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Gestion de l’Incertitude pour la fiabilité des Données
Liées dans le Web Sémantique

Résumé — Le Web sémantique a évolué pour atteindre différentes applications.
Il a été conçu pour permettre aux machines de comprendre les ressources disponibles
sur le World Wide Web et d’utiliser les informations extraites dans le processus de
prise de décision et de raisonnement. Le Web est donc un monde ouvert où les gens
peuvent dire ce qu’ils veulent et où les utilisateurs - dans ce cas, les humains et les
machines - peuvent s’y retrouver. L’un des principaux défis actuels consiste à traiter
des informations provenant de sources multiples et le plus souvent peu fiables, et
les données liées sont une sélection du contenu hétérogène du Web. Qu’elles soient
présentées dans un format lisible par une machine, extraites automatiquement de
documents Web ou déduites par des processus de raisonnement, les données liées
peuvent être périmées, incorrectes, incomplètes, vagues, ambiguës ou, plus générale-
ment, incertaines. Le traitement des données liées incertaines est représenté par de
multiples défis tels que la qualification (ou quantification) de l’incertitude, le calcul,
la déduction et, dans le cas du Web sémantique, la publication et la réutilisation.

Cette thèse de doctorat se concentre sur plusieurs points :

• comment l’incertitude peut être formalisée et intégrée dans le Web Sémantique,

• comment l’incertitude peut être extraite et accessible,

• comment réconcilier et fusionner des données incertaines distribuées et liées,

• comment l’incertitude peut être évaluée sur la base de sources de données dis-
tribuées, et si possible de propager l’incertitude avec les liens.

Mots clés : Incertitude, Web Sémantique, Données Liées, Ontologies.



Uncertainty Management for Linked Data Reliability on
the Semantic Web

Abstract — The Semantic Web has evolved to reach different applications. It
was designed to enable machines to understand available resources on the World Wide
Web and use the extracted information in the decision making and reasoning process.
Hence, the Web is an open world where people can say whatever they want and
users -in this case, people and machines- can relate to it. One of the main challenges
nowadays is to deal with information from multiple and mostly unreliable sources
and Linked Data is a screening of the heterogeneous content on the Web. Either pre-
sented in a machine-readable format, automatically extracted from web documents
or inferred by reasoning processes, Linked Data might be outdated, incorrect, in-
complete, vague, ambiguous, or more generally, uncertain. Dealing with Uncertain
Linked Data is represented by multiple challenges like uncertainty qualification (or
quantification), calculus, deduction, and in the case of the Semantic Web: publishing
and reusability.

This Ph.D. focuses on several points:

• how uncertainty can be formalized and integrated into the Semantic Web,

• how uncertainty can be extracted and accessed,

• how to reconcile and fuse distributed uncertain linked data,

• how uncertainty can be evaluated based on distributed data sources, and if
possible to propagate uncertainty along with links.

Keywords: Uncertainty, Semantic Web, Linked Data, Ontologies.

Laboratoire d’Informatique, Signaux et Systèmes de Sophia Antipolis
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Chapter 1

Introduction

1.1 Context of the thesis: Uncertainty on the

Semantic Web

Web and Data Due to the Internet, we are more linked now than ever before.

The expanding infrastructure of the network allowed to connect machines via cables

and protocols, and more than that: it connected people. With it being the basis and

the transparent proxy, a refrigerator signals a vending machine to deliver a pack of

eggs. The same network is the backbone for the content that is daily updated and

augmented by the different agents, i.e. The Web [1].

The 2020 Dagstuhl Manifesto [2] described the Web as perceived as the “nervous

system of the planet”. The document selected that year to discuss the Web’s future

and affirm its size, impact, and stakes. The report issued by DataReportal1 in Jan-

uary 2021 [3] confirms the aforementioned fact by accounting for the growth of the

connected population. The same report mentioned statistically ordered reasons for

the use of the Web. The reasons vary from information search and retrieval to educa-

tion, entertainment, education, finances, and being inspired by the content. The Web

helps lives too: governments are digitizing and decentralizing their services, making

it easy to issue documents, pay taxes, switch properties, and even get travel passes.
1DataReportal is an online reference library offering statistical reports for online activity

over the world. Info available here: https://datareportal.com/

https://datareportal.com/
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The report estimated the current connected population to be 4.66 billion users (about

59.5% of the total population of the world).2

How wide is the Web? According to the statistics compiled by Domo3 from

several sources, In every 60 seconds of the year 2020, an average of:

• 500 hours of videos are uploaded to Youtube,

• 150,000 messages and 147,000 photos are shared on Facebook,

• 64,499 job applications are submitted on LinkedIn,

• $240,000 are exchanged on Venmo,

• $1M is spent on E-commerce websites,

• 28 music tracks are added to Spotify.

These statistics show the significant quantity of data added to or exchanged via

the Web. Other websites provide new information daily, such as news websites

(e.g. bbc.com, aljazeera.net, francetvinfo.fr), financial websites (e.g. tradingview.com),

or inspiration for artists and designers (e.g. usepanda.com). As for the “wideness” of

the Web, the number of published websites on the Web exceeded alone one billion

websites.4

The emergence of the Internet of Things IoT opened the door for more machine-

to-machine autonomous communication. For instance, sensor networks connect to

their main stations and communicate data about humidity and temperature. Home

assistants link and control the different intelligent devices of a smart home: light

bulbs, cameras, appliances, etc. In short, the World Wide Web evolved from the

simple network linking documents with hyperlinks to a crucial part of our daily life.

It is perceived as a "non-ending project" [1] in constant development for a better reach

and inclusion.
2This data does not include social media statistics as multiple accounts may refer to a

unique person.
3https://www.domo.com/learn/data-never-sleeps-8
4https://www.internetlivestats.com/total-number-of-websites/

https://www.domo.com/learn/data-never-sleeps-8
https://www.internetlivestats.com/total-number-of-websites/
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Semantic Web and Artificial Intelligence The Web is around us, accessed

from different terminals and used to link existing files hosted by interconnected servers

across the globe. With one click, a student in Karachi can download a textbook from

their teacher in Melbourne. Despite its usefulness, the Web used to represent only

the rigid form of content (such as documents, audio, video, images, etc.) and the

links referring to that content. Nowadays, the Web took much more advanced steps

towards understanding deeper connections, from linking bits of zeros and ones hosted

on machines interconnected via the Internet to linking physical and conceptual entities

in real life.

The abstraction of reality revolutionized our perception of the Web. We no longer

refer to documents but to resources that might be anything: people, cars, animals,

theories, fruits with weird shapes, the concept of “weirdness”, etc. Some of these

resources do exist in Web documents: a web page talking about lions, an audiobook

promoting grit, or a TED talk explaining procrastination.

As we stated before, the Web is in constant change. The “Web that makes sense”

became more than a set of related files hosted on the Internet. It is a network of

interconnected entities that provides some abstraction of reality. Within a context,

this network offers a focused perception of our beliefs on a particular matter. This

abstraction of reality opened the doors for powerful usages for a network that used

to link documents and allowed it to link pieces of data, making the support for many

exciting applications. We believe that we know all the other resources related to it

and the types of relationships between them from one resource. The links between

these resources allow us to go on an exploratory journey, from Albert Einstein5 to

getting the phone number of Princeton University from their Facebook page, where

he spent 22 years working (between 1933 and 1955).

Discovering and exploring are amongst the essential applications of this evolution.

Nevertheless, we focus here on reasoning as one of the intelligent behaviors studied and

supported by the Semantic Web [4]. First, reasoning covers both previous applications
5https://www.wikidata.org/wiki/Q937
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as it requires resources to discover their entourage and relies on path exploration to

jump from one resource to the other. Second, reasoning is the natural application

to be used with such abstraction of the world: if we can think with abstract data in

our minds, machines should do the same with data explicitly abstracted. Reasoning,

in this case, is about letting machines infer new information. That is conditioned

by allowing them first to discover, explore, and understand the links, patterns, and

semantics of resources. Consequently, AI can create new connections and observe

patterns, enabling a better understanding of the sense of resources and relationships

between them.

Strong Artificial Intelligence refers to the fact that machines will be able to think

for themselves, and perform complex reasoning processes and decide on different

matters, the same way the human brain does. It is in contrast with weak AI limited

to specific applications and without access to significant amounts of data, which is the

case of machine learning applications nowadays: limited domain of application (task-

specific AI), limited data (or access to data, due to size or non-readiness), and limited

resources. We think it is early to talk about strong AI, assuming the conditions are

not met yet for the vision to be true. Nevertheless, we see the Web as a raw material

for AI to feed on, as it represents an exceedingly rich source for human contributions

to knowledge. We envision for AI to access the Web as any other human agent, do

their research, understand, decide, contribute, and communicate the results of its

reasoning process to other AIs [5]. We find no better support for such a vision than

the Semantic Web: a network of interconnected intelligence, human and artificial

ones, helping one another in the production and maintenance of consistent, reliable

information that can be consumed and verified by anyone.

What is wrong with our (Semantic) Web ? Data reliability is not related

only to the Web but linked to the creators and curators of data. The rationality of

agents in decision-making is often assumed. That way, any interpretation related to

the existing pieces of data is assumed to be accurate. Once uncertainty is introduced,

it should be considered, assuming that the agents act upon the data they are served
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but still risk bias or mistake. One of the examples of such imperfections that we can

present in daily life would be the cognitive biases. Even the lines that you are reading

here can be subject of the Naive realism as an example of the previous biases, where

we believe that what we are stating is the complete truth about a subject, and those

who contradict must be ignorant of the subject. Here are some other known biases:

• Confirmation bias: some people tend to seek information that confirms their

opinions or previous beliefs. Significant importance is given to sources favoring

the existing idea while ignoring (on purpose or by other means) and avoiding

other sources that contradict it.

• Dunning-Kruger effect: due to a lack of self-awareness, some people are unable

to measure their ineptitude. Hence, they wrongly believe in their superiority

in some subjects. In other words, people that are unaware of their ignorance

tend to think they know everything about a certain subject.

• Survivorship bias: the stories that living people tell about a certain fact might

deflect the reality, as the absentees (dead) are unable to present their opinion.

The bias usually reflects the selectivity in sampling information by relying on

convenient, easily accessible, or simply available resources. That undermines

the opinion or the role of information provided by the other resources.

Naturally, we can lie, act wrongly, be lazy, and not abide by the standards, and

there is no difference in dealing with the Web. The Utopian Web with agreeable and

reliable metadata does not exist (Yet) [6]. The “yet” here is yet to be answered in

this thesis. But we attempt to shed some light on some of these problems and offer

some solutions to specific questions.

In the Web, we un-trust The Web is an enormous source of information. We

can be more specific about the reliability of the latter, judging that they might be

true or false, but even that does not reflect the reality yet. For such open information,

we have to aspire to the exactitude of our judgment while expecting its falsehood,

similarly to the theory of knowledge decay [7].
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We may also see the Web as a “selective” abstraction of reality. If that is not

enough as a difference, our behavior itself changes when we are online. Some re-

searchers argue that we might not behave the same way while on the Web [8]. And

when anonymity is preserved, more freedom is allowed. Our public image is always a

subject of polishing by being selective with our communications, and the Web offers

more control over that.

The Web offers leverage to some entities over others. When misused, news web-

sites can act as tools to control the flow of information to populations of entire coun-

tries. One solution to defend against such abuse is to create new websites or social

media accounts to publish what is believed to be the correct information. However,

the leverage will always favor more prominent websites with a broader reach and a

better ranking on search engines. Media can smear anyone using their large follower

base, and the victim will not have been given a chance nor the stand to defend them-

selves. The uncertainty of information–in this case– is harmful, and the existence of

a way to equalize the effect of certain websites with small websites is crucial. We

can project such facts to a Semantic Web format, which would help build a bridge

between the different narratives but still raises problems. One is the absence of a

formalization of (un)certainty and a comparison metric between such information to

distinguish which narrative is more accurate. Moreover, data in its raw format might

be incomparable. Its translation to a Semantic Web format with explicit uncertainty

measures would distinguish and select what information we value to be true.

Our Doubts are Abstracted When we get an email with a calendar event, we

are often presented with three choices: whether to accept, deny or state that we are

unsure of our attendance. The latter opens the door for many interpretations of our

schedule: we are yet to decide, we have two or more events with the same priority, we

are waiting for an important event to happen, etc. Those interpretations go beyond

a simple yes/no answer, but the consequence of their existence is that we cannot

determine our schedule in a certain period. The “maybe” varies from one person

to another but is eventually linked between all the subjects of interest. If we think
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in general about the instruments we use, the uncertainty is by design included in

large labels such as “In case of”. Random events, outlier observations, unguaranteed

futures, unknown or inaccessible previous information are all sources of doubt.

“Humans are humans”. It should not be perceived as an undermining statement

for what humans can do or of their achievements. After all, humans conceived these

systems. Still, parameter miscalculation may lead to the explosion of a rocket, and

job applications may be lost because the applicant mixed the month and the day in

their birth date, so the system could not fetch their profile. Uncertainty opens the

door for ongoing trials for information validation. It requires us to stay attentive

to any new information to re-evaluate the coherence of our beliefs. The previous

discussion also points that it is better to get familiar with the unknown and try to

describe its boundaries when possible, instead of ignoring the existence of its pebbles

and therefore risk the accumulated consequences. Uncertainty is also related to the

growth mindset, as described by Professor Carol Dweck [9]: in contrast with the

fixed mindset, a growth mindset is always eager for challenges and is never stopped

by the limitations. It does not thrive in the safe area where it always feels sound and

intelligent but looks up to challenges as means for progress. We think that this is

the same case for a Web running way ahead of its time and run by billions of people

worldwide. The Web (and the Semantic Web) is made of changes and should never

perceive uncertainty as a burden but live up to it.

The vision of interconnected intelligent entities, humans, and machines, requires

a consensus in data representation, but that is not everything. The consensus should

also be about the sense of data and the transformation that might happen to the

data afterward. Such data have to be reusable, no matter who is using it. All of

the previous assumes the sanity of users, producers, and data. When uncertainty is

on the line, going underline about it is never a solution. Instead, we may think of

having dialogues about the leaks, the impurities, and the different angles from which

we perceive our data. The consensus here is not only about agreeing on the truth

and how to deal with it. It is also about the abstraction of the considered reality to

evaluating that truth.
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The authors of the 2020 Dagstuhl Manifesto thoroughly discussed information

personalization, privacy, quality, and freedom on the Web. All of the previous prob-

lems also concern the specific case of the Semantic Web and raise lots of questions,

such as the necessity to make everything machine-readable or give machines access

to more/less information. We believe that the first step of remedy is to get familiar

with the limitations that our biases present to us by understanding and formalizing

uncertainty.

The goal of this Ph.D. thesis is to investigate the dimension

of uncertainty on the Semantic Web. From representing the

uncertainty in a standard format, understanding, manipu-

lating, extracting, to propagating it to other sources.

1.2 Problem and Research Challenges

We study three main challenges in supporting uncertainty handling on the Semantic

Web.

• Challenge I is representing uncertainty on the Semantic Web: this can

help to formalize the lack of information, give an idea about data quality, and

be a base for other transformations of the knowledge graphs on the Semantic

Web (e.g., update, merge, or refute the information.).

• Challenge II is making uncertainty explicit in knowledge graphs: this

ensures that the data providers are transparent about their data.

• Challenge III is propagating uncertainty on the Semantic Web: this

allows shipping uncertainty information alongside data and helps to understand

the decisions made to select specific pieces of data.
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1.3 Research Questions and Contributions

In this thesis, the general research question that we study is: How to qualify the

reliability of data on the Semantic Web?. To be specific, the scope of this

thesis focuses on uncertainty representation, manipulation, extraction, and

propagation.

To go further into details, we present here the research questions we investigated.

RQ I: How can we represent uncertainty on Semantic Web while respecting the

existing standards and technologies ?

Hypothesis I: Offering an ontological representation of uncertainty, allowing to

annotate elements of knowledge graphs (and knowledge graphs themselves) with un-

certainty values following various theories of uncertainty.

Contribution I: We propose an ontology for uncertainty metadata (mUnc) that

we aligned with an existing query scripting language (LDScript) to create a framework

for uncertainty representation and manipulation. We use this framework to offer

an uncertainty dictionary for some current uncertainty theories in the wild. The

manipulation of uncertainty values is done using remote functions linked to each

of the approaches. We demonstrate the possibility of declaring custom uncertainty

theories to fit with the requirements of each user.

The representation of uncertainty in a standard way is the first step toward pub-

lishing and reusing it. Some of the questions we treated under this challenge are:

• is the Semantic Web stack compatible with a representation of uncertainty?

Do we need to extend the existing standards?

• what layers should uncertainty be included within?
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• how to deal with the heterogeneity of uncertain data following different uncer-

tainty theories?

RQ II: How can we access uncertainty data on Semantic Web while respecting its

context and exchange it ?

Hypothesis II: Offering an contextual representation of uncertainty, allowing to

represent multi-level uncertainty of knowledge graphs, and transfer negotiated hetero-

geneous uncertainty values to enable their composition.

Contribution II: We proposed methods to access and manipulate uncertainty val-

ues depending on their context. We offered different readings for uncertainty depend-

ing on the level of granularity it includes. We provided translatability extensions for

mUnc to enable transforming and negotiating uncertainty.

The representation of uncertainty in a standard way is the first step toward pub-

lishing and reusing it. Some of the questions we treated under this challenge are:

• how to access and interpret uncertainty information encapsulated in different

levels in the same source?

• how to combine uncertainty information from several levels in the same source?

• in the case of context-related uncertain data, how to deal with uncertainty in

nested contexts?

• how to translate and negotiate uncertainty when presented under a different

formalism ?

RQ III: How can uncertainty be extracted from knowledge graphs that do not pro-

vide explicit uncertainty information?
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Hypothesis III: Finding a reference point to compare the knowledge graph may

help. The projection should be made in a specific context, assessing how good the

answers provided by the target knowledge graph can be.

Contribution III: We propose a framework (Archer) to extract uncertainty from

existing knowledge bases with missing uncertainty annotations. We use a task-specific

comparison to evaluate the uncertainty of focused corpora of data around selected re-

sources representing anchor points of this evaluation. The extracted uncertainty fol-

lows the representation and manipulation principles provided by the first contribution.

One of the main issues we faced during the thesis was the lack of data with

explicit uncertain information. To cope with that, Archer allows extracting and

annotating data with uncertainty metadata. Some of the questions we treated under

this challenge are:

• how to formalize tasks to relate to for uncertainty extraction?

• what resources to focus the analysis of uncertainty around? what data to select

around these resources?

• how to use the outcome of the analysis for further exposition and updates?

• how to annotate data with uncertainty information? and what indication would

that uncertainty provide?

It is crucial to establish a “dialogue” mechanism to reach some consensus between

several uncertain data providers on the Semantic Web. Therefore, the conversation

must follow a unified standard. For that, we discussed in our perspectives a view

for consensual dialogue between data sources based on the existing data in the LOD

cloud and the passage from local beliefs to common knowledge, all with respect to

the ambivalence of the Web. Some of the questions we openly discuss are:

• if all sources abide by the dialogue rules, how can it be achieved practically?

• should all sources implement uncertainty ?
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• how to transform local beliefs into common knowledge using uncertainty as a

dimension?

To build upon previous research work, we analyze the existing results treating

uncertainty in the Semantic Web. The work approach is reflected in the organization

of this manuscript. After this introduction, we describe in Chapter 2 the preliminary

notions related to uncertainty and the Semantic Web. We provide an overview of

the technologies used in the Semantic Web stack and the limits of uncertain data.

Afterward, we deliver in Chapter 3 a representation for uncertainty on the Semantic

Web. We discuss our contribution of the uncertainty ontology mUnc and the methods

for annotating statements with uncertainty. Chapter 4 discusses uncertainty man-

agement and access in a contextualized view and the reading of uncertainty inside

contexts. For sources without explicit uncertainty information, we present a frame-

work in Chapter 5 enabling the evaluation of uncertainty, based on both syntactical

and semantic similarities with entities from a reference source and within a specific

use case. We conclude with a discussion about dialogue between sources and how we

can reach a sure and consensual universe, following that with a view this work with

our perception of the reality and perspectives of this research.

Scientific Production

Here is an exhaustive list of the productions realized during and with relation to the

current thesis:

International Conferences

• Ahmed El Amine Djebri, Andrea G.B. Tettamanzi, Fabien Gandon. Pub-

lishing Uncertainty on the Semantic Web: Blurring the LOD bubbles. ICCS

2019 - International Conference on Conceptual Structures, July 2019, Marburg,

Germany. <https://hal.inria.fr/hal-02167174>

https://hal.inria.fr/hal-02167174
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• Ahmed El Amine Djebri, Andrea G.B. Tettamanzi, Fabien Gandon. Link-

ing and Negotiating Uncertainty Theories Over Linked Data. WWW 2019 -

LDOW/LDDL Workshop of the World Wide Web Conference, May 2019, San

Francisco, United States. <https://hal.inria.fr/hal-02064075>

• Ahmed El Amine Djebri, Andrea G.B. Tettamanzi, Fabien Gandon. Task-

Oriented Uncertainty Evaluation for Linked Data Based on Graph Interlinks.

International Conference on Knowledge Engineering and Knowledge Manage-

ment EKAW 2020. October 2020. Online Venue. <https://hal.inria.fr/

hal-02933190>

• Ahmed El Amine Djebri, Antonia Ettorre, Johann Mortara. Towards a

Linked Open Code. The 18th Extended Semantic Web Conference ESWC

2021. Online Venue. <https://hal.inria.fr/hal-03190617>

https://hal.inria.fr/hal-02064075
https://hal.inria.fr/hal-02933190
https://hal.inria.fr/hal-02933190
https://hal.inria.fr/hal-03190617
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Miscellaneous

• Ahmed El Amine Djebri, Andrea G.B. Tettamanzi, Fabien Gandon. mUnc

Vocabulary Specification. <http://ns.inria.fr/munc/>

• Mehwish Alam, Tayeb Abderrahmani Ghorfi, Ahmed El Amine Djebri,

Omar Alqawasmeh, Amina Annane, et al. Linked Open Data Validity – A Tech-

nical Report from ISWS 2018. 2019. <https://hal.inria.fr/hal-02087112>

http://ns.inria.fr/munc/
https://hal.inria.fr/hal-02087112
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Part II

Uncertainty integration in the

Semantic Web
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Chapter 2

Introduction to Uncertainty and

the Semantic Web

Previously, we presented the general context of our problem and the aspirations and

goals of this thesis. The representation of Uncertainty on the Semantic Web requires

an understanding of the notions of the Semantic Web and a deep understanding of

the technical choices and the theoretical background of uncertainty.

This chapter is structured as follows: Section 2.1 presents an overview of the

Semantic Web and the different technicalities linked to the notion. Section 2.2 offers

a glimpse over the notion of uncertainty from different backgrounds and focuses on

the aspects concerning the context of this work. We bridge between the two concepts

of uncertainty and Semantic Web in Section 2.3. Then, the conclusion of this chapter

paves the way to further discussion about the needed steps for the integration of

uncertainty in the Semantic Web.
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2.1 Semantic Web: the Web that makes sense

for machines

Since 1989, starting from the publication of the first report authored by Tim Berners-

Lee describing his vision of the World Wide Web [10], this latter continues the evolu-

tion towards an open universe of information. The same report initiated a foundation

for what is known now as Linked Information Systems, which were further discussed

in another article of his, focusing on the semantic aspect of the Web. This vision tar-

geted the accessibility of information on the Web to different types of agents, helping

to move towards ubiquitous artificial intelligence [11].

The Semantic Web nurtures the processes allowing the Web to become a “machine-

friendly” space. This starts with the transition from a document-based view of re-

sources on the Web to a data-based one, as shown in figure 2.1.1 Allowing more

granularity in data representation and taking advantage of structured data already

encapsulated in the “Web of Documents” helped to turn it into a Web with interlinked

pieces of data (i.e., Linked Data). These small interlinked atoms allowed machines to

explore, read, understand, and use such pieces for other purposes such as reasoning.

The transition was possible due to the introduction of new technologies, standardized

by the World Wide Web Consortium W3C.

Figure 2.1: Transition from a document-centered view to a
data-centered view.

1The arrows between documents represent URLs, while arrows linking the graph nodes
are IRIs.
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2.1.1 Linked Data

The current architecture of the Web relies on a set of technologies and protocols,

allowing the presentation and access to the resources (documents). These technologies

were needed to identify, describe, and access resources on the Web:

• Hypertext Transfer Protocol HTTP:2 to access and retrieve information from

existing resources on the Web.

• Hypertext Markup Language HTML:3 to describe the structure of a Web page.

• Uniform Resource Locator URL:4 to identify and refer to resources on the Web.

Changing the view from document to data required the introduction of new terms

and technologies, as shown in figure 2.2:

• URI (Universal Resource Identifiers5) replacing URL. Instead of “rep-

resenting what exists on the Web” (i.e., files, documents, pages, etc.) it allows

“representing, on the Web, what exists” (i.e., entities, concepts, data) [12].

While URLs can only refer to documents on the Web, URIs (and IRIs after,

for Internationalized) allow identifying physical and conceptual entities (like a

person, a car, or the concept of knowledge), hence offering the possibility to

bridge the gap between the Web and the reality.

• RDF replacing HTML. Instead of describing the documents using HTML,

the Resource Description Framework RDF is used as a standard6 to describe

both entities and the relationships between them. More details about RDF are

provided in section 2.1.2.

2https://tools.ietf.org/html/rfc2616
3https://tools.ietf.org/html/rfc2616
4https://tools.ietf.org/html/rfc1738
5https://tools.ietf.org/html/rfc3986
6https://www.w3.org/TR/rdf11-concepts

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc1738
https://tools.ietf.org/html/rfc3986
https://www.w3.org/TR/rdf11-concepts
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Figure 2.2: Transition from the Web to the Semantic Web [12]

2.1.2 Semantic Web Stack

The Semantic Web “layer cake” is a stack of technologies summarizing the process

of data description and interpretation. The layer-based architecture ensures that

information in each layer is conforming with and less general than the lower ones.

The version we provide in figure 2.3 is the one of the W3C. The technological stack

is based on dereferenceable entities, identified each by an IRI. The stack provides

multiple layers:

Figure 2.3: The Semantic Web “Layer cake” [13]
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• Data: In the Semantic Web, data is represented following the Resource De-

scription Framework RDF. The standard allows representing data in a machine-

readable format that can be understood and exchanged between the different

agents on the Semantic Web. Atoms at this level (smallest piece of data) are

RDF triples in the form <subject, predicate, object>. For instance, express-

ing that “entity XYZ is of the color Red”, translates to a triple linking the

IRI ex:XYZ7 representing the entity XYZ, with the IRI ex:Red representing the

color “Red” as a resource, using a predicate (i.e., property) called ex:hasColor.

In this case, all three elements of the triple <ex:Apple ex:hasColor ex:Red> are

IRIs. The RDF triples form a directed labeled graph (i.e. RDF graph) in which

the predicate of each triple links its subject to its object.

The triple-based architecture and abstraction in the framework are the same,

yet RDF requires a serialization syntax for data publication. RDF data can be

expressed in many syntaxes, like XML or JSON-LD (JSON for Linked Data),

or more intuitive syntaxes8 such as Turtle and N-Triples. Moreover, notations

such as RDFa permit embedding RDF data in HTML pages.

• Schema: The essence of the Schema layer is structuring data existing in the

lower level (RDF triples). This layer allows the enrichment of the stack with

extra functionalities to describe the “data about data” or metadata. RDFS (for

RDF Schema) is a W3C standard to represent schemas (ontologies), providing a

semantic extension to RDF [14]. It allows building relationships between classes

(subsumption relationships) and for properties to have additional specifications

about their semantics (like domain and range).

The Web Ontology Language OWL extends the capacities of RDFS with more

expressive, rigid, and descriptive features [15]. For instance, it enables ex-

pressing restrictions or declaring equivalences by introducing predicates such

as owl:sameAs, but at the same time adds some constraints, such as the prohi-

bition to use classes as instances. OWL enables annotating the ontology itself,
7The example prefix “ex:” refers to the URI of the namespace in which the entities are

defined.
8https://www.w3.org/wiki/RdfSyntax
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enabling stating metadata such as the provenance of the ontology, authors,

version numbers, and backward compatibility information. OWL also comes

in different variants (profiles, or flavors) in expressiveness and complexity.

• Query: The role of this layer is to allow access to data in lower levels. Similar

to SQL, the Semantic Web presents its RDF-flavored technologies and proto-

cols, offering the possibility to read and question the triples using formalized

queries and triple patterns. The SPARQL query language allows harnessing

information in an advanced way, offering the needed tools for complex web-

based applications to thrive [16]. SPARQL relies on data and does not provide

inferences on its own. Its only role is to transform the description of the appli-

cation’s query, then return its results as an RDF graph or as bindings.

• Rules: This layer is introduced to cope with the lack of expressivity in the

schema layer. Rules focus on representing a general approach for discovering

and creating new links based on the existing data. Rules are not only about

controlling the inference steps which the inference engine makes, but also to

limit the process with a proper set of constraints. Reasoning and inference are

based on the two layers (i.e., schema and rules) to generate new data, transform

the existing ones, or verify data integrity and explain what it should look like

in shape. The W3C maintained language to explain rules is the Rule Inter-

change Format RIF, mainly destined to exchanging rules among rule systems.

Rules can be invoked in both directions: associating given information with an

inferred one (bottom-up) or associating a query with sub-queries satisfying its

answer (top-down).

Some rule languages like SPIN 9 or SHACL10 can be used for data validation

purposes. SPIN uses SPARQL queries to mimic the Object-oriented model on

the Semantic Web by linking resources (objects) to rules (methods) describing

the behaviors or constraints of objects. SHACL defines a set of constraints,
9https://spinrdf.org

10https://www.w3.org/TR/shacl
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called shapes, around graph nodes and their property paths. It produces con-

formance reports to check whether data in a graph is conform with predefined

shapes.

• Unifying Logic: The idea of standardizing and bridging granularized data

together targets mainly reasoning about facts to create new links, assemble the

pieces to visualize a bigger picture, and untangle the different stories that the

data may tell. The use of ontology languages and rule languages enables, to

some extent, inferencing and verifying the integrity of newly generated data.

Despite that, the stack does not specify a standard logic to work with data

on a global level: in particular, interpretations to use when data is missing,

incomplete, invalid (We discuss later an uncertain World Assumption in Sec-

tion 2.2.1). The unifying logic should enable digesting data from all lower levels

into unique ones that make sense to the agents. The different families of logic

used all along with the stack (i.e. Description logic in OWL, First-Order Logic,

and Horn Logic in rules) seem to offer different flavors (but not one) to reason

about data. OWL itself comes with many variants, each with a different level

of expressiveness.

• Digital Signature or Crypto: This layer goes all the way from the bottom

of the stack to its top, backing up the other layers and making part of the

foundation of the trust layer. The idea behind cryptography is to ensure that

the presented data comes from a trustworthy source and via a reliable channel.

Statements can be either part of signed documents, verified with a key, or have

been logically derived from verified statements. The other aspect of this layer

is encryption, for data needs to be transferred securely.

• Trust and Proof : The foundation of trust comes from the previous layer

(Crypto) and the fact that data needs to be traced to its origins, hence proven.

The role of the proof layer is to ensure finding breadcrumbs leading to the pro-

cesses or the sources that created the data and being able to explain how data

was generated and for what purpose. Proof engines need to elaborate a clear

path for the trust layer to analyze and choose whether the signed and proven
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data is to be trusted for applications to use.

2.1.3 Linked Open Data

The adoption of the aforementioned technological stack by sources on the Web influ-

enced further the culture of openness of information on the Semantic Web: Since Web

documents were accessible, data issued from them or directly made public through

the Semantic Web is made accessible for everyone too. However, some restriction-

s/recommendations must be respected to achieve that and the first of them is linked

to the previous influence. For the Linked Data to be open, it must comply with the

5-stars recommendations for data publishing. The recommendations require data to

be openly available on the Web, in a machine-readable and non-proprietary format,

published with respect to the Semantic Web standards and is linked to other data.

All sources publishing their data publicly and in open-access on Semantic Web are

contributing with Linked Open Data. One illustration of this interconnected Web is

formed in the Linked Open Data cloud or LOD cloud,11 illustrated in figure 2.4. The

cloud includes available datasets of more than 1000 triples from the Semantic Web,

with some datasets reaching the order of billions of triples. As of May 2020, the cloud

assembles 1255 datasets linked with 16174 links and covering several domains (i.e.

Geography, Government, Life Sciences, Linguistics, Media) [17].

The potential of Linked Open Data is enormous: search engines can thrive, defi-

nitions enriched, and exploratory search is easier than ever. The interlinks between

datasets allow to refer to similar entities and reuse their descriptions, assembling the

scattered facts about them and seeing a bigger picture or accessing extra information

that one dataset could not afford. The advancements made in the field of Artificial

Intelligence permit nowadays to leverage the use of this kind of data as inputs, hence

helping produce, curate, share and maintain corpora and datasets [2]. In the follow-

ing paragraphs, we present some of the significant cross-domain datasets in the LOD
11https://lod-cloud.net
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Figure 2.4: the Linked Open Data Cloud as of May 2020[17]

cloud. The ones we mention here integrated the cloud in their early stages.

DBpedia 12 It is a knowledge base aiming to make the existing knowledge on

Wikipedia (unstructured or semi-structured) available on the Semantic Web. The user

community of DBpedia contributes by providing the mappings linking the information

representations in Wikipedia with the DBpedia ontology [18]. The mapping process

focuses mainly on Infoboxes (tables that appear on the side of an article to indicate

its relevant facts). As a consequence, users cannot directly alter data on DBpedia.

If one does want to, they must edit the corresponding Wikipedia pages and wait for

the extraction process (which can be done live in DBpedia-live [19]). DBpedia is one
12https://www.dbpedia.org

https://www.dbpedia.org
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of the pillars of the LOD cloud, representing one of its central nodes that has been

maintained since the first iterations. It covers information in 125 languages, with the

English chapter alone containing more than 28 million triples in multiple domains

[18].

Wikidata 13 It is one of the projects maintained by the Wikimedia Foundation.

Wikidata started in 2012 and aimed at offering a machine-readable representation of

existing knowledge in the Wikimedia projects. The project assembles all languages

from the projects in a unique, easily accessed interface. Wikidata is a community-

maintained knowledge base where everyone with an account can add, update, or

delete triples. It counts more than 93 million interlinked entities.

Freebase 14 It was one of the first initiatives to link data on the Web. Freebase

shared the same spirit with DBpedia regarding knowledge extraction from Wikipedia

but offered a broader view as it harvested other sources. The project was started

in 2007 by Metaweb and was discontinued in 2015 after being absorbed by Google,

with the last dumps of Freebase residing in Google’s Knowledge Graph. One common

point between Freebase and Wikidata is their openness to changes directly by their

users, unlike DBpedia that requires altering Wikipedia articles or the mappings that

allow it to extract information. However, unlike Wikipedia and DBpedia, Freebase

was maintained by domain experts (and not community members).

YAGO 15 It defines itself as a simplified, cleaned, and reasonable version of Wiki-

data. YAGO aims to upgrade the usability and reliability of Wikidata by imposing a

strict type hierarchy with semantic constraints. The project started with a combina-

tion of Wikipedia and Wordnet [20]. It is moving now in the fourth version of YAGO

towards the combination of Wikidata and schema.org [21].

13https://www.wikidata.org
14https://developers.google.com/freebase
15https://yago-knowledge.org/

https://www.wikidata.org
https://developers.google.com/freebase
https://yago-knowledge.org/
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Alongside data, the Linked Open Vocabulary16 initiative allows access to open

schemas that were published to map the previous datasets or to be used to annotate

data as a standard way to represent the concepts and their relations.

For Linked Data to be 5-stars, it has to be (i) available on the Web, (ii) structured,

(iii) presented in a non-proprietary format, (iv) follow W3C standards (i.e. such as

RDF) to be referenced, and (v) linked together to provide a context [22]. The openness

of LOD cloud requires all sources to comply with the previous 5-stars rule to publish

their data. Still, it gives no constraints about the uniqueness and the compatibility of

such data. Two different sources may make contradictory statements about a single

entity. Moreover, the Unique Name Assumption is not respected: one resource may

have different IRIs referencing it. For instance, one user may have an account at

Facebook, Twitter, and Pinterest. In each of the former websites, the same user has a

different set of information about them and a different permalink. For that, standards

like OWL and SKOS17 provide tools to link similar and identical resources together

(owl:sameAs, skos:exactMatch, skos:closeMatch).

2.1.4 RDF Serialization Syntaxes

In the universe of Linked data, triples are the atoms. They consist of components

that provide meaningful information only when put together. The existence of con-

cepts means nothing if the concepts are not interlinked and put in action. Hence, a

statement consists of a subject linked to an object using a property. Some views would

extend this to include the context in which the statement has been asserted (yet no

standard definition of a context has been made).

Table 2.1 shows some of the existing syntaxes of RDF serialization and examples of

the representation for the triple (ex:Apples, ex:hasColor, ex:Red). The two factors

we focus on are human readability and storage (Compression). The first one depends

on the ease of distinguishing resources and linking them to their properties, objects,
16https://lov.linkeddata.es
17https://www.w3.org/TR/skos-reference/

https://lov.linkeddata.es
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and types. The second one is about the size of the serialization with and without the

presence of redundancies. Some of these syntaxes were adopted by W3C as standards

or recommendations, such as RDF/XML [23], Turtle [24] (followed by TriG [25]),

N-triples [26] (followed by N-Quads [26]), and JSON-LD [27].

Serialization

format

Human

readability
Storage Example with the triple

(ex:Apples, ex:hasColor, ex:Red)

RDF/XML + +

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"
xmlns:ex="http://example.com/">
<rdf:Description rdf:about="http://example.com/Apples">

<ex:hasColor rdf:resource="http://example.com/Red" />
</rdf:Description>
</rdf:RDF>

N-Triples + ++ <http://example.com/Apples> <http://example.com/hasColor> <http://example.com/Red> .

Turtle +++ +++ @prefix ex: <http://example.com/> .
ex:Apples ex:hasColor ex:Red .

Trig +++ +++ @prefix ex: <http://example.com/> .
ex:MyWebsite {ex:Apples ex:hasColor ex:Red .}

Table 2.1: Examples of existing serialization syntaxes for RDF

The first and the native syntax was an XML representation of RDF data. It

consists of a nested representation of entities and attributes. It is considered quite

verbose, which resulted in the adoption of more intuitive syntaxes.

Turtle (for Terse RDF Triple Language), a flavor of N3 stripped of some syntactic

sugar, brought more readability to the representation of the code by allowing predicate

lists and object lists. Overall, the N-Triples format is the most serializable, with direct

use of IRIs, explicit triple structure, and no predicate or object lists. Other formats

such as TriG or N-Quads (successors of Turtle and N-Triples, respectively) may be

included in the aforementioned listing. Both included the possibility to add a fourth

element to statements consisting of the graph in which the statements are asserted.

There exist other embedded formats to serialize RDF. For instance, RDFa 18

enriches the HTML representation of Web pages with semantic attributes, making

it possible to annotate parts of the Web page with RDF data. On the other hand,

JSON-LD became a common alternative with a familiar web-ready syntax. Another

example is Microdata 19, using the itemscope attribute to enforce a semantic reading

of parts of a Web page and produce machine-readable labels.
18https://www.w3.org/TR/rdfa-primer/
19Part of the HTML living standard: https://html.spec.whatwg.org/

https://www.w3.org/TR/rdfa-primer/
https://html.spec.whatwg.org/


2.1. Semantic Web: the Web that makes sense for machines 31

2.1.5 Syntactical Representation of RDF Annotations

To be more thorough, we discuss the different approaches in the literature for an-

notating RDF statements with metadata in the next part. We focus here on the

annotation approaches at the statement level.

Reification It is part of the RDF standards presented in 1999 [28], [29]. Reifying

an RDF statement consists of adding a resource representing the statement (in ad-

dition to the statement itself) and link the new resource with any metadata we want

to use as annotation for the data. This representation is verbose. It also touches

the mere existence of the statement in its natural form (subject, predicate, object),

hence canceling its natural semantics and the assertion of its information. In [30], the

authors confirm that the reification is the only standard way to represent annotation

for RDF Triples and still the only one compatible with all the RDF Data Repositories

for the fact that it does not require any extensions. There exist other abbreviated

variants of standard reification, consisting of representing each triple <s,p,o> with

two triples as <:i,rdf:subject,:s>, <:i,:p,:o> with the subject of the statement in

one triple and the property-object pair in the other [31].

N-ary properties It consists of using a middle resource instead of the object

of the statement [32]. This middle resource is linked to the object above using the

property rdf:value and can be annotated with metadata. This approach is less verbose

than standard reification but inherits that the statement is no longer asserted.

Single named graph It consists of encapsulating a single statement into a named

graph and use the named graph as reference to establish the link between the state-

ment and its metadata. Unlike reification, this approach keeps the structure of the

statement, preserving its semantics.
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Singleton property It consists of creating classes of unique properties from the

existing property instances linking subjects to objects. The singleton property classes

are then used to annotate the statements that use it [33]. For example, one may create

ex:label_1 a singleton property from rdf:label that should inherit its semantics and

use it instead of the main property to transfer its semantics and annotate the edge.

This approach does not preserve the semantics of statements as it is, as it alters the

purpose of properties in the ontological definition. Another downside is ending up

having many unique properties, singletons of a single one.

RDF-star This approach proposed by Hartig et al. [34] consists of adding the

notion of embedded triples. The latter are triples encapsulated in the annotation <<

>> and can take the place of subjects or objects in regular triples. Another addi-

tion is that embedded triples are not automatically asserted. Hence we may describe

metadata about a triple without asserting it with the previous annotation, or use the

delimiters {| and |} to both assert and annotate it. That might be useful in case

of redacted triples. Meanwhile, embedding triples may be problematic in statements

with long literal objects (i.e., a descriptive text of 1000 words, with 30 attributes).

In some direct RDF syntaxes, we must repeat this abstract triple as many times as

the meta dimensions. The authors proposed an extension of Turtle to cope with the

problem and offer tools for the aforementioned notions.

Table 2.2 illustrates the previous annotation methods when annotating the triple

<ex:Apples, ex:hasColor, ex:Red> with information about its creation date and prove-

nance. For example, we consider that the triple is issued from DBpedia and created

on 01-01-2020.

The previous approaches rely on the native idea of RDF. As mentioned before,

some of the serialization syntaxes, such as N-Quads, use n-tuples instead of triples.

The additional elements can be used to associate the triple to one graph, give an ID

to the statement, or be given specific semantics by the authors of the approaches.

One example in [35] used quintuples to allow the annotation. The extra elements are
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Annotation
method

Example (turtle-star)

Reification

@prefix ex: <http://example.com/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
ex:S1 rdf:type rdf:Statement;

rdf:subject ex:Apples;
rdf:predicate ex:hasColor;
rdf:object ex:Red;
dc:created "01−01−2020"^^xsd:date;
dc:source <http://dbpedia.org/> .

Singleton
Property

@prefix ex: <http://example.com/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
ex:Apples ex:hasColor_1 ex:Red .
ex:hasColor_1 rdf:singletonPropertyOf ex:hasColor;

dc:created "01−01−2020"^^xsd:date;
dc:source <http://dbpedia.org/> .

N-ary
properties

@prefix ex: <http://example.com/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
ex:Apples ex:hasColor _:a .
_:a rdf:value ex:Red;

dc:created "01−01−2020"^^xsd:date;
dc:source <http://dbpedia.org/> .

Single
Named
Graph

@prefix ex: <http://example.com/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
ex:Graph_1 {ex:Apples ex:hasColor ex:Red .}

ex:Graph_1 dc:created "01−01−2020"^^xsd:date;
dc:source <http://dbpedia.org/> .

RDF-
star

@prefix ex: <http://example.com/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
<<ex:Apples ex:hasColor ex:Red>> dc:created "01−01−2020"^^xsd:date;

dc:source <http://dbpedia.org/> .

Table 2.2: Examples of annotation methods for RDF triples

identifiers for the graph in which an occurrence of the statement is asserted and a

key to metadata annotation for the statement in this context.

The authors of [31] remodeled subsets of Wikidata using the different annotation

approaches previously discussed. Using their work, the team working on GraphDB 20

20A graph database engine and RDF store. https://www.ontotext.com/

https://www.ontotext.com/
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performed a comparative analysis for the number of triples, loading time, and the

dump size in the different annotation approaches. The results in table 2.3 show that

RDF-star outperforms the other approaches in the three previous aspects.

2.1.6 Lightweight Ontology Development Methodology

The passage between data and schemas requires understanding a set of techniques to

harness the similarities and relations between the different instances. Such findings

can be used to create and tweak models representing a small part of the world.

These models can be compared, linked, and composed to create bigger or better ones.

Engineering ontologies aims to build structured hierarchies that rule over data and

inspire it.

The iterative process of conceptualizing entities and relationships between them

needs to be well defined to ensure a working methodology. Online communities from

several countries and throughout several years may gather around to build a hierarchy,

and for that, the working method is amongst the first things to agree on. Sometimes

the collaboration is done between strangers deciding to collaborate on one project,

and collaboration tools offer the possibility to do so (i.e., Git for code). An example

of iterative processes used for ontology development is SAMOD [37]–for Simplified

Agile Methodology for Ontology Development–. It is organized in three steps within

an iterative process, focusing on the creation, development, and documentation of

models by using a set of applicable use cases. The iterations begin with a collection

of information about the studied domain by the ontology engineer. This information

serves as the basis for the development of a modelet (an iteration of a model) that will

be checked for compatibility multiple times before publishing in the three different

steps of the lifetime of an ontology: initially, after merging a new modelet with the

model, and after refactoring the model. The tests consist of verification of the model,

data, and both of them together facing query testing. This process iterates every

time there should be an extension of the model in the future.
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The SAMOD methodology provide a test case at each iteration. It consists of the

following elements:

• Motivating scenario MS ;

• Informal competency questions CQ;

• Glossary of terms GoT ;

• a formal model T-Box;

• an exemplar dataset A-Box;

• a set of queries SQ.

A motivating scenario [38] describes a set of intuitive examples of the problem

informally. Competency questions [38] relate to this scenario and allow the produc-

tion of a glossary of terms [39]. The formalization of the motivating scenario and

the previous questions in a Semantic Web language such as OWL 2 results in the

proposition of a T-Box and an A-Box of the model. A set of queries reflects the

competency questions in a query language such as SPARQL.

2.2 Uncertainty in Information

Like any other human innovation, the Web reflects the genius and creativity of its

creators as well as their flaws and imperfections. Nowadays, the Web is a place where

“anyone can say anything about any topic”. A simple user can open a free blog on

Blogger21 and start writing what is on their mind. Fake news, conspiracy theories,

or misspelled names and places can (and do) exist on the Web. By extension, these

imperfections transferred some lack of reliability to the Semantic Web.

The population of the latter with data is the result of two processes: (i) au-

tomatic extraction and conversion (Web documents to data), and (ii) manual (or
21https://www.blogger.com
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semi-automatic) data entry. Both processes are at risk of error: extraction models

can be imperfect or inaccurate, and newly added data can be incomplete, wrong,

or invalid. In this case, both may be parts in generating unreliable outputs. This

uncertainty can be due to a random event, i.e. mistyping a name while knowing how

it should be written and entering it the right way. It also can be due to a chosen

lack of information or an imposed one. In the first case, information exists but still

was not accessed (i.e., a course on JavaScript exists in the curriculum. However, the

student still did not take it). In the second case, it cannot be accessed and is lost

forever (i.e., small details during historical events that were not documented hence

lost).

The following sections discuss the different aspects of uncertainty and how it

reflects on the Semantic Web. In an attempt to lay the ground for our research work.

2.2.1 Identifying Uncertainty in an Open World

The existing data in knowledge bases can be incorrect, incomplete, vague, etc. Each

of the deficiencies mentioned earlier may result in different types of uncertainty [40].

The Closed World Assumption CWA presumes that the lack of knowledge refers to

its falsehood. On the other hand, the Open World Assumption OWA identifies each

statement by the existence of its affirmation or negation but treats the lack of in-

formation as an “unknown” information. While both assumptions treat the truth of

statements as crisp values (0 or 1), they do not deal with uncertainty. In Table 2.4,

we present the difference of truth-value interpretation I(t) of an uncertain statement

t in a knowledge base K following one of the assumptions as mentioned earlier and

add our view over quantifying the presumed lack of knowledge by extending both

assumptions. The qualification of True and False interpretations of statements in

the last case is achieved by associating a pair of dual uncertainty measures (µt, µ̄t).

Hereby, any uncertainty measure µt (resp. its dual µ̄t) linked to a statement t has to

be in the interval [TF, TT] with TT (Totally true) and TF (Totally false) respectively.
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We believe that when measurable and presented in a machine-readable form, un-

certainty can be deduced, compared, and leveraged by applications in their processing.

Use-case ICWA(t) IOWA(t) IUncertainty(t)

t ∈ K,¬t /∈ K t t t

t /∈ K,¬t ∈ K ¬t ¬t ¬t

t /∈ K,¬t /∈ K ¬t t ∨ ¬t t ∨ ¬t, (µt, µ̄t) ∈ [TF, TT]× [TF, TT]

t ∈ K,¬t ∈ K ⊥ ⊥ t, (µt, µ̄t) ∈ [TF, TT]× [TF, TT]

Table 2.4: Interpretation of statement t in CWA, OWA, and
OWA with uncertainty

We note that it is a technical choice to use the affirmative form of a statement

when mentioning uncertainty in the Unknown case (last row, last column). One may

use t′ = ¬t instead, and the exact definition applies, or choose uncertainty measures

that help to affirm ¬t in contrast with t.

2.2.2 Origins of Uncertainty

The nature of the term that we are dealing with stresses the need for a clear definition,

for what the literature offers has several connected and close meanings. When Shan-

non introduced entropy, he presented uncertainty as information deficiencies which

can be reduced by obtaining more relevant information [41]. The term pops up in

experiments and simulations to imply the range of values (i.e. the interval) in which

measurements are included. For instance, authors in [42] stress the difference between

vagueness and uncertainty. The former deals with the non-exactitude of values in an

existing and well-defined interval, while the latter describes the absence of a context

while defining the truth value of a statement. Klir et al. [40] define three types of

uncertainty that already have established measurements: fuzziness, non-specificity,

and discord. Marquis et al. [43] reduce the definition of uncertainty to two specific

notions: (i) the lack of data and (ii) the existence of contradictory ones. The defi-

nition of uncertainty itself is challenging. It can be epistemic, i.e., stemming from our

ignorance (incomplete knowledge, lack of a model) of an entity or process, or ontic,
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i.e., representing the inherent randomness of a phenomenon or system (a roulette,

for instance). Besides, the border between these two types of uncertainty is somehow

blurred and arbitrary. It depends on our point of view and the level of abstraction

of knowledge representation. Random uncertainty is irreducible and uncontrollable,

but the epistemic uncertainty can be reduced or eliminated by introducing sufficient

information.

In logic, uncertainty is often linked to inconsistency. One example is the im-

mediate (or delayed) presence of contradictory information. Moreover, information

can be true (or partially true) only in certain contexts. Therefore, instead of relying

on logic with unretractable conclusions (monotonic), uncertainty appealed to other

types of logic. For instance, non-monotonic logic allow beliefs to be updated based

on newly presented information, and paraconsistent logic [44] handles contradictory

information and inconsistencies in knowledge bases.

We believe that the term “uncertainty” holds more specification. It includes

the different imperfections that data might have (vagueness, fuzziness, ambiguity,

invalidity, incompleteness, etc.). In practice, we are leaning towards the definition of

decision-making uncertainty, i.e., when uncertainty refers to the fact that an agent is

uncertain about the decisions to make due to an imperfection in data. The valuation

of uncertainty is, in fact, a materialization of the existing imperfection. Here, we

provide some examples of what an uncertain statement t might point at:

• Invalidity: t is wrong. i.e. providing a wrong name for a person.

• Incompleteness: t provides incomplete information. i.e. the list of songs in

one album referred to by the statement is missing some titles.

• Inconsistency: t provides information that contradicts another statement.

i.e. having two different delays for one flight or two birth dates for one person.

• Risk: the use of t is risky. It is usually linked to a use case. i.e. one road is

selected for transit, but there is a risk for it to be closed due to constructions.
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• Vagueness: t provides a vague, imprecise information. i.e. saying a person

was born in the ’90s instead of providing their date of birth.

• Ambiguity: may be confused with vagueness, but here t provides multiple

possible interpretations, due to the lack of complementary knowledge. i.e.

Two students in the same classroom have the same family name, but no first

name or ID number is provided.

• Fuzziness: t states a fuzzy truth. While vagueness means not specifying a

value in a defined interval, the problem here is the imprecision of upper and

lower cuts of the possible instances of the information (the interval itself is

imprecise). i.e., using the concepts old and young without proper definition, or

in a form of a membership function.

In literature, the previous terms are treated differently, some works on uncertainty

evaluation in textual documents deal with vagueness [45], other works on logic deal

with inconsistency [46] and other works on ontology alignment deal with fuzziness [47].

We should mention that the previous list is not exhaustive.

We perceive Uncertainty as “a result of imperfections, in the inputs or the model,

generating defiant outputs whose mere existence, real value, or real meaning (seman-

tics) we are uncertain of ”. Some outcomes are either produced by error, their values

are wrong and make no sense (invalid), or do make some sense (incomplete, vague,

ambiguous, fuzzy). If we consider machine learning models, insufficient training data

or using wrong parameters may provide skewed results. We relate to real-life scenarios

of human error, such as mistyping a name during data entry, missing one line during

data curation, or not selecting the best regular expression for textual data extraction.

The same might happen for models performing Named-Entity Recognition tasks on

a text where the validation scores are not perfect on the complete set of tests. The

simple logical rule governs the previous relationship: “the false implies everything”.

Imperfect processes and imperfect inputs will generate anything, including errors.

For such, we qualify the data as uncertain.
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2.2.3 Uncertainty Theories

The quantification of uncertainty is not a novel intent. Klir [48] specified that un-

certainty theories must satisfy four levels of challenges to be able to deal with the

uncertainty of a specific type. According to the author, uncertainty theories have to:

• LEVEL 1: provide an appropriate mathematical representation of the con-

ceived level of uncertainty

• LEVEL 2: offer calculus by which the values can be manipulated

• LEVEL 3: enable measuring relevant uncertainty in any situation formalizable

in the theory

• LEVEL 4: present developed methodological aspects of the theory, i.e. proce-

dures to make the various uncertainty principles work within the theory.

The first three levels are self explanatory. As for the fourth, it links to the

uncertainty principles presented by the same author to be taken as standard rules for

the use of theories in different use case and they are similar to . The principles in

question are:

• The more informative results are the ones to be selected, to minimize uncer-

tainty.

• The results of uncertain information should widen the range of uncertainty to

cover all the constraints, to maximize uncertainty.

• Uncertainty should be preserved as it is transformed between different theories,

for uncertainty invariance.

We enumerate some of the theories developed and used by researchers in various

domains to cope with uncertainty.
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Probability Theory The recurrent observation of random (ontic) phenomena

allowed understanding more details about them. Observations show that facts remain

random, but they show up over time with a certain frequency. As a result, defining a

truth value of a fact is tied to defining their likelihood of being in a particular state,

either based on observations (i.e. the number 3 in one dice shows up once every

20 times), or mere subjective definitions (i.e. the dice has six faces, so if we repeat

the experience each of them is likely to show up once in 6 times). Thus, probability

theory can have subjective or frequentist semantics. The first represents an assigned

degree of belief and includes prior background knowledge (like the number of faces in

dice and the fact that the dice is not tricked). The second represents the statistical

frequency of events. It is based on infinite sampling: rolling the dice infinite (finite

enough to tell) times, studying batches of samples from the population, and having

the same result. Subjective probability is often described as Bayesian, as the first

explanations about prior, likelihood, and posterior knowledge used in that calculus

were introduced by Bayes in 1763 [49].

To go further, Imprecise Probabilities extend the previous definitions and allow

using a probability interval (with upper and lower bounds) to describe how the prob-

ability may variate instead of single-valued probabilities.

Possibility Theory The reflection behind possibility is based on being close to a

certain prototype. A possible outcome is not a certain one, as probability might state,

but it refers to the fact that it is normal to have it, not surprising. However, when an

outcome has more possibility than another, it is more plausible to be accepted. The

degree of possibility πΩ(x) ∈ [0, 1] of an element x in the universe of discourse UΩ

represents the plausibility of x to be the correct value of an uncertain variable [50].

Based on the previous definition, the theory identifies two dual measures: possi-

bility and necessity. The possibility Π(A) of a subset A ⊆ Ω represents the upper

bound of the possibility distribution of the elements in A, representing the consistency

of A with πΩ. On the other hand, the necessity N(A) of a subset A ⊆ Ω represents

the possibility that elements in the complement of A noted Ā are not satisfied (or
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possible), thus representing to what extent the knowledge implies A.

Fuzzy sets As their name suggests, fuzzy sets are sets with gradual, non-crisp,

and fuzzy boundaries. Each element in a fuzzy set has a degree of membership to

the set. The sum of the degrees of membership to all possible sets of each element

sums to the unit. One element can be in multiple fuzzy sets at once with different

degrees of membership. For instance, normal temperatures cannot be less than 20,

and low temperatures cannot be more than 24. If the temperature is 23, it is neither

normal nor low, but both. Each one with a degree of inclusion to the sets “normal”

and “low”. Figure 2.5 illustrates the difference between sets with crisp boundaries

(A) and fuzzy sets having gradual ones (B).

(a) Crisp sets

(b) Fuzzy sets

Figure 2.5: Crisp sets and Fuzzy sets

There is, however, a difference between fuzzy sets and fuzzy measures: the latter

describes how uncertain we are about the membership of one element to a crisp

set (with known boundaries), while the former offers a formal description to the

graduality of the edges of the set itself.
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Dempster-Shafer Theory of Evidence The nature of this theory allows it to

provide epistemic-based uncertainty specifications in defined intervals. This theory

is built upon the works of Dempster and Shafer [51], offering a framework built

upon “evidence” of membership in sets. The theory introduces two non-additive

measurement called belief Bel(x) and plausibility Pl(x).

Considering a universe of discourse UΩ, the degree of belief that an element x in

Ω is backed up by a subset A ⊆ Ω or any of its subsets (members of the so-called

power set of A), is the degree of belief in the subset A or Bel(A). Similarly, the degree

of plausibility of A noted Pl(A) represents the evidence provided by the power set

of A and any set that overlaps with A. The Fuzzified Dempster-Shafer theory is A

generalization of the previous theory by applying it on the fuzzy sets.

The previous list of uncertainty theories is not exhaustive. Nevertheless, it offers

a glimpse of what tools are available to value the lack of data and handle the measures

agents use in their applications. The projection of these theories on the universe of

interest is also linked to the use case. For instance, one may relate the probability

information about a set of financial data to investment risks they afford to handle

if they choose to act based on one piece of data over the other. We show after in

section 3.2.2 that custom uncertainty theories can be represented to use and allow

annotating data with custom features.

2.3 The Link between Semantic Web and Un-

certainty

The Semantic Web is perceived as a formal extension of the Web. In addition to the

existing Web documents, it allows accessibility for information from data stores. Data

on Semantic Web is either contributed independently (directly in a Semantic Web

format, e.g., data dumps) or extracted via specific processes (e.g., mapping semantic
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annotations from Web documents to Linked Data, or transforming spreadsheets into

Linked Data, etc). Ceolin et al. [52] picture one process of extracting significant data

from existing Web pages. Their use-case, assessing the quality of Web pages, allowed

identifying three different possible sources of uncertainty: (i) automatic extraction

and selection of features, (ii) the relevance of those features, and (iii) the sustainability

of models. The three sources follow the idea we endorse about inputs and models.

Another concrete example we use to illustrate uncertainty on the Semantic Web is

this same manuscript, once published in a machine-readable format (i.e., uploaded on

HAL,22 or its code shared on Github, etc.). We can still be misspelling some words

or misusing others, for what will lead the automatic extractors to generate triples

with both implicit or explicit imperfections even after proofreading, examining, and

testing.

One of the many concerns here is defining the extent to which uncertainty can be

significant. We argue that uncertain data can be trusted or used to extract reliable

parts of data. It leads to a problem of defining what threshold is necessary and link

that to the use-cases, or determining what parts can be reliable, i.e., linking data

with a partial definition of reliable fragments (For instance, day, month, and year

information to be extracted from a date).

Efforts for Uncertainty standardization The first efforts to present an on-

tological representation for uncertainty on the Semantic Web were the ones of the

Uncertainty Representation on The World Wide Web Working Group or URW3-

XG [53]. Their proposed vocabulary [53] enables them to annotate data with the

type, the model, and the derivation of uncertainty. The group offers a limited list of

models (Fuzzy sets, rough sets) with which neither information regarding the quantifi-

cation of uncertainty nor the specificities of each approach and theory are provided.

Some works settled for the use of a more straightforward definition for uncertainty,

considering it as a number between 0 and 1 and representing the confidence in the

annotated statement [54]. Various works proposed their flavors of OWL to cope with
22https://hal.archives-ouvertes.fr

https://hal.archives-ouvertes.fr
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specific uncertainty types, such as Poss-OWL [55] for possibility theory handling,

Fuzzy-OWL [47] for fuzzy set, and Bayes-OWL [56] for Bayesian probability support.

These works do not provide a generic view for uncertainty nor a link between its

different components.

Uncertainty in the Semantic Web stack The three layers “crypto, proof, and

trust” in the Semantic Web Stack (see section 2.1.2) have the potential of backing-up

initiatives for uncertainty representation. It will rely mainly on digitally signed and

verified proofs describing the course of data to evaluate whether to trust them (or

not, or to a certain extent). However, until now, there are no standards to cope with

uncertainty for many reasons. One of the main ones was expressed by Tim Berners-

lee himself, pointing that scalability is the main issue if one has to reason about data

reliability [57]. Moreover, for those layers to be as intended, the lower ones have to

integrate uncertainty.

In the current context of the Semantic Web, data can be incomplete, invalid,

vague, outdated, ambiguous, imperfect, hence leading to an uncertain understanding

or uncertain decision-making [40]. More is due to the distributed nature of the Web

architecture, where some processes rely on data aggregation from different sources,

opinion polling, crowdsourcing, etc. Following the architecture of the Semantic Web

“layer-cake” presented in the section 2.1.2, we can link uncertainty to some if not

all of the layers. At the data level, uncertain statements can be annotated with

uncertainty metadata. At the schema level, schemas for uncertainty can be proposed

to annotate uncertain data as well as uncertain schemas. In the rules layer, uncertain

rules can be generated to identify multiple interpretations for inferred data. The

query layer can be extended to take into consideration such changes. As for the proof

and trust layers, they can be the foundation of standards for uncertainty evaluation.

In this thesis, our focus is going to be on the former research questions regarding

uncertainty. The study of the contextualization of statements is mentioned but not

profoundly studied. As for provenance, it is perceived as another type of metadata

that might help evaluate the uncertainty of statements.
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One reflection behind elucidating uncertainty is to make an agent feel safer and

more confident about getting out of their bubble. An agent may be open to consuming

data from known and trusted sources, therefore enclosed in a bubble of confirmation.

The bubble limits the perception of the agent towards the external world and acts like

an echo chamber in worst cases. We imagine one agent consuming only information

from one language chapter of DBpedia.23 even though the source is being updated

regularly, the agent limits itself to that. We believe that the agent here created

for itself a “Local Open World”. One solution to that is to list all of the trusted

sources and their confidence level according to the agent and treat the other sources

as “unknown”. Elucidating uncertainty provides a universal path for the exploration

of unknown sources. It allows understanding what to expect from one source or

performing an evaluation and casting it in that format. It will not affect agents

who still choose to trust their limited list and help those who want to open up for

exploration.

Uncertainty Extraction from Data Sources Some sources do not provide

explicit uncertainty information, whether perceived as errors,incompleteness, or reli-

ability. Detecting uncertainty can be achieved by comparing the data source to itself,

reflecting on data patterns or extrapolation to complete missing information and/or

detect wrong ones. This also can be achieved by comparing and linking the data

source with other external sources for more confirmation. According to Paulheim

[58], external error-detection approaches in knowledge graphs are based on intercon-

nections between data sources: they take advantage of the links (identity links or

simply IRI reuse) to check for errors in the data source of interest. Paulheim [59]

proposes in another work an external approach to detect outlier interlinks between

datasets by creating a feature vector representation of each interlink based on types

and incoming/outgoing links to all instances of a class. That work is meant to eval-

uate links, whilst here we check the reliability of data based on presumed correct

interlinks. Other works are based on a statistical analysis of feature vectors asso-

ciated with predicates that are linked to interlinked resources [60], [61]. Another
23https://www.dbpedia.org
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interesting idea is identity quantification between two linked data sets. It explores

the idea of isomorphism quantification between two sets presumably representative

of the same real-world entity. Similar works inspiring data-driven ontology alignment

were discussed by Shvaiko et al. [62].

Christodoulou et al. [63] discusses the use of similarity measurements and Bayesian

updating to help to align ontologies from different data sources and using precom-

puted values provided by ontology matchers. The authors depend on the Linked

Open Vocabularies24 to calculate the likelihood of equivalence vs. non-equivalence of

two distinct classes and use that measure to update the local probability of similarity

between two classes using Bayesian update. Authors of [61] propose a statistical data-

driven approach to detect incorrect property mappings among the different language

chapters of DBpedia. The work focuses on detecting the wrong mappings and the

analysis is run through the whole datasets.

2.4 Conclusion: a need for explicit Uncertainty

Information

Understanding the nature of uncertainty became crucial to maintaining a view on

the reliability of the different information presented on the Semantic Web. One

way of doing this is by achieving a consensus between all parties in the information

transaction: the provider is transparent about their data. The users are aware of

the quality of data they are building their judgments and decisions upon. It fell

into the vision of Tim Berners-Lee when he was explaining the relation between AI

and the Semantic Web: “The concept of machine-understandable documents does not

imply some magical artificial intelligence that allows machines to comprehend human

mumbling. It only indicates a machine’s ability to solve a well-defined problem by

performing well-defined operations on existing well-defined data. Instead of asking
24https://lov.linkeddata.es/
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machines to understand people’s language, it involves asking people to make the extra

effort” [11].

The idea of explicit uncertainty representation raises many challenges: what if the

uncertainty information is uncertain on its own? Such an issue requires proposing a

specific limitation for the semantics of uncertainty (Local Closures).

In the next chapter, we begin the journey towards uncertainty representation on

Semantic Web and present the different factors that should be considered to perform

such extensions.
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Chapter 3

Representing and Manipulating

Uncertain Data on the Semantic

Web

The Semantic Web is populated from four primary sources: data extracted from

the static Web, databases linked to the dynamic Web, data published directly in a

Semantic Web format, and data generated from reasoning over all the previous ones.

As discussed in the previous chapter, the different processes of extraction, population,

publishing, and reasoning are sources of different imperfections. If we consider the

Semantic Web as a digital discretization of our continuous reality, our view should be

achievable through approximations. The uncertain nature of information on the Web

pushes us to consider the possible boundaries we can draw to fit the abnormalities

or know the extent of our errors. We dedicate this chapter to the proposition of a

model for uncertain data representation on the Semantic Web. In section 3.2.1, we

will discuss the physical and logical representation of uncertainty. Following that,

section 3.2.2 offers an overview of the manipulation of uncertainty information with

the integration of uncertainty calculi. We continue the discussion in section 3.2.2

with an overview of the different readings and mapping modes for uncertainty. We

conclude this chapter by showing the means of negotiating suitable definitions and

values for one use case. The results presented in this chapter were published in the
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International Conference of Conceptual Structures ICCS2019 [64], and the workshop

on Linked Data on the Web and its Relationship to Distributed Ledgers hosted in

the Web Conference WWW2019 [65].

3.1 Understanding Uncertainty in the Web

The textual and structured documents on the Web can be easily parsed. Documents in

a non-proprietary format, such as XHTML ones, can be analyzed to get interlinked

pieces of data. Data harnessing does not stop at Web-destined documents only.

The Web allowed linking other documents, such as audio files, videos, and code.

Those types survived the fragmentation of documents into interlinked pieces of data.

Nevertheless, they represent valuable resources that AI mines nowadays. Automatic

video captioning, Automatic transcription, and code mining are some of the various

applications. All of these works generate valuable data to be linked again on the

Semantic Web.

For a starter, we chose two publications [66], [67] with the same title "The Un-

certain Web". The existence of both publications on the Web makes a practical

example of uncertainty in the following use-case: Google Scholar 1 offers an add-on

for browsers, enabling them to search directly for references in selected texts or the

metadata of one open tab in the browser. For instance, if we select the text "Informa-

tion Management: a proposal" then click on the add-on, a pop-up shows the closest

matches to the text and includes links to the papers’ Web pages (and texts when

available). On the page describing the book "The Uncertain Web" by Benslimane et

al. [66], the add-on did not show the same book. Instead, it showed another book

with the same title [67], but this time for a different author and perspective. We

include both resources in the following discussion.
1scholar.google.com
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Is the Web meant to be Uncertain by Design? The direct answer to this

question would be a negative one. Like any other technology, Web architects do not

mean for it to host errors. The Web, an incomplete but progressing project, is in

a continuous movement and improvement. The designers of Web-based applications

rely on standardized, or at least community-supported technologies to build up their

functionalities. When Web technologies receive updates, improve efficiency, and of-

fer new features, the Web-based applications are updated accordingly: from simple

HTML pages to cross-platform applications that can be run over Web-views on dif-

ferent devices. The first book about the “Uncertain Web” [67] mainly discusses the

uncertainty of Web engineering and how browsers and protocols have developed over

the last two decades. The “uncertainty” here is about the technologies and mecha-

nisms helping to create Web-based content and how to deliver it to the user. If we

limit ourselves to the design of the Web or the user experience, the main uncertainty

discussed here is the one about the behavior. The Web has to reduce and tighten the

constraints leading to common errors.

Is the Semantic Web Uncertain by Design? The same answer applies here:

the Semantic Web is not meant to be uncertain. The four processes we mention in

the introduction of this chapter aim to create richer experiences and enable more ap-

plications to thrive on top of the existing piles of data offered by the generous amount

of documents, databases, and Linked Data on the Web. The stack of technologies

reigning over the Semantic Web inspires a Utopian vision of a universe where every

datum can be verified, traced, and be accurate. However, the processes leading to the

population of such data are uncertain on their own, and the standards might not be

tight enough to prevent issues like inconsistencies from happening. Those problems

can still be addressed with off-the-shelf solutions. The second book about the “Uncer-

tain Web” [66] suggests the different factors that should be taken into consideration

to cope with uncertainty. It identifies the critical points for uncertain data as the

creation, representation, and consumption.
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Imperfections in Web Data Although one piece of information passes all kinds

of tests and verification, we may find that the mere existence of that piece is wrong.

One real person may spell their name wrong on an online form, although their name

is correct in their minds, and it is the case in another part of the Web (e.g., their

LinkedIn profile). Sensors connected to the Web may produce data with a random

uncertainty due to measurement errors. Some bugs in a code that extracts data from

online spreadsheets can lead to the generation of wrong sums or averages shared on

the Web. These cases are out of the scope of Web technologies and may not be

covered entirely by the Semantic Web. There is no overseeing entity that supervises

the whole Web and prevents that one wrong piece of information is entered, based

on the Web itself (When we say the Web here, it means all the sources connected to

it and not just the hosted content. If external sources are connected, they also make

parts of the Web).

To sum up, the uncertainty we discuss here is a general concept that gathers all

of the previous definitions. It funnels the uncertainties of designing the Web tech-

nologies, Web documents, data in online databases, Linked Data, the transformation

generating data from documents, and data augmentation processes. It is an uncer-

tainty that marks the origins and the paths of each statement in the knowledge base.

In the previous chapter, we pointed that uncertainty can be epistemic or ontic and

that it follows different theories and may indicate several meanings according to the

use-case. This chapter will dive into the technical details of uncertainty representation

and manipulation on the Semantic Web. We present and discuss a model to represent

and exchange information about uncertainty on the Semantic Web.
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3.2 Representing Uncertainty on the Semantic

Web

Uncertainty is presented as a piece of information given about another information

to tell how unsure we are about the semantics of the latter. This doubt may refer

to a lack of confidence or be a subjective representation of the backing evidence

to this statement. Either one, uncertainty is a special kind of “data about data”,

i.e., metadata, defined on Oxford dictionary as “information that describes other

information in order to help you understand or use it”.

Definition 3.1. Uncertainty metadata refers to the data describing the uncertainty

of one or multiple statements. They include qualitative/quantitative data that eval-

uate the reliability of the concerning statements and descriptive ones indicating the

approach and the meaning of the provided valuations.

Uncertainty metadata is another type of data about data, similarly to temporal

annotations [68] and provenance data [69]. It represents the qualification/quantifi-

cation of the uncertainty of a statement and describes the theories and semantics of

such uncertainty. For example, it measures that 70% of the available evidence points

that the person X is the author of the paper Y. The source describes the uncertainty

metadata as one of a statistical nature. They could also be Bayesian, evidential, or

following a custom theory of uncertainty (see section 2.2.3).

To integrate uncertainty in the Semantic Web, it must comply with the standards

and, like any other data on the Web, must be reusable and publishable. In the next

sections, we propose to discuss three aspects related to the representation of uncertain

linked data:

• Syntax: The serialization of uncertain data with respect to the existing stan-

dards requires uncertainty to follow the rules of representation, linkage, and

storage of linked data. The representation should allow accessing and querying
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uncertainty besides of data and independently from it. Results should be in a

machine-readable and interchangeable format.

• Semantics: The readability of uncertainty metadata is the first step. The next

step is to make it understandable. We need to define proper semantics for un-

certainty metadata and clarify the meaning of the link between the annotation

and the statement. A valid schema for uncertainty is required for reasoners to

infer new triples or validate the knowledge base with the schema.

• Reading: We need to address the coverage of uncertainty metadata and specify

the borders of its semantics. The reading refers to the different stages involved

in providing a piece of single uncertainty information. These stages include the

sets of statements affected by or affecting uncertainty, either directly (i.e., a

direct annotation and affiliation) or indirectly (i.e., through a link or an inclu-

sion). They also include the methods used to combine the different values and

use the indications to understand current uncertainty information or provide a

new one.

3.2.1 Serializing and Storing Uncertain Data

Statements (triples) in the form of <subject, predicate, object> are used to de-

scribe relationships between resources on the Semantic Web. The metadata linked to

these statements and representing uncertainty can also be considered as a resource.

They can be identified using IRI s and linked to other resources as an annotation

or be annotated by them. For example, an uncertainty IRI can be annotated by

other metadata such as its creation date or its provenance. If we consider the IRI

ex:Uncertainty_1, we may assert that the statement ex:Statement_1 is annotated by

ex:Uncertainty_1, and that ex:Uncertainty_1 was generated on the first of September

2021 by user ex:User_1.

The annotation of a statement with uncertainty metadata requires a link to the
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statement as an entity. We discussed in section 2.1.5 the different serialization syn-

taxes for RDF and the several methods to annotate statements with metadata using

such syntaxes. Some of the proposed methods affect the semantics of triples them-

selves. We argue that annotating a statement requires elaborating a link with the

statement as a whole and preferably without losing its semantics. Both the syntax

and annotation methods are crucial elements to discuss for scalability.

We believe that the use of RDF-star to represent uncertainty and annotate triples

fulfills the needs for assertion, readability, and ease of access. RDF-star is yet to be

a standard. However, it is currently adopted by different data stores (like Apache

Jena, TopQuadrant TopBraid EDG, and Ontotext GraphDB) and offers multiple

implementations (RDF-star, SPARQL-star, turtle-star, ...). Upon the approval of its

authors, we registered the representation of uncertainty as one of the use cases in the

working documents of RDF-star.2

In the next part, we walk through an ontological representation of uncertainty

and link that with our current choice of syntax.

3.2.2 mUnc: an Ontology for Uncertainty Metadata

Uncertainty might differ from one use case to another in terms of nature and require-

ments. It can take the form of inconsistencies, incompleteness, ambiguity, vagueness

(See section 2.2.2). The use of such uncertain data requires a specific representation

that the current standards of the Semantic Web cannot fulfill without extensions.

Back in the previous chapter, we provided various elements that can be related

to an uncertainty annotation. For instance, the value reading requires two elements:

the theory that governs the value/qualification and the meaning of the annotation.

The theory can be linked with calculus. We reuse some of the definitions offered by

URW3 with slight changes to the content. We recall that we rely on the SAMOD

methodology of ontology development to recite different use cases for uncertainty use
2https://w3c.github.io/rdf-star/UCR/rdf-star-ucr.html#uncertainty-representation

https://w3c.github.io/rdf-star/UCR/rdf-star-ucr.html##uncertainty-representation
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and then validate our ontology by giving examples of its usage. Besides the benefits of

agility, having it in ontology design methodology is a choice for several reasons. One

of the reasons is upgrading the model iteratively as long as new data and requirements

are available. In addition, the model can be published in several versions containing

separated focuses. The example would be focusing now on the main questions about

uncertainty representation and then figuring out a way to represent the translatability

of uncertainty. Not to mention that this allows having milestones and hence facilitate

collaborative working on the design, especially since discussions about uncertainty

should be of consensus about concepts before application.

3.2.2.1 mUnc Motivating Scenarios

We provide examples of the motivating scenarios MS describing some use cases where

uncertainty representation is of need. This list cites existing/possible situations with

unreliable data in Table 3.1. The list is extended with more examples on the website

of the uncertainty ontology.3

Other motivating examples are mentioned in the report of URW-XG.5 Cases of

information fusion and Ontology-based reasoning are upon the first motivations we

mentioned previously.

3.2.2.2 mUnc Competency Questions

The identified questions, issued from the reading of the motivating scenario, would

make the basis and the limitation for the proposition of the Glossary of terms. We

provide here some of the requirements that the ontology is supposed to handle.

1. What statements are annotated using a particular uncertainty theory?

2. What are the components of an uncertainty approach?

3. How to manipulate an uncertainty value?
3http://ns.inria.fr/munc
5The use-cases can be found here: https://www.w3.org/2005/Incubator/urw3/

XGR-urw3-20080331/#usecases

http://ns.inria.fr/munc
https://www.w3.org/2005/Incubator/urw3/XGR-urw3-20080331/##usecases
https://www.w3.org/2005/Incubator/urw3/XGR-urw3-20080331/##usecases
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Name Uncertainty of data on the Semantic Web

Example 1 The height of the football player is stated in the context of the French
language chapter of DBpedia <http://fr.dbpedia.org/page/Stefano_
Tacconi> is 193cm, while in the English chapter <http://dbpedia.org/
page/Stefano_Tacconi> it is of 188cm. We counted 27516 football play-
ers in the English chapter have a valid height and an owl:sameAs link
with the French chapter. After querying and linking both sources,
we found 695 instances (i.e., 2.5%) having different height values (We
tested for more than 2cm, refer to appendix A).

Example 2 To calculate the age of Plato 4 from incomplete birth and death dates
(missing one information such as the day, or the month), we must have
an approximate representation or an interval. A birth date missing an
information about the day of birth can be represented using a fuzzy
number, with a membership function based on a statistical analysis
of the different birth dates in a specific period. There is no datatype
to represent fuzzy intervals and fuzzy numbers. According to Strac-
cia [70], a fuzzy interval may have up to four parameters to describe
the shoulders. A fuzzy number can be part of multiple fuzzy intervals
at once, each with a degree of membership.

Example 3 The choice to use unreliable information (from a website that we did
not verify or without references) is linked to a risk the user must
comprehend. Such risk may be linked to the whole website, a portion
from it, or specific authors. For example, the reference to Plato in
Wikidata has two different birth dates on the Web page. Moreover,
the query service returns a third and different birth date (Figure 3.1).

Example 4 The list of music albums of one artist can be missing some titles.
The fact that we judge based on incomplete information should be
mentioned and quantified.

Example 5 A human agent provided a list of the employees in their company. The
same task was given to a robot to crawl the different phone books
and websites, find listings of people working in the same company,
and enrich the previous list. The human agent made some typos in
the list, and the robot found multiple instances for people with the
same name but different phone numbers and addresses.

Example 6 When Named Entity Recognition is run automatically, the model may
not be fully accurate and precise with the outputs. The missing labels
inform of incompleteness in the generated list, and the falsely (or
wrongly) annotated refer to invalidity (or ambiguity).

Table 3.1: The motivating scenario for uncertainty represen-
tation on the Semantic Web

4. How to answer a query about two statements, knowing that one of them at

least is uncertain?

http://fr.dbpedia.org/page/Stefano_Tacconi
http://fr.dbpedia.org/page/Stefano_Tacconi
http://dbpedia.org/page/Stefano_Tacconi
http://dbpedia.org/page/Stefano_Tacconi
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Figure 3.1: An example of inconsistencies in Wikidata. The
page shows two different birth dates while the query service

shows a distinct third one.

5. Given two uncertain statements, how to determine which one is the most ac-

curate one?

6. What is the uncertainty of a statement inside an uncertain context?

The list above is non-exhaustive. Some of these questions are related to the

motivating scenario. Others link with some of the research questions we provided in

the introduction of this manuscript. These questions can be preliminarily answered

as follows.

1. A possible outcome is the list of all the statements with an uncertainty anno-

tation joint with the list of their theories. For instance:

• statement 1, uncertainty object: (uncertainty value, uncertainty theory)

• statement 2, uncertainty object: (uncertainty value, uncertainty theory)
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2. An uncertainty approach announces a reading and follows a theory that has

defined features.

3. An uncertainty value can be manipulated using the calculi linked to the features

of uncertainty theories.

4. We need to check first if the two statements are mentioned in the same world or

non-contradictory worlds. If the statements are linked to each other to provide

an answer, then the answer –if any– must be uncertain, and we need to evaluate

its uncertainty based on the two statements.

5. A formal definition of a theory also provides comparability between the uncer-

tainty values. We may choose the best one in terms of the uncertainty reading

provided with the two values.

6. One possible outcome is to consider the assertion of the inclusion in the context

as an uncertain statement itself and answer according to (4).

3.2.2.3 mUnc Glossary

From the previous test cases and the definition of uncertainty we provided in the

previous chapter (see section 2.2.2), we introduce some terms that we see as a raw

format for what can be formalized later in ontological concepts. Table 3.2 presents

the main terms that are related to uncertainty, such as theories and values.

3.2.2.4 mUnc Concepts and Properties

Uncertainty information is considered a specialization of the general concept of meta-

data. That simplifies the future extensions for other types of metadata. For the same

reason, we do not include the concept of Agent, as it can be included using other

vocabularies like W3C PROV Ontology.6 We see the provenance-related metadata

as an external component that can annotate uncertainty data to express their ori-

gin for more transparency. Figure 3.2 offers an overview of the core concepts and

properties of mUnc including sentences, contexts (worlds), and uncertainty metadata
6http://www.w3.org/TR/prov-o/

http://www.w3.org/TR/prov-o/
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Term Definition

Meta/Uncertainty Data associated with and annotating a state-
ment. This metadata does not have a generic
type, for as many types of customized metadata
can inherit from it. The Meta relates to a specific
world in which the statement is asserted. Uncer-
tainty is one kind of metadata that can be used
to annotated a statement.

Sentence The annotated statement with uncertainty meta-
data.

Uncertainty Theory A theory that allows reading and manipulating
uncertainty values.

Uncertainty Features A set of parameters linked to one uncertainty the-
ory and allowing to quantify/qualify the state-
ments with uncertainty values.

Uncertainty Indication An annotation that explains the reading of the
uncertainty. That may refer to the risk of having
uncertain sentences in the results, the reliability
of the information, the ambiguity, or a mistake
detected by the agents subjecting the data qual-
ity. It may as well refer to the epistemic nature
of the uncertainty.

Uncertainty Value The value (or values) qualifying/quantifying the
uncertainty of the statement.

Uncertainty Calculi The set of operators and functions that can be
applied to uncertainty values to combine them
and manipulate them.

World The context in which the statement is asserted
and this assertion is evaluated.

Select uncertain statements When two uncertain statements in the same
world are selected to output a result, a selection
can be performed based on their uncertainty val-
ues to decide whether there is a world in which
the two statements hold together with respect to
their uncertainty theories.

Compose uncertain statements When two uncertain statements in the same
world are joined to output a result, a composi-
tion can be performed on their uncertainty values
to export a new uncertainty value linked to the
result.

Table 3.2: A glossary of terms of the uncertainty ontology
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(theories, features, calculi). Table 3.3 illustrates the former concepts and their defi-

nitions. The extended definitions of the ontology and its documentation are available

in its reserved namespace on INRIA servers.7

Class Definition

munc:Meta Data associated with and annotating a statement.
This metadata has a generic type, for as many types
of customized metadata can inherit from it. The
Meta relates to a specific world in which the state-
ment is asserted. Uncertainty is one kind of meta-
data that can be used to annotated a statement.

munc:Uncertainty A specific type of munc:Meta. The concept refers to
the metadata set that holds information about the
uncertainty of the annotated resources.

munc:Sentence The annotated statement with uncertainty meta-
data.

munc:UncertaintyApproach An approach for uncertainty evaluation, linking a
theory, a set of features, and operators. Under-
standing the approach allows reading and manip-
ulating uncertainty values.

munc:UncertaintyIndication An annotation that explains the reading of the un-
certainty. That may refer to the risk of having un-
certain sentences in the results, the reliability of the
information, the ambiguity, or a mistake detected
by the agents subjecting the data quality. It may as
well refer to the epistemic nature of the uncertainty.

munc:UncertaintyValue The value (or values) qualifying/quantifying the un-
certainty of the statement. It can be a literal, a URI,
or of a specific datatype.

munc:UncertaintyCalculus The function linked to an uncertainty feature to ma-
nipulate it under an uncertainty operator.

Table 3.3: List of Classes in the Uncertainty Ontology

A sentence is an expression evaluating a truth value, while the world represents

the context in which a sentence is stated. Both sentences and worlds can be annotated

with uncertainty information. For instance, the sentence ex:S1 representing the triple

⟨ex:StefanoTacconi, dbo:height, 188⟩ in the world ex:DBpedia_FR referring to the

height of the football player is stated in the context of the French language chapter

of DBpedia [71], assuming that the latter is consistent [72].
7http://ns.inria.fr/munc

http://ns.inria.fr/munc
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Property Definition

munc:uncertaintyFeature A parameter linked to one uncertainty theory and
allowing to quantify/qualify the sentences with un-
certainty values.

munc:uncertaintyOperator The set of operators and functions can be applied
to uncertainty values to combine them and manip-
ulate them.

munc:statedIn Links the sentences and worlds to their metadata,
including uncertainty.

munc:hasMeta Links the sentences and worlds to their metadata,
including uncertainty.

munc:hasUncertaintyFeature Links the uncertainty approach to its features.
munc:hasUncertaintyOperator Links the uncertainty approach to its operators.

Table 3.4: List of Properties in the Uncertainty Ontology

1 ex:S1 munc:statedIn ex:DBpedia_FR.

An Uncertainty Approach (i.e., Uncertainty theory) links a set of features. These

are the metrics on which the uncertainty theory is based to indicate the degree of

truth, credibility, trust, or likelihood of a sentence (see section 2.2.2). Each feature

links a value to the uncertainty entity annotating the sentence. The interpretation

of each uncertainty entity is linked to the entity itself, resuming the reading of the

different uncertainty features in this case. Indications can be given as plain text,

references to documentation, or other datatypes that can be used later as parameters

in the uncertainty calculus. To continue with the previous example, the sentence

ex:S1 can be annotated with an uncertainty entity ex:Uncertainty_1 that follows a

probabilistic approach ex:SubjectiveProbability having one feature ex:probability

with the value 0.9. The indication states that the probability here indicates the trust

in the author of the sentence.
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1 ex:S1 munc:hasMeta [

2 a munc:Uncertainty;

3 munc:hasUncertaintyApproach ex:SubjectiveProbability;

4 ex:probability "O.9"^^xsd:integer;

5 munc:hasUncertaintyIndication "ex:probability represents the trust in the

original author of the sentence. If the provenance information is not given,

the author is example.com by default."^^xsd:string

6 ].

We note that the attribution of a specific uncertainty approach depends on the

use-case. For instance, a missing triple cannot be annotated with an approach that

represents incompleteness but we can manage to annotate its graph with such an

approach to describe that there is missing information that was supposed to exist.

Such a detail is left for the users under the condition of expressing the indication of

each feature.

3.2.2.5 The Logic behind Uncertainty Operators

To understand and manipulate the previous values, we divided the force between (i)

operators that can be applied to an uncertainty value, and the (ii) functions that

are used to apply the effect of operators, i.e., Uncertainty Calculus. With respect to

the definitions provided in the previous chapter (see section 2.2.3), we offer a generic

choice of operators for the different uncertainty approaches. We stress that we do not

extend the RDF semantics with uncertainty operators and calculi.

Uncertainty operators can be applied to uncertainty values to cover the logical part

of uncertainty theories in case of querying uncertain data. To treat the uncertainty

metadata linked to sentences beside them in queries, we require operators linked to

uncertainty approaches to offer mainly two functionalities:

• establish an order between uncertainty values of the same feature, under the

assumption of monotonicity.

• link an uncertainty approach to the calculi necessary for manipulating and

binding uncertainty values during query processing.
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The use of uncertainty operators in our work is similar in a way to the use of ⊗ or

so-called meet operator in [73]. The authors interpreted the t-norm as the existence

of one interpretation that satisfies a set of conditions set either by the agent or by

the semantics of the uncertainty theory itself. Unlike their work, we do not specify

an operator to combine information about the “same” statement, but to check if

different statements that can be bound without considering uncertainty will fit in

terms of it. For instance, two statements with different uncertainty theories would

not fit in some instances because their uncertainty metadata cannot be combined

(e.g., where uncertainty features cannot be homogenized). Naturally, two statements

following the same theory and respecting the condition of selection issued by the

requesting agent (such as a threshold for truth values or intervals for fuzzy values)

are selected for the next steps. We mentioned that we do not offer an operator for

one statement, but we can consider two instances annotated differently of the same

statement as different sentences and work the combination from there.

The example here is about the existence of two sentences in the graph :G consid-

ered here as their world:

T1 :<ex:StefanoTacconi, dbo:height, 188> and

T2 :<ex:StefanoTacconi, rdfs:label, "Stefano Tacconi">.

We define a probabilistic uncertainty approach that associates a subjective probability

value µi to each sentence Ti to reflect its reliability. We associate µ1 = 0.4 to T1 and

µ2 = 0.95 to T2. If the user looks for the different football players’ names and heights

(using the query in Listing 3.1), the expected result should be: (ex:StefanoTacconi,

188, "Stefano Tacconi"). This result presents valid bindings satisfying the pattern in

the query.

1 PREFIX dbo : <http://dbpedia.org/ontology/>

2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

3

4 SELECT ?player ?height ?label FROM :G WHERE {

5 ?player dbo:height ?height.

6 ?player rdfs:label ?label.

7 }

Listing 3.1: Querying for the names and heights of football
players
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The bindings, in this case, should satisfy the conjunction of the two triple patterns

to satisfy the query. When uncertainty is considered, both sentences should satisfy

separately (and together) a set of conditions given by the user before executing the

query. For instance, the user suggests that they do not accept answers from sentences

with a probability value of less than 0.5. In this case, the user has two options:

• to ignore the dependency of probability values, and perform a preliminary

selection of sentences with a probability surpassing the threshold;

• to check the dependency between the probability values of the two sentences

and adjust each accordingly.

If at least one of the sentences does not satisfy the conditions, both are disregarded.

For the sake of example, we consider that no dependency information links the two

probability values. For the previous threshold of 0.5, T1 won’t be selected and that re-

sults of disregarding ex:StephanoTacconi from being a binding for ?player. We expect

no multiple occurrences of the same statement with different uncertainty metadata.

As we mentioned before, we consider each context a consistent one to work with. If

we consider a new sentence:

T3 :<ex:StefanoTacconi, dbo:height, 192>

with µ3 = 0.9, then the expected result should be: (ex:StefanoTacconi, 192, "Stefano

Tacconi").

For uncertainty operators, we distinguish two important ones for each theory. The

first is the selection operator, which acts whenever a pair of sentences is selected for a

query evaluation. The operator checks if the link between these sentences holds under

the conditioning of their uncertainty values. Unlike the regular meet definition from

the lattice theory, the selection operator indicates the existence of a possible world

where both sentences can be asserted with indicated conditions on their uncertainty

values.

The second is the composition operator. It is used to evaluate the new uncertainty

value for the selected result components from query answers. For instance, the two
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selected sentences in the previous example T2, T3 are the basis for calculating the

resulting information’s probability. If we consider each sentence as an independent

fact, the resulting probability value would be the product of µ2 and µ3. The operations

linked to these operators –and any others– are implemented as an uncertainty calculus.

Figure 3.2: Overview of the mUnc ontology and its core con-
cepts

3.2.2.6 Uncertainty Calculi

Semantic Web ontology languages do not support procedural attachments or func-

tions inside ontologies. We consider linking the features of uncertainty theories to

their proper calculi (arithmetic, logical, comparison, selection, composition). Never-

theless, to satisfy the four levels of formalization for uncertainty theories, we rely here

on the LDScript function definition language [74], a programming language whose ob-

jects are RDF entities. It is built on top of SPARQL as an extension of the SPARQL

filter expression language. LDScript as a language permits variable declaration, as-

signment, function call, return, etc. Using LDScript, we can define functions named

with an IRI and one or several arguments that are variables in the SPARQL syn-

tax. That enables defining uncertainty operations and linking them to uncertainty

features.
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One of the previous informal competency questions mentioned the manipulation

of uncertainty values. We may provide a function that calculates the probability of

a conjunction of two supposed independent events A and B. The formula suggests

that for the previous events:

P(A ∧ B) = P(A)× P(B). (3.1)

Such value can be calculated for the user using the function referenced by ex:composeProbabilityCalculus

and defined in LDScript as shown in the following example:

function ex:composeProbabilityCalculus(?pA, ?pB){

?pA * ?pB

}

Therefore, binding the function ex:composeProbabilityCalculus(0.7, 0.9) during

a SPARQL query execution will return 0.63. The former definition of the probabilistic

approach using mUnc can be enriched by linking the IRI of the function to the

declared feature, simply by adding the triple:

ex:probabilityValue ex:composeProbability ex:composeProbabilityCalculus.

As stated before, each function is considered a resource due to the IRI defining its

name. We can store such functions in SPARQL files all over the Web and access their

code using their reference. In Appendix B, we provide an overview for a language-

independent vision for the use of linked functions. Listing 3.2 illustrates a complete

example of an uncertainty approach alongside its calculus, with a pseudo-coded func-

tions to check for the dependency of probability values. The approach is linked first

to its features and operators (Lines 1-3). The features are then linked using the op-

erators to the proper calculus, and the type of uncertainty values is attributed (Lines

5-9). The calculus is defined in the last part of the code using LDScript, where the

selection calculus checks for the conformity of the probability value with the given

conditions, the composition calculates the product of the two probabilities assuming

they are independent ones.

1 # Definition of the approach, features and opeators
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2 ex:Probability a munc:UncertaintyApproach;

3 munc:hasUncertaintyFeature ex:probabilityValue;

4 munc:hasUncertaintyOperator ex:selectProbability, ex:composeProbability,

ex:compareProbability.

5

6 ex:probabilityValue a munc:uncertaintyFeature;

7 rdfs:range xsd:decimal;

8 ex:selectProbability ex:selectProbabilityCalculus;

9 ex:composeProbability ex:composeProbabilityCalculus;

10 ex:compareProbabilty ex:compareProbabilityCalculus.

11

12 # Returns True if both probabilities satisfy the threshold of selection provided by the user.

13 function ex:selectProbabilityCalculus(?proba1, ?proba2, ?threshold){

14 if(min(?proba1, ?proba2) > ?threshold) return True;

15 return False;

16 }

17

18 # Returns the product of two probabilities, under the assumption they are independent

19 function ex:composeProbabilityCalculus(?pA, ?pB){

20 return ?pA * ?pB

21 }

22

23 # Returns True if the first parameter is strictly bigger than the second parameter

24 function ex:compareProbabilityCalculus(?pA, ?pB){

25 return ?pA > ?pB

26 }

Listing 3.2: Representing the Probabilistic approach using
mUnc

3.3 Annotating Uncertain Data with mUnc

To illustrate the previous definitions, we offer an annotation for the previous examples

in the motivating scenario.

Example 1 uses subjective probability as the feature representing the uncertainty

values. We may indicate in the definition of the probabilistic approach that the fea-

ture ex:probabilityValue reflects the likelihood that one value appears in the different

language chapters of DBpedia. The annotations are written in turtle-star syntax[34].8

8The syntax is similar to Turtle, with the addition of two notations for embedded and
asserted-annotated triples.
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1 ex:StefanoTacconi dbo:height "188"^^xsd:decimal {|

2 munc:hasMeta [a munc:Uncertainty;

3 munc:hasUncertaintyApproach ex:Probability;

4 ex:probabilityValue 0.8

5 ]

6 |}

7

8 ex:StefanoTacconi dbo:height "193"^^xsd:decimal {|

9 munc:hasMeta [ a munc:Uncertainty;

10 munc:hasUncertaintyApproach ex:Probability;

11 ex:probabilityValue 0.1

12 ]

13 |}

Listing 3.3: Example 1- Two triples from different sources

In the second example, we define an uncertainty approach to deal with fuzzy date

values. We define a “fuzzy interval” with two shoulders limited by four uncertainty

features with a decimal range. Later on, we can define the selection of two fuzzy

intervals as the different sentences with valid intersections between their intervals

and the composition as the intersection linked to the query results.

1 PREFIX fuzzy: <http://example.com/fuzzy>

2

3 fuzzy:FuzzyDate a munc:UncertaintyApproach;

4 munc:hasUncertaintyFeature fuzzy:fuzzyInterval;

5 munc:hasUncertaintyOperator ex:selectFuzzy, ex:composeFuzzy.

6

7 fuzzy:fuzzyInterval rdfs:subPropertyOf munc:uncertaintyFeature;

8 rdf:range fuzzy:Shoulderinterval.

9

10 fuzzy:ShoulderInterval a rdf:Seq;

11 rdf:1 fuzzy:valA; #left value in left shoulders or crisp, only value in linear modifiers

12 rdf:2 fuzzy:valB; #right value in left shoulders or crisp

13 rdf:3 fuzzy:valC; #left value in right shoulders

14 rdf:4 fuzzy:valD. #right value in right shoulders

15

16 fuzzy:valA, fuzzy:valB, fuzzy:valC, fuzzy:valD rdfs:subPropertyOf

munc:uncertaintyFeature;

17 rdf:range xsd:date.

Listing 3.4: Example 2- Defining a fuzzy date interval using
mUnc
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In the third example, we may define the combination of the author and the

website as a world. These worlds can have a general uncertainty annotation with a

risk annotation.

1 ex:World_1 munc:hasMeta [a munc:Uncertainty;

2 munc:hasUncertaintyApproach ex:Probability;

3 munc:hasUncertaintyIndication "This value represents the risk

taken for trusting an author on this website; The less the

better";

4 ex:probabilityValue 0.1].

Listing 3.5: Example 3- The risk of using information from an
author in a website.

The fourth example indicates using a possibilistic feature that the list of songs of

the album represented by the entity ex:Album_1_Songs is complete by 80%.

1 ex:Album_1_Songs munc:hasMeta [a munc:Uncertainty;

2 munc:hasUncertaintyApproach ex:Possibility;

3 munc:hasUncertaintyIndication "This value represents the

completeness of the resource it is attached to";

4 ex:completeness 0.8].

Listing 3.6: Example 4- Incomplete list of tracks

The fifth example represents the fact that one feature can have many indications.

The default indication can be attributed by definition, and then the feature can be

understood according to each instance. The probability here served as a validity

measure in the first and second blocks and in the third block as a similarity.

1 ex:Employee_1 rdfs:label "Fabienn"^^xsd:string {|

2 munc:hasMeta [

3 a munc:Uncertainty;

4 munc:hasUncertaintyApproach ex:Probability;

5 munc:hasUncertaintyIndication "This value represents the validity of the

attached label";

6 ex:probabilityValue 0.8;

7 prov:wasAttributedTo :HumanAgent.

8 ]

9 |}

10

11 ex:Employee_2 rdfs:label "Fabien"^^xsd:string {|

12 munc:hasMeta [

13 a munc:Uncertainty;

14 munc:hasUncertaintyApproach ex:Probability;
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15 munc:hasUncertaintyIndication "This value represents the validitiy of the

attached label";

16 ex:probabilityValue 1;

17 prov:wasAttributedTo :RobotAgent

18 ]

19 |}

20

21 ex:Employee_1 owl:sameAs ex:Employee_2 {|

22 munc:hasMeta [

23 a munc:Uncertainty;

24 munc:hasUncertaintyApproach ex:Probability;

25 munc:hasUncertaintyIndication "This value represents the similarity between

two entities";

26 ex:probabilityValue 0.8

27 ]

28 |}

Listing 3.7: Example 5- Man vs Machine

In the sixth example, we attributed uncertainty to a graph entity. The features

here (accuracy, precision) represent the evaluation of the dataset of recognized enti-

ties. This shows that uncertainty can be used as a marker to evaluate both data and

processes.

1 ex:Graph_Of_Entities munc:hasMeta [

2 a munc:Uncertainty;

3 munc:hasUncertaintyApproach ex:Evaluation;

4 ex:precision 0.8;

5 ex:accuracy 0.9

6 ].

Listing 3.8: Example 6- An uncertain graph from an uncertain
model

As seen in the previous examples, the definition of mUnc allows the introduction

of the existing uncertainty theories to the Semantic Web and the proposition of new

and custom ones. The Semantic Web stack holds for the previous definitions of un-

certainty. We find different syntaxes and methods to annotate data with uncertainty

values. Annotating uncertain data with mUnc allows to harness uncertainty infor-

mation from the Semantic Web and communicate with other sources in a unified and

formalized language. Uncertainty calculi can also be stored in a referenceable format.
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In practice, the Semantic Web engine Corese 9 implements LDScript [74], allowing

functions to be stored in an external SPARQL query files on the Web to be called at

the moment of query execution.

3.4 Design Choices for Uncertainty Represen-

tation

Opting for RDF-star requires providing mappings from the different alternatives to

RDF-star, ensuring backward compatibility and easing the transition. For instance,

annotations can be reconstructed from reified annotated statements with the query

in listing 3.9.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns\#>

2 PREFIX munc: <http://ns.inria.fr/munc/>

3

4 DELETE {

5 ?statement a rdf:Statement .

6 ?statement rdf:subject ?subject .

7 ?statement rdf:predicate ?predicate .

8 ?statement rdf:object ?object .

9 ?statement munc:hasMeta ?uncertainty .

10 ?statement ?p ?o .

11 } INSERT {

12 ?subject ?predicate ?object {| munc:hasMeta ?uncertainty; ?p ?o |} .

13 } WHERE {

14 ?statement a rdf:Statement .

15 ?statement rdf:subject ?subject .

16 ?statement rdf:predicate ?predicate .

17 ?statement rdf:object ?object .

18 ?statement munc:hasMeta ?uncertainty .

19 ?statement ?p ?o .

20 FILTER (?p NOT IN (rdf:subject, rdf:predicate, rdf:object) &&

21 (?p != rdf:type && ?object != rdf:Statement))

22 }

Listing 3.9: Mapping between reified annotated statements
and RDF-star

9https://github.com/Wimmics/corese

https://github.com/Wimmics/corese
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RDF-star appears to outperform other approaches in storage and loading time.

To illustrate, we account for four additional statements linked to mUnc to clarify: the

nature of the metadata as uncertainty, the theory it follows, the reading it offers, and

the value annotating it. We consider here an examplar dataset with n = 50 million

triples and p = 1500 properties. The table 3.5 represents the effect of annotating

all triples in a dataset with uncertainty values. The different annotation methods

consider/add many statements to ensure the encoding of the additional information

about uncertainty. For example, standard reification encodes the sentences in four

triples, and the four additional triples for uncertainty make the total at (4+ 4)n triples

for each sentence, hence 400 million triples for a dataset with 50 million sentences.

We gave examples of the encoding in table 2.1.

For storage purposes, we can rely on customized representation and indexing

methods (like S-RDF [75], or HDT [76]) to store uncertainty. This aspect is crucial

as the introduction of uncertainty increases the size of data significantly. Later in this

chapter, we discuss the reading of uncertainty and the fact that contextualization can

be a solution to minimize redundancy on statements with different types of reading

that should be implemented.

For the ontological part, we discussed that we could not limit the list of possible

indications. Instead, we offer a natural language annotation to let users explain the

purpose of this uncertainty annotation. That might seem counter-intuitive, but if

the users do not care about annotating their data, they will not reach this step. If

one cares about delivering proper definitions about their data, they will take their

time to explain what might be problematic with it as well. Moreover, the annotation

property we offered can handle both an object property and a datatype property.

The indications can be formalized later to give further meaning to their uncertainty

values. However, calculus and formalization must be provided to ship such theories.

The representation we offer here is based on data annotation. We do not deal

with uncertain ontologies, and their definition is out of the scope of this work. We

perceive ontologies as stable entities at a specific moment, but we are aware of works
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that dynamize the concepts and roles of the ontology (e.g., concepts that change

over time [77]). We provide some alternative to that in the next chapter, where

contextualization may replace the uncertainty of an ontology. After all, we stress that

designing accurate ontologies may be the only requirement to avoid that situation.

The two aspects may be linked together in future works.

One of the goals of mUnc is to promote the portability of the uncertainty calculi.

Reasoners do not use external calculi to perform entailment. The logic of reasoners

is extended in many works [70], [78] to be theory-specific but still dealing with one

type of uncertainty. We believe that the best way to deal with the uncertainty from

an open world is by publishing the calculi alongside the theories and have small

extensions to perform any uncertainty-related operations on the go. That opens the

doors for generic reasoners that update their core and logic from the Linked Open

Data graph.

3.5 Conclusion: Representing Uncertainty Meta-

data

In this chapter, we provided and discussed a listing of the annotation methods for

linked data. We proposed the mUnc ontology for uncertainty representation. The

ontology allows custom uncertainty approaches and calculi to be linked with the

uncertainty values annotating uncertain statements.

Representing uncertainty with respect to the existing Semantic Web stack is a

challenging process. For it is a particular type of metadata, different aspects should

be considered to publish, access, read, manipulate, and produce uncertain values. In

this chapter, we discussed the representation and publication of uncertainty on the

Semantic Web. We presented a vocabulary allowing the representation of uncertainty

theories and annotating sentences using the Semantic Web standards. We explained

the publishing of reusable uncertainty calculus using LDScript.
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Uncertainty representation is the first step of a long process, including the pre-

liminary calculus of uncertainty values and uncertainty propagation among intercon-

nected Linked Data sources. The next chapter follows with our view to access and

read uncertain data. We discuss the notion of contextualization, the mapping of

uncertainty values, uncertainty translation and through sources.
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Chapter 4

Accessing Uncertain Data on the

Semantic Web

Understanding uncertainty requires understanding it on different levels. Despite the

linking of crucial information to uncertainty entities such as the theories to use and

the indication of the value, uncertainty still requires extra attention. Statements are

encapsulated in graphs, issued from datasets, and grasped from deeper levels that

may affect the reading of its uncertainty, by adding some features or altering others.

Moreover, uncertainty requires transformation when meeting different formalism, and

mUnc as presented in the previous chapter does not account for that.

This chapter discusses the contextualization of uncertainty values, the different

scopes for uncertainty reading, the translatability of uncertainty theories and the ne-

gotiation of such data. Contextualizing leads to involving extra information about

the assertion of sentences to reflect the effect of the encapsulation. The readings

discuss ways to reduce the uncertainty on several levels to present a set of uncer-

tainty information to users. Translatability and negotiation of uncertainty are about

offering more flexibility and transparency and access to agents selecting to be fed of

uncertainty.



80 Chapter 4. Accessing Uncertain Data on the Semantic Web

4.1 Contextualizing Uncertain Linked Data

In our regular communications, we often refer to the context in which our statements

are made to clarify their semantics and offer extra elements on which one can rely

to understand our message. This contextualization can be both implicit and explicit.

The first type makes part of most of our speech and is perceived as the default

set of ideas about the speaker. The second type is direct and does not necessarily

require prior knowledge of the speaker. For instance, this manuscript commenced

with an opening to clarify the context of the research we discussed. However, someone

who knows the author of the chapter and their research direction would infer that

information and position any discussion accordingly.

As for uncertainty, we may explicitly offer a context with respect to the standards

of the Semantic Web using the graph that our statements are asserted in. However,

that context is still unclear semantically. The information we have about a graph is

its assertion to statements. In an RDF dataset, we may find several graphs encap-

sulating statements, but having a statement inside a graph is not compulsory unless

the semantics of that graph are well defined, as the default graph. Another thing to

consider is the effect of the reliability of statements on one of their graphs and vice-

versa: we may consider a certain open graph being affected by uncertain statements

or for the latter to be considered certain once stated in a graph of the sort.

We included previously in section 3.2.2.4 an explicit relationship between a state-

ment and the context it is mentioned in, saying that a sentence is stated in a world.

When using RDF-star as a serialization syntax, we are allowed several ways of real-

izing that link:

• inserting the embedded sentence (or its identifier in other annotation methods)

as a subject of a statement linking it to the world with munc:statedIn. This

allows elaborating the link between the statement and the world. This link is

a fact on its own that can be annotated with uncertainty.

• inserting the sentence in a graph that we consider as a world.
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The first method associates uncertainty to the fact of linking embedded triple

in a world as a separate thing. This can be time-consuming if compared with the

second one. Moreover, it does not assert the embedded triples unless specified with

the notation. The second method encapsulates all asserted triples in one place. Both

methods require mentioning the triples every time they are linked to a world. In the

first, that can be achieved using occurrences of the same embedded triple. In the

second, mentioning the triple in the new graph is enough. We use worlds mainly for

two purposes:

• Controlling the coherence of statements;

• Optimizing the uncertainty annotations for statements with the same prove-

nance.

We do not think one method is better than the other, but the first one seems counter-

intuitive to the idea of the world itself, while the second method seems more natural

for both purposes. A query can be directly pointed to a specific graph to control

the existence of contradictory statements. The latter can exist as they are within

different graphs without specifying the semantics of occurrences. Nevertheless, the

first method comes in handy in the absence of an encapsulation method (like named

graphs or quads). As for mUnc, the annotations are linked to both the world and the

sentence, allowing to cover the previous two cases.

We expect agents on the Semantic Web to be querying n uncertain data sources

s1, s2, ..., sn, each possibly containing several graphs Gij, i ∈ {1, . . . , n} representing

each a set of coherent information. This means that each graph contains a set of

triples that do not lead to a contradictory reasoning. For example, if the predicate

dbo:height is a functional one (accepts a unique value), we cannot have both triples

(ex:StephanoTacconi, dbo:height, 188) and (ex:StephanoTacconi,

dbo:height, 193) in the same graph. We still can declare both triples in different

graphs. We recall here the definition of RDF Dataset and perform the link with the

set of contexts.



82 Chapter 4. Accessing Uncertain Data on the Semantic Web

Definition 4.1. (RDF dataset) An RDF dataset of a source si is a collection of RDF

graphs, containing one default graph Gi and a set of named graphs, each consisting

of a pair (uj, Gij) where uj is the IRI of the graph Gij. The set of named graphs can

be the empty set.

As cited in [79], named graphs are suitable for context representation as they allow

encapsulating a set of triples in a graph and annotate the latter with metadata. Also,

each named graph can represent a vision or an opinion over the reality represented

in the source. A sentence can be cited in multiple named graphs but with different

uncertainty information. For example, two websites can state that tomorrow it will

rain. The two websites may not be sure about that information at different levels,

so they annotate it with different uncertainty information. Data from the previous

websites can be encapsulated in a separate named graph, each representing a context.

Definition 4.2. (Context) A context Cij, j ≥ 0 is a named graph (uj, Gij), j ≥ 0 in

the RDF Dataset of a source si.

Each context can be annotated with a set of uncertainty information triples de-

fined as follows.

Definition 4.3. (Context Uncertainty) A context uncertainty UCij is a set of pairs

(UncertaintyFeature, UncertaintyValue) representing the uncertainty information about

the context Cij, j ≥ 0 in a data source si .

Triples in the default graph of the source si may present a context on their own,

and they are moved to a named graph Gi0 representing a separate context Ci0. The

set of pairs (UCij , Cij) represents the contextual dataset (noted as CDS(si)) of data

source si. Figure 4.1 illustrates the following definition.

Definition 4.4. (Contextual Dataset) Given a data source si and a set of Contexts

Cij, j ≥ 0, each annotated with a set of metadata triples UCij , a contextual dataset

CDS(si) of a data source si is a set where Ci is the default context encapsulating

metadata about other contexts, Ci0 is the context encapsulating triples which was
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stored in the default graph Gi of data source si.

CDS(si) = {(UCij , Cij) | j ≥ 0} (4.1)

Figure 4.1: Example of context encapsulation

Similar to context uncertainty, a sentence can have its uncertainty information

defined as follow.

Definition 4.5. (Sentence Uncertainty) A sentence uncertainty USCij
is a set of

pairs (UncertaintyFeature, UncertaintyValue) representing the uncertainty informa-

tion about the sentence S in a context Cij .

4.2 Mapping and Querying Uncertainty in Con-

textualized Uncertain Data

In a Semantic Web supporting the representation of uncertainty metadata, query

results should include information about their uncertainty. The latter should be

dependent on both sentences and their context.

We illustrate this need with the following example: we associate a subjective

probability pt indicating our trust in one website. We decide that we do not trust this
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website in all subjects but the economy, for which we grant a subjective probability

pe. We may achieve that with different methods:

• annotating statements of economics with pe and all other statements with pt,

then use a direct reading for each statement.

• creating a context for the economy, and annotate it with pe, and all the other

statements outside of it with pt, then use a direct reading for other statements

and a hereditary reading for statements in the economic context. This reading

allows all statements to get the same uncertainty as to their context.

• considering the whole website as a context annotated with pt, and the context

of economics as a nested one annotated with pe. In this case, use the hereditary

reading on direct ascendants of the contexts. This allows the statements about

the economy to get the uncertainty from their context. All other statements

get their uncertainty from the website.

The previous list is not exhaustive, and solutions differ according to the result we want

to achieve. In addition, it will be more complex if there is a statement we do not trust

as much as the others inside the context of the economy. As a result, mapping each

sentence S with its uncertainty information requires defining a metadata-mapping

mode (see table 4.1) to link between the metadata annotating the sentence and the

one annotating the context in which the sentence is stated.

Definition 4.6. (Meta-Mapping Mode) Given two sets of pairs A = {(x, y) | x ∈

F1}, B = {(w, z) | w ∈ F2}. A meta-mapping mode is the process linking A and B to

a new set C where C = {( f , v) | ( f , v1) ∈ A, ( f , v2) ∈ B, v = v1 ⊕ v2} with ⊕ being

the composition uncertainty operator linked to the feature f .

The reading for uncertainty metadata concerns the statement it annotates, the

same as any other annotation for a direct resource. However, the scope for uncertainty

may override that and allow several readings. For instance, when a graph G containing

a set of statements {t | t ∈< s, p, o >} is annotated with uncertainty metadata, the

scope of uncertainty becomes less intuitive.
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A distributive reading for the uncertainty values distributes or duplicates the

uncertainty over all the statements included in G. For example, if G is annotated

with an uncertainty value µ:

• a distributive reading states that ∀t ∈ G, µt = µ, hence µG = µ|G|. It means un-

certainty assigned to the graph via annotation was projected on all statements

that the graph asserts. The uncertainty of the graph is then an association of

the uncertainties of its statements.

• a collective reading states that µG = µ, hence ∀t ∈ G, µt = |G|
√

µ. It means

uncertainty was meant for the graph as a whole, and it is read as the uncertainty

of the statements collectively.

The two former readings are mere examples of how uncertainty can be understood.

Other readings may establish that the uncertainty value associated with a set of

statements touches some but not all the statements. These readings are related to

what we define as meta-mapping modes, which select the way of choosing a set of

uncertainty features, and what uncertainty value to associate to each feature based

on their associated values in each of the initial sets. In the first two modes, only

uncertainty information UCij linked to the context Cij is considered with a specification

of the reading. The third mode considers uncertainty information from the lowest

level of granularity only, while the fourth mode enables inheriting context metadata

but overrides the values for existing features in uncertainty information linked to the

sentence.

The set of uncertainty information linked to a sentence S regarding its context is

denoted as Universal Uncertain Information Set or ÛSCij
and defined as follows.

Definition 4.7. (Universal Uncertain Information Set) A universal uncertain in-

formation set ÛSCij
of a sentence S in a context Cij of the data source si is a set of

(UncertaintyFeature, UncertaintyValue) pairs issued by combining the sets UCij ,USCij

using a meta-mapping mode.
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4.2.1 Mapping a Sentence to its Uncertainty Set

The mapping between a sentence S and its universal uncertainty information set ÛSCij

is a two steps process:

• Mapping both sentences and contexts to their uncertainty information. We

denote USCij
the uncertainty information about the sentence S cited in the

context Cij and UCij the uncertainty information about the context Cij.

• USCij
is combined with UCij using uncertainty operations linked to each feature,

in order to evaluate its corresponding value in ÛSCij
. In this step we apply the

metaList algorithm (see Algorithm 1) translated form the formula in the fourth

meta mapping-mode (see table 4.1): ÛSCij
= metaList(USCij

,UCij).

In our case, Uncertainty Operations are stored as Linked Functions. This feature

in Corese [80] enables storing LDScript [74] functions in external SPARQL query

files on the web to be called at the moment of query execution. The former feature

permits publishing and executing the calculi of uncertainty approaches. Additionally,

this approach may be extended to capitalize existing software libraries from other

programming languages like C++ or Java.

Also, some sentences might be redundant in different contexts. A possible alter-

native would be the enrichment of RDF semantics to use occurrences of statements to

store them in different named graphs. This gives more flexibility to the process and

allows defining new methods and terms, allowing context-overlapping and context-

selective querying.

mUnc also enables representing uncertainty about uncertainty information by

considering the latter as sentences with uncertainty. Nevertheless, combining uncer-

tainty information about uncertainty sentences with the information provided by the

sentences themselves is challenging. The framework does not allow combining uncer-

tainty information from multiple data sources using different uncertainty approaches
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1: procedure metaList(USCij
,UCij)

2: uncFeatures(x): list of all uncertainty features contained in the set x
3: uncValue( f , x): the value linked to the feature f in the set x
4: Operation( f ): the uncertainty operation linked to the feature f
5: eval(o, v1, v2): execute the operation o passing the parameters v1, v2
6: ÛSCij

← ∅
7: if USCij

̸= ∅ then
8: for all f ∈ uncFeatures(USCij

) ∩ uncFeatures(UCij) do
9: v← eval(Operation( f ), uncValue( f ,USCij

), uncValue( f ,UCij))

10: ÛSCij
← ÛSCij

∪ {( f , v)}
11: end for
12: for all f ∈ uncFeatures(UCij) \ (uncFeatures(USCij

) ∩
uncFeatures(UCij)) do

13: v← uncValue( f ,UCij)

14: ÛSCij
← ÛSCij

∪ {( f , v)}
15: end for
16: else
17: ÛSCij

← UCij

18: end if
19: return ÛSCij

▷ the set of universal uncertainty information of the
sentence S

20: end procedure

Algorithm 1: metaList: Universal Uncertainty Information
Set of a sentence S in a context Cij of a data source si
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for the same reasons. Sentences should be annotated using the same uncertainty ap-

proaches for the calculus to be executed. Otherwise, this presents no problem with

other metadata since they will be appended to the presented information using the

metaList algorithm. Providing a solution for the latter problem, we can add a third

step to the previous two-step process in subsection 4.2 corresponding to the combi-

nation of uncertainty information of identical sentences issued from different contexts

with different uncertainty information.

4.2.2 Querying for contextualized uncertainty

mUnc does not provide an extension of RDF Semantics. Instead, we rely on the

SPARQL query language to provide a mapping between sentences and the uncertainty

information presented to the user. Moreover, we consider mUnc as an approach to

providing definitions of known and custom uncertainty theories, for which we do not

provide any specific semantics. The possibility of defining a calculus alongside the

ontology is an alternative to generalize and reuse the shared rules between uncertainty

theories, such as maximizing or minimizing a feature.

We note USCij
the uncertainty information about the sentence S cited in the con-

text Cij and UCij the uncertainty information about the context Cij. Each sentence S

stated in a context Cij of a source si, will be mapped to a combined set of pairs (Uncer-

tainty Feature, Uncertainty Value) issued from both sentence and context metadata

(noted ÛSCij
). This requires defining a metadata-mapping mode (see table 4.1).

The modes depend on the purpose of the application, the data itself, and the

semantics of uncertainty theories. In the first mode, only uncertainty information

linked to context Cij is considered. The second mode considers only pairs from the

lowest level of granularity, while the third mode enables inheriting context metadata

but overrides the values for existing features in uncertainty information linked to the

sentence.

In our approach, we use a specific meta mapping mode which relies on uncertainty
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1 @public

2 function munc:metaList(?xT, ?xG){

3 let(SELECT ?xT ?xG (group_concat(?FV;separator="-") as ?metaD) WHERE

4 {{

5 SELECT ?xT ?xG (CONCAT(?xF,'=',?xV) AS ?FV) WHERE

6 {

7 ?xG ?xF ?xV1

8 OPTIONAL {?xT ?xF ?xV2}

9 ?xF rdfs:subPropertyOf munc:uncertaintyFeature

10 ?xF ex:and ?xFFunction

11 BIND(IF(BOUND(?xV2),funcall(?xFFunction,?xV1,?xV2),?xV1) AS ?xV)

12 }

13 } GROUP BY ?xT ?xG}

14 UNION

15 {{

16 SELECT ?xT ?xG (CONCAT(?xF,'=',?xV) AS ?FV) WHERE

17 {

18 ?xT ?xF ?xV

19 ?xF rdfs:subPropertyOf munc:uncertaintyFeature

20 FILTER NOT EXIST {?xG ?xF ?xV2}

21 }

22 } GROUP BY ?xT ?xG}

23 )

24 {?metaD}

25 }

Listing 4.1: metaList algorithm in LDScript

calculus to evaluate a new set of pairs based on both information from sentences and

contexts. In the metaList algorithm we implement and use the last mode in the

previous table (see Listing 4.1),

The munc:metaList function is declared in the example as “@public”. This keyword

is implemented in Corese as many others (@define, @visitor, @trace, . . . ) defining

specific routines in the former Semantic Web engine. The keyword allows the previous

code to be accessed globally in the engine through its reference without rewriting the

function with each query. The listing 4.1 translates the metaList algorithm into

LDScript. The result of binding this function in a SPARQL query is a string that

groups all uncertainty features and their corresponding values from the Universal

Uncertainty Information set of the corresponding sentence.
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Corese also implements Linked Functions enabling storing LDScript [74] functions

in external SPARQL query files on the Web. Such functions, referenced by IRI s, may

be called at the moment of query execution. The former feature permits publishing

and executing the calculi of uncertainty approaches.

The Semantic Web engine also allows defining specific routines preceding the

query execution. One can integrate query transformation or precalculations of some

variables. We implemented the previous meta-mapping mode in extension to the

visitor "@metadata" and enabled rewriting SPARQL queries to simplify querying for

uncertainty information. Using "@metadata" and with munc:metaList publicly defined,

querying for the height of the football player Stefano Tacconi in a data source is as

follows.

1 @metadata

2 prefix ex: <http://example.org/> .

3 prefix munc: <http://ns.inria.fr/munc/> .

4

5 SELECT * WHERE {

6 ?player dbo:height ?height .

7 ?player rdfs:label ?label .

8 }

Listing 4.2: Query rewriting using visitors implementing the
access to uncertainty information

4.3 Negotiating Uncertainty on the Semantic

Web

In addition to the previous two-step process leading to the generation of Universal

Uncertainty Information Sets alongside sentences, users may prefer one theory or

another.This section will discuss the translatability between uncertainty theories and

how, using HTTP content negotiation (conneg), users may negotiate the theory they

want for their results.
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4.3.1 Translating uncertainty between theories

Many examples reject the claim that uncertainty can be represented only using proba-

bility theory. However, the belief about the uncertainty being the lack of information

or the deficiencies due to a shortage of knowledge urges researchers to work on their

unification, or at least that the different views may be linked. Dubois et al. [81] stated

that transformation is helpful in any problem considering heterogeneous, uncertain,

and imprecise data (e.g., subjective, linguistic-like evaluations and statistical data).

Zadeh [82] cites the example of DempsterShafer theory which is a theory of random

sets. The latter is a probability distribution of possibility distributions. An inter-

esting analysis of the possibility-probability transformation and its links to graphical

models can be found in [83].

With the use of our framework, every context will issue an answer to the user.

If the answers are annotated with the same theory and the same set of features,

this enables ranking the results or offers more options to control the results. In the

example of search engines, this could support uniform criteria to order the results

shown to the user. However, on an open Web where several open sources are queried,

the results might use different features from different theories.

A translation must offer to transform a Universal Uncertainty Information Set

ÛSCij
of a sentence S annotated following an uncertainty approach T1, to another set

annotated with a different uncertainty approach T2. The translatability of theories

should consider several issues such as symmetry, reversibility, and the possible loss of

information.

To fit in with the previous requirements, we define a translatability relationship

between two uncertainty theories as follows:

Definition 4.8. A theory T1 has a translatability relationship with a theory T2, if

there exists a mapping M : FT1 → FT2 from the set of features FT1 represented in

theory T1 to the set of features FT2 represented in theory T2 such that every possible

feature of FT1 is mapped to a set of feature of FT2 semantically coherent with the
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uncertainty initially expressed in T1. We note T1 >| T2.

The former definition is valid for all theories that have a relationship allowing the

conversion of features from one theory to another, regardless of the loss of information.

In case the conversion does not generate a loss of information allowing the reversibility

of the operation, we define the relationship as follows:

Definition 4.9. A theory T1 has an ideal translatability relationship with a theory

T2, if T1 is translatable to T2 (T1 >| T2) and there is no loss of information in the

translation. We note T1 ≫ T2

We should mention that an ideal translatability might not be reversible, regardless

of the semantics of the translatability. The loss of information disables the backward

operation. If the other case is considered, where we have no loss of information, then

we can define a full translation as follows:

Definition 4.10. A theory T1 has a full translatability relationship with a theory T2,

iff T1 is ideally translatable to T2 (T1 ≫ T2) and, inversely, T2 ideally translatable to

T1 (T2 ≫ T1). We note T1 ⊗ T2.

Using our mUnc vocabulary and the framework previously proposed, we are able

to formalize the translation (if it exists) between the different theories. For this, we

extended mUnc with the set of the following properties:

• munc:hasTranslation (definition 4.8)

• munc:hasIdealTranslation (definition 4.9)

• munc:hasFullTranslation (definition 4.10)

These QNnames respectively identify the previous definitions. Figure 4.2 shows the

extension, where each property of the previous set has for domain an uncertainty

approach, and for range a blank node pointing to both the destined theory and the

IRI of the translation function, written in LDScript.

By definition, the translativity properties have several algebraic properties:
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Definition 4.1. (Transitivity of translatability) Let Ti, i = 1, 2, 3 be three uncertainty

theories. If T1 >| T2 and T2 >| T3 then T1 >| T3.

Definition 4.2. (Reflexivity of translatability) Each uncertainty theory has a full

translatability with itself. We note T ⊗ T.

Definition 4.3. (Symmetry of full translatability) Let T1, T2 be two uncertainty the-

ories. If T1 ⊗ T2 then T2 ⊗ T1.

Definition 4.4. (Full translatability is an equivalence relation) because it is transi-

tive, symmetric, and reflexive.

We can note that full translatability being an equivalence relation allows us to

form equivalence classes by transitive closure i, which we have translatability with no

loss of information from a theory Ti to any other theory Tj of its class. We note this

set TCU (Ti).

To illustrate the previous extension, we propose to represent the example proposed

in [84] about the Optimal Transformation (OT) from probability to possibility. We

declare a translatability relationship between probability theory ex:Probability and

possibility theory ex:Possibility representing the two different uncertainty theories.

We enrich the data source with the triples below, where ex:translateProbaToPoss is

an LDScript function.

ex:Probability munc:hasTranslation ex:Possibility.

ex:translateProbaToPoss munc:translateFrom ex:Probability.

ex:translateProbaToPoss munc:translateTo ex:Possibility.

4.3.2 Negotiation with Uncertainty Headers

Based on the previous model, we can now support the possibility of negotiating

answers annotated with different uncertainty theories. Content negotiation can be

based on HTTP headers or non-HTTP methods such as query arguments in IRI s.
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Following the W3C working draft proposed by Svensson et al. [85] we propose that

clients may negotiate a representation annotated with a specific uncertainty theory,

using q-values to express their preference regarding the uncertainty theories they are

to receive. Since uncertainty theories are already defined using mUnc and named

with IRI s, both server and client can exchange and verify the conformity of their

options. We propose to handle three use cases:

1. Uncertainty information exist in the queried source under one or many re-

quested uncertainty theories. We answer with the first theory selected by the

user. In the example, uncertainty information is issued from a context anno-

tated with evidence.

GET /some/resource HTTP/1.1

Accept: text/x-turtlestar;q=0.9;uncertain="http://example.org/

probability",

text/x-turtlestar;q=0.7;uncertain="http://example.org/evidence";

HTTP/1.1 200 OK

Content-Type: text/x-turtlestar;uncertain=<http://example.org/evidence>

2. The data source does not offer direct information about all the requested the-

ories, but a translation from existing uncertainty information to one or more

requested theories is available. In this example, uncertainty is available in the

probability theory. The returned information is evaluated using the function

ex:translateProbaToPoss and presented to the client with an indication about

the type of translation the data underwent.

GET /some/resource HTTP/1.1

Accept: text/x-turtlestar;q=0.7;uncertain="http://example.org/

possibility";

HTTP/1.1 200 OK
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Content-Type: text/x-turtlestar;uncertain=<http://example.org/

possibility>;translation=full

We note that the selection of a suitable translation starts from the transitive

closure of full translations TCU (possibility) offering more information and

graduates to the normal translatability relationship.

3. The data source has no information about the theory and no available trans-

lations. We answer the user with the existing information. The default uncer-

tainty information proposed by the server is returned in such a case.

GET /some/resource HTTP/1.1

Accept: text/x-turtlestar;q=0.9;uncertain="http://example.org/

probability",

text/x-turtlestar;q=0.7;uncertain="http://example.org/evidence";

HTTP/1.1 200 OK

Content-Type: text/x-turtlestar;uncertain=<http://example.org/

possibility>;default=true

4.4 Conclusion: Leveraging Uncertainty Con-

texts

The focus on uncertainty translatability was mainly in AI-based applications. We

point that the Semantic Web requirements in term of interoperability and information

usage are fundamental and the suitability of uncertainty theories to different types

of data and applications need to be further explored. We also offered the possibility

of translating between uncertainty theories and negotiating uncertainty information

following a specific theory. The translation process is also the first step that enables

merging uncertain data annotated using different uncertainty approaches.
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The next chapter follows with our proposition of an approach to extract uncer-

tainty from sources with respect to specific use cases.
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Chapter 5

Extracting Uncertainty from

Implicit Uncertain Data Source

for Task-Oriented Evaluations

using Graph Interlinks

We are witnessing an era fulfilling the vision to create a Web of linked intelligent

systems [5], thriving through sharing data they own or have processed. In this con-

text, many challenges present themselves to developers of such platforms to retain

reliable data that allows enriching their existing knowledge bases using robust rea-

soning or with the help of more external relevant content. The latter is using links

with extra pieces of information revealing new dimensions for users to explore with

their requests. On the latter, data can be filtered through different funnels allowing

to confirm their consistency with respect to the layers of its stack. In other words, we

consider the Semantic Web as a “task-ready” environment for reliability validation

and uncertainty assessment, as it offers a granularized and enriched representation of

data. Moreover, the interlinking between different resources enables browsing, ana-

lyzing, and reasoning over the graphs [4]. Uncertainty is a major issue when related to

content brought out on the Web, or Semantic Web by extension. Nevertheless, most
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data providers do not present explicit information about the uncertainty of their data.

On the other hand, completely mistrusting a data source is unfair: while some data

providers may not be reliable on one subject or provide false information about it,

they are experts on other subjects and the pieces of information they provide should

not be ignored. In some cases, references about data provenance and/or related data

are given, from which a data consumer may hope to get further validation from other

data sources.

We address in this chapter the need to evaluate uncertainty in linked data sources.

In our approach, a data source may auto-evaluate the level of uncertainty of its data

according to what is being presented by other data sources and for a specific use-case.

We leverage the fact that different knowledge graphs may provide complementary

and/or extra information enabling the assessment of the conformity of a target source.

We also think that a user’s preferences should be taken into consideration while

evaluating uncertainty. Our work is built on top of the mUnc model [64] introduced

in chapter 3 to represent and publish uncertainty on the Semantic Web. The main

question we aim to answer is: How to evaluate uncertainty in a data source, based on

its data, other linked data sources, and with respect to a specific use-case?

To answer this question, we propose an approach to evaluate the uncertainty of a

target data source, based on graph interlinks with other reference data sources. We

propose to annotate statements with uncertainty values in a publishable format and

provide a method to manipulate and update such values if existed. In the first, we

propose to evaluate uncertainty by using graph interlinks. To do so, we extract a

set of links supporting each interlink, using different metrics for syntactic and statis-

tical semantic similarity. We then represent such measures as publishable, reusable

uncertainty information that can be updated when new information presents itself

to the data source. The intuition behind this work is that often users who need to

confirm a piece of information will look for different sources that confirm or contra-

dict it. For instance, the traditional verification techniques in journalism include the

"two-sources rule" asking to verify that at least two independent trustworthy sources

confirm a piece of information.
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The rest of the chapter is organized as follows. Section 5.1 surveys related work

and positions our contribution accordingly. In section 5.2 we discuss similarity as-

sessment between two focus graphs of one resource and our choices of indicators. In

section 5.3 we present our main contribution, with a method to evaluate uncertainty

based on existing links and transform it into reusable information that annotates

statements in the data source of interest. In section 5.4 we discuss the experimental

workflow and present our tool for uncertainty evaluation and annotation. The work in

this chapter was published in the International Conference on Knowledge Engineering

and Knowledge Management EKAW2020 [86].

5.1 The Need for Uncertainty Extraction

Users check the consistency of information before assessing its truth. This fact is al-

ways context-related: a user looking for information about the last concert of singer

Whitney Houston might give more importance to the reliability of the resource re-

garding Whitney Houston than other singers. Moreover, asked about their knowledge

regarding a specific subject, a person would answer according to their proper exper-

tise and the support they get from their trusted backers, confirming the reliability of

their information. One may not be a music expert, but be a fan of Whitney Houston

with detailed knowledge about her.

We take this hunch to the case where two resources from different data sources

are linked using a similarity link (e.g. an owl:sameAs link). We want for instance to

see if MusicBrainz1 is reliable regarding information about Whitney Houston,2 with

respect to her page on Wikidata3 for which the link was provided. Both references are

about the same artist, yet in some cases, one reference may provide a wrong birth date

or a misspelled name, or does not mention the complete list of singles of the artist.
1https://musicbrainz.org/
2http://dbtune.org/musicbrainz/resource/artist/0307edfc-437c-4b48-8700-80680e66a228
3https://www.wikidata.org/wiki/Q34389
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Hence, we translate the link between the two resources into a set of links between two

graphs, each representing the description of a resource on one data source. While the

similarity link remains the same, the ones selected to perform the analysis alongside

the definition of the graphs are a user’s preference. The sets of selected links can be

analyzed then generalized over other resources. Similarly to when one is tested on

how reliable they can provide information about a specific subject.

Hereby is an example to discover what can be wrong with data and to what extent,

from a user’s perspective and with the help of selected references to trust. Referring

to such anomalies might be a trigger for an automatic process of correction, or crowd-

sourcing the correct answer. This can be built upon the work presented in the previous

chapters [64], [65] to offer referenceable exchangeable uncertainty metadata.

The works mentioned in section 2.3 mostly treated the reliability of the similarity

links between data sources or detecting wrong schema-mappings. This differs from our

problem that requires analyzing data based on a use-case. The previous works present

a promising set of measures to analyze data uncertainty based on links. Nevertheless,

we notice the absence of specific sets of interest encapsulating the linked resources.

Moreover, the said works are more in the spirit of ontology-matching techniques

relying on linking all instances of two classes.

The problem relates in general to ontology alignment approaches and is also

inspired by quasi-key detection problems. Most of the literature is assessing the link

quality and not depending on the links themselves to assess data quality. We believe

that it is original to discuss uncertainty evaluation with a task-centered perspective

based on graph interlinks .

To sum up, our problem is about evaluating uncertainty based on graph interlinks.

The previous works that treated error-detection were either about evaluating the

quality of interlinks themselves, detecting wrong literal values according to the whole

graph, or assessing the quality of the mapping between the schemas of different data

sources.
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5.2 Uncertainty Assessment in Linked Data

5.2.1 Terminology and Definitions for Uncertainty

We introduce the terminology and the formalism used in this chapter to propose an

evaluation of uncertainty based on existing links between graphs.

Definition 5.1. RDF-dataset — a set of statements (triples) in the form

⟨subject, predicate, object⟩ ∈ (I ∪ B)× I× (I ∪ B∪ L) where I is a set of IRIs, B a set

of blank nodes, L a set of literals, I, B and L are pairwise disjoint and for every two

RDF-datasets D1, D2 the sets of blank nodes are disjoint. we also denote ID the set

of IRIs used in statements of the RDF-dataset D.

Definition 5.2. Target dataset — an RDF-dataset noted as Dt that is the target of

the uncertainty evaluation.

Definition 5.3. Reference dataset — an RDF-dataset noted as Dr that represents

a reference for the evaluation of the uncertainty of a target dataset.

Definition 5.4. RDF-graph — a graph G = (V, E), where V ⊂ (I ∪ B ∪ L) is a set

of vertices, and E ⊂ I is a set of directed edges.

Definition 5.5. Focus graph — an RDF-graph noted as GD(e) ⊂ D, where D is the

dataset including the graph (target or reference) and e ∈ I is a focused resource for

which GD(e) is considered representative according to the use-case.

Definition 5.6. Set of Linking predicates — a non-empty set of predicates explicitly

chosen to link between the target dataset and the reference dataset. We note it as

Pl ⊂ I. Example: Pl = {owl:sameAs, skos:exactMatch}.

Definition 5.7. Contextual Linkset — as defined in the VOID vocabulary,4 a linkset

is a set of RDF triples where all subjects are in one dataset and all objects are in

another dataset. We call a contextual linkset the one containing links between focused

resources of Dt and those of Dr. A contextual linkset defines the set of focused re-

sources of each dataset as well as the links between them. A link between a target
4https://www.w3.org/TR/void/#linkset

https://www.w3.org/TR/void/#linkset
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focused resource et and a reference focused resource er is also a link between the focus

graphs GDt(et) and GDr(er): LS(Dt, Dr) = {⟨et, p, er⟩ | p ∈ Pl , et ∈ IDt , er ∈ IDr};

Definition 5.8. Evidence link — a relationship between two statements tt ∈ GDt(et),

tr ∈ GDt(er) discovered using similarity analysis, that supports the link between two

linked focus graphs GDt(et) and GDt(er). The evidence link refers to a considered

relationship between the predicates and/or the objects of two statements tt and tr. We

note E(GDt(et), GDt(er)) the set of evidence links discovered between the two focus

graphs GDt(et) and GDt(er)).

Our purpose is to find a method to assess the reliability of the information in

each target focus graph GDt(et) centered around a target focused resource et. To

this end, we translated the existing link between the resource et of a target dataset

and the resource er of a reference dataset ( ⟨et, p, er⟩ ∈ LS(GDt(et), GDt(er)), p ∈ Pl)

to a set of evidence links between the target focus graph GDt(et) and the reference

focus graph GDt(er). We statistically analyze the extracted evidence links to obtain

a set of indicators enabling the evaluation of the overall semantic similarity between

the predicates of linked focus graphs. Finally, we use the extracted evidence links to

calculate the uncertainty of each focus graph based on its local ones.

5.2.2 Choosing Target Focused Resources

The problem of matching, whether it is data-driven or schema-driven, is context-

related and may not be evident to users or useful for their request if done without

involving them in the process [87]. We consider the concept of uncertainty to be also

context-specific and that it is possible to choose a different evaluation method for

each use case.

A focus graph GD(e) is meant to be the image that represents e in the context

of the application. Hence, the choice of the set of focused resources is necessary

to ensure that uncertainty assessment is built on a user-centered view. The set of

targeted focused resources e ∈ IDt (IDt being the set of IRIs in the dataset Dt) depends
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on the type of validation a user intends to have within the data-source and depending

on the use-case.

In the case of MusicBrainz, we believe that uncertainty of the statements repre-

senting the song data will not be the same if treated as a part of a focus graph of an

artist, or as a focused resource itself. The former definition holds for any use-case that

may have custom requirements. Another example is the validation of geographical

entities such as points of interests that can be based on specific resources from differ-

ent classes (city, country, building, etc) and following some constraints of coordinates

(ex.inside borders of a country, or linked to a book resource for fact-checking, etc).

In works treating ontology matching from a statistical point of view [58], [62],

focused resources are all instances of one class in the target dataset that is a candidate

to be mapped to another reference class in the schema of the reference dataset. Also,

the whole dataset is seen as the focus graph for each resource.

5.2.3 Concise Bounded Description

To bridge user choices with uncertainty evaluation, proposals such as the concept of

RDF Molecules [88] inspire clustering statements in a way to leverage the inherent

structural and data redundancy in RDF streams. Other works propose the concept

of local networks [89] that uses a fixed level selection of nodes and edges, starting

from one centered node on the graph.

We also need to present a sufficient focus graph —in the context of the use-case—

reflective of information about the resource. As an example with music artists, a focus

graph may contain simple information like their names and birthplaces and deeper-

level information like songs from their albums. Our work is based on existing links.

In the context of the Semantic Web, there is no such formalization in the current

standards to reflect such a definition. One may use named graphs [79] or simply

attribute the set of triples to a resource. Yet no specific semantics are stipulated for
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the former proposals and their use still depends on the application. We previously

proposed to encapsulate triples and their sets of interests on-the-go in contexts and

query those for related uncertainty information [64].

To limit the issue in our current use-case, we rely on the proposal5 made by Strikler,

aiming to create a focused subgraph centered around and describing a resource, called

a Concise-Bounded Description and noted as CBD. The formal definiton of a CBD is

a union between three different subgraphs, noted in Formula 5.1: a set of statements

directly related to the resource Cdirect, a set of recursively-linked statements to the

resource via blank nodes Cblank, and the set of reified statements which identifiers are

found in the previous two sets Crei f ication.

Cdirect(e, D) = {⟨e, p, o⟩|⟨e, p, o⟩ ∈ D}

Cblank(e, D) = {⟨s, y, z⟩|⟨e, p, o⟩ ∈ Cdirect(e, D),

o ∈ B, ⟨s, y, z⟩ ∈ Cblank(o, D),

⟨s, y, z⟩ /∈ Cdirect(e, D)}

Crei f ication(e, D) = {⟨x, y, z⟩|⟨s, p, o⟩ ∈ Cblank(e, D),

⟨o, rdf:type, rdf:Statement⟩ ∈ D,

⟨x, y, z⟩ ∈ Cblank(o, D), ⟨x, y, z⟩ /∈ Cblank(e, D)}

(5.1)

In a CBD linked to a resource e, we find a focused body of knowledge aiming to

describe the focused resource, i.e. a set of triples linked to the resource e and known

to be representative of the resource. Some Linked Data stores like Virtuoso6 propose

their proper definition of CBD and use it as the mapping of DESCRIBE SPARQL

queries.

CBD(e, D) = Cdirect(e, D) ∪ Cblank(e, D) ∪ Crei f ication(e, D). (5.2)

For our current use-case, we find the definition of CBD an intuitive, simple yet inter-

esting one to define our GD(e). We choose to have:

GD(e) = CBD(e, D). (5.3)
5https://www.w3.org/Submission/CBD/
6http://docs.openlinksw.com/virtuoso/rdfsqlfromsparqldescribe/



5.3. Uncertainty Assessment Approach 107

More parameters can be linked with the choice of CBD definition. The former propo-

sition states also other particular definitions, such as the symmetric one where the

resource is placed as an object in the first layer of linked triples. Other works [90]

use an alternative definition with a fixed depth.

5.2.4 Linking Predicates and Contextual Linkset

Unlike the approaches to ontology matching or alignment, we take existing links in

the contextual linkset as ground truth. The first links one may find between two

data sources can be established by reusing IRIs of resources from one in the other.

Moreover, the RDFS and OWL standards provide predicates such as owl:sameAs,

rdfs:seeAlso with debatable semantics to link between resources [14], [91]. Other

commonly used ontologies propose more predicates to indicate the matching between

two resources (example: skos:exactMatch [92]). The choice of predicates in Pl depends

mostly on the data: a user may decide to use a custom set of linking predicates to

link two focus graphs from two data sources.

5.3 Uncertainty Assessment Approach

We propose a level-based architecture where each level depends on the previous one,

from isolating candidate evidence links to exporting update-ready uncertainty values.

A link between a target focused resource et and a reference focused resource er can

be seen as a link between the focus graph of each. The evidence links supporting

that link are discovered and selected based on defined similarity indicators. The

architecture in question is illustrated in figure B.1.

In the next parts, we consider two statements t1 : ⟨s1, p1, o1⟩, t2 : ⟨s2, p2, o2⟩ where

t1 ∈ GDt(et) and t2 ∈ GDr(er) and a prior knowledge indicating the existence of a link

between the two resources et and er: ⟨et, l, er⟩ ∈ LS(Dt, Dr).
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5.3.1 Precomputing: Augmentation and Clustering

During this step, we apply the chosen definition of focus graphs on Dt based on

LS(Dt, Dr). Beforehand, we use OWL [91] semantics for properties to augment the

data source by evaluating the deductive closure of our target dataset Dt. This helps to

unveil more potential evidence links between the linked focus graphs. In the example

of Whitney Houston, this step leads to the creation of a graph around the resource

ex:WhitneyHouston. The graph includes the set of statements that are representative

to the resource in question and is then enriched via deductive closure.

5.3.2 Level 1: Identifying Possible Evidence Links based

on Syntactic Similarity between Objects of State-

ments in Linked Focus Graphs

In the first level, we produce a set of evidence links for each pair of linked focus graphs

using an object similarity measure defined as follows.

Definition 5.9. Object similarity — We denote by symo(t1, t2) (eq. 5.4) as the

weighted similarity between objects of statements t1 and t2 (between o1 and o2). This

measure refers to what extent the two objects share the same nature (literal, URI),

the same datatype(xsd:short, xsd:integer, etc.7) and/or the same value:

symo(t1, t2) = (1−ωval)× typeMatch(o1, o2) + ωval × valMatch(o1, o2). (5.4)

The binary function typeMatch returns 1 if both nature (IRI, Literal) and datatypes

are similar and 0 otherwise. The valMatch function can be any syntactic similarity

measure (Jaccard, Levenshtein, Jaro-Winkler distance, n-grams, etc.). Once the first

level measures are established, a positive threshold τobj ≤ 1 restricts the discovered

evidence links to ones of higher object similarity. The weight 0 ≤ ωval ≤ 1 gives
7https://www.w3.org/2011/rdf-wg/wiki/XSD_Datatypes
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preference to one of the matching functions if that information is not likely to be

provided by the data sources, or according to the choice of the user.

Object similarity (said syntactic) can be considered as a probability measure,

reflecting the resemblance of two literals. For example, one measure of the degree of

resemblance between two literals containing the complete name of Whitney Houston

is the probability that letters in the same position are the same or the probability that

some words exist. For instance, we may compare the birth name "Whitney Elizabeth

Houston" to the name "Whitney Houston" and get a measure of 0.67 using Jaccard’s

distance between words. The quantity here depends on the method chosen for the

measurement.

5.3.3 Level 2: Identifying Evidence Link Patterns using

Semantic Similarity of Predicates in the Overall

Linked Focus Graphs

The second level introduces semantic similarity between evidence links while tak-

ing into account: the fact that the same predicates are used in schemas of the dif-

ferent data sources, and specific semantics related to the current use case by the

mean of predicate similarity indicators. This view is inspired by the example in [63]

but adapted to fit predicates due to the generalized, class-independent definition of

LS(Dt, Dr).

Definition 5.10. Predicate similarity — We denote by symp(t1, t2) (eq. 5.6) the

statistical similarity between predicates of statements t1 and t2 (between p1 and p2).

This measure is built on all the linked focus graphs and represents the use-case related

semantic similarity of the two predicates p1 and p2.

To evaluate semantic similarity, we first define five indicators I1, .., I5 (table 5.1)

to be statistically extracted for each pair of linked focus graphs GDt(et) and GDr(er).

We then use these indicators for each pair of linked focus graphs GDt(et) and GDr(er)

to calculate three local ratios R1, R2, R3 (table 5.2).
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Table 5.1: Semantic similarity indicators for each pair of linked
focus graphs.

Indicator Definition

I1(GDt(et), GDr(er)) the number of evidence links between the two focus
graphs GDt(et) and GDr(er). i.e. the number of links
supporting the similarity hypothesis between the two
resources et and er.

I2(GDt(et), GDr(er)) the set of predicate pairs in evidence links between state-
ments of the two focus graphs GDt(et) and GDr(er). i.e:
the set of pairs (p1, p2) where an evidence link exists
between t1 and t2.

I3(GDt(et), GDr(er), p1, p2) the count of evidence links relying on two predi-
cates p1, p2 between the two focus graphs GDt(et) and
GDr(er).

I4(GDt(et), GDr(er), p1, p2) the total number of possible combinations between
statements using each p1 or p2 in the two linked fo-
cus graphs GDt(et), GDr(er) (For instance, if three state-
ments in GDt(et) use p1 and two statements in GDr(er)
use p2 then the total number of links would be six. So
this represents the maximum possible number of evi-
dence links that can be found linking p1 and p2).

I5(GDt(et), GDr(er), p1, p2) the sum of the quality of evidence links relying on two
predicates p1, p2 between the two focus graphs GDt(et)
and GDr(er). i.e. the sum of object similarities of discov-
ered evidence links between GDt(et) and GDr(er) linking
statements using respectively p1 and p2.

To evaluate the semantic similarity between p1 and p2 on the overall contextual

linkset, we evaluate three averaged ratios R̂1, R̂2, R̂3 for each pair of predicates p1 and

p2 with an evidence link between t1 and t2 in all linked focus graphs, and add another

indicator R̂0 for the equality p1 = p2 (as it will stay the same if averaged). We get

a vector of averaged ratios R̂(p1, p2) = [R̂0(p1, p2), R̂1(p1, p2), R̂2(p1, p2), R̂3(p1, p2)],

with

R̂i(p1, p2) =
1

|LS(Dt, Dr)| ∑
⟨et,pl ,er⟩∈LS(Dt,Dr)

Ri(GDt(et), GDr(er), p1, p2) (5.5)

and for which we define a vector of semantic weights ωsem = [ω0, ω1, ω2, ω3] with

∑ ωi = 1, ωi ≥ 0. We select only the predicate pairs having an average of link quality

equal or greater than a positive defined threshold τsem where τsem ≤ R̂3(p1, p2) ≤ 1.

Hence, we can define symp(t1, t2) of statements t1 and t2 as the dot product of the



112 Chapter 5. Extracting Uncertainty from Implicit Uncertain Data Source for Task-Oriented Evaluations using Graph Interlinks

Table 5.2: Normalised local ratios for each pair of linked focus
graphs.

Ratio Definition

R1(GDt(et), GDr(er), p1, p2) I3 is normalised using I1 to reflect the participation of
evidence links between two statements having p1 and p2
as predicates, in the overall evidence links between the
two linked focus graphs.

R2(GDt(et), GDr(er), p1, p2) I3 is normalised using I4 to reflect the portion of existing
statement that actually participate with a link. If all
existing statements between two focus graphs, with p1
and p2 as predicates are linked with evidence links, it
indicates that the predicates may be functional, or that
this information is a common knowledge that usually
have a lower cardinal (like homepages for artists).

R3(GDt(et), GDr(er), p1, p2) I5 is normalised using I3 to get the average quality of
each evidence link between statements having p1 and
p2 as predicates.

two vectors R̂(p1, p2) and ωsem:

symp(t1, t2) = ωsem · R̂(p1, p2) (5.6)

Similarly to the previous level, the overall quality of considered evidence links

should also respect the average quality threshold τsem. To summarize, each statement

in the target focus graph is candidate to have two measures: object and predicate

similarity. The first is related to a particular evidence link between two statements

while the second requires a general study to the set of all evidence links and is based

on the previously defined indicators. We see this measure as an application of the

law of total probabilities: the probability that two predicates are similar is a sum

of products, with the selected weights that sum up to 1 representing the probability

that an indicator is the one responsible for defining the semantic similarity, and the

average indicators as the probability that the indicator in question is of quality.
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5.3.4 Level 3: Evaluating Contextual Uncertainty of Tar-

get Focus Graphs

At this level, the previous similarity measures are combined into one value reflecting

the degree of uncertainty of a target focus graph GDt(et) regarding its linked reference

focus graph GDr(er). For this, we define the notion of contextual uncertainty to be

the measure of one of a target focus graph based on its evidence links.

Definition 5.11. Contextual Uncertainty — We define contextual uncertainty of a

target focus graph GDt(et) compared to a reference focus graph GDr(er), with a link ex-

isting between et and er in the contextual linkset LS(Dt, Dr), as the sum of products of

object(syntactic) and predicate(semantic) similarity scores of the statements linked by

each l ∈ E(GDt(et), GDr(er)), on the number of evidence links in E(GDt(et), GDr(er)).

U(GDt(et) | ⟨et, pl , er⟩) =
∑<t1,l,t2>∈E(GDt (et),GDr (er)) symo(t1, t2)× symp(t1, t2)

|E(GDt(et), GDr(er))|
(5.7)

This value is not meant to reflect the resemblance of one focus graph to another,

but to give an idea of the reliability of data in the focus graph comparing to the

reference dataset, and to the overall links between the two graphs.

If one wants to evaluate the uncertainty value for each statement inside a focus

graph, we recall the concept of Meta Mapping Modes [64] where selective inheritance

and the involving of uncertainty calculi issue an aggregated value from the local object

and predicate similarities of the statement, and the contextual similarity of the focus

graph including it. One may choose to keep the object similarity as a particular

uncertainty value for the statement, and when asked to provide its uncertainty, the

latter is provided based on the mode: the value of the statement itself, the value of

its focus graph, the most specific value, or a combination of the previous values using

uncertainty calculi.
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5.3.5 Offline Uncertainty Extrapolation

When new elements are presented to the contextual linkset LS(Dt, Dr) or as new

data are inserted and its uncertainty need to be assessed, one may want to reuse the

previously evaluated uncertainty values measured on the semantic level without the

need to rerun the whole evaluation process on linked focus graphs. The elements of the

vector R̂(p1, p2) can be easily updated to match with the new configuration of linked

focus graphs. When adding a new link l between two resources et ∈ IDt , er ∈ IDr to

LS(Dt, Dr), the values of the components R̂i(p1, p2), i ∈ [0, 3] of R̂(p1, p2) are updated

as follows:

R̂i(p1, p2) =
R̂i(p1, p2) ∗ (|LS(Dt, Dr)| − 1) + Ri(GDt(et), GDr(er), p1, p2)

|LS(Dt, Dr)|
(5.8)

Another way to update such values is to treat the predicate similarity of a predi-

cate pair (p1, p2) in the current configuration of Dt and Dr as a prior probability, to

be used in a Bayesian updating to calculate a posterior representing the probability

that the predicates p1, p2 are similar after the update. The likelihood that the two

predicates are similar is tricky to calculate. We can estimate it by using the number

of links from the contextual linkset that supported this hypothesis. For example, if

in 500 analyzed links we found that only 5 links supported the similarity of p1, p2, we

assume that the likelihood is 1%. Another proposition is to check for the likelihood

of the hypothesis of similarity between p1, p2, by checking a global schema providing

information about the equivalence/non-equivalence of predicates, and calculating a

contingency table to find the probability that two random predicates are linked with

explicit equivalence statements.

5.4 Experiment and Evaluation

We evaluate a dataset with 714 artists from MusicBrainz against their linked infor-

mation from the English chapter of DBpedia. The used dataset including focus graphs
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and contextual linkset is available online 8.

5.4.1 Archer: a tool for Uncertainty Analysis and Ex-

traction based on Extrenal Graph Interlinks

To validate our approach, we developed Archer,9 a tool for analyzing and annotating

link data with uncertainty values. Archer uses the proposed approach to extract the

object and predicate similarity with respect to the links between focus graphs. The

tool allows the user to query for identity links, extract focus graphs from both the

target and the reference datasets, and evaluate the uncertainty of each focus graph

in the target dataset. It further allows analyzing and visualizing pairs of linked focus

graphs individually as well as the different indicators for the overall analysis.

In the next parts, we give a quick guide from querying for target and reference

focus graph, to annotating target data with uncertainty information. We offer an

extended guide for each section as an interactive experience within the tool.

5.4.1.1 Querying for Graph Interlinks

The first step is to provide graph interlinks between a target dataset and the reference

one. Links are in the form:

1 <IRI_target_resource> <linking_predicate> <IRI_reference_resource>

For instance, to assess the uncertainty of information about the resource dbp:Paris

in DBpedia while taking the resource wiki:Q90 in Wikidata as a reference, we should

provide the identity link:

1 <http://dbpedia.org/resource/Paris> owl:sameAs <http://www.wikidata.org/entity/Q90>

The query interface of Archer, as shown in figure 5.2 allow to execute predefined

queries just by precising a set of parameters, or provide a list of identity links to use
8see https://github.com/djebR/archer/tree/master/dataset
9http://github.com/djebr/archer

https://github.com/djebR/archer/tree/master/dataset
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as a contextual linkset. The interface allows exploring previous queries, by indicating

the target and reference sources queried for what class individuals. It indicates the

number of found entries as well.

Figure 5.2: Querying for Contextual Linksets in Archer

As explained above, identity links can be provided in two ways:

• by selecting a target and a reference SPARQL endpoints, the desired linking

predicates (such as owl:sameAs, skos:exactMatch, etc). Archer will fetch a max-

imum number of links defined by the user.

• by entering the links manually and directly into the field reserved for custom

links or by importing links from a file. Links have to be in N3 format to be

parsed correctly.

5.4.1.2 Querying for Focus Graphs

Once the resources from the identity links are parsed, Archer queries for their focus

graphs in both the target and reference sources. Figure 5.3 illustrates the view of

individuals, and the number of triples on both focus graphs linked to them.
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Figure 5.3: Entities parsed from the Contextual Linksets

The tools offers two options to analyse linked focus graphs, the first (figure 5.3)

is an individual analysis of focus graph pairs by clicking on the label of the desired

focused resource. The second (figure 5.4) is a complete analysis to give the overview

of the previous pipeline.

The individual analysis provide an overview of the previous indicators I1, .., I5 with

a JSON representation of the same information for debug purposes. The individual

(local) analysis is done by choosing a method for the object similarity. The previous

indicators can be read as a heat map (figure 5.5) showing statistics about the object

similarity and linking it to the predicate-pairs for the next step.

The complete analysis (Figure 5.6) is performed by selecting the method a user

judges to be suitable after some trials with individual focus graphs. Once done, the

user may select specific threshold to refine the results. The complete analysis is done

once and the results are saved to be processed and visualized offline. The figure

shows two different types of charts: a three-dimensional heatmap to see the effect of

the number of the thresholds on the results, and a box map to offer an idea about
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Figure 5.4: The parameters for the Complete analysis

the distribution of the local ratios.

5.4.1.3 Annotating Data with Uncertainty

The tool exports the imported data with uncertainty annotations. Exporting the data

requires the user to choose a configuration from the previous ones, with what they

found convenient and more representative of the reality of their use case. The two

tables (Figure 5.7) provide an idea of the uncertainties that triples will be annotated

with, and the ones calculated for the future uncertainty extrapolation.

5.4.2 Experiment and Results

For the experiment, we chose both a Jaccard distance and a string equality measures

as a valMatch() function. Plots in figure 5.8 show the effect of the size of the contextual

linkset |LS(Dt, Dr)| on the overall count of evidence links ∑ I1(GDt(et), GDr(er)) and

the number of distinct predicate-pair |∪ I2(GDt(et), GDr(er))|. We fixed τsem = 0 to
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Figure 5.5: Individual Analysis of one pair of focus graphs with
two different methods (String matching and Jaccard distance for

characters)

see the effect of τobj on the evidence link count specifically. We then changed the value

to τsem = 0.5 to visualise the effect specifically on the distinct count of predicate-pairs

that are considered as similar in the context of the application. For both experiments,

we chose ωval = 1 to see the effect of each object similarity function as well.

We notice that:

• in all of (a1,a2,a3,a4), the number of evidence links is proportional to the number
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Figure 5.6: Visualization of the results of complete analysis.

of analyzed focus graphs. This points to the fact that focus graphs in both sides

share a certain structure allowing to maintain a relatively fixed ratio of evidence

links per pair of focus graphs. Moreover, in (a1) compared to the absence of

a threshold, more than half the evidence links were ignored in (τobj = 0.25)

indicating that those evidence links were of bad quality. As for the string

equality, the local threshold is not needed as the indicators R1 and R3 will be

the same (for each discovered evidence link, the quality is 1 at ωval = 1), so no

evidence links will be dropped.

• as seen in (b1,b3), the effect of τobj on the number of evidence links is also

predictable. The threshold will only allow links with better quality to be part

of the overall evaluation.
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Figure 5.7: A sample with the chosen configuration to anno-
tate and export data with Archer

• the number of predicate-pairs increases with the number of linked focus graphs.

This is due to discovering predicate-pairs that did not have any evidence links

in the first analyzed focus graphs. It is notable that for both object similarity

methods, the number converges after analyzing more than 400 pairs of focus

graphs. Furthermore, the effect of τobj can be observed confirming that some

predicate-pairs were dropped as they presented only bad quality links.

• when increasing τsem, the plots in (a2) move closer to each other and converging

towards (a4) as it represents strict equality, resulting as well in similar shapes for

(b2) and (b4). The fluctuation is due to the fact that the overall quality of some

predicate-pairs evidence links might drops when considering new pairs of focus

graphs that do not support the hypothesis. However, the plot remains constant

proving that on the overall analysis, five predicate-pairs can be considered as

best candidates to support the graph interlink.

• the difference between the number of predicate-pairs in (b3) and (b4) is remark-

able. Comparing to 28 predicate-pairs in the first with 6600 evidence links, the

second has only 5 predicate-pairs with almost 6000 evidence links. This further

provides proof that most of the discovered links were not of general use (not
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Figure 5.8: Results for analysing 714 pairs of linked focus
graphs: (ai) total number of discovered evidence links (bi) Num-

ber of distinct discovered predicate-pairs.
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common information between focus graph pairs).

5.4.3 Annotating Uncertain Data Using mUnc

After the analysis and selecting what evidence links are considered (by selecting the

thresholds τobj, τsem and what predicate pairs are similar to each other, Archer enables

annotating the statements related to evidence links, the predicate pairs, and the focus

graphs with uncertainty information, encoded in RDF using the Meta-Uncertainty

ontology mUnc [64]. The listing 5.1 is an example of annotating one focus graph

with uncertainty values, where the uncertainty approach and the uncertainty value

annotating the focus graph are defined using mUnc, while PROV [69] describes Archer

as an activity that was used to generate that value.

1 :StatisticalApproach a munc:UncertaintyApproach;

2 munc:hasUncertaintyFeatures :contextualUncertainty.

3

4 :contextualUncertainty a munc:uncertaintyFeature;

5 rdfs:range xsd:decimal.

6

7 :focusGraph1 munc:hasMeta [a munc:Uncertainty;

8 munc:hasUncertaintyApproach :StatisticalApproach;

9 :contextualUncertainty 0.8^^xsd:decimal;

10 prov:wasGeneratedBy :Archer101

11 ].

12

13 :Archer101 a prov:Activity;

14 prov:used :contextualLinkset101.

Listing 5.1: Example of annotating a focus graph with

uncertainty approach and value- with a reference to the process

and the contextual linkset used to generate the value
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5.5 Discussing Uncertainty Extraction

An argument about statistical extraction of semantics would be the fact that a target

dataset can be completely wrong, or somehow unrelated to the reference dataset like

having the same information but in a different language. In both cases, this does

not affect the semantic analysis of evidence links. For the first case, no links will

be discovered and this will raise a flag about the current configuration itself (one is

wrong about everything related to a certain subject, or the references were chosen

incorrectly). For the second case, the similarity links will not be translated as well,

and triggering the intuition of completeness between the two graphs (and not that of

negation).

Analyzing the similarity patterns based on graph interlinks may be a good first

base to evaluate trustworthiness and inclusion between data sources. If one source is

likely to quote the other or has always supported it (in a non-contradicted, comple-

mentary way) then it can be thought of as backed and trustworthy. This approach

works best if one has already a clustered dataset by structure, and the system is used

to see the reliability of its information according to known sources.

Further investigations are scheduled to explore the use of other clustering meth-

ods, or customized focus graphs and see the possibility to transform the existing

information about focus graphs using graph embedding. Finally, user queries should

be one of the main triggers of uncertainty measurement, interlink creation, and eval-

uation. Presenting a publishable measurement with enabled updates is one of the

main motives to ease up the process. It is also important to explore other infor-

mation about predicates by studying the polarity of evidence links, built upon the

previous semantic indicators in the same spirit of ontology-matching but involving a

contextual view.
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5.6 Conclusion: Managing Extracted Uncer-

tainty

For data sources to ensure providing reliable linked data, they need to indicate in-

formation about the uncertainty of their data based on the views of their consumers.

In this chapter, we introduce a novel approach to evaluate the uncertainty of data in

an RDF dataset based on its links with other datasets. We have proposed to evalu-

ate uncertainty in linked data sources by providing graph interlinks. Our approach

is based on both object and predicate similarity and operates on different levels to

evaluate task-specific uncertainty measurements for the data source of interest. We

translate each interlink into a set of links referring to the position of a target dataset

from a reference dataset, based on both object and predicate similarities. The results

of our experiments show that graph interlinks can be supported with a set of evidence

links, depending on the use-case and the user’s choice of quality parameters. Using

our tool enables us to assess the quality of a dataset regarding a certain task, and

annotate its data accordingly while producing reusable and publishable uncertainty

measurements.

This manuscript’s next and last part gives our final thoughts about the realized

work and our research perspectives. Following, we discuss the potential of sharing and

propagating the results of experiments that each source performed. We talk about

the idea of having a collaborative uncertain linked data universe.
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Part III

Conclusion
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Chapter 6

Conclusion

The challenge of understanding all aspects of uncertainty seems somehow limiting its

purpose. The world as we know it is meant to be incomplete and some parts of it to

be ignored. Data can be erroneous in the Web Utopia we aspire for, but the error

should be detected. People can express different subjective measurements about one

fact, and their beliefs can be compared and composed into knowledge. This vision

of a transparent and reliable Web can be realized with the aid of extra resources,

allowing the curating of the existing data and the secure funneling and linking of new

ones to a consensual Web.

Uncertainty is not a bad thing. However, exaggeration or ignorance can be bad

practices. We ask data publishers to be transparent with their data and processes

to serve both the openness of the Web and offer the possibility for future robust

decentralized curation processes to be achieved.

This manuscript cannot cover all the different questions one may ask about uncer-

tainty. The purpose was to shed some light on the area we explored and contributed

to, and most importantly, to ask further questions. As wide as it is, uncertainty

always leaves room for improvement.

Our ideas were built on the assumption of local consistency in contexts. This

means that a unique occurrence of the same sentence with a specific set of uncertainty

metadata. Although this was not discussed in detail, one way this can be achieved
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on the existing and upcoming data is through validation. The use of SHACL, for

instance, helps validate the shape of each context to ensure it contains no redundant

or contradictory information. The rules can be further set to translate any uncertainty

to compare the different occurrences of the same sentence.

To the best of our knowledge, no previous work offered a framework to handle

uncertainty using a standard generic vocabulary to represent custom uncertainty

approaches. Since the URW3-XG was shut down in 2008, we perceived a decrease

in the works treating uncertainty as a generic dimension. The group insisted on the

investigation and the proposition of generic support of uncertainty. We offered a way

for uncertainty to be representable, publishable, detectable, and reusable using the

Semantic Web standards. In addition, the use of contexts, readings, indications, and

calculi allows more selectivity towards the metadata presented to the user and allows

inferring new uncertainty information. The uncertainty ontology can extend the

work by Cabrio et al. [93] treating the composition of information from the different

language chapters of DBpedia. This can be done by enriching the proposed fuzzy

labeling algorithms with definitions of uncertainty theories suitable to the data. A

set of other applications such as fake news detection, argumentation-based systems,

and even community-based data population for sources such as DBpedia can use the

uncertainty ontology to enrich future content with uncertainty information.

The idea we see as following to the representation and extraction of uncertainty

is the propagation of such uncertainty values. In this section, We tackle the questions

of sharing, receiving, updating uncertain information. We discuss the best practices

on approaching information on the Web and provide some ideas about positioning

a piece of information we found on the Web, accordingly to others in the same or

different contexts.
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6.1 Generalizing Uncertainty Extraction and

Propagation through the LOD Cloud

The natural course of action to propagate uncertainty is to move it up the different

contexts that shape the view of reality and recursively select and compose its val-

ues according to the conditions set by the user. Propagating uncertainty between

sources requires analyzing their dependency relationship, leading to the study of the

macrostructure of the Web of Linked Data (as any other directed graph [94]) and

discussing what sources affect/get affected more by others. The in/out links from

data sources are represented interactively on the LOD-cloud website.1 The linking

information provided is the number of triples linking the pair of sources with an in-

/out link, and it is a good start to build an initial dependency graph. Therefore, we

can start implementing uncertainty for the effective central sources (sources mostly

used as references by other sources). This should be done by checking the existence

of a link between two sources and analyzing the relationship between the data of-

fered by both sources. The LOD cloud provides the number of triples linking one

dataset to another but does not specify the relationship of such triples, and –unlike

Archer– it does not provide an idea about non-connected triples. Uncertainty cannot

be propagated without understanding where it is coming from and having a refer-

ence to compare the two contexts in which uncertainty was generated into. For that,

all sources must evaluate themselves and position themselves according to all other

sources. This evaluation may concern all or part of the data the source is presenting.

This must be eventually mentioned to data consumers to promote more transparency

about the process.

Sharing and propagating uncertainty requires packaging each level with its un-

certainty and unpacking the levels in the same way. For instance, a sentence-level

uncertainty must be compared and composed with a similar one from another source

during propagation. This process is different from the composition of uncertainty
1The links are visible on hover. From one source, red links represent incoming links, and

green links are outgoing ones. https://lod-cloud.net/clouds/lod-cloud.svg

https://lod-cloud.net/clouds/lod-cloud.svg
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from different levels inside the same source (like meta-mapping modes). We point

here to the differences between (i) serving an answer to a user and (ii) comparing two

sources. The first one requires a unified view of uncertainty from the different encap-

sulation levels inside every single source. For instance, we can use the meta-mapping

mode to compose the uncertainty of a sentence stating that Stefano Tacconi is Italian,

with the uncertainty of the section of the website it is mentioned in (e.g., the football

section) and then with the uncertainty of the website as a whole. In the end, the

user gets a composed uncertainty from the different levels, reflecting the sentence’s

contextualization. The second one requires understanding the different components

composing uncertainty to be transparent on the propagation as well. Comparing two

sources can be done while considering the contextualization of sentences and with-

out it. Moreover, uncertainty from the different levels can be linked to more specific

provenance information.

6.2 A Consensual Uncertain Semantic Web Uni-

verse

The question is about how to get everyone to comply with the presented approach.

Complying here is not about fully embracing the approach, but at least coping with

the fact it exists and some sources adopt it. This question can be answered with a

quick "no" or an ambitious "maybe." The quick negative answer implies that the Web

cannot handle this additional layer for many reasons:

• Data providers perceive uncertainty as an additional burden to handle.

• Humans do not care about publishing correct or accurate metadata [6].

• Users get confused about the type of uncertainty to use in each use case.

• Some sources serve but do not take feedback.
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The level-based architecture we proposed and the use of meta-mapping modes

was meant for dealing with scalability issues. Sharing metadata about data is not

necessarily increasing the size exponentially. Using uncertainty reading and contex-

tualization, we can save much space and reduce the time of treatment. Dealing with

scattered, unorganized metadata can be less challenging relative to scalability. We

can overcome such an issue by imposing strict guidelines for data publishing or reuse

on the Web. Moreover, it is easier to represent uncertainty when we abide by a pub-

lished unique vocabulary, or a set of interlinked vocabulary serving the same purpose,

with a straightforward mapping from one to another and a more precise explanation

for the processes, indications, readings, and calculi of uncertainty. The open nature

of the Semantic Web encourages reusability: one can reuse previously defined uncer-

tainty approaches to describe the uncertainty of their datasets and build upon the

existing ones. They can decide to position their data according to the ones proposed

by their peers, therefore decide for its reliability accordingly. On the Semantic Web,

everyone complies with the standards to publish their data. The community can pro-

pose "reliability standards," a set of best practices to publish reliable, portable linked

data on the Semantic Web. These standards can contribute to the 5-star rating of

Linked data publishing on the Semantic Web. We can have something like:

• Published while respecting the Semantic Web and Linked Data publishing stan-

dards.

• Data provenance made available.

• Uncertainty data and schema made available.

• Uncertainty Calculi and reading made available.

• Data reproducibility processes made available (full provenance, access to data

generation/extraction code)

The last issue is where some sources opt-in for transparency, but others do not.

One source can serve data but does not accept receiving suggestions or updates from

the external world. Supporting uncertainty starts by filtering, contextualizing, and
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profiling every piece of information that hops from the Web into the Semantic Web

or is integrated directly into the latter.

The ambitious “maybe” is based on two steps: Homogenization and curation.

With mUnc, we can enforce transparency on individual sources, especially those linked

to official or governmental institutions. The more sources are adopting uncertainty,

the better it is for the community. However, homogenization may take a long time,

and data providers may not comply with other regulations easily. During that time,

curation may be a second resort, where a mediator agent gathers the necessary data

for a specific use case from different sources. The mediator performs an uncertainty

extraction following the same principles as Archer and compares/homogenizes the

acquired data for those without explicit uncertainty. An example for homogenization

using truth values is offered in [93] where the authors proposed to curate data from

the different language chapters of DBpedia using a majority consensus. Afterward,

the curated data can be cached or saved on a new copy, or the changes can be publicly

communicated to the different data sources used in this operation. The idea of data

curation is not meant to create a unique point of view but a set of backed ones.

Anyone can say anything on the Web, as long as they can prove it rationally and

others approve of their method. Hence, sources accept that there can be multiple

opinions on the Web, and users can see them transparently, understand how they

relate to each other and judge them according to their search context. This work is

not meant to enforce a unique view on the Web, but to add a protective shield to the

ambivalence it thrives on, making it safer to burst the bubbles of local contexts.

6.3 Data transparency: say more and be hon-

est about data

Setting up filters on the doors of the Semantic Web is not an easy task. Any process

requires assessing the quality of data before using it with or as a reference. This

transparency can be expressed manually, where data providers check every piece of
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their data and state its provenance. However, in the case of the Web, lots of data

are already out there. AI comes in handy for such a problem, where systems can

check and predict missing provenance or simulate data generation, which can be for

the service of crypto, proof, and trust layers on the Semantic Web Stack. To deal

with unifying logic, we must consider sharing data and the processes that lead to its

creation and those manipulating it.

Another transparency issue is the uncertainty of uncertainty-related processes.

We elaborate the debate around the fact that uncertainty data can be uncertain

on its own. This is another reason for us to be transparent about the processes of

uncertainty selection and composition.

In the future, we may face other issues as the uncertain semantics of silent triples

(i.e., triples without explicit annotation or indication of uncertainty). The idea with

these triples is to consider both their default state as an asserted triple in a data

source and the assumption of their existence in an open world. By default, silent

triples are considered certain for their mere existence, and the absence of uncertainty

tells nothing more about their state. Any user can change this setting according to

what they think is convenient for their use case. One can decide not to consider silent

triples or to treat them differently. This issue opens the door to a debate about the

democracy of information on the Semantic Web and whether to consider all triples

equal or different.

6.4 From Beliefs to Knowledge

According to the Theory of Knowledge proposed by Plato, a belief is the subjective

requirement for knowledge, whilst Knowledge is defined as a justified true belief. In our

case, the criteria set by the user to select resulting uncertain data are the justifications

we are looking for to consider the beliefs as knowledge. We see uncertain data as a

support for a subjective judgment. Therefore, we can say that uncertain data assert

the truth of beliefs depending on their uncertainty qualification/quantification. Once
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the users select to believe uncertain data because they fit their reality and use case,

beliefs then are considered knowledge in that use case. For example, we consider

the sentence stating that Stefano Tacconi’s height is 192 cm, annotated with an

uncertainty value of 0.3. This sentence asserts the truth of this information to the

extent of its uncertainty value but cannot be considered knowledge by the users unless

they decide to accept all sentences with an uncertainty annotation equal to or greater

than 0.3. Nevertheless, the sentence is considered knowledge only in that context.

The previous example reflects on any sentence, assuming each data source pos-

sesses a coherent context. Hence, two sentences can still be selected if their uncer-

tainty values are above the threshold while knowing they will not be of a contradic-

tion. However, if we want to widen our view, this should not be the only criterion to

use. The Web, in reality, allows the existence of different sentences asserting different

beliefs on the same atomic and functional information, such as birthdays or height

values. Having a consensus requires the previous selection criteria to apply globally to

all sources. For example, consensus by the majority is one form of the conditions we

apply to get beliefs to be knowledge. It is an implied selection criterion that allows the

information believed by the majority to be the one selected as knowledge. Our work

on uncertainty representation and extraction provides another criterion. Uncertainty

values can then lead and achieve the consensus while easing the communication of

data deficiencies.
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Chapter 7

Perspectives and Future Works

This work on uncertainty is a precious opportunity to reflect on some basic ideas about

epistemology, knowledge, and philosophy. The journey through the different layers

of the Semantic Web and the different related domains was of joy. This manuscript

covers the works we contributed to the previous, but both time and words limit the

expression of some ideas we want to pursue further. We revisit the principles required

by Klir to see that the representation and calculi of uncertainty enabled by mUnc,

uncertainty extraction enabled by Archer, the contextualization and the translation

mechanisms of uncertainty cover the different points and allow for the implementation

of the different principles. It is up to the users to choose the best theories to fit with

their use-cases. But this does not conclude the work in this area and will open many

doors and possibilities for future improvements.

We aim to dive deeper with uncertainty operators. The plan is to issue a set of

recommendations about linking every component in the query answer with the appro-

priate uncertainty value, with a detailed description of the processes, the considered

contexts and levels, and the various user-selected conditions that contributed to the

generation of such data. The visualization of uncertainty explanations can be done

using procedural/flow diagrams (e.g., Sankey diagrams1). This work should finally be

presented as a generic uncertainty querying and reasoning engine that would support
1A diagram illustrating the flow from one set of values to another. It can help to show

what elements intervened in the generation of an uncertainty resource.https://developers.
google.com/chart/interactive/docs/gallery/sankey

https://developers.google.com/chart/interactive/docs/gallery/sankey
https://developers.google.com/chart/interactive/docs/gallery/sankey
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any formalized uncertainty approach. We worked on a tweaked version of Corese to

integrate some uncertainty support, which should be our starting reference.

For uncertainty extraction, it would be interesting to focus on two main axes.

The first axis concerns learning the most suitable structure for a focus graph. That

should generalize our approach to consider a set of reference resources to include

more parameters such as scores from ontology matchers. The second is exploring the

possibility of using embeddings with the focus resources, especially for the internal

analysis of the similarity between the focused resources of the same set.

We aim to make our vocabularies, code, and contribution more accessible and

open for sources to use and adapt. This step includes offering solutions to ease the

adoption of uncertainty and integrating this dimension in the marketed extensible

data stores. Linked Data sources can adopt this approach to enrich federated queries

with uncertainty information, allow negotiation, and progressively build a consensus-

based Linked Data source. Having enough uncertain data would allow us to study

the relationship between use cases and uncertainty theories that are used. We think

of specifying the levels in which different readings for uncertainty may operate in

order to constraint the approaches to their specific level: for instance, if there is an

approach that treats incompleteness, it should be limited to annotate collections of

triples and not single ones.

We intend on exploring the question of weighted contexts. Some contexts appear

to be more relevant than others in single or multiple sources or contain more relevant

information to a specific query. Using relevant and reliable contexts will help the

answer be backed by higher quality data, reducing uncertainty. At the same time,

the idea of nested contexts can be explored. We require to implement a generalized

version of the meta-mapping modes to enable a finer-level architecture for uncertainty.

We also like to explore context overlapping, allowing the selectivity inside the source

between contexts and optimizing the storage.

The generalization of our approach requires testing Archer on a larger scale. This

step includes analyzing the macrostructure of the Linked Open Data cloud and testing
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for a feasible way to propagate a simple type of uncertainty, such as a statistical

probability of the consensus between the different sources. We aim to upgrade Archer

to fit in with more data sources.

Some of the questions we would like to tackle concern annotation to extract

valuable data for uncertainty evaluation. W3C Credible Web group discussions are

stirring the wheel in that direction, but on an upper application level. We aim to

draw attention to the use of low-level data and the chance to consider uncertainty

as one dimension in judging a source’s credibility. Another question we mentioned

above was about the democracy of data on the Web and the reading of silent triples.

We want to discover the effects of the different assumptions we can make about such

data and the optimal use cases for each. We want to see if uncertainty metadata

can be networked on an independent architecture or mediated by external parties of

the transactions between data sources. A broad ambition is to pursue the idea of

a Linked Open Code [95], where code on the Web can be referenced and reused as

Linked data (see appendix B). We find it interesting to see the possibilities it can

offer for sharing, understanding, and proposing functional code to serve as a platform

for distributing uncertainty calculi.

To conclude, embracing uncertainty should be part of the full experience of the

Web of Intelligence. Various aspects are to consider, and many technicalities must

be solved to establish a universal, collaborative, trustworthy universe.

“He who controls Metadata controls the Web”[12] recalls the power of metadata.

Being transparent about data prevents this power from falling into the wrong hands

and guarantees a fair Web experience for all users. Being familiar with imperfections

and using them to our advantage is required to overcome our limits.
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Appendix A

Querying the English and

French chapters of DBpedia for

Inconsistencies in Football

Players

To give the example of inconsistencies between two language chapters of DBpedia, we

performed a query on both the French and English chapters to check for the heights

of football players. The query could not be executed due to the limitations offered

by DBpedia servers.

The options we had in hand were:

• Downloading the dumps of the both chapters

• Overcoming the limits imposed by the servers

Both language chapters ran endpoints based on Virtuoso. The default settings

allow to fetch 10000 rows with a single query. Nevertheless, SPARQL offer the option

to fetch rows starting a specific index, using the keyword OFFSET. In the end, we

proceeded like follows:
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• we queried for the total number of football players satisfying our condition

• we used a UNION over the result of a set of limited queries (using LIMIT and

OFFSET).

In our experiment, we counted the number of entities in the class dbo:SoccerPlayer

having a valid label and a height value in both chapters. We then use the English

chapter as reference because it covered more information, and within looked for the

players having an identity link with the French chapter. We counted a total of 27516

entities.

Knowing that Virtuoso does not allow for results more than 10000 rows, we opted

for the following solution: we divided the service query into three parts using LIMIT

and OFFSET, allowing to recover 10000 rows at once (3 sub-queries in this case). We

then used UNION to reassemble the results before passing them to the second service

query for the French chapter. The condition we chose for an inconsistency in this

case is a 2cm of difference between the two height values. The following query was

tested on CORESE 4.2, following with a result of 695 players with inconsistent height

values.

1 prefix dbo: <http://dbpedia.org/ontology/>.

2

3 SELECT ?English ?French ?enHeight ?frHeight WHERE {

4 {

5 SERVICE <http://dbpedia.org/sparql> {

6 SELECT distinct ?English ?enHeight ?French WHERE {

7 ?English a dbo:SoccerPlayer.

8 ?English dbo:height ?enHeight.

9 ?English owl:sameAs ?French.

10 filter(contains(str(?French), "fr.dbpedia") = true)

11 } LIMIT 10000

12 }

13 } UNION {

14 SERVICE <http://dbpedia.org/sparql> {

15 SELECT distinct ?English ?enHeight ?French WHERE {
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16 ?English a dbo:SoccerPlayer.

17 ?English dbo:height ?enHeight.

18 ?English owl:sameAs ?French.

19 filter(contains(str(?French), "fr.dbpedia") = true)

20 } LIMIT 10000 OFFSET 10000

21 }

22 } UNION {

23 SERVICE <http://dbpedia.org/sparql> {

24 SELECT distinct ?English ?enHeight ?French where {

25 ?English a dbo:SoccerPlayer.

26 ?English dbo:height ?enHeight.

27 ?English owl:sameAs ?French.

28 filter(contains(str(?French), "fr.dbpedia") = true)

29 } LIMIT 10000 OFFSET 20000

30 }

31 }

32 SERVICE <http://fr.dbpedia.org/sparql> {

33 ?French dbo:height ?frHeight.

34 }

35 FILTER(IF(abs(?enHeight - ?frHeight) > 0.02, 1,0) = 1)

36 }

Listing A.1: Query for inconsistencies between the English and

the French Chapters of DBpedia

Another solution to overcome the limitations of the server is the use of SPARQL

functions proposed in LDScript, where the sub-queries can be executed in a for loop

before passing them to the next query. The function may improve this query by

checking for the unit of measurement, and normalize any odd values (e.g., if some

values are in meters or inches).

The previous query is just an example, and reflects just a small part of the incon-

sistencies here. It suggests the existence of a height value, whether in reality, some

players do not have an attributed height value as well as other data points.
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Appendix B

A vision Towards a Linked Open

Code: shipping methods with

data

The vision in this appendix is part of a work published in the Extended Semantic Web

Conference ESWC 2020 [95]. The work aimed to offer a vision towards a Semantic

Web with a possibility of publishing, linking, and reusing parts of code as we know

it, aiming to apply that in the publishing of Uncertainty Calculi.

The guidelines provided by the Semantic Web community allow to (i) homoge-

neously represent, (ii) uniquely identify, and (iii) uniformly reference any piece of

information. However, the same standards do not allow defining and referencing the

methods to exploit it: functions, procedures, algorithms, and code are generally left

out of this interconnected world.

For the sake of transparency, the processes to generate and manipulate data need

to be open and AI-ready. Understanding the provenance of uncertainty metadata is

required to manipulate it. For that, we are required to understand the processes that

lead to the generation of such data: whether it is an entry, an automatic generation,

or a generation based on other uncertainty metadata. In all cases, access to the code

that leads to these operations is crucial.
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The existing code repositories on the Web are not ready for Semantic Web. Many

challenges arise from this new definition, starting with the fact that the existing code

repositories do not provide a "function-based" view. As a consequence, we should

figure out how to turn those into referenceable, reusable resources. The following

challenges presented in figure B.1 are to be addressed.

B.1 Referencing Functions

Function structure and signature in code make it easily recognizable. The signatures

usually contain information such as the function’s name and its typed arguments (cf.

figure B.2). Such information can be represented as linked data while attributing a

unique identifier for function definitions.

The idea is to allow Linked Data providers to publish, following the Semantic

Web principles, the code of functions, and their metadata. Furthermore, one may

include an additional level of granularity to existing IRIs referencing code entities

(repositories, folders, files, fragments), helping to reference functions and keep track

of their provenance. For example, a code file archived on Software Heritage with the

IRI swh:codeFile helps addressing the function fn using the IRI swh:codeFile_fn_1

(instead of referencing fragments of code with no defined semantics).

Figure B.1: Challenges to achieve a first working prototype of
Linked Open Code
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Figure B.2: Comparison of metadata provided function signa-
ture in Python and C++

B.2 An Ontology for Functions

A crucial step to bring functions to the Semantic Web is defining an ontology to

represent them. Such ontology must describe four aspects:

1. Versioning: the version of the function, programming language, provenance.

2. Relational: relations between functions (inclusion, dependencies).

3. Technical: code, arguments, typing.

4. Licensing: although all open source licenses imply free-use and sharing of

code 1, some may impose restrictions on the reuse (e.g. crediting the origi-

nal author), hence this information needs to be provided to the user.

B.3 Annotating Functions Semantically

During this step, the defined functions are mapped, each with their signature and

feature metadata. An Abstract Syntax Tree (AST) analysis is applied to identify the

components constituting the function’s signature (name, parameters, ...) that will

then be used as values for the properties defined in the ontology. As a result, the user

will query the knowledge base to retrieve the function matching the given constraints.

In parallel, a feature identification process is executed to identify the functionalities

implemented by each function and annotate them accordingly. The whole process is
1https://opensource.org/licenses

https://opensource.org/licenses
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Codebase

Extraction of
functions

Functions 
source code

Analysis of the
functions signatures

Signature 
properties for 
each function

Feature 
identification

List of features 
implemented by 

each function

Annotated functions 
relying on the 

ontology

int sum(a,b):
    return a+b

void sortArray(l):
    …

name: sum
parameters: [int, int]
return type: int
name: sortArray
parameters: [list]
return type: void

name: sum
features: sum_integers

name: sortArray
features: parse_array, 
sort_array

int sum(a,b):
    return a+b

void sortArray(l):
    …

sum_integers

parse_array

sort_array

Figure B.3: Overview of the process for semantic annotation
of functions

depicted as in figure B.3. Multiple techniques for the identification of features have

already been proposed [96] and need to be adapted to our context.

B.4 Linking Functions

After identifying the functions’ features, we can use this information to semanti-

cally link functions fulfilling similar goals. Indeed, two functions annotated with the

same feature can be considered different implementations for the same functionality

perceived by the user. Therefore, we can link them with standard predicates such

as owl:sameAs, skos:exactMatch, skos:closeMatch or custom predicates offered by

other existing ontologies. Alongside semantics, the dependency must be taken into

account to link related functions together. Based on this criterion, functions relying

on the results provided by other functions (including the function itself in the case of

recursive calls) will be semantically connected.

B.5 Ranking Functions

The same functionality can be implemented in different ways and using different pro-

gramming languages. To provide the most efficient implementation, we need to rank

functions according to several parameters. One example can be the community’s
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feedback, whereas a repository where usage statistics for functions are being kept for

ranking purposes, alongside other information such as the number of times a function

was starred, forked, or upvoted by users. It is also possible to signal issues related

to security flaws. Performance evaluation can also be used as a ranking criterion. A

Semantic Web Engine like Corese 2, coded in Java, would use functionality imple-

mented in Java. However, the same functionality, implemented in Python, can deliver

better performance for the same tool if used with a Python wrapper. This aspect is

meant to link code with experience. We can imagine users sharing their execution

log, containing hardware specification, operating system, and the language version,

amongst other metadata.

B.6 Negotiating Functions

Users may take advantage of the implemented content negotiation to get suitable

function definitions for their use-cases. This is done by using HTTP headers or non-

HTTP methods like Query String Arguments (QSA). Users negotiate functions that

suit their current environment to access and manipulate Linked Data. For instance,

a user working with Corese may send a request to the function catalog, asking for

the Java implementation of functions alongside their query for data. Negotiation can

rely on the previous step by proposing the best function to the users according to

their specifications.

The realization of this vision would be a framework through which the user would

use SPARQL to query a catalog of functions for the implementations of needed func-

tionalities meeting architectural and user-defined requirements. The fetched code

artifacts can then be composed to build a tailored software system. Concretizing the

vision raises other challenges such as the code curators’ centrality, scalability, code

quality, and distribution. That will need to be addressed when designing the actual

solution.
2https://github.com/Wimmics/corese

https://github.com/Wimmics/corese
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