclude with a few open questions naturally suggested by the present
chapter. Of course, many more complexity issues arise systematically for
hard problems, but let us mention the foremost ones.

Question 9.4.1. Can one �nd a good approximation of α in time polynomial
of the input size }U} (de�ned in (9.2))?

Question 9.4.2. Are there interesting subfamilies of critical models for
which the di�culty is computable in polynomial time }U}?
Question 9.4.3. In view of Remark 9.1.2, can one �nd an algorithm which
computes α in eOp}U}q time?

In Section 9.A we provide an example showing the α itself can be expo-
nentially large in }U}, suggesting that one should not hope for a subexpo-
nential complexity algorithm to compute it.

Question 9.4.4. Is the 2D Critical Bootstrap Difficulty problem
in NP (and thus NP-complete)?

Appendix

9.A Relevance of the diameter

In this appendix we provide a sequence pUkq8k�2 of update families such that°
UPUk |U | is constant and αpUkq is exponential in }Uk}. This answers a

question raised during the preparation of this chapter. The example gives
some relevance to the questions in Section 9.4 as well as further justifying the
de�nition of }U} in equation (9.2). For any integer k ¥ 2 let Uk � tU1, U2u
with

U1 � tp0,�1q, pk, 0q, pk � 1, 0qu
U2 � tp0,�1q, p�k, 0q, p�k � 1, 0qu.
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Proposition 9.A.1. For any integer k ¥ 2 the update family Uk is critical
and

αpUkq � k � D

2
� 1

2
� e}Uk}{6.

Proof. It is not hard to check as in the examples in Figure 1.2 that (similarly
to the Duarte model) the set of stable directions for Uk is r�π, 0s Y tπ{2u,
so the model is critical. Moreover, α :� αpUkq � αpuq where u :� π{2 is the
only isolated stable direction.

It su�ces to prove that α � k. Consider Z0 � tpi, 0q : i P t1, . . . , kuu
and observe that rZ0 Y Hus � Hu Y lu. Indeed, by stability of u we have
rZ0 Y Hus � Hu Y lu, while using U1 one can infect successively p�i, 0q for
all i ¤ 0. Similarly, using U2, one can infect pk � i, 0q for i ¡ 0.

We are thus left with proving that for any Z � Z2 with |Z|   k we have
|Z̄|   8. Consider a minimal set Z contradicting this statement.

Let ppi, jq � pi, 0q be the projection onto lu and let ppZq � tppzq : z P Zu
be the projection of Z. We claim that

ppZq � ppZ̄q. (9.8)

Let lj � tpi, jq : i P Zu and let m � maxtj : Z̄ X lm � ∅u. By
stability of u we have that lm X Z � ∅. As p0,�1q P U1 X U2, we have that
pppZ̄zZq X lmq � ppZ̄ X lm�1q. Moreover, since U1 Y U2 � Hu Y lu, we have
Z̄ X lm�1 � pZzlmq X lm�1. Therefore, if we consider Z

1 � pZzlmq Y ppZ X
lmq� p0, 1qq, i.e. we decrease the y-coordinates of all sites in ZX lm by 1, we
have that

ppZ̄ 1q � ppZ̄ X lmq. (9.9)

Furthermore, as U1 Y U2 � Hu Y lu and Z 1 X pHu Y�
j m ljq � Z X pHu Y�

j m ljq, we have

Z 1 X pHu Y
¤
j m

ljq � Z X pHu Y
¤
j m

ljq.

Combining this with (9.9), we get that ppZ̄ 1q � ppZ̄q. Repeating this proce-
dure until m � 0, we obtain (9.8).

By stability of u we have that Z̄ � �
0¤j¤m lj , so Z̄ is in�nite if and

only if ppZ̄q is. Since |ppZq| ¤ |Z|, we may replace Z by ppZq and assume
without loss of generality that Z � lu. As lu identi�es with Z by pi, 0q ÞÑ i,
the following lemma concludes the proof.

Lemma 9.A.2. Consider the 1-dimensional update family consisting of the
rules U1 � tk, k � 1u and U2 � t�k,�k � 1u. There does not exist Z � Z
with |Z|   k such that |rZs| � 8.
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Proof. Notice that if z P rZszZ is used to infect another site using rule U1,
then either z � k or z � pk � 1q gets infected after z, so z is infected using
rule U1. Therefore, z � k and z � k � 1 are infected before z.

Let Z be a counterexample of the statement of the lemma. Without loss
of generality, we may assume that infprZsq � �8. Necessarily, there exists
z P rZs with z   minZ�k2, which is infected using rule U1. By the argument
above, z � k and z � k � 1 are infected via rule U1 (before z gets infected).
Iterating this argument we obtain that X0 � tz� k2� k� 1, . . . , z� k2u are
all infected by rule U1.

Let Xi � X0 � k � i and
Yi � tx� k � i� z � k2 � k : x P Xi, x is infected using U1u,

so that Y0 � t1, . . . , ku � Yi for all i ¥ 0. As in the proof of Proposi-
tion 9.A.1, one can check that rX0s � Z, so rZs � Z. Therefore, by an ana-
logous reasoning for U2, we have that all sites to the right of Z are infected
using rule U2. Thus, Yi0 � ∅ for i0 su�ciently large. For any y P Yi�1zYi
the site y � k � i � z � k2 � k is contained in Z, because, by de�nition, it
does not get infected by U1, and the �rst argument of this proof shows that
it cannot be infected via U2. Hence, k � |Y0zYi0 | ¤ |Z|, a contradiction.



Chapter 10

The second term for

two-neighbour bootstrap

percolation in two dimensions

This chapter is based on joint work with Robert Morris [220], proving the lo-
wer bound of Theorem 1.4.5 in a slightly di�erent form (recall Section 1.4.3).

In this chapter we exceptionally denote the parameter q of bootstrap
percolation by p, say that the set of initial infections A is p-random and
denote its law by Pp instead of µ. Rather than working with µ

�
τBP

0

�
, we

consider the critical probability

pc
�rnsd, r� :� inf

!
p P p0, 1q : Pp

�rAs � rnsd� ¥ 1{2
)
,

where rnsd � t1, . . . nud is endowed with the r-neighbour bootstrap percola-
tion model (all sites outside rnsd being considered healthy). Our goal is to
prove the following lower bound.

Theorem 10.0.1. There exists a constant C ¡ 0 such that

pc
�rns2, 2� ¥ π2

18 log n
� C

plog nq3{2 .

The rest of the chapter is organised as follows. In Section 10.1 we give
an outline of the proof of Theorem 10.0.1, and in Section 10.2 we recall some
basic tools and facts that we will need later, and set up some useful notation
and conventions used throughout the chapter. In Section 10.3 we state (and
give an extended sketch of the proof of) our key bounds on the probability
that a rectangle is internally �lled by A together with a sub-rectangle (the
full details of the proof are postponed to Section 10.A) In Section 10.4 we
introduce the hierarchies we will use in the proof, prove some standard facts
about the family of hierarchies, and describe a partition of this family which
plays an important role in the analysis. Finally, in Section 10.5, we prove

295
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Theorem 10.0.1. We �nish the chapter, in Section 10.6, by mentioning a
couple of natural open problems.

10.1 An outline of the proof

The proof of Theorem 10.0.1 is very technical, so in this section we will at-
tempt to give the reader an easily-digestible outline of the main ideas behind
the proof. The main step will be to bound the probability that a `critical
droplet' R (a rectangle with sides of length between 1{p and p1{pq logp1{pq)
is `internally �lled' by the p-random set A. The claimed lower bound on
pcprns2, 2q will follow easily from this bound via a standard argument (using
a lemma due to Aizenman and Lebowitz [7] and the union bound). In order
to state this theorem precisely, we will need to introduce a little notation.

A rectangle is a non-empty set R � Z2 of the form ra, bs � rc, ds; we
write dimpRq � pb� a� 1, d� c� 1q for the dimensions of R. We say that
a rectangle R is internally �lled by A if rA X Rs � R. We also need the
function

gpzq :� � log
�
β
�
1� e�z

�	
(10.1)

where βpuq :� 1
2

�
u�a

up4� 3uq�, which was de�ned by Holroyd [225], who
also proved that » 8

0
gpzqdz � λ :� π2

18
. (10.2)

Finally, set q :� � logp1� pq, and note that q ¥ p, and that q � p as pÑ 0.
(This notation is convenient, because the probability that a set of size a con-
tains no element of the p-random set A is e�aq. We will assume throughout
that p Ñ 0.) We can now state our main bound on the probability that a
critical droplet is internally �lled.

Theorem 10.1.1. There exists a constant C ¡ 0 such that the following
holds. Let R be a rectangle with dimensions dimpRq � pa, bq, and suppose
that a ¤ b, and

C

q
¤ b ¤ 1

2q
log

1

q
. (10.3)

Then

Pp
�rAXRs � R

� ¤
exp

�
�min

"
2λ

q
� 1

q3{4 , pb� aqgpaqq � 2

q

» aq
0
gpzqdz � C?

q

*

.

We remark that the �rst term in the minimum is easily large enough for
our purposes, and is only needed for technical reasons; the reader should
therefore focus her attention on the second term. Let us write longpRq and
shortpRq for the maximum and minimum (respectively) of the dimensions of
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R. In order to deduce Theorem 10.0.1 from Theorem 10.1.1, we will need
the following fundamental lemma of Aizenman and Lebowitz [7].

The Aizenman�Lebowitz lemma. If rAs � rns2, then for each 1 ¤ k ¤ n
there exists a rectangle R with

k ¤ longpRq ¤ 2k

that is internally �lled by A.

To deduce a lower bound on pcprns2, 2q, we simply apply the Aizenman�
Lebowitz lemma with k � p1{p4qqq logp1{qq, and take a union bound over
choices of R, using Theorem 10.1.1 to bound the probability that R is inter-
nally �lled, and the (straightforward) fact that

pb� aqgpaqq � 2

q

» aq
0
gpzqdz ¥ 2λ

q
� Op1q?

q

if a ¤ b and b ¥ p1{p4qqq logp1{qq, see Lemma 10.2.9.

Our main challenge will therefore be to prove Theorem 10.1.1. As has
become standard in the area since their introduction by Holroyd [225], we
will do so using hierarchies; however, our de�nition will di�er in various
important ways from that used in [225], and also from the various notions
of hierarchy used in, for example, [69, 70, 129, 190]. These were discussed in
detail in Section 1.4.3.

10.2 Basic facts and de�nitions

In this section we will recall a few basic facts about two-neighbour bootstrap
percolation on rns2, state a few simple properties of the function gpzq, and
introduce some further notation. For convenience, let us �x (for the rest of
the chapter) su�ciently large constants B ¡ 0 and C � CpBq ¡ 0, and a
su�ciently small constant δ � δpB,Cq ¡ 0.

10.2.1 Preliminaries

To begin, recall the following simple and well-known fact (see, e.g., [68,
Problem 34]). We write φpRq for the semi-perimeter of a rectangle R, so
φpRq � longpRq � shortpRq.

Lemma 10.2.1. If rAXRs � R, then |AXR| ¥ φpRq
2

.

Now, recall from (10.1) the de�nition of the function gpzq. The next
lemma, which bounds the probability that a su�ciently small rectangle is
internally �lled, follows easily from Lemma 10.2.1 (see, e.g., [190, Lemma 2]).
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Lemma 10.2.2. There exists δ ¡ 0 such that for any p ¡ 0 and any rectangle
R with dimpRq � pa, bq, where a ¤ b and ap ¤ δ,

Pp
�rAXRs � R

� ¤ 3φpRq exp
�
� φpRqgpaqq

	
.

In order to control the growth of a droplet, we will need to bound various
probabilities relating to the existence of double gaps. To be precise, let us
say that a rectangle R � ra, bs�rc, ds has a vertical double gap if there exists
j P ra, b� 1s such that

AX �rj, j � 1s � rc, ds� � H ,

and similarly for a horizontal double gap. (We will say that R has a double
gap if it has a horizontal or vertical double gap.) We will say that R is
crossed from left to right1 if it has no vertical double gap and the rightmost
column tbu � rc, ds is occupied, that is, has non-empty intersection with A.
Note that if the column to the left of R is already infected, and R is crossed
from left to right, then R will also be infected by the process. The following
simple estimates were proved in [225, Lemma 8].

Lemma 10.2.3. If R is a rectangle with dimpRq � pa, bq, then
Pp
�
R has no vertical double gap

� ¤ e�pa�1qgpbqq

and

Pp
�
R is crossed from left to right

� ¤ e�agpbqq .

We remark that the function g is positive, decreasing, convex and di�e-
rentiable on p0,8q, that gpzq � e�2z as z Ñ8, that

� 1

2
log z �?z ¤ gpzq ¤ � 1

2
log z � z (10.4)

for all su�ciently small z ¡ 0 (see [190, Observation 4]), that

e2gpzq ¤ C

z
(10.5)

for all 0   z ¤ 3e2B (see [190, Observation 10]), and that

� g1pzq ¤
#

B{z if z ¤ B

3e�2z if z ¥ B{2 (10.6)

since B and C � CpBq were chosen su�ciently large.

1We de�ne similarly the notions of being crossed from right to left, bottom to top, and
top to bottom.
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10.2.2 Analytic estimates

We will use the following de�nition from [225] to control the growth of a
droplet.

De�nition 10.2.4. For each a ¤ b P R2�, de�ne

W pa,bq � inf
γ :aÑb

»
γ

�
gpyqdx� gpxqdy� , (10.7)

where the in�mum is taken over all piecewise linear increasing paths from a
to b in R2.

Now, for any pair S � R of rectangles, de�ne

UpS,Rq :�W
�
q dimpSq, q dimpRq� . (10.8)

One of the key lemmas from [225] states that the integral in (10.7) is
minimized when the path γ is chosen as close to the diagonal as possible.
We will use the following immediate consequence of this fact.

Lemma 10.2.5 (Lemma 16 of [225]). Let S � R be rectangles with longpSq ¤
shortpRq. Then

UpS,Rq
q

� pd� cqgpdqq � 2

q

» aq
dq
gpzqdz � pb� aqgpaqq ,

where a � shortpRq, b � longpRq, c � shortpSq and d � longpSq.
When longpSq ¡ shortpRq we will use the following easy consequence of

the fact that gpzq is decreasing (it also follows immediately from [225, Lemma
16]).

Lemma 10.2.6. Let S � R be rectangles with longpSq ¥ shortpRq. Then
UpS,Rq

q
¥ pb� dqgpaqq ,

where a � shortpRq, b � longpRq and d � longpSq.
We will also need the following straightforward bound from [190].

Lemma 10.2.7 (Lemma 14 of [190]). Let S � R be rectangles, such that
longpSq ¤ shortpRq. Then
UpS,Rq

q
¥ 2

q

» aq
0
gpzqdz�pb�aqgpaqq� φpSq

2
log

�
1� 1

φpSqq


�O�φpSq� ,

where a � shortpRq and b � longpRq.
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In order to transition between UpS,Rq and the bounds of Section 10.3,
below, we will also need the following simple upper bound. If S and R are
rectangles with dimensions dimpRq � pa, bq and dimS � pa� s, b� tq, then
set

QpS,Rq :� sg
�pb� tqq�� tg

�pa� sqq� , (10.9)

The following lemma follows immediately from the fact that gpzq is decrea-
sing.

Lemma 10.2.8 (Proposition 13 of [225]). Let S � R be rectangles. Then

UpS,Rq
q

¤ QpS,Rq .

We will also need a couple of additional technical lemmas, each of which
follows easily from simple properties of the function g. The �rst is a variant
of [190, Observation 19], with slightly weaker assumptions and conclusion.

Lemma 10.2.9. If a ¤ b and b ¥ p1{p4qqq logp1{qq, then
2

q

» aq
0
gpzqdz � pb� aqgpaqq ¥ 2λ

q
� 4e4

?
q
.

Proof. Recall that B ¡ 0 is a su�ciently large constant, and note that if
a ¤ B{q then

pb� aqgpaqq ¥ gpBq
5q

log
1

q
¥ 2λ

q
,

since g is decreasing and q Ñ 0. Let us therefore assume that a ¥ B{q, and
observe that therefore » 8

aq
gpzqdz ¤ gpaqq , (10.10)

since gpzq � e�2z as z Ñ8, and hence, recalling the de�nition (10.2) of λ,

2

q

» aq
0
gpzqdz � pb� aqgpaqq ¥ 2

q

» 8

0
gpzqdz � 2λ

q

if b� a ¥ 2{q. Finally, if b� a ¤ 2{q, then a ¥ p1{p4qqq logp1{qq � 2{q, and
so

2

q

» aq
0
gpzqdz ¥ 2λ

q
� 2gpaqq

q
¥ 2λ

q
� 4e4

?
q
,

by (10.10), and since gpzq ¤ 2e�2z if z ¥ B.

The next lemma quanti�es how much harder it is for a droplet to grow far
from the diagonal. To state it, we need to introduce a further large constant
L1 � L1pB,C, δq ¡ 0.
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Lemma 10.2.10. If L1a ¤ b ¤ B{q, then
2

q

» bq
aq
gpzqdz ¤ pb� aq�gpaqq � gpbqq�� 4Cb .

Proof. We claim �rst that �B{z ¤ g1pzq ¤ �δ{z for every 0   z   B.
Indeed, this follows since g1pzq � �1{p2zq as z Ñ 0 and g1pzq � �2e�2z as
z Ñ 8, and since B was chosen su�ciently large, and δ � δpBq su�ciently
small. Now, integrating by parts, we obtain

2

q

» bq
aq
gpzqdz ¤ 2

�
bgpbqq � agpaqq�� 2Bpb� aq .

It follows that

2

q

» bq
aq
gpzqdz � pb� aq�gpaqq � gpbqq� ¤ pa� bq�gpbqq � gpaqq � 2B

�
.

Now, since g1pzq ¤ �δ{z for every z   B, and b{a ¥ L1, we have

gpaqq � gpbqq � �
» bq
aq
g1pzqdz ¥ δ logL1 ¥ 5C ,

and so the claimed bound follows.

We will also need some larger constants, denoted by L2, L3, . . ., where
each Li is chosen to be su�ciently large depending on B, C, δ, and all of
L1, . . . , Li�1. We will use Op�q to denote the existence of an absolute con-
stant, that is, a constant that does not depend on any of the aforementioned
ones.

10.2.3 Correlation inequalities

To �nish this section, we will state the fundamental inequalities of van den
Berg and Kesten [357] and Reimer [305], which we will use in Section 10.4
to bound the probability that a hierarchy is `satis�ed' by A, the p-random
set of infected sites, see De�nition 10.4.3 and Lemma 10.4.7.

In our setting, an event E is simply a family of subsets of rns2, and the
event E is said to occur if A P E . Two events E and F are said to occur
disjointly for A if there exist disjoint sets X,Y � rns2 depending on A such
that S P E for any S such that S XX � AXX, and T P F for any T such
that T X Y � A X Y . We write E � F for the event that E and F occur
disjointly.

Recall that we write Pp to indicate that A is a p-random subset of rns2.
The following fundamental lemma was proved in 1985 by van den Berg and
Kesten [357].
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S

R

Bp�1,0q

Bp0,1q

Bp1,0q

Sx
�

Figure 10.1 � An example of
a frame. The non-empty buf-
fers and frame Sx

� (hatched) of
S in R with x1,0 � x0,1 � 1,
x�1,0 � x0,�1 � 0. Note that
the bu�ers may have width 1.

The van den Berg�Kesten Lemma. Let E and F be any two increasing
events and let p P p0, 1q. Then

PppE � Fq ¤ PppEqPppFq .
The authors of [357] also conjectured that their inequality holds in the

following more general setting; this was proved 15 years later by Reimer [305].

Reimer's Theorem. Let E and F be any two events and let p P p0, 1q.
Then

PppE � Fq ¤ PppEqPppFq .
We remark that the events which we will need to consider will not all be

increasing (or decreasing); however, they will all be obtained by intersecting
an increasing event with a decreasing event. For such events the conclusion
of Reimer's theorem was proved earlier, by van den Berg and Fiebig [356],
and the proof is signi�cantly simpler.

10.3 The key lemmas

In this section we will state our key bounds (Lemmas 10.3.3 and 10.3.4, be-
low) on the probability that a rectangle R is internally �lled by the union
of A (chosen according to Pp) and a rectangle S � R. In order to sim-
plify the statement somewhat, we will begin by giving some rather technical
de�nitions, which are illustrated in Figure 10.1.

Throughout this section, we will assume that S � R are rectangles with
shortpSq ¥ 2.

De�nition 10.3.1. The bu�ers of S in R are the sets

Bpi,jqpS,Rq :�  
v P RzS : v � p2i, 2jq P S( ,

where pi, jq P I :�  p1, 0q, p0, 1q, p�1, 0q, p0,�1q(. We call the elements of I
directions, de�ne

ZpS,Rq :�  
d P I : BdpS,Rq � H(
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to be the collection of non-empty bu�ers of S in R, and set zpS,Rq �
|ZpS,Rq|.

Given x � pxdqdPI P t0, 1uI , de�ne the x-bu�er of S in R to be

BxpS,Rq :�
¤

d P I :xd� 1

BdpS,Rq ,

and the x-frame of S in R to be the set

Sx
� :� BxpS,Rq Y  

v P RzS : |Npvq XBxpS,Rq| ¥ 2
(
.

and set Sx
� :� S Y Sx

� . Thus x encodes the inclusion in Sx
� of some of

the (non-empty) bu�ers, and also the `corner' site in between two selected
bu�ers. We will write x and y for the number of non-empty horizontal and
vertical bu�ers included in BxpS,Rq, i.e.,

x :� x1p1,0q � x1p�1,0q and y :� x1p0,1q � x1p0,�1q , (10.11)

where x1 � x �1ZpS,Rq (i.e., x1d :� xd if d P ZpS,Rq, and x1d :� 0 otherwise).
We are now ready to de�ne our key technical events, which will appear in

our hierarchies (see Section 10.4, below), and are designed to be su�ciently
unlikely, and to occur disjointly.

De�nition 10.3.2. Let the rectangles S � R, and x P t0, 1uI , be as descri-
bed above.

(a) Dx
1 pS,Rq denotes the event that�

S Y �
AXRzSx

�

�� � R .

(b) Dx
2 pS,Rq denotes the event

Dx
1 pS,Rq X

 
AX Sx

� � H(
.

The main results of this section are the following two lemmas, which
provide us with close to best possible upper bounds on the probabilities of
the events Dx

1 pS,Rq and Dx
2 pS,Rq. The statements are designed to facilitate

a proof by induction.

Lemma 10.3.3. Let S � R be rectangles with dimpRq � pa, bq and dimpSq �
pa� s, b� tq, let x P t0, 1uI and set z � zpS,Rq. If

L1 ¤ shortpRq ¤ B

q
and longpRq ¤ 3e2B

q
, (10.12)

and s, t ¤ 4δ
a

shortpRq, then

Pp
�
Dx

1 pS,Rq
� ¤ Cz

�
C?
a


y � C?
b


x
exp

�� sgpbqq � tgpaqq� .
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Lemma 10.3.4. Let S � R be rectangles with dimpRq � pa, bq and dimpSq �
pa� s, b� tq, let x P t0, 1uI , and set z � zpS,Rq. If

shortpRq ¡ B

q
and longpRq ¤ 1

2q
log

1

q
(10.13)

and s, t ¤ 4δ?
q
� exp

�
shortpRq � q�, then

Pp
�
Dx

2 pS,Rq
� ¤�

CeshortpRqq
	z �

C
?
qe�aq

�y �
C
?
qe�bq

	x
exp

�� sgpbqq � tgpaqq� .
It will be convenient later when applying these lemmas to combine them

as follows. First, the following function encodes the upper bounds on s and
t:

fpRq :�

$''&''%
δ
a

shortpRq if shortpRq ¤ B

q
,

δ?
q

exp
�

shortpRq � q� otherwise.
(10.14)

Let us say that a rectangle R is 1-critical if it satis�es the bounds in (10.12),
and 2-critical if it satis�es the bounds in (10.13). Recall that if S and R
have dimensions dimpRq � pa, bq and dimS � pa� s, b� tq, then

QpS,Rq � sg
�pb� tqq�� tg

�pa� sqq� ,
and if x P t0, 1uI then write }x} :� x � y � °

dPZpS,Rq xd. The following
corollary is an almost immediate consequence of Lemmas 10.3.3 and 10.3.4.

Corollary 10.3.5. Let S � R be rectangles such that dimpRq � pa, bq and
dimpSq � pa� s, b� tq, let x P t0, 1uI . Let j P t1, 2u, and suppose that R is
j-critical. If s, t ¤ 4fpRq, then

Pp
�
Dx
j pS,Rq

� ¤ C9

�
δ

fpRq

}x}

exp
��QpS,Rq � 4φpRqq� . (10.15)

Proof. The claimed inequality follows from those given by Lemmas 10.3.3
and 10.3.4 using the bounds on g1pzq given in (10.6), and noting that x �
y � z ¤ 8 and z ¤ 4. To spell out the details, recall from (10.6) that
g1pzq ¥ �B{z if z ¤ B and g1pzq ¥ �3e�2z if z ¥ B{2, and note that g1pzq
is increasing and that fpRq ¤ δ{q. It follows that

exp
�� sgpbqq � tgpaqq�

¤ exp
�
�QpS,Rq � 2stq � g1�� shortpRq � 4fpRq� � q�	

¤ exp
��QpS,Rq � δ

�
since s, t ¤ 4fpRq and δ � δpBq is su�ciently small.
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Sx
�

R

T

i

j

(a) Case 1: the rectangle T is internally
�lled outside the shaded Sx

� and allows
S to grow i to the right and j upwards.

Sx
�

j

R

(b) Case 2: S grows j to the right until
it reaches a double gap (shaded). The
last column before that is necessarily
occupied. In both �gures, the hatched
region is assumed (in the sketch proof)
to be unoccupied.

Figure 10.2 � Two possible growth mechanisms.

Since the proofs of Lemmas 10.3.3 and 10.3.4 involve a signi�cant amount
of quite technical (and not especially illuminating) case analysis, we will give
here only a sketch, and postpone the full details to Section 10.A.

Sketch of the proof of Lemma 10.3.3. Let R be a 1-critical rectangle with
dimensions dimpRq � pa, bq, and for each x, y, z and each s, t ¤ 4fpRq, set

F x,y,zps, tq :� Cz
�
C?
a


y � C?
b


x
exp

�� sgpbqq � tgpaqq� .
We will prove, by induction on the pair ps� t,�px� yqq, that

Pp
�
Dx

1 pS,Rq
� ¤ F x,y,zps, tq (10.16)

for every 0 ¤ s, t ¤ 4fpRq and x P t0, 1uI , and every S � R with dimpSq �
pa� s, b� tq, where x and y are as de�ned in (10.11), and z � zpS,Rq.

The base of the induction is the case mints, tu � 0. Without loss of
generality suppose that t � 0, and note that this implies that x � y � 0, since
otherwise Pp

�
Dx

1 pS,Rq
� � 0. It follows that RzS consists of two rectangles

(one of which may be empty), one of which is crossed from left to right, and
the other of which is crossed from right to left. By Lemma 10.2.3, it follows
that

Pp
�
Dx

1 pS,Rq
� ¤ exp

�� sgpbqq� ¤ F 0,0,zps, 0q ,
as required. We remark that, since shortpRq ¥ L1, the function F

x,y,zps, tq
is increasing in z and decreasing in x, y, s and t.

For the induction step, �x x P t0, 1uI and S � R with dimpSq � pa �
s, b � tq, and assume that (10.16) holds for all smaller values of the pair
ps� t,�px�yqq in lexicographical order. We partition into cases, depending
on whether or not z � x� y.
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Case 1: z � x� y, i.e., all of the non-empty bu�ers are included in Sx
� .

The key observation in this case is that if the event Dx
1 pS,Rq holds, then

there exists a rectangle T � R such that�
AX T zSx

�

� � T and T X Sx
� � H

(see Figure 10.2a). For simplicity, we will assume that φpT q ¤ 36fpRq (the
other case is dealt with in Section 10.A), which in particular implies that
φpT q ¤ δ � shortpSq.

We will sum over choices of T the probability that�
AX T zSx

�

� � T and
�
S Y T Y �

AXRzSx
�

�� � R . (10.17)

Note that these two events depend on disjoint sets of infected sites, and are
therefore independent. To bound the probabilities of these events, we will
partition according to k :� φpT q, and the dimensions of rS Y T s,

dim
�rS Y T s� � pa� s� i, b� t� jq .

Note that 4 ¤ i� j ¤ k, and therefore, by Lemma 10.2.1, we have

|AX T zSx
�| ¥ k

2
¥ i� j

2
.

Note also that, given i, j and k, we have at most 4k choices for the rectangle
T (at most k per corner of S). Therefore, given i, j and k, the expected
number of rectangles T satisfying the �rst event in (10.17) is at most

4k

�
k2

rk{2s


prk{2s ¤ p24kpqk{2 .

To bound the probability of the second event in (10.17), we use the induction
hypothesis. To do so, however, we need to split into cases according to
whether or not the bu�ers of rSYT s that are not adjacent to T contain any
elements of A. In this sketch we will assume that they do not; for the full
details see Section 10.A.

By the induction hypothesis (under the assumption that no additional
infections are found in the bu�ers), it follows that2

Pp
��
S Y T Y �

AXRzSx
�

�� � R
	
¤ F x�1,y�1,zps� i, t� jq ,

and hence, by the argument above, it will su�ce (in this case) to show that

¸
i�j¥4

36fpRq¸
k�i�j

p24kpqk{2 � F x�1,y�1,zps� i, t� jq ! F x,y,zps, tq . (10.18)

2Note that we used here the bound zprS Y T s, Rq ¤ zpS,Rq, and the fact that F is
increasing in z.
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To see this, note �rst that 24kp ¤ δ, since k ¤ 36fpRq, and that we may
therefore assume that k � i� j. Now, observe that

F x�1,y�1,zps� i, t� jq
F x,y,zps, tq �

?
ab

C2
exp

�
igpbqq � jgpaqq�

¤
?
ab

C2

�
C

bq


i{2 � C

aq


j{2
(10.19)

by (10.5), since longpRq ¤ 3e2B{q. Since i� j � k and i, j ¥ 1, and recalling
that p ¤ q, we have

36fpRq¸
k�4

¸
i�j�k

p24kpqk{2 �
?
ab

C2

�
C

bq


i{2 � C

aq


j{2
¤

36fpRq¸
k�4

k � pC2kqk{2
minta, bupk�2q{2

¤ C5

shortpRq ,

since shortpRq ¥ L1. Combining this with (10.19), we obtain (10.18), as
claimed.

Case 2: z ¡ x� y, i.e., some non-empty bu�er is not included in Sx
� .

Without loss of generality, let Bp1,0qpS,Rq be a non-empty bu�er that is
not included in Sx

� , so xp1,0q � 0. The idea is to `grow' S to the right until
we �nd a double gap, or reach the right-hand side of R, thus leading either
to an increase in x�y, or a decrease in s� t. One signi�cant complication is
that before reaching a double gap we might �nd an infected site in one of the
other bu�ers, which are growing with S (see Figure 10.2b). In this sketch
we will assume that this does not occur, and also that we do not reach the
right-hand side of R; the other cases are dealt with in Section 10.A.

Let j be the distance to the �rst double gap to the right of S, that is

j :� min
 
i ¥ 0 : AXRX �

S � pi� 2, 0q�z�S � pi, 0q� � H(
,

and denote by Ŝ :� �j
i�0

�
S � pi, 0q� the rectangle formed by the growth

of S to the right, until it reaches that double gap. As noted above, we will
assume in this sketch that

Bp1,0qpŜ, Rq � H and AX Ŝx̂
� zSx

� � H .

where x̂ :� x � 1p1,0q (i.e., x̂p1,0q � 1 and x̂d � xd for each p1, 0q � d P I).
In other words, we found a double gap before reaching the right-hand side
of R, and no new infected site was found along the way in any of the bu�ers.
We will sum over choices of j the probability that�

S Y �
AX Ŝ

�� � Ŝ and
�
Ŝ Y �

AXRzŜx̂
�

�� � R . (10.20)
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Note that these two events depend on disjoint sets of infected sites, and are
therefore independent; we will bound the �rst using Lemma 10.2.3, and the
second using the induction hypothesis. Indeed, by Lemma 10.2.3 (and since
gpzq is decreasing) we have

Pp
��
S Y �

AX Ŝ
�� � Ŝ

	
¤ exp

�� jgpbqq� ,
and by the induction hypothesis (under the assumption that no additional
infections are found in the bu�ers and that the right-hand side of R is not
reached),

Pp
��
Ŝ Y �

AXRzŜx̂
�

�� � R
	
¤ F x�1,y,zps� j, tq .

It follows that the probability that there exists j ¥ 0 such that the events
in (10.20) both hold is at most

s�1̧

j�0

exp
�� jgpbqq�F x�1,y,zps� j, tq � Cs?

b
� F x,y,zps, tq ¤ 4Cδ � F x,y,zps, tq

since s ¤ 4δ
?

shortR. Since δ � δpCq ¡ 0 was chosen su�ciently small, this
bound su�ces in this case. For the full details of the proof, see Section 10.A.

The proof of Lemma 10.3.4 is very similar to that of Lemma 10.3.3, and
so we shall give here only a single calculation from the proof, which illustrates
the main additional technicality that arises in this setting, and shows why
the term eshortpRqqz is needed in the statement of the lemma. The full details
can once again be found in Section 10.A.

Sketch of the proof of Lemma 10.3.4. Recall thatDx
2 pS,Rq denotes the event�

S Y �
AXRzSx

�

�� � R and AX Sx
� � H .

Let R be a 2-critical rectangle with dimensions dimpRq � pa, bq; as in the
proof of Lemma 10.3.3, we use induction on the pair ps � t,�px � yqq, this
time to prove that

Pp
�
Dx

2 pS,Rq
� ¤ F̂ x,y,zps, tq ,

where

F̂ x,y,zps, tq :��
CeshortpRqq

	z �
C
?
qe�aq

�y �
C
?
qe�bq

	x
exp

�� sgpbqq � tgpaqq� ,
for every 0 ¤ s, t ¤ 4fpRq and x P t0, 1uI , and every S � R with dimpSq �
pa� s, b� tq, where x and y are as de�ned in (10.11), and z � zpS,Rq.
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S

Sx
�

j

R

u
Figure 10.3 � S grows j to the
right and reaches the infected site
u in the hatched region before a
double gap to the right. Thus, the
shaded region has no vertical dou-
ble gap.

In this sketch we will only consider one very particular (but instructive)
con�guration, which is illustrated in Figure 10.3. In this example, the top
bu�er is of height 1, the left and bottom bu�ers are empty, and we attempt
to grow S to the right in search of a double gap. However, before �nding
one, we pass an infected site u P A in the (new part of the) top bu�er, which
instead causes us to grow upwards by one step.

Let j denote the } � }8-distance of u from S, and denote by

Ŝ1 :�
j¤
i�0

�
S � pi, 0q� and Ŝ :� Ŝ1 Y �

Ŝ1 � p0, 1q�
so Ŝ is the rectangle formed by the growth of S to the right, and one step
upwards (using u). As noted above, we will assume in this sketch that all of
the bu�ers of Ŝ are empty except Bp1,0qpŜ, Rq. We will sum over choices of j
the probability that AXSx

� � H (as in the de�nition of the event Dx
2 pS,Rq),

that u P A, that there is no double gap to the right of S before it reaches u,
and that �

Ŝ Y �
AXRzŜx̂

�

�� � R ,

where x̂ � x � 1p0,1q � 0. Note that these four events are independent,
and moreover the probability of each is easy to bound. Indeed, note that
Pppu P Aq � p, that

Pp
�
AX Sx

� � H� � p1� pqa�s � exp
�� pa� sqq� ¤ 2 � e�aq

since longpRq ¤ p1{p2qqq logp1{qq, and so s ¤ p4δ{?qq � eshortpRqq ¤ 4δ{q,
that

Pp
�
Ŝ1zS has no vertical double gap

� ¤ exp
�� pj � 1qgpbqq�

by Lemma 10.2.3 (and since gpzq is decreasing), and that

Pp
��
Ŝ Y �

AXRzŜx̂
�

�� � R
	
¤ F̂ 0,0,1ps� j, 0q

� F̂ 0,1,2ps, 1qe
aq�shortpRqq�jgpbqq�gpaqq

C2?q � ,
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by the induction hypothesis. It follows that the probability that there exists
j ¥ 0 such that the four events above all hold is at most

s�1̧

j�1

2p � e
� shortpRqq�gpbqq�gpaqq

C2?q � F̂ 0,1,2ps, 1q

¤ 4s
?
q � e

� shortpRqq

C2
� F̂ 0,1,2ps, 1q , (10.21)

since p ¤ q, and since a, b ¥ B{q implies that egpaqq�gpbqq ¤ 2. Finally,
recall that s

?
q ¤ 4δ � eshortpRqq, so the right-hand side of (10.21) is at most

p16δ{C2q � F̂ 0,1,2ps, 1q, as required. Once again, see Section 10.A for the full
details of the proof.

10.4 Hierarchies

In this section we will de�ne precisely the family of hierarchies that we will
use in the proof of Theorem 10.1.1. Our de�nition is more complicated and
restrictive than those used in [190, 225], and is designed to take advantage
of the bounds proved in Section 10.3, and to allow us to prove a su�ciently
strong upper bound on the number of hierarchies.

10.4.1 Good and satis�ed hierarchies

De�nition 10.4.1. Let R be a rectangle. A hierarchy H for R is an oriented
rooted tree GH with edges pointing away from the root (�downwards�), with
edges e labelled with vectors xpeq P t0, 1uI and vertices u labelled with
rectangles Ru � R. Let NGHpuq denote the out-neighbourhood of u in GH.
We require them to satisfy the following conditions.

(a) The label of the root is R.

(b) Each vertex has out-degree at most two.

(c) If v P NGHpuq, then Rv � Ru.

(d) If NGHpuq � tv, wu, then rRv YRws � Ru.

We will write LpHq for the set of leaves of GH, and refer to the rectangles
associated with leaves u P LpHq as seeds of the hierarchy. We will also refer
to vertices with out-degree two as split vertices.

We next de�ne a subclass of `good' hierarchies that is su�ciently small
to allow us to use the union bound (see Lemma 10.4.9), but su�ciently
large so that every internally �lled rectangle R can be associated with a
good hierarchy that encodes the growth of the infected sites inside R (see
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Lemma 10.4.4). To do so, we will need one more piece of notation: if
S � R are rectangles with R � rrp�1,0q, rp1,0qs � rrp0,�1q, rp0,1qs and S �
rsp�1,0q, sp1,0qs � rsp0,�1q, sp0,1qs, then we de�ne

djpS,Rq :� |rj � sj|
for each j P I, and dpS,Rq :� max

 
djpS,Rq : j P I(.

De�nition 10.4.2. We say that a hierarchy H is good if the following con-
ditions hold for every u P V pGHq:
(e) u is a leaf of GH if and only if shortpRuq ¤ q�1{2;

(f) if NGHpuq � tvu, then
dpRv, Ruq ¤ 2fpRuq ;

(g) if v P NGHpuq and either |NGHpuq| � 2 or |NGHpvq| � 1, then

dpRv, Ruq ¥ fpRuq ;

(h) if NGHpuq � tvu and |NGHpvq| � 1, then xpuvq ¤ 1ZpRv ,Ruq, and
moreover either

(I) }xpuvq} � zpRv, Ruq, or
(II) }xpuvq} � zpRv, Ruq � 1 and dpRv, Ruq P tfpRuq, fpRuq � 1u;

(i) if v P NGHpuq and either |NGHpuq| � 1 or |NGHpvq| � 1, then xpuvq �
0;

where the function fpRq was de�ned in (10.14), and

}xpuvq} �
¸

dPZpRv ,Ruq
xpuvqd.

Finally, we need to de�ne the family of events that we require to occur
disjointly. In order to do so, let us �rst choose a path (the trunk) from the
root to a leaf of a hierarchy H by choosing at each split vertex the out-
neighbour whose associated rectangle has larger short side (if they are equal,
choose arbitrarily). We will write trpHq for the set of edges of the trunk.
De�nition 10.4.3. A hierarchy H is satis�ed by A if the following events
all occur disjointly :

(j) If u P LpHq, then the rectangle Ru is internally �lled by A;
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(k) If NGHpuq � tvu and uv R trpHq, then Dx
1 pRv, Ruq holds, where x �

xpuvq;
(l) If NGHpuq � tvu and uv P trpHq, then Dx

2 pRv, Ruq holds, where x �
xpuvq.

We remark that the purpose of the trunk is to guarantee that the unoccu-
pied frames in the eventsDx

2 pRv, Ruq occur disjointly. For the sake of brevity,
we will often say that a rectangle is in the trunk of a hierarchy H, when we
really mean that the associated vertex of GH is in the trunk, and trust that
this will cause no confusion.

10.4.2 Fundamental properties

The following deterministic lemma implies that every internally �lled rec-
tangle that satis�es the condition (10.3) of Theorem 10.1.1 has a good and
satis�ed hierarchy.

Lemma 10.4.4. Let R be a rectangle that is internally �lled by a set A, and
suppose that

longpRq ¤ 1

2q
log

1

q
. (10.22)

Then there exists a good hierarchy H for R that is satis�ed by A.

A similar lemma was proved by Holroyd in [225] using the following
lemma, which is a straightforward consequence of the `rectangles process' of
Aizenman and Lebowitz [7].

Lemma 10.4.5 (Proposition 30 of [225]). Let R be a rectangle such that
longpRq ¥ 2. If R is internally �lled by A, then there exist rectangles S1, S2 �
R, with rS1 Y S2s � R, that are disjointly internally �lled by A.

We will need the following slight (and straightforward) strengthening of
this lemma.

Lemma 10.4.6. Let R be a rectangle with longpRq ¥ 2. If R is internally
�lled by A, then there exist rectangles S1, S2 � R, with rS1 Y S2s � R, such
that �

AX pS1zS2q
� � S1 and

�
AX pS2zS1q

� � S2 . (10.23)

Proof. By taking a subset if necessary, we may assume that A is a minimal
percolating set for R, i.e., that A is minimal such that rAs � R. We claim
that for such a set A, the rectangles S1 and S2 given by Lemma 10.4.5 in
fact satisfy (10.23). Indeed, suppose that A1 and A2 are disjoint subsets of
A such that S1 � rA1s, S2 � rA2s and rS1 Y S2s � R, and observe that�

AzpA1 X S2q
� � R ,
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since S2 � rAzA1s and rAs � R. By the minimality of A, it follows that
A1 X S2 � H, and similarly A2 X S1 � H as required.

Now we prove that any internally �lled rectangle has a good and satis�ed
hierarchy.

Proof of Lemma 10.4.4. The proof is similar to that of [225, Proposition 32],
but since there are several slightly subtle (and important) di�erences, we will
give the details in full.

We prove the statement by induction on φpRq. If shortpRq ¤ q�1{2 then
we can let H be the hierarchy with only one vertex, which is good by the
bound on shortpRq, and satis�ed since R is internally �lled by A. So assume
that shortpRq ¡ q�1{2, and that the lemma holds for all rectangles with
semi-perimeter strictly smaller than φpRq.

We use Lemma 10.4.6 to construct a sequence of rectangles

R � T0 � T1 � � � � � Tm

for some m P N as follows. For each i ¥ 0, suppose that we have already con-
structed Ti, and let Ti�1 and T

1
i be the two rectangles given by Lemma 10.4.6

applied to Ti, where dpTi�1, Rq ¤ dpT 1i , Rq. Now let m be minimal such that
dpTm, Rq ¥ fpRq, and note that m exists because (10.14) and (10.22) imply
that longpRq ¡ 2fpRq. We consider three cases:

Case 1: dpTm, Rq ¤ 2fpRq.
In this case, instead of applying the induction hypothesis to Tm (as in,

e.g., [190, 225]), we let Tm � S � R be a maximal internally �lled rectangle
with dpS,Rq ¥ fpRq, and apply the induction hypothesis to S. (We remark
that this is a crucial step in our proof.) Observe that, by the maximality of
S, one of the following two events holds:

(I) There is no element of A within distance two of S. In this case the event
Dx

2 pS,Rq holds for x � 1ZpS,Rq, since A X Sx
� � H, and R is internally

�lled by A.

(II) dprS Y tuus, Rq   fpRq for each u P A within distance two of S, and the-
refore dpS,Rq P tfpRq, fpRq � 1u. Choose d P I such that ddpS,Rq P
tfpRq, fpRq � 1u, and set x � 1ZpS,Rqztdu. We claim that the event
Dx

2 pS,Rq holds. Indeed, R is internally �lled by A, and if there exists
an element u P AX Sx

� , then we have dprS Y tuus, Rq ¥ ddpS,Rq ¥ fpRq,
contradicting the maximality of S.

Now, let H1 be the good and satis�ed hierarchy for S given by the in-
duction hypothesis, and form a hierarchy H for R by adding an edge from
a vertex u corresponding to R, to the (root) vertex v of H1 corresponding
to S. If |NGHpvq| � 1, then set xpuvq � 0, and otherwise de�ne xpuvq as
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above, i.e., xpuvq � 1ZpS,Rq in (I) and xpuvq � 1ZpS,Rqztdu in (II), where
ddpS,Rq P tfpRq, fpRq � 1u.

We claim that H is good, and satis�ed by A. To see that H is good,
recall that H1 is good, and note that fpRq ¤ dpS,Rq ¤ 2fpRq, and that
if |NGHpvq| � 1 then either }xpuvq} � zpS,Rq (if there is no element
of A within distance two of S), or }xpuvq} � zpS,Rq � 1 and dpS,Rq P
tfpRq, fpRq � 1u (otherwise).

To see that H is satis�ed by A, recall that H1 is satis�ed by A, and note

that the event D
xpuvq
2 pS,Rq occurs (by the observations above). Moreover,

the event D
xpuvq
2 pS,Rq depends only on sites in RzS, whereas the events

involved in H1 depend only on sites inside S. The events involved in H
therefore occur disjointly, as required.

Case 2: dpT1, Rq ¡ 2fpRq.
Let tS1, S2u � tT1, T

1
0u, where the labelling is chosen so that shortpS1q ¥

shortpS2q, and recall that rS1 Y S2s � R, that (10.23) holds, i.e.,�
AX pS1zS2q

� � S1 and
�
AX pS2zS1q

� � S2 ,

and that 2fpRq   mintdpS1, Rq, dpS2, Rqu. Set A1 :� A X S1 and A2 :�
AXpS2zS1q and, applying the induction hypothesis, let H1

1 and H1
2 be good

hierarchies for S1 and S2 that are satis�ed by A1 and A2, respectively. Form
a hierarchy H for R by adding edges from a vertex u corresponding to R, to
the roots of H1

1 and H1
2, that is, the vertices v1 and v2 corresponding to S1

and S2 (respectively), and set xpuv1q � xpuv2q � 0.
We claim that H is good, and satis�ed by A. To see that H is good,

recall that H1
1 and H1

2 are good, and that mintdpS1, Rq, dpS2, Rqu ¥ 2fpRq.
To see that H is satis�ed by A, recall that H1

1 and H1
2 are satis�ed by A, and

note that the trunk of H can be chosen to pass through S1. Now, all of the
increasing events involved in H1

1 and H1
2 are witnessed by disjoint subsets of

A1 and A2, respectively, and A1 and A2 are disjoint sets (since A1 � S1 and
A2 X S1 � H), so all of these events occur disjointly. Since S2 is not in the
trunk, the only remaining events are the decreasing events involved in H1

1

(that the frames of rectangles in the trunk are empty), which all depend only
on sites in S1zA1, and therefore occur disjointly from those that depend on
A1 and A2. The events involved in H therefore occur disjointly, as required.

Case 3: dpTm, Rq ¡ 2fpRq, and m ¡ 1.

Set S � Tm�1, and let tS1, S2u � tTm, T 1m�1u, where the labelling is cho-
sen so that shortpS1q ¥ shortpS2q, and recall that rS1YS2s � S, that (10.23)
holds, and that

dpS,Rq   fpRq and dpSi, Sq ¥ dpSi, Rq � dpS,Rq ¡ fpRq (10.24)

for each i P t1, 2u. As in Case 2, set A1 :� A X S1 and A2 :� A X pS2zS1q
and let H1

1 and H1
2 be good hierarchies for S1 and S2, satis�ed by A1 and
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A2, respectively, given by the induction hypothesis. Form a hierarchy H
for R by adding an edge from a vertex u corresponding to R, to a vertex v
corresponding to S, and edges from v to the roots of H1

1 and H1
2, that is,

the vertices w1 and w2 corresponding to S1 and S2 (respectively), and set
xpuvq � xpvw1q � xpvw2q � 0.

It is again easy to see that H is good, since H1
1 and H1

2 are good, and
using the inequalities (10.24). We claim that moreover H is satis�ed by A;
this follows almost exactly as in Case 2, but for completeness we will spell
out the details. Recall that H1

1 and H1
2 are satis�ed by A, observe that the

event Dx
2 pS,Rq holds (since R is internally �lled by A, and xpuvq � 0), and

note that the trunk of H can be chosen to pass through S1.
Now, all of the increasing events involved in H1

1, H1
2 and Dx

2 pS,Rq are
witnessed by disjoint subsets of A1, A2 and AzS, respectively, and A1, A2

and AzS are disjoint sets (since A1 � S1, A2 X S1 � H, and A1 YA2 � S),
so all of these events occur disjointly. Now, S2 is not in the trunk, and
xpuvq � 0, so the only remaining events are the decreasing events involved
inH1

1 (that the frames of rectangles in the trunk are empty), which all depend
only on sites in S1zA1, and therefore occur disjointly from those that depend
on A1, A2 and AzS. The events involved in H therefore occur disjointly, as
required.

We are now ready to deduce our fundamental bound on the probability
that a rectangle is internally �lled, cf. [225, Section 10] or [190, Lemma 7].
Given a rectangle R, let us write HR for the set of good hierarchies for R,
and for each H P HR, set

G
p2q
H � trpGHq and G

p1q
H � EpGHqzGp2q

H .

Recall also that Pp denotes the probability space obtained by choosing A to
be a p-random subset of rns2, and let us write IpRq for the event that R is
internally �lled by A.

Lemma 10.4.7. If R is a rectangle with longpRq ¤ p1{p2qqq logp1{qq, then

Pp
�
IpRq� ¤¸

HPHR

� 2¹
j�1

¹
uvPGpjqH

NGH puq�tvu

Pp
�
D

xpuvq
j pRv, Ruq

�
� ¹
uPLpHq

Pp
�
IpRuq

�

. (10.25)

Proof. By Lemma 10.4.4, if R is internally �lled by A then there exists a
hierarchy H P HR that is satis�ed by A. By the union bound (over HR), it
will therefore su�ce to show that for each H P HR, the probability that H
is satis�ed by A is bounded above by the corresponding term of the right-
hand side of (10.25). But this follows immediately from De�nition 10.4.3 by
Reimer's Theorem, and hence (10.25) holds, as claimed.
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We remark that we did not actually need the full power of Reimer's
Theorem in the proof above, since our events are particularly simple: each is
the intersection of an increasing and a decreasing event, and the decreasing
events are moreover primitive (i.e., a �xed set must be empty). For events of
this form, the conclusion of Reimer's theorem is actually a straightforward
consequence of the van den Berg�Kesten lemma.

10.4.3 Weighted counting

Recall that we can bound the probabilities on the right-hand side of (10.25)
using Lemma 10.2.2 and Corollary 10.3.5. It therefore remains to control
the `size' of the set HR; however, since hierarchies with many empty bu�ers
are more numerous and less likely to be satis�ed, we would like to give them
lower `weight' when measuring the size of HR. Due to the form of the right-
hand side of (10.15) (in particular, its dependence on }x}), we will �nd the
following de�nition useful.

De�nition 10.4.8. Given a rectangle R, the weight of a hierarchy H P HR
is de�ned to be

wpHq :�
¹

NGH puq�tvu

�
1

fpRuq

}xpuvq}

.

Given a hierarchy H, we will write vpHq for the number of vertices of
GH, and spHq � |LpHq| for the number of seeds of H. (Note that H has
exactly spHq � 1 split vertices.) Given a rectangle R, let us write

HRpN,Mq :�  
H P HR : vpHq � N, spHq �M

(
. (10.26)

The following lemma bounds the total weight of HRpN,Mq.
Lemma 10.4.9. Let R be a rectangle, and let N,M P N. Then¸

HPHRpN,Mq
wpHq ¤ exp

�
16
�
N �M log φpRq�	 .

Proof. Let us �rst �x the tree GH and the labels xpeq for each e P GH.
There are at most 3N oriented rooted trees on N vertices with maximum
out-degree at most two (and edges oriented away from the root), and at most
24N choices for the labels xpeq P t0, 1uI . We will choose the rectangles one
by one, starting at the root and working our way down the tree, counting
the number of choices (given the earlier choices) at each step.

Let u P V pGHq, and suppose that we have already chosen the rectangle
Ru. Suppose �rst that u is a split vertex, and let NGHpuq � tv, wu. We
clearly have at most φpRq4 choices for each of Rv and Rw, and hence (re-
calling that there are M � 1 split vertices) the total number of choices for
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the rectangles associated with the out-neighbours of split vertices is at most
φpRq8M . Similarly, if NGHpuq � tvu and v is a split vertex or a seed, then
we have at most φpRq4 choices for Rv, so the total number of choices for the
rectangles associated with such vertices is also at most φpRq8M .

Suppose now that NGHpuq � tvu and |NGHpvq| � 1, and recall from De�-
nition 10.4.2 that dpRv, Ruq ¤ 2fpRuq, and that either }xpuvq} � zpRv, Ruq,
or

}xpuvq} � zpRv, Ruq � 1 and dpRv, Ruq P tfpRuq, fpRuq � 1u .

In either case we have at most 210fpRuq}xpuvq} choices for Rv, and it follows
that ¸

HPHRpN,Mq
wpHq ¤ p3 � 214qN � φpRq16M ¤ exp

�
16
�
N �M log φpRq�	 ,

as claimed.

10.4.4 The height of a hierarchy

Let us write hpHq for the height of the hierarchy H, that is, the number of
vertices in the longest path from the root to a leaf of GH. In this subsection
we will prove some straightforward (though sometimes slightly technical)
properties of the height of a good hierarchy.

Let us begin with a simple lower bound on the size of a seed in a good
hierarchy.

Observation 10.4.10. Let R be a rectangle, and suppose that longpRq ¤
p1{p2qqq logp1{qq and shortpRq ¥ q�1{2. If H P HR, and v P V pGHq, then

φpRvq ¥ δ

q1{4 .

Proof. It su�ces to prove the claimed bound for seeds of H, so assume
that v is a seed, and that v P NGHpuq (if H has only one vertex then the
result is trivial). Since u is not a seed and H is a good hierarchy (see
De�nition 10.4.2), we have shortpRuq ¡ q�1{2. Thus

φpRvq ¥ min
 
φpRuq � 8fpRuq, fpRuq

( ¥ δ

q1{4 ,

as required, since if |NGHpuq| � 1, then dpRv, Ruq ¤ 2fpRuq, while if
|NGHpuq| � 2, then dpRv, Ruq ¥ fpRuq. Note that in the �rst step we
used the fact that if rRv YRws � Ru, then φpRvq � φpRwq ¥ φpRuq, and in
the second we used the de�nition (10.14) of fpRq.
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Next, let us recall a simple but key observation from [190]. Let us say
that a seed S is large if longpSq ¥ 1{p3?qq, and denote by mpHq the number
of large seeds of a hierarchyH. Observe (or recall from [190, Observation 17])
that every non-leaf vertex of a good hierarchy lies above a large seed.

Observation 10.4.11. Let R be a rectangle with shortpRq ¥ q�1{2. If
H P HR, then

vpHq ¤ 2 � hpHq �mpHq .
Proof. Since H is a good hierarchy for R, every non-leaf u P V pGHq lies
above a large seed. There are therefore at most hpHq �mpHq vertices that
are either large seeds or non-seeds. Since each small seed is adjacent to
a non-seed, and each non-seed is adjacent to at most one small seed, the
claimed bound follows.

We will use Observation 10.4.11 together with the following lemma to
bound the number of vertices in a `typical' hierarchy H P HR.
Lemma 10.4.12. Let R be a rectangle with longpRq ¤ p1{p2qqq logp1{qq,
and let H P HR. Then either3

hpHq ¤ L2?
q
, (10.27)

or there exists a vertex u P V pGHq such that either

shortpRuq ¤ B

q
and longpRuq ¥ 2L1 � shortpRuq , (10.28)

or

shortpRuq ¥ B

q
and longpRuq ¥ 4 � shortpRuq . (10.29)

Proof. Suppose that there is no vertex u P V pGHq satisfying either (10.28)
or (10.29); we will show that hpHq ¤ L2{?q. To do so, let v be the root of
H, let P be a longest path in GH (from v to a seed w), and partition (the
vertex set of) P into sets

P1 :� tvu Y  
u P P : shortpRuq ¡ B{q( and P2 :� P zP1 .

Let u1 be the lowest vertex of P1, and let u2 be the highest vertex of P2.

We �rst claim that the distance (in GH) from u2 to w is a most L1{p3?qq.
To see this, note that any w   y ¤ u2 satis�es longpRyq   2L1 � shortpRyq,

3Recall that L2 � L2pB,C, δ, L1q is a su�ciently large constant. The lemma also holds
with a smaller constant in (10.27), but this particular tripartition will be convenient in
Section 10.5.
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and so, by De�nition 10.4.2, in the next two consecutive steps up P the
semi-perimeter increases by at least

δ?
2L1

�
b

longpRyq .

Since L1 is large, the claimed bound follows easily.

Similarly, we claim that the distance (in GH) from u1 to v is a most
L1{p3?qq. To see this, note that any v ¡ y ¥ u1 satis�es 4 � shortpRyq ¡
longpRyq, so in the next two consecutive steps up P , either we reach v, or
the semi-perimeter increases by at least

δ?
q

exp
�
q � φpRyq{5

�
.

It is again not di�cult to see that the claimed bound holds; indeed, the
semi-perimeter takes at most x � L1{p6?qq steps to increase by 5{q, then
at most x{2 steps to increase by 5{q again, and so on, until it has increased
by p5{qq log2 x in at most 2x steps.

The next lemma bounds the height of H in the case where only (10.28)
is satis�ed.

Lemma 10.4.13. Let R be a rectangle with longpRq ¤ p1{p2qqq logp1{qq,
and let H P HR. Suppose that neither (10.27) nor (10.29) holds for any
vertex u P V pGHq. Then the vertex u satisfying (10.28) may be chosen so
that

hpHq ¤ L1q
1{4 � longpRuq . (10.30)

Proof. Let u P V pGHq be a vertex satisfying (10.28) with longpRuq maximal,
and set c � shortpRuq and d � longpRuq. Let P be the longest path in H,
and observe that P contains at most L1{p3?qq vertices v with shortpRvq ¡
B{q, as in the proof of Lemma 10.4.12, since H contains no vertex such
that (10.29) holds. Observe also that P contains at most pL1q

1{4{2q � d
vertices v with longpRvq ¤ d, since it follows from De�nition 10.4.2 that in
each two consecutive steps the semi-perimeter increases by at least δq�1{4.

Finally, we claim that P contains at most L2{p3?qq vertices v with
shortpRvq ¤ B{q and longpRvq ¡ d. To see this, note that 2L1 � shortpRvq ¡
longpRvq, by our choice of u, and therefore in each two consecutive steps up
P , the semi-perimeter increases by at least

δ?
2L1

�alongpRvq ¥ δ

2
?
L1

�aφpRvq .

It now follows easily that after L2{p3?qq steps we have φpRvq ¥ 3L1B{q,
and hence shortpRvq ¥ B{q, as claimed.
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Since (10.27) does not hold, it follows that

L2?
q
¤ hpHq ¤ L1q

1{4

2
� longpRuq � L2

2
?
q
,

and hence we obtain (10.30), as required.

De�ne the upper trunk of H to be the following set of vertices4 of the
trunk:

uppHq :�  
u P V pGHq : u is in the trunk of H and shortpRuq ¥ B{q( .

The �nal lemma of this subsection bounds the sum of the semi-perimeters of
rectangles in the upper trunk when there does not exist a vertex u P V pGHq
satisfying (10.29).

Lemma 10.4.14. Let R be a rectangle with longpRq ¤ p1{p2qqq logp1{qq,
and let H P HR. Then either¸

uPuppHq
φpRuq ¤ L2

q3{2 ,

or there exists a vertex u P V pGHq such that

shortpRuq ¥ B

q
and longpRuq ¥ 4 � shortpRuq . (10.31)

Proof. If u P uppHq, and u does not satisfy (10.31), then by De�nition 10.4.2
(as in the proof of Lemma 10.4.12), in the next two consecutive steps up the
trunk either we reach the root v, or the semi-perimeter increases by at least

δ?
q

exp
�
q � φpRyq{5

�
.

Set x � L1{?q, and observe (cf. the proof of Lemma 10.4.12) that there
are at most 2�k�1x vertices u P uppHq with φpRuq ¥ pB � 5kq{q, for each
0 ¤ k ¤ log2 x. It follows that

¸
uPuppHq

φpRuq ¤
8̧

k�0

B � 5k

q
� x

2k�1
¤ L2

q3{2 ,

as required.

4Recall that trpHq denotes the set of edges of the trunk; we hope that this minor
inconsistency in our notation (which will be quite convenient) will not confuse the reader.
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10.4.5 The pods of a hierarchy

To �nish this section, let us recall the following important lemma from [225],
which is known as the `pod lemma', and prove a generalization which we be
useful in Section 10.5, below. Recall from (10.8) the de�nition of UpS,Rq.
Lemma 10.4.15 (Lemma 38 of [225]). Let H P HR. Then there exists a
rectangle S � R such that

dimpSq ¤
¸

wPLpHq
dimpRwq

and ¸
NGH puq�tvu

UpRv, Ruq ¥ UpS,Rq � 2
�
spHq � 1

�
qgp?qq .

Holroyd called the rectangle S the pod of H. Roughly speaking, his
Lemma 10.4.15 says that the `cost' of the growth (given the size of the seeds)
is minimized by placing all of the seeds near to one another, at the very
bottom of the hierarchy. However, when we are in the case corresponding
to (10.28) (or, more precisely, Lemma 10.4.13), we will need to make use of
the special rectangle Ru, which is somewhere in the middle of H. In order to
use the fact that this rectangle appears in the hierarchy when minimizing the
`cost' of growth, we instead form two pods: one corresponding to the growth
inside the special rectangle Ru, the other corresponding to the growth of this
rectangle to �ll R.

Lemma 10.4.16. Let H P HR and let u P V pGHq. Then there exist rec-
tangles S1 � Ru and Ru � S2 � R, such that

dimpS1q � dimpS2q � dimpRuq ¤
¸

wPLpHq
dimpRwq (10.32)

and ¸
NGH pvq�twu

UpRw, Rvq ¥ UpS1, Ruq � UpS2, Rq � 2
�
spHq � 1

�
qgp?qq .

(10.33)

The proof of Lemma 10.4.16 is essentially identical to Lemma 10.4.15,
and so we will give only a brief sketch here, and refer the reader to [225] for
the details.

Sketch proof of Lemma 10.4.16. We will use induction on the distance from
u to the root. Note �rst that when u is the root of H, then the claimed
conclusion follows from Lemma 10.4.15 by setting S1 � S and S2 � R. For
the induction step, we divide into cases according to whether the root has
one or two neighbours.
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Indeed, suppose �rst that the root has one neighbour, x, and apply the
induction hypothesis to the sub-hierarchy of H rooted at x to obtain pods
S1 and S2. Note that these pods satisfy (10.32), and also (10.33), since the
inequality

UpRx, Rq ¥ UpS2, Rq � UpS2, Rxq ,
follows immediately from the de�nition. On the other hand, if the root has
two neighbours, x and y, and u is a descendant of x, then we apply the
induction hypothesis to the sub-hierarchy of H rooted at x, giving pods S11
and S12, and Lemma 10.4.15 to the sub-hierarchy of H rooted at y, giving a
pod T . Set S1 :� S11, and choose S2, with

dimpS12q ¤ dimpS2q ¤ dimpS12q � dimpT q
and

UpS12, Rxq � UpT,Ryq ¥ UpS2, Rq � 2qgp?qq
by applying [225, Proposition 15], exactly as in the proof of [225, Lemma 38].
Noting that spHq � spHxq � spHyq, the inequalities (10.32) and (10.33)
follow.

10.5 Proof of Theorem 10.0.1

In this section we will put the pieces together and prove Theorem 10.0.1.
The main step is the proof of Theorem 10.1.1, which we restate (this time
with explicit constants) for convenience. Recall that IpRq denotes the event
that R is internally �lled by A.

Theorem 10.5.1. Let R be a rectangle with dimensions dimpRq � pa, bq,
and suppose that a ¤ b, and

3e2B

q
¤ b ¤ 1

2q
log

1

q
. (10.34)

Then

Pp
�
IpRq� ¤

exp

�
�min

"
2λ

q
� 1

q3{4 , pb� aqgpaqq � 2

q

» aq
0
gpzqdz � L6?

q

*

.

We will begin by giving an outline of the proof of Theorem 10.5.1, and
proving a couple of straightforward technical lemmas. Let us �x a rectangle
R as in the theorem until the end of its proof. The �rst step is to recall that

Pp
�
IpRq� ¤¸

HPHR

� 2¹
j�1

¹
uvPGpjqH

NGH puq�tvu

Pp
�
D

xpuvq
j pRv, Ruq

�
� ¹
uPLpHq

Pp
�
IpRuq

�

, (10.35)
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by Lemma 10.4.7, where we used the upper bound on longpRq from (10.34).
Recall that gpzq is decreasing, and (from De�nition 10.4.2) that shortpRuq ¤
q�1{2 for every leaf u P LpHq of a good hierarchy H. Therefore, if H P HR,
then

Pp
�
IpRuq

� ¤ 3φpRuq exp
�
� φpRuqgp?qq

	
(10.36)

for each leaf u P LpHq, by Lemma 10.2.2. Moreover, since dpRv, Ruq ¤
2fpRuq whenever NGHpuq � tvu, if Ru is j-critical for some j P t1, 2u, then

Pp
�
D

xpuvq
j pRv, Ruq

� ¤ C9

�
δ

fpRuq

}xpuvq}

exp
��QpRv, Ruq � 4φpRuqq

�
(10.37)

by Corollary 10.3.5, where QpRv, Ruq was de�ned in (10.9). Unfortunately,
however, some rectangles are neither 1- nor 2-critical, and we must deal with
these separately.

Lemma 10.5.2. The probability that there exists an internally �lled rectangle
S � R with

shortpSq ¤ B

q
and longpSq ¥ 3e2B

q
(10.38)

or an internally �lled rectangle S � R with

shortpSq ¤ 1

q
and longpSq ¥ B

2q
(10.39)

is at most e�2{q.

Proof. Observe that if S � R is internally �lled, then it must be crossed
from left to right, and from bottom to top. By Lemma 10.2.3, it follows that
if S satis�es (10.38) then

Pp
�
IpSq� ¤ exp

�
� longpSq � g�q � shortpSq�	 ¤ exp

�
� 3e2BgpBq

q



.

Recalling that gpzq � e�2z as z Ñ8 (and that B is large), and applying the
union bound, it follows that the probability that there exists such a rectangle
S is at most �

longpRq�4 � exp

�
�3e2BgpBq

q



¤ 1

2
� e�2{q .

The same bound (with the same proof, noting that B ¡ 4{gp1q, since B is
su�ciently large) holds if S satis�es (10.39). The result then follows by the
union bound.

Note that λ � π2{18   1, so by Lemma 10.5.2 we may assume that
R contains no internally �lled rectangle S satisfying (10.38) or (10.39). It
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follows that each rectangle Ru (where u P V pGHq) either satis�es the condi-
tion (10.12) of Lemma 10.3.3 (and hence is 1-critical), or satis�es the condi-
tion (10.13) of Lemma 10.3.4 (and hence is 2-critical). Note also that, since
b ¥ 3e2B{q, by (10.34), we may assume from now on that a ¥ B{q.

The next problem is that we would like Ru to be j-critical when uv P
G
pjq
H , and this is not necessarily the case. However, since D

xpuvq
2 pRv, Ruq �

D
xpuvq
1 pRv, Ruq, it is not a problem if uv P Gp2q

H � trpGHq for some u with
shortpRuq ¤ B{q. The next lemma bounds the probability that there exists

uv P Gp1q
H with NGHpuq � tvu and shortpRuq ¡ B{q.

Lemma 10.5.3. The probability that there exist two disjointly internally
�lled rectangles S1, S2 � R with

min
 

shortpS1q, shortpS2q
( ¥ B

q
(10.40)

is at most e�2{q�op1{qq.

This lemma is an almost immediate consequence of Holroyd's theorem
and the van den Berg�Kesten lemma. However, for convenience (since the
version we need is not explicitly stated in [225]) we will deduce it from the
following (very weak) consequence of [190, Proposition 15], which holds since
2λ � π2{9 ¡ 1.

Proposition 10.5.4. Let S � R be a rectangle with shortpSq ¥ B{q. Then
Pp
�
IpSq� ¤ e�1{q .

Proof of Lemma 10.5.3. By the van den Berg�Kesten inequality and Pro-
position 10.5.4, the probability that two given rectangles S1 and S2, each
with short side at least B{q, are disjointly internally �lled is at most e�2{q.
By the union bound, it follows that the probability that two such disjointly
internally �lled rectangles exist is at most�

longpRq�8
e�2{q � e�2{q�op1{qq ,

as claimed.

Note that if there exists a vertex u with shortpRuq ¥ B{q that is not
in the trunk, then there must exist a split vertex above u whose neig-
hbours are labelled with disjointly internally �lled rectangles S1 and S2 sa-
tisfying (10.40). Hence, by Lemma 10.5.3, and recalling that λ   1, we may
assume that every vertex u P V pGHq with shortpRuq ¥ B{q is in the trunk,
and hence uv P trpHq whenever NGHpuq � tvu and shortpRuq ¡ B{q. We
may therefore apply the inequality (10.37) to bound the probability of the

event D
xpuvq
j pRv, Ruq for each uv P Gpjq

H with NGHpuq � tvu. Setting
XpHq :�

¸
uPLpHq

φpRuq ,



10.5. PROOF OF THEOREM 10.0.1 325

it follows from (10.35), (10.36) and (10.37), and Lemmas 10.5.2 and 10.5.3,
that the probability that R is internally �lled is bounded from above by
e�2{q�op1{qq plus¸

HPH�
R

3XpHqe�XpHqgp
?
qq�

¹
NGH puq�tvu

C9

�
δ

fpRuq

}xpuvq}

exp
�
�QpRv, Ruq � 4φpRuqq

	
,

where H�
R denotes the set of hierarchies H P HR that contain no rectangle

satisfying either (10.38) or (10.39), and such that every vertex u P V pGHq
with shortpRuq ¥ B{q is in the trunk. By De�nition 10.4.8, this is at most¸

HPH�
R

wpHq � C9vpHq � 3XpHq � e�XpHqgp?qq�
¹

NGH puq�tvu
exp

�
�QpRv, Ruq � 4φpRuqq

	
. (10.41)

The rest of the proof of Theorem 10.5.1 is just a careful analysis of (10.41).

Proof of Theorem 10.5.1. As explained above, taking into account Lemmas
10.2.2, 10.4.7, 10.5.2 and 10.5.3, and Corollary 10.3.5, in order to prove the
theorem it will su�ce to bound (10.41). Let us set

ΛpHq :� wpHq � C9vpHq � 3XpHqe�XpHqgp?qq�¹
NGH puq�tvu

exp
�
�QpRv, Ruq � 4φpRuqq

	

for each H P H�
R, and write Hp1q

R for the set of H P H�
R such that

hpHq ¤ L2?
q

and
¸

uPuppHq
φpRuq ¤ L2

q3{2 , (10.42)

cf. Lemmas 10.4.12 and 10.4.14. Let us note that this is the most important
class of hierarchies, since it will turn out that the remaining hierarchies

H�
RzHp1q

R contribute only smaller order terms to (10.41). To slightly simplify
the formulae below, let us write

J pRq :� 2

q

» aq
0
gpzqdz � pb� aqgpaqq ,

where we recall that a � shortpRq and b � longpRq.
Claim 1:

¸
HPHp1q

R

ΛpHq ¤ exp

�
� J pRq � L5?

q



� e�2{q.
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Proof of Claim 1. The proof is a fairly standard (if somewhat complicated)
calculation, similar to, e.g., [190], the main new ingredient being the weighted
counting of Lemma 10.4.9. The �rst step is to deal with hierarchies with
XpHq ¡ 1{q, and to do so we will �rst show that

ΛpHq ¤ wpHq � C10vpHq � exp

�
� XpHq

5
log

1

q
� 4L2?

q



(10.43)

for every H P Hp1q
R . To see this, recall �rst that every vertex u with

shortpRuq ¥ B{q is in the trunk, and no rectangle that appears in H sa-
tis�es (10.38). It follows that shortpRuq ¤ B{q and longpRuq ¤ 3e2B{q for
every u R uppHq, and hence, by (10.42), we have¹

NGH puq�tvu
exp

�
4φpRuqq

� ¤ CvpHq exp
�
4L2{?q

�
, (10.44)

since C � CpBq ¡ 0 was chosen su�ciently large. Next, observe that

3XpHqe�XpHqgp
?
qq ¤ exp

�
�XpHq

4

�
log

1

34q
� 4q1{4




¤ exp

�
�XpHq

5
log

1

q



, (10.45)

since gp?qq ¥ logpq�1{4q � q1{4, by (10.4). Noting that QpRv, Ruq ¥ 0 for
every Rv � Ru, since gpzq is positive, and using (10.44) and (10.45), we
obtain (10.43), as claimed.

Now, recall that mpHq denotes the number of large seeds in a hierarchy
H, and that

vpHq ¤ 2 � hpHq �mpHq
by Observation 10.4.11, and observe that therefore

XpHq ¥ mpHq
3
?
q
� δpspHq �mpHqq

q1{4 ¥ vpHq
L3

� spHq
q1{5 , (10.46)

by Observation 10.4.10 and (10.42). We claim next that¸
HPHp1q

R :XpHq¡1{q
ΛpHq ¤ e�2{q . (10.47)

To prove (10.47), let us write

Hp1q
R pN,Mq :�  

H P Hp1q
R : vpHq � N, spHq �M

(
,

as in (10.26), and recall that, by Lemma 10.4.9,¸
HPHp1q

R pN,Mq
wpHq ¤ exp

�
16
�
N �M log φpRq�	 . (10.48)
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Combining (10.43) with (10.46) and (10.48), it follows that¸
HPHp1q

R
XpHq¡1{q

ΛpHq ¤
¸
N,M

¸
HPHp1q

R pN,Mq
XpHq¡1{q

wpHq � C10vpHq�

exp

�
� XpHq

5
log

1

q
� 4L2?

q



¤ e�2{q ¸

N,M

exp
�� CN �Mq�1{5� ¸

HPHp1q
R pN,Mq

wpHq

¤ e�2{q ¸
N,M

exp
��N �M

� ¤ e�2{q,

as claimed, where in the second step we used the bound XpHq ¡ 1{q " 1.
We will therefore assume from now on that

XpHq ¤ 1

q
. (10.49)

We next claim that

ΛpHq ¤ wpHq � C10vpHq � exp

�
� UpS,Rq

q
� XpHq

4
log

1

q
� 13L2 �XpHq



.

(10.50)
To prove this we repeat the proof of (10.43), being slightly less wasteful
in (10.45), and replacing the trivial bound QpS,Rq ¥ 0 by a more complica-
ted argument. To be more precise, recall that UpRv, Ruq ¤ q �QpRv, Ruq for
every Rv � Ru, by Lemma 10.2.8, and that therefore, by Lemma 10.4.15,
there exists a pod S, with φpSq ¤ XpHq, such that¸
NGH puq�tvu

QpRv, Ruq ¥
¸

NGH puq�tvu

UpRv, Ruq
q

¥ UpS,Rq
q

� 2spHqgp?qq .

(10.51)
Now, recall from (10.46) that we have XpHq ¥ spHq � q�1{5 " spHqgp?qq,
and note that XpHq ¥ 1{p3?qq, since every hierarchy in HR has at least
one large seed. Hence, by (10.44), (10.45) and (10.51), we obtain (10.50), as
claimed.

Now, by Lemma 10.2.7, we have

UpS,Rq
q

¥ 2

q

» aq
0
gpzqdz�pb�aqgpaqq� φpSq

2
log

�
1� 1

φpSqq


�O�φpSq� ,

since (10.49) implies5 that φpSq ¤ XpHq ¤ 1{q ¤ a, and hence

UpS,Rq
q

¥ J pRq � XpHq
2

log

�
1� 1

XpHqq


�O

�
XpHq� ,

5Recall that, by Lemma 10.5.2, we may assume that a ¥ B{q.
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since x ÞÑ x log
�
1� 1

x

�
is increasing. Combining this with (10.50), recalling

that vpHq ¤ L3 � XpHq, by (10.46), and noting that 1 � 1
XpHqq ¤ 2

XpHqq ,
by (10.49), we obtain

ΛpHq ¤ wpHq � exp

�
�J pRq � XpHq

2
log

XpHq?q
L4



(10.52)

where L4 � COpL3q. Finally, observe that, by (10.46) and (10.48), we have¸
HPHp1q

R :XpHq�x
wpHq ¤ exp

�
O
�
L3 � x

��
for any x P N. It follows that

¸
HPHp1q

R
XpHq¤1{q

ΛpHq ¤ e�J pRq
1{q̧

x�1{p3?qq
exp

�
�x

2
log

x
?
q

L4


 ¸
HPHp1q

R
XpHq�x

wpHq

¤ e�J pRq
1{q̧

x�1{p3?qq
exp

�
�x

2
log

x
?
q

L4
�O

�
L3 � x

�


¤ exp

�
�J pRq � L5?

q



,

where L5 � L4 � eOpL3q, since the summand decreases super-exponentially
quickly once x

?
q is larger than this. This completes the proof of Claim 1.

If H P H�
RzHp1q

R then, by Lemmas 10.4.12 and 10.4.14, there exists a
vertex u P V pGHq satisfying either (10.28) or (10.29). The rest of the proof
consists of bounding the contribution to (10.41) of hierarchies containing
such a vertex. In order to simplify the argument, it will be convenient to
�rst (in Claims 2 and 3) deal with those hierarchies in which either vpHq or
XpHq is unusually large. We then (in Claims 4 and 5) consider the remai-
ning hierarchies with an `abnormal' vertex, i.e., one satisfying either (10.28)
or (10.29).

We begin by considering hierarchies with unusually many vertices. Let

us write Hp2q
R for the set of H P H�

RzHp1q
R such that

vpHq ¥ 8 � spHq � 4L1

q3{4 . (10.53)

For such hierarchies we will prove the following stronger bound.

Claim 2:
¸

HPHp2q
R

ΛpHq ¤ e�2{q.
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Proof of Claim 2. The �rst step is to prove the following bounds,

|uppHq| ¤ L1?
q

log
1

q
and

¸
uPuppHq

φpRuq ¤ L1

q3{2

�
log

1

q


2

(10.54)

which replace those in (10.42), and hold for any H P HR. Both follow
immediately from the upper bound on b � longpRq in (10.34), and the
observation that in two consecutive steps of uppHq, the semi-perimeter of
the corresponding rectangles grows by at least δ{?q.

Now, for each H P Hp2q
R , consider the set YpHq of edges uv P GH such

that

shortpRuq ¤ B

q
, NGHpuq � tvu and |NGHpvq| � 1 .

We claim that

|YpHq| ¥ vpHq � 4spHq � |uppHq| ¥ vpHq
2

� L1

q3{4 . (10.55)

To see this, recall that H has spHq seeds and spHq � 1 split vertices, and
so there are at most 4spHq � 2 vertices u P V pGHq that are either seeds, or
split-vertices, or have a single out-neighbour that is a seed or a split vertex.
Moreover, H P H�

R implies that every vertex u P V pGHq with shortpRuq ¥
B{q is in the trunk. The second inequality follows from (10.53) and (10.54).

We next claim that

ΛpHq ¤ wpHq � C10vpHq � exp

�
4L1?
q

�
log

1

q


2

� δ2|YpHq|
q1{4



. (10.56)

The proof of this is similar to that of (10.43). Indeed, we obtain a slightly we-
aker bound in place of (10.44) by using (10.54) instead of (10.42), and (10.45)
still holds, and the right-hand side is at most 1. Moreover, H P H�

R implies
that longpRuq ¤ 3e2B{q for each edge uv P YpHq, and therefore

QpRu, Rvq ¥ δgp3e2Bq
q1{4 ¥ δ2

q1{4 ,

for each such edge, since dpRu, Rvq ¥ fpRuq ¥ δ
a

shortpRuq ¥ δq�1{4, by
De�nition 10.4.2 and (10.14), and since δ � δpBq was chosen su�ciently
small. Plugging these bounds into the de�nition of ΛpHq, we obtain (10.56).

By (10.55), it follows that

ΛpHq ¤ wpHq � exp

�
� δ3|YpHq|

q1{4



,
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and hence, by (10.55) and Lemma 10.4.9, and since φpRq ¤ 1{q2, we obtain

¸
HPHp2q

R

ΛpHq ¤
¸

y¥L1q�3{4

exp

�
� δ

3y

q1{4


 2y̧

M�1

2y̧

N�M

¸
HPHp2q

R pN,Mq
|YpHq|�y

wpHq

¤
¸

y¥L1q�3{4

exp

�
� δ

3y

q1{4


 2y̧

M�1

2y̧

N�M
exp

�
16
�
N � 2M log

1

q

	


¤
¸

y¥L1q�3{4

exp

�
� δ

4y

q1{4



¤ e�2{q,

as required.

We will next deal with those hierarchies for which XpHq is unusually

large. To be precise, let us de�ne Hp3q
R to be the set of H P H�

Rz
�
Hp1q
R YHp2q

R

�
such that

XpHq ¥ 1

L2q3{4 . (10.57)

For this class of hierarchies we will prove the following bound.

Claim 3:
¸

HPHp3q
R

ΛpHq ¤ exp

�
�J pRq � 1

q3{4



� e�2{q.

Proof of Claim 3. Let H P Hp3q
R , and observe that

vpHq ¤ 8 �spHq� 4L1

q3{4 and
¸

uPuppHq
φpRuq ¤ L1

q3{2

�
log

1

q


2

, (10.58)

where the �rst inequality holds since H R Hp2q
R , and the second holds for

any H P HR, by (10.54). We will repeat the proof of Claim 1, using the
bounds (10.58) instead of (10.42).

Indeed, note (cf. (10.44)) that¹
NGH puq�tvu

exp
�
4φpRuqq

� ¤ CvpHq exp

�
4L1?
q

�
log

1

q


2

, (10.59)

and hence, using (10.45), we obtain

ΛpHq ¤ wpHq � C10vpHq � exp

�
� XpHq

5
log

1

q
� 4L1?

q

�
log

1

q


2

.

Now, note that, by Observation 10.4.10 and the bounds (10.57) and (10.58),
we have

XpHq ¥ 1

L2
�max

"
spHq
q1{4 ,

1

q3{4

*
¥ vpHq

L3
,
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It follows, exactly as in the proof of Claim 1 (cf. the proof of (10.47)), that¸
HPHp3q

R :XpHq¡1{q
ΛpHq ¤ e�2{q .

We will therefore assume from now on that XpHq ¤ 1{q.
We now simply repeat the remainder of the proof of Claim 1, using the

bounds 1{pL2q
3{4q ¤ XpHq ¤ 1{q, to obtain

ΛpHq ¤ wpHq � exp

�
�J pRq � XpHq

2
log

XpHq?q
L4




for each H P Hp3q
R , and hence

¸
HPHp3q

R
XpHq¤1{q

ΛpHq ¤ e�J pRq
1{q̧

x�1{pL2q3{4q
exp

�
�x

2
log

x
?
q

L4


 ¸
HPHp3q

R
XpHq�x

wpHq

¤ e�J pRq
1{q̧

x�1{pL2q3{4q
exp

�
�x

2
log

x
?
q

L4
�O

�
L3 � x

�


¤ exp

�
�J pRq � 1

q3{4



,

as claimed.

We are now ready to deal with those hierarchies that travel `far from the
diagonal', i.e., that contain a vertex u satisfying either (10.28) or (10.29).
We will �rst consider the (easier) case in which u is in the upper trunk, i.e.,

shortpRuq ¥ B

q
and longpRuq ¥ 4 � shortpRuq . (10.60)

Let Hp4q
R be the set of hierarchies H P H�

Rz
�3
i�1H

piq
R containing a vertex u

such that (10.60) holds. For these hierarchies we will prove the following
bound.

Claim 4:
¸

HPHp4q
R

ΛpHq ¤ exp

�
�2λ

q
� 2

q3{4



.

Proof of Claim 4. Given H P Hp4q
R and u P V pHq satisfying (10.60), we claim

that

ΛpHq ¤ wpHq � exp

�
�J pRuq � L3

q3{4



. (10.61)
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To prove this, we will repeat the proof of Claim 1, with some minor changes.
First, note that (10.49) holds, and moreover

spHq
L1q1{4 ¤ XpHq ¤ 1

L2q3{4 , (10.62)

the �rst holding by Observation 10.4.10, and the second since H R Hp3q
R .

Now, applying Lemma 10.4.15 to Hu, the sub-hierarchy of H rooted at u,
and using (10.59) instead of (10.44), we obtain (cf. the proof of (10.50))

ΛpHq ¤ wpHq �C10vpHq � exp

�
� UpS,Ruq

q
� XpHq

5
log

1

q
� 4L1?

q

�
log

1

q


2 

for some pod S with φpSq ¤ XpHuq ¤ XpHq. Using (10.58) again (this time
to bound vpHq from above), and continuing to follow the proof of Claim 1,
we obtain

ΛpHq ¤ wpHq � exp

�
�J pRuq � XpHq

2
log

XpHqq3{5

L4
� L2

q3{4

�
instead of (10.52), which implies (10.61).

Now, let c � shortpRuq, and observe that

J pRuq ¥ 2

q

» cq
0
gpzqdz � 3cgpcqq ¥ 2

q

» 8

0
gpzqdz � 2cgpcqq ,

by (10.60) and (10.10), and since c ¥ B{q, and that

cgpcqq ¥ c

2
� e�2cq ¥ 1

4q3{4 log
1

q
,

where the �rst inequality holds since c ¥ B{q, and the second since 4c ¤
longpRq ¤ p1{p2qqq logp1{qq. Combining this with (10.61), it follows that

ΛpHq ¤ wpHq � exp

�
�2λ

q
� L3

q3{4



.

Hence, recalling that vpHq ¤ 5L1{q3{4 and spHq ¤ q�1{2 for every H P Hp4q
R ,

by (10.58) and (10.62), and applying Lemma 10.4.9, we obtain

¸
HPHp4q

R

ΛpHq ¤ exp

�
�2λ

q
� L3

q3{4


 1{q1{2¸
M�1

5L1{q3{4¸
N�M

¸
HPHp4q

R pN,Mq
wpHq

¤ exp

�
�2λ

q
� L3

q3{4


 1{q1{2¸
M�1

5L1{q3{4¸
N�M

exp

�
L2

q3{4



¤ exp

�
�2λ

q
� 2

q3{4



,

as claimed.
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Finally, we come to most technically challenging family of hierarchies:
those which contain a vertex u P V pGHq such that

shortpRuq ¤ B

q
and longpRuq ¥ 2L1 � shortpRuq . (10.63)

Let Hp5q
R denote the set of hierarchies H P H�

Rz
�4
i�1H

piq
R containing a vertex

u such that (10.63) holds. For this �nal class of hierarchies we will prove the
following bound.

Claim 5:
¸

HPHp5q
R

ΛpHq ¤ exp

�
�J pRq � 1

q3{4



.

Proof of Claim 5. Given a hierarchy H P Hp5q
R , let u P V pHq be a vertex

satisfying (10.63) with longpRuq maximal, and set c � shortpRuq and d �
longpRuq. We will prove that

ΛpHq ¤ wpHq � exp

�
�J pRq � 3Cd�XpHq log

1

XpHqq3{4



, (10.64)

from which the claim will follow easily, using Lemma 10.4.9.

In order to prove (10.64), we will need various bounds on c, d, hpHq, vpHq
and XpHq. Note �rst that H does not contain a vertex satisfying (10.60)

since H R Hp4q
R . It follows, by Lemmas 10.4.13 and 10.4.14, and since H R

Hp1q
R , that

L2?
q
¤ hpHq ¤ L1q

1{4d . (10.65)

Indeed, the lower bound holds since H R Hp1q
R implies that one of the ine-

qualities in (10.42) must fail to hold, and by Lemma 10.4.14, it must be the
bound on hpHq. The upper bound then follows by Lemma 10.4.13, and by
our choice of u (i.e., with longpRuq maximal).

We next claim that

vpHq ¤ d, c ¤ 1

q
and

1

q3{4 ¤ d ¤ B

2q
. (10.66)

Indeed, the lower bound on d follows immediately from (10.65), since L1 ¤
L2. To prove the other bounds, recall �rst that (since H P H�

R) the rectangle
Ru does not satisfy (10.38) or (10.39). Since c ¤ B{q, by (10.63), it follows
that d ¤ 3e2B{q, and hence

c ¤ d

L1
¤ 3e2B

L1q
¤ 1

q
.
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Now, since Ru does not satisfy (10.39), it follows that d ¤ B{p2qq, as claimed.
Finally, to prove the bound on vpHq, recall that

mpHq
3
?
q

¤ XpHq ¤ 1

L2q3{4 , (10.67)

by the de�nition of large seeds, and since H R Hp3q
R . Hence, by (10.65) and

Observation 10.4.11, we obtain

vpHq ¤ 2 � hpHq �mpHq ¤ 6L1q
3{4d �XpHq ¤ d ,

as claimed.
We now apply Lemma 10.4.16 to obtain two pods S1 � Ru and Ru �

S2 � R, such that

φpS1q � φpS2q � φpRuq ¤ XpHq (10.68)

and ¸
NGH pvq�twu

UpRw, Rvq ¥ UpS1, Ruq � UpS2, Rq � 2spHqqgp?qq .

Let S1 � S � S2 be a rectangle with

dimpSq � dimpS1q � dimpS2q � dimpRuq , (10.69)

so φpSq ¤ XpHq, by (10.68), and moreover UpS1, Ruq ¥ UpS, S2q, since gpzq
is decreasing.

Recalling that UpRw, Rvq ¤ q � QpRw, Rvq, by Lemma 10.2.8, and that
gp?qq ¤ logp1{qq, by (10.4), it follows that¸

NGH pvq�twu
QpRw, Rvq ¥ 1

q

�
UpS, S2q � UpS2, Rq

	
� 2spHq log

1

q
.

Hence, using (10.45), (10.59) and (10.62), we obtain

ΛpHq ¤ wpHq � C10vpHq�
exp

�
�1

q

�
UpS, S2q � UpS2, Rq

	
� XpHq

4
log

1

q
� 1

q3{4



. (10.70)

It only remains to bound UpS, S2q and UpS2, Rq; controlling UpS, S2q will
take some work, but we obtain a suitable bound on UpS2, Rq simply by
applying Lemma 10.2.5. Indeed, by (10.66), (10.67) and (10.69), we have

longpS2q ¤ φpSq � longpRuq ¤ XpHq � d ¤ 1

q3{4 �
B

2q
¤ a � shortpRq ,

(10.71)
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and therefore, setting s2 � shortpS2q and t2 � longpS2q, we may apply
Lemma 10.2.5, which gives

UpS2, Rq
q

¥ pt2 � s2qgpt2qq � 2

q

» aq
t2q
gpzqdz � pb� aqgpaqq . (10.72)

As noted above, we will have to work harder to obtain a suitable bound on
UpS, S2q; in particular, the bound we obtain will depend on whether or not
longpSq ¤ shortpS2q.
Case 1: longpSq ¤ shortpS2q.

This case is also straightforward, since we may apply Lemma 10.2.7,
which gives

UpS, S2q
q

¥ 2

q

» s2q
0

gpzqdz�pt2�s2qgps2qq�XpHq
2

log
2

XpHqq �O
�
XpHq� ,
(10.73)

where we used the inequalities φpSq ¤ XpHq ¤ 1{q. To show that this is
su�cient to deduce (10.64), we will use Lemma 10.2.10. Indeed, observe that

L1 � shortpS2q ¤ L1

�
c�XpHq� ¤ d ¤ longpS2q ¤ B

q
,

where the �rst inequality follows from (10.68) (since Ru � S2), the second
follows since 2L1 � c ¤ d, by (10.63), and L2 �XpHq ¤ q�3{4 ¤ d, by (10.66)
and (10.67), the third since Ru � S2, and the last by (10.71). Since d ¤ t2
it follows, by Lemma 10.2.10, that

2

q

» t2q
s2q

gpzqdz ¤ pt2 � s2q
�
gps2qq � gpt2qq

�� 4Cd .

Combining this with (10.72) and (10.73), it follows that

1

q

�
UpS, S2q � UpS2, Rq

	
¥ J pRq � 4Cd� XpHq

2
log

2

XpHqq �O
�
XpHq� .

Hence, by (10.70), and recalling from (10.66) that d ¥ maxtvpHq, q�3{4u ¥
XpHq, we obtain

ΛpHq ¤ wpHq � exp

�
�J pRq � 3Cd� XpHq

2
log

1

XpHq?q


,

which is slightly stronger than (10.64).

Case 2: longpSq ¡ shortpS2q.
This case is a bit more tricky, as the easiest path from S to S2 does

not reach the diagonal, see Figure 10.4. As a consequence, we cannot apply



336 Chapter 10: Two-neighbour bootstrap percolation

S

S2

plongpS2q, longpS2qq

pa, aq
pb, aq

plongpSq, longpSqq plongpS2q, longpSqq

Figure 10.4 � The easiest
path via which the rec-
tangle S can grow �rst
to S2, and then to R, in
Case 2 of Claim 5. In the
proof, the lower two thick
segments are replaced with
the lower dashed one, and
Lemma 10.2.10 is applied
to the shaded triangle.

Lemma 10.2.7 directly to bound UpS, S2q, nor can we apply Lemma 10.2.10
directly to the dimensions of S2. Instead, we observe that, setting t :�
longpSq, we have

UpS, S2q
q

¥ pt2 � tqgps2qq ¥ pt2 � tqgptqq ,

by Lemma 10.2.6, and since gpzq is decreasing. Combining this with (10.72),
we obtain

1

q

�
UpS, S2q � UpS2, Rq

	
¥

J pRq � 2

q

» t2q
0

gpzqdz � pt2 � s2qgpt2qq � pt2 � tqgptqq .

We will now apply Lemma 10.2.10 to the pair pt, t2q. Indeed, we have

L1 � longpSq ¤ L1 �XpHq ¤ d ¤ longpS2q ¤ B

q
,

where the �rst inequality follows since φpSq ¤ XpHq, and the others follow
as in Case 1. By Lemma 10.2.10, and since d ¤ t2, it follows that

2

q

» t2q
tq

gpzqdz ¤ pt2 � tq�gptqq � gpt2qq
�� 4Cd .

Note also that, by integrating (10.4), we have

2

q

» tq
0
gpzqdz ¤ t log

1

tq
�Optq .

Hence, recalling that s2   t ¤ φpSq ¤ XpHq, it follows that
1

q

�
UpS, S2q � UpS2, Rq

	
¥ J pRq � 4Cd�XpHq log

1

XpHqq �O
�
XpHq� .
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Hence, by (10.70), and since d ¥ maxtvpHq, q�3{4u ¥ XpHq, by (10.66), we
obtain (10.64).

It now only remains to deduce the claim from (10.64); we do so using
Lemma 10.4.9. Indeed, recalling that q�1{5spHq ¤ XpHq ¤ 1{pL2q

3{4q ¤
maxtvpHq, q�3{4u ¤ d ¤ B{q, by (10.62) and (10.66), we obtain¸

HPHp5q
R

ΛpHq

¤ e�J pRq
1{pL2q3{4q¸

x�1

�
1

q3{4x


x B{q̧

d�q�3{4

e�3Cd
q1{5ḑ

M�1

ḑ

N�M

¸
HPHp5q

R pN,Mq
wpHq

¤ e�J pRq�q�3{4
B{q̧

d�q�3{4

e�3Cd
q1{5ḑ

M�1

ḑ

N�M
exp

�
O
�
N �M logp1{qq�	

¤ e�J pRq�q�3{4
B{q̧

d�q�3{4

e�2Cd ¤ exp

�
�J pRq � 1

q3{4



,

as required. This concludes the proof of Claim 5.

Now, combining Claims 1�5, it follows that¸
HPH�

R

ΛpHq ¤ 3 � exp

�
�min

"
2λ

q
� 2

q3{4 , J pRq �
L5?
q

*

.

As was observed before the proof (see the discussion leading up to (10.41)),
this completes the proof of Theorem 10.5.1.

We are �nally ready to deduce Theorem 10.0.1 from Theorem 10.5.1.

Proof of Theorem 10.0.1. Recall that the upper bound was proved in [187];
we will prove the lower bound. Let n P N be su�ciently large and set

q :� λ

log n
� 4e4 � L6

plog nq3{2 ,

and note that the same is satis�ed by p � q �Θpq2q with a slightly smaller
constant. Suppose that rns2 is (internally) �lled. Then by the Aizenman�
Lebowitz lemma there exists an internally �lled rectangle R � rns2 with

1

4q
log

1

q
¤ longpRq ¤ 1

2q
log

1

q
.

There are at most n2plog nq3 rectangles satisfying those conditions, and each
one satis�es the conditions of Theorem 10.5.1. Hence, by the union bound
and Lemma 10.2.9 we have

Pp
�rAs � rns2� ¤ n2plog nq3 exp

�
�2λ

q
� 4e4 � L6?

q



Ñ 0
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as nÑ8, as required.

10.6 Open problems

The most obvious problem suggested by Theorem 10.0.1 is to determine
even more precise bounds on pc

�rns2, 2�. By a theorem of Balogh and Bol-
lobás [30], it is known that the `critical window' in which the probability of
percolation increases from op1q to 1 � op1q has size at most plog nq�2�op1q,
and it is therefore natural to make the following conjecture.

Conjecture 10.6.1. There exists a constant µ ¡ 0 such that

pc
�rns2, 2� � π2

18 log n
� µ� op1q
plog nq3{2

as nÑ8.

Another natural direction for future research would be to extend the
results of this chapter to higher dimensions. The following conjecture was
made by Uzzell [354], who also established the upper bound.

Conjecture 10.6.2 (Conjecture 7.1 of [354]).

pc

�
rnsd, r

	
�
�

λpd, rq
logpr�1q n

� Θp1q�
logpr�1q n

�3{2


d�r�1

.

As a �rst step, it would be interesting to determine whether or not this
conjecture holds in the case r � 2. In particular, one might hope that the
conjecture in this case would follow from a suitable generalization of the
technique used in this chapter.

However, perhaps the most interesting avenue for further research would
be to prove corresponding `sharp' and `sharper' thresholds for other two-
dimensional models, cf. the discussion of U-bootstrap percolation in the In-
troduction. It would be very interesting (and, most likely, very challenging)
to determine a sharp threshold for all families with polylogarithmic critical
probability, or a `sharper' threshold for either some large class of models (e.g.,
that studied in [125], or a corresponding class of `unbalanced' models), or for
other speci�c interesting examples, such as the Duarte model (see [69]). The
problem in higher dimensions is also extremely interesting, but much more
di�cult, and proving even much weaker bounds on the critical probability
for general U-bootstrap models (see, for example, [280, Conjecture 1.6]) is
an important open problem.
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Appendix

10.A Proof of Lemmas 10.3.3 and 10.3.4

In this appendix we complete the proofs of Lemmas 10.3.3 and 10.3.4, by
dealing with the cases that were omitted from the sketch proofs given in
Section 10.3. The details are somewhat tedious but, for the convenience of
the diligent (or sceptical) reader, we will attempt to spell everything out
slowly and carefully.

For the entire Section 10.A we �x a rectangle R � rp0, 0q, pa� 1, b� 1qs.
Recall from De�nition 10.3.1 that if S � R is a rectangle, then we write

zpS,Rq � |ZpS,Rq| � �� d P I : BdpS,Rq � H(�� ,
where I � tp�1, 0q, p1, 0q, p0,�1q, p0, 1qu is the set of directions and BdpS,Rq
is the bu�er in direction d. Recall also that if x P t0, 1uI and S � R is a
rectangle, then

x � x1p1,0q � x1p�1,0q and y � x1p0,1q � x1p0,�1q , (10.74)

where x1 :� x � 1ZpS,Rq. For convenience, let us begin by restating the two
key lemmas.

Lemma 10.A.1 (Lemma 10.3.3 restated). Let x P t0, 1uI and S � R be a
rectangle with dimS � pa� s, b� tq and set z � zpS,Rq. If

L1 ¤ shortpRq ¤ B

q
and longpRq ¤ 3e2B

q
, (10.75)

and s, t ¤ 4δ
a

shortpRq, then

Pp
�
Dx

1 pS,Rq
� ¤ Cz

�
C?
a


y � C?
b


x
exp

�� sgpbqq � tgpaqq� .
Lemma 10.A.2 (Lemma 10.3.4 restated). Let x P t0, 1uI and S � R be a
rectangle with dimS � pa� s, b� tq and set z � zpS,Rq. If

shortpRq ¡ B

q
and longpRq ¤ 1

2q
log

1

q
(10.76)

and s, t ¤ 4δ?
q
� exp

�
shortpRq � q�, then

Pp
�
Dx

2 pS,Rq
� ¤�

CeshortpRqq
	z �

C
?
qe�aq

�y �
C
?
qe�bq

	x
exp

�� sgpbqq � tgpaqq� .



340 Chapter 10: Two-neighbour bootstrap percolation

We begin with a straightforward technical lemma, which will be required
in both proofs.

Lemma 10.A.3. Let 15 ¤ D ¤ 4δ{q, a, b ¤ p1{p2qqq logp1{qq, and s, t ¤ D
with t ¤ minta, bu. Then, for any x, y P t0, 1, 2u, we have

exp
�� 3Dgptqq� ¤ �

1?
a


y � 1?
b


x
exp

�� sgpbqq � tgpaqq�
and

exp
�� 3Dgptqq� ¤ �?

qe�aq
�y �?

qe�bq
	x

exp
�� sgpbqq � tgpaqq� .

Proof. Observe �rst that �3gptqq ¤ logptqq ¤ logpDqq, by (10.4) and since
t ¤ D ¤ 4δ{q. Noting that D logpDqq is decreasing in D, it follows that

exp
��Dgptqq� ¤ exp

�
5 logp15qq� ¤ q4 ¤ min

"
1

ab
, q2e�2qpa�bq

*
,

where in the last step we used the bound a, b ¤ p1{p2qqq logp1{qq. Moreover,
we have

exp
�� 2Dgptqq� ¤ exp

�� sgpbqq � tgpaqq� ,
since s, t ¤ D and t ¤ minta, bu, and recalling that g is decreasing. Combi-
ning these two inequalities we obtain the two claimed bounds.

Proof of Lemma 10.A.1. Recall that Dx
1 pS,Rq denotes the event that�

S Y �
AXRzSx

�

�� � R .

Let a, b satisfy (10.75), and for each x, y, z and each s, t ¤ 4δ
a

minta, bu, set

F x,y,zps, tq :� Cz
�
C?
a


y � C?
b


x
exp

�� sgpbqq � tgpaqq� .
We will prove, by induction on the pair ps� t,�px� yqq, that

Pp
�
Dx

1 pS,Rq
� ¤ F x,y,zps, tq (10.77)

for every 0 ¤ s, t ¤ 4δ
a

minta, bu and x P t0, 1uI , and every S � R with
dimpSq � pa � s, b � tq, where x and y are as de�ned in (10.74), and z �
zpS,Rq.

The base of the induction, the case mints, tu � 0, was dealt with in
Section 10.3, so let us �x x P t0, 1uI and S � R with dimpSq � pa� s, b� tq,
and assume that (10.77) holds for all smaller values of the pair ps�t,�px�yqq
in lexicographical order.

Note �rst that, since shortpRq ¥ L1, the function F
x,y,zps, tq is increasing

in z and decreasing in x, y, s and t. Note also that we may assume, without
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S

D

a

b

3D

b� t

a� s

R

Figure 10.5 � The 8 rectangles, one of which
must have a `short' double gap if φpT q is
large. Each has width at mostD and length
3D � 1. Note that 9D ¤ shortpRq, so the
rectangles do not overlap.

loss of generality, that x � x � 1ZpS,Rq (i.e., that xd � 0 whenever the bu�er
BdpS,Rq is empty), since neither side of the inequality (10.77) depends on
the value of xd if d R ZpS,Rq.

We partition into cases, depending on whether or not z � x� y.

Case 1: z � x� y, i.e., all of the non-empty bu�ers are included in Sx
� .

The key observation in this case is that if the event Dx
1 pS,Rq holds, then

there exists a rectangle T � R such that�
AX T zSx

�

� � T and T X Sx
� � H (10.78)

(see Figure 10.6a). In Section 10.3 we assumed that φpT q ¤ 36fpRq �
36δ

a
minta, bu, so let us begin by dealing with the other case. To do so, the

key observation is that, since T is internally �lled by the infected sites in
T zSx

�, one of the eight rectangles in Figure 10.5 has no double gap crossing
it in the `short' direction. To be more precise, set D :� 4δ

a
minta, bu (so, in

particular, s, t ¤ D and 9D ¤ minta, bu) and consider the p3D � 1q � p¤ tq
rectangle �rD, 4Ds � r0, t� 1s�X �

RzS� ,
which is located at the bottom and to the left of Figure 10.5.

By Lemmas 10.2.3 and 10.A.3, the probability that this rectangle con-
tains no vertical double gap is at most

exp
��3Dgptqq� ¤ �

1?
a


y � 1?
b


x
exp

��sgpbqq�tgpaqq� ¤ 1

C
�F x,y,zps, tq .

Applying the same argument to the other seven rectangles in Figure 10.5, we
may assume that each is either empty, or contains a double gap crossing it
in the short direction. But in this case any rectangle satisfying (10.78) must
be contained in a square of size p4D�1q�p4D�1q in one of the four corners
of R, and it is therefore not possible that it has semi-perimeter greater than
9D, as required.

We will now sum over choices of T with φpT q ¤ 9D the probability that�
AX T zSx

�

� � T and
�
S Y T Y �

AXRzSx
�

�� � R . (10.79)
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Sx
�

R

T

i

j

u1

(a) The rectangle T is internally �lled
outside the shaded Sx

� and allows S
to grow i to the right and j upwards.
Since there is an infected site u1 P J
(in the hatched region), but not in the
double hatched set (so Jpu1q is empty),
in this case we have E � tu1u.

Sx
�

j

R

u1

(b) In Algorithm 10.A.5, the rectangle
S grows j steps to the right until it rea-
ches either paq the right-hand side of R,
pbq a double gap, or pcq an infected site
u1 in the hatched region (here xp0,1q �
xp�1,0q � 1 and xp1,0q � xp0,�1q � 0).
In the �gure case pcq occurs, and hence
`p0,1q � 1. The double hatched site
in the top-left corner is not occupied,
so the set Jp�1,0q is empty and hence
`p�1,0q � 0. It follows that E � tu1u in
this case.

Figure 10.6 � The two possible growth mechanisms.

Note that these two events depend on disjoint sets of infected sites, and are
therefore independent. To bound the probabilities of these events, we will
partition according to k :� φpT q, and the dimensions of rS Y T s,

dim
�rS Y T s� � pa� s� i, b� t� jq .

It was proved in Section 10.3 that, given i, j and k, the expected number
of rectangles T satisfying the �rst event in (10.79) is at most p24kpqk{2.
Bounding the probability of the second event in (10.79) is unfortunately
rather more complicated, and will require the induction hypothesis, and a
careful analysis of the possible positions of elements of A in the bu�ers of
rS Y T s. Recall that the case in which there are no infected sites in the
bu�ers was analyzed in Section 10.3.

In order to deal systematically with all of the possible cases, we run the
following algorithm. For simplicity we assume that T contains the top right
corner of Sx

� (as in Figure 10.6a); the same bound follows in the other three
cases by symmetry.

Algorithm 10.A.4. We de�ne a set E � RzrS Y T s of size 0, 1 or 2, as
follows:

1. If the set

J :� AX �
Bp�1,0qprS Y T s, Rq YBp0,�1qprS Y T s, Rq�zSx

�

is empty, then set E :� H.
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2. Otherwise, choose d P tp�1, 0q, p0,�1qu and u1 P J X BdprS Y T s, Rq.6
Now, if

Jpu1q :� AXBd1
�rS Y T Y tu1us, R

�zSx
�

is empty, where td,d1u � tp0,�1q, p�1, 0qu, then set E :� tu1u.
3. Otherwise, choose u2 P Jpu1q, and set E :� tu1, u2u.

We now partition the second event in (10.79) according to the set E, and
apply the induction hypothesis to the rectangle

ŜpEq :� rS Y T Y Es .
Recall that the case E � H was dealt with in Section 10.3, so we may assume
that |E| P t1, 2u. It is possible to deal with these two cases at the same time,
but to simplify the notation we will take them one at a time.

Indeed, suppose �rst that |E| � 2. Then, by the induction hypothesis, it
follows that7

Pp
��
ŜpEq Y �

AXRzSx
�

�� � R
	
¤ F x�2,y�2,zps� i� 2, t� j � 2q .

Now, recalling that k � φpT q, note that there are at most p2kq2 choices
for the set E. Hence, recalling that the expected number of rectangles T
satisfying the �rst event in (10.79) is at most p24kpqk{2, it will su�ce (in this
case) to show (cf. (10.18)) that

¸
i�j¥4

36fpRq¸
k�i�j

4k2p2 � p24kpqk{2 � F x�2,y�2,zps� i� 2, t� j � 2q ! F x,y,zps, tq .
(10.80)

To see this, note �rst that 24kp ¤ δ, since k ¤ 36δ
a

minta, bu ¤ q�1{2, and
that we may therefore assume that k � i� j. Now, observe that

F x�2,y�2,zps� i� 2, t� j � 2q
F x,y,zps, tq � ab

C4
� epi�2qgpbqq�pj�2qgpaqq

¤ ab

C4

�
C

bq


pi�2q{2 � C

aq


pj�2q{2

by (10.5), since maxta, bu ¤ 3e2B{q. Since i�j � k, and recalling that p ¤ q
and that minta, bu ¥ maxtL1, C

3ku, we obtain
36fpRq¸
k�4

¸
i�j�k

4k2 � p24kpqk{2 � 1

C2

�
C

bq


i{2 � C

aq


j{2
¤

36fpRq¸
k�4

4k3 � pC2kqk{2
minta, buk{2

¤ C5

minta, bu2
,

6Whenever we have a choice to make in either algorithm, we choose the �rst direction
/ site of A in some (arbitrary) pre-de�ned order on I / the sites in R.

7Note that we used here the bound zpŜ, Rq ¤ zpS,Rq, and the monotonicity of F in
z, s, t.
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which implies (10.80).
The argument for the case |E| � 1 is almost the same. Observe �rst

that, by symmetry, we may assume that u1 P Bp0,�1qprS Y T s, Rq, as in
Figure 10.6a. Noting that the set Jpu1q (in Algorithm 10.A.4) is empty, it
follows from the induction hypothesis that

Pp
��
ŜpEq Y �

AXRzSx
�

�� � R
	
¤ F x�1,y�2,zps� i, t� j � 2q .

There are at most 2k choices for the vertex u1, so it will su�ce (in this case)
to show that¸
i�j¥4

36fpRq¸
k�i�j

2kp � p24kpqk{2 �F x�1,y�2,zps� i, t�j�2q ! F x,y,zps, tq . (10.81)

Since 24kp ¤ δ, we may again assume that k � i� j. Now, observe that

F x�1,y�2,zps� i, t� j � 2q
F x,y,zps, tq � a

?
b

C3
� eigpbqq�pj�2qgpaqq

¤ a
?
b

C3

�
C

bq


i{2 � C

aq


pj�2q{2

by (10.5), since maxta, bu ¤ 3e2B{q. Since i ¥ 1, we obtain

36fpRq¸
k�4

¸
i�j�k

2k � p24kpqk{2 �
?
b

C2

�
C

bq


i{2 � C

aq


j{2
¤

36fpRq¸
k�4

2k2 � pC2kqk{2
minta, bupk�1q{2

¤ C5

minta, bu3{2 ,

which implies (10.81), since minta, bu ¥ maxtL1, C
3ku. This completes the

proof in Case 1.

Case 2: z ¡ x� y, i.e., some non-empty bu�er is not included in Sx
� .

Without loss of generality, let Bp1,0qpS,Rq be a non-empty bu�er that is
not included in Sx

� , so xp1,0q � 0. As explained in the sketch proof, the idea
is to `grow' S to the right until we �nd a double gap, an infected site in one
of the bu�ers, or reach the right-hand side of R, thus leading either to an
increase in x � y, or a decrease in s � t. In Section 10.3 we dealt with the
cases in which we �nd a double gap before reaching the right-hand side, and
that before doing so we do not �nd any infected sites in the bu�ers above or
below S. Here we will deal with the other cases.

Algorithm 10.A.5. We de�ne a set E � RzSx
� of size 0, 1, 2 or 3, and also

an integer j P t0, . . . , su and a variables `d P t0, 1u for each direction d P I,
as follows:8

8Initially E � H and `d � 0 for every direction d P I.
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1. Set S̃ :� �j
i�0

�
S � pi, 0q� and x̃ :� x� 1p1,0q, where

j :� min
 
i ¥ 0 : AXRX �

S � pi� 2, 0q�z�S � pi, 0q� � H(
.

If the set AX S̃x̃
� zSx

� is empty, then go to Step 8.

2. Set S̃ :� �j
i�0

�
S � pi, 0q�, where j is minimal such that S̃zS is crossed

from left to right, and�
AX S̃x̃

�

�z�Sx
� YBp1,0qpS̃, Rq

� � H .

3. Now, if xp0,1q � 1 and the set9

Jp0,1q :� AX
��
Bp0,1qpS̃, RqzBp0,1qpS,Rq

�Y tvp1,1qu	
is non-empty, then add a site up0,1q P Jp0,1q to E, and set `p0,1q :� 1.

4. Similarly, if xp0,�1q � 1 and the set

Jp0,�1q :� AX
��
Bp0,�1qprS̃ Y Es, RqzBp0,�1qpS,Rq

�Y tvp1,�1qu
	

is non-empty, then add a site up0,�1q P Jp0,�1q to E, and set `p0,�1q :� 1.

5. If xp0,1q � 1 and E � tvp1,�1qu, and the set10

J 1p0,1q :� AX
��
Bp0,1qprS̃ Y Es, RqzBp0,1qpS,Rq

�	
is non-empty, then add a site up0,1q P J 1p0,1q to E, and set `p0,1q :� 1.

6. If xp�1,0q � 0 then go to Step 8. Otherwise, if the set

Jp�1,0q :� AXBp�1,0qprS̃ Y Es, RqzSx
�

is non-empty, then add a site up�1,0q P Jp�1,0q to E, and set `p�1,0q :� 1.

7. If either `p0,1q � `p0,�1q � xp0,1q � xp0,�1q or `p�1,0q � 0 then go to Step 8.
Otherwise:

paq If `p0,1q � 1 and `p0,�1q � 0, and the set

Jp�1,�1q :� AXBp0,�1qprS̃ Y Es, RqzSx
�

is non-empty, then add a site up�1,�1q P Jp�1,�1q to E and set `p0,�1q :�
1.

9For each i P t1,�1u, let vp1,iq denote the unique `corner' site in RzS̃ with a neighbour
in each of the bu�ers Bp1,0qpS̃, Rq and Bp0,iqpS̃, Rq.

10Note that this set has at most one element.
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pbq If `p0,1q � 0 and `p0,�1q � 1, and the set

Jp�1,1q :� AXBp0,1qprS̃ Y Es, RqzSx
�

is non-empty, then add a site up�1,1q P Jp�1,1q to E and set `p0,1q :� 1.

8. Set Ŝ :� rS̃ Y Es and STOP.

Observe that Algorithm 10.A.5 outputs a set E and an integer j (which
together determine the sets S̃ and Ŝ, and the variable `d for each d P I)
with the following properties:

paq E � A;

pbq rS Y pAX S̃qs � S̃;

pcq On the event Dx
1 pS,Rq the event Dx̂

1 pŜ, Rq occurs, i.e.,�
Ŝ Y �

AXRzŜx̂
�

�� � R ,

where x̂ � x � `, except in the case treated in Section 10.3, in which
x̂ � x� 1p1,0q.

We will analyse each case individually, and sum over all possible sets E and
j P t0, . . . , su.

Suppose �rst that E � H. In Section 10.3 we dealt with this case, under
the additional assumption that Bp1,0qpŜ, Rq � H (i.e., we found a double gap
before reaching the right-hand side of R); here we will deal with the other
case (i.e., that Ŝ reaches the right-hand side of R). To do so, we need to
bound the probability that

rS Y pAX S̃qs � S̃ and Dx̂
1 pŜ, Rq ,

where in this case Ŝ � S̃ and x̂ � x. Note that these two events depend on
disjoint sets of sites, and are therefore independent; we will bound the �rst
using Lemma 10.2.3, and the second using the induction hypothesis. Indeed,
by Lemma 10.2.3 (and since gpzq is decreasing) we have

Pp
�rS Y pAX S̃qs � S̃

� ¤ exp
�� jgpbqq� ,

and by the induction hypothesis (since Bp1,0qpŜ, Rq � H and E � H),

Pp
�
Dx

1 pŜ, Rq
� ¤ F x,y,z�1ps� j, tq .

Thus, the probability that E � H, Bp1,0qpŜ, Rq � H and Dx
1 pS,Rq is at

most11

exp
�� jgpbqq�F x,y,z�1ps� j, tq � 1

C
� F x,y,zps, tq

11Note that there is a unique possible value of j for which Bp1,0qpŜ, Rq � H.
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which su�ces since C is su�ciently large.

We will therefore assume from now on that E � H, which means that
before reaching a double gap (when trying to grow S rightwards, forming
S̃), we �nd an infected site in either the bu�er above or below S̃. More
precisely, recall that S̃ :� �j

i�0

�
S � pi, 0q�, where j is minimal such that

S̃zS is crossed from left to right, and�
AX S̃x̃

�

�z�Sx
� YBp1,0qpS̃, Rq

� � H ,

where x̃ � x � 1p1,0q. Note that xp0,1q � xp0,�1q ¥ 1, and that moreover
`p0,1q � `p0,�1q ¥ 1 (since the set above is non-empty).

Suppose �rst that |E| � 1, and therefore (without loss of generality) we
have `p0,1q � 1, E � tup0,1qu and `p0,�1q � `p�1,0q � 0. This implies that the
(independent) events

up0,1q P A, rS Y pAX S̃qs � S̃ and Dx̂
1 pŜ, Rq

occur, where x̂ � x�1p0,1q. Given j, it follows from the minimality of j that
there are at most four choices for up0,1q, so

Pp
� 
up0,1q P A

(X  rS Y pAX S̃qs � S̃
(	 ¤ 4p exp

�� jgpbqq� .
Suppose �rst that up0,1q � vp1,1q. In this case, by the induction hypothesis,
we have

Pp
�
Dx̂

1 pŜ, Rq
� ¤ F x,y�1,zps� j, t� 2q ,

and so the probability in this case can be bounded by

ş

j�0

4p exp
�� jgpbqq�F x,y�1,zps� j, t� 2q ¤ 4ps� 1qp?a

C
e2gpaqq �F x,y,zps, tq .

Recalling that s ¤ 4δ
?
a and that e2gpaqq ¤ C{aq, by (10.5), and recalling

that δ is su�ciently small, we obtain a suitably strong bound in this case.
Similarly, if up0,1q � vp1,1q, then the induction hypothesis gives

Pp
�
Dx̂

1 pŜ, Rq
� ¤ F x,y�1,zps� j � 1, t� 1q ,

and so the probability in this case can be bounded by

ş

j�0

4p exp
�� jgpbqq�F x,y�1,zps� j � 1, t� 1q ¤

4ps� 1qp?a
C

egpaqq�gpbqq � F x,y,zps, tq .
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Since s ¤ 4δ
?
b and egpaqq�gpbqq ¤ C{pq?abq, we again obtain a suitable

bound.

In all remaining cases we win easily, since each extra infected site is
extremely expensive. Nevertheless, we will go carefully through each case.
Indeed, suppose next that |E| � 2, so (without loss of generality) either

paq `p0,1q � `p0,�1q � 1, `p�1,0q � 0, and E � tup0,1q, up0,�1qu, or

pbq `p0,1q � `p�1,0q � 1, `p0,�1q � 0, and E � tup0,1q, up�1,0qu.
In case paq, the (independent) events

E � A, rS Y pAX S̃qs � S̃ and Dx̂
1 pŜ, Rq

occur, where x̂ � x�1p0,1q�1p0,�1q. Given j, there are at most �ve choices
for each element of E, so

Pp
�
E � A and rS Y pAX S̃qs � S̃

� ¤ p5pq2 exp
�� jgpbqq� .

Suppose �rst that the set E X tvp1,1q, vp1,�1qu is empty. In this case, by the
induction hypothesis, we have

Pp
�
Dx̂

1 pŜ, Rq
� ¤ F x,y�2,zps� j, t� 4q ,

and so the probability in this case can be bounded by

ş

j�0

p5pq2e�jgpbqq � F x,y�2,zps� j, t� 4q ¤ 25ps� 1qp2a

C2
e4gpaqq � F x,y,zps, tq .

Since s ¤ 4δ
?
a and e2gpaqq ¤ C{aq, we win (easily) in this case. Similarly, if

the set EXtvp1,1q, vp1,�1qu is non-empty, then the induction hypothesis gives

Pp
�
Dx̂

1 pŜ, Rq
� ¤ F x,y�2,zps� j � 1, t� 3q ,

and so the probability in this case can be bounded by

ş

j�0

p5pq2e�jgpbqq � F x,y�2,zps� j � 1, t� 3q ¤

25ps� 1qp2a

C2
e3gpaqq�gpbqq � F x,y,zps, tq .

Since s ¤ 4δ
?
b and e3gpaqq�gpbqq ¤ C2{pq2

?
a3bq, we again obtain a suitable

bound.
In case pbq, the (independent) events

E � A, rS Y pAX S̃qs � S̃ and Dx̂
1 pŜ, Rq
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occur, where x̂ � x�1p0,1q�1p�1,0q. Given j, there are at most four choices
for each element of E, so

Pp
�
E � A and rS Y pAX S̃qs � S̃

� ¤ p4pq2 exp
�� jgpbqq� .

Suppose �rst that up0,1q � vp1,1q. In this case, by the induction hypothesis,
we have

Pp
�
Dx̂

1 pŜ, Rq
� ¤ F x�1,y�1,zps� j � 2, t� 2q ,

and so the probability in this case can be bounded by

ş

j�0

p4pq2e�jgpbqq � F x�1,y�1,zps� j � 2, t� 2q ¤

16ps� 1qp2
?
ab

C2
e2gpaqq�2gpbqq � F x,y,zps, tq .

Since s ¤ 4δ
?
a and e2gpaqq�2gpbqq ¤ C2{pabq2q, we are done in this case, as

before. Similarly, if up0,1q � vp1,1q, then the induction hypothesis gives

Pp
�
Dx̂

1 pŜ, Rq
� ¤ F x�1,y�1,zps� j � 3, t� 1q ,

and so the probability in this case can be bounded by

ş

j�0

p4pq2e�jgpbqq � F x�1,y�1,zps� j � 3, t� 1q ¤

16ps� 1qp2
?
ab

C2
egpaqq�3gpbqq � F x,y,zps, tq .

Since s ¤ 4δ
?
b and egpaqq�3gpbqq ¤ C2{pq2

?
ab3q, we again obtain a suitable

bound.

Finally, suppose that |E| � 3, and observe that `p0,1q � `p0,�1q � `p�1,0q �
1 and, without loss of generality, either

paq E � tup0,1q, up0,�1q, up�1,0qu, or

pbq E � tup0,1q, up�1,0q, up�1,�1qu.
In either case, the (independent) events

E � A, rS Y pAX S̃qs � S̃ and Dx̂
1 pŜ, Rq

occur, where x̂ � x � 1p0,1q � 1p0,�1q � 1p�1,0q � 0. Given j, there are at
most six choices for each element of E, so

Pp
�
E � A and rS Y pAX S̃qs � S̃

� ¤ p6pq3 exp
�� jgpbqq� .
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Suppose �rst that the set E X tvp1,1q, vp1,�1qu is empty. In this case, by the
induction hypothesis, we have

Pp
�
Dx̂

1 pŜ, Rq
� ¤ F x�1,y�2,zps� j � 2, t� 4q ,

and so the probability in this case can be bounded by

s�1̧

j�0

p6pq3e�jgpbqq � F x�1,y�2,zps� j � 2, t� 4q ¤

63sp3a
?
b

C3
e4gpaqq�2gpbqq � F x,y,zps, tq .

Since s ¤ 4δ
?
a and e4gpaqq�2gpbqq ¤ C3{pq3a2bq, we again win easily in

this case. Similarly, if E X tvp1,1q, vp1,�1qu is non-empty, then the induction
hypothesis gives

Pp
�
Dx̂

1 pŜ, Rq
� ¤ F x�1,y�2,zps� j � 3, t� 3q ,

and so the probability in this case can be bounded by

s�1̧

j�0

p6pq3e�jgpbqq � F x�1,y�2,zps� j � 3, t� 3q

¤ 63sp3a
?
b

C3
e3gpaqq�3gpbqq � F x,y,zps, tq .

Since s ¤ 4δ
?
b and e3gpaqq�3gpbqq ¤ C3{pq3

?
a3b3q, we again obtain a suitable

bound.

Summing over the various cases completes the proof of Lemma 10.A.1.

The proof of Lemma 10.A.2 is very similar to that of Lemma 10.A.1,
and we will be able to reuse large parts of the proof (in particular Algo-
rithms 10.A.4 and 10.A.5).

Proof of Lemma 10.A.2. Recall that Dx
2 pS,Rq denotes the event that�

S Y �
AXRzSx

�

�� � R and AX Sx
� � H .

As in the proof of Lemma 10.A.1, we use induction on the pair ps� t,�px�
yqq, this time to prove that

Pp
�
Dx

2 pS,Rq
� ¤ F̂ x,y,zps, tq ,

where

F̂ x,y,zps, tq :��
CeshortpRqq

	z �
C
?
qe�aq

�y �
C
?
qe�bq

	x
exp

�� sgpbqq � tgpaqq� ,
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for every 0 ¤ s, t ¤ 4δ � q�1{2 � exp
�

minta, bu � q� and x P t0, 1uI , and
every S � R with dimpSq � pa � s, b � tq, where x and y are as de�ned
in (10.74), and z � zpS,Rq. The base of the induction remains unchanged
from Lemma 10.A.1.

As in the proof of Lemma 10.A.1, we partition into cases depending on
whether or not z � x � y, the function F̂ x,y,zps, tq is increasing in z and
decreasing in x, y, s and t, and we may assume without loss of generality
that x � x � 1ZpS,Rq.
Case 1: z � x� y, i.e., all of the non-empty bu�ers are included in Sx

� .

As in Lemma 10.A.1, the event Dx
2 pS,Rq requires the existence of a

rectangle T such that�
AX T zSx

�

� � T and T X Sx
� � H .

The �rst step is to apply Lemma 10.A.3, as in the proof of Lemma 10.A.1,
to exclude rectangles T with φpT q ¡ 9D, where this time we set D :�
4δ � q�1{2 � exp

�
minta, bu � q�. It follows from (10.76) that s, t ¤ D ¤ 4δ{q

and 9D ¤ minta, bu, and we may therefore argue exactly as before, except
using the second inequality in Lemma 10.A.3, which gives

exp
�� 3Dgptqq� ¤ �?

qe�aq
�y �?

qe�bq
	x

exp
�� sgpbqq � tgpaqq�

¤ 1

C
� F̂ x,y,zps, tq .

We will therefore assume from now on that φpT q ¤ 9D, and sum over
choices of T with φpT q ¤ 9D the probability that�
AXT zSx

�

� � T,
�
SYTY�

AXRzSx
�

�� � R and AXSx
� � H . (10.82)

Note that these events depend on disjoint sets of sites and are therefore
independent. It was proved in Section 10.3 that, given k :� φpT q and the
dimensions of rS Y T s, the expected number of rectangles T satisfying the
�rst event in (10.82) is at most p24kpqk{2. For the intersection of the second
and third events, we will partition the space according to the set E given by
Algorithm 10.A.4, and apply the induction hypothesis to the set

ŜpEq :� rS Y T Y Es .
Suppose �rst that E � H, and recall that this means that the set�

Bp�1,0qprS Y T s, Rq YBp0,�1qprS Y T s, Rq�zSx
�

contains no element of A. Together with the second and third events ap-
pearing in (10.82), this implies that the event Dx̂

2 pŜpEq, Rq occurs, where
x̂ � x� 1p1,0q � 1p0,1q. By the induction hypothesis, we have

Pp
�
Dx̂

2 pŜpEq, Rq
� ¤ F̂ x�1,y�1,zps� i, t� jq ,
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where dimprS Y T sq � pa � s � i, b � t � jq. Now, since B{q ¤ a, b ¤
p1{p2qqq logp1{qq, we have

F̂ x�1,y�1,zps� i, t� jq
F̂ x,y,zps, tq � epa�bqq

C2q
exp

�
igpbqq � jgpaqq� ¤ 2i�j

C2q2

since egpaqq�gpbqq ¤ 2. Recalling that k ¤ 9D ¤ 36δ{q, it follows that the
probability of this case is at most

¸
i�j¥4

9Ḑ

k�i�j
p24kpqk{2 � 2i�j

C2q2
� F̂ x,y,zps, tq ¤ 1

C
� F̂ x,y,zps, tq ,

as required.
Suppose next that |E| � 1, and observe that, by symmetry, we may as-

sume that u1 P Bp0,�1qprSYT s, Rq, as in Figure 10.6a. Recalling that the set

Jpu1q (in Algorithm 10.A.4) is empty, it follows that the event Dx̂
2 pŜpEq, Rq

occurs, where x̂ � x� 1p1,0q � 1p0,1q � 1p0,�1q. By the induction hypothesis,
we have

Pp
�
Dx̂

2 pŜpEq, Rq
� ¤ F̂ x�1,y�2,zps� i, t� j � 2q

and, since B{q ¤ a, b ¤ p1{p2qqq logp1{qq, we have (as before)

F̂ x�1,y�2,zps� i, t� j � 2q
F̂ x,y,zps, tq � ep2a�bqq

C3q3{2 exp
�
igpbqq� pj� 2qgpaqq� ¤ 2i�j�2

C3q3
.

Noting that there are at most 2k choices for the vertex u1, and recalling that
k ¤ 9D ¤ 36δ{q, it follows that the probability of this case is at most

¸
i�j¥4

9Ḑ

k�i�j
2kp � p24kpqk{2 � 2i�j�2

C3q3
� F̂ x,y,zps, tq ¤ 1

C2
� F̂ x,y,zps, tq ,

as required.
Finally, suppose that |E| � 2, and observe that in this case the event

Dx̂
2 pŜpEq, Rq occurs, where x̂ � 0, and that x � 1. By the induction

hypothesis, we have

Pp
�
Dx̂

2 pŜpEq, Rq
� ¤ F̂ x�2,y�2,zps� i� 2, t� j � 2q

and, since B{q ¤ a, b ¤ p1{p2qqq logp1{qq, we have (as before)

F̂ x�2,y�2,zps� i� 2, t� j � 2q
F̂ x,y,zps, tq �

ep2a�2bqq

C4q2
exp

�pi� 2qgpbqq � pj � 2qgpaqq� ¤ 2i�j�4

C4q4
.
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Noting that there are at most 4k2 choices for E, and since k ¤ 9D ¤ 36δ{q,
it follows that the probability of this case is at most

¸
i�j¥4

9Ḑ

k�i�j
p2kpq2 � p24kpqk{2 � 2i�j�4

C4q4
� F̂ x,y,zps, tq ¤ 1

C3
� F̂ x,y,zps, tq ,

as required. This completes the proof in Case 1.

Case 2: z ¡ x� y.

As in the proof of Lemma 10.A.1, let Bp1,0qpS,Rq be a non-empty bu�er
that is not included in Sx

� , so xp1,0q � 0, and de�ne a set E using Algo-
rithm 10.A.5.

Suppose �rst that E � H, and recall that S̃ � �j
i�0

�
S � pi, 0q�, where

j � min
 
i ¥ 0 : AXRX �

S � pi� 2, 0q�z�S � pi, 0q� � H(
,

and that S̃x̃
� zSx

� contains no elements of A, where x̃ � x � 1p1,0q. There

are two sub-cases, depending on whether or not Bp1,0qpS̃, Rq � H, that is,
whether or not we reached the right-hand side without �nding a double gap.
Suppose �rst that we did �nd a double gap (i.e., Bp1,0qpS̃, Rq � H). We will
sum over choices of j the probability that

rS Y pAX S̃qs � S̃,
�
S̃ Y �

AXRzS̃x̃
�

�� � R and AX S̃x̃
� � H .
(10.83)

Note that these three events depend on disjoint sets of sites, and are the-
refore independent; we will bound the �rst using Lemma 10.2.3, and the
intersection of the second and third using the induction hypothesis. Indeed,
by Lemma 10.2.3 (and since gpzq is decreasing) we have

Pp
�rS Y pAX S̃qs � S̃

� ¤ exp
�� jgpbqq� .

Moreover, the second and third events imply that the event Dx̃
2 pS̃, Rq occurs,

and by the induction hypothesis we have

Pp
�
Dx̃

2 pS̃, Rq
� ¤ F̂ x�1,y,zps� j, tq .

It follows that the probability that there exists j ¥ 0 such that the events
in (10.83) all hold is at most

s�1̧

j�0

e�jgpbqq � F̂ x�1,y,zps� j, tq � Cs
?
qe�bq � F̂ x,y,zps, tq ¤ 4Cδ � F̂ x,y,zps, tq

as required, since s ¤ 4δ � q�1{2 � exp
�

minta, bu � q� and δ � δpCq ¡ 0 is
su�ciently small.
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We next deal with the case E � H and Bp1,0qpS̃, Rq � H (i.e., we reached
the right-hand side without �nding a double gap). In this case, the event
Dx

2 pS̃, Rq occurs, and by the induction hypothesis we have

Pp
�
Dx

2 pS̃, Rq
� ¤ F̂ x,y,z�1ps� j, tq ,

since zpS̃, Rq � zpS,Rq � 1. It follows that the probability that the events
in (10.83) all hold, and Bp1,0qpS̃, Rq � H, is at most

exp
�� jgpbqq�F̂ x,y,z�1ps� j, tq ¤ 1

C
� F̂ x,y,zps, tq

which su�ces since C is su�ciently large.

We will therefore assume from now on that E � H, so S̃ � �j
i�0

�
S �

pi, 0q�, where j is minimal such that S̃zS is crossed from left to right, and�
AX S̃x̃

�

�z�Sx
� YBp1,0qpS̃, Rq

� � H .

In other words, before reaching a double gap we found an infected site in
either the bu�er above or below S̃. In particular, note that `p0,1q�`p0,�1q ¥ 1.

Suppose �rst that |E| � 1, and therefore that (without loss of generality)
we have `p0,1q � 1, E � tup0,1qu and `p0,�1q � `p�1,0q � 0. Then the events

up0,1q P A, rS Y pAX S̃qs � S̃, AXBp0,1qpS,Rq � H and Dx̂
2 pŜ, Rq

occur, where Ŝ � rS̃ Y Es and x̂ � x � 1p0,1q. There is an important
subtlety in this case, since these events might not be independent: the bu�er
Bp0,1qpS,Rq might `stick out' of the top of Ŝ, and therefore intersect the set

of sites that the event Dx̂
2 pŜ, Rq depends on. However, the only dependence

is between the decreasing event tA X Bp0,1qpS,Rq � Hu and the increasing

part of the event Dx̂
2 pŜ, Rq (since x̂p0,1q � 0), so by Harris' inequality [202]12

the probability that all four events occur is at most the product of their
probabilities.

Given j, there are at most four choices for up0,1q, so

Pp
� 
up0,1q P A

(X  rS Y pAX S̃qs � S̃
(	 ¤ 4p exp

�� jgpbqq� .
Suppose �rst that zpŜ, Rq   zpS,Rq. In this case, by the induction hypot-
hesis, we have

Pp
� 
AXBp0,1qpS,Rq � H(XDx̂

2 pŜ, Rq
	
¤

p1� pqa�s � F̂ x,y�1,z�1ps� j � 1, t� 2q ,
12Harris' inequality states that increasing events in a product space are positively cor-

related. It is often referred to as the FKG inequality, which is a generalization that was
proved somewhat later.
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and so the probability in this case can be bounded by13

ş

j�0

4pp1� pqa�se�jgpbqq � F̂ x,y�1,z�1ps� j � 1, t� 2q

¤ 4ps� 1qp � e�pa�sqq � e
aq�minta,buq

C2?q � e2gpaqq�gpbqq � F̂ x,y,zps, tq

¤ δ

C
� F̂ x,y,zps, tq ,

since s ¤ 4δ �q�1{2 �exp
�

minta, bu�q� ¤ 4δ{q, and hence esq�2gpaqq�gpbqq ¤ 2.

On the other hand, if zpŜ, Rq � zpS,Rq then the bu�er Bp0,1qpS,Rq must
have height at least two, and hence

Pp
� 
AXBp0,1qpS,Rq � H(XDx̂

2 pŜ, Rq
	
¤

p1� pq2pa�sq � F̂ x,y�1,zps� j � 1, t� 2q .
The probability in this case can therefore be bounded, as above, by

ş

j�0

4pp1� pq2pa�sqe�jgpbqq � F̂ x,y�1,zps� j � 1, t� 2q

¤ 4ps� 1qp � e�2pa�sqq � eaq

C
?
q
� e2gpaqq�gpbqq � F̂ x,y,zps, tq ¤ δ � F̂ x,y,zps, tq ,

as required.

The remaining cases are similar but easier, since each extra infected site
is extremely expensive. We will therefore be able to be use slightly weaker
bounds, which simpli�es the analysis somewhat. Suppose next that |E| � 2,
so either

paq `p0,1q � `p0,�1q � 1, `p�1,0q � 0, and E � tup0,1q, up0,�1qu, or
pbq `p0,1q � `p�1,0q � 1, `p0,�1q � 0, and E � tup0,1q, up�1,0qu.
In either case, given j there are at most �ve choices for each element of E,
so

Pp
�
E � A and rS Y pAX S̃qs � S̃

� ¤ p5pq2 exp
�� jgpbqq� .

Moreover, in case paq, by the induction hypothesis and Harris' inequality, we
have

Pp
� 
AXB � H(XDx̂

2 pŜ, Rq
	
¤ p1� pq2pa�sq � F̂ x,y�2,zps� j � 1, t� 4q ,

13We remark that this is the only point in the proof where we will need the term
eshortpRqqz in the bound in Lemma 10.3.4. This term gives rise to the term uppHq in the
proof of Theorem 10.1.1 and the corresponding precision needed in Lemma 10.4.14.
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where B � Bp0,1qpS,Rq Y Bp0,�1qpS,Rq and x̂ � x � 1p0,1q � 1p0,�1q.14 The
probability in this case can therefore be bounded by

ş

j�0

p5pq2p1� pq2pa�sqe�jgpbqq � F̂ x,y�2,zps� j � 1, t� 4q ¤ δ

C
� F̂ x,y,zps, tq ,

since s ¤ 4δ{q and e2sq�4gpaqq�gpbqq ¤ 2. Similarly, in case pbq we have

Pp
� 
AXB � H(XDx̂

2 pŜ, Rq
	
¤ p1�pqa�s�b�t � F̂ x�1,y�1,zps� j�3, t�2q ,

where B � Bp0,1qpS,Rq Y Bp�1,0qpS,Rq and x̂ � x � 1p0,1q � 1p�1,0q, which
allows us to bound the probability in this case by

ş

j�0

p5pq2p1� pqa�s�b�te�jgpbqq � F̂ x�1,y�1,zps� j � 3, t� 2q ¤ δ

C
� F̂ x,y,zps, tq ,

exactly as before. The calculation when |E| � 3 is almost the same. Recall
that `p0,1q � `p0,�1q � `p�1,0q � 1 and, without loss of generality, either

paq E � tup0,1q, up0,�1q, up�1,0qu, or

pbq E � tup0,1q, up�1,0q, up�1,�1qu.
In either case, given j there are at most six choices for each element of E, so

Pp
�
E � A and rS Y pAX S̃qs � S̃

� ¤ p6pq3 exp
�� jgpbqq� .

Moreover, in either case, by the induction hypothesis and Harris' inequality,
we have

Pp
� 
AXB � H(XDx̂

2 pŜ, Rq
	
¤ p1�pq2pa�sq�b�t �F̂ x�1,y�2,zps�j�3, t�4q ,

where B � Bp0,1qpS,Rq Y Bp0,�1qpS,Rq Y Bp�1,0qpS,Rq and x̂ � 0. The
probability in this case can therefore be bounded by

ş

j�1

p6pq3p1�pq2pa�sq�b�te�jgpbqq �F̂ x�1,y�2,zps�j�3, t�4q ¤ δ

C2
�F̂ x,y,zps, tq ,

since s ¤ 4δ{q and e2sq�tq�4gpaqq�3gpbqq ¤ 2. This completes the proof of
Lemma 10.A.2.

14Note that here (and also below) we could have gained substantially by dividing into
cases, as above, depending on whether or not zpŜ, Rq   zpS,Rq. In this case, however,
this weaker bound will su�ce.
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Chapter 11

Generalised oriented site

percolation

This chapter is based on joint work with Réka Szabó [222]. It concerns GOSP
discussed in Section 1.5.4, though its relation to bootstrap percolation is
unimportant for the present chapter.

11.1 Introduction

Oriented percolation on Zd is a classical model in probability theory and
statistical physics, whose behaviour is relatively well understood with many
of the main advances on the subject dating back to the 1980s (see [131,224,
257, 258] for comprehensive expositions). It is also essentially equivalent to
the well-known contact process, but also linked to many other models and
often used as a tool in proofs.

In this chapter we study the supercritical phase of a natural generalisa-
tion of oriented site percolation on Zd with arbitrary �nite neighbourhood,
which we de�ne next. Our goal is to examine the importance of symmetry
and planarity to the qualitative behaviour of oriented percolation. The ge-
neralisation is further motivated by its relations with probabilistic cellular
automata and bootstrap percolation, as discussed in Section 11.2.

11.1.1 Model

Our model of interest is generalised oriented site percolation (GOSP) on Zd
for d ¥ 2. The model is de�ned by a neighbourhood�a �nite set X � Zdztou
(o shall denote the origin of Zd) with |X| ¥ 2 such that

Du P Rd,@x P X : xx, uy ¡ 0, (11.1)

which ensures the orientation of the model, and a parameter p P r0, 1s. For
convenience we will always assume that u � ed, where peiqdi�1 denotes the

359
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canonical basis of Rd and that the group generated by X is Zd. This can
be achieved by an invertible linear transformation of Zd and, possibly, a
restriction to a sublattice. We denote by Pp the product Bernoulli measure

of parameter p on Zd. The con�guration ω P Ω � t0, 1uZd is assumed to
be distributed according to this measure. We endow the vertex set Zd with
the locally �nite translation-invariant oriented graph structure with edge set
tpa, a� xq : a P Zd, x P Xu generated by X (see Fig. 11.1). We refer to this
graph as Zd when X is clear from the context and GX otherwise.

One can naturally identify ω P Ω with the set of open sites tx P Zd :
ωx � 1u � Zd, all other sites being closed. The open sites induce a subgraph
of GX by keeping all edges between open sites. We can then introduce the
following variant of the natural notion of being connected in this graph.
For any a, b P Zd we say that a infects b (there is a path from a to b)
and write a Ñ b for the event that there exists a sequence of open vertices
a1, . . . , am � b such that a1 � a P X and ai � ai�1 P X for all i P r2,ms.
Note that we do not require for a to be open in order for aÑ b to occur. We
make this choice so that aÑ b and bÑ c are independent for all a, b, c P Zd.

For any B � Zd we further de�ne a
BÝÑ b as a Ñ b but with ai P B for

i P r1,ms. We write a
BÝÑ 8 for the existence of in�nitely many b such that

a
BÝÑ b and similarly for 8 BÝÑ b. We further extend the notation by de�ning

the event C
BÝÑ D for B,C,D � Zd as Dc P C, Dd P D such that c

BÝÑ d. We

say that C percolates in B if C
BÝÑ 8. We de�ne the order parameter

θppq � PppoÑ8q,
the critical probability

pc � pcpXq � inftp ¡ 0 : θppq ¡ 0u
and say that there is percolation at p if θppq ¡ 0 (by ergodicity this is
equivalent to the a.s. existence of an in�nite open path). Depending on the
value of p, we may speak of subcritical, critical and supercritical regimes.
We focus on the study of the supercritical phase, where θppq ¡ 0.

It is convenient to view the last coordinate of Zd as the time in an inte-
racting particle system. We therefore usually denote points in Zd by px, tq
with x P Zd�1 and t P Z. Let R � maxtt P Z : px, tq P Xu be the range of X.
Consider the slab St � Zd�1�pZXrt, t�Rqq of width R with normal vector
ed, which we call time slab, and denote S � S0. Given an initial condition
A � S and a domain B � Zd, which we omit if B � Zd�1�rR,8q, the state
at time t P N is

Bξ
A
t �

!
b P S : Da P A, a BÝÑ b� ted

)
,

so pZd�1�rR,8qξAt q8t�0 � pξAt q8t�0 is a Markov chain with state space t0, 1uS .
For simplicity if A � tou � S, we write simply o instead of A. Finally, in
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Figure 11.1 � The graph GX on Z2 for X � tp�1, 1q, p0, 1q, p2, 1qu. The
two thickened paths cross although there is no common vertex nor an edge
pointing from one to the other. Here S � Z� t0u, since R � 1.

the supercritical phase it is useful to de�ne

P̄p � Ppp�|@t ¥ 0, ξot � ∅q.

11.1.2 Examples

Standard oriented percolation in 2 dimensions (2dOP) can be de�ned byX �
tp0, 1q, p1, 1qu. However, we more customarily consider X � tp�1, 1q, p1, 1qu
instead, which only spans half of Z2, but we will mostly disregard this
minor detail. We denote by pOP

c the critical probability of 2dOP. In hig-
her dimensions the situation is more ambiguous and at least the choices
X � tei : i P t1, . . . , duu; X 1 � ted � εei : i P t1, . . . , d � 1u, ε P t�1, 1uu
and X2 � X 1 Y tedu for the neighbourhood could be legitimately called d-
dimensional oriented percolation (ddOP). For concreteness, we will use ddOP
to refer to X2 and simply OP for generic statements.

As a prototype example of neighbourhood which is not covered by the
classical approach, but handled here, we retain the two-dimensional GOSP
de�ned by X � tp�1, 1q, p0, 1q, p2, 1qu (see Fig. 11.1). It exhibits the two
main additional di�culties of GOSP w.r.t. 2dOP: lack of symmetry w.r.t.
the vertical axis and the non-planarity. The latter property is witnessed
by the fact that paths may jump over each other without intersecting (see
Fig. 11.1).

11.1.3 Results

Denote by tApxq the hitting time of x P Zd�1 from A:

tApxq :� min
 
t : px, 0q P ξAt

(
, (11.2)

and de�ne the following subsets of S:

HA
t :�  px, sq P S : tApxq ¤ t� s

(
, (11.3)

KA
t :�  px, sq P S : ξAt px, sq � ξSt px, sq

(
, (11.4)
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which we refer to as hit and coupled regions with initial condition A respecti-
vely. We omit A if it is o. Our main result is the following.

Theorem 11.1.1. Consider a GOSP in any dimension d ¥ 2. For any
p ¡ pc there exists a deterministic convex compact set U � Uppq � Rd�1

with non-empty interior such that for all ε ¡ 0, P̄p-a.s., for every t large
enough it holds that

Ht XKt � ppp1� εqtUq � r0, Rqq X Zd, (11.5)

ξot � ppp1� εqtUq � r0, Rqq X Zd. (11.6)

The function p ÞÑ Uppq is continuous on ppc, 1s for the Hausdor� distance on
non-empty compact subsets of Rd�1. Furthermore, for any open set O � U ,
considering the cone C � �

t¡0ptO � ttuq, we have

Pp
�
Dx P C, x CÝÑ 8

	
� 1. (11.7)

Our second result provides more precise information in the near-critical
regime in two dimensions.

Theorem 11.1.2. For GOSP in two dimensions there exists v P R such that£
p¡pc

�

Uppq � tvu,

where
�

Uppq is the interior of the limit shape from Theorem 11.1.1.

11.1.4 Organisation

The chapter is structured as follows. In Section 11.2 we provide the back-
ground for this chapter. In Section 11.3 we gather some preliminaries and
notation. Sections 11.4 and 11.5 contain the proofs of Theorems 11.1.1
and 11.1.2 respectively.

The proofs are quite long and involve numerous intermediate results of
independent interest. Inevitably, some of the steps are already known or
require little or no new input as compared to existing arguments for OP or
for the contact process. Nevertheless, we choose to also present these steps
(without their proofs), so that the new ingredients we provide can be �tted
into the global strategy and the reader is not obliged to scour the vast and
entangled literature for all the �well-known� ingredients necessary. Moreover,
in order not to disturb the �ow of reasoning and to single out the novel
contributions, we gather them in Section 11.A. Hence, specialists aware of
classical results in two and more dimensions and of more recent developments
around shape theorems may be able to directly consult Section 11.A.
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11.2 Background

We only discuss the supercritical regime, which is the focus of this chapter.
Let us begin by emphasising that Theorems 11.1.1 and 11.1.2 are both known
for OP and so are all intermediate results featuring in their proofs. More
precisely, in the case of ddOP Eqs. (11.5) and (11.6) are due to [132�134]; the
continuity in Theorem 11.1.1 was only recently established in [168], based
on [166, 167]; Eq. (11.7) was proved in [113, Chapter 5]. Correspondingly,
Theorem 11.1.2 for 2dOP was established in [134] (see also [131,258]).

Following progress on OP, natural generalisations similar to GOSP have
often been considered. For the sake of comparability, in the present discus-
sion, we focus on the most restrictive interesting case: GOSP with X �
tpa, 1q : a P Zd�1u, like the example of Fig. 11.1. These models exhibit the
main di�culties inherent to GOSP and are known as percolation probabilis-
tic cellular automata (PPCA), 2dOP being called Stavskaya's PCA in this
context [331,335,336,348�350].

Bezuidenhout and Gray [50] adapted the well-known renormalisation
scheme of Bezuidenhout and Grimmett [51] to show that in any dimen-
sion PPCA (and more general models) do not percolate at criticality. Their
renormalisation will be the starting point of the proof of Theorem 11.1.1. In
two dimensions an attempt at proving Theorem 11.1.2 and related results
for PPCA (and more general models) was made by Durrett and Schonmann
[136], themselves building on [134]. Unfortunately, they imposed a restrictive
technical assumption amounting to assuming that X consists of consecu-
tive sites. These neighbourhoods precisely lack the two main obstacles of
GOSP�asymmetry and paths jumping over each other (see Fig. 11.1). Furt-
hermore, unaware of their work, Taggi [335,336] claimed results for PPCA in
two dimensions based on [134], as outlined in [131]. Owing to non-planarity,
his proof is only correct for neighbourhoods of consecutive sites. As we will
see, [335, Theorem 2.2] does indeed hold for all PPCA (and, more generally,
GOSP), but requires a di�erent treatment either based on higher dimensional
techniques or on our enhancement of the approach of Durrett�Schonmann
used to prove Theorems 11.1.1 and 11.1.2 respectively.

Let us note that GOSP are a particular case of bootstrap percolation
(see Chapter 12 and [315]). As established in Chapter 12 (see particularly
Remark 12.5.7 there), Theorems 11.1.1 and 11.1.2 on GOSP can be used to
obtain results for more general bootstrap percolation models, particularly in
conjunction with quantitative bounds on the limit shape U , as discussed in
the �rst arXiv version of the present chapter [221, Section 5.7]. Other related
models and generalisations of OP, to which much of the present approach
applies can be found in [50,130,133,364] (also see [121]).
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11.3 Preliminaries

11.3.1 Duality

An important property of GOSP is that it is �nearly� self-dual (see [258,334]
for background on duality). The dual of GOSP with neighbourhood X can
be thought of as a GOSP with paths moving �backwards� in time. More
precisely, write a  b if there exist m ¥ 0 and paiqmi�0 with a0 � a and
am � b such that for all 0 ¤ i   m we have ai P ω and ai � ai�1 P X.
In other words, a Ñ b i� b  a. Note that there are two di�erences with
b Ñ a. Firstly, the steps are reversed: ai�1 � ai P �X. Secondly, for the
dual connections we require that the initial site is open instead of the �nal
one. Based on this notion we de�ne the dual process pξ̃At q again with state
space S but time coordinate �ed. We draw the reader's attention to the fact
that this process does not have the same law as the primal process pξAt q, for
instance

θ̃ppq � Pppo 8q � pPppoÑ8q � pθppq.
However, up to such minor amendments all our results apply equally well
to the dual process and we will use them as needed without systematically
stating them.

11.3.2 The contact process

OP is closely related to the contact process (CP) [203,257,258]. The latter is
often used to model epidemics on a graph: vertices are individuals, which can
be healthy or infected. In this continuous time Markov dynamics infected
individuals recover with rate 1 and transmit the infection to each neighbour
with rate λ ¡ 0 (infection rate). The CP admits a well-known graphical
construction that is a space-time representation [258]. We assign to each
vertex v and ordered pair pu, vq of neighbours independent Poisson point
processes Dv with rate 1 and Dpu,vq with rate λ respectively. For each atom t
ofDv we place a �recovery mark� at pv, tq and for each atom ofDpu,vq we draw
an �infection arrow� from pu, tq to pv, tq. An infection path is a connected path
moving in the increasing time direction without crossing recovery marks,
but possibly jumping along infection arrows in the direction of the arrow.
Starting from a set of initially infected vertices A, the set of infected vertices
at time t is the set of vertices v such that pv, tq can be reached by an infection
path from some pu, 0q with u P A.

This representation can be thought of as a continuous time version of
OP with infection paths in CP corresponding to paths in OP. Several of the
results presented below are originally stated for CP but their proofs transfer
to discrete models with the following very minor adaptations.

Firstly, setting γ � maxp}x}{t : px, tq P Xq, we clearly have that o Ñ
px, tq implies }x} ¤ γt, so, just like for CP, in�uence can spread at most
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linearly in time.
Secondly, since the group generated by X is Zd, for all n ¡ 0 there exist

a time t and v P Zd�1 such that

Pp pξot � v �Bnq ¡ 0, (11.8)

where Bn � pr�n, nqd�1�r0, RqqXZd. This is the analogue of the fact that
with positive probability the CP infects an arbitrarily large box in unit time.

Finally, for the CP one often needs to control the time an infection path
spends at a vertex: either to ensure that it does not stay long at a vertex
before jumping or that the path spends at least δt time at a vertex during
a time interval of length t. The �rst assertion is trivial in discrete time as a
path �jumps immediately� to the next vertex, and the discrete-analogue of
the second assertion is visiting a vertex at least rδts times in a time interval
of length t.

11.4 Proof of Theorem 11.1.1

Throughout Sections 11.4 and 11.5, proofs are usually omitted altogether
when they only require minor changes (including those of Section 11.3.2).
Nevertheless, we provide a sketch or at least a vague idea, whenever possible.
The proofs requiring new ideas are gathered in Section 11.A.

The present section is structured as follows. In Section 11.4.1 we recall
the Bezuidenhout�Grimmett renormalisation and its extension. We next
derive several exponential bounds in Section 11.4.2 obtained based on restart
arguments for later use. Section 11.4.3 then completes the proof of the
asymptotic shape result and its continuity from Theorem 11.1.1. Finally,
Section 11.4.4 puts together all of the above with some further large deviation
results to prove the percolation in restricted regions of Theorem 11.1.1. New
ingredients needed in Sections 11.4.2 to 11.4.4 are deferred to Sections 11.A.1
to 11.A.3.

11.4.1 Bezuidenhout�Grimmett renormalisation

We begin the study of the supercritical phase by brie�y describing the well-
known Bezuidenhout�Grimmett (BG) renormalisation. It was �rst introdu-
ced in [51] for the CP on Zd (see also [257, Sec. I.2]) and later generalised
for translation-invariant �nite-range attractive1 spin systems on Zd by Be-
zuidenhout and Gray [50], the latter reference being the more relevant for
us. It is a construction that allows us to compare GOSP and 2dOP. The
main idea is to show that GOSP when restricted to a su�ciently thick two-
dimensional space-time slab dominates a supercritical 2dOP, which in turn

1A spin system is attractive if adding extra sites in the initial condition only makes
more sites infected by it at any later time (see e.g. [257, Sec. I.1.]), as in the case of GOSP.
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8h

h

4w�4w w�w

hv
Bpw, h, vq

Bp4w, 8h, vq

px, tq �Bn

Figure 11.2 � The event described in Theorem 11.4.1 for d � 2. Note that
in this case w and v are one-dimensional.

implies that if there is percolation in 2dOP, then there is percolation in this
restricted region. As all the results below are already known for 2dOP, this
will entail numerous consequences for GOSP.

Before proceeding to the renormalisation we will need a few geometric
de�nitions. Our basic box is Bn � r�n, nqd�1�r0, Rq for natural n, recalling
R from Section 11.1.1 (although many of our regions will be de�ned as subsets
of Rd, we systematically refer to the integer points in them). For w P Zd�1,
h P Z and v P Rd�1 we further introduce the block (see Fig. 11.2)

Bpw, h, vq � r0, hqpv, 1q �
d�1¹
i�1

r�wi, wiq � t0u � Rd, (11.9)

so that Bn � Bptnud�1, R, 0q. Note that if the model is symmetric we can
always assume v � 0.

The key theorem allowing comparison between the two models is as fol-
lows.

Theorem 11.4.1. If p is such that θppq ¡ 0, then for all ε ¡ 0 there exist
positive integers n, h and vectors w, v with n   wi for all i and h ¡ R such
that if px, tq P Bpw, h, vq, then

Pp
�Dpy, sq P Bpw, h, vq � 7hpv, 1q � 2wed�1 such that

px, tq �Bn infects py, sq �Bn in Bp4w, 8h, vq� ¡ 1� ε. (11.10)

In other words we can choose parameters such that when considering the
truncated process in Bp4w, 8h, vq with high probability a box Bn centered at
some px, tq inside the blockBpw, h, vq infects a copy of itself centered at either
of the target blocks that are translates of Bpw, h, vq (see Fig. 11.2). The proof
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of this theorem being quite long and technical, we direct the interested reader
to [50], where it is established in a setting essentially including GOSP.

Recall that 2dOP is de�ned by X � tp�1, 1q, p1, 1qu. We denote by ζAk
the set of (even) sites in Z2 with second coordinate k which are infected by
2dOP with initial condition A. We are now ready for the 2dOP comparison
of [51].

Theorem 11.4.2 (BG renormalisation). Fix q   1 and assume that p is
such that Eq. (11.10) holds for ε ¡ 0 su�ciently small depending on q and
some n, h,w, v as in Theorem 11.4.1. Then the following holds for some
n, h,w, v. For any initial condition A � S we denote

A1 � tj P 2Z : Dpx, sq P Bpw, h, vq � 2wd�1jed�1, px, sq �Bn � Au .
Then there exists a coupling of 2dOP ζA

1
of parameter q and GOSP ξA such

that for all j P Z and k

j P ζA1k implies that px, 0q �Bn � ξAt

for some px, tq P Bpw, h, vq � 7hkpv, 1q � 2wd�1jed�1.

In particular, θppq ¡ 0.

Informally, each site of 2dOP corresponds to a translate of the block
Bpw, h, vq in GOSP. We can couple the two processes so that if a site in
2dOP is in the cluster of a vertex in ζA, then there is a box infected by A in
the block corresponding to that site in the GOSP.

The proof of Theorem 11.4.2 is as in [257, Theorem I.2.23] (also see [51]).
Indeed, one may construct the coupling by induction as follows. If j P ζk,
then there is an infected copy of the box Bn in the block corresponding to j, k,
so we may apply the result of Theorem 11.4.1 to get that with probability 1�ε
there will also be such infected boxes in the blocks corresponding to j�1, k�1
and j� 1, k� 1. It is easily seen (as the GOSP con�guration is composed of
independent variables) that the resulting process is a 1-dependent 2dOP with
parameter at least 1� ε, so by a standard comparison between 1-dependent
and independent percolation [259] we obtain Theorem 11.4.2 as desired.

It is useful to note that the BG renormalisation concerns only certain
translates of the block Bpw, h, vq. However, we may tile Zd with disjoint
blocks so that each tilted space-time slab of the form¤

j,kPZ
Bpw, h, vq � wd�1jed�1 � khpv, 1q

is formed by 14 disjoint 2dOP lattices of blocks. We may perform the cou-
plings of all the corresponding 2dOP processes with the same GOSP simul-
taneously as above so that sites in di�erent 2dOP have a �nite range depen-
dence, hence they may be made independent by [259]. In total, for A � S
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we can couple ξA with independent 2dOP processes naturally indexed by
Zd�2 � t1, . . . , 14u with initial conditions corresponding to the parts of A in
each of the 2dOP lattices.

11.4.2 Restart arguments

Recall that ξAt is the set of sites infected by A at time t. The extinction time
of A is the absorption time of the chain started at A, that is

τA � min
 
t ¥ 0 : ξAt � ∅

( P t0, 1, . . .u Y t8u. (11.11)

We say that the process started from A dies out if τA   8 and survives
otherwise.

The BG renormalisation allows us to use a so-called restart argument
that can be described as follows. We let GOSP pξAt q evolve until we �nd an
infected translate of the box Bn (which by Eq. (11.8) has a strictly positive
probability, thus it happens after at most a geometrically distributed num-
ber of steps) or the process dies out. If we infect a box, we start the 2dOP
process pζkq of Theorem 11.4.2 (with appropriate initial condition) from the
corresponding block coupled with pξAt q. If pζkq percolates, then pξAt q percola-
tes as well. If pζkq dies out and pξAt q still survives, we restart the procedure.
We repeat this until either the GOSP dies out or the renormalisation yields
a percolating 2dOP (since the parameter q of pζkq is supercritical, q ¡ pOP

c ,
this will happen after at most a geometric number of trials).

We will use this technique to transfer properties from 2dOP to GOSP.
The exponential bounds we prove next in this section (like all other results)
are already established for 2dOP [134] and the d-dimensional CP [132]. Re-
call that τA is the extinction time of the set A.

Theorem 11.4.3 (Exponential death bounds). For every p ¡ pc there exists
a constant ε � εppq ¡ 0 such that for all A � S and t ¥ R it holds that

Pp
�
t ¤ τA   8� ¤ e�εt, (11.12)

Pp
�
τA   8� ¤ e�ε|A|. (11.13)

The proof of Theorem 11.4.3 goes along the same lines as the proof of
[257, Theorem I.2.30], using the restart argument. For Eq. (11.12), on tτA  
8u, we can bound τA by the sum of the number of steps until we �nd an
infected box and the survival time of the coupled 2dOP in each round. As
2dOP satis�es Eq. (11.12) and the required quantities of the restart argument
are bounded by geometric random variables, we get the desired exponential
decay.

For Eq. (11.13) �rst tile Zd with the disjoint translates of the space-time
slab

T �
¤
j,kPZ

Bp4w, 7h, vq � 4wd�1jed�1 � 7hkpv, 1q
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and consider the processes restricted to these slabs with initial conditions
corresponding to the parts of A in each slab. Observe that these processes
are independent and τA can be bounded from below by the maximum of their
extinction times. Therefore, it is enough to show the analogue of Eq. (11.13)
for A � T . As in Eq. (11.8) we can show that there exists a t depending
on w and h, but not on A, such that with strictly positive probability every
vertex in A � T can infect a box Bn in

tpv, 1q �
¤
jPZ

Bpw, h, vq � wd�1jed�1.

Thus, (save for an exponentially unlikely event) for some δ ¡ 0 at least δ|A|
disjoint blocks at the same time contain an infected box. We start the 2dOP
process of Theorem 11.4.2 from all these blocks. Observe that tτA   8u
can only happen if all the coupled 2dOP process dies, but since Eq. (11.13)
holds for 2dOP, this has exponentially small probability in the size of A.

Remark 11.4.4. Equation (11.12) implies that the law of ξSt converges to
the upper invariant measure of the process (corresponding to the distribution
of sites x P S such that x 8) exponentially fast in t.

The next result is the analogue of condition (a) of Lemma 5.1 in [132].

Theorem 11.4.5. Let ξ and ξ̃ be independent primal and dual GOSP. Then
for every p ¡ pc there exist constants ε, c, C ¡ 0 and a vector v P Rd�1

depending on p such that for all integer t ¡ 0 and A,B � S satisfying
maxaPA,bPB }a� b}   ct we have

Pp
�
ξAt X ξ̃

B�p2tv�zt,0q
t � ∅, ξAt � ∅, ξ̃B�p2tv�zt,0qt � ∅

	
¤ Ce�εt, (11.14)

where zt P Rd�1 � t0u is such that 2tv � zt P Zd�1 and }zt}2 ¤ pd� 1q{4.
It is important to note that due to the lack of symmetry this result is

more technical for GOSP than for ddOP. We leave the proof to Section 11.A.1
and only indicate that it relies mainly on the BG renormalisation, restart
argument, Eq. (11.12) and several properties known for 2dOP, which will be
established below for GOSP.

Remark 11.4.6. We can use Theorem 11.4.5 to prove that the in�nite
cluster is unique. Together with θppcq � 0 following from Theorems 11.4.1
and 11.4.2, this customarily yields that θ : p ÞÑ θppq is continuous on r0, 1s.
This was �rst established for ddOP in [197].

Recall the hit and coupled regions of Eqs. (11.3) and (11.4).
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Theorem 11.4.7 (At least linear growth). For every p ¡ pc there exist
constants ε, c ¡ 0 and a vector v P Rd�1 depending on p such that for all
t ¡ 0 and x P Zd�1 such that }x� vt}   ct it holds that

Pp ppx, 0q R Ht, τ
o � 8q ¤ e�εt, (11.15)

Pp ppx, 0q R Kt, τ
o � 8q ¤ e�εt. (11.16)

This result is also a consequence of Theorem 11.4.5. The proof is an
adaptation of the proof of conditions (c) and (d) of Theorem 5.2 in [132]
for the CP (see also [133]). For Eq. (11.15) recall the de�nition of the dual
process ξ̃ from Section 11.3.1 and note that for any 0 ¤ s ¤ t the event
tDy P S, o Ñ y � sed, px, tq  y � sedu is equivalent to o Ñ px, tq. By a
restart argument we can �nd a time r such that px, rq  8 and up to an
exponentially unlikely event we can take 0 ¤ t�r   ct. Then the conclusion
follows from Eq. (11.14) with A � tou, B � tpx � 2rv, 0qu and t in the
theorem equal to r{2.

For Eq. (11.16) observe that for ω � Zd�1 � tR,R� 1, . . .u
tpx, 0q R K2t, τ

o � 8u � to �Ñpx, 2tq, px, 2tq S, oÑ8u .
The conclusion then follows again from Eq. (11.14) with A � tou and B �
tpx� 4tv, 0qu.

Finally, for completeness let us mention a consequence of the restart ar-
guments concerning GOSP on tori. Recall that we assume that the direction
u � ed, and let Td�1

n � pZ{nZqd�1 denote the pd � 1q-dimensional discrete
torus of side n. Consider GOSP on the graph with vertex set Td�1

n � Z
obtained as the quotient of GX . The extinction time is de�ned as

τT � sup
!
t ¥ 0 : Td�1

n � t0,�1,�2, . . .u Ñ Td�1
n � ttu

)
.

Corollary 11.4.8. For all p   pc there exists cppq such that

τT

log n

PpÝÝÝÑ
nÑ8

d� 1

cppq , (11.17)

and for all p ¡ pc there exist c, C P p0,8q such that

τT

EprτTs
pdqÝÝÝÑ
nÑ8 E , (11.18)

ecn
d�1   Ep

�
τT

�
  eCn

d�1
, (11.19)

for n large enough, where E is the standard exponential distribution.

Equation (11.17) follows as in [135] (see also [257, Theorem I.3.3]) from
the subcritical result established in [6, 276]: for all p   pc there exists cppq
such that

� lim
tÑ8

1

t
logPppτ o ¥ tq � cppq ¡ 0. (11.20)
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Equation (11.18) was proved for the CP in two dimensions in [312] (see
also [137]), while in d dimensions this was done in [285] (also see [327] for
subsequent development). Equation (11.19) was proved in [135] for the two-
dimensional CP and in [103] in d dimensions. The proofs rely on Theo-
rems 11.4.2, 11.4.3 and 11.4.7 (see [221, App. A.4] for a sketch following
[285]).

Let us note that for the CP on a �nite box (in our setting this corresponds
to cutting the bonds crossing the boundary of a fundamental domain of the
torus) in [137, 287] it was established that in fact logEprτ s{nd�1 converges
as nÑ 8. However, for GOSP considering a box is either inappropriate or
requires tiling the lattice �rst, making the result somewhat unnatural and
unhandy due to the implicit de�nition of the tilting direction, which may
even depend on p as p Ñ pc. It would appear that proving the existence of
the above limit on the torus is unknown even for OP and CP.

11.4.3 Asymptotic shape

With the results of Section 11.4.2 at hand we are ready to prove the asymp-
totic shape theorem and the continuity of the limit shape, that is Eqs. (11.5)
and (11.6) and the continuity result of Theorem 11.1.1. These results are
known for the CP. However, certain issues arise due to the possibility that
the model may have a �drift,� e.g. if the convex envelope of the neighbour-
hood X does not intersect the line Red. This problem is absent if we can take
v � 0 in Theorem 11.4.7. For simplicity, in Section 11.4.3 we only brie�y
recall the arguments used to prove the desired results under this additio-
nal assumption, leaving out the minor changes described in Section 11.3.2.
Thus, we leave the new input needed for removing the assumption v � 0 to
Section 11.A.2.

It was proved in [133] for permanent one-site growth procesess (trans-
lation invariant, attractive processes with local rules, with ∅ absorbing
state and positive probability of survival) that the exponential estimates
from Eqs. (11.12), (11.15) and (11.16) with v � 0 imply the shape theorem:
Eqs. (11.5) and (11.6). The idea is that, given these estimates, the hitting
times are subadditive, stationary and integrable. Then, using subadditive
ergodic theory [243], one can prove that for x P Zd�1

tpnxq
n

Ñ µpxq P̄p-a.s. (11.21)

The time constant µpxq can be extended into a norm on Rd�1 with unit
ball U , yielding the result for the hit region. Then we can argue that there
are a lot of vertices around the boundary of the cone de�ned by U that are
reached from the origin and by Eq. (11.12) survive. Using Eq. (11.16) we can
conclude that the union of the coupled regions of these vertices eventually
covers p1� εqtU .



372 Chapter 11: Generalised oriented site percolation

Our next goal is to prove that the limit shape U is continuous in p.
For this, we will require a quantity called essential hitting time. It was
�rst introduced by Garet and Marchand in [166], inspired by [248], to prove
shape theorems in a more di�cult setting. Using this notion, they later
proved large deviation inequalities [167] and continuity of the asymptotic
shape [168]. We next discuss these results still under the assumption that
v � 0 in Theorem 11.4.7.

Roughly speaking (see [166] for the correct de�nition), under P̄p the
essential hitting time σpxq of x P Zd�1 is a time such that o Ñ px, σpxqq Ñ
8. Crucially, the essential hitting time is nearly subadditive [166, Theorem
2]. Using this property, one can show that P̄p-a.s., as n Ñ 8, σpxnq{n
converges. Controlling the discrepancy between the essential hitting time
and the hitting time [166, Proposition 17], we can conclude that the limit
is also the one of tpxnq{n, whose existence is a byproduct of [133]. This
control of σpxq� tpxq further allows us to bound the moments of σpxq under
P̄p and to get exponential estimates for the essentially hit region analogous
to Eq. (11.15) with v � 0 [166, Corollary 20 and 21].

Relying on the almost subadditivity of σpxq, one may establish large
deviation results corresponding to [167, Theorems 1.1 and 1.4], still under
the assumption v � 0 to be removed in Section 11.A.2.

Theorem 11.4.9. For every p ¡ pc and every ε ¡ 0 there exist constants
c, C ¡ 0 such that for any x P Zd�1 and t ¥ 1

P̄p
�
Kt XHt � ppp1� εqtUq � r0, Rqq X Zd

	
¥ 1� Ce�ct,

Pp
�
ξot � ppp1� εqtUq � r0, Rqq X Zd

	
¥ 1� Ce�ct,

where U is as in Theorem 11.1.1.

Finally, one can show the continuity of the limit shape in Theorem 11.1.1
as in [168, Theorem 1], recycling much of the proof of Theorem 11.4.9.

11.4.4 Percolation in restricted regions

Relying on the results of Section 11.4.2, we next establish large deviations
for the in�nite cluster density, which we then use to prove Eq. (11.7) of The-
orem 11.1.1.

Theorem 11.4.10. Let

Yn :� |tpx, tq P Bn : px, tq 8u| {|Bn|. (11.22)

For all p ¡ pc there exists a convex function ϕ : r0, 1s Ñ r0,8q such that
ϕpaq � 0 if and only if a � pθppq � θ̃ppq and for all a   b in r0, 1s,

lim
nÑ8

logPppYn P ra, bsq
nd�1

� � inf
xPra,bs

ϕpxq.
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Most of this result is very general and holds for any translation invariant
attractive spin system, as established in [251]. Roughly speaking, the exis-
tence of the limit follows from the fact that if several boxes have Yn ¥ a,
then so does their union; the convexity follows similarly, asking for one box
with Yn ¥ x and one with Yn ¥ y and considering their union. The relevance
of θ̃ppq comes from cutting a large box into smaller ones and using attracti-
veness to replace boundary conditions by maximal ones, in order to enable
the use of large deviations results for i.i.d. random variables. Indeed, the
invariant measure of GOSP in a large box with infected boundary condition
still infects sites �far from the boundary� with probability close to θ̃ppq. This
follows from the fact that the upper invariant measure of the in�nite volume
attractive process must dominate the (decreasing) limit of these invariant
measures as the size of the box diverges (see [258, Theorem III.2.7]).

The only somewhat model-speci�c property is the fact that for any a  
θ̃ppq there exists c ¡ 0 such that for all n we have

PppYn ¤ aq ¤ e�cn
d�1
. (11.23)

This was established for 2dOP in [138]. Unfortunately, the argument is
2-dimensional, so we provide a proof for GOSP in any dimension (and in
particular ddOP), which appears to be novel. This is done via a new renor-
malisation in Section 11.A.3, relying on Theorems 11.4.3 and 11.4.7.

Remark 11.4.11. One can further study �uctuations of the density. For
translation invariant attractive spin systems on Zd [250] examined when,
starting from the upper invariant measure, we reach a value of Yn smaller
than θ̃ppq. Later this result was extended to upper �uctuations in [161] for
the CP. These proofs rely on Theorem 11.4.10 and can be adapted to GOSP.
We also direct the reader to [113, Chapter 5] for information regarding the
properties and shape of large �nite clusters and more large deviations.

Now we are ready to prove a more geometric property of the in�nite
cluster, Eq. (11.7) of Theorem 11.1.1, establishing that percolation occurs in
restricted regions. This result was proved for ddOP in [113, Theorem 1.3 of
Chapter 5], but given the results available to us, we may directly retrieve it
(for GOSP) from Theorems 11.4.3, 11.4.9 and 11.4.10 as follows. Fixing some
u P O and δ ¡ 0 small, for a site px, tq at distance at most δ2t from ptu, tq
surviving for time δt, by Eq. (11.12) and Theorem 11.4.9 it is likely that its
coupled region contains a box of side δ2t centered at pp1� δqtu, p1� δqtq. By
Theorem 11.4.10, it is likely that at least δ2dtd�1 sites in that box are infected
by px, tq and, since δ is small and px, tq is at distance of order t from the
boundary of C, this has to happen inside C. Finally, by Eq. (11.13), some
of those sites is likely to survive. Repeating this procedure to in�nity and
recalling that the probability of failing at each step is exponentially small in
t, we obtain Eq. (11.7) of Theorem 11.1.1, as desired.
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11.5 Proof of Theorem 11.1.2

In this section we assume d � 2. In this case one can say more about GOSP
based on techniques for 2dOP, for which [258, Chapter VI] and [131] are
excellent references. In Section 11.5.1 we gather some standard prelimina-
ries. In Section 11.5.2 we introduce an alternative renormalisation technique,
whose re�nement enables us to prove Theorem 11.1.2.

11.5.1 Edge speed

De�ne the right edge of the process as

rt � max
!
x P Z : Dy P t0, . . . , R� 1u, px, yq P ξS�t

)
,

where S� � pp�8, 0s � r0, Rqq X Z2 is the left half of S. Similarly de�ne
the left edge lt as the minimum of x above with S� � pr0,8q� r0, Rqq X Z2

instead of S�. It is important to note that, as discussed in Section 11.1.2,
although the model is two-dimensional, it is not planar and paths may jump
over each other without crossing (recall Fig. 11.1). Nevertheless, the right
and left edges do retain some of their properties from the 2dOP case.

Theorem 11.5.1 (Edge speed). For any p P r0, 1s there exists

α � lim
tÑ8

Eprrts
t

� inf
t¥1

Eprrts
t

P r�8,8q.

Moreover, rt{t tÑ8ÝÝÝÑ α a.s. and if α ¡ �8, then Ep
��� rt
t � α

��� tÑ8ÝÝÝÑ 0.
Similar statements hold for β � limEprlts{t.

The proof (and statement) is identical to [258, Theorem VI.2.19] and is
a consequence of a subadditive ergodic theorem due to Durrett [130] (see
particularly Theorem 6.1 thereof). The idea is to introduce a version of the
right edge between time s and t which, contrary to rt, is subadditive in an
appropriate sense.

We next show that the two-dimensional approach coincides with the more
general one from the previous section.

Theorem 11.5.2. For any p ¡ pc the limit shape U from Theorem 11.1.1
and the edge speeds α, β from Theorem 11.5.1 satisfy U � rβ, αs.

To see this, note that by Theorem 11.4.7 with positive probability oÑ8
and at all times the coupled region is large enough to ensure that the right
and left edges are infected by o. We can then conclude, since Theorems 11.1.1
and 11.5.1 are almost sure statements.

A notable advantage of having the edge representation of the limit shape
is the following result.
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Theorem 11.5.3. The right edge speed α is strictly increasing on ppc, 1q.
The proof is very similar to [131, Eq. (12)] and was reiterated in [136] in

a setting including PPCA. It proceeds in two steps. Firstly, one shows by
a clever but simple algebraic manipulation that adding a vertical column of
sites to any initial condition entirely on its right increases Eprrts by at least 1
for all t. This property only relies on the fact that the process is additive in
the sense that ξAYBt � ξAt YξBt for all A,B, t. Secondly, one observes that if p
is increased by a small amount δ, it may happen that the additional vertices
opened by increasing it lead precisely to adding such a vertical column in ξt
to the right of rt (corresponding to parameter p).

11.5.2 Alternative renormalisation

In two dimensions it is possible to study the supercritical phase via a more
elementary renormalisation scheme than the BG one. For 2dOP this appro-
ach due to Durrett and Gri�eath [134] is used classically to derive most of the
results stated above in that setting. However, applying this renormalisation
to GOSP (in two dimensions) turns out to be quite tricky. Let us �rst give
the rough lines of the renormalisation before explaining what goes wrong for
GOSP and how to address it.

For 2dOP, let us assume that p satis�es αppq ¡ βppq. By Theorem 11.5.1
we have that rt{tÑ α a.s. Moreover, one can show (see [131, 134]) that for
all ε ¡ 0 there exists c ¡ 0 such that for all t ¡ 0

Ppprt ¡ pα� εqtq ¤ e�ct. (11.24)

We may then establish (see Fig. 11.4) that for L large enough depending on
ε ¡ 0, the box BpεL, L, αq is crossed from bottom to top by an open path
with high probability, namely for ε ¡ 0

lim
LÑ8

Pp
�
BpεL,L,αqξS

�

L � ∅
	
� 0. (11.25)

Indeed, by Eq. (11.24), it is forbidden for the right edge to leave the box on
one side; by Theorem 11.5.1 the right edge at time L is likely to be in the
middle of the top side of the box; while if the path reaching the right edge
at time L leaves the box on the other side, that would imply that the path
necessarily went faster than allowed by Eq. (11.24), in order to make up for
the delay (the last idea is due to Gray [136]).

Hence, we have that with probability close to 1 long thin boxes with
tilting α (and similarly for β) are crossed. This reasoning is perfectly valid
for GOSP. In order use such boxes to construct a renormalisation, one places
around each renormalised vertex two of them directed by α and β and says
the vertex is open if they are crossed by paths (see [131, Fig. 7] or [134,
Fig. 1]). For 2dOP it is then clear that if the resulting renormalised 2dOP
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percolates, then so does the original one. Indeed, one can switch from the
path in one box to another as soon as they intersect, which is necessarily the
case for planar graphs such as the one associated to 2dOP.

It is not hard to see that the argument remains valid for PPCA with
neighbourhood consisting of consecutive sites of the form px, 1q. However,
for GOSP with arbitrary neighbourhoodX it is no longer true that two paths
which �cross� have to intersect in an open point. An attempt to remedy this
was made by Durrett and Schonmann [136], whose approach will be of use to
us. Yet, when restricted to PPCA, their result only applies to the ones with
neighbourhood of consectuive sites as above, making it trivial (their main
idea is not needed for those models). As their work is somewhat informal,
we indicate that this follows from the restrictive hypothesis (H3) located at
the end of Sec. 4 of [136].

Improving the approach of [136] and using Theorem 11.5.3, we outline
how to obtain the following result in Section 11.A.4.

Theorem 11.5.4. If for some p P r0, 1s We have αppq ¡ βppq, then θppq ¡ 0
and

lim
p1Ñp�

αpp1q � αppq lim
p1Ñp�

βpp1q � βppq.

In particular, this implies αppcq ¤ βppcq. On the other hand, Theo-
rem 11.5.1 readily implies that αppq ¥ βppq for p ¡ pc. The �nal ingredient
for proving Theorem 11.1.2 is the continuity to the right of α (and β), which
also follows from Theorem 11.5.1, since α is the decreasing limit of the con-
tinuous non-decreasing functions Eprrts.2 Combining these properties, we
get

lim
pÑpc�

αppq � βppq � 0,

which, together with Theorems 11.5.2 and 11.5.3, implies Theorem 11.1.2.
We note that in higher dimensions it is unknown whether

�
p¡pc

�

Uppq is
empty, a singleton or a larger set.

Appendix

11.A Proofs

In this appendix we gather the proofs of the novel steps in the proof of
the main results. The following basic result for 2dOP proved by contour
arguments (see [131,138]) will be used several times.

2Indeed, Eprrts is the limit of the polynomials Eprmaxprt,�Mqs as M Ñ8. The limit
is uniform for p P rp1, 1s for p1 ¡ 0, since the negative tail of rt is bounded by a geometric
variable with success rate pp1qt. Recalling Eq. (11.20) and pc ¡ 0 (by comparison with
branching), we further have αppq � �8 and βppq � 8 for p   pc.
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Proposition 11.A.1. For every ε ¡ 0 there exist c, δ ¡ 0 such that for
2dOP with parameter p ¥ 1� δ it holds that for all �nite A � Z and integer
t

Ppp|ta P A, aÑ8u|{|A| ¤ 1� εq   e�c|A|

P̄pp|ξot |{t ¤ 1� εq   e�ct.

11.A.1 Primal-dual intersection�proof of Theorem 11.4.5

Recall the notation of Theorem 11.4.5 and Section 11.4.2.

Observe that the BG renormalisation restricts the process to a space-time
slab in which all but one space dimension are suppressed. Throughout the
chapter we assumed this to be the d�1st dimension, but we can replace ed�1

by any ei in Theorem 11.4.1 for i P t1, . . . , d�1u. If the model is symmetric,
the parameters n,w, h, v can be chosen to be the same in all directions,
however this is not necessarily the case in general. Let us �x ε and denote
the values of n,w, h, v in Theorem 11.4.1 corresponding to ei by n

i, wi, hi

and vi. We then set v � °d�1
i�1 v

i{pd � 1q. For simplicity we will disregard
the o�set zt.

We start by noticing that by Eq. (11.12) we may assume that τA � 8 in
ω and τ̃B�2tv � 8 in ω translated by �2ted. We can then choose px, sq P A
and px̃, s̃q P B � 2tpv, 1q such that τ tpx,squ � τ̃ tpx̃,s̃�2tqu � 8.

We can perform a restart argument starting from px, sq and px̃, s̃q until
they simultaneously infect a (translate of the) box Bnd�1 each and that the
two boxes give rise to a percolating 2dOP in their respective ed�1-space-time
slabs. As in Section 11.4.2 the restart argument is exponentially unlikely to
require more than δt steps for some small δ ¡ 0, the positions of the two
boxes di�er by 2tpv, 1q �∆ with }∆} � Opc� δqt (here asymptotic notation
is w.r.t. tÑ8).

Fix a large integer K so that Eq. (11.8) holds for n � nd�2 and t �
tKhd�1{2u. Then by Proposition 11.A.1 we get that at time t{p7hd�1pd �
1qq � K both in ζ and ζ̃ (the renormalised 2dOP corresponding to ξ and
ξ̃) infect at least 2{3 of the (renormalised) sites that can be reached from
the sites corresponding to the initial two boxes Bnd�1 . By the pigeonhole
principle, as c and δ are su�ciently small, there are at least t{p22hd�1pd �
1qq sites pz, t{p7hd�1pd � 1qq � Kq which are infected in ζ and such that
pz̃, t{p7hd�1pd�1qq�Kq is infected in ζ̃ with z̃�z � �t∆d�1{wd�1

d�1u. It then
follows fromEq. (11.8), Proposition 11.A.1 and the pigeonhole principle that
up to an exponentially unlikely event at least one such couple z, z̃ gives rise
to two boxes Bnd�2 � py, t{pd� 1qq and Bnd�2 � pỹ, tp2� 1{pd� 1qqq infected
in ξ and ξ̃ respectively such that ỹ � y � 2tv � 2tvd�1{pd� 1q �°d�2

i�1 ∆iei
and such that the 2dOP renormalisations in direction ed�2 of each of the
boxes percolate.



378 Chapter 11: Generalised oriented site percolation

Repeating the same reasoning for each direction and recalling the de�ni-
tion of v, we obtain the desired conclusion.

11.A.2 Tilting

Recall the setting of Section 11.4.3. In this section we show how to remove the
additional assumption v � 0 used there in the proofs of Eqs. (11.5) and (11.6)
and the continuity of U in Theorem 11.1.1, as well as Theorem 11.4.9. The
reasoning for Theorem 11.4.9 and the continuity being identical to the one
for Eqs. (11.5) and (11.6), we only address the latter.

Indeed, we can assume w.l.o.g. that the vector v in Theorem 11.4.7 is in
Qd�1 and then apply the linear map px, tq ÞÑ px � vt, tq to the lattice. We
will refer to the resulting lattice Ẑd as the tilted lattice and de�ne its period
R̂ :� mintt P Z : tv P Zd�1, t ¥ Ru and base B̂ � pRd�1 � r0, R̂qq X Ẑd. For
A � S we de�ne the tilted process, hitting time, hit and coupled regions

ξ̂At :�
!
px, sq P B̂ : px� vpt� sq, 0q P ξAt�s

)
,

K̂A
t :�

!
px, sq P B̂ : ξ̂At px, sq � ξ̂St px, sq

)
,

t̂Apx, sq :� min
!
t P s� R̂Z : t ¥ 0, px� vt, 0q P ξAt

)
px, sq P B̂,

ĤA
t :�

!
px, sq P B̂ : t̂Apx, sq ¤ t

)
The proof of Section 11.4.3 applies to GOSP in the tilted setting, yielding

Eqs. (11.5) and (11.6) in Ẑd for some convex compact limit shape Û � Rd�1

containing o in its interior. We then need to transfer the result back to the
original lattice with U � Û � v. By the de�nition of ξ̂t and K̂t, Eq. (11.6)
and the inclusion in the coupled region in Eq. (11.5) are immediate. It
remains to show that for every ε ¡ 0, P̄p-a.s. for every t large enough Ht �
ppp1 � εqtUq � r0, Rqq X Zd. Our strategy, somewhat similar to [133], is as
follows. Fixing x P Zd�1 such that px, 0q should belong to Ht, we trace the
line of slope v from px, tq and determine when it intersects the boundary of
the cone

�
t1¥0pt1Uq � tt1u (see Fig. 11.3). Someone close to the intersection

point should be infected around time t1 by the result available in Ẑd. But
then at a time t1�εt some site close to the intersection has survived for time
εt, so, applying Eq. (11.12) and Theorem 11.4.7 to this site we manage to
reach px, tq as desired. With this in mind, let us spell out the details.

Equations (11.5) and (11.6) of Theorem 11.1.1 on Ẑd imply that for
every ε ¡ 0 P̄p-a.s. there exists a constant C such that for every px, sq P B̂
with }x} ¥ C �

x, t̂px, sq� P ¤
t¡0

�
tBÛ

	
� ttu, (11.26)

setting BÛ :� pp1� εqÛqzpp1� εqÛq. Observe that this event implies that in
the original lattice there is at least one vertex infected by the origin in the
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px, tq

px� vt, 0q

�
t¡0

�
p1� 2εqtÛ � vt

	
� ttu

�ct ct

(a) Case }x� vt} ¤ ct.

px, tq

py, sq

py1, s1q

px� vt, 0q

(b) Case }x� vt} ¡ ct.

Figure 11.3 � The original lattice for d � 2. Shaded areas represent the cone�
t¡0rtpv�cq, tpv�cqs�ttu rooted at o and py1, s1q respectively. The hatched

region is ∆.

intersection of ∆ :� �
t¡0ptBÛ1 � vtq � ttu and the ray px � vt, tqt¥s for all

px, sq P B̂ such that }x} ¥ C (see Fig. 11.3b).
Fix c and ε so that Theorems 11.4.3 and 11.4.7 hold for the original

lattice. We now argue that for any t ¡ C{c and for any x P pp1 � 2εqtÛ �
vtq X Zd�1, we have px, 0q P Ht except with probability exponentially small
in t. If }x� vt} ¤ ct (see Fig. 11.3a), then Theorem 11.4.7 directly gives the
desired result.

Assuming }x � vt} ¡ ct, let δ ¡ 0 be small enough depending on
X, c, Û, v, ε, but not t, x, C. Equation (11.26) implies that P̄p-a.s. there is
a vertex py, sq in the intersection of ∆ and the segment from px � vt, 0q
to px, tq, such that py, 0q P ξos . As s ¡ δt, we can take a site along an asso-
ciated infection path at time closest to s � δt, and denote it by py1, s1q (see
Fig. 11.3b).

We then have that py1, 0q P ξos1 and py1, s1q survives for time at least δt{2,
so we use Eq. (11.12) to conclude that py1, s1q survives with probability ex-
ponentially high in t. Once we have survival, we can use Theorem 11.4.7 to
show that x is in the hit region of py1, s1q at time t with high probability,
thus it is also in the hit region of the origin. Indeed,��x� y1 � vpt� s1q�� � ��y � y1 � vps� s1q�� ¤ t

?
δ   cpt� s1q,

since px, tq is at distance at least κt from ∆ (and thus from py, sq) for some
κ ¡ 0 depending only on Û, v, ε.

This completes the proof of Eqs. (11.5) and (11.6) of Theorem 11.1.1 as
stated for the original lattice.

11.A.3 Density large deviations�proof of Eq. (11.23)

Recall the notation of Theorem 11.4.10 and Section 11.4.4. We will use a si-
milar argument to [138] but based on a completely di�erent renormalisation.
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Let us �x p ¡ pc and a   θ̃ppq, let C be large enough depending on p,
let L be large enough depending on p, a, C and de�ne w � pL, . . . , Lq P Zd�1

and s � CL� L{C. Recalling Eq. (11.9), let B � Bpw,CL, vq with v as in
Theorem 11.4.7. We say that B is good if the following events all occur.

(1) For each site px, tq P B X S � Bpw,R, vq we have either τ px,tq   L{C
or τ px,tq ¥ s, where τ px,tq is de�ned as τ tpx,R�1qu for the con�guration ω
translated by �pt�R� 1qed.

(2) For each site px, tq P B X S such that τ px,tq ¥ L{C we have K
px,tq
s �

Bp3w,R, vq � sv and K
px,tq
CL � Bp3w,R, vq �CLv with K

px,tq
u de�ned as

K
tpx,R�1qu
u�t�R�1 for the con�guration ω translated by �pt�R� 1qed.

(3) ξSs X pBpw{C,R, vq � spv, 0q � Led�1q � ∅,
ξSs X pBpw{C,R, vq � spv, 0q � Led�1q � ∅.

In words, each site which does not die quickly survives well beyond the top
of B and infects the same set of sites at the top of B�Led�1, at least one of
which does not die quickly. Indeed, the neighbourhood X being �nite, the
only way to reach Bpw{C,R, vq�spv, 1q�Led�1 is to go through Bpw,R, vq�
CLpv, 1q � Led�1. Therefore, considering a renormalised two-dimensional
lattice with sites corresponding to disjoint translates of B, the resulting
2dOP is C2-dependent, as B being good only depends on the con�guration
in BpC2w, 2CL, vq.

We next show that the parameter of the 2dOP is close to 1 when L is
large enough, so that by [259] it stochastically dominates an independent
2dOP with parameter close to 1. Indeed, Event (1) fails with exponentially
small (in L) probability by Eq. (11.12); Event (2) fails with exponentially
small probability by Theorem 11.4.7 and Eq. (11.12); Event (3) fails with
stretched exponentially small probability by Eq. (11.13) applied to the dual
process.

It is easily checked that if a renormalised site B percolates in 2dOP,
then each site in B X S either dies in time at most L{C or also percolates.
Recalling Proposition 11.A.1, the rest of the proof is essentially as in [138].
Taking n much larger than L, we may cut a box Bn into pn{p2Lqqd�2 strips
each giving rise to a di�erent renormalised 2dOP. It is then standard to
show that the total proportion of percolating renormalised sites is not close
to 1 with probability at most expp�εnd�1q for some ε ¡ 0 depending on
L but not on n. Moreover, by standard large deviations for independent
random variables, the proportion of sites, which survive at least L{C steps
in Bn is smaller than θppq with probability at most expp�ε1nd�1q for some
ε1 ¡ 0 depending on L but not on n. We may then conclude by discarding
the renormalised sites which do not percolate. Finally, performing the same
reasoning for the dual process rather than the primal one, we obtain the
desired conclusion (with θ̃ppq instead of θppq).
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Figure 11.4 � The shaded boxes are likely to contain paths crossing them.
In order to transition from one path to another, we use additional infections
as illustrated in Fig. 11.5.

11.A.4 Enhanced two-dimensional renormalisation�proof of
Theorem 11.5.4

Recall the notation of Theorem 11.5.4 and Section 11.5.
The idea of [136] is to introduce several translates of the original long

boxes from Eq. (11.25) and hope that their paths have positive probability
of intersecting and do so independently (see Fig. 11.4). More precisely, in-
creasing p by a small amount ε, they require that the additional infections
su�ce to transition with positive probability from one path to the other at
the place where they cross. As we shall see, although it is not possible to
do this, as intended, in one step at the crossing point, it is possible to �nd a
place where to do it in several steps.

More precisely, using Eq. (11.25), �x ε ¡ 0 and δ ¡ 0 small and L large
enough so that

Pp
�
S

BÝÑ S � p0, Lq
	
¡ 1� δ

with B � BpεL, L, αq�2εLe1 and similarly for B1 � BpεL, L, βq�2εLe1 (see
Fig. 11.5). Fix two open paths γ � pa0, a1, . . . , anq and γ1 � pa10, a11, . . . , a1mq
crossing B and B1 respectively. Fix v and large n and t as in Eq. (11.8)
independent of all other constants. Let η be a set of additional infections,
with each site at distance at most Optq from B XB1 infected independently
with probability ε ¡ 0. Then we claim that

Pp�ε
�
a0

γYγ1YηÝÝÝÝÝÑ a1m



¡ εOpt

2q.

To see this, simply consider the region

γ̂ �
¤
aPγ
pa�Bn � pv, tqq,
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B1

B

γ̂ γ
γ1

x

Figure 11.5 � The paths γ and γ1. The shifted and thickened version γ̂ is
the union of the shaded boxes. Due to its thickness it necessarily intersects
γ1 and does so close to the intersection of the boxes B and B1. The only x
yielding the intersection in the example is indicated by a dot.

which is a shifted and thickened version of γ (see Fig. 11.5). It is clear that
γ̂ X γ1 � ∅, so it su�ces for one a P γ such that pa� Bn � pv, tqq X γ1 � ∅
to infect all possible sites for a time interval t in η. Since there are Opt2q of
them, we obtain the desired result.

Hence, with positive probability we can go from a0 to a1m and, similarly,
from a10 to an, which is just as good as having γ X γ1 � ∅ for our purposes
(except that the latter cannot be achieved by sprinkling). With this at
hand, the approach of [136] works without the annoying hypothesis (H3) to
renormalise GOSP to 2dOP with parameter close to 1. Consequently, αppq ¡
βppq does imply θppq ¡ 0, but also, since the probability of a renormalised
site being open is continuous in p and arbitrarily close to 1, Theorem 11.5.4
follows (see [131] for more details).



Chapter 12

Subcritical bootstrap

percolation

This chapter is based on [209]. Recall Section 1.5.4.

Remark 12.0.1. We acknowledge that since the completion of the original
[209] of the present chapter it has come to our attention that Schonmann
[315, Theorem 5.1] has proved by independent means a result roughly equi-
valent to part of Theorem 12.3.5 (see also Remark 12.4.8).

In this chapter we write Pq for the product Bernoulli measure µ and Eq
for its expectation. We say that bootstrap percolation (BP) occurs if the the
closure rAs of the initial set A of infections with law Pq is the entire lattice
Z2. We further use the term percolation to refer to a random subset of Z2

with law Pp for any p, not necessarily referring to a BP process.

12.1 Models

Oriented site percolation OP can be viewed as the BP model de�ned
by U � ttp1, 1q, p�1, 1quu. It is easy to check (and was noticed already by
Schonmann [315]) that x R rAs if and only if there exists an in�nite orien-
ted path (with North-East and North-West steps) starting at x of initially
healthy sites. In particular, qc for this model is equal to 1� pOP

c , where pOP
c

is the usual critical probability of OP parametrised in terms of the density
of healthy sites (this is one of the reasons for denoting our parameter q).
Up to applying an invertible linear transformation to Z2, any family with
one rule consisting of two non-collinear sites is equivalent to OP, so we will
abusively also call them OP. Furthermore, one may consider bidirectional
OP with U 1 � ttp1, 1q, p�1, 1qu, tp�1,�1q, p1,�1quu, for which the surviving
healthy sites are those initially belonging to a bi-in�nite oriented path, so
that the critical probability is again 1�pOP

c . OP is a very classical and well-

383
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understood model, for background on which we direct the reader to [131] in
addition to Section 12.5.

Spiral model The Spiral model of Toninelli, Biroli and Fisher [347] is
de�ned by U � tU1, U2, U3, U4u, where
U1 � tp1,�1q, p1, 0q, p1, 1q, p0, 1qu U2 � tp1,�1q, p1, 0q, p�1,�1q, p0,�1qu
U3 � �U1, U4 � �U2.

(12.1)
This model was introduced to witness the somewhat surprising fact that
subcritical BP can have a discontinuous phase transition in the sense that
θpqcq � Pqcp0 R rAsq ¡ 0. This was established rigorously by Toninelli and
Biroli [344] based on a close relationship with OP, which we will discuss
further in Section 12.6.

Directed triangular bootstrap percolation DTBP was introduced by
Balister, Bollobás, Przykucki and Smith [28] as an example of a simple, but
somewhat generic, subcritical model. Its main feature is its lack of symmetry
and it should be viewed as a benchmarking example. It can be de�ned as
2-neighbour BP on a directed triangular lattice, but can also be embedded
in Z2 by

U � ttp1, 0q, p0, 1qu, tp1, 0q, p�1,�1qu, tp0, 1q, p�1,�1quu. (12.2)

As for most subcritical models not much is known about it. As a quantitative
illustration of their result, the authors of [28] established that for DTBP

10�101 ¤ qc ¤ 1� pOP
c ¤ 0.3118,

invoking Gray, Weirman and Smythe [193] for the last inequality.

Ordinary site percolation Finally, SP is one of the most classical perco-
lation models (see [196]), which will also be useful for us, although it is not
a particular case of BP. Similarly to OP, it consists in declaring each site of
Z2 open independently with probability p and looking for in�nite paths of
open sites with respect to the usual nearest neighbour graph structure of Z2

instead of the oriented one for OP. We denote pSP
c the critical probability of

appearance of such in�nite paths.

12.2 De�nitions and notation

In this section we gather most of the notation used throughout the chapter.
We invite the reader familiar with percolation to skip ahead to Section 12.3
and go back to this section as needed. As some of the notions will be used
relatively locally, let us indicate that the central notion of the present chapter
is the one in De�nition 12.2.1.
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Critical probability Recall that 0   q   1 is the density of infected sites
and Pq is the associated Bernoulli product law of the random set A � Z2

and that r�s denotes the closure with respect to the BP process de�ned by a
non-trivial update family U , that we keep implicit when there is no risk of
confusion. Also, Bx � r�x, xs2 X Z2 for all x P r0,8q. De�ne

θnpqq � Pqp0 R rAXBnsq,
θpqq � lim

n
θnpqq � Pqp0 R rAsq.

The critical probability is given by

qc � inf
 
q P r0, 1s,PqprAs � Z2q � 1

( � sup tq, θpqq ¡ 0u ,
the �rst equality following from ergodicity and the second one resulting from
invariance by translation as for SP (see e.g. [196]). We also introduce another
critical probability

q̃c � inf

#
q P r0, 1s,

¸
n

nθnpqq   8
+
, (12.3)

which is actually the only relevant one for our proofs, only noting that q̃c ¥
qc. Several other equivalent de�nitions will be proved in Theorem 12.3.5, so
that q̃c is in particular the critical probability of exponential decay of θnpqq.
We emphasise that working with q̃c instead of qc will only lead to stronger
results in applications.

Directions and half-planes In order to de�ne the central notion of this
chapter, critical densities, we will need some conventions and notation con-
cerning directions and half-planes, which will mostly follow previous authors.
We identify the unit circle S1 � R2 with the torus R{2πZ via

pcos θ, sin θq ÐÑ θ mod 2π.

Despite the identi�cation we shall preferentially use the letters u, v for di-
rections and θ for angles. For n P N directions u1, . . . un P S1 we write
u1   . . .   un if one can �nd θ1   . . .   θn   θ1 � 2π and θ in R such that
for each i we have ui ÐÑ pθi � θq mod 2π.

Recall that x�, �y and S1 are the canonical scalar product on R2 and its
unit sphere (circle). Furthermore, for u P S1 and a P R set

Ha
u � tv P R2, xv, uy   au,

Hu � H0
u and Ha�

u � tv P R2, xv, uy ¤ au. We denote by Vu,v � Hu X Hv

the cone de�ned by the directions u, v P S1. We also recall the standard
notation a_ b � maxpa, bq and a^ b � minpa, bq.



386 Chapter 12: Subcritical bootstrap percolation

Critical densities We are now ready to introduce the new notion of `cri-
tical densities' adapted to subcritical BP (for critical and supercritical ones
they will turn out to be identically 0). Let us note that this is not an exten-
sion, but rather a complement, of the `di�culties' of [70], which are trivial
for subcritical models.

Before we frighten the reader with the de�nition, let us say that the
critical density in a direction u is morally the critical probability of the
model with infected boundary condition in Hu. The de�nition we give di�ers
from this one in two ways�it concerns the critical probability for certain
decay of θnpqq and it is de�ned in a region whose shape approaches a half-
plane. Nevertheless, this distinction will only be of major importance for
Section 12.4.2. That is because in applications we will always rely on simple
OP-like models, in which we know that there is exponential decay above
criticality and that the critical density is continuous in the shape of the
region, so that the two notions coincide. Finally, we actually conjecture that
they are always equal. With this in mind, let us state the de�nition we shall
use.

De�nition 12.2.1. For u P S1 and θ P r�π, πs de�ne

dθu � inf

#
q P r0, 1s,

¸
n

nPq p0 R rppAY Vu,u�θq XBnqsq   8
+
.

Taking the (monotone) limit of this quantity, we set

d�u � lim
θÑ0�

dθu

and we call d�u and d�u the left and right critical densities of u respectively.
The critical density of u is then given by du � d�u _ d�u . We call u ÞÑ du the
critical density function of the model (of U).

It is clear from the de�nition that this quantity is somewhat of the same
complexity as qc, so that it is not feasible to be able to compute the critical
densities for all u even for the simplest of subcritical models�OP.

The next observation directly follows from De�nition 12.2.1, but will be
the base for our upper bounds on qc.

Observation 12.2.2. Let U be an update family. Let u P S1 be a direction
and U 1 � U be a subfamily of rules. Then

dupUq ¤ dupU 1q.

One-arm events Generally in percolation theory, a one-arm event is an
event corresponding to `a point being connected to in�nity' or its �nite-size
truncations. In BP there is one very natural in�nite volume one-arm event�
t0 R rAsu, which corresponds to the presence of an in�nite cluster (set) of



12.2. DEFINITIONS AND NOTATION 387

healthy sites ensuring the occurrence of the event. There are several natural
ways to truncate this event. In particular, we have

t0 R rAsu �
£
n

tτ0 ¥ nu �
£
n

t0 R rAXBnsu,

etc., where τ0 is the infection time of the origin. We interpret this event
as 0 Ñ 8 (0 `looks at' in�nity) and its truncated version t0 R rA X Bnsu
as 0 Ñ BBn (B stands for the boundary). In models involving some kind
of directionality, like BP, one may need to distinguish between `point-to-
in�nity' and `in�nity-to-point' and similarly for truncated versions. The
second one, which we de�ne next, turns out to be more tractable, albeit less
natural.

For n P N and x P Bn we denote the infection time of x in Bn with
healthy boundary condition by

τBnx � inf
!
t, x P pAXBnqBnt

)
,

where the dynamics only a�ects the con�guration in Bn. More formally, for
any sets X � Z2 and A0 � Z2, we inductively de�ne

AXt�1 � AXt Y
 
x P X, DU P U , x� U � AXt

(
.

De�nition 12.2.3. Fix a large constant C ¡ 0 depending on U . Denote by
En � t0, 1uBn the event that there exists an integer N and a sequence pxiqN0
of sites in Bn such that

• xN is at distance at most C from the boundary BBn of Bn.

• x0 � 0

• xi�1 P xi �X for all 1 ¤ i ¤ N , where X � �
UPU U

• τBnxi ¥ i.

Also set θ̃npqq � PqpEnq and θ̃pqq � limn θ̃npqq.
Note that the healthy boundary condition does not in�uence this event

too much. Indeed, it is clear that some xi is close to BBn{2, so the occurrence
of En implies the existence of a site `in the bulk' (far from the boundary)
with large infection time. We will use this observation to obtain information
on the distribution of the infection time τ0 below q̃c.

The events En, which we interpret as BBn Ñ 0, have the notable advan-
tage of being `re�exive' in the sense that, when exploring a con�guration to
check if En holds, looking back at the explored region from its boundary,
one sees the event itself occurring in a smaller domain, which is crucial for
the argument of Duminil-Copin, Raou� and Tassion [127] that we will use.
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Also very importantly, this event is de�ned in terms of a path rather than a
`cluster', although it does require the existence of `clusters' of healthy sites.
Of course, the main disappointment is that although very closely related to
(and only di�ering by at most polynomial factors from) the natural events
t0 R rA X Bnsu or tτ0 ¥ nu, it does not allow us to prove that q̃c � qc,
but only provides additional constraints on the phase rqc, q̃cq. The reason is
that we may have

�
nEn � t0 R rAsu, meaning that in BP the `0 Ñ8' and

`8Ñ 0' events are di�erent.

Randomised algorithms and revealment We will need the natural no-
tion of algorithm determining a random variable Y on Ω0 � t0, 1uBn endowed
e.g. with the measure Pq. Roughly speaking, this is an algorithm which re-
veals the state of one bit (the value of ω0 P Ω0 on one site x P Bn) at a time
possibly depending on knowledge of the con�guration already explored. It
keeps exploring bits one at a time until the value of Y is witnessed by the ex-
plored sites (determined regardless of the state of the remaining unexplored
sites).

More formally, an algorithm is a rooted strict binary tree T directed away
from the root. Its internal nodes are labelled by sites of Bn indicating the
state of which site is being revealed. For each such internal node labelled by
x, the two out-edges are labelled by the two possible values of the correspon-
ding bit, so that given ω0 P Ω0, the algorithm with input ω0 continues along
the edge labelled by ω0pxq. The leaves of the tree are labelled by the pos-
sible values of Y (with repetition) indicating which value of Y is witnessed
(guaranteed) by the states indicated by the edges from the root to the leaf.
More precisely, let Pl denote the path from the root to a leaf l labelled by a
possible value y of Y . Then the vertices of Pl all have distinct labels (each
site is revealed at most once) and for any ω0 P Ω0 such that for all internal
nodes v P Pl we have ω0pxvq � εv it holds that Y pω0q � y, where xv is the
label of v and εv is the label of the out-edge of v belonging to Pl. Clearly,
given an algorithm and an input ω0 P Ω0, there exists a unique leaf lω0 such
that for every internal node in v P Plω0

we have ω0pxvq � εv. This simply
corresponds to what the algorithm actually does for the speci�c realisation
of the random input�which sites it checks, in what order, what values it
�nds for their states and, �nally, what value of the random variable Y it
determines based on those states.

A randomised algorithm is an algorithm-valued random variable. As we
will apply these algorithms to inputs which are random themselves, we need
to de�ne them on a common probability space pΩ,Pq, so that the random al-
gorithm is independent from the random input. For a randomised algorithm
de�ne its maximal revealment

δ � max
xPBn

PpDv P Plω0
, xv � xq,
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i.e. the maximal probability that any �xed site is explored by the algorithm.

Noise sensitivity We next de�ne noise sensitivity, although our proofs
will mostly use black-box theorems based on Fourier analysis instead of the
de�nition.

De�nition 12.2.4. Let Gn � t0, 1uBn be a sequence of events. For every
ω0 P t0, 1uBn let Nεpω0q be the con�guration obtained when each bit of
ω0 is resampled independently with probability ε and unchanged otherwise.
Resampled bits are taken to be independently infected with probability q as
originally.

We say that the sequence Gn is noise sensitive, if for every ε ¡ 0

lim
nÑ8

Cov
�
1ω0PGn ,1Nεpω0qPGn

�
V arp1Gnq

� 0.

Let us note that this de�nition following [43] is stronger than the original
one from [47], which is trivial for events with probabilities tending to 0 and
equivalent, if the probabilities are bounded away from 0.

12.3 Results

Our goal is to provide a toolbox for studying subcritical models in full ge-
nerality. Although our results will apply also to supercritical and critical
models, most of them are either empty or relatively easy for such families.
Unless explicitly mentioned we do not consider trivial subcritical models.

Critical densities and upper bounds on qc Let C � tru, u�πs, u P S1u
be the set of closed semi-circles of S1. The most central result of our chapter
is the following directional decomposition of the critical probability.

Theorem 12.3.1. Let U be any update family. Then

q̃c � sup
uPS1

du � inf
CPC

sup
uPC

du. (12.4)

If U is not subcritical, then q̃c � 0.

Combining Theorem 12.3.1 with Observation 12.2.2, we obtain the follo-
wing upper bound on qc.

Corollary 12.3.2. Let U be an update family. Then for any set of subfami-
lies Ui � U we have

qcpUq ¤ q̃cpUq ¤ inf
CPC

sup
uPC

min
i
dupUiq.
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Critical densities of OP In order to make use of Corollary 12.3.2 and
obtain a concrete non-trivial upper bound in relative generality, we express
the critical densities of OP in terms of a classical quantity called `edge speed'.
This is done in Section 12.5 by combining many standard facts about OP
recalled there together with the de�nition of the `edge speed'.

Application to DTBP Though simple, the bound in Corollary 12.3.2
is very versatile and can lead to non-trivial results for the right choice of
subfamilies we have information for. Of course, in some cases it will reduce
to the trivial bound qcpUq ¤ minUPU qcptUuq (since it is sometimes sharp
already), which has not been brought up explicitly in the literature, but was
mentioned for DTBP in [28], taking only U1 � tUu for some rule U P U
(they are all isomorphic). There it was observed that qc ¤ 1� pOP

c   0.312,
the second inequality being due to Gray, Weirman and Smythe [193].

As an exemplary application of our result, we improve this bound on
DTBP, answering Question 17 of [28] (of course, the question may now be
reiterated). We prove the following by combining Corollary 12.3.2, the ex-
pression of critical densities of OP and a variant of the argument from [193].

Theorem 12.3.3. For DTBP

qc ¤ q̃c ¤ dOP
arctanp�1{3q   0.2452,

where dOP is the critical density of OP.

Application to Spiral Another application concerns the Spiral model.
For that model Toninelli and Biroli [344] proved that qc � 1� pOP

c , there is
exponential decay for q ¡ qc and its transition is discontinuous, as well as
providing bounds on the exponentially diverging correlation length. It turns
out that our method exactly recovers the �rst two assertions, giving a new
proof of the following.

Theorem 12.3.4 (Theorem 3.3. of [344]). For the Spiral model qc � q̃c �
1� pOP

c .

This is a consequence of Corollary 12.3.2 together with an adaptation of
a straightforward but fundamental lemma from [344], which inputs a crucial
feature of the model identi�ed by Jeng and Schwarz [235].

Exponential decay In the proof of Theorem 12.3.1 we actually prove that
θnpqq decays exponentially fast in n for q ¡ q̃c. We provide a second proof
of this fact, which also gives additional information on the phase q   q̃c.

Theorem 12.3.5. Recalling De�nition 12.2.3, for any update family the
following holds.
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• If q ¡ q̃c, then there exists cpqq ¡ 0 such that

max
�
θnpqq, θ̃npqq

	
¤ expp�cpqq � nq.

• There exists c ¡ 0 such that for q   q̃c

θ̃pqq ¥ c � pq̃c � qq ¡ 0.

• If q   q̃c, then there exists cpqq ¡ 0 such that

Pqpτ0 ¡ nq ¥ cpqq{n
and in particular Eqrτ0s � 8.

Although we expect that qc � q̃c, this implies that if qc � q̃c, then the
expected infection time is in�nite at qc (Question 11 of [28]).

The proof relies heavily on the new simple but powerful method of
Duminil-Copin, Raou� and Tassion [127] based on randomised algorithms.
With some additional work on their only model-dependent Lemma 3.2, so-
mewhat surprisingly the technique applies to BP, which is a rather uncon-
ventional setting for such arguments from SP.

Finally, we answer Question 12 of [28] on exponential decay for q   qc in
the negative and provide satisfactory information concerning Question 14 of
the same paper on the relationship between BP and SP.

Noise sensitivity Exploiting the algorithm we devise in order to prove
Theorem 12.3.5, we obtain the following relatively complete information
about noise sensitivity.

Theorem 12.3.6. Recalling De�nition 12.2.3, for any update family and
any q P p0, 1q the following hold.

• θ̃pqq � 0 if and only if the events En are noise sensitive and if and only if
there is an algorithm with vanishing revealment determining their occur-
rence.

• If θpqq ¡ 0, then the events t0 R rAXBnsu are not noise sensitive.

• If θpqq � θ̃pqq � 0, then the events t0 R rAXBnsu are noise sensitive and
there is an algorithm with vanishing revealment determining their occur-
rence.

The proof relies on fundamental results of Benjamini, Kalai and Schramm
[47] and Schramm and Steif [318].

In particular, this proves that Spiral is not noise sensitive at criticality,
while OP is, so that the conditions on continuity of the transition are in-
deed relevant for noise sensitivity. Let us also mention that proving that
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the missing case�θ̃pqq ¡ 0 � θpqq�never occurs is only slightly stronger
than proving Conjecture 12.8.1 stating that qc � q̃c. If it indeed does not
occur, then Theorem 12.3.6 provides the �nal answer to Question 13 of [28]
as far as one-arm events are concerned. Furthermore, Theorem 12.3.6 sug-
gests some limitations for the intuition given by Bartha and Pete [43] (see
Question 1.3 therein). Namely, Theorem 12.3.6 indicates that noise sensi-
tivity non-trivially depends on the continuity of the transition, while [43]
suggests that it should only depend on whether the model is subcritical or
not, though for a more restrained class of models. Therefore, if a variant of
Question 1.3 of [43] is to hold in general, additional rami�cations should be
needed.

Spectral gap and mean infection time of KCM Another application
of our exponential decay results concerns KCM. We extend to full genera-
lity the scope of the main result of Cancrini, Martinelli, Roberto and Toni-
nelli [88] using their method together with exponential decay.

Theorem 12.3.7. Consider any KCM. If q   q̃c, then the spectral gap of
its generator is 0 and the mean infection time of the origin in the stationary
process (with initial law Pq) is in�nite. If q ¡ q̃c, then the spectral gap is
strictly positive and the mean infection time of the origin in the stationary
process is �nite.

In other words, q̃c is the phase transition of the spectral gap of the
associated KCM, so that it can be directly read o� the associated BP as
is the case of the non-ergodicity transition occurring at qc [88].

We should note that the statement in the case of supercritical and critical
models (for which q̃c � 0 by Theorem 12.3.1) is also a trivial consequence
of the quantitative result of [269]. We are particularly indebted to Cristina
Toninelli for discussions around this theorem and its proof.

12.4 Critical densities

In this section, after some short preparatory work of establishing basic pro-
perties of critical densities, we characterise q̃c in terms of them, which can
be viewed as the most central result of the chapter.

12.4.1 Preliminaries

We start with a few observations which follow trivially from De�nition 12.2.1,
but are essential nonetheless.

Observation 12.4.1. For all u, θ P S1 one has

dθu ¤ q̃c
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and therefore the same holds for du and d�u . Moreover, θ ÞÑ dθu is non-
decreasing for θ P r0, πs and non-increasing for θ P r�π, 0s and d�πu � q̃c.

Observation 12.4.2. For all u, θ P S1 one has

dθu � d�θu�θ.

The following fundamental lemma is based on a classical topological trick.

Lemma 12.4.3. Let ε ¡ 0 and I � S1 be a closed interval of S1, which we
identify with an interval ru, vs of R. Then there exists n P N and a �nite
sequence u � u0   u1   . . .   un � v of directions in I such that

@i P r1, ns, 0 ¤ d
ui�ui�1
ui�1 �

�
d�ui�1

_ d�ui
	
  ε. (12.5)

Proof. Recall that by Observation 12.4.2 for u1, v1 P S1 with 0   v1 � u1   π

we have dv
1�u1
u1 � d

�pv1�u1q
v1 . Then by Observation 12.4.1 one always has

dv
1�u1
u1 ¥ d�u1 _ d�v1 , so we need only establish the second inequality.
Set

I0 �
 
v1 P ru, vs, DnDpuiq P pS1qn�1,

u � u0   . . .   un � v1, satisfying (12.5)
(
,

and v0 � sup I0, which we shall prove to be v. To do this we prove that I0

is open to the right:

@v1 P I0 Dδ ¡ 0, rv1, v1 � δs X I � I0

and closed to the right:

Dv1 P I, pviq P IN0 , vi Õ v1 ñ v1 P I0,

which su�ces as I is an interval and u P I0.
For the �rst part, �x v1 P I0ztvu, n and puiqn0 , un � v1 as provided by

the de�nition of I0. By Observation 12.4.1 there exists pv � v1q ^ π ¡ δ ¡ 0
small enough so that dδv1 � d�v1   ε, which proves that rv1, v1 � δs � I0.

The proof of I0 being closed goes along the same lines looking to the left
instead of to the right. More precisely, let vi form an increasing sequence
of elements of I0 converging to v1 P I. By de�nition for i su�ciently large
v1 � vi   δ, where 0   δ   pv1 � uq ^ π is such that d�δv1 � d�v1   ε. Hence,
taking a sequence given by the de�nition of vi P I0 and appending v1 to it,
we obtain v1 P I0, which concludes the proof.

Remark 12.4.4. One can use the technique of quasi-stable directions [70]
to deal more easily with intervals of unstable and isolated stable directions.
We do not do this as our construction works for the more di�cult stable
intervals and trivially also applies to unstable ones.

Also notice that if one knew that pu, θq ÞÑ dθu is continuous, this would
follow by uniform continuity on a compact set.
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We shall in fact need the following variant which follows immediately.

Corollary 12.4.5. With the notation of Lemma 12.4.3 there also exist two
directions such that v   v1   u1   u and

du
1�u
u � d�u   ε,

dv
1�v
v � d�v   ε.

Proof. Given a sequence as in Lemma 12.4.3 we apply one step of the rea-
soning to the right of v, obtaining v1 su�ciently close to v and one step to
the left of u. We simply observe that the inequalities we obtained in the
proof of the Lemma were in fact the stronger ones in the statement of the
corollary.

12.4.2 Critical density characterisation of q̃c�proof of The-
orem 12.3.1

In order to prove Theorem 12.3.1 we will �rst need to show that above the
maximal critical density in a semi-circle a certain well-chosen big droplet of
infection grows inde�nitely in that direction with high probability. We thus
start by de�ning our droplets (see Figure 12.1).

De�nition 12.4.6. Let n ¥ 3, u � u0   . . .   un�1 � v be directions with
un � u1 � π and un   v   u   u1 and let L be in R�. We then de�ne the
droplet of size L by

DL �
n�1£
i�0

HL
ui � xL, DL� �

£
L1¡L

DL1 �
�

n£
i�1

HL�
ui � xL

�
X Vu,v, (12.6)

where xL P R2 is such that xxL, uy � xxL, vy � L, so that droplets are
inscribed in Vu,v.

It is crucial for the reasoning to follow that all sides of this droplet are
of length ΘpLq for large L when the directions are �xed.

The growth mechanism is, of course, quite di�erent from the one encoun-
tered for critical and supercritical models (�nding an infection somewhere
on the side of a droplet and relying on quasi-stable directions to make sure
that the sides expand to �ll the corners as well). Our strategy is to infect
sites one by one by inspecting an area of size ΩpLq to have su�ciently small
probability that the site remains uninfected in that zone. We can then use
the union bound to infect a new row on one side of the droplet. We use
this procedure to make the droplet grow, making sure that each side grows
linearly, so that we can �nally sum the probabilities using the decay provided
by the de�nition of critical densities.

The next lemma roughly tells us that once a set of directions is �xed as
in Corollary 12.4.5, a large infected droplet is highly likely to grow to infect
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hn�1

0

L.u0 L.u2

L.u1

L.un�1

L.un�1

L.un

...

Figure 12.1 � The droplet DL of size L for the directions u0, . . . un�1 de�ned
in (12.6). The left `half-side', hn�1 of ln�1 is thickened. The shaded box is
x�BL{C for some x P hn�1.

the cone it is inscribed in if given a su�ciently high (compared to the critical
densities) additional density of infections.

Lemma 12.4.7. Let n ¡ 2 and let puiqn�1
0 be directions such that

u � u0   u1   . . .   un   un�1 � v,

and u1 � π � un   un�1   u0   u1. Fix C large enough depending on the
directions. Let q ¡ max d

ui�ui�1
ui�1 for all 1 ¤ i ¤ n � 1 and let δ ¡ 0. Then

for L large enough and for any Λ ¥ CL

Pq
�rDL Y pAXBCΛqs � Vu,v XBΛ{C

� ¡ 1� δ.

Proof. Let puiqni�0, C, q and δ be as in the statement of the lemma.

Consider L such that Z2XpDL�zDLq � ∅ and let L1 � suptl, DlXZ2 �
DL� X Z2u. Consider the (possibly empty) new line of DL1zDL in direction

ui, li � Z2 X DL1 X
��

HL1
uizHL

ui

	
� xL

	
, for 1 ¤ i ¤ n. Let hi � tx P

li, xui � π{2, x� xLy ¥ 0u be the left half-side of li (looking from inside the
droplet), see Figure 12.1. For each site x P hi and Λ ¥ CL we have

Pq px R rDL Y pAXBCΛqsq ¤ Pq
�
x R �pAYDLq X px�BL{Cq

��
¤ Pq

�
0 R ��AY Vui,ui�1

�XBL{C
��
,

since inside a box of size L{C around x the droplet locally looks like (at
least) Vui,ui�1 , see Figure 12.1. Then the union bound over all sites in all



396 Chapter 12: Subcritical bootstrap percolation

half-sides gives

Pq prDL Y pAXBCΛqs � DL1q ¤
ņ

i�1

|li|
�
Pq

�
0 R ��AY Vui,ui�1

�XBL{C
��

� Pq
�
0 R ��AY Vui�1,ui

�XBL{C
�� 	

.

We now iterate this bound. Let L0 be large enough (depending on C,
δ and puiqn�1

i�0 ) and such that such that Z2 X pDL0�zDL0q � ∅. De�ne
Lj�1 � suptl, Dl X Z2 � DLj� X Z2u for all j ¥ 0. Again by the union
bound for any L ¥ L0 and Λ ¥ CL we have

Pq prDL Y pAXBCΛqs � DΛq

¤
ņ

i�1

8̧

j�0

|lji |
�
Pq

�
0 R

��
AY Vui,ui�1

�XBLj{C
�	

� Pq
�

0 R
��
AY Vui�1,ui

�XBLj{C
�		

,

where lji � Z2 XDLj�1 X
��

HLj�1
ui zHLj

ui

	
� xLj

	
.

Let us upper bound the �rst term for i � 1 for concreteness. Let jk �
mintj, Lj ¥ Cku. Then for any k ¥ tL0{Cu

jk�1�1¸
j�jk

|lj1|Pq
�

0 R
�
pAY Vu1,u2q XBLj{C

�	

¤ Pq p0 R rpAY Vu1,u2q XBksq
jk�1�1¸
j�jk

|lj1|.

Finally, the last sum is easily seen to be at most C3k (it is essentially equal
to the area covered by the ui side while growing from DCk to DCpk�1q), so
in total we get

Pq prDL Y pAXBCΛqs � DΛq

¤
8̧

k�tL0{Cu

C3k
ņ

i�0

Pq
�
0 R ��AY Vui,ui�1

�XBk
�� ¤ δ

by De�nition 12.2.1 and the choice of q. This concludes the proof, since
DΛ � Vu,v X BΛ{2 (by construction the u, v-sector of the Euclidean ball of
radius Λ{C is contained in DΛ).

We are now ready to prove Theorem 12.3.1.
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Proof of Theorem 12.3.1. By Observation 12.4.1 we have

q̃c ¥ sup
uPS1

du ¥ inf
CPC

sup
uPC

du,

so we are left with proving q̃c ¤ infCPC supuPC du.
Fix ε ¡ 0 su�ciently small and C P C such that

ε� inf
C1PC

sup
uPC1

du ¡ sup
uPC

du.

Also �x a set of directions as required by Lemma 12.4.7 with C � ru1, uns
and satisfying

@i P r2, ns, dui�ui�1
ui�1 � pd�ui�1

_ d�uiq   ε

d�pu1�u0q
u1

� d�u1
  ε

dun�1�un
un � d�un   ε,

as provided by Corollary 12.4.5. Without loss of generality (after rotating
the lattice) we assume un � p0, 1q. Fix δ ¡ 0 su�ciently small depending
on the directions puiq and ε. Let q1 � 2ε � supu1PC du1 , so that q � q1 � ε
satis�es the condition q ¡ max d

ui�ui�1
ui�1 of Lemma 12.4.7.

We sample (a part of) the infected sites as the union of two independent
percolations�one with probability ε and another one with probability q. At
this point one can easily obtain q1 ¥ qc using Lemma 12.4.7 to prove that a
droplet of size L grows with high probability in the second percolation and
�nd such a large droplet in the �rst one. However, in order to avoid using
qc � q̃c, we give a slightly more involved but fairly standard renormalisation
procedure to prove the desired inequality for q̃c. Furthermore, we will be
able to deduce that q̃c is also the critical probability of exponential decay.

Let L be large enough for the assertion of Lemma 12.4.7 to hold. Also
�x N su�ciently large depending on L such that PεpDx P BN , A X BN �
DL � xq ¥ 1 � δ. Finally, let c P N be large enough depending only on
the directions puiq (and on the constant C in Lemma 12.4.7), but not on δ.
Consider a renormalised lattice L � Z2 and say X P L is open if N.X �
BN � rA X pN.X � BcN qs. This process is clearly only 2c-dependent1 and
we claim that each site is open with probability at least 1 � 2δ. Indeed,
NpX�pt?cu, 0qq�BN contains a droplet of size L in the percolation process
with parameter ε with probability at least 1 � δ and this droplet grows to
infect NX � BN with probability at least 1 � δ in the percolation process
with parameter q only using infections inside NX �BcN by Lemma 12.4.7.

Hence, by the Liggett�Schonmann�Stacey theorem [259] the renormali-
sed process stochastically dominates an independent site percolation with
parameter 1 � δ1 with δ1 which can be made arbitrarily small by choosing

1Each site is independent from the states of sites at distance more than 2c from it.
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δ su�ciently small. In particular, it is known (from the standard Peierls
argument, see e.g. [196]) that the probability that there is no contour (self-
avoiding closed path) of open sites around 0 decays exponentially. Yet, if
such a contour exists in a renormalised box of size a ¡ c, we know that
0 P rA X B2aN s. Indeed, since the family is not trivial subcritical, the
renormalised site NX � BN for X in the contour becomes infected using
A X pNX � BcN q and the union of these sets for all X in the contour is
enough to infect the origin. To see this, simply use the fact that there exists
an unstable direction and that the BP process inside the infected contour
behaves as though everything outside the contour is infected. Thus, θmpq1q
decays exponentially in m, since N is a constant. Hence, q1 ¥ q̃c, concluding
the proof of (12.4).

Let us now consider a non-subcritical family and show that q̃c � 0. Fix
q ¡ 2ε. It is not hard to see (e.g. by repeating the proof from [74]) that a
su�ciently large droplet is very likely to grow using a density ε of infections
to infect an entire cone of �xed opening depending only on ε and U (see
Figure 7 of [74]). We can then repeat the renormalisation above using this
input instead of Lemma 12.4.7 to obtain that there is exponential decay at
q and thereby q̃c � 0.

Remark 12.4.8. Note that we also proved that q̃c is the critical probability
of exponential decay: for each q ¡ q̃c

lim inf
n

� log θnpqq
n

¡ 0,

while this fails for q   q̃c. Moreover, since the family is not trivial, the
exponential decay of the absence of a renormalised contour of radius n implies
also exponential decay of Pqpτ0 ¥ nq for q ¡ q̃c.

Remark 12.4.9. In fact, using droplets contained between two parallel lines
(see Figures 5 and 7 of [74]) instead of a cone with strictly positive opening
one can obtain a slightly stronger characterisation of q̃c only involving one
of the left or right critical densities at each endpoint of the semi-circle.

12.5 Critical densities of oriented percolation

In this section we determine the critical densities of the simplest subcriti-
cal BP model�OP. This is established in order to be used in conjunction
with Theorem 12.3.1 in the next section to deduce information about other
models. Interestingly, although determining critical densities corresponds to
studying the phase transition of OP with an absorbing boundary condition
(in a restricted region), this problem does not seem to have been thoroughly
studied. The only case which we are aware of that has been considered [160]
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is the symmetric one�u � π, for which the result, as we shall see, is that
the transition is the same as on the entire plane.

Let us recall a few classical results from OP theory all of which can be
found up to minor modi�cations in Durrett's review [131] (see also [130,134,
193,258]). We will not redo most of the proofs, as they are discussed in more
detail for GOSP in Chapter 11 and since they have appeared numerous times
in the literature in slightly modi�ed forms.

Recall that OP is de�ned by U � tUu � ttp�1, 1q, p1, 1quu. For the sake
of convenience, in this section we parametrise in terms of p � 1 � q�the
density of healthy (open) sites, so that Pp still denotes the product Bernoulli
measure such that each site is open with probability p. For the rest of this
section we consider only the sublattice of Z2 generated by U without further
mention. Denote by x Ñ y for x and y in Z2 the event that there exist
x0, . . . , xN with x0 � x, xN � y, xi � xi�1 P U and xi open for 0   i ¤ N ,
that we call an OP path (from x to y). Let

rn � sup tx P Z, Dy ¤ 0, py, 0q Ñ px, nqu
be the right edge with the convention sup∅ � �8.

Lemma 12.5.1. There exists a function α : r0, 1s Ñ r�8, 1s called edge
speed with the following properties.

(1) For any p we have Pp-a.s.

rn{nÑ αppq � inf
n

Eprrn{ns � lim
n

Eprrn{ns.

(2) α is strictly increasing on
�
pOP

c , 1
�
.

(3) α and continuous on
�
pOP

c , 1
�
with α

�
pOP

c

� � 0, αp1q � 1 and αppq �
�8 for p   pOP

c .

The �rst equalities and the a.s. limit are proved as in [258], following [130,
131]. The other assertions are proved exactly as in [131]. We will use this
de�nition of α in the remainder of the chapter. The contour argument used
in [131] to prove the continuity of α (together with the Borel-Cantelli lemma)
actually gives the following.

Lemma 12.5.2. For all p ¡ pOP
c and a   αppq we have that with posi-

tive probability there exists an in�nite OP path ppai, iqqiPN with a0 � 0 and
infn an{n ¥ a.

The next Lemma can be proved exactly like Theorem 7 of [195] (see
also [131]).

Lemma 12.5.3. If a ¡ αppq, then for some γ ¡ 0

Ppprn ¥ anq ¤ e�γn.
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The following bound on α will only be used in the next section.

Lemma 12.5.4. For all p P r0, 1s we have

αppq ¤ p3 � p� 1

p3 � 2p2 � 3p� 1
.

Proof. The two-paragraph argument of Section 2 of [193] adapts immediately
to give that α�1paq is larger than the root of the equation

pp3 � p2 � 2p� 1q{pp� p2q � 1� a

1� a
.

Rephrasing this we obtain exactly the desired inequality.

Let ψ be the composition of the tangent, the inverse of α and �nally 1��

ψ : r�π,�3π{4s Y r�π{4, 0s | tan |ÝÝÝÑ r0, 1s α�1ÝÝÑ �
pOP

c , 1
� 1��ÝÝÑ r0, qcs.

Putting the preceding facts together we obtain the critical densities of
OP.

Theorem 12.5.5. The critical density of U � tUu � ttp1, 1q, p�1, 1quu is
given by

dupUq �

$'&'%
0, u P r�3π{4,�π{4s
1� pOP

c � qc, u P r0, πs
ψpuq, otherwise.

For bidirectional OP U 1 � tU,�Uu, where �U � tp�1,�1q, p1,�1qu, the
critical densities are dupU 1q � dupUq ^ d�upUq. One also has d0

u � d�u � du
for all u in both cases.

Remark 12.5.6. If the OP rule is rather Ũ � tpx, yq, pz, tqu with the two
linearly independent vectors (sites), let L P GL2pRq be such that L � Ũ �
U � tp�1, 1q, p1, 1qu and detL ¡ 0. Then the critical densities are also

transformed via d
tŨu
u � d

tUu
u1 , where u1 is the direction of pLpu�π{2qq�π{2.

Proof of Theorem 12.5.5. If u P p�3π{4,�π{4q we have nothing to prove, as
the directions are unstable. By symmetry it su�ces to treat u P r�π{4, π{2s,
so �x one such direction and let q̃ � qc if u P p0, π{2s and ψpuq otherwise.
Notice that αp1� q̃q � � tanpuq in the latter case and 0 in the former one.

Let q   q̃. By Lemmas 12.5.1 and 12.5.2 we know that with positive
probability there exists an in�nite OP path of healthy sites starting at 0 not
intersecting Hu. This proves that q ¤ dθu for all θ, so q ¤ d0

u ¤ d�u ¤ du and
the same inequalities hold for q̃.

Conversely, let q ¡ q̃. Then by Lemmas 12.5.1 and 12.5.3

Pqp0 R rpAXBnq Y Vu�θ,u�θsq
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decays exponentially for θ ¡ 0 small enough, so that d0
u ¤ d�u ¤ du ¤ q.

Thus, with the inequalities from the previous case we obtain

du � d�u � d0
u � q̃.

Now consider bidirectional OP. It is clear that 0 remaining healthy for
this process is equivalent to 0 remaining healthy for the family tUu and for
the family t�Uu, both of which are simply OP. Moreover, these two events
are independent conditionally on the state of 0 (as the oriented paths occur
in the upper and lower half-planes respectively). Thus, the critical densities
are indeed obtained as claimed.

Remark 12.5.7. In order to be able to usefully apply Corollary 12.3.2 in
full generality to any subcritical model, we require a generalisation of The-
orem 12.5.5 to GOSP. Indeed, every non-trivial subcritical model contains
rules corresponding to GOSP as explained in Section 12.1. The proof of
Theorem 12.5.5 remains unchanged for GOSP, provided we have all the in-
gredients needed, Lemmas 12.5.1�12.5.3. In Chapter 11 we explained how
those are established.

12.6 Applications of the upper bound

The most natural and easy way to use Corollary 12.3.2, which we call basic
bound, is for subfamilies consisting of only one rule:

qcpUq ¤ q̃cpUq ¤ inf
CPC

sup min
UPU

duptUuq, (12.7)

since the r.h.s. terms correspond to OP treated in the previous paragraph or
similarly behaved GOSP. In principle this approach includes the trivial one

consisting of using qcpUq ¤ minUPU q
tUu
c , but also allows better estimates.

We give two illustrative applications of the general bound of Corol-
lary 12.3.2. The �rst one follows from the basic bound given by single rule
subfamilies as outlined above, while the second one is more subtle.

12.6.1 The basic bound�the DTBP model

Our �rst example is DTBP. We improve the upper bound of [28] as asked in
their Question 17 by proving Theorem 12.3.3.

Proof of Theorem 12.3.3. Our starting point is (12.7). Let Ui be the three
rules in the update family U of DTBP de�ned in (12.2). We can then use
Theorem 12.5.5 and Remark 12.5.6 to determine the r.h.s. We spare the
reader the tedious details, but it is elementary to see (see Figure 12.2) that
by symmetry there are three local maxima of u ÞÑ mini duptUiuq�the one



402 Chapter 12: Subcritical bootstrap percolation

5π{4π3π{4π{2π{40

1� α�1p1{3q

1� pOP
c

Figure 12.2 � A schematic representation of the critical densities of the three
OP rules in DTBP. For symmetry reasons we only depict the domain u P
rπ{4, 5π{4s.

at π{4 being the global maximum in r�π{4, 3π{4s. Hence, Theorem 12.5.5
and Remark 12.5.6 give

qcpUq ¤ dOP
Lp�π{4q�π{4 � dOP

arctanp�1{3q � 1� α�1p1{3q,
where Lpx, yq � px, y � xq maps the DTBP rule tp�1,�1q, p0, 1qu into
tp�1, 0q, p0, 1qu, which is OP rotated by π{4.

In fact, the other two maxima are also easily determined to be at π �
arctanp1{2q and arctanp1{2q � π{2. They turn out to give the same value as
the one at π{4, but we did not need that for establishing the upper bound.
Finally, Lemma 12.5.4 provides the desired bound α�1p1{3q ¡ 0.7548.

It should be noted that the numerical bound is not optimised, but me-
rely given to testify that the gain is signi�cant. For comparison, based on a
re�nement of the same method in [193] in conjunction with the trivial bound
qcpUq ¤ 1�pOP

c � 1�α�1p0q the authors of [28] obtain qcpUq   0.312. Even
if the exact value of pOP

c were known, it follows from rigorous upper bounds
that the trivial bound cannot go beyond 0.274 [29]. Numerical studies in-
dicate that in fact 1 � pOP

c � 0.2945 [294]. Unfortunately, we have been
unable to �nd appropriate numerical estimates for α for values far from qc

in the literature, so we cannot provide a corresponding result for our bound
1� α�1p1{3q. Finally, all these values are also to be compared with the nu-
merical estimate qcpUq � 0.118 suggested in [28], which indicates that there
is much room for further improvements.

12.6.2 Motivation of the second-level bound

Unfortunately, the basic bound (12.7) is not tight. Something more, it
is possible to �nd two rules U1 and U2, such that dptU1, U2uq is nowhere
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equal to dptU1uq ^ dptU2uq. Even worse, changing U2 may lead to a change
in dptU1, U2uq while dptU2uq remains the same. We give the following in-
structive counterexample, along whose lines many can be constructed.

Proposition 12.6.1. Let Un � tU1, Unu with Un � tpn, nq, p�n, nquu for
n ¥ 1. Then as nÑ8

qcpUnq ¤ 1� inf
 
p, pOP

c ¤ θOP ppq(� op1q,
where θOP ppq � P1�p

�
0 R rAstU1u

�
is the probability that 0 is never infected

in OP.

Proof. Let B1
n � p�n, ns�p0, nq and denote by L � tn.pm�k,m�kq, m, k P

Nu the sites concerned by the second rule. Note that for all x P L the boxes
x�B1

n are disjoint and disjoint from L.
Fix ε ¡ 0 and p � 1 � q such that θOP ppq   pOP

c � ε. Let n be large
enough so that

Pq
�
x R �AX �

x�B1
n

��� ¤ θOP ppq � ε

p
.

Such an n exists, because the process with initial infection in x � B1
n is

identical to the one under the family tU1u, which is OP and for which we
know that the probability converges to θOP ppq{p.

Then we can associate to each site of x P L an independent Bernoulli
random variable with parameter θOP ppq�ε�the indicator of the event Gx �
tx R A; x R rA X px � B1

nqsu. Furthermore, tx R rAsu � Gx for all x.
But then in order for 0 to remain uninfected at all times it is necessary
to have an in�nite path with steps in Un starting at 0 of sites x such that
Gx occurs and the probability of this event is θOP pθOP ppq � εq � 0, since
θOP ppq ¤ pOP

c � ε.

This example shows where the main di�culty of the subcritical models
resides once GOSP is well understood. The division into three universality
classes is based on the unstable directions of a model, which can be directly
obtained by superimposing the ones for each rule, which are very easy to
determine [28, 74]. In the re�ned result based on `di�culties' for critical
models [70] Bollobás, Duminil-Copin, Morris and Smith only require infor-
mation in the �nitely many isolated stable directions�their di�culty. In
their case, like here, there is no easy way of calculating the di�culty of an
isolated stable direction without looking at the entire update family. Ho-
wever, in the simple case of critical models the di�culty happens to be a
�nite discrete quantity, which invites direct exhaustive computation (which
for simple models is readily done by hand), and indeed [70] does not provide
a recipe for determining di�culties (it turns out that determining them is
NP-hard�see Chapter 9). This is essentially the same problem that we are
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Figure 12.3 � An example of the healthy
path used in the proof of Lemma 12.6.2.
The shaded region is entirely infected.

facing here, but the critical densities of subcritical models being much richer,
they are even harder to decompose and analyse.

On the bright side the bound from Corollary 12.3.2 need not be applied
to subfamilies with a single rule. Hence, if we have information on the joint
critical densities of, say, all pairs of rules in the family U , then we can extract
a (better) upper bound for qcpUq. We next turn our attention to an example
where this approach works brilliantly, while to apply the basic bound (and
obtain worse results) we would need an understanding of GOSP.

12.6.3 Spiral model

Indeed, in the Spiral model the subfamilies with two rules happen to be
simpler than the single-rule ones when restricted to appropriate half-planes.
Recall the de�nition of its update family U � tU1, U2, U3, U4u from (12.1).
We will use Corollary 12.3.2 to provide a new proof of one of the main results
of [344]�Theorem 12.3.4.

The proof is nearly complete at this point, but we need one last ingre-
dient, a variant of Lemma 4.11 of [344], which is actually more naturally
expressed in the language of critical densities. This is where one uses the
�no parallel crossing� property, which Jeng and Schwarz [235] identi�ed as
essential, as without it the pairs of rules do not simplify to OP.

Lemma 12.6.2 (Adaptation of Lemma 4.11 of [344]). Let u P pπ{2, 5π{4q.
Then

duptU1, U2uq � dupU 1q,
where U 1 � ttp0, 1q, p1, 1qu, tp0,�1q, p�1,�1quu is a bidirectional OP.

Since there are a few additional technicalities, we give the proof, focusing
on the new parts, so the reader is also invited to consult [344] for more details.

Proof of Lemma 12.6.2. Let u P I � pπ{2, 5π{4q and π{2�u   θ   5π{4�u.
We claim that dθuptU1, U2uq � dθupU 1q, which clearly implies the desired result.
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Let B � r�n, ns�r0, cns for some �xed n P N su�ciently large and 0 ¤ c ¤ 1
su�ciently small (c   tanpu � π{2q if u P pπ{2, πq and the same with u
replaced with u� θ) and de�ne the events

E1 �
 
0 R rpAY Vu,u�θq XBsU 1

(
E2 �

!
0 R rpAY Vu,u�θq XBstU1,U2u

)
.

We argue that E1 � E2. Fix a realisation of A such that E2zE1 holds and call
the sites in

Bz rpAY Vu,u�θq XBstU1,U2u

survivors. Let P be the rightmost path of survivors from 0 with steps in
tp0, 1q, p1, 1qu (performing the step p1, 1q whenever possible and p0, 1q only
when p1, 1q is not possible) and denote x its endpoint. Indeed, P cannot
reach the (top) boundary BB of B, since E1 does not hold (survivors are
necessarily initially healthy). Since x is a survivor and both x � p0, 1q and
x� p1, 1q are not (otherwise x is not the end of the path), there needs to be
a survivor y among x�p1, 0q and x�p1,�1q (see Figure 12.3). In particular,
x � 0, as both p0, 1q and p1,�1q are in Hu XHu�θ.

Since y is a survivor, there has to exist a path of survivors starting at y
with steps in U2 reaching BB. However, it is easy to see (see Figure 12.3)
that such a path cannot reach BB without intersecting Vu,u�θ or P . The
former possibility is excluded, since Vu,u�θ are not survivors and the latter
one contradicts the choice of P to be the rightmost path of survivors from
0.

Hence, E2 � E1. A similar reasoning applies with B tilted by 3π{4.
Finally, recalling that the region Vπ{2,5π{4 is entirely infected for all values of
pu, θq considered, we obtain that

0 R rpAY Vu,u�θq XBnstU1,U2u ùñ 0 R rpAY Vu,u�θq XBcnsU 1 .

The same implication with U 1 and tU1, U2u swapped is clear from the fact
that U1 � tp0, 1q, p1, 1qu and U2 � tp0,�1q, p�1,�1qu, so we are done by
De�nition 12.2.1.

Proof of Theorem 12.3.4. First note that if q   1 � pOP
c , then with proba-

bility 1 there exists a bidirectional U 1 path of healthy sites, which remains
healthy also for U . Therefore, qcpUq ¥ 1� pOP

c .

We apply Corollary 12.3.2 to U and the families U1 � tU1, U2u, U2 �
tU2, U3u, U3 � tU3, U4u and U4 � tU4, U1u. We simply bound dupU1q by
1 for u P p�π, π{2s and apply Lemma 12.6.2 and Theorem 12.5.5 with Re-
mark 12.5.6 to obtain a bound on dupU1q for all u. By symmetry the same
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applies to the other three families up to rotation by π{2. Hence,

qcpUq ¤ q̃cpUq � sup
uPS1

du ¤ sup
uPpπ{2,πs

dupU1q

� sup
uPpπ{2,πs

dupU 1q ¤ sup
uPS1

dupU 1q � 1� pOP
c .

Remark 12.6.3. It is important to note that Lemma 12.6.2 does not hold
for all directions u. It is clear, for example, that when u � 0 it su�ces to have
an in�nite uni-directional healthy path with steps tp1, 0q, p1,�1qu starting at
0, which occurs for q   1�pOP

c � 0 � dupU 1q. Moreover, the complete Spiral
model is not equivalent to any (uni- or bi-directional) OP, as it is clear from
the fact that it has a discontinuous phase transition [344], while the phase
transition of OP is continuous [51]�BP occurs for both bidirectional OP
involved, but not for Spiral. Thus, it is crucial to restrict the process to half-
planes where it is equivalent to OP. This idea also underlies the reasoning
of [344].

12.7 Exponential decay and applications

In Section 12.4 we characterised q̃c in terms of critical densities and proved
that it is the critical probability of exponential decay. We now give a second
proof of the latter, which makes the conclusions slightly stronger and more
manipulable. For instance, if we assume that θnpqq decays like a power law,
(12.3) gives that for q   q̃c the exponent is at least �2, which is what we
will prove here without assuming that the decay is a power law. Moreover,
this method will grant us access to noise sensitivity as well as proving that
a one-arm event has strictly positive probability below q̃c, so that this is
indeed a phase transition regardless of whether qc � q̃c or not. Finally, we
give a straightforward but important application of exponential decay to the
spectral gap and mean infection time of KCM.

As a motivation we start by answering Questions 12 and 14 of Balister,
Bollobás, Przykucki and Smith [28]. We then reprove exponential decay and
all the results gathered in Theorem 12.3.5 using the method developed by
Duminil-Copin, Raou� and Tassion [127] and then use a modi�cation of the
algorithm we made for the proof of exponential decay to also deduce the
results concerning noise sensitivity in Theorem 12.3.6.

12.7.1 Answers to Questions 12 and 14 of [28]

Let us begin this section by explaining why, contrary to the expectations
of the authors of [28], one should expect exponential decay above criticality
rather than below it, thus answering Question 12 of that paper. As the
reasoning will be identical, we also answer Question 14, but before that we
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will need to establish the following straightforward fact that will serve as a
source of examples.

Proposition 12.7.1. For every ε ¡ 0 there exists a GOSP model with qc ¥
1� ε.

Proof. Fix 1 � q � ε ¡ 0 and let N � Npεq P N be large enough. Consider
the following GOSP update family

U � tUu � tH�π{2 XB8Nu.
We perform the following renormalisation. We call a renormalised site

X P Z2 good if there is a healthy site in 4N.X � BN . The renormalised
process clearly yields a percolation with parameter larger than pOP

c for N
large enough. Indeed, sites are good independently (as p4NX � BN q X
p4NY �BN q � ∅ for X � Y P Z2) with probability 1� q|BN |. In particular,
for N large enough there is a positive probability that the renormalised site
0 belongs to an in�nite OP path of good renormalised sites. But this implies
that the ordinary site 0 belongs to an in�nite oriented path of healthy vertices
in the graph structure on Z2 de�ned by U , i.e. 0 remains healthy forever with
positive probability. Hence, BP does not occur a.s. and 1 � ε � q ¤ qc as
desired.

Question 14

The authors of [28] ask for which subcritical models below criticality there
is no in�nite path (non-oriented with nearest neighbour steps) of sites in rAs
and seem to be in favour of a positive answer for all subcritical BP models.
On the one hand, it is indeed possible for this scenario to occur and that is
the case for the simplest subcritical model�OP.

Proposition 12.7.2. Consider OP and let q   qc. Then a.s. there is no
in�nite path in rAs.
Proof. Let q   qc. Recall that the edge speed from Lemma 12.5.1 satis�es
αp1 � qq ¡ ε for some ε ¡ 0. It then follows from Lemma 12.5.2 that with
positive probability there exists an in�nite initially healthy oriented path
pai, iqiPN (i.e. with |ai�1 � ai| � 1 for all i) starting at 0 with inf ai{i ¥ ε.
Re�ecting this event, we see that with positive probability there exists a
bi-in�nite oriented path pai, iqiPZ containing 0 such that infi�0 ai{|i| ¥ ε.
By ergodicity and symmetry a.s. there exist two bi-in�nite oriented paths
of initially healthy vertices paiqiPZ and pbiqiPZ such that a0   0, b0 ¡ 0,
lim inf |i|Ñ8 ai{|i| ¥ ε and lim sup|i|Ñ8 bi{|i| ¤ �ε. As these are oriented
paths of healthy sites, they never become infected in the BP process. More-
over, the two paths intersect both in the upper and lower half-planes, H�π{2
and Hπ{2, forming a contour of sites in Z2zrAs around the origin. In particu-
lar, a.s. there is no in�nite non-oriented path with nearest neighbour steps
in rAs containing the origin, which concludes the proof by ergodicity.
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On the other hand, it is obvious that any subcritical model with qc ¡ pSP
c

is an example of the opposite behaviour. Minimal such examples are provided
by large enough GOSP as in Proposition 12.7.1, but also by any trivial
subcritical model. Indeed, for any pSP

c   q   qc we a.s. have an in�nite
non-oriented path of initially infected sites.

As we do not give the characterisation asked for in [28], let us explain
why we believe the question to be somewhat extrinsic in the light of the
above example and counter-examples. Indeed, the graph structure of Z2,
which de�nes the in�nite path in rAs that [28] asks for, is not relevant to
the model itself, de�ned only by U . For example if one is to replace U by
2U (e.g. in the above examples) the problem is changed non-trivially, while
the bootstrap process is really the same. Finally, let us note that we do not
expect that qc ¡ pSP

c (or qc ¥ pSP
c ) is a necessary condition.

Question 12

With the previous reasoning in mind, let us go back to Question 12 of [28]
about exponential decay. The question is whether at q   qc there would
be exponential decay in n of the probability of 0 being connected by sites
in rAs to the boundary of Bn, to quote [28] �Here we mean `connected' in
the site percolation sense, although other notions of connectedness are also
interesting�.

This is not the case, since in many models there is even no decay at all
(the probability of being connected in the non-oriented nearest neighbour
sense by sites in rAs to the boundary of Bn may remain bounded away from
0 as n Ñ 8 for some q   qc), let alone exponential one. For example
consider any subcritical model with qc ¡ pSP

c . Obviously, for pSP
c   q   qc

there is a positive probability for 0 to be initially connected to in�nity by
an infected non-oriented nearest neighbour path, but also with probability
1 BP does not occur, so some (positive density of) sites remain healthy
forever. This is by no means contradictory, since, e.g. in the example of
Proposition 12.7.1, a path, in the graph sense given by the GOSP rule and
not the non-oriented nearest neighbour one, of healthy sites witnessing that 0
never becomes infected can easily jump over an in�nite infected non-oriented
nearest neighbour path in the usual Z2 sense.

12.7.2 Exponential decay�proof of Theorem 12.3.5

Even though exponential decay below qc is not always present, we prove that
there is exponential decay above qc, as it is well known to be the case for OP
(this follows e.g. from Lemmas 12.5.1 and 12.5.3). We shall use the recent
method of Duminil-Copin, Raou� and Tassion [127] in order to prove the
exponential decay of the one-arm events En from De�nition 12.2.3. In fact,



12.7. EXPONENTIAL DECAY AND APPLICATIONS 409

much of the proof of [127] calls for no modi�cation.2 We will only need the
following replacement for their Lemma 3.2.

Lemma 12.7.3. There exists a randomised algorithm determining 1En with
maximal revealment

δ ¤ 3

n� 1

n�1̧

k�0

θ̃kppq.

Proof. The algorithm is as follows. First pick k uniformly at random in
r1, n � 1s. Let S � Bn denote the current set of sites whose state has been
checked by the algorithm. We start by revealing (in an arbitrary order) all
sites at distance at most C from BBk, the boundary of Bk, and adding them
to S. Afterwards we repeat the following. As long as there exists a site
x0 P BnzS for which there exist an integer N ¥ 1 and a sequence x1, . . . xN
of sites in S verifying the following conditions, the algorithm picks one of
the possible x0 arbitrarily and checks its state.

• xN is at distance at most C from BBk.
• For all 0   i ¤ N we have xi�1 P xi �X.

• For all 0   i ¤ N we have that S is a witness of the event τBnxi ¥ i.

When no such sites remain, the �rst stage of the algorithm terminates.

If at this point 0 R S, then the algorithm stops. Otherwise, we directly
reveal all remaining sites in Bn (in an arbitrary order) and stop.

It is clear that this algorithm does determine 1En . Indeed, if all sites
were revealed, this is vacuously true for any function, while if at the end of
the �rst stage we had 0 R S, we know that Ek does not occur (by de�nition)
and therefore neither does En � Ek (by extraction of a shorter path from a
longer one).

We now proceed to bound its revealment. Fix the value of k and consider
a site x P BBl for some 0 ¤ l ¤ n. The events En are such that when x
is revealed, we are certain that either E|k�l| translated by x occurs or the

original event Ek occurs. Hence, its revealment is at most θ̃|k�l|pqq � θ̃kpqq.
Taking the average on k this gives a maximal revealment bounded by

3

n� 1

n�1̧

0

θ̃lppq.

With this Lemma we are ready to apply the method of [127] to prove
Theorem 12.3.5.

2We encourage the reader unfamiliar with that paper to see the second half of the
course recording [124], which gives precisely the part we need and precisely in the simpler
form we use here adapted to product measures, except for Lemma 12.7.3 we prove.
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Proof of Theorem 12.3.5. Let us start by proving the theorem for subcritical
models. For the �rst two items, using Lemma 3.1 of [127] we can repeat the
proof of their Theorem 1.2, using the result of [291] (instead of its more
general form, Theorem 1.1 of [127]) together with our replacement for their
Lemma 3.2�Lemma 12.7.3�and Russo's formula. Setting

q̂c � sup

#
q, lim sup

log
°n�1

0 θ̃kpqq
log n

¥ 1

+
,

this yields the following.

• If q ¡ q̂c, then there exists cpqq ¡ 0 such that

θ̃npqq ¤ expp�cpqq.nq.

• There exists c ¡ 0 such that for q   q̂c

θ̃pqq ¥ c.pq̂c � qq ¡ 0.

We next prove that q̂c � q̃c.
First notice that 0 R rAXBns implies the existence of a path, in the sense

of De�nition 12.2.3, of sites xi with τ
Bn
xi � 8 from 0 to BBn (since there are

no �nite stable healthy sets) with xi�1 P xi � X and x0 � 0. But such a
path needs to come at distance less than C{4 of BBn{2 at some point xk, so
En{3 translated by xk occurs. Thus, by the union bound

θnpqq ¤ Cnθ̃n{3pqq.

Therefore, exponential decay for θ̃n implies exponential decay for θn and
thereby q̃c ¤ q̂c and for q ¡ q̂c we have (for some other cpqq)

θnpqq ¤ expp�cpqq.nq.
Conversely, we know that for q   q̂c the sequence θ̃npqq converges to

θ̃pqq ¡ 0. Note that on the event En there exists a site x with τBnx ¥ n{C
at distance at most C{4 from BBn{2 in the path in De�nition 12.2.3. Then
by the union bound we obtain

Cnθ?n{p2Cqpqq ¥ θ̃npqq Ñ θ̃pqq ¡ 0,

since τ
BC2n
0 ¥ 4Cnñ 0 R rAXB?ns. Indeed, since U is not supercritical, we

can �nd three or four stable directions containing the origin in their convex
envelope, which guarantees that rB?ns � B?Cn and inside this box sites will

become infected at least one at a time. This proves that θnpqq ¥ c{n2 for
some c ¡ 0 and thus q ¤ q̃c by (12.3). Hence, q̃c � q̂c and the proof of the
�rst two items is complete.
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Let us turn to the third one. As we already observed the occurrence
of En implies the existence of a site x within distance C{4 of BBn{2 with

τBnx ¥ n{C. However, the event τx ¥ n{C does not depend on sites outside
Bn, so that it is the same as τBnx ¥ n{C and the �rst one's probability is
independent of x P B2n{3. Then the union bound gives

CnPqpτ0 ¥ n{Cq ¥ θ̃npqq Ñ θ̃pqq ¡ 0.

Thus, for q   q̃c we have Pqpτ0 ¡ nq ¥ c{n for some c ¡ 0 and in particular
the �rst moment of τ0 is in�nite, which completes the proof for subcritical
models.

For U critical or supercritical and q ¡ 0 it su�ces to recall from Re-
mark 12.4.8 that Pqpτ0 ¥ nq decays exponentially, which immediately im-
plies the exponential decay of θ̃npqq by the union bound as above and thus
completes the proof (the second and third items being void for q̃c � 0).

12.7.3 Noise sensitivity�proof of Theorem 12.3.6

We next use the algorithm we have to study noise sensitivity and prove
Theorem 12.3.6.

The harder part of the proof of Theorem 12.3.6 relies on the following easy
consequence of Theorem 1.8 of Schramm and Steif [318] and Theorem 1.9 of
Benjamini, Kalai and Schramm [47].3

Theorem 12.7.4 ([47, 318]). Let Gn be a sequence of cylinder events (de-
pending on �nitely many sites). If there exists a randomised algorithm de-
termining the occurrence of Gn with maximal revealment δn Ñ 0, then the
sequence is noise sensitive.

The straightforward converses in Theorem 12.3.6, stated for complete-
ness, follow from the next easy lemma.

Lemma 12.7.5. Let Gn be a nested sequence of cylinder events such that�
nGn � G8 and 0   PqpG8q   1. Then Gn are not noise sensitive.

Proof. Firstly, V arp1Gnq Ñ V arp1G8q P p0, 1{4s. Secondly, 1Gn
L2ÝÑ 1G8 ,

so that for any δ ¡ 0 there exists nδ such that for all n ¥ nδ we have }1Gn �
1Gnδ

}L2   δ. Finally, for any ε ¡ 0 the function f ÞÑ px ÞÑ ErfpNεpxqq|xsq
is an L2 contraction, so that for all n ¥ nδ we also have }1NεpxqPGn �
1NεpxqPGnδ }L2   δ. These three facts combined imply that it is su�cient
to show that for any δ ¡ 0 small enough and any ε ¡ 0 small enough
depending on δ it holds that V arp1Gnδ q � Covp1xPGnδ ,1NεpxqPGnδ q   δ.

3The results of these papers are stated for q � 1{2, but they are also valid for any �xed
value of 0   q   1. Moreover, the result does hold for the stronger De�nition 12.2.4.
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But this is the case, as Gnδ is a cylinder event, so that for ε small enough
Pqp1xPGnδ � 1NεpxqPGnδ q   δ. Hence,

lim
εÑ0

lim inf
nÑ8

Covp1xPGn ,1NεpxqPGnq
V arp1Gnq

� 1,

which concludes the proof by De�nition 12.2.4.

Remark 12.7.6. The consequences of Lemma 12.7.5 can also be deduced
easily from [47, Theorem 1.4].

Proof of Theorem 12.3.6. Fix 0   q   1. First assume that θpqq ¡ 0. Then
by Lemma 12.7.5 we have that the events 0 R rAXBns are not noise sensitive
and then Theorem 12.7.4 proves that no low-revealment algorithm exists.
The proof in the case θ̃pqq ¡ 0 that the events En are not noise sensitive
is analogous. Assume, on the contrary, that θ̃pqq � 0. Then Lemma 12.7.3
provides an algorithm with revealment δn Ñ 0, which completes the proof
of the �rst two items of Theorem 12.3.6.

Finally, assume that θpqq � θ̃pqq � 0. Since θpqq � 0 we also have
Pqpτ0 ¥ nq Ñ 0. Fix ε ¡ 0 and let n be large enough so that we can �nd

n{C ¡ k0 ¡ C with k0   ε{p64CPqpτ0 ¥ n{Cqq and 2
k0

°2k0
m�0 θ̃mpqq   ε.

Denote by Hk the event that there exists x at distance at most C from BBk
such that τBnx ¡ n{C. Then by the union bound PqpHkq   16CkPqpτ0 ¥
n{Cq   ε for k   4k0.

We perform the same algorithm as in the proof of Lemma 12.7.3, but
with k chosen uniformly in r3k0, 4k0q. When the �rst stage (exploration) of
the algorithm stops we check if Hk occurs, which is indeed known (witnessed
by the set of inspected sites S). If it does, then we simply check all the
remaining sites to determine if 0 P rA X Bns. The probability that this
last step occurs is exactly PqpHkq   ε. If Hk does not occur, we know
that 0 P rA X Bns (since there are no �nite stable healthy sets). We can
then bound the revealment similarly to what we did in Lemma 12.7.3�we
consider a site y P BBl and take cases depending on its position. If l ¥ 5k0,
the revealment is at most ε � θ̃l�4k0pqq ¤ ε � θ̃k0pqq   2ε and similarly for
l   2k0. For 2k0 ¤ l   5k0 we average on k as before to obtain a revealment
bounded by ε � 2

k0

°2k0
m�0 θ̃mpqq. Hence, the maximal revealment is indeed

bounded by 2ε. Then, as previously, Theorem 12.7.4 gives that 0 P rAXBns
is noise sensitive, which concludes the proof.

12.7.4 Spectral gap and mean infection time of KCM

To conclude our discussion of exponential decay, we turn to its applications
to the KCM de�ned at the end of the introduction. Cancrini, Martinelli,
Roberto and Toninelli [88] proved the positivity of the spectral gap above qc

for several speci�c models including OP, whose KCM counterpart is known
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Figure 12.4 � Illustration of the de�nition of a renormalised site being good.
The two hatched parallelograms become infected by the �rst condition, while
the second one concerns the two shaded rhombi.

Figure 12.5 � Infection procedure used to prove that if the top-right, bottom-
right and top-left renormalised sites are good, the bottom-left one becomes
entirely infected.

as the North-East model. They also proved that the result holds for any
model under an unhandy additional condition. We now use Theorem 12.3.5
together with their results to prove that for all KCM the gap is positive above
q̃c and 0 below and the mean infection time of the origin is �nite and in�nite
respectively. It is very interesting to note that we will use the exponential
decay of θ̃n and not θn, which does not su�ce.

In order to link the spectral gap and the mean infection times we need
the following simple facts from [272] and [89].

Lemma 12.7.7 (Lemma 4.3 [272], Theorem 4.7 [89]). For all 0   q   1 the
mean infection time of the origin in the BP and the corresponding stationary
KCM processes satisfy

δµ
�
τBP

0

� ¤ Eµpτ0q ¤ Trel{q,
where Trel is the inverse spectral gap of the KCM and δ ¡ 0 is a su�ciently
small constant.

Proof of Theorem 12.3.7. Let U be a (non-trivial) update family and without
loss of generality assume that it contains a rule U0 � H�π{2�δXH�π{2�2δ for
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some δ ¡ 0 su�ciently small such that �π{2� δ is a rational direction. Fix
q ¡ q̃c and εpδq ¡ 0 and ηpδ, εq ¡ 0 su�ciently small. The positivity of the
gap is implied by Theorem 3.3 of [88] if we can �nd a suitable renormalisation
satisfying the following (see De�nition 3.1 [88]).4

(a) Each renormalised site is good with probability at least 1� ε.

(b) If the renormalised sites p0, 1q, p1, 0q and p1, 1q are all good, then
rAX pta,b,a� bu �B1qs � B1,

where a and b are the two base vectors of the renormalisation and B1 is
the renormalisation box�the parallelogram generated by a and b i.e.

B1 � pr0, 1q � aq � pr0, 1q � bq,
where we use the notation C �D � tc� d, c P C, d P Du.
Set a � pn, 0q and b � npcosp�π � δq, sinp�π � δqq for npηq su�ciently

large. We call the renormalised site 0 good if the following all hold (see
Figure 12.4) and we extend the de�nition to any site by translation.

• For all x in the parallelograms rε, 1� εs � a� r0, 2εs � b and rε, 1� εs � b�
r0, 2εs � a it holds that τB

1

x   ηn.

• For all x in the rhombus r1� ε, 1q � a� r0, εs � b it holds that τB
1

x   ηn if
we impose infected boundary condition on r1, 1� 2εs �a�r0, 1� εs �b and
healthy on the rest of Z2zB1. Also the symmetric condition holds for the
rhombus r1� ε, 1q � b� r0, εs � a.

Condition (b) on the renormalisation is easily checked from this de�nition,
using only the rule U0 (see Figure 12.5). Indeed, all hatched regions become
infected by the �rst condition, so that the double hatched rhombi are infected
by U0. Finally, the shaded rhombi become infected by the second condition,
since the infected boundary condition is already met. The renormalised site
considered is then entirely infected using U0. Thus, we only need to check
that a renormalised site is good with probability at least 1� ε.

Since the conditions concern Opn2q sites, by symmetry and monotonicity
it su�ces to observe that

Pq
�
τ
r�Cηn,Cηns�r0,Cηns
0 ¥ ηn

	
decays exponentially with n. Indeed, for this event to occur, there must exist

a path of sites x0, . . . , xrnηs � 0 with xi�xi�1 P U0 and τ
r�Cηn,Cηns�r0,Cηns
xi ¥

i for all 0 ¤ i   ηn, which in particular means that Eη2n translated by x0

occurs. Hence, using the �rst item of Theorem 12.3.5 and the union bound

4The statement in [88] is given for square boxes, but generalises without change.
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we obtain the desired result and thereby the spectral gap is strictly positive.
By Lemma 12.7.7 this implies that the mean infection time of the KCM is
�nite.

Finally, by Theorem 12.3.5 for q   q̃c the mean infection time of BP is
in�nite, so Lemma 12.7.7 shows that in this regime the spectral gap is 0 and
the mean infection time of the KCM is in�nite.

12.8 Open problems

To conclude, let us mention some interesting open problems related to this
chapter besides its direct extensions based on GOSP.

12.8.1 Simpli�cations

We next mention the two prime conjectures which would greatly simplify the
statements of our results besides being interesting on their own. We start
with the uniqueness of the transition.

Conjecture 12.8.1. For all update families we have

qc � q̃c.

We should note that, the Kahn�Kalai�Linial theorem [238] tells us that
(up to replacing the box by the torus as in [30] or adapting the techni-
que of [126]) θnpqq decays at least like n�εpq�qcq above criticality and The-
orem 12.3.5 establishes that below q̃c it decays at most like n�2. As it is
commonly the case, it is likely that breaching this gap will prove di�cult.

As mentioned earlier if one proves the slightly stronger property

θ̃pqq ¡ 0 ñ θpqq ¡ 0, (12.8)

which implies Conjecture 12.8.1, then Theorem 12.3.6 exhausts the noise
sensitivity problem for subcritical BP at least for the most natural event
0 P rAXBns, which we consider since there is no obvious choice of �crossing�
event. Indeed, in view of Question 12.8.3 below, it is not clear whether it is
relevant to consider the event of complete infection on the torus. Also in the
light of Theorem 12.3.6 the converse implication of (12.8) is not uninteresting
at q̃c.

Secondly, it would be practical to know if the complication of taking
limits in De�nition 12.2.1 is necessary. We suspect that this is never the
case.

Question 12.8.2. What are the continuity properties of dθu as a function of
pu, θq?
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12.8.2 Torus

Although the most natural setting for subcritical models is the in�nite vo-
lume quantity θ, which is approximated by its restriction to boxes θn, anot-
her common choice in order to avoid boundary issues is to consider the torus
Tn � pZ{nZq2. Indeed, results for critical and supercritical models are mea-
ningful in this setting and are essentially equivalent to the law of the infection
time in in�nite volume [74]. Yet, for subcritical models the mechanism of
infection is rather di�erent�instead of rare large droplets that grow easily
we have common droplets which only manage to grow with a lot of help.
Owing to this it is not clear how quantities on the torus relate to those on
the entire grid. We should mention that most of our results carry through
if all is de�ned on the torus, but it is interesting to note that not even the
next question seems to have been answered yet.

Question 12.8.3. Does one have that for all subcritical families

qc � lim inf
n

tq, PqprAsTn � Tnq ¥ 1{2u,

where the closure is taken with respect to the BP process on the torus and A
is a random subset of Tn of density q?
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MOTS CLÉS

Percolation bootstrap, modèles cinétiquement contraints, percolation orientée, systèmes de particules en
interaction, dynamique de Glauber, universalité, classification, seuil aigu, inégalité de Poincaré, trou spectral

RÉSUMÉ

On étudie deux classes de modèles étroitement liées de physique statistique sur le réseau carré bidimensionnel – les
modèles cinétiquement contraints et la percolation bootstrap. Les premiers sont apparus pour modéliser la dynamique
des liquides surfondus près de leur transition vitreuse, tandis que la percolation bootstrap modélise de nombreux cadres
tels que certains aimants ou encore des phénomènes sociaux. Nous considérons les modèles cinétiquement contraints
et la percolation bootstrap d’un point de vue rigoureux probabiliste. On s’intéresse à leur comportement lorsque leur pa-
ramètre tend vers sa valeur critique (possiblement dégénérée). Plus concrètement, nous étudions le taux de divergence
de certains temps caractéristiques tels que le temps d’infection d’un site fixé et le temps de relaxation.
Parmi les résultats les plus conséquents de la thèse est la détermination des classes d’universalité de modèles cinéti-
quement contraints ainsi que leurs échelles de temps caractéristiques à l’équilibre en basse température. C’est-à-dire,
on établit une partition de tous les modèles possibles en groupes à comportement similaire et fournit une recette pour
déterminer ce comportement à partir de la définition du modèle. Des contributions sont apportées à tout le spectre de
classes d’universalité de modèles cinétiquement contraints, mais dans certains cas aussi à la percolation bootstrap plus
simple et mieux comprise. En supplément des résultats universels, nous donnons des asymptotiques exactes à la fois
en percolation bootstrap et en modèle cinétiquement contraint pour le modèle le plus classique à deux voisins. De plus,
nous marquons des progrès sur le modèle cinétiquement contraint à un voisin appelé modèle de Fredrickson–Andersen
1-spin facilité.
La thèse est constituée de trois parties principales, basées sur des techniques provenant de domaines différents. La
première relève de la dynamique de systèmes de particules en interaction. La deuxième emploie des arguments de
combinatoire. La troisième et dernière partie prend un point de vue de percolation.

ABSTRACT

We study two tightly related classes of statistical mechanics models on the two-dimensional square lattice—kinetically
constrained models and bootstrap percolation. The former arose as models of the dynamics of supercooled liquids close
to the glass transition, while the latter are used to model a number of settings including magnets and social phenomena.
We consider both kinetically constrained models and bootstrap percolation from a rigorous probabilistic perspective. We
are interested in their behaviour as their parameter approaches its (possibly degenerate) critical value. More specifically,
we investigate the rate of divergence of certain characteristic time scales, such as the infection time of a fixed site and
the relaxation time.
Among the highlights of the thesis is determining the universality classes of kinetically constrained models together with
their characteristic equilibrium time scales at low temperature. That is, we establish a partition of all possible models into
groups with similar behaviour and provide a recipe for determining the behaviour from the definition of the model. Con-
tributions are made to the full spectrum of universality classes of kinetically constrained models, but in some cases also
to the simpler and better understood bootstrap percolation. In addition to universal results, we provide sharp asymptotics
in both bootstrap percolation and kinetically constrained models for the most classical, 2-neighbour, model, as well as
advances on the 1-neighbour kinetically constrained model known as the Fredrickson–Andersen 1-spin facilitated model.
The thesis consists of three main parts based on techniques from different domains. The first one relates to dynamics
of interacting particle systems. The second one relies on combinatorial arguments. The third and final part takes a
percolation viewpoint.

KEYWORDS

Bootstrap percolation, kinetically constrained models, oriented percolation, interacting particle systems, Glau-
ber dynamics, universality, classification, sharp threshold, Poincaré inequality, spectral gap
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