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ABSTRACT

This thesis addresses the Visual Question Answering (VQA) task through the prism
of biases and reasoning. VOQA is a visual reasoning task where a model is asked to
automatically answer questions posed over images. Despite impressive improvement
made by deep learning approaches, VOA models are notorious for their tendency to rely
on dataset biases. The large and unbalanced diversity of questions and concepts involved
in the task, and the lack of well-annotated data, tend to prevent deep learning models
from learning to “reason”. Instead, it leads them to perform “shortcuts”, relying on specific
training set statistics, which is not helpful for generalizing to real-world scenarios.

Because the root of this generalization curse is first and foremost a task definition
problem, our first objective is to rethink the evaluation of VOA models. Questions and
concepts being unequally distributed, the standard VOA evaluation metric, consisting in
measuring the overall in-domain accuracy, tends to favour models which exploit subtle
training set statistics. If the model predicts the correct answer of a question, is it necessarily
reasoning? Can we detect when the model prediction is right for the right reason? And, at
the opposite, can we identify when the model is “cheating” by using statistical shortcuts?
We overcome these concerns by introducing the GQa-0oD benchmark: we measure and
compare accuracy over both rare and frequent question-answer pairs, and argue that the
former is better suited to evaluate the reasoning abilities. We experimentally demonstrate
that VOA models, including bias reduction methods, dramatically fail in this setting.

Evaluating models on benchmarks is important but not sufficient, it only gives an
incomplete understanding of their capabilities. We conduct a deep analysis of a state-
of-the-art Transformer VQA architecture, by studying its internal attention mechanisms.
Our experiments provide evidence of the existence of operating reasoning patterns, at
work in the model’s attention layers, when the training conditions are favourable enough.
More precisely, they appear when the visual representation is perfect, suggesting that
uncertainty in vision is a dominating factor preventing the learning of reasoning. By
collaborating with the data visualization experts, we have participated in the design of
VisQA, a visual analytics tool exploring the question of reasoning vs shortcuts in VOA.

Finally, drawing conclusion from our evaluations and analyses, we come up with
methods for improving VOA model performances. First, we propose to directly supervise
the reasoning through a proxy loss measuring the fine-grained word-object alignment.
We demonstrate, both experimentally and theoretically, the benefit of such reasoning
supervision. Second, we explore the transfer of reasoning patterns learned by a visual
oracle, trained with perfect visual input, to a standard VOA model with imperfect vi-
sual representation. Experiments show the transfer improves generalization and allows
decreasing the dependency on dataset biases. Furthermore, we demonstrate that the
reasoning supervision can be used as a catalyst for transferring the reasoning patterns.

vii
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RESUME

“De quelle couleur est le terrain de tennis ? Quelle est la taille du chien ? Y a-t-il une voiture
a droite du vélo sous le cocotier ?” Répondre a ces questions fondamentales est le sujet de
la tache appelée question-réponses visuelle (VOA, en anglais), dans laquelle un agent doit
répondre a des questions posées sur des images.

CONTEXTE ET MOTIVATIONS

Plus précisément, le VOA requiert de mettre au point un agent capable de maitriser une
grande variété de compétences : reconnaitre des objets, reconnaitre des attributs (couleur,
taille, matériaux, etc.), identifier des relations (e.g. spatiales), déduire des enchainements
logiques, etc. C’est pourquoi, le VOA est parfois désigné comme un test de Turing vi-
suel (GEMAN et al. 2015), dont le but est d’évaluer la capacité d’un agent a raisonner sur
des images. Cette tache a récemment connu d’important progres grace a 1'utilisation des
réseaux de neurones et de l'apprentissage profond (GOODFELLOW et al. 2016).

Apres une revue détaillée de 1’Etat de I’Art sur le VQA, ainsi qu’une définition de notre
utilisation du terme raisonnement (Partie I), nous nous intéressons a la question suivante
(Partie II) : les modeles de VQA actuels raisonnent-ils vraiment ? La mise en ceuvre d’une
nouvelle méthode d’évaluation (GQA-OOD) nous permettra de répondre négativement
a cette question. En particulier, nous mettrons en évidence la tendance des modeles a
apprendre des raccourcis (GEIRHOS et al. 2020), autrement appelés biais, présent dans les
données d’entrainement, mais heurtant les capacités de généralisation. Nous proposerons
alors, dans une troisieme partie (Partie III) une analyse approfondie des mécanismes
d’attention appris par les réseaux de neurones artificiels. Nous étudierons quels sont les
enchainements aboutissant a un raisonnement, ou, au contraire, a une prédiction biaisée
par un raccourci frauduleux. La derniere et quatrieme partie (Partie IV) tire conclusion
de nos évaluations et analyses, afin de développer de nouvelles méthodes améliorant les
performances des modeles de VOA.

RESUME DES CONTRIBUTIONS
Les contributions sont divisées en trois grandes parties “Evaluer, Analyser, Améliorer” :

EVALUER (PARrTIE II) Nous proposons une nouvelle méthode d’évaluation — appelée
GQA-00D — permettant de mieux appréhender les capacités de raisonnement des systémes
de VOA. En particulier, nous mesurons le taux de bonnes réponses prédites par l'agent
en fonction de la rareté de la réponse dans les données d’entrainement. Notre étude
expérimentale montre que les systémes de I'Etat-de-1’Art, incluant les méthodes spécifi-
quement congues pour réduire I'impact des biais, échouent a répondre aux questions dont

ix
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la réponse est rare. Ce résultat mets en exergue la tendance des modeles a apprendre des
biais dans les données d’entrainement, au lieu de raisonner.

ANALYSER (ParTIE III) Dans le but de compléter notre évaluation du biais et du
raisonnement dans les systemes de VOQA, nous conduisons une analyse poussée des
mécanismes d’attention appris par les modeles. Plus précisément, nous dressons une
étude détaillée des cartes d’attention apprises par des modeles basés sur une architecture
Transformers (VAswaANTI et al. 2017). Dans ce contexte, nous présentons VIsQA, un outil de
visualisation interactif, dont nous avons participé a la conception, en collaboration avec
Théo Jaunet. De plus, nous mettons en ceuvre une analyse statistique de ces mémes cartes
d’attention, afin de mettre en évidence I'existence de patterns de raisonnement émergeant
durant I'apprentissage, lorsque les données visuelles sont parfaites.

AMELIORER (ParTIE IV)  Enfin, nous exploitons les résultats de nos analyses et évalua-
tions et mettons au point plusieurs méthodes améliorant les performances des systéemes de
VQA. Dans un premier temps, nous montrons qu’il est possible de directement superviser
le raisonnement durant l’apprentissage, au moyen d’une utilisation judicieuse des annota-
tions de nos jeux de données, et que cela permets d’améliorer le taux de bonne prédiction
de nos modeles. Dans un second temps, nous concevons une méthode permettant de
transférer les patterns de raisonnement appris lorsque les conditions d’entrainement sont
favorables (données visuelles parfaites), vers un modele traitant des données réalistes,
mais bruitées. Nous montrons que ce transfert améliore les performances sur le VOA, et
qu’il est complémentaire avec la méthode de supervision précédemment présentée.

En conclusion, cette thése a pour objet 1’étude du raisonnement visuel dans des réseaux
de neurones artificiels entrainés par apprentissage profond, dans le cadre du VQA. Mais
surtout, ce qui nous intéressera en premier lieu, c’est 'évaluation et I’analyse de l'influence
qu’ont les biais, présents dans les données d’apprentissage, sur les prédictions de nos
modeles. Ce sujet de recherche pourra se résumer par ces quelques vers détournés d’une
comptine anglaise :

Roses are red,
Violets are blue...
But should VQA expect them to?
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CHAPTER

GENERAL INTRODUCTION

1.1 CONTEXT AND MOTIVATION

HAT color is the tennis court? How fat is the dog? How big is the car to the right of the
W bicycle underneath the mango tree? These are existential questions addressed by
the VOA task, where an agent answers questions posed over an image.

But above all, VOA aims at studying the emergence of artificial reasoning (cf. Chapter 2
for an attempt to define “reasoning”). Initially devised as a “visual turing test” (Geman
et al. 2015), VOA measures the ability of an artificial agent to learn various high-level
general representations of concepts of the physical world as well as their interactions:
object and attribute recognition, comparison, logical composition, relation detection, etc.
Contrary to abstract reasoning tasks — such as variants of the Raven’s Progressive Matrices
(Barrett et al. 2018; Chollet 2019) — VOA stands out for its multi-modality. The reasoning
process is guided by language (through the question) and grounded by vision. Thus, it
resembles traditional computer vision tasks such as image retrieval or image captioning,
the difference being that VOA involves multi-modal and high-dimensional data as well as
complex decision functions requiring latent representations and multiple hops.

Recent advances in Deep Learning (DL) (Goodfellow et al. 2016), combined with the
construction of large-scale datasets, have pushed forward the emergence of powerful VvOA
models. Actually, a VOA model takes advantage of advances in several subfields of DL in
order to fulfill three main tasks:

® Understanding the question, by leveraging methods from Natural Language Pro-
cessing (NLP) like the Transformer architecture (Vaswani et al. 2017) or BERT pre-
training (Devlin et al. 2019).

@ Understanding the visual scene, by leveraging approaches from Computer Vision
(CV) such as object detectors (Ren et al. 2015).

® Fusing information between vision and language, borrowing models from the mul-
timodal fusion domain, e.g. bilinear fusion (Ben-Younes et al. 2017) or Transformer-
based cross attention (Yu et al. 2019).

Figure 1.1 provides two illustrative questions, extracted from GQA. In Figure 1.1a the
VOA model has to answer the question “how fat is the animal on the sand?”. It requires to:

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI101/these.pdf
© [C. Kervadec], [2021], INSA Lyon, tous droits réservés



(a) “How fat is the animal on the sand?” (b) “How big is the giraffe on the right?”

Figure 1.1 — Samples of questions addressed by the Visual Question Answering (VQA) task. Source:
GQA dataset (Hudson et al. 2019b).

@ analyze the question, to find that the answer must be a size descriptor related to an
animal; @ encode the image pixels into a high-level semantic representation where each
object is described, e.g. a fat blond dog, a large area of sand, etc.; ® align the question and
visual features in order to find the relationships between them, e.g. the animal whose size
we want to know is the blond dog. Figure 1.1b involves similar mechanisms, but with
other concepts and a different reasoning. Indeed, VQA is famous for the wide variety of
concepts and reasoning skills it covers.

DO VQA MODELS REASON?  On VQAv2, a widely adopted VQA dataset (cf. Chapter 3),
the State-Of-The-Art (SOTA) already reaches a performance almost competitive with
humans (cf. Chapter 4). However, despite these impressive improvements brought by
DL, it remains unclear if VOA models reason (in Chapter 2, we provide our definition of
“reasoning”). More precisely, we observe that these models lack robustness and are brittle
to many kinds of variation in the data. As an illustration, replacing a single question’s
word by a synonym can potentially have a dramatic impact on the predicted answer.
In fact, we will show in Part II, that the performance drops as soon as the evaluation
domain slightly deviates from that of training. This phenomenon is due to the fact that DL
models tend to capture spurious correlations found in the training data (also called biases),
which do not align with the task’s objective. This so-called shortcut learning (Geirhos et al.
2020) is characteristic of DL, but the wide diversity of concepts covered by VOA makes it
particularly sensitive to it. Figure 1.2 provides two examples of shortcuts learned by the
VQA baseline method UpDn (Anderson et al. 2018). In Figure 1.2a, the baseline wrongly
predicts that a “mirror” is on the wall, because it is infrequent to have a “star” on the wall
in the training corpus. Similarly, in Figure 1.2b, the baseline fails to predict that the shirt
is brown because the training contains a larger amount of blue shirts. Thereby, before being
a “visual turing test”, VOA can be seen as a test-bed for studying shortcut learning in DL.

ON THE IMPORTANCE OF STUDYING SHORTCUTS Beyond the question of reasoning
in VOA, shortcut learning potentially leads to the emergence of weak DL models, lacking
robustness against many types of variation in the data. This can be problematic for certain
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(a) “What is on the wall?” — UpDn: A mirror. In (b) “Is the shirt brown or blue?” — UpDn: Blue. In
the corpus, it is more frequent to find a mirror the corpus, shirts are more likely to be blue
on the wall rather than a star. than brown.

Figure 1.2 - VQA models — here, the UpDn baseline (Anderson et al. 2018) — are notorious
for exploiting biases in datasets to find shortcuts instead of performing high-level
reasoning. Reproduced from: GQA dataset (Hudson et al. 2019b).

applications, e.g. if the model’s predictions are used to make critical decisions. Further-
more, shortcut learning tends to exaggerate biases present in the training data. While
some of them are useful, others can be particularly harmful. Thus, such algorithmic biases
can have negative impacts on our society, raising ethical questions. As an illustration,
Buolamwini et al. (2018) demonstrate how gender classification models can be affected
by social biases in the training data, leading to discriminative decisions. Closer to VQA,
in their paper called Women also Snowboard, Hendricks et al. (2018) point out the gender
discrimination found in the predictions of image captioning models. Therefore, it seems
to be of prime importance to better to evaluate and analyse shortcuts in DL in order to
better understand them and mitigate their influence. In this thesis, we propose to address
this question through the VOA task.

EVALUATE ®ANALYSE *IMPROVE In light of these problems, we propose to address
several aspects of VOA under the motto evaluate, analyse, improve. Evaluate, because
DL progress is driven by benchmarks, and we think that it is a priority to set up VOA
evaluation methods able to quantify the amount of shortcuts learned by a model. Analyze,
because evaluation metrics only provide one view of a much more complex system, it
is essential to conduct analyses in order to better diagnose strengths and weaknesses of
VOQA models and to enhance their interpretability. Improve, because our ultimate goal is to
come up with better models, more robust against shortcut learning, we draw conlusion
from our evaluations and analyses in order to improve the models.
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1.2 CONTRIBUTIONS OF THE THESIS
1.2.1  Organization of the manuscript

The manuscript is organized as follows. Part I provides the background necessary for
the reader to understand our work. Then, Part II, Part III, and Part IV, introduce the
contributions of this thesis.

PART I (BACKGROUND) provides the background knowledge required to understand
the contributions introduced in the thesis. It includes an overview of the DL approaches
for vQA, and a discussion on the notion of reasoning and shortcut learning in DL. We
assume that the reader is already familiar with DL and neural networks (cf. Goodfellow
et al. (2016)). — Chapter 2 and Chapter 3.

ParT II (EVALUATE) focuses on the evaluation of VOA models. More precisely, we
wonder: can we measure the reasoning ability of VOA models? This part begins with a compre-
hensive study of popular datasets and benchmarks used in VQA, with a critical review
of their strengths and weaknesses. We show that the standard evaluation metric (i.e. the
overall accuracy) is not sufficient to measure the robustness against many kinds of varia-
tions (linguistic reformulations, visual editions, distribution shift, etc.), which is related to
the reasoning capacity. Hence, we introduce GQa-00D, a benchmark devised to evaluate
VOA models in Out-Of-Distribution (OOD) setting. We experimentally demonstrate that
SOTA VQA models — even those specifically designed for bias reduction — fail in our OOD
setting. — Chapter 4 and Chapter 5

Part III (ANALYZE) complements the evaluation with an extensive analysis of rea-
soning and bias exploitation in VOQA. Resulting from a collaboration with Théo Jaunet — a
PhD candidate working on explainable Al with data visualization — we develop VisQA,
an interactive tool targeting the instance-based analysis of the attention mechanisms
learned by a SOTA Transformer-based VOA model. In addition, we extend VisQA with
a dataset-level analysis. In particular, we propose to study the emergence of reasoning
patterns in the attention maps learned by a perfect sighted model (fed with ground truth
visual input) and compare it with the standard setting. We experimentally demonstrate
that the oracle model more easily learns to relate attention to the task at hand, suggesting
a better reasoning. — Chapter 6 and Chapter 7.

PAarT IV (IMPROVE) draws conclusions from the evaluate and analyze parts and pro-
poses to improve the VOA model performances. Two directions are explored: (1) supervis-
ing the reasoning trough additional objective losses, and (2) transferring the knowledge
learned by an oracle with perfect sight to a deployable model. We provide experimental
and theoretical evidences demonstrating the effectiveness of these approaches, as well as
their complementary. — Chapter 8 and Chapter o.
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Figure 1.3 — Organization of the manuscript

1.2.2  List of publications

This manuscript is based on the material published in the following papers (Figure 1.3
shows where the papers are localized in the thesis):

¢ Corentin Kervadec, Grigory Antipov, Moez Baccouche, and Christian Wolf (2021b). “Roses
Are Red, Violets Are Blue... but Should Vqga Expect Them To?” In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) - Chapter 5;

® Theo Jaunet, Corentin Kervadec, Romain Vuillemot, Grigory Antipov, Moez Baccouche, and
Christian Wolf (2021). “VisQA: X-raying Vision and Language Reasoning in Transformers”.
In: IEEE Transactions on Visualization and Computer Graphics (TVCG) - Chapter 6;

* Corentin Kervadec, Theo Jaunet, Grigory Antipov, Moez Baccouche, Romain Vuillemot, and
Christian Wolf (2021c). “How Transferable are Reasoning Patterns in VQA?”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) - Chapter 7
and Chapter o;

* Corentin Kervadec, Grigory Antipov, Moez Baccouche, and Christian Wolf (2019). “Weak
Supervision helps Emergence of Word-Object Alignment and improves Vision-Language
Tasks”. In: European Conference on Artificial Intelligence (ECAI) - Chapter 8;

¢ Corentin Kervadec, Christian Wolf, Grigory Antipov, Moez Baccouche, and Madiha Nadri
(2021d). “Supervising the Transfer of Reasoning Patterns in VQA”. in: Advances in Neural
Information Processing Systems (NeurIPS) - Chapter 8 and Chapter 9.
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1.2.2.1  Software and dataset contributions

The work conducted in this thesis has contributed to the following list of software and
released dataset:

* GQA-00D: a benchmark devised to evaluate VOA in OOD setting and introduced in
Chapter 5. It is publicly available at https://github.com/gga-0od/GQA-00D.

* VisQA: a visual analytic tool that explores the question of reasoning vs bias
exploitation in VOA models, introduced in Chapter 6 and publicly available at
https://visqa.liris.cnrs.fr. It is the fruit of a collaboration with Théo Jaunet, a
PhD candidate working on explainable AI with data visualization.

1.3 INDUSTRIAL CONTEXT

This thesis is part of an academia-industry collaboration between INSA Lyon and
Orange Innovation (the R&D division of the telecommunication company Orange). As a
telecommunication operator handling tons of data every day, Orange is highly interested
in the automatic understanding methods based on Machine Learning (ML). In particular,
this thesis was initiated by the Multimedia contents Analysis technologieS (MAS) research
team of Orange, conducting research on various ML-related topics, such as face recognition
(identity, gender, age, etc.), and speech analysis (e.g. automatic speech recognition, speaker
recognition and diarization). In this context, conducting research on VQA allows to build
an expertise on the automated processing of multimodal content — here, image and text
— which can be used for various purposes, such as language-based image indexation or
multimodal chatbots to improve the customer experience. Furthermore, Orange is also
sensitive to the ethical issues of the use of Al. With the intention of building algorithms
respectful towards individuals - e.g. without social biases — it is essential for Orange to
better understand how DL is impacted by shortcut learning.
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BACKGROUND: VQA & REASONING
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CHAPTER

REASONING VS. SHORTCUT LEARNING

2.1 AN ATTEMPT TO DEFINE “REASONING”

In this thesis, we want to address the problem of automated reasoning. More precisely, we
target the VOA task where an agent has to predict answers to questions posed over images.
In order to fulfill the task, the agent is required to master several skills. Among them,
there are perception skills, e.g. recognizing an object and its attributes, or recognizing
words. But this is not sufficient to solve VOA. In addition to that, the agent is also required
to compare, relate, solve logical entailment, etc. Naturally, the first word coming to our
mind to describe this set of skills is the ability to “reason”.

What does it mean to “reason”? While it is common to say that a neural network reasons,
we rarely take the time to think about what it really means. At the risk of deceiving the
reader, this chapter is not intended to provide an exact definition of “reasoning”. This
would require knowledge and expertise going far beyond the scope of this thesis. At
the same time, it would be dishonest to dismiss the question and continue to use a term
whose lack of definition leaves too much room for interpretation. That is why, this chapter
is our modest attempt to define — or, at least, provide cues on what is — “reasoning”. In
order to narrow the question, we propose to focus on DL, and in particular we try to
explain what we mean by “reasoning” in the context of VOA.

2.2 REASONING, INDUCTION AND INTELLIGENCE

Reasoning is the deduction of inferences or interpretations from premises.

— Wiktionary (2021)

A plausible definition of "reasoning” could be "algebraically manipulating previously acquired
knowledge in order to answer a new question”.

— Bottou (2014)

While elegant and concise, these definitions do not provide much information on what
“reasoning” means. What should be the nature of the inferences and interpretations? What

are the conditions such that a knowledge manipulation causes “reasoning”? It seems
realistic to think that “reasoning” only appears under certain conditions.

11
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INDUCTION AND INTELLIGENCE In DL, we conjecture that “reasoning” is related to
“induction” and “intelligence”. Beforehand, let us define a close friend of the “induction”,
namely “deduction”:

“Flowers have petals, a rose is a flower, so every rose has petals”

The statement above is a “deductive reasoning”, where a conclusion (“every rose has petals”)
is inferred from premises (“flowers have petals” and “a rose is a flower”). It is a top-down
logic, then the validity of the reasoning depends on the quality of the premises. However,
it is generally not possible to learn those premises in DL. Neural networks only have
access to a restricted set of i.i.d. data samples, which is only partially representative of
the infinite variations of the real world. In that context, instead of performing top-down
“deduction”, DL leverages bottom-up “induction”. Let us take a new example:

“This rose has thorns, the next rose has thorns, another rose has thorns. So all roses
have thorns” *

This does correspond to the main steps of reasoning involved in “induction”. Unlike
“deduction”, the conclusion of an “inductive” reasoning is probable rather than certain. Is
that a problem? We think it is not, because it corresponds to the mechanism involved
in experimental sciences, as shown by Popper (1934). This line of thought has led to
discoveries like Newton’s second law, relativity, and the standard model of physics.
However, as seen in the example below, it can lead to wrong theories:

“This rose is red, the next rose is red, another rose is red. So all roses are red”

This type of spurious induction is called a “shortcut” (Geirhos et al. 2020) (see Section 2.4).
As a consequence, Induction as a principle of finding truth does not consistently lead to
either all false or all true statements; The quality of the result depends on various factors,
including the data from which the conclusions are derived, and the algorithm itself.

Therefore, it might be relevant to relate “inductive reasoning” to the faculty of intelligence.
Legg et al. (2007) survey numerous definition of “intelligence” and propose their own
version:

Intelligence measures an agent’s ability to achieve goals in a wide range of environments.
— Legg et al. (2007)

In that context, “intelligent reasoning” denotes the process of organizing inference and
interpretations in a way that it generalizes to multiple settings and across various envi-
ronments. Thereby, it appears that “reasoning” requires “scaling to ever-larger search spaces
and understanding the world broadly” (Bommasani et al. 2021), hence implying properties
such as consistency, causality, or compositionality.

2.3 THE MANY FACES OF “REASONING”

The previous definitions remain vague, and are hardly usable in practice. Bottou (2014)
tells us that rather than searching for a unique definition of “reasoning”, it might be more
fruitful to consider the many faces of “reasoning”. It defines different types of reasoning,
from which we find: first order logic reasoning, probabilistic reasoning, causal reasoning,
or even social reasoning.

1. Because we are not botanist, we still believe that all roses do have thorns ©.
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FIRST ORDER LOGIC REASONING is probably the first facet of reasoning which comes
to mind. In few words, first order logic is a powerful mathematical tool allowing to derive
logical inference between subjects and predicates. However, there is strong evidence that
the human brains do not perform only that type of reasoning. For instance, first order
logic is not expressive enough to describe all the nuance of natural language (Bottou 2014).
Moreover, the discrete nature of first order logic leads to an expensive computation cost
because it generally involves large combinatorial searches.

PROBABILISTIC REASONING treats the problem by manipulating conditional probabil-
ity distributions. This is the type of reasoning which is typically used in ML. Contrary
to first order logic, the continuous nature of probability distributions allows to reduce
the computation cost, by using probability theory tools such as Bayesian inference. In
addition, it makes possible to reason under uncertainty, which is inevitable when dealing
with real-world data.

CAUSAL REASONING highlights one of the major limitation of probabilistic reasoning.
Let us consider the correlation between “it is raining” and “people are carrying umbrellas”. In
the context of probabilistic reasoning, this correlation is predictive: if “people are carrying
umbrellas”, it is highly probable that “it is raining”. However, the probabilistic framework
does not tell us about the effect of an intervention: if “it is raining” but “people throw
away their umbrellas”, is it still raining? Answering this question requires to model the
relation of causality between premises. Here, it is the rain which causes people to carry
an umbrella, and not the inverse. Pearl et al. (2000) propose to counteract this issue with
causal inference. More precisely, it defines a three-level abstraction called the ladder of
causation. The first step, “association”, consists in modelling correlations between events,
this is what is done in probabilistic reasoning. The second step, “intervention”, requires
modeling the conditional probability distribution of the effect of an intervention (cf. the
previous example involving umbrellas). Finally, the third step, “counterfactual”, indicates
a full comprehension of the causal relationships, such that it is possible to predict what
would have been the present state considering an alternate version of a past event (e.g. “if
it was snowing instead of raining, what people would have done?”). Recently, DL approaches
try to adopt insights from causal inference, e.g. in vision-language understanding (Teney
et al. 2020a) or in counterfactual learning of physics (Baradel et al. 2019).

From a human point of view, “reasoning” might not always be rational. Thereby, we
can also cite other forms of reasoning, which move away from a mathematical point of
view but, in a way, come closer to human reasoning. Even if it is out of the scope of this
thesis, commonsense and social reasoning are essential when designing an agent able to
reason in the real world.

COMMONSENSE REASONING is a form of reasoning allowing to make presumptions
about the type and essence of ordinary situations humans encounter every day (Wikipedia
2021). This implies the ability to make intuitive judgments about the nature of physical
objects (e.g. a dropped object falls straight down, a solid object cannot pass through
another solid object, etc.), taxonomic properties, and peoples’ intentions. Therefore,
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(A) Cow: 0.99, Pasture: 0.99, (B) No Person: 0.99, Water: 0.98, (C) No Person: 0.97, Mammal:
Grass: 0.99, No Person: 0.98, Beach: 0.97, Outdoors: 0.97, 0.96, Water: 0.94, Beach: 0.94,
Mammal: 0.98 Seashore: 0.97 Two: 0.94

Figure 2.1 — [llustration of shortcut learning in an image recognition algorithm. We observe that it
generalizes poorly to a new environment. While the cow in ‘common’ contexts (e.g.
Alpine pastures) is detected and classified correctly (A), cows in uncommon contexts
(beach, waves, and boat) are not detected (B) or classified poorly (C). Reproduced
from: Beery et al. (2018)

commonsense reasoning differs from first order logic, probabilistic or causal reasoning
as it relies more on intuition and human psychology rather than on modelling relations
(logical, probabilistic or causal) between events. At the same time, this form of reasoning
is highly desirable when designing an agent to “think like humans”, e.g. if its purpose is to
assist people (a chatbot for instance).

SOCIAL REASONING is related to the ability to change its viewpoint. Placing oneself
in somebody else’s shoes generally induces changes in the way we perceive the world
and human intentions (Bottou 2014). As an illustration, the fact that different cultures
do not necessarily share the same representation of the world (Descola 2013) (e.g. the
representation of color) might be an evidence that human reasoning is subjective. This
form of reasoning might be useful in the context of modeling social interactions.

These definitions are not completely satisfying, as they cannot fully describe the way
humans reason. In any case, human reasoning displays neither the limitations of logical
inference nor those of probabilistic inference (Bottou 2014). However, this set of definitions
provides a useful tool for evaluating and designing reasoning algorithms.

2.4 REASONING AS THE OPPOSITE OF SHORTCUT LEARNING

In the context of DL, it is simpler to define “reasoning” by what it is not. In particular,
in this thesis, we define “reasoning” as the opposite of exploiting biases and spurious
correlation in the training data.

SHORTCUTS AND BIASES  Mitchell (1980) define the term “bias” to refer to “any basis for
choosing one generalization over another, other than strict consistency with the observed training
instances”. In this work, we abusively refer to “bias” as the bad ones, i.e. a generalization
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Figure 2.2 — Taxonomy of decision rules. We propose to define reasoning as the ability to learn
intended features, i.e. decision rules which perform well in both training, in-distribution
test and out-of-distribution test sets. Reproduced from: Geirhos et al. (2020)

choice which does not generalize to unseen settings. More precisely, our definition of
bias exploitation is aligned with the notion of “shortcut learning” introduced by Geirhos
et al. (2020): “decision rules that perform well on standard benchmarks but fail to transfer to
more challenging testing conditions”. This can be related to the “simplicity bias” (Shah et al.
2020), referring to the tendency of models trained with Stochastic Gradient Descent (SGD)
(and its variants) to find simple approximations. Paradoxically, it is considered at the
same time as a reason for the success of neural nets generalization but also as a cause for
their lack of robustness. In few words, the “simplicity bias” explains why neural nets tend
to exclusively rely on the simplest features while ignoring the complex ones, leading to
decision rules which depend on biases found in training data rather than on a complex
reasoning.

CONSEQUENCES OF SHORTCUT LEARNING As an illustration, Figure 2.1 shows an
image recognition algorithm which have learned to detect the presence of a cow depending
on the context (e.g. the background) rather than on the animal’s characteristics. When
evaluated on uncommon contexts, such as a cow in the water or on the beach, this
recognition algorithm fails to generalize. Furthermore, as already mentioned in Chapter 1,
shortcuts also raise ethical concerns. For instance, Buolamwini et al. (2018) alert on the
tendency of gender classification models to be affected by social biases in the training
data. Similarly, in the context of vision and language understanding, Hendricks et al.
(2018) demonstrate that image captioning models learn gender discriminatory decision
rules. This reinforces the stakes of the study of reasoning vs shortcut learning in DL.

00D EVALUATION Therefore, we propose to define “reasoning” following the decision
rules taxonomy introduced by Geirhos et al. (2020) (cf. Figure 2.2). In particular, we refer
to “reasoning” as the process leading to the intended solution, i.e. a decision rule which
performs well on the training set, in-distribution and all relevant OOD test sets. In that
context, OOD evaluation — which consists in pushing the evaluation beyond i.i.d. examples
— can be viewed as an effective way to measure shortcut exploitation vs reasoning. That
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is why, we propose in Chapter 5 the GQa-00op benchmark, devised to evaluate the OOD
performance of VOA models.

However, we have to keep in mind that defining “reasoning” as the opposite of “shortcut
learning” is also not completely satisfying. It is quite possible that, at some point, a
DL model performs something which is neither “reasoning” nor exploiting shortcuts.
Nevertheless, as we will show in Part II and Part III, detecting shortcut exploitation is an
effective way to evaluate reasoning.

2.5 VQA: A VISUAL REASONING TASK?

VQA is often understood as a proxy task for evaluating the “reasoning” ability of artificial
agents on vision and language inputs (Geman et al. 2015). Indeed, this task requires to
understand a visual scene at both general and fine-grained levels. Moreover, it involves
skills such as object and attribute recognition, transitive relation tracking, spatial reasoning,
logical inference and comparisons, counting or memorizing (Hudson et al. 2019b). More
importantly, VOA stands out from other visual understanding tasks because the question
to be answered is not determined until run time: VOA models have to adapt the reasoning
to the task at hand, by reading the question. Thus, solving VOA might require a general
reasoning model able to process a wide variety of questions. This recalls one of the
reasoning properties we gave, namely the fact that “reasoning” implies to “generalizes to
multiple settings and across various environments”.

LIMITATIONS The popularity of VOA is probably due to practical reasons. As the
questions” answers generally contain a few words only, it is easy to automatically evaluate
models on million of examples. However, VOA also suffers from several limitations,
hindering its ability to evaluate “reasoning”. First, VOA evaluation is actually not as easy
as it seems: naively measuring the prediction accuracy tends to favor models relying
on shortcuts instead of reasoning (in Part II we propose a new evaluation method to
counter this issue). Second, the variant of “reasoning” addressed in VOA is limited, and
not comparable with human capacities. Indeed, it mostly involves probabilistic and
common-sense reasoning. Causal reasoning has only been recently introduced (Shah
et al. 2019; Agarwal et al. 2020), and is still at an exploration stage. Social reasoning is
absent: VOA databases are mostly representative of the occidental culture and based on
the English language. Nevertheless, we do think that VOA is a preliminary and necessary
step paving the way for the emergence of intelligent reasoning systems.
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CHAPTER

VISUAL QUESTION ANSWERING

3.1 CONTEXT: VISION-AND-LANGUAGE UNDERSTANDING

VOA (Antol et al. 2015) consists in predicting the answer to questions asked about an
input image. Answering the questions requires a wide variety of skills: finding relations,
counting, comparing colors or other visual features, materials, sizes, shapes, etc. Thereby,
VOQA lies in vision and language understanding, a broad area that can take several forms at
many levels of granularity. At the same time, it is also a reasoning task (cf. Chapter 2).

3.1.1  Vision and language tasks

Some vision and language tasks focus on matching problems, as for instance Image
Retrieval, which requires finding the most relevant image given a query sentence (Karpathy
et al. 2015a; Lee et al. 2018). The inverse problem — namely Sentence Retrieval — has
also been explored (Karpathy et al. 2015a). A similar task with finer granularity is
Visual Grounding, where the model must associate image regions to words or sentences
(Kazemzadeh et al. 2014; Plummer et al. 2015). Other tasks require more high-level
reasoning over images and sentences, which, in general, requires multi-modal interactions
but also the ability to compare, count or find relations between objects in the image. We
can cite VOQA, but also the binary task of Language-driven Comparison of Images, which takes
as input triplets (img, img, sentence) and requires predicting whether the sentence truly
describes the image pair (Suhr et al. 2019), or the visual entailment task (Xie et al. 2019),
where the goal is to predict whether the image semantically entails the text.

Finally, some tasks involve the generation of one modality from the other. Image
captioning consists in translating an image into text (Lin et al. 2014). Other tasks aim to
generate questions about an image (Li et al. 2018). Inversely, it is also possible to generate
an image from a caption (Mansimov et al. 2016; Ramesh et al. 2021).

3.1.2 Reasoning tasks

VOA is also a reasoning task (cf. Chapter 2). As such, it can be compared to the task
defined by the Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al. 2016),
which contains 100K questions posed by crowd workers on a set of Wikipedia articles, as
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(a) Question-answer pairs for a sample passage in the (b) Measuring abstract reasoning in the
SQuAD dataset. Reproduced from: Rajpurkar et al. form of Raven’s Progressive Matrices.
(2016). Reproduced from: Barrett et al. (2018).

Figure 3.1 — Example of two other reasoning tasks: (a) textual question answering and (b) abstract
reasoning.

shown in Figure 3.1a. However, at contrary to VOA, SQuAD only contains text. Embodied
Question Answering (Das et al. 2018) goes further than VOA by allowing the model to
interact with is environment while answering the question. An agent is spawned at
random in a 3D environment, and has to move and interact with it to answer questions
such as “what color is the fish tank?”. This addresses a more realistic type of reasoning,
where interaction is as much important as perception. Similarly, the ALFRED (Shridhar
et al. 2020) dataset combined an interactive visual environment with natural language
directives. Another direction of work focuses on abstract reasoning, taking inspiration
from human IQ tests. As an illustration, the benchmarks devised by Barrett et al. (2018)
and Chollet (2019) are both variants of Raven’s Progressive Matrices (see Figure 3.1b),
where the model has to predict complex sequences under various generalization settings.

3.2 VQA DATASETS

Progress on VOA has been driven by the existence of large-scale datasets. One of the first
large-scale datasets was VQAv1 (Antol et al. 2015) with ~ 76K questions over 25K realistic
images. It started a new task, but was soon found to suffer from biases. Goyal et al. (2017)
pointed to strong imbalances among the presented answers and proposed the second
(improved) version: VQAv2. Johnson et al. (2017) introduced the fully synthetic CLEVR
dataset, designed to evaluate reasoning capabilities. Its strong point is its detailed and
structured annotation. In Hudson et al. (2019b), CLEVR is adapted to real-world images
resulting in the automatically created GQA dataset (1.7M questions), offering a better
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Figure 3.2 — Schematic illustration of the standard VQA pipeline in earlier work of the literature.
In this line of work, the pipeline is decomposed into separate models processing the
image, the question, the multimodal fusion and the answer classification. Recent
works move towards holistic approaches, where the frontiers between these models
are less pronounced (cf. Figure 3.9).

control on dataset statistics. We let the reader refer to Chapter 4 to get a comprehensive
overview of the corpora and benchmarks used in VOA.

3.3 DISSECTING THE VQA PIPELINE

We now describe the standard VOA pipeline, taking as input an image-question pair
and returning the predicted answer. Usually, the VOA problem is formalized as follows.
Given a visual input v and a question g, the predicted answer §j can be written as:

A

§ = argmax pe (ylv,q) (3.1)

where O is the set of model parameters and y is the ground truth answer taken in the dic-
tionary A. As illustrated in Figure 3.2, early work in vision and language understanding
focused on separate models for each modality, followed by multi-modal fusion. We will
see that recent approaches move toward holistic architectures where both modality are
jointly learned (see Figure 3.9).

3.3.1 Processing the question

The input question is processed using NLP methods. For instance, one can translate
word’s tokens into numerical representation using pre-trained embedding — such as
word2avec (Mikolov et al. 2013) or GloVe (Pennington et al. 2014) — which contains a
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(a) Grid-level features (b) Object-level features

Figure 3.3 — Images can be represented in two ways: (a) grid-level, where the image is uniformly
paved following a grid structure; or (b) object-level, when the image is decomposed
into semantic objects. Reproduced from: Anderson et al. (2018).

semantic representation of the words. Thereafter, in early work, a recurrent neural
network — such as LSTM (Hochreiter et al. 1997) or GRU (Cho et al. 2014) — is used
to encode the whole sentence into a unique representation. More recently, pre-trained
BERT-like (Devlin et al. 2019) models are directly plugged to the VOA architecture to
replace those standard words embeddings and recurrent networks.

3.3.2 Processing the image

Similarly, the image is processed using CV methods. As shown in Figure 3.3, two main
approaches are used: grid-level and object-level.

GRID-LEVEL FEATURES As in Xu et al. (2015), early work employs a Convolutional
Neural Network (CNN) to extract features from the image. In particular, the use of a
ResNet (He et al. 2016) pre-trained on Imagenet (Deng et al. 2009) is a popular option. We
call them grid-level features as they uniformly pave the image, as shown in Figure 3.3a.

OBJECT-LEVEL FEATURES The Bottom-Up Top-Down architecture (UpDn) (Anderson
et al. 2018) introduces the use of object level features for VOA and image captioning.
As shown in Figure 3.3b, this type of features is computed for objects and salients
regions of the images, which are obtained using a pre-trained object detector such as
Faster-RCNN (Ren et al. 2015). More recently, Zhang et al. (2021) propose an improved
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Figure 3.4 — The Bottom-Up Top-Down (UpDn) architecture is a strong VQA baseline. As shown
in this schematic illustration, a question guided attention is applied on top of the
object-level visual features. Then, vision and language features are fused using an
element wise product. Reproduced from Anderson et al. (2018).

object-level representation called VinVL, specifically designed for vision and language
tasks.

In practice, object-level features are preferred over the grid-level ones. Indeed, the
former generally leads to a higher accuracy, probably because they bring an additional
level of abstraction allowing to reason over objects rather than over pixels. However, it
remains unclear what really is the advantage of object vs grid-level features. Recently,
Jiang et al. (2020) revisited grid-level features and showed they can work surprisingly
well while running much faster (object detectors such as Faster-RCNN (Ren et al. 2015)
generally add a significant computation overhead). In addition, we will show in Part III
that object detectors suffer from inaccuracies that can potentially interfere with learning
of reasoning.

3.3.3 Fusion: from late fusion to multimodal attention

Vision and language modalities need to be fused. This is a fundamental operation, as
the whole reasoning process depends on the ability to correctly align vision and language.
While early work focuses on late fusion, it is now admitted that a more complex fusion
process is required. This implies the use of attention, bilinear fusion, graph networks and,
more recently, Transformers (Vaswani et al. 2017).

QUESTION GUIDED ATTENTION Xu et al. (2015) make use of a soft attention mechanism
for VQA, where the image regions are weighted by the question. This allows the model to
learn to attend to specific parts of the image, depending on the question. As an illustration,
if v = {v;} is the image representation, where each v; corresponds to different region
features, and g is the question representation, then the attention over the vision is defined
as:

0= a (3-2)
i
where the attention weights 4; are computed as follows:
ai = ¢(vi, q) (3-3)
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(a) Edge update (b) Node update (c) Global update

Figure 3.5 — The Graph Network (GN) framework introduces relational inductive biases in DL
architectures by considering the input data as a graph. It works by iteratively updating
nodes, edges and global states. Reproduced from Battaglia et al. (2018)

where ¢(-) is a learnable neural network. Then, the fused representation m is obtained by
fusing g with the attention product o:

m = f(q,90) (3-4)

where f(-) is a learnable fusion module, e.g. an addition plus a MLP. Yang et al. (2016) go
one step further and propose a Stacked Attention Networks (SAN), composed of several
iterations of attention in order to perform multi-hop reasoning. Besides, as shown in
Figure 3.4, the UpDn (Anderson et al. 2018) model adapts this attention mechanism to
object-level features.

BILINEAR FUSION Bi-linear fusion is a more expressive family of models, helping to
learn high level associations between question and visual concepts in the image. They
consist in encoding fully-parameterized bilinear interactions between the question g € R%
and the image v € R% representations. It is expressed as follows:

m = (T x1q) X2v (35)

with 7~ € R%*%>dn 3 learnable tensor. The operator x; is the i-mode product between
a tensor and a matrix. However, such a formulation suffers from over parametrization
and therefore overfitting. Subsequent work address this by using compact bilinear
pooling (Fukui et al. 2016), low-rank bilinear pooling (Kim et al. 2016), or even by creating
low-rank decomposition of the fusion tensors, either through Tucker tensor compositions
as in MUTAN (Ben-Younes et al. 2017), or block tensor decomposition like in BLOCK (Ben-
Younes et al. 2019). Finally, Kim et al. (2018) combine bilinear fusion with attention
mechanisms to obtain their Bilinear Attention Network (BAN).

RELATIONAL INDUCTIVE BIASES  Although it was already perceptible in some bilinear
fusion methods, other approaches introduce relational inductive biases into the fusion
architecture, in the form of variants of GN (Battaglia et al. 2018). This fusion paradigm
consists in representing the image-question pair as a graph, where the nodes are question
words and image regions (or objects). It turns out that many VOA architectures fall into
the GN framework drawn by Battaglia et al. (2018) and illustrated in Figure 3.5. GN works
by iteratively applying the following operations: (a) the edge update, i.e. the message
passing mechanism allowing to circulate the information between nodes; (b) the node
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(a) Graph VQA by Teney et al. (2017)

(b) LCGN by Hu et al. (2019)

Figure 3.6 — Graph VQA and LCGN are two methods based on variants of GN, introducing
relational inductive biases into the vision-language fusion.

update, which contextualizes each node given the messages from its neighborhood; and (c)
the global update; which can be viewed as an update of the general state of the graph. In
this context, Teney et al. (2017), Norcliffe-Brown et al. (2018) and Hu et al. (2019) propose
variants of Graph Convolutional Networks (Kipf et al. 2017) applied to visual objects and
question words. Figure 3.6 provides a schematic illustration for two of these methods,
namely Graph VQA (Teney et al. 2017) and LCGN (Hu et al. 2019). Besides, the Relation
Network (Santoro et al. 2017) is also a GN which only considers the pairwise interactions
between visual objects.

TRANSFORMER The Transformer (Vaswani et al. 2017) architecture can be viewed as a
special case of the GN framework, combining message passing with an efficient use of
attention. It is composed of a succession of self attention layers, illustrated in Figure 3.7a.
Given an input set € = (x1,...,&5) of the embeddings of the same length d, they
calculate an output sequence:

x; =t (x) = Zaijxf (3.6)
j

by defining the query x4, key =¥ and value ’ vectors which are calculated with the
respective trainable matrices 7 = Wiz, ¥ = Wkz and 2 = W?z. In particular, 7 and

xk are used to calculate the self-attention weights c. j as follows:

qT qT _k 9Tk

T, T T T x,
: = ) (3-7)

N R it

with ¢ being the softmax operator. Yu et al. (2019) and Gao et al. (2019) propose to model
the multimodal interactions via adapting Transformer principles to vision and language.
In particular, they reformulate the unimodal self-attention layer to obtain a multimodal
guided-attention layer. This layer is designed to let information circulate between vision
and language (see Figure 3.7). In guided-attention, contextualizing vision with language
requires extracting key and value vectors from language, and query from vision (and vice
versa). The main advantage of Transformers is that they are able to consider both intra-
modality (inside a modality) and inter-modality (fusion between modalities) relationships,

a] = (al]',...,aij/~~'la71j) :U(
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Figure 3.7 — Adaptation of the self-attention operation (a) to the vision and language multi-
modality. A guided-attention (b) layer is used to contextualize modality X with
modality Y. Reproduced from: Yu et al. (2019).

leading to richer fusion. Some models use a two-streams architecture — e.g. LXMERT (Tan
et al. 2019) or VilBERT (Lu et al. 2019) — where vision and language are first processed
in parallel by self-attention layers and then fused using guided-attention layers. Others
use one-stream architecture — e.g. UNITER (Chen et al. 2020) — where a concatenation of
vision and language is directly fed to a Transformer. However, Bugliarello et al. (2020)
experimentally show that there are no significant differences between both approaches.
As the LXMERT architecture is widely used in this thesis, we propose a detailed overview
in Section 3.5.

3.3.4 Training: from task-specific to multitask

We also observe the evolution of training from task-specific supervision signals to a
set of different losses, which are related to general vision-language understanding, and
whose supervision signal can successfully be transferred to different downstream tasks.
Recent work shows that a joint pre-training over both modalities can benefit downstream
vision-language tasks. This is achieved by setting up strategies to learn a vision-language
representation in a multitask fashion similar to BERT (Devlin et al. 2019) in Natural
Language Processing (NLP). Thereby, approaches such as LXMERT (Tan et al. 2019),
VilBERT (Lu et al. 2019) or OSCAR (Li et al. 2020b) use Transformer architectures to
learn a vision-language encoder trained on a large-scale amount of image-sentence pairs.
As shown in Figure 3.8, pre-training is done through diverse losses such as: language
or vision reconstruction, cross-modality matching and even VOA. The encoder is then
transferred to specific vision-language tasks, where they generally achieve SOTA results.
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Figure 3.8 — The LXMERT pre-training leverages a set of different losses related to vision-language
understanding: language or vision reconstruction, cross-modality matching and even
VQA. It is combined with the use of a Transformer based architecture. Reproduced
from Tan et al. (2019).
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Figure 3.9 — VQA moves towards holistic approaches where a unified vision-language encoder is
trained on a large-scale dataset in a multitask fashion.

We observe the same trend for video and language representation learning (Sun et al.
2019).

3.3.5 From separated to holistic models

Interestingly, we observe a pronounced tendency to move from separated models —
composed of independent components having a specific purpose as shown in Figure 3.2 —
to holistic approaches. On the architecture side, especially in the fusion part, models admit
more and more degrees of freedom to compute both intra- and inter-modal relationships
in a unified vision-language encoder (cf. Figure 3.9). On the training side, large-scale
vision-language pre-training with weak supervision is now preferred to task specific
supervision strategies. As a consequence, model architectures tend to be more and more
general and less hand-crafted. For this reason, in this thesis, our efforts concentrate on
the training objectives and algorithms: we propose to evaluate and analyze what have
been learned by VQA models (cf. Part II and Part III) and design new approaches for
pretraining and transfer (cf. Part IV).

25



@ RUBI

strategy
~OM [ ~pO
Classic a; &
strategy answers
masking
training only | Cq
Q«——o0
A, 8 o]
: biased towards ! "
question modality
VQA VQA e Tro
Model Model s backprop
& |
Ui | | g | U; | 9 |

Figure 3.10 — RUBi is a training strategy aiming at mitigating question biases in VQA. During
the training, a question-only branch is added to the base model. At test time, the
additional branch is removed. Reproduced from Cadene et al. (2019)

3.3.6  Symbolic representation for visual reasoning

Aside from these connectionist approaches, others address the visual reasoning problem
by constructing a symbolic view of vision, language and of the reasoning process. Thus,
Yi et al. (2018) use reinforcement learning to learn a program generator predicting a
functional program from a given question. The Neural State Machine (Hudson et al.
2019a) predicts a probabilistic graph from the image to obtain an abstract latent space
which is then processed as a state machine. Alternatively, MMN (Chen et al. 2021) is
a Meta Module Network for compositional visual reasoning. It is based on a hybrid
approach combining neural module networks (NMN) (Andreas et al. 2016) and monolithic
architectures (such as Transformer-based ones). The former, NMN, is based on hand-
crafted neural network program blocks and is supposed to lead to better compositionality
and interpretability. The latter, which is a monolithic architecture, performs its operations
in a latent space and has been shown to be experimentally more efficient. MMN tries to
combine the best of both worlds.

3.4 ATTEMPTS TO REDUCE THE BIAS-DEPENDENCY

Despite efforts to design complex architectures, VOA models suffer from significant
generalization inability (cf. Part II). They tend to answer questions without using the
image, and even when they do, they do not always exploit relevant visual regions (Das
et al. 2016). They tend to overly rely on dataset biases (Hendricks et al. 2018), and are not
able to generalize to unseen distributions (Agrawal et al. 2018).

MITIGATING BIASES Assuming that biases are on the language side, Ramakrishnan

et al. (2018) set up an adversarial game against a question-only adversary to regularize
training. Similarly, RUBi (Cadene et al. 2019) makes use of a question-only branch in
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addition to a base model during training to prevent it from learning textual biases (cf.
Figure 3.10). The training process is then formalized as follows:

A

j = argmax pe, (y[0,9) pe, (v|q) (3-8)
YEA e
base model blind branch

The blind branch is supposed to learn the question biases instead of the base model.
Hence, at test time, the blind branch is omitted. In the same way, Clark et al. (2019)
regularize model predictions using question type statistics from the training set. They
propose two variants: Bias Product (BP) and Learned-Mixin (LM). BP is similar to RUBi
but differs in directly taking training set statistics to infer question type biases during
training. The question type biases are fused with the base model predictions using a
product of experts, and removed during testing. LM is an improved version of BP. In this
version, the question bias is dynamically weighted by the base model in order to control
its influence. An entropy penalty can be added to the loss to prevent the model to ignore
the bias. Other approaches force VOA models to attend to the most significant visual
regions from humans’ perspective (Wu et al. 2019; Selvaraju et al. 2019). However, these
methods rely on the known construction of the evaluation split (Teney et al. 2020c), and
we will show their limitations in Chapter 5. Alternatively, Teney et al. (2020b) propose a
knowledge agnostic de-bias method, showing that training a model on multiple non-i.i.d.
sets leads to a better OOD generalization.

INJECTING CAUSALITY A promising direction of work for reducing the bias depen-
dency is the use of insights from causal inference in VOA. Abbasnejad et al. (2020)
introduce a data augmentation method based on the generation of counterfactual ex-
amples. Teney et al. (2020a) and Gokhale et al. (2020a) design a novel supervision loss
constraining pairs of counterfactuals (minimally dissimilar samples) to have their gradient
aligned with their vector difference in the input space.

3.5 CASE STUDY: LXMERT

The last section of this chapter is dedicated to a detailed overview of LXMERT (Tan
et al. 2019), a neural model which is widely used in this thesis, because of its use of self-
attention combined with efficient large-scale self-supervised pretraining. It is composed
of a VL-Transformer architecture trained with BERT-like losses.

3.5.1 VL-Transformer architecture

The key strength of the Transformer-based architecture is its ability to contextualize
input representations. This is achieved by a sequence of transformations of the input
vectors, and the key mechanism behind these transformations is the concept of attention
(self-attention). Language-only and vision-only layers are referred below as intra-modal
transformers layers, while language-vision layers are referred as the inter-modal ones. In
this context, we present the Transformer architecture illustrated in Figure 3.11 which we
call VL-Transformer, and which corresponds to the one used in LXMERT (Tan et al. 2019).
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Figure 3.11 — Schematic illustration of the VL-Transformer architecture used in the thesis. Question
and image are first tokenized. They are then encoded using vision (in green) and
language (in blue) only Transformers (Vaswani et al. 2017). At the next step, the
information flow between the two modalities (bidirectional) thanks to inter-modality
Transformers (Tan et al. 2019). Finally, the answer is predicted from the ‘CLS’
token. Yellow and orange rectangles represent respectively inter- and intra-modality
attention heads. i and j are the layer and head indices used for naming attention
heads through the thesis.

We use the following naming convention for the VL-Transfomer: each layer is named
as xxx_i_j, where xxx € {lang, vis, vl 1v,1l,vv} denotes the layer type (e.g. vision-only
intra-modal layer, vision-language inter-modal layer, etc.), while i and j are respectively
the layer and head indices.

VISION INPUT On the vision side, we use an object detector — Faster-RCNN (Ren
et al. 2015) — to extract object level visual features from the input image as in Anderson
et al. (2018). Similar to hard attention mechanisms, this enforces the system to reason
on the object level rather than on the pixel level or global level. In particular, the visual
input embeddings are concatenations of 2048-dimensional object embeddings and the
corresponding 4-dimensional bounding box coordinates.

LANGUAGE INPUT  On the language side, sentences are tokenized using the WordPiece
tokenizer (Wu et al. 2016). As common in language processing, a special token [CLS]
is added at the beginning of the tokenized sentence, which encodes the multimodal
information of the image and sentence. The transformation of this token, performed
during the forward pass through the network, corresponds to the prediction of the answer
to the task. Tokens are embedded into d-dimensional vectors using a look-up table learned
during the training phase. The index position of the word is added to the dense vector as
a positional encoding in order to obtain index-aware word level embeddings.

INTRA-MODALITY Visual and language modalities are firstly processed independently

using a two-streams approach (cf. Figure 3.11). More precisely, the self-attention heads
lang_i_j are used to encode the words of the question, as described in the example above.

28

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI101/these.pdf
© [C. Kervadec], [2021], INSA Lyon, tous droits réservés



In the same spirit, the vis_i_j heads encode the visual modality, i.e. the different objects
and theirs embeddings.

INTER-MODALITY Then, in order to take into account the inter-modality structure
of the input, this architecture let the information flow between language and vision, as
shown in Figure 3.11. This contextualization is bidirectional: from the question’s words to
visual objects in [v_i_j, and vice-versa in vl_i_j (lv means ‘language to vision” while the
opposite vl means ‘vision to language’). This requires a minor, but essential, modification
of the intra-modality transformer. In particular, the use of guided-attention (Yu et al.
2019) to operate on both modalities. More precisely, the query vectors are taken from the
modality to be contextualized, and the key and value vectors from the other one. Thereby,
in the case of the vision to language heads, vl_i_j, attention maps AV~ are computed as
the outer product between the query projections L7 of the language embeddings and the
key projections V¥ of the visual ones:

Vk
AV-L a9 4
—
EEEEC 5
a HFLQ. softmax _/
EEENC
(3.9)

A row-wise softmax function is applied, such that each attention map’s row sums to 1.
Then, the language embeddings L are updated with the value projections V° of visual

tokens: pral
L AV-L -
r_l_l l—l—\
d BEOREECC
— COCNEEON
= FFN| gompmom -
DOEEERC

(3.10)
where “4- =" represents a residual connection and FFN is a trainable feed-forward
layer. For the sake of clarity, we omit the description of the multi-head mechanism in
the notation of Equation 3.9 and Equation 3.10. Nevertheless, it is important to notice
that the inter-modality Transformers are multi-headed, similarly to the intra-modal ones.
As shown in Figure 3.11, each [v or vl attention head is immediately followed by an
intra-modal attention head called, respectively, vv or II.

MULTI-HEAD To increase the learning power of the described self-attention mechanism,
the attention layers in Transformers are often multi-headed. This means that, at each
layer, h attention maps are computed in parallel. These parallel operations are called the
attention heads. At the end of each Transformer layer, the outputs of the attention heads are
concatenated and followed by token-wise residual connections and feed-forward layers.

INTERPRETING ATTENTION MAPS In this thesis, we will sometimes focus on the
interpretation of the attention maps, as these maps contain the information which is
crucial for the Transformer’s functionality. Indeed, these maps tell us to what extent a
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given token has been contextualized by its neighbors. A low attention value «;; indicates
a weak interaction between tokens i and j. Inversely, a high value is an indicator of the
strong information flow from j to i. Therefore, attention maps provide strong insights on
how our VL-Transformer has modeled the question, the image, and, more importantly,
the relationships between both modalities.

ANSWER PREDICTIONS The VQA task is finally achieved by decoding the final repre-
sentation of the textual [CLS] token using a 2-layered neural network. In particular, our
model outputs a probability vector over the set of the most frequent answers found in the
training set. The final predicted answer is then the one with the highest score.

HYPERPARAMETERS In the following chapters of this thesis, we use two versions of the
VL-Transformer architecture. The original version, similar to the one used in LXMERT (Tan
et al. 2019), is composed of 9 language only layers, 5 vision only layers, and 5 cross modal
layers. Its hidden size is set to d=768 and the number of per-layer heads to h=12. Thus, it
is composed of 212M parameters. The compact version has the same number of layers, but a
smaller hidden size /=128 and only /=4 heads per layers. It allows reducing computation
time and memory overhead as it has only 26M trainable parameters. Following Anderson
et al. (2018), we use 36 objects per-images.

3.5.2 LXMERT pre-training

The so-defined vision-language encoder is trained following the recently widely-
adopted strategy of combining BERT-like (Devlin et al. 2019) self-supervised signals
with task-specific supervision signals, which has been applied to various problems in vi-
sion and language — e.g. in Tan et al. (2019) or Lu et al. (2019). Following Tan et al. (2019),
it combines four supervision signals: vision masking, language masking, image-sentence
matching and VQA, which are briefly described below. This pre-training allows to learn
a general vision-language understanding. Thereafter, a fine-tuning can be necessary to
adapt to the downstream task.

VISION/LANGUAGE MASKING This signal aims to supervise the encoder’s ability to
reconstruct missing information in language and vision. More precisely, it randomly mask
each language token (resp. visual object) with a probability of 0.15 and ask the model to
predict the missing words (resp. objects). Therefore, two classifiers are added — for vision
masking* and language masking — on top of the vision language encoder and supervised
via a cross-entropy loss. Tan et al. (2019) proposes to take the object detector prediction
as ground truth in order to get over the disparity of visual annotation. Additionally, the
model is also supervised to regress the masked objects” features via L2 loss.

IMAGE-SENTENCE MATCHING BERT (Devlin et al. 2019) proposes next sentence pre-
diction supervision by asking to predict if two sentences are consecutive in a given text,
or randomly sampled from a corpus. Its vision-language equivalent is image-sentence

1. It is worth noticing that vision masking requires to predict both the object classes and their attributes
(e.g. color, materials, etc.)
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matching, where the model has to predict whether a given sentence matches a given
image or not. Thus, in each sentence-image pair, the image is randomly replaced with a
probability of 0.5. A feed-forward layer is added on top of the [CLS] output embedding
to predict whether the pair matches or not. This global matching is supervised using a
binary cross-entropy loss.

VISUAL QUESTION ANSWERING The VL-Transformer is applicable to a wide range of
vision-language problems. At the same time, independently of the target vision-language
task, pretraining on VQA helps reasoning, as shown by Tan et al. (2019). The VQA task is
defined as a classification problem over a set of most frequent answers. This classification
is performed from a prediction head attached to the [CLS] token and supervised using a
cross-entropy loss.
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Part I1

EVALUATE: WHERE WE LEARN THAT VQA MODELS ARE
(STILL) NOT REASONING
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INTRODUCTION

In the year 2021 AD, deep learning based VQA models already achieve close-to-human perfor-
mance on VQAv2.

Sir, does it mean that we solved Artificial General Intelligence (AGI)?
Of course, not. Try to ask your own questions to a SOTA VOA model, and you will be
convinced: it is so easy to fool them!

But Figure 3.12 is clear, only few years to wait before reaching super-human accuracy!
Not really. Actually, I am not sure that we are correctly evaluating the reasoning
ability of VOA models. But let me explain all from the beginning!

Evaluating reasoning in VOA is a difficult task. In part because it is hard to define
what “reasoning” is, but also because evaluation can be fooled by many confounders. As
explained in Chapter 2, we can define reasoning as “algebraically manipulating previously
acquired knowledge in order to answer a new question” (Bottou 2014). In practice, we choose
to define reasoning by opposition to biased prediction, when the model leverage statistical
shortcuts (often present in the training data) in order to infer predictions. While being
effective on the popular benchmarks, shortcut learning leads to the emergence of models
brittle to many kinds of variations in the data: linguistic reformulations, visual editions,
distribution shift, etc. Thus, several works (e.g. Agrawal et al. (2016)) have alerted on
the urgent need to define new evaluation methods, taking into account this shortcut
dependency. These methods can take the form of OOD benchmarks, measuring to what
extent the models generalize to unseen settings. However, as we will see in this part, most
of the OOD benchmarks are subject to many issues related to the presence of unwanted
confounder, potentially hindering the performance measures. Therefore, we propose the
GQA-00D benchmark, our contribution to the evaluation of reasoning in VOA. Part II is
organized as follows:

CHAPTER 4 is an extension of the related work (Chapter 3), including a comprehensive
study of the most popular databases and benchmarks used in VQA. This chapter will be
an opportunity for the reader to familiarize himself with the stakes and limitations of
the VOA task. In particular, we provide a critical review of the benchmarks dedicated
to the evaluation of models” robustness, showing that they are not sufficient to properly
measure the VOA reasoning ability.

CHAPTER 5 introduces our GQa-oop benchmark, dedicated to the OOD evaluation
of VOA models. We argue that it answers to most of the concerns raised in Chapter 4,
leading to a better estimation of the reasoning capability. This benchmark allows us
to experimentally demonstrate that current SOTA VOA models are prone to the usage of
shortcut in the data, and are highly ineffective in the OOD setting.
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Figure 3.12 — VQA models achieve near human performance on VQAv2. Reproduced from Sheng
et al. (2021).

This part has led to the publication of the following conference paper:

¢ Corentin Kervadec, Grigory Antipov, Moez Baccouche, and Christian Wolf (2021b). “Roses
Are Red, Violets Are Blue... but Should Vqa Expect Them To?” In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);
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CHAPTER

PITFALLS OF VQA EVALUATION

4.1 INTRODUCTION

This chapter aims at drawing a comprehensive review of popular databases and
evaluation benchmarks dedicated to the VOA task. It is motivated by the fact that the data
is one of the central aspect of deep learning based VOA approaches. Indeed, the recent
performances of VOA models are largely due to the construction of large-scale corpuses.
Each database differs in many ways. What is the nature of the images, synthetic or real? Are
the question generated automatically? Or is it human questions? How is the annotation, weak
or detailed? How diverse are the questions? Which reasoning capacities are covered? How is the
quality of the annotations? We propose to review the most popular datasets in light of these
questions.

In a second part, we focus on how to evaluate VOA model’s robustness. We show
that the initial metric, i.e. the widely used overall accuracy, is not sufficient to properly
assess the models’ reasoning ability. Several benchmarks have been proposed to improve
the VOA evaluation, focusing on diverse aspect of VOA: linguistic and visual robustness,
consistency, compositionality, etc. We will show that VOA evaluation is a hot topic:
approaches are numerous, sometimes contradictory, and they often fall into worrying
pitfalls.

The purpose of this chapter is to help the reader delving deep into the numerous
challenges raised by the VOA task — and also its limitations — through the lens of data.
This comprehensive study of VOA evaluation methods will also motivate the Chapter 5,
where we introduce our contribution to the VQA evaluation.

4.2 VQA DATASETS

We first overview the most popular datasets used for VOA. Table 4.1 provides a summary
of their different characteristics. At first glance, we observe that the datasets differ by
the nature of their data. Some corpora are fully synthetic (e.g. CLEVR from Johnson
et al. (2017)), while others are partially synthetic (only the questions are automatically
generated, e.g. GQA from Hudson et al. (2019b)) or 100% generated by humans (e.g.
VQAv2 from Goyal et al. (2017)). But the devil is in the details, so we propose a detailed
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Real Natural Amount of Human SOTA

Dataset  #1 (K)  #Q (M) images questions annotation acc. (%) (%)

VQAv: 205 0.6 4 4 - 83.3 -
VQAv2 205 1.1 4 4 - 80.8 81.3
CLEVR 100 0.9 ++ 92.6 > 99
VizWiz 34 0.03 4 4 - 75.0 54.8
GOQA 113 1.7 v + 89.3 64.7

Table 4.1 — Overview of the most popular VQA datasets. Note that GQA statistics corresponds to
its balanced version. SOTA accuracies are taken from: evalai leaderboard (VQAv2 and
VizWiz test-std), Zhang et al. (2021) (GQA test-std) and Yi et al. (2018) (CLEVR test).
As VQAv1 is no longer used, we do not provide the SOTA.

Figure 4.1 — Illustration of a balanced pair in VQAv2. “Which plane wing has a logo under it?”. Both
images are similar but have a different answer. Source: Goyal et al. (2017)

overview of each one of the most popular datasets, providing both quantitative and
qualitative descriptions.

4.2.1  The VQA dataset: versions 1 and 2

One of the first large-scale datasets was VQAv1 (Antol et al. 2015) with ~ 0.6M questions
over 205K realistic images, but it was soon found to suffer from biases: a blind model
(which has only access to the question) is able to achieve ~ 50% of the accuracy! Goyal
et al. (2017) point to strong imbalances among the expected ground-truth answers. As an
illustration, “tennis” is the correct answer for 41% of the “What sport...?” questions. As a
consequence, they propose the second (improved) version of the dataset: VQAv2.

DATA DISTRIBUTION To mitigate the language priors found in VQAv1, the VQAv2
authors balance the dataset by collecting complementary images, such that each question
is associated to a pair of similar images with different answers, as shown in Figure 4.1.
However, the experiments show that biases remain problematic as a blind model still
reaches 44% of accuracy on VQAv2.
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Stump a smart robot! Ask a question about this scene that a human can answer, but a smart
robot probably can’t!

We have built a smart robot. It understands a lot about images. It can recognize and
name all the objects, it knows where the objects are, it can recognize the scene (e.g.,
kitchen, beach), people’s expressions and poses, and properties of objects (e.g., color
of objects, their texture). Your task is to stump this smart robot! Ask a question
about this scene that this smart robot probably can not answer, but any human can
easily answer while looking at the scene in the image.

Figure 4.2 — Annotators’ directives for the VQA dataset. Source: Antol et al. (2015).

(b) “Would it be a difficult bet, to suggest whether the
(a) “What is this machine going to do?” GT:? bench or the tree will last longest?” GT: No.

Figure 4.3 — Tricky questions from VQAv1 and VQAv2. Sources: Antol et al. (2015) and Goyal
et al. (2017)

REASONING SKILLS The VOQA dataset is composed of open-ended questions asked by
humans. This allows to collect interesting and diverse questions, going beyond simple
low-level computer vision knowledge: object detection, activity recognition, commonsense
reasoning, OCR, counting, etc.

LIMITATIONS However, in addition to the imbalanced data distribution, the VQA
dataset suffers from weaknesses due to its collection process. In both versions, questions
are collected using Amazon Mechanical Turk workers. The directives for the annotator
were formulated as in Figure 4.2. In a few words, annotators were asked to “fool a smart
robot”. This sometimes resulted in tricky questions moving away from the initial objective
of measuring the visual reasoning skills. On the extreme level, Figure 4.3 shows two
inappropriate questions found in VQAv1 and VQAv2: the first one requires to imagine
what is the machine’s purpose (without consensus on the ground truth), while the second
requires making a subjective judgment about a bet. It is difficult to quantitatively estimate
the proportion of these questions. However, the fact that the collection process is explicitly
encouraged to “stump a smart robot” suggest that these tricky questions are not isolated
cases. In addition, the VOA dataset contains a large proportion of questions where the
image content is not sufficient to find the answer. Thereby, in VQAv1, 18% of the questions
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(a) “What type of dog is this?” GT:german shep- (b) “Did Goldilocks, traditionally, encounter this crea-
herd ture?” GT: No.

Figure 4.4 — Question requiring common-sense knowledge in VQAv2. Sources: Goyal et al. (2017)

requires external knowledge such as baseball team, clothing brand, dog breed, etc. (cf.
Figure 4.4). Although this external knowledge is considered to belong to commonsense ,
it produces questions going beyond the simple visual Turing test initially targeted by the
VOA task. Because of this, and due to the difficulty of collecting large-scale annotations,
the quality of annotation is questionable: ~ 17% of the VQAv1 questions cannot be
answered by a human.

4.2.2  VizWiz: VQA for visually impaired people

VizWiz (Gurari et al. 2018) pushes the realness of VOA to its extreme limits. This dataset
gathers over “31,000 visual questions originating from visually impaired people who each took
a picture using a mobile phone and recorded a spoken question about it”. As a result, VizWiz
is probably the VOA dataset which is the best aligned with a real-world usage. It differs
from VQAv2 in several aspects: (1) the questions are targeted to help a person asking
for an information on the image, and not to stump a smart robot (cf. Figure 4.5a); (2) as
images are captured by visually impaired photographers, they are often poor quality and
sometimes not answerable (cf. Figure 4.5b); (3) questions are spoken, and so are more
conversational. As a result, at time of writing, the SOTA only reaches an accuracy of 54.8%
(cf. VizWiz leaderboard), making it one of the most challenging VOA dataset.

REASONING SKILLS One of the main challenge of VizWiz lies on the perception side,
where it is required to cope with low-quality images. Therefore, less importance is given
to the evaluation of reasoning. Nevertheless, it still requires diverse interesting skills such
as detecting when a question is answerable, reading, counting, understanding evasive
questions, etc.

4.2.3 The synthetic CLEVR

On the opposite side, Johnson et al. (2017) introduced the fully synthetic CLEVR dataset,
designed to diagnose reasoning capabilities by disentangling perception from reasoning.
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(b) “Alright, and what does this label say?” GT:
(a) “What's the name of this product?” GT: basil. unsuitable.

Figure 4.5 — VizWiz samples. Source: Bhattacharya et al. (2019)
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(a) Hlustrative questions. (b) A functionnal program.

Figure 4.6 — CLEVR samples. Source: Johnson et al. (2017)
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It results in a very simple environment. As shown in Figure 4.6a, images are composed of
simple 3D objects arranged on a planar surface, where each object is determined by its
shape (cube, cylinder or sphere), color (8 colors), material (rubber or metal), size (large or
small) and position (x and y).

REASONING SKILLS The images are procedurally annotated with complex questions
including attribute identification, counting, comparison, spatial relationships and logical
operation. In addition, the strong point of CLEVR is its detailed and structured annotation.
As shown in Figure 4.6b, each question is translated into a functional program composed
of individual operations. This allows for precise evaluation of the reasoning skills.

LIMITATIONS Despite the apparent complexity of the questions, SOTA models already
reach an accuracy above 99% (Yi et al. 2018) on CLEVR. This suggests that the vQA
bottleneck is in combining reasoning with perception, rather than in the abstract reasoning
alone. Indeed, when the environment becomes more complex (as in real world) it leaves
more place for visual uncertainty, which can be one of the cause of shortcut learning. We
will analyze this in Part III.

4.2.4 GQA: VOA on image scene graphs

Taking the best of both worlds, Hudson et al. (2019b) adapt CLEVR to real-world images.
It results in the automatically created GQA dataset (1.7M questions), offering a better
control on dataset statistics. In particular, each image is associated with a scene graph
of the image’s objects, attributes and relations (which have been manually annotated),
allowing to automatically generate questions using pre-defined templates. As in CLEVR,
each question is associated with a functional program that specifies the reasoning steps
needed to be taken to answer it. As a result, GQA can be viewed as a compromise between
a controlled environment (like in CLEVR) and realistic data (like in VizWiz). Since its
creation, the GQA dataset has been rapidly adopted by the VOA research community.

DATA DISTRIBUTION  Significant efforts have been made to mitigate the data biases
by smoothing the answer distribution of all question groups (grouped according to their
context). Interestingly, the data smoothing has been applied to GQA such that “it retains
the general real-world tendencies” (Hudson et al. 2019b): it thus still contains natural biases,
which will be studied in Chapter 5. As in the VOA dataset, a blind model still achieves a
relatively high accuracy of 41%.

REASONING SKILLS The GQA dataset covers a large variety of reasoning skills such
as object and attribute recognition, transitive relation tracking, spatial reasoning, logical
inference and comparisons. In order to give to the reader a better understanding of the
skills covered by GQA, we provide illustrative samples: spatial reasoning (Figure 4.7a),
object recognition (Figure 4.7b), attribute recognition (Figure 4.8a), logical inference
(Figure 4.8b), weather classification (Figure 4.9a), and comparison (Figure 4.9b). It is
worth noticing that GQA does cover neither counting questions nor OCR, which are
generally brittle to annotation errors. In addition, GQA focuses on factual questions,
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(a) “Is the cabbage to the left or to the right of the
carrot that is to the left of the broccoli?” GT: Left. (b) “What piece of furniture is it?” GT: Sofa.

Figure 4.7 — GQA samples: (a) spatial reasoning, (b) object recognition. Source: Hudson et al.
(2019b).

(a) “What color is the trash can in the top?” GT: (b) “Are there both fences and helmets in the picture?”
Brown. GT: Yes.

Figure 4.8 — GQA samples: (a) color detection, (b) logical operation. Source: Hudson et al. (2019b).

o = (b) “Are the napkin and the cup the same color?” GT:
(a) “How is the weather?” GT: Rainy. Yes.

Figure 4.9 - GQA samples: (a) weather classification, (b) comparison. Source: Hudson et al.
(2019b).
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(a) “Are there any people to the = : ‘
right of the umbrella that looks (b) “Which kind of furniture is (c) “What is the food on the plate of
dark blue?” GT: No. blue?” GT: Desk. the food called?” GT: Cookie.

Figure 4.10 — Issues in GQA annotation: (a) not answerable, (b) annotation error, (c) odd syntax.
Source: Hudson et al. (2019b).

where the answer can always be predicted from the image only, without requiring external
knowledge as in VQAv2.

LIMITATIONS Its semisynthetic nature is also the cause of several limitations. Because
the questions are synthetic, they have a limited linguistic diversity. As an illustration,
GQA only covers 88.8% and 70.6% of VQAv2’s questions and answers. The template-
based generation can also result in strange wording, as shown in Figure 4.10c where the
question is “What is the food on the plate of the food called?”. Furthermore, generating such a
large-scale dataset favors the emergence of noisy annotations. It is relatively frequent to
encounter ambiguous questions. As an illustration, in Figure 4.10b both the table and the
chair are blue, and in Figure 4.10a there is more than one “umbrella that looks dark blue”.
Thus, as shown in Table 4.1, = 11% of the GQA questions cannot be answered (which is
still lower than in VQAv1).

Overall, despite these limitations, GQA involves a larger variety of reasoning skills
(spatial, logical, relational and comparative) than in datasets with human questions (such
as VQAv2), making it more suitable for evaluating reasoning. Additionally, it limits the
requirement of extremely domain-specific knowledge unavailable during training, e.g. the
logo of a specific baseball team or the breed of a dog. At the same time, because it is
based on real images, it is more challenging than CLEVR, and allows studying the vision
bottleneck. For these reasons, we use GQA as a testbed for the majority of our studies
conducted in this thesis, while being aware of its limitations.

4.2.5 Other datasets

Many datasets have not been cited in this overview, such as VisualyW (Zhu et al. 2016),
or the pioneering work DAQUAR (Malinowski et al. 2014) first introducing the VOA task.
We let the reader refer to Wu et al. (2017) for a detailed overview of older VQA datasets.
We can also cite the TDIUC dataset (Kafle et al. 2017), being close to GQA by essence.
They propose to divide the questions into 12 different types, including absurd questions.
More importantly, they develop several metrics aiming to provide an unbiased score of
the model performances.
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4.3 MEASURING ROBUSTNESS IN VQA

Are we really sure that our VQA models reason? Despite the numerous datasets (and
dedicated benchmarks) available for the VOA task, the question persists. Hudson et al.
(2019b) inform us that models (even the baselines) learn to predict answers that are often
plausible, suggesting they have learned a consistent representation of the world. But,
at the same time, Agrawal et al. (2016) reveal that VOA models are “myopic” (tend to
fail on sufficiently novel instances), often “jump to conclusions” (converge on a predicted
answer after “listening” to just half of the question), and are “stubborn” (do not change
their answers across images). Many attempts have been recently taken to try to better
evaluate VOA in the form of variants of the existing datasets. These benchmarks can be
seen as OOD evaluations, each one focusing on measuring the robustness against a specific
variation (syntactic, visual, multi-modal, etc.).

4.3.1  The standard metric: overall accuracy

VOQA is generally considered as a classification task over a large dictionary, ranging
from 1000 to 3000 possible answers depending on the dataset. Hence, the standard metric
used for the majority of the datasets is overall accuracy, i.e. the proportion of the correctly
predicted answers over the amount of total predictions. However, we note some subtle
variants. For instance, in VQAv1, VQAv2 and VizWiz, each question is answered by ten
annotators and the evaluation metric takes into account the (non) agreements between
them, by weighting the accuracy. Interestingly, the pioneering work led by Malinowski
et al. (2014) initially proposed a metric taking into account the semantic of the prediction,
which was then abandoned in favor of overall accuracy.

4.3.2 Robustness against linguistic variation

VQA-Rephrasing (Shah et al. 2019) proposes to evaluate the robustness against linguistic
variation. For this purpose, they manually reformulate the questions of VQAv2 while
making sure that the answer remains the same. For instance, the question “What is in the
basket?” is reformulated to “What does the basket mainly contain?”. Despite the apparent
simplicity of the modification, the benchmark shows a very weak robustness of SOTA
models against linguistic reformulations. As an illustration, the baseline UpDn (Anderson
et al. 2018) accuracy decreases from 61.5% to 51.2% when evaluated on original and
reformulated questions respectively.

4.3.3 Robustness against visual variation

It is also possible to evaluate the robustness again visual variations, as proposed by
IV/CV-VQA (Agarwal et al. 2020). This benchmark is constructed by applying semantic
editions to the images. In particular, a GAN-based resynthesis model is used to remove
some objects from the image. Two types of modifications are explored:
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(a) CV-VQA: “How many giraffes are there?” (b) IV-VQA: “Is there a cat?”

Figure 4.11 — Robustness against visual variations. Source: Agarwal et al. (2020).
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Main Reasoning Question: Main Reasoning Question:

Perception Sub-questions: ‘¢ Perception Sub-questions:
« Are there electric lines? “Yes" L

* Is the train attached to a cable? “Yes"

* Are there wires above the tracks? “Yes” ence’y

* Is a fence around the giraffe? "Yes”

Figure 4.12 — VQA-Introspect: measuring consistency. Source: Selvaraju et al. (2020)

* InVariant (IV-VQA) set (Figure 4.11b): removing objects not required to answer the
question. This should not have any impact on the prediction, except if the model is
relying on visual shortcuts.

e CoVariant (CV-VQA) set (Figure 4.11a): removing objects such that the answer change.
It is limited to counting questions, where removing one of the important objects
reduces the numerical answer by one.

Afterward, we can measure how the model is affected by the visual intervention. In
particular, the authors observe that VOA models are brittle to visual variations. More
importantly, this lack of robustness is present even when the model initially predicted
the correct question, i.e. the model flips its prediction to an incorrect one after the image
modification. This suggests (and we will confirm it in Chapter 5) that providing a correct
answer does not necessarily imply the presence of a reasoning process, and that models
tend to exploit spurious correlation in the data.

4.3.4 Consistency across questions

Several works propose to measure the consistency of the predictions. Hudson et
al. (2019b) introduces the consistency metric in GQA, measuring if the model does not
contradict itself when answering several questions of the same image. Similarly, Ray
et al. (2019) construct L-ConVQA a benchmark evaluating the consistency and showing
similar results. Their most strict metric — perfect-consistency, measuring the proportion of
consistent question sets where all the questions have been correctly answered — barely
reaches 40% with the UpDn baseline, showing that there is a large room for improvement.

VQA-Introspect (Selvaraju et al. 2020) — based on VQAv2 - goes one step further, and
proposes to measure the consistency while splitting questions into reasoning and perception:

* Perception questions can be answered by detecting or recognizing a low-level prop-
erty in the image, e.g. “What is next to the table?”)
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* Reasoning questions can be answered by solving several perception questions, e.g.
“Are the giraffes in their natural habitat?”

Thereby, as shown in Figure 4.12, each reasoning question is related to a group of perception
questions. In that context, VQA-Introspect evaluates the consistency by measuring
when a reasoning question is correctly answered while the associated perception questions
are also correct. Authors analyze two types of inconsistency: (a) when reasoning is
correct but not perception, it is probable that the model is using a shortcut instead of
reasoning; (b) inversely, if perception is correct but not reasoning, it indicates a reasoning
failure. Interestingly, the baseline — Pythia (Jiang et al. 2018) — achieves a relatively high
consistency of 70%.

4.3.5 Compositionality

One property of reasoning is compositionality. In VOA, this corresponds to the ability to
answer questions resulting from a combination of sub-question, e.g. “Is the man wearing a
hat and glasses?”. GQA contains many of such question, but other benchmarks specifically
focus on the evaluation of compositionality.

VQA-LOL (Gokhale et al. 2020b) proposes to tackle VQA “under the lens of logic”. They
augment the VQAv2 dataset by adding logical compositions and linguistic transformations
(negation, disjunction, conjunction and antonyms). They show that the LXMERT (Tan
et al. 2019) model trained on VQAv2 does not perform better than random on composed
questions.

CLOSURE (Bahdanau et al. 2019) conducts a similar evaluation on top of the CLEVR
dataset, by constructing new questions resulting from unseen associations of known
linguistic structures (mostly through referring expressions). Here again, they show that
models poorly generalize to these settings, loosing 15% to 35% of their baseline accuracy.
Also built upon CLEVR, CoGenT (Johnson et al. 2017) measures the compositional
generalization by evaluating models on unseen combination of attributes (e.g. the training
set contains blue sphere and green cubes while the test set contains green sphere and
blue cubes). Without surprise, many models also fail in this setting.

4.3.6  Multimodal robustness

Other works evaluate robustness against distribution shifts. We call this multimodal
robustness as it does not specifically focus on language or vision, but rather on the
multimodal context.

The VQA-CP2 (Agrawal et al. 2018) dataset was a first of its kind and paved the
way for follow-up work on bias reduction methods in VOQA. It has been constructed by
reorganizing the training and validation splits of VQAv2 (and VQAv1) aiming to maximise
differences in answer distributions between training and test splits. Basically, rare answers
in the train set become frequent answers in the test set, as shown in Figure 4.13. They
experimentally demonstrate that VOA models are brittle to changes in the distribution. As
an illustration, the baseline UpDn (Anderson et al. 2018) has its accuracy decreased from
65% in in-domain to 39% in OOD (Teney et al. 2020c).
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In a similar trend, VQA-CE (Dancette et al. 2021) propose to evaluate VOA models on
counterexamples, where relying on shortcuts is ineffective. For this purpose, they first apply
a mining algorithm on top of VQAv2 in order to extract frequent associations of {words,
visual objects, answer}, which is the easy question set. Then, they create a counterexample
set, containing questions which contradict the frequent associations. As an illustration, in
Figure 4.14, the association of the words “what sport” and the visual object racket frequently
lead to the answer “tennis”. The counterexample set will contain samples having “what
sport” in the question and a racket in the image, but with an answer which is not “tennis”.
Once again, results are clear: The UpDn baseline achieves 77% on the easy set while
reaching only 34% on counterexamples.

4.3.7 Adversarial robustness

Finally, we observe a very recent and promising trend for adversarial benchmarks
involving humans in the loop. adVQA (Sheng et al. 2021) and AVVQA (Li et al. 2021) have
been similarly constructed by asking human annotators to find questions where a SOTA
VOA model was failing, using the VQAv2 images. They found that it was surprisingly
easy to trick the SOTA models, showing once again their lack of robustness. In that setting,
the UpDn baseline has its accuracy decreased from 68% to 20%. It is worth noticing that
this data generation process could also be used for data-augmentation during the training
(but in that case, the benchmark no longer measures adversarial robustness). However, a
risk exists that these adversarial datasets lead to questions irrelevant to the “visual turing
test” objective (i.e. evaluating the visual reasoning ability), as already noticed for VQAv2
questions.
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No Violate ID/O0OD

Benchmark Target validation Goodhart re-train
VQA-Rephrasing Lingual robustness X
CV/IV-VQA Visual robustness X
VQA-Introspect . X X
L-ConVOA Consistency
VQA-LOL X
CLOSURE Compositionality
CoGenT X
VQA-CE X
VQA-CP Multimodal robustness X X X
gqa-ood (ours)
adVQA

AVVOA Adversarial robustness X

Table 4.2 — We compare several dataset variants dedicated to the robustness evaluation. Many of
them suffer from serious weakness: lack of validation set, violation of Goodhart law or
impossibility to evaluate on in- and out-of-distribution without retraining.

4.4 PITFALLS OF VQA EVALUATION

All in all, it seems that VOA models are far from being robust against many types of
variations. This suggests that they heavily rely on spurious shortcuts instead of reasoning.
In deep learning, benchmarks are useful for making diagnoses and shedding light on the
model’s weaknesses. More importantly, benchmarks are also a powerful tool driving the
design of new methods. Therefore, if a benchmark is not properly devised, it will lead to
the emergence of models with unwanted behaviors.

We have seen that overall accuracy, the standard metric in VQA gives us a wrong
estimation of the model’s reasoning performances. It is then legitimate to ask: are these
robustness benchmarks trustworthy for designing robust VQA models?

Unfortunately, we have reasons to be skeptical. Evaluating reasoning is difficult, and in
many cases evaluation methods are biased by spurious confounders, leading to negative
results. Recent works have raised concerns about such OOD evaluation protocols. In
particular, Teney et al. (2020c) point out several pitfalls observed when evaluating VOA
in OOD setting using VQA-CP (Agrawal et al. 2018). We briefly overview the principal
criticisms, which are summed up in Table 4.2.

4.4.1  Violating Goodhart’s law

Several works rely on known construction procedures of the OOD test split, violating
Goodhart’s law: “when a measure becomes a target, it ceases to be a good measure” (Teney et al.
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2020c¢). The most eloquent illustration is VQA-CP where knowing that the test answer
distribution is the inverse of the train distribution allows a model to significantly boost
accuracy. Paradoxically, it results in models overfitting this particular OOD setting, without
increasing the generalization on unseen distributions. Similarly, in VQA-Introspect,
CV/IV-VQA and VQA-LOL, the proposed baselines rely on data augmentation employing
the same generation process as the one used to construct the benchmark, without any
careful analysis of potential confounders hidden in the generation process.

4.4.2 Issue in in- and out-of-distribution comparison

Some benchmarks (such as VQA-CP or CoGenT) do not allow for the possibility to
evaluate the performance in both in- and out-of-distribution settings without having to
retrain the model on a different set of data. This results in evaluating two copies of the
same model, but optimized on different training sets, with different label distributions.
However, as demonstrated by Teney et al. (2020c), a method can behave differently
depending on the distribution of its training examples. Hence, it ensues in a biased
comparison of the in- vs out-of-distribution performance.

4.4.3 Validating on the test set

As surprising as it may seem, a majority of the dataset variants does not provide
any validation set. Most bias-reduction techniques therefore seem to optimize their
hyperparameters on the test split (Cadene et al. 2019; Clark et al. 2019; Ramakrishnan et al.
2018; Wu et al. 2019; Selvaraju et al. 2019), which should be frowned upon, or, alternatively,
validate on a subset of train which does not include a shift (Teney et al. 2020b), which is
suboptimal. Obviously, selecting hyperparameters on the test split automatically leads to
an overestimation of the performances. At the same time, it is worth noticing that having
statically separated validation and test splits is not ideal either. Indeed, it is still possible
to (slowly) overfit on the test because of multiple evaluations and model comparisons.
An interesting direction would be dynamic benchmarks, which evolve through time in
order to avoid any potential spurious confounder during the evaluation. Adversarial
benchmarks with humans in the loop, such as adVQA or AVVQA are good potential
candidates.

4.4.4 Impact on VQA methods

These pitfalls of OOD evaluation have a negative impact on the design of new VQA
methods. As an illustration, Shrestha et al. (2020) come up with an interesting negative
result while analyzing bias-reduction methods based on visual grounding designed on top
of the VQA-CP dataset. These methods (Wu et al. 2019; Selvaraju et al. 2019), attempting
to supervise a VOA model to attend to visual regions which are relevant to a human
considering the question, are very efficient on VQA-CP. Surprisingly, Shrestha et al. (2020)
found that simply enforcing the model to attend to random visual regions was at least as
much efficient on out- and in-distribution settings. Why was this negative result not observed
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before? We think that a more profound empirical evaluation of models” behavior would
help to better judge and compare the efficiency of new VOA methods.

4.5 CONCLUSION

This chapter draws a comprehensive study of the popular datasets and benchmarks
dedicated to the VOA task. We show that several large-scale databases are available, with
different settings: synthetic vs natural data, strong annotation, realness, etc. However,
we also shed light on potential issues — related to data distribution, linguistic diversity,
poor annotation quality, presence of tricky questions, etc.— which could hurt VOA training.
Without falling into pessimism (these databases have led to the emergence of powerful
models), we think that it is important to be aware of the databases” limitations as it is the
root of every deep learning based model.

We then review numerous benchmarks, pointing out the lack of robustness of current
VOQA models. They confirm the databases” weaknesses, and in particular their inability to
accurately evaluate the VOA models. However, we argue that many robustness benchmarks
are not trustworthy, preventing them from helping VOA model designers to build more
robust models. Most of the criticism introduced is related to wrong practices, in part to
the responsibility of the model designers. But it is also a broader issue related to flaws
taking root in the current machine learning scientific method, e.g. see Forde et al. (2019)
or Gorman et al. (2019).

Drawing conclusion from it, we construct (in Chapter 5) our own benchmark — GQa-oop-
dedicated to the evaluation of robustness against distribution shift. We will show that
many of the previously designed bias-reduction methods are ineffective in our setting.
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CHAPTER

GQA-OOD: EVALUATING VQA IN OOD SETTINGS

5.1 INTRODUCTION

Efforts to learn high-level reasoning from large-scale datasets depend on the absence
of harmful biases in the data, which could provide unwanted shortcuts to learning in
the form of “Clever Hans” effects. Unfortunately, and in spite of recent efforts (Goyal
et al. 2017; Hudson et al. 2019b), most VOA datasets remain very imbalanced. Common
concepts are significantly more frequent, e.g. the presence of a “red rose”, compared to out
of context concepts like the presence of a “zebra in a city”. This causes the tendency of
models to overly rely on biases, hindering generalization (Cadene et al. 2019; Clark et al.
2019). Despite a consensus on this diagnostic, systemic evaluations of error distributions
are rare. In particular, overall accuracy is still the major, and often unique, metric used to
evaluate models and methods, although it is clearly insufficient. Several questions remain
open. How is error distributed? Are true positives due to reasoning or to exploitation of bias?
What is the prediction accuracy on infrequent vs. frequent concepts? How can we validate models
in OOD-settings?

In this chapter we propose a new benchmark and a study of SOTA VOA models, which
allows to precisely answer these questions. The proposed new evaluation protocol is
complementary to existing ones, but allows a better diagnostic of current VOA performance.
In particular, our benchmark can be viewed as an alternative to the VQA-CP (Agrawal
et al. 2018) dataset, which has lead to mixed results (see Chapter 4). Our benchmark
comprises (i) a new fine-grained reorganization of GQA introducing distribution shifts
in both validation and test sets (see Figure 5.1-a); (ii) a set of evaluation metrics; (iii)
new evaluation plots illustrating the generalization behavior of VOA models on different
operating points. The choice of GQA is motivated by its useful structuring into question
groups, which allows capturing biases precisely, to select groups with strong biases and
to create distribution shifts tailored to the exact nature of each question (see Figure 5.1-b).
It also makes it possible to analyze how errors are distributed over different associations
of concepts according to their frequency in the dataset.

CONTRIBUTIONS OF THE CHAPTER

(i) We propose and make public' a new fine-grained re-organization of GQA and a
set of the respective evaluation metrics allowing to precisely evaluate the reasoning

1. https://github.com/gga-oo0d/GQA-00D
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Figure 5.1 — We address bias exploitation in VQA and propose a new benchmark for Out-Of-
Distribution evaluation containing distribution shifts tailored to different question
groups with highly imbalanced distributions. A new evaluation metric based on
rareness inside each question group, here shown for "objects on walls", is experimen-
tally demonstrated to be less prone to bias exploitation. We show that SOTA methods
(7 VQA models and 3 bias reduction methods) reproduce biases in training data.

behavior of VOA models and to characterize and visualize their generalization
behavior on different operating points w.r.t distribution shifts.

(ii) Compared to competing benchmarks, our dataset features distribution shifts for
both, validation and test, allowing to validate models under OOD conditions.

(iii) We experimentally evaluate the usefulness of the proposed metric, showing its
behavior on models trained to, more or less, exploit biases.

(iv) In a large study, we evaluate several recent VOA models and show that they struggle
to generalize in OOD conditions; we also test several SOTA bias reduction methods
and show that there is still room for improvement in addressing bias in VOA.

5.2 GQA-OOD: A BENCHMARK FOR OOD SETTINGS

We introduce a new VOA benchmark named GQa-oop designed to evaluate models
and algorithms in OOD configurations. We here define OOD samples as rare events, in
particular measured w.r.t. to a base distribution, e.g. a training distribution. These rare
events might involve concepts which are also present in the training set. Let’s for instance
consider the question: ‘What color is this rose?’. If the image represents a rose, then red
would be a common color, but in an OOD setting, infrequent (correct) test answers would
be, for instance, blue, requiring models to reason to provide the correct answer. We design
a benchmark where this shift is not global but depends on the context. If the context
changes, and the flower type is a violet, then a (correct) OOD answer would now be red
instead of blue.
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[ GQA-00D=GQA ] GQA protocol (existing)
train_ GQA-00D protocol (ours)

' — Construction / introducing shift
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GQA-00D
test
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Figure 5.2 — We re-organize GQA (Hudson et al. 2019b) in a fine-grained way: the benchmark
contains a distribution shift in validation and test, allowing to validate and evaluate
in OOD settings.

Dataset  Split #Quest. #Groups #Imgs GQa-00D Subset #Quest. #Groups #Imgs
oo B W WA w opmoamam
TR L IR e
(a) (b)
Table 5.1 — Data statistics: (a) Goa-00D vs. GQA; (b) head vs. tail
5.2.1 Dataset construction

The coa-00D benchmark consists of a dataset and new evaluation metrics. The dataset
itself is based on the existing GQA (Hudson et al. 2019b) dataset?, which provides more
fine-grained annotations compared to competing VQAv2 (Goyal et al. 2017) (the questions
in GQA have been automatically generated from scene graphs, which allows better control
of the context). Figure 5.2 shows how the proposed protocol compares to the existing GQA
protocol: the two share the same (existing) training set, but we introduce fine-grained
shifts into both the validation and the test sets applying the process further described
below. The shifted subsets have been constructed in 3 steps: (i) dividing questions into
groups according to their contexts; (ii) extracting the most imbalanced question groups,
considering their answer distributions; (iii) selecting OOD samples among the remaining
questions.

QUESTION GROUPs To structure the process introducing distribution shifts, we use the
notion of local groups provided in the GQA annotation. They allow to precisely define the
type of question, e.g. “‘What color ...?’", “‘Where is ...?", etc. They also depend on the concepts
related to the question, e.g. “zebra’, ‘violet’, etc. There is a total of ~ 37K local groups
related to ~ 132K questions in the GQA validation split. We use the balanced version of
GQA, whose question distribution has been smoothed in order to obtain a more uniform
answer distribution. However, this does not impact the imbalanced nature of the dataset,
which is often due to real-world tendencies, e.g. that ‘roses are red’.

2. We use version 1.2 of GQA (Hudson et al. 2019b).
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MEASURING GROUP IMBALANCE  We extract a subset of the most imbalanced question
groups, as we are interested in evaluating the prediction error specifically in the context,
where shifts in distribution are meaningful and strong. We measure balance through
Shannon entropy, given as:

d
e(x) = — ;) p(xi)log p(xi)

where p(x;) is the estimated probability of the class i. As entropy depends on the
number of answer classes, which is highly variable between different question groups, we
normalize entropy w.r.t. the number d of possible answers in the group:

_e(x)
log(d)

where log(d) is equal to the entropy of a uniform distribution of size d. Normalized
entropy &(x) thus measures how close the distribution p(x) is to a uniform distribution of
the same dimension. Finally, we keep groups with a normalized entropy smaller than a
threshold empirically set to T=0.9. This selects all benchmark’s questions, but further
work is done in order to select specific answer classes for each group.

é(x)

5.2.2  Qut-of-distribution setting

METRICS We introduce a shift in distribution by selecting a subset of answer classes for
each question group according to their frequencies, and introduce three different metrics
according to which classes are used for evaluation. All these metrics are defined over
the aforementioned imbalanced local groups. Figure 5.1 illustrates how the subsets are
selected using the example answer histogram of question group objects on walls.

* Acc-tail: the accuracy on OOD samples, which are the samples of the tail of the
answer class distribution, i.e. the rarest answers given the context. We define the tail
classes as classes i with |a;| < ap(a), where |a;| is the number of samples belonging
to the class i and y(a) is the average sample count for the group. We empirically set
the parameter x=1.2, and in Section 5.3.2 we analyze and illustrate the impact of
the choice of o on Acc-tail. Figure 5.1 provides an example of such a tail question —
we can see that the answer Star is rare in this group, therefore it belongs to the tail
set like the other answers shown in orange.

* Acc-head: the accuracy on the distribution head for each local group, given as the
difference between the whole group and its tail (blue answers in Figure 5.1).

* Acc-all: the overall (classical) accuracy over all Goa-00D samples, i.e. the in-domain
accuracy. In Figure 5.1, this corresponds to the blue and orange answers.

DATASET STATISTICS Table 5.1 provides statistics of the proposed benchmark. We
also analyzed the nature, distribution and diversity of the questions w.r.t to GQA, and
demonstrate that it preserves the original question diversity. Figure 5.4a and Figure 5.4b
show the distribution of question structure type as defined in GQA on the validation
split. As one can observe, the process implemented to construct GQa-oop does not alter
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Figure 5.3 — Distribution of the semantic types as defined in GQA. rel = relation; attr = attribute;
cat = category; obj = object.
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Figure 5.4 — Distribution of the structural types as defined in GQA.

the question diversity of the original split. However, the proportion of open questions —
‘query” in Figure 5.3a and Figure 5.3b — has increased in GQa-oobp. Indeed, open questions
- such as color questions — generally accept a wider diversity of answer, therefore it is
prone to be more imbalanced. On the contrary, other types such as ‘choose’, “verify” or
‘compare” usually accept only two possible answers and are easier to balance. Figure 5.3a
and Figure 5.3b details the distribution of the structure types.

5.2.3 Discussion and limitations

DIFFERENCE WITH vQA-CP2 The VQA-CP2 dataset was a first of its kind and paved
the way for follow-up work on bias reduction methods in VOA. However, its construction
is conceptually different from our work, partially due to the restrictions of the base dataset
VQAv2 w.r.t. to GQA, but also due to key design choices. Lacking annotations on group
structure in the base dataset, questions are grouped according to their first words and the
ground-truth answer. The shift is created by splitting according to types. In contrast, our
proposed GQa-o0D dataset allows fine-grained analysis of the generalization behavior of a
VOQA model by (i) question group, and via (ii) different metrics corresponding to different
amounts of shifts (acc-tail vs. acc-head) in out- and in-distribution settings, and (iii) even
through the possibility of continuous evaluation along different operating points (see
Figure 5.5). In addition, VQA-CP2 comprises only two splits (train and test), lacking the
possibility of validating model hyperparameters (cf. Chapter 4). Our Gea-oop dataset
contains a validation set with a shift w.r.t. to the train set, which allows validating

57

Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI101/these.pdf
© [C. Kervadec], [2021], INSA Lyon, tous droits réservés



hyperparameters in OOD settings. Finally, unlike VQA-CP, our proposed dataset requires
models to be trained on the existing GQA train split. This forces models to reduce bias
in their test results while being exposed to natural tendencies and biases captured in
the training corpus, favoring work on bias reduction through methodology instead of
through cleaning of training data.

LIMITATIONS The proposed benchmark is built on GQA, whose questions have been
automatically generated, resulting in a limited vocabulary and a synthetic syntax (cf.
Chapter 4). While the images are natural and real, one might argue, that the questions
are not “in the wild”. However, the benefits of the synthetic nature of the questions
largely out-weight its limitations. In particular, this offers a better control on the data and
excludes unmodelled external knowledge, which leads to a better evaluation of reasoning
abilities. We made the source code publicly available 3, and we encourage the field to use
it to study robustness in OOD settings.

5.3 EXPERIMENTS

In our experiments we used several SOTA VOA models, and we compared the proposed
GQA-00D benchmark to the standard benchmarks VQAv2 (Goyal et al. 2017), GQA (Hud-
son et al. 2019b) and VQA-CP2 (Agrawal et al. 2018). The line-up includes recent models
with object-level attention and two Transformer-based model, as well as two blind baseline
models (see Chapter 3 for details). We also evaluate a visual oracle model with a perfect
sight, i.e. taking as input the question and a set of ground truth objects directly taken from
the annotation of GQA 4. It allows evaluating the performance of a model without the
imperfection of the visual extractor. It is based on a compact VL-Transformer architecture
(cf. Section 3.5).

TRAINING DETAILS All models evaluated on GQA and GQa-oop have been trained on
the balanced training set of GQA, and validated on the validation split. When available,
we provide the standard deviation computed over at least four different seeds. For
MCAN (Yu et al. 2019) and UpDn (Anderson et al. 2018) we use publicly available
implementations at https://github.com/MILVLG/openvga. LSTM (Hochreiter et al. 1997),
UpDn, RUBI (Cadene et al. 2019), BP and LM (Clark et al. 2019) are trained during 20
epochs with a batch size equals to 512 and Adam (Kingma et al. 2014) optimizer. At
the beginning of the training, we linearly increase the learning rate from 2e¢~3 to 2¢~!
during 3 epochs, followed by a decay by a factor of 0.2 at epochs 10 and 12. MCAN is
trained during 11 epoch with a batch size equals to 64 and Adamax (Kingma et al. 2014)
optimizer. At the beginning of the training, we linearly increase the learning rate from
le~* to 2¢~! during 3 epochs, followed by a decay by a factor of 0.2 at epochs 10 and 12.
For MMN, we use the author’s implementation and trained model>. LXMERT (Tan et al.
2019) is pre-trained on a corpus combining images and sentences from MSCOCO (Lin

3. https://github.com/gqga-o00d/GQA- 00D

4. As Ground Truth (GT) annotations (scene-graphs) are only available for the train and validation split,
we do not evaluate VIS-ORACLE on the testdev split.

5. Available at https://github.com/wenhuchen/Meta-Module-Network.
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Model Baseline benchm. Proposed benchmark (Acc-tail)

Tot. Acc. a=12 a=05 x=0.3
UpDn (AndeI‘SOl’l et al. 2018) + bal 60.7+04 454403 33.8+05 246105
UpDn (Anderson et al. 2018) + all 59.8101 41.9+01  29.5403 18.306
A (relative): —1.4% —77% —12.9% —25.7%

Table 5.2 — We compare two different VQA models based on UpDn (Anderson et al. 2018), one of
which has been trained on a split known to be biased (UpDn (Anderson et al. 2018)+all),
and evaluate the proposed metric’s capacity to detect this bias. All scores in % on the
GQA-00D val split.

et al. 2014) and VisualGenome (Krishna et al. 2017). As GQA is built upon VisualGenome,
the original LXMERT pre-training dataset contains samples from the GQA validation
split. Hence, we remove those samples before pre-training in order to correctly evaluate
on the GQA and GQa-oop validation split. The VIS-ORACLE model is based on a tiny
version of the LXMERT architecture (Tan et al. 2019), where we set the hidden size to 128
and the number of per-layer heads to 4. This perfect-sighted model takes as input objects
extracted from the ground-truth GQA annotation (Hudson et al. 2019b). Each object is
constructed using one hot vectors encoding its class, its attributes and its in and out scene
graph relationships.

5.3.1 Evaluation of the proposed metric

We believe that a good evaluation metric satisfies at least two properties: it is easy to
interpret, and it provides an estimate for the quality targeted by the evaluation. We argued
above on the merits of our proposed tail accuracy (acc-tail) as a way of estimating VOA
performance less influenced by bias. In what follows, we achieve this by an experimental
validation of the metric. To this end, we compared two different VOA models, one of
which has been trained in a way known to be biased. In particular, we trained UpDn,
known to capture training set biases (Agrawal et al. 2018), on the GQA and GQA-0o0OD
validation splits. The first version, UpDn+bal, is trained on the widely used balanced
training set of GQA, which we had also used for all other experiments in this paper. This
training set had been created by smoothing the question distribution in order to mitigate
dataset biases (Hudson et al. 2019b). The second one, UpDn+all, is trained on the raw
and unbalanced GQA training set, which leads to more spurious biases than the balanced
version. As the unbalanced set is ten times bigger than the balanced one, we split it in ten
subsets and provide the average score.

Results are given in Table 5.2, comparing two different metrics, namely the classical
total accuracy and our GQA-0OD acc-tail metric, with three different values for the «
hyperparameter. First, we observe that the two versions of UpDn obtain similar scores on
GQA overall — the relative difference is only 1.4%. This is not a surprise, the classical
metric is influenced by biases. As expected, the two VOA models behave differently
on our proposed acc-tail metric: the model trained on the unbalanced training set is
outperformed by the balanced one by a large margin. Moreover, the score difference
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Model Uses image acc-all acc-tail acc-head A

21.6 17.8 24.1 35.4
30.7 24.0 34.8 45.0
464411 42.1+09  49.1:111 16.6
50.8+04 46.5+05 53.4+06 14.8
50.2+07 47.2:05 51.9:10 9.9
52.7 48.0 55.5 15.6

54.6 49.8 57.7 159

Quest. Prior

LSTM (Antol et al. 2015)
UpDn (Anderson et al. 2018)
MCAN (Yu et al. 2019)
BAN4 (Kim et al. 2018)
MMN (Chen et al. 2021)
LXMERT (Tan et al. 2019)

NN NN

Table 5.3 — Comparison of several VQA models on the cQa-o0p testdev split. Acc-tail: OOD
settings, Acc-head: accuracy on most probable answers (given context), scores in %.

increases with decreasing «, (i.e. when the metric focuses on the rarer and rarer question-
answer pairs, providing valuable evidence that acc-tail is indeed well suited for measuring
VQA performance undisturbed by bias dependencies.

5.3.2  Analysis of VOA model error distributions

The GQa-00p benchmark allows us to perform an analysis of the error prediction
distributions for various VOA models as shown in Table 5.3 and Table 5.4. We provide
the three metrics introduced in Section 5.2: acc-tail, acc-head and acc-all. We also measure
the difference A(tail head) = % to illustrate how much is the error prediction
imbalanced between frequent and rare answers.

MODELS FAIL ON RARE QUESTION-ANSWER PAIRS We can see that VQA models
(dramatically) fail to generalize to infrequent association of concepts. The two blind
models (Question Prior and LSTM in Table 5.3) obtain the highest gap between acc-tail
and acc-head, explained by the fact that they uniquely rely on question biases. The
A score indicates that UpDn, MMN, MCAN, BAN4 and LXMERT also struggle (in a
lesser extent) to generalize to the less frequent question-answer pairs. Nevertheless, we
observe that the Transformer-based architecture combined with large-scale BERT training,
LXMERT, outperforms all models on the acc-tail metric, confirming its superiority. This is
corroborated by Hendricks et al. (2018), who show that pretrained Transformers improve
OOD robustness in NLP.

In contrast to our proposed acc-tail metric, the metric acc-all, close to the standard VOA
metric, does not reflect the true model’s performances, since it is mechanically increased
by the high scores obtained on the most frequent question-answers. This confirms the
need for a two-in-one evaluation: measuring the out- and in-distribution performance
scores, as we propose.

VISUALIZING THE GENERALIZATION BEHAVIOR The definition of what constitutes

a “rare” answer, i.e. the size of the tail, depends on the parameter «. In Figure 5.5, we
analyze how VOA model prediction errors (acc-tail) depend on this definition, i.e. how
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Figure 5.5 — Performance (higher is better) for different definitions of the tail distribution («
parameter values) on the Gga-oop benchmark. We compare several vQA models. The
x-axis is in log-scale.

models behave w.r.t. to questions whose answers are more and more rare. Increasing «
increases the tail — in the extreme case it is equal to the whole distribution (right side
of the plot). With small «, only the most infrequent question-answer pairs are evaluated
(left side of the plot). All models follow the same dynamic: starting from a tail size
which represents roughly half of the question-answer pairs, tail accuracy starts to linearly
decrease until reaching a dramatically low score (about 30 pts lower than the overall
accuracy). An exception is VIS-ORACLE: its dynamics is nearly flat, prediction error is
almost decorrelated from answer rareness. This provides evidence that a model using
perfect visual input is able to learn reasoning with significantly decreased dependency on
dataset biases.

We complement this analysis by measuring the confusion between head and tail as
a function of a, shown in Figure 5.6, which provides insights on the causes of the
generalization failure observed in Figure 5.5. The confusion corresponds to the proportion
of questions where the model predicts a head answer with a tail GT answer. When plotting
the confusion versus a, we decrease the size of the tail set (i.e. we keep only the rarest
question-answer pairs) while keeping the head set unchanged. For a=1.2, LXMERT
confuses answers for 25% of questions, which increases up to 42% for «=0.3. Similar
behavior is observed for the other models, but interestingly not for VIS-ORACLE, where
the curve is nearly flat, again providing evidence for a low dependency on statistical
biases in the training set. As a side note, we will show in Chapter g that initializing
LXMERT weights with VIS-ORACLE allows boosting the accuracy on acc-tail.
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Figure 5.6 — Head/tail confusion (lower is better) for different definitions of the tail distribution
(« parameter values) on the Goa-00D benchmark. We compare several VOA models.
The x-axis is in log-scale.

EXPLOITING BIASES VS. REASONING It is difficult to assess, whether a model reason
or not, in particular since the term reasoning has various different definitions (cf. Chapter 2).
However, it is certain that using statistical biases cannot be considered reasoning, but
should rather be denoted as “educated guesses” (Hudson et al. 2019b) or biased answers.
Using the proposed Goa-00D benchmark, we explore the estimation of three reasoning
labels qualifying the mode of operation a model uses for a given input: bias, reason and
other/unknown. In absence of GT information, we propose to estimate these labels from
proxy rules: a VOA model is estimated to reason, when it correctly predicts an answer,
which is rare in GT and rare in prediction; it is considered biased, when it wrongly predicts
an answer, which is frequent in its prediction and rare in GT.

Figure 5.7-a shows the calculation of these labels based on the distribution of the head
and tail labels of each answer in the predictions (rows) and GT (columns) for LXMERT on
the validation split of Goa-oop. We add a borderline label representing the fuzzy frontier
between reasoning and bias exploitation®. In Figure 5.7-b, we show the distribution of
these reasoning labels over the different GQA structural question types: verify, choose,
compare and query. We observe that LXMERT seems to “reason” on the verify, choose
and logical questions, which are binary questions, while compare” and query questions
are the most prone to bias exploitation. From this, we conclude that future efforts on
improvements of model capacities to answer open questions (e.g typed as query) should
be particular fruitful.

6. head: «>1.2, borderline: 0.7<a<1.2, tail: <0.7.
7. only 1% of the tail questions are typed as compatre.
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Figure 5.7 — We estimate “reasoning labels”: the model is estimated to reason, when it correctly
predicts an answer rare in GT and rare in prediction; it is considered biased, when
it wrongly predicts an answer, which is frequent in its prediction and rare in GT. All
values are computed over the GQa-00D validation split. The matrix (a) shows the joint
distribution of predicted and GT classes. (b): Distribution the estimated reasoning
labels over the GQA (Hudson et al. 2019b) question types for the LXMERT (Tan et al.
2019) model. The model often predicts a biased answer on the query and compare
questions while there is evidence that it may reason on wverify, choose and logical
questions.

5.3.3 Re-evaluating bias-reduction methods

We use the proposed benchmark to re-evaluate several bias-reduction methods, which
have been initially designed on the VQA-CP dataset. As these methods were designed to
be model-agnostic, we use them together with the UpDn architecture:

RUBI (Cadene et al. 2019) adds a question-only branch to the base model during training
to prevent it from learning question biases. This branch is omitted during evaluation.
To better analyze bias dependencies, we also study a modified version of RUBi, which
we refer to as RUBi+QB below. In this variant, the question-only branch is kept during
evaluation.

BP (Clark et al. 2019) is similar to RUBi but differs by directly taking training set
statistics to infer question type biases during training ®. The question type biases are fused
with the base model predictions using a product of experts, and removed during testing.

LM (Clark et al. 2019) is an improved version of BP. In this version, the question bias is
dynamically weighted by the base model in order to control its influence. In the original
setup, an entropy penalty is added to the loss to prevent the model to ignore the bias.
Nevertheless, when training on GQA, we obtain better results without this penalty.

8. VQAwv2: biases are over question types; GQA: local groups.
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Technique acc-all acc-tail acc-head A

UpDn (Anderson et al. 2018) 46.4:11 421200  49.1:11 16.6

+RUBi+QB 46.7+13 421410  49.4+15 17.3
+RUBi (Cadene et al. 2019) 38.8424 35.7+125  40.8+27 14.3
+LM (Clark et al. 2019) 34.5+:07 322412 359112 11.5
+BP (Clark et al. 2019) 33.1x04 30.8410 34.5105 12.0

Table 5.4 — Comparison of several VQA bias reduction techniques on the GQa-00D testdev split.
Acc-tail: OOD settings, Acc-head: accuracy on most probable answers (given context),
scores in %. Bias reduction techniques are combined with UpDn (Anderson et al. 2018)
model.

Surprisingly, none of the three bias-reduction methods succeed to improve acc-tail
(cf. Table 5.4). They even deteriorate acc-head. This is unexpected as they have been
designed to overcome the dependency on question type biases. For further analysis, we
evaluate RUBi while keeping the question-only branch during testing (RUBi+QB). As
expected, it outperforms RUBi on acc-head, indicating it has better captured frequent
patterns. However, it also outperforms RUBi on the OOD settings, demonstrating that
preventing from learning frequent patterns does not necessarily increase performances on
rare samples.

We provide a visualization of the generalization behavior on bias-reduction methods
in Figure 5.8. For BP, LM and, to a lesser extent, RUBi, we observe that the right side of
the curve has flattened, indicating that overall accuracy, dominated by frequent question-
answer pairs, has been reduced by bias-reduction. The left side of the curve, however,
corresponding to rare samples, remains almost unchanged, revealing that these methods
have somewhat succeeded in preventing the base model from learning dataset biases. As
a comparison, the LSTM model in Figure 5.5 performs worse than UpDn but conserves
the same frequent/rare imbalance. We observe that RUBi+QB responds the same way as
UpDn, confirming the effect of bias-reduction; looking at head/tail confusion in Figure 5.9,
the result is even more pronounced. In short, we demonstrate the effectiveness of bias
reduction methods in preventing the base model from learning salient properties of the
training set, and occasionally reducing the dependency toward dataset biases. However,
this does not necessarily help the model to learn the subtle distributions, required for
generalization and for learning to reason.

5.3.4 Comparison with other benchmarks

We compare the proposed GQa-oop benchmark with the following three standard voA
datasets:

GQA (BALANCED VERSION) (Hudson et al. 2019b) We compare with the overall accuracy
and the distribution score on the GQA testdev split. The distribution score is
obtained by measuring the match between the true GT answer distribution and the
predicted distribution.
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Figure 5.8 — Acc-tail performance, as in Figure 5.5), but for different bias-reduction methods on
top of UpDn (Anderson et al. 2018).
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Figure 5.9 — Head /tail confusion, as in Figure 5.6), but for different bias-reduction methods on
top of UpDn (Anderson et al. 2018).
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Model VQA:2 GQA VQA-CP2 GQA-00D

overall overall dist. overall acc-tail
Q. Prior 321 27.0 55.6 8.8 17.8
LSTM (Antol et al. 2015) 43.0 39.1 3.6 221 24.0
UpDn (Anderson et al. 2018) 63.5 51.6+05 1.8  40.1 42.1+09
MCAN (Yu et al. 2019) 66.1 56.3x02 1.6  42.5 46.5+05
BAN4 (Kim et al. 2018) 65.9 54.7+04 1.6 40.7 47.2+05
MMN (Chen et al. 2021) - 59.6 1.8 - 48.0
LXMERT (Tan et al. 2019) 69.9 59.6 1.5 - 49.8
UpDn (Anderson et al. 2018)  63.5 51.6x03 1.8  40.1 42.1+09
+RUBi+QB - 51.9+11 1.7  47.6+37 42.1+10
+RUBi (Cadene et al. 2019) 61.2 43.6+20 1.9 442 35.7423
+LM (Clark et al. 2019) 56.4 39.7+07 2.1 52.0 32.2+12
+BP (Clark et al. 2019) 63.2 39.6+03 2.2 399 30.8+10

Table 5.5 — We compare the proposed acc-tail metric with other benchmarks. Results computed
on the testdev split of coa-00D and GQA, the test split of VQA-CP2 and the VQAv2
validation split. Values in italic: trained and tested by ourselves.

vQAav2 (Goyal et al. 2017) We compare with overall accuracy on the VQAv2 validation
split.

vQa-cr2 (Agrawal et al. 2018) We compare with the accuracy on the test split, which
has been designed to measure sensitivity to language bias.

COMPARISON WITH GQA AND VQAv2 In Table 5.5, we compare our acc-tail score
with the other benchmarks. We can see that overall accuracy on GQA and VQAvz2 is not
sufficient to fully characterize the VOA performances. Our evaluation in OOD settings
is the only one to reveal that even SOTA models struggle on infrequent question-answer
pairs. The best-performing model LXMERT looses about 10 points in the OOD setting.
Our metric also unveils that, despite performing on-par with LXMERT on GQA overall,
MMN struggles more on infrequent question-answer pairs. Finally, we argue that acc-tail
is easier to interpret than the error distribution measure defined in GQA.

COMPARISON WITH vQA-cr2 Comparing acc-tail to VQA-CP2 overall accuracy, we
observe similar scores on standard VOA models, but a completely different behavior
for bias-reduction methods. While they do not improve the scores in the OOD setting
(cf. Section 5.3.2), they achieve strong performances on VQA-CP2. The score of LM
stands out, achieving the highest overall accuracy on VQA-CP2 (52.0%) but one of the
lowest acc-tail on GQa-00D (33%), with similar behavior for RUBi and BP. In short, while
VQA-CP2 measures to what extent a VOA model struggles to generalize to a specific
unseen distributions, the VQA-CP2 evaluation does not reflect the model behaviour on
rare question-answer pairs.
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5.4 VISUALISING PREDICTIONS

In order to give a better insight about the benchmark’s goals and possibilities, we
provide additional samples extracted from the Goa-oop validation split. In Figure 5.10
and Figure 5.11, we show two question-answer pairs belonging to the tail. The histogram
represents the answer frequency measured over the set of all questions belonging to the
group of the given question. We colored the answers according to their label, head or
tail. First, we can observe that the histogram is very imbalanced, which motivates the
GQA-00D approach. Second, in the caption, we provide the predicted answer for each one
of the evaluated model. One can notice that the predictions are diverse, showing various
degree of bias dependency. However, all models are mostly relying on context biases, as
shown in Figure 5.12. Finally, in Figure 5.13, we show a question-answer pair labelled as
head, where all models (excepted the blind LSTM) are correct.

5.5 DISCUSSION AND CONCLUSIONS

Going beyond previous attempts to reduce the influence of dataset biases in VOQA
evaluation, our proposed GQa-oop benchmark allows to both evaluate (1) whether models
have absorbed tendencies in the training data, and (2) how well they generalize to
rare/unseen question-answer pairs. This was made possible by (i) a thorough choice
of imbalanced question groups, (ii) a new set of metrics and finally, (iii) by allowing to
control the amount of distribution shift via the hyperparameter . We have provided
evidence that the benchmark and metric measure performance and dependency on dataset
bias. Our experiments have also shown that neither conventional SOTA VOA models nor
dedicated bias reduction methods succeed in all aspects of the proposed evaluation
benchmark. We hope that this sheds light on the current shortcomings in vision and
language reasoning, and we hope that coa-oop will contribute to the emergence of new
models, less prone to learning spurious biases and more reliable in real-world scenarios.
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Figure 5.10 — Tail sample from the GQa-oop validation split. Question:What is the man on?.
Answer:bridge. The evaluated models have predicted: LSTM=skateboard; UpDn
MCAN = bike; BAN, UpDn+LM, MMN, UpDn+RUBI, UpDn+BP = bicycle; LXMERT,
ORACLE-VIS = bridge. The histogram represents the answer frequency measured

over the set of all questions belonging to the question group.
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Figure 5.11 — Tail sample from the GQa-o0D validation split. Question:Is the shirt brown or blue?. An-
swer:brown. The evaluated models have predicted: LSTM, BAN, UpDn, UpDn+LM

= blue; UpDn+RUBI, = light blue; MCAN, LXMERT, ORACLE-VIS, MMN, UpDn+BP
= brown. The histogram represents the answer frequency measured over the set of

all questions belonging to the question group.
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Question: Which kind of clothing is white?
Group: white clothing
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Figure 5.12 — Tail sample from the Goa-oop validation split. Question:Which kind of clothing is

white?. Answer:glove. The evaluated models have predicted: LSTM = shirt; LXMERT,
UpDn, BAN, MMN, UpDn+RUBI = coat; MCAN = jacket; UpDn+LM, UpDn+BP =
long sleeved; ORACLE-VIS = glove. The histogram represents the answer frequency
measured over the set of all questions belonging to the question group.
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Figure 5.13 — Head sample from the Goa-00D validation split. Question:What is the brown animal in

the picture?. Answer:dog. The evaluated models have predicted: LSTM = horse; BAN,
UpDn, UpDn+LM, UpDn+RUBI, MCAN, LXMERT, ORACLE-VIS, MMN, UpDn+BP
= dog. The histogram represents the answer frequency measured over the set of all
questions belonging to the question group.
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ANALYSE: IN SEARCH OF REASONING PATTERNS
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INTRODUCTION

Part II has shown that current VOA models are prone to exploiting harmful biases in
the data, which can provide unwanted shortcuts to learning in the form of “Clever Hans”
effects. We demonstrated (in Chapter 5) the necessity to define new ways of evaluating
VQA models, going beyond the standard overall accuracy. But more importantly, we
highlighted the fact that this bias-related issue is difficult to identify and measure. Indeed,
although the VOQA bias dependency has already been largely studied and analyzed (e.g.
see Agrawal (2019)), the issue persists. SOTA VOA models are still bias dependent, and
datasets initially designed to measure bias dependency become quickly insufficient. VQA-
CP (Agrawal et al. 2018) is probably the most eloquent example: while it allowed to reveal
the strong bias dependency of VOA models, it is currently at the origin of new types of
biases leading to negative results (in a few words, de-bias methods designed on top of
VQA-CP tend to overfit on its specific setup, cf. Chapter 5 for details). Summarizing, it
appears that designing one (or many) benchmark(s) is not sufficient to solve the bias
issue.

BUT THEN, WHY IS THE STUDY OF BIAS SO DIFFICULT? A pessimistic answer would
be that designing bias reduction methods generally boils down to a trade-off between
seemingly incompatible goals: reaching high accuracy on standard benchmarks (which are
biased), or being robust against biases. Thereby, working on bias-reduction would not be
an attractive choice because it could steer efforts away from the classic SOTA competition
metrics. But this hypothesis is not completely satisfying. First, reaching SOTA accuracy
on standard (biased) benchmarks while being robust against biases is, theoretically, not
incompatible, but arguably, hard. As an illustration, we observed in cQa-oop (Chapter 5)
that models performing the best in in-distribution settings are also the best performing in
out-of-distribution ones (which measure bias-robustness). Second, there is a large amount
of work trying to address (with more or less success) bias robustness in VOA (cf. Part II),
suggesting that this issue is a topic perceived as relevant by the field.

Actually, we rather think that the origin of the problem is simpler. Working on bias
robustness is difficult precisely because it is hard to correctly diagnose bias dependencies.
Why? Because of the lack of interpretability of VOA models. As models are not inter-
pretable enough, experts have to build their own interpretation of models” predictions, at
the risk of overestimating their reasoning capabilities (a la “Clever Hans”), and so ignoring
bias issues. In a nutshell, it is hard to solve a problem that we do not understand well.

VQA INTERPRETABILITY In the line of recent work in Al explainability (Lipton 2016;
Ribeiro et al. 2016), and data visualization (Hohman et al. 2018; Vig 2019a; DeRose et al.
2020), we aim at improving our understanding of VOA model predictions. More precisely,
we propose to borrow tools and methods from Al explainability to draw a better picture
of the bias issue in VOA, in a complementary way with the benchmark-based evaluations
discussed in Part II. For this purpose, we develop a tool (VIsQA) and conduct in-depth
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analyses of attention mechanisms at work in VOA models, providing cues to answer the
following questions: When is the model relying on biases? What did it learn? What are the
conditions for the emergence of reasoning?

This work on VOA interpretability is directly related to the discussion on VOA evaluation
done in Part II, and contributes to designing new VOA methods introduced in Part IV. The
whole part is the result of a collaboration between experts in visual analytics (in particular, Théo
Jaunet), and experts in Visual Question Answering systems and Machine Learning. Part III is
organized as follows:

CHAPTER 6 aims at improving the interpretability of a VL-Transformer VOA model
using VIsQA, an instance-level visual analytics tool for vOA, developed in collaboration
with Théo Jaunet. In particular, we show that analyzing the attention mechanism at
work in the VOA model help experts to better judge when it is reasoning or exploiting
shortcuts. This work has resulted in an online interactive tool, publicly available at
https://visga.liris.cnrs.fr.

CHAPTER 7  extends the VIsSQA analysis, conducted at an instance-level, to get a broader
view of the behavior of the VL-Transformer at a dataset level. In particular, we focus
on the emergence of reasoning patterns at work in the attention layers of the model.
We experimentally demonstrate that the reasoning patterns emerge when the training
conditions are favorable enough, and in particular when the uncertainty in the visual part
is reduced.

This part has led to the publication of the following conference papers:

¢ Theo Jaunet, Corentin Kervadec, Romain Vuillemot, Grigory Antipov, Moez Baccouche, and
Christian Wolf (2021). “VisQA: X-raying Vision and Language Reasoning in Transformers”.
In: IEEE Transactions on Visualization and Computer Graphics (TVCG);

¢ Corentin Kervadec, Theo Jaunet, Grigory Antipov, Moez Baccouche, Romain Vuillemot, and
Christian Wolf (2021c). “How Transferable are Reasoning Patterns in VQA?”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);
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CHAPTER

INVESTIGATING ATTENTION IN TRANSFORMERS

6.1 INTRODUCTION

Attention is at the heart of the VL-Transformer architecture (cf. Section 3.5 in Chapter 3).
While conceptually simple, it makes possible learning very complex relationships between
input items. Making sense of the learned attention and verifying its inner workings is a
difficult problem, which is addressed by VisQA. More precisely, VIsQA is an instance-
based visual analytic tool designed to help domain experts investigate how information
flows in a VL-Transformer architecture and how the model relates different items of
interest to each other in vision and language reasoning. In this chapter, we propose to use
V1sQA in order to elucidate if the so-called attention is informative enough to provide insights
on the emergence of reasoning or bias exploitation in the context of VOA.

For this purpose, we explore the different attention maps, represented as heatmaps,
generated by the VL-Transformer for a given question-image pair. The exploration is
guided by color codes that convey the intensity of each attention head, i.e. whether they
focus attention narrowly on specific items, or broadly over the full input set. Complemen-
tary dataset-wide statistics are provided for each selected attention head, either globally,
or with respect to specific task functions, e.g. “What is”, “Where is”, “What color” etc. (this
aspect will be discussed in more detail in Chapter 7). While VisQA is post-hoc, it is also
interactive and allows certain modifications to the internal structure of the model. At any
time, attention maps can be pruned to observe their impact on the output answer.

In a first part, we motivate the need of an attention visualization in a detailed case
study. We show that VisQA improves the interpretability of the VL-Tranformer and helps
to better understand the reason of its failure. In a second part, we ask different experts
in deep learning, who were not involved in the project nor its design, to evaluate the
feasibility of using attention analysis to identify bias exploitation and reasoning in the
model. We answer positively, and report experiments with qualitative interviews and
results in Section 6.4.

This chapter results from a collaboration with visual analytics experts. The scope
of this thesis is the study of bias vs reasoning in VOA and not data visualization itself,
hence we let the reader refer to our associated paper (Jaunet et al. 2021) to get all the
details on the design of VisQA. However, we encourage the reader to watch the short
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Figure 6.1 — Opening the black box of neural models for vision and language reasoning: given
an open-ended question and an image @, VIsQA enables to investigate whether
a trained model resorts to reasoning or to bias exploitation to provide its answer.
This can be achieved by exploring the behavior of a set of attention heads @, each
producing an attention map ®, which manage how different items of the problem
relate to each other. Heads can be selected ®, for instance, based on color-coded
activity statistics. Their semantics can be linked to language functions derived from
dataset-level statistics @, filtered and compared between different models.

introductory video provided at https://visga.liris.cnrs.fr/static/assets/demo.mp4, in
order to familiarize with VIsQA.

CONTRIBUTIONS OF THE CHAPTER

(i) We participate in the conception of VisQA, an interactive visual analytics tool
developed by Théo Jaunet, which helps experts to explore the inner workings of
transformers models for VOA by displaying models” attention heads in an instance-
based fashion.

(ii) We provide a set of visualizations to address bias in VOA systems, by exploring
models” performances in real-time with altered attention, and/or by asking free-text
questions.

(iii) We conduct an evaluation with domain experts, resulting in insights on the emer-
gence bias in transformers for VOA.

VisQA is available online as an interactive prototype: https://visqa.liris.cnrs.fr,
and our code and data are available as an open-source project: https://github.com/
Theo-Jaunet/VisQA .
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Figure 6.2 — When asked “Is the knife in the top part of the photo” @ the VL-Transformer model, with
the image of a knife at the bottom @, incorrectly outputs “yes” ® with more than 95%
confidence. While an exploitation of bias can be considered, we can observe that the
answer “yes” represents only 33% of answers of similar questions over the complete
dataset. Thus in-depth analysis of the attention of the model may be required to grasp
what led to such a mistake.

6.2 A SHORT INTRODUCTION TO VISQA
6.2.1 A visual analytics tool for interpretability of DL

Our work is related to building visual analytics tools for interpretability of DL. DL
models are white boxes *, which are generally hardly interpretable. Prior work focused on
the analysis of image processing models, known as CNN, by exposing their gradients over
the input images (Zeiler et al. 2014). This approach, enhanced with visual analytics (Liu
et al. 2016), and provided glimpses on how the neurons of those models are sensitive to
different patterns in the input. More recently, CNN have been analyzed through the prism
of attribution maps in works such as Activation-atlas (Carter et al. 2019) and attribution
graphs (Hohman et al. 2020).

On the other side, NLP with recurrent neural networks, have also been explored
through static visualization (Karpathy et al. 2015b) which provided insights, among
others, on how those models can learn to encode patterns in sentences beyond their
architectures in capacities. Interactive visual analytics works such as LSMTViz (Strobelt et
al. 2017), and RetainVis (Kwon et al. 2018) have also addressed the interpretability of those
models through visual encoding of their inner parameters, which can then be filtered
and completed with additional information. Those parameters are collected during
forward pass on models, as opposed to RNNbow (Cashman et al. 2018), which has the

1. Contrary to a black box, all operations conducted in a white box are observable.
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particularity to focus on visualizing gradients of those models through back-propagation
during training.

More recently, models with attention (Vaswani et al. 2017) increasingly gained pop-
ularity due to their improvement of state-of-the-art performance, and their attention
mechanisms which may be more interpretable than CNN and RNNSs. The interpretability
of attention models similar to the transformer models used in this work, initially designed
for NLP, has also been addressed by visual analytics contributions. Commonly, in works
such as (Strobelt et al. 2018; Olah et al. 2016; Vig 2019b), the attention of those models
is presented, in instance-based (Hohman et al. 2019) interfaces as graphs with bipartite
connections that can be inspected to grasp how input words are associated with each
other. Attention Flows (DeRose et al. 2020) addresses the influence of BERT pre-training
on model predictions by comparing two transformers models applied to NLP. Similar to
VisQA, such a tool displays an overview of each attention head with a color encoding
their activity. Those methods are specific to NLP tasks. In this work, we address the
challenges provided by the bi-modality of vision and language reasoning, and expand the
interpretability of VOA systems which can rely on visual cues or dataset biases. Current
practices of VOA visualization include attention heatmaps of selected VL heads based on
their activation (Li et al. 2020a) to highlight word /key-object associations, global overview
heatmaps of attention heatmaps towards a specific token (Cao et al. 2020), and guided
backpropagation (Goyal et al. 2016) to highlight the most relevant words in questions.
Following those works, VISQA provides a visualization of every head’s attention heatmaps
and word /object associations, along with an overview of their activations.

This work is complementary with an alternative direction of work, proposing to
increase the interpretability through explanation generation. Thus, Hendricks et al. (2016)
and Park et al. (2018) directly supervise their model to generate an explanation in addition
to the task-related answer, resulting in an explainable vision-and-language model. Beside,
we also propose a complementary approach to Manjunatha et al. (2019), which run rule
mining algorithms to explicitly discover VOA shortcuts.

6.2.2 A tool for investigating hypothesis on bias vs reasoning

VIsQA have been designed to investigate hypotheses on the presence of bias vs rea-
soning in a VL-Transformer based VOA model (we let the reader refer to Section 3.5 for
a detailed review of the aforementioned architecture). In particular, VisQA focuses on
attention maps, which are a key feature of transformer-based neural models, as they fully
determine relationships between input items. We recommend the reader referring to
Jaunet et al. (2021) to familiarize itself with VisQA, or watching the short introductory
video available at https://visqa.liris.cnrs.fr/static/assets/demo.mp4. We nevertheless
briefly recall its main features.

FREE-FORM QUESTIONS By default, VIsQA loads the GQA dataset to provide images
and questions. But at any time, we can type and ask free-form open-ended questions.
Such an interaction allows investigating the model’s bias exploitation. For instance, when
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asked the following question from the GQA dataset “Is this a mirror or a sofa”, the model
correctly outputs “mirror”. However, when asked the following question “Is there a mirror
in this image?”, the model fails and outputs “no”. This suggests that the model might have
exploited biases when it answered the first question, which is supported by the fact that
in the GQA dataset, “mirror” is the correct answer to the question “Is this a mirror or a sofa”
in 85% of all cases.

VISUAL SUMMARY VISQA allows us to explore the attention maps generated by the
VL-Transformer attention heads for a given question-image pair. In order to scope with
the relatively high dimension of attentions maps, making them hardly interpretable in
a reasonable amount of time, we rely on summarizing each of them to a single scalar.
Such a scalar, referred to as k-number (Ramsauer et al. 2020), represents the normalized
amount of tokens per row summed up to reach a threshold of 90% of energy. A k-number
close to 0 indicates that the corresponding row has peaky attention focusing on only one
column (as seen in Figure 6.3 @), and a high k-number encodes a uniform attention (as
in Figure 6.3 @). Then we combine each of those k-number together using either min,
median, or max functions. Such functions can be selected in VisQA, depending on the
attention maps intensity they want to investigate. VisQA provides this interaction because
for a head to have a low k-number, the majority of its rows needs to be highly activated.
This can shadow attention maps with less than half of their rows with peaky attention.
In V1sQA, the k-number is discretized and color encoded in 4 categories as it follows:
lk<12] [k<25] [k<50] [k<ed. In addition, for each head, we provide global (i.e. dataset-level) statistics
which will be the subject of the next Chapter 7.

HEAD INTERACTIONS  VISQA let the possibility to dynamically interact with the model.
More precisely, it makes possible to filter and prune attention head. By clicking on a
row, column, or cell, we can filter attention heads to only keep the ones in which the
corresponding clicked element has attention above a threshold. This facilitates seeking for
heads in which a specific association is expected e.g. a word in the question with an object
of the image required to answer. It is also possible to prune selected attention heads.
Pruning here means that the attention head does not perform any focused attention, but
uniformly distributes attention over the full set of items (objects or words). Each row of a
pruned attention map is thus the equivalent of an average calculation. This can be used in
order to test hypotheses on attention head interpretations, as explored in Section 6.4. The
benefit of such pruning is that it preserves the amount of energy in the head, at contrary
to an alternative approach where the attention head output is simply zeroed.

SETUP  VISQA is based on the VL-Transformer architecture described in Chapter 3. We
use the compact version, with an embedding size equals to d=128 and a number of heads
per-layers set to h=4. As a recall, in addition to the VOA objective, we train the model
parameters also on MS-COCO (Lin et al. 2014) and Visual-Genome (Krishna et al. 2017)
images following the semi-supervised BERT (Devlin et al. 2019)-like strategy introduced
in (Tan et al. 2019). In particular, the model is trained to perform simple tasks such as
recognizing masked words and visual objects, or predicting if a given sentence matches
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the question. After pre-training on these auxiliary tasks, the model is fine-tuned on the
GQA (Hudson et al. 2019b) dataset with the VOA objective.

6.3 MOTIVATING CASE STUDY

We illustrate the advantages and the power of instance-level visualizations with VisQA
on the following case study. It is based on the following input instance, i.e. the image
given in Figure 6.2(®), and associated question “Is the knife in the top part of this photo?” @©.
The correct ground truth answer is of course “No”, but the model incorrectly answers
“Yes” @. We see the frequency of the different possible answers provided in the interface,
and observe that the wrong answer “Yes” is not the most frequent one for this kind of
question as “No” is the correct answer 67% of the time, which does not provide evidence
for bias exploitation. The objective is to use VISQA to dive deeper into the inner workings
of the model.

A first step is to analyze whether the model is provided with all necessary information.
While the input image itself does contain all the information required to find the answer,
the neural transformer model reasons over a list of objects detected by a first object
detection and recognition module — Faster R-CNN (Ren et al. 2015) —, the outputs of
which may be erroneous.

IS THE KNIFE DETECTED BY THE VISION MODULE?  VISQA provides access to the
bounding boxes of the objects detected by the input pipeline. Each bounding box can be
displayed superimposed over the input image along with the corresponding object label
predicted by the object recognition module. We can observe that the key object “knife”
lacks a suitable bounding box or class label, it has not been detected. Since this object
is required to answer the question for this image, the model cannot predict a coherent
answer. However, the question remains why the wrong answer is “yes”, corresponding to
the presence of a knife.

CAN ATTENTION MAPS PROVIDE CUES FOR REASONING?  For the example above, we
are interested in checking the correspondence between the question word “knife” and the
set of bounding boxes, which should provide us with evidence whether the model was
capable of associating the concept with the visual object in the scene, which is, of course,
not sufficient for correctly answering, but a necessary step. This verification is non-trivial,
however, since the model is free to perform this operation in any of the inter-modality
layers and heads. VisQA allows to select the different heads, and we could observe that
none of the heads provides a correct association. As an example, we can see the behavior
of a head in Figure 6.3 ©, which associates the word “knife” to various objects, mostly
fruits. No other head is found, indicating a more promising relationship.

IS COMPUTER VISION THE BOTTLENECK? From the example above, as well as similar
observations in other instances, we conjecture that the computer vision input pipeline
(notably, the imperfect object detector) is one of the main bottlenecks in preventing
correct reasoning. To validate this hypothesis, we explored training an Oracle model
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Figure 6.3 — Visualization of a selected vision-to-language head and attention map for two different
models. @ the baseline model associates the “knife” word with a large number of
different objects, including fruit. @ the oracle model learns a perfect association
between the word “knife” and the “knife” object. Head selections are not comparable
between models, we therefore checked for permutations.

with perfect sight, which thus takes as input the ground truth objects provided by
human annotation instead of the noisy object detections by a trained neural model. This
considerably improves the performance of the model, reaching ~ 80% accuracy on the
difficult questions with rare ground-truth answers, compared to ~ 20% for the standard
model reasoning on noisy input. This particularly high difference in performance for
questions with rare answers suggests a higher performance in correct reasoning of the
oracle model. By loading this model into VisQA, we observe in Figure 6.3 @, that
there exists an attention map which associates the word “knife” to a visual object “knife”,
which, as the reader might recall, is an object indicated through human annotation. This
correct association is reassuring, but by itself does not yet guarantee correct reasoning —
further exploration is possible, but we will now concentrate on this problem of finding
correspondences between words and visual objects and explore this question further. In
Section 7.2, we will provide a statistical (dataset-level) analysis of the vision bottleneck.

64 EVALUATION WITH DOMAIN EXPERTS

In order to evaluate the usability and convenience of analyzing attention to get in-
sights on the emergence of reasoning or biases in a VL-Transformer model, we conduct

81

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI101/these.pdf
© [C. Kervadec], [2021], INSA Lyon, tous droits réservés



an experimental study with 6 experts. They have experience in building deep neural
networks, but were not involved in the project or the design process of VIsQA. We report
on their feedback using VIsQA to evaluate the decision process of the Oracle transfer model
(this model will be introduced in Chapter g), which obtains 57.8% accuracy on GQA,
as well as insights they received from this experience. Hypotheses drawn from single
instances cannot be confirmed or denied, but as illustrated in the following sections, such
a fine-grained analysis aims to provide cues (often unexpected) that will be later explored
through statistical evidence in Chapter 7.

6.4.1  Evaluation Protocol

For each expert, we conducted an interview session lasting on average two hours.
Sessions were organized remotely and began with a training on VisQA, showing step-
by-step how to analyze attention maps. During this presentation, experts were able
to ask questions. The study then began with questions on 6 problem instances, i.e.
image/question pairs loaded into VIsQA in a browser window on participants” work-
stations. Those instances were balanced between the prediction failures and successes,
head or tail distributions of question rarity as described in coa-oop (cf. Chapter 5), as
well as our estimation on whether the model resorts to bias for this instance grasped
using VIsQA. V1sQA, configured as conditioned during evaluations is accessible online
at: https://theo-jaunet.github.io/visqEval/. The model outputs were hidden, and
the experts were asked to use VisQA to provide an estimate for two different questions:
(1) will the model predict a correct answer, (2) what will it be?, and (3) does it exploit
biases for its prediction, or does it reason correctly? During this part of the interview,
experts were asked to explain out loud what lead them to each decision. Once those
questions were completed, post-study questions were asked, such as “Which part of VIsQA
is the least useful?”, and “What was the hardest part to understand?”.

RESULTS The ability of experts to predict failures and specific answers of VOA systems
has already been addressed through evaluation (Chandrasekaran et al. 2018) under
different conditions. The experiment closest to ours is question+image attention (Lu et al.
2016) with instant feedback — similarly to ours, experts were asked to estimate whether a
model will predict a correct answer when provided with attention visualizations of the
model, and reaching a similar score of ~ 75% accuracy. The difference is that in Lu et al.
(2016) attention is overlaid over the visual input, whereas our attention maps allow to
inspect reasoning in a more detailed and fine-grained manner, and not necessarily tied to
the visual aspects. The similarity in results changes when experts are asked to provide
the specific answer predicted by the model: this accuracy drops to 61% in our case, and
to 51% in (Chandrasekaran et al. 2018). While our results are promising, they cannot be
directly compared to their results due to the different pool and amount of experts. Future
work will address studies on a larger number of human experts.

More importantly, our work focuses on qualitative results of bias estimation in which
experts obtained a precision of 75% on whether the model exploited any bias. We
extracted the ground truth estimate by comparing the rarity of the question, following
Chapter 5. These results are encouraging, as they provide a first indication that the
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Figure 6.4 — When asked “Is the person wearing shorts?”, the oracle transfer model successfully
answers “yes”. It can be observed in its first Language-to-Vision attention maps, that
the word “shorts” (column) is strongly associated with the object “shorts” (row). The
same phenomenon is also observed for the word “person’, strongly associated with
objects labeled as “woman” among others.

reasoning behavior of VL models can be examined and estimated by human experts with
VisQA. While 75% of performance reasoning vs. bias is not a perfect score, it is also far
away from the random performance of 50%, which is important given the large capacity
of these models, which contain millions of trainable parameters.

6.4.2  Object Detection and Attention

To provide an answer, a model must first grasp which objects from the image are
requested and thus are essential to focus on. Such an association needs to occur early in
the model as those objects are needed for further reasoning. The experts widely observed
high intensity in the first language-to-vision (LV) layer. As illustrated in Figure 6.4, when
asked “Is the person wearing shorts?”, the attention map LV_o_1 has peaky activations in the
columns “person” and “shorts”. This can be interpreted as the model correctly identifying
with its self-attention for language that those two words are essential to answer the given
question. In Figure 6.4, the word “person” is associated with the bounding boxes labeled
as “woman”,“shirt”,“shoe”,”leg”, while the word “shorts” is associated with the “shorts”
bounding box. Based on this observation, all experts concluded that the model correctly
sees the required objects, and more broadly over the evaluation instances, that the first LV
layer might be responsible for the recognition of objects with respect to the question. One
of the experts mentioned that therefore, “if we don’t see a good word/bounding-box association
here, the model can hardly cope with such a mistake and might exploit dataset biases”. In order to
verify such a statement, we pruned the four heads in this LV layer, to observe how the
model would behave with no association in them. From such pruning, we observe that the
following vision-to-language (VL) layers have lower attention distributions, close uniform
in some cases. In addition, after pruning, the model’s prediction wrongly switched from
“Yes”, a rare answer (in Tail), to “No”, the most frequent one.
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Figure 6.5 — When asked “Are there both knives and pizzas in this image?”, the oracle transfer model
fails and answers “yes”. By filtering heads associated with a selected word, we can
observe that language self-attention heads are more responsive to the word “both” @,
as opposed to the word “and” @.

6.4.3 Questions with Logical Operators

During the evaluation, experts were shown two instances with questions containing the
word “and”. Such instances are interesting because, as one of the experts mentioned, “this
word has a lot of importance is this question”. To answer correctly, the model needs to grasp
that it must analyze the image over two different aspects. With the image, illustrated
in Figure 6.5, and asked “Are there both knives and pizzas in this image?”, the model fails
and answer “yes”, the most frequent answer despite having no knife in the picture nor
provided bounding-boxes. However, when asked “Are there knives in this image?” the
model correctly answers “no”. This suggests that the model failed to grasp the meaning
of the keyword “and”, and thus that the self-attention language heads might associate
wrong words. Also, swapping the terms “knives” and “pizzas” in the question, yields
the correct answer, i.e. “no”. This may indicate that the model ignores the first term
when questions contain the operator “and”. Using the head-filtering interaction, we can
observe that in attention heads, the word “and” has little to no attention. Instead, the
word “both” has peaky attention scattered across most of self-language layers, and some
language-to-language heads. Pruning those 19 heads makes the model correctly yield
“no”, regardless of the order the words “knives” and “pizzas” are in the question. Such a
behavior can be observed over our evaluation dataset, in which 34 questions have the
keyword “and”. On those questions the model, without pruning, can provide a correct
answer 62% of cases, up to 64% with the two words around “and” are swapped. In
opposition, while having the 19 attention-heads with peaky attention for the word “both”
pruned, the model reached an accuracy of 76%, down to 74% with words around “and”
swapped. In the worst case, this pruning of the 19 attention heads illustrated in Figure 6.5
is responsible for an improvement of 10% on question contain the operator “and”.

6.4.4 Vision to Vision Contextualization

When asked “What is the woman holding?”, with the image in Figure 6.6, the model fails
and outputs “remote-control”, a frequent answer, instead of “hair dryer”. This could be
interpreted as bias exploitation. However, in such a dataset, “remote-control” is not among
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Figure 6.6 — Without any "hair dryer” provided by the object detector, the oracle transfer associates in
its vision-to-language @ the object “hand” with the words {“[CLS]”,“is”,”?”,“[SEP]"}.
While vision-to-vision focuses on a “knob” object @.

the 10 most common answers to this question. This raises the question of what leads the
model to output such an answer. During evaluation on this instance, experts noticed that
the object detector failed to provide a “hair dryer” object. Similar to the use case given in
Section 6.3, such a mistake forces the model to draw its attention towards other bounding
boxes related to the missing object. In this case, as observed by experts, a majority of
the vision-to-language reached their highest association between the word “holding” and
bounding boxes labeled as “hands”. Such an association is expected as held objects are
directly related to hands, and no “hair dryer” bounding box is provided. Among those
bounding boxes, we can observe the presence of one labeled as “television”, and another
as “knob” which are associated to “holding” and “woman” in both vision-to-vision_2_2 and
early vision-to-language layers. This suggests that those heads might have influenced
the model’s predictions towards “remote-control” instead of the most common dataset
bias. This can be confirmed by pruning those heads which yields a more frequent answer:
“cell phone”. One of the experts also highlighted that those attention heads had a high
association with the tokens “[CLS]”, “is”, “?”, and “[SEP]”. Which the expert interpreted
as “the model correctly transferred the context of the question”.

6.5 CONCLUSION

We introduced how VIsQA — an interactive visual analytics tool designed to perform
instance-based in-depth analyses of the attention — helps to better understand reasoning
behavior in transformer neural networks for vision and language reasoning. Thanks to its
multiple features — displaying attention head intensities; inspecting attention distributions;
pruning attention heads; asking free-form questions — VisQA allows us to conduct a
qualitative study of bias vs reasoning in a VL-Transformer model. Our quantitative
evaluations are encouraging, providing the first evidence that we can obtain indications
on the reasoning behavior of a neural network using its attention maps, i.e. estimates on
whether it correctly predicts an answer, and whether it exploits biases. Finally, ViIsQA
provides us interesting cues about VOA VL-Transformer models” behavior, that will be
explored in a broader statistical analysis in Chapter 7.
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CHAPTER

ON THE EMERGENCE OF REASONING PATTERNS IN VQA

7.1 INTRODUCTION

In this chapter, we continue to study the capabilities of VOA models to “reason”. As
a recall, while an exact definition of this term is difficult, we refer to (Bottou 2014) and
define it as “algebraically manipulating words and visual objects to answer a new question” (cf.
Chapter 2). In particular, we interpret reasoning as the opposite of exploiting spurious
biases in training data. We argue, and will provide evidence, that learning to algebraically
manipulate words and objects is difficult when visual input is noisy and uncertain
compared to learning from perfect information about a scene. When objects are frequently
missing, detected multiple times or recognized with ambiguous visual embeddings
wrongly overlapping with different categories, relying on statistical shortcuts may be a
simple and tempting alternative for the optimizer.

In Chapter 6, we introduced VisQA, a tool designed to help researchers analyzing the
reasoning and biases at work in Transformer based VOA models. This interactive tool
provides a fine-grained understanding of the reasoning and bias mechanisms learned by
the model. However, this study is limited to be at instance level. This is at the same time
a benefit and a drawback. A benefit, as it lets the user inspect attention layers without
alteration due to statistical aggregations. Thus, it provides cues and intuitions on what
has been learned by the VOA model. At the same time, instance level visualization is not
sufficient to discover how the model behaves at a dataset level. Therefore, in this chapter,
we conduct a complementary analysis, focusing on a large scale statistical analysis of the
attention mechanisms learned by the same VL-Transformer VOA model.

More precisely, drawing conclusion from Chapter 6, we propose an in-depth analysis
of attention mechanisms in Transformer-based models and provide indications of the
patterns of reasoning employed by models of different strengths. We visualize different
operating modes of attention and link them to different sub tasks (“functions”) required
for solving VOA. In particular, we use this analysis for a comparison between perfect-
sighted (oracle) models and standard models processing noisy and uncertain visual input,
highlighting the presence of reasoning patterns in the former and less so in the latter.
Indeed, we show that a perfect-sighted oracle model learns to predict answers while
significantly less relying on biases in training data. Therefore, we claim that once the
noise has been removed from visual input, replacing object detection output by Ground
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Truth (GT) object annotations, a deep neural network can more easily learn the reasoning
patterns required for prediction and for generalization.

In addition to improving our understanding of VL-Transformer decisions, this large
scale analysis will serve as a basis for enhancing VOA training methods. In particular,
we will explore a method for transferring the reasoning patterns learned by the oracle
(trained with GT visual input) to the standard settings where visual inputs are extracted
using an (imperfect) object detector (cf. Chapter 9).

CONTRIBUTIONS OF THE CHAPTER

(i) A study of the visual bottleneck in VOA, i.e. we explore how the visual uncertainty
(caused by imperfect object detectors) affects VOA performance.

(ii) An in-depth analysis of reasoning patterns at work in Transformer-based models,
including: (a) visualizations of attention modes; (b) an analysis of the relationships
between attention modes and reasoning; and (c) an exploration of the impact of
attention pruning on reasoning.

(iii) A comparison of oracle vs. noisy (standard) models, where we show that the former
more easily learns reasoning patterns.

7.2 VISION IS THE BOTTLENECK

VisQA study made us wonder: is computer vision the bottleneck? We conjecture that
difficulties in the computer vision pipeline are the main cause preventing VOA models
from learning to reason well, and which leads them to exploit spurious biases in training
data. Most of these methods use pre-trained off-the-shelf object detectors during training
and evaluation steps. But in a significant number of cases, the visual objects necessary for
reasoning are misclassified, or even not detected at all, as indicated by detection rates of
SOTA detectors on the Visual Genome dataset (Krishna et al. 2017), for instance. In that
context, Under these circumstances, even a perfect VOA model is unable to predict correct
answers without relying on statistical shortcuts. In the context of a collaboration with
Pierre Marza, we propose two experiences shedding light on the visual bottleneck and its
potential consequences.

OBJECT DETECTION QUALITY We evaluate the quality of the objects detected by Faster
RCNN (Ren et al. 2015) for the VOA task. In particular, we ask: are important objects (given
the question) correctly detected by the detector? Therefore, for each question of the Goa-oop
validation split, we measure the proportion of object correctly detected and required for
answering the question. Results are shown in Table 7.1. In our setup, an object is correctly
detected if it sufficiently overlaps (measured with IoU, Intersection over Union) with the
ground truth. It is worth to notice that it only provide an underestimation of the detector
capabilities, as we do not consider the predicted label associated to the image region
(e.g. in some case, a region can be falsely detected). We observe that the detection is not
accurate enough for VOA, as many important objects are not detected (especially when
the IoU threshold is set to 0.8).
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GQA-ooD val. split R@o.2 R@o.5 R@o.8

Head 89.7% 77.1% 12.7%
Tail 89.0% 75.8% 12.6%

Table 7.1 — Are important objects correctly detected? We report R-CNN recall (R) on objects
required for answering the question with various IoU tresholds (R@0.8 means that a
ground-truth object is considered as correctly detected if it has an IoU greater than
0.8 with one of the Faster R-CNN objects). We observe that, on both head and tail
GQA-00D splits, the object detection is not accurate and only few important objects are
perfectly detected.

Table 7.2 — Impact of object detection quality (embeddings and BBs) on the UpDn VQA model (An-
derson et al. 2018), evaluated as comparison with oracles (GQA balanced validation
set).

GT BB GT embeddings Perturbed  Perturbed  Accuracy Binary Open
boxes (1-in-K class) B. boxes = Embeddings

- 60.01 7222 48.56

v - v v 59.58 76.75  43.48
v - v — 69.21 82.15 57.08
v - — - 69.21 82.18  57.06
v v — — 83.29 8293 83.62

IMPACT OF THE VISUAL QUALITY Table 7.2 indicates that more than 20 accuracy points
are gained when both object features and bounding boxes are taken from a perfect (oracle)
object detector. This confirms our intuition that there is a large room for improvement
on the object detection side of VOA. Moreover, analyzing the gain brought by perfect
selection of bounding boxes alone, one may notice that it can bring more than +9 pts
of improvement for VOA. We also measure to what extent the exact regression of the
object coordinates (bounding boxes) is essential for VOA, evaluating the scores under the
perturbation of the GT coordinates. For each GT bounding box coordinate, we sample
random translations from a uniform distribution over [—% ; +%], where [ is the size of the
bounding box along the axis at hand. The results are shown in the 3rd row of Table 7.2 and
paint a clear picture: given the rather strong amplitude of the coordinate perturbations, the
drop in performance is surprisingly small. On the contrary, if in addition to the bounding
box coordinates perturbations, we also perturb the detector’s feature embeddings, the
VQA performance drastically drops (the 2nd row in Table 7.2). This corroborates the
intuition that answering questions in current applications and datasets requires a rather
coarse knowledge of where objects are mostly restricted to their spatial relationships with
other objects (left, right, above, under, below, etc.), but a quite precise knowledge of the
type of objects involved is necessary. In other words, it is important to coarsely select the
objects required for answering the question, but the precise regression of their bounding
box coordinates is not important. This result (hopefully) tones down a bit the observation
made in Table 7.1, even thought the visual uncertainty remains a main bottleneck for VOA.
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7.3 VISUAL NOISE VS. MODELS WITH PERFECT-SIGHT
7.3.1  Oracle: a perfect-sighted model

To further explore this working hypothesis, we propose to compare the learned attention
of a VL-Transformer (cf. Chapter 3) trained with two different settings: oracle and noisy.
Oracle setting consists in training a VL-Transformer model with perfect sight, i.e. a model
which receives perfect visual input. It receives the GT objects from the GQA annotations,
encoded as GT bounding boxes and 1-in-K encoded object classes replacing the visual
embeddings of the classical model. All GT objects are fed to the model, not only objects
required for reasoning. Noisy settings corresponds to the classical model, based on the
same VL-Transformer as oracle, but taking as input objects features detected by an object
detector (FasterRCNN (Ren et al. 2015)). We call it noisy because of the uncertainty in the
vision part.

EXPERIMENTAL SETUP  All analyses in this chapter have been performed with a hidden
embedding size d = 128 and a number of per-layer heads /1 = 4. This corresponds to the
compact version of the VL-Transformer architecture (cf. Chapter 3). Therefore, “compact-
LXMERT” corresponds to the VL-Transformer architecture plus BERT-like (LXMERT) pre-
training. Unless specified otherwise, objects have been detected with Faster R-CNN (Ren
et al. 2015). Visualizations are done on GQA (Hudson et al. 2019b) (validation set) as it
is particularly well suited for evaluating a wide variety of reasoning skills. However, as
GQA contains synthetic questions constructed from pre-defined templates, the dataset
only offers a constrained VOA environment. Additional experiments might be required to
extend our conclusions to more natural setups.

7.3.2  Does the oracle “reason”?

We study the capabilities of both models — the oracle model and the classical one — to
“reason” (see our definition in Chapter 2). Following Chapter 5 we measure the reasoning
capabilities of a VOA model as the capacity to correctly answer questions, where the GT
answer is rare w.r.t. the question group, i.e. the type of questions being asked. In particular,
we evaluate the models on the coa-0op benchmark designed for OOD evaluation (cf.
Chapter 5).

00D EVALUATION  Figure 7.1 illustrates the model behavior in different situations. At
the extreme case (left side of the plot), the model is evaluated on the rarest samples only,
while on the right side all samples are considered. We observe that the performance
of the classical model taking noisy visual (compact-LXMERT) drops sharply for (image,
question) pairs with rare GT answers, which is an indication of a strong dependency on
dataset biases. We would like to insist that in this benchmark the rarity of a GT answer is
determined w.r.t. the question type, which allows measuring biases taking into account
language. The oracle model, on the other hand, obtains performances which are far less
dependent on the answer rarity, providing evidence for its ability to overcome statistical
biases. As a consequence, we conjecture that the visual oracle is closer to a real “reasoning
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Figure 7.1 — Uncertainties and noise in visual input dominate the difficulties in learning reasoning:
comparison of the out-of-distribution generalization between two different vQA Mod-
els. A perfect-sighted oracle model and a standard noisy vision based model trained
on the Goa-00D benchmark (Kervadec et al. 2021a). For the classical model, accuracy
drops for questions where the GT answer is rare (left side) compared to frequent
answers (right side), indicating probable bias exploitation. In contrast, the oracle
obtains high performance also on rare answers. Both models are compact-LXMERT.

process”, by predicting the answer resulting from a manipulation of words and objects,
rather than by having captured statistical shortcuts. In the absence of GT on reasoning,
we admit that there is no formal proof to this statement, but we believe that the evidence
above is sufficient.

7.4 ATTENTION MODES IN VL-TRANSFORMERS
7.4.1  Defining and estimating the attention modes

Attention modes, or distributions, are at the heart of the VL-Transformer. They are not
directly supervised during training, their behavior emerges from training the different
VQA objectives, i.e. the discriminative loss as well as the eventual additional BERT-like
objectives (Tan et al. 2019). Their definition as a strength of association between different
items makes them a prime candidate for visualization of inner workings of deep models.
We analyze attention, and in particular we observe different attention modes in trained
VOQA models.

k-pisTrIBUTION We use the technique previously introduced in Chapter 6. As a
recall, it consists in visualizing the distribution of attention energy associated with each
Transformer head in multi-headed attention, following (Ramsauer et al. 2020). For each
attention map, associated with a given head for a given sample, we calculate the number k
of tokens required to reach a total sum of 90% of the distribution energy. A low k-number
is caused by peaky attention, called small meta-stable state in (Ramsauer et al. 2020), while
a high k-number indicates uniform attention, close to an average operation (very large
meta-stable state). For each head, and over a subset of validation samples, we plot the
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Figure 7.2 — Attention modes learned by the oracle model. Following (Ramsauer et al. 2020), for
each head we plot the distribution of the number k of tokens required to reach 90% of
the attention energy (GQA-val). X-axis (from 0 to 100%): ratio of the tokens k w.r.t.
the total number of tokens. Plots are not attention distributions, but distributions of
indicators of attention distributions. We observe three major modes: (a) “bimorph”
attention, unveil two different types of attention distribution for the same head; (b)
Dirac attention with high k-median, i.e. small meta stable state; (c) uniform attention,
with low k-median, i.e. very large meta stable state.

distribution of k-numbers, and for some experiments we summarize it with a median
value taken over samples and over tokens.

7.4.2 Diversity in attention modes

In this experiment, we focus on the oracle VL-Transformer, where we observed a
high diversity in attention modes. We also observed that some layers” heads, especially
those processing the visual modality (tV or t“1)* are mainly working with close-to-
average attention distributions (very large meta-stable states (Ramsauer et al. 2020)). On the
other hand, we observed smaller meta-stable states in the language layers (t- or t5V).
This indicates that the reasoning process in the oracle VL-Transformer is in large part
executed by the model as a transformation of the language features, which are successively
contextualized (i.e. influenced) by the visual features (and not the opposite).

BIMORPH ATTENTION MODE In contrast to the attention modes reported in (Ramsauer
et al. 2020), we also observed bi-modal k-number distributions, shown in Figure 7.2-a,
which are a combination of a Dirac (Figure 7.2-b) and uniform (c¢f. Figure 7.2-c) attention
modes. We call these modes “bimorph” attention, since they reveal the existence of two
different shapes of attention distribution: for some samples, a Dirac activation is generated,
while other samples lead to uniform attention (averaging over tokens) >.

ORACLE’S HEADS ARE MORE DIVERSE Besides, in Figure 7.3, we compare attention
mode diversity between the noisy visual model and the oracle t£*V heads, where we
observe higher diversity for the oracle. In particular, “bimorph” attention is mostly
performed by the oracle.

1. As a recall, the annotation is introduced in Section 3.5.
2. We remind that these plots are distributions of indicators of distributions: uniform behavior does not
show up as a flat plot, but as plot with a peak on the right side — it may in these plots look like a Dirac.
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Figure 7.3 — Comparison of k-distribution of t5 attention heads for two different models: (a)
oracle; (b) noisy visual input. Rows indicate different TL“"V layers. Heads are colored
according to the median of the k-number.

7.5 ATTENTION MODES AND TASK FUNCTIONS

In this experiment, we study the relationships between attention modes and question
types, which correspond to different functions of reasoning required to solve the problem
instance. In other words, we explore to what extent the neural model adapts its attention
distribution to the question at hand. We group the set of questions according to functions
using the GQA (Hudson et al. 2019b) annotation, using 54 different functions such as e.g.
“filter color”, “verify size”, etc..3

3. There is limited overlap between functions, e.g. “filter” contains, among others, the “filter color” and
“filter size”.
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Figure 7.4 — Attention modes for selected attention heads (rows) related to functions required to be
solved to answer a question (columns). The head’s notation x, 7, j refers to the head j
of the i-th Transformer layer of type x: ‘lang’/‘I'=tL (-), “vis'/“vv'=tY (-), vI'=tL=V (),
‘Iv'=tV L (.). The VL-Transformer’s architecture is presented in Chapter 3. The color
encodes the attention mode, i.e. median of the k-number (Ramsauer et al. 2020). We
observe (1) attention heads behave differently depending on the function; (2) a given
function causes different attention modes for different heads.

7.5.1 Attention vs. function in oracle setting

We link functions to the attention modes introduced in Section 7.4. In Figure 7.4 we
show functions in columns and a selection of attention heads in rows, while the color

encodes the median k-number for the oracle model.

RELATION BETWEEN ATTENTION AND TASK FUNCTION  We observe a certain depen-
dency between functions and the attention modes. Certain functions, e.g. the majority
of the “choose X” functions, tend to cause the emergence of small meta-stable states. In
these modes, the attention mechanism is fundamental, as it allows the model to attend
to specific token combinations by detecting specific patterns. On the other hand, some
functions requiring to attend to very general image properties, such as “choose location” or
“verify weather”, seem to be connected to very large meta-stable states. We conjecture, that
to find general scene properties, a large context is needed. In these modes, the attention
mechanism is less important, and replacing it with a simple averaging operation is likely
to keep performance — an experiment we explore in Section 7.6. Similarly, when focusing
on heads instead of functions, we observe that a majority of heads typed as 7L (-) or
tV(-) tends to behave independently of the question functions, and they generally show

close-to-uniform attention.

EMERGENCE OF SPECIALIZED HEADS  On the other hand, the t£ (-) and t£V(-) heads
are highly dependent on the question functions. As shown in Figure 7.4 and Figure 7.5,
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Figure 7.5 — Influence of the question on oracle’s “bimorph” attention heads. We compare attention
modes of the third layer of TV heads as a distribution of the k-numbers (Ramsauer
et al. 2020) over (a) samples of all functions, and (b) samples with questions involving
the “choose color” function, and observe a clear difference. The function “choose color”
seems to cause the activation (i.e. emergence of a small meta-stable state) of the 1%, ond
and 4" head, and the desactivation of the 3" one, further indicating task dependence
of attention head behavior.

these heads does not behave in the same way and are not “activated” (i.e. have a smaller
metastable-state) for the same combination of functions. This provides some evidence for
modularity of the oracle VL-Transformer, each attention head learning to specialize to
one or more functions.

ILLUSTRATION WITH choose color In addition, in Figure 7.5, we visualize the
difference in oracle attention modes between two different function configurations: Fig-
ure 7.5-a is the distribution of median k-numbers over all samples, i.e. involving all
functions, whereas Figure 7.5-b shows the distribution over samples involving the “choose
color” function. We show the 3rd TL/ <L Transformer layer heads. Over all functions, these
heads show “bimorph” behavior, whereas on questions requiring to choose a color, these
same heads show either dirac or uniform behavior.

7.5.2  Oracle vs. Noisy Input

In the next experiment, we explore the difference in behavior between the perfect-
sighted oracle and the classical model taking noisy visual input. For each input sample,
we create a 80-dimensional representation describing the attention behavior of the model
by collecting the k-numbers of the 80 cross-attention heads into a flat vector, taking the
median over the tokens for a given head.

STANDARD MODEL FAILS TO RELATE ATTENTION TO FUNCTION Figure 7.6 shows
two different t-SNE projections of these attention behavior space, one for the oracle
model and one for the noisy model. While the former produces clusters regrouping
functions according to their general type, the function representation of the noisy model
is significantly more entangled. We conjecture, that the attention-function relationship
provides insights into the reasoning strategies of the model. VOQA requires handling a
large variety of reasoning skills and different operations on the input objects and words.
Question-specific manipulation of words and objects is essential for correct reasoning. In
contrast to the oracle one, the t-SNE plot for the noisy visual model paints a muddier
picture, and does not show clear relationships between attention modes and functions.
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Figure 7.6 — t-SNE projection of the attention mode space, i.e. the 80-dim representation median
k-numbers, one per head of the model. Colors are functions, also provided as overlaid
text. We compare projections of (a) the oracle, and (b) the noisy visual model, and
observe a clustering of functions in the attention mode space for the oracle, but
significantly less for the noisy input model.

Furthermore, when analyzing the special case of the choose color task function (in
Figure 7.8), we do not observe any evidence of a relation between attention and function
for the noisy setting.

CAVEAT visualizing attention modes does not provide any indication of the attention
operation itself, only about the shape of the operation. In particular, an attention head
might result in the same low k-number for two different input samples, showing Dirac
attention, but could attend to quite different objects or words in both cases.

7.6 ATTENTION PRUNING

We further analyze the role of attention heads by evaluating the effect of pruning heads
on model performance. As reported by Voita et al. (2019) and Ramsauer et al. (2020),
specific attention heads may be useful during training, but less useful after training. In
the same lines, for specific heads we replace the query-key attention map by a uniform
one, “pruned” heads will therefore simply contextualize each token by an averaged
representation of all other tokens, as a head with large meta-stable state would have done.
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Pruned attentions n/a L A% L+<V V+«L

Accuracy 91.5 37.9 914 528 68.1

Table 7.3 — Impact of pruning different types of attention heads of the trained oracle model. We
observe that ‘vision” and ‘language—vision” Transformers are hardly impacted by
pruning, in contrast to ‘language’ and ‘vision—language’. Accuracies (in %) on the
GQA validation set.

7.6.1  Pruning different types of attention heads

In Table 7.3 we report the effect of pruning on GQA validation accuracy according to
different attention categories and observe that the oracle model is resilient to pruning of
the t(-) and " L(-) heads, but that pruning of t£ (-) and +,~V(-) heads results in sharp
drops in performance. This indicates that the bulk of reasoning occurs over the language
tokens and embeddings, which are contextualized from the visual information through
tL=V(+) cross-attention. We can only conjecture why this solution emerges after training
— we think that among reasons are the deep structure of language and the fact that in
current models the answer is predicted from the CLS language token.

7.6.2  Impact on functions

We study the impact of pruning on the different task functions by randomly pruning
n cross-attention heads and measuring accuracy for different function groups, n being
varied between 0% (no pruning) to 100% (all heads are pruned), as shown in Figure 7.7
for the oracle and noisy vision-based models. For the sake of clarity only 4 different
functions are shown, additional results are provided in Figure 7.9. For the perfect-sighted
oracle (Figure 7.7-a), we first observe that the pruning has a different impact depending
on the function. Thereby, while filter and choose are dominated by negative curvature
where performance drops only when a large number of heads are pruned, verify and and,
are characterized by a sharp inflection point and an early steep drop in performance. This
indicates that the model has learned to handle functions specifically, resulting in various
degrees of reasoning distribution over attention heads. For the noisy vision-based model,
on the other hand, the effect of head pruning seems to be unrelated to the function type
(Figure 7.7-b).

7.7 CONCLUSION

In this chapter, we have provided a deep analysis and visualizations of several aspects
of deep VOA models linked to reasoning on the GQA dataset. We have shown, that oracle
models produce significantly better results on questions with rare GT answers than models
on noisy data, that their attention modes are more diverse and that they are significantly
more dependent on questions. We have experimentally measured a pronounced difference
in attention modes between the perfect-sighted oracle and a noisy vision based model.
More importantly, the oracle model shows a strong relationship between attention mode
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and task function, which we interpret as the capability of adapting reasoning to the task
at hand. The classical model significantly lacks these abilities, suggesting a strategy of
transferring patterns of reasoning from an oracle model pre-trained on visual GT to a
model taking noisy visual input. This oracle transfer method will be studied in Chapter 9.
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Figure 7.7 — Impact of random pruning of varying numbers of attention heads in cross-modal
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layers on GQA-validation accuracy. (a) For the oracle, the impact is related to the
nature of the function, highlighting its modular property. (b) For the noisy-vision-
based model, pruning seems to be unrelated to function types.
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(a)

(b)

Figure 7.8 — Comparison of k-distribution of VL-attention heads for two different models for the
function choose color: (a) oracle (5 first rows); (b) noisy visual input (5 last rows).
Heads are colored according to their k-number median. As a recall, for each head we
plot the distribution of the number k of tokens required to reach 90% of the attention
energy (GQA-val). The x-axis represents in % the number of tokens k relatively to the

total number of token, it goes from 0% to 100%.
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Figure 7.9 — Full visualization of the impact of random pruning of varying numbers of attention
heads in cross-modal layers on GQA validation accuracy. (a) For the oracle, the impact
is related to the nature of the function, highlighting its modular property. (b) For the
noisy-vision-based model, pruning seems to be unrelated to function types.
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INTRODUCTION

In the year 2021 AD, 2 liters of coffee and 100 pages later:

- Sir?
- You, again?

— Now I understand everything! We are call VQA a “visual turing test”, but it turns out
that, rather than reasoning, VQA models only learn shortcuts. ..

— Don’t be so pessimistic. In some cases, VQA models still succeed in reasoning.
Slowly, but surely, we are moving towards models more apt to reason.

— Do you mean that there is sill hope?
— Exactly, and I have some ideas!

In Part II and Part III we experimentally demonstrate that SOTA VOA models tend
to leverage dataset biases and shortcuts in learning rather than performing reasoning,
leading to lack of generalization. Using VIsQA (cf. Chapter 6) to inspect the attention
maps learned by a VL-Transformer taught us that it struggles to detect the fined-grained
interactions between language and vision. Furthermore, when it succeeds, it is often
dominated by shortcuts. As an illustration, when asking “What is the woman holding?”
with the picture in Figure 7.10 to the tiny-LXMERT (Tan et al. 2019) model, it wrongly
predicts “a banana”. Yet, the attention map VL_3_o informs us that the model has correctly
grounded “woman” and “holding” to the woman’s face and the glove, respectively. This
suggests that the reasoning process, leading to the answer prediction, does not rely on
the right cues (here, it relies on shortcuts rather than on word-object alignment). Thus, it
appears as a necessity to develop methods preventing shortcut learning in VOA.

IMPROVING THE REASONING PROCESs Drawing conclusion from our evaluations
(Part II) and analyses (Part I1I), we now propose to improve the performance of VOA
models. In the VOA literature, the reasoning ability is frequently assumed to be implicitly
learned during training from application-specific losses, mostly cross-entropy for classifi-
cation, or the use of inductive biases in the model’s architecture. We conjecture that it is
not so obvious, and explore two alternatives, improving the VOA accuracy and reducing
the impact of biases on the prediction. The first one aims at guiding the reasoning process
during training, leveraging a weak supervision of the object-word alignment or a super-
vision of the operations steps required to answer the question. The second one consists
in pre-training the VOA model on perfect (oracle) input, in order to learn the reasoning
patterns observed in Chapter 7, and transfer them to the standard settings, where vision
is uncertain. The underlying intuition is that it is easier to learn a shortcut-free reasoning
when the training conditions are favorable enough (i.e. when the uncertainty in the input
is reduced). Part IV is organized as follows:

103

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI101/these.pdf
© [C. Kervadec], [2021], INSA Lyon, tous droits réservés



Prediction: A banana X

Figure 7.10 — To the question “What is the woman holding?”, the tiny-LXMERT (Tan et al. 2019)
model answers “a banana”. Looking at the attention maps generated by attention
head VL_3_o, we observe that it has correctly found the relationships between words
“woman holding” and visual regions. However, these relationships are dominated by
shortcuts, as the final prediction is “a banana” (a yellow fruit, like the gloves).

CHAPTER 8 addresses the question of the reasoning supervision. While the GT rea-
soning signal is not observable, it is still possible to approximate it through proxy losses.
Thus, we propose a weak supervision of the word-object alignment during the training of
VL-Transformer, in order to better ground its reasoning to the vision-language relation-
ships. Furthermore, we borrow results from PAC-learning and provide theoretical cues
on the benefits brought by this reasoning supervision.

CHAPTER 9 explores an alternative method, directly related to the analyses conducted
in Chapter 7. We propose to transfer the reasoning patterns learned by a visual oracle,
trained with perfect visual input, to a standard VOA model with imperfect visual rep-
resentation. In a second part, we combine this method with the reasoning supervision,
through program prediction, and show that the latter can be used as a catalyst for the
transfer of reasoning patterns.

This Part has led to the publication of the following conference papers:

¢ Corentin Kervadec, Grigory Antipov, Moez Baccouche, and Christian Wolf (2019). “Weak
Supervision helps Emergence of Word-Object Alignment and improves Vision-Language
Tasks”. In: European Conference on Artificial Intelligence (ECAI);

¢ Corentin Kervadec, Theo Jaunet, Grigory Antipov, Moez Baccouche, Romain Vuillemot, and
Christian Wolf (2021c). “How Transferable are Reasoning Patterns in VQA?”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);

® Corentin Kervadec, Christian Wolf, Grigory Antipov, Moez Baccouche, and Madiha Nadri
(2021d). “Supervising the Transfer of Reasoning Patterns in VQA”. in: Advances in Neural
Information Processing Systems (NeurIPS).
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CHAPTER

A PROXY LOSS FOR SUPERVISING REASONING

8.1 INTRODUCTION

High-capacity deep neural networks trained on a large amount of data currently
dominate methods addressing problems involving either vision or language, or both of
these modalities jointly (Tan et al. 2019). Examples for vision-language tasks are image
retrieval task (Karpathy et al. 2015a) — retrieve an image given a query sentence —, image
captioning (Lin et al. 2014) — describe the content of an input image in one or more
sentences —, or VOA. These tasks require different forms of reasoning, among which we
find the capacity to analyze instructions — e.g. the question in VOA —, or the ability to
fuse modalities. Additionally, they often require different levels of understanding, from
a global image-text comparison to fine-grained object-word matching. In this context, a
wide panoply of high-performing models adopt self-attention architectures (Vaswani et al.
2017) and BERT-like (Devlin et al. 2019) training objectives, which complement the main
task-related loss with other auxiliary losses correlated to the task (see VL-Transformer in
Chapter 3). The common point of this large body of work is the large-scale training of
unified vision-language encoders on image-sentence pairs.

However, despite their impressive success in standards benchmarks, we have shown in
Chapter 5 that these models — in particular, LXMERT (Tan et al. 2019) — are prone to learn
shortcuts instead of reasoning. More precisely, when analyzing the attention maps learned
by a VL-Transfomer with VisQA (cf. Chapter 6), we observe that, despite its ability to
model interactions unique to one modality (i.e. intra-relationships), it tends to struggle
to identify fine-grained object-word relationships (inter-relationships, or cross-modality
relationships). Yet, these relationships are essential in visual reasoning, which can be
illustrated in the example of VOA (cf. Figure 8.1): answering a question given an input
image requires the detection of certain objects in the image, which correspond to words
in the question, and possibly the detection of more fine-grained relationships between
visual objects, which are related to entities in the sentence.

In this chapter, we claim that the word-object alignment does not necessarily emerge
automatically, but rather requires explicit supervision. Therefore, we design a train-
ing signal, aiming at supervising the model to learn a fine-grained matching between
question’s words and visual objects. This takes the form of an additional pre-training
supervision, which can be viewed as a proxy loss for guiding the model to learn reasoning.

105

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI101/these.pdf
© [C. Kervadec], [2021], INSA Lyon, tous droits réservés



QUESTION

Sea Does the to the left

of thelflag|look small or
large? GT: small

LEGEND: POINTER |Textua|words | |Visual regions |

Figure 8.1 — Answering a question posed over an image requires grounding the question’s words
in the image. In this specific illustration, it is important to understand what are the
image regions corresponding to the boat and the flag. We propose to supervise the
VQA model to learn this alignment.

Our experiments show the benefit of this approach on VOA. Moreover, we also test its
generalization to another task requiring to reason over images, namely the language
driven comparison of images.

In a second part, we conjecture that such reasoning supervision in itself leads to a
simpler learning problem. Indeed, the underlying reasoning function is decomposed into
a set of tasks, each of which is easier to learn individually than the full joint decision
function. Following recent works in PAC-learning (Xu et al. 2020), we back up this
claim through a theoretical analysis showing decreased sample complexity under mild
hypotheses.

CONTRIBUTIONS OF THE CHAPTER
(i) a weakly supervised word-object alignment objective for vision language reasoning;

(ii) a theoretical analysis of the benefit of supervising reasoning in VOA deriving bounds
on sample complexity.

8.2 SUPERVISING WORD-OBJECT ALIGNMENT

In the literature, the alignment or matching of words to visual objects is generally
assumed to be implicitly learned from application-specific losses — mostly cross-entropy
for classification — thanks to the inductive biases provided by the encoder’s architecture,
i.e. the possibility of the model to represent this kind of matching. In this section, we
experimentally show that (1) modality alignment does not necessarily emerge automat-
ically and (2) that adding weak supervision for alignment between visual objects and
words improves the quality of the learned models on tasks requiring visual reasoning. We
therefore propose to add a vision-language alignment decoder on top of the VL-Transformer
architecture (cf. Chapter 3), which directly supervises the word-object alignment.
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Figure 8.2 — We propose to add a word-object alignment module (on the right) on top of the VL-
Transformer architecture, in order to supervise the fine-grained alignment between
vision and language.

8.2.1 Vision-Language Decoder

The overall architecture of our model is presented in Figure 8.2. It is based on the
VL-Transformer described in Chapter 3.

VL-TRANSFORMER As a recall, VL-Transformer is a vision-language encoder based
on a succession of self- and guided-attention layers. The former are used to process
uni-modal interactions (inside one modality) while the latter process the cross-modal
interactions (between vision and language). On the input side, VL-Transformer is fed with
the tokenized question and the image, which is represented as a set of objects extracted
by an object detector (here, the Faster-RCNN (Ren et al. 2015)). Following Tan et al. (2019),
the encoder is trained on a large image-sentences corpus with BERT-like losses adapted
to the vision-language understanding: vision and language masking, image-sentence
matching and VQA. We propose to augment this set with a word-object alignment loss, in
order to improve the reasoning.

8.2.2  Vision-Language Alignment Decoder

As shown in Figure 8.2, we propose to add a vision-language alignment decoder on
top of the VL-Transformer.

VISION-LANGUAGE ALIGNMENT DECODER The whole model is supervised to predict
the object-word alignment matrix A from the VL-Transformer’s outputs (¢/,4’). First,
(v',q') are projected into a joint space using a feed-forward layer with layer normaliza-
tion (Ba et al. 2016) and residual connection. We obtain (9, 4), from which we compute

A: o
_q®v

A=J7

(8.1)
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Figure 8.3 — The proposed vision-language alignment decoder and the respective weakly-
supervised loss. In this illustration, we present the alignment prediction .4; between
one word g; and the visual objects v’. FF stands for feed-forward layers.

where ® is the outer product. In other words, the alignment scalar Aij is computed as the
scaled-dot-product between object-word pair (v;, q;), as shown in Figure 8.3:

o7
T (8.2)

For each word g; we only keep the top-k highest predictions and apply a softmax:

>

.Ai]' =

Aj = softmax;(topy(Aij)) (8.3)

In this work, we empirically set k = 3. This way, we compute from each word a probability
distribution A; over the set of visual objects detected by Faster-RCNN. A high probability
Ajj means word g; and object v; refer to the same high-level entity. The dedicated loss
Lajign is defined using Kullback-Leibler (KL) divergence:

Lalign = KL(A*/ A) (84)

where A* is the GT alignment.

SOFT ALIGNMENT SCORE: APPROXIMATING A* Let’s suppose we have the ground
truth object-word pair (¢;, b;,). This pair is composed of a word or group of words g; taken
from the input sentence and a bounding box by, indicating the position of the respective
object in the image (provided in GQA). However, we cannot directly use this supervision
because both ground truth object-word annotations and the object detector are imperfect.
More precisely, (1) the ground truth visual-object annotation is often misaligned with the
object detection’s bounding box prediction, or (2) the annotated object can simply be not
detected at all. To address this issue, we set up a soft-alignment score taking into account
both the detection-annotation misalighment and the object detector imperfection. To this
end, we consider two criteria: the position one and the semantic one.

POSITION CRITERION For each ground truth object-word pair (q;,b;,), we compute
Intersection over Union (IoU) between the object detector’s predicted bounding box
by, and the ground truth object’s bounding box by :

P.Afj = Ioll(b;‘i,bvj) (8.5)
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A high IoU leads to a high position criterion value. Therefore, this criterion allows
giving more importance to objects detected in the same image region as the GT
object.

SEMANTIC CRITERION Since we cannot only rely on positional information, we also
have to take into account the semantics of the object detector’s prediction. This
would avoid aligning a word with a well-localized but a semantically-different
object (according to the detector). Therefore, we define the semantic criterion which
computes the semantic similarity between a word ¢; and the object’s class ¢, — and
attribute a,, — predicted by the detector:

" 3 1
S-Ai]' = 15(%’/%1) + le(fli/avj) (8.6)

where S(-, -) compute the cosine similarity between the GloVe embeddings of the
class/attribute names. We bias the similarity toward object class, as we empirically
found it more relevant than the attribute prediction.

Finally, we combine the two criteria in order to obtain a soft alignment score for each
object-word pair in the annotation:

norm;(PAY) + norm;(S.A7;
A:} _ ]( ]) 2 ]( ]) (87)

The resulting soft-alignment scores are normalized over the objects such as:

Mobjects

Y Aj=1 (8.8)
j

Hence the ground truth soft alignment score A} of word g; is a probability distribution
over the set of visual objects detected by the object detector. The soft alignment score
defined in this chapter is by construction incomplete and approximate. It is for this reason
that we refer to the designed supervision signal as weak, according to the definition of
“weak supervision” in (Zhou 2018).

8.2.3 Experimental evaluation

We now study in what extent the weak supervision of the object-word alignment
improve the reasoning. For this purpose, we evaluate the encoder on the VOA task,
and in particular, on the GQA dataset. In order to further evaluate the generalization
of our conclusions on other tasks requiring reasoning, we also conduct an evaluation
on the language-driven comparison of images task, using the Natural Language for
Visual Reasoning (NLVR2) dataset (Suhr et al. 2019). The latter is composed of triplets
(imgy,imgy, sentence) where img, and img, are two images and sentence is a sentence
describing one or both images. The goal is to predict if the sentence is true. It is worth
noticing that NLVR2 data is not viewed during the encoder training, therefore it truly
evaluates the generalization capacity of our method.
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Table 8.1 — Evaluation of the proposed object-word alignment weak supervision on the GQA (Hud-
son et al. 2019b) dataset. The presented results are calculated on the dataset’s test-std
split. The GQA'’s accuracy is presented in the last column. The exact definitions of all
other (auxiliary) metrics can be found in (Hudson et al. 2019b). t means that the model
relies on the supervision of the scene graph predictor. B=Binary; O=Open; V=Validity;
P=Plausibility; C=Consistency; D=Distribution; Acc=Overall accuracy.

Models B @) \Y% P C D Acc

Human (Hudson et al. 2019b) 91.2 874 989 972 984 - 893
UpDn (Anderson et al. 2018)  66.6 34.8 96.2 84.6 787 6.0 49.7
MAC (Hudson et al. 2018) 71.23 389 96.2 845 81.6 53 541

LCGN (Hu et al. 2019) 73.7 423 96.5 84.8 847 47 57.0

LXMERT (Tan et al. 2019) 77.2  45.5 96.4 84.5 89.6 57 603

NSM (Hudson et al. 2019a) t  78.9 49.3 96.4 84.3 93.3 3.7 63.2

ours 76.9 46.1 96.3 84.7 89.7 53 605
8.2.3.1  Setup

DATASET Following Tan et al. (2019), we train our encoder on the concatenation
of several corpuses: MSCOCO (Lin et al. 2014), Visual Genome (Krishna et al. 2017),
VQAv2 (Goyal et al. 2017), GQA (Hudson et al. 2019b) and VG-QA (Krishna et al. 2017).
Consequently, our dataset is composed of 9.18M image-sentence pairs (a sentence can be
either a caption or a question).

The GT object-word alignment scores are calculated based on the annotations extracted
from GQA and Visual Genome. In GQA dataset, salient question words and answers are
annotated with visual pointers. A visual pointer consists of a bounding box corresponding
to the visual region described by the words composing the question or the answer.
Nevertheless, as GQA represents only 12% of the dataset, the use of the GQA pointers
would have been insufficient.

To alleviate this issue, we augment the pointer annotation with visual grounded
annotations from Visual Genome. Every Visual Genome image is accompanied by visual
region descriptions forming (description, bounding box) pairs. Unlike in GQA, descriptions
are full descriptive sentences and not small groups of words. Therefore, the so obtained
pointer is less discriminative towards the language part. Thus, we choose to combine these
descriptions in order to obtain sentences with one, two or three pointers. For instance, the
two descriptions “the cat playing near the tree” and “the yellow bird” become “the cat playing
near the tree and the yellow bird”, with the associated bounding boxes.

All in all, by combining annotations from GQA and Visual Genome, we gather roughly
6M image-sentence pairs annotated with pointers. In other words, about 70% of the
total number of the image-sentence pairs in the dataset have fine-grained object-word
alignment annotations.

Note: thus research was conducted prior to the creation of our Goa-oop dataset (intro-
duced in Chapter 5.)
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Table 8.2 — Impact of the proposed object-word alignment weak supervision on the VQA task. The
presented results are calculated on the GQA (Hudson et al. 2019b) test-std split.

Models Consistency Accuracy
ours (w/o alignment supervision) 79.5 54.9
ours (with alignment supervision) 89.7 60.5

ARCHITECTURE We use the VL-Transformer architecture defined in Chapter 3. We
use the original version defined in Tan et al. (2019), with a hidden size d = 768 and a
multi-head number h=12.

PRE-TRAINING DETAILS We train our vision language encoder using the Adam op-
timizer (Kingma et al. 2014) during 20 epochs. However, the VOA supervision is only
added after 10 epochs, following Tan et al. (2019). We set the learning rate to 10~* with
warm starting and learning rate decay. The batch size is 512. Training is done on four
P1oo GPUs.

FINE-TUNING DETAILS For NLVR2 (Suhr et al. 2019), we use the same fine-tuning
strategy as in Tan et al. (2019). Thus, we concatenate the two encoder’s output [CLS]
embeddings — obtained with (imgy, sentence) and (img,, sentence) pairs — and pass them
through a feed-forward layer. We then use a binary cross-entropy loss. We fine-tune
during 4 epochs using Adam optimizer (Kingma et al. 2014). The learning rate is set to
5% 107> and the batch size is 32. We only supervise with the task-specific binary objective,
i.e. we drop all the supervision signals used for encoder training. For the GQA result, we
directly evaluate our pre-trained model without any fine-tuning step.

8.2.3.2 Results

VISUAL QUESTION ANSWERING Table 8.1 compares the results of applying our vision-
language encoder on the VOA task versus the recent published works. As one may observe,
our model obtains the 2nd-best SOTA result’, just after the NSM model (Hudson et al.
2019a). The latter is fundamentally different from our approach (contrary to NSM, our
approach does not rely on the supervision of the scene graphs predictor). Moreover, it
is important to highlight that, unlike previous work (Tan et al. 2019; Lu et al. 2019), our
model has not been fine-tuned on the target dataset after the main training step —i.e. we
kept the same encoder and prediction head used in the pre-training step — making the
obtained result even more significant.

In order to quantify the impact of our object-word alignment weak supervision on the
VOA task, we evaluate the two versions of our model, with and without the proposed
loss, on the GQA dataset. The results are reported in Table 8.2. One may observe that the
proposed weak supervision boosts the accuracy with 45.6 points. Moreover, when we
focus on the consistency metric, our weakly-supervised alignment allows gaining more

1. At the time of writing the related publication, in December 2019.
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Table 8.3 — Evaluation of the proposed object-word alignment weak supervision on the NLVR2
evaluation splits. Models marked with * have been ran by the authors of (Suhr et al.

2019).
Models Dev. Test-P
MAC* (Hudson et al. 2018) 50.8 514
FiLM* (Perez et al. 2018) 51.0  52.1
CNN+RNN?* (Suhr et al. 2019) 534 524
MaxEnt (Suhr et al. 2019) 54.1  54.8
LXMERT (Tan et al. 2019) 74.9  74.5
ours 75.8  75.5

Table 8.4 — Impact of the proposed object-word alignment weak supervision on the Visual Reason-
ing grounded by Language task. The presented results are calculated on the Test-P set
of the NLVR2 dataset.

Models Test-P  Unbalanced Balanced
ours (w/o alignment sup.)  74.5% 76.0% 73.1%
ours (with alignment sup.) 75.5% 77.2% 74.5%

than +10 points. This demonstrates that, by enforcing the model to explicitly align words
with visual objects, we obtained a finer multimodal representation.

NATURAL LANGUAGE FOR VISUAL REASONING (NLVR2) As shown in Table 8.3, our
method outperforms the published SOTA accuracy on NLVR2 with a gain of +1 point?>.
Furthermore, we have performed the same ablation analysis as for the VOA task (i.e. with
and without the object-word alignment weak supervision), and the obtained results are
summarized in Table 8.4. These results are coherent with those calculated on the VOA task
confirming the advantage of the proposed supervision. Note that the scores in Table 8.4
are reported both for unbalanced and balanced subsets of the NLVR2 dataset. This split
takes into account the visual biases present in the dataset. The benefit of our fine-grained
alignment supervision method is constant between both subsets, showing that the gain is
not caused by learning shortcuts.

8.2.3.3 Visualizing Reasoning

In Figure 8.4, we inspect the attention maps inside the inter-modality transformers,
which illustrates the information flow between the two modalities (vision and language) 3.
Generally, attention maps convey information on the importance that a neural map poses

2. At the time of writing the related publication, in December 2019.
3. As a side note, this visualization has been generated before the conception of VisQA. It is worth
noticing that VisQAis perfectly suited for this type of analysis.
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Figure 8.4 — Visualization of the attention maps of the penultimate (=4th) inter-modality trans-
former. Word-object alignment does not emerge naturally for the baseline (without
object-word alignment supervision), whereas our model with the proposed weakly-
supervised objective learns to pay strong cross-attention on co-occurring combinations
of words and objects in the scene. In the attention maps, rows represent words and
columns represent visual objects. For the sake of visibility, we display the bounding
box of the detected object with the highest activation regarding the selected word.
The predicted answer (underlined) is written after the question. Its corresponding
language token is [CLS], i.e. the first row in attention maps.

on local areas in input or activations. In the particular case of our model, the inter-
modality attention map visualizes how modalities are fused by the model, as they give
weight to outputs for a given word as a function of a given object (or vice-versa).

The effectiveness of the new object-word alignment objective is corroborated by attention
units which are higher for object-word pairs referring to the same entity in our model. We
observe a radically different behavior in the baseline’s attention maps, where attention is
less-fine grained: roughly uniform attention distributions indicate that the layer outputs
of all words attend to roughly the same objects.

CAVEAT We do not want to imply, that the exact word-object alignment in the inter-
modality layer is indispensable for a given model to solve a reasoning task, as a complex
neural network can model relationships in the data in various different layers. However,
we do argue, that some form of word-object alignment is essential for solving vision-
language tasks, as the model is required to query whether concepts from the question are
present in the image, and possibly query their relationships to other concepts. Inductive
bias has been added to the model for this type of reasoning in the form of inter-modality
layers, and it is therefore natural to inspect whether this cross-attention emerges at this
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exact place. We would also like to point out that we do not force or favor word-object
alignment at a specific layer, as our proposed supervision signal is injected through a new
module attached to the inter-modality layer (see Figure 8.2). The attention maps show
that the supervision signal is successfully propagated from the new alignment head to
the inter-modality layer.

83 SAMPLE COMPLEXITY OF REASONING SUPERVISION

In the previous section, we experimentally show the benefit of guiding the reasoning
process through supervision. Why does this additional supervision help to learn reasoning ?.

In this section we focus on supervising reasoning programs, i.e. we suppose that
the exact logical function computing the output answer from input is known during
training time (not during testing). We provide a theoretical analysis indicating that the
prediction and supervision of reasoning can improve learnability in vision and language
reasoning under some assumptions. We back up this claim through a theoretical analysis
showing decreased sample complexity under mild hypotheses. This will be experimentally
confirmed in chapter 9.

8.3.1  Measuring complexity of learning problems

Measuring complexity of learning problems and thus generalization, has been a goal of
theoretical machine learning since the early days, with a large body of work based on
PAC-Learning (Valiant 1984; S. Shalev-Shwart et al. 2014). Traditionally, bounds have
been provided ignoring data distributions and focusing uniquely on hypothesis classes
(network structures in neural network language), e.g. as measured by VC-dimension.
Surprising experimental results on training networks on random samples have seemingly
contradicted learning theory (Zhang et al. 2017), in particular Rademacher Complexity.
To cope with this, we use the modern estimators of sample complexity developed for
the deep learning era (see Belkin (2021) for an overview), which provide the possibility
of calculating tighter bounds under the assumption that learning is performed by over-
parametrized deep networks and stochastic gradient descent. These estimators are
data-dependent and as such more powerful.

Within this framework, in particular the work of Arora et al. (2019), sample complexity
is linked to the functional form of the decision function directly. If the functional form is
simpler, learning it requires fewer samples. Arora et al. (2019) provides a direct way to
estimate sample complexity, if the functional form is known, or through its estimation from
training data in the form of a stochastic Gram matrix. Algorithmic alignment between
neural network structures and the decomposition of underlying reasoning functions
has been studied in Xu et al. (2020), with a focus on algorithms based on dynamic
programming. Our theoretical contribution in Section 8.3.2 builds on the latter two
methodologies and extends this type of analysis to intermediate supervision of reasoning
programs.
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(a) Classical training, CE loss on answers y (b) CE loss on y + reasoning supervision r

Figure 8.5 — VQA takes visual input v and a question g and predicts a distribution over answers
y. (a) Classical discriminative training encodes the full reasoning function in the
network parameters 6, while the network activations contain latent variables neces-
sary for reasoning over multiple hops. (b) Additional reasoning supervision requires
intermediate network activations to contain information on the reasoning process,
simplifying learning the reasoning function §g. Under the hypothesis of its decom-
position into multiple reasoning modes, intermediate supervision favors separately
learning the mode selector and each individual mode function. This intuition is
analyzed theoretically in Section 8.3.2.

We here briefly recall the notion of sample complexity, in the context of PAC-learning
(Valiant 1984), which characterizes the minimum amount (=M) of samples necessary to
learn a function with sulfficiently low (= €) error with sufficiently high (= J) probability:

DEFINITION 8.3.1 (SAMPLE COMPLEXITY). Given an error threshold € >0; a threshold on
error probability 6; a training set S = {x;,y;} of M i.i.d. training samples from D, generated
from some underlying true function y, = g(x;), and a learning algorithm A, which generates a
function f from training data, e.g. f = A(S); Then g is (M, €, 6)-learnable by A if

Peop [[If(x) —g(x)[| < €] 21-6 (8.9)

8.3.2 Reasoning supervision reduces sample complexity

In what follows, we denote with g “true” (but unknown) underlying reasoning functions,
and by f functions approximating them, implemented as neural networks. The goal is
to learn a function g able to predict a distribution y over answer classes given an input
question and an input image, see Figure 8.5a. While in the experimental part we use state-
of-the-art Transformer based models, in this theoretical analysis, we consider a simplified
model, which takes as input the two vectorial embeddings g and v corresponding to,
respectively, the question and the visual information (image), for instance generated by a
language model and a convolutional neural network, and produces answers y* as:

Yy =g(q,v) (8.10)

We restrict this analysis to two-layer MLPs, as they are easier to handle theoretically than
modern attention based models. The reasoning function g is approximated by a neural
network f parametrized by a vector 8 and which predicts output answers y as:

y = f(q,v,0) (8.11)
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Our analysis uses PAC-learning (Valiant 1984) and builds on recent results providing
bounds on sample complexity taking into account the data distribution itself. We here
briefly reproduce Theorem 3.5. from Xu et al. (2020), which, as an extension of a result in
(Arora et al. 2019), provides a lower bound for sample complexity of overparametrized
MLPs with vectorial outputs, i.e. MLPs with sufficient capacity for learning a given task:

THEOREM 8.3.2 (SAMPLE COMPLEXITY FOR OVERPARAMETRIZED MLPS). Let A be
an overparametrized and randomly initialized two-layer MLP trained with gradient descent
for a sufficient number of iterations. Suppose g : R? — R™ with components g(x)) =

. ) (i) . . ; i
) oc](-l)(ﬂ](l)Tx)p/ , where ﬁ](.l) c RY, al) € R, and p](l) =1or p](.’) = 21,1 € N. The sample
complexity C4(g,€,0) is
0]
TOTRIPON;
max; X p)” o {1615 +og (%)
(e/m)?

Ca(g,€,6)=0 (8.12)

We use the following Ansatz: since each possible input question requires a potentially
different form of reasoning over the visual content, our analysis is based on the following
assumption.

ASSUMPTION 1. The unknown reasoning function g() is a mixture model which decomposes as
follows

y =) mh, =) mgv), (8.13)

where the different mixture components r correspond to different forms of reasoning related to
different questions. The mixture components can reason on the visual input only, and the mixture
weights are determined by the question q, i.e. the weights 7t depend on the question q, e.g.

T = g=(q).

We call g (.) the reasoning mode estimator. One hypothesis underlying this analysis is that
learning to predict fine-grain alignment or reasoning programs (cf. Chapter 9) allows
the model to more easily decompose into the form described in Equation 8.13, i.e. that
the network structure closely mimics this decomposition, as information on the different
reasoning modes r is likely to be available in the activations of intermediate layers, cf.
Figure 8.5. This will be formalized in Assumption 3 and justified further below.

Considering the supposed “true” reasoning function y* = g(g,v) and its decomposi-
tion given in Equation 8.13, we suppose that each individual reasoning module g, can be
approximated with a multi-variate polynomial, in particular each component hgl) of the
vector h,, as:

i i)/ oli (@) . i) L) (i
R = gr(v) = 2“7(’,])('37(’,])Tv)p7’] with params. w = {062,[58, PSJ)} (8.14)
j

A trivial lower bound on the complexity of the reasoning mode estimator g,(.) is the
complexity of the identity function, which is obtained in the highly unlikely case where
the question embeddings g contain the 1-in-K encoding of the choice of reasoning mode .
We adopt a more realistic case as the following assumption.
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ASSUMPTION 2. The input question embeddings q are separated into clusters according to
reasoning modes r, such that the underlying reasoning mode estimator g, can be realized as a NN
classifier with dot-product similarity in this embedding space.

Under this assumption, the reasoning mode estimator can be expressed as a generalized
linear model, i.e. a linear function followed by a soft-max o

T=gr(q) =0 ([qu, “an,u-D (8.15)

where the different v, are the cluster centers of the different reasoning modes r in the
question embedding space. As the softmax is a monotonic non-linear function, its removal
will not decrease sample complexity 4, and the complexity can be bounded by the logits
7T, = 7] q. Plugging this into Equation 8.13 we obtain that each component y*() of the
answer is expressed as the following function:

; i) pli @
0 = 5 (+7a) Talpoy 516
r j

We can reparametrize this function by concatenating the question g and the visual input v
into a single input vector «, which are then masked by two different binary masks, which

can be subsumed into the parameters -, and ,Bﬁl]) , respectively:
. . . (i)
v =Y Y (7 a)al (B ) (8.17)
T

Extending Theorem 3.5. from Xu et al. (2020), we can give our main theoretical result as
the sample complexity of this function, expressed as the following theorem.

THEOREM 8.3.3 (SAMPLE COMPLEXITY FOR MULTI-MODE REASONING FUNCTIONS).
Let A be an overparametrized and randomly initialized two-layer MLP trained with gradient

descent for a sufficient number of iterations. Suppose g : R — R™ with components g(x)\!) =
. . (i) . . . .
Y, Zj(’er:c)ocsj)(,Bg])Ta:)p"ff where v, € RY, ,1351]) € RY, ocﬁllj) € R, and psj) =1or psj) =2l,1¢
IN.;.. The sample complexity C 4(g, €,9) is
(i
)" +log(m/9)

ol vell2-[|Br
(e/m)?

max; ), ) npﬁl])

Ca(g,€,0)=0

The proof of this theorem is given in Section A.1.

Theorem 8.3.3 provides the sample complexity of the reasoning function g() under
classical training. In the case of program supervision, our analysis is based on the
following assumption (see also Figure 8.5b):

4. In principle, there should exist special degenerate cases, where an additional softmax could reduce
sample complexity; however, in our case it is applied to a linear function and thus generates a non-linear
function.
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ASSUMPTION 3. Supervising reasoning encodes the choice of reasoning modes r into the hidden
activations of the network f. Therefore, learning is separated into several processes,

(a) learning of the reasoning mode estimator g, () approximated as a network branch f()
connected to the program output;

(b) learning of the different reasoning modules g,() approximated as network branches f,() con-
nected to the different answer classes y,; each one of these modules is learned independently.

We justify Assumption 3.a through supervision directly, which separates g () from
the rest of the reasoning process. We justify Assumption 3.b by the fact that different
reasoning modes r will lead to different hidden activations of the network. Later layers
will therefore see different inputs for different modes r, and selector neurons can identify
responsible inputs for each branch f;(), effectively switching off irrelevant input.

We can see that these complexities are lower than the sample complexity of the full
reasoning function given in Theorem 8.3.3, since for a given combination of i, 7, j, the
(i) 0]
term ||, ||2-]| B, |§” dominates the corresponding term ||, || g” . Let us recall that the
different vectors y correspond to the cluster centers of reasoning modes in language
embedding space. Under the assumption that the language embeddings g have been
created with batch normalization, a standard technique in neural vision and language
models, each value 'yﬁz) follows a normal distribution N'(0,1). Dropping indices i,7, j
to ease notation, we can then compare the expectation of the term ||7||2-||8||5 over the
distribution of 7y and derive the following relationship:
(3 +3)
E.ononll7ll2- 18I, = ClIBIIE = ﬁﬁ“lﬂ 5 (8.18)
2
where I' is the Gamma special function and m is the dimension of the language embedding
. We provide a proof for this equality in A.2.

8.3.2.1  Discussion and validity of our claims

The difference in sample complexity is determined by the factor C in Equation 8.18,
which monotonically grows with the size of the embedding space m, which is typically
in the hundreds. For the order of m=>512 to m=768 used for state-of-the-art LXMERT
models (Tan et al. 2019), complexity grows by a factor of around ~2o0.

We would like to point out, that this analysis very probably under-estimates the
difference in complexity, as the difference very much depends on the complexity of the
reasoning estimator 7r, which we have simplified as a linear function in Equation 8.15.
Taking into account just the necessary soft-max alone would probably better appreciate
the difference in complexity between the two methods, which we leave for future work.
Our analysis is also based on several assumptions, among which is the simplified model
(an over-parametrized MLP instead of an attention based network), as well as assumptions
of Theorem 8.3.3 from Xu et al. (2020) and Arora et al. (2019), on which our analysis is
based.
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Lastly, we would like to comment on the fact that we compare two different bounds:
(i) the bound on sample complexity for learning the full multi-modal reasoning given in
Theorem 8.3.3, and (ii) the bound for learning a single reasoning mode given by Theorem
8.3.2. While comparing bounds does not provide definitive answers on the order of
models, both bounds have been derived by the same algebraic manipulations, and we
claim that they are comparable.
We also provide an experimental evaluation of the sample complexity of both variants,
with and without program supervision, in section 9.3.2.2, Figure 9.6.

8.4 CONCLUSION

In this chapter, we have demonstrated that it is possible to improve the reasoning
abilities of VOA models by designing an additional supervision loss. In particular, we
propose to guide the learning of reasoning during the VL-Transformer training through
the weak supervision of the fine-grained word-object alignment. We experimentally
show that our method improves the performance on GQA, and generalizes well to the
language-driven comparison of images, another visual reasoning task. Furthermore, our
experiments are supported by a theoretical analysis, providing cues on the benefit of
this additional supervision. More precisely, we leverage theorems from PAC-learning to
demonstrate that program supervision can decrease sample complexity, under reasonable
hypothesis. In the next Chapter 9, we will show how this reasoning supervision can
be used as a catalyst for transferring reasoning patterns learned on perfect training
conditions.
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CHAPTER

TRANSFERRING REASONING PATTERNS

9.1 INTRODUCTION

“Learning to reason”, what does it mean? As already stated in Chapter 2, providing a
general definition of “reasoning” is difficult. Following Bottou (2014), we define “reasoning”
as “algebraically manipulating previously acquired knowledge in order to answer a new question”.
We also specify that, in the context of ML, “reasoning” can be defined as the opposite
of shortcut learning (Geirhos et al. 2020). As such, we can assess that a VOA model
performs reasoning if it has learned decision rules which perform well on the training
set, in-distribution and all relevant OOD test sets. In Chapter 7, we provided evidence
that deep neural networks can learn to reason, when training conditions are favorable
enough, i.e. when uncertainty and noise in visual inputs is reduced. In particular, we
highlighted the existence of reasoning patterns at work in the attention layers learned by a
Transformer-based VOA model trained on perfect (oracle) visual input. On the contrary,
when comparing this visual oracle with a standard VOA model (i.e. with uncertain visual
input), we discover that the observation does not hold.

In this chapter, we wonder: are reasoning patterns transferable? In other words, is it possi-
ble to transfer, or adapt, the ability of reasoning (modularity, generalization, etc.) learned
in favorable conditions to a less favorable setup where the vision in uncertain? We first
propose a naive approach, by fine-tuning the perfectly-sighted oracle model on the real
noisy visual input (see Figure 9.1). Using the same analysis and visualization techniques
as in Chapter 6, we show that attention modes, absent from noisy models, are transferred
successfully from oracle models to deployable 'models. We report improvements in
overall accuracy and OOD generalization.

While this oracle transfer method provides strong empirical results and insights on
the bottlenecks in problems involving learning to reason, it still suffers from significant
loss in reasoning capabilities during the transfer phase, when the model is required to
adapt from perfectly clean visual input to the noisy one. We conjecture that reasoning
on noisy data involves additional functional components, not necessary in the clean
case, due to different types of domain shifts: (1) a presence shift, caused by imperfect
object detectors, leading to missing visual objects necessary for reasoning, or to multiple

1. In this thesis, we define the term deployable as a model that does not use GT visual inputs. It is not
related to deployment to production.
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Appearance shift + presence shift

GQA data GQA/Vis. Gen./COCO/VQAv2Z GQA data
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Classif. loss
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Figure 9.1 — We argue that noise and uncertainties in visual inputs are the main bottleneck in VOA
preventing successful learning of reasoning capacities. In a deep analysis, we show
that oracle models with perfect sight, trained on noiseless visual data, tend to depend
significantly less on bias exploitation. We exploit this by training models on data
without visual noise, and then transfer the learned reasoning patterns to real data.
We illustrate successful transfer by an analysis and visualization of attention modes.

(duplicate) detections; and (2) an appearance shift causing variations in object embeddings
(descriptors) for the same class of objects due to different appearance.

We then propose to enhance oracle transfer by adding a regularization term, minimizing
loss of the reasoning capabilities during transfer. In particular, we address this problem
through program prediction as an additional auxiliary loss, i.e. supervision of the sequence
of reasoning operations along with their textual and/or visual arguments. This additional
supervision is directly related to Chapter 8, where we demonstrated, experimentally and
theoretically, that guiding the reasoning process during training (through supervision)
helps to improve the predictions of the VOA model. Therefore, to maintain a strong link
between the learned function and its objective during the knowledge transfer phase, when
inputs are switched from clean oracle inputs to noisy input, the neural model is required
to continue to predict complex reasoning programs from different types of inputs. In an
experimental study, we demonstrate the effectiveness of this guided oracle transfer on GQA
and show its complementarity when combined to BERT-like self-supervised pre-training.

CONTRIBUTIONS OF THE CHAPTER

(i) an oracle transfer method allowing to transfer, through fine-tuning, the knowledge
learned from perfect visual input to a deployable setting where the visual represen-
tation is uncertain.

(ii) an augmented guided oracle transfer, leveraging results from Chapter 8 in order to
improve the transfer of reasoning patterns by adding a program supervision loss.

(iif) we experimentally demonstrate the efficiency of the reasoning pattern transfer and
show that it increases VOA performance on both in- and out-of-distribution sets,
even when combined with BERT-like pre-training.
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9.2 TRANSFERRING REASONING PATTERNS FROM ORACLE

Our purpose is to transfer the reasoning patterns learned by a visual oracle, when
the uncertainty in the visual input is reduced, to a standard model taking as input the
imperfect image representation extracted by an object detector. Therefore, we propose
a method called oracle transfer. It consists in first pre-training the VOA model on the
oracle (perfect) visual input, and then further training on the standard (noisy) data. In
Chapter 7, we conjecture that the uncertainty in vision is one of the major cause leading
to shortcut learning. Therefore, we argue that the first optimization steps are crucial for
the emergence of specific attention modes, and claim that such oracle pre-training puts
the model in favorable condition for avoiding learning shortcuts.

9.2.1 Method: oracle transfer

ORACLE TRANSFER As shown in Figure 9.1, training proceeds as follows:

1. Training of a perfectly-sighted oracle model on GT visual inputs from the GQA
annotations, in particular a symbolic representation concatenating the 1-in-K encoded
object class and attributes of each object.

2. Initializing a new model with the oracle parameters. This new model is taking noisy
visual input in a form of the dense representation (2048-dim feature vector extracted
by Faster-RCNN (Ren et al. 2015) fused with bounding-boxes). The first visual layers
(TY) are initialized randomly due to the difference in nature between dense and
symbolic representations.

3. Optionally and complementary, continue training with large-scale self-supervised
objectives (LXMERT (Tan et al. 2019)/BERT-like) on combined data from Visual
Genome (Krishna et al. 2017), MS COCO (Lin et al. 2014), VQAv2 (Goyal et al. 2017).

4. Fine-tuning with the standard VOA classification objective on the target dataset (GQA
or VQAv2).

9.2.2 Experimental evaluation

9.2.2.1 Setup

DATASET  Our models are trained on the balanced GQA (Hudson et al. 2019b) training
set (~1M question-answer pairs). LXMERT pretraining is done on the on a corpus gather-
ing images and sentences from MSCOCO (Lin et al. 2014) and VisualGenome (Krishna
et al. 2017). Note that, as the GQA dataset is built upon VisualGenome, the original
LXMERT pre-training dataset contains samples from the GQA validation split. Therefore,
we removed these validation samples from the pre-training corpus, in order to be able to validate
on the GQA validation split. We evaluate on the GQA, our own GQA-00D (cf. Chapter 5)
and VQAv2 (Goyal et al. 2017) datasets.

ARCHITECTURE We use the same compact VL-Transformer architecture as defined in
Chapter 3.
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Figure 9.2 — We reproduce Figure 7.5, (a) and (b), with our VL-Transformer + dense Oracle Transfer
(same heads/layers). As we can see in (c), the attention heads have retained their
“bimorph” property, although their shape is distorted by the noisy visual training. In
addition, when we measure the attention mode on questions involving the choose
color function, in (d), we observe that the attention heads are still function-dependant,
although in a lesser extent.

TRAINING DETAILS All models were trained with the Adam optimizer (Kingma et al.
2014), a learning rate of 10~* with warm starting and learning rate decay. Training was
done on one P1oo GPU. Two P10oo GPUs were used for BERT/LXMERT (Tan et al. 2019)
pre-training. For the oracle, the batch size was equal to 256. We train during 40 epochs and
select the best epoch using accuracy on validation. The oracle transfer follows exactly the
same procedure, except when using LXMERT pretraining. In that case, BERT/LXMERT
pretraining is performed during 20 epochs max with a batch size of 512. All pretraining
losses are added from the beginning, including the VOA one. After pre-training, we
fine-tune either on GQA or VQAv2. For GQA, we fine-tune during 4 epochs, with a batch
size of 32 and a learning rate equal to 10~°. For VQAvz2, we fine-tune during 8 epochs,
with a batch size of 32 and a learning rate equal to 10~°. Hyperparameters are selected
either on the testdev (for VQAv2) or validation (for coa-oop and GQA) sets

9.2.2.2 Results

EVALUATING TRANSFER We evaluate the impact of Oracle Transfer on three different
benchmarks in Table 9.1, observing that transferring knowledge from the oracle signifi-
cantly boosts accuracy. We also evaluate the effect of Oracle Transfer on bias reduction and
benchmark on Goa-00D (cf. Chapter 5), reporting gains in OOD settings — rare samples,
“acc-tail” — by a large margin, which suggests improved generalization ability. Our
experiments show that Oracle Transfer is complementary to large-scale vision-language
self-supervised objectives of type LXMERT /BERT-like pretraining as introduced in (Tan
et al. 2019). An overall gain of about 41 accuracy points is observed from models (c) to (d)
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Model Pretraining GQA-OOD GQA | VQAv2
ode Oracle LXMERT | acc-tail acc-head | overall | overall

(a) Baseline 42.9 49.5 52.4 -

(b) Oracle transfer (ours) v 48.5 55.5 56.8 -

(c) Baseline (+LXMERT) v 47.5 54.7 56.8 69.7

(d) Oracle transfer (ours) (+LXMERT) v v 48.3 55.2 57.8 70.2

Table 9.1 — Quantitative evaluation of the proposed knowledge transfer from oracle models.
All listed models are deployable and based on the same compact VL-Transformer
architecture (cf. Chapter 3), no GT input is used for testing. Models: (c)+(d) are pre-
trained with LXMERT (Tan et al. 2019)/BERT-like objectives after Oracle Transfer. All
scores are obtained on GQa-ooD-testdev (cf. Chapter 5); GQA-testdev; VQAv2-test-std.
Training hyperparameters selected on respective validation sets.

Method Input train  Input test  Acc.
(a) Baseline Dense Dense 61.7
(b) Transf. w/o retrain 1-in-K GT  1-in-K pred. 58.8
(c) Transf. w/ TV retrain  1-in-K GT Dense 61.7
(d) Transf. w/ retrain 1-in-K GT Dense 66.3

Table 9.2 — Impact of different types of transfer, GQA (Hudson et al. 2019b) val. accuracy. All
models are deployable (no GT used for testing).

in Table 9.1, attributed to Oracle Transfer. As a comparison, LXMERT/BERT pretraining
alone does not improve “acc-tail” on GQA-0OOD.

CROSS-DATASET TRAINING We explore whether the effects of oracle knowledge gener-
alize beyond the GQA dataset, and evaluate training the oracle on GQA GT annotations,
performing LXMERT/BERT pretraining, and transferring to a model trained on the
VQAv2 dataset. We improve VQAv2 accuracy by a significant margin, suggesting positive
transfer beyond GQA (Table 9.1).

TRANSFER ABLATION STUDIES We evaluate different variants of knowledge transfer,
shown in Table 9.2, on the GQA validation set only. We explore a direct transfer from the
oracle to a deployable model without retraining, by making visual input representations
comparable. To this end, the deployable model receives 1-in-K encoded class information,
albeit not from GT classes but taking classes from the Faster R-CNN detector (Table 9.2-b).
While inferior to the baseline, its performance is surprisingly high, suggesting that the
oracle learns knowledge which is applicable in real/noisy settings. Performance gains
are, however, only obtained by finetuning the model to the uncertainties in dense visual
embeddings. Retraining only the visual block (Table 9.2-c), performances are on par with
the baseline, retraining the full model (Table 9.2-d) gains +4.6 points.

COMPARISON WITH SOTA  Oracle Transfer allows improving performance of the tiny-
LXMERT model both in-distribution and OOD settings (Table 9.8, bottom part). Further-
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[SEP]
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Figure 9.3 — Example for the difference in attention in the second TL*V layer. The oracle drives
attention towards a specific object, “fork”, also seen after transfer but not in the baseline
(we checked for permutations). The transferred model overcame a miss-labelling of
the fork as a knife. This analysis was performed with our interactive visualization
tool VisQA, introduced in Chapter 6.

more, oracle transfer is parameter efficient and achieves on-par overall accuracy with
MCAN-6 (Kim et al. 2018) while halving capacity.

QUALITATIVE ANALYSIS Finally, we qualitatively study the effects of Oracle Transfer
by analyzing the attention modes as done in Chapter 7. As shown in Figure 9.2, after
transfer, the VL-Transformer preserves the “bimorph” property of its attention heads,
which was present in the original oracle model (Figure 7.3-a), but absent in the baseline
(Figure 7.3-b). In addition, Figure 9.3 shows the attention maps of the TV heads in the
second cross-modal layer for an instance. This head, referenced as VL, 1,0 in Figure 7.4,
is observed to be triggered to questions such as verify attr and verify color provided
as example. We observe that the oracle model draws attention towards the object “fork” in
the image, and also, to a lesser extent, in the transferred model, but not in the baseline
model. Similar attention patterns were observed on multiple heads in the corresponding
cross-modal layer — this analysis took into account possible permutations of heads
between models. Interestingly, the miss-classification as a “knife” prevents the baseline
from drawing attention to it, but not the transferred model.

9.3 GUIDING THE ORACLE TRANSFER

Although it provides encouraging experimental results, the oracle transfer is still limited.
When transferring the reasoning patterns from oracle to noisy settings, two different shifts
have to be addressed:

(1) a presence shift: as contrary to the oracle settings, the imperfect object detection in
standard setting causes some objects to be not detected, falsely detected or detected
multiple times.

(2) an appearance shift: while oracle objects are encoded as one-hot vectors, objects
extracted using an object detector are better represented using dense vectors.

The oracle transfer method mainly addresses the appearance shift, through fine-tuning. We
now propose to tackle the presence shift.
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Method © O L OOD GQA

UpDn (Anderson et al. 2018) 22 42.1  51.6
BAN-4 (Kim et al. 2018) 50 47.2  54.7
MCAN-6 (Yu et al. 2019) 52 46.5 563
Oracle transfer (ours) 26 Vv 4855 56.8
LXMERT-tiny 26 v. 475 568
LXMERT-tiny + Oracle transfer (ours) 26 v v 483 57.8
LXMERT (Tan et al. 2019) 212 v’ 498 596

|®| = number of parameters (M); OOD = GQa-00D Acc-tail.
O = Oracle Transfer, L = LXMERT/BERT pretraining.

Table 9.3 — Comparison with SOTA on GQA and GQa-00D (c¢f. Chapter 5) on testdev. Hyperparame-
ters were optimized on GQA-validation.

We draw inspiration from results in Chapter 8, where we demonstrated that supervising
the model to learn a fine-grained alignment between the question’s words and visual
objects helps to reason. Based on these insights, we propose to follow a similar method
and guide the reasoning process during the oracle transfer. In particular, we propose to
supervise the model to predict the whole reasoning steps required to answer the question.
Indeed, as described in Figure 9.4, reasoning involves to decompose the question into
multiple hops, called operation steps, each operation having a specific function and
arguments (question’s words or visual objects). In particular, our method is designed to
mitigate the presence shift, by enforcing the model to identify which words and objects
are necessary to answer the question. Thereby, we conjecture that supervising the VvOA
model to predict these operations during the oracle transfer will help to better transfer
the reasoning patterns.

9.3.1 Method: guided oracle transfer

We conceived a regularization technique which supervises the prediction of reasoning
steps required to answer the question. We therefore assume the existence of the following
GT annotation of reasoning programs >.

A given data sample consists of a sequence {g;} of input question word embeddings,
a set {v;} of input visual objects, the ground truth answer class y* as well as the GT
reasoning program, which is structured as a tree involving operations and arguments.
Operations {0} } are elements of a predefined set {choose color, filter size,..}. The
arguments of these operations may be taken from (i) all question words, (ii) all visual
objects, (iii) all operations — when an operation takes as argument the result of another
operation. Hence, arguments are annotated as many-to-many relationships. In the
question “Is there a motorbike or a plane?”, for instance, the operation “or” depends on the

2. GT annotation of reasoning programs can be easily obtained in semi-automatically generated dataset
such as GQA(Hudson et al. 2019b)
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Figure 9.4 — When answering a question posed over an image, one needs to decompose the
reasoning into multiple steps (i.e. operations), going further than the alignment between
vision and language. In this illustration, the question can be answering by: ©
localizing the flag; @ relating it to the boat on the left of it; and @ identifying its size.
Therefore, we propose to boost the oracle transfer by supervising the vQA model to
predict the sequence of operations associated to the question-image pair.

result of the two operations checking the existence of a specific object in the image. This
is denoted as a?j*e{O, 1} where a?j*zl means that operation i is associated with question
word j as argument and, similarly, a;;*=1 indicating a visual argument and a?].*zl an
operation result argument.

We propose to apply the regularization on top of the VL-Transformer architecture (cf.
Chapter 3), based on sequences of self- and cross-modality attention. For this purpose,
we define a trainable module for program generation (program decoder), added to the
output of the VL-Transformer model as shown in Figure 9.5 — an adaptation to other
architectures would be straightforward.

PROGRAM DECODER In the lines of Chen et al. (2021), the program decoder has been
designed in a coarse-to-fine fashion. It first generates @ a coarse sketch of the program
consisting only of the operations, which are then @ refined by predicting textual and
visual arguments and dependencies between operations.

COARSE: OPERATION @ This module only predicts the sequence of operations {0; };c[o 1]
using a recurrent neural network variant (GRU) (Cho et al. 2014), whose initial hidden
state is initialized with the ycrs token embedding of the VOA transformer — the same
embedding from which classically the final answer y is predicted, cf. Figure 9.5. Inference

is stopped when the special STOP operation is predicted. At each GRU time step i, a
new hidden state h; is computed, from which the operation o; is classified with a linear
projection. It is supervised with a cross-entropy loss:

Eop = 2i£CE(Oi/ Oj)
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Figure 9.5 — A vision+language transformer with an attached program decoder. The decoder is
fed with the VL-Transformer’s penultimate embedding (just before the VQA classi-
fication head) and generates programs using a coarse-to-fine approach: @ a coarse
program is generated using a GRU, consisting of a sequence of program operations
embeddings {0;};c(g ,—1]- @ It is then re-fined by predicting the visual afj and textual

;.7].

shown: prediction of the operation’s dependencies.

a’. arguments using an affinity score between operation and input embeddings. Not

FINE: INPUT ARGUMENTS @ The coarse program is then refined by predicting the
operations” arguments. We first deal with textual and visual arguments only. Affinity
scores a?j between each operation’s hidden embedding h; and each token embedding g;
are computed with a 2-layer feed-forward network from concatenated embeddings. They
represent the probability of the word g; to belong to the argument set of operation o;.
Similar scores aj; are computed for operations and visual objects. They are supervised
with BCE losses:

*
Loarg = ZijEBCE(a?]'/a?j )

Evarg = ZijLBCE (a%/ U/Z*)

FINE: OP ARGUMENTS Next, the dependencies are predicted, i.e. arguments which
correspond to results of other operations, and which structure the program into a tree.
We deal with these arguments differently, and compute the set of dependency arguments
for each operation o; with another GRU, whose hidden state is initialized with the hidden
state h; of the operation. The argument index ag. is a linear projection of the hidden state
and supervised with BCE:
»Cvurg = Zij‘CBCE(a?]'/ a;i]*)

PROGRAM SUPERVISION The coarse-to-fine program decoder is trained with the four
additional losses weighted by hyperparameters «, 3, 7y, 6.

E - ﬁvqa + DC'EOP + ﬁ.ﬁdep + ’)’.Eqarg + 5.£varg
—— >

VQA Program supervision

GROUND TRUTH PROGRAMS  We use ground truth information from the GQA dataset,
whose questions have been automatically generated from real images. Each sample
contains a program describing the operations and arguments required to derive the
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answer for each question. However, the GT programs have been created for GT visual
arguments (GT objects), which do not exactly match the visual input of an object detector
used during training and inference (Anderson et al. 2018). We therefore construct a soft
target, by computing intersection-over-union (IoU) between GT and detected objects.

GUIDED ORACLE TRANSFER Our method uses program supervision to regularize
knowledge transfer from a visual oracle to noisy input, as introduced in the oracle transfer
method. We perform the following steps:

1. Oracle pre-training on GT visual input on the GQA dataset, including program
supervision;

2. (optionally) BERT-like pre-training on data from GQA unbalanced, with program-
supervision;

3. Fine-tuning on the final VOA objective on the GQA dataset, while keeping program
SUpervision.

9.3.2 Experimental evaluation

9.3.2.1 Setup

DATASET Our models are trained on the balanced GQA training set (~1M question-
answer pairs). However, LXMERT pretraining is done on the unbalanced training set
(~15M question-answer pairs). The latter contains more questions and programs, but
the same number of images (~100K images). Note that LXMERT (Tan et al. 2019) is
originally pre-trained on a corpus gathering images and sentences from MSCOCO (Lin
et al. 2014) and VisualGenome (Krishna et al. 2017). In this work, we only train on the
GQA unbalanced set, with VisualGenome images. The maximum number of operations
in one program is set to Nyuxop = 9. The total number of operation’s labels is Ny, = 212.
We evaluate on the GQA (Hudson et al. 2019b) and GQa-00D (cf. Chapter 5) datasets.

ARCHITECTURE  VQA architecture: we use the compact VL-Transformer introduced in
Chapter 3. Program decoder: The hidden size is set to 128 (same as in the VL-Transformer).
We use GeLU (Hendrycks et al. 2016) as non-linearity, along with layer norm (Ba et al.
2016). We use a one layer GRU (Cho et al. 2014) with hidden size equals to 128, to infer the
operation’s hidden embedding h;. It is followed by a two-layers MLP (128 — 64 — N,
projecting h; into a one-hot vector o;. Affinity scores a?j between each operation’s hidden
embedding h; and each token embedding gq; (or v;) are computed with a 2-layer feed-
forward network (256 — 64 — 1) from concatenated embeddings. The op arguments are
predicted from h; using another one layer GRU with hidden size equals to 128, followed
by a nonlinear projection (128 — Nyax0p). Hyperparameters aresettoa =1, =1, v =1
and ¢ = 100.

TRAINING DETAILS All models were trained with the Adam optimizer (Kingma et al.
2014), a learning rate of 10~* with warm starting and learning rate decay. pretraining:
performed during 20 epochs with a batch size of 320 (256 when using VinVL features).
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Run Model #GPUs # hours Total number of runs

train Oracle 1 30 ~5
train+test ours 36 RCNN 1 9 ~ 100
train+test ours 100 RCNN 2 10 ~5
train+test ours VinVL 2 10 ~5
train+test ours 36 RCNN + LXMERT pretrain 2 100 ~ 20
train+test ours 36 RCNN + LXMERT finetune 1 4 ~ 50
train+test  ours VinVL + LXMERT pretrain 3 180 2
train+test  ours VinVL + LXMERT finetune 1 6 2

Table 9.4 — Training and execution time for one run. Ours corresponds to our guided oracle transfer.
We also provide the approximated amount of runs done during this work (hyper
parameters search, abblation, efc.)

Oracle | Prog. GQA-00D GQA AUCt
Model . : % *

transf. | sup. | acc-tail acc-head | test-dev binary* open* test-std | prog.
< (a) Baseline 42.9 49.5 52.4 - - - /
s (b) Oracle transfer v 48.2403 54.6+11 | 57.0+03 74.5 42.1 57.3 /
& (c) Guided oracle transfer| v V' 148.8+01 56.1:03 |57.8+02 75.4 43.0 58.2 97.1
% (d) Baseline 475 552 58.5 - - - /
g (e) Oracle transfer v 47.1 54.8 58.4 77.1 42.6 58.8 /
& () Guided oracle transfer v v’ |48.0x06 56.6:06 |59.3%03 77.3 44.1 59.7 96.4

Table 9.5 — Guided oracle transfer: Impact of program supervision on Oracle transfer for vision-
language transformers. LXMERT (Tan et al. 2019) pre-training is done on the GQA
unbalanced training set. We report scores on GQA (Hudson et al. 2019b) (test-dev and
test-std) and GQA-00D (test). * binary and open scores are computed on the test-std; '
we evaluate visual argument prediction by computing AUC@o0.66 on GQA-val.

All pretraining losses are added from the beginning, including the VOA one. fine-tuning:
on the GQA balanced set during 4 epochs, with a batch size of 32 and a learning rate equal
to 10~°. Hyperparameters are selected either on the testdev (for GQA) or validation (for
GQA-00D) sets. When specified (with £) we provide the average accuracy and standard
deviation computed on three runs with different random seeds.

COMPUTING RESOURCES & c02 EMISSION Training and evaluation has been per-
formed on several compute infrastructures, which include an Nvidia DGX-A100 with 8x
A100 GPUs and a cluster with P1oo and RTX 2080 GPUs. After design and development,
the final training and evaluation runs have been performed on Geforce RTX 2080 GPUs.
We provide an estimate for the amount of compute in Table 9.4 — the number of GPUs
and approximate execution times for different models and experimental settings (train,
validation, and test). The RTX infrastructure has a carbon efficiency of 0.035

131

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI101/these.pdf
© [C. Kervadec], [2021], INSA Lyon, tous droits réservés



50|

40 |

GQA val accuracy (%)

+p1‘0g. Sup.
—a— baseline
| | | | | |

0 20 40 60 80 100
Portion of training data (%)

Figure 9.6 — Program supervision leads to a decreased sample complexity. We vary the amount
of training data from 5% to 100%, comparing overall accuracy obtained with and
without program supervision. We observe that adding program supervision allows to
reach an accuracy similar to the baseline while using fewer data. In this setup, we do
not use oracle transfer neither LXMERT pretraining.

9.3.2.2 Results

PROGRAM SUPERVISION IMPROVES VISUAL REASONING Table 9.5 reports the effec-
tiveness of program prediction when combined with oracle and BERT-like pretraining on
the GQA dataset, and corroborates the results found in the theoretical analysis. In addi-
tion, when using both program supervision and LXMERT (Tan et al. 2019) but without
oracle transfer, we achieve an accuracy of 58.8 on the testdev set of GQA. This is lower
than oracle transfer’s accuracy, demonstrating the complementarity of the two methods.
We note that the majority of the gain is achieved on the more challenging open questions.
In addition, results on GQA-00D (acc-tail and acc-head) suggest that the gains are obtained
in, both, out- and in-distribution settings. However, as already observed in Chapter o,
LXMERT pre-training tends to decrease the acc-tail gains brought by oracle transfer plus
program supervision. We evaluate the program prediction performance by measuring
the area under the ROC curve (AUC) on the visual argument prediction with an IoU
threshold of 2=0.66. Models (c) and (e) achieve, respectively, 97.1 and 96.4 AUC scores,

3
demonstrating the effectiveness of the program decoder.

DECREASED SAMPLE COMPLEXITY In Figure 9.6, we verify that program supervision
does indeed reduce the sample complexity as demonstrated in Chapter 8. For this purpose,
we measure the accuracy on GQA (validation set) while reducing the amount of data
used during the training. We observe that adding program supervision allows to reach an
accuracy similar to the baseline while using less data. Thus, for a given target accuracy
(e.g. > 55%), the number of required training samples is lower when using our program
supervision method (30% vs. 100% of the data).
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) Oracle| cQa-oop |GQA
Ablations transf. | acc-tail (val.) | val.
(1) VQA only 46.9 62.2
(2) Coarse only 46.5 62.5
(3) Coarse + dep. 46.8 62.8
(4) Full w/o v.arg 473 63.7
(5) Full 49.9 66.2
(6) Random prog. ‘ ‘ 45.7 61.4
(7) No prog v 50.0 66.4
(8) Uni-modal v 49.9 66.5
(9) Cross-modal v 50.4 67.4

Table 9.6 — Ablation study. (1-5): we analyze different types of program supervision, and show
that visual arguments are the key. (6): we compare with the random prog baseline,
where we randomly replace the ground truth program with a program picked from
another question. (7-9): we study the impact of the program supervision position, after
uni-modal layers or after cross-modal layers. The supervision is more efficient when
used after cross-modal interactions. No LXMERT /BERT pre-training.

VISUAL ARGUMENTS ARE THE KEY  We study the impact of different types of program
supervision in Table 9.6 (1-5). We can see the importance of supervising arguments,
in (4) and (5). The supervision of visual arguments (5) contributes most to the gain
in performance, again corroborating that visual uncertainty is the main bottleneck for
reasoning on the GQA dataset. In addition, as a sanity check, we show in (6) that
supervising with random programs does not improve the baseline.

PROGRAM SUPERVISION ENHANCES CROSS-MODAL INTERACTIONS In Table 9.6
(7-9), we study how the inputs of the program prediction module influence the VOA
accuracy. In particular, we test two settings: (8) uni-modal, where the programs are
predicted from the vision and language embeddings right after the uni-modal layers
(language and vision only in Figure 9.5); and (9) cross-modal, where the programs are
predicted after the cross-modal layers. We observe that, contrary to the latter, the former
does not improve the baseline ((8) vs (7) in Table 9.6). This highlights the fact that the
program supervision mainly impacts the operations in the cross modal layers, where the
most complex reasoning operations are performed.

PROGRAM SUPERVISION ALLOWS TAKING ADVANTAGE OF BETTER VISION We ana-
lyze the impact of using our method with a better input image representation. Increasing
the number of objects from 36 to 100 per image ((g) and (h) in Table 9.7), allows to
further increase the gains brought by our method. On the contrary, the score of the
baseline model remains unchanged, showing that the program supervision allows taking
advantage of a bigger number of object proposals. Similarly, replacing the faster-RCNN
features by the more recent and more accurate VinVL ones ((i-1) in Table 9.7) results in
better performances.
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Model Visual | Oracle | Prog. GQA
features | transf. | sup. |test-dev binary* open® test-std

(g) Oracle transfer v 57.0+04 - - -
(h) Guided oracle transfer 100 RENN v v’ | 58.2x01 - - -

(i) Oracle transfer v 59.6=01 - - -

(j) Guided oracle transfer VinVL v v’ | 60.9z02 - - -
(k) Oracle transfer +lxmert v 61.4 79.6 47.5 62.5
(1) Guided oracle transfer +lxmert v v | 618 80.1 48.0 63.0

Table 9.7 — Impact of improved visual inputs while using program supervision on Vision-
Language Transformers. Scores on GQA (Hudson et al. 2019b). *binary/open are
computed on test-std. VinVL (Zhang et al. 2021) RCNN (Ren et al. 2015)

Visual | Additional | Training data (M) GQA-0OD GQA
Method .. . .

feats. |supervision |Img  Sent acc-tail acc-head | bin. open all
BAN4 (Kim et al. 2018) RCNN | - A 01 =1 47.2 51.9 |[76.0 40.4 57.1
MCAN (Yu et al. 2019) RCNN | - R 01 N1 46.5 53.4 |75.9 422 58.0
Oracle transfer RCNN | - ~0.18 ~1 48.3 55.5 75.2 44.1 58.7
MMN (Chen et al. 2021) RCNN | Program ~0.1  ~15 48.0 555 |78.9 44.9 60.8
LXMERT (Tan et al. 2019) RCNN | - ~0.18 =9 49.8 57.7 |77.8 45.0 60.3
Guided oracle transfer VinVL | Program 0.1 15 49.1 59.7 |80.1 48.0 63.0
NSM (Hudson et al. 2019a) SG |Scene graph | 0.1 ~1 - - 78.9 49.3 63.2
OSCAR+vinv. (Zhang et al. 2021) | VinVL | - 5.7 =9 - - 82.3 48.8 64.7

Table 9.8 — Comparison with the state of the art on the GQA (Hudson et al. 2019b) (test-std)
and GQa-00D (Kervadec et al. 2021a) (test) sets. For a fair comparison, we provide
information about the required training data and supervision. RCNN (Anderson et al.
2018), SG (Hudson et al. 2019a), VinVL (Zhang et al. 2021)
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QUESTION

Does the boat to the left of the

CHOOSE
SIZE

PREDICTION: SMALL

(IR S OPERATION = : Op argument |Textua| argument | |Vi5ua| argument |

Figure 9.7 — Example of program prediction. The question is: “Does the boat to the left of the flag
looks small or large?”. Our model (ours+lxmert with VinVL) correctly answers “small”.

COMPARISON WITH sOTA  We report in Table 9.8 the results obtained by our approach
compared to the current SOTA on the GQA and GQA-00D datasets. In order to ensure a
fair comparison, we also provide, for each method, information regarding the amount of
data (images and sentences) used during training. As shown in Table 9.8, our approach
compares favorably with SOTA, since it obtains the second-best accuracy (with a 0.2 points
gap) on the GQA test-std set among the approaches which not use extra training data. The
results also remain competitive when comparing to the OSCAR:vinvi. (Zhang et al. 2021),
while being trained with 50 times fewer images. On GQA-00D, our approach obtains the
second best acc-tail score (and the best acc-head one) with a much less complex architecture
than current SOTA (26M vs 212M trainable parameters compared to LXMERT (Tan et al.

2019)).

VISUALIZATION OF PREDICTIONS We provide examples of program prediction in
Figure 9.7 and Figure 9.8. In Figure 9.7, the question is ‘does the boat to the left of the
flag look small or large?’. The program decoder successfully infers the correct program.
It first predicts the coarse operations — select, relate, choose size —, then adds the
arguments taken from the image or the question — boat, flag, small, large —. Finally, the
VOQA model predicts the correct answer ‘small’. In Figure 9.8, the question is ‘who is wearing
goggles?’. Similarly to the first example, the program decoder generates coarse operations
—select, relate, query name —and visual/textual arguments — woman, who, goggles,
wearing—. In these two examples, the decoder correctly predicts that the programs are
chains of operations (special case of a tree). At contrary, a question like “are there nuts or
vegetables?” is a not a chain because of the presence of exist and or operations.

9.4 CONCLUSION

Drawing conclusions from analysis conducted in Part III, we have shown that reasoning
patterns can be partially transferred from oracle models to SOTA VOA models based on
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QUESTION

- SELECT is|lwea ringlkoggles}’

RELATE ° GT: Woman

PREDICTION: WOMAN

LEGEND: || 0JZ=0flel\ = : Op argument |Textua| argument | |Visua| argument

Figure 9.8 — Example of program prediction. The question is: “Who is wearing goggles?”. Our
model (ours+lxmert with VinVL) correctly answers “woman”.

Transformers and BERT-like pre-training. The accuracy gained from the transfer is partic-
ularly high on questions with rare GT answers, suggesting that the knowledge transferred
is related to reasoning, as opposed to bias exploitation. We have also demonstrated that it
is possible to improve this knowledge transfer by providing an additional supervision
of program annotations. Furthermore, our experiments are aligned with theoretical and
experimental results found in Chapter 8, demonstrating that program supervision can
decrease sample complexity. The proposed method relies on the availability of reason-
ing program annotations, which are costly to annotate, especially when dealing with
human-generated questions. Recent work has already managed to gather such kind of
annotations Das et al. 2016. The next step will be to extend the method to configurations
where the program annotation is rare or incomplete.
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CHAPTER

GENERAL CONCLUSION

10.1 SUMMARY OF CONTRIBUTIONS

This thesis focuses on the question of bias vs reasoning in VOA. Part I and Part III
provide a diagnostic on the effect of shortcut learning on VOA. Drawing a conclusion from
it, Part IV proposes two complementary methods, improving the model’s predictions
while mitigating the effect of biases. All in all, our contributions can be summarized as
follows:

EVALUATE (PArT II)  We conduct a comprehensive review of existing evaluation meth-
ods for VOA. We show that they struggle to correctly evaluate the reasoning ability, so we
propose our own benchmark called GQa-0op. It consists in providing a multidimensional
evaluation, allowing to measure the OOD performance — which we argue to be related to
the reasoning ability — by controlling the rarity of the used test examples (in-distribution vs
out-of-distribution). Thus, Goa-00D has been designed to address most of the limitations
found in others benchmarks: evaluate both in- and out-of-distribution accuracies at the
same time, validate in OOD setting, maintain natural biases. Thereby, we experimentally
demonstrate that all the VOA models that we have tested are brittle to OOD evaluation. This
suggests that they have learned to rely on shortcuts instead of reasoning. Furthermore,
our results show that even methods specifically devised to mitigate the influence of biases
fail in our setup. GQA-00D is publicly available: we encourage researchers to evaluate
their models on it, or to extend our methodology to other tasks.

ANALYZE (ParT IIT)  We complement the quantitative results provided by the eval-
uation part (Part II) with qualitative observations. For this purpose, we conduct an
instance-based visualization of the attention learned by a VL-Transformer using VIsQA
(developed in collaboration with Théo Jaunet). This analysis highlights interesting insights
about the type of reasoning which is performed by the learned model. In particular, we
observe potential bottlenecks for learning to reason, such as the uncertainty in the visual
part (e.g. useful objects are not correctly detected), the difficulty to precisely align visual
regions with question words, or other language biases (e.g. with logical operators). Then,
in a broader dataset-level study of the learned attention maps, we analyze the emergence
of reasoning patterns in the same VL-Transformer. We demonstrate that the ability to
relate attention to the task at hand (i.e. the ability to reason) is present when the training
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conditions are favorable enough, e.g. when the uncertainty in the visual part is reduced
(visual oracle), but not in the standard setting.

IMPROVE (PART IV) In the last part, we design two complementary approaches for
improving reasoning in VOA. The first one focuses on training supervision. In particular,
we propose to add a proxy loss for reasoning (e.g. a weak supervision of the fine-grained
word-object alignment). In an experimental study, we show that this additional su-
pervision helps to improve the visual reasoning performance. We complement those
experimental results, by providing theoretical clues (based on PAC-learning) demonstrat-
ing that reasoning supervision reduces the sample complexity, and eases the learning of
reasoning. The second method directly takes inspiration from the results obtains in the
analysis part (Part III). We propose to transfer the reasoning patterns learned when the
training conditions are favorable to the standard settings having uncertainty in the input.
We show that this transfer is feasible and does improve the VOA performances in both
in- and out-of-distribution settings. Furthermore, we combine the transfer of reasoning
patterns with the reasoning supervision and experimentally demonstrate that the latter is
a catalyst for the former.

10.2 PERSPECTIVES FOR FUTURE WORK

The work conducted in this thesis opens a wide range of exciting perspectives and
challenges that we have listed below. It includes the conception of new evaluation process
for ML, the design of methods to mitigate shortcut learning, and the exploration of
reasoning beyond DL. There are also numerous other broader issues, not mentioned
enough in this thesis, which are primordial for the ML field. Thus, we can cite the
importance of studying and preventing the (potentially negative) societal impact caused
by biases in DL-based technologies, or the urgent need to conciliate DL usage with concerns
raised by climate change.

10.2.1 Evaluation in ML

In Part II, we propose a new method for evaluating VOA models. An interesting
perspective would be to adapt our method to other tasks, going beyond VOA or vision-
and-language understanding. Besides, we also think that we have to keep putting effort
in improving the way we evaluate and compare ML approaches.

REAL-WORLD SCENARIOS In the real world, it can be difficult to disentangle reasoning
from perception. Therefore, while synthetic datasets — such as CLEVR (Johnson et al.
2017) for VOQA — are useful (and necessary) tools for diagnosing weaknesses and strengths
in models, we also have to work on real-world scenarios. A large part of the work in this
thesis has been conducted on the GQA database (Hudson et al. 2019b). As explained
in Chapter 4, GQA is the best suited for evaluating reasoning capabilities in VOA. At
the same time, it is semisynthetic, because it contains both real images and synthetic
questions. While it was a necessary step, in the future, we will have to validate our
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approaches on a more realistic setup. For instance, a dataset such as VizWiz (Gurari
et al. 2018) is a good candidate for real-world evaluation. Such adaptation to real-world
applications brings new challenges, such as a greater diversity of concept, or a higher
uncertainty in annotation.

DYNAMIC BENCHMARKS We think that a good evaluation cannot be static. The quick
evolution of DL, combined with the SOTA race, can lead to a kind of overfitting, where
models are unconsciously selected on the test set. One possible solution could be to design
dynamic benchmarks. Therefore, Gorman et al. (2019) analyzed published part-of-speech
taggers, and propose to use randomly generated splits instead of the static standard splits.
Recently, two VOA benchmarks — namely adVQA (Sheng et al. 2021) and AVVQA (Li et al.
2021) — make use of a human adversarial evaluation in order to update the standard test
set with questions fooling a SOTA model. We could imagine doing such test update on a
regular basis, to obtain a kind of dynamic evaluation, where benchmarks update across
time.

A BETTER SCIENTIFIC METHOD Improving evaluation and diagnosing in ML goes
hand in hand with a better scientific method. In this thesis, we tried (even if it is far from
being perfect) to carefully evaluate the significance of our experimental results before
drawing conclusions. It includes the use of adequate baselines and ablation studies,
but also a statistical measure of the results’ significance (here, we use basic statistics,
namely the average plus std across random seed). On this subject, Picard (2021) shows
how important can be the impact of the random seed selection on the final performance,
suggesting that the statistical significance of experimental results do have to be carefully
handled. However, there is still a large room for improvement. Thus, to avoid the negative
results depicted in Chapter 4 (where some VOA methods are directly validated on the
test set!), it appears to be necessary to re-think our ML practices. A good starting point is
the discussion led by Forde et al. (2019), taking inspiration from physics to provide good
practices, which could positively enhance the scientific method in ML.

10.2.2 Mitigating shortcut learning

This thesis puts a lot of efforts on diagnosing the cause and effect of shortcut learning
in VOA. Designing new methods for mitigating these unwanted effects is an obvious
perspective, which goes beyond the scope of VOA.

IMPROVE THE VISION PART  We have seen that uncertainty in the vision part is a crucial
factor leading to shortcuts in vision-and-language understanding. Therefore, a fruitful
perspective of work would be to improve the vision part. We can think about designing
object detectors with a better precision, in order to reduce the visual uncertainty as done
in Zhang et al. (2021). Alternatively, as already started by Jiang et al. (2020), conducting
analyzes on which image representation type — namely, grid-level, object-level or anything
else — is the best suited for visual reasoning is also essential. Finally, vision-and-language
understanding requires a strong alignment between vision and language. Then, it could
be interesting to address this issue as early as possible in the pipeline, and jointly learn
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vision and language features, in the same vain as in Ramesh et al. (2021) or Radford et al.
(2021).

DESIGN BIAS-AGNOSTIC METHODS Many approaches for mitigating biases during
learning have been proposed. However, as shown in Chapter 5 (and confirmed in Dancette
et al. (2021)), most of them provide limited improvement. We think that progress has to
be made on this topic. Promising approaches includes multiple domain training (Rame
et al. 2021), training collection of models while favoring diversity (Teney et al. 2021), or
combining ML with causal approaches e.g. using counterfactual examples (Teney et al.
2020a).

10.2.3 Explore reasoning beyond DL

It appears, from our study, that many of the obstacles preventing from learning to
reason are intrinsic to DL. In particular, we think of shortcut learning (Geirhos et al. 2020)
and simplicity bias (Shah et al. 2020). In that context, it would be interesting to explore
reasoning beyond DL, taking inspiration from other domains, in a cross-disciplinary
fashion.

EMBODIED LEARNING In the standard DL training, a neural net is optimized, through
iterative gradient descent on data samples, to minimize an objective loss aligned with the
task to be accomplished. In that settings, the neural net has only access to i.i.d. samples in
a read only fashion. However, as demonstrated in the infamous * experiment conducted
by Held et al. (1963), the combination of perception with interaction (through sensory
feedback) is essential for the development of the mammal brain. Thereby, it seems that
the ability to interact with its environment is an essential property for learning to reason.
This motivates methods for adapting the read only DL training to a setup where an agent
has the possibility to interact with its environment. This is the objective of embodied
learning, which have been notably used for VOA in Das et al. (2018).

CAUSAL REPRESENTATION LEARNING In a similar vain, graphical causality (Pearl
et al. 2000), seeks to overcome ML issues by leveraging the notion of intervention in the data.
As already seen in Chapter 2, “causality” is a property of “reasoning”. In that context, it
seems relevant to combine methods from both ML and graphical causality, as proposed by
Scholkopf et al. (2021). It is worth noticing that some works already introduces causality
in DL, e.g. in VOA (Teney et al. 2020a; Agarwal et al. 2020) or in counterfactual learning of
physics (Baradel et al. 20109).

COGNITIVE SCIENCES  Another perspective would be to develop new ways for learning
to reason by taking inspiration from cognitive sciences. For instance, Lazaridou et al.
(2017) make use of game theory and language evolution in order propose to analyze

1. In a nutshell, the experiment consisted in putting two kittens in a carousel. The first one can see and
move. The second one can also see, but is not free to move. Its movements are mechanically linked with the
first kitten, such that it does not have any control on them. It turns out that the kitten which cannot decide
where it goes does not develop normally (Held et al. 1963).
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the emergence of language in multiagent (neural agents) referential games. In the same
context, Chaabouni et al. (2020) study whether such emergent languages have the faculty
of “compositionality” and “generalization”, two properties of “reasoning”. Would it be possible
to do the same and study the emergence of visual reasoning? Vani et al. (2021) already try to
tackle the question, and propose to use iterated learning on a synthetic VOA task. We
think that these cross-disciplinary works, borrowing results from cognitive sciences, will
play an important role in the development of new neural models devised to reason.

* kX

143

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI101/these.pdf
© [C. Kervadec], [2021], INSA Lyon, tous droits réservés



Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI101/these.pdf
© [C. Kervadec], [2021], INSA Lyon, tous droits réservés



145

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI101/these.pdf
© [C. Kervadec], [2021], INSA Lyon, tous droits réservés



Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI101/these.pdf
© [C. Kervadec], [2021], INSA Lyon, tous droits réservés



APPENDIX

PROOEFS: SAMPLE COMPLEXITY OF REASONING SUPERVISION

A.1 PROOF OF THEOREM 8.3.3

In the lines of Arora et al. (2019), we first define the case for a single component y(/) of
the vector y and define the following Corollary:

COROLLARY A.0.1 (SAMPLE COMPLEXITY FOR MULTI-MODE REASONING FUNCTIONS
WITH A SINGLE SCALAR COMPONENT). Let A be an overparametrized and randomly
initialized two-layer MLP trained with gradient descent for a sufficient number of iterations.
Suppose ¢ : R? — R™ with g(x) = ¥, (7 ) rT,]-az)p’// where v, € RY, B,; € RY,
a,; € R, and p,; = 1or p,; =2l,1 € N. The sample complexity C4(g,€,0) is:

Ly Z]' npr,j‘“"H’)’er'Hﬁr’j‘ ’Zy’j—I—log((SlO))

2
€y

CA(g/ €0, 50) =0 (

PROOF OF COROLLARY A.0.1  Using Theorem 5.1 from Arora et al. (2019), we know
that sums of learnable functions are learnable, and can thus focus on a single term:

y=g(x) =a(y"z)(pTz) (A.1)

where we dropped indices r and j and the superscript (i) for convenience. We proceed in
the lines of the proof of Theorem 5.1 in Arora et al. (2019). Given a set of i.i.d data samples
S = {(ws,y5)}!_; = (X, y) from the underlying function g(x), let w be the weights of the
first layer of a two-layers network with ReLu activations; let H* € IR"" be a Gram matrix
defined as follows, with elements:

Hl‘;° = Eon(0,1) [:BiTa:jI[{wtsciZO,wt:niZO}} .

To provide bounds on the sample complexity of g(x), using Theorem 5.1 of Arora et al.
(2019), it suffices to show that the following bound holds:

yT(H®) ly <M (A.2)

for a bound M, independent of the number of samples 7.
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We first introduce some notation. For matrices A = [ay, ..., ay,| € R"*™ and B =
[by, ..., by, ] € R™*" the Khatri-Rao product is defined as A®B = [a1®b1, ax®by, ..., 4, Qby,].
Let o be the Haddamard product (element wise multiplication) of two matrices. We also
denote the corresponding powers by A®l A%l A°l We denote by At = (ATA)*lAT
the Moore-Penrose pseudo-inverse, and by Py = A2 AT A7 the projection matrix for the
subspace spanned by A. From the proof of Theorem 5.1 in (Arora et al. 2019), we also
know that: o

H = =y

where K = XTX, and X is the data matrix of all row vectors ;.

Let us consider the case of p = 1. Reformulating Equation A.1, we get:

y=g(x) =a(y"z)(p'z) (A3)
= a(a’y)(="p) (Ag)
= a(x@xz)" (12p) (A.5)

Now, taking the full set of input vectors «; arranged into the full data matrix X, we can
perform similar algebraic operations to get

y =g(X) =a(X"y)o (XB) (A.6)
= a(X9?)T (y2p) (A7)

Plugging Equation A.6 and Equation A.7 into Equation A.2, we need to show that the
following expression is smaller than a constant M,:

(X y) o (XTB))T(H®)"H (X )T (v®p) (A.8)

=a*((X“2)T (y@p)) " (H®) (X)) (12p) (A.9)

=a?(y®p) (X 2)(H™) "1 (X“2)" (v®p) (A.10)

<2ma(y®P) (X ) (K2)N(X2) T (v®p) (A.11)

=270 (Y@PB)" Pxoz(xonyr(Y2P) (A.12)

<27a’(| (v@B) 12 (A.13)

=27a||13 - [1BII2 (A.14)

where we made use of ||a®b||3 = ||a||3||b||3 for two vectors a and b and an integer n. This

finishes the proof for the case p = 1.

Let us consider the case of p = 2I+1. Reformulating Equation A.1, we get:

y =g(X) =a(X"y)o (XTB)P (A.15)
_ oc(XQZI)T(’Y@@ﬁ@(le)) (A.16)
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Plugging Equation A.16) into Equation A.2, we again need to show that the following
expression is smaller than a constant M:

(X T (4p2@+D))T (A17)
(H®) (X O (yp2@+1) (A.18)
=2 (@B E+DT (A.19)
(XN (H™) (X )T (yop=®H) (A.20)
<2m(21 = 1)%? (v )T (A21)
(XY (K2)H (X O2)T (4 g2+ (A.22)
=271(21 — 1)2a2 (y@ B2 )T (A.23)
PX@ZI(X@QZ)T(’Y®,B®(21+1)) (A.24)
<272l — 12| (@B D) (A25)
<2mp*e®||(y2p” )| 13 (A.26)
=27p*a||y|3 - ||BII3" (A27)
where we made use of |[a®b||3 = ||a||3||b||3 and therefore |[a®"||3 = ||a||5" for two vectors

a and b and an integer n. This finishes the proof for the case p = 2/4-1.

THE CASE OF VECTORIAL OUTPUTS In the lines of (Xu et al. 2020), we consider each
component of the output vector independent and apply a union bound to Corollary A.o.1.
If the individual components y(?) fail to learn with probability dy, then the full output of
dimension m fails with probability mdy and with an error of at most mep. A change of
variables from (eo, do) to (€, ) gives a complexity for the model with vectorial output of
‘ (i)
max; X, X 7ep ||| [+ |Brlly” +log(m/6)
(e/m)? '

Cu(g,€,0)=0

This ends the proof of Theorem 4.2.

A.2 PROOF OF THE INEQUALITY IN EQUATION 8.18

Let us denote by p(x) the density of normal distribution. And to make the notation
more succinct and to avoid confusion between different usages of superscripts, in this
proof we will change 7% to v, i.e. the i" component of the vector 7, not to be confused
with 7,, a vector corresponding to the embedding of the 1 reasoning mode. Then:

Eqonon | 1[12: 18I (A.28)

1

2
=||BII5E,~n(0,1) (Z ’Y?) (A.29)

1
We now perform a change of variables and introduce a new random variable:
z=3)77 (A.30)
1

149

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI101/these.pdf
© [C. Kervadec], [2021], INSA Lyon, tous droits réservés



Since each individual 1; is distributed normal, z is distributed according to a x? distribu-
tion with m degrees of freedom, and we get:

lEyz-NN(o,l)’|’YH2"|ﬁ||§ (A.31)

=[1BII} .. [22] (A32)

. th . . . .
The expectation now corresponds to % centered moment of the x? distribution with m
degrees of freedom, whose k" moments are given as:

r(m 4+ k
E,. [z = 2" (rm+)) (A33)
2

NIF

—~

This ends the proof of the equality.
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RESUME :

De quelle couleur est le terrain de tennis ? Quelle est la taille du chien ? Y a-t-il une voiture a droite du vélo sous le cocotier ?
Répondre a ces questions fondamentales est le sujet de la tache appelée question-réponses visuelle (VQA, en anglais), dans
laquelle un agent doit répondre a des questions posées sur des images.

Plus précisément, le VQA requiert de mettre au point un agent capable de maitriser une grande variété de compétences :
reconnaitre des objets, reconnaitre des attributs (couleur, taille, matériaux, etc.), identifier des relations (e.g. spatiales), déduire
des enchainements logiques, etc. C'est pourquoi, le VQA est parfois désigné comme un test de Turing visuel, dont le but est
d'évaluer la capacité d'un agent a raisonner sur des images. Cette tache a récemment connu d'important progrés grace a
I'utilisation des réseaux de neurones et de l'apprentissage profond.

Aprés une revue détaillée de I'Etat de I'Art sur le VQA, ainsi qu'une définition de notre utilisation du terme raisonnement, nous
nous intéressons a la question suivante : les modéles de VQA actuels raisonnent-ils vraiment ? La mise en ceuvre d'une
nouvelle méthode d'évaluation (GQA-OOD) nous permettra de répondre négativement a cette question. En particulier, nous
mettrons en évidence la tendance des modeles a apprendre des raccourcis, autrement appelés biais, présent dans les données
d'entrainement, mais heurtant les capacités de généralisation. Nous proposerons alors, dans une troisieme partie une analyse
approfondie des mécanismes d'attention appris par les réseaux de neurones artificiels. Nous étudierons quels sont les
enchainements aboutissant & un raisonnement, ou, au contraire, a une prédiction biaisée par un raccourci frauduleux. La
derniere et quatrieme partie tire conclusion de nos évaluations et analyses, afin de développer de nouvelles méthodes
améliorant les performances des modéles de VQA.

En résumé, cette thése a pour objet I'étude du raisonnement visuel dans des réseaux de neurones artificiels entrainés par
apprentissage profond, dans le cadre du VQA. Mais surtout, ce qui nous intéressera en premier lieu, c'est I'évaluation et
I'analyse de l'influence qu'ont les biais, présents dans les données d'apprentissage, sur les prédictions de nos modéles.

MOTS-CLES : Machine Learning; Deep Learning; Vision and Language; Visual Reasoning; // Apprentissage Automatique ;
Apprentissage Profond; Vision et Langage; Raisonnement Visuel ;

Laboratoire (s) de recherche : LIRIS (INSA Lyon), Orange Innovation
Directeur de thése: Christian Wolf (directeur), Grigory Antipov (co-encadrant), Moez Baccouche (co-encadrant)
Président de jury : David Picard

Composition du jury : Rapporteur : David Picard, Nicolas Thome // Examinateur-rice:s : Cordelia Schmid, Damien Teney, Akata
Zeynep // Directeur de thése : Christian Wolf // Co-encadrants : Grigory Antipov, Moez Baccouche

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI101/these.pdf
© [C. Kervadec], [2021], INSA Lyon, tous droits réservés




	Notice XML
	Page de titre
	Abstract
	Résumé
	Remerciements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Chapter 1 General introduction
	1.1 Context and motivation
	1.2 Contributions of the thesis
	1.2.1 Organization of the manuscript
	1.2.2 List of publications

	1.3 Industrial context

	Part I Background: VQA & Reasoning
	Chapter 2 Reasoning vs. shortcut learning
	2.1 An attempt to define ``reasoning''
	2.2 Reasoning, induction and intelligence
	2.3 The many faces of ``reasoning''
	2.5 VQA: a visual reasoning task?

	Chapter 3 Visual question answering
	3.1 Context: vision-and-language understanding
	3.1.1 Vision and language tasks
	3.1.2 Reasoning tasks

	3.2 VQA Datasets
	3.3 Dissecting the VQA pipeline
	3.3.3 Fusion: from late fusion to multimodal attention

	3.5 Case study: LXMERT
	3.5.1 VL-Transformer architecture
	3.5.2 LXMERT pre-training


	Part II Evaluate : Where we learn that VQA models are (STILL) not reasoning
	Introduction
	Chapter 4 Pitfalls of VQA evaluation
	4.1 Introduction
	4.2 VQA datasets
	4.2.1 The VQA dataset: versions 1 and 2
	4.2.2 VizWiz: VQA for visually impaired people
	4.2.3 The synthetic CLEVR
	4.2.4 GQA: VQA on image scene graphs
	4.2.5 Other datasets

	4.3 Measuring robustness in VQA
	4.3.1 The standard metric: overall accuracy
	4.3.2 Robustness against linguistic variation
	4.3.3 Robustness against visual variation
	4.3.4 Consistency across questions
	4.3.5 Compositionality
	4.3.6 Multimodal robustness

	4.4 Pitfalls of VQA evaluation
	4.4.1 Violating Goodhart’s law
	4.4.2 Issue in in- and out-of-distribution comparison
	4.4.3 Validating on the test set
	4.4.4 Impact on VQA methods

	4.5 Conclusion

	Chapter 5 GQA-OOD: evaluating VQA in OOD settings
	5.1 Introduction
	5.2 GQA-OOD: a benchmark for OOD settings
	5.2.2 Out-of-distribution setting
	5.2.3 Discussion and limitations

	5.3 Experiments
	5.3.1 Evaluation of the proposed metric
	5.3.2 Analysis of VQA model error distributions
	5.3.4 Comparison with other benchmarks

	5.4 Visualising predictions
	5.5 Discussion and conclusions


	Part III Analyse E : In search of reasoning patterns
	Introduction
	Chapter 6 Investigating attention in Transformers
	6.1 Introduction
	6.2 A short introduction to VisQA
	6.2.2 A tool for investigating hypothesis on bias vs reasoning

	6.3 Motivating case study
	6.4 Evaluation with Domain Experts
	6.4.1 Evaluation Protocol


	Chapter 7 On the Emergence of Reasoning Patterns in VQA
	7.1 Introduction
	7.2 Vision is the bottleneck
	7.3 Visual noise vs. models with perfect-sight
	7.3.1 Oracle: a perfect-sighted model
	7.3.2 Does the oracle “reason”?

	7.5 Attention modes and task functions
	7.5.1 Attention vs. function in oracle setting

	7.6 Attention pruning
	7.6.1 Pruning different types of attention heads
	7.6.2 Impact on functions

	7.7 Conclusion


	Part IV Improve: A new hope
	Introduction
	Chapter 8 A proxy loss for supervising reasoning
	8.1 Introduction
	8.2 Supervising word-object alignment
	8.2.3 Experimental evaluation

	8.3 Sample complexity of reasoning supervision
	8.3.1 Measuring complexity of learning problems

	8.4 Conclusion

	Chapter 9 Transferring Reasoning Patterns
	9.1 Introduction
	9.2.1 Method: oracle transfer
	9.2.2 Experimental evaluation

	9.2 Transferring reasoning patterns from Oracle
	9.3 Guiding the oracle transfer
	9.3.1 Method: guided oracle transfer
	9.3.2 Experimental evaluation


	10 General Conclusion
	10.1 Summary of contributions
	10.2 Perspectives for future work
	10.2.1 Evaluation in ML
	10.2.2 Mitigating shortcut learning
	10.2.3 Explore reasoning beyond DL



	Appendix A Proofs: Sample complexity of reasoning supervision
	A.1 Proof of Theorem  8.3.3
	A.2 Proof of the inequality in Equation 8.18

	 Bibliography
	Folio administratif



