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Extended summary

The following extended summary reveals the contents and results of each of the four

chapters constituting this thesis entitled: “Acoustofluidics of nonspherical microbubbles:

physics and mechanical interaction with biological cells.” This part, which is not necessary

to understand the core of the manuscript, can be entirely dismissed whether the reader

wishes to discover the results as and when reading.

As a starter of this thesis manuscript, chapter 1 takes us on a journey into the sci-

entific, medical and industrial worlds of bubbles. It establishes the context in which this

thesis takes part by defining and discussing concepts of cavitation, nonspherical bubble,

microstreaming and sonoporation. To be exact, section 1.1 defines the terms bubble and

cavitation and discusses their adversities and fortunate applications in which they take

place in the industrial and medical fields, the latter being our main interest in the frame-

work of this thesis. Foremost, it was their large mismatch of acoustic impedance with a

surrounding fluid that was taken advantage of, when bubbles began to be used as ultra-

sound contrast agents in medical imaging. Tuned with specific gases and coatings, they

could serve a large spectrum of diagnostic purposes. It was not before much later that

they were found to be also able to serve many therapeutic uses from their capacity in

producing huge amount of acoustic, mechanical and thermal energy, whether they drift,

oscillate or collapse under the action of ultrasounds or lasers. The different ways in which

bubbles can be created, and how this might affect their nature and their response to ultra-

sounds, will also be presented, which will then lead us to the next section 1.2 that concerns

the bubble’s behavior when animated by an ultrasound field. While every theoretical and

a large part of experimental works consider the bubble as free of any contact, this thesis

work especially takes its interest in the study of a wall-attached bubble. Nevertheless,

comparisons between our experimental wall-attached bubble and the theory of free bubble

will be occasional throughout this manuscript, so that the wall effect may be highlighted.

The stability of the bubble interface is also discussed here, which will then bring us to sec-

tion 1.3 on the nonspherical dynamics of a bubble. These shape deformations arise from

the parametric instability of the bubble interface, occurring above a critical threshold in
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Extended summary

pressure that especially depends on the bubble size and the driving frequency. We will

see how these nonspherical shapes behave whether in the case of a free bubble or a con-

strained one and how they can be mathematically described with the spherical-coordinate

harmonics. These harmonic functions are indexed according to two inherent integers, a

degree n and an order m, and take the names of zonal, tesseral and sectoral depending

on the relation between n and m and thus, as we shall see, on their geometrical features.

Their impact on the surrounding fluid is then detailed, relying on the plentiful literature

on bubble-induced microstreaming with section 1.4. This introducing chapter ends with

a large overview on sonoporation in section 1.5. The possible involved mechanisms, the

measuring techniques and the existing experimental and theoretical works are brought to

light. The emphasis is done on the difference between investigations performed at the

single-cell and multi-cells scales, thus highlighting the interest of our experimental study

at the scale of one single bubble and one single cell.

With that background in mind, the experimental investigation on the dynamics of a

single bubble attached to a wall, the triggering, the detection and the identification of

its nonspherical modes, can be initiated with chapter 2. On the menu, the experimental

setup allowing the bubble high frame rate visualization from a top-view perspective is first

described in details as a starter, in section 2.1. A small parenthesis showing some bubbles

from a double top- and side-view will be made in order to facilitate the comprehension of

the system under study, yet limited afterwards to a single top-view, failing to be conve-

nient at a later stage. It is followed by section 2.2 that reports the main results of this

chapter. Our method for identifying and qualitatively measuring the nonspherical modes

is there presented. It allows, along a modulated driving acoustic pressure, to look into

the pressure instability thresholds of the bubble nonspherical modes. As a centerpiece,

a spectral splitting, the so-called nondegeneracy, of nonspherical modes is demonstrated,

which comes as a contradiction against the theory of free bubbles. Some interpretations

based on the bubble nonspherical geometry allow to explain the preferential appearance

of specific modes, as well as the coexistence of zonal and sectoral modes, conditioned by

their respective degree of spherical harmonics. Besides, appendix A.1 gives a complemen-

tary analysis on the dynamics of a wall-attached bubble but visualized from a side-view,

which comes reinforcing our interpretations and modal identifications asserted before.

After that the bubble dynamics has been a little unveiled, the manuscript pursues

with the bubble-induced effects on the surrounding fluid in chapter 3. In a first step, the

experimental setup and procedure are introduced in section 3.1, as well as some details

on how the fluid flow is visualized and assessed in the bubble’s neighborhood. The second

and last part, section 3.2, gathers all our results. There, the formation of specific patterns

of microstreaming is explained on the basis of the bubble modal content. With this aim, a
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quantified description of the bubble dynamics is actually required, while it was previously

only investigated in a rather qualitative way. The correlation of these fluid flows with the

bubble activity is explained for five different cases of modal configuration: a zonal mode

only, a sectoral mode only, a tesseral mode only, combined zonal and sectoral modes, and

lastly, combined tesseral and sectoral modes. In the particular and widely investigated

case of combined zonal and sectoral modes, the preferential appearance of flower-shaped

and star-shaped streaming patterns is explained on the basis of modal amplitudes, their

relative phase shift and the strength of their interaction. From time to time, this exten-

sive analysis is supported by illustrated examples of our calculation method, while the

analytic expressions are given step by step throughout the different subsections. Similarly

as before, some occasional visualizations from a side-view of the bubble and its associated

streaming are presented apart, in appendix A.2. It allowed to demonstrate that sectoral

modes generate an antifountain-like streaming with a significantly wider area of action

than zonal modes and their fountain-like streaming.

Last but not least, chapter 4 gathers the knowledge now acquired on a wall-attached

bubble undergoing nonspherical modes to evaluate its effects on a nearby biological cell.

To address this issue, two cellular models described in section 4.1 are selected: a mouse

oocyte and a human megakaryocyte. While they were both of them designated as good

candidates for the purpose of our investigation, oocytes are quickly cast aside due to the

unexpected sanitary crisis, and hence supplying difficulties. Accordingly, the study will

be limited in the forthcoming to megakaryocytes. Nevertheless, some scarce results on

oocytes are presented out of this chapter, in appendix B. After exposing the good prac-

tices concerning the preparation of megakaryocytes comes section 4.2 on the experimental

methodology, in which our methods employed for manipulating the cells and for assessing

their mechanical response are detailed. In addition, a little aside comes up with a char-

acterization of the culture medium employed instead of water as experimenting medium.

All this being now settled, section 4.3 can begin. Starting with a brief investigation of

the pressure instability thresholds for our bubble now surrounded by culture medium,

the results on the mechanical interaction between a biological cell and a bubble arrive

then. First, their coupled dynamics is studied at the acoustic time scale through the

bubble pushing-pulling action on the cell, the emphasis being on sectoral modes. With

the aim to measure the cell elasticity, this periodic motion is then taken advantage of in

order to promote the propagation of shear waves within the cell. On the other hand, at

the fluidic time scale, the tumbling motion of suspended cells trapped on the stagnation

points of the bubble-induced streaming is studied. Several attempts for internalizing fluo-

rescent particles (propidium iodide) were undertaken, but without success. However, the

pushing-pull action of the bubble on the cell could be clearly observed qualitatively, as

well as the detection and identification of significant and stable nonspherical modes. As

xiii



Extended summary

a conclusion, the cellular sonoporation of an adhering nearby cell induced by a nonspher-

ically oscillating microbubble is not immediate. Impossible seems a bit impulsive as a

conclusion, but certainly very compromised with the experimental configuration as it is.
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Résumé étendu

Le résumé étendu qui suit révèle le contenu et les résultats de chacun des quatre chapitres

constituant cette thèse intitulée: “Acoustofluidique de microbulles non-sphériques : physi-

que et interaction mécanique avec des cellules biologiques.” Cette partie, qui n’est pas

nécessaire pour comprendre le coeur du manuscrit, peut être entièrement laissée de côté

si le lecteur souhaite découvrir les résultats au fur et à mesure de sa lecture.

Au commencement de ce manuscrit de thèse, le chapitre 1 nous emmène en voyage

dans les mondes scientifique, médical et industriel des bulles. Il établit le contexte dans

lequel s’inscrit cette thèse en définissant et en discutant les concepts de cavitation, bulle

non-sphérique, microstreaming et sonoporation. Plus exactement, la section 1.1 définit

les termes bulle et cavitation, et discute des circonstances défavorables et des applications

bénéfiques dans lesquelles ces bulles prennent place, autant dans le domaine industriel

que médical, ce dernier étant notre principal intérêt dans le cadre de cette thèse. En

premier lieu, c’est grâce à la différence importante qui existe entre leur impédance acous-

tique et celle du fluide environnant que les bulles ont commencé à être utilisées comme

agents de contraste ultrasonores à des fins d’imagerie médicale. Perfectionnées avec des

gaz et des enveloppes spécifiques, elles peuvent être employées à des fins très variées de

diagnostics. Ce n’est que bien plus tard que leur utilité dans de nombreuses utilisations

thérapeutiques est révélée, de par leur capacité à produire d’énormes quantités d’énergie

acoustique, mécanique et thermique, que ces bulles soient propulsées, oscillent ou im-

plosent sous l’action d’ultrasons ou de lasers pulsés. Les différentes manières dont les

bulles peuvent être créées, et en quoi cela peut affecter leur nature et leur réponse aux

ultrasons, seront également présentées, ce qui nous mènera ensuite à la section 1.2 qui

concerne le comportement de la bulle lorsqu’elle est animée par un champ ultrasonore.

Alors que l’ensemble des travaux théoriques et une grande partie des travaux expéri-

mentaux existants considèrent la bulle comme libre de tout contact, ce travail de thèse

s’intéresse plus particulièrement à l’étude d’une bulle attachée à la paroi. Néanmoins,

des comparaisons entre notre bulle expérimentale attachée et la théorie des bulles libres

seront occasionnelles tout au long de ce manuscrit, afin que l’effet de la paroi puisse être
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mis en évidence. La stabilité de l’interface de la bulle est également discutée ici, ce qui

nous amènera ensuite à la section 1.3 sur la dynamique non-sphérique d’une bulle. Ces

déformations de surface résultent de l’instabilité paramétrique de l’interface de la bulle, se

produisant au-dessus d’un seuil critique de pression qui dépend notamment de la taille de

la bulle et de la fréquence d’excitation. Nous verrons comment ces formes non-sphériques

se comportent que ce soit dans le cas d’une bulle libre ou contrainte et comment elles

peuvent être décrites mathématiquement avec les harmoniques sphériques. Ces fonctions

harmoniques sont indexées selon deux entiers inhérents, un degré n et un ordre m, et

prennent les noms de zonal, tesséral et sectoral selon la relation entre n et m et ainsi,

comme on le verra, selon leurs caractéristiques géométriques. Leur impact sur le fluide

environnant est ensuite détaillé, en s’appuyant sur l’abondante littérature concernant le

microstreaming induit par les bulles avec la section 1.4. Ce chapitre d’introduction se

termine par un large aperçu de la sonoporation détaillé dans la section 1.5. Les mécan-

ismes possiblement impliqués, les techniques de mesure et les travaux expérimentaux et

théoriques existants sont présentés. L’accent est mis sur la différence entre les investiga-

tions réalisées à l’échelle unicellulaire et multicellulaire, mettant ainsi en évidence l’intérêt

de notre étude expérimentale à l’échelle d’une seule bulle et d’une seule cellule.

Une fois ces concepts acquis, l’investigation expérimentale de la dynamique d’une

bulle accrochée à une paroi, le déclenchement, la détection et l’identification de ses modes

non-sphériques, peut être initiée avec le chapitre 2. Au menu, le dispositif expérimental

permettant la visualisation à haute fréquence d’une bulle dans une perspective en vue de

dessus est d’abord décrit en détail, dans la section 2.1. Une petite parenthèse montrant

quelques bulles dans une vue double (dessus et côté) est faite afin de faciliter la com-

préhension du système à l’étude, mais limitée par la suite à une seule vue de dessus, à

défaut de convenir à un stade ultérieur. Elle est suivie de la section 2.2 qui rapporte les

principaux résultats de ce chapitre. Notre méthode d’identification et de mesure quali-

tative des modes non-sphériques y est présentée. Elle permet, le long d’une modulation

de la pression acoustique d’excitation, d’étudier les seuils d’instabilité de pression des

modes non-sphériques de la bulle. En tant que résultat principal, une division spectrale,

la soi-disant non-dégénérescence, des modes non-sphériques est démontrée, ce qui est en

contradiction avec la théorie des bulles libres. Certaines interprétations basées sur la

géométrie non-sphérique de la bulle permettent d’expliquer l’apparition préférentielle de

modes spécifiques, ainsi que la coexistence des modes zonaux et sectoraux, conditionnés

par leur degré respectif d’harmoniques sphériques. Par ailleurs, l’appendice A.1 donne

une analyse complémentaire sur la dynamique d’une bulle toujours accrochée à une paroi

mais visualisée latéralement, ce qui vient renforcer nos interprétations et identifications

modales affirmées précédemment.
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Après que la dynamique des bulles ait été un peu dévoilée, le manuscrit poursuit

avec les effets induits par les bulles sur le fluide environnant avec ce chapitre 3. Dans

une première étape, le montage expérimental et la procédure sont présentés dans la sec-

tion 3.1, ainsi que quelques détails sur la façon dont l’écoulement du fluide est visualisé

et évalué dans le voisinage de la bulle. La deuxième et dernière partie, la section 3.2,

rassemble tous nos résultats. Là, la formation de motifs spécifiques de microstreaming

est expliquée sur la base du contenu modal de la bulle. Dans ce but, une description

quantifiée de la dynamique de la bulle est actuellement requise, alors qu’elle n’était au-

paravant étudiée que de manière plutôt qualitative. La corrélation de ces écoulements

fluides avec l’activité de la bulle est expliquée pour cinq cas différents de configuration

modale : un mode zonal uniquement, un mode sectoral uniquement, un mode tesséral

uniquement, des modes zonaux et sectoraux combinés, et enfin, des modes tesséraux et

sectoraux combinés. Dans le cas particulier et plus largement étudié des modes zonaux

et sectoraux combinés, l’apparition préférentielle de motifs de microstreaming en forme

de fleur et d’étoile est expliquée sur la base des amplitudes modales, de leur déphasage

relatif et de la force de leur interaction. De temps en temps, cette analyse approfondie est

appuyée par des exemples illustrés de notre méthode de calcul, tandis que les expressions

analytiques sont données étape par étape dans les différentes sous-sections. De la même

manière que précédemment, certaines visualisations occasionnelles d’une vue latérale de

la bulle et de son streaming associé sont présentées séparément, en annexe A.2. Cela a

permis de démontrer que les modes sectoriels génèrent un écoulement de type antifontaine

avec une zone d’action significativement plus large que les modes zonaux et leur écoule-

ment de type fontaine.

Enfin, le chapitre 4 rassemble les connaissances maintenant acquises sur une bulle fixée

à une paroi animée par des modes non-sphériques pour évaluer les effets mécaniques in-

duits sur une cellule biologique voisine. Pour expérimenter cela, deux modèles cellulaires

décrits dans la section 4.1 sont sélectionnés : un ovocyte de souris et un mégacaryocyte

humain. Alors qu’ils étaient tous les deux désignés comme de bons candidats pour notre

étude, les ovocytes sont rapidement mis de côté en raison de la crise sanitaire inattendue,

et donc de difficultés d’approvisionnement. En conséquence, l’étude est limitée par la suite

aux mégacaryocytes. Néanmoins, quelques rares résultats sur les ovocytes sont présentés

hors de ce chapitre, en annexe B. Après avoir exposé les bonnes pratiques concernant la

préparation des mégacaryocytes vient la section 4.2 sur la méthodologie expérimentale,

dans laquelle sont détaillées nos méthodes employées pour manipuler les cellules et quan-

tifier leur réponse mécanique. De plus, un petit aparté propose une caractérisation du

milieu de culture employé à la place de l’eau comme milieu d’expérimentation. Tout ceci

étant à présent établi, la section 4.3 peut débuter. Commençant par une brève analyse

des seuils d’instabilité de pression pour notre bulle désormais entourée de milieu de cul-
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ture, arrivent alors les résultats sur l’interaction mécanique entre une cellule biologique et

une micro-bulle. Tout d’abord, leur dynamique couplée est étudiée à l’échelle de temps

acoustique au travers de l’action de poussée-traction de la bulle sur la cellule adjacente,

l’accent étant mis sur les modes sectoraux. Dans le but de mesurer l’élasticité de la cel-

lule, ce mouvement périodique est ensuite mis à profit pour favoriser la propagation des

ondes de cisaillement au sein de la cellule. D’autre part, à l’échelle de temps fluidique,

le mouvement de rotation de cellules en suspension piégées sur les points de stagna-

tion de l’écoulement fluide induit par une bulle est étudié. Enfin, plusieurs tentatives

d’internalisation de particules fluorescentes (iodiure de propidium) ont été entreprises,

mais sans succès. Cependant, le mouvement de poussée-traction de la bulle sur la cellule

a pu être clairement observé de façon qualitative, ainsi que la détection et l’identification

de modes non-sphériques significatifs et stables. Pour conclure, la sonoporation cellulaire

d’une cellule voisine adhérente induite par une microbulle oscillant non-sphériquement

n’est pas immédiate. Impossible semble un peu impulsif comme conclusion, mais cer-

tainement très compromis avec la configuration expérimentale telle qu’elle est.
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Introduction

There is no angry way

to say “Bubble”.

Someone, someday.

Bubbles are everywhere. They are just like cats: They exist in a multitude of sorts

and sizes. Some are wild, some are chosen for specific characteristics. Some are expensive,

some are obtained for free. Some are massive, some are tiny. Some are exotic, some are

regular. Some are beautiful, some are of subjective beauty. Some bring joy and happiness,

some are not always in the right place at the right time. However, in the end, they are

all the same, they are cats and bubbles.

The genesis of a microbubble never comes alone. It results from a triggering event

and may be facilitated by the presence in the fluid of an heterogeneity. From the very

first moments of its existence, the bubble adopts a spherical shape, as in a natural and

intuitive way, anyone would picture it. At least, this is what happens when the bubble

is not influenced by some external disturbance. When this is the case, bubbles can be

subject to buoyancy like in a glass of champagne, burst like a chewing gum bubble or

collapse and severely damage machinery. Uncontrolled bubbles can be the source of im-

portant troubles. Engineers in hydrodynamics had figured that out when they observed

how cavitation bubbles, generated by a transient pressure drop below the liquid’s vapor

pressure, could have destructive effects on pumps and propellers. Cavitation is in most

cases an unwanted occurrence, but in some others it turns out that well-controlled bubbles

can be very beneficial. In fact, there is one sequel this thesis focuses on: the sonoporation

of biological cells induced by oscillating microbubbles for purposes of drugs or genes in-

ternalization. This is allowed by the wonderful characteristic of microbubbles to be very

selective acoustic resonators. This makes them perfect transducers for remotely inducing

mechanical waves within any fluid environment. In addition to this oscillatory motion

of the surrounding fluid, a steady flow emerges from the nonlinear response of the fluid.

These two different motions operate at different time scales, and yet are both held respon-

sible for the generation of stresses on a nearby surface. Prior to placing a biological cell in
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front of an oscillating bubble, the logic would like us to study first these two phenomena

in an exclusive manner.

We believe that the study at the microscopic scale of one single bubble and one single

cell could improve the understanding at the macroscopic scale of the erratic and complex

phenomenon in which hundred of thousands of microbubbles interact with as many bi-

ological cells. To this end, this thesis manuscript presents an experimental work on the

physics of one single microbubble and its induced effects on a nearby cell. It is organized

in four chapters.

The chapter 1 takes us on a journey into the scientific, medical and industrial worlds

of bubbles. It establishes the context in which this thesis takes part by defining and

discussing the concepts and the physics of nonspherical bubbles, microstreaming and

sonoporation. These three terms respectively summarize the next three chapters, devoted

to an extensive experimental study of the mechanical behavior of cells and microbubbles

immersed in an acoustic field.

The chapter 2 is dedicated to the dynamics of a wall-attached microbubble. Its visual-

ization from a top-view allowed to evidence the nondegeneracy, or spectral splitting, of its

nonspherical shape modes, triggered above certain critical thresholds of acoustic pressure.

Also, the coexistence, facilitated or not, between modes is discussed on the basis of their

dynamics and geometrical features.

The chapter 3 focuses on the formation of fluid flows, also called streaming, induced

by these nonspherical modes. It goes further in the description of the time-resolved

bubble dynamics with a quantitative analysis of the modal amplitudes, so that the modal

interaction truly responsible for the formation of streaming could be assessed. A large

spectrum of varied streaming patterns is unveiled, and compared in terms of shapes, flow

direction and velocity magnitude.

The chapter 4 relies on the precedent results on bubble dynamics and induced stream-

ing to explain their possible interaction with a biological cell located in the bubble vicinity.

With the view to investigate the effects of both the bubble pushing-pulling action and the

formation of streaming-induced stresses, the study is twofold, taking place at the acoustic

and the fluidic time scale.
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Chapter 1

About bubbles

This introducing chapter aims at laying down the groundwork of this thesis, and moti-

vating its ins and outs. Concepts of bubble, cavitation and sonoporation are stated, in

addition to a comprehensive overview of their physics and their applications and inter-

ests. It begins in section 1.1 with the global scientific and medical context in which gas

bubbles are involved. Afterwards, we will wander the grounds of what characterizes a

stable oscillatory regime of microbubbles first in a condition of low acoustic pressure and

purely spherical motion with section 1.2 and then in a condition of high acoustic pressure

and nonspherical deformations of the bubble interface with section 1.3. It is completed

by an extended comment on how the presence of a wall can alter the bubble acoustic

response in terms of its modal content and displacement amplitude. This chapter ends

with the description of the effects induced by the bubble oscillations on the surrounding

environment. This includes the formation of fluid flows around the oscillating bubble with

section 1.4 and the usage made out of it for a particular purpose of therapeutic applica-

tion that consists in the permeabilization of biological cells for facilitating their uptake of

drugs and genes with section 1.5.

1.1 Context of microbubble and cavitation

A microbubble, which is nothing else but some gas trapped in a volume of fluid, requires

necessarily any triggering event or some kind of heterogeneity to exist. From the very first

moments of its existence, the bubble is exposed to mechanical stresses at its liquid-gas

interface due to an attractive force pulling the water molecules towards each other. The

resulting inward force is exactly balanced by the outward-pushing pressure of the enclosed

gas. As a consequence, it is constrained to minimize its interface area, forcing it to adopt

a spherical shape. At least, this is how bubbles behave when they are at rest. In contrast,
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when they are animated by any event, a fluid flow, a change in the local fluid pressure

or the activation of an acoustic source, things take a different turn. It is under these

circumstances a bubble can unveil its most favorable, but also its most unwanted and

terrible effects.

In an engineering context, the term cavitation originally refers to a complex and erratic

phenomenon triggered by an important and fast pressure drop below the vaporization

pressure of the liquid, and by which bubbles get nucleated in a liquid, progress in an

erratic motion and then collapse. When described with such words, this does not bode

well. As a matter of fact, the collapse of millions of microbubbles is comparable to so

many violent detonations at the center of which the temperature can locally rise up to

thousands of Kelvin degrees and the pressure reach colossal magnitudes. The random

generation and the destructive effects of such bubbles are very likely one of the main

issues in the design of industrial fluidic devices today. Hopefully, bubbles are not only

undesirable occurrences. If controlled, their immense amount of thermal and mechanical

energy can be employed in many positive ways.

1.1.1 Medical and industrial applications

Industrial purposes

The applications of bubbles in industry are not lacking. Some of the best known and

documented concern their use for cleaning, degreasing and sterilizing pharmaceutical,

biotechnological and medical materials, as well as their use in the manufacturing process

of polymer foams [Dollet et al., 2019]. In the former, it involves clouds of acoustically-

driven bubbles and their influence on and with a wall of variable stiffness and elasticity.

For understanding the involved mechanisms in such closed industrial devices, every con-

figurations are explored: from the single bubble system, attached to a wall [Doinikov

et al., 2011], in close proximity [Garbin et al., 2007] or confined between walls [Mekki-

Berrada et al., 2016], to the arrangements of several bubbles and their altered behavior in

presence of so many others; resonance frequency shift [Prosperetti, 1988] and anisotropy

of the amplitude response [Maeda and Colonius, 2019]. However, because the surface

cleaning with ultrasound also comes from the high stresses generation potential of jetting

bubbles, further comprehension is also brought by studying the inertial dynamics of a

single bubble, i.e. the unstable and non-periodic behavior, which can be mimicked by its

laser pulse induced collapse [Reuter and Mettin, 2016]. Finally, special attention is also

given through research aiming at reducing the environmental impact and the cost of such

techniques [Miyamoto et al., 2007, Dollet et al., 2019].
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Medical imaging

Thanks to their large acoustic impedance mismatch with the surrounding biological tis-

sues, microbubbles are great scatterers of acoustic energy. For that reason, they were

employed for purposes of medical imaging since the early stages of their taming for the

seeking to new scientific interests and perspectives in the 1980’s. Microbubbles could help

to return more back-scattered energy from the venous network than in normal condition

without their injection, and in this way highlight blood circulation dysfunctions, blood

clots and stenosis, or even cardiac arrhythmias and myocardial ischemias. When created

with a specific gas, microbubbles injected in the venous network are able to persist for a

given time in order to reach a desired location of interest before their dissolution. For in-

stance, for a same size of 2 µm, bubbles made of octafluoropropane and decafluorobutane

can last 400 ms and 4 s, respectively, for only 25 ms for air bubbles [Chomas et al., 2001].

In addition, when the gas is enclosed in a specific coating consisting of proteins, lipids,

sugars or polymers, their lifetime can stretch to several minutes. Arrived at destination,

the microbubbles are finally activated by ultrasound in a non-invasive way. A second

advantage of these manufactured bubbles is the possibility of adjusting their acoustic

response by modifying the shell composition and thickness or by adapting the enclosed

gas, its density and compressibility. Depending on the biological region to be explored,

one may wish to improve their spectral response to lower frequencies that have a better

dissipationless penetration through the tissues or on the contrary increase their response

to higher frequencies for having the possibility of using them with a high frequency trans-

ducer characterized by a better spatial resolution. Moreover, some other techniques rely

of their tunable nonlinear behavior to differentiate their back-scattered energy from what

is emitted by the nearby tissues [Postema and Schmitz, 2006, Segers et al., 2015].

Medical therapies

As said so well by Postema and Bouakaz [2018] three years ago in the editorial of the

conference on acoustic bubbles in therapy held in Tours, “although the use of microbub-

bles has become common in ultrasound diagnostics, microbubbles are not that often seen in

therapeutic applications.” This assertion stems from the particularly complex and difficult-

to-predict nature of acoustically excited bubbles. Yet, the mechanical and thermal energy

potential of such bubbles make it a highly coveted technique, especially since their use

is minimally invasive, inexpensive and non-irradiating for organic tissues. Nowadays, mi-

crobubbles are at the central focus of many still preclinical studies, while the effective

clinical applications of bubble-based therapeutic techniques are restricted to the break-

ing of kidney stones by associated shock-waves and cavitation, and to the treatment of

cataract on the same principle of destruction of the opacified crystalline lens. Neverthe-

less, preclinical studies show promising advancements in the use of acoustic microbubbles
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for the treatment of varicose veins and for the elimination of blood clots. Very recently,

the remote action of acoustically driven drug-loaded microbubbles was showing successful

results of drug release in-vivo through the blood-brain barrier (BBB) without compromis-

ing its safety [Ozdas et al., 2020]. This latter application consists in applying mechanical

stresses on biological cells, sufficiently to temporarily alter the permeability of the cells

wall, but without excess to avoid their permanent lysis. The mechanical stimulation of

cells can be locally and remotely done in various ways by means of microbubbles, while

the real challenge in that situation is the effective control and mediation of the involved

technique for enhancing the therapeutic effects (drug or gene uptake) and minimizing the

adverse and unwanted fallout (cell lysis).

1.1.2 Methods for bubble nucleation

Thermal vaporization

Literature about bubbles makes a distinction between bubbles made of a permanent gas

and bubbles nucleated from a heating process through the formation of vapor. Besides

major differences in terms of their oscillatory stability [Feng and Leal, 1997], because

the diffusivity of gases is about hundred times smaller than the thermal diffusivity, a

vapor bubble differentiates from a gas bubble by its extreme sensitiveness to changes

in pressure and temperature in its near environment, which could for instance generate

its rapid condensation and extinction [Prosperetti, 2017]. In the range of experimental

methods for nucleating bubbles that are soliciting a thermal increase with the generation

in the liquid of a laser pulse or an electrical spark discharge, the maintenance of a bubble

only consisting of vapor could only be achieved by maintaining a local high temperature.

In the absence of such a means of bubble maintenance, the bubble would rapidly collapse.

This fast motion is widely investigated with laser- and spark-induced transient bubbles

through the formation on a nearby wall of micro-jets [Tagawa and Peters, 2018, Rapet

et al., 2019, Fong et al., 2009] and shock waves [Tagawa et al., 2016].

In studies investigating stable oscillations of bubbles nucleated by a local thermal in-

crease, bubbles consist of vapor exclusively at the very first moments of their existence.

Immediately afterwards, their persistence and growth result from the transfer of gas dis-

solved in the surrounding liquid by the phenomenon of rectified diffusion under the action

of an oscillating pressure field, hence commonly referred as vapor-gas bubbles. Due to

the rapid drop in temperature, the vapor has very likely condensated and only the gas

remains. Laser pulse and spark discharge based methods for bubble nucleation present

great advantages, respectively, the absence of induced flow disturbance, and the simplicity

and low cost of the setup [Fong et al., 2009]. In addition, the bubble nucleation can be

provoked in a closed or hard-to-reach space. Once the mechanism is set up, these methods
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have good repeatability in terms of localization of the bubble formation.

Prefabricated bubbles

Even if already mentioned previously in section 1.1.1, it is worth providing further ex-

planation about the pros and cons of the use of prefabricated bubbles, also referred as

ultrasound contrast agents (UCA). They are suitable in both in-vivo and in-vitro envi-

ronments. The reason for that comes from the possibility for prefabricated bubbles to

be designed with specific inner gases and coatings that allow to tune and increase their

persistence. This makes them very convenient in medical applications where the choice

of the frequency and the distance of the path to be covered by the bubbles depend on

the area to be investigated, but also in experimental research with their possibility, once

created, to be easily transported or stored for further use. Their manufacturing performed

in microfluidic devices allows a very accurate control of their size at a production rate of

up to one million bubbles per second [van Elburg et al., 2021]. According to the needs, it

is possible to obtain bubble populations with an accurately regulated polydispersion or

monodispersion, which can enhance their remote acoustic control. However, when there is

no home-made facility for their production, their acquisition can be relatively expensive.

Acoustics

Nucleating bubbles with acoustics results from a pressure decrease below the vapor pres-

sure threshold. The erratic and possibly violent behavior of this process was already

mentioned in section 1.1. More exactly, the random and unpredictable behavior in terms

of localization of cavitation nuclei and bubble size dispersion makes this method for bub-

ble nucleation not really suitable whether it is wanted to create one single bubble with

the view of studying its dynamics. The same reasons make the use of cavitation within

in-vivo environments an unsafe and still too little understood tool, today.

It is worth noting that in literature, the term acoustic cavitation bubbles is also often

attributed to ultrasound-driven bubbles, no matter how they were created, whether they

were prefabricated, nucleated from a thermal process or a pressure drop, for instance.

Electrolysis

The electrolysis is defined as the breakdown or decomposition of something by use of

electricity. In an industrial context, it is employed for the extraction of metals from ores,

or in the production of chemicals from ionic compound. It consists in immersing two

electrodes in a solution and applying a direct electric current. When performed in pure

water with added NaCl as an electrolyte, it occurs the overall reaction
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2NaCl + 2H2OÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
reactants

⟶ Cl2 +H2 + 2NaOHÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
products

(1.1)

Chlorine (Cl2), that quickly dissolves in water, is generated at the positively charged

anode where it results an oxidation reaction. Dihydrogen gas (H2) is generated at the

negatively charged cathode where it results a reduction reaction. The circuit is completed

when the ions Na+ and OH− react to constitute sodium hydroxide (NaOH) in the form

of a new electrolyte. Unlike the bubble nucleation by laser pulse or spark discharge, the

bubble nucleation by electrolysis requires an access to the interior of the tank for the

wires to be immersed and manipulated. On the other hand, this is a lot less expensive

method, given that only a signal generator, a metal wire and table salt are needed. With

some skills in handling the cathode, the tethering of a nucleated dihydrogen bubble to a

substrate can be easily performed to arrange it in an experimental configuration attached

to a wall, for instance. All things considered, this nucleation method by electrolysis will

be preferred for the experimental purpose of this thesis work.

1.2 Spherical bubble dynamics

Provided its size is small enough related to the acoustic wavelength (R0 << λ), a bubble

immersed in an acoustic field experiences an homogeneous pressure all along its interface.

Under the action of this pressure fluctuation, the bubble oscillates with a spherical shape,

while the pressure within the bubble varies inversely with its size variations.

Extended Rayleigh-Plesset model

The dynamics of an acoustically forced bubble was mathematically described for the first

time by considering an incompressible inviscid liquid under adiabatic conditions with the

following second-order differential equation known as Rayleigh-Plesset equation

ρ [RR̈ +
3

2
Ṙ

2] = pi − pe(t), (1.2)

where R, Ṙ and R̈ are respectively the instant radius of the spherical bubble and

its first and second order derivatives with respect to time. The constant ρ is the liquid

density, pi the bubble’s supposed homogeneous internal pressure, pe(t) = p∞ + pac(t) the

external pressure that includes the static pressure or far-field pressure p∞ and the driving

acoustic pressure pac(t). Equation (1.2) does not consider the bubble surface tension and

the viscosity of the liquid. When assuming a bubble with very small radius, these last

quantities that are inversely proportional with the bubble radius are no longer negligible
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and must be considered. As a consequence, additional terms complete the expressions of

internal and external pressures pi(t) and pe(t) of equation (1.2), so that it takes the form

ρ [RR̈ +
3

2
Ṙ

2]
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
inertial terms

= pv(T ) + pg0 (R0

R
)3γ

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
internal pressure pi(t)

− [p∞ + pac(t) + 2σ

R
+ 4µ

Ṙ

R
]ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

external pressure pe(t)
, (1.3)

where σ is a surface tension coefficient expressed in N ⋅ m
−1 and µ = νρ is the liquid

dynamic viscosity expressed in Pa ⋅ s, with ν the kinematic viscosity. The quantity pv(T )
refers to the vaporization pressure, which is a function of the temperature T . It translates

the thermal agitation of liquid and thus the tendency for liquid particles to change from

a liquid to a gaseous state. As the temperature rises, so does the vaporization pressure

and the internal pressure of the bubble. pg0 = 2 σ

R0

+ p∞ − pv(T ) is the instantaneous

partial pressure pg of the gas inside the bubble but here assumed to be constant with

time, the additional subscript 0 referring to an initial condition. Finally, γ = 1.4 is the

ratio of the gas heat capacities, as no thermal or mass transfer between the inside and the

outside of the bubble are assumed. Equation (1.3) is also referred as RPNNP equation in

commemoration to its contributors, Rayleigh [1917], Plesset [1949], Noltingk and Neppiras

[1950], and Poritsky [1951]. Even though a qualitative approach of equation (1.3) was

obtained by Ma and Wang [1962] who analytically investigated the bubble radial velocity

Ṙ as a function of the interface displacement R, a numerical solver is preferred whether

the objective is to obtain a quantitative solution for this differential equation.

Linearization of Rayleigh-Plesset equation

By considering a small displacement r(t) of the bubble interface R(t) = R0 + r(t) with

regards to the bubble radius at rest R0, also named bubble equilibrium radius, such as

r(t) ≪ R0, equation (1.3) can be linearized. By doing so, it brings up the equation of a

forced and damped harmonic oscillator

r̈(t) + δṙ(t) + ω
2
br(t) = −pac(t)

ρR0

, (1.4)

that is characterized by a resonant pulsation ω
2
b =

3γp∞

ρR2

0

+
6σγ

ρR3

0

−
2σ

ρR3

0

and a damping

term δ =
4µ

ρR2

0

. When neglecting the second and third terms in R
−3
0 , the expression of

the resonant pulsation simplifies. The numerical application in water with γ = 1.4,

p∞ = 10
5
pascal and ρ = 10

3
kg ⋅ m

−3 leads to the expression

R0fb ≃ 3.26 m ⋅ s
−1
. (1.5)
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Chapter 1. About bubbles

This qualitative estimation of the natural frequency of a bubble fb associated to its

radius at rest R0 through the linear expression of equation (1.5) is called Minnaert’s

frequency, in tribute to its initiator [Minnaert, 1933].

Determination of the acoustic pressure from the bubble radial displacement

When the acoustic pressure close to an oscillating bubble cannot be measured with an

hydrophone at the risk of altering the bubble behavior and when the bubble location

in the acoustic field is not controlled, an other way for obtaining the acoustic pressure

applied on the bubble has to be found. From the observation of the bubble interface

small fluctuations, the acoustic pressure can be deduced thanks to equation (1.4). By

assumption of a constant acoustic pressure and a spherical oscillation of the form r(t) =
Ar cos(ω0t+ψ) ≪ R0, where ω0 = 2πf0 is the driving angular frequency and ψ the phase

shift, the acoustic pressure Pa writes

Pa = βρR
2
0

√(ω2
b − ω2

0)2
+ δ2ω2

0, (1.6)

with

β =

√
C2

1 + C2
2 , C1 =

2

T
∫

T

0

r(t)
R0

cos(ω0t)dt, C2 =
2

T
∫

T

0

r(t)
R0

sin(ω0t)dt,
and T = 1/f0 is the acoustic period. The experimental knowledge of the bubble

instantaneous radius r(t) allows to numerically determine C1 and C2. In chapter 2, we

will see that the experimental method consists in applying an acoustic field modulated

in amplitude. Besides the interest of studying the dynamics and stability of a bubble

at different acoustic pressure, the modulation of the acoustic field allows to calculate

the acoustic pressure at low values and then to extrapolate it linearly along the whole

modulation ramp.

Bubble spherical stability

The question of the stability of a bubble interface is a major concern in hydrodynamics

where the collapse of bubbles can generate micro-jets and shock waves with highly de-

structive potentials. Interface instabilities of an acoustically forced bubble arise from its

radial interface motion and can result from two different mechanisms: the Rayleigh-Taylor

instability and the Faraday instability [Feng and Leal, 1997]. They especially differentiate

by their temporal scale of setting up. A Rayleigh-Taylor instability is the consequence of

a rapid radial acceleration of the bubble interface. Its growth time can be estimated from

∆τ = ( σ

ρa3
s

)(1/4)
, where σ and ρ are the liquid surface tension and density, and as is the

acceleration of the radial motion [Avila and Ohl, 2016]. For a bubble driven at 30.5 kHz

10



1.2. Spherical bubble dynamics

animated by a 5 µm radial amplitude displacement, a Rayleigh-Taylor instability would

develop in a time delay of about 10 µs, provided the interface acceleration as is maximal

and constant during this time delay. However, because an important acceleration only

happens for a small portion of a bubble oscillatory cycle, Rayleigh-Taylor instabilities

do not apply to oscillating bubbles in weakly viscous fluids [Feng and Leal, 1997]. On

the other hand, the Faraday instability results from the accumulation of interface insta-

bilities over several bubbles oscillations above a critical radial amplitude. It is therefore

a relatively much slower mechanism described as parametric because it is forced by the

amplitude of the periodic radial motion. This type of instability is at the origin of the

break of spherical bubble stability as we experienced it in the present work and which

resulted in nonspherical deformations of the bubble interface [Guédra et al., 2017].

The wall effect

In the absence of any particular triggering event, bubbles naturally nucleate where they

meet surface irregularities or heterogeneities in a fluid. The study of the mechanical

behavior of a bubble attached to a substrate is thus of great interest to answer its physics

in closed environments, as in pumps and industrial cleaning devices, or even in biological

tissues. The parametric instability discussed in previous section arises from the nonlinear

spherical behavior of the bubble interface, accumulated over several oscillations beyond a

critical magnitude of acoustic pressure [Guédra et al., 2017, Feng and Leal, 1997]. Because

there exists no theory predicting the spherical instability of an oscillating wall-attached

bubble, a comparative example is given in figure 1.1, in order to unveil some evidence

of dissimilarity between the nonlinear behavior (and hence the stability) of the spherical

oscillation of free bubbles and attached bubbles.

Under the action of a 30.5 kHz low-pressure periodic forcing (about 2 kPa), a mi-

crobubble undergoes a low amplitude sinusoidal displacement (about 0.5 µm) of its spher-

ical interface around its value at rest R0 = 64.6 µm, as depicted in figure 1.1a. The

experimental data correspond to the case of a bubble attached to a wall, while the joined

numerical simulation corresponds to a bubble of same equilibrium radius, but free of any

constraints. Their comparison shows that the tethering of the bubble does not seem to

alter the spherical dynamics at low acoustic pressure.

Under the action of a high-pressure periodic forcing (about 30 kPa), the same mi-

crobubble attached to the wall undergoes a high amplitude displacement (about 6 µm)

of its constant spherical interface, as depicted in figure 1.1b. This spherical oscillation

diverges barely from linearity as it does not exhibit a monochromatic aspect anymore.

In contrast, the numerical simulation of a free bubble of same radius undergoes a strong

nonlinear behavior. The theoretical model for free bubble does not match anymore the

dynamics of the experimental wall-attached bubble.
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Figure 1.1: Example of radial oscillations of a microbubble of equilibrium radius R0 = 64.6 µm

driven at 30.5 kHz with an acoustic pressure of about 2 kPa (left) and 30 kPa (right). The com-

parison between the cases of an experimental wall-attached bubble (black dots) and a theoretical

free bubble (red curves) highlights the different nonlinear behavior at high acoustic pressure. The

information is structured as follows. Top: time-resolved dynamics of the experimental bubble

radius (black dots) and the numerical bubble radius implemented with an extended Rayleigh-

Plesset model (red solid line). Bottom: acoustic pressure signal obtained from the experimental

bubble and the method described in section 1.2, and then introduced as an input parameter in

the numerical simulation.

It is expected that the truncation of the bubble spherical shape due to the tethering

and thus the break of the bubble symmetry could facilitate the triggering of bubble in-

terface instabilities. In other words, the tethered bubble does not necessitate to undergo

a strong nonlinear spherical oscillation before interface instabilities arise, unlike the free

(not-truncated) bubble, for which the nonlinear behavior of the spherical oscillation can

reach stronger magnitudes before any instabilities get triggered. This might explain the

difference displayed in figure 1.1b between the spherical oscillations of the theoretical free

bubble and the experimental tethered bubble at an acoustic pressure close to the thresh-

old of parametric instability.

Theoretically, the presence of a nearby wall is usually modeled as a two-bubbles system

by considering an additional virtual bubble as a mirror image [Doinikov et al., 2009, Vos

et al., 2011]. In this configuration, an arbitrary elasticity for the wall can be simulated

by introducing a phase shift in the dynamics of the bubble mirror image with respect

to the original one. In a condition of attached bubble, an increased difficulty arises in

the mathematical description of the contact line dynamics and its reciprocal effects on

the bubble dynamics. For this reason, theoretical works on wall-attached bubbles are

scarce. We can still mention a study of Maksimov [2005] who demonstrates a significant

modification of the radial (breathing) mode pulsation due to the volume truncation of a

tethered bubble, as a function of the equilibrium contact angle. For a vertically vibrating
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1.3. Nonspherical bubble dynamics

plate, the contact line dynamics can also be estimated through the condition of Hocking

[1987] who suggests a solution accounting for the contact angle hysteresis and the energy

dissipation due to the moving contact line. Experimentally, an upward shift in resonance

frequency and a decrease in the radial oscillation have also been shown for adherent

bubbles. This emanates from the stiffening of the system [Lum et al., 2020].

1.3 Nonspherical bubble dynamics

1.3.1 Nonspherical modes

Spherical-coordinate harmonics

When excited at sufficiently high acoustic pressure, a bubble may exhibit nonspherical

modes. These nonspherical deformations of its interface are traditionally described using

the spherical harmonics. Mathematically, a spherical harmonic is a harmonic function,

namely a function, let us call it h, that is the solution to the Laplace’s equation in the

spherical system of coordinates (r,θ,φ).

1

r2

∂

∂r
(r2∂h

∂r
) + 1

r2 sin θ

∂

∂θ
(sin θ

∂h

∂θ
) + 1

r2 sin2 θ

∂
2
h

∂φ2
= 0. (1.7)

The spherical harmonics are the equivalent of the Fourier series which allow the de-

scription of any harmonic function in a single sum of cosines and sines, but here applied

to the case of functions defined on a sphere of unit radius. Because they are normalized

to one, these functions form an orthonormal basis and are traditionally introduced as

Y
m

n (θ, φ) = (−1)m
fnmPnm(cos θ)eimφ

, (1.8)

where n and m are two integers closely connected by −n ≤ m ≤ n and respectively

named the degree and the order of the spherical harmonic. Pnm is the associated Legendre

polynomial of degree n and order m, and fnm = (2n+1

4π

(n−∣m∣)!(n+∣m∣)!)1/2

is the normalization

coefficient. The orthonormality relation between two spherical harmonics Y m
n and Y

m
′

n′

writes

∫
π

θ=0

∫
2π

φ=0

Y
m

n Y
m

′

n′

∗
dΩ = δnn′ δmm′ , (1.9)

where Y m
n

∗(θ, φ) = (−1)m
Y

−m
n (θ, φ) is the complex conjugate of Y m

n (θ, φ) and dΩ =

sin θ dθ dφ is the solid angle. Spherical harmonics are functions commonly employed in

physics, especially in quantum mechanics, for describing the motion and the wave-like

behavior of gravitating electrons of atoms and in geophysics for representing the surface

of the terrestrial globe or its magnetic field. The phase factor (−1)m in equation (1.8)
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Chapter 1. About bubbles

is usually employed in quantum mechanics for simplifying some operations. In what

concerns us, in acoustics and vibration systems this phase factor is not included in the

definition of spherical harmonics, just as the index m will be considered as having always

a positive value. This simplification is allowed when considering the harmonics Y m
n and

Y
−m

n equivalent, up to one rotation in azimuth (following the variable φ). Its relation

with n is thus simplified as 0 ≤ m ≤ n in the following. Spherical harmonics cancel

on m nodal meridians (2m if a meridian is defined as joining the two poles, instead of

going all around the sphere) and n − m nodal parallels, for a total of n nodal lines, as

illustrated in figure 1.2. Following the relation between the order m and the degree n,

and thus the number of nodal meridians and parallels, spherical harmonics take different

names: zonal when m = 0 < n, tesseral when n > m > 0 and sectoral when n = m > 0.

It seems important to clarify at this stage that the zonal modes are φ-independent as

they are functions axisymmetric around the axis z (θ = 0). Y m
n (θ, φ) and Ynm(θ, φ) are

two different notations employed in literature that refer to the same spherical harmonic of

degree n and order m. The notation Ynm(θ, φ) is the one that will be preferred throughout

this manuscript.

Zonal n=4, m=0

Tesseral n=4, m=3

Sectoral n=4, m=4

x
y

z
θ

φ

Figure 1.2: Exemplary cases of implemented spherical harmonics and their projections in the

(x,y), (x,z) and (y,z) planes for a degree n = 4: a zonal harmonic (m = 0 < n), a tesseral

harmonic (0 < m = 3 < n) and a sectoral harmonic (m = 4 = n). Their respective n − m nodal

parallels (in yellow) and m nodal meridians (in black) are drawn on each spherical harmonic.

The system of coordinates is given in the lower right corner of the figure.

Bubble shape modes

The most common approach for investigating the shape perturbation of an initially spher-

ical bubble is to describe its interface with the equation

S(θ, φ, t) = r(θ, φ, t) −R0 − ∑
n,m

anm(t)Ynm(θ, φ) = 0, (1.10)
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1.3. Nonspherical bubble dynamics

where anm(t) are the time-varying amplitudes of the bubble modes (including the

purely radial one for n = m = 0). The set of spherical harmonics Ynm applied to a

numerical bubble of equilibrium radius R0 = 90 µm can be visualized from a top-view

perspective in figure 1.3. The cos(mφ) azimuthal shape of sectoral modes and the circular

azimuthal shape of zonal modes are obvious, while tesseral modes exhibit more complex

shapes with nodal lines in both elevation and azimuth, barely discernible from this top-

view.

Considering an incompressible, inviscid, unbounded fluid, Lamb [1916] derived the

spectrum of natural angular frequencies for these nonspherical shape modes

ω
2
n = (n − 1)(n + 1)(n + 2)σ/ρR3

0, (1.11)

where σ is the surface tension and ρ is the density of the liquid. A further analysis of

the nonspherical oscillations has been performed by Plesset [1954] who derived the equa-

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

zonal m = 0 < n

sectoral n = m > 0

tesseral n > m > 0

Figure 1.3: Overview of the bubble nonspherical modes (R0 = 90 µm and anm = 30 µm) for

degrees up to n = 6, visualized from a top-view perspective.
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Chapter 1. About bubbles

tions of shape oscillations for small amplitudes of deformations ∣anm(t)/R0∣ ≪ 1, n ≠ 0.

In this approximation the equations for both spherical and nonspherical oscillations are

uncoupled. The former is the Rayleigh-Plesset equation ruling the evolution of the radial

oscillation, while the latter can be reduced to the Mathieu equation describing the para-

metric excitation of shape modes [Benjamin, 1958]. An important feature of the equations

ruling the nonspherical oscillations is that they do not contain the index m. This means

that, for a given spherical harmonic of degree n, all associated order-m functions are de-

scribed by the same expression given by equation (1.11) and would have thus the same

resonance frequency, which is referred in literature as degeneracy of spherical harmonics.

This feature will be further discussed in the next section.

1.3.2 Parametric instability thresholds

Parametric instability thresholds of a free bubble

As introduced in section 1.2, these shape modes are generated through the process of para-

metric instability when the bubble radial oscillation is driven above some pressure thresh-

old [Brenner et al., 1995, Feng and Leal, 1997, Shaw, 2017]. From a mathematical point of

view, instabilities of bubble surface are commonly approached by assuming small ampli-

tudes of nonspherical deformations. By conducting a perturbation analysis, Francescutto

and Nabergoj [1978] obtained the pressure thresholds for the nonspherical oscillations,

that are also independent of the index m of the spherical harmonics. From this analysis,

for a given value n, the set of degree-n spherical harmonic modes for different orders m

appears as degenerate modes. The mathematical analysis of an initially spherical bub-

ble in an unbounded fluid is therefore commonly reduced to axisymmetric deformations

invariant to the coordinate φ, for which spherical harmonics are described by Legendre

polynomials (called zonal harmonics). The axisymmetry property is commonly retained

in theoretical works as simplifying mathematical derivations. It is worth specifying at

this stage that some experiments based on axisymmetric external forcing [Versluis et al.,

2010], stereoscopic optical set-up [Guédra et al., 2017] or coalescence-induced shape mode

triggering [Cleve et al., 2018] attest the validity of this assumption.

The threshold of this parametric instability depends on many factors, on the equilib-

rium bubble radius, the driving frequency and the degree of an arbitrary shape mode. The

degree-n free bubble instability threshold P n
th can be obtained from asymptotic approxima-

tion of the set of equations ruling the oscillations of axisymmetric deformations [Frances-

cutto and Nabergoj, 1978, Nabergoj and Francescutto, 1979], and is expressed as:

P
n
th = ρR

2
0 Cn

√(ω2
B − ω2

0)2
+ ω2

0δ
2, (1.12)
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Figure 1.4: Theoretical pressure instability curves derived by Francescutto and Nabergoj [1978]

for the case of a free bubble subject to axisymmetric shape modes Yn0. The instability curves

are drawn for modal degrees going from n = 3 to n = 11.

where

Cn =

√√√√√√√√√√⎷
(a − 1)2

+ 4p

[−3

2
a + 2p + 2 (n +

1

2
)]2

+ q2

,

a =
4(n − 1)(n + 1)(n + 2)σ

ρω2
0R

3
0

, p = [2(n + 2)(2n + 1)µ
ρω0R

2
0

]2

, q =
6(n + 2)µ
ρω0R

2
0

,

and µ is the viscosity of the medium, ω0 is the driving pulsation, ωB is the resonance

frequency of the bubble radial mode, δ =
4µ

ρR2

0

is the damping constant applied by the

medium on the bubble and n is the modal degree. These bubble instability thresholds have

been calculated for degrees n = 3 to n = 11 for a bubble sizing in the range [60 250] µm.

The result is shown in figure 1.4, where only the first parametric resonances are drawn. In

practice, other secondary resonances can appear among these areas of instability. Lastly,

it should be noted that the triggering thresholds are minimal when the bubble equilibrium

radius R0 is close to the resonance of the volumetric mode (Minnaert’s resonance). With

our experimental parameters, it is the instability curve of the first parametric resonance

of the modal degree n = 5 that is concerned by this situation.

More information on the thresholds of these parametric instabilities investigated from

a different perspective, as a function of the bubble radial amplitude displacement, can be

found in the exhaustive review of Feng and Leal [1997] about the nonlinear dynamics of

a gas bubble.
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Chapter 1. About bubbles

Parametric instability thresholds of a constrained bubble

Before discussing about how bubble shape modes are altered in presence of a wall, it

should be noted that besides the study of the nonspherical dynamics of a bubble, another

field of fluid mechanics studies in a similar way the dynamics of liquid drops. Indeed, they

are governed by the same physics of surface tension which especially explain their tether-

ing to a surface and their response to a high amplitude forcing with similar nonspherical

shape deformations. Therefore, throughout this thesis manuscript, recurring analogies

are made with the behavior of an attached drop, also referred as sessile drop or droplet,

in order to support our analysis of an attached bubble. For the sake of simplicity and co-

herence, it has been preferred to directly integrate these comparisons into the discussions

on the bubble dynamics rather than devote an exclusive section to these drop analogies.

When this will happen, it will be explicitly stipulated in the text.

While microbubbles are commonly theoretically investigated as being immersed in an

infinite liquid, constraints on bubble dynamics usually appear experimentally through the

poking to neighboring cells [van Wamel et al., 2006], when being attached to a substrate

in microfluidic applications [Vos et al., 2011, Prabowo and Ohl, 2011, Marmottant et al.,

2006, Abramova et al., 2018], confined between walls [Mekki-Berrada et al., 2016] or re-

strained nearby a wall [Garbin et al., 2007, Dollet et al., 2008, Xi et al., 2014]. These

experimental works teach us that the temporal dynamics of a constrained bubble signifi-

cantly differ from the theory of free bubbles. In the case of a wall-attached bubble, if the

dynamic feature of the contact line motion is taken into account [Shklyaev and Straube,

2008], linear coupling between shape and volume oscillations has been evidenced for hemi-

spherical bubbles. In this particular case, it is theoretically demonstrated that the only

shape modes that may interact with the breathing oscillation are the axisymmetric ones

(arbitrary n, m = 0).

As explained in previous section 1.3.1, when deriving the equation of motion of bubble

surface oscillation at the first order of the ratio between the modal displacement ampli-

tudes and the bubble radius at rest ǫn = an/R0, it appears that asymmetric modes m of a

same degree n are degenerate. The associated Lamb spectrum describing the instability

regions of any surface mode is therefore limited to the spectrum of the zonal, axisym-

metric modes. This degenerate behavior of the set of spherical harmonics comes from

an assumption commonly operated in theoretical works. This simplification has been re-

futed by recent works where the splitting of the natural frequencies of the whole set of

asymmetric oscillations has been evidenced, experimentally for a substrate-attached bub-

ble [Fauconnier et al., 2020] and for a sessile drop [Chang et al., 2013], and theoretically

for a bubble oscillating near a wall [Maksimov, 2020].

Still for wall-attached bubbles, the shape mode characterization is either performed
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1.4. An overview on microstreaming

through a Fourier mode decomposition of the bubble interface [Prabowo and Ohl, 2011]

(and hence restricted to axisymmetric deformations) or only qualitatively described [Birkin

et al., 2001, Abramova et al., 2018]. In the case of vibrating sessile drops, image post-

processing of profiles from a top-view allows determining the modal decomposition on

the basis of spherical harmonics [Courty et al., 2006, Chang et al., 2013]. In the above-

mentioned studies, the investigations are restricted to the shape mode classification, the

temporal dynamics of the non-axisymmetric oscillations being usually disregarded. The

mechanism underlying which shape mode is chosen to grow to a steady-state, and selected

out, is not revealed so far. Such mode selection, and the establishment of a final bubble

shape, may be deduced from the symmetry of the studied geometry [Dollet et al., 2008]

or preferential directions of the ultrasound wave [Versluis et al., 2010]. Theoretically, a

three-wave resonant interaction between the Faraday ripples on the bubble surface has

been proposed to describe the selection of an established standing-wave pattern [Maksi-

mov and Leighton, 2012]. Experimentally, the preferential manifestation of sectoral modes

has recently been described [Abramova et al., 2018].

1.4 An overview on microstreaming

When an ultrasound-driven microbubble oscillates nonspherically in a volume of fluid, it

occurs, at the acoustic time scale, an oscillation of the fluid particles that synchronize with

the bubble interface displacement. In addition, since the fluid is not inviscid, the bubble,

which acts as a mechanical transducer, generates a tangential motion of the fluid at its

interface, finally resulting, thanks to the absorption capacity of the medium, in a steady

fluid motion called acoustic streaming. We must go back in 1831 in order to find the early

beginnings of experimental work on acoustic streaming when Faraday [1831] observed and

reported for the first time air streaming that resulted from a vibrating plate, and then, wait

50 years for the first theoretical work accomplished by Rayleigh [1884] with his study on

steady air flows between parallel walls. He explained their existence in resonant pipes as a

time-independent second order flow driven by the viscous stresses of the fluid, and justified

their specific patterns by the presence of the parallel solid boundaries. The association of

this phenomenon to a gas bubble amounts first to Kolb and Nyborg [1956] who discovered

the generation of microstreaming when the bubble is tethered to a vibrating metal cone,

and to Elder [1959] who observed the acoustic streaming of a bubble visualized from a

side view, as a function of the fluid viscosity and the acoustic pressure. At that time,

Elder stated for the first time that the direction of the flow in a low viscosity medium

“is such as to move the liquid away from the nodes and towards the anti-nodes”. In these

works, nonspherical instabilities of a tethered bubble were reported above certain pressure

values, as well as changes in the microstreaming behavior associated to changes in the
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Figure 1.5: Overview of the experimental works on dynamics and/or microstreaming associated

to a wall-attached bubble undergoing asymmetric modes.

bubble modal deformations.

Since then, microstreaming induced by a single bubble is investigated through several

scenarios, either when undergoing a rigid-body translation motion only [Davidson and

Riley, 1971, Longuet-Higgins, 1998, Collis et al., 2010] or when accompanied with a ra-

dial oscillation [Gormley and Wu, 1998, Longuet-Higgins, 1998, Marmottant et al., 2006,

Bolaños-Jimenez et al., 2017], either when animated by asymmetric modes [Tho et al.,

2007], or axisymmetric ones [Spelman and Lauga, 2017, Cleve et al., 2019]. This latter

case of triggered axisymmetric modes occurs when bubbles are free of any constraints,

acoustically trapped in a standing-wave levitation system [Cleve et al., 2019] or stabilized

close to the vortex core of a propagating beam [Baresch and Garbin, 2020]. The investi-

gation of bubble interface motion and induced streaming in an unbounded fluid presents

the advantage of allowing the comparison to mathematical models that are based on the

assumption of axisymmetric bubble oscillation. Bubble-induced microstreaming gener-

ated by the combination of radial, translation or any arbitrary axisymmetric oscillation is

now well documented [Longuet-Higgins, 1998, Spelman and Lauga, 2017, Doinikov et al.,

2019a,b, Inserra et al., 2020a,b].

Sectoral and tesseral harmonics correspond to asymmetric deformations whose trig-

gering is facilitated when a bubble is close or in contact with a wall. The mathematical

description of bubble asymmetric oscillation is complex and brings a bunch of new difficul-

ties when resolving the bubble interface dynamics. As a result, experimental works about

fluid flows induced by the asymmetric shape modes of a bubble are very scarce [Collis

et al., 2010, Tho et al., 2007, Marmottant and Hilgenfeldt, 2003, Elder, 1959]. In these

investigations of microstreaming resumed in figure 1.5, the time-resolved dynamics of the

bubble is always left to the side, while it can actually play an important role. One of the
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1.5. An overview on sonoporation

reason for this discharge is the complex behavior and interpretation of the bubble silhou-

ette. In this regard, the chapter 3 of this manuscript takes its interest in the revelation

of simultaneous measurements of asymmetric bubble dynamics and induced fluid flow in

order to correlate the bubble modal content to the experienced microstreaming patterns.

1.5 An overview on sonoporation

Because some in-vivo environments can be difficult to access, a very promising alternative

is suggested and consists in carrying out a remote mechanical action on biological cells and

tissues by taking advantage of the resonant behavior of acoustically-excited microbubbles

working as acousto-mechanical transducers. This allows a non-invasive and localized

action on the biological tissues. Also referred as cellular sonication, the sonoporation is

the process by which ultrasounds are employed to alter the membrane permeability of

biological cells. Intended to have a transient and reversible action, it aims at facilitating

the internalization of particles, drugs or genes into the cytoplasm without affecting the

cells viability. The real challenge with sonoporation is the control of the irregular bubbles

activity that can quickly become chaotic. Too little acoustic energy deposit would result in

no cell permeabilization, but too much could irreversibly porate the cell until its complete

lysis. To answer this purpose, the use of prefabricated bubbles can be more attractive

because it allows a better monitoring and control of the bubbles behavior, facilitated with

their tunable and selective frequency response.

stable cavitation inertial cavitation

streaming pushing and pulling translation through
radiation forces

shock waves g micro jets

Figure 1.6: Sketches of the different mechanisms possibly leading to cellular sonoporation, which

can be induced either by a stable oscillatory regime of ultrasound-driven microbubbles either by

an inertial collapsing regime of microbubbles (reprinted with permission from Cleve [2019]).

As it will be discussed in this section, the manifold mechanisms of these ultrasound-

driven (or laser-induced) microbubbles, resumed in figure 1.6, are as much possible means

to mechanically stimulate and eventually permeabilize nearby biological cells. Among oth-

ers, this includes the generation of streaming-induced shear stresses, the bubble pushing-

pulling action, i.e. the first order acoustic time scale bubble-induced cell deformation, or

even the bubble jetting towards the cell membrane. Before going into the detail of this,

the methods for measuring the sonoporation will be first described.
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Chapter 1. About bubbles

1.5.1 Techniques for measuring the rate of sonoporation

There exists several ways for measuring the rate of sonoporation of biological cells. Some

rely on the real-time monitoring of the cell activity, while others interpret the effect of

bubbles from a post-ultrasound exposure analysis. The former is usually limited to the

analysis of cells located in the field of view, but allows a time-resolved understanding of the

involved mechanisms. The latter not only covers fast measurements and statistical results

of large cells populations, but also consists of the high-definition imaging of sonoporated

cells.

Post-US exposure measurement

A biological cell is a dynamic living entity endowed with an ability of resilience and regen-

eration. The sonoporation aims at the transient and reversible poration of cells membrane.

Literature reporting recovery time of sonoporated cells on the order of milliseconds to sec-

onds [Mehier-Humbert et al., 2005, Hu et al., 2013], it could be concluded from these two

sentences that measuring the success rate of such a transient phenomenon with an after-

the-fact procedure makes no sense. Hopefully, it is possible. The sonoporation can be

quantified in an after-the-fact procedure by using a fixative solution added just after in-

sonication or by using fluorescent markers before or during insonication. The possibility

of evaluating the rate of intact, successfully permeabilized and dead cells among a large

population of sonicated cells is of great interest for investigating the influence of acoustic

parameters, the cell-to-bubble distance and different types of microbubbles on sonopo-

ration in a statistical way [Forbes et al., 2008, Yu and Chen, 2014]. The opening times

of pores is usually evaluated by adding fluorescent markers at different post-US exposure

time delays along repeated experiments, and regarding at the rate of stained cells for each

scenario [Mehier-Humbert et al., 2005]. It is worth precising that the counting of cells

is performed by flow cytometry, i.e. the optical computer-assisted sorting of a sample of

cells labeled with fluorescent markers flowing through a laser beam.

Otherwise, when it is aimed at looking into the outcomes of sonoporation at the single-

cell scale and not at a population scale, scanning electron microscopy is employed. This

measures the response to an electron beam of a surface to be imaged in order to capture

and reproduce its three-dimensional structure at the nanoscale level. Because the poration

of the cellular membrane is transient and may recover after a short duration, the state

of the cells right after ultrasound exposure can only be visualized by freezing its state

with a fixative (e.g. glutaraldehyde). Its application to the examination of the membrane

surface of sonoporated biological cells revealed that the sizes of pores is closely related

with the size of internalized particles but also with the cellular lethality [Mehier-Humbert

et al., 2005], and the bubble-cell distance before ultrasound activation [Zhou et al., 2012].
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Real time measurement

Along its living time, an eukaryotic cell continuously interacts with the outside in order

to provide itself with nutriments and information. Its so-called calcium pumps are ion

channels disposed on its membrane that allow it to communicate with its environment

and share information with other cells. The constant concentration of calcium ions (Ca2+)

within the cytoplasm is crucial for ensuring these functions and its monitoring allows the

detection of abnormal changes in the cellular membrane permeability. It is widely used in

research as a means for evaluating the cell viability or the rate of sonoporation caused by

oscillating microbubbles [Bose et al., 2011, Deng et al., 2004, Tran et al., 2008, Kudo et al.,

2009]. Similar works investigate in a more general way the transmembrane current regu-

lated by these ions channels [Zhou et al., 2009, 2012], which they achieve to relate to an

estimation of the bubble-induced pores size. The difficulty in these monitoring techniques

remains in the very delicate patch-clamp method that consists in introducing a commu-

nicating wire within the cell for measuring these ion quantities. If badly handled, the risk

of damaging the cellular membrane with the wire can be high, leading the measurements

to be irrelevant with the action of ultrasounds and the bubbles activity. Another way for

monitoring the cellular membrane opening and the internalization of particles into the

cytoplasm goes through the use of blue trypan [Le Gac et al., 2007] or fluorescent DNA-

intercalating dyes. Among others, propidium iodide (PI) [Okada et al., 2005, van Wamel

et al., 2006, Kooiman et al., 2011], calcein [Guzman et al., 2003] and TOTO-1 [Escoffre

et al., 2010] are perfect candidates to answer this purpose of cell staining.

1.5.2 Multi-cells scale investigation

The effect of ultrasound-driven bubbles on a cell population is usually experimentally

investigated as a black box system. Acoustic parameters, types of microbubbles and

cells are first described and introduced as experimental conditions. Ultrasounds are then

activated and the outcome of the bubbles activity on cells is acknowledged afterwards.

At the end, the cells are identified as intact, sonoporated or dead by the internalization

of fluorescent markers. The result is the subject of a statistical analysis, but the time-

resolved description of the bubbles activity remains unknown. In this configuration, the

mechanisms generated by the bubbles activity and involved in the cell sonoporation are

difficult, if not impossible, to identify. Nevertheless, the after-the-fact analysis of cells

reveals that not only the particles uptake, but also the cell lysis, are correlated with

insonication time and acoustic power [van Wamel et al., 2002]. Forbes et al. [2008] reported

an optimal rate of sonoporated chinese hamster ovary (CHO) cells with OptisonTM bubbles

(GE Healthcare Inc.) at an acoustic pressure of 1.74 MPa and a decrease of sonoporated

cells at acoustic pressure above 2.4 MPa, for which 95 % of bubbles were seen collapsing,

suggesting that bubbles stable regime was more likely to be responsible for the effective
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sonoporation than bubbles inertial regime. The 150 kPa insonication of SonoVue® bubbles

(Bracco Diagnostics, Inc.) in presence of mouse fibroblasts at a concentration of 8 x 106

cells mL
−1 resulted in 58.3 ± 4.1 % of cells that were sonoporated and still alive [Yu and

Chen, 2014]. Most experimental studies of the multi-cells scale sonoporation agree that

the cell permeabilization is possible and often more efficient at low-acoustic pressure

where a stable regime of microbubbles dominates. An interesting recent work involving

an oscillating vapor bubble and its associated streaming within which cells are flowing

should also be mentioned [Xie et al., 2016]. The deformation of cells is explained through

a numerical simulation of the asymmetric shear stress field and experimentally measured

through their change in shape eccentricity (aspect ratio between long and short axis) for

different types of cells. The deformations reaching maximal values up to a value of 2.3 for

the aspect ratio finally result in sonoporation of cells, evidenced with fluorescent markers.

Lastly, it is worth mentioning a promising variant method of cell membrane perme-

abilization. The electrosonoporation takes advantage of two modalities of cell poration

through the use of electric pulses joined with sonoporation in order to promote the en-

trance of drug or genetic material into cells. It should be recalled that electroporation

historically arrived before sonoporation among the techniques for cellular permeabiliza-

tion. Escoffre et al. [2010] explore this dual modality technique with the use of plasmid

DNA and operate in a two-stages procedure. First the electroporation induces the for-

mation of DNA aggregates on the cell membrane. Then the sonoporation precipitates

the aggregates deep into the cell towards the nucleus. This twofold technique showed

an increase in the rate of transfected cells and in the transfection intensity per cell in

comparison with each technique employed alone.

1.5.3 Single-cell scale investigation

The isolated study of a specific mechanism induced by an ultrasound-driven microbubble

is usually done at the single-cell scale through the time-resolved bubble-cell dynamics

ensured by a high-frame-rate camera.

Stable regime of an acoustically-driven microbubble

The study of a stable oscillating bubble in the vicinity of a wall takes its interest in

the capacity for microstreaming to generate shear stresses on a close boundary, which is

widely reported in literature whether it focuses on medical applications [Doinikov and

Bouakaz, 2010, Yu and Chen, 2014, Pommella et al., 2015] or for purposes of indus-

trial cleaning [Reuter and Mettin, 2016, Chahine et al., 2016]. In the run for studying

the bubble-cell interaction, lipid vesicles have often been used as cellular models. The

major advantage comes from their controlled manufacture and therefore from the knowl-

edge of their mechanical and elastic properties that facilitate the comparison with theory.
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Among the earliest experimental works are positioned two of the major pioneers in the

field, Marmottant and Hilgenfeldt [2003] who pave the way for the manipulation, defor-

mation and rupture of biological cells with a purpose of therapeutic application. They

have correlated the path followed by a lipid vesicle caught in the fluid flow generated by a

tethered bubble undergoing both radial and vertical translation motion with the stream-

ing model of Longuet-Higgins [1998]. The meeting of the moving and gradually deforming

cell with the fixed bubble ends up with its disintegration. One year later, van Wamel et al.

[2004] were showing for the first time the acoustic time scale periodic interaction between

a biological cell and a radially oscillating microbubble (Sonovue®, Bracco Diagnostics,

Inc.). The endothelial cell deformation was quantified with the cellular cross-section close

to the microbubble and has demonstrated a 5 µm peak-to-peak amplitude displacement

(15.5 µm at rest) induced by the so-called pushing-pulling action of a 8 µm-sized bubble,

which reached twice its size at maximal expansion (bubble-cell distance = 3 µm). In a

second work, van Wamel et al. [2006] further evidenced the cell permeabilization, assessed

by the internalization of PI, due to a similar bubble pushing-pulling action. The reiterated

experiment on several cells revealed that most permeabilized cells show no more fluores-

cent stain after a three minute time recovery, meaning that no permanent lysis occurred.

The sonoporation of endothelial cells has also been experienced by Kooiman et al. [2011]

with the difference than bubbles were adhering to the cell membrane. Even if the rate

of PI uptake seems unrelated with the bubble localization on the cell membrane, it was

clear that sonoporation could already occur at low acoustic pressure (80 kPa). In the

meanwhile, Marmottant et al. [2008] reiterated their experiment on the deformation of a

lipid vesicle caught in a bubble-induced streaming. The observation of the vesicle during

one period of the flow looping motion exhibits a prolate shape when coming towards the

bubble in the focal plane and an oblate shape when moving away from the bubble out-

wards the focal plane. This behavior has been theoretically confirmed with the resolved

strain rate along the streamline taken by the vesicle. In theory, they determined that

a 4 % vesicle excess area was supposed to result in the vesicle breakup, but they never

experimentally attained this strain in water due to a too low-viscosity. A similar work

investigated the influence of the size and membrane stretching elasticity of vesicles flowing

in a bubble-induced streaming on their ability to support important excess area before

their breakup [Pommella et al., 2015]. For a same stretching ability, the rupture occurred

easier for larger vesicles. Besides these studies, Zhou et al. [2012] studied the cell perme-

ation in a very original way, through the so-called bubble compression. A 10 µm bubble

is propulsed by the acoustic radiation force of a 7 MHz pulse towards the membrane of

a xenopus oocyte with a 25 mm ⋅ s
−1 velocity recorded before impact. The monitoring of

the transmembrane current unveiled the effective sonoporation, while knowing the mag-

nitude of the radiation force allowed them to estimate the membrane rupture tension

to be 1.23 × 10
−5

N ⋅ cm
−1. Lastly, Moosavi Nejad et al. [2016] presented images of cell
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membrane deformation caused by a radially oscillating microbubble flowing near the cell.

The local expansion estimated at 2.5 µm for a 16.7 µm cell area at rest led to a harmless

cellular sonoporation, confirmed by the internalization of fluorescent markers.

This ends the very short list of published works on the mechanical interaction between

a stably oscillating microbubble and a cellular model, at the single-cell scale. To our

knowledge, no experimental study investigates the pushing-pulling action of a microbubble

undergoing nonspherical shape modes at that single-cell scale.

Inertial regime of an acoustically-driven microbubble

As mentioned in section 1.1.2, the formation and immediate collapse of a microbubble

can be generated by nucleation methods making use of a laser pulse or an electrical

spark discharge. In this way, the fast expansion and collapsing bubble behavior has

demonstrated its responsibility in the production of important damages on nearby cells,

whether reversible or not. The cell elasticity has shown to be crucial in its ability to resist

to the bubble motion, especially during its collapsing phase [Tandiono et al., 2013]. Too

elastic cells ended after the bubble disappearance with a very elongated shape, unlike more

rigid cells which remained intact. Le Gac et al. [2007] found a bubble-cell critical distance

of 0.75 R
max

, where R
max

is the maximal expanding bubble radius, below which human

promyelocytic leukemia cells had more than 75 % chance to be porated. Qin et al. [2015]

also shown that sonoporation induced by a collapsing bubble occurred at short bubble-cell

distance and never for a bubble-cell distance larger than the bubble diameter. According

to their findings, the sonoporation is mostly a matter of bubble-cell parameters (distance,

bubble radius, number of collapsing bubbles) than acoustic parameters, the recurrent

irreversible cell disruption taking place exclusively when there is bubble-cell contact or

for repetitive collapse of several (>3) bubbles. A condition of bubble-cell contact before

ultrasound exposure has also been reported to be responsible for important damage in

endothelial cells, which demonstrated a significant rate (70 %) of cell repair within 3

minutes after insonication [Okada et al., 2005].

Theoretical studies

The bubble-cell interaction is also the subject of some theoretical studies, whether in-

vestigated through the bubble pushing-pulling action [Gracewski et al., 2005, Zinin and

Allen, 2009, Guo et al., 2017, Wang et al., 2018] or through the generation of flow-induced

shear stresses [Doinikov and Bouakaz, 2010, Yu and Chen, 2014]. First, it is worth men-

tioning that to our knowledge no theory unifies these two mechanisms (streaming and

first-order strain) in a single model of cell sonoporation. Concerning the shear stresses

induced by bubble streaming on a nearby wall, most of actual models propose extensions

of the earliest work accomplished by Nyborg [1958] concerning the radial oscillation of
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a super-hemispherical bubble resting on a infinite rigid boundary in a context of indus-

trial cleaning. For a not-adhering spherically oscillating bubble, the maximal shear stress

applying on a boundary occurs at a distance x ≃ 1.13 d from the bubble center, where

d is the distance of the boundary to the bubble center [Doinikov and Bouakaz, 2010].

The Nyborg’s model was found to be in accordance with experiments when Yu and Chen

[2014] approximated in a probability way the theoretical percentage of sonoporated cells

(mouse fibroblasts) to be 64.8 % while their experimental results were approached by

the model with a percentage of about 58.3 ± 4.1 % of sonoporated and viable cells. It is

worth remembering that these two studies did not account for the cell strain induced by

the bubble action at the acoustic time scale, while it can have a huge influence in the

process of sonoporation. If we look at the studies carried out on this bubble pushing-

pulling action too often set aside in theoretical models, they all consider bubble radial

motion only. The cell deformation under the action of a nonspherically oscillating bubble

is never considered. Gracewski et al. [2005] report a cell strain and stress decreasing with

the cubic radial distance to the bubble. Zinin and Allen [2009] propose a decomposition

of a bacteria strain on quadrupole and dipole shapes and report maximal deformations

occurring at the acoustic frequency fK ∼
1

2π

√
KA/(ρca

3) where KA, ρc and a are respec-

tively the surface area modulus, the density and the radius of the cell. Recently, the cell

strain was approached with the displacement of the close-to-bubble point (CP) on the

cell membrane, as first defined by van Wamel et al. [2004], and was numerically stud-

ied through a parametric study of the initial bubble-cell distance, the acoustic pressure

and the maximal CP displacement [Guo et al., 2017]. Strengthened with experimental

results [Wang et al., 2018], it came out that the analysis of the CP displacement could

explain the internalization of particles, which seem to be facilitated with the use of larger

bubbles.

1.5.4 Sonoporation induced by bubble nonspherical shape modes

Literature widely reports experimental cases of effective permeabilization of biological cells

induced by ultrasound-driven microbubbles animated either by a stable oscillatory regime

or by an inertial collapsing regime. Particular emphasis is placed on stable microbubbles

whose dynamics are less destructive, but intense enough to sufficiently stimulate nearby

cells and facilitate the internalization of particles within them. In this scenario, the most

documented bubble-induced mechanism responsible for this generation of stresses is the

microstreaming induced by bubble nonspherical shape modes. The pushing-pulling action

of a bubble is also exploited but far less documented than microstreaming and actually

restricted to bubbles exclusively animated by a radial oscillation, while the presence of

nonspherical modes might play an important role, as sketched and conjectured in fig-

ure 1.7. To answer this, we suggest through this thesis work to study the mechanical
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1

Figure 1.7: Sketches of the permeabilization of a biological cell membrane facilitated by the

pushing-pulling action of nonspherical microbubbles under the action of an ultrasound field.

interaction that may exist between an ultrasound-driven wall-attached microbubble un-

dergoing nonspherical oscillations and a nearby biological cell, at a micro-scale level of a

couple of one single bubble and one single cell. More exactly, the scheme of investigation

is the following:

• Our work is initiated in chapter 2 with the analysis of one single bubble driven by an

acoustic pressure field modulated in amplitude. This allows to track the emergence

of bubble nonspherical modes and to examine their dynamics under a wide variety

of modal configurations.

• Once a better control of the bubble nonspherical oscillations is achieved, the un-

derstanding of their induced streaming is the next task in line. The chapter 3 goes

around the whole spectrum of fluid patterns generated by each of the main classes

of nonspherical modes. Each of these two parts is a step closer to ultimately enable

the observation and comprehension of its interaction with a neighboring cell.

• The chapter 4 conjugates these bubble phenomena previously revealed with the

addition near the bubble of a biological cell. The cellular response is investigated

through several bubble-involved mechanisms and sorts of motion and deformation,

for which we will finally attempt to validate the effects by the internalization of

fluorescent markers within the cell.
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Nonspherical bubble dynamics

Nonspherically stable oscillating bubbles are responsible for important fluid flows and

large amplitude displacements which can possibly lead to considerable shear stresses on

nearby cells. For this reason, the knowledge of the conditions of their interface instability

and the control of their nonspherical dynamics are key elements to improve their action,

while avoiding irreversible damages on biological cells, with an intention of sonoporation.

This second chapter, aiming to this end, is devoted to the experimental exploration of the

temporal dynamics and selection of the nonspherical oscillations of a microbubble. Before

delving into the meat of the issue, section 2.1.1 gives the detail of the experimental method

that allows capturing the high-resolved temporal dynamics of an ultrasound-driven wall-

attached bubble, in a top-view configuration. This also includes a quick description of

the applied methods for the characterization of the acoustic field. Section 2.1.2 proposes

an alternative and occasional setup in which the bubble is observed from a double (top

and side) perspective. Quickly abandoned due to the difficulty in such a setup to lay an

adhering biological cell near a bubble, it mostly helps to illustrate the issue in visualizing

the bubble nonspherical modes in a single-view. Also, it makes possible to estimate the

contact angle of the bubble at rest. Section 2.2 studies the nonspherical behavior through

several steps. With a preliminary introduction on the problematic and involved challenges

in the modal identification explained in section 2.2.1, the seeking for the emergence of

nonspherical modes under the action of an increasing acoustic driving is presented in sec-

tion 2.2.2 for sectoral modes and in section 2.2.3 for all nonspherical modes in general.

Integrated into this section are the numerical and experimental validations of our modal

analysis tool, enabling the identification and detection of the set of zonal (m = 0 < n),

tesseral (0 < m < n) and sectoral (m = n > 0) spherical harmonics that develop at the

bubble interface. Therefrom, section 2.2.4 points out the modal nondegeneracy of spher-

ical harmonics of a wall-attached bubble. The selection of specific modes is interpreted

by the inhibiting action of the contact on the nonspherical deformations, and compared
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to the well documented case of a sessile drop in section 2.2.5. Lastly, section 2.2.6 draws

particular attention to the interaction between zonal and sectoral modes and deepens the

possible conditions for their coexistence.

2.1 Methodology

2.1.1 Top-view experimental setup

A schematic of the experimental setup is given in figure 2.1a. Observations of ultrasound-

driven microbubbles are performed in a polymethyl methacrylate (PMMA) tank of inner

size Lx × Ly × Lz = 44 × 260 × 50 mm. Experiments are conducted in pure (Milli-Q® IQ

7000) water supplemented with saline solution (NaCl concentration of 24 ± 1 mg ⋅ L
−1).

A dihydrogen microbubble is created, resulting from a reduction reaction and occurring at

the cathode of an electrolysis actuator. The electrolysis is actuated by a signal generator

(Agilent 33210A, squared signal, peak-to-peak amplitude 4 Vpp, offset 2 Vpp, 50 % duty

cycle). The cathode connector is tied up to a three-axis hydraulic micromanipulator

(Narishige MMO-203), which allows the positioning and tethering of the bubble at the

tank’s bottom. Once that is accomplished, the electrolysis wire is moved away so that it

does not interfere with the oscillation of the attached bubble. In this way, single bubbles

of equilibrium radius ranging from 60 to 230 µm may be nucleated.

The driving acoustic field is induced by a Langevin transducer (Sinaptec®, 30 kHz

nominal frequency, high-voltage gain amplifier Trek50/750) located at one edge of the

water tank and described in details in section 2.1.1. Acoustic coupling between the

transducer and the water tank is ensured with ultrasound transmission gel (Aquasonic,
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Figure 2.1: Schematic representation (not to scale) of the experimental setup (a) and geometry of

the system under study: Three-dimensional (b) and top-view (c) representations of a numerical

bubble animated with a spherical harmonics of degree n = 4 and order m = 4, called sectoral

when n = m. The bubble interface is characterized using spherical coordinates (r, θ, φ).
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Figure 2.2: Schematic representation of the driving signal: a sine wave of frequency fa = 30.5 kHz

modulated by a triangle shape envelope of frequency fm = 25 Hz.

Fisher ThermoScientific). Similarly to previous works investigating bubble shape defor-

mations [Guédra et al., 2016], bubbles are insonified by a sinusoidal signal modulated by a

slowly-varying envelope in order to periodically trigger bubble interface instabilities, and

hence the shape modes, as illustrated in figure 2.2: a triangle shape envelope of modu-

lation frequency fm = 25 Hz is superimposed to a sine wave of frequency fa = 30.5 kHz.

The visualization of the bubble’s activity is performed using an inverted Nikon Eclipse-

Ti microscope equipped with a 10× magnification optical lens. The bubble dynamics is

captured by means of an high-speed CCD camera (Vision Research, Phantom V12.1).

The geometry of the studied bubble is schematized in figures 2.1b and 2.1c, for the case

of a sectoral (n = m) mode of degree n = 4. The image scale has been measured to be

2 µm/pixel, thence a numerical inaccuracy of 2 µm. Movies are performed with acquisi-

tion parameters (frame size, sampling frequency and exposure time) that are bubble size

dependent, as described in table 2.1. Such adjustment is necessary to optimize the field

of view for a broad range of bubble radii.

Bubble radius Frame size Sampling frequency Exp. time

R0 < 124 µm 128 × 128 pixels 180 064 Hz 4 µs

R0 > 124 µm 256 × 256 pixels 67 065 Hz 7 µs

Table 2.1: Acquisition parameters (frame size, frame rate and exposure time) as set in the

software Phantom Camera Control (PCC).

Transducer acoustic characterization

The acoustic transducer employed is a Langevin sensor Sinaptec® with nominal frequency

30 kHz. Following Minnaert’s expression of equation (1.5), the corresponding resonant

radius of a bubble driven in water equals 108.7 µm. For the purpose of studying the dy-

namics of a single bubble, this functioning frequency is suitable for working with relatively
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Figure 2.3: Frequency response of the electroacoustic chain consisting of a Langevin transducer

of nominal frequency 30 kHz and a high-voltage gain amplifier Trek50/750. It is obtained by

Fourier transform of its response to a 3 V amplitude Dirac signal.

large bubbles with radius sizing in the range 60 to 230 µm, whose resonance frequency

varies in the range 14 to 54 kHz.

The frequency response of this transducer and its associated high-voltage gain amplifier

Trek50/750 has been obtained from their response to a Dirac signal, recorded by an

hydrophone (Sinaptec® TC-4034 ± 2 dB in the range 10-100kHz) positioned at a 1 mm

distance from the Langevin surface active area. Drawn in figure 2.3, it unveils that the

transducer possesses three harmonics at 52 kHz, 66.5 kHz and 85 kHz, which could be

useful for working with smaller bubbles. As we shall see later on, in chapter 4, in order

to study the coupling between a biological cell and a bubble, we are seeking to work with

smaller bubbles in order to have a size correspondence with the cells. The transducer’s

85 kHz third harmonic will then be very useful to insonify bubbles with radii in the range

20 to 45 µm.

Acoustic field characterization

The procedure to assess the acoustic pressure driving the bubble is the following. Be-

fore all else, the recording time τrec is set so that it is just longer than two modulation

periods: τrec > 2Tm. This ensures to have at least one complete modulation period in

the captured sequence. Considering that the modulation envelope is slowly varying, i.e.

fm ≪ fa, the ultrasound field may be assumed to be a constant-amplitude sinusoidal sig-

nal during a few acoustic periods. At the beginning of the triangle modulation waveform,

the acoustic pressure is low enough to induce relatively weak radial oscillations of the

bubble. By capturing this radial dynamics and rearranging it on a single acoustic period,

the obtained waveform can be numerically compared to the linearized Rayleigh-Plesset

expression of equation (1.4) ruling the bubble spherical oscillations at low pressure, as

detailed in section 1.2. As all other parameters are known or can be directly measured

(fluid viscosity and density, bubble equilibrium radius), the acoustic pressure can then be
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2.1. Methodology

deduced from this modeling. This technique is reproduced for increasing driving voltage

as far as the bubble interface remains spherical. Then, acoustic pressures associated to

bubble nonspherical oscillations are extrapolated linearly along the whole experimental

data set. The applied pressures go up to 60 kPa.

2.1.2 Some occasional bubble side-views

Prismatic bubble

Before going further in the investigation of bubble nonspherical shape modes, we would

like to propose first a typical example of bubble vibration sequence as we experienced it

along an increasing pressure ramp. To illustrate the bubble shape modes possibly involved

and the difficulty to visualize them from a single-view, an alternative configuration for

the bubble visualization is proposed. It is very important to note that this alternative

setup that will be described here is exclusively limited to this section 2.1.2, and in some

other rare occasions, for which it will be explicitly specified. This configuration differs

from the one previously described in section 2.1.1 by the positioning of the camera on the

side of the tank. Thanks to the tethering of the bubble on a suspended glass slide located

in front of a reflecting straight prism, the simultaneous observation of the bubble from a

direct side-view and from a reflected top-view is possible, at a frame rate of 120 171 Hz.

One might think then, why not having used this setup throughout this whole thesis

work. The reason comes from the difficulty in such a configuration to place one of our

biological cells on the glass slide, rather than in the bottom of the PMMA tank. We will

see in chapter 4 how the manipulation of our cells can be quite complicated. It must be

remembered that, ultimately, the positioning of the cell in front of the bubble is above all

one of the objective of this thesis, in order to allow the study of the mechanical interaction

between a nonspherical microbubble and a biological cell.

Accordingly, an example of observed bubble dynamics is shown in figure 2.4 for which

the progressively increasing acoustic pressure reveals a vibration sequence successively

marked by four different modal configurations: a radial mode only, a zonal mode Y50 only,

the combination of the same zonal mode Y50 and a sectoral mode Y55, and finally a tesseral

mode Y53 only, respectively shown in figures 2.4a, 2.4b, 2.4c and 2.4d.

This so-called prismatic bubble, failing not to exhibit a clear sight of its contact line,

had the merit of allowing its double (side and top) view. This helped us to understand

how the top-view visualization of a zonal mode can be misleading (see figure 2.4b), or how

much the visualization of a tesseral mode (in this case, a mode Y53 in figure 2.4d), from

a single side-view can be confusing as soon as the bubble orientation is not controlled or

known. These elements gave us information that seemed important to us in establishing

our modal bubble analysis strategy that will be further described in this chapter and the
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Figure 2.4: Experimental observation of an oscillating microbubble positioned on a glass slide,

in front of a reflecting straight prism. The video frame contains both its direct side-view and

its reflected top-view, while animated by a radial mode only (a), a zonal mode Y50 only (b), a

combination of a same zonal mode Y50 and a sectoral mode Y55 (c) and a tesseral mode Y53 only

(d).

next one. More specifically, it reinforced our belief that, as long as a choice had to be

made between one view or another, the top-view seemed the most appropriate in order

to study the sometimes very complex modal behavior of the bubble. To this is added
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the obvious fact that the top-view visualization performed under microscope allows in

definitive a better imaging resolution.

Equilibrium bubble shape

In order to have clearer sight on the contact and to evaluate the conditions at the bubble

contact in the main configuration, the straight prism and the glass slide were abandoned

and the bubble was tethered at the PMMA tank’s bottom. Figure 2.5c shows an experi-

mental image of a side-view of the attached bubble. The way this bubble is standing on the

surface and the value of the angle α it forms at the contact result from the wetting prop-

erties of water, i.e. the capacity of the liquid to wet the substrate. It is especially ruled by

the interface tensions that exist between the different media (gas, liquid and solid) and is,

at a first glance, independent of the bubble radius at rest. In a condition of hydrophobic

substrate, the wetting of water is weak and the bubble has a sub-hemispherical shape (α >

90°). In a condition of hydrophilic substrate, the wetting of water is high and the bubble

has a super-hemispherical shape (α < 90°), as it is the case with our experimental tank

made of PMMA. Geometrically, this contact angle α is defined by the angle formed by the

tangent to the bubble surface at the contact point and the substrate plane. Measurements

have been performed before ultrasound activation for a large number of single attached

bubbles, in a side-view configuration. The angle α = asin(L/2R0) is obtained from the

optical measurement (see figure 2.5c) of the bubble radius R0 and the diameter of the

bubble base L via the ImageJ software [Schneider et al., 2012]. It came out that it has

indeed no dependency with the bubble radius (see figure 2.5a) and it equals 51 ± 7° (see

figure 2.5b). The large dispersion in the measured contact angles comes from the fact that

it is highly dependent on the way the bubble has been deposited on the surface [Noblin

et al., 2009]. Because of an hysteretical behavior, the contact angle of sessile bubbles and

drops can take values in a large range. It is worth also noting that the contact angle at

rest appears to be larger with PMMA, than it was in the case of the glass contact, in
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Figure 2.5: Investigation of the bubble contact angle α = asin(L/2R0), as a function of the

bubble equilibrium radius (a) and as a frequency distribution (b), allowed by the optical mea-

surement from a side-view of the bubble radius at rest R0 and the contact diameter L (c).
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Chapter 2. Nonspherical bubble dynamics

figure 2.4a where the bubble was gently radially oscillating. We have also noticed that

after ultrasound activation, as long as the bubble does not shift from its original location,

the contact angle at rest does not significantly change for a same bubble.

For our experimental bubbles of radius in the range 60 to 230 µm defined in water by

the liquid-gas interface tension (γgl = 72.8 mN ⋅ m
−1 at 20

◦
C in contact with air), we are

confident in the absence of a significant influence of the bubble size on the contact angle

since the adhesion force Fr = πLγgl sinα (ranging between 12 µN and 47 µN) that applies

at the bubble base of diameter L = 2R0 sinα on the substrate is much greater than the

Archimedes’ buoyancy force Fa (ranging between 8.2 nN and 0.46 µN) that applies on the

same bubble of truncated volume V = πR
3
0(2/3 + cosα − 1/3 cos

2
α).

2.2 Experimental investigation of nonspherical modes

2.2.1 Shape modes observation

In this experimental configuration of a bubble visualized under a microscope, the only

accessible information concerning the bubble shape is its top-view contour. Through-

out this manuscript, the bubble contour will also be equivalently designated as bubble’s

silhouette. It is obtained after normalization, thresholding and binarization of the exper-

imental image. Once obtained, the difficulty to analyze the bubble modal content lies

in the interpretation of the silhouette of the bubble for which each point can possibly

be located at different longitudes. This problem does not arise for radial and sectoral

modes but well for the more complex shapes of tesseral and zonal modes, for which the

longitudinal angle responsible for the apparent contour is constantly changing.

Applying an amplitude-modulated ultrasonic field results in a beating behavior of the

spherical oscillations of the bubble, with a period f−1
m = 40 ms, and variations of the radial

mode a00(t) alternating between low-amplitude and high-amplitude phases. During one

modulation period, if the applied pressure exceeds the threshold of nonspherical oscilla-

tions, then the bubble interface deviates from sphericity. Typical examples of the recorded

series of pictures are shown in figure 2.6 where the onset of nonspherical oscillations on

spherical harmonics of degree n = 6 has been reached. The snapshot series is plotted

on four acoustic periods, revealing the subharmonic behavior of the nonspherical oscilla-

tion resulting from the parametric excitation by the radial mode. For each experimental

snapshot series, the observed nonspherical mode is compared with top- and side-views

of the corresponding theoretical spherical harmonic. We recall that, at first glance, no

axisymmetry hypothesis can be made on the obtained bubble interface, and the bubble

contour should consequently be decomposed over the set of spherical harmonics.

In figure 2.6a, a bubble of equilibrium radius R0 = 133.7 µm exhibits an easily recog-

nizable contour with a 6-lobe shape. This case illustrates the shape deformation along a
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Figure 2.6: Snapshot series of an experimental (camera top-view) bubble, with its associated

theoretical spherical harmonics (top- and side-views), oscillating on a sectoral mode Y66 (a), on

a zonal mode Y60 (b) and on a tesseral mode Y64 (c). The elapsed time between two consecutive

snapshots is 14.9 µs. Oscillations over two acoustic periods are displayed.

sectoral harmonic Y66 for which the top-view corresponds to a n-lobe deformation. From

the side-view, a sectoral harmonic is close to a spherical shape as the associated Legendre

polynomial can be reduced to Pnn(cosθ) ∼ sin
n(θ), that is a bell-shape function with

zero values at the poles. In figure 2.6b a bubble of equilibrium radius R0 = 131.5 µm

exhibits spherical oscillations from the top-view, with some additional interface motion

along the elevation visible due to optical effects. This case illustrates the shape defor-

mation along a zonal harmonic Y60. As a reminder, zonal harmonics are axisymmetric

functions: their contour looks spherical from a top-view and their shape deformation from
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Chapter 2. Nonspherical bubble dynamics

the side-view is a Legendre polynomial (m = 0). At first, identifying this axisymmetric

shape uniquely from its top-view is not straightforward. Finally, figure 2.6c illustrates the

shape deformation along a tesseral spherical harmonic Y64, for a bubble with equilibrium

radius R0 = 131.3 µm. In this case, the shape deformation becomes more complex with

angular deviations from the sphere along both the elevation and azimuthal directions.

It is worth reminding that a Ynm spherical harmonic possesses n − m nodal lines along

the elevation. Due to the phase interplay of the associated Legendre polynomial between

two successive nodal parallels, the azimuthal shape governed by a cos(mφ) function is

out-of-phase with the previous one. The top-view integration of a Ynm tesseral harmonic

provides a seemingly 2m-lobe bubble contour. In the case illustrated in figure 2.6c, the

nonspherical mode Y64 shows indeed an 8-lobe top-view contour. Among the possible

nonspherical oscillations decomposed over the zonal, tesseral or sectoral harmonics, bub-

bles oscillating along a sectoral harmonic (m = n) are the ones easily recognizable in a

top-view configuration. By decomposing the bubble contour on a cos(nφ) function, the

onset of a sectoral harmonic may be deduced during the amplitude-modulated pressure

driving, leading to the instability threshold for this particular asymmetric oscillation.

Lastly, it is worth saying that the shades of light that constitute the bubble interface,

induced by the optical path, can also bring some information about its modal content. Yet

they are difficult to be used in an image post-processing algorithm due to some variability

in the light patterns for a same bubble modal content.

2.2.2 Degree n differentiation

The detection of the emergence of sectoral harmonics has been performed for approxi-

mately two hundred bubbles of radius in the range [60 230] µm. Note that because our

experiments are conducted at a fixed driving frequency, the excited shape mode mainly

depends on the bubble size and driving pressure amplitude. All results are presented in

a radius-pressure map in figure 2.7. Bubbles showed nonspherical oscillations on sectoral

harmonics with degree ranging from n = 3 to n = 11. The analysis of their temporal

evolution revealed that they oscillate at half the driving frequency, and consequently,

are all triggered on their first parametric resonance. Figure 2.7 highlights the fact that

each degree-n sectoral oscillation is exclusively associated to a specific range of bubble

size. This non-overlapping feature is similar to the partitioning of axisymmetric modes

related to the bubble radius [Cleve et al., 2018]. We therefore compare the experimental

instability threshold for sectoral harmonics to the theoretical ones obtained in case of ax-

isymmetric shape oscillations of free bubbles, implemented following equation (1.12). At

high degree, an important modal density did not allow us to observe and report bubbles

exclusively oscillating on a sectoral mode. This is the case for degrees n = 8, n = 9 and

n = 11, where particular shades of light on the bubble interface, visible in figure 2.7,
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Figure 2.7: Instability thresholds of sectoral harmonics (m = n) as a function of the bubble

equilibrium radius. Experimental wall-attached bubbles (geometric markers) are compared with

free bubble theory (solid lines), according to Francescutto and Nabergoj [1978]. Depending on

the bubble size, the frame dimension varies following table 2.1.

betray the presence of nonspherical modes other than sectoral.

2.2.3 Order m differentiation

Due to the partitioning of the degree-n spherical harmonics with the bubble equilibrium

radius, we may now postulate that the index n is known once the bubble radius is mea-

sured. Appendix A.1 reinforces this postulate with the visualization of bubble shape

modes from an alternative side-view. Therefore, specific strategies can be designed to

extract the value m of a given spherical harmonic, paving the way to the differentiation

of the set of zonal, sectoral and tesseral harmonics. We recall that, from a top-view, the

appearance of zonal harmonics Yn0 results in a circular contour. The differentiation of

this nonspherical oscillation from a purely radial one is performed through the analysis

of its subharmonic behavior. It is worth noting that this feature differs from the very

similar case of a vertically-vibrated sessile drop, for which the zonal mode must synchro-

nize with the driving base and oscillate at the fundamental [Chang et al., 2013]. In the

same way, the appearance of a sectoral harmonic Ynn results in a n-lobe contour in top-

view. This shape oscillates at half the driving frequency due to parametric excitation.

The combination of the spatial (contour) and temporal (subharmonic) information on a

cos(nφ) projection confirms the existence of a sectoral mode. The main difficulty lies

in the identification of a tesseral (0 < m < n) mode. As discussed in section 1.3.1 and

figure 2.6, a spherical harmonic possesses n−m azimuthal nodal lines due to the property

of the associated Legendre polynomial Pnm. When n−m ≠ 0, the phase interplay between

successive nodal lines induces the top-view contour to have a seemingly 2m-lobe shape.

More exactly it consists of two sets of m-lobe disposed in a staggered arrangement, whose
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Figure 2.8: Change in spectral signature due to nodal lines parity. Spatiotemporal Fourier

decomposition of the bubble contour r(φ, t) (normalized amplitude), processed for numerical

(in red) and experimental (in black) cases of spherical harmonics Y64 (a) and Y74 (b). The

discrepancy between numerical and experimental cases comes from the ombroscopic-induced

artefact that affects the optical image but not the numerical projection. This is amplified in the

n − m odd situation due to the existence of a nodal line along the equatorial plane.

amplitude displacement may differ according to the parity of n − m. This property is

illustrated in figure 2.8 and discussed here with two exemplary cases.

When n−m is even, the bubble interface is symmetric with respect to the equatorial

plane θ = π/2. The top-view contour exhibits a 2m-lobe shape, consisting of two sets of

m-lobe shape with different amplitudes. This behavior results in two spatial harmonic

components (referred as φ-components in what follows) of the azimuthal contour r(φ, t)
at the frequencies m and 2m. This is highlighted in figure 2.8a for a Y64 tesseral har-

monic. In addition it can be shown that the φ-component m oscillates temporally at

the subharmonic frequency f0/2, while its spatial harmonic 2m oscillates at the driving

frequency. This temporal characteristic allows especially the differentiation of an order-m

tesseral harmonic from a sectoral harmonic in the special case n = 2m, for which the

spatial φ-component n oscillates at f0/2.

When n−m is odd, the bubble interface exhibits a nodal line along the equatorial plane.

The top-view contour exhibits then a 2m-lobe shape, consisting of two sets of m-lobe with

equal amplitudes. The spatial projection of the azimuthal contour r(φ, t) mainly contains

the φ-component 2m, oscillating at the driving frequency. This is shown in figure 2.8b

for a Y74 tesseral harmonic. In this case the numerical projection of the bubble interface

is reduced to the φ-component 2m = 8. The identification of the order m = 4 is thus not

straightforward. Fortunately, experimental conditions always contain the φ-component m

due to the ombroscopic image sharpness, that naturally induces some difference in lobe

amplitudes depending on their position in elevation, as shown in figure 2.8.

A lack that one could find in this preceding explanation of the difference in spatial

content based on the parity of the modal numbers is that it does not take into account
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the spacing between each nodal parallel. For instance, the modes Y72 and Y52 have a same

parity of nodal parallels, but the difference of spacing between each of them may result

in a more important focal difference between two successive m-lobe azimuthal shapes and

thus in a more pronounced harmonic content in the case of the mode Y52 for which the

3 nodal parallels must cover π radians, while there are 5 of them, less spaced, in the

case of the mode Y72. Due to this ombroscopic image, a greater sharpness of the bubble

contour and thus a more accurate modal analysis must be expected for bubbles with

higher number of nodal parallels.

An additional explanation for the difference between theory and experiment displayed

in figure 2.8 results from a very constructive epistolary exchange we had with Professor

A. Maksimov. The subject matter of the bubble contact and its induced effects on the

nonspherical shape modes was addressed. More exactly, the question concerned the ge-

ometry of spherical harmonics in the case of a free bubble and how the tethering induced

a possible shift in the positioning of the nodal parallels in elevation on the bubble inter-

face. Following this theory, this would also induce a shift of the equatorial line and thus

the appearance of spatial harmonics and subharmonics in the top-view bubble contour

while there was none in the theoretical description of the Y74 bubble mode in figure 2.8b.

In these conditions, the use of spherical harmonics for describing the interface of a wall-

attached nonspherical bubble is compromised. This issue will be further discussed apart,

in appendix A.1.

In definitive, the combined spectral analysis along both space and time can reasonably

allow the differentiation of the order m of any spherical harmonics and is particularly

convenient for the detection of tesseral harmonics, for which the geometric identification

is not straightforward. This process is implemented through a spatial Fourier transform

of the top-view bubble contour r(φ, t) along the angular coordinate φ:

cnk(t) = ∫
2π

0

r(φ, t) e−ikφ
dφ, with 0 ≤ k ≤ 2n, (2.1)

where cnk(t) is the modal coefficient associated to the φ-component k of degree n.

According to the above-mentioned identification process of the order-m tesseral harmon-

ics, each cnk(t) coefficient is further filtered around the driving frequency f0 = 30.5 kHz

and the subharmonic frequency f0/2 = 15.25 kHz. For each mode Ynm, the spatial har-

monic k = 2m is used for the identification of its order m, while the k = m coefficient

cnm(t), oscillating at f0/2, is presented in the following as its modal amplitude. It is

worth noting that this modal coefficient differs from the theoretical one anm, as defined

in equation (1.10), due to a bias in the projection’s decomposition.
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Method validation: numerical case

A validating example of the proposed identification process is performed through the

numerical analysis of the bubble nonspherical dynamics and its top-view contour. A

virtual bubble of arbitrary equilibrium radius R0 is submitted to a sine wave modulated

by a ramp envelope. The bubble interface is implemented as follows

r(θ, φ, t) = R0 +
t
τ a00(t)Y00 + ∑

n≠0,m

anm(t)YnmHT (t − tm), (2.2)

where anm(t) = anm cos(πf0t) and a00(t) = a00 cos(2πf0t) are the time-varying ampli-

tudes of, respectively, the subharmonic nonspherical modes and the radial mode, τ = 20 ms

is the signal duration and HT is the Hanning operator of duration T = 6 ms centered at

time tm + T/2. Figures 2.9a and 2.9b present two modal decomposition of a bubble in-

terface exhibiting a breathing mode a00, as well as zonal Y60, sectoral Y66 and tesseral

Y64 harmonics. The case in figure 2.9a (respectively figure 2.9b) corresponds to the onset

times (t0, t4, t6) = (4, 8, 10) ms (respectively (8, 10, 4) ms). Numerical top-view snapshots

of the bubble contour help illustrate the shape deformation induced by these nonspherical

oscillations. The result of the spatiotemporal analysis of the bubble contour is provided

by the envelopes cnm(t)∗ of the modal coefficients cnm(t) oscillating at the subharmonic

of the driving frequency. For both cases, the onset times of the implemented nonspherical

modes appear correctly tracked and defined. The maximal amplitudes of the oscillations
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Figure 2.9: Modal decomposition of a top-view bubble contour including the Y60, Y64 and Y66

modes triggered at time (t0, t4, t6) superimposed to a breathing mode Y00. Comparison of the

coefficients c
∗

nm(t) with the theoretical ones anm(t) in case of (a) (t0, t4, t6) = (4, 8, 10) ms and

(b) (t0, t4, t6) = (8, 10, 4) ms. (c) Evidence of amplitude transfer between the subharmonic
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, t) and fundamental c
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64(f0, t) coefficients of the Y64 tesseral mode.
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is in good agreement with the theoretical ones, except in two circumstances. The first one

concerns the quantification of the radial oscillation when a zonal harmonic appears, lead-

ing to a slight overestimation of the breathing mode amplitude. The second one concerns

the amplitude of the tesseral harmonic Y64 when combined to another nonspherical mode

(figures 2.9a and 2.9b). In this case, a part of the modal amplitude is contained into the

2m frequency component oscillating at the driving frequency, in accordance to the pro-

posed spatiotemporal analysis and filtering. This amplitude transfer between c64(f0, t)∗
and c64(f0

2
, t)∗ for the second exemplary case is illustrated in figure 2.9c.

Method validation: experimental case

The spatiotemporal analysis is applied to an experimental case. This allows characterizing

the bubble vibration sequence consisting of the set of successively-triggered nonspherical

modes. Figure 2.10 presents two experimental wall-attached bubbles of equilibrium radii

133 µm and 83 µm that deviate from spherical shape in the set of n = 6 and n = 4

spherical harmonics, respectively. In addition to snapshot series of the top-view contour,

the envelopes c∗nm(t) of the modal coefficients that are dominantly excited are shown.

The bubble interface presented in figure 2.10a follows the successive vibration sequence

Y60 − Y64 − Y66 once nonspherical oscillations appear. The existence of these modes is

clearly visible on the top-view snapshots, giving confidence into the proposed analysis.

When the zonal mode emerges, the amplitude of the radial oscillation decreases. This

phenomenon can be associated to a possible energy transfer between modes [Guédra et al.,

2016], but also to a bias in the determination of the amplitude of the modal coefficient

cnm(t). Therefore the analysis of mode coupling is not straightforward at this stage. It

is worth noting that the existence of the Y64 tesseral harmonic is short and precedes the

onset of the sectoral oscillation.
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Figure 2.10: Evolution of the modal coefficients c
∗

nm(t) resulting from a top-view contour in the

case of a bubble (a) with equilibrium radius R0 = 133 µm oscillating on the set of n = 6 spherical

harmonics and (b) with equilibrium radius R0 = 83 µm oscillating on the set of n = 4 spherical

harmonics. Only the predominant nonspherical modes are displayed. Snapshot series illustrate

significant changes in bubble shape.
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The bubble interface presented in figure 2.10b follows the successive vibration sequence

Y41 − Y44 − Y40 once nonspherical oscillations appear. The fact that the Y41 tesseral

harmonic is the first mode to be triggered is clearly visible on the snapshot series. Once

more, the existence of the tesseral harmonic is short and precedes the onset of both

sectoral and zonal modes. By the way, figure 2.10b shows that both sectoral and zonal

modes follow similar trends and reach a plateau value of oscillation amplitude.

Besides, pursuing the same line of experimental validation of the observed modes,

appendix A.1 offers some visualizations and analysis of occasional side-view microbubbles.

It comes supporting our interpretations and modal identifications asserted throughout this

chapter.

2.2.4 Modal nondegeneracy

The analysis of the bubble vibration sequence has been performed over the whole data set

of experimental wall-attached bubbles, leading to the determination of the onset of the first

triggered nonspherical oscillation. These pressure thresholds are displayed in a pressure-

radius map, for sub-resonant radii (degree n = 3 and n = 4) in figures 2.11a and 2.11b,

for resonant radii (degree n = 5) in figure 2.11c and for over-resonant radii (degree n = 7)

in figure 2.11d. Each geometrical marker is associated to a particular vibration sequence

and indicates the pressure value at which the bubble interface diverges from the purely

radial mode. In addition, the color range points out which nonspherical mode is firstly

triggered.

In order to help in the figure readability, parabolic-like graphical fits have been drawn

for each order-m mode, for m = 0 to m = n, and allow identifying their respective

radius-related areas of bubble shape instability, the so-called resonance bands. For low

degrees (n = 3 or 4), these resonance bands only slightly overlap. For higher degree

(n = 7), despite a strong overlap, some orders m appear completely distinct. For resonant

degree (n = 5), some resonance bands are completely overlapping (m = 3 and m = 5)

and some others only partially (m = 1). Globally, for each investigated degree n, three

distinct modal regions are found. In the vicinity of the nonspherical resonant radius of the

equivalent free bubble (given on top of each sub-figure and corresponding to the radius

at which a de gree n is parametrically-excited, see equation (1.11)), zonal and sectoral

modes emerge preferentially. Far from this resonant radius, tesseral modes are most likely

to show up firstly. We therefore distinguish the degree-n modal regions as a three-band

zone, the tesseral-mode bands surrounding the zonal/sectoral ones. We can be confident

in this result, since the frequency of the sectoral mode, compared to other nonspherical

mode of a same modal subset of spherical harmonics, is the less likely to differ as a function

of the equilibrium contact angle [Bostwick and Steen, 2014]. Contrariwise to the Lamb

spectrum where every modes m of a same degree n have the same resonance frequency,
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Figure 2.11: Instability pressure thresholds of the first triggered nonspherical shape modes of

degree n = 3 (a), n = 4 (b), n = 5 (c) and n = 7 (d). Parabolic-like graphical fits (dashed lines)

give an overview of the nondegenerate instability threshold curves. The solid gray lines are the

theoretical instability curves of free axisymmetric bubbles [Francescutto and Nabergoj, 1978],

centered on the respective modal resonances.

the experimental instability curves of figure 2.11 unveil resonant radius that are order-

dependent. This evidences a modal nondegeneracy over the set of zonal, tesseral and

sectoral modes. Such modal nondegeneracy has already been observed experimentally for

vibrating sessile drops [Chang et al., 2013] and demonstrated theoretically for levitating

drops with the appearance of n+1 modal regions for a given degree n of the parametrically-

excited nonspherical mode [Suryanarayana and Bayazitoglu, 1991]. To our knowledge the

modal nondegeneracy of bubble asymmetrical oscillations had not been demonstrated so

far.

2.2.5 Occurrence of specific orders m

It is worth mentioning that asymmetric bubble shapes only arise from a break into the

problem symmetry, usually caused by a geometrical singularity [Dollet et al., 2008] or by

asymmetry in the external forcing [Versluis et al., 2010]. Moreover, which nonspherical
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mode is selected under external forcing for a given bubble radius has not been explained

theoretically. In the present investigation, because of the pinning of the bubble on a

substrate, specific nonspherical oscillations may encounter difficulties to be triggered,

while other modes would experience the pinning as less inhibiting. At first glance, it

is reasonable to suppose that a zonal mode, with a circular contact line shape and a

possible nodal line matching the contact, is more inclined to emerge at low acoustic

pressure. Concerning sectoral modes, the conditions of their emergence are less obvious

as the contact line or angle are necessarily changing, if conform with the free bubble modal

shapes. Nevertheless, the sectoral shape of a super-hemispherical wall-attached bubble

would always encounter weak variations of contact line and angle with respect to the

equilibrium state, as illustrated in figure 2.12. For the measured contact angle of 51°±7°,

the associated Legendre polynomial Pnm[cos θ] responsible for the longitudinal shape

of nonspherical modes present a slight deviation from the shape at rest, regardless the

modal degree. On the contrary, tesseral modes could encounter much greater variations

of contact line and angle. In view of figure 2.12, close to a contact angle of 51°, some of

them have a nodal line matching the contact (Y41 or Y52), while others should experience

an extreme deformation from the situation at rest (Y43 or Y54) in order to exist. This

feature would strongly condition their respective emergence. This might explain why

certain tesseral modes have never been observed in the present experimental setup, while

others never miss to show up. By resuming to figure 2.11, we indeed note the recurring

onset of tesseral modes Y41, but in contrast to this theoretical hypothesis, not as often the

tesseral mode Y52. In fact, theoretically predicting the conditioning of the tethering on

the appearance of the set of nonspherical modes of a wall-attached bubble would require

more than an investigation of the truncated spherical harmonics, given that the contact

line mobility, the variability of the contact angle at rest, the possible existence of vertical

translation oscillation (hard to capture in a top-view configuration) or the kinetic energy

required for the bubble interface to bend and adopt nonspherical deformations may all

play a crucial role. Some of these lines of thought were taken to answer the question,

but the analysis being multi-parametric and very hypothetical, we did not succeed in

concluding properly on this point.

Substantial literature exists for the modal analysis of sessile drops [Bostwick and Steen,

2014, Chang et al., 2015, 2013, Courty et al., 2006, Shklyaev and Straube, 2008]. It has

been demonstrated that the modal content of the nonspherical drop shape relies on the

equilibrium contact angle and the contact line mobility [Bostwick and Steen, 2014]. At

very high mobility, the contact line motion is facilitated while the instantaneous contact

angle barely varies. The substrate-induced stress is less constraining. The dynamics

of the system approaches the one of a free drop, displaying degenerate Lamb natural

frequencies, as defined by equation (1.11). At low mobility, the contact line moves hardly

and its dynamics is ensured by more extreme contact angles. Therefore this mobility
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Figure 2.12: Normalized associated Legendre polynomials as a function of the longitudinal angle

θ, for degrees n = 3 to n = 6. This corresponds to the maximal deformation of a free bubble

interface with respect to its situation at rest. In other words, it illustrates the theoretical

matching of nodal parallels of modal deformation with a no-mobility contact line of a bubble

attached to a wall, as a function of the contact angle at rest α, that actually geometrically

replicates the longitudinal angle θ.

limitation leads to stronger interface deformations, facilitating the onset of nonspherical

shapes [Prosperetti, 2012]. As a consequence, a modal splitting is expected and has been

experimentally observed [Bostwick and Steen, 2014]. Modal nondegeneracy is shown

to occur when the equilibrium contact angle α differs significantly from 90°, in other

words when the undisturbed drop shape is no longer hemispherical [Chang et al., 2015].

The degeneracy break yields to frequency reordering and modal crossing, responsible

for coexistence between modes [Bostwick and Steen, 2014], and eventually for coupling

between resonant modes. When regarding the investigated bubble with measured contact

angle about 51°± 7°, the undisturbed shape is far from being hemispherical. Similarly to

the case of sessile drops, it favours the mode coupling (section 2.2.3), modal nondegeneracy

(section 2.2.4 and figure 2.11) and coexistence (section 2.2.6 and figure 2.13).

In addition, it is shown that the resonance frequency of sectoral modes does not differ

significantly from the one of zonal modes. Accordingly sectoral modes have been often

reported because of their ease to emerge at low pressure amplitude. Recently, the con-

tact line dynamics and mobility, and their impact on the onset of nonspherical modes

have been modelled numerically for the case of a tethered bubble submitted to increasing

acoustic pressure [Abramova et al., 2018]. Preferential triggering of the sectoral mode

over the other nonspherical oscillations have been shown, but only in a qualitative way.

From a theoretical point of view, Maksimov and Leighton [2012] derived the conditions

of the emergence of specific shape mode patterns in order to clarify experimental ob-

servations of nonspherical bubble interface [Birkin et al., 2011]. The theoretical model
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Chapter 2. Nonspherical bubble dynamics

relies on the Faraday wave analysis over the bubble interface, based on a triad resonant

interaction between the radial mode and two shape modes. The preferential triggering of

peculiar patterns called rolls (sectoral shape) and squares (combination of sectoral and

zonal modes) is highlighted, but is limited to the case of high modal degree (n > 9).

2.2.6 Coexistence of zonal and sectoral modes

It is worth noting that the theoretical derivations of Maksimov and Leighton [2012] con-

cern the emergence of specific patterns that are either the combination of zonal and

sectoral harmonics, either a lone sectoral harmonic. In the present study, for bubble radii

near the nonspherical resonant radius of a given degree n, we take advantage of the previ-

ously described spatiotemporal image processing method for mode differentiation in the

aim of analysing the dynamics of zonal and sectoral modes.

Literature about a vibrating sessile drop reports two kinds of modal interaction: “mode

mixing” and “mode competition” [Chang et al., 2015]. It is demonstrated that two modes

are more inclined to hysteretically compete when their resonance bands intersect or when

they are oscillating at the same harmonic frequency. Otherwise, they both display an

unconstrained linear superposition of their respective dynamics. Contrarily to the present

experiment, it should be pointed out that sessile drops are usually excited by a substrate-

normal driving. This leads to the triggering of zonal modes oscillating at the fundamental

frequency and to non-zonal modes exhibiting a subharmonic response. On the contrary, in

the scope of our experimental wall-attached bubbles, every nonspherical modes developing

on the interface are excited on their first parametric resonance, hence oscillating at half

the driving frequency. In addition to the recurrent overlapping of the resonance frequency

bands of zonal and sectoral modes (cf. figure 2.11), this suggests that “mode competition”

would be more likely to occur if we refer to Chang et al. [2015].

However, figure 2.13 unveils dissimilarities in the modal interaction depending on the

degree n, as described in the next two paragraphs through an original approach highlight-

ing their modal dynamics, amplitude interplay and phase relation, and their geometric

compatibility. The modal amplitudes and nonspherical deformations of the radial, zonal

and sectoral modes are exposed for odd degree modes in figures 2.13a and 2.13b and for

even degree modes in figures 2.13c and 2.13d. The normalized modal coefficients c∗nm(t)
and cnm(t) are depicted respectively during a complete modulation period and during

two acoustic periods. In addition, schematics of the bubble interface for each considered

shape mode is provided.

In figures 2.13c and 2.13d where even degrees n = 4 and n = 6 are detailed, sectoral and

zonal modes exhibit stable coexistence: Their modal oscillation amplitudes reach a plateau

value without inhibiting each other. This corresponds to “mode mixing”, as their modal

envelopes c∗nk(t) display an unconstrained linear superposition. This aspect is illustrated
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Figure 2.13: Coexistence of sectoral and zonal modes is exposed relying on their modal interplay,

phase relation and symmetry compatibility for the cases of modes of odd degree n = 3 (a) and

n = 5 (b) and even degree n = 4 (c) and n = 6 (d). For each case (x), the information is

structured as follows. (x1) Evolution of the coefficients c
∗

nm(t) for the radial, zonal and sectoral

modes along a complete modulation period; (x2) Evolution of the oscillatory behavior of the

coefficients cnm(t) for the same modes, taken at particular times corresponding to colored areas

in (x1) and refolded over two acoustic periods. vertical purple lines correspond to the instants

where occur the minima of radial oscillation; (x3) Side-view schematics of the extrema of bubble

deformations for the selected shape modes.

in figures 2.13c1 and 2.13d1. In addition, the observation of their dynamics reinforces this

interpretation. Indeed, very interestingly, figures 2.13c2 and 2.13d2 reveal the obvious

synchronization of the zero crossing of their respective nonspherical deformations with

the minimum of the radial oscillation (graphically marked with vertical purple lines).
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Chapter 2. Nonspherical bubble dynamics

This probably happens as a way to minimize the magnitude of bending energy. As a

consequence, it is also worth noting that zonal and sectoral modes oscillate then in-phase.

As a matter of fact, both zonal and sectoral modes seem to synchronize independently

with the radial mode, given that this occurs similarly when one of them is lonely triggered.

Lastly, figures 2.13c3 and 2.13d3 depict side-view schematics of the corresponding bubble

deformations. From a geometrical point of view, both zonal and sectoral deformations

of even degree possess a vibration anti-node at the equatorial plane of the bubble, which

could explain their propensity to coexist.

In contrast, in figures 2.13a1 and 2.13b1, it appears that zonal and sectoral modes

of odd degree n = 3 and n = 5 go up against each other. The onset of the secondly-

triggered mode seems to coincide with the fading of the first one, as it is clearly visible

in the case n = 5. This corresponds to “mode competition”, as their modal interaction

is characterized by the domination of some mode and by a challenging coexistence. The

first triggered nonspherical shape modes, zonal of degree n = 3 coded in orange in fig-

ure 2.13a and sectoral of degree n = 5 coded in black in figure 2.13b, are spontaneously

privileged and show similar behavior, namely the synchronization of the zero crossing of

their nonspherical deformations with the minimum of the radial oscillation (graphically

marked with vertical purple lines). The secondly triggered nonspherical shape modes,

sectoral of degree n = 3 coded in black in figure 2.13a and zonal of degree n = 5 coded

in orange in figure 2.13b, arrive later. They never encounter a possibility to oscillate

in-phase with the first triggered modes and favour a synchronization of their zero crossing

of nonspherical deformations with a zero crossing of the radial oscillation. Still from a

geometrical point of view, as schematized in figures 2.13a3 and 2.13b3 for this odd degree

case, the equatorial plane corresponds to a vibration anti-node of the sectoral mode but

to a vibration node of the zonal shape. Hence both sectoral and zonal modes undergo

conflicting shapes. This could explain why modal competition occurs and why they never

exhibit an in-phase behavior.

However this does not explain their specific and recurrent phase-locking relation, or

determine how coupling operates, or even justify the legitimacy for one mode to dominate

another. Explaining the modal coexistence would most likely involve a multi-parameter

study, and not just an investigation of the shape compatibility, the contact line or the

phase relation. In definitive, it would be worth investigating whether the phase relation

is rather governed by a minimization of the energy cost occurring at the contact. Such an

analysis would require access to the contact line dynamics and mobility, as well as to both

the macroscopic and the microscopic behaviors near the contact of a wall-attached bubble

excited upon nonspherical shape modes. So far, these remain experimentally very difficult

to obtain. Nevertheless, we are confident in saying that the phase relation between zonal

and sectoral modes is essential for their coexistence as a means of minimizing in some

way their energy cost.
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2.3 Conclusion

In the absence of any consistent theoretical model for the dynamics of an ultrasound-

excited wall-attached bubble and the triggering of its surface instability, we proposed an

experimental study with the aim of investigating the modal behavior of such a bubble

under an acoustic excitation of increasing pressure. The vibration sequence of a bub-

ble oscillating upon nonspherical shape deformations is obtained from a spatiotemporal

analysis of its top-view contour. The differentiation of any nonspherical shape modes led

to the mapping of their pressure instability threshold as a function of the bubble size.

This revealed for the first time that the frequencies of asymmetric modes differ from the

standard Lamb spectrum. This feature referred as nondegeneracy of the set of nonspher-

ical shape modes of a wall-attached bubble is evidenced by non-completely overlapping

resonance bands. More exactly, a three-band zone of modal resonances stand out, with

a preferential triggering of sectoral and zonal modes around the free bubble resonant ra-

dius and a triggering of tesseral modes further than this resonant radius. In addition, an

original investigation of the coexistence between zonal and sectoral modes explores their

modal interaction in terms of their amplitude interplay, phase relation, degree parity and

geometric compatibility. Similarly to sessile drops but, in the present study, observed for

the case of a wall-attached bubble, two kinds of modal interaction behavior are reported:

Sectoral and zonal modes of even degree n = 4 and n = 6 show ease of coexistence and

preferential “mode mixing”, while sectoral and zonal modes of odd degree n = 3 and

n = 5 present greater difficulties to exist simultaneously, given that important “mode

competition” occurs.

Now that the dynamics of nonspherical bubbles is better controlled and understood,

our experimental investigation continues in chapter 3 with its induced effects on the

surrounding fluid and the formation of microstreaming patterns. The correlation of these

fluid flows with the bubble activity will require a better knowledge of its modal content,

while it was only investigated in this chapter 2 in a rather qualitative way. To this

end, an extension of our modal analysis tool will be hence described, allowing discussing

the influence of modal amplitudes and phase shift on the induced streaming, the fluid’s

patterns and velocity.
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Chapter 3

Acoustic microstreaming

Now strengthened with the ability to detect and identify the asymmetric modes of a

wall-attached bubble, this third chapter focuses on the characterization and the differen-

tiation of its induced microstreaming. Our experimental method described in section 3.1

allows the capture and the exploration of particular flow signatures for the main classes

of spherical harmonics. Because the streaming formation can be explained by the bubble

modal content, a more accurate and quantified knowledge of the involved modes, their

amplitude and phase shift, is crucial. The detail of our modal calculation is progressively

given throughout the five main experimental cases investigated in section 3.2: the “zonal

mode only” case (3.2.1), the “sectoral mode only” case (3.2.2), the “tesseral mode only”

case (3.2.3), the “sectoral and zonal modes combo” case (3.2.4) and the “sectoral and

tesseral modes combo” case (3.2.5). A deeper analysis by particle tracking velocimetry

(PTV) method of the specific case of zonal and sectoral modes allowed to discuss and

explain the preferential appearance of specific streaming signatures.

In literature, the bubble-induced microstreaming is usually explored for the case of

axisymmetric modes. When asymmetric modes are encountered, the bubble dynamics

is clearly neglected, while it may actually play an important role. As a consequence,

this chapter draws the main lines of what could be the first depictions and evidences of

the experimental microstreaming produced by asymmetric modes of a tethered bubble,

reinforced and interpreted by their quantified time-resolved dynamics.

3.1 Methodology

3.1.1 Experimental setup

Figure 3.1 depicts a schematic of the experimental setup, which barely differs from the

setup employed for the visualization of the dynamics of nonspherical shape modes. Pure
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Figure 3.1: Schematic representation of the experimental setup.

water still fills the tank with the difference that tracking particles are appended to the

solution, with the aim of monitoring the fluid motion generated by the bubble oscillation.

First unsuccessful attempts were done using polyamid micro-spheres (Dantec Dynamics

A/S, Polyamid Seeding Particles 5 µm ∅), but their constant inclination for sticking

to the bubble interface made their replacement inexorable. The bubble was then so

constrained that a stable oscillation and the triggering of nonspherical shape modes were

particularly difficult to reach. At relatively high acoustic pressure, where we should have

already observed the emergence of nonspherical modes, the bubble was barely oscillating

radially and the particles came to stick the bubble. Then, after rising considerably the

acoustic pressure, the particles suddenly detached from the interface and began to swirl

all around a very unstable bubble until its collapse or an adjustment of the pressure and

the return to the first situation. Quickly, we moved to different particles, fluorescent

red beads made of polystyrene (Fisher ThermoScientific, Fluoro-max red beads 3 µm

∅). Fluorescent and thus originally built to be lighted by a laser source, we were here

visualizing them in a simple optical manner under the microscope white light. This

configuration turned out to be functional. In addition, we are confident in the ability of

these tracking particles to follow with closeness and fidelity the global fluid motion, since

their Stokes number [Tropea et al., 2007] St is much smaller than 0.1,

St ∝
dp∣ρp − ρf ∣vmax

µ ≃ 6.2 × 10
−3

≪ 1, (3.1)

where ρf ≃ 0.998 × 10
3
kg ⋅ m

−3 is the density of Milli-Q water (at 20
◦
C), ρp ≃

1.05 × 10
3
kg ⋅ m

−3 is the density of particles, dp ≃ 3 µm their equivalent mean diame-

ter, µ ≃ 1 mPa ⋅ s the dynamic viscosity of water and v
max

≃ 40 mm ⋅ s
−1 the approxi-

mated maximal velocity of streaming. Because a bubble stable oscillation is required for

the observation of microstreaming, a continuous sine wave of frequency 30.5 kHz without

modulation in amplitude is employed for driving the bubble. Provided that the bubble
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dynamics is then stable at constant acoustic pressure, video of steady fluid motion could

be recorded for a few seconds, which is a sufficient duration to get the full trajectory of

particles.

3.1.2 Experimental procedure

Since the bubble interface displacement and the fluid motion happen at different time

scales, the camera records alternatively two video sequences with different acquisition

parameters (frame size, frame rate and exposure time), summarized in table 3.1. More

precisely, the experiments are conducted through five steps :

1. The bubble is nucleated by electrolysis and positioned in the optical path.

2. The triggering of nonspherical shape modes is achieved by rising gradually the out-

put voltage of the signal generator.

3. The streaming around the bubble is captured.

4. Instantly after, the bubble dynamics is captured at a higher frame rate.

5. Finally, a snapshot of the bubble is taken at rest in order to obtain its equilibrium

radius R0.

Frame size Frame rate Exposure time

Microstreaming 512 x 512 pixels 2k images/s 2 µs

Bubble dynamics 256 x 256 pixels 67k images/s 2 µs

Table 3.1: Acquisition parameters (frame size, frame rate and exposure time) as set in the

software Phantom Camera Control (PCC).

3.1.3 Data post-processing

Streamlines overlay

In order to obtain a global overview of the fluid motion, all images of a video sequence

are overlaid. More exactly, the resulting image is obtained by retaining for each pixel

of the 512 by 512 pixels frame the minimal value among all images contained in the

whole video sequence. This evidences the trajectories taken by particles. Although this

method of representing fluid motion is limited to the recognition of streaming patterns,

a quantitative approach is necessary whether the objective is to distinguish variations
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within a same sort of pattern. Throughout this chapter, velocity measurements will be

especially employed in section 3.2.4, which concerns the modal interaction between zonal

and sectoral modes, in order to explain the preferential formation of specific patterns. To

this end, the post-processing method is explained hereafter.

Particle Tracking Velocimetry

For knowing the field of particles velocity, we performed a particle tracking velocimetry

(PTV) analysis on the streamlines thanks to the Fiji software [Schindelin et al., 2012] and

the plugin Trackmate [Tinevez et al., 2017]. An example is given in figure 3.2 for the case

of a bubble undergoing simultaneously a sectoral mode and a zonal mode of degree n = 3.

The result is obtained through the followings steps and parameters. The analysis is per-

formed on 2000 images (1 s duration video) inverted so that the background is black and

the bubble contour and particles are white. For the particles detection, the Laplacian of

Gaussian filter is selected, with an estimated blob diameter of 5 µm and a threshold

at 180. This quality threshold may need some adjustments, depending on the ability of

particles to distinguish themselves from the possibly noisy background. After that, a filter

of light total intensity on the detected spots is set so that the misleading bright spots

detected on the bubble interface are discarded. Finally, the linear motion tracker

(with parameters initial search radius = 40 µm and search radius = 10 µm) is em-

ployed to follow the particles trajectory and to estimate their velocity.

Figure 3.2: Typical result of the particle tracking velocimetry (PTV) analysis of the streaming

induced by a bubble undergoing a sectoral and a zonal mode of degree n = 3.
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The exportation of data into Matlab allows their detailed inspection with respect to a

polar coordinates system referred to the center of the bubble, as well as the comparison

of their maximal radial (outward) streaming velocities at an arbitrarily chosen distance

of twice the equilibrium radius. For a modal degree n, n profiles of velocity are extracted

from the n areas of propelled particles. For instance, in figure 3.2, there a 3 areas of

propelled particles around the azimuthal angle φ = 0, φ = 2π/3 and φ = 4π/3, where φ

is defined from the positive x-axis. Lastly, a mean velocity profile is calculated, and the

median value in the approximate distance range [1.9R0 2.1R0] is retained.

3.2 Microstreaming induced by the main classes of

spherical harmonics

This section gathers the scenarios of microstreaming we experienced for our tethered

bubbles. Every streaming patterns are resulting from bubbles parametrically excited on

their first resonance and exhibiting therefore nonspherical subharmonic behavior. As a

consequence, no streaming can result from the interaction between a nonspherical shape

mode and the radial oscillation, which occurs at the driving frequency [Cleve et al., 2019].

For the bubbles investigated here with equilibrium radius in the range [60 140] µm and

acoustically driven at 30.5 kHz, modes of degree n = 3 to 6 are observable, as expected

by the theoretical predictions on free bubbles [Francescutto and Nabergoj, 1978] and the

results obtained in chapter 2 and figure 2.7. Since the formation of streaming can be

explained from the bubble modal content, the phase shift between interacting modes and

their respective amplitude [Longuet-Higgins, 1998, Marmottant and Hilgenfeldt, 2003], a

quantitative modal description is necessary. Generally speaking, a nonspherical mode of

degree n and order m has n −m parallel nodal lines and 2m meridian nodal lines. With

a single experimental top-view, the characterization of nonspherical modes can therefore

struggle as soon as the bubble interface contains any mode such as n ≠ m and that nodal

parallels appear. Since there exists no analytic solution for the projection in the (x,y)

plane, the quantification of the amplitudes of any arbitrary asymmetric oscillation from a

single top-view becomes challenging. We suggest here alternative methods for approaching

the time-resolved amplitudes of nonspherical modes, associated to each of these exper-

imental cases: zonal mode only, sectoral mode only, tesseral mode only, sectoral-zonal

modes combo and sectoral-tesseral modes combo. These five cases represent the majority

of cases encountered experimentally.
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Chapter 3. Acoustic microstreaming

3.2.1 The “zonal mode only” case

Zonal modes are widely studied in literature because of their ease to be triggered ex-

perimentally for the case of free bubbles, and because of their comfortable axisymmet-

ric shape that facilitates their mathematical study [Spelman and Lauga, 2017, Doinikov

et al., 2019a,b, Inserra et al., 2020a,b]. The experimental visualization of their axisymmet-

ric dynamics and associated streaming is usually performed from a side-view in a plane

containing the bubble symmetry axis z. The orientation of a free bubble axisymmetric

deformation is strongly influenced by the geometry of the system under study, the pres-

ence or not of a boundary, or even the existence of an asymmetric forcing on the bubble

interface. In the absence of a wall, the assurance of the positioning of the symmetry axis

within the imaging focal plane can be ensured experimentally by controlling the direction

of impact of two coalescing bubbles [Cleve et al., 2019]. In that configuration of free

axisymmetric bubble, the theoretical predictions of streaming are solved [Inserra et al.,

2020a] and an example for the case of a self-interacting zonal mode of degree n = 4 is

given in figure 3.3d. This microstreaming pattern is characterized by 2n vortices that

develop in (r,θ) and show no dependency in azimuth.

When the bubble is attached to a wall, the orientation of the nonspherical bubble is also

governed by the system geometry and gives a preference for the zonal mode deformation

to develop following the symmetry axis z directed along the normal to the wall surface.
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Figure 3.3: Modal analysis and associated microstreaming pattern of a microbubble of equilib-

rium radius 84.3 µm oscillating on a zonal mode of degree n = 4. The information is structured

as follows. (a) Snapshot series of the top-view contour display the microbubble at different in-

stants along a complete subharmonic period of duration 2/f0. The scale bar equals 100 µm. The

red contour is a numerical reconstruction issued from the processed modal amplitudes displayed

in (b). (b) Left: spectrum of the excited modes n = 4, ’R’ standing for the radial oscillation

(m = n = 0), and right: temporal evolution of the normalized amplitudes of the predominant

radial and zonal oscillations. (c) The associated microstreaming pattern. (d) Theoretical pre-

diction of the side-view microstreaming induced by the self-interaction of a zonal axisymmetric

mode of degree n = 4, issued by Inserra et al. [2020a].
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Figure 3.4: Side-views of a numerical bubble of equilibrium radius R0 = 90 µm oscillating on a

zonal mode Y40 of amplitude a40 = 30 µm (a), a sectoral mode Y44 of amplitude a44 = 30 µm (b)

and the combination of both modes (c). The represented angle θm is the longitudinal angle for

which the bubble contour projection in the (x,y) plane is maximal. (d) The temporal evolution

of θm is observed along a complete subharmonic period for a zonal mode of degrees n = 3 to

n = 6, with a zonal amplitude an0 = 0.3R0.

As a consequence, from a top-view perspective, the bubble oscillates with a misleading

spherical appearance and the microstreaming looks exclusively radial, since there exists no

azimuthal dependence and that the axisymmetric vortices are imperceptible, as illustrated

in figure 3.3a and 3.3c. In a general way, differentiating several microstreaming scenarios

and characterizing their motion strength require a good approach of the bubble modal

content, especially when more than one nonspherical mode exist. In the framework of our

microstreaming investigation, the amplitude of zonal modes is determined as follows. As

a reminder, a bubble animated by a zonal mode only (m = 0 < n) presents an oscillating

shape devoid of nodal meridian. As a result, the top-view bubble’s silhouette is circular at

anytime, and measuring its amplitude is not straightforward. In addition, the longitudinal

angle θ responsible for the top-view bubble’s silhouette s(φ, t) = r(θm, φ, t) is not constant

along a subharmonic period, as illustrated in figure 3.4a. This longitudinal angle, referred

as θm in this study, varies with time as shown in figure 3.4d for cases of zonal modes of

degree n = 3 to n = 6. It oscillates around the equilibrium value π

2
with a signature that

is specific to the modal degree n and especially its parity. In other words, this angle θm(t)
corresponds to the global maximum r(θ, φ, t) ⋅ sin θ. Given that, the amplitude an0(t) of

the zonal mode can be approximated by decomposing the top-view bubble’s silhouette

s(φ, t) on the spherical harmonic Yn0,

an0(t) = γn0

2π
∫

2π

0

s(φ, t) dφ, (3.2)

where γn0 = (fn0P
∗

n0 sin θ
∗

m
s
∗(φ,t)

R0+ã
n0f

n0P∗

n0

)−1

, with θ
∗

m = max(θm), P ∗

n0 is the local

maximum of the associated Legendre Polynomial Pn0(cos θ) that is the nearest to θm,
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ãn0 =
1

2T
∫ 2T

0

1

2π
∫ 2π

0
s(φ, t) e

−iπf0t
dφ dt and s∗(φ, t) is the maximal value reached by the

bubble silhouette s(φ, t). This allows to approach the amplitude of the zonal mode. In

the experimental case illustrated in figure 3.3, the amplitude of the zonal mode is of the

same order of magnitude than the amplitude of the radial oscillation, as detailed by the

spectrum of the excited modes of figure 3.3b. It goes along with the temporal evolution

of the predominant radial and zonal oscillations refolded over two acoustic periods and

expressed in normalized amplitudes. A numerical bubble is implemented from the exper-

imental data issued by this modal decomposition and its top-view contour is drawn in

dashed red lines on the experimental snapshots of figure 3.3a. This experimental bubble

corresponds to a similar case of zonal harmonics n = 4 than the theoretical case displayed

in figure 3.3d. Even if, we cannot observe the axisymmetric recirculation loops in our

top-view configuration, we can discern in the experimental video sequence that particles

get regularly blurry as they move around the bubble, which confirms that particles come

out and in the focal plane and that there does exist a dependence in elevation, such as

figure 3.3d demonstrates.

3.2.2 The “sectoral mode only” case

Sectoral modes have as much azimuthal deformation lobes as the modal degree n they be-

long to. Strictly speaking, they have 2n anti-nodes and 2n nodes of interface displacement

along the azimuthal coordinate. Because the number of nodal parallels of any spherical

harmonics equals n − m, sectoral modes (n = m) are devoid of it and have their only

longitudinal displacement anti-node at the equator, as illustrated in figure 3.4b, where

they exhibit an azimuthal shape that corresponds to a cos(mφ). This azimuthal shape is

easily recognizable from a top-view observation, as shown in figure 3.5a and figure 3.5d

for bubbles oscillating on a sectoral mode n = 3 and n = 4, respectively. The bubble’s

silhouette s(φ, t) from a top-view exactly equals the bubble interface r(θ, φ, t) at θ = π

2
,

s(φ, t) = r(π
2
, φ, t) = R0 + a00(t) + ann(t)fnnPnn[0]eimφ

. (3.3)

By decomposing the top-view bubble’s silhouette s(φ, t) on the spherical harmonic

Ynn, the amplitude ann(t) of the sectoral mode is calculated as follows

ann(t) = γnn

2π
∫

2π

0

s(φ, t)e−imφ
dφ, (3.4)

where γnn = (fnnPnn[0])−1

. When performing this modal decomposition on an ex-

perimental bubble animated by a sectoral mode n = 3, it results what is depicted in

figure 3.5b. The sectoral oscillation is three times greater than the radial one and reaches

an amplitude of 15 µm.
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Figure 3.5: Modal analysis and associated microstreaming pattern of a microbubble of equilib-

rium radius 73.8 µm oscillating on a sectoral mode n = 3 (left) and a microbubble of equilibrium

radius 88 µm oscillating on a sectoral mode n = 4 (right). The information is similarly structured

as in figure 3.3.

When a bubble is animated by a sectoral mode only, the single azimuthal streaming

contribution that may exist in our configuration is due to the interaction of the sectoral

mode with itself. It generates a streaming pattern that has a 4n-lobe flower shape, where

lobes are assembled by pair. The same streaming signature is obtained in figure 3.5f in

the case of a sectoral mode n = 4. The pattern displays 16 lobes that are also arranged by

pair. It should also be mentioned that, in both cases, the rotational direction of the flow is

such as to propel the particles away from the anti-nodes and to attract them back towards

the nodes of displacement of the bubble interface. Each pair of recirculation loops is thus

surrounded by areas of particles propelled with a positive radial velocity. This motion

behavior is outlined with red arrows in figure 3.5c. Similar streaming signatures are also

obtained for cases of sectoral modes of degree n = 5 and n = 6, illustrated in figure 3.6.

According to our knowledge of microstreaming patterns induced by axisymmetric

modes, these general observations can be interpreted as follows. The bubble interface
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Figure 3.6: Modal analysis and associated microstreaming pattern of a microbubble of equilib-

rium radius 107.7 µm oscillating on a sectoral mode n = 5 (left) and a microbubble of equilibrium

radius 132.1 µm oscillating on a sectoral mode n = 6 (right). The information is similarly struc-

tured as in figure 3.3.

motion of a sectoral mode from a top-view reminds the interface motion of an axisym-

metric mode of same degree visualized from a side-view : They both present the same

number of nodal lines, in elevation for axisymmetric modes, and in azimuth for sectoral

modes. In conclusion, it could be argued that, just like the self-interaction of an axisym-

metric mode of degree n presents 4n lobes of streaming around the bubble [Inserra et al.,

2020a], a bubble exclusively animated by a sectoral mode generates a streaming signature

as a 4n-lobe flower shape.

It is worth noting that in the case of odd-order modes, an important misleading non-

zero amplitude associated to a mode of order m = 1 usually appears (see figures 3.5b

and 3.6b). This has been numerically confirmed to be an artefact issued from our calcu-

lation method of the biased bubble two-dimensional projection. The evidence is given in

figure 3.7 following a two-step procedure of analysis. First, figure 3.7a presents the result

of our algorithm of modal analysis applied to an experimental bubble, letting appear a
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a Modal analysis of an experimental bubble undergoing a sectoral mode n = 5
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Figure 3.7: Demonstration of the appearance of an unwanted artefact in the modal analysis of

odd m-order modes, here applied to a bubble of radius 107.7 µm oscillating on a sectoral mode

of degree n = 5 (same bubble as in figure 3.6). The appearance of a m = 1 modal component in

the spectrum (a1) is first qualitatively confirmed as artefact thanks to the superimposition of

an equivalent numerical bubble contour on the experimental snapshots with (a3) and without

(a4) considering the presumed artefact in its implementation. The scale bars equal 100 µm. The

modal analysis with the exact same algorithm of a numerical bubble implemented without the

presumed artefact (b) makes the m = 1 modal component reappear, quantitatively confirming

their existence as artefact only.
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sectoral 4

top-view

3D-view

Figure 3.8: Artist’s view of the microstreaming induced by a bubble oscillating on a sectoral

mode of degree n = 4, represented from a three-dimensional perspective (left) and from a top-

view (right). The color map relates to the derivative of the fluid displacement with respect to

the radial coordinate, from dark to light shades for streamlines having negative to positive radial

velocities.

sectoral mode n = 5 of amplitude 30 µm, but also, a presumed artefact (a tesseral mode

m = 1) of amplitude 15 µm. In a second stage, the exact same algorithm is applied to

a numerical bubble implemented without the presumed artefact. It turns out that an

artefact (still a tesseral mode m = 1) of same amplitude reappears (see figure 3.7b). It

therefore demonstrates that this misleading non-zero amplitude was indeed an artefact.

This affirmation is also reinforced by analyzing the oscillatory dynamics of the misleading

tesseral mode. Indeed, its oscillatory characteristics (onset, dynamics, inter-modal phase

and extinction) exactly match the ones of the predominantly investigated sectoral mode.

All these dynamical similarities never occur when a tesseral mode is truly existent.

In elevation, sectoral modes are characterized by displacement nodes at the poles and

displacement anti-nodes at the equator, resembling therefore from a side-view to a dipole

mode. Such motion is often reported in works investigating acoustic streaming, whether it

concerns a free bubble [Longuet-Higgins, 1998, Davidson and Riley, 1971, Doinikov et al.,

2019b] or a tethered one [Tho et al., 2007, Collis et al., 2010]. The associated streaming

pattern is characterized by the presence of antifountain-like vortices in elevation at the

poles of the bubble. As qualitatively sketched in figure 3.8, such an antifountain-like

pattern could be expected in elevation around a bubble animated by a sectoral mode,

though certainly marked by a symmetry break in the lower hemisphere due to the presence

of the wall. This may be an important difference with zonal modes, which, unlike sectoral

modes, possess an anti-node of displacement at their north pole. We will further discuss

this in appendix A.2, in which a complete aside is made on the streaming visualized from

a lateral perspective. Emphasis is placed on the comparison between zonal and sectoral
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3.2. Microstreaming induced by the main classes of spherical harmonics

modes, and their very opposite induced fluid flow. In what concerns us for the moment, it

is expected that important fluid flows develop in both azimuth and elevation dimensions

due to the sectoral oscillation, even though only the azimuthal part of the particles motion

located at the equator is clearly visible from our experimental top-view.

At last, because of a greater modal density of higher degree modes, the occurrence of

sectoral modes only becomes scarcer when the bubble equilibrium radius and the associ-

ated modal degree increase. As a consequence, experimental occurrences of stable sectoral

modes alone were less obvious for modal degrees higher than n = 6.

3.2.3 The “tesseral mode only” case

We have seen in chapter 2 that tesseral modes have the particularity of appearing prefer-

entially for bubbles whose radii are far from the modal resonant radius, while zonal and

sectoral modes give a preference to emerge close to that resonant radius. This result is

also verified for bubbles excited at constant acoustic pressure and displayed in figure 3.9

for modal degrees n = 3, n = 4, n = 5 and n = 6. This gives a possibility for zonal

and sectoral modes to exist simultaneously, with the particularity of modal degrees n = 3

and n = 6 for which this happens at over-resonant radii. The coexistence of tesseral

and sectoral modes is quite common too, and will be discussed in section 3.2.5. In con-

trast, the coexistence of a tesseral mode with another one or with a zonal mode was not

observed, at the magnitudes of acoustic pressure explored here. The calculation of the
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Figure 3.9: Distribution of the experimental occurrences of nonspherical modes for bubbles

whose equilibrium radius R0 is located around the resonant radius associated to the modal

degrees n = 3 (top left), n = 4 (top right), n = 5 (bottom left) and n = 6 (bottom right), given

by the red dashed vertical lines.
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Figure 3.10: Modal analysis of the dynamics and associated microstreaming pattern of mi-

crobubbles of equilibrium radius 86.4 µm oscillating on a tesseral mode of order m = 1 (left)

and a microbubble of equilibrium radius 102.6 µm oscillating on a tesseral mode of order m = 2

(right). Both are generating a 4m-lobe flower-shaped pattern. The information is similarly

structured as in figure 3.3.

modal amplitude of a tesseral mode Ynm writes

anm(t) = γnm

2π
∫

2π

0

s(φ, t)e−imφ
dφ, (3.5)

where γnm = (fnmP
∗

nm sin θ
∗

m
s
∗(φ,t)

R0+ã
nm

f
nm

P∗
nm

)−1

.

Tesseral modes also differ from zonal and sectoral modes by the presence in their

modal deformations of nodal lines in both elevation and azimuth. For instance, each

tesseral mode of order m = 1 has two nodal meridians, regardless the modal degree n it

belongs to, but a number of n −m nodal parallels that differs with its degree. In a mi-

croscope top-view configuration, the observation of the bubble and the induced particles
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Figure 3.11: Theoretical prediction of the side-view microstreaming induced by the self-

interaction of an axisymmetric mode of degree n = 1, i.e. a roughly vertical translation os-

cillation. Issued by Inserra et al. [2020a], the streaming pattern has a quadrupole shape, closely

similar to the one induced by a tesseral mode m = 1, as illustrated in figure 3.10c.

motion is performed in a horizontal focal plane of finite thickness. From that perspective,

at a given angle θ, the azimuthal bubble contour of any tesseral mode 1 possesses two

nodes and two anti-nodes of displacement. As a direct consequence, all the self-interacting

tesseral modes m = 1 ever experienced in this work for n = 3 to n = 6 have always devel-

oped from a top-view a microstreaming characterized by a 4-lobe shape, as an example is

illustrated in figure 3.10c. This is in line with the previous logic related to sectoral modes,

where the number of recirculation loops equals two times the number of nodal meridi-

ans. The particles are thus animated by a flow motion going away from the displacement

anti-nodes and towards the displacement nodes of the bubble interface. An analogy can

be drawn between such a tesseral mode m = 1 observed in a horizontal focal plane and

a solid-body translation oscillation without shape deformation. Such bubble translation

motion is widely investigated in literature and generally associated to quadrupole-shaped

patterns [Longuet-Higgins, 1998, Collis et al., 2010, Doinikov et al., 2019b], as an example

is given in figure 3.11. The resemblance with the streaming pattern induced by a tesseral

mode m = 1 is close (see figure 3.10c).

Analogously, tesseral modes of order m = 2 possess four nodal meridians. Similarly, it

is expected that such bubble oscillation would generate a microstreaming characterized

by 4m lobes, and this is exactly what is shown in figure 3.10f, where eight lobes are clearly

visible. Similarly as the tesseral mode m = 1, the 4m recirculation loops are assembled

two by two, each pair being located between two displacement nodes of the bubble in-

terface and surrounded by region of dense streamlines associated to a fluid motion going
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Figure 3.12: Modal analysis of the dynamics and associated microstreaming pattern of a mi-

crobubble of equilibrium radius 101.5 µm oscillating on a tesseral mode of order m = 3 (left)

and a microbubble of equilibrium radius 118.8 µm oscillating on a tesseral mode of order m = 4

(right). Both are generating a 4m-lobe flower-shaped pattern. The information is similarly

structured as in figure 3.3.

towards the bubble interface. The bubble nonspherical mode here represented belongs

to the modal degree n = 4. We believe that as the presence of the wall facilitates the

triggering of some asymmetric modes, it might in the same way inhibits others. This

might be the reason why we have not experienced self-interacting tesseral mode m = 2

for every modal degrees n that were investigated in this work.

As illustrated in figure 3.12, the microstreaming induced by tesseral modes of order

m = 3 and m = 4 exhibits a similar signature: 4m lobes assembled by pair, with a great

density of particles in the equatorial plane coming towards the bubble interface and more

particularly towards the displacement nodes of the bubble interface. In addition, it ap-

pears that the recirculation loops become smaller as the modal order m increases.

Lastly, it is worth noting a difference that exists between the microstreaming associated
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3.2. Microstreaming induced by the main classes of spherical harmonics

to a bubble animated by a tesseral mode or a sectoral mode. While both present a very

similar streaming with a 4m-lobe flower shape, the major distinction between them is the

sign of the radial direction of the fluid motion in the equatorial plane, positive for sectoral

modes and negative for tesseral modes.

With these first three experimental cases, we made the tour of our top-view experi-

mental microstreamings induced by a wall-attached bubble exclusively animated by each

of the main classes of spherical harmonics: zonal, sectoral and tesseral. There remain two

scenarios of modal interaction that we met all along this experimental work. First, the

probably least shy and most stable configuration: the modal coexistence and interaction

between a sectoral and a zonal mode. Lastly, the probably most difficult to identify and

quantify, but not so rare, configuration: the modal coexistence and interaction between

a sectoral and a tesseral mode.

3.2.4 The “sectoral and zonal modes combo” case

By investigating the shape modes dynamics of a wall-attached bubble, we have evidenced

in chapter 2 the recurrent coexistence of sectoral and zonal modes around the resonant

radius and reported it in Physical Review E [Fauconnier et al., 2020]. The emergence of

bubble nonspherical modes was investigated along an increasing pressure ramp, and the

triggering of zonal and sectoral modes oscillating simultaneously was highlighted. In this

current experimental configuration aiming at the study of the induced microstreaming,

bubbles are driven at constant acoustic pressure, but the coexistence of zonal and sectoral

is still frequently observed. As a reminder, microstreaming results from the interaction

between two modes oscillating at the same frequency [Doinikov et al., 2019a], as well as

the self-interaction of a shape mode [Inserra et al., 2020a]. The microstreaming induced

by a bubble oscillating predominantly on two parametrically-excited shape modes (here

the zonal and sectoral ones), in addition to the spherical oscillation (oscillating at the

driving frequency), will lead to the second-order velocity field

v
(2)

≃ v
(2)
z−s + v

(2)
z−z + v

(2)
s−s, (3.6)

where v
(2)
z−s refers to the second-order velocity induced by the interaction of zonal and

sectoral modes, and v
(2)
z−z (respectively v

(2)
s−s) refers to the second-order velocity induced

by the self-interacting zonal mode (respectively sectoral mode). The interaction between

two modes would be the largest when they are in phase quadrature [Marmottant and

Hilgenfeldt, 2003]. As a result, depending on the phase and amplitude relations between

zonal and sectoral modes, one or another contribution is likely to prevail on others. Cap-

turing and measuring with accuracy the modal variables becomes then critical. When

sectoral and zonal modes coexist, the calculation of the amplitude an0(t) of the zonal
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Figure 3.13: Example of the result obtained with our modal analysis method, here applied to

a bubble of radius 88.1 µm oscillating simultaneously on a sectoral and a zonal mode of degree

n = 4. The information is structured as follows. (a) Snapshot series of the top-view contour

display the microbubble at different instants along a complete subharmonic period of duration

2T. The scale bar equals 100 µm. The red contour is a numerical reconstruction issued from the

processed modal amplitudes displayed in (b). (b) Snapshots of a numerical bubble, implemented

with the parameters obtained from the modal analysis of the experimental bubble. (c) Spectrum

of the excited modes n = 4 of the experimental bubble (solid lines) and the numerical bubble

(dashed lines) is expressed in µm, as a function of the modal order m, ’R’ standing for the radial

oscillation (m = n = 0). Temporal evolution of the normalized amplitudes of the predominant

radial, zonal and sectoral refolded over two acoustic periods for the experimental bubble (d) and

the numerical bubble (e).

mode is performed as in section 3.2.1, but the calculation of the amplitude ann(t) of the

sectoral mode requires some adjustments. The reason for that is the shift of the longi-

tudinal position of the maximal displacement of the sectoral mode, as it does in the last

two schematics of figure 3.4c. The amplitude ann(t) is then no longer normalized by the

associated Legendre Polynomial at θ = π

2
, but by the general expression

ann(t) = γnn

2π
∫

2π

0

s(φ, t)e−inφ
dφ, (3.7)

where γnn = (fn0P
∗

n0 sin θ
∗

m
s
∗(φ,t)

R0+ã
nn

f
nn

P∗
nn

)−1

. Figure 3.13 demonstrates the ability of

our method for approaching the amplitudes of zonal and sectoral modes. The top-view

observation of an experimental microbubble’s silhouette of equilibrium radius 88.1 µm al-
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Figure 3.14: Distribution of the phase shift ∆Φ between zonal and sectoral modes as a function

of the bubble’s equilibrium radius R0, for degrees n = 3 to 6.

lows not only the detection of the presence of radial, zonal and sectoral modes, but also

an accurate quantification of their respective amplitude and relation of phase. In order to

validate our method, a similar modal analysis has been performed on a numerical bubble’s

silhouette implemented from the obtained experimental parameters (a00, a40, a44 and the

relative phase shifts). Figure 3.13 shows that the modal amplitudes are accurately recov-

ered (maximal error of 2 µm), as it is the case for the phase shift.

Above the instability pressure threshold of a given degree n, the occurrence of sectoral

modes alone is scarcer than the coexistence of sectoral and zonal modes. In addition,

sectoral and zonal modes of even degree n = 4 and n = 6 evidence a recurrent disposition

to oscillate in-phase, unlike modes of odd degree n = 3 and n = 5 for which the phase shift

is greater and may vary in a broader range. This behavior is summed up in figure 3.14

for the whole set of experimental data, each dot being a different microbubble animated

simultaneously by a zonal and a sectoral mode. When it concerns odd degree (n = 3

and n = 5), we know that zonal and sectoral modes never oscillate in phase and coexist

in a more competitive behavior (see section 2.2.6), highlighted here with an important

variance of their phase shift. It varies within a broad range [0.1π 0.5π], in contrast with

the case of even degree n = 4 and 6 where the phase shift is recurrently constrained below

0.1π. We remind that the magnitude of the microstreaming interaction is governed by the

phase shift between the two interacting modes [Longuet-Higgins, 1998, Marmottant and

Hilgenfeldt, 2003]. Following the work of Longuet-Higgins [1998], when a radial oscillation

(of amplitude ǫ0) interacts with a translation oscillation (amplitude ǫ1), the magnitude

of the resulting flow is given by the so-called dipole strength d2 = ǫ0ǫ1R
2
0 sin ∆Φ, where

∆Φ is the phase shift between the radial and translation oscillations. Accordingly, we can

therefore expect the interaction of zonal and sectoral modes of even degree to be weaker

in comparison to the one induced by odd degrees.
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Figure 3.15: Modal analysis of the dynamics and associated microstreaming pattern of a mi-

crobubble of equilibrium radius 80.2 µm oscillating on a sectoral mode and a zonal mode of

degree n = 3, generating a 2n-lobe flower-shaped streaming pattern (left) and of a microbbuble

of equilibrium radius 75.4 µm oscillating on a sectoral mode and a zonal mode of degree n = 3,

generating a n-pointed star-shaped streaming pattern (right). The information is similarly

structured as in figure 3.3.

When a bubble oscillates simultaneously on a zonal and a sectoral mode of degree

n = 3, two different scenarios of microstreaming stand out, as illustrated in figure 3.15.

Both scenarios clearly differentiate themselves in the ability for the streaming flow to

present or not recirculation loops in the visualized equatorial plane. In figure 3.15c, a

2n-lobe flower shape characterized by a fluid flow moving away from a displacement anti-

node of the bubble interface and coming back towards another is observed. Actually,

it is very likely that the particles are actually heading towards zonal-related nodes of

displacement that are hidden at a different position in elevation. The progression from a

sharp to a blurry appearance of particles throughout their looping circulation reinforces

this hypothesis. This 2n-lobe flower-shaped pattern contrasts with the one shown in

figure 3.15f where particles are propelled from the bubble interface with an outward one-
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Figure 3.16: The preferential appearance of flower-shaped (•) or star-shaped (⭒) patterns in-

duced by a combination of sectoral and zonal modes of degree n = 3 is investigated as a function

of their phase shift ∆Φ and amplitudes a33 and a30 (a) as well as a function of their tripole

strength = a30 ⋅ a33 ⋅R
2
0 ⋅ sin ∆Φ correlated by the maximal radial velocity of propelled particles

Vr
max

measured at a distance r = 2R0 from the bubble barycenter (b). Two particular red open

markers represent the two chosen cases of figure 3.15 and their position in this tripole strength

map.

way motion. For the degree n = 3, this pattern resembles a star with 3 branches, and

we refer to it as a n-pointed star shape. These two patterns are resulting from a bubble

exhibiting both a zonal and a sectoral oscillation, as shown in the modal analysis displayed

in figures 3.15b and 3.15e. Clearly, both the amplitudes of the nonspherical modes and

their phase shift differ, and so are the relative strength of each interaction underlying the

two presented patterns, as indicated in equation (3.6). For the bubble exhibiting a 2n-lobe

shape in figure 3.15c, the pattern probably results from the three-fold interaction described

in equation (3.6), without predominance of one on another. However, due to the greater

phase shift between zonal and sectoral modes in the case of the n-pointed star shape, the

interaction between these two modes on the resulting pattern is probably predominant.

It is worth noticing that this pattern looks like a zonal-induced microstreaming pattern

(see figure 3.3c for instance), but here regularly interrupted with a spatial period 2π/n.

In order to understand how these two scenarios differ, figure 3.16a gives an overview

of the experimental data where there is coexistence and interaction between a zonal mode

and a sectoral mode of degree n = 3. The preferential occurrence of flower-shaped or star-

shaped patterns is investigated as a function of the amplitudes of the sectoral mode a33

and the zonal mode a30, as well as their phase shift ∆Φ. At a first glance, a preferential

generation of flower shapes occurs when the sectoral amplitude is weak, regardless the

zonal amplitude. On the other hand, when the sectoral mode amplitudes become stronger,

star-shaped patterns become predominant. For these patterns, the tracking particles

are propelled with such an important velocity that they are never steered back to the

bubble interface and thus do not experience any recirculation loops. This observation

is asserted by figure 3.16b where the propelling velocity of the particles measured at
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a distance 2R0 from the bubble center is plotted as a function of the tripole strength

d3 = a30 ⋅ a33 ⋅ R
2
0 ⋅ sin ∆Φ. This expression was inspired from the dipole strength as

defined by Longuet-Higgins [1998] in the case of a translation bubble motion. Clearly,

the generation of star-shaped patterns is associated to the highest magnitudes of tripole

strength, while flower-shaped patterns are globally restricted to the lowest magnitudes.

Based on the observation of figure 3.16a, a correlation between phase shift and modal

amplitudes, which highlights the modal competition of sectoral and zonal modes of degree

n = 3 mentioned before, also deserves to be noted. As a matter of fact, the modal

coexistence does not happen unconditionally, quite the contrary. The progressive rise

in power of the sectoral mode conditions the zonal mode, provided that a phase shift

operates and that the zonal mode suffers a reduction in its amplitude.

Lastly, it should be specified that, due to some inadequate sets of data for accurately

measuring the particles velocity through the Fiji software [Schindelin et al., 2012] and

the plugin Trackmate [Tinevez et al., 2017], the number of experimental occurrences of

figure 3.16b differs from the number in figure 3.16a.

When n = 5, similar results come out. Same 2n-lobe and n-pointed star-shaped pat-

terns are observed. Similarly as before, the strongest sectoral amplitude is associated to

the n-pointed star shape (figure 3.17f) in comparison to the lobe-type pattern (Fig 3.17c).

For the results presented here, identical magnitudes of the zonal oscillations are obtained

for both cases. Figure 3.18 gives an overview of the distribution map of microstreaming

patterns induced by interacting zonal and sectoral modes of degree n = 5, as a function

of their phase shift and modal amplitudes a55 and a50. Even if a clear boundary between

star-shaped and flower-shaped patterns is not as obvious as it was for the case n = 3, the

global trend still goes in the direction of a preferential generation of star-shaped patterns

when the sectoral mode outweighs the zonal amplitude. On the other hand, at weaker

zonal and sectoral amplitudes, star-shaped patterns can only arise when the phase shift

is sufficiently large. Somehow, the phase shift compensates the weak sectoral mode and

facilitates in this way the emergence of star-shaped patterns. This is further proof that

star shapes and flower shapes are related patterns that have a common boundary, a crit-

ical threshold in intensity of interaction that swings the response of the fluid from one

pattern to another. Finally, a correlation between phase shift and modal amplitudes also

deserves to be mentioned. Unlike the case n = 3, the phase shift is here inversely related

with the sectoral amplitude.

Sectoral and zonal modes of even degree n = 4 show ease to coexist. They emerge and

exist together without inhibiting each other [Fauconnier et al., 2020]. As a result, their

phase shift is not as variable as it was for odd-degree modes (see figure 3.14), and the

microstreaming patterns are then less different and exclusively limited to 2n-lobe flower
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Figure 3.17: Modal analysis of the dynamics and associated microstreaming pattern of a mi-

crobubble of equilibrium radius 112.1 µm oscillating on a sectoral mode and a zonal mode of

degree n = 5, generating a 2n-lobe flower-shaped streaming pattern (left) and of a microbub-

ble of equilibrium radius 110.2 µm oscillating on a sectoral mode and a zonal mode of degree

n = 5, generating a n-pointed star-shaped streaming pattern (right). The information is similarly

structured as in figure 3.3.
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Figure 3.18: The preferential appearance of flower-shaped (•) or star-shaped (⭒) patterns in-

duced by a combination of sectoral and zonal modes of degree n = 5 is investigated as a function

of their phase shift ∆Φ and amplitudes a55 and a50.
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shapes (see figure 3.19). Despite this, we will see in figure 3.20 that we yet experienced a

great variability in the magnitudes of fluid velocity.

The two different scenarios illustrated in figure 3.19 are related to closely similar asym-

metric modal amplitudes and phase shift between zonal and sectoral oscillations, while

they display the two most opposite microstreaming patterns we experienced for the case

of a degree n = 4. Since the interaction strength of even-degree zonal and sectoral modes

is generally less than that of largely phase-shifted odd-degree modes, it results in flower-

shaped patterns with early stages of star shapes instead of fully developed star-shaped

patterns. When measuring the velocity of particles propelled by the bubble anti-nodes at

a distance 2R0, clear differentiation occurs between the flower shapes and the seemingly

4-pointed star shapes (see figure 3.20). This differentiation occurs along the amplitude of
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Figure 3.19: Modal analysis of the dynamics and associated microstreaming pattern of a mi-

crobubble of equilibrium radius 87.4 µm oscillating on a sectoral and a zonal mode of degree

n = 4 generating a 2n-lobe flower-shaped streaming pattern (left) and of a microbubble of equi-

librium radius 87.7 µm oscillating on a sectoral and a zonal mode of degree n = 4 generating a

2n-lobe flower-shaped streaming pattern accompanied with early stages of a star shape (right).

The information is similarly structured as in figure 3.3.

76



3.2. Microstreaming induced by the main classes of spherical harmonics

0 1 2 3 4 5

Quadripole strength [m4] 105

0

5

10

15

20

||V
r m

ax
 (

r=
2
R

0
)|

| [
m

m
/s

]

Figure 3.20: The preferential appearance of flower shapes (•) or flower shapes with early stages

of star shapes (⭒) induced by a combination of sectoral and zonal modes of degree n = 4 is

investigated as a function of their quadrupole strength = a40 ⋅ a44 ⋅ R
2
0 ⋅ sin ∆Φ correlated by

the maximal radial velocity of propelled particles Vr
max

measured at a distance r = 2R0 from

the bubble barycenter. Two particular red open markers represent the two cases selected in

figure 3.19 and their position in this quadrupole strength map.

the quadrupole strength d4 = a40 ⋅a44 ⋅R
2
0 ⋅sin ∆Φ. Again, confined flower-shaped patterns

are clearly restricted at the lowest magnitudes of quadrupole strength. On the other hand,

higher magnitudes of quadrupole strength seem to force the fluid flow to adopt more like

an outward one-way motion (see figure 3.20f).

Concerning sectoral and zonal modes of degree n = 6, the coexistence is also facilitated.

Figure 3.14 evidenced a phase shift between modes always confined below 0.05π. This

translates into even less diversified streaming signatures as in the case of degree n = 4.

Not helped by a higher modal density, only a few rare cases of coexistence between zonal

and sectoral modes absent from any other tesseral mode were experienced, an example
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Figure 3.21: Modal analysis of the dynamics and associated microstreaming pattern of a mi-

crobubble of equilibrium radius 135.8 µm oscillating on a sectoral mode and a zonal mode of

degree n = 6, generating a 2n-lobe flower-shaped pattern. The information is similarly struc-

tured as in figure 3.3.

77



Chapter 3. Acoustic microstreaming

of which is given in figure 3.21. This streaming pattern with twelve lobes summarizes all

cases of interacting sectoral and zonal modes of degree n = 6.

3.2.5 The “sectoral and tesseral modes combo” case

The fifth and last experimental case concerns the microstreaming induced by an interac-

tion between sectoral and tesseral modes. Due to the complexity of discerning the tesseral

mode oscillation from the sectoral one, the bubble modal content is in this case only inves-

tigated in a qualitative way. Figure 3.22a (respectively, figures 3.22b and 3.22c) presents

an experimental case of interaction of a sectoral mode n = 3 with a tesseral mode m = 1

(respectively, a sectoral mode n = 4 with a tesseral mode m = 2, and a sectoral n = 4 with

a tesseral mode m = 1). All these three nonspherical bubbles generate a 4-lobe streaming

pattern. Figure 3.22d presents an experimental case of interaction of a sectoral mode

n = 6 with a tesseral mode m = 3. It generates a 6-lobe shaped pattern. Experimental

occurrences of streaming induced by sectoral and tesseral modes are not the most usual

and certainly not the easiest scenario to analyze and interpret. It will be difficult to draw

conclusion, since the number of possible modal configurations is important and not all of

them are observable in our configuration. As a reminder, the tethering to the wall acts as

a filter on the bubble modal behavior, facilitating the emergence of certain nonspherical

modes and inhibiting others. These four examples given in figure 3.22 have been wisely

chosen among the large panel of patterns in order to illustrate the non-exclusivity of spe-

cific patterns (here, 4-lobe shape) to a single bubble modal configuration and that, in

definitive, a rule of thumb can not be easily advanced.

To sum up the results on streaming patterns, figure 3.23 gives an overview of the

complete variety and classification of the microstreaming patterns induced by nonspherical

modes of an ultrasound-driven wall-attached bubble, as they were experienced in this

work. Four experimental cases are summarized here: self-interacting zonal, self-interacting

sectoral, self-interacting tesseral and zonal-sectoral interacting combo. Although a self-

interacting sectoral mode and a self-interacting tesseral mode of a same order m generate

similar top-view streaming signatures and are represented in figure 3.23 with similar 4m-

lobe symbols, they can be differentiated by considering the sign of the radial fluid velocity

at the equator, as represented with pink arrows in figure 3.5c (for sectoral modes) and

in figure 3.10f (for tesseral modes). In the case of sectoral modes, recirculation loops are

assembled by pair with an inward motion, while in the case of tesseral modes, recirculation

loops are assembled by pair with an outward motion. This feature is recurrent regardless

the modal degree to which is related each sectoral or tesseral mode. In addition, we

observed that sectoral modes of a wall-attached bubble give rise to an antifountain-like
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200 µm

a Sectoral (3,3) + Tesseral (3,1)

200 µm

b Sectoral (4,4) + Tesseral (4,2)

200 µm

c Sectoral (4,4) + Tesseral (4,1)

200 µm

d Sectoral (6,6) + Tesseral (6,3)

Figure 3.22: Microstreaming induced by a bubble of equilibrium radius 70.3 µm oscillating si-

multaneously on a sectoral mode n = 3 and a tesseral mode m = 1, generating a 4-lobe shaped

pattern (a), by a bubble of equilibrium radius 90.8 µm oscillating simultaneously on a sectoral

mode n = 4 and a tesseral mode m = 2, also generating a 4-lobe shaped pattern (b), by a

bubble of equilibrium radius 92 µm oscillating simultaneously on a sectoral mode n = 4 and a

tesseral mode m = 1, also generating a 4-lobe shaped pattern (c) and by a bubble of equilibrium

radius 134 µm oscillating simultaneously on a sectoral mode n = 6 and a tesseral mode m = 3,

generating a 6-lobe shaped pattern (d). The scale bars on the small snapshots all equal 100 µm.
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Figure 3.23: Schematics of the complete variety of the microstreaming patterns as we experienced

them, from a top-view. The notations in gray on top of columns are the degrees for which we

experienced the microstreaming patterns as described.

behavior of the surrounding fluid above the bubble, characterized with a negative radial

velocity along the normal to the top wall surface (See figure 3.8), which may significantly

differ in the case of tesseral and zonal modes.

3.3 Conclusion

The formation of specific microstreaming patterns induced by a wall-attached microbub-

ble undergoing asymmetric shape modes is analyzed with respect to its time-resolved

dynamics. In our experimental setup, each main class of spherical harmonics Ynm(θ, φ) is

experienced: zonal (m = 0 < n), sectoral (n = m ≠ 0) and tesseral (0 < m < n). The mi-

crostreaming induced by a bubble animated by a sectoral mode alone reveals a streaming

signature characterized by a 4n-lobe flower shape. Very similarly, self-interacting tesseral

modes give rise to 4m-lobe flower-shaped patterns. The modal configuration that involves

tesseral and sectoral interacting modes is illustrated through four cases, for which a rule of

thumb is hard to advance. On the other hand, in a scenario staging the coexistence of sec-

toral and zonal modes, the microstreaming induced by their interaction can produce two

kinds of patterns: 2n-lobe flower and n-pointed star shapes. The preferential emergence

of one or another pattern of streaming is discussed on the basis of the modal amplitudes

and phase shift between both shape modes. For modes of odd degree n = 3 and n = 5,

an important modal competition induces greater phase shifts and thus stronger modal

interaction and more diverse shapes of streaming patterns than in the case of even degree

n = 4 and n = 6 where the modal coexistence is more facilitated. Globally, the amplitude

of the sectoral mode, encouraged with a decisive phase shift, appears to have an im-

portant responsibility in the generation of a microstreaming signature characterized by a

flower-shaped (weak amplitude a33, phase shift and quadrupole strength) or a star-shaped

(strong amplitude a33, phase shift and quadrupole strength) pattern around the bubble.
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Despite zonal and sectoral modes of even degree behave less competitively and present

weaker phase shift and thus modal interaction, the level of flow spreading of the always

recurrent 2n-lobe flower shape seems to be governed by the streaming strength and its

capacity to reach high magnitudes of radial velocity and to propel particles located in the

equatorial plane with an outward one-way motion. Both scenarios, the flower-shaped and

the star-shaped pattern, seem to have different areas of high velocity activity, confined

near the bubble or away from the bubble in front of the anti-nodes of the bubble inter-

face displacement, respectively. Controlling the bubble’s size and dynamics could make it

possible to promote the generation of one or another sort of streaming pattern, hence the

oriented and optimized generation of shear stresses on a nearby wall or biological cell.

The now improved understanding of the dynamics and induced streaming of a non-

spherically oscillating wall-attached microbubble will allow an in-depth explanation of the

influence it can have on a nearby biological cell. To this end, chapter 4 explores original

methods for assessing this mechanical interaction at both the acoustic and the fluidic time

scales.
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Chapter 4

Mechanical interaction with a biological cell

The sonoporation of a biological cell membrane is a recurrent topic of research whether

it concerns the blood-brain barrier (BBB) opening or the transfection of genetic mate-

rials. Classically performed non-invasively by means of resonant microbubbles, another

recurrent matter is the common knowledge that a cloud of acoustically driven microbub-

bles can be a very complex, erratic and destructive cocktail, especially when interacting

with a population of biological cells. This chapter presents an experimental study of the

bubble-cell interaction, based on two postulates:

• First, we believe that investigating this mechanical interaction at the micro-scale

level of one single bubble and one single cell could help in understanding the complex

macro-scale phenomenon.

• Second, because bubble nonspherical deformations are at the origin of important

bubble displacements and formation of streaming, the focus will be on these bubble

shape modes and their influence on a nearby biological cell.

With the perspective of studying these induced effects, two cellular models are sug-

gested: an oocyte and a megakaryocyte. The nature of these cells and the good practices

concerning their preparation are detailed in the first section 4.1. Section 4.2 takes stock

of the experimental setup and the methods for manipulating the cells and for assessing

their response. The experimental results are displayed in section 4.3 where the bubble-cell

behavior is investigated at the single-cell scale through five consecutive approaches:

• the single bubble characterization in the cell medium (section 4.3.1),

• the bubble pushing-pulling action on a cell (section 4.3.2),

• the propagation of shear waves within a cell (section 4.3.3),

• the motion of cells in bubble-induced streaming (section 4.3.4),

• the internalization of fluorescent markers (section 4.3.5).
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4.1 The choice of a cellular model

With the aim of investigating the mechanical interaction between a biological cell and a

microbubble, a cellular model had to be selected by considering two important points:

the size of the cell and its likeliness to be sonoporated. Because we are technically limited

by a maximal recording rate of 180 kHz and hence the use of a low-frequency transducer,

we are restricted in working with bubbles with relatively important sizes. In section 2.1.1

and figure 2.3, the acoustic response of our transducer has revealed its harmonic content

and the possibility of working with bubbles of radius about 35 µm and 45 µm, respectively

resonant at the 85 kHz third harmonic and the 66.5 kHz second harmonic, accordingly

to Minnaert’s frequency defined in equation (1.5). Since the objective is to approach

a bubble-cell sizing ratio of 1:1 in order to be in a configuration comparable as those

encountered in medical applications where UCA sizing in the range 1-10 µm injected in

the bloodstream interact with red and white blood cells, a cellular model sizing in the

diameter range 50-90 µm had to be found.

4.1.1 Oocytes

A first convenient cellular model which was easy for us to provide is a mouse oocyte.

A handful of oocytes could be delivered to us by Jean-Michel Vicat and the Faculty of

Medicine of Laënnec. For this precious help, we thank them very much.

Because it has a large size in the range 70-100 µm, such an oocyte is a perfect candi-

date to be placed near a similarly sizing bubble acoustically driven at 66.5 kHz. Even if

occurrences of sonoporation of xenopus oocytes have been achieved by Deng et al. [2004],

these cells are, by nature, reluctant to let in external foreign particles. Protected by an

encompassing zona pellucida ensuring in particular a role of filter on what can enter, i.e.

a spermatozoon with an intact plasma membrane, oocytes are at a first glance not really

prone to be permeabilized.

Moreover, this zona pellucida appears to be somehow adhesive after having been col-

lected from the animal. For the experimental purpose of Jean-Michel Vicat’s team, the

oocytes are washed and this adhesive layer is thus wiped out. At the end, when the cells

are delivered to us, these adhesive properties are no longer. This does not help them to

adhere to a substrate and a method must be found to efficiently fasten the cells. This is

accomplished thanks to a microaspiration system, a glass capillary, a flexible hose and a

syringe (Hamilton Gastight® 1710). The homemade manufacture of a glass capillary and

the microaspiration method are presented later, in section 4.2.4.

The truth is that the sanitary crisis did not help to perform an extensive study on

oocytes. This last part of thesis work chronologically arrived after the first works on the

bubble dynamics, presented in previous chapters, and at the exact moment the COVID-
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19 virus (SARS-CoV-2) entered our lives. For this reason, only two one-day series of

experiments have been realized. Soon it became more convenient to dispose of cells

without depending on an outside supplier and thus to start cultivating cells within our

premises. This made it possible to manage the accessibility to cells during the consecutive

lockdowns. For that reason, and due to a doomed lack of experimental data, no result

on oocytes will be displayed in this chapter. Yet, some images and a brief discussion are

given in appendix B.

4.1.2 Megakaryocytes

Another cellular model has been employed in this thesis work: a cell line of human

megakaryoblasts MEG-01 (CRL-2021, American Type Culture Collection, Manassas, Vir-

ginia). They were selected for the purpose of our cell study not only for their nature and

their likeliness to be targeted for sonoporation and drug deliverance in clinical applica-

tions, but also because of their particularity to have a large size when they are reaching

maturity. These bone marrow cells are responsible for the production of thrombocytes in

the vascular network and are characterized by a three-phase evolution, during which they

grow in size. Firstly megakaryoblasts, they become then promegakaryocytes and after-

wards megakaryocytes. At that final stage, they start developing a granular appearance

due to the production on their membrane of thrombocytes, which they finally release in

the blood circulation upon the cell itself breakup. Since we chose the largest cells among

the whole cell population we could find to perform the bubble-cell interaction experi-

ments, it is likely that these are fully mature megakaryocytes, and not megakaryoblasts.

In addition, it is worth noting that these cells are not pleomorphic, in the sense that they

maintain a constant shape common to all from the first to the final stage of their growth,

namely a roughly spherical shape or a spherical capped shape for the adherent ones.

Cell culture

Concerning their culture, the cells were grown in 75 cm
2 flasks (Corning®) filled with

15 mL Roswell Park Memorial Institute (RPMI) medium supplemented with 10 % fetal

calf serum (FCS) and 1 % L-glutamin, then incubated at 37
◦
C and 5 % CO2. The medium

renewal is done twice a week. Although these cells do not show a high propensity to adhere

to their substrate, this consists in scraping the few adherent ones, then centrifuging them

and diluting the cellular pellet into 15 mL fresh medium at a ratio of 1:5 to 2:5 in order

to keep the culture below a recommended approximate density of 106 cells/mL. Provided

these conditions of culture are respected, they have the capacity to double their population

in 36 to 48 hours.
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Depth

0.1mm

Thoma

1 mm

a b

Figure 4.1: (a) Schematics of a Thoma’s cell of which both counting-chambers are filled with

a 10 µL sample of the initial cell culture solution diluted in 10 µL blue trypan solution. (b) A

schematic zoom on a counting-chamber on which the method on how cells are taken into account

(green ones) or not (red ones) in the total count, whether a cell is located inside or outside the

large square, or on one of its four edges.

Cell counting

When there was a need for an important and controlled density of cells in the experimental

tank, or more simply when there was a need for an information on the dilution rate to be

carried out to optimize the cell culture, the counting of cells was performed using a trypan

blue solution (Corning®, 29-900-CI 0.4 % in PBS) and a Thoma’s cell of which a schematics

is given in figure 4.1a. The Thoma’s cell is a cytometer, a counting-chamber device that

allows to make an estimation of the number of cells in suspension in an initial solution.

10 µL of this solution containing all cells is diluted in 10 µL of blue trypan solution, then

inserted between a thin glass slide and the Thoma’s cell, in the two counting-chambers.

The count is done as illustrated in figure 4.1b, by taking into account the cells located

inside the large square of 1 mm edge and located on top and left edges but not on right

and bottom ones. This gives two numbers of cells, N1 and N2, one for each of both

counting-chambers. Given that the thickness of solution under the glass slide measures

0.1 mm, the total volume then contained in each square is about 0.1 µL. The final number

of cells in the initial solution is then approximated by applying the following calculation

Number of cells /mL =
N1 +N2

2
fcd 10

4 (4.1)

where fcd is the concentration-dilution factor, which equals 20 µL / 10 µL = 2, in our

case.

Cell population

For the need of our experimental investigation of the interaction between a biological cell

and an oscillating bubble, one single cell would be sufficient, while we were growing each
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Figure 4.2: Counting of a typical sample consisting of 500 hundred cells issued from our popu-

lation of megakaryocytes (MEG-01).

week millions of cells. The selection criterion in cell size, for ensuring a bubble-to-cell size

ratio of 1:1, was so restrictive that finding one suitable cell was not effortless.

The megakaryocytes are described in literature as cells sizing in a very broad range

from 10 to 100 µm [Levine et al., 1982]. This is one of the main reasons why these cells

were chosen for the purpose of this work. Unfortunately, we scarcely observed such large

cells. Actually, we think we did when the cells were still in culture, but once they were

scrapped from the flask’s bottom, brought out of their culture flask and transferred within

the experimental tank, it is as if those few very large cells had disappeared. While the

typical desired cell diameter was at least 50 to 60 µm, the most cells we could find were

much smaller. It is likely that these large sought cells are fully mature megakaryocytes and

may have therefore already planned out their apoptosis, a form of programmed cell death,

with the view to serve their purpose, i.e. the release of their production of thrombocytes.

In the scheme of things, the absence of very large cells once observed in the experimental

tank could be explained by a stress induced by this preparation and transfer of cells,

which could speed up their apoptosis.

From snapshots taken in the experimental tank, the equivalent diameter of about five

hundred cells randomly hand-picked has been measured. The total count as a function

of the cell diameter is given in figure 4.2, on which the cellular distribution presents a

rather bell-shaped curve around a peak at 16 µm, with a couple events above 25 µm. Some

rare cells larger than 40 µm could be found with some luck, but this was definitely not a

generality. Throughout all our experiments, megakaryocytes larger than 50 µm have been

found, twice.

Mycoplasma test

Mycoplasmas are part of the smallest known living-free organisms. They are bacterias

typically sizing in the range 0.2-1 µm. Due to the absence of cell wall and the smallness

of their genome, their capacity to live and grow is highly dependent on their possibility

to take advantage of host cells, especially mammalian cells, and their nutrients. When
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a mycoplasmal infection happens, if this does not quickly lead to the destruction of the

host cells, it can in many cases generate tumorigenesis, growth difficulties or changes

in the metabolisms of host cells [Borchsenius et al., 2020]. With good laboratory and

culture practices as well as recurrent detection tests, the apparition of mycoplasmas can

be controlled. To that end, our cell line of megakaryocytes has endured such detection test,

which was performed by the laboratory Anticorps Anticancer of the Centre de Recherche

en Cancérologie de Lyon. The MycoAlertTM Mycoplasma Detection kit was employed. It

takes advantage of the activity of enzymes of mycoplasma which is not present in healthy

eukaryotic cells. When the MycoAlert solution is added to the culture sample, it reacts

with the eventual mycoplasma’s enzymes and causes the generation of ATP. The presence

or the absence of mycoplasma is then evaluated by comparing the level of ATP before

and after the addition of MycoAlert solution. The result of the detection test carried out

on our MEG-01 cells line was negative. Our megakaryocytes are mycofree.

4.2 Methodology

4.2.1 Experimental setup

Figure 4.3 depicts a schematic of the experimental setup, which barely differs from the

one employed for the visualization of the dynamics of nonspherical shape modes. For

welcoming the cellular population, the content of the tank is replaced by cell culture

medium (Dulbecco’s Modified Eagle Medium DMEM, high glucose, without L-glutamin)

preheated in an incubator at 37
◦
C. We noticed that the longer the culture medium was

kept in the incubator, the more the gas concentration decreased and that our bubbles

were less prone to grow by rectified diffusion. When the medium was kept too long in the

.8pt.8pt

biological cell

y

z

x

electrolysis

high frame
rate camera

microscope
objective

transducer

light

Figure 4.3: Schematic representation of the experimental setup.
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incubator, bubbles dissolved very quickly in such a poorly (not measured) gassed medium,

even when no ultrasound was activated. In the opposite case, bubbles had a tendency

to grow indefinitely by rectified diffusion, until occupying all the microscope field of view

and that imaging nearby cells became impossible. A right balance was difficult to achieve.

At a first glance, it appeared empirically that the best conditions of bubble size stability

were obtained for an incubating time about 6 to 8 hours. Once the DMEM and the

cells were poured into the tank, it quickly cooled and reached, after approximately three

hours, a temperature of about 26.7 ± 0.5
◦
C without going lower for the rest of the day.

The microscope lamp was very likely responsible for this asymptotic value higher than

the room temperature.

For the observation of the interaction between a megakaryocyte and a microbubble at

the acoustic time scale, the transducer is driven at the frequency of its third harmonic,

which is 85 kHz (see figure 2.3). As a reminder, it allows to approach an approximate 1:1

sizing ratio between a resonant microbubble and a large megakaryocyte. The visualization

with an inverted microscope of such a micrometric cell through a 50 mm height tank filled

with cell medium made the question of light critical. The amount of light was restricted

by the need for a short exposure time, the 20× magnification objective lens allowing to

achieve an adequate image scale of 1 µm/pixel and a frame rate inevitably superior than

twice the driving frequency. All these limitations left no other choice but to work with

a frame size of 136 x 128 pixels, or equivalently 136 x 128 µm, and thus with a couple of

cell and bubble that fitted the frame size. As a consequence, the frame rate was limited

to a maximal value of 177 215 Hz, yet sufficient to describe the 85 kHz oscillations.

4.2.2 Mechanical characterization of cell culture medium

With the view to learn more about what we were dealing with and what to expect in terms

of modal behaviors of an ultrasound-driven bubble immersed in the DMEM, the charac-

terization of the medium is required. Information about its mass density and surface

tension were lacking on the manufacturer’s website. The sparse literature contains some

works that explore the surface tension of few cell mediums eventually added with fetal

bovine serum for optimization purposes of computational fluid dynamics analysis [Hin-

derliter et al., 2010, Poon, 2020] or added with polymers in order to monitor intracellular

biomolecules in living cells [Lin et al., 2014]. In any cases, their measurement is per-

formed at 37
◦
C. Because these information could not be found for our experimental case

of pure DMEM at room temperature, we undertook to measure these quantities. The

mass density of DMEM was easily obtained with a density meter (Anton Paar, DMA 35).

At 21.2
◦
C, DMEM weights 1.0064 × 10

3
kg ⋅ m

−3. For quantifying its surface tension, an

optical tensiometer (Biolin Scientific, Attension Theta Lite) has been employed. Operat-

ing with an internal software, it requires an information about the dynamic viscosity of
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Figure 4.4: (a) Experimental snapshot of a DMEM pendant drop. (b) Geometry of the system

under study. (c) Distribution of the measurements of surface tension.

the DMEM at 20
◦
C that is set to 959.8 mPa ⋅ s according to Hinderliter et al. [2010]. The

system optically evaluates the shape of a drop suspended at the tip of a needle. From

a snapshot such as the one given in figure 4.4a, the software recovers a value of surface

tension γ [Lauren, 2017] by applying the following expression inspired from Tate’s law on

the drop coming out of a dropper

γ =
∆ρ g R0

β
, (4.2)

where ∆ρ is the difference of density between the air and the fluid to characterize, g is

the gravity constant, R0 is the drop radius of curvature at the apex and β is a parameter

related to the drop shape. It can be calculated with these three differential equations

dx

ds
= cosφ,

dz

ds
= sinφ,

dφ

ds
= 2 + βz −

sinφ
x , (4.3)

where x, z, s and φ are defined such as depicted in figure 4.4b. The set of values

obtained for the surface tension are gathered in figure 4.4c in the form of a histogram,

showing a normal distribution around a peak value of 62 mN ⋅ m
−1. The variability might

be explained by the absence of an antivibration system beneath the tensiometer. The

pendant drop was apparently vibrating on the video acquisition. In the forthcoming of

this manuscript, the surface tension of DMEM is set to a mean value of 62 mN ⋅ m
−1. For

reference, the surface tension of water at 20
◦
C equals 72.8 mN ⋅ m

−1.

4.2.3 Image processing

The image processing method that concerns the bubble is the same as the one briefly

described in section 2.2.1. Due to a weak contrast of the image of cells, the post-processing

part concerning them differs. The method summarized as a block diagram in figure 4.5

is performed as follows. Before starting the extraction of the cell contour, a noisy mask
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is applied on the bubble. Only remaining the cell to be treated, the image is thresholded

in order to uniform the shades of dark gray that constitute the image of the cell. Then,

a low-pass filter is applied in order to reduce the noise present in the whole image and

slightly smooth the cell contour, before applying a minimization algorithm for detecting

the areas of similar gray shade. The area corresponding to the cell is selected on the basis

of its previously manually located centroid. The image is finally binarized and undergoes

a cell contour extraction procedure similar to that applied to the bubble.

Bubble analysis Bubble masking Global threshold Low-pass filter Grays detection Binarization

Figure 4.5: Block diagram of the image processing method for extracting the coordinates of the

biological cell contour.

4.2.4 Cell fastening

In order to investigate the bubble-cell interaction through several parameters, and espe-

cially as a function of the bubble-cell distance, there is a need of controlling the position

of the cell with respect to the bubble attached at the tank’s bottom. The first idea was

to fasten the cells to a glass capillaries by aspiration, facilitating thereafter its fine dis-

placement thanks to a micromanipulator and the study of a same bubble-cell couple with

an adjustable interspace.

Manufacture of a glass capillary

Home-made glass capillaries could be manufactured at low cost thanks to a micropipette

puller (Sutter Instrument® P-1000). Borosilicate glass capillaries (World Precision In-

struments, 1B100-4, 1 mm outer diameter, 0.58 mm inner diameter) were chosen to fit the

capillary holder (Narishige, HI-9). The difficulty with a pipette puller is to find a func-

tional recipe to create adequate capillaries, especially when the desired result is somehow

exotic and not referred in the manufacturer’s pipette cookbook [Sutter Instrument, 2018].

While the puller has integrated premade recipes for preparing ready-to-use patch or injec-

tion pipettes of 1-3 µm, fabricating capillaries with a larger tip may necessitate a manual

scoring and breaking of the sealed glass tip in a post-pulling stage. A so-called “glass-

on-glass” procedure is laid out in large detail in the cookbook and will not be further

discussed here. Starting from recipes given in the cookbook, the pulling parameters were

empirically adjusted so that it fitted our 1B100-4 capillaries. Capillaries of inner diam-

eters (ID) about 6-8 µm (without manual scoring) and 14-20 µm (with manual scoring)

were successfully obtained. The recipe parameters are summarized in table 4.1.
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Resulting ID Ramp Heat Pull Velocity Time Pressure Scoring

6-8 µm 492 502 15 15 120 500 no

14-20 µm 492 522 0 150 0 200 yes

Table 4.1: Recipes to use with the P-1000 micropipette puller in order to obtain 6-8 µm and

14-20 µm inner diameter (ID) glass capillaries, without and with a post-pulling manual scoring

procedure, respectively.

Cell microaspiration

The cell microaspiration is accomplished thanks to a glass capillary, a flexible hose filled

with cell medium and a syringe (Hamilton Gastight® 1710). Filling the hose with cell

medium has a twofold objective. First of all, it ensures a correct ionic balance all around

the cell, inside the capillary and elsewhere in the tank. Second, it improves the control

of the applied depression, thanks to the weak compressibility of the liquid compared to

air and thus a larger range of pressure, unlike when filled with air and that the maximum

displacement of the piston caused insignificant pressure change. Due to the presence

of a stiff zona pellucida, the attachment to a glass capillary by microaspiration worked

relatively well for the case of oocytes. A same method has been attempted at many

times with megakaryocytes with differently sizing glass capillary (manually scored or not)

and unfortunately led to failings only. The megakaryocytes, much less resistant than

oocytes, were most of them finishing completely lysed. When this was not the case,

the few surviving specimens were observed to rapidly reorganize themselves within the

capillary in a few minutes, even before a bubble could have been nucleated and tethered

to the substrate. A plastic-like behavior is clearly evidenced when the cell is expelled

from the capillary, as photographed in figure 4.6. After release, the cell retains its plastic

deformation for several minutes before slowly regaining its original spherical shape. These

observations led to the conclusion that this cell fastening technique by aspiration was not

adequate for megakaryocytes, which are too fragile or too motile.

Figure 4.6: Image of a plastically deformed megakaryocyte after having been maintained by

microaspiration through a capillary for a few minutes and then released.
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contact

Cells

Cells’ reflection

Figure 4.7: Side-view of two substrate-adhering megakaryocytes, letting their reflections appear

on the substrate.

Cell tethering

Unable to fasten megakaryocytes by means of glass capillaries and cell aspiration, an

alternative method had to be found. At the same time as certain megakaryocytes were

attempted to be aspirated, we noticed that all the other cells quickly sedimented and

had an ability to adhere to the bottom of the tank while keeping a relatively circular

shape. Images of cells were taken in a side-view configuration so that their position on

the substrate could be acknowledged, whether they adopt more like a super-hemispherical

or a sub-hemispherical shape. A typical example of substrate-adhering megakaryocytes is

displayed in figure 4.7. When this snapshot was taken, the cells had been poured in the

tank for more than three hours. After a rapid sedimentation, they began to adhere to the

substrate and maintained such a super-hemispherical shape for hours. This is obvious in

figure 4.7 on which two typical megakaryocytes and their reflection on the substrate are

visible. The way our cells are super-hemispherically standing on the substrate gives us a

possibility for placing it in a face-to-face position with a wall-attached bubble. Yet, the

poor image quality of figure 4.7 asserts the interest of imaging the cell, and therefore the

bubble, under a microscope and therefore in a top-view configuration.

In conclusion, throughout this thesis work, the tethering of oocytes will be accom-

plished by aspiration through a glass capillary, and in the case of megakaryocytes, by

sedimentation and natural substrate-attachment.

4.2.5 Characterization of the cell deformation

Since both microbubble and cell are visualized under a microscope, their dynamics are

investigated from their top-view contour. With that in mind, geometrical indexes had

to be defined in order to evaluate their respective motion. Concerning the microbubble,

its modal behavior is determined following the modal analysis of its contour described

in chapter 3. Concerning the cell, it needs more than one geometrical variable in or-

der to differentiate and quantify its overall dynamics that is actually characterized by a

solid-body translation and a deformation. In that respect, two geometrical quantities are
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defined. The first one is the close-to-bubble (CtB) cell’s point, which is the point of the

cell membrane that is the closest to the bubble, as illustrated in figure 4.8a. The cell

deformation and the bubble pushing-pulling action were already experimentally investi-

gated by van Wamel et al. [2004] and Wang et al. [2018], and theoretically by Guo et al.

[2017] using the excursion of this point. However, due to the rather super-hemispherical

shape of the adhering megakaryocyte, it also undergoes an important translation motion,

which tends to diminish the cell deformation. To distinguish these two kinetic responses,

translation and deformation, a second index, the so-called cell strain, which is defined

as the ratio of the in-axis cell diameter to its orthogonal diameter, as illustrated in fig-

ure 4.8b, is also taken into consideration. These two indexes are observed with respect

to the bubble modal amplitudes and the displacement of the close-to-cell (CtC) bubble’s

point, which is reciprocally the point of the bubble contour that is the closest to the cell

membrane. If the bubble is significantly larger than the cell, one can suspect that this

point defined in a two-dimensional perspective is no longer the bubble interface point

closest to the cell membrane in the three-dimensional perspective. This confirms the need

for cells and bubbles to have comparable sizes. Also, it should be noted that, if the bubble

is animated by a shape mode, as soon as the displacement anti-node of the nonspherical

deformation does not occur in front of the cell, it is possible that this CtC bubble’s point

Close-to-bubble (CTB)
cell’s point

Close-to-cell (CTC)
bubble’s point

Nonspherically oscillating
microbubble

Biological

cell

Displacement of
close-to-bubble (CTB) cell’s point

a

Nonspherically oscillating
microbubble

Biological

cell

Close-to-cell (CTC)
bubble’s point

Cell Strain = in-axis cell diameter
orthogonal cell diameter

b

Figure 4.8: Visual description of the geometrical indexes employed for describing the mechanical

cell response with respect to the bubble dynamics and the displacement of the close-to-cell (CtC)

bubble’s point, which is the point that belongs to both the bubble surface and the center-to-

center segment. (a) The displacement of the close-to-bubble (CtB) cell’s point, which is the point

that belongs to both the cell membrane and the center-to-center segment. (b) The evolution of

the cell strain is the ratio of the in-axis cell diameter to the orthogonal cell diameter. The color

code employed here is kept in the figures of section 4.3.2 investigating the bubble-cell interaction

at the acoustic time scale.
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would not correctly reflect the bubble deformation responsible for the cell response. We

make this informed choice of definition, while knowing that this geometrical parameter,

more impacted by a not controlled angle of the nonspherical mode than are the others, is

also less engaging on the characterization of the cell response.

4.3 Bubble-cell interaction

4.3.1 Single bubble behavior in cell medium

Similarly as in chapter 2, the emergence of bubble shape modes has been investigated as a

function of the acoustic pressure, as depicted in figure 4.9. Sectoral modes are privileged

in this configuration for which degrees n = 3, n = 4 and n = 5 were experienced. The

resonance of the radial oscillation appears to meet the resonance of the modal degree

n = 4, at very low acoustic pressure. At a first glance, sectoral modes of degree n = 5

have exclusively been experienced off resonant radius, but that’s without taking into

account the fact that too large bubbles, and hence too spread out bubble-cell couples (too

large for the imaging frame) were actually out of investigation. This is why no bubble

of radius larger than 47-48 µm was investigated. In definitive, bubbles basically behave

similarly as in water, with an expected shift in resonance, as obviously expected due to

the change in the driving frequency, and as predicted by the Francescutto curves drawn

in solid lines in figure 4.9. These curves were implemented with the physical parameters

measured in section 4.2.2.
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Figure 4.9: Instability thresholds of sectoral modes (subharmonic frequency = 42.5 kHz) as a

function of the bubble equilibrium radius for modal degrees n = 3, n = 4 and n = 5. Experimental

wall-attached bubbles (geometric markers) are compared with free bubble theory (solid lines),

according to Francescutto and Nabergoj [1978].
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Chapter 4. Mechanical interaction with a biological cell

4.3.2 Bubble pushing-pulling action

The pushing-pulling action of a microbubble has proven its capacity for sonoporating

the membrane of biological cells [van Wamel et al., 2004, Wang et al., 2018]. This was

performed with adhering epithelial cells and spherically oscillating microbubbles. As far

as we are aware, this has never been experienced or described theoretically at the single-

cell scale for a bubble undergoing nonspherical shape modes. Thence, we investigate

throughout this section the generation of cell deformations in presence of a nearby bubble

undergoing nonspherical modes. The focus is done on sectoral modes of degree n = 3

and n = 4, although tesseral modes of order m = 1 and m = 2 have been experienced

too. The modulation of the driving signal with a triangle-shaped envelope (modulation

frequency fm = 25 Hz) allows to encounter different bubble modal configurations for
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Figure 4.10: Mechanical response of a cell of diameter c∅ ∼43 µm to a subharmonically oscillating

microbubble animated by a sectoral mode n = 4. The center-to-center distance between both

cell and bubble is about ∼67 µm. Two regions of interest are highlighted by colored areas along

the increasing pressure ramp (a), in a way to have two scenarios of bubble dynamics, a radial

motion only (left) and an additional sectoral mode (right). Snapshot series at the acoustic time

scale (b). Zooms on the modal amplitudes of radial and sectoral modes (c), the CtC bubble’s

and CtB cell’s points displacement (d) and the cell strain evolution (e), subtracted by their

value at rest, in which the data are refolded over two acoustic periods.
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Figure 4.11: Standardized cell strain ǫ∗ =
(D

cc
−R0)

R0

ǫ induced by the pushing-pulling action of a

bubble undergoing a sectoral mode n = 4 and investigated as a function of the bubble radius

and the increasing acoustic pressure.

similar experimental parameters: bubble and cell distance and sizes. The acoustic field

is considered to be of constant amplitude when the observation of the bubble-cell pair is

limited to around a hundred experimental points, as accomplished in figure 4.10. Two

instants along the 20 ms increasing pressure ramp are defined so as to dissociate two

experimental configurations: a bubble oscillation on a radial oscillation only and the

presence of an additional sectoral mode n = 4. By refolding on two acoustic periods,

the bubble modal content can be correlated to the CtB cell’s point and the cell strain ǫ.

When regarding at the cell response in presence of the sectoral mode, the dynamics of

the CtB cell’s point exhibits an evident subharmonic behavior. It illustrates perfectly the

importance of the phase relation between modes, given that while the sectoral amplitude

reaches 10 µm, the bubble surface displacement, counterbalanced by an out-of-phase radial

oscillation, barely reaches a 5 µm maximal excursion for a 3 µm maximal displacement of

the CtB cell’s point. Concerning the strain, the cell meets twice more peak-to-peak

amplitude with the emergence of the sectoral mode.

Among the whole experimental data set, this example of bubble-cell pair is one of the

most intense in terms of cell deformation. This is explained by the particularly important

proximity of the bubble to the cell. The cell deformation caused by the sectoral mode n = 4

decreases faster with the bubble-cell distance than that induced by the radial oscillation.

At long distance, the cell periodically pushed and pulled by the bubble undergoing a

radial and a sectoral mode only exhibits a strain oscillating at the driving frequency. At

short bubble-cell distance, the cell experiences a subharmonic strain in addition to the

radial contribution. To interpret this, one can consider the cell in the acoustic far-field

area of the microbubble, and the radial mode as a monopole source oscillating at the
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Figure 4.12: Mechanical response of a cell of diameter c∅ ∼18 µm to a subharmonically oscillating

microbubble animated by a sectoral mode n = 3. The center-to-center distance between both

cell and bubble is about ∼62 µm. Two regions of interest are highlighted by colored areas along

the increasing pressure ramp (a), in a way to have two scenarios of bubble dynamics, a radial

motion only (left) and an additional sectoral mode (right). Snapshot series at the acoustic time

scale (b). Zooms on the modal amplitudes of radial and sectoral modes (c), the CtC bubble’s

and CtB cell’s points displacement (d) and the cell strain evolution (e), subtracted by their

value at rest, in which the data are refolded over two acoustic periods.

fundamental frequency with an omnidirectional far-field directivity and a power radiation

greater than that of a sectoral mode.

All experimental occurrences, where a bubble oscillating on a sectoral mode n = 4 only

has been seen interacting with a cell, are summed up in figure 4.11. Therein the cell strain

is described as a function of the bubble radius R0 and the acoustic pressure. Due to a

large range of values, the y-axis is presented on a logarithmic scale. To take consideration

of all parameters, the cell strain ǫ is standardized as ǫ∗ =
(D

cc
−R0)

R0

ǫ, where Dcc is the

center-to-center bubble-cell distance and ǫ is the cell strain as defined in figure 4.8b. As

a reference, the theoretical instability threshold curve for free bubble [Francescutto and

Nabergoj, 1978] is displayed in solid gray line. Figure 4.11 highlights the sectoral mode

contribution to the total cell strain. Even if the radial oscillation can by itself cause a

significant cell strain, the sectoral mode brings also an important participation, making
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Figure 4.13: Standardized cell strain ǫ∗ =
(D

cc
−R0)

R0

ǫ induced by the pushing-pulling action of a

bubble undergoing a sectoral mode n = 3 and investigated as a function of the bubble radius

and the increasing acoustic pressure.

the cell strain leaping high out of its uniform growth (along the increasing amplitude

pressure) which would have occurred in the absence of the sectoral mode.

A similar study of the cell response has been performed in the case of smaller bubbles

undergoing a sectoral mode of degree n = 3. An example is given in figure 4.12. De-

spite similar modal amplitudes as in the sectoral mode n = 4 example, the subharmonic

contribution in the cell strain is weak. A different phase shift than in the case of the

sectoral mode n = 4, leading to a synchronization of the modal maximal deformations,

would let think that such a strong 8 µm amplitude displacement of the CtC bubble’s point

would promote an important cell strain, through a kind of constructive interference. In

the contrary, it rather seems that the cell strain was even stronger at the time the bubble

dynamics was only radial.

When all experimental occurrences of bubble-cell interaction in presence of a sectoral

mode n = 3 are gathered and displayed as before in a single representation, it results what

is depicted in figure 4.13. High cell strains are not necessarily related to nonspherical

bubble deformations. It helps but it is not a sine qua non causation.

4.3.3 Shear waves propagation

The elasticity of a biological tissue highly depends on its structure and state of health.

While methods for measuring it at the macroscopic level do not lack and are already ap-

plicable in the medical field [Sarvazyan et al., 2011], its transportation at the microscopic

level leads to complications. One reason is the complexity of the high-frame rate tracking

of possibly large wavelengths in a micrometric object.

Shear stresses in a viscous medium can be calculated by retaining the gradient of

the displacement field. The different ways for inducing shear stresses in biological cells
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Figure 4.14: Snapshot of a megakaryocyte of about 60 µm diameter (left) and its shear mod-

ulus map obtained by elastography through the action of a microbubble animated by a radial

oscillation and a sectoral mode n = 4, in a 85 kHz acoustic field (right).

especially differentiate in their necessity to access the region of interest or not. Elasticity

maps in an oocyte have already been observed in real time thanks to the action of a

15 kHz-oscillating glass capillary brought in contact with the cell [Grasland-Mongrain

et al., 2018]. If the access is difficult such as within in-vivo environments, the remote action

of ultrasound could be a noninvasive and localized solution for generating shear stress.

As any wave attenuates when propagating through a dissipative medium, there exists an

upper critical frequency above which shear waves encounter an evanescent behavior and

are not able to propagate in a medium. In this way, propagating shear waves were recently

observed in a gelatin phantom until a frequency of 20.4 kHz [Laloy-Borgna et al., 2021].

If the objective is to image a deep position in a tissue, hard to reach due to dissipation,

ultrasound-driven microbubbles could make things easier. As far as we are aware, cellular

elastography with microbubbles has never been reported in literature and we propose

in this section first evidences of feasibility, whereas these mentioned experimental works

give us confidence in the possibility of inducing shear waves in megakaryocytes with

microbubbles.

An optical image of an investigated cell and a resulting elasticity map are given in

figure 4.14, the latter being obtained with the kind collaboration of Sibylle Grégoire and

Gabrielle Laloy-Borgna. This was performed using an 85 kHz acoustic field of constant

amplitude. While one would have thought that the use of such a high frequency would

not have allowed to propagate acoustic waves, it turned out experimentally that the little

amount of energy transmitted into the cell was actually sufficient to perform an elastic-

ity measurement. This elasticity map has been computed using an algorithm adapted

from Grasland-Mongrain et al. [2018] based on a Helmholtz decomposition of the two-

dimensional displacement field. The divergence-free part is directly connected through the

classical wave equation to the propagation speed of shear waves, and hence to the shear

modulus, by considering the cell as a linear, infinite (compared to shear wave wavelength)
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and isotropic medium. Experimentally, the displacement field is obtained by particle

imaging velocimetry (PIV) analysis, and the shear wave speed with a passive elastog-

raphy algorithm. Briefly, this algorithm consists in applying to each pixel a temporal

cross-correlation with all other points. The analysis of the resulting focal spots and their

curvature informs on the shear wave wavelength and thus on its propagation speed.

By assuming in the whole megakaryocyte a constant density of 1.1 mg ⋅ cm
−3 [Nakeff

and Floeh, 1976], an information of shear elasticity can be recovered. It appears in

figure 4.14 that the cell is characterized following the radial direction by three successive

layers of different elasticity. This can be hard to interpret given that it is unclear where

the imaging focal plane locates with respect to the cell, close to the contact, at its equator

or higher in elevation. Nevertheless, an interpretation for this variation in elasticity is

suggested in the following. The presence of a circular area of higher shear modulus

(about 50-70 Pa) can be explained by the tethering. At a first glance, if there is cellular

attachment, the elasticity measured in the region of the contact is higher because of a

densification of its cytoskeleton due to the formation of actin-based connections with the

substrate. From a top-view perspective, due to the super-hemispheral shape of the cell

(see figure 4.7), this tethering-induced stiffening appears as a circular area, following the

contact line, located half way between the center and the edge of the cell two-dimensional

projection in the (x,y) plane.

Unlike previously where it was necessary to sufficiently approach the bubble towards

the cell in order to induce membrane deformations, this elastography method is based on

the assumption of induced diffuse waves. Consequently, a short bubble-to-cell distance is

not necessary, and is even rather to be avoided, at the risk of generating guided waves.

In fact, the close location of the microbubble with respect to the biological cell and the

presence of largely predominant harmonic and subharmonic oscillations can be responsible

for artifacts in the elasticity map. The exemplary case chosen in figure 4.14 reveals such

an error resulting in values of shear modulus that locally reach fallacious magnitudes

higher than elsewhere, going beyond 70 Pa.

In conclusion, the shear modulus of this megakaryocyte has been measured to be about

25-35 Pa, although the tethering can locally induce an increase of the cellular stiffness, up

to 50-60 Pa. Higher values are associated to artifacts only.

4.3.4 Cells in streaming

Tumbling cells

In this section, the cells and their dynamics are no longer investigated tethered but in

suspension in the medium. As the bubble experiences a nonspherical mode and induces

streaming in its vicinity, it appeared that the nearby suspended cells showed a strong
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Figure 4.15: Snapshot series of a tumbling cell in the vicinity of a bubble undergoing a sectoral

mode of degree n = 5 under the action of a 30.5 kHz acoustic field.

tendency to be trapped on what could be the stagnation points of the recirculation loops

and to spin on itself. This behavior was already reported in literature for the case of lipid

vesicles [Marmottant et al., 2008, Pommella et al., 2015]. In these works, a deformation

of the vesicle membrane was also observed on the side of the vesicle near the bubble, all

the more important as the vesicle was elastic. Such asymmetric deformation has not been

experienced for our case of tumbling megakaryocytes, which only encounter a rigid-body

rotation, as illustrated in figure 4.15, for the case of a 20 µm diameter cell in the vicinity

of a bubble undergoing a sectoral mode n = 5. The induced streaming at the equator

is mainly azimuthal (no longitudinal dependency). Thence, the cell tumbles around the

z-axis, at a location halfway between an anti-node and a node of the bubble interface

displacement. This motion occurs at the fluidic time scale and not at the acoustic time

scale, since it is carried out by the streaming. The cell’s initial position of the first

snapshot is recovered in the seventh snapshot (see figure 4.15). Because a duration of

0.5 ms separates each snapshot, the angular velocity of the cell can be approximated in

this case to be about 2π/3 rad ⋅ ms
−1. It should be noted that the observation is done here

with the 10× magnification microscope objective lens, hence an image scale of 2 µm/pixel.

The example given in figure 4.15 was an exemplary case. When all our results are

gathered in a single representation, it results what is depicted in figure 4.16a. A relation

between tumbling velocity and cell diameter can be drawn, for which larger cells are
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Figure 4.16: Relation between the size of a megakaryocyte and its tumbling velocity while

trapped on the stagnation point of a streaming recirculation loop induced by a bubble sectoral

mode of degree n = 5. The experimental results (a) are schematically explained (b-c): The

larger is the cell, the greater is the streaming velocities applying on its surface, and thus so is

the cell tumbling velocity.
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Figure 4.17: Snapshots of a bubble undergoing a sectoral mode n = 5 and rotating in a clockwork

motion. The tumbling cells trapped in the stagnation points follow the bubble interface as it

rotates.

associated to higher tumbling velocities. The point of stagnation, characterized by a

zero flow velocity, is located at the center of closed streamlines. As one moves radially

away from this point of stagnation, the velocity field grows in magnitude. If the cell is

indeed trapped on a stagnation point, the velocity field that applies on its surface thus

grows with the cell radius, due to an increased distance from the stagnation point but

also to an extended cell surface on which the fluid can apply stresses and make the cell

tumbling. This point of view is schematized in figures 4.16b and 4.16c where two cells of

different size are schematically placed on the stagnation point of similar streaming fields.

The resulting torque is necessarily greater when the cell is larger, which may explain the

correlation between cell size and tumbling velocity displayed in figure 4.16a.

In addition to this tumbling motion, it is worth noting that we experienced rotating

sectoral modes. This had already been reported in literature by [Mekki-Berrada et al.,

2016], in the case of bubbles flattened between two elastic walls, who measured a constant

angular velocity of about 0.5 revolution/s for every modal degrees. In our experimental

configuration, the direction of rotation may change and the angular velocity is not con-

stant, quite the contrary, as it may actually vary in a broad range of 0-0.8 revolution ⋅ s
−1.

The underlying causes for these changes in direction and variations in velocity remain so

far unknown. An example of a rotating sectoral mode n = 5 in a clockwork motion is

given in figure 4.17 where tumbling cells are visible. They maintain their constant posi-

tion relatively to the bubble nonspherical deformation and describe then a sort of spiral

motion all along the bubble oscillation and rotation.

Flowing cells

When the cells caught in the streaming and being attracted towards the bubble do not

encounter a possibility for being trapped on a stagnation point near the bubble interface,

or when the trapped cells leave their position under the action of a disruptive event, e.g. a

collision with another cell or an abrupt change in the bubble dynamics, they can be subject

to a bubble-induced projection in a one-way outward movement, following the equatorial
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Figure 4.18: Flowing cells around the same microbubble as illustrated in figures 4.15 and 4.17,

simultaneously animated by a sectoral mode n = 5 and a rotational motion. The cells are

arriving out-of-focus from above the bubble and are then propelled by the bubble displacement

anti-nodes located at the equator, in a one-way outward movement.

plane, which is also the focal plane, as a reminder. An example given in figure 4.18

reuses the same bubble as the one illustrated in figures 4.15 and 4.17. The cells follow the

antifountain-like streaming motion induced by the bubble sectoral mode, arriving out-of-

focus from above the bubble and leaving it from its displacement anti-nodes located at

the equator.

4.3.5 Fluorescent particles internalization

Propidium iodide

Propidium iodide (PI) is a fluorescent agent, with excitation maximum of 493 nm (green-

blue) and emission maximum of 636 nm (red), that binds to nucleic acids, e.g. DNA

and RNA contained in biological cells, by intercalating between the bases. Its inability

to penetrate an intact membrane makes it commonly used to assess cellular membrane

integrity and cell viability, when binding to RNA contained in the cytoplasm. On the same

basis, this makes PI an adequate fluorescent marker to evaluate the impacts, reversible

or not, of mechanical stresses on a biological cell and its membrane. When PI does

enter the cytoplasm and binds to RNA, its excitation and emission spectra encounter

a frequency shift, resulting in fluorescent excitation maximum of 535 nm (green) and

emission maximum of 617 nm (orange-red). Therefore, the PI suspended in the aqueous

solution and the internalized PI differentiate by their emission frequency, but also by their

emitted light intensity. When bound to acid nucleic, the PI’s quantum yield, i.e. the ratio

of emitted photons to absorbed photons, becomes multiplied by 20 to 30. With controlled
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Figure 4.19: (a) The light spectrum of emitting PI when bound to acid nuclei with a maximum

at 617 nm (gray) and the microscope filter response (black). (b) A photography of the DMEM

filled tank and the region of interest lit by the microscope green light and by the 635 nm red

light emitted by the not-bound PI suspended in the DMEM.

light excitation, only the RNA-bound PI can be visualized. This does not prevent the

suspended not-bound PI from radiating but at lower emission amplitude and at 636 nm,

which can also be seen with the naked eye, such as in figure 4.19b. The emission spectrum

when bound to nucleic acids is displayed in gray in figure 4.19a.

PI is especially used in experimental works that investigate the effects of ultrasound-

driven microbubbles on nearby cells, either when the bubble is maintained at a con-

trolled distance from the cell and remotely exerts stresses on the cell membrane through

a pushing-pulling motion [van Wamel et al., 2006, Wang et al., 2018], either when the

oscillating bubble is directly attached to the cell membrane [Kudo et al., 2009, Kooiman

et al., 2011]. It should be noted that in these previous studies, the bubble is much smaller

than the cell aimed for sonoporation. Actually, the bubbles are ultrasound contrast agents

(UCA) sizing in the range 1 to 10 µm, while the cells are large and substrate-adhering

fibroblasts or endothelial cells able to cover several tens of micrometers. In such experi-

mental conditions, if we consider the size difference between cells and bubbles, the cellular

membrane resembles more like an infinite large wall from the bubble perspective. This is

something to take into account when investigating the capacity of an oscillating bubble to

generate stresses on a nearby cell, and on which we shall come back later in the discussion

part.

Fluorescent imaging

The monitoring of the entry of fluorescent markers within biological cells and their binding

to RNA has to be carried out with a different camera than the one employed until now. It is

performed with a digital camera (Hamamatsu®, ORCA-Fusion, C14440) connected to the

same inverted Nikon Eclipse-Ti microscope. With the 10× magnification optical objective,

the image scale has been measured to be 0.65 µm/pixel. We chose to employ PI particles
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(Sigma-Aldrich®, 81845-100 mg) as their emission wavelength fitted one of our microscope

single-band light filter (BrightLine®, TRITC-B-000), for which the response curve can

be found in figure 4.19a, and at a concentration of 25 mg ⋅ L
−1 as it was successfully

carried out by van Wamel et al. [2006]. Flasks of 12.5 mg PI solubilized in 12.5 mL

pure water (Milli-Q® IQ 7000) were prepared upstream of the experiments, following the

manufacturer’s recommendations. Under the excitation of a green light, the eventually

RNA-bound PI particles emit a strong red light which will be captured by the camera

through the filter. As the figure 4.19a suggests, not all of the red light will be visualized,

but a certain quantity in sufficient proportion to achieve a qualitative measurement. The

images are processed and recorded through the software HCImage Live with a frame rate

of about 93 Hz and an exposure time of 65 µs. These are the maximum limits of fast

imaging that this camera can achieve.

Results

With the acquisition parameters described in previous section, it is obviously impossible

to look at the acoustic time scale bubble oscillation, but the objective is else. On the other

hand, if the bubble oscillation is stable enough, it is somehow possible to guess the presence

and the type of the bubble nonspherical mode (especially if it is a sectoral mode) from

the image averaged over several acoustic periods. This can be seen in figure 4.20a where

the bubble is animated by a sectoral mode n = 4. We can discern 8 lobes, typical time-

Figure 4.20: Two 65 µs-exposure snapshots, taken at different instants, of a wall-attached bubble

of equilibrium radius 37.4 µm animated by a sectoral mode n = 4 oscillating near an adhering

megakaryocyte of diameter about 41.6 µm, illuminated with the white light (left) and with the

green light (right).
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averaged signature of this nonspherical mode, as already seen in chapter 3. In addition,

there is possibly a zonal mode too, but this alternative setup does not allow us to be

certain. In figure 4.20b where only the green light is turned on, the fluorescent cells come

into sight. In the lower edge of the image, a small adhering cell already fluorescent before

the bubble was placed indicates the proper functioning of fluorescence. In addition, a

bouncing-on-the-bubble and fluorescent cell is detected. It is the trail of light that we can

observe. During the 65 µs exposure duration, it had the time to move out-of-focus towards

the bubble and then to be expelled within the imaging focal plane located near the bubble

equatorial plane. It reveals again the antifountain-like behavior of the sectoral-induced

streaming. This bouncing fluorescent cell is a particular case, most of the cells caught

in the streaming and passing by the bubble being and remaining not fluorescent. Lastly,

the large adhering cell that was initially aimed for sonoporation sees itself rejected with

a constant outward force, under the action of the bubble-induced streaming, as visible in

figure 4.20a. The cell is pushed towards the upper right corner of the image with respect

to its narrow contact with the substrate, oval-shaped brighter area, closer to the bubble.

Several experimental attempts led to the same conclusion: Although the cell was

clearly under the action of a strong streaming for several minutes and that a pushing-

pulling action was also discernible, no internalization of fluorescent particles has been

detected in a nearby adhering megakaryocyte aimed for sonoporation. At the acoustic

time scale, section 4.3.2 was reporting a limited cell strain whether with or without the

presence of a nonspherical mode. In any cases, it would seem, in view of these unsuc-

cessful attempts to internalize particles, that these deformations were too little to hope

for successful permeabilization. On the other hand, we can then ask ourselves why the

bubble-induced effects at the fluidic time scale did not allow to sonoporate cells, while

many publications unanimously agree to say that bubble-induced streaming is the first

cause for cell sonoporation. They are also numerous to prove this theoretically for the case

of a free bubble spherically oscillating. It should be probably worth reminding that these

works consider the cell as an infinite wall, on which a flow would necessarily induce shear

stresses, while in a condition of spherical cell small, or similarly sizing, in comparison to

the bubble (which is our experimental condition), we can expect the streaming not to be

as impairing for the cell membrane due to a possibility for the flow to simply pass by

instead of perceiving the cell as an insurmountable obstacle. Theoretically, Doinikov and

Bouakaz [2010] demonstrated that, in a case of purely spherical oscillation, a maximal

shear stress on a wall, located at a distance d from the center of a free bubble, occurred

at a distance x ≃ 1.13 d. If the cell is small compared to the bubble, this location of the

maximum shear stress is a point that presumably does not belong to the cell. In contrast,

most experimental works reporting successful particles internalization at the micro-scale

of one single cell typically employ an UCA (1-10 µm diameter) and situate therefore in

an experimental condition of a very small bubble size compared to the targeted biological
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cell [van Wamel et al., 2004, Okada et al., 2005, van Wamel et al., 2006, Kooiman et al.,

2011].

4.4 Conclusion

Studying the mechanical interaction between a single bubble and a biological cell at the

micro-scale level could help in understanding the complex macro-scale phenomenon in

which a cloud of ultrasound-driven microbubbles interact with a population of biological

cells. In this chapter were presented several scenarios of cell’s mechanical responses when

stimulated by a microbubble undergoing nonspherical shape modes. Bubble-induced cel-

lular motions and deformations took place at both acoustic and fluidic time scales.

At the acoustic time scale, the bubble pushing-pulling action on a tethered cell is

investigated along two geometrical indexes, the close-to-bubble cell’s point displacement

and the cell strain amplitude. From these are evidenced two distinct parts in the cell

mechanical response, a solid-body translation and a deformation. For a same amplitude

of the radial displacement, the emergence of a bubble sectoral mode induces an increase in

the cell deformation, provided the bubble-to-cell distance is very short. At long distance,

the cell only perceives the harmonic excitation due to the radial oscillation, while the

subharmonic excitation due to the nonspherical oscillation is consequence-free. Tracking

shear waves induced in a megakaryocyte by a bubble driven at 85 kHz oscillating on a

sectoral mode n = 4 has allowed to successfully measure the cellular elasticity. It has been

demonstrated that the shear modulus of an adhering megakaryocyte is about 25-35 Pa

and seems to locally double near the contact line with the substrate.

At the fluidic time scale, the motion of cells caught in the fluid flow generated by a

microbubble oscillating on a sectoral mode n = 5 was studied. When they are trapped

in the stagnation points of streaming recirculation loops, their tumbling velocity can be

explained on the basis of their characteristic size. The more they cover a large span in the

flow vortex, the more their speed of rotation is high. When a disruptive event occurs, the

cells that were trapped resume to their flowing motion, following an outward trajectory

in the bubble equatorial plane.

Lastly, fluorescent markers (propidium iodide) were appended within the experimen-

tal medium so that the sonoporation of an adhering megakaryocyte could be assessed,

under the action of a nearby nonspherically oscillating microbubble. Although the in-

tensity of streaming did not seem to lack, as well as the acoustic time scale bubble

pushing-pulling action, every targeted cells remained untouched, not sonoporated, or not

sufficiently enough to let in propidium iodide. Yet, the conclusion must be moderated,

especially since one particular cell is not another. To a certain extent, they all differ in

their stiffness, internal structure, fragility, resilience and response to a nearby oscillating
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microbubble. For this reason, saying that bubble nonspherical modes do not facilitate

the cellular sonoporation is probably a bit impulsive as a conclusion, so early in the slow

quest for localized drug delivery with microbubbles.
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Conclusion

The sonoporation, i.e. the ultrasound-induced permeabilization of the membrane of bi-

ological cells, is today widely accepted as a promising and effective therapeutic tool for

facilitating the cellular uptake of drugs or genes. Moreover, the scientific literature agrees

on its relation with the activity of microbubbles activated by acoustics. Although the as-

sets are multiple, there is always a major drawback: The behavior, nucleation, dynamics

and extinction of a myriad of microbubbles are very complex, erratic and possibly vio-

lent phenomena. Eventually, they can turn into as much ready-to-collapse bombs able to

locally rise the temperature up to thousands of Kelvin degrees and the pressure to colos-

sal magnitudes. Nevertheless, the control of their dynamics, and hence of their potential

thermal and mechanical energy, could allow to minimize the harmful effects and maximize

the therapeutic action. To this end, the present thesis work had as an objective to en-

hance the comprehension of interacting bubbles and cells through the investigation at the

micro-scale level of the mechanical interaction between one single oscillating microbubble

and one single biological cell. Prior to placing a cell near a bubble, the underlying mech-

anisms induced by this bubble oscillatory motion were studied in very wide and detailed

terms. The outcomes are summed-up in what follows.

The ultra-fast imaging of a microbubble driven by an amplitude-modulated acoustic

field allowed to describe its time-resolved dynamics. Its monitoring along the increasing

part of the modulation evidenced, first in a qualitative way, vibration sequences, namely

the successive emergence of specific nonspherical modes, that were bubble size-related,

hence revealing a nondegeneracy (spectral splitting) of the set of spherical harmonics.

Close to the modal resonances, the microbubbles were more inclined to trigger zonal and

sectoral modes, while elsewhere tesseral modes were more predisposed to show up firstly.

The observation of sectoral and zonal modes dynamics evidenced two different behav-

iors of competitiveness. Their coexistence, facilitated or not, is explained on the basis

of their interplay in amplitude and phase shift, as well as their geometric compatibility.

As a result, zonal and sectoral modes of odd degree (n = 3 and n = 5) display a strong

competitiveness: the emergence of one mode occurring at the expense of the other one, ac-
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companied with important and varied phase shifts. On the other hand, zonal and sectoral

modes of even degree (n = 4 and n = 6) show ease to coexist: the emergence of one mode

never hinders the other one, and their time-resolved dynamics is always synchronized in

phase.

The appending of tracking particles within the experimental medium allowed to bring

to light the fluid flows generated by the bubble nonspherical modes. A further quantita-

tive study of the bubble modal content allowed to assign values to amplitudes, so that

the modal interaction truly responsible for the formation of streaming could be assessed.

Five experimental scenarios were analyzed: a zonal mode, a sectoral mode, a tesseral

mode, a combination of zonal and sectoral modes and a combination of tesseral and sec-

toral modes. Provided the bubble nonspherical oscillation was stable, recirculation loops

were experienced with a direction of flow going away from the displacement anti-nodes

of the bubble interface and coming back towards its displacement nodes. For most of

these modal configurations, a rule of thumb could be drawn for explaining the observed

patterns, closely related with the number and the position of nodal lines at the interface

of the nonspherical bubble. In the particular case of interacting zonal and sectoral modes

for which a more in-depth analysis has been carried out, a differentiation between two

sorts of recurrent patterns, flower shapes and star shapes, has been explained by their in-

teraction strength. Besides, some occasional visualizations of streaming from a side-view

perspective confirm the previously dictated trends and made it possible to designate the

sectoral mode as having a greater mixing power than the axisymmetric zonal mode, the

latter being the modal deformation formulated in most of the theories on nonspherical

bubbles.

When an oscillating bubble is brought closer to a biological cell, its influence is twofold.

At the acoustic time scale it occurs a periodic pushing-pulling action on the cell, and at

the fluidic time scale the cell undergoes a steady stress due to the bubble-induced stream-

ing. Despite none of these two mechanisms could have been demonstrated through our

experiments as responsible for an internalization of fluorescent markers within megakary-

ocytes, the study of the dynamics of the bubble-cell pair is nonetheless interesting. This

led us to successfully characterize the cellular elasticity and its stiffening caused by its

adherence to the substrate, but also to discover and measure the tumbling and flowing

motions of suspended cells caught in the vortices of streaming recirculation loops.



Future follow-up and perspectives

From an experimental point of view, the successful sonoporation with an oscillating bub-

ble at the single-cell scale is not brand new, although the involved mechanisms remain

so far not fully understood. Also, it is very likely that, depending on whether the bi-

ological cell is very large compared to the bubble size, or the opposite situation, the

streaming-induced shear stresses that apply on the cell may dramatically change. With

that in mind, it would be really worth investigating through precise measurements the

effective generation of stresses on a surface of variable area placed near a bubble ani-

mated by nonspherical modes. This is an aspect that will be soon investigated by Estelle

Meziani during her forthcoming doctoral work. To this end, with the recent purchase of

a four channels camera, the fluid flow generated by a wall-attached bubble undergoing

asymmetric shape modes could be characterized in the whole fluid volume containing the

oscillating bubble. It should also bring the missing information for fully explaining the

experimental microstreaming of bubble asymmetric modes, only presented in two dimen-

sions throughout this thesis manuscript.

An other aspect that would also deserve a more in-depth investigation concerns the

conditions for which the emergence of particular bubble nonspherical modes takes the

advantage on the emergence of others. The mechanisms underlying which shape mode

is chosen to grow to a steady-state, and selected out, is not fully revealed so far. As a

bubble at rest adopts a spherical shape in order to minimize its surface, the selection of

nonspherical modes might also be explained by some aspects involving an energy mini-

mization, and not only the matching of the contact line with the displacement nodes of

the bubble nonspherical oscillation. In fact, theoretically predicting the conditioning of

the tethering on the appearance of the set of nonspherical modes of a wall-attached bubble

would require more than an investigation of the truncated spherical harmonics, given that

the contact line mobility, the variability of the contact angle at rest, the possible existence

of vertical translation mode (hard to capture in a top-view configuration) or the kinetic

energy required for the bubble interface to bend and adopt nonspherical deformations may

all play a crucial role. First attempts of the calculation of some of these magnitudes failed
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to be decisive. The complexity undoubtedly lies in the fact that all these aspects must

be taken in consideration as a whole system and not resolved separately, hence the likely

need for an extensive resolution of the attached bubble dynamics by numerical simulation.

Our comprehension now enhanced on the dynamics of the whole set of nonspherical

modes and their induced streaming especially benefited to Claude Inserra and Alexander

Doinikov for initiating an analytic work on the streaming generated by bubble asymmetric

modes. In addition to validating the experimental results, this should bring further infor-

mation on the streaming velocities where it was difficult to make measurements, in the

very near vicinity of the bubble interface or elsewhere at varied elevations. This should

also allow to assess the shear stresses applying at a given distance, on a nearby wall, for

instance.

With a similar aim, it has been multiple times undertaken to implement numerical

simulations on the software STAR-CCM+®, which was resolving the Navier-Stokes equa-

tion in a meshed domain surrounding a nonspherically oscillating bubble, from an initial

condition given by the expression of its interface velocity. We have been so far unable

to conclude on first results, even if they were not completely absurd. It is a path that

should imperatively be pursued since it could allow to do what the theoretical expres-

sions could not easily, which is, considering the bubble attached to a wall or the presence

of a nearby biological cell. With all these tools, the whole picture could probably be

completed so that the bubble-cell interaction would have a lot less secrets. This could

also bring an explanation for the following unanswered questions. What logic governs

the interaction between tesseral and sectoral modes ? To what extent does the tethering

quantitatively impact the streaming of axisymmetric modes in comparison to the case of

the free microbubble ? Why did all the nearby adhering cells have not been sonoporated ?

Lastly, concerning this recurrent inability to sonoporate cells and internalize particles,

it might be interesting to reiterate experiments with some changes in the experimental

setup. Keeping PI as a fluorescent marker of RNA, being small enough to be internalized in

comparison to other commonly used markers, it could be rewarding to design and 3D-print

a sort of blocking frame, or any system, stemming the possibility for the cell to translate.

In such a configuration, megakaryocytes would have no other choice but to comply and

deform under the bubble action. An alternative would be to change the cellular model

for a more naturally substrate-adhering one, e.g. a fibroblast or an endothelial cell. In

these conditions, the cellular deformation measured at the acoustic time scale might be

stronger so that the membrane stretching and permeabilization would hopefully occur.

Through a multi-parameter study, the presence of bubble shape modes and the distance

to cell could be finally correlated with the rate of effective sonoporation.



Appendix A

Nonspherical bubbles from a side-view

This appendix explores some bubble shape modes and induced streaming from a lat-

eral perspective, thanks to a variant of our experimental configuration. This allows

to have a closer look on the contact with the wall and to discuss in appendix A.1 the

tethering-induced discrepancy of the attached bubble nonspherical shapes with respect to

the theoretical spherical harmonics and the shape of a numerical free bubble of equivalent

modal content. Then, appendix A.2 proposes complementary results of microstreaming

visualized from this same alternative side-view perspective. This provides additional in-

formation on what was not visible under the single top-view. The comparison is especially

done between sectoral and zonal modes, which are furthermore the bubble shape modes

most often reported in literature.

A.1 Bubble dynamics

This experimental variant owes its realization from the motivation to examine more closely

the bubble shape and dynamics near the contact, which would hopefully bring confidence

in our modal analysis and comfort in the interpretation of the results presented before.

The question of the possible shift in elevation of the nodal parallels due to the tethering

is also a matter still pending. More exactly, the questions that carry this side-view

experiment and which were fed in particular by the discussion with Professor A. Maksimov

are the followings: Is the number of nodal lines of a nonspherical free bubble and the

number of nodal lines in the similar modal case of a tethered bubble the same ? Does the

tethering induce a shift in elevation of the nodal parallels ? Assuming that the superior

hemisphere of the bubble can be correctly described by the spherical harmonics, does the

same hold for the inferior hemisphere ? If a shift operates on the nodal parallels and on

the initial position of the equator with respect to the free bubble case, to what extent can
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Figure A.1: Snapshot series and modal analysis of a microbubble of equilibrium radius 111.9 µm

undergoing a tesseral mode Y51 (a), a microbubble of equilibrium radius 125.8 µm undergoing

a zonal mode Y60 (b), a microbubble of equilibrium radius 111 µm undergoing a tesseral mode

Y54 (c) and a microbubble of equilibrium radius 72.2 µm undergoing a tesseral mode Y31 (d),

observed from a side-view. The modal parameters obtained from the analysis of the experimental

bubble are employed to numerically reconstruct an equivalent nonspherical free bubble of which

the contour is superimposed on the experimental snapshots.

it influence our modal analysis tool ?

To serve these purposes and to bring some further answers, the camera was placed

in side-view and equipped with an objective lens (Navitar). The image scale has been

measured to be 3.7 µm/pixel. The other experimental parameters remain unchanged

compared to table 2.1. Several oscillating bubbles were imaged from the side-view and

four selected examples are given in figure A.1. The bubble modal content is obtained by

decomposition of its contour on the associated Legendre polynomials

anm(t) = 2n + 1

2

√(n −m)!(n +m)! ∫
π

0

r
∗(θ, t)Pnm[cos θ]dθ, (A.1)

where r∗(θ, t) is the bubble side-view contour of which the missing truncated part

(due to the tethering) has been numerically completed for each m-order projection. This
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A.1. Bubble dynamics

results in falsely important amplitudes for modes that do not really exist, but also to an

accurate amplitude calculation of the tethered bubble modes truly present. Also, we have

chosen to hide the irrelevant modal amplitudes in the spectra presented in figure A.1.

Provided the bubble is correctly orientated with respect to the camera view, the modal

calculation is optically validated by superimposing a numerical reconstruction of an equiv-

alent free bubble (amplitude and phase shift obtained from the modal analysis) on the

experimental snapshots. This has been performed with good agreement in the four se-

lected examples displayed in figure A.1. At the first look, the contact lines seem immobile

and the experimental modal shapes near the wall to be ensured by a great flexibility of the

contact angle, seeing that the largest discrepancy between the contours of the equivalent

numerical free bubble and the experimental tethered bubble occurs at the contact. In

addition, bubbles undergoing few-nodal-parallels nonspherical modes (such as the mode

Y31 in figure A.1d) seem to present a greater disparity of their lower hemisphere and thus

a greater disparity at the equator with the numerically reconstructed free bubble than

several-nodal-parallels modes (such as modes Y51 in figure A.1a and Y60 in figure A.1b)

for which the matching is more obvious and the description with the spherical harmonics

more appropriate.

In definitive, if there is indeed a shift of the nodal parallels due to the tethering, in

comparison with their position in the free bubble case, this change in elevation must only

occur very slightly or only very close to the contact. In a top-view configuration, we can

expect the observation of shape modes characterized by a low number (n −m) of nodal

parallels to be more impacted and distorted by the tethering than shape modes character-

ized by a higher number of nodal parallels. This might explain the noisy and less accurate

oscillation of the tesseral mode Y31 in figure A.1d, in comparison to the other modal cases.

In our case of tethering with a PMMA substrate, the contact line shows weak or no mo-

bility, which necessarily generates modal selection and, in the same way, reinforces our

observations of nondegeneracy of nonspherical modes evidenced in chapter 2.

Lastly, the postulate made in chapter 2, assuming that the modal degree n is known

once the bubble radius is measured, is even more evident. The tesseral modes Y51 (R0 =

111.9 µm) and Y54 (R0 = 111 µm) identified in figures A.1a and A.1c, respectively, concern

bubble radii in the vicinity of the 108.3 µm resonant radius of the n = 5 modal degree.

The same is true for the zonal mode Y60 (R0 = 125.8 µm) and the tesseral mode Y31

(R0 = 72.2 µm) identified in figures A.1b and A.1d, respectively, for which the bubble

radii approach the resonant radii of the n = 6 and n = 3 modal degrees, respectively,

130.5 µm and 68.2 µm.
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A.2 Microstreaming

In a similar configuration, the visualization of the bubble-induced streaming from a side-

view was at first motivated by the will to validate the conjecture made in section 3.2.2

and figure 3.8, which argued that sectoral modes devoid of nodal parallels would generate

a quadrupole-shaped pattern following the longitudinal dimension, in a similar way as a

translation motion. In addition, the side-view perspective should allow to observe the

influence of the wall on the streaming of zonal modes. Since the microstreaming induced

by free axisymmetric bubbles is very well documented in literature, comparing the two

experimental situations, with and without tethering, should be of great interest. However,

because we only achieved an image scale of 3.7 µm/pixel in this side-view setup, the small

recirculation loops localized in close proximity of the bubble interface might be difficult

to discern.

Sectoral from a side-view

Figures A.2a and A.2b expose experimental images of the side-view streaming generated

by a bubble sectoral mode of degree n = 4 and n = 5, respectively. It very clearly evidences

the two superior recirculation loops of a quadrupole-shaped pattern. Due to the truncation

of the bubble, the two inferior ones are absent, which does not prevent our conjecture

from being confirmed. The fluid particles are ejected by the displacement anti-nodes

of the bubble interface and steered back towards the displacement nodes of the bubble

interface. The fluid motion exhibits an antifountain-like pattern above the bubble with

a very large area of action and significant velocities in the whole frame of visualization.

This streaming shape may be reminiscent of fountain-like streaming patterns induced

by a radial oscillation interacting with a vertical translation motion [Marmottant and

Hilgenfeldt, 2003]. This is not particularly surprising since, if we consider the sectoral

mode in a vertical cross-section, sectoral and vertical translation oscillations are analogous

oscillatory motions, up to a rotation by π/2: similar shape deformation and same number

of displacement nodes and anti-nodes. Lastly, these two patterns given in figures A.2a

and A.2b do not seem to differ significantly from one modal degree to another, at least

from this side-view perspective. The velocities of particles are also of the same order of

magnitude.

Zonal from a side-view

Figures A.2c and A.2d expose experimental images of the side-view streaming generated

by a bubble zonal mode of degree n = 3 and n = 4, respectively. The fluid motion

induced by these zonal modes has a fountain-like behavior above the bubble. This is

not surprising as every zonal modes have an anti-node of bubble interface displacement
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a Sectoral (4,4) b Sectoral (5,5)

c Zonal (3,0) d Zonal (4,0)

Figure A.2: Observation from a side-view of the microstreaming pattern generated by a bubble

undergoing an asymmetric sectoral mode of degree n = 4 (a) and n = 5 (b) and by a bubble

undergoing an axisymmetric zonal mode of degree n = 3 (c) and n = 4 (d).

at its poles (θ = 0 and θ = π). This is a specific feature of zonal modes that no other

bubble shape modes has. We could therefore safely conclude that the zonal modes of a

wall-attached bubble are the best culprits in inducing a fountain-like streaming. On the

other hand, their very limited area of action makes us think that the mixing power of

zonal modes is very weak, at least compared to sectoral modes. This discrepancy of the

magnitudes of streaming velocity between zonal and sectoral modes is confirmed when

comparing with the results of Cleve et al. [2019] who report zonal-induced streaming

velocities on the order of 1 mm ⋅ s
−1 at a distance 2R0, while we have seen in chapter 3
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that the streaming induced by sectoral modes can easily reach velocities on the order of

20 to 30 mm ⋅ s
−1 at a same distance 2R0.

The zonal mode n = 4 in figure A.2d exhibits important recirculation loops at the

equator, unlike the zonal mode n = 3 in figure A.2c. These large toroidal loops (see

figure A.2d) that join the two hemispheres, without marking the meeting of streamlines

with the anti-nodes of the bubble interface displacement located at the equator, seem hard

to interpret. This streaming pattern associated to the zonal mode n = 4 of a tethered

bubble differs from the equivalent case of the axisymmetric free bubble, which was given

in figure 3.3d. This is an evidence of the immense repercussions of tethering on the bubble

streaming. In perspective, a better experimental definition close to the bubble interface

or an adequate numerical simulation could provide the explanations necessary to identify

the exact influence of the wall attachment.

A.3 Conclusion

As a conclusion, the bubble visualization from a side-view highlighted the tethering-

induced selection of nonspherical shapes. It appeared that nonspherical modal shapes

of an attached bubble can differ importantly close to a slightly movable contact, com-

pared to the theoretical spherical harmonics. Provided that the nonspherical interface

of a bubble has few nodal parallels, it is very likely that its top-view contour will be

more distorted than in the case of several nodal parallels, in comparison to the theoret-

ical spherical harmonics. A bias is therefore expected in the modal decomposition with

spherical harmonics. The question of using spherical harmonics to describe the shape

of an attached bubble was worth asking, even if the certainly not trivial exact solution,

requiring an access to the contact line dynamics and an extensive comparison of the two

experimental cases of free and attached bubbles, is out of the scope of this thesis work.

Lastly, the side-view capture of streaming evidenced the global antifountain- and

fountain-like behaviors of sectoral and zonal modes. Sectoral modes clearly induce larger

areas of action compared to zonal modes. The comparison with literature confirms this

discrepancy in term of the streaming velocity magnitudes. It therefore seems reasonable

to think that sectoral modes would have stronger consequences than zonal modes on a

nearby wall or biological cell, and would thus be better candidate for inducing cellular

sonoporation.

120



Appendix B

Some aside results on oocytes

As mentioned in section 4.1.1, the arrival in our lives of the COVID-19 virus (SARS-CoV-

2) and the implementation of consecutive lockdowns by the health authorities in the years

2020 and 2021 did not allow us to perform an extensive study on oocytes, which were

originally chosen as one of the two cell models of this thesis work. This is due to the forced

shutdown, and later to the slowdown, of the activities of many companies, universities and

laboratories, including our supplier, the Faculty of Medicine of Laënnec. Nevertheless, in

order to honor this collaboration and the time spent for implementing these experiments

(cells retrieval, glass capillaries manufacture and images post-processing), as well as to

discuss some encountered difficulties, this appendix reports few figures and results on

interacting bubbles and oocytes.

Overall, two one-day series of experiments on oocytes have been performed in the

company of Estelle Meziani, Master 1 student at that time. The first day settled on no

result at all, due to our mistake of having kept the oocytes for the day in DMEM instead

of a medium more appropriate, which quickly led to their premature death, unfortunately.

The second day, M2 medium (Sigma-Aldrich®, M7167-50 mL, with hepes, without peni-

cillin) has been employed to conserve them. As described in details in chapter 4, the

oocytes, unable to adhere to a substrate, were fastened by means of a glass capillary and

a microaspiration system. When the oocyte attachment was a success, which was not al-

ways straightforward, it became easy to keep it immutable as long as needed and to have

a great control on the cell-to-bubble distance. This configuration of acoustic parameters

and cell size was very convenient, so that images as the ones depicted in figure B.1 could be

captured. The curvature of the top-view contour of a 70 µm oocyte is investigated through

two different cases of bubble modal configuration: a radial mode only (see figure B.1a)

and an additional tesseral mode of degree n = 3 and order m = 2 (see figure B.1b). In

both cases, the first images depict the instantaneous curvature. Then, twenty of them
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Figure B.1: Snapshot series of a 70 µm oocyte interacting with a bubble (R0 = 46 µm) driven by

a 66.5 kHz acoustic field and animated by a radial mode only (a) and by an additional tesseral

mode of degree n = 3 and order m = 2 (b), imaged at a frame rate of 139 650 Hz with a 10×

magnification optical lens.

are employed to calculate the variability rate of curvature, which is illustrated in the last

snapshot of both sub-figures. It evaluates how the cell curvature varies as a function of

time and space, and basically consists in a calculation of the curvature variability. In the

case of the tesseral mode, the bubble deformation is out-of-line with the bubble-to-cell

axis and it results in a stronger asymmetric curvature rate than in the radial mode only

case, as visible in the last snapshots of figure B.1. The apparent asymmetry probably

comes from the position in elevation of the cell with respect to the bubble tesseral mode,

which possesses only one (n − m) nodal parallel. As a consequence, the oocyte is very

likely affected by an hemisphere only of the bubble. Cellular deformations are often quan-

tified as a whole by means of global variables, the axial ratio [Xie et al., 2016], the area

stretching [Evans et al., 1976] or the cross section [van Wamel et al., 2004], while the

information at the local level could also be meaningful. With this recent analysis, we

wanted to explore cellular deformations in an original way. Compared to the geometrical

indexes presented in section 4.2.5, this curvature calculation allows to evidence asymmet-

ric local deformations. So far, it seems to very well highlight the interest of triggering

bubble nonspherical modes to promote local deformations on a cell membrane.
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Abstract Résumé

Sources of significant acoustic, mechanical and

thermal effects, gas microbubbles are widely used

for industrial and medical purposes. Among oth-

ers, the acoustic oscillation of microbubbles make

it possible to internalize products in living cells,

which opens the way to numerous therapeutic ap-

plications. Large amplitude oscillatory regimes

necessary for there to be a significant interaction

with cells can be synonymous with the appearance

of instability of the bubble interface and of the

so-called nonspherical modes of bubble oscillation,

but also to bubble collapse and cell destruction. It

seems therefore necessary to control their dynamics

in order to minimize the harmful effects and maxi-

mize the therapeutic action.

With the view to study the action of the os-

cillating bubble at the cellular level, this thesis

manuscript presents an experimental work in three

stages. First, the oscillatory dynamics of a single

bubble attached to a wall is studied, in particu-

lar through the conditions for the appearance of

its nonspherical modes. Second, the appearance of

fluid flows, also called microstreaming, induced by

such a nonspherical bubble is analyzed on the basis

of a quantitative description of its interface. Lastly,

this knowledge acquired on an oscillating bubble

is transposed to the configuration of a bubble-cell

pair. The bubble-induced mechanical effects that

apply on the cell are assessed at both the acoustic

and the fluidic time scales.

bubble bubble bubble bubble bubble bub-

ble bubble bubble bubble bubble bubble bubble

bubble bubble bubble bubble bubble bubble.

Sources d’effets acoustiques, mécaniques et ther-

miques importants, les microbulles de gaz sont

largement utilisées à des fins industrielles et médi-

cales. Entre autres, l’oscillation acoustique des mi-

crobulles permet d’internaliser des produits dans

des cellules vivantes, ce qui ouvre la voie à

de nombreuses applications thérapeutiques. Les

régimes oscillatoires de grande amplitude néces-

saires pour qu’il y ait une interaction significa-

tive avec les cellules peuvent être synonymes

d’apparition d’instabilité de l’interface bulle et de

modes dits non-sphériques d’oscillation de bulle,

mais aussi d’implosion de bulle et de destruction

cellulaire. Il semble donc nécessaire de contrôler

leur dynamique afin de minimiser les effets néfastes

et de maximiser l’action thérapeutique.

Dans l’optique d’étudier l’action de la bulle os-

cillante à l’échelle cellulaire, ce manuscrit de thèse

présente un travail expérimental en trois temps.

Premièrement, la dynamique oscillatoire d’une

bulle unique accrochée à une paroi est étudiée,

notamment au travers des conditions d’apparition

de ses modes non-sphériques. Dans un deuxième

temps, les écoulements fluides, également appelés

microstreaming, induits par une telle bulle non-

sphérique sont analysés à partir d’une description

quantitative de l’interface de bulle. Enfin, cette

connaissance acquise sur une bulle oscillante est

transposée à la configuration d’un couple bulle-

cellule. Ces effets mécaniques induits s’appliquant

sur une cellule à proximité sont analysés à la fois

aux échelles de temps acoustique et fluidique.

Keywords: ultrasound, microbubble, non-

spherical modes, modal nondegeneracy, mi-

crostreaming, sonoporation, bubble-cell interac-

tion.

Mot-clés: ultrasons, micro-bulle, modes

non-sphériques, non-dégénérescence modale,

microstreaming, sonoporation, interaction

bulle-cellule.
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