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Preface

This manuscript deals with asymptotic modeling in fluid mechanics. We are interested here
in studying two singular problems: the effect of roughness on oceanic motion taking as a
starting point the single-layer quasi-geostrophic model and the mathematical description
of congestion phenomena in tumor growth by investigating the behavior of traveling wave
solutions.

Asymptotic analysis in fluid mechanics is motivated by singular limit problems that
naturally arise in physical reality, such as combustion, magneto-hydrodynamics, biology, and
geophysical fluid mechanics. It provides improved insight into the mathematical structure
of the problem by dealing with more straightforward but still significant models.

In the first chapter of this work, we consider the complex system that is the ocean.
As a result of the multiple physical quantities determining its behavior at different time
and spatial scales, computing the speed of ocean currents at any point using a universal
model remains an unrealistic goal. A more reasonable strategy, both from a theoretical
and numerical point of view, is to conduct an asymptotic analysis to identify approximate
reduced models and their solutions. These factors motivated our study: the impact of the
irregularities of the coastline on the wind-driven oceanic motion. The single-layer quasi-
geostrophic system is a well-known model in meteorology used to describe the external
force applied by the wind on the free surface of the ocean. From a mathematical point
of view, it is a singularly perturbed quasilinear problem depending on a small parameter,
which justifies the apparition of boundary layers. Since the geometry of the coasts is not
meant to follow a given spatial pattern, we use functions without any particular structure
to describe roughness. Consequently, nonlinear, linearized and linear PDE systems describe
the behavior of the boundary layers in infinite domains, and their solutions are sought in
nonlocalized Sobolev spaces. Moreover, under these hypotheses, the eastern boundary layer
exhibits a singular behavior at low frequencies far from the eastern boundary. Ergodicity
properties are imposed to tackle the convergence issues. In this general regime, we establish
the well-posedness of the governing boundary layer equations and of the approximate solution
when the small parameter goes to zero.

In the second part of this work, we address a problem inspired by biology: the asymp-
totics of avascular tumor growth. Establishing how cellular changes affect macroscopic dis-
tributions is especially important when examining tissue invasion, emphasizing the need for
mathematical models linking multiple scales. We are interested in the singular ‘stiff pres-
sure law’ limit of the porous medium diffusion equation with a source term towards a free
boundary model of the Hele-Shaw type. We provide a rigorous mathematical description of
the congestion phenomena describing the transitions between free/compressible zones and
congested/incompressible zones through the behavior of their respective traveling wave solu-
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tions. Furthermore, we describe the profiles in the vicinity of the transition between the free
(compressible) domain and the congested (incompressible) domain. We show the nonlinear
asymptotic stability of such profiles in regimes where the parameter describing the strength
of the repulsive forces is very large.
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I – Introduction

The problems analyzed in this manuscript attest to the convenience and effectiveness of
using asymptotic methods in mathematical modeling. This chapter aims to lay the foun-
dations for later discussion of the technical results obtained during the author’s Ph.D. The
first section contains a general discussion on asymptotic methods in fluid mechanics and how
their evolution has been driven historically by the needs of problems belonging to mathe-
matical physics. The remaining two sections are devoted to each one of the problems and
have a similar structure. First, the evolution of research on the topic is presented, provid-
ing a glimpse of the main mathematical results and techniques. Then, a summary of the
contributions of this work to the theory and its possible further development are discussed.
Section I.3 presents the problem of roughness-induced effects on oceanic motion driven by
the quasi-geostrophic model. Section I.4 discusses the different fluid mechanics models used
in the mathematical description of tumor growth to introduce later the analysis of monotone
traveling wave solutions when considering the incompressible limit.

I.1 Asymptotic models in fluid mechanics

Due to their complexity, only a few fluid flow problems may be solved (approximately) by
closed-form (analytic) solutions through idealized mathematical models . Most importantly,
most of them are either unsolvable by direct methods or only amenable to numerical simu-
lation after some appropriate asymptotic modeling. Describing more physical and realistic
phenomena encompasses a broad spectrum of scales and simultaneously dominant and neg-
ligible effects. Nowadays, scientific modeling confronts technological limitations beyond the
capabilities of full-scale numerical simulation by the best of supercomputers known to men.
For these reasons, asymptotic modeling has become an even more attractive tool to gener-
ate more straightforward (fewer variables or (and) fewer unknowns) and consistent models
to develop accurate and efficient numerical methods while adding to the understanding of
both the underlying physics and the mathematical structure of the investigation’s primary
focus. A discussion on the role of physically motivated asymptotic analysis in the design of
numerical methods for singular limit problems in fluid mechanics can be found in [1].

Perturbation (asymptotic) theory revolves around the concept of an asymptotic solution.
Such a solution approaches a limit as the perturbation quantity approaches zero (or infin-
ity). Several mathematical problems involve rigorously justifying this passage to the limit
resulting in a change in the type of equations, boundary layer formation, or varying the
influence of several spatial and temporal scales. In these cases, the main system of equations
can be approximated by allowing the perturbation quantity to go towards its limit. Then,
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2 Chapter I. Introduction

an approximate solution is built in terms of an extremely small or sizeable dimensionless
parameter1.

Some relevant examples are:

• the Reynolds number appearing in the dimensionless representation of the Navier-
Stokes equations. It leads to the inviscid and boundary-layer models when it is large,
and to the Stokes and Oseen models for smaller values;

• the description of rapidly rotating flows with applications of industrial and geophysical
nature, which are asymptotic models of flow at low Rossby number, large-scale models
of flows used in meteorology and oceanography are extracted can be asymptotically
derived by considering the hydrostatic balance; and,

• local low Mach number limits in compressible flows, where the singular limit passage
links fully compressible systems with two-phase compressible/incompressible systems.

For a book on asymptotic models in fluid dynamics, see [2].
The singular parameters used in the asymptotic theory of fluid flows may be subdivided

into two categories. There are the so-called dynamic parameters which can be directly
built into the equations (Reynolds number in Navier-Stokes equations) or in the boundary
conditions (inverse of high aspect ratio wings in the no-slip condition); and can also be found
describing the coupling of two systems associated with the same physical phenomenon [2].
They determine the relative significance of physical processes competing with one another
taking place in moving fluid. The remaining category corresponds to geometric parameters
when used as a feature of the domain (small irregularities on a rough surface).

Asymptotic models are often classified following the nature of the problem they describe
on local or global. Sometimes, understanding flow behavior in some localized regions can
be pretty helpful when studying, for example, laminar separation or near interfaces with
material properties. Other times, the asymptotic modeling of a flow as a whole provides the
relevant information (large-scale oceanic motion).

The main reasoning behind this approach is that the approximate model is associated
with an asymptotic expansion procedure, and therefore, can be improved by adding correc-
tors, expanding in a series of successive approximations or both.

I.2 A little bit of history
Since asymptotic methods have played an essential role in the progress achieved in fluid
dynamics for more than a century, this section outlines the origins of modern fluid mechanics
and mathematical methods.

In 1687, Isaac Newton (1642-1727) postulated his laws of motion and the law of viscosity
of Newtonian fluids - a fluid whose stress law - strain rate is linear. Eighteen-century mathe-
maticians later developed this theory regarding an“ideal” (inviscid and incompressible) fluid.
Bernoulli published in 1738 in the book Hydrodynamica a critical result that will be later
known as Bernoulli’s Principle: the sum of pressure, kinetic energy, and potential energy per
unit mass of an incompressible, non-viscous fluid in a streamlined flow remains a constant.

1Dimensionless variables are reference variables selected by geometrical and physical arguments related to
the particular system which is modeled.



I.2 A little bit of history 3

Jean Le Rond D’Alembert (1749) stated the physical paradox that later will take his name:
that a body immersed in a frictionless fluid has zero drag, undoubtedly a consequence of
the neglected effects of viscosity. In 1755, Euler applied Newton’s second law of motion to a
fluid moving under an internal force known as the pressure gradient and provided the first
mathematical description of the motion of this type of fluid. Later, in 1816, Pierre-Simon
Laplace completed the formulation by adding the adiabatic condition.

Navier (1827) is the pioneer at deriving the equations for homogeneous incompressible
viscous fluids based on considerations involving intermolecular forces’ action. Later, in 1831,
Poisson derived the equations for compressible fluids from a similar molecular model. Saint-
Venant (1843) published a derivation of the equations applied to laminar and turbulent flows,
but we owe Stokes (1845) the Navier-Stokes equations currently in use.

Experimentalists of the time showed little to no interest in the newly discovered theory
of hydrodynamics. Instead, they developed empirical equations, charts, and tables to study
several essential quantities. Well-known hydraulic engineers of the nineteenth century were
Chézy, Poiseuille, Darcy, Bazin, Manning, and Weisbach, who performed extensive tests and
original experiments on the study of flows in open channels, pipe flows, waves, and turbines.

At the end of the nineteenth century, unification between experimental hydraulics and
theoretical hydrodynamics finally began. Froude (1810-1879) developed laws of model test-
ing, Lord Rayleigh (1842-1919) proposed the technique of dimensional analysis, and Osborne
Reynolds (1842-1912) published the classic pipe experiment in 1883. This study showed the
importance of the dimensionless Reynolds number named after him. Meanwhile, the viscous-
flow theory was available but unexploited since Navier and Stokes had successfully added the
Newtonian viscous terms to the governing equations of motion. The reason behind neglect
was that they were too difficult to analyze for arbitrary flows.

To this century also belongs the first use of perturbation theory in the study of physical
processes. In particular, to the works of Lagrange (1811-1815) and Laplace (1799–1825)
on celestial mechanics. When computing the Earth’s orbit, one can disregard the existence
of other planets since the Sun is the astronomical body with the highest mass in the Solar
System. For a more accurate prediction, it is necessary to consider the influence of the Moon’s
gravitation. Perturbations to the main order approximation of the solution are obtained by
taking the mass ratio of the Moon and the Earth as a small parameter. In 1843, Cauchy
published his results for the Euler’s Gamma function logarithm using Bernoulli numbers.
He called attention to the fact that the series on the right-hand side of the Stirling formula
could be used to compute ln Γ(x) when x is large and positive. Moreover, it has been shown
that the absolute error incurred by considering a finite sum of N becomes arbitrarily small
with increasing x. Forty years later, Poincaré (1886) broadens the concept of development
in series by introducing the asymptotic development to solve puzzling differential equations
of celestial mechanics. Namely, he described the search for a divergent series capable of
approaching functions at infinity which later became an essential theoretical analysis tool in
fluid dynamics.

Asymptotic analysis and fluid mechanics become inseparable with the introduction of
boundary layer theory in the seminal paper by Prandtl (1904). Although prototypes of
the concept of a boundary layer associated with the no-slip condition on a solid body had
existed since the derivation of the equations of motion of a viscous fluid (Stokes (1845),
Rankine (1864), Froude (1872), Lorenz (1881)), it was Prandtl who noticed that while in
a large Reynolds number flow past a rigid body, the Euler equations hold in the bulk of



4 Chapter I. Introduction

the flow, the inviscid description was not valid near the body’s surface. He introduced the
idea of subdividing the entire flow field into two separate regions where different asymptotic
forms of the governing equations: a small thin layer near the solid surface and the Euler
equations elsewhere. This was a subject of thorough discussion in the 1950s and early 1960s
involving the names of Friedrichs, Kaplun, Lagerstrom, Cole, and Van Dyke (see [3] for a
survey on the first fifty years of research on boundary layer theory). Their works help to
develop the singular perturbation theory as we currently know it and the method of matched
asymptotic expansions. The development of the asymptotic approach in fluid mechanics is
well documented; see, for example, [4]. For a recent detailed analysis of its importance
in physical oceanography, the reader can turn to [5]. For an extensive discussion on the
evolution of theoretical and experimental fluid mechanics, see [6].

I.3 Wind-driven ocean circulation

Ocean circulation is pivotal for climate regulation and sustaining marine life through heat,
nutrients, and chemical transport [7]. A better understanding of the complex dynamical
system that is the ocean would increase the precisions of climate predictions.

Wind stress is probably the most vital force acting on the upper surface of the world’s
oceans. In the early stages, our knowledge of its influence on general oceanic circulation
was primarily observational. Its understanding entered the modeling realm with the seminal
work of Ekman (1905)[8]. He showed that the frictional stress of the wind is confined to
a thin (surface) layer, so the motions below can be considered frictionless. According to
his theory, the velocity in the boundary layer should have a spiral structure. This layer
and its flux, which currently bear Ekman’s name, constitute the theoretical foundation of
modern wind-driven circulation theories. It was not until 1987 [9], that in situ measurements
confirmed the existence of the Ekman spiral in the upper ocean. Ekman layers are now a
standard textbook topic of physical oceanography and are reasonably well-understood from
the mathematical standpoint [10].

In general, oceanography and meteorology experienced an unprecedented quantitative
and qualitative revolution in the late ’40s and ’50s with the emergence of computers and
satellites. In this period occurred the second breakthrough in wind-driven circulation theory
in the works of Harald Sverdrup (1947) [11]. He established the relationship between the
wind stress curl and the circulation in the basin interior by assuming that the wind-driven
circulation is confined to the upper layer of the ocean and the lower layer is infinitely deep.
Thus, the circulation can be studied in terms of a single moving layer. Oceanographers im-
mediately adopted this approach, and it is known today as reduced-gravity models. In order
to find the circulation in the basin, Sverdrup assumed and integrated the wind stress curl
westward, starting with a no-zonal flux condition at the eastern boundary. No explanation
was provided on dealing with the western boundary and the reasons behind the integra-
tion order. Nevertheless, the Sverdrup balance and the homogeneous model of wind-driven
circulation are cornerstones of geophysical models.

The frictional or inertial western boundary layers provide a vital dynamical component
that helps close the circulation in terms of the conservation of mass, energy, and potential
vorticity. A dynamical explanation for western intensification phenomena was first estab-
lished in 1948 when Henry Stommel studied an idealized model for the North Atlantic Ocean,
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including bottom friction and the latitudinal change of the Coriolis force, also known as β-
effect. He used a different approach to the single-layer ocean by considering wind-driven
oceanic circulation as a single moving layer: the homogeneous model. In this case, the wind-
stress curl is negative, so the interior flow must move southward where planetary vorticity
is lower. The interior flow must be closed by some boundary layer. Stommel proposed to
close the circulation driven by evaporation at low latitudes and precipitation at high lat-
itudes by adding the western boundary currents. This solution overcame the substantial
limitations implied in Goldsbrough’s model [12] concerning how the mass flux at the ocean
surface induces a barotropic flow in the ocean interior through vorticity conservation needs.
Accordingly, circulation in a closed basin driven by an arbitrary pattern of wind stress, or
freshwater flux across the air-sea interface due to evaporation minus precipitation, can be
very well described by the theory. In 1950, Munk essentially applied the same approach as
Stommel to lateral friction by assuming it balanced the vorticity equation and induced an
intense western flow [13].

Circa 1955, research on the Gulf Stream helped the understanding of boundary layers
in physical oceanography. Here, they are worth mentioning the inertial model of Charney
[14, 15] and the parallel work on the matter by Morgan[16]. Charney investigated baroclinic
instability and showed the connection between the upper Ekman layer and the formation of
permanent currents in the ocean interior. Morgan focused mainly on integral constraints of
closed circulation in an entire basin and hinted at the connection between the interior and
the inertial western boundary currents. For a detailed review on the subject, we recommend
consulting [17] and the references therein.

Jules Charney is also considered the father of the quasigeostrophic (QG) theory. Although
the term and some aspects of the theory were dealt with before by other authors, Charney’s
paper “On the scale of atmospheric motions” of 1948 [18] distinguishes for its consistent
scale-analysis of the equations governing the motion of the atmosphere using all relevant
dynamical and thermodynamical equations. He mathematically derived a tractable equation
for unstable waves by eliminating the inertia-gravity waves solutions using the separation of
time between vertical motions. This theory replaces them with an elliptic relation between
a materially conserved scalar, the potential vorticity, and the geostrophic stream function.
Norman Phillips in [19] believes that “earlier studies on large-scale motion in the atmosphere
cannot be said to have “led” to Charney’s 1948 paper”, but it recognizes the influence
from a methodology perspective of the works of L. Prandtl [20], and Rossby [21, 22]. For
more information on the matter, the reader can refer to [19] for a detailed chronological
analysis of papers preceding the one by Charney on the subject of barotropic geostrophic
approximationss, baroclinic quasigeostrophy, and geostrophic equilibrium. For more on the
influence of Charney in physical oceanography, see [23].

QG theory may also be applied to shallow water equations and stratified fluids. Shallow
water equations are vastly used as a conceptual model for the behavior of rotating, stratified
fluids. They were introduced by Welander in 1957 [24] to explain the relation between wind-
driven currents and surface displacements in a shallow body, extending Ekman’s analysis
to the case of finite depth. The development of shallow-water dynamics on account of the
wind-driven circulation is examined in [25, 17]. For an extensive review of shallow-water
dynamics and related models, the reader can refer to [26].



6 Chapter I. Introduction

I.3.1 Boundary layers and singular perturbations problems
Our previous discussion shows oceanographers rapidly adopted the boundary layer theory
developed in traditional fluid dynamics. In mathematical terms, boundary layers appear
when the governing equations describing a flow field (generally a set of non-linear partial
differential equations) is a singular perturbation problem depending on a small dimensionless
parameter. This is often because the perturbation parameter multiplies the highest derivative
of the unknown function in the main differential equation.

Boundary layer problems have attracted the attention of mathematicians for more than 60
years. Mathematical research has provided insight on many different phenomena, including,
among others, the classical problem of vanishing viscosity limit in fluid mechanics and, in
particular, in geophysical fluid mechanics, in relation to rotating fluids and Ekman layers.
For an extensive discussion on the matter, we refer to [27] and the references therein. The
reader interested in a comprehensive monograph on mathematical results in geophysical
dynamics can consult [10].

I.3.2 Matched asymptotic expansion method
A widely used approach consists of the construction of an approximate solution using “matched
asymptotic expansions”. This method was developed systematically between the 50s and 70s
of the 20th century and used successfully in a wide variety of applications [28]. It is a power-
ful systematic analytical tool for asymptotically calculating solutions to singularly perturbed
PDE problems. For a general presentation, we refer the reader to [29, 30, 31].

The main idea of the matched asymptotic expansions method is to introduce a local
variable to describe the behavior near the wall and the corresponding local (inner) expansion
when a regular (outer) expansion fails to describe the actual behavior of the fluid flow near
a solid surface. Both expansions have to match to obtain a uniformly valid approximation
of flow on the entire region. Thus, the name of the method. For example, when dealing with
western intensification, the flow can be described by the low-order dynamics in the interior
ocean, i.e., essentially inviscid and linear. However, such an approximation is no longer
valid near the western wall, within the boundary layer, where the fluid velocity changes
rapidly and viscosity becomes essential. Consequently, other physical phenomena must be
considered, such as frictional or inertial terms. In other words, the addition of correctors is
necessary to match the interior solution and boundary conditions.

I.3.2.1 A simple example

We proceed to illustrate how to deal with a singularly perturbed problem through an exam-
ple. For the purpose of coherence with the fluid mechanics context, we analyze the following
second order linear ODE system:

εũ′′ε + ũ′ε = a, in (0, 1)
ũε(0) = 0, ũε(1) = 1,

(I.3.1)

where 0 < ε � 1 is a small parameter and a is a given positive constant of order 1 and
independent of ε. This model was introduced by Friedrichs (1942) as an example of a
boundary layer in a viscous fluid and has become common in perturbation theory, see for
instance [32, 33].
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We are interested in studying the behavior of the solution uε in (I.3.1) when ε → 0.
In this case, it is possible to find the exact solution, which is helpful for later comparisons
with the approximate solution. From now on, we will denote by uε the solution of a per-
turbed problem, while uε refers to the corresponding limit problem at ε = 0. The existence
and uniqueness of the solutions to (I.3.1) consist of finding the corresponding variational
formulation and applying the Lax-Milgram Lemma. To facilitate the computations, we con-
sider uε(x) = ũε(x)− x in (I.3.1) which gives the following problem on u with homogeneous
boundary conditions

εu′′ε + u′ε = a− 1, in (0, 1),
uε(0) = uε(1) = 0.

(I.3.2)

A weak solution of (I.3.2) is a function uε ∈ H1
0 ([0, 1]) verifying the integral condition

− ε
∫ 1

0
u′εv
′ +

∫ 1

0
u′εv = (a− 1)

∫ 1

0
v, ∀v ∈ H1

0 ([0, 1]). (I.3.3)

Then, the Lax-Milgram theorem is used once again to show the existence and uniqueness of
a solution u0 ∈ H1([0, 1]) of the limit problem (I.3.6). Considering v = uε as test function
in (I.3.3) and applying Poincaré inequality, we have that

ε‖u′ε‖2L2 = −(a− 1)
∫ 1

0
uε ≤ C‖uε‖L2

≤ C ′‖u′ε‖L2 ≤
C ′2

2ε + ε

2‖u
′
ε‖2L2 ,

which leads to
ε2‖u′ε‖2L2 ≤ C ′2.

Thus, we have found a bound for εu′ε in L2([0, 1]), independent of ε. Moreover, uε is bounded
in L2([0, 1]) independently of ε. This can easily shown by considering a weighted test function
v = uεw in (I.3.3), where w is a decreasing function, for example, w = 1− x.

−ε
∫ 1

0

(
u′ε
)2 (1− x) + 1

2

∫ 1

0

(
u2
ε

)′
(1− x) = a− 1

2 . (I.3.4)

Integrating by parts the second member in right-hand side gives

−2ε
∫ 1

0
|u′ε|2(1− x) + ‖uε‖2L2([0,1]) = a− 1.

Hence, ‖uε‖2L2([0,1]) ≤ C. We can then infer that there exists a subsequence (εn)n∈N satisfying
εn → 0 and a function u0 ∈ L2((0, 1)) such that

uεn ⇀ u0 weakly in L2.

Passing to the limit in (I.3.3), we obtain that the function u0 ∈ L2((0, 1)) verifies

−
∫ 1

0
u0v
′ = (a− 1)

∫ 1

0
v, ∀v ∈ H1

0 ([0, 1]). (I.3.5)
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Figure I.1: Behavior of the exact solution uε of the problem for a = 1
2 when ε→ 0.

The above result corresponds to the weak formulation of the problem

u′0 = a− 1, (I.3.6)

with no boundary conditions. It is evident that uε differs from u0 in thin zones near the
boundaries. This leading-order approximation is only suitable in the outer region, here (0, 1).
Note that the equation driving the first approximation of the solution differs from the one
of uε because we have lost the second order term (I.3.1) and cannot satisfy both boundary
conditions. Note this is coherent with the sharp transitions of uε in small area near x = 0,
see Figure I.1.

The previous analysis gives a clear indication that relevant information is missing when
considering the small parameter equal to zero and hints at the idea of rescaling the equations.
The new scale allows the introduction of the local information at the boundary layer through
an inner expansion.

If there is not an a priori knowledge of the correct scale for constructing the inner asymp-
totic expansion, it usual to define the local variable X as follows

X = δ(ε)x,
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where δ is a real function of ε and X = O(1). Rewritting the equation (I.3.1) in X, yields

δ2ε
d2Uε
dX2 + δ

dUε
dX

= a− 1. (I.3.7)

A quick comparison of the coefficients in (I.3.7) provides five different possibilities for the
rescaling parameter.

Case (i) Taking δ � 1, leads to the contradiction a− 1 = o(1).

Case (ii) Taking δ = 1, we have the regular asymptotic expansion u′0 = a−1, which it is not
able to satisfy all boundary conditions as seen before.

Case (iii) When 1 � δ � 1
ε , we get from equation (I.3.7) that dUε

dX = o(1), which is once
again impossible.

Case (iv) Now, if δ = 1
ε , then δ � 1 and the equation behaves as follows:

d2Uε
dX2 + dUε

dX
= (a− 1)ε︸ ︷︷ ︸

o(1)

, (I.3.8)

which provides the correct scale.

Case (v) Lastly, if δ � 1
ε ,i.e. δε� 1, multipying equation (I.3.7) by δ−1ε−2 leads to

d2Uε
dX2 + δ−1ε−1dUε

dX︸ ︷︷ ︸
o(1)

= (a− 1)δ−1ε−2︸ ︷︷ ︸
o(1)

,

which also fails to provide a suitable scale.

In conclusion, assuming δ = ε−1 will transform (I.3.7) in a regular perturbation problem.
Now that we have chosen the proper scale, we can look for an approximation of uε in the

form
uε ∼ u0(x) + uBLl (Xl) + uBLr (Xr), (I.3.9)

where Xl = ε−1x and Xr = ε−1(1− x) are the rescaled variables; and uBLr and uBLl denote
the approximate correctors whose role is to solve the discrepancy between uε and u0 near
x = 0 and x = 1, respectively. Here, ε is the thickness of the boundary layer. By additionally
imposing a far-field or stability condition to guarantee uε remains bounded when x→ +∞,
which means both correctors converge to zero as the corresponding rescaled variable goes to
infinity.

From the previous analysis, we know that the equation u′0 = a provides a first approxima-
tion of the solution, correcting the source term. Therefore, there remains to investigate the
boundary layer terms. Plugging the ansatz (I.3.9) into (I.3.2) yields the following equations

d2uBLl
dXl

+ duBLl
dXl

= 0, (I.3.10)

d2uBLr
dXr

− duBLl
dXr

= 0. (I.3.11)
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The solutions of (I.3.10) and (I.3.11) are uBLl = l0+l1e−Xl and uBLr = r0+r1e
Xr , respectively,

where ri, li ∈ R for i = 0, 1. Function uBLr increases exponentially as Xr → +∞. This
behavior is not compatible with the assumption that boundary layers have no influence far
from the boundary (far field condition). Therefore, to guarantee that lim

Xr→+∞
uBLr = 0, one

must take ri = 0,∀i, i.e, uBLr ≡ 0.
So far we have disregarded the boundary conditions. Note that substituting (I.3.9)

in (I.3.1) leads to uBLl (0) = −u0(0), near x = 0; while at the other end of the interval
uBLl (0) = −u0(1). If −u0(1) 6= 0, the far field condition is not satisfied. Therefore, −u0(1)
must forcibly be equal to zero which implies the equation driving the outer expansion term
has been supplemented with the boundary condition

u0(1) = 0.

This clearly highlights the close relationship between the nature of the boundary layer
at the right and the choice of boundary conditions for the inner profile u0.

We conclude that:

• there is no boundary layer at x = 1;

• the inner profile is u0(x) = (a− 1)(x− 1); and,

• the boundary layer corrector at x = 0 is the solution of the system

d2uBLl
dX2

l

+ duBLl
dXl

= 0, in R+

uBLl (0) = −u0(0),
uBLl → 0, as Xl → +∞.

(I.3.12)

Therefore, uBLl (x) = (a− 1)e−Xl .

This procedure is known as asymptotic matching. In the words of Van Dyke [32]:

Inner representation of (outer representation)
=

outer representation of (inner representation),

where the outer representation corresponds to first nonzero term in the macroscopic or global
variable (here, x) and the inner ones is the equivalent in the microscopic or local variable (in
our example, Xl, Xr). Therefore, the solution of (I.3.12) is an approximation of uε satisfying
all boundary conditions

u0 + uBLl , uBLl (x) = −u0(0)e−
x
ε .

Figure (I.2) illustrates the behavior of the new approximation for different values of ε with
respect to the analytical solution uε and the regular (outer) approximation u0. Notice that
for ε = 10−2, uε and u0+uBLl are indistinguishable at the scale of the graph. In mathematics,
it is well-known that a graphical representation is a reference but not a proof, therefore, we
need to show the convergence of our approximation to the original solution.
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Figure I.2: Behavior of the new approximation, the analytical solution and the regular
approximation u0 for (I.3.7) for the case when a = 1

2 and ε ∈
{
10−2, 10−1, 0.5, 1

}
.

Let us define wε = uε − (u0 + uBLl ). This error function satisfies the following system
resulting from (I.3.7), (I.3.8) and (I.3.12)

εw′′ε + w′ε = −εu′′0, 0 < x < 1,
wε(0) = 0, wε(1) = −uBLl (1) = (1− a)e−1/ε.

(I.3.13)

Notice that −εu′′0 = 0 and a the value of wε is exponentially small as ε→ 0.
Therefore, we have a good approximation of the actual solution when ε→ 0. Let C > 0

be a constant whose value is independent from ε, using the estimates ‖uBLl ‖L2((0,1)) ≤ C
√
ε

and ‖(uBLl )′‖L2((0,1)) ≤ Cε−1/2, we infer from (I.3.13) that

‖uε − u0‖L2((0,1)) ≤ C
√
ε,

‖uε − u0‖H1((0,1)) ≤ Cε−1/2.

This result gives a convergence rate in L2((0, 1)). Similar results can be obtained using Lp
estimates, for 1 ≤ p ≤ +∞.

Some remarks are necessary:

• Most of the time, computing the error is not that simple. We need to compute energy
estimates of wε in an acceptable norm and show the error becomes increasingly small
as ε→ 0.
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• u0 + uBLl is known in the literature as a zeroth-order approximation. Consequently, u0
is the zeroth-order outer solution which describes the behavior of the solution outside
of the boundary layer regions, and the corrector uBLl is known as zeroth-order inner
solution linked to uε in the boundary layer.

We end our discussion by emphasizing that rarely the approximation at the main orders
provides an accurate description of uε. One of the advantages of using asymptotic methods
is that the solution can be improved by adding additional terms. Consequently, the idea
discussed before can be easily generalized to higher orders by means of a power series of the
small parameter ε. In practice, we look for an approximate solution of the form:

uε ∼
+∞∑
i=0

εi(ui + (uBLl )i + (uBLr )i).

The main steps of the analysis are the same as before. First, we substitute the asymptotic
expansion in the original equation and recursively obtain a family of equations of each one
of the components by balancing the powers of ε.

The main equations describing the behavior of the profiles at each order in the case of
(I.3.2) is shown in Table I.1.

Order Outer expansion Inner expansion

Left boundary layer Right boundary layer

O(ε−1) d2(uBLl )0
dX2

l

+ d(uBLl )0
dXl

= 0 d2(uBLr )0
dX2

r

− d(uBLr )0
dXr

= 0

O(1) u′0 = a− 1 d2(uBLl )1
dX2

l

+ d(uBLl )1
dXl

= 0 d2(uBLr )1
dX2

r

− d(uBLr )1
dXr

= 0

O(ε) u′1 = u′′0
d2(uBLl )2
dX2

l

+ d(uBLl )2
dXl

= 0 d2(uBLr )2
dX2

r

− d(uBLr )2
dXr

= 0

...
...

...

O(εk) u′k = u′′k−1
d2(uBLl )k+1

dX2
l

+ d(uBLl )k+1
dXl

= 0 d2(uBLr )k+1
dX2

r

− d(uBLr )k+1
dXr

= 0

...
...

...

Table I.1: Equations of the inner and boundary layer profiles at order εk for k ≥ −1.

A technical difficulty adds to the algebraic one: choosing the boundary conditions for
each outer solution; since it is directly linked to the corrector through the matching process.
The latter is far from being straightforward in most cases. There are also the issues resulting
from a possible overlapping of inner and outer approximations; for details, refer to [33].

The last step corresponds to verify the error wε = uε −
n∑
i=0

εi(ui + uBLi ), for a certain
n ∈ N . The choice of n depends on the number of terms needed for the error to verify
wε = o(1) when ε→ 0.
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In the example, u′′k = 0 for all k ∈ N. Therefore, the solution of the inner profiles is
constant uk = Ck, Ck ∈ R. The equation driving the behavior of higher order correctors at
x = 1 have an exponentially large solution. Then, similarly to the zeroth-order equation, it
is necessary to choose the boundary condition for the interior profile such that (uBLr )k+1 ≡ 0
for the far field conditions to be satisfied. As a consequence, the problem for higher order
interior terms is as follows for k ≥ 1{

u′k = 0, in (0, 1),
uk(1) = 0, =⇒ uk ≡ 0,

yielding in turn that (uBLl )k ≡ 0, k ≥ 1.

I.3.3 Mathematical models of the oceanic motion
A classical model to describe large-scale oceanic motion is the Navier-Stokes system in a ro-
tating frame. The model is supplemented with the first law of thermodynamics, the diffusion
equation for humidity and salinity, and boundary conditions to describe the interaction of
the fluid with its surroundings.

The extreme generality of the complete system of equations makes computing explicit
solutions an unrealistic goal in the foreseeable future from both numerical and theoretical
perspectives. Scaling and asymptotic analysis come into play to obtain approximate models
that accurately predict physical phenomena while being simple enough for mathematical
analysis to be possible.

The simplifying hypotheses leading to the homogeneous wind-driven circulation model
establish a scale of sorts for other well-known mathematical models in geophysical dynamics.

The equations of geophysical fluid dynamics are derived from the conservation laws from
continuum mechanics, namely of mass, momentum, energy, and additional elements such as
salt, humidity, and chemical components. Another distinctive characteristic of this type of
fluid is the influence of the Earth’s rotation (the tangential speed is around 400m/s and the
speed of the ocean typically around 0.1m/s).

In the ocean, it is well accepted that the differences in density are only relevant in the
buoyancy term and the equation of state. Neglecting the density changes elsewhere leads to
the Boussinesq equations (BES), which are considered as the basic equations for the ocean
and removes acoustic waves [34]. This system is fully nonlinear and three-dimensional,
making its analytical treatment extremely difficult and unsuitable for numerical simulations
in its explicit form. The smallness of the aspect ratio between the vertical and horizontal
scales (an average depth of 3.7 km over a typical horizontal length of 104 km) can be used to
simplify the vertical momentum balance. This leads to the pressure being locally determined
by the weight of fluid. This assumption on the vertical momentum equation is known as
hydrostatic approximation and leads to the so-called primitive equations (PEs) introduced
by Richardson in 1922. For some important mathematical results regarding the study of
PEs, the reader may refer to [35, 36, 37]

From the physical point of view, Shallow Water equations (SW) stand as an intermediate
model between the primitive and the quasi-geostrophic equations. They are essentially a
vertically integrated form of the Navier–Stokes equations. Some books and survey papers the
interested reader can consult are [38, 39]. Another essential feature of large-scale geophysical
flows is that the Earth, in its rotation, moves much faster than the wind and the seawater.
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Figure I.3: Hierarchy of models in geophysical fluid dynamics leading to the homogeneous
wind-driven ocean circulation model or single-layer quasi-geostrophic model.

Accounting for the fast rotation leads to the classical quasi-geostrophic equations and other
balanced equations.

Although the mathematical derivation of the quasi-geostrophic (QG) equations from the
free surface Navier–Stokes or primitive equations remains an open problem, many results
exist with a rigid-lid hypothesis, see [10] and references therein. When a "flat" ocean is
considered, the zeroth and first-order asymptotic expansions of the SW equations based on
a small parameter lead to the so-called geostrophic and quasi-geostrophic equations, respec-
tively. Formal derivations of the homogeneous wind-driven model from the Navier–Stokes
equations can be found in [40] and [17].

I.3.4 The single-layer quasi-geostrophic model

This section presents the single-layer quasi-geostrophic equations and explains their most
relevant physical and mathematical features. This material is well-known from geophysical
fluid dynamics as applied to the ocean. Consequently, we only focus here on setting the
mathematical and physical foundations leading to the discussion of our results. The reader
interested in a more extensive and detailed analysis of the matter can turn to [41, 25], and
for an extensive monograph on the quasi-geostrophic model, to [42].

The quasi-geostrophic model describes the almost stationary response of the ocean to the
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wind forcing at the free surface and the turbulent friction resulting from Earth’s rotation.
The main modeling assumptions are:

• The water body is taken as a constant density fluid in the form of a single layer bounded
by the seafloor and the free surface of the sea.

• The pressure is fully hydrostatic, and consequently, the horizontal pressure gradient
depends only on the free-surface elevation.

• There are no dissipative mechanisms; therefore, the flow is adiabatic.

• The Coriolis force dominates the flow, and inertial effects can be neglected, which
translates into a small Rossby number(Ro).

• The variations of the Coriolis force with respect to the latitude are small, which allows
approximating its magnitude using the linear function βy + f0. This approximation is
known in the literature as the beta-plane approximation.

• The amplitudes of bottom topography are small.

The mathematical model describes the behavior of the stream function Ψ = Ψ(t, x, y) ∈
R associated to a two-dimensional velocity field u = (u1(t, x, y), u2(t, x, y))t in a simply
connected domain Ω ⊂ R2. In its dimensionless form, the system reads

(
∂t +∇⊥Ψ · ∇

)
(∆Ψ + βy − FΨ + ηB) + r∆Ψ = β curl τ + Re−1∆2Ψ, (I.3.14)

where

• ∇⊥Ψ · ∇ is the transport operator associated to advective time scale;

• ∆Ψ is the vorticity, and r∆Ψ , r > 0, is the Ekman pumping term;

• F is the Froude number;

• β > 0 is the slope in the beta-plane approximation of the Coriolis force;

• ηB is smooth function associated to bottom topography;

• β curl τ denotes the wind forcing where τ is a given stress tensor; and,

• Re is the Reynolds number.

When the domain is simply connected, the system is supplemented with the boundary and
initial conditions

Ψ|∂Ωε = 0, ∂Ψ
∂n

= 0, (I.3.15)

Ψ|t=0 = Ψini, (I.3.16)

where the first equation in (I.3.15) describes the lack of water outflow in the closed basin,
while the second is known in the literature as the no-slip condition and characterizes how
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the fluid velocity is zero in a fluid-solid interaction as a consequence of the adhesion of
the particles being stronger than cohesion. Ψini in (I.3.16) is a function for which problem
(I.3.14) is “well-prepared”2.

Typical values the dimensionless parameters at midlatitudes (see Table 5.3 in [26] for the
case of a 1000× 1000km bassin at φ = 45◦N) are

1.6× 10 ≤ Re ≤ 1.6× 102, β ∼ 103, F ∼ 1, 1 ≤ r ≤ 102.

It is clear from the equation (I.3.14) and the values of the dimensionless parameters that
the coefficient of the highest order derivative (Re−1) is very small compared to others in the
equation. As a consequence, thin frictional boundary layers appear near horizontal (Ekman
layers) and vertical (Munk layers) boundaries.

From both physical and mathematical points of view Ekman layers are currently well
understood, unlike vertical layers [10]. The analytical complexity of Munk boundary layers
comes from the fact that they divide into two sublayers with different sizes, see [43, 44].
In meteorology and oceanography, vertical boundary layers appearing near continents are
responsible for the western current intensification. This phenomenon refers to how the sea
level gradients are much more robust, and the geostrophic velocities are also higher along
western boundaries than those at the East. Among these subtropical western boundary
currents, we have the “Kuroshio” and “East Australian” currents in the Pacific Ocean and
the “Gulf Stream” and “Brazil” in the Atlantic Ocean.

B. Desjardins and E. Grenier in [45] showed the existence of global strong solutions
for problem (I.3.14)–(I.3.15)–(I.3.16) using its similarities to the 2D incompressible Navier-
Stokes equations and global weak solutions of the Navier-Stokes-Coriolis system by slightly
modifying the classical proof by Leray [46]. They also performed a complete asymptotic
analysis of (I.3.14)–(I.3.15)–(I.3.16) in a smooth bounded domain.

Ω =
{

(x, y) ∈ R2 : χw(y) ≤ x ≤ χe(y), ymin ≤ y ≤ ymax
}
.

Regarding the lateral boundary layers, they introduced the small scale ε = (Reβ)−1/3 and
look for an approximate solution of (I.3.14)–(I.3.15)–(I.3.16) of the form

ΨN
app =

N∑
i=0

Ψi
int(t, x, y) + Ψi

w(t, y,Xw) + Ψi
e(t, y,Xe) + εN Ψ̃N , (I.3.17)

for a given N ∈ N when ε→ 0. In (I.3.17), the boundary layer variables Xw and Xe are

Xw = x− χ′w(y)
ε

(
1 + χ′w(y)2

)−2/3
, Xe = χ′e(y)− x

ε

(
1 + χ′e(y)2

)−2/3
.

Functions Ψi
int, Ψi

w(t, y,Xw), Ψi
e(t, y,Xe) denote the interior and boundary layer profiles,

respectively. ΨN
app must be a solution of the problem(

∂t +∇⊥ΨN
app · ∇

) (
∆ΨN

app + ε−3y − Fr ΨN
app + ηB

)
+r∆ΨN

app − 1
Re∆2ΨN

app = ε−3 curl τ + rNε , in Ω
ΨN
app|∂Ωε = ∂Ψapp

∂n |∂Ωε = 0,
ΨN
app|t=0 = Ψini.

(I.3.18)
2Ψini is chosen to be equal to the limit of the approximate solution Ψε

app|t=0 when ε→ 0 in an adequate
norm.
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for some rNε → 0 when ε→ 0 in a given norm.
Their main result is summarized in the following theorem:

Theorem I.3.1 (Desjardins & Grenier [34]). Let Ω be a simply connected smooth domain
given by

Ω =
{

(x, y) ∈ R2 : χw(y) ≤ x ≤ χe(y), ymin ≤ y ≤ ymax
}
, (I.3.19)

where χw, χe ∈ C2([ymin, ymax]) and r, Re and τ are known quantities. Assuming addition-
ally that for some δ, δ̄ > 0, δ̄ � 1, the wind forcing curl τ ∈ L∞((0, T ), Hs(Ω)), for some
T > 0 satisfies the conditions

curl τ(x, y) ≡ 0 if y ≤ ymin + δ or y ≥ ymax − δ, (I.3.20)∣∣∣∣∣
∫ χe(y)

χw(y)
curl τ(t, x′, y)dx′

∣∣∣∣∣ ≤ δ̄. (I.3.21)

Let Ψε be a solution of system (I.3.14)–(I.3.15)–(I.3.16) and uε = ∇⊥Ψε. Then, if s is large
enough, there exists a unique approximate solution uapp for N ≤ 2 rapidly decaying with
respect to the reduced variables (see (I.3.17)) such that

uε − uapp → 0 in L∞((0, T ), L2(Ω)). (I.3.22)

The hypothesis (I.3.20) aims to avoid geostrophic degeneracy which describes the strong
singularities at the Northern and Southern coasts. This phenomenon was studied in depth by
Dalibard and Saint-Raymond in [47] for a stationary linear version of (I.3.14). Assumption
(I.3.21) guarantees the uniform boundedness of the coefficients stemming from the boundary
layer profiles and their smallness which allows them to be absorbed in the viscosity term.
Let us briefly discuss two important points regarding the zeroth-order approximation of the
solution Ψε since the proof of (I.3.22) follows from classical energy estimates. The first one
concerns the Sverdrup relation and the other, the interplay between the interior profile and
the eastern boundary layer. These aspects are common to all subsequent generalizations of
the problem and are discussed in detail in Chapter II.

When ε→ 0 (which is equivalent to taking the limit β → +∞), a first approximation of
the solution follows the Sverdrup relation

∂xΨ0 = curl τ, (I.3.23)

which cannot fulfill all the boundary conditions in (I.3.15) because it is a first order partial
differential equation. This confirms (I.3.14) is singularly perturbed problem when the small
parameter ε goes to zero and, consequently, there is a need for correctors. Moreover, there is
still a choice to be made regarding if the boundary condition for Ψ0 is defined at the East or
at the West. In its seminal work of 1947, Stommel integrated (I.3.23) from the East to the
West but no explanation was provided [23]. Since then, in the literature is usual to complete
problem (I.3.23) with the boundary condition

Ψ0|Γe = 0, (I.3.24)

where Γe is the eastern boundary, which for (I.3.19) is of the form

Γe = {(x, y) ∈ ∂Ω : x = χe(y)}. (I.3.25)



18 Chapter I. Introduction

Therefore,

Ψ0(t, x, y) = −
∫ χe(y)

x
curl τ(t, x′, y)dx′. (I.3.26)

From the mathematical standpoint, substitution of (I.3.17) leads to a family of ODE prob-
lems for the boundary layer profiles where the main fourth-order equation is supplemented
with two boundary conditions and a far field condition (the boundary current Ψbl has no
influence far its corresponding boundary, i.e, Ψbl −→ 0 at infinity). At order ε−4, we have
the following equations describing the behavior of the eastern and western boundary layer

∂XeΨ0
e + ∂4

XeΨ
0
e = 0, (I.3.27)

∂XwΨw − ∂4
XwΨw = 0. (I.3.28)

A quick analysis of the characteristic polynomial of the above equations shows a solution of
(I.3.27) cannot simultaneously verify all boundary conditions and the assumption far from
the boundary, unlike (I.3.28).

Among the physical arguments justifying the “lack” of boundary current at the East
(see (I.3.25)), we can cite the nature of the Rossby waves, responsible for the dynamical
adjustment in the ocean. They present westward group velocity, which means that at a
given point, the adjustment is made on the dynamics at the eastern side; hence, to adjust
the whole basin, Rossby waves must be at the extreme western side. Another is linked to
the vorticity balance in the ocean. A boundary layer at the West re-injects the vorticity that
has been previously lost due to the wind into the flow, unlike an eastern boundary layer that
causes a more significant loss of vorticity [48]

A natural extension of the works by Desjardins and Grenier [45] is adding roughness to the
model in an attempt to bring closer the mathematical theory to the physical reality. Indeed,
it is a well-known fact that the irregularities of a given solid surface can profoundly affect
the behavior of the fluid it enters in contact with. The study of roughness-induced effects in
the behavior of a viscous fluid traces back to the seminal works of Achdou, Pironneau and
Valentin in the 1990s [49, 50, 51] and has received much attention ever since, see [52] and
the references therein.

In the context of oceanography, the burning questions are: how does the rough topog-
raphy of the coasts influence the ocean currents? How can we model roughness effects, and
what are the consequences of the different modeling assumptions?

D. Bresch and D. Gérard-Varet [53] provided the first answers to the discussion for the
case of periodic roughness. The periodicity hypothesis is common in fluid mechanics since it
reduces the complexity of the physical phenomena while remaining valid for most relevant
cases, see for example[54, 55, 56, 57].

Bresch and Gérard-Varet recover the well-posedness and convergence results in [45] for
(I.3.14)–(I.3.15)–(I.3.16) in the domain

Ωε =
{

(x, y) ∈ R2 : χw(y)− εγw(ε−1y) < x < χe(y) + εγe(ε−1y), ymin ≤ y ≤ ymax
}
.

(I.3.29)
In (I.3.29), regular and periodic functions γw, γe describe the roughness of the western and
eastern coasts, respectively.

We can easily conclude that (I.3.29) results from adding “rough shores” to the domain
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Ω in the work of Desjardins and Grenier. These portions of the domain Ωε are of form

Ωε
w =

{
(x, y), 0 > x− χw(y) > −εγw(ε−1y)

}
,

Ωε
e =

{
(x, y), 0 < x− χe(y) < εγe(ε−1y)

}
.

The interface between the interior domain and the western (eastern) rough domain is defined
by Σw = {(χw(y), y), y ∈ (ymin, ymax)} (Σe = {(χe(y), y), y ∈ (ymin, ymax)}). The west-
ern (eastern) rough boundary is Γεw = {

(
χw(y)− εγw(ε−1y), y

)
, y ∈ (ymin, ymax), } Γεe =

{
(
χe(y) + εγe(ε−1y), y

)
, y ∈ (ymin, ymax)}.

Choosing the same quantity ε to describe the period size of the roughness and the size of
the boundary layer has no physical justification but allows for a richer mathematical analysis
since the nonlinear effect also appears at the level of boundary layer. Indeed, one striking
difference with respect to the work of Desjardins and Grenier is that the Munk layers are no
longer ordinary differential equations but elliptic quasi-linear partial differential equations
since a new reduced variable is added to the boundary layer profiles: Y = ε−1y. Moreover,
the dependence of the boundary layer variables Xw, Xe on the interface functions χw(y) and
χe(y), respectively, prompts the introduction of more general differential operators of the
form

∇w = (∂Xw , ∂Y − αw∂Xw)t, ∇e = (∂Xe ,−αe∂Xe − ∂Y )t .
These have similar properties as the usual ones, and consequently, the definition extends
quite easily to higher orders.

As we hinted before, the equation driving the eastern boundary layer behavior inherits
the issues of the linear version (the incapability of satisfying all boundary conditions and
the far-field condition simultaneously). Consequently, the results of the zeroth-order interior
approximation and the eastern boundary layer profile are (I.3.26) and Ψ0

e ≡ 0. A smallness
assumption on the wind stress tensor here is essential to deal with the nonlinear terms
associated with Ψ0

w in the study of the well-posedness of the western boundary layer.

I.3.5 Contributions
Although useful and well documented, the periodicity hypothesis is still way too idealized in
many practical situations. As a matter of fact, the geometry of the coasts is not meant to
follow a specific pattern. Consequently, we extend the analysis of the roughness-effects by
relaxing the periodicity assumption. Our focus lies on the asymptotic analysis as ε → 0 of
problem (I.3.14)–(I.3.15)–(I.3.16) in a domain Ωε defined as in (I.3.29) when functions γe,
γw ∈W 2,∞(R) are arbitrary. Without loss of generality, we consider Re = µ = 1. Assuming
F = ηB = 0 results in the system(

∂t +∇⊥Ψ · ∇
) (

∆Ψ + ε−3y
)

+ ∆Ψ = ε−3 curl τ + ∆2Ψ in Ωε,

Ψ|∂Ωε = ∂Ψ
∂n |∂Ωε = 0,

Ψ|t=0 = Ψini.

(I.3.30)

Here, Ωε = Ωε
w ∪ Σw ∪ Ω ∪ Σe ∪ Ωε

e and curl τ is assumed to verify the condition (I.3.20).
We use the method of matched asymptotics to look for an approximate solution of (I.3.30)

depending on the natural size of the boundary layers, in this case, the small parameter ε

Ψε
app(t, x, y) =

+∞∑
i=0

εi
(
Ψi
int(t, x, y) + Ψi

w (t, y,Xw, Y ) + Ψi
e (t, y,Xe, Y )

)
, (I.3.31)
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where Y = ε−1y, Xw = ε−1(x − χw(y)), Xe = ε−1(χe(y) − x). Since the boundary layer
terms are expected not to have an effect far from the boundaries, we assume

Ψi
e −→
Xe→∞

0, Ψi
w −→
Xw→∞

0. (I.3.32)

We make the modeling assumption that the interior terms are zero outside Ω which induces
the apparition of jumps at Σe and Σw.

Plugging (I.3.31) in (I.3.30) and then identifying the coefficient of every power of ε
provides a family of problems allowing the inductive determination of the profiles.

The first interior and eastern boundary profiles are the same as those of the periodic
case. Namely, Ψ0

int satisfies the Sverdrup relation (I.3.23) and Ψe ≡ 0.
In the western boundary layer domain ωw = ω−w ∪ σw ∪ ω+

w , we investigate the problem

Qw(Ψ0
w,Ψ0

w) + ∂XwΨ0
w −∆2

wΨ0
w = 0 in ω−w ∪ ω+

w ,[
Ψ0
w

] ∣∣
σw

= φ,[
∂kXΨ0

w

] ∣∣
σw

= 0, k = 1, 2, 3,

Ψ0
w

∣∣
X=−γw(Y ) = ∂Ψ0

w

∂nw

∣∣
X=−γw(Y ) = 0,

Ψ0
w −→ 0 as Xw → +∞,

(I.3.33)

where

ω+
w = {Xw > 0, Y ∈ R} , σw = {Xw = 0, Y ∈ R} ,
ω−w = {−γw(Y ) < Xw < 0, Y ∈ R} . (I.3.34)

Here, [·]
∣∣
X=X′ denotes the jump of a function at the interface ωw which corresponds to the

difference between its value in ω+
w and ω−w . The jump conditions in (I.3.33) were introduced

to enable the match between the outer expansion (interior profile) and the inner expansion
(boundary layer). Here, φ is used to denote the quantity

φ(t, y) = −Ψ0
int|x=χw(y) = −

∫ χe(y)

χw(y)
curl τ(t, x′, y)dx′. (I.3.35)

The limit in (I.3.33) is the far field condition. The remaining conditions are associated with
the boundary conditions in (I.3.30). The differential operators are defined as follows for
αw = χ′w(y)

∆w = ∂2
Xw + (αw∂Xw − ∂Y )2 ,

Qw(Ψ, Ψ̃) = ∇⊥w ·
((
∇⊥wΨ · ∇w

)
∇⊥wΨ̃

)
.

At the level of the boundary layer, t and y, and, consequently, αw behave as parameters.
The well-posedness of (I.3.33) exhibits several difficulties. First off, ωw is an unbounded,

infinite domain that does not allow for the application of Fourier analysis due to the irregu-
larities of γw. The unboundedness of the domain also prevents the use of classical methods
based on energy estimates. Moreover, the quantity φ does not decay in the Y -direction,
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Figure I.4: Diagram of a boundary layer domain with a transparent boundary.

which raises questions concerning Ψ0
w’s decay with respect to the tangential variable. As a

consequence, we work in the framework of functional spaces of infinite energy Hq
uloc, q ∈ R

known in the literature as uniformly local Sobolev spaces introduced by Kato in [58].
It remains to handle the issues associated with the characteristics of the domain. We

apply the strategy of Masmoudi and Gérard-Varet in [59] and introduce a transparent bound-
ary. This artificial interface separates the domain in two: a half-space and a bounded rough
channel. A Dirichlet problem on the half-space {Xw > M}, M > 0, is then solved using
Fourier analysis and the theory of pseudo-differential operators. In the rough channel, the
proof of well-posedness relies on the method introduced by Ladyzhenskaya and Solonnikov
in [60]. This method establishes an equivalence between showing the existence and unique-
ness of the solution and solving the problem in a bounded truncated domain using energy
estimates and then taking the limit when the truncation parameter tends to infinity. This
limit provides the solution in the whole domain; hence, computing beforehand uniformly
local bounds for the energy with respect to the truncation parameter is essential.

An operator of the Poincaré-Steklov type is introduced at the artificial interface to “con-
nect” both solutions as seen in Figure I.4. These differential operators map the values of
one boundary condition of the solution of an elliptic partial differential equation to another
boundary condition. This last step is performed directly when Qw ≡ 0; while for the non-
linear/linearized cases, the implicit function theorem is needed. The technique employed in
the analysis of nonlinear boundary layers in the case of highly rotating fluids was introduced
in [61]. It is important to highlight that all boundary layer problems analyzed here display
the issues discussed above.

Once we have laid the foundations of the problem and its solution, we can state our first
result concerning the existence and uniqueness of the solution for the western boundary layer
problem under a smallness condition of φ.

Theorem I.3.2 (Theorem 1 in [62]). Let γw be a positive W 2,∞(R) function and ωw be
defined as before. There exists a constant δ0 > 0 such that if ‖φ‖W 2,∞ < δ0, problem (I.3.33)
has a unique solution in H2

uloc(ω+
w ∪ ω−w ) denoted by Ψw. Moreover, for a certain constant
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δ > 0, it satisfies the estimate

‖eδXwΨw‖H2
uloc(ω+

w∪ω−w ) ≤ C‖φ‖W 2,∞ .

Unlike [52] and [61] where the presence of singularities at low frequencies yields a slower
convergence (with polynomial weight) of the solution far from the boundary, we are able to
recover the same exponentially decaying rate as Xw → +∞ for Ψ0

w, as in the periodic case.
To this point, we have computed the zeroth-order terms of the asymptotic expansion. The

information of the first profiles is used to compute those in the following order. This process
is repeated recursively. Similar to the simple model analyzed in Section I.3.2.1, the nature of
the boundary layer equation at the eastern domain prompts us to make assumptions on the
interior profile and fixes the integration order at (I.3.23). The same phenomenon arises at
higher orders. Assuming all the terms of the outer and inner expansions till order i = n− 1,
n > 1 have been already computed, we have

∂xΨn = Fn in Ω, (I.3.36)

where Fn is equal to zero for n ≤ 2 and a smooth function depending on the interior profiles
Ψj
int, 0 ≤ j ≤ n− 3. Then,

Ψn
int(t, x, y) = Cn(t, y)−

∫ χe(y)

x
Fn dx,

where Cn(t, y) is a smooth function.
At the East, we have

−∂XeΨn
e −∆2

eΨn
e = 0 in ω−e ∪ ω+

e ,
[Ψn

e ]
∣∣
σe

= −Cn,[
∂kXeΨ

n
e

] ∣∣
σe

= g̃nk , k = 1, . . . , 3,
Ψn
e

∣∣
Xe=−γe(Y ) = ∂Ψne

∂ne

∣∣
Xe=−γe(Y ) = 0,

Ψn
e −→ 0 as Xe → +∞,

(I.3.37)

where the domain is given by

ω+
e = {Xe > 0, Y ∈ R} , σe = {Xe = 0, Y ∈ R} ,
ω−e = {−γe(Y ) < Xe < 0, Y ∈ R} . (I.3.38)

The differential operators in (I.3.37) depend on the parameter αe = χe(y) and are defined
as follows:

∇e = (∂Xe ,−αe∂Xe − ∂Y ) , ∆e = ∂2
Xe + (α∂Xe + ∂Y )2 .

Function Ψn
e is responsible of lifting the normal trace of Ψn

int and of the derivatives of other
interior profiles at Σe. Namely, the jump functions are

g̃nk = −
[
∂kxΨn−k

int

]
x=χe(y)

, k ∈ N, 1 ≤ k ≤ 3.

Although it is possible to have a nonzero source term depending on Ψj
e, 1 ≤ j ≤ n− 1, it is

always sufficiently small and treated as a perturbation of the equation in (I.3.37).
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In addition to the aformentioned issues for the western boundary layer, the eastern bound-
ary layer presents a singular behavior at low frequencies, which prevents its convergence far
from the boundary. We distinguish three different asymptotic behaviors at low frequencies:
two decaying to zero at exponential and algebraic rates in the normal direction denoted
by Ψn

exp and Ψn
alg, respectively, and a third one, Ψerg, for which a probabilistic setting and

ergodicity properties are needed. The far-field condition is then only guaranteed if the jump
of Ψn

w at σe is chosen to be equal to the ergodic limit.
Then, Cn(t, y) is uniquely determined so that Ψn

e → 0 as Xe goes to infinity. The
latter determines a fixed order in the construction of the solution: first, we solve the eastern
boundary layer using a generic function g̃n0 to describe its jump at σe and determine the
value of the ergodic limit. Then, we fix the constant in the interior profile accordingly and
then solve the boundary layer problem at the West.

This result is summarized in the following theorem:

Theorem I.3.3 (Theorem 3 in [62]). Let ε > 0 and (P,Π, µ) be a probability space for which
µ is a the probability measure preserved by the translation group (τY ) acting on P . The
eastern boundary layer domain is described as follows for m ∈ P :

ωe(m) =
{

(Xe, Y ) ∈ R2 : Xe > −γe(m,Y )
}
,

where ωe(m) = ω+
e (m) ∪ σe ∪ ω−e (m) and ω±e (m) = ωe(m) ∩ {±X > 0}.

Let γe an ergodic stationary random process, K-Lipschitz almost surely, for some K > 0
and g̃k,∈ L∞(P ×R+), k = 1, 2, 3. Then, there exist a unique measurable map Cn such that
problem (I.3.37) has a unique solution Ψn

e = Ψn
exp + Ψn

alg + Ψn
erg where

1.
∥∥∥Ψn

erg

∥∥∥
Lq(ω+

e )
−−−−−→
Xe→+∞

0, locally uniformly in Y , almost surely and in Lq(P ) for all
finite q,

2. there exist constants δ, C > 0 such that

‖eδXeΨn
exp‖L∞(ω+

e ) ≤ C
( 3∑
k=1
‖g̃k‖L∞ + ‖Cn‖∞

)
, (I.3.39)

3. there exists a constant C > 0 such that

‖(1 +Xe)1/4Ψn
alg‖L∞(ω+

e ) ≤ C
( 3∑
k=1
‖g̃k‖L∞ + ‖Cn‖∞

)
. (I.3.40)

At order n, the last step consists in solving the following system for Ψn
w

∂XwΨn
w +Qw(Ψn

w,Ψ0
w) +Qw(Ψ0

w,Ψn
w)−∆2

wΨn
w = Hn in ω−w ∪ ω+

w ,[
∂kXwΨn

w

] ∣∣
σw

= gnk , k = 0, . . . , 3,

Ψn
w

∣∣
Xw=−γw(Y ) = 0, ∂Ψn

w

∂nw

∣∣
Xw=−γw(Y ) = 0,

Ψn
w −→ 0 as Xw → +∞,

(I.3.41)
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where Hn is a small term depending on the previous western boundary layer profiles and
gnk ∈ L∞(R). The western boundary layer profiles lift the normal trace of interior profiles at
the interface σw and deal additionally with the influence of the eastern boundary layers (see
Theorem I.3.3). This means that for k = 1, 2, 3

gnk = −
[
∂kxΨn−k

int

]
x=χw(y)

−
[
∂kXeΨ

n−k
e

]
.

The problem when Hn = 0 is solved similarly to the nonlinear case using pseudo-differential
analysis and the ideas introduced by Dalibard and Gérard-Varet [61].

Once we have constructed the approximate solution, our final result involves studying its
convergence to that of the original problem (I.3.30). This analysis involves two main steps:
finding N such that the finite sum of the first N terms of (I.3.31) satisfies (I.3.18), and then
show its closeness to Ψε using energy estimates on the difference Ψε −ΨN

app.
In the periodic setting, similar to the case without roughness, the boundary layer profiles

decay exponentially to zero when ε → 0. Moreover, the main order approximation gives a
O(ε1/2) rate of convergence in H2, see [53]. In this general setting, the lack of spectral gap at
the eastern boundary layer imposes using average information to guarantee the convergence of
this profile far for the eastern boundary (Ergodic Theorem). Consequently, the convergence
of Ψerg and, therefore, of Ψe, can be arbitrarily slow and impact the asymptotics of the entire
approximate solution.

The convergence result is as follows:

Theorem I.3.4. Let Ψε be the solution of problem (I.3.30) and Ψapp defined as in (I.3.31).
Moreover, let Ψε

ini be such that Ψε
ini|Ωε = ∂nΨε

ini = 0 and ‖(Ψε
ini − Ψapp)|t=0‖H1(Ωε) → 0.

There exists C∞, such that if ‖curl τ‖W 2,∞ < C∞, then

‖Ψε −Ψapp‖L2(0,T ;H2(Ωε) + ‖Ψε −Ψapp‖L∞(0,T ;H1(Ωε) → 0 as ε→ 0, almost surely.
(I.3.42)

The proof of I.3.4 is classical. In this case, the difficulty comes from computing the error
terms linked to the nonlinear advection component in the western boundary layer domain and
building additional correctors. The reason behind this is, once again, the slow convergence
of the eastern boundary layer profiles.

I.3.5.1 Perspectives

A natural question is to know whether these techniques are applicable to more complex
models. It would be interesting to discard the assumption (I.3.20) on the wind stress curl
with the added roughness. The linear case studied by Dalibard and Saint-Raymond [47] is
already quite complex due to the North-South singularities resulting from the geostrophic
degeneracy. In our case, we would additionally have to deal with the nonlinear aspect of the
model.

Another possibility consists of exploring the influence of roughness in the case of a domain
with islands. This model characterizes for the presence of multiple boundary layers (North,
South), free boundary layers in the north and the south of the islands, Stommel or Munk
layer as seen in [39].
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I.3.5.2 Outline of the Chapter II

The chapter is based on [62] and is organized as follows. First, we introduce the quasi-
geostrophic equations and discuss their physical and mathematical relevance. In Section
II.3 we formally construct an approximate solution of Ψε, introduce the main modeling
assumptions and establish the problems associated with the zeroth-order approximation of
the solution for the interior and boundary layer profiles. Then, in Section II.4, we present
the methodology behind the proof of several well-posedness results in this work for linear
and nonlinear/linearized problems in an unbounded rough domain. In Section II.5 we turn
to the well-posedness of the linear problem describing the behavior of the western boundary
layer. These results are crucial to proving Theorem I.3.2. Later, in Section II.6, the existence
and uniqueness of a solution for the nonlinear western boundary layer problem is shown in
Kato spaces under a smallness condition. Before proceeding to the convergence analysis, it is
necessary to show that all the approximate solution elements are well-defined. This leads in
Section II.7 to the analysis of quasi-linear problems in the western boundary layer domain,
which correspond to the behavior of the following order profiles at the West. Following the
same direction, Section II.8 focuses on the singular behavior of the eastern boundary layer
(see Theorem I.3.3). Once all the information on the different profiles has been gathered,
Section II.9 is devoted to the proof of the convergence result in Theorem I.3.4.

The following section is completely independent of this one since it presents the subject
of Chapter 3.

I.4 Asymptotic methods in the mathematical modeling of tissue
growth

Biological systems are inherently complex due to the multiple functional networks operating
at different temporal and spatial scales. From the theoretical perspective, understanding
the connection between the different scales brings us closer to bridging the gap between
experiments and whole-organism models [127]. Indeed, theoretical models and simulations
can significantly reduce experimental efforts while providing a detailed description of the
spatio-temporal evolution of a biological system and cast light on processes that are diffi-
cult to access experimentally. This type of study is usually conducted using a multiscale
mathematical approach.

A usual query in medical research refers to how the behavior of the individual cells may
influence tissue growth. In fact, a mass or new tissue with clear macroscopic features is
still deeply influenced by the behavior of individual cells, emphasizing the multiscale nature
of this biological phenomenon. At a “visible” scale, tissue growth is described either by
nonlinear partial differential equations or discrete modeling approaches, where nonlinearity
and the capacity of describing heterogeneous phenomena (the nonuniform distribution of the
microscopic states of cells) are common features. Continuum models examine the average
behavior of the cell densities or concentration, while the discrete models describe the behavior
of individual cells. Furthermore, continuum models can be classified as phenomenological or
mechanical models. The former disregard mechanical effects by assuming such that cells do
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not move. Conversely, mechanical models assume force or momentum balance to describe
the interactions between cell, matrix, and fluid components and their response to physical
forces. Within the mechanical approach, one can take the solid or fluid mechanics route
depending on how the cells are assumed to behave. If one considers cells conduct as a fluid,
these models typically consist of reaction-diffusion-convection equations of the form

∂n

∂t
+∇ · J = f, (I.4.1)

where n(t, x) is the cell population density, J is a general flux transport and f is a source
term depending on the spatio-temporal variables (x, t) and the concentration. The above
equation results from applying a general conservation law stating the equivalence between
the material change in a region and the flow across the boundary. A classical diffusion process
is obtained when J = D∇n, where D is the diffusivity coefficient. Taking D constant and
f = rn(1−n/K), where r denotes the linear reproduction rate and K the carrying capacity
of the environment yields the classical Fisher–Kolmogoroff equation. For a more information
on the matter the reader can refer to [96].

I.4.1 Mathematical models of tumor growth

The classical model (I.4.1) can be adapted to tissue growth by considering that cell prolifer-
ation increases the local pressure, thus, creating a velocity field.

I.4.2 Compressible agent-based model

Consider for (t, x) ∈ R+ × RN

∂n

∂t
+∇ · (nv) = nΦ(p(n)),

n(0, x) = n0(x) ≤ 0,
(I.4.2)

where n := n(t, x) ≥ 0 denotes the cell population density, p := p(t, x) = P (n) ≥ 0 corre-
sponds to the pressure induced by the cell number, v is the velocity field driving cell motion
and Φ is a function describing the net growth rate of cells, which is determined by contact
inhibition, which means tissue growth is only limited by the availability of space. Moreover,
Φ satisfies the following properties:

Φ ∈ C1(R), Φ′ < 0, Φ(pM ) = 0 for some pM > 0, (I.4.3)

where pM is usually called homeostatic pressure. The left-hand side on (I.4.2) describes the
cells proclivity to move towards regions where they are less compressed.

From a classical fluid mechanics standpoint, problem (I.4.2) describes a compressible
fluid whose changes in pressure are bounded by differences in density through the law P (n).

Choosing the appropriate framework is of paramount importance. It is determined by
assumptions on the velocity field behavior and the state law p = Π(n) in (I.4.2) and can lead
to a variety of models.
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I.4.2.1 Velocity field behavior

Phenomenological models are characterized by simple diffusion similar to the Fisher–Kolmogoroff
equation. In particular, the average of the velocity over the cross-section is considered to be
of the form

v = −D∇p,

where D refers to the diffusion coefficient. The diffusivity D can be taken as a positive
constant, in which case, cell movement can described using linear or nonlinear diffusion
D := D(n), which has proven to be useful when studying gliomas, and movements such as
chemotaxis and haptotaxis [128].

Although these models succeed in describing the interactions between the cells, such as
contact inhibition, they fail to explain the influence of the elastic membrane. In such cases,
it is suitable to consider the tissue as a viscous Newtonian fluid in which the tissue grows on
much longer timescales than those of elastic stress relaxation.

We now present velocity field laws that are usually considered when studying tumor
growth with proliferation as a compressible fluid. It is important to notice this type of
problems are supplemented with a state law p = P (n). The possible choices for the pressure
function will be discussed right after this paragraph.

I.4.2.1.1 Darcy’s law. If one assumes fluid-like cells, the simplest constitutive equation
for the stress results from assuming that the cells move as an elastic fluid within a rigid
extracellular matrix. Darcy’s law describes cells as a granular material flowing in a porous
medium (the extracellular matrix). The constitutive equation is as follows:

v = −K
µ
∇p, (I.4.4)

where p, µ and K are the fluid pressure, the dynamic viscosity of the fluid, and the per-
meability of the porous medium, respectively. This law describes a linear proportionality
between the flow velocity and the pressure gradient. Henry Darcy introduced this relation
in 1856 through his experiments with sand and water.

The use of Darcy’s model in the study of tumor growth traces back to the seminal work
of Greenspan [138] and has been further developed by several authors. For a survey on the
extensive use of this constitutive equation in the context of tissue and tumor growth, the
interested reader can turn to [129, 130].

For liquids at high velocities, Darcy’s law is no longer valid. In this scenario, it is
suitable to incorporate the pressure in the fluid velocity through Stokes flow, Brinkman’s or
Navier–Stokes’ laws [131, 132].

I.4.2.1.2 Brinkman’s Law. Another constitutive law results from combining Darcy’s
law with Stokes flow, and it is known as the Brinkman equation, see [140]. In this case, the
velocity field associated with the fluid flow v is described by the equation

− µ∆v + v = −k
µ
∇p, (I.4.5)

where p and µ are the pressure and viscosity of the fluid, respectively; and v is the bulk
velocity. Note that the term on the right-hand side coincides with Darcy’s law and is used
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as a corrector. For example, when the extracellular matrix degrades and large pores appear,
the viscous term applies in the large pores, while Darcy’s law concerns the unscathed region,
see for example [140, 131, 139] and the references therein.

I.4.2.1.3 Stokes flow. This constitutive equation is chosen when assuming the cell-
matrix medium behaves as a viscous fluid, see [136], for example. Contrary to Darcy’s law,
velocity and pressure are no longer coupled

− µ∆v +∇p− κ∇(divv) = 0. (I.4.6)

Here, µ, κ > 0 are viscosity coefficients. Several studies have concluded the Stokes flow
is better suited to model tumors due to simulations being closer to experimental data, see
for example [142]. Viscoelastic models for tumor growth based on Stokes’ or Brinkman’s
differ from those using Darcy’s law in that pressure is determined by tissue incompressibility
instead of a state law.

I.4.2.1.4 Navier-Stokes. Navier-Stokes equation determines a more general relation
between the cell density n and the pressure p since Darcy’s law, Stokes’ law or Brinkman’s
law can be formally derived from it. To (I.4.2), we add the equation

n(∂tv + v · ∇v)− µ∆v − κ∇divv +∇p = 0, (I.4.7)

where µ, κ > 0 are viscosity coefficients.

I.4.2.2 Pressure law

Model (I.4.2) describes cellular heterogeneity by considering different pressure laws to de-
scribe the response of the tissue to external forces. Among the most widely used state
laws in the mathematical modeling of tumor growth, we have power and singular pressure
laws. They share a common feature: the repulsion between cells becomes “singular” at the
asymptotic limit (γ → +∞ for the power law and ε→ 0, for the singular pressure).

I.4.2.2.1 Power law. Barotropic power laws are usual in fluid mechanics and have
proven to provide an appropriate description for a variety of particulate and polymeric
fluids[153]. One representative example is

p = P (n) := C(γ)
(
n

nM

)γ
, (I.4.8)

where γ > 1 provides a measure of the stiffness of the barotropic relation and accounts for the
property of finite speed of propagation, C(γ) is a normalization constant and nM is generally
understood as the maximum packing constraint of the cells. This law allows to recover from
(I.4.2) the porous medium equation ∂tn = ∆(nm) for m > 1. We refer to the book [141] for
more information on this equation.
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I.4.2.2.2 Singular pressure. In collective motion models, it is usual to assume the
non-overlap constraint on the microscopic components, particularly the cells forming the
tissue. In highly dense regimes, they can alter the flow’s dynamics by inducing some non-
local effects. When non-overlap conditions are enforced at a population level, we encounter
singular pressure laws of the type

P (n) = ε
n

1− n. (I.4.9)

At the macroscopic level, the singularity in (I.4.9) acts as a barrier before the appearance
of a congested zone at n = 1. Formally, at a microscopic level, such a limit imposes non-
overlapping constraints while leading to free boundary problems.

I.4.3 Free-boundary models and the incompressible limit
It is also possible to assume the tumor as a moving domain of constant density at the
macroscopic level. In this case, the evolution equations describe the changes of the boundary
between the healthy tissue and the tumor. The first mathematical model in the form of a
free boundary problem used to describe tumor growth appeared in the 1970s in the works of
Greenspan [138, 143]. His reaction-diffusion model for the cell substrates was then improved
by Byrne and Chaplain in the 1990s for radially symmetric tumors without and with necrosis
[144, 145] and has attracted much attention ever since, see, for instance, the survey papers
by Friedman [147] and Lowengrub et al. [146].

The last fifty years have witnessed an increasing interest on rigorously investigating the
link between incompressible and compressible models within the mathematical community.
The emergence of this topic in fluid mechanics was motivated by simple physical examples
such as the behavior of compressible isentropic fluids when the Mach number becomes in-
creasingly smaller [148]. The study of the incompressible limit is key for the derivation of
macroscopic equations from microscopic dynamics (agent-based models) in the case of short-
range repulsive social forces preventing contacts between individual components that are, in
the case of tumor growth, the cells.

The first results in mathematical biology regarding the link between compressible and
incompressible models are due to Perthame, Quirós, and Vázquez [85]. The authors con-
sidered (I.4.2) when the tissue bulk velocity abides Darcy’s law (I.4.4) and the density and
pressure are linked trough a power law of type (I.4.8). In particular, they studied the purely
mechanical model

∂tnγ +∇ · (nγv) = nγΦ(pγ) in R+ × RN ,
nγ(0, ·) = n0

γ ∈ L1
+(RN ),

v = −∇pγ ,
(I.4.10)

where pγ = P (nγ) follows

P (nγ) = γ

γ − 1

(
nγ
nM

)γ−1
. (I.4.11)

Here, the parameter γ refers to the strength of the repulsive forces, and the function
Φ satisfies (I.4.3). Problem (I.4.10) describes a highly dense regime and displays non-local
effects due to the maximal packing constraint. In the range of γ > 1, (I.4.10) degenerates at
the level p = 0. When considering γ → +∞, we observe two zones: one close to the maximal
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density constraint, where the pressure becomes increasingly negligible for a fixed n < 1 and
another one, where the pressure is nonzero and n = 1. This produces the existence of a mov-
ing interface, separating the regions {n(t, ·) < 1} and {n(t, ·) = 1}. This phase transition
phenomenon indicates the presence of congestion. From the mathematical standpoint, the
pressure p can be seen as a Lagrange multiplier associated with the incompressibility con-
straint in {n ≤ 1} [83]. The compressible system (I.4.10) with singular behavior is classified
as a soft congestion model.

Using the distributional solution approach: a combination of variational formulations on
the so-called Baiocchi variable, i.e. weak solutions in the sense of Elliot and Janovsky[187],
and viscosity solutions; Perthame, Quirós, and Vázquez showed for initial data n0 ∈ L1

+(RN )
that when γ → +∞ in (I.4.10)–(I.4.11), the solution pair (nγ , pγ) converges to a solution of
the Hele-Shaw model

∂tn−∇(n∇p) = nΦ(p) in R+ × RN , (I.4.12a)

0 ≤ n ≤ 1, (1− n)p = 0, (I.4.12b)

p
(
∆p+ Φ(p)

)
= 0. (I.4.12c)

Note that there is a transition phase with an evolving free boundary between the tumor
region, where the density is saturated (n = 1) and p activates; and the pre-tumor zone where
the density is “free”, in the sense that n < 1 and p = 0 (the support of 1−n). This behavior is
condensed in the exclusion condition (I.4.12b). Equation (I.4.12c) is known in the literature
as complementarity condition. Free-congested systems of type (I.4.12) are known as hard
congestion models. For a survey on congested phenomena in fluid mechanics, see [111].

The effect of the limit γ → +∞ was already well known in the porous medium equation
case (PME), i.e., equation (I.4.12) with Φ ≡ 0 and can be found in [89, 90, 91, 150]. It
has been proven that for initial datum larger than 1 on a nontrivial set, the solution pair
(nγ , pγ) of (I.4.10)–(I.4.11) converges to solution of the Hele-Shaw problem (n, p) satisfying
Supp n ⊆ [0, 1] when γ → +∞. The upper part of the initial datum collapses to n = 1
at t = 0+ as a consequence of the diffusivity γnγ−1 → +∞ whenever n > 1. This height
constraint at {n = 1} induces the limit function n to graphically mimic the silhouette of a
“mesa”: a flat-topped mountain commonly seen in the West of the USA, Australia, Israel,
Germany and England. Numerical studies show the mesa formation is already apparent for
relatively low values of m (m ∼ 6) with bell-shaped initial data [188]. Consequently, the
study of the incompressible limit in the PME is said to belong to the mathematical theory
of the Mesa problem.

Mellet, Perthame and Quirós in [88] studied further the free boundary problem (I.4.12)
and showed additional results on its regularity at ∂{n = 1} using integral estimates. More-
over, they showed in a weak (distributional) sense that the velocity law normal to the free
boundary in the tumor region ∂{n = 1} is

V = Dp

1−min(1, n0eΦ(0)t)
, (I.4.13)

a formula that was first suggested in [85].
In 2018, Kim and Požar [133] obtained the same results of [85, 88] using pointwise

arguments. In particular, the authors use a viscosity solution approach based on radially
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symmetric functions with fixed boundaries to show that the density uniformly converges far
from the edge of the tumor. They also proved the formula (I.4.13) for general solutions.
Recently, David and Schmidtchen solved the question of the strong compactness of the
pressure gradient when considering the incompressible limit in (I.4.10)–(I.4.11) and similarly
to [85], they were able to obtain the complementarity relation for the pressure using a weak
(distributional) approach, see [134].

Perthame, Quirós, and Vázquez in [85] succeeded to extend the results on the purely
mechanical model to the case when the tumor growth depends additionally on the concen-
tration of nutrients. The main system in this case is (I.4.10)–(I.4.11) with an additional
equation to describe the diffusion of nutrients in the tumor:

∂tc−∆c = −nΨ(p, c),
c(x, t) = cB > 0 as |x| → +∞,

(I.4.14)

where c denotes the density of nutrients, and cB is the far field supply of nutrients. The
coupling function Ψ describes the effect of the vasculature network bringing the nutrients to
the cells and their consumption. This function is considered to be smooth and satisfies

∂pΨ ≤ 0, ∂cΨ ≥ 0, Ψ(p, 0) = 0.

The birth/death process of cells modeled by function Φ is also considered to be dependent
on the amount of nutrients and therefore, the conditions

∂pΦ < 0, ∂cΦ ≥ 0, Φ(pM , cB) = 0,

join the ones in (I.4.3). Perthame, Tang and Vauchelet proved the existence of traveling waves
for the Hele-Shaw model with nutrients (I.4.12)–(I.4.14) in [121]. They showed through semi-
analytical formulae that a sharp front separates the healthy part from the cancerous tissue
near n = nM ; and, the pressure is differentiable from the edges of the tumor to the necrotic
core where p = 0.

In [112], the convergence of a more general model to a free boundary model of Hele-
Shaw type was shown following the strategy in [135] of ignoring compactness on the cell
densities and prove strong compactness on the pressure gradient using an Aronson-Bénilan
type estimate. It is worth noting that such a model had systems in [85] and [121] as particular
cases. The same method was used in [113] in the study of (I.4.10)-(I.4.11) for the case of
two types of cancerous cells.

The previous convergence results by Perthame, Quirós and Vázquez for the purely me-
chanical model were later extended by Hetch and Vauchelet [86] to the case where a non-
overlapping constraint is imposed on the cells, leading to the singular pressure law P (nε) in
(I.4.9). Here, the incompressible limit is established when ε→ 0 making similar hypotheses
on the growth function Φ but adding boundness to deal with the singularity in the pressure
law. Regularizing effects are used to prove convergence, unlike [85] where well-known results
on the PME lead to the compactness and later convergence of the solution pair (nε, pε) to
the solution of the free boundary model of Hele-Shaw type (I.4.12).

The question of the incompressible limit for (I.4.2) with state law (I.4.11) including vis-
coelastic effects has been analyzed when v follows the Brinkman equation (I.4.5) by Perthame
and Vauchelet in [114], while the general case where the velocity and the pressure are re-
lated via the Navier-Stokes equation (I.4.7) was the main focus of the work by Vauchelet
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and Zatorska [116]. A clear difference concerning the models based on Darcy’s law is that
the complementarity condition for the pressure depends on the viscosity. Unlike the cases
of Navier-Stokes and Darcy’s law, for which several mathematical results were already in
existence and simplified the obtention of compactness results, Brinkman law introduces two
major drawbacks: the space discontinuity of the pressure and the lack of known regularizing
effects for the transport equation. Consequently, in [116] the strong compactness using the
kinetic reformulation of the problem and then, carefully analyzing all possible oscillations of
the pressure.

The reader interested in a more detailed discussion on the the evolution of the question
of the incompressible limit in the mathematical modeling of tumor growth can refer to [134].

I.4.4 Traveling wave solutions of the Hele-Shaw model for tumor growth

In the previous section, we confirmed considering the incompressible limit in (I.4.2) is physi-
cally relevant since the study of the tumor tissue is reduced to the analysis of an incompress-
ible elastic material in a confined environment. The limiting model is a Hele-Shaw type free
boundary problem. The Hele-Shaw cell is known for being a useful tool to study pattern
formation in the transition between a viscous and an effectively inviscid fluid.

Despite all the attention this question has drawn, the issue of traveling wave solutions
(TWs, for short) to (I.4.12) is still not well understood. The TWs form a class of special
solutions that are known to provide valuable information on general solutions of nonlinear
reaction-diffusion equations and account for phase transitions between different states of
physical systems, propagation of patterns, and domain invasion in population biology (see
the books [122] and [123]). In the study of tumor growth, these solutions are thought to
represent waves of malignant cellular invasion into healthy surrounding tissue.

To the best of our knowledge, few researchers have addressed this question. In [121],
Perthame, Tang and Vauchelet investigated the existence of this type of solution for the
Hele-Shaw model with nutrients (I.4.12)–(I.4.14). The existence of TWs in (I.4.10) for a
fixed value of γ was not provided and the radial instabilities appearing in the numerical
simulations were not explored from the analytical point of view.

Therefore, in an attempt to fill the gap in the literature, we are interested in investigating
the smooth TWs when γ →∞ of the nonlinear parabolic equation

∂tn− ∂x
(
n∂xp(n)

)
= nΦ(p(n)) in R+ × R, (I.4.15)

where
p(n) = pγ(n) = nγ with γ > 1, Φ(p) = 1− p. (I.4.16)

Note that the homeostatic pressure pM is unitary, which means that cells are destroyed
above the maximal packing density nM = 1. Problem (I.4.15) is endowed with the boundary
conditions

lim
x→±∞

n(t, x) = n±,

where n± are constant stationary states of the equation (equilibrium solutions). It is addi-
tionally considered that n− = nM = 1, and n+ = 0. In our view, this analysis takes us a
step closer to a better understanding of the free boundary ∂{n = 1} for the limit Hele-Shaw
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system 
∂tn− ∂x(n∂xp) = nΦ(p) in R+ × R, (I.4.17a)
0 ≤ n ≤ 1, (1− n)p = 0, p ≥ 0, (I.4.17b)
p
(
∂2
xp+ Φ(p)

)
= 0. (I.4.17c)

Equation (I.4.15) is a particular case of the quasilinear degenerate second-order parabolic
type

∂tn+ βnγ∂xn = ∂x(αnγ∂xn) + ζn(1− nγ). (I.4.18)
Note that taking β = 0, α = γ

γ+1 and ζ = 1 in (I.4.18) yields (I.4.15). 3The existence and
uniqueness (up to a shift) of a monotone (decreasing) TW solution of the form nγ(x, t) =
Nγ(x−ct) = Nγ(ξ), for some sufficiently regular function Nγ (the wave profile) and constant
wave speed c ∈ R when γ → ∞; and its asymptotic behavior close to ±∞ for c larger than
a threshold velocity c∗γ > 0 result from the works of Gilding and Kersner [117].

Kamin and Rosenau [125] investigated (I.4.18) taking α = ζ = 1, β ∈ R and proved
that the solutions converge to a sharp TW solution with speed c∗ in a weighted L1-norm
whenever the initial condition is non-negative, bounded, and exponentially converges towards
a sharp TW. The authors relied on a method used in stability analysis of shock waves for
viscous conservation laws. Although interesting, a major disadvantage of their approach is
that it is specific to the critical speed c∗ of the sharp fronts. In particular, the “weighted”
conservation of mass property and the contraction principle cannot be adapted to the case
where wavefronts propagate at speed c > c∗. The results in [125] were later generalized by
Malaguti and Ruggerini [151] by providing a characterization of the TWs in the case where
a general reaction term of Fisher type4 f(n) is considered instead of ζn(1− nγ).

To date, the only result dealing with a family of smooth fronts with speed c > c∗ belongs
to Leyva and Plaza in [110]. Here, the authors establish the spectral stability in exponentially
weighted spaces of smooth monotone traveling fronts for the equation

∂tn = ∂x(D(n)∂xn) + f(n), (I.4.19)

where the diffusion coefficient D = D(n) is a nonlinear, non-negative, density-dependent
function degenerating at n = 0, and f(n) is a Fisher type function. They use relative entropy
type estimates to overcome the difficulties stemming from the degeneracy and adapted to
some L2 exponential weights.

I.4.5 Contributions
This section contains the main results of Chapter 3. This work is a collaboration with
Anne-Laure Dalibard and Charlotte Perrin.

We study the asymptotic behavior of TWs of the reaction-diffusion equation (I.4.15)–
(I.4.16), i.e., the solutions of the form (nγ , pγ) = (Nγ , Pγ)(x− ct), where c > 0 is a constant
representing the traveling wave speed and Nγ , Pγ are real nonnegative functions.

3Other known mathematical equations with these characteristics are the Fisher-KPP equation with non-
linear diffusion (β = 0, α > 0, ζ > 0) and the degenerate Burgers equation (β 6= 0, α > 0, ζ = 0).

4The function f is said to be of Fisher type if it satisfies

f(0) = f(1), f > 0 for 0 < s < 1, f < 0 for s > 1.
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Considering the incompressible limit γ → +∞ raises several questions. For example,
do the TWs of the initial system (I.4.15)–(I.4.16) converge to those of (I.4.17)? If yes, is
the convergence strong or weak? Can we provide a detailed description of the convergent
subsequences? Finally -a classical query in dynamical systems- are the solutions stable under
small perturbations?

We provide some answers by showing the convergence of smooth fronts of (I.4.15)–(I.4.16)
towards the TWs of (I.4.17). We also conduct a nonlinear stability analysis of the solutions
of (I.4.15)–(I.4.16) where the perturbations are quantified with respect to γ. The major
difficulty here lies in the fact that on the one hand, we have continuous representations of
phase transitions for the microscopic model, while at the other, the limiting Hele-Shaw model
presents a major sharp interface at ∂{n = 1} as a result of the discontinuous gradient.

From (I.4.15)–(I.4.16), the profile Nγ is the solution of the problem:

−cN ′γ − γ(Nγ
γN
′
γ)′ = Nγ(1−Nγ

γ ),
lim

ξ→−∞
Nγ(ξ) = 1, lim

ξ→+∞
Nγ(ξ) = 0. (I.4.20)

The existence and uniqueness (up to a shift) of a monotone (decreasing) traveling wave
solution Nγ(x− ct) of (I.4.15) for all c ≥ c∗γ =

√
γ

γ + 1 and its asymptotic behavior close to

±∞ are a direct consequence of the works by [117]. Note that the value of Pγ is obtained by
substituting Nγ in (I.4.16). For traveling wave variable ξ ∈ R defined by ξ = x− ct, we have

Theorem I.4.1 (Gilding & Kersner [117]). Let c∗γ =
√

γ
γ+1 .

1. System (I.4.20) has a unique solution Nγ (up to a shift) for every c ≥ c∗γ and no
solution for c < c∗γ.

2. When c = c∗γ, Nγ is a sharp front, i.e. the support of Nγ is bounded above, and, modulo
translation,

Nγ(ξ) =
{

(1− exp (cξ))1/γ for ξ < 0,
0 for ξ ≥ 0.

3. When c > c∗γ, Nγ is positive, strictly monotonic and satisfies

(ln(1−Nγ))′(ξ)→

√
1 + c2

4γ2 −
c

2γ = 1√
1 + c2

4γ2 + c

2γ

as ξ → −∞, (I.4.21)

and
(ln(Nγ))′(ξ)→ −1

c
, as ξ → +∞.

The TWs of the limiting system (I.4.17) satisfy the following:

Lemma I.4.1. For c > 1 arbitrary, the following properties hold:
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1. Define the profile (NHS , PHS) ∈ L∞(R)×W 1,∞(R) by

PHS(ξ) =
{

0 if ξ > 0,
1− eξ if ξ < 0, NHS(ξ) =


(

1− 1
c

)
e−

ξ
c if ξ > 0,

1 if ξ < 0.
(I.4.22)

Then (NHS , PHS)(x−ct) is a traveling wave moving at speed c solution of the Hele-Shaw
system

cN ′ + (NP ′)′ +NΦ(P ) = 0, (I.4.23)
0 ≤ N ≤ 1, (1−N)P = 0, P ≥ 0, (I.4.24)

P (P ′′ + Φ(P )) = 0. (I.4.25)

2. Let (N,P ) ∈ L∞(R)×W 1,∞(R) be a traveling wave profile moving at speed c of the Hele-
Shaw system (I.4.17). Then there exists ξ0 ∈ R such that (N,P ) = (NHS , PHS)(·− ξ0).

The first result of this work concerns the convergence of (Nγ , Pγ) to the TWs of (I.4.15)–
(I.4.16). The proof relies on the continuity of the flux Jγ = cNγ + NγP

′
γ at the interface,

similarly to [124]. The following theorem contains the convergence result in addition to the
qualitative and quantitative properties of (Nγ , Pγ) that are necessary to obtain it.

Theorem I.4.2. Let us fix the shift such that Nγ(0) =
(

1
γ

)1/γ
. Assume γ > 1 sufficiently

large, c > 1 be fixed, independent of γ, and let Nγ be the solution of (I.4.20) such that
Pγ(0) = 1

γ . Then the following properties hold true.

• There exist ξ−γ , ξ̃γ with ξ−γ = O
(

1√
γ

)
< 0 < ξ̃γ = O

(
1
γ

)
, such that the profile (Nγ , Pγ)

satisfies

– in the congested zone ξ < ξ−γ , the density Nγ converges uniformly to 1: there
exists a constant C > 0 depending only on c such that(

C
√
γ

) 1
γ

≤ Nγ(ξ) ≤ 1 ∀ ξ ≤ ξ−γ , (I.4.26)

and there exist constants C ′ ≥ C > 0 independent of γ such that

1−
(

1− C ′
√
γ

)
e(1−Cγ−1/2)ξ ≤ Pγ(ξ) ≤ 1−

(
1− C
√
γ

)
eξ ∀ ξ ≤ ξ−γ ; (I.4.27)

– in the intermediate region ξ ∈ [ξ−γ , ξ̃γ ], N ′γ takes exponentially large values with
respect to γ:

‖N ′γ‖L∞(ξ−γ ,ξ̃γ) = O

((
1− 1

2c

)−γ)
, (I.4.28)

while the pressure Pγ converges uniformly to 0 as γ → +∞: there exists δ ∈
(0, 1− c−1), independent of γ such that(

1− 1
c
− δ

)γ
≤ Pγ(ξ) ≤ C

√
γ

∀ ξ ∈ [ξ−γ , ξ̃γ ]; (I.4.29)
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– in the free zone ξ > ξ̃γ, the pressure Pγ takes exponentially small values (wrt γ):
Pγ(ξ) ≤

(
1− 1

2c

)γ
and Nγ decreases exponentially to 0 as ξ → +∞: there exists

δ > 0 independent of γ, such that for γ large enough(
1− 1

c
− δ

)
exp

(
−
(1
c

+ δ

)
ξ

)
≤ Nγ(ξ) ≤

(
1− 1

c
+ δ

)
exp

(
− 1

2cξ
)
∀ ξ > ξ̃γ ;
(I.4.30)

• As γ → +∞, there exists (NHS , PHS) ∈ L∞(R) ×W 1,∞(R) such that Nγ → NHS in
Lploc(R) and Pγ → PHS in W 1,p

loc (R) for any p ∈ [1,∞[, and (NHS , PHS) is a wave-
front profile of the Hele-Shaw equations (I.4.17) such that PHS(ξ) = (1 − eξ)1ξ≤0,
limξ→0+ NHS = 1− 1

c .

Passing to the (weak) limit in equation (I.4.20) is possible thanks to the strong conver-
gence of Pγ and the weakly-* convergence of Nγ to NHS in L∞(R). The limit (NHS , PHS)
satisfies the equation

− cN ′HS − (NHSPHS)′′ = NHS(1− PHS), (I.4.31)

in the sense of distributions. Making separate analysis in the free and the congested zones,
we are able to show that this limit coincides with a traveling wave solution of (I.4.17). The
jump of NHS at ξ = 0 results from the continuity of the flux J = CN +NP ′.

The second result establishes the convergence in weighted Sobolev spaces of the solution
of (I.4.15)–(I.4.16) towards Nγ as t→ +∞ when the initial data lies between two translations
of the profile Nγ .

Theorem I.4.3. Let
W (ξ) := Nγ(ξ)γ exp

(∫ ξ

ξ−γ

c

γNγ
γ

)
.

be a weight with double exponential growth as ξ → +∞, and a exponential decay as ξ → −∞.
There exists constants η1, η2 ∈]0, 1[, depending only on c > 1, such that the following result
holds.

Let γ > 1 be fixed, sufficiently large. We make the following assumptions on the initial
data n0

γ:

(H1) n0
γ lies between two shifts of Nγ, i.e. there exists h > 0 such that n0

γ(x) ∈ [Nγ(x +
h), Nγ(x− h)] for all x ∈ R;

(H2) The difference n0
γ −Nγ is sufficiently decaying, namely∫

R

(
n0
γ(x)−Nγ(x)

)2
W (x)dx <∞.

Let nγ be the solution of (I.4.15) associated with n0
γ.

Then there exists a constant cγ > 0, cγ = O(ηγ1 ), such that if |h| ≤ ηγ2 , the following
inequality holds:∫

R
(nγ(t, x)−Nγ(x− ct))2W (x− ct) dx ≤ e−cγt

∫
R

(
n0
γ(x)−Nγ(x)

)2
W (x)dx ∀t ≥ 0.
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Moreover, setting uγ(t, x) := (nγ(t, x) −Nγ(x − ct))/N ′γ(x − ct), we have the additional
dissipation of energy:

γ

∫ ∞
0

∫
R

(∂xuγ(t, x))2(Nγ
γ (N ′γ)2W )(x− ct) dx dt ≤

∫
R

(
n0
γ(x)−Nγ(x)

)2
W (x)dx.

Computations lead to u satisfying an equation of the type

∂tuγ + Luγ = G[uγ ].

Here, L is a linear operator resulting from the linearization of (I.4.15) around nγ = Nγ ,

L := b∂x − a∂xx,

where

a(t, x) = ā(x− ct) := γNγ , b(t, x) = b̄(x− ct) := −2γ
(
NγN ′

)′
N ′

.

G[u] denotes the resulting quadratic operator satisfying

|G[u]| ≤ Cγ |u|(|u|+ |∂xu|). (I.4.32)

The proof relies upon two main ideas using the coercivity of the linear operator L and
treating the nonlinear term G[u] as a perturbation of the linearized problem. For the latter,
it is important to obtains a L∞ control on nγ−Nγ and a L2 weighted estimate on uγ . The L∞
control is a direct consequence of the parabolic nature of the equation and is obtained using
a comparison principle. The L2 weighted estimate is based on the two following inequalities:

Proposition I.4.1 (Weighted Poincaré-type inequality). Let v ∈ C1
c (R).

Then there exists a constant C̄ independent of γ and a constant Cγ ≤ Cγ such that

∫ ξ−γ

−∞
v2γNγ

γ w̄0dξ +
∫ +∞

ξ̃
v2 1
γNγ

γ
w̄0dξ ≤ C̄

∫
R

(∂ξv)2āw̄0 dξ + Cγ

∫
R
v2e
√
γξ dξ. (I.4.33)

In particular, there exists a constant cγ, satisfying cγ ≥ ηγ for some η ∈]0, 1[ independent
of γ, such that

cγ

∫
R
v2w̄0dξ ≤

∫
R

(∂ξv)2āw̄0 dξ +
∫
R
|v|2 exp(√γξ)dξ.

The asymptotic behavior of Nγ and its derivatives greatly impact the size of the pertur-
bations in the stability analysis. Indeed, the size of cγ is linked to fact that ‖N ′γ‖L∞(R) blows
up exponentially as γ → ∞. We, therefore, need ‖u‖L∞ to be exponentially small to treat
the quadratic term as a perturbation. The remainder of the proof is classical. It relies on
the coercivity of the linear operator L, and G[u] is absorbed in the energy dissipation.

I.4.5.1 Perspectives

It would be interesting to adapt the analysis to the case where the mechanical pressure
comprises the non-overlapping of cells but still generates cell displacement with a velocity
field following Darcy’s law. In [86] it was proven that for the singular law, taking the
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incompressible limit when ε → leads to the Hele-Shaw model (I.4.17). For this equation,
up to our knowledge, there are no known results on the existence of TW solutions for a
given ε > 0. The general models dealing with similar reaction-diffusion equations assume
the diffusion term to be C1([0, 1]), where 0 and 1 are the equilibrium solutions [95]. This
is not the case of ε nε

(nε−1)2 at nε = 1. Indeed, the lack of known results for the model with
singular pressure was one of the main difficulties stated by Hecht and Vauchelet [86].

Another possible extension includes not changing the power-law but the velocity field to
include viscosity effects using the Brinkman or Navier-Stokes equations as in [114] and [116],
respectively.

One could also consider the same problem (I.4.15)–(I.4.16) in a higher dimension. It
is a well-known fact that most realistic models of biological interest are multidimensional
and involve several dependent variables. In this case, one of the main issues regards the
fact that the Hele-Shaw problem does not necessarily have a global classical solution in
multidimensional spaces due to cusp-like singularities5 appearing at the free boundary [185].

I.4.5.2 Outline of Chapter III

The chapter is organized as follows. In section III.2, we provide a description of traveling wave
solution for both systems (I.4.15) and (I.4.17). Here, we also give a refined description of Nγ

in the transition zone between the congested and the free region. Then in Section III.3, the
nonlinear asymptotic stability of the profile Nγ is shown in an L2-weighted norm for small
perturbation depending on γ. The key ingredients of stability analysis are the linearized
system around Nγ and a weighted Poincaré inequality. The proof of this result is left to
Section III.4.

5A cusp or spinode (in French, point de rebroussement) is a local singularity not resulting from self-
intersection but from the point of the curve moving in a reverse direction.
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This chapter deals with the so-called homogeneous model of wind-driven ocean circu-
lation or the single-layer quasi-geostrophic model. Our attention is focused on performing
a complete asymptotic analysis that highlights boundary layer formation along the coastal
line. We assume rough coasts without any particular structure, resulting in the study of a
nonlinear PDE system for the western boundary layer in an infinite domain. As a conse-
quence, we look for the solution in nonlocalized Sobolev spaces. Under this hypothesis, the
eastern boundary layer exhibits a singular behavior at low frequencies far from the rough
boundary, leading to issues with convergence. The problem is tackled by imposing ergodic-
ity properties. We establish the well-posedness of the governing boundary layer equations
and the asymptotic solution. Our results generalize the ones of the paper by Bresch and
Gérard-Varet [53] in the context of periodic irregularities.

II.1 Introduction
This chapter addresses roughness-induced effects on geophysical fluid motion in a context
where small irregularities have very little structure. In geophysics, this phenomenon is usual
when looking at the indentations on the bottom of the ocean and shores. The analysis will
be conducted on the homogeneous model of wind-driven ocean circulation, also known as
the 2D quasigeostrophic model. In this case, the input is the planetary wind-stress field over
the ocean, while the output is the transport that takes place into the mid-depth layer and
is forced by the Ekman pumping, due to wind stress, above this layer. Steady circulation is
then maintained by bottom friction and lateral diffusion of relative vorticity.

The mathematical description of the model is as follows: let Ψ = Ψ(t,x) ∈ R be the
stream function associated to the two-dimensional velocity field u = (u1(t,x), u2(t,x))t. In
a simply connected domain Ω ⊂ R2 to be described later on, the system reads


(
∂t +∇⊥Ψ · ∇

)
(∆Ψ + βy − Fr Ψ + ηB) + r∆Ψ = β curl τ + Re−1∆2Ψ,

Ψ|∂Ω = ∂Ψ
∂n = 0

Ψ|t=0 = Ψini,

(II.1.1)

where

• ∇⊥Ψ · ∇ is the transport operator by the two-dimensional flow;

• ∆Ψ is the vorticity, and r∆Ψ , r > 0, is the Ekman pumping term due to bottom
friction;
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• Fr is the Froude number due to the free surface ;

• β > 0 is a parameter characterizing the beta-plane approximation which results from
linearizing the Coriolis factor around a given latitude;

• ηB describes the variations of the bottom topography;

• β curl τ is the Ekman pumping term due to wind stress at the surface, where τ is a
given stress tensor; and,

• Re denotes the Reynolds number.

Here, Ψini is chosen such that data is “well-prepared”, i.e., we need Ψini to converge at
least in H1(Ωε) to a function to be specified later on. For a formal derivation of the model
(II.1.1) from the Navier–Stokes equations, we refer the reader to [40] and [17]. If the basin
is closed and if we assume that there is no water outflow, then the flux corresponding to
the horizontal velocity has to vanish at the boundary, from which we have the homogeneous
boundary condition Ψ|∂Ω = 0. Moreover, the presence of the diffusion term Re−1∆2Ψ
requires the no-slip boundary condition ∂Ψ

∂n = 0.
Under certain hypotheses (fast rotation, thin layer domain, small vertical viscosity) and

proper scaling, B. Desjardins and E. Grenier proved this model describes asymptotically a
2D fluid [45]. The authors performed a complete boundary layer analysis of the model in
the domain

Ω =
{

(x, y) ∈ R2 : χw(y) ≤ x ≤ χe(y), ymin ≤ y ≤ ymax
}
,

where χw and χe are smooth functions defined for y ∈ [ymin, ymax]. The forcing term τ
was assumed to be identically zero when y is in a neighborhood of ymin and ymax. This
assumption is crucial to avoid the strong singularities near the northern (max) and southern
(min) ends of the domain, known as geostrophic degeneracy [47].

In the context of ocean currents, the Rossby parameter β and Reynolds number are
very high. A first approximation of the solution confirms (II.1.1) is a singular perturbation
problem and there is boundary layer formation. These problems are often tackled by a
multi-scale approach. Therefore, it is natural to look for an approximate solution of (II.1.1)
of the form

Ψε ∼ Ψint(t, x, y) + Ψbl(t, y,X(ε), Y (ε)),

where X(ε), Y (ε) are the boundary layer or fast variables.
Following this reasoning, Desjardins and Grenier derived the so-called Munk layers, re-

sponsible for the western intensification of boundary currents. D. Bresch and D. Gérard-Varet
[53] later generalized these results for the case of rough shores with periodic roughness. In
this case, the ocean basin was described by a domain

Ωε =
{

(x, y) ∈ R2 : χw(y)− εγw(ε−1y) < x < χe(y) + εγe(ε−1y), ymin ≤ y ≤ ymax
}
,

(II.1.2)
where ε is a small positive parameter and γw, γe are regular and periodic functions describing
the roughness of the West and East coasts, respectively. Taking into account rough coast-
lines leads naturally to additional mathematical difficulties. For example, the usual Munk
system of ordinary differential equations is replaced by elliptic quasilinear partial differential
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equations. Nevertheless, the periodicity assumption on the structural properties of γe, γw
simplifies the analysis of the existence and uniqueness of the solutions.

A natural extension of this work would be dropping the periodicity assumption, since
the geometry of the boundary is not meant to follow a particular spatial pattern. Our goal
is to study the asymptotic behavior of problem (II.1.1) when functions γe, γw are arbitrary,
therefore generalizing the results of [53].

We are able to show three main results:

1. The western boundary profiles are well-defined and decay exponentially far from the
boundary (cf. Theorem II.2.1).

2. In the eastern boundary layer profiles, three components with different asymptotic be-
havior far from the boundary can be identified: one decaying exponentially, another
converging to zero at a polynomial rate, and a third one whose convergence is guar-
anteed adding ergodic properties. Their well-posedness is completed by adding some
constraints to the interior profile to ensure the validity of the far-field condition (see
Theorem II.2.2.

3. Finally, we have Ψε −Ψapp is o(ε) in a norm that will be specified later (cf. Theorem
II.2.3)

When the periodic roughness is no longer considered, the analysis, although possible, is
much more involved, as shown in [63, 59, 52, 61] in other contexts. We seek the solution of
the boundary layer problem in a space of infinite energy. In particular, we will be considering
Kato spaces Hs

uloc (a definition is provided in (II.2.11)). The use of such function spaces to
mathematically describe fluid systems traces back to [64, 65], in which existence is proven
for weak solutions of the Navier-Stokes equations in R3 with initial data in L2

uloc. For other
relevant works, see [52] and the references therein.

New difficulties arise in this context. First, due to the unboundedness of the boundary
layer domains, we deal here with only locally integrable functions, leading to a completely
different treatment of the energy estimates and mathematical tools, such as Poincaré inequal-
ity are needed but are no longer valid. Second, being typical for fourth-order problems, the
equation lacks a maximum principle. Third, as the roughness is nonperiodic, the boundary
layer system is more complex. Indeed, the absence of compactness both in the tangential
and transverse variables and the presence of singularities at low frequencies for the eastern
boundary layer functions make proving convergence in a deterministic setting extremely dif-
ficult. We, therefore, use the ergodic theorem to specify the behavior of the solution of the
eastern boundary layer far from the boundary and, later, to find the energy estimates in the
analysis of the quality of the approximation.

The rest of the paper is structured as follows. The following section contains a precise de-
scription of the domain, some simplifying assumptions and the statements of the main math-
ematical results. Section II.3 contains the assumptions made for constructing the profiles
of the approximate solution and the detailed derivation of the functions in the main order.
In Section II.4, we outline the general methodology to solve linear and nonlinear/linearized
problems characterizing the boundary layer functions. The existence, uniqueness and asymp-
totic behavior of the first profile of the western boundary layer are discussed in Section II.5
for the linear case and Section II.6, for the nonlinear and linearized systems. Section II.8
focuses on the boundary layer analysis in the east of region. Finally, Section II.9 contains
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the construction of the approximate solution and the study of its convergence to the solution
of the original problem.

II.2 Preliminaries and main results
Before stating the main results, let us first state some hypotheses on the dimensionless
problem (II.1.1). We will assume there is no stratification, therefore, Fr = 0. Our study
is solely focused on the effect of rough shores on flow behavior, so the bottom topography
parameter ηB is considered to be nil. Since for a basin of 1000×1000 km at a central latitude
θ0 = 45◦N [26], we have that ηB + µ ∼ 1.0 − 100, β ∼ 103, and Re ∼ 1.6 − 160, it is
possible to consider r = 1 and Re = 1 to simplify the computations. Up to minor changes,
equivalent results can be obtained for arbitrary values of the Reynolds number and r.

Let ε be the natural size of the boundary layers arising in this study, we consider β = ε−3.
This choice of scaling preserves the problem’s physical accuracy. Moreover, the size of the
irregularities is also assumed to be equal to ε. The last hypothesis is mainly of mathematical
significance, since it allows for a richer analysis due to the interaction of the linear and
non-linear terms of the equation at the main order for the boundary layer problem. Then,
system (II.1.1) becomes

(
∂t +∇⊥Ψ · ∇

) (
∆Ψ + ε−3y

)
+ ∆Ψ = ε−3 curl τ + ∆2Ψ, in Ωε

Ψ|∂Ωε = ∂Ψ
∂n |∂Ωε = 0,

Ψ|t=0 = Ψini.

(II.2.1)

Here, we adopt the notation and terminology in [53]. The domain of problem (II.2.1) is
defined as follows

Ωε = Ωε
w ∪ Σw ∪ Ω ∪ Σe ∪ Ωε

e.

Figure II.1: Domain Ωε

• The “interior domain” is given by

Ω = {χw(y) ≤ x ≤ χe(y), y ∈ [ymin, ymax]} ,

where χw and χe are smooth functions defined for y ∈ [ymin, ymax].
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• Σw = {(χw(y), y), y ∈ (ymin, ymax)} and Σe = {(χe(y), y), y ∈ (ymin, ymax)} are inter-
faces separating the interior domain from the “rough shores”.

• Ωε
w and Ωε

e are the rough domains. The positive smooth functions γw = γw(Y ) and
γe = γe(Y ) describe the irregularities. We set

Ωε
w =

{
(x, y), 0 > x− χw(y) > −εγw(ε−1y)

}
, (II.2.2)

Ωε
e =

{
(x, y), 0 < x− χe(y) < εγe(ε−1y)

}
. (II.2.3)

The lateral boundaries are

Γεw = {
(
χw(y)− εγw(ε−1y), y

)
, y ∈ (ymin, ymax), }

Γεe = {
(
χe(y) + εγe(ε−1y), y

)
, y ∈ (ymin, ymax)}.

Let us introduce the notation nw and ne for the exterior unit normal vectors to the
roughness curves γw and γe.

Let T > 0, we assume that τ(t, x, y) ∈ L∞((0;T );Hs), for s large enough. We are
actually studying well-prepared data, as seen in [45]. In order to avoid steep singularities
due to advection of vorticity when approaching the northern and southern extremal points,
we assume additionally the irrotational part of the wind vanishes in their vicinity, see [47].
More precisely, we suppose that there exists λ > 0 such that

curl τ = 0 for y ∈ [ymax − λ, ymax] ∪ [ymin, ymin + λ] . (II.2.4)

As pointed out in [45], problem (II.2.1) has a unique smooth solution Ψε for all ε > 0.
The approximate solution is sought in form of series in powers of the small parameter

ε with coefficients depending on the global variables t, x, y, and the microscopic variables
Y = Y (y, ε), X = X(x, y, ε)

Ψε
app(t, x, y) ∼

∞∑
k=0

εk
(
Ψk
int(t, x, y) + Ψk

w (t, y,Xw, Y ) + Ψk
e (t, y,Xe, Y )

)
, (II.2.5)

where Ψk
int(t, x, y) correspond to the interior terms, while Ψk

w and Ψk
e refer to the corrector

terms in the western and eastern boundary layer, respectively. Such a series is substituted
in the original problem and a system of equations is obtained for each one of the profiles by
equating to zero all coefficients associated to powers of ε. Here, X and Y are the fast or
microscopic variables which depend on the small parameter. They are defined as follows:

Y = ε−1y, Xw = ε−1(x− χw(y)), Xe = ε−1(χe(y)− x),

where ωw and ωe are respectively the western and eastern boundary layer domains. The
former is of the form ωw = ω+

w ∪ σw ∪ ω−w , where

ω+
w = {Xw > 0, Y ∈ R} , σw = {Xw = 0, Y ∈ R}
ω−w = {−γw(Y ) < Xw < 0, Y ∈ R} . (II.2.6)

The domain ωe can be defined in a similar manner.
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In a first approximation of the solution, we are confronted with coastal asymmetry: it is
impossible to obtain a solution in the eastern boundary layer domain satisfying all boundary
conditions and decaying at infinity due to the lack of enough roots with positive real part.
A usual choice under these circumstances is to consider that Ψint is tangent to the boundary
Σe, which results in

Ψ0
int(t, x, y) = −

∫ χe(y)

x
curl τ(t, x′, y)dx′, (II.2.7)

and Ψ0
e ≡ 0. Then, the key element in the construction of the approximate solution will be

to determine Ψ0
w which formally solves the problem

Qw(Ψ0
w,Ψ0

w) + ∂XwΨ0
w −∆2

wΨ0
w = 0, in ω−w ∪ ω+

w[
Ψ0
w

] ∣∣
σw

= φ, (II.2.8)[
∂kXΨ0

w

] ∣∣
σw

= 0, k = 1, 2, 3,

Ψ0
w

∣∣
X=−γw(Y ) = ∂Ψ0

w

∂nw

∣∣
X=−γw(Y ) = 0.

Here, [·]
∣∣
X=X′ denotes the jump operator of the function f at X = X ′ and is defined as

[f ]|X=X′ := f(X ′+, ·)− f(X ′−, ·). The jump of the function at the western boundary of the
interior domain is given by

φ(t, y) =
∫ χe(y)

χw(y)
curl τ(t, x′, y)dx′. (II.2.9)

Moreover, for αw = χ′w(y), the differential operators are given by

∇w = (∂Xw , ∂Y − αw∂Xw)t, ∇⊥w(y) = (αw∂Xw − ∂Y , ∂Xw)t,

consequently, ∆w and Qw are defined as follows

∆w = ∂2
Xw + (α∂Xw − ∂Y )2 ,

Qw(Ψ, Ψ̃) = ∇⊥w ·
((
∇⊥wΨ · ∇w

)
∇⊥wΨ̃

)
.

Note ∆w and ∆2
w are elliptic operators with respect to the variables Y et Xw. At the level

of the boundary layer, t and y behave as parameters.
Our first result is the existence and uniqueness of the solution for the boundary layer

system (II.2.8). As usual in the steady Navier–Stokes equations theory, the well-posedness
is obtained under a smallness hypothesis. The problem is defined in an unbounded set;
therefore, we seek the solution in spaces of uniformly locally integrable functions, also know
in the literature as Kato spaces [58]. They include a richer spectrum of functions, allowing
for some singular behavior or non-decaying functions. Let us briefly recall the definition:

Let θ ∈ C∞0 (Rd) be such that Suppθ ⊂ [−1, 1]d, θ ≡ 1 on [−1/4, 1/4]d, and∑
k∈Zd

τkθ(x) = 1, for all x ∈ Rd, (II.2.10)
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where τk denotes the translation operator defined by τkf(x) = f(x − k). Then, for s ≥ 0,
p ∈ [1,+∞),

Lpuloc(R
d) =

{
u ∈ Lploc(R

d) : sup
k∈Zd
‖(τkθ)u‖Lp(Rd)

}

Hs
uloc(Rd) =

{
u ∈ Hs

loc(Rd) : sup
k∈Zd
‖(τkθ)u‖Hs(Rd)

} (II.2.11)

We show the following:

Theorem II.2.1. Let γw be a positive W 2,∞(R) function and ωw be defined as before. There
exists a constant δ0 > 0 such that if ‖φ‖W 2,∞ < δ0, problem (II.2.8) has a unique solution in
H2

uloc(ωw) denoted by Ψw. Moreover, for a certain constant δ > 0, it satisfies the estimate

‖eδXwΨw‖H2
uloc(ωw) ≤ C‖φ‖W 2,∞ . (II.2.12)

This theorem generalizes the result of [53] for to the case of nonperiodic roughness.
A remarkable feature of this result is that exponential decay to zero persists, despite the
arbitrary roughness, and without any additional assumption on the function describing the
irregular boundary.

Following the ideas in Masmoudi and Gérard-Varet [59], we look for the solution of
(II.2.8) by introducing a transparent boundary which divides the domain in two: a half-
space and a bounded rough channel. Then, the problem is solved in each of the subdomains,
and a pseudo-differential operator of Poincaré-Steklov is used to relate the behavior of the
solutions at both sides of the interface. When (II.2.8) is considered linear, this last step
can be done directly; otherwise, applying the implicit function theorem is needed to join the
solutions at the artificial boundary.

Once we have shown the above result on the western boundary layer, we construct the
approximate solution and analyze its closeness to the original problem. The error is computed
by calculating the following profiles in a systemic scheme (see Sections II.3 and II.9) and is
pretty straightforward.

At order εn the interior profile satisfies Ψn
int = Cn(t, y)−

∫ χe(y)
x Fn dx, where Fn depends

on Ψj
int, j ≤ n − 1. The value of Cn(t, y) will be specified later. Then, the n-th eastern

boundary layer profile meets the conditions

−∂XeΨn
e −∆2

eΨn
e = 0, in ω−e ∪ ω+

e

[Ψn
e ]
∣∣
σe

= −Cn(t, y),[
∂kXeΨ

n
e

] ∣∣
σe

= gk, k = 1, . . . , 3,

Ψn
e

∣∣
Xe=−γe(Y ) = ∂Ψn

e

∂ne

∣∣
Xe=−γe(Y ) = 0,

(II.2.13)

where gk ∈ L∞, the domain is given by

ω+
e = {Xe > 0, Y ∈ R} , σe = {Xe = 0, Y ∈ R}
ω−e = {−γe(Y ) < Xe < 0, Y ∈ R} , (II.2.14)
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and the differential operators are defined as follows for αe = χ′e(y):

∇e = (∂Xe ,−αe∂Xe − ∂Y ) , ∇⊥e = (∂Y + αe∂Xe , ∂Xe) , (II.2.15)
∆e = ∂2

Xe + (α∂Xe + ∂Y )2 , Qe(Ψ, Ψ̃) = ∇⊥e ·
((
∇⊥e Ψ · ∇e

)
∇⊥e Ψ̃

)
.

Note that the main equation in (II.2.13) is elliptic with respect to Xe and Y ; t and
y are considered parameters. Although the analysis of the well-posedness of (II.2.13) is
similar to one described for the western boundary layer, additional issues arise concerning the
convergence of Ψn

e when ε→ 0. Indeed, the analysis of the problem (II.2.13) in the half-space
reveals the lack of spectral gap, which prevents the decay far from the boundary, see Section
II.8.1. To guarantee the convergence of the eastern boundary layer profile when Xe → ∞
while keeping the same structure of the domain, we add some probabilistic information
(ergodic properties).

Let ε > 0 and (P,Π, µ) be a probability space. For instance, P could be considered as
the set of K-Lipschitz functions, with K > 0; Π the borelian σ-algebra of P , seen as a subset
of Cb(R2;R) and µ a the probability measure preserved by the translation group (τY ) acting
on P . Then, the eastern boundary layer domain can be described as follows for m ∈ P :

ωe(m) =
{

(Xe, Y ) ∈ R2 : Xe > −γe(m,Y )
}
,

where ωe(m) = ω+
e (m) ∪ σe ∪ ω−e (m) and ω±e (m) = ωe(m) ∩ {±X > 0}. Here γe are

homogeneous and measure-preserving random process.
In this context, we are able to distinguish three components of Ψn

e with different asymp-
totic behavior far from the boundary for which we have obtained the following result:

Theorem II.2.2. Let ωe a domain defined as before and γe an ergodic stationary random
process, K-Lipschitz almost surely, for some K > 0. Let g1, g2, g3 ∈W 2,∞(R+×[ymin, ymax]×
R), then there exist a unique measurable map Cn(t, y) such that problem (II.2.13) has a
unique solution Ψn

e = Ψn
exp + Ψn

alg + Ψn
erg where

1.
∥∥∥Ψn

erg

∥∥∥
Lq(ω+

e )
−−−−−→
Xe→+∞

0, locally uniformly in Y , almost surely and in Lq(P ) for all
finite q,

2. there exist constants δ, C > 0 such that

‖eδXeΨn
exp‖L∞(ω+

e ) ≤ C
( 3∑
k=1
‖gk‖L∞ + ‖Cn‖W 2,∞

)
, (II.2.16)

3. there exists a constant C > 0 such that

‖(1 +Xe)1/4Ψn
alg‖L∞(ω+

e ) ≤ C
( 3∑
k=1
‖gk‖L∞ + ‖Cn‖W 2,∞

)
. (II.2.17)

Moreover, Ψe satisfies

‖Ψn
e ‖H2

uloc(ωe) < +∞, almost surely. (II.2.18)
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The proof of the above result also relies on the use of wall laws and follows the same ideas
of Theorem II.2.1 for the western boundary layer. First, we apply Fourier analysis to problem
(II.2.13) in the half-space, which hints directly to the singular behavior at low frequencies
far from the boundary. We show that the properties involving Ψn

exp and Ψn
alg in Theorem

II.2.2 remain true in a deterministic setting by following the same ideas used for the western
boundary layer. Only the convergence of Ψn

erg is shown using the ergodic theorem. Then, we
define the associated Poincaré-Steklov operator for boundary data in H3/2

uloc(R) × H1/2
uloc(R).

Finally, we look for the solution of a problem equivalent to (II.2.13) defined in a domain
in which a transparent boundary condition is prescribed. For the equivalent system, we
derive energy estimates in H2

uloc which are then used to prove existence and uniqueness of
the solution.

The eastern boundary layer not converging to zero or not doing it fast enough at infinity
poses an issue when solving the problem at Ψn

w. In particular, the terms Ψn
alg and Ψn

erg
influence the western boundary layer mainly through the nonlinear term. Adding ad hoc
correctors allows us to show the following results for Ψε −Ψapp.

Theorem II.2.3. Let Ψε be the solution of problem (II.2.1) and Ψapp defined as in (II.2.5).
Moreover, let Ψε

ini be such that Ψε
ini|Ωε = ∂nΨε

ini = 0 and ‖Ψε
ini − Ψapp|t=0‖H1(Ωε) → 0.

There exists C∞, such that if ‖curl τ‖W 2,∞ < C∞, then

‖Ψε −Ψapp‖L2(0,T ;H2(Ωε) + ‖Ψε −Ψapp‖L∞(0,T ;H1(Ωε) → 0 as ε→ 0, almost surely.
(II.2.19)

In the periodic setting, for which the boundary layer profiles decay exponentially when ε
goes to zero, the bound becomes O(ε1/2) for theH1 estimate (see [53]). In the general random
setting, the convergence rate is limited by the behavior of eastern boundary layer profiles.
The convergence result in Theorem II.9 is obtained by computing energy estimates on Ψε −
Ψapp. The accuracy of the estimates depends greatly on each element in the approximate
solution, their interactions and contributions. Each component needs to be smooth enough,
with proper controls on the corresponding derivatives.

II.3 Formal asymptotic expansion and first profiles
In this section, we construct the approximate solution Ψε

app for the singularly perturbed
problem (II.2.1) employing a matched asymptotic expansion. Inner and outer expansions
(boundary layers) are determined in the interior and the rough shores domain. Then, match-
ing conditions at the interface are imposed to obtain an approximate global solution.

Let X and Y define the local variables obtained after scaling: Y = y/ε while Xw =
x−χw(y)

ε , Xe = χe(y)−x
ε . We seek for an approximate solution of (II.2.1) of the form

Ψε
app(t, x, y) =

N∑
i=0

εi
(
Ψi
int(t, x, y) + Ψi

w (t, y,Xw, Y ) + Ψi
e (t, y,Xe, Y )

)
+O(εN+1), (II.3.1)

where Ψi
int(t, x, y) correspond to the interior terms, while Ψi

w and Ψi
e denote the western

and eastern boundary layer profiles. Without loss of generality, we assume that the interior
terms are zero outside Ω̄.
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Since the boundary layer terms are expected not to have an effect far from the boundaries,
we assume

Ψi
e −→
Xe→∞

0, Ψi
w −→
Xw→∞

0. (II.3.2)

The approximate solution must additionally satisfy the boundary condition Ψε
app = 0 at ∂Ωε.

Thus, we have
Ψi
w

∣∣∣
Xw=−γw(Y )

= 0, Ψi
e

∣∣∣
Xe=−γe(Y )

= 0 (II.3.3)

From the homogeneous Neumann condition, we obtain the following conditions on the
boundary layer profile:

∂Ψi
w

∂nw

∣∣∣
X=−γw(Y )

= 0, ∂Ψi
e

∂ne

∣∣∣
X=γe(Y )

= 0. (II.3.4)

There is no loss of generality in assuming Ψi
w|Ωεe = 0 and Ψi

e|Ωεw = 0. This condition directly
gives (II.3.3) and (II.3.4).

Additional conditions are needed at the interfaces separating the interior domain and the
boundary layer domains to guarantee the existence of the derivatives in the weak sense over
the whole domain. Since the interior terms are zero outside Ω, they create discontinuities at
the interfaces Σw and Σe. Then, boundary layer terms are added to cancel such discontinu-
ities; see for instance [54, 66]. To guarantee the approximation is regular enough, we impose
the condition: [

∂kXΨε
app

] ∣∣
Σw∪Σe = 0, k = 0, . . . , 3. (II.3.5)

We have the following jump conditions on the boundary layer terms:[
Ψi
w(·)

] ∣∣
σw

= −Ψi
int(·)

∣∣
x=χw(y) −

[
Ψi
e(·)

] ∣∣
σw
,
[
Ψi
e(·)

] ∣∣
σe

= −Ψi
int(·)

∣∣
x=χe(y) −

[
Ψi
w(·)

] ∣∣
σe
,

(II.3.6)
and [

∂kXΨi
w(·)

] ∣∣
σw

= f i,kw ,
[
∂kXΨi

e(·)
] ∣∣
σe

= f i,ke , (II.3.7)

where the f i,kw , k = 1, 2, 3, depends on the Ψj
int and Ψe

j , j ≤ i. Here, f i,ke is chosen to be
independent of Ψw

j , while still relying on the behavior of the interior profiles.
Plugging (II.3.1) into (II.2.1), and equating all terms of the same order in powers of ε

provide a family of mathematical systems establishing the behavior of each one of the profiles
in the ansatz.

To facilitate the comprehension, we compute some terms of the approximation Ψε
app. We

are particularly interested in the ones corresponding to i ∈ {0, 1}.
When i = 0, we obtain in the interior of the domain the so-called Sverdrup relation:

∂xΨ0
int = curl τ, (II.3.8)

for which only one boundary condition can be prescribed, either on Σe or on the Σw.

Remark II.3.1. In the non-rough case, the boundary layer problems are described by linear
ODEs. Mainly, we have

− ∂XΨe − (1 + α2
e)2∂4

XΨe = 0, (II.3.9)
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and
∂XΨw − (1 + α2

w)2∂4
XΨw = 0.

Notice that there is an asymmetry between the coasts (see [45, 17]). Indeed, only one bound-
ary condition can be lifted on the east boundary since there is only one root with non-negative
real part, whereas the space of admissible (localized) boundary corrections is of dimension two
on the western boundary. Consequently, Ψe must vanish at first order on the East coast, leav-
ing the solution on the boundary layer at Γe to correct the trace of ∂nΨe. This phenomenon
is still present in the rough case.

Since the eastern cannot bear a large boundary layer, see Remark II.3.1, it is frequent in
the literature to choose Ψ0

int tangent to the boundary Σe, see for example [45, 53]. Hence,
we take

Ψint(t, x, y) =
{
−
∫ χe(y)
x curl τ(t, x′, y)dx′ in Ω,

0 in Ωε \ Ω.
(II.3.10)

and consequently, at order ε−4, the eastern boundary layer profile is Ψ0
e ≡ 0. At the West,

we have the following system

Qw(Ψ0
w,Ψ0

w) + ∂XwΨ0
w −∆2

wΨ0
w = 0, in ω+

w ∪ ω−w (II.3.11a)[
Ψ0
w

] ∣∣
σw

= −
[
Ψ0
int

] ∣∣
Σw , (II.3.11b)[

∂kXwΨ0
w

] ∣∣
σw

= 0, k = 1, . . . , 3, (II.3.11c)

Ψ0
w

∣∣
Xw=−γw(Y ) = 0, ∂Ψ0

w

∂nw

∣∣
Xw=−γw(Y ) = 0, (II.3.11d)

Ψ0
w −→ 0 when Xw → +∞, (II.3.11e)

Henceforth, the jump condition (II.3.11b) is described by a function φ defined as follows

φ =
∫ χe(y)

χw(y)
curl τ(t, x′, y)dx′, (II.3.12)

which is a direct result of (II.3.10).
It remains to prove the well-posedness of the nonlinear problem (II.3.11). Since it is quite

technical, we address the matter later in Section II.6. This step concludes the computations
in the main order.

Now, let us compute the next step in the asymptotic expansion. Similarly to the first
interior profile, Ψ1

int follows the equation

∂xΨ1
int = 0, (II.3.13)

hence, Ψ1
int(t, x, y) = C1(t, y). The lack of source term is related to the factor ε−3 multiplying

∂xΨ in (II.2.1). Accordingly, the equation driving the behavior of the interior profile becomes
nonhomogeneous when i ≥ 3.
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At order ε−3, the eastern boundary layer function is described by the equations
−∂XeΨ1

e −∆2
eΨ1

e = 0, in ω+
e ∪ ω−e ,[

Ψ1
e

] ∣∣
σe

= −
[
Ψ1
int

] ∣∣
Σe ,[

∂kXeΨ
1
e

] ∣∣
σe

= 0, k = 1, . . . , 3,

Ψ1
e

∣∣
Xe=−γe(Y ) = 0, ∂Ψ1

e

∂ne

∣∣
Xe=−γe(Y ) = 0,

Ψ1
e −→ 0 when Xe → +∞.

(II.3.14)

The space of admissible boundary corrections at the rough eastern domain remains in-
sufficient to satisfy simultaneously the boundary conditions and the one at infinity. Beyond
imposing conditions on Ψ1

int, ergodicity assumptions will be needed to guarantee the exis-
tence of a solution Ψ1

e of (II.3.14). This question is the main focus of Section II.8.
In the western boundary layer domain, Ψ1

w satisfies the following system
Qw(Ψ0

w,Ψ1
w) +Qw(Ψ1

w,Ψ0
w) + ∂XwΨ1

w −∆2
wΨ1

w = F 1, in ω+
w ∪ ω−w ,[

Ψ1
w

] ∣∣
σw

= −
[
Ψ1
int

] ∣∣
Σw −

[
Ψ1
e

] ∣∣
σw
,[

∂XwΨ1
w

] ∣∣
σw

= −
[
∂xΨ1

int

] ∣∣
Σw ,[

∂kXwΨ1
w

] ∣∣
σw

= 0, k = 2, 3,

Ψ1
w

∣∣
Xw=−γw(Y ) = 0, ∂Ψ1

w

∂nw

∣∣
Xw=−γw(Y ) = 0,

Ψ1
w −→ 0 when Xw → +∞,

(II.3.15)

where F 1 = −(∇Ψ0
int · ∇w)∆Ψ0

w. The existence of a solution of problem (II.3.15) can be
shown by following the same reasoning used for Ψ0

w (see Section II.7).
In the next section, we provide a formal method of proof of well-posedness for the prob-

lems previously mentioned with its core ideas and some general computations.

II.4 Existence and uniqueness of the solution of an elliptical prob-
lem in a rough domain: methodology

In hopes of facilitating the comprehension of this work, we describe a general method to
prove the existence and uniqueness of the solution of a general problem encompassing all
the possible behaviors within the boundary layer; in particular, the nonlinear and linearized
western boundary layer systems and the linear eastern boundary layer equations. For α ∈ R,
we start with elliptic differential systems of the form

Lα(Ψ) +Qα(Ψ, Ψ̃) = F, (II.4.1)

where F is a regular enough source term with sufficient decay at infinity, Lα is a fourth order
elliptic linear differential operator and Qα is the nonlinear/quasilinear part of the equation.
Let us consider for a fixed α ∈ R

Lα(Ψ) = ±∂XΨ−∆2
αΨ

Qα(Ψ̄,Ψ) = j

2
(
(∇⊥α Ψ̄ · ∇α)∆αΨ + (∇⊥αΨ · ∇α)∆αΨ̄

)
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for j ∈ {0, 1, 2}, and

∇α = (±∂X , ∂Y ∓ α∂X), ∇⊥α = (−∂Y ± α∂X ,±∂X)

∆α = ∇α · ∇α = ∂2
X + (∂Y ∓ α∂X)2, ∆2

α = ∆α∆α =
(
∂2
X + (∂Y ∓ α∂X)2

)2
.

In the definition of Lα, the factor multiplying ∂X is linked to the definition of the local
variables provided in Section II.3: positive for the western boundary layer and negative
in the eastern boundary layer domain. Moreover, α corresponds to the derivative of the
function describing the interface between the interior and rough domain (namely χ′(y)),
and, therefore, different on each side.

Let us suppose that equation (II.4.1) holds in a domain ω = ω+ ∪ σ ∪ ω−, where

ω+ = {X > 0, Y ∈ R} , σ = {X = 0, Y ∈ R}
ω− = {−γ(Y ) < X < 0, Y ∈ R} ,

and γ is a positive Lipschitz function such that inf γ > 0. Problem (II.4.1) is supplemented
with the following jump and boundary conditions:[

∂kXΨ
] ∣∣
σ

= gk, k = 0, . . . , 3,

Ψ
∣∣
X=−γ(Y ) = ∂Ψ

∂n

∣∣
X=−γ(Y ) = 0.

(II.4.2)

Here, n denotes the unit outward normal vector of γ and gk are smooth functions.
Let us point out some difficulties related to the proof of existence and uniqueness of the

solution of problem (II.4.1)-(II.4.2). First, we consider a domain ω that is not bounded in
the tangential direction. Moreover, functions gk do not decay as Y goes to infinity, so that
standard energy estimates are inefficient. As a consequence, only locally integrable functions
are considered, which leads to a completely different treatment of the energy estimates.

If the problem was set in ω−, with Dirichlet boundary conditions at {X = 0}, one could
build a solution Ψ adapting ideas of Ladyženskaya and Solonnikov for the case of Navier-
Stokes flows in tubes [60]. The existence of the solution in [60] is proven using an a priori
differential inequality on local energies. Unfortunately, this method relies heavily on the
bounded direction hypotheses to make possible the application of the Poincaré inequality.
Hence, this reasoning is not applicable in our setting.

Moreover, contrary to what happens for the Laplace equation, one cannot rely on maxi-
mum principles to get an L∞ bound since we are dealing with a fourth-degree operator.

This problem has been overcome in the literature for the Stokes boundary layer flow
in [59] and, recently, for highly rotating fluids in [61]. The main idea is to impose a so-
called transparent boundary condition when the variable in the normal direction is equal to
a certain value M > 0, see Figure II.2.

This transparent condition separates the original domain in two: a half-plane {X > M}
and a bumped region bounded in the tangential direction. The Dirichlet problem on the half-
space {X > M} is solved by means of Fourier analysis and pseudo-differential tools in Kato
spaces. The problem on the bumped sub-domain is not suitable for a similar treatment due
to the nature of boundary and the fact that Kato spaces are defined through truncations
in space1. Nevertheless, it is now suitable for the application of the Ladyženskaya and

1Similar difficulties arise in [67] when studying water waves equations in locally uniform spaces.
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Figure II.2: Boundary layer domain ω with an artificial boundary at X = M .

Solonnikov method [60]. The remaining step consists of connecting both solutions on the
artificial boundary.

II.4.1 Linear case.

If j = 0, the main steps of the proof are as follows:

(L1) Prove existence and uniqueness of a solution of the linear system in a half-space with
boundary data in H3/2(R)×H1/2(R).{

Lα(Ψ) = F, in X > M,
Ψ
∣∣
σM

= ψ0, ∂XΨ
∣∣
σM

= ψ1,
(II.4.3)

where σM = {X = M, Y ∈ R}. The solution is constructed by means of an integral
representation using Fourier analysis. Indeed, we take the Fourier transform with
respect to the tangential variable Y and do a thorough analysis of the characteristic
equation of the resulting problem. If F 6= 0, we compute the fundamental solution
using the Green function.

(L2) Extend this well-posedness result to boundary data in (ψ0, ψ1) ∈ H3/2
uloc(R)×H1/2

uloc(R)
using ideas in [61]. A priori estimates on a solution of (II.4.3) are established in this
scenario.

(L3) Define the Poincaré-Steklov type operator for functions in H3/2
uloc(R) ×H1/2

uloc(R) using
the information recovered from the problem in the half-space {X > M} and extend
the result to the case when the boundary data belongs to a space of uniformly locally
integrable functions. The Poincaré-Steklov operator associated to Lα(Ψ) is a positive
non-local boundary differential operator of the form

PSα : H3/2
uloc(R)×H1/2

uloc(R) → H
−3/2
uloc (R)×H−1/2

uloc (R) (II.4.4)(
ψ0
ψ1

)
7→

 (1 + α2)∆αΨ
∣∣
σM

−
[
(1 + α2)∂X ∓ 2α∂Y

]
∆αΨ± Ψ

2

∣∣∣
σM

 =
(
Aα2 (ψ0, ψ1, F )
Aα3 (ψ0, ψ1, F )

)

where the form of the differential operators Aαi , i = 2, 3, depend greatly on the solution
determined in (L1) and is, therefore, particular to each case.
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(L4) Define an equivalent problem in a domain with transparent boundary condition ωM =
ω ∪ {X = M} and then, solve the problem

Lα(Ψ−) = F, in ωb \ σM ,[
∂kXΨ−

] ∣∣
σ

= gk, k = 0, . . . , 3,

(1 + α2)∆αΨ−
∣∣
σM

= Aα2
(
Ψ−
∣∣
σM
, ∂XΨ−

∣∣
σM
, F
)
,

−
[
(1 + α2)∂X ∓ 2α∂Y

]
∆αΨ− ± Ψ−

2

∣∣∣
σM

= Aα3
(
Ψ−
∣∣
σM
, ∂XΨ−

∣∣
σM
, F
)
,

Ψ−
∣∣
X=−γ(Y ) = ∂Ψ−

∂n

∣∣∣
X=−γ(Y )

= 0,

(II.4.5)

where ωb refers to the rough “tubular" domain given by ωb = ωM \ ({X > M} × R)
and Aαi , i = 2, 3 are the ones in (II.4.4). Note that for M = 0, ωb = ω−.

Proposition II.4.1. Let γ ∈ W 2,∞(R) and gk ∈ L∞(R), for k = 1, . . . , 3. Assume
that there exists δ0 > 0 such that ‖gk‖∞ < δ0, for all k = 0, . . . , 3.

– Let Ψ be a solution of (II.4.1)-(II.4.2) in ω such that Ψ ∈ H2
uloc(ω). Then Ψ|ωM

is a solution of (II.4.5), and for X > M , Ψ solves (II.4.3), with ψ0 := Ψ|X=M ∈
H

3/2
uloc(R) and ψ1 := ∂XΨ|X=M ∈ H1/2

uloc(R).
– Conversely, let Ψ− ∈ H2

uloc(ωM ) be a solution of (II.4.5). Consider the solution
Ψ+ ∈ H2

uloc(R2
+) of (II.4.3). Setting

Ψ(X, ·) :=
{

Ψ−(X, ·) for −γ(·) < X < M,
Ψ+(X, ·) for X > M,

the function Ψ ∈ H2
loc(ω) is a solution of the problem (II.4.1)-(II.4.2).

(L5) Consequently, we focus our attention on the existence and uniqueness of solutions
of the equivalent problem (II.4.5). To simplify the presentation, we replace in this
paragraph the functions Aαi

(
Ψ−
∣∣
σM
,−∂XΨ−

∣∣
σM
, F
)
by ρi ∈ H3/2−i

uloc (R), i = 2, 3. In
fact, the Poincaré-Steklov operator is not local which hinders the application of the
ideas in Ladyženskaya and Solonnikov [60], as seen in [59] and [52]. We will address
in this difficulty in Section II.5.3. Showing the operators Aαi are well-defined depends
on the Fourier representation of the solutions in the half-space, and consequently, on
the definition of ∇α and the domain. We leave the detailed discussion of each case for
later. System (II.4.5) becomes

±∂XΨ− −∆2
αΨ− = F, in ωb \ σM ,[

∂kXΨ−
] ∣∣
σ

= gk, k = 0, . . . , 3,

(1 + α2)∆αΨ−
∣∣∣
σM

= ρ2,

−
[
(1 + α2)∂X ∓ 2α∂Y

]
∆αΨ− ∓ Ψ−

2

∣∣∣
σM

= ρ3,

Ψ−
∣∣
X=−γ(Y ) = ∂Ψ−

∂n

∣∣∣
X=−γ(Y )

= 0.

(II.4.6)
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To facilitate the computations, we lift the conditions at the interface {X = 0} by
introducing the function

ΨL(X,Y ) := χ(X)
3∑

k=0
gk(Y )X

k

k! , (II.4.7)

where χ ∈ C∞0 (R) such that χ ≡ 1 near σ, and Suppχ ⊂ [0, M2 ]. Thus, ΨL ≡ 0 in ω−
and in ω+ close to X = M . Additionally, it satisfies the jump conditions[

∂kXΨL
] ∣∣∣
σ

= gk, k = 0, . . . , 3.

For Ψ̃ = Ψ− −ΨL, we have

±∂XΨ̃−∆2
αΨ̃ = FL, in ωb \ σM ,

(1 + α2)∆αΨ̃
∣∣∣
σM

= ρ2,

−
[
(1 + α2)∂X ∓ 2α∂Y

]
∆αΨ̃∓ Ψ̃

2

∣∣∣
σM

= ρ3,

Ψ̃
∣∣
X=−γ(Y ) = ∂Ψ̃

∂n

∣∣∣
X=−γ(Y )

= 0,

(II.4.8)

where the source term FL depends also on gk, k = 0, . . . , 3.
Since a priori estimates are needed, it is useful to write the weak formulation of (II.4.8).

Definition II.4.1. Let V be the space of functions ϕ ∈ H2(ωb) such that Ψ̃
∣∣
Γ =

∂nΨ̃
∣∣
Γ = 0 and Suppϕ is bounded. A function Ψ̃ ∈ H2

uloc(ωb) is a solution of (II.4.8)
if it satisfies the homogeneous conditions at the rough boundary, and if, for all ϕ ∈ V,

∓
∫
ωb
∂XΨ̃ϕ−

∫
ωb

∆αΨ̃∆αϕ (II.4.9)

=
∫
ωb
FLϕ−

∫
R

(
ρ3 ±

Ψ̃
2

)
ϕ
∣∣
X=M dY −

∫
R
ρ2∂Xϕ

∣∣
X=M dY.

Throughout this step, we will frequently be using the following technical lemma:

Lemma II.4.1. Let U be a regular open set bounded at least in one direction. Then,
for f ∈ H2(U) there exists a constant C > 0 such that

‖f‖H2(U) ≤ C
(
‖f‖L2(U) + ‖∆αf‖L2(U)

)
. (II.4.10)

If the function satisfies additionally that f = ∂nf = 0 on some part of the boundary ∂U ,
the first term on the right-hand side of (II.4.10) is not longer needed for the inequality
to hold.

We refer to Appendix II.E for a proof. Note that a direct result from Lemma II.4.1 is
that controlling the L2-norm of ∆αf immediately provides f ∈ H2(U). This property
is easily generalized to Kato spaces.
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– Energy estimates for (II.4.8). We introduce, for all n ∈ N, k ∈ N

ωn := ωb ∩
{

(X,Y ) ∈ R2 : |Y | < n
}
, ωk+1,k = ωk+1 \ ωk,

σMn := {X = M, and |Y | < n, Y ∈ R} , σMk+1,k = σMk+1 \ σMk ,
Γn = {X = −γ(Y ), |Y | < n}.

(II.4.11)

We consider the system (II.4.8) in ωn

±∂XΨ̃n −∆2
αΨ̃n = FL

(1 + α2)∆αΨ̃n

∣∣∣
σM

= ρ2

−
[
(1 + α2)∂X ∓ 2∂Y

]
∆αΨ̃n ∓

Ψ̃n

2

∣∣∣∣
σM

= ρ3

Ψ̃n

∣∣
Γn = ∂nΨ̃

∣∣
Γn = 0.

In order to prove the existence of the solution of (II.4.5), we derive H2
uloc estimates

on Ψn, uniform with respect to n. Then, passing to the limit when n→ +∞, we
achieve our goal. Indeed, taking Ψ̃n as a test function in (II.4.9), we obtain

‖∆αΨ̃n‖2L2(ωn) = −
∫
ωn
FLΨ̃n +

∫
σMn

ρ3Ψ̃n +
∫
σMn

ρ2∂XΨ̃n

≤ C1
√
n

(
‖F‖L2

uloc(ωb)
+

3∑
k=0
‖gk‖L∞(R)

)
‖Ψ̃‖H2(ωn)(II.4.12)

+C2
√
n
(
‖ρ3‖L2

uloc(R)‖Ψ̃n

∣∣
σM
‖L2([−n,n]) (II.4.13)

+‖ρ2‖L2(ωn)‖∂XΨ̃n

∣∣
σM
‖L2(([−n,n])

)
,

using the Cauchy-Schwarz and Poincaré inequalities over ωn. Thus,

‖∆αΨ̃n‖2L2(ωn) ≤
(
δ + ‖F‖2L2

uloc(ωb)

) (
‖Ψ̃n|X=M‖2H1([−n,n]) + ‖Ψ‖2L2(ωn)

)
+ Cδn

( 3∑
k=0
‖gk‖2L∞(R) + ‖ρ2‖2L2

uloc(R) + ‖ρ3‖2L2
uloc(R)

)
(II.4.14)

Notice that the first term on the r.h.s of the previous inequality can be absorbed
by the one on the l.h.s for δ and F small enough. Then, using Poincaré inequality
over the whole channel yields

En :=
∫
ωb
|∆αΨ̃n|2 ≤

∫
ωn
|∆αΨ̃n|2 ≤ C0(g0, . . . , g3, ρ2, ρ3)n. (II.4.15)

where constant C0 depends on α and the size of the jumps and the values of the
differential operators at the artificial boundary, as seen in (II.4.14). The existence
of Ψ̃n in H2(ωn) follows.
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Therefore, we resort to performing energy estimates on the system (II.4.8), fol-
lowing the strategy of Gérard-Varet and Masmoudi [59]. The idea is to use the
quantity

Enk :=
∫
ωk

|∆αΨ̃n|2,

to derive an induction inequality on (Enk )k∈N, for all n ∈ N. Hence, we consider
ϕ = χkΨ, where χk ∈ C∞0 (R) is a cut-off function in the tangential variable such
that Suppχk ⊂ [−k−1, k+ 1] and χn ≡ 1 on [−k, k] for k ∈ N. Since the problem
is defined in a two-dimensional domain, the support of ∇jχk, j = 1, . . . , 4, is
included in the reunion of two intervals of size 1.
Let us explain the overall strategy. We shall first derive the following inequality
for all k ∈ {1, . . . , n}

Enk ≤ C1

(
(Enk+1 − Enk ) +

( 3∑
k=0
‖gk‖2L∞(R) + ‖ρ2‖2

H
m−1/2
uloc (R)

+ ‖ρ3‖2
H
m−3/2
uloc (R)

)
(k + 1)

)
.

(II.4.16)
Here, C1 is a constant depending only on the characteristics of the domain.
Then, by backward induction on k, we deduce that

Enk ≤ Ck, ∀k ∈ {k0, . . . , n},

where k0 ∈ N is a large, but fixed integer (independent of n) and Enk0
is bounded

uniformly in n for a constant C depending on ωb, gk, k = 0, . . . , 3 and F . This
provides the uniform boundness for a maximal energy of size k0. Since the deriva-
tion of energy estimates is invariant by translation on the tangential variable, we
claim that

sup
a∈Ik0

∫
{(−1,M)×a}∩ ωb

|∆αΨ̃n|2 ≤ C. (II.4.17)

The set Ik0 contains all the intervals of length 2k0 in [−n, n] with extremities in
Z. Consequently, the uniform H2

uloc bound on Ψn is proved and an exact solution
can be found by compactness. Indeed, by a diagonal argument, we can extract a
subsequence (Ψ̃r(n))n∈N such that

Ψ̃r(n) ⇀ Ψ weakly in H2(ωk),
Ψ̃r(n)

∣∣∣
σM

⇀ Ψ
∣∣∣
σM

weakly in H3/2(σMk ),

∂XΨ̃r(n)

∣∣∣
σM

⇀ ∂XΨ
∣∣∣
σM

weakly in H1/2(σMk ),

for all k ∈ N. Of course, Ψ̃ is a solution of (II.4.8), and, consequently, Ψ− ∈
H2

uloc(ωb) is solution of system (II.4.5).
To lighten notations in the subsequent proof, we shall denote Ek instead of Enk .

– Deriving the inequality. This part contains the proof of (II.4.16). Taking χkΨ̃ as
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test function in (II.4.9) provides the following expression for the l.h.s.

∓
∫
ωb
∂XΨ̃χkΨ̃−

∫
ωb

∆αΨ̃∆α(χkΨ̃) = ±1
2

∫
R
χkΨ2∣∣

X=M − Ek

− 2
∫
ωb

∆αΨ̃∇αχk · ∇αΨ̃−
∫
ωb

Ψ̃∆αΨ̃∂2
Y χk

−
∫
ωk+1\ωk

χk|∆αΨ̃|2.

(II.4.18)

For the third term, we simply use the Cauchy–Schwarz and Poincaré inequalities:

∣∣∣∣∫
ωb

∆αΨ̃∇αχk · ∇αΨ̃
∣∣∣∣ ≤ C

(∫
ωk+1,k

|∆αΨ̃|2
)1/2(∫

ωk+1,k
|∇αΨ̃|2

)1/2

≤ C(Ek+1−Ek).

(II.4.19)
In the same fashion, we find that

∫
ωb Ψ̃∆αΨ̃∂2

Y χk and
∫
ωk+1\ωk χk|∆αΨ̃|2 are also

bounded by C(Ek+1 − Ek).
Gathering all boundary terms stemming from the biharmonic operator and the
first term in the r.h.s. of (II.4.18) yields

−
∫
R
χk

(
ρ3Ψ̃

∣∣
X=M + ρ2∂XΨ̃

∣∣∣
X=M

)
.

The term above is bounded by

C
(
‖ρ2‖2L2

uloc
+ ‖ρ3‖2L2

uloc

)
(Ek+1 + (k + 1))

where C depends only on M , α and on ‖γ‖W 2,∞ . The computation of this bound
relies on the trace theorem and Young’s inequality.
We are left with∣∣∣∣∫

ωb
χkF

LΨ̃
∣∣∣∣ ≤ C

( 3∑
k=0
‖gk‖L∞(R)

)
E

1/2
k+1
√
k + 1 + ‖F‖L2

uloc(ωb)
E

1/2
k+1,

≤ Cν

( 3∑
k=0
‖gk‖2L∞(R)

)
(k + 1) + (ν + ‖F‖2L2

uloc(ωb))Ek+1.

Lastly, combining all the estimates and taking ν and ‖F‖2
L2

uloc(ωb) small enough
give

Ek ≤ C1 ((Ek+1 − Ek) + C2(k + 1)) ,

where C1 is a constant independent of k and

C2 := C2(g0, . . . , g3, ρ2, ρ3) =
( 3∑
k=0
‖gk‖2L∞(R) + ‖ρ2‖2

H
m−1/2
uloc

+ ‖ρ3‖2
H
m−3/2
uloc

)
.

(II.4.20)
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– Induction. Our goal is to show from (II.4.16) that there exists k0 ∈ N\{0}, C > 0
such that, for all n ∈ N ∫

ωk0

|∆αΨ̃n|2 ≤ C. (II.4.21)

From (II.4.16), we claim that induction on n− k indicates there exists a positive
constant C3 depending only on C0, C1 and C2 appearing respectively in (II.4.15)
and (II.4.21), such that, for all k > k0,

Ek ≤ C3C2(k + 1). (II.4.22)

Let us insist on the fact that C3 is independent of n, k and will be adjusted in
the course of the induction argument.
First, notice that thanks to (II.4.15), (II.4.22) is true for k = n once C3 > C0C

−1
2 ,

recalling that Ψ̃n = 0 on ωb \ ωn. We then assume that (II.4.22) holds for n, n−
1, . . . , k + 1, where k is a positive integer.
We prove (II.4.22) at rank k by contradiction. Assume that (II.4.22) does not
hold at the rank k. Then, the induction implies

Ek+1 − Ek < C3C2.

Since C0, C1 > 0 are fixed and depend on α and ‖γ‖W 2,∞ (see (II.4.15) for the
definition of C0), substituting the above inequality in (II.4.16) yields

C3C2(k + 1) < Ek ≤ C1C2C3 + C1C2(k + 1). (II.4.23)

Taking C3 ≥ 2C1 and plugging it in (II.4.23) results in a contradiction for k > k0,
where k0 = 2C1 + 1. Therefore, (II.4.22) is true at the rank k > k0. Moreover,
since Ek is an increasing functional with respect to the value of k, we obtain that
Ek is also bounded for k ≤ k0. It follows from (II.4.22), choosing k = 2, that there
exists a constant C > 0, depending only on C0, C1, C2, C3, and therefore only on
α, ‖γ‖L∞(R) and on the norms on gk, k = 0, . . . , 3 and ρi, i = 2, 3, such that,

Ek0 ≤ Ek0+1 ≤ C(k0 + 1). (II.4.24)

Let us now consider the set Ik0 of all segments contained in {(M,Y ) : |Y | ≤ n}
of length 2k0. As Ik0 is finite, there exists an interval a in Ik0 which maximizes{

‖Ψ̃n‖H2(ωa) : a ∈ Ik0

}
,

where ωa = {x ∈ ωb : Y ∈ a}. We then shift Ψ̃n in such a manner that a is
centered at 0. We call Ψ̄n the shifted function. It is still compactly supported,
but in ω2n instead of ωn:∫

ω2n
|∆αΨ̄n|2 =

∫
ωn
|∆αΨ̃n|2 and

∫
ωk0

|∆αΨ̄n|2 =
∫
ωa
|∆αΨ̃n|2.

Analogously to Ek, we define Ēk. The arguments leading to the derivation of
energy estimates are invariant by horizontal translation, and all constants depend
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only on the parameter α and the norms on gk, ρi, i = 2, 3, F and γ, so (II.4.24) still
holds when Ek is replaced by Ēk. On the other hand, Ēk0 maximizes ‖Ψ̄n‖2H2(ωa)
on the set of intervals of length 2k0. This estimate being uniform, we can take k0
large enough and obtain

sup
a∈Ik0

‖Ψ̃n‖H2(((0,−1)×a)∩ωb) <∞,

which means that Ψ̃n is uniformly bounded in H2(ωb).
– Uniqueness. To establish uniqueness, we consider Ψ = Ψ1−Ψ2, where Ψi, i = 1, 2,

are solutions of the original problem. The goal is to show that the solution Ψ̃ of
the following problem is identically zero.

±∂XΨ−∆2
αΨ = 0 in ωb,

Ψ
∣∣
X=−γ(Y ) = ∂nΨ

∣∣
X=−γ(Y ) = 0,

(II.4.25)

We proceed similarly as in the “existence part” by multiplying the equation in
(II.4.25) by Ψk = χkΨ and integrating over ωb. The resulting induction relation
is

Ek ≤ C(Ek+1 − Ek).

Since Ek+1 − Ek is uniformly bounded in k, we obtain Ek ≤ C uniformly in k,
meaning that the difference between two solutions belongs to H2. Hence, we can
multiply the equation on Ψ by Ψ itself and integrate by parts, disregarding χk.
This leads to

(1− Cδ0)
∫
ωb
|∆αΨ|2 ≤ 0,

which provides the uniqueness result when δ0 < C−1.

The values of ρ2 and ρ3 are later replaced by the corresponding non-local operators.

II.4.2 Nonlinear/ linearized problem.
If j ∈ {1, 2}, we proceed as follows:

(NL1) The well-posedness of the system on the half-space{
Lα(Ψ) +Qα(Ψ̄,Ψ) = F, in X > M,

Ψ
∣∣
σM

= ψ0, ∂XΨ
∣∣
σM

= ψ1,
(II.4.26)

for small enough but non-decaying boundary data ψ0 and ψ1 and source term F is
shown by combining estimates of the linear problem for a certain source function F̃
(steps (L1) and (L2)) with a fixed point argument. The problem is clearly nonlinear
when Ψ̄ = Ψ. This corresponds to the case when j = 1 and the solution is obtained
under a smallness assumption by applying a fixed point theorem in a space of expo-
nentially decaying functions.
The linearized problem (j = 2), the solution Ψ is sought in a similar manner, with the
particularity of only assuming Ψ̄ is small enough.
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(NL2) For any (ρ2, ρ3) ∈ H−1/2
uloc (R)×H−3/2

uloc (R) small enough, we introduce the function Ψ−
satisfying the following problem in the rough domain ωb = ω \ ({X > M} × R)

Lα(Ψ−) +Qα(Ψ̄−,Ψ−) = F, in ωb \ σM[
∂kXΨ−

] ∣∣
σ

= gk, k = 0, . . . , 3,

Ψ−
∣∣
X=−γ(Y ) = ∂Ψ−

∂n

∣∣
X=−γ(Y ) = 0,

A−i
(
Ψ−
∣∣
σM
, ∂XΨ−

∣∣
σM

)
= ρi, i = 2, 3.

(II.4.27)

Here, A2 and A3 are the second and third-degree components of the Poincaré-Steklov
operator, defined at the transparent boundary in the rough channel. The nonlin-
ear/quasilinear nature of A3 depends on the choice of the function Ψ̄ since it contains
the boundary terms stemming from Qα.
The proof of existence and uniqueness of the solution of (II.4.27) follows the same
ideas of (L5). The goal is to obtain uniform estimates on the quantity Ekn by means
of backward induction and then apply it to a translated channel to get a uniform local
bound. The first obvious difference resides naturally in the induction relation. Here,
the inequality is

Enk ≤ C̃1(Enk+1 − Enk )3/2 + C1(Enk+1 − Enk ) + C2(k + 1), ∀k ∈ {1, . . . , n} , (II.4.28)

where C̃1 and C1 are constants depending only on the domain, while C2 is determined
by the norms of gk, k = 0, . . . , 3 and ρi, i = 2, 3. Relation (II.4.28) is obtained using a
truncation over ωk and energy estimates. The smallness assumption on the boundary
data (resp. on Ψ̄) is essential in the nonlinear (resp. linearized) case since it guarantees
for the terms derived from Qα to be absorbed by the truncated energy on the r.h.s. In
particular, for the linearized case, we have that C̃1 = 0 in (II.4.28).

(NL3) Then, we will introduce the solution Ψ+ of (II.4.26) with ψ0 = Ψ−
∣∣
X=M and

ψ1 = ∂XΨ−
∣∣
X=M and connect the solutions Ψ− and Ψ+ at the transparent boundary.

The strategy is to apply the implicit function theorem to a certain map

F := F(g0, . . . , g3, ρ2, ρ3),

to find a solution of F = 0 in a neighborhood of zero. To do so, we first prove that F
is a C1 mapping in a neighborhood of the transparent boundary, which means, in turn,
that higher regularity of the solution is needed.

(NL4) Once the regularity estimates have been computed, we define the mapping F =
(F1,F2), where

F1(g0, . . . , g3, ρ2, ρ3) = A2
(
Ψ+∣∣

X=M , ∂XΨ+∣∣
X=M , F

)
− ρ2,

F2(g0, . . . , g3, ρ2, ρ3) = A3
(
Ψ+∣∣

X=M , ∂XΨ+,
∣∣
X=M , F

)
− ρ3.

(II.4.29)

The point will be to establish that for small enough gk, k = 0, . . . , 3 the system{
F1(g0, . . . , g3, ρ2, ρ3) = 0,
F2(g0, . . . , g3, ρ2, ρ3) = 0,
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has a unique solution , provided that Fi(0, . . . , 0) = 0, for i = 1, 2. This result will
be obtained via the implicit function theorem. When verifying that dF(0, . . . , 0) is an
isomorphism of Hm−1/2(R)×Hm−3/2(R), we need that the only solution of the linear
problem (II.4.1)-(II.4.2), when gk ≡ 0 for all k is Ψ = 0. This shows once again how
intrinsically connected the linear and nonlinear/linearized problems are.
Therefore, the field Ψ defined by Ψ± on each side of the transparent condition will be a
solution of (II.4.1)-(II.4.2). The definitions of Ψ+ and tensors A±2 (·, ·, ·) and A±3 (·, ·, ·)
provide that

[
∂kXΨ

] ∣∣
X=M = 0, for k = 0, . . . , 3.

This section is a blueprint for the proofs in the remainder of the chapter, and we will
refer to it profusely. Especially in the derivation of energy estimates, where only the terms
different from the ones discussed above will be presented.

II.5 Western boundary layer: the linear case
This section is devoted to showing the well-posedness of the western boundary layer problems
in a general regime. The western boundary layer plays a fundamental role in basin-scale
wind-driven ocean circulation, and it has been long studied in several theoretical works, e.g.,
[68, 13]. In idealized ocean models with a flat bottom, this layer is required not only to
balance the interior Sverdrup transport to close the gyre circulation, but also to dissipate
the vorticity imposed by the wind-stress curl [69].

Note that while the boundary layer functions depend on (t, y), these variables behave as
parameters at a microscopic scale. On that account, they will be omitted from the boundary
layer functions to lighten the notation when no confusion can arise.

We start by studying the linear problem

∂XwΨw −∆2
wΨw = 0, in ω+

w ∪ ω−[
∂kXwΨw

]
|Xw=0 = gk, k = 0, . . . , 3,

Ψw

∣∣
X=−γ(Y ) = 0, ∂Ψw

∂nw

∣∣
Xw=−γw(Y ) = 0,

(II.5.1)

where gk ∈ L∞(R), for all k = 0, . . . , 3.

Theorem II.5.1. Let γw be a positive W 2,∞(R) function and ωw be defined as before. Let
gk ∈ L∞(R), for all k = 0, . . . , 3. Then, problem (II.5.1) has a unique solution Ψw in
H2

uloc(ωw \ σw) and there exists positive constants C, δ > 0 such that

‖eδXwΨw‖H2
uloc(ωw) ≤ C

3∑
k=0
‖gk‖L∞(R). (II.5.2)

The proof of well-posedness of Theorem II.5.1 relies on the formulation of an equivalent
system in a domain where transparent boundary conditions have been added at Xw = M ,
M > 0. We will be following the steps listed in Section II.4.1 for the linear case.

First, we show some preliminary results on a problem in the half-space. Then, we define
the pseudo-differential operators of the Poincaré-Steklov type relating the solution in the
half-space with the one in the rough domain at the “transparent” interface. Finally, we
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restrict ourselves to the domain ωbw = ωw ∩ {X ≤ M} and solve an equivalent problem
following the Ladyženskaya and Solonnikov method [60].

Throughout this section, we write X instead of Xw since the analysis is only focused on
the western boundary layer; hence no confusion can arise.

II.5.1 The linear problem on the half-space
The main focus of this section is the analysis of the system

∂XΨw −∆2
wΨw = F, in R2

+

Ψw

∣∣
X=0 = ψ0, ∂XΨw

∣∣
X=0 = ψ1.

(II.5.3)

Here, F is a function decaying exponentially as Xw goes to infinity, and we have considered
M = 0 to facilitate the computations. The problem with a source term F is necessary for
the subsequent study of the nonlinear problem describing the western boundary layer.

Note that if Ψw is a solution of (II.5.3), Ψw(X−M,Y ) is solution of the problem defined
on {X > M} with M > 0 as a consequence of the equation being invariant with respect to
translations on X. Functional spaces of ψ0 and ψ1 are provided in the following theorem,
which summarizes the main result of the section.

Theorem II.5.2. Let m ∈ N such that m� 1. Let ψ0 ∈ Hm+3/2
uloc (R) and ψ1 ∈ Hm+1/2

uloc (R).
Let F be such that eδ̄XF ∈ Hm−2

uloc (R2
+), for δ̄ ∈ R∗+. Then, there exists a unique solution Ψw

of system (II.5.3) satisfying

‖eδXΨw‖Hm+2
uloc (R2

+)) ≤ C
(
‖ψ0‖Hm+3/2

uloc (R)) + ‖ψ1‖Hm+1/2
uloc (R)) + ‖eδ̄XF‖Hm−2

uloc (R2
+))

)
, (II.5.4)

for a constant C depending on α, δ < δ̄.

Note that uniqueness consists of showing that if F = 0, ψ0 = 0 and ψ1 = 0, the only
solution Ψw of (II.5.3) is Ψw ≡ 0. The proof of the result is rather easy and will be sketched
in paragraph II.5.1.1. Consequently, the primary result will be the existence of a solution
satisfying estimate (II.5.4). Similarly to [61], the existence results can be obtained by com-
pactness arguments.

As the main equation is linear, we use a superposition principle to prove the desired
result, meaning a solution of (II.5.3) is sought of the form

Ψw = Ψw + ΨF
w ,

where Ψw is the solution of a homogeneous linear problem{
∂XΨw −∆2

wΨw = 0, in R2
+

Ψw

∣∣
X=0 = ψ∗0, ∂XΨw

∣∣
X=0 = ψ∗1,

(II.5.5)

while, the function ΨF
w solves the equation

∂XΨF
w −∆2

wΨF
w = F, in R2

+. (II.5.6)

Note that the boundary terms ψ∗0 and ψ∗1 are different from ψ0 and ψ1. Indeed, it is convenient
to construct the solution of (II.5.6) which does not satisfy homogeneous boundary conditions,
and then lift the non-zero traces of ΨF

w and ∂XΨF
w thanks to Ψw.
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First, we apply Fourier analysis when looking for the solution of homogeneous problem
(II.5.5) with boundary conditions ψ∗0 = ψ0 −ΨF

w

∣∣
X=0 and ψ∗1 = ψ1 − ∂XΨF

w

∣∣
X=0. Then, we

tackle the sub-problem regarding function ΨF
w . In this case, we disregard temporarily about

boundary conditions and focus on the equation (II.5.6). Our goal in this step is to construct
a solution by means of an integral representation involving the Green function.

II.5.1.1 Homogeneous linear problem

In order to prove the existence and uniqueness of the solution of problem (II.5.5) inH2
uloc(R2

+),
we first analyze the problem when the boundary data belongs to usual Sobolev spaces, see
Proposition II.5.1, and then, extend the result to Kato spaces.

Proposition II.5.1. Let ψ∗0 ∈ Hm+3/2(R) and ψ∗1 ∈ Hm+1/2(R). Then, the system{
∂XΨw −∆2

wΨw = 0, in R2
+

Ψw

∣∣
X=0 = ψ∗0, ∂XΨw

∣∣
X=0 = ψ∗1,

(II.5.7)

admits a unique solution Ψw ∈ Hm+2(R2
+).

Proof. Existence. Let us illustrate the proof for m = 0. Given ψ∗0 ∈ H3/2(R2
+) and ψ∗1 ∈

H1/2(R2
+), we proceed with the construction of the fundamental solution by means of the

Fourier transform. Applying the Fourier transform with respect to Y results in the following
ODE problem

∂XΨ̂w − (∂2
X + (−α∂X + iξ)2)2Ψ̂w = 0, in R2

+

Ψ̂w

∣∣
X=0 = ψ̂∗0, ∂XΨ̂w

∣∣
X=0 = ψ̂∗1,

(II.5.8)

where ξ ∈ R is the Fourier variable and ψ̂∗i is the Fourier transform of ψ∗i , i = 0, 1. The
corresponding characteristic polynomial is

P (λ) = −λ− (λ2 + (αλ+ iξ)2)2. (II.5.9)

We are now interested in identifying possible degenerate cases using the relations between
the coefficients and the roots of its characteristic equation.

Lemma II.5.1. Let P (λ) be the characteristic polynomial associated to the problem (II.5.5).
Then, P (λ) has four distinct complex roots λ±i , i = 1, 2. Moreover, when ξ 6= 0, <(λ+

i ) > 0
and <(λ−i ) < 0.

We refer the reader to Appendix II.A for a detailed proof of Lemma II.5.1.
The solutions of the problem resulting of applying the Fourier transform are linear

combinations of exp(−λ+
kX) (with coefficients depending on ξ), where (λ+

k )k=1,2 are the
complex-valued solutions of the characteristic polynomial satisfying <(λ+

k ) > 0. There exist
A+
k : R→ C such that

Ψ̂w(X, ξ) =
2∑

k=1
A+
k (ξ) exp(−λ+

k (ξ)X), in R2
+. (II.5.10)
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Combining (II.5.10) with boundary conditions in (II.5.5), we have that coefficients A+
1 , A

+
2

satisfy

Λ
(
A+

1 (ξ)
A+

2 (ξ)

)
=
(

ψ̂∗0
−ψ̂∗1

)
, where Λ :=

(
1 1
λ+

1 λ+
2

)
. (II.5.11)

Note that the coefficients A+
1 and A+

2 are well-defined since Λ is invertible as a direct
consequence of all the roots λ+

k , k = 1, 2 of (II.5.9) being simple.
It remains to check that the corresponding solution is sufficiently integrable, namely,

‖Ψw‖Hm+2(R2
+) < +∞. This assertion is equivalent to showing that for 0 ≤ k ≤ 2

∫
R+×R

|∂kXΨ̂w|2dξdX + |ξ|2k|Ψ̂w|2dξdX < +∞. (II.5.12)

To that end, we need to investigate the behavior of λ+
k , A

+
k for ξ close to zero and when

|ξ| → ∞. We gather the results in the following lemma, whose proof is postponed to
Appendix II.B:

Lemma II.5.2. – As ξ → 0,

λ+
j (ξ) = λ̄+

j O (|ξ|) , <(λ̄+
j ) > 0, j = 1, 2,

A+
j (ξ) = a0,jψ̂

∗
0 + a1,jψ̂

∗
1 +O

(
|ψ̂∗0||ξ|+ |ψ̂∗1||ξ|2

)
,

where λ̄+
j , a0,j and a1,j depend continuously on α.

As |ξ| → +∞, we have the following asymptotic behavior for j = 1, 2 when

λ+
j (ξ) = p1|ξ|+ (−1)jp0|ξ|−

1
2 +O(|ξ|−2)

A+
j (ξ) = (−1)jm2|ξ|3/2 + (−1)jm1|ξ|1/2 +O

(
(|ψ̂∗0|+ |ψ̂∗1|)|ξ|−1

)
,

where p1 = ζ2
1ξ>0+ζ̄2

1ξ<0, p0 = 1
2
(
iζ1ξ>0 + ζ̄1ξ<0

)
, m1 = ψ̂∗1

|ζ|2
(
ζ1ξ<0 − iζ̄1ξ>0

)
and m2 = ψ̂∗0

(
iζ1ξ>0 − ζ̄1ξ<0

)
. Here, ζ refers to the complex quantity

√
1−iα
α2+1

satisfying <(ζ) > 0.

Lemma II.5.2 is used to show (II.5.12) is in fact true for even larger values of k if ψ0 and
ψ0 are regular enough. The detailed proof can be found on Appendix II.C.

Uniqueness. To show the uniqueness the solution, it is enough to solve (II.5.5) when
ψ∗0 = ψ∗1 = 0 and verify Ψw ≡ 0. Applying the Fourier transform results in the following
system

Λ
(
A+

1 (ξ)
A+

2 (ξ)

)
=
(

0
0

)
,

where Λ is the invertible matrix previously defined. We conclude that A1 = A2 = 0, and
thus Ψ̂(X, ξ) ≡ 0. Since Ψw is an absolutely integrable function whose Fourier transform is
identically equal to zero, then Ψw = 0.
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II.5.1.2 Non homogeneous problem

We begin the proof of the existence and uniqueness of the solution ΨF
w of (II.5.6) with the

analysis of the equation
∂XΨF

w −∆2
wΨF

w = F, in R2
+.

Our approach consists of constructing a particular solution of this equation, satisfying for
some large enough m an estimate where the norm of F controls the norm of the solution in
L∞(Hm−2

uloc ). We look for a integral solution of the form

ΨF
w(X, ·) =

∫ +∞

0
G(X −X ′, D)F (X ′, ·)dX ′, (II.5.13)

where G is the Green function verifying the equation

∂XG−∆2
wG = δ0. (II.5.14)

Here, δ0(·) = δ(·−X ′) denotes the Dirac delta function. In other words, G is the fundamental
solution over R2 of the Fourier multiplier L(X, ξ) for any ξ ∈ R and satisfies

L(X, ξ)G(X, ξ) = δ0(X).

Away from X = 0, G(X, ξ) satisfies the homogeneous equation (II.5.5), see Section II.5.1.1.
ForX 6= 0, G(X, ξ) is a linear combination of e−λ

±
i X , where λ±i (ξ), i = 1, 2 are continuous

functions of ξ and roots of the polynomial (II.5.9). We define G as follows

G =
{ ∑2

i=1B
−
i e
−λ−i X , in X < 0∑2

i=1B
+
i e
−λ+

i X , in X > 0,
B±i : R→ C, k = 1, 2. (II.5.15)

Note that if G is considered discontinuous at X = 0, with the discontinuity modeled by a
step function, then, ∂XG ∝ δ0(X) and consequently, ∂kXG ∝ δ

(k)
0 (X), k = 2, 3, 4. However,

(II.5.14) does not involve generalized functions beyond δ0(X), and contains no derivatives of
δ-functions. Thus, we conclude that G(X,X ′) must be continuous throughout the domain
and in particular at X = 0. G(X, ·) is a C2 function and ∂3G/∂X3 has a finite jump
discontinuity of magnitude −1/(1 + α2)2 at X = X ′. More precisely, G satisfies

[∂kXG]|X=0 = 0, k = 0, 1, 2, and [∂3
XG]|X=0 = − 1

(1 + α2)2 .

Substituting (II.5.15) in the above interface conditions provides a linear system on the coef-
ficients B±i .

B+
1 +B+

2 −
(
B−1 +B−2

)
= 0

λ+
1 B

+
1 + λ+

2 B
+
2 −

(
λ−1 B

−
1 + λ−2 B

−
2

)
= 0

(λ+
1 )2B+

1 + (λ+
2 )2B+

2 −
(
(λ−1 )2B−1 + (λ−2 )2B−2

)
= 0

(λ+
1 )3B+

1 + (λ+
2 )3B+

2 −
(
(λ−1 )3B−1 + (λ−2 )3B−2

)
= 1

(1 + α2)2 .

(II.5.16)

The determinant of the Vandermonde matrix associated to (II.5.16) is of the form

D̄ = (λ+
1 − λ

+
2 )(λ+

1 − λ
−
1 )(λ+

2 − λ
−
1 )(λ+

1 − λ
−
2 )(λ+

2 − λ
−
2 )(λ−1 − λ

−
2 ).
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Since all the λ±i are distinct (see Lemma II.5.1), D̄ is non-zero and system (II.5.16) has a
unique set of solutions

B+
1 = − 1

(α2 + 1)2
(
λ+

1 − λ
+
2

) (
λ+

1 − λ
−
1

) (
λ+

1 − λ
−
2

) ,
B+

2 = 1
(α2 + 1)2

(
λ+

1 − λ
+
2

) (
λ+

2 − λ
−
1

) (
λ+

2 − λ
−
2

) , (II.5.17)

B−1 = 1
(α2 + 1)2

(
λ+

1 − λ
−
1

) (
λ+

2 − λ
−
1

) (
λ−1 − λ

−
2

) ,
B−2 = − 1

(α2 + 1)2
(
λ+

1 − λ
−
2

) (
λ+

2 − λ
−
2

) (
λ−2 − λ

−
1

) .
This establishes the function G. Its asymptotic behavior as |ξ| → 0 and |ξ| → ∞ is

summarized in the following lemma.

Lemma II.5.3. We have

G =


∑2
j=1B

−
j e
−λ−j X , X < 0∑2

j=1B
+
j e
−λ+

j X , X > 0
,

where the coefficients B±j are given by (II.5.17) and λ+
j are the ones in Lemma II.5.2. Here,

as |ξ| → 0

λ−1 = −|ξ|4 +O
(
|ξ|5

)
, λ−2 = − 1

(α2 + 1)2/3 +O (|ξ|) .

If |ξ| → ∞,

λ−j (ξ) = p1|ξ|+ (−1)jp0|ξ|−
1
2 +O(|ξ|−2),

where pi, i = 0, 1, are defined as in Lemma II.5.2 and ζ ′ =
√
−1−iα
α2+1 .

Asymptotic behavior:

• As |ξ| → 0, we have that B±j → B̄j ∈ R independent of α.

• For |ξ| � 1, we have B±j = O(|ξ|−3/2).

We refer to Appendix II.D for a proof.
We proceed to rigorously prove that the field

ΨF
G(X, ·) =

∫ +∞

0
G(X−X ′, D)F (X ′, ·)dX ′ =

∫ +∞

0
F−1
ξ→Y ′

(
G(X −X ′, ·)FY ′→ξF (X ′, ·)

)
dX ′

(II.5.18)
is well-defined and satisfies (II.5.6). This is made more precise in the following lemma:

Lemma II.5.4. Let F be smooth and compactly supported. The formula (II.5.13) defines a
solution ΨF

w of (II.5.6) in L∞loc(R+, H
m+2(R)) for any m ≥ 0.
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Proof. From the hypotheses, we can assert that F̂ = F̂ (X ′, ξ) is in the Schwartz class
with respect to ξ 6= 0, smooth and compactly supported in X ′. We have additionally that
G(X − X ′, ξ) is smooth in ξ 6= 0, and continuous in X,X ′. As a result, the function
JX,X′ : ξ −→ G(X −X ′, ξ)F̂ (X ′, ξ) belongs to L2((1 + |ξ|2)m/2+1dξ)×L2((1 + |ξ|2)m/2+1dξ)
for any X,X ′ ≥ 0 and is smooth in ξ and continuous in X,X ′. At high frequencies, the
functional satisfies

|JX,X′(ξ)| ≤ C|ξ|N |F̂ |,

where N = −3/2. This value comes from computing the Bi using Lemma II.5.3. We can
conclude that it belongs to L2 since F̂ and its X ′-derivatives are rapidly decreasing in ξ by
definition of Schwartz class.

Furthermore, when |ξ| � 1, using once again the bounds derived in Lemma II.5.3,

G(X −X ′, ξ)F̂ (X ′, ξ) = O(1).

Thus, ΨF
G defines a continuous function of X with values in Hm+2(R2

+) for all m ≥ 0.
Moreover, the smoothness of F implies ΨF

G is smooth in X with values in the same space.
It will be a solution of the problem due to classical results in the construction of Green
functions.

Finally, as its Fourier transform is a linear combination of e−λi(ξ)XBi(ξ), it also satisfies
the linear problem treated in section II.5.1.1.

II.5.1.3 Bounds in Kato spaces

In this section we establish that Ψw is controlled by the norms of ψ0, ψ1 and F in L∞
(
Hm−2

uloc

)
for a large enough m. The proof follows [61].

Now we need to derive a representation formula for Ψw when ψ0 ∈ H3/2
uloc(R) and ψ1 ∈

H
1/2
uloc(R) by using its Fourier transform. The critical point is to understand the action of

the operators on L2
uloc functions.

Due to the form of the solution, the end goal will be to establish that for any X > 0,
the kernel type K±i = F−1

ξ→Y

(
B±i (ξ)e−λ

+
i (ξ)X

)
, i = 1, 2, defines an element of L1(R). The

advantage of proving the latter is that Ψ±i = K±i (·, z) ∗ ψ
i
will then be (at least) an L1

uloc
function.

Lemma II.5.5. Let ψ be L1
uloc(R). We define Ψ±i (X,Y ) by

Ψ±i (X, ·) := χ(D)P (D)e−λ
±
i (D)Zψ, for i = 1, 2, (II.5.19)

where χ = χ(ξ) ∈ C∞c (R) and P = P (ξ) ∈ C∞(R) is a is a homogeneous polynomial of
degree k ≥ 0 in the same vicinity. Then, there exists C and δ > 0 independent of ψ such
that

∀Z ≥ 0, ‖eδZΨ+
1 ‖L∞(R2

+) + ‖eδZΨ+
2 ‖L∞(R2

+) ≤ C‖ψ‖L1
uloc

,

∀Z ≤ 0, ‖(1 + |Z|)k/4Ψ−1 ‖L∞(R2
+) + ‖eδ|Z|Ψ−2 ‖L∞(R2

+) ≤ C‖ψ‖L1
uloc

.

This lemma follows the same idea as [61, Lemma 7]. For the reader’s convenience, we
repeat the main ideas of the proof, thus making our exposition self-contained.
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Proof. We introduce a partition of unity (ϕq)q∈Z with ϕq ∈ C∞0 (R), where Suppϕq ⊂ B(q, 2)
for q ∈ Z and supq ‖ϕq‖Wk,∞ < +∞ for all k. We also introduce functions ϕ̃q ∈ C∞0 (R) such
that ϕ̃q ≡ 1 on Suppϕq, and, say Supp ϕ̃q ⊂ B(q, 3). Then, for i = 1, 2

Ψ±i (Z, Y ) =
∑
q∈Z

χ(D)P (D)(ϕqψ)e−λ
±
i (D)Z (II.5.20)

=
∑
q∈Z

∫
R
K±i (Z, Y − Y ′)ψ(Y ′)ϕq(Y ′)dY ′ (II.5.21)

=
∑
q∈Z

∫
R
K±i,q(Z, Y, Y

′)ϕq(Y ′)ψ(Y ′)dY ′,

where

K±i (Z, Y ) =
∫
R
eiY ·ξχ(ξ)P (ξ)e−λ

±
i (ξ)Zdξ, K±i,q(Z, Y, Y

′) = K±i (Z, Y − Y ′)ϕ̃q(Y ′).

We show that the following estimate holds:

Lemma II.5.6. There exists δ > 0 and for all n ∈ N a constant Cn ≥ 0 such that for all
Y ∈ R, Z > 0 and i = 1, 2

|K+
i (Z, Y )| ≤ Cn

e−δZ

(1 + |Y |)n , for i = 1, 2. (II.5.22)

When Z < 0, we have for all Y ∈ R, for all n ∈ N

|K−1 (Z, Y )| ≤ Cn
|Z|(n−1−k)/4

|Z|n/4 + |Y |n
, |K−2 (Z, Y )| ≤ Cn

e−δ|Z|

(1 + |Y |n) . (II.5.23)

We finish the proof of the current lemma and then show the result in Lemma II.5.6.
Combining (II.5.20) and (II.5.22) when i = 1, 2 and Z > 0 yields

|Ψ+
i (Z, Y )| ≤ Ce−δZ

 ∑
q∈Z, |q−Y |≥4

∫
|ϕq(Y ′)ψ(Y ′)|dY ′ 1

|Y − q|2 − 3 (II.5.24)

+
∑

q∈Z, |q−Y |<4

∫
|ϕq(Y ′)ψ(Y ′)|dY ′


≤ Ce−δZ‖ψ‖L1

uloc
.

The latter also applies to Ψ−2 . Furthermore, for |Z| > 1, we have

|Ψ−1 (Z, Y )| ≤ C

 ∑
q∈Z, |q−Y |≥4

∫
|ϕq(Y ′)ψ(Y ′)|dY ′ |Z|

1−k
4

|Z|
1
2 + |Y − q|2 − 3

(II.5.25)

+
∑

q∈Z, |q−Y |<4

∫
|ϕq(Y ′)ψ(Y ′)|dY ′ 1

|Z|(1+k)/4


≤ C

(
|Z|1/4 + 1

)
|Z|−(1+k)/4‖ψ‖L1

uloc
≤ C (|Z|+ 1)−k/4 ‖ψ‖L1

uloc
.

When |Z| ≤ 1, a similar reasoning yields |Ψ−1 (Z, Y )| ≤ C‖ψ‖L1
uloc

.
Estimate in Lemma II.5.5 follows.
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Proof of Lemma II.5.6. With the notation introduce in Lemma II.5.5, we follow the ideas in
[61] to obtain the estimates. Let us consider Z > 0. Since λ+

i , i = 1, 2 are continuous and
have non-vanishing real part on the support of χ, there exists a constant δ > 0 such that
<(λ+

i ) ≥ δ for all ξ ∈ Suppχ and for i = 1, 2. When |Y | ≤ 1, we obtain

|K+
i (Z, Y )| ≤ e−δZ‖χP‖L1 .

However, this estimate is not enough for greater values of Y . Let us define χi(Z, ξ) =
χ(ξ) exp(−λ+

i Z) which is an L∞(R+,S(R)) function. It follows that for all n1, n2 ∈ N

|∂n2
ξ χi(Z, ξ)| ≤ Cn1,n2

e−δZ

(1 + |ξ|2)n1
.

Integrating by parts with respect to the frequency variable yields

Y nK+
i (Z, Y ) =

∫
R
eiY ·ξDn

ξ

[
χi(ξ)P (ξ)e−λ

+
i (ξ)Z

]
dξ

≤ eδZ
∫
R
eiY ·ξ

n∑
m=0

(
n

m− 2

)
∂n−mξ χi∂

m−2
ξ (P (ξ)e−λ

+
i (ξ)Z)dξ.

(II.5.26)

Note that for any k ∈ {0, ..., n}, ∂kξP (ξ) remains an homogeneous polynomial. Thus, expres-
sion (II.5.26) is bounded by a linear combination of integrals of the form∫

R
eiY ·ξe−δnZ1{|ξ|≤C}dξ,

and (II.5.22) follows. The estimate of K−2 stems from the same ideas.
We proceed to compute a useful estimate on K−1 . When |Z| ≤ 1, we have

|K−1 (Z, Y )| ≤ ‖ exp(−δ|ξ|4)χ(ξ)P (ξ)‖L1 < +∞,

for all Y ∈ R and k > −1. Let us now consider |Z| ≥ 1. By introducing the change of
variables ξ′ = |Z|1/4ξ and Y ′ = |Z|−1/4Y , K can be rewritten as

K−1 (Z, Y ′) = 1
|Z|(1+k)/4

∫
R
eiY

′·ξ′χ

(
ξ′

|Z|1/4

)
P (ξ′)e

−λ−1
(

ξ′

|Z|1/4

)
|Z|
dξ′.

Since λ−1 /|ξ|4 ∼ 1 and does not vanish on the support of χ, there exists a positive constant
δ such that −λ−1 (ξ) ≤ −δ|ξ|4 on Suppχ. Therefore, for |Y ′| ≤ 1, it is easy to see that

|K−1 (Z, Y )| ≤ |Z|−(1+k)/4‖ exp(−δ|ξ′|4)P (ξ′)‖L1 .

Now, for |Y ′| ≥ 1, we perform integration by parts and obtain for any n ∈ N,

Y ′nK−1 (Z, Y ) = 1
|Z|(1+k)/4

∫
R
eiY

′ξ′Dn
ξ′

[
χ

(
ξ′

|Z|1/4

)
P (ξ′) exp

(
−λ−1

(
ξ′

|Z|1/4
)
)
|Z|
)]

dξ′.

The main issues arise when the derivative acts on the exponential. Note that λ−1 (ξ) =
|ξ|4Λ−1 (ξ), where Λ1 ∈ C∞(R) and Λ1(0) = 1 therefore, for all ξ′ ∈ R, Z < 0,

exp
(
−λ1

(
ξ′

|Z|1/4

)
|Z|
)

= exp
(
−|ξ′|4Λ−1

(
ξ′

|Z|1/4

))
.
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We infer that for ξ ∈ Suppχ,∣∣∣∣∣P (ξ′)∂nξ′
(
χ

(
ξ′

|Z|1/4

)
e
−λ−1

(
ξ′

|Z|1/4

)
|Z|
)∣∣∣∣∣ ≤ P3n(ξ′)e−δ|ξ′|4 ,

where P3n denotes a polynomial on ξ′ of degree 3n. Hence, we have for all n ∈ N

|Y ′nK−1 (Z, Y )| ≤ Cn|Z|−(1+k)/4,

which provides in turn the following result for all n ∈ N

|K−1 (Z, Y )| ≤ C |Z|
−(1+k)/4

1 + |Y ′|n = C
|Z|(n−1−k)/4

|Z|n/4 + |Y |n
. (II.5.27)

Taking n = 2 in the previous inequality guarantees the convergence of integral controlling
Ψ−1 , completing the second estimate in the lemma.

Exponential decay is obtained at high frequencies by using the following result:

Lemma II.5.7. Let χ ∈ C∞c (R), with χ ≡ 1 in a ball Br := B(0, r), for r > 0, and
P = P (ξ) ∈ Cb(Bc

r). For ψ ∈ L2
uloc(R) , we define Ψi = Ψi(X,Y ) by

Ψ±i (X,Y ) = (1− χ(D))e−λ
±
i (D)ZP (D)ψ.

Then, for Z ∈ R and δ > 0 small enough,

‖eδZΨ1‖L∞(R×R+) + ‖eδZΨ2‖L∞(R×R+) ≤ C‖ψ‖HN
uloc(R). (II.5.28)

The proof of the previous lemma follows almost exactly the one of Lemma 9 in [61], and
consequently, it is not repeated here. The authors in [61] showed that for n large enough,
and any |Z| 6= 0,

Kn(Z, Y ) := F−1
(
1 + |ξ|2)−n(1− χ(ξ))P (ξ)e∓λ

±
i (ξ)Z

)
∈ L1(R).

Consequently, Ψi = Kn ? ((1 − ∂2
Y )nψ) is at least an element of L2

uloc when ψ ∈ HN
uloc(R),

for N ≥ 2n. The choice of N is linked to the degree of polynomial P (D), and thus, to the
asymptotic behavior of the eigenvalues.

Proposition II.5.2. Let l ≥ 0 and F a compactly supported function of HN
uloc(R2

+), for
N ≥

⌈
2l−1

4

⌉
. Then, the solution ΨF

w of (II.5.6) satisfies for 0 < δ < δ̄ and ,

‖eδXDl
X,Y ΨF

w‖L∞ ≤ C‖eδ̄XF‖L∞(HN
uloc), (II.5.29)

where DX,Y is the differential operator with respect to the variables X and Y .

Proof. We distinguish between high and low frequencies. We introduce some χ = χ(ξ) ∈
C∞c (R) equal to 1 near ξ = 0.

Let Ψ[
w denote the integral expression when ξ is in a vicinity of zero

Ψ[
w =

∫ +∞

0
I(X,X ′, ·)dX ′, I(X,X ′, ·) = χ(D)G(X −X ′, D)F (X ′, ·). (II.5.30)
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Here,

Ψ[
w =

∫ X

0
χ(D)G(X −X ′, D)F (X ′, ·)dX ′ +

∫ +∞

X
χ(D)G(X −X ′, D)F (X ′, ·)dX ′.

Let us first show (II.5.29). Using Lemmas II.5.3 and II.5.5, there exists a δ > 0

‖G(X −X ′, D)F (X ′, ·)‖L∞(R) ∼
{
e−δ(X−X

′)‖F (X ′, ·)‖L1
uloc(R), if X −X ′ > 0

‖F (X ′, ·)‖L1
uloc(R), if X −X ′ < 0 .

Then, assuming F decays exponentially at rate δ < δ̄∥∥∥∥∥
∫ X

0
χ(D)G(X −X ′, D)F (X ′, ·)dX ′

∥∥∥∥∥
L∞(R)

≤ C sup
Z∈R+

‖eδ̄ZF (Z, ·)‖L1
uloc(R)

∫ X

0
e−δ(X−X

′)e−δ̄X
′
dX ′

≤ Ce−δX sup
Z∈R+

‖eδ̄ZF (Z, ·)‖L1
uloc(R).

Moreover,∥∥∥∥∫ ∞
X

χ(D)G(X −X ′, D)F (X ′, ·)dX ′
∥∥∥∥
L∞(R)

≤ C sup
Z∈R+

‖eδ̄ZF (Z, ·)‖L1
uloc(R)

∫ ∞
X

e−δ̄X
′
dX ′

≤ Ce−δX sup
Z∈R+

‖eδ̄ZF (Z, ·)‖L1
uloc(R).

Consequently,
‖eδXΨ[

w‖L∞(R2
+) ≤ C‖eδ̄XF‖L∞(L1

uloc(R2
+)). (II.5.31)

For high frequencies, we define

Ψ]
w =

∫ +∞

0
J(·, X,X ′)dX ′, J(X,X ′, ·) = (1− χ(D))G(X −X ′, D)F (X ′, ·). (II.5.32)

On account of Lemma II.5.7, we have that for m ≥ 1

‖J(X,X ′, ·)‖L∞(R) ≤ Ce−δ|X−X
′|‖eδ̄X′F (X ′, ·)‖HN

uloc(R), l = 0, 1,

and, consequently,

‖Ψ#
w‖L∞(R2

+) ≤ C
∫ +∞

0
e−δ|X−X

′|dX ′‖F‖L∞(L2
uloc(R)) ≤ Ce−δX‖eδ̄X

′
F (X ′, ·)‖L∞(L2

uloc(R2
+)),

(II.5.33)
which combined with (II.5.31) provides (II.5.29) for l = 0.

It remains to show the result for the derivatives of ΨF
w . At low frequencies, the coefficients

associated to e−λ
+
i X , i = 1, 2 and eλ

−
2 X satisfy the same properties of exponential decay. The

terms containing eλ
−
1 X converge to a constant or decay to zero with polynomial weight. In

particular, D4k+l
X,Y Ψ[

w decays at a rate O(X1−l/4), for l = 1, · · · , 3. Hence, following the same
reasoning as for l = 0 we have

‖eδXDl
X,Y Ψ[

w‖L∞(R2
+) ≤ C‖eδ̄XF‖L∞(L1

uloc(R2
+)). (II.5.34)
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At high frequencies, applying the differential operator D to Ψw adds at most a |ξ| factor.
Consequently, the l-th derivative at high frequencies behaves like |ξ|l−3/2 exp(−|ξ||Z|). We
have that P (D) = |ξ|l−3/2−2n ∈ Cc(R \ B(0, r)), r > 0 if l − 3/2 − 2n < −1. Lemma II.5.7
gives for N ≥ 2

⌈2l − 1
4

⌉

‖Dl
X,Y Ψ#

w‖L∞(R2
+) ≤ C

∫ +∞

0
e−δ|X−X

′|dX ′‖F‖L∞(HN
uloc(R)) ≤ Ce

−δX‖eδ̄X′F (X ′, ·)‖L∞(HN
uloc(R)).

(II.5.35)
Finally, (II.5.29) results from gathering (II.5.34) and (II.5.35).

II.5.1.4 Proof of Theorem II.5.2

In previous sections, we have constructed the solutions Ψw and ΨF
w for the subproblems

(II.5.5) and (II.5.6), respectively. This paragraph deals with the connection to the solution
of (II.5.3).

The remarks following Theorem II.5.2 justify the existence of such a solution for smooth
and compactly supported data, and it belongs to Hm+2

uloc , for m � 1. We will now focus on
retrieving estimate (II.5.4).

Let us consider Ψw = Ψw − ΨF
w . From Section II.5.1, we know the solution of the

problem (II.5.5) will be well-defined for ψ∗0 = ψ0 − ΨF
w

∣∣
X=0 and ψ∗1 = ψ1 − ∂XΨF

w

∣∣
X=0

regular enough. Formal solutions of the homogeneous linear with zero source term and
inhomogeneous Dirichlet data are given by the equation (II.5.10). Using Lemma II.5.2 and
Lemma II.5.3, we study the behavior of Ψw at low and high frequencies following the ideas
of the previous section.

Lemma II.5.8. Let m0 � 1. Then, there exists δ > 0 and C > 0 such that the solution Ψw

of (II.5.5) satisfies the estimate∥∥∥eδXΨw

∥∥∥
L∞(R2)

≤ C
(
‖ψ0‖Hm0+3/2

uloc (R) + ‖ψ1‖Hm0+1/2
uloc (R) + ‖eδ̄XF‖

H
m0−2
uloc (R2

+)

)
.

Proof. Here, we make use once again of the function χ ∈ C∞c (R) equal to one in a vicinity
of ξ = 0 and zero elsewhere. At low frequencies, the asymptotic behavior in Lemmas II.5.2
and II.5.3 paired with Lemma II.5.5 yield

‖χ(D)Ψw‖L∞ ≤ Ce−δX
(
‖ψ0‖L2

uloc(R) + ‖ψ1‖L2
uloc(R) + ‖eδ̄XF‖L2

uloc(R2
+)

)
. (II.5.36)

Computation of estimates of Ψw at high frequencies relies on Lemma II.5.6. From the
asymptotic behavior listed in Lemma II.5.2 and II.5.3, the coefficient multiplying ψi behaves
as |ξ|3/2−ie−|ξ||Z|, i = 0, 1. If m0 > k > 1 and ψi ∈ H3/2−i

uloc (R), considering P (ξ) = |ξ|3/2−k−i
and ψ = (1−∆)k/2ψi in Lemma II.5.5 gives

‖(1− χ(D))Ψw‖L∞(R) ≤ Ce
−δX

(
‖ψ0‖Hm0+3/2

uloc (R) + ‖ψ1‖Hm0+1/2
uloc (R) + ‖eδ̄XF‖

H
m0−2
uloc (R2

+)

)
.

(II.5.37)
Combining (II.5.36) and (II.5.37), and in view of the estimate (II.5.29) satisfied by ΨF

w , we
have ∥∥∥eδXΨw

∥∥∥
L∞
≤ C

(
‖ψ0‖Hm0+3/2

uloc
+ ‖ψ1‖Hm0+1/2

uloc
+ ‖eδ̄XF‖

H
m0−2
uloc

)
.
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We are left with the task of determining the higher regularity bound (II.5.4). Taking the
derivatives directly on (II.5.10) and (II.5.18), it is clear that by considering larger values of
m0 ∥∥∥eδXΨw

∥∥∥
W 2,∞

≤ C
(
‖ψ0‖Hm0+3/2

uloc
+ ‖ψ1‖Hm0+1/2

uloc
+ ‖eδ̄XF‖Hm0−2

uloc

)
. (II.5.38)

Hence, Ψw = Ψw + ΨF
w verifies∥∥∥eδXΨw

∥∥∥
W 2,∞

≤ C
(
‖ψ0‖Hm0+3/2

uloc
+ ‖ψ1‖Hm0+1/2

uloc
+ ‖eδ̄XF‖Hm0−2

uloc

)
. (II.5.39)

From this, it may be concluded that Ψw ∈ H2
uloc(ω+).

Notice that for all k ∈ Z2 and all m ≥ 0, there exists a constant Cm > 0 such that

‖Ψw‖Hm+2(B(k,1)∩ω+
w ) ≤ C

(
‖ψ0‖Hm+3/2

uloc
+ ‖ψ1‖Hm+1/2

uloc
+ ‖F‖Hm−2(B(k,2)∩ω+

w ) + ‖Ψw‖H2(B(k,2)∩ω+
w )

)
.

This is a classical local elliptic regularity result, see [70]. Using the previous inequality and
(II.2.11) provides

‖eδXΨw‖Hm0+2
uloc (ω+) = sup

k∈Z2
‖eδXΨw‖Hm0+2(B(k+1)∩ω+)

= Cm0 sup
k∈Z2

(
‖ψ0‖Hm0+3/2

uloc
+ ‖ψ1‖Hm0+1/2

uloc

+eδk‖F‖Hm0−2(B(k,2)∩ω+
w ) + eδk‖Ψw‖H2(B(k,2)∩ω+

w )

)
.

From sup
k∈Z2

eδk‖F‖Hm0−2(B(k,2)∩ω+
w ) ≤ C‖eδkF‖

H
m0−2
uloc (ω+

w ) and (II.5.39), we obtain (II.5.4) in

Theorem II.5.2 for δ̄ > δ.

II.5.2 Differential operators at the transparent boundary
This paragraph is devoted to the well-posedness of the Poincaré-Steklov type operators
defined at the boundary X = M .

Providing explicit representations for the Poincaré-Steklov operator in terms of boundary
data and the source term F 6= 0 is quite technical and exceeds the scope of this chapter.
From now on, we are only interested in the case where F = 0. Once again, without loss of
generality, we assume M = 0.

Using Proposition II.5.1 and the variational formulation of problem (II.5.7), we have the
following result:

Definition II.5.1. Let Ψw ∈ H2(R2
+) be the unique weak solution of the Dirichlet problem

(II.5.7) for (ψ∗0, ψ∗1) ∈ H3/2(R) × H1/2(R). Then, the biharmonic matrix-valued Poincaré-
Steklov operator is defined by

PSw : H3/2(R)×H1/2(R)→ H−1/2(R)×H−3/2(R)

PSw

(
ψ∗0
ψ∗1

)
:=

 (1 + α2)∆wΨ
∣∣∣
X=0

−
(
(1 + α2)∂X − 2α∂Y

)
∆wΨ

∣∣
X=0 + Ψ

2

∣∣∣∣
X=0

 = Kw ∗
(
ψ∗0
ψ∗1

)
,

(II.5.40)

where Kw is the distributional kernel.
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Let us derive the expression of the operator in the Fourier space. We know that the
unique solution Ψw of (II.5.3) in H2(R2

+) of the linear problem (II.5.5) for boundary data
ψ∗0 ∈ H3/2(R) and ψ∗1 ∈ H1/2(R) can be written as

Ψ̂w(X, ξ) =
2∑
i=1

A+
i (ξ) exp(−λ+

i (ξ)X),

where A+
i (ξ) and λ+

i , i = 1, 2 are the ones in Lemma II.5.2. Going forward and for sim-
plicity of notation, we drop the + sign from both the coefficients and the eigenvalues in this
subsection.

Then, taking the Fourier transform of PSw with respect to Y provides the following has
the Fourier representation at the “transparent” boundary

P̂Sw

(
ψ̂∗0
ψ̂∗1

)
=

 (1 + α2)
∑2
i=1Ai(ξ)

(
λi(ξ)2 + (αλi(ξ) + iξ)2)∑2

i=1Ai(ξ)
[(

(1 + α2)λi + 2αiξ
)

(λ2
i + (αλi + iξ)2) + 1

2

] . (II.5.41)

Plugging in the above equation the coefficients Ai(ξ) computed in (II.5.11) yields

̂
PSw

(
ψ∗0
ψ∗1

)
= Mw

(
ψ̂∗0
ψ̂∗1

)
.

We investigate the behavior of the matrix Mw = (mi,j)2≤i≤3,0≤j≤1 ∈ M2(C) for ξ close
to zero and for |ξ| → ∞. The results are gathered in the following lemma:

Lemma II.5.9. • Behavior at low frequencies: when |ξ| � 1

Mw =
(
−
(
α2 + 1

)2/3 +O (|ξ|) −
(
α2 + 1

)4/3 +O (|ξ|)
−1

2 +O (|ξ|) −8αi
(
α2 + 1

)
|ξ|1 +O

(
|ξ|2

) ) .
• Behavior at high frequencies: when |ξ| � 1

Mw =

 m2,0|ξ|2 +O
(
|ξ|−1/2

)
m2,1|ξ|+O

(
|ξ|−1/2

)
m3,0|ξ|3 +O

(
|ξ|3/2

)
m3,1|ξ|2 +O

(
|ξ|1/2

)  ,
where mi,j is a complex quantity depending on α, for i = 2, 3, j = 0, 1. Notice that the
value of this constant at ξ → +∞ differs from the one at ξ → −∞ (see Lemma II.5.2
and Appendix II.B).

The proof of this lemma is elementary and will be given in Appendix II.F.
We have an additional result for the matrix Mw:

Lemma II.5.10. At all frequencies,

∂Nξ Mw(ξ) = O((1 + |ξ|)3−N ),

for N ∈ N, 0 ≤ N ≤ 5.
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Then, ∇N [(1− χ(ξ))Mw(ξ)] ∈ L1(R) that for N = 5, there exists a constant C > 0 such
that

F−1 ((1− χ(ξ))Mw) ≤ C

|Y |5
.

The Poincaré-Steklov operator PSw associated to R2
+ has been defined as a continuous

operator from H3/2(R) ×H1/2(R) to H−1/2(R) ×H−3/2(R). Our aim here is to prove that
it has a unique extension to the space H3/2

uloc(R)×H1/2
uloc(R).

Let us first show this general result:

Lemma II.5.11. Let s, s′ ∈ R. If for Ψ ∈ Hs(R), the differential operator Ā : Hs(R) →
Hs′(R) is continuous, then, there exists a unique continuous extension A : Hs

uloc(R) →
Hs′

uloc(R).

Proof. First, we recall the definition of Hs
uloc(R), that is:

ψ ∈ Hs
uloc(R) iff ‖ψ‖Hs

uloc(R) = sup
q∈Z
‖ηqΨ‖Hs(R) < +∞, (II.5.42)

where (ηq)q∈Z is a partition of unity satisfying ηq ∈ C∞0 (R) and Supp ηq ⊂ B(q, 1) for q ∈ Z
and supq ‖ηq‖Wk,∞ < +∞ for all k. Definition (II.5.42) is independent of the choice of
the function ηq (see Lemma 7.1 in [67]). Let ψ∗ be function of Hs

uloc(R), we introduce the
notation ψ∗q to denote ηqψ∗. Then, we have

ψ∗ =
∑
q∈Z

ψ∗q .

We are interested in verifying that Aψ∗ belongs to Hs′
uloc(R), that is the same, as showing

that η′qAψ∗ ∈ Hs′(R), ∀q′ ∈ Z. We have the following decomposition

η′qAψ∗ =
∑
q∈Z

η′qA(ηqψ∗)

=
∑

|q−q′|≤4
η′qA(ηqψ∗) +

∑
|q−q′|>4

η′qA(ηqψ∗).
(II.5.43)

The first term in r.h.s can be easily bounded as follows: if ηqψ∗ ∈ Hs(R), we have A(ηqψ∗) ∈
Hs′(R) and furthermore, η′qA(ηqψ∗) ∈ Hs′(R). Then,∥∥∥∥∥∥
∑

|q−q′|≤4
η′qA(ηqψ∗)

∥∥∥∥∥∥
Hs

≤ C‖Ā‖L(Hs,Hs′ )
∑

|q−q′|≤4
‖ηqψ∗‖Hs ≤ C‖Ā‖L(Hs,Hs′ )‖ψ

∗‖Hs
uloc(R) < +∞.

For the remaining term in (II.5.43), we consider the kernel representation of the operators.
We have for d(Suppηq′ , Suppηq) ≥ 1 and all Y ′ ∈ Supp ηq′ ,∣∣∣Ā(ψ∗q )(Y ′)

∣∣∣ ≤ ∫
|Y ′−Y |≥1

1
|Y ′ − Y |m

|ψ∗q (y)|dY ≤ 1
|q − q′|m

‖ψ∗q‖L2

≤ 1
|q − q′|m

‖ψ∗‖L2
uloc(R) ≤

1
|q − q′|m

‖ψ∗‖Hs
uloc(R),

(II.5.44)
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for m ≥ 5. Thus, ∣∣∣∣∣∣
∑

|q−q′|>4
ηq′A(ψ∗q )

∣∣∣∣∣∣ ≤
∑

|q−q′|>4

1
|q − q′|m

‖ψ∗‖Hs
uloc(R) < +∞.

Consequently, A(ψ∗) ∈ Hs′
uloc(R) if ψ∗ ∈ Hs

uloc(R), which ends the proof.

Now, it is possible to link the solution of the (II.5.5) with (ψ∗0, ψ∗1) ∈ H3/2
uloc(R)×H1/2

uloc(R)
and PSw(ψ∗0, ψ∗1).

Proposition II.5.3. Let (ψ∗0, ψ∗1) ∈ H3/2
uloc(R)×H1/2

uloc(R), and let Ψw be the unique solution
of (II.5.3) with F = 0 and boundary data Ψw|X=0 = ψ∗0 and ∂XΨw|X=0 = ψ∗1. Then, for all
ϕ ∈ C∞0 (R̄2

+)

∫
R2

+

∂XΨwϕ−
∫
R2

+

∆wΨw∆wϕ =
〈
A3[ψ∗0, ψ∗1]− ψ∗0

2 , ϕ
∣∣
X=0

〉
+
〈
A2[ψ∗0, ψ∗1], ∂Xϕ

∣∣
X=0

〉
.

(II.5.45)
Namely, for (ψ∗0, ψ∗1) ∈ H3/2(R) ×H1/2(R), the Poincaré-Steklov operator satisfies the con-
dition

〈A3[ψ∗0, ψ∗1], ψ∗0〉+ 〈A2[ψ∗0, ψ∗1], ψ∗1〉 ≤ 0. (II.5.46)

The proof of (II.5.45) relies once again on defining a smooth function χ̃, with χ̃ = 1 in
an open set containing Suppϕ and using the kernel representation formulae of the boundary
differential operators. Estimate (II.5.46) results from considering Ψw as test function in
(II.5.45). The detailed verification is left to the reader.

This section ends with other useful estimates on the Poincaré-Steklov operator:

Proposition II.5.4. Let ϕ ∈ C∞0 (R) such that Suppϕ ⊂ B(Y0, R), R ≥ 1, and (ψ∗0, ψ∗1) ∈
H

3/2
uloc(R) × H1/2

uloc(R). Then, there exists a constant C > 0 such that the following property
holds.

|〈A3[ψ∗0, ψ∗1], ϕ〉|+|〈A2[ψ∗0, ψ∗1], ∂Xϕ〉| ≤ C
√
R
(
‖ϕ‖H3/2(R) + ‖∂Xϕ‖H1/2(R)

)(
‖ψ∗0‖H3/2

uloc(R) + ‖ψ∗1‖H1/2
uloc(R)

)
(II.5.47)

In particular, if ψj ∈ H3/2−j(R), j = 0, 1,

|〈A3[ψ∗0, ψ∗1], ϕ〉|+|〈A2[ψ∗0, ψ∗1], ∂Xϕ〉| ≤ C
(
‖ϕ‖H3/2(R) + ‖∂Xϕ‖H1/2(R)

) (
‖ψ∗0‖H3/2(R) + ‖ψ∗1‖H1/2(R)

)
(II.5.48)

Proof. This construction is adapted from [52]. We consider a truncation function χ ∈ C∞c (R)
such that χ ≡ 1 on B(Y0, R + 1) and Suppχ ⊂ B(Y0, R + 2), and such that ‖∂rY χ‖∞ ≤ Cr,
with Cr independent of R, for all r ∈ N. For the terms∫

R
K3,j ∗ ((1− χ)ψ∗j )ϕ,

∫
R
K2,j ∗ ((1− χ)ψ∗j )∂Xϕ,
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where |Ki,j(Y )| ≤ C|Y |−5, i = 2, 3, j = 0, 1, for all Y ∈ R, we use the following relation

C

∫
R×R

1
|Y ′|5

|1− χ(Y − Y ′)||ψ∗j (Y − Y ′)||∂3−i
X ϕ(Y )| dY dY ′

≤ C
∫
R
|∂3−i
X ϕ(Y )|dY

(∫
|Y ′|≤1

|ψ∗j (Y − Y ′)|2|
|Y ′|5

dY ′
) 1

2
(∫
|Y ′|≤1

1
|Y ′|5

dY ′
) 1

2

≤ C‖ψ∗j ‖L2
uloc(R)‖∂3−i

X ϕ‖L1 ≤ C
√
R‖ψ∗j ‖L2

uloc(R)‖∂3−i
X ϕ‖L2 .

(II.5.49)

It remains to analyze the terms of the type

〈F−1(mi,jχ̂ψ∗j ), ∂
3−i
X ϕ〉H−(2i−3)/2,H(2i−3)/2 .

Since mi,j(ξ), i = 2, 3, j = 0, 1 is a kernel satisfying Op(mi,j) : H3/2−j(R) → H−i+3/2(R),
these terms are bounded by

C‖χψ∗j ‖H3/2−j(R)‖∂
3−i
X ϕ‖Hi−3/2(R)

We proceed to prove the estimate

‖χψ∗j ‖H3/2−j(R) ≤ C
√
R‖ψ∗j ‖H3/2−j

uloc (R) (II.5.50)

but first let us recall the norm definition in fractional Sobolev spaces.

Definition II.5.2. Let s ∈ (0, 1) be a fractional exponent and ω be a general, possibly non-
smooth, open set in Rn . For any p ∈ [1,+∞), the fractional Sobolev space W s,p(ω) is defined
as follows

W s,p(ω) :=
{
u ∈ Lp(ω) : |u(Y )− u(Y ′)|

|Y − Y ′|
n
p

+s ∈ L
p(ω × ω)

}
; (II.5.51)

i.e. an intermediary Banach space between Lp(ω) and W 1,p(ω), endowed with the natural
norm

‖u‖W s,p(ω) :=
(∫

ω
|u|p dY + [u]pW s,p(ω)

)1/p
. (II.5.52)

Here, the term [u]W s,p(ω) is the so-called Gagliardo (semi)norm of u defined as

[u]W s,p(ω) =
(∫

ω

∫
ω

|u(Y )− u(Y ′)|p

|Y − Y ′|n+sp

)1/p
. (II.5.53)

If s = m+ η, where m ∈ Z and η ∈ (0, 1). The space W s,p(ω) consists of

W s,p(ω) :=
{
u ∈Wm,p(ω) : Dζu ∈W η,p(ω) for any ζ such that |ζ| = m

}
; (II.5.54)

which is a Banach space with respect to the norm

‖u‖W s,p(ω) :=

∫
ω
‖u‖pWm,p(ω) dY +

∑
|ζ|=m

‖Dζu‖pW η,p(ω)

1/p

. (II.5.55)
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Before proving the estimates, we introduce a cut-off function θ satisfying (II.2.10), which
will allow us to use (II.2.11). Following the same ideas in [52, Lemma 2.26], we have that
for a certain u0

‖χu0‖2L2(R) ≤
∑
k∈Z
‖(τkθ)χu0‖2L2(R) ≤ ‖χ‖

2
∞

∑
k∈Z
k≤CR

‖(τkθ)u0‖2L2(R) ≤ CR ‖χ‖
2
∞sup
k∈Z
‖(τkθ)u0‖2L2(R).(II.5.56)

To deal with the Gagliardo norm, notice that the denominator in (II.5.55) for p = 2 can be
written as

|χu0(Y )− χu0(Y ′)|2

=

∑
k∈Z

kθ(Y )χ(Y )u0(Y )− τkθ(Y ′)χ(Y ′)u0(Y ′)

2

=
∑
k,l∈Z
|k−l|≤3

(
τkθ(Y )χ(Y )u0(Y )− τkθ(Y ′)χ(Y ′)u0(Y ′)

) (
τlθ(Y )χ(Y )u0(Y )− τlθ(Y ′)χ(Y ′)u0(Y ′)

)

+
∑
k,l∈Z
|k−l|>3

(
τkθ(Y )χ(Y )u0(Y )− τkθ(Y ′)χ(Y ′)u0(Y ′)

) (
τlθ(Y )χ(Y )u0(Y )− τlθ(Y ′)χ(Y ′)u0(Y ′)

)
.

As a result of the assumptions on θ, for |k − l| > 3, we obtain that τkθ(Y )τlθ(Y ) = 0 for all
Y ∈ R. Moreover, if τk(Y )τl(Y ′) 6= 0, then, |x − y| ≥ |k − l| − 2. Also, the first sum above
contains O(R) nonzero terms. Hence, using the Cauchy–Schwarz inequality gives

[χu]2W s,p(ω)

=
∫
R

∫
R

|χu0(Y )− χu0(Y ′)|2

|Y − Y ′|3
dY dY ′

≤ CR sup
k∈Z

∫
R

∫
R

|(τkθχu(Y ))− (τkθχu(Y ′))|2

|Y − Y ′|3
dY dY ′

+
∑
k,l∈Z
|k−l|>3

1
(|k − l| − 2)3

(
τkθ(Y )χ(Y )u0(Y )− τkθ(Y ′)χ(Y ′)u0(Y ′)

) (
τlθ(Y )χ(Y )u0(Y )− τlθ(Y ′)χ(Y ′)u0(Y ′)

)
= I1 + I2.

We have
|I1| ≤ CR ‖χ‖2W 1,∞‖u0‖2

H
1/2
uloc(R)

, and |I2| ≤ C‖u0‖2L2
uloc

.

Then, for u0 = ψ∗1 and R > 1, it follows that

‖χψ∗1‖2H1/2(R) = ‖χψ∗1‖2L2(R) + [χψ∗1]2H1/2 ≤ CR ‖ψ∗1‖2H1/2
uloc(R)

+ C‖ψ∗1‖2L2
uloc

≤ CR ‖ψ∗1‖2H1/2
uloc(R)

.

The remaining term is dealt with in a similar manner

‖χψ∗0‖2H3/2(R) = ‖χψ∗0‖2L2(R) + ‖χDψ∗0‖2L2(R) + [χDψ∗0]2H1/2

≤ CR ‖ψ∗0‖2H3/2
uloc(R)

+ C‖Dψ∗0‖2L2
uloc

≤ CR ‖ψ∗0‖2H3/2
uloc(R)

.
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From (II.5.49) and (II.5.50) we obtain (II.5.47). The proof of inequality (II.5.48) is classical
and follows from the Fourier representation of the differential operators.

II.5.3 The problem in the rough channel
The section is devoted to proving the existence and uniqueness of weak solutions for the lin-
ear problem (II.5.1) by studying an equivalent problem defined in a channel ωbw presenting a
transparent boundary at the interface {X = M}, M > 0. Here, only an accurate representa-
tion of the solution of the problem linear problem at {X = M} is needed in order to obtain
a good approximation of the solution of the original problem while solving a similar set of
equations in the rough channel (step (L5) in Section II.4.1). The linear problem (II.5.1)
acts on the new system through the coupling conditions described employing the Poincaré-
Steklov operator in (II.5.40). As before, we are going to consider the linear problem without
a source term, i.e., F = 0 in (II.5.1).

We define the following problem equivalent to (II.5.1) in the bounded channel ωbw =
ωw ∩ {X ≤M}, M > 0,

∂XΨw −∆2
wΨ = 0 in ωbw \ σw,[

∂kXΨw

] ∣∣
σw

= gk, k = 0, . . . , 3, (II.5.57)[
(1 + α2)∆wΨw

] ∣∣
σMw

= A2 [Ψw|X=M , ∂XΨw|X=M ] ,[
−
(
(1 + α2)∂X − 2α∂Y

)
∆wΨw + Ψw

2

] ∣∣∣∣∣
σMw

= A3 [Ψw|X=M , ∂XΨw|X=M ] , ,

Ψw

∣∣
X=−γw(Y ) = ∂nΨw

∣∣
X=−γw(Y ) = 0.

The equivalence between the solution of (II.5.57) and the one of the original problem is
given in the following lemma:
Lemma II.5.12. Let γ ∈W 2,∞(R) and gk ∈ L∞(R), for k = 0, . . . , 3.
• Let Ψw be a solution of (II.5.1) in ωw such that Ψw ∈ H2

uloc(ω). Then, Ψ|ωbw is a
solution of (II.5.57), and for X > M , Ψ solves the homogeneous equivalent of problem
(II.5.1) defined on the half-space M × R, with ψ0 := Ψw|X=M ∈ H3/2

uloc(R) and ψ1 :=
∂XΨw|X=M ∈ H1/2

uloc(R).

• Furthermore, let Ψ−w ∈ H2
uloc(ωbw) and Ψ+

w ∈ H2
uloc(R2

+) be solutions of (II.5.57) and
(II.5.1), respectively. Taking

Ψw(X, ·) :=
{

Ψ−w(X, ·) for −γw(·) < X < M,
Ψ+
w(X, ·) for X > M,

the function Ψ ∈ H2
loc(ω) is a solution of the problem (II.5.1).

Note that Ψ−w solves (II.5.57) in the trace sense, and for all ϕ ∈ C∞c (ωbw) satisfies∫
ωbw

∂XΨwϕ−
∫
ωbw

∆wΨw∆wϕ = −
〈
A3 [Ψw|X=M , ∂XΨw|X=M ]− ψ∗0

2 , ϕ
∣∣
X=M

〉
−
〈
A2 [Ψw|X=M , ∂XΨw|X=M ] , ∂Xϕ

∣∣
X=M

〉
.

(II.5.58)
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The above result easily follows from Theorem II.5.2 and Proposition II.5.3. Consequently,
we focus our attention on showing a well-posedness of problem (II.5.57) in the remainder of
the section.

Proposition II.5.5. Let γw ∈ W 2,∞(R) and ωbw = ωw ∩ {X ≤ M}, M > 0. Assume
the Poincaré-Steklov operators Ai : H3/2

uloc(R) × H1/2
uloc(R) → H

3/2−i
uloc (R), i = 2, 3 satisfy the

properties in Proposition II.5.3 and gk ∈ L∞(R), for k = 0, . . . , 3. Then, there exists a
unique solution Ψw ∈ H2

uloc(ωbw \ σw) satisfying

‖Ψw‖H2
uloc(ωbw) ≤ C

3∑
k=0
‖gk‖L∞(R), (II.5.59)

where C > 0 is a universal constant.

Proof. From now on, we lose the w index to simplify the notation when no confusion can
arise.

Before stating the main ideas of the proof, we first lift the nonhomogeneous jump con-
ditions at σw by introducing the function ΨL as in (II.4.7). Then, for Ψ̃ = Ψ − ΨL, we
have

∂XΨ̃−∆2
wΨ̃ = FL in ωbw \ σMw ,[

(1 + α2)∆wΨ̃
] ∣∣∣
σMw

= A2 [Ψw|X=M , ∂XΨw|X=M ] , (II.5.60)[
−
(
(1 + α2)∂X − 2α∂Y

)
∆wΨ̃ + Ψ̃

2

] ∣∣∣∣∣
σMw

= A3 [Ψw|X=M , ∂XΨw|X=M ] ,

Ψ̃
∣∣
X=−γw(Y ) = ∂nΨ̃

∣∣
X=−γw(Y ) = 0,

where FL is a function depending on gk, k = 0, . . . , 3. The truncation technique introduced
by Ladyženskaya and Solonnikov [60] is used to prove the existence and uniqueness of the
solution of system (II.5.60) by means of a local uniform bound on ∆wΨ̃n, where Ψ̃n is the
solution of the problem

∂XΨ̃n −∆2
wΨ̃n = FLn in ωn

(1 + α2)∆wΨ̃n

∣∣∣
σMn

= A2 [Ψw|X=M , ∂XΨw|X=M ] ,

−
[
(1 + α2)∂X − 2∂Y

]
∆wΨ̃n + Ψ̃n

2

∣∣∣∣
σMn

= A3 [Ψw|X=M , ∂XΨw|X=M ] ,

Ψ̃n

∣∣
Γn = ∂Ψ̃

∂nw

∣∣
Γn = 0,

(II.5.61)

where ωn, σMn and Γn are the ones in (II.4.11). The problem on Ψ̃n has the following weak
formulation: Let ϕ ∈ C∞0 (ωb) such that

ϕ = 0 on ωb \ ωn, ϕ|Γn = 0 and ∂Xϕ|Γn = 0. (II.5.62)
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Then, the solution Ψ̃n ∈ H2(ωn) of (II.5.61) satisfies∫
ωb
∂XΨ̃nϕ−

∫
ωb

∆wΨ̃n∆wϕ = −
〈
A3 [Ψw|X=M , ∂XΨw|X=M ]− Ψ̃n

2

∣∣∣
X=M

, ϕ
∣∣
X=M

〉

−
〈
A2 [Ψw|X=M , ∂XΨw|X=M ] , ∂Xϕ

∣∣
X=M

〉
−
∫
ωb
FLn ϕ.

(II.5.63)

Taking Ψ̃n as test function gives∫
ωb
|∆wΨ̃n|2 =

(〈
A3 [Ψw|X=M , ∂XΨw|X=M ] , Ψ̃n

∣∣
X=M

〉
+
〈
A2 [Ψw|X=M , ∂XΨw|X=M ] , ∂XΨ̃n

∣∣
X=M

〉)
︸ ︷︷ ︸

≤0

−
∫
ωb
FLn Ψ̃n

≤ C
√
n

3∑
k=0
‖gk‖L∞(R)‖Ψ̃n‖H2(ωn),

(II.5.64)

where the constant C only depends on ‖γw‖W 2,∞ . Then, applying Poincaré inequality we
have ∫

ωk

|∆wΨ̃n|2 ≤ C0n, (II.5.65)

where C0 = C0(g0, . . . , g3). The existence of Ψ̃n in H2(ωb) follows from Lemma II.4.1.
Uniqueness is obtained by following similar arguments as the ones presented in (L5), see
Section II.4.1. We work with the energy

Enk :=
∫
ωk

|∆wΨ̃n|2, (II.5.66)

for which we prove an inequality of the type

Enk ≤ C1

(
k + 1 +m sup

k≤j≤k+m

(
Enj+1 − Enj

)
+ 1
m4−2η sup

j≥k+m
(Enj+1 − Enj )

)
for all k ∈ {m, . . . , n},

(II.5.67)
for any m > 1 and η ∈]0, 2[. The constant C1 > 0 is uniform constant in n depending only
on ‖γ‖W 2,∞ and ‖gj‖W 2−j,∞ , j = 0, . . . , 3. The bound in H2

uloc(ωb) is then obtained via a
nontrivial induction argument.

The remaining of the overall strategy is the same as the one detailed in step (L5) in
Section II.4.1. Consequently, as we advance, we only discuss in detail the computations
of the estimates involving the nonlocal differential operators and their incidence on the
induction argument.

• Induction. To shorten the notation in the following paragraphs, we write Ek and Ψ̃
instead of Enk and Ψ̃n. Let us show by induction on n − k that for m large enough,
(II.5.67) amounts to

Ek ≤ C1

(
k + 1 +m3 + 1

m4−2η sup
j≥k+m

(Ej+1 − Ej)
)

for all ∀k ≤ n, (II.5.68)
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where the positive constant C2 depends only on C0 and C1, appearing respectively in
(II.5.65) and (II.5.67). The inequality is clearly true when k = n, as soon as C2 > C0.
Let us now assume that

Ek′ ≤ C2

(
k + 1 +m3 + 1

m4−2η sup
j≥k′+m

(Ej+1 − Ej)
)

for all k ∈ {≤ k + 1, . . . , n} ,

(II.5.69)
holds and show it remains true for index k. If it were false, we have

Ek′ ≥ C2

(
k + 1 +m3 + 1

m4−2η sup
j≥k′+m

(Ej+1 − Ej)
)
. (II.5.70)

Combining inequalities (II.5.69) and (II.5.70) implies for all k +m ≥ j ≥ k,

Ej+1 − Ej ≤ Ej+1 − Ek ≤ C2(m+ 1). (II.5.71)

Then, (II.5.67) yields

Ek ≤ C1

(
k + 1 + C2m(m+ 1) + 1

m4−2η sup
j≥k+m

(Ej+1 − Ej)
)

for all k ∈ {m, . . . , n}.

(II.5.72)
Note that if C2 > C1 and C1C2m(m+ 1) ≤ C2m

3 in (II.5.72) we have a contradiction.
This is verified when C2 > C1 and m is large enough. Hence, inequality (II.5.70) is
valid for all k ≤ n. Since equation (II.5.67) is invariant by a horizontal translations
(see (L5) in Section II.4.1), we obtain

Ek+1 − Ek ≤ C1

(
2 +m3 + 1

m4−2η sup
j∈N

(Ej+1 − Ej)
)

for all k ∈ {m, . . . , n},

for all k, so that for m large enough, we conclude that

sup
k∈N

(Enk+1 − Enk ) ≤ C1

(
2 +m3

1−m−4+2η

)
= C < +∞,

which is a H2
uloc bound on Ψ̃n. Hence, we can extract a subsequence of Ψ̃n that

converges weakly to some Ψ̃n satisfying (II.5.60). Existence follows from the ideas
presented at the beginning of the current section.

• Establishing the Saint-Venant estimate. This paragraph contains the proof of (II.5.67).
The main difficulty in computing estimates independent of the size of the support of
Ψ̃n resides on the nonlocal nature of the Poincaré-Steklov operators.
Thanks to the representation formula of the Poincaré-Steklov operators, the above
formulation makes sense for ϕ ∈ H2(ωbw) satisfying (II.5.62). To establish the estimates
of Ek, we first introduce the cut-off function χk(Y ) supported in σMk+1 and identically
equal to 1 on σMk . Considering ϕ = χkψ̃, k < n, as a test function in (II.5.45) yields
for elements in l.h.s an expression equivalent to (II.4.18). Namely,

Ek =
(〈
A3
[
Ψ̃|X=M , ∂XΨ̃|X=M

]
, χkΨ̃

∣∣
X=M

〉
+
〈
A2
[
Ψ̃|X=M , ∂XΨ̃|X=M

]
, χk∂XΨ̃

∣∣
X=M

〉)
−
∫
ωb
FLχkΨ̃ + commutator terms stemming from the bilaplacian.

(II.5.73)
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All commutator terms are bounded by C(Ek+1 − Ek). The proof involves applying
Poincaré and Young inequalities similarly to (II.4.19). Moreover,∣∣∣∣∫

ωb
FLχkΨ̃

∣∣∣∣ ≤ C
( 3∑
k=0
‖gk‖L∞

)
√
k + 1E1/2

k+1 ≤ C(g0, . . . , g3)
√
k + 1E1/2

k+1. (II.5.74)

It remains to handle the non-local terms, i.e., the Poincaré-Steklov operator. Drawing
inspiration from [52] and [71], we introduce the auxiliary parameter m ∈ N∗ appearing
in (II.5.67) and the following decomposition for ψj

ψj = (χk + (χk+m − χk) + (1− χk+m))ψj , j = 0, 1. (II.5.75)

Then, for i = 2, 3, the transparent operators can be written as

〈Ai
[
Ψ̃|X=M , ∂XΨ̃|X=M

]
, χk∂

3−i
X Ψ̃|X=M 〉

= 〈Ai
[
χkΨ̃|X=M , χk∂XΨ̃|X=M

]
, χk∂

3−i
X Ψ̃|X=M 〉

+ 〈Ai[χkΨ̃|X=M , 1− χk∂XΨ̃|X=M ], χk∂3−i
X Ψ̃|X=M 〉

+Ai[1− χkΨ̃|X=M , χk∂XΨ̃|X=M ], χk∂3−i
X Ψ̃|X=M

+Ai[(1− χk)Ψ̃|X=M , (1− χk)∂XΨ̃|X=M ], χk∂3−i
X Ψ̃|X=M

≤
∣∣∣Ai[(χk+m − χk)Ψ̃|X=M , (χk+m − χk)∂XΨ̃|X=M ], χk∂3−i

X Ψ̃|X=M 〉
∣∣∣

+
∣∣∣〈Ai[(1− χk+m)Ψ̃|X=M , (1− χk+m)∂XΨ̃|X=M ], χk∂3−i

X Ψ̃|X=M 〉
∣∣∣

= Ii,1 + Ii,2.

(II.5.76)

The inequality in (II.5.76) results from considering the negativity condition satisfied
by the transparent operators. For the term Ii,1 we use to Proposition II.5.4 and the
estimate

‖χkΨ̃‖H2(ωb) + ‖χkΨ̃|X=M‖H3/2(ωb) + ‖χk∂XΨ̃|X=M‖H1/2(ωb) ≤ CE
1/2
k+1.

Then,

|I2,1|+ |I3,1| ≤‖A2[(χk+m − χk)ψ0, (χk+m − χk)ψ1‖H−1/2

∥∥∥χk∂XχkΨ̃|X=M
∥∥∥
H1/2

+ ‖A3[(χk+m − χk)ψ0, (χk+m − χk)ψ1‖H−3/2

∥∥∥χkχkΨ̃|X=M
∥∥∥
H3/2

≤C
(
‖∂XχkΨ̃|X=M‖H1/2(R) + ‖χkΨ̃|X=M‖H3/2(R)

)
×
(
‖(χk+m − χk)∂XΨ̃|X=M‖H1/2(R) + ‖(χk+m − χk)Ψ̃|X=M‖H3/2(R)

)
≤C(Em+k+1 − Ek)1/2E

1/2
k+1.

We are left with the task of finding bounds for Ii,2. Note that for m ≥ 2, Suppχk+1 ∩
Supp(1− χk+m) = ∅, so, for i = 2, 3

〈Ai
[
Ψ̃|X=M , ∂XΨ̃|X=M

]
, ∂3−i
X χkΨ̃〉 =

∫
R
Ki,0 ∗ ((1− χk+m)Ψ̃|X=M )∂3−i

X χkΨ̃

+
∫
R
Ki,1 ∗ ((1− χk+m)∂XΨ̃|X=M )∂3−i

X χkΨ̃.

(II.5.77)

The convolution terms in (II.5.77) decay like |Y |−5. We have the following estimate:
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Lemma II.5.13. For all k ≥ m and η ∈ ] 0, 2 [

‖Ki,j ∗ (1− χk+m)ψj‖L2(σM
k+1) ≤ Cηm

−2+η
(

sup
j≥k+m

(Ej+m − Ej)
)1/2

. (II.5.78)

Proof. We use an idea of Gérard-Varet and Masmoudi [2010], that was later used in
[52], to treat the large scales: we decompose the set σM \ σMk+m as

σM \ σMk+m =
⋃

j≥k+m
σMj+1 \ σMj .

On every set σMj+1 \σMj , we bound the L2 norm of (1−χk+m)ψi, i = 0, 1, by Ek+m+1−
Ek+m. Thus we work with the quantity

sup
j≥k+m

(Ej+1 − Ej),

which we expect to be bounded uniformly in n, k. Now, applying the Cauchy–Schwarz
inequality yields,∫
σM
k+1

dY

∫
σM\σM

k+m

1
|Y ′ − Y |5

|∂iXΨ̃
∣∣
X=M |dY

′

≤ C
(∫

σM
k+1

dY

∫
σM\σM

k+m

1
|Y ′ − Y |5+2η dY

′
∫
σM\σM

k+m

1
|Y ′ − Y |5−2η |∂

i
XΨ̃

∣∣
X=M |

2dY ′
)1/2

≤ Cηm−2+η
(∫

σM
k+1

∫
σM\σM

k+m

1
|Y ′ − Y |5+2η dY

′dY × sup
j≥k+m

(Ej+1 − Ej)
)1/2

.

(II.5.79)

The previous result is obtained using the following computations: for Y ∈ σMk+1∫
σM\σM

k+m

1
|Y ′ − Y |5−2η |∂

i
XΨ̃

∣∣
X=M |

2dY ′ =
∑

j≥k+m

∫
σMj+1\σ

M
j

1
|j − Y |5−2η |∂

i
XΨ̃

∣∣
X=M |

2dY ′

≤ C
∑

j≥k+m
(Ej+1 − Ej)

1
|j − Y |5−2η

≤ C sup
j≥k+m

(Ej+1 − Ej)
∑

j≥k+m

1
|j − Y |5−2η

≤ C sup
j≥k+m

(Ej+1 − Ej)
∑

j−k≥m+1

1
|j − k|5−2η

≤ Cηm−4+2η sup
j≥k+m

(Ej+1 − Ej) .

(II.5.80)

The series above correspond to the Hurwitz zeta function which is absolutely convergent
for η ∈ ] 0, 2 [ . On the other hand,∫

σM
k+1

∫
σM\σM

k+m

1
|Y ′ − Y |5+2η dY

′dY ≤ C
∫

R\[0,1]

dX

X4+2η ≤ Cη < +∞. (II.5.81)

Estimate (II.5.78) is easily obtained from (II.5.79), (II.5.80) and (II.5.81).
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Applying several times Lemma II.5.13 combined with (II.5.74) gives

Ek ≤ Cη,g

√k + 1E1/2
k+1 + E

1/2
k+1(Ek+m+1 − Ek)1/2 +m−2+ηE

1/2
k+1

(
sup

j≥k+m
(Ej+1 − Ej)

)1/2
 ,

(II.5.82)
for k ≥ m ≥ 1. Since Ek is a monotonically increasing function with respect to k, we
have

Ek+1 ≤ Ek + (Ek+m+1 − Ek) .
Furthermore,

Ek+m+1 − Ek =
∑

k≤j≤k+m
(Ej+1 − Ej) ≤ m sup

k≤j≤k+m
(Ej+1 − Ej) .

Taking C = max
η∈]0,2[

Cη and using Young’s inequality gives that for all ν > 0 there exists

Cν , such that

Ek ≤ νEk + Cν,g

(
k + 1 +m sup

k≤j≤k+m
(Ej+1 − Ej) + 1

m4−2η sup
j≥k+m

(Ej+1 − Ej)
)
.

(II.5.83)
Inequality (II.5.67) follows from choosing ν sufficiently small.

II.6 Nonlinear boundary layer formation near the western coast
This section is devoted to showing the well-posedness of the western boundary layer when
the model presents an advection term. We study the problem

∂XwΨw +Qw(Ψw,Ψw)−∆2
wΨw = 0, in ω+

w ∪ ω−
[Ψw] |Xw=0 = φ,[

∂kXwΨw

]
|Xw=0 = 0, k = 1, . . . , 3,

Ψw

∣∣
X=−γ(Y ) = 0, ∂Ψw

∂nw

∣∣
Xw=−γw(Y ) = 0.

(II.6.1)

where φ ∈W 2,∞(R) and the nonlinear term is given by

Qw(Ψw, Ψ̃w) = ∇⊥wΨw · ∇w(∆wΨ̃w) = ∇⊥w
[(
∇⊥wΨw · ∇w

)
∇⊥wΨ̃w

]
.

As before, in this section we will write X instead of Xw.
The proof of Theorem II.2.1 for the nonlinear problem under a smallness assumption

follows the general scheme presented in Section II.4.2. There are three main parts in our
analysis: showing the well-posedness of the nonlinear problem in the half-space; proving
the existence, uniqueness and regularity of the solution in the rough channel; and, finally,
connecting both solutions at the “transparent” interface.

Later, in Section II.7 special attention will be paid to linearized problems in the western
boundary layer domain. In its general form, this kind of problem is crucial in constructing
the approximate solution since it describes the behavior of higher-order western profiles and
additional correctors.
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II.6.1 Nonlinear problem in the half-space
In this section, the well-posedness of the system (II.4.26) in the half-space is established
under a smallness assumption. Namely, we study the problem{

Qw(Ψw,Ψw) + ∂XΨw −∆2
wΨw = 0, in X > M

Ψw

∣∣
σMw

= ψ0, ∂XΨw

∣∣
σMw

= ψ1.
(II.6.2)

We shall solve (II.6.2) by means of a fixed point theorem using the a priori estimated pro-
vided in Theorem II.5.2. Basically, we use a contraction mapping argument in a suitable
Banach space which will be norm invariant under the transformations that preserve the
set of solutions, mainly the translations with respect to the X variable. We introduce the
functional spaces:

Hm :=
{
f ∈ Hm

uloc(R2
+) :

∥∥∥eδXf∥∥∥
Hm

uloc
< +∞

}
, m ≥ 0, (II.6.3)

with the norm ‖f‖Hm = Cm‖eδXf‖Hm
uloc

. Here, δ > 0 is the one in Theorem II.5.2 and the
constant Cm is chosen so that if g, f ∈ Hm+1

‖(∇⊥wf · ∇w)∇⊥wg‖Hm−1 ≤ ‖f‖Hm+1‖g‖Hm+1 .

We show the following:

Proposition II.6.1. Let m ∈ N, m� 1. There is δ0 > 0 such that for all ψ0 ∈ Hm+3/2
uloc (R)

and ψ1 ∈ Hm+1/2
uloc (R),

‖ψ0‖Hm+3/2
uloc (R) + ‖ψ1‖Hm+1/2

uloc (R) < δ0, (II.6.4)

the system{
Qw(Ψw,Ψw) + ∂XΨw −∆2

wΨw = 0, in R2
+

Ψw

∣∣
X=0 = ψ0, ∂XΨw

∣∣
X=0 = ψ1.

(II.6.5)

has a unique solution in Hm+2.

Proof. For any functions ψ0 ∈ Hm+3/2
uloc (R) and ψ1 ∈ Hm+1/2

uloc (R), let the operator T(ψ0,ψ1) be
defined as follows: given a function Ψ ∈ Hm+2, set T(ψ0,ψ1)(Ψ) = Ψ̃, where Ψ̃ is the solution
of (II.5.3) when F = −∇⊥w

[
(∇⊥wΨ · ∇w)∇⊥wΨ

]
. According to Theorem II.5.2, there exists a

constant C0 such that for all Ψ̃ ∈ Hm+2,

‖T(ψ0,ψ1)(Ψ)‖Hm+2 ≤ C0

(
‖ψ0‖Hm+3/2

uloc (R) + ‖ψ1‖Hm+2
uloc (R) + ‖Ψ‖2Hm+2

)
.

The previous inequality results from taking into account that when δ̄ = 2δ

‖eδ̄XF‖Hm−2
uloc (R2) ≤ Cδ̄‖e

δ̄X(∇⊥wΨ · ∇w)∇⊥wΨ‖Hm−1
uloc (R2)‖ < ‖Ψ‖

2
Hm+2 .

Let us verify that T(ψ0,ψ1) is a strict contraction under the smallness assumption (II.6.4).
This implies the function has a fixed point in a closed ball of R2

+. Let δ0 < 1/(4C2
0 ), and

suppose that (II.6.4) holds. Thanks to the assumption on δ0, there exists R0 > 0 such that

C0
(
δ0 +R2

0

)
≤ R0. (II.6.6)
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Hence, R0 belongs to [R−, R+], where

R± = 1
2C0

(
1±

√
1− 4δ0C2

0

)
.

Therefore 0 < R− < (2C−1
0 , and it is always possible to choose 2R0C0 < 1. (II.6.4) and

(II.6.6) imply
‖Ψ‖Hm+2 ≤ R0 =⇒ ‖T(ψ0,ψ1)(Ψ)‖Hm+1

uloc
< R0.

Now, let Ψi ∈ Hm+2 be a function satisfying T(ψ0,ψ1)(Ψi) = Ψ̃i, where Ψi is the solution of
(II.5.6) when F i = (∇⊥wΨi ·∇w)∇⊥wΨi, i = 1, 2. If ‖Ψ1‖Hm+2

uloc
≤ R0, ‖Ψ2‖Hm+2

uloc
≤ R0 and Ψ̄ =

T(ψ0,ψ1)(Ψ1)−T(ψ0,ψ1)(Ψ2), we have that Ψ̄ is a solution of (II.5.6) with Ψ̄
∣∣
X=0 = ∂XΨ̄

∣∣
X=0 =

0 and source term F 1 − F 2 = ∇⊥w
[
(∇⊥wΨ1 · ∇w)∇⊥wΨ1

]
− ∇⊥w

[
(∇⊥wΨ2 · ∇w)∇⊥wΨ2

]
. Thus,

using once again Theorem II.5.2,

‖T(ψ0,ψ1)(Ψ1)− T(ψ0,ψ1)(Ψ2)‖Hm+2 ≤ C0‖F 1 − F 2‖Hm−1 ≤ 2C0R0‖Ψ1 −Ψ2‖Hm+2 .

Since 2C0R0 < 1, T(ψ0,ψ1) is a contraction over the ball of radius R0 in Hm+2. We can
then assert that T(ψ0,ψ1) has a fixed point inHm+2 as a result of Banach’s fixed point theorem
which concludes the proof of Proposition II.6.1.

Remark II.6.1. We can retrieve the solution for X > M when M > 0 thanks to the
problem being invariant with respect to translations along the X-axis. Let Ψ0 be the solution
of (II.6.5). Then, the solution ΨM of (II.6.2) in the half-space X > M , M > 0, satisfies
ΨM = Ψ0(X −M).

II.6.2 The problem in the rough channel
The goal in this section is to prove, by the truncation technique employed in [59], the existence
of a solution of problem

Qw(Ψ−w ,Ψ−w) + ∂XΨ−w −∆2
wΨ−w = 0, in ωb \ σw

[Ψ−w ]
∣∣
σw

= φ,
[
∂kXΨ−w

] ∣∣
σw

= 0, k = 1, . . . , 3,

Ψ−w
∣∣
X=−γw(Y ) = ∂Ψ−w

∂nw

∣∣
X=−γw(Y ) = 0,

A2[Ψ−w
∣∣
σMw
, ∂XΨ−w

∣∣
σMw

] = ρ2, A3[Ψ−w
∣∣
σMw
, ∂XΨ−w

∣∣
σMw

] = ρ3,

(II.6.7)

where ωbw = ωw \ ({X > M} × R) denotes the rough channel. We recall that

A2[Ψ
∣∣
σMw
, ∂XΨ

∣∣
σMw

] = (1 + α2)∆wΨ,

A3[Ψ
∣∣
σMw
, ∂XΨ

∣∣
σMw

] = −
(
(1 + α2)∂X − 2α∂Y

)
∆wΨ + ∂Y

(
|∇⊥wΨ|2

2

)

+ (∇⊥wΨ · ∇w)
(
(1 + α2)∂X − α∂Y

)
Ψ + Ψ

2 .

This part corresponds to step (NL2) in Section II.4.2. Although the idea is the same as
for the linear case, an important difference resides in working indirectly with the values of
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the Poincaré-Steklov operators. Indeed, here we “join” the solutions obtained at both sides
of the artificial boundary using the implicit function theorem. To do so, higher regularity
estimates of the solution near σMw are essential.

As for the tensors at X = M , since we will need to construct solutions in Hm+2
uloc and

due to the form of the differential operators, we look for ρ2 and ρ3 in the Hm−1/2
uloc (R) and

H
m−3/2
uloc (R), respectively. We then claim that the following result holds:

Proposition II.6.2. Let m � 1 be arbitrary. There exists δ > 0 such that for all φ ∈
W 2,∞(R), ρ2 ∈ H

m−1/2
uloc (R) and ρ3 ∈ H

m−3/2
uloc (R) with ‖φ‖W 2,∞(R) < δ, ‖ρ2‖Hm−1/2

uloc (R) +
‖ρ3‖Hm−3/2

uloc (R) < δ, system (II.6.7) has a unique solution Ψ−w ∈ H2
uloc(ωbw \ σw).

Moreover, Ψ−w ∈ Hm+2
uloc ((M ′,M)× R), for all M ′ ∈]0,M [ and

‖Ψ−w‖Hm+2
uloc ((M ′,M)×R) ≤ CM ′

(
‖φ‖W 2,∞ + ‖ρ2‖Hm−1/2

uloc
+ ‖ρ3‖Hm−3/2

uloc

)
.

Proof. First, we will briefly discuss the existence and uniqueness of a solution in H2, as well
as the validity of the estimate. Then, the regularity result will be presented. Throughout
the proof, we will drop the w from the notation when there is no confusion.

Step 1. Existence and uniqueness of the solution. We look for the solution
Ψ̃ = Ψ− −ΨL of the problem

Qw(Ψ̃, Ψ̃ + ΨL) +Qw(ΨL, Ψ̃) + ∂XΨ̃−∆2
wΨ̃ = FL in ωb,

A2[Ψ̃
∣∣
σMw
, ∂XΨ̃

∣∣
σMw

] = ρ2, A3[Ψ̃
∣∣
σMw
, ∂XΨ̃

∣∣
σMw

] = ρ3,

Ψ̃
∣∣
X=−γ(Y ) = 0, ∂Ψ̃

∂nw

∣∣
X=−γ(Y ) = 0. (II.6.8)

Here, ΨL is defined as in (II.4.7) for g0 = φ and gk ≡ 0 for k = 1, 2, 3. In (II.6.8), FL
denotes ∆2

w(ΨL)−∂X(ΨL)−Qw(ΨL,ΨL). Notice that thanks to the regularity and smallness
assumptions on φ, we have,

‖FL‖L2
uloc(ωb) ≤ C

(
‖φ‖W 2,∞ + ‖φ‖2W 2,∞

)
≤ C‖φ‖W 2,∞ .

In the nequality above, the constant C depends on α and ‖γw‖W 2,∞ . Before computing the
a priori estimates, we write the weak formulation of (II.6.8).

Definition II.6.1. Let V be the space of functions ϕ ∈ C∞0 (ωb) such that Suppϕ ∩ ∂Ω = ∅
and D2

0(ωb) its completion for the norm ‖Ψ‖ = ‖∆wΨ‖L2. Define for (Ψ, Ψ̃, ϕ) ∈ D2
0×D2

0×V,
the trilinear form b(Ψ, Ψ̃, ϕ) = −

∫
Ω(∇⊥wΨ · ∇w)∇⊥wΨ̃ · ∇⊥wϕ. A function Ψ̃ ∈ H2

uloc(ωb) is
a solution of (II.6.8) if it satisfies the homogeneous conditions Ψ̃

∣∣
Γw = ∂nwΨ̃

∣∣
Γw = 0 at the

rough boundary, and if, for all ϕ ∈ V, we get∫
ωbw

∂XΨ̃ϕ+ b(Ψ̃, Ψ̃, ϕ)−
∫
ωbw

∆wΨ̃∆wϕ

= −
∫
R

(
ρ3 −

Ψ̃
2

∣∣∣∣
X=M

)
ϕ
∣∣
X=M dY (II.6.9)

+
∫
R

(
|∇⊥wΨ̃|2

2

) ∣∣∣∣
X=M

∂Y
˜̃Ψ
∣∣∣∣
X=M

dY −
∫
R
ρ2
∣∣
X=M∂Xϕ

∣∣
X=M dY.
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We consider the system (II.6.8) in ωn

Qw(Ψ̃n, Ψ̃n + ΨL
n) +Qw(ΨL

n , Ψ̃n) + ∂XΨ̃n −∆2
wΨ̃n = FLn in ωn,

Ψ̃n = 0, in ωb \ ωn,
Ψ̃n

∣∣
X=−γn(Y ) = ∂nΨ̃n

∣∣
X=−γn(Y ) = 0, (II.6.10)

A2[Ψ̃n

∣∣
σMn
, ∂XΨ̃n

∣∣
σMn

] = ρ2,

A3[Ψ̃n

∣∣
σMn
, ∂XΨ̃n

∣∣
σMn

] = ρ3.

The domain ωn and its components are the same as in (II.4.11).
By taking Ψ̃n as a test function in (II.6.10), we get a first energy estimate on Ψ̃n

‖∆wΨ̃n‖2L2(ωn) = b(Ψ̃n,ΨL
n , Ψ̃n) +

∫
σMn

ρ3Ψ̃n +
∫
σMn

ρ2∂XΨ̃n −
∫
ωn
FLΨ̃n

≤ C1‖∆wφ‖L∞(ωn)‖∇⊥wΨ̃n‖2L2(ωn) + C2
√
n

(
‖ρ3‖Hm−3/2

uloc (R)‖Ψ̃n

∣∣
X=M‖L2([−n,n])

+‖ρ2‖Hm−1/2(ωn)‖∇wΨ̃n

∣∣
X=M‖L2(([−n,n])

)
+ ‖FL‖L2

uloc
‖Ψ̃n‖L2(ωn),(II.6.11)

using the Cauchy-Schwartz and Poincaré inequalities over ωn. Moreover, we have

‖∆wΨ̃n‖2L2(ωn) ≤ C
(
‖φ‖W 2,∞ + ‖ρ3‖Hm−3/2

uloc
+ ‖ρ2‖Hm−1/2

uloc

)
‖Ψ̃n‖H2(ωn).

Notice that as a consequence of the smallness assumption on ‖φ‖H2(ωb), the first term on
the r.h.s of inequality (II.6.11) can be absorbed by the one on the l.h.s for δ small enough.
Then, using Poincaré inequality over the whole channel yields

En :=
∫
ωb
|∆wΨ̃n|2 ≤

∫
ωn
|∆wΨ̃n|2 ≤ C0n, (II.6.12)

where constant C0 depends on α, ‖φ‖W 2,∞ , ‖ρ3‖Hm−3/2
uloc

, ‖ρ2‖Hm−1/2
uloc

and ‖γ‖W 2,∞ . The
existence of Ψ̃n in H2(ωn) follows.

Following the same reasoning as in the linear case ((L5) in Section II.4.1 and Section
II.5.3), we establish an induction inequality on (Enk )k∈N for all n ∈ N. Recall that

Enk :=
∫
ωb
χk|∆wΨ̃n|2,

where χk ∈ C∞0 (R) is a cut-off function in the tangential variable such that Suppχk ⊂
[−k− 1, k+ 1] and χn ≡ 1 on [−k, k] for k ∈ N. The induction relation allows one to obtain
a uniform bound on the Ek, from which we deduce a H2

uloc bound on Ψ̃n uniformly in n.
From this, an exact solution follows by compactness, see (L5) in Section II.4.1.

Here, we show the inequality for all k ∈ {1, . . . , n}

Enk ≤ C1

(
(Enk+1 − Enk )3/2 + (Enk+1 − Enk ) +

(
‖ρ2‖2

H
m−1/2
uloc

+ ‖φ‖2W 2,∞ + ‖ρ3‖2
H
m−3/2
uloc

)
(k + 1)

)
,

(II.6.13)
where C1 is a constant depending only on the characteristics of the domain. Then, by
backwards induction on k, we deduce that

Enk ≤ Ck, ∀k ∈ {k0, . . . , n},
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where k0 ∈ N is a large, but fixed integer (independent of n) and Enk0
is bounded uniformly

in n for a constant C depending on ωb, φ and ρi, i = 2, 3. Then, we use the fact that the
derivation of energy estimates is invariant by translation on the tangential variable to prove
that the uniform boundness holds not only for a maximal energy of size k0, but for all k,
similarly to (L5) in Section II.4.1.

To lighten notations in the subsequent proof, we shall denote Ek instead of Enk .

• Energy estimates. This part is devoted to the proof of (II.6.13). We carry out the
energy estimate on the system (II.6.8), focusing on having constants uniform in n as
explained before. Since the linear part of the equation has already been analyzed on
Section II.5, we discuss in detail only the nonlinear terms. In fact, the main issue
consists in handling the quadratic terms Qw(Ψ̃, Ψ̃ + ΨL), Qw(ΨL, Ψ̃), which justifies
the presence of the |∇⊥wΨ̃|2 in one of the tensors at σMw . Plugging ϕ = χkΨ̃ into the
nonlinear terms of (II.6.9) gives

b(Ψ̃ + ΨL, Ψ̃, χkΨ̃) = −
∫
ω
χk(∇⊥w(Ψ̃ + ΨL) · ∇w)∇⊥wΨ̃ · ∇⊥wΨ̃

−
∫
ω
(∇⊥w(Ψ̃ + ΨL) · ∇w)∇⊥wΨ̃ · (∇⊥wχk)Ψ̃, (II.6.14)

b(Ψ̃,ΨL, χkΨ̃) = −
∫
ω
χk(∇⊥wΨ̃ · ∇w)∇⊥wΨL · ∇⊥wΨ̃

−
∫
ω

(
∇⊥wΨ̃ · ∇

)
∇⊥wΨL · (∇⊥wχk)Ψ̃, (II.6.15)

To bound each one of the terms we will frequently use the Sobolev inequality for all
ω′ ⊂ ωb,

∀u ∈ H1(ω′), u
∣∣
Γ = 0, ‖u‖Lq(ω′) ≤ Cq‖∇u‖L2(ω′), q ∈ [1,+∞). (II.6.16)

The constant Cq does not depend on ω′. Let us now illustrate the procedure for the first
term in the l.h.s. of (II.6.15). By using Cauchy-Schwarz inequality and the properties
of χk, we find that∣∣∣∣∫

ω
χk(∇⊥wΨ̃ · ∇w)∇⊥wΨL · ∇⊥wΨ̃

∣∣∣∣ ≤ C‖φ‖W 2,∞(ωk+1)‖∇⊥wΨ̃‖2L2(ωk+1)

≤ C ‖φ‖W 2,∞Ek+1,

where C is a strictly positive constant depending on α, M and ‖γw‖W 2,∞ . On the
other hand,

−
∫
ω
χk(∇⊥w(Ψ̃ + ΨL) · ∇w)∇⊥wΨ̃ · ∇⊥wΨ̃ = −

∫
ω
χk∇⊥w(Ψ̃ + ΨL) · ∇w

(
|∇⊥wΨ̃|2

2

)

=
∫
ω
∇wχk · ∇⊥w(Ψ̃ + ΨL)

(
|∇⊥wΨ̃|2

2

)

−
∫
R
χk

(
|∇⊥wΨ̃|2

2 ∂Y Ψ̃
) ∣∣∣∣∣

X=M

dY.
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Proceeding as before, it can be easily checked that the first term on the right-hand side
is bounded by C(Ek+1 − Ek)3/2 + C‖φ‖W 2,∞(Ek+1 − Ek).
Applying integration by parts on the second integral gives

−
∫
R
χk

(
|∇⊥wΨ̃|2

2 ∂Y Ψ̃
) ∣∣∣∣∣

X=M

dY =
∫
R
χk∂Y

(
|∇⊥wΨ̃|2

2

) ∣∣∣∣∣
X=M

Ψ̃ dY (II.6.17)

+
∫
R
∂Y χk

(
|∇⊥wΨ̃|2

2

) ∣∣∣∣∣
X=M

Ψ̃ dY.

The first term can be grouped with other boundary terms stemming from the bilapla-
cian, while the second is bounded by C(Ek+1 − Ek)3/2 as a consequence of the trace
theorem.
There remains to consider the r.h.s of (II.6.14) and (II.6.15), i.e, the terms

∫
ω(∇⊥w(Ψ̃ +

ΨL) · ∇w)∇⊥wΨ̃ · (∇⊥wχk)Ψ̃ and
∫
ω

(
∇⊥wΨ̃ · ∇

)
∇⊥wΨL · (∇⊥wχk)Ψ̃ which are bounded by

C(Ek+1 − Ek)3/2 + C‖φ‖W 1,∞(Ek+1 − Ek) and C‖φ‖W 2,∞(Ek+1 − Ek), respectively.
The linear terms defined on ωb satisfy (II.4.18) and are bounded by C(Ek+1 − Ek) as
seen in (II.4.19). Lastly, we deduce∫

ωbw

∂XΨ̃χkΨ̃ = 1
2

∫
ωbw

χk∂X(|Ψ̃|2) = 1
2

∫
R
χk|Ψ|2

∣∣
X=M . (II.6.18)

From collecting the boundary terms coming from the bilaplacian with (II.6.17) and
(II.6.18), we get

−
∫
R
χk
(
Ψ̃ρ3 + ∂XΨ̃ρ2

) ∣∣∣∣∣
X=M

.

The term above is bounded for any δ > 0 by

C
(
‖ρ2‖L2

uloc
+ ‖ρ3‖L2

uloc

)
Ek+1 + C ′

(
‖ρ2‖L2

uloc
+ ‖ρ3‖L2

uloc

)
(k + 1),

where C,C ′ depend only on M , α and on ‖γ‖W 2,∞ . The computation of this bound
relies on the trace theorem and Young’s inequality. We are left with∣∣∣∣∣

∫
ωbw

χkF
LΨ̃
∣∣∣∣∣ ≤ C‖φ‖W 2,∞E

1/2
k+1
√
k + 1.

The last bound is not optimal but it suffices for our purposes. Applying once again
Young’s inequality yields∣∣∣∣∣

∫
ωbw

χkF
LΨ̃
∣∣∣∣∣ ≤ C‖φ‖W 2,∞Ek+1 + C ′‖φ‖W 2,∞(k + 1).

For ‖φ‖W 2,∞ , ‖ρ2‖Hm−1/2
uloc

and ‖ρ3‖Hm−3/2
uloc

, gathering all the terms provides the following
inequality

Ek ≤ C1(Ek+1−Ek)3/2+C2‖φ‖W 2,∞(Ek+1−Ek)+C3

(
‖φ‖W 2,∞ + ‖ρ2‖Hm−1/2

uloc
+ ‖ρ3‖Hm−3/2

uloc

)
(k+1).

(II.6.19)
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• Induction. We aim to deduce from (II.6.13) that there exists k0 ∈ N \ {0}, C > 0 such
that, for all n ∈ N ∫

ωk0

|∆wΨ̃n|2 ≤ C. (II.6.20)

Let C2(φ) and C3(φ, ρ2, ρ3) denote the coefficients associated to second and third k-
dependent terms in inequality (II.6.19). From (II.6.13), we prove by downward induc-
tion on k, that there exists a positive constant C4 depending only on C0, C1, C2(φ)
and C3(φ, ρ2, ρ3), appearing respectively in (II.6.12) and (II.6.19), such that, for all
k > k0,

Ek ≤ C4C3(φ, ρ2, ρ3)(k + 1). (II.6.21)

Here, C4 is independent of n, k.

Note that (II.6.21) is holds for k = n if C4 > C0(C3(φ, ρ2, ρ3))−1 , remembering that
Ψ̃n = 0 on ωb \ ωn. We then assume that (II.6.21) holds for n, n− 1, . . . , k + 1, where
k is a positive integer.

To obtain the contradiction that allows us to claim (II.6.21) holds at the rank k, we
assume that (II.6.21) is no longer true for k. Then, the induction yields

Ek+1 − Ek < C4C3(φ, ρ2, ρ3).

Substituting the above inequality in (II.6.19) gives

C4C3(φ, ρ2, ρ3) < Ek ≤ C1C
3/2
4 C3(φ, ρ2, ρ3)3/2 + C2(φ)C4C3(φ, ρ2, ρ3) + C3(φ, ρ2, ρ3)(k + 1)

(II.6.22)

Even when the values of C0, C1, C2(φ), C3(φ, ρ2, ρ3) > 0 are fixed, C4 can be conve-
niently chosen. Taking C4 ≥ 2 and plugging it in (II.6.22) results in a contradiction
for k > k0, where k0 =

⌊
C1C

3/2
4 C3(φ, ρ2, ρ3)1/2 + C2(φ)C4

⌋
. Consequently, (II.6.21)

is true at the rank k > k0 and it also holds when k ≤ k0, since Ek is increasingly
monotonic with respect to k.

Remark II.6.2. The reader can find a detailed description of the method for the Stokes
problem in [59] and for the Stokes-Coriolis system, in [52]. The backward induction
in our case is less involved than the works mentioned above since we are not dealing
directly with a non-local, non-linear Dirichlet-to-Neumann operator.

By taking into account the translation invariance of the energy estimates and consid-
ering k0 sufficiently large, we conclude that Ψ̃n is uniformly bounded in H2(ωb). This
implies in turn that Ψ̃ and consequently, Ψ belong to H2

uloc(ωb).

• Uniqueness. Let Ψ̄ = Ψ1 − Ψ2, where Ψi, i = 1, 2, are solutions of satisfying the
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smallness condition ‖Ψi‖Hm
uloc

< δ. We show that the solution Ψ̄ of the problem

Qw(Ψ̄,Ψ1) +Qw(Ψ2, Ψ̄) + ∂XΨ̄−∆2
wΨ̄ = 0 in ωb,

(1 + α2)∆wΨ̄
∣∣∣
σMw

= 0,(
−
(
(1 + α2)∂X − 2α∂Y

)
∆wΨ̄ + ∂Y

(
∇⊥wΨ̄∇⊥w(Ψ1 + Ψ2)

2

)
(II.6.23)

+(∇⊥wΨ̄ · ∇w)
(
(1 + α2)∂X − α∂Y

)
Ψ1 (II.6.24)

+(∇⊥wΨ2 · ∇w)
(
(1 + α2)∂X − α∂Y

)
Ψ̄ + Ψ̄

2

) ∣∣∣∣∣
σMw

= 0,

Ψ
∣∣
X=−γ(Y ) = ∂Ψ

∂nw

∣∣
X=−γ(Y ) = 0, (II.6.25)

(II.6.26)

is Ψ̄ ≡ 0. The smallness assumption on Ψi, i = 1, 2 leads the to following inequality
on the truncated energies

Ek ≤ (‖Ψ1‖H2
uloc

+ ‖Ψ2‖H2
uloc

)C1(Ek+1 − Ek),

where the constant C1 depends only on the characteristics of the domain. Since
sup
k

(Ek+1 − Ek) ≤ ‖Ψ̄‖2H2
uloc

, it is possible to show that Ek is uniformly bounded in k.

Therefore, the difference between two solutions belongs to H2(R) and we can repeat
the method but without χk. The smallness assumption on ‖Ψi‖H2

uloc
, i = 1, 2, ensures

for a constant C > 0
(1− Cδ)

∫
ωb
|∆Ψ|2 ≤ 0,

which provides the uniqueness result when δ < C−1.

Step 2. Regularity. Higher regularity estimates for the solution are necessary for
the subsequent application of the implicit function theorem. The analysis of the interior
regularity and the regularity up to the boundary starts with the case of m = 1. This case is
later used to obtain higher regularity estimates through induction.

II.6.2.0.1 First order interior regularity

Theorem II.6.1. For any, Ψ ∈ H2
loc(ωbw) which is a solution of

∂XΨ + (∇⊥wΨ · ∇w)∆wΨ−∆2
wΨ = 0 in ωb (II.6.27)

then Ψ ∈ Hs
loc(ωbw), s ∈ N, s ≥ 2. More precisely, for any bounded open set ω′satisfying

ω′ ⊂⊂ ωbw,
‖Ψ‖Hs(ω′) ≤ C‖Ψ‖H2

uloc(ωbw), (II.6.28)

where C is a constant depending on ω′.
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Proof. Let Ψ be a solution of (II.6.27) belonging to H2
uloc(ωbw) and ω′ ⊂⊂ ωbw. Note that

(∇⊥wΨ·∇w)∆wΨ = ∇w ·((∇⊥wΨ)∆wΨ) and∇⊥wΨ ∈ H1(ω′). Therefore, by Sobolev embedding

∇⊥wΨ ∈ Lp(ω′) for any p ∈ [1,+∞).

As ∆wΨ ∈ L2(ω′), we have that (∆wΨ)∇⊥wΨ ∈ Lq(ω′) for any q ∈ [1, 2) and, on that account

∇w · ((∇⊥wΨ)∆wΨ) ∈W−1,q(ω′) for any q ∈ [1, 2).

Taking into account ∂XΨ ∈ H1(ω′) ⊂ W−1,q(ω′) and using (II.6.27) provide ∆w(∆wΨ) ∈
W−1,q(ω′) for any q ∈ [1, 2). Therefore, by means of classical elliptic regularity arguments,
we obtain ∆wΨ ∈ W 1,q(ω′) for any q ∈ [1, 2). This implies in turn that Ψ ∈ W 3,q(ω′) for
any q ∈ [1, 2) and

‖Ψ‖W 3,q(ω′) ≤ C‖Ψ‖H2(ω′′) ≤ C‖Ψ‖H2
uloc(ωbw),

where ω′ ⊂ ω′′ ⊂ ωbw and C is a constant depending only ω′. Consequently, ∇⊥Ψ ∈W 2,q(ω′)
for any q ∈ [1, 2) leading to∇⊥Ψ ∈W 1,p(ω′) for any p ∈ [1,+∞). Similarly, ∆wΨ ∈W 1,q(ω′)
for any q ∈ [1, 2) which gives that ∆wΨ∇⊥Ψ ∈W 1,q(ω′) for any q ∈ [1, 2) and Ψ ∈W 4,q(ω′)
for any q ∈ [1, 2). Repeating the procedure results in Ψ ∈W s,q(ω′) for any s ∈ N∗. Therefore,
Ψ ∈ Hs(ω′) for any s ∈ R by Sobolev embedding. In particular, there exists C depending
only on ω′ such that

‖Ψ‖H3(ω′) ≤ C‖Ψ‖H2
uloc(ωbw).

II.6.2.0.2 Regularity up to the boundary Since we are only interested in the regular-
ity near the artificial boundary, we can consider without loss of generality that the behavior
at the interface at X = 0 and the rough boundary does not influence our analysis. We tackle
our regularity analysis for X > M ′, where M ′ ∈ (0,M). To prove H3

uloc- regularity up to
the boundary, we need to compute a priori estimates for ∂Y Ψ in H2

uloc. First, we are going
to localize the equation near a fixed k ∈ Z. Let ϕ̃k ∈ C∞0 (R) be equal to 1 in a neighborhood
of k ∈ Z, and such that the size of Suppϕ̃k is bounded uniformly in k. Moreover, we set
ϕk = ϕ̃2

k.
The idea is to apply a finite difference operator with a step h > 0 in the direction parallel

to the boundary, that is to say parallel to the Y -axis, and then, pass to the limit when h
goes to zero. This shows that ∂Y (ϕkΨ−w) ∈ H2(ωbw). Then, using the equations, it implies
that ∂X(ϕkΨ−w) ∈ H2(ωbw) and thus ϕkΨ−w ∈ H3(ωbw). From the arbitrariness of k ∈ Z and
ϕk, and from the interior regularity provided for the case when m = 1, this in turn implies
that Ψ−w ∈ H3

uloc(ωbw). Going forward, to alleviate the notation, we omit the k-dependence
of ϕ and we denote Ψ instead of Ψ−w . We define the finite difference operator δh as follows:

δhu = τhu− u
h

, τhu(X,Y ) = u(X,Y + h).

Then, for ω′ ⊂⊂ ωbw, there exists a constant C > 0 such that |h| < dist(∂ω, ω′), and
f ∈W k,p(ω),

‖δhf‖Wk−1,p(ω′) ≤ C‖f‖Wk,p(ω),

lim
h→0
‖δh(f)− ∂Y f‖Wk−1,p(ω′) = 0.
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Considering ψh = δh(ϕkΨ) in (II.6.7) yields

∂Xψh −∆2
wψh = fh in ωb ∩ Suppϕk,

(1 + α2)∆wψh = ρh2 ,

−
[
(1 + α2)∂X − 2α∂Y

]
∆wψh + ψh

2

∣∣∣
X=M

= ρh3 ,

ψh = ∂Xψh = 0, on (M ′,M)× ∂Suppϕk.

Taking into account that ϕk is independent of X, we have that

fh = −δh
[
4ϕ(3)

k (∂Y − α∂X) Ψ + 6ϕ′′k∆wΨ + 4ϕ′k (∂Y − α∂X) ∆wΨ + ϕ
(4)
k Ψ

−∇wΨ ·
(
3(0, ϕ′k)∆wΨ + 3ϕ′′k∇wΨ + (0, ϕ(3)

k )Ψ
)]
− δh

[
(∇⊥wΨ · ∇w)∆w(ϕkΨ)

]
,

ρh2 = δh[ϕkρ2]− (1 + α2)δh
[
2ϕ′k (∂Y − α∂X) Ψ + ϕ′′kΨ

]
,

ρh3 = δh[ϕkρ3] + δh
[(

(1 + α2)∂X − 2α∂Y
) (

2∂Y ϕk (∂Y − α∂X) Ψ + ∂2
Y ϕkΨ

)
−∇⊥wΨ ·

(
−α∇w (Ψ∂Y ϕk) +

(
(1 + α2)∂X − α∂Y

)
Ψ(0, ∂Y )ϕk

)
−
(
∂Y
(
|∇⊥wΨ|2

2

)
ϕk
)]

+ δh
[
(∇⊥wΨ · ∇w)

(
(1 + α2)∂X − α∂Y )(ϕkΨ)

)]
− δh[2α∆wΨ∂Y ϕk].

Let us now state some technical lemmas which are necessary to the proof.

Lemma II.6.1. Let σMw = {(M,Y ) : Y ∈ R}. Define σk = σMw ∩ Suppϕ where ϕ ∈ C∞0 (R)
and it is equal to 1 in a neighborhood of σMw . Consider the functions Ψ ∈ H2

uloc(ωb), ρ2 ∈
H

1/2
uloc(σM ) and ρ3 ∈ H−1/2

uloc (σM ). Then, for any h ∈ R, we have the estimates

‖ρh3‖H−3/2(σk) ≤C(1 + ‖ϕ‖W 4,∞)(‖ρ3‖H−1/2
uloc (σMw ) + ‖ρ2‖H1/2

uloc(σMw )

+ ‖Ψ‖H2
uloc

(1 + ‖ψh‖H2
uloc

+ ‖Ψ‖H2
uloc

)),

‖ρh2‖H−1/2(σk) ≤C
(
‖ρ2‖H1/2

uloc(σMw ) + ‖Ψ‖H2
uloc

)
‖ϕ‖W 3,∞ ,

‖fh‖H−2(ωbw) ≤C(‖Ψ‖H2
uloc

(1 + ‖Ψ‖H2
uloc

+ ‖ψh‖H2
uloc

+ ‖ΨL‖H2
uloc

))(1 + ‖ϕ‖W 3,∞(ωbw)),

where C is a constant depending only on the domain ωbw.

Lemma II.6.2. Consider the linear problem

∂Xz −∆2
wz = f1 in ωk,

(1 + α2)∆wz = f2, (II.6.29)

−
[
(1 + α2)∂X − 2α∂Y

]
∆wz + z

2

∣∣∣
σk

= f3,

z = ∂Xz = 0, on ∂ωk \ σk,

where ωk = ωb ∩ Suppϕ, σk = ∂ωk ∩ ∂ωbw and ν stands for the unit outer normal vector at
the boundary. If f1 ∈ H−2(ωk), f2 ∈ H−1/2(σk), f3 ∈ H−3/2(σk). Then, problem (II.6.29)
has a unique solution z ∈ H2(ωk) and satisfies the estimate

‖z‖H2(ωk) ≤ C
(
‖f1‖H−2(ωk) + ‖f2‖H−1/2(σk) + ‖f3‖H−3/2(σk)

)
. (II.6.30)
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The regularity up to the boundary and the fact that ϕΨ ∈ H3(ωbw) is a consequence
of Lemmas II.6.1 and II.6.2 for z = ψh. Combining these two Lemmas with the smallness
assumption on ‖Ψ‖H2

uloc(ωbw), we have that ψh ∈ H2(ωbw) and, for any h ∈ R∗

‖ψh‖H2(ωbw) ≤ C
(
‖Ψ‖H2

uloc(ωbw) + ‖ρ2‖H1/2
uloc(σk) + ‖ρ3‖H1/2

uloc(σk)

)
,

for some constant C depending on the bound on ‖Ψ‖H2
uloc(ωbw) but independent of h. This

implies that ψh ∈ H2(ωbw) and therefore, ∂Y (Ψϕ) ∈ H2(ωbw). From the arbitrariness of ϕ
and as Ψ ∈ H2(ωbw), this means that ∂Y Ψ ∈ H2

uloc(ωbw). Hence, that ∂Y ∂XΨ ∈ H1/2
uloc(σk). In

particular ∂XΨ ∈ H3/2
uloc(σk). The first boundary condition of (II.6.7) yields

∂2
XΨ = (1 + α)−1

(
−∂2

Y Ψ + 2α∂Y ∂XΨ + (1 + α)−1ρ2
)
,

which implies that ∂2
XΨ ∈ H

1/2
uloc(σk). This result combined with the second boundary

condition in (II.6.7) gives ∂X∇wΨ ∈ H−1/2
uloc (σk) and, consequently, ∆w(∂XΨ) ∈ H−1/2

uloc (σk).
Using now the main equation in (II.6.7), we deduce that ∆2

wΨ ∈ H−1
uloc(ωbw) and ∂2

X∆wΨ ∈
H−1

uloc(ωbw). Hence, ∂2
X∆Ψ ∈ H−3/2

uloc (σk) and A3[∂XΨ] ∈ H−3/2
uloc (σk). Let χ ∈ C∞c (ωbw), setting

f1 = ∆2
w(χ∂XΨ)− (χ∂XΨ),

f2 = (1 + α2)∆w(χ∂XΨ),

f3 = −[(1 + α2)∂X − 2α∂Y ]∆w(χ∂XΨ) + χ∂XΨ
2 ,

yields that χ∂XΨ is solution to a linear problem of the from (II.6.29) where f1 ∈ H−2(σk),
f2 ∈ H−1/2(σk), f3 ∈ H−2(σk). From Lemma II.6.2, χ∂XΨ ∈ H2(ωbw) and paired with
the arbitrariness of χ ∂XΨ ∈ H2(ωbw). Finally, combining this with ∂Y Ψ ∈ H2(ωbw) gives
Ψ ∈ H3(ωbw). It remains to prove the results in Lemmas II.6.1 and II.6.2. Lemma II.6.2 is a
standard elliptic regularity result. The main difficulty resides in the proof of the estimates
in Lemma II.6.1 when handling the nonlinear terms.

Proof of Lemma II.6.2. Before computing the elliptic regularity estimates, let us first briefly
comment on the existence of an appropriate weak solution z of the boundary-value problem
(II.6.29). Note that the weak formulation associated with (II.6.29) is∫

ωk

∂Xzθ −
∫
ωk

∆wz∆wθ =
∫
ωk

f1θ −
∫
σk

f3θ
∣∣
X=M

−
∫
σk

f2∂Xθ
∣∣
X=M +

∫
σk

1
2 z
∣∣
X=M

θ
∣∣
X=M

, ∀ θ ∈ H2(ωk),
(II.6.31)

which can be written as follows:

A(z, θ) + a(z, θ) = (f1, θ)−
∫
σk

f3θ
∣∣
X=M −

∫
σk

f2∂Xθ
∣∣
X=M +

∫
σk

1
2z
∣∣
X=Mθ

∣∣
X=M , (II.6.32)

where A(z, θ) =
∫
ωk
∂Xzθ −

∫
ωk

∆wz∆wθ and a(z, θ) contains the integral boundary terms.
Here, (·, ·) refers to the usual product in L2. The differential operator A is a bilinear and
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continuous form in H2(ωk)×H2(ωk), as well as, H2
0 (ωk)-elliptic. The existence and unique-

ness of a solution z ∈ H2(ωk) is guaranteed by applying [70, Theorem 3.1, Section 1.3.2].
Taking θ = z in (II.6.31) yields the expression∫

ωk

|∆wz|2 = −
∫
ωk

f1z +
∫
σk

f3z +
∫
σk

f2∂Xz, (II.6.33)

which leads naturally to the estimate by using Cauchy-Schwarz inequality, the definition of
the norm in dual spaces and the trace theorem∫

ωk

|∆wz|2 ≤ C
(
‖f‖H−2(ωk) + ‖f2‖H−1/2(σk) + ‖f3‖H−3/2(σk)

)
‖z‖H2(ωk).

Finally, we obtain the desired result

‖z‖H2(ωk) ≤ C
(
‖f‖H−2(ωk) + ‖f2‖H−1/2(σk) + ‖f3‖H−3/2(σk)

)
.

Proof of Lemma II.6.1. This proof is divided in three parts corresponding to each one of the
estimates of ρh3 , ρh2 andfh.

Estimate of ρh3 . We have

ρh3 = δh[ϕkρ3] + δh
[(

(1 + α2)∂X − 2α∂Y
) (

2∂Y ϕk (∂Y − α∂X) Ψ + ∂2
Y ϕkΨ

)
−∇⊥wΨ ·

(
−α∇w (Ψ∂Y ϕk) +

(
(1 + α2)∂X − α∂Y

)
Ψ(0, ∂Y )ϕk

)
−
(
∂Y
(
|∇⊥wΨ|2

2

)
ϕk
)]

+ δh
[
(∇⊥wΨ · ∇w)

(
(1 + α2)∂X − α∂Y )(ϕkΨ)

)]
− δh[2α∆wΨ∂Y ϕk].

The first term on the r.h.s satisfies

‖δh[ϕkρ3]‖H−3/2(σk) ≤ C‖ρ3‖H−1/2
uloc (σM ), (II.6.34)

Let us give a closer look at the second term. Enclosed in brackets are terms involving at
most one order derivative of Ψ multiplied by a derivative of ϕk, which has compact support
on σk. Let us now recall that Ψ belongs to H3/2

uloc and ∂XΨ belongs to H1/2
uloc at X = M .

Moreover, using the conditions at σMw , we get

‖∂2
XΨ‖

H
−1/2
uloc (σMw ) ≤ C(‖Ψ‖H2

uloc(ωb) + ‖ρ2‖H−1/2
uloc (σMw )). (II.6.35)

Hence,∥∥∥δh [((1 + α2)∂X − 2α∂Y
) (

2∂Y ϕk (∂Y − α∂X) Ψ + ∂2
Y ϕkΨ

)]∥∥∥
H−3/2(σk)

≤ C
(
‖ρ2‖H−1/2

uloc (σMw ) + ‖Ψ‖
H

3/2
uloc(σMw ) + ‖∂XΨ‖

H
1/2
uloc(σMw )

)
‖ϕk‖W 4,∞ .

(II.6.36)

Now, observe that for f ∈ H1/2
uloc(σk,R2), g ∈ H1/2

uloc(σk,R2), θ ∈ C∞c (σk,R+) and as a result
of the Sobolev embedding H1/2(R) ⊂ Lp(R), for any p ∈ [1,+∞), we have

‖fgθ‖H−1/2(σk) ≤ ‖fgθ‖Lp(σk) ≤ ‖f‖H1/2
uloc(σMw )‖g‖H1/2

uloc(σMw )‖θ‖L∞ . (II.6.37)
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Consequently, using Trace theorem∥∥∥δh [−∇⊥wΨ ·
(
−α∇w (Ψ∂Y ϕk) +

(
(1 + α2)∂X − α∂Y

)
Ψ(0, ∂Y )ϕk

)]∥∥∥
H−3/2(σk)

≤ C
(
‖Ψ‖

H
3/2
uloc(σMw ) + ‖∂XΨ‖

H
1/2
uloc(σMw )

)
‖ϕk‖W 2,∞(ωbw)

≤ C‖Ψ‖2H2
uloc(ωbw)‖ϕk‖W 2,∞(ωbw).

(II.6.38)

Finally, note that

(∂2
Y Ψ)ϕk = ∂2

Y (Ψϕk)− 2(∂Y Ψ∂Y ϕk)− (Ψ∂2
Y ϕk),

(∂2
XΨ)ϕk = ∂2

X(Ψϕk),
(∂2
Y XΨ)ϕk = ∂2

Y X(Ψϕk)− (∂XΨ∂Y ϕk).

Therefore,

δh
[
−
(
∂Y
(
|∇⊥wΨ|2

2

)
ϕk
)]

= δh
[
−
(
∂Y
(
|∇⊥wΨ|2

2 ϕk
))]
− δh

[
(∂Y ϕk) |∇

⊥
wΨ|2
2

]
.

(II.6.39)

The second term is a quadratic in Ψ, linear in ϕk and involves at most one derivative of Ψ
and one derivative of ϕk. Therefore,

‖δh
[
(∂Y ϕk) |∇

⊥
wΨ|2
2

]
‖H−3/2(σk) ≤ C‖(∂Y ϕk)

|∇⊥wΨ|2
2 ‖H−1/2(σk)

≤ C‖ϕk‖W 1,∞(σk)

(
‖∂XΨ‖

H
1/2
uloc(σk) + ‖Ψ‖

H
3/2
uloc(σk)

)2
.

(II.6.40)

The first term of (II.6.39) can be treated as follows

δh(|∇⊥wΨ|2ϕk) = δh
([

(1 + α2)(∂XΨ)2 − 2α∂XΨ∂Y Ψ + (∂Y Ψ)2
]
ϕk
)

= 2(1 + α2)(∂Xψh)(∂XΨ)− 2α∂Xψh∂Y Ψ− 2α∂XΨ∂Y ψh + 2(∂Y Ψ)(∂Y ψh)
+ F1(Ψ, δhϕk, ϕk) + F2(Ψ, δhΨ, ϕk),

(II.6.41)

where F1(Ψ, δhϕk) is a sum of terms quadratic in Ψ, linear in δhϕk and involving at most
one derivative of Ψ and δhϕk. F2(Ψ, δhΨ, ϕk), on the other hand, is a sum of terms linear
in Ψ, linear in δhΨ and linear in ϕk involving at most one derivative in Ψ, no derivative in
δhΨ and one derivative in ϕk. As a result of (II.6.37), we have

‖F1(Ψ, δhϕk)‖H−1/2(σk) ≤ C
(
‖Ψ‖

H
3/2
uloc(σMw ) + ‖∂XΨ‖

H
1/2
uloc(σMw )

)2
‖ϕk‖W 1,∞ , (II.6.42)

and

‖F2(Ψ, δhΨ, ϕk), ‖H−1/2(σk) ≤ C(‖Ψ‖
H

3/2
uloc(σMw ) + ‖∂XΨ‖

H
1/2
uloc(σMw ))‖δhΨ‖

H
1/2
uloc(σMw )‖ϕk‖W 1,∞

≤ C(‖Ψ‖
H

3/2
uloc(σMw ) + ‖∂XΨ‖

H
1/2
uloc(σMw ))

2‖ϕk‖W 1,∞ .

(II.6.43)
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The reminder of (II.6.41) is now easy to handle using (II.6.37)

‖2(1 + α2)(∂Xψh)(∂XΨ)− 2α∂Xψh∂Y Ψ− 2α∂XΨ∂Y ψh + 2(∂Y Ψ)(∂Y ψh)‖
H
−1/2
uloc (σk)

≤ C
(
‖∂XΨ‖

H
1/2
uloc(σk) + ‖Ψ‖

H
3/2
uloc(σk)

)(
‖∂Xψh‖H1/2

uloc(σk) + ‖ψh‖H3/2
uloc(σk)

)
.

(II.6.44)

Using (II.6.40), (II.6.41), (II.6.42), (II.6.43), and (II.6.44) one has∥∥∥δh [− (∂Y ( |∇⊥wΨ|2
2

)
ϕk
)]∥∥∥

H−3/2(σk)

≤
∥∥∥δh [∂Y ( |∇⊥wΨ|2

2 ϕk
)]∥∥∥

H−3/2(σk)
+ C‖ϕk‖W 1,∞(σk)

(
‖∂XΨ‖

H
1/2
uloc(σk) + ‖Ψ‖

H
3/2
uloc(σk)

)2

≤ C
∥∥∥δh [ |∇⊥wΨ|2

2 ϕk
]∥∥∥
H−1/2(σk)

+ C‖ϕk‖W 1,∞(σk)

(
‖∂XΨ‖

H
1/2
uloc(σk) + ‖Ψ‖

H
3/2
uloc(σk)

)2

≤ C
(
‖ϕk‖W 1,∞(σk)

(
‖∂XΨ‖

H
1/2
uloc(σk) + ‖Ψ‖

H
3/2
uloc

)2

+
(
‖∂XΨ‖

H
1/2
uloc(σk) + ‖Ψ‖

H
3/2
uloc(σk)

)(
‖∂Xψh‖H1/2

uloc(σk) + ‖ψh‖H3/2
uloc(σk)

))
.

Combining the above result with the Trace theorem gives

∥∥∥δh [− (∂Y ( |∇⊥wΨ|2
2

)
ϕk
)]∥∥∥

H−3/2(σk)
≤ C

(
‖ψh‖H2(ωbw)‖Ψ‖H2

uloc(ωbw) + ‖Ψ‖2H2
uloc(ωbw)

)
‖ϕk‖W 1,∞ .

It remains to tackle the two last terms of (II.6.34), starting with

δh
[
(∇⊥wΨ · ∇w)

(
(1 + α2)∂X − α∂Y

)
(ϕkΨ)

]
.

Since too many derivatives are involved in the above expression, this term cannot be con-
trolled roughly by controlling δh[∇⊥wΨ] by |∇(∇⊥wΨ)|. To address this issue, we make
δh(ϕkΨ) = ψh appear, similarly as we did for (II.6.39). We claim

δh
(
([∇⊥wΨ] · ∇w)

(
(1 + α2)∂X − α∂Y

)
(ϕkΨ)

)
= (τh[∇⊥wΨ] · ∇w)

(
(1 + α2)∂X − α∂Y

)
(δh(ϕkΨ)) + (δh[∇⊥wΨ] · ∇w)

(
(1 + α2)∂X − α∂Y

)
(ϕkΨ)

= (τh[∇⊥wΨ] · ∇w)
(
(1 + α2)∂X − α∂Y

)
(ψh) + (δh[∇⊥wΨ] · ∇w)

(
(1 + α2)∂X − α∂Y

)
(ϕkΨ).
(II.6.45)

For the first term

‖(τh[∇⊥wΨ] · ∇w)
(
(1 + α2)∂X − α∂Y

)
(ψh)‖H−3/2(σk)

≤ C‖(τh[∇⊥wΨ] · ∇w)
(
(1 + α2)∂X − α∂Y

)
(ψh)‖L1(σk)

≤
(
‖ψh‖H3/2(σk) + ‖∂Xψh‖H1/2(σk)

)(
‖Ψ‖

H
3/2
uloc(σk) + ‖∂XΨ‖

H
1/2
uloc(σk)

)
.
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This inequality results from the Sobolev embedding L1(σk) ⊂ H−3/2(σk). It can also be
seen coming back to the definition of H−3/2(σk) as done below at (II.6.47)-(II.6.49). For the
second term of (II.6.45), we have

(δh[∇⊥wΨ] · ∇w)
(
(1 + α2)∂X − α∂Y

)
(ϕkΨ)

=
[
(δh[∇⊥wΨ] · ∇w)

(
(1 + α2)∂X − α∂Y

)
Ψ
]
ϕk + (δh[∇⊥wΨ] · ∇w)

([(
(1 + α2)∂X − α∂Y

)
ϕk
]

Ψ
)

+
[
(δh[∇⊥wΨ] · ∇w)ϕk

] [(
(1 + α2)∂X − α∂Y

)
Ψ
]
.

(II.6.46)

Note that the second and third terms above are easier to deal with as they have fewer
derivatives of Ψ. Indeed, it consists of the product of two terms: the first one involves
δh[∇⊥wΨ] while the second one contains at most a first order derivative of Ψ and is multiplied
by a term with compact support. Accordingly, the latter belongs to H1/2(σk). Using that
for f ∈ H1/2(σk) and g ∈ H3/2

0 (σk), we have g ∈W 1/2,∞ and fg ∈ H1/2(σk). Thus,

‖fg‖H1/2(σk) ≤ C‖f‖H1/2(σk)‖g‖H3/2(σk). (II.6.47)

For f1 ∈ H1/2
uloc(σMw ), f2 ∈ H1/2

uloc(σMw ), ϕk ∈ C∞c (σk), and g ∈ H
3/2
0 (σk), using (II.6.37) gives∣∣∣∣∫

R
(δhf1)f2ϕkg

∣∣∣∣ =
∣∣∣∣∫

R
(δhf1ϕ̄k)f2ϕkg

∣∣∣∣
≤ ‖δh(f1ϕ̄k)‖H−1/2(R)‖f2ϕkg‖H1/2(R)

≤ C‖f1ϕ̄k‖H1/2(R)‖f2‖H1/2
uloc(σk)‖ϕk‖L∞(R)‖g‖H3/2(σk)

≤ C‖f1‖H1/2
uloc(σk)‖f2‖H1/2

uloc(σk)‖ϕk‖W 1,∞(R)‖g‖H3/2(σk),

(II.6.48)

where ϕ̄k belongs to C∞0 (R) and satifies Supp(ϕk) ⊂ Supp(ϕ̄k). This implies that

‖(δhf1)f2ϕk‖H−3/2(σk) ≤ C‖f1‖H1/2
uloc(σk)‖f2‖H1/2

uloc(σk)‖ϕk‖W 1,∞(R). (II.6.49)

Hence,

‖(δh[∇⊥wΨ] · ∇w)
([(

(1 + α2)∂X − α∂Y
)
ϕk
]

Ψ
)

+
[
(δh[∇⊥wΨ] · ∇w)ϕk

] [(
(1 + α2)∂X − α∂Y

)
Ψ
]
‖H−3/2(σk)

≤ C(‖Ψ‖
H

1/2
uloc(σMw ) + ‖∂XΨ‖

H
−1/2
uloc (σMw ))

2‖ϕk‖W 2,∞ .

(II.6.50)

Now, the first term in the r.h.s of (II.6.46) satisfies[
(δh[∇⊥wΨ] · ∇w)

(
(1 + α2)∂X − α∂Y

)
Ψ
]
ϕk

=
[
ϕk([∇⊥wδhΨ] · ∇w)

(
(1 + α2)∂X − α∂Y

)
Ψ
]

=
[
([∇⊥wδh(ϕkΨ)] · ∇w)

(
(1 + α2)∂X − α∂Y

)
Ψ
]
−
[
([(∇⊥wϕk)δh(Ψ)] · ∇w)

(
(1 + α2)∂X − α∂Y

)
Ψ
]

−
[
([∇⊥w [δh(ϕk)τhΨ]] · ∇w)

(
(1 + α2)∂X − α∂Y

)
Ψ
]
,

(II.6.51)
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where τh is the translation of amplitude h on the Y axis. Once again, the second and third
terms above are easier to deal with as they include fewer derivatives and can be bounded
similarly to (II.6.50). Now, we are left with analyzing the first term. We have[

([∇⊥wδh(ϕkΨ)] · ∇w)
(
(1 + α2)∂X − α∂Y

)
Ψ
]

=
[
([∇⊥wψh · ∇w)

(
(1 + α2)∂X − α∂Y

)
Ψ
]
.

Similarly to the case of (II.6.50), using that ψh ∈ H3/2(σk) and ∂Xψh ∈ H1/2(σk) yields

‖
[
([∇⊥wδh(ϕkΨ)] · ∇w)

(
(1 + α2)∂X − α∂Y

)
Ψ
]
‖H−3/2(σk)

= ‖
[
([∇⊥wψh · ∇w)

(
(1 + α2)∂X − α∂Y

)
Ψ
]
‖H−3/2(σk)

≤ C(‖ψh‖H3/2(σk) + ‖∂Xψh‖H1/2(σk))(‖Ψ‖H3/2
uloc(σMw ) + ‖∂XΨ‖

H
1/2
uloc(σMw ) + ‖ρ2

h‖H−1/2
uloc (σMw )).

(II.6.52)

Finally, taking f ∈ H−1/2
uloc (σk), l ∈ C∞c (σk), and g ∈ H3/2(σk) we have∣∣∣∣∫
R
fgl

∣∣∣∣ ≤ ‖f‖H−1/2
uloc (σk)‖gl‖H1/2(σk)

≤ ‖f‖
H
−1/2
uloc (σk)‖g‖H3/2(σk)‖l‖W 2,∞(σk).

Then, we infer
‖fl‖H−3/2(σk) ≤ ‖f‖H−1/2

uloc (σk)‖l‖W 2,∞(σk).

From (II.6.35) follows that

‖∆wΨ∂Y ϕk‖H−3/2(σk) ≤ C‖∆wΨ‖
H
−1/2
uloc (σk)‖ϕk‖W 2,∞(σk)

≤ C
(
‖Ψ‖H2

uloc(ωbw) + ‖ρ2‖H−1/2
uloc (σk)

)
‖ϕk‖W 2,∞(σk).

(II.6.53)

Therefore, from (II.6.34), (II.6.38), (II.6.42), (II.6.51), (II.6.50), (II.6.52), (II.6.53) and
applying the Trace theorem

‖ρh3‖H−3/2(σk) ≤ C(1 + ‖ϕk‖W 4,∞)(‖ρ2‖H−1/2
uloc (σMw ) + ‖Ψ‖H2

uloc
(1 + ‖ψh‖H2

uloc
+ ‖Ψ‖H2

uloc
)),

which is the desired estimate.

II.6.2.0.3 Estimate of fh. Let us recall the expression of fh,

fh = −δh
[
4ϕ(3)

k (∂Y − α∂X) Ψ + 6ϕ′′k∆wΨ + 4ϕ′k (∂Y − α∂X) ∆wΨ + ϕ
(4)
k Ψ

−∂XΨ
(
3ϕ′k∆wΨ + ϕ

(3)
k Ψ

)
− 3ϕ′′k∆wΨ

]
− δh

[
(∇⊥wΨ · ∇w)∆w(ϕkΨ)

]
.
(II.6.54)

Let us analyze the first (large) term of (II.6.54). Note that all the terms enclosed in brack-
ets that are not quadratic in Ψ involve at most a third order derivative of Ψ and are all
proportional to a derivative of ϕk (hence compactly supported). This implies that∥∥∥δh [4ϕ(3)

k (∂Y − α∂X) Ψ + 6ϕ′′k∆wΨ + 4ϕ′k (∂Y − α∂X) ∆wΨ + ϕ
(4)
k Ψ

]∥∥∥
H−2(ωbw)

≤ C
∥∥∥4ϕ(3)

k (∂Y − α∂X) Ψ + 6ϕ′′k∆wΨ + 4ϕ′k (∂Y − α∂X) ∆wΨ + ϕ
(4)
k Ψ

∥∥∥
H−1(ωbw)

≤ C ‖Ψ‖H2
uloc
‖ϕk‖W 4,∞(ωbw).

(II.6.55)
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The quadratic terms between the brackets in the second term of (II.6.54) can be treated in
an analogous manner∥∥∥δh [−∂XΨ

(
3ϕ′k∆wΨ + ϕ

(3)
k Ψ

)
− 3ϕ′′k∆wΨ

]∥∥∥
H−2(ωbw)

≤ C
∥∥∥−∂XΨ

(
3ϕ′k∆wΨ + ϕ

(3)
k Ψ

)
− 3ϕ′′k∆wΨ

∥∥∥
H−1(ωbw)

≤ C ‖Ψ‖2H2
uloc
‖ϕk‖W 3,∞(ωbw).

(II.6.56)

On the last term on the r.h.s of (II.6.54), we use the property

δh
[
(
(
∇⊥wΨ

)
· ∇w)∆w(ϕkΨ)

]
= δh

(
∇w ·

(
∆w(ϕkΨ)∇⊥wΨ

))
,

by virtue of ∇w · ∇⊥w(δhΨ) = 0. Therefore,

‖δh
[
(
(
∇⊥wΨ

)
· ∇w)∆w(ϕkΨ)

]
‖H−2(ωbw) ≤ C‖δh

(
∆w(ϕkΨ)∇⊥wΨ

)
‖H−1(ωbw),

and it suffices to estimate δh
(
∆w(ϕkΨ)

(
∇⊥wΨ

))
is the H−1(ωbw) norm. We get

δh
(
∆w(ϕkΨ)

(
∇⊥wΨ

))
= ∆w(ϕkΨ)δh

(
∇⊥wΨ

)
+ δh∆w(ϕkΨ)τh

(
∇⊥wΨ

)
= ∆w(ϕkΨ)δh

(
∇⊥wΨ

)
+ ∆w(ψh)τh

(
∇⊥wΨ

)
.

(II.6.57)

The second term satisfies

‖∆w(ψh)τh
(
∇⊥wΨ

)
‖H−1(ωbw) ≤ C‖ψh‖H2(ωbw)‖Ψ‖H2

uloc(ω). (II.6.58)

The above estimate is obtained from applying the following result: let f ∈ H1
uloc(ωbw), g ∈

L2(ωbw) with compact support, and l ∈ H1(ωbw),∣∣∣∣∫
R
fgl

∣∣∣∣ ≤ ‖g‖L2(ωbw)‖fl‖L2
uloc(ωbw) ≤ C‖g‖L2(ωbw)‖f‖L4

uloc(ωbw)‖l‖L4(ωbw),

≤ C‖g‖L2(ωbw)‖f‖H1
uloc(ωbw)‖l‖H1(ωbw),

(II.6.59)

hence,
‖fg‖H−1(ωbw) ≤ C‖g‖L2(ωbw)‖f‖H1

uloc(ωbw). (II.6.60)

The first term in (II.6.57) satisfies

∆w(ϕkΨ)δh
(
∇⊥wΨ

)
= ϕk∆w(Ψ)δh

(
∇⊥wΨ

)
+ F (δhΨ,Ψ, ϕk), (II.6.61)

where F (δhΨ,Ψ, ϕk) is a linear combination of functions depending linearly of Ψ, ∂hΨ and
ϕk, compactly supported and involving at most a first order derivative of δhΨ, a first order
derivative of Ψ and a second order derivative in ϕk. Therefore, proceeding similarly as in
(II.6.48) but in H1(ωbw) norm, we have

‖F (δhΨ,Ψ, ϕk)‖H−1(ωbw) ≤ C‖δhΨ‖H1
uloc
‖Ψ‖H2

uloc
‖ϕk‖W 2,∞

≤ C‖Ψ‖2H2
uloc
‖ϕk‖W 2,∞ .

(II.6.62)
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The first term of (II.6.61) can be estimated noting that δh(fg) = (δhf)g + δhgτhf where τh
denotes the translation operator of size h along the Y -axis. This gives

ϕk∆w(Ψ)δh
(
∇⊥wΨ

)
= ∆w(Ψ)δh

(
∇⊥w(Ψϕk)

)
−∆w(Ψ)δh

(
Ψ∇⊥wϕk

)
−∆w(Ψ)

(
δhϕkτh(∇⊥wΨ)

)
= ∆w(Ψ)

(
∇⊥wψh

)
−∆w(Ψ)δh

(
Ψ∇⊥wϕk

)
−∆w(Ψ)

(
δhϕkτh(∇⊥wΨ)

)
.

The last two terms are now easier to bound. Using again (II.6.59)-(II.6.60) for a function
f ∈ H1(ωbw) with compact support and g ∈ L2

uloc(ωbw) leads to

‖ϕk∆w(Ψ)δh
(
∇⊥wΨ

)
‖H−1

uloc(ωbw) ≤ C‖∆wΨ‖L2
uloc(ωbw)‖∇⊥wψh‖H1(ωbw) + ‖ϕk‖W 2,∞(ωbw)‖Ψ‖2H2(ωbw)

≤ C‖Ψ‖H2
uloc(ωbw)

(
‖ψh‖H2(ωbw) + ‖ϕk‖W 2,∞(ωbw)‖Ψ‖H2

uloc(ωbw)

)
.

(II.6.63)

Therefore, from equations (II.6.55), (II.6.56), (II.6.58), (II.6.62), and (II.6.63), we have

‖fh‖H−2(ωbw) ≤ C(‖Ψ‖H2
uloc

(1 + ‖Ψ‖H2
uloc

+ ‖ψh‖H2
uloc

))(1 + ‖ϕk‖W 4,∞(ωbw)).

II.6.2.0.4 Estimate of ρh2 . We have

ρh2 =δh[ϕkρ2] + (1 + α2)δh
[
2∂Y ϕk (∂Y − α∂X) Ψ + ∂2

Y ϕkΨ
]

=δh[ϕkρ2] + (1 + α2)
[
2∂Y ϕk (∂Y − α∂X)ψh + ∂2

Y ϕkψh
]

+ (1 + α2)
[
2∂Y δhϕk (∂Y − α∂X) Ψ + ∂2

Y δhϕkΨ
]
.

Since ‖δhf‖Hp(σk) ≤ C‖f‖Hp+1(σk) for h sufficiently small, where C is independent of h, we
have

‖ρh2‖H−1/2(σk) ≤C
(
‖ρ2‖H1/2

uloc(σMw )‖ϕk‖W 1,∞ + ‖ϕk‖W 1,∞‖Ψ‖H3/2(σk)

+‖ϕk‖W 3,∞‖Ψ‖H−1/2(σk) + ‖ϕk‖W 2,∞‖Ψ‖H1/2(σk)

)
≤C

(
‖ρ2‖H1/2

uloc(σMw )‖ϕk‖W 1,∞ + ‖ϕk‖W 3,∞‖Ψ‖H3/2(σk)

)
.

Therefore, using the Trace theorem

‖ρh2‖H−1/2(σk) ≤ C
(
‖ρ2‖H1/2

uloc(σMw ) + ‖Ψ‖H2
uloc

)
‖ϕk‖W 3,∞ ,

which is the desired estimate.

II.6.2.0.5 Higher interior regularity. We intend to iterate the argument used in the
case m = 1, thereby deducing our solution in various higher Sobolev spaces. As before, we
start with the interior regularity analysis.
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Proposition II.6.3. Let m be a nonnegative integer and Ψ ∈ H2
uloc(ωbw) be a solution of the

PDE
∂XΨ + (∇⊥wΨ · ∇w)∆wΨ−∆2

wΨ = 0 in ωbw.

Then, Ψ ∈ Hm+2
uloc (ωbw) and for each ω′ ⊂⊂ ω

‖Ψ‖H2+m(ω′) ≤ c(ω′)‖Ψ‖H2
uloc(ωbw)

This proposition is a direct consequence of Theorem II.6.1.

II.6.2.0.6 Regularity up to the boundary for m > 1. We now complete the proof
of Theorem II.6.2 for m ≥ 2 using an induction argument. Taking m = 1 as the base case,
we assume that the theorem holds up to m ∈ N∗ and, then, prove that it is true as well
for m + 1. Again we localize the solution near a fixed k ∈ Z using ϕ̃k and apply a finite
difference operator δh to show that

‖δh(ϕkΨ)‖Hm+2(ωbw) ≤ C(ϕk)(‖ρ2‖Hm+1/2
uloc

+ ‖ρ2‖Hm−1/2
uloc

). (II.6.64)

Therefore, ϕ̃kΨ belongs to Hm+3(ωbw) if ρ2 ∈ Hm+1/2
uloc (ωbw) and ρ3 ∈ Hm−1/2

uloc (ωbw) which are
exactly the hypotheses of Theorem II.6.2 when adding one degree of regularity to m. From
the interior regularity result given earlier, we have that Ψ ∈ Hm+3

uloc (ωbw). Hence, Theorem
II.6.2 indeed holds for m+ 1, which concludes the induction.

The proof of estimate (II.6.64) follows the same ideas as the ones presented for the case
m = 1. First, we have the following result

Lemma II.6.3. Consider the linear problem

∂Xz −∆2
wz = f1 in ωk,

(1 + α2)∆wz = f2, (II.6.65)[
(1 + α2)∂X − 2α∂Y

]
∆wz −

z

2

∣∣∣
σk

= f3,

z = ∂Xz = 0, on ∂ωk \ σk,

where ωk = ωb ∩ Suppϕk, σk = ∂ωk ∩ ∂ωbw and n stands for the unit outer normal vector at
the boundary. If f1 ∈ Hm−2(ωk), f2 ∈ Hm−1/2(σk), f3 ∈ Hm−3/2(σk). This problem has a
unique solution z ∈ Hm+2(ωk) and it satisfies the estimate

‖z‖Hm+2(ωk) ≤ C
(
‖f1‖Hm−2(ωk) + ‖f2‖Hm−1/2(σk) + ‖f3‖Hm−3/2(σk)

)
. (II.6.66)

This lemma is a direct consequence of Lemma II.6.2. As before, we need the following
result

Lemma II.6.4. Let σk = σMw ∩Suppϕk where ϕk ∈ C∞0 (R) and is equal to 1 in a neighborhood
of σMw . Consider the functions Ψ ∈ Hm+2

uloc (ω), ρ2 ∈ Hm−1/2
uloc (R) and ρ3 ∈ Hm−3/2

uloc (R). Then,
for any h ∈ R we have the estimates

‖ρh3‖Hm−3/2(σk) ≤ C(1 + ‖ϕk‖Wm+4,∞)(‖ρ3‖Hm−1/2
uloc (σMw ) + ‖Ψ‖Hm+2

uloc
(1 + ‖ψh‖Hm+2

uloc
+ ‖Ψ‖Hm+2

uloc
)),

‖ρh2‖Hm−1/2(σk) ≤ C
(
‖ρ2‖Hm+1/2

uloc (σMw ) + ‖Ψ‖Hl
uloc

)
‖ϕk‖W l+3,∞ ,

‖fh‖Hm−2(ωbw) ≤ C(‖Ψ‖Hm+2
uloc

(1 + ‖Ψ‖Hm+2
uloc

+ ‖ψh‖Hm+2
uloc

+ ‖ΨL‖Hm+2
uloc

))(1 + ‖ϕk‖W l+1,∞(ωbw)),
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where C is a constant depending only on the domain ωbw.

Assume that Lemma II.6.3 and II.6.4 holds. Then, for l ∈ N∗ and l ≥ 2, (II.6.64) follows
directly by induction on {2, ..., l}. We now show a way to adapt the proof of II.6.4 to prove
Lemma II.6.4.

Proof of Lemma II.6.4. Let assume that Ψ ∈ H l for l ≥ 3 (the case l = 2 was shown in
Lemma II.6.2). The estimate of the linear terms are exactly the same as in the proof of
II.6.1. Therefore we are left with showing the regularity of the quadratic terms in fh and ρh3 .

II.6.2.0.7 Estimate of ρh3 . We have

ρh3 = δh[ϕkρ3] + δh
[(

(1 + α2)∂X − 2α∂Y
) (

2∂Y ϕk (∂Y − α∂X) Ψ + ∂2
Y ϕkΨ

)
−∇⊥wΨ ·

(
−α∇w (Ψ∂Y ϕk) +

(
(1 + α2)∂X − α∂Y

)
Ψ(0, ∂Y )ϕk

)
−
(
∂Y
(
|∇⊥wΨ|2

2

)
ϕk
)]

+ (δh[∇⊥wΨ] · ∇w)
(
(1 + α2)∂X − α∂Y

)
(ϕkΨ).

All the terms can be estimated as before. In fact most of them are easier to compute as
Hs(σk) is an algebra for s > 1/2. For f ∈ H l−3/2(σk) with compact support and g ∈
H
l−3/2
uloc (σk), we have

‖fg‖Hl−3/2(σk) ≤ C‖f‖Hl−3/2(σk)‖g‖Hl−3/2(σk).

which replaces (II.6.37). Let us illustrate the case of δh
[
∂Y
(
|∇⊥Ψ|2

2

)
ϕk
]
. As before, this

term can be decomposed as in (II.6.39) and the difficulty consists of estimating

δh

[
∂Y

(
|∇⊥Ψ|2

2 ϕk

)]

From the algebra property, it follows that∥∥∥∥∥δh
[
∂Y

(
|∇⊥Ψ|2

2 ϕk

)]∥∥∥∥∥
Hl−7/2(σk)

≤ C‖|∇⊥Ψ|2ϕk‖Hl−3/2(σk)

≤ C‖∇⊥Ψ‖2
H
l−3/2
uloc (σk)

‖ϕk‖Hl−3/2(σk).

≤ C
(
‖∂XΨ‖

H
l−3/2
uloc (σk) + ‖Ψ‖

H
l−1/2
uloc (σk)

)
‖ϕk‖Hl−3/2(σk).

Note that such a direct estimate does not work for l = 2, which explains why this term was
treated previously in a lengthier way, also involving the norm of ψh.

II.6.2.0.8 Estimate of ρh3 . Concerning the estimate of fh the same can be done by
assuming that l ≥ 3 and noticing that H2(ωbw) ∈ L∞(ωbw). Therefore, for f ∈ H l−1(ωbw),
g ∈ H l−2(ωbw) and θ ∈ C∞c (ωbw), we obtain

‖fgθ‖Hl−3(ωbw) ≤ ‖f‖Hl−1(ωbw)‖g‖Hl−2(ωbw)‖θ‖W l,∞(ωbw).
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Noticing then that Hs
uloc(ωbw) is an algebra as soon as s > 1, we have

‖ [(−∂Y + α∂X)ψh∂X + ∂Xψh(∂Y − α∂X))] ∆wΨ‖H−2(ωbw) ≤ C‖ψh‖H2(ωbw)‖Ψ‖2H2
uloc

.

all other terms of fh can be dealt with exactly as in the proof of Lemma II.6.1 and this ends
the proof of Lemma II.6.4.

This concludes the proof of Theorem II.6.2.

II.6.3 Connecting the solutions at the artificial boundary

In previous sections, we showed the existence and uniqueness of the solution on both the half-
space and the bumped domain. It remains to connect both results at the artificial boundary
X = M . This local analysis is based on the implicit function theorem and will allow us to
establish the solution of the problem on the whole boundary layer domain.

On account of Theorem II.6.2, we know the solution Ψ− of (II.6.7) is well-defined and
satisfies the estimate∥∥∥Ψ−∣∣

X=M

∥∥∥
H
m+3/2
uloc

+
∥∥∥∂XΨ−

∣∣
X=M

∥∥∥
H
m+1/2
uloc

≤ C
(
‖φ‖W 2,∞ + ‖ρ2‖Hm−1/2

uloc
+ ‖ρ3‖Hm−3/2

uloc

)
,

for some positive constant C depending on α, M and ‖γw‖W 2,∞ . The existence and unique-
ness of the solution Ψ+ of (II.6.2) with Ψ+∣∣

X=M = Ψ−
∣∣
X=M and ∂XΨ+∣∣

X=M = ∂XΨ−
∣∣
X=M

is guaranteed by Proposition II.6.1 when C
(
‖φ‖W 2,∞ + ‖ρ2‖Hm−1/2

uloc
+ ‖ρ3‖Hm−3/2

uloc

)
smaller

than a certain quantity δ0 > 0.
Furthermore, A2[Ψ+∣∣

X=M , ∂XΨ+∣∣
X=M ] andA3[Ψ+∣∣

X=M , ∂XΨ+∣∣
X=M ] belong toHm−1/2

uloc
and Hm−3/2

uloc , respectively. Thus, the mapping

F : W 2,∞(ωw)×Hm−1/2
uloc (R)×Hm−3/2

uloc (R)→ H
m−1/2
uloc (R)×Hm−3/2

uloc (R)

given by

F(φ, ρ2, ρ3) =
(
A2[Ψ+∣∣

X=M , ∂XΨ+∣∣
X=M ]− ρ2,A3[Ψ+∣∣

X=M , ∂XΨ+∣∣
X=M ]− ρ3

)
is well-defined. Note that, when φ, ρ2 and ρ3 are simultaneously equal to zero, F(0, 0, 0) = 0
as a direct consequence of Theorem II.6.2. The main idea consists in applying the implicit
function theorem F to find a solution of F(φ, ρ2, ρ3) = 0 for φ in a vicinity of zero. Thus,
we need to first check the following hypotheses:

• F is continuously Fréchet differentiable;

• (v1, v2) 7→ dF(0, 0, 0)(0, v1, v2) is a Banach space isomorphism onHm−1/2
uloc (R)×Hm−3/2

uloc (R),
where d is the differential with respect to ρ2 and ρ3.

F is a C1 mapping in a neighborhood of zero: Let (φ0, ρ0
2, ρ

0
3) and (φ, ρ2, ρ3) be in a vicinity

of zero in the sense of the functional norm of Hm+3/2
uloc (R)×Hm−1/2

uloc (R)×Hm−3/2
uloc (R). Let Ψ±0

and Ψ± be solutions of (II.6.2), (II.6.7) associated to (φ0, ρ0
2, ρ

0
3) and (φ+φ0, ρ2 +ρ0

2, ρ3 +ρ0
3)
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respectively. We introduce the functions ψ± = Ψ± − Ψ±0 . Then, easy computations show
that ψ− satisfies

∂Xψ
− −∆2

wψ
− +Qw(ψ−, ψ− + Ψ−0 ) +Qw(Ψ−0 , ψ−) = 0, in ωbw \ σw[

ψ−
] ∣∣∣
σw

= φ,
[
∂kXψ

−
] ∣∣∣
σw

= 0, k = 1, 2, 3

(1 + α2)∆wψ
−
∣∣∣
σMw

= ρ2,[
−
(
(1 + α2)∂X − 2α∂Y

)
∆wψ

− + ∂Y

(
∇⊥wψ−∇⊥w(ψ− + Ψ−0 )

2

)
(II.6.67)

+(∇⊥wψ− · ∇w)
(
(1 + α2)∂X − α∂Y

)
(ψ− + Ψ−0 )

+(∇⊥wΨ−0 · ∇w)
(
(1 + α2)∂X − α∂Y

)
ψ− + ψ−

2

] ∣∣∣∣∣
σMw

= ρ3,

ψ−
∣∣
X=−γ(Y ) = ∂nψ

−∣∣
X=−γ(Y ) = 0.

Similar arguments to the ones of Theorem II.6.2 apply to (II.6.67). This leads to the estimate

∥∥ψ−∥∥H2
uloc(ωw)+

∥∥∥ψ−∣∣
X=M

∥∥∥
H
m+3/2
uloc

+
∥∥∥∂Xψ−∣∣X=M

∥∥∥
H
m+1/2
uloc

≤ C
(
‖φ‖W 2,∞ + ‖ρ2‖Hm−1/2

uloc
+ ‖ρ3‖Hm−3/2

uloc

)
,

for ‖φ0‖H2
uloc

+‖ρ0
2‖Hm−1/2

uloc
+‖ρ0

3‖Hm−3/2
uloc

and ‖φ‖W 2,∞+‖ρ2‖Hm−1/2
uloc

+‖ρ3‖Hm−3/2
uloc

small enough.
Hence, the solution ψ− belongs toH2

uloc(ωbw) and toHm+2
uloc ((M,M ′)×R), forM ′ > sup (−γw).

Moreover, we can assume

ψ− = ψ−` +O(‖φ‖2W 2,∞ + ‖ρ2‖2
H
m−1/2
uloc

+ ‖ρ3‖2
H
m−3/2
uloc

),

where ψ−` is the solution of

∂Xψ
−
` −∆2

wψ
−
` +Qw(ψ−` ,Ψ

−
0 ) +Qw(Ψ−0 , ψ

−
` ) = 0, in ωbw[

ψ−`

] ∣∣∣
X=0

= φ,
[
∂kXψ

−
`

] ∣∣∣
X=0

= 0, k = 1, 2, 3

(1 + α2)∆wψ
−
`

∣∣∣
X=M

= ρ2,[
−
(
(1 + α2)∂X − 2α∂Y

)
∆wψ

−
` (II.6.68)

+(∇⊥wψ−` · ∇w)
(
(1 + α2)∂X − α∂Y

)
Ψ−0

+(∇⊥wΨ−0 · ∇w)
(
(1 + α2)∂X − α∂Y

)
ψ−` + ψ−

2

] ∣∣∣∣∣
X=M

= ρ3,

ψ−`
∣∣
X=−γ(Y ) = ∂nψ

−
`

∣∣
X=−γ(Y ) = 0,

Note that (II.6.68) is similar to system (II.6.67) but lacks the quadratic terms. Solution of
problem (II.6.68) can be sought using once again Ladyžhenskaya and Solonnikov’s truncated
energy method, which provides a dependence on the φ and ρi, i = 2, 3, at the main order.
An analogous conclusion can be drawn from applying Theorem II.5.2 to the problem defined
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on the half space. In this case, we have ψ+ = ψ+
` +O(‖φ‖2W 2,∞ + ‖ρ2‖2

H
m−1/2
uloc

+ ‖ρ3‖2
H
m−3/2
uloc

).

Here, ψ+
` satisfies

Qw(ψ+
` ,Ψ

+
0 ) +Qw(Ψ+

0 , ψ
+
` ) + ∂Xψ

+
` −∆2

wψ
+
` = 0, in X > M

ψ+
`

∣∣
X=M = ψ−`

∣∣
X=M , (II.6.69)

∂Xψ
+
`

∣∣
X=M = ∂Xψ

−
`

∣∣
X=M .

From Theorem II.5.2, we infer that

‖ψ+
` ‖Hm+2

uloc
≤ C

(∥∥∥ψ+
`

∣∣
X=M

∥∥∥
H
m+3/2
uloc

+
∥∥∥∂Xψ+

`

∣∣
X=M

∥∥∥
H
m+1/2
uloc

)
≤ C

(
‖φ‖W 2,∞ + ‖ρ2‖Hm−1/2

uloc
+ ‖ρ3‖Hm−3/2

uloc

)
.

More details on the resolution of problems similar to (II.6.68) and (II.6.69) can be found in
Section II.7. Furthermore,

F1(φ+ φ0, ρ2 + ρ0
2, ρ3 + ρ0

3)−F1(φ0, ρ0
2, ρ

0
3) = −ρ2 + (1 + α2)∆wψ

+
`

+O

(
‖φ‖2W 2,∞ + ‖ρ2‖2

H
m−1/2
uloc

+ ‖ρ3‖2
H
m−3/2
uloc

)
,

F2(φ+ φ0, ρ2 + ρ0
2, ρ3 + ρ0

3)−F2(φ0, ρ0
2, ρ

0
3) = −ρ3 +

(
(1 + α2)∂X − 2α∂Y

)
∆wψ

+
` −

ψ+
`

2
+ (∇⊥wψ+

` · ∇w)∂X
(
(1 + α2)∂X − α∂Y

)
Ψ+

0

+ (∇⊥wΨ+
0 · ∇w)

(
(1 + α2)∂X − α∂Y

)
ψ+
`

+O

(
‖φ‖2W 2,∞ + ‖ρ2‖2

H
m−1/2
uloc

+ ‖ρ3‖2
H
m−3/2
uloc

)
.

(II.6.70)

We see that the Fréchet differential of F at (φ0, ρ0
2, ρ

0
3) is defined by L = (L1, L2) where

L1 = −ρ2 + (1 + α2)∆wψ
+
` ,

L2 = −ρ3 −
(
(1 + α2)∂X − 2α∂Y

)
∆wψ

+
` + ψ+

`

2 + (∇⊥wψ+
` · ∇w)∂X

(
(1 + α2)∂X − α∂Y

)
Ψ+

0

+ (∇⊥wΨ+
0 · ∇w)

(
(1 + α2)∂X − α∂Y

)
ψ+
` .

It is important to emphasize that (II.6.69) is a linear problem with respect to the per-
turbation function ψ+

` . Therefore, it is possible to obtain the exact form of its solution by
applying the same reasoning as the one in Section II.5.1. The use of Fourier analysis to
(II.6.69) provides a solution ψ+

` showing continuous dependence on Ψ+
0 , as well as, on the

boundary condition. Note that ψ+
`

∣∣
X=M and ∂Xψ+

`

∣∣
X=M depend in turn on Ψ−0 . Hence, ψ±

depend continuously on Ψ±0 , and conversely on φ0, ρ0
2, ρ

0
3. Therefore, F is a C1 function in a

neighborhood of zero.
dF(0, 0, 0) is invertible: Since dF(0, 0, 0) = L0(·, ·), we consider the systems satisfied by
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ψ±` with Ψ±0 = 0 and φ = 0.

∂Xψ
−
` −∆2

wψ
−
` = 0, in X ≤M

(1 + α2)∆wψ
−
`

∣∣∣
X=M

= ρ2,[
−
(
(1 + α2)∂X − 2α∂Y

)
∂X∆wψ

−
` + ψ−`

2

] ∣∣∣∣∣
X=M

= ρ3,

ψ−`
∣∣
X=−γ(Y ) = ∂nψ

−
`

∣∣
X=−γ(Y ) = 0,

,

and 
∂Xψ

+
` −∆2

wψ
+
` = 0, in X > M

ψ+
`

∣∣
X=M = ψ−`

∣∣
X=M ,

∂Xψ
+
`

∣∣
X=M = ∂Xψ

−
`

∣∣
X=M .

If L0(ρ2, ρ3) = (0, 0), then ψ` := 1X≤Mψ
−
` + 1X>Mψ

+
` is a solution of the linear system in

the whole western boundary layer domain

∂Xψ` −∆2
wψ` = 0, in ωw

ψ`
∣∣
X=−γ(Y ) = ∂nψ`

∣∣
X=−γ(Y ) = 0. (II.6.71)

The existence and uniqueness of the solution ψ` ≡ 0 of the linear elliptic problem
(II.6.71) is guaranteed by Theorem II.5.1, and therefore ρ2 = 0 and ρ3 = 0. Consequently,
ker dF(0, 0, 0) = {(0, 0)}, and ker dF(0, 0, 0) is one-to-one. Solving the equation

L0(ρ2, ρ3) = (ρ̄2, ρ̄3),

for a given (ρ̄2, ρ̄3) ∈ Hm−1/2(R) × Hm−3/2(R) is equivalent to finding the solution of the
problem

∂Xψ
−
` −∆2

wψ
−
` = 0, in X ≤M(

(1 + α2)∆wψ
−
` ,−

(
(1 + α2)∂X − 2α∂Y

)
∆wψ

−
` + ψ−`

2

) ∣∣∣∣∣
X=M

= − (ρ̄2, ρ̄3) + PSw(ψ−`
∣∣
X=M , ∂Xψ

−
`

∣∣
X=M ),

ψ−`
∣∣
X=−γ(Y ) = ∂nψ

−
`

∣∣
X=−γ(Y ) = 0,

(II.6.72)

where PSw denotes the Poincaré-Steklov operator

PSw(ψ0, ψ1) : Hm+3/2
uloc (R)× ∈ Hm+1/2

uloc (R)→ H
m−1/2
uloc (R)× ∈ Hm−3/2

uloc (R).

The existence of a unique solution ψ−` ∈ H2
uloc(ωbw) of problem (II.6.72) follows from the

ideas of the proof of Proposition II.5.5 in Section II.5.
The only point remaining concerns proving that ψ−` is a Hm+2

uloc function in [M ′,M ]× R
for all sup(−γw) < M ′ < M . Therefore, we notice that in the domain (M ′,M) × R, the
derivatives up to order k of ψ−` satisfy a linear system similar to the one above. It follows
that ∂lY ψ

−
` ∈ H2

uloc([M ′,M ]×R for all l ≤ k. In particular, ∂lY ψ
−
`

∣∣
X=M ∈ H

3/2
uloc([M ′,M ]×R)

and ∂X∂lY ψ
−
`

∣∣
X=M ∈ H

1/2
uloc([M ′,M ]×R), hence, ψ−` ∈ H

m+3/2
uloc (R) and ∂nψ−` ∈ H

m+1/2
uloc (R).

Consequently,

(ρ2, ρ3) =
(
(1 + α2)∆wψ

−
` ,−

(
(1 + α2)∂X − 2α∂Y

)
∆wψ

−
` + ψ−

`
2

)
.
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We can finally assert that dF(0, 0, 0) is an isomorphism of Hm−1/2(R)×Hm−3/2(R). Using
the implicit function theorem, we deduce that for all φ ∈ W 2,∞ in a neighborhood of zero,
there exists (ρ2, ρ3) ∈ H

m−1/2
uloc (R) × H

m−3/2
uloc (R) such that F(φ, ρ2, ρ3) = 0. Let Ψw :=

1X≤MΨ−w + 1X>MΨ−w , where Ψ−w ,Ψ+
w are the solutions of (II.6.7) and (II.6.2) associated to

(φ, ρ2, ρ3). By definition, the jump of Ψw across the transparent boundary {X = M} is zero,
and since F(φ, ρ2, ρ3) = (0, 0),

Ai
[
Ψ−w
∣∣
X=M , ∂XΨ−w

∣∣
X=M

]
= ρi = Ai

[
Ψ+
w

∣∣
X=M , ∂XΨ+

w

∣∣
X=M

]
, i = 2, 3.

Since ∂kXΨ+
w

∣∣
X=M = ∂kXΨ−w

∣∣
X=M , k = 0, 1 we deduce that(

(1 + α2)∆wΨ−,−
(
(1 + α2)∂X − 2α∂Y

)
∆wΨ− + Ψ−

2

) ∣∣∣∣
X=M

=(
(1 + α2)∆wΨ+,−

(
(1 + α2)∂X − 2α∂Y

)
∆wΨ+ + Ψ+

2

) ∣∣∣∣
X=M

.

Accordingly, these operators are continuous across {X = M} × R, and therefore Ψw is a
solution of the western boundary layer system in the whole domain ωw. This concludes the
proof of Theorem II.2.1.

II.7 Linearized problem
This section focuses on the well-posedness analysis of the linearized problems driving the
higher-order western profiles of the approximate solution and the correctors needed to deal
with the influence of the east boundary layer on the western side of Ωε.

We are interested in the system

∂XΨw +Qw(Ψw,Ψ0
w) +Qw(Ψ0

w,Ψw)−∆2
wΨw = F, in ω+

w ∪ ω−w
[∂kXΨw]

∣∣
X=0 = gk, k = 0, . . . , 3

Ψw

∣∣
X=−γw(Y ) = 0, ∂Ψw

∂nw

∣∣
X=−γw(Y ) = 0,

(II.7.1)

where gk ∈ L∞(R). Assume Ψ0
w ∈ H2

uloc(ω+
w ∪ ω−w ) and F ∈ H−2

uloc(ωw) are exponentially
decaying functions. The existence and uniqueness of a solution of (II.7.1) depend additionally
on a smallness hypothesis made on the first profile of the western boundary layer Ψ0

w.
The main result concerning problem (II.7.1) is summarized in the following theorem:

Theorem II.7.1. Let ωw defined as in (II.2.6) and γw be a bounded Lipschitz function.
Suppose gk ∈ L∞(R), k = 0, . . . , 3, and δ > 0 and Ψ0 ∈ H2

uloc(ω+
w ∪ω−w ) a function satisfying

‖eδXΨ0
w‖H2

uloc(ω+
w∪ω−w ) < δ0.

Additionally, suppose that eδF ∈ Hm−2
uloc (ωw). Then, for δ0 small enough, (II.7.1) has a

unique solution Ψ in H2
uloc(ω+

w ∪ ω−w ). Moreover, the following estimate holds

‖eδXΨ‖H2
uloc(ω+

w∪ω−w ) ≤ C
( 3∑
k=0
‖gk‖L∞(R) + ‖eδXF‖Hm−2

uloc (ωw)

)
, (II.7.2)

for a universal constant C. Here, δ is the one in Theorem II.5.2.
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Note that the smallness condition on Ψ0
w is ensured by choosing φ small enough in (II.6.1).

Theorem II.7.1 results from following the same ideas of the nonlinear case. As a result, we
are going to discuss the relevant steps of the construction listed in Section II.4.2 but only
emphasize the differences concerning the previous section. The details are left to the reader.

II.7.1 The problem on the half space

We study the following problem on the half-space

∂XΨw +Qw(Ψ,Ψ0
w) +Qw(Ψ0

w,Ψw)−∆2
wΨw = F, in R2

+

Ψw

∣∣
X=0 = ψ0, ∂nΨw

∣∣
X=0 = ψ1,

(II.7.3)

where ψ0 ∈ H
m−3/2
uloc (R) and ψ1 ∈ H

m−1/2
uloc (R). The result in this section equivalent to

Proposition II.6.1 is as follows:

Proposition II.7.1. Let m ∈ N, m � 1 and Hm the functional space defined in (II.6.3).
There is small constant δ0 > 0 such that for all ψj ∈ Hm−j+3/2

uloc (R), j = 0, 1 and Ψ0
w ∈ Hm+2

uloc
such that for δ > 0, ‖eδXΨ0

w‖Hm+2
uloc
≤ δ0 and

‖ψ0‖Hm+3/2
uloc (R) + ‖ψ1‖Hm+1/2

uloc (R) + ‖eδXF‖Hm−2
uloc

< δ0. (II.7.4)

Then, the problem

{
∂XΨw +Qw(Ψ0

w,Ψw) +Qw(Ψ,Ψ0
w)−∆2

wΨw = F, in R2
+

Ψw

∣∣
X=0 = ψ0, ∂XΨw

∣∣
X=0 = ψ1.

(II.7.5)

has a unique solution in Hm+2.

The strategy of proof is the same as to the one of Proposition II.6.1. Indeed, the mapping
T(ψ0,ψ1) : Hm+2

uloc → Hm+2
uloc such that T(ψ0,ψ1)(Ψw) = Ψ̃ is the solution of (II.5.3) when

F̃ = F −Qw(Ψ0
w,Ψw)−Qw(Ψw,Ψ0

w) satisfies the estimate for δ̄ = 2δ

‖T(ψ0,ψ1)(Ψw)‖Hm+2 < C1

(
‖ψ0‖Hm+3/2

uloc (R) + ‖ψ1‖Hm+2
uloc (R) + ‖eδXF‖Hm−2

uloc

+‖Ψ0
w‖Hm+2‖Ψ̃‖Hm+2

)
,

for C1 > 0. When considering the functions Ψi, i = 1, 2, such that T(ψ0,ψ1)(Ψi
w) = Ψ̃i

w are
solutions of (II.7.1) for F̃ i = F−Qw(Ψi

w,Ψ0
w)−Qw(Ψ0

w,Ψi
w), we can show that T(ψ0,ψ1)(Ψ1)−

T(ψ0,ψ1)(Ψ2) is a strict contraction in a ball of radius R0 > 0. Indeed, it is always possible
to choose R0 ∈]δ(η), 1

2C1
[ when 0 < δ0 ≤ δ(η) = η−1

2C1η−C1
, η > 1. The existence result is a

consequence of applying the fixed point theorem in Hm+2. Since the ideas of proof are the
same of Proposition II.6.1, they are not repeated here.
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II.7.2 The linearized problem on the rough domain

This section is devoted to the well-posedness of the problem in the rough channel ωb =
ωw \ {X < M}

∂XΨ−w +Qw(Ψ−w ,Ψ0
w) +Qw(Ψ0

w,Ψ−w)−∆2
wΨ−w = F, in ωw, in ωb \ σw[

∂kXΨ−w
] ∣∣
σw

= gk, k = 0, . . . , 3,

A2[Ψ−w |σMw , ∂XΨ−w |σMw ] = ρ2,

Ã3[Ψ−w |σMw , ∂XΨ−w |σMw ] = ρ3,

Ψ−w |X=−γw(Y ) = 0, ∂Ψ−w
∂nw

∣∣∣
X=−γw(Y )

= 0,

(II.7.6)

where gk ∈Wm+2−k,∞(R) and ρ2 and ρ3 belong to Hm−1/2
uloc (R) and Hm−3/2

uloc (R), respectively.
The source term F is a function of Hm−2

uloc (ωbw). The transparent operators are defined by

A2[Ψ, ∂XΨ] = (1 + α2)∆wΨ,
Ã3[Ψ, ∂XΨ] = −((1 + α2)∂X − 2α∂Y )∆wΨ

+ (∇⊥wΨ · ∇w)((1 + α2)∂X − α∂Y )Ψ0
w + (∇⊥wΨ0

w · ∇w)((1 + α2)∂X − α∂Y )Ψ + Ψ
2 .

(II.7.7)

We claim the following result:

Proposition II.7.2. Let m � 1 be arbitrary and gk ∈ Wm+2−k,∞(R), k = 0, . . . , 3. There
exists δ > 0 such that for δ > 0, F ∈ Hm−2

uloc (ωbw), ρ2 ∈ H
m−1/2
uloc (R) and ρ3 ∈ H

m−3/2
uloc (R)

satisfy

‖F‖Hm−2
uloc (R) + ‖Ψ0

w‖Hm+2
uloc (R) + ‖ρ2‖Hm−1/2

uloc (R) + ‖ρ3‖Hm−3/2
uloc (R) < δ0. (II.7.8)

Then, system (II.7.6) has a unique solution Ψw ∈ H2
uloc(ωbw).

Moreover, Ψw ∈ Hm+2
uloc ((M ′,M)× R), for all M ′ ∈] sup(−γw),M [ and

‖Ψw‖Hm+2
uloc ((M ′,M)×R) ≤ CM ′

( 3∑
k=0
‖gk‖Wm+2−k,∞ + ‖ρ2‖Hm−1/2

uloc (R) + ‖F‖Hm−2
uloc ((M ′,M)×R + ‖ρ3‖Hm−3/2

uloc (R)

)
(II.7.9)

Proof. Note that Proposition II.7.2 is the equivalent for the linearized case of Proposition
II.6.2. Consequently, to look up the solution of problem (II.7.6), similar arguments to the
nonlinear case apply, see Section II.6.2. First, we discuss the existence and uniqueness of the
solution in H2

uloc(ωb) and later, its regularity near the artificial boundary.
We work with the truncated energies

Enk =
∫
ωn
|χk∆wΨ̃|2, (II.7.10)

where the truncation function χk ∈ C∞0 (R) is such that χk ≡ 1 ∈ [−k, k], Suppχk ⊂
[−k− 1, k+ 1], and the derivatives χ(j)

k , j = 1, . . . , 4 are bounded uniformly in k. Moreover,
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Ψ̃ = Ψ−ΨL is the solution of the system

Qw(Ψ̃,Ψ0
w) +Qw(Ψ0

w, Ψ̃) + ∂XΨ̃−∆2
wΨ̃ = FL0 in ωb,

A2[Ψ̃|σMw , ∂XΨ̃|σMw ] = ρ2, A2[Ψ̃|σMw , ∂XΨ̃|σMw ] = ρ3,

Ψ̃
∣∣
X=−γ(Y ) = 0, ∂Ψ

∂nw
Ψ̃
∣∣
X=−γ(Y ) = 0. (II.7.11)

Function ΨL depends on the gk and is defined as in (II.4.7) and for FL0 = F −Qw(ΨL,Ψ0
w)−

Qw(Ψ0
w,ΨL), we have the estimate

‖FL0 ‖Hm−2
uloc (ωb) ≤ C

(
‖F‖Hm−2

uloc (ωb) +
3∑

k=0
‖gk‖W 2,∞(R)‖Ψ0

w‖Hm+2
uloc (R)

)
. (II.7.12)

We compute the following inequality for the sequence (Enk )l≤n,n∈R

Enk ≤ C1

(
(Enk+1 − Enk ) +

(
‖ρ2‖2

H
m−1/2
uloc

+ ‖ρ3‖2
H
m−3/2
uloc

)
(k + 1)

)
. (II.7.13)

This a priori estimate allows one to obtain a uniform bound on Ekn which is used in turn
to deduce a H2

uloc bound on Ψ̃ using backward induction on n− k and later a compactness
argument. This corresponds to step (NL2) in Section II.4.2. For more details we refer the
reader to Section II.6.2.

From now on, we drop the n’s to lighten the notation and only address the particularities
of the features unique to the linearized case.

First, we write the weak formulation of (II.7.11).

Definition II.7.1. Let V and D2
0 be spaces of functions in Definition II.6.1 and b(Ψ, Ψ̃, ϕ) =

−
∫

Ω(∇⊥wΨ · ∇w)∇⊥wΨ̃ · ∇⊥wϕ for (Ψ, Ψ̃, ϕ) ∈ D2
0 × D2

0 × V. The solution Ψ̃ ∈ H2
uloc(ωb) of

(II.7.11) satisfies for all ϕ ∈ V∫
ωbw

∂XΨϕ+ b(Ψ̃, Ψ̃0, ϕ) + b(Ψ̃0, Ψ̃, ϕ)−
∫
ωbw

∆wΨ̃∆wϕ

=
∫
ωbw

FL0 ϕ−
∫
R

(
ρ3 −

Ψ̃
2

∣∣∣
X=M−

)
ϕ
∣∣
X=M− dY −

∫
R
ρ2∂Xϕ

∣∣
X=M− dY.

• Energy estimates. The proof of (II.7.13) is as follows. Plugging ϕ = χkΨ̃ into the
trilinear terms in (II.7.14), and proceeding similarly as before it is possible to show
that∣∣∣b(Ψ̃,Ψ0

w, χkΨ̃) + b(Ψ0
w, Ψ̃, χkΨ̃)

∣∣∣ ≤ C‖Ψ0
w‖H2

uloc
Ek+1 + C1‖Ψ0

w‖H2
uloc

(Ek+1 − Ek),(II.7.14)

where C and C1 depend on the domain. To obtain estimate II.7.14, we first write the
terms as in (II.6.14) and (II.6.15). Then, combining the Sobolev inequality (II.6.16)
with the definition of norm in Kato spaces leads to the desired result. The terms
associated to the biharmonic operator are bounded by C(Ek+1−Ek) as seen in (II.4.19).
We are left with∣∣∣∣∣

∫
ωbw

χkF
L
0 Ψ̃

∣∣∣∣∣ ≤ C (‖F‖Hm−2
uloc (ωb) +

∑3
k=0 ‖gk‖W 2,∞(R)‖Ψ0

w‖Hm−2
uloc (R)

)
E

1/2
k+1.(II.7.15)
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At the artificial boundary, we get

−
∫
R
χk
(
ρ3Ψ̃

∣∣
X=M− + ρ2∂XΨ̃

∣∣
X=M−

)
≤ C

(
‖ρ2‖L2

uloc
+ ‖ρ3‖L2

uloc

)
Ek+1 + C

(
‖ρ2‖L2

uloc
+ ‖ρ3‖L2

uloc

)
(k + 1),

(II.7.16)

where C depends only onM , α and on ‖γ‖W 2,∞ . The computation of this bound relies
on the trace theorem and Young’s inequality.
From (II.7.14), (II.7.15), (II.7.16) and the bound on the linear term, we obtain

Ek ≤ C ′1(Ek+1 − Ek) + C ′2

(
‖F‖Hm−2

uloc (ωb) +
3∑

k=0
‖gk‖W 2,∞(R)‖Ψ0

w‖Hm−2
uloc (R)

)2

Ek+1

+C ′4
(
‖ρ2‖Hm−1/2

uloc
+ ‖ρ3‖Hm−3/2

uloc

)
Ek+1 + C ′4

(
‖ρ2‖Hm−1/2

uloc
+ ‖ρ3‖Hm−3/2

uloc

)
(k + 1).

Choosing δ0 small enough, the previous expressions becomes for C1 > 0

Ek ≤ C1 (Ek+1 − Ek + C2(ρ2, ρ3)(k + 1)) , (II.7.17)

where C2(ρ2, ρ3) refers to the term ‖ρ2‖Hm−1/2
uloc

+ ‖ρ3‖Hm−3/2
uloc

.

• Induction. Performing backwards induction on (II.7.17) is easier than the nonlinear
case. Indeed, considering that there exists a constant C3 independent of n and k, such
that

Ek > C3C2(ρ2, ρ3)(k + 1),
implies that Ek+1 − Ek < C3C2(ρ2, ρ3). Furthermore, substitution on (II.7.17) gives

C3C2(ρ2, ρ3)(k + 1) < Ek ≤ C1C2(ρ2, ρ3)C3 + C1C2(ρ2, ρ3)(k + 1).s(II.7.18)

Taking C3 ≥ 2C1 and plugging it in (II.7.18) provides a contradiction for k > k0, where
k0 = bC3c. Therefore, (II.7.17) is true at the rank k > k0 and also for k ≤ k0, since
Ek is an increasing functional with respect to the value of k. The derivation of the
energy estimates is invariant by horizontal translation, and all constants depend only
on norms of ρi, i = 2, 3 and γw. Following the same reasoning in Step (L5) of Section
II.4.1, it is possible to show that Ψ̃ is uniformly bounded in H2

uloc(ωbw).

• Uniqueness. Let Ψi, i = 1, 2, are solutions of (II.7.6). To establish uniqueness, we
need to show that the solution Ψ̄ = Ψ1 −Ψ2 of the system

Qw(Ψ̄,Ψ0
w) +Qw(Ψ0

w, Ψ̄) + ∂XΨ̄−∆2
wΨ̄ = 0 in ωb,

Ψ̄
∣∣
X=−γ(Y ) = ∂nΨ̄

∣∣
X=−γ(Y ) = 0, (II.7.19)

is identically zero under a smallness assumption on Ψ0
w.

Repeating the same reasoning of “existence part” provides the induction relation on
the truncated energies

∫
ωn
χk|∆wΨ̄|2

Ek ≤ Cδ0 (Ek+1 + (Ek+1 − Ek)) .

Here, the constant depends not only on the domain, but also on ‖Ψ0
w‖Hm

uloc
. The term

Ek+1−Ek is uniformly bounded in k, hence, Ek ≤ C uniformly in k. As a consequence,
repeating the method but this time without the truncation function leads to Ψ̄ ≡ 0.
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The last step in the proof of Proposition II.7.2 corresponds to the higher regularity esti-
mates near X = M . Interior and boundary regularity results analogous to that of Lemma
II.6.2 can be easily obtained by following the same ideas. The major difficulties we encoun-
tered when performing the regularity analysis near the boundary for the first western profile
came from the nonlinear terms, which are not present in the linearized case. Moreover,
information on the behavior and Hm+2-regularity of Ψ0

w in the vicinity of the transparent
boundary is available. These factors greatly simplify the computations, and, therefore, the
detailed verification is left to the reader.

II.7.3 Joining ω−w and ω+
w

In this section we are concerned with finding a solution on the whole domain ωw. Let Ψ−w
be the unique solution of (II.7.6) satisfying the regularity estimate (II.7.9). As a conse-
quence of standard trace properties, we have that Ψ−

∣∣
X=M ∈ H

m+3/2
uloc (R) and ∂XΨ−

∣∣
X=M ∈

H
m+1/2
uloc (R). Taking ψ0 = Ψ−

∣∣
X=M and ψ1 = ∂Ψ−

∣∣
X=M in (II.7.5) guarantees the existence

a unique solution Ψ+ for the problem in the half-space decaying exponentially far from the
boundary having imposed smallness conditions on Ψ0

w and ρi, i = 2, 3. Additionally, we have
that A2[Ψ+|X=M+ , ∂XΨ+|X=M+ ] ∈ Hm−1/2, Ã3[Ψ+|X=M+ , ∂XΨ+|X=M+ ] ∈ Hm−3/2. We
define the mapping F : Hm+2

uloc (ωw)×(W 2,∞(R))4×Hm−1/2
uloc (R)×Hm−3/2

uloc (R)→ H
m−1/2
uloc (R)×

H
m−3/2
uloc (R) by

F(Ψ0
w, g0, . . . , g3, ρ2, ρ3) =

(
A2[Ψ+|X=M+ , ∂XΨ+|X=M+ ]− ρ2, Ã3[Ψ+|X=M+ , ∂XΨ+|X=M+ ]− ρ3

)
.

Once again, if Ψ is a C3 function at X = 0 and X = M , and F = 0, we have that F = 0.
Showing that F is a C1 mapping starts by considering two points in the vicinity of zero using
the functional norm defined in the domain of F . Suppose these points have an analogous
form as the ones in Section II.6.3. Let Ψ±0 and Ψ± be the solutions associated to the points
(Ψ0

0, g
0
0, . . . , g

0
3, ρ

0
2, ρ

0
3) and (Ψ0

w+Ψ0
0, g0+g0

0, . . . , g3+g0
3, ρ2+ρ0

2, ρ3+ρ0
3), respectively. Function
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ψ− = Ψ− −Ψ−0 satisfies

∂Xψ
− −∆2

wψ
− +Qw(Ψ0

w + Ψ0
0, ψ

−) +Qw(ψ−,Ψ0
w + Ψ0

0) (II.7.20)
+Qw(Ψ0

w,Ψ−0 ) +Qw(Ψ−0 ,Ψ0
w) = 0, in ωbw \ {σw}[

∂kXψ
−
] ∣∣∣
σw

= gk, k = 0, . . . , 3

(1 + α2)∆wψ
−
∣∣∣
σMw

= ρ2,(
−
(
(1 + α2)∂X − 2α∂Y

)
∆wψ

− + ψ−

2 (II.7.21)

+(∇⊥wΨ0
w + Ψ0

0 · ∇w)
(
(1 + α2)∂X − α∂Y

)
ψ− (II.7.22)

+(∇⊥wΨ0
w · ∇w)

(
(1 + α2)∂X − α∂Y

)
Ψ−0 (II.7.23)

+(∇⊥wψ− · ∇w)
(
(1 + α2)∂X − α∂Y

)
(Ψ0

w + Ψ0
0)

+(∇⊥wΨ−0 · ∇w)
(
(1 + α2)∂X − α∂Y

)
Ψ0
w

) ∣∣∣∣
X=M

= ρ3,

ψ−
∣∣
X=−γ(Y ) = ∂nψ

−∣∣
X=−γ(Y ) = 0,

and for small enough norms ‖eδXΨ0
w‖H2

uloc
, ‖Ψ0

0‖H2
uloc

, and ‖Ψ−0 ‖Hm+2
uloc

, we deduce

‖ψ−‖H2
uloc(ωb) + ‖ψ−|X=M‖Hm+1/2

uloc
+
∥∥∥∂Xψ−∣∣X=M

∥∥∥
H
m+1/2
uloc

≤C
( 3∑
k=0
‖gk‖Wm+2−k,∞ + ‖ρ2‖Hm−1/2

uloc
‖ρ3‖Hm−3/2

uloc

)
.

Proceeding similarly on the half-space, suppose ψi = ∂kXψ
+|σMw , i = 0, 1 and a smallness

condition on Ψ0
w. Then, the unique solution ψ+ of

∂Xψ
+ −∆2

wψ
+ (II.7.24)

+Qw(Ψ0
w + Ψ0

0, ψ
+) +Qw(Ψ0

w,Ψ+
0 ) +Qw(ψ+,Ψ0

w + Ψ0
0) +Qw(Ψ+

0 ,Ψ0
w) = 0, in {X > M}

ψ+∣∣
σMw

= ψ0, ∂Xψ
+∣∣
σMw

= ψ1,

fulfills the estimate

‖eδXψ+‖Hm+2
uloc
≤ C

( 3∑
k=0
‖gk‖Wm+2−k,∞ + ‖ρ2‖Hm−1/2

uloc (R) + ‖ρ3‖Hm−3/2
uloc (R)

)
,

provided that ‖eδXΨ−0 ‖Hm+2
uloc

is small. It is easily seen the Fréchet differential depends
continuously on ψ+, and consequently, on ρ2, ρ3 and gk, k = 0, . . . , 3.

dF(0, . . . , 0) is invertible: We consider the systems satisfied by ψ± with Ψ0
w = 0 where

the solutions are considered to be C3. Here, ψ± are the unique solutions of (II.5.3) and
(II.5.57). If F(0, . . . , 0, ρ2, ρ3) = 0, ψ := 1X≤Mψ

− + 1X>Mψ
+ is a solution of the linear

system in ωw boundary layer domain (II.5.1). From Section II.5, we know (II.5.1) without
jumps at X = O has a unique solution ψ ≡ 0 and therefore ρ2 = 0 and ρ3 = 0. Consequently,
ker dF(0, . . . , 0) = {(0, 0)}.
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By Lemma II.7.2, ψ− is a Hm+2
uloc function in [M ′,M ]× R for all 0 < M ′ < M . Thus,

(ρ2, ρ3) =
(
(1 + α2)∆wψ

−,−
(
(1 + α2)∂X − 2α∂Y

)
∆wψ

− + ψ−

2

)
.

We see that dF(0, . . . , 0) is an isomorphism of Hm−1/2
uloc (R)×Hm−3/2

uloc (R). The implicit func-
tion theorem guarantees the existence of (ρ2, ρ3) ∈ H

m−1/2
uloc (R) × H

m−3/2
uloc (R) such that

F(Ψ0
w, g0, . . . , g3, ρ2, ρ3) = 0 for all gk ∈ Wm+2−k,∞(R) and Ψ0

w ∈ Hm+2
uloc (ωbw) near zero.

Finally, we can assert that Ψw := 1X≤MΨ−w + 1X>MΨ−w , where Ψ−w ,Ψ+
w are the solutions of

(II.5.3) and (II.5.57) associated to (Ψ0
w, g0, . . . , g3, ρ2, ρ3) is a solution of the western bound-

ary layer system in the whole domain ωw. Namely, it satisfies

A2
[
Ψ−w
∣∣
X=M , ∂XΨ−w

∣∣
X=M

]
= A2

[
Ψ+
w

∣∣
X=M , ∂XΨ+

w

∣∣
X=M

]
,

Ã3
[
Ψ−w
∣∣
X=M , ∂XΨ−w

∣∣
X=M

]
= Ã3

[
Ψ+
w

∣∣
X=M , ∂XΨ+

w

∣∣
X=M

]
,

which implies in turn the continuity of the differential operators across {X = M}, and
therefore Ψw at the transparent boundary. This completes the proof of Theorem II.7.1.

II.8 Eastern boundary layer
This section is devoted to the proof of Theorem II.2.2 concerning the well-posedness of
problem

−∂XeΨe −∆2
eΨe = 0, in ω+

e ∪ ω−e[
∂kXeΨe

] ∣∣∣
Xe=0

= g̃k, k = 0, . . . , 3,

Ψe

∣∣
Xe=−γe(Y ) = ∂Ψe

∂ne

∣∣
Xe=−γe(Y ) = 0,

(II.8.1)

where g̃k ∈ L∞, for k = 0, . . . , 3. Problem (II.8.1) describes the behavior of the eastern
boundary layer profiles. Note that the system driving Ψ0

e is obtained by choosing g̃k ≡ 0,
∀k.

Similar to the previous case of the western boundary layer, we rely on wall laws to show
the existence and uniqueness of solutions to system (II.8.1) following the steps listed in
Section II.4.1. In Section II.8.1, the analysis of the problem in the half-space exhibits an
additional difficulty: the presence of degeneracy at low frequencies. The singular behavior
is going to impact the convergence of Ψe when Xe goes infinity. As a result, a probabilistic
setting and ergodicity properties are prescribed to prove the convergence of the solution.

In this context, we will distinguish three different behaviors of Ψe far from the boundary:
Ψexp which decays exponentially to zero, Ψerg whose convergence to a specific constant is
driven by the ergodic theorem and Ψalg, a function converging to zero at a polynomial rate
when ε→ 0. The analysis of each one of these functions is going to be conducted separately
in subsection II.8.1.1, and final results are summarized in Theorem II.2.2. The probabilistic
scenario is only necessary for the analysis of Ψerg since the convergence of the remaining
components is obtained using deterministic methods. We pay special attention to the link
between the value of the limit of Ψerg far for the boundary and the choice of g̃0. Later, on
Section II.9.1, we will see that this translates in a strong connection between the problems
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driving the n-th eastern profile and Ψn
int. Finally, we will briefly discuss the equivalence

of solutions of the problems in the half-space and the rough channel at the “transparent”
boundary, and, hence provide a solution for problem (II.8.3) in the whole domain ωe.

To simplify the notation, we will write X instead of Xe throughout this section.

II.8.1 The problem in the half-space

In this section, we will consider without loss of generality that M ′ = 0, to facilitate the
computations. We can easily recuperate the solution when M ′ 6= 0 since the differential
operators involved in the problem are translation-invariant. We are confronted with solving
the following linear problem

−∂XΨe −∆2
eΨe = 0, in R2

+,

Ψe

∣∣
X=0 = ψ0, ∂XΨe

∣∣∣
X=0

= ψ1. (II.8.2)

Taking the Fourier transform with respect to Y on the main equation results in the following
fourth order characteristic polynomial with complex coefficients

Pe(µ, ξ) = −µ+ (µ2 + (−αµ+ iξ)2)2. (II.8.3)

Note that by considering µ = −λ in (II.8.3), we obtain the characteristic polynomial cor-
responding to the linear boundary layer problem defined at the western domain. Some
properties of the polynomial are stated in the following lemma:

Lemma II.8.1. Let Pe(µ, ξ) be the characteristic polynomial of (II.8.2), then:

1. Pe(µ, ξ) has four distinct roots µ±i , i = 1, 2, where <(µ+
i ) > 0, i = 1, 2 and <(µ−i ) < 0.

Moreover, µ± = −λ∓, where λ± are the roots of (II.5.9).

2. (Low frequencies) As |ξ| → 0, we have

µ+
1 = ξ4 +O

(
ξ5
)
, µ+

2 = 1
(1 + α2)2/3 +O (ξ) ,

µ−i = − 1
2 (1 + α2)2/3 + (−1)i

√
3

2 (1 + α2)2/3 +O (ξ) , i = 1, 2.

3. (High frequencies) When ξ →∞, we have

µ+
i = 1 + iαsgn ξ

1 + α2 |ξ|+ (−1)i

2

√
1 + iαsgn ξ

1 + α2 |ξ|−1/2 +O(|ξ|−3/2), i = 1, 2,

µ−i = −1 + iαsgn ξ
1 + α2 |ξ|+ (−1)i

2

√
−1 + iαsgn ξ

1 + α2 |ξ|−1/2 +O(|ξ|−3/2).

The proof of the previous results follows the same ideas of the ones of Lemmas II.5.1 and
II.5.2. For more details, we refer the reader to Appendix II.A.
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When ξ 6= 0, polynomial (II.8.3) has two roots with strictly positive real part noted by
µ1 and µ2, whose asymptotic behavior is summarized in Lemma II.8.1. The solutions of

−∂XΨ̂e + (∂2
X + (α∂X + iξ)2)2Ψ̂e = 0, in R2

+

Ψ̂e

∣∣
X=0 = ψ̂0, ∂XΨ̂e

∣∣
X=0 = ψ̂1,

are linear combinations of exp(−µk(ξ)X) with coefficients also depending on ξ, where (µk)1≤k≤2
are the roots of (II.8.3) satisfying <µ > 0. More precisely, they are of the form

∑2
i=1Ak(ξ) exp(−µk(ξ)X),

where Ak : R → C, k = 1, 2. Substituting the expression of Ψ̂e on the boundary conditions
provides the following linear system of equations

A1 +A2 = ψ̂0,

µ1A1 + µ2A2 = −ψ̂1.

It is then clear that the matrix associated to this system is invertible when ξ 6= 0 since all
the roots of the characteristic polynomial are simple. Thus, we obtain the coefficients

A1 := A0
1ψ̂0 +A1

1ψ̂1 = µ2
µ2 − µ1

ψ̂0 + 1
µ2 − µ1

ψ̂1,

A2 := A0
2ψ̂0 +A1

2ψ̂1 = − µ1
µ2 − µ1

ψ̂0 −
1

µ2 − µ1
ψ̂1.

(II.8.4)

Lemma II.8.2 (Asymptotic behavior of the coefficients). • (Low frequencies). When
|ξ| → 0, we have

A1(ξ) = ψ̂0 + (1 + α2)2/3ψ̂1 +O(|ψ̂0||ξ|4 + |ψ̂1||ξ|),

A2(ξ) = −(1 + α2)2/3ψ̂1 +O(|ψ̂0||ξ|4 + |ψ̂1||ξ|).

• (High frequencies) As |ξ| goes to infinity, we have

A1(ξ) = −
√

1− iαsgn ξ|ξ|1/2ψ̂1 +
( 1√

1− iαsgn ξ
|ξ|3/2 + 1

2

)
ψ̂0

+O(|ψ̂0||ξ|−3/2 + |ψ̂1||ξ|−5/2),

A2(ξ) =
√

1− iαsgn ξ|ξ|1/2ψ̂1 −
( 1√

1− iαsgn ξ
|ξ|3/2 − 1

2

)
ψ̂0

+O(|ψ̂0||ξ|−3/2 + |ψ̂1||ξ|−5/2).

II.8.1.1 Behavior far from the boundary

In the previous section, we proved that Ψ̂e(X, ξ) was a linear combination of Ai(ξ)e−µ
+
i (ξ)X ,

where (µi)1≤i≤4 are the roots of the characteristic polynomial (II.8.3) such that <(µ+
i ) >

0 and the form of coefficients is given in (II.8.4). The next step would be to derive a
representation formula for Ψe, based on the Fourier transform results, in such a way that
the formula still makes sense when ψ0 ∈ H3/2

uloc(R) and ψ1 ∈ H1/2
uloc(R). The behavior of Ψe

as X → +∞ is crucial to understanding the approximation of the solution. Contrary to
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the periodic setting (see [53]), the exponential decay does not hold in this case. Although
the terms associated to A2(ξ)e−µ

+
2 (ξ)X decay exponentially to zero (see paragraph II.8.4),

when looking closely at expressions on (II.8.4) and the asymptotic behavior in (II.8.1), it is
clear that A1(ξ)e−µ1(ξ)X does not converge to zero at low frequencies when X → +∞ since
µ1(ξ) = O(|ξ|4).

This section is devoted to proving the results in Theorem II.2.2. We have divided the
proof into a sequence of lemmas, one for each component of the solution Ψe: Ψexp, Ψalg and
Ψerg. Ψexp is a function decaying exponentially at infinity, while Ψalg refers to the part of Ψe

converging at polynomial rate. Finally, Ψerg is a function whose convergence at X → +∞ is
guaranteed by using ergodic properties in a probabilistic setting.

II.8.1.1.1 Behavior at high frequencies. Let Ψ]
e denote the eastern boundary layer

at high frequencies. Following the ideas in [61, Lemma 9] coupled with the behavior of µ+
i (ξ)

at infinity yields an equivalent result to the one in Lemma II.5.7:

Lemma II.8.3. Let ψ0, ψ1 ∈ Luloc(R). Then, the behavior of the Ψe at high frequencies
denoted by Ψ]

e satisfies the estimate∥∥∥eδXΨ]
e

∥∥∥
L∞
≤ C

(
‖ψ0‖L1

uloc(R) + ‖ψ1‖L1
uloc(R)

)
,

for some constants C, δ > 0

II.8.1.1.2 Low frequencies. This paragraph is devoted to the analysis of the behavior
of the eastern boundary layer at low frequencies. Each component is enclosed in the corre-
sponding lemma, starting with the deterministic ones (exponential and algebraic) followed
by the probabilistic limit.

Our analysis starts with the component of Ψe decaying exponentially at infinity. Explic-
itly, we deal with the term whose Fourier transform satisfies

Ψ̂exp(X, ξ) =
∑
k

χ(ξ)Ak2(ξ)e−µ
+
2 (ξ)X ψ̂k, (II.8.5)

where Ak2(ξ) is the coefficient of A2(ξ) associated to ψ̂k in (II.8.4) and χ is defined as in
Lemma II.8.3.

Following closely the arguments in Lemma II.5.5 and [61, Lemma 7], we obtain the result:

Lemma II.8.4. Let Ψexp defined as in (II.8.5) and ψ0, ψ1 ∈ Luloc(R). Then, there exist
constants δ, C > 0 independent of ψi, i = 0, 1 such that

‖eδXΨexp‖L∞(ω+
e ) ≤ C(‖ψ0‖L1

uloc(R) + ‖ψ1‖L1
uloc(R)). (II.8.6)

There remains to study the terms of A1. From (II.8.4), it is clear that Ak1 → Āk1, for
k = 0, 1 as ξ → 0 where Āk1 ∈ R. Therefore, it is possible to rewrite each one of the terms as
Ak1(ξ) = Āk1 + Ãk1(ξ) with

Āk1(ξ) =
{

1, for k = 0
(1 + α2)2/3, for k = 1 , Ãk1(ξ) =


µ1

µ2 − µ1
, for k = 0

1
µ2 − µ1

− (1 + α2)2/3, for k = 1
.
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The terms Ãk1(ξ)f , k = 0, 1 decay to zero far from the boundary at polynomial rate as
a result of Lemma II.5.5. Notice that, at low frequencies, Ã1

1 behaves as a constant, while
Ã2

1 does it similarly to a homogeneous polynomial of degree 1, which is a straightforward
consequence of Lemma II.8.1.

We introduce the notation Ψalg for the part of Ψe decaying to zero algebraically when
X → +∞, i.e., the one associated to the coefficients Ãk, k = 0, 1. Its behavior is summarized
in the following lemma:

Lemma II.8.5. Let ψk ∈ L1
uloc(R), k = 0, 1. Then, there exists a constant C independent

of ψi, i = 0, 1 such that

‖X1/4Ψalg‖L∞(R2) ≤ C(‖ψ0‖L1
uloc(R) + ‖ψ1‖L1

uloc(R)). (II.8.7)

It is easy to check that the convergence of the terms Āk1f is not guaranteed for any
choice of function f , k = 0, 1. Therefore, we require additional hypotheses, in this case, of
ergodicity.

We recall for the reader’s convenience the probability setting: for ε > 0, let (P,Π, µ) be
a probability space where P is the set of K-Lipschitz functions, with K > 0; Π the borelian
σ-algebra of P , seen as a subset of Cb(R2;R) and µ a probability measure. Let (τY )Y ∈R, the
measure-preserving transformation group acting on P . We recall that there exists a function
F ∈ L∞(P ) such that

γe(m,Y ) = F (τYm), Y ∈ R, m ∈ P.

We define the stochastic derivative of F by

∂mF (m) := γ′e(m, 0) ∀m ∈ P,

so that γ′e(m,Y ) = ∂mF (τYm) for (m,Y ) ∈ P×R. Then, the eastern boundary layer domain
can be described as follows for all m ∈ P ,

ωe(m) =
{

(X,Y ) ∈ R2 : X > −γe(m,Y )
}
,

where ωe(m) = ω+
e (m) ∪ σe ∪ ω−e (m) and ω±e (m) = ωe(m) ∩ {±X > 0}. We assume γe is a

homogeneous and measure-preserving random process.

Lemma II.8.6. Let χ ∈ C∞0 (R) and µ+
1 defined as in Lemma II.8.1. Suppose that f is a

stationary random function belonging to L∞ Then,

χ(D)e−µ
+
1 (D)Xf → E(f), as X → +∞,

locally uniformly in Y , almost surely and in Lp(P ) for all finite p.

The hypothesis on f can be relaxed since we need f to be at least to L1
uloc.

Proof. Birkhoff Ergodic Theorem (see, e.g., Theorem 4.1.2 of [72]) guarantees the existence
of the following limit

lim
R→∞

1
R

∫ R

0
f(m,−Y ′)dY ′ = E(f), almost surely. (II.8.8)
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Furthermore, following the ideas in [63, Lemma 4.6] we have

lim
R→∞

1
R

∫ R

0
f(m,Y − Y ′)dY ′ = E(f),

uniformly locally in Y , and (II.8.8) also satisfies almost surely

lim
R→∞

1
R

∫ R

0
f(m,Y ′)dY ′ = E(f).

From Lemma II.5.5, we know that for |X| ≥ 1, Y ′ → K(X,Y − Y ′) is L1(R). Let
m(X) =

∫
RK(X,Y )dY , we have∫

R
K(X,Y )dY = K̂(X, 0) = χ(0)e−µ1(0)X = 1,

and, consequently, m0(X) = 1, when X > 0. Note that m(X) = 1, for all X > 0. Then,
proceeding exactly as in [63, Lemma 4.6]

χ(D)e−µ
+
1 (D)X = E(f) +

∫
R
K(X,Y ′ − Y )

(
f(Y − Y ′)− E(f)

)
dY ′. (II.8.9)

Integrating by parts leads to

χ(D)e−µ
+
1 (D)X = E(f)−

∫
R
∂Y ′K(X,Y ′)

(∫ Y ′

0

(
f(Y − Y1)− f

)
dY1

)
dY ′.

Therefore,

χ(D)e−µ
+
1 (D)Xf = E(f)−

∫
R
Y ′∂Y ′K(X,Y ′)

(
1
Y ′

∫ Y ′

0

(
f0(Y − Y1)− f

)
dY1

)
dY

= E(f) + J.

Now, we focus our attention on controlling the term J . From Lemma II.5.5, we have the key
estimates

|Y ′∂′YK(X,Y ′)| ≤ C X1/4Y

X3/4 + Y 3 , ∀|X| ≥ 1, ∀Y ′ ∈ R,∫
R
Y ′∂′YK(X,Y ′) = −1. (II.8.10)

We conduct the analysis by distinguishing the behavior of J in |Y ′| ≤ R from the one on
|Y ′| > R for R � 1, denoted by J1 and J2 respectively. For all δ > 0 and all L > 0 there
exists R > 0 such that for all |Y | ≤ L and |Y ′| ≥ R∣∣∣∣∣ 1

Y ′

∫ Y ′

0
f(Y − Y1)dY1 − E(f)

∣∣∣∣∣ ≤ δ,
and |J1| ≤ Cδ. For |Y ′| ≤ R, we have that

|J2| =
∣∣∣∣∣
∫
|Y ′|≤R

Y ′∂Y ′K(X,Y ′) 1
Y ′

∫ Y ′

0
(f(Y − Y1)− E(f)) dY1dY

∣∣∣∣∣
≤ C‖f‖L1

uloc

∣∣∣∣∣
∫
|Y ′|≤R

X1/4Y

X3/4 + Y 3dY
′
∣∣∣∣∣

≤ CR‖f‖L1
uloc
|X|−1/4 −→

X→∞
0.
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Thus,
lim
X→∞

J(X,Y ) = 0,

which allows us to conclude that

lim
X→∞

χ(D)e−µ
+
1 (D)Xf = E(f).

Combining the results in Lemmas II.8.2 and II.8.6, we can provide a definition for the
limit of Ψe.

Definition II.8.1. Let ψ0, ψ1 be stationary random functions belonging to L∞(ωe). Then,
the limit of Ψerg as X → +∞ is the measurable function φ̄ : P → R of the form

φ̄ = E[ψ0] + (1 + α2)2/3E[ψ1]. (II.8.11)

II.8.1.1.3 Almost sure convergence of Ψerg. We show almost sure estimates in the
stationary ergodic setting as in [73].

Proposition II.8.1. Let Ψerg be the part of the solution Ψe of the system (II.2.13) whose
convergence is guaranteed by ergodicity hypotheses. Then the following estimates hold:∥∥∥Ψerg(·/ε)− φ̄

∥∥∥
L2(Ωε)

= o(1) almost surely as ε→ 0.

Proof. This proof follows the ideas in [73] inspired from the works by Souganidis (see [74]).
Let δ > 0 be arbitrary. Then, according to Egorov’s Theorem, there exist a measurable set
Mδ ⊂ P and a number Xδ > 0 such that∣∣∣Ψerg(m,X, 0)− φ̄

∣∣∣ ≤ δ, ∀m ∈Mδ,∀X > Xδ,

µ(M c
δ ) ≤ δ.

Without loss of generality, we assume that Xδ ≤ ε−1(χe(y)−χw(y)). From Birkhoff’s ergodic
theorem, we have that for almost every m there exists kδ > 0 (depending on m) such that if
k > kδ

Aδ = Aδ(m) := {Y ∈ R, τYm ∈M c
δ satisfies: |Aδ ∩ (−k, k)| ≤ 4kδ} .

Indeed, when k goes to infinity,

1
2k

∫ k

−k
1τYm∈Mc

δ
→ µ(M c

δ ) ≤ δ.

Therefore, for almost all m ∈ P , there exists some kδ such that for all k > kδ

|Aδ ∩ (−k, k)| =
∣∣∣∣∣
∫ k

−k
1τYm∈Mc

δ

∣∣∣∣∣ ≤ 4kδ.
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For all ε > 0, we have

∥∥∥Ψerg(·/ε)− φ̄
∥∥∥2

L2(Ωε)
=
∫ ymax

ymin

∫ Σw

Γe
|Ψm,erg

e

(
x

ε
,
y

ε

)
− φ̄|2dxdy

= ε2
∫ ymax/ε

ymin/ε

∫ (χe(εY )−χw(εY ))/ε

γe(Y )
|Ψerg(m,X, Y )− φ̄|2dXdY

= ε2
∫ ymax/ε

ymin/ε

∫ (χe(εY )−χw(εY ))/ε

γe(Y )
|Ψerg(τYm,X, 0)− φ̄|2dXdY

= ε2
∫ ymax/ε

ymin/ε

∫ Xδ

γe(Y )
|Ψerg(τYm,X, 0)− φ̄|2dXdY

+ ε2
∫ ymax/ε

ymin/ε

∫ (χe(εY )−χw(εY ))/ε

Xδ

1τYm∈Mδ
|Ψerg(τYm,X, 0)− φ̄|2dXdY

+ ε2
∫ ymax/ε

ymin/ε

∫ (χe(εY )−χw(εY ))/ε

Xδ

1τYm∈Mc
δ
|Ψerg(τYm,X, 0)− φ̄|2dXdY

=
3∑
j=1

Ij .

Then,

I1 ≤ ε
∥∥∥∥Ψerg

(
x

ε
,
y

ε

)
− φ̄

∥∥∥∥2

L2({x<xδ}∩Ωε)
≤ Cδε

(
‖Ψerg‖∞ + |φ̄|

)
, (II.8.12)

where the constant Cδ depends on the random parameter m and xδ = εXδ. Taking into
account that if τYm ∈Mδ, Ψerg(m,X, Y ) = Ψerg(τYm,X, 0) and X > Xδ,

I2 ≤ ε2
(
ymax − ymin

ε

)(
χw(y)− χe(y)− xδ

ε

)
δ2 ≤ Cδ2. (II.8.13)

As for the third integral, we know that Ψe ∈ L∞((−∞, a) × R). Assuming a = χ̄e :=
maxy∈(ymin,ymax) χe(y) and ε < 1/kδ, we have

I3 ≤ ε‖χe − χw‖∞‖Ψerg − φ̄‖2L∞((−∞,χ̄e)×R)λ
(
ε−1(ymin, ymax) ∩Aδ

)
,

where λ denotes the Lebesgue measure. Then,

I3 ≤ Cδ
(
|φ̄|2 + ‖Ψerg‖2L∞((−∞,χ̄e)×R)

)
. (II.8.14)

The first estimate of the lemma is obtained by combining (II.8.12), (II.8.13) and (II.8.14).

II.8.1.1.4 Connection between the choice of g̃0 and the limit of Ψerg. In the
formal construction of the approximate solution, it was important to reflect that boundary
layers are not supposed to have any impact far from the boundary (II.3.2). In Section II.8.1.1,
we showed that at low frequencies and far for the boundary the eastern boundary layer can
be decomposed as

Ψe = Ψexp + Ψalg + Ψerg,
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where Ψexp and Ψalg converge to zero when X → +∞ at different rates (exponential and
with a polynomial weight, respectively), while Ψerg converges almost surely to a quantity φ̄
once ergodicity assumptions have been added. It is obvious that the far field condition does
not hold for φ̄ 6= 0. In this paragraph, we explore how choosing g̃0 wisely can make

Ψe −→
X→+∞

0 almost surely,

which is the last result in Theorem II.2.2.
We are interested in the specific case when all g̃k are given but g̃0 in (II.8.1). Moreover,

g̃0 is supposed to be constant with respect to the boundary layer variables. Note that if Ψe

is a solution of (II.8.1), by linearity of the problem, Ψ̃e = Ψe+ g̃0 also satisfies the boundary
layer problem. Passing to the limit as X → +∞ gives

lim
X→+∞

Ψ̃e = φ̄+ g̃0.

Then, for g̃0 = −φ̄, the limit of Ψerg as Xe goes to infinity equals zero and, in turn, Ψ̃e

satisfies both (II.8.1) and condition at +∞.
Let us now illustrate the procedure for the profile Ψ1

e. This function satisfies the system
of equations

−∂XeΨ1
e −∆2

eΨ1
e = 0, in ω+

e ∪ ω−e[
∂kXeΨ

1
e

] ∣∣∣
σe

= −
[
Ψ1
int

] ∣∣∣
x=χe(y)

,[
∂XeΨ1

e

] ∣∣∣
σe

=
[
∂xΨ0

int

] ∣∣∣
x=χe(y)

,[
∂kXeΨ

1
e

] ∣∣∣
σe

= 0, k = 2, 3,

Ψ1
e

∣∣
Xe=−γe(Y ) = ∂Ψ1

e

∂ne

∣∣
Xe=−γe(Y ) = 0.

(II.8.15)

The jump of its derivative at σe depends of Ψ0
int, and it is, therefore, known from the previous

step. Here, Ψ1(t, y) is the solution of the equation

∂xΨ1 = 0 in Ω

Consequently, Ψ1(t, y) = C1(t, y).
Let us consider a solution Ψ1

e of (II.8.15) and define the function

Ψ̃1
e =

{
Ψ1
e − φ̄, in ω+

e

Ψ1
e, in ω−e

, (II.8.16)

where φ̄ is the value of the limit Ψ1
e when X → +∞. Note that (II.8.16) satisfies all the

conditions in (II.8.15) but [Ψ̃1
e]|σe = −φ̄. Moreover, Ψ̃1

e → 0 almost surely far from the
eastern boundary. Since the jump at the interface σe is linked to the interior profile, we have

φ̄ =
[
Ψ1
int

] ∣∣∣
x=χe(y)

= C1
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Therefore, considering C1(t, y) = φ̄(t, y) provides a solution for the boundary layer (II.8.15)
satisfying the far field condition. This interdependence between the eastern boundary layer
and the interior profile determines the construction of the approximate solution. First, we
solve the problem at the East with a general function g̃0 to obtain the value of the limit far
from the boundary. Then, this information is considered when computing the solution of the
corresponding interior profile. Finally, the western boundary layer problem is addressed.

II.8.2 Transparent operators
This section deals with the well-posedness of the differential operators associated with the
eastern boundary layer problem at the transparent boundary. We stick in our analysis to the
same ideas developed in Section II.5.2 and, as a consequence, we summarize the main steps
and go into detail only when the differences with the western boundary layer are notable.

Once again, without loss of generality, suppose that the artificial boundary lays at X = 0
and is defined as follows

Definition II.8.2. Let Ψe ∈ H2(R2
+) be the unique weak solution of the Dirichlet problem

(II.8.1) for (ψ0, ψ1) ∈ H3/2(R) × H1/2(R). Then, the biharmonic matrix-valued Poincaré-
Steklov operator is given by

PSe : H3/2(R)×H1/2(R)→ H−1/2(R)×H−3/2(R)

PSe

(
ψ0
ψ1

)
:=

 −(1 + α2)∆eΨe

∣∣∣
X=0[(

(1 + α2)∂X + 2α∂Y
)

∆eΨe + Ψe

2

] ∣∣∣∣
X=0

 = Ke ∗
(
ψ0
ψ1

)
,

(II.8.17)

where Ke is the distributional kernel.

Substituting the Fourier representation of the solution Ψe on PSe similarly to (II.5.41)
results in an explicit formula for the Poincaré-Steklov operator. Indeed, we have PSe =
(B2[ψ0, ψ1],B3[ψ0, ψ1]) for

Bk : H3/2 ×H1/2 → H−3/2+k

Bk[ψ0, ψ1] := F−1(nk,0ψ̂0 + nk,1ψ̂1), k = 2, 3,
(II.8.18)

where ni,j denotes the components of the matrix Me = F−1(Ke).
The asymptotic behavior ofMe at low and high frequencies is summarized in the following

lemma:

Lemma II.8.7. • When |ξ| � 1

Me =
( (

α2 + 1
)
|ξ|2 +O

(
|ξ|3

) (
α2 + 1

)4/3 +O (|ξ|)
1
2 +O (|ξ|) −

(
α2 + 1

)2/3 +O (|ξ|) .

)

• When |ξ| → +∞, there exist complex constants ni,j, i = 2, 3, j = 0, 1 depending on the
parameter α such that

Me =

 n2,0|ξ|2 +O
(
|ξ|−1/2

)
n2,1|ξ|+O

(
|ξ|−1/2

)
n3,0|ξ|3 +O (1) n3,1|ξ|2 +O

(
|ξ|−1/2

)
.


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For a proof of Lemma II.8.7, we refer the reader to Appendix II.F. Applying the same
ideas of Section II.5.2, it is easily seen that at high and low frequencies our operator is
well-defined and continuous in usual Sobolev spaces. Moreover, Lemma II.5.10 also holds
for Me.

Of course, we are interested in extending the definition of PSe to the case of functions
that are not square-integrable in R2, but rather locally uniformly integrable. Generalizing
the results above can be easily achieved by following the same reasoning of Section II.5.2.
The differences in the definition of the operators at the western and eastern boundary layers
do not impact the estimates. Consequently, for the convenience of the reader, we list the
relevant results without proof.

The unique extension of Bi, i = 2, 3 to Kato spaces is guaranteed by Lemma II.5.11.
Moreover, we have the integral representation:

Proposition II.8.2. Let (ψ0, ψ1) ∈ H3/2
uloc(R)×H1/2

uloc(R), and let Ψe be the unique solution
of (II.5.3) with F = 0 and boundary data Ψe|X=0 = ψ0 and ∂XΨe|X=0 = ψ1. Then, for all
ϕ ∈ C∞0 (R̄2

+)

−
∫
R2

+

∂XΨeϕ−
∫
R2

+

∆eΨe∆wϕ =
〈
B3[ψ0, ψ1]− ψ0

2 , ϕ
∣∣
X=0

〉
+
〈
B2[ψ0, ψ1], ∂Xϕ

∣∣
X=0

〉
.

(II.8.19)
In particular, for (ψ0, ψ1) ∈ H3/2(R)×H1/2(R) the Poincaré-Steklov operator satisfies

〈B3[ψ0, ψ1], ψ0〉+ 〈B2[ψ0, ψ1], ψ1〉 ≤ 0. (II.8.20)

It is possible to relate the solution of the (II.5.5) to (ψ0, ψ1) ∈ H3/2
uloc(R)×H1/2

uloc(R) and
PSw(ψ0, ψ1) by introducing a smooth function χ̃, with χ̃ = 1 in an open set containing
Suppϕ and the kernel representation formula of the boundary operators. Estimate (II.8.20)
follows from taking Ψe ∈ H2(R2

+) as test function in (II.8.19) and using a density argument.
Similarly to the linear problem driving the behavior of the western boundary layer, we

have that

Proposition II.8.3. Let ϕ ∈ C∞0 (R) such that Suppϕ ⊂ B(Y0, R), R ≥ 1, and (ψ0, ψ1) ∈
H

3/2
uloc(R) × H1/2

uloc(R). Then, there exists a constant C > 0 such that the following property
holds.

|〈B3[ψ0, ψ1], ϕ〉|+|〈B2[ψ0, ψ1], ∂Xϕ〉| ≤ C
√
R
(
‖ϕ‖H3/2(R) + ‖∂Xϕ‖H1/2(R)

)(
‖ψ0‖H3/2

uloc(R) + ‖ψ1‖H1/2
uloc(R)

)
.

(II.8.21)
Moreover, if ψj ∈ H3/2−j(R), j = 0, 1,

|〈B3[ψ0, ψ1], ϕ〉|+|〈B2[ψ0, ψ1], ∂Xϕ〉| ≤ C
(
‖ϕ‖H3/2(R) + ‖∂Xϕ‖H1/2(R)

) (
‖ψ0‖H3/2(R) + ‖ψ1‖H1/2(R)

)
.

(II.8.22)

The proof of the proposition relies mainly on bounds on Me which are used to compute
estimates in fractional Sobolev spaces. Since the proof is very similar to the one in Lemma
II.5.10, we refer the reader to Section II.5.2 for details.
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II.8.3 Equivalent problem and estimates on the rough channel

In this section, we are concerned with proving the existence of weak solutions to the linear
system driving the behavior of Ψe in ωe. There difficulties we confronted before remain: the
irregularities of γe prevents us from using the Fourier transform in the tangential direction
and the domain ωbe is unbounded and, it is therefore impossible to rely on Poincaré type
inequalities. Here, we follow the ideas presented in Step (L5) of Section II.4.1. We start by
defining a problem equivalent to (II.8.1) yet posed in the bounded channel ωbe = {−γe(Y ) ≤
X ≤ M} × R, where a transparent boundary condition has been imposed at the interface
X = M , M ≥ 0. We have the system

−∂XΨ−e −∆2
eΨ−e = FLe , in ωbe \ σe[

Ψ−e
] ∣∣
σe

= −φ̄, (II.8.23)[
∂kXΨ−e

] ∣∣
σe

= g̃k, k = 1, . . . , 3, (II.8.24)

(1 + α2)∆eΨ−e
∣∣
σMe

= B2
[
Ψ−e
∣∣
X=M , ∂XΨ−e

∣∣
X=M

]
,

−(1 + α2)∂X∆eΨ−e + 2α∂Y ∆eΨ−e + Ψ−e
2

∣∣∣∣
σMe

= B3
[
Ψ−e
∣∣
X=M , ∂XΨ−e

∣∣
X=M

]
,

Ψ−e
∣∣
X=−γe(Y ) = ∂Ψ−e

∂ne

∣∣
X=−γe(Y ) = 0,

where g̃k ∈ L∞(R), k = 1, . . . , 3 and φ̄ is constant function with respect to the boundary layer
variables chosen as in Definition II.8.1. This guarantees the solution of (II.8.23) satisfies the
far field condition (see Section II.8.1.1). Here, Bk denotes the components of the Poincaré-
Steklov operator. The following lemma states the equivalence between the solutions of the
problems (II.8.23) and (II.8.1).

Lemma II.8.8. Let γe ∈ W 2,∞(R) be an ergodic stationary random process, K-Lipschitz
almost surely, for some K > 0 in a probability space (P,Π, µ). Assume φ̄ is a constant
function with respect to the macroscopic variables and gk ∈ L∞(R).

• If Ψe is a solution of (II.5.1) in ωe such that Ψe ∈ H2
uloc(ωe), then, Ψ|ωbe is a solution of

(II.8.23), and for X > M , Ψ solves problem (II.5.1), with ψ0 := Ψe|X=M ∈ H3/2
uloc(R)

and ψ1 := ∂XΨe|X=M ∈ H1/2
uloc(R).

• Conversely, if Ψ−e ∈ H2
uloc(ωbe) and Ψ+

e ∈ H2
uloc(R2

+) are solutions of (II.8.23) and
(II.8.2), respectively; then, the function

Ψe(X, ·) :=
{

Ψ−e (X, ·) for −γe(·) < X < M,
Ψ+
e (X, ·) for X > M,

belongs to H2
loc(ω) and is a solution of the problem (II.5.1).

The proof of Lemma II.8.8 follows from combining the results in Section II.8.1 and Propo-
sition II.8.3 and is, therefore, left to the reader.
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Proposition II.8.4. Let γe ∈W 2,∞(R) and ωbe = ωe∩{X ≤M},M > 0. Let Bi : H3/2
uloc(R)×

H
1/2
uloc(R) → H

3/2−i
uloc (R), i = 2, 3 be Poincaré-Steklov operators verifying Proposition II.8.3.

Moreover, φ̄ is a constant function with respect to the boundary layer variables and g̃k ∈
L∞(R), for k = 1, . . . , 3. Then, there exists a unique solution Ψe ∈ H2

uloc(ωbe \ σe) satisfying
for some constant C > 0 the estimate

‖Ψe‖H2
uloc(ωbe) ≤ C

(
‖φ̄‖∞ +

3∑
k=1
‖g̃k‖L∞(R)

)
. (II.8.25)

It is worth noting that the above result does not need the ergodicity hypothesis.

Proof. To facilitate the computations, we lift the jump conditions at X = 0 in order to work
with a C3 function at the interface between the interior and rough domains. Namely, we
analyze the existence and uniqueness of a solution Ψ̃e = Ψ−e −ΨL

e of the system

−∂XΨ̃e −∆2
eΨ̃e = FLe in ωbe

(1 + α2)∆eΨ̃e

∣∣
σMe

= B2
[
Ψ̃e

∣∣
X=M , ∂XΨ̃e

∣∣
X=M

]
−(1 + α2)∂X∆eΨ̃e + 2α∂Y ∆eΨ̃e + Ψ̃e

2

∣∣∣∣
σMe

= B3
[
Ψ̃e

∣∣
X=M , ∂XΨ̃e

∣∣
X=M

]
Ψ̃e

∣∣
X=−γe(Y ) = ∂Ψ̃e

∂ne

∣∣
X=−γe(Y ) = 0,

where ΨL
e is defined as in (II.4.7) and FLe = ∆2

eΨL
e + ∂XΨL

e .
Adapting Definition II.4.1 provides the weak formulation: A function Ψ ∈ H2

uloc(ωbe) is
a solution of (II.8.26) if it satisfies the homogeneous conditions Ψ̃e

∣∣
Γe = ∂nΨ̃e

∣∣
Γe = 0 at the

rough boundary, and if, for all ϕ ∈ Ṽ, we have∫
ωbe

∂XΨ̃eϕ+
∫
ωb

∆eΨ̃e∆eϕ = −
∫
ωb
FLe ϕ (II.8.26)

−
〈
B3
[
Ψ̃e

∣∣
X=M , ∂XΨ̃e

∣∣
X=M

]
− Ψ̃e

2

∣∣∣
X=M

, ϕ
∣∣
X=M

〉
H
−3/2
uloc ,H

3/2
uloc

−
〈
B2
[
Ψ̃e

∣∣
X=M , ∂XΨ̃e

∣∣
X=M

]
, ∂Xϕ

∣∣
X=M

〉
H
−1/2
uloc ,H

1/2
uloc

, (II.8.27)

where Ṽ is the space of functions ϕ ∈ C∞0 (ωbe) such that Suppϕ ∩ ∂Ω = ∅ and D2
0(ωb) its

completion for the norm ‖Ψ‖ = ‖∆eΨ‖L2 Note that (II.8.26) is quite similar to (II.8.19).
To prove the existence and uniqueness of a H2

uloc solution of problem (II.8.26), we use
the method by Ladyženskaja and Solonnikov on the truncated energies

Enk :=
∫
ωk

|∆2
eΨ̃n

e |2,

where Ψ−e,n is equal to Ψ̃e on ωn and zero elsewhere. Here, ωn is defined as in (II.4.11). Then,
one applies the same reasoning on the translated channel to get a uniform local bound. The
latter allows us to show that the maximal energy is uniformly bounded, and we can extract
a convergent subsequence and obtain the desired result using a compactness argument.
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The weak formulation (II.8.26) and the estimates of the Poincaré-Steklov operator for
the eastern boundary layer are very similar to the ones in Section II.5.2. Then, it is not
surprising to obtain the inequality

Enk ≤ C1

(
k + 1 +m sup

k≤j≤k+m

(
Enj+1 − Enj

)
+ 1
m4−2η sup

j≥k+m
(Enj+1 − Enj )

)
for all k ∈ {m, . . . , n},

(II.8.28)
where C1 is a constant depending on the characteristics of the domain and the jump functions
when following the reasoning in Section II.5.3. It is clear that being (II.8.28) a key element
in the reminder of the analysis, the results obtained in Section II.5.3 also apply to (II.8.23).
The proof is left to the reader. Finally, consider Ψ−e ∈ H2

uloc(ωbe) to be the unique solution
of (II.8.1). Then, take ψ0 := Ψ−e

∣∣
X=M ∈ H

3/2
uloc(R) and ψ1 := ∂XΨ−e

∣∣
X=M ∈ H

1/2
uloc(R), then,

there exists a unique solution Ψ+
e ∈ H2

uloc({X > M} × R). We have that

Bk
[
Ψ+
e

∣∣
X=M , ∂XΨ+

e

∣∣
X=M

]
= Bk

[
Ψ−e
∣∣
X=M , ∂XΨ−e

∣∣
X=M

]
, (II.8.29)

and Ψ+
e

∣∣
X=M = Ψ−e

∣∣
X=M , ∂XΨ+

e

∣∣
X=M = ∂XΨ−e

∣∣
X=M . Thus, Ψ+ = Ψ+

e 1{X>M}×R +
Ψ−e 1(M≤X≤−γe(Y ) is a H2

uloc solution of original problem defined in ωe (II.8.1).

II.9 Convergence result
We are now ready to prove the convergence result stated in Theorem II.2.3. The general
scheme of the proof is classical: we build an approximate solution of the fluid system and
then show that the approximation is close to an exact solution through energy estimates.

II.9.1 Construction of the approximate solution
In this section, we justify the well-posedness of each one of the functions within the approx-
imate solution of the 2d quasigeostrophic problem (II.1.1).

Let us recall that an approximate solution of problem (II.2.1) is defined as follows

Definition II.9.1. A function Ψapp ∈ H2(Ωε) is an approximate solution to (II.2.1) if it
satisfies the approximate equation

(
∂t +∇⊥Ψapp · ∇

) (
∆Ψapp + ε−3y

)
+ ∆Ψapp −∆2Ψapp = ε−3 curl τ + rεe, in Ωε

Ψapp|∂Ωε = ∂Ψapp
∂n |∂Ωε = 0,

Ψapp|t=0 = Ψini.

(II.9.1)
for some rε ∈ L∞t ([0, T ], H−2(Ωε)) such that rε = rε0 + rε1 + rε2, where rεk = o(1) in
L∞t ([0, T ], H−k), k = 0, 1, 2.

• At main order in the interior of the domain, we get the Sverdrup relation

∂xΨ0
int = curl τ.

In Section II.3, it was discussed that Ψ0
int does not vanish on the whole boundary.

Therefore, we introduce boundary layer corrections resulting from the balance between
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ε−3∂xΨ0
bl and Qbl(Ψ0

bl,Ψ0
bl)−∆2Ψ0

bl. Since it is possible to prescribe only one boundary
condition, either on the eastern coast or on the western coast, the boundary condition
for the Sverdrup equation is chosen such that Ψbl|Σe = 0 in (II.3.10).

• The assumption on Ψ0
int determines that Ψ0

e ≡ 0. The system driving the behavior
of Ψ0

w is given by (II.3.11). A smallness condition on curl τ guarantees existence and
uniqueness of a solution Ψ0

w of (II.3.11) with exponential decay when ε→ 0 (Theorem
II.2.1), see Section II.6.1.

• Let us now present the general form of the remaining profiles in the approximation.
The n-th interior profile Ψn

int = Ψn
int(t, x, y) satisfies

∂xΨn
int = Fn, (II.9.2)

where Fn depends on the Ψm
int, m ≤ n − 1. Note that F1 = F2 = 0 as a result of the

perturbation being of order ε−3 and the interior part not having singularities. The
terms ∆Ψn−3

int , ∆Ψn−3
int and

(
∇⊥Ψi

int · ∇
)

∆Ψj
int form the source term Fn in (II.9.2),

when i+j+3 = n, as well as, . Note that Ψn
int does not meet the boundary conditions,

and therefore boundary layer correctors must be defined. Following the direction of
propagation of the equation in the main order, we choose Ψn

int(t, x, y) = Cn(t, y) −∫ χe(y)
x Fn(t, x′, y) dx′.
Function Cn(t, y) is determined by the eastern profile Ψn

e satisfying the system

−∆2
eΨn

e − ∂XeΨn
e = Gn, in ω−e ∪ ω+

w ,

[Ψn
e ]
∣∣
σe

= −Cn,[
∂kXeΨ

n
e

] ∣∣
σe

= (−1)k+1
[
∂xΨn−k

int

] ∣∣
x=χe(y), k = 0, . . . , 3,

Ψn
e

∣∣
Xe=−γe(Y ) = 0, ∂Ψn

e

∂ne

∣∣
Xe=−γe(Y ) = 0,

(II.9.3)

where Gn is conditioned by the behavior of Ψm
e , for all m ≤ n− 1. Singularities at low

frequencies for (II.9.3) are a consequence of the nature of the main equation as stated
in Remark II.3.1 and later discussed in Section II.8.1.1. This impacts the asymptotic
behavior of the solution far from the boundary, i.e., in the West at macroscopic level.
Cn(t, y) is chosen such that the limit stemming from the Ergodic Theorem converges
to zero when Xe → +∞. Theorem II.2.2 guarantees the well-posedness of system II.9.3
in ωe since Gn is usually small, it can be considered as a perturbation parameter of
II.8.1.
Similar equations are obtained for the western profiles but with additional interaction
terms. Namely,

∂XwΨn
w +Qw(Ψn

w,Ψ0
w) +Qw(Ψ0

w,Ψn
w)−∆2

wΨn
w = Hn, in ω−w ∪ ω+

w ,[
∂kXwΨn

w

] ∣∣
σw

= −
[
∂kxΨn−k

int

] ∣∣
x=χw(y) −

[
∂kXeΨ

n
e

] ∣∣
σw
, k = 0, . . . , 3,

Ψn
w

∣∣
Xw=−γw(Y ) = 0, ∂Ψn

w

∂nw

∣∣
Xw=−γw(Y ) = 0,

(II.9.4)
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where Hn depends on Ψm
w , Ψm

e and Ψm
int, for all m ≤ n − 1. Problem (II.9.4) has two

features that clearly distinguish it from (II.9.3): two linearized terms containing Ψ0
w

and the influence of the eastern boundary layer function on the jump at the interface
separating the interior domain from the western rough domain. As a consequence, the
well-posedness of the solution of (II.9.4) depends not only on the behavior of interior
profiles, but on the first profile of the western boundary layer as well as the solutions
of the eastern boundary layer system. The complete analysis of (II.9.4) is presented
on Section II.7.

To summarize, for the eastern profile Ψn
e to be well-posed, it fixes the value of the constant

in Ψn
int. Its role is to correct at Σe, ∂kXΨn−k

int , for k = 1, 2, 3. On the other hand, Ψn
w plays

same role for the interior profiles and the jump of Ψn
e and its derivatives at Σw.

II.9.2 Computing the reminder
Once we have constructed the approximate solution, a natural question arises: how “far” is
Ψε
app from Ψε, i.e., what is the error (in a suitable norm) when replacing Ψε by Ψε

app ? How
far should we take the expansion?; i.e., what is the minimum value of n to satisfy a suitable
energy estimate?

II.9.2.1 Building the correctors

II.9.2.1.1 The interior term. The ε−3 factor in the main equation of (II.2.1) dictates
the asymptotic development must be taken at least till order n = 3 to deal with the remain-
ing stemming from the substitution of Ψ0

int on the original equation. We are referring in
particular to

∂t∆Ψ0
int,

(
∇⊥Ψ0

int · ∇
)

∆Ψ0
int, and ∆2Ψ0

int.

All subsequent error terms containing only interior profiles are O(ε).

II.9.2.1.2 Western boundary layer profiles We start by stressing that far from the
western boundary, all terms containing at least one Ψi

w decay exponentially as a result of
Theorem II.2.1. Let us, therefore, focus our analysis on the western region. The error terms
resulting from evaluating in ∂t∆Ψapp + ∆Ψapp can be considered as part of rε. To illustrate
this, take ∆Ψ0

w. We have

‖∆Ψ0
w‖H−2(Ωε) ≤ C‖Ψ0

w‖L2(Ωε) ≤ C
√
ε. (II.9.5)

Let us now analyze the corresponding elements in the advection term. Namely,(
∇⊥Ψi

w · ∇
)

∆Ψj
int (II.9.6a)(

∇⊥Ψi
int · ∇

)
∆Ψj

w (II.9.6b)(
∇⊥Ψi

w · ∇
)

∆Ψj
w (II.9.6c)(

∇⊥Ψi
w · ∇

)
∆Ψj

e (II.9.6d)(
∇⊥Ψi

e · ∇
)

∆Ψj
w. (II.9.6e)
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Note that there is a part of (II.9.6a)–(II.9.6c) that is used to compute Ψn
w as a component

of Gn, i + j ≤ n. We need to elucidate if the remaining components can be included in rε
or if an additional corrector is needed. For (II.9.6a), we have far from the western boundary
that∥∥∥(∇⊥Ψ0

w · ∇
)

∆Ψ0
int

∥∥∥
H−1(Ωε)

≤ C
(∥∥∥∇⊥ (Ψ0

w · ∇∆Ψ0
int

)∥∥∥
H−1(Ωε)

+
∥∥∥Ψ0

wD
2Ψ0

int

∥∥∥
L2(Ωε)

)
≤ C
√
ε.

Hence, there is no need for an additional corrector for (II.9.6a). The same cannot be said
for (II.9.6b) since ∥∥∥(∇⊥Ψ0

int · ∇
)

∆Ψ0
w

∥∥∥
H−1(Ωε)

≤ Cε−1/2. (II.9.7)

The “problematic” part in the previous term can be considered as part of the source term in
the problem driving the behavior of Ψ1

w. Although the action of the ergodic part is corrected
by the choice of the corresponding interior profile far from the boundary, the advection
terms including the parts of Ψn

e must be taken into account in the West. For example, let
us consider the term of the type (II.9.6d)∥∥∥ε (∇⊥Ψ0

w · ∇
)

∆Ψ1
e

∥∥∥
H−1(Ωε)

≤ Cε
∥∥∥(∇⊥Ψ0

w · ∇
)
∇Ψ1

e

∥∥∥
L2(Ωε)

≤ Cε
(∥∥∥(∇⊥Ψ0

w · ∇
)
∇Ψ1

e

∥∥∥
L2(Ωε∩{x−χw(y)≤

√
ε})

+
∥∥∥(∇⊥Ψ0

w · ∇
)
∇Ψ1

e

∥∥∥
L2(Ωε∩{x−χw(y)>

√
ε})

)
.

As a consequence of the decreasing behavior of Ψ0
w far from the boundary, the second

term in the last inequality is exponentially small. For the first element, we have∥∥∥(∇⊥Ψ0
w∇)∇Ψ1

alg

∥∥∥
L2(Ωε∩{x−χw(y)>

√
ε})
≤ ‖∇⊥Ψ0

w‖L2(Ωε∩{x−χw(y)>
√
ε})‖D

2Ψ1
alg‖L2(Ωε∩{x−χw(y)>

√
ε})

≤ Cε−7/4.

(II.9.8)

Moreover, from Lemma II.8.6, we know that Ψ1
erg = o(1) and it easy to verify thatXk/4

e ∇keΨ1
erg =

o(1). Proceeding similarly as before yields∥∥∥ε (∇⊥Ψ0
w · ∇

)
∆Ψ1

erg

∥∥∥
H−2(Ωε)

= o(ε).

Consequently, the first term needs to be corrected; this is possible when including it as part
of the source term in the system dictating Ψ2

w.
For the term (II.9.6d) when i = 1 and j = 0, we decompose the domain as before when

analyzing the interaction terms∥∥∥ε (∇⊥Ψ1
alg · ∇

)
∇Ψ0

w

∥∥∥
L2(Ωε∩{x−χw(y)≤

√
ε})

= O(1), (II.9.9)

and ∥∥∥ε (∇⊥Ψ1
erg · ∇

)
∇Ψ0

w

∥∥∥
L2(Ωε∩{x−χw(y)≤

√
ε})

= o(ε−1/4). (II.9.10)
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Therefore, to deal with these advection terms, we add the functions ε5/4Ψerg
ew and ε3/4Ψalg

ew to
the approximate solution: one for the term decaying algebraically, and the other, for Ψ1

erg.
These functions fulfill the equations ∂XwΨew +Qw(Ψ0

w,Ψew)−∆2
wΨew = Gε,t,y(Xw, Y ), in ωw,

Ψew

∣∣
X=−γw(Y ) = ∂Ψew

∂nw

∣∣∣
X=−γw(Y )

= 0, (II.9.11)

where,

Gε,t,y(Xw, Y ) =


(
∇⊥e Ψ1

erg

(
χe(y)−χw(y)

ε −Xw, Y
)
· ∇w

)
∇wΨ0

w(Xw, Y ), for Ψew = Ψerg
ew ,(

∇⊥e Ψ1
alg

(
χe(y)−χw(y)

ε −Xw, Y
)
· ∇w

)
∇wΨ0

w(Xw, Y ), for Ψew = Ψalg
ew .

Note that Ψew is C3 at the interface σw. From Section II.7, (II.9.11) has a unique solution
decaying exponentially when ε goes to zero. The remaining terms are small enough and can
be considered a part of rε. Indeed, repeating the same reasoning as before, we have

‖ε
(
∇⊥Ψ1

int · ∇
)

∆Ψ0
w‖H−1(Ωε) = O(ε1/2),

‖ε2
(
∇⊥Ψ1

e · ∇
)

∆Ψ1
w‖H−2(Ωε) ≤ ε2‖∇⊥Ψ1

e · ∇Ψ1
w‖L2(Ωε)

=≤ ‖∇⊥Xe,Y Ψ1
e
· ∇Xw,Y Ψ1

w‖L2(Ωε) = o(ε1/2),

‖ε2
(
∇⊥Ψ1

e · ∇
)

∆Ψ1
w‖H−2(Ωε) ≤ ‖

(
∇⊥Xe,Y Ψ1

e · ∇Xw,Y
)

Ψ1
w‖L2(Ωε) = o(ε1/2).

II.9.2.1.3 The eastern boundary layer profiles The same analysis must be applied
to Ψn

e , i ≥ 1. The linear terms involving Ψ1
e are o(ε). Indeed, as a consequence of Proposition

II.8.1 we have
‖ε∂t∆Ψ1

e‖H−2(Ωε) ≤ ε‖∂tΨ1
e‖L2(Ωε = o(ε). (II.9.12)

The estimate for the Laplacian can be computed in the same manner. From the previous
paragraph, we know that advection terms containing Ψ0

w are exponentially small on the
eastern domain. It remains to check the terms(

∇⊥Ψi
int · ∇

)
∆Ψj

e, (II.9.13a)(
∇⊥Ψi

e · ∇
)

∆Ψj
w, (II.9.13b)(

∇⊥Ψi
e · ∇

)
∆Ψj

e. (II.9.13c)

(II.9.13a) satisfies∥∥∥ε (∇⊥Ψ1
e · ∇

)
∆Ψ0

int

∥∥∥
H−2(Ωε)

≤ ε
∥∥∥∇⊥Ψ1

e∆Ψ0
int

∥∥∥
H−1(Ωε)

≤
∥∥∥Ψ1

e∆Ψ0
int

∥∥∥
L2(Ωε)

+
∥∥∥Ψ1

e∆Ψ0
int

∥∥∥
L2(Ωε)

≤ C
∥∥∥Ψ1

e

∥∥∥
L2(Ωε)

= o(1).
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Furthermore, applying the same idea to (II.9.13b) yields
∥∥∥ε (∇⊥Ψ0

int · ∇
)

∆Ψ1
e

∥∥∥
H−2(Ωε)

=
o(1). Lastly, (II.9.13c) follows

∥∥∥ε2
(
∇⊥Ψ1

e · ∇
)

∆Ψ1
e

∥∥∥
H−2(Ωε)

≤ Cε2
∥∥∥∇⊥Ψ1

e ⊗∇Ψ1
e

∥∥∥
L2(Ωε)

≤ Cε2‖∇Ψ1
e‖2L4 ≤ C

√
ε.

We conclude there is no need for correctors in the eastern domain.

II.9.2.1.4 Traces at Σe and Σw The traces of Ψn
exp at Σw and of Ψn

w at Σe are expo-
nentially small. Indeed, they satisfy

∥∥∥∂kXΨn
exp

∥∥∥
L∞t (H3/2−k(Σe∪Σw)

+
∥∥∥∂kXΨn

w

∥∥∥
L∞t (H3/2−k(Σe∪Σw)

= O

(
exp

(
−δ
ε

))
, λ > 0.

Moreover, the traces of Ψn
erg and Ψn

alg are included in the jump conditions in (II.9.4) and
therefore, they are lifted by the western profiles.

Note that thanks to hypotheses we made near ymin and ymax, the traces are zero for
y ∈ [ymax − λ, ymax] ∪ [ymin, ymin + λ]. We add a corrector to ψε to lift the jump conditions
of the form

φε1(t, x, y) =
∑
k

xk

k! (σ̃ekθ(x− χw(y)) + σ̃wk θ(x− χw(y))) , (II.9.14)

where σ̃wk and σ̃we denote the values of the traces of the western and eastern profiles, respec-
tively. Moreover, θ is a function belonging to C∞c ([−δ, δ]) for δ > 0 small enough.

For the traces of ∂kxΨn
int, k = 0, . . . , 3 at Σw ∪ Σe to be well-defined, we need correctors

Ψi
w, Ψi

e, n ≤ i ≤ n+ 3 satisfying (II.9.4) and (II.9.3), respectively.

II.9.3 Energy estimates

Let us consider the difference ψε = Ψε − Ψε
app, with Ψε satisfying (II.2.1) and Ψε

app defined
as in Section II.9.1. Moreover, let rε be the error resulting from the difference between the
original solution. We have

∂t∆ψε +∇⊥Ψε · ∇(∆ψε) +∇⊥ψε · ∇(∆Ψε
app) + ε−3∂xψ

ε + ∆ψε −∆2ψε = rε in Ωε

ψε|∂Ω = ∂ψε

∂n

∣∣
∂Ω = 0

ψε|t=0 = (Ψini −Ψε
app)

∣∣
t=0,

(II.9.15)
where ‖(Ψini − Ψε

app)
∣∣
t=0‖Lt∞(H1(Ωε)) = O(ε), which results from hypotheses made on Ψini.

Moreover, ‖rε‖L∞t (H−2(Ωε)) = o(1). The details on the computation of the remainder have
been discussed in detail in Section II.9.1 . It is clear that ψε belongs to H2(Ωε). Multiplying
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the main equation on (II.9.15) and integrating over Ωε provides the following∫
Ωε
∂t∆ψε · ψε = −

∫
Ωε
∂t∇ψε · ∇ψε = −1

2
d

dt

∫
Ωε
|∇ψε|2∫

Ωε
∇⊥Ψε · ∇(∆ψε)ψε = −

∫
Ωε

(
(∇⊥Ψε · ∇)∇⊥ψε

)
· ∇⊥ψε = −1

2

∫
Ωε
∇⊥Ψε · ∇|∇⊥ψε|2 = 0∫

Ωε
(∇⊥ψε · ∇)∆Ψε

appψ
ε = −

∫
Ωε

(∇⊥ψε · ∇)∇⊥Ψε
app · ∇⊥ψε =

∫
Ωε

(∇⊥ψε · ∇Ψε
app)D2ψε∫

Ωε
∂xψ

εψε = 0∫
Ωε

∆ψεψε =
∫
∂Ωε

∂nψ
εψε −

∫
Ωε
|∇ψε|2 = −

∫
Ωε
|∇ψε|2

−
∫

Ωε
∆2ψεψε = −

∫
Ωε
|∆ψε|2.

We claim that
1
2∂t ‖∇ψ

ε(t, ·)‖2L2 + ‖∇ψε(t, ·)‖2L2 +
∥∥∥D2ψε(t, ·)

∥∥∥2

L2
≤
∣∣∣∣∫

Ωε
rεψε(t, ·)

∣∣∣∣+ ∣∣∣∣∫
Ωε

(∇⊥ψε · ∇Ψε
app)D2ψε

∣∣∣∣ .
(II.9.16)

We proceed to analyze each one of the terms on the r.h.s. For the first term we have∣∣∣∣∫
Ωε
rεψε(t, ·)

∣∣∣∣ ≤ ∥∥∥D2ψε(t, ·)
∥∥∥
L2(Ωε)

‖rε‖H−2 (II.9.17)

≤ 1
2

(∥∥∥D2ψε(t, ·)
∥∥∥2

L2(Ωε)
+ ‖rε‖2H−2

)
We are left with bounding the term

∫
Ωε(∇⊥ψε ·∇Ψε

app)D2ψε. The difficulty here comes from
Ψε
app at the boundary layer since

∇Ψε
app = ∇Ψint +∇Ψε

e +∇Ψε
w.

In particular, from ∇εΨw = O(ε−1) in L∞ since |∇Ψε
e| = ε∇Ψ1

e + O(ε), where ∇Ψ1
e,

similarly to ε∇Ψint, is small and bounded in L∞. Hence, we focus our attention on∣∣∣∣∫
Ωε

(∇⊥ψε · ∇Ψ0
w)D2ψε

∣∣∣∣ .
From Hardy’s inequality, we have the following∥∥∥∥∥∇⊥ψε(t, ·)d(x,Γεw)

∥∥∥∥∥
L2

≤ C‖D2ψε(t, ·)‖L2 .

Here, d(x,Γεw) denotes the distance from x = (x, y) ∈ R2 to the western rough boundary.
Thus, ∣∣∣∣∫

Ωε
(∇⊥ψε · ∇Ψε

w)D2ψε
∣∣∣∣ ≤ C‖d(x,Γεw)∇Ψ0

w‖L∞‖D2ψε(t, ·)‖2L2 . (II.9.18)

Note that d(x,Γw)∇Ψ0
w ∼ z

ε exp(− z
ε ), where z denotes the distance to the boundary, and,

therefore, it satisfies
‖d(x,Γεw)∇⊥Ψ0

w‖L∞ ≤ C0,

where the small constant C0 does not depend on ε. Hence, (II.9.18) can be absorbed by the
diffusion term on the l.h.s. Plugging (II.9.17) and (II.9.18) in (II.9.16) and then applying
the Grönwall’s inequality complete the proof of Theorem II.2.3.
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Appendix

II.A Study of the roots of equation of the linear western boundary
layer

This appendix is concerned with proving Lemma II.5.1, i.e., that equation (II.5.9)

P (λ) = −λ− (λ2 + (αwλ+ iε)2)2 = 0,

does not have purely imaginary nor multiple roots when ξ 6= 0.
The first part can be easily checked by considering λ = iR, R ∈ R on (II.5.9). This yields

the following relation
iR = ((1 + αw)2R2 + 2αwξR+ ξ2)2.

Taking the imaginary part of the previous equality results in R = 0.
The second part of the analysis, although strenuous because (II.5.9) is a fourth-degree

polynomial with complex coefficients, leads us to discard the cases of purely imaginary roots
and multiple eigenvalues. We proceed as follows:

• First, we prove that for αw and ξ equal to zero, all the roots of the characteristic
equation are simple.

• Then, for ξ 6= 0, we show that there are no purely imaginary simple nor double roots.

• The remaining cases are analyzed through equations resulting from the relation between
repeated roots of a polynomial and its derivatives.

The main ingredient in the analysis of the multiplicity of the solutions will be the classical
lemma:

Lemma II.A.1. Let K be a commutative ring and P (x) ∈ K[x], a nonconstant polynomial
of the form P (x) =

∑
k akx

k. Let a ∈ K be a multiple root of P . Denote by P ′, the derivative
of the polynomial P . Then, P ′(a) = 0.

In this case, P ′(x) is a third-degree polynomial, and its algebraic solution can be explicitly
derived by using, for example, Cardano’s method. We will prove that the form of the original
equation excludes the possibility of P ′(x) having real roots. Moreover, a system of equations
describing the behavior of the real and imaginary parts of the complex roots will be solved
to find the relation αw and ξ satisfy in the presence of a double root.

• We start by proving the result for the cases when αw = 0 or ξ = 0.

139
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– Let us first consider ξ = 0. Then, equation (II.5.9) becomes

λ+ (1 + α2
w)2λ4 = 0. (II.A.1)

The roots of the above equation are

λk = − 1
(1 + α2

w)2/3 e
i 2πk

3 , for k = 0, 1, 2, λ3 = 0.

It is evident that these roots are simple for all αw ∈ R, and that <(λ0) < 0,
<(λ1) = <(λ2) < 0.

– When αw = 0, a double root must satisfy the following system of equations{
λ+ (λ2 − ξ2)2 = 0

1 + 4λ(λ2 − ξ2) = 0. (II.A.2)

Combining both equations in (II.A.2) gives the cubic polynomial

λ3 + 1
16 = 0, (II.A.3)

The values satisfying the above equation are of the form

λk = − 1
2 3√2

e
2π
3 ik, for k = 0, 1, 2.

Since ξ is a real-valued quantity, we have that =(λ) = 0 as a result of combining
(II.A.2.b) and (II.A.3). The latter does not hold for λ1 and λ2. Moreover, a quick
substitution of λ0 in (II.A.2.b) results in a contradiction since λ0ξ

2 ≤ 0 for ξ ∈ R.
Hence, equation (II.5.9) does not have repeated roots when αw = 0.

• We now analyze the case when αw, ξ ∈ R∗. Let us start by rewriting equation (II.5.9)
as follows

λ

(1 + α2
w)2 +

((
λ+ αwiξ

1 + α2
w

)2
− ξ2

(1 + α2
w)2

)2

= 0. (II.A.4)

We then introduce the variable µ = λ+ αwiξ
1+α2

w
. Due to the affine relation between µ and

λ, we can assert that a repeated root of the problem will satisfy the following system
µ

(1 + α2
w)2 −

αwiξ

(1 + α2
w)3 +

(
µ2 − ξ2

(1 + α2
w)2

)2

= 0,

1
4(1 + α2

w)2 + µ

(
µ2 − ξ2

(1 + α2
w)2

)
= 0.

(II.A.5)

Lemma II.A.2. Let αw, ξ ∈ R∗ and µ ∈ C \ R be a solution of (II.A.5). Then,

|ξ| <
√

3
2 (1 + α2

w)1/3. Furthermore, setting a = − ξ2

(1 + α2
w)2 , b = 1

4(1 + α2
w)2 and

A =
3

√√√√− b2 +

√
b2

4 + a3

27 ,

B =
3

√√√√− b2 −
√
b2

4 + a3

27 ,
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the solution µ belongs to {µ−, µ+}, for

µ+ = −1
2(A+B) +

√
3i
2 (A−B)

µ− = −1
2(A+B)−

√
3i
2 (A−B).

Proof. Note that (II.A.5) is written in canonical form. The sign of the term b2

4 + a3

27
determines the number of real roots of the cubic polynomial, going from three in the
cases when it is non-positive to one, when b2

4 + a3

27 is greater than zero. Let us prove
that if a repeated root µ exists, it must forcibly have a non zero imaginary part.

Assuming µ ∈ R and then taking the imaginary part of (II.A.5a) lead to

− αwξ

(1 + α2
w)3 = 0, (II.A.6)

which contradicts the assumption that αw and ξ are not equal zero. We have thus
proved that µ must be a complex quantity with nonzero imaginary part for the char-
acteristic equation to have a repeated root. Therefore, b2

4 + a3

27 has to be positive which
in turn, implies that A and B must be real quantities and the Fourier variable should
satisfy |ξ| <

√
3

2 (1 + α2
w)1/3.

Lemma II.A.3. Let µ ∈ C \R be a solution of (II.A.5). Then, µ is also a root of the
quadratic polynomial

3
4µ

2 − αwiξ

1 + α2
w

µ+ ξ2

4(1 + α2
w)2 = 0. (II.A.7)

This equation is easily obtained by first, multiplying (II.A.5a) by µ and (II.A.5b) by(
µ2 − ξ2

(1 + α2
w)2

)
and then, subtracting the resulting equations .

Substituting µ± = −1
2(A + B) ±

√
3i
2 (A − B) in (II.A.7) yields the following system

for the real and imaginary parts of the solution


3
16(A+B)2 − 9

16(A−B)2 ±
√

3
2

αwξ

1 + α2
w

(A−B) + ξ2

4(1 + α2
w)2 = 0

∓3
√

3
8 (A+B)(A−B) + αwξ

2(1 + α2
w)(A+B) = 0.

(II.A.8)

The root λ cannot be purely imaginary, hence, A+B 6= 0 and the condition A−B 6= 0
is derived from the fact that µ must be complex. Dividing equation (II.A.8b) by A+B
gives

A−B = ± 4
3
√

3
αw

1 + α2
w

ξ. (II.A.9)
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We check at once that A+B is also proportional to ξ. From the relation (A+B)2 =
(A−B)2 + 4AB and the fact that AB = −a

3 , we obtain

(A+B)2 = 4
3(1 + α2

w)2

(
4α2

w

9 + 1
)
ξ2. (II.A.10)

The term A+B must additionally satisfy equation (II.A.8a). Taking into account that
ξ 6= 0, the combination of (II.A.8a) and (II.A.10) provides the following condition for
αw

8α2
w + 9

18 (α2
w + 1)2 = 0. (II.A.11)

The roots of the above equality are complex; hence, there is no real-valued αw for
which (II.5.9) has multiple roots. The same conclusion can be drawn from solving
system (II.A.8) directly since complex or null A + B terms contradict our previous
assumptions.

Finally, we conclude (II.5.9) has four simple roots (λ±i )i=1,2 ∀ξ, αw ∈ R in C \ I, satisfying
<(λ+

i ) > 0 and <(λ−i ) > 0 if ξ 6= 0.

II.B Expansion of the eigenvalues at high frequencies
This section is devoted to high-frequency expansions of the main functions we work with,
namely, λk and Ak.

In high frequencies, that is, for |ξ| � 1, by considering λ = ξρ, where ρ ∈ C, we obtain

ξ−3ρ+
(
(1 + α2

w)ρ2 + 2iαwρ− 1
)2

= 0. (II.B.1)

The above polynomial provides the following approximation of the solutions

ρ+ = 1− iαw
α2
w + 1 +O(|ξ|−3/2), ρ− = −1 + iαw

α2
w + 1 +O(|ξ|−3/2). (II.B.2)

The definition of λ exhibits a clear relation between the sign of its real part and the sign of
ρξ. In particular, λ has positive real part if and only if sgn(<(ρ)) = sgn(ξ).

Since we have already proved that all roots of (II.5.9) are simple, we will provide a second
term on the expansion of the solutions to make this assertion evident to the reader. Let ρ̄
be a root of the polynomial

(
(1 + α2

w)ρ2 + 2iαwρ− 1
)2 and ρ = ρ̄ + ξ−ηρ̃ + O(ξ−3), where

η < 3, we have

ξ−3ρ̄+
(
2(1 + α2

w)ρ̃ρ̄ξ−η + 2iαwρ̃ξ−η +O(ξ−2η)
)2

+O(ξ−3−η) = 0. (II.B.3)

This is the same as

ξ−3ρ̄+ 4ρ̃2ξ−2η
(
(1 + α2

w)ρ̄+ iαw +O(ξ−η)
)2

+O(ξ−3−η) = 0,
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from which we conclude that η = 3/2 and

ρ̃± = ± i
√
ρ̄

2
√

(α2
w + 1)ρ̄+ iαw

. (II.B.4)

Consequently, for j = 1, 2,

ρ+
j = 1− iαw

α2
w + 1 + (−1)j iξ

− 3
2

2

(1− iαw
α2
w + 1

)
+O(ξ−3),

ρ−j = −1 + iαw
α2
w + 1 + (−1)j iξ

− 3
2

2

√
1 + iαw
α2
w + 1 +O(ξ−3).

We now turn towards the expressions of the Ak’s which satisfy the linear system(
1 1
λ1 λ2

)(
A1
A2

)
=
(
ψ̂∗0
ψ̂∗1

)
.

Thus,

A1 = λ2ψ̂
∗
0

λ2 − λ1
− ψ̂∗1
λ2 − λ1

, A2 = − λ1ψ̂
∗
0

λ2 − λ1
+ ψ̂∗1
λ2 − λ1

. (II.B.5)

High frequency expansions. At infinity, the sign of real part of the λ will depend on the
sign of ξ, hence, for ξ → +∞

λ+
j (ξ) = 1− iαw

α2
w + 1 ξ + (−1)j iξ

− 1
2

2

√
1− iαw
α2
w + 1 +O(ξ−2),

A+
j (ξ) = (−1)jiξ

3
2

√
1− iαw
α2
w + 1 ψ

∗
0 + (−1)j−1iξ

1
2
√

1 + iαwψ
∗
1 +O(|ψ∗0|+ |ξ|−5/2|ψ∗1|),

and, when ξ → −∞

λ+
j (ξ) = 1 + iαw

α2
w + 1 |ξ|+ (−1)j |ξ|

− 1
2

2

√
1 + iαw
α2
w + 1 +O(ξ−2),

A+
j (ξ) = (−1)j−1|ξ|

3
2

√
1 + iαw
α2
w + 1 ψ

∗
0 + (−1)j |ξ|

1
2
√

1− iαwψ∗1 +O(|ψ∗0|+ |ξ|−5/2|ψ∗1|).

II.C Computations of the regularity estimates

We now focus our attention on the term
∫
R |ξ|2k|Ψ̂w|2dξ, k = 0, 1, 2. First, we decompose

the integral into two pieces, one on {|ξ| > ξ0} and {|ξ| ≤ ξ0}.

. On the set |ξ| ≤ ξ0,∫
|ξ|≤ξ0

∫ ∞
0
|ξ|2k|Ψ̂w|2dξdX ≤ C

2∑
j=1

∫
|ξ|≤ξ0

|ξ|2k |Aj(ξ)|
2

2<(λj)
. (II.C.1)

Using (II.5.11) and Lemma II.5.2∫
|ξ|≤ξ0

∫ ∞
0
|ξ|2k|Ψ̂w|2dξdX ≤ C

∫
|ξ|≤ξ0

(
|ψ̂∗0|2 + |ψ̂∗1|2

)
< +∞.
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. We now analyze the case when |ξ| > ξ0. We are only illustrating the case when ξ > 0
since the negative case can be obtained in the same manner. For k = 0, 1, 2, we have

|ξ|2k
∫ ∞

0
|Ψ̂w|2dX = |ξ|2k

 ∑
1≤l,m≤2

A+
l Ā

+
m

1
λ+
l + λ̄+

m

 . (II.C.2)

From Lemma II.5.2, we have that λ+
l + λ̄+

m = a|ξ| + blm|ξ|−1/2 + O(|ξ|−2), a = <(ζ2)
and blm ∈ R ∪ R, l,m ∈ {1, 2}. Hence,

1
λk + λ̄l

= 1
a|ξ|

(
1− blm|ξ|−3/2

a

)
+O

(
ξ−3

)
, k, l = 1, 2.

As a consequence,

|ξ|2k
∫ ∞

0
|Ψ̂w|2dX = |ξ|

2k−1

a

|A+
1 +A+

2 |
2 − ξ−3/2

a

∑
l,m

blmA
+
l Ā

+
m

+ O
(
(|ψ̂∗0|+ |ψ̂∗1|)|ξ|2k−1

)
.

Here, |A+
1 +A+

2 |2 = |ψ̂∗0|2 and
∑
l,m blmA

+
l Ā

+
m = O(|ξ|3|ψ̂∗0|2 + |ξ|||ψ̂∗1|2).

Asymptotic expansions in Lemma II.5.2 lead to

λ+
l + λ̄+

m =
{

2<
(
ζ2)ξ + (−1)lξ−1/2= (ζ) +O(ξ−2), for l = m,

2<
(
ζ2)ξ + (−1)l−1iξ−1/2< (ζ) +O(ξ−2), for l 6= m,

for ζ =
√

1−iαw
α2
w+1 , and

A+
l Ā

+
m =


(

1
4 + i=(ζ)ξ3/2 + |ζ|2ξ3

)
|ψ̂∗0|2 −

ξ
|ζ|2 |ψ̂

∗
1|2 + (−1)l−1

|ζ|2
(
i=(ζ)ξ1/2 − 2<(ζ2)ξ2

)
|ψ̂∗0ψ̂∗1|, l = m(

1
4 + i=(ζ)ξ3/2 + |ζ|2ξ3

)
|ψ̂∗0|2 −

ξ
|ζ|2 |ψ̂

∗
1|2 + (−1)l−1

|ζ|2
(
i<(ζ)ξ1/2 − 2=(ζ2)ξ2

)
|ψ̂∗0ψ̂∗1|, l 6= m.

These expressions could mistakenly lead to a need for more robust results on regularity
at the boundary. We will show that nontrivial cancellations occur for the usual elliptic
regularity result to hold in this case. All sums of the eigenvalues are of the type
aξ + blmξ

−1/2 +O(ξ−2), a = <(ζ2) and blm ∈ R ∪ I, l,m ∈ {1, 2}. Thus,

1
λk + λ̄l

= 1
aξ

(
1− blm|ξ|−3/2

a
+ b2lmξ

−3

a2

)
+O

(
ξ−9/2

)
, k, l = 1, 2,

where

blm =
{

(−1)l=(ζ), l = m,
(−1)l−1i<(ζ), l 6= m.

Substituting the above expression in (II.C.2) leads to

|ξ|2k
∫ ∞

0
|Ψ̂w|2dX = |ξ|

2k−1

a

|A1 +A2|2 −
|ξ|−3/2

a

∑
l,m

blmAlĀm + ξ−3

a2

∑
l,m

b2lmAlĀm

+O
(
ξ2k−9/2

)
.

(II.C.3)
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Moreover,

|A1 +A2|2 = |ψ∗0|2,∑
l,m

blmAlĀm = A2Ā2=(ζ) +A1Ā1(−=(ζ))− iA2Ā1<(ζ) + iA1Ā2<(ζ)

= 2
√
ξ
(
2ξ3/2=(ζ)− 1

)
ψ∗0ψ

∗
1, (II.C.4)∑

l,m

b2lmAlĀm = =(ζ)2
(
|A1|2 + |A2|2

)
−<(ζ)2

(
A1Ā2 + Ā1A2

)

= =(ζ)2

2

(
4
|ζ|2

ξ|ψ∗1|2 +
(
4iξ3/2=(ζ) + 4ξ3|ζ|2 + 1

)
|ψ∗0|2

)
(II.C.5)

+
2<(ζ)3

(
−4ξ3/2=(ζ) + i

)
|ζ|2

√
ξψ∗0ψ

∗
1.

Combining the equations (II.C.4) and (II.C.3) we obtain,

|ξ|2k
∫ ∞

0
|Ψ̂w|2dX = O

(
|ξ|2k−1|ψ∗0|2 + |ξ|2k−3|ψ∗1|2

)
.

To complete the proof of (II.5.12), it remains to check the behavior of the derivatives of
Ψ̂w with respect to X up to the second order. Each derivation adds a factor (−1)

(
λ+
l + λ̄+

m

)
.

It is clear the expression is bounded when |ξ| ≤ ξ0. Moreover, simple computations show
|λ+
l + λ̄m|k = O(|ξ|k) for 1 ≤ l,m ≤ 2 and k = 0, 1, 2 when |ξ| > ξ0. Note that the

term
∫
{|ξ|>ξ0}×R+ |∂kXΨ̂w|dXdξ will behave asymptotically as

∫
{|ξ|>ξ0}×R+ |ξ|2k|Ψ̂w|dXdξ, and

therefore, its boundeness depends on the regularity of the functions ψ∗0 and ψ∗1.

II.D Asymptotic behavior of the Green function coefficients

This section is devoted to the proof of Lemma II.5.3 dealing with low and high-frequency
expansions of the coefficients of the Green function (II.5.15). The form of the coefficients

B+
1 = − 1

(α2 + 1)2
(
λ+

1 − λ
+
2

) (
λ+

1 − λ
−
1

) (
λ+

1 − λ
−
2

) ,
B+

2 = 1
(α2 + 1)2

(
λ+

1 − λ
+
2

) (
λ+

2 − λ
−
1

) (
λ+

2 − λ
−
2

) ,
B−1 = 1

(α2 + 1)2
(
λ+

1 − λ
−
1

) (
λ+

2 − λ
−
1

) (
λ−1 − λ

−
2

) ,
B−2 = − 1

(α2 + 1)2
(
λ+

1 − λ
−
2

) (
λ+

2 − λ
−
2

) (
λ−2 − λ

−
1

) .
combined with the asymptotic behavior of the eigenvalues stemming from the characteristic
equation provide the desired results. Let us now illustrate this for each case.
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Low frequencies: When |ξ| � 1, we have

λ−1 = −|ξ|4+O
(
|ξ|5

)
, λ−2 = − 1

(α2 + 1)2/3 +O (|ξ|) , λ+
j = 1 + (−1)ji

√
3

2 (α2 + 1)2/3 +O (|ξ|) , j = 1, 2.

Consequently,

B+
j = B−2 = 1

3 +O(|ξ|), j = 1, 2, B−1 = 1 +O(|ξ|).

High frequencies: As |ξ| → +∞, the eigenvalues behave for j = 1, 2 as

λ−j = − i|ξ|
α+ i

+(−1)j |ξ|
−1/2

2
√

1− iα
+O

(
|ξ|−3/2

)
, λ+

j = − iξ

α− i
+(−1)j

√
1
ξ

2
√
−1− iα

+O
(
|ξ|−3/2

)
.

II.E Proof of Lemma II.4.1

Note that we have the following Poincaré inequality for H2
0 (U):

‖f‖H2
0 (U) ≤ C‖D2f‖2L2(U).

The previous result is obtained by chaining the Poincaré inequality for f with the Poincaré
inequality for Df . We considered the norm ‖f‖2∗ = ‖D2f‖2L2(U) on H

2
0 (U) which is equivalent

to the standard H2
0 (U) norm.

We claim that
‖∆f‖L2(U) = ‖D2f‖L2(U) = ‖f‖∗

for any f ∈ H2
0 (U).

Indeed, let us consider f ∈ C∞0 (U). Then integration by parts and commutativity of
partial derivatives for smooth functions implies∫

U
fxixifxjxjdx = −

∫
U
fxifxjxjxidx = −

∫
U
fxifxjxixjdx =

∫
U
fxixjfxixjdx,

for all 1 ≤ i, j ≤ n. Summing over all i and j yields

‖∆f‖L2(U) = ‖D2f‖L2(U),

for all f ∈ C∞0 (U). Since C∞0 (U) is dense in H2
0 (U), passing to limits we find that

‖∆f‖L2(U) = ‖D2f‖L2(U) for all f ∈ H2
0 (U).

This gives the desired equality of norms. Hence, in H2
0 (U) we have

‖f‖H2
0 (U) ≤ C‖∆f‖L2(U).

Let us now show that
‖∆f‖L2(U) ≤ C‖∆αf‖L2(U), (II.E.1)

where C > 0 is a constant depending on α ∈ R.
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As a result of Plancherel theorem, we have that

‖∆αf‖2L2(U) = ‖∆̂αf‖2L2(U), and ‖∆f‖2L2(U) = ‖∆̂f‖2L2(U).

Let (ξ1, ξ2) be the Fourier variables associated to X and Y , respectively. We have

‖∆̂αf‖2L2(U) =
∫
U
|ξ2

1 + (ξ2 ± αξ1)2|2|f̂ |2

≥
∫
U
|ξ2

1 + ξ2
2 − α2ξ2

1 |2|f̂ |2

≥ (1− α2)2‖∆̂f‖2L2(U)

(II.E.2)

Here, we have used that (a+ b)2 ≥ a2 − b2, for a, b ∈ R. Therefore, if ∆αf ∈ L2(U), we
have that ∆f ∈ L2(U).

For non-homogeneous Dirichlet boundary data, a similar result can be obtained by ap-
plying the Poincaré-Wirtinger inequality. The additional term in the estimate is introduced
to control the boundary terms. The proof is left to the reader.

Other results. In applications, it is important to find different norms which are equivalent
to ‖ · ‖H2 . Let U be a bounded subset of R2. Then, the scalar product

(u, v)α =
∫
U
〈D2

αu,D
2
αv〉F , (II.E.3)

defines a norm on H2
0 (U) for

D2
α =

(
(1 + α2)∂2

X ±α∂2
XY

±α∂2
XY ∂2

Y

)
(II.E.4)

and the Frobenius inner product.

Remark II.E.1. The Frobenius norm on Mm,n(K) is derived from the scalar or standard
Hermitian product on this space, namely

(A,B) ∈ Mm,n(K)2 7→ 〈A,B〉 = tr(A∗B) = tr(BA∗), (II.E.5)

where A∗ denotes the conjugate transpose of A et tr is the trace.

Let u be a function of H2
0 (U), we have that

1
1 + α2 ‖u‖α ≤ ‖u‖

2
H2

0 (U) ≤ max(1 + α2, 2α2)‖u‖2α. (II.E.6)
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II.F Proof of Lemmas II.5.9 and II.8.7

Proof of Lemma II.5.9. The Fourier multiplier Mw = (mi,j)2≤i≤3,0≤j≤1 ∈ M2(C) has the
components

m2,0 = −
(
α2
w + 1

) ((
α2
w + 1

)
λ1λ2 + ξ2

)
,

m2,1 = −
(
α2
w + 1

) ((
α2
w + 1

)
λ1 +

(
α2
w + 1

)
λ2 + 2iαwξ

)
, (II.F.1)

m3,0 = −1
2
(
2
(
α2
w + 1

)
λ1λ2

((
α2
w + 1

)
λ1 +

(
α2
w + 1

)
λ2 + 4iαwξ

)
+ 4iαwξ3 − 1

)
,

m3,1 =
(
5α2

w + 1
)
ξ2

+
(
α2
w + 1

) (
−λ1

((
α2
w + 1

)
λ2 + 4iαwξ

)
− λ2

((
α2
w + 1

)
λ2 + 4iαwξ

)
−
(
α2
w + 1

)
λ2

1

)
.

Recall that λi are the roots of the characteristic equation

P (λ) = −λ− (λ2 + (αλ+ iξ)2)2 = 0,

satisfying <(λi) > 0.
Expressions in (II.F.1) together with the asymptotic expansions in Lemma II.5.2 are the

core ingredients of the proof.

• At low frequencies, the eigenvalues are complex conjugate constants depending on the

parameter αw. In particular, substituting λ1(ξ) = 1− i
√

3
2 (α2

w + 1)2/3 + O (|ξ|), λ2 = λ̄1 in

(II.F.1) provides

m2,0 = −
(
α2
w + 1

)2
|λ1|2 +O(|ξ|) = −

(
α2
w + 1

)2/3
|λ1|2 +O(|ξ|),

m2,1 = −2
(
α2
w + 1

)2
<(λ1) +O(|ξ|) = −

(
α2
w + 1

)4/3
|λ1|2 +O(|ξ|),

m3,0 = −2
(
α2
w + 1

)2
|λ1|2<(λ1) + 1

2 +O(|ξ|) = −1
2 +O(|ξ|),

m3,1 = −
(
α2
w + 1

)2 (
3<(λ1)2 −=(λ1)2

)
+O(|ξ|) = O(|ξ|).

To compute a more precise value of m3,1, we take into account that λj = 1+(−1)ji
√

3
2(α2+1)2/3 +

4iα|ξ|
3α2+3 +O

(
|ξ|2

)
and do not neglect the coefficients of ξ.

• When ξ → +∞, the roots behave as λ+
j (ξ) = ζ2ξ + (−1)j iξ

− 1
2

2 ζ + O(|ξ|−2), where
ζ =

√
1+iαw
α2
w+1 . This yields the matrix,

Mw =

 −2(1 + iαw)ξ2 +O
(
ξ−1/2

)
−2(1 + 2iαw)

(
α2
w + 1

)
ξ +O

(
ξ−1/2

)
2
(

7 + 2iαw −
8(1 + iαw)
α2
w + 1

)
ξ3 +O (1) −2(1− 8α2

w + 7iαw)ξ2 +O
(
ξ1/2

)
 .
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Let us illustrate the proof of the above result. We see that

m2,0 = −
(
α2
w + 1

) ((
α2
w + 1

)
ζ4 + 1

)
ξ2 +O(ξ−1/2)

= −
(
α2
w + 1

)(1 + 2iαw − α2
w

1 + α2
w

+ 1
)

+O(ξ−1/2) = −2(1 + iαw) +O(ξ−1/2),

m2,1 = −2
(
α2
w + 1

) ((
α2
w + 1

)
ζ2 + iαw

)
ξ +O(ξ−1/2) = −2(α2

w + 1)(1 + 2iαw) +O(ξ−1/2),

m3,0 = −2
((
α2
w + 1

)2
ζ6
w + 2

(
α2
w + 1

)
iαwζ

4
w + iαw

)
ξ3 +O(1)

= −2
(

(1 + iαw)2

1 + α2
w

(1 + 3iαw) + iαw

)
ξ3 +O(ξ3/2) = 2

(
7 + 2iαw −

8(1 + iαw)
α2
w + 1

)
ξ3 +O (1) ,

m3,1 =
(

5α2
w + 1−

(
3
(
α2
w + 1

)2
ζ4
w + 8iαw

(
α2
w + 1

)
ζ2
))

ξ2 +O(ξ1/2)

=
(
5α2

w + 1−
(
3(1 + αwi)2 + 8iαw(1 + αwi)

))
ξ2 +O(ξ1/2)

= −2(1− 8α2
w + 7iαw)ξ2 +O(ξ1/2).

The matrix values when ξ → −∞ can be computed in the same manner.

Proof of Lemma II.8.7. In the eastern boundary layer domain, the matrix of Fourier multi-
pliers Me = (ni,j)2≤i≤3,0≤j≤1 ∈M2(C) is formed by the elements

n2,0 =
(
α2
e + 1

) ((
α2
e + 1

)
µ1µ2 + ξ2

)
,

n2,1 =
(
α2
e + 1

) ((
α2
e + 1

)
µ1 +

(
α2
e + 1

)
µ2 − 2iαeξ

)
, (II.F.2)

n3,0 = −1
2

(
2
(
α2
e + 1

)2
µ1µ2 (µ1 + µ2) + 4iαeξ3 − 1

)
,

n3,1 = −
((
α2
e + 1

)2 (
µ2

1 + µ2µ1 + µ2
2

)
+
(
3α2

e − 1
)
ξ2
)
,

where µi, i = 1, 2 are the complex roots of positive real part of the equation

Pe(µ, ξ) = −µ+ (µ2 + (−αeµ+ iξ)2)2.

• When |ξ| � 1, the eigenvalues behave like (see Lemma II.8.1)

µ1 = |ξ|4 +O
(
|ξ|5

)
, µ2 = 1

(α2 + 1)2/3 +O (|ξ|) .

We obtain immediately that

n2,0 =
(
α2
e + 1

)
ξ2 +O(ξ4), n2,1 =

(
α2
e + 1

)4/3
+O(ξ),

n3,0 = 1
2 +O(ξ), n3,1 = −

(
α2
e + 1

)2 (
α2 + 1

)−4/3
+O(ξ) = −

(
α2 + 1

)2/3
+O(ξ).
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• Similarly to the proof of Lemma II.5.9, we only discuss the case when ξ → +∞, since
the behavior at −∞ results from applying the same reasoning.
The high frequency expansion of the eigenvalues are of the form

µj(ξ) = ζ2
e ξ + (−1)j

2 ξ−
1
2 ζe +O(ξ−3/2), ζe =

√
1− iαe
α2
e + 1 .

We have

Me =

 2(1− iαe)ξ2 +O
(
ξ−1/2

)
2(1− 2iαe)

(
α2
e + 1

)
ξ +O

(
ξ−1/2

)
2
(

3− 2iαe −
4(1− iαe)
α2
e + 1

)
ξ3 +O (1) −2(1− 3iαe)ξ2 +O

(
ξ−1/2

)
 .

Indeed, substituting the formulae of the eigenvalues at high frequencies in (II.F.2) gives

n2,0 =
(
α2
e + 1

) ((
α2
e + 1

)
ζ4
e + 1

)
ξ2 +O(ξ−1/2) = 2(1− iαe) +O(ξ−1/2),

n2,1 = −2
(
α2
e + 1

) ((
α2
e + 1

)
ζ2
e − iαe

)
ξ +O(ξ−1/2) = 2(1− 2iαe)

(
α2
e + 1

)
+O(ξ−1/2),

n3,0 = −2
((
α2
e + 1

)2
ζ6
e + iαe

)
ξ3 +O(ξ3/2) = −2

(
2iα3 − 3α2 − 2iα+ 1

1 + α2
e

)
ξ3 +O(1)

= 2
(

3− 2iαe −
4(1− iαe)
α2
e + 1

)
ξ3 +O(1),

n3,1 = −
(

3
(
α2
e + 1

)2
ζ4 + 3α2

e − 1
)
ξ2 +O(ξ−1/2) = −

(
3 (1− iαe)2 + 3α2

e − 1
)
ξ2 +O(ξ−1/2)

= −2(1− 3iαe)ξ2 +O(ξ−1/2).
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In this chapter, we analyze the behavior of monotone traveling waves of a one-dimensional
porous medium equation modeling mechanical properties of living tissues. We are interested
in the asymptotics where the pressure governing the diffusion process and limits the creation
of new cells, becomes very stiff, and the porous medium equation degenerates towards a
free boundary problem of Hele-Shaw type. This is the so-called incompressible limit. The
solutions of the limit Hele-Shaw problem then couple “free dynamics” with zero pressure,
and “incompressible dynamics” with positive pressure and constant density. In the first part
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of the work, we provide a refined description of the traveling waves for the porous medium
equation in the vicinity of the transition between the free domain and the incompressible
domain. The second part of the study is devoted to the analysis of the stability of the
traveling waves. We prove that the linearized system enjoys a spectral gap property in
suitable weighted L2 spaces, and we give quantitative estimates on the rate of decay of
solutions. The nonlinear terms are treated perturbatively, using an L∞ control stemming
from the maximum principle. As a consequence, we prove that traveling waves are stable
under small perturbations.

III.1 Introduction
This chapter is devoted to the asymptotic analysis and the stability of traveling waves for
the porous medium equation (PME). More precisely, let us consider the following nonlinear
parabolic equation

∂tn− ∂x
(
n∂xp(n)

)
= nΦ(p(n))), (III.1.1)

endowed with the boundary conditions

lim
x→±∞

n(t, x) = n±,

where n± are constant stationary states of the equation. This equation has been introduced
in the literature to model tissue growth and, particularly, in the propagation of tumors
(see for instance [85, 133, 112]). The left-hand side corresponds to the Porous Medium
Equation (PME): the density of cells, n, is transported by a velocity given by the Darcy
law v = −∂xp where p = p(n) denotes the mechanical pressure. The right-hand side models
the cell proliferation in the medium, proliferation which is limited by the pressure. Hence,
the function Φ is usually taken as a decreasing function of the pressure and is such that
Φ(pM ) = 0 for some pM > 0 called the homeostatic pressure. In this study, we shall assume
for simplicity that

p(n) = pγ(n) = nγ with γ > 1, Φ(p) = 1− p. (III.1.2)

In other words, the function Φ becomes negative above the threshold pressure pM = pγ(nM ) =
1, which means that cells are destroyed above the maximal packing density nM = 1. We will
also pick n− = nM = 1, and n+ = 0.

This study aims to analyze the behavior of traveling waves (TWs) solutions of (III.1.1)
when the parameter γ appearing in the equation of state (III.1.2) tends to +∞. For Φ(p) = 0,
i.e without the reaction term in the equation, this limit γ → +∞ is referred as the mesa
limit and has been studied for instance by Caffarelli and Friedman [89]. In this paper, the
authors consider an initial datum larger than 1 on a nontrivial set and show that this upper
part exceeding 1 collapses at t = 0+ to {n = 1}. This phenomenon is due to the blow up of
the diffusivity np′γ(n) = γnγ → +∞ when n > 1. The singular limit γ → +∞ for solutions
of the PME is then called the “mesa” limit in reference to the shape of the target density
n∞ ∈ [0, 1] which is similar to the flat-topped mountains. In the presence of a growth source
term Φ, the limit γ → +∞ has been first tackled by Perthame et al. in [85]. As in the
previous case, the blow-up of the pressure as γ → +∞ when n > 1 forces the limit density
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to lie in [0, 1]. The sequence (nγ)γ>1 of weak solutions to (III.1.1) is then shown to converge
(for a suitable topology) towards a weak solution of the following Hele-Shaw system

∂tn− ∂x(n∂xp) = nΦ(p), (III.1.3a)
0 ≤ n ≤ 1, (1− n)p = 0, p ≥ 0, (III.1.3b)
p
(
∂2
xp+ Φ(p)

)
= 0. (III.1.3c)

The transition between equation (III.1.1) and system (III.1.3) is usually called the incom-
pressible limit in reference to the fact that, when the solution n of (III.1.3) reaches 1, it is
blocked to this maximal value (the combination of the mass equation (III.1.3a) with the com-
plementary relation (III.1.3c) yields formally ∂tn = 0 in {n = 1}) and the medium cannot be
further compressed. Beyond the physical and biological relevancy of system (III.1.1) seen as
an approximation of (III.1.3), Mellet et al. [88] have shown that the incompressible limit can
provide crucial qualitative information on the solutions of the Hele-Shaw system (III.1.3),
like the regularity of the free boundary ∂{n = 1}.
To finish with the incompressible limit, let us mention that this type of singular limit has
been studied in other frameworks: for other singular equations of state [86], in the case of
coupling with the dynamics of nutrients [112], in the case of more than one type of cancerous
cell as seen in [113, 115, 120], when the Darcy law is replaced by the Brinkman equation [114]
or the Navier-Stokes equations [116].

Up to our knowledge, the issue of TWs solutions to (III.1.3) remains rare in the litera-
ture (see [121] when nutrients are considered), even when the topic was intensively studied
for nonlinear reaction-diffusion equations like (III.1.1). Indeed, TWs as a class of special
solutions have been shown to provide valuable information on general solutions of these
reaction-diffusion equations (see the books [122] and [123]). Most of the results concern the
long-term behavior (convergence to TWs, asymptotic rate of propagation of disturbances)
or the behavior close to interfaces of general solutions.
Regarding the issue of interfaces, Gilding and Kersner study in [117] the existence of sharp
(or finite) TWs whose support is bounded on one side in case of nonlinear degenerate diffu-
sion, and deduce a result about the existence of an interface ∂{n = 0} for general solutions.
In [124], TWs are used to study the regularity of the general solutions near the free boundary
∂{n = 0}, as well as for the derivation of the interface motion. The essential tools of the
analysis are then: the continuity of the flux across the interface and a comparison principle
bracketing a general solution between two TWs.
Concerning the long-time behavior of solutions to reaction-diffusion scalar equations like (III.1.1),
let us mention two types of results related to the nature of the wave-front. For sharp fronts,
that is, TWs with support bounded from above (or below), Kamin and Rosenau prove in [125]
that initial data decaying sufficiently fast at infinity converge (in a specific sense) towards a
sharp TW. The techniques they employ are inspired by L1-stability theory of shock waves
for viscous conservation laws (see for instance [126]): use of comparison principle (already
mentioned above), derivation of L1 conservation, and contraction principles with an expo-
nential weight. It is worth pointing out that this result cannot be extended to smooth fronts,
i.e. TWs that do not vanish and remain smooth on R. Indeed the weight used in [125] is
specific to the critical speed c∗ at which the sharp fronts travel (see Theorem III.2.1 below)
and is not suited for the smooth fronts propagating at speed c > c∗. To our knowledge,
the only result dealing with smooth fronts is a spectral stability result obtained recently by



154 Chapter III. Travelling waves for the PME in the incompressible limit

Leyva and Plaza in [110]. In their work, the difficulties associated with the degeneracy of
the diffusion term are overcome with the derivation of a kind relative entropy estimate with
a well-suited exponential weight.

In this chapter, the study of smooth TWs of (III.1.1) as γ → +∞ can be seen as a first
step in the analysis of the free boundary ∂{n = 1} for the limit Hele-Shaw system (III.1.3).
Our contributions are twofold: we first give a qualitative and quantitative description (in
terms of γ) of smooth TWs of (III.1.1) and show the convergence towards TWs of (III.1.3)
that are discontinuous at the interface ∂{n = 1}; we also study the nonlinear asymptotic
stability of the smooth TWs for small (quantified in terms of γ) general perturbations of
these wave-fronts.
As in [124], our analysis relies strongly on the control of the flux around the interface (passage
to the limit as γ → +∞, determination of the transmission conditions across the interface on
the limit system); and the comparison principle (quantitative behavior of TWs as γ → +∞,
control of general solutions lying between two TWs). Compared to the stability analysis of
Leyva and Plaza [110], we have to deal with additional nonlinear contributions that we treat
in a perturbative manner and control thanks to a Poincaré-type inequality. This latter also
allows us to get a decay rate of the perturbation as t→ +∞.

Statement of main results

In this chapter, we focus on traveling waves solutions of (III.1.1)-(III.1.2), that is solutions
nγ such that nγ(t, x) = Nγ(x − ct) where Nγ is the wave profile, ξ = x − ct is the wave
coordinate and c is the speed of propagation of the wave. The profile Nγ is then solution to
the differential equation:

− cN ′γ − γ(Nγ
γN
′
γ)′ = Nγ(1−Nγ

γ ). (III.1.4)

The above equation admits two equilibrium states: N ≡ 0 (unstable) and N ≡ 1 (stable),
and we seek therefore wavefronts Nγ connecting these two states:

lim
ξ→−∞

Nγ(ξ) = 1, lim
ξ→+∞

Nγ(ξ) = 0. (III.1.5)

The existence and uniqueness (up to a shift) of a monotone (decreasing) solution to (III.1.4)-
(III.1.5), as well as the asymptotic behavior of Nγ close to ±∞, were previously investigated
by Gilding and Kersner [117] for c larger than a threshold velocity c∗γ > 0 (see below Theo-
rem III.2.1 for a precise statement). In the present study, we intend to analyze further the
behavior of Nγ and Pγ(ξ) = (Nγ(ξ))γ , the associated pressure profile, with respect to the
parameter γ. Our first main result concerns the qualitative and quantitative behaviors as
γ → +∞.

Theorem III.1.1. Let γ > 1 sufficiently large, c > 1 be fixed, independent of γ, and let Nγ

be the solution of (III.1.4)-(III.1.5) such that Pγ(0) = 1
γ . Then the following properties hold

true.

• There exist ξ−γ , ξ̃γ with ξ−γ = O
(

1√
γ

)
< 0 < ξ̃γ = O

(
1
γ

)
, such that the profile (Nγ , Pγ)

satisfies
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– in the congested zone ξ < ξ−γ , the density Nγ converges uniformly to 1: there
exists a constant C > 0 depending only on c such that(

C
√
γ

) 1
γ

≤ Nγ(ξ) ≤ 1 ∀ ξ ≤ ξ−γ , (III.1.6)

and there exist constants C ′ ≥ C > 0 independent of γ such that

1−
(

1− C ′
√
γ

)
e(1−Cγ−1/2)ξ ≤ Pγ(ξ) ≤ 1−

(
1− C
√
γ

)
eξ ∀ ξ ≤ ξ−γ ; (III.1.7)

– in the intermediate region ξ ∈ [ξ−γ , ξ̃γ ], N ′γ takes exponentially large values with
respect to γ:

‖N ′γ‖L∞(ξ−γ ,ξ̃γ) = O

((
1− 1

2c

)−γ)
, (III.1.8)

while the pressure Pγ converges uniformly to 0 as γ → +∞: there exists δ ∈
(0, 1− c−1), independent of γ such that(

1− 1
c
− δ

)γ
≤ Pγ(ξ) ≤ C

√
γ

∀ ξ ∈ [ξ−γ , ξ̃γ ]; (III.1.9)

– in the free zone ξ > ξ̃γ, the pressure Pγ takes exponentially small values (wrt γ):
Pγ(ξ) ≤

(
1− 1

2c

)γ
and Nγ decreases exponentially to 0 as ξ → +∞: there exists

δ > 0 independent of γ, such that for γ large enough(
1− 1

c
− δ

)
exp

(
−
(1
c

+ δ

)
ξ

)
≤ Nγ(ξ) ≤

(
1− 1

c
+ δ

)
exp

(
− 1

2cξ
)
∀ ξ > ξ̃γ ;
(III.1.10)

• As γ → +∞, there exists (NHS , PHS) ∈ L∞(R) ×W 1,∞(R) such that Nγ → NHS in
Lploc(R) and Pγ → PHS in W 1,p

loc (R) for any p ∈ [1,∞[, and (NHS , PHS) is a wave-
front profile of the Hele-Shaw equations (III.1.3) such that PHS(ξ) = (1 − eξ)1ξ≤0,
limξ→0+ NHS = 1− 1

c .

Remark III.1.1. Concerning the convergence of (Nγ , Pγ) towards (NHS , PHS), a key in-
gredient of our proof is the uniform control of the flux Jγ = cNγ + NγP

′
γ which is such

J ′γ = −Nγ(1 − Pγ) ∈ [−1, 0]. The control of Jγ implies in particular the control of P ′γ and
thus yields the uniform convergence of (Pγ)γ. It is important to note that this uniform con-
vergence of (Pγ) is uncorrelated to the convergence of (Nγ)γ. Indeed, we have P ′γ = γNγ−1

γ N ′γ
but the pre-factor γNγ−1

γ which tends to 0 on a half-space, prevents us to get a uniform bound
on N ′γ. Actually this derivative blows up as it can be observed on (III.1.8). The uniform
convergence of the flux Jγ is also crucial to determine the value of NHS on the right side
of the interface ξ = 0. Since then JHS(0) = c + lim

ξ→0−
P ′HS(ξ) = c − 1, we deduce that

limξ→0+ NHS = c−1JHS(0) = 1− 1
c .
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Remark III.1.2. A legitimate question is the possible extension of the previous result to
more general pressure laws (as for instance the singular potentials considered in [86] or [186])
and reaction terms Φ. Our analysis actually starts with the results obtained by Gilding and
Kersner [117]. In particular in [117], the determination of the critical speed c∗ = c∗γ is
specific to the pressure law pγ(n) = nγ. To our knowledge, the explicit characterization of
c∗ has not been tackled in the literature, more precisely we would need an upper bound on c∗
independent of the parameter characterizing the incompressible limit. The extension of [117]
to the case of more general pressures and reaction terms is therefore out of the scope of the
present chapter but there is a reasonable hope for a generalization of the previous theorem
once the existence of a profile Nγ for a fixed speed c > c∗ (independent of parameter γ) is
ensured.

We believe that several steps of our strategy could be extended to other pressure laws
(analysis of the phase portrait of the traveling wave and consequences, design of appropriate
weights for the coercivity of the linearized operator, etc.) However, in several instances some
quantitative arguments rely heavily on fine properties of Nγ (e.g. the description of the
transition zone). It is unavoidable that such properties will depend on the exact nature of
the pressure law, and that a case by case analysis needs to be performed.

Our second result is dedicated to the analysis of stability of the wavefront Nγ in weighted
Sobolev spaces. To that end, we introduce the weight

W (ξ) := Nγ(ξ)γ exp
(∫ ξ

ξ−γ

c

γNγ
γ

)
.

Note thatW has a double exponential growth as ξ → +∞, and a (slow) exponential decay as
ξ → −∞. Therefore,W will provide a very good control of the difference nγ(t, x)−Nγ(x−ct)
in the free zone x− ct > 0.

Our result is the following:

Theorem III.1.2. There exists constants η1, η2 ∈]0, 1[, depending only on c > 1, such that
the following result holds.

Let γ > 1 be fixed, sufficiently large. We make the following assumptions on the initial
data n0

γ:

(H1) n0
γ lies between two shifts of Nγ, i.e. there exists h > 0 such that n0

γ(x) ∈ [Nγ(x +
h), Nγ(x− h)] for all x ∈ R;

(H2) The difference n0
γ −Nγ is sufficiently decaying, namely∫

R

(
n0
γ(x)−Nγ(x)

)2
W (x)dx <∞.

Let nγ be the solution of (III.1.1) associated with n0
γ.

Then there exists a constant cγ > 0, cγ = O(ηγ1 ), such that if |h| ≤ ηγ2 , the following
inequality holds:∫

R
(nγ(t, x)−Nγ(x− ct))2W (x− ct) dx ≤ e−cγt

∫
R

(
n0
γ(x)−Nγ(x)

)2
W (x)dx ∀t ≥ 0.
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Moreover, setting uγ(t, x) := (nγ(t, x) −Nγ(x − ct))/N ′γ(x − ct), we have the additional
dissipation of energy:

γ

∫ ∞
0

∫
R

(∂xuγ(t, x))2(Nγ
γ (N ′γ)2W )(x− ct) dx dt ≤

∫
R

(
n0
γ(x)−Nγ(x)

)2
W (x)dx.

Let us give a short sketch of proof of the above result. An important feature of equation
(III.1.1) lies in the fact that its linearization around Nγ(x−ct) is spectrally stable in suitable
weighted Sobolev spaces. This property has been identified recently by Leyva and Plaza [110],
using Sobolev spaces with an exponential weight. Here, we work with different weights,
which we believe follow more closely the structure of the equation, see Lemma III.3.1 and
subsection III.4.2, and which give a better control in the congested zone. One crucial point of
our analysis lies in the derivation of a new weighted Poincaré inequality associated with this
weight, see Proposition III.3.1. This allows us to prove a spectral gap property, leading to the
exponential decay announced in the above Theorem. Once the dissipation properties of the
linearized equation have been identified and quantified, we perform the nonlinear estimates
by treating the quadratic terms as perturbations. In this regard, assumption (H1) allows us
to have a uniform L∞ control on nγ(t, x)−Nγ(x− ct), thanks to the parabolic nature of the
equation.

Note that the rate of decay cγ of the energy is exponentially small. This is linked to the
exponential blow-up of N ′γ in the transition zone, see Theorem III.1.1. This blow-up also
imposes a strong limitation on the admissible size of the perturbation in L∞, and thereby on
the size of h. It is not clear whether this assumption could be substantially lowered, taking
for instance initial perturbations that would be algebraically - but not exponentially - small.
Indeed, it is possible that the strong variations of Nγ in the transition zone destabilize the
flow.

Our study is organized as follows. In Section III.2, we describe traveling fronts for both
systems (III.1.1) and (III.1.3) and give a refined behavior of the profile Nγ in the transition
zone between the congested region and the free region. Next, we prove in Section III.3 the
asymptotic stability of the profile Nγ (γ being fixed) for some L2-weighted norm. Finally,
we have postponed in Section III.4 the proofs of some technical lemmas used in Section III.3.

III.2 Traveling waves for the Hele-Shaw system and the porous me-
dia equation

This section is devoted to studying the existence and properties of traveling fronts of both
systems: Hele-Shaw and the mechanical model of tumor growth with “stiff pressure law”
depending on the parameter γ. For the latter, an asymptotic expansion of this type of
solution will be computed.

III.2.1 TW for the limit Hele-Shaw system

We look for traveling wave-type solutions of the form (n, p) = (N,P )(x − ct), where c > 0
is a constant representing the traveling wave speed and N,P are real nonnegative functions.
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We may assume that c > 0, since for c = 0 we find again the stationary solutions, and the
case c < 0 can be reduced to c > 0 by reflection.

Lemma III.2.1. Let c > 1 be arbitrary, and let ξ denote the traveling wave variable ξ =
x− ct.

1. Define the profile (NHS , PHS) ∈ L∞(R)×W 1,∞(R) by

PHS(ξ) =
{

0 if ξ > 0,
1− eξ if ξ < 0, NHS(ξ) =


(

1− 1
c

)
e−

ξ
c if ξ > 0,

1 if ξ < 0.
(III.2.1)

Then (NHS , PHS)(x−ct) is a traveling wave moving at speed c solution of the Hele-Shaw
system

cN ′ + (NP ′)′ +NΦ(P ) = 0, (III.2.2)
0 ≤ N ≤ 1, (1−N)P = 0, P ≥ 0, (III.2.3)

P (P ′′ + Φ(P )) = 0. (III.2.4)

2. Let (N,P ) ∈ L∞(R)×W 1,∞(R) be a traveling wave profile moving at speed c of the Hele-
Shaw system (III.1.3). Then there exists ξ0 ∈ R such that (N,P ) = (NHS , PHS)(·−ξ0).

Remark III.2.1. • The Lipschitz regularity assumption on P ensures that the term P ′N
is well-defined, as a product of two L∞ functions.

• An important feature of the analysis is the continuity of the flux (c+P ′)N on R (and in
particular at the transition point ξ0). This property will determine the value of N(ξ+

0 ).

Proof. It is easily checked that (NHS , PHS) is a solution of (III.2.2)-(III.2.4). Hence the
difficulty is to prove that all solutions are equal to (NHS , PHS) (up to a translation). As
emphasized in Remark III.2.1, the flux J = cN + NP ′ satisfies J ′ = −NΦ(P ) ∈ [−1, 0].
Hence J is Lipschitz continuous and decreasing. Using the values of N,P at ±∞, we find
that J(−∞) = c, J(+∞) = 0, and therefore 0 ≤ J ≤ c a.e.

Since P is Lipschitz continuous, the set {P > 0} is a countable union of disjoint open
intervals, say ∪j∈J (aj , bj). On any such interval (aj , bj), we have N = 1 and

−P ′′ = 1− P, ∀ξ ∈ (aj , bj).

Hence there exist C±j such that

P (ξ) = 1 + C+
j e

ξ + C−j e
−ξ ∀ξ ∈ (aj , bj).

Note that the case bj = +∞ is excluded, since N(+∞) = 0, and that C−j = 0 if aj = −∞.
Furthermore, on any interval (aj , bj), we have J = c+P ′ ∈ [0, c], and J ′ = P ′′ ≤ 0. Hence P is
non-increasing and concave on (aj , bj). If aj , bj ∈ R, we have additionally P (aj) = P (bj) = 0,
since aj , bj ∈ ∂{P > 0}. This entails that P (ξ) = 0 for all ξ ∈ (aj , bj), which is absurd.
Hence J is a singleton and there exists ξ0 ∈ R such that {P > 0} = (−∞, ξ0). Furthermore,
since P (ξ0) = 0, we find that

P (ξ) = 1− eξ−ξ0 ∀ξ < ξ0. (III.2.5)
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Let us now consider the free-phase, i.e. the set {P = 0} = [ξ0,+∞[. In (the interior of)
this interval, the equation becomes

cN ′ = −N, ∀ξ > ξ0.

The solution of the above linear equation is of the form

N(ξ) = C exp
(
−ξ − ξ0

c̄

)
.

We infer that in (ξ0,+∞), J = cC exp
(
− ξ−ξ0

c̄

)
. By continuity of J at ξ = ξ0, we obtain

c− 1 = J(ξ−0 ) = J(ξ+
0 ) = cC.

Thus C = (c− 1)/c, and we find that (N,P ) = (NHS , PHS)(· − ξ0).

III.2.2 Qualitative properties of travelling waves for the porous medium equation

Let us now consider traveling waves for the porous medium equation (III.1.1). We are
interested in the behavior of such profiles in the limit γ → +∞, with a fixed velocity c > 0.
In the following two subsections, we aim to derive qualitative and quantitative information
on the profiles when γ � 1.

The existence of a profile Nγ solution to (III.1.4)-(III.1.5) is ensured by a former study of
Gilding and Kersner [117]. More precisely, as a particular case of [117], one has the following
result.

Theorem III.2.1 (Gilding & Kersner [117]). Let c∗γ =
√

γ
γ+1 .

1. System (III.1.4)-(III.1.5) has a unique solution Nγ (up to a shift) for every c ≥ c∗γ and
no solution for c < c∗γ.

2. When c = c∗γ, Nγ is a sharp front, i.e. the support of Nγ is bounded above, and, modulo
translation,

Nγ(ξ) =
{

(1− exp (cξ))1/γ for ξ < 0,
0 for ξ ≥ 0.

3. When c > c∗γ, Nγ is positive, strictly monotonic and satisfies

(ln(1−Nγ))′(ξ)→

√
1 + c2

4γ2 −
c

2γ = 1√
1 + c2

4γ2 + c

2γ

as ξ → −∞, (III.2.6)

and
(ln(Nγ))′(ξ)→ −1

c
, as ξ → +∞.
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The above theorem guarantees the existence (and the uniqueness up to a shift) of a
TW Nγ for all c ≥ c∗γ =

√
γ

γ + 1; the smoothness of Nγ when c > c∗γ ; the monotonically
decreasing behavior of Nγ and its boundness on R. Notice that the sharp front with minimal
speed c = c∗γ it is only Hölder continuous with exponent 1/γ at ξ = 0. The fact of Nγ+1

γ

being continuously differentiable in the whole domain means this traveling wave is a weak
solution in the usual sense, while from the physics perspective, it indicates the presence of
continuous flux.

Theorem III.2.1 is adapted from Theorem 1 in [117], and therefore, we refer to this work
for detailed proof.

Figure III.1: Density and pressure profiles for finite values of γ and limit profiles, c = 1.5.

From now on, we pick a velocity c > 1 independent of γ, so that c > c∗γ
1. We also fix the

shift in Nγ by imposing

Nγ(0) =
(1
γ

) 1
γ

. (III.2.7)

The goal of this subsection is to prove the following result:

Proposition III.2.1. Let c > 1 and let (Nγ , Pγ), Pγ := pγ(Nγ), be the unique bounded weak
solution to (III.1.4) satisfying (III.2.7). Let (NHS , PHS) ∈ L∞ ∩W 1,∞(R) be the reference
traveling wave solution moving with speed c of the Hele-Shaw system, see (III.2.1).

1. The following convergence properties hold:

• Weak-star convergence:

Nγ ⇀ NHS in w∗ − L∞, Pγ ⇀ PHS in w∗ −W 1,∞;

1All the results of this chapter remain true with little or no modification if the velocity cγ depends on γ
in such a way that cγ → c̄ with c̄ > 1. However for the sake of readability we have chosen cγ ≡ c > 1.
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• for any compact set K ⊂ R

Pγ → PHS in C(K);

• Nγ → 1 uniformly on R− and P ′γ → P ′HS uniformly in C(]−∞, 0]).

2. Pointwise bounds for Pγ on R−: setting λ = (−c+
√
c2 + 4)/2, we have,

1−
(

1− 1
γ

)
eλξ ≤ Pγ ≤ 1−

(
1− 1

γ

)
eξ, ∀ ξ ≤ 0; (III.2.8)

The rest of this subsection is devoted to the proof of Proposition III.2.1.
L∞ bounds. From the maximum packing constraint, we know that 0 ≤ Pγ ≤ pM = 1.
Then, standard comparison provides

0 ≤ Nγ ≤ lim
γ→+∞

(pM )1/γ = 1.

From Theorem III.2.1, we know that N ′γ ≤ 0, which combined with the definition of the stiff
pressure yields P ′γ ≤ 0.

Therefore there exist (N,P ) ∈ L∞ × L∞(R) such that up to the extraction of a sub-
sequence, Nγ ⇀ N , Pγ ⇀ P in w∗ − L∞(R). Furthermore, N,P are non-increasing. The
choice of shift (III.2.7) implies that Nγ(0)→ 1, Pγ(0)→ 0. Hence, since Nγ is non-increasing
Nγ converges uniformly towards 1 on ]−∞, 0], and Pγ converges uniformly towards zero on
[0,+∞[. It follows that N(ξ) = 1 for ξ < 0 and P (ξ) = 0 for ξ > 0.

Strong convergence of Pγ and Jγ. Define the flux Jγ := cNγ + γN ′γN
γ
γ = cNγ + NγP

′
γ .

We observe that equation (III.1.4) can be written as

J ′γ = −Nγ(1−Nγ
γ ),

so that Jγ is decreasing on R. Combining the latter with the L∞ bounds on Nγ yields

−1 ≤ J ′γ ≤ 0,
0 = Jγ(+∞) ≤ Jγ ≤ Jγ(−∞) = c.

(III.2.9)

In particular, cNγ +NγP
′
γ ≥ 0. Since we already know that Pγ is non-increasing, it follows

that
− c ≤ P ′γ ≤ 0, 0 ≤ Pγ ≤ 1. (III.2.10)

From inequality (III.2.9) (resp. (III.2.10)) and Ascoli’s theorem, Jγ (resp. Pγ) converges
strongly, up to a subsequence, in C(K) for any compact set K ⊂ R. Note also that P ′γ

∗
⇀ P ′

in L∞(R); since Nγ converges uniformly towards 1 on R−, we find that J = cN + NP ′ on
]−∞, 0[.

The exact same cannot be done with Nγ . Indeed, from (III.1.4) and (III.2.9), we can
deduce the following bounds for Nγ

− c Nγ

Nγ
γ γ
≤ N ′γ ≤

c(1−Nγ)
Nγ
γ γ

. (III.2.11)
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Note that obtaining an L∞ bound implies controlling N1−γ
γ γ−1 in L∞ over any compact on

R when γ → +∞. This is impossible as Nγ ∈ (0, 1). In fact, we show in what follows that
N is discontinuous in ξ = 0.

Passing to the limit in equation (III.1.4). We can write the diffusion term as

(NγP
′
γ)′ = (γN ′γNγ

γ )′ = γ

γ + 1(Nγ+1
γ )′′ = γ

γ + 1(PγNγ)′′.

Since Pγ converges strongly in C(K) for all compact set K ⊂ R, while Nγ converges weakly-*
in L∞(R), we can pass to the (weak) limit in equation (III.1.4).

We obtain that (N,P ) satisfies the following equation in the sense of distributions

− cN ′ − (NP )′′ = N(1− P ). (III.2.12)

The same argument also shows that J = cN + (NP )′ on R.

Limit in the free-phase (ξ > 0). We recall that P = 0 in R+. Hence, in (0,+∞), equation
(III.2.12) becomes

−cN ′ = N.

We recognize the ODE satisfied by NHS in the free-phase in the Hele-Shaw system. It follows
that

N(ξ) = C exp
(
−ξ
c

)
∀ξ > 0,

for some C > 0.

Limit in the congested phase (ξ < 0). We recall that N = 1 on ] − ∞, 0[. Inserting
this information into (III.2.12), the following elliptic equation (complementarity equation)
is obtained

P ′′ + (1− P ) = 0, in D′((−∞, 0)). (III.2.13)

From P (0) = 0 (recall that P is continuous), it follows that P (ξ) = 1− eξ for ξ ∈ R−.

(N,P) satisfies (III.2.3). We know that P = 0 on [0,+∞) and N = 1 on R−; hence,
P (1−N) = 0 on R as in (III.2.3).

Jump relation at ξ = 0. We recall that the flux J = cN + (NP )′ is continuous on R, and
in particular at ξ = 0. Thus,

lim
ξ→0+

N(ξ) = 1− 1
c
. (III.2.14)

Gathering all the information, we find that (N,P ) = (NHS , PHS). Furthermore, since the
limit is uniquely identified, we deduce that the whole sequence (Nγ , Pγ) converges (in the
sense given above).

Sub- and super-solution for Pγ on R−. Using (III.2.10), it follows that

−P ′′γNγ = Nγ(1− Pγ) + (c+ P ′γ)N ′γ ≤ Nγ(1− Pγ),

whence
−P ′′γ ≤ 1− Pγ on R.
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Now, let ξ1 ∈ R be arbitrary, and let P1 := Pγ(ξ1). We have for P+ := 1− (1−P1)eξ−ξ1 that
−P ′′+ = 1− P+. Furthermore,

−(Pγ − P+)′′ ≤ 1− (Pγ − P+) on (−∞, ξ∗).

It follows from the maximum principle that Pγ ≤ P+ for ξ ≤ ξ∗. In particular, taking ξ1 = 0
and P1 = 1/γ,

0 ≤ Pγ(ξ) ≤ 1−
(

1− 1
γ

)
eξ ∀ξ ≤ 0. (III.2.15)

In a similar fashion, recalling that γPγ ≥ 1 on R− and P ′γ ≤ 0, we have

−P ′′γ = 1− Pγ +
cP ′γ
γPγ

+
(P ′γ)2

γPγ
≥ 1− Pγ + cP ′γ .

Arguing as before, we define P−(ξ) = 1 −
(
1− 1

γ

)
eλξ, where λ is the positive root of λ2 +

cλ− 1 = 0 (i.e. λ = (−c+
√
c2 + 4)/2). By definition of λ, P− satisfies

−P ′′− = 1− P− + cP ′−, lim
ξ→−∞

P−(ξ) = 1, P−(0) = 1
γ
.

We infer that
1−

(
1− 1

γ

)
eλξ ≤ Pγ(ξ) ∀ ξ ≤ 0. (III.2.16)

Uniform convergence of the flux and of P ′γ on R−.
We recall that J ′γ = −Nγ(1− Pγ). The pointwise bounds on Pγ imply that

|J ′γ | ≤ eλξ ∀ξ ≤ 0, ∀γ > 0.

It follows immediately that Jγ converges towards JHS uniformly in C(R−). Since

P ′γ = Jγ
Nγ
− c,

we infer that P ′γ also converges uniformly towards P ′HS in C(R−). This concludes the proof
of Proposition III.2.1.

III.2.3 Phase portrait of Nγ and further consequences
In this subsection, we derive other properties of the family (Nγ)γ>0, which will be useful in
our stability analysis. These properties rely crucially on the analysis of the phase portrait
of Nγ .

In order to plot the phase portrait of Nγ , we use the results of [97], together with the
following remark: using equation (III.1.4), we have

dN ′γ
dNγ

=
dN ′γ
dξ

dξ

dNγ

= − 1
γNγ

γN ′γ

[
cN ′γ + γ2(N ′γ)2Nγ−1

γ +Nγ(1−Nγ
γ )
]
.
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Hence dN ′γ/dNγ vanishes if and only if Nγ
γ (1−Nγ

γ ) ≤ c2/(4γ2) and N ′γ ∈ {Q−(Nγ), Q+(Nγ)},
where

Q±(Nγ) = 1
2γ2Nγ−1

γ

(
−c±

√
c2 − 4γ2Nγ

γ (1−Nγ
γ )
)
. (III.2.17)

Note that the curves Γ± = {(N,Q±(N)), N ∈ (0, 1)} each consist of two branches, for
N ∈ (0, N1) and N ∈ (N2, 1). The points Ni are the roots of the discriminant, i.e.
Nγ
i (1−Nγ

i ) = c2/(4γ2). The curves Γ+ and Γ− intersect at N = N1 and at N = N2. A
straightforward analysis shows that

N1 = 1− 2 ln γ
γ

+ o

( ln γ
γ

)
, N2 = 1− c2

4γ3 + o

( 1
γ3

)
,

with
Q±(N1) ∼ −2

c
, Q±(N2) ∼ − c

2γ2 .

Furthermore, Q+(N) ∼ −N
c forN � 1, whileQ−(N)→ −∞ asN → 0, andQ+(N) ∼ −γ(1−N)/c

for 1−N � 1, while Q−(1) = −c/γ2.
Note also that with the normalisation of the previous section, i.e. Nγ(0) = γ−1/γ , we

have Nγ(0) ∈ [N1, N2].
Now, let us denote by T (resp. S) the interior region between the curves Γ− and Γ+

for 0 < N < N1 (resp. N2 < N < 1). We also denote by Γ the curve (Nγ , N
′
γ), which we

orientate in the direction of growing Nγ . We make the following observations:

(i) For all Nγ ∈ (N1, N2), dN ′γ/dNγ ≥ 0;

(ii) For allNγ ∈ (0, N1) (resp. Nγ ∈ (N2, 1) ),
dN ′γ/dNγ < 0 iff (Nγ , N

′
γ) ∈ T (resp. (Nγ , N

′
γ) ∈ S);

(iii) If Γ crosses one of the curves Γ±, then dN ′γ/dNγ = 0 at the crossing point and therefore
the tangent to Γ at the crossing point is horizontal;

(iv) dQ±
dN

≷ 0 for all N ∈ (N2, 1);

(v) dQ±
dN

≶ 0 for all N ∈ (0, N1);

(vi) When ξ → −∞, we have Nγ(ξ)→ 1, and N ′γ(ξ) ∼ −
(√

1 + c2

4γ2 −
c

2γ

)
(1−Nγ(ξ)).

The proof of all items is easy and left to the reader, except for (v), which we prove below.
Note that (vi) is a consequence of (III.2.6). It follows from (vi) that for Nγ in a neighborhood
of 1 (the size of which depends on γ), the curve Γ is above Γ+. Furthermore, (iii) and (iv)
imply that if the curve Γ intersects the region S, then it cannot exit S. It follows that Γ lies
strictly above Γ+ for all N ∈ (N2, 0). Consequently, for all Nγ ∈ (N1, 1), dN ′γ/dNγ ≥ 0.
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Figure III.1: Trajectory Γ in the phase plane (N,N ′), c = 2, γ = 5.

Let us now prove that dQ+/dN ≤ 0 for all N ∈ (0, N1) (the inequality for Q− is easier
and left to the reader). We have, setting P = Nγ ,

dQ+
dN

= d

dN

− c

2γ2Nγ−1

1−

√
1− 4γ2

c2 N
γ(1−Nγ)


= − c

2γ2Nγ−1

−γ − 1
N

1−

√
1− 4γ2

c2 N
γ(1−Nγ)

+ 2γ3

c2
Nγ−1(1− 2Nγ)√

1− 4γ2

c2 Nγ(1−Nγ)


= − c

2γ2Nγ

− 4γ2(γ − 1)P (1− P )

c2(1 +
√

1− 4γ2

c2 P (1− P ))
+ 2γ3P (1− 2P )

c2
√

1− 4γ2

c2 P (1− P )


= −

γ(1− 2P )− (γ − 2 + 2P )
√

1− 4γ2

c2 P (1− P )

c(1 +
√

1− 4γ2

c2 P (1− P ))
√

1− 4γ2

c2 P (1− P )
.

Note that for 0 < N < N1, P = O(1/γ2). In this regime, it can be easily checked that the
numerator of the right-hand side is positive, and therefore dQ+/dN < 0 for all N ∈ (0, N1).
This completes the proof of (v).

We deduce that for N ∈ (0, N1), the curve Γ can cross Γ+ at most once, as Γ exits the
region T . This completes the proof of (v). Now, let us argue by contradiction and assume
that there exists N0

γ ∈ (0, N1) such that (N0
γ , (N0

γ )′) ∈ Γ lies above Γ+. Then there are two
possibilities:

• either (Nγ , N
′
γ) is above Γ+ for all Nγ ∈ (0, N1). In that case, dN ′γ/dNγ ≥ 0 for all

Nγ ∈ (0, N1). Since (0, 0) ∈ Γ and N ′γ ≤ 0, it follows that N ′γ = 0 for all Nγ ∈ (0, N1),
which contradicts Theorem III.2.1.
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• or there exists N1
γ ∈ (0, N0

γ ) such that (N1
γ , (N1

γ )′) ∈ Γ ∩ T . In that case, since Γ and
Γ+ intersect at most once, there exists N3 ∈ (0, N1) such that for all Nγ ∈ (0, N3),
(Nγ , N

′
γ) ∈ Γ ∩ T and for Nγ ∈ (N3, N1), (Nγ , N

′
γ) is above Γ+. Hence N ′γ reaches a

minimum for Nγ = N3, and the value of this minimum is Q+(N3) ≥ Q+(N1) ∼ −2/c.
Thus N ′γ is bounded in L∞. Using Ascoli’s theorem, we infer that Nγ converges
uniformly on C(K) for any compact set K ⊂ R as γ →∞. Since NHS is discontinuous
at ξ = 0, we have reached a contradiction.

We conclude that (Nγ , N
′
γ) remains below Γ+ for all Nγ ∈ (0, N1), and therefore Γ does not

cross Γ+. Using once again the fact that minN ′γ must blow up as γ → ∞, we infer that Γ
and Γ− intersect exactly once, at a point where Nγ = N0

γ ∈ (0, N1), and N0
γ is such that

Q−(N0
γ ) → −∞ as γ → +∞. For all Nγ ∈ (0, N0

γ ), dN ′γ/dNγ ≤ 0, and for Nγ ∈ (N0
γ , 1),

dN ′γ/dNγ ≥ 0. Thus we obtain the phase portrait drawn in Figure III.1.
Let us now go back to the analysis of ξ ∈ R 7→ Nγ(ξ). There exists a unique ξ0

γ ∈ R such
that Nγ(ξ0

γ) = N0
γ . Note that dN ′γ/dNγ and N ′′γ have opposite signs. Hence, Nγ is concave

on (−∞, ξ0
γ) and convex on (ξ0

γ ,+∞). We are now ready to prove the following Lemma:

Lemma III.2.2. We normalize the function Nγ so that Nγ(0) = γ−1/γ. We have the
following properties:

• ξ0
γ > 0 and limγ→∞ ξ

0
γ = 0;

• supγ>0 supξ<0 |N ′γ(ξ)| < +∞ and ‖N ′γ‖L∞(R) = −Q−(N0
γ )→ +∞ as γ →∞;

• limγ→∞N
0
γ = 1− c−1;

• For γ large enough, for all ξ ≥ ξ0
γ,

0 ≤ Nγ(ξ) ≤ N0
γ exp

(
− 1

2c(ξ − ξ0)
)

;

• P ′γ → P ′HS and Nγ → NHS in Lploc(R) for all p ∈ [1,+∞[;

• Let ξ∗γ > ξ0
γ such that N ′γ(ξ∗γ) = −1

c

(
1− 1

c

)
. Then ξ∗γ → 0 and Nγ(ξ∗) → 1 − c−1 as

γ →∞.

Proof. First step: Upper-bound on N0
γ and on ξ0

γ.
The analysis of the phase portrait entails immediately that ‖N ′γ‖L∞(R) = −Q−(N0

γ ). As
recalled above, if Q−(N0

γ ) remains bounded, then Nγ converges strongly in C(K) for any
compact set K, which is absurd since NHS is discontinuous. Hence Q−(N0

γ ) must blow up.
Since

− c

γ2(N0
γ )γ−1 ≤ Q−(N0

γ ) ≤ − c

2γ2(N0
γ )γ−1 ,

we deduce that (N0
γ )γ = o(γ−2))� γ−1 = Nγ(0)γ . Thus ξ0

γ > 0.
Since the flux Jγ is decreasing on R, it follows that Jγ(ξ0

γ) ≤ Jγ(0). Now

Jγ(ξ0
γ) = cN0

γ + γ(N0
γ )γQ−(N0

γ ) =
(
c+O

(1
γ

))
N0
γ , (III.2.18)
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and
Jγ(0) = γ−1/γ

(
c+ P ′γ(0)

)
.

Thanks to the sub- and super-solutions for Pγ on R−, we know that for all ξ < 0,(
1− 1

γ

)
(1− eλξ) ≤ Pγ − Pγ(0) ≤

(
1− 1

γ

)
(1− eξ),

where λ = (
√
c2 + 4 − c)/2. Hence P ′γ(0) ∈ [−(1 − γ−1), (1 − γ−1)λ]. We deduce that

J(0) ≤ c− (1− γ−1)λ, and therefore

N0
γ ≤

(
c+O

(1
γ

))−1 (
c−

(
1− 1

γ

)
λ

)
≤ 1− λ

c
+O

(1
γ

)
. (III.2.19)

Hence lim supγ→∞N0
γ ≤ (c− λ)/c < 1.

The bound on P ′γ(0) also implies the boundedness of N ′γ on R−. Indeed, since ξ0
γ > 0,

N ′γ is decreasing and negative on R−, and

sup
ξ<0
|N ′γ(ξ)| = |N ′γ(0)| = −

P ′γ(0)
γNγ(0)γ−1 = O(1).

Let us now address the upper-bound on ξ0
γ . We recall that Nγ is concave on (−∞, ξ0

γ).
Consequently, for all ξ ∈ (0, ξ0

γ),

0 ≤ Nγ(ξ) ≤ Nγ(0) +N ′γ(0)ξ.

In particular, taking ξ = ξ0
γ , we deduce that

ξ0
γ ≤ −

Nγ(0)
N ′γ(0) = −γPγ(0)

P ′γ(0) = − 1
P ′γ(0) ,

since Pγ(0) = γ−1 by choice of our normalization. We deduce in particular that

0 ≤ ξ0
γ ≤

1
λ(1− γ−1) .

Second step: Super-solution for Nγ on (ξ0
γ ,+∞).

We recall that Nγ is convex on (ξ0
γ ,+∞). As a consequence, using the equation on Nγ ,

we have

−cN ′γ = Nγ(1−Nγ
γ )+γN ′′γNγ

γ +γ2(N ′γ)2Nγ−1
γ ≥ Nγ(1−(N0

γ )γ) ∀ξ ∈ (ξ0
γ ,+∞). (III.2.20)

The Gronwall Lemma then implies that

Nγ(ξ) ≤ N0
γ exp

(
−

1− (N0
γ )γ

c
(ξ − ξ0

γ)
)
∀ξ ≥ ξ0

γ . (III.2.21)

Recalling (III.2.19), we deduce that for γ large enough, for all ξ ∈ (ξ0
γ ,+∞),

Nγ(ξ) ≤ N0
γ exp

(
− 1

2c(ξ − ξ0
γ)
)
. (III.2.22)
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Third step: Strong convergence of P ′γ and Nγ.
We start with an L2 bound for P ′γ . From (III.1.4), Pγ is solution to

− cγP ′γ − γPγP ′′γ − (P ′γ)2 = γPγ(1− Pγ). (III.2.23)

Integrating Equation (III.2.23) over R gives

(γ − 1)
∫
R
|P ′γ(ξ)|2dξ = −cγ + γ

∫
R
Pγ(1− Pγ) dξ.

Hence, we get the following inequality

‖P ′γ‖2L2(R) ≤
γ

γ − 1
(
‖Pγ‖L1(R+) + ‖1− Pγ‖L1(R−)

)
.

The right-hand side is uniformly bounded with respect to γ thanks to sub-solution for Pγ
on R− (see Proposition III.2.1) and to the upper-bound for Nγ on (ξ0

γ ,+∞) (see (III.2.22)).
On the interval (0, ξ0

γ), we simply use the fact that ξ0
γ is bounded and Pγ ≤ Pγ(0). Hence,

(P ′γ)γ>1 is bounded in L2(R).

We now show an additional strong convergence of (P ′γ)γ in L2. Going back to Equa-
tion (III.2.23) and taking into account that (P ′γ)γ is uniformly bounded in L2(R), we have
for any ψ ∈ C∞c (R):∫

R
ψPγ

[
P ′′γ + (1− Pγ)

]
dξ = −1

γ

∫
R
ψ
[
cγP

′
γ + (P ′γ)2] dξ → 0 as γ → +∞.

Hence, by integration by parts in the left-hand side:∫
R
ψ(P ′γ)2 dξ +

∫
R
ψ′PγP

′
γ dξ +

∫
R
ψPγ(1− Pγ) dξ → 0 as γ → +∞.

From the previous bounds, it is clear that∫
R
ψ′PγP

′
γ dξ+

∫
R
ψPγ(1−Pγ) →

γ→+∞

∫
R
ψ′PHS P

′
HS dξ+

∫
R
ψPHS(1−PHS) dξ = −

∫
R
ψ(P ′)2,

using the complementary equation (III.2.13). Finally∫
R
ψ(P ′γ)2 dξ →

∫
R
ψ(P ′HS)2 dξ as γ → +∞,

which means that (P ′γ)γ converges strongly in L2
loc(R) to P ′HS .

We then recall that Jγ = Nγ(c + P ′γ). Since (P ′γ)γ converges in L2
loc, there exists a sub-

sequence (which we still denote by P ′γ) which also converges almost everywhere. Recall that
(Jγ)γ converges in C(K) for any compact set K ⊂ R. Therefore (Nγ)γ converges almost
everywhere - up to a subsequence - on any set of the form ∩γ>0{c+ P ′γ ≥ δ}, with δ > 0.

Let K be a compact set in R, and let M = supK JHS < c, m = infK JHS > 0. There
exists γK > 0 such that for γ ≥ γK , Jγ ∈ [m/2, (c + M)/2]. Since Jγ ≤ c + P ′γ , we deduce
that c+ P ′γ ≥ m/2 on K for γ ≥ γK . Whence (Nγ)γ converges almost everywhere on K, up
to a subsequence. Since Nγ is bounded in L∞, Lebesgue’s dominated convergence theorem
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implies that (Nγ)γ converges towards NHS in Lp(K) for any p ∈ [1,+∞[. Note that the
limit is uniquely identified. Hence the whole sequence (Nγ)γ converges in Lploc.
Fourth step: Convergence of ξ0

γ and N0
γ .

We argue by contradiction and assume that lim supγ→∞ ξ0
γ > 0. Then there exists ξ̄ > 0

such that ξ̄ ≤ ξ0
γ for a subsequence. We recall that N ′′γ ≤ 0 on (0, ξ̄). Passing to the limit

in the sense of distributions along this subsequence, we obtain that N ′′HS ≤ 0 in D′((0, ξ̄)),
which is absurd. Thus ξ0

γ → 0 as γ →∞.
Let us now go back to (III.2.18). We recall that Jγ converges uniformly towards JHS ,

and that JHS(0) = c− 1. It follows that limγ→∞N
0
γ = 1− c−1.

Fifth step: Asymptotic behavior of ξ∗γ and Nγ(ξ∗γ).
First, notice that ξ∗γ is well-defined since N ′γ is increasing on (ξ0

γ ,+∞), with N ′γ(+∞) = 0
and limγ→∞N

′
γ(ξ0

γ) = −∞. Furthermore, since Nγ(ξ∗γ) ≤ N0
γ , lim supγ→∞Nγ(ξ∗γ) ≤ 1− c−1.

In order to prove that limγ→∞ ξ
∗
γ = 0, we argue once again by contradiction and we

assume that lim supγ→∞ ξ∗γ > 0. Thus there exists δ > 0 such that ξ∗γ ≥ δ along a sub-
sequence. By monotony of N ′γ , we know that N ′γ(ξ) ≤ N ′γ(ξ∗γ) = −c−1(1 − c−1) for all
ξ ∈ (ξ0

γ , δ) ⊂ (ξ0
γ , ξ
∗
γ). Thus, passing to the weak limit, we find that there exists a non-empty

open interval included in (0,+∞) on which N ′HS ≤ −c−1(1− c−1). This contradicts the ex-
plicit expression of N ′HS , namely N ′HS = −c−1(1− c−1)e−ξ/c; and therefore limγ→∞ ξ

∗
γ = 0.

The convergence of Nγ(ξ∗γ) towards 1− c−1 follows from the same arguments as the one
of N0

γ : we note that

Jγ(ξ∗γ) = cNγ(ξ∗γ)− γ 1
c

(
1− 1

c

)
Nγ(ξ∗γ)γ .

Since lim supγ→∞Nγ(ξ∗γ) < 1, the second term in the right-hand side converges towards zero
exponentially fast. We also recall that by uniform convergence of Jγ , Jγ(ξ∗γ)→ JHS(0) = c−1
as γ →∞. Hence limγ→∞Nγ(ξ∗γ) = 1− c−1.

III.2.4 Quantitative bounds for the profiles Nγ

In order to prove our quantitative stability result in Theorem III.1.2, we will need some
quantitative information on the asymptotic behavior of Nγ and its derivatives (e.g., the size
of ‖N ′γ‖L∞). This subsection is devoted to the proof of such bounds. More precisely, we
prove the following result:

Lemma III.2.3. There exists a constant C > 1, depending only on c, such that the following
properties hold, for any γ > 0:

sup
0<|h|≤1

sup
x∈R

1
|h|
|Nγ(x+ h)−Nγ(x)|

Nγ(x) +
∥∥∥∥∥N ′γNγ

∥∥∥∥∥
∞
≤ Cγ ,

sup
0<|h|≤1

sup
x∈R

1
|h|

∣∣∣∣∣Nγ(x+ h)−Nγ(x)
N ′γ(x)

∣∣∣∣∣ ≤ Cγ , sup
ξ<0

∣∣∣∣∣1− PγP ′γ

∣∣∣∣∣ ≤ C.
Proof. Bound on N ′γ/Nγ in the free zone ξ > ξ∗γ.
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We set Lγ := N ′γ
Nγ

+ c−1. Using the equation and the convexity of Nγ in ξ > ξ∗γ , see
(III.2.20), we have

−cN ′γ(ξ) ≥ Nγ(ξ)(1−(Nγ(ξ))γ) =⇒ Lγ(ξ) =
N ′γ(ξ)
Nγ(ξ)+1

c
≤ (Nγ(ξ))γ

c
≤

(Nγ(ξ∗γ))γ

c
∀ ξ ≥ ξ∗γ .

Furthermore, since N ′γ(ξ∗γ) = −c−1(1 − c−1) and Nγ(ξ∗γ) → 1 − c−1, we immediately infer
that Lγ(ξ∗γ) vanishes as γ →∞. We now derive an equation for Lγ in order to obtain a lower
bound on Lγ . We have, using the equation on Nγ ,

L′γ =
N ′′γ
Nγ
−

(N ′γ)2

N2
γ

= − 1
γNγ+1

γ

(
Nγ(1−Nγ

γ ) + cN ′γ + γ2(N ′γ)2Nγ−1
γ

)
−

(N ′γ)2

N2
γ

= − cLγ
γNγ

γ
+ 1
γ
− (γ2 + 1)

(
Lγ −

1
c

)2
.

Thus Lγ satisfies the differential equation

L′γ +
[
(γ2 + 1)Lγ + c

γNγ
γ
− 2(γ2 + 1)

c

]
Lγ = 1

γ
− γ2 + 1

c2 .

Note that the coefficient c
γNγ

γ
− 2(γ2+1)

c is exponentially large in the free zone, and drives a
strong convergence of Lγ towards zero. Thus the whole idea is to prove that the quadratic
term (γ2 + 1)L2

γ does not perturb the linear behavior. This easily follows from a bootstrap
argument. Indeed, note that at ξ = ξ∗γ , for γ large enough

(γ2 + 1)Lγ + c

γNγ
γ
− 2(γ2 + 1)

c
>

c

2γNγ
γ
. (III.2.24)

Thus by continuity, this property remains true on a non-empty open interval on the right of
ξ∗γ . Let

ξmax := sup{ξ > ξ∗γ , (III.2.24) holds on (ξ∗γ , ξ)}.

Then ξmax > ξ∗γ , and on the interval (ξ∗γ , ξmax), we have

L′γ + c

2γNγ
γ
Lγ ≥

1
γ
− γ2 + 1

c2 ≥ −γ
2 + 1
c2 .

The Gronwall Lemma then implies that for all ξ ∈ (ξ∗γ , ξmax),

Lγ(ξ) ≥ Lγ(ξ∗γ) exp
(
−
∫ ξ

ξ∗γ

c

2γNγ
γ

)
− γ2 + 1

c2

∫ ξ

ξ∗γ

exp
(
−
∫ ξ

ξ′

c

2γNγ
γ

)
dξ′.

Now, we recall that for ξ > ξ∗γ , for γ sufficiently large,

Nγ(ξ) ≤ Nγ(ξ∗γ) ≤ 1− 1
2c .
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Thus for all ξ ∈ (ξ∗γ , ξmax),

Lγ(ξ) ≥ −|Lγ(ξ∗)| exp
(
−(ξ − ξ∗γ) c2γ

(
1− 1

2c

)−γ)

−γ
2 + 1
c

∫ ξ

ξ∗γ

exp
(
−(ξ − ξ′) c2γ

(
1− 1

2c

)−γ)
dξ′

≥ −|Lγ(ξ∗)| exp
(
−(ξ − ξ∗γ) c2γ

(
1− 1

2c

)−γ)
− 2γ(γ2 + 1)

c2

(
1− 1

2c

)γ
.

Note that the right-hand side of the above inequality converges uniformly towards zero. In
particular, for γ sufficiently large, Lγ(ξ) ≥ −1 for all ξ ∈ (ξ∗γ , ξmax). It follows that

(γ2 + 1)Lγ + c

γNγ
γ
− 2(γ2 + 1)

c
≥ c

γNγ
γ
− (c+ 2)(γ2 + 1)

c
≥ 3c

4γNγ
γ
∀ξ ∈ (ξ∗γ , ξmax).

By a bootstrap argument, we deduce that ξmax = +∞. This implies, in particular, that
Lγ → 0 uniformly on (ξ∗γ ,+∞).

Remark III.2.2. The uniform convergence of Lγ towards zero yields the existence of sub-
solutions of Nγ in the zone ξ > ξ∗γ. Indeed, let δ > 0 be arbitrary. Then for γ large enough,
Lγ ≥ −δ, and therefore N ′γ

Nγ
≥ −(c−1 + δ). By the Gronwall Lemma, we obtain

Nγ(ξ) ≥ Nγ(ξ∗γ) exp
(
−
(1
c

+ δ

)
(ξ − ξ∗γ)

)
. (III.2.25)

Bound on N ′γ/Nγ and on the first difference quotient in L∞.
We distinguish between ξ < ξ∗γ and ξ > ξ∗γ and we write, for γ sufficiently large,∥∥∥∥∥N ′γNγ

∥∥∥∥∥
∞

= max
(

sup
ξ<ξ∗γ

|N ′γ |
Nγ

, sup
ξ>ξ∗γ

∣∣∣∣Lγ − 1
c

∣∣∣∣
)

≤ max
(

1
Nγ(ξ∗γ)‖N

′
γ‖∞,

1
c

+ 1
)

≤ C|Q−(N0
γ )| ≤

(
1− 1

2c

)−γ
.

Let us now consider the difference quotient

1
|h|
|Nγ(x+ h)−Nγ(x)|

Nγ(x) .

We will need to distinguish several cases:

• Case x < ξ∗γ : in that case, Nγ(x) ≥ Nγ(ξ∗γ) → 1 − c−1, and therefore the difference
quotient is bounded by C‖N ′γ‖∞.

• Case x > ξ∗γ :
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– Sub-case h > 0: we write Nγ(x+h)−Nγ(x) =
∫ h
0 N

′
γ(x+y)dy, and we recall that

since Lγ is uniformly bounded, |N ′γ | ≤ CNγ for some constant C in (ξ∗γ ,+∞).
Using the monotony of Nγ , we deduce that the difference quotient is bounded.

– Sub-case h < 0 and x+h > ξ∗γ : an argument similar to the sub-case h > 0 applies.
In that case, we obtain, using a variant of Remark III.2.2,

1
|h|
|Nγ(x+ h)−Nγ(x)|

Nγ(x) ≤ CNγ(x+ h)
Nγ(x) ≤ C.

– Sub-case x+ h ≤ ξ∗γ : in that case, note that x = x+ h− h ≤ ξ∗γ + 1 since |h| ≤ 1.
Hence Nγ(x) ≥ Nγ(ξ∗γ + 1), which is uniformly bounded from below thanks to
(III.2.25). Thus the difference quotient is bounded by C‖N ′γ‖∞.

Gathering these results, we obtain the bounds announced in the Lemma.

Bound on (1− Pγ)/P ′γ on R−.
Let Mγ := (1 − Pγ)/P ′γ . According to Proposition III.2.1, Mγ → (1 − PHS)/P ′HS = −1

locally uniformly on R−. So, for γ sufficiently large, Mγ(ξ) ∈ [−3/2,−1/2] for all ξ ∈ [−1, 0].
Furthermore we know that

N ′γ
P ′γ

(ξ) = 1
γ(Nγ(ξ))γ−1 →

1
γ
, lim

ξ→−∞

1− Pγ(ξ)
1−Nγ(ξ) = lim

N→1−
1−Nγ

1−N = γ,

so that, thanks to Theorem III.2.1,

Mγ(ξ) =
N ′γ(ξ)
P ′γ(ξ)

1−Nγ(ξ)
N ′γ(ξ)

1− Pγ(ξ)
1−Nγ(ξ) → −

√1 + c2

4γ2 −
c

2γ

−1

, as ξ → −∞.

Now, let us consider the interval (−∞,−1]. There are two possibilities:

• eitherMγ(ξ) ∈ [Mγ(−1),Mγ(−∞)] for all ξ ∈ (−∞,−1]. In that case, for γ sufficiently
large, Mγ(ξ) ∈ [−3/2,−1/2] for all ξ ∈ (−∞,−1];

• or Mγ takes values outside the interval [Mγ(−1),Mγ(−∞)]. In that case Mγ reaches
a local extremum at some ξM ∈ (−∞,−1), and therefore M ′γ(ξM ) = 0.
Let us compute M ′γ . Using the equation satisfied by Pγ (III.2.23), we have

M ′γ = −1−
P ′′γ (1− Pγ)

(P ′γ)2

= −1 + 1− Pγ
(P ′γ)2

(
1− Pγ +

cP ′γ
γPγ

+
(P ′γ)2

γPγ

)

= −1 +M2
γ + c

Mγ

γPγ
+ 1− Pγ

γPγ
.

At ξ = ξM , the right-hand side vanishes, and therefore

Mγ(ξM ) = 1
2

(
− c

γPγ(ξM ) ±
√

4 + c2

γ2Pγ(ξM )2 − 41− Pγ(ξM )
γPγ(ξM )

)
.
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Note that, thanks to (III.2.8), Pγ(ξM ) ≥ Pγ(−1) ≥ 1 − e−λ > 0. Hence Mγ(ξM ) =
±1 +O(γ−1). Recalling that Mγ < 0 on R−, we deduce that Mγ(ξM ) = −1 +O(γ−1).
Once again, for γ sufficiently large, we find that Mγ(ξ) ∈ [−3/2,−1/2] for all ξ ∈
(−∞,−1].

Hence in all cases, we deduce that for γ sufficiently large,

− 3
2 ≤

1− Pγ
P ′γ

≤ −1
2 ∀ξ ∈ R−. (III.2.26)

Note that these bounds (which are stronger than what is announced in the statement of
the Lemma) imply in particular the following inequalities, which are easy consequences of
the Gronwall Lemma: for all ξ ≤ ξ′ ≤ 0, for γ large enough,

(1− Pγ(ξ)) exp
(
−2(ξ′ − ξ)

)
≤ 1− Pγ(ξ′) ≤ (1− Pγ(ξ)) exp

(
−2

3(ξ′ − ξ)
)
. (III.2.27)

Bound on the second difference quotient.
We now address the bound on

sup
0<|h|≤1

sup
x∈R

1
|h|

∣∣∣∣∣Nγ(x+ h)−Nγ(x)
N ′γ(x)

∣∣∣∣∣ .
Once again, we will need to distinguish between several zones. First, note that

1
|h|

∣∣∣∣∣Nγ(x+ h)−Nγ(x)
N ′γ(x)

∣∣∣∣∣ = 1
|h|

∣∣∣∣∣Nγ(x+ h)−Nγ(x)
Nγ(x)

∣∣∣∣∣
∣∣∣∣∣Nγ(x)
N ′γ(x)

∣∣∣∣∣ .
Hence for x > −2, this difference quotient is bounded by

sup
x∈R

sup
0<|h|≤1

1
|h|

∣∣∣∣∣Nγ(x+ h)−Nγ(x)
Nγ(x)

∣∣∣∣∣ sup
x>−2

Nγ(x)
|N ′γ(x)| .

For x > ξ∗γ , Nγ/N
′
γ = (Lγ − c−1)−1, and we recall that Lγ converges uniformly towards

zero on (ξ∗γ ,+∞). Hence Nγ/N
′
γ is uniformly bounded on (ξ∗γ ,+∞). And looking at the

variations of N ′γ , we infer that

sup
x∈(−2,ξ∗γ)

Nγ(x)
|N ′γ(x)| ≤ max

(
1

|N ′γ(−2)| ,
1

|N ′γ(ξ∗γ)|

)
≤ Cγ.

Thus
sup

0<|h|≤1
sup

x∈(−2,+∞)

1
|h|

∣∣∣∣∣Nγ(x+ h)−Nγ(x)
N ′γ(x)

∣∣∣∣∣ ≤ γCγ ≤ Cγ1 ,
for some constant C1 > C.

We now consider the interval (−∞,−2). Since |h| ≤ 1, we have x + h ≤ −1. Hence x
and x+ h are in the congested zone. We write

1
h

Nγ(x+ h)−Nγ(x)
N ′γ(x) =

∫ 1

0

N ′γ(x+ τh)
N ′γ(x) dτ.
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Recall that N ′γ = γ−1P ′γN
−(γ−1)
γ . Hence

N ′γ(x+ τh)
N ′γ(x) =

P ′γ(x+ τh)
P ′γ(x)

Nγ(x)γ−1

Nγ(x+ h)γ−1 .

Note that Nγ−1
γ = Pγ/Nγ is uniformly bounded from above and from below on (−∞,−1).

Thus we focus on the quotient P ′γ(x+ τh)/P ′γ(x), which we further decompose as

P ′γ(x+ τh)
P ′γ(x) =

P ′γ(x+ τh)
1− Pγ(x+ τh)

1− Pγ(x+ τh)
1− Pγ(x)

1− Pγ(x)
P ′γ(x) = Mγ(x)

Mγ(x+ τh)
1− Pγ(x+ τh)

1− Pγ(x) .

Using (III.2.27) and (III.2.26), we deduce that∣∣∣∣∣P ′γ(x+ τh)
P ′γ(x)

∣∣∣∣∣ ≤ Ce2|h|.

Hence
sup

0<|h|≤1
sup
x≤−2

1
|h|

∣∣∣∣∣Nγ(x+ h)−Nγ(x)
N ′γ(x)

∣∣∣∣∣ ≤ C.

Our nonlinear stability result will hold in weighted Sobolev spaces. The weights will
depend on the function Nγ and its derivative, and therefore will have abrupt changes in
the transition zone (0, ξ∗γ). In order to monitor precisely these changes, we introduce two
additional abscissa ξ−γ and ξ̃γ , which we define as follows:

Definition III.2.1 (Definition of ξ−γ and ξ̃γ).

• The abscissa ξ−γ ∈ R is the unique point where

Pγ(ξ−γ ) =
(

c3

(c− 1)(γ + 1)

)1/2

. (III.2.28)

• The abscissa ξ̃γ ∈ R is the unique point such that Nγ(ξ̃γ) ∈ (0, N0
γ ) and

N ′γ(ξ̃γ) = − c− 1
4γ2Nγ(ξ̃γ)γ−1 .

Remark III.2.3. • Note that ξ−γ is well-defined by monotony of Pγ, and ξ−γ < 0 since
Pγ(ξ−γ ) > Pγ(0);

• The definition of ξ̃γ is a little more intricate. We recall that for all Nγ ∈ (0, N0
γ ),

Q−(N) < N ′γ < 0, where Q− is defined in (III.2.17) and dN ′γ/dNγ ≤ 0 for all Nγ ∈
(0, N0

γ ); we refer to the analysis of the phase portrait in the previous subsection.

Now, define Q̃(N) by
Q̃(N) := − c− 1

4γ2Nγ−1 .
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Figure III.1: Definition of the point Ñγ in the phase plane (N,N ′), c = 2, γ = 5.

It is clear from the definition of Q̃ and Q− that Q− < Q̃ for all N ∈ (0, N0
γ ), and Q̃ is

monotone increasing on that interval. Consequently, the curve (Nγ , N
′
γ) intersects the

curve (N, Q̃(N)) exactly once on the interval (0, N0
γ ) (see Figure III.1). We denote the

abscissa of the intersection point as Ñγ, and ξ̃γ is defined implicitly as Nγ(ξ̃γ) = Ñγ.

Let us now give some properties of ξ̃γ and ξ−γ , which will be used in the next section:

Lemma III.2.4 (Properties of ξ̃γ and ξ−γ ). For γ large enough, the following properties
hold:

• ξ−γ < 0 < ξ0
γ < ξ̃γ < ξ∗γ. As a consequence, limγ→∞Nγ(ξ̃γ) = 1− c−1;

• ξ−γ = O(γ−1/2), and ξ̃γ = O(γ−1);

• P ′γ ≤ −Cγ−1 for all ξ ∈ (ξ−γ , ξ̃γ).

Proof. Relative positions of ξ0
γ , ξ̃γ , ξ

∗
γ.

By definition of ξ̃γ , Nγ(ξ̃γ) < N0
γ , and thus ξ0

γ < ξ̃γ . Furthermore, we recall that N ′γ is
monotone increasing on (ξ0

γ ,+∞), and

N ′γ(ξ̃γ) = − c− 1
4γ2Nγ(ξ̃γ)γ−1 ≤ −

c− 1
4γ2(N0

γ )γ−1 → −∞.

Whence N ′γ(ξ̃γ) < N ′γ(ξ∗γ), and therefore ξ̃γ < ξ∗γ . The limit of Nγ(ξ̃γ) follows from the
monotony of Nγ and the fact that limγ→∞Nγ(ξ0

γ) = limγ→∞Nγ(ξ∗γ) = 1− c−1 (see Lemma
III.2.2).

Size of ξ−γ .
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First, considering the sub-solution for Pγ , we see that ξ−γ > −1. Using (III.2.26), we
recall that P ′γ is bounded away from zero on (−1, 0), for γ large enough. Thus,

|Pγ(ξ−γ )− Pγ(0)|
sup(ξ−γ ,0) |P ′γ |

≤ |ξ−γ | ≤
|Pγ(ξ−γ )− Pγ(0)|

inf(ξ−γ ,0) |P ′γ |
,

and thus
C−1
√
γ
≤ |ξ−γ | ≤

C
√
γ
.

Lower-bound for |P ′γ | on (ξ−γ , ξ̃γ) and size of ξ̃γ.
Let us introduce yet another intermediate point ξint

γ such that Nγ(ξint
γ ) = 1 − (2c)−1.

We recall that Nγ(ξ0
γ) → 1 − c−1, and therefore ξint

γ ∈ (0, ξ0
γ) for γ large enough. Now, for

ξ ∈ (ξ−γ , ξint
γ ), we have Nγ(ξ) ∈ [1− (2c)−1, 1], and

P ′γ = Jγ − cNγ

Nγ
≤ Jγ − c+ 1

2 .

We recall that Jγ(ξ)→ c− 1 uniformly on that interval. Thus P ′γ ≤ −C < 0 on (ξ−γ , ξint
γ ) for

γ sufficiently large, for some uniform constant C.
In particular, since Pγ(ξint

γ ) = (1− (2c)−1)γ is exponentially small, it follows that

ξint
γ ≤

|Pγ(ξint
γ )− Pγ(0)|

inf [0,ξint
γ ] |P ′γ |

≤ C

γ
.

Let us now consider the intervals (ξint
γ , ξ0

γ) and (ξ0
γ , ξ̃γ). Using the notations introduced

in the previous subsection, it is easily checked that Nγ(ξint
γ ) ≤ N1. As a result, using the

phase portrait of Nγ (see Figure III.1), N ′γ ≤ Q−(Nγ) for all ξ ∈ (ξint
γ , ξ0

γ). In particular,

P ′γ = γN ′γ(ξ)
(
Nγ(ξ)

)γ−1

≤ γ
(
Nγ(ξ)

)γ−1 × 1
2γ2(Nγ(ξ)

)γ−1
(
− c−

√
c2 − 4γ2(Nγ(ξ)

)γ(1−
(
Nγ(ξ)

)γ)
)

≤ − c

2γ ∀ξ ∈ (ξint
γ , ξ0

γ).

For ξ ∈ (ξ0
γ , ξ̃γ), the argument is similar. On this interval, N ′γ ≥ Q−(Nγ), but N ′γ ≤ Q̃(Nγ)

by definition of ξ̃γ . Thus

P ′γ(ξ) ≤ γ
(
Nγ(ξ)

)γ−1 ×
(
− c− 1

4γ2(Nγ(ξ)
)γ−1

)
≤ −c− 1

4γ ∀ξ ∈ (ξ0
γ , ξ̃γ).

We obtain the desired lower bound on |P ′γ | on (ξint
γ , ξ̃γ). It follows that

ξ̃γ − ξint
γ ≤

|Pγ(ξ̃γ)− Pγ(ξint
γ )|

inf(ξint
γ ,ξ̃γ) |P ′γ |

≤ Cγ
(

1− 1
2c

)γ
= o(γ−1).

Hence ξ̃γ and ξint
γ are exponentially close. The estimate on ξ̃γ follows.
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Let us conclude this section by saying a few words about the proof of Theorem III.1.1.
The sizes and signs of ξ−γ and ξ̃γ are given in Lemma III.2.4. Inequality (III.1.6) follows
from the monotony of Nγ and from the definition of ξ−γ . Let us say few words about the
inequality claimed in (III.1.7). Actually, the reader may check that the derivation of sub-
and super-solutions on R− made in (III.2.15)-(III.2.16) can be easily adapted to the interval
(−∞, ξ−γ ], using the fact that Pγ(ξ−γ ) = O(γ−1/2) and γPγ ≥ C

√
γ on (−∞, ξ−γ ]. It follows

that
1−

(
1− Pγ(ξ−γ )

)
eµγξ ≤ Pγ(ξ) ≤ 1−

(
1− Pγ(ξ−γ )

)
eξ,

where µγ is the positive root of µ2 + C√
γµ−1 = 0. It is easily checked that µ = 1−O(γ−1/2),

which leads to inequality (III.1.7).
The size of ‖N ′γ‖∞ in the intermediate region (ξ−γ , ξ̃γ) is an easy consequence of Lemma

III.2.2, and the bounds on the pressure in that zone follow from the monotony of Pγ , the
definitions of ξ−γ and the asymptotic behavior of Nγ(ξ̃γ) (see Lemma III.2.4).

Eventually, the lower and bounds on Nγ in the free zone follow from (III.2.25) and
(III.2.22) respectively.

The convergence properties for Nγ , Pγ at the end of Theorem III.1.1 are a consequence
of Lemma III.2.2 and Proposition III.2.1.

III.3 Stability of the profiles Nγ

The goal of this section is to prove that the solution of the equation

∂tnγ − γ∂x
(
nγγ∂xnγ)

)
= nγ

(
1− nγγ

)
(III.3.1)

associated to an initial datum that lies between two shift of the profile Nγ , converges (in a
sense specified below) towards Nγ as t → +∞. After a presentation of the general strat-
egy, we enter in the details of the two main steps of the demonstration: the analysis of the
linearized system and, next, the control of the nonlinear contributions. To keep the presen-
tation as seamless as possible, we have postponed the proof of some technical lemmas to the
next section.

This section contains rather technical ingredients. Therefore, in order to alleviate the
notation as much as possible, we will systematically drop the dependency with respect to γ
in the computations and proofs: Nγ will be denoted by N , nγ will be denoted by n, etc. We
only keep track of this dependency in the statement of our main result.

In the whole section, for all weights and coefficients f(t, x) that only depend on ξ = x−ct,
we denote f(t, x) = f̄(x− ct).

III.3.1 Overall strategy

We define here our notion of stability and convergence towards the profile Nγ . We introduce
a weight

w̄0(ξ) = KNγ
γ (ξ)(N ′γ(ξ))2 exp

(∫ ξ

ξ−γ

c

γNγ(z)dz
)
, (III.3.2)
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with a normalization constant K chosen so that w̄0(ξ−γ ) = 1. We will prove that for suffi-
ciently small and decaying initial data,∫

R

∣∣∣nγ(t, x)−Nγ(x− ct)
N ′γ(x− ct)

∣∣∣2w̄0(x− ct) dx→ 0 as t→ +∞. (III.3.3)

The result is summarized in the following theorem.

Theorem III.3.1. There exists η ∈]0, 1[ such that the following result holds. Let γ > 1
be fixed, sufficiently large. Let us assume that n0

γ lies between two shifts of Nγ, i.e. there
exists h > 0 such that n0

γ(x) ∈ [Nγ(x + h), Nγ(x − h)] for all x ∈ R. Let nγ be the solution
of (III.1.1) associated with n0

γ and

uγ(t, x) := nγ(t, x)−Nγ(x− ct)
N ′γ(x− ct) .

Assume that ∫
R
|uγ(0, x)|2w̄0(x) dx < +∞.

Then there exists a constant cγ > 0, decreasing exponentially with γ, such that if h ≤ ηγ,
the following inequalities hold∫

R
|uγ(t, x)|2w̄0(x− ct) dx ≤ e−cγt

∫
R
|uγ(0, x)|2w̄0(x) dx ∀t ≥ 0,

γ

∫ ∞
0

∫
R
|∂xuγ(t, x)|2Nγ

γ (x− ct)w̄0(x− ct) dx dt ≤
∫
R
|u(0, x)|2w̄0(x) dx.

(III.3.4)

Note that this statement is merely a rephrasing of Theorem III.1.2 in terms of the un-
known uγ . We emphasize that uγ is a natural variable when linearizing equation (III.3.1)
around Nγ(x − ct). Indeed, since equation (III.3.1) has constant coefficients and since
Nγ(x − ct) is a particular solution of the equation, it is classical that ∂xNγ(x − ct) is a
solution of the linearized equation around Nγ(x− ct) (and we also recall that ∂xNγ does not
vanish on R). Moreover, nγ(t, x) − Nγ(x − ct) is also a solution of the linearized equation,
up to a quadratic remainder which we will treat perturbatively. Therefore working with
energies depending on uγ is similar to deriving relative entropies for the system.

The result relies on two main estimates: a L∞ control on n−N (almost immediate, see
below) and a more complicated L2 weighted estimate on the variable u. Indeed, an easy
computation (see subsection III.4.1) shows that u satisfies the equation

∂tu+ b∂xu− a∂2
xu = γ

γ + 1
∂2
xG(u)

N ′(x− ct) −
G(u)

N ′(x− ct) , (III.3.5)

with a = ā(x− ct), b = b̄(x− ct) and

ā := γNγ , b̄ := −2γ
(
NγN ′

)′
N ′

= −2γ2Nγ−1N ′ − 2γNγN
′′

N ′
,

and
G(u) := nγ+1 −Nγ+1(x− ct)− (γ + 1)Nγ(x− ct)(n−N(x− ct)). (III.3.6)
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Let us make a few remarks before exposing the main ingredients of the proof. First, we
emphasize that all unknowns and coefficients depend on γ (i.e. b, a, u,G,N). As mentioned
above, we chose not to make this dependency explicit in our notation. Second, equation
(III.3.5) has a structure of the type

∂tu+ Lu = G[u],

where L is a linear operator, corresponding to the linearization of equation (III.3.1) around
nγ = Nγ , and G[u] is a quadratic operator in the sense of (III.3.8).

Quite classically, the core of our proof relies on the two following observations:

• The linear operator L is coercive in some weighted H1 space. More precisely, there
exists a weight w̄ and a constant δ = δγ > 0 with the following property: for any
v ∈ C2

c (R),

∫
R

(b̄∂ξv − ā∂2
ξ v)vw̄ ≥

∫
R

(∂ξv)2āw̄ + δ

2

∫
R
|v|2e

√
γξ − c

2

∫
R
|v|2∂ξw̄. (III.3.7)

Note that the last term will enter the time derivative of the energy
∫
|u|2w when we

perform energy estimates.

This type of coercivity property had been identified by Leyva and Plaza in [110],
without the L2 term

∫
R |v|2e

√
γξ, which will play a crucial role in the energy estimates.

• The nonlinear term G[u] satisfies

|G[u]| ≤ Cγ |u|(|u|+ |∂xu|). (III.3.8)

Hence, if ‖u‖L∞ is small enough, we can hope to absorb this term in the energy
dissipation provided by the coercivity of L.

The remainder of the section is devoted to a more rigorous statement and to the proofs of the
above heuristic arguments. Concerning the smallness of the L∞ bound, a possible strategy
could be to differentiate equation (III.3.5) with respect to x and to derive uniform, high
regularity bounds on u. This strategy is likely to succeed. However, it will probably come
at a high technical cost. Consequently, to simplify the proof and the presentation, we chose
here to take advantage of the parabolic structure of the equation and use the comparison
principle (or maximum principle), which immediately implies an L∞ bound on n and u.

Remark III.3.1. Let us mention by anticipation that the constant δ in (III.3.7) will be
small, while the constant Cγ in (III.3.8) will be very large. Whence we will need ‖u‖L∞
to be very small (in fact, exponentially small) to treat the quadratic term as a perturbation.
This is related to the strong singularities in N ′γ which were highlighted in the previous section
(recall that ‖N ′γ‖L∞ blows up exponentially, see Lemmas III.2.2 and III.2.3).

Let us now present the main ideas of the proof.
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Structure of the linearized system - weighted L2 estimate

We start from a reference weight w̄0, which is defined as the solution of the differential
equation {

(āw̄0)′(ξ) +
(
b̄(ξ)− c

)
w̄0 = 0 for ξ ∈ R,

w̄0(ξ0) = 1 for some ξ0 ∈ R.
(III.3.9)

This weight is identical to the one identified by Leyva and Plaza in [110, Section 3.1],
although our derivation differs from theirs, see subsection III.4.3. For this weight w̄0, we
have the following

Lemma III.3.1 (Stability estimates for the linearized system). Let u be a smooth solution
to

∂tu+ b∂xu− a∂2
xu = S, (III.3.10)

where S is a general source term. The following equality holds, with w0(t, x) = w̄0(x− ct)∫
R
|u(t, x)|2w0(t, x) dx+ 2

∫ t

0

∫
R
a(s, x)(∂xu(s, x))2w0(s, x) dx ds

=
∫
R
|u0(x)|2w̄0(x) dx+ 2

∫ t

0

∫
R
S(s, x)u(s, x)w0(s, x) dxds. (III.3.11)

Furthermore the weight w̄0 fulfills the following properties:

Lemma III.3.2 (Asymptotic behaviors of w̄0). The solution of (III.3.9) with ξ0 = ξ−γ is
given by

w̄0(ξ) = KNγ(ξ)(N ′(ξ))2 exp
(∫ ξ

ξ−γ

c

ā(z)dz
)
, (III.3.12)

where the normalization constant K is chosen so that w̄0(ξ−γ ) = 1. We find that K ∝ γ3/2.
Consequently w̄0 has the following asymptotic behaviors:

• as ξ → +∞, w̄0 has a double exponential growth: there exist C1, C2, C > 0 independent
of γ such that for all ξ ≥ C,

exp (exp (C1γξ)) ≤ w̄0 ≤ exp (exp (C2γξ)) ; (III.3.13)

• as ξ → −∞, w̄0 decreases exponentially to 0: there exists C > 0 independent of γ such
that for all ξ ≤ −C,

C−1K

γ2 exp
(

2
(

1 + C
√
γ

)
ξ

)
≤ w̄0 ≤ C

K

γ2 exp
(

2
(

1− C
√
γ

)
ξ

)
. (III.3.14)

Spectral gap and Poincaré inequality

However, the sole weight w0 is not entirely sufficient to have an exponential decay in time
of the energy

∫
R |u|2w0. Indeed, in order to prove such an exponential decay, we need a

Poincaré inequality of the type∫
R
|v|2w̄0 ≤ Cγ

∫
R

(∂xv)2āw̄0 ∀v ∈ C1
c (R).
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In other words, we need to prove a spectral gap inequality. To the best of our knowledge,
such an inequality does not hold for the weight w̄0. However, we are able to prove a variant
of such an inequality, with an additional L2 term in the right-hand side:

Proposition III.3.1 (Weighted Poincaré-type inequality). Let w̄0 be reference weight which
is defined as the solution of the differential equation{

(āw̄0)′(ξ) +
(
b̄(ξ)− c

)
w̄0 = 0 for ξ ∈ R,

w̄0(ξ0) = 1 for some ξ0 ∈ R,
(III.3.15)

and v ∈ C1
c (R).

Then there exists a constant C̄ independent of γ and a constant Cγ ≤ Cγ such that

∫ ξ−γ

−∞
v2γNγ

γ w̄0dξ +
∫ +∞

ξ̃
v2 1
γNγ

γ
w̄0dξ ≤ C̄

∫
R

(∂ξv)2āw̄0 dξ + Cγ

∫
R
v2e
√
γξ dξ. (III.3.16)

In particular, there exists a constant cγ, satisfying cγ ≥ ηγ for some η ∈]0, 1[ independent
of γ, such that

cγ

∫
R
v2w̄0dξ ≤

∫
R

(∂ξv)2āw̄0 dξ +
∫
R
|v|2 exp(√γξ)dξ.

Remark III.3.2. • We recall that we defined ξ−γ so that Pγ(ξ−γ ) =
(

c3

(c−1)(γ+1)

)1/2
. Con-

sequently, in the first integral of (III.3.16), the term γNγ
γ is bounded from below by

C
√
γ.

• In a similar way, for ξ > ξ̃, we have Nγ ≤ 1 − (2c)−1, so that the term 1
γNγ

γ
in the

second integral in the left-hand side of (III.3.16) is exponentially large.

• We stated this result for v ∈ C1
c (R), but the result can be extended to v in suitable

weighted Sobolev spaces by a classical density argument.

• Let us give a few motivations for the weight e
√
γξ in the right-hand side. We actually

have some freedom in the choice of the coefficient of the exponential that we take equal
to αγ = √γ. We could a priori take a larger coefficient αγ with respect to γ. However
αγ must satisfy a number of conditions. First, an important feature is that the growth
(resp. decay) of this weight as ξ → +∞ (resp. ξ → −∞) is lower (resp. stronger)
than the one of w̄0. Moreover, the energy dissipation provides a very good control of
the energy in the zone ξ < ξ−γ and ξ > ξ̃γ, as we can see in inequality (III.3.16). The
additional term

∫
R v

2e
√
γξ is only needed in the transition zone (ξ−γ , ξ̃γ), as we shall

see in the course of the proof. Our choice αγ = √γ is actually motivated by the need
to control, uniformly with respect to γ, the exponential exp(αγξ−γ ) (see in particular
(III.4.11)). Since ξ−γ = O(γ−1/2), it leads us to set αγ = √γ.

• The proof of Proposition III.3.1 relies on the quantitative estimations of Lemma III.2.3,
and will be performed in subsection III.4.4.

As a consequence, if we are able to have an additional lower-order dissipation term in
the energy estimate (the term

∫
|v|2e

√
γξ in the right-hand side), the exponential decay of
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the energy for the linearized system will follow. In order to get this extra dissipation, it
turns out that it is sufficient to modulate slightly the weight w̄0. More precisely, we define
w̄ = w̄0φ̄, where

φ̄(−∞) = 2,

φ̄′ = − δγ√
γ

exp (√γξ) (āw̄0)−1,
(III.3.17)

and the constant δγ > 0 is chosen such that φ̄(+∞) ≥ 1.
Lemma III.3.2 ensures that φ̄′ ∈ L1(R), and therefore φ̄ is well-defined and monotonous.

Note that since 1 ≤ φ̄ ≤ 2 by construction, the weights w̄0 and w̄ are equivalent. However,
choosing w̄ gives us the following additional control:

Lemma III.3.3. Under the same assumptions and notation as in Lemma III.3.1, we have

∫
R
|u(t, x)|2w(t, x) dx+ 2

∫ t

0

∫
R

(∂xu)2aw + δγ

∫ t

0

∫
R
|u(s, x)|2 exp (√γ(x− cs)) dxds

=
∫
R
|u0|2w̄ dx+

∫ t

0

∫
R
S(s, x)u(s, x)w(s, x) dxds, (III.3.18)

with
δγ = δ0γ

−1/2 (III.3.19)

, for some constant δ0 independent of γ.
Furthermore, there exists η1 ∈]0, 1[ and a constant cγ ≥ ηγ1 such that for all v ∈ C1

c (R),

cγ

∫
R
|v|2w̄ ≤ 2

∫
R

(∂xv)2āw̄ + δγ

∫
R
|v(ξ)|2 exp (√γξ) dξ.

Definition III.3.1. In the rest of the chapter, we set

Dγ(t) := 2
∫
R

(∂xu(t, x))2a(t, x)w(t, x)dx+ δγ

∫
R
|u(t, x)|2 exp(√γ(x− ct))dx,

which is the total dissipation term.

Gathering the above results, we see that any solution of the linearized equation (III.3.10)
with S = 0, with an initial data such that

∫
R |u0|2w̄0 < ∞, decays exponentially (at a rate

cγ) as t→∞.

L∞ estimate

In order to prove that the dynamics of the nonlinear equation (III.3.5) is driven by the
linearized part of the equation, and that the nonlinear term in the right-hand side of (III.3.5)
can be treated perturbatively, we will need a last ingredient, which is a direct consequence
of the comparison principle:

Lemma III.3.4 (L∞ estimate). Let h be small enough and assume that n0 lies between two
shifts of the reference profile N :

N(x+ h) ≤ n0(x) ≤ N(x− h).
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Then, for all t ≥ 0, for all x ∈ R,

N(x+ h− ct) ≤ n(t, x) ≤ N(x− h− ct).

From Lemma III.2.3, we have

‖u‖L∞(R+×R) +
∥∥∥∥n−N(x− ct)

N(x− ct)

∥∥∥∥
L∞(R+×R)

≤ Cγh, (III.3.20)

where C is a positive constant independent of γ.

Equipped with this estimate and the control in L∞ from Lemma III.3.4, we can control
the nonlinear contributions and deduce an exponential decay of the L2 weighted norm as
t → +∞, as stated in Proposition III.3.1. The next subsection is devoted to the control of
the nonlinear terms. We then give a proof of Theorem III.1.2 at the end of section III.3.

III.3.2 Control of the nonlinear terms and long-time behavior

We now address the proof of Theorem III.3.1 using the tools described above. Let u be a
smooth solution to (III.3.5), we get by applying (III.3.18):

∫
R
|u|2w0φ dx+ 2

∫ t

0

∫
R
a(∂xu)2w0φ dxds+

∫ t

0

∫
R
|u|2δγ exp(√γ(x− cs)) dxds

=
∫
R
|u0|w̄ + γ

γ + 1

∫ t

0

∫
R

∂2
xG(u)
∂xN

uw0φ dxds−
∫ t

0

∫
R

G(u)
∂xN

uw0φ dxds. (III.3.21)

Observe that the first term of the right-hand side comes from the nonlinear diffusion while
the second comes from the reaction term. We also recall that

G(u) = (N + u∂xN)γ+1 −Nγ+1 − (γ + 1)Nγu∂xN.

First, let us estimate G(u).

Lemma III.3.5. Assume that∥∥∥∥u∂xNN
∥∥∥∥
∞

=
∥∥∥∥n(t, x)−N(x− ct)

N(x− ct)

∥∥∥∥
∞
≤ 1
γ
.

Then

|G(u)| ≤ Cγ2(u∂xN)2Nγ−1, (III.3.22)
|∂xG(u)| ≤ Cγ3∂xNN

γ−2(u∂xN)2 + Cγ2Nγ−1(u∂xN) ∂x(u∂xN) (III.3.23)
≤ Cγ3∂xNN

γ−2(u∂xN)2 + Cγ2Nγ−1(∂xN)2|u| |∂xu|
+ Cγu2|∂xN |2N−1 + Cγu2|∂xN |,

for some constant C > 0 independent of γ.
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Proof. The first estimate can be easily proved by writing

G(u) = Nγ+1g

(
u∂xN

N

)
,

where g(X) = (1 +X)γ+1 − 1− (γ + 1)X. A Taylor expansion at order two close to X = 0
shows that if |X| ≤ γ−1,

|g(X)| ≤ 1
2γ(γ + 1)

(
1 + 1

γ

)γ−1
|X|2 . γ2|X|2.

Estimate (III.3.22) follows. We also know by convexity that G(u) ≥ 0.
For the second estimate, we differentiate G and get

∂xG(u) = (γ + 1)∂xN
(
(N + u∂xN)γ −Nγ − γNγ−1u∂xN

)
+ (γ + 1)∂x(u∂xN)

((
N + u∂xN

)γ −Nγ
)
.

Reasoning as before, we infer that

|∂xG(u)| ≤ C(γ + 1)γ2|∂xN ||u∂xN |2Nγ−2 + C(γ + 1)γ|∂x(u∂xN)||u∂xN |Nγ−1.

To obtain the last set of inequalities, we use the equation on N , and we recall that

γ∂2
xNN

γ = −c∂xN − γ2(∂xN)2Nγ−1 −N(1−Nγ),

which concludes the proof of the lemma.

Lemma III.3.6 (Control of the nonlinear reaction term). There exists a constant η2 ∈]0, 1[
such that if ∥∥∥∥u∂xNN

∥∥∥∥
∞
≤ ηγ2 ,

then the following inequality holds∣∣∣∣∫
R

G(u)
∂xN

uw0φ dx

∣∣∣∣ ≤ 1
4Dγ . (III.3.24)

Proof. Using Lemma III.3.5, we have∣∣∣∣∫
R

G(u)
∂xN

uw0φ dx

∣∣∣∣ ≤ Cγ2
∫
R
|u|3|∂xN |Nγ−1w0φ dx,

that we want to absorb in the left-hand side of the equality (III.3.21) thanks to the diffusion
and damping terms:

Dγ = 2
∫
R
a(∂xu)2w0φ dx+

∫
R
δγ exp(√γξ)u2 dx.

Recalling Proposition III.3.1, we observe that it suffices to have

γ2
∥∥∥∥u∂xNN

∥∥∥∥
∞
≤ cγ

4 ,

which concludes the proof, choosing η2 < η1.
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Lemma III.3.7 (Control of the nonlinear diffusion term). There exists a constant η2 ∈]0, 1[
such that if

‖u‖∞ +
∥∥∥∥u∂xNN

∥∥∥∥
∞
≤ ηγ2 ,

then the following inequality holds∣∣∣∣∣
∫
R

∂2
x(G(u))
∂xN

uw0φ dx

∣∣∣∣∣ ≤ 1
4Dγ . (III.3.25)

Proof. Integrating by parts the nonlinear term stemming from the diffusion, we have∫
R

∂2
x(G(u))
∂xN

uw0φ dx = −
∫
R
∂xG(u)∂xu

(
w0φ

∂xN

)
−
∫
R
∂xG(u)u∂x

(
w0φ

∂xN

)
. (III.3.26)

• We first address the first term in the right-hand side of (III.3.26), using the estimate
on ∂xG(u) from Lemma III.3.5. It follows that∣∣∣∣∫

R
∂xG(u)∂xu

(
w0φ

∂xN

)∣∣∣∣ ≤ C

∫
R
γ3Nγ−2|u|2|∂xu|(∂xN)2w0φ

+C
∫
R
γ2|u||∂xu|2Nγ−1|∂xN |w0φ

+C
∫
R
γ|u|2|∂xu|

|∂xN |
N

w0φ

+C
∫
R
γ|u|2|∂xu|w0φ

=
4∑
i=1

Ii.

We then address each term Ii separately. We start with the term I2, for which we simply
write

I2 ≤ Cγ
∥∥∥∥u∂xNN

∥∥∥∥
L∞

∫
R

(∂xu)2aw0φ,

which is smaller than Dγ/16, provided ‖u∂xN/N‖∞ ≤ (16Cγ)−1.
For all other terms, we first perform a Cauchy-Schwarz inequality. We have, recalling

that ā = γNγ ,

I1 ≤ C
(∫

R
(∂xu)2aw

)1/2 (
γ5
∫
R
|u|4Nγ−4w0φ

)1/2
,

I3 ≤ C
(∫

R
(∂xu)2aw

)1/2
(∫

R
γ|u|4 (∂xN)2

Nγ+2 w0φ

)1/2

,

I4 ≤ C
(∫

R
(∂xu)2aw

)1/2 (∫
R
γ|u|4N−γw0φ

)1/2
.

We then bound each integral with |u|4 in the right-hand side by using the Poincaré inequality
from Proposition III.3.1 and the L∞ estimate on u. The simplest term is I1, for which we
have

I1 ≤ Cγ5/2‖u‖L∞
(∫

R
(∂xu)2aw

)1/2 (∫
R
|u|2w0φ

)1/2
≤ Cγ5/2‖u‖L∞c−1/2

γ Dγ .
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Concerning the term I3, we have∫
R
γ|u|4 (∂xN)2

Nγ+2 w0φ ≤ γ
∥∥∥∥u∂xNN

∥∥∥∥2

L∞

∫
R
|u|2w0φ

Nγ
.

Using Proposition III.3.1, we have∫
R
|u|2w0φ

Nγ
=

∫
ξ>ξ̃
|u|2w0φ

Nγ
+
∫
ξ<ξ̃
|u|2w0φ

Nγ

≤ γ

∫
R

(∂xu)2aw0φ+ γCγ

∫
R
u2e
√
γ(x−ct)dx

+ 1
N(ξ̃)γ

∫
ξ<ξ̃
|u|2w0φ

≤ C ′γDγ ,

for some exponentially large constant C ′γ . The above inequality also allows us to bound I4.
Thus, provided

‖u‖L∞ ≤ δ inf
(
c1/2
γ δ−5/2, (C ′γ)−1/2γ−1/2

)
,

∥∥∥∥u∂xNN
∥∥∥∥
L∞
≤ δ(C ′γ)−1/2γ−1/2,

for some small constant δ independent of γ, we infer that∣∣∣∣∫
R
∂xG(u)∂xu

(
w0φ

∂xN

)∣∣∣∣ ≤ 1
8Dγ .

• Let us now consider the second term in the right-hand side of (III.3.26). Computing
the weight in the right-hand side and using the definitions of φ, w and the equation satisfied
by N , we find

∂ξ

(
w̄0φ̄

∂ξN

)
= ∂ξφ̄

w̄0
∂ξN

+Kφ̄∂ξ(∂ξNNγ) exp
(∫ ξ

ξ−γ

c

ā

)

+Kφ̄∂ξNNγ c

ā
exp

(∫ ξ

ξ−γ

c

ā

)

= − δγ√
γ

exp(√γξ)
γNγ∂xN

− K

γ
φ̄N(1−Nγ) exp

(∫ ξ

ξ−γ

c

ā

)
=: W1 +W2.

We then use the estimate on ∂xG(u) from Lemma III.3.5, treatingW1 andW2 separately.
We have, concerning the terms with W1,∣∣∣∣∫

R
∂xG(u)uW1

∣∣∣∣
≤ C

δγ√
γ

[∫
R
γ2|u|3 (∂xN)2

N2 e
√
γξ +

∫
R
γ
|∂xN |
N
|u|2|∂xu|e

√
γξ

]

+ C
δγ√
γ

∫
R
|u|3N−γ

(
1 + |∂xN |

N

)
e
√
γξ.
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Using a Cauchy-Schwarz inequality for the second integral, we get∣∣∣∣∫
R
∂xG(u)uW1

∣∣∣∣
≤ Cδγγ

3/2
∥∥∥∥u∂xNN

∥∥∥∥
L∞

∥∥∥∥∂xNN
∥∥∥∥
L∞

∫
R
u2e
√
γξ

+Cδγ
(∫

R
(∂xu)2aw

)1/2 ∥∥∥∥u∂xNN
∥∥∥∥
L∞

(∫
R

u2

Nγw0
e2√γξ

)1/2

+C δγ√
γ

(
‖u‖L∞ +

∥∥∥∥u∂xNN
∥∥∥∥
L∞

)∫
R

u2

Nγ
e
√
γξ.

We then observe that thanks to the growth and decay properties of the weight w0 at ±∞,
there exists a constant Cγ such that

e
√
γξ ≤ Cγw(ξ) ∀ξ ∈ R. (III.3.27)

However, because of the strong degeneracy and singular behavior in the transition zone near
ξ0
γ , the constant Cγ might be exponentially large. It follows that∫

R
u2e
√
γξ ≤ Cγ

∫
R
u2w ≤ Cγc−1

γ Dγ .

Concerning the integral
∫
R
u2

Nγ e
√
γξ, using Proposition III.3.1 together with (III.3.27) yields a

bound Cγc−1
γ Dγ for this term, with a possibly different constant Cγ . The last term is treated

in the same fashion. We obtain∣∣∣∣∫
R
∂xG(u)uW1

∣∣∣∣ ≤ Cγ (∥∥∥∥u∂xNN
∥∥∥∥
L∞

+ ‖u‖L∞
)
Dγ ≤

1
8Dγ ,

provided ‖u‖L∞ and ‖u∂xN/N‖L∞ are small enough (exponentially small with γ).
There remains to address the terms containing W2. We have, using Lemma III.3.5 and

recalling the expression of the weight w̄0 from Lemma III.3.2,∣∣∣∣∫
R
∂xG(u)uW2

∣∣∣∣
≤ Cγ2

∫
R

|∂xN |
N
|u|3w + Cγ

∫
R
u2|∂xu|w +

∫
R
|u|3 w

Nγ
+
∫
R

|u|3(1−Nγ)
|∂xN |Nγ−1 w.

Using the same arguments as above, we find that the first three terms are bounded by(
γ2
∥∥∥∥u∂xNN

∥∥∥∥
L∞

c−1
γ + γ‖u‖L∞Cγ + γ ‖u‖L∞ c

−1
γ Cγ

)
Dγ ,

and can be absorbed in Dγ under the assumptions of the Lemma, provided η is sufficiently
small.

There remains the last term, which has an additional singularity in the congested zone
because of the ∂xN factor in the denominator (note that in the free zone ξ > ξ̃γ∗, |∂xN | & N ,
so that this singularity can be treated thanks to the weighted Poincaré inequality from
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Proposition III.3.1.) However this singularity is compensated by the factor (1−Nγ) in the
numerator. More precisely, we have, for ξ ≤ ξ̃γ and using Lemma III.2.3,∣∣∣∣1−Nγ

∂xN

∣∣∣∣ = γ

∣∣∣∣1− PP ′

∣∣∣∣P 1− 1
γ . γ.

Hence ∫
x−ct≤ξ̃γ

|u|3(1−Nγ)
|∂xN |Nγ−1 w ≤ Cγ‖u‖L∞

∫
x−ct<0

|u|2w ≤ Cγ‖u‖L∞c−1
γ Dγ .

Gathering all the terms, we obtain the inequality announced in the Lemma.

Let us now complete the proof of Theorem III.1.2. First, we choose h so that h ≤ η2/C,
where η2 ∈]0, 1[ is the constant appearing in Lemmas III.3.6 and III.3.7, and C is the constant
in (III.3.20). Then Lemma III.3.4 entails that

‖u‖∞ +
∥∥∥∥u∂xNN

∥∥∥∥
∞
≤ ηγ2 .

It follows from Lemmas III.3.6 and III.3.7 that the sum of the two nonlinear terms in the
right-hand side of (III.3.21) is bounded by

∫ t
0 Dγ/2. Therefore, we obtain for all t ≥ 0,∫

R
|u|2w + 1

2

∫ t

0
Dγ ≤

∫
R
|u0|2w.

Letting t → ∞, we obtain the control of the diffusion announced in Theorem III.1.2. Now,
applying the Poincaré inequality from Proposition III.3.1 and Lemma III.3.3, we get, for all
t ≥ 0, ∫

R
|u|2w + cγ

2

∫ t

0
|u|2w ≤

∫
R
|u0|2w.

The exponential decay with a rate cγ/2 (which we rename cγ) follows easily from the Gronwall
Lemma.

III.4 Proofs of some technical results

III.4.1 Derivation of the equation on u

In this subsection, we prove that u defined by

u(t, x) = n(t, x)−N(x− ct)
∂xN(x− ct) ,

is a solution of (III.3.21). As in the previous section, we omit the dependency of γ for
simplicity.

First, we recall that n and N(x− ct) are both solutions of (III.3.1), in which we rewrite
the diffusion term as

γ∂x(nγ∂xn) = γ

γ + 1∂xxn
γ+1.
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Recalling the definition of G(u) from (III.3.6), we write (omitting x− ct in the argument of
N)

nγ+1 −Nγ+1 = (γ + 1)N(n−N) +G(u).
Introducing ν(t, x) = n(t, x)−N(x− ct), we find that ν is a solution of

∂tν − γ∂2
x(Nγν)− ν (1− (γ + 1)Nγ) = γ

γ + 1∂
2
x(G(u))−G(u). (III.4.1)

Observe that, from (III.1.4), ∂xN(x− ct) is a (negative) solution of the linearized equation

∂t∂xN(x− ct)− γ∂2
x(Nγ∂xN(x− ct))− (1− (γ + 1)Nγ) ∂xN(x− ct) = 0.

Let us now set u(t, x) := ν(t, x)/∂xN(x−ct) = (n(t, x)−N(x−ct))/∂xN(x−ct) and compute
the equation satisfied by u. Using the identity

∂2
xu = ∂x

(
∂xν

∂xN
− ν∂2

xN

(∂xN)2

)

= ∂2
xν

∂xN
− ν

(∂xN)2∂
3
xN − 2∂

2
xN

∂xN
∂xu,

we infer that
∂tu+ b∂xu− a∂2

xu = γ

γ + 1
∂2
xG(u)

N ′(x− ct) −
G(u)

N ′(x− ct) , (III.4.2)

where a(t, x) = ā(x− ct), b(t, x) = b̄(x− ct) and

b̄ := −2γ∂xNγ − 2γNγ ∂
2
xN

∂xN
, ā := γNγ . (III.4.3)

III.4.2 Structure of the linearized system: Lemmas III.3.1 and equality (III.3.18)
Proof of Lemma III.3.1. Multiplying (III.4.2) by 2uw0 and integrating on R, we obtain for-
mally

d

dt

∫
R
|u|2w0 −

∫
R
|u|2∂tw0 +

∫
R

2u∂xu(bw0 + ∂x(aw0)) + 2
∫
R
aw0(∂xu)2 = 2

∫
R
Suw0.

Integrating by parts the middle term gives∫
R

2u∂xu(bw0 + ∂x(aw0))

= −
∫
R
|u|2∂x(bw0 + ∂x(aw0)).

Gathering all the terms, we have
d

dt

∫
R
|u|2w0 −

∫
R
|u|2 [∂tw0 + ∂x(bw0 + ∂x(aw0))] +

∫
R
aw0(∂xu)2 = 2

∫
R
Suw0.

Now, let us look at the term between brackets. As w0 = w̄0(x− ct),

[∂tw0 + ∂x(bw0 + ∂x(aw0))] = −cw̄′0 + (b̄w̄0 + (āw̄0)′)′,

= ∂x
(
(āw̄0)′ + (b̄− c)w̄0)

)
,

= 0,
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from the definition of w̄0. This implies

d

dt

∫
R
|u|2w0 + 2

∫
R
aw0(∂xu)2 = 2

∫
R
Suw0,

and therefore, integrating with respect to t,∫
R
|u(t, x)|2w0(t, x)dx+ 2

∫ t

0

∫
R
a(s, x)w0(s, x)(∂xu(s, x))2dxds

=
∫
R
|u0(x)|2w0(0, x)dx+ 2

∫ t

0

∫
R
Suw0.

Note that w0(0, x) = w̄0(x). Hence we obtain the identity announced in the Lemma.

Proof of equality (III.3.18). This proof is very similar to that of Lemma III.3.1. Observe
first that for w = w0φ, one has

−[∂tw + ∂x(bw + ∂x(aw))](t, x) =
(
cw̄0φ̄− b̄w̄0φ̄− (āw̄0φ̄)′

)′
(x− ct),

= −
(
āw̄0φ̄

′
)′

(x− ct).

Note that from the definition of φ, āw̄0φ̄
′ = − δγ√

γ exp(√γξ), hence

−[∂tw + ∂x(bw + ∂x(aw))](t, x) = δγ exp(√γξ).

Proceeding exactly as in the proof of Lemma III.3.1, we obtain

d

dt

∫
R
|u|2w −

∫
R
|u|2 [∂tw + ∂x(bw + ∂x(aw))] + 2

∫
R
aw(∂xu)2 = 2

∫
R
Suw,

d

dt

∫
R
|u|2w + δγ

∫
R
|u(t, x)|2 exp(√γ(x− cs))dx+ 2

∫
R
aw(∂xu)2 = 2

∫
R
Suw,

and therefore, integrating again with respect to t, we obtain, for all t ≥ 0,∫
R
|u(t, x)|2w(t, x)dx+ δγ

∫
R+

∫
R
|u(s, x)|2 exp(√γ(x− cs))dx

+ 2
∫
R+

∫
R
a(s, x)w(s, x)(∂xu(s, x))2dxds =

∫
R
|u0(x)|2w̄(x)dx+ 2

∫ t

0

∫
R
Suw.

The Poincaré inequality stated in Lemma III.3.3 is an easy consequence of Proposition III.3.1
and of the equivalence between the weights w̄ and w̄0.

III.4.3 Properties of the weights w̄0 and w̄: Lemma III.3.2 and estimate (III.3.19)
Proof of Lemma III.3.2. Let us rewrite equation (III.3.9) as

(āw̄0)′ + b̄− c
ā

(āw̄0) = 0,

which yields, since w̄0(ξ−γ ) = 1,

āw̄0(ξ) = ā(ξ−γ ) exp
(∫ ξ

ξ−γ

c− b̄
ā

)
.
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We recall that

ā = γNγ , b̄ = −2γ2Nγ−1∂xN − 2γNγ ∂
2
xN

∂xN
,

hence

−
∫ ξ

ξ−γ

b̄(z)
ā(z)dz = 2

∫ ξ

ξ−γ

[(Nγ)′(z)
Nγ(z) + N ′′(z)

N ′(z)

]
dz

= 2 ln
(

(N(ξ))γ

(N(ξ−γ ))γ

)
+ 2 ln

(
|N ′(ξ)|
|N ′(ξ−γ )|

)
,

and therefore

w̄0(ξ) =
ā(ξ−γ )
ā(ξ) exp

(∫ ξ

ξ−γ

c

ā

)
exp

(
−
∫ ξ

ξ−γ

b̄

ā

)
(III.4.4)

= 1
(N(ξ−γ ))γ(N ′(ξ−γ ))2 (N(ξ))γ(N ′(ξ))2 exp

(∫ ξ

ξ−γ

c

ā
dz

)
. (III.4.5)

Therefore we find the expression announced in Lemma III.3.2, with a normalization constant

K := 1
(N(ξ−γ ))γ(N ′(ξ−γ ))2 .

Let us now estimate K. We recall that ξ−γ is defined in (III.2.1) Since N ′ = γ−1P ′P
1
γ
−1, it

also follows that

N ′(ξ−γ ) = 1
γ
P ′(ξ−γ )

((c− 1)(γ + 1)
c3

) 1
2−

1
2γ
,

and thus

K =
(

c3

(c− 1)(γ + 1)

) 1
2−

1
γ γ2

P ′(ξ−γ )2 .

The sub- and super-solutions for P (see Proposition III.2.1) entail that P ′(ξ−γ ) is bounded
from above and below. Hence K is of order γ3/2.

For ξ ≥ ξ̃, we know by (III.1.10) that there exist 0 < A1 < A2 < 1 (close to 1− c−1) such
that

A1e
− 2
c
ξ ≤ N(ξ) ≤ A2e

− ξ
c . (III.4.6)

Moreover, remember that Lγ = N ′

N + 1
c converges uniformly to 0 on [ξ∗,+∞) as γ → +∞

(see the proof of Lemma III.2.3). Hence, for any η > 0, there exists γ0 such that for all
γ > γ0, N ′/N ∈ [−1/c− η,−1/c+ η] for all ξ ∈ [ξ∗,+∞). By (III.4.6), we deduce that

Ã1e
− 2
c
ξ ≤ |N ′(ξ)| ≤ Ã2e

− ξ
c , (III.4.7)

with Ã1,2 ∈ (0, 1). As a consequence w̄0 has a double exponential growth as ξ → +∞:

K1A
γ
1Ã

2
1 exp

(
−2γ + 2

c
ξ

)
exp

(
c2

γ2A
−γ
2

(
exp

(
γ

c
ξ

)
− exp

(
γ

c
ξ−γ

)))
≤ w̄0 (III.4.8)

≤ K2A
γ
2Ã

2
2 exp

(
−γ + 2

c
ξ

)
exp

(
c2

2γ2A
−γ
1

(
exp

(2γ
c
ξ

)
− exp

(2γ
c
ξ−γ

)))
,
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with K1,2 ∝ γ3/2. The estimate from the Lemma follows.
For ξ → −∞, we have using (III.2.6) and denoting λ̃ =

√
1 + c2

4γ2 − c
2γ ,

w̄0 = KNγ(N ′)2 exp
(∫ ξ

ξ−γ

c

γNγ

)
∼

ξ→−∞
Kλ̃2P (1−N)2 exp

(∫ ξ

ξ−γ

c

γP

)
.

Recalling estimates (III.1.7), we get

C
√
γ

(ξ − ξ−γ ) ≤
∫ ξ

ξ−γ

c

γP
≤ c

γ
(ξ − ξ−γ ),

and, for |ξ| ≤ C with C independent of γ

C−1

γ

(
1− C ′
√
γ

)
exp (ξ) ≤ 1−N ≤ C

γ

(
1− C ′
√
γ

)
exp

((
1− C
√
γ

)
ξ

)
.

Gathering the terms, we obtain

C−1K

γ2 exp
(

2
(

1 + C
√
γ

)
ξ

)
≤ w̄0 ≤ C

K

γ2 exp
(

2
(

1− C
√
γ

)
ξ

)
,

and we deduce the result announced in Lemma III.3.2.

Estimate of the constant δγ in w̄. Let

ψ̄ := φ̄′āw̄0 = − δγ√
γ

exp (√γξ) .

Using the previous Lemma and recalling (III.4.6), we observe that the double exponential
growth of w̄0 dominates the growth in ψ as ξ → +∞. On the other hand, for ξ ≤ −C, we
have

ψ̄(ξ)
ā(ξ)w̄0(ξ) = − δγ√

γ

exp
(√
γξ
)

γ(N̄(ξ))γw̄0(ξ)
≥ −C δγ

γ3 exp
((
√
γ − 2

(
1 + C
√
γ

))
ξ

)
.

Hence, for γ large enough√γ−3 > 0 and ψ̄(ξ)
ā(ξ)w̄0(ξ) decreases exponentially to 0 as ξ → −∞.

We conclude then to the integrability of ψ̄

āw̄0
on R.

Let us now study the behavior of φ. For that purpose, we analyze separately the different
regions according to the value of ξ.

• for ξ > ξ̃: using the estimates (III.4.6)-(III.4.8), we infer that

|φ′(ξ)| = − ψ̄(ξ)
ā(ξ)w̄0(ξ)

≤ C δγ
γ3/2K

A−2γ
1 exp

((√
γ + 4(γ + 1)

c

)
ξ

)
exp

(
−A−γ2

(
exp

(
γ

c
ξ

)
− exp

(
γ

c
ξ−γ

)))
≤ C δγ

γ3/2K
A−2γ

1 exp
(

5γ
c
ξ

)
exp

(
−A−γ2

(
exp

(
γ

c
ξ

)
− exp

(
γ

c
ξ−γ

)))
.
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Hence, integrating and using the asymptotic values of ξ−γ and ξ̃ from Lemma III.2.4,
we get ∫ ∞

ξ̃
|φ̄′| ≤ C

δγ
γ4A

−2γ
1 Aγ2 exp

(
−A−γ2

(
exp

(
γ

c
ξ̃

)
− exp

(
γ

c
ξ−γ

)))
≤ C

δγ
γ4A

−2γ
1 Aγ2 exp(−CA−γ2 ). (III.4.9)

• for the intermediate region ξ ∈ [ξ−, ξ̃], we write∫ ξ̃

ξ−
|φ̄′(z)|dz = δγ√

γ

∫ ξ̃

ξ−

e
√
γz

γ(N(z))γ ×
1

K(N(z))γ(N ′(z))2 exp(
∫ z
ξ−

c
γNγ )dz

= δγ
γ−1/2K

∫ ξ̃

ξ−

e
√
γz

(P ′(z))2(N(z))2 exp
(
−
∫ z

ξ−

c

γNγ

)
dz.

Now, using Lemma III.2.4 and the definition of ξ−, we have in this region

|P ′(ξ)| ≥ C

γ
, N(ξ) ≥ N(ξ̃) > 1− 2

c
, (N(ξ))γ ≤ P (ξ−) = O

(
1
√
γ

)
,

and thus ∫ ξ̃

ξ−
|φ′(z)|dz ≤ C δγ

γ−5/2K
e
√
γξ̃
∫ ξ̃

ξ−
exp

(
− C

γ1/2 z

)
dz

≤ Cγ3/2δγ

(
exp

(
−
Cξ−γ√
γ

)
− exp

(
−Cξ̃√

γ

))
,

≤ Cγ1/2δγ , (III.4.10)

where we have used the fact that ξ̃ = O(γ−1), ξ−γ = O(γ−
1
2 ) (cf Lemma III.2.4).

• for ξ < ξ−γ , we use the fact that

1− P
P ′

→
γ→+∞

−1 uniformly on R−,

and the control (III.2.8)

1− P ≥
(

1− 1
γ

)
eξ ∀ ξ < 0,

to infer that

−
∫ ξ−

−∞
φ′(z)dz = δγ

γ−1/2K

∫ ξ−

−∞

e
√
γz

(P ′(z))2(N(z))2 exp
(∫ ξ−

z

c

γNγ

)
dz

≤ C δγ
γ−1/2K

∫ ξ−

−∞

e
√
γz

(1− P (z))2 e
c√
γ

(ξ−−z)
dz

≤ C δγ
γ−1/2K

∫ ξ−

−∞
e
√
γze−2ze

c√
γ

(ξ−−z)
dz

≤ C δγ
γ−1/2K

∫ ξ−

−∞
e
√
γ

2 zdz

≤ Cγ−3/2δγ , (III.4.11)
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thanks to the fact that ξ− = O(γ−1/2) (cf Lemma III.2.4). Combining (III.4.9)-(III.4.10)-
(III.4.11), there exists δ0 bounded away from 0 such that for δγ = δ0γ

−1/2, |
∫
R φ
′| ≤ 1.

III.4.4 Proof of the weighted Poincaré inequality
Proof of Proposition III.3.1. To lighten the notations, we forget in what follows the notation
·̄ when it is clear that we work with functions of variable ξ. Formally, we have the following
inequalities, for any ρ ∈ C2(R) and v ∈ C1

c (R)

0 ≤
∫
R

(
∂ξ(vρ)

)2
dξ

=
∫
R

[
ρ2(∂ξv)2 + v2(∂ξρ)2dξ + 2

∫
R
u∂ξvρ∂ξρ

]
dξ

=
∫
R

[
ρ2(∂ξv)2 + v2(∂ξρ)2

]
dξ −

∫
R
v2∂ξ(ρ∂ξρ)dξ

=
∫
R
ρ2(∂ξv)2dξ −

∫
R
v2ρ∂2

ξρ dξ.

Note that when ρ is positive and strictly convex, we obtain a Poincaré inequality. We want
to apply this inequality with ρ := (āw̄0)1/2. However, the weight ρ is not convex on R and
we cannot guarantee the sign of the second integral. Let us compute the derivatives of ρ.
Using (III.3.12), we have

ρ = −
√
γKN ′Nγ exp

(∫ ξ

ξ−γ

c

2γN(ξ)γ

)
,

and thus
ρ′(ξ) =

√
γK exp

(∫ ξ

ξ−γ

c

2γN(ξ)γ

)[
−(N ′(ξ)N(ξ)γ)′ − c

2γN
′(ξ)

]
.

We recall that
−cN ′ − γ(N ′Nγ)′ = N(1−Nγ),

so that
ρ′(ξ) =

√
γK exp

(∫ ξ

ξ−γ

c

2γNγ(z)

)[1
γ
N(ξ)(1−Nγ(ξ)) + c

2γN
′(ξ)

]
.

Differentiating once again and using the equation on N , we get

ρ′′(ξ) =
√
K

γ
exp

(∫ ξ

ξ−γ

c

2γNγ(z)dz
)[

N ′(1− (γ + 1)Nγ) + c

2N
′′ + c

2γNγ−1 (1−Nγ) + c2

4γ
N ′

Nγ

]

=
√
K

γ
exp

(∫ ξ

ξ−γ

c

2γNγ(z)dz
) [
N ′(1− (γ + 1)Nγ)

− c

2γNγ

(
cN ′ + γ2(N ′)2Nγ−1 +N(1−Nγ)

)
+ c

2γNγ−1 (1−Nγ) + c2

4γ
N ′

Nγ

]

= −
√
K

γ
N ′ exp

(∫ ξ

ξ−γ

c

2γNγ(z)dz
)[

(γ + 1)Nγ + c2

4γNγ
+ cγ

N ′

2N − 1
]
.
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Note that ρ′′ ≥ 0 provided the term in brackets is non-negative. The bracketed term is a
sum of four terms, among which the first two are positive, and the last two are negative.
Furthermore,

γ + 1
c

Nγ + c

4γNγ
=
(√

γ + 1
c

Nγ −
√

c

4γNγ

)2

+
√
γ + 1
γ
≥ 1,

so that

ρ′′ ≥ −
√
K

γ
N ′ exp

(∫ ξ

ξ−γ

c

2γNγ

)[
(γ + 1)

(
1− 1

c

)
Nγ + c(c− 1)

4γNγ
+ 1

4γ + cγ
N ′

2N

]
.

(III.4.12)
Thus the only zone where ρ′′ is non-positive is the region where the last term in the above
bracket is not dominated by others. Decomposing the domain in three zones, we have

• ξ ≥ ξ̃: using the notations of Section III.2, we have

N ′(ξ) ≥ Q̃(N) = − c− 1
4γ2(N(ξ))γ−1 ,

so that
cγ
N ′

2N <
c(c− 1)
8γNγ

∀ ξ ≥ ξ̃.

Recalling the expressions of ρ and w̄0, we infer that for ξ > ξ̃

ρρ′′ ≥ C
√
γK

√
K

γ
(N ′)2Nγ exp

(∫ ξ

ξ−γ

c

γNγ(z)dz
)

C

γNγ

≥ C

γNγ
w0.

• for ξ ≤ ξ−γ , we have P ≥ P (ξ−γ ) =
(

c3

(c−1)(γ+1)

)1/2
while P ′ ∈ [−c, 0]. Hence, we ensure

that
−cP ′ ≤ c2 ≤ (γ + 1)

(
1− 1

c

)
P 2 ∀ ξ ≤ ξ−γ ,

and therefore
−cγ N

′

2N ≤
(γ + 1)

2

(
1− 1

c

)
Nγ ∀ ξ ≤ ξ−γ .

Let us mention that this inequality is precisely the property that lead us to the nor-
malization (III.2.1). We deduce then

ρρ′′ ≥ K(N ′)2N2γ exp
(∫ ξ

ξ−γ

c

γNγ(z)dz
)

(γ + 1)
2

(
1− 1

c

)
≥ CγNγw0.

• for intermediate region, i.e., ξ ∈ [ξ−γ , ξ̃], we can always bound the negative contribution
as follows

ρ(ρ′′)− ≤
cγ

2 K|N
′|3 exp

(∫ ξ

ξ−γ

c

γNγ(z)dz
)
Nγ−1 ≤ Cγe

√
γξ,
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for ξ ∈ (ξ−γ , ξ̃), where

Cγ ≤ Cγ5/2‖N ′‖3
L∞(ξ−γ ,ξ̃)

exp
(∫ ξ̃

ξ−

1
γNγ

)
.

Let us now evaluate the integral in the argument of the exponential. Using Lemma
III.2.4, we recall that |P ′| = γ|N ′|Nγ−1 ≥ Cγ−1 on (ξ−, ξ̃). Hence

∫ ξ̃

ξ−

1
γNγ

=
∫ ξ̃

ξ−

|N ′|
γ|N ′|Nγ

≤ Cγ

∫ ξ̃

ξ−

|N ′|
N

≤ Cγ ln
(
N(ξ−)
N(ξ̃)

)
≤ Cγ.

Thus Cγ ≤ Cγ for some constant C > 1 independent of γ.

Gathering all the terms, we obtain∫
ξ≤ξ−γ

v2ρρ′′ +
∫
ξ≥ξ̃

v2ρρ′′ ≤
∫
R

(∂ξv)2āw̄0 +
∫ ξ̃

ξ−γ

v2ρ(ρ′′)−.

Replacing ρρ′′ by their lower bounds on (−∞, 0) and on (ξ̃,+∞), we obtain the inequality
announced in the Proposition.
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Glossary

acoustic wave An acoustic wave is a mechanical or longitudinal wave resulting from fluc-
tuations in the pressure field. They propagate as a result of the compression and
decompression through a medium. 13

advective time scale It refers to the time required for the bulk of a fluid to travel charac-
teristic distance L at speed U . It is, therefore, determined by dimensional constraints.
Let ta denote the time scale for advection, then ta = L

U . 15

Bernoulli numbers These quantities first appeared in Ars Conjectandi, a treatise pub-
lished in 1713, by Jakob Bernoulli (1654-1705). They usually can be found in the
expansion of known functions such as tan(x), tanh(x), among others. They are related
to Riemann’s zeta function ζ trough the formula

Bn = −nζ(1− n)q forn ≤ 1,

where ζ(s) =
∞∑
n=1

n−s, if Re(s) > 1 and Bn denotes the Bernoulli number. 3

beta-plane approximation It corresponds to the linearization of the Coriolis parameter
with respect to a certain latitude θ when the scale of the motion be sufficiently small
in north-south extent. Then, f ∼ f0 + βy where βy � f0. 15

boundary layer Thin layer of viscous fluid close to the solid surface of a wall in contact
with a moving stream in which the effects of viscosity are comparable in magnitude
with those due to the inertia force, and therefore, cannot be neglected. 1, 3, 4

chemotaxis Chemotaxis in microbiology refers to the migration of cells in relation to chem-
ical agents, such as a growth factor. 27

Coriolis force Force produced by the complementary acceleration due to the Earth’s rota-
tion. It determines the general direction of winds and ocean currents. Its traditional
approximation is known as the Coriolis parameter and is defined by f = 2|Ω| sin θ
where θ is latitude and Ω corresponds to the angular velocity. At mid-latitudes, a
typical value of f is 104s−1. 5, 15

Ekman layer The wind exerts stress on the ocean surface proportional to the square of
the wind speed and in the direction of the wind, setting the surface water in motion.

197
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This motion extends to a depth of about 100 meters in what is called the Ekman layer.
Within the oceanic Ekman layer, the wind stress is balanced by the Coriolis force and
frictional forces. 4, 16

Ekman spiral Theoretical displacement of current direction by the Coriolis effect, given a
steady wind blowing over an ocean of infinite depth, extent, and uniform eddy viscosity.
It refers to the movement of an average water particle within the Ekman layer: to the
right of the wind direction in the Northern Hemisphere and its left in the Southern
Hemisphere. 4

Froude number Dimensionless number defined as the ratio of the flow inertia to the ex-
ternal field. It is based on the speed-length ratio defined by Fr = U√

gL
, where U is

the local flow velocity, g is the local external field, and L is a characteristic length.
It is used to determine the resistance of a partially submerged object moving through
water. 15

Gamma function Complex function denoted by Γ commonly used extension of the facto-
rial function to complex numbers. For every complex number z, satisfying <(z) > 0,
the Gamma function is defined via a convergent improper integral as follows:

Γ : z 7→
∫ +∞

0
tz−1 e−t dt

. 3

geostrophic approximations The assumption that the horizontal wind behaves as the
geostrophic wind, i.e., a wind for which the Coriolis acceleration exactly balances the
horizontal pressure force. 5

geostrophic degeneracy It refers to the geostrophic approximation inability to provide a
complete dynamical determination of motion. The geostrophic approximation fails to
near equatorial regions, see [17]. 17, 24

geostrophic equilibrium The term geostrophy comes from Greek ge-Earth + strophikos-
turned. It refers to the balance between the horizontal pressure gradient and the
Coriolis force. 5

glioma Gliomas or glial tumors are all brain and spinal cord tumors arising from the neu-
ronal support tissue or glia. 27

haptotaxis It refers to the moment cells encounter immobilized ligands, such as extracel-
lular matrix proteins, and these ligands promote directional migration. 27

homeostatic pressure It is the value of the pressure for which cell division and death
achieve an equilibrium. It is a measure of the competition between a tumor and the
surrounding tissue. 26, 32

inertia-gravity waves Also known as Poincaré waves, they are waves traveling at speed√
Hg, with H denoting the ocean depth and g, the acceleration of gravity. In the deep

ocean, they are about 5-10 times slower than acoustic waves. 5
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Mach number Dimensionless quantity describing the ratio between the velocity of a fluid
and the velocity of sound in that fluid. It is usually denoted by M and defined as
follows

M = U

c
,

where U is the local flow velocity to the boundaries, and c is the speed of sound in
the medium. Low values of the Mach number indicate that high-velocity variations
are required to produce a change in density. Thus the flow tends to be incompressible.
Experimentally, the incompressible behavior of the flow occurs for M < 0.3 . 2

Munk layer Boundary layer characterized by a balance of the meridional transport of plan-
etary vorticity and the viscous dissipation. It is responsible for the western intensifi-
cation phenomenon. 16, 19

no-slip condition Condition stating that in the absence of retarding frictional forces, the
fluid will have zero velocity relative to the boundary at a solid surface. 2, 3, 15

reduced-gravity model Model based on the assumption that the gravitational field of a
given environment is smaller than that of the Earth. 4

Reynolds number Dimensionless number describing the ratio between inertial and viscous
forces. It used to characterize a flow in laminar(low Reynolds number), transient,
turbulent(large Reynolds number). It is defined by Re = UL

ν , where where U is the
local flow velocity, L is a characteristic length and ν is the kinematic viscosity. 2, 3, 15

Rossby number In geophysical fluid dynamics, it is a dimensionless number represent-
ing the ratio between the forces of inertia and the forces due to the rotation, which
characterizes the movement of a fluid in a rotating frame. It is computed using the
formula

Ro = U

f L
,

where U is the local flow velocity, L is a characteristic length, and f is the Coriolis
parameter. 2, 15

Rossby waves Also known as planetary waves, they are oscillatory movements of the at-
mosphere or ocean of long wavelength. They are a consequence of variations of the
Coriolis force. 18

Stirling formula It is an approximation for factorials leading to accurate results. The
usual version of the formula is

lnn! = n lnn− n+O(lnn).

Here the big O notation is considered as n → ∞. It can be also found written as
n ! ∼

√
2πn

(
n
es

)n
, where e is the Euler’s number. 3

stratified fluid Fluid with density variations in the vertical direction, see stratification. 5
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Sverdrup balance Theoretical relationship between the wind stress at the ocean surface
and the vertically integrated transport of ocean water resulting from the Ekman pump-
ing/suction. 4

vertical momentum balance The momentum equation is a statement of Newton’s Second
Law and relates the sum of the forces acting on a fluid to its acceleration. Since the
velocity field is a vector, it is possible to obtain the independent equations for the
horizontal and vertical components. The vertical balance equation is given by

Dw

Dt
= −g − 1

ρ

∂p

∂z
,

where g is the effective gravity acceleration, p is the pressure and ρ denotes the density
of the fluid . 13

western intensification At the beta plane, a zonal asymmetry appears in the circulation
and consistently at sea level. Indeed, to the east, the cyclonic beta effect partially
compensates for the anticyclonic wind stress so that less bottom friction is needed for
the flow to reach a vorticity balance. As friction is proportional to vorticity, this means
that the flow must slow down. Reversely, to the west, both the beta effect and the
wind stress impart anticyclonic vorticity. Hence the bottom friction must be enhanced
to balance both terms. This is done through the intensification of the northward flow.
As the basin is closed, by continuity, the northward and southward transports must be
equal, which implies a narrow western boundary northward flow and a wide interior
southward flow. 4, 6
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Sujet : Étude asymptotique de deux problèmes de la mécanique de
fluides

Résumé : Ce manuscrit porte sur l’analyse asymptotique de deux problèmes provenant de la mé-
canique des fluides : l’effet des rugosités sur le comportement des courants océaniques, et la descrip-
tion mathématique des phénomènes de congestion dans la croissance tumorale. Tout d’abord, nous
analysons l’impact des irrégularités du littoral sur le mouvement océanique entraîné par le vent, lorsque
la géométrie des côtes ne suit pas un modèle spatial précis. Cette hypothèse a deux conséquences prin-
cipales dans l’étude du problème singulièrement perturbé qu’est le modèle quasigéostrophique 2D :
les équations de couches limites sont définies dans des domaines infinis avec des données aux bords
non décroissantes ; et la couche limite à l’Est présente des problèmes de convergence loin de la fron-
tière. Nous montrons le caractère bien posé de ces problèmes dans des espaces de Sobolev non locaux
en nous servant des propriétés d’ergodicité et de l’analyse pseudo-différentielle. Nous construisons
une solution approchée du problème original et analysons sa convergence. Dans la deuxième partie
de ce travail, nous étudions une équation du milieu poreux (PME) unidimensionnelle modélisant les
propriétés mécaniques de la croissance tumorale. Nous nous intéressons à la limite singulière “loi
de pression rigide” lorsque le PME dégénère vers un problème à frontière libre de type Hele-Shaw.
Nous proposons une description précise des ondes progressives au voisinage de la transition entre le
domaine libre à pression nulle et le domaine incompressible à pression positive. Nous effectuons après
une analyse de stabilité des ondes progressives.

Mots clés : mécanique des fluides - analyse asymptotique - couches limites - modèle quasi-
géostrophique - équation du milieu poreux - ondes progressives - limite d’incompressibilité - équations
de Hele-Shaw -croissance tumorale

Subject : Asymptotic study of two problems in fluid mechanics

Abstract: This manuscript deals with the asymptotic analysis of two problems arising in fluid me-
chanics: the effect of roughness on oceanic motion taking as a starting point the single-layered quasi-
geostrophic equation and the mathematical description of congestion phenomena in tumor growth.
First, we are interested in the impact of the irregularities of the coastline on wind-driven oceanic mo-
tion when the geometry of the coasts does not follow a specific spatial pattern. The assumption on the
roughness has two main consequences in the asymptotic analysis of the quasigeostrophic model: the
governing boundary layer equations are defined in infinite domains with not-decaying boundary data,
and the eastern boundary layer exhibits convergence issues far from the boundary. We establish the
well-posedness of the solution of the boundary layer profiles in nonlocalized Sobolev space by adding
ergodicity properties and using pseudo-differential analysis. We construct an approximate solution to
the original problem and analyze its convergence. In the second part of this work, we study a one-
dimensional porous medium equation (PME) modeling the mechanical properties of tumor growth.
We are interested in the singular “stiff pressure law” limit when the PME degenerates towards a free
boundary problem of Hele-Shaw type. We provide a refined description of the traveling waves in the
vicinity of the transition between the free domain with zero pressure and the congested domain with
positive pressure and then perform a stability analysis of the traveling waves.

Keywords : fluid mechanics - asymptotic analysis- boundary layers - quasigeostrophic model -porous
medium equation- traveling waves-incompressible limit -Hele-Shaw equations -tumor growth
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