
HAL Id: tel-03679950
https://theses.hal.science/tel-03679950

Submitted on 27 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Online Landscape-Aware Algorithm Selection
in Numerical Black-Box Optimization

Anja Jankovic

To cite this version:
Anja Jankovic. Towards Online Landscape-Aware Algorithm Selection in Numerical Black-Box Opti-
mization. Neural and Evolutionary Computing [cs.NE]. Sorbonne Université, 2021. English. �NNT :
2021SORUS302�. �tel-03679950�

https://theses.hal.science/tel-03679950
https://hal.archives-ouvertes.fr

Thèse de doctorat en informatique
de Sorbonne Université

École Doctorale Informatique, Télécommunications et
Électronique

Towards Online Landscape-Aware Algorithm
Selection in Numerical Black-Box Optimization

par
Anja Jankovic

présentée et soutenue publiquement
pour obtenir le grade de

DOCTEUR de SORBONNE UNIVERSITÉ

Date provisoire de soutenance: le 17 décembre 2021

Directrice de thèse
Dr.-Ing. Carola Doerr
Sorbonne Université, CNRS
Chargée de recherche

Jury
Dr. Marie-Éléonore Kessaci
Université de Lille, CRIStAL
Rapportrice – Maîtresse de conférences

Prof. Dr. Heike Trautmann
University of Münster, Department of Information Systems
Rapportrice – Professeure des universités

Prof. Dr. Jamal Atif
Université Paris-Dauphine, LAMSADE
Examinateur – Professeur des universités

Prof. Dr. Evripidis Bampis
Sorbonne Université, LIP6
Examinateur – Professeur des universités

Dr. Christoph Dürr
Sorbonne Université, CNRS
Examinateur – Directeur de recherche

Dr. Alberto Tonda
INRAE, AgroParisTech, EKINOCS
Examinateur – Chargé de recherche

0Abstract
Black-box optimization algorithms (BBOAs) are conceived for settings in which

exact problem formulations are non-existent or inaccessible, or in which prob-

lems are too complex to be solved analytically, thus requiring users to treat it as

a black box. In those scenarios, BBOAs are essentially the only means of finding

a good solution to such a problem. Due to their general applicability, BBOAs can

exhibit different behaviors when optimizing different types of problems. This

yields a meta-optimization problem of choosing the best suited algorithm for a

particular problem at hand, called the algorithm selection problem.

By reason of inherent bias and limited knowledge about the complex rela-

tionship between algorithms, problems, and performance, a manual selection

of the algorithms is undesirable. In consequence, the vision of automating the

selection process has quickly gained traction in the evolutionary computation

community. One prominent way of doing so is via so-called landscape-aware
algorithm selection, where the choice of the algorithm is based on predicting its

performance by means of numerical problem instance representations called

features. There exists a large body of work in this very domain. However, a key

challenge that landscape-aware algorithm selection faces is the computational

overhead of extracting the features, a step typically designed to precede the ac-

tual optimization, which reduces the computational budget that can be allocated

to the optimization algorithm.

In this thesis, we propose a novel trajectory-based landscape-aware algorithm

selection approach which incorporates the feature extraction step within the

optimization process. We show that the features computed using the search

trajectory samples can lead to very robust and reliable predictions of algorithm

performance, and consequently to powerful algorithm selection models built

atop. We also present several preparatory analyses, including a novel perspective

of combining two complementary regression strategies that outperforms any of

the classical, single regression models, to amplify the quality of the final selector.

iii

0Résumé

Les algorithmes d’optimisation de boîte noire (BBOA) sont conçus pour des environ-

nements dans lesquels les formulations exactes de problèmes sont inexistantes ou

inaccessibles, ou dans lesquels les problèmes sont trop complexes pour être résolus ana-

lytiquement, obligeant ainsi les utilisateurs à les traiter comme une boîte noire. Dans ces

scénarios, les BBOA sont essentiellement le seul moyen de trouver une bonne solution à

un tel problème. En raison de leur applicabilité générale, les BBOA peuvent présenter

des comportements différents lors de l’optimisation de différents types de problèmes.

Cela donne un problème de méta-optimisation consistant à choisir l’algorithme le mieux

adapté à un problème particulier, appelé problème de sélection d’algorithmes.
En raison du biais inhérent et des connaissances limitées sur la relation complexe

entre les algorithmes, les problèmes et les performances, une sélection manuelle des

algorithmes n’est pas souhaitable. En conséquence, la vision d’automatiser le processus

de sélection a rapidement gagné du terrain dans la communauté. Un moyen important

de le faire est ce que l’on appelle la sélection d’algorithmes tenant compte du paysage,
où le choix de l’algorithme est basé sur la prédiction de ses performances au moyen

de représentations numériques d’instances de problèmes appelées caractéristiques. Il
existe un grand nombre de travaux dans ce domaine. Cependant, un défi clé auquel la

sélection d’algorithmes tenant compte du paysage est confrontée est le coût de calcul de

l’extraction des caractéristiques, une étape qui précède l’optimisation, ce qui réduit le

budget pouvant être alloué à l’algorithme d’optimisation.

Dans cette thèse, nous proposons une nouvelle approche de sélection d’algorithmes

tenant compte du paysage basée sur la trajectoire qui intègre l’étape d’extraction de

caractéristiques dans le processus d’optimisation. Nous montrons que les caractéristiques

calculées à l’aide des échantillons de trajectoire de recherche peuvent conduire à des

prédictions très robustes et fiables des performances des algorithmes, et par conséquent

à de puissants modèles de sélection d’algorithmes construits dessus. Nous présentons

également plusieurs analyses préparatoires, y compris une nouvelle perspective de

combinaison de deux stratégies de régression complémentaires qui surpasse n’importe

lequel des modèles classiques de régression simple, pour amplifier la qualité du sélecteur

final.

iv

0Acknowledgments

My PhD journey has been the most beautiful, exciting, fulfilling, yet challenging experi-

ence of my life. This thesis is nothing but the essence of the past three and a half years

squeezed into a manuscript. Although I am very proud of myself to have grown as a

person during this time and to have accomplished becoming a Doctor of Science, this

whole story would never in a million years have been possible if it had not been for the

people, old and new, that were by my side every step of the way.

The person whom I am indebted for life is Carola Doerr, my thesis supervisor. I

am forever grateful that our paths even crossed in this universe. She helped me shape

myself as a researcher with endless patience and kindness. Her sharp mind and warm

heart are the best combination one can come across in academia. Carola helped me

whenever I was feeling stuck or down, and genuinely celebrated my little achievements

throughout this journey. I still to this day cannot believe my luck to have had her as my

supervisor, and I am humbled to now be able to call her a true friend.

I thank my collaborators for their enthusiasm, ideas and discussions that have led to

very nice publications. I also thank the whole RO team at LIP6 for being a second family

to me all these years. Without them, my life would be far more boring, and I would not

have experienced what it was like to be a part of a true research environment, like the

one we have at LIP6. Thank you from the bottom of my heart for making me feel at

home.

Nevertheless, there are two people that I am happy to call friends, albeit first getting

to know them as colleagues: Martin Krejca and Elena Raponi. I do not know what I

would do without you, guys! Thank you for the precious feedback on my thesis, Martin,

for our countless weird discussions in the office, for understanding my unpredictable

moods and handling them exquisitely, and for keeping up with me in general. Elena, we

share the same soul, but different bodies. I think you already know everything that I

would say, and you would even say it much better, so I am not going to get even more

pathetic here. I owe you a lot, both of you.

Outside of the research context, my family and friends are the ones that kept me

going in the worst of times, making sure to transform it into the best of times. My

friends: Stefan, Milica, Saša, Uroš, Dunja, Mia, Emilija (with her baby, my godson!),

Anastasija, Vanja. . . the list does not end here! You know who you are, and you know I

love you a lot.

To my family (the whole tribe), I know this period has been hard for you at times,

especially when you were witnessing my struggles. I think there is nobody in this world

prouder of me than they are. I will not list all of them here, except my brother Lazar

v

and my sister Marija. They have always been successful in keeping the family dynamics

as close as to what it had been when we were children. Thanks to them, I never lost

this crucial, child-like part of myself, no matter the circumstances. I love you all to the

moon and back.

Finally, I dedicate this thesis to the most important people in my life: my mom and

dad. I consider them to be living legends, each in their own right. I would not at all be

here today if it was not for them, but much more importantly, I would not be the person

I am, today and every day, without their unquestionable love, support, encouragement,

critiques, conversations... the whole lot! I am sorry that I have not been around a lot,

which is extremely hard for you, but at the same time, you are the ones that opened the

doors for me and gave me strength to lead my life the way I want. Thank you for being

my parents. Volim vas.

vi

0Contents
Abstract iii

Résumé iv

Acknowledgments v

Contents vii

1 Introduction 1
1.1 Algorithm Selection . 2

1.2 Exploratory Landscape Analysis . 2

1.3 Key Objective of the Thesis . 3

1.4 Outline of the Thesis . 5

2 Contributions of the Thesis 6
2.1 Combining Fixed-Budget Regression Models 7

2.2 Impact of Hyper-Parameter Tuning 7

2.3 Personalized Performance Regression 8

2.4 Adaptive Landscape Analysis . 9

2.5 Trajectory-Based Algorithm Selection 10

I The Background 11

3 Black-Box Optimization 12
3.1 Black-Box Optimization Algorithms 12

3.1.1 CMA-ES . 13

3.1.2 Modular CMA-ES . 14

3.1.3 Additional Algorithms . 15

3.2 Algorithm Performance Measures 16

3.3 Problem Collections . 17

3.3.1 BBOB Test Suite . 17

4 Exploratory Landscape Analysis 19
4.1 ELA Features . 19

4.2 Choice of Features . 20

vii

4.3 Feature Computation . 21

5 Algorithm Selection 22
5.1 Per-Instance Algorithm Selection 22

5.2 From Performance Regression to Algorithm Selection 23

5.3 State of the Art . 23

5.4 Performance Assessment of Algorithm Selectors 24

II Contributions 25

6 Combining Fixed-Budget Regression Models 26
6.1 Preliminaries . 26

6.2 Fixed-Budget Performance Regression 30

6.2.1 Impact of Feature Selection 32

6.3 Fixed-Budget Algorithm Selection 33

6.3.1 Impact of the Threshold Value and the Feature Portfolio 34

6.3.2 Impact of the Algorithm Portfolio 35

6.3.3 Impact of the Sample Size for Feature Extraction 37

6.4 Conclusions . 38

7 Impact of Hyper-Parameter Tuning 40
7.1 Preliminaires . 40

7.2 Performance Regression Quality of Different Models 43

7.3 ELA-Based Algorithm Selection . 46

7.4 Sensitivity Analyses . 48

7.5 Conclusions . 49

8 Personalized Performance Regression 52
8.1 Preliminaries . 52

8.2 Personalized Machine Learning Models 53

8.3 Use-Case: ELA-Based Fixed-Budget Performance Regression 55

8.3.1 Experimental Setup . 56

8.3.2 BIPOP-CMA-ES Performance Prediction 58

8.4 Conclusions . 65

9 Adaptive Landscape Analysis 69
9.1 Preliminaries . 69

9.2 “Zooming In” into the Landscapes 70

9.3 Conclusions . 73

viii

10 Trajectory-Based Performance Regression 74
10.1 Preliminaries . 74

10.2 Supervised Machine Learning for Performance Regression 78

10.3 Comparison with Global Feature Values 79

10.4 Sensitivity Analyses . 79

10.5 Conclusions . 81

11 General Conclusions and Outlook 86

Bibliography 88

ix

1 Introduction

Optimization is one of the central themes across many scientific fields, notably math-

ematics, computer science, and related technical disciplines. Optimization is also at

the core of many real-world applications. Solving an optimization problem is typically

not easy, as problems are often computationally hard or otherwise resource-intensive;

finding an exact optimal solution in a reasonable time is thus always a luxury demand.

Furthermore, in many concrete cases formal problemmodeling is impossible. The nonex-

istence (or inaccessibility) of an explicit mathematical formula, or the computational

complexity of a problem, requires users to treat it as a black box.

In order to tackle problems in these circumstances, we resort to so-called black-box
optimization techniques. They comprise algorithms, also known as heuristics, that
are able to generate good, but not necessarily optimal, solutions via limited number of

operations, such as sampling and evaluating new candidates, and then use the obtained

knowledge to steer the search towards more promising alternatives, proceeding in

iterations until eventually recommending their best estimate for a good solution. This

framework allows for saving precious time and computational resources, and it works

surprisingly well for many different types of problems.

A plethora of different black-box optimization algorithms has been developed to

this day. Their behaviors typically vary fundamentally from one approach to another.

For example, Bayesian optimization techniques [FSK08] approximate the true problem

instance via a surrogate function which, once optimized, tells the algorithm which

solution candidate to consider in the next step; direct search methods, such as the Nelder-

Mead algorithm [NM65] and Powell algorithm [Pow64], examine candidate solution in a

sequential fashion and compare each newly estimated solution quality with the quality of

the best found solution so far, selecting the better of the two; evolution strategies [ES15],
in their own right, apply (stochastic) mutation, recombination, and selection operators to

a population of individuals containing candidate solutions in order to evolve iteratively

better and better solutions.

Different black-box optimization algorithms have complementary strengths and weak-

nesses due to their different behaviors. Hence, to be able to achieve peak performance,

this large pool of algorithmic options induces a challenging meta-optimization problem:

how does one select the most efficient algorithm for a given problem instance?

1

Chapter 1 Introduction

1.1 Algorithm Selection

For a long time, algorithm selection was addressed manually by relying solely on

expert knowledge of both the problem and the algorithm. The main disadvantage of

this algorithm selection approach is not only that it requires an outstanding level of

expertise, but, more importantly, that it can be highly prone to human bias. Therefore,

the automation of the selection process has become a vision that quickly gained traction

within the research community. Various research routes have since been explored in

order to achieve efficient automated techniques.

The most basic approach in automated algorithm selection consists of using a
priori available high-level problem characteristics to recommend the most appropriate

algorithm via so-called passive selection techniques [MRW+21]. In contrast, active
selection approaches [MBT+11; ME13; MKH15] operate within a bet-and-run framework,

where several algorithms are run on an instance for some time and then all but the best

one are stopped. Lastly, in recent years, significant research effort has been put towards

designing algorithm selection approaches comprising an important preprocessing step

that consists of extracting knowledge about the problem instance beforehand and using

this knowledge to base the decision of which algorithm to use in the particular situation.

This thesis is concerned with the last of these perspectives, also known as landscape-
aware algorithm selection [BBH+19; KT19; MKH12]. The term landscape here stands
for the fitness landscape of a function, i.e. a set of function evaluations corresponding to

a sample of observations in the search space. The landscape properties of a problem are

first automatically computed as low-level features and are then used as a basis for further

selecting an algorithm. The standard pipeline of this approach is shown in Figure 1.1.

Importantly, we note that the common landscape-aware algorithm selection framework

relies on using machine learning tools, notably supervised learning techniques, for

designing models that recommend the most appropriate algorithm in the last phase of

the pipeline.

1.2 Exploratory Landscape Analysis

Research addressing efficient ways to characterize problem instances via low-level

feature approximations is subsumed under the umbrella term exploratory landscape
analysis (ELA) [MBT+11]. These low-level features are computed based on a (random

or carefully chosen) sample of observations and their function evaluations from the

given problem instance. Information carried by the features allows to select an algorithm

that fits well to the particular problem instance we aim to solve. This perspective is

known as per-instance algorithm selection. Classically, the landscape-aware algorithm
selection pipeline requires that this feature extraction is performed in a preliminary

2

Key Objective of the Thesis Section 1.3

Problem
Instances

Algorithm
Portfolio

Landscape
Features

Feature
Computation

Algorithm
Execution

Algorithm
Performance

Algorithm
Selection

Figure 1.1: High-level schematic representation of the structure of landscape-aware

algorithm selection pipeline.

phase, which introduces a significant additional cost in terms of function evaluations

on top of the cost needed for the algorithm selector itself.

This overhead cost is of huge concern. A classical recommendation for computing

reliable and robust feature values is 50𝑑 function evaluations dedicated to the prepro-

cessing step [BDS+17; KPW+16], where 𝑑 denotes the dimensionality of the problem.

Nonetheless, this feature extraction budget is still outstandingly large for many practi-

cal applications; moreover, it is always considered to be independent from the budget

of the optimization process. In turn, these observations create room for additional

improvement by reducing this cost to a greater extent.

1.3 Key Objective of the Thesis
This thesis studies how to further save resources in the algorithm selection process. We
balance out the aforementioned cost of the feature extraction step by incorpo-
rating it within the optimization process. We do so by:

1. running a default algorithm on problem instances,

2. extracting features based on the algorithm’s search trajectory samples,

3. using this information to predict performances of the different algorithms in the

portfolio,

4. switching to a potentially better suited algorithm for the problem at hand, based

on the predictions.

3

Chapter 1 Introduction

We show that this paradigm shift towards trajectory-based landscape-aware algo-
rithm selection is indeed highly promising. We note that the terms trajectory-based
and online landscape-aware algorithm selection will be used interchangeably in the

remainder of the thesis.

Our work involves a performance prediction step as a foundation upon which we

build the algorithm selector. To this end, we opt for regression models (rather than

classification ones), as we are interested in targeting concrete performance values. The

general pipeline is then expanded by this additional step and is presented in Figure 1.2.

Problem
Instances

Algorithm
Portfolio

Landscape
Features

Feature
Computation

Algorithm
Execution

Algorithm
Performance

Algorithm
Selection Performance

Regression

Figure 1.2: High-level schematic representation of the structure of landscape-aware

algorithm selection pipeline, where the algorithm selection is based on predicted
performance values.

Generally, when speaking of algorithm performances, most previous works in the

context of landscape-aware algorithm selection have been undertaken in the fixed-target

setting, in which the goal is to minimize the number of function evaluations needed

to find a solution of a predefined target value. However, we often face a different

optimization scenario in practice, where time is of vital importance, and computational

and financial costs associated to time can be overwhelming if we aim for some fixed

quality solution.

This is precisely the reason whywe choose to shift the viewpoint for our work, and we

thus place ourselves throughout this thesis in thefixed-budget context. Here, algorithm
performance is measured as expected solution quality after spending a predetermined

budget of function evaluations we have at our disposal. We thus translate the landscape-

aware (i.e., ELA-based) algorithm selection approach to the fixed-budget setting, which

has not been systematically analyzed so far.

In order to set up the correct trajectory-based framework, the thesis also introduces

several preparatory steps. We look into the design of more accurate algorithm selection

approaches building on top of the state-of-the-art, by combining supervised models

that predict differently with different precision and by personalizing those models to

the particular problem instance we are interested in solving. We also provide a detailed

4

Outline of the Thesis Section 1.4

empirical performance analysis of machine learning tools needed for the algorithm

selection in the desired context.

1.4 Outline of the Thesis
The general structure of the thesis is presented in this section.

Chapter 2 gives an overview of the contributions of the thesis via summaries of

publications that the thesis is based on. The remainder of the thesis is organized in two

parts.

In Part I, we are concerned with the conceptual background for each of the compo-

nents in the algorithm selection pipeline. We first introduce important notions from the

black-box optimization domain, notably the core principle of black-box optimization

algorithms, their performance measures, and the nature of numerical black-box optimiza-

tion problems in Chapter 3. Techniques of representing the problem instances through

numerical values, which are subsumed under the term of exploratory landscape analysis,

are presented in Chapter 4. We then define the algorithm selection problem, giving an

overview of the state of the art and highlighting the key challenges in Chapter 5.

The detailed contributions of the thesis are found in Part II. Chapter 6 introduces a

combined regression strategy for algorithm performance prediction required to select

algorithms in the landscape-aware context. We are concerned with comparing the

quality of different regression models based on their parametrization in Chapter 7. A

novel performance prediction approach based on personalizing regression models to

the problems is proposed in Chapter 8. We then give a brief analysis of how problem

landscapes look as seen by the optimizer in Chapter 9. Our novel trajectory-based (i.e.,

online) algorithm selection framework is finally introduced in Chapter 10.

Lastly, Chapter 11 opens some promising avenues and gives motivation for future

work in this line of research.

5

2 Contributions of the Thesis

This thesis is based on the following publications, listed here in reverse chronological

order:

• Anja Jankovic, Gorjan Popovski, Tome Eftimov and Carola Doerr. The Impact

of Hyper-Parameter Tuning for Landscape-Aware Performance Regression and

Algorithm Selection. In Proc. of Genetic and Evolutionary Computation Conference
(GECCO’21), pages 687–696. ACM, 2021. [JPE+21]

• Tome Eftimov, Anja Jankovic, Gorjan Popovski, Carola Doerr and Peter Korošec.

Personalizing Performance Regression Models to Black-Box Optimization Prob-

lems. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’21),
pages 669–677. ACM, 2021. [EJP+21]

• Anja Jankovic, Tome Eftimov and Carola Doerr. Towards Feature-Based Perfor-

mance Regression Using Trajectory Data. In Proc. of Applications of Evolutionary
Computation (EvoApplications’21), volume 12694 of Lecture Notes in Computer
Science, pages 601–617. Springer, 2021. [JED21]

• Anja Jankovic and Carola Doerr. Landscape-Aware Fixed-Budget Performance

Regression and Algorithm Selection for Modular CMA-ES Variants. In Proc. of
Genetic and Evolutionary Computation Conference (GECCO’20), pages 841–849.
ACM, 2020. [JD20]

• Anja Jankovic and Carola Doerr. Adaptive Landscape Analysis. In Proc. of Ge-
netic and Evolutionary Computation Conference (GECCO’19), Companion Material,
pages 2032–2035. ACM, 2019. [JD19]

In Sections 2.1 to 2.5, we give a brief summary of each publication, in the order in

which they appear in the thesis.

6

Combining Fixed-Budget Regression Models Section 2.2

2.1 Landscape-Aware Fixed-Budget Performance
Regression and Algorithm Selection for Modular
CMA-ES Variants [GECCO’20]

In this paper, we propose a novel automated algorithm selection approach based on two

differently trained and suitably combined supervised learning models which underpin

the recommendation of the most appropriate algorithm for the problem instance at

hand. A common component in the state-of-the-art algorithm selection techniques are

regression models which predict the performance of a given algorithm on a previously

unseen problem instance.

In the context of numerical black-box optimization, such regression models build on

ELA features, which quantify relevant characteristics of the problem. These measures

can be then used in a rather straightforward way by a regression model that maps them

to algorithm performances. First steps towards ELA-based performance regression have

been made in the context of a fixed-target setting. In many applications, however, the

user needs to select an algorithm that performs best within a given budget of function

evaluations, as for numerous practical purposes with limited time or computational

restrictions, a fixed-target setting is often off-limits.

Adopting this fixed-budget setting, we demonstrate that it is possible to achieve high-

quality performance predictions with off-the-shelf supervised learning approaches, by

combining two differently trained regression models: one trained on the original
performance values of different algorithms, and the other trained on log-scale perfor-
mance values. In the fixed-budget context, this is especially useful, as log-scale values of

the data match the intuitive notion of the distance level of the solution to the optimum.

We test this approach on a very challenging problem: algorithm selection on a portfolio

of very similar algorithms, which we choose from the family of modular CMA-ES al-

gorithms [RWL+16]. We show that the complementary algorithm selection approach

achieves better performance quality compared to any of the standalone selectors (based

either on the original data or on the log-scale data). The pipeline of the approach is

illustrated in Figure 2.1.

2.2 The Impact of Hyper-Parameter Tuning for
Landscape-Aware Performance Regression and
Algorithm Selection [GECCO’21a]

This paper studies the differences in algorithm selection accuracy depending on the

choice of the underlying machine learning model, and in particular depending on its

hyper-parameter configuration. Despite a significantly growing number of applica-

tions, machine learning models are still often chosen in an ad hoc manner; this motivates

7

Chapter 2 Contributions of the Thesis

Problem
Instances

Algorithm
Portfolio

Landscape
Features

Feature
Computation

Algorithm
Execution

Algorithm
Performance

Performance
Regression

Performance
Regression

Model with original data

Model with log-data

Combined
Algorithm
Selection

Orig
ina

l d
ata

Log-data

Figure 2.1:High-level schematic representation of the structure of our novel combined
landscape-aware algorithm selection pipeline.

further investigation of the influence that the choice of the machine learning model

can have on the performance prediction and, consequently, on the algorithm selection

quality. We show in this work that three classical regression methods are able to achieve

meaningful results for ELA-based algorithm selection. For those three model families –

random forests, decision trees, and bagging decision trees – the quality of the regression

models is highly impacted by the chosen hyper-parameters. This has significant effects

also on the quality of the algorithm selectors that are built on top of these regressions.

After a preliminary study which led to discarding a few hundreds of tested models

due to their very low accuracy, we restrict our attention to 30 differently parametrized

models from the three aforementioned model families. Each of the models is then

coupled with 2 complementary regression strategies, as described in Section 2.1. The

so-obtained insights allowed us to derive guidelines for the tuning of the regression

models and provide general recommendations for a more systematic use of classical

machine learning models in landscape-aware algorithm selection. This paper being a

first step in this direction, we point out that a number of open questions merit further

investigation. Nevertheless, general results indicate that the choice of the machine

learning model is a challenging step in the design of the algorithm selection pipeline

and needs to be undertaken carefully.

2.3 Personalizing Performance Regression Models to
Black-Box Optimization Problems [GECCO’21b]

This paper focuses on analyzing the possibility of personalizing performance re-
gression models to specific types of optimization problems. Accurately predicting

the performance of different optimization algorithms for previously unseen problem

instances is crucial for high-performing algorithm selection techniques. In the context

8

Adaptive Landscape Analysis Section 2.5

of numerical black-box optimization, researchers and practitioners typically stick to

standard choices of the machine learning models as a basis for algorithms selectors.

These are, most frequently, off-the-shelf tools, which can seem rather naïve from the

machine learning viewpoint. Thus, we are presented with a risk of not achieving the

full potential of a machine learning technique if we disregard proper investigation of its

actual suitability for the problems we encounter.

With this study, we bring to the attention of evolutionary computation community

one way of increasing the suitability of machine learning tools for the problems at hand.

Instead of aiming for a single model that works well across a whole set of possibly diverse

problems, our personalized regression approach acknowledges that different models may

suit different types of problems. Going one step further, we also investigate the impact

of selecting not a single regression model per problem, but personalized ensembles. We

test our approach on predicting the performance of numerical optimization heuristics

on the BBOB benchmark suite and we show that this approach opens promising avenues

for further increasing the regression quality and, consequently, the accuracy of the

algorithm selector built atop.

2.4 Adaptive Landscape Analysis [GECCO’19]

This paper takes a deeper dive into the underlying properties of different black-box

optimization problems. In order for the optimization process to be as efficient as possible,

one must first recognize the nature of the problem at hand and then proceed to choose

the algorithm exhibiting the best performance for that type of problem. A standard way

of identifying similarities and differences between various problems lies in ELA feature

extraction and representation of the problem via these numerical values.

We present here some first steps towards adaptive landscape analysis. Our ap-
proach is aimed at taking a closer look into how feature values evolve during the

optimization process and whether this local feature information can be used to dis-

criminate between different problems. The motivation of our work is to understand

if and how one could exploit the information provided by local features to get a step

closer to dynamic (also known as online) algorithm selection. The idea behind it is fairly

simple, yet extremely promising in terms of gaining efficiency and performance quality;

the choice of an algorithm is tracked and adapted during the optimization process,

allowing for switching from one algorithm to a better suited one. The long-term goal of

this analysis is to leverage local landscape information for adjusting the choice of the

algorithm on the fly, i.e., during the optimization process itself.

We show that the local feature values differ drastically compared to the global ones,

which gives a promising insight into how the problem landscape looks locally, as seen

by the algorithm. These insights could turn out to be crucial for ultimately designing an

algorithm selector model that operates in an online fashion.

9

Chapter 2 Contributions of the Thesis

2.5 Towards Feature-Based Performance Regression
Using Trajectory Data [EvoAPPs’21]

The final paper investigates a novel framework where the performance regression

model is based on the information obtained via a search trajectory of a default solver.

The pipeline of this trajectory-based approach is shown in Figure 2.2. Existing ELA-

based algorithm selection approaches require the approximation of problem features

based on a significant number of samples. They are typically selected through uniform

sampling or Latin hypercube designs, and they are computed in a problem-specific

fashion, independently of the optimization process that occurs later. The evaluation of

these points is costly, and the benefit of an ELA-based algorithm selection over a default

algorithm must therefore be significant in order to pay it off.

Problem
Instances

Algorithm
Portfolio

Landscape
Features

Feature
Computation

Algorithm
Execution

Algorithm
Performance

Trajectory-
based

feature
extraction

Performance
Regression

Performance
Regression

Model with original data

Model with log-data

Combined
Algorithm
Selection

Orig
ina

l d
ata

Log-data

Figure 2.2:High-level schematic representation of the structure of ournovel trajectory-
based landscape-aware algorithm selection pipeline.

One could hope to by-pass the evaluations for the feature approximations by using

the samples that a default algorithm would anyway perform, i.e., by using the points

of the default algorithm’s trajectory. We analyze here how well such an approach can

work. Concretely, we test how accurately trajectory-based ELA approaches can predict

the final solution quality of the particular default solver (the CMA-ES algorithm) after a

fixed budget of function evaluations.

We observe that the loss of trajectory-based predictions can be surprisingly small,

even negligible, compared to the classical global sampling approach, if the remaining

budget for which solution quality shall be predicted is not too large. This important

result fortifies our vision of trajectory-based algorithm selection being the future of

dynamic algorithm selection. It goes without saying that a large pool of open questions

are yet to be answered. Nonetheless, we note that the untapped potential within this

research direction remains the central point of our research efforts in the imminent

future.

10

Part I

The Background

3 Black-Box Optimization

In Chapters 3 to 5 we provide a more detailed overview of the components in the

algorithm selection pipeline we adopt throughout the thesis (cf. Figure 1.2). In this first

chapter of this background part, we briefly discuss the relevant black-box optimization

techniques (cf. Section 3.1), the performance measures in the fixed-budget context that

we consider in this thesis (cf. Section 3.2), and the problem collections that we use to

evaluate our pipeline (cf. Section 3.3).

3.1 Black-Box Optimization Algorithms
Black-box optimization algorithms (BBOAs) are a wide-ranging family of adaptive

sampling-based strategies, which adjust their behavior during the optimization process.

There have been various attempts to provide an exhaustive classification of BBOAs in

the literature [BLS13; BPS+01; SB18], which proved to be a challenging task in its own

right, given the rather loosely defined boundaries between different algorithm classes.

The arguably largest class of BBOAs are iterative optimization heuristics. They are

initialized by selecting a set of candidate solutions (i.e., an initial population) that are
evaluated in a first iteration. Once the quality of these search points is known, a second

set of solution candidates is selected and evaluated. The algorithm proceeds in this

manner, alternating between selecting and evaluating solution candidates iteration

by iteration, until some termination criterion is met, e.g., when a sufficiently good

solution has been found, when a time (or function evaluation) budget is exhausted,

when no progress has been observed for some time, or when the diversity of the

solutions has fallen below some threshold. With each iteration, the algorithm collects

more information about the problem instance at hand, which it uses to steer the search

towards the most promising regions in the decision space. The simplified blueprint of a

black-box algorithm is shown in Algorithm 1.

Many, but not all, iterative optimization heuristics are randomized. Furthermore,

most of these heuristics were developed with a particular application in mind, and

some have paved their way into a much broader field than what they had been initially

conceived for. One of such universally acknowledged strategies has served as a default

solver in many use-cases across the field due to its state-of-the-art performance, and was

thus also selected for the purpose of this thesis. We introduce it in Section 3.1.1. Due

to the many variants of this default solver that have been developed, a novel modular

framework based on it has also been proposed recently and presents another important

algorithm family that we introduce in Section 3.1.2.

12

Black-Box Optimization Algorithms Section 3.1

Algorithm 1: Blueprint of a black-box optimization algorithm

1 choose an initial sampling distribution;

2 from this distribution, sample the initial set of search points (initial
population) 𝑋 ;

3 evaluate the initial population 𝑋 ;

4 while termination criterion not reached do
5 update the sampling distribution based on previous evaluations;

6 from this new distribution, sample a new population of solution

candidates;

7 evaluate the new population;

8 output the best search points seen so far

3.1.1 CMA-ES

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [HO01] is one of the

most widely applied algorithms for real-valued single-objective optimization problems

(the original paper has so far reached more than 4000 citations). Thanks to its invariance

properties, some of its default parameter values can be tuned using a rather small set of

test functions, while nevertheless providing robust performances on a large variety of

problems, from analytical benchmark functions to many real-world applications.

The core ideas behind the CMA-ES are fairly simple. In every iteration, candidate

solutions are sampled from a multivariate normal distribution 𝑁 (𝑚,𝐶), where𝑚 stands

for the distribution mean, and 𝐶 denotes the covariance matrix that adapts and rotates

the distribution. The best candidates are then selected for shifting the distribution mean,

and the distribution is adapted to an ellipsoid with information about evolution paths;

i.e., the pairwise dependencies between variables stored in the covariance matrix are

continuously updated by incorporating previous evolution paths. Finally, the distribution

is centered around the new distribution mean for the next generation. The algorithm

runs until a termination criterion is met and returns the best individual observed so far.

The CMA-ES works derivative-free, i.e., it does not need access to gradients or higher-
order derivatives. Furthermore, it is comparison-based, i.e., it only uses the ranking

between candidate solutions being exploited for learning the sample distribution. It

performs significantly well on ill-conditioned and non-separable problems [HO01], but

also on non-convex, highly multi-modal and noisy problems. Figure 3.1 illustrates the

behavior of the CMA-ES.

13

Chapter 3 Black-Box Optimization

Figure 3.1: Illustration of the CMA-ES algorithm. Taken from Wikimedia Com-

mons [Com08].

3.1.2 Modular CMA-ES

Widespread use of the CMA-ES in the community has naturally led to its several adap-

tations. For some of them, empirical results have shown that they outperform the

original version of the CMA-ES under different circumstances. One perspective that

captures multiple alterations of the standard CMA-ES has been proposed in [RWL+16].

The modular CMA-ES is an algorithmic framework which allows to extract different

functional modules based on underlying mechanisms of existing CMA-ES adaptations.

For instance, by enabling or disabling modules such as orthogonal sampling, elitism, or

choosing one of the available weighting schemes, we can create different variants of the

CMA-ES (cf. Table 3.1 for a complete overview of modules).

Eleven modules have been incorporated within the framework, nine binary and two

ternary, hence amounting to 4608 different CMA-ES variants in total. The framework

can thus be considered as a family of very similar algorithms.

We note that an extension of the modular CMA-ES, adding in particular new boundary

control methods and simplifying the implemented interface, has recently been proposed

14

Black-Box Optimization Algorithms Section 3.1

in [NVW+21]. Given that it appeared only recently, our work uses only the original

framework proposed in [RWL+16].

Table 3.1:Overview of the CMA-ESmodules available in the framework. Row 9 specifies

formulae for computing each weight 𝑤 𝑗 .

Module name 0 1 2

1 Active Update [JA06] off on -

2 Elitism (`, _) (` + _) -

3 Mirrored Sampling [BAH+10] off on -

4 Orthogonal Sampling [WEB14] off on -

5 Sequential Selection [BAH+10] off on -

6 Threshold Convergence [PEB+15] off on -

7 TPA [Han08] off on -

8 Pairwise Selection [ABH11] off on -

9 Recombination Weights [AJT05] 𝑙𝑜𝑔(` + 1

2
) − 𝑙𝑜𝑔 (𝑖)∑

𝑗 𝑤𝑗

1

` -

10 Quasi-Gaussian Sampling off Sobol Halton

11 Increasing Population [AH05; Han09] off IPOP BIPOP

3.1.3 Additional Algorithms
While the abovementioned CMA-ES and its modular extension remain in the spotlight

of the thesis, in Chapters 7 and 8 we consider a broader algorithm portfolio, based on

the suggestion in [KT19]. We give here a brief overview of different solvers included in

this investigation.

The twelve optimization algorithms from the considered portfolio can be grouped

into four categories and are summarized below.

Deterministic Optimization Algorithms. The two solvers of this category are

variants of the Brent-STEP algorithm [BP15]. The Brent-STEP performs axis-parallel

searches and can choose the search dimension of the next iteration either using a

round-robin (BSrr) [PB15] or a quadratic interpolation strategy (BSqi) [PB15].

Multi-Level Approaches. Most algorithms of this category stem from the multi-
level linkage method (MLSL) [KT87; Pál13b]. MLSL is a stochastic, multi-start algorithm

for global optimization that operates using random sampling and local searches. Be-

sides MLSL, our portfolio also consists of several of its variants: fmincon [Pál13b] (an

interior-point MLSL version for constrained linear problems), fminunc [Pál13b] (a quasi-
Newton MLSL version which approximates the Hessian matrix using BFGS [Bro70]), and

15

Chapter 3 Black-Box Optimization

HMLSL [Pál13b] (a hybrid MLSL variant which incorporates significant improvements

within its sampling phase). Finally, this category contains the multi-level coordinate
search (MCS) [HN99], which splits the search space into smaller portions and that per-

forms local search procedures from the most promising portions. Each of the small

portions contains an already known observation.

Variants of the CMA-ES. We include in the portfolio the CMA-ES version with

cumulative step-size adaptation (CMA-ES-CSA) [Ata15]. Additionally, three more al-

gorithms derived from the standard CMA-ES (presented above) are also found in the

portfolio. They are IPOP400D [ABH13], a CMA-ES version with restarts, an increasing

population size and a maximum of 400× (𝑑 + 2) function evaluations, where 𝑑 stands for

problem dimensionality; HCMA [LSS13b], a hybrid CMA which combines three different

strategies (BIPOP self-adaptive surrogate-assisted CMA-ES [LSS13a], STEP [SSB94] and

NEWUOA [Pow06]) to simultaneously benefit from their complementary strengths;

and BIPOP-CMA-ES [LSS13a], a CMA-ES variant with special restart strategy switching

between two population sizes – a small one (like the default CMA, but with more focused

search) and a large one (that is progressively increased as in IPOP). This makes the

BIPOP-CMA-ES perform well both on functions with many regularly or irregularly

arranged local optima (the latter by frequently restarting with small populations). Note

that this last algorithm replaces SMAC-BBOB [HHL13], which was a part of the original

portfolio, due to reasons of unavailability of raw data.

Other Algorithms. The last solver is a multi-start, commercial heuristic called

OptQuest/NLP (OQNLP) [Pál13b; ULP+07], which was initially designed to find the global
optima of smooth constrained non linear problems (NLPs) and mixed integer non-linear

programs (MINLPs). It uses the OptQuest Callable Library (OCL) [LM02] to generate

the inital population of candidate solutions for a local NLP solver.

3.2 Algorithm Performance Measures
Throughout Chapters 1 and 2, and so far in Part I, we have mentioned several times that

we are interested in performances of different algorithms, and yet we did not explicitly

state how to assess this performance. The choice of the algorithm heavily depends on

the performance measure, since an algorithm that works well with large computational

budgets might not necessarily perform very well for small budgets.

A classical approach such as assessing the running time through the number of

arithmetic operations cannot work with black-box optimizers; here, the most substantial

computational resources are spent on evaluating candidate solutions. It is thus beneficial

to use the number of function evaluations when speaking of black-box algorithms’

running time. Moreover, as iterative optimization heuristics often employ randomization

16

Problem Collections Section 3.3

when generating or selecting candidate solutions, their performance can differ on

multiple levels: between different algorithm runs on one problem instance, between

different instances of the same problem, let alone between different problems. Therefore,

for empirical assessment, multiple algorithm runs need to be aggregated in a suitable

way.

With respect to the nature of the performance space, we can essentially distinguish

between two main axes. If we are interested in finding a solution of a certain quality,

we typically consider the number of function evaluations needed to reach this fixed
target. On the other hand, if the number of available function evaluations itself is limited,

we opt for measuring the quality of the solution that can be obtained within this fixed
budget. All these measures are then commonly aggregated for multiple runs (or even

problem instances) via averaging or some other statistics.

Whereas in practical applications we very frequently encounter the need for set-

ting the budget a priori, due to possibly expensive function evaluations that are to be

performed, this fixed-budget scenario remains largely unexplored in the context of

automated algorithm selection for black-box optimization. We thus adopt this particular

setting in the thesis moving forward.

The performance measure that we consequently go for, in accordance to the fixed-

budget setting, is the target precision, which measures the distance of the best found

solution until the budget is exhausted to the optimal solution of a problem instance.

Target precision, as we shall see in Part II, carries important intuition about how many

so-called distance levels there are between some solution and the optimum. We are then

able to conveniently incorporate said information into the relevant component of the

algorithm selection pipeline to design a novel regression perspective (cf. Figure 2.1).

3.3 Problem Collections
Another important question that arises is how one algorithm’s performance generalizes

to different types of problems. Indeed, the algorithm may be highly tuned to the specific

problem at hand. To reliably evaluate its search behavior, the algorithm needs to be tested

on multiple different problem instances and problem classes. Therefore, a procedure

called benchmarking is applied. A problem collection consists of a fixed set of problems,

typically spanning over a wide spectrum of various problem classes. Any new algorithm

is tested on exactly the same functions to allow for performance comparisons between

different solvers. This thesis also relies of one such benchmark problem collection that

is introduced below in more detail.

3.3.1 BBOB Test Suite
In the domain of numerical optimization, a platform called COCO (COmparing Contin-

uous Optimizers) [HAR+20] has been established precisely for this purpose over the

17

Chapter 3 Black-Box Optimization

last years. The COCO platform offers interfaces to run solvers on various test suites

that consist of multiple benchmark functions. Those functions are used as black boxes

for solvers (while still being explicitly known in the community), and they are designed

to allow for meaningful interpretation of performance results. Moreover, the COCO

platform provides exhaustive methods to trace and process performance data.

This thesis focuses on the COCO test suite called Black-Box Optimization Benchmark
(BBOB) [HFR+09]. The BBOB problem collection consists of 24 noiseless, single-objective

test functions that need to be minimized, with dimensionality (number of problem

variables) commonly set to 𝑑 ∈ {2, 3, 5, 10, 20, 40}. The functions are defined in a [−5, 5]𝑑
search space. They are grouped into five different problem classes, spanning across

different values for properties such as modality, separability, conditioning and global

structure (cf. Table 3.2). Different instances of each function are generated by rotating

and translating the function in the objective space [Han09]. Figure 3.2 illustrates three

BBOB functions in dimension 2.

Table 3.2: Noiseless BBOB functions grouped into five different classes.

Functions Problem class

F1–F5 separable functions

F6–F9 functions with low conditioning

F10–F14 unimodal functions with high conditioning

F15–F19 multimodal functions with adequate global structure

F20–F24 multimodal functions with weak global structure

Figure 3.2: Examples of BBOB noiseless test bed function landscapes. Left: F9, the

rotated Rosenbrock function (unimodal, low or moderate conditioning). Middle: F16, the

Weierstrass function (multimodal, adequate global structure). Right: F20, the Schwefel

function (multimodal, weak global structture). Taken from [HAF+10].

18

4 Exploratory Landscape Analysis

In order to represent the considered optimization problems in a suitable and useful way

for the algorithm selection pipeline, we want to quantify different characteristics of

the problem instances via appropriate measures. We do this by means of exploratory

landscape analysis. In this chapter, we present the concept of exploratory landscape

analysis as one of the core pipeline components (cf. Figure 1.2) in greater detail. We

explain the notion of features and discuss main challenges with respect to feature

computation in Section 4.1, and we present selected feature sets for the purpose of

this thesis in Section 4.2. Lastly, we give a brief overview of a tool that allows for

an automatic feature computation, which is an indispensable step towards building a

landscape-aware algorithm selector (cf. Section 4.3).

4.1 ELA Features
In landscape-aware algorithm selection, algorithm recommendations are based on fea-
tures of the problem instances, which are estimated from a finite set {(𝑥, 𝑓 (𝑥))}𝑥 ∈𝐷 of

evaluated samples in a decision space 𝐷 via so-called exploratory landscape analysis
(ELA) [MBT+11]. Most research in this area focuses on the definition or the analysis

of features that describe certain characteristics of the optimization problem, and their

suitability for automated algorithm selection, configuration, and design [LW06; MBT+11;

MKH15]. For instance, features can comprise information about problem ruggedness,

neutrality, fitness-distance correlation, and presence of funnels [ME13].

For a given problem, ELA aims atmeasuring problem characteristics through functions

that assign to each problem a vector of real numbers. To date, ELA has mostly focused

on numerical optimization problems [BDS+17; Mal21], but the concepts have also been

very successfully applied to some NP-hard combinatorial problems, such as satisfiability

problem, AI planning, travelling salesperson problem and more [FVH+14; HXH+14;

MPR12; OV16; PM14; XHH+08]. ELA has also been investigated in multi-objective

settings [DLV+17; LDV+20; LVL+21].

These automatically computed features should ideally cover several facets. They

should be:

• informative, so that they allow for a sufficient degree of discriminative power

between different problem instances;

• interpretable, so that the values they carry enable maximum insight into the

instance properties;

19

Chapter 4 Exploratory Landscape Analysis

• cheaply computable, to ensure that the advantages obtained by ELA-based algo-

rithm selection are not outweighed by the cost of their computation;

• generally applicable to a broad range of problem instances.

Common research questions in ELA concern the number of samples needed to ac-

curately approximate feature values, the design and the selection of features that are

descriptive and easy to approximate, and the possibility to use feature values to transfer

learned policies from some instances to previously unseen ones.

Diverse sampling strategies can be employed when gathering search points for feature

computation, e.g., uniform random sampling, Latin hypercube designs, as well as Sobol

sequences. Moreover, feature values are shown to be sensitive to the chosen sampling

strategy [RDD+20].

4.2 Choice of Features
In this thesis, we only consider features that do not require additional function eval-

uations for their computation, also referred to as cheap features [BDS+17]. They are

computed using the fixed initial sample, while expensive features, in contrast, need

additional sampling during the run, an overhead that makes them more inaccessible

for practical use. Each feature set regroups several relevant features that quantify some

information about the landscape. We now give a brief overview of the cheap feature

sets we make use of throughout the rest of the thesis.

Classical ELA Feature Sets
Out of the six classical features sets originally proposed in [MBT+11], we opt for y-
Distribution, Levelset and Meta-Model sets, as these sets do not make use of additional

sampling during the feature computation process.

y-Distribution. This feature set approximates the distribution of the fitness values

by means of several measures whose values are then compared to the normal distribution

(the skewness (i.e., assymetry) and kurtosis (i.e., sharpness) of the objective function

values, as well as the degree of peakedness, i.e., whether the distribution is rather flat or

peaked compared to the normal one).

Levelset. This feature set works by splitting the initial data set into two classes

via a specific objective level that serves as a threshold, predicting the position of the

objective values of the data set with respect to the said threshold, and then extracting the

relevant information by cross-validating mean misclassification errors of each classifier.

Predictions are performed via different variants of discriminant analysis (LDA, QDA or

MDA).

20

Feature Computation Section 4.3

Meta-Model. This feature set fits linear and quadratic regression models (with or

without interactions) to the initial data set and the relevant indicators are then carried

by the adjusted coefficient of determination 𝑅2 and related metrics.

Other Feature Sets
Dispersion. As ELA was getting traction in the community, many new feature

sets have been introduced. One of them is the dispersion feature set [LW06], which

compares pairwise distances of all points in the initial data set with the pairwise distances

of the best points in the initial data set (according to the corresponding objective

values). Depending on the size of the best points subset (2%, 5%, 10% or 25%), different

comparisons are executed and their relevant values captured by the difference and the

ratio of pairwise distance means/medians.

Information Content. Another feature set, proposed in [MKH15], measures the

landscape’s Information Content (i.e., smoothness, ruggedness, or neutrality) based on a

random path across the problem’s landscape, using the change in the objective values of

neighboring points. The random path is constructed starting from an initial observation

and then greedily walking to its not yet visited nearest neighbors.

Nearest-Better Clustering. Finally, the last feature set considered in this thesis is

the Nearest-Better Clustering set [KPW+15]. It distinguishes between so-called “funnel”

and “non-funnel” structures by comparing the sets of distances from all observations to

their nearest neighbors, as well as their nearest better neighbors.

4.3 Feature Computation
A convenient way to compute landscape features is offered by the flacco toolbox [KT16].
This package, available in both R and Python, provides a unified interface to a collection

of the majority of feature sets and consequently simplifies their accessibility.

In its default settings, flacco computesmore than 300 different numerical landscape fea-

tures, distributed across 17 so-called feature sets, given a set of sampled points and their

function evaluations. We make use of this property to import our own trajectory-based

sample sets in Chapters 9 and 10. Conveniently, for well-known problem collections

such as the BBOB, flacco provides interfaces that facilitate feature extraction for those

functions and their instances. To this end, it offers different sampling strategies, such as

the uniform sampling or generating points by a Latin hypercube construction.

A Web-based graphical user interface of flacco is also available, and can be found

at [HK17].

21

5 Algorithm Selection

With the algorithm portfolio, the problem collection and corresponding problem land-

scape features at hand, we can now discuss the algorithm selection models built on top of

performance regression (as illustrated in Figure 1.2), and we outline all the tools needed

to achieve a fully functional algorithm selection framework. We also present useful

concepts to assess the quality of an algorithm selector, i.e., to measure its performance.

5.1 Per-Instance Algorithm Selection

Many prominent optimization problems have long been considered to be central spec-

imens in active research efforts when it comes to developing new solving strategies.

For those well-analyzed and well-understood problems, a range of high-performing

algorithms is available, but there is typically no single algorithm that dominates all

others on all possible instances of the problem at hand. Instead, different algorithms

achieve best performance on different problem instances, which is known as perfor-
mance complementarity [BKK+16; KHN+19; Kot14; Ric76; Smi09]. This long-existing

observation has naturally led to the necessity of appropriate algorithm selection for the

problem instances we can face. Given an optimization problem, its specific instance that

needs to be solved, and a set of algorithms that can be used to solve it, the so-called

per-instance algorithm selection (PIAS) problem arises: how to determine which of those

algorithms can be expected to perform best on that particular instance?

The (per-instance) algorithm selection problem has historically been tackled man-

ually, using expert knowledge to make algorithm recommendations. Addressing the

question of reducing bias which is inherent to the manual approach was soon deemed

indispensable; it paved the way towards the concept of automating this process by

means of various tools available in related fields. To this day, automated algorithm
selection has been steadily gaining prominence, resulting in a large body of work [CV97;

KT19; LHH+15; LNA+03; XHH+08; XHH+12]. From high-level, passive strategies that
are based on choosing an algorithm as a function of a priori available features [BS04;
LMP+20; MRW+21], through active, bet-and-run approaches that consist of running

several algorithms and stopping all but the best-performing one (i.e., per-set algorithm

selection) [MBT+11; ME13; MKH15], the research focus has ultimately turned towards

establishing efficient landscape-aware algorithm selection models that operate using

low-level problem features, which are computed beforehand [BMT+12; CDL+21; HKV19;

KHN+19; KT19; MKH12].

22

From Performance Regression to Algorithm Selection Section 5.4

5.2 From Performance Regression to Algorithm
Selection

This thesis makes use of the prediction of algorithm performance as a foundation upon

which the algorithm selection models are built. This pipeline component (illustrated

in Figure 1.2) relies on machine learning techniques. As briefly mentioned in Chapter 5,

general approaches differ based on the type of learning model. Supervised learning

methods, such as classification and regression, are the ones coupled with the information

about landscape (ELA) features to make predictions about how well certain algorithms

will perform on certain problem instances. To this end, we employ ELA-based regression,
as we are concerned not only in knowing which algorithm is recommended, but also in

further interpreting and comprehending the actual behavior of algorithms. Regression

models allow for keeping track of precise magnitudes of differences between perfor-

mances of different algorithms. This interpretability aspect is especially important due

to settings that include portfolios of very similar algorithms.

With respect to the available regression techniques, a general state-of-the-art rec-

ommendation highlights random forests as a method that outperforms other typically

used regressors in the context of automated algorithm selection [HXH+14]. Random

forests [Bre01] are ensemble-based meta-estimators that fit decision trees on various

sub-samples of the data set and use averaging to improve the predictive accuracy and

to control over-fitting. We adopt them as a principal regression model going forward,

but we also investigate the potential of other models under fixed-budget circumstances

(cf. Chapter 7).

5.3 State of the Art

Existing research in automated algorithm selection and closely related topics, such

as algorithm configuration, can be roughly positioned on one of the two main axes,

depending on whether underlying machine learning techniques are supervised or not.

In terms of unsupervised learning, reinforcement learning and its variants are the most

predominant approaches [BBE+20; BBH+19; KHN+19; SKL+19]. When it comes to the

the supervised learning, strategies building upon exploratory landscape analysis (ELA)

(cf. Chapter 4) are central in the field. In particular, ELA-based regression has been

applied to assess the effect problem features have on algorithm performance [LDV+20],

to configure algorithms’ parameters [BDS+17; BKJ+19; HHH+06], as well as to se-

lect algorithms from a given portfolio [KT19; MKH12]. See [KHN+19; MSK+15] for

comprehensive surveys of automated algorithm selection state-of-the-art methods and

results. With regards to dynamic algorithm selection, search behavior or algorithms’

state parameters can influence the model recommendations [BPR+19; DLV+19].

23

Chapter 5 Algorithm Selection

5.4 Performance Assessment of Algorithm Selectors
We introduce here two baselines that are essential for assessing the quality of algorithm

selectors. The performance of a (hypothetical) perfect per-instance algorithm selector,

also known as the virtual best solver (VBS) or the oracle selector, provides a lower bound
on the performance of any realistically achievable algorithm selector. On the other hand,

a natural upper bound on the algorithm selector performance is provided by the single
best solver (SBS), which is the algorithm with the best performance among all other

algorithms in the considered portfolio.

The ratio between VBS and SBS performances, also referred to as the VBS-SBS gap,
gives an indication of the performance gains that can be obtained by per-instance

algorithm selection in the best case. Consequently, the fraction of this gap closed by a

certain algorithm selector provides a measure of its quality [LRK17].

To measure both performance regression and algorithm selection accuracy, we use

the Root Mean Square Error (RMSE) metric. The RMSE is the square root of the mean of

the square of all of the errors. It can be thought of as a kind of (normalized) distance

between the vector of predicted or selected values and the vector of true values.

When it comes to performance regression, it is the standard deviation of prediction

errors; it measures how spread out those errors are, and it serves to aggregate the

magnitudes of the errors in predictions for various data points into a single measure of

predictive power. The RMSE allows us to compare (and quantify) how well different

models predict the performance. In the fixed-budget regression that we focus on it the

thesis, the prediction errors are distances of the prediction to the true target value.

We use the same metric to assess the quality of the algorithm selectors we consider;

in this case, the selection errors are the difference between performances of the selected

algorithm and the true best algorithm. We will thus speak of the regression RMSE and

of the selection RMSE in the remainder of the thesis.

24

Part II

Contributions

6 Combining Fixed-Budget
Regression Models

This chapter is based on paper [JD20], which appeared in the Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO) 2020, Landscape-Aware Fixed-Budget
Performance Regression and Algorithm Selection for Modular CMA-ES Variants.

6.1 Preliminaries
Summary of Results. In this chapter, we propose a novel combined performance

regression model for single-objective numerical problems in the fixed-budget setting
(i.e., with a limited budget of function evaluations) which aims to solve the algorithm

selection problem by combining the use of problem features that can be automatically

computed and off-the-shelf supervised machine learning techniques. As commonly

carried out in the state of the art algorithm selection, the model learns the mapping

between problem features on one hand and algorithm performance (measured by the

target precision in the fixed-budget context) on the other hand. We allow ourselves a

budget of 500 function evaluations.

We show that we are able to achieve high-quality predictions of algorithm perfor-

mance values by suitably combining two differently trained regression models, one that

predicts the actual target precision (the unscaled model) and another that predicts the

logarithm of the target precision (the logarithmic model).

An important conjecture we make here is that the landscape features are expressive

enough so that we can rely on information carried by them for the purpose of automat-

ically constructing algorithm selection models for numerical black-box optimization

problems.

Experimental Setup
The BBOB Test Suite. In this chapter, we restrict our attention to dimension 5. We

take into account only the first 4 instances (IID 1-4) of the 24 noiseless BBOB functions

(FID 1-24), which results in 96 black-box problems in total.

The Modular CMA-ES. The algorithm portfolio of choice for this chapter consists

of the modular CMA-ES variants (presented in Section 3.1.2). All 4608 modular CMA-ES

variants were executed on the 96 problem instances mentioned above (i.e., four instances

per each of the 24 BBOB functions), with a budget of 500 function evaluations. We

26

Preliminaries Section 6.1

perform five independent runs per each algorithm and problem instance. After every

run, we store the best target precision achieved, computed as 𝑓 (𝑥best_tp) − 𝑓 (𝑥OPT) (this
value is positive, since we assume minimization as objective), as well as the function ID,

instance ID, and algorithm ID. We compute the median best target precision over five

different runs for all functions and instances and for each algorithm.

From this large median performance dataset, we select the best algorithm per function

to create an algorithm portfolio that would act as the target data for our regression

models. To identify which algorithm is the best for a certain function, we compute the

median performances of algorithms over instances as well, which gives us 4608 different

target precision values per each of the 24 functions. We then pick the algorithm with

the minimum target precision among those 4608 for each function, and end up with a

portfolio of 24 best algorithms in total.

Since we operate within the fixed-budget approach, we consequently use the target
precision after 500 function evaluations as a measure of an algorithm’s performance.

It is important to note that the information carried by the target precision intuitively

stands for the order of magnitude of the actual distance to the optimum. For instance, if

a recorded precision value on a certain problem instance is 10
−2

for one algorithm and

10
−8

for the other, consequently they differ by 6 orders of magnitude, and so we can

interpret that informally as the latter one being “6 levels closer to the optimum” than

the first one. This perspective helps immensely in designing the experiment, as we are

interested not only in the actual precision values, but also in the “distance levels” to

the optimum, which are very conveniently computed as the logarithm of the precision

value.

We plot in Figure 6.1 the median target precision values (over five independent runs)

of 24 different modular CMA-ES variants for each of the first four instances of the 24

BBOB functions. This is our algorithm portfolio of choice, and we use these values as

the target data for our performance regression models. However, we observe that the 24

algorithms are in fact very similar in performance, which makes the algorithm selection

problem in this setting rather challenging. As shown in Figure 6.2, each algorithm “wins”

on at least one of the 96 considered instances.

Feature Computation. As the predictor variables for our model, we use vectors of

landscape feature values per each problem instance. For the feature value computation,

we use the flacco toolbox, presented in Section 4.3. To compute the features, we evaluate

2000 uniformly sampled search points per function and instance in 5D, and feed the

points and their respective fitness values to flacco. Since the feature approximations can

show low robustness for certain features [RDD+19; SGW19], we replicate this step 50

independent times and take the median feature values per problem instance as a final

feature vector. By selecting only those feature sets that do not require further sampling

in the search space (all described in Chapter 4), we end up with 56 features in total per

problem instance.

27

Chapter 6 Combining Fixed-Budget Regression Models

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 3 4 5 1 2 3 4 5

1e-08

1e-04

1e+00

1e+04

BBOB Functions

va
lu

e

variable

perf_C1

perf_C2

perf_C3

perf_C4

perf_C5

perf_C6

perf_C7

perf_C8

perf_C9

perf_C10

perf_C11

perf_C12

perf_C13

perf_C14

perf_C15

perf_C16

perf_C17

perf_C18

perf_C19

perf_C20

perf_C21

perf_C22

perf_C23

perf_C24

Figure 6.1:Median performance (measured by the target precision) over 5 independent

runs of the 24 modular CMA-ES variants (selected out of 4608 as the best variant per

BBOB function) on the first 4 instances of all 24 BBOB functions. These 24 algorithms

represent the algorithm portfolio from which we want to select the best-performing

one for an unseen optimization problem.

Configuration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

7 3 10 4 1 2 3 3 4 2 5 3 8 6 3 1 6 1 6 2 5 7 4 2

Number of instances for which the configuration performed best (out of a total of 96 instances)

Figure 6.2: Number of problem instances (out of 96 total; second row) for which each

of the algorithms (first row) achieved the best performance.

28

Preliminaries Section 6.1

It is worth noting that the sample size of 2000 points is certainly much higher than

one would be willing to invest in concrete applications, and we will therefore analyze the

sensitivity of the results with respect to the sample size in Section 6.3.3. Note here that –

in particular with such a small budget as investigated in our work – the development of

features that use the samples of a search trajectory rather than additional samples and

hence avoid the specific sampling step for feature value computation [MS17] is very

strongly needed. This trajectory-based approach has been analyzed and shown to be

successful in Chapter 10.

We will also investigate the effect of the feature portfolio (cf. Section 6.3.1), and show

that a smaller set of features does not necessarily lead to worse results.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 3 4 5 1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

Instance ID

el
a_

m
et

a.
lin

_s
im

pl
e.

ad
j_

r2

Figure 6.3: Distribution of approximated values for the ela_meta_lin_simple_adj_r2
feature for the first five instances of the 24 BBOB functions, normalized in the 0-1

range. The values are computed from 2000 samples each, and each box plot shows the

distribution of 50 independent runs.

Figure 6.3 shows an example of how the feature values are distributed for different

instances. The feature under consideration is one of the classical ELA Meta-model

features, a value of adjusted 𝑅2 correlation coefficient for the linear model fitted to the

data. We see that the values are overall quite constant for most functions. However,

there are functions (e.g., F8, F12) for which this is not the case. All five instances

of F5 are correctly identified as linear slope functions; they have a feature at value

1. Importantly, we observe that some features are more expressive than others, and

are prone to discriminate between different problems better than others, as suggested

by [RDD+19].

29

Chapter 6 Combining Fixed-Budget Regression Models

Regression Models. For our regression models, we use off-the-shelf random forest

regressors with 1000 estimators, available via the scikit-learn Python package [PVG+11].

No parameter tuning was involved in our setup, which gives us hope that a further

improvement of the accuracy is highly likely to achieve by fine-tuning the machine

learning model, but also that a clever design of underlying model mechanism can render

the processing itself quite cheap. This is investigated in more detail in Chapter 7.

6.2 Fixed-Budget Performance Regression

Using the elements described in Section 6.1 as key pieces in our approach, we organize

the experiment in the following way. For each algorithm in the portfolio, we train two

separate random forest regression models to predict the algorithm’s performance on

all problem instances, given a vector of features per problem instance as the predictor

variable. One model is trained to predict the actual target precision values (we call it

the unscaled model from here onward), while the other predicts logarithms of the target

precision data to represent the “distance levels” explained in Section 6.1 (we refer to this

model as the logarithmic model or simply the log-model).
In order to obtainmore realistic and reliable estimates of the accuracy of the regression

models, we assess them using a 𝐾-fold leave-one-instance-out cross-validation (we use

𝐾 = 4), i.e., per algorithm, we split the data in such a way that we use three instances

per BBOB function for the training (72 problems in total), and we test on the remaining

instance (24 problems in total). We do this with each of the four instances to ensure that

each instance was used once in the test phase. We consistently store the values of the

prediction on the test instance for each algorithm in the portfolio for both the unscaled

and the logarithmic model. The full experiment is replicated three independent times

and the median values are retained for the analysis.

In Figure 6.4, we plot the true vs. predicted values of a single variant of the modular

CMA-ES over 50 independent regression model runs for each of the first four instances

of the 24 BBOB functions. The distribution of two different predictions, the unscaled and

the log-prediction, are shown. We observe a high stability of the predictions irrespective

of the number of replications (i.e., whether we perform three runs of the model, as

throughout our experiments, or 50 runs, as shown here), and we can thus conclude that

this allows for a significant decrease in the computational cost of creating such a model.

Importantly, Figure 6.4 shows how well the predicted values follow the actual data.

As a general trend, the predictions of the unscaled model fit better to larger precision

values, while the logarithmic model better predicts small target precisions.

As a measure of model accuracy, the Root Mean Square Errors (RMSE) and its loga-

rithmic counterpart (log-RMSE) are computed per each prediction. They allow us to

compare and quantify how well different models predict the performance. Within the

regression context, while the RMSE corresponds to the unscaled model, the log-RMSE

30

Fixed-Budget Performance Regression Section 6.2

Table 6.1: Root Mean Square Error (RMSE) and its logarithmic counterpart values (log-

RMSE) as a measure for model prediction accuracy for each algorithm in the portfolio

in 3 different scenarios, for both the unscaled and logarithmic model. These measures

compare how well different models fit the actual target data. The default experiment (the

first 2 columns; on the left) consists of the performance regression using the full feature

set, where features were computed using 2000 samples. The second 2 columns (in the

middle) correspond to the experiment where the regression was based on 9 selected
features only, while the third 2 columns (on the right) describe the case where, again,

the full feature set was used, but this time the features were computed using 50𝑑 (= 250)
samples. The values shown in bold represent lower errors when comparing the first 2

scenarios (all features vs. selected features), while the underlined values highlight lower

errors when the 1
𝑠𝑡
and the 3

𝑟𝑑
scenario are compared (features computed with 2000

samples vs. with 250 samples).

Default Selected features 50𝑑 samples

Config. RMSE log-RMSE RMSE log-RMSE RMSE log-RMSE

C1 130.1 0.808 135.4 0.663 123.6 1.066

C2 84.1 0.776 79 0.682 77.7 0.891

C3 206.5 0.842 199.7 0.663 189.6 1.308

C4 201.9 0.757 198.3 0.682 200.7 0.829

C5 1011.2 0.690 916.8 0.564 1106.6 0.742

C6 649.9 0.986 660.6 1.018 618.1 1.030

C7 462.8 0.804 455 0.743 412.8 0.989

C8 61.2 0.830 58.8 0.698 57.4 0.925

C9 71.1 0.770 74.3 0.623 77.3 1.133

C10 12.1 0.771 11.4 0.649 12.2 1.080

C11 71.9 0.794 55.2 0.653 78.3 1.060

C12 76.7 0.708 64.9 0.601 78.1 0.789

C13 1120.4 0.700 1124.7 0.696 1113.1 0.789

C14 51.1 0.792 51.4 0.678 44.4 0.973

C15 60.5 0.629 54.7 0.519 56.5 0.748

C16 2306.3 0.621 2280.6 0.604 2239.0 0.791

C17 114.3 0.781 98 0.631 111.2 1.134

C18 130.4 0.640 149.6 0.596 131.6 0.903

C19 85.1 0.710 82.4 0.571 73.5 1.025

C20 144.3 0.760 152.9 0.618 138.7 1.032

C21 23.2 0.719 23 0.662 20.7 1.007

C22 17.0 0.805 16.4 0.714 16.5 0.919

C23 53.6 0.613 45.8 0.538 55.0 0.691

C24 571.9 0.803 604.7 0.86 531.1 0.872

31

Chapter 6 Combining Fixed-Budget Regression Models

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 3 4 1 2 3 4

1e-03

1e-01

1e+01

1e+03

Instance ID

Legend

log_model

true_precision

unscaled_model

Figure 6.4: Distribution of predicted algorithm performance values by the unscaled (in

red) and logarithmic regression models (in green) across 50 independent runs, with the

actual algorithm performance values (in purple) as dots. The algorithm performance is

measured by the target precision.

corresponds to the logarithmic model. Once computed, we aggregate the relevant RMSE

and log-RMSE values per algorithm to estimate the quality of the model at hand.

We report in the first two columns of Table 6.1 how good the regression models

(unscaled and logarithmic) were at predicting the performance of each algorithm. We

observe that the same algorithm (e.g., C16) can have high RMSE (and thus be very bad

in predicting the actual data) all while having one of the lowest log-RMSE (quite the

opposite for the log-scale data).

6.2.1 Impact of Feature Selection

We have reported above results for the regression models that make use of 56 flacco
features. However, it is well known that feature selection can significantly improve

the accuracy of random forest regressions. We therefore present a brief sensitivity

analysis, which confirms that significantly better results can be expected by an appro-

priate choice of the feature portfolio. We note that a reduced feature portfolio also has

the advantage of faster computation times, both in the feature extraction and in the

regression steps. We have performed an ad hoc feature selection, which solely builds

on a visual analysis of the approximated feature values. This was done by studying

the plots as in Figure 6.3 for all computed flacco features, which we use to identify

features that show a high expressiveness [RDD+19], in the sense that they seem very

32

Fixed-Budget Algorithm Selection Section 6.3

suitable to discriminate between the different BBOB functions. From this set, we then

choose nine features: disp.diff_mean_02, ela_distr.skewness, ela_meta.lin_simple.adj_r2,
ela_meta.lin_simple.coef.max, ela_meta.lin_simple.intercept, ela_meta.quad_simple.adj_r2,
ic.eps.ratio, ic.eps.s and nbc.nb_fitness.cor.

The middle two columns of Table 6.1 illustrate how the model accuracy indeed

increases with the reduced feature set. 16 out of the 24 RMSE values and 22 of the 24

log-RMSE values are smaller than for the model using all features (which, we recall, are

provided in the 2 leftmost columns of the same table). The values of the more accurate

model between the two are highlighted in bold in this case. These results support the

idea that an appropriate feature selection is likely to result in significant improvements

of our regressions, and hence of the algorithm selectors which we shall discuss in the

next section.

6.3 Fixed-Budget Algorithm Selection

After examining the regression models’ accuracy, we next evaluate the performance

of two simple algorithm selectors, which are based on the predictions of the unscaled

and the logarithmic models, respectively. The former selects the algorithm for which

the unscaled regression model predicted the best performance, and, similarly, the latter

bases its decision on the best prediction of the logarithmic regression model. To quantify

how well the selectors perform per problem instance, we compare the target precision

of the algorithm chosen by the selector for the instance at hand to the target precision

of the actual best algorithm for that instance. We are then able to indicate the overall

quality of this selector by computing the RMSE and log-RMSE values (aggregated across

all problems) using the differences in performance.

Following common practices in algorithm selection [BKK+16], we compare the per-

formances of these two selectors with two different baselines: the virtual best solver
(VBS) (which gives a lower bound for the selectors), and the single best solver (SBS)
(which gives an upper bound for the selectors). Since we have two models, we have

two different SBS, one for the logarithmic model (SBSlog) and one for the unscaled

one (SBSunscaled). Studying the RMSE values of the 24 different algorithms (Figure 6.5),

we find that configuration C10 has the best performance (measured against the VBS),

with the RMSE value of 13.65. Configuration C21, in contrast, is seen to have the best

log-RMSE value, and is therefore the SBSlog of the full portfolio. Its log-RMSE value is

0.733. In the following, for ease of notation, we will not distinguish between the two

SBS, and, in abuse of notation, will combine them into one. That is, we simply speak of

the SBS, and refer to C10 when discussing RMSE values, while we refer to C21 when

discussing log-RMSE values. As we can see in Figure 6.5, our algorithm selectors are

able to outperform the SBS in terms of log-RMSE performance. We did not find a way,

however, to beat the RMSE values of C10, nor the ones of C8, C14, C21, C22, nor C23.

33

Chapter 6 Combining Fixed-Budget Regression Models

Performances of single algorithms from the portfolio, as well as those of the two

selectors (unscaled and logarithmic selector) are shown in Figure 6.5. For the majority of

the portfolio, a lower RMSE value entails a lower log-RMSE value and vice versa. We see

that our two selectors already outperform the majority of algorithms from the portfolio

on both RMSE- and log-RMSE scales, but we want to make use of the observation

reported in Section 6.2 that the unscaled model better predicted higher target precision,

while the logarithmic model has better accuracy for small target precision. We therefore

aim at combining the two regression models, to benefit from the two complementing

strengths. Here again we can define a virtual best solver, which is the one that chooses

for each instance the better of the two suggested algorithms from the unscaled and the

logarithmic model, respectively. Clearly, in terms of single best solver, the logarithmic

model minimizes the log-RMSE, whereas the unscaled model minimizes the RMSE.

We compare these three algorithm selectors (unscaled algorithm selector, logarithmic

algorithm selector, and VBS algorithm selector) with a selector which combined the two

basic selectors in the following way: if the target precision of an algorithm, as predicted

by the logarithmic model, is smaller than a certain threshold, we use the logarithmic

selector, whereas we use the recommendation of the unscaled selector otherwise. A new

optimization sub-problem that arises here is to find the threshold value which minimizes

the RMSE and log-RMSE of the combined selector, respectively. A sensitivity analysis

with respect to this threshold will be presented in Section 6.3.1.

Once the optimal threshold value found, we measure the performance of our selector

and add it, along with the VBS algorithm selector, to Figure 6.5. We clearly see that our

algorithm selector performs better than the unscaled algorithm selector and the loga-

rithmic algorithm selector. It is also better than most of the algorithms. Also, Figure 6.5

demonstrates that our selector effectively reduces the gap towards the VBS algorithm

selector. Detailed numbers for the RMSE and log-RMSE values of the different algorithm

selectors are provided in Table 6.3 (rows for 24 algorithms).

6.3.1 Impact of the Threshold Value and the Feature Portfolio

We now study the influence of the threshold value which determines whether we use the

unscaled or the logarithmic algorithm selector. In the previous section, we had chosen

this value so that it optimized the log-RMSE measure and the RMSE measure (these

are the red triangle and the red diamond in Figure 6.5, respectively). Table 6.2 analyzes

the influence of this threshold value, and shows both the RMSE and log-RMSE values

for different thresholds. We note that one could formulate an alternative decision rule,

in which the selection of the model is not based on the target precision recommended

by the logarithmic model, but by the unscaled model. We did not observe significant

differences in the performance of these two approaches, and thus omit a more detailed

discussion.

We show in Table 6.2 also the results for the algorithm selectors that build on the

34

Fixed-Budget Algorithm Selection Section 6.3

Figure 6.5: RMSE and log-RMSE values as measures for the quality of the configurations

(label C𝑥) and for the algorithm selectors: the AS using only the predictions from the

logarithmic model (green dot, hiding behind red diamond), the AS using predictions

from the unscaled model (orange dot), the virtual best combination of these two models

(purple triangle), and our two combined algorithm selectors, which optimize for RMSE

and log-RMSE (red diamond and red triangle, respectively).

regression models using only the nine selected features. In fact, it turns out that for these

selected-feature regression models, the combination of the two different regressions

is not beneficial – we were not able to identify means to improve upon the algorithm

selector that uses the performances predicted by the logarithmic model.

6.3.2 Impact of the Algorithm Portfolio

Our final analysis concerns the portfolio for which we do the regression. We note that

in all the above we have given ourselves a very difficult task: algorithm selection for a

portfolio of 24 solvers that all show quite similar performance (i.e., that all stem from

a family of very similar algorithms; Figure 6.1). We now study alternative problems,

in which we consider only subsets of the 24 CMA-ES configurations considered above.

More precisely, we consider in Table 6.3 the portfolio of configurations C13-C24, i.e.,

the second half of the original portfolio.

We observe that, while the log-RMSE values remain fairly consistent for all the

selectors independently of the portfolio size, the RMSE is significantly reduced by

reducing the portfolio size for all but one selector, the SBS. It is worth looking further

into this aspect of the problem in order to better understand if the observed effects

are simply a product of less choice, or, more likely, there are other factors at play, e.g.,

whether the algorithms chosen for the portfolio are diverse enough in their performance

on different problem instances.

35

Chapter 6 Combining Fixed-Budget Regression Models

Table 6.2: Sensitivity of the RMSE and the log-RMSE with respect to the threshold value

at which we switch from choosing the modular CMA-ES configuration suggested by

the logarithmic model to the one suggested by the unscaled model. We show results

for both models, using the full feature set and the selected feature set as the basis for

regression. Optimal values are shown in bold and are underlined.

RMSE log-RMSE

Threshold All features Selected features All features Selected features

0.01 63.20 25.87 0.687 0.728

0.1 63.20 25.87 0.676 0.723

0.5 63.19 25.81 0.600 0.637

0.814 63.19 25.81 0.595 0.627

1 63.19 25.77 0.624 0.620

2 63.17 25.81 0.643 0.607

2.294 63.17 25.80 0.643 0.590

3 63.75 25.82 0.656 0.583

8.525 63.71 15.50 0.654 0.565
10 63.71 15.55 0.654 0.565

20 63.69 15.55 0.650 0.565

50 63.69 15.55 0.650 0.565

Table 6.3: Comparison of the RMSE and log-RMSE values for the different algorithm

selectors for the full portfolio of 24 and for the reduced set of 12 configurations.

algos unscaled log the AS VBS SBS

RMSE

12 17.25 18.03 16.94 12.78 20.37

24 63.19 63.69 63.19 63.09 13.65

log-RMSE

12 0.967 0.621 0.608 0.561 0.629

24 0.968 0.650 0.595 0.517 0.733

36

Fixed-Budget Algorithm Selection Section 6.3

6.3.3 Impact of the Sample Size for Feature Extraction
We recall that our feature approximations are based on 2000 samples. As commented

above, this number is much larger than what one could afford in practice. Belkhir

et al. [BDS+17] showed that sample sizes as small as 30𝑑-50𝑑 can suffice to obtain

reasonable results. While their application is in algorithm configuration, we are interested
in knowing whether we obtain similarly robust performance for algorithm selection.
As mentioned before, in the long run, one might hope for zero- or low-cost feature

extraction mechanisms that simply use the search trajectory samples of a CMA-ES

variant (or some other solver) to predict algorithm performances and/or perform a

selection task. First steps in this direction have already been made [Mal18; MM19;

MS17].

Therefore, in this last section we study the influence of the feature sample size on the

performance of our algorithm selector. We compare the results reported in Section 6.3

with the results obtained from the repeated regression experiment, only this time using

features computed with 50𝑑 (250) samples.

Table 6.4: Comparison of the RMSE and log-RMSE values for the different algorithm

selectors for the regression based on 250-sample features and 2000-sample features.

feature samples unscaled log the AS VBS SBS

RMSE

250 23.51 38.74 23.45 23.05 13.65

2000 63.19 63.69 63.19 63.09 13.65

log-RMSE

250 0.881 0.700 0.660 0.511 0.733

2000 0.968 0.650 0.595 0.517 0.733

The two rightmost columns of Table 6.1 show the regression model accuracy for this

case, and allow for a comparison with the default scenario. We once again conveniently

highlight the values of the more accurate model, only this time underlined. We clearly

notice that, in terms of RMSE values of the logarithmic model, using a larger sample

size is preferable consistently for all the algorithms in the portfolio. On the other hand,

the model using a reduced sample size performed better on 18 out of 24 algorithms in

terms of RMSE.

In Table 6.4 we report the differences of the algorithm selectors in case the regression

was based on features computed using 50𝑑 (250) samples vs. those computed using the

original 2000 samples. The results are comparable in terms of both RMSE and log-RMSE

values; the distances between the performance of our combined selector and the VBS

are similar in both 250- and 2000-sample experiments. Also, in neither of the two

experiments have we been able to beat the SBS. However, we notice a general decrease

in the RMSE when using 250 samples to compute the features, which is an interesting

observation leading to a conjecture that it might be preferable to use a smaller number

37

Chapter 6 Combining Fixed-Budget Regression Models

of samples to compute the features for regression purposes, while still maintaining the

robustness of the results.

6.4 Conclusions
We have studied in this chapter how to increase the accuracy of ELA-based regression

models and algorithm selection by combining a plain, “unscaled” regression with a

regression operating on the log-scaled data. While the former achieves higher accuracy

for large target precision values, the latter performs better for fine-grained precisions.

By combining the two models, we could improve the accuracy of the regression and

of the algorithm selector. Our combined algorithm selector reduces the gap towards

the VBS, although it does not consistently beat the SBS across all cases. These results,

however, still open up a path to further exploit the power of ELA-based regression and

algorithm selection in different settings.

In the remainder of this section, we list a few promising avenues for future work.

Cross-Validation of the Trained Algorithm Selector on Other Black-Box
Optimization Problems. Our ultimate goal is to train an algorithm selector that

performs well on previously unseen problems. We are therefore keen on testing our

regression models for the different CMA-ES variants and on testing the trained algorithm

selector on other benchmark functions. The current literature is not unanimous with

respect to the quality that one can expect from the training on the BBOB functions.

While [BDS+17] reported encouraging performance, LaCroix and McCall [LM19] could

not achieve satisfactory results.

Feature Selection. The results presented in Section 6.2.1 indicate that a proper

selection of the features can improve the quality of the random forest regression quite

significantly. Our feature selection was based on an purely visual interpretation of the

distribution of the feature value approximations (i.e., plots as in Figure 6.3), which is

similar to the analyses made in [MKS18; RDD+19]. A proper feature selection may help

to improve the accuracy of our models further. Since feature selection is quite expensive

in terms of computational cost, a first step could be a comparison of the accuracy of the

two here-presented models with those using the feature sets selected in [KT19].

Fixed-Target Settings. While we have deliberately chosen a fixed-budget setting

(which is the setting of our envisaged applications), we are nevertheless confident that

the combination of a logarithmic with an unscaled regression model could also prove

advantageous in fixed-target settings, in which the goal is to minimize the average time

needed to identify a solution of function value at least as good as some user-defined

threshold.

38

Conclusions Section 6.4

Different Algorithm Portfolios. We have chosen a very challenging task in

performing algorithm selection on a collection of algorithms that all stem from the same

family. A cross-validation of our findings on more diverse portfolios is a straightforward

next step for our work.

39

7 Impact of Hyper-
Parameter Tuning

This chapter is based on paper [JPE+21], which appeared in the Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO) 2021, The Impact of Hyper-
Parameter Tuning for Landscape-Aware Performance Regression and Algorithm
Selection.

7.1 Preliminaires

Summary of Results. We compare in this chapter the performance of 30 different

regression models on the algorithm selection task suggested in [KT19]. The 30 selected

models are all tree-based, and they are configurations of random forest, decision tree

and bagging decision tree regression techniques.

We train the 30 models on different data sets, taking as input the ELA features

of a problem instance and outputting the fixed-budget performance of an algorithm.

Two distinct ELA feature representations (based on different sample sizes for feature

computation) describe each of 120 problem instances belonging to 24 BBOB problems.

Algorithm performances for a portfolio of twelve algorithms were recorded for different

budgets of function evaluations (we consider here budgets of 250, 500, and 1000 function

evaluations), measuring the target precision of the best found solution (i.e., the distance

to the optimum). On top of that, two complementary regression approaches were

adopted for each model and each data set: one that predicts true (unscaled) target

precision values and another that predicts the logarithm of target precision, as suggested

in Chapter 6.

We then use stratified 5-fold cross-validation to ensure that all problem instances

were used in the test phase of our models, and we build, for each regression model and

each data set, an algorithm selector, which takes as input the predicted target precision

of each of the twelve algorithms and which returns the algorithm with the best predicted

performance. The true target precision of this selected algorithm is then compared to

that of the actual best algorithm for that problem instance, which defines the loss that

we associate to the regression model. Following the approach in Chapter 6, for each

regression model and each data set, we also build an algorithm selector which combines

the regression for the unscaled target precision with that for the logarithmic precision,

favoring the latter for small target precision values, and favoring the former otherwise.

In total, we evaluate for each of the 30 regression models, three different algorithm

40

Preliminaires Section 7.1

selectors (unscaled, logarithmic, combined), on 6 different data sets (3 different budgets

of function evaluations and 2 different feature sample sizes).

The results in this chapter clearly indicate a need for appropriate tuning of the re-

gression techniques, but more importantly, they raise an important question of how

the chosen machine learning model can lead to highly varying results in the algorithm

selection step. We argue that the untapped potential of a careful choice of the relevant

machine learning model and its hyper-parameter configuration can be only fully ex-

ploited when taking into account some preliminary knowledge about the problem classes

and the algorithms. This sub-explored area of research merits further investigation.

We see differences of up to several orders of magnitude in the accuracies of the

different models, not aggregated across optimization algorithms. Even if we aggregate

the errors, the differences between them are still as high as 60%. We further notice that

different models perform differently on different types of problems, making it difficult

to derive a general recommendation for which model to favor in which scenario. This,

however, does not limit the relevance of our work, since training the different regression

models is of negligible cost, in particular when compared to the efforts required for

setting up the whole algorithm selection pipeline. In practice, the use of several machine

learning techniques at the same time (“ensembles”) is not uncommon – quite the contrary,

in fact [MSJ+12]. We show in Chapter 8 that employing ensemble learning techniques in

the context of algorithm performance regression for landscape-aware algorithm selection

is indeed promising. Therefore, this chapter also motivates further investigation of those

techniques in landscape-aware algorithm selection, configuration and design.

Experimental Setup

Regression Models. Following best practices in applying supervised machine

learning techniques to the landscape-aware algorithm selection context, we first perform

a preliminary step of testing the quality of the following seven families of regression

models with different hyper-parameter values tested via iterative grid search: Random

Forests [Bre01], Decision Trees [BFS+84], Bagging Decision Trees [Bre96], Lasso [Tib96],

ElasticNet [ZH05], KernelRidge [Mur12], and PassiveAggressive [CDK+06]. We retained

only the models that largely outperformed the rest in terms of regression quality.

For our analysis we have selected three different classes of regression models, namely

Decision Tree, Random Forest and Bagging Decision Tree (also referred to as Bagging

DT within the chapter). For each model class, the hyper-parameter configurations used

are shown in Table 7.1. Note that, due to the rather small size of our data set, we have

not considered techniques such as Neural Networks which are powerful for a huge

quantity of data. We have not considered any classification techniques either (including

Bayes classifier), as we are interested in predicting numerical performance values for

each algorithm.

Since the basic component unit of all considered models is a decision tree (both

41

Chapter 7 Impact of Hyper-Parameter Tuning

Random Forests and Bagging DTs are based on them), the hyper-parameter crit value
can be one of the following three: mse (mean squared error), mae (mean absolute

error) and so-called friedman mse - Friedman mean squared error. The minsplit hyper-
parameter represents the minimum number of data instances a tree node has to contain

in order to become a splitting node. Lastly, the nest hyper-parameter defines the number

of decision trees needed to build a Random Forest or Bagging DT model. In total, we

end up with 30 different regression models, with 6 different configurations for Decision

Tree, 12 for Random Forest, and 12 for Bagging DT. Table 7.1 summarizes the chosen

hyper-parameter values for different regression classes.

Table 7.1: Hyper-parameter values for the regression models.

Model Hyper-parameters

DecisionTree • 𝑐𝑟𝑖𝑡 ∈ {”𝑚𝑠𝑒”, ”𝑚𝑎𝑒”, ”𝑓 𝑟𝑖𝑒𝑑𝑚𝑎𝑛_𝑚𝑠𝑒”}
(6 configs.) • 𝑚𝑖𝑛𝑠𝑝𝑙𝑖𝑡 ∈ {4, 5}
RandomForest • 𝑐𝑟𝑖𝑡 ∈ {”𝑚𝑠𝑒”, ”𝑚𝑎𝑒”}
(12 configs.) • 𝑚𝑖𝑛𝑠𝑝𝑙𝑖𝑡 ∈ {4, 5}

• 𝑛𝑒𝑠𝑡 ∈ {3, 6, 9}
BaggingDT • 𝑐𝑟𝑖𝑡 ∈ {”𝑚𝑠𝑒”, ”𝑚𝑎𝑒”}
(12 configs.) • 𝑚𝑖𝑛𝑠𝑝𝑙𝑖𝑡 ∈ {4, 5}

• 𝑛𝑒𝑠𝑡 ∈ {3, 6, 9}

Benchmark Problems. We consider the first five instances (IID 1-5) of each of the

24 noiseless functions from the BBOB test suite (FID 1-24) in dimension 5, for a total of

120 problem instances.

Algorithm Portfolio. The algorithm portfolio we choose in this chapter was

suggested in [KT19] for its diversity. It consists of the following 12 algorithms:

BrentSTEPqi [PB15], BrentSTEPrr [PB15], CMA-ES-CSA [Ata15], HCMA [LSS13b],

HMLSL [Pál13a], IPOP400D [ABH13], MCS [HN09], MLSL [Pál13a], OQNLP [Pál13b],

fmincon [Pál13b], fminunc [Pál13b], and BIPOP-CMA-ES [Han09]. Note that, due to

the unavailability of the raw performance data for one of the algorithms in the original

study, the BIPOP-CMA-ES was added instead of the missing one. The performance data

of all twelve algorithms can be downloaded at [HAB20], but for our setting it was more

convenient to extract the relevant figures from IOHprofiler [DWY+18]. As we focus

on the fixed-budget performance throughout the thesis, we consider 3 different budget

sizes of 250, 500 and 1000 function evaluations across all algorithms from the portfolio

for purpose of sensitivity analysis, and we restrict ourselves to a single algorithm run

per problem instance. We show in Figure 7.1 the portfolio’s target precisions reached

after 1000 evaluations. We note that the algorithm performances are significantly less

diverse for functions 15 through 20, 23 and 24 than for the other problems.

42

Performance RegressionQuality of Different Models Section 7.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 3 4 5 1 2 3 4 5

1e-11

1e-06

1e-01

1e+04

BBOB Functions

Alg

BIPOP-CMA-ES

BrentSTEPqi

BrentSTEPrr

CMA-ES-CSA

HCMA

HMLSL

IPOP400D

MCS

MLSL

OQNLP

fmincon

fminunc

Figure 7.1: Single-run performances (measured by the target precision) of the 12

algorithms on the first five instances of 24 BBOB functions. They represent our portfolio

from which we want to select the best-performing algorithm for an unseen problem

instance.

Feature Computation. Again, predictor variables for our regression models are

vectors of ELA feature values. Feature computation is done using the flacco package
(presented in Section 4.3) for two distinct sets of uniformly sampled points and their

evaluations. Samples are of sizes 50𝑑 (250) and 400𝑑 (2000) respectively for purpose

of sensitivity analysis. 50 independent feature computations were performed for each

sample size, as some of them can show low robustness on certain features [RDD+19], and

a median feature value was taken for each one. Following suggestions from [BDS+17;

KT19], we choose only those feature sets that do not require additional sampling during

their computation; this way, we end up with a total of 56 feature values per problem

instance.

7.2 Performance RegressionQuality of Different
Models

Using the key elements described in Section 7.1, we establish two separate regression

(true and logarithmic) approaches for each of the 30 regression models, as suggested

in Chapter 6. Following common machine learning practices, we perform a 5-fold

43

Chapter 7 Impact of Hyper-Parameter Tuning

2.50

2.75

3.00

3.25

3.50

6.5 7.0 7.5 8.0
RMSE

lo
gR
M
S
E

df$model

log

org

df$X

RM1

RM10

RM11

RM12

RM13

RM14

RM15

RM16

RM17

RM18

RM19

RM2

RM20

RM21

RM22

RM23

RM24

RM25

RM26

RM27

RM28

RM29

RM30

RM5

RM6

RM7

RM8

RM9

Figure 7.2: Overall prediction quality of different regression models (RMSE vs. log-

RMSE), from both the unscaled (in blue) and the log-based approach (in red) on the

CMA-ES-CSA algorithm, with the budget of 1000 function evaluations and 2000-sample

feature size. Minimizing both error values as a Pareto front, we see that log-based

regression models perform significantly better than the unscaled ones.

stratified leave-one-instance-out cross-validation when training each model to reduce

variability and obtain a higher model accuracy, thus carrying out the training on four

out of five instances per each function, testing on the remaining one and combining the

results over all folds.

In order to assess and compare the accuracy of different predictions made by the

regressionmodels, we compute here again the RMSE and log-RMSE values per prediction,

and aggregate them across problems and algorithms. The RMSE is computed based on

the actual data values (both for the unscaled and logarithmic approach), whereas the

log-RMSE makes use of the log-scaled data for both approaches.

Table 7.2 conveniently shows the best achieved prediction accuracies (RMSE and

log-RMSE) of the logarithmic approach for different algorithms in the portfolio, for

the 2000-sample feature size, and for all different budgets, aggregated across problems.

Different ‘Model’ columns in the table correspond to the regression model with the best

quality in a specific scenario. Note that the RM-labeled models 1–6 refer to the Decision

Tree regressors, 7–18 to the Random Forest regressors, and 19–30 to the Bagging DT

regressors. This allows us to draw some first conclusions related to selecting the most

efficient regressor, with the Decision Tree family being predominantly chosen in the

44

Performance RegressionQuality of Different Models Section 7.3

low-budget setting when optimizing the RMSE, while the presence of the Bagging DT

family is stronger when optimizing the log-RMSE in the same setting. Random Forest

regressors, however, seem well-performing across the board, which is supported by the

fact they are typically an all-round model of choice in related lines of research. Most

importantly, we remark that, even when aggregated across problems, the choice of the

best regression model is highly dependent on the setting we work in, and varies between

algorithms.

Table 7.2: Best quality of the predictions of logarithmic regression models (RMSE vs.

log-RMSE) for each algorithm from the portfolio, for feature size of 2000 samples. Note

that the labels in columns named ‘Model’ correspond to the regression model (referred

to as RM in the table) achieving the said best prediction quality. Different models are the

best-performing ones across the portfolio for different budgets of function evaluations.

Feature size 2000

Budget 250 Budget 500 Budget 1000

Algorithm RMSE Model logRMSE Model RMSE Model logRMSE Model RMSE Model logRMSE Model

BIPOP-CMA-ES 10368.95 RM27 1.65 RM13 1489.86 RM9 1.83 RM20 73.18 RM7 1.94 RM12

BrentSTEPqi 58096.65 RM8 2.22 RM30 57828.22 RM9 2.76 RM12 57040.98 RM9 2.84 RM11

BrentSTEPrr 59475.56 RM3 2.15 RM30 58039.56 RM16 2.70 RM30 57993.93 RM21 2.90 RM12

CMA-ES-CSA 10216.53 RM7 1.62 RM13 280.26 RM13 1.95 RM30 6.78 RM21 2.38 RM12

fmincon 17.73 RM5 1.64 RM18 10.36 RM3 1.96 RM18 6.23 RM20 1.64 RM23

fminunc 254.93 RM21 2.20 RM11 7.05 RM7 2.34 RM29 6.83 RM2 2.35 RM29

HCMA 1651.12 RM13 1.70 RM23 4.29 RM23 2.10 RM18 2.82 RM14 2.77 RM12

HMLSL 16.83 RM2 1.62 RM11 10.45 RM6 1.95 RM23 4.01 RM24 1.87 RM12

IPOP400D 3120.75 RM14 1.72 RM18 1204.75 RM19 1.71 RM11 33.66 RM7 1.99 RM11

MCS 2514.61 RM2 2.40 RM24 2233.27 RM7 2.74 RM11 1992.51 RM24 2.87 RM11

MLSL 19.54 RM7 1.77 RM17 11.45 RM6 2.06 RM23 5.39 RM6 2.07 RM22

OQNLP 26.36 RM13 2.40 RM30 11.34 RM20 2.17 RM17 9.10 RM20 2.29 RM17

As illustrated in the example in Figure 7.2, which is the use-case of CMA-ES-CSA

algorithm for budget of 1000 evaluations and 2000-sample feature size, the overall

regression quality both in terms of RMSE (on 𝑥-axis) and log-RMSE (on 𝑦-axis), regarded

as a Pareto front, i.e. a two-objective min-min problem, is higher for the log-based

approach than for the unscaled one. However, it does not always have to be the case;

depending on the algorithm, we can also observe situations in which the unscaled

approach yields better results. Nevertheless, a remarkable diversity of regression model

accuracies on different problems is easily noticed, and supports the idea of possibly

having to resort to multiple regressors (each excelling in prediction of one sub-class of

problems, for example) to achieve best results, which further supports the claim that

ensemble-based models could be significantly more accurate than the standalone ones.

45

Chapter 7 Impact of Hyper-Parameter Tuning

7.3 ELA-Based Algorithm Selection
After examining the regression accuracy, we proceed to evaluate the performance of two

simple algorithm selectors, based on the predictions of the unscaled and the logarithmic

approach, respectively, for each of the 30 regression models. The unscaled selector

recommends the algorithm for which the unscaled-based model predicted the best

performance, and, similarly, the log-selector bases its decision on the best prediction of

the logarithmic model. To quantify how well selectors perform per problem instance, we

compare the precision of the algorithm chosen by the selector for the instance at hand to

the precision of the actual best algorithm for that instance. We then indicate the overall

quality of this selector by computing the RMSE and log-RMSE values (aggregated across

all problem instances).

Both in unscaled as well as in the logarithmic approach, some algorithms will be

selected more often than others per different problem instance, as seen in Figure 7.3. For

the budget of 1000 function evaluations and 2000-sample feature size, we observe that

HCMA is chosen most consistently across different problem instances, while the choice

of BIPOP-CMA-ES is very rare. We also notice that on specific instances, there could

be one or two particularly frequently selected (thus good) algorithms which are not

selected for other problems in the benchmark set (e.g., CMA-ES-CSA for the function 16

in the unscaled approach, or fmincon for the function 21 in the log-based approach).

Combined Algorithm Selector. We compare the qualities of our two selectors

(unscaled and logarithmic) with two standard baselines – the virtual best solver (VBS)

and the single best solver (SBS). The SBS baselines vary depending on the budget and

feature size, and we can also distinguish between the unscaled approach SBS and the

log-based approach SBS.

We plot in Figure 7.4 the quality of the selectors over all problem instances on

RMSE and log-RMSE axes, again treating them as a Pareto front with the objective

of minimizing both errors, and we see that different unscaled and log-based selectors

already outperform the majority of single algorithms from the portfolio on both RMSE

and log-RMSE. We also want to incorporate the observation reported in Chapter 6 that

the unscaled approach is better in predicting higher target precision, while the log-based

approach has better accuracy when targeting smaller performance values.

Again, we establish a combined regression approach for all the models in order to

benefit from their two complementing strengths. We can thus define a combined VBS,

which is the one that, for each model and problem instance, chooses the better of the two

recommended algorithms by the unscaled and the log-based approach, respectively, using

the following rule: if the target precision of an algorithm, as predicted by the logarithmic

model, is smaller than a certain threshold, we use the log-based approach, whereas

we use the recommendation of the unscaled approach otherwise. The threshold value

chosen here is 0.9 in order to ensure selecting the log-based approach recommendation

46

ELA-Based Algorithm Selection Section 7.3

FID IID BIPOP-CMA-ES BrentSTEPqi BrentSTEPrr CMA-ES-CSA fmincon fminunc HCMA HMLSL IPOP400D MCS MLSL OQNLP BIPOP-CMA-ES BrentSTEPqi BrentSTEPrr CMA-ES-CSA fmincon fminunc HCMA HMLSL IPOP400D MCS MLSL OQNLP

1 0 2 0 0 0 2 24 1 0 0 1 0 0 2 5 0 1 0 13 0 0 0 9 0

2 0 4 2 0 0 0 15 3 0 0 0 6 0 0 13 0 0 3 5 0 0 0 9 0

3 0 0 0 0 2 0 23 0 0 0 4 1 0 0 5 0 0 2 21 0 0 0 2 0

4 0 0 0 1 0 6 18 1 0 0 4 0 0 3 12 0 1 0 11 0 0 2 1 0

5 0 0 2 0 4 6 13 0 0 0 2 3 0 0 0 0 0 7 0 1 0 1 20 1

1 6 3 12 4 0 0 5 0 0 0 0 0 2 10 2 0 2 3 0 2 2 2 3 2

2 0 12 10 0 0 0 8 0 0 0 0 0 0 6 20 0 0 0 4 0 0 0 0 0

3 0 8 4 0 0 0 18 0 0 0 0 0 0 0 6 0 0 0 23 0 0 0 1 0

4 0 8 0 4 1 0 10 1 0 0 5 1 0 0 0 3 9 0 12 3 0 0 3 0

5 0 2 0 0 0 0 28 0 0 0 0 0 0 1 21 0 0 0 8 0 0 0 0 0

1 0 21 8 0 0 0 0 1 0 0 0 0 0 15 15 0 0 0 0 0 0 0 0 0

2 0 13 3 0 0 2 5 4 0 1 2 0 0 6 11 0 0 0 11 0 0 0 2 0

3 5 11 10 0 0 0 0 1 3 0 0 0 0 11 9 0 0 0 10 0 0 0 0 0

4 0 12 1 2 0 0 15 0 0 0 0 0 0 8 4 0 0 0 18 0 0 0 0 0
5 0 0 2 2 0 3 23 0 0 0 0 0 2 13 11 2 0 0 0 1 0 0 1 0

1 0 7 4 0 2 0 2 0 6 3 1 5 6 0 0 8 2 1 0 0 0 0 12 1

2 0 6 6 2 0 0 4 3 5 4 0 0 9 9 0 0 1 1 0 0 0 0 10 0

3 0 6 5 1 2 4 0 0 2 4 2 4 0 0 0 0 7 0 0 1 0 0 22 0

4 0 6 4 0 2 0 6 0 2 1 2 7 0 1 1 3 3 2 8 1 3 0 8 0
5 0 2 8 0 3 3 2 0 5 6 1 0 6 1 0 6 8 0 0 0 1 0 7 1

1 0 0 0 0 3 0 20 5 0 0 1 1 0 0 0 0 11 0 5 0 0 0 14 0

2 0 0 0 0 1 1 20 2 0 2 4 0 0 0 0 0 4 0 13 4 0 0 9 0

3 0 0 0 1 4 2 20 1 0 0 1 1 0 0 0 0 16 0 7 3 0 0 4 0

4 0 0 0 0 14 2 4 2 0 6 2 0 0 0 0 0 17 0 0 4 0 0 9 0

5 0 0 0 1 8 1 9 5 0 0 5 1 0 0 0 2 6 2 3 9 0 0 8 0

1 0 0 0 1 2 2 22 1 1 0 1 0 0 0 4 1 5 3 13 1 2 0 1 0

2 2 2 0 3 0 0 20 0 2 0 1 0 2 0 0 0 0 1 25 1 0 0 1 0

3 0 0 1 0 2 6 17 0 0 0 2 2 0 0 1 0 0 0 28 0 0 0 1 0

4 4 4 0 2 0 0 11 0 2 0 4 3 2 0 0 15 0 0 12 1 0 0 0 0

5 0 0 0 6 0 5 15 2 2 0 0 0 4 0 0 1 0 0 25 0 0 0 0 0

1 0 0 0 2 9 0 3 3 3 4 0 6 0 0 0 0 2 2 0 2 0 10 12 2

2 0 0 1 0 0 0 22 0 0 7 0 0 0 3 0 0 9 2 6 5 0 1 4 0

3 0 0 0 0 4 2 11 4 0 4 2 3 0 0 0 0 0 0 0 0 0 3 26 1

4 0 0 0 0 1 2 11 1 0 7 0 8 0 0 0 0 0 1 0 0 0 2 25 2
5 0 0 0 0 6 4 8 0 0 2 4 6 0 0 0 0 0 0 0 0 0 2 28 0

1 0 0 0 0 6 0 0 1 0 11 3 9 0 0 0 0 11 0 0 2 0 4 13 0

2 0 0 0 0 6 3 0 0 0 5 1 15 0 0 0 0 0 0 0 0 0 4 26 0

3 0 0 0 2 3 1 0 7 0 5 4 8 0 0 0 0 2 2 0 7 0 17 2 0

4 0 0 0 0 5 2 0 9 0 7 7 0 0 0 0 0 3 2 0 1 0 17 6 1

5 0 0 0 0 2 4 0 12 0 8 2 2 0 0 0 0 3 0 1 6 0 5 15 0

1 0 0 0 0 3 2 24 1 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0

2 0 1 0 0 0 0 20 6 0 0 2 1 0 0 0 0 0 0 30 0 0 0 0 0

3 0 4 0 0 9 0 17 0 0 0 0 0 0 0 0 0 8 0 11 1 0 0 10 0

4 0 0 0 0 0 0 28 1 0 0 1 0 0 0 2 0 0 2 20 4 0 0 2 0

5 0 0 1 0 1 5 16 6 0 0 1 0 0 2 1 0 0 0 18 0 0 0 8 1

1 0 2 0 1 4 0 21 2 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0

2 0 0 0 0 2 3 22 0 0 0 3 0 0 0 0 0 0 0 30 0 0 0 0 0

3 0 1 0 0 3 2 23 0 0 0 1 0 0 0 0 0 0 0 30 0 0 0 0 0

4 0 0 0 0 3 2 16 7 0 0 0 2 0 0 0 0 0 0 30 0 0 0 0 0

5 0 0 0 0 10 0 17 0 0 0 3 0 0 1 9 0 0 0 20 0 0 0 0 0

1 0 0 0 0 1 3 15 8 0 1 1 1 0 0 0 0 1 0 26 0 0 0 3 0

2 0 0 0 0 2 4 15 3 0 0 6 0 0 0 0 0 2 1 6 2 0 0 19 0

3 0 0 0 0 2 2 15 4 0 0 7 0 0 0 0 0 0 0 24 2 0 0 4 0

4 0 0 0 0 6 1 12 3 0 1 6 1 0 0 0 2 2 1 3 2 0 1 13 6

5 0 0 0 0 2 3 6 8 0 2 6 3 0 0 0 0 2 4 0 2 0 8 13 1

1 1 0 0 0 0 1 24 2 0 0 0 2 0 0 0 0 5 0 25 0 0 0 0 0

2 0 0 0 1 0 0 29 0 0 0 0 0 0 0 0 0 0 5 18 5 1 0 1 0

3 2 2 4 3 1 2 9 1 0 0 2 4 0 0 1 0 4 0 5 9 0 0 11 0

4 0 0 2 1 6 1 10 4 1 0 3 2 0 0 0 0 2 0 26 0 2 0 0 0

5 0 0 0 4 1 4 14 4 0 0 3 0 1 0 0 1 5 0 21 2 0 0 0 0

1 0 0 0 2 8 4 5 1 0 0 2 8 0 4 0 0 0 0 26 0 0 0 0 0

2 2 0 3 2 0 0 13 2 2 1 4 1 0 0 0 2 0 5 23 0 0 0 0 0

3 0 4 0 5 3 1 6 0 0 3 5 3 1 0 0 0 1 4 24 0 0 0 0 0

4 0 0 0 2 0 5 9 8 2 0 2 2 0 0 0 0 0 13 11 0 0 0 2 4

5 0 0 0 0 2 0 17 2 0 2 2 5 0 0 0 0 8 5 10 4 0 0 1 2

1 0 2 4 3 0 0 11 5 1 0 3 1 0 4 0 0 1 0 21 2 0 0 2 0

2 0 0 0 2 0 0 15 6 0 4 0 3 0 0 0 1 2 2 24 1 0 0 0 0

3 0 0 2 9 2 4 1 4 8 0 0 0 4 5 0 0 0 0 18 2 0 0 1 0

4 0 16 0 5 1 3 4 1 0 0 0 0 3 4 3 0 0 0 14 0 0 0 6 0

5 4 0 4 0 0 1 14 3 3 0 1 0 3 5 1 4 0 0 12 0 1 2 0 2

1 0 3 3 0 2 2 0 10 0 0 10 0 0 0 2 10 0 0 0 2 1 2 11 2

2 0 1 4 0 6 4 0 1 0 8 6 0 0 0 2 6 4 6 0 2 2 8 0 0

3 0 0 10 0 2 4 0 2 0 1 11 0 0 0 3 11 2 0 0 1 1 4 8 0

4 0 0 1 3 2 0 0 6 6 0 12 0 0 0 0 7 4 0 0 3 8 0 8 0

5 0 0 3 2 0 2 1 7 0 1 7 7 0 0 2 6 0 3 1 8 1 2 7 0

Unscaled models Log models

23

13

14

15

7

8

9

10

11

12

2

3

4

5

6

Figure 7.3: Heatmap of the selection frequency of each algorithm from the portfolio

per problem instance, both for the unscaled (left) and log-based approach (right), for

the budget of 1000 function evaluations and the feature size of 250 samples, showing

selected functions only for reasons of space.

47

Chapter 7 Impact of Hyper-Parameter Tuning

3

4

5

2.5 5.0 7.5 10.0 12.5
RMSE

lo
gR
M
S
E

AS

Alg11

Alg12

Alg4

Alg5

Alg6

Alg7

Alg8

VBS

combinedAS

logAS

orgAS

RM

Alg11

Alg12

Alg4

Alg5

Alg6

Alg7

Alg8

RM1

RM10

RM11

RM12

RM13

RM14

RM15

RM16

RM17

RM18

RM19

RM2

RM20

RM21

RM22

RM23

RM24

RM25

RM26

RM27

RM28

RM29

RM3

RM30

RM4

RM5

RM6

RM7

RM8

RM9

Figure 7.4: Quality of the algorithm selectors (RMSE vs. log-RMSE) for different regres-

sion approaches, including the combined selectors, the virtual best combined selectors

(combinedVBS), and the selectors based on consistently using a certain algorithm across

the board (‘Algo’ selectors in the legend, among which we can identify the SBS), for the

budget of 1000 function evaluations and the 2000-sample feature size. Note that some of

the selectors, notably the ‘Algo’ ones, have been excluded from the figure, as otherwise

the visibility of the best ones is disrupted.

for fine-grained precisions and vice versa. We apply this strategy to all 30 regression

models, and the results for the budget of 1000 evaluations and the 2000-sample feature

size are seen in Figure 7.4. The combined selector clearly outperforms any of the simple

regression approaches, the single algorithms and even the combined VBS selectors. This

finding highlights the potential of the combined selector, which boosts the quality of its

standalone components even in the case when they might not be the optimal regression

models for a specific algorithm portfolio and problem set.

7.4 Sensitivity Analyses
Lastly, we highlight the differences in regression quality obtained by using different

budgets and feature sizes. We have purposefully randomly selected one regression model

(RandomForest_crit.mse_minsplit.4_nest.9) and one algorithm (HCMA) to point out the

diversity of regression on different problem instances. The data in Table 7.3 corresponds

to the log-based approach of said selector, using 2000-sample feature size, in order to

48

Conclusions Section 7.5

be consistent with the showcased use-case throughout the chapter. We immediately

observe extremely large RMSE values for the budget of 250 function evaluations, which

drastically decrease for the budgets of 500 and 1000. One possible interpretation of this

finding could be that in raw performance data, whereas the budget of 250 evaluations

was not big enough to allow for getting closer to the optimum in case of certain functions,

increasing the budget seem to facilitate getting a better estimate of the optimal solution,

thus making a more straightforward way for the regression to perform better. Finally,

this again stresses the possible importance of personalizing the regression models to

the actual optimization problems, as the results can vary drastically between problem

instances.

Table 7.3: Sensitivity analysis of regression quality for the log-based approach of the

𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡_𝑐𝑟𝑖𝑡 .𝑚𝑠𝑒_𝑚𝑖𝑛𝑠𝑝𝑙𝑖𝑡 .4_𝑛𝑒𝑠𝑡 .9 regression model for the HCMA algorithm

for the feature size of 2000 samples, with respect to the different algorithm budgets.

Note that, for reasons of space, we showcase only values of the first instance of the 24

BBOB functions.

FID 1 2 3 4 5 6 7 8 9 10 11 12

IID 1 1 1 1 1 1 1 1 1 1 1 1

Feature size 2000

Budget 250

RMSE 0.12 0.00 4.01 0.66 1.00 229.24 39.73 44127.00 0.01 21357821.80 3243.65 20853295.16

logRMSE 0.03 15.35 0.01 0.00 14.80 0.40 0.21 1.12 0.00 1.94 0.04 0.65

Budget 500

RMSE 0.06 0.00 0.16 1.77 1.00 4.83 0.52 10.35 0.13 0.00 0.00 0.00

logRMSE 0.01 23.83 7.65 0.67 21.68 1.98 4.35 0.28 0.10 1.09 1.50 0.02

Budget 1000

RMSE 0.01 0.00 2.58 0.66 1.00 0.00 0.41 0.00 0.00 0.00 0.00 0.00

logRMSE 0.00 0.02 80.68 2.80 11.15 1.28 16.98 0.01 3.85 0.04 0.53 0.26

FID 13 14 15 16 17 18 19 20 21 22 23 24

IID 1 1 1 1 1 1 1 1 1 1 1 1

Feature size 2000

Budget 250

RMSE 53.95 1.12 656.09 341.45 7.21 38.76 0.09 6.81 0.49 0.72 3.89 247.95

logRMSE 0.11 1.19 0.19 0.58 0.40 0.18 0.12 0.15 0.03 0.06 0.09 0.06

Budget 500

RMSE 0.00 0.01 251.70 72.77 0.11 4.18 0.03 0.84 0.70 0.26 0.55 5.75

logRMSE 0.67 13.13 6.62 0.39 1.09 2.49 0.06 0.09 0.04 0.02 0.02 0.01

Budget 1000

RMSE 0.00 0.00 0.99 0.10 0.00 0.18 0.14 2.86 0.10 3.72 0.23 1.65

logRMSE 0.15 1.01 33.19 0.02 2.96 2.86 0.15 1.48 0.02 3.48 0.01 0.00

7.5 Conclusions
While most landscape-aware algorithm selection, configuration, and design studies

in the context of numerical black-box optimization do not pay great attention to the

configuration of the machine model, we have demonstrated in this work that both the

choice of regression technique and its parametrization can have significant impact on

the performance of the trained models. Using a classical experimental design from the

context of automated algorithm selection [JD20; KT19], we have analyzed 30 different

regression models, applied them to both the logarithmic and to the unscaled performance

49

Chapter 7 Impact of Hyper-Parameter Tuning

data, trained an automated algorithm selector, and analyzed its performance through

stratified 5-fold cross validation. We have seen that the regression quality of the different

models can vary by several orders of magnitude. This reinforces and justifies the

need for meticulously choosing the machine learning model and its hyper-parameter

configuration, as we have seen that picking any single model and tuning it might

not at all provide good results (e.g., the discarded machine learning models from the

preliminary step of this work). Differences in the regression models’ quality also lead to

very diverse performance portfolios in the algorithm selection task, although the impact

there is somewhat less severe, since wrong predictions can still result in a lucky choice

of algorithms. Additionally, when considering ensembles, hyper-parameter tuning can

be expected to further improve upon performance gains, which will depend on the used

data set and learning scenario.

Our study suggests that the selection of the machine learning techniques should be

performed with care. It also suggests that the quality of different regression techniques

can vary between different types of problems, so that we cannot give a “one-size-fits-

all” recommendation for which regression models or which parametrization to favor.

As a rule of thumb, different Bagging Decision Tree and Random Forest instances

provide better results in terms of log-RMSE, for both feature extraction sample sizes

and all three budgets of function evaluations. For the RMSE performance criterion, in

contrast, Decision Trees provides best results for some of the algorithms. The important

question of choosing the absolute best performing machine learning model for a certain

problem set and algorithm portfolio remains open, but this preliminary work stresses the

significance of the efforts that should go towards developing more advanced mechanisms

to select the most appropriate one and its hyper-parameter configuration.

We note that the computational costs of training different regression models is

rather negligible for the data sizes commonly studied in the landscape-aware black-box

algorithm selection context, which means a validation step can be added before deciding

which model to choose and apply to the real use-cases (i.e., in the test phase). In general,

we believe that the current common practice of studying stratified 5-fold cross validation

on the BBOB functions is too limited to give an accurate impression about the potential

of carefully choosing the machine learning model for the automated algorithm selection

and configuration in practice. We therefore plan to massively extend our study by

adding to our data sets performance data from the Nevergrad platform [RT18], which

offers benchmark data for very broad ranges of optimization problems on its frequently

updated dashboard.

One problem to overcome in cross-validation across different benchmarking platforms

is the fact that one needs to ensure that the data corresponds to the same instances of

the algorithms – a CMA-ES implementation in one platform may be much different than

a CMA-ES implementation in another. We therefore believe that a common algorithm

repository, interfaced with the various benchmarking suites, would be a useful step

50

Conclusions Section 7.5

towards a better re-usability of results and better training sets for the automated selection,

configuration and design of black-box optimization techniques.

51

8 Personalized Perfor-
mance Regression

This chapter is based on paper [EJP+21], which appeared in the Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO) 2021, Personalizing Performance
Regression Models to Black-Box Optimization Problems.

8.1 Preliminaries
Summary of Results. The main goal of this chapter is to analyze to what extent

state-of-the-art landscape-aware algorithm selection models could benefit from a more

careful choice of the machine learning tools, and, more concretely, how their comple-

mentarity can be leveraged to obtain good predictions for broad sets of optimization

problems. We evaluate a way of extending the current practice of deploying a single

predictive model by combining ensemble regression and personalized regression.

While ensemble learning is well-known and the de-facto standard in several machine

learning applications [ZM12], the idea to personalize the regressions is an original

research contribution that we propose here. In a nutshell, the key idea is that different

regression models work best for different types of problems, so that we can improve

regression quality by automatically selecting the one(s) that showed best performance

for similar problems.

We test the impact of each of the suggested extensions on a portfolio of 12 algorithms

from the BBOB workshop series [HAB20] suggested in [KT19], for which we task

ourselves with predicting the solution quality after a fixed budget of function evaluations.

We find that the regression quality improves for 58%-70% of the tested problems,

depending on the comparison scenario, which nicely demonstrates that the current prac-

tice in performance regression used within the evolutionary computation community

has quite some untapped potential.

The computational overhead for training and applying the personalized models is

also negligible for the tasks performed in this study. This happens because we are

working only with 120 instances from 24 problems. When moving to larger data sets of

several GB or even TB in size (as often considered in machine learning applications),

however, we need to consider the impact of data size and data quality on the learning

algorithms performances. With larger amounts of data, the so-called offline learning (as

used in this paper) can become computationally inefficient. In such cases, one option is

to use random or stratified sampling if possible, which can reduce the data size and still

preserve the relevant information found in the original data set.

52

Personalized Machine Learning Models Section 8.2

The idea to personalize the regression models is not restricted to performance regres-

sion, and not even to optimization. Based on our findings presented here, we consider

further applications, for example in personalized medicine, as an exciting avenue for fu-

ture work, since predictive models that are specifically developed for different genotypes

and/or phenotype may allow better recommendations that “one-size-fits-all” predictive

models, which are unfortunately known to come with biases that can cause severe harm.

Note that personalized approach is different from training individual models sep-

arately, in that the classification which model to use is done in a data-driven way,

and not by an external entity. While in this chapter we use classification to assign

problem instances to problem classes, our approach can easily be extended to allow

for interpolation between personalized models. How much such an additional layer

would contribute, however, remains to be evaluated in future work. We compare our

results to the approach in which the classification step can be omitted and the ground

truth problem class is known (this is the “ensemble-ground” method in Section 8.3.1).

Based on the results, the misclassification of the problem class that leads to selecting a

personalized model does not have a significant loss. On the contrary, it can even improve

the end predictions, however, this happens in cases where landscape representations of

the problems instances are quite similar.

8.2 Personalized Machine Learning Models
To introduce our personalized performance regression pipeline, we assume that we face a

fixed-budget performance regression task, i.e., we aim at predicting algorithms’ solution

quality after a fixed budget of function evaluations has been exhausted. The pipeline

presented below can be used for other machine learning tasks, but the restriction to a

specific use case eases the presentation considerably.

Problem
instance i

Exploratory
Landscape Analysis

Feature
representation

of i

(Multi-class) classification
(assign i to a class C(i))

Perform regression with
all RM relevant for C(i) to

obtain y1,..., ym

Output

Figure 8.1: Application of the personalized machine learning models. Note that the

abbrevation RM stands for regression models.

The high-level approach is depicted in Figure 8.1. The main steps to obtain the

performance prediction 𝑦 for a given problem instance 𝑖 are the following:

53

Chapter 8 Personalized Performance Regression

1. We first apply a feature extraction method to obtain a description of this instance

𝑖 . In our context, the features are computed via exploratory landscape analysis

(see Section 8.3 for details).

2. We use the instance description to assign instance 𝑖 to a class𝐶 (𝑖) (i.e., we perform
a multi-class classification) to obtain a set {𝑦1, . . . , 𝑦𝑚} of different performance

predictions, one per regression model.

3. We combine these values to obtain the end prediction 𝑦 =
∑𝑚

𝑗=1𝑤 𝑗 (𝑖)𝑦 𝑗 , using
the weighting scheme 𝑤1 (𝑖), . . . , 𝑤𝑚 (𝑖) of the class 𝐶 (𝑖).

Benchmark
problem

data

k
Instances

of f1

k
Instances

of f2

k
Instances

of fn

Exploratory
Landscape Analysis

Feature
instance

representtion

A1 A2

Iterative grid search for hyperparameter optimisation

Regression algorithm portfolio

Algorithm
instances of the

Am
Am

Supervised
regression analysis

Target
predictions for
k Instances of

f1

Target
predictions for
k Instances of

f2

Target
predictions for
k Instances of

fn

Calculate the weights (w1, w2, ..., wm)

a1 a2 am a1 a2 am

A1 A2 Am

Selecting the best algorithm instance
within each algorithm

A1 A2 Am

Selecting the best algorithm instance
within each algorithm

A1 A2 Am

Selecting the best algorithm instance
within each algorithm

a1 a2 am

Calculate the weights (w1, w2, ..., wm) Calculate the weights (w1, w2, ..., wm)

`

Figure 8.2: Training phase of the personalized problem ensembles.

The association of the regression models to different classes, as well as the computa-

tion of the class-specific weights, is handled in a prior (i.e., “offline”) training phase.
Its most relevant steps are illustrated in Figure 8.2.

54

Use-Case: ELA-Based Fixed-Budget Performance Regression Section 8.3

Assuming that we have a set of training instances which are grouped into 𝑛 classes

𝐶1, . . . ,𝐶𝑛 (in our case, these are the problem instances), a set of potential regression

models, which are grouped into𝑚 classes 𝐴1, . . . , 𝐴𝑚 ,
1
, and fixed-budget performance

data for an algorithm A, then the training phase comprises the following steps:

1. We compute a representation for each training instance, ideally using the same

feature extraction technique that will be used in the applications (i.e., in the test
phase, in proper machine learning terminology).

2. Each regressionmodel instance uses the problem representation and the algorithm

performance data to train a predictive model.

3. Each regression model is evaluated according to its regression performance on

the training instances within each optimization problem.

4. For each problem class 𝐶 (𝑖), we select from each regression model class 𝐴 𝑗 the

configuration 𝑎 𝑗 (𝑖) which achieved the best performance.

5. We then calculate the importance of each regression model 𝑎 𝑗 (𝑖) via a min-max

normalization. That is, if we denote by 𝑞(𝑖) = (𝑞1 (𝑖), . . . , 𝑞𝑚 (𝑖)) the vector of
performance measures for each of the 𝑚 selected configurations for the class

𝐶 (𝑖), the importance of 𝑎 𝑗 (𝑖) is computed as

𝑞 𝑗,norm. (𝑖) =
max(𝑞(𝑖)) − 𝑞 𝑗 (𝑖)

max(𝑞(𝑖)) −min(𝑞(𝑖)) , (8.1)

where we assume a performance measure for which lower values are better

(typically, a deviation from the ground truth is measured in one way or the

other). We then compute the vector 𝑤 (𝑖) = (𝑤1 (𝑖), . . . , 𝑤𝑚 (𝑖)) of weights 𝑤 𝑗 =
𝑞 𝑗,norm. (𝑖)∑𝑚
𝑗=1 𝑞 𝑗,norm. (𝑖) , which are used in the third step of the application phase described

above.

8.3 Use-Case: ELA-Based Fixed-Budget Performance
Regression

We evaluate our personalized machine learning pipeline on a standard fixed-budget

regression task, which aims at predicting the final solution quality of a black-box op-

timization algorithm after a fixed number of function evaluations. The experimental

setup is described in Section 8.3.1. In total, we apply our approach to twelve different

optimization algorithms. We present here only some selected results (Section 8.3.2). A

1 In this chapter, we group in one class all regression models that differ only in the hyper-

parameters, but use the same basic regression technique.

55

Chapter 8 Personalized Performance Regression

few sensitivity analyses, to test the robustness of our approach, are performed in Sec-

tion 8.3.2.

8.3.1 Experimental Setup
Algorithm Portfolio, Benchmark Problems, Feature Computation. As

in Chapter 7, we aim at predicting the performance of the following 12 algorithms (pre-

sented in Chapter 3): BrentSTEPqi [PB15], BrentSTEPrr [PB15], CMA-ES-CSA [Ata15],

HCMA [LSS13a], HMLSL [Pál13a], IPOP400D [ABH13], MCS [HN09], MLSL [Pál13a],

OQNLP [Pál13b], fmincon [Pál13b], fminunc [Pál13b], and BIPOP-CMA-ES [Han09].

As performance measures of these algorithms, we use their single-run fixed-budget

target precision after 250, 500, and 1000 fitness evaluations, respectively, and this for

the first five instances of each of the 24 BBOB functions.

The representations of the 120 problem instances are based on exploratory landscape

analysis (ELA). The ELA features were computed via the flacco package, using the

uniform sampling procedure with a budget of 400𝑑 (a sensitivity analysis for a 50𝑑

sampling budget will be presented in Section 8.3.2). Following similar reasoning as

in Chapters 6 and 7, we used 56 feature values per instance (all presented in Chapter 4).

To stick to common practice in the evolutionary computation community, we take

the raw feature values, i.e., we do not normalize these values nor do we perform any

representation learning prior to feeding the values to our machine learning models.

Personalized Ensembles. To evaluate the personalized ensembles, we use strati-

fied 5-fold cross-validation, where each fold consists of the first, second, third, fourth,

and fifth instance for each problem, respectively. That is, we repeat the whole training

and testing process described in Section 8.2 five times, each time leaving out one fold

for the test phase and using the other four for the training. Note that the personalized

ensembles for the same problem can be different across the five different runs, since

different training data is used. An example will be presented in Table 8.3.

In a preliminary evaluation of our personalization approach, similarly to Chap-

ter 7, we used seven regression techniques: Lasso [Tib96], Elastic Net [ZH05], Kernel

Ridge [Mur12], Passive Aggressive [CDK+06], Decision Tree [BFS+84], Random For-

est [Bre01], and Bagging Decision Tree [Bre96]. We apply iterative grid search to each of

them in order to test different hyper-parameters. Evaluating the seven regression tech-

niques using the mean absolute errors (MAE) of the test folds from the stratified 5-fold

cross-validation, only three regression techniques were selected for further investigation,

Decision Tree, Random Forest, and Bagging Decision Tree. All tested hyper-parameter

combinations for each of these techniques are summarized in Table 8.1.

Since all selected techniques are based on trees, the crit parameter can be one of the

following: “mse" (mean squared error), “mae" (mean absolute error), and “friedman_mse"

(Friedman mean squared error). With respect to the minsplit hyper-parameter, it is

56

Use-Case: ELA-Based Fixed-Budget Performance Regression Section 8.3

the minimum number of data instances a node contains in order to be split. The

nest hyper-parameter defines how many decision trees will be built in the Random

Forest/Bagging Decision Tree regression model. These range of the hyper-parameters

have been selected with respect to the data set size and the general machine learning

guidelines in order to avoid overfitting. In total, we end up with 430 different regression

models: 30 configurations of Decision Trees, 200 configurations of Random Forests, and

200 configurations of Bagging Decision Trees.

Table 8.1: Hyper-parameter values for each regression model class.

Algorithm Hyperparameters

Decision Tree • 𝑐𝑟𝑖𝑡 ∈ {”𝑚𝑠𝑒”, ”𝑚𝑎𝑒”, ”𝑓 𝑟𝑖𝑒𝑑𝑚𝑎𝑛_𝑚𝑠𝑒”}
(30 configs.) • 𝑚𝑖𝑛𝑠𝑝𝑙𝑖𝑡 ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}
Random Forest • 𝑐𝑟𝑖𝑡 ∈ {”𝑚𝑠𝑒”, ”𝑚𝑎𝑒”}
(200 configs.) • 𝑚𝑖𝑛𝑠𝑝𝑙𝑖𝑡 ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

• 𝑛𝑒𝑠𝑡 ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
Bagging DT • 𝑐𝑟𝑖𝑡 ∈ {”𝑚𝑠𝑒”, ”𝑚𝑎𝑒”}
(200 configs.) • 𝑚𝑖𝑛𝑠𝑝𝑙𝑖𝑡 ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

• 𝑛𝑒𝑠𝑡 ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

To select the best regression model from the three selected regression techniques, and

to learn the weights for each problem class separately, we use the mean absolute error
(MAE) of the results obtained on the training fold. We purposefully opt for doing so,

since the data set we used is relatively small, and we are not able to split it properly into

classical sets for training, validation, and testing. Going forward, when working with

much larger data sets, it will be crucial to use validation sets for the weight computation.

In the current context, however, this can lead to further overfitting on the training

set, but, on the other hand, it can also provide some preliminary insight into how the

proposed methodology fits to the new test problem instances.

To associate an instance 𝑖 to a problem class𝐶 (𝑖), we train an ensemble with the major-

ity vote of three multi-class classification algorithms (BaggingDT_crit-entropy_minsplit-
2_nest-9, RandomForest_entropy_nest-9_min-2, and RandomForest_gini_nest-9_min-2),
and we do so on the exact same folds used for building the personalized regression

models. The hyper-parameters used for training the classifiers are the same as for the

regression models, with the only difference lying in the fact that Gini impurity (gini) or
the Information Gain (entropy) [FHT+01] criteria were used for splitting the nodes in

individual trees. Both these criteria measure the impurity of a node.

The comparison is done in the following scenarios, which are summarized in Table 8.2:

• Ensemble-ground: this so-called “ground truth” scenario corresponds to per-

sonalized ensembles for each problem. The true problem class, 𝐶 (𝑖), which the

test problem instance 𝑖 belongs to, is known as a priori information. That is, we

assume in this model that we know which problem class the instance belongs

57

Chapter 8 Personalized Performance Regression

Table 8.2: Regression models used for evaluation purposes.

Regression model

Selection

Personalized Ensemble MAE on train MAE on test Classification

Ensemble-ground ✓ ✓ ✓ - -

Ensemble-class ✓ ✓ ✓ - ✓
Best-train - - ✓ - -

Best-train-instance ✓ - ✓ - -

Best-test - - - ✓ -

to, and our key objective is thus to evaluate how appropriate the class-specific

ensemble is.

• Ensemble-class: this is the approach described in Section 8.2, i.e., we have at

our disposal the personalized ensembles for each problem, and the problem class

𝐶 (𝑖) needs to be guessed by the classifier from the instance representation. When

the classifier correctly predicts the true problem class, this prediction is identical

to the one of the Ensemble-ground model. If, on the other hand, the instance is

misclassified to a different problem class, the noise presented in the classifier will

affect the selection of the relevant regression model, which, in turn, influences

the end prediction (this can go both ways, as we shall see below).

• Best-train: in this scenario, the best regression model from the three regression

techniques is selected based on the mean absolute error obtained across all

problems from the training folds (i.e., one regression model for all problems).

• Best-train-instance: here, the best regression model is selected in the same

scenario as the Best-train, but for each problem separately (i.e., not across all

problems). Selecting the Best-train-instance model for each problem is a special

case of personalized approach (i.e., each problem has its own best regression

model, but we do not combine the predictions of several models for the final

output).

• Best-test: lastly, the best regression model from the three regression techniques

is selected based on the mean absolute error obtained across all problems from

the test folds (i.e., one regression model for all problems).

Note that the first four abovementioned models are learned without evaluating

problem instances from the test folds, whereas testing is needed to select the Best-test

regression model.

8.3.2 BIPOP-CMA-ES Performance Prediction
To evaluate the proposed methodology, we explore the scenario of BIPOP-CMA-ES

performance prediction. The experiment is performed for a fixed budget of 1000 function

58

Use-Case: ELA-Based Fixed-Budget Performance Regression Section 8.3

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
function_d

va
lu
es

method
Best-test
Best-train
Best-train-instance
Ensemble-class
Ensemble-ground

Figure 8.3: Evaluation results of the BIPOP-CMA-ES performance prediction. The

𝑦-axis corresponds to the absolute error between the ground truth and predicted target

precision (i.e., the logarithm of the target precision), while the 𝑥-axis corresponds

to each BBOB benchmark problem. The box plots represent the distribution of the

absolute error obtained from each test fold for each problem separately in five different

scenarios: a) Best-test, b) Best-train, c) Best-train-instance, d) Ensemble-class, and e)

Ensemble-ground.

evaluations, and with a feature portfolio calculated using a 400𝑑 sample size. The

personalized ensembles were trained in two scenarios: once to predict the original target

precision achieved, and once to predict the logarithm of the target precision. Regardless

of how the target is represented, the benefits of using the proposed methodology is the

same. We present going forward the logarithmic models in greater detail.

Figure 8.3 shows the distribution of the absolute error obtained from each test

fold for each problem separately in five different scenarios: a) Best-test, b) Best-

train, c) Best-train-instance, d) Ensemble-class, and e) Ensemble-ground. The Best-

test model is RandomForest_crit-mse_minsplit-6_nest-20, while the Best-train model is

DecisionTree_crit-mae_minsplit-4. Table 8.3 highlights the models used in the person-

alized ensembles for the BBOB problem F6 (i.e., Attractive Sector Function) for each

fold.

We note that the performance quality of the tested approaches in the following

paragraphs is assessed via the median absolute error.

59

Chapter 8 Personalized Performance Regression

Table 8.3: Regression models used in the personalized ensembles for the BBOB function

F6 in each fold.

Fold Models

1 DecisionTree_crit.mse_minsplit.4

RandomForest_crit.mae_minsplit.2_nest.90

BaggingDT_crit.mae_minsplit.2_nest.10

2 DecisionTree_crit.mae_minsplit.4

RandomForest_crit.mse_minsplit.6_nest.90

BaggingDT_crit.mae_minsplit.6_nest.10

3 DecisionTree_crit.mse_minsplit.4

RandomForest_crit.mse_minsplit.2_nest.20

BaggingDT_crit.mae_minsplit.10_nest.10

4 DecisionTree_crit.mae_minsplit.4

RandomForest_crit.mae_minsplit.4_nest.30

BaggingDT_crit.mae_minsplit.2_nest.10

5 DecisionTree_crit.mae_minsplit.4

RandomForest_crit.mse_minsplit.2_nest.70

BaggingDT_crit.mse_ minsplit.10_nest.10

Comparing a single regression model vs. personalized ensembles. The

following analysis involves comparing the results obtained by using a single regression

model that works well across all problems (i.e., Best-train or Best-test) with the results

obtained using the personalized ensembles (i.e., Ensemble-class and Ensemble-ground).

By comparing the Best-train, Ensemble-class, and Ensemble-ground models, while

inspecting the medians from the box plots, it is obvious that the personalized ensembles

(i.e., Ensemble-class, and Ensemble-ground) outperform the Best-train for 14 out of 24

BBOB problems (i.e., 6, 7, 9, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, and 24). This comparison

comprises models that have never seen the test instances. On the other hand, Even

more promising results are obtained when comparing the Ensemble-class and Ensemble-

ground models with the Best-test model. In this case, the personalized ensembles are

better in 15 out of 24 BBOB problems (i.e., 1, 2, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 21, and 24).

It is important to note that the Best-test model is selected based on the information from

the test instances, that, as pointed out above, have never been seen by the personalized

models. Table 8.4 presents the median absolute error obtained from each test fold for

each problem separately by four different regression models. Comparing the median

absolute error values, we observe that the gain achieved by using the personalized

ensembles varies between the problems, but we also note that this results from the

different target precision ranges between problems.

60

Use-Case: ELA-Based Fixed-Budget Performance Regression Section 8.3

Comparing the ground-truth personalized ensembles with the person-
alized ensembles combined with classification. By comparing the median

values between the Ensemble-class and Ensemble-ground models, we can actually see

the influence of the classifier on the end result. The difference between the end pre-

diction results obtained by both models means that the classifier predicted the wrong

problem class. This happens for four BBOB problems (i.e., 3, 4, 10, and 15). In the case

of the fourth and the fifteenth problem, the misclassification actually improves the end

target prediction. In order to see which regression models are selected and combined to

generate the personalized ensemble, we bring the confusion matrix of the classification

into play. For the fourth problem, the misclassification happens in the third test fold,

where the instance from the fourth problem class (i.e., Büche-Rastrigin function, which

is a separable function) is assigned to the third problem (i.e., Rastrigin function, which

is also a separable function). For the fifteenth problem (i.e., Rastrigin Function, which is

a multi-modal function with adequate global structure), the misclassification happens

in the first test fold, where the classifier identifies it as the third problem (i.e., Rastrigin

Function, which is a separable function).

These results open up several new directions for future work; instead of training

personalized ensembles on the problem level, we can shift our perspective to learn them

for a whole group of instances belonging to the same cluster. This can be obtained by

clustering the ELA representations of the problem instances.

Comparing a single personalized regression model with personalized
ensembles. To delve even deeper into analyzing the potential of the personalized

approach, we now compare the Ensemble-class and Ensemble-ground personalized

models to the Best-train-instance model. In this scenario, we have restricted ourselves to

only the best regression model for each problem separately, which was learned using the

performance obtained from the training folds, excluding the information from the test

instances in the selection. By looking at the median absolute error across the test folds,

we see that the personalized ensembles perform better than the Best-train-instance

models for 13 out of 24 BBOB problems (i.e. the problems: 1, 7, 8, 9, 10, 15, 17, 18, 19,

21, 22, 23, and 24). Since the personalized ensembles are based on combining different

regression models, the Best-train-instance model for each problem is actually one of

the three regression models that are being combined. In most cases, combining the best

regression model (i.e., Best-train-instance) with regression models from the other two

regression techniques improves the end prediction. However, there are also cases where

we do not observe the improvement of the end prediction, which opens up the question

of how to select the regression techniques that should be included in the ensemble

learning.

Comparison of mean absolute error vs. median absolute error. We now

perform a final comparison with respect to the chosen performance quality metric. In

61

Chapter 8 Personalized Performance Regression

Table 8.4:Median absolute errors obtained from each test fold for each problem sepa-

rately in four different scenarios.

Problem Best-test Best-train Ensemble-ground Ensemble-class

1 0.6337 0.2170 0.4718
★

0.4718
★

2 1.0507 0.7152 0.7478
★

0.7478
★

3 0.9530 0.9963 1.0053 1.2729

4 1.0627 0.7711 1.3661 0.8353
★

5 9.0958 0.0000 1.9736
★

1.9736
★

6 3.5115 1.6669 1.5341
△

1.5341
△

7 2.3472 3.0982 2.0179
△

2.0179
△

8 2.0920 0.5789 0.6052
★

0.6052
★

9 0.8675 1.0208 0.7480
△

0.7480
△

10 1.2298 1.8954 1.3431
⋄

1.2865
⋄

11 0.7064 0.6347 0.9910 0.9910

12 2.3399 1.9997 2.1457
★

2.1457
★

13 1.1155 1.0443 1.0073
△

1.0073
△

14 3.9245 1.8126 1.3522
△

1.3522
△

15 0.8055 0.7086 0.3540
△

0.2452
△

16 0.2879 0.4122 0.2404
△

0.2404
△

17 3.7476 4.4404 3.7838
⋄

3.7838
⋄

18 2.4728 1.8581 2.6707 2.6707

19 0.7567 2.1484 1.9176
⋄

1.9176
⋄

20 0.3334 0.4013 0.4151 0.4151

21 0.4166 0.3046 0.2726
△

0.2726
△

22 0.9757 1.6932 1.6386
⋄

1.6386
⋄

23 0.2916 0.4672 0.3494
⋄

0.3494
⋄

24 0.3209 0.3103 0.2335
△

0.2335
△

⋄
Better than Best-train.

★
Better than Best-test.

△
Better than both, Best-train and Best-test.

62

Use-Case: ELA-Based Fixed-Budget Performance Regression Section 8.3

the case when the mean absolute error is used instead of the median absolute error, the

personalized ensembles (i.e., Ensemble-class, and Ensemble-ground) outperform the

Best-train in 17 out of 24 BBOB problems (i.e., 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 19,

20, 21, 22, 23, and 24). When comparing them to the Best-test model, they are better in

11 out of 24 BBOB problems (i.e., 3, 5, 6, 9, 10, 12, 13, 14, 15, 21, and 24). Finally, when

the comparison is done to the Best-train-instance, the personalized ensembles are better

in 17 out of 24 BBOB problems (i.e., 2, 5, 7, 8, 9, 10, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23,

and 24).

Sensitivity Analyses
To investigate the impact of the different steps used by the methodology on the end

predictions, we compare the Best-test, Best-train, and Ensemble-class models in three

different scenarios:

1. We investigate how different sample sizes required to compute the ELA features

influence the prediction of the reached target precision;

2. We compare results for different budgets, for one fixed optimization algorithm

and a fixed feature portfolio;

3. We compare results for different optimization algorithms, for a fixed feature

portfolio and a fixed budget.

Fixed budget, one optimization algorithm, different sample sizes for
feature computation. To investigate the impact that different sample sizes re-

quired to compute the ELA features have on the end predictions, the 56 selected ELA

features were computed using 50𝑑 and 400𝑑 sample sizes. This yields two distinct feature

portfolios, which were further used as input data to learn the personalized ensembles

for the BIPOP-CMA-ES in the fixed-budget scenario, with the budget of 1000 evalua-

tions. Figure 8.4 presents the relative advantage of the the Ensemble-class-400d model

vs. the regression models (Best-train-50d, Best-test-50d, Best-train-400d, Best-test-400d,

Ensemble-class-50d) for each problem separately. The suffix 50𝑑 or 400𝑑 in the name

of each model denotes the sample size of the feature portfolio used for learning. To

estimate their advantages, we look into the difference between the median absolute

errors. Positive values indicate where the Ensemble-class-400d model performs better

than the other models, while negative values indicate the opposite. As seen in the

figure, we can safely conclude that the Ensemble-class-400d model outperforms the

other models for the majority of the problems. Comparing the Ensemble-class-50d and

the Ensemble-class-400d (i.e., the blue line), it follows that using the 400𝑑-sample-feature

portfolio provides much better results in most of the problems. Nevertheless, there are

some problems (i.e., 17, 19, 22) for which the opposite is true, with rather insignificant

63

Chapter 8 Personalized Performance Regression

-2
0

2
4

6
8

10

Problem

G
ai

n
in

 a
bs

ou
lte

 e
rr

or

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Best-train-50d
Best-test-50d
Best-train-400d
Best-test-400d
Ensemble-class-50d

Figure 8.4: Relative advantage of the Ensemble-class-400d model vs. simple regression

models (Best-train-50d, Best-test-50d, Best-train-400d, Best-test-400d, Ensemble-class-

50d). The 𝑦-axis represents the difference between the median absolute errors. Positive

values indicate where the Ensemble-class-400d model performs better than the other

models, while negative values indicate the opposite.

differences in the median absolute errors. These results indicate that the selection of the

sample size required to compute the ELA features can influence the end prediction. The

findings also raise a question of the robustness of the ELA features for different samples

sizes, which has been already discussed and investigated from another perspective

in [RDD+20].

Fixed feature portfolio, one optimization algorithm, different budgets.
Figure 8.5 presents the relative advantage of Ensemble-class model vs. Best-train model

for each of the 3 budgets (250, 500, 1000), in the case when we analyze the log-scale per-

formance of the BIPOP-CMA-ES. Here, the feature portfolio is fixed and computed using

a 400𝑑 sample size. Positive values indicate where the Ensemble-class model performs

64

Conclusions Section 8.4

better than the Best-train model. The figure implies that personalized ensembles work

well also for small budgets. By looking at problem 7, it seems that, based on its ELA

representation, we can have a good prediction of the target precision reached after 250

and 1000 evaluations, but the Best-train model achieves better performance when the

budget is 500. The limitation here is that the ELA representation of a problem instance

is static and the same for all budgets, with the only difference in the reached target preci-

sion. This further means that the ELA representation does not cover information about

the algorithm’s behavior (i.e., which parts of the decision space are visited until some

budget is exhausted). In order to improve this, additional information about the state

of the algorithm should be considered and used as input data to train the personalized

ensembles for predicting performance in different budgets. This has been looked into

in Chapter 10.

Fixed budget, fixed feature portfolio, different optimization algorithms.
To verify the transferability of the proposed methodology to algorithms other than

BIPOP-CMA-ES, we highlight here the results obtained by personalized ensembles when

trained to predict the performance of CMA-ES-CSA and IPOP400D, with a fixed budget

of 1000 evaluations, and with a fixed feature portfolio calculated using 400𝑑 sample

size (Figure 8.6). These insights confirm once again that using personalized ensembles

improves the end prediction for most of the problems for both algorithms.

8.4 Conclusions
In this chapter, we present the idea of achieving high-quality performance prediction

for optimization algorithms by means of selecting a regression model (or an ensemble)

for a problem type. Our results demonstrate that there is quite some untapped potential

in moving from “generalist” regression models that work well across broad ranges of

optimization problems to more problem-specific, personalized regression models. The

sensitivity analyses confirm the robustness of our approach.

We note that our study should be seen as a first prototype only. Several extensions

are not only possible, but also strongly needed. For example, we need to evaluate our

methodology onmuch bigger data sets, to allow for a proper split into training, validation,

and test sets. Within such a setting, the training instances would be used to train the

regression models, the validation instances to select and to evaluate the regression

models which are to be included in the ensembles (this comprises the association of the

importance weights that are used to calibrate the predictions of the different models).

The test instances are then used to assess the performance of the overall pipeline.

With respect to combining the output of different regression models into one pre-

diction, we plan on evaluating different approaches to derive the weighting schemes.

In particular, we believe that a multi-criteria approach to combine different regression

65

Chapter 8 Personalized Performance Regression

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

Problem

M
ed

ia
n

ab
so

lu
te

 e
rr

or

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

250
500
1000

Figure 8.5: Relative advantage of the Ensemble-class model vs. the Best-train model

for each of the 3 budgets (250, 500, 1000 function evaluations). The 𝑦-axis represents

the difference between the median absolute errors. Positive values indicate where the

Ensemble-class model outperforms the Best-train model.

performance measures (such as mean root square error, correlation coefficients, etc.)

could be promising, to balance the complementary information obtained through each

of these statistics.

We used here a multi-class classification to assign problem instances to problem

classes. In practice, instances may stem from problem classes that are not used in the

training phase, so that the classifier cannot assign it to one of the present classes. In

such cases, the classification step can be exchanged with clustering, which returns

its 𝑘 closest problem instances. The personalized ensembles for the selected problem

instances would then be used to compute the performance prediction, which would be

further merged with some heuristic of choice to generate the end prediction.

66

Conclusions Section 8.4

Finally, we plan to evaluate the personalized ensembles trained on one benchmark

suite (e.g., the BBOB functions) on other benchmark suites (e.g., Nevergrad [RT18]), in

order to investigate the transferability of the models between the different benchmark

collections.

67

Chapter 8 Personalized Performance Regression

0
5

10
15

20

Problem

M
ed

ia
n

ab
so

lu
te

 e
rr

or

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Best-test
Best-train
Ensemble-class

(a) CMA-ES-CSA

0
5

10
15

20
25

30

Problem

M
ed

ia
n

ab
so

lu
te

 e
rr

or

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Best-test
Best-train
Ensemble-class

(b) IPOP400D

Figure 8.6: Median absolute error between the ground truth and predicted target

precision (i.e., the logarithm of the target precision) for each BBOB benchmark problem,

for fixed budget 1000, fixed feature portfolio calculated using 400d sample size, and two

optimization algorithms: CMA-ES-CSA and IPOP400D.

68

9 Adaptive Landscape Analysis

This chapter is based on paper [JD19], which appeared in the Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO) Companion 2019, Adaptive Landscape
Analysis.

9.1 Preliminaries
Summary of Results. This chapter presents a preliminary study of adaptive land-
scape analysis, which is concerned by how problem features change locally depending

on the quality of the already reached solution(s), in hope to understand if there is an

underlying connection between how the fitness landscape looks locally and the perfor-

mance of a certain optimization algorithm. We “zoom in” into the local feature structure,

and focus in particular on gauging what features values tell us about the nature of

the problem, and subsequently what information we can extract about how to adapt

the algorithm choice during the optimization process, following the dynamic change

in the fitness landscape. These are the first steps towards extension of the so-called

per-instance algorithm configuration (PIAC) approach in numerical optimization (suc-

cessfully applied to the configuration of the well-known CMA-ES algorithm in [BDS+17])

to online landscape-aware algorithm selection. Apart from parameter control, we can

also target automated algorithm design with the same approach, such as for the modular

CMA-ES presented in Section 3.1.2.

Experimental Setup
Problem Benchmark, Choice of the Algorithm, Feature Computation.
Again, we consider as the algorithm of choice the standard CMA-ES, presented in Sec-

tion 3.1.1. For our analysis, we consider the BBOB noiseless test suite (cf. Section 3.3.1.

From the 24 BBOB functions, we select three (namely F1, F2 and F6), all in dimension 5,

and we focus on the first five instances for each of them.

The experimental code was built upon the original CMA-ES implementation provided

in [HAB19]. The feature computation was done using the flacco library [KT16].

Structure of the Experiment. The experiment is designed in a following way:

while the algorithm is running, we track the precision of the sampled points. Whenever

a new target value 10
𝑖 , 𝑖 = {−2, ..., 9} is reached, 2000 additional points are sampled

69

Chapter 9 Adaptive Landscape Analysis

Figure 9.1: Normalized feature values for the Dispersion and Information Content

feature sets for the first instance of the BBOB function F2 (ellipsoid function).

from the current distribution and stored along with their evaluations. These additional

samples do not influence the behavior of the algorithm and are used only to compute

the feature values of the fitness landscape currently seen by the CMA-ES. We run each

optimization process five times, with no restarts and with fixed default population size

for the CMA-ES.

Landscape feature values are then computed at each target precision level and for

each function and instance. To this end, we again only consider features that do not

require additional function evaluations for feature computation, introduced in Chapter 4,

having at our disposal 56 features in total. For a comparison of these local features with
the ones typically computed using points sampled globally from the [−5, 5] range (i.e.,
the domain of definition of the BBOB functions), we have also computed the latter, global
features for the respective BBOB functions, using the same number of 2000 samples

for each of the first five instances in dimension 5. For the purpose of this chapter, we

consider average feature values computed over five independent runs, and from hereon

we focus exclusively on the first instance of each function.

9.2 “Zooming In” into the Landscapes
In this section we present some of our preliminary findings for the adaptive landscape

analysis, obtained through the lens of three selected BBOB functions. The accompanying

figures illustrate how the feature values evolve during the optimization process, with

different features on 𝑥-axis, feature values on 𝑦-axis and target values as different

lines within a figure. The scale has been normalized to the range [0, 1], for a better

70

“Zooming In” into the Landscapes Section 9.2

Figure 9.2:Normalized feature values for the Meta-model and Nearest-Better Clustering

feature sets for the first instance of the BBOB function F1 (sphere function).

Figure 9.3: Normalized feature values for the y-Distribution and Levelset feature sets

for the first instance of the BBOB function F6 (attractive sector function).

71

Chapter 9 Adaptive Landscape Analysis

visualization of the results. Lastly, in order to visualize the data more clearly and make

the charts more accessible for understanding, we have purposefully omitted some target

values (namely 10
−2, 10−4, 10−6 and 10

−8
) from all the figures.

Figure 9.1 shows Dispersion and Information Content feature sets for the function F2

(ellipsoid function). We observe monotonicity in the relationship between feature values

and target values for certain features, which is most prominent in the case of features

IC:eps.ratio and IC:eps.s from the Information Content feature set. Information Content

feature set is closely related to the measure of ruggedness of the fitness landscape, and

the monotonicity could be explained by the fact that F2 is a locally smooth function.

The Dispersion feature set exhibits an overall similar monotonic behavior, although not

as consistent at every feature; this set translates the notion of hardness of the problem

and quantifies the proximity of more interesting regions of the search space. We remark

that these 2 feature sets behave very similarly in the other 2 functions, albeit not shown

here. This is in line with the previous comment about the monotonicity of Information

Content features, as F1 and F6 are both smooth functions as well. It is worth noting

that the curve of the global feature values is excluded from Figure 9.1 for reasons of

scale. However, the general trend seems to be that global feature values usually differ

significantly from local feature values, indicating that the fitness landscape as seen by

the algorithm differs from that of uniform sampling.

On the other hand, both Figure 9.2 and Figure 9.3 display plots of their respec-

tive global feature values along with locally observed values, which for the most part

show stark contrast between the two, as previously mentioned. Moreover, both of the

figures demonstrate rather chaotic and inconsistent local behavior for most features.

In Figure 9.2 we observe Meta-model and Nearest-Better Clustering feature sets for

the function F1 (sphere function). Meta-model feature set aims to measure the ability

to approximate the objective function with a linear, quadratic or regression model,

while Nearest-Better Clustering feature set deals with recognizing single peaks within

a multimodal landscape. Lastly, Figure 9.3 shows y-Distribution and Levelset feature

sets for the function F6 (attractive sector function): the former contains features that

measure ruggedness, symmetry and multimodality of the problem at hand, while the

latter is especially useful when dealing with multimodal functions.

At this stage, the available data does not yet allow for an more complete intuitive

interpretation of the dynamic change of feature values. Some of the important questions

that guide our ongoing research activities are why these values evolve in such a fashion,

whether these features capture the important knowledge about the problem instance and

if yes, how to exploit that knowledge for the purpose of recognizing different problems.

72

Conclusions Section 9.3

9.3 Conclusions
Motivated by the quest to design landscape-aware online algorithm selection and config-

uration techniques, we have analyzed in this work to what extent the fitness landscape,

as seen by iterative black-box optimization heuristics, changes during the optimization

process. To this end, we have computed ELA features as locally seen by the CMA-ES at

different target values 10
−𝑖 , 𝑖 = −2, ..., 9. Our preliminary analysis focuses on 3 selected

benchmark problems of the BBOB testbed. In an ongoing work we are extending our

approach to the full set of the 24 noiseless BBOB functions.

Our next step towards an online algorithm selection model will be coupling feature

information to performance of continuous black-box optimizers. Apart from studying

the algorithm selection problem on standard solvers such as CMA-ES, Differential

Evolution, EDAs etc., it would be of great importance to build an online configurator

for the modular CMA-ES proposed in [RWL+16]. A first indication that a dynamic

configurator of this meta-model is likely to give additional performance gains has been

demonstrated in [VRB+19].

73

10 Trajectory-Based Per-
formance Regression

This chapter is based on paper [JED21], which appeared in the Proceedings of the Appli-
cations of Evolutionary Computation Conference (EvoAPPs) 2021, held as part of EvoStar
2021, Towards Feature-Based Performance Regression Using Trajectory Data.

10.1 Preliminaries
Summary of Results. This chapter introduces a novel trajectory-based landscape-

aware algorithm selection strategy. With the long-term goal to obtain well-performing

dynamic ELA-based algorithm selection and configuration techniques, we analyze in

this chapter a first, rather cautious task: ELA-based performance prediction using the

trajectory samples of the algorithm under investigation. More precisely, we consider

the Covariance Matrix Adaptation Evolution Strategy (CMA-ES [HO01]), and we aim

at predicting its solution quality (measured as target precision, i.e., the distance to an

optimal solution in quality space) after a fixed budget of function evaluations using the

landscape features extracted from the samples of the first part of the search trajectory.

Concretely, we use the first 250 samples evaluated by the CMA-ES and we aim at

predicting its performance after additional 250 evaluations, doing so for 20 independent

CMA-ES runs.

We then take into account that problem characteristics cannot only be described via

classic ELA features, but that internal states of the search heuristics can also be used to

derive information about the problem instance at hand. Such approaches have in the past

been used, for example, for local surrogate modeling [PRH19]. We analyze the accuracy

gains when using the same state information as in [PRH19], that is, the values of the

CMA-ES internal variables that mainly carry information about the current probability

distribution from which the CMA-ES samples candidates for the new generation. In

our experiments, the advantage of using this state information over using only the ELA

features, however, is only marginal. Concretely, the average difference between true and

predicted solution quality decreases from 14.4 to 12.1 when adding the state variables

as features (where the average error reported here is taken over all 24 BBOB noiseless

benchmark problems, and over all performed CMA-ES runs).

We observe in the experiments above that some CMA-ES runs are drastic outliers

in terms of performance, at times with the target precision differing from the target

precision of all the other runs by up to 10 orders of magnitude. We therefore also

consider an intentionally more “friendly” setting, in which we analyze the regression

74

Preliminaries Section 10.1

quality only for the run achieving median performance on a given problem instance.

Conclusions for combining trajectory-based and state variable features remain almost

identical to those stated above.

We then compare these median trajectory-based predictions to the classical approach

using globally sampled features. Here, we pessimistically assume that the samples

were computed for free. That is, we couple 2 separate sets of the global feature values

approximated from 250 and 2000 uniformly sampled points each to the target precision

achieved by the CMA-ES after 500 function evaluations. Interestingly, the difference

in prediction accuracy compared to our trajectory-based predictions is rather small.

The global predictions still remain, however, more accurate, with an average absolute

prediction error of 4.7 vs. 6.2 for the trajectory approach (where again the average is

taken over all 24 BBOB functions).

Furthermore, we also use this median setting to analyze the influence of feature

selection on prediction accuracy. Different state-of-the-art methods were applied, using

a transfer learning scenario, to select features estimated to be the most important and

to have highest discriminative power. Here again, the differences in prediction accuracy

were small, with feature selection surprisingly leading to an overall slightly worsened

solution quality than the full feature portfolio.

As suggested in Chapter 6, all our experiments are based on two independently trained

models: one which aims to predict target precision after 500 evaluations, and one which

predicts the logarithm of this target precision. While the former is better in guessing the

broader “ball park”, the latter is more suitable for fine-grained performance prediction,

i.e., when the expected performance of the algorithm is very good. As in Chapter 6, we

also build a combined regression, which uses either one of the two models, depending

on whether the predicted performance is better or worse than a certain threshold. The

optimal thresholds differ quite drastically between different feature sets. However, a

sensitivity analysis reveals that their influence on overall performance is rather small.

Also, the ranking of the different feature portfolios remains almost unaffected by the

choice of the threshold. In line with the results in Chapter 6, the combined models

perform consistently better than any of the two standalone ones, albeit slightly.

Experimental Setup

Regression Models. In this chapter, we used once again an off-the-shelf random

forest regressor from the Python scikit-learn package [PVG+11], without parameter

tuning and using 1000 estimators.

Algorithm of Choice. We restrict this chapter to a single heuristic, the Covariance

Matrix Adaptation Evolution Strategy (CMA-ES, presented in Section 3.1.1). For the

purpose of our experiments, we used its standard version, available in the Python

75

Chapter 10 Trajectory-Based Performance Regression

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 3 4 5 1 2 3 4 5

1e-06

1e-03

1e+00

1e+03

BBOB Functions

factor(Run)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 10.1: Target precision achieved by the CMA-ES with a budget of 500 function

evaluations, for each of the first five instances of all 24 BBOB functions. Differently

colored and shaped points represent 20 independent CMA-ES runs.

pycma package [HAB19], which uses a fixed population size and no restarts during the

optimization process.

Benchmark Problems. As our benchmark, we use the first five instances of all

24 noiseless BBOB functions. We point out that transformations carried out while

generating different instances of each function do not affect the performance of CMA-

ES, but they do influence some of the feature values, especially those which are not

transformation-invariant [ŠEK20] (for the invariant features, the boundary handling

can have an effect on the feature values). We focus exclusively on dimension 5 here.

Structure of the Experiment. For our first experiments, we perform 20 indepen-

dent runs of the CMA-ES on these 120 problem instances, while keeping track of the

search trajectories and the internal state variables of the algorithm itself. Throughout

this chapter, we fix the budget of 500 function evaluations, after which we stop the

optimization and record the target precision of the best found solution within the budget.

In order to predict those recorded target precisions after 500 function evaluations, we

compute the trajectory-based landscape features using the first 250 sampled points and

their evaluations from the beginning of each trajectory, and couple them with the values

of the internal CMA-ES state variables extracted at the 250
𝑡ℎ

function evaluation.

Figure 10.1 summarizes the target precision achieved by CMA-ES in each of the

20 runs. We see that the results are more or less homogeneous across different runs

76

Preliminaries Section 10.2

and across different instances of the same problem. However, we also observe several

outliers, e.g., for functions 7 (outlier for all instances), function 10 (instance 4), function

12 (instance 1). It is important to keep inmind that the randomness of these performances

are entirely caused by the randomness of the algorithm itself – the problem instance

does not change between different runs.

Problem Features: Landscape and Algorithm State. We compute the ELA

features using flacco (presented in Section 4.3. We again restrict ourselves to those

feature sets that do not require additional function evaluations for computing the

features. Namely, in this chapter we use 2 original ELA feature sets (y-Distribution and

Meta-Model), as well as Dispersion, Nearest-Better Clustering and Information Content
feature sets. This gives us a total of 38 landscape features per problem instance.

In addition, we follow up on an idea previously used in [PRH19] and consider a set of

internal CMA-ES state variables as features:

• Step-size: its value indicates how large is the approximated region from which

the CMA-ES samples new candidate solutions.

• Mahalanobis mean distance: it represents the measure of suitability of the current

sampled population for model training from the point of view of the current state

of the CMA-ES algorithm.

• 𝐶 evolution path length: it indicates the similarity of landscapes among previous

generations.

• 𝜎 evolution path ratio: it provides information about the changes in the probability

distribution used to sample new candidates.

• CMA similarity likelihood: it is a log-likelihood of the set of candidate solutions

with respect to the CMA-ES distribution and may also represent a measure of the

set suitability for training.

As suggested in Chapter 6, and using the elements described above, we establish two

separate regression approaches. One model is trained to predict the actual, true value

of the target precision data (we refer to it as the unscaled model in the remainder of

the chapter), while the other predicts the logarithm of the target precision data (the

logarithmic model). Moreover, to reduce variability, we estimate both models’ prediction

accuracy through performing a 5-fold leave-one-instance-out cross-validation, making

sure to train on four out of 5 instances per BBOB function, test on the remaining instance

and combine the results over the rounds.

77

Chapter 10 Trajectory-Based Performance Regression

FID SV ELA ELA+SV SV ELA ELA+SV

1 4.6 2.6 1.9 0.1 0.0 0.0

2 60.4 64.2 63.7 65.4 58.0 57.1

3 6.4 5.4 5.2 10.1 7.2 6.9

4 9.0 7.0 6.9 12.4 8.7 8.6

5 86.4 6.6 26.2 5.5 4.6 4.5

6 9.1 9.4 4.0 1.1 0.5 0.6

7 6.5 1.0 0.8 0.9 0.7 0.7

8 6.8 1.8 1.7 1.7 1.2 1.2

9 9.2 1.1 1.0 0.9 0.7 0.7

10 126.2 171.1 125.1 125.9 119.7 114.8

11 37.2 12.7 23.9 6.8 5.4 5.6

12 15.2 101.8 24.5 15.3 14.3 13.0

13 9.8 5.6 5.1 4.1 3.9 3.7

14 4.8 2.5 1.1 0.4 0.1 0.0

15 8.8 10.7 5.5 9.6 6.9 6.5

16 4.7 4.8 5.0 0.8 1.7 1.7

17 6.4 1.9 1.8 1.4 0.7 0.7

18 7.8 2.4 2.3 2.7 2.3 2.3

19 11.7 2.3 1.6 2.9 0.5 0.5

20 4.6 0.5 0.6 1.4 0.6 0.6

21 3.8 3.5 3.7 3.5 3.6 3.6

22 10.1 9.0 8.6 9.1 8.6 8.6

23 13.4 1.8 2.0 2.6 0.8 0.8

24 9.4 5.2 5.1 14.9 8.3 8.5

Unscaled model Log model

Figure 10.2:Absolute prediction errors for both regression models aggregated per BBOB

function in 3 different scenarios depending on the feature set used. The SV column

stands for the CMA-ES state variables, the ELA for the landscape features, and the third

one is the combination of both.

10.2 Supervised Machine Learning for Performance
Regression

Adopting our two regression models, we trained them separately in the following three

scenarios: using as predictor variables the landscape features only, using the internal

CMA-ES state variables only, and using the combination of the two. We trained the

random forests 3 independent times and took a median of the 3 runs to ensure the

robustness of the results.

Figure 10.2 highlights the absolute prediction errors per BBOB function using two

regression models, the unscaled and the logarithmic one, when trained with 3 different

feature sets: using only the trajectory landscape data, only the CMA-ES state variable

data, and the combination of the two. For the majority of the functions, using the

combination of the trajectory data and the state variable data seems to help in improving

the performance prediction accuracy, compared to the scenarios which use only one of

those two feature sets.

We also confirm that the logarithmic model is indeed better at predicted fine-grained

target precision (e.g., in the case of F1 (sphere function) or F6 (linear slope function),

78

Comparison with Global Feature Values Section 10.4

we know that those functions do not require many function evaluations to converge to

the global optimum, and their recorded target precision values are already quite small

as they are very near the optimal solution). On the other hand, the unscaled model

performs better where the target precision values are higher (e.g., for the functions such

as F3, F15 (two versions of Rastrigin function), and also F24 (Lunacek bi-Rastigin), which

are all highly multimodal, the number of function evaluations in our budget was not

nearly enough to allow for finding a true optimum).

We also notice that using only the state variables for the unscaled model does not

suffice for an accurate prediction in the most cases. The reverse situation is nevertheless

also possible: we see that for F12, using only the state variables yields the best accuracy

in the unscaled model. Furthermore, there are also exceptions where using only the

landscape data results in a higher accuracy than using the combined features (e.g., F11

for both models, F5 for the unscaled model).

10.3 Comparison with Global Feature Values
We then proceeded to compare the differences in the prediction accuracy from the sets

described in the Section 10.2 with the prediction accuracy using the global feature data,

both alone and combined with the same CMA-ES state variable data as above. To be able

to perform a fair comparison, for the trajectory data we selected from the 20 executed

CMA-ES runs those runs with the median target precision value per problem instance

and their corresponding features and re-trained the unscaled and the logarithmic model.

Global features-wise, both models were also trained using features computed from 2000

and 250 globally uniformly sampled points (the median value of 50 independent feature

computations) for each function and instance.

Figure 10.3 shows the absolute errors in prediction when the trajectory-based ap-

proach is compared with the results using the global features. The highest accuracy is

reported in cases when only the global landscape features were used, across almost all

problems, with 2000-sample features yielding the best results. Here, we do not observe a

huge improvement when combining the global landscape features with the state variable

data. It seems that the number of samples used to compute the features can be crucial

in reducing the errors in prediction, as global sampling could be linked to a potential

higher discriminative power of features thus computed. Again, for certain functions

such as F2 and F10 (both of which are different variants of the ellipsoidal function), we

observe an overall low accuracy.

10.4 Sensitivity Analyses
Feature Selection. To provide a sensitivity analysis based on the features used for

the performance regression, we performed feature selection in the scenario of transfer

79

Chapter 10 Trajectory-Based Performance Regression

FID SV ELA

ELA

+SV GLOB2k

GLOB2k

+SV GLOB250

GLOB250

+SV SV ELA

ELA

+SV GLOB2k

GLOB2k

+SV GLOB250

GLOB250

+SV

1 4.4 2.2 2.0 0.9 1.3 1.8 2.0 0.29 0.00 0.00 0.00 0.00 0.00 0.00

2 31.2 17.4 16.7 18.5 17.9 18.9 17.7 38.89 31.56 31.86 25.65 26.58 28.98 30.20

3 8.3 5.2 5.5 1.6 2.6 3.6 4.9 10.14 7.08 6.97 4.93 5.69 8.33 8.80

4 9.3 3.5 3.8 2.9 3.7 3.9 4.6 11.78 4.45 4.99 3.59 4.87 7.64 8.31

5 1.7 1.4 1.0 1.3 1.1 1.2 0.9 7.16 8.19 8.17 4.97 5.22 5.93 6.21

6 5.0 6.7 6.1 1.4 1.6 2.5 2.5 0.66 1.45 1.33 0.23 0.25 0.30 0.34

7 3.8 4.9 4.7 13.1 12.9 4.0 3.2 0.68 0.31 0.33 2.42 2.05 1.00 1.01

8 3.2 1.6 1.9 1.9 2.2 1.8 2.0 0.98 0.98 0.96 0.81 0.76 0.91 0.71

9 3.2 1.1 0.7 0.5 0.4 1.0 0.8 0.73 0.26 0.27 0.45 0.38 0.40 0.41

10 37.0 24.4 24.3 19.5 19.3 24.8 26.9 37.98 30.84 31.48 29.15 29.94 28.75 30.17

11 14.4 8.6 10.2 2.6 3.0 6.4 8.4 2.18 5.18 5.36 3.09 3.52 2.57 3.05

12 2.2 24.9 20.2 2.3 2.5 4.4 3.7 4.55 1.76 1.40 3.43 3.57 3.65 3.55

13 9.7 2.2 3.6 2.4 2.4 3.2 4.8 1.95 1.62 1.70 1.73 1.81 1.49 1.65

14 2.8 0.7 0.6 3.5 3.5 5.5 5.4 0.45 0.00 0.00 0.05 0.06 0.23 0.25

15 5.5 3.6 3.5 4.3 5.5 5.6 5.8 7.23 7.48 6.23 6.04 6.57 8.23 8.40

16 2.8 5.6 5.5 0.6 1.1 0.5 1.1 0.35 4.26 4.08 0.27 0.33 0.21 0.23

17 3.3 1.3 1.2 2.4 2.2 3.3 2.8 0.89 0.26 0.25 0.27 0.30 0.27 0.27

18 3.3 0.9 1.0 3.0 2.7 3.6 3.0 0.44 0.34 0.27 0.29 0.25 0.39 0.41

19 18.1 2.7 3.5 1.4 2.3 1.4 3.2 2.91 0.24 0.27 0.43 0.53 0.40 0.43

20 3.3 5.8 5.7 0.2 1.1 0.6 1.9 1.27 0.67 0.80 0.67 0.93 0.64 0.75

21 3.1 1.9 2.6 4.1 3.6 2.9 3.0 3.27 3.16 3.15 3.96 3.98 4.11 3.96

22 7.2 7.0 7.0 9.1 9.2 9.6 9.3 7.87 7.45 7.45 7.66 7.85 7.61 7.66

23 6.9 3.0 3.6 0.2 0.9 0.5 2.5 2.53 1.11 1.19 0.61 0.63 0.65 0.68

24 6.7 4.0 4.2 1.5 2.4 2.2 3.3 12.65 8.35 9.22 4.41 7.24 8.07 9.87

Unscaled model Log model

Figure 10.3: Absolute prediction errors for both regression models for the median

trajectory-based prediction (the first 3 columns of each block) and the median global

feature prediction (the middle two columns of each block represent the errors when

using the 2000-sample features, and the last two columns correspond to using the 250-

sample features).

learning, i.e., between different supervised tasks, where the features selected for the

problem classification task have been evaluated on the performance regression task.

To do this, we have explored four state-of-the-art feature selection techniques:

Boruta [KJR10] is a feature selection and ranking algorithm based on random forests

algorithm, which only selects features that are statistically significant. Recursive feature
elimination (rfe) [GFB+06] learns a model assessing different sets of features by recur-

sively eliminating features per loop until a good model is learnt. It requires an machine

learning algorithm for evaluation, and here we use a random forest. Stepwise forward
and backward selection (swfb) [DK92] tries to fit the best regression model by iteratively

selecting and removing features. In our experiments, we used it in both directions

simultaneously. Correlation analysis with different threshold values (cor) [BCH+09] is
based on the correlation analysis done only using the features (i.e., excluding the target).

The result is a feature set where highly correlated features are omitted. In our case, we

tested three different correlation thresholds: 0.50, 0.75, and 0.90. Note that while the

80

Conclusions Section 10.5

boruta swfb rfe cor0.5 cor0.75 cor0.9

selected ELA features 37 1 7 4 9 15

selected state variable features 2 0 0 3 3 5

Table 10.1:Number of ELA and state variable features for each selected feature portfolio.

Details are available in Table 10.3.

first three feature selection methods require a supervised machine learning task, the

last one is completely unsupervised and does not depend on the target.

Our experimental design has been done using stratified 5-fold cross-validation. For

a fair feature selection, we used the aforementioned methods on each training fold

separately, then selected the intersection of the features returned by each training fold

in the end. These features are further evaluated in the performance regression task.

Table 10.1 summarizes howmany features were selected per portfolio, from the whole

set of 38 ELA landscape features and 5 CMA-ES state variable features.

Combined Selector Model and Sensitivity Analysis. We measure the regres-

sion accuracy in terms of Root Mean Squared Error (RMSE). Table 10.2 summarizes the

RMSE values for the different feature portfolios when using (1) the unscaled model, (2)

the logarithmic model, and (3) a combination of the two models (see last three rows

of Table 10.2). The threshold 𝜏 at which the predictive model changes is optimized

for each feature portfolio individually, the obtained thresholds are summarized at the

top of Table 10.2. That is, we select the prediction of the logarithmic model when the

predicted precision (according to the logarithmic model) is smaller than the threshold

value 𝜏 , and we use the prediction of the unscaled model otherwise. Note that the

optimal threshold value 𝜏 varies significantly between the different feature portfolios.

When comparing all the different portfolios (initial trajectory-based, global and

selected trajectory-based ones), the good performance of the global feature sets is not

surprising. Differences from the initial trajectory-based predictions are marginal for sets

such as boruta, cor0.75 and cor0.9, whereas swbf and cor0.5 perform constantly worse

than ELA+SV. Using the rfe set, on the other hand, led to better results than using the

original feature set. SV alone does not achieve good accuracy, but its contribution to

ELA-only feature portfolio is around 3% at the best threshold for the combined model,

which is 𝜏 = 4.901. The absolute errors per instance are plotted in Figure 10.4.

10.5 Conclusions
We analyzed in this final chapter the accuracy of predicting the CMA-ES solution

quality after given budget based on the features computed from the samples on the

81

Chapter 10 Trajectory-Based Performance Regression

SV ELA ELA GLOB2k GLOB2k GLOB250 GLOB250 boruta cor cor cor rfe swfb
+SV +SV +SV 0.5 0.75 0.9

Best threshold 𝝉
FID min_tp max_tp 1.336 3.99 4.742 14.497 9.46 0.694 2.605 3.63 1.813 4.901 1.717 7.388 20

1 0 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0.21

2 9.25 87.47 44.69 25.47 24.46 24.49 23.65 28.96 27.98 25.16 36.78 35.28 34.62 24.51 53.85

3 10.34 14.63 9.73 6.62 7.02 5.62 6.25 4.43 9.39 6.73 8.08 7.7 5.63 7.95 8.82

4 10.29 14.53 11.86 5.08 5.08 4.81 5.73 5.1 7.49 5.18 9.26 6.71 5.59 7.53 8.41

5 8.53 11.34 4.59 8.24 8.15 6.02 5.52 1.48 1.06 8.21 2.36 6.76 4.91 4.52 7.74

6 0.04 0.11 0.78 3.87 2.15 0.24 0.27 0.33 0.37 4.46 1.02 1.19 1.65 0.89 1.43

7 0.13 1.83 3.84 0.36 0.39 4.49 4.07 4.62 1.13 0.42 0.86 0.6 0.65 0.67 7.94

8 1.22 2.59 3.02 1.06 1.1 1.25 1.22 2.03 0.84 0.95 2.02 0.93 1.04 1.42 4.88

9 0.68 1.36 3.05 0.34 0.34 0.59 0.53 0.77 0.48 0.33 0.52 0.26 0.29 0.86 3.47

10 8.44 84.69 43.33 32.06 32.85 21.39 23.16 29.29 33.35 32.13 42.18 32.73 35.01 29.64 47.68

11 4.97 8.83 17.48 10.37 12.63 3.46 2.99 8.26 10.18 11.17 25.11 21.61 20.86 2.43 4.77

12 2.53 6.32 4.76 19.34 15.89 4.03 4.16 5.76 4.13 19.45 4.38 2.31 9.69 19.32 3.56

13 1.09 5.92 13.62 2.07 2.13 2.29 2.32 3.51 2.21 2.11 2.45 2.04 5.37 2.03 3.5

14 0 0 1.65 0.01 0.01 0.07 0.08 1.89 0.37 0.01 0.61 0 0 0 5.18

15 8.49 12.93 7.44 6.79 6.66 6.08 6.81 6.24 8.12 5.77 7.07 6.11 5.88 6.73 9.12

16 0.18 0.83 0.87 6.31 5.85 0.32 0.35 0.25 0.25 6.45 0.48 4.42 4.77 2.43 1.21

17 0.03 0.64 2.63 0.36 0.33 0.32 0.33 0.28 0.31 0.38 4.25 0.41 0.38 0.27 2.75

18 0.16 0.69 1.54 0.34 0.34 0.33 0.3 4.96 0.45 0.34 0.54 0.28 0.3 0.54 1.24

19 0.75 1.19 18.75 0.34 0.36 0.65 0.67 1.66 0.49 0.38 9.95 0.59 0.5 0.46 8.54

20 1.7 1.79 3.77 0.76 0.84 0.99 1.17 0.99 0.93 0.69 3.2 1.22 3.16 1.77 5.16

21 0 8.12 4.86 4.55 4.52 5.02 5.02 5.2 4.95 4.53 4.72 4.84 4.83 4.83 3.72

22 0 25.48 12.04 11.91 11.91 11.9 11.91 12.88 11.94 11.91 11.89 11.93 11.7 11.92 5.34

23 1.99 2.35 7.49 3.67 3.61 0.69 0.77 0.64 0.91 3.72 7.89 2.73 4.53 2.46 3.04

24 15.73 20.73 10.06 4.76 4.94 5.15 6.52 2.95 4.29 4.81 11.13 9.49 7.22 7.43 11.65

Overall RMSE, combined 15.05 10.41 10.25 7.74 7.92 9.48 10.05 10.43 13.66 11.67 11.86 9.77 15.73
Overall RMSE, unscaled 15.08 11.18 10.88 9.21 9.30 9.58 10.19 11.16 14.11 11.80 12.00 10.93 17.03

Overall RMSE, log 15.63 13.05 13.21 11.46 11.88 12.05 12.87 13.14 14.65 13.89 14.29 12.61 15.73

Table 10.2:RMSE values of the combined selector in three scenarios: when the prediction

is based on the search trajectory landscape features and state variables (first 3 columns),

on global features (next 4 columns), and finally on selected feature portfolios (last 6

columns).

CMA-ES search trajectory using two complementary regression models, the unscaled

and the logarithmic model. Adding information obtained from the CMA-ES internal

state variables does not improve the prediction accuracy drastically compared to the

trajectory-based data only. Those results were then contrasted to the regression using

the global features, where using the latter ones, especially those computed using a

higher number of samples, yielded a consistently better accuracy.

Next, we tested whether we would achieve further gains in accuracy through feature

selection. Although the overall results are comparable to the ones from initial trajectory-

based portfolios, several selected feature sets resulted in worse accuracy than in the

initial approach. We ultimately pointed out the advantages of using our combined

selector model over relying separately on predictions of the standalone unscaled or

logarithmic model across all different feature portfolios in all 3 scenarios.

In terms of future work, we plan on continuing this research by considering the

following questions and tasks:

(0) Performance prediction of other solvers: How accurately can we use trajectory-

based features of one algorithm to predict the performance of another algorithm? In this

work, we have only tried to predict performance for the same algorithm from whose

trajectory the feature values have been computed. A next step would be to test if models

82

Conclusions Section 10.5

boruta cor0.5 cor0.75 cor0.9 SV ELA

ELA

+SV GLOB_2k

GLOB2k

+SV GLOB250

GLOB250

+SV rfe swfb boruta cor0.5 cor0.75 cor0.9 SV ELA

ELA

+SV GLOB_2k

GLOB2k

+SV GLOB250

GLOB250

+SV rfe swfb

0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 4.1 5.1 4.4 3.3 5.6 4.0 3.9 4.6 4.7 3.1 4.4 3.7 3.9

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 1.5 0.2 0.1 1.8 0.4 0.9 1.3 1.5 4.4 1.2 0.1 1.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.7 0.0 0.3 0.0 1.4 0.6 0.6 1.1 1.3 5.2 0.6 2.1 6.1

0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.5 1.3 6.1 0.0 2.1 2.3 1.0 0.8 2.2 1.2 1.6 1.1

0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.9 1.1 0.4 9.8 29.9 0.9 0.9 0.9 0.8 0.9 1.2 0.4 1.9

0.8 12.6 16.0 13.9 15.6 0.3 0.3 4.5 6.9 2.9 1.4 1.6 10.7 0.0 0.6 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 5.9

5.2 23.7 11.8 13.9 0.2 3.9 5.1 1.8 3.4 8.3 7.5 4.0 4.3 0.0 0.4 0.0 0.0 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.9

41.5 56.6 42.2 39.2 77.6 43.1 38.8 23.9 24.8 62.2 59.3 30.7 87.4 0.0 0.5 0.0 0.0 0.1 0.0 0.0 0.0 0.1 4.2 0.8 0.0 7.1

37.5 46.2 62.0 63.1 60.9 36.8 38.2 46.9 45.2 14.5 18.3 40.8 79.7 0.0 0.7 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.1

3.2 26.6 14.2 9.6 3.3 4.5 1.3 14.2 8.7 6.5 1.5 19.4 19.3 0.0 0.7 0.0 0.0 0.4 0.0 0.0 0.1 0.2 0.1 0.2 0.0 1.1

4.8 10.6 7.3 5.5 10.6 4.2 6.5 8.9 9.4 7.5 10.2 0.7 2.7 1.2 7.7 4.9 1.8 8.0 2.0 0.8 7.4 7.6 4.3 7.9 6.8 8.0

9.8 1.5 9.7 5.8 4.9 10.1 10.0 1.0 2.1 1.6 1.7 10.8 10.6 5.1 6.2 4.9 4.9 4.7 9.4 8.9 5.9 5.8 8.5 7.0 7.8 11.9

4.5 7.6 8.7 7.4 11.1 3.5 4.1 6.4 6.9 0.3 10.7 8.4 7.2 0.2 1.6 0.3 1.4 4.3 0.5 0.3 4.6 4.5 1.7 2.2 5.2 8.2

8.9 9.5 6.6 4.0 10.1 8.7 8.7 2.5 3.9 4.7 7.0 5.6 10.0 0.8 1.2 1.9 0.2 2.1 0.7 1.5 6.1 6.4 6.0 9.3 1.6 2.6

3.0 7.9 5.3 4.9 10.6 3.2 3.2 5.5 6.4 4.1 13.0 9.8 10.8 11.8 12.1 11.6 12.0 12.9 11.7 11.8 6.0 8.9 8.1 11.3 9.5 11.8

3.6 5.6 5.2 5.3 13.2 3.7 3.9 5.0 5.7 5.8 6.2 10.2 5.6 10.3 0.3 3.1 5.9 0.3 10.1 10.0 0.4 0.4 0.4 0.3 1.5 0.8

1.3 0.3 0.6 0.3 10.0 1.4 1.1 1.2 2.0 0.1 0.2 3.5 8.3 1.3 1.0 9.2 7.9 0.0 1.2 1.0 0.2 0.2 0.1 0.1 2.6 0.2

8.3 10.8 9.1 6.2 10.9 8.3 8.2 0.1 1.7 0.4 1.4 4.6 1.0 0.2 0.0 0.3 0.2 0.3 0.3 0.3 0.1 0.1 0.2 0.1 0.1 0.2

1.7 11.0 3.4 3.7 11.9 1.6 1.5 2.9 4.3 8.8 10.1 8.6 11.6 7.6 0.4 1.1 1.2 0.5 7.3 7.5 0.1 0.5 0.0 0.3 4.0 2.4

6.9 12.7 10.1 8.7 12.9 6.5 6.6 9.0 10.3 4.5 11.8 8.5 10.8 6.4 0.1 1.1 3.9 1.8 6.4 3.9 0.5 0.5 0.4 0.3 2.2 0.7

7.9 1.9 0.5 0.9 1.9 7.7 7.5 1.6 2.4 0.4 1.3 2.7 6.5 0.5 7.3 0.4 0.5 5.7 0.4 0.4 0.1 0.4 0.2 0.4 0.2 2.9

7.2 3.0 7.3 3.4 2.8 7.0 7.4 7.7 6.7 1.5 0.9 2.4 7.2 0.0 0.4 0.0 0.0 0.7 0.0 0.0 0.2 0.1 0.4 0.3 0.0 1.4

9.5 3.6 7.5 2.6 1.6 9.8 9.2 4.1 3.7 2.6 1.1 8.8 11.3 0.0 5.0 0.4 0.1 0.5 0.2 0.1 0.6 0.5 0.4 0.5 0.3 4.7

8.7 1.6 7.6 2.7 0.1 8.7 8.4 10.0 8.6 1.2 1.2 2.3 8.7 0.2 0.7 0.3 0.3 1.1 0.2 0.2 0.3 0.3 0.1 0.1 0.4 2.2

7.6 0.5 7.7 9.7 9.6 7.8 8.0 1.9 3.7 0.3 0.8 2.7 0.1 0.6 3.3 0.7 0.6 0.5 0.7 0.6 0.2 0.1 0.2 0.1 0.3 0.4

0.6 0.4 0.8 0.7 0.1 0.7 0.8 0.1 0.1 0.4 0.4 0.2 0.3 0.3 0.5 0.2 0.1 0.2 0.3 0.2 0.1 0.3 10.8 0.8 0.4 0.7

0.5 0.8 2.2 3.5 0.9 0.4 0.4 0.4 0.4 0.4 0.5 1.6 2.1 0.4 0.5 0.3 0.3 0.0 0.4 0.4 0.4 0.2 0.4 0.4 0.3 0.2

0.1 0.1 0.2 0.2 1.0 0.1 0.1 0.2 0.2 0.2 0.2 0.4 0.2 0.5 0.0 0.4 0.5 0.5 0.5 0.6 0.5 0.5 0.2 0.3 1.1 0.6

9.9 1.2 1.3 1.0 0.4 8.6 4.7 0.2 0.2 0.4 0.3 1.0 2.4 0.2 0.2 0.1 0.1 0.5 0.2 0.1 0.3 0.2 2.2 0.4 0.2 2.5

0.7 1.7 0.3 0.4 1.0 0.7 0.6 0.2 0.3 0.3 0.4 0.3 0.1 0.2 1.0 0.3 0.2 3.4 0.2 0.2 0.2 0.2 1.2 0.1 0.0 0.6

0.8 1.5 0.8 0.5 4.0 0.6 0.6 0.3 0.2 0.9 1.2 1.1 0.0 0.1 0.5 0.0 0.4 3.0 0.1 0.0 0.3 0.3 0.1 0.4 0.1 16.4

0.1 0.9 0.4 0.6 7.6 0.1 0.1 0.3 0.5 5.9 0.9 0.5 0.1 0.2 0.8 0.2 0.2 24.2 0.2 0.3 0.5 0.8 0.8 0.4 0.2 0.5

0.3 0.9 0.5 0.9 0.3 0.2 0.2 10.0 9.1 8.0 2.0 0.7 4.2 0.0 17.7 0.2 0.1 14.6 0.1 0.0 0.0 0.4 3.6 0.8 0.1 0.1

0.3 0.0 0.8 0.6 0.1 0.4 0.4 0.3 0.4 0.4 0.5 0.3 0.2 0.7 0.8 1.0 0.6 0.6 0.6 0.7 1.3 1.1 0.1 0.0 0.9 8.3

0.3 0.2 0.3 0.6 0.4 0.3 0.4 1.2 0.7 2.5 0.2 0.4 17.2 0.4 13.4 0.8 0.8 30.8 0.3 0.3 0.1 0.3 0.5 0.5 0.4 5.1

0.9 1.0 0.4 0.8 6.5 1.1 1.0 0.2 0.1 1.6 1.1 1.4 4.9 0.5 1.7 0.7 0.8 0.6 0.7 0.9 1.6 1.6 0.4 0.1 0.1 0.0

0.1 3.9 0.3 0.5 1.0 0.6 0.0 0.2 0.0 4.0 0.2 0.5 9.3 0.4 1.8 0.9 1.6 1.8 0.6 0.6 0.2 0.1 1.3 1.4 0.3 0.3

0.7 1.0 0.5 0.8 1.1 0.7 0.9 0.9 0.7 1.1 1.0 0.8 2.2 0.5 1.7 1.1 1.2 1.7 0.5 0.7 0.1 1.5 1.3 1.3 0.2 0.0

1.6 0.3 0.0 0.1 0.9 1.6 1.8 0.4 0.4 1.0 1.0 2.1 0.5 1.2 4.4 2.1 6.5 7.9 1.2 1.2 1.5 1.4 0.1 0.3 3.9 11.1

0.9 1.8 2.0 2.0 0.2 1.1 1.0 2.6 2.6 0.4 0.4 1.6 1.6 0.6 4.7 0.7 1.6 1.4 0.5 0.7 0.1 0.0 1.2 0.8 0.3 3.2

0.0 0.1 0.1 0.2 6.7 0.0 0.1 0.1 0.1 0.5 0.4 0.1 1.2 1.1 1.0 1.2 1.2 4.1 1.2 1.2 0.7 0.7 1.1 1.1 1.0 0.7

0.1 0.1 0.0 0.0 0.3 0.1 0.1 0.7 0.4 0.7 0.8 0.2 1.0 7.0 6.8 7.0 7.0 5.8 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.9

0.3 0.9 0.4 0.5 0.1 0.3 0.2 0.3 0.3 1.1 0.4 0.5 6.4 7.2 7.9 8.1 8.1 8.1 7.3 7.2 8.1 8.1 8.1 8.1 8.1 4.4

0.7 0.5 0.3 0.3 1.3 0.6 0.7 1.1 1.1 0.2 0.5 1.8 1.1 0.9 0.6 0.1 0.3 1.2 0.3 0.2 0.2 1.1 1.2 1.2 0.8 0.1

0.1 0.6 0.2 0.2 0.1 0.2 0.2 0.0 0.0 1.0 0.1 0.1 3.9 0.1 0.8 0.6 0.2 0.4 0.1 0.2 3.5 3.2 4.2 2.2 0.1 1.2

21.6 28.3 3.7 8.8 18.6 22.9 22.7 22.0 9.3 20.6 21.1 22.3 31.5 0.7 1.7 1.4 0.9 6.8 0.8 0.8 2.2 2.4 11.0 1.8 1.5 0.8

3.4 9.5 7.0 3.3 5.9 2.0 1.1 3.9 20.5 17.5 13.9 7.1 8.2 2.4 2.6 2.6 2.1 2.6 2.5 2.4 2.6 2.6 2.5 2.6 2.6 0.2

2.9 31.8 7.8 6.0 40.8 3.6 4.6 0.8 1.2 2.6 6.4 6.1 2.2 1.3 1.9 0.9 1.9 2.0 1.3 1.3 0.7 1.7 1.7 1.6 0.5 2.9

31.1 43.8 49.9 50.4 51.1 33.0 29.9 21.4 22.7 39.5 40.0 22.5 58.8 7.3 6.7 7.3 7.3 7.2 7.3 7.3 7.3 7.3 7.2 7.2 7.2 7.3

60.9 71.3 52.4 58.8 68.7 59.2 62.9 36.5 40.7 44.7 57.3 57.5 82.7 25.5 25.5 25.5 25.0 24.8 25.5 25.5 25.4 25.3 25.5 25.5 25.5 9.0

9.5 1.1 10.7 16.0 4.7 8.2 8.5 5.0 4.0 9.6 8.6 1.8 2.0 0.3 1.2 1.8 6.4 1.0 0.1 0.3 1.0 1.1 0.2 0.9 0.7 0.6

3.2 8.1 8.1 7.7 31.5 1.1 2.9 4.3 4.4 2.1 2.2 4.8 7.8 0.8 6.3 0.4 0.5 9.0 1.0 0.9 0.6 0.4 0.2 0.6 1.0 6.2

6.7 11.4 27.6 27.0 17.0 6.6 9.2 3.5 1.5 14.7 16.0 1.6 3.8 0.8 15.9 0.6 0.5 11.6 0.7 0.8 0.2 0.1 1.0 0.1 0.7 2.3

6.7 5.2 4.4 5.1 5.4 5.3 6.2 1.0 0.6 0.1 1.0 0.7 3.7 0.5 0.9 0.7 5.3 2.8 0.6 0.6 0.9 1.2 0.0 1.7 1.6 1.5

20.8 54.1 37.0 33.2 14.1 20.0 24.3 1.9 2.5 5.2 13.5 0.6 4.6 8.2 4.0 5.7 5.8 7.5 8.1 7.9 0.4 0.2 1.0 0.1 5.1 0.4

31.5 4.5 1.0 13.4 4.9 31.7 26.0 2.6 2.8 1.6 2.6 1.8 5.0 6.1 7.9 8.1 10.8 3.9 6.5 6.7 1.1 0.3 0.2 0.1 10.8 15.6

4.4 5.4 4.8 4.5 5.6 4.5 4.5 5.3 5.3 5.3 5.4 26.8 2.7 6.8 10.5 10.5 8.5 11.8 6.7 6.7 9.2 3.5 4.2 4.6 8.6 18.4

29.7 6.1 1.4 5.6 6.3 29.1 23.8 6.1 6.3 6.1 6.1 33.5 4.9 5.0 18.6 15.8 6.4 18.6 4.6 5.0 6.1 13.9 1.3 7.6 8.4 0.3

0.2 2.9 1.0 12.6 3.5 0.0 0.2 3.0 3.3 3.4 3.4 3.5 1.1 2.6 9.9 4.0 4.9 0.4 2.3 2.7 0.8 1.6 4.9 3.6 3.1 9.7

0.1 1.2 0.0 9.0 2.5 0.0 0.3 0.1 0.1 9.3 0.0 3.1 2.4 0.2 1.6 3.1 2.7 2.2 0.1 0.1 2.8 2.1 0.1 0.1 2.3 0.8

24

13

14

15

16

17

18

19

20

21

22

23

12

1

2

3

4

5

6

7

8

9

10

11

Figure 10.4: Absolute prediction errors of the combined models using portfolio-specific

optimal thresholds 𝜏 .

for configuring the same algorithm can be trained. When this is successful, transfer

learning from one algorithm to another one can be considered.

(1) How can we more efficiently capture the temporal component, i.e., the information

which sample was evaluated when during the search? Using such longitudinal data,

both in terms of extracted feature values and in terms of state variable evolution could

possibly be done using recurrent neural networks [ZFW+19].

(2) Combining global and trajectory-based sampling: In our work, we only consid-

ered the case in which either global sampling or trajectory-based sampling is used. The

accuracy of the models based on global sampling was better than that of the trajectory-

based features. Even if we keep in mind that this comparison was unfair in that we

provided the global feature values “for free”, the results nevertheless suggest that a

combination of global and trajectory-based feature computations could be worthwhile

to investigate. How we can optimally balance the budget between global sampling,

83

Chapter 10 Trajectory-Based Performance Regression

trajectory-based sampling, and remaining optimization budget is a challenging question

in this context.

(3)Warm-starting the CMA-ES such that it starts the optimization process with the

covariance matrix and other parameters that are extrapolated from the (uniformly or

otherwise) distributed global samples might significantly improve the overall accuracy,

as the CMA-ES will have a better overview of the whole problem instance "from the

get-go". A similar approach has been suggested in [MRT15] when switching from a

Bayesian optimization algorithm to CMA-ES.

(4) Feature selection and ranking: Instead of using transfer learning for feature

selection between two different supervised machine learning tasks, feature selection

within the same supervised task has not been considered in this chapter. We also plan

on making better use of variable importance estimations provided by feature ranking

algorithms such as those based on ensemble of predictive clustering trees [PKD20] and

those based on ReliefF and RReliefF [RK03].

(5) Feature design: The work [DLV+19] suggests several algorithm-specific features

for the SOO tree algorithm [Mun11]. Such specific features can much more explicitly

capture the characteristics of the algorithm-problem instance interaction. It could be

worthwhile to study whether, possibly in addition to the longitudinal data mentioned

in (1), such specific features can be identified for other common solvers, such as the

CMA-ES.

(6) Feature portfolio: We note that our work above is based on the features available

in the flacco package (cf. Section 4.3). Since the design of flacco, however, several new
feature sets have been suggested. Another straightforward way to extend our analyses

would be in the inclusion of these feature sets, with the hope to improve the overall

regression accuracy. In this respect, we find in particular the Search Trajectory Networks

suggested in [OMB20] worth investigating.

(7) Representation learning of landscapes: The feature data will be additionally
explored by applying representation learning methods that automatically learn new

data representations by reducing the dimension of the data, automatically detecting

correlations, and removing bias and redundancies presented in the feature data. The

work presented in [EPR+20] showed that linear matrix factorization representations

of the ELA features values significantly detects better correlation between different

problem instances.

(8) Hyperparameter tuning of regression models: Last, but not least, we are plan-
ning to explore algorithm portfolio that consists of different regression methods in

order to find the most suitable one, together with finding its best hyperparameters for

achieving better performance. In this study, we have used random forest for regression

without tuning its parameters, since we have been interested in the contribution of

different feature portfolios.

84

Conclusions Section 10.5

Table 10.3: Feature portfolios that were selected per each of the selection methods used;

the number of landscape and state variable features used per selected set, and their

frequency of appearance in each selected set.

Feature # sets boruta swfb rfe cor0.5 cor0.75 cor0.9

ela_distr.skewness 4 x x x x

ela_distr.kurtosis 4 x x x x

ela_distr.number_of_peaks 4 x x x x

ela_meta.lin_simple.adj_r2 2 x x

ela_meta.lin_simple.intercept 1 x

ela_meta.lin_simple.coef.min 2 x x

ela_meta.lin_simple.coef.max 2 x x

ela_meta.lin_simple.coef.max_by_min 3 x x x

ela_meta.lin_w_interact.adj_r2 1 x

ela_meta.quad_simple.adj_r2 2 x x

ela_meta.quad_simple.cond 4 x x x x

ela_meta.quad_w_interact.adj_r2 3 x x x

disp.ratio_mean_02 1 x

disp.ratio_mean_05 1 x

disp.ratio_mean_10 1 x

disp.ratio_mean_25 1 x

disp.ratio_median_02 2 x x

disp.ratio_median_05 1 x

disp.ratio_median_10 1 x

disp.ratio_median_25 1 x

disp.diff_mean_02 1 x

disp.diff_mean_05 1 x

disp.diff_mean_10 1 x

disp.diff_mean_25 1 x

disp.diff_median_02 3 x x x

disp.diff_median_05 1 x

disp.diff_median_10 1 x

disp.diff_median_25 1 x

nbc.nn_nb.sd_ratio 2 x x

nbc.nn_nb.mean_ratio 1 x

nbc.nn_nb.cor 2 x x

nbc.dist_ratio.coeff_var 3 x x x

nbc.nb_fitness.cor 2 x x

ic.h.max 3 x x x

ic.eps.s 1 x

ic.eps.max 1 x

ic.eps.ratio 4 x x x x

ic.m0 3 x x x

step_size 4 x x x x

mahalanobis_dist 2 x x

c_evol_path 3 x x x

sigma_evol_path 2 x x

cma_simil_lh 2 x x

85

11General Conclusions and Outlook

In this thesis, we have proposed a novel approach within the context of landscape-aware

algorithm selection. The key objective of our online, trajectory-based landscape-aware
algorithm selection approach is to balance out the cost of the feature extraction step by

incorporating it into the optimization process, with the goal to save precious compu-

tational resources that can then be allocated to the optimization routine instead. We

investigated this approach in the fixed-budget setting. Since this setting has been largely

neglected in the context of landscape-aware algorithm selection prior to our work, we

also present various preparatory steps to set up this fixed-budget trajectory-based frame-

work. Notably, we point out the potential of suitably combining two complementary

regression strategies in the fixed-budget context. We complete the algorithm selection

pipeline by building our selector on top of those strategies.

We hope that our work inspires more research in related promising avenues. In

particular, we believe that the following topics merit further attention.

Predicting Multiple Diverse Solvers Our approach in this thesis represents a

stripped-down use-case that serves as a form of a proof-of-concept for the trajectory-

based algorithm selection, with only one switch from a solver to another. Recent

efforts in the fixed-target context also point out the potential of switching the algorithm

once [VRB+19]. A more detailed analysis of prediction of another solver’s performance

based on the features computed using the base solver’s samples is thus very strongly

required.

In this context, the problem of warm-starting the next solver(s) is paramount, i.e.,

initializing them appropriately by making the best use out of the information collected

by the base solver [MRT15; VRB+19].

Automating the Switching between Algorithms Very closely related to the

former, the switching process needs to be automated. That is, it needs to track and

adapt the choice of the current algorithm on its own. In particular, we only considered

a single switch of algorithms, whereas in practical applications it may be beneficial to

change the algorithm more often. To this end, several aspects of the algorithm selection

pipeline would need further adaptation to be able to make recommendations “on the

fly”.

Effects of Feature Handling We majorly reduce the cost of feature extraction

by integrating it into the optimization process. With the long-term aim to build a fully

86

online algorithm selection model, feature computation will also need to be performed

in a more efficient way. For now, we rely on flacco whenever necessary. To further

reduce the overhead of feature extraction, in particular when aiming for an “on-the-fly”

detection of suitable moments to switch to another algorithm, feature computation

should ideally also be done “on the fly”.

Feature selection is another aspect that should be carefully considered. In this thesis,

selecting the most informative and descriptive features is restricted for the purpose

of sensitivity analysis. However, it has recently been shown that a small number of

features suffices to distinguish the problem instances from the BBOB set, which our

experiments are based on [RDD+20]. We therefore advise to investigate the feature

selection on a broader collection of problem instances.

Selection of the Base Solver In this thesis, we predominantly considered the

CMA-ES and its extension into a modular algorithm framework. This choice was based

on their versatility across a wide range of optimization scenarios. However, choosing

an appropriate base solver is a challenging problem in its own right. Depending on the

setting we operate in – determined by the problem(s) to be solved and the resources that

we have at our disposal to solve them – an algorithm exhibiting a different behavior

might be a more suitable option for the base solver. Therefore, a systematic analysis of

our trajectory-based approach on a broader spectrum of base algorithms is needed.

Extending the Approach to Real-World Scenarios We opted for the BBOB

problem collection as our benchmark, but the question remains of how representative it

is of more practical scenarios. Real-world application of our ideas would indispensably

need more tailored training, and extension of the benchmark variety is another direction

worth undertaking.

87

11Bibliography

[ABH11] A. Auger, D. Brockhoff, and N. Hansen.Mirrored Sampling in Evolu-
tion Strategies with Weighted Recombination. In: Proc. of Genetic
and Evolutionary Computation Conference (GECCO’11). ACM, 2011, 861–

868. doi: 10.1145/2001576.2001694 (see page 15).

[ABH13] A. Auger, D. Brockhoff, and N. Hansen. Benchmarking the local meta-
model CMA-ES on the noiseless BBOB’2013 test bed. In: Proc. of
Genetic and Evolutionary Computation Conference (GECCO’13), Compan-
ion Material. ACM, 2013, 1225–1232. doi: 10.1145/2464576.2482701 (see

pages 16, 42, 56).

[AH05] A. Auger and N. Hansen. A restart CMA evolution strategy with
increasing population size. In: Proc. of Congress on Evolutionary Com-
putation (CEC’05). 2005, 1769–1776. doi: 10.1109/CEC.2005.1554902 (see
page 15).

[AJT05] A. Auger, M. Jebalia, and O. Teytaud.Algorithms (X, sigma, eta): Quasi-
random Mutations for Evolution Strategies. In: Artificial Evolution.
Springer, 2005, 296–307. doi: 10.1007/11740698_26 (see page 15).

[Ata15] A. Atamna. Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-
ES-MSR on the BBOB Noiseless Testbed. In: Proc. of Genetic and
Evolutionary Computation Conference (GECCO’15), Companion Material.
ACM, 2015, 1135–1142. doi: 10.1145/2739482.2768467 (see pages 16, 42,

56).

[BAH+10] D. Brockhoff, A. Auger, N. Hansen, D. V. Arnold, and T. Hohm.Mirrored
Sampling and Sequential Selection for Evolution Strategies. en. In:
Proc. of Parallel Problem Solving from Nature (PPSN’10). Springer, 2010,
11–21. doi: 10.1007/978-3-642-15844-5_2 (see page 15).

[BBE+20] A. Biedenkapp, H. F. Bozkurt, T. Eimer, F. Hutter, and M. Lindauer.

Dynamic Algorithm Configuration: Foundation of a New Meta-
Algorithmic Framework. In: Proc. of European Conference on Artificial
Intelligence (ECAI’20). Vol. 325. Frontiers in Artificial Intelligence and

Applications. IOS Press, 2020, 427–434. doi: 10.3233/FAIA200122 (see

page 23).

88

https://doi.org/10.1145/2001576.2001694
https://doi.org/10.1145/2464576.2482701
https://doi.org/10.1109/CEC.2005.1554902
https://doi.org/10.1007/11740698_26
https://doi.org/10.1145/2739482.2768467
https://doi.org/10.1007/978-3-642-15844-5_2
https://doi.org/10.3233/FAIA200122

[BBH+19] A. Biedenkapp, H. F. Bozkurt, F. Hutter, and M. Lindauer. Towards
White-boxBenchmarks forAlgorithmControl.CoRR abs/1906.07644

(2019). arXiv: 1906.07644 (see pages 2, 23).

[BCH+09] J. Benesty, J. Chen, Y. Huang, and I. Cohen. “Pearson correlation coeffi-

cient.” In: Noise reduction in speech processing. Springer, 2009, 1–4. doi:
10.1007/978-3-642-00296-0_5 (see page 80).

[BDS+17] Nacim Belkhir, Johann Dréo, Pierre Savéant, and Marc Schoenauer. Per
instance algorithm configuration of CMA-ES with limited budget.
In: Proc. of Genetic and Evolutionary Computation Conference (GECCO’17).
ACM, 2017, 681–688. doi: 10.1145/3071178.3071343 (see pages 3, 19, 20,

23, 37, 38, 43, 69).

[BFS+84] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen.Classification and
regression trees. CRC Press, 1984. isbn: 9781315139470 (see pages 41,

56).

[BKJ+19] A. Blot, M.-E. Kessaci, L. Jourdan, and H. Hoos. Automatic Config-
uration of Multi-Objective Local Search Algorithms for Permu-
tation Problems. Evolutionary Computation 27:1 (2019), 147–171. doi:

10.1162/evco_a_00240 (see page 23).

[BKK+16] B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Fréchette,

H. Hoos, F. Hutter, K. Leyton-Brown, K. Tierney, and J. Vanschoren.ASlib:
A benchmark library for algorithm selection. Artificial Intelligence
237 (2016), 41–58. doi: 10.1016/j.artint.2016.04.003 (see pages 22, 33).

[BLS13] I. Boussaïd, J. Lepagnot, and P. Siarry. A survey on optimization meta-
heuristics. Information Sciences 237 (2013), 82–117. doi: 10.1016/j.ins.
2013.02.041 (see page 12).

[BMT+12] B. Bischl, O. Mersmann, H. Trautmann, and M. Preuss. Algorithm selec-
tion based on exploratory landscape analysis and cost-sensitive
learning. In: Proc. of Genetic and Evolutionary Computation Conference,
GECCO’12. ACM, 2012, 313–320. doi: 10 . 1145 /2330163 .2330209 (see

page 22).

[BP15] P. Baudiš and P. Pošík. Global Line Search Algorithm Hybridized
with Quadratic Interpolation and Its Extension to Separable Func-
tions. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’15). ACM, 2015, 257–264. doi: 10.1145/2739480.2754717 (see

page 15).

[BPR+19] L. Bajer, Z. Pitra, J. Repický, andM.Holena.GaussianProcess Surrogate
Models for the CMA Evolution Strategy. Evolutionary Computation
27:4 (2019), 665–697. doi: 10.1162/evco_a_00244 (see page 23).

89

https://arxiv.org/abs/1906.07644
https://doi.org/10.1007/978-3-642-00296-0_5
https://doi.org/10.1145/3071178.3071343
https://doi.org/10.1162/evco_a_00240
https://doi.org/10.1016/j.artint.2016.04.003
https://doi.org/10.1016/j.ins.2013.02.041
https://doi.org/10.1016/j.ins.2013.02.041
https://doi.org/10.1145/2330163.2330209
https://doi.org/10.1145/2739480.2754717
https://doi.org/10.1162/evco_a_00244

[BPS+01] M. Birattari, L. Paquete, T. Stützle, and K. Varrentrapp. Classification
of Metaheuristics and Design of Experiments for the Analysis of
Components. Tech. rep. Intellektik, Darmstadt University of Technology,

2001 (see page 12).

[Bre01] L. Breiman. Random forests. Machine Learning 45:1 (2001), 5–32. doi:

10.1023/A:1010933404324 (see pages 23, 41, 56).

[Bre96] L. Breiman. Bagging predictors. Machine Learning 24:2 (1996), 123–140.

doi: 10.1007/BF00058655 (see pages 41, 56).

[Bro70] C. G. Broyden. The Convergence of a Class of Double-rank Mini-
mization Algorithms: 2. The New Algorithm. IMA Journal of Applied
Mathematics 6:3 (1970), 222–231. doi: 10 . 1093 / imamat /6 . 3 . 222 (see

page 15).

[BS04] N. Baskiotis and M. Sebag. C4.5 Competence Map: A Phase
Transition-Inspired Approach. In: Proc. of International Conference
on Machine Learning (ICML’04). ACM, 2004, 10. doi: 10.1145/1015330.

1015398 (see page 22).

[CDK+06] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer.Online
Passive-Aggressive Algorithms. Journal of Machine Learning Research
7 (2006), 551–585. doi: 10.5555/1248547.1248566 (see pages 41, 56).

[CDL+21] R. Cosson, B. Derbel, A. Liefooghe, H. E. Aguirre, K. Tanaka, and Q. Zhang.

Decomposition-Based Multi-objective Landscape Features and Au-
tomated Algorithm Selection. In: Proc. of Evolutionary Computation
in Combinatorial Optimization (EvoCOP’21). Vol. 12692. LNCS. Springer,
2021, 34–50. doi: 10.1007/978-3-030-72904-2_3 (see page 22).

[Com08] Wikimedia Commons. Concept of directional optimization in CMA-ES
algorithm. 2008. url: https://upload.wikimedia.org/wikipedia/commons/

d/d8/Concept_of_directional_optimization_in_CMA-ES_algorithm.png

(see page 14).

[CV97] D. J. Cook and R. C. Varnell. Maximizing the Benefits of Parallel
Search Using Machine Learning. In: Proceedings of AAAI Conference
on Artificial Intelligence (AAAI’97). AAAI Press / The MIT Press, 1997,

559–564 (see page 22).

[DK92] S. Derksen and H. J. Keselman. Backward, forward and stepwise
automated subset selection algorithms: Frequency of obtaining
authentic and noise variables. British Journal of Mathematical and
Statistical Psychology 45:2 (1992), 265–282. doi: 10.1111/j.2044-8317.1992.

tb00992.x (see page 80).

90

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/BF00058655
https://doi.org/10.1093/imamat/6.3.222
https://doi.org/10.1145/1015330.1015398
https://doi.org/10.1145/1015330.1015398
https://doi.org/10.5555/1248547.1248566
https://doi.org/10.1007/978-3-030-72904-2_3
https://upload.wikimedia.org/wikipedia/commons/d/d8/Concept_of_directional_optimization_in_CMA-ES_algorithm.png
https://upload.wikimedia.org/wikipedia/commons/d/d8/Concept_of_directional_optimization_in_CMA-ES_algorithm.png
https://doi.org/10.1111/j.2044-8317.1992.tb00992.x
https://doi.org/10.1111/j.2044-8317.1992.tb00992.x

[DLV+17] F. Daolio, A. Liefooghe, S. Vérel, H. E. Aguirre, and K. Tanaka. Problem
Features versus AlgorithmPerformance on RuggedMultiobjective
Combinatorial Fitness Landscapes. Evolutionary Computation 25:4

(2017). doi: 10.1162/evco_a_00193 (see page 19).

[DLV+19] B. Derbel, A. Liefooghe, S. Vérel, H. E. Aguirre, and K. Tanaka. New
features for continuous exploratory landscape analysis based on
the SOO tree. In: Proc. of ACM/SIGEVO Conference on Foundations of
Genetic Algorithms (FOGA’19). ACM, 2019, 72–86. doi: 10.1145/3299904.

3340308 (see pages 23, 84).

[DWY+18] C. Doerr, H. Wang, F. Ye, S. van Rijn, and T. Bäck. IOHprofiler: A Bench-
marking and Profiling Tool for Iterative Optimization Heuristics.
CoRR (2018). The BBOB datasets from [HAR+20] are available in the

web-based interface of IOHanalyzer at http://iohprofiler.liacs.nl/. arXiv:

1810.05281 (see page 42).

[EJP+21] T. Eftimov, A. Jankovic, G. Popovski, C. Doerr, and P Korošec. Personal-
izing performance regression models to black-box optimization
problems. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’21). ACM, 2021, 669–677. doi: 10.1145/3449639.3459407 (see

pages 6, 52).

[EPR+20] T. Eftimov, G. Popovski, Q. Renau, P. Korošec, and C. Doerr. Linear Ma-
trix Factorization Embeddings for Single-objective Optimization
Landscapes. In: Proc. of IEEE Symposium Series on Computational Intelli-
gence (SSCI’20). IEEE, 2020, 775–782. doi: 10.1109/SSCI47803.2020.9308180
(see page 84).

[ES15] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.
2nd. Springer, 2015. isbn: 3662448734 (see page 1).

[FHT+01] J. Friedman, T. Hastie, R. Tibshirani, et al. The elements of statistical
learning. Vol. 1. 10. Springer, 2001. isbn: 9780387848587 (see page 57).

[FSK08] A. I. J. Forrester, A. Sobester, and A. J. Keane. Engineering Design via
Surrogate Modelling - A Practical Guide. Wiley, 2008, I–XVIII, 1–210.

isbn: 9780470060681 (see page 1).

[FVH+14] C. Fawcett, M. Vallati, F. Hutter, J. Hoffmann, H. H. Hoos, and K. Leyton-

Brown. Improved Features for Runtime Prediction of Domain-
Independent Planners. In: Proc. of International Conference on Auto-
mated Planning and Scheduling. AAAI Press, 2014, 355–359. doi: 10.5555/
3038794.3038837 (see page 19).

91

https://doi.org/10.1162/evco_a_00193
https://doi.org/10.1145/3299904.3340308
https://doi.org/10.1145/3299904.3340308
http://iohprofiler.liacs.nl/
https://arxiv.org/abs/1810.05281
https://doi.org/10.1145/3449639.3459407
https://doi.org/10.1109/SSCI47803.2020.9308180
https://doi.org/10.5555/3038794.3038837
https://doi.org/10.5555/3038794.3038837

[GFB+06] P. M. Granitto, C. Furlanello, F. Biasioli, and F. Gasperi. Recursive
feature elimination with random forest for PTR-MS analysis of
agroindustrial products. Chemometrics and Intelligent Laboratory Sys-
tems 83:2 (2006), 83–90 (see page 80).

[HAB19] N. Hansen, Y. Akimoto, and P. Baudiš. CMA-ES/pycma on Github. Zenodo.
2019. doi: 10.5281/zenodo.2559634 (see pages 69, 76).

[HAB20] N. Hansen, A. Auger, and D. Brockhoff. Data from the BBOB workshops.
https://coco.gforge.inria.fr/doku.php?id=algorithms-bbob. 2020 (see

pages 42, 52).

[HAF+10] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-Parameter Black-Box
Optimization Benchmarking: Experimental Setup. RR-7215. INRIA,
2010 (see page 18).

[Han08] N. Hansen. CMA-ES with Two-Point Step-Size Adaptation. CoRR
(2008). arXiv: 0805.0231 (see page 15).

[Han09] N. Hansen. Benchmarking a BI-Population CMA-ES on the BBOB-
2009 Function Testbed. In: Proc. of Genetic and Evolutionary Compu-
tation (GECCO’09), Companion Material. ACM, 2009, 2389–2396. doi:

10.1145/1570256.1570333 (see pages 15, 18, 42, 56).

[HAR+20] N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tušar, and D. Brockhoff.

COCO: a platform for comparing continuous optimizers in a black-
box setting. Optimization Methods and Software 36 (2020), 1–31. doi:

10.1080/10556788.2020.1808977 (see pages 17, 91).

[HFR+09] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-Parameter Black-Box
Optimization Benchmarking 2009: Noiseless Functions Defini-
tions. Tech. rep. RR-6829. INRIA, 2009 (see page 18).

[HHH+06] F. Hutter, Y. Hamadi, H. H. Hoos, and K. Leyton-Brown. Performance
Prediction and Automated Tuning of Randomized and Parametric
Algorithms. In: Proc. of Principles and Practice of Constraint Programming
(CP’06). Vol. 4204. LNCS. Springer, 2006, 213–228. doi: 10.1007/11889205_
17 (see page 23).

[HHL13] F. Hutter, H. Hoos, and K. Leyton-Brown. An Evaluation of Sequential
Model-Based Optimization for Expensive Black-Box Functions. In:
Proc. of Genetic and Evolutionary Computation (GECCO’13), Companion
Material. ACM, 2013, 1209–1216. doi: 10 .1145/2464576 .2501592 (see

page 16).

92

https://doi.org/10.5281/zenodo.2559634
https://coco.gforge.inria.fr/doku.php?id=algorithms-bbob
https://arxiv.org/abs/0805.0231
https://doi.org/10.1145/1570256.1570333
https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.1007/11889205_17
https://doi.org/10.1007/11889205_17
https://doi.org/10.1145/2464576.2501592

[HK17] C. Hanster and P. Kerschke. Flaccogui: Exploratory Landscape Anal-
ysis for Everyone. In: Proc. of Genetic and Evolutionary Computation
Conference (GECCO’17), Companion Material. ACM, 2017, 1215–1222. doi:

10.1145/3067695.3082477. url: https://flacco.shinyapps.io/flacco/ (see

page 21).

[HKV19] F. Hutter, L. Kotthoff, and J. Vanschoren, eds. Automated Machine
Learning - Methods, Systems, Challenges. The Springer Series on
Challenges in Machine Learning. Springer, 2019. doi: 10.1007/978-3-030-

05318-5 (see page 22).

[HN09] W. Huyer and A. Neumaier. Benchmarking of MCS on the noiseless
function testbed. Online (2009). url: https://mat.univie.ac.at/~neum/

ms/mcs_exact.pdf (see pages 42, 56).

[HN99] W. Huyer and A. Neumaier. Global optimization by multilevel coor-
dinate search. Journal of Global Optimization 14:4 (1999), 331–355. doi:

10.1023/A:1008382309369 (see page 16).

[HO01] N. Hansen and A. Ostermeier. Completely Derandomized Self-
Adaptation in Evolution Strategies. Evolutionary Computation 9:2

(2001), 159–195. doi: 10.1162/106365601750190398 (see pages 13, 74).

[HXH+14] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown. Algorithm runtime
prediction: Methods & evaluation. Artificial Intelligence 206 (2014),
79–111. doi: 10.1016/j.artint.2013.10.003 (see pages 19, 23).

[JA06] G. A. Jastrebski and D. V. Arnold. Improving Evolution Strategies
through Active Covariance Matrix Adaptation. In: Proc. of Congress
on Evolutionary Computation (CEC’06). 2006, 2814–2821. doi: 10.1109/
CEC.2006.1688662 (see page 15).

[JD19] A. Jankovic and C. Doerr. Adaptive Landscape Analysis. In: Proc. of
Genetic and Evolutionary Computation Conference (GECCO’19), Compan-
ion Material. ACM, 2019, 2032–2035. doi: 10.1145/3319619.3326905 (see

pages 6, 69).

[JD20] A. Jankovic and C. Doerr. Landscape-Aware Fixed-Budget Perfor-
mance Regression and Algorithm Selection for Modular CMA-ES
Variants. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’20). ACM, 2020, 841–849. doi: 10.1145/3377930.3390183 (see

pages 6, 26, 49).

93

https://doi.org/10.1145/3067695.3082477
https://flacco.shinyapps.io/flacco/
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-3-030-05318-5
https://mat.univie.ac.at/~neum/ms/mcs_exact.pdf
https://mat.univie.ac.at/~neum/ms/mcs_exact.pdf
https://doi.org/10.1023/A:1008382309369
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1016/j.artint.2013.10.003
https://doi.org/10.1109/CEC.2006.1688662
https://doi.org/10.1109/CEC.2006.1688662
https://doi.org/10.1145/3319619.3326905
https://doi.org/10.1145/3377930.3390183

[JED21] A. Jankovic, T. Eftimov, and C. Doerr. Towards Feature-Based Per-
formance Regression Using Trajectory Data. In: Proc. of Applica-
tions of Evolutionary Computation (EvoApplications’21). Vol. 12694. LNCS.
Springer, 2021, 601–617. doi: 10.1007/978-3-030-72699-7_38 (see pages 6,

74).

[JPE+21] A. Jankovic, G. Popovski, T. Eftimov, and C. Doerr. The Impact of
Hyper-Parameter Tuning for Landscape-Aware Performance Re-
gression and Algorithm Selection. In: Proc. of Genetic and Evolu-
tionary Computation Conference (GECCO’21). ACM, 2021, 687–696. doi:

10.1145/3449639.3459406 (see pages 6, 40).

[KHN+19] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann. Automated
Algorithm Selection: Survey and Perspectives. Evolutionary Com-
putation 27:1 (2019), 3–45. doi: 10.1162/evco_a_00242 (see pages 22,

23).

[KJR10] M. B. Kursa, A. Jankowski, and W. R. Rudnicki. Boruta – a system for
feature selection. Fundamenta Informaticae 101:4 (2010), 271–285 (see
page 80).

[Kot14] L. Kotthoff. Algorithm Selection for Combinatorial Search Prob-
lems: A Survey. AI Mag. 35:3 (2014), 48–60. doi: 10.1609/aimag.v35i3.

2460 (see page 22).

[KPW+15] P. Kerschke, M. Preuss, S.Wessing, and H. Trautmann.Detecting Funnel
Structures by Means of Exploratory Landscape Analysis. In: Proc.
of Genetic and Evolutionary Computation Conference (GECCO’15). ACM,

2015, 265–272. doi: 10.1145/2739480.2754642 (see page 21).

[KPW+16] P. Kerschke, M. Preuss, S. Wessing, and H. Trautmann. Low-Budget
Exploratory Landscape Analysis on Multiple Peaks Models. In:
Proc. of Genetic and Evolutionary Computation Conference (GECCO’16).
2016, 229–236. doi: 10.1145/2908812.2908845 (see page 3).

[KT16] P. Kerschke and H. Trautmann. The R-Package FLACCO for ex-
ploratory landscape analysis with applications to multi-objective
optimization problems. In: Proc. of IEEE Congress on Evolutionary Com-
putation (CEC’16). IEEE, 2016, 5262–5269. doi: 10.1109/CEC.2016.7748359
(see pages 21, 69).

[KT19] P. Kerschke and H. Trautmann. Automated Algorithm Selection on
Continuous Black-Box Problems by Combining Exploratory Land-
scape Analysis andMachine Learning. Evolutionary Computation 27:1
(2019), 99–127. doi: 10.1162/evco_a_00236 (see pages 2, 15, 22, 23, 38, 40,

42, 43, 49, 52).

94

https://doi.org/10.1007/978-3-030-72699-7_38
https://doi.org/10.1145/3449639.3459406
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1609/aimag.v35i3.2460
https://doi.org/10.1609/aimag.v35i3.2460
https://doi.org/10.1145/2739480.2754642
https://doi.org/10.1145/2908812.2908845
https://doi.org/10.1109/CEC.2016.7748359
https://doi.org/10.1162/evco_a_00236

[KT87] A. H. G. Rinnooy Kan and G. T. Timmer. Stochastic global optimization
methods part II: Multi level methods. Mathematical Programming
39:1 (1987), 57–78. doi: 10.1007/BF02592071 (see page 15).

[LDV+20] A. Liefooghe, F. Daolio, S. Vérel, B. Derbel, H. E. Aguirre, and K. Tanaka.

Landscape-Aware Performance Prediction for Evolutionary Multi-
objective Optimization. IEEE Transactions on Evolutionary Computation
24:6 (2020), 1063–1077. doi: 10.1109/TEVC.2019.2940828 (see pages 19,

23).

[LHH+15] M. Lindauer, H. H. Hoos, F. Hutter, and T. Schaub. AutoFolio: An Auto-
matically Configured Algorithm Selector. Journal of Artificial Intelli-
gence Research 53 (2015), 745–778. doi: 10.1613/jair.4726 (see page 22).

[LM02] M. Laguna and R.Martí. “The OptQuest Callable Library.” In:Optimization
Software Class Libraries. Ed. by S. Voss and D. L. Woodruff. Springer, 2002,

193–218. doi: 10.1007/0-306-48126-X_7 (see page 16).

[LM19] B. Lacroix and J. A. W. McCall. Limitations of benchmark sets and
landscape features for algorithm selection and performance pre-
diction. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’19), Companion Material. ACM, 2019, 261–262. doi: 10.1145/

3319619.3322051 (see page 38).

[LMP+20] J. Liu, A. Moreau, M. Preuss, J. Rapin, B. Roziere, F. Teytaud, and O.

Teytaud. Versatile Black-Box Optimization. In: Proc. of Genetic and
Evolutionary Computation Conference (GECCO’20). ACM, 2020, 620–628.

doi: 10.1145/3377930.3389838 (see page 22).

[LNA+03] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden, and Y. Shoham.

A Portfolio Approach to Algorithm Selection. In: Proc. of Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’03). Morgan Kauf-

mann, 2003, 1542. doi: 10.5555/1630659.1630927 (see page 22).

[LRK17] M. Lindauer, J. N. van Rijn, and L. Kotthoff. Open Algorithm Selection
Challenge 2017: Setup and Scenarios. In: Proc. of Open Algorithm
Selection Challenge. Vol. 79. PMLR, 2017, 1–7 (see page 24).

[LSS13a] I. Loshchilov, M. Schoenauer, and M. Sebag. Bi-population CMA-ES
agorithms with surrogate models and line searches. In: Proc. of Ge-
netic and Evolutionary Computation Conference (GECCO’13), Companion
Material. 2013, 1177–1184. doi: 10.1145/2464576.2482696 (see pages 16,
56).

95

https://doi.org/10.1007/BF02592071
https://doi.org/10.1109/TEVC.2019.2940828
https://doi.org/10.1613/jair.4726
https://doi.org/10.1007/0-306-48126-X_7
https://doi.org/10.1145/3319619.3322051
https://doi.org/10.1145/3319619.3322051
https://doi.org/10.1145/3377930.3389838
https://doi.org/10.5555/1630659.1630927
https://doi.org/10.1145/2464576.2482696

[LSS13b] I. Loshchilov, M. Schoenauer, and M. Sebag. Intensive Surrogate
Model Exploitation in Self-adaptive Surrogate-assisted Cma-es
(Saacm-es). In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’13). ACM, 2013, 439–446. doi: 10.1145/2463372.2463427 (see

pages 16, 42).

[LVL+21] A. Liefooghe, S. Vérel, B. Lacroix, A.-C. Zavoianu, and J. A. W. McCall.

Landscape features and automated algorithm selection for multi-
objective interpolated continuous optimisation problems. In: Proc.
of Genetic and Evolutionary Computation Conference (GECCO’21). ACM,

2021, 421–429. doi: 10.1145/3449639.3459353 (see page 19).

[LW06] M. Lunacek and D. Whitley. The dispersion metric and the CMA
evolution strategy. In: Proc. of Genetic and Evolutionary Computation
Conference (GECCO’06). ACM, 2006, 477–484. doi: 10 . 1145 / 1143997 .

1144085 (see pages 19, 21).

[Mal18] K. M. Malan. Landscape-Aware Constraint Handling Applied to
Differential Evolution. In: Proc. of Theory and Practice of Natural Com-
puting (TPNC’18). Vol. 11324. LNCS. Springer, 2018, 176–187. doi: 10.
1007/978-3-030-04070-3_14 (see page 37).

[Mal21] K. M. Malan. A Survey of Advances in Landscape Analysis for Op-
timisation. Algorithms 14:2 (2021), 40. doi: 10 . 3390 / a14020040 (see

page 19).

[MBT+11] O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and G.

Rudolph. Exploratory Landscape Analysis. In: Proc. of Genetic and
Evolutionary Computation Conference (GECCO’21). ACM, 2011, 829–836.

doi: 10.1145/2001576.2001690 (see pages 2, 19, 20, 22).

[ME13] K. M. Malan and A. P. Engelbrecht. A survey of techniques for char-
acterising fitness landscapes and some possible ways forward.
Information Sciences 241 (2013), 148–163. doi: 10.1016/j.ins.2013.04.015
(see pages 2, 19, 22).

[MKH12] M. A. Muñoz, M. Kirley, and S. K. Halgamuge. A Meta-learning Pre-
diction Model of Algorithm Performance for Continuous Opti-
mization Problems. In: Proc. of Parallel Problem Solving from Nature
(PPSN’12). Vol. 7491. LNCS. Springer, 2012, 226–235. doi: 10.1007/978-3-
642-32937-1_23 (see pages 2, 22, 23).

[MKH15] M. A. Muñoz, M. Kirley, and S. K. Halgamuge. Exploratory Landscape
Analysis of Continuous Space Optimization Problems Using Infor-
mation Content. IEEE Transactions on Evolutionary Computation 19:1

(2015), 74–87. doi: 10.1109/TEVC.2014.2302006 (see pages 2, 19, 21, 22).

96

https://doi.org/10.1145/2463372.2463427
https://doi.org/10.1145/3449639.3459353
https://doi.org/10.1145/1143997.1144085
https://doi.org/10.1145/1143997.1144085
https://doi.org/10.1007/978-3-030-04070-3_14
https://doi.org/10.1007/978-3-030-04070-3_14
https://doi.org/10.3390/a14020040
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1016/j.ins.2013.04.015
https://doi.org/10.1007/978-3-642-32937-1_23
https://doi.org/10.1007/978-3-642-32937-1_23
https://doi.org/10.1109/TEVC.2014.2302006

[MKS18] M. A. Muñoz Acosta, M. Kirley, and K. Smith-Miles. Reliability of
Exploratory Landscape Analysis (2018). doi: 10.13140/RG.2.2.23838.
64327 (see page 38).

[MM19] K. M. Malan and I. Moser. Constraint Handling Guided by Landscape
Analysis in Combinatorial and Continuous Search Spaces. Evolu-
tionary Computation 27:2 (2019), 267–289. doi: 10.1162/evco_a_00222

(see page 37).

[MPR12] M. Maratea, L. Pulina, and F. Ricca. Applying Machine Learning Tech-
niques to ASP Solving. In: Proc. of International Conference on Logic Pro-
gramming (ICLP’12). Vol. 17. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum

für Informatik, 2012, 37–48. doi: 10 . 4230 / LIPIcs . ICLP . 2012 . 37 (see

page 19).

[MRT15] H. Mohammadi, R. Le Riche, and E. Touboul.Making EGO and CMA-
ES Complementary for Global Optimization. In: Proc. of Learning
and Intelligent Optimization (LION’15). Vol. 8994. LNCS. Springer, 2015,
287–292. doi: 10.1007/978-3-319-19084-6_29 (see pages 84, 86).

[MRW+21] L. Meunier, H. Rakotoarison, P.-K. Wong, B. Rozière, J. Rapin, O. Tey-

taud, A. Moreau, and C. Doerr. Black-Box Optimization Revisited:
Improving Algorithm Selection Wizards through Massive Bench-
marking. IEEE Transactions on Evolutionary Computation (2021). doi:

10.1109/TEVC.2021.3108185 (see pages 2, 22).

[MS17] M. A.Muñoz and K. A. Smith-Miles.PerformanceAnalysis of Continu-
ous Black-BoxOptimizationAlgorithms via Footprints in Instance
Space. Evolutionary Computation 25:4 (2017). doi: 10.1162/evco_a_00194

(see pages 29, 37).

[MSJ+12] J. Mendes-Moreira, C. Soares, A. M. Jorge, and J. F. de Sousa. Ensemble
Approaches for Regression: A Survey. ACM Computing Surveys 45:1
(2012). doi: 10.1145/2379776.2379786 (see page 41).

[MSK+15] M. A. Muñoz, Y. Sun, M. Kirley, and S. K. Halgamuge. Algorithm selec-
tion for black-box continuous optimization problems: A survey
on methods and challenges. Information Sciences 317 (2015), 224–245.
doi: 10.1016/j.ins.2015.05.010 (see page 23).

[Mun11] R. Munos.Optimistic optimization of a deterministic functionwith-
out the knowledge of its smoothness. In: Proc. of Neural Information
Processing Systems (NIPS’11). 2011, 783–791 (see page 84).

[Mur12] K. P. Murphy. Machine learning: a probabilistic perspective. MIT

Press, 2012. isbn: 9780262018029 (see pages 41, 56).

97

https://doi.org/10.13140/RG.2.2.23838.64327
https://doi.org/10.13140/RG.2.2.23838.64327
https://doi.org/10.1162/evco_a_00222
https://doi.org/10.4230/LIPIcs.ICLP.2012.37
https://doi.org/10.1007/978-3-319-19084-6_29
https://doi.org/10.1109/TEVC.2021.3108185
https://doi.org/10.1162/evco_a_00194
https://doi.org/10.1145/2379776.2379786
https://doi.org/10.1016/j.ins.2015.05.010

[NM65] J. A. Nelder and R. Mead. A Simplex Method for Function Minimiza-
tion. The Computer Journal 7:4 (Jan. 1965), 308–313. doi: 10.1093/comjnl/

7.4.308 (see page 1).

[NVW+21] J. de Nobel, D. Vermetten, H. Wang, C. Doerr, and T. Bäck. Tuning as
a means of assessing the benefits of new ideas in interplay with
existing algorithmic modules. In: Proc. of Genetic and Evolutionary
Computation Conference (GECCO’21), Companion Material. 2021, 1375–
1384. doi: 10.1145/3449726.3463167 (see page 15).

[OMB20] G. Ochoa, K. M. Malan, and C. Blum. Search Trajectory Networks of
Population-Based Algorithms in Continuous Spaces. In: Proc. of
Applications in Evolutionary Computation (EvoApplications’20). Springer,
2020, 70–85. doi: 10.1007/978-3-030-43722-0_5 (see page 84).

[OV16] G. Ochoa and N. Veerapen. Additional Dimensions to the Study of
Funnels in Combinatorial Landscapes. In: Proc. of Genetic and Evolu-
tionary Computation Conference (GECCO’16). ACM, 2016, 373–380. doi:

10.1145/2908812.2908820 (see page 19).

[Pál13a] L. Pál. Benchmarking a hybrid multi level single linkage algorithm
on the BBOB noiseless testbed. In: Proc. of Genetic and Evolutionary
Computation Conference (GECCO’13). 2013, 1145–1152. doi: 10 . 1145 /
2464576.2482692 (see pages 42, 56).

[Pál13b] L. Pál. Comparison of multistart global optimization algorithms
on the BBOB noiseless testbed. In: Proc. of Genetic and Evolutionary
Computation Conference (GECCO’13), Companion Material. 2013, 1153–
1160. doi: 10.1145/2464576.2482693 (see pages 15, 16, 42, 56).

[PB15] P. Posík and P. Baudis. Dimension Selection in Axis-Parallel Brent-
STEP Method for Black-Box Optimization of Separable Continu-
ous Functions. In: Proc. of Genetic and Evolutionary Computation Con-
ference (GECCO’15), Companion Material. ACM, 2015, 1151–1158. doi:

10.1145/2739482.2768469 (see pages 15, 42, 56).

[PEB+15] A. Piad-Morffis, S. Estévez-Velarde, A. Bolufé-Röhler, J. Montgomery, and

S. Chen. Evolution strategies with threshold convergence. In: Proc.
of Congress on Evolutionary Computation (CEC’15). 2015, 2097–2104. doi:
10.1109/CEC.2015.7257143 (see page 15).

[PKD20] M. Petković, D. Kocev, and S. Džeroski. Feature ranking for multi-
target regression. Machine Learning 109:6 (2020), 1179–1204. doi: 10.

1007/s10994-019-05829-8 (see page 84).

98

https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1145/3449726.3463167
https://doi.org/10.1007/978-3-030-43722-0_5
https://doi.org/10.1145/2908812.2908820
https://doi.org/10.1145/2464576.2482692
https://doi.org/10.1145/2464576.2482692
https://doi.org/10.1145/2464576.2482693
https://doi.org/10.1145/2739482.2768469
https://doi.org/10.1109/CEC.2015.7257143
https://doi.org/10.1007/s10994-019-05829-8
https://doi.org/10.1007/s10994-019-05829-8

[PM14] J. Pihera and N. Musliu. Application of Machine Learning to Algo-
rithm Selection for TSP. Proc. of IEEE International Conference on Tools
with Artificial Intelligence (ICTAI’14) (2014), 47–54. doi: 10.1109/ICTAI.
2014.18 (see page 19).

[Pow06] M. J. D. Powell. “The NEWUOA software for unconstrained optimization

without derivatives.” In: Large-Scale Nonlinear Optimization. Ed. by G.

Di Pillo and M. Roma. Springer, 2006, 255–297. doi: 10.1007/0-387-30065-

1_16 (see page 16).

[Pow64] M. J. D. Powell. An efficient method for finding the minimum of a
function of several variables without calculating derivatives. The
Computer Journal 7:2 (Jan. 1964), 155–162. doi: 10.1093/comjnl/7.2.155

(see page 1).

[PRH19] Zbynek Pitra, Jakub Repický, andMartin Holena. Landscape analysis of
Gaussian process surrogates for the covariance matrix adaptation
evolution strategy. In: GECCO. ACM, 2019, 691–699 (see pages 74, 77).

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research
12 (2011), 2825–2830 (see pages 30, 75).

[RDD+19] Q. Renau, J. Dréo, C. Doerr, and B. Doerr. Expressiveness and Ro-
bustness of Landscape Features. In: Proc. of Genetic and Evolutionary
Computation Conference (GECCO’19), Companion Material. ACM, 2019,

2048–2051. doi: 10.1145/3319619.3326913 (see pages 27, 29, 32, 38, 43).

[RDD+20] Q. Renau, C. Doerr, J. Dréo, and B. Doerr. Exploratory Landscape Anal-
ysis is Strongly Sensitive to the Sampling Strategy. In: Proc. of Parallel
Problem Solving from Nature (PPSN’20). Vol. 12270. LNCS. Springer, 2020,
139–153. doi: 10.1007/978-3-030-58115-2_10 (see pages 20, 64, 87).

[Ric76] J. R. Rice. The Algorithm Selection Problem. Advances in Computers
15 (1976), 65–118. doi: 10.1016/S0065-2458(08)60520-3 (see page 22).

[RK03] M. Robnik-Šikonja and I. Kononenko. Theoretical and empirical anal-
ysis of ReliefF and RReliefF. Machine Learning 53:1-2 (2003), 23–69.

doi: 10.1023/A:1025667309714 (see page 84).

[RT18] J. Rapin and O. Teytaud. Nevergrad - A gradient-free optimization platform.

https://GitHub.com/FacebookResearch/Nevergrad. 2018 (see pages 50,

67).

99

https://doi.org/10.1109/ICTAI.2014.18
https://doi.org/10.1109/ICTAI.2014.18
https://doi.org/10.1007/0-387-30065-1_16
https://doi.org/10.1007/0-387-30065-1_16
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1145/3319619.3326913
https://doi.org/10.1007/978-3-030-58115-2_10
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1023/A:1025667309714
https://GitHub.com/FacebookResearch/Nevergrad

[RWL+16] S. van Rijn, H. Wang, M. van Leeuwen, and T. Bäck. Evolving the Struc-
ture of Evolution Strategies. In: Proc. of IEEE Symposium Series on
Computational Intelligence (SSCI’16). IEEE, 2016, 1–8. doi: 10.1109/SSCI.
2016.7850138 (see pages 7, 14, 15, 73).

[SB18] A. E. Stork J.and Eiben and T. Bartz-Beielstein. A new Taxonomy of Con-
tinuous Global Optimization Algorithms. 2018. arXiv: 1808.08818 (see

page 12).

[ŠEK20] U. Škvorc, T. Eftimov, and P. Korošec. Understanding the prob-
lem space in single-objective numerical optimization using ex-
ploratory landscape analysis.Applied Soft Computing 90 (2020), 106138.
doi: 10.1016/j.asoc.2020.106138 (see page 76).

[SGW19] S. Saleem, M. Gallagher, and I. Wood. Direct Feature Evaluation in
Black-Box Optimization Using Problem Transformations. Evolu-
tionary Computation 27:1 (2019), 75–98. doi: 10.1162/evco_a_00247 (see

page 27).

[SKL+19] M. Sharma, A. Komninos, M. López-Ibáñez, and D. Kazakov. Deep rein-
forcement learning based parameter control in differential evo-
lution. In: Proc. of Genetic and Evolutionary Computation Conference,
(GECCO’19). ACM, 2019, 709–717. doi: 10.1145/3321707.3321813 (see

page 23).

[Smi09] K. A. Smith-Miles. Cross-Disciplinary Perspectives on Meta-
Learning forAlgorithmSelection.ACMComputing Surveys 41:1 (2009).
doi: 10.1145/1456650.1456656 (see page 22).

[SSB94] S. Swarzberg, G. Seront, and H. Bersini. S.T.E.P.: the easiest way to
optimize a function. In: Proc. of IEEE Congress on Evolutionary Com-
putation (CEC’94). Vol. 1. 1994, 519–524. doi: 10.1109/ICEC.1994.349896
(see page 16).

[Tib96] R. Tibshirani. Regression Shrinkage and Selection via the Lasso.
Journal of the Royal Statistical Society. Series B (Methodological) 58:1 (1996),
267–288. url: http://www.jstor.org/stable/2346178 (see pages 41, 56).

[ULP+07] Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, and R. Martí. Scatter
Search and Local NLP Solvers: A Multistart Framework for Global
Optimization. INFORMS Journal on Computing 19:3 (2007), 328–340. doi:
10.1287/ijoc.1060.0175 (see page 16).

[VRB+19] D. Vermetten, S. van Rijn, T. Bäck, and C. Doerr. Online selection of
CMA-ES variants. In: Proc. of Genetic and Evolutionary Computation
Conference (GECCO’19). ACM, 2019, 951–959. doi: 10 . 1145 / 3321707 .

3321803 (see pages 73, 86).

100

https://doi.org/10.1109/SSCI.2016.7850138
https://doi.org/10.1109/SSCI.2016.7850138
https://arxiv.org/abs/1808.08818
https://doi.org/10.1016/j.asoc.2020.106138
https://doi.org/10.1162/evco_a_00247
https://doi.org/10.1145/3321707.3321813
https://doi.org/10.1145/1456650.1456656
https://doi.org/10.1109/ICEC.1994.349896
http://www.jstor.org/stable/2346178
https://doi.org/10.1287/ijoc.1060.0175
https://doi.org/10.1145/3321707.3321803
https://doi.org/10.1145/3321707.3321803

[WEB14] H. Wang, M. Emmerich, and T. Bäck. Mirrored Orthogonal Sampling
with Pairwise Selection in Evolution Strategies. In: Proc. of ACM
Symposium on Applied Computing (SAC’14). ACM, 2014, 154–156. doi:

10.1145/2554850.2555089 (see page 15).

[XHH+08] L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-
based Algorithm Selection for SAT. Journal of Artificial Intelligence
Research 32 (2008), 565–606. doi: 10.1613/jair.2490 (see pages 19, 22).

[XHH+12] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Evaluating Com-
ponent Solver Contributions to Portfolio-Based Algorithm Selec-
tors. In: Proc. of Theory and Applications of Satisfiability Testing (SAT’12).
Vol. 7317. LNCS. Springer, 2012, 228–241. doi: 10.1007/978-3-642-31612-

8_18 (see page 22).

[ZFW+19] J. Zhao, Q. Feng, P. Wu, R. A. Lupu, R. A. Wilke, Q. S. Wells, J. C. Denny,

andW.-Q. Wei. Learning from longitudinal data in electronic health
record and genetic data to improve cardiovascular event prediction.
Scientific Reports 9:1 (2019), 1–10. doi: 10.1038/s41598-018-36745-x (see
page 83).

[ZH05] H. Zou and T. Hastie. Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 67:2 (2005), 301–320. url: https://www.jstor.org/stable/

3647580 (see pages 41, 56).

[ZM12] C. Zhang and Y. Ma. Ensemble machine learning: methods and
applications. Springer, 2012. doi: 10 .1007/978- 1- 4419- 9326- 7 (see

page 52).

101

https://doi.org/10.1145/2554850.2555089
https://doi.org/10.1613/jair.2490
https://doi.org/10.1007/978-3-642-31612-8_18
https://doi.org/10.1007/978-3-642-31612-8_18
https://doi.org/10.1038/s41598-018-36745-x
https://www.jstor.org/stable/3647580
https://www.jstor.org/stable/3647580
https://doi.org/10.1007/978-1-4419-9326-7

	Abstract
	Résumé
	Acknowledgments
	Contents
	1 Introduction
	1.1 Algorithm Selection
	1.2 Exploratory Landscape Analysis
	1.3 Key Objective of the Thesis
	1.4 Outline of the Thesis

	2 Contributions of the Thesis
	2.1 Combining Fixed-Budget Regression Models
	2.2 Impact of Hyper-Parameter Tuning
	2.3 Personalized Performance Regression
	2.4 Adaptive Landscape Analysis
	2.5 Trajectory-Based Algorithm Selection

	I The Background
	3 Black-Box Optimization
	3.1 Black-Box Optimization Algorithms
	3.1.1 CMA-ES
	3.1.2 Modular CMA-ES
	3.1.3 Additional Algorithms

	3.2 Algorithm Performance Measures
	3.3 Problem Collections
	3.3.1 BBOB Test Suite

	4 Exploratory Landscape Analysis
	4.1 ELA Features
	4.2 Choice of Features
	4.3 Feature Computation

	5 Algorithm Selection
	5.1 Per-Instance Algorithm Selection
	5.2 From Performance Regression to Algorithm Selection
	5.3 State of the Art
	5.4 Performance Assessment of Algorithm Selectors

	II Contributions
	6 Combining Fixed-Budget Regression Models
	6.1 Preliminaries
	6.2 Fixed-Budget Performance Regression
	6.2.1 Impact of Feature Selection

	6.3 Fixed-Budget Algorithm Selection
	6.3.1 Impact of the Threshold Value and the Feature Portfolio
	6.3.2 Impact of the Algorithm Portfolio
	6.3.3 Impact of the Sample Size for Feature Extraction

	6.4 Conclusions

	7 Impact of Hyper-Parameter Tuning
	7.1 Preliminaires
	7.2 Performance Regression Quality of Different Models
	7.3 ELA-Based Algorithm Selection
	7.4 Sensitivity Analyses
	7.5 Conclusions

	8 Personalized Performance Regression
	8.1 Preliminaries
	8.2 Personalized Machine Learning Models
	8.3 Use-Case: ELA-Based Fixed-Budget Performance Regression
	8.3.1 Experimental Setup
	8.3.2 BIPOP-CMA-ES Performance Prediction

	8.4 Conclusions

	9 Adaptive Landscape Analysis
	9.1 Preliminaries
	9.2 ``Zooming In'' into the Landscapes
	9.3 Conclusions

	10 Trajectory-Based Performance Regression
	10.1 Preliminaries
	10.2 Supervised Machine Learning for Performance Regression
	10.3 Comparison with Global Feature Values
	10.4 Sensitivity Analyses
	10.5 Conclusions

	11 General Conclusions and Outlook

	Bibliography

