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Résumé: Un nombre croissant de sources de don-
nées sont publiées sur le web, exprimées dans les
langages proposés par le W3C comme RDF, RDFS
et OWL. Ces sources représentent un volume de
données sans précédent disponible pour les util-
isateurs et les applications. Afin d'identifier les
sources les plus pertinentes et de les utiliser, il est
nécessaire d'en connaitre le contenu, par exemple
au moyen de requétes écrites en Sparql, le lan-
gage d'interrogation proposé par le W3C pour les
sources de données RDF. Mais cela nécessite, en
plus de la maitrise du langage Sparql, de disposer
de connaissances sur le contenu de la source en
termes de ressources, classes ou propriétés qu'elle
contient. L'objectif de ma thése est d'étudier
des approches permettant de fournir un support a
I'exploration d'une source de données RDF. Nous
avons proposé deux approches complémentaires, la
recherche mots-clés et le résumé d'un graphe RDF.

La recherche mots-clés dans un graphe RDF
renvoie un ou plusieurs sous-graphes en réponse
3 une requéte exprimée comme un ensemble de
termes a rechercher. Chaque sous-graphe est
I'agrégation d'éléments extraits du graphe initial,
et représente une réponse possible a la requéte con-
stituée par un ensemble de mots-clés. Les sous-
graphes retournés peuvent &tre classés en fonction
de leur pertinence. La recherche par mot-clé dans
des sources de données RDF souléve les problémes
suivants : (i) I'identification pour chaque mot-clé
de la requéte des éléments correspondants dans le
graphe considéré, en prenant en compte les dif-
férences de terminologies existant entre les mots-
clés et les termes utilisés dans le graphe RDF,
(ii) la combinaison des éléments de graphes re-
tournés pour construire un sous-graphe résultat en
utilisant des algorithmes d’agrégation capable de

déterminer la meilleure facon de relier les éléments
du graphe correspondant a des mots-clés, et enfin
(i), comme il peut exister plusieurs éléments du
graphe qui correspondent a un méme mot-clé, et
par conséquent plusieurs sous-graphes résultat, il
s'agit d'évaluer la pertinence de ces sous-graphes
par |'utilisation de métriques appropriées. Dans
notre travail, nous avons proposé une approche de
recherche par mot-clé qui apporte des solutions aux
problémes ci-dessus.

Fournir une vue résumée d'un graphe RDF
peut &tre utile afin de déterminer si ce graphe
correspond aux besoins d'un utilisateur particulier
en mettant en évidence ses éléments les plus im-
portants ; une telle vue résumée peut faciliter
I'exploration du graphe. Dans notre travail, nous
avons proposé une approche de résumé originale
fondée sur l'identification des thémes sous-jacents
dans un graphe RDF. Notre approche de résumé
consiste 3 extraire ces thémes, puis a construire le
résumé en garantissant que tous les thémes sont
représentés dans le résultat. Cela pose les ques-
tions suivantes : (i) comment identifier les thémes
dans un graphe RDF 7 (ii) quels sont les critéres
adaptés pour identifier les éléments les plus perti-
nents dans les sous-graphes correspondants a un
théme 7 (iii) comment connecter les éléments les
plus pertinents pour créer le résumé d'un théme
? et enfin (iv) comment générer un résumé pour
le graphe initial a partir des résumés de thémes
? Dans notre travail, nous avons proposé une ap-
proche qui fournit des réponses a ces questions
et qui produit une représentation résumée d'un
graphe RDF garantissant que chaque théme y est
représenté proportionnellement & son importance
dans le graphe initial.
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Abstract: An increasing number of datasets are
published on the Web, expressed in the standard
languages proposed by the W3C such as RDF,
RDF (S), and OWL. These datasets represent an
unprecedented amount of data available for users
and applications. In order to identify and use the
relevant datasets, users and applications need to
explore them using queries written in SPARQL, a
query language proposed by the W3C. But in order
to write a SPARQL query, a user should not only
be familiar with the query language, but also have
some knowledge about the content of the RDF
dataset in terms of the resources, classes or prop-
erties it contains. The goal of this thesis is to pro-
vide approaches to support the exploration of these
RDF datasets. We have studied two alternative
and complementary exploration techniques, key-
word search and summarization of an RDF dataset.

Keyword search returns RDF graphs in re-
sponse to a query expressed as a set of keywords,
where each resulting graph is the aggregation of el-
ements extracted from the source dataset. These
graphs represent possible answers to the keyword
query, and they can be ranked according to their
relevance. Keyword search in RDF datasets raises
the following issues: (i) identifying, for each key-
word in the query, the matching elements in the
considered dataset, taking into account the differ-
ences of terminology between the keywords and
the terms used in the RDF dataset, (ii) combin-
ing the matching elements to build the result by

defining aggregation algorithms that find the best
way of linking the matching elements, and finally
(iii), finding appropriate metrics to rank the re-
sults, as several matching elements may exist for
each keyword and consequently several graphs may
be returned. In our work, we propose a keyword
search approach that addresses these issues.

Providing a summarized view of an RDF
dataset can help a user in identifying if this dataset
is relevant to his needs, and in highlighting its most
relevant elements. This could be useful for the ex-
ploration of a given dataset. In our work, we pro-
pose a novel summarization approach based on the
underlying themes of a dataset. Our theme-based
summarization approach consists of extracting the
themes in a data source and building the summa-
rized view so as to ensure that all these discovered
themes are represented. This raises the follow-
ing questions: (i) how to identify the underlying
themes in an RDF dataset? (ii) what are the suit-
able criteria to identify the relevant elements in the
themes extracted from the RDF graph? (iii) how
to aggregate and connect the relevant elements to
create a theme summary? and finally, (iv) how to
create the summary for the whole RDF graph from
the generated theme summaries? In our work, we
propose a theme-based summarization approach
for RDF datasets which answers these questions
and provides a summarized representation ensur-
ing that each theme is represented proportionally
to its importance in the initial dataset.
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1.1 Context and Motivation

An increasing number of interlinked datasets are published on the web. They
are described in languages proposed by the W3C, such as the Resource Descrip-
tion Framework (RDF). These interlinked datasets represent a massive amount of
knowledge available for numerous applications. However, to use these data sources
meaningfully, the user first needs to understand them and have some knowledge
about their content. In our work, we are interested in providing the users with
tools to explore the data sources in order to get an insight about their content.
Indeed, the most important issue in this setting is enabling the users to discover
which data are relevant to their needs and ranges of interest.

The natural way of interacting with an RDF dataset is to use a query language
such as SPARQLI[72]. However, to write the SPARQL query, the user should
have some knowledge about the data source such as, the classes and resources it
contains, the list of their properties, the vocabulary used if any, etc. To acquire
this knowledge, the user should manually browse and explore the content of the
RDF and check the properties used in the data set. The manual browsing process
consists of finding a seed node in the graph, issuing queries to get the properties
of this seed, and then repeating the process with neighboring nodes until the
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relevant information is found. But this task is very complex and takes a lot of
time. Moreover, the user should also be familiar with the SPARQL query language
in order to write the different queries.

Some approaches aim to propose alternative ways of querying an RDF dataset,
such as keyword search approaches and natural language querying approaches.
These approaches require some knowledge about the content of a dataset in order
to choose the appropriate keywords.

Some approaches have been proposed in order to provide a description of the
content of an RDF dataset, which could be very useful to support query formula-
tion. These approaches have different goals, and deal with different problems. We
can find among them schema discovery approaches, summarization approaches,
profiling and visualization approaches, or topic identification approaches. Some
of these approaches are based on quantitative information on the data, and they
generate some statistics on the different elements contained in the data source,
such as the number of classes, or the number of triples described by a given prop-
erty. Thus, the user will have a global vision of the source, but he must use the
SPARQL query language to query the data and get the information he needs.
There are also works proposing exploring RDF data sources in cases where the
user has no information and knowledge about the underlying data set. Since the
RDF data can be represented as a graph, thus the approaches propose creating
a summarized RDF graph to summarize the main RDF data set. The proposed
approaches aim to provide the user with a concise representation containing the
most relevant information in the graph to ease its exploitation; its purpose is to
extract meaningful information from the RDF graph representing their content as
faithfully as possible.

In our work, we have focused on two complementary ways of supporting the user
during the exploration of an RDF dataset. The first one is to provide an alternative
to querying the dataset using the well-known dedicated query languages. One
possible approach is keyword search, which has been addressed by several works |3,
23, 10, 85, 90, 41|. The second way of supporting the user during his exploration of
the source is to provide him with a structural summarized description of the dataset
representing its most important elements. Some research works have proposed
such summarization techniques [18, 58, 94]. Both families of approaches can be
used to help a user or an application willing to use the dataset without having
a detailed knowledge about the resources or properties in the dataset. Although
several solutions have been proposed for these two problems, some issues are still
open. In the next section, I will present the most important challenges that face
both keyword search and summarization.
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1.2 Challenges

Our goal consists in providing support for exploring and querying the RDF dataset
to allow the user to retrieve useful information and understand the content of the
RDF graph. For this purpose, we have explored two distinct but complementary
paths. The first one is keyword search, used to query an RDF dataset without
knowing the properties and the resources it contains.The second one is summariza-
tion, which aims at creating a summarized graph to help the user in the process
of finding out whether the dataset contains information which is relevant to his
needs.

Keyword search helps the user to remove the obstacle of the complexity of the
formulation of a query in a SPARQL query language. This allows the exploration
and retrieval of relevant information for the user. The main key issues that face
keyword search can be summarized as follow: (1) Identifying the relevant elements:
how to identify the elements in the dataset that can be matched to the given query
keyword? (2) Aggregating the relevant elements: after identifying the relevant
elements we need to connect them to create a sub-graph. How do we aggregate
the relevant elements and construct the results to be returned for the user? What
is the best way to connect two relevant elements related to a query? Can we
measure the importance of the paths in the final results? and finally, (3) Ranking
the final results: since we might have more that one sub-graph result for a given
keyword query, then we need to find a method in order to rank these different
results. What is the best way to rank the set of final results to the query?

We might have a query keyword with no relevant elements for this keyword in
the dataset. This is because there is no such concept in the dataset which can be
matched with this keyword or there is an equivalent concept in the graph but this
concept expressed using different terminology. The challenge is how to bridge the
terminological gap between the keyword query and the concept used in the graph?
In particular, this is one of the challenges that we will address. Once we have
identified relevant elements, we need to aggregate them to create the sub-graph
result and this is the second challenge. The third challenge we are addressing is
to identify the best metric to be used to rank the different results.

Summarization provides a concise representation for the content of an RDF
dataset. This representation reflects the most relevant elements in the graph.
This work revolves around two main challenges linked to the problem of summa-
rizing RDF graphs: (1) Identifying the relevant elements: we need to identify the
elements in the graph that will be used to create the summarized graph. What
criteria are used to identify these elements? Do we use the same criteria for all the
typed of nodes? (2) Aggregating the relevant elements: after selecting the relevant
elements we need to aggregate and connect them to create the summarized graph.
What is the method used to aggregate and connect the relevant elements to create



4 CHAPTER 1. INTRODUCTION

a summarized graph?

1.3 Contribution

Our work has studied some of the possible ways to provide support to RDF datasets
exploration and querying. More precisely, we are interested in two problems:
keyword search and summarization of RDF graph. Keyword search could be useful
when the user has very little knowledge about the dataset, its topic or the different
concepts used to describe the content of the dataset, and therefore he can not
write a sparql query corresponding to his needs. Moreover, summarization could
be useful when the user needs to know the different concepts that are described in
the dataset and how these concepts are connected and presented. The rest of this
section details our contributions.

We have proposed an approach for keyword search in RDF data [75]. We target
the problem of solving the terminological gap that exists between the keywords
of the queries provided by the user and the different elements and terms of the
graph representing the RDF dataset. The proposed approach uses an external
source of knowledge providing semantic relations in an online linguistic resource.
These relations are integrated into the matching part of the approach to bridge the
terminological gap between keyword query and RDF terms in order to improve the
quality of the results. We have defined two different types of matching according
to a hierarchy of semantic relations. This knowledge also helps the user explore
the RDF data by using his own terms without being restricted to the terms used
in the RDF graph.

Each keyword query can be matched with one or more elements from the RDF
dataset; these elements can be a node, an edge, or a subgraph. These elements
should be connected to form the subgraph result to the query. Consequently, we
have proposed a new approach to improve the way of connecting the matching
elements to build a meaningful final result [45]. In this approach, a novel method
is presented to aggregate the matching elements and find the best paths between
them to extract the sub-graph corresponding to the keyword query. Our solution
is an adaptation of two algorithms. The first one is used to solve the Steiner tree
problem, and the second one is used to extract the minimum spanning tree. We
have used a score to calculate the importance of the path connecting two elements
in a graph. This score is used to determine the best path when selecting the one
to be chosen in the process of building the final sub-graph result. Finally, we
have proposed a ranking method to rank the set of possible answers based on the
semantic relations used during the matching process.

We have also proposed an approach for summarizing RDF graphs [76]. Unlike
the existing approaches, our approach relies on the detection of the underlying
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themes or topics in the considered dataset. It ensures that the most relevant
nodes of each theme are present and that their representativity is reflected in the
summary. The underlying themes are first identified in the graph, then each of
them is summarized. The global summary is then built from the set of theme
summaries. In order to detect a theme in the graph, we rely on previous works
presented in [65], where a theme is represented by a dense area in the graph, i.e., an
area where nodes are highly connected. The summary of a given theme is built by
selecting the most relevant nodes in the graph. We have introduced an extended
definition of node centrality. We have proposed an aggregation method to find
the best paths between theme summaries. Moreover, we have stated theme-based
summarization as a Steiner tree problem. To this end, we have adapted existing
algorithms which have been proposed to solve the Steiner tree problem and finding
the minimum spanning tree, to connect the different summarized themes to build
the final summary for the RDF graph.

1.4 Organization of the Manuscript

This manuscript consists of five chapters apart from this introduction.

Chapter 2 presents a state of the art related to the problems we have addressed.
We survey the recent works on both keyword search in RDF graphs and RDF
graph summarization. We present each existing keyword search approach focusing
on the way it has dealt with the different challenges posed by keyword search. The
challenges can be summarized as follows: (i)Matching keywords where we need
to find the best matching elements in the dataset that matches with the query
keywords (ii)Aggregating Graph Elements The challenge is how to connect
and aggregate the matching elements (iii)Result Ranking. As each keyword may
have more than one matching element in the dataset, there may be several possible
results to the query. The problem is to rank the different results and to find a
ranking method capable of determining if there are better results than others. We
present existing summarization approaches and we categorize them according to
the technique used to build the summary. For each family of existing approaches,
we compare and analyse the different works and we discuss their limitations.

Chapter 3 deals with the matching process in keyword search. This problem
consists of finding the elements in the RDF graph that can be matched to the query
keyword. First, an overview of the keyword search approach is presented. Second,
the dataset indexation technique is presented, as well as the external knowledge
source used in the matching process. Third, our matching process is discussed.
Finally, an experimental evaluation is provided to compare the basic matching
process with the enhanced one using an external source of knowledge.

Chapter 4 deals with another challenge of keyword search in RDF graphs, which
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is aggregating the graph elements matching the keywords of the query. We state
our problem as a Steiner tree problem; then we describe the algorithms used to
solve this problem. We define the notion of centrality score associated to a path,
which is used to reflect the importance of the path connecting two different ele-
ments in the graph. We also detail the proposed algorithms and their adaptations
to solve our problem. The proposed approach is evaluated by comparing different
aggregation techniques according to their execution time and the total number of
results created.

In chapter 5, we present a novel summarization approach for an RDF graph.
We first present our method for identifying the different themes in the graph, and
we describe the identification of the relevant elements in each theme. We then
present a method to aggregate the relevant elements in the theme. We also de-
scribe the algorithm for connecting the different themes summaries. The proposed
approach is tested by using another method of summarization which is the baseline
approach where summarization is performed solely on the basis of centrality, with-
out considering the underlying themes. This test is done to show the difference
in the respective execution times; we also present the precision of the computed
result.

Finally, we provide a conclusion in Chapter 6, where we sum up our contribu-
tions and show how our proposal can help querying RDF graphs. We discuss the
open problems and present some future works.
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2.1 Introduction

An increasing number of data sources are published on the web, expressed in
languages proposed by the W3C, such as RDF, RDFS, and OWL. These data
sources are available for users and applications, but using them is not an easy
task, since the users need to have some knowledge about the content of the data
source before querying them. They can be queried by using dedicated languages
proposed by W3C such as SPARQL. However, to write a SPARQL query, the user
should first have some information about the content of the data source, such
as the schema, the vocabularies, or the list of the properties used in this data
source. To do so, the user must first browse the RDF data source and look for
the labels, properties and instances that are of interest to him. Then the user
could formulate the queries that will provide the relevant information by using the
collected information from the previous step. Moreover, the user should be familiar
with the SPARQL syntax; a query in this language consists of triple patterns with
variables, properties and resources that should be matched to the RDF data source.

In this work, we are interested in providing support to exploit meaningfully the
RDF datasets. In other words, our goal is to enable and guide the interrogation of
RDF datasets, considering that a user or an application does not necessarily have
a detailed knowledge about the content of this dataset, which makes the use of
the SPARQL query a complex process. If the user do not have information about
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the types, properties, and resources contained in the dataset, he will not be able
to write the SPARQL query. We have explored two distinct ways to support the
process of exploiting the dataset. The first one is keyword search, which enables
answering queries formulated as a set of keywords, regardless of the types and
properties of the dataset. Keyword search raises several issues, one of these issues
is the mismatch between the terminology of the dataset and the one of the queries.

When we use keyword search, sometimes we can find the same label for what we
are looking for and sometimes it is not straightforward but we can find something
in the dataset which is closed in meaning or even equivalent to the keyword query.
The challenge consists of determining all the possibilities of matching between
the keyword query and the dataset. Another challenge consists of finding the
match between number expressed in character. For example how can we match
the keyword query "one" with a node labelled with "1".

Keyword search is a technique used to retrieve information from large amount
of data. Keyword search approaches have been proposed for various type of data,
such as databases or Web pages. It consists of entering a set of keywords into
the system, which will then match these keywords with the data and connect the
keywords to provide a set of sub-graphs as an answer.

In the context of an RDF dataset, answering a query composed of a set of
keywords consist firstly in retrieving from the dataset the elements which are the
best matches for each keyword, and secondly in connecting the matching elements
in order to provide the sub-graph which represents a possible answer to the initial
query. As several matching elements can be retrieved for each keyword, processing
a single query may lead to several results. This leads to an important issue which
is identifying the best answer, this requires us to be able to find a ranking method
to compare the set of possible answers and identify the best ones.

Providing a summary of an RDF dataset is another way of supporting the
users and the applications willing to use the dataset. Summarizing RDF datasets
consists in extracting a concise representation that gives insight into the dataset’s
content. The challenge here is to define what are the relevant elements and how
they will be selected. The evaluated element can be a node, an edge or set of
connected nodes and edges, in some cases we need to define an appropriate metrics
to evaluate the relevance of the different elements in the dataset; in other cases a
method is needed to determine which paths or sub-graphs need to be selected as
relevant elements. In some of the summarization approaches, the elements of the
dataset that are present in the summary, are selected based on their importance
in the dataset; in other approaches, the elements are selected based on similarity
between the elements or on the most similarity of the paths. Another challenge
consists in building the summary from the selected relevant elements.

The summarization of the dataset consists of first selecting the most relevant
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elements, then connecting those elements to create the summarized graph. The
relevant elements differ from one approach to another, some of them use the most
central nodes, and others use different metrics to identify the important classes, but
the main idea is to select the elements that represent important information in the
dataset. The main concept of summarization is to reduce the number of elements
as much as possible but without loosing the important information described by
the dataset.

In this chapter we will study existing approaches for both keyword search and
summarization. The preliminaries are presented in the section 2.2. The second
part, presented in section 2.3, is devoted to keyword search. We will present the
challenges raised by this problem and the related works, as well as a comparative
analysis of these works. The third part, presented in section 2.4, deals with sum-
marization approaches. We will present the different summarization techniques,
as well as the different ways of evaluating the relevance of elements in an RDF
dataset. For both sections, we will provide a discussion and the open research
issues for the considered problem. Finally, we will provide a conclusion in section
2.5 highlighting the open problems.

2.2 Preliminaries

This section introduces preliminaries and concepts used in our work. First, we
present the Resource Description Framework (RDF), then a brief definition for
the Web Ontology Language (OWL) is presented; We also introduce SPARQL
which is the query language for RDF. Finally, we present the concepts related to
linked open data cloud and the semantic web.

2.2.1 The Resource Description Framework

Resource Description Framework (RDF) [51] is a language proposed by W3C to
describe the datasets published on the web. RDF triples are used to express de-
scriptions of resources. The building block in RDF is a triple <subject, predicate,
object>. The subject is a resource represented by URI or a blank node and the
object is the description of the resource and it can be described by URI, or it can
be a blank node or even a literal. For example, <The God Father 2, starring,
Al Pacino> is a triple where the subject is the resource "The God Father 2"
and the object is "Al Pacino".

The Uniform Resource Identifiers (URIs) are used to identify anything, in-
cluding real-world objects, such as people and places, concepts, or information
resources such as web pages and books. The URIs are shared across all Web doc-
uments existing worldwide; It allows different people to reuse the URI to refer to
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the same resource.

The literal is a constant value of different types such as a string or a number.
The predicate is the relation that connects the subject and the object, and it is
identified by the a URI.

The Resource Description Framework (RDF) dataset can be represented as a
graph model where the subjects and the objects are the nodes, and the predicates
are the edges connecting the nodes.

Informally, sentence “The God Father 2 movie was released in 12-12-1974” can
be represented as an RDF triple as shown in figure 2.1, where the subject is “The
God Father 27, the predicate is “release date” and the object is “12-12-1974".

<?xml version="1.8" encoding="utf-8" 7>

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/62/22-rdf-syntax-nsz"
“mlns:schema="http://schema.org/"
xmlns:ns@="http://dbpedia.org/ontology/">

<schema:Movie rdf:about="http://dbpedia.org/resource/The_God Father_2">
<ns@:starring rdf:resource="http://dbpedia.org/resource/Al-Pacino"/>
<ns@:starring rdf:resource="http://dbpedia.org/resource/Robert _De Niro"/>
<ns@:releaseDate rdf:datatype="http://www.w3.0rg/2081/XMLSchematdate">1974-12-12</ns0:releaseDate>
<ns@:director rdf:resource="http://dbpedia.org/resource/Francis_Ford Coppola"/>

</schema:Movie>

</rdf :RDF>

Figure 2.1: An Example of RDF Dataset about Movies

These triples can also be represented as a graph, as shown in Figure 2.2.

1974-12-12 @

releasedDate

Figure 2.2: Graph representation for the RDF data in figure 2.1
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2.2.2 RDFS and OWL

RDF is a data model that describes set of resources. Moreover, the RDF Schema
(RDFS) provides a data-modelling vocabulary for RDF data. This vocabulary
can be used to specify URIs as being of a specific type (classes, properties and
instances), to denote special relationships between resources. The flexibility of the
RDF data model allows the representation of both the schema and the instances
information in the form of RDF triples.

For example in the graph of figure 2.2, "Movie" is a class, "release_ Date" is a
property and "12-12-1974" is literal.

Therefore, the vocabularies that are provided by RDF Schema to define classes
and properties can be included as "rdfs:Class, rdf:Property (from the RDF names-
pace), rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, and rdfs:range". It may
also include properties for documentation, including rdfs:label and rdfs:comment.
To go beyond these primitives, the W3c has proposed an Ontology Web Language
(OWL).

The W3C Web Ontology Language (OWL) [22] is a Semantic Web language
designed to represent rich and complex knowledge about things, groups of things,
and relations between things. OWL is a computational logic-based language such
that knowledge expressed in OWL can be exploited by computer programs, e.g., to
verify the consistency of that knowledge or support some inferences to derive new
knowledge from what we already have. OWL documents, known as ontologies, can
be published in the World Wide Web and may refer to or be referred from other
OWL ontologies [88]. For example, owl allows to express that some property has
a cardinality.

2.2.3 The SPARQL Query Language

RDF datasets can be queried using languages such as the SPARQL language [79]
where queries are specified as basic graph patterns evaluated against the dataset.
A basic graph pattern is a set of triple patterns. A triple pattern is an RDF
triple in which the resources and/or the property could be variables. The idea
is to match the triples in the SPARQL query with the existing RDF triples and
find solutions to the variables. For example, if the user wants to query the data
represented in the graph of figure 2.2 to find the director and release date of the
movie “The God Father 2”7, he should write the following query:

SELECT 7x 7y
WHERE {< The_God_Father_2, director, 7x >.
< The_God_Father_2, Release_date, 7y>.}

nn

The result of the query for the variable "x" will be "Francis Ford Coppola"
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which is the director of the movie and "12-12-1974" is the value of the variable
"y" which is the release date for "The God Father 2" movie.
A SPARQL query[86] can be of the following forms:

SELECT; Returns all, or a subset of, the variables bound in a query pattern
match.

CONSTRUCT; Returns an RDF graph constructed by substituting variables
in a set of triple templates.

ASK; Returns a boolean indicating whether a query pattern matches or not.

DESCRIBE; Returns an RDF graph that describes the resources found.

2.2.4 Linked data and the Semantic Web

The web of data or linked data was introduced by Tim Berners-Lee [8] to represent
the multiple structured and interconnected data sources published on the Web. It
builds upon standard Web technologies such as HI'TP, RDF and URIs, but rather
than using them to serve web pages only for human readers, it extends them to
share information in a way that can be read automatically by computers.

The semantic web is a distributed collection of "linked data" on the Web. Just
as Web pages are linked via hypertext, the goal of the semantic web is to ultimately
link all the available data. In other words, each data source includes links to other
data sources, thus forming a huge information space, which can be exploited by
machines, and not only by humans.

According to Berners-Lee|[7] “The step of putting data on the Web in a form
that machines can naturally understand, or converting it to that form is call a
Semantic Web — a web of data that can be processed directly or indirectly by
machines”.

The Semantic Web is about two things. It is about common formats for inte-
gration and combination of data drawn from diverse sources, where on the original
Web mainly concentrated on the interchange of documents. It is also about lan-
guage for recording how the data relates to real-world objects. That allows a user,
or a an application, to start off in one dataset and navigate to all the interconnected
datasets as if it was a single virtual data space [87].

2.3 Keyword Search

Keyword search is a process that takes some keywords issued by a user and retrieves
any document that has all or any of those terms used. Although mostly known
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for searching collections of documents, some keyword search approaches have been
proposed for relational databases [1, 6, 9, 24, 42, 44|, other approaches have been
proposed to enable keyword search on XML data [20, 34, 92, 34]. Finally, some
approaches have addressed keyword search over RDF datasets [93, 38, 66, 91].

Keyword search is an alternative way used to query an RDF graph, it does
not require any knowledge about the syntax of the query language from the user;
the process consists of entering a set of keywords into the system. The system
finds the best match for each keyword and returns them as a sub-graph containing
all the keywords and representing an answer to the query. There are three main
challenges for keyword search:

Identifying the matching elements: This consists in finding the elements
of the graph that match each keyword in the query. In some cases, the user may
enter a keyword for which an exact match can not be found in the dataset. The
problem is to identify the equivalent concepts and the close concepts to some key-
words in the dataset.

Aggregating the matching elements: After identifying the matching el-
ements in the RDF graph, the problem is to build the final result from these
elements and aggregate them into a connected sub-graph representing an answer
to the query.

Ranking the final results: As each keyword may have more than one match-
ing element in the dataset, there may be several possible results to the query. The
problem is to rank the different results and to find a ranking method capable of
determining if there are better results than others.

The above challenges are tackled by the existing keyword search approaches,
which either propose a general solution covering all of them or focus on a subset
of these challenges. In the rest of this section, I will present each challenge and
the existing approaches with their techniques to overcome each of them.

2.3.1 Identifying the matching elements

Identifying the matching elements consists in identifying the elements in the dataset
that can be matched with the query keywords. Some of the existing approaches
find the exact matches between the query keywords and the dataset; exact matches
means that the same query keyword was found in the dataset. Other approaches
use some external knowledge to help in identifying the matching elements. In this
section, I will present existing approaches that tackle this problem.
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The approaches can be classified into three categories according to the type of
matching they perform. The first one is node matching; the approaches in this
type match the query keywords with the nodes of the RDF graph. The second one
is edge matching; the approaches in this type match the query keywords with the
nodes and the edges of the RDF graph. The last type is pattern matching, where
the query keyword can be matched with a node, an edge or even a sub-graph from
the RDF graph.

2.3.1.1 Node Matching

Node Matching is the first category of approaches that match the nodes in the
RDF graph with the query keywords. In this section, we will present the different
approaches under this category.

Spark [93] is a keyword search approach that takes a set of keywords as an
input and returns a ranked list of SPARQL queries as an output. These queries
are used to create the final answer to the query keyword. The matching between
the query keywords and the elements of the RDF graph in this approach is done
according to two ways. (i) The first one is morphological matching, and (ii) the
second one is semantic matching. The first kind of matching is to use some string
based functions and comparison techniques such as Sub-String and Edit-Distance.
These techniques aim to find nodes and edges in the graph that are morphologically
similar to the query keyword. Stemming sub-string is a process used to reduce the
words into their root form and try to find the matching elements between the
query keyword and the nodes and/or edges in the graph. For example, "browse"
can be matched with "browsing". Another technique is the Edit-Distance which
calculates the minimum number of operations required to transform one string into
the other; these operations are deletion, insertion and substitution of a character.
For example to convert "cat" into "cut" one operation is needed which is replacing
’a’ with 'u’. The second method consists of finding semantically relevant words to
map the terms in a graph with the keywords in the query by using some external
knowledge. A pre-defined confidence value to determine the mapping quality is
assigned to each matching element. This score is between 0 and 1 where the value
for a direct matching is higher than that for a semantic matching. At the end of
the matching process, each keyword in the query will be associated with a set of
matching nodes from the RDF graph.

In the Q2semantic [91] approach, the matching is performed using an external
knowledge base. In this approach, all the property names, URIs, resources and
literals values are considered as words, and every single word is represented by a
term ¢;. A document is created for each term ¢; in the dataset; this document
contains the features that are matched to ¢;. These features are extracted from
Wikipedia by searching for ¢; in it. They are consisted of the titles of the first
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articles that appears in the search and the title of another article that redirects to
the first article. The matching process starts by comparing the keywords in the
query with the terms and the documents associated with each term in the dataset.
The search in this approach is an exact match between one of the elements in
the document related to the terms of the data set and the query keyword. The
matching process provides for each query keyword a set of matching elements.

The previous approaches use an external knowledge base to enrich the matching
process and find more keywords to match the query. Other approaches provide
only the exact matching between the query keyword and the graph patterns as in
[40, 46] but these approaches differ in the way they find the result for the query.
One of these approaches is BLINKS (Bi-Level INdexing for Keyword Search)[40],
it is an indexing and query processing scheme for ranked keyword search over
node-labeled directed graphs. In this approach, the keywords are matched to the
nodes in the RDF graph by exact matching, finding the identical keywords in the
nodes of RDF graph that match the query keyword by using an index defined by
the authors.

In the approach presented by Kargar et al. [46], a system for effective keyword
search in a graph with weighted nodes is presented. This system returns a sub-
graph containing all the keywords in the query entered by the user. In the matching
process, for each query keyword k; the approach finds the set of matching nodes
Sk, in the RDF graph that are identical to k; by using the inverted index, which
is used in the search engine to optimize the speed of the query.

2.3.1.2 Node and Edge Matching

The second category of approaches not only consider the nodes but the edges
as well. Each query keyword in these approaches will be matched with either a
node or an edge of the RDF graph. The matching technique is different from one
approach to another, for example the approach presented in [38] builds a bipartite
graph from RDF data. A bipartite graph is a graph whose vertices can be divided
into two disjoint and independent sets U and V such that every edge connects a
vertex in U to one in V. This approach consists of creating an annotated query AQ
from the query keyword Q={t1, t2, t3...}, by checking if each term in Q could
be matched to an entity, a class, or a relation of the RDF dataset. The mapping
is done by using the entity linking [39] and relation paraphrasing [11, 62].
Consider the example given in figure 2.3, representing an RDF graph extracted
from DBpedia, and let () = {scientist, university, locate, United _States} be a
query keyword. The annotated query is AQ = {“scientist ”: class, “graduate from™
relation, “university”: class, “locate™ relation, “USA™: entity }, where “scientist” is
matched to the {Scientist} class, “university” is matched to the { University} class,
and “USA” is matched to the entities {United _States}. In addition, the relation
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“locate” is also matched to the candidate predicate { location}.
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Figure 2.3: An example of RDF graph describing universities and scientists|3§]

All the previous approaches provide a subgraph as a result of the query key-
words. Another type of keyword search approach provides set of SPARQL queries
from the query keyword and then executes this query to provide the final result.
The approach presented in Gkirtzou et al. [31] takes a set of keywords as input and
translates them into candidate SPARQL queries. In this approach, the matching
elements are determined by finding the exact matching between the query keyword
and the elements of the RDF graphs. The matching elements can be either nodes
or edges.

2.3.1.3 Pattern Matching

The third category of approaches use not only matching between nodes and edges,
but also use pattern matching. The keyword in this category will be matched
with either a node, or an edge or even a path that is represented as a pattern
in the RDF graph. The approaches in this category use external knowledge to
find the patterns that match a path in the graph with a query keyword. Another
approach presented by Zou et al. [95] proposes a graph data-driven solution to
answer a natural language question over an RDF graph. It takes a natural language
question as an input and returns a set of sub-graphs that matches the question
as an output. The approach consists of two stages, an offline stage and an online
one. In the offline stage, a dictionary is created to support the matching process
between the natural language question and the terms in the RDF graph. In the
online stage, the matching elements are identified, and the possible sub-graph
solutions are created.
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Jeseph_p._kennedy, Sr,
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Figure 2.4: Predicate and Predicate Paths that can be mapped to Relation Phrases
[95]

In the offline part, the approach relies on some external knowledge to create
a paraphrase dictionary. This external knowledge is provided in the form of sup-
porting entity pairs that consist of matching relation to entities; for example, table
2.1 presents the relation phrases and the supporting entity pairs. The first column
contains the relation phrase, and the second one contains the supporting entity
pairs where the pairs in column two can be connected using the relation in column
one; for example, <Antonio Banderas> is connected to <Philadelphia(film)> by
the relation "Play in".

Relation Phrase | Supporting Entity Pairs

“play in” ((Antonio_ Banderas) , (Philadelphia (film))),
((Julia_Roberts) , (Runway _Bride)) ...

“uncle of” ((Ted_Kennedy) ,(John_F. Kennedy_Jr.)),
((Peter_Corry,(Jim_Corr)) ...

Table 2.1: Relation Phrase and Supporting Entity Pairs [95]

The paraphrase dictionary contains the relation phrase and the predicate or
path equivalence to this phrase and a confidence probability to reflect the matching
score between them. For example, Table 2.2 shows an example of paraphrase
dictionary created by using the entity pairs in the table 2.1 and the graphs in
figure 2.4. The dictionary shows that the relation "uncle of" is equivalent to the
path highlighted in blue in the graph of figure 2.4.

In the online phase, each keyword in the natural language question will be
matched to a term in the RDF graph exactly or by using the paraphrase dictionary
created in the offline phase. For example, if "play in" is one of the keywords in the
natural language question, it will be matched to the predicate "director" according
to the paraphrase dictionary in table 2.2. As an output of the online phase, for
each keyword in the question could be matched with more than one matching
element.

In the approach presented by Ouksili et al. [66], the equivalence between
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Relation Phrase | predicates or Predicate Paths | confidence probability

“play in” <starring> 0.9

® O
“play in” <director> 0.5

® ©
“uncle of” <hasChild> <hasChild> 0.8

o O @O ©°
<hasChild>

Table 2.2: Paraphrase Dictionary [95]

keywords and paths is also used. This approach takes a set of keywords as an input
query and returns a set of sub-graphs as a result to the query. External knowledge
expressed as patterns are used to match the query keyword with patterns from
the RDF graph. The pattern represents the equivalences between a property and
a path. For example, the property “brother” is equivalent to the graph shown in
figure 2.5, which can therefore be selected as a matching element for the keyword
"brother".

son son<» Ridley Scott

Figure 2.5: Example of sub-graph which matches the Brother keyword

In this approach, the matching process is based on the exact matching between
the keywords and the terms of the RDF graph; if the keyword is not found in some
graph elements, then the patterns are used to find a sub-graph that is equivalent
to the keyword. Finally, each query keyword can be matched to more than one
candidate sub-graph.

In all the presented approaches the matching elements between the keyword
query and the sub-graphs are defined in two ways. The first one is using the exact
match, which consists of making comparisons over the letters of the keywords.
The second one consists of finding keywords in the RDF graph that are close in
meaning to the keywords in the query using some external knowledge. Most of the
approaches that uses the exact matches use the indexation to optimize the search
and find the keywords in the fastest way. But using exact matching alone is not
enough; The problem is that the user could use a keyword which can not be found
exactly as it is in the graph but we can still find some elements that are close in
meaning to this keyword. To overcome this problem, some approaches have been
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proposed based on using some external knowledge to bridge the terminological gap
between the query keywords and the terms in the graph. The limitations of these
approaches is that most of them rely on some external knowledge which is domain
specific which makes these approaches unsuitable for any RDF dataset.

2.3.2 Aggregating the matching elements

After finding the matching elements, the goal is to aggregate these elements and
connect them to create a sub-graph corresponding to the query keyword. This is
done by finding the best paths that connect the matching elements. Determining
what is the best path is a challenge. The problem is to find a way to assess the
path according to different criteria that reflect its meaningfulness according to the
user.

In keyword search approaches there has been several ways to aggregate a given
set of matching elements in order to produce the smallest sub-graph containing
them all, and this sub-graph represents an answer to the query. We can divide
these approaches into four categories according to the graph algorithm they use.
The first one is using the shortest path, the approaches in this category find the
shortest path between the matching elements to create the final result. The second
category is summarization; in this category, the approaches build a summarized
graph starting from the main graph in order to find the best result to connect
all the matching elements. The third category is backpropagation; this algorithm
starts from different nodes and propagates backward to converge in one node to
find the best solution. The final category is the ad-hoc aggregation method where
each approach in this category has its own method in creating the result. In the
next section, the approaches are presented according to the four categories.

2.3.2.1 Aggregating Matching Elements by using the Shortest Path

The first category is to build the sub-graph result based on the shortest path
between two nodes. The metric to compute the shortest path differs from one
approach to another; it can be based on the number of edges that connected
the two nodes or on the sum of a weight associated to the edge. The approach
presented in [46] weighted the edges and find the shortest weighted path between
the matching elements. The weight of the edge depends on the degree of the two
nodes that are connected by this edge. The process consists of selecting a node
in the graph and finding the shortest path from this node to all the other nodes
containing one of the query keywords. Since each node in the graph can be a
potential root for an answer tree, the system starts with a random node n; in the
graph. Finally, it creates a tree which root is the node n; and all its leafs containing
the matching elements. The previous steps are repeated by choosing another root
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node n; to create another possible result. After finding all the possible result trees,
a score is calculated by computing the sum of the weight of the edges in the tree.
The tree having the highest score is the best answer to the query keyword.

This method is also used by the approach presented in [66]. Each query keyword
corresponds to a set of matching elements; The cartesian product is performed to
extract all the possible combinations between the matching elements. For each
combination, a sub-graph is created by randomly selecting one of the marching
elements and connecting all the shortest paths from this element to all the other
elements in the combination. Finally, a set of sub-graph results is returned to the
user.

The approach presented in [93| uses the minimum spanning tree algorithm
that is based on the shortest path. This approach constructs SPARQL queries
from the list of matching elements of the query keywords. Since there is a list of
matching elements for each keyword in the query, all the possible combinations
are derived. In each combination there is one matching element that corresponds
to one keyword query. For each combination, the approach finds the sub-graph
connecting all the terms in the combination to create the query graph by using an
algorithm called the minimum spanning tree [55]. This algorithm constructs a tree
from a graph by connecting the nodes without any cycle and with the minimum
possible edge weight. In this approach, the authors consider that the weight of the
edges equals one. After building the query graph, the SPARQL query is created.
Since SPARQL is a graph pattern-based query language, it is straightforward to
convert the query graph into a corresponding SPARQL query.

2.3.2.2 Aggregating Matching Elements by using Backward Propaga-
tion

Backward propagation starts form the matching nodes, which are the nodes that
can be matched to the query keywords, and propagates backward until all the nodes
converge to a root node and all the nodes are connected. Q2semantic [91] uses
backward propagation and it creates a clustered graph summarizing the original
graph, then uses the propagation method on the summarized graph. This graph
is called the RACK graph; it consists of R-Edge, A-Edge, C-Node, and K-Node
obtained from the original RDF graph through the following mappings:

Mapping instances: Every instance of the RDF graph is mapped to a C-Node
labeled by the concept name that the instance belongs to.

Mapping attributes: Every attribute value is mapped to a K-Node labeled
by the literal value.

Mapping relations: There are two types of relations, the first one is the
relations connecting two instances that are mapped to an R-Edge and the second
one is a relation between an instance and literal that is mapped to an A-Edge.
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The clustered RACK graph is obtained by applying the following rules:

Rule 1: Two C-Nodes are merge into one if they have the same label.

Rule 2: Two R-Edges are merge into one if they have the same label and
connect the same pair of C-Nodes.

Rule 3: Two A-Edges are merge into one if they have the same label and are
connected to the same C-Node.

Rule 4: Two K-Nodes are merge into one if they are connected to the same
A-Edge. The resulting node inherits the labels of both K-Nodes.

The final query is constructed from the clustered RACK graph by creating a
thread for each keyword and do a traversal from the K-nodes until all threads
converge to the same node. When all the keyword threads converge to the same
node, then a final solution is found.

Another approach that also uses backward propagation is presented in [40],
but in this approach, the authors first decompose the data graph into blocks.
The decomposition of the graph is based on node-based since the number of the
nodes that separate the different partitions, which are denoted by separators, are
smaller in the node-based partition; since the nodes are the separators then only
one element will be duplicated in the two separated graphs unlike the edge-based
partitioning which requires the duplication of 3 elements, the edge separator and
the two nodes connected to this edge. The authors also mentioned that the node-
based partition eases the implementation. The process of creating the resulting
sub-graph starts by traversing the RDF graph from the blocks containing the query
keywords and starts expanding backwards until the propagation converges to the
same node. The shortest distance score SumDist for a node is defined as the sum
of the shortest distances from this node to all the nodes that contain the query
keywords. This SumDist is calculated for all the nodes, and we check if this score
is less than a given threshold, then the sub-graph created by connecting this node
to all the nodes that contain the query keywords is a candidate answer. A list of
ranked sub-graphs is returned as an output.

2.3.2.3 Aggregating Matching Elements by using a Summarized Graph

Similarly to the QQ2semantic approach [91] that summarizes the graph before build-
ing the final sub-graph result, the approach proposed in [31] creates an augmented
summary graph. This graph is a combination of an aggregated representation of
the RDF dataset. All RDF entities from the RDF data graph that have the same
type are represented by a vertex labeled with the name of this class. Let 1 and
be two resources in the RDF graph and let R; and R, be the aggregated vertex in
the augmented summary graph that represent the resources r; and ry respectively.
If there is an edge between r; and ry in the RDF graph, then this edge need to be
added in the augmented summary graph.
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After creating this graph, a query graph pattern is extracted by calculating
the shortest paths between every pair of matching elements and then all paths
are combined together into one connected query pattern graph. Finally, the query
pattern graph is transated into a SPARQL query.

Mio0o0o262 accession

hsa-mir-147a name @
type
species
% PITX Hea
Specics narme 9L D
pe NSGO00096 I i score
saplens
Chromosome ¢
hasTarget
@ producesTranscript 4@‘
@ pe

Figure 2.6: Example of an RDF data graph describing biological data [31]

OO\.

Let us consider the graph in figure 2.6; and let k={ "MI000262", "name" ,
"hasTarget"} be the query keyword. There are three matching elements for the
keyword "name", one for "MI000262" and one for "hasTarget". There are three
possible combinations; let us take the combination having the keyword "name" as
a literal. Figure 2.7 shows the augmented summary graph.
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Figure 2.7: Augmented summary graph [31]
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To extract the query pattern graph from the augmented summary graph, for
each pair of matching elements the shortest path is calculated, then all the shortest
paths are combined to create one connected subgraph. The final step in this process



24 CHAPTER 2. STATE OF THE ART

is to translate the query pattern graph into a SPARQL query.
The final SPARQL query is obtained by translating the query pattern of graph

Interaction ?|

\
hasMature * hasTarget
A

Transcript ?T

DIANA Query Pattern Graph

Figure 2.8: query pattern graph [31]

2.8, and the corresponding SPARQL query is given below:

SELECT 7I 7?M 7T WHERE

{?I a diana:Interaction. 7?M a diana:Mature. ?T a diana:Transcript.
?I diana:hasMature 7M. 7I diana:hasTarget 7T.

?M diana:accession ‘‘MIMAT0000251’’. ?M diana:change ‘‘NAME”.}

2.3.2.4 Ad-hoc aggregation methods

Beside summarization based and shortest path based, there are other methods
presented by different approaches and can be used to connect the matching ele-
ments and compute the final result. One of these approaches is to use bipartite
graph as in [38], the process consists of classifying the matching keywords into two
sets. The first one contains vertex pairs for all the possible combinations of classes
and literals, and the second one contains the possible relations (edges) between
the items in the first set. Then all the possible combinations are derived. For each
combination, a SPARQL query is created.

Another method that can be used consists of translating the natural language
question into a graph as in the approach presented in [95]. The aggregation in
this approach consists of two processes: the first one is question understanding;
its goal is to translate the natural language question into a dependency tree. The
second process is query evaluation, which finds a sub-graph in the RDF data graph
that can be matched with the dependency tree created in the previous process.
The translation of the natural language question into a tree is done by using
the Stanford Parser [21], then the relations are extracted from this tree, and a
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comparison is done with the paraphrase dictionary in order to match the relations
in the tree with the phrases and the pairs in the dictionary. Ambiguity is allowed
in this matching, i.e., one element in the dependency tree may be matched to more
than one element in the RDF graph. Finally, all the sub-graphs that match the
dependency tree are extracted from the RDF graph and ranked according to the
confidence probability in the paraphrase dictionary. A ranked list of sub-graphs is
returned to the user as an output.

2.3.3 Ranking Answers Subgraphs

Since most of the approaches provide more than one answer to the query keyword,
there is a need of a ranking method to rank these results. There are different
ranking methods proposed in the approaches of keyword query. Some of them
realise the probability formulas, and others use a method based on the matching
element that reflects how the matching element is close to the query keyword. In
this section, I will present how the different approaches deal with calculating the
rank for each answer in the resulting set of answers.

In SPARK [93] after finding all the sub-graphs for all the combinations, a
ranking method is applied in order to rank the results. This method is based on
the matching score assigned to the terms during the matching process. The ranking
method consists in representing the probability of constructing formal query from
the given query keyword; it is treated as a conditional probability event; i.e what
is the probability of constricting sparql query Q given the query keywords.

In the approach presented in [95] the results are ranked based on the probability.
In this approach, a paraphrase dictionary D is used to compute the equivalence
paths between the relation phrases and the paths connecting the supporting entity
pairs. Each relation phrase in the dictionary D is associated with a confidence
probability, which is the probability of mapping relation phrase to predicate paths.
During the ranking phase, this confidence probability is used to calculate the final
rank for the created result by adding the confidence probability for each matching
element.

Other approaches combine more than one method to rank the results. In
Q2Semantic [91], three methods are used for ranking the sub-graph results. Q2Semantic
consists of creating query graphs. The ranking is based on these graphs. The first
method is the query length, which consists in calculating the number of edges in
the query graph. The second method is calculated based on a matching relevance
score; this score is associated with the matching element during the matching pro-
cess. In this method, the query graph with the minimal number of nodes and with
the higher matching relevance score is the higher-ranked query. The third one is a
score that reflects the importance of edges and nodes. This is calculated by taking
into account the number of nodes and edges that are not related to the matching
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elements and are added to the summarized RACK graph.

Another approach that uses more than one method to rank the final results
is presented in [66]. In this approach, all the results are ranked according to a
ranking function that combines two criteria, the compactness relevance, and the
mapping relevance. The compactness relevance is the relevance between the size of
the matching elements and the final sub-graph result; it is used to check the size of
the intermediate part of the final sub-graph that is added during the construction
of the result, the rank of the final result increase as the size of the intermediate part
decreases. The mapping relevance consists of giving a weight for each matching
element; this weight represents the relevance of the matching element with the
query keyword.

2.3.4 Discussion and open issues

We have presented some existing works addressing keyword search in RDF datasets.
Some of these works deal with one of the challenges which are matching the key-
word query with the elements of the RDF graph, aggregating the matching ele-
ments to build an answer to the query and finally ranking the final set of answers
to the query; other approached deal with all of them. The approaches in this
section are presented according to these challenges.

For matching the query keywords with the elements of the dataset, Spark [93]
uses morphological mapping and semantic mapping, but the user might write a
query keyword which is not in the ontology, or it is not equivalent to a predicate
path. Another approach [38] matches the query keyword to entity, class, or relation
and then deduces the clique with the largest coverage, but this study did not take
into consideration that the user may enter a keyword different from the terms
in the graph. Other approaches used external knowledge as in [91] and [95] but
according to [91] a large-sized memory is needed to handle the documents for each
keyword, and it is expensive to extract all the related elements, and the target
element may be not founded in these documents. Moreover, the approach in [95]
uses the supporting entity pairs but these pairs are domain specific and they are
not available for all datasets according to [62].

For the second challenge, which is aggregating the matching elements, the
approach in [93| extracts the relation from the ontology and proposes to build
query graphs by uses minimum spanning tree and convert the graph into SPARQL
queries. We can use the ontology to generate some knowledge from it after doing
some kind of inferences. However not all datasets have their ontology, and not all
relations can be extracted from it. There are approaches that transfer the data
graph into a summarized graph and use them to answer the query keyword [91, 40,
57|, but creating a summarized graph leads to a lack of information and loss lot of
relations may be important to connect the matching elements. Other approaches
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[31] use some ad-hoc methods to create query pattern graph and then generate
the SPARQL query based on this graph, but this approach needs good knowledge
about the initial graph, the ontology, and all the relations between the nodes. The
last approach to discuss is [38|, consists of creating a bipartite graph by classifying
the keywords into two sets, classes and literals (vertices) and relations (edges);
the problem with this approach is that the connected keywords may not be in the
query keyword (use only query keyword to create the edges set).

There are not many studies dealing with the last challenge, which is ranking
the final set of answers. In the approach presented in [95] the authors calculate the
confidence probability of mapping relation phrase to predicate path. While [38] and
[91] use the edge weight and the query length, they consider that the smallest the
query the better the rank but this might not be true since the query with a smaller
length is not necessary to be the best one. Other approaches use probability to
compute the ranking, for example in [93|, the probability of constructing a formal
query from the given query keyword is calculated.

Table 2.3 summarizes the keyword search algorithms presented in this section.
As we can observe from the table, some of them match the keywords with nodes
and others match it with nodes and edges. We can also see that some approaches
use exact matching and others use an external knowledge base consists of semantic
similarity between concepts under a specific domain. Usually, the input to all the
approaches is a set of keywords, but the output differs from one approach to
another, some of them return a set of sub-graphs as an output, others return just
one sub-graph and there is also the approaches that return a SPARQL query as
an output.

One of the limitations of the existing approaches is that they do not consider
the terminological gap between the query keyword and the RDF elements. Suppose
the user enters a keyword that can not be matched to any component of the graph,
but there exist one or more elements that are similar to this query keyword, none
of the studied approaches can handle this problem. In that case, some of them
are using specific domain external knowledge relations. Still, those are not enough
since they are not general relations and do not reflect all the possible semantic
relations for all the elements of the RDF graph. Another limitation of the existing
approaches which rely on shortest path, is that they only consider the length of
the path and they do not consider the semantics carried by the edges of the path.
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. Use of
Approaches Matching Type .Of Input Output External
elements Matching
knowledge
SPARK Nodes Exact and | Keyword | A Set of Yes
[93] approximate | Query | sub-graphs | WordNet
Han et al. Nodes Keyword | SPARQL
[38] and Edges Exact Query query No
Q2Senabtic Exact and | Keyword Yes
[91] Nodes approximate | Query Sub-graph Wikipedia
Zou et al. Nodes ,Edges . Set of
[95] and Patterns Exact Question sub-graphs No
BLINKS Keyword
140] Nodes Exact Query Sub-graph No
Gkirtzou et al. Nodes Keyword | SPARQL
[31] and Edges Exact Query query No
Kargar et al. Keyword
146] Nodes Exact Query Sub-graph No
Ouksili et al. | Nodes , Edges Exact Keyword Set of Yes
|66] and Patterns x Query | sub-graphs | Patterns

Table 2.3: Summary of some Keyword Search Approaches
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2.4 Summarization of an RDF Graph

Summary can guide the user in exploring RDF dataset since it can provides us with
a concise representation containing the most relevant information in the graph.
Summarizing RDF graphs has been the topic of several research works [18, 58|.
The main idea consists of selecting the most relevant elements and connect them
to build the graph summary. These elements differ from one approach to another,
it can be a node, an edge or even a patterns in a graph. One challenge of graph
summarization consists in identifying the relevant elements in the graph; we need
to find the best criteria to assess the nodes and patterns to identify the relevant
elements that will represent the graph. Another challenge is to aggregate these
relevant elements in order to build a summary; we need to find a method to connect
the relevant elements without introducing to much new elements to the summary.

The problem of summarization has been tackled according to two different per-
spectives, the first one is based on the node level metric and the second one is based
on graph analysis techniques. Summarization approaches which rely on node level
metric are based on identifying the most relevant nodes to be extracted from the
main graph and connect them to create the summarized graph. The relevant el-
ements are identified based on different metrics calculated based on the structure
of the graph. These metrics can be statistical information, node centrality calcula-
tion, or identifying equivalent nodes based on predefined equivalence relation. The
second perspective of summarization is based on graph analysis such as identifying
the different communities in a graph or decomposing the graph according to the
regions with the highest density.

In this section, we will present the existing approaches to summarize RDF
graphs based on the two different categories, the Graph summarization based
on node level metrics and Graph summarization based on graph analysis
techniques.

2.4.1 Summarization based on Node Level Metrics

Summarization based on node level metrics depends on assessing the nodes in
the graph using different metrics. Building the summarized graph differs from
one approach to another. According to the approaches, there are four different
categories for summarizing RDF graph based on node level metrics; the first one is
the quotient based graph, where an equivalence relation is defined over the nodes
and an equivalence class of nodes is represented by one node in the summarized
graph. The centrality is the second category in the node level metrics. The
summarization in this category is based on identifying the most central elements
in the RDF graph and building the summary starting from them. The third
category is the statistical one, where the summarized graph is constructed based
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on statistical information collected from the RDF graph. The last category is
composed of hybrid approaches, which summarizes graphs by using two or more
approaches from the previous three categories. In the next section, I will present
each category by giving the definition and the approaches that use it.

2.4.1.1 Quotient Based Summarization

In this category, the summarized graphs are generated according to the concept
of quotient graph. This concept is based on aggregating the nodes that have the
same features into one single node, then connect the aggregated nodes together
to create the summarized graph. Not all the approaches use the same technique
to compare the nodes; some of them compare the nodes according to their labels,
other according to the incoming and outgoing edges. In this section, I will present
the definition of the quotient graph and the different approaches that use it.

Quotient Graph: Given a data graph G(V,E) with V nodes and E edges, let
us consider an equivalence relation between the node of G denote =, the quotient
graph G by =, denoted G /=, is a graph such that:

1. G /= contains a node for each set of equivalent nodes based on the equiva-
lence relation = (thus, for each set of equivalent G nodes)

2. for each edge ny = ny in G, there is an edge mq — my in G /=, where m; |
my are the quotient nodes corresponding to the equivalence nodes of n; , n4
respectively.

This equivalence relation can be define differently according to the method-
ology, for example if two nodes have the same type, then these two nodes are
equivalent under the type equivalence relation; then the quotient of G by = ,
denoted G /=, is the graph such that:

1. the nodes G /= are the equivalence classes of V produced by =.

2. for each edge n; % ny in G, there is an edge m; % my in G /=, where m,
, mo are the quotient nodes corresponding to the equivalence classes of n; ,
n, respectively.

The approaches in [47, 19] presented an adaptive structural summary for graph
structured data. One example of a structured data is XML, where the data can
be represented by a tree graph. This approach summarizes the tree graph into an
index graph to reduce the execution time of the query and have the same result
as if it is applied on the tree and on the index graph. The algorithm for building
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the graph is based on the quotient graph. The equivalence relation between the
nodes is based on the concepts of node path and label path. A definition for node
path and label path is presented below:

Definition 1. A node path in the data graph G is a sequence of nodes, niny -
n,, such that there is an edge between nodes n; and n;yq , for 1 <¢ <p-1.

Definition 2. A label path is a sequence of labels 1l - [,,.

d irector Rigl]:itﬁuus released Date

starring starring

Robert .
de Niro Al Pacino

starring starring

Figure 2.9: An RDF graph describing movies

For example let us consider the graph in figure 2.9, from this graph we can
observe that "John Avnet - Righteous kill - 2008" is a node path since there is
an edge between the node "John Avnet" and the node "Righteous kill" and also
another edge between the node "Righteous kill" and the node "2008". From the
same graph, we can also observe that "director - releasedDate" is a label path.

A node path matches a label path if label(n;) = [;, for 1 < i < p. A label
path, {1l -+ [, matches a node n if there is some node path ending in node n that
matches [;ly - [,. Two nodes n; and n,, are equivalent if and only if all their
label paths are the same. For example, let us take the graph in figure 2.10, the
nodes 7 and 10 are equivalent, while nodes 7 and 9 are not because node 7 has
a parent labeled "actor", while node 9 does not have any parent labeled "actor".
The construction of the index graph consists of aggregating the equivalent nodes
into one single node and use the label path to connect the aggregated nodes.

Some of the quotient based summarization approaches are dedicated to non
RDF data such as XML as in the approach presented in [47, 19]. Other quotient
based summarization approaches dedicated to RDF data such as in the approaches
presented in [15, 36, 16, 17|, they summarize the RDF graph by using different
equivalence relations over the nodes. These equivalent relations are presented
below.

Let G be an RDF graph and let pl and p2 be two data properties G:

Definition 3. pl, p2 € G are source-related if and only if either: (i) a data node
in G is the subject of both pl and p2, or (ii) G contains a data node that is the
subject of pl and a data property p3, and p3 and p2 being source-related.
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myvie name title

(@)

title category title category

category

title actor

Figure 2.10: An Example of Graph-Structured Data [19]

Definition 4. pl , p2 € G are target-related if and only if either: (i) a data node
in G is the object of both pl and p2, or (ii) G contains a data node that is the
object of pl and a data property p3, and p3 and p2 being target-related.

A maximal set of data properties in G which are pairwise source-related is
called a source property clique. Similarly, a maximal set of data properties in G
which are pairwise target-related is called a target property clique.

In these approaches, the authors define two equivalence relations, weak equiva-
lence and strong equivalence. They are based on the subject which is also defined
as the source of the data properties and the object which is the target of the data
properties. Consider two data nodes of G nl and n2: (i) nl and n2 are strongly
equivalent, denoted nl =g n2 , if they have the same source and target cliques;
(ii) nl and n2 are weakly equivalent, denoted nl =g n2 , if they have the same
non-empty source or non-empty target clique.

The definitions of weak and strong equivalence are used to define four novel
summaries (weak summary - strong summary- typed weak summary and typed
strong summary) based on property clique which generalizes property co-occurrence.

The weak summary [36] of a data graph G, denoted G/W, is its quotient
graph with respect to the weak equivalence relation =y,. The process of weak
summarization starts by creating a node for each set of nodes having the same
source clique or target clique.

The second step is to add the edges to the summarized graph as follows; for
each edge nq % ny in G, there is an edge my % my , where m; and my are the
quotient nodes corresponding to the equivalence classes of n; and n; respectively.
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Figure 2.11: Example of an RDF Graph describing information about Students,
Courses, Articles and Professors

Q

Let us consider the RDF graph in figure 2.11, this graph describes information
about the relations between students, courses, articles and professors. This graph
will be used each time it is possible as an input for the different presented sum-
marization approached to illustrate and compare their results. Figure 2.12 shows
the summarized graph created by using the weak summary method. As we can
observe from the resulting graph, the node "N1" has two different types, while in
the graph presented in 2.11 there is no node with more than one type. We can
deduce that some links have been added to the summary which were not in the
initial graph, and such a links are not necessarily accurate .

brof Graduate'
rofessor, e Student

phone @

credits

Figure 2.12: Weak Summary of the RDF graph in Figure 2.11

In RDF data some nodes has type and are denoted by typed nodes and other are
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not and are denoted by data nodes. The typed weak summary [17]| distinguishes
between typed nodes and data nodes. For example node "P1" in the graph of figure
2.11 is a typed node since it has a type which is "Professor". In this method, the
node types are more important when deciding whether nodes are equivalent or
not. Let us consider the graph in figure 2.11 and build the typed weak summary
of this graph. First, the nodes are aggregated according to their type. The type of
node "p2" is graduate student, then node "p2" and its type will be added to the
summarized graph. The other data nodes are aggregated according to the source
clique and target clique similarly to the weak summary. The last step which is
adding the edges to the summarized graph is based on the same method used in
the weak summary definition. The resulting typed weak summary graph in shown
in the figure 2.13.

takes

desc

- type credits

I E D @D

Figure 2.13: Typed Weak Summary of the RDF graph in Figure 2.11

The strong summary [36] of a data graph G, denoted G/S, is its quotient
graph with respect to the strong equivalence relation =g. In the weak summary,
the nodes aggregated if they either have the same source clique or the same target
cliques. In the strong summary, the nodes are aggregated if they have both the
source and the target cliques. The same procedure as for the weak summarization
are used but the way of aggregating the nodes is different. The strong summary
of the graph of figure 2.11 is presented in figure 2.14.
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Figure 2.14: Strong Summary of the RDF graph in Figure 2.11
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Type strong summary [17] consists of aggregating the nodes according to their
type, as in the type weak summary. The type of node pl is Professor and the type
of node p2 is Graduated Student, then both nodes pl and p2 and their types will
be added to the summarized graph. In order to build the type strong summary,
we aggregate the nodes based on the source and the target cliques this is done by
using the same method as the one used to build the strong summary. The edges
are added to the type strong summary according to the same method presented in
the strong summary definition. The resulting type strong summary graph shown

in figure 2.15.
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Figure 2.15: Typed Strong Summary of the RDF graph in Figure 2.11

In [32] the authors summarize a dynamic data graph. The approach is similar
to [15, 36, 16, 17| but in an incremental way. In [15, 36, 16, 17| the algorithm
traverses the graph, computes all the cliques and then performs a graph traverse
to represent nodes according to their cliques, but in [32] the incremental algorithm
the cliques are build as the graph is traversed; each time we traverse an RDF
triple, the cliques will be updated. Simultaneously the summarization graph is
build based on these cliques and it is continuously updated.

The authors in [35] summarize big graphs and build the RDFQuotient sum-
maries in parallel. They present four algorithms for the parallel computation of
strong, weak, type strong and type weak summaries. The main idea of the al-
gorithm consists of distributing the nodes of the main graph into M machines to
compute the summary on each machine alone, taking into consideration the classes
and properties which must be preserved by summarization; this step is done by
allowing the communication between the machines during the computation of the
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summary. At the end, the summarized graph is created.

2.4.1.2 Centrality based Summarization

The second category in the structure-based summary is the centrality. The ap-
proaches in this category are based on identifying the most important nodes by
using different measures of centrality. Centrality is define as the more central a
node, the closer it is to all other nodes. Calculating centrality differs from one
approach to another, but all approaches have the same intuition, which is assess-
ing all the nodes and identify the most important ones. After finding the most
important nodes, the summary is build by connecting these nodes, the method
used for connecting the relevant nodes is different from one approach to another.
In this category, not all the nodes are represented in the summarized graph; for
example if the most central nodes represents one topic, then the summary will be
consists of only this topic and the other topics will not be represented at all.

RDFDigest [82, 83] is defined for RDF graphs and uses the schema information
such as the domain and range of a property to enrich the graph with the implicit
data such as the type of the resources that use this property. After enriching the
graph, the most important nodes are identified by calculating the relevance score
for each node. This score depends on the centrality of the node and the centrality
of their directly connected neighbors. The relevant nodes are then selected to
build the summarized graph. The connection is done by using a score to assess
the coverage of a path connecting two distinct relevant nodes. This score is based
on the relevant score for each node in the path and also the length of this path.

There are other approaches [68, 84, 81| that use four different methods to
calculate the importance of the nodes in the graph.

e Betweenness centrality: quantifies the number of times a node acts as a
bridge along the shortest path between two other nodes. Assume we com-
pute the shortest paths for every pair of nodes in a connected graph. The
betweenness centrality for any node n; is the number of the shortest paths
that pass through the node for all the pairs in the graph.

¢ Bridging centrality is the product of betweenness centrality of a node and
the bridging coefficient of the node. The bridging coefficient reflects how well
the node is located between high degree nodes. The bridging coefficient of a
node n is defined as follows:

d —1
BC(n) = Y e nim S

where d(n) is the degree of node n, and N(n) is the set of neighbors of node
n.
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e Degree centrality is the number of edges connected to this node.

e Harmonic Centrality also known as valued centrality, it is a variant of
closeness centrality of node u and it is equals to m where n is the
total number of nodes in the graph and v; is a node where u # v; and d(u,v;)

is the distance from node u to node v;.

After identifying the most important nodes based on these notations of cen-
trality, the approach deal with the problem of connecting the important nodes as a
Steiner tree problem [37]. In this approach, the user can parameterize the process
by specifying the number of important nodes to be selected in the summarized
graph.

Another way of building the summarized graph consists in calculating the im-
portance of the node by combining more than one measure as in the approach
presented in |73]. The authors first identify the number of important nodes to be
selected by using some parameters which can be the either the proportion of the
number of node in the initial graph or a threshold identified by the user. The most
important nodes are selected based on the relevance score calculated according to
each node’s centrality. This score is based on the shortest paths and can be defined
as the reciprocal of the sum of the length of the shortest paths between the node
and all other nodes in the graph. This score is knows as closeness centrality of a
node. The closeness of node v is equal to where d(u,v) is the distance be-
tween the nodes u and v and N is the tota?numﬁ)er of nodes in the graph. Finally
the summarized graph is build by connecting the selected important nodes. The
connection is based on an algorithm that finds the best path between two nodes
according to the relevance and the degree score of the nodes in this path.

Another method of building the summarized graph can be done by using the
graph patterns as in the approach presented in [94]. The approach consists of
three main steps: the first one is to build a binary matrix mapper that creates a
matrix for the graph based on each node and the properties that are connected to
this node. The second one is the graph pattern identification which identifies the
patterns according to the constructed matrix and the last one is the construction
the graph summary based on the extracted patterns. The graph in this approach
is not an RDF graph. The three steps are detailed below.

Binary Matrix Mapper In this first step, the graph is transformed into
a binary matrix where the rows represent the nodes, and the columns represent
the edges. For each property two columns are created, the first one captures the
subject of the property and the second one (reverse-property) captures the object.
Let us consider two nodes i and j belong to graph G, the matrix of graph G is
defined as follows:
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1 iff the node i (has j — type) or (is j — property's domain/range)
D(i,j) = or (j — th attribute’s domin)
0 otherwise

Graph Pattern Identification

The binary matrix created in the previous step is used to create a set of k
patterns that best describe the input data. The quality of the patterns is measured
internally with some cost functions. The PaNDa+ algorithm [59] is used to extract
relevant patterns from the binary dataset resulting from the transformation of the
original RDF graph.

Constructing the summary graph

The final step is to construct the summary by using the extracted patterns.
For each pattern in step 2, a node labeled by a URI is generated and an attribute
representing the number of instances for this pattern is added. The graph of figure
2.16 shows the summarized graph after using the previous approach on the graph
presented in figure 2.11 .

address year phone

1_. conf name name
Professor) | [advices] title Professor] [feaches

A 4

year
’ “L Graduate
fide Student L j

Y

desc

desc : iakes
@ 4—'— name eraits
[ S

Figure 2.16: Summary of the RDF graph in Figure 2.11

Song et al. [80] also uses patterns to create the summarized graph. The authors
present a novel summarization framework to compute diversified summaries and
evaluate knowledge graph queries with their summaries. The approach takes a
threshold "d" and the RDF graph as an input and provides a set of patterns that
summarize and represent the graph as an output. The threshold "d" is used to
capture the similarity between entities in terms of their label and neighborhood
information up to distance "d". The approach provides summaries for schema-less
knowledge graphs.
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Figure 2.17: Knowledge graph [80]

Let us consider the graph in figure 2.17, and let "d" be equals to two; three
different patterns can be extracted from this figure. The results are presented in
figure 2.18.

[/
[genre] [film] [countiy] [film]
[artist] [band] Fartist]
Pf[b(u?d] P fmanager] ¥ [country]

Figure 2.18: patterns extracted from the graph in figure 3.9 [80]

The authors introduce the notion of base graph for the patterns. The base
graph consists of all the nodes in the original graph that match the patterns P.
For example, the node "T.McGraw", "D.Yoakam" and "J.Browne" match the
pattern P1, then these three nodes are in the base graph of P1. The base graph
is used to facilitate query answering and to provide a general overview about the
data in the graph.

Another approach which is VoG [53] also summarizes very large graphs using
patterns. The proposed technique consists in decomposing and extracting patterns
from the initial graph. First, the initial graph is decomposed into many overlapping
sub-graphs using any decomposition algorithm. The sub-graphs are classified into
four categories: cliques, bi-partite cores, stars or chains. This classification is based
on the shapes that can represent them. The optimal summarization is created by
using those sub-graphs. The method is to select the set of sub-graphs that together
yield the best lossless compression of the graph, this is done by using the minimum
description length (MDL)[77].
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2.4.1.3 Statistical Summarization

The approaches in this category present summarization techniques based on sta-
tistical information. In this category, the content of the graph is summarized
quantitatively. The main idea is to build the summarized graph based on statisti-
cal information that can be extracted from the graph; this information can be: (i)
the occurrences of a class or property, (ii) the frequency of usage of a specific class
with specific property (iii) the frequency of a path in the graph. In [13, 12] the
summarized graph is created by extracting the type and predicate for each node
in the RDF graph then grouping the nodes which share the same set of types into
the same node summary. This node summary contains the type name and all its
properties. The nodes that are not associated to a class are grouped according
to their attributes. Each node in the summarized result will be associated with a
number of its occurrences in the initial graph. The final result is not necessarily a
graph. For example figure 2.19 shows the summarized representation of the graph
of figure 2.11 after using the above approach.
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Figure 2.19: Summary of the RDF graph in Figure 2.11 after applying the approach
presented in [12]

ExpLOD [49, 50] is another approach that presents a summarization technique
based on statistical information extracted from the graph. The summarized graph
in this approach is computed over the RDF graph based on the different sets
that are extracted from the graph. These sets are created from the nodes based
on classes and predicates. The authors use four different concepts to describe
the RDF graph content and create the different sets. The concepts are: (i) class
instantiation which is the number of instances of a class; (ii) predicate instantiation
is the number of times a predicate is used to describe all instances; and (iii)
predicate usage is the sets of predicates used to describe an instance. Then all
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the nodes that share the same class usage are grouped together. The different
sets are connected using the properties usage. The class instantiation, predicate
instantiation and statistics are added to the final summarized graph. For example,
the graph in figure 2.20 shows a summarized graph of the graph of figure 2.11 after
applying the ExpLOD approach.
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Figure 2.20: Summary of the RDF graph in Figure 2.11 after applying the ExpLLOD
approach [49]

Dudas et al.|25, 61] present the LODSight approach which finds the summa-
rized graph based on properties and statistical information retrieved from the
graph. The authors introduce two types of paths; the first one is the type-property
path which is the path connecting two instances of different types (typel-property-
type2) and the second path is the data-type-property path which is the path be-
tween an instance and a literal. LODsight starts by retrieving all the type-property
paths in the graph and merges them together to create one graph, then finds all
the data-type-property paths and add the one which subject type is present in
the type-property paths. SPARQL queries are used to retrieve the above paths;
through these SPARQL queries, it collects statistical information on the available
combinations of types and properties. The statistical information are graphically
visualized through the size of the nodes and edges in the summarized graph. The
node with a high occurrence in the initial graph, will be visualized larger in the
summarized graph. The summarized graph in figure 2.21 was created after apply-
ing LODSight approach on the graph of figure 2.11.
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Figure 2.21: Summary of the RDF graph in Figure 2.11 after applying the LOD-
Sight approach [61]

2.4.1.4 Hybrid Summarization

Summarization in this category is performed by combining two or more of the
previous categories, the quotient summary, the central based summary and the
statistical summary.

In [56] the authors propose an iterative utility-driven graph summarization
approach. The summarized graph is build in an iterative way and keeps track
of the utility of the graph summarization. The utility depends on calculating
the difference between two scores, the first one is the centrality of edges in the
summarized graph; the second score is the percentage of change (loss of gain nodes
and edges) in the data graph after reconstructing it from its summarized one. The
centrality of edges can be assigned by four properties which are the following:

e Edge Importance: Changes that create disconnected components or weaken
the connectivity should be penalized more than the changes that maintain
the connectivity properties of the graph.

e Spurious Edge Awareness: Additional edges for connecting the relevant ele-
ments must lead to a lower utility.

o Weight Awareness: In weighted graphs, the higher the weight of the removed
edge or added spurious edge, the greater the impact on the utility measure
should be.

e Edge Submodularity: A specific change is more important in a graph with
fewer edges than in a much denser graph.
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The summarization process consists of first creating a set of pairs of nodes from
the graph as candidates to form supernodes. Each pair represents two nodes
that are either directly connected by an edge or by a 2-hop connection via a
common neighbors. An importance score is calculated and assigned to each pair;
the score is based on combining the node centrality score for all the nodes in
the path connecting the nodes of the pair. Creating a summarized graph starts by
combining the two nodes related to the pairs with the lowest importance score into
one supernode. After that, all the neighbors of the combined nodes are checked to
see whether they can also be combined with the supernode or not.

Graduate!
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takesteaches

@‘W

Figure 2.22: Summarized graph after applying the utility algorithm on the RDF
graph in Figure 2.11

The decision is taken after calculating the penalty of connecting it and not
connecting it to the supernode. After checking all the neighbors, a new pair of
nodes is selected and all the previous steps are executed. The process ends when
there are no more nodes that can be combined to a supernode. The final result
is a summarized graph. Figure 2.22 shows the summarized graph obtained after
applying the utility algorithm on the graph in figure 2.11.

In [69] the notation of centrality and frequency are used to summarize the
RDF graph. First, the centrality (an adaptation of the degree centrality) and the
frequency of all the nodes in the graph are calculated. Then relevant concepts
arc sclected according to the defined threshold. Grouping the adjacent nodes in
the initial graph and then in order to link non-adjacent groups, the first k-paths
connecting them are examined to select the ones that have the best f-measure
and average relevance. Figure 2.23 shows the summarized graph obtained after
applying the above algorithm on the graph in figure 2.11.
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Figure 2.23: Summarized graph after applying the above algorithm on the RDF
graph in Figure 2.11

D

2.4.2 Summarization Based on Graph Analysis Techniques

In the previous section we have studied the approaches that build the summarized
graph based on the node metrics, in this section we will study another method
of summarizing the RDF graph by using the graph analysis techniques. In the
previous part the summary was build based on assessing each element alone in the
initial graph. In this part the approaches build the summary by using another
perspective that consists in using some graph analysis technique to assess the
whole graph and build the summary. The graph analysis technique is different
from one approach to another, but they all focus on decomposing the graph and
identifying some sub-graphs which represents some logical unit, each sub-graph
alone have some shared semantics which are related to the same topic that can be
considered as a theme. The thematic view of an RDF dataset can be considered as
a summary since this way provides information about the semantic of this graph.
In this section, we will present the most important approaches that uses graph
analysis techniques to summarized the RDF graph.

2.4.2.1 Community structure

The goal of this approach is to decompose the graph by using the betweenness
centrality. This centrality was first defined by [27], the centrality betweenness of a
vertex "i" is defined as the number of shortest paths between pairs of other vertices
that pass through "i". Based on this definition, [30] defines an approach to detect
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the different themes in the graph according to the edge betweenness centrality.
The betweenness centrality of an edge is the number of the shortest paths that
contains this edge in a graph. Let us consider the graph in figure 2.24 with the
edge betweenness centrality on each edge of the graph. For example, the edge
betweenness centrality for the edge connecting nodes "c¢" and "d" is calculated
according to the number of shortest paths that pass through this edge. All the
paths that connect the nodes {"a" , "b" or "c¢"} with the nodes {"d", "e" or "{"}
pass through this edge then the edge betweenness centrality is equals to nine.

Poo—ec

Figure 2.24: Undirected Weighted Graph

The algorithm used to identify the communities consists in calculating the
betweenness centrality score for all the edges in the graph and then select the
edge with the highest betweenness centrality score to be removed from the graph,
recalculate the betweenness centrality for all the edges affected by the removal,
this process is repeated recursively until the communities are detected.

2.4.2.2 Label propagation

The approach proposed by Raghavan et al. [74] use the Label propagation algo-
rithm (LPA); this approach works by propagating labels throughout the network
and forming communities based on these labels. The algorithm starts by giving
each node a unique label. At each propagation iteration, each node is updated by
replacing its label with the one used by the highest number of neighbors. At the
end of the propagation, nodes that have the same labels are assigned to the same
community. Figure 2.25 shows an example of detecting three different communi-
ties after applying the LPA algorithm on the graph of the Zacharys Karate club
network [74].

Gregory et al. [33] improved the Label propagation algorithm [74] in order
to detect the overlapping communities in very large graphs. LPA can not detect
overlapping communities since each node should have only one label. It is therefore
impossible for a node to belong to more than one community. The approach
proposed in [33] extends LPA in order to allow a node to have more than one
label, so the node label will be a set of pairs (c,p) where ¢ is the community
identifier and p is the probability of this node to be labeled by c. Initially, each
node should be labeled by a unique identifier, after each propagation step, the label
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Figure 2.25: Appying LPA on the graph of Zacharys Karate club network [74]

of a node is the union of its neighbors’ labels. This is done by normalizing the
sum of the probabilities of the communities overall its neighbors. Let us consider
the example in figure 2.26.
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Figure 2.26: Initial step of label propagation [33]

Consider the node b having ¢, d and a as its neighbors. After the first propa-
gation, the set of community identifiers for b will be (a,1/3),(b,1/3),(c,1/3). The
same process is performed for all the other nodes.

A threshold is defined in order to detect the final overlapping communities.
if v is the maximum number of communities any node can belong to then the
threshold is the reciprocal of v (1/v). After the first propagation, each pair (c, p)
having a probability p less than the threshold will be deleted. It is possible that
all pairs in a node label have a probability less than the threshold. In this case,
the pair that has the greatest probability is kept and all the others are deleted.
If more than one pair has the same maximum probability below the threshold, a
randomly one is selected to be kept. After deleting pairs from the node label, the
probabilities are normalized by multiplying the probability of each remaining pair
by a constant so that their sum equals 1.

Figure 2.27 shows the results after executing the algorithm with v = 2 on
the graph of figure 2.26. In the first iteration, node ¢ is labeled with community
identifiers b and d, each with the probability (1/2), those two labels are kept
because their probability is equal to the threshold (1/2). Similarly, f is labeled with
e and g. The other five vertices have at least three neighbors, so their probabilities
are below the threshold. For example, b is first labeled with (a, 1/3), (c, 1/3),
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Figure 2.27: Detecting overlapping community by using label propagation [33]

(d, 1/3). We randomly choose ¢, delete ¢ and d and we normalize the sum of
probabilities so that the total is 1 and therefor c¢ is associated to probability 1,
(c,1). The labels for a, d, e and g are randomly chosen in the same way. Before
the final iteration, node a has two neighbors labeled ¢, and two others labeled e;
the node a will therefore have both community identifiers: {(c, 1/2), (e, 1/2)}.
The final solution contains two overlapping communities: {a,b,c,d} and {a,e,f,g}.

2.4.2.3 Theme Identification in RDF Graphs

The idea of this approach is to use the MCODE algorithm [4] to detect the dif-
ferent themes in an RDF graph that are represented by dense area. MCODE was
proposed first in the field of bioinformatics for the identification of the molecu-
lar complexes in large networks of interactions based on the extraction of dense
regions in the network. MCODE is composed of three steps that are described
below.

Vertex Weight:

This step consists in calculating the weight for all the nodes in the graph based
on the notion of k-core defined as follows:

Definition (k-core): A k-core of a graph G is a mazximal connected subgraph of
G in which all vertices have a degree of at least k.

The weight of the node v; is calculated based on the density of the largest
k-core formed by this node and its directly connected neighbors. The weight of
the node tends to be high in the highly connected areas in the graph. The weight
of all the nodes is calculated according to algorithm 1.

Let us consider the example in figure 2.28 which consists of a graph with a
weight associated to each node. The node weight represents the maximum k-core
which can be created from this node. For example the weight of the nodes a, b and
c is equal to 3 since the maximal connected sub-graph in which all vertices have
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Algorithm 1 MCODE-Vertex-Weighting

procedure MCODE-VERTEX-WEIGHTING (graph G)
W=
for v € G do
N <+ findneighborso futodepthl
K < Gethighestk — coregraph fromN
k < Gethighestk — corenumber fromN
d < Getdensityof K
w(v) < kxd
W« W U (v, w(v))
end for
end procedure

a degree of at least 3 is the graph containing the nodes a, b, ¢ and d, similarly to
the nodes d, e, f and ¢ but with k-core equal to 4.

Figure 2.28: Example of k-cores in a graph with the MCODE algorithm

Identifying topics

The different topics in the graph are identified based on the weights of the
nodes from the previous step. This step takes the weighted graph as an input and
returns a set of clusters as an output where each cluster describes one topic. In
addition, the algorithm requires a parameter t ranging from 0 to 1. To build the
clusters, the algorithm starts with the node with the highest weight called seed
node, to initiate a cluster. All nodes adjacent to the seed node are added to the
cluster, provided that their weight is greater than the predefined threshold which
is proportional to the weight of the initial node and defined as follows: w(n;) >
w(n;) * (1 — t) where n; is the seed node, and n; one of its neighbor. Each time
a node is included in a cluster, all of its neighbors are considered in the same way
to check if they should be included in the current cluster. Each node added to a
cluster is marked and it will not be considered when building the other clusters.
Once there are no more nodes that can be added to the current cluster. We select
a new seed node by choosing from the unmarked nodes the one with the highest
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weight for initiating a new cluster. The same procedure is applied to build a new
cluster. The process ends when there are no more unmarked nodes. It should be
noted that t determines the level of connectivity as well as the size of the clusters.
The closer it gets to 0, the denser and smaller the clusters.

Figure 2.29: Clustering the graph with MCODE algorithm

Post Processing:

The final step of the MCODE algorithm is aimed to identify the overlap between
the clusters of the previous step in order to produce a set of overlapping clusters.
This step uses a threshold d ranging from 0 to 1 to identify the overlapping clusters.
The algorithm traverses all the clusters and all the neighbors of each node n;
of a given cluster, if the density of the subgraph formed by n; and its direct
neighborhood exceeds the threshold 1-d, then this node is added to the current
cluster. The nodes added to the clusters by this step are not marked, which will
allow the same node to be inserted into multiple clusters.

'
&
Figure 2.30: Finding overlapping communities with MCODE algorithm

2.4.2.4 InWalk [14]

This approach extracts the topics for a given RDF graph by using the Clique
Percolation Method(CPM) which is a method introduced by [67] to determine the
overlapping communities in the graph. The main idea of the method consists of
finding the k-cliques and constructing the communities according to these cliques.
Definitions:
k-clique: a k-clique is a complete graph of k vertices with k(k — 1)/2 edges.
Adjacent K-cliques: Two cliques C; and C; are adjacent if they share exactly
k-1 nodes.
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The algorithm starts by finding all the k-cliques in the RDF graph for a given
size K. The second step is to create a clique graph, where all cliques are nodes
and the cliques that are adjacent are connected with an edge. At the end, the
communities are the connected components of this graph. The CPM method is
presented in the algorithm 2.

Algorithm 2 Clique Percolation Method (CPM)

e Parameter: K.
. return Overlapping communities
: Clique, = find all the cliques of size K
. Construct clique graph G(V,E), where |V| = |Cliquesy|
. E = ej;| clique i and clique j are adjacent
: Return all connected components of G

T W N =

For example, figure 2.31 (a) consists of a graph. First, all the k-cliques from
this graph where k is equal to three. Figures 2.31 (b) 2.31 (¢) and 2.31 (d) show
the three cliques that are computed from the graph in figure 2.31 (a).

Two cliques C1 and C2 are adjacent if they share two nodes between them. this
notation is used to construct the clique graph by representing each clique with one
node, and if two nodes nl and n2 are representing two different cliques C1 and C2
then nl1 and n2 are connected by an edge.

a b
Graph clique 1
c clique 2 d clique 3

AN | DN

Figure 2.31: Clique Percolation Method [67]

For example clique 1 and clique 2 in figure 2.31 are adjacent since they have
two share nodes; the other cliques are not adjacent. Figure 2.32 (a) represents the
clique graph for the main graph in 2.31 (a).

The connected components represent the communities, figure 2.32 (b) shows
the two communities that can be derived.

The last step of the inWalk approach consists in extracting for each topic a set
of labels that describe its content; these labels are extracted according to some



2.4. SUMMARIZATION OF AN RDF GRAPH ol

wr A
o AVQV,

a b

Figure 2.32: Practical example for Clique Percolation Method [67]

statistics related to the occurrences of the elements in the theme.

2.4.2.5 Spectral Partitioning [5, 2, 71]

This algorithm aims to detect the different communities in a graph using the
eigenvectors and eigenvalues. Let G=(V, E) be a graph, the degree matrix (D) of
G is a diagonal matrix which contains information about the degree of each node
in G, and the adjacency matrix (A) is a square matrix used to represent G. The
elements of the matrix indicate whether pairs of vertices are adjacent or not in G.
The Laplacian matrix (L) is defined as L = D - A.

The spectral partitioning method consists of finding the second eigenvector and
eigenvalue for the Laplacian matrix.

01 10 10 3 00000 3 -1 -1 0 -1 0
101000 020000 -1 2 -1 0 0 o0
_|t1ro1o00p (003000 -1 -1 3 -1 0 0
“Tloo 1001 1] 000300~ |0 0 -1 3 -1 -1
1001 0 1 0000 3 0 -1 0 0 -1 3 -1
0001 10 000 0 0 2 0 0 0 -1 -1 2

Figure 2.33: Graph G with adjacency diagonal and Laplacian matrix of this graph.

Let us consider figure 2.33 which is composed of a graph with 6 nodes and 8
edges, the figure also shows the adjacency, diagonal and Laplacian matrices of this
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graph.

In the figure 2.34, the eigenvectors denoted by X and the eigenvalues denoted
A, for the Laplacian matrix in figure 2.33 are presented. The communities are
detected according to the sign of the values in the second eigenvector X;. The
values of nodes 1, 2, and 3 in the second eigenvector are positive while the values
of nodes 4, 5 and 6 are negative, then the graph can be decomposed into two
different communities. The first one consists of nodes 1, 2 and 3 while the second
one consists of the nodes 4, 5 and 6. Figure 2.35 shows the two communities.

oo 04 (o= 0.5 0z 04 05
10 04 (o6 04 04 04 [l
30 04 (o3 o 0.6 -D.4 05
A= 30 X= o4 |03 o1 0.6 o4 0.5
A0 o4 |03 0.5 02 0.4 os
50 o4 |08 o4 04 04 0.0
1 03 xz
2 0.6
3 0.3
4 -0.3
5 -0.3
& -0.6

Figure 2.34: Eigenvector and Eigenvalue for the Laplacian matrix in figure 2.33

Figure 2.35: Extracting communities with spectral partitioning algorithm on graph
of figure 2.33

2.4.2.6 Kernighan-lin(KL) [48]

Kernighan-lin [48] is a graph partitioning method used to partition the nodes of
the graph G(V, E) into two disjoint subsets A and B of equal size in a way that
minimizes the number of edges that cross from A to B, these edges are denoted by
cut edges. The goal of the algorithm is to reduce the number of cut edges between



2.4. SUMMARIZATION OF AN RDF GRAPH 53

the two partitions. The algorithm starts with the initial partition for sets A and
B and tries to find a sequence of node pair exchanges (exchange nodes of A with
nodes of B) that can decrease the number of cut edges between sets A and B.
Let us Consider a graph G(V, E), and let A and B be two different set of nodes
such that the size of A equals the size of B,and V= A UB. Leta€ Aandb € B
be two nodes in A and B. The cost denoted cons(A, B) equals the number of cut
edges between the sets A and B. Suppose we want to check if the exchange between
pairs (a,b) can decrease the number of cut edges between sets A and B. We define
two concepts the external cost and the internal cost. Let I, be the internal cost of
node a, that is the sum of the costs of edges between a and other nodes in A, and
let E, be the external cost of node a, that is the sum of the costs of edges between
a and nodes in B. Similarly, we define the two costs I, Ej for set B. Let D, = E|
- I, be the difference between the internal and the external cost of s. The cost of
exchanging node a and with node b can be defined as (cost (a,b)) = D, + D, -
2¢,, where ¢, equal one if there is an edge between a and b; and zero otherwise.
Figure 2.36 presents a graph with 6 nodes, which is randomly partitioned into
two equal sized subsets of nodes. We can see from the figure that the graph is
partitioned into two different sets A and B, where A represents the set inside the
red box A={2, 3, 4} and B ={1, 5, 6} represents the set outside the box. The
number of cut edges between the two sets A and B is equal to three since there
are three different edges connecting nodes in the set A to other nodes in set B.

€% @O+
&

Figure 2.36: Graph partitioned into two equal subset of nodes

In the two tables 2.4 and 2.5 all the external and internal costs for all the nodes
in sets A and B are presented.

partition A | Ea | Ia | D partition B | Ea | Ia | D
2 112 1-1 1 11011
3 0 1]1]-1 5 1 110
4 2 1111 6 1 110
Table 2.4: External and Internal Table 2.5: External and Internal

costs for all the nodes in A costs for all the nodes in B
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Table 2.6 contains all the possible combinations of exchanging a node in set
A to another node in set B. The combination with the highest positive gain score

cla,b) | 1 0 0 0 0 1 1
Gain -2 -1 -1 -1 -1 -1 -1

G2,1 | G256 | G2,6 | G3,1 | G3,5 | G3,6 | G4,1 | G4,5 | G4,6
0 0
0 2

Table 2.6: The gain score of all the possible combinations of exchanging a node in
set A to another node in set B

is selected. From the table we can see that "G4,1" has the highest positive score
which is equals to "2", then the nodes "4" and "1" should be exchanged in order
to reduce the number of cut edges between sets A and B. After the exchange, the
new sets are A= 1,2,3 and B=4,5,6 with one cut edge. The graph is partitioned
into two equal sets A and B with the minimal number of cut edges and they are
presented in the figure 2.37.

B A

Z’ 2

Figure 2.37: Graph partitioned into two equal subset of nodes with minimum
number of cut edges after applying KL algorithm

2.4.3 Discussion and open issues

After presenting the existing summarization approaches, we can see that there
are two different sets of approaches. The first set groups the approaches that are
based on node level metrics. These approaches summarize the graph based on
analyzing the nodes. These analysis can be the selection of the most important
node according to its centrality or frequency, or can be based on the equivalent
between the nodes based on equivalence relation. In this group, the approaches
are divided into four different categories; the first one is the quotient graph |36,
32, 19| which groups approaches that use the equivalence relations to build the
summarized graph. But this approach is not sufficient, since in some graphs it is
possible to have the data without the schema and the nodes are not necessarily
typed. In this case, this approach will not be able to provides a summarized graph.

The second category in the node based summarization groups the approaches
that uses the centrality, such as in [82]. The approaches in this category determine
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the importance of the nodes based on different centrality metrics. The most im-
portant nodes are selected to be presented in the summarized graph. The creation
of the summarized graph is done by connecting the important nodes. Finding the
connection between the important nodes is different from one approach to another;
some of them consider the shortest path, others define a score to assess the path
based on its length and the degree of the nodes in this path. Using this technique
the summarized graph might be containing nodes from just one type (in the case
where all the important nodes belong to the same class) and such a summary does
not reflect all the information presented in the main graph.

The approaches that use the statistical methods is the third category in the
node based summarization such as in [49, 49]. The approaches in this category
build the summarized graph based on statistical information collected from the
graph. This information can be the frequent number of the classes and/or predi-
cates. The statistical calculations are also used by [13, 12|, the summarized graph
is created by extracting the type and predicate for each node in the RDF graph
then group the nodes which share the same set of types into the same node sum-
mary. These approaches are important since they reflect the importance of the
class in the graph by having information about its instances. The limitation of
these approaches consists in presenting all the classes in the summary and ignoring
the untyped nodes even if they are more important than the typed ones. Moreover,
the summarized graph in this category might have a very large number of elements
such as all the classes, but these elements are not reflecting the important elements
in the RDF graph.

The last category in the node based summarization is the group of hybrid; the
approaches in this category [56, 69| create the graph by combining two or more of
the previous three categories. The limitation of the approaches in this category is
that the user needs to use more than one metric to determine the relevant nodes;
these metrics are based on some statistical information extracted from the graph,
such as the number of instances for a specific type or the number of times a property
is used or the number of accuracy for a specific type with a list of properties, but
this is complicated, and time-consuming technique since the user needs to do a lot
of calculations to determine the importance of the node. Moreover, since it is a
hybrid category, then all the limitations of the three previous categories are the
limitation of this one also.

The second group is the approaches that summarize the graph based on graph
analysis techniques. One of the methods used in this group is the identification
of the different underlying themes in the graph. The second method is to decom-
pose the graph into different sub-graphs. The importance of this technique is in
presenting all the topics of the graph, but the topics are not a summary.

Table 2.7 shows some summarized graph with a comparison between the ap-
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Technique Summarization Requm? node Constraints on
Approaches o Unit Lyping the Summar
Algorithm Information Y
[47, 19] Quotient Nodes No Not identified
Graph
[16, 17] Qg;);;? ¢ Nodes Yes Not identified
[82] Centrghty Nodes No size constraint
metrics
|68] Centrayhty Nodes No size constraint
metrics
[94] Graph patterns Patterns No Not identified
[53] Graph patterns Patterns No Not identified
13, 12] Statistical Nodes No Not identified
Information and edges
Statistical Node . .
[49] Information and edges Yes Not identified
[25] Statlstlgal Paths No Not identified
Information
14 InWalk Nodes No Not identified
48 Kernighan-lin Nodes No Not identified
[69] I};Z}if(li Nodes No size constraint

Table 2.7: Comparative Table of Summarization

proaches. The comparison is done on four aspects. The first one is to show the
summary was build according to the node level metrics or graph analysis. The
second aspect is to show the elements that are assessed and included in the sum-
marized graph, from the table we can observe that some approaches use only the
nodes, others use nodes and edges and there are also approaches that use the pat-
terns. Checking if the type of the node was taken into consideration is the third
aspect of comparison. We can observe that the approaches are divided into two
parts, some of them takes the type into consideration and others are not. The
last aspect in this comparison is the size of the summarized graph, some of the
approaches did not identify the final size but others put constraints on the final
size.

After presenting all the above approaches, we can observe that some of them

prioritize the typed nodes and preserve all the classes in their summary as the
approached presented in [15, 36, 16, 17, 94, 80, 13, 12, 13, 12, 25, 61]. It is difficult
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to know in advance that the most important nodes are the typed nodes or the
untyped nodes, we should be able to select relevant nodes regardless if all the
types are presented in the summarized graph or not. For example, if we have a
graph with more than 100 classes, then all those classes are represented in the
summarized graph. Therefore the computed summary graph is still a big graph,
and the user cannot understand it easily. Some of these classes are important, the
others are not then we do not need to select them all. The second limitation of the
existing approaches consists in preserving the classes along with their instances
which is kind of redundancy. The instance is represented by the class then there
is no need to have it also in the summary. The third limitation of the presented
approaches is creating summary containing one topic of the graph. If we use some
relevant metric to select the most important nodes, we discover that these nodes
are related to the same topic which makes the summary less diverse. What could be
interesting is building a more diverse summary. For example, if all the important
nodes in the graph belong to the same class, then the summarized graph will be
representing one class and its instance and ignoring the others. This is not good
summarized graph.

2.5 Conclusion

In this chapter we have studied approaches related to keyword search and ap-
proaches related to summarization. In the first part, we discussed the different
approaches that target keyword search over RDF data. We have seen that the
approaches mainly focus on finding the matching elements between the keyword
query and the RDF data, some of them match the query keyword with just nodes,
but others match with nodes and edges. Some of them use external knowledge
to enrich the matching elements, and others match the exact keyword between
the query and the terms in the dataset. For the aggregation challenge, some ap-
proaches use information from the schema to connect the matching elements and
build the final result, and others use a metric to identify the most important path
to connect the matching elements. The main limitation of the existing approaches
is how to fill the terminological gap between the keywords in the query and the
terms used in the RDF data. The second limitation is the aggregation of the
matching elements in order to find the best sub-graph results.

The second part of the chapter discussed different approaches about the graph
summarization techniques. We have seen that most of the approaches find the
most relevant elements in the graph and connect them to create the summariza-
tion graph. The main limitation in such approaches consists of creating graphs
lacking from diversity in the content of the graph. Moreover, most of the sum-
marized graphs are not taking into consideration all the underlying topics in the
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RDF graph during the process of summarization. We also have seen that in some
approaches, all the classes appear in the summarized graph. The problem is that
the summarized graph might contain classes that are not important at the expense
of important untyped nodes. Other approaches just focus on the importance of
the elements regardless if they preserve all the classes in the summarized graph
or not. The problem of such approaches is that the important elements might all
belong to the same class, then the summarized graph will miss the diversity.

As a conclusion, this work mainly targets two different aspects of exploring
RDF graphs. The first one is the keyword search and how to fill the terminological
gap between the queries and the data-set and also find the best aggregation method
to create a set of sub-graphs as a solution and finally provide a ranking method to
rank the results. The second one is the summarization, which consists of creating
a summarized graph by taking into account all the different topics in the RDF
graph and selecting the most central nodes after using different metrics. Finally,
create the summarized graph by aggregating the relevant nodes.

In the upcoming chapters, I will present my contributions for both keyword
search and summarization.
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3.1 Introduction

Exploring RDF datasets is a very important task to understand the dataset and
use it. One way of exploration consists of using one of the query languages (such as
SPARQL) to retrieve the needed information for our usage. To use this language,
the user should be familiar with its structure because it has a specific characteristic
which consists of a set of triples where the subject, predicate and/or object can be
variables. The idea is to match the triples in the SPARQL query with the existing
RDF triples and find solutions to the variables. Let us take the graph in figure 3.1
as an example, if the user needs to retrieve the movies that are released in 1974
and Al Pacino is one of its actors, then he should write the following SPARQL

query:

SELECT 7Movie
WHERE {7Movie Release_date 1974.
?Movie starring Al_Pacino.}

From the above query, we can observe that the SPARQL query consists of two
parts: the SELECT clause identifies the variables to appear in the query results,
and the WHERE clause provides the basic graph patterns to match against the
data graph. The user should know the language and the different parts of it
in order to write a query. The structure of the SPARQL query is not the only
problem that faces the user, there is also another problem which consists of having
knowledge about the content of the RDF dataset. The user needs to know the
different classes and properties in the RDF data set, since this kind of information
is necessary to write the triples of the SPARQL query. For example, to write the
above SPARQL query, the user should know that "release date" and "starring"
are properties in the RDF dataset.

An alternative way of querying RDF datasets is keyword search, in which the
user can write a query without having a knowledge base either about the structure
of the query or about the content of the RDF dataset.

Keyword search has been used to retrieve information from a large amount of
data, whether the data is databases or web pages. The idea of keyword search
is the same as in web browser, where the user issues some keywords to find the
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relevant documents that matches these keywords. RDF data can be represented
as a graph and the keyword search over the RDF graph consists in finding the
graph fragments that match the keywords and connect them to create a sub-graph
which represents a result to the keyword query.
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Figure 3.1: An Example of RDF Dataset describing Movies

During the matching process, each query keyword can be matched to more
than one element in the graph. For example, let us consider the RDF graph in Fig.
3.1 and consider the query Q1 = {Dakota, Washington} to be the keyword query
submitted to this graph. As we can observe, the keyword "Dakota" can be matched
to two nodes in the graph highlighted in red, and the keyword "Washington" can
be matched to the nodes highlighted in blue. The goal of the matching process
is to identify all the possible elements that can be matched to one of the query
keywords.

The user might issues a keyword that can not be found in the RDF graph, but
we can find some elements that are close in meaning to this keyword. The problem
is to identify the close concepts to a keyword in the graph. Let us consider the
graph in figure 3.1 as an example and issue the following keyword query Q2=|"film
maker", "brothers","2004"| on this graph. We can observe that there is no element
that contains "film maker", but we know that "film maker" is closed in meaning
to "director", then we need to find a technique that helps us to select "director"
as a matching element for "film maker". Also, we can observe that "brothers"
can not be matched to any element in that graph but from the graph we know
that "Ridley Scott" and "Tony Scott" are brothers since they are both the sons
on "Francis Percy Scott". The problem consists in finding a technique that
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helps us in selecting "Ridley Scott" and "Tony Scott" as matching elements to
the keyword "Brothers". From this example we can deduce that the type of the
matching elements can be a node as for the keyword "2017" or an edge as for the
keyword "film maker" that can be matched with the edge labeled with "director",
or even a sub-graph as for the keyword "brother" that is matched with the sub-
graph that connects "Ridley Scott", "Tony Scott" and "Francis Percy Scott".

The challenge we target in this chapter is identifying the matching elements.
It lies on the limitation of the existing techniques in detecting the close concepts
in the graph to the query keywords. The user might provide a keyword query that
contains concepts different from the one used in the graph. Our goal is to solve the
heterogeneity of terminology used between the keyword query and the elements of
the RDF graph.

The rest of this chapter is organized as follows. The overview of our keyword
search approach is presented in section 3.2. The problem statement is provided
in section 3.3. We present the indexation in section 3.4. We have used semantic
knowledge provided either by domain experts or by online resources, this knowledge
is provided in Section 3.5. The use of the external knowledge is presented in
sections 3.6 and 3.7. Section 3.8 presents our marching process. Our experiments
are presented in section 3.9. Finally, we conclude the chapter in section 3.10.

3.2 Approach Overview

In chapter 2, we have presented the existing approaches for keyword query and how
the problem is targeted via multiple techniques. However, applying the existing
approaches on RDF graphs will not produce results in some cases. Our goal is
to find a solution that takes into account the similarity between the keywords in
the query and the elements in the RDF graph. To do so, we propose a framework
for keyword search that is presented in figure 3.2. This framework takes a set of
keywords as an input and returns a set of subgraph results as an output. Each
subgraph consists of a minimal sub-graph containing one matching element for
each keyword query. The main idea is to match the keywords of the query with
the elements of the graph and then connect them to have the final results. Our
framework comprises three components, a matching component, which searches
the graph elements corresponding to the keywords, the aggregation component
which aggregates and connect the matching elements to create possible subgraph
result, and ranking component to rank the multiple results for a given query. In
the next section I will present each component, and what problem each one of
them targets.

The matching component takes as input the keyword query and searches for the
matching elements in the dataset. Each keyword is compared to the graph elements
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Figure 3.2: Approach Overview

such as nodes, edges or sub-graphs, and the matching elements are identified. In
some cases, the user may enter a keyword for which an exact match can not be
found in the dataset, but some graph elements could be close to the keyword.
The problem is to identify the close concepts to a keyword in the dataset. Let
us consider the graph in figure 3.1 as an example and issue the following keyword
query Q3=["film maker", "abstract"| on this graph. We can observe that there is
no element that contains "film maker", but we know that "film maker" is closed
in meaning to "director", then we select "director" to be a matching element for
film maker. Also, how can we select the edge "abstract" as a matching element to
the keyword query "abstract".

Once the matching elements in the RDF graph are identified for each keyword,
the final result from these elements needs to be built. The process is to aggregate
them into a connected subgraph representing an answer to the query. The problem
consists of finding the best way to connect these elements. The path that connects
two elements might be the shortest path, longest path, or the most semantically
meaningfull path. We need to determine which is the most suitable case for our
challenge and how we can find it.

Each keyword can be associated with one or more elements in the RDF graph,;
this will lead to several possible results to the query. We consider that each com-
bination of matching elements containing exactly one element for each keyword
is a possible answer to the query. Therefore more than one possible answer can
be derived. Since there are several results, it would be useful to provide a rank-
ing method to assess these results. We need to find a ranking method capable of
assessing each result based on defined criteria. The problem consists of defining
these criteria to determine if there are better results than others. For example, let
Q3 = {Dakota, 1974, Al pacino } be a keyword query, from the graph of figure
3.1 we know that set of matching elements for the keyword "Dakota" denoted by
Mepakota = {south_Dakota, Dakota_ fanning}, Mejgrs = {1974} and Mea; pacino
= {Al_Pacino}. From these three different sets we can derive two possible com-
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binations C1 = {south_Dakota, 1974, Al Pacino} and C2 = {Dakota_fanning,
1974, Al_Pacino} each one can create different sub-graph result. In order to assess
the different results, then a ranking method is needed.

In the rest of this chapter we will target the first challenge in keyword search
which is matching the keyword query with the different elements of the RDF
graph.

3.3 Problem statement

One of the problems raised by keyword search in RDF datasets is matching the
query keywords with the elements of the dataset. If I compare a keyword query
to the graph elements, and I did not succeed to find the exact term in the graph
this does not mean that there is no answer to the query. Since there might be
a concept in the graph that is close in meaning to the keyword query then I can
provide an approximate answer the the query.

For example let Q4={2008, film-maker} be the keyword query to be submitted
to the graph in figure 3.3, the node having the value "2008" can be exactly matched
to the keyword "2008" from Q4. Moreover, we can consider that "director" is
matching element to "film-maker" since there is a semantic closeness between the
the two concepts.

Our problem can be stated as follows, let us consider:

e G(V,E) an RDF graph data where V is the set of nodes and E is the set of
edges

o Q ={kwy, kwy, kws, ..., kw,} a keyword query with n keywords

o m: kw; — Me;={men, me;, me;, ...,me;;} where me; € G and m a
mapping function from the query Q to the graph G such as me; = kw;
or sim(kw;, me;) > threshold where sim(x, y) is a similarity function that
checks the similarity between the two concepts x and y.

Our goal is to find the set ME={Me;y, Mes, Mes, ..., Me, } where:

o Me;={me;1, me;z, me;s, ...,me;;} is the set of matching elements for the
keyword query kw; and

o me; = kw; or sim(kw;, me;) > threshold and
e type of me; is a node, an edge or sub-graph

Finding the matching elements between the keyword query and the elements
of the RDF graph consists of three different problems. The first one is finding the
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exact keyword in the graph that can be matched with the query keyword (me;
= kw;). This matching element can be either a node or an edge. For example,
let us consider the RDF graph in figure 3.3 and let Q5 = {"2008" ,"Al pacino"
and "director"} be a keyword query, the result to this query are the movies and
the directors of the movies where "Al Pacino" is one the actors of those movies.
As we can see from the graph, the keyword "Al pacino" can be matched to the
resource "Al Pacino", the keyword "2008" can be matched to the literal "2008"
and finally, the keyword "director" is matched to the property "director"; the
problem consists in finding these exact matching elements in the RDF graph and
this requires indexing techniques.

director: ngl]:itﬁ"us releasedDate 2008

starring  starring

Robert )
de Niro Al Pacino

Figure 3.3: An RDF graph

The second problem is how to solve the terminological gap which may exist
between the keywords and the data graph elements. Indeed, a keyword of the
query itself may not be found in the dataset, but an equivalent element could be
found (sim(kw;,me;) > threshold). For example, let Q6 = {"film-maker" and
"John Avent"} be the keyword query, considering the graph in figure 3.3 we can
see that there is no exact matching for both keywords, but we know that "film-
maker" has a close meaning to "director", therefore the edge labeled "director"
should be considered as matching element to "film-maker".

The third problem we might face is matching a subgraph from the graph with
an element from the keyword query. The existing approached do not deal with this
problem. For example, let Q7 = {"Al Pacino" and "co_ Staring"} be the keyword
query, we know from the graph of figure 3.3 that "co_Staring" has no matching
element, but "Robert De Niro" and "Al Pacino" are co__Staring since they are both
acting in the same movie "Righteous Kill". Then the sub-graph connecting the
two actors can be considered as a matching element to the keyword "co Staring".
The problem consists in providing a technique that finds the relationship between
a keyword query and a sub-graph.

In our work, we are going to deal with three main problems, the first one we
address in our work is being able to match a keyword with a sub-graph. In the
existing approaches a keyword is generally matched with a node, what we would
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like to achieve is to find a matching elements which could be composed of more
than a single node. Another problem we consider is how to find beside the graph
elements that have exactly the same name as the keyword, the one that are not
exactly the same as the keyword but they are close in meaning and this would
allow as to overcome the terminological heterogeneity between the elements of the
graph and the keyword query.

In this chapter, we introduce a matching process for the keyword query search
approach that takes keywords as an input and returns the best matching elements
from the graph as an output in order to create the final result of the query. In our
matching approach, unlike existing approaches, we match the keywords with all
the elements of the graph such as nodes, edges and sub-graphs. We also propose
an exact matching between the keyword query and the graphs where we look for
elements in the graph that are the same as the keyword we search. We have also
proposed an approximate matching where we use an external source of knowledge
providing semantic relations to bridge the terminological gap which exists between
the keywords and the graph terminology.

For any type of matching we need to be able to retrieve efficiently the different
types of graph elements such as nodes, edges or even sub-graph, according to
some selection criteria. The approach generally used is indexation which consists
in finding the elements in the graph that are exactly matched with the keyword
query. In the next section, we will present the indexation used by our approach.

3.4 Indexing an RDF Data Graph

In order to have a fast access to the edges and nodes in the graph, the indexation is
needed. Indexing is a process carried offline independently from the user’s request.
The index is created for the textual content of the document or file. There are
many types of indexing, such as the citations index [29] used to store the citation
or hyperlinks between documents, the N-gram index [43] is a contiguous sequence
of n items from a given sample of text, it is used in text mining. The document-
term matrix index is another index used in natural language processing, it consists
in describing the frequency of the terms that occur in a collection of documents.
Another index type is the inverted index which is an index storing a mapping from
a content to its location in the document. This content can be the words in the
document.

Since our approach consists in retrieving the matching elements from the RDF
graph, then the inverted index is used. It allows fast full-text searches on datasets
at scale, for example, in search engines. In our context, we need to search for
the existence of the keyword query in the elements of the RDF graph. To create
the index, we rely on previous work [63] proposed by Ouksili, H. which aims at
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creating an inverted index to search the different RDF graph elements.

3.4.1 Structure of the Index

The inverted index structure consists of two elements: the first one is the keyword
and the second one is the occurrence. Generally speaking, the keywords are the
set of all distinct words in the text. The occurrence is a document containing
information about the keyword, such as the index where this keyword appears or
the number of occurrences for the keyword in the test.

In the case of RDF datasets, the keywords are all the distinct words appearing
in the nodes and edges of the RDF graph, and the document is a table containing
information about the different elements in the graph where the keywords appear.
This information contains the type of the RDF graph element where the keyword
appears. The graphical representation of the inverted index is described in figure
3.4. The first part is the keywords which represents a list of all the distinct words
in the graph, these words are extracted from the different elements of the graph
(classes, resources, properties, literals, etc.). Each keyword is linked to one or
several tables which are the second part of the index. The table is composed of
fields representing information about the elements of the data source. These fields
are the part of the graph where the word appears, the type of the element in the
graph (resource, literal, property).

Element Type Content | Fragment

_ _,—'Dbpedia:Movie Class | Movie | Dbpedia:Movie
Movie

“2017" literal 2017 | <movie:South_Dakata, release date, 2017>

director

Dbpedia:director | property |director |<movie:Man_on_fire, dbpedia:director, person:Tony_Scott>

2017

Dbpedia:director | property |director | <movie:Black_Howk_Down, dbpedia:director, person:Ridley_Scott>

Figure 3.4: Graphical representation for the index for some words in the graph of
figure 3.1

The field Element contains the word to be indexed from the graph. The
Element is a URI or a literal depending on the type of the resource it describe, the
second field is the Type which represents the type of the Element which can be a
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class, instance, property or literal. The third field is the Content which contains
the text that was extracted from the graph element, this extraction method differs
from one element to another depending on its type. Finally, the last field, which is
the Fragment, represents the part of the graph corresponding to the keyword, it is
a sub-graph that will be used for the construction of the results. For example, the
second keyword "2017" is pointing to the second table. From this table, we know
that the type of element where "2017" appears is a literal, and also we know that
this literal is a value of the properties "released date" that describes the resource
"South Dakota".

3.4.2 Building the Index

Before creating the index, we have used existing text analysis methods. This
analysis is a common operation performed during keyword search and it consists
of many functions. These functions are used to create a precise index by removing
all the unnecessary elements and by extracting the useful texts to be indexed.
We have mainly used three tasks, lemmatization, removing the stop words and
information extraction functions. Each one of them is suited for a particular type
of graph element. Lemmatization is used for the resources, properties and literals,
remove stop words are used for the literals, and information extraction is used for
the URIs. In the next Paragraph, I will provide an explanation for each one of
them.

The first considered text analysis task is lemmatization |70], it consists of re-
placing each word by its canonical form. By lemmatization, we increase the number
of occurrences of each word in the data source and reduce the number of distinct
words in the vocabulary, but this process can also decrease the precision for the
final results. For example, searching for a name will find all its forms in the graph
such as the singular and the plural forms. The second text analysis task used is
removing the stop words. Stop words do not add anything to the semantics and
they are more used as a connectives, so they do not provide information to the
content of the text, an example of stop word is (a, an, the, at, being...) those words
increase the size of the index file without being informative. The last text analysis
task is the information extraction function|78]. This function is carried out on the
local names of the URIs in order to extract the text. Since there are no spaces
between the words formulating the URIs, then we need to extract each word alone.
For example, the URI <http://www.dbpedia.org/Starring/Denzel Washington>
has a local name Denzel Washington which consists of two different words, then
this function extracts each word alone and adds them to the content field of the
indexation table.

The indexation of the elements of the RDF graph differs from one type to
another, for example, the process of indexing the classes is different from the
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indexation of the literal.

Let us index the literal "2017" in the RDF graph of figure 3.1, the indexation
is in the table of figure 3.4. In the content field the extracted text is "2017", the
type is literal that describes a resource. If this literal is selected as a matching
element, this literal should be selected with the resource describing it. In other
words, each literal 1 is a value for a property P that describes a resource r, then
the triple <r,p,I> is added to the fragment field of the table and to be selected
as a matching element 1. For example, the literal "2017" describes the released
date of the movie "South Dakota" (second record in the table of figure 3.4) then
<movie: South Dakota, property: released date, "2017"> is the fragment to be
added to the table.

In the case of a property, which corresponds to the last two records in the table
of figure 3.4, we can see in the content field the extracted text "director" that is
used as a property to a resource. If this property is selected as a matching element,
then it will be added to the fragment section of the table along with the resource
and the object connected to it. For example if the property "director" is used to
show that "Tony Scott" is the director of the movie "Man on fire", then <movie:
Man _ on_ fire, property: director, person: Tony Scott> is added to the table.

In the case of a resource (class or instance), we use the local name of the URI
in the content field. The fragment field will contain the URI of this resource. For
example, the first record of figure 3.4 is a class, then the local name from the
URI, which is "Movie" is extracted to be added to the content field, and the URI
"Dbpedia:Movie" is added to the fragment field.

Using the index will help us to retrieve firstly the elements in the RDF graph
that are exactly matched with the keyword query. In the next section, we will
present the external knowledge which will be used in our approach.

3.5 External Knowledge used to Enhance the Match-
ing Process

In our matching algorithm, we will use external knowledge to enhance the match-
ing elements and to solve the heterogeneity between the query keyword and the
element of the RDF graph. There are two different kinds of knowledge that are
used in our approach. The first kind of knowledge we can use are the semantic
relationships provided by the digital resources, they help in finding the semantic
relations between the elements in the graph and the query keyword. The second
external knowledge is the patterns that match a path to an equivalent property in
the RDF graph. They will help us to identify the approximate matches according
to their semantic closeness with the considered keyword. In this section, we will
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present each one of them.

3.5.1 Semantic relations to bridge the terminological gap

The first source of knowledge considered in our approach is the use of some ex-
ternal knowledge stored in online linguistic resources such as WordNet !, which is
a large lexical database of English providing numerous semantic relations among
concepts. WordNet’s structure makes it a useful tool for computational linguis-
tics and natural language processing. This lexical database can help in solving
the terminological gap which may exist between the concept and the data graph
elements.

There are many semantic relations between two concepts, some of them are
very useful to help us find the best matching elements between the query and
the dataset. In our work, we have considered the following relations to search for
matching elements.

e Synonymy: a concept ¢ is a Synonym of another concept ¢’ if ¢ means exactly
or nearly the same as ¢’. For example, the concept Couch is the synonym of
the concept sofa.

e Antonymy: a concept c is a Antonym of another concept ¢’ if ¢ means oppo-
site in meaning to ¢’. Increase is an antonym of decrease.

e Hyponymy: a concept ¢ is a Hyponym of another concept ¢’ if ¢ is denotes
a subcategory of a more general concept ¢’. For example, the concept meal
is the Hyponym of the concept lunch.

e Hypernymy: a concept c is a Hypernym of another concept ¢’ if ¢ is super-
ordinate to ¢’. For example, the concept fly is the Hypernym of the concept
travel.

e Substance meronym: a concept c is a Substance meronym of another concept
¢’ if ¢’ is Substance to c. For example, the concept water is the substance
meronym of the concept Oxygen.

e Part meronym: a concept c is a part meronym of another concept ¢’ if ¢’ is
part of c. For example, the concept table is the part meronym of the concept
leg.

e Member meronym: a concept ¢ is a Member meronym of another concept
¢’ if ¢’ is Member of c¢. For example, the concept faculty is the member
meronym of the concept professor.

Thttps:/ /wordnet.princeton.edu/
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e Substance of holonym: a concept ¢ is a Substance holonym of another concept
¢’ if ¢ is Substance of ¢’. For example, the concept gin is the substance
holonym of the concept Martini.

e Part of holonym: a concept c is a Part holonym of another concept ¢’ if ¢
is part of ¢’. For example, the concept window is the part holonym of the
concept building.

e Member of holonym: a concept ¢ is a Member holonym of another concept
¢’ if ¢ is Member of ¢’. For example, the concept copilot is the member
holonym of the concept crew.

e Troponym: A verb v is Troponym to verb v’ is verb v expressing a specific
manner elaboration of v’. For example, the verb walk is the troponym of the
verb stroll.

Let us consider an example of query keyword Q9 ={"board", "2008"} and
submit it to the graph of figure 3.5.

d irector mgl}:it]'; o } releasedDate 2008

starring starring

Robert .
de Niro Al Pacino

starring starring

Figure 3.5: An RDF graph about movie

We can observe that the keyword "board" is not in the graph, which means that
there is no exact matching element for "board". Assume that an external resource
stating that "board" is the meronym of "director" is provided, then the property
"director" will be matched to the keyword "board". We can see that having these
semantic relations will enhance the matching between the query keyword and the
RDF graph elements.

3.5.2 Equivalence between properties and paths

Let us consider the query keyword Q10 ={"co-starring", "Al Pacino"} issued on
the graph of figure 3.5. There is no element that can be matched with the keyword
"co-starring", but from the graph, we know that "Al Pacino" and "Robert de Nero"
are co-starring in two different movies "Heat" and "Righteous kill". We can then
deduce that a property "co-starring" can be matched to the path connecting two
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different actors through a common movie and by using the relation starring. Using
this equivalence between a property and a path can enhance the matching process
and help in bridging the terminological gap.

In our approach, we have used the patterns proposed by Ouksili, H. [63], these
patterns express the equivalence between a property and a path in the RDF graph.
For example, if "grandson" is one of the query keyword issued on an RDF graph,
and there is no matching element for this keyword, but there is a path P1 = [(X
son Y), (Y son Z)| in the graph, and we know that "grandson" is equivalent to this
path then we can consider P1 is the matching element to the keyword "grandson".
In this section, I will present the definition of patterns, their type, and how we can
use them in our approach.

The definition of a patterns relies on property expression and path expression.
I will first give the definition of property expression and path expression and then
define the patterns.

Definition 5. Property Expression
A property expression is a triple (X, p, Y ), where X and Y are either resources,
literals or variables and p is a property.

For example, (South Dakota,releasedDate, 2017) is a property expression that
represents the release date of the South Dakota movie.

Definition 6. Path Expression

A path expression describes a relation between resources. The relation is a
path (a sequence of properties) between two resources. More formally, a path
expression is defined as a triple (X, P, Y ), where X and Y are either resources or
literals or variables and P is a SPARQL path expression [89).

The SPARQL path expression can be expressed as a sequence of properties.
This sequence is created by using the property path expression. It is similar to
a string regular expression but over properties, not characters. For example, """
express the inverse of the property and "|" express an alternative between two
properties.

For example, (X, (“son|son) , Y) represents all the resources related to X
represented by a sequence of properties the inverse of son and son. For example,
from the graph of figure 3.1 we can see "Ridley Scott" and "Tony Scott" are related
by both the property son, and it’s inverse which means that they are brothers.

Definition 7. A pattern is a pair |propertyEx, pathEx| where propertyEx is a
property expression and pathlEx is a path expression. It represents the equivalence
between one property expression and one path expression.
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son son—>{ Ridley_Scott

Figure 3.6: Path equivalent to the "Brother" property

Francis_Percy
_Scott

For example, in order to express the equivalence between the property "brother"
and the path expression presented in the figure 3.6, the following pattern is defined:
[ ( X, brother , Y) , (X, “son /son,Y ) |

In other words we can say that the property brother is equivalent to the path
having the properties inverse of the property son and the property son.

Three different types of patterns are proposed in [63], (i) the sameResult pat-
terns, (ii) SameProperty patterns and (iii) patterns using the domain properties.
In the following, we will provide a definition for each one of them.

3.5.2.1 SameResult Pattern

The SameResult pattern is a pattern created to describe the semantic closeness
between two nodes of the graph. Consider that we have two different nodes nl and
n2, and assume they are related by a sequence of owl:sameAs properties. We can
say that these nodes contain equivalent information as they represent the same
object. We can define generic patterns by using the properties from subClassOf,
type and sameAs from the RDFS, RDF and OWL, respectively. The general form
of these patterns can be one of the two following:

| ( X, pattern : sameResult , Y) , (X, (owl : sameAs | ~ owl : sameAs ) ¥ |Y )|

| ( X, pattern : sameResult , Y) , (X, rdf:type 7/ rdfs:subClassOf * | Y ) |

Al Pacino
owl:SameAs

l::> sameResult»{ Al Pacino

owl:SameAs

Figure 3.7: Two Nodes are equivalent by using SameResult Pattern
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Let us consider the graphs of figure 3.7 as an example, the graph on the right
expresses that "Alfredo James Pacino" is connected to "Al Pacino" and "A. P." by
"owl:SameAs" property. We can observe that "A. P." has the same result as "Al
Pacino" since they are connected by a path composed of owl:SameAs properties.

3.5.2.2 SameProperty Pattern

SameProperty pattern is used to describe the equivalence between edges (proper-
ties). The properties owl:inverseOf, owl:equivalentProperty and rdfs:subPropertyOf
are used in this type of patterns and its general form is shown below:

| ( X, pattern : sameProperty , Y) , (X, ( owl:equivalentProperty | ~
owl:equivalentProperty | rdfs:subPropertyOf ) ™, Y )]

owl:equivalentProperty

Figure 3.8: Two properties are equivalent by using SameProperty Pattern

Let us consider the graphs of figure 3.8 as an example, from this graph and
from the general form of the sameProperty pattern we can deduce that "starring"
is the same property as "Acted In".

3.5.2.3 Property Pattern

The third type of pattern is the patterns created by using specific domain proper-
ties. Let us consider the following pattern:

[(X,p,Y), (X, P, Y )]

For example if p is "co-starring" and P is starring /~ starring then the pattern
| ( X, co-starring , Y) , (X, starring /~ starring , Y ) | expresses that if there are
two resources representing two different actors starring in the same movie, then
they are co-starring. More details on the definition of the patterns can be founded
on [63].

Let Q11 ={"John Avent", "co-starring"} be the query keyword to be issued
on the graph of figure 3.5 and let the path in figure 3.9-a be equivalent to the
property on the figure 3.9-b. We can observe that the keyword "co-starring" is not
in the graph, which means that there is no exact matching element for the keyword
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"co-starring", but we can see that "Robert De Niro" and "Al Pacino" are acting
in the same movies "Righteous kill" and "Heat" and therefore they should return
as a matching element to the keyword "co-starring". We can deduce that the path
in figure 3.10 a possible matching element for the query keyword "co-starring".

@—starring starring

a b
Figure 3.9: Property "co-starring" equivalent to a path

Robert : Righteous 2 §
de Niro starring starring—>{ Al Pacino
Robert starringstarring Al Pacino
de Niro

Figure 3.10: Matching Elements for the keyword "co-starring" in Q11
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This kind of information can help in finding the matching elements for the
query Q11. In the next two sections, we will discuss the use of semantic relations
and the patterns in the matching process.

3.6 Emnhancing the Matching Process with Seman-
tic Relations

In this section, we will present the use of some external knowledge to enhance
the matching process. In our work, we have used WordNet 2 as a source for the
semantic relation. This lexical database will be used to help in finding the matching
elements between the keyword queries and the graph elements using the provided
semantic relations presented in section 3.5.1. Using the semantic relations will
bridge the gap between the query keyword and the elements of the RDF graph.
We have first divided the semantic relations provided by WordNet into two sets:

e Relationships Indicating Equivalence, used to find whether two concepts are
equivalent; these semantic relations are: synonym and antonym.

e Relationship Indicating Closeness, which express other relations than equiv-
alence or generalization; the considered concepts are not synonyms, but are

2https:/ /wordnet.princeton.edu/
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linked by some other semantic relation, which could be hypernym, hyponym,
meronym or holonym.

In the next subsections, we will present the two sets of relations which are
Set of Relationships Indicating FEquivalence and the Set of Relationship Indicating
Closeness, and the use of each one of them in our matching process.

3.6.1 Finding Equivalent Matching Elements

In this section we will search for concepts in the RDF graph that are equivalent
to another concepts in the RDF graph by using equivalence relationships. The
equivalence relations are derived by using three different types: exact, synonym,
and antonym. We will present each one here after.

3.6.1.1 Exact Matching

An exact match is a graph element, such as a node or an edge, that contains one of
the query keyword in their content; these elements can be extracted by using the
index. Let us first illustrate with an example, suppose that Q4= {2017, director}
is a query keyword. If a user issues this query keyword on the data graph of figure
3.1, then the matching elements for the keyword "2017" will be the elements of
the graph that have "2017" in there content. From the table in figure 3.4 we can
observe that the literal describing the release date of the movie "South Dakota"
has "2017" in its content. Since the object is the value of the property that
describes a specific subject, then the triple <subject, property, object> will be
considered as a matching element. In our example, the object "2017" is the value
of the property "released date" that describes the subject "South Dakota", then
the triple <"South Dakota", "released date", "2017"> will be considered as a
matching element for the keyword "2017". As for the second query keyword,
"director", it can be matched to the property "director", and from the index table
in figure 3.4 the matching element of the keyword "director" are the two triples
having "director" as their property.

The different cases of exact matching depend on the types of the graph elements
and they are presented as follows: Let kw; be the query keyword and let me; be
one of the elements in the graph that can be exactly matched to Kw; then:

e If me; is of type resource (class or instance) then the matching element to
be matched with Kw; is the resource itself (me;).

o [f me; is of type literal, then the matching element that will be matched to
Kwj is the triple <subject, predicate, me;>
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o If me; is of type property, then the matching element that will be matched
to Kwj is the triple <subject, me;, object>

3.6.1.2 Synonymy Relations

The second type is a synonym,; it is to find a synonym relation between the query
keyword and the graph elements. Let kw; be the query keyword and let me; be
the element in the graph that can be matched to Kw; such that me; is synonym
for Kw;. For example, lets us consider the query keyword Q5={performing, film
maker} be a query keyword. If a user issues this query keyword on the data graph
of figure 3.1, then the answer will be empty. However, knowing that "performing"
is a synonym for "starring" and "film-maker" is a synonym to "director", we can
see that there are in the graph some elements that can be matched to the query.

3.6.1.3 Antonymy Relations

The last type is the antonym, where one of the query keyword and one of the
graph elements are both antonyms to the same concept. For example, the search
for matching elements using the antonymy relation is done by issuing the following
query to Wordnet.

SELECT 7y

WHERE {$kw_i$ Antonym\_to 7x.
?x Antonym\_to ?y.}

And $kw_i$ different from 7y.

Finding equivalent matching elements consists of searching for elements in the
dataset by using the equivalent relations. Consider a query keyword Q={kw1, kws, kws, ...kw,}.
For each keyword kw;, we perform the task of searching the knowledge base for
the equivalent of the considered keyword. This consists of querying WordNet to
extract the semantic relations (synonyms and antonyms) involving kw; and find
the exact matching of these semantic relations and the keyword kw; in the data
graph.

The first goal behind using the equivalent relations is to bridge the terminolog-
ical gap between the query keyword kw; and the RDF graph G. Second goal is to
enrich the matching elements for kw; by extracting semantically related elements
even if there exists an exact matching for the keyword kw;.

Algorithm 3 describes the identification of equivalent matching elements. Let us
start by presenting the notations used in the algorithm. Let K={kw, kws, kws...kw, }
be the query keyword, EM(kw;) a function to extract the exact matching elements
for kw; in the dataset (these elements can be literals, instances, classes, properties,
etc.).
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The semantic relations between the query keyword kw; and WordNet are ex-
tracted by using the following functions; Synonym(kw;) is used to extract the set
of synonyms for the query keyword kw; and Antonym(kw;) is used to extract the
set of antonym for the query keyword kw;.

The exact matching between kw; and the graph elements is first extracted (line
4), then WordNet is queried to extract the sets S and A of synonyms and antonyms
respectively(lines 6-10) for each keyword kw; in the query. The dataset is accessed
to check if there is a matching element for the words in the sets S and A in the
edges and nodes of the graph (lines 8-12). At the end, for each query keyword, a
set of matching elements is returned.

Algorithm 3 Finding the equivalent matching elements

1. procedure SEARCHEQUIVALENTMATCHES (kw;)

2 MatchingElements = EM (kw;)

3: S« synonym(kw;) > S is set of synonyms to the keyword kw;

4 for each s; in S do

5 MatchingElements < MatchingElements U EM (s;) > extract the
matching elements for the synonym s; and add them as matching element to
the query keyword kw;

6: end for

7: A < Antonym(kw;) > function Antonym take kw; as
input and return keyword similar to it as output after executing the following
query {kw; Antonym to 7x, 7x antonym to 7y.} and kw; different from 7y

8: for each a; in A do

9: MatchingElements < MatchingElements U EM (a;)

10: end for

11: Return MatchingFElements

12: end procedure

Consider the example of the keyword query Q6=/{film maker, Robert De Niro}
to be submitted to the graph of figure 3.1, the resource "Rober De Niro" will be
considered as an exact matching to the keyword "Rober De Niro". The keyword
"film maker" has no exact matching element. The search for equivalent matches is
processed on the query Q6, and we query WordNet using the following SPARQL

query
Select 7Synonym where

{<http://www.w3.org/instances/"film maker">
<http://www.w3.org/schema/Synonym0f> ?Synonym. }

As a result S — {author, director, ...} is the set of synonyms for "film maker",
then an exact matching is performed between the elements in the set S and the
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RDF graph. We can observe that the word "director" from the set S has an exact
matching with the property "director" in the RDF graph. Consequently all the
"director" properties are selected to be the matching elements to the keyword
query "film maker".

3.6.2 Finding Close Matching Elements

To find the equivalent matching elements, we have used some semantic relations
from section 3.5.1. In some cases we could not find the equivalent matching ele-
ments, but there are other semantics that can be used to infer that there exists
some kind of closeness between the RDF graph elements and the keyword query.
These elements can be derived by using semantic relations such as hypernymy.

The idea of finding the elements that are closed in meaning to the keyword
query is similar to search for equivalent matching elements by using an external
knowledge source. In our case, we have considered semantic relations in Word-
net. The semantic relations we are interested in for finding the elements that
are closed in meaning to keyword query are hypernyms, hyponyms, holonyms and
meronyms. For each keyword kw;, we query WordNet to search for one of the
semantic relations.

The relations of hypernym, hyponymy, holonymy and meronymy do not ex-
press equivalence but express some sort of closeness between two concepts. If a
meronymy relation is found between kw; and a concept c, and if ¢ has an exact
match in the dataset, i.e., a graph element labeled ¢, then this latter is a close
concept to kw;. Indeed, if ¢ does not represent an equivalent concept, it still repre-
sents a close concept as ¢ is part of kw; because the two are linked by a meronymy
relation, according to Wordnet.

The algorithm for finding the matching elements that are close in meaning to
keyword query is presented in 4. WordNet is queried to find the semantic relations
by searching for the hypernym, hyponymy, holonymy and meronymy for query
keyword kw;. For each concept c related to kw; by one of these relations, we
search for elements labeled ¢ in the dataset; these elements are added to the set
of matching elements for the keyword kw;.

Let us consider the query keyword Q4={1974, board}, if we issue this query
on the graph of figure 3.1, the keyword "1974" will be matched to the RDF triple
<The Godfather 2, released date, "1974"> since "1974" is a literal. There is
neither Exact match nor equivalent match for the keyword "board", then searching
for close matches is executed to query WordNet to search for close semantic relation
for the keyword "board". The SPARQL query below is one of the queries that can
be used to search for close elements to the keyword "board".

Select 7Meronym where



S80CHAPTER 3. SEMANTIC-BASED MATCHING FOR KEYWORD SEARCH IN RDF DA/

Algorithm 4 Finding the Elements that are Close in Meaning

1. procedure SEARCHCLOSEMATCHES (kw;)

2: MatchingFElements = ¢

3: semanticK eywords — Hypernym(kw;) U Hyponym(kw;) U
Meronym(kw;) U Holonym(kw;) > semanticKeywords is set of Hypernyms,
Hyponyms, Myronyms and Holonyms to the keyword kw;

4 for each h; in semanticKeywords do

5 MatchingElements < MatchingElements U EM (h;)

6: end for

7 Return MatchingElements

8: end procedure

{<http://www.w3.org/instances/"board">
<http://www.w3.org/schema/Meronym0f> ?Meronym. }

The result of the meronym for the word "board" are shown in the set M =
{director, board member, etc.}. We need to check if the elements in the set M
can be matched to the elements of the RDF graph. We can observe that the word
"director" from the set M can be matched to the "director" property in the RDF
graph, consequently all the "director" properties are selected to be the matching
elements for the keyword "board".

3.7 Using Patterns in the Matching Process

Besides the use of the semantic relations provided by an online resource to im-
prove the matching process, we also use the notion of pattern defined in [63] and
presented in section 3.5.2. The patterns are used to enrich the set of matching
elements for the keyword query kw; by extracting paths from the RDF graph that
can be matched to kw;. Suppose that we have a property p; that is equivalent to
a path P, and suppose that one of the keyword query kw; is p;, then during the
matching process, we search for P in the RDF graph and consider it as a matching
element to the keyword kw;. As defined in section 3.5.2, a pattern is a pair hav-
ing the following structure: |[propertyEx, pathEx| where propertyEx is a property
expression and pathEx is a path expression.

The use of the patterns requires first an evaluation stage which is done be-
fore querying the RDF graph. It consists of retrieving for each pair [propertyEx,
pathEx| all the paths from the RDF graph that are equivalent to the property
(propertyEx) using the pattern (pathEx). This is done by the using the mean of a
SPARQL query. For each property propertyEx there exists a list of paths = {path;,
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paths,.. pathy,} such that path; is equivalent to propertyEx. The results are stored
in an external knowledge base to be used in the matching process. During the
matching process and after sending the keyword query, for each query keyword
kw;, we check if it is matches one of the properties in the external knowledge
(propertyEx). If it is matched, then we select the list of paths that are equivalent
to the property as matching elements for the keyword query kw;.

In section 3.5.2, we have three different types of patterns; SameResult Pattern,
SameProperty Pattern and Property Pattern. The type of matching element for
each type of pattern is presented as follows:

e If the pattern is a SameResult Pattern, then the type of matching element
is one node.

e If the pattern is a SameProperty Pattern, then the type of matching element
is one edge.

e If the pattern is a Property Pattern then the type of matching element is a
subgraph.

Let Q12 ={"Brother", "co-starring"} be the keyword query to be applied on
the graph of figure 3.1, and let pl = [ ( X, brother,Y) , (X, son /~ son, Y )] and p2
= | ( X, co-starring , Y) , (X, starring /"~ starring , Y ) | be the external knowledge
that represents two patterns; the first one expresses the property "brother" is
equivalent to a path consisting of property "son" followed by its inverse, and the
second pattern represents an equivalence between the property "co-starring" and
a path which consists of the property "starring" followed by its inverse.

We can observe that the keyword "brother" is not in the graph, which means
that there is no exact matching element to this keyword "brother". But from the
graph we know that "Ridley Scott" and "Tony Scott" are the sons of "Francis Percy
Scott", then the path in figure 3.11 is found in the graph and is selected to be the
matching element for the keyword "brother". There is no exact matching element
for the keyword "co-starring", but also from the graph we have that "Dakota
fanning" and "Al Pacino" are acting in the same movie "Once upon a time in
Hollywood" so they are acting together. We can deduce that the paths in figure
3.12 are equivalent to the keyword "co-starring". Hence these paths are selected

as matching elements for this keyword.

Figure 3.11: Matching Element for the keyword "Brother" in Q12

Francis_Percy
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Figure 3.12: Matching Elements for the keyword "co-starring" in query Q12

3.8 Semantic relations and pattern in the Match-
ing Process

After presenting the use of the semantic relations and the patterns in the matching
process, we will present in this section the overview and algorithm of the matching
process used in our keyword search approach.

The general principle of the matching process is to find for each query keyword
kw; the elements that can be matched to it in the graph. These matching elements
can be found by using the exact matching, using one of the equivalent relations,
or using the patterns. If using the equivalent relations and equivalent patterns
failed to find matching elements for the query keyword kw;, then the searching
for matching elements using close relations is executed to find the graph elements
that are closed in meaning to kw;. The overview of this process is presenting in
figure 3.13.

The process takes the keyword query Q = {kwy, kw,, ...., kw,} as input and
returns a set of lists Me = {Mey, ..., Me,} where Me; = {me;1, me;a,...,mep, } is
the list of matching elements me;; extracted from the graph G which corresponds
to the query keyword kw;. Our matching process consists of three phases: (i)
searching using equivalent relations, (ii) searching using equivalent patterns and
(iii) searching using close relations. For each keyword query kw;, the equivalent
relations and equivalent patterns are search for in the RDF graph; if no matching
element is found then we search for matching elements by using the close relations.

The first phase, which is searching using equivalent relations consists of
two parallel tasks. The first one is comparing the query keyword with the graph
elements (resources, classes or properties) to identify the matching elements. We
refer to this task as exact matching, and it uses the index as defined in section
3.4. The second task is searching for synonyms and antonyms, which consists of
querying WordNet to find the equivalent semantic elements that are matched to
the keywords of the query.

The second phase is searching for patterns. This task is executed after the
first one, and it uses the patterns and the paths equivalent to these patterns, and
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Figure 3.13: Overview of the Matching Elements Process

they are expressed as external knowledge. This part consists of finding the paths
in the graph that matches to one of the query keyword kw,; and adding this path
to the matching element of kw;.

The last phase is searching using close relations which is executed if search-
ing using equivalent relations and searching for patterns failed to find a matching
element for the keyword query kw;. This task also uses WordNet to search for
close semantic elements that are matched to the query keyword kw;.

The matching process is presented in algorithm 5, with the following notations:
EM(kw;) is a function which extracts the exact matching elements for kw; from
the RDF graph (these elements can be literals, instances, classes or properties).
The semantic relations between the keyword query kw; and WordNet are extracted
using two functions, (i) SearchEquivalentMatches(kw;) (algorithm 3) which returns
the equivalent elements to kw; by using the relation synonymy and antonymy, and
(ii) SearchCloseMatches(kw;) (algorithm 4) which returns elements that are closed
to the keyword kw; by using the relations hypernymy, hyponymy, meronymy and
holonymy.

For each keyword kw; in the query, all the exact matching elements are re-
trieved by searching the index file (line5). Then WordNet is queried to extract
the equivalent semantic elements involving kw;; as a result, we obtain a set E.S;
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such that: ES; = {¢;;| 3 equ — rel(kw;, ¢;;)} where equ-rel(kw,c;;) is one of the
two equivalent relations: synonymy or antonymy between kw; and ¢;;. For each
concept ¢;; in ES;, we check the index table to find exact matching elements in G
and add them to the set of matching elements Me;(kw;) (line 6-9).

The next step consists in finding the patterns in the graph that matches kw;.
This is done by using the PatternMatching(kw;) function that searches if there ex-
ists a pattern that is equivalent to kw; in the external knowledge base, then extract
this pattern from the graph and added it as a matching element for each keyword
kw; (line 10). If no matching element has been found in the two previous steps,
then a search for close matching elements is performed (line 11). In this phase,
WordNet is queried to extract elements that are closed to kw; by using the close re-
lations; as a result, we obtain a set C'S; such that: C'S; = {¢;;| 3 clo — rel(kw;, ¢;;)}
where clo-rel(kw;,c;;) is one of the following close relations: hypernymy, hyponymy,
meronymy or holonymy between kw; and ¢;;. For each concept ¢;; in C'S;, we check
the index table to find exact matching elements in G; these elements are added to
the set of matching elements for the keyword kw; (line 12-15). At the end of the
execution, for each keyword, the algorithm returns a set of matching elements.

Algorithm 5 Matching the Query Keywords with the RDF Graph

1. keywordQuery = {kwy, kws, kws, ...kw;}
2: procedure MATCHING (keywordQuery)
3: for each keyword kw; in keywordQuery do

4: MatchingElements = ()

5: MatchingElements = MatchingElements U EM (kw;)

6: SemanticRelations Equivalent <— SearchEquivalent Matches(kw;)
7 for each s; in SemanticRelationsEquivalent do

8: MatchingElements = MatchingElements U EM (s;)

9: end for

10: MatchingElements = MatchingElements U Patter M atching(kw;)
11: if MatchingElements is empty then

12: SemanticRelationsClose <— SeachCloseMatches(kw;)

13: for each s, in SemanticRelationsClose do

14: MatchingElements = MatchingElements U EM (sy,)

15: end for

16: end if

17: hashmap.add(kw;, MatchingElements)

18: end for
19: Return hashmap
20: end procedure
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Let us consider Q13= {brother, Washington, outline, board}, a keyword query
issued on the data graph of figure 3.1. For each keyword we will get a set of
matching elements.

As we can observe from the data graph, the keyword "Washington" can be
matched exactly with two nodes, the first is the actor "Denzel Washington" and
the second one is a literal describing the movie "The God Father 2". These nodes
are extracted by using the index created in section 3.4.

There is no exact matching for the keyword "outline" but from WordNet, we
can find that "outline" is a synonym to "abstract". The property abstract con-
necting the movie "The God Father 2" and the literal describing this movie is then
considered to be a matching element to the "outline" keyword.

The second phase is searching for pattern. As we can observe from the data
graph, there is no graph element corresponding to the keyword "brother"; searching
for pattern enables us to infer that "brother" is equivalent to the graph shown in
figure 3.14, which can therefore be selected as a matching element for the keyword
"brother". All the matching elements are presented in figure 3.15.

Francis_Percy .
son son Ridley Scott

Figure 3.14: Example of Equivalent Path for the Keyword Brother
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Figure 3.15: Matching Elements for each Keyword in Query Q13
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After processing the first two phases to extract the matching elements for the
keywords in Q13, we deduce that it fails to find a matching element for the key-
word "board"; for this reason, the third phase (searching for closed relations) is
processed. After searching WordNet for elements that are closed to the keyword
"board" by using the close semantic relations, we can find that the keyword "di-
rector" is a meronym of "board". All properties "director" are then selected as
matching elements of the keyword "board".
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In the next section, we are going to present some experiments to show the
effectiveness and the efficiency of our approach.

3.9 Experimental evaluation

This section describes our experiments to validate the performances of our ap-
proach. Our goal is to observe the performance of using WordNet as an external
knowledge to fill the gap between the keywords and the dataset terminologies with
various keyword queries

All the experiments have been done on Intel Core i7 with 32GB RAM. Our
approach is implemented in Java. We have used the Jena API for the manipulation
of RDF data. For indexing and searching the keyword query, we have used the
Lucene API. The Jung API is used for graph manipulation and visualization.

We have used two datasets: AIFB and DBpedia. AIFB is a dataset containing
data taken from the AIFB Institute at Karlsruhe University. It describes entities
of research community such as persons, organizations, publications (bibliographic
metadata) and their relationships. The dataset contains 8281 entities and 29
233 triples. DBpedia is a project aiming to extract structured content from the
information created in the Wikipedia project. The extracted data is related to
movies, titles, actors, directors, released data, and other properties. This dataset
contains 30 793 triples.

We have tested and compared our keyword search approach both with and
without the use of external knowledge. We will refer to the approach with external
knowledge as semantic based matching since we use semantic relations. We will
refer to the approach without external knowledge as the basic approach.

The query size was between 3 and 8 keywords. Some of the keywords have
exact matching with graph elements, and others are closed in meaning to some
elements in the dataset. We have also used some keywords that can be matched
to a path according to the pattern we have defined in section 3.5.2. The total
number of queries was 20 queries (10 for each dataset) in order to cover all the
different WordNet semantic relations during the matching stage. Table 3.1 shows
some examples of queries keyword, the number of nodes and edges containing
these keywords in the data graph, and the type of semantic relations between
the keywords and the data graph after querying WordNet. For example, Query
1 (carole_lombard, 5940, theoretical and edwin) consists of 4 keywords. These
keywords appear in the data graph (nodes and edges) 14, 18, 0 and 10 times
respectively. The keyword "theoretical" is not in the dataset, but it is closed to
the concept "academic" since there is a hypernymy relation between "academic"
and "theoretical" in WordNet.

As we can observe from figure 4.22, the execution time increases when the
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Query Number | keyword Query ;t?:se;egfgjfpear WordNet Relations
carole lombard | 14
5940 18
Q1 theoretical 0 hypernym
edwin 10
swedishfilms 2
Q2 llz;gge;crantz ;l? hyponym
plosion 0
psychiatric 2
hampshire 1
@3 ziskii 1 hyponym
system 0
bring 0 antonym
Q4 cut 1
mind 0 hypernym
solar _system 0 holonym
Q5 secondary 0 synonym
vocabulary 0 meronym

Table 3.1: Example of Keyword Queries

number of keywords increases for both datasets. We can also see that the execution
time for AIFB is greater than the execution time for DBpedia because the size of
data in AIFB is greater than the size in DBpedia.

The number of matching elements also affect the execution time; for example
Q1 {carol_lombard, 5940, theoritical and edwin} in table I takes 4.91 sec (fig.
3.17) and contains 4 keywords while Q6 {poor, 1990, mind and Ellen Burstyn}
needs 31.57 sec (fig. 3.17) to be executed: the two queries contain the same
number of keywords (4), but the difference in the execution time is due to the
number of matching elements. In Q1, the four keywords appear 14, 18, 0 and 10
times respectively as we can see from table 3.1, but the keywords in Q6 appear 20,
258, 0 and 2 times respectively. We can deduce that as the number of matching
elements for the query keyword increase, the execution time increase.

The differences in terminology between the query keyword and the dataset also
affect the execution time. Consider the queries Q3 and Q4 in table 3.1; Q3 consists
of 4 keywords, and these keywords appear 2, 1, 4 and 0 times respectively in the
dataset while Q4 has 3 keywords and these keywords appear 0, 1 and 0 times
respectively in the dataset. But the execution time for Q4 (7.76 sec) is greater
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Figure 3.16: Average Execution Time According to the Size of the Query
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Figure 3.17: Execution Time for Each Query over DBpedia

than the execution time of Q3 (5.08 sec); this is because Q4 requires access to
WordNet two times to search for semantic relations involving the keywords, while

Q3 requires only one access.

(basic approach)

query QL 1Q2 Q3 |1Q4 Q5| Q6 | Q7 | Q8 | Q9| Q10
Ne of results
(semantic based matching) 2 173 (7 8 50 [ 250 | 110 | 132 | 78 | 34
Ne of results 1 (15001 |0 o |54 |25 |0 |2 |2

Table 3.2: Number of Results for each Keyword Query(DBpedia)

As we can observe from tables 3.2 and 3.3, the number of results increases
when WordNet is used during keyword search because using WordNet increases
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Figure 3.18: Execution Time for Each Query over AIFB

query QLI Q21 Q3| Q41 Q5 Q6| Q7| Q8] Q9| Q10

Ne of results
(semantic based matching) 9 |10 21 125 132 138 )20 118 125 15

Ne of results

(basic approach) 3 |4 10 | 7 12 122 |14 | 7 13 10

Table 3.3: Number of Results for each Keyword Query(AIFB)

the number of matching elements. This means that the number of combinations
and, therefore the number of results both increase.

To check the effectiveness of our approach, we have used 10 queries from the
tables 3.2 and 3.3 and asked three users to check the top-k results for each query
and give the number of relevant results to calculate the precision at k as follows:

NumberO f Relevant Results
K

According to table 3.4, we can see that PQK varies between 0.82 and 0.96 for
the semantic based matching. These results are better than those obtained using
the basic approach, where PQK varies between 0.62 and 0.8; this means that the
results achieved with the semantic based matching were more accurate according
to the users.

POK = (3.1)

Data AIFB DBpedia
K 3 5 8 3 5 8
semantic based matching | 0.93 | 0.88 | 0.82 | 0.96 | 0.9 | 0.87
basic approach 0.73]10.68 | 0.62 | 0.8 | 0.76 | 0.68

Table 3.4: Top-K precision of the basic approach and the semantic based matching
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3.10 Conclusion

In this chapter, we have presented our matching process for the keyword search over
RDF graphs. We have presented an indexation approach for an RDF graph. We
have extended the existing matching approaches by introducing semantics into it.
The semantics help in enriching the matching elements and try to find approximate
solution for the query keyword if we could not find the exact keywords in the
dataset. To this end we have used the patterns that are equivalent to properties
based on previous work. We have proposed the use of the semantic relationships
provided by available online linguistic resources that are used to search for the
semantic relations between the keyword query and the elements of the RDF graphs.
Our contribution consists of using these semantic relations to enrich the matching
elements of the keyword query and find a solution even if the keyword query is
not the same as a graph element. The second contribution in our approach is
the type of the matching elements, where the matching elements are nodes, edges
and sub-graphs. We have conducted some experiments showing that using some
external knowledge give more results for some queries and sometimes returns an
answer where other keyword search approaches fail to.

The future works will focus on other types of matching, such as matching the
numbers with the character. For example, match "1" with "one". We will also
use other methods of external knowledge to enrich the matching elements, such as
using machine learning and deep learning in the matching process. Another thing
to be considered is to capture the user intent in the keywords. This can be done
by finding relationships between them before matching them to the graph. We
will also study scalability issues and enable efficient keyword search for massive
datasets.
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4.1 Introduction

In the previous chapter, we have extended the process of matching one keyword
with some graph elements using some external knowledge to enhance the process
with more semantics. In this chapter we are tackling another problem related
to keyword search which is aggregating the matching elements to form a sub-
graph representing an answer to the query. Aggregation takes the set of matching
elements for each query keyword as an input and find the best way to combine
them and produce set of sub-graph results as an output.

For each keyword k; in a query Q = {ki, ks, ks,...k,} a set S; = {mey,
mes,...me;} of matching elements corresponding to k; was retrieved. In order
to provide a sub-graph that is an answer result to Q, we need a find a way to
aggregate and combine these matching elements. Our task is to have one element
from each set S;, and we need to aggregate these elements and connect them to
create the subgraph result.

Consider G(V,E) to be an RDF graph and Q = {k1, k2,...,k,} to be a keyword
query and assume that at least one matching element for each keyword query has
been identified. The problem is to combine these elements in order to provide an
answer to the query Q.

ICompany| Car
A A
type type
@ arksln selling

knows

type
e —

Figure 4.1: RDF graph Example

For example, suppose the two nodes "Alice" and "Car" in the graph of figure
4.1 are matching elements for a keyword query, and the user needs to connect
them in order to build an answer to this query. The problem how we can combine
them to create the sub-graph result. In our context, we refer to this problem as an
aggregation problem. The goal is to find a way that allows us to combine a given
set of graph elements to create one single sub-graph; those graph elements can be
an edges, a nodes or even a sub-graphs.

Aggregation is not an easy task since there are some main challenges facing this
process. The straightforward idea if I want to find the best paths that connects
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two or more graph elements is to enumerate all the possible paths between these
elements. But this task is a time-consuming and costly process. Another problem
consists of creating the final sub-graph with a minimal number of elements. The
aim is to focus on the matching elements and not to introduce new unnecessary
elements. Creating the minimal sub-graph is not always the best answer, we need
also to check the semantic meaning of the final sub-graph and this is another
challenge for aggregation. For example, in the previous example we can see that
there are two different paths connecting the two nodes "Alice" and "Car" from
the graph of figure 4.1. The first one is in red and reflects that Alice works in
a company that sales cars. The second path is in blue and represents that Alice
knows Bob that owns a car. We can observe that each path reflects a different
semantic, the question is which one should be selected in order to connect the two
nodes? Checking the semantic of the paths helps us to select the most suitable one
in order to build a meaningful final result for the keyword query. Our problem is
to define a method to assess a path and determine which one is more meaningful
than the others.

Many research works dedicated to keyword search target these problems, some
of them use the shortest path as in the approach presented in [66] that combines the
shortest paths between all pairs of matching elements. Other approaches use the
backpropagation as the approach in [91] that starts from the matching elements
and propagates to a common node to build the final graph, but this will not
reflect the importance of the semantic of the graph and will introduce unnecessary
elements to the final result. Others use the schema to enrich the aggregation
process and discovering the paths between the matching elements, the limitation
of such an approach consists in having a dataset without a schema.

Our contribution is related to detect the best way of connecting the different
matching elements. In our approach, we need to find an assessment method to
assess the paths that connect the matching elements during the building of the
sub-graph result. Moreover, we need to reduce the number of elements in the
sub-graph as minimum as possible without losing the semantic meaning of the
sub-graph result.

For the same keyword query, it is possible to have several possible solutions.
This is due to the fact that each query keyword can have more than one matching
element. In creating the sub-graph result, we need to take into account all the
possible matching elements, i.e., all the possible solutions that can be created
from the different sets of matching elements. Finally, we will end with a set of
sub-graph results. The problem consists in finding a ranking method to rank this
set and determine what is the best answer.

As an example, let us consider the RDF graph in figure 4.2 and let K— {Ridley
_scott, Denzel washington, Abstract} be the set of elements to be connected.
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Figure 4.2: RDF graph about Movies

Aggregating the elements in the set K consists in finding a sub-graph containing
all the elements in K. We can observe from the graph that we have more than
one path connecting the node having the keyword "Ridley scott" with the edge
having the property "abstract". The problem consists in deriving all the possible
paths and determining the best path to be used in the aggregation process.

In this chapter, we will present the aggregation method, as well as the ranking
method we have proposed to rank the sub-graph results. The rest of this chapter is
organized as follows. A problem statement is presented in section 4.2. Section 4.3
presents an overview of our aggregation approach. The ranking method is discussed
in section 4.4. Section 4.5 presents our experiments. Finally, we conclude the
chapter in Section 4.6.

4.2 Problem Statement

Let us consider G(V,E) to be an RDF graph and Q = {kq, ko,....k,} a keyword
query, for each keyword query k; let S; = {si1, Si2, ..., Sin} be its set of matching
elements. Then S = {51,95,..., S,} will be the sets of matching elements for
the keyword query Q. The set of matching elements S; represents the elements
that can be found in G and matched with the keyword query k;. The type of
these matching elements can be either a node an edge or even a subgraph. Having
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a set of matching elements corresponding to each keyword raises the problem of
identifying all the possible combinations of matching elements which represents
the candidate to create the resulting sub-graph.

Let us consider a combination C = {(k1, s1), (k2, $2), ..., (kn, s») } where each s;
is a matching element for the keyword k; will be an input. Our goal is to create a
sub-graph result G,.(V’)E’) for the keyword query ) by aggregating the elements
in the combination C. Building this sub-graph is what we call aggregating the
matching elements. This sub-graph result G, should be a minimal sub-graph such
that for each keyword query k; in C one matching element s; is found in G,., for
any pair of matching elements (s;,s;), there is only one path connecting them.

For example, let us take the graph of figure 4.3 and let Q={brother, director,
Man} be the keyword query. From the graph of the figure 4.3 we can see that
the sub-graph colored in blue can be matched with the keyword "brother", the
edge colored in green can be matched with the keyword "director" and the node
colored in red can be matched with the keyword "Man". Therefore, not all the
matching elements are of the same type and they can be nodes, edges and sub-
graphs. The problem consists of finding a way to connect the different types of

matching elements.
son Ridley Scott directo
Gangster

Starring

Denzel
son Sl
Washington type

Starring
directo r—@—!yp < @

Figure 4.3: RDF graph showing different types of matching elements

Francis_Percy
_Scott

There are three main challenges in the aggregation process, the first one consists
of building a minimal connected sub-graph containing the matching elements of
the considered combination. This sub-graph represents a possible result of the
query; it is built by introducing the minimum number of nodes and edges which
do not correspond to matching elements. Connecting two elements in a graph is
done through a path, but this introduces new elements in the result. Our goal is
to minimize the elements in the resulting sub-graph by focusing on the matching
elements in C and not introduce new unnecessary elements.

During the building of the sub-graph result, we can find several possible paths
between a given pair of matching elements. The problem is which path should we
select to build the sub-graph. The second challenge consists in finding a metric to
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rank the relevance of the path connecting two matching elements. Let p; and p;
be two possible paths connecting the elements s; and s;. We need to know which
path should be selected in the process of aggregation. What are the criteria used
to determine the importance of one path on another? State-of-the-art aggregation
tools rely on finding the shortest path between the matching elements. But the
shortest is not always the best answer; what if all the paths have the same length.
The limitation consists in determining which one will be selected. For this reason,
we need to find a way to assess the importance of the paths in the RDF graph.

Since for a given keyword query k; we can have a set of matching elements
S; = {si1, Si2, ..., Sin}, then several combinations are created. If we have several
combinations, then we will have several sub-graph results for the keyword query.
The third challenge is how to rank the different possible answers. For example,
let us consider the graph of figure 4.3 and let Q3 = brother, director, Man be the
keyword query. The figure 4.4 consists of two differed possible sub-graph results for
the keyword query Q3. The problem consists in determining which one is better
than the other. Another problem is finding the criteria that affect the rank of
a given sub-graph and finding a method to calculate a score of ranking for each
sub-graph result.

. . American_ d
on Ridley Scott directol son
Starring

Denzel
son i son
Washington
Starring
@ director—@

Figure 4.4: Sub-graph results for the keyword query Q3
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In this chapter, we present a novel method to aggregate the matching elements
and find the best paths between them to extract the sub-graph corresponding
to the keyword query. In our method we introduce new way of measure in the
addition to the shortest path, this way consists of finding the importance of the
path by checking its centrality in the graph. Deriving the possible combination
and aggregating the matching elements are presented in the next section. In the
second part, a method to calculate the score of ranking for the results is given.

4.3 Aggregation as Steiner tree problem

Our goal is to design a method that aggregates the matching elements and finds
the minimal sub-graph connecting them, in addition to have only one path between
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any pairs of matching elements.

In order to find the minimal sub-graph, then all the paths between all the
matching elements should be retrieved, and all the combinations should be de-
rived to find the minimal sub-graph. This problem has been addressed in the field
of algorithmics, and it is a combinatorial optimization problem which is the Steiner
tree problem |28|. In the rest of this section, a definition for the Steiner tree prob-
lem will be given and we will also present why it could be used in our context and
why our aggregation problem can be stated as Steiner tree problem. In addition,
we will provide the algorithm we used in our approach and the adaptations we
made to better solve the problem. Finally, we will show how we build the answer
sub-graph result.

4.3.1 Preliminaries

In this section we define the concepts of the weighted graph, the complete graph
and the distance Graph. We have also introduced definition of the Steiner tree
problem and the algorithm that solves it.

Definition 8. Weighted Graph: A weighted graph is a graph in which its elements
are given a numerical weight. The elements can be node or edge. The weight of
the graph is calculated by adding the weights that are assigned to its elements. For
example, the graph of figure 4.5 is a weighted graph and the weights are assigned
to its edges, the weight of this graph is 23, which is the sum of weight for all its
edges.

@;{?
& Q

Figure 4.5: Undirected weighted graph

Definition 9. Complete Graph: The complete graph is a graph in which every
pair of distinct vertices is connected by a unique edge. For example the graph of
figure 4.6 is a complete graph.

Definition 10. Distance Graph: Let graph G (V, E) be a graph, and let T C V
be a subset of nodes called terminals, and a weighted function d : £ — R on the
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edges. The Distance graph DG (T,E’) is a complete graph that can be derived
from G and its nodes the set of terminal T. Each pair nodes (n;,n;) is connected
with an edge e;;” € E’ labeled by a weight a;; representing the shortest path weight
connecting the nodes n; and n;. Let us consider the graph of figure 4.5 and let
T = {"a","b", "c", "d"} be the set of terminal nodes, then the distance graph
that can be derived from the graph in 4.5 and from the set T is represented in the
graph of figure 4.6.

/]
/A “\jj

(a; 4

Figure 4.6: Distance Graph for the graph in figure 4.5

Definition 11. Minimum Spanning Tree: The minimum spanning tree is a subset
of edges of connected weighted graph that connects all the vertices together without
any cycle and with the minimal possible total edge weight. For example the graph
of figure 4.7 represents the minimum spanning tree for the distance graph in figure
4.6.

.

4

/

(a) 4 d

Figure 4.7: Minimum Spanning tree for the graph in figure 4.6

Kruskal’s algorithm[54]: It is an algorithm used to find the minimum spanning
tree of the weighted graph. The algorithm consists of creating a forest F which is
the set of trees where each vertex in the graph is a separated tree in T, and create
set S containing all the edges in the graph. The algorithm starts by selecting an
edge from S with the minimum weight. If the selected edge is connecting two
different trees, then we add it to the forest F and combining two trees into one
tree. If it is not, then we select another edge from S. The algorithm terminates
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Figure 4.8: Kruskal’s algorithms steps to build the minimum spanning tree of the graph
in figure 4.6
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when all the trees in F are connected into one single tree, which is the minimum
spanning tree. For example, the steps of building the minimum spanning tree for
the distance graph of figure 4.6 are presented in figure 4.8.

Definition 12. Steiner tree problem [28]: Let graph G = (V, E) be a graph,
and let 7" C V be a subset of nodes called terminals, and a weighted function
d : E — R on the edges, the goal is to find a sub-graph S of minimal weight
in G containing all the terminals. Other nodes than the terminals can be added
to S; they are called Steiner nodes. S should be a tree, which means that from
every node s and t € V there should be exactly one path between s and t. The
Steiner tree problem is NP-hard, and there are many research works which aim
to find approximate solutions to this problem. The quality of the approximation
algorithm is measured by calculating the ratio between the weight of the resulting
tree and the optimal Steiner tree.

Distance Network Heuristic(DNH) [52]: It is an algorithm used to solve the
Steiner tree problem. Given graph G and set of terminals T={ty, ts,..., t,}, a
Steiner tree is created by using the distance network heuristic algorithm, which
consists of several steps. First, a distance graph DG is created; this graph contains
only the elements in T, and every two elements ¢; and t; are connected by a labeled
edge. The label is the weight of the shortest path connecting ¢; and ¢; in G. The
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next step is to create the minimum spanning tree MST from DG. The minimum
spanning tree is a subset of the edges of a DG without any cycles and with the
minimum possible total edge weight. Therefore the sum of edge weights in this
tree is as small as possible. The result it MST containing n nodes and n-1 edges,
and each edge connecting ¢; and ¢; is labeled by the length of the shortest path
connecting t; with ¢;. The third step of the algorithm consists of creating a sub-
graph G’ by replacing each edge in MST with a corresponding minimum cost path
in G; if several paths are found, one of them is randomly selected. Due to the
replacement, G’ might not be a tree, Therefore the minimum spanning tree MST’
is computed for G’. The last step of the DNH algorithm consists of deleting from
MST’ all non-terminals of degree 1. Since DNH is an heuristic algorithm, then the
final result is an approximate solution for the Steiner tree problem.

Let us take the graph in figure 4.5 as an example, and let T = {"a", "b", "c",
"d"} be the set of terminal nodes. We need to find a minimal weight sub-graph
S connecting all the nodes in T. Figure 4.6 shows the distance graph created by
using the graph in figure 4.5 and the elements in T. As we have seen before, the
figure 4.7 shows the minimum spanning tree created from the distance graph in
figure 4.6. The next step is to replace the edges in the graph of figure 4.7 with the
corresponding path in the graph of figure 4.5.

'6 4 {Cc ) /@
/ .
“ Pod
‘/ a 4 d) @j/ \Cd)
a) Minimum Spanning Tree for the Distance )
Sgrzjmph in figure 4.6 (b) Steiner Tree

Figure 4.9: From the Minimum Spanning tree to the Steiner Tree

In figure 4.9b we have the created graph G’ after replacing the paths in figure
4.7 by the corresponding paths in figure 4.5. As we can observe, G’ is not a tree
and it contains a cycle in it. The next step is to create the MST’ which is the MST
derived from G’. Figure 4.10a shows the minimum spanning tree that is computed
from the graph of figure 4.9b. The last step of DNH is to remove the non-terminal
nodes with degrees equals to one. The nodes that are not belong to T denoted by
non-terminal nodes. In the graph of figure 4.10a the node labeled by "e" having
a degree equal to one and it is not in the set T, then this node and the edge
connecting this node to the node "b" are removed. The final result is presented in
figure 4.10b.
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Figure 4.10

4.3.2 Building the answer Tree

We state the aggregation problem as Steiner tree problem. In our context, the set
of terminals represents a combination of matching elements. For example, let Q9
—{brother, Dakota, Washington, Actor} be the keyword query to be applied to the
graph of figure 4.2. First we search for the matching elements in the RDF graph
that can be matched with the keyword in Q9 by using the matching approach
presented in section 3.1. The results are presented in the table of figure 4.11 where
each keyword is associated with a set of matching elements corresponding to it.

Brother Washington Actor Dakota

Ridley
son Scott Denzel
— Washington South_Dakota
Percy Scott Outbreak)—Actor:
Iscacson
son 0
n Dakota
Washington, fanning
D.C...

Figure 4.11: Matching Elements for each Keyword in the Query Q9

After obtaining the set of matching elements for each keyword, the possible
combinations are constructed. In figure 4.12 we can see all the possible combi-
nations, obtained by performing the cartesian product on the sets of matching
elements shown in figure 4.11.

Let us take the combination "c4" from figure 4.12. We can see from this
combination that the keyword "brother" is matched with sub-graph while the
keyword "Actor" is matched with an edge and the keywords "Washington" and
"Dakota" are matched with nodes. We can deduce that the three different types of
matching elements are presented in this combination. In the DNH algorithm, all
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Figure 4.12: Matching Elements for each Keyword in the Query Q9
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the terminals are nodes, so in order to use the DNH in our context, an adaptation
is needed.

4.3.2.1 Adaptation for DNH

In DNH algorithm the terminals are a set of nodes, but in our context, the terminals
can be either nodes, edges, or sub-graphs. An adaptation is needed in order to
make the DNH algorithm fits our needs. We need to translate all the matching
elements of different types (nodes, edges and sub-graphs) into terminal nodes. Let
us consider a matching element m,; for a query keyword k;, this matching element
is translated into a node according to the following rules:

e Rulel: If m; is a node then the resulting node is m;

e Rule2: If m; is a edge then the edge and the 2 connected nodes are replaced
by a single node

e Rule3: If m; is a sub-graph then the sub-graph is replaced by one node

After applying the above translation rules we will end with the graph of figure
4.13. The sub-graph in figure 4.12 representing the keyword brother is replaced
by one node labeled brother according to rule3, and the edge "Actor" with its



4.3. AGGREGATION AS STEINER TREE PROBLEM 103

: _/American_ "\
Brother }#————director—— . Gangster
Starring [

director Washington, Starring

2 Amanda
Director _Aday

Starring

Starring

Dakota tarring
fanning

Starring Abstract
Brad Pitt g h Washington,
o

Figure 4.13: RDF graph of figure4.2 after executing the translation rules

corresponding nodes "Outbreak" and "Buce Iscacson" are replaces by one node
labeled "Actor" according to rule2.

Another adaptation of DNH algorithm is related to the selection of the most
relevant path. In DNH, while replacing the edges in minimum spanning tree with
the original paths from the graph, if two edges have the same path, one of them
is selected randomly. In our approach, we need to select one of the paths with
the same length according to some criteria to be defined. To this end, we have
introduced the notion of centrality degree weight of a path. Instead of selecting an
arbitrary path if there are several paths between a pair of terminals, we will select
according to the centrality degree weight. The centrality degree weight for a node
is defined as the number of both incoming and outgoing edges to this node.

Definition 13. Path Centrality Score
The centrality degree weight of a path is calculated as follows. Let p=[(v1, €1,
v9)(ve, €2, v3)....(Uy_1, €n_1, v,)] be the path connecting the two terminal nodes

E;Zl deg(v;
n

v1 to v,; the centrality degree weight of p C'(p) = ) is the average degree

of the nodes in the path.

We can also limit the computation of C'(p) to the top k nodes having the
highest centrality. This score allows us to know which path is more centralized
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in the graph. For example let us take the graph of figure 4.13, and take two
different paths with the same length as an example. There is the first path P1
that connects the node "Brother" with the node "once upon a time in Hollywood"
and highlighted in red; another path P2 is also connected the same nodes but it is
highlighted in green. Both paths P1 and P2 have the same length which is equals
to three. If we want to check which one is more important than the other then
the C(p) is calculated. In P1 there is 4 nodes, the degree of these nodes are 2,
4,2 and 5 then C(P1) = 13/4, while C'(P2) = 16/4. Then we can conclude that
P2 is more centralized than P1 in the graph of figure 4.13. The adapted distance
network heuristic is described by algorithm 6.

Algorithm 6 Finding steiner tree

1. procedure AGGREGATINGMATCHINGELEMENTS(G, C;) /*G is the RDF
graph and C; is one of the combinations™®/
2: DG « DistanceGraph(G) /*Compute the complete distance graph*/
3: MST <+ MinimumSpanningTree(DG) /*Compute the Minimum Span-
ning Tree*/
4: G’ < Replace(G, MST) /*replace each edge in M ST by a corresponding
minimum cost path in Gj if several paths are found, select the path having the
highest centrality degree weight*/
MST' < MinimumSpanningTree(G")
Fg < delete(MST') /*Delete all non-terminals of degree 1*/
return Fg
end procedure

4.3.2.2 Adaptation of Kruskal’s Algorithm

One of the steps of DNH algorithm is to build the minimum spanning tree. This
is done by using the Kruskal’s Algorithm that is defined in 4.3.1. This tree is
build by selecting the edges with the minimum weight in the graph. If we have
more than one edge with the same minimum weight then one of them is selected
arbitrarily. In our context, we need to select the edge based on its meaning. This
can be done by using another assessment method on the edges and select the most
relevant one. For example while building the minimum spanning tree of the graph
in figure 4.7, all the edges have a weight equals to four, then any edge will be
selected randomly. In order to solve this problem, we have adapted the Kruskal’s
algorithm that computed the minimum spanning tree. The adaptation consists
of using additional metric during the assessment of the path instead of just using
the length of the path. This allows us to create more meaningful sub-graphs that
connects the different matching elements.
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Algorithm 7 Adapted Kruskal’s algorithm
. A=¢
2: procedure KRUSKAL(G)

3: Make — set(V)

4: for each v € G.V do

5: Make-set(v)

6: end for

7: for each (u, v) in G.E ordered by weight(u, v) and CDW, increasing do
8: if FIND — SET(u) # FIND — SET(v) then
9: A=AU{(u,v)}

10: UNION(u, v)

11: end if

12: end for

13: return A

14: end procedure

Let p,x and pg; be the two edges in the distance graph that connect the nodes
n; with n; and ny, with n; respectively. The weight w(p,; ) is the weight of the
shortest path that connects the nodes n; with n;. If w(n;n;) and w(ny,n) are
equal, then instead of selecting arbitrarily one of them another method is used.
This method consists in calculating the centrality degree for each edge and to
select the relevant edge according to it. This centrality degree value is based on
the original path that the edge in distance graph represents and it is calculated
according to the formula in definition 13. The edges are first sorted according to w
and then if we have two or more edges having the same w, we sort them according
to centrality degree and select the relevant edge. The adapted Kruskal’s algorithm
is presented in algorithm 7.

4.3.2.3 Using Adapted DNH and Kruskal’s algorithm in Building the
final sub-graph Result

To build the final sub-graph result for the keyword query, all the combinations
are derived. For each combination we apply the adapted DNH and the adapted
Kruskal’s algorithms to create the sub-graph result. First all the matching elements
are translated into nodes according to the translation rules and the new graph G,
with the translated matching elements is created. The adapted DNH algorithm is
applied on Gy, by first extracting the distance graph DG from the new graph
Grew- To extract the minimum spanning tree M ST from the graph DG, the
adapted Kruskal’s algorithm is extracted. Each edge in M ST will be replaced
with the corresponding paths in the graph G,.,. In this phase, if there are more
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Algorithm 8 Finding results sub-graph

1. procedure BUILDINGRESULTS(G, hashmap(k;, S;))

2 C = Combinations(S;)

3: for each combination ¢; in C' do

4 Giran < ReplaceFromMatchingElements(G) /*Replace matching el-
ements with nodes by using translation rules*/

5: DG <« DistanceGraph(Giren) /*Compute the complete distance
graph*/

6: MST <+ MinimumSpanningTree(DG) /*Compute the Minimum
Spanning Tree*/

7: G’ « Replace(G, MST) /*replace each edge in M ST by a correspond-
ing minimum cost path in G} if several paths are found, select the path having
the highest centrality degree weight™*/

8: MST' < MinimumSpanningTree(G')

9: Rg « deleteNonTerminals(MST') /*Delete all non-terminals of de-
gree 1%/

10: Fg « ReplaceToMatchingElements /*Replace the nodes with the
corresponding matching elements */

11: ResultsSubGraphs = ResultsSubGraphs U Fg

12: end for
13: return ResultsSubGraphs
14: end procedure

than one path candidate to replace an edge in the minimum spanning tree, then
the path centrality score is used. After replacing all the edges in the minimum
spanning tree, G’ is created. In order to compute the tree, the minimum spanning
tree of G’ denoted M ST’ is extracted. All the non-terminal nodes that are of
degree equals to one are deleted to create the result to the keyword query. The
last step is to translate the nodes that represents the matching elements to their
original type to build the final result. The algorithm of creating the resulting
sub-graphs is presented in algorithm 8.

For example let us take the combination C in figure 4.12. The graph of figure
4.13 is the result of the graph in figure 4.2 after executing the translation rules
to translate the matching elements into nodes. The next step is to extract the
distance graph DG from this graph by using the shortest path between all the
matching elements. Let me; and me; be two matching elements, then w(me;,me;)
is the number of edges in the shortest path connecting me; and me;. For example
the shortest path between "brother" and "dakota" is equal to two and the shortest
path between "Brother" and "Washington" is equal to four. Figure 4.14 shows the
distance graph induced by Cj.
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CD

4]

Figure 4.14: Distance graph constructed from the graph of figure 4 and C); com-
bination

We compute the minimum spanning tree from the distance graph by using the
modified Kruskal’s algorithm presented in Algorithm 7.

Brother

Washington @ Washington
2
3
Dakota Dakota Actor

Figure 4.15: Building the Minimum Spanning Tree on the Distance Graph of figure
4.14
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Figure 4.15-d shows the Minimum spanning tree constructed using the adapted
Kruskal’s algorithm. The steps are shown in figure 4.15. After selecting the first
edge which connects "Brother" with "Dakota" in figure 4.15-b, we select the edge
with the minimal weight. But as we can see in figure 4.14, there are four edges all
having the same weight which is equal to three. We then compute the centrality
degree for these edges; the results are shown in the table below.

We select the edge with the highest centrality degree as shown in figure 4.15-¢
and then select the edge connecting "Washington" and "Actor" as presented in
figure 4.15-d. If the number of edges equals |V|-1, then we can deduce that this is
the minimum spanning tree for the distance graph in figure 4.14.
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path Cp)
Washington-Actor | 3
Brother-Actor 4.66
Dakota-Actor 5

Table 4.1: The Centrality Degree for the Edges in the Distance Graph of figure4.14

4.3.3 Building the Answer Sub-graph

The result we obtain from the DNH algorithm is an undirected tree with edges
labeled with weight and nodes labeled with the query keywords. The next step
consists of replacing the edges with the corresponding paths from the graph G.
We have done adaptations to replace the matching elements with nodes before
executing the DNH. This means that some of the nodes in the result of DNH
are not actual nodes so we need to rewrite the resulting graph by replacing these
nodes with the corresponding matching elements. For example the node "Brother"
will be replaced by the sub-graph which represents that "Tony Scott" and "Ri-
dley Scott" and brothers. After replacing all the matching elements, we will get

the graph of figure 4.16a.
= rancis_Perc .

son

son
Iscacson Buce

Iscacson

2
Actor Starring
Dakota_ Actor
fanning 3
Outbreak Dakota_ 3
fanning
3 3
In Washington, In Washington,
D.C... D.C...

(a) Replace nodes in MST with Matching(h) Replace Edges in MST with Exact Paths
Elements from the Initial Graph

Figure 4.16: Replacing the Nodes and the Edges in the MST
To create the final resulting sub-graph we need to replace the edges that are

connecting the matching elements in the graph of figure 4.16a with the corre-
sponding paths. For example the edge connecting the two nodes "Tony Scott"
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and "Dakota fanning" will be replaced by the path colored in red in the figure
4.16b. After replacing the nodes and the edges in the minimum spanning tree by
the matching elements and the paths in G. We obtain the sub-graph of figure 4.17

as a final solution.
rancis_Perc .
“scott son{ Ridley_Scott

‘dlre ctor,

Starrmg

fanning

Abstract

n Washington,
D.C...

Figure 4.17: Solution for the Keyword Query Q9 after using the combination C4
from the list of combination in the figure 4.12

4.4 Ranking the Results

For each keyword query, we might have more than one candidate matching element.
In order to take all the candidates into account while creating the sub-graph result,
the cartesian product is used to provide the set of combinations. The elicitation
of all the combinations of graph elements and the aggregation of graph elements
for each combination lead to several sub-graphs, each one representing a possible
answer for the query. For example, let us take the combination C5 from the set of
combinations for the keyword query Q9 that are presented in figure 4.12 and build
the sub-graph result. We will end with the graph of figure 4.18 as a solution.

We can observe that the graph of figure 4.17 is different from the graph of figure
4.18 this difference raises a question about the relevance of the different sub-graph
results and if there is a way to rank them. The problem consists in ranking these
sub-graph results and determining if there are better results than others. Let
K={k1, ka,.. ,k,} be a keyword query and let ¢; and ¢; be two combinations for
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rancis_Perc
Rldle}.lr Scott

Denzel
Washmgtorl pe

UI

S outi'| Dakota
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director type Director
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Iscacson
Actor

Figure 4.18: Second possible Solution for the Keyword Query Q9 after using the
combination C2 from the list of combination in the figure 4.12

the matching elements of K. Suppose we have two sub-graph G} and G, created by
applying the aggregation process described above on both ¢; and ¢y respectively.
We need to define a function rank(G) that takes a sub-graph as input and returns
a score between 0 and 1 as an output, this score represents the ranking of the sub-
graph result G. In our approach, we have ranked the results according to three
different strategies, the first one is by using the type of matching element in the
Result extracted during the matching process. The second one is based on using
of the Proportion of the Nodes Corresponding to Matching Elements in the Result
according to the total number of nodes and edges in the resulting sub-graph. The
third one is an aggregation method for the previous two strategies. The three
different types of ranking are expressed in the next part.

4.4.1 Using the Type of Matching Element in the Result

According to the matching process, the matching elements can be classified into
two types the matching elements retrieved by using one of the equivalent rela-
tions and are denoted by "equivalent matching elements" and the ones that are
retrieved by using one of the closed relations between the query keyword and the
RDF graph elements and are denoted by "approximate matching elements". The
matching elements in the resulting sub-graph can be equivalent matching element
or approximate matching element.

Our ranking strategy is based on considering the type of matching elements, we
consider that a answer with more equivalent matching elements should have higher
rank than an answer with a lower number of equivalent elements. The answer that
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contains only equivalent matching elements reflects that we have found exactly
what we are looking for. Unlike the answer with approximate matching elements,
it reflects that we did not find the elements we are interested in but instead of not
providing an answer, we have provided an approximation of it. Therefore in the
final result we prefer to have an equivalent matching elements. We can conclude
that the more approximate matching elements we have in the answer, the lower
the quality of the answer. For example let us take the graph of figure 4.19 as an
example, and let Q10={"director", "Starring", "Release-date"} be the keyword

query.
director

starring

[Robert De Ni

starring performing

release datilm-make

Figure 4.19: An RDF graph describing movies

In figure 4.20 there are two possible sub-graph results. As we can observe
from the figure, the two graphs have the same number of nodes and edges but the
difference is in the types of the matching elements. In figure 4.20a all the matching
elements are of type exact matching while the graph of figure 4.20b consists of one
exact matching element and two approximate matching elements.

Let G be a resulting sub-graph, the formula of ranking G according to this
strategy is as follows:

Score(G) =1 - £

where C is the number of approximate matching elements and N is the total

number of nodes and edges in the graph G.

directorrelea.se dalE—@
starring performing
release date ilm-maker-»{ichael Ma
Al Pacino
b
(a) (b)

Figure 4.20: Two possible answers for the query Q10
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4.4.2 Using the Proportion of the Nodes Corresponding to
Matching Elements in the Result

Considering the type of matching elements in the resulting sub-graph is one way of
ranking the solution. Another way could be considered is the proportion of nodes
and edges that have been introduced to link the matching elements and denoted
as linking elements. For example, in figure 4.21 there are two possible solutions for
the query Q10. As we can observe from the two graphs, both have three equivalent
matching elements, while the difference is in the number of linking elements used
to connect the matching elements and create the final sub-graph result. The graph
of figure 4.21a contains less linking elements (4 linking elements) than the graph
of figure 4.21b (6 linking elements).

Let G be a resulting sub-graph, the formula of ringing G according to this
strategy is as follows:

Score(G) = 1— £

where L is the number of Linking elements and N is the total number of nodes

and edges in the graph G.

@ director: Righteous kill
dire:tor Righteous Lill release date 2008 .
starring

starring
performing
release dal
(a)
(b)

Figure 4.21: Two Possible sub-graph Results for the Query Q10

4.4.3 Aggregating Different Rankings

In the previous two sections we have seen two different strategies of ranking the
RDF graph results. In this section we will present an aggregation method that
aggregates both strategies. A ranking method that we will propose should reflects
that the graphs in figure 4.20a is more important than the graphs of figures 4.20b
and 4.21b.

We need to present a ranking method expressing that the less linking elements
in a sub-graph, the better the solution. Also this formula should Express that the
more equivalent matching elements in a sub-graph, the better the solution. We
calculate the ranking score as follows:
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[wxC+(1—w)*L]
N

where C is the number of close matching elements, L is the number of linking
elements, N is the total number of nodes and edges in the sub-graph and 0 < w <1
is the weight for C.

In this formula, both the approximate and the linking elements are presented
by C and L, then both of them affects the ranking. The weight w is used to
express the importance of one criteria on another. If the user considers that having
approximate elements in the final result is better than having linked elements,
then he will increase the w to be closed to zero. If this weight is closed to one
this expresses that the approximate elements are much more important than the
linking element. If we have a sub-graph result and all its matching elements are
exact matching and there is no linking elements in it, then its score will be equals
to one according to the formula.

Score = 1 —

Let us take the graphs of figures 4.18 and 4.17 as examples. Both of these
sub-graphs are results for the keyword query Q9. Suppose that w is equal to 0.5,
then the ranking score for the graph of figure 4.17 is equal to 0.69 since there are
13 linking elements and 21 is the total number of nodes and edges while the score
of the graph is figure 4.18 is equal to 0.73 since the number of linking elements is
equal to 9 and the total number of elements equals to 17.

4.5 Experimental Evaluation

This section describes our experiments to validate the performances of our ap-
proach. Our goal is to observe the performance of using an adapted DNH algorithm
during the building of the subgraph result.

4.5.1 Prototype Environment

Our approach is implemented in Java, we have used the Jena API for the manipu-
lation of RDF data. For indexing and searching the keyword query, we have used
the Lucene API. The Jung API is used for graph manipulation and visualization.

In the rest of this section, we describe our experiments to validate the perfor-
mances of our approach. Our goal is to study the impact of using an adapted DNH
algorithm in building the final sub-graph results, as well as to evaluate the ranking
model with various keyword queries. All the experiments have been performed on
Intel Core i7 with 32GB RAM.
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4.5.2 Datasets

We have used two datasets: AIFB and DBpedia. AIFB contains 8281 entities and
29 233 triples. The subset of DBpedia we have used is related to movies, their
title, stares, director, released data and other properties. This dataset contains 30
793 triples. The size of the keyword queries was between 3 and 7 keywords. The
total number of queries was 30 queries (15 for each dataset).

We have tested and compared our keyword search approach both with and
without the use of the adapted distance network heuristic algorithm to solve the
Steiner tree problem. We have compared our approach (referred to as ST) to an
approach consisting of picking a random matching element and computing the
shortest path between this element and all the other ones in a combination. We
refer to this approach as the basic approach.

4.5.3 Results

In this section, we need to present three different experiments that have been
performed. The first experiment is to check the average execution time of our
approach with respect to the number of keywords in the query. The second ex-
periment is to check the number of results sub-graphs before and after using the
adapted distance network heuristic algorithm. The last experiment is to check the
effectiveness of our approach by calculating the precision at K and comparing it
with the basic approach.

Average Execution Time

55 W DBpedia
50 44.9 W AIFB
45
40
35
30
25
20
15
10
5
(O]

Time (s)

Number of Keywords in the Query

Figure 4.22: Average Execution Time According to the Size of the Query

Figure 4.22 shows the execution time with respect to the size of the query.
The graph shows that the execution time increases when the number of keywords
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increases for both datasets. We can also see that the execution time for AIFB is
greater than the execution time of DBpedia because the size of data in AIFB is
greater than the size of the dataset extracted from DBpedia.

query QLI Q21 Q3| Q4| Q5 Q6| Q7| Q8] Q9| Q10

Ne of results
(ST approach) 5 |17 |7 |5 |32 (48 |4 |10 |2 |9
Ne of results

(basic approach)

7T 13219 5 |53 |62 |6 17 | 3 11

Table 4.2: Number of Results for each Keyword Query(DBpedia)

As we can observe from table 4.2, the number of results decreases when the
adapted distance network heuristic algorithm is used during the aggregation pro-
cess because using this method decreases the number of inaccurate results as shown
in table 4.2.

To check the effectiveness of our approach, we have used 10 queries from table 2
and asked five users to check the top-k results for each query and give the number
of relevant results. We have computed the precision at k as follows:

NumberO f Relevant Results
K

POK = (4.1)

According to table 4.3, we can see that PQK varies between 0.98 and 0.94 for
our approach. These results are better than the ones obtained using the basic
approach, where PQK varies between 0.89 and 0.87. We can deduce that the
results achieved with our approach were more accurate according to the users.

Data AIFB
K 5 10
Top-K ST approach | 0.98 | 0.94
Top-K basic approach | 0.89 | 0.87

Table 4.3: Top-K Precision

4.6 Conclusion

In this chapter, we have provided an approach of the aggregating method for
the matching elements returns by the matching elements process in the keyword
query approach. The goal of this chapter was to characterize the semantic of the
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different paths during the aggregation process. This process consists in first using
the cartesian product to extract all the possible combinations for the matching
element. Then for each combination, we need to create a sub-graph connecting all
the elements in this combination, we stated our problem as a Steiner tree problem.
We have adapted the distance network heuristic algorithm, which is a well known
algorithm used to solve the Steiner tree problem. Our adaptation was to introduce
a score for calculating the average degree in the path, and this score reflects the
importance of the paths during the construction of the sub-graph result. We have
also presented three different methods of ranking in order to assess the final results.
These methods are based on two different criteria, the first one is the number of the
linking elements and the total number of nodes and edges is the final result. The
second criteria that affects the ranking score is the type of the matching elements;
if the matching elements are extracted by equivalent relations of closed relations.

In future works, we will study the scalability issue and enable efficient keyword
search for massive datasets. We will also study the importance of the path that
connects two matching elements not only by using the centrality but also by using
the semantics that is reflected by this path. This can be achieved by using the
schema or by using some external knowledge to express the most meaningful re-
lation that should be between two concepts. In the next chapter, we will present
another summarization graph techniques that be also used as support to explore
RDF graphs..
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5.1 Introduction

Summarization is a technique that consists in providing a short, clear and brief
description of the main facts or ideas of something. The purpose of the summary
is to give the reader or the user condensed and objective points of the main idea of
a text. The summary is used in a variety of situations. For example, the abstract

117
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of this thesis is a type of summary to provide the reader with the main idea of this
thesis and the main contribution.

Summarization can be used in RDF data to support the user in querying, ex-
ploring and understanding what this dataset describes. RDF graph summarization
has been the topic of several research works [18]. The goal of the proposed ap-
proaches is to provide the user with a concise representation that captures the
semantics of a graph to ease its exploitation.

According to the related works described in chapter 2, the summarization of
an RDF graph can be classified into 3 distinct categories. The first category of
approaches summarize the RDF graph based on the structure of the graph as in
[68, 84, 81| that use different methods to assess the importance of the nodes in the
graph by calculating their centrality and build the summary based on the top-k
most central nodes. Others like in the approaches presented in [47, 36] provide the
summarization by considering the typed elements as the most important elements
in the graph and all the typed elements and their classes should be presented in the
summary. Focusing on the typed elements will lead to having a summary missing
important elements that are untyped.

The second category of approaches summarize the RDF graph based on sta-
tistical information collected from the graph itself as in [49, 61]. This information
can be the number of occurrences for a class with a set of properties or the number
of times a property appears in the graph. The summarized graph will be based
on the most important nodes and/or edges based on the information collected.
The summarized graph in this category will contain the statistical information in
addition to the important elements. In this category, the approaches take into
account the importance of the elements according to statistical information, but
selecting the most relevant elements can lead to the fact that some parts of the
graph will be over-represented.

The third category of approaches consists of semantic-based summary where
the summary is based on the semantics of the information described by the graph
as in [14, 71]. The RDF graph can describe more than one topic, for example, the
graph of figure 5.2 describes three different subjects, the first one is determined by a
red circle and describes the monuments in France. The second topic is determined
by a blue circle and presents information about the university, professors, and
courses. The last topic about the publications and the articles is presented in the
green circle. We refer to each topic by a theme, the summarized graph in three
category is based on the themes extracted from the RDF graph. The extracted
themes can provide the users with a summary of what the graph describes. This
way of summarization might need a huge number of elements to describe the
different themes in the graph.

If we consider all these categories we can see that they are based on either the
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type of the node or on the topology of the graph. Some of them provide a summary
without taking into account all the underlying topics in the RDF graph, and others
build the summary based on the typed nodes. In our view, there is another way
of considering the summarization problem. It is to consider the underlying topics
of the graph and to guide the summary based on these topics.

The main goal we target in this chapter is to provide an approach that not
only describes all the underlying themes in an RDF graph but also to provide
a summarization graph taking into account all these themes. This raises several
issues, the first one is to identify the different themes in the graph. As they are
not specified explicitly in the graph, we need to find a technique to retrieve them.
After identifying the themes, what are the relevant nodes to be selected from it?
These nodes will be part of the theme summary. The problem consists in finding
an assessment tool to assess the elements of the theme. The last problem, consists
in creating the final summary for whole dataset from a given set of summary for
each theme. The problem is how can we aggregate the individual theme summaries
to create the final summarized graph.

In this chapter, we present a theme based summarization approach, which
extracts a meaningful summary from an RDF graph. This summary takes into
consideration all the underlying themes in the RDF graph by extracting them
before creating the summary. Each theme will be summarized based on set of
relevant metrics that are capable of identifying the most important nodes in a
theme. The final graph summary is created by aggregating all the summarized
themes.

The rest of this chapter is organized as follows. A problem statement is given
in section 5.3. An overview of the approach is provided in section 5.4. We present
theme identification in Section 5.5. Section 5.6 presents the process of summariz-
ing the extracted themes. The generation of the graph summary is presented in
section 5.7. Section 5.8 presents our experiments. Finally, we conclude the chapter
in Section 5.9.

5.2 Motivating Example

Consider the example of an RDF graph given in figure 5.1, which describes profes-
sors, their courses, their publications, the students they advise and the monuments
of Paris. Assume that the summarization algorithm consists in selecting the top-k
most central nodes, considering that the centrality of a node is equal to its degree.
For k=4, the nodes "pl1", "c2", "s1" and "s2" are the most central nodes as their
degree is 5, 5, 4 and 4 respectively.

Assume that the summary is built by finding the shortest paths between the
relevant elements. Figure 5.2 shows an example of graph summary considering the
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Figure 5.1: Example of RDF graph with set of themes

set of relevant nodes {"pl", "c2", "s1" , "s2"}

We can notice that the graph summary in figure 5.2 contains information about
professors, students and courses only. Information about the publications and the
monuments of Paris are missing. If we consider that there are three underlying
themes in the initial graph, one describing publications, the second describing pro-
fessors, their courses and their students, and the last one describing the monuments
of Paris, we can see that only one theme is represented in the resulting summary,
since the summarized graph is giving information about professors, students and

courses.
advises—ﬁk
type
takes type
type Grudend

takes
é/ Pe

Figure 5.2: Graph summary for the graph in figure5.1
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An alternative way of building this summary would be to ensure that each
theme, represented by a circle in figure 5.1, is present in the result. For example,
the graph of figure 5.3 presents a summary for the graph in figure 5.1 by taking
into account the three themes in the graph of figure 5.1. In this summarized graph,
we can find information about professors, courses, publications, and monuments,
unlike the summarization in figure 5.2 that presents information about professors,
courses and students only.

! type
type Chateau de
i Versailles
@ location

1 ti
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member of . 3
write write

@ advises

Ltype takes

Figure 5.3: A Theme-Based Summary for the graph in figure 5.1

To create the summarized graph of figure 5.3, the three different themes in the
graph of figure 5.2 should be identified, and this is the first challenge. The second
challenge consists in building the theme summary based on identifying the most
important nodes in each theme. After building the summary for the three different
themes, we need to aggregate them and create the graph in figure 5.3 and this is
the last challenge. In the next section we will present all these challenges we are
facing during the building of the RDF summary.

5.3 Problem Statement

Each RDF graph can be related to more than one theme. By theme, we mean a
set of elements that belongs to the same domain and describes the same topic. A
theme in the RDF graph is a sub-graph containing resources and properties which
are semantically related to a specific topic.

Let G(V,E) be an RDF graph, we need to build a summary Sg for it such
that: (i) all the themes in the graph G are represented in Sg,
(ii) each theme is represented proportionally to its size, and
(iii) the number of other nodes is minimal.
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The size of the theme is calculated by computing the number of nodes in this
theme, size(t;) = number of nodes in the theme t;. For example, the size of the
theme in the blue circle of figure 5.1 is equal to 12.

From the definition of the graph summary, we can deduce that building this
summary raises four main challenges. The first one is extracting the set of all the
themes that are presented in the RDF data graph denoted by T = {t;, ts, 3, ..., t,, }
where ¢;(V;, E;) is a sub-graph of G and V; C V| E; C E and V; and E; related to
the same topic. As we have discussed in the motivating example that identifying
the relevant elements will not create a clear summary describing all the topics in
the graph, then we need another way to build the graph by representing all the
underlying themes of a given graph in constructing its summary. It is not obvious
to identify the themes in an RDF graph, the problem is how we can extract the
different themes. For example, what is the best way to determine and extract the
three different themes described by the graph of figure 5.1.

To create Si we should start from the set of themes 7', and build the sum-
marized theme S, for each theme t; and this is the second problem. Building
the summarized theme consists in identifying the relevant elements and aggregate
them. Identifying the relevant elements is not an easy task, we need to define a set
of metrics that are capable to assess all the nodes in the theme based on a relevance
score and quantify the important ones. For example, in the graph of figure 5.1,
what are the most important nodes and how can we assess them? After selecting
the relevant elements, we will face the third challenge, which is aggregating the
relevant nodes corresponding to one theme and build the summarized graph for
the theme ¢;. For example, from the graph of figure 5.1 if we select the nodes "c2",
"p1", "pub2" and "Eiffel Tower" the most important nodes, what is the best way
to be used in order to connect these nodes and build the summarized graph.

To build the final summarized graph, all the summarized themes should be
connected, and this is the last challenge. The problem here is to find the best
paths that connect the different summarized themes and not introduce new nodes
to the final summarized graph.

In this chapter, we have provided an approach to theme-based summarization.
An overview of this approach and the way of building the summary is presented
in the next section.

5.4 Overview of the Approach

Our approach summarizes an RDF graph based on the different topic in this graph.
This is done by identifying the different themes described in the graph. There is
a bunch of similar work that identifies the different themes in a graph and it is a
well known problem in RDF graphs. Once the themes are identified, we need to
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build a summary for each one of them. Finally we need to build a global summary
by aggregating the summarized themes. Our framework, presented in figure 5.4,
comprises three main components: theme identification, theme summarization and
building the final summary.

Theme o Theme Building the > 7
Identification “| Ssummarization Final Summary

A 4

Summarized RDF
RDF Graph graph

Figure 5.4: Thematic-Based Summarization Framework

The first component in our framework is the Theme identification. It is used to
solve the challenge of extracting the underlying themes in the input RDF graph.
To this end, we have used an approach proposed in [64], which identifies the dif-
ferent topics in the graph. The main idea of this approach is to identify highly
connected areas in the graph, each of these areas representing a theme. The algo-
rithm used in the approach is MCODE [4], a density-based algorithm producing
possibly overlapping clusters. Each of the clusters represents a theme. This work
is suitable to our context, but we would use any other approach such as the one
presented in [14].

The second component, Theme summarization, was used to solve the challenge
of building the summarized graph for a theme. To this end we have defined assess-
ment tools to quantify the most relevant elements in the graph. In our approach
we want to make the difference between schema-level nodes (classes) and instance-
level nodes (untyped entities). Since the instance is just an individual element in
the graph, while the class represents a set of entities, so we need to distinguish
between the two types of elements during the identification of the relevant nodes.
This component also solved the problem of connecting the relevant elements and
built the theme summary. This summary is built by connecting the set of most
relevant nodes in the theme while minimizing the number of non-relevant nodes.

Finally, the third component of our framework was used to solve the challenge
of building the global summary from the theme summaries. once we have a sum-
mary for each theme, we need to aggregate them and build the global summary.
For each theme summary, the most central node is selected, and all of them are
connected to build the final graph summary. This problem can be formulated as a
Steiner tree problem [28] similar to what we have presented in chapter 4. During
this process, we ensure that all the themes are represented in the summary pro-
portionally to their size. In the following sections, we will describe each of these
three components.
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5.5 Theme Identification in an RDF Graph

The proposed approach is to build a theme-based summary, then we need first
to extract the different underlying themes in the RDF graph. Some approaches
have been proposed in order to identify the underlying themes in an RDF data
graph such as the approach presented in [26]. The purpose of theme identification
is to group graph elements such that each group consists of semantically related
elements representing a given topic.

A theme is represented in the graph by a dense area, where nodes are highly
connected. To identify these dense areas, we rely on the approach proposed in [64],
which proposes the use of a graph clustering algorithm to identify highly connected
areas in the graph. The intuition behind this approach is that the more connected
a set of nodes in the graph, the more likely they are related to the same theme.
Graph clusters are generated using the MCODE graph clustering algorithm [4].
This algorithm exploits graph density to build the clusters and does not require
the number of clusters as a parameter. Each generated cluster corresponds to a
theme.

MCODE has initially been used in bioinformatics to identify molecular com-
plexes in large networks of interactions based on the extraction of dense regions
in the network. One of the features of MCODE is that it produces overlapping
themes, which could be interested in our context. Since a given node can be related
to several topics. MCODE is composed of three tasks, described in the remainder
of this section, computing vertex weights, building clusters and post-processing.

In the first task which is computing vertex weights, we need to calculate a
weight for all the nodes in the graph. The computation of the weights relies on
the notion of k-core.

Definition 14. k-core A k-core of a graph G is a maximal connected sub-graph
of G in which all vertices have a degree of at least k.

The weight of the node v is computed from the density of the largest k-core
formed by this node and its directly connected neighbours. The weight of the node
tends to be high in the highly connected areas in the graph. The weight of all the
nodes is calculated according to the algorithm 9.

After calculating the weight for all the nodes, we will end with weighted graph.
The goal of building clusters is to build a clustered graph based on the weighted
graph we have created. The algorithm requires a parameter ¢ ranging from 0 to 1,
which expresses the level of connectivity: the higher the number, the higher the
clusters density. To generate the clusters, the algorithm initiates a cluster with
the node v; with the highest weight, called a seed node. For each adjacent node v;
such that the difference between the weights of v; and v; is less than the threshold
t, v; is assigned to the same cluster as v;. Each time a node is included in a cluster,
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Algorithm 9 MCODE-Vertex-Weighting

procedure MCODE-VERTEX-WEIGHTING (graph G)
W =10
for v € G do
N < find neighbors of v to depth 1
K < Get highest k — core graph from N
k< Get highest k — core number from N
d < Get density of K

w(v) <k = d
W« WU (v, w(v))
end for

end procedure

all its neighbours are processed in the same way to see if they should be included
in the current cluster. Once no more nodes can be added to the current cluster,
the process is performed again by initiating a new cluster considering the next
seed node, i.e. the node having the highest weight that has not been assigned to
a cluster.

Finally, the post-processing identifies the nodes that could be members of differ-
ent clusters, thus producing a set of overlapping clusters. The algorithm considers
all the clusters, and for each node v, if the sub-graph formed by v and its adjacent
nodes is highly connected, then all the adjacent nodes are added to the current
cluster.

We will rely on the themes identified in the graph for our summarization ap-
proach. In the next section we will present the different metrics we have proposed
to assess the important nodes in each theme as well as the technique to build the
summarized theme.

5.6 Theme Summarization

In this section, we will present the concepts and algorithms of our summarization
approach. Consider the sub-graph G; representing a theme ¢; in the RDF data
graph G. Summarizing G; consists in building a graph Sg, such that: (i) Sg,
contains the top-k most relevant nodes of G;, and (ii) the number of other nodes
is minimal. This requires the computation of a relevance score for each node in
G;.

In section 5.6.1, we describe the proposed node relevance metrics. In section
5.6.2, we present our algorithm to identify the most relevant nodes in the graph G;.
Finally, in section 5.6.3, we describe our theme summarization algorithm which
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builds the summary Sg; from the relevant nodes.

5.6.1 Evaluating Node Relevance in an RDF Graph

An RDF graph comprises schema-related information, such as classes or type def-
initions, and instance-related information, such as entities and literals. In the
example given in figure 5.5, "Movie" is a type, "G" is an entity which type is
"Generation", and "2012" is a literal representing the value of the property "re-
leaseDate". From this example we can see that the instance nodes describe one
single entity, while the class can represent the class it self and its entities, so they
can not be assessed in the same way. In our context, we propose two different level
of metrics, the first one is on the schema-level nodes and it is specific for classes
and typed nodes. The second one is on the instance-level nodes such as entities
and untyped nodes. In this way, we can assess the different graph nodes accord-
ing to their importance and what they represent. This technique also preserves
that both the schema-level nodes and the instance-level nodes are presented in the
summary.

Let G; = (V, E) be the graph representing the theme t; in a data graph G,
where V is the set of vertices and E the set of edges. A common way of assessing
the relevance of a node in a graph is node centrality, which is calculated as the
degree of this node.

In our work, we have proposed a new method to calculate the centrality score of
a class. This score is based on the class itself and the entities that are belonging to
this class. For example, the class "Sci-Fi Movie" in the graph of figure 5.5 has two
instances with degree one while the class "Comedy Movie" has one instance but this
instance is connected to more other elements in the graph, then we can consider
that this class is more central than the class "Sci-Fi Movie". The centrality is
evaluated as the weighted average between the degree of the node representing
this class and the average degree of the nodes representing the entities belonging
to this class. Since the edges with label "type" are the common edges that connect
the classes with their instances, then they should be considered once during the
calculation of the centrality. For this reason, we are not considering them at the
level of the classes.

Definition 15. Class Centrality. Consider the class C; in the RDF graph G, and
its set of entities F;. The centrality score of C} is:

ZEieEi degree(e;)
| Ei]

CS(C;) = w—+ D(C;) x (1 —w)

where D(C}) is the degree of the node corresponding to C; in the graph G excluding
all the edges labelled "type", and w a value ranging from 0 to 1.
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The average degree of the entities of a class is calculated in order to reflect the
importance of this class in the graph. If the score of the classes was calculated
according to the degree of the class only, then the node "Sci-Fi Movie" which
has a degree of three in the graph of figure 5.5 would be more relevant than the
node "Comedy Movie" which has a degree of two. But we can see that the node
"Comedy Movie" has an instance with a degree of four while the two instances of
the class "Sci-Fi Movie" have a degree of two; this means that according to their
instances, the class "Comedy Movie" has more links with the other nodes of the
graph than the class "Sci-Fi".

When computing the centrality score of a class, the weight w expresses the
level of confidence in the schema compared to the instances: a high value will give
more weight to the average degree of the entities, which could represent the fact
that the description of the classes in the graph is incomplete; a low value will give
more weight to the class degree, which could express the fact that the description
of the class is complete and accurate.
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Figure 5.5: Example of an RDF Graph Describing Movies
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The set of classes in the graph of figure 5.5 is C —{Horror Movie, Comedy
Movie, Action Movie,Sci-Fi Movie, Generation and place}. A centrality score will
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be calculated for each of these classes. For the "Horror Movie" class, the set of
entities is F; = {M1, M2, M3, M8}. The degree of each of these nodes is 2, 2, 5
and 5 respectively. Therefore, the average degree of the entities in the class "Horror
Movie" is 2.75. The degree of the class "Horror Movie" is computed considering
all the edges except those labelled with the "type" property and this degree is
equal 1. If we assume that w is equal to 0.7, then: CS(”HorrorMovie”) =
5007 +1x 0.3 = 2.75.

Centrality is not the only score that reflects the relevance of a class. Indeed,
a class could have a low centrality score but a high number of instances. For
example, the centrality score of the "Generation" class is equal to 0.46, which is
one of the lowest in the example. However, this class has the highest number of
instances. To this end we have defined the representativity of a class as follows.

Definition 16. Class Representativity. The representativity of a class C; in a
graph G is the number of entities of this class, i.e., the number of nodes connected
to C; by an edge labelled with the "type" property.

During the selection of the most relevant classes, we also take into account the
centrality as well as the representativity score.

Besides the nodes corresponding to classes, some nodes in the graph may cor-
respond to entities for which no type declaration has been given. The centrality
of these nodes is defined hereafter.

Definition 17. Untyped Entity Centrality. The centrality of an untyped entity
in a graph G is the degree of the node corresponding to the entity in G, i.e., the
number of edges incoming and outgoing edges connected to this node.

During the selection of the relevance and the computation of the importance
score, we do not take into account the typed nodes since they are included in the
calculation of the centrality of the class.

Unlike the existing approaches, we have defined three different metrics that
take into account the importance of the typed and untyped nodes in the graph
and use two different ways to assess the importance of the node.

5.6.2 Identifying the Relevant Nodes

Consider the RDF graph G and the set of underlying themes T={t1, ¢, t3, ..., t,,},
and assume we want to build a summary for G by identifying the top-k most
relevant nodes. One of our requirements is to maximize the number of themes
present in the summary, and to ensure that the themes are represented according
to their respective size in G. All the themes have different sizes, we want to identify
the different number of relevant nodes that have to be extracted from each one of
them. To this end, we defined a formula presented below.



5.6. THEME SUMMARIZATION 129

Definition 18. The number k; of relevant nodes for each theme ¢; in T is deter-
mined proportionally to its size in G as follows: k; = % x k, where |t;| is the

number of nodes in the theme t; and |G| is the total number of nodes in the graph
G.

The number of relevant nodes of the theme ¢; is the sum of both the number
of relevant classes and the number of relevant untyped entities that should be
included in the summary. Hence we need to calculate these numbers. This is done
so as to reflect the proportion of classes and untyped entities in ¢;.

Definition 19. Let p; be the proportion of classes and their entities in ¢;.
e The number of classes in the summary of ¢; is defined as follows: nc; = p; x k;.

e The number of untyped entities in the summary of ¢; is defined as follows:

The relevance of an untyped entity is evaluated using the centrality metric
defined in the previous section. The selection process will extract the top-ne; most
relevant untyped entities. The relevance of a class can be considered according to
two facets, its centrality or its representativity. In the graph of figure 5.5 the top-3
most central classes are "Comedy Movie", "Action Movie" and "Horror Movie",
while the top-3 most representative ones are "Horror Movie", "Action Movie" and
"Generation". In our approach, we take into consideration both facets. It is up
to the user to determine if he wants to give more importance to the connection
between the classes and the other nodes in the graph or to give more weight to
the number of instances represented by the class. To this end, a weight w specifies
the importance of centrality with respect to representativity is defined. According
to w, we calculate two different number, the first one is the number of relevant
classes according to centrality metric and the second one is the number of relevant
classes according to representativity metric.

Definition 20. If nc¢; classes are to be selected, and w,, is a weight between zero
and one then ncc = w,, X nc; is the number of classes having the highest centrality
to be selected from the theme and ncr = (1 — w,,) X ne; is the number of classes
having the highest representativity to be selected.

After defining the metrics used to assess the importance of the different ele-
ments in the theme and presenting the way of calculating the number of k relevant
classes and untyped nodes, the principle of our approach by describing the identi-
fication of the relevant nodes in a given theme is presented. After identifying the
themes, we summarize them by calculating the importance of the nodes according
to our definition of the centrality and representative for the classes and the central-
ity for the untyped nodes. Our summarization process is divided into tasks; the
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first one is on the schema information level (classes and their instances). This stage
task consists in calculating the classes’ importance based on the class’s representa-
tive and centrality and then selecting the most important classes according to the
calculated scores. The second task consists in calculating the importance for the
untyped nodes, and the most important nodes are selected to be in the summarized
graph. At the end, all the selected nodes from both stages are connected to have
the final summarized theme. By this approach, we ensure that the schema-related
information and the instance-related information are evaluated with appropriate
metrics and the schema-related information we consider both the properties of the
class and the instances of the class. Our summary reflects the representation of
both information in the theme.

Algorithm 10 describes our approach, it takes as an input the theme to be
summarized, the number of relevant nodes k;, the number of relevant classes nc;,
and the weight w,.,. that allows to specify if we want to give a higher weight to
the centrality or to representativity. First, for each class, we evaluate both the
representativity and the centrality and for each untyped nodes we evaluated the
the centrality. From the list of classes we create two different sorted sets, the
first one is sorted according to the centrality score and the second one according
to the representativity score (lines 3 and 4). The untyped nodes are also sorted
according to the centrality score (line 5). The number of relevant classes according
to centrality and representativity scores is calculated using the weight w,, (lines
6 and 7). Then the number of relevant nodes is deduced from k; and ne; (line
8). The most central and the most representative classes from the two sorted lists
of classes are selected (lines 9). After choosing the relevant classes, the relevant
untyped nodes are selected; this is done by choosing the most central untyped
nodes after sorting them according to their centrality (line 10). All the relevant
nodes for the theme ¢; are returned as an output.

5.6.3 Building a Theme Summary

In the previous section, we have our relevance metrics and define the different
components of the summary. After selecting the relevant nodes, the summarized
theme is built by connecting them. The problem consists of aggregating and
connecting the relevant nodes to have one sub-graph. The relevant nodes should
be connected in a way we can introduce them as minimal as possible to the non-
relevant elements.

In chapter 4 we have presented an approach to aggregate the relevant elements
in RDF graph during keyword search. The relevant elements could be of three
different types: a node, an edge and a sub-graph. In this section our goal is
to build a theme summary after selecting a set of relevant nodes. The problem is
similar, the only difference is that we consider here only nodes as relevant elements.
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Algorithm 10 Identifying Relevant Nodes

Input: Graph G;, set of classes C, set of untyped entities E, number of relevant
nodes k;, number of relevant classes nc; and weight w

Output: Set of relevant nodes R;

: procedure RELEVANT NODES(G;, C, E, k;, nc;, w)

R; = ¢ /*set of relevant nodes™/

CCS « sort(Classes) /*sort classes according to the centrality score*/

CRS <« sort(Classes) /*sort classes according to the representativity
score*/

ECS < sort(entities) /*sort untyped entities according to the centrality
score*/

[ = w xne; /*number of classes according to centrality™/

m = (1 —w)ne; /*number of classes according to representativity™®/

n = (k; — nc;) /*number of relevant untyped entities™® /

R; < top—1 classes of CCSUtop—m classes of CRS /*Identify relevant
classes™/
10: R; « R;Utop — n entities of ECS /*Identify relevant untyped entities*/
11: return R;
12: end procedure

= W e

i

We have proposed the same technique used to solve the aggregation problem
by stating it as a Steiner tree problem [28]. We have adapted the distance network
heuristic(DNH) [52], which has an approximation ratio equal to 2— 2 where p is the
total number of the terminal nodes. The weight of the path equals the length of
this path in the non-weighted graphs. Instead of having the length, we proposed a
score that reflects the importance of the nodes in this path. The intuition behind
this definition is to have as many central nodes as possible in the summarized
graph. The path containing the most central nodes will better reflect the RDF
graph. In this way, we can have most central paths in our summarized graph. For
example, if we have two different paths, P1 and P2 have the same length, which
equals 4. This means that there are 5 nodes in each path. Suppose that the nodes
in P1 having a higher degree than the nodes in path P2; this means that the nodes
in P1 are important and are connected to more elements in the RDF graph. This
score is called the centrality score and it is based on the degree of the nodes in the
path.

Definition 21. The centrality score of a path is calculated as follows. Let p=[(vy,

e1, v2)(ve, €g, v3)....(Un_1, €n_1, U, )| be the path connecting the two terminal nodes

fol deg(v;
n

v1 t0 vy; the centrality score of p C'S(p) = ) is the average degree of the

nodes in the path.
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Building the Steiner tree by using DNH consists first of computing the distance
graph DG; from G; by using the shortest path between all the relevant nodes.
Let ¢ and j be two relevant nodes, n;; the number of edges in the shortest path
connecting ¢ and j. The computation of DG; will be based on n;;. The next step
is to compute the minimum spanning tree starting from DG,;. This is done by
using the Kruskal algorithm, this algorithm consists in creating a forest F (a set
of trees) where each node in the graph is a separate tree, and creating a set S
containing all the edges in the graph. The algorithm finds an edge with minimal
weight connecting any pair of trees in the forest without forming a cycle. If several
edges match these criteria, then one is chosen arbitrarily. The edge is added to the
spanning tree, and this step is repeated until there are [V|-1 edges in the spanning
tree (where [Vl]is the number of vertices).

We have also used the same adaptation of the Kruskal’s Algorithm we have
proposed in the chapter 4. The adaptation consists of using additional metrics
during the assessment of the path instead of just using the length of the path. In
our approach, if two edges have the same weight, we will then check the centrality
of these paths to decide which path will be selected. The path with the highest
centrality degree will be selected.

After creating the minimum spanning tree, we need to replace the edges with
the actual paths to create the summarized theme.

The adapted distance network heuristic is described by algorithm 11. The dis-
tance graph is first computed (line 2), then the minimum spanning tree is deduced
by using the distance graph (line 3). The edges in the minimum spanning tree will
be replaced by the actual paths from the theme (line 4). The final summarized
theme will be returned as an output to this algorithm (line 5).

Algorithm 11 Building Theme Summary

1. procedure BUILDINGTHEMESUMMARY (G;, R;)
2: DG; < DistanceGraph(G;) /*Compute the complete distance graph™*/
3: M ST, + MinimumSpanningTree(DG;) /*Compute the Minimum Span-

ning Tree*/

4: G < Replace(G;, MST;) /*replace each edge in M ST; by a corresponding
minimum cost path in G;; if several paths are found, select the path having
the highest centrality degree weight™*/

5: return G

6: end procedure

Assume that R={"Horror Movie", "Comedy Movie", "Generation", "A2"} is
the set of relevant nodes of the graph in figure 5.5. First we generate the distance
graph by connecting each node in R with all the other relevant nodes in R by
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an edge labelled with the shortest distance between them. For example, from the
graph of figure 5.5 we know that the shortest distance between the two nodes
"Horror Movie" and "Comedy Movie" is two, then in the distance graph we create
an edge connecting "Horror Movie" with "Comedy Movie" and labelled with two.
The distance graph is shown in figure 5.6a.
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Figure 5.6: From Distance Graph to summarized graph

From this distance graph we need to build the Steiner tree by using the adapted
Kruskal’s algorithm. Figure 5.6b shows the generated Steiner tree, each edge in this
graph need to be replaced by the corresponding path from the initial graph. For
example the edge connecting "Horror Movie" with "Comedy Movie" and labelled
by two should be replaced by the corresponding path from the graph of figure 5.5.
After replacing the edges in the Steiner tree with the paths from G, we obtain the
sub-graph of figure 5.7.
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Figure 5.7: Final Summarized Graph

After creating the summarized graph we can observe that the classes and their
instances are presented in the summary, for example in the graph of figure 5.7 the
class "Horror Movie" and its instance "M2" are presented and it is some kind of
redundancy. Our goal is to remove the instances and just keep the classes and the
untyped nodes.
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Suppose in a graph G we have class C; with three instances i;, 73 and i3, in the
new graph this class should be replace with one node labelled C. Assume there
exists an edge e between tow nodes n; and n;: If n; is of type C; and n; is of type
Cy then in the new graph we need to add an edge e between the nodes C; and
Cy. If n; is of type C} and n; is untyped node, then we need to add the edge e
connecting the node € with the node n; in the new generated graph.

The summarized graph after removing the typed instances is presented in figure
5.8. Finally, we enrich the resulting summary by adding some edges corresponding
to properties that describe the selected nodes, such as "label" and "name". For
example the edge labelled "name" has been added for the node "A2".
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Figure 5.8: Final Summarized Graph

5.7 Building the final summary

In the previous sections, we have seen how we can identify the different themes in
the graph and for each one we have produced a summary. Our aim now is to build
the final summary from all the summaries of the extracted themes. Let S ={ Sg1,
Sca ... San} be the set of summaries corresponding to the themes in a graph G
such that each Sg; is the summary of a sub-graph corresponding to the theme ¢;.

Our goal is to connect all the summarized themes in S in order to create the final
summary. To this end, we have proposed to select from each summarized theme
Sai the most central node ¢; and connect these nodes to build the final summary.
Moreover, we need to find that minimal sub-graph in which all the nodes ¢y, ¢s,...,
¢, are connected. This problem is similar to connecting the relevant nodes in the
theme and build the theme summary.

Let C = {¢1, ¢a,..., ¢, } be the set of most central nodes in each theme where
¢; is the central node in the theme ¢; and let G be the initial RDF graph. The
problem is to find the minimal sub-graph in G and containing all the elements in
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set C. This problem can be stated as the Steiner tree problem, where the terminals
are the elements in set C.

We have also used the DNH algorithm to solve this problem; the algorithm
starts by creating the distance graph based on the weights of the edges in the graph.
The default weight of each edge equals one. Let us consider the graph in figure 5.9a
where two theme summaries are represented in red and blue respectively; consider
"al" and "b1" the most central nodes of the two themes.

(a) Initial graph (b) Summary Using Path P1 (¢) Summary Using Path P2

Figure 5.9: Path Selection for Building the Final Summary

The shortest path connecting nodes "al" and "b1" is P1=[al, c1, bl], but we
can observe that choosing this path will introduce the node "c1", while the path
P2=[al, a3, b2, bl| connects the two themes without introducing any additional
node. We then modify the weights such that the weight of an edge equals to zero
if its origin and destination nodes are in one of the theme summaries and equals
to one otherwise. This leads to the graph depicted in figure 5.9c. Path P2 will be
selected as its weight is equal to one while the weight of P1 is equal to two.

After creating the distance graph based on the weight we have proposed, the
next step is to extract the minimum spanning tree from the distance graph by
using the Kruskal’s algorithm. All the edges in the minimum spanning tree will
be replaces by the path from the RDF graph to connect the summarized themes.
At the end, all the central nodes will be connected forming a sub-graph. This
sub-graph is the final summarized graph. Algorithm 12 presents all the steps of
building the global summary.

(a) RDF graph (b) Identified themes

Figure 5.10: Example of a RDF graph with three different themes
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Algorithm 12 Building Global Summary

1. procedure BUILDINGGLOBALSUMMARY (S ={ S¢1, Sa2 ... San}, G)
2 Gueignt < weight(G)
3 for Sg; € S do
4: ¢; + Central(Se;)
5 C.add(c;)
6 end for
7 DG <« DistanceGraph(Gyeight, C) /*Compute the complete distance
graph™/
MST «+ MinimumSpanningTree(DG) /*Compute the Minimum Span-
ning Tree*/
9: Gaiovat < Replace(G, MST)
10: return Ggopal
11: end procedure

*®

Let us consider the graph in figure 5.10a, the themes are identified and colored
in red green and blue in the graph in figure 5.10b.

(a) summarized themes (b) Select most central nodes

Figure 5.11: Summarized Themes and the Most Central Nodes in these Themes

Graph in figure 5.11a have the summarized graphs of the themes identified in
the figure 5.10b. Figure 5.11b shows the most central nodes in the summarized
themes of figure 5.11a. After applying the DNH on the selected nodes in in figure
5.11b, we get the graph in figure 5.12.
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Figure 5.12: Final Summary

5.8 Evaluation

In this section, we describe our experiments to validate the performances of our
approach and to compare the resulting summary with the one of a baseline ap-
proach where summarization is performed solely on the basis of centrality, without
considering themes.

Our approach is implemented in Java, we have used the Jena API for the
manipulation of RDF data. The Jung API is used for graph manipulation and
visualization. All the experiments have been done on Intel Core i7 with 32GB
RAM.

We have used three datasets: AIFB, DBpedia and Olympics. AIFB is a dataset
containing data taken from the AIFB institute, at Karlsruhe University. It de-
scribes entities of research communities such as persons, organizations, publica-
tions (bibliographic metadata) and their relationships. The dataset contains 8281
entities and 29 233 triples. DBpedia is a project aiming to extract structured con-
tent from the information created in the Wikipedia project. The extracted data is
related to movies their title, actors, director, released date among other properties.
This dataset contains 30 793 triples. The Olympics dataset contains information
on 120 years of Olympic history, among which information about athletes and
their medal results from Athens 1896 to Rio 2016. This dataset contains 1 781 625
triples.
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Figure 5.13 shows the execution time with respect to the size of the dataset.
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The graph shows that the execution time increases when the number of triples
increases for all the datasets. We can also see that the execution time for the
Olympics is greater than the execution time of AIFB and DBpedia. The number
of themes extracted from Olympics is greater than the number of themes extracted
from AIFB and DBpedia according to the graph in figure 5.14, which explains the
increase in the execution time for the Olympics dataset.

Number of Top-k Number of Size of summarized | Execution
entities extracted themes | graph (entities) | time (sec)
1k 10 3 16 1.5
10k 20 7 35 9.5
100k 40 8 53 35.8
200k 80 8 113 76.1

Table 5.1: Number of extracted themes and the execution time for samples from
Olympics dataset

We have extracted 4 samples from the Olympics dataset with a respective size
of 1k, 10k, 100k and 200k and executed our summarization process on each of them.
The results are presented in table 5.1. We can see that the number of extracted
themes and the execution time increase as the number of entities increases. As
described in section 5.6, we distinguish between typed and untyped entities.

To check the effectiveness of our approach, we have used 8 simple graphs (the
number of entities in those graphs varies from 24 to 34) and asked five users to
select the relevant elements in those graphs. We have then compared their answers
to the results obtained by our summarization algorithms(TBA). We have also com-
pared our results with the application of a baseline summarization approach(BA),
where the top-k nodes are selected based on their degree. We have computed the
precision at k as follows:

POK = NumberOfreésvantelements

According to table 5.2, we can see that PQK ranges between 0.84 and 0.98 for
our thematic-based approach. These results are better than those obtained using
the baseline approach, which range between 0.62 and 0.88; on these graphs, the
results achieved with the thematic-based approach were more accurate according
to the users.
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Data Gl G2 G3 G4 G5 G6 GT7 G8

K 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10
TBA | 0.88 | 0.84 | 0.84 | 0.88 | 0.88 | 0.98 | 0.84 | 0.86 | 0.96 | 0.94 | 0.92 | 0.94 | 0.92 | 0.94 | 0.96 | 0.96
BA [ 0.84 | 0.88]0.72 ] 0.80 | 0.72 | 0.84 | 0.88 | 0.82 | 0.8 | 0.72 | 0.68 | 0.62 | 0.68 | 0.72 | 0.64 | 0.62

Table 5.2: Top-k precision

5.9 Conclusion

In this chapter, we have provided an approach for summarizing RDF graphs based
on theme extraction. Unlike the existing approaches, our proposed idea is to
take into account all the underlying themes in the RDF graph when building the
summary. In our approach, we proposed different metrics to assess the different
types of nodes in the graph. In this case we ensure that both the schema-level
information as well as the instance-level information are assessed correctly and
presented in the summarized graph. We stated the problem of connecting the
relevant nodes as the Steiner tree problem, and we have introduced a novel way to
assess the paths while building the summarized theme. This assessment is based
on the degree of the nodes in the path, and it reflects how this path is centralized
in the RDF graph. We have used it to build the theme summary. For building
of the global summary, we have proposed an approach based on connecting the
summarized themes. We have also conducted some experiments to evaluate our
approach.

In the present work, the resulting summary contains nodes and edges which
exist in the initial graph. A possible extension would be to insert in the resulting
summary properties of nodes that do not exist in the graph but have some seman-
tic relationships with existing nodes; for instance, this could lead to replacing a
path in the summary with a single edge conveying the same meaning, or replacing
two classes by their super-type if they are close in meaning. This could be pos-
sible through the use of external knowledge sources such as domain ontologies or
exploiting the vocabularies used in the considered dataset.
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Conclusion

This thesis explored differed ways of providing a support for the meaningful ex-
ploration of RDF datasets. To this end we have addressed two distinct problems
keyword search over RDF dataset and summarization of an RDF graphs. The key-
word search approach consists of having a set of keywords as an input and returns
a set of sub-graphs as an output. Each sub-graph will contain elements related to
the query keywords. The summarization allows the user to have a brief descrip-
tion of the data; this is done by extracting relevant elements from the graph. The
solution turned quickly into other problems; in the keyword search we have faced
the problem of matching the query keywords with the different concepts used in
the RDF graph elements. Moreover, in the summarization, we had the problem
of creating a summarized graph representing all the different topics relies in the
RDF graph.

6.1 Summary of the contributions

In chapter 3, we presented an approach for keyword search over RDF dataset.
The contribution of this work was to introduce a way to bridge the terminological
gap between the keyword query and the terms used in the RDF dataset. In our
approach, we integrated the use of a knowledge base to ease the exploration and
querying of the RDF dataset in terms that are not necessarily used in the elements
of the dataset. We have also used the patterns [63] as an external knowledge base
to enrich the matching elements for the keywords in the query. The results of
different experiments carried out on several data sources have shown that the
integration of external knowledge improves the number of matching elements and
obtains a result better meets the needs of the user.

After finding the matching elements for each keyword in the query, we focused
on the aggregation of those elements to create the final meaningful sub-graph
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result. Our second contribution was in introducing the centrality score to measure
the importance of the path connecting two different elements in a graph, we also
have adapted an algorithm used to solve the Steiner tree problem after stating
our problem as a Steiner tree problem. After creating all the possible solutions,
a ranking method is presented based on the importance of the matching elements
and the size of the graph compared with the number of keywords in the query.

Summing up, we handled three problems related to keyword search: matching
elements, aggregating these matching elements, and ranking the final set of sub-
graph results. The experiments showed that the solutions gave an interesting
improvement in the quality of the results created.

In this thesis, we also presented thematic-based summarization. This approach
aims to provide the user with a brief and obvious description of the information
carried by the RDF graph in a summarized way. As the RDF graph can have
more than one theme, each theme describes a topic; we need our summarization to
reflect the different themes in the RDF graph. Our contribution was to introduce
thematic-based summarization in the approach. The summarized graph in this
approach is build based on the extracted themes from the RDF graph. After
extracted the themes, we need to build a summary for each one of them. To
this end, we have presented the method to evaluate the importance of the classes
based on their centrality score and representativity score. Our contribution was
to take into account the relevant untyped nodes based on their centrality score
in our summarization. In other words, our summary will have information about
schema level and instance level. The summarized theme is built by connecting and
aggregating the relevant nodes selected according to the different relevance metrics.
At the end, a summarized graph is built by aggregating all the summarized themes
extracted from the graph. In this process, we ensure that all the themes, hence all
the topics, are represented in the summarized graph. In this work, we handled two
problems related to the summarization: representing all the themes and choosing
the relevant nodes to be presented in the graph.

6.2 Future Works

Our work still has a high potential for future improvements. For a keyword search,
we can improve the extraction of the semantic relations between the keyword query
and the terms in RDF data by using text mining and machine learning techniques.
For example we can use word2vec|60| which is a technique for natural language
processing used to produce word embeddings. It uses a neural network model to
learn word associations from a large corpus of text. Once trained, such a model can
detect synonymous words. These words can be used to bridge the terminological
gap between the keyword query and the RDF dataset.
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Another improvement can be on the level of numbers, such as the ability to
match the numbers represented by integers by the number represented by charac-
ters, for example, matching the keyword query "one" with a node having the value
"1". Moreover, we can work on using greater than or less than in the keyword
query, for example "greater than five" will be matched with all the elements in the
RDF graph that have a number greater than five.

As the number of data on the web increases, we are facing a scalability issue
problem. To this end we can study this problem and how we can query a big
RDF dataset; what is the best way can be done for the matching process, can we
decompose the RDF graph into different themes and lunch the query keyword on
each theme in a parallel way is this solution efficient? What about the aggregation
problem? How can the relevant nodes be connected in massive datasets?

On the level of summarization, in the present work, the resulting summary
contains nodes and edges which exist in the initial graph. A possible extension
would be to insert in the resulting summary properties of nodes that do not exist in
the graph but have some semantic relationships with existing nodes; for instance,
this could lead to replacing a path in the summary with a single edge conveying
the same meaning, or replacing two classes by their super-type if they are close
in meaning. This could be possible through the use of external knowledge sources
such as domain ontologies or exploiting the vocabularies used in the considered
dataset.

Finally, we can combine the two different methods of exploration into one single
approach. It can be decomposes into two different processes, the summarization
process and the keyword search process. After generating the summarization graph
from the first process, the user can utilize this summary to have an idea about
the dataset and what vocabulary it contains. This will helps him to issue the
query keywords. These keywords will be an input to the second process which is
keyword search that generates a ranked set of sub-graphs representing an answer
to the query.






Appendix A

Résumé en Francais

Un nombre croissant de sources de données sont publiées sur le web, exprimées dans les langages
proposés par le W3C comme RDF, RDFS et OWL. Ces sources représentent un volume de
données sans précédent, disponible pour les utilisateurs et les applications. Afin d’identifier les
sources les plus pertinentes et de les utiliser, il est nécessaire d’en découvrir le contenu, par
exemple au moyen de requétes écrites en Sparql, le langage d’interrogation proposé par le W3C
pour les sources de données RDF. Mais cela nécessite, en plus de la maitrise du langage Sparql,
de disposer de connaissances sur le contenu de la source en termes de ressources, classes ou
propriétés qu’elle contient. L’objectif de ma thése est d’étudier des approches permettant de
fournir un support a 'exploration d’une source de données RDF. Pour cela, nous avons proposé
deux approches complémentaires, la recherche mots clés et le résumé d'un graphe RDF. La
recherche mots clés dans une source de données RDF permet d’interroger cette source sans
avoir de connaissances préalables sur son contenu en termes de ressources ou de propriétés. Elle
renvoie un ou plusieurs sous-graphes en réponse a une requéte exprimée comme un ensemble de
termes a rechercher. Chaque sous-graphe est une réponse possible a la requéte, et est obtenu
par l'agrégation d’éléments extraits du graphe initial, chacun correspondant a un mot clé de la
requéte. Les sous-graphes retournés sont classés en fonction de leur pertinence. La recherche
par mot clé dans des sources de données RDF souléve les problémes suivants : (i) I'identification
pour chaque mot clé de la requéte des éléments qui lui correspondent dans le graphe considéré,
en prenant en compte les différences de terminologies existant entre les mots clés et les termes
utilisés dans le graphe RDF, (ii) la combinaison des éléments du graphe qui correspondent
aux mots clés pour construire un sous-graphe résultat en utilisant des algorithmes d’agrégation
capable de déterminer la meilleure fagon de relier ces différents éléments, et enfin (iii), comme
il peut exister plusieurs éléments du graphe qui correspondent & un méme mot clé, et par
conséquentplusieurs sous-graphes résultats, il s’agit d’évaluer la pertinence de ces sous-graphes
par 'utilisation de métriques appropriées. Dans notre travail, nous avons proposé une approche
de recherche par mot clé qui apporte des solutions aux problémes ci-dessus. Pour cela, nous
utilisons une source de connaissances externe qui fournit un ensemble de relations sémantiques
entre concepts, et nous avons proposé un processus de matching qui exploite ces relations
pour résoudre ’hétérogénéité terminologique entre le graphe RDF considéré et les mots clés de
la requéte. Le matching renvoiedétermine pour chaque mot clé un ou plusieurs éléments du
graphe RDF, un élément pouvant étre un nceud, un arc ou encore un sous-graphe. Nous avons
proposé une approche permettant d’agréger ces éléments en exploitant les chemins existants
entre eux et en sélectionnant les meilleurs, afin de construire les sous-graphes résultats. La
construction d’une vue résumée d'un graphe RDF, qui mettrait en évidence ses éléments les
plus représentatifs, pourrait étre utile afin de déterminer si ce graphe correspond aux besoins
d’un utilisateur particulier ; une telle vue résumée peut étre utilisée comme support pour
explorer le graphe, en ciblant par exemple ses éléments les plus représentatifs. Dans notre
travail, nous avons proposé une approche de résumé originale fondée sur l'identification des
théemes sous-jacents dans un graphe RDF. Notre approche de résumé consiste a extraire ces
thémes, puis a construire le résumé en garantissant que tous les thémes sont représentés dans le
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résultat. La construction d’un tel résumé souléve les questions suivantes : (i) comment identifier
les thémes dans un graphe RDF 7 (ii) quels sont les critéres adaptés pour identifier les éléments
les plus pertinents dans les sous-graphes correspondants a un théme 7 (iii) comment connecter
les éléments les plus pertinents pour créer le résumé d’un théme ? et enfin (iv) comment générer
un résumé pour le graphe initial a partir de ’ensemble des résumés de thémes 7 Dans notre
travail, nous avons proposé une approche qui fournit des réponses a ces questions. Elle permet
d’identifier les thémes, qui correspondent aux régions denses du graphe RDF. Pour chaque
théme, un résumé est construit en identifiant d’abord les sommets les plus représentatifs, et
nous avons pour cela introduit une extension de la notion de centralité d’un nceud dans le
graphe. Puis les résumés de thémes sont connectés en utilisant une mesure de pertinence des
chemins entre les sommets représentatifs. Le résumé final est construit par 'agrégation des
résumés de thémes de telle sorte que tous les thémes soient représentés proportionnellement a
leur importance dans le graphe initial.
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