N

N

Novel concepts for theoretical and applied problems of

electromagnetism. Part 1: Absolute representation of

the fields in the spacetime map. Part 2: Low-volume
optical antennas for bolometer applications

Marina Yakovleva

» To cite this version:

Marina Yakovleva. Novel concepts for theoretical and applied problems of electromagnetism. Part
1: Absolute representation of the fields in the spacetime map. Part 2: Low-volume optical anten-
nas for bolometer applications. Electromagnetism. Université Paris-Saclay, 2021. English. NNT:
2021UPASP129 . tel-03679218

HAL Id: tel-03679218
https://theses.hal.science/tel-03679218
Submitted on 26 May 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-03679218
https://hal.archives-ouvertes.fr

=
gv)
e
@)
s
&
@)
©
Q
ﬁ
Q
7))
rQ
o=
|_

NNT : 2021UPASP129

o
universite

PARIS-SACLAY

Novel concepts for theoretical and applied
problems of electromagnetism.
Part 1. Absolute representation of the fields
in the spacetime map.
Part 2: Low-volume optical antennas

for bolometer applications.

Theése de doctorat de l'université Paris-Saclay

Ecole doctorale n°572 Ondes et Matiere (EDOM)

Spécialité de doctorat : Physique

Unité de recherche : Université Paris-Saclay, CNRS,

Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
Graduate School : Physique. Référent : Faculté des sciences d'Orsay

These présentée et soutenue a Paris-Saclay,
le 9 Décembre 2021, par

Marina YAKOVLEVA

Composition du Jury

Jean-Jacques GREFFET Président

Professeur, 10GS, Université Paris-Saclay

Jonathan GRATUS Rapporteur & Examinateur
eq. MCF HDR, Physics Dept., Lancaster University

Agnés MAITRE Rapporteure & Examinatrice
Professeure, INSP, Paris-Sorbonne

Renaud BACHELOT Examinateur

Professeur, L2n, Université de Technologie de Troyes

Direction de la thése

Jean-Luc PELOUARD Directeur de theése
Directeur de Recherche, C2N, CNRS
Fabrice PARDO Co-encadrant

Chargé de Recherche, C2N, CNRS

Nicolas BOUDOU Invité
Ingénieur R&D, LYNRED




PARIS-SACLAY

ECOLE DOCTORALE

Ondes et matiére
(EDOM)

universite

Titre: Nouveaux concepts pour les problémes théoriques et appliqués de 1’électromagnétisme.
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Partie 2 : Antennes optiques de faible volume pour applications bolométriques.

Mots clés: topologie de I'espace-temps, invariants de Lorentz, champ électromagnétique, nanoantenne optique,

absorbeur infrarouge, bolomeétre

Résumé: Ce travail se compose de deux parties qui,
bien que tres différentes 'une de l'autre, appartiennent
toutes deux au méme domaine : 1’électromagnétisme et
ses problemes modernes. Dans la premiere partie, une
géométrisation absolue du champ électromagnétique
dans ’espace-temps est présentée, remettant en cause
I'affirmation selon laquelle la seule facon de présen-
ter le champ électromagnétique est l’abstraction. Il
est démontré qu’avec la topologie absolue de I’espace-
temps, deux invariants scalaires suffisent & décrire en-
tierement le champ électromagnétique. Une attention
particuliere est accordée au cas d’'un champ invari-
ant selon une direction et polarisé, dont la topolo-
gie peut étre représentée dans l’espace-temps 3D par
des lignes (spaghettis électriques), les deux invariants
scalaires étant alors réduits & un seul. Contrairement
aux lignes du monde des particules, qui sont toujours
de type temps, ces lignes transcendent la frontiere en-
tre I'espace et le temps. Cette approche du champ
électromagnétique ouvre de nouvelles perspectives tant

pour l'enseignement que pour la recherche, notam-
ment ’analyse des propriétés topologiques de ces struc-
tures absolues dans ’espace-temps. La seconde partie
est consacrée a un probléme plus appliqué, celui du
développement de nano-absorbeurs qui pourraient de-
venir la base d’une nouvelle génération de bolometres.
Dans ce travail, il est démontré que grace aux pro-
priétés exceptionnelles des antennes plasmoniques (ab-
sorption totale et fort confinement du champ élec-
tromagnétique), il est possible de concevoir des ab-
sorbeurs infrarouges dont le volume est fortement ré-
duit (plusieurs ordres de grandeur) par rapport a ceux
utilisés dans les microbolometres actuels. Ces résul-
tats ouvrent la voie a une rupture technologique ma-
jeure qui, en réduisant fortement la capacité thermique
de I'absorbant, conduit a un nouveau compromis sen-
sibilité - vitesse pour les bolomeétres dont les perfor-
mances devraient alors étre proches de celles des pho-
todétecteurs refroidis.

Title: Novel concepts for theoretical and applied problems of electromagnetism.
Part 1: Absolute representation of the fields in the spacetime map.
Part 2: Low-volume optical antennas for bolometer applications.

Keywords: spacetime topology, Lorentz invariants, electromagnetic field, optical nanoantenna, infrared ab-

sorber, bolometer

Abstract: This work consists of two parts which,
although very different from each other, both belong
to the same field: electromagnetism and its modern
problems. In the first part, an absolute geometrization
of the electromagnetic field in spacetime is presented,
challenging the claim that the only way to present elec-
tromagnetic field is abstraction. It is demonstrated
that with the absolute topology in spacetime, two
scalar invariants are sufficient to describe the electro-
magnetic field. Particular attention is paid to the case
of y-invariant p-polarised field, the topology of which
can be represented in 3D spacetime by lines (electric
spaghetti), the two scalar invariants then being re-
duced to one. Unlike the world lines of particles, which
are always time-like, these lines transcend the bound-
ary between space and time. This new approach of
the electromagnetic field opens up new perspectives
both for teaching and for research, in particular the

analysis of the topological properties of these absolute
structures in spacetime.

The second part is dedicated to a more applied prob-
lem, that of the development of nano-absorbers which
could become the basis for a new generation of bolome-
ters. In this work, it is demonstrated that thanks to
the exceptional properties of plasmonic antennas (to-
tal absorption and strong confinement of the electro-
magnetic field), it is possible to design infrared ab-
sorbers whose volume is greatly reduced (several orders
of magnitude) compared to those used in current mi-
crobolometers. These results pave the way for a major
technological breakthrough which, by greatly reducing
the thermal capacity of the absorbent, leads to a new
sensitivity - speed compromise for bolometers whose
performance should then be close to that of cooled
photo-detectors.
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Résume francais

Ce travail se compose de deux parties qui, bien que tres différentes 'une de 'autre, appartiennent
toutes deux au méme domaine : 1’électromagnétisme et ses problémes modernes.

Dans la premiére partie, une géométrisation absolue du champ électromagnétique dans
I’espace-temps est présentée, remettant en cause I'affirmation selon laquelle la seule fagon de
présenter le champ électromagnétique est ’abstraction. Cette approche du champ électromagné-
tique ouvre de nouvelles perspectives tant pour ’enseignement que pour la recherche, notamment
en considérant les propriétés topologiques de ces structures absolues dans 1’espace-temps.

La premiére partie commence avec le Chapitre 1, ou la formulation intégrale des équations
de Maxwell basée sur les flux magnétiques et électriques sur des surfaces 2D orientées arbitraire-
ment (espace-temps ou espace-temps) est présentée pour I'espace-temps 4D. Contrairement aux
champs électrique ou magnétique qui dépendent d’un choix de référentiel, les flux sur les surfaces
sont des scalaires absolus (invariants par la transformation Lorentz). Cependant, le choix des
surfaces 2D (maillage de I'espace-temps 4D) est arbitraire. Le but de ce travail est de prouver
qu’il existe une topologie absolue du champ électromagnétique dans 'espace-temps. Complétée
par deux invariants scalaires, cette topologie décrit entierement le champ électromagnétique.

Dans le Chapitre 2, le cas d'un probléme y-invariant p-polarisé est considéré en raison de
son avantage a pouvoir étre représenté dans un espace-temps 3D. Dans ce cas, la topologie du
champ électromagnétique est représentée de maniere absolue par des lignes d’événements que
nous nommons spaghettis électriques, et les deux invariants scalaires sont réduits a un. Un nouvel
invariant scalaire, le parametre caractéristique 7, a été trouvé pour ces lignes. Leur topologie est
présentée pour trois exemples illustratifs : deux cylindres électrostatiques, une interférence de
deux ondes planes se propageant en sens inverse, et un réseau de fentes résonantes. Ce dernier

cas est particulierement remarquable, car dans la région d’entonnoir, les spaghettis électriques



présentent des motifs en spirale bien qu’il n’y ait pas de charge en leur centre. Il est démontré
qu’ils apparaissent dans l'interférence d’une onde plane incidente et d’une onde évanescente.

Le Chapitre 3 présente le cas général du concept de décomposition unique du flux dans
I’espace-temps 4D. Comme ’a démontré Riesz en 1959, la décomposition en deux bivecteurs
orthogonaux (I'un de type temps-espace, 'autre de type espace-temps) dans ’espace-temps de
Minkowski 4D est unique. Ainsi, la carte électromagnétique absolue (réalisée, par exemple, avec
des triangles orientés portant les flux magnétiques et électriques) basée sur des paires de segments
infinitésimaux completement orthogonaux de surfaces 2D, chacun contenant les valeurs absolues
des flux électriques et magnétiques, peut étre définie d’une maniere unique, indépendamment de
tout référentiel. Dans certains cas, ces éléments de surface définissent une surface unique, que
I’'on appelle une lasagne. Cette partie se termine par le Chapitre 4 qui résume les principaux
résultats.

La seconde partie est dédiée a un probleme plus appliqué : le développement de nano-
absorbeurs d’énergie électromagnétique a 'usage des bolometres. Dans ce travail, nous montrons
que les propriétés exceptionnelles des antennes plasmoniques (absorption totale dans des volumes
nanométriques) permettent de concevoir des absorbeurs infrarouges dont le volume est plusieurs
ordres de grandeur plus petit que celui des micro-bolometres actuels. Cette réduction drastique
de la capacité thermique permet, en déplacant le compromis sensibilité vitesse, de concevoir
une nouvelle classe de bolometres dont les performances devraient alors étre proches de celles
des photo-détecteurs refroidis.

Le chapitre 5 donne un apercu de I’état de I’art des micro-bolomeétres et présente le po-
tentiel de bolometres utilisant des structures plasmoniques comme absorbeurs. Celles-ci, de
dimensions inférieures a la longueur d’onde, permettent a la fois un fort confinement du champ
électromagnétique et une absorption quasi-totale a la résonance.

Le chapitre 6 est dédié a létude de labsorption dans les réseaux (1D et 2D) de structures
métal isolant métal (MIM) placés a un quart de longueur donde dun miroir pour compatibilité
avec le procédé de fabrication des micro-bolometres actuels. Malgré ces conditions inhabituelles
dexcitation (champ magnétique nul) les conditions de couplage critique ont été démontrées,
correspondant & un mode, des conditions de couplage et une concentration du flux dénergie
spécifiques. Une recherche des absorbeurs de plus petit volume a été menée pour différents
métaux et différentes géométries. Enfin, les antennes en forme de croix et de rectangle ont été

décrites comme lassemblage de deux antennes /4 séparées par un conducteur parfait.

vi



Le chapitre 7 montre que, dans le cas d’'un excitation a A\/4 au-dessus d’un miroir, les réseaux
dantennes isolant métal isolant (IMI) sont mieux adaptées aux applications bolométriques que
les antennes MIM. Dans ce cas, le mode excité est de type dipdle, ce qui a permis d’en faire une
description analytique compléte. Les parametres permettant de contréler la réponse du réseau
IMI et son absorption ont été définis. Enfin, labsorption totale prédite par les simulations
numériques a été validée expérimentalement.

Enfin, le chapitre 8 résume les résultats de la deuxiéme partie de cette these, et fournit

quelques perspectives pour les développements futurs.

vii



viii



(General introduction

This work consists of two parts which, although distant from each other, belong to the same
field: electromagnetism and its modern problems.

In the first part, an absolute geometrization of the electromagnetic field in spacetime is pre-
sented. Although attempts to geometrize the electromagnetic field were made earlier, starting
with Maxwell’s tiny wheels and vortices, and then with field lines. Unfortunately, these lines
depend on the choice of a reference frame. Now it is commonly accepted that the only way to
present the electromagnetic field is the abstract way. This work challenges this claim, demon-
strating that the electromagnetic world can be fully described by absolute structures in the 4D
spacetime. The first step is to consider electric and magnetic fluxes on arbitrary 2D oriented
surfaces (space-space or time-space) in 4D spacetime. These fluxes are absolute (Lorentz in-
variant) scalar values, as opposed to values such as the strength of the electric or magnetic
field, which depend on the choice of a reference frame. However, at this step, the choice of 2D
surfaces (meshing of 4D spacetime) is arbitrary. In this work it is shown that it is possible to go
further in the search of absolute by defining an absolute topology of the electromagnetic field in
spacetime. With this topology, two scalar invariants fully describe this field.

The case of y-invariant p-polarised field which has the advantage of being able to be rep-
resented in 3D spacetime is studied in detail. The topology is represented by lines (electric
spaghetti) and the two scalar invariants are reduced to one. Unlike the world lines of parti-
cles, which are always time-like, these lines transcend the boundary between space and time.
This new approach of the electromagnetic field opens up new perspectives both for teaching
and for research, especially considering the topological properties of these absolute structures in
spacetime.

The second part is devoted to a more applied problem, that of the development of nano-



absorbers which could become the basis for a new generation of bolometer devices. In this
work, it is demonstrated that thanks to the exceptional properties of plasmonic antennas (total
absorption and high confinement of the electromagnetic field), it is possible to design IR ab-
sorbers with a greatly reduced volume (several orders of magnitude) compare to those used in
current microbolometers. This technological breakthrough, which makes it possible to greatly
reduce the thermal capacity of the absorbent, leads to a new sensitivity - speed compromise for
bolometers whose performance should be close to that of cooled photo-detectors.

This work is organized as follows. The first part begins with Chapter 1, where the evolution of
presentations of the Maxwell equations is overviewed briefly, including their integral formulation
for 4D spacetime. It is based on the magnetic and electric fluxes on oriented 2D surfaces, either
space-space or time-space. While the concept of flux on a space-space surface is common, and
indeed the official name of the B vector is the density of magnetic flux, and D is the density of
electric flux (on space-space surfaces), it is not common to call the electric field strength E as
the magnetic flux density on time-space surfaces, the magnetic field strength H as the electric
flux density on time-space surfaces. The generalisation of the flux concept in 4D spacetime is a
key point for building an absolute presentation of the electromagnetic field.

In Chapter 2, the case of an y-invariant p-polarised problem is considered. In this case, the
electromagnetic field is presented with absolute objects in 3D spacetime. These objects called
electric spaghetti (ES) and zero-electric-flux surface (ZEFS) are solid, concrete line and surface
of events in a 3D spacetime map, correspondingly. They can be successively time-like, null-like,
or space-like, encompassing the boundary between space and time. ESs are characterised by
three invariant values: the interval length, the electric flux values ¢., and a new quantity, the
characteristic parameter 7. Three examples illustrating ES-ZEFS topology are considered: two
electrostatic cylinders, an interference of two counterpropagating plane waves, and a y-invariant
resonant slit system. The third case is particularly noteworthy. In the funneling region ESs
exhibit spiral patterns although there is no charge at their centers. These special topological
structures are studied in detail. It is demonstrated that they are endless logarithmic spirals,
which appear in the interference of an incident plane wave and an evanescent wave.

In Chapter 3 the general case of the unique flux decomposition concept in 4D spacetime
is presented. Although a clue to this decomposition can be inspired by means of a classical
electromagnetic problem, the strict proof is based on the two bivector decomposition in 4D

Minkowski spacetime which was provided by Riesz in 1959. The existence of such decomposition



is the root of the geometrical absolute representation of the electromagnetic field in 4D spacetime.
It is shown that at any event of 4D spacetime, two completely orthogonal infinitesimal segments
of 2D surfaces (L1 and Ls), each containing absolute values of the electric and magnetic fluxes,
can be defined in a unique way. One of these surface segments belongs to the time-space type, and
the other is the space-space type, with a particular exception where the two surfaces contain the
same line of light, and are null-space type. In this way, the absolute electromagnetic map (made,
for example, with orientated triangles with the magnetic and the electric fluxes on them) does
not need any frame of reference. Following an arbitrary tangent curve, each of the infinitesimal
surfaces Ly or Ly can be united into infinitely narrow tagliatelle ribbon. In some cases, these
ribbons constructed from any different paths define a unique surface, which are called a lasagna.

This part ends with Chapter 4 that summarizes the main results and presents future per-
spectives for the absolute electromagnetic field presentation.

The second part of the work begins with Chapter 5. This chapter provides an overview
of the state of the art of microbolometers and presents how the use of plasmonic structures
as absorbers would allow the design of a new generation of bolometers. Having subwavelength
dimensions, plasmonic particles can provide light concentration and strong field confinement, and
as a result can absorb all the incident energy in tiny volumes. The considerably reduced volume
of absorbers, compared to that of modern industrial structures, allows to shift the fundamental
trade-off of the bolometer between sensitivity (the level of noise) and time response towards a
faster and more sensitive behavior. While operating at room temperature, these nanobolometers
would have performances closer to those of cooled photo-detectors.

Chapter 6 is devoted to the study of MIM (metal-insulator-metal) structures as absorbers.
In this chapter, arrays of MIM antennas are placed in unusual conditions for these structures —
the node of the magnetic field of the standing wave at the distance \/4 above a mirror. This is
the condition set by our industrial partners to keep compatibility with the current fabrication
process. In this condition the physical behaviour of these antennas, such as the coupling with an
incident wave and the energy funnel effect towards the antenna, changes their character. These
two aspects are studied for 1D and 2D periodic MIM arrays.

It is found that, in the case of a 1D MIM array placed at A\/4 above a mirror, the energy
funnel is formed by the electric and magnetic fields of the mode, unlike the case of the classical
MIM configuration for which the lower metal layer acts as a mirror. In the case of a 2D MIM

array placed at A/4 above a mirror, the funnel effect is due to the electric field of the standing



wave and the magnetic field of the mode. Additionally, the most suitable metal and geometry
for the smallest absorbers are defined. It is shown that rectangle and cross shaped antennas
can be described by two A/4 antennas separated by a perfect conductor (instead of the usual
A/2 antenna). The thickness of the conductor is zero in the case of the rectangle while it is
finite in the case of the cross. The application of this model opens perspectives to reconsider
the description of the MIM mode and for a more in-depth study of complex MIM structures.

In Chapter 7, it is demonstrated that in the case of IMI (insulator-metal-insulator) antennas
placed at the distance A\/4 above a mirror, the volume density of absorbers can be even lower
than that of 2D MIM arrays. The parameters to control the response of the IMI array and
its losses were defined. The excited mode in this case is similar to a dipole-like mode. As the
IMI structures are found to be the best suited to the objectives of this work, an experimental
validation of the total absorption is provided for an IMI array placed at about A/4 above a
mirror. Good agreement with the numerical simulations is shown when additional losses were
introduced to the metal. It is due to additional scatterings for electrons in the metal layer due
to its ultra-small thickness (i.e. smaller that the electron mean free path) and imperfections in
the fabrication of this thin layer.

Finally, Chapter 8 summarises the results of the second part of this thesis, and provides

some prospects for future developments.



Chapter

On the way to the absolute description of the

electromagnetic field

1.1.

Introduction

As a result of the first relativistic revolution brought about by Giordano Bruno and Galileo
Galilei [1], the position and speed of an object, be it a butterfly, a cannonball or a planet, are no
longer regarded as absolute physical quantities, bound to the Earth’s frame of reference. Instead,
these quantities are treated as relativistic, differing from one frame of reference to another, and
all Galilean inertial frames of reference are assumed to be equivalent, with the same physical
laws.

The physical quantities of the electromagnetic world, at first described by Maxwell [2], were
based on physical quantities that depended on the chosen frame of reference. These quantities are
now regarded as the components of the tensorial fields Fj; = (—=E,B) and G;; = (H,D) [3, 4].
Since the second relativistic revolution in 1905, these electromagnetic field components have
been regarded as fully relativistic physical quantities, as well as space and time [5]. Time is no
longer an absolute quantity, independent of the chosen frame of reference, but is combined with
space coordinates in Lorentz transformations, just as electric and magnetic field components are
combined into the electromagnetic field.

The tensorial formulation of Maxwell’s equations 9; F% = 0 (first group, with F the dual of F')
and 0;GY = JJ (second group in natural units with ¢ = 1, and G the dual of G, J the 4-vector

current) is referred to as covariant formulation. Maxwell’s equations are independent of the
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chosen frame of reference while coordinates and field components are relative to it. This raises the
question of whether it is possible to express electromagnetic laws using invariant quantities only.
Poincaré was the first to find mathematical invariants under the Lorentz transformations [6].
The spacetime interval computed between two spacetime events is the most famous of these.
Poincaré also described invariants of the electromagnetic field. The original formulation was
written in a somewhat cryptic form between equations (7) and (8) of §5 of Ref. [6]. Using
modern formulation, the electromagnetic quantities %Fisz-j = B?> - E?, %giﬂ'gzj = H? - D?,
%]—" “WF,; =E-B, and %Gij Gi; = H - D are invariants defined at every spacetime event [3, 4].

Poincaré’s mathematical insights and Einstein’s groundbreaking discovery, that time is not
absolute [7], were brought together by Minkowski in 1908 [8, 9]. He declared that space and time
should be considered as a spacetime continuum: "From now onwards space by itself and time by
itself will recede completely to become mere shadows and only a type of union of the two will still
stand independently on its own" [10]. The conceptual simplificity of Minkowskian spacetime is
largely underestimated [11, 12]. The adjective invariant, meaning “invariant across all Lorentz
transformations” or “has the same value regardless of the inertial frame of reference” is commonly
found in the literature and in textbooks. And yet the adjective absolute, meaning “which can
be written in The absolute common Minkowski’s Spacetime Map (MSM) !” is simpler. It is also
more general, remaining valid even when spacetime is not flat.

Just as geometric problems can be solved on a sheet of paper, without defining any axes, so
simple 2D spacetime problems can be tackled using absolute values, on a sheet of paper in which
the definition of a reference frame (t, z) is arbitrary and nonessential. The simplification can best
be grasped through the following analogy: the distance that is written in kilometers between
two cities on a road map represents an absolute value — the length — and the characteristic of a
solid object — the road.

In Minkowskian geometry, the possibility of rotating a geometric construction is lost, but
special directions appear: the two null directions in 2D spacetime, and the conical family of null
directions (the light cone) in 4D spacetime. The other main novelty of Minkowskian geometry
is the Pythagorean formula that features a minus sign instead of a plus sign if one segment is
timelike and the other is spacelike and perpendicular to the first segment [14].

Similarly the proper time between two events on a particle’s worldline is an absolute value

— the proper time — of a solid object — the worldline. This approach is much simpler than

Lthe term spacetime map is sometimes used by other authors for the MSM equipped with 4 axes e.g.[13]
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considering the time of a hypothetical clock that is insensitive to accelerations and bound to the
particle, with a sequence of Lorentz transformations [15].

The proper time is an example of 1D absolute quantity in the MSM. Poincaré’s invariants
E? — B? and E - B are examples of 0D absolute quantities that can be written for any event
in the MSM. 2D absolute quantities can be written from electromagnetic field components
Fj;: considering an infinitesimal oriented parallelogram based on two vectors du and dv 2 of
components du’ and dv’, the flux d®,, = %Fijduidvj on the surface dS = du A dv is a scalar,
the result of a tensor contraction. So it is invariant under Lorentz transformations [16, 17].
P, = % fE d®,,, is then an absolute quantity that can be written as a characteristic of any given
surface ¥ in the MSM. For a space-space infinitesimal surface (e.g. dydzy A z), this value is
the magnetic flux B,dydz on the surface. Hence, it is natural to call ®,, = % fz Fideij the
magnetic flux on the oriented surface 3. It should be noted that electric field components are the
density of magnetic flux on time-space surfaces. For example, F, corresponds to the magnetic
flux E,dxdt on the oriented surface dxdtx A t. Similarly, it is natural to call ®, = % fz: Qideij
the electric flux on the surface 3.

The simplification offered by the MSM is best illustrated by how Maxwell’s equations can
be expressed in terms of absolute magnetic ®,, and electric ®, fluxes: the first group V-B = 0,
V x E + 0,B = 0 of differential equations is equivalent to the elementary law stating that the
magnetic flux on a closed surface in spacetime is equal to zero, while the second group V-D = p,
V x H — 0;D = j is equivalent to the law stating that the electric flux on a closed surface in
spacetime is equal to the number of enclosed charges [18].

There have been several attempts to connect the electromagnetic world with a physical, con-
crete model. Maxwell himself considered that his attempt to construct a sort of machine made up
of tiny wheels and vortices [19] was too complicated and ultimately unsuccessful. Furthermore,
the concept of field lines does not resist Galilean or Lorentz invariance. It is now commonly
assumed that the abstract field notion is the only way of dealing with electromagnetism [20, 21].

Another interesting approach is the theory of differential forms, which manipulates geometric
objects and describes the electromagnetic field in frame-free way. Although 3D visualisations
are quite successful ([17, 22, 23]), visualisation in 4D spacetime using "tubes of flux" [17] is a
dead end. Between modern books, we know only Gratus paper [24], who abandoned the concept

of tubes for 4D spacetime. The more detailed description needs the mathematical introduction

2In this work, the "d" letter does not mean the exterior differentiation, for which the symbol d is used, it is
just used to emphasise infinitesimal quantities.
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and described in Chapter 3.

In the present work, using geometrical approach, we demonstrate that the electromagnetic
world can be fully described by absolute objects in the 4D MSM. This work begins with the pos-
tulation of the integral Maxwell’s equations, which are based on fluxes on oriented 2D surfaces.
These surfaces can be not only space-space, but also time-space. Later, it will be demonstrated
that at any event of 4D spacetime, two infinitesimal segments of 2D surfaces L; and Ls, each
containing absolute values of the electric and magnetic fluxes, can be defined in unique way.
These two infinitesimal surfaces are completely orthogonal. Their orientation, which is abso-
lute, corresponds to 4 degrees of freedom in 4D spacetime. Considering, for example, the two
electric flux densities (on L; and Ls), we have, in an absolute way, the six degrees of freedom
of the tensor Fj; = (—FE, B).

This is new concept for absolute representation of electromagnetic fields in spacetime. This
representation is independent from any frame of reference. Around the same event, two inde-
pendent physicists will write in the spacetime map the same topology (L; and Lo orientation)
and the same densities of flux.

Following an arbitrary tangent curve, each of the infinitesimal surfaces L; or Ls can be
united into infinitely narrow tagliatelle ribbon. In some cases, the ribbons constructed from any
different paths define a unique surface, which are called lasagna here.

As the 4D spacetime map is difficult to visualize, one chapter is dedicated to an analysis of
the electromagnetic field of y-invariant, p-polarized (the direction of the magnetic field coincides
with y) problems in spacetime. In this case, two lasagna sets L and Lo can be constructed.
L1 lasagne contain only electric flux and are invariant in y direction. Thus, it is enough to
consider only a map of electric lasagna surfaces cut (at any y = Const), which we call electric
"spaghetti" (ES). Inheriting the properties of lasagna, electric spaghetti (ES) are solid, concrete
lines of events in 3D spacetime map. The the second lasagne Lo contain only magnetic flux,
thus called the Zero Electric Flux Surfaces, and are perpendicular to ESs and y direction. ESs
can be successively time-like, null-like or space-like, encompassing the boundary between space
and time. They are characterised by three invariant values: the interval length, the electric flux
values ¢, and a new quantity, the characteristic parameter 7. All these quantities are absolute
(frame independent) characteristics of any ES segment in the 3D MSM. Contrary to the interval
length, which have to be defined separately for time-like and space-like parts, the electric flux

value ¢, and the characteristic parameter 1 are defined continuously along any ES segment. The
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(absolute) ESs map contains all the information about the electromagnetic field. It permits to
compute the (relative) field components in any reference frame.

ES and ZEF'S topology exhibits specific patterns that permits to visualize, for example, plane
waves, wave interferences. A detailed analysis of ES and ZEFS topology opens up a new field
of research.

The remain part is organized as follows. In the rest of this Chapter the different formulations
of Maxwell’s equations are overviewed briefly (Section 1.2), including their integral formulation
for 4D spacetime (Section 1.3). Magnetic and electric fluxes on any surface in 4D are the key
concepts of this formulation. In Section 1.4 it is shown that this general flux concept generalizes
the Finite Integration Technique with complete freedom of spacetime meshing.

In Chapter 2 the ES and ZEF'S objects are introduced (Section 2.2), and the way to construct
them from classical field components is presented. In is shown, that the electric flux is a natural
ES measure, and the n parameter is introduced. After that, a few illustrative examples are
considered in Section 2.3. First (Section 2.3.1), a simple 2D y- and t-invariant electrostatic
problem is described. Here, the ESs are simply the equipotential lines, as computed in the
frame of reference bound to the electrodes. Second (Section 2.3.2), the interference of two
counterpropagating plane waves is considered. This is a 2D x- and y-invariant case, with all the
peculiarities of Minkowskian geometry. Plane wave regions correspond to straight ESs, oriented
in the light cone, with sinusoidal density. The interference region is particularly interesting. In
this region, the ESs exhibit loop patterns that transcend the boundary between space and time.

Finally (Section 2.3.3), the third example, a 3D y-invariant resonant slit system is studied.
This problem converges together the cases considered in the previous section. The plane wave
regions are similar to those in the previous 2D case. There is a further similarity in the slit
region, where two plane waves interfere. The evanescent field region where funneling occurs is
particularly noteworthy. In this region ESs exhibit spiral patterns although there is no charge
at their centers. This special topological structure is studied in Section 2.4. It is demonstrated
that they appears in the interference of an incident plane wave and an evanescent wave. The
spirals are Bernoulli’s spirals, fractal curves that never end.

Chapter 3 begins with qualitative explanations that can helps to understand the unique flux
decomposition concept without the use of additional mathematics. Section 3.2 provides a clue
to this decomposition by means of a classical electromagnetic problem. It is shown that a pair

of completely orthogonal surfaces appears when finding the reference frame where the electric
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and the magnetic fields are parallel. Then, in Section 3.3 it is demonstrated, that in the the
Euclidean 4D space a decomposition of two bivectors is not unique, but similar demonstration
cannot be provided for the Minkowski spacetime. Section 3.4 provides the retrospective of the
presentation of the electromagnetic field with differential forms. The fundamental result of
uniqueness of a bivector decomposition in 4D is introduced in Section 3.5. The existence of such
decomposition is the root of the geometrical absolute representation of the electromagnetic field
in 4D spacetime, presented in Section 3.6. After that, in Section 3.7 some examples, considered

in Chapter 2 in 3D spacetime, are reconsidered for 4D spacetime.

1.2.

Differential approach of electromagnetism

(Maxwell’s equations)

In this Section different approaches of electromagnetism are presented, all starting from
differential equations. The introduction of differential forms permits to obtain two integral
equations discussed in Section 1.3. These equations, being the fundamental principles of elec-
tromagnetism in spacetime, can be described without any high level mathematics. Meanwhile,
in this Section the other approaches, presented electromagnetism, are discussed.

The EM field and Maxwell’s equations naturally appear in the classical field theory as a
gauge field under the condition of the local invariance of complex (scalar, vector or spinor)
fields with respect to isotropic rotations [25]. On the other hand, in classical electrodynamics
Maxwell’s equations are either postulated or derived from the experience as a generalization of
experimental facts.

At first, Maxwell’s equations were presented in 1865 as a set of Egs. 1.2 — 1.7 [2], employing
the vector-potential A (called as the electromagnetic momentum) and the electric potential
¢. As original notation is complicated to understand, the equations are presented here using

modern notations (the authentic names are saved)

A. Equations of Total Currents

dD, . . dD, . ) dD,
T ] — i+ 1.1
dt » Jtotaly Jy dt » Jtotal z J dt ( )

jtotala: = ]m +

B. Equations of Magnetic Force
dA,  dA, _dA;  dA; o o— dAy dAg

H, = — — pH = ——
K dy dz P dz de " dx dy

(1.2)

10



CHAPTER 1

C. Equations of Currents

e ! (1.3
= )
D. Equations of Electromotive Force
E, = p(H,v, — Hyv,) — d:;‘” - %,
By = (. — Hyo) - " - . (1.4)
E. = n(Hyv, — Hyvy) — diz — %
F. Equations of Electric Elasticity
E, = %Dx, E, = %Dy, E, = %DZ (1.5)

G. Equation of Free Electricity

dje  djy  djz dp
Mroy Py WE R 1.6
dx + dy + dz dt (16)

H. Equation of Continuity

dje  djy | djz
YL PE 0. 1.
dr  dy + a7 0 (1.7)

Here p is the free charge density, j is free current, v is a velocity of a short straight con-
ductor, € and p are the electric and magnetic permeability, correspondingly. The vectors of the
electromagnetic field: E is the electric field strength (called the electromotive force in [2]), D is
the electric displacement, and H is the magnetic field strength (the magnetic intensity in [2]),
correspondingly. Also in literature one may see names the "magnetic flux density" for B and
the "electric flux density" for D (for example, in [23], and officially in the International System
of Units Brochure [26]).

Being inspired by Hamilton’s invention of the quaternions, Maxwell represented his equations
in terms of quaternions in [27]. However, this presentation was mach harder to understand, and
was even seen "unnatural'. In 1884 - 1885, using modern vector notation (also advocated by
J.W. Gibbs), Oliver Heaviside rewrote Maxwell’s equations in more compact form that had

become standard [28]. In Heaviside’s book [29] one may find the following set of equations

11
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V-B =o, (1.8)
OB
E=-G—— 1.
V X G 5 (1.9)
V.D=p, (1.10)
VxH—J+881t), (1.11)

where o is the magnetic charge density, and G is the magnetic current. Although Heaviside used
the magnetic charge for the sake of symmetry, he was not sure in its existence. He wrote "The
idea of a magnetic current is a very useful one, nevertheless". At the present time, the existence
of a magnetic charge has not been proven, but this concept is helpful for some engineering
calculations.

The Heaviside’s formulation of Maxwell’s equations can be divided into two independent
groups. The first group includes Eq. 1.8 and Eq. 1.9, using E and B. Often it is associated
with the electromagnetic force (as the Lorentz force is built from E and B). The second group
includes Eq. 1.10 and Eq. 1.11, using H and D. In literature it is associated with sources [22]. In
a vacuum, two groups of Maxwell’s equations are connected by constitutive equations B = ugH
and E = ppc?D. Further, unless otherwise specified, natural units with ¢ = 1 are used. It is
interesting to note, that in Poincaré paper [6] ¢ was equal to 1, but in Minkowski one it was not.
In the same time, as it was stated by Minkowski in [9], being non-separated, space and time
constitute 4D spacetime. From this point of view, ¢ = 1 maker space and time equal terms. In
Minkowski spacetime, where space and time are considering on an equal footing, the electric and
magnetic field are treated as parts of one electromagnetic tensors (the choice of signs is based

on the Minkowski metric tensor (+ — ——))

Fi = : (1.12)
-B, E. 0 -E,

12
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and

i D
G = : (1.13)
-D, —H. 0 H,

-D, H, —-H, 0
Tensor notation simplifies the symmetrical set of Maxwell’s equations written by Heaviside,

and reduces their number to two:

0;F7 =0,

0,G" = J', (1.14)

where J = (p, 7) is the four-current density. The first tensor equations corresponds to the Eq. 1.8
and Eq. 1.9, and the second tensor equation — to Eq. 1.10 and Eq. 1.11. In tensor notation,
constitutive equations are

S
Fii — QMOEUMGM; (1.15)

where €% is the antisymmetric unit tensor of rank four.
There is another way to present Maxwell’s equation that can be found in famous textbooks
like Landau [30]. This is not-symmetric presentation including the hypothesis that there is no

magnetic charge. It is based on the vector-potential A
Fi, = 0A)0x' — 9A;)9x>. (1.16)

The vector-potential is useful to define a Lagrangian, thus this approach is one of the most

popular ways to present Maxwell’s equations. The components of tensor F' are

0 -E, —E, —E.

E 0 B, -B
Fij = ' ’ ! ) (1.17)

In this formulation the first group of Maxwell’s equations appears naturally, first as

13
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Here the square brackets [] indicate the indices antisymmetrizations. This equation corresponds

to four equations where [i, j, k| equal to [0,2,3], [0, 3,1], [0,1,2], [1,2,3]. Defining F like

%eijlekl (1.19)

Fii =
the first equation of Eq. 1.14 can be obtained.

The second equation of the antisymmetric set is obtained with the aid of the principle of the

least action using the same tensor [30]
0 F" = poJ". (1.20)

This equation corresponds to the second equation of Eq. 1.14 with F% = ;oGY.

The tensor presentation has two advantages. It is laconic, and it doesn’t need the intro-
duction of special operators like divergence or rotational. Both approaches with vectors or
components of tensors suppose that a frame of reference is defined. There are mathematical
objects that are independent of any frame of reference which corresponds to antisymmetrical
tensors of rank two: differential 2-forms.

A 2-form is a linear functional, which computes a scalar value from an infinitesimal 2D
oriented surface. The mathematical introduction to differential forms is provided in Appendix C.
It provides the basis theory of the exterior algebra, including most necessary definitions, the basic
concepts and properties of this theory, and their connection with better known mathematical
approaches in physics (vectors and tensors). It can be useful for readers who do not yet familiar
with this approach.

Here is only a brief introduction to Maxwell’s equations with differential forms is given, while
a more detailed description can be found in Appendix B. Electrodynamics can be presented
using the differential forms approach, since Fj; and G;; are antisymmetric. In 4D spacetime, the
canonical basis of 2-forms is made of 6 elements e¥/ = e A e’ (i,j = [0,3]), where {e’} is the
canonical basis of 1-forms (covectors). Then, the two electromagnetic 2-forms can be presented

in this basis, employing components of electromagnetic tensors F;; and G;;

_ 1 o

P, = iFijeZ A e’ (1.21)
_ 1. .

P, = §gije’ Aéel. (122)
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They are explicitly written as

&, = E,el ne’ + Ey62 ANe’ + E.el Ae + Be? Aed + Bye3 Nel + Bye' A€, (1.23)

®, = He' ne' + Hye0 Nnel+ He® ned + Dye’ ned + Dye3 Nel' + D,e' A e (1.24)
Thus, in this notation, two groups of Maxwell’s equations take on a new form

d®,, =0 (1.25)

d®,. =J (1.26)

where d is the exterior derivative operator, that constructs a 3-form from a 2-form, and J is
a 3-form electric current density. The exterior derivative of each term Fijei A €7 is equal to
8kFZ-jek Ael Nel. One of advantages of this presentation is that the form of Maxwell’s equations
do not change in any system of coordinates. They are valid without modification, whether
presented in rectangular or curvilinear coordinates [22]. But in general case the relation between
®,, and ¥, depends on the metric.

More detailed discussion, devoted to this presentation in literature is presented in Chapter
3, Section 3.4. In the next Section it is shown that the integral formulation of these 2-form
differential equations has a very simple interpretation, that can be used as postulate of the

electromagnetism.

1.3.

Integral formulation of electromagnetism

As pointed out by Cartan [31], the integral formulation of electromagnetism doesn’t need to
suppose that partial derivatives of the field do exist, and it is valid in curved spacetime, with
no assumption concerning its affine connection. Only constitutive equations need a metric to
connect two different fluxes. This formulation is considered below, first from tensorial approach.
Next a new nomenclature, extending to spacetime the notions of magnetic and electric fluxes,
is introduced.

The names the magnetic flux density for B and the electric flux density for D are now well
established [26]. We propose to add “on space-space” surfaces to these denominations. The
traditional definition of flux across a surface seems natural in 3D space. This is because there is

only one direction to complement the 2D surface. In 4D this is no longer possible. The general
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concept of flux "on an oriented surface' need to be used instead. Then the electric field strength
FE has to be called the magnetic flux density on space-time surfaces, and the magnetic field
strength H has to be called the electric flux density on time-space surfaces (see Fig. 1.1). This
apparent paradox that electric field is a magnetic flux and thad magnetic field is a magnetic flux
comes from the fact that the names for the fields were given on the basis of experimental work,
and only later human has learned that the electric and magnetic fields are connected.

The result of the 2-form ®,, and ®, computed on an infinitesimal 3 area dS = dS¥e; A e;j
in 4D 4 are the scalars equal to the tensorial product between the tensors F;; and G;; with this

surface, which is also an antisymmetric tensor:

1 g
Ay, = 5 FyydS”, (1.27)

and

1 g
d®, = 5G;;dS". (1.28)

If the elementary infinitesimal surface dS is space-space, for example dS?® = dydz (strictly, it
is es A e3), we compute d®,, = Bydydz. It is clearly a magnetic flux, that justify our usage
of the subscript m. For the elementary space-time surface dS10 = dxdt (strictly, it is e; A eg),
we compute d®,, = E,dxdt. The electric field strength is clearly a magnetic field density on
space-time surfaces. Symmetrically, on the surface dS* = dydz, d®. = D.dydz is clearly
an electric flux, that justify our usage of the subscript e, and for the elementary time-space
surface dSO! = dtdx (strictly, it is eg A ey, opposite to dS1?), we compute d®, = H,dtdx. The
magnetic field strength is clearly an electric field density on time-space surfaces. The full set of

correspondence between the oriented segments and the components of the tensors is presented

in Table 1.1.
Table 1.1: Magnetic and electric fluxz on the basis surfaces in spacetime.
Surface TNy A YNz At yAt zAt
®,, (surface) B, By B, E, E, E,
Surface TAy TNz YAz tNx tAy tAz
. (surface) D, D, D, H, H, H,

3Here and below, the "d" letter does not mean the exterior differentiation, for which the symbol d is used, it
is just used to emphasise infinitesimal quantities.
4The bivector conception in 4D is considered in Appendix C, Section C.3.
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&, (dx/\dy)=B, ®,,(dz/\ dt)=F,

~Y

T

&, (dzx/\ dy)=D, P, (dt \dz)=H,

> >
> >

T t

Figure 1.1: On the spatial surfaces the magnetic flur density is B field, and the electric fluz density is
the D field. But on space-time surfaces the magnetic flux density is the E field, and the electric flux
density is H field.

On an arbitrary 2D oriented surface X, the magnetic flux can be computed as
(%) = 5 [ Fyds?, (1.29)
b

and the electric flux as

D (X) = % A G;dSY. (1.30)

/M dw = /aMw, (1.31)

Maxwell’s equations (Egs. 1.25, 1.26) can be rewritten as

And, using the Stokes’ theorem

515 AP, = 0 (1.32)
ov

AP = ne (1.33)

where n, = fv J is the charge contained in any ® 3D volume V enclosed by the surface V.
These two equation can be directly formulated as the postulates.
1. Any 2D oriented surface of 4D spacetime can be labelled with two scalar quantities, its

magnetic flux ®,, and its electric flux ®..

5in 4D there is an infinite number of 3D volumes enclosed by 2D surface.
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2. The magnetic flux on any closed surface is zero

®,, (closed surface) = 0. (1.34)

3. The electric flux on any closed surface is equal to the number of charges in any 3D volume
enclosed by this surface

&, (closed surface) = n. (1.35)

As seen from this equation, the unit of electric flux is the natural unit of the electric charge.
Also, in 4D spacetime electric charge is no longer just a point, but a time-like line in spacetime.
The lines of charge never end, but two equal charges with opposite sign +¢q and —¢ can annihi-
late. Then the number of charges n in Eq. 1.35 is in fact the number of intersections between
the charges worldlines and the arbitrary 3D volume enclosed by the surface, on which flux is
considered.

Two simple postulate of Eq. 1.34 and Eq. 1.35 together with charges considered as lines
in spacetime provide Maxwell’s equations. If a spatial volume is considered at a fixed time,
Eq. 1.34 and Eq. 1.35 are clearly the Gauss’s law for the magnetic flux density B (Eq. 1.8) and
the Gauss’s law for the electric flux density D (Eq. 1.10). When considering tyz volume at fixed
x, the x component of vectorial equations Eq. 1.9 - Eq. 1.11 are obtained. Detailed discussion
and derivation of equations involving curls from flux equations are given in Appendix D.

The physics of electromagnetic fields is contained in the constitutive equation Fj; = 110Gi;
(see Eq. 31 in Appendix D), or ®,, = pg * ®.. Another way to express the relation between
the 2-forms with Hodge product x is to say that on two infinitesimal surfaces of same values,
fully perpendicular, the flux ®,, on the first and the flux ®. on the second are connected by the
equation:

= 90—, (1.36)

where ¢, = h/qe, h is the Planck constant, ¢ = e is the elementary charge, and « is the
fine-structure constant.

In this way, considering the electric field strength E as the magnetic flux density on space-
time surface segments, and the magnetic field strength H as the electric flux density on time-
space surface segments, the flux concept can be extended in spacetime. Extended conception

of fluxes allows to present Maxwell’s equations in simple integral formulation Eq. 1.34 and

Tt means that algebraic signe of +¢q and —gq define the orientation of worldlines.
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Eq. 1.35. Together with constitutive relation, this concept allows direct computations of the

electromagnetic field.

1.4.

Generalisation of the Finite Integration

Technique

The integral equations Eq. 1.34 and Eq. 1.35 have been obtained by integration of differential
forms, which are high level tools. In Appendix D it is shown that using these simple equations
as postulates the classical formulation of Maxwell’s equations can be obtained.

Instead of solving differential Maxwell’s equations, the flux equations can be used directly to
compute electromagnetic problems. This technique is already known as the Finite Integration
Technique [32, 33]. But in fact, this technique can be generalized to an arbitrary meshing of
spacetime, instead of a meshing of only space.

From the mesh, a set of 2D oriented surfaces have to be constructed in spacetime. The
electromagnetic variables to be determined are magnetic and electric fluxes ¢,, and ¢., on 2D
surfaces. The two fundamental equations Eq. 1.34 and Eq. 1.35 are just “the sum of the magnetic
flux values on a system constructing a closed surface is 0” and “the sum of electric flux values
is equal to the number of charges included in any volume enclosed by a surface”. Thus, the flux
equations can be written exactly in a computer program as a discrete sum of flux values. This
"exact formulation" was noted by Tonti [34] but his exact, "topological formulation" of Maxwell’s
equation was restricted to spatial part.

By contrast, the constitutive equation Eq. 1.36 cannot be written exactly in a computer.
Constitutive equation is connecting the density of flux (the fields). A model is needed, we
have to write an approximation that will connect magnetic and electric fluxes. A example of
model is the polynomial approximation used by Portier et al to compute harmonic 2D modal
problems [35].

As said above, the equations Eq. 1.34 and Eq. 1.35, the "Maxwell’s equations" can be written
in an absolute way, with no approximation. It is also valid in the case of curved space, when

gravitation is present. In contrast, constitutive equation needs a metric to be computed.
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1.5. CONCLUSION

1.5.

Conclusion

To summarize, an integral, discrete, absolute and exact formulation of Maxwell’s equations
was given in spacetime. It was constructed from a classical tensorial approach, from the differ-
ential forms approach, and also from a new fundamental approach of electromagnetism. The
fundamental concept is the magnetic flux and the electric flux on a oriented arbitrary surface.
The surface can be space-space, time-space, null-space, or any of these types on a part and any
other type on another part.

Maxwell’s equations are now simple algebraic equations declaring that if surface segments
are combined to form a closed surface, the sum of the magnetic fluxes is zero, and the sum of
electric fluxes is equal to the number of electric charges. The form of surfaces is arbitrary, and
Maxwell’s equations formulation is independent of the choice of a frame of reference.

If a frame of reference is chosen, elementary surfaces are t Ax, t Ay, ..., y A\ z, and density
of magnetic flux component B, is the magnetic flux on elementary surface y A z, etc. It is
the common concept for the magnetic flux density B. We have added that the electric field
strength component F, is also a magnetic flux density, but on space-time elementary surface
x A t. Similarly, the density of the electric flux component D, is the electric flux on elementary
surface y A z, while the magnetic field strength component H, is an electric flux density on
time-space elementary surface t A . In this formulation, the constitutive equation connects the
flux densities on completely perpendicular surfaces, for example B, on y A z and H, on t A x.

In the two next chapters we go one step further. Rather than simply constructing a map
of the electromagnetic world by computing electric and magnetic fluxes on arbitrary surfaces,
it is shown that the natural, unique and absolute structures, that support these fluxes, can be
defined in spacetime. At first, in Chapter 2, the particular y-invariant p-polarized problems are
considered. In this case, the unique supporting flux objects are lines in 3D spacetime, we call
them the electric spaghettis. The generalization to 4D spacetime is presented in Chapter 3. It
is shown that under some conditions these specific structures with flux are 2D static surfaces in

4D spacetime, the electromagnetic lasagna.
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Chapter

Absolute description of polarized EM field,

the y-invariant, p-polarized case

2.1.

Introduction

The aim of the first part of this thesis is to show that the map of “static” objects that
characterizes completely the electromagnetic world can be built in 4D spacetime. Any element
of a these object carries two scalar electromagnetic values, its electric and magnetic flux. In
the next Chapter it will be shown that under some conditions these objects form 2D surfaces
that transcend the boundary between time and space. These surfaces are called electromagnetic
lasagne. In 4D spacetime there are two of them, and they are completely orthogonal. In a given
reference frame (¢,x,y, z), an oriented surface defines 4 scalars (the 1st vector: 3 components,
the 2nd vector: 2 two independent components , minus one rotation angle in the vector plane),
and with the two scalar electromagnetic values provided by a lasagna we get the 6 components
of the fields E =D and B = H in the vacuum.

It is not easy to visualize two-dimensional surfaces in a four-dimensional space. This is the
reason why in this Chapter a reduction in the invariant case according to y, supplemented by the
TM polarized problem, i.e. with the magnetic field oriented according to y, is presented. The
first simplification, associated with polarization leads to the fact that the lasagne are divided into
a purely electric and purely magnetic. The second simplification — the invariance in y direction
— means the cutting of the electric lasagne by a plane y = Constant constructs lines in 3D

space-time (¢, x, z), which we call electric spaghetti ES. Just like the lines of the universe of an
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2.2. THE SPAGHETTI OBJECT

object are "hard" lines, the ES are "rigid" objects in the space-time map. As it is demonstrated
below, any piece of ES between two events e; and es is bearer of a scalar electromagnetic value,
®.(e1,e2) or better n(er,e2). In a given (t,x, z) repository, the direction of the ES at a given
event defines 2 scalars, and the electromagnetic value, associated with it, defines a third scalar.
Thus, the three components of the electromagnetic field, H, = B, and D, = E,;, D, = E., can
be calculated.

The ES object is presented in Section 2.2. It is demonstrated, that ESs uniquely define
an absolute 3D MSM, completed by surfaces of zero electric flux. While electromagnetic field
components change from one reference to another, electromagnetic measures along ES are in-
variants. It is shown, that electromagnetic field components can be straightforwardly derived in
an arbitrary frame of reference (set of perpendicular unit vectors in the MSM), from ESs and
Zero Electric Flux Surfaces map.

In Section 2.3, three illustrative examples of static map, constructed with ES are presented.
At first, the 2D y- and t-invariant problem of two oppositely charged cylinders is considered in
Section 2.3.1. In this case ES are potential circles. Second, the 2D x- and y-invariant case of
interference of two counterpropagating plane waves is described in Section 2.3.2. In the regions
of the plane wave ESs are simply straight lines with the sinusoidal density. In the interference
region, ESs have a form of concentrated loops. Finally, a 3D y-invariant resonant slit system is
considered in Section 2.3.3. This problem include three regions: a plane wave region far from
the slits, the wave interference inside the slits, and the region of evanescent waves near the slits,
where funneling occurs. While in the first two regions, the ESs patterns repeat the previously
demonstrated cases, the last region is especially notable, as there ESs exhibit special topological
whirl pattern. In Section 2.4 it is demonstrated, that interference of the plane wave and the
evanescent wave creates similar whirl patterns, which are, in fact, Bernoulli’s Spira mirabilis,

that never ends.

2.2.
The spaghetti object

ES are lines of events in 3D MSM. In contrast to the worldlines of physical objects, which
are only timelike, ESs transcend the boundary between time and space directions and can be
timelike, spacelike, and even lightlike, changing from one to the other. Being lasagna cuts for

the y-invariant, H, polarized problem, they are absolute objects, containing all the information
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about the electromagnetic world. This Sections begins with the introduction of 1-form e, the
particular case of 2-form @, for the y-invariant, H, polarized problem. Computed between two
events, the scalar value ¢, = Pe(ds) is an invariant. The Lorentz invariance of this value is
demonstrated. Besides ES, in 3D MSM there are other objects, surfaces of Zero Electric Flux
(ZEF'S). Electric flux is zero on any segment of this surface. ZEFS complete 3D MSM, and are
useful doe the extraction of the electric fields components.

In Section 2.2.3, the ES object recipe is provided. After that, measures, that characterise
EM field along ES are discussed. A new EM field invariant 7, arising in the ES construction,
is discussed in Section 2.2.5. After that, direct computation of EM field components from ES,
using ¢.. 1, and ZEFS are presented in Section 2.2.6. Finally, direct computation of ZEFS is

introduced in Section 2.2.7.

2.2.1 The 1-form ¢,

In the general case, there are six independent components of electric flux (Section 1.3). As this
Chapter is restricted to systems that are invariant in the spatial y-direction, with a magnetic

field parallel to the y-direction, only three electric flux terms remain non-zero:

i)e(X/\y) =D, (2'1)

Taking into account the common factor y, the 2-form ®, can be reduced to a one form with

(136(t) = Hy
Ge(x) =D, (2.2)
¢E(Z) - _Dx

Thus, the electric flux (the general form in Eq. (1.22)) on the surface (dtt + drx + dzz) Ay can

be regarded in 3D spacetime (t,x,z) as the 1-form:
Ge(ds) = ®c(ds Ny) = Hydt + D,dx — D,dz. (2.3)

If we consider an arbitrary pair of events in this 3D spacetime, separated by an infinitesimal
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2.2. THE SPAGHETTI OBJECT

vector ds = dtt + dax + dzz, the squared interval ds®> = dt?> — da? — dz? computed between
these two events is a well known invariant [6]. As demonstrated below, the electric flux value
de = pe(ds), computed between these two events (Eq. (2.3)), is also an invariant. In other
words, d¢. does not depend on the particular choice of a reference frame: in any the other frame

of reference (t',x’,2’) the electric flux value d¢. between the same events remains the same.

¢. as a Lorentz-invariant measure of intervals

The electric flux ¢. (Eq. 2.3) is the value of a 1-form on an infinitesimal interval ds. Hence it is
a scalar value. As such, it is absolute, it doesn’t depend on the frame of reference choice.
However, here it is demonstrated that Eq. 2.3 is invariant under Lorentz transformations.
As the invariant y-direction should be maintained in spacetime, only frames moving in the (z, z)
plane therefore should be considered. For the sake of simplicity, we consider a frame (¢, 2/, 2")
moving in the x direction with velocity v (¢ = 1). The old coordinates are expressed from the

new ones as:
t=~(t +vx')

x =~vy(a' + ot
z=12z,
with v = (1 —v?)~1/2,
The Lorentz transforms for the fields components of the y-invariant, p-polarized problem

are:

H, = ’Y(Hy,_sz/)
D, = fy(DZ'—va’)

D, = D,

Substitution of the coordinates and the electromagnetic field components in the Eq. (2.3) pro-

vides

dpe = ~(H, —vD,")y(dt' + vdz") +
v(D," —vH,)y(dz' + vdt') — D,'d’
= 721 —*)(H,/dt' + D.'d2’) — D,'d?’

— H/dt' + D.)dx' — D,'d?,
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i’

>

Figure 2.1: Electric spaghetti defined by the tangent vector Tg.

which is clearly an invariant formula for d¢.. The same computation can be done for a frame

moving in the z-direction, or in any direction in the (z, z) plane.

2.2.2 The ZEFS surfaces

There are three directions along which starting from any event ey the electric flux d¢. computed
with Eq. (2.3) is zero. These three directions are not independent, and actually define a 2D
surface, the Zero Electric-Flux Surface (ZEFS) containing the event e;. This surface can be

regarded as a solid object drawn in the 3D MSM independently of the chosen frame of reference.

2.2.3 The electrical spaghetti object

The vector perpendicular (in the Minkowskian sense) to the ZEFS surface can be computed as
Ts = (Hy, —D., D;). Although the components of this vector can differ according to the frame
of reference, the direction it determines is absolute in spacetime, and does not depend on the
choice of frame of reference.

Starting from a given event e; in 3D spacetime, we can construct in an absolute way a line,
the electric sphaghetto (ES) S(eq) with Tg as a tangent vector (Fig. 2.1). The construction of
ESs does not depend on the chosen frame of reference: if two events eq, es are connected by a
specific ES S (S = S(e1) = S(e2)) constructed from a given frame of reference (system of axes),
they will be connected by the same ES S if another frame of reference is chosen to construct
S(er).

Contrary to the worldlines of physical objects, which are always timelike, ESs transcend the

boundary between time and space directions and can be timelike, spacelike, and even lightlike,
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2.2. THE SPAGHETTI OBJECT

changing from one to the other. Examples of this very special topological property of ESs are
provided in Section 2.3.

In two next subsections, it is shown that the electric flux ¢, corresponds to a measure on
the ES. In order to overcome a limitation of this measure (it is null on null lines), we define a

new measure, in characteristic parameter 7 which is an absolute, monotonic parameter.

2.2.4 ¢., a natural but limited measure

If a given ES S(eq, e2), constructed between two events e; and eo, is timelike, it is characterized
by its time length. If it is spacelike, then it is characterized by its spatial length. If some parts
of the ES are timelike and others are spacelike, the total interval cannot be characterized by
any coherent interval value. By contrast, the electric flux ¢.(S(e1,e2)) is well defined for this
ES as it is for any other. This flux is an algebraic value, expressed in units of charge per y unit
of length, independently of any reference system in the 3D y-invariant spacetime.

However, when electric field is equal to magnetic field (for example in the case of a single
plane wave), ES are null-like. The interval ds? and the electric flux ¢.(ds) are both zero. In
next section, a new absolute (i.e. Lorentz-invariant) measure, the ES characteristic parameter

7, is introduced.

2.2.5 The 7 characteristic parameter, a new EM field invariant

The simplest effective construction of an ES uses the parametric equation

with 7 as the parameter. This parameter, which initially looks like a simple mathematical
auxiliary tool, is actually a new invariant!, which we refer to as the ES characteristic parameter.
The invariant nature of dn is easy to demonstrate, by considering the Eq. (2.5) obtained by
combining Egs. (2.3) and (2.4):

dp. = (H* — D?)dn. (2.5)

In this equation, d¢. is invariant and H? — D? is the well known Poincaré invariant G<,[3, 6],
hence dn is invariant.

From a topological point of view, a set of ESs can be constructed to cover any region of the

1Strictly speaking, the invariants are the 7 differences
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3D spacetime. Furthermore, an ES segment can be labeled with three quantities: 1) its interval
length (though only if the segment is purely timelike or spacelike), 2) its electric flux, which
has a definite algebraic value (examples of how ESs transcend the time and space distinction
are given in the next section), 3) its characteristic parameter. The particular case where ESs
are contained in the light cone requires some attention, as H> — D? = 0 as well as ds = 0 and
doe = 0. By contrast, dn is not equal to zero. This gives the characteristic ES parameter n a very
important role. As shown in Section 2.2.6, the ESs with 7 labels contain all the electromagnetic
information.

Technically, an ES can be constructed straightforwardly with n and ¢, scales, by solving the
system of differential equations (2.4) and (2.5). Moreover, in the absence of an electric charge,
the ¢. scale on two ESs can be synchronized from ZEFS, as demonstrated in Section 2.2.6.
Although the ES recipe is technically based on field components that are specific to the chosen
frame of reference, neither the ES topology nor the 1 or ¢. values depend on this specific
reference frame. In other words, if two physicists decide to independently draw the 3D map
of ESs around a given event, they will obtain the same map, and the ESs will have milestones
featuring the same 7 or ¢, quantities. This map is therefore absolute and unique. Furthermore,
given the possibility of computing the electromagnetic field components directly from the ES
map (Section 2.2.6), this map is not only absolute and unique, but also contains a complete

description of the y-invariant p-polarized electromagnetic world.

2.2.6 Computation of electromagnetic field components from electric spaghetti

An ES is a line in the spacetime map which connects a set of events regardless of the choice of
coordinate system. In contrast, electromagnetic field components are relative to the choice of an
inertial frame of reference (O, t,x,z). In any frame of reference, the components of the electric

and magnetic fields can be extracted from the ES map in several ways, provided below.

Field computation from n ES measure

The components of the electromagnetic field can be obtained from the equation (2.4) as follows:

d d d
Hy=""D.=-%*p,=""

—= 2.
i i an’ (2.6)

where (dsy, ds,,ds,) are the components of the vector tangent to the ES.

The smaller the field, the larger the n value on an ES. This may seems rather counterintuitive,
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but the characteristic ES parameter 7 is really an absolute, extensive physical property of ESs,

measured as the 3D volume per charge.

Field computation from ¢. ES measure

The electromagnetic field components can be computed from a more natural quantity, the electric
flux value d¢., except null-like ESs segments. First, let us consider Fig. 2.2 (a). An infinitesimal
ES segment OF is presented in green, having an electric flux value d¢.. According to the ES
definition, the flux value on any segment that is perpendicular (in the sense of the Minkowski
product) to the ES direction is zero. ES segments define the ZEFS plane, plotted in red in
Fig. 2.2 (a).

Under a condition where there is no electric charge, the electric flux value on any closed
2D surface of 4D MSM is zero. Transposed to considered p-polarized 3D case, the electric flux
value onany closed line is zero. From triangles FOT, EOX, EOZ, it is clear that the segments
OT, OX, OZ, and OI (Fig. 2.2 (a)) contain the same electric flux value d¢.. The points T,
X and Z are chosen as the intersections of the perpendicular plane, with Ot, Ox and Oz axes.
Construction of the point [ is explained as follows. In the case presented in Fig. 2.2 (a), £ is the
unit vector in the direction of the electric field, and OI is defined as the direction perpendicular
to them, with ¢ as the unit vector in this direction. The ES segment OF can therefore be
considered in 2D (t,() spacetime (inset in Fig. 2.2 (a)). [ is also the intersection of the XZ
and ET lines. As the electric flux value is zero on any closed lines in the absence of an enclosed
electric charge, and ET belongs to ZEFS (and thus contains zero electric flux), the electric flux
value d¢. on OI equals the electric flux value on the ES segment OF. In this case, the only

component of D is D¢ = d¢./|OI|. The coordinates of the point I can easily be computed as

1 1
0 |OX] |0Z]
(7 1 + 1 ) 1 + 1 )’
lox|* ' |oz]” |oX|* ' |0z

do?
lOX|**

de2  d¢2
oI? — |0z)?

giving the equality | + Herewith the formula Dg = D? + D? stands as
expected.
Using the formulae d¢. = H, |OT| = D, |0X| = —D,|0Z]| (Eq. (2.3)) the components of
the electromagnetic field can be computed in the (t,x,z) frame of reference as
dbe , _ do. o

= z = ) DZE = - . 2.
v = Jor] 0X]| 07] (2.7)
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(a)

light line

[@)

Figure 2.2: (a) ES segment OE (green line) and ZEFS plane (dark red) containing the E,I,T,X,Z
events. All the segments OI, OT, OX, OZ contain the same electric flur value. The segments OT,
OX, OZ correspond to coordinate axes. I is the intersection of XZ and ET. (b) ES line (green) with
spacelike, null-like and timelike parts. For the spacelike (dark-purple frame) and timelike (purple frame)
parts, both equations (2.6) and (2.7) can be used to compute field components. When the ES is contained
in the light cone (light-blue frame), only the characteristic parameter (Eq. (2.6)) can be used. (c) If no
charge is present, any green line connecting two ZEFS carries the same electric flur value ¢., meaning
that a potential value can be attributed to each ZEFS.

Once a reference system has been chosen, the components of the fields can be directly
computed from the map using Eq. (2.7). As demonstrated in Fig. 2.2 (b), it can be used for
both time-like and space-like segments. Let us consider the inset of Fig. 2.2 (a) as an example
of a situation where an ES is not aligned along a time or space axis, unlike the case in Fig. 2.2
(b). In the inset, the ES is timelike and the ZEFS line is spacelike. The OT segment is smaller
than the OI segment, which corresponds to a higher value for the magnetic field H = H, than
for the electric field D = D¢. This is true in all the reference frames, as H 2 _ D? is an invariant.
As indicated earlier, a procedure using electric flux milestones (Eq. (2.7)) seems more natural
if it uses 1 milestones. However, unlike the Eq. (2.6), it fails to yield the electromagnetic field

components when the ES is null-like (see Fig. 2.2 (b), light-blue zone).

Field computation from ZEFS

A more pictorial way of obtaining electromagnetic field components is to draw ZEFSs in the

MSM. By definition, ZEFSs are the surfaces perpendicular to the ESs (in the Minkowskian
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sense). In spacetime regions with no charges, the electric flux ¢, measured between two ZEFSs
is identical, regardless of the choice of starting and finishing points on each ZEFS (Fig. 2.2 (c)).
A value (electric flux potential) can thus be attributed to each ZEFS, and ¢, can be computed
as a difference in this potential. If a (O, t,x,z) frame of reference is chosen, the components of
the EM fields are the ratio of d¢. over the distances dt, dx and dz between two ZEFS in the

directions t,x,z with the appropriate signs:

_ 8¢e 8¢e ad)e

Hy =" D== 5, De=="%]

. (2.8)

Although Eq. (2.8) is similar to Eq. (2.7), its form allows the problem of ES contained in the light
cone to be solved. When an ES segment is null-like, it contains a zero electric flux, meaning that
the equation (2.7) cannot be used. Moreover, null-like ES segments cannot connect two ZEFSs
because they are contained inside a ZEF'S. This is a peculiarity of Minkowskian geometry, where
a null-line is perpendicular to itself. As a consequence, potential values cannot be attributed to
ZEFSs directly from this region. However, potential values can be attributed to these ZEFSs
by computation in adjacent regions where ES are timelike or spacelike (Fig. 2.3(a)). Hence the
d¢e value between two infinitely closer ZEFSs can always be determined, and Eq. (2.8) is fully
applicable to the computation of the electromagnetic field components.

In the presence of electric charges, equipotential values cannot be assigned to ZEFSs, but
the concept of ZEFSs remains valid, as does the difference in potential value d¢. between two
nearby ZEFSs. Hence in general, an absolute representation of the y-invariant, p-polarized
electromagnetic world is given by the ZEFS map and the electric flux difference between them.
Let us consider the simplest case involving electric charges: a linear, constant density of charge
along the y-direction. The worldline of each charge is a straight line along the Ot axis, and
represents all the charges in the 3D MSM (t,x,z). ES in this case are concentric circles centred
around the Ot line. Every ES circle contains the same electric flux value, equal to the linear
charge density A. ZEFSs in this case are radial half-planes, starting on the Ot charge line
(Fig. 2.3(b)). The difference in electric flux ¢, between two ZEFSs can be defined, as being

equal to the electric flux ¢. on any ES part cut by these two ZEFSs (Fig. 2.3(c)).

An example of computation of field components from spaghetti structures

To illustrate how precise this computation can be, let us consider an arbitrary ES, depicted in

Fig. 2.4(a), with the characteristic parameter 1. This spaghetti is obtained in the slit problem
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ZEFS

Figure 2.3: (a) Two ZEFSs (red) are never linked by an ES where they are null-like (top), but the
difference in potential ¢. between them can be obtained from other domains where they are connected by
an ES (green, bottom). (b) Electron density along the y axis in (t,X,z) spacetime is represented by a
straight red line running in the t-direction which gives rise to a ZEFS (red plane). In this case, the ESs
take the form of concentric green circles. (c¢) Electric flux value along one of the ES in (b).

from Section 2.3.3. Using Eq. (2.6), the field components are obtained and compared with the
field components calculated from Maxwell’s equations. The coincidence, shown in Fig. 2.4, is

perfect.

2.2.7 Direct computation of ZEFSs

The computation of y-invariant p-polarized electromagnetic problems with no charge can be
considerably simplified by considering the ¢, potential and Eq. (2.8) with the curl equation
0¢By — 0, E.+ 0.F, = 0. In a vacuum, the resulting equation is just the d’Alembertian equal to
zero: (07 — 92 — 0?) ¢ = 0 with the normal derivative at perfect conductor boundaries being
equal to zero.

In conclusion, for the y-invariant, H, polarized problem, a static map of ESs and/or ZEFSs
with ¢, or 1 milestones can be constructed. Independently of any frame of reference, this
map contains all the information about the electromagnetic world. A frame of reference is
no more than the choice of three Minkowski-perpendicular unit vectors (t,x,z) in the MSM,
and electromagnetic field components are no more than quantities relative to this particular
choice of axes in the MSM. They can be straightforwardly computed either from the ESs with
their milestones n (Eq. (2.6)) or ¢e (Eq. (2.7)), or from the difference in flux between two
ZEFSs (Eq. (2.8)). In the following section, three different examples illustrating this absolute
description of the electromagnetic world are provided: the electrostatic coaxial capacitor, the

interference of two plane waves, and extraordinary transmission in resonant slits.
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Figure 2.4: (a) Spacetime topology of an ES; (b) magnetic and (c,d) electric field components along it.
The original values of the field components (solid curves) are compared with those calculated from the
characteristic ES parameter n and ES tangent vector (dots).

2.3.

Three illustrative examples

In this Section, a unique topology of ES and ZEFS maps of three y-invariant, p polarized
cases are studied in in detail. The first two cases — the electrostatic cylinder (Section 2.3.1) and
the interference of two planes waves (Section 2.3.2) — can be analyzed in 2D plane. In addition to
the invariance in y direction, the ¢t dimension in the first case is also removed, while in the second
example the direction x is excluded. In the third example, the extraordinary transmission in

resonant slits is considered in 3D spacetime (Section 2.3.3).

2.3.1 Electrostatic cylinder

First, the electrostatic problem of two oppositely charged co-centred cylinders is considered
(Fig. 2.5 (a)) — a similar problem to the one described at the end of Section 2.2.6 (Fig. 2.3).
As this problem is invariant in y and t directions, a cut can be made at at any ¢ and y (for
example, ¢ = 0 and at y = 0). The solution of this problem is well-known: in the reference frame

connected with the system, magnetic field is equal to zero, and electric field in the gap between
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Figure 2.5: (a) Electrostatic problem with two oppositely charged co-centered cylinders. (b) ESs (in green)
and ZEFS (in red) cut for the given problem

two cylinders decreases inversely to the distance to the center.

2D map for this problem is presented in Fig. 2.5 (b) where the ESs are shown in green and the
ZEFSs in red. In accordance with the ES definition, the green lines are perpendicular to the red
lines. At first glance, this is nothing more and nothing less than a picture of electric field strength
lines (red lines) and equipotential lines (green lines). However, the two are fundamentally
different. In a different frame of reference, a magnetic field would appear, and both the electric
field and the equipotential lines would be changed. Instead, the ESs and ZEFSs are absolute
(i.e. defined independently of any frame of reference). They yield both magnetic and electric
field components, depending on the choice of frame of reference (Egs. (2.6), (2.7) and (2.8)). In
Fig. 2.5 every green ES segment contains the same electric flux ¢, = 9912 rD.df = rD,66. The
total value of the electric flux over every ES circle is equal to the linear density of charge A on
the internal cylinder. Here, radial red lines correspond to ZEFSs, and they can also be seen as
magnetic spaghettis with a constant magnetic flux ¢, = f:f E,.dr on each red segment. Each
green arc in the figure contains the same electric flux ¢, and each red segment contains the
same magnetic flux ¢,,. Both fluxes are connected by the constitutive equation in a vacuum
(D, = E,): ¢ = ady, with a = %. This can form the basis of a new way of solving Laplace’s
equation: to build a solution, we need to plot a mesh made up of red and green segments,
topologically similar to Fig. 2.5(b). The segments must be mutually orthogonal, and their

length ratio must be a constant.
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2.3.2 Interference of two plane waves

In our second example, we consider a system that is no longer invariant in the t-direction, formed
by the interference of two counterpropagating waves in a vacuum E, = Y(t — 2) sin(27(t — 2)) +
Y(t + z)sin(27(t + z)), where Y is the Heaviside step function and the wavelength A is equal
to 1. This problem is invariant in y- and x-directions, so the MSM can be represented by a 2D
time-space (t,z) plane where the peculiarities of Minkowskian geometry can be observed.

This 2D spacetime is illustrated in Fig. 2.6 where, as before, the ESs are pictured in green,
and the ZEFSs in red. In the top and bottom lefthand corners of Fig. 2.6(a), the depicted events
are beyond the interference of the two counterpropagating planes waves. The ESs of each plane
wave are straight lines running along the null directions t —z and t +z. This case is represented
in Fig. 2.2(b). In the special case of plane waves, the red and green lines are superimposed, and
the electric flux is measured not on the ESs themselves, but between the ZEFS lines. In Fig. 2.6,
the electric flux between two adjacent green lines is constant everywhere, and equal to ﬁ.

The wave interference is pictured in the central and righthand parts of Fig. 2.6(a) and in
Fig. 2.6(b) by concentric rounded squares. The ZEFS lines have the same rounded square
patterns, but with the time and space shift of A\/4. Given the definition of ESs and ZEFSs,
all the green and red lines are perpendicular. This is obvious in Fig. 2.5(b), which corresponds
to space-space Euclidean geometry. By contrast, in Fig. 2.6, Minkowskian time-space geometry
should be used, where null lines are perpendicular to themselves. As the flux on line segments is
constant, the shorter the segments, the larger the field. The flux orientation is indicated in the
figure by periodically alternating blue arrows. The centers of the rounded squares correspond
to zero field events.

At the z,y planes of maximum interference (z = 0,0.5, 1, etc.), the ES tangents are parallel
to the Oz axis. Therefore, in accordance with Fig. 2.2(b), the field is purely electric at any value
of t. For z = —0.25,0.25,0.75, and so on, the ES tangents are parallel to the Ot axis. The field
is therefore purely magnetic. Between the two, there are events where the ESs are null-like. At
these events, the green and red lines are tangent, and the electric and magnetic fields are equal,
as in Fig. 2.2(b) in the light-blue zone.

As observed in the electrostatic example (Section 2.3.1), the ES map, which was constructed
using a special frame of reference (t,z), is in fact independent of it and any other frame of

reference. Conversely, once a frame of reference has been chosen, the electric and magnetic field
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Figure 2.6: (a) Interference of two plane waves. Green lines are ESs, red lines are ZEFSs. In the plane-
wave region, these lines coincide. There is a constant flux of 1/10m between two red lines. Blue arrows
indicate an oriented electric flux equal to 1/m. (b) Zoomed part of the zone of interference.

components can be directly extracted from the map. The observed topological pattern for the
case of interference of two plane wave appeared any time when interference is observed, and in

the following sections an example of it will be given.

2.3.3 Extraordinary transmission in resonant slits

In this third example, the system is only invariant in the y-direction, and no longer invariant
in the x-direction. The ESs are now curves plotted in 3D spacetime, with new topological
behavior. We consider a periodic array of slits, made into a perfect conductor material. The
slits are parallel to the y-direction (Fig. 2.7(a)), and excited at normal incidence by a p-polarized
plane wave (magnetic field along the y-direction). The period of the grating is L = 0.5, that is,
half the wavelength A = 1 (¢ = 1), so all the diffracted waves are evanescent. The slit width
is arbitrarily chosen as w = 1/6. When the slit height h is adjusted to h = hg + n A/2 with
ho = 0.417, n is an arbitrary integer, there is a Fabry-Perot resonance with total transmission,
and no reflection. The value of hg is slightly smaller than A/2, as the phase of the internal
reflection is not exactly w. We chose h = 0.917, in order to have a clear view of the interference
pattern inside the slits.

The system is only studied in the resonance condition, in order to suppress the reflected wave.
The 100% transmission phenomenon is depicted in Fig. 2.7(b), where the energy of the incident

wave funnels through the grating [36]. This funneling can be directly attributed to magneto-
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Figure 2.7: (a) Slit grating, invariable in y-direction, made in a perfect conductor. (b) Time-averaged
Poynting vector lines in the resonant case, H-polarized normally incident monochromatic wave. ESs (c)
in the central plane of a slit, and (d) for z-shifted case.

electric interference between the incident and evanescent fields [37]. Several ESs are plotted in
the 3D spacetime map in Figures 2.7 (¢) and (d). The median plane is a special location in this
system where the F, component is equal to zero. As a consequence, the ZEFSs are perpendicular
to this plane and all the ESs are located in it, as seen in Figs. 2.7(c) Figure 2.3.1 shows one
period of ESs (green) and ZEFSs (red) in such a way that they partially overlap. The details
of the two patterns are visible, but these patterns fill the entire plane tOz. The electric flux is
constant between two neighboring ZEFS lines (bold red) inside the slit. The density of these
lines in the ¢-direction therefore corresponds to the H, field component, and the density in the
z-direction corresponds to the D, field component. Some characteristics of the ESs are evident,
and the plots in Fig. 2.2(b) and Fig. 2.6 are similar, whether they are inside the slit or far from
the slits. The field is purely electric when the ESs (green lines) are parallel to the z-direction,
and purely magnetic when they are parallel to the t-direction. Owing to the resonance inside
the slit, the electric flux density in this region is six times higher than it is in the plane-wave
region. This is clearly depicted in Fig. 2.8: in the slit region, there are six ZEFS lines over
a half-period in time, whereas in the top part of the figure (plane-wave region), there is only
one ZEFS bold line. As we saw in Fig. 2.6, lines beginning in the vacuum are straight null-like
ESs corresponding to simple plane waves. The central part is slightly distorted because the
bottom-to-top wave amplitude is smaller than the top-to-bottom one. Another slight difference

between Fig. 2.6 and Fig. 2.8 is the presence of two ESs per period crossing the structure in
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Figure 2.8: 2D view of the ES (green) and ZEFS (red) lines on the median plane for one time period.
The orange rectangle corresponds to the slit area. There is a constant electric fluxz between two thick red
ZEFS lines. The flux is 6 times smaller between two thin red lines. Inset: zoom of the whirl zone, with
even smaller flux step between ZEFS lines.

the z-direction. Most ESs entering the slits exit from the same side (top or bottom) of the
grating, making a U-turn. Thus, ESs are clearly independent of any past-future direction, or
the distinction between time and space.

New topological structures can be seen in the top and bottom parts of the slit grating. These
regions are known to give rise to magneto-electric interference between the evanescent field and
the incident wave, at the origin of the energy funneling observed in Fig. 2.7 (b) [37]. Whirls
observed in the median plane of the slit are very similar to those resulting from the interference
of a plane wave with an evanescent wave, discussed in detail in Section 2.4. They are centered
on a zero field event, and have the fractal behavior of a stretched logarithmic spiral. They
seem to contradict the principle that tubes of flux with no charge never end[17]. They do not,
indeed: logarithmic spirals never end. In Fig. 2.7(d), we can see slightly z-shifted ESs abruptly
exiting the whirl in the x-direction. Starting from different x coordinates, an intricate topology
is depicted in Fig. 2.9. Some of the ESs touch and even enter the slit region, then either turn
around or enter the slit and exit at the bottom. Others enter the gap and return to the free

space.
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EVANESCENT WAVE

Figure 2.9: The different behaviour of a selection of five out-of-central-plane ESs illustrates that topological
analysis of ES should be a new field of research.

2.4.

Detailed analysis of the interference of a

plane wave and an evanescent wave

In the problem of the extraordinary transmission in resonant slits (Section 2.3.3) the inter-
esting whirl pattern appears near the slits, in the area of the evanescent waves. At first look, it
seems contradictory with the common knowledge that the lines of flux never end if there is no
charges [17]. In this Section, the origin of the whirl patterns is considered.

The field in the whirl zone is the superposition of the incident field and of the diffracted
field due to the periodic slit structure. As the period of the grating have been chosen smaller
than the wavelength, for a normal incident wave the diffracted orders are all evanescent. The
height of the slits have been adjusted (close to A\/2) in the way that there is no reflection (close
to A\/2) so that the reflected amplitude for the far field is zero. In this Section, the following
approximation is chosen: only the pair of evanescent waves corresponding to the orders —1 and
+1 of the diffracted waves is taken into account. They have the same amplitude and build a
standing wave.

In order to simplify the writing equations, here the wavelength is set as A = 27. For an
incident plane wave of amplitude cos(z + t), the evanescent wave corresponding to the standing
wave for the first diffracted order of the grating with the period L = 0.5A has the amplitude

aexp (—v/32) sin(t) cos(2x). Here a = 1.09122 (numerically computed) for the slit grating con-
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Figure 2.10: ESs (green) and ZEFS-lines (red) in the case of interference of the plane wave and two
evanescent ones(with equal amplitudes and opposite propagation directions along x axis.).

sidered. The wave vector component for the z direction is 274/ —ﬁ + % = /3. At the surface

z = 0, the two waves are in quadrature. The flux and field components are then:

$e = sin (z +t) — aexp (—V/3z) cost cos 2x (2.9)
H, = cos(z +t) + aexp (—V32) sint cos 2z (2.10)
D, = —cos (z +t) — av3exp (—V/3z) cost cos 2z (2.11)
D, = 2aexp (—V3z) cost sin 2z (2.12)

The ES-ZEFS pattern of this interference at x = 0 is plotted as green and red lines in

Fig. 2.10. The pattern of this simplified model is very similar to the one observed in Fig. 2.8.

The whirls are centered on no-field points H, = E, = 0, corresponding to equations:
tantg = v/3 (2.13)
oS 29 .
— sinzg 4+ aexp(—v3z9) =0 2.14
\/3 0 p( 0) ( )

with solution (tg = 7/3, 20 = 0.7736).
The asymptotic character of the whirls can be obtained by a linear approximation (¢ =

to+t,x=12',2= 29+ 2') of the field around the point (¢o, 0, z0):

H, v
= \A (2.15)

D, z
D, = A\oa! (2.16)
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with
—2a+8 —
A= vor (2.17)
B B
\i = \/(3 sin zg + COSWZO)(Sin 20 — C()S\/go) (2.18)
Aiaw = sin zg + % (2.19)
Aiff = 2sin zg (2.20)
Ao = Ai(—2a + 28). (2.21)

The factor A; which will appear later as the angular frequency for ES n parameter gives for the

moment the relation

%=1+ (2.22)
The ES equation (2.4) becomes:

d [t t/
. = NA (2.23)

A\ 2 2!

dx’

S 2.24
- (2:24)

The solution of this system of differential equations is

(2.25)

z'(n) = e "2/ (0) (2.26)

where the matrix exponential can be obtained from the eigenvalues A1 and eingenvectors matrix

exp(A 0
exp(And) =V () V1 (2.27)
0 exp(A-7)
where
Ay 0
NAV =V : (2.28)
0 A
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Explicitly
A = A\ 0N
with
A= (B —a)\i =)N;/2
and

—a+i —a—1
V=
B
V—lzi —if 1 —ia
26 i 1+«
Equation (2.27) can be rewritten as
A @ 0 1
exp(AinA) = e | cos(\in) + sin(A\n)V V-
0 —i
Calculating
v 0 L
Vv V-
0 —

and considering the starting point ¢'(0) = 0,2'(0) = x5, 2/(0) = z5, we obtain

t'(n) 0 —fB)\ [cosAin

2'(n) 1 « sin A\;n

The equation (2.33) is an affine transformation of the logarithmic spiral:

t”(ﬁ) B 6/\r71 CcOoS )\ﬂ]

2"(n) sin \;n

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

This curve, named spira mirabilis by Bernoulli three centuries ago, is a spiral that never ends,

the first fractal curve ever studied. For each loop toward the center, corresponding to a decrease

in parameter 7 equal to —2m/)\;, the radius is decreased by a factor of exp(—27\,/\;) = 0.12.

The spaghettis starting from a non-zero x = x5 value have the same (t', z’) behaviour, spiralling
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toward (¢’ = 0,2’ = 0), while they are escaping exponentially in z direction, with a factor
exp(4m\, /i) = (1/0.12)? for each loop.

Despite this topological curiosity, the electromagnetic field around the zero-field point has
a linear behaviour, as expected. Indeed, the absolute characteristic parameter n we have intro-
duced has a constant value of 27/\; for each loop. As the temporal and spatial sizes of the loop
are proportional to the distance to the center of the whirl, the field amplitudes (Eq. (2.6)) are
proportional to this distance.

The ES plotted (in an absolute way) in the spacetime time map with the 7 parameter scale
written on them are fully describing the field components of an y-invariant, p-polarized problem.
Calculating the field from these spiralling ES, which seems counter-intuitive or even erroneous
for a field in a vaccum without any charge can be illuminating. The field components are given

by equations (2.6), and using Eqs. (2.33, 2.34), we calculate them as

H d [t
= - (2.36)
D, m\z
d /
D, = —d% (2.37)

The component D, is simple to calculate. We obtain Apxse =1 = \,z’ which is exactly the

expected value, given by Eq. (2.16). The two other components are

H, -\ —Ar CoS \;
o y ’ ! (2.38)
D, A+ Ao Ao — N sin \;n
or
H -1 a-p cos \;
Y| = e B K (2.39)
D, 1 a-—p sin \;7).

Inverting Eq. (2.33) we obtain

COS A o' t/
zse™ ) o : (2.40)
sin \;n Blo1 o) \»
and eventually
H —2a+p —-B) [t
=N : (2.41)
Dx 6 ,8 Z/
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which is indeed the expected field, given by Eq. (2.15).

To summarize, the observed ESs whirl pattern corresponds to the case of the interference of
the incoming plane wave and the evanescent wave. ESs whirls are centered on a zero field event,
and have the fractal behavior of a stretched logarithmic spiral that never ends. The parameters

of the spiral are defined by the parameters of the interfered waves.

2.5.

Conclusion

In this Chapter it was demonstrated, that contrary to common opinion, the electromagnetic
field can be presented in absolute way. The static 3D map for the y-invariant, H, polarized
problem can be constructed with ESs, lines of events, supplemented with special measures,
and/or ZEFSs. ES lines arise as the cut of more general lasagna surfaces in the invariant
polarized case. As ES and ZEFS construction does not depend on a reference frame, they can
be considered as static rigid objects in 3D MSM. Unlike physical objects, they can transcend the
boundary between time and space, and be timelike, spacelike, and even lightlike, changing from
one to the other. Such map containing all the information about the electromagnetic world.

ESs are labeled with three invariant scalar measures. A purely timelike or spacelike segment
can be characterized by its interval length. The electric flux ¢, is the ES measure, which
characterises the electromagnetic field. Being the result of action of a 1-form on an infinitesimal
interval ds, the electric flux ¢, is a scalar absolute value. However, in case of null-like ES,
this measure cannot be applied. Thus, a new electromagnetic invariant n is introduced. Any
ES segment between two events e; and e is characterized of a scalar electromagnetic value
n(e1, e2), which is not zero even in the light cone region. The ESs with 1 labels contain all the
electromagnetic information.

In the absence of electric charges, ZEFS can be labeled with the electric flux potential values,
and ¢, value is a difference in this potential. ZEFS start on electric charges, thus equipotential
values no more can be assigned to ZEFSs in the presence of electric charges. However, the
concept of ZEFSs remains valid, as does the difference in potential value d¢. between two
nearby ZEFSs. Thus, an absolute representation of the y-invariant, p-polarized electromagnetic
world can be given just by the ZEFS map and the electric flux difference between them.

In this way, electromagnetic map is ES and/or ZEFS and measures on them are the absolute

map, independent from any reference frame. It contains all the information about electromag-
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netic field. It was shown that components of the electromagnetic field can be computed from
ES or ZEFS in any reference frame. In this way, a frame of reference is just the choice of three
Minkowski-perpendicular unit vectors in the MSM, and electromagnetic field components are
no more than quantities relative to this particular choice of axes in the MSM.

Although the ES recipe is technically based on field components, ESs can be constructed
straightforwardly with 1 and ¢, scales. The ES topology, the n and ¢, values do not depend on a
specific reference frame. If two events ey, es are connected by a specific ES S (S = S(e1) = S(e2))
constructed from a given frame of reference (system of axes), they are connected by the same
ES S in another frame of reference chosen to construct S(e;). Thus, two physicists would
independently build the same 3D map of ESs around a given event, and the ESs will have
milestones featuring the same 1 or ¢. quantities. Therefore this map is absolute and unique.

ES and ZEFS demonstrates unique topology. Some characteristic patterns were shown for
the specific cases of ES and ZEFS maps. In the presence of the electric charge density, ESs are
concentric circles around charge, while ZEFSs start on electric charges. In the considered case of
the electrostatic cylinders, ES-ZEFS pattern is similar to well-known picture of the equipotential
lines and the electric strength lines. However, the ES-ZEFS map is absolute. Every segment
of ES between two ZEFS (and any ZEFS segment between two ES) contains the same electric
(magnetic) flux. In this way, the behavior of the electromagnetic field is clear from the plot.

Plane wave have a specific presentation in the ES-ZEFS topology: lines (ES and ZEFS
coincide) with the sinusoidal density. The interference of two plane waves have the characteristic
pattern as well. ESs and ZEFS cuts have a form of concentrated loops. They appear as well
in the third example, the periodic slits problem. In this problem, the interesting whirl pattern
appear in the area of the evanescent waves. It was shown, that the same pattern appear in
the case of the interference of the plane wave with the evanescent wave. Linear approximation
for the fields around the whirl provides the ES solution in the form of the logarithmic spiral,
Bernoulli’s spira mirabilis. This spiral has the fractal behaviour and never ends. The whirl
parameters are defined by the parameters of the interfered waves.

As ZEFS is a particular case of lasagne, and ES is cut of another one, it is clear that for
these particular problems, lasagna can be presented in 4D. The next Chapter is devoted to
general case of 4D spacetime, where unique decomposition of two-form at any event provide a
map of solid objects with flux values on them. After that, the presented above examples are

reconsidered from lasagna point of view.
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Chapter

The absolute description of EM field in 4D

spacetime

3.1.

Introduction

In the previous Chapter it was shown that in the spacetime map, restricted to the y-invariant
p-polarized case, it is possible to construct "absolute" electromagnetic objects: electric spaghetti
(ES) and Zero Electric Flux Surfaces (ZEFS). Regardless of the reference frame, which may have
been chosen to build them, these objects connect the events of space-time in a fixed way. This
Chapter is devoted to the generalization to any electromagnetic field in the four-dimensional
spacetime.

The generalisation of the concrete map of ES, which was a set of oriented linear segments
with the electric flux values on them, is now a set of pairs of 2D surface pieces. Each of them
are labeled with electric and magnetic flux values.

At any event, the direction of spaghetti (its tangent) was unique and absolute (independent
on a choice of the reference frame). Similarly, at any event, the orientation of the pair of
surfaces is unique and absolute, and the two surfaces of each pair are completely orthogonal.
For example, one surface is t A @, and the second one is y A z. The origin of such decomposition
is based on the uniqueness of the decomposition of the electromagnetic two forms into a pair of
simple two-form.

As far as we know, the mathematical proof of the uniqueness of such decomposition in 4D

spacetime is mentioned only in the Riesz course [38], given more than 60 years ago in 1959.
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And on the contrary, several later works, be it Misner [17], Lounesto [39], or even indirectly
Landau [30], suggest that decomposition is not unique. As it will be shown below (Section 3.3),
this uniqueness is specific to the space-time signature (4 - - -) or (- + + +).

Riesz demonstrated the uniqueness of the decomposition in a few lines, using Clifford’s
algebra [38]. The complete demonstration is provided in Appendix E. The demonstration of
the uniqueness needs this advanced Clifford’s algebra. However, the explicit calculation of
the decomposition can be derived from a classical problem of electromagnetism (Laudau, [30]
(§25)), presented in Section 3.2, — the search for reference frames where the electric field and the
magnetic field are parallel. An attempt to give an intuitive approach of the uniqueness, involving
surfaces with zero flux, is presented in Section 3.3. It is demonstrated that this heuristic way is
a dead end, because in 4D Euclidean space such bivectors decomposition is clearly not unique.
The uniqueness indeed is the special feature of 4D spacetime.

In order to highlight the distinction between the presented approach and the common ways
of geometric representation of the electromagnetic field with differential forms, an overview
of them is provided in Section 3.4. Contrary to this work, none of them gives an absolute
unique geometrical representation of the electromagnetic field. Then, in Section 3.5 unique
decomposition with two bivectors is discussed in a general 4D case.

Finally, the explicit construction of unique surface pairs from the Riesz theorem is given in
Section 3.6. After that (Section 3.7), the examples considered in Chapter 2, are presented in
4D spacetime, showing that y extension of ES and ZEFS themselves correspond to pair of two

continuous solid surfaces, the electric and magnetic lasagna objects.

3.2.

Elementary construction of the unique sur-

face pair

In this Section, the introduction to a concept of the unique pair of surfaces at any event of 4D
spacetime is provided. A rigorous proof of the unicity of the decomposition of the electromagnetic
two-form as the sum of two fully orthogonal simple two-forms was first given by Riesz, using
Clifford algebra (see Appendix. E). However, a clue to this decomposition can be inspired by
a classical electromagnetic problem. A pair of completely orthogonal surfaces appears when
finding the reference frame where the electric and the magnetic fields are parallel.

The following problem is presented in [30] (§25): excepted if E and H are equal in module
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and mutually perpendicular, it is possible to determine a frame of reference where the electric
and magnetic fields are parallel. The speed and direction of the new frame of reference are given

by the equation
v ExH

1+ E?2+H? (3.1)
Using a notation o = % with S=FE x H, and £ = E2§H2, the solution is
1— V1= o2
polVIZ s (5.2
o

Let us consider the obtained result in more details. Let z be the direction of the fields at a
given event in the new frame of reference. The only components of the field are E,, B,, H,, D,.
D, is the electric flux density on the surface & A y and H, is the electric flux density on the
surface t A z. At the same time, B, is the magnetic flux density on the surface Ay, and FE, is
the magnetic flux density on the surface z At = —t Az. It can be observed that the two surfaces
x Ay and t A z are completely perpendicular one to another. Only they contain the electric
and magnetic flux (each of them), and the flux is zero on the four remaining surfaces that are
simply perpendicular to them: t Az, t Ay,y A z, and x A z. 1t is also zero on any combimation
of them.

This is a construction of the decomposition of the magnetic flux two-form and of the electric

flux two-form as the sum of two fully orthogonal simple two-forms:

B.& A (3.3)

+
&, =HAINZ+ D, &N, (3.4)

but this is not a proof that the decomposition is unique. As said by Landau ([30]), the solution
of Eq. 3.2 is not unique in the term of reference frame as the electric and magnetic fields
remain parallel in any frame of reference moving in the field direction z. However, all these
new reference frames correspond to the same two-form decomposition (Egs. 3.3 - 3.4). Any new
frame of reference t’, 2’ gives the unit bivector ¥ A 2’ = t A z, it is a fundamental property of
the Lorentz’s transformation. This is not yet a proof but the clue of uniqueness of the two-form
decomposition.

In the following sections other approaches considering the uniqueness of the decomposition

are provided.
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3.3.

Another approach, involving zero-flux sur-

faces

In this Section, an attempt to understand the uniqueness of two-form decomposition is
provided. It is based on an idea of four bivectors with zero flux on them in 4D spacetime.
Thus, only two remain bivectors has non-zero flux values. However, this attempt is clearly bad
considering that it will be equivalently valid in Euclidean 4D space while a simple counter-
example shows two different decompositions.

An infinitesimal piece of a surface (regarded as a simple bivector), which can be considered
as flat due to its small size, has two orthogonal directions in 4D spacetime. For the infinitesimal
bivector Ay, based on two non-parallel vectors  and y (Fig. 3.1 (a)), there are two orthogonal
directions: t and z. Let the value of the flux (electric or magnetic) on this bivector be d®;.
Rotation of this bivector along the direction y towards the direction z eventually leads to the
fact that the bivector will be flipped (see Fig. 3.1 (b) and (c)). It is important to note that here
the term rotation means usual euclidean rotation based on sin« and cos « functions, but not
the hyperbolic rotation. As a result, the bivector A y changes by —x A y. Thus, the flux on
this surface changes to —d®;. This change of sign means that somewhere between the start and
end positions there is such a position of the bivector that the flux on it is zero.

There are four ways to rotate the & Ay bivector in 4D, which form four orthogonal surfaces:
along x towards t, along x« towards z, along y towards ¢, along y towards z. Thus, in 4D
spacetime four simple infinitesimal bivectors with zero flux around a point can be found. As
in general case any bivector in 4D can be decomposed on a basis of six simple bivectors, we
expect that it is possible to find two fully perpendicular simple bivectors (with the electric and
magnetic fluxes on them), orthogonal to these four bivectors with zero flux.

Unfortunately, this heuristic approach is flawed. Indeed, in euclidean space such decompo-
sition is not unique. Let us suppose that zero flux surfaces are t Ay, t Az, x Ay, © A z,
and the bivector with fluxes (consisted from two simple bivectors) is b = t Az + y A z.
In 4D euclidean space this decomposition is clearly not unique, as it can be presented as
b= (ct+ sy) A (cx + sz) + (st — cy) A (sx — cz) for any simultaneous rotation of basis vectors
in t Ay and @ A z planes [39]. However, the 4D spacetime case is very special, as the decompo-

sition is really unique. One can observe that £ A y is a time-space plane, thus transformations
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Figure 3.1: To the description of bivectors with fluz in 4D: (a) A bivector x Ay, and one of the orthogonal
directions z. (b) The rotation of the bivector x Ay along the direction y towards the direction z. (c) The
flipped bivector Ay is a bivector —x Ny.

(cht + shy) and (sht+ chy) that keep orthonormality are different from euclidean rotations. As
a result, other orthogonal pair of simple bivectors cannot be found using this approach.
Presented above demonstration is only qualitative. Indeed, the rigorous mathematical proof
of the existence of such a decomposition in 4D spacetime, and its uniqueness, was proved by
Riesz in [38]. However, this decomposition was not mentioned after the publication of the lec-
tures to E.F. Bolinder in 1993. The mention of the electromagnetic canonical decomposition
is also appeared in the famous book "Gravitation" by Ch.W. Misner, K.S. Thorne and J.K.
Wheeler [17], but authors did not consider it as unique. Further in this Chapter both of these
decompositions will be discusses in details. However, this presentation requires a brief mathe-
matical introduction, presented in Appendix C. Also, it is important to highlight the differences
between the geometrical approach presented in this work and the classical presentation of the
electromagnetic field with the differential forms. The next Section is devoted the review of the

presentation of the electromagnetism by 2-forms in literature.

3.4.

Approach of electromagnetism by 2-forms

in the literature

In order to highlight the advantageous features of the approach presented in this work, it is
initially useful to consider the results presented in the literature on this topic. In this Section,
the brief review of classical differential form approach for electromagnetism is presented. Special
attention is paid to the illustration of the electromagnetic fields by means of this approach, and

the difference with the approach presented in this work is discussed. For a complete under-
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standing of the presented results, the mathematical introduction to the exterior algebra and the
Clifford algebra, presented in Appendix C, should be revised at first. Section C.2, providing the

most basic information, may be especially useful.

3.4.1 Presentation of the electromagnetic field with the differential forms

Differential forms have been found to be extremely useful in electromagnetism [23]. The physical
quantities as fields, currents, and charge densities can be integrated over lines, areas, volumes
and time, thus they can be represented by differential forms [40]. They even give more elegant
form for the equations of electromagnetics [22]. One of the advantages of exterior algebra
over conventional vector or tensor calculus is that it provides a way to deal with problems of
electrodynamics in a frame-free manner, thus equations stay unchanged [17, 22].

Although applications of exterior calculus to electromagnetism were known before [41, 42, 43],
its became widely known thanks to "Gravitation" by Charles W. Misner, Kip S. Thorne, and
John A. Wheeler [17], also known as MTW. Although main part of the book is devoted to
spacetime and gravity, there are detailed introduction to the exterior algebra (Chapters 2-4)
and its application to electromagnetics in spacetime (Chapter 4).

Authors consider a widest list of questions, including description of the Maxwell equations
with 2-forms, geometrical version of Lorentz force law, Stokes’ theorem, stress-energy tensor
and conservation laws. MW'T consider electromagnetic field in the form which is classical now

(corresponds to the form presented in Eq. 1.21)

~ 1 ~ ~
F = iFaﬁdma ANdxP =

E,d% A dt + E,dg N\ dt + E.dZ A\ dt + B,d§ A dZ + Bydz A d% + B.d% A dg, (3.5)

where F' is a 2-form of the electromagnetic field, F,3 = (—E, B) is components of electromagnetic
tensor [3], and the wedge product is a basis of two-forms of a given Lorentz frame. In this way,
by means of F electromagnetic field can be visualized by a tubular structure, which can turn
and twist in spacetime. As 2-form is a linear functional which transform any orientated 2-surface

in a scalar, the meaning of F' is also

/ F =N, (3.6)
sur face

where N is a number of tubes cut.
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The Maxwell’s equations in this approach are

=0

o

L _ (3.7)

dxF =47 x J.
Here J is 1-form of the charge-current in 4D. The meaning of the first equation have sense that
the tubes of F newer end. The second one means that the number of tubes of «F that end in
an elementary volume, is equal to the the amount of electric charge in the volume [17] (p. 105).
It is worth to note that the star operator remains the same for vacuum, and if materials are
presented, it includes their parameters € and p. The example of these two-forms presentation
as tube of flux ("a honeycomb-like structure") is shown in Fig. 3.2. It is worth noting that
each equation of 3.7 is independent of the system of coordinates (both space and time), but
the relation between F and xF depends on the metric in general case. In vacuum the relation
F — xF and the Minkowski metric are invariant under the Lorentz transformation [22].

It is important to note that although tube of flux in 3D is useful for two-form understanding
concept, it is not well defined in 4D. For example, for one simple two-form A &, there are two
sets of tubes (similar to presented in Fig. 3.2), along y and z, or any their mix, in the same time.
In this way, it is no more a conventional tube, not even a set of events of the spacetime. However,
for electromagnetic two-form F' tube presentation is even more complex. As it is explained in
Section 3.5, the sum from Eq. 3.5 can be simplified to just two fully orthogonal terms. Each
of them can be presented with "a honeycomb-like structure". But, as it is explained in Box
4.2 of [17], they should be considered only as a sum. This way does not construct geometrical
structure i.e. sets of events in space-time. In Section 3.6 it will be shown that instead of
tubes, the electromagnetic field can be described as two orthogonal oriented 2D surfaces in 4D
specetime, in a unique, well-defined way.

Thus, most illustrations of Maxwell’s equations, involving 1- and 2-forms, are discussed only
in 3D. It is presented, for example, in well-kwown Deschamps’s paper [22]. 1-forms E and
H corresponds to electric ans magnetic fields strength, and 2-forms D and B to electric and

magnetic induction vectors, correspondingly [22].

E = E,d& + E,dy + E.dz, (3.8)

D = D,dij A dz + D,dz A d& + D.d% A df, (3.9)
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y

Figure 3.2: Presentation of electric field by 2-form F = E,d& NdE and its dual xF = E,d§ N dz (F and
*F in the notation of the authors) from [17]

where {E;} and {D;} are the components of the corresponding vectors [22, 23].Thus, with
the differential form notation we immediately see the distinction of forms E and D, which
demonstrate the different geometrical representation and physical properties. It is not obvious
(and often not understood by students) in the case of vector notation for E and D [23]. For
example, the one-form E can be considered as a linear operator which produces the work done
by E on a unit charge when applied to a displacement vector dr. The result of this operation
is a scalar.

Then electric field can be plotted as a set of planes, as it is presented in Fig. 3.3 (a). This
and other illustrations of electromagnetic field in 3D in Fig. 3.3 comes from Warnik’s paper [23].
While the relationship between an electric current and the 1-form H (Fig. 3.3 (b)), as well as a
point charge and the 2-form D (Fig. 3.3 (c)), are quite simple, the graphical presentation for the
Stokes theorem should be considered in detail. In the differential forms notation, it is written
as

&|dD = da|D, (3.10)

where & is a p-form and D is a (p+1) integration domain with a boundary 8D, and the vertical
bar sign for inner product [22].

Graphical illustration of Eq. 3.10 is provided in the Fig. 3.3 (d) and (e), in the case when & is
an one-form. The number of surfaces & which are pierced by the path 8D is equal to the number
of tubes of the two-form dé that come through the surface D limited by this path. All pictures
in 3.3 present simplest conceptions in 3D space, which are reasonable for the acquaintance with
the approach, but it did not receive significant development. In addition, authors often identify

time as a separate coordinate. However, since space and time are not separable, it prevents the

52



CHAPTER 3

Figure 3.3: Illustration of electromagnetic field in 3D using differential forms (all from [23]). (a) One-
form E for a nonconservative field (compare with vectors). (b) An electric current, presented by tubes
J, produce a magnetic field, presented by surfaces H. (c) A point charge, presented as three-form by
cubes, generates electric flur density D, presented by radial tubes (two-form). For the Stokes theorem
for one-form &: (d) The loop dD pierces the & surfeces, and (e) the tubes dé go through a surface D
having the loop boundary 8D.

creation of full-fledged diagrams.

In the middle of the last century physicists were motivated with differential forms approach,
for example, in 1963 Flanders wrote "Physicists are beginning to realize its usefulness; perhaps,
it will soon make its way into engineering" [41]. Nowadays, it does not have a significant im-
portance in the continuum of general physics. About ten years ago the advantages of Clifford
geometric algebra were briefly discussed in the "Nature physics” [44], and David Hestenes in his
biographical article [45], published in 2017, expressed hope that time of geometric algebra will
come. However, we can distinguish just a few authors, who use this approach in physics nowa-
days. The introduction to the differential forms and applications to electromagnetic fields its
description including medium and boundaries, Maxwell’s equations and electromagnetic waves
are presented in the books [40, 46] written by Lindell. Helh and Obukhov in [47] considered ap-
plications of the differential forms approach to the electrodynamics in a vacuum and in a matter
for spacetime. The conservation laws, Maxwell-Lorentz theory, propagation of electromagnetic
waves, reciprocity, constitutive laws, and moving continua are also regarded.

Some modern authors also use geometrical (based on the Clifford calculus) approach to
electrodynamics. The most useful examples are textbooks of Lounesto [39], Arthur [48], Doran
and Lasenby [49]. Another modern work, discussing the application of the Clifford’s geometric
algebra in the field of electrical engineering is Chappell’s paper [50]. Authors considered a few
problems: dipoles, the EM potential, EM wave, the Lienard-Winner potential, and the complex

power in circuits analysis, as well as well as a short review of electromagnetism with Clifford’s
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notation. Undoubtedly, these works present a new way to deal with electromagnetism and
provide additional physical insides at the well-known problems.

It should also be emphasized that in many works on exterior calculus the nice tools having a
great potential is used for description of electromagnetic problems. But only high-level mathe-
matical physicists can understand to the full extent the essence of all expressions, while mainly
physicists are even not familiar with this conception. While the other valuable part of the ap-
proach of differential forms which is available to most people — the geometrical interpretation —
has been almost completely forgotten. Among modern works, apart from the [23, 51], we know
only the paper [24] of Gratus, who moves in the same direction as we do, believing that the
geometrical illustration of physical laws can be much easier for a wide audience.

The difference between an approach described in [24] and more tradition illustration of the
differential forms, presented in the section C.2, is as follows: in [24] p-form on n-manifold is
presented through n — p submanifolds, thus the dimension of the presentation decreases as p
increases. In this case, for example, a two-form in 3D is presented by the lines, not by the tubes,
created by intersected planes. Some examples involving this approach for electromagnetic laws
are displayed in Fig. 3.4. According to the idea "n — p”, in 3D the electric current density being
two form is presented as line (1D manifold), the one-form H — as surfaces, and two-form B —
as circles for the vacuum or similar constitutive relations (Fig. 3.4 (a)). The electromagnetic
two-forms F' in blue and «F from Eq. 3.5 for a vacuum in 4D spacetime are presented in
Fig. 3.4 (b) in blue and in red, correspondingly. They are connected by the Hodge star, and
their orthogonality is presented with black right angle. The Lorentz law in 4D is presented in
Fig. 3.4 (c), where the force is orthogonal to to the both two form F from 3.5 and the 4-velocity
of the particle.

Some applications of Maxwell’s equations are also demonstrated in in [24]. In Fig. 3.4 (d) the
integral formulation of Faraday’s law of induction for a loop on the plane z = 0 using two-form
F is presented. As F is the 2-form, in 3D it is shown as lines (in blue). It demonstrates a
change in both the electric £ and magnetic B fields. The change in the B field corresponds to
the difference between the number of lines entering the bottom disk (four) and leaving the top
one (two). This difference is equal to the number of lines leaving the volume through the side
surface (two, corresponds to the change in the electric field), which is the integral value having
a meaning of the electromotive force [24]. In Fig. 3.4 (e) similarly the integral formulation of

Maxwell-Amperes law for the loop in the z = 0 plane using two-form +F (in red) is presented.

o4



CHAPTER 3

(a) (b)

Time

SP
Space

Sp&Ce

Time
time
\
vime

ccebecaca==

\

ceades"
1
'
[y -
1
—————
'

pace

Space
Spacg space

Figure 8.4: Illustrations for electromagnetics laws from [24]. (a) Ampere’s law: the constant line current
in black (two-form) and the magnetic field strength in red (one-form), and the magnetic induction in
blue (two-form). (b) The constitutive relations in the vacuum for F in blue and xF in red (orthogonal
surfaces). (c) The Lorentz force law on a particle: the worldline of the particle in green, the two form
F in blue, and the force is in red. (d) The integral formulation of the Faraday’s law of induction for
z = 0. The two-form F for a plane z = 0 is presented with blue lines. (e) The integral formulation of
Mazwell-Amperes law for the z = 0. The two-form «F' is presented with red lines and electric charges in
green (all for a plane z =0).

Red lines start or finish at charges whose worldlines intersect plane z = 0 in the green points.
Now the difference between the number of lines entering through the bottom surface and leaving

the cylinder through the top (corresponds to the magnetic field) and side surfaces (corresponds

to the electric field) equals the sum of the charges inside the cylinder.

3.4.2 Our approach

Without detracting from the merits of other authors whose contribution is huge and very useful,
the flux geometrization approach from this work is significantly different from others presented
earlier, although the same mathematical basis is used. In most works using the differential
forms or geometrical algebra approach for electromagnetism, space and time are separated.
They are mainly focused on the mathematical description, not aiming attention on geometrical
representation, while it is the powerful aspect of these approaches.

In this work, time and space are non-separable, and the unique decomposition into two
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simple bivectors with fluxes in 4D spacetime is the key idea of our approach. We are not just
trying to depict the electric or magnetic field using a new mathematical tool, but go beyond the
usual framework, creating a new concept for electromagnetic field and constructing an absolute
electromagnetic spacetime map. It can provide simple concrete models for electromagnetism,

allowing a deeper understanding of some effects.

3.5.

The unique decomposition in 4D space-

time

In Section 3.2 it was demonstrated, that an electromagnetic two-form as ®,, (Eq. 1.21,
Section 1.2, or Eq. 3.5,Section 3.4), written in the general case as the sum of six simple two-

forms

®,, = E,dz \Ndt + E,dj A\ dt + E.dz A dt (3.11)

+B,dy NdZ + BydZ NdE + B.d¥ NdZ,
can be written as a sum of two simple two-forms:
F =E,dz Ndt + B.di' Ndi'. (3.12)

In the book Gravitation [17], a similar problem is considered as well (p. 122, Exercise 4.1).
Authors conclude, that only two wedge products needed to represent the generic local field, and
call this decomposition "canonical representation".

It was shown in Section 3.2 that Lorentz’s transforms along the axis 2’ provide a decompo-
sition

F = E.dz" Ndt" + B.d&" A dj”, (3.13)

with the same E/, B’ field components, and the same dZ” A dt"” = dZ’ A dt’ and d&" A df" =
dZ’' N dy’ two-forms. In Exercise 4.2, [17], (p.122) authors discussed that for some 'canon-
ical transformations" different one-form products are obtained, giving the same two-forms.
Their conclusion is that "the decomposition of a six-wedge-product object into two wedge prod-
ucts, miraculous though it seems, is actually far from unique" (Box 4.2 about the concept of

"honeycomb-like structure").
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Lately, some authors, like Lounesto ([39]) insist on the fact that the decomposition is not
unique in 4D Euclidean space (see Section 3.3).

However, about sixty years ago, Riesz gave a prove of the uniqueness of the two-forms
decomposition in 4D spacetime [38] (p. 206): "A nonsimple, nonlight-like bivector can, in
a unique way, be decomposed into the sum of a time-like and a space-like bivector"'. This

theorem was proved using the Clifford algebra (see Appendix E). The decomposition is

® = aT +bS. (3.14)

Here T is a time-space simple two-form and S is a space-space simple two-form. The two are
completely orthogonal, a and b are real numbers. Riesz said that this gives a proof of "the
theorem of Sommerfeld", probably a reference to his Lectures on Theoretical Physics [52, §26 D).

We do not have any explanation why the miraculous uniqueness, specific to the space-time
metrics with signature (+ - - -) or (- + + +) (then more miraculous than the miracle described
in Box 4.2 of the book [17]), remains unknown as far as we know. Even Pertti Lounesto, who
was editing Riesz’s book[38], only presented non-uniqueness of the decomposition in the 4D
Euclidean space.

In a recent book [53, p. 79], the authors demonstrate (not using the Clifford algebra and not
citing Riesz) that an anti-symmetric tensor in 4D can be decomposed into two simple bivectors in
a unique way if the orthogonality condition is added. However, the question of uniqueness seems
not clear, as in p. 328 it is written "Moreover, the electromagnetic tensor can be decomposed
(even if not uniquely, see Chap. 2) in the sum of two orthogonal bivectors'. Meanwhile, Stazi
in [54] gave the explicit unique determination of a decomposition of the electromagnetic tensor
into a sum of two completely bivectors.

The uniqueness of the decomposition of electromagnetic two-forms as a sum of two fully
perpendicular simple two-forms is the root of the absolute, unique geometrical representation of

the electromagnetic field, as shown in the next Section.

3.6.

Electromagnetic spacetime map

As it was discussed in Chapter 1, the electric and magnetic flux can be defined on any

surface in 4D spacetime, and they are enough to describe the electromagnetic field. In Chapter

LOf the vector space or of the dual form-space
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2 it was demonstrated, that unique absolute map, built of ESs and their milestones contains
all information about electromagnetic field in the case of the y-invariant, p-polarized problem.
In the general case an absolute electromagnetic map is built with the decomposition to two
bivectors with flux on them, connected in the infinitesimal ribbons. Sometimes they can be
connected into continuous surface, called lasagna. Similar to presented in literature approach
(Eq. 3.5), the description of the map is based on two two-forms.

Electromagnetic two-forms ®,, and b, (Eq. 1.21 and Eq. 1.22), discussed in Chapter 1, are
used for building of the flux decomposition. As discussed before, each them include 6 components
in 4D space-time, and to construct them, tensors Fj; = (—E,B) and G;; = (H,D) are used.

The two-form associated with the electric flux is

@, =H INE+HENG+ HINZ+
(3.15)
DygNZ+DZNE+D.ENY
The two-form associated with the magnetic flux in 4D is
D, =F,ENt+ E,jANt+ FE.Z N+
e Y : (3.16)

A
B.§ANE+ByZANE+ B, % A §.

Here &, &, §, Z is an basis of one-forms.

The result of action of two forms &’e and @m on a bivector is a number, an invariant value.
Thus, these values are absolute (independent of any frame of reference). The infinitesimal
magnetic and electric fluxes on an infinitesimal surface, defined as the bivector dS = du A dv

with du = du'e; and dv = dv'e; are

d®,, = @, (dS) = Fyjdu’dv’ (3.17)

d®, = ®.(dS) = G;jdu’dv’ (3.18)

Again, the unbold "d" letter do not mean the differentiation, but has sense of infinitesimal value.
As it was already discussed in Sections 3.5, the 6 terms decomposition Eq. 3.15 and Eq. 3.16
can be written in a unique way (except the zero-case when the electric and magnetic fields are

equal and orthogonal) as the sum of two simple 2-forms

S, =HT Nz +Dx' Ny, (3.19)
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®,,=F'z Nt/ + B'x' Ny, (3.20)

In this way, at any event in 4D spacetime the pair of simple unit two-forms T = # A 2/ and
S = a’ Ay’ can be constructed in a unique way. They permit to construct two fully orthogonal
infinitesimal surfaces ;' A 2’ and e,&’ A y’, characterized by magnetic fluxes —&;E’ and ¢,B’,
and by electric fluxes e;H' and e,D’.

The constitutive equation in a vacuum (Eq. 1.36) links the density of the magnetic flux E’
and B’ with the density of the electric flux H' and D’: E' = 2aD’ and B’ = 2aH' (Appendix A).
As the fully orthogonal two-forms # A z’ and @’ Ay’ are unique, and the tangent plane of the
two infinitesimal surfaces defined by unit bivectors T = t/ Az’ and S = x’ Ay’ are unique. They
construct a unique, absolute topology of the electromagnetic field connecting each event with
two sets of infinitely close neighbors. This topology with two flux densities (either E' on T or
D' on S, and H on T or B’ on S) fully describe the electromagnetic field. Indeed, if (¢, z,y, 2)
frame of reference is chosen, then expanding Eq. 3.19 and Eq. 3.20 in the basis of two-forms
tANTENG,ENZ GANZ ZNT, & NG, equations, gives components of fields by identification with
Eq. 3.15 and Eq. 3.16.

Now we can think about connecting all these infinitesimal surfaces 1 and 2. If we consider
one of these two surfaces, we can follow a tangent line, and construct an infinitely narrow ribbon
connecting 1 and 2, a kind of spacetime "tagliatelle". In some cases, the ribbons constructed from
any different paths can be joined, defining a unique surface containing the starting event. This
surface forms a kind of electromagnetic "lasagna" (Fig. 3.5). Since the decomposition consists
of two simple bivectors at any event, there are two families of lasagna surfaces, the L; and Lo
surfaces.

In the null-space special case, the L1 and Lo surfaces are null-space, with the same ¢+ z null
direction which is orthogonal to itself. That corresponds to the case when E-B =0 and F = B.
Remembering that E - B and E? — B? are Lorentz invariant, E and B, being orthogonal in one
reference, are orthogonal in all of them [30]. In this case, the Riesz decomposition is not unique.
However, we do the hypothesis that they can be constructed by continuity from adjacent regions.
It is done, for example, in the following Section 3.7.2, Fig. 2.6. There are events of cylindrical
patterns where lasagna are null-space, but they connect time-space and space-space pieces. In
the next Section two examples of lasagna structures in 4D spacetime are constructed from the

ES-ZEFS results of Chapter 2.
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In this way, a lasagna, each piece of surface of which is supplemented by fluxes values written
on it, constructs a special map in 4D spacetime. Using it, the components of the electromagnetic
field can be extracted in any reference frame. Thus, this map provide all the information about
the electromagnetic field.

Components of electric and magnetic field in any reference frame can be found for any pair
of unique bivector decomposition with flux values on it. This concrete representation of the
map near a given event P can be presented with nodes Q1,Q2, @3, Q4, allowing to construct
two small completely orthogonal triangles PQ1(2 and PQ3@4. They corresponds to bivectors
a = (PQi AN PQ2)/2 and B = (PQs A PQ4)/2 with flux values on them. For example, the
magnetic flux ®,,(a) = ®,,,; and @,,(8) = ®pno. In the same time, the magnetic flux on four
orthogonal to v and B bivectors PQ1 A PQs, PQ1 N PQy4, PQ2 N PQs, PQa N PQy is zero.

When an orthonormal frame of reference (¢, z,y, z) = e; is defined, the four vectors PQ; are
PQ; = 6{ e;, and each bivector is linear combination of six basis bivectors ey A eq, etc. Then, for
example, @A B = (1/2)(a’Bt —a'fVegAer +...4+(1/2)(a?B3 — a3B%)es Aes. All coefficients «;
and §; are defined. Then, the magnetic two-form ®,, = E,& At + ... + B.& A § can be applied
on each of six bivectors, with non-zero result for a and 8 (®,,1 and ®,,; correspondingly), and
zero for others. This provide the system of linear equations where unknown variables are E and
B components in a given reference frame. Solution of this system provides the electromagnetic

field components in a given reference.

P

= ) e \
NN
’ L, lasagna

.

time

Figure 3.5: Schematic representation of a lasagna in 4D MSM: a surface in 4D which contains the electric
and magnetic flux values.

Although the theoretical basis for electromagnetic 4D spacetime map is presented here,
this work is just a very introduction of the presentation, which can be developed significantly.
In particular, the topology of geometrical structures, supported the fluxes, can become new

research area, and provide insights into understanding some electromagnetic problems. Below
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Figure 3.6: (a) Electrostatic problem with two oppositely charged cylinders. (b) The electric lasagna and
(c) the magnetic lasagna (ZEFS) for the electrostatic problem.

in this Chapter only simplest lasagna examples are considered.

3.7.

Examples

It was shown that there is an absolute geometrical representation of the electromagnetic
field in 4D spacetime. To completely describe the electromagnetic field at an event with a given
approximation a pair of small and fully orthogonal surfaces containing this event can be defined,
both labeled with an electric flux and a magnetic flux values?, in a unique way. Here these
surfaces will be constructed as lasagna surfaces for two cases, the electrostatic cylinder and the
two wave interference.

In these two cases of y-invariant p-polarized problems, one lasagna will be obtained by
extending the ES (defined in Chapter 2) in the y direction. This lasagna contains only electric
flux. The ZEFS is the second one, containing only magnetic flux. In these special, polarized

problems we choose to call the two lasagnas as electric and magnetic.

3.7.1 Electrostatic cylinder

At first, let us describe in 4D spacetime the electrostatic cylinder problem from Section 2.3.1
as lasagna surfaces. A schematic presentation of the system is shown in Fig 3.6 (a). The
first lasagna, obtained by ES lines extension in the y direction. In fact they are just the
equipotential surfaces between the cylindrical plates, as shown in Fig 3.6 (b). However, contrary

to equipotential surfaces that is defined only in the special frame of reference of the electrodes,

2Due to constitutive equation these four values reduce to two.
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Figure 3.7: (a) Interference of two plane waves. Green lines are ESs, the cut of the first lasagna, and red
lines are ZEFSs, the cut of the second lasagna. In the plane-wave region, these lines coincide. Schematic
representation of the electric (b) and magnetic (c) lasagnas in the interference region.

this lasagna does not depend on the any frame of reference, as they are based on the unique
decomposition from Eq. 3.14. The second lasagnas are the ZEFSs planes are defined in in
Section 2.3.1 (shown in Fig 3.6 (c)). These lasagnas contain only magnetic flux.

As expected, two lasagna surfaces are fully orthogonal. The first one (green) is space-space
and the second one (red) is time-space. The density of the electric flux on the space-space green
lasagna is the radial vector D The density of the magnetic flux on a space-time surface is the
radial vector E. The two densities are connected by the constitutive equation in a vacuum
E = 2aD in natural units (Eq. 1.36).

Additionally, similarly to the 2D case, pieces of green cylinders (different layers) between two
ZEFS contains the same electric flux ®., and each piece of red surface between two cylinders
contains the same magnetic flux ®,,. Thus, a character of the electromagnetic field behaviour

is seen directly from lasagne map.

3.7.2 Two plane waves interference

Another 2D problem, which can be described in 4D by lasagna surfaces, is the interference of
two plane waves (Fig 3.7 (a)), presented in Section 2.3.2. Again, the electric lasagna is obtained
as the extension of ESs in the y direction, as shown in Fig 3.7 (b), and the magnetic lasagna is
ZEFS surfaces (Fig 3.7 (c)). The two lasagne are completely orthogonal at any event.

In contrast to the previous example, here both red and green lasagna have space-space and

time-space parts. These parts are connected by y- (for green lasagnas) or z- (for red lasagnas)
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lines of events, where the lasagna tangents surfaces are null-space, the null-direction being t + z
or t — z. At these events the electric and magnetic field modules are equal. It can be observed
that the two simple bivector decomposition when electric and magnetic field are orthogonal with
same module are indeed defined by continuity, in a unique way (see Section 3.5).

Again, field components can be obtained from the lasagne. For example, the electric flux on
the segment of the green surface, which is parallel to the yz plane (for example, at t = 0.25),
D (y A z) = D,. On the orthogonal to it segment of the red plane, the magnetic flux is
®,,(x At) = E,. On the segment of the green surface, parallel to the ty plane (for example, at
z = 0.25), the electric flux ®.(t Ay) = Hy. And on the orthogonal segment of the red surface,
the magnetic flux is @m(w A z) = By. Again, the flux components on two orthogonal lasagna
pieces are connected by the constitutive equation in a vacuum (Eq. 1.36).

These two considered problems include only invariant polarized problems, while in more
general case lasagna surfaces can be more complex. Contrary to field maps, lasagna maps are
unique, independent on the choice of the reference frame. The same lasagna map will be obtained
from any reference. And, reversely, the components of the electromagnetic field can be obtained
in any reference from lasagne and flux density values on them (or, for a given precision, flux
values on pieces of lasagna).

The same procedure made for these two cases (green electric lasagnas as y- extension of ES
and red magnetic lasagnas as ZEFS) can be done for the interference of homogeneous and evanes-
cent waves, described in Section 2.3.3. It will show stunning fractal-like topological structures

of the lasagnas in 4D spacetime, in x = 0 region.

3.8.

Conclusion

In this Chapter, the generalisation of the absolute electromagnetic map in the 4D MSM was
provided. As it was proved by Riesz, the electric or magnetic two-forms can be expressed as
a sum of two fully orthogonal simple two-forms in 4D spacetime, in a unique way. Then, the
density of electric and magnetic fluxes are zero on any combination of the four simple bivectors
perpendicular to the two bivectors corresponding to these two-forms. These bivectors with non-
zero fluxes can be united into two families of 2D ribbons called tagliatelle. In some cases, the
ribbons constructed from any different paths can be joined, defining a unique surface called

lasagna. Similar to described in Chapter 2 ESs, these surfaces are concrete absolute objects in
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MSM, independent on any reference. In a given event, one of lasagna belongs to the time-space
type, and the other is the space-space type, with a particular exception where the two surfaces
contain the same line of light, and are null-space type.

Instead of considering the fields as one or two sets of 6 components (E,, E,, E., B, By, B.),
(Hy,Hy,H,,D,,D,,D,) depending on the frame of reference, the electromagnetic field is pre-
sented as an absolute topology of two fully orthogonal simple bivectors and the magnetic and
electric density of flux on them. Considering the vacuum constitutive equation, there is 6 de-
grees of freedom for the electromagnetic field. Indeed, the bivectors orientation in 4D spacetime
corresponds to 4 degrees of freedom, and the scalar density of flux on them correspond to the 2
remaining degrees of freedom.

The concrete electromagnetic map (made, for example, with triangles with the magnetic
and the electric fluxes on them) does not need any frame of reference. If a frame of reference is
chosen, the electromagnetic field components can be extracted from this map.

Two y-invariant p-polarized examples from Chapter 2 were reconsidered, and lasagna families
were presented. The fully orthogonal at any event lasagna surfaces were described. With the
example of the interference it was demonstrated that a lasagna surface can include both space-
space and time-space segments, transcending the distinction between space and time.

Beyond the simplest problems presented in this work, the topology of absolute electromag-

netic objects can become a new field of research, which possibly could provide new insights.
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Chapter

Conclusion and Outlooks

Conceptions, presented in this work, clearly contradict the general idea that the electromagnetic
field can only be presented in an abstract way [20, 21]. Attempts to represent the electromagnetic
field in a geometrical way existed long before this work. In the middle of the last century
differential forms inspired many scientists. The famous book "Gravitation" was published in
1973, and among other things, it popularized the geometrical idea of flux tubes based on 'a
honeycomb-like structure'. But the tube of flux conception is well-defined only in 3D, and
cannot be maintained in the 4D spacetime. A way is to split time, but that corresponds to the
choice of a special frame of reference, making such approach incomplete.

However, as it was proved by Riesz, the electric or magnetic two-forms can be expressed
as a sum of two fully orthogonal simple two-forms in 4D spacetime, in a unique way. It was
proves by means of a Clifford algebra, and, as it was demonstrated, the existence of such a
decomposition is a property of 4D spacetime, while in 4D Euclidean space this decomposition
is not unique. Unfortunately, although Riesz demonstration was provided in 1959, nowadays it
seems forgotten. A clue to this decomposition can be inspired by the classical electromagnetic
problem of finding the reference frame where the electric and the magnetic fields are parallel. As
result, a pair of completely orthogonal surfaces (which can be assigned by flux values) appears.

Instead of considering the electromagnetic field as sets of 6 components in a given frame of
reference, and considering the electric and magnetic field separately, as well as time from space,
the electromagnetic field can be presented as an absolute topology of two fully orthogonal simple
bivectors and the magnetic and electric density of flux on each of them. The density of flux are
scalar, absolute values, independent on the reference frame.

The magnetic density of flux on space-space surfaces as y A z, z A x, and « A y give the
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B;, By, and B, of the B vector. It is natural but not common to say that the components F,,
E,, and E, of the electric field strength vector E are the magnetic density of flux on space-time
surfaces € A t, y A t, and z A t. Similarly, the electric density of flux on space-space surfaces as
YAz, zAz, and & Ay give the D,, D,, and D, of the D vector. Again, it is natural to say
that the components H,, Hy,, and H. of the magnetic field strength vector H are the electric
density of flux on space-time surfaces t Az, t Ay, and t A z.

Additionally, the constitutive equation connects the magnetic flux density on one surface to
the electric flux density on its completely perpendicular surface with the factor 2ae &~ 2/137 in
natural units.

The conception of flux on a surface together with uniqueness of two bivectors decomposition
in 4D spacetime provide the fundamental result. The electromagnetic field in 4D spacetime has
an absolute geometrical representation at any event. It is completely described in a unique way
with a given approximation by a pair of small and fully orthogonal surfaces L1 and Ly containing
this event, respectively labeled with an electric fluxes ®.1, .2 and a magnetic fluxes ®,,,1, Py0.
Due to constitutive equation these four flux values reduce to two. These pairs of surfaces can
be one time-space, the other space-space, or both null-space, sharing the same null-line.

Taking into account the vacuum constitutive equation, there are 6 degrees of freedom for the
electromagnetic field. In this work, the topological part ((Lj1, L2) orientation in 4D spacetime)
corresponds to 4 degrees of freedom, and the scalar density of flux on them correspond to the
2 remaining degrees of freedom. The density of electric and magnetic fluxes are zero on any
combination of the four surface perpendicular to L and Ls.

Following an arbitrary tangent curve, each of the infinitesimal surfaces Li or Lo can be
united into infinitely narrow tagliatelle ribbon. In some cases, the ribbons constructed from any
different paths define a unique lasagna surface. Since the decomposition consists of two simple
bivectors at any event, there are two families of lasagna surfaces. These surfaces are concrete
absolute objects in MSM, independent on any reference.

It is geometrical static presentation of field: contrary to field maps, the lasagna map is
unique, independent on the choice of the reference frame. If a lasagne containing a given event
is determined form the field components in a given frame of reference, the same lasagna will be
obtained from field components in another frame of reference. And, reversely, the components
of the electromagnetic field can be obtained in any frame of reference from lasagne and flux

density values on them.

66



CHAPTER 4

Two simple examples of lasagne were given to show their topology: the electrostatic coaxial
cylinders case, and the interference of two plane waves. It was demonstrated that a lasagna
surface can include both time-space and space-space segments, transcending the distinction
between space and time.

As a presentation in 4D is a challenging task, we focused on cases where the electromagnetic
map can be depicted in 3D spacetime: the y-invariant p-polarized problems. With these condi-
tions L; lasagne contain only electric flux and are invariant in y direction. They can be described
by curves (electric spaghettis ESs) in (t, x,z) spacetime. The lasagne Ly contain only magnetic
flux (the Zero Electric Flux Surfaces) and are perpendicular to ESs and y direction. Contrary to
the worldlines of physical objects, which are always timelike, ESs and ZEFSs transcend the limit
between space and time. Any ES segment is characterized by two electromagnetic invariants:
the electric flux ¢, and the characteristic ES parameter 7, a new concept. The electric flux is
attached not only to ESs, but also to ordered pairs of ZEFSs. The ESs and/or ZEFSs, complete
with flux or n milestones, form a complete representation of the electromagnetic world in the
3D MSM: when three orthogonal directions t,x,z (i.e. inertial frame of reference) are chosen,
the field components H,, D, D, can be directly computed.

Three increasingly complex illustrative examples were analyzed. First, we studied the case of
two oppositely charged electrostatic cylinders, this is a (z, z) space-space problem. The ES and
ZEF'S lines correspond to the potential and electric strength lines in the frame of reference bound
to the electrodes. However, ESs and ZEFSs are frame-of-reference-free. The ES-ZEFS map
approach offers a new way of solving the Laplace equation, by solely considering orthogonality
and a constant length ratio.

The second example was the interference of two plane waves, a (¢, z) problem. Out of the
interference, in the plane wave regions, the ES-ZEFS are the same null-lines. The interference
region is made up of concentric rounded square patterns. The plot is easily interpreted, with
regions of pure magnetic or pure electric field. As in the first example, all the ES and ZEFS
lines are perpendicular to each other, with the peculiarity of Minkowskian spacetime that null
lines are perpendicular to themselves.

The third studied case is a resonant subwavelength slit grating, a fully 3D (¢, z, z) spacetime
problem. There are two regions which are similar to the previous cases: the plane waves far from
the grating and two-wave interference in the slit, far from the upper and lower boundaries. The

funneling region, where diffracted evanescent waves play a major role, is particularly interesting,
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with new topological features for both ESs and cut of ZEFSs. As it was demonstrated, the
topological behaviour of the ES whirls can be explained by the interference of the incident plane
wave and the first-order evanescent wave. A linear approximation for the fields around a whirl
provides the ES solution in the form of a stretched logarithmic spiral, the Bernoulli’s spira
mirabilis. This spiral has a fractal behaviour and never ends. Its parameters are defined by the
parameters of the interfered waves. The relevance of the n parameter was demonstrated with
this example. In particular, it was shown, that for each loop there is a constant 7 parameter
variation.

An ES map is the simplest way of representing the electromagnetic world, owing to the 1D
character of ESs. Furthermore, ESs can be easily computed from the magnetic and electric
field components in an arbitrary frame of reference. Conversely, a ZEFS map can be directly
computed from a scalar d’Alembertian equation. In any case, the magnetic and electric field
components can be straightforwardly extracted from the unique, absolute, and static map of
ESs or ZEFSs.

This work offers a radical change in the conceptual approach to the electromagnetic world.
There are three possible consequences. The first one is philosophical and educational. Instead of
considering differential equations (Maxwell’s equations) involving field components relating to
an arbitrary frame of reference, an integral form can be considered, involving absolute quantities
(magnetic flux ®,, and electric flux ®.) on arbitrary 2D spacetime surfaces: 1) the magnetic
flux is zero on a closed surface; 2) the electric flux on a closed surface is equal to the number of
enclosed electric charges; and 3) in a vacuum, ®,,, is proportional to ®, on two fully perpendicular
identical surfaces. These simple rules make it possible to construct solid, absolute objects in
spacetime, independently of any frame of reference. These objects transcend the limit between
space and time, and contain all the information about the electromagnetic world.

Second, new numerical techniques can be developed using these concepts. For 2D static
problems, we suggest a technique for solving Laplace’s (or the 2D d’Alembertian) equation. For
y-invariant problems, the six field components can be replaced by two potentials ¢.' and ¢,,
in the 3D spacetime map. Third, the topological analysis of these solid, absolute objects, basic

components of the electromagnetic world opens up a new field of research.

more precisely, difference of potentials if charges are present
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Chapter

Plasmonic structures for eflicient absorption

5.1.

Introduction

Since 1957, when Ritchie first reported the plasma losses of electrons incident on a metal
film [55], the collective electron motion in metals has received considerable attention [56]. Pri-
marily named for the guiding of confined light using metallic nanostructures, plasmonics has
extended far beyond the original concept and has become a branch of optical science [57]. The
position of plasmonics among other optical sciences is presented in Fig. 5.1 (a). Here, the dashed
line presents the limit where the scale of the structures is equal to the working wavelength.
While atomic and solid state physics concentrate on structures of the atomic scale, and molecu-
lar chemistry focuses on atomic structures which size are less than 10 nm, plasmonic structures
and optical metamaterials are mostly larger in size than natural science objects. Hence, occupy-
ing a large vacant area in the diagram, these artificially structured objects are complementary
to those of the natural sciences [57].

Plasmonic structures display enhanced properties, being capable of modify the spectral, po-
larization and phase characteristics of incident wave [58]. They can confine light to dimensions
much smaller than the wavelength in free-space, having the ability of strong field enhance-
ment [59, 60, 61], selective frequency response [62], and design flexibility based on geometry
rather than materials used [63]. As a result, these structures paved the basis for a new class of
elements applied for refractive index sensing [64], cloaking [65], solar cells [66], optical biosens-
ing [67, 68, 69], nonlinear optics [70], spectrophotometry [71, 72|, surface-enhanced Raman

scattering [73], photocatalysis [74, 75, 76], mechanical thermal sensors [77], gas sensing [78], etc.
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Absorption in a small volume compared to a wavelength volume can be useful for wide variety
of applications [64, 63]. Plasmon resonators are one possible way of achieving this [79, 63]. A
short list of important properties for plasmonic resonators in comparison with other materials is
presented in Fig. 5.1 (b). It can be seen that plasmonic resonators can underlie the operation of
fast tunable devices. Their only major drawback is their high optical losses in the metal parts.
However, the concept of perfect absorbers based on plasmonic effects has more recently initiated
a new research area where losses became an advantage [64]. In this work, it is demonstrated
that this disadvantage can become a good opportunity for the design of a novel generation of

infrared detectors.
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Figure 5.1: (a) A diagram for optical science: scale versus wavelength. The scale stands for the period or
characteristic size of objects. (b) Classification for advantages and disadvantages for plasmonic resonators
in compare with other materials. In the diagram, double circle means highly suitable, open circles designate
possible properties, triangles — difficult to obtain but not impossible, crosses — impractical or almost
impossible. PhCs stands for photonic crystals. Pictures from [57].

In recent years, low-cost infrared detectors have been developed for non-military applications:
firefighting, aircraft aid, drivers aid, industrial process monitoring, border surveillance, night vi-
sion, portable mine detection, community services, search and rescue, law enforcement, etc. [80].
Quantum detectors offer higher sensitivity and speed, however they must be cooled to liquid
nitrogen temperatures and cost orders of magnitude more that thermal detectors. Although
thermal detectors, and bolometers in particular, are becoming more and more sophisticated,
their price has been significantly reduced in recent decades thanks to a manufacturing process
allowing massively parallel production. Thus, they are popular for many applications. However,
from the point of view of physics, over the past decades, there have been no significant changes
in the principles of operation of microbolometers. The pixel size of commercially available de-

vices reduces, providing better resolution but increasing the noise. Meanwhile, the devices with
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better characteristics are desirable [80, 81].

In this context, plasmonic structures can form a remarkable basis for a new generation of
thermal detectors. As they allow light absorption in volumes much smaller than the wavelength,
the thermal capacity of a pixel can be drastically reduced compared to those of current bolome-
ters. As a result, the speed of such detectors could be much higher than that of traditional
structures, it could also make it possible to improve the sensitivity of the device, while keeping
operation at room temperature. Moreover, the electrical and magnetic properties of a plasmonic
structure can be tuned by the design of the structure, thus the operating wavelength, the quality
factor and, more generally, the spectral shape of the optical response can be chosen by design.

In this work, we focus on designing the smallest possible plasmonic absorber for infrared
applications. As shown below, the main criterion for optimizing these structures is their vol-
ume. The configuration of the structure must imperatively satisfy one condition: the absorbing
structure must be placed at the distance \/4 above the mirror. This resonant configuration
enhances the electric field in the structure region, avoids transmission, thus is widely used for
traditional bolometers. It will be shown, that optical antennas can be effectively coupled under
these conditions to absorb all the incident radiation, some of them occupying only a few percent
of the period area.

The rest of this Chapter is organized as follows. First, the operating principle and possi-
ble designs of plasmonic structures are introduced in Section 5.2. Great attention is paid to
plasmonic absorbing structures used in the infrared range. Then, in Section 5.3, the classic
bolometer structure and its working principles are considered. Modern detectors design based
on plasmonic structures, presented in the literature, are also reviewed in this section. After that,
in Section 5.4, resonant configurations including a mirror are discussed in detail. In Section 5.5,
the thermal properties of different materials, used in plasmonics, are considered. It is shown
that the values of volumetric specific heat capacity for the most popular plasmonic metals are
very close, while specific heat capacities for these materials can be very different. In this way,
the most accurate optimisation criterion for the absorber is its volume rather than its mass.
Section 5.6 presents the general purpose of this work. Finally, in Section 5.7, a review of the

other chapters of this manuscript is provided.
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5.2.

Plasmonic structures

In this Section, a brief review of plasmonic structures is provided. The main working princi-
ple of these structures is considered, after that, some examples of metal nanoparticles and their
optical response are presented. Particular attention is paid to absorbing metal structures. While
there is a wide variety of metal-insulator-metal structures for absorption, a more common ap-
plication of insulator-metal-insulator structures is as waveguides. However, there are a number
of works focused on absorbers based on such structures.

The operation principle of plasmonic structures is based on the resonant interaction of elec-
tromagnetic radiation with free electrons of metal at the metal-dielectric interface. As a result,
collective electron oscillations, called surface plasmon polaritons (SPP), arise as a propagating
wave at a plane interface (Fig. 5.2 (a)). This wave is evanescent in both media, confining them
at the interface and making it a waveguide. The amplitude of these oscillations extends further
into the dielectric region in comparison with the metal. For the excitation of SPP, an additional
momentum to the wave vector should be provided either by periodical patterning or by evanes-
cent coupling of radiation into the metal [82, 83]. A propagation length of SPP is defined by
metal absorption, as well as its thickness and interface roughness [83].

As materials for plasmonic structures in IR range, noble metals such as gold and silver are
the best known. They demonstrate plasmonic behavior in both the visible and near-infrared
domains. Other metals utilized in plasmonics are copper, aluminum, gallium, indium, cobalt,
palladium, platinum, nickel, and titanium [84]. As dielectric, silicon, oxides (for example, SiO,
and AlpOs, phononic materials such as GaN, SrTiOs, SiC, GaP, and many others are used [84].
Also graphene, investigated as long wavelength plasmonic material due to its unique band struc-

ture and very high charge mobility [85, 86], is widely studied for plasmonic applications [84, 87].

Light can be coupled with metal nanoparticles. The resonant wavelength in this case depends
on the shape, size, and composition of the nanoparticle (Fig. 5.2 (b)). A single subwavelength
particle can provide field enhancements of 10 - 100 [61]. For instance, spherical nanoparticles
exhibit a dipolar plasmonic resonance. Fig. 5.2 (c) shows that an increase of the particle aspect
ratio redshifts the resonance wavelength. The extinction cross section and the distributions of

the electric field norm in the case of spherical and rod shapes are presented in the top line in
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Figure 5.2: (a) Surface plasmon polaritons at a flat metal-dielectric interface [83]. (b) Typical spectra
of individual silver nanoparticles. A TEM image of the corresponding particle is presented above its
spectrum  [88]. (c) Examples of influence of geometry and materials on electrostatic resonances of deep-
subwavelength metal nanostructures. Increase of the dielectric constant of the surrounding media causes
redshift. Increase of the aspect ratio of a particle leads to redshift as well. Minus and plus signs are
for the regions of the high and low electron density [61]. (d) Spectral response and distribution of the
norm of the electric field for typical nanophotonic structures, placed in water (refractive index 1.33). The
colorbar is in the logarithmic scale. The top left: gold sphere of the 80 nm diameter; the top right: gold
nanorod of the 80 nm diameter and 120 nm length; the middle left: gold spheres dimer, a sphere diameter
is 80nm, and the distance between spheres is bnm; the middle right: a gold spheres heptamer with a
sphere diameter 80 nm and the 5nm distance between spheres; the bottom left: a 80 nm-thick gold film
with periodic array of 120nm diameter holes; the bottom right: a periodic array of 80 nm-thick gold disks
with the diameter 120mm [69].
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Fig. 5.2 (d). Also the dielectric constant of a surrounding media affects the resonance wavelength,
and its increase leads to the redshift too [61].

Besides individual particles, a pair or group of particles can be coupled with an electromag-
netic wave, as shown in Fig. 5.2 (d). In this case, the electromagnetic field is concentrated in the
gap between particles, and Fano resonances originate from the interference of coupled modes.
Besides, light can be coupled with a periodic or non-periodic array of particles, as well as with
a metal film with array of holes in it [69].

Plasmonic structures composed of metallic elements inserted in a dielectric material form a
particularly effective absorbing medium because both the electrical and the magnetic proper-
ties of this so-called metamaterial can be tuned by structure design [92]. Effective absorption
can be provided by metal-insulator-metal (MIM) plasmonic metamaterials. Having a small ab-
sorber volume and being easy to fabricate, they also provide tunability of both the absorption
wavelength and the operation mode by geometrical control. Due to their high performance and
design flexibility, MIM structures are widely studied for a broad frequency range [63].

Basically, a MIM structure consists of three layers: a bottom flat layer, a thin dielectric layer
(or periodic patches), and one or few metal patches, or periodic array of them. Examples of
different MIM strictures are presented in Fig. 5.3. Fig. 5.3 (a) shows schematic presentation of
a conventional plasmonic MIM structures with 2D and 1D periodic patches. It can be seen, that
a dielectric layer can be a flat homogeneous layer or also can be structured. A detailed review
of the MIM mode is presented in Section 6.2.

The geometric parameters of the MIM structure define the central wavelength A5 of the
resonance peak. This is mainly defined by the length of a metal top patch and to a lesser extend
by the optical index of the materials and the dielectric thickness. A resonance appears when a
round trip of the wave along the resonator corresponds to a multiple phase shift of 27. This
phase shift is due to the wave propagation and to the reflection at the ends of the resonator. The
effective index of the mode nqg corresponds to the propagation of this mode. It is defined by the
optical index of the dielectric disturbed by the penetration of the field into the metal [93, 94].
As a first approximation, the phase shift at the reflections can be assumed to be equal to 2.
The resonance wavelength and the length of the structure are then related by the effective index
to approximately Aqes & 2negl. The effective index of the mode is also affected by the width
and thickness of the metal, as demonstrated in the following chapters.

Thus, if a few metal patches of different sizes are placed in the same period, the absorption
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Figure 5.3: (a) A schematic presentation of 2D MIM (the top left) and 1D (the top right) MIM struc-
tures [63]. (b) A multi-band 2D MIM structure for the infrared range of wavelength. The structure
parameters: the spacer thickness hz,s = 290nm, the top gold layer thickness hpu = 50nm, the period
p = 5.8 tm. Widths of the MIM resonators are wy= 1.64{m, wo= 1.78 fm, ws= 1.91 {m, and wy=
2.07 tm [89]. (c¢) Dual-band MIM absorber working at the short infrared frequencies. Incidence and po-
larization angles of the exciting plane wave are shown at the top of the scheme. Measured and simulated
absorbance spectra under normal incident x- and y-polarized light sources are presented at the bottom
for the structure with parameters Ly =1800nm, L =800nm, L3=500nm, W =100nm, D=200nm, and
P, = P,=2100nm [90]. (e) A dual-band perfect plasmonic absorber MIM structure: a schematic presen-
tation at the top left and a SEM image at the top right. The thickness of the top gold layer is 20 nm,
the bottom gold layer thickness is 150nm, the thickness of SiOs dielectric spacer is 30nm. Presented
at the bottom spectra correspond the TM (on the left) and TE (on the right) polarizations, both are at
the normal incidence. Spectra correspond to the structure with following parameters: period along both x
and y directions d=600nm, the minor and major azes of the elliptical gold nanodisks are a=240nm and
b=360nm, respectively [91].

spectra can show either a wide band or several bands (Fig. 5.3 (b)). As it shown in Fig. 5.3 (c)
and (d), more complicated patch geometry can also provide a multi-band response.

Besides MIM structures, there are insulator-metal-insulator (IMI) structures, which oper-
ational principle is also based on plasmonic effects. In the presence of material loss, a simple

structure, consisting of three infinite plane-parallel layers (not structured) of limited thicknesses,

can support two types of modes: symmetric long propagation SPP and anti-symmetric one [95].
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Thus, IMI structures are known for waveguide applications. Structuring of the metal layer
allows managing the structure response. The examples of two waveguide IMI structures are
presented Fig. 5.4 (a) and (b). Fig. 5.4 (c) shows a silver branched nanowire which can serve
as a controllable router and multiplexer in integrated plasmonic circuits due to its ability to
route light of different wavelength into different branches. As a result, it can emit light from
the corresponding wire ends [96].

For the three IMI structures mentioned above, as in general for all plasmonic structures,
absorption in metal is considered to be the main drawback [64]. But in this work it is no
longer disadvantage but a fundamental property. For the design of new detectors, the opposite
situation of a rapidly dissipating mode becomes the central point of research. Conventional
thermal detectors employing a uniform layer as an absorber in the infrared domain have limited
absorption efficiency, as illustrated by the central graph in Fig. 5.4 (f) showing the absorbance
of a uniform layer of titanium-gold at the 6 um wavelength) [97]. Oppositely, a structured layer
(array of antennas) can demonstrate a much more efficient absorption at the chosen wavelength
due to the critical coupling with the incident wave. In addition, its volume density will be
reduced compared to that of the uniform layer. Some examples of IMI absorbent structures are
presented in Fig. 5.4 (d) - (f). These structures can be in the form of periodic 1D or 2D metal
patches on a membrane or slits in a metal film. However, a single metallic layer can absorb at
most half of the incident radiation [87].

Thus, due to the specific physical properties of metals, an electromagnetic wave can be
excited at the metal - dielectric interface. It can be used for concentration of the strong electro-
magnetic field in sub-wavelength volume, and for efficient absorption of radiation in the visible
and IR ranges. MIM structures (1-port absorber) were found as promising absorbers, while IMI
antennas (2-port absorber) are capable of absorbing about half of the incident radiation. In
contrast, IMI antennas have a smaller volume than MIMs, which is an important parameter for

the design of sensitive thermal detectors as shown below.

5.3.

Long wave photodetection

In this section both classical and modern conceptions for optical detectors are consider,
mainly focusing on bolometers structures for the infrared (IR) wavelengths. In the infrared do-

main, there are three main wavelength ranges of interest: 1.2—1.8 um (short wavelength infrared,
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Figure 5.4: (a) A periodic thickness modulation of thin metal stripes embedded in a dielectric for long-
range SPP for the telecom wavelength around 1.55¢tm. The gold thickness is varied from 10nm up to
60nm, a characteristic grating period is about 500nm [98]. (b) A waveguide for SPP over millimeter
distances with tight mode confinement at the telecom wavelengths of about 1.55 tm. The gold strip thickness
is 15 nm, its width is 500 nm, the buffer layer is PMMA, a square Benzocyclobutene ridge has the 800 nm
side [99]. (¢) Numerical simulation results for an excited by Gaussian beam silver nanowire branch, which
works as controllable plasmon router. The length of a smaller wire is 1.5 fm and its diameter is 200 nm,
the length of a longer wire is 5 tm, and its the diameter is 120mm. The top left diagram presents angular
polarisation (0) dependence of emission power at terminals of long (red) and short wire (black). The top
right diagram shows emission power S12 (blue) from a single wire of same dimension as the long wire,
compared to the total emission power B12+ 13 (red) from both terminals in the branched structure. The
color maps shows the norm of the electric field at the maxima (top) and minima (bottom) emission on
the short wire [96]. (d) Schematic presentation and SEM image of gold nanoribbons of a width w, the
period is 1.5bw, and the gold thickness is 3nm. The array is fabricated on CaFy substrate. Measured
spectra are presented in the right [100]. (e) An array of periodic holes in a 50 nm gold film, standing on
a 100mm freestanding silicon nitride membrane. The structure parameters are: s = 600nm, g = 470nm,
w = 200nm, L = 1150nm, and the array period P = 1400nm. The scanning electron microscopy image
of the aperture system is presented in the left. The calculated and measured reflected spectra are presented
in the bottom [101]. (f) An absorber based on gold nanostrip antennas array on the 200nm thick silicon
nitride membrane. The gold thickness is 20mm. A design wavelength is 6 ym. The middle plot shows
the dependence of absorption on the gold thickness for the uniform gold film, and the right plot present
absorption values for the nanostrip array with different width w and length L [97].
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SWIR) 3 — 5 uwm (middle wavelength, MWIR) and 8 — 14 um (long wavelength, LWIR) due to
the atmosphere transparency [102, 80]. This last IR domain is of particular interest because,
according to Planck’s law, materials at room temperature (around 7' = 300 K) have a black
body emission around 10 um [80]. Consequently imaging, including long distance, is possible in
the atmosphere allowing applications such as security, remote monitoring and healthcare.

The majority of optical detectors for LWIR range can be divided into two large groups, based
on their physical operating principle: photon (or quantum) detectors and thermal detectors. The
photon detectors are based on the change in electronic density distribution, due to interaction
of incident radiation with bound-to-lattice electrons, or electrons of impurity atoms, or free
electrons. As a result, electrical output signal is detected. For example, intersubband absorption
due to transitions between quantum levels is the operating principle of quantum well infrared
photodetectors (QWIP).

In the second group of detectors are the thermal detectors. Their operating principle was
invented by the American astronomer Samuel Pierpont Langley. From 1878 to 1880 he sought
to create a devise for measuring radiation that was more sensitive than the thermopiles he
had available. In 1880 he designed and used a new instrument, the bolometer, and for the
first time measured the energy distribution of the solar spectrum by coupling his bolometer
to a diffraction grating [103]. The bolometer is based on the absorption of incident radiation
by the absorber which heats up. At least one of the physical properties of the thermometer
placed in intimate thermal contact with the absorber is modified. It is the measurement of this
modification which allows the measurement of the incident flux. A change in electrical resistance,
thermoelectric or pyroelectric effects can be used for this measurement [104]. This fundamental
concept was used to design the first micro-bolometers for infrared cameras in the late 70’s [105],
but was not published until the early 90’s [105, 106]. Since then, progress has been focused on
technological modifications for improved performance (sensitivity, speed, spatial resolution) and
reduced prices.

For modern optical detectors there is always a trade-off between better characteristics and
price. The photon detectors have high sensitivity, high quantum efficiency, a selective wavelength
response, and high speed. HgCdTe ternary alloy, InSb/III-Vs are the most common photon
detector materials. But this materials must be cooled down to 70 — 90 K for the long waves IR
(LWIR) range thus are quite expensive [80].

As it was mentioned by Kinch in [107]: "the ultimate cost reduction for an IR system will only
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be achieved by the room temperature operation of depletion-current limited arrays with pixel
densities that are fully consistent with background - and diffraction-limited performance due to
the system optics". That is the reason why the uncooled thermal detectors are in higher demand.
Although they are slower and less sensitive, they have much lower cost without need for cooling
and exotic materials [80, 108]. At present, the microbolometer detectors are manufactured in
volumes much larger than all other IR array technologies. Being the dominant uncooled IR
detector technology, microbolometers had more than 95 % of the market in 2010 [80].
However, the use of plasmonic structures could considerably change this trade-off. Their
unique properties, in particular the concentration of the electromagnetic fields in very tiny
volumes, may be at the heart of a new class of detectors with characteristics approaching those of
cooled detectors, while maintaining operation at the room temperature. The rest of this Section
is dedicated to the state of the art of bolometers. It is organized as follows. First, the principle
of operation of the bolometer is introduced, and some examples of modern devices are provided.
After that, some examples of nanoplasmonic devises, applied for bolometer applications, are

presented.

5.3.1 Current technology

The principle of operation of all thermal detectors is based on the absorbing element, charac-
terized by its heat capacity C. It converts incident electromagnetic radiation of power P into
heat. To improve the corresponding temperature rise, this element is thermally isolated from
the rest of the world. It can be considered as connected to a heat sink at temperature T via a
thermal conductance G (schematic representation in Fig. 5.5 (a)). Due to the absorbed energy,
the temperature of the heated element 75 rises over time at rate d7p/dt = P/C and approaches
the limit value Tp = Ts + P/G with the thermal time constant 7 = C'/G. Once the radiation is
turned off, this temperature relaxed back to its initial value with the same time constant 7 [104].
The exploded schematic presentation of a microbolometer is presented in Fig. 5.5 (b).

The core of state-of-the-art microbolometers is mainly composed of two parts : a thin metallic
film [110, 111}, acting as an absorber, and an amorphous silicon film (@-Si) or vanadium oxide
(VO,) for the thermometer function [80]. The majority of commercially available devices consist
of a thermally insulated absorbent membrane covering almost the entire pixel. Fig. 5.6 shows
some commercially available structures based on a-Si and VO,. Modern microbolometers can

be classified in two types: single and double layer. For the first type, the pixel design involves
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Figure 5.5: (a) A schematic presentation of a thermal detector (inspired by [80]). (b) A schema of VO,
microbolometer from [109]. A pizel size is 25 x 25 um?, the thickness of the active thermometer V,O,
layer is 95nm, placed on a 400nm thick SizsNy layer which is air-suspended above a silicon substrate
employing two 6 um diameter gold cylindrical pillars. Two titanium electrodes are used for electrical bias
and readout connection. A 5 — nm-thin metal film of NiCr, sandwiched between two 50 — nm-layers of
SizNy, works as optical absorber. For electrical insulation, the silicon substrate is covered with silicon
diozide. A thin gold film is placed on SiOs, and a thin chromium layer is used for adhesion between the
gold and SiOs. The gold layer functions as an optical cavity mirror in the microbolometer. There is an
1.5um air-gap between the mirror and suspended microbolometer structure.

a resonant cavity, made by an absorbing material layer suspended above a reflecting metal
layer [80]. Usually, the length of the cavity is A/4. This design aims to amplify the absorption
of the incident IR radiation by the absorbent placed at the anti-node of the electric field, since
the absorption varies as the electric field squared. Also, the gap created and maintained under
vacuum works as a thermal isolation. A double-layer microbolometers are composed of a space-
filling metal/dielectric sandwich layers designed to capture a maximum amount of incoming
radiant heat energy [80]. This improves the efficiency of the old concept but makes the structure
much more complicated to fabricate. This is the opposite process to the goal of this work: to
improve the performance of the bolometer while keeping its structure as simple as possible.
For all microbolometer structures, the fundamental compromise lies between their sensitivity
and response time. One of the most important characteristics of photo-detectors, the noise
equivalent difference temperature (NEDT) represents the minimum temperature difference that
a device resolves It is proportional to the conductance of the thermal conductance GG, and the
thermal time response 7 = C'/G is inversely proportional to this value. As a result, increasing
of sensitivity (i.e. decreasing NEDT) results in increased response time, and conversely.
Nowadays, the main improvement of bolometer technology is related to the reduction of the
pixel size. This allows to fabricate a higher amount of devices on the same wafer, and thus —

to reduce the price of a device. The pixel size has already reached the wavelength limit in the
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LWIR range and tends to become twice smaller [80]. New difficulties then emerge: diffraction
effects as well as an increase in noise in 1/f. Additionally, the thermal isolation of the absorbent

membrane becomes more challenging: there is less room for isolation arms.

Figure 5.6: Examples of commercial bolometer design. Scaning electron microscope images for (a), (c),
(d), (e) VO, bolometers, (b) a-Si bolometer, (f) a-Si/a-SiGe bolometer [80].

In this way, the bolometer concept has not changed significantly since it was originally
designed in the early 90s. The spectacular progress that has been made in terms of performance
has been achieved through technological improvements. We can think that they are now reaching
their limit, which would explain the slowdown observed in recent years in the progression of
performance. Future imaging systems in the LWIR domain require higher pixel sensitivity and
improved pixel matrix functionality (spectral sensitivity and / or polarization) for multispectral
sensors, while decreasing the unit price of the detector [81]. Additionally, video applications
that require a frame rate of at least 30 fps, require a reduction in response time. All of these
constraints make the sensitivity - response time compromise hitherto used obsolete and require
the entire design of bolometers to be reconsidered.

Plasmonic structures can become an alternative that breaks the fundamental limitation of
traditional microbolometers. Being of sub-wavelength size, they allow to fabricate miniature
absorbing structures which, while absorbing all incident light, leave enough space for thermal
isolation. Their volume can be much smaller than that of the absorbing layers currently used,
allowing the thermal capacitance to be drastically reduced and paving the way for another (and

better) sensitivity - speed compromise.
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5.3.2 Nanoplasmonic devices

The use of plasmonic sub-wavelength structures can break the compromise established for tra-
ditional bolometers. Much smaller than the wavelength, plasmonic structures offer significant
reduction of the thermal capacitance, thermal conductance, and thermal fluctuation noise, pro-
viding advanced responsitivities and reduced noise floor [111]. They also make it possible to
structure the spectral response of the absorption (spectral width, multi-bands, etc.) This can
be done at two levels: on the one hand by modifying the geometric parameters of the optical
antennas and on the other hand by associating several different antennas in the same period. In
addition, the separate measurement of the temperature of different antennas gives access to a
spectral resolution, opening up perspectives for "colored" images. Absorbers based on metasur-
faces can be tuned in real time, thus when integrated with a detector, a single detection element
could be used for time multiplexed multispectral sensing" [111].

During the last decade, some attempts to employ plasmonic structures ability to collect light
energy in small volume were realized for bolometric applications. In the design of the structures
of Fig. 5.7 (a) and (b), the current flow is localized in the bolometric material. In the device
of Fig. 5.7 (a), due to the optical losses in the metal, the energy absorbed at the resonance
is concentrated in the top and bottom gold layers, and is converted into heat by the Joule
effect. The generated heat is then transmitted by conduction to the a-Si thermometer film via
a thin film of SigNy. This generates a change of the electrical resistance of the film of a-Si, the
measurement of which allows that of the incident IR flux [112]. In structure of Fig 5.7 (b) the
sensing layer is made of a 300 nm thick amorphous Sig 344 Geg.60200.054 film.

Bolometers, based on a plasmonic antenna, also can be polarization sensitive. For example,
a device in Fig. 5.7 (c) consists of two orthogonal slot antennas. Each antenna is loaded with
two 200 nm thick nickel microbolometers at its edges. As a result, this detector is sensitive to
polarisation of the incident IR radiation and have a wide dynamic range. In the device, shown in
Fig. 5.7 (d) a resistive and fast micro-bolometer is placed between two three-steps tapered dipole
nano-antennas. Matching the impedance between the nanoantenna and the microbolometer
allows to reduce return losses by a factor of 650 %, opening the route towards an efficient energy
transfer between load elements and resonant nanoantennas [115]. The design of the structure,
presented in Fig. 5.7 (e), is based on the idea of simplification of device manufacture, making

it cheaper. One material is used as an optical absorbent, another for the thermometer. Both
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Figure 5.7: (a) A wavelength-selective detector built of a 2D MIM absorber coupled to a thermally isolated
a-Si bolometer. Parameters of the structure: period p = 1.2 um, the thickness of AlaOs (dielectric)
t = 0.045 um, the side of top square metal patches w = 0.72 ym, its thickness is T0mm, the bottom gold
film thickness is 100mm. A 100 — nm-thick SisNy layer is placed in between the metal film and the
bolometer for electrical isolation [113]. (b) A bolometer structure designed for long wave IR (8 — 14 um),
consisting of 75 —nm-thick aluminum disks arranged on a Hexagonal Close-Packed lattice in direct contact
with the top of the 300 — nm-thick amorphous Sig314Geg.60200.054 film (a sensing layer). The thickness
of an isolation/insulation layer of SizNy with is 50 nm. Thickness of the chromium and gold layers are
50nm and 150 nm, respectively. Titanium bridge of 200 nm thickness support the rest of the layers [114]
(¢) An infrared polarization sensing sub-wavelength detector, consisting of two orthogonal slot antennas,
each loaded with two microbolometers at its edges. The operation wavelength is 10.6 um. In the right
simulation and measurement results of the polarization sensing IR detector for various incidence angles
are presented [112]. (d) A schematic representation of the three-steps tapered dipole Ti antenna coupled to
a nano-bolometer element, working at the 10.6 um wavelength. The nano-bolometer is freestanding-bridge-
like on the dipole elements. The antenna lying on a 1 mum SiOy layer and semi-infinite Si substrate.
Parameters of the structure L1 = 273nm, Ly = 563nm, L3 = 162nm, Wi = 292nm, Wy = 103 nm,
W35 = 97nm, T = 42nm and G = 103wm [115]. (e) An optical antennas as a distributed bolometer
and the load lines perpendicular to it. The length L of the load line is 15 um, its width w; = 0.2 um, its
thickness t = 0.1 um. Characteristic parameters for dipole antenna: the length is 2.2 um, the width is
0.2 um, the thickness is 0.1 um. The thickness of the SiOs layer is also 0.2 ym. In the right, the device
response for different materials is presented as a function of the external circuit resistance Reqzt [62].

the resonant antenna and the load line are made of the same metal. The incident IR radiation
induces electric current on the optical antenna, and its temperature increases due to Joule effect.
This varies the resistance, thus whole antenna structure works as a bolometric element [62].
Due to their property to collect and concentrate light energy, plasmonic resonant structures
can be employed for the design of a new generation of efficient thermal detectors. Sub-wavelength

plasmonic elements allow smaller thermal capacitance, resulting in increased sensitivity, and
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decreased response time and noisefloor. However, most of the plasmonic structures presented
for bolometric applications have a too complicated design only valid for a lab concept, which is
not manufactured industrially. In this work, we focus on exploring the most simple and efficient

design for IR absorbers for bolometric applications.

5.4.
Structures at \/4

As it was mentioned in Section 5.3.1, the traditional bolometer design includes a resonance
cavity with a mirror in the bottom. In this section, an example of a standing wave, which
arose due to the interaction of incident and reflected waves from the mirror, is considered. The
anti-node of the electric field occurs for this wave at the distance nA/4 from the mirror, where
n is a natural number. That is the reason for choosing the length of the resonant cavity equals

A/4. Then, classical absorption structures based on the resonance at A/4 are discussed.

5.4.1 A standing wave above the mirror

The presence of the mirror on the path of the plane wave exp (—ikz — iwt) leads to the appear-
ance of a standing wave. The field maps in the case when the wave vector is directed orthogonal
to the mirror are shown in Fig. 5.8. Both electric and magnetic fields of the standing wave
have a sinusoidal behavior, so that the maxima (anti-node) and minima (node) of the amplitude
alternate with the distance A\/4. The electric field on the mirror is zero, and its anti-nodes are
at (2n+ 1) - A/4 from the mirror (n is a natural number). Oppositely, for the magnetic field the
first maxima on the mirror, and at (2n 4 1) - A/4 there are its nodes. Thus, bulk absorbers are

placed at A/4 above the mirror where the electric field is maximum.

Figure 5.8: The field maps for the standing wave. The mirror is placed at the level of 0. On the left - the
norm of the electric field, on the right - the norm of the magnetic field.
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5.4.2 Configurations

Maximum of the electric field for the standing wave at the distance A/4 provides maximum ab-
sorption in the bulk. Structures, employing this effect, can be classified into three categories [63].
These configurations are widely used in microwave range for a long time [116]. But it is im-
portant to note, that metals behaviour is different for the microwave and IR ranges. While
the permittivity for the microwaves tends to infinity, for the optical range the real part of the
permittivity is about minus thousand (or less), and imaginary part is about a few hundreds (or
less). Thus, using technological solutions from different ranges, it is important to adapt them
appropriately.

The schametic presentation of structures design, involving the A/4 electric resonance, is
presented in Fig. 5.9. The Salisbury screen construction (Fig. 5.9 (a)) is based on the idea of
the placement of an absorption layer above a reflecting surface. A quarter of the wavelength
distance between them is aimed to maximal absorption, and the sheet resistance of the layer
should be equal to the vacuum impedance. This configuration is widely used in radio frequency
engineering and optics [108].

The design of the Jaumann absorber (Fig. 5.9 (¢)) is include two or more purely restive
sheets distanced at a quarter of a wavelength in front of each other. In the case of a circuit
analog absorber (Fig. 5.9 (e)) the periodically patterned top metal layer is separated by a
quarter-wavelength thickness dielectric spacer from the bottom homogeneous metal layer. Resent
metamaterials structures often employ the conception of the circuit analog absorber for efficient
absorption [63].

(@ (c)

(b)g (d)

Reflectance
Reflectance

Reflectanc:

Frequency Frequency Frequency

Figure 5.9: Schematic presentation and characteristic response of resonant absorbers: (a,b) the Salisbury
screen; (c,d) the Jaumann absorber; and (e,f) the circuit analog absorber. The symbol d stands for the

quarter-wavelength gap [63].

85



5.5. THERMAL PROPERTIES AND MASS VS VOLUME

In this way, the A\/4 resonance cam be applied for different types of design and is widely
used for different frequency ranges. As it was said in Section 5.3.1, the traditional bolometers
construction also includes a quarter-wavelength gap. But it is also can be met for the mod-
ern prototypes of thermal detectors. For example, in work [108] the Si-nanomembrane-based

thermoelectric bolometers for long-wave IR detection are studied.

5.5.

Thermal properties and mass vs volume

In this work, gold was chosen as the metal for the absorbing structures. However, other well-
studied metals with different optical properties also can be used. In this work, four materials
were selected for comparison: gold, silver, aluminum, and copper, as the optical response of
these materials varies considerably. In addition, as one of the objectives of this work is to
define a perfect absorbent with the smallest possible volume, silicon was chosen as a dielectric
material for its optical index in the target wavelength region: a high real part (high confinement)
and its very low imaginary part (negligible absorption). Before analyzing the response of these
structures, it is worth to determine the criterion by which the most optimal structure will
be selected. For a bolometer structure an absorber should be connected with a thermometer.
Temperature measurements defines the intensity of absorbed electromagnetic energy. Thus,
thermal properties of the structure is very important.

The structures from different materials can be compared by masses. For example, gold is
the most heavy metal from considered metals (Table 5.1). Meanwhile, as it can be seen from
the third column of Table 5.1, its specific heat capacity is smaller than one for other metals.
In the same time, the volumetric heat capacity values are very close for three metals, and only
copper has higher value.

The specific heat capacity for bulk materials arises from lattice vibrations, and thus it de-
pends on the number of atoms in the volume. A consequence of this is the Dulong-Petit law,
which states that the heat capacity per one mole of a chemical element is almost the same for
all bulk and equals 3 R (the universal gas constant). It also worth to note, that the volumes of
atoms differ much less than their mass, thus one mole of different chemical elements can have a
similar volume, but a large difference in the masses. Indeed, the atomic volume of three metals
except copper is very close, while their atomic masses vary significantly (Table 5.1). Also, the

number of freedoms of atoms for all four metals is approximately the same. Thus, the volumetric
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Table 5.1: Thermal properties of studied materials

Material Density Specific Vol. s.h.c. | Degrees of Atomic Atomic
Heat freedom mass volume
Capacity
P Cp PCp N ma ma/p
g/cm? J/(g K) J/(em*K) number g/mol em3 /mol
Gold 19.30 0.129 2.49 6.11 196.97 10.19
Silver 10.5 0.233 2.45 6.10 107.87 10.27
Aluminum 2.699 0.897 2.42 5.82 26.982 10.00
Copper 8.92 0.385 3.43 5.88 63.546 7.12

Silicon 2.33 0.75 1.75 4.76 28.085 12.05

specific heat capacity for three materials are very close, and copper differs a bit.

For silicon, its atomic volume is a bit larger, than one for metals, while the volumetric
specific heat capacity is a bit less than 30 % smaller than one for metals. But as these values
are comparable (and the difference is smaller than for the specific heat capacity), at the first
approximation the full volume of the structure becoming a good parameter to compare and
structure optimization. Thus, in this work, the discussion and comparison is based on volumes

instead of mass.

5.6.

The problem we aimed to solve

In this Section, the main aim of the second part of the present work is discussed. As
mentioned above, since the design of the bolometer was presented (about thirty years ago), it
has only undergone quantitative improvements with no qualitative change in its structure. The
most significant progress has certainly been the reduction in pixel size. Now, this approach is
reaching its limit. Indeed, the design of smaller pixels comes up against the fundamental barrier
of the diffraction (the pixel size being close to the wavelength) and the more technological one
of the organisation of the thermal insulation while keeping as much space as possible for the
absorbent. Moreover, current applications demand detectors that are both more sensitive and
faster. It appears that it is time to revisit the founding concepts of bolometers to propose a
qualitatively new structure. This work is a contribution to this great project, considering the
plasmonic structures capable of causing this break in concept. Although there are some attempts
to create plasmonic-based bolometers, nothing has been designed for an industrial fabrication,

only lab concepts were presented. However, it is indeed a very promising direction. Being of
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subwavelength sizes, plasmonic structures have a small (compared to wavelength) volume and
thus — a small heat capacity. This can help to shift the compromise between the time response
and the sensitivity into another level, with both better sensitivity and speed.

This work aims to solve only a part of a more complex problem of creating a new type of
bolometer based on plasmonic effects. It focuses only on the first part of the problem: to show
that an array of ultra-small plasmonic structures, occupying a small percentage of the pixel
area, can efficiently absorb incident LWIR radiation. The second stage of this problem — a new
concept of temperature measurement — is outside the scope of consideration, is reserved for a
future study.

We assume that the use of plasmonic structures will allow to decrease the thermal capaci-
tance. For this we will find a design with the smallest volume of metal possible with absorption
of 100 %. Besides, structure miniaturisation also allows to decrease the mechanical support of
the absorber, and offers more space for the isolation system.

In this approach, our industrial partner asked to place the plasmonic absorbers at a distance
equal to A,es/4 above a mirror in order to introduce as few modifications as possible in the
existing technology. This distance corresponds to a maximum absorption in the volume of the
absorbent membrane used in current micro-bolometers. As will be seen, this distance is not
very suitable for certain plasmonic structures, the specific design of plasmonic antennas will
therefore be required. On the other hand, the presence of a mirror makes it possible to suppress
the transmission and to enhance the electric field in the region of the structure.

In this way, we are looking for the simplest plasmonic structure, which, being placed a quarter
of the resonant wavelength above the mirror, has the smallest possible volume and efficiently

absorbs incoming LWIR radiation.

5.7.

Review on the following chapters

In this Section, a brief review of the following chapters is presented.

The study starts with MIM structures because their modes of operation have been widely
studied. However, as in the case under consideration, they are placed in an unusual location
above a mirror, at a node of the magnetic field of a standing wave, their properties and the
coupling process need to be reconsidered. As the structures are placed in front of a mirror, and

the main objective of this study is to obtain the smallest as possible volume for structures in the
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critical coupling conditions, only MIM with all structured layers are considered below. In the
beginning of Chapter 6, the introduction to MIM structures and their properties is presented
(Section 6.1). As the comparison with the fundamental MIM mode arises several times in the
present work, this mode and its main properties are presented in Section 6.2). Then, the arrays
of MIM structures, periodic only in one direction of the plane and invariant in the other, so
called 1D MIM, are considered in Section 6.3.

First, the simpler problem of a MIM array placed on a perfect mirror is considered in
Section 6.3. It is shown, that the energy funnel in this case, corresponding to the standard
MIM configuration, is provided by the magnetic field of the standing wave and the electric field
of the mode. Being optimised on the mirror, 1D MIM array, moved to the node of the magnetic
field at Aes/4 above the mirror, has a weak response with almost no absorption (Section 6.3.3).

However, as demonstrated in Section 6.3.4, the 1D MIM array having a sufficiently thick
dielectric layer can be critically coupled at the distance A,.s/4 above the mirror. But the
process of energy funneling is no longer that of MIM mode. The structure then shows another
behaviour. Indeed, the funnel effect is, in this case, based on the magnetic field of the mode
(instead of the magnetic field of the standing wave for the MIM mode). Design rules providing
critical coupling conditions, i.e. the balance between incoming energy and non-radiative losses,
are found for 1D arrays above the mirror, and some of their optical properties are presented.
However, it is observed that this type of structure does not make it possible to significantly
reduce the volume density of the absorbers.

Thus, periodic 2D arrays of MIM structures, limited in both directions, are considered at
the distance Aye¢s/4 (Section 6.4). Limiting the structure in the former invariant direction sig-
nificantly decreases the volume of the metal and provides a new control parameter — width. It
is demonstrated that these structures can be critically coupled being placed in the node of the
magnetic field above the mirror.

To define the shape providing the minimal volume, four simple geometries of 2D periodic
MIM are examined in Section 6.4.2. It is shown that, for a given metal thickness, the width
of the structure defines the optical losses in the metal, and, consequently, the critical coupling.
The excited mode differs significantly from those of 1D MIMs because edge effects modify the
distribution of the field, and new components of the magnetic field are excited, corresponding
to a more complex distribution of the current density. It is established that the cross-shaped

(resp. rectangle) geometry is optimal (i.e. has the smallest volume) for a non-sensitive (resp.
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sensitive) optical response to the polarization. The influence of the metal properties is discussed
in Section 6.4.3. It is shown that the distribution of the electric current which is responsible for
optical losses in the metal, i.e. for critical coupling, is defined as the complex balance between
skin depth and conductivity. Gold is the metal allowing the design of the structure of smaller
total volume and lower thermal capacity.

The details of the critical coupling for an array of 2D MIM placed at the distance A,.s/4
above the mirror and the influence of the metal thickness on it are considered in Section 6.4.4.
It is shown that the coupling is provided by the electric field of the standing wave and the
magnetic field of the mode. As a result, a significant part of the energy comes from above and
below the structure and is absorbed at the air-metal interfaces. In addition, a flow of energy
through lateral planes appears. Consequently, the electric current density in the metal bars has
a more complex distribution than that of 1D MIM. This leads to a change in the character of
the critical coupling curve compared to that of the MIM mode when the structure is placed in
the anti-node of the magnetic field.

In Section 6.4.5 two geometries of 2D MIM resonators, rectangle and cross, are compared
under critical coupling conditions. Having the same length, these structures show a similar re-
sponse for linear polarisation. However, compared to the rectangular antennas, the cross-shaped
resonators show a blue-shift of the resonance as well as a slightly lower maximum absorption.
It is demonstrated that these differences can be explained by modelling the structures by two
A/4 antennas separated by a conductive plane. The thickness of the conductive plane is finite
for cross-shaped antennas, zero for rectangles.

Finally, in Section 6.4.6 it is shown that indeed, due to a different coupling process, at
the critical coupling the volume density of 2D MIMs is significantly reduced (tens of times)
compared to that of 1D MIMs. Although promising results have been found for MIM structures,
the presence of the mirror allows to simplify the design, and to study structures with only one
layer of metal.

In Chapter 7, periodic arrays of IMI structures are studied for the absorption applications.
Due to the presence of a mirror, a metal antenna array supported by a membrane, all placed in a
vacuum, can be critically coupled with incident radiation. First, Section 7.2 provides a geometric
description of a periodic IMI array placed at the distance A.e5/4 above the mirror. Then, in
Section 7.3, the excited mode in the structure at the critical coupling, is analyzed. As for MIM

structures in the same conditions, the electric field of the mode has a dipole-like distribution,
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while the magnetic field is excited at the side edges, with a maximum near mid-length. It is
demonstrated that the coupling is provided by the electric field of the standing wave and the
magnetic field of the mode.

In Section 7.4, the influence of the geometric parameters of the metal bar on the optical
response of an array of IMI antennas is presented. It has been observed that the antenna width
and thickness define the effective index of the mode and that their ratio influences the optical
losses. The connection of the critical coupling conditions with the non-radiative losses is pro-
vided. The optical response of an array of IMI antennas at the distance \,.s/4 above the mirror
is provided in Section 7.5. They have a large manufacturing tolerance on the distance separating
them from the mirror and, in the case of the rectangular geometry, show high sensitivity to the
polarisation of the incident radiation, demonstrating a high tolerance to the incident angle when
the electric field of the wave is orientated along it, but having no absorption when the electric
field has the orthogonal direction. It is also demonstrated that IMI arrays placed at A.es/4 above
the mirror have the smallest volume density of absorbers , less than 1nm, among considered
structures in this work. It can be considered as the most promising absorber for the design of
the next generation of bolometers.

The simple design of IMI arrays allows to be modeled as a point dipole array, as presented
in Section 7.6. The dipole approximation can predict the absorbance spectra by using the
polarizability of a single antenna, extracted from numerical computations. This makes it possible
to avoid several full numerical simulations which require long calculation times in the 3D cases.
Finally, the experimental validation of the quasi-total absorption for the IMI arrays placed at
A/4 above the mirror is presented in Section 7.7. The experimental part is performed for MWIR
spectral domain, while the antennas are held above the mirror by a dielectric layer of thickness
A/(4n). A good agreement between the experimental data and the results of the numerical
simulation is obtained.

In Chapter 8 the conclusion of this part and outlooks are presented.
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Chapter

Metal-insulator-metal structures

6.1.

Introduction

Metal-insulator-metal (MIM) structures are one of the widely studied plasmonic-based nanos-
tructures [63, 117]. Simple in design, these structures can effectively confine light at the sub-
wavelength scale [63, 118]. In the general case, the MIM structures consist of an upper array of
periodic micropatches, of an intermediate dielectric layer/patches, and of a homogeneous lower
layer, acting as a reflector [63]. Such a construction allows to generate a strong localized surface
plasmon resonance [63]. This resonance has a magnetic nature [119], and each metal-insulator-
metal stack in such an array can be considered as a magnetic "atom" [120, 121].

Although different modes can be excited in a MIM structure [122], this work focuses on
the fundamental resonance of MIM: magnetic dipole mode resonance [119]. Having no cutoff,
this resonance allows to create ultra small resonators, whose volumes are much lower than the
diffraction limit (A/2n)3 [119]. Additionally, MIM resonators provide a strong field enhance-
ment [123, 124]. Due to their high performance [63] and tunability [119], MIM structures have
already been studied in a wide variety of contexts [63, 117], such as enhanced light emission [125],
light absorption [126, 127, 128], thermal IR sensors [129, 130], mechanical thermal sensors [77],
sensors of refractive index [131, 64], optical switches [132], color pixels [133], surfaceenhanced
spectroscopy [134], solar cells [66], and gas sensing [78, 135].

In particular, due to their magnetic response, arrays of MIM resonators are effective for
applications where high absorption is required [119]. This property can be useful for a new
generation of bolometer structures. However, traditional MIM structures with a thick continuous

metal layer (few skin depths) have too high thermal capacitance. Thus, to decrease the metal
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volume, the lower metal layer must also be structured (in the same way as the upper metal
layer). On the other hand, such a structure can absorb a maximum of 50 % of the incident
radiation [87, 136]. The use of a mirror below the structure can allow this limit to be exceeded,
by eliminating the transmitted flux. The MIM structures can then interact effectively with the
incident radiation and absorb it completely.

Configurations with a mirror are usual for currently manufactured micro-bolometers. In
this case, a homogeneous absorbing layer is placed at the distance A/4 above the mirror that
corresponds to one of the anti-nodes of the electric field (see Section 5.4.1 about the standing
waves). To keep its fabrication process unchanged, our industrial partner wishes to position the
MIM absorbers at the same distance from the mirror as in the case of bulk absorbers. Thus,
the MIM structure is located in a node of the magnetic field (see Section 5.4.1). Since the MIM
mode behaves like a magnetic meta-atom, it is not coupled to the standing wave. In this chapter
the discussion is centered on the question: is it possible to design a MIM resonator allowing a
critical coupling with a standing wave when it is placed in a node of its magnetic field?

This Chapter begins with the description of the fundamental MIM mode and its main proper-
ties (Section 6.2). In the following sections, the complex resonators, consisting of all-structured-
MIMs (i.e. the three layers M, I and M are structured in the same way) and a perfect mirror,
are studied. The conditions necessary to obtain complete absorption for this complex resonator
are discussed. First, the simple case of 1D periodic arrays of infinite MIM in the other direction,
is studied in Section 6.3. Before considering systems at the distance A.es/4 above the mirror,
a MIM array placed on a perfect mirror is considered (Section 6.3). In this case the funneling
mechanism is based on the magnetic field of the standing wave. Thus, being moved to the node
of the magnetic field (at Ayes/4 above the mirror), this MIM array demonstrates a weak response
(Section 6.3.3).

However, as shown in Section 6.3.4, the 1D periodic MIM array at the distance Ayes/4
above the mirror can be critically coupled for sufficiently thick dielectric layers. This is a more
complex system compared to the case discussed above, because it includes two resonators: an
array of MIM structures and a cavity between the MIM structures and the mirror. The funneling
mechanism in this case is different from that observed for the MIM mode: it is based on the
magnetic field of the mode instead of the magnetic field of the standing wave. The critical
coupling conditions (i.e. the balance between the incoming energy and the absorption) are

reached by two design rules: the thickness of the dielectric layer must be increased as either the
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period increases or the thickness of the metal is reduced. It is therefore possible to use 1D MIM
structures located at A\/4 above a mirror to fully absorb the incident radiation, but this type of
structure does not make it possible to significantly reduce the volume density of the absorbers.

In order to overcome this limitation, 2D periodic MIM arrays are considered in Section 6.4.
Limiting these structures in the direction in which 1D MIMs were invariant provides a new
control parameter — width. In Section 6.4.2 four simple geometries of 2D periodic MIM are
studied. It is shown that, for a given metal thickness, the width of the structure defines the
optical losses in the metal thus the total response of the structure. Optimal structures for
absorption application is then defined. In addition, the excited modes of 2D MIMs is discussed.
They differ significantly from those of 1D MIMs because edge effects modify the distribution
of the field, and new components of the magnetic field are excited, corresponding to a more
complex distribution of the current density.

The response of the structures made of four different metals is discussed in Section 6.4.3.
It is shown that the distribution of the electric current responsible for the optical losses in the
metal and thus for the critical coupling is defined as the complex balance between skin depth and
conductivity. Gold is defined as the metal allowing the design of the structure of smaller total
volume and lower thermal capacity. It is, among the metals studied here, the best candidate.

The critical coupling for the 2D periodic MIM array placed at the distance \.¢5/4 above
the mirror is considered in detail in Section 6.4.4. It is shown that in this case the coupling is
provided by the electric field of the standing wave and the magnetic field of the mode. In this
way, a significant part of the energy comes from above and below the structure and is absorbed
at the air-metal interface. Besides, a flow of energy through lateral planes appears. Thus, the
electric current density has a more complex distribution than that of 1D MIM. This also leads
to a change in the character of the critical coupling curve. The [/p ratio increases with dielectric
thickness, and for thinner metal layers the curve shifts to the left, towards smaller dielectric
thickness, which is opposite to the 1D MIM. As a result, critical coupling conditions have been
achieved for a metal thickness of 5 nm and a reduced volume.

In Section 6.4.5 two geometries of 2D MIM resonators are compared under critical coupling
conditions: rectangle-shaped structures for a response sensitive to polarization and cross-shaped
for a response insensitive to polarization. Although they have a similar response for linear
polarisation, the observed differences can be explained by modeling the cross-shaped antennas

with two A/4 antennas separated by a conductive plane, instead of one A/2 antenna for the
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rectangular antenna. Finally, in Section 6.4.6 it is shown that indeed, due to different coupling

process, 2D MIM arrays have ten times less absorber densities than 1D MIMs.
6.2.

The MIM mode

In this Section the basic principles of the fundamental MIM mode, having the magnetic

dipole resonance, are considered.
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Figure 6.1: An illustration for the operating principle of MIM structure. The letter E stands for the
electric displacement vector, H for the magnetic field, and p stands for the electrical current. (b-d)
Calculated results: the magnetic field map (Hy), (c) the electric field map (Ey and E.), arrows stand for
the electric field polarization, and (d) the power dissipation. (a) is reprinted from [63], (b-d) from [126].

MIM structures contain three layers, as it is shown in Fig. 6.1 (a). Usually the bottom metal
layer is a flat plane. The middle layer is a dielectric spacer, which can be structured or not, and
the top layer is periodic metal patches. These patches can have different shapes (rectangular,
ellipse, etc.). It can be a single patch [137], or a periodic in one or two dimensions array. In
the general case, this does not particularly affect the mode excited in such a structure, as it will
be shown below. The thickness of metal layers can be different compare the metal skin depth,
however often it is supposed to be more than twice thicker than the skin depth for the operation
wavelength. The dielectric thickness can be more than 50 times thinner that the operation
wavelength corresponding to a strong mode confinement [63].

If the geometrical and materials parameters are matched correctly, an incident wave is cou-
pled with the structure. In this case, the schematic representation of the excited mode is

presented in Fig. 6.1 (a). When the electric field of the incident wave has the E, component,
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between the edges of the top metal patch the dipole electric resonance establishes. In both metal
layers a pair of anti-parallel currents is induced, and strong magnetic field is excited inside the
resonator.

The fields characteristics obtained in [126] from numerical simulations for a MIM structure
with periodic square patches as the top metal are presented in Fig. 6.1 (b) - (d). In Fig. 6.1
(b) the amplitude H, of the magnetic field is presented with color map, and arrows show the
electric displacement field. It can be seen clearly that the stronger magnetic field is excited in
the center of resonator, and electric field behavior is dipole-like, with the high amplitude of the
electric displacement in metal on the inner side of the resonator. The amplitudes E, and E, of
the electric field presented in the color map In Fig. 6.1 (c), and the electric field polarisation is
presented by arrows. The stronger electric field of the mode is excited in the dielectric closer to
the edges of the resonator, with the largest amplitude at the edges of the resonator. Besides,
the electric field vectors are oppositely directed at the edges of the structure. Finally, Fig. 6.1
(d) represents resistive heating. This heating occurs in metal layers due to induced currents.
The map of electric current repeats one for heating, an corresponds to the magnetic field map.
The strongest electrical current is induced at the inner metal-dielectric interfaces in the center
of MIM.

The resonant wavelength for the fundamental MIM mode is determined by the size of the
metal patch and the effective index of the mode. The last depends on the the dielectric permit-
tivity of the insulator (gap) material and its thickness [118, 94]. This mode is also characterized
by high absorption for the wide range of the incident angles (almost independent) at the resonant

wavelength [118].

6.3.

1D MIM antennas for bolometer applica-

tions

6.3.1 Introduction

In this Section, the total absorption conditions of the complex resonator consisting of 1D-periodic
MIM arrays and a perfect mirror are studied. A schematic presentation of the 1D MIM is shown
in Fig. 6.2 (the mirror is not presented). These structures are periodic in one of the spatial

directions (x), and invariant in another (y). Unlike common MIM geometry, the bottom metal
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layer is structured in the same way that the two other layers. In the case of invariant structure,
the MIM mode can be excited by p-polarized radiation, i.e. by the plane wave with the electric
field in £Oz plane and the magnetic field along y for the structure presented in Fig. 6.2. The
presence of the mirror guarantees that there is no transmitted flux, and the structure can absorb

all incident electromagnetic radiation.

Plane wave

y X

Figure 6.2: A periodic array of MIM antennas translation invariant along the y-direction. All three
layers repeat the same pattern.

In this work, the interaction of the electromagnetic field with plasmonic structures is studied
by means of analytical models and numerical simulations. The latter were performed with
COMSOL Multiphysics, a commercially available finite-element-method software. For the sake
of example, here and in what follows geometrical parameters of MIM structures are optimized
for the wavelength of 10 um. However, the optimization can be done in the same way at any
wavelength.

Gold and silicon were selected as materials for the studied MIM structures. But, as it will
be demonstrated below, silver, copper and aluminum are suitable for absorption applications as
well (Section 6.4.3). In other words, to obtain results similar to those presented in this work,
the metal must be characterized by a permittivity having a large and negative real part and an
imaginary part of the order of 103,

Silicon was chosen due to its high optical index, because it affects the effective index of
the mode and, therefore, the length of the resonator for a given wavelength. This is indeed an
important point since we are looking for the smallest resonator. As the main aim of this chapter
is to understand the behaviour of the resonant structures, it is desirable to work on a simplify
model. Thus, the imaginary part of the silicon is neglected. In this way, the observed absorption
arise only due to the metal. To simplify the optimization process and to separate the influence
of geometrical parameters and material properties, dielectric permittivity values are considered

constant and equal £ = —3792 4 825 for gold [138] and ¢ = 11.56 for silicon [139)].

98



CHAPTER 6

The skin depth for chosen metal parameters is about 25.7nm accordingly to the equa-
tion [140]
b=\ (27K). (6.1)

Here X is the wavelength, and the absorption coefficient k is connected with the complex

dielectric function e = 1 +iey as n, + ik = /g1 + 1 e2. It can be expressed as [140]

€1 1
H—\/—2+2\/€%+6%. (62)

Computed skin depth value corresponds to the gold skin depth values for this wavelength region

from the literature [141, 142].

Here and below, the absorption spectra are computed from the Scattering parameters (S-
parameters). For high frequencies range, scattering parameters are defined in terms of the
electric field on the port [143]. The detailed explanation is provided in Appendix F, Section F.2.
Here let us only indicate that the time-average reflection coefficient is computed on the port,
which create excitation, and calculated as R = AbS(S11)2, where S71 is the complex-valued
normalized amplitude, corresponding to the reflected wave, detected by the port. If there is no
mirror in the system, the time-average transmission coefficient is computed as 7' = Abs(Sa1)?,
where S5 is he complex-valued normalized amplitude, corresponding to the electromagnetic
energy, transmitted from the Port 1 to the Port 2, for a given wavelength.

The case when for some wavelength the absorption peak appears for a given structure is
called the coupling. The geometrical parameters, for which the full absorption is achieved at
this wavelength, are called the critical coupling conditions. Under the critical coupling, the
energy of an incident wave is totally absorbed by the structure. In this case, the non-radiative
and radiative damping rates are perfectly matched [144].

The rest of this Section is organized as follows. At first, the configuration when a MIM array
is placed on the mirror, i.e. in the anti-node of magnetic field, is considered in Section 6.3.2.
This is the classical way to excite the MIM mode and achieve the critical coupling conditions.
It is shown that in this configuration the funneling process is provided by an external magnetic
field. Thus, when such a structure is placed in a magnetic field node, it has a much weaker
response (Section 6.3.3).

However, in Section 6.3.4 it is demonstrated that the 1D periodic array of MIMs placed at
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the distance \/4 above the mirror can be optimized and critically coupled. In this case, the
excited mode looks similar to the MIM mode, but the funneling process changes. This leads to
unexpected behaviour when parameters of the structure change. The thickness of the dielectric
layer at the critical coupling increases when the metal thickness decreases (for the constant
incident flux). This behaviour is considered in detail, and a basic explanation is provided.
Finally, the volume density of 1D MIM absorbers at A;¢s/4 above the mirror and some of their

optical properties are presented.

6.3.2 An array of 1D MIM antennas on the mirror

In this Section, the critical coupling for an array of the symmetrical 1D MIM antennas, placed
on the perfect mirror, is discussed. The procedure for finding the geometrical parameters corre-
sponding to the total absorption of the incident flux in this system is provided. It is demonstrated
that this structure exhibits the MIM mode described above. After that, the nature of the energy

funneling, connected with the external magnetic field, is demonstrated.

The critical coupling

As the MIM-mode resonance has a magnetic nature, it is worth starting with a case where
the antennas array is placed in the region of the strong magnetic field. Let us consider an
incident plane wave at normal incidence exp (—ikz — iwt). The wave is linearly-polarized with
the magnetic field orientated along the translation-invariant direction of the structure (y-axis).
As the array is invariant in the y direction, it is enough to consider a 2D model with the periodic
boundary conditions (the Floquet periodicity) on the sides (Fig. 6.3 (a)).

To reach the critical coupling conditions, the following procedure is applied. There are a
few parameters for optimizing a 1D MIM structure (assuming that materials permittivities are
fixed): the metal thickness and the thickness of the dielectric layer, the length of the structure
and the period of the array. At first, we fix all of the antenna parameters except the structure
length [ which is adjusted to reach the desired resonant wavelength (as mentioned in Section 5.2,
the length defines the resonant wavelength). The example of the influence of the structure length
on the resonant wavelength is presented in Fig. 6.3 (b): a longer length corresponds to a longer
resonant wavelength. At this stage, the absorption can take any value, only the peak position is
important. The next step is to vary the period value until the maximum absorption is reached.

Then, it may be necessary to slightly change the length (and the period again) to achieve the
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Figure 6.3: 1D MIM antenna deposited on the perfect mirror. (a) A schematic presentation of the
numerical model for the simulated array of 1D MIM. A periodicity in x direction is described with periodic
conditions on the left and right sides (green lines). The perfect mirror at the bottom is presented in gray.
(b) The spectral response of systems with 1D MIM from the picture (a), having the same parameters
except for the length of the antenna, in the case of the normal incidence. The parameters: t = 45nm,
h =81nm, and p = 1.62 um. The length | = 1.134 um corresponds to the resonant wavelength 10 um.

desired value of the central wavelength. If the other parameters (the metal and the dielectric
spacer thicknesses) were selected fortunately, the critical coupling will be achieved. Otherwise,
for finding critical coupling parameters, these thickness values should be changed one after
another, and the length and period should be corrected again.

For example, for an array of 1D MIM with the 35nm dielectric thickness and the 45nm
metal thickness, the maximum achievable absorption is about 0.9 for the resonant wavelength
10 wm. In this case, the length of the structure is 0.917 ym and the period is 0.98 um. Further
reduction of the period is necessary to achieve the critical coupling conditions. In this case,
the procedure leads to an unrealistic solution where the period is smaller than the MIM length.
However, if the dielectric thickness is increased, for example, for 81 nm, as in Fig. 6.3 (b), the
critical coupling (red curve) conditions can be found. In this case, the length of the structure is
1.134 pm and the period is 1.62 ym.

The physical behaviour of this system at the resonant wavelength 10 um is close to a classical
MIM structure. For a wide range of incident angles, absorption value stays higher than 0.9
(Fig. 6.4 (b)). As it is shown in Fig. 6.4 (c) and (d), both the electric and magnetic field norms
are similar to the classic MIM mode, described in Fig. 6.1. The maximum of the electric field is
close to the side edges, while the maximum of the magnetic field is at the center of the structure.
In the top part of the figure, the distribution of the Poynting vector is uniform (as expected
from a plane wave), while near the structure it is strongly perturbed: arrows point towards the

ends of the structure. As it can be seen in the distribution of arrows, the absorption for the
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considered structure occurs inside the MIM structure, since the long arrows, presented inside
the structure, are pointed towards the metal, but they are absent in the corresponding area

above the metal layer.
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Figure 6.4: The physical behaviour of the 1D MIM structure with the parameters p = 1.62 pu, I = 1.134 pm,
t =45nm, h = 81 nm at the resonant wavelength 10 um. (a) A schematic presentation of the numerical
model. (b) The angular dependence of the absorption at the resonant wavelength. The angle is measured
from the normal. The color maps of the norm of the electric (¢) and the norm of the magnetic (d) fields
with the minimum value in blue, and the maximum value in red. The mazimum and minimum values
are written at the top and the bottom of the scale bar near the black triangles. The arrow map in picture
(c) is the map of the time average Poynting vector, where the arrow lengths are proportional to the log of
their amplitude.

The funneling mechanism

The energy funneling process can be explained in the following way. The field around the
structure can be described as the sum of the external field, i.e. the standing wave, and the
scattered field, called the field of the mode in the region close to the structure. This separation
will help to indicate the nature of the funneling process. For this study, another numerical model
(using Comsol Multiphysics) was created. In this model, two MIM structures are placed in the
field of a standing wave, such as it results from the interference between the incident wave and
the wave reflected by the mirror (assumed to be perfect). The electric and magnetic fields of
the standing wave are shown in Fig. 6.4 (a) and (b), correspondingly. The bottom of the top
MIM is located at a node of the electric field of the standing wave, thus at an anti-node of its

magnetic field. This case is identical to that of the structure on the mirror, described above.
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But it allows to effectively separate the field of the standing wave (a plane wave reflected by
the mirror) and the scattered field. The periodic boundary conditions are applied on the sides
(thus, a periodic array is studied), and the system is studied at the normal incidence. The fields

of the mode are presented in Fig. 6.4 (c) and (d), they correspond to the MIM mode. !

Figure 6.5: Explaining of the funneling process. The total field can be broken down into two components:
the standing wave field and the scattered field. Thus, instead of the mirror, two MIM structures are placed
at the node of the electric field (and the anti-node of the magnetic field). The norm of (a) the electric
field E,, = E,x and (b) the magnetic field H,, = H,y of standing wave. The norm of (c) the electric
field E,, and (d) the magnetic field H,, of the scattered field for the structure with parameters p = 1.62 p,
l=1.134 um, t = 45nm,h = 81 nm at the resonant wavelength 10 um.

Then, the time average Poynting vector around the structure can be presented as the sum
of four terms, corresponding to field separation of the standing wave and the mode, and their
mix:

S=E,xH,+E,xH,+E,xH,+E,xH,. (6.3)

Here the index w corresponds to the field of the standing wave, and the index m to the field of
the mode. At first, the last term of the sum in Eq. 6.3 is zero, as it refers to the standing wave,
which does not carry any energy.

Three other components of the sum in Eq. 6.3 are presented in Fig. 6.6. Color maps there
present the absolute value of the corresponding Poynting vector, and arrows indicate its direction
and value as well (in the logarithmic scale). The top MIM structure is discussed, as for the
bottom one all processes are the same, but in the opposite direction relative to the vertical

direction. The same color scale is chosen for all pictures in Fig. 6.6, as a result, the color map

1Unless otherwise specified, the field maps in this work are maps of a total field. If such a separation takes
place, this is indicated as in this paragraph.
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for E,, x H is saturated. This term has its maximum value at the sides of the structure, near
the metal corners and at the air-silicon interfaces, decreasing towards the center of the structure.
A decrease in the length of the arrows also shows the decay in the amplitude.

It can be seen that E,, x H (Fig. 6.6 (c)) is the term, responsible for the energy funneling
inside the structure. It also has the highest amplitude, as the magnetic field of the standing
wave is maximum in this region, and the electric field of the mode provides high value at the
MIM edges. As the S, component of the Poynting vector is responsible for the power that goes
into the structure, thus it must be constructed from the magnetic field in y direction (due to
polarisation there is only y component of the magnetic field), and thus the electric field must
be in z direction. As the standing wave (and the normally incident wave in the initial problem)

has only the component in x direction, F, can be only provided by the mode.

Ew XHm

e

3‘\\
<

Figure 6.6: The color and arrow maps of the terms of the total Poynting vector: (a) E,, x H}, (b)
E, x H},, and (c) E,, x H}, at the resonant wavelength 10 um for the 1D MIM structure having the

m?’

parameters p = 1.62u, I = 1.134 um, t = 45nm,h = 81nm . The color map displays the norm of the
corresponding term. The arrows show its direction, and the length of the arrows corresponds to the vector
amplitude in the logarithmic scale. The scales are the same for all three plots.

Meanwhile, the E,, x H};, (Fig. 6.6 (a)) term removes some energy from the inner part of the
MIM structure, and recycles it along the top border of the structure, providing some absorption
in the top layer of metal. It also directs energy to the bottom metal layer inside the structure.
The E,, x H}, (Fig. 6.6 (b)) term provides energy moving only in the z direction, since E,, has
only the F, component. As on the mirror this component is zero, it becomes stronger only near
the top metal-dielectric interface, and directs the energy to the top metal layer.

Reaching the critical coupling implies the total absorption of the incoming energy. The
absorption mechanism for this mode is as follows. The incoming into resonator energy is directed
to metal layers. The electric current is excited on the inner metal-dielectric interfaces of MIM.
As it was shown in Fig. 6.1, being proportional to the magnetic field amplitude, the electric

current density is strongest in the center of MIM. Thus, according to the Joule’s law, this is a
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region of strongest absorption.

To summarize, an array of 1D MIM, being place on the mirror (the anti-node of the magnetic
field of the standing wave), demonstrates behaviour similar to the classical MIM mode. The
energy funneling in this case is provided by the magnetic field of the standing wave, what is

typical for such artificial meta-atoms.

6.3.3 1D MIM array distanced from the mirror

In this Section, an introduction of a more complicated system, an infinite 1D periodic array
of MIM, places at some distance above the perfect mirror, is provided. The difference of this
system from one, considered in the Section 6.3.2, is discussed, and particular case, when this
distance is A\.es/4 above the mirror, is presented.

As it was shown above, 1D MIM antenna array can be critically coupled to the incident wave
when located at the anti-node of the magnetic field In this case, the MIM in the array behaves
as the classical MIM structure, presented in Section 6.2.

When an array is moved from the mirror, as shown in Fig. 6.7 (a), the system becomes more
complicated. Now it consists of two resonators: a MIM structure and the resonator, formed in
between the MIM and the mirror (the Fabry-Pérot resonator). The behaviour of this system
changes with the location of the structure with respect to the magnetic field. In the anti-nodes
of the magnetic field, i.e. at distances n x A/2 from the mirror, where n is a natural number, the
behavior, similar to one, presented in Section 6.3.2, is expected. The only difference can come

from the interaction of the evanescent field with the mirror.

(@) (b) A
Incident Periodic 1'0,
radiation conditions :V
0.8j —
0.6 —A
t | :

- h 0.4/ t=45 nm
S A [ h=81 nm
2 0.2 =1.134pm
2 Mirror A p=1.62um
= i S ‘ A, um

¥ 9 10 11 12 13

Figure 6.7: The 1D MIM antenna array optimized for the total absorption at 10 um being placed on the
mirror. (a) The numerical model for the array, placed at the distance 2.5 pum from the mirror. The
periodicity is modeled by means of the periodic boundary condition. (b) The response of the structure,
optimized on the mirror at 10 ym, when it is placed at the distance 2.5 ym above the mirror. The param-
eters of the structure are specified on the plot.
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Regardless of the MIM position, the work of such an absorber differs from classical bulk
absorbers. The last show best results at the distance (2n + 1)\/4 (with n € N) above a mirror,
since their absorption is proportional to E?, and there is an anti-node (i.e. a maximum) of
the electric field at these locations (a standing wave). As a result, a bulk absorber and a MIM
resonator present completely opposite absorption behaviors: for the former, the absorption
is maximum when the electric field is maximum, for the latter — when the magnetic field is
maximum.

The first case corresponds to the microbolometer configuration for which the absorption is
located into a thin absorbing layer located at A/4 above a mirror. Replacing this absorbing layer
by MIM antennas would imply placing these antennas at a distance A/2 from the mirror. For
practical reasons (i.e. keeping the same fabrication process), our industrial partner demanded
to keep the same distance from the mirror as in the case of bulk absorbers. In this way, we
approached the key question of this chapter: is it possible to design MIM resonators
showing a full absorption being located in the region where the magnetic field of
the stationary wave is equal to zero?

If a MIM structure, optimized on the mirror, is moved at a distance A,cs/4 from a mirror, the
structure becomes strongly undercoupled. The magnetic field of the standing wave H,,, which
was responsible for the funneling on the mirror, is zero or almost zero in this region. Thus,
the funnel effect is no longer effective for this structure. Indeed, Fig. 6.7 (b) shows that the
structure optimized on the mirror (from Fig. 6.3 (b)) produces a weak response being placed at
the distance \/4 above the mirror. The small absorption peak can be explained only due to the
magnetic field of the mode. Thus, for the structure placed at A\/4 from the mirror, the magnetic
field of the mode should be tuned.

Let us consider the dependence of the MIM absorption as a function of its distance to the
mirror. The optical response of a complex resonator, consisting of the 1D MIM array and a
cavity between the array and the mirror, has been computed as a function of the distance d
between the MIM antenna and the mirror by the analytical method employing S parameters (see
Section F.3, Appendix F). The absorption, presented in Fig. 6.8 (b), demonstrates a periodic
behavior with a period equal to A\/2. As expected from the above discussion, absorption maxima
are observed for the distances d from the mirror which are close to n x A\/2, i.e. at the locations
of the anti-nodes of the magnetic field of the standing wave. In the same way, the minima of

absorption are located at distances d =~ (2k 4+ 1) x A/4, i.e. at the locations of the nodes of the
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magnetic field.

(a) (b) 4 am -
o 1.0¢ =45 nm
Incident PerIO_dI_C [ h=81 nm
radiation conditions 0.8h =1 134pm
” p=1.62um
0.6/ 1
< |
t | 0.4
0.2}
0.04 RVAN ‘ ‘ L\
0 2 4 6 8 10 12

The distance to the mirror, um

Figure 6.8: (a) A schematic presentation of the numerical model. (b) Absorption at the wavelength 10 pm
in dependence on the distance d to the mirror for the array of 1D MIM antenna optimized for the total
absorption at this wavelength being placed on the mirror. The solid line is for the analytical computation
with S-parameters, and the dots are for the COMSOL simulations.

However, the observed maximum of absorption (about 0.98) is a bit less than 1. This differ-
ence comes from the fact that the MIM on the mirror benefits from the additional contributions
of the evanescent waves reflected by the mirror. This is not the case for the distanced array
because of the attenuation of the evanescent waves. Consequently, to reach the critical coupling
conditions, the MIM antenna must be designed in two different ways depending on whether they
are on the mirror or far away (i.e at a long distance compared to the decay of the evanescent
waves). In the second case, it should be optimized directly at the chosen distance. The nature
of the small shift in the maximun and minimun position with respect to d = \/2 and d = \/4,
respectively, may be due to the contribution of evanescent waves to the optimization of the
structure on the mirror too.

To summarize this Section, the behaviour of plasmonic structures is dramatically different
from the behavior of bulk absorbers. While homogeneous absorbers demonstrated the best
efficiency in the anti-node of the electric field, the MIM resonators are excited in the anti-node
of the magnetic field. Being placed in a node of the magnetic field, a MIM structure, optimized
on the mirror, demonstrated a weak absorption value. The funneling process in this case arises
from only the magnetic field of the mode. Consequently, the best way to reach a better coupling
at the distance \,¢5/4 above the mirror is to optimize the structure at this distance. The next
Section addresses the key question for this chapter: is it possible to achieve the critical coupling

for an array of 1D MIM structures located at Apes/4 from a perfect mirror?
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6.3.4 Optimization of an 1D MIM array at \/4 above the mirror

In this Section, it is demonstrated that 1D MIM structures can be critically coupled at the
distance A/4 above the perfect mirror. This is a more complex system compare to the case
discussed in Section 6.3.2, since it includes two resonators: an array of MIM structures and a
cavity formed by the MIM array and the mirror. As in this case the array is placed in the node
of the magnetic field, the energy funneling inside the structure is provided by the magnetic field
of the mode. Due to change in the energy funneling, the parameters for the critical coupling are
changed too: for the same metal thickness and the period values, the thickness of the dielectric
layer at the critical coupling is a few times higher compare to the case of 1D MIM on the mirror.
It is also shown that the decrease of the thickness of the metal layer shifts the critical coupling
curve to the right, towards higher dielectric thicknesses, due to the increase in the resistance
of the metal layer. It is found that at a constant value of the period, the critical coupling is
maintained for thinner metal layers when the product of the effective metal thickness and the
thickness of the dielectric layer teg X h is kept constant. In the end of the Section, the volume
density of the absorbers and some optical properties of 1D MIM structures at the distance \/4
above the mirror are presented.

The vacuum wavelength A\..s = 10 um is chosen again as the central wavelength for the
optimization, thus the array of the studied MIM structures is placed at the distance d = 2.5 ym

from the mirror.

The critical coupled 1D MIM at \/4 above the mirror

The schematic presentation of the system used for computations is shown in Fig. 6.9 (a). As it
was mentioned in the previous section, for an effective optimization, parameters of the structure
should be adjusted at the fixed distance above the mirror. Fig. 6.9 (b) shows that the MIM
length determines the resonant wavelength in the same way as it was describe above. The critical
coupling conditions at Aes for the structure of the metal thickness t = 45 nm were found for the
following parameters: [ = 1.317 um, p = 1.883 um, and h = 314nm. It can be seen that for the
same ratio [/p = 0.7 the thickness of the dielectric is almost four times higher compare to the
case of the array on the mirror. To understand this difference and the coupling mechanism for
the structure placed at A,.s/4 above the mirror, let us consider the behaviour of this structure
at the resonant wavelength.

The field maps and the currents distribution at the critical coupling for the 1D MIM array at
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Figure 6.9: (a) A schematic presentation of the simulation model of a 1D MIM structure at the distance
Ares/4 above the mirror. (b) The absorption spectra for the structures with different parameters of the
length while other parameters are fived: p = 1.883 um, t = 45nm, h = 314 nm.

the distance A\cs/4 above the mirror (the yellow curve from Fig 6.9) are presented in Fig. 6.10.
As it can be seen, the observed mode looks similar to the classical MIM mode: the E, component
is maximum close to the edges and equal to zero at the center, and the magnetic field has its
maximum at the center of the structure. However, unlike the case of the classical MIM mode,
the norm of the electric field is not symmetrical with respect to the horizontal line in the middle
of the structure.

The Poynting vector is depicted in Fig. 6.10 (a) by the arrow map (in logarithmic scale).
It shows different behavior in the upper and lower parts of the structure. This asymmetry is
explained in detail below. Since at the critical coupling there is no reflection, there is only the
incident plane wave in the top air region, and the Poynting vector is presented by the uniform
array directed along z. Below the structure the standing wave still exists, thus there is no energy
flux.

Inside the MIM structure, the Poynting vector is symmetric. It is directed towards the
centers of metallic parts in the middle region of the structure, and its vertical component is
zero on the external horizontal interfaces. This means that the strongest absorption occurs at
the center of the metallic parts. It is validated by the current distribution, shown in Fig. 6.10
(d): the strongest electric current density is found at the inner side in the center of the metallic

layers. This is the typical MIM-mode behaviour as well.

109



6.3. 1D MIM ANTENNAS FOR BOLOMETER APPLICATIONS

A 1.32x10°
x10°

12

1

0.8

0.6

2.5

1.5
1

0.5

Norm J K38
1

0.5 m

Figure 6.10: The field maps for the 1D MIM structure having the parameters p = 1.883 um, [ = 1.317 um,
t = 45nm, and h = 314nm at the resonant wavelength of 10 um placed at the distance A\.es/4 from the
mirror: (a) the color map for the norm of the total electric field and the arrow map for the time average
Poynting vector (in the logarithmic scale); (b) the norm of the total magnetic field; (c) the absolute value
of z-component of the electric field; (d) the norm of the electric current density.

The funneling mechanism

To understand the funneling mechanism, let us again separate the field components from the
standing wave (occurring as a result of the reflection of the incident wave on the prefect mirror
in the initial model) and from the scattered field. There is no contradiction in considering the
background field as a standing wave for the critical coupling conditions. In this approach the
scattered far field cancels the reflected wave, thus no reflection can be detected.

To model the studied system, two identical 1D MIM arrays (an array is introduced by the
periodic conditions) are placed at the distance A,¢s/2, measured between the centers of the MIM
structures. The centers of the MIM structures are located in the opposite anti-nodes of electric
field (same amplitude but opposite signs) of the standing wave (Fig. 6.11 (a)), thus, also in nodes
of the magnetic field Fig. 6.11 (b)). Therefore, this model completely corresponds to the case of
the 1D MIM array at the distance Ayes/4 above the mirror. The field of the mode, presented in
Fig. 6.11 (c) and (d), are similar to the MIM mode.

Using this field separation, let us consider each term of the Poynting vector from the decom-
position of Eq. 6.3. It can be seen from Fig. 6.12 that the behavior of the first three terms differs
from the case of the MIM array on the mirror (the last term does not provide energy move as

it corresponds to the standing wave). Oppositely to the previous case, now E,, x H}, (Eq. 6.3
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Figure 6.11: To the explanation of the funneling process. The total field can be separated into the field of
the standing wave and the scattered field. Thus, instead of the mirror, two MIM structures placed at the
anti-nodes of the electric field (and the nodes of the magnetic field). The norm of (a) the electric field
E, = E,x and (b) the magnetic field H,, = H,y of standing wave. The norm of (c) the electric field
E,, and (d) the magnetic field H,, of the scattered field for the structure with parameters p = 1.883 um,
1 =1.317um, t = 45nm, and h = 314nm at the resonant wavelength 10 um.

(a)) is the main term responsible for the energy funneling into the structure. The other term
having the Poynting direction mainly along the x-axis, is E,, x H} (Eq. 6.3 (c)). Its color map,
providing the absolute value of the Poynting vector amplitude, has horizontal and vertical zero
values lines in the middle of the structure (Fig. 6.12 (c)). These lines correspond to the zero line
of the magnetic field H,, (Fig. 6.11 (b)) and the electric field E,, (Fig. 6.11 (c)). In the upper
part of the structure, E,, x H,, provides the energy funneling into MIM, while in the bottom
part arrows point outwards from the structure. This behavior occurs due to a change in sign
of the magnetic field of the standing wave. It was proved by the numerical computation that
the integral energy flux for this term through the lateral air-dielectric interface is almost zero.
But E,, x H} causes an asymmetry in the total Poynting vector funneling, seen in Fig. 6.10
(a): the longer arrows in the upper part and shorter in the bottom one. Inside the structure,
E,, x H} and E, x H}, direct energy to the top and bottom metal layers, correspondingly.
This is connected with the strong magnetic field of the mode in this area.

Thus, due to location in the node of the magnetic field of the standing wave fields instead
of its anti-node (considered above), in the case, when the array of 1D MIM is placed at the
distance Ayes/4 from the mirror, the funneling process is different from the case of the array on
the mirror. The MIM array placed above the mirror is at the node of the external magnetic

field. Thus, magnetic component for the Poynting vector is mainly provided by the field of the
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Figure 6.12: The color and arrow maps of the terms of the total Poynting vector: (a) E., x HY, (b)

E, x H},, and (c) E,, x H}, at the resonant wavelength 10 um for the 1D MIM structure having the

parameters p = 1.883 um, | = 1.317um, t = 45nm, and h = 314nm. The color map corresponds to the
norm of the corresponding term. The arrows show its direction, and the length of the arrows corresponds
to the vector amplitude in the logarithmic scale. For the picture (c) the length of arrows is multiplied by
5 compare to (a) and (b).

mode. It was demonstrated that the funneling is provided by the magnetic field of the mode.
In the same time, the magnetic field in the center of the structure is connected with absorption,
and thus defines the critical coupling. As a result, the magnetic field of the mode defines the
both processes. Such behaviour changes the response of the array of 1D MIM at the distance

Ares/4 above the mirror compared to the array placed on the mirror.

The system behaviour

The specific funneling mechanism for the MIM array in the node of the magnetic field introduces
an increase in thickness of the dielectric as compared with the MIM deposited on the mirror.
To explain this behavior, let us study the critical coupling conditions in dependence on the
parameters of the array.

As it was shown before, the length of the MIM defines the resonant wavelength, which is fixed
at 10 um in this Chapter. The period influences the coupling: this value defines the incident
power, and thus either a system is under-coupled, over-coupled, or at the critical coupling.
Thus, there are two parameters left for changes: the thicknesses of the dielectric and metal
layers. Let us focus on a few different thicknesses of the metal layers, 15, 45, and 100 nm that
correspond to three different cases: thinner, intermediate and thicker than the gold skin depth (=
26 nm). The critical coupling conditions were found for such arrays above the mirror for different
dielectric thicknesses. These parameters are presented in dependence on the dielectric thickness
in Fig. 6.13, where every point in the plot corresponds to the critical coupling conditions. The

tables with these values are presented in Section G.1 of Appendix G. Two main effects were
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observed: the decrease of the I/p ratio when the thickness of the dielectric layer is increased,
and the shift of the critical coupling curve towards thicker dielectric layers when the metal
thickness is decreased.

In Fig. 6.13 (a) the sets of points, corresponding to the critical coupling conditions, are
connected by solid interpolation curves. For all metal thicknesses a similar behaviour for [/p
in dependence on the dielectric thickness is observed: the ratio [/p increases as the dielectric
thickness decreases. To explain this type of behaviour, let us consider how the length and period
of the MIM depends on the dielectric layer thickness.

For 1D MIM with constant metal thickness and almost constant length, increasing dielectric
thickness influences its radiative losses, thus to keep critical coupling the period should be
increased too [145]. For the standard MIM mode (i.e. a MIM structure on a mirror), the
period increases linearly with the dielectric thickness when the latter is greater than a few
nanometers (see [94]). As it is discussed in the following sub-section, the incident far-field power

is proportional to the period p, as carried by a plane wave:

Py, = np, (6.4)

In all presented in this Section computations the amplitude of the incident plane wave (or the
flux density) is considered the same. As shown in Section G.2 of Appendix G (Fig. 13), at
the critical coupling conditions, the power entering a MIM structure through its air / dielectric
interfaces is linearly proportional to the thickness of the dielectric layer (P/, = h, the value for

both interfaces). Since at the critical coupling conditions all the incident energy is funneled into

/
m)

the structure through these interfaces, P, = and p « h. Indeed the numerically calculated
values of the period of the 1D MIM arrays under the critical coupling conditions (the points in
figure 6.13 (b)) are located on the lines papp(h) (solid lines).

On the other hand, for the MIM mode the effective index of the mode decreases when the
dielectric thickness increases. This law can be approximated by neg(h) = ngy/1 + 2(6/h), where
ng is the bulk index of the dielectric material, J is the skin depth and A is the dielectric thick-
ness [93]. Fig. 6.13 (c) presents a similar kind of dependence. The points, obtained numerically
for the critical coupling conditions, are connected by the interpolation curves for the approxi-

mated lengths of the structure lapp. It is computed as lypp(h) = Ares/(2neg(h)), and for each

curves parameters ng and § are found to provide a better fit (these values are indicated in the
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Figure 6.13: The dependence of 1D MIM array parameters at the critical coupling conditions for
Ares = 10 um on the dielectric thickness h for thee different metal thicknesses. The blue color repre-
sents structures with 100 nm thick metal layer, red — for 45 nm thick metal layer, and yellow — for 15nm
thick metal layer. All arrays are placed at the distance of \res/4 from the mirror. (a) The critical coupling
curves in dependence of the spacer thickness. Points show results of the numerical simulation, the solid
lines are interpolation curves, obtained as lapp(h)/Papp(h). (b) Points: the period values for the critical
coupling condition in dependence on the dielectric thickness. It can be seen that the set of points for every
metal thickness can be approrimated with high accuracy as linear functions pgpps, plotted as solid lines.
For the blue line popps(h) = 529.361 + 4.928h, for the red line popps(h) = 542.383 + 4.156h, the yellow
line papps(h) = 166.903 + 3.093h (all return values in nm). (c) Points: the MIM length values for the
critical coupling condition in dependence on the dielectric thickness. The solid curves are approximation
functions lapp(h). For the blue curve ng = 3.525, § = 24 nm, for the red curve ng = 3.528, § = 25 nm,
for the yellow curve ng = 3.48, § = 65 nm.

figure caption). It can be seen that points for the two thicker metal layers almost coincide,
and the fitting parameters are close. Although in this case the two fitting values ng and 9 are
different from the parameters used in the numerical simulations, this difference is less than four
percent for the optical index and less than eight and four percent for the skin depth in the case
of the corresponding blue and red curves. Oppositely, the yellow points are shifted significantly
from others, and the fitting parameter 6 more than twice higher that the gold skin depth. This
case corresponds to metal layers which are thinner than a skin depth. The fields can pass the
layer in this case, consequently, its behaviour requires a corrected approximation (the model for
neg was created for thicker metals), and the effective mathematical parameter has no physical
meaning. Also, for all curves, points corresponding the thinnest dielectric are not fitted well
because they are corresponds to high values [ /p, and thus — to another mode (discussed in detail
below).

As a result, keeping the resonant wavelength constant leads to an increase of the MIM length

when the dielectric thickness increases. The approximation curves in Fig. 6.13 (a) are plotted as
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lapp/Papp, using corresponding fitting parameters. Since the period grows faster than the MIM
length, the curves decrease with increasing of the dielectric layer thickness. For the smallest
dielectric thicknesses this decrease is slower than the 1/h, and for higher thicknesses it becomes
close to it.

For the highest values [/p this approximation does not work fine, as the character of the mode
changes. There is a special region for the critical coupling curves, when [/p is close to 1. For this
region, the interaction with neighboring elements increases, and the mode type changes. When
l/p ratio is high, the array of MIM resonators forms two continuous parallel metal films drilled
by vertical slits. As a result, the whole system behaves as a Salisbury screen where the array
of resonators plays the role of the screen located at \/4 above the mirror. This screen works
as a Helmholtz filter without vertical walls, providing a resonant transmission. Extraordinary
transmission in optical Helmholtz resonators for considered wavelength region is presented, for
example, in [146]. It is demonstrated there, that in such conditions the other mode, characterised
by the strong electric field in the narrow gap and the strong magnetic field in the cavity, appears.
However, this Section is focused on the MIM mode, described above. Additionally, later it will
be shown that this configuration cannot improve the bolometer behavior.

The second effect, observed in Fig. 6.13 (a), is the decrease of the metal thickness when
the dielectric thickness increases while the ratio [/p is constant. One could expect the opposite
behaviour: assuming the metal absorption is reduced when its thickness is reduced, the field on
the metal layer should be increased to keep the critical coupling conditions. But Fig. 6.13 (a)

shows the opposite trend. This paradox is explained in the following subsection.

The metal thickness

In the case when the 1D MIM array is placed at a node of the external magnetic field, the mag-
netic field of the mode is responsible for the both the absorption and the funneling mechanism.
This specific situation leads to the unexpected result described above.

Let us now consider in detail how the behaviour of the mode, appearing in this case, depends
on the metal thickness. For this study, the critical coupling conditions for the structures with
the fixed ratio {/p = 0.7 were found at the resonant wavelength \,.s = 10 um for different
thicknesses of metal and dielectric. The results are presented in Table 7 in Appendix G. Below
in the sub-section, only the structures at critical coupling conditions presented in this table are

discussed.
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Before beginning the discussion, an important note should be made. The thicknesses con-
sidered vary from 15nm to 100 nm, thus some of them are thinner than the skin depth (6 =
25.7nm), and some of them are several times thicker. Thus the fields can path through the
thinnest metal layers, in the thickest, the distribution of the field, as well as the electric cur-
rent density, is not homogeneous but varies according to an exponential law. To facilitate the
treatment of absorption in the metal layers despite this strong variation of the field, an effective
thickness of metal is introduced below: thickness of metal showing the same absorption if the
field was constant.

Fig. 6.14 (a) shows the variation of the electric current density along an axis orthogonal to
the faces of a metal layer of 100 nm. This dependency is obtained at the center of the structure
as indicated by the white line in the color map (insert in the figure). The points represent
values, extracted from the numerical computation, while the solid curve is a fitting curve for the
exponential law j(z) = aexp(—z/J) where z is the distance to the internal metal - dielectric
interface and ¢ the skin depth. The value of the skin depth is that of gold (0 = 25.7nm). a is
only fitting parameter. Its fitted value is a = (2.94 £ 0.01)105. It can be seen that, indeed, the
electric current density decrease exponentially with the distance to the internal metal - dielectric
interface. It is useful to note that the field along the outer face of the metal layer was considered
negligible compared to that along the inner face. This explains the small difference observed in

the 10 nm closest to this interface.
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Figure 6.14: (a) The distribution of the electrical current density along the metal layer thickness at the
middle of the critically coupled structure with 100 nm metal layer, at the resonant wavelength 10 um. The
line, along which the electric current density is presented, is showed in white in the inserted color map.
Points present extracted from the numerical computation values, and the solid curve is a fitting curve for
the exponential law. The inserted color map shows the distribution of the electric current density in the
top layer of the MIM structure with the 100 nm thick metal layer. (b) The dependence of the effective
thickness on the geometrical thickness. Point show the result, computed numerically in simulations, while
the solid curve shows the fitted effective thickness according to Fq. 6.7.

116



CHAPTER 6

Now let us introduce the effective thickness of metal ¢.g(t), defined as the thickness of metal
demonstrating the same total induced current than that induced in the metal layer of thickness ¢
if the current density was constant. The total current I;,; induced in the metal layer of thickness
t is given by:

Ligt = /Ot Ipexp (—z/6)dz (6.5)

where Ij is the current density at the metal - dielectric interface that is proportional to 1/ Vh,

as observed in the previous sections. After integration it writes:
Lot = 100(1 —exp (—t/0)) = Iptesr (6.6)
Thus the effective thickness of metal t.g(t) is defined by
best(t) = (1 — exp (—t/9)). (6.7)

Indeed, the solid curve showing this dependence fits well the numerical results, represented by
the points in Fig. 6.14 (b). These values were computed by numerical integration of the electric
current density in Comsol Multiphysics.

Fig. 6.15 shows the dependence of the dielectric thickness on the effective thickness of the
metal teg for 1D-MIM at the critical coupling conditions for a filing factor I/p = 0.7 and at the
resonant wavelength A,.s = 10 um). As it was observed in the previous sub-section, the thickness
of the dielectric layer must decrease as the thickness of the metal increases to maintain the critical

coupling conditions.
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Figure 6.15: The dependence of the dielectric thickness h on the effective metal thickness teg at the
critical coupling conditions for the resonant wavelength \res = 10 um for arrays of 1D MIM with the
ratio l/p ~ 0.7, placed at the distance Ay.s/4 above the perfect mirror.
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The observed dependence between the dielectric and metal thicknesses can be explained as
follows. The critical coupling can be separated in two basic parts: the funneling mechanism
and the absorption mechanism. The nature of the first one was described in the previous sub-
section. In the considered 1D-MIM, absorption takes place only in the metal layers by the Joule
effect. Critical coupling means that all the incident energy is absorbed. Since the period of the
1D-MIM arrays studied here varies very little from one array to another, it can be considered
as constant, as well as the incoming power Pj, in each 1D-MIM (Eq. 6.4).

As it was demonstrated in the previous sub-section, all the power absorbed in the 1D-MIM
enters the structure by its sides and is described by the E,,, x H;, term of the Poynting vector [3].

For the air-dielectric interface on one side, the incoming power
h
P, / E,, x H, dz. (6.8)
0

As P, is constant for all these structures, i.e. P;, does not depend on h, and as E,, and H,,
have the same dependence on h, then E,, and H,, are both proportional to 1/ Vh:

Py (&)2;1 (6.9)

The power dissipated P; by the Joule effect is equal to the product of the square of the
electric current I by the resistance R, P; = RI?. Moreover, the electric current is proportional
to the induced magnetic field, thus P; o RH?. For the metal layer, R is proportional to
1/tesr (the resistance of a homogeneous conductor is inversely proportional to its section), and
Py o< 1/(h teg). Since all these structures are kept at the critical coupling conditions, Py =
P;, = Const, thus the product h X t.g is constant.

As a result, when the metal thickness is reduced, the optical losses increase, since they are
inversely proportional to teg. Thus, to keep the critical coupling conditions, the fields must be
reduced by the same ratio. Numerical simulations validate this conclusion.

The solid fitting line, presented in Fig. 6.16 (a), shows a linear dependence of the thickness
of the dielectric layer on the inverted effective metal thickness h = a/(tcg) +b. It has parameters
a = 7193 £ 452 and b = —17 £+ 23. Indeed, this line fits the numerical results from Fig. 6.15.
The exception is the point for the smallest thickness: for thickness twice thinner than the skin
depth, the energy flux can goes trough the metal layer (also proved by field maps), which is not

taken into account in the simple model, described above.
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Figure 6.16: (a) Points: the dependence of the dielectric thickness h on the metal thickness t for the
critical coupling conditions at the resonant wavelength Ares = 10 um for arrays of 1D MIM with the ratio
I/p ~ 0.7, placed at the distance Ares/4 above the perfect mirror. The interpolation red line fits points,
obtained fro numerical simulations. The dependence of the absolute values of (b) z-component of the
electric field of the mode and (c) y-component of the magnetic field of the mode on the dielectric thickness
at Apes. Color maps in the inset are for corresponding field maps for one of the structures. The probe
areas are marked with white rectangles.

The 1/ Vh dependency is observed on both electric and magnetic field maps. The amplitudes
of the fields at the critical coupling when the metal layer thickness is changed are presented in
Figs. 6.16 (b) and (c). They show that the electric and magnetic fields of the mode increase
proportionally to 1/ vh when the critical coupling conditions are maintained. For this plot
the electric field values were extracted at the center of the side dielectric-air interface and the
magnetic field — in the center of the inner top metal-dielectric interface (both probe areas are

2 Despite the small discrepancy observed for the largest 1/ Vh

marked by a white rectangle).
values (i.e. the thickest metal layers), the model can be considered to fit well the numerical
results. Thus, thinner metal layers, having the highest optical losses, require weaker fields for
the critical coupling. Hence, it is important to note that the way, how the metal absorbs in
plasmonics, is different from the way for the bulk dielectrics. A thinner metal layer, having a
smaller effective cross-section, demonstrates higher resistance.

However, it is should be noted that such behaviour for fields is only valid for the case of
a constant value of the period, while the metal thickness changes. This is the equivalent of a

horizontal move (as [ changes insignificantly) in Fig. 6.13, keeping the [/p ratio constant. We

can notice that there are two other particular ways of moving on this map: vertical (i.e. keeping

2Tt can be assumed that the h dependency found at the center of the MIM is maintained up to its side edges.
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h constant), and along one of the critical coupling curves (i.e. keeping ¢ constant).

In the first case, where the thickness of the dielectric is constant, the thickness of the metal
layers and the period change to maintain the balance between the incident energy and the
resistive losses (the critical coupling). The period changes significantly (more than 70% increase
between the two extreme metal thicknesses) while the length varies much less (about 5% between
the same extremes). As a first approximation, the length is therefore considered to be constant.
As observed previously, the small variations of the MIM length correspond to small variations
of the effective mode index, here due to changes in the metal thickness.

According to the continuum form of Ohm’s law, the dissipated power can be written P,

oL E2

T Emas where o and [ are constant. In the far field, the potential difference over a period

due to the electric field of the incident wave is written V;; = ff FEindl = E;,p where E;, is
constant (incident plane wave). The potential difference on the air / dielectric interface of the
MIM is V,,5 = foh E.dz = Eph, where E,,, is assumed constant along these interfaces. Since
the potential difference is zero along metal surfaces and periodic boundaries, Vy; = 2V,r. So

FE,,, o p since h is constant. Due to the proportionality of the field components of the MIM

2

mode, F,,, can be also considered proportional to p. In this way, Py o< £~

tefs’

The incident power P, is proportional to the period (Eq. 6.4). As the MIM arrays are in
the critical coupling conditions, P;, = P;. Thus, p x %, or p < terr. Indeed, as shown in
Fig. 11 of Appendix G for the few structures considered in Fig. 6.13, the period p varies linearly
with the effective metal thickness t.f¢. In this way, indeed, the decrease in the metal thickness
leads to a decrease in the period as observed in Fig.. 6.13.

In the second case, the metal thickness is constant while other parameters change. Since the
amplitude of an incident plane wave is constant, the incident power P, is proportional to the
period p (Eq. 6.4). As the critical coupling curve is considered, each point of which corresponds
to a total absorption, as it was discussed above, P;, = Py, and thus P; o« p. In the previous sub-
section it is demonstrated that the period p is linearly proportional to the dielectric thickness
h (Fig. 6.13). Consequently, the dissipated power P, is also linearly proportional to h. The
resistance of the metal layer can be, in a first approximation, considered constant because the
thickness of each metal patch is kept constant and its length changes insignificantly compared
to p and h. In this way, the increase of the dissipated power is only provided by the increase

of the fields of the mode. As P; oc RH?2,, the magnetic field of the mode H,, o V'h, as well as

other components of the field of the mode due to their proportionality.
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Although the fields of the mode are proportional to v/h, there is no contradiction between
this dependency and the linear dependency of P;, on h, where F;, is given by Eq. 6.8. The
energy flux entering the 1D MIMs is provided by the component P, = E,;,. - Hp,, of the time-
averaged Poynting vector, where E,. and H,,, have complex amplitudes. It writes: P, =
0.5Re(Emz)Re(Hpy) + Im(Ey,.)Im(H,y,,y). Each of the two terms of P,, computed at the
middle of the air-silicon side interface, depends linearly on h. After integrating from 0 to h, the
two terms therefore depend as a quadratic function on h. However their terms in h? are equal in
absolute value but opposite in sign, thus they cancel each other (see Section G.2 of Appendix G).
As a result, the power funneled into the structure trough the side air-silicon interfaces is linearly
proportional to the dielectric thickness h, or the period p, as it should be. In the case of the
constant period and changing metal thickness both terms of P, are independent of the dielectric
thickness h (Section G.2 of Appendix G).

To summarize, it is observed that to maintain the critical coupling when the thickness of the
metal layer decreases and the period is kept constant (constant incident power), it is necessary
to increase the thickness of the dielectric layer. This is due to the increase in the resistance of the
metal layer which varies inversely with its effective thickness t.g where t.g depends on the skin
depth. The power dissipated therein can be kept equal to the incident power if the field in the
resonator is reduced by increasing the thickness h of the dielectric layer. The critical coupling
is maintained when the product t.g x h is kept constant. When the metal thickness ¢ is kept
constant, an increase in the dielectric thickness h requires the increase in the period p (i.e. the
increase of the incident power) to keep the critical coupling. In this case, the fields of the mode
grow as v'h. When the dielectric thickness is kept constant, a reduction in the metal thickness
(i.e. an increase in optical losses) results in an increase of the period (an increase of the incident
power) to maintain the critical coupling conditions. In this case, the period increases linearly

with the metal effective thickness: p o< tory.

Volume

As it was discuss above, none of the MIM arrays considered at A/4 above the mirror are optimal:
they either have too thick a metal or have too thick a dielectric layer. It makes the volume of
the absorber too high compared to that of an array placed on the mirror.

To compare structures with different metal thicknesses, discussed above, the total® volume

3Metal and dielectric.
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density wy = 1-(2t+h)/p is used. In this way, both the density of resonators and the volume are
taken into account. Fig. 6.17 provides the dependence of wy on the dielectric thickness h for the
MIM arrays at the critical coupling conditions presented in Fig. 6.13. The points present results
of numerical simulations (Section G.1 of Appendix G), while the solid curves are obtained from

the curves of Fig. 6.13 by multiplying by (2t + h).
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Figure 6.17: The dependence of the total volume density of the resonators wy on the dielectric thickness h.
FEvery point corresponds to the critically coupled 1D MIM array at the resonant wavelength A..s = 10 um
placed at the distance A\..s/4 above the mirror. The blue points are for the structures with 100 nm thick
metal layer, the red — for 45 nm thick metal layers, and yellow ones — for 15 nm thick metal layers.

It can be noted that there are two different types of behavior. For the arrays with the
metal thicknesses smaller or comparable to the skin depth (yellow and red curves), the lowest
volume density values correspond to the thinnest dielectrics (and to the highest I/p ratios).
For structures with a metal thickness greater than a few skin depths (blue curve), the volume
density is higher for the thinnest dielectrics (and the highest [/p ratios) and almost constant for
the thickest dielectric layers. This difference is due to the high metal thickness: as there are
two metal layers with a thickness of 100 nm, which significantly affects the total volume values,
especially in the left part of the plot.

This difference appears in the following way. The form of the volume density wy is based
on the critical coupling curves [/p(h). As the [/p ratio has the form a/(b+ h) + ¢, the volume
density wy = a(2t + h)/(b+ h) + c¢(2t + h), i.e. wy is the sum of a few functions, depending on
h and t. While for ¢ this dependence is linear, for h they are linear, hyperbolic and 1/(1 + 1/h)
terms. Depending on the ratio between ¢, h, and the coefficients a, b, and ¢, the resulting curve
can take different forms.

To prove it, let us consider the curve f(z) = a(7+x)/(b+ ) + c¢(r + ). It can be presented
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as f(z) = ar/(b+z)+a/(14+b/x)+c(T+x). As x grows, the third term simply moves the curves
upward along the ordinate axis. This can affect the curve shape depending on the coefficients
ratio. However, the main difference in curves shape is defined by the first two terms.

In order to simplify the analyses, let us consider the function fi(z) = 7/(b4+2)+1/(1+b/x).
This function has three different shapes, depending on the ratio between 7 and b. When 7 = b,
fi(x) = 1. When 7 < b, fi(x) increases, as the second term increases faster than the second
decreases. And, oppositely, when 7 > b, fi(z) decreases, as the first term decreases faster than
the second one increases. The Fig. 6.18 show all three situations for the particular case, when
b = 0.5. Physically, such behaviour means that there exists a critical thickness t., = b/2 ~ 56 nm
for all three curves, which defines the form of the dependence of wy on the dielectric thickness.
As two curves correspond to metal thicknesses smaller than t.., they have one shape, and the
third — corresponding to the metal thickness higher than t.. — has a different behaviour. Plots,

presenting wy as sum of three terms, are provided in Fig. 16, Section G.3 of Appendix G.
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Figure 6.18: The behaviour or the function fi(x) =7/(b+x)+1/(1+b/x) (the top row) and each of its
terms (the bottom row) when b = 0.5 and 7 is smaller than b, equal to b, and higher than b.

It can be seen from Fig. 6.17 that among the considered structures, the smallest value of
the total volume density is found on the red curve (¢t = 45nm) for the thinnest dielectric
layers. However, in these conditions the resonators cover all the surface. Thus, there is no heat
concentration in a limited area. The use of this kind of antenna would lead to heating almost
the entire surface of the device, which is the opposite of our goal: to concentrate the heat at

the smallest possible volume. On the other hand, for thicker dielectric layers (600 — 700 nm),
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the volume density is minimal for the ticker metal layers. The heat concentration in this case
is better (I/p ~ 0.4), but as the arrays are continued in one direction, this result is far from
optimal with a coverage rate of 40%. Also, as curves are quite flat, thus the minimum volume
density for the 1D-MIM can be considered to be around 300 nm.

It is necessary to note that, in general, such a configuration (i.e. at A/4 above a mirror) is
not as favorable as the one where the resonators are either on the mirror or at A,.s/2. Indeed,
the best way to increase the radiative coupling for this type of structure is to move the structure

into a region of a stronger incident magnetic field.

Optical properties

The funneling process in the case of 1D MIM are placed at the distance Ayes/4 from the mirror
is different from the case, when array is placed on the mirror. This leads to changes in the
electromagnetic response. In this sub-section some useful for application properties for such
systems are presented. At first, the angular dependence, presented in Fig. 6.19, differs from the
previous case (Fig. 6.4). The absorption between —10° and 10° is almost perfect, and it exceed
90 % for the angles in the range —20° — 20°. For higher angle values, the absorption decreases
drastically. This difference can appear because of the cavity between the array and the mirror.

Such selective dependence on the incident angle can be useful for some applications.

Incident
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Figure 6.19: Absorption vs the incident angle at the wavelength 10 um for the array of 1D MIM with
parameters p = 1.883 um, | = 1.317 um t = 45nm, h = 314dnm placed at the distance 2.5 um above the
mirror. The angle is measured from the normal.

The 1D MIM array, optimized at the node of magnetic field, demonstrates periodic behavior
when moved relative to the mirror. This dependence is presented in Fig. 6.20 (b) at wavelength
equal to 10 wm. It can be seen that the curve is periodic with the period Ares/2 = 5 um, but
its shape differs from the case of the array optimized on the mirror. The large asymmetry of

this curve may be connected with the asymmetry of the Poynting vector caused by E,, x H,,.
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Also, at the range of distances from 2.13 um to 2.75 uym the structure optimized at a distance
of 2.5 um absorbs more than 90 % of the radiation. It can be useful for absorption applications.

(a) (b)
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Figure 6.20: The response of the 1D MIM structure, optimized for Ares = 10 um at the distance 2.5 um
from the mirror, in dependence on the distance d to the mirror at Ares. The parameters of the structure:
p=1883um,l=1317um, t =45nm, and h = 314dnm. The solid line is for the analytical computation
with S-parameters, and the dots are for the COMSOL simulations.

6.3.5 Conclusion

To summarize, an array of 1D MIM placed at the node of the magnetic field at the distance
Ares/4 above the mirror can be critically coupled for different metal thickness. The mode in
this case seems similar to the classic MIM mode. However, in this case, the critical coupling is
very specific. The funneling process in the case of 1D MIM are placed at the distance Ay.s/4
from the mirror is different from the case, when the array is placed on the mirror. For the array
on the mirror the funneling is provided by the magnetic field of the standing wave, while for
the array at the A,cs/4 — by the magnetic field of the mode. The magnetic field of the mode
is also involved in the absorption inside a MIM. Due to the characteristic distribution of the
magnetic field of the MIM mode, which is weak at the side edges and strong in the center,
special conditions are required for the critical coupling. the dielectric layer thickness increases
compare to an array of 1D MIM on the mirror (for the same [/p). Even more, the decrease of
the metal thickness because of the growth of its resistance requires the increase of the dielectric
thickness. Consequently, optimized structures have or thicker metal layers or the high ratio {/p,
or involve thick dielectric spacer. All these options are not close enough to the aim of structure
miniaturization.

Trying to overcome these limits, in the following sections 2D periodic MIM structures are
considered. The limitation in the direction of invariance opens up a new parameter to control

the response of the structure, and the edge effects bring change in the field distribution and
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energy absorption.

6.4.

2D MIM antennas for bolometers applica-

tions

6.4.1 Introduction

(a)

radiation

Mirror

Figure 6.21: 2D MIM structure. (a) A transition from 1D MIM to 2D MIM and parameters of a MIM
structure. (b) The schematic presentation of a unit cell of 2D periodic array of MIM structures.

In Section 6.3, it is demonstrated that arrays of 1D-MIM structures can be critically coupled
being placed at the distance A,es/4 above the mirror. However, they are too large in volume
(mainly due to the dielectric layer) to make a breakthrough in bolometer applications. In this
Section, a way, breaking the invariance of the structure to decrease its volume, is presented.
As shown in Fig. 6.21 (a), the 1D MIM structure can be limited in the invariant direction,
introducing periodicity along this direction, which creates a periodic 2D array of MIM structures.
In this Chapter, the resonance conditions of this reduced volume structure is studied. It is
useful to note that it has an additional parameter — the width [y — to access the critical coupling
conditions.

The schematic representation of the system, considered further in this Chapter, is presented
in Fig. 6.21 (b). Again, the chosen resonant wavelength is A\..s = 10 um, and an array of
structures is placed at the distance d = \.cs/4 = 2.5 um above the mirror. The response of
studied arrays is obtained with numerical simulation. There a periodic port that produces the
incident wave and receives the reflected waves is used. It is situated at least one wavelength

above the structure. The periodic boundary conditions are applied on the sides to take into
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account the array periodicity. In most computations a plane wave incidents normally on the
array of MIMs.

The rest of the Section is organized as follows. First, in Section 6.4.2, four simple geometries
of MIM in 2D periodic arrays are studied in order to define the influence of the structure shape on
its response and to identify the geometry that provides the smallest volume. Second, in Section
6.4.3, the influence of four different metals on optical losses and the critical coupling conditions
is studied, and the optimal metal for absorber applications among them is determined. After
that, in Section 6.4.4, 2D MIM structures having a gold layer of various thicknesses are studied.
The excited mode at the critical coupling conditions is considered. It is demonstrated that due
to the distribution of fields inside the MIM and the specificity of the funnel effect®, the critical
coupling curve exhibits a behaviour different from that of standard MIMs. Then, some optical
properties for structures with different metal thicknesses are presented.

The difference between cross and rectangle shaped geometries is explained in Section 6.4.5.
Although the response of these structures with the same parameters is close, for the cross-shaped
structure the resonance peak is blueshifted with slightly different characteristics. To explain this
difference, a new approach, where a A/2 antenna is replaced by two A/4 antennas, separated by
a conductive plane, is proposed. The application of this model provide an explanation for all
the differences observed between the two geometries . Finally, in Section 6.4.6 the comparison
of 2D and 1D arrays of MIM with is provided. The density of absorbers for rectangle and cross

geometries for 2D MIM is given. It is show that, indeed, this value is much smaller for 2D MIM.

6.4.2 Geometries

In this Section, 2D MIM structures with different geometries are considered: circle, square,
rectangle, and cross. The metal layer thickness of 35 nm was chosen for all geometries, because
in the previous section it is found that intermediate metal thicknesses are optimal® for bolometer
applications. The 10 um resonant wavelength is kept. Below, influence of a geometrical shape
on a structure response is studied. Four various structures at the critical coupling are compared
from the geometrical parameters point of view, then the modes of the resonator are analyzed

under these conditions. Based on the presented results, an optimal geometry is defined.

“In the context of 2D periodic MIM arrays funneling is the concentration of incident flux from the period
surface p? on a small structure, having a surface of a few percent of p?.
5in the following sections this result will be revised for 2D MIM
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General behaviour: half structures

Before presenting the study made on 2D MIM structures located at A/4 above a mirror (i.e.
the three MIM layers are structured), the critical coupling of standard 2D MIM resonators are
studied in this sub-section. They are composed of a thick and infinite perfect metallic layer (M)
on which the two structured layers are deposited: dielectric (I) and metallic (M). The results
for the full system, completed by the mirror, is presented in the following sub-section.

A perfect electrical conductor is used for the bottom metallic layer (Fig. 6.22 (a)). Thus the
studied structure is equivalent to a MIM twice as thick located at an anti-node of the electric
field (e.g. at A/2) of the standing wave generated by a mirror. This reduction in thickness
together with the absence of fixed-length space between the structures and the mirror reduces
significantly the computation time of the 3D simulations. This simplified approach makes it
possible to distinguish the critical coupling conditions between the different geometries studied.

The schematic presentation of half-cut MIM structures with different geometries, placed on
the mirror is shown in Fig. 6.22 (a). In computations, the electric component of the incident field
was directed along the x axis: along the longest side of the rectangle MIMs, and along one of
the sides for square and cross-shaped ones. For all of them, the critical coupling conditions were
found for the 10 um resonant wavelength and for various dielectric thicknesses. The parameter
values leading to the critical coupling for different geometries are presented in Appendix G,
Section G.4. Periodic boundary conditions are along the Ox and Oy axes. The period p, and
py are equal in both directions.

Critical coupling curves in dependence on the dielectric thickness for periodic arrays of half-
cut structures on the mirror are presented in Fig. 6.22 (b). The metal thickness for all curves
is equal to 35nm. Two different behaviors can be observed: disk and square shaped MIMs
on the one hand and cross and rectangle shaped MIMs on the other. For the same [/p ratio,
the dielectric thickness at the critical coupling for the former is smaller than for the later. For
example, for [/p ~ 0.6, disk-shaped and squared-shaped MIMs have a dielectric thickness of
about three times smaller than that of the rectangles and crosses.

The observed behaviour can be explained in the following way. All curves in Fig. 6.22 (b) are
presented for the critical coupling conditions. Similarly, as it was described in Section 6.3.4, the
critical coupling can be presented as the balance of the incoming power P;, and the dissipated

power Py.
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Figure 6.22: (a) Considered geometries of half cut 2D MIM structures: disk, square, rectangle and cross
on the perfect mirror. For the rectangle and rectangles of the cross, the sides aspect ratio is 0.1. (b)
Critical coupling curves at the resonant wavelength 10 um for the four geometries, fitting numerical results
(points), presented in Section G.4. (c) The critical coupling conditions in according with Eq. 6.10 (solid
curves) and numerical results (dots) for 2D periodic MIM (half-structures) with different geometries of
top patches. Line equations and deviations for the points are indicated by corresponding colors. The color
legend is the same as in picture (b).

In this way, the dissipated power P; = RI?, where R = ﬁ is the resistance and I = jA the
current. Since the current density j = oE, the dissipated power writes Py = oliAE?. As the
metal thickness is kept constant for all structures studied in this sub-section, the cross-section
A is only a function of the metal width, thus A « [s.

in the structures considered in this sub-section, similar to the classical MIM, the electric field
FE is proportional to the thickness of the dielectric layer h. As it is demonstrated in Section G.5
of Appendix G, this statement is true in the case of classical 1D MIM mode. In the considered
case of the metallic patch with limitation in both directions, the field decomposition is more
complicated (Section G.5). However, this is still a modified MIM mode, and the assumption
that E o h in the considered case is proved both in Section G.5 and by the results presented
below.

As F « h, and all the structures are made with the same material, the dissipated power

P; o l1lyh?. Moreover, the incoming power Pj, in the 3D case is proportional to p?. For the
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critical coupling, equilibrium must be reached, thus l;loh? o p?. As a result, at the critical

coupling the condition

P X h\/ lllg (610)

should be satisfied. The linear dependence of the period on the dielectric thickness is shown for
the 1D MIM structures for example, in [94].

In this way, according to Eq. 6.10, the critical coupling curves for structures of different
geometries depend inversely on the dielectric thickness (I1/p o« 1/h). Indeed, Fig. 6.22 (c)
shows, for all geometries, an excellent agreement with a linear behavior. Thus, the critical
coupling curves (solid lines) in Fig. 6.22 (b) are fitted to the numerical results (points) with a
function proportional to 1/h.

Equation 6.10 also makes it possible to explain the difference in behavior observed between
the two groups of curves in figure 6.22 (b). The filling factor I/p is proportional to the 1/(I?h) for
square-shaped patches, and to 1/(d?h) for disk-shaped ones. For rectangular and cross-shaped
patches the ratio 3 /p is proportional to /I1/(v/I2h). For example, if the dielectric thickness
h is fixed, the ratio I;/p is proportional to v/I1/y/l2, i.e. 3.16 for a rectangle of aspect ratio
la/li = 0.1 and 1 for a square. For another example, if the [/p ratio is fixed, the dielectric
thickness h is proportional to the ratio v/I1/y/l2, so structures with a smaller lo must have a
thicker dielectric layer.

In this way, a change in the aspect ratio leads to a shift of the critical coupling curves.
Although in this comparison the patch lengths are not exactly the same due to the change in
the effective mode index, this simple model correctly predicts the separation of critical coupling
curves into two groups based on their aspect ratio. As a result, rectangle-shaped and cross-
shaped geometries have a higher [/p ratio than disks and squares.

In terms of the simple model described above, the shift of the critical coupling curves towards
large dielectric thicknesses as the aspect ratio increases, can also be explained as follows. As the
dissipated power Py is proportional to the width, the structure of greater width (and of constant
length) can provide the same losses for a smaller amplitude of the electric field. As the later
depends linearly on the dielectric thickness, this means that a larger structure can provide the

same losses for a smaller dielectric thickness (while the other parameters are kept constant).

6Also, the linear dependence of the period on the dielectric thickness can be explained in the term of the
radiative and non-radiative losses. As the metal parameters (for one geometry) change not significantly compared
to the period and the dielectric thickness, the non-radiative decay is change slightly. In the same time, radiative
decay depends linearly on the dielectric thickness and inversely — on the period [145]. Thus, for increased linearly
dielectric the period also should be increased linearly.
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However, it should be noted that, as the electric current decomposition in the metal patch is
nonlinear (see Section G.6 and Section G.8 of Appendix G), significant variations of the width
and/or thickness of the patch would modify the resistance in a more complex way.

To estimate the influence of the resonator geometry on the thermal capacitance, the volume
of the dielectric and the metal must be considered for the same period value. Since all the
resonators are at the critical coupling conditions and the period is the same in both directions,
the same power is absorbed for equal period values. As it was demonstrated is Section 5.5,
the volumetric specific heat capacities of gold and silicon are not very different, thus the total
volume of the resonator (dielectric and metal) should be used for this estimate.

Fig. 6.23 shows the dependence of the total volume for the four considered geometries in the
case of half-structures (i.e. a metallic layer and a half-thickness of dielectric on a perfect mirror).
It can be seen that the dependence of the total volume on the period is linear. The points present
the results of the numerical simulations, and the solid lines the best fit of a linear function to
these results. If for simplicity, we consider the rectangular shape, its total volume is given by
V' = lilst + l1loh. As the first term of the sum is much smaller than the second, V =~ l1lsh
(the first term will be considered separately later). Together with Eq. 6.10, V o< /I1lop. As an
increase in the length and width is not significant compared to the increase of the period, in
a first approximation the total volume depends linearly on the period value. The inset graph
shows the dependence of the metal volume on the period at the critical coupling. It can be
seen indeed, that the change in the volume of metal remains low when the parameters {1 and Iy

increase (increase of p) for a given metal thickness ¢.
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Figure 6.23: The volume of the structures critical coupled at the resonant wavelength 10 um. Solid lines
corresponds to the linear fit for the total volume, and dots shows results of numerical computations. The
line equations and standard deviation for the fitting lines are indicated in corresponding colors. The inset
shows the volume of metal uniquely (one layer).
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As the only significant impact in the total volume is provided by the dielectric, structures
with smaller widths have smaller dielectric thicknesses at the same period value (i.e. to absorb
the same incident power). This can be observed in Fig. 6.23: for the same absorbed power, the
total volume for the rectangular geometry is twice smaller than for the other geometries. While
for disc and square shaped patches higher volume is due to higher width, for cross shaped patch
there are just two bars.

However, rectangular geometry can be useful only for applications, where polarization sen-
sitive absorption is required. For non-polarized problems, the cross-shaped geometry is the one
with the smallest volume. Since the presented results are for half structures, for the whole
structure the difference between the cross and other two geometries is doubled.

Summing up, the geometrical shape of patches of 2D MIM influences its response due to the
change in optical losses. Although disc and square shaped geometries require a thinner dielectric
layer for the same [/p ratio, rectangle and cross shaped geometries, due to smaller side aspect
ratios, employ smaller volumes for dissipation an equal power. The difference in thickness of
the dielectric layer observed between the different geometries to achieve the critical coupling
conditions is mainly due to the width of the patches which modify the optical losses. As the
structures having the smaller volumes are best suited for bolometric applications, a cross-shpaed
geometry is preferred for polarization insensitive detection and a rectangular geometry (with
almost twice smaller volume) for polarization sensitive detection. However, all these structures
have significant dielectric thicknesses (hundreds of nm) and are linearly dependent on the period,
which leads to a total volume that is all the greater that the period is large. Below the mode at
the critical coupling and the optical response of complete structures of different geometry are

considered.

Complete structures at \/4 above the mirror

In this Section, unlike the discussion above, 2D arrays of complete MIM structures at Ay.s/4
above the perfect mirror are considered (A\..s = 10 um). The same geometric shapes as those
presented in the subsection above, are compared. The modes excited under the critical coupling
conditions are studied and are compared to those observed in the corresponding half-structures
of the sub-section above.

For the critical coupling of an array of complete MIMs at 2.5 um above the mirror?, the

"Measured from the center of MIM structures.
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geometric parameters are different from those of the half-structures studied above (presented
in Section G.4). The values of the parameters are presented in Table 6.1 for a fixed dielectric
thickness h = 1.2 um, thus the structures are placed in the same external fields. This value has
been chosen to avoid too high [/p ratios for the rectangle and cross shaped geometries.

In this way, 2D periodic arrays of MIM structures can be critically coupled by being placed
at the distance \.¢s/4 above the mirror. There are similarities and differences compare to the
case, considered above. The key difference between the complete structures at the A,.s/4 and
the half-structures on the mirror is the way how a structure is excited. The structures placed
on the mirror are excited by the external magnetic field, because they are in the anti-node of
the magnetic field of the standing wave. In this case, the total fields on the metal at the center
of the metal bar are proportional to h.

On the contrary, the complete structures at \..s/4 above the mirror are located at the node
of the external magnetic field. In this case the only magnetic field providing the coupling is the
magnetic field of the mode, which has two components and a complex distribution around the
structure compare to the magnetic field of the standing wave. As a result, the critical coupling
is provided in more complex way and the dependencies of the period and the total field on the
dielectric thickness change its character (shown in Section 6.4.4): they decrease with the growth
of the dielectric thickness (keeping the critical coupling). Thus, the critical coupling conditions
are different from that used for standard MIMs, and fundamental physical explanation for this
case is a matter for further study. However, some aspects of its behaviour, including funneling
process and the optical properties are presented in Section 6.4.4, while the behavior in the case
of different geometries is considered here.

The main difference observed between the geometries presented in the above subsection,
remains present for the complete structures. The only difference between them is again connected
with the different widths and thus to the resistances of the metal patches. The critical coupling
can be described as a balance between the incoming and dissipated powers by a simple model
comparable to that provided in the previous subsection. As Py o« oliAE?, and P;, x p?, at
the same dielectric thickness & the disk and square geometry can absorb more incidence power.
Thus, the period value is higher than that of the other two geometries.

The parameters of the complete 2D MIM arrays can be compared to those of half-cut MIM

8In this sub-section, the dependence on the dielectric thickness is not considered. This dependence can change
the shape of the critical coupling curve, but a similar relative shift of the curves is expected, as the only important
parameter for the critical coupling for considered case is the width of a MIM structure.
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with doubled dielectric thicknesses. For the same resonant wavelength, the length (diameter) of
complete structures at A..s/4 above the mirror changes insignificantly compared to those of half
structures. On the other hand, the periods are almost twice as small for the rectangle and cross-
shaped geometries, and almost three times — for disks and squares, compared to half-structures?,
and thus — the absorbed power. This difference is caused by the change in coupling between
these two configurations, associated with a change in the fields of the standing wave.

Moreover, as it was already been mentioned, similar to the half-structures, the disk and
square-shaped geometries require, for the same dielectric thickness, a ratio [/p smaller than
those of the rectangles and cross, because a higher width results in higher losses and thus in
a higher period. However, a high value (compared to the rectangular geometry) of the side
aspect ratio leads to significant increase in the total volume. For the parameters, presented
in Table 6.1, the incident power between two groups of geometries differs by approximately a
factor of 1.5, while the dielectric volumes of the disks and squares are more than twice that
of the cross, and about five times that of the rectangle. This makes it possible to apply the
conclusion, established for half-structures, to the complete structures.

It can also be noted that for the complete 2D MIM at A,.s/4 above the mirror, the di-
electric thickness is a few times higher than that of the 1D arrays having the same ratio [/p
(Section 6.3.4).

Table 6.1: Critical coupling parameters at the resonant wavelength 10 um for 2D MIM structures with dif-
ferent geometries, which centers are located at the distance 2.5 um from the mirror. For all the structures
the dielectric thickness h = 1.2 ym and the metal thickness t = 35 nm.

Geometry Side length / Side length Period p, um li/p
diameter 1, um lo, pm

Disk 1.822 1.822 3.500 0.521

Square 1.586 1.586 3.500 0.453

Rectangle 2.255 0.226 2.800 0.805

Cross 2.295 0.230 2.850 0.805

The width of the MIMs also influences the field distributions, although the fundamental
aspects of the coupling are the same for all geometries, as all arrays are placed at A.e5/4 above
the mirror. Field maps of the MIM structures of the studied geometries, under critical coupling

conditions, are presented in Appendix G, Section G.6. For all geometries the excited mode looks

%In fact, the dielectric thickness 600 pm for the disk and square half-structures would require the period value
higher than resonant wavelength. In this case, new diffraction orders will appear and the response can be changed,
that is not considered in this Chapter. Thus, this comparison is relative, only in order to highlight the significant
change in the period for critical coupling.
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10 similar to

like the dipole mode in the x direction (along the longest side of the structures)
the MIM mode presented in Section 6.3.4. Moreover, additional components of electric field are
excited along the edges in the y direction.

Also, due to the limitation in the y direction, the behaviour of the magnetic field changes
dramatically ' compare to 1D MIMs. It is inhomogeneous along the y direction, with a stronger
excitation at the edges (the H, component). The width (/2 is in the y direction) has a significant
impact here: for geometries with an aspect ratio equal of 1, the magnetic field is mostly excited
on the sides in the y direction, while for the narrow structures the fields on the left and on the
right do not decay fast enough in the y direction to be completely separated. Thus they overlap
for small widths'?2. As a result, the magnetic field along narrow structures is similar to that of
a wire carrying an electric current. The magnetic field therefore also appears at the top and
bottom (air-metal interfaces) of the structures, unlike 1D MIMs. In addition, this field overlaps
the standard magnetic field of the MIM mode in Oz plane, making total field not symmetrical
along the z direction. Thus, the decomposition of the magnetic field in this plane is different
depending on whether it is a question of wide or narrow structures.

The limitation in the y direction also leads to a considerable change in the electric current
density'®. Unlike the case of 1D MIMs where the electric current is only excited near the internal
metal-dielectric interfaces, for 2D MIMs the electric current is also excited from the external
metal-air interfaces. The distribution of the current spread over a larger surface for the disks and
the squares explains the particular behavior of their [/p ratio for the same dielectric thickness.

The time-average Poynting vector behavior also changed compared to the 1D MIM arrays.
While for 1D MIMs the energy only funnels inside the structure through the side slits (the S,
component of the Poynting vector), for 2D MIMs the energy can also pass through the other
sides (the S, component of the Poynting vector), and from the top and the bottom in the case
of the rectangular and cross geometries. The Poynting vector behavior for 2D MIMs is discussed
in detail in the following sections.

Finally, let us consider some difference in the optical properties. Fig. 6.24 (a) shows the
absorption spectra for 2D periodic array of MIM placed at A..s/4 above the mirror, which
parameters are indicated in Table 6.1. It can be seen that, again, similar to Fig. 6.22, the

curves are divided on two groups. The structures with cross and rectangle geometries provide

0Fig 20 of Appendix G
"Eig. 20 of Appendix G
12Rig. 22 of Appendix G
13Fig. 23 of Appendix G
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the response with a wider spectral width compare to the cross and the rectangle. The main
difference can be connected with different structure widths lo, as the thickness of the metal for
all the structures is 35nm. Structures with higher width provide higher losses having higher
area of the electric current distribution. As a results, structures with higher dissipation provide

more narrow spectra.

@ o T T T ' T oy (B)ygr
| — Disk
0.8} | Square 0.8
r ‘ —— Rectangle [
0.6 —Crbes 0.6
< | < L
0.4 0.4/
0.2, 0.2]
0.0L ¢ : . ! e p—— r 0.0t i it
8 9 10 1 12 0 2 4 6 8 10 12
A, um Distance to the mirror, um

Figure 6.24: The response of periodic 2D arrays for MIM structure with four different geometries, placed
at the distance 2.5 ym from the mirror (from a structure center). All structures are optimized for the
critical coupling at the resonant wavelength 10 um, being placed at the distance 2.5 um from the mirror.
The geometric parameters of the structures are provided in Table 6.1. (a) The dependence of the absorp-
tion on the wavelength. (b) The dependence of the absorption on the distance from the mirror, counted
from the center of the structures at the resonant wavelength.

Fig. 6.24 (b) shows the dependence of the absorption on the distance to the mirror at the
resonant wavelengths 10 um for 2D periodic arrays of MIM with different geometries. The
distance is measured from the center of the structures, thus the curves begin from non-zero
value. Again, similar to the above result, the curves are divided into two groups. Response of
the cross and rectangle shaped MIM is similar to that of the 1D periodic MIM array in Fig. 6.20.
By contrast disk and square shaped MIMs are much more sensitive to distance change in the
distance range (A\/4 —\/2). This division into two groups can be assigned to different resistance
structures, while their asymmetry in shape can be related to the change in sign of the magnetic
field of the standing wave, and thus the E,, x H,, term. However, the full analysis of the shape
of the curves remains outside the scope of this work, since it requires a detailed analysis of the
operation of a coupled system of two resonators (MIM and Fabry - Pérot).

It is however interesting to note that at the distance A,.s/2 = 5 pm the response of structures
with the disk and square geometries is very weak, although they are placed in the anti-node of
the external magnetic field. This is caused by the fact that the period for the critical coupling

at the \..s/4 is significantly smaller compared to the classical MIM mode, observed for half
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structures. Thus, being excited by the external magnetic field, the array of structures become
over-coupled.

To summarize, the mode, obtained for all geometries, is similar to the 1D MIM modes in
the x direction (the direction of the electric field of the incident wave). However, due to the
limitation in the y direction, more complicated fields and current decomposition appear. They
are stronger on the sides of a structure, and for rectangular and cross geometries the magnetic
field is excited above and below it. The behaviour of considered geometries can be divided into
two groups, in dependence on the width of the structure, and thus, optical losses. Demonstrated
properties of both groups can be useful for different applications. However, all structures have
large dielectric thicknesses which contribute significantly in the total structure volume. For
a better absorber in a bolometer it is desirable to reduce its volume. In Section 6.4.4 it is
demonstrated that the critical coupling conditions can be achieved for structures with smaller
thicknesses. However, at first, let us consider the influence of the metal optical properties on

the critical coupling of 2D periodic arrays of MIM structures.

6.4.3 Metals

In this Section, the response of 2D periodic array of half MIM structures on the mirror is
analyzed for four different metals, while the dielectric is the same — silicon. The critical coupling
is considered, and influence of physical characteristics on the optical losses and the critical
coupling is discussed. The absorption mechanism is considered in detail. It is shown that the
difference in total volumes for structures is not significant, although gold and copper demonstrate
better results. However, for the considered mode whatever the metal, the volume of the dielectric
significantly exceeds the volume of the metal. In the same time, the thermal response does not
differ significantly with the nature of the metals, except for copper which has a slightly higher

thermal capacity.

Critical coupling

Again, in this Section, to save computation time, the half-cut structures are considered. The
cross geometry was chosen as the reference geometry due to its versatility. The aspect ratio of
its bar is 0.1, and metal layer thickness is about 35 nm. The comparison is done for four metals:
gold, silver, copper and aluminum. Their permittivities at the resonant wavelength A,.s = 10 um

are presented in the Table 6.2. Both the real and imaginary parts of the permittivities vary
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significantly from metal to metal. Gold has the smallest imaginary part of the permittivity,

thus it can be considered as the most "ideal" metal, while that of aluminum is about five times

higher.
Table 6.2: Optical properties of studied materials at the wavelength 10 um
Material Gold Silver Aluminum Copper Silicon
Permittivity € | —3792 + 8257 | —4666 4+ 13827 | —6764 + 429947 | —4825 4 10724 11.56
Skin depth, 25.7 23 18.5 22.8 —
nm
Conductivity, 1.38 +6.32¢ 2.30+7.78: 7.17 4+ 11.28:¢ 1.79 + 8.05:¢ -
MS/m

The critical coupling conditions of the half-structures were found for the different studied
metals and for different dielectric thicknesses. The computations focused on an area of balance
between the ratio /1 /p and the dielectric thickness: too high a value of [; /p leads to another mode,
too high values of the dielectric thickness are not useful for the intended purpose. Thus, the
intermediate zone is considered. The geometric parameters of the critically coupled structures
are grouped together in Tables 11— 14 of Appendix G, Section G.7. The critical coupling curves
for the different metals are presented in Fig. 6.25. The dots show the sets of values found for
the critical coupling conditions, and the solid lines have been interpolated using the {1 /p o< 1/h
dependency shown in Section 6.4.2. A good agreement is observed between the points and the
curves.

It can be seen that for the same ratio l;/p, a greater dielectric thickness is required for
aluminum, and a smaller — for copper. The observed difference is linked to the difference in
the permittivity of the metals. It determines optical losses through electrical conductivity at
optical frequencies and skin depth. Both of them are presented in Table 6.2 at the considered
wavelength 10 ym. The electrical conductivity is computed from permittivity as —iwege [147],
and the skin depth is computed with Eq. 6.1.

However, direct comparison of permittivity, conductivity or skin depth does not allow explain
the order of the critical coupling curves. Indeed, the optical response of a structure includes
in a more complex way both the effects due conductivity and skin depth, both described by
the real and imaginary parts of the permittivity. Additionally, as mentioned in Section 6.4.2,
the excited mode at the critical coupling conditions is different for a 2D MIM from that of an

infinite 1D MIM. The distribution of the current density in the metal is then more complex. In

138




CHAPTER 6

0.9f ]
0.8 ]
0.7 ]
= 06/ ]
05 — Gold ]
r — Silver

04; _ Aluminum ]
0.3~ — Copper ]
400 600 800 1000

h of spacer, nm

Figure 6.25: Properties of the cross half cut structures on the mirror constructed with different metals,
critically coupled at the resonant wavelength 10 um. Critical coupling curves, a schematic representation
of the structure is inserted.

the following sub-section, it is shown how these factors lead to the observed order of the critical

coupling curves.

Optical losses

To study the difference in behaviour of 2D MIM made from different metals let us consider
structures at the same [;/p ratio and with the same geometrical cross-section. The study is
performed for rectangular geometry because of a simpler electric current density distribution (a
detailed explanation of the similarity of the cross and rectangle geometry for polarized radiation
is presented in Section 6.4.5). Parameters for the critical coupling at A,s = 10 pm are presented
in Table 6.3.

The width and thickness of all the metal layers are the same for all structures, thus they all
have the same geometric cross-section. As critical coupling conditions are found for the same
resonant wavelength, the structures have roughly the same length (see Table 6.3). The only
small variations we can see are due to the change in the effective index of the mode provided by
the change of the dielectric thickness. Since it is a second order effect (the relative variations
are less than 2%), the length will be considered constant.

It can be seen, that the distribution of the structures by the dielectric thickness in Table 6.3
is the same as in the figure 6.25: highest for aluminium and lowest for copper. On the other

hand, their order is not directly in accordance with the order of the metal skin depth or the
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Table 6.3: Critical coupling parameters for the resonant wavelength Ares = 10um for rectangle half-
structures computed with different metals; and the electric current trough the cross-section (normalized
on the highest value), calculated for this conditions.

Metal Period Side Side Li/p Dielectric Gold 12,
D, pm length, length, thick- thick-
l1, pm lo, pm ness, nm | ness, nm
Aluminum|  3.86 2.358 0.25 0.611 488 35 0.64
Silver 3.81 2.253 0.25 0.605 452 35 0.77
Gold 3.65 2.191 0.25 0.600 430 35 0.78
Copper 3.698 2.202 0.25 0.595 398 35 1.0

electric conductivity (Table 6.2). This influence can be taken into account with the effective
cross-section (similar to Section 6.3.4). However, due to the complex field distribution in the
metal bar, the comparison here is limited to the total excited currents in the metal.

As discussed in Section 6.4.2, the dissipation for such structures is due to losses by the
Joule effect. The power dissipated in the metal writes: P; = 0.5V Re(Ej*) [3], where the star
symbol denotes the complex conjugation, and V is the volume. As the distribution of both the
electric current density and the electric field is inhomogeneous (Fig. 23 of Appendix G) and
the length of the structures is almost constant, the study is here limited to the middle section
(i.e. orthogonally to the length I; of the metal bar). As shown below, this is enough to explain
the observed effects. Thus, the dissipated power writes P; [ Re(Ej*)dA, where A is the

geometrical cross-section. Applying the Ohm’s law it comes, Py o< [ Re(1/0)|j|*dA, or
Py Re(a)/abs(a)Q/ijdA. (6.11)

In the discussion below, I2. = [ |j|*dA. It is also should be noted that in the previous sections
(for example, Section 6.4.2), only structures made of gold are considered. Thus, the term
Re(o)/abs(c)? was not explicitly mentioned, since it is the same for all structures, while the
geometric parameters were different. In this sub-section, the opposite situation is presented: the
geometric parameters are the same, but the electrical conductivity varies and plays a key role.

For the 2D arrays presented in Table 6.3, the periods, and therefore the incident fluxes per
structure, are almost constant, as is the absorbed power per structure (the critical coupling is
considered). The geometrical section being the same, the dissipated power is defined only by
the electric current and the metal conductivity. To define I.., consider the distribution of the

electric current density in the metal bar under the critical coupling conditions.
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For the considered mode, the electric current is orientated along the length of the structure,
or j = jyy. The distribution of the current density abs(j) at the surface of the metal bar is shown
in Fig. 6.26 (a). The strongest current is excited at the edges of the structure. As shown in
Section 6.4.4 for 2D MIM structures, the magnetic field of the mode is excited in two directions:
along the width of the metal bar (i.e. above and below) and along its thickness (i.e. at the
sides) while the electric field is directed along the longest side. Thus, the electric current which
is excited by the component E of the electric field, is directed in the direction y and decreases
exponentially from the faces of the metal bar: exp (—t/d), where ¢ is the distance to the excited
surface and § the metal skin depth. Thus, the electric current density through a cross-section

of the metal bar is proportional to the sum of two exponential terms in the directions x and z.

(0)1.0
0.9}
0.8
—0.7
0.6}
0.5
0.4 |
-100 -50 0 50 100
Zf{&y X, nm
(c) Normalized density of the electric current
5
0
5
0
5
0
5 L —— ]
-100 -50 0 50 100
X, nm

Normalized density of the electric current

5

0

5

0

5

0

5 |

-100 -50 0 50 100
X, hm

|
0 0.2 0.4 0.6 0.8 1.0

Figure 6.26: The distribution of the electric current density (the absolute value) in the metal part of half
MIM on the mirror. (a) The distribution on the metal bar surface. The gray plane shows cut at the
middle of the structure. (b) Extracted and fitted distribution of the normalized absolute value electric
current density in the cut plane in the center of the thickness (z = 0). (c¢) The normalized absolute
value of the electric current density in the middle plane (shown in picture (a)), extracted from numerical
simulations. (d) The fitted map of the normalized absolute value of the electric current density in the
middle plane (shown in picture (a)).
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Let us consider the distribution of the absolute value of electric current density (Fig. 6.26
(a), color scale) in the plane zOz in the middle of the metal bar (shown as a grey plane in
Fig. 6.26 (a)), where the current density is strongest. This distribution (normalized) for the
gold bar is shown in Fig. 6.26 (¢). It can be seen that in the central part the current is minimal,
and the highest values are located in the corners of the bar. This distribution, which varies in

two directions, can be described as:

j(x,z) = alexp(—x/d) + exp(z/d)) + blexp(—z/d) + exp(z/9d)). (6.12)

Here j(xz, z) is the absolute value of the electric current density through the cross-section.
It writes as the sum of two independent currents induced in the y direction. a and b are the
two fitting parameters. The sum consists of four terms, because the magnetic field is excited
both at the top and bottom, and on the left and right sides of the metal bar. Also, to simplify
the equation, the center of the metal bar is placed at the point (zg = 0,z9 = 0). In this way,
the edges of the metal bar are located at —l3/2 and l3/2 in the x direction, and at —t5/2 and
t2/2 in the z direction. Thus, an additional term, including one of these values, is present in
each exponential term in order to satisfy the boundary conditions. However, in every pair of
exponential functions this term is the same, thus, for simplicity, it is included in the coefficient
a or b. The fitting parameters for all the metals considered are presented in Section G.8 of
Appendix G, as well as the detailed description of the computation procedure.

The result of the fit for the middle line (at z = 0) of the section plane is presented in
Fig. 6.26 (b). The points, corresponding to the normalized absolute values of the electric den-
sities, extracted from the numerical simulation, are in good agreement with the fitting curve
from Eq. 6.12. The fitting result for complete geometrical section is shown in Fig. 6.26 (d). It
agrees well with the map of values extracted from numerical calculations, shown in Fig. 6.26
(c). Fine agreement was demonstrated for the other three metals. Thus, the electric current,
excited by the £, component of the electric field, is maximum at each metal - dielectric interface
and decreases exponentially towards depth with a characteristic decay length equal to the skin
depth.

It is also important to note that in the central part of the metal the electric current density
is not equal to zero (Fig. 6.26 (c)). The side surfaces of the metal bar support the maximum

current excitation. As the distance between these two surfaces is much greater than the skin
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depth (more than 10 times) one would expect a negligible current at the center of the bar. We
observe that this is not the case: the current at the center is about 40% of its value at the
surface. This is due to the contribution of the other two faces where the excitation although
weaker than that of the lateral faces brings a significant contribution because the thickness of
the bar is close to the skin depth. Likewise, this contribution to the current is almost constant
in the direction z. This is described in the right part of Eq. 6.12, related to factor b. This effect
can be significant in the absorption process: while the maximum current density jmq. is excited
at the left and right ends of the bar over a width of about ¢, this constant current density j. is
excited over all the entire thickness of the bar with a width of about ten §. Thus, although its
amplitude is smaller, it can provide even higher dissipation in the metal bar.

The analytical description of the electric current density (Eq.6.12) along the directions x

and z, allows to calculate the total current I2., responsible for the optical losses, through a

ers
cross-section of the metal bar (direction y). The results of the calculations are presented in the
right column of the Table 6.3, after having been normalized to the largest value, that of copper.
It can be seen that the obtained values correspond to the order of the critical coupling curves
(Fig. 6.25), in ascending order: aluminum, silver, gold, and copper. Likewise, Re(c)/abs(o)?
values are ordered in reverse order, with a higher value for aluminum and a lower value for
copper. As a result, according to the Eq. 6.11, multiplying I2. by the factor Re(c)/abs(c)?
provides similar values of the dissipated power P, for all the metals. These values differ by a
few percent, proportionally to inequality of periods.

Thus, although all the structures have a metal bar of the same geometric section, the optical
losses therein depend on the metal conductivity and on the skin depth in a complex way. The
electrical conductivity is included not only explicitly in the dissipated power P; (Eq.6.11) but
also through the current density (j = o0 F) whose distribution is strongly inhomogeneous due to
the skin depth effect.

To illustrate this complexity, consider the case of aluminum. Among the metals studied here,
aluminum has the highest absolute value of the electric conductivity which tends to decrease the
resistance of the metal bar (i.e. the dissipated power). It has also the smallest skin depth which
tends to increase this resistance. Due to these two opposite effects, the resistance provided by
aluminum is higher than that of the other studied metals. Thus to keep the critical coupling
conditions, for a given dielectric thickness (i.e. given fields) the period must have the smallest

value (i.e. the highest ratio [1/p). The best compromise between conductivity and skin depth is
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found for copper. Despite copper-based structures do not exhibit the highest conductivity nor
the largest skin depth, they reach the critical coupling conditions for the largest period when
the dielectric thickness is fixed (Fig. 6.25).

To summarize, the nature of the used metal acts on the conditions of the critical coupling
by two opposite effects, the skin depth and the finite conductivity of the metal. The complex
spatial distribution of the fields makes this dependence strongly nonlinear. Thus, the losses in
structure are determined not by the conductivity or the skin depth in a direct way, but by their
complex balance. Consequently, the critical coupling conditions for a fixed [/p ratio are reached
for the smallest dielectric thickness with copper and the highest with aluminum (among the

metals studied).

Thermal properties

As discussed above (for example, Section 5.5 of Chapter 5), from a thermal point of view, the
most correct way to compare response of structures is to consider their volumes. Fig. 6.27 (a)
shows the total volumes of structures made of different metals at the critical coupling for the
same value of the period (i.e. the same absorbed power). As the comparison is again for the
same period, the structures absorb the same amount of energy. It can be seen, that similar
to 1D MIM structures (Section 6.3.4), the volume of the silicon is significantly higher than the
volume of metals.

For the structure made with aluminum, the highest volume values is required, although no
significant difference with other metals was observed. The smallest one — for the copper and
gold. The volumes of three metal (except aluminum) have similar volume values. In this way,
again, an optimisation of the dielectric volume is significant problem for this kind of structures.

In Section 5.5 it was shown that the volumetric specific heat capacity for copper is higher
compare to other materials. Thus, it is useful to compare thermal (heat) capacities for critically
coupled structures. They are presented separately for metals and dielectric in Fig 6.27 (b).
Again, they are compared for the same period, thus comparison is made for the same incident
power. It can be seen, that gold, silver and aluminum (metals) in structures absorb almost the
same energy amount in order to raise their temperature by one degree. In the most suitable
range of the period (5 — 7 um), which avoids diffraction orders at oblique incidence, this value is
about 0.1 pJ/K. Copper structures require higher energy to increase their temperature by one

degree, the heat capacity value for these structures exceeds the others by about 1.4 times due
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Figure 6.27: Properties of the cross half cut structures on the mirror constructed with different metals,
critically coupled at the resonant wavelength 10 um. (a) Dependence of the total volumes of structures
made from different metals and silicon on the period for the critical coupling case. In insert: volumes
of metals on the period for the critical coupling case. (b) Thermal capacity in dependence on the period:
solid lines for metals and dashed lines for the corresponding dielecric layers.

to higher volumetric specific heat.

In the same time, due to much higher volume, the contribution of the dielectric layer to the
thermal capacity significantly exceeds (about ten times) one for the metals. This difference is
a consequence of high dielectric volumes (the lines are similar to ones in Fig 6.27 (a)). Thus,
the difference between chosen means is insignificant in this situation. From this point of view,
again gold and copper are an optimal choice.

It is also important to note that for bolometric applications in addition to the sensitivity
of the absorber, the effective increase in temperature when absorbing energy, there is also an-
other important characteristic - the time response. Usually, these values are inversely related.
Although this issue is not the subject of discussion in this work, this quantity should be inves-
tigated to create an effective device. Thus, the high value of dielectric volume influence this
characteristics too.

In this way, although gold, silver, aluminum and copper have a significantly different per-
mittivities, the total volumes of the structures do not differ significantly due to a high dielectric
volume. Also, it has been shown, that critically coupled structures, made from this metals have

similar thermal response, and gold is optimal among considered metals.

6.4.4 The metal thickness

In this Section, structures having a gold layer of various thicknesses are studied. Considered
complete MIM structures are placed at the distance 2.5 um above the mirror, this distance is

measured from the center of the structure. In order to simplify the model, the rectangle shaped

145



6.4. 2D MIM ANTENNAS FOR BOLOMETERS APPLICATIONS

geometry is chosen in this Section. It is demonstrated that the critical coupling curve exhibits
a behaviour different from that of standard MIMs or even 1D MIM arrays at Aq..s/4 above
the mirror. This is the consequence of different mechanisms both for the funnel effect and for
the distribution of fields inside the MIM. Although the fundamental physical explanation is for
further study, the excited mode at the critical coupling conditions for the thinnest structure is
considered and conclusions on energy absorption is provided. Finally, some optical properties

for structures with different metal thicknesses are presented.

Critical coupled 2D periodic MIM arrays with different metal thicknesses

The skin depth of gold at the wavelength of 10 um is about 26nm. To find the optimum
thickness, three thicknesses close to the skin depth were studied: 5nm, 20nm, and 35 nm. The
parameters for the critical coupling at 10 um for these structures are presented in the Table 6.4.
For the two highest metal thicknesses, a critical coupling is possible for the same thickness of the
dielectric layer, thus a comparison with the same dielectric thickness is possible. The thickness
2.7 um was chosen for this. If the center of a 2D MIM structure with such a metal thickness is
placed in the node of the magnetic field, the dielectric thickness becomes higher than 0.1)\¢;.
The critical coupling parameters for the two structures at the resonant wavelength A..s = 10 um
are as follows. For the structure with the metal thickness ¢ = 35nm: the period is p = 9.6 um,
the length | = 2.80 um, the width lo = 280nm. For the structure with the metal thickness
t =20nm: p =55um,l = 288 um, ly = 280nm. This result is analogous to the case of
1D MIM arrays at Ares/4 above the mirror with different metal thicknesses, which is shown in
Fig. 6.13 of Section 6.3.4: for the same dielectric thickness, a smaller metal thickness requires a
higher ratio [; /p for critical coupling.

Table 6.4: Critical coupling parameters at the resonance wavelength 10 um for 2D MIM rectangle struc-
tures with ratio la/l; = 0.1 for different metal thickness

Gold Dielectric Period p, pm | Side length Side length li/p
thickness ¢, thickness h, l1, pm lo, pm

nm nm

35 2700 9.6 2.800 280 0.292
20 2700 5.5 2.880 288 0.523
20 2300 8.02 2.811 281 0.35
20 1998 9.6 2.726 273 0.284
5 300 8.3 3.050 305 0.367
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However, for the structure with the metal thickness t = 20 nm the behaviour is opposite to
that observed for 1D MIM arrays. Here, as shown in the Table 6.4, the decrease in the dielectric
thickness leads to the decrease in the ratio [/p. As a result, for the same period value, as in the
case of the gold thickness of 35nm, the dielectric thickness is significantly reduced. A further
reduction of the spacer would lead to a further increase of the period, and thus to the appearance
of new diffraction orders. But a further reduction of the metal thickness allows the thickness of
the dielectric to be reduced even further, as shown for the structure with a metal thickness of
5nm. The l1/p ratio for this structure is about the same than that of the structure having a
dielectric layer thickness about seven times greater (line 3 of the Table 6.4. The length of the
structure is increased compared to MIM having a metal layer of 20 nm, however this difference
is not significant (less than 4%).

The reduction in dielectric thickness induced by reduction in metal thickness to maintain
critical coupling conditions is the opposite behavior to that observed for 1D MIMs. Indeed, all
the critical coupling curves of Fig. 6.13 of Section 6.3.4 verifies the relation [/p o< 1/h, i.e., an
increase of the dielectric thickness h leads to an increase in the period'*. In the case of 2D MIM,
the dependence is the opposite: the period depends inversely on the dielectric thickness. Let us

consider this effect in more detail in the following sub-section.

The critical coupling of a 2D periodic MIM array placed at A\/4 above the mirror

The critical coupling curve for the MIM array having a metal thickness of 20 nm is presented
in Fig. 6.28 (a). The points represent the critical coupling conditions found in the numerical
calculation (presented in Table 16 of Section G.9, Appendix G), and the solid line is the fit curve,
having the quadratic dependence indicated in the figure caption. It can be seen, indeed, that
the increase of the dielectric thickness leads to an increase in the ratio [/p. Thus, as the length
1 does not change significantly, this behaviour is connected mainly with the period decrease.
The dependence of the period on the dielectric thickness at the critical coupling is presented in
Fig. 6.28 (b), where the results of numerical simulations are fitted by inverse quadratic function.

Taking into account the dependence Pj, o p?, the decrease in the period with the increase
in the dielectric layer thickness to maintain the critical coupling, means that the thicker the
dielectric, the weaker the absorbed power. Indeed, as shown in Fig. 6.28 (¢), the norm of the

electric field at the central point of the metal-silicon interface of the upper metal layer decreases

4 This conclusion concerns structures maintained at the critical coupling conditions with the same metal thick-
ness t.
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with the growth of the silicon thickness h. As the geometric parameters of the metallic layers
do not change significantly, the absorbed power Py o olj AE? decreases as the thickness of the

dielectric increases.
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Figure 6.28: The critical coupling for the 2D periodic MIM array of the 20 nm metal thickness placed
at the distance \/4 above the mirror. For all plots points shows the numerical results for the critical
coupling conditions, and solid lines are fitting curves. (a) The critical coupling curve. The fitting curve
has dependence ax® + bx + ¢, where a = 0.32 £ 0.01, b= —1.154+0.03, ¢ = 1.30 £ 0.04. (b) The period p
vs the dielectric thickness h, the fitting curve is a/(z? 4+ bx +c) +d with a = 8.99+0.20, b = —3.70+£0.02,
¢ =4.3440.02. (¢) The norm of the electric field at the center of the metal-silicon interface of the top
metal layer. The fitting curve is a/(x? +bx +c) +d with a = 0.34£0.16, b = —3.9940.06, ¢ = 4.5040.09,
d=0.34+0.1.

This significantly different behaviour from that observed with 1D MIMS is the consequence
of the limitation of the 2D MIMs in the transverse direction together with a better adaptation
to the magnetic field node of the standing wave. The first leads to the significant amplification
of the magnetic field of the mode at the 2D MIM edges, which, as demonstrated below, is
responsible for the energy funneling to the structure. With the second, the magnetic field node
corresponds to the anti-node of the electric field, which allows a different funneling process than
those of standard 2D MIMs (where the magnetic field of the standing way participate in the
energy funneling, see Section G.5 of Appendix G). As a result, there is a specific behavior for
2D MIMs placed at \/4 above the mirror.

As indicated in Table 6.4, the decrease in the metal thickness is one of the consequences
of this specific behavior, as discussed below. The [/p dependence on the dielectric thickness h
(Fig. 6.28 (a)) can be supplemented by the data in Table 6.4. Numerical values for two other
thickness indicate a shift of the critical coupling curve on the left for smaller metal thicknesses

(i.e. towards smaller dielectric thicknesses), and on the right - for the thicker metal layers.
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However, as for some structures, the thickness of the dielectric is about 2 um or even more,
the lower metal layer is 1.5 ym away from the mirror, or even less. Thus, perturbations can
come from interactions between the evanescent fields and the mirror or from the influence of the
non-zero magnetic field of the standing wave.

Nevertheless, as this mode can be excited in the case of the a silicon layer of only 300 nm (field
maps for it, presented in the following sub-section, are similar for ones for thicker structures,
presented in Section G.6 of Appendix G), the most significant impact should be connected with

the mode fields. In the following sub-section, this excited mode is considered in detail.

The excited mode

As observed above, 2D periodic MIM arrays demonstrate different behaviour than 1D periodic
MIM arrays, both being placed at Ayes/4 from the mirror. This behavior is also different from
that of standard 2D periodic MIM arrays, i.e. placed on a mirror. Indeed, its critical coupling
curve has another type of dependence on the dielectric thickness h, and when the metal thickness
is decreased, h should be decreased to keep the critical coupling conditions. This difference
comes from another mode excitation. Here, the physical behaviour of 2D MIM above the mirror
at the critical coupling is considered in more detail. As structures with a thinner dielectric
layer is better suited for potential bolometric applications, the 2D periodic array with metal
thickness of 5-nm was chosen for this study. The other parameters are listed in Table 6.4. The
thinner dielectric layer also provides another advantage for the mode study: the lower layer of
the structure is as far away as possible from the mirror (compared to the other 2D MIM arrays
studied above and having thicker metal layers), decreasing thus the interaction of the evanescent
field with the mirror.

In general, the absorption of an optical antenna can be divided into two steps: (1) the way
in which the energy is collected by the structure (funneling effect) and (2) the way in which that
radiative energy is transformed into heat within the structure (optical losses). To study the first
step, consider the field maps around a MIM structure (of the array), placed at A/4 above the
mirror and at critical coupling conditions. The maps of the total fields as well as the map of the
time average Poynting vector are placed in Fig. 6.29 for different sections. They are sections of
the structure through its center in different directions, as shown in Fig. 6.30 (a). The structure
is denoted by a rectangular frame in the maps.

As already mentioned, the main difference from the 1D infinite MIM is the excitation of
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more complex fields of the mode. In particular, the magnetic field of the mode now also has a
H, component, and is excited around each metal layer (also outside the structure) in the same
way as the magnetic field around a wire carrying an electric current. As shown in Fig. 6.30 (b)
for the considered structure, the magnetic field of the mode has both H, and H, components,

while the magnetic field of the standing wave is close to zero in this region.

Norm E Norm H Norm S

Figure 6.29: Maps of the norm of the total fields (the electric field E and the magnetic field H ) and the
time-average Poynting vector S for different cross-sections, shown in the left column. The structure is
at the critical coupling, being placed at the \pes/4. White arrows represent the Poynting vector in the
logarithmic scale.

The electric field E (Fig. 6.29, left column) and the magnetic field H (Fig. 6.29, center
column) defined the behaviour of the Poynting vector S (Fig. 6.29, right column). The color of
the maps presents the norm of the vectors while the white arrows indicate their direction and
amplitude in logarithmic scale. It can be seen, that unlike a 1D MIM array, the energy comes
directly from above and below the structure, and the absorption appears on all sides of metal
layers (similar to classical 2D MIM arrays and unlike to 1D MIM arrays). Indeed, the numerical

integration of the Poynting vector in the simulation shows that about 65 % of energy reaches
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the metallic layer on one of its external faces and is absorbed at the air-metal interfaces. The
remainder (about 35 %) reaches the metal via one of its faces internal to the resonator and is
absorbed at the silicon-metal interfaces. It can also be seen that there is almost no energy funnel
effect in the z direction (along the length of the rectangle): about one percent (of 35 %) of the
incident energy comes in this direction, while the rest (34 %) reaches the air-silicon interfaces
following the y direction (zOz planes).

A more detailed description of the Poynting vector, showing the terms due to the fields of
the standing wave on the one hand and the mode on the other hand (in the same way, as in
Eq. 6.3), is provided in Fig. 24 — 26 of Section G.9, Appendix G. It can be seen that for the
both effects, the energy coming from the top and the bottom of the structure as well as funnel
effect in the y direction, are created by the product of the magnetic field of the mode by the
electric field of the standing wave.

It is also important to note that the thickness of the metal layer, which is much smaller than
the skin depth (5nm and 26 nm, correspondingly), influences the mode behaviour. As shown
in Fig. 22 of Section G.6 (Appendix G), in the case of a metal thickness of 35nm, a significant
funnel effect is observed in the z direction, similar to the MIM 1D mode. Numerical integration
of the time-average Poynting vector shows similar energy flows entering the structure in the x
and y directions. According to the numerical simulations, the funnel effect of the energy flow in
the z direction is excited by the mode fields (Fig. 27 of Section G.9). It provides the structure
with about 23 % of the incident energy, while about 26 % enters in the y direction, the rest
passing trough the top and the bottom of the structure. Thus, the significant decrease of the
metal thickness influences the funnel process. However, this influence has a minor role, as the
absorption also takes place at the upper and lower air-metal interfaces, and at the internal
interfaces also due to the funnel effect in the y direction.

In this way, in the case of a 2D MIM periodic array above the mirror, the energy flux comes
directly on the upper and lower metal surfaces and, by a funnel effect, on the side air-dielectric
interfaces. This behavior, different from that of an infinite 1D MIM array, appears to be due to
a more complex excitation of the magnetic field of the mode, which is strongest at the sides of
the structure.

A more complex behaviour of the fields and of the Poynting vector also leads to a more

complex decomposition of the electric current density (Fig 6.30 (c)®) compared to 1D MIM.

15also Fig. 23 of Section G.6, Appendix G
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Figure 6.30: (a) A schematic presentation of the cross-section planes, which cut the structure in the
middle in different directions, for field maps, presented in Fig. 6.29. (b) The field map of the components
of the magnetic field H, and H,. White arrows represent the magnetic field direction. (c) The distribution
of the electric field density on the metal layers of MIM, placed at the \..s/4 at the critical coupling.

A strong electric current is excited at the upper and lower air-metal interfaces (a significant
part of the incident energy gets there), and at the sides of the structure, in accordance with the
magnetic field of the mode. Moreover, this current density decomposition is similar to that of
classical 2D MIM, discussed in Section 6.4.3. Despite some differences on the funnel mechanism,
in both cases the funnel effect of the energy in the direction y (i.e. through the 2Oz air-silicon
interfaces) is due to the contribution of the electric field of the standing wave.

To summarize, the distribution of the mode fields is more complex for the 2D periodic MIM
arrays than for 1D periodic arrays infinite MIM, in both cases structures are placed at the
distance \cs/4 above the mirror. As a result of the limitation in the y direction, the magnetic
field and the electric current density are stronger on the sides of the structure, near its mid-
length, and for rectangular and cross geometries the magnetic field is excited above and below
the structure. As a result, the Poynting vector behaviour and the absorption mechanism are

also more complex. Part of energy comes from above and below the structure is absorbed
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in the top and bottom interfaces, and the funnel effect of energy in the y direction appears.
Additionally, in the case of 2D MIM, the electric field of the standing wave forms the Poynting
vector, directing the energy to the structure interfaces, while for 1D MIM all energy absorption
is due to funneling, formed by both the electric and magnetic fields of the mode. All mentioned
leads to a different critical coupling curve and different behaviour when the metal thickness
changes. Opposite to 1D MIM, a reduction in metal thickness induces a reduction in dielectric

thickness to maintain critical coupling conditions.

The optical response of 2D periodic MIM arrays with different metal thicknesses

Some optical properties of 2D MIM structures with different metal thickness are considered
here. At first, let us consider the absorption spectra (Fig. 6.31) for structures with different
thicknesses, which parameters are presented in Table 6.4. The red curve corresponds to the
structure with metal thickness of ¢t = 5nm, the other parameters being p = 8.3 um, [ = 3.05 um,
lo = 305nm, h = 300 nm; the purple curve to a metal thickness of ¢ = 20nm with p = 5.5 um,
I = 2.88um, lo = 280nm, h = 2.7 um; and the blue curve to a metal thickness of ¢t = 35nm

with p = 9.6 um, | = 2.80 um, lo = 280nm, h = 2.7 um.
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Figure 6.31: Absorption spectra for critically coupled 2D periodic arrays of MIM with different metal
thickness, placed at the distance 2.5 um from the center of the structure to the mirror, at the mormal
incidence. Red corresponds to the structure with the metal thickness t = 5nm, purple — with t = 20nm,
blue — with t = 35 nm. Lines break at points A = p.

From Fig. 6.31 it can be seen that the decrease in the cross section of the metal layer leads
to an increase in the width of the absorption spectrum. The widths of the considered structures
are relatively close (maximum variation < 8%) while the thickness of the metal layer increases

significantly (up to 7 times). The structure with the smallest thickness (¢ = 5nm) has the
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widest spectrum, and an increase in this thickness leads to a decrease in the spectrum width.
This effect is connected with the change in the optical losses. An increase in the metal thickness
results in a non-linear increase in the effective section of the metal bar in accordance with the
distribution of the electric currrent, reflecting the skin effect (Section 6.4.3). As a result, the
resistance of the metal bar decreases as well as the resistive losses. The other parameters must
then be adjusted to maintain the critical coupling conditions. In the end, an increase in the
quality factor of the resonance is obtained.

A similar effect is expected with an increase in the width of the structure as it also defines the
effective cross-section (also non-linearly). This explains why the response of the square-shaped
geometry is narrower than the rectangle-shaped one in Fig. 6.24.

From this point of view, absorbers with different metal section (the thickness and the width)
can serve different aims: rather the wide or narrow absorption band is necessary. Also, a few
structures with different characteristics can be placed in one period to cover the wide range
of wavelengths. However, from the practical point of vies, the change of the width is simpler
compare to change the thickness. It allows to fabricate a few different arrays on the same
substrate and in the same period (to cover a wider spectral width). The influence of the metal
width is discussed mode detailed in Chapter 7 for IMI structures.

It also can be noted that for the thicker metal a new peak, connected with interaction of the
evanescent field with the mirror, arises. This can be overcome with the decrease of the period
due to change of the dielectric thickness.

The dependence on the distance from the mirror for tree structures with different metal
thicknesses at the resonant wavelength is presented in Fig. 6.32 (a). The dependence for the 5 nm
metal structure has a periodic character, and at a minimum it drops to zero, thus it resembles
the 1D MIM case, although it is more symmetric and has wider range of high absorption. For the
structure with 20 nm metal thickness the dependence on the distance to the mirror is periodic
as well, but the minimum of absorption is about 0.3. The reason for this behavior is the high
distance between the two metal plates. As a result of a significant distance (higher than A\.s/4),
one of the metal layers is always in a high electric or non-zero magnetic external fields, which
means that effectively each of the layers can operate as a separate antenna.

At the same time, the dependence for a structure with 35 nm metal thickness has two different
regions. The structure is critically coupled at the distance 2.5 ym from the mirror, with strong

absorption at adjacent distances. However, this peak is not repeated, but is replaced by a peak
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with absorption at the level 0.25. And the pattern from the range 5.5 — 10.5 um is repeated
further. This difference is explained by the fact that the evanescent mode takes part in the
creation of the critical coupling. As the distance from the center of the structure to the mirror
is 2.7um, the distance from the bottom of bottom metal to the mirror is 1.315um. Thus, the
amplitude of the evanescent mode can be strong enough, and thus be reflected from the mirror
and change the field compositions around the bottom metal. At large distances, the field of
the evanescent mode can no longer reach the mirror, and the field pattern changes significantly.
Therefore, at short distances, the structure absorbs a significant part of the radiation, while at
longer distances only a small part. Although the structure with the metal thickness of 20 nm is
placed at the same distance from the mirror, the absorption curve for it remains periodic. There
is no contradiction, it only means that in this case the amplitude of the evanescent mode is not

strong enough to reach the mirror and make a significant contribution to the fields composition.
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Figure 6.32: Absorption spectra for structures critically coupled at the wavelength 10 um, placed at the
distance 2.5 pm from the center of the structure to the mirror: (a) in dependence on the distance from
the mirror, and (b) in dependence on the incident angle. Red corresponds to the structure with the metal
thickness t = 5nm, purple — with t = 20 nm, blue — with t = 35nm.

Angular dependencies for three critically coupled structures with different thicknesses at the
resonant wavelength 10 um are presented in Fig. 6.32 (b). For all structures computations were
performed for the case of TE polarisation. For this polarisation the electric field has only the
E, component (i.e. if directed along longer side of the structure), while the incidence plane
is the yOz plane (i.e. orthogonal to the longer side of the rectangle). Thus the electric field
component of the incidence wave is kept the same, while its magnetic field has changing H, and
H, components. All tree structures demonstrate different dependencies. Mainly it is connected
with the period values, which leads to the appearance of a new diffraction order. In the case of

the structure with 20 nm metal thickness, the period is 5.5 um, and the high absorption value is
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observed in the range —30° — 30°. For two other structures the range of high absorption angles
is smaller due to higher period values, with sharp decreases on both sides.

To summarize, as a result of the different mode, arising at the critical coupling, the behaviour
of 2D MIM differs from an infinite 1D MIM. In the case of 2D MIM structures, a more complex
field of the mode is exited. That leads to change to the energy funneling character and to a more
complex electric current density distribution. As a result, the critical coupling curve is changed,
and keeping the critical coupling the dielectric thickness decreases when the metal thickness
decrease. Thus, the optimal 2D MIM structure has both a thin metal and a thin dielectric
layer. At the same time, the width and the metal thickness allow influence the response and the

effective index, allowing design structures with different characteristics.

6.4.5 Cross vs Rectangle

In the previous sections, it is demonstrated that the critical coupling conditions are possible for
various thicknesses of both the metal and the dielectric layers. In this Section, two types of MIM
geometry are considered, those giving the smallest volumes: rectangle-shaped and cross-shaped
MIMs. The rectangle geometry makes it possible to design MIMs with smaller volumes but
exhibits sensitivity to polarization. The cross-shaped geometry provides an insensitive response
to polarization but its volume is approximately twice as large. As can be seen from Fig. 6.22,
the geometric parameters for the critical coupling are not very different from one structure to
another. In both cases, the incident wave is polarized with the electric field along one of the
metal bars. In these conditions, let us consider the modes of these geometries at the critical
coupling conditions in detail and explain observed differences in the responses.

For this comparison, let us consider the 2D MIM with a thickness of 5 nm of the metal layer.
The parameter of the rectangular structure are: the period p = 8.3 um, the length | = 3.05 um,
the width Iy = 305 nm, the dielectric thickness h = 300 nm, the distance from the mirror to the
center of the structure is 2.5um. The cross-shaped structure consists of two identical orthogonal
rectangles with all the same parameters as those of a rectangular geometry structure. These two
rectangles intersect at their center. The absorption spectra of these two structures are presented
in Fig. 6.33. Compared to the rectangular structure, the cross-shaped structure has a resonance
shifted by about 250 nm towards the low wavelengths. Its spectral width (FWHM) is enlarged
by about 17% and its absorption at the resonance is slightly decreased by about one percent.

To understand the reasons for this behavior, let us regard field maps.
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Figure 6.33: The absorption spectra for the rectangle and the cross structures with the same parameters:
p=283um, ly = 3.05um, lo = 305nm, t = 5nm, h = 300nm. The distance from the mirror to the
center of the structure is 2.5um.

The electric field maps in various cross sections are presented in Fig. 6.34 for the two struc-
tures considered. They look a lot similar. The mode behaves like an electric dipole, and it is
the same for the upper and the lower metal layers. A difference for the Poynting vector plotted
in the top view is observed. It is due to the presence of the second (orthogonal) bar in the case
of the cross geometry. While there is no difference observable on the side view.

Rectangle Cross

K Top view (zy)

R Side view (22)

Figure 6.34: On the left: schematic presentation of the cross-sections, for for which the color maps of
the field on the right are plotted. The plane Oz is at the edge of the structure, yOz at its middle, and
xQOy is at the top of the metal layer. The maps present the norm of the electric field vector and the time-
average Poynting vector in the case of the rectangle and the cross structures with the same parameters:
p=83um,l=3.05um,ly =305nm, t=>5nm, h=300nm. The distance from the mirror to the center
of the structure is 2.5um. All maps are presented at the resonant wavelength: 10 ym for the rectangle
geometry and 9.75 um for the cross geometry. The sections planes are presented on the left: the xOy
plain on the top level of the top metal, the yOz plane at the center of the structure, the xOz plane at
the center of the rectangular structure and shifted to the w/2 for the cross structure (i.e. the edge of the
second rectangle). The color and arrow scales are the same for all the maps.

The magnetic field maps for the rectangular and the cross geometries are presented in
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Fig. 6.35 (a). On the top view maps, it can be seen that in the case of rectangular geome-
try, the strongest magnetic field is concentrated along the longer edges, with a maximum in the
center. For the cross-shaped geometry, this pattern is broken: the magnetic field in the area
of the intersection of the two rectangles forming the cross is greatly reduced. This behaviour
is associated with the electric current in the metal layers (Fig. 6.35 (c)). Due to the presence
of the second rectangle, the electrical current broadens, covering in this zone of intersection, a
width greater than that of the rectangles ls. Thus, although the total current can be conserved,
its density decreases and the distribution of the magnetic field changes. The side views also
shows the magnetic field decline in the area of intersection for the cross geometry. Meanwhile,
the Poynting vector maps are similar.

The break observed in the field pattern for the cross-shaped geometry helps to explain the
changes in the absorption peak (Fig. 6.33) compared to that of the rectangle: the blue shift,
reduced absorption and narrower spectral response.

The considered rectangular-shaped structure is a A/2 antenna. Any complex field of evanes-
cent waves can be presented as an effective wave, propagating along the structure in both
directions. This wave is reflected on the free edges of the structure with the effective phase ¢

around 7. Thus, the condition for the resonance can be presenter as:
2negkl + 2¢ = 2mm, (6.13)

where k = 27/) is the wave vector and m is a natural number. This equation expresses the
relation between the resonance wavelength and the structure length, presented in Chapter 5 and
applied to 1D MIMs: Ayes = 2negl.

In the case of rectangular geometry, this A/2 antenna can be presented as two A/4 antennas
connected by their ends. The phase shift due to the reflection at the free edges of the structure
remains ¢; ~ 7 while that at the connection of two antennas is ¢o = 0. This second reflection
can be materialized by an infinitely thin film of perfect conductor placed at the mid-length of
the structure. For each of these half-bars (\/4 antenna of the length I, /2) the condition for the

resonance of Eq. 6.13 becomes
Iy
27”Leﬂk‘§ + @1 + ¢ = 2mm. (6.14)
In the case of cross-shaped geometry, these antennas are separated from each other. Indeed,
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Figure 6.35: The maps of the norm of the magnetic field vector and the time-average Poynting vector
(a), and the electric current density ((b) and (c)) for the metal parts in the case of the rectangle and the
cross structures with the same parameters: p = 8.3 um, I = 3.05 um, w = 305nm, t = 5nm, h = 300 nm.
The distance from the mirror to the center of the structure is 2.5um. The schematic presentation on the
left of the plot (a) shows the sections for the color maps: Oz at the middle of the structure for rectangle
and in the plane at the edge of the second rectangle for the cross, yOz at its edge, and xOz at the top
of the metal. All maps are presented at the resonant wavelength: 10 um for the rectangle geometry and
9.75 um for the cross geometry. The sections planes are presented on the left: the xOy plain on the top
level of the top metal, the yOz plane at the side edge of the structure, the xOz plane at the edge of the
structure. The color and arrow scales are the same for all the maps.

a significant decay is observed in center of structure in the maps of fields and electric current.
Let us assume that this field gap can be modeled by introducing a finite thickness of perfect
conductor at the mid-length of the structure (as shown in Fig. 6.38 (a)). As for the rectangle-
shaped antenna, the evanescent field propagates along the main metal half-bar and is reflected
by the perfect conductor with a phase shift ¢o = 0.

In this model, the length of a single A/4 antenna is reduced compared to that of the rectangle,
which introduces a blue shift of the resonance (Eq. 6.14). Indeed, as shown in Fig. 6.36 and in

Fig. 6.37 (a), increasing the width w of the orthogonal (to the main bar along which the electric
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field is directed) bar blueshifts the resonance. From the field maps, it is clear that fields which
in the main half-bar are comparable to those observed in the rectangle, penetrate slightly in the
overlap region of the two bars constituting the cross. Thus, the reflection of the wave does not

appear exactly at the edge of the transverse bar but somewhere in the area where the two bars

overlaps.
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Figure 6.36: Absorption spectra of rectangular and cross-shaped antennas. The length of rectangular

antenna I, was modified to correspond to a response of cross-shape structures. The other parameters were
not changed, they are the same for all spectra: p = 8.3 um, lo = 305nm, t = 5nm, h = 300nm. The
distance from the mirror to the center of the structure is 2.5um.

To confirm this observation, the absorption spectrum of rectangular antennas was fitted to
that of cross-shaped antennas using only one free parameter: the length of the antenna. It is
important to note that the spectra thus found coincide perfectly, a few examples of cross and
rectangle geometry are shown in Fig. 6.36, there is only exception for w = 305 nm, where small
difference in the spectral width is observed. The lengths of the structures with rectangular shape
I, are shorter than one for the structures of the cross shape (I, = 3.05 um). Presented spectra
confirm the hypothesis of an operation with two shorter A\/4 antennas. The difference l., — I,

between the lengths of the rectangular and cross structures having the same peak position while

the other parameters'® are identical, is plotted Fig. 6.37 (b) (blue points) as a function of the

16Except the width of the transverse bar of the cross
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width w of the transverse cross bar. This dependence has a linear character and is fitted by the
blue line. In the same plot, a green line shows the w values. The position of the blue line is below
the green one, this allow to conclude that the length of the A/4 antenna of the cross-shaped
antenna is longer than just (I3 —w)/2. The reflection, therefore, occurs inside the overlap region
of the two crossing bars.

In fact, according to Eq. 6.14, the observed shift in figure 6.37 (b) could also be due to a
non-zero reflection phase shift ¢o . The discussion that follows would not be changed. The
simplicity of the model (one single parameter) as well as the excellent agreement of the spectra
with those of the shortened rectangles ( Fig. 6.36) suggests that this approach is preferable.

Using the notation from Fig. 6.37 (a), the effective length I’ of the antenna \/4 writes:

l/

z % + Sw. (6.15)

:5—

Here, dw characterizes the depth of the field penetration into the region of the overlap of two

bars and indicates the position of the reflection plane.
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Figure 6.837: (a) The absorption spectra for the cross structures with different width of the orthogonal
bar. Other parameters: p = 8.3 um, w = 305nm, t = 5nm, h = 300nm. (b) The difference of the length
of the rectangular (l1,) and cross (l1.) structures, providing the absorption peak at the same resonant
wavelength (different for each point). The other parameters are the same, taken from the plot (a). Points
present direct result from the numerical simulations. The blue fitting line is ax + b, a = 0.39 £ 0.02,
b= —3.64 £ 1.78. The green line shows function w/2, and is used to indicate which difference would be
observed in the case of reflection on the edge of the orthogonal cross bar.

In this way, the change in the length of the antenna A/4 in the case of a cross, compared to

that of the rectangle, is

_qpy_h1__w
ol=1 3 5 + 0w, (6.16)

The schematic presentation for this case is shown in Fig. 6.38 (a). Then, introducing the modified

length in Eq. 6.14, the resonant conditions for the resonant wavelength A\, = Ao — d\ (where \g
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is the resonant wavelength in the case of the rectangular geometry, 6 = 0) is

dnegm 11
et b =92 Nl
" 5/\(2 +0l) + P11+ P2 mm, (6.17)

or, in a first approximation ¢; ~ 7w and ¢2 =~ 0,
4neﬁ(% +dl) = Xg — SN (6.18)
Finally, the shift of the resonant wavelength is given by:
O\ = —4negdl = 2negw — 4dnegdw. (6.19)

As a result, the shift of the resonant wavelength depends on two components. The first term
(proportional to w) introduces a linear shift of the resonant wavelength. The second term dw is
also a function of w. It should be noted that for widths higher than I, the field map becomes
more complex and another mode is excited. Indeed, the upper limit of the width is w = I; for
which the antenna becomes a square. The mode is then very different from that of the rectangle
(see Section 6.4.2). For the intermediate cases where [y < w < [j, a complex mixture of between
these two extremes is expected, the study of which stays outside the scope of this work. Thus,

the discussion below is limited by the case w < Is.
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Figure 6.38: (a) the schematic presentation of the cross MIM structure (top view), the central part of
which is occupied by the perfect conducting layer. In this way, the part of the two bar overlap region
is excluded from the consideration, and the length of one \/4 antenna is ! = % — 5 +ow. (b) The
wavelength shift for the cross-shaped antenna with different width of the orthogonal bar. The red 2negw,
the blue line aw + b, a = 2.60 £ 0.01 and b = 1.46 + 1.44, yellow is the sum of both lines .
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Fig. 6.38 (b) shows the dependence of the shift of the resonant wavelength d\ on the width
w of the transverse rectangle. In the considered case Ao = 10 um, and the other parameters
are p = 8.3 um, Iy = 3.05 um, lo = 305nm, t = 5nm, h = 300nm. The red points in the plot
are results of numerical computations and the solid lines are built according to the model of
Eq. 6.19. The effective index of the mode neg ~ 1.64 is found for the structure of the rectangular
geometry and, as the dielectric and metal thicknesses are kept constant for all geometries, this
value is also applied for the cross geometry.

From Fig. 6.38 (b) it can be seen that the red dots demonstrate linear behaviour. The red
line in the graph shows the first linear term 2n.gw. The blue line is a fitted line for the expression
Inegdw = 2negw — O, and, the yellow line is their difference (i.e. 0A = 2negw — 4negow). It
can be seen that the yellow line () fit perfectly all points except the last one, for which the
mode starts to change its character. In this way, the penetration depth dw of the field into
the overlap region increases with the growth of the w, but remains smaller than w/2. This
result is consistent with the difference between the lengths of rectangles and crosses, presented
in Fig. 6.37. For example, for the width w = 150 nm the value dw, found from Fig. 6.38 (b), is
about 59.7nm. Thus, the length of the rectangular antenna, corresponding to this cross-shaped
antenna, should be w — 2 - dw ~ 31 nm shorter compare to the cross-shaped one. Indeed, this
value is close to that, presenter by a blue line from Fig. 6.37 (b) for this width.

The considered model makes it possible to explain the three differences observed between
cross-shaped and rectangle-shaped geometries. The overlap region of two orthogonal bars of the
cross-shaped structure leads to the decrease of the effective length of the A\/4 antennas compare
to the rectangular geometry. As a result, the resonant conditions change, decreasing the resonant
wavelength (blueshift). In the overlap region, the energy flow feeding the optical losses in the
metal is greatly reduced as it can be seen in Fig. 6.35. The critical coupling condition is no longer
satisfied. As a result, the absorption decrease compared to the rectangular structure (Fig. 6.33),
and the width of the spectral response decreases, as for any under-coupled resonator.

In the considered model, only the change of the width of the transverse bar is considered,
while the centers of the two intersecting bars have remained unmoved. In the light of considered
model, a shift of one of the centers with respect to the other would transform the symmetric
system of two equivalent A\/4 antennas into an asymmetric system of two antennas of different
length (i.e. with different resonant wavelength). Moreover, this shift also leads to the excitation

of the orthogonal metal bar due to the asymmetry of the electrical currents. This more complex
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case has not been studied in this work despite the interest in the questions it poses. This will
be the subject of further study.

To summarize, the 2D MIM modes of the most compact geometries among those considered —
rectangle and cross — were compared. The response of these structures with the same parameters
is indeed very close. The only difference appears at the intersection of two rectangular bars for
the cross geometry. In this region the actual width of the resonator is much wider leading to a
strong reduction of the electric current density (i.e. the electric field). As a result, the resonance
peak of the cross is blueshifted with different characteristics. To explain this difference, a new
approach for the MIM mode is presented. In this approach, the A\/2 antenna is replaced by
the two antennas A/4, separated by a conductive plane. While these two descriptions give the
same result for the rectangle-shaped antenna, this is not the case for the cross-shaped antenna
for which the actual length of each half MIM resonator is reduced, leading to a blue shift. For
width of the transverse bar smaller than that of the main bar, the resonance shifts linearly with
the width, corresponding to an increase of the width of the separating conductive plane. The
application of this model makes it possible to explain all the differences observed between the
two geometries and opens perspectives for reconsidering the MIM mode approach and for a more

in-depth study of complex MIM structures.

6.4.6 Comparison of 2D and 1D periodic arrays

In this Section, rectangle and cross geometries for 2D MIM arrays are compared to 1D arrays
of MIM, in both cases arrays are placed at A.es/4 above the mirror.

The absorption spectrum of a 1D MIM array was calculated (the green curve in Fig. 6.39)
for the same parameters as those of rectangular-shaped 2D MIMs at critical coupling (Fig. 6.33:
t = 5nm, h = 300 nm dielectric, Iy = 3.05 um, p = 8.3 um. The maximum value of absorption
is low, and the system is definitely under-coupled. It is possible to optimize it by reducing
the period, while keeping the same thicknesses of metal (5nm) and dielectric (300nm). The
optimized absorption curve is presented in Fig. 6.39 in violet. It this case, the length [; is
0.99 pm, and the period is 1.05 um. The maximum of absorption is about 52%, what is far from
a critical coupling. The system is still under coupled, and a significant increase in the ratio
/p would be necessary to obtain the critical coupling conditions, but this is no longer possible
because the period is almost equal to the length.

This example demonstrates the difference between 1D and 2D arrays of MIM: due to limita-
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tion in the invariance direction, the magnetic field becomes non-homogeneous in the y-direction.
In 2D MIM, the highest current density occurs at the sides of a structure, providing greater
absorption than in 1D MIM. Thus, critical coupling conditions can be achieved with 2D MIMs

having a finer metal and dielectric as well as a lower /1 /p ratio than 1D MIMs.
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Figure 6.39: The absorption spectra for the 1D MIM structure, placed at the distance 2.5um above the
mirror. The metal thickness is bnm, and the dielectric spacer thickness is 300nm. The green curve
represent the array of 1D MIM with the length 1y = 3.05 pm and the period p = 8.3 um, for the violet —
Iy =099 um, and p = 1.05 um.

The total volume density can be compared for 1D MIMs and 2D MIMs. In Section 6.3.4, the
minimum total volume density was found (wy &~ 270 nm) for the 1D periodic MIM arrays. For
comparison, let us compute this value for the rectangular and cross geometries. As mentioned,
for a rectangular 2D MIM, the total volume density is wy = (1 - la/p?) - (2t + h). For the
rectangular structure considered in this Section, wy ~ 4.2 nm. For the cross geometry this value
is calculated as wy = ((211 - lo — 13/p?) - (2t + h), and for the considered geometry (the resonant
wavelength is shifted a bit from 10 um) wy ~ 8nm. In the same time, the minimal density
value wy for the infinite 1D MIM array at the distance A,¢s/4 above the mirror is about 270 nm.
Thus, 2D MIMs allow heat to be concentrated in much smaller volumes than 1D MIMs: 33 times
for cross-shaped MIM and 64 times for rectangle shaped MIM. This is useful, in particular, for
bolometers applications.

In conclusion, 2D MIMs allow to reach the critical coupling conditions for much smaller
volumes than 1D MIM due to the structured field along the y direction. In this way, the array
of 2D MIM allow to concentrate the generated heat in much smaller volumes than 1D MIM,

which is best suited for bolometric applications.
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Conclusion

In this Chapter, the possibility of using MIM structures, placed at unusual location — at the
node of the magnetic field — for absorption applications has been considered. It has been found
that an array of MIM, all of whose layers are structured, can be critically coupled to the incident
wave although placed at the distance A,¢5/4 above the mirror.

In the case of a 1D periodic array of infinite MIM, the excited mode at the critical coupling is
similar to the classic MIM mode. If this 1D MIM array is placed at \,.s/4 above the mirror, the
funnel effect directing a flow of energy to the resonator is provided by the magnetic and electric
fields of the excited MIM mode, unlike the classic MIM configuration, where the coupling is
provided by the magnetic field of the standing wave and the electric field of the mode. This
specific condition of the critical coupling leads to a shift of the critical coupling curve towards the
highest dielectric thicknesses when the metal thickness is reduced. This is connected with the
increase in the resistance of the metal layer which varies inversely with its effective thickness tqg.
However, the volume density for 1D MIM structures at the critical coupling is far from the set
objective: for the smallest volume densities, the ratio [/p is high, i.e. the heating is distributed
over all the surface, and for the smallest [/p the volume density is higher than 300 nm, which is
far from desirable values.

2D periodic MIMs placed at A/4 above the mirror demonstrate much smaller values of the
volume density compare to 1D MIM. It is possible to achieve due to a different mode, arising at
the critical coupling, which appears as a result of the limitation in the lateral direction. Contrary
to the magnetic field of the 1D MIM mode, which is invariant in this direction, this 2D MIM
mode is characterized by two components of the magnetic field, with the strongest values at the
sides of the metal patch near its mid-length. The electric field of the mode has a dipole-like
distribution along the length of the structure.

In turns, the change in the field leads to modification of the energy funneling character and
to a more complex electric current density distribution compare to 1D MIM. In the 2D MIM
case the coupling is mostly provided by the electric field of the standing wave and the magnetic
field of the mode. In this case, a significant part of the energy comes from above and below the
structure and is absorbed in the air-metal interface. Additionally, a funnel effect of energy in the

y direction (trough planes built from the length and the thickness) appears. Consequently, the
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electric current density has more complex compare to 1D MIM decomposition. In the particular
case of a rectangular-shaped structure, the electric current distribution in each metal layer can
be described with four exponential terms, with the maximum at the edges at the mid-length.
For other geometries this tendency is saved, although distribution is more complex.

As a result, the shape of the critical coupling curve is different for 2D MIM placed at
Ares/4 above the mirror. Keeping the critical coupling, the period decreases when the dielectric
thickness increases. Moreover, for thinner metal layers this curve is shifted in left, towards
smaller dielectric thickness, which is opposite to the 1D MIM. Thus, for 2D MIM the structure
it is possible to achieve the critical coupling for the metal thickness of 5 nm and the 300 nm thick
silicon layer. As a result, much smaller compare to 1D volume density is possible to achieve for
2D MIM, 4.2 nm for rectangular structure and about 8 nm for the cross one.

Being a complex function of the skin depth and the conductivity, the electric current decom-
position defines losses in the metal. It was found, that among structures made of four popular
metals, suitable for absorption applications (gold, silver, aluminum, and copper), having a dif-
ference in both parameters, gold one exhibits a bit smaller total volume and thermal capacity,
thus can be considered as optimal among studied structures. However, as the thickness of the
dielectric layer at the critical coupling is significantly higher than the metal layer, it provides
the main impact on the structure volume, and the difference in metals is not significant compare
to it.

The width of the structure allow influence the response and optical losses, allowing design
structures with different characteristics. The study of four simple MIM shapes (square, disk,
rectangle (a.r. = 0.1) and cross (a.r. = 0.1)) shows division into two groups, depending on the
width. As the metal thickness was kept the same, for the same dielectric thickness only the
width influences a structure response due to the change in optical losses. Thus, the same [/p
ratio requires a smaller dielectric thickness for the disk and square geometry. At the same time,
the total volume of the structure is smaller for the rectangle and cross geometries, thus, they are
defined as the most optimal for bolometric applications: the rectangular MIM is for the problem
where polarisation is essential, and cross MIM — for non-polarized radiation.

At the same polarisation along the length, the cross-shaped and rectangular structures show
a similar response, but for the same length, the resonant peak of the cross-shaped structure
is blueshifted relative to that of the rectangle. Also, its absorption is slightly decreased. This

difference can be explained by modeling the cross-shaped structure by two \/4 antennas, sep-
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arated by a conductive plane, instead of the A\/2 antenna of the rectangular structure. The
application of this model makes it possible to explain all the differences observed between these
two geometries and opens perspectives for reconsidering the description of the MIM mode and
for a more in-depth study of complex MIM structures.

2D MIM structures with a metal thickness greater or equal to the skin depth as well as a
dielectric thickness higher than 0.1\,.s/4 were observed. For such large distances between the
metal bars, the coupling of the surface plasmons carried by these interfaces becomes very weak.
This suggests that the structure can be simplified. As it operates in the presence of the mirror,
it is therefore possible to use the layer which absorbs only half of the incident radiation. Thus,
it is reasonable to consider structures with only one metal layer: insulator-metal-insulator (IMI)
resonators. Their analysis, when placed at the distance \.s/4 above the mirror is presented in

the following section.

168



Chapter

Insulator-metal-insulator structures

7.1.

Introduction

In this Chapter, some results, both numerical and experimental, illustrating that the Insulator-
Metal-Insulator (IMI) structure has a potential to be a good resonator for bolometer applications
are presented. Beyond these preliminary results, a complete study will be necessary to grasp
the concept of physics involved in these structures.

In Chapter 6, it was demonstrated that 2D MIM structures can be critically coupled to
the incident wave when located at about A\/4 above a mirror. In this case, the structure can
be much smaller than the wavelength, with a dielectric layer 300 nm thick and metal layers
5nm thick. However, the largest contribution to the volume of these structures comes from the
dielectric layer. Since a structure of smaller dielectric volume would present a greater potential
for bolometers, it should be asked whether another type of resonator would be better suited for
this kind of application.

On the other hand, it is shown in chapter 6 that the same field and current distributions
appear on the two metallic layers of the MIM structure. It is also shown that the dielectric
thickness for some structures can be as large as 0.3 \,.s/n at the critical coupling. In this
case, each layer can function independently, as a pair of separate resonators. It is well known
that the maximum absorption of a single thin film in air is 50% and that the introduction of
a mirror, transforming this two-port system into a single-port system, allows to overcome this
limitation [87]. In this case, a single metal layer should be sufficient. That is to say, an insulator-
metal-insulator (IMI) structure placed in front of a mirror should be able to be critically coupled

to an incidence wave.
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An IMI structure is only composed of a single metal layer surrounded by dielectric. Its
geometry allows it to behave like an electric dipole, like one of the metal bars of MIM. This
dipole can be excited by the electric field of the incident wave. In this case, the maximum of
the electric field of a standing wave formed by the mirror is the optimal position to couple these
electric dipoles to the incident wave. Thus, the metal volume can be decreased by a factor of
two compared to that of an MIM, and the structure becomes easier to fabricate. In addition, the
condition imposed by our industrial partner to keep the structures at a distance A,.s/4 above
the mirror, corresponds to maximum excitation of the IMI antenna, unlike the case of MIMs.

In this Chapter, the optical properties of these optical antennas with a single metal layer
are explored. Similarly to the previous Chapter, the resonators are placed at the distance \/4
above the mirror, i.e. at the maximum of the electric field of a standing wave formed by an
incident wave reflected by the mirror. As stated earlier previously for MIM structures, the
response of cross-shaped geometry is insensitive to polarization while that of rectangle ones is
very sensitive to it. Also, the cross-shaped geometry provides an optical response similar to that
of the rectangular geometry provided the light is polarized along one of the axes of the cross.
Thus, in this Chapter, for the sake of simplicity, only rectangular geometry is considered. The
metal slab is completed with a dielectric membrane that mechanically supports the metal part
above the mirror, and also provides additional parameters to adjust the optical response of the
structure.

This Chapter is organized as follows. First, a description of the geometry of an IMI array
at the distance A,.s/4 above the mirror is presented in Section 7.2. Then, the excited mode
in this structure is analyzed under the critical coupling conditions in Section 7.3. It is shown
that, similar to MIM structures under similar conditions, the electric field of the mode has a
dipole-like distribution along the length of the metal bar, while the magnetic field is excited
at the side edges, with the maximum near the mid-length. The coupling is provided by the
electric field of the standing wave and the magnetic field of the mode. After that, the influence
of geometric parameters on the optical response of an array of IMI antennas is considered in
Section 7.4. It is shown that the width and thickness of the antenna define the effective index
of the mode, as well as the influence of section of the metal on the non-radiative losses in the
antenna and the conditions of the critical coupling.

The optical response of an array of IMI antennas at the distance A,¢s/4 above the mirror is

presented in Section 7.5. The IMI arrays demonstrate a large manufacturing tolerance which
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separate them from the mirror: the absorption being almost total in a band approximately one
micrometer wide. The antennas of rectangular geometry, which are sensitive to the polarisation
of the incident radiation, demonstrate a high tolerance to the incident angle if the electric
field is orientated along it. They have no significant absorption when the electric field has the
orthogonal direction. It is also shown that IMI arrays placed at Ayes/4 above the mirror has the
smallest volume density among considered structures. The simplicity of IMI arrays also allows
to model them as a point dipole array, as presented in Section 7.6. The dipole approximation
predicts their absorbance spectra using the polarizability of a single antenna, which avoids time
consuming full-wave simulations.

Finally, the experimental validation of the quasi-total absorption for IMI arrays placed at
A/4 above the mirror is presented in Section 7.7. A good agreement between the experimental

data and numerical simulation is shown.

7.2.

The studied structure

In this Section, the geometry of the studied IMI arrays is described. All other results, unless

otherwise specified, are provided for this type of structure.

Figure 7.1: The considered in this Chapter IMI structure, which is a rectangular metal bar on a dielectric
membrane, placed above a mirror. In the right the measures of metal rectangle are presented.

Typically, an IMI structure consists of three layers of materials: a metal layer interposed
between two dielectrics (insulator). In this Chapter the same materials as in Chapter 6 are
chosen. The top dielectric layer is air (or vacuum), the metal one is gold (¢ = —3792 + i825 at
10 um), and the lower dielectric layer is composed of a silicon membrane (¢ = 11.56 at 10 um)
for the mechanical support and an air layer (or vacuum). Again, constant dielectric values are

important for a rapid search for the optimum response, as well as for separating the influence
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of geometric parameters from material properties on the response of the structure.

The schematic presentation of the IMI structure is shown in Fig. 7.1. The structure is placed
at the distance d above the mirror (a perfect electric conductor), and this distance is measured
from the lower edge of the dielectric. In numerical computations, the thickness of the membrane
is 300 nm, as for this value a flat membrane of a large area can be produced [148].

The system is periodic, with the period p equals in both directions. The metal part is a
rectangular slab of thickness ¢, width w, and length [. The membrane is considered as a plane-
parallel plate of thickness h which covers the entire illuminated surface. The incident wave
comes from the top. All numerical simulations were performed with the multiphysics simulation
software COMSOL Multiphysics. In these simulations, a port is placed at a distance of one
wavelength above the studied structure. For most sections the structure is optimized for the

wavelength 10 pym.

7.3.
The IMI mode

In this Section, the fundamental mode of the IMI structure is analyzed at the critical coupling
conditions under normal incidence, and physics of the coupling process is described on the base
of the Poynting vector. Without limiting its scope, the study is started for a structure with
a metal thickness of 20mm, after which other thicknesses will be considered. For a silicon
membrane thickness equal to h = 300nm, the critical coupling conditions were found for a
period p = 3.18 um, a length of the structure I = 1.8 um and a width w = 200nm. The
absorption spectra for this structure is presented in Fig. 7.2.
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Figure 7.2: The dependence of the absorption on the wavelength for the IMI structure with the parameters
p=318pum, l =1.8um, w=200nm, t =20nm, h = 300 nm. The distance to the mirror is 2.5 um.

To consider field maps, let us specify the planes which are used for their presentations. They
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are shown in Fig. 7.3 with respect to the metal bar!, and their choice is connected with the
specificity of the fields. The orientation of the electric and magnetic fields of the incident wave

are also indicated in Fig. 7.3.

(a) (b)

Figure 7.3: Planes, for which field maps are shown in Fig. 7.4. (a) Planes is for the electric field maps:
the Oy plane on the top of the metal, xOz plane at the middle of the metal bar and yOz plane at this
edge. (b) Planes is for the magnetic field maps: the Oy plane on the top, Oz at the edge, and yOz at
the middle of the metal bar. On both plots, a red arrow indicates the direction of the electric field of the
incident radiation, and the blue one - of the magnetic one.

The field maps at critical coupling are presented in Fig. 7.4. It is worth to mention that for
the side views, the metallic area is represented by a thin line while the membrane is drawn as a
rectangle of the 300 nm thickness (from 0 to 0.3 um on the x-axis). In the maps, it contains a
few vertical lines, which are the result of the technical solution designed with the aim to build a
mesh physically suitable for numerical computations. As a result, the membrane is divided into
sectors, as shown on one of the maps.

The distribution of the electric field norm and the magnetic field norm at the metal level is
similar to that of 2D MIM structures. The electric field of the mode is dipolar in shape with
maxima at the ends of the metal bar. The magnetic field is maximum along the longest edges
of the metal bar. Similar to 2D MIM structures, the flow of the Poynting vector is directed
towards the center of the structure in the top views (xOy plane), and towards the metal layer
in the side views (xOz and yOz planes).

It can also be noticed that in the side views of the second and third rows of Fig. 7.4, that
the fields are asymmetrical with respect to the plane of the metal patch. They have stronger
amplitudes deeper in the dielectric membrane than in the air. However, as demonstrated in
Section H.2 of Appendix H, it does not introduce significant asymmetry in the electric current
distribution in the metal.

The Poynting vector represents the energy flows thus the regions of the metal bar towards

which a maximum of Poynting vector points are those where the absorption is maximum. Indeed,

! These field maps are presented for the complete system with the membrane and the mirror. To make the
figure 7.3 more readable only the metal bar is presented.
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Figure 7.4: Field maps of the norms of the electric and the magnetic fields on the different sections for
the structures with parameters p = 3.18 um, Il = 1.8 um, w = 200nm, t = 20nm, h = 300nm, placed at
the distance 2.5um from the mirror. The white arrows are for the Poynting vector, which is presented in
logarithmic scale. The maps of the Poynting vector for the top and side (xz) and xz views of the electric
field have the same scale, while for two remaining (yz) maps the same arrow length corresponds to the 2
times smaller amplitude.

as shown in the current density map on the metal (Fig. 7.5), the strongest electric currents
occur on the lateral edges of the long sides of the metal bar, as observed above for 2D MIMs.
Furthermore, the distribution in the direction of the thickness of the metal seems to be uniform
for this thin metal layer (¢t = 20 nm).

The electric field of the incident wave plays an important role in the coupling process. As
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Figure 7.5: The current density on the surface of an IMI antenna in the critical coupled array with
parameters p = 3.18 um, | = 1.8 um, w = 200nm, t = 20nm, h = 300nm, placed at the distance 2.5um
from the mirror. (a) The top and (b) the side views.

shown in Fig. 28 of Section H.1, Appendix H, the energy flow to the antenna is provided by
the mixed component of the Poynting vector E; x H,,, where E; is the electric field of the
standing wave, and H,, is the magnetic field of the mode. The energy arriving in the metal
by its upper surface (air-metal interface) and its lower surface (metal-silicon interface) is given
by P, = E;;Hp,, while the component P,, describing the flow of energy arriving by the lateral
surfaces (zOz planes), is written E;; and H,y,,.

Numerical integration in the COMSOL simulation for the structure with parameters p =
318 um, I = 1.8 um, w = 200nm, t = 20nm, h = 300 nm shows that under critical coupling
conditions, about 45% of the incident energy comes into the metal trough the top air-dielectric
interface, and about 41% trough the bottom metal-silicon interface. The rest of the energy
(14%) passes through the side faces of the metal 2Oz (equal amount for both sides).

To summarize, the IMI array can be critically coupled when placed at the distance A.s/4
from a mirror. The excited mode in this case looks like an electric dipole mode, with the
maximum of the electric field at the antenna ends (in respect to the length), while the maximum
of the magnetic field is on the sides at the mid-length. The electric current decomposition on
the metal bar seems similar to that observed for MIM antenna array at the same distance above
the mirror. The location of the IMI antenna in the anti-node of the electric field of the standing

wave is crucial for the coupling process, as it is provided by the electric field of the incident wave
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and the magnetic field of the mode. The influence of the geometric parameters of the metal bar

on the critical coupling is presented in the following Section.

7.4.

The antenna geometry

In this Section, the critical coupling conditions for the studied IMI structure, placed at
the distance 2.5 um above the mirror (Fig. 7.1) are considered in detail. The influence of the
geometrical parameters of the IMI antenna on the array response and losses in it are discussed.

The critical coupling arises when the incident energy is equal to the non-radiative losses.
Since the permittivity of the membrane has been chosen as a real number and the mirror is
considered perfect, absorption only occurs due to the heating of the metal. Thus, the metal bar
defines the non-radiative losses. In this way, setting the parameters to achieve critical coupling
relies on two processes: (i) changing the parameters of the metal bar to control losses and (ii)
changing the period to control the incident power per antenna. In this way, balancing these two
values allows to maximize the absorption and, in some situations, to obtain the critical coupling.

As the length [ of the structure defines the resonant wavelength (similar to Chapter 6), only
two geometric parameters of metal bar (its width w and its thickness ¢) remain free to reach the
critical coupling conditions at the given wavelength. Below it is shown than they modify both
the resonant wavelength and the Q factor. The distance from the mirror to the bottom of the

membrane is fixed in this Section, d = 2.5 um, as the resonance wavelength A..s = 10 um.

7.4.1 The metal width

At first, let us consider the influence of the width. Fig. 7.6 (a) shows the absorption spectra for
three structures of different widths, while the other parameters are unchanged: p = 3.18 um,
I =18um t =20nm, h = 300nm. It can be seen that as the width w increases, the resonant
wavelength blueshifts. That indicates that the effective mode index decreases as the width of
the antenna increases.

Oppositely, the Q factor increases as the width of the metal increases. As the period remains
the same, i.e. the incident power is constant, only the non-radiative losses are modified when
the width w changes. As the width w = 200 nm corresponds to the critical coupling conditions,
the other two spectra correspond to the under-coupled and over-coupled cases. For the under-

coupled case (w = 150 nm), the non-radiative losses are larger than the incident power therefore
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the Q factor is smaller than that at critical coupling. For the over-coupled case (w = 250 nm),
it is the reverse. Also, it is worth to note that for a higher width, the asymmetry level on the
right side of the absorption spectrum is smaller than for structures with a smaller width.

Structures of different width can be critically coupled at the same wavelength. To do this, as
a first step, the antenna length | must be adjusted to match the desired wavelength. The length
of structure of greater width must be increased, since the effective index of the mode decreases
as the width increases. After that, the period must be tuned to recover the critical coupling
conditions. As the smaller width structure is under-coupled, its period should be reduced. On
the other hand, that of the structure of greater width must be enlarged. The parameters for the
critical coupling of the three structures at the 10 ym resonant wavelength are shown in Table 7.1.
The corresponding absorption spectra are plotted in Fig. 7.6 (b). The quality factor of these
structures goes from 5 for the blue curve to 7.3 for the purple one. Thus, there is a way to deal
with the Q factor of the IMI structure.

Table 7.1: Critical coupling parameters at the resonance wavelength 10 ym for IMI rectangle structures
with different metal widths. The membrane thickness for all structures is h = 300 nm.

Period p, pm Side length Side width Gold thickness Q factor
I, pm w, m t, nm
2.80 1.77 150 20 5.0
3.18 1.80 200 20 6.4
3.4 1.839 250 20 7.3
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Figure 7.6: (a) Absorption spectra for the structures of different widths, but the same other parameters:
p=318um,l = 18um, t = 20nm, h = 300nm. (b) Absorption spectra for the critically coupled at
the 10 um wavelength structures with different width. Blue —w = 150nm, red — w = 200 nm, purple —
w = 250nm. Other geometrical parameters, corresponding to a given width, are provided in Table 7.1.
The distance from the mirror is 2.5um for both figures.
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7.4.2 The metal thickness

The metal thickness also affects the coupling by changing both the resonant wavelength and
the Q factor. The absorption spectra of three structures with different metal thicknesses while
the other parameters are the same, are presented in Fig. 7.7 (a). The increase of the metal
thickness leads to blueshift. Thus the increase of the metal thickness leads to the decrease of
the effective index of the mode. Meanwhile, as the metal thickness increases, the Q factor also
increases: Q = 6.4 for t = 20nm, Q = 13.4 for t = 40nm, Q = 22.9 for ¢ = 80 nm. However,
as the thickness increases, but the incident power is retained, the coupling decreases. Critical
coupling at a given wavelength can be achieved for structures of different thickness by varying

the length and period, as above for the case of different widths of the metal bar.

7.4.3 The cross-section

As the width and thickness of the metal bar affect both the effective index of the mode and the
absorbed power, it is interesting to consider the cases where the width w and the thickness ¢
vary while keeping constant the section w -t of the metal bar. Critical coupling conditions were
found for three different IMI structures at the resonant wavelength 10 um. Their parameters are
given in Table 7.2, and their absorption spectra are presented in Fig. 7.7 (b). While the period
remains virtually unchanged, the length increases simultaneously with the metal thickness to
keep the critical coupling at the same wavelength. This means that the effective index of the
mode decreases. Keeping the constant cross section in the considered case is provided by a
decrease of the width and increase of the metal thickness. While the first process leads to the
effective index growth (Fig. 7.6 (a)), the second one — to its decrease (Fig. 7.7 (a)). Thus, for
considered structures the effective index of the mode varies mainly with the antenna thickness.

The optical losses in the antennas are almost constant, as the period values giving a critical
coupling are very close. The ) factor increases a bit for thicker structures. The spectral width
(FWHM) increases with the metal thickness when the latter is smaller than the skin depth. This
dependence decreases when the thickness increases and saturates for thicknesses of a few skin
depths. This variation can be related to decomposition of the electric current density according
to the geometric parameters of the metal bar, as discussed below. Also, the absorption level in
the right part of the spectrum is the same for the two thicker structures but a little higher for
the thinner.

The current density maps on the metal bars of the structures discussed above are presented
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Table 7.2: Critical coupling parameters at the resonance wavelength 10 ym for IMI rectangle structures
with different metal thicknesses. for all structures in the Table the membrane thickness h = 300 nm.

Metal thickness Metal width Metal length Period p, um Q factor
t, nm w, nm I, um
20 200 1.80 3.18 6.42
40 100 1.878 3.18 7.63
80 50 2.02 3.20 7.82

9 10 1 12 13 14 15 . 9 10 1 12 13 14 15
A, um A, um

Figure 7.7: (a) Absorption spectra for the structures with different metal thicknesses and the same other
parameters p = 3.18 um, | = 1.8 um, w = 200nm, h = 300nm. (b) Absorption spectra for the critically
coupled at 10 pm IMI structures with the same metal bar cross section. The red curve correspond to the
structure with t = 20nm, the blue one — with t = 40nm, and the yellow one — with t = 80nm. Other
parameters are indicated in Table 7.2. The distance from the mirror is 2.5um.

in Fig. 7.8. It can be seen that for the thicker metal bars, a current density gradient appears
along the vertical direction (z). It is seen more clearly for the structure with the thickness 80 nm.
This current distribution corresponds to the exponential decay of the field in metal, similar to
that described for MIM structures in Section 6.4.3.

The distribution of the electric current density of IMI structures Fig. 7.8 is similar to that of
MIM structures (Fig. 6.26). Thus, the similar approach to losses considering the electric current
density at the middle plane can be applied. The electric current density j(y, z) (directed along
x) at the middle section (z = [/2) can be described as the sum of four components, two of them
are along the width of the metal bar, and the other two — along the thickness of the metal bar
(as in Eq. 6.12). Although the field distribution at the upper and lower metal interfaces (with
respect to the direction z) is observed to be unsymmetrical (Fig. 7.4), the difference in current
densities is not significant (see Fig. 30 in Section H.2, Appendix H), thus j(y, z) can be described

as

J(y, z) = a(exp(—y/d) + exp(y/d)) + b(exp(—z/6) + exp(z/d)). (7.1)
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Figure 7.8: The electric current density maps on the surface of an IMI antenna with the metal thickness
(a) 40 nm and (b) 80 nm in critically coupled arrays placed at the distance Ares/4 above the mirror. Other
parameters are indicated in Table 7.2. Top maps in (a) and (b) are for top surfaces, and bottom — a right
side surfaces of the antennas.

Then, similarly as it was done in Section 6.4.3 of Chapter 6, the losses in structure can be
estimated using the current through the middle cross-section IZ. = [|j(y, z)|*dA (Eq. 6.11 of
Chapter 6). The integration here is over area A with y = (—w/2,w/2), and z = —t/2,t/2.

All the structures considered in this section with different geometric cross-sections (Table 7.1
and Table 7.2,the membrane thickness is the same) can be compared using I2.. The total current
values were calculated for five considered structures (presented in Section H.2 of Appendix H).

As the structures are at the critical coupling conditions, all incident energy is absorbed. Thus,
the absorbed power is equal to the incident power, which is proportional to p?. Consequently,
according to Eq. 6.11, p? should be proportional to I2.. Because structures have different length
[, which defines the array density, it is included into the comparison. The dependence of the
structure density //p? on the square of the total current is presented in Fig. 7.9. The points show
the result of the numerical computation, and the solid curve is the fit of the inverse dependence
a/(b+ x). Although the fit is not perfect, it validates the variation of the ratio I/p? with the
square of the total current.

In summary, the studied mode is affected by both the width and thickness of the metal bar.

The modification of one of this parameters induces two different behaviors: 1) the dissipated
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Figure 7.9: The dependence of the filling factor on the electric current through the middle cross-section
I2.. Points show the result of numerical computations. The solid line is a fitting curve a/(z +b), where
a =0.154 +0.005 and b = —0.048 £ 0.028.

power, and 2) the effective index of the mode. The first property is due to the skin effect on the
current density distribution: a decreasing exponential from the metal surface. For the second,
the increase of the width or the thickness of the metal leads to a decrease of the effective index
of the mode and therefore a resonance blueshift.

The effective index of the mode is also connected with the thickness of the membrane (because
of the asymmetry in the distribution of the fields). However, the influence of the membrane,
as well as the physical explanation of the asymmetric response of the structure (which can be
caused by a superposition of geometrical factors and by the membrane) remain the subject
of further research. Meanwhile, some optical properties of the structures under consideration,

useful for any absorption application, are presented in the next Section.

7.5.

The optical response

IMI structures can be critically coupled when located at Ayes/4 above the mirror, and the
influence of their parameters on their optical response is discussed above. In this Section, the
dependencies of the absorption on the distance to the mirror and on the incidence angle are
considered.

Since the excited mode of the IMI structure has some similarities with that of 2D MIMs,

the absorption dependence on the distance to the mirror is expected to be similar. Indeed, this
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dependency for the IMI structure, presented in Fig. 7.10 (a), demonstrates a periodic behaviour
of the period 5 um. The maximum absorption is at the distance 2.5 um, and the minimum
around 5 pum. Moreover, absorption greater than 90% is observed in the range of approximately
1.3 um (from 1.7 to 3 wm), which means that the control of this distance is associated with a
large manufacturing tolerance.

The angular dependence for the IMI array is considered for two incident planes: yOz, which
is orthogonal to the length of the metal bar (along z), and Oz, along the metal bar length, as
shown in inset of Fig. 7.10 (b). As the structure is excited by the electric field of the incident
wave, a strong absorption is expected for the TE (transverse electric) polarisation with respect
to the incident plane yOz, and for the TM (transverse magnetic) polarisation with respect to
the incident plane zOz, because in the two cases the electric field of the wave is orientated
along the metal bar. Indeed, the absorption for the two preferential polarizations mentioned
above (Fig. 7.10 (b)) is total for the small incident angles. However their angular dependence is
different for higher angles (i.e. > 30°).

The angular dependence of the TE polarisation with respect to the incident plane yOz (blue
line) has a wide range of high absorption values: more than 90% between —60° and 60°. This
can be explained by the fact that, for this polarization, the component of the electric field along
the long side of the metal bar does not depend on the incident angle. On the other hand,
the decreasing component of the magnetic field along the width of the metal rectangle does
not have such a strong effect on the excitation mode until the angle of incidence is significant.
Under the TM polarisation with respect to the incident plane Oz (red line), the magnetic
field is constant and aligned along the short side of the metal bar. On the other hand, the
electric field sees its component FE, along the long side of the metal bar vary with the incident
angle. Thus when the incidence angle is small the absorption is strong but when it increases the
component E, weakens (around 42°), the absorption decreases significantly (in comparison with
other polarization). These two dependencies are connected with the way an IMI structure is
coupled to the incidence wave, described in Section 7.3. As the electric field along the metal bar
has a key role, the blue curve (the E, component of the electric field is constant) shows greater
absorption tolerance at the incident angle than the red curve for which this field component
varies with the incident angle. It is however important to note that the decrease in absorption
does not vary like the cosine of the incidence angle which means that second order effects modify

this effect: the decrease in the magnetic field for the TM polarization, the component E, for
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the TE.

The absorption for two other polarisations, namely the TE polarisation with respect to
the incident plane xOz and for TM polarisation with respect to the incident plane yOz, is
close to zero at all incident angles (shown in Fig. 31, Section H.3 of Appendix H). For both
of them the electric field of the incident wave is directed along the short side of the metal
bar. Thus the structure is not excited because for the mode excitation, the electric field along
the long side of the metal bar is needed. Thus, the considered geometry of the metal bar
is sensitive to the polarisation of the incident radiation. For applications insensitive to the
incident polarization, another geometry must be used, for example the cross-shaped one. As it
was shown in Section 6.4.5, the goemetric parameters of the cross-shaped IMI antenna can be

found by a slight change from those of the rectangle antenna.
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Figure 7.10: The dependence of absorption of IMI structure on (a) distance to the mirror, and (b) the
incidence angle. The polarisation and corresponding to it incidence planes for the angular dependence are
indicate in the legend. The incidence planes in relation to structure orientation are shown in the inserted
schema: the yOz plane is orthogonal to the structure length, and the Oz plane is orientated along it.
Parameters of the structure p = 3.18 um, | = 1.8 um, w = 200nm, t = 20nm, h = 300nm. The distance
to the mirror is 2.5um.

Finally, the volumes of the IMI and MIM structures at the critical coupling at the resonant
wavelength 10 um (all placed at \q.s/4 above the mirror) can be compared. As in Chapter 6,
where MIM structures were considered, a membrane, that mechanically holds the structures,
was not taken into account, it is not considered in this Section either. The discussion of the
membrane impact is a separate thermal problem (for example, [149]), which is out of the scope
of this work. Indeed, its heating is not a homogeneous process, having a gradient between the
small area heated by an antenna and the edges of the membrane being at room temperature.
Additionally, the reduced area of the IMI antenna compared to that of the period allows the

design of a membrane more complex than a simple homogeneous membrane, for example a mesh
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of narrow ribbons. In this way, the membrane is not considered in

The volume density for IMI antennas is computed as wy = [ - w - t/p?. For the structures,
presented in Table 7.1 and Table 7.2, the volume densities are in the range 0.68 — 0.80 nm
(presented in Table 18 of Section H.4, Appendix H), which is at least five times less that values
obtained for MIM structures with the metal thickness 5nm. Additionally, these structures are
easier to fabricate than the multi-layer MIM structures. Thus, IMI structures are the most
optimal structures for bolometer applications among considered. They have small area (about
4% of that of the period), thus a few antennas can be placed in the same period, leaving enough
space for isolation arms.

To summarize, the IMI antennas are the structures, among those studied in this work,
which have the lowest heated volume. They occupy a small part of the period area (about
4%) and are easier to fabricate than the MIM structures. This is the reason why they were
chosen for the experimental validation of the computation results (Section 7.7). These structures
demonstrate a large manufacturing tolerance on the distance separating them from the mirror,
the absorption is higher than 90% in a band approximately one micrometer wide. Rectangular
geometry IMI structures are extremely sensitive to the polarisation of the incident radiation,
showing a high absorption tolerance to the incident angle when the electric field is along the
metal but demonstrating no absorption when the electric field has the orthogonal direction. This
is an intrinsic property connected with its coupling process. The simplicity of a IMI array also

allows to model it as a dipole array, as demonstrated in the following Section.

7.6.

The dipole approximation

7.6.1 Introduction

When S-parameters of an array of nano-antennas in vacuum are calculated numerically, reflection
and absorption from the same array over the mirror can be found analytically for different
distances to the mirror (Section F.3 of Appendix F). It allows one to significantly reduce the
time spent on full-wave numerical simulations. Apart from the distance to the mirror, the
inter-element distance in a nano-antenna array is another important parameter influencing the
absorbance spectra. In order to account for this parameter, a more elaborated analytical model
(than the one presented in Section F.3) is required.

In this Section, the dipole approximation is developed to estimate the mutual interactions
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in nano-antenna arrays over the mirror and analytically calculate absorbance spectra for dif-
ferent inter-element distances. The dipole approximation is well-known in electromagnetism
and was successfully applied to scattering calculations from arbitrarily-shaped targets [150], to
metasurface (dense nano-antenna arrays) absorbers [136, 151] and many more. Often, dense (in
comparison to the wavelength) nano-antenna arrays are considered in the literature, what allows
one to introduce approximations in calculation of mutual interaction. In this work, no condition
is imposed on the inter-element distance and the calculations are performed rigorously.

In what follows IMI nano-antennas are considered, see Fig. 7.11(a), since their response can
be well-approximated by simply accounting for the electric dipole moment. An array of IMI
nano-antennas can be thus approximated by an array of point electric dipoles. MIM nano-
antennas are additionally characterized by the magnetic dipole moment, what would require a

bit more efforts to write down equations.

7.6.2 Theory

In this Section, a retrieval procedure of the electric polarizability of a single dipole scatterer is
given by analysing the field scattered by a regular array of identical dipoles placed above the
mirror. Using the retrieved polarizability, the response of the dipole array can be calculated for

different lattice parameters and distances to the mirror.

Scattering by a regular electric dipole array in vacuum

In this subsection a regular array of identical point electric dipoles at the distance h above
the mirror (perfect electric conductor) is considered. A schematics of the system is shown in
Fig. 7.11 (b). A dipole is characterized by its polarizability «. An incident plane wave plus its
reflection from the mirror constitute the external field, which excites the dipole moment p,,,, in
the nmth dipole.

The electric field E(r) scattered by a single dipole can be calculated with the help of the

Green’s function [3]

ik|r—rool

B(r) = iZk (1 4 ng) A(r), A(r) =

—iwp e
_— 7.2
4 "I" —7‘00‘ ( )

It is assumed that the dipole is placed at the position rgg in vacuum and has the dipole moment
p. In this equation Z = \/uo/eg and k = w,/Egfig are respectively the intrinsic impedance

and the wavenumber in vacuum, V is the vector operator nabla and ® stands for the tensor
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radiation

Figure 7.11: A periodic array of (a) IMI nano-antennas (gold bars) and (b) point dipoles over the mirror
under plane-wave illumination.
product, A(r) is the vector potential. The scattered magnetic field H (7) can be found from the
Maxwell’s equations.

The vector potential created by the regular array of dipoles can be expressed as the series of

the individual contributions

+00 _ ik|lr—rnm |
WP €
Alr) = E ' 7.3
(x) — At v —r1pml|’ (7.3)
n,m=—00

where 7, = anx + bmy is the position of the nmth dipole, x and y are the two of three basis
vectors of the Cartesian coordinate system. Since an array of identical dipoles illuminated by a
plane wave is considered, P, = pexp(ikr,,,). The series (7.3) can be transformed into the

series of plane waves by means of the Poisson formula [152]

400 , 400 1 +ood +ood j2mp, i2ma, -
— - a b
> fanmy = 3 [ Cau [ dofuaee (7.4)

n,Mm=—00 P,q=—00

and the Fourier transform of the Green’s function

+oo +o0 L etkVurvP 422 eilzlV/k?—p?—¢?
/ du/ dvePtet?? (7.5)
—00 —00

=27 ,
W2 + 02 + 22 /K2 —p2 — 2

the branch of the square root is chosen such that (y/k? — p? — ¢?) < 0. Here a and b are period

values in the & and y directions, correspondingly. By applying Egs. (7.4) and (7.5) to Eq. (7.3)
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one arrives at the following plane-wave decomposition of the scattered field

+00
wp Z 1 ITpmT 3] 2| Bnm
A(I') = T./b 676 e | ‘ﬂ s (76)

n,m=—00

where T, = (k:x + 2””) x + (ky + %Tm) y and B = Vk? — 12,,. The corresponding electric

a

field is calculated from the vector potential following Eq. (7.2)

1 X Kp — (pknm)knm
E(r) = —— Z p — (Pknm) nmezknmr’ (7.7)
2iabeg o0 Brnm
where KpmrT = TpmT + 2Bnm|z|.  As follows from this equation, the array of dipoles scat-

ters the incident wave symmetrically in the upper and lower half-spaces. The incident wave
Eyeilkarthyy=Pooz) and the scattered wave propagating in the direction opposite to z are re-

flected from the mirror and contribute to the total reflected field in the upper half-space

E(r) = (=14 z® z)Eye?Pooheikoor

+o0 2
k°p — (Pknm)knm 2iBnmh) ik
_ 1— 1Pnm 2 nm"'. .
2 2iabeoBm (1-¢ )e (78)

n,m=—00

Here I and z ® z are projection operators on the plane 20y and z-axis, respectively.

Polarizability retrieval

This subsection describes a procedure of the polarizability retrieval from the reflected field.
Consider a particular situation when the array is composed of dipoles polarizable only along x
direction p = px and has the inter-element distance such that a < A and b < A. The array is
illuminated by a normally-incident plane wave with the electric field Ey = Egx. Under these
conditions, the specularly reflected wave is the only propagating wave and has the electric field

Rx found from Eq. (7.8)
k2 (1 o 621',(300}1)

QiabEQBOQ

R = _Eoe%ﬂooh —p (7.9)

This equation can be used to extract the dipole moment p from the complex amplitude of the
reflected wave R (S7; in COMSOL computations accurate to the phase due to the distance
between the array and the port). In its turn the dipole moment depends on the polarizability
and the electric field at the position of the given dipole (local electric field). The local electric

field is the sum of the external field and the scattered field by all dipoles in the array (apart
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from the zeroth) at the position of the zeroth dipole 799 = 0. The dipole moment can be found
from the following equation

p= a(Eezt + Esct)a (7.10)

where external field E.,; is the incident wave plus its reflection form the mirror
Eopt = (1 — 2PN Ey (7.11)

and the scattered field is calculated from Eqgs. (7.2), (7.3) and (7.8)

82 +oo eik|r—rnm\
B = -2 <k2+) DI

4meq Ox? =00 ’r_rnm’ r=0
n,m#0
400 2 2
k2 — A
e Y B @) i (7.12)
— 2iabeo Brm
n,m=—o0

From Eq. (7.8) only the part of the field scattered by the dipoles and reflected from the mirror
is taken (corresponding to the second term in the parentheses under the summation sign).
Importantly, the local field cannot be calculated directly from Eq. (7.8), since the series diverges
when 7 = 0. Derivations made in Ref. [153] can be used to accelerate numerical calculations of
the scattered field (7.12).

Equations (7.10), (7.11) and (7.12) allow one to retrieve the polarizability of the dipole from

the complex amplitude of the specularly reflected wave

o= —PF (7.13)

Eemt + pﬂ,
where 8 = Fyq/p is the interaction constant [136] that depends only on the inter-dipole distance
and the distance to the mirror as follows from Eq. (7.12).
On the other hand, when « is known, the dipole moment can be calculated as follows

p=Bu(25)" (7.14)

(%

In this way, the polarizability of a single dipole is obtained from the field reflected from a
regular array of identical dipoles placed above the mirror. Since the polarizability is a charac-
teristic of a single dipole which does not depend on the inter-dipole distance and the distance

to the mirror, absorbance spectra for different values of lattice parameters and distances to the
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Figure 7.12: (a) The retrieved from a numerical simulation polarizability o of a single gold-bar nano-
antenna constituting a periodic array over the mirror with the period values a = b= 4.5 um, h = 2.5 um.
(b) The interaction constant B calculated for the array over the mirror with a =b = 4.5 pm, h = 2.5 um.
(c)-(d) The absorbance spectra for different period values of the array calculated by means of the analytical
model (solid curves) and compared to COMSOL Multiphysics full-wave simulations (dotted curves).

mirror can be estimated by means of analytical formulas. In the following section predictions of

the analytical model and full-wave numerical simulations are compared.

7.6.3 Validation of approach

In this Section, the approach developed in Section 7.6.2 is applied to retrieve the polarizability
of a nano-antenna from the specular reflection from an array of identical nano-antennas. The
specular reflection is calculated numerically in the frequency range of interest for a given set
of parameters of the array: the inter-antenna distances and the distance to the mirror. After
that, the reversed procedure is used to extrapolate the retrieved polarizability on another set of
parameters of the array.

As a concrete example, a periodic array of simple metallic nano-antennas (gold bars) above
the mirror as shown in Fig. 7.11(a) is considered and the following step-by-step procedure is

used:

1. A full-wave numerical simulation is performed for given inter-antenna distances a and b,

and the height h above the mirror;
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2. Complex amplitude of the specular reflection is recorded in the frequency range of interest;

3. By means of Eq. (7.13), the polarizability of a single nano-antenna is calculated in the

frequency range;

4. In the last step the polarizability is used to calculate the absorbance spectra for arbitrary
parameters of a, b and h without performing time consuming full-wave simulations, to that

end Egs. (7.14) and (7.9) are used.

Figure 7.12(a) demonstrates the frequency dependence of a single dipole polarizability re-
trieved from the specular reflection of a plane wave impinging an array of nano-antennas above
the mirror at the normal incidence. The array has a square lattice with a = b = 4.5 um, the
distance to the mirror A is 2.5 pm. The mutual coupling between nano-antennas in the array as
well as with the mirror is described by the single interaction constant 8 calculated analytically
from Eq. (7.12) and shown on the panel (b) of Fig. 7.12 for the given set of the parameters.
When changing either a, b or h, the interaction constant has to be recalculated. Meanwhile,
the retrieved polarizability does not depend on these parameters, and together with [ it is used
to estimate absorbance spectra for various lattice parameters and distances to the mirror. In
Fig. 7.12(c) and (d) it is used to find the lattice parameters corresponding to the condition of the
critical coupling, i.e. the total absorption. It is seen that when increasing the inter-antenna dis-
tance the maximum absorption also increases until the critical coupling is reached fora =b=7
pm. The observed tendency has been validated with COMSOL full-wave simulations.

In comparison to another analytical method, developed in Section F.3 of Appendix F, the
dipole approximation can be used not only to account for the reflection from the mirror, but
also to change the distance between antennas. Furthermore, the dipole approximation takes into
account the near-field inter-dipole interaction (i.e., through the evanescent modes), what allows
one to compute the response of the array at distances closer to the mirror (although there is
a limitation related to the size of an antenna) in comparison to the simplest case of the single
propagating mode.

To summarize, the point dipole approximation can be successfully employed for predicting
the absorbance spectra of nano-antennas arrays while avoiding time consuming full-wave simu-
lations. Being the simplest model of a nano-antenna, it can be further improved by taking into
account the finite size of nano-antennas and more complex current distribution. The method of

moments can be used to that end, see, e.g., Ref. [154].
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7.7.

Experimental validation

This Section is dedicated to the experimental validation of the quasi-total absorption demon-
strated above for IMI antennas placed at A/4 above a mirror. These antennas are difficult to
fabricate for at least two reasons. First, they are supported by a thin membrane (300 nm thick),
and second, the operate at wavelengths around 10 gm which requires the use of a transparent
dielectric material at these wavelengths, silicon or germanium for example. Developing such a
process would have taken too long. Thus, in according with the laboratory facilities, the wav-
erange was changed to MWIR, and the design of the structure was modified. In this way, the
goal of this experimental validation being focused on the antenna behavior rather than on the

materials, it was chosen to simplify the structure.

Design of the test structures

The simplified structure consists of a mirror overlaid with a A/4n thick dielectric layer, on which
the IMI antenna arrays are deposited. The mirror is a thick layer of gold. The dielectric is a
700 nm thick layer of SiOs. The working wavelength is in the range 3 to 5 um, where SiO» is
highly transparent. The unit cell of an IMI array is shown schematically in Fig. 7.13 (a). At the
center of the 2D period of width p, there is a rectangular parallelepiped of metal (orange bar)
whose thickness is t, length [, and width w. The SiOg layer (in blue) covers the whole surface,

as well as the bottom mirror (in grey).

Fabrication process

The fabrication process begins with a Ti/Au (20/200nm) deposition (e-evaporation process)
on a silicon substrate. Then, the SiOy layer is deposited by a PECVD process. A thickness
of 700 nm has been measured by ellipsometry with the expected stoichiometry. Finally, several
arrays (100 x 100 um?, Fig. 7.13 (c)) of IMI antenna are drawn by electron beam lithography
(Fig. 7.13 (b)), followed by a Ti/Au (1/10nm) deposition and lift-off. The grainy structure of
the SiOq layer observed by electron microscopy photography (Fig. 7.13 (b)) is mainly due to the
difference in charge effects between the volume of the grains and their boundaries. Since the
amplitude of the corresponding roughness is much less than the wavelength, their impact on the

optical response should be very small, although they may influence the antenna shape.
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Figure 7.13: (a) The schematic presentation of a unit cell of the IMI array. A gold parallelepiped is
placed on the 700 nm thick SiOs layer, backed by a thick gold layer. (b) A scanning electron microscopy
photography for one of nano-antenna arrays. The top view of a few metal patches on a top of SiOs
surface. (c) An optical microscopy photography, showing an array of metal patches on the top of the
S04 layer. The wide metal rectangles on both sides of the array are used to indicate the array area.

The surface of arrays of IMI antenna are much larger than the resonant wavelength (Ayes
between 3 and 5.5 um). Each of these arrays corresponds to a different set of the geometrical
parameters of the IMI antennas, with the exception of the thickness of the gold patches, which
is fixed as t = 10 um. These geometrical parameters (length [ and width w) have been carefully

measured by SEM observations. All these measures were calibrated by the period of the IMI
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arrays, leading to an uncertainty of less than 1%.

Optical characterization

The reflection spectral response of all arrays was measured in the 3 — 5 um wavelength range,
by a Fourrier-Transform InfraRed (FTIR) spectrometer via an optical microscope, equipped
with a Cassegrain objective so that the setup remains achromatic. As a result, the measured
reflection corresponds to the sum of the reflections for incident angles allowed by the objective,
here between 12° and 24° for the all azimuths.

The reflection spectrum of the IMI array with parameters p = 2.5 um, | = 1.219 um, w =
235nm is presented in Fig. 7.14 (a), blue line. This spectrum R(\) can be fitted with R(\) =

1 — L(\) where the absorption is modeled by a Lorentzian function L(\):

24
(A4 = X0)?/(7) +7)

L(\) = Lo+ — (7.15)

The best fit obtained over the interval (3.70 um — 5.56 um) is presented by the red curve in
Fig. 7.14 (a). The fitted parameters are Lo = 0.94074 £ 0.0035, Ao = (4.6091 +0.0003) um, A =
—2.1324+0.015, v = (1.5166 £ 0.0056) um. Two gray zones in the plot Fig. 7.14 (a) correspond
to two absorption windows due to (1) O-H links in the SiOy layer (observed empirically on many
samples) and (2) COy in the atmosphere for the shortest and middle wavelengths, respectively.
These two spectral domains are excluded from the fit, as well as that of the unexpected behaviour
in the region of the short wavelengths. The later will be commented on below.

At the resonance, the minimum of reflection is about 0.046, which is 95.4% absorption, as the
bottom gold layer is a thick enough to avoid any transmission. Thus this array experimentally
demonstrates an almost total absorption, although an IMI antenna only covers 4.6% of the unit

cell area.

Numerical simulations

The optical response of these arrays of IMI antennas were also calculated using Comsol Multi-
physics. In these simulations, the unit cell of the IMI array is limited by two pairs of periodic
boundary conditions, modeling the Floquet periodicity in the directions  and y. At the bottom,
the thick gold layer is modeled by an impedance boundary condition, characterised by the gold

permittivity. The optical index of SiOg is taken from the literature [155]. For the modeling of
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gold, its permittivity was calculated with the Drude formulation:

w2

=1-—F— 7.16
() =1- 2, (7.16)

where wy, is the electron plasma frequency, I' the electron relaxation rate, and w the radiation
frequency. In a first approach, the values of these coefficients are taken from the literature:
wp = 12.9 - 10% rad/s, and T'/w, = 0.0055 for evaporated gold [156]. These values allowed an
excellent agreement of the calculated reflection spectra with those routinely measured on thick
gold optical resonators fabricated in the same equipment.

As it was shown in Section 7.5, rectangular shaped antennas interact with TE polarisation
when the incidence plane is orthogonal to the length of the antenna, and to TM polarisation
when the incidence plane is along the length of the antenna. Consequently, to simulate the
experimental illumination conditions (angle of incidence varying from 12° to 24° and electric
field parallel to the antenna for all azimuths), numerical simulations were performed for two
orthogonal incidence planes. One of these planes is along the antenna length (the plane is
longitudinal and the wave is excited with TM polarisation) and the other plane is orthogonal to
the antenna length (the plane is transverse and the wave is excited with TE polarisation). Those
simulations were performed for three angles of incidence 6;, = 12°, 18°, 24° in each plane. The
total spectral response is then calculated as the average of the responses to these six conditions.

The spectrum, computed for the gold parameters from the literature, is presented in Fig. 7.14 (b)
together with the experimental response. It can be seen that calculated spectrum does not fit
the experimental curve. Although the resonance wavelengths almost coincide, the calculated
absorption is significantly smaller than the measured one. Likewise, the calculated full width at
half maximum (FWHM) is smaller than that measured. The origin of peaks on the left side of
the computed spectrum is discussed below.

The discrepancy between the measured and computed spectra may be due to the following
reasons. As the thickness (¢ = 10nm) of the metal layer is thinner than the mean free path of
electrons in gold (A = 38,nm) [157], the free surface at its upper limit and the interface with
the SiO9 layer at its lower limmit, introduce an additional scattering process for the electron
of the metal. This mechanism must be taken into account in the effective permittivity of the
metal. This effect, which has been extensively studied for metal nanoparticles (see for example

the reference [158]) is significant for nanoparticles with a diameter of less than about 10 nm.
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Figure 7.14: (a) The measured reflection spectrum (blue line) for the IMI array with parameters p =
2.5 um, 1 =1.219 pm, w = 235nm, and t = 10nm placed above the mirror, and its Lorentz fit (red line).
Gray zones corresponds for two absorption bands. (b) The absorption spectrum (blue line) obtained from
the measured reflection spectrum (picture (a)) as 1 — R, and the result of the numerical simulation for
the same array with the gold parameters, taken from literature.

Additionally, irregularities in the deposited metal layer, such as grains or thickness fluctuations,
may introduce local variations of the metal permittivity. Finally, 1 nm Ti layer, added at the Au
- SiOs interface to improve its adhesion, can introduce additional changes in the optical response.
In addition, it is likely that this layer of titanium was fully oxidized during the manufacturing
process. However, the modeling of this oxidized material, which should require an additional
specific study, remains outside the scope of this work. Here, we will be content to extract from
the experimental data an effective value of relaxation rate e of the electrons in the gold layer,
noting that it takes into account all the effects mentioned above.

Taking all these effects into account, a fitting procedure of the calculated spectrum to that
measured is carried out with three free parameters: the electron relaxation rate I'eg, the metal
thickness ¢, and the length of the structure . The best agreement (Fig. 7.15 (a), the purple line)
is obtained for Ieg/w, = 0.0101 & 0.0004, leg = (1.194 £ 0.008)um, and teg = (10.0 £ 0.3)nm.
The greatest difference from the initial values is observed for the electron relaxation rate with
an increase of 82% compared to the value of the literature. This result is in good agreement
with those published on nanoparticles and confirms the role of the surface/interface for very
thin metal layers (i.e. with thickness less than the electron mean free path). Also, the variation
in length is about 2%, that is to say close to its measurement error, while the metal thickness is
equal to its experimental value.

The numerical results allow to explain the accidental behaviour observed on the experimental
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Figure 7.15: The measured reflection spectrum (blue line) for the IMI array, and computed spectra (pur-
ple line) with adjusted parameters, each point of which is the mean algebraic value of six spectra from
numerical simulations for two incident planes and three incident angles. (b) The measured reflection
spectrum (blue line) and these siz spectra separately. The solid lines are for the transverse incident plane
(orientated orthogonal to the antenna length) and TE polarisation and dashed lines for the longitudinal
incident plane (orientated along the antenna length) and TM polarisation.

curve at short wavelengths. Figure 7.15 (b) shows the calculated response for the six chosen
configurations: two incident planes and three incident angles. For the longitudinal plane of
incidence, the antennas are excited by the TM polarisation. For suffciently short wavelengths,
this polarization excites a guided mode resonance in the SiOs layer, represented by sharp peaks
plotted by dashed lines in Fig. 7.15 (b). Due to the refractive index of silicon dioxide and the
oblique incidence, the first order of diffraction is excited in the SiOs layer. This works as a
waveguide evacuating part of the corresponding energy away from the IMI antenna. As in the
simulation the array is infinite, this energy does not leave the SiOs9 layer, it therefore appears as
a sharp absorption peak. This explanation is confirmed by the different peaks, corresponding
to different angles of incidence.

As the experimental spectrum was measured over a continuous range of incidence angles,
instead of a few peaks calculated for a few angles, it shows a plateau spread over a range of
wavelengths. As the measurement is made for all azimuths, the response is averaged over an
infinity of incidence planes. The corresponding absorption therefore does not reach the 100%
calculated for a single plane but a smaller value. It is represented by a purple curve in Fig. 7.15
(a), where, after summation for two planes and three incident angles, there are a few small
peaks.

In the case of the transverse incident plane, the antennas absorb the TE-polarised radiation.
In this case, a waveguide mode is not excited in SiO9 layer, due to different refection conditions

on dielectric interface compared to TM case [159]. However, due to the absence of the peaks
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on the left side, these spectra show clearly the appearance of the minus first diffractive order,
arising for the shortest wavelength. Indeed, according to the equation connecting the incident

angle # with the wavelength A and the period d
3—sin9: 1, (7.17)

this order appears at the wavelength 3.52 ym for the 24°, at 3.27 um for the 18°, and at 3.02 um
for the 12° for the considered period p = 2.5 um. This diffractive order appears also for the
second incident plane, changing slightly the left slope of the left peak.

To end the discussion on the plateau at the experimental spectrum, the presence of the
absorption by SiOg, indicated as a grey zone in Fig. 7.15 (a) should be taken into account. This
absorption may be the reason for the discrepancy observed at short wavelengths between the
computed and measured spectra.

To summarize, the IMI geometry with a mirror has been found to be an effective absorber
in the infrared wavelength range. Numerical computations were validated by the experiment,
where the rectangular antennas were distanced from the mirror by a SiO9 layer. Covering about
4% of the period area, the antenna absorb almost all incident radiation. The comparison of the
experimental data and simulation results shows that the losses in metal layer are higher than
what is predicted by literature. This is due to to the ultra-small thickness of this layer and
possible manufacturing imperfections. The obtained results open up promising perspectives for
ultra-small bolometers, operating at room temperature and having better sensitivity and shorter

response time.

7.8.

Conclusion

In this Chapter it is demonstrated that an array of IMI structures can be efficiently coupled
to incident radiation being when placed at the distance A/4 above the mirror. These metallic
antennas absorb all the incident radiation while occupying only a few percent of the period
area. In these structures, the mode excited at the critical coupling, is a dipole-like mode with a
maximum of the electric field at ends of the metal bar, and a maximum of the magnetic field on
its sides at the mid-length. This configuration is similar to that observed on one of the metal
layers of an MIM structure placed under the same conditions. In both cases, the coupling is

mainly provided by the electric field of the standing wave and the magnetic field of the mode.
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The geometric parameters of the IMI antenna akes it possible to manage its optical response.
While the length of the metal antenna is associated, in the first order, with the resonance
wavelength, its width and thickness define the effective index of the mode as well as the non-
radiative losses. As with the MIM structures, the losses in the structure depend in a complex
way on the skin depth and the conductivity of the metal. The current distribution in the antenna
bar can be described as the sum of four exponential terms. This allows to evaluate the losses
in structures through different sections, and to define the critical coupling conditions. It is also
demonstrated that for the same geometric section, the optical losses depend on the aspect ratio
of this section.

It was also shown that IMI arrays demonstrate a large manufacturing tolerance on the
distance separating them from the mirror, having high absorption values (> 90%) in a band
approximately one micrometer wide around A,¢s/4. Due to specificity of the coupling process,
IMI antennas of rectangular geometry are extremely sensitive to the polarisation of the incident
radiation, showing a high absorption tolerance to the incident angle when the electric field is
orientated along the antenna but demonstrating no absorption when the electric field have the
orthogonal direction.

The simplicity of IMI arrays as well as the dipole-like mode at the critical coupling conditions
allows to model them as a point dipole array. This model can predict their absorbance spectra
by a rapid calculation, thus avoiding the long calculation times of the full-wave simulations. It
is enough to extract the response of a single antenna from one numerical simulation to predict
its response in the case of different periods or distances to the mirror. Taking into account the
distribution of currents in the metal bar observed at the critical coupling, the dipole model can
be made more precise, when an antenna is presented as a sum of currents instead a point dipole.
This will be the subject of a latter study.

Finally, the quasi-total absorption was demonstrated for IMI antennas placed at a distance
of about \/(4n) above a mirror in the MWIR spectral domain (3.5 —5.5 pm). The experimental
sample consists of a layer of SiOo deposited on a thick layer of gold. on which is deposited a
periodic array of 10nm tjick rectangular gold antennas. It shows a maximum absorption of
about 95%. Good agreement with the numerical simulation results was found for an electron
relaxation frequency of about I'/w, = 0.010, which is significantly higher than the literature
value I'/w, = 0.0055. This correction corresponds to an increase in losses due to a metal layer

thickness smaller than the electron mean free path in the metal, as well as to imperfections linked
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to the fabrication process (grains, variable thickness, etc.). This encouraging result validates
numerical simulations, provided in the present work, and confirms that IMI antenna structures
are efficient absorbers.

Compared to the other structures studied in this work under the same conditions, IMI
arrays have the smallest volume density, less than 1 nm. This result opens up prospects for the
creation of a new class of thermal sensors. Their response can be predefined with its geometric
parameters, and their low density allows the use of few antennas in the same period, creating
multi-color devices. Thus, IMI arrays are promising structures for absorption applications, in
particular, bolometers. A small antenna volume means a reduction in thermal capacity which
can be used to revisit the sensitivity - rapidity compromise of the bolometer design, allowing
better sensitivity (increase in thermal resistance) and faster response (reduction of the product
resistance - capacity). However, this technology needs some further development, in particular

a thermometer suitable for IMI antennas.
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Conclusion and Outlooks

The microbolometer concept has not changed significantly since it was presented in the early
90s. The most significant progress has certainly been the reduction in pixel size and increasing
picture resolution. However, this technology is now reaching its limit, and in recent years a
slowdown in the progression of performance is observed. The design of smaller pixels comes
up against the fundamental barrier of light diffraction, as well as technical difficulties in the
organization of the thermal isolation parts and the absorber. Additionally, the compromise
between the sensitivity and response time is the integral feature for all microbolometers. Thus,
a reduction in pixel size tends to decrease its sensitivity. Meanwhile, future imaging systems in
the LWIR domain require improved pixel sensitivity and multispectral sensing without loss of
operating speed.

The use of plasmonic structures as an absorber part could overcome the barrier in the de-
velopment of thermal detectors and shift the compromise between sensitivity and speed towards
new, better values. Being smaller than the wavelength, plasmonic structures concentrate the
electromagnetic fields in tiny volumes and provide efficient absorption of the electromagnetic
radiation. They significantly reduce thermal capacitance, paving the way for a better sensi-
tivity - speed compromise, while their miniature size leaves enough area for thermal isolation.
Thus, a device based on plasmonic structure, maintaining operation at room temperature, could
have characteristics approaching those of cooled detectors. Besides, the response of these sub-
wavelength structures can be tuned by design, promising some useful detector functionality,
such as selectivity or polarisation sensing. Therefore, in the present work plasmonic structures
are proposed as the heart of a new conception for thermal detectors. Although there are few

attempts to create plasmonic-based bolometers, only lab concepts were presented, while nothing
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has been designed for industrial fabrication.

In the present work two types of plasmonic structures where examined: metal-insulator-
metal (MIM) structures with all structured layers and insulator-metal-insulator (IMI) structures,
both placed above a mirror. The presence of the mirror and the placement of the absorbers at a
distance equal to A,¢s/4 above it is an a priori constraint of this study in order to introduce as few
modifications as possible in their manufacturing compared to that of current microbolometers.
This distance corresponds to maximum absorption in the volume of the absorbent membrane.
On the other hand, the presence of a mirror suppresses the transmission and enhances the electric
field in the region of the structure.

It is demonstrated that the two types of studied structures can be critically coupled by
being placed at A,es/4 above the mirror. A priori, this distance is not well suited for MIM
structures since they function as a magnetic dipole, also called a magnetic meta-atom. Their
usual operating configuration assumes in particular the implementation of the structure at the
maximum of the magnetic field. However, it is shown in this work that MIM structures can
absorb the total incident radiation when placed at A,¢s/4 above the mirror. The corresponding
behavior, different of that of "classic" MIM, is reported and studied.

It is observed, that the excited MIM mode in the A,.s/4 configuration with a mirror is similar
to the fundamental MIM mode but the processes of funneling energy to the antenna differ.
Indeed, the only way to build the Poynting vector, directing electromagnetic energy towards the
MIM antenna, is with the magnetic field of the mode, whereas it is with the incident magnetic
field in the "classical" case.

In the case of 1D periodic MIM, the energy flow entering inside the structure is due to both
magnetic and electric field of the mode, while the decomposition of the fields and currents are
similar (although not perfectly) to those for the standard configuration. It is found that the
critical coupling curve of this specific configuration for 1D MIM shifts towards higher dielectric
thicknesses with decreasing the thickness of the metal layers. This is connected with the increase
in the resistance of the metal layer which varies inversely with the effective metal thickness tqg.
As a result, the volume density for 1D MIM structures is far from values desirable for absorber
applications. The smallest values are obtained for the highest [/p ratios, the heating is then not
concentrated on small area. For smaller [/p values, the volume density of MIMs is higher than
300 nm, that is far from the objectives of this study.

2D periodic MIM structures in the same A,¢s/4 configuration with a mirror, however, can
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overcome this limit due to a more complex field distribution than that of 1D MIMs: a dipole-like
electric field along the length of the structure and an intense magnetic field at the edges of the
structure in the direction orthogonal to the length, with the maximum at the mid-length. As a
result, in the 2D MIM case the coupling is mainly provided by the electric field of the standing
wave and the magnetic field of the mode, and the behavior of the Poynting vector, directing
the energy flux to the structure, differs from that of 1D MIMs. Indeed, a significant part of the
energy comes from above and below the structure and is absorbed at the air-metal interfaces.
Also, a funnel effect of energy appears in the direction of the structure limitation (that which is
infinite on 1D MIMs).

Consequently, the electric current density of the excited mode is more complex than that
of 1D MIMs. For the simplest case of a rectangular-shaped structure, the electric current
distribution in each metal layer can be presented as the sum of four exponential terms. For
other geometries this tendency is maintained, although distribution is more complex.

It is shown that the geometry of the 2D MIM structure and the nature of the materials
can influence the optical losses through the electric current decomposition and thus the critical
coupling. In particular, the geometric shape of 2D MIM patches at the critical coupling con-
ditions influences its response due to the change in optical losses, connected with the width of
the structure. Four simple geometries and four metals with different permittivities are studied.
Among studied geometries the rectangular and cross-shaped structures show the lowest antenna
volumes for, respectively, polarised and non-polarized radiation.

The spatial distribution of electric current density is a function of a complex balance be-
tween the skin depth and conductivity of the chosen metal. At critical coupling conditions, the
dielectric layer having a thickness significantly greater than that of the metal layer, provides
the main contribution to the volume of the structure. However, structures made of gold have
a bit smaller volume and thermal capacity, thus they can be considered optimal among studied
structures.

Particular attention was paid to the behavior differences between the rectangular and cross
geometries. For a polarization along the length of the metal bar, the two structures have a
similar response but the cross-shaped structure shows on the one hand a resonance peak shifted
towards blue (its length is equal to that of the rectangle) and on the other hand a slightly lower
absorption maximum. These differences are explained by the modeling of MIM antennas by two

A/4 antennas separated by a perfect conductive plane. The thickness of the conductor is finite
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in the case of the cross-shaped antenna, it is zero in that of the rectangle. This model explains
all the differences observed between the two geometries and opens perspectives for reconsidering
the MIM mode and for a more in-depth study of complex MIM structures.

The different coupling processes also change the critical coupling curve because in the case of
2D MIMs the period varies inversely with the thickness of the dielectric layer. In this case, the
decrease of the metal layer thickness shifts the critical coupling curve towards thinner dielectric
layers. As a result, it makes it possible to achieve the critical coupling for thicknesses of 5nm
of metal and 300 nm of silicon. Thus, a much smaller volume density than that of 1D MIM is
achieved for 2D MIMs: 4.2 nm for rectangles and about 8 nm for the crosses.

As demonstrated in literature, the presence of mirror allows complete absorption for systems
with a single absorbent layer. In this work, it is shown that an array of IMI antennas at
the distance A.¢5/4 above the mirror, can be critically coupled to the incident wave. More
importantly, it is demonstrated that this total absorption can be obtained with an antenna
occupying only a few percent of the period area. At critical coupling, the excited mode in the
IMI structure is a dipole-like mode with a maximum electric field at the ends of the metal bar,
and a maximum magnetic field at the sides, at mid-length. This arrangement is similar to that
observed for 2D MIM structures in similar conditions. Here again, the coupling is provided by
the electric field of the standing wave and the magnetic field of the mode.

The study of the influence of the geometric parameters of the antenna on the optical response
of the array shows that its width and its thickness allow to control the effective index of the
mode and the non-radiative losses, while the length of the metal antenna is associated with the
resonance wavelength. In the case of the rectangular shaped antenna, as with MIM structures,
the current distribution in the metal bar can be presented as the sum of four exponential terms.
Thus, the optical losses can be calculated for different sections of the metal bar, and the critical
coupling conditions can thus be found.

It is demonstrated that due to the specificity of the coupling process, IMI arrays have a large
manufacturing tolerance on the distance between them and the mirror, having high absorption
values in a band approximately one micrometer wide near A,¢s/4. Antennas of the rectangular
geometry are extremely sensitive to the polarisation of incident radiation, showing a high ab-
sorption tolerance for the incident angle when the electric field is along the antenna but having
no absorption when the electric field is orthogonal to that direction.

The simplicity of IMI arrays allows them to be modeled as a point dipole array. The dipole
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model makes it possible to predict their absorbance spectra, thus avoiding time consuming
full-wave simulations as soon as the polarizability of the single antenna is extracted.

Finally, the experimental validation of the IMI array as an efficient absorber was provided
in MWIR. It was proved that the IMI array, composed of a layer of SiOg of thickness Aes/(4n),
deposited on a thick gold layer and of a periodic array of rectangular antennas of 10 nm of gold,
shows quasi-total absorption. A good agreement is demonstrated with the numerical simulations
(peak position and absorption value) when the electron relaxation time in the metal is much
smaller than the literature value. These higher losses in metal are caused by the very small
thinness (i.e. smaller than the electron mean free path) and imperfections of the gold layer.

The volume density of IMI arrays at the critical coupling is found to be the smallest among
the considered structures in this study, less then 1nm for all studied structures. In this way,
the IMI antenna is the simplest plasmonic structure which, being placed at a quarter of the
resonant wavelength above the mirror, has the smallest possible volume and efficiently absorbs
incoming radiation.

In this way, the purpose of this work is fulfilled. Numerically for LWIR region and experimen-
tally for MWIR region, it is shown that an array of ultra-small plasmonic antennas placed above
the mirror and occupying only a few percent of the surface area, can provide total (or almost
total) absorption of the incident radiation. The use of these antennas as absorbent presents a
very high potential for future bolometric structures. As an antenna occupies only a few percent
of the period area, multiple antennas can be placed in the same period, allowing a response
at multiple wavelengths to be provided. Besides, the structure miniaturisation also allows to
decrease the mechanical support of the absorber, and offers more space for the isolation system.

The present work can be developed in the following directions:

1. First of all, the second stage for a new concept of bolometer — a new kind of thermome-
ter — will have to be developed. This could involve adapting the method currently used in
microbolometers — the variation in resistance with temperature — to the case of IMI antennas.
To avoid the inevitable disturbances of the electromagnetic field by the metallic measurement
lines, it could also be designed on the basis of plasmonics and photonics for remote temperature
measurement, providing in this way outstanding characteristics of the device working at room
temperature.

2. The experimental validation in the LWIR domain of the antennas on a membrane are a

necessary step on the way to the creation of new devices.
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3. A more precise approximation of the behaviour of the IMI antenna could be useful to
increase the precision of the result while maintaining a short computation time. This is of great
importance for massive 3D numerical simulations. It could be done by replacing the point dipole

approximation used in this work by a modeling of the current distribution in the metal.
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Appendices

A.

Legal and natural units

Nowadays, the legal SI units kg, meter, ampere, are defined from the physical constants h =
6.62607015x1073* Js (kgm?s71), ¢ = 299792458 ms~!, and e = 1.602 176 634 x 10712 C (s A) [160].
Here we give some conversion formulas between legal (L) and natural (N) units.

For a length value, legaly measured as L) in meters, and naturally measured as L(y) in

seconds:
(2]
m S
For a speed v:
Yo | _ Y
ms—l} — T ] 2)

and specially for speed of light with ¢y = 1:

‘L) ‘™
] =[] ®
For an electric charge Q:
Qu) ]_ [Qm
Cervinde @

same conversion for an electric flux ®,
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A. LEGAL AND NATURAL UNITS

The electric flux density D is the density of electric flux on a space-space surface:

[ D) } _ e [D(m
Cm2=m2sA| 2| g2

The magnetic field H is the density of electric flux on a time-space surface:

Hu _ ¢ [Hw .
Cmlsl=m71A| ¢|s2 (7)

The magnetic flux ®,,, with natural unit being the Dirac magnetic monopole ¢,, = %

{ Q1) ] _h |:(I)m(N)
Wb =kgm2s2A-1] ¢

The magnetic flux density B is the density of magnetic flux on a space-space surface:

B
g2

M-
T=Wbm2=kgs2A 1] ec

The electric field E is the density of magnetic flux on a space-time surface:

) 1} _h {Em)} (10)

The vacuum magnetic permeability 110 which is no more defined exactly as 47 x107"N A=2(kgms~2 A~2)

but from fine structure experimental determination

h
= 20— 11
Ho aegc (11)

The more recent measure of the fine structure constant is o« = 1/137.035999 206(11) [161] giving

J200]

Toio=r = 0.999999999 65(8) The characteristic impedance of vacuum Zy = pgc gives the ratio

of B -n = the magnetic flux density on a space-space surface orthogonal to n over H-n/c the
electric flux density on the fully orthogonal c-time-space surface ct A n. As n is arbitrary, we

can write:
B

HoC = Hi/c (12)

Zy is also the ratio of E - n/c = the magnetic flux density on a space-c-time surface n A ct over

D - n the electric flux density on the fully orthogonal space-space surface orthogonal to n.

1
poc = —— (13)
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(14)

with

ZO(N) = 2a. (15)
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B.

Different languages of electromagnetism

There are many different languages to describe classical electromagnetism. Vector and tensor
approaches[3, 17], are common and well-known. Besides them, differential forms[17, 22, 47, 23,
24] and geometrical algebra[48] present the electromagnetic laws in an elegant way.

In this appendix we briefly bridge the gap between the different languages and the symbols
they use, and we specify our sign conventions. The same unit is used for space and time (¢ = 1),
and metric tensor g has signature (+, —, —, —).

An inertial frame of reference is an orthonormal vector basis {e;} (e = t, e1 = x, e2 =y,

e3 = z), with

t2=1 (16)
x2—y?—z2—_1 (17)
The orthonormal 1-form basis corresponding to this basis is {e'} (e = t, e! = %, e? = ¥,
e’ =7)!, with
t2=1 (18)
=5 =7"=-1 (19)
We also have:
eiej = 6;-, (20)

with 5;- the Krenecker symbol, equal to = 1 if ¢ = j and equal to = 0 if ¢ # j. This equation is
also valid for an arbitrary, not orthonormal basis.

The field vectors are E, B, H, D. In order to make explicit the symmetry between the two

!The 1-form basis is also commonly written (dt, dz, dy, dz) = (dz°, dz*, dz?, dz®), with some drawbacks
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groups of Maxwell’s equations the fields H and D are considered:

V-B=0 (21)
VxE+0B=0 (22)
VD = pe (23)
VxH—-0D = je, (24)
the vacuum constitutive equations being
B = uoH (25)
E = yD. (26)

In natural units (see Appendix A), the flux of D on a space-space surface and the flux of H
on a time-space surface (the electric flux) are mesured in units of the elementary electric charge
ge = e ; the flux of B on a space-space surface and the flux of E on a space-time surface (the
magnetic flux) are measured in units of the elementary magnetic charge ¢,, = h/e with h the
unit of action quantum. With these units, pg = 2a.

Defining the antisymmetric tensors with components

Fi = (27)

and
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Maxwell’s and constitutive equations become]3]

0;F7 =F". =0 (29)
0,G7 =G, =]’ (30)
Fij = poGij (31)
with
0 -E, -E, —E.
1 0O B, -B
Fij = §€ijszkl - ’ ! (32)
B, -B. 0 B,
E. B, -B,
and
0 -D, -D, —D,
D 0 H —H,
Gij = gingn G = ’ : ! (33)

The G tensor dual to G has components

Gij = ~€iuGH = (34)
“H, -D, 0 D,

~H. D, -D, 0

The underlying objects represented by antisymetrical tensors Fj; and G;; are 2-forms. The
magnetic and electric 2-forms (also called by MTW Faraday’s and Maxwell’s 2-forms[17], and

by Deschamps as force and source 2-forms[22]) are

1 : :
O = SFjel Nel = Eyel’ + Eye™ + Be™ + Bye® + Bye’l + Beel? (35)

~ 1 . .
O, = Gijel Nel = Hyel + Hye' + H.e" + Dye™ + Dye®l + D.e' (36)
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with

—ell = =tAx (37)
—eV =P =tAy (38)
—eV =P =tAzZ (39)
B =FANZ (40)
el =7 A% (41)
el =%1y. (42)

Taking into account that e’ (t Ax) = 1, e?(t Ay) = 0, etc. the density of magnetic flux on

Space-space surfaces are

By = ®m(y Az) (43)
B, = ®,,(z N x) (44)
B. = ®m(xAYy). (45)

Indeed, B is called the magnetic flux density.

The density of electric flux on space-space surfaces are

Dy = ®.(y Az) (46)
D, = ®.(z Ax) (47)
D, =®(xNy). (48)

Indeed, D which was called the electric displacement is now called the electric flux density.

The density of magnetic flux on space-time surfaces are

E, = ®,(xAt) (49)
Ey = ®p(y At) (50)
Ez = (i)m(z A t) (51)

The common name of E is the electric field strength, but as B, it is a magnetic flux density!
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The density of electric flux on time-space surfaces are

Hy = ®.(t AX) (52)
Hy = (i)e(t N y) (53)
H, = ®.(t A2). (54)

The common name of H is the magnetic field strength, but as D, it is an electric flux density!
It should be noticed that the orientations of space-time surfaces (for E) and time-space surfaces
(for H) are opposite.

The infinitesimal magnetic and electric fluxes on an infinitesimal oriented parallelogram

dS = du A dv with du = du‘e; and dv = dv'e; are

d®,, = &, (dS) = Fjdu’de? (55)

d®, = ®.(dS) = G;jdu’dv? (56)

Take care to avoid the confusion with the common notation <i>m = %Fijda:idxj. Our letter d is
not the exterior derivative d, it is just used here to mark a quantity as infinitesimal (sufficiently
small to compute a model with high accuracy).

The infinitesimal fluxes can be integrated on any oriented 2D surface X of the 4D spacetime

defining the magnetic and electric fluxes

B, (%) = /Z &, (dS) (57)
D(%) = /Z &,(d5) (58)

In the language of electromagnetic fluxes, Maxwell’s equations are

(I)m(zclosed) =0 (59)

o, (Eclosed) = Ne (60)

where n, is the net number of electric charges in any 3D volume enclosed by the 2D surface
Y closed in the 4D spacetime. As pointed out by Cartan[31], this integral formulation doesn’t need
to suppose that partial derivatives of the field do exist, and they are valid in curved spacetime,

with no assumption concerning its affine connexion.
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In the language of differential forms, the Maxwell’s and constitutive equations are

d®,, = (61)
d®,=J (62)
*'i)m = ,U,Q‘i)e (63)

where d is the exterior derivative, J is the 3-form current, and « is the Hodge operator. The
exterior derivative of each term Fjje! A e’ (35) is equal to Oy Fije* A e’ A e/. Considering that

the only non-zero terms are (notwithstanding a permutation):

e =elne’ne’=—-elnelne’=... (64)
e’ =e’ne’ned (65)
eBl=elnednel (66)
e’? = e’ nel A e? (67)

the first equation d®,, = 0 computes as

which corresponds to first group of Maxwell’s equation V- B = 0 and 0B +V x E = 0.
Similarly, the second equation corresponds to second group of Maxwell’s equation.

Advantages over conventional vector calculus make exterior algebra an elegant tool for work-
ing with electromagnetic problems, as well as for illustrating essential principles of electro-
magnetism [23]. An example of its effectiveness would be the direct construction of 7 =
Hyeo— D.eq + D e3 tangent vector from differential form (Eq. (2.3)) &e = Hye0 +D.e'+D,e3
that results directly from 7¢ = g% ¢j.

From the historical perspective, the idea behind the metric-free approach to electrodynamics

(based on integral conservation laws) was proposed in Refs. [162, 31, 42]. Withal, the corre-
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sponding approach is presented as a discipline of mathematical physics in [163, 164, 165], as
well as a branch of electrical engineering [166, 167, 50]. Unfortunately, very few textbooks em-
ploy the exterior calculus in electrodynamics [47], and it is not widely used despite its many
advantages [47, 48, 40, 168, 169, 170, 49, 171, 39]. Differential form notation markedly simplifies
well-known formulae and calculations of electrodynamics, improving problem solving in a num-
ber of cases, and establishing a direct connection to geometric images [50, 23]. Unfortunately,
time-space splitting is almost universal in the literature and geometric constructions are never

absolute. One of the few exceptions to this 1-3 splitting was made by Riesz [38].
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Metric free approach

C.1 Introduction

The foundation of the metric-free approach to electrodynamics, based on integral conservation
laws was laid down by Friedrich Kottler [162], Elie Cartan [172], and David van Dantzig [42].
And the basis for it was created by Hermann Grassman more than fifty years before [173]. In his
book "Die lineale Ausdehnungslehre, ein neuer Zweig der Mathematik" (1844) he developed the
conception of an algebra which represent geometric entities, such as points, lines, and planes, and
manage them using certain rules [174]. Its main element is the wedge (exterior) product [174].

Unfortunately, initially Grassman’s algebra did not receive much attention [174]. Lawvere
[175] has noted the following reasons. At first, Grassmann’s writing style was found very compli-
cated even for native German-speaking mathematics students. Secondly, the first half of study
was devoted unclear philosophical discussions on mathematical issues. And thirdly, Grass-
mann’s mathematical misconceptions and unusual terminology [174]. Withal, in those days
William Rowan Hamilton presented his quaternion formulation. By the time of publication, he
was well-known and had supporters [176]. These reasons led to the fact that the Grassmann
algebra was not recieved proper attention.

Only in the beggining of 1900 Elie Cartan implemented Grassmann’s algebra to the theory of
differential forms in his work "Legons sur les invariants intégrauz" (paragraph 55). After more
than a half-century of a neglecting the advantages of the differential forms have become much
appreciated [174]. It is worth to mention Adhémar Saint-Venant, who also published similar
ideas of exterior calculus (one year later than Grassman) [177]. But only in early 1900s Cartan
finally developed the differential forms theory, based on Gassman work [40].

The exterior algebra is an elegant tool for operation with electromagnetic problems as well as
for illustration the fundamental principles of electromagnetism [23]. Application of differential
forms notation in electromagnetic quantities is quite natural [22]. It significantly simplifies
well-known formulas and calculations, provide improved problem solving, and allow to build
a direct geometrical interpretation of electromagnetism, that can provide additional physical
insights [23, 50]. Exterior algebra unifies the electric with the magnetic field, and presents the
EM field as one object of a single grade. Thus, description of Maxwell’s equations in terms of

exterior algebra on arbitrary spacetime represent them in a elegant formulation [23], making
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their form is unchanged with change of coordinates (including curvilinear ones) [22]. Many
scientists have found differential forms to be a powerful means for electrodynamics [22, 17, 47,
40, 48, 50, 23, 24, 168, 169, 178, 170, 49, 171]. Withal, exterior algebra approach is presented as
a discipline of mathematical physics at [163, 164, 165] and at a branch of electrical engineering
[166, 167].

Differential forms provide a unique way to visualize fields and sources [23, 17], that allows
to look deeper into physical processes and more clearly understand some of the electromagnetic
effects. All of the above make the exterior differential forms a great framework for teaching
basic laws and the underlying principles of electromagnetism [23]. Nevertheless, although the
exterior algebra formulation of the basis of the classical electrodynamics has been described by
many authors, it has not become widely known between physicists. No significant progress was
observed besides a very few modern paper with simple images.

In this Appendix, the brief mathematical introduction to the differential forms theory is

provided.

C.2 1-forms and 2-forms

Let us imagine that a special function, which gives electromagnetic flux value on any surface,
exists. It works like a special machine, which "eats" a piece of surface in spacetime, and gives
one the flux value on it instead. This kind of "function" really exists. It is called the differential
two-form. The detailed mathematical review on differential forms is presented in this Section.
Using differential forms approach, it is possible to describe the generalize case of spaghetti —
lasagna. Lasagna is a special 2D surface in 4D spacetime map, which construction is based on
the electromagnetic field in the 4D volume. Electric and magnetic flux on its surface, being the
result of action of a two-form on a bivector, are scalars. Two families of lasagne surfaces in 4D
Minkowski spacetime build the absolute electromagnetic map.

To present differential forms, at first we consider some simple example to introduce to the
subject. However, understanding of these simplest forms of lower degrees is the most important
and largely sufficient for the further theory. Therefore, in this review, they are given maximum
attention. Hereinafter the bold font and Latin letters are used for the vectors, while bold letters
with tilde (often Greek) are used for forms, unless otherwise specified.

Exterior differential forms can be divided by their degree, which is an integer between 0 and

n on an n-dimensional manifold [24]. While null-form is just a mathematical function [17], the
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most interesting in the context of this work are one- and two-forms.

One-form

The combination of differentials represents the one-form [23]. One-form in 3D space occurs
under integral sign [41]:
a = A dx + Axdy + AsdZ. (68)

In this work it is enough to understand one-form as a linear operation (linear functional) which,
acting on a vector, returns a number? [17]. In other words, one-forms can be considered as a
covectors which are dual to ordinary contravariant vectors. Thus, they create a linear space,
and a basis can be constructed. Using the metric of the space, one may make a contraction of
an one-form and a vector using the inner product (also called the bar product or the duality
product) [46]. For example, in 4D the bar product of a vector a = aje; + ages + azes + asey

and an one-form & = a'é! + 282 + o383 + et

4 4
a|d == ZZaiajei]é'j, (69)

i=1j=1

where {e;} and {&'} are the basis of vectors and one-forms [46]. If bases are reciprocal (or

dual [17]), i.e. they satisfy ;|67 = 55 with §! = 1 and (5f = 0 when ¢ # j, then [46]
a; = élla, o' = ej|a, (70)
and the bar product is expanded as
ala = arat + asa® + aza® + asat. (71)

For example, the product of the one-form & with the unit basis vector x is 1, etc. The product
(in the orthonormal basis) of the one-form & with the vector b = 3x + 4y equals 3. In literature
(for example, in [17]) one can also find the other terminology, having the sense of the product
form Eq. 69. One-form is a linear functional, thus it act on a vector and return a scalar. Thus
the mapping of a vector a with one-form & produce a;a;. Also the property of linearity is
important. One of the example of one-form is the gradient of a function, but not all one-forms

are gradients [17, 180].

2In general, one-form should be understood as mapping of the tangent bundle of some point of a manifold to
real number [179].
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In classical literature, for example, The Gravitation [17], an one-form is visualized as a set of
equally spaced planes in 3D, or hyperplanes in higher dimensions In 3D spacetime dual vector
and one-form basises can be presented as shown in Fig. 1 (a). While basis vectors are arrows,
the one-form basis is a set of planes. Each plane is orthogonal to one of the basis vectors, and
the other two lie in its plane. Then the scalar value, which is returned by an one-form acting
on a vector a, in nothing more than the number of planes which a pierces (and the orientation
define a sing of the scalar), or the number of segments into which the vector a was cut by these
planes.

(@)

Figure 1: One-forms representation in 3D. (a) The presentation of vectors (arrows) and one-forms
(planes) basises of a Lorentz coordinate frame in the case €;|&; = 0; ;. (b) A two-form representation in
3D. In this representation two-forms should only be considered as the tubes direction and their density,
but not their walls positions. Both the left and right representations give the same two-form, which can
be written as Bid& A\ dg (left) or B1(2d&) A (3d§) (right). The pictures are inspired by [17].

Any vector a has corresponding unique one-form é&, dual to it. The components o’ of & can

be received using the coefficients of the metric tensor
o' = gYay, (72)

and, oppositely, components of a can be obtained from components of &.

One-forms are independent of any choice of coordinates [17]. But what is more important for
this work, that is the fact that the result of the operation, when an one-form act on a vector, is
a scalar. This value does not depends on chose of reference frame, or coordinates of a particular

frame.

Two-form

The special bilinear combination based on exterior product of one-forms is called two-form [17]
B = B1dx \Ndyg + Body NdZ + BsdzZ N\ dE. (73)
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Two-forms occur under a surface integral [41]. Here a new element, the wedge A appears.
It is used to a new type of product, the exterior product. There are three main axioms for
operation with the wedge product [41]. Anticommutativity

(AD)AAf=—fAXN

Also exterior product obeys the distributive property

(A2) AN (B +D) = AN+ AAD,

and the associative law

(A3) AN (BAD) = (AA@R)AD.

There is one more useful operation in differential forms, called the Hodge star dual operator
*. In n-dimensional space it connects p-form and Honge dual n — p-form, constructed with use
of the "remain" part of a basis. For example, in 4D the Hodge dual to df A d& two-form is also
two-form dg A dZ.

In literature one may meet that a two-form is visualize in 3D as a set of tubes, organized
by two intersecting sets of planes [17]. At first, this visualisation should not mislead one: the
positions of the tubes walls can be different for the same forms, for example, B1dZ A dy and
B (2d&) A (3d§), etc., is considering as the same two-form (see Fig. 1 (b)). Therefore, when
visualizing a bundle of such tubes, it is better to think not about the walls, but about its general
guidance. Secondly, it is worth to note that tube presentation can be applied only in 3D, in 4D
it becomes not clear. As it is discussed in Section 3.4, in work [24] two-forms are presented as
2D surfaces. As it is described in Section C.3, an exterior product built from two vectors a and
b, produces the bivector a Ab. This is an element of another space than vectors [40]. The set of
bivectors creates a linear space, which often designated as A2R™ (n is the dimension of a vector
space). This space has the basis, the oriented segments of the coordinate planes [39]. Then, a

wedge product a A b can be presented as [40]
aAb= Z (aibj — ajbi)ei Aej, (74)
i<j
where a = a;e; and b = bse;, {e;} is an n vector space basis. Nevertheless, in fact, the
basis of bivectors can be built without any vector basis. It is enough to have a set of linearly
independent bivectors {e; A e;} [46].

In terms of spaces, bivectors are dual to two-forms [17]. Then, their bar product can be
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constructed as follows (here is a simple bivector and a simple two-form, see definition below)

(@A B)|(anb) = (Gla)Blb) — (Bla)(@b) = det | 1 T, (75)

which follows from the asymmetry of the wedge product and orthogonality of the basis bivectors
and two-forms [46]. For example, the product of the two-form £ A # and the bivector ¢ A & can

be computed as follows
EAZ)|(tAz) = (Et)(&]x) - (&[t)(Ez) =1, (76)

because (t|t) = 1, (Z|x) = 1, (£]t) = 0, (t|x) = 0.

A bivector can be represented as a linear combination of other bivectors A = aAb+cAd+...,
if a bivector can be expressed as a exterior product of two vectors, for example a A b, it is called
a simple bivector [40]. The same is true for the two-forms [46]. In 3D all bivectors a simple,
but it is no more true in 4D [39]. In 4D a bivector cannot be presented as the exterior product
of two vectors [39] but can be written as a sum of two simple bivectors t A x +y Az [40]. In
spacetime this sum includes temporal (the first term) and spatial (the second term) parts, which
are completely orthogonal [46, 17]. In this way, such a bivector in 4D do not present a plane no

more. This decomposition is unique [38].

C.3 Bivector

This section is based on Chapter 1 of [49], Chapter 1 of [40], and the book [39]. The discussion
about the difference between the cross product and a bivector is build on the basis of [180] and
[39]. The description starts with a simple bivector in 2D and 3D. After that, this concept is
extended to the more complex 4D case.

The wedge product of two vectors a and b, written as

A=aAb (77)

is called a bivector. It is constructed with the special multiplication sign A, called "wedge".

Thus, in literature one may meet a name "wedge product" (also outer or exterior product).
From geometrical point of view, a simple bivector corresponds to an oriented parallelogram

formed by the two vectors (Fig. 2, (a)). Importantly, opposite to the cross product, this product
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(a) (b) (c) . -
a a

Figure 2: Geometrical interpretation of the bivector a A'b. (a) Construction of a bivector. (b) and
(c): the orientation of a bivector. The change of the vectors order in the wedge product changes the
orientation [49].

does not define a vector perpendicular to the direction of the segment, but a surface element.
This surface element is assigned an orientation. In can be defined with simple right-hand rule,
from the first vector in the wedge product to the second one (see Fig. 2, (b) and (c)). Change

in the order of the vectors flips the orientation of a bivector:

aAb=-bAa, (78)

but saves the magnitude the same. The consequences of this anticommutative property is that

the wedge product of the bivector with itself is zero:

aNa=0. (79)

As a result, the wedge product can only be constructed from linearly independent vectors. Also,
bivectors can be added, and be multiplied by scalars. The last operation simply scales the area
proportionally to this scalar.

Like vectors, bivectors form a linear space, and they can be decomposed into a bivector
basis. If {e;} is an orthonormal basis in the vector space, {e;;} with e;; = e; A e; as an
orthonormal basis for bivectors in their space. In the simplest 2D case there is only one basis

bivector e12 = e1 A ez, and any bivector a A b can be expressed as (Fig. 3 (a))

aAb= (a1b2 — agbl)elz, (80)

where a = a1e1 + ages and b = bieq + boes.

In the 3D case the basis consists of three linear independent basis bivectors (Fig. 3, (b)).
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A2
(b)

Figure 8: Demonstrations for a bivector basis (a) in 2D case and (b) in 3D case.

Then a bivector a A b can be expressed as "determinant'

€23 €31 €12

a/\b: a1 as as |- (81)

by by b3

In any dimension, the e;; component of the bivector a A b is a;b; — a;jb;. In 3D a bivector can
be seemed as something similar to the cross vector product (besides they have the orientations
defined in different ways ). The cross vector product on two 3-dimensional vectors  and y
yields in result 3-dimensional (axial) vector z. This vector is orthogonal to the piece of surface,
formed by vectors @ and y, which can be considered as the bivector @ A y. Thus, a bivector
and the vector product seem to be connected in 3D. But let us note, that the vector product as
operation exist only in 3D space. In higher (and lower) dimensions there is no direct analogue
of the binary cross product, while a bivector can be built for every dimensions with keeping its
geometrical meaning.?

The distinctive property of bivectors in 2D or 3D is that any bivector (or sum of bivectors)
can be presented as the wedge product of two vectors. Such a bivector is called a simple bivector.
All bivectors in 2D and 3D are simple. In 4D this is not the case. A bivector basis consists of 6

bivectors in 4D. The example of decomposition of a general bivector into basis bivectors in 4D

A = Apiegr + Ap2eoz + Aozeos + Aizern + Aizers + Azzens. (82)

The difference of 4D space is that a general bivector can not be presented as a simple bivector.

3The another distinction that the cross product requires a metric, while the exterior product does not.
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There is no way to present e; A ea + eg A eg as a A b. The bivector A from Eq. 82 can be
simplified to the sum of minimum two terms. Moreover, in 4D spacetime this decomposition is
unique, and it is the basis of the idea of the spacetiome map for electromagnetic world. Thus,
this property is important for this work, and it is discussed in more detail in following chapters.

Describing the vector basis above, it was assumed that the basis bivector e;; is the product
of two basis vectors e; A ej. Nevertheless, the basis of bivectors can be built without any vector
basis. One of the interesting properties of such representation is that it is enough to have a
set of linearly independent bivectors {e;;}. The presentation with vectors is provided here for
a simplified explanation: a bivector itself does not need vectors, it is just a surface with an
orientation. If needed, it can be decompose in any basis, but the advantage of exterior algebra

is that one can operate with bivectors without a traditional vector basis.

C.4 General case of n-form

In general case, on the base of the exterior product, in n-dimensional space we can construct a

n-form as a wedge product of n 1-forms [47]
w = wl_,.n(m)i’l Ao N Xy (83)

It defines a volume element on manifold, and can be integrated over n-dimensional domain [41].

In the same like in Eq. 83 way, the n-dimensional multivector can be constructed.

C.5 Differential forms and tensors

Intrinsically, the differential form is a skew-symmetric tensor field. The completely skew-
symmetric covariant tensor of the rank (0,p) corresponds to the p-form, and (p,0) to p-vector
(multivector) [17, 181]. Hence, the multivectors and forms are dual [17]. A general p-form can

be expanded using tensor {a;;} with components [17]

_ 1 s w
o = aail...ipw““'mzp' (84)

In n-dimensional space a bivector can be represented as a n x n skew-symmetric matrix.
Some of problems expressed in matrices can be adapted in terms of bivectors, providing advanced
geometric meaning [39].

Being only the calculus technique, tensors alone are devoid of clarity or illustration com-
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ponent in many situation, while exterior calculus (often combined with moving Cartan frame)

4. In addition, difficulties often arise with mappings of tensor fields,

produces easier solution
and because a large number of indexes one may miss the difference between various types of
quantities. The tensors are attached to a basis, which can change arbitrarily with transformation
to new coordinates [182]. Meanwhile, differential forms provide a coordinate-free solution for a
bunch of problems [181, 183, 47]. Another their advantage is easy and clear interpretation [41].

The technique of differential forms and multivectors is not intended to completely replace
tensor calculus in physics, since in various problems each of these methods can show great
efficiency [23, 41]. For the set of particular problems, the differential forms is more natural tool

due to their inner simplicity [41]. Also they can provide an additional physical insight in to the

common picture [23]. And they are there wherever integrals occur [41].

C.6 Hodge dual operator

Here we discuss in more the Hodge dual star operator x. Using the metric on the vectoral
space, one can set up linear isomorphism between vector and bivector linear spaces of the same
dimension [39]. For example, in 3D the star operator convert a vector to a bivector with missing
coordinates [39, 23]

*X =y N2z,

and oppositely. The Hodge dual depends also on the choice of orientation. Normally, a right-
handed and orthormormal basis is meant [39]. The general definition of Hodge duality in n-

dimensional space connects p-form and dual n — p-form with components

_ 1 .
(*a)kl---kn—p = H(a)“mzpeil...ipk‘l...k‘n,p (85)
includes Levi-Cevita tensor [17].
In spacetime for Hodge dual [17]:
*xe = (—1)P 4. (86)

The easiest way to compute the Hodge dual is to write the product of the form and it is dual

4For example, working on problems with Riemannian geometry by tensor methods could be overly compli-
cated [41].
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on the one side and the full volume product on the another (4D case)

aNa)=CEANEANGAZ. (87)

Besides bivectors, there are many ways to set an area [48]. As it was mentioned above,
the geometrical sense of a bivector is a surface of a parallelogram, built on two vectors, and
from this point of view bivector is similar to the vector product (besides the orientation). But
let us note, that the vector product as operation exist only in 3-dimension space as a binary
bilinear antisymmetric non-degenerate map, i.e. the operation on the two 3-dimensional vectors
yielding in result 3-dimensional (axial) vector. In higher (and lower) dimensions there is no
direct analogue of the binary cross product, while the bivector can be built for every dimensions

with keeping geometrical meaning [180]. In 4D the Hodge dual to a bivector is another bivector.

C.7 Differentiation and integration

Finally, it is important to mention the exterior derivative and integration. Exterior derivative

d produce a p + 1-form from p-form in n-space (p < n):

a=> aj 6N NEP (88)
we obtain
la = > (9;aj,..5,)8 NET AL NEP (89)
A
with
of
of =55

Using well-known derivative (1-form) of a scalar function (0-form) [17, 22]

df(zt, ..., z") = (0;f)é’

and adding a new factor e’ in the wedge product. Exterior derivative has the next properties

d(anf) = f’ia /\~E3~+ (—1)Pa& A dB, (90)
& =dd =0,

where & and 8 are p-form and g-form. Thus d(& A dB) = da A df.
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In 4D exterior derivative can be obtain from 3D exterior derivative as [22]

~ 0
d= =
d+ﬁ@,

which is useful for the Maxwell’ equations.
As differential form is stand under the sign of the integral, it can be integrated. Integration
decrease the degree of the form. There is geometrical interpretation for integration of differential

forms [17](p.94):

o the integral of one-form X along a specific curve is interpreted as a "number of A-surfaces

pierced along this curve',

o the integral of two-form fi over a piece of surface which has an orientation is interpreted

as a "number of tubes cut through by that surface", etc.

To integrate p-form & = Z%ailmip (x!,...,2™)&"...&% over a p-dimensional surface is needed

of substitution of a parametric equation of the surface z*(¢, ..., €P) into &:
&= a(e)de' A .. A dE. (92)
And than, integrate & using elementary integral definition [17]

/d = /a(gj)dgl...dgp. (93)

The integral relation for generalized Stokes theorem then

//Z&_/w&’ (94)

where & is p-form, and 07 is a border of an interior ¥ [17]. This theorem and its geometrical

presentation is discussed in more details in the Section 3.4.

C.8 C(lifford algebra

It is also worth mentioning that some works on electrodynamics [171, 50, 184, 185, 186, 48] are
based on an extended version of the Grassmann approach, the Clifford algebra. Being familiar
with both Hamilton’s and Grassmann’s approaches, Clifford successfully combined them, with

a bias towards Grassmann’s ideas [174]. Clifford’s geometric algebra generalize an idea of the
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vectors multiplication by introducing the geometrical product for vectors, applicable in any
dimension and signature [187]. The geometrical product is written as ab, and it is the sum of a
scalar and a bivector [49]

ab=a-b+aAb. (95)

This sum should be viewed in the same way as a complex number: it is a mixture of
two different objects [49]. This rewriting has effects that are more than just notation. The
combination of inner and outer multiplication into one operation has the great advantage: it
makes multiplication associative [171].

Similar to the differential forms approach, in Clifford algebra div and rot operations are
united, and this united operator is invertible, while separately they are not. This leads, for
example, to novel methods for solution of EM scattering problems [187, 49]. As Eq. 95 includes

a scalar product and a bivector, it stays simple to use even in the case of curvilinear coordinates.
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D.

Electromagnetism as 4D-static magnetic

and electric flux equations

This Appendix begins with consideration of the traditional conception for the flux in 3D. To
expand the flux conception for the general 4D case, which requires the introduction of the the
bivector concept. After that the connection of vectorial Maxwell’s equations with two integral

ones for fluxes is proved.

D.1 Conventional flux in 3D

The electric and magnetic fluxes on 2D surface in 4D spacetime is the key concept of the
presented theory. In the integral formulation of Maxwell’'s equations only fluxes are used to
describe the electromagnetic fields. Below it is shown that the flux is a convenient tool to
operate with electromagnetism. The flux conception in electromagnetism, starting from classical
approach, is discussed, and then this idea is transformed for general case of 4D spacetime. For
this, the geometric algebra tools are applied which advantage is a frame-free approach.

The traditional concept of electric or magnetic flux in electrodynamics implies the compu-
tation of the field through the surface(Fig. 4), i.e. the flux is a scalar product of field and

surface [3]. For example, in the case of infinitesimal area dS the electric flux
d®, =D -dS, (96)

where dS = dSn, n is the normal to the surface dS. Then the integral formulation is

B, — //E D.ds, (97)

where Y is the surface through which the electric flux is computed. In the case of magnetic flux
®,,, D is replaced by B.

For 4D spacetime, this traditional definition for 3D should be revised, because there are two
normals, corresponding to a piece of surface. In 4D spacetime there is another way to present
the flux: an algebraic value on a surface. To make the transition to these calculations, the

conception of a bivector should be seen. It is presented in Appendix C, Section C.3.

233



D. ELECTROMAGNETISM AS 4D-STATIC MAGNETIC AND ELECTRIC FLUX
EQUATIONS

Figure 4: Definition of the electric fluz in the case of 3D space.

D.2 Integral formulation of electromagnetism

As it is discussed in Section 1.3, Maxwell’s equations can be formulated in terms of the electric
and magnetic flux as the following postulates:

1. Any 2D oriented surface of 4D spacetime can be labelled with two scalar quantities, its
magnetic flux ®,, and its electric flux ®..

2. The magnetic flux on any closed surface is zero
®,, (closed surface) = 0. (98)

3. The electric flux on any closed surface is equal to the number of charges in any 3D volume

enclosed by this surface

&, (closed surface) = n. (99)

Below connection of the integral formulation with traditional form of curl Maxwell’s equa-
tions is demonstrated.
D.3 Maxwell’s equations from 4D static flux equations

In this work we consider the flux as the product of a field component on an oriented spatial

area. The electric flux on the basis surfaces

@e(ey Ney) = Dy,
D.(ex Ney) = Dy, (100)

@, (ez A ey) = D.,
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and magnetic flux on the basis surfaces

‘i)m(ey Ney) = By,

®,,(ex Nes) = By, (101)

It is important to consider attentively the orientation of the surface, as the change of the

orientation of the bivector change the sign of the flux on it.

(a) 2 (b) y
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