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Abstract

The finite element method has been widely used since the 1970s to predict the behavior of structures
such as automobiles, airplanes, machines, bridges or buildings. The modeling choices are essential to
build a representative model and control the number of degrees of freedom. Many works have sought to
optimize the model from a mesh point of view, namely by proposing adaptive meshing technigues. On
the other hand, concerning the theory choice, seldom work has been carried out to obtain an optimal
finite element model.

In the context of static and vibratory linear analysis, this thesis aims to propose an adaptive modeling
methodology in order to obtain an optimal finite element model from the theory choice point of view.
The mesh, composed only of solid elements, is refined at each iteration of the methodology. An
appropriate choice between beam, shell and 3D elasticity theories is made on each finite element of the
model at each analysis. In areas where beam or shell theories are relevant, specific displacement fields
are applied. New solid-shell and solid-beam approaches, based respectively on shell theory and beam
theory, have been developed for this purpose. For each of these two approaches, first-order and higher-
order theories are proposed. In these areas, the application of kinematic relations at nodes of the solid
mesh, by using linear equations, leads to a reduction of the number of degrees of freedom. In the context
of static and vibratory analysis, several examples are treated to evaluate the methodology of adaptive
modeling. The numerical results obtained are always very close to those of a reference solid model and

the adaptive modeling method leads to a significant reduction in the model size.

Key words: Adaptive modeling, Solid finite element, Solid-beam element, Solid-shell element, Beam

theory, Plate or shell theory, Displacement fields






Résume

La méthode des éléments finis est couramment utilisée depuis les années 1970 pour prédire le
comportement de structures telles que des automobiles, des avions, des machines, des ponts ou des
batiments. Les choix de modélisation sont essentiels afin de construire un modele représentatif, tout en
maitrisant le nombre de degrés de liberté. De nombreux travaux ont cherché a optimiser le modele d’un
point de vue du maillage en proposant notamment des techniques de maillage adaptatif. En revanche,
concernant le choix de théorie, peu de travaux ont été menés pour obtenir un modéle éléments finis
optimal.

Dans le contexte de 1’analyse linéaire statique et vibratoire, cette thése a pour objectif de proposer
une méthodologie de modélisation adaptative afin d’obtenir un modele éléments finis optimal d”un point
de vue du choix de théorie. Le maillage, composé uniquement d’¢léments volumiques, est raffiné a
chaque itération de la méthodologie. Un choix approprié entre les théories de poutre, de coque et
d’¢élasticité 3D est effectué sur chaque élément fini a I’issue de chaque analyse. Dans les zones ou les
théories de poutre ou de coque sont pertinentes, des champs de déplacements spécifiques sont appliqués.
De nouvelles approches volume-coque et volume-poutre, basées respectivement sur la théorie des
coques et la théorie des poutres, sont développées a cet effet. Pour chacune de ces approches, des théories
de premier ordre et d’ordre supérieur sont proposées. Dans ces zones 1’application de relations
cinématiques aux nceuds du maillage volumique, se traduisant par des équations linéaires, méne a une
réduction du nombre de degrés de liberté. Dans le cadre de 1’analyse statique et vibratoire, plusieurs
exemples sont traités pour évaluer la méthodologie de modélisation adaptative. Les résultats numériques
obtenus sont toujours trés proches de ceux d’un modéle volumique de référence et la modélisation

adaptative méne a une réduction significative de la taille du modeéle.

Mots clés : Modélisation adaptative, EIément fini volumique, ElIément fini volume-poutre, Elément fini

volume-coque, Théorie de poutre, Théorie de plaque ou coque, Champs de déplacement
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Chapter 1

General introduction

1.1 Introduction

The complex practical problems in both academic and industrial contexts are usually described by
ordinary/partial differential equations (ODES/PDEs), but it is a challenge to obtain analytical solutions.
The numerical simulation technique transforms a physical problem into a discrete mathematical
description. Then the algebraic equations derived from ODES/PDEs are solved by a computer. The Finite
Element Method (FEM) is one of the most well established and widespread numerical techniques for
multi-physical problems in recent decades. A brief history of FEM is recalled. Some strengths and
difficulties are also presented. Finally, some drawbacks of the current finite element modeling process
are discussed.

1.1.1 Brief history of FEM

As early as 1870, Rayleigh used assumed "trial functions" to solve complex differential equations.
In 1909, Ritz developed it into a numerical approximation method, laying a solid foundation for modern
finite element methods. In the 1940s, due to the rapid development of the aviation industry, designers
needed to accurately design and calculate the aircrafts structures. Then, they gradually produced matrix
mechanics analysis methods in engineering. In 1943, Courant [1] published the first paper using the
triangular area's polynomial function to solve the torsion problem. In 1954, Argyris [2] published the
first work on energy principles and matrix methods in structural analysis. In 1956, Turner, Clough,
Martin, and Topp [3] of Boeing Company systematically studied the element stiffness expressions of
discrete trusses, beams, and triangles when analyzing aircraft structures. In 1960, Clough [4, 5] first
proposed and used the name "finite element method" when dealing with plane elasticity. In 1967,
Zienkiewicz and Cheung [6] published the first monograph on finite element analysis. In 1969, Szabo
and Lee [7] pointed out that the weighted residual method, especially the Galerkin method, can be used
to derive the standard finite element process from solving non-structural problems. After 1970, the finite
element method began to deal with nonlinear and large deformation problems. With the rapid
development of computer technology, many software based on the principles of finite element methods
have appeared, and they have played an increasingly important role in actual engineering. At present,
there are well-known internationally general-purpose finite element analysis software, including
ABAQUS, ANSYS, and some specialized finite element analysis software, such as FELAC, DEFORM,

etc.



1.1.2 Strengths and difficulties of FEM

As described above, the finite element method (FEM) has attracted a lot of scientists and had a rapid
development in recent decades due to its many strengths. From a global viewpoint, the FEM utilizes
finite and interrelated elements to simulate complex geometry so that the results can be calculated by
modeling and analysis. The FEM succeeds in multiphysics analysis, combining structural analysis and
thermal analysis for example. Moreover, the physics fields are accurately approximated by increasing
the number of elements or the order of elements. Another strength for the FEM is the ability to combine
different types of formulations, namely mixed formulations, which seems difficult in other methods,
such as the finite volume method. From the industrial application viewpoint, the FEM provides a simple
visualization of results, decreases the design cycle and testing time, and helps to save a lot of costs. For
example, it helps engineers with residual stress analysis for predicting failure location. It is not easy to
predict without the FEM unless the engineer has years of experience. Fig. 1.1 shows some domains in
which the FEM is widely used.

Automobile Aircraft Machine

Building

Fig. 1.1. Examples of the FEM applications.

The difficulties of effectively using the FEM are also apparent. The first one is the accuracy of the
results mainly depends on the mesh, requiring a high quality of the mesh to obtain good results. The
experience of FE modeling, the definition of boundary conditions, and whether the loading meets the
physical reality, matter much. Moreover, the computational time for large models is significant, leading

to an expensive cost.
1.1.3 Drawbacks of the current finite element modeling process

A finite element analysis is usually composed of three parts [8] with different proportions of effort:
pre-processing (70% of total effort), run of program/solver (5% of total effort), post-processing (25% of

total effort). The pre-processing step includes preparation of geometry, material properties, loading,



boundary conditions, selection of elements, and mesh creation. The post-processing step consists of the
observation and interpretation of the results, but also of the refinement of mesh if convergence of results
is not met. All these above are so-called finite element modeling, which is a significant part of finite
element analysis.

The current finite element modeling process is summarized in three main steps. Firstly, theory (3D
solid, shell, or beam) is selected using rules acquired through experience, and a simulation scenario is
defined. In some cases, for complex structures or systems (for example a finite element model of a car),
different theories are used in the same model. Secondly, the geometry is created, and material properties
are defined. The third step deals with the creation of the mesh. A consistent mesh is obtained thanks to
a convergence study. During past decades, numerous studies were performed about the adaptive
meshing issue, leading to optimal meshes. In 1978, Babuska and Rheinboldt [9] proposed a pioneering
work of error estimation in computational processes, which is a great inspiration for the latter researches
of adaptive mesh. A further bibliography study about this issue is highlighted in Chapter 4. In an
industrial context, rules acquired from experience are often used to define the mesh size. Deficiencies
appear in this existing finite element modeling process.

Some of these difficulties are highlighted through examples, as presented in Fig. 1.2. Choosing an
appropriate theory may be difficult when geometry, boundary conditions, loadings, and materials are
complex. For instance, the best choice of theory is ambiguous when objects have complex shapes or
contain stiffeners (Fig. 1.2a). The limitation of beam and shell theories is also a difficult issue for
composite or sandwich structures. For example, even if an automotive windscreen is thin from a
geometric viewpoint, shell theory may be inappropriate for this type of sandwich structure. When shell
theory is chosen, starting with the solid geometric definition of the object under study, a mid-surface
geometry is required. This task is often difficult for an industrial application, and existing tools generally
fail in this context. The solid-shell finite elements have been developed to avoid creating a mid-surface
geometry. In 1986, Graf et al. [10] firstly presented the “three-dimensional thick shell elements” using
solid geometry and displacements, without any rotation degree of freedom. After which, several types
of solid-shell elements have been proposed for decades and it is still a promising field until today. A
further bibliography study of this aspect is highlighted in Chapter 2. In the same way, when beam theory
is chosen, difficulties may appear to make a mid-axis geometry. So solid-beam finite elements have also
been developed. In 2013, Frischkorn and Reese [11] introduced the “solid-beam” expression and
proposed an eight-node solid-beam element with only displacement degrees of freedom. To our best
knowledge, no other solid-beam element has been developed till now. Fig. 1.2b shows a fan blade, which
is a combination of massive (cylinder area) and thin structure. The optimal model is certainly made of
solid elements and shell elements. But mixing different types of elements in the same model requires
some specific numerical treatment. Namely, at the interfaces between solid and shell areas, specific
relations between the degrees of freedom are necessary to ensure the compatibility between solid and

shell elements.



Fig. 1.2. Examples of complex structures: (a) pedal support, (b) fan blade.
1.2 Motivations and outline

Due to the rapid development of 3D geometry software and Reverse Engineering (RE) technology
in recent decades, it has become easier to obtain 3D geometries. In finite element analysis, 3D models
have many strengths compared with 1D or 2D models. Firstly, the 3D model uses fewer assumptions
from the dimension viewpoint, facilitating the application of loads and boundary conditions closer to
actual issues. Secondly, 3D models are more convenient when simulating complex structures, especially
for some assembled structures. In terms of presenting the results, the 3D model is richer. However, the
computational cost for 3D finite element analysis is usually higher than 1D or 2D analysis.

1.2.1 Motivations

The final objective of this research is to define a methodology to identify, in the context of linear
static or dynamic analysis, optimal finite element models from both theory and mesh points of view.
Indeed, a finite element model is optimal if the choice of the solid, shell, or beam theory and the choice
of the mesh are both relevant. As discussed above, many papers have been published about subjects
relative to this problem. As far as the authors know, the overall problem proposed here, involving an
adaptive choice of theory, has not been described in the literature. This study is performed in the context
of the so-called Verification and Validation [12, 13, 14] methodology to improve the predictive
capability of finite element models.

An adaptive modeling method should include two aspects: the adaptive meshing and the adaptive
choice of theory. As an already relatively reliable technology, the adaptive meshing aspect is not
considered in this PhD thesis. On the contrary, the adaptive choice of theory, which was rarely treated
before, is discussed here. The methodology is supposed to be based only on solid mesh and elements.
The proposed iterative process of the methodology for a given structure contains several steps: the initial
finite element analysis of a solid model with coarse mesh, the local choice of appropriate theories, the
mesh refinement, the application of solid-shell and solid-beam approaches in the areas concerned, the
finite element analysis with a new adaptive model, the calculation of convergence criterion of the
methodology.

Our methodology is based on a solid model containing several elements in the different directions

of the structure of interest. In particular, in thin-walled areas, the mesh contains several elements through



the thickness or cross-section. In the areas where beam or shell theory is suitable, specific treatments

are applied and lead to solid-beam and solid-shell approaches respectively. Therefore, before proposing

the overall adaptive modeling method, new solid-shell and solid-beam approaches based on solid

elements is first presented. Then it is shown how our methodology exploits a mix of solid, solid-shell

and solid-beam areas. One problem may be the compatibility at the interface between the different areas.

It is shown that the compatibility conditions are naturally met with our approach.

1.2.2 Outline

The manuscript is organized into five chapters:

Chapter 1 deals with the general introduction and motivations.

In the context of adaptive modeling methodology, chapter 2 presents a new solid-shell approach
based on the standard solid elements instead of developing a new element. Three plate or shell
theories, including the classical first-order plate theory, a modified first-order plate theory and
a higher-order plate theory, are considered. The static and vibration examples considering thin
to thick structures are treated to verify the relevance and to assess the performances of the
approach.

In chapter 3, we propose a new solid-beam approach in the same way with the solid-shell
approach. Beam in a plane, involving membrane and bending effects, is first considered. Then
beam in space with rectangular cross-section, taking into account torsion effects. For beam in a
plane, three theories including the Timoshenko first-order beam theory, a modified first-order
beam theory and a higher-order beam theory, are considered. For beam in space, two variants
for the description of warping of the cross-section, are presented. As for the solid-shell
approach, static and vibration examples considering thin to thick structures are treated.

Next, the adaptive modeling methodology is presented in chapter 4. The criterion used to choose
the local appropriate theories, the convergence criterion of the methodology, the
implementations of the methodology and the special treatment for vibration are described.
Cantilever structures and ““T” shape plates are considered for both static examples and vibration
examples.

Chapter 5 presents the conclusions and perspectives.






Chapter 2

A new solid-shell approach

In the context of adaptive modeling methodology, a new solid-shell approach dedicated to thin to
very thick structures is presented. An original aspect is that plate or shell displacement fields are
directly applied on a solid finite element model which contains several elements through the
thickness. Moreover any plate or shell theory based on kinematic assumptions can be used, three

theories have been considered.

2.1 Introduction

A lot of natural or industrial structures have one dimension small compared to other ones. These
structures are called plates and shells. Since the pioneering works of Germain [15] two centuries ago, a
lot of researchers, namely Kirchhoff [16] and Love [17], contributed to this theory currently known as
the Love-Kirchhoff theory dedicated to thin structures without transverse shear effects. About one
century later, Reissner [18] and Mindlin [19] developed the plate theory with transverse shear effects,
called the Reissner-Mindlin theory, dedicated to thick as well as thin structures. In these first-order
theories, the in-plane and out-of-plane displacements are linear and constant through the thickness
respectively. Then higher-order theories were proposed. In the context of the derivation of a shell theory,
in 1957 Naghdi [20] proposed a quadratic out-of-plane displacement which includes the transverse
normal strain. In 1975, Reissner [21] developed a higher-order theory with cubic in-plane displacements
and quadratic out-of-plane displacements. This approach considers out-of-plane effects characterized by
the bending phenomenon but neglects in-plane effects. In 1977, Lo, Christensen and Wu [22] enriched
the displacement field to take into account in-plane as well as out-of-plane effects. The in-plane
displacement contains constant, linear, quadratic and cubic terms, while out-of-plane displacement
contains constant, linear and quadratic terms. In 1978, Lo, Christensen and Wu [23] modified the method
described above to improve the evaluation of transverse shear and normal stresses using the integration
of equilibrium equations. This type of refined theory, or variants, is commented and tested by several
authors (Kant [24], Rehfield and Valisetty [25]). Levinson [26] and Reddy [27] used cubic in-plane
displacements again, but keep a constant out-of-plane displacement. VVoyadjis and Baluch [28] enriched
the kinematic assumptions with order five for in-plane displacements and order four for transverse
displacements. Levinson [29] developed a higher-order plate theory based on studies in foundation

theory. He suggested using of more or less complex shape functions to describe the through-the-



thickness distributions of in-plane and out-of-plane displacements. Other variants of plate theories were
proposed, in particular for multilayered composite structures and sandwich ones. The scope of this
chapter is limited to homogeneous structures, so multilayered composite structures which have led to a
lot of research are not considered in this bibliography study.

The analytical resolution of examples treated with these theories is limited to some academic
examples. Consequently, finite element method is widely used for the treatment of plates and shells
applications. Since the sixties, an impressive number of formulations have been developed and assessed,
to improve the performances of plate and shell finite elements. Most of the formulations concern the
Love-Kirchhoff and Reissner-Mindlin first-order theories.

For these finite elements, the most popular approach requires a mesh of the mid-surface and the
degrees of freedom are displacements and rotations at nodes. Up to now a lot of literature has been
published about this issue, most of the papers dealing with Reissner-Mindlin plate and shell elements.
In a review paper containing about 200 references, Cen and Shang [30] describe the state of the art
concerning Reissner-Mindlin plate elements. The reader is invited to refer to this paper for detailed
information. The reason why a lot of literature deals with these finite elements is that they lead to several
specific numerical problems. The most problematic one is transverse shear locking which leads to very
bad results when the structure is thin. Another numerical problem, linked to the techniques used for
solving the locking phenomenon, is rank deficiency which may cause spurious zero-energy modes.
Several techniques were proposed to alleviate these problems. The most popular ones are reduced or
selective numerical integration (Zienckiewicz et al. [31], Pawsey and Clough [32], Hughes et al. [33]),
Assumed Natural Strain (ANS) method (Hughes and Tezduyar [34]) and its variants, namely the mixed
interpolation tensorial components (Bathe and Dvorkin [35]) and the discrete gap method (Bletzinger et
al. [36]), Enhanced Assumed Stress (EAS) method (Simo et al. [37]), discrete shear approach (Batoz
and Lardeur [38]), mixed or hybrid approach (Spilker and Munir [39], Lee and Pian [40]). In order to
prevent spurious modes or zero strain energy modes due to the rank deficiency of the stiffness matrix,
stabilization methods have been proposed (Belytschko et al. [41]). Research to improve further and
identify best plate and shell finite elements based on first-order theories is still currently an active area
(Katili et al. [42]).

Some research has also been carried out for the formulation of finite elements based on higher-order
plate theories. The applications of these theories to homogeneous plates and shells are considered here.
In 1982, Kant et al. [43] developed a nine-node quadrilateral element based on the Reissner refined
theory introduced above [21]. The element only takes bending effects into consideration and has six
degrees of freedom per node, compared to three for classical first-order plate elements. Voyadjis and
Becquet [44] integrated their theory introduced in [28] in an eight-node quadrilateral element. The
number of degrees of freedom is the same as for classical plate elements. Tessler [45] criticized higher-
order theories and stated that they are unattractive, namely because they often use a large number of

degrees of freedom at each node. Using kinematic assumptions close to those introduced in [20] with

8



membrane and bending effects and improving the transverse stresses, he described a three-node
triangular finite element with five degrees of freedom per node, just like classical plate elements. Up to
now, in commercial finite element software, only plate and shell elements based on first-order theories
are available.

Another possibility is to exploit only the solid geometry, in this case a mid-surface geometry is not
required. As soon as 1970, Ahmad et al. [46] presented an element based on solid geometry but with
thick shell assumptions. This leads to a sixteen-node hexahedron element and a twenty-four-node
hexahedron element with classical shell degrees of freedom, that is to say three displacements and two
rotations. This approach is also known as the degenerated shell element concept. But the so-called solid-
shell only uses displacements at nodes, without rotations. This approach has several advantages. First
solid and solid-shell elements can be used in the same model, without difficulty. Indeed, sometimes, for
the same industrial application, it is justified to use solid theory in some areas of the structure and shell
elements in other ones. In this situation, the use of solid and solid-shell elements avoids the development
of specific solid-to-shell techniques to correctly connect shell and solid elements. A second advantage
is that there is no need to make and exploit a mid-surface mesh, which may lead to severe difficulties
and some errors for complex applications. Moreover, in the solid-shell approach, all terms of the strain
and stress tensors can be considered and a three-dimensional constitutive law can be used, even if this
issue may lead to some difficulties known as the thickness locking phenomenon mentioned below.
Finally loading can be naturally applied on the top or bottom faces of the structure. The first contribution
was presented in 1986 by Graf et al. [10] who introduced the “three-dimensional thick shell elements”
using a solid geometry and displacements, without any rotation. Hexahedral elements with eight, sixteen
or eighteen nodes were proposed, with a hybrid/mixed formulation based on the Hellinger-Reissner
variational principle. The elements are free from shear or membrane locking phenomena. These
numerical problems led to a lot of research for classical plate and shell finite elements and are also
relevant for solid-shell elements. Ausserer and Lee [47] also proposed a hexahedral eighteen-node solid
element for thin shell analysis based on the same variational principle. The spurious modes problem due
to the rank deficiency of the stiffness matrix is discussed and a method to control this numerical problem
is detailed. In addition to membrane locking, shear locking and spurious modes, solid-shell elements
also suffer from other numerical problems due to the solid nature of these elements. These pathologies
include trapezoidal locking, Poisson thickness locking and volumetric locking. Techniques developed
to solve these numerical problems are generally similar to those cited above for the development of
efficient classical plate and shell elements. Of course, some difficulties as Poisson thickness locking are
specific to solid-shell elements and may lead to particular treatments. The main objective of the
numerous research works is to control all these numerical difficulties as far as possible. Generally, two
or more of the techniques cited above are used together to improve the performances of the elements.
Most of the contributions concern the eight-node hexahedral element, see for example Graf et al. [10],

Parisch [48], Hauptmann and Schweizerhof [49] who introduced the “solid-shell” expression in 1998,
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Sze and Yao [50], Abed-Meraim and Combescure [51, 52], Schwarze and Reese [53], Naceur et al. [54],
Ben Bettaieb et al. [55], Bishara and Jabareen [56]. Sixteen-node or eighteen-node hexahedral elements
were proposed by Graf et al. [10], Assurer and Lee [47], Parisch [48], Sze et al. [57]. Bassa et al. [58]
presented a nine-node hexahedral element which uses an additional node at the center of the element.
Twenty-node hexahedral element was proposed by Abed-Meraim et al. [59] and Wang et al. [60]. But
for complex geometries, due to difficulties with meshes made up only of hexahedra, prismatic elements
are necessary. Abed-Meraim et al. [59] and Wang et al. [60] proposed a fifteen-node prismatic element.
As for classical shell elements, research to improve further solid-shell elements finite elements is
currently an active area. In 2020 Bishara and Jabareen [56] use the Assumed Natural Inhomogeneous
Strain (ANIS) method and the EAS one to improve the eight-node hexahedral element.

In this chapter, a new solid-shell approach, based on applications of first-order or higher-order plate
and shell equations to standard solid finite element models, is presented. In Section 2.2, the basic ideas
of the methodology proposed, as well as the first-order and higher-order theories of interest, are recalled.
In Section 2.3, the approach relying on the master and slave nodes concept is described. In Section 2.4,
three static examples with thin and thick cases are treated, and a comparison with solid and shell models
in terms of model size is also presented. Two vibration examples with thin and thick cases are presented
in Section 2.5. Some conclusions and perspectives are drawn in Section 2.6.

2.2 Presentation of a new solid-shell approach — theoretical aspects

2.2.1 Context and basic ideas

The new solid-shell approach proposed in this chapter is developed in the context of a more general
methodology. The aim of this methodology is to propose an adaptive modeling technique based on the
use of solid elements, for any type of structure. As stated in Section 1, for the same application, it is
sometimes justified to use solid theory in some areas of the structure and shell theory in other ones. The
solid-shell approaches developed up to now lead to specific finite elements. Consequently, if it is
justified to use both solid and shell theory in the same model, two different finite elements must be
managed. Moreover, one characteristic and advantage of classical solid-shell elements is that generally
only one finite element is required through the thickness of the structure. On the contrary, in the solid
areas, generally due to local effects in the boundary conditions or loading areas, several finite elements
through the thickness are necessary to get relevant results meeting the convergence conditions.
Consequently, at the interface between the solid and solid-shell areas, severe meshing difficulties may
appear. To prevent this problem, our adaptive modeling technique uses only solid elements and the mesh
systematically contains several elements through the thickness of the structure. This leads to
homogeneous and regular meshes over the whole structure. In solid areas, there is no specific treatment
and in the solid-shell areas, plate and shell displacement fields are applied using a specific approach. In

this chapter the formulation associated with the solid-shell areas is presented and assessed.
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Classically, to develop plate or shell finite element models, equations of the 3D theory of elasticity

are modified to give new theoretical equations, characteristic of the plate or shell theory retained. Then,

based on these equations, a plate or shell numerical formulation is developed, leading to a surface mesh.

The contrary is proposed here. The structure is first modeled with solid finite elements, then through-

the-thickness plate or shell equations are applied directly on the solid model to modify the system of

algebraic equations and obtain the plate or shell numerical solution.

The main characteristics of the proposed solid-shell approach, dedicated to plate or shell structures,

are described below.

The solid-shell model must give results very close to the reference results given by the solid
model.

The methodology is dedicated to thin to very thick structures and is applicable for statics and
dynamics. In the static case presented in this chapter, it must provide correct displacements and
stresses. In the thin case, plane stresses oy, gy, 0y, are concerned. In the thick case, the

transverse stresses oy, 0,,, and g, are also of interest.

Only solid elements are used. The finite element selected must have good performances and
must not suffer from severe numerical deficiencies. In particular, the element must be free of
severe locking phenomena. In this chapter existing twenty-node hexahedral element is exploited.
Some results obtained with eight-node hexahedral element will also be mentioned. Of course, a
new solid element formulation could be considered.

The mesh contains several elements through the thickness. A convergence study makes it
possible to choose the appropriate refinement level.

The 3D constitutive law is used. This means that all strains and stresses are considered in the
strain energy. No modification of this constitutive law is allowed. This prohibits for example
the use of transverse shear correction coefficients which are classically associated with first-
order theories.

First-order as well as higher-order displacement fields are considered.

Plate or shell displacement fields are directly applied on the solid finite element model which
contains several elements through the thickness.

From a numerical point of view, kinematic relations between the degrees of freedom of the
various nodes through the thickness, are applied. These degrees of freedom are displacements
exclusively because solid elements are used, in contrast with plate and shell elements which use
rotations and possibly other types of variables, namely in the higher-order theories case. For this
purpose, the concept of slave and master nodes is used. After application of equations, only
master nodes are kept in the model.

This process leads to a reduction of the model size compared to the initial solid model.
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2.2.2 Displacement fields
2.2.2.1 Classical first-order displacement field

Three displacement fields are considered in this study. The first one, considered in this section, is
given by the classical Reissner-Mindlin plate theory. It considers bending effects as well as transverse
shear ones. It is widely used in plate and shell finite element formulations. This displacement field is
defined by:

u(z) =ug—zp,

v(z) = vy — z¢y (2.1)
w(z) = wy

where u,, v and w, are the displacements of a node on the mid-surface, ¢, and ¢,, are the rotations
around x and y axes respectively.

This displacement field uses displacements as well as rotations. In our approach which relies on
solid elements and which is described further in Section 3, only displacements at nodes are used. It is
relevant and well suited to rewrite the displacement field of Eq. (2.1) in the simple following form:

u(z) = za; + a,
v(z) = zby + b,
2.2

w(z) =¢; (22)
where a4, a,, b1, b, and ¢, are coefficients to be determined.
As will be shown and justified in Section 2.4.1, this displacement field does not lead to good results,

in the context of our approach.

2.2.2.2 Modified first-order displacement field

To justify a relevant modification of the Reissner-Mindlin theory, it is useful to observe the through-
the-thickness displacements of a moderately thin (1/h=20) square plate modeled with solid elements. For
the bending case, the plate is clamped along its four edges and subjected to uniform pressure applied on
the top face. For the membrane case, the plate is clamped along one edge and submitted to a distributed
traction loading at the opposite edge. The through-the-thickness distributions of displacements are
shown in Fig. 2.1. For the bending case, in good agreement with the classical first-order theory, the
displacements u and v are linear. But the displacement w is quadratic, while the classical first-order
theory considers that this component is constant over the entire thickness. For the membrane case, in
good agreement with the classical first-order theory, the displacements u and v are constant. But the
displacement w is linear, while the classical first-order theory considers that this component is equal to
zero over the entire thickness. In summary, to be fully consistent with solid theory, the classical first-
order theory must be corrected. The displacement w needs to be enriched and must contain a linear term
as well as a quadratic one. This does not mean that the classical Mindlin-Reissner plate theory is not
consistent. Indeed, this theory neglects the effect of the transverse strain &,, and the transverse stress

0,,. Consequently, the assumption stating that w is constant through the thickness has no consequence
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on the results. One may say that this theory is self-consistent but does

observed in the 3D theory of elasticity.

not reproduce all the effects
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Fig. 2.1. Moderately thin square plate under membrane or bending loading — Distribution of through-the-

thickness displacements.

The consistency between linear distribution for u and v and quadratic distribution for w can also be
demonstrated. First, as commonly accepted and highlighted in Fig. 2.1, for a given line in the z-direction,
assuming that both membrane and bending effects exist, linear through-the-thickness distributions are
assumed for u and v:

{u(z) =za; + a,

v(z) = zby + b, (2.3)
where a4, a,, b; and b, are coefficients to be determined for each line.
Then the strains &, &y, and yy,, are linear:
gxx = u,x = Za3 + a4,
Eyy = Vy = zbz + by (2.4)

)/xy == u,y + U'x = Zdl + d2
where a3, a4, b3, by, d, and d, are coefficients to be determined for each line.

For thin or moderately thick plates, the assumption g, = 0 is acceptable, leading to the classical

Exx
1-v|).”
> Yxy

In this case, from 3D solid stress-strain relation for isotropic material, the expression of ¢,, is
deduced:

relation between plane stresses and strains:

Jxx E
o =
{ J’J’E 1 — 2

Txy

1 v
v 2.5)
0 0
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v
&z =Wz =" (axx + ayy) (2.6)

Eqg. (2.5) shows that the stresses oy, gy, and gy, are linear. From Eq. (2.6), it is deduced that the
strain &,,, which is due to the Poisson effect, is linear. By integration of Eq. (2.6), one highlights the
quadratic expression of w. The displacement field given in Eq. (2.3) can then be completed as follows:

u(z) =za, +a,

v(z) = zby + b, (2.7
w(z) = z%¢c; + zcy + ¢4

where a4, a,, by, b,, ¢4, ¢, and c; are coefficients to be identified.

This displacement field also corresponds to the theory introduced by Naghdi [20].

2.2.2.3 Higher-order displacement field

The example presented in Section 2.2.2.1 and treated for a moderately thin plate, is now considered
for a thick case (I/h=5). The through-the-thickness distribution of displacements is shown in Fig. 2.2.
For the bending case, the displacements u and v seem to have a cubic variation, while w is again almost
guadratic. For this bending case, these observations correspond to the displacement field introduced by
Reissner [21].

u(z) =z, + Z3¢x
v(z) = zYy + 23 ¢y (2.8)
w(z) = wy + 2%,

It is worth noting that this displacement field uses classical variables: wy, ¥y, 1, but also other
variables: ¢, ¢y, &, which may be difficult to be interpreted and managed, for example to define
boundary conditions or loading. In the approach proposed, displacement field of Eq. (2.8) is rewritten
in the simple following form:

u(z) = z3a, + za,

U(Z) = Z3b1 + Zb2 (29)
w(z) = z%¢c; + ¢,

where a4, a,, b, b,, ¢; and c, are coefficients to be identified.

For the membrane case, the displacement w is almost linear, while the displacements u and v have
amore complex distribution. Anyway, a quadratic distribution which will be considered hereafter should
lead to correct results and seems to be a good choice, even if higher-order terms would certainly have
an influence. If one considers membrane and bending effects, compared to the displacement filed
proposed by Reissner [21], constant and quadratic terms must be added for u and v, and linear term must
be added for w. These observations correspond to the displacement field introduced by Lo et al. [22].

u(z) = ug + 2Py + 228, + 23 ¢y
v(z) = vy + 2Py + 2%, + 2Py (2.10)
w(z) = wotzy, + 22§,
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One can observe again that this displacement field uses classical variables but also other variables
due to higher-order terms. Finally, 11 variables are necessary for this theory. Lo et al. [22] state that this
type of theory is not convenient to use. The displacement field of Eq. (2.10) is exploited in the simple
following form:

u(z) = z3a, + z%a3 + za, + a,

v(z) = z3by + z%b3 + zb, + b, (2.11)
W(Z) = Z2C1 + ZC3 + Cy

where a4, a,, as, as, by, by, b3, by, ¢4, ¢, and c5 are coefficients to be identified.
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Fig. 2.2. Thick square plate under membrane or bending loading — Distribution of through-the-thickness

displacements.

2.3 Presentation of a new solid-shell approach — numerical aspects and implementation

The objective of this section is to explain how the displacement fields presented in Section 2.2.2 are
applied on the solid finite element mesh leading to solid-shell models. In all cases, equations are applied
on the assembled finite element model. Three solid-shell models are described. Eq. (2.2) leads to the
First-Order Solid-Shell (FOSS) model. In the same way, Eqg. (2.7) gives the Modified First-Order Solid-
Shell (MFOSS) model and Eq. (2.11) the Higher-Order Solid-Shell (HOSS) one. The principle,
illustrated in Fig. 2.3, consists in imposing a selected displacement field for each line of nodes in the z
direction. For each line slave degrees of freedom and master degrees of freedom are defined. Slave
degrees of freedom are eliminated from the system of equations to be solved. Each equation leads to the
elimination of one degree of freedom. Consequently, the number of degrees of freedom eliminated

corresponds exactly to the number of equations applied.
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2.3.1 FOSS model

For each through-the-thickness line, the FOSS model uses two master nodes T and B, the bottom
and the top ones, as described in Fig. 2.3. Eq. (2.2) contains two coefficients ( a; and a,) to be
determined for u, two coefficients ( b; and b,) for v and one coefficient (c; ) for w. To identify these
five coefficients, the following set of five equations is used:

(u(zp) =up = zga; + a,
u(zr) = ur = zray + a,
v(zp) = v = zgby + b, (2.12)
v(zr) = vy = zpby + b,
kW(ZB) =Wp =0
where ug, ur, vg, vy and wg are displacements at top and bottom nodes; z; and z; are the coordinates
in the z direction of bottom and top nodes respectively.

Solving Eq. (2.12) gives the expressions of coefficients identified for each through-the-thickness

line:
Ur — Up
(q., =
1
Zt — Zp
ZTUp — ZgUT
ay=————"—
Zr — Zp
Ur —Vp
b, = (2.13)
Zt — Zp
b ZtVp — ZgVT
2 =
Ztr —Zp
LCl = WB

Considering Eq. (2.13) in Eg. (2.2), one obtains:

Ur — Up N ZgpUr—ZTUpg

u(z) =z
Zr —Zp Zr —Zp
vy — U ZgUp—Z7V

v(z) =z——L BT T (2.14)
Zr —Zp Zr —Zp

w(z) = wg

Equations to be applied are obtained by replacing z by z; in Eq. (2.14), z; being the coordinate of

the slave node i in the z direction:

Ur —Up ZpUT—ZTUp

(u(zl-) =u; =z +

| Zr — Zp Zr — Zp

Ur —Vp ZgpUr—ZrVUp

{IV(Zi) =v} =z + (2.15)

Zr —Zp Zr —Zp
kw(zi) =w; = wg

For a given line in the z direction, the displacements ug, uy, vg, vy and wg must be calculated and
are the master degrees of freedom. All other degrees of freedom, called the slave degrees of freedom,
are expressed in terms of master degrees of freedom and are eliminated using Eq. (2.15). Concerning
the displacements u and v, Eq. (2.15) is applied at all through-the-thickness nodes, except bottom and

top ones. The displacements u of other nodes of the line are dependent of ugz and uy. In the same way
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the displacements v of other nodes of the line are dependent of vz and v4. Concerning w, Eq. (2.15) is
applied at all through-the-thickness nodes, except bottom one. The displacement w of other nodes is
dependent of wg. This description shows that the methodology relies on slave and master degrees of
freedom. For the sake of simplicity, one distinguishes master and slave nodes. It is considered here that
a given node is a master node if it contains at least one master degree of freedom. The FOSS model
contains five master degrees of freedom per line. It can be observed that Eq. (2.15) defines linear
relations between the slave and the master degrees of freedom. One complementary remark is that as far
as one needs two master nodes, it seems natural to select the top and bottom nodes, as described here.

But two other nodes through the thickness could be selected as well, leading to equivalent results.

z e Masternodes @ Slave nodes
Tyup o V7 Up o VI o W7 UT ¢ VI o Wr
y P uP VP
(‘xi ] yf )
B u % w
MB VB WB MB VB WB B B B
3D plate FOSS MFOSS HOSS

Fig. 2.3. Master nodes and slave nodes through-the-thickness of a 3D plate model.

2.3.2 MFOSS model

The methodology described in Section 2.3.1 for the FOSS model is now applied to build the MFOSS
model. This model exploits three master nodes T, B and M, as shown in Fig. 2.3. Eq. (2.7) contains two
coefficients ( a, and a,) to be determined for u, two coefficients ( b, and b,) for v and three coefficients
(¢q, ¢, and c3) for w. The coefficients a,, a,, b; and b, are the same as for the FOSS model. To identify
c; to ¢, the following equations are used:

w(zg) = wp = ;25 + 325 + ¢,
w(zy) = Wy = 125 + C32y + C; (2.16)
w(zp) = wp = ¢1Z2 + 3270 + ¢,
where wg, wy, and wy are displacements at master nodes; zg, z); and z; are the coordinates of master
nodes in the z direction.

The expressions of coefficients identified for each through-the-thickness line are:
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(&)

C3

=

Ur —up

Zt — Zp
ZTUp — ZBUT
Zt — Zp
VUr — Up
Zt — Zp
_ZrVp — ZpVr
Zr —ZB (2.17)

WgZy — WyZg — WgZr + WrZg + Wy Zr — WrZy
2
(zp — zr)(2p2zy — Zpzr + ZnZT — Zj)
WpZh — Wyzh — Wgz# + wrzh + wyzé — wrzd
- 2
(zp — zr)(2pzy — Zpzr + ZnZT — Zj)
—WTzézM + WMZ§ZT + WTZBZ,%,, — WMZBZ% — WBZI%,IZT + WBZMZ%

(zg — zr)(2pzy — Zpzr + ZyZr — Zfy)

Considering Eq. (2.17) and replacing z by z; in Eq. (2.7), one obtains equations to be applied at

slave node i:

w(z;) = w; = z{

Ur —Up ZpUT—ZTUp
(u(z) =uf =z +
Zr — Zp Zt — Zp
Ur —Vp ZpUr—ZrVp
v(z) =v; =z +
Zt — Zp Zr — Zp
S 2 WBZy — Wy Zpg — WBZr + WrZpg + WyZr — WrZy

2
(zg — zr)(2pzM — Zp2r + ZMZT — Zjf) (2.18)
WpZZ — Wy z5 — Wpzé + wrzi + wyz2 — wrzg

' (zg — zr)(2pzy — ZpZr + ZyZT — Zi)

—Wrz3Zy + WyZizr + WrZpzh — Wy Zpzi — Wpzizr + Wpzyz2

(zg — zr)(2pzy — ZpZr + ZyZr — Zi)

The MFOSS contains seven master degrees of freedom per through-the-thickness line. As for the

FOSS model, Eq. (2.18) describes linear relations between slave and master degrees of freedom.

2.3.3 HOSS model

The methodology is now applied to build the HOSS model. This model requires four master nodes

T, B, Mand P, as described in Fig. 2.3. Eq. (2.11) contains four coefficients ( a, to a,) to be determined

for u, four coefficients ( b, to b,) for v and three coefficients ( ¢, to c3) for w. To identify these eleven

coefficients, the following set of eleven equations is used:
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(u(zg) = ugp = a,z5 + azz4 + a,zg + a,
u(zy) = uy = a1z + a3z + azy + ay
u(zp) = up = ayzp + azz3 + ayzp + a,
u(zy) = ur = a1z5 + azz% + ayzr + a,
v(zg) = vg = byz3 + b3z + byzg + by

S v(zy) = vy = biz3 + b3zl + byzy + by (2.19)
v(zp) = Vp = byz5 + b3z + byzp + b,
v(zr) = vy = byz3 + b3z% + byzy + by
w(zg) = wg = 123 + 325 + ¢,

w(zy) = wy = 125 + 32y + ¢,

\W(zr) = wr = ;22 + 327 + ¢,

where ug, Uy, Up, Ug, Vg, Uy, Up, U, W, Wy, and  wy are the displacements at master nodes;
Zg, Zy, Zp and zy are the coordinates of master nodes in the z direction.
The expressions of coefficients identified for each through-the-thickness line are:

( uBZMZP uBZMZP uMZBZ]% + uMZ§Zp + uPZBZI%,[ — uPZ§ZM — uBZMZ% + uBZI%,[ZT
+uyzgz2 — uMZBZT — uTZBZf,, + uTzézM + uBZpZ% - ugzng — UpzpZ? + upzizr
a +uTszP UrZBZp — Uy ZpZs + Uy Zizr + uPzMzT uPzMzT uTzMz,% + uTz,%lzp
1 3
z2zy + z5zp + 252r — Z) — ZpZyZ
[(ZP_ZT)(ZMZP+ZMZT_ZPZT_Z )( pom T CB°P T BT 7B CBIM P)]
ZpZmZr — ZpZpZT — ZMZpZT
3 3 3 _ . .3, 3 3
uBZMZP uBZMZP UpZpZp + uMZBZp + UpZpZy uPZBZM UpZyZT + UpZyZr
+uMszT uMszT uTszM + uTzBZM + uBszT uBszT uPsz% + ungzT
tUrZpZs — UpZ3Zp — Uy ZpZs + Uy Z5Z7 + UpZyZs — UpZiyZy — UpZyZs + UrZiyZp
a3 =
2 2 2 3
ZgZy * ZpZp + ZgZy — Zg — ZgZyZ
[(ZP — 21)(2mZp + Zyzr — 2pZ7 — Zj) ( BoM T UBTR T CBUT 7B CBOM P)]
_ZBZMZT - ZBZPZT - ZMZPZT
) 2\ (2.20)
uBzMzP uBzMzP uMZBzP + uMszp + uszzM uPszM uBzMzT + uBzMzT
+uMszT uMszT uTszM + uTszM + uBszT uszzT uPszT + uszz%
‘urzizy —urzizh — uyzhzi + uyz3zi + upzhzi — upzyzi — urzhzs + urzyzh
a, = —
2 2 2 3
ZgZy + ZgZp + ZpZy — Zg — ZgZyZ
[(ZP — 27)(Zuzp + Zy2zr — 2ZpZr — Ziy) ( pemM T CBUR T CBOT O TB O CBTM P)]
ZgZyZy — ZgZpZy — ZyMZpZT
UrZpZyZp — UpZBZhZr — UrZpZBzy + UpZpZizy + UyZpZizr — Uy ZpZ22p
—UrZyZEzZp + UpZyZBzZr + UrZ3zEZy — UpZazBzy — UuyZzhZr + uyZ3zhzp
‘Urzyzizg — UpzZyzizg — UrzpziyZp + UpZaziyZp + Uy ZZizg — Uy Z3ZE2Zg
—uBzf,,z}%ZT + uBZ,%,Z%Zp + uBngf,,ZT - uBZ%Z,%,,ZP - uBzgz%zM + uBZ%ZEZM
a4 =
2 2 2 3
2N (ZpZy + ZgZp + ZgZy — Zg — ZpZpyZp
L [(ZP —z7)(Zmzp + ZmZr — ZpZr — Ziy) (

_ZBZMZT - ZBZPZT - ZMZPZT
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( VpZmZE — VpZ4Zp — VyZpZB + VyZBZp + VpZpzZl — VpzhzZy — VpZyZE + vpzhzZr
+17MZBZ'12~ - szézT - vTZBZI%’I + 'UTZ§ZM + vBZPZ'IZ" - vBZl%ZT - vPZBZ'IZ" + UPZ§ZT
+vr2Zpz3 — VrZEZp — VyZpZE + VyZBZr + VpZyZE — VpzZhzZr — VrZyZh + vrzhZp

b, = —
1 2 2 2 3
2~ (25Zy + ZgZp + ZpZy — Zg — ZpZyZp
[(ZP — zr)(Zyzp + ZmZr — ZpZr — Zjy) (
—ZpZyZr — ZgZpZy — ZMZpZT
3_ . .3, _ 3 3 3 _ .3 _ 3 3
UBZMZP vBZMZP vMZBZP + UMZBZP + vPZBZM vPZBZM vBZMZT + UBZMZT
+VyZpZE — VyzZhzr — VrZpzy + VrZhzZy + VpZpZi — VpzZizr — VpzZpzZe + VpZizZy
b +VrZpZ — VrZiZp — VyZpZa + VyZpzZy + VpZyZi — VpZyZr — VrZyZe + VrZiyZp
3~ 2 2 2 3
ZgZy + ZgZp + ZgZy — Zg — ZgZy Z
[(ZP — 21)(Zm2p + ZmZr — ZpZr — Zz%z)( BeM T "B°P T BT 7B CBIM P)]
—ZpZyZr — ZgZpZy — ZMZpZT
VpZ4Z — VpZiyZh — VyZEZ + VyzZpzE + vpzhzhy — Vpzizly — VpZhZE + gz ZF
‘v zEzE — vyzpzE — vrzhzy + vrzizh + vgzhzi — vpzizi — vpzEzE + vpzizd
b = +vrzEzd — vpz3zE — vyzEZE + vyzEZE + vpzhzE — vpzzE — vrzhzE + vz zh
, =

2 2 2 3

2~ (25Zy + ZgZp + ZgZy — Zg — ZpZyZp

[(ZP —zr)(zZyzp + ZymZr — ZpZy — Zjip) (
—ZpZyZTt — ZRZpZT — ZMZpZT

VrZ3ZhZp — VpZpZhZy — VrZpzhzy + VpZazizy + VyZpzizr — VyZiZEZp
—VrzyzBzp + VpzyZhzr + Vrzizhzy — vpzizEzy — vyzhzEzr + vy ZizEZp
‘vz zizg — VpzyZizg — Vrzpzhzy + vpZizhzp + vyzpzizg — vyzizhzg

—VpZyZhZr + VgZy2izp + Vpziziyzy — VpZizhzp — Vpzpzizy + vpZizhzy

b, =
4 2 2 2 3
2 (ZpZy + ZgzZp + ZgZt — Zg — ZgZy Zp
[(ZP —z7)(Zuzp + ZmZr — ZpZr — Ziy) (
—ZgZyZT — ZgZpZT — ZMmZpZT
= WpZy — WypyZg — WRZr + WrZp + Wy Zr — WrZy
1 2
(zg — zr)(z2y — ZpZr + ZyZT — Ziy)
o = WgZy — WyZg — WRZr + WrpZpg + Wy Zy — WrZy
1= 2
(zg — z1)(zp2Zm — ZpZr + ZMmZT — Zi)
o —Wrz3Zy + WyZizr + WrZpzl — Wy Zpz2 — WpziZp + Wpzyz2
, = —

(zg — zr)(2pzy — ZpZr + ZyZr — Ziy)

After replacing z by z; in Eq. (2.11), one obtains equations to be applied at slave node i:

u(z;) = uis = Zfal + Zi2a3 +z,a, +a,
v(z;) = vi = z7by + 2z} b3 + z;b, + b, (2.21)

w(z;) = wis = Zl-zcl + z;c3+ ¢,

with coefficients a,, a,, as, a4, b1, by, bs, b, ¢4, ¢, and c5 defined in Eq. (2.19).

The HOSS model contains 11 master degrees of freedom per through-the-thickness line. Eq. (2.21)

describes linear relations between slave and master degrees of freedom.

2.3.4 Remarks

As shown in Sections 2.3.1 to 2.3.3, the methodology is the same for the three theories considered.

Only the number of master degrees of freedom per through-the-thickness line is different, namely five,
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seven and eleven for the FOSS, MFOSS and HOSS solid-shell models respectively. The number of
equations applied is equal to the number of slave degrees of freedom which are systematically eliminated.
Consequently, the size of the system to be solved is given by the number of master degrees of freedom
and does not depend on the number of nodes through the thickness. The level of mesh refinement in the
thickness direction has no consequence on the size of the final model. As highlighted above, the relations
between slave and master degrees of freedom are linear. From a practical point of view, in Abaqus [61],
the “*EQUATION” keyword is used to consider these linear equations. Of course, in the post-processing
step, displacements at slave as well as master nodes are available. Then the stresses can be calculated in
all the finite elements of the mesh. The average value at nodes technique is retained to evaluate the
stresses.

The solid-shell approach proposed exploits displacements exclusively, without any other type of
degree of freedom. This is a hopeful characteristic of our methodology, in particular for higher-order
theories which initially use displacements, rotations, but also other types of degrees of freedom (see Eq.
(2.10)). Furthermore, there is no limitation for applying other displacement fields in our approach, which
means it can be developed for an even higher-order plate or shell theory if necessary.

2.4 Static examples

The new solid-shell approach for FOSS, MFOSS and HOSS models is here used for the treatment
of three examples with thin and thick cases in the context of static analysis: a square plate, a quarter of
cylinder, and a quarter of hyperboloid. Each static example is presented. A convergence study is made
for each example. The displacement and the von Mises stress are studied. The finite element results
obtained with the solid-shell models are evaluated by comparison with a reference solid model. The
reduction of model size due to the solid-shell approach is discussed. The compatibility of the solid-shell

approach with another efficient solid element is also proved.

2.4.1 Clamped square plate under distributed loading
2.4.1.1 Presentation of the example

The first example presented in Fig. 2.4 is a square plate, clamped along its four edges and submitted
to a distributed loading applied on the upper surface. Two values of the I/h ratio are considered: 20 and

5, leading respectively to a relatively thin plate case and a thick plate one.
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Fig. 2.4. Clamped square plate under distributed loading — Presentation of the example.

2.4.1.2 Convergence study

First a convergence study is presented, to ensure that our approach preserves the convergence quality
of the solid finite element used. Namely it is useful to compare the convergence characteristics of models
based on the approach proposed and the intrinsic convergence performance of the solid element used.
As mentioned before, our approach is compatible with any solid finite element. Here the twenty-node
hexahedral element C3D20 of Abaqus [61] is used. The evolution of displacement on the bottom face
in the center of the plate (see point O in Fig. 2.4) is observed, for several mesh refinement levels. A solid
model with a very fine 10x80%80 mesh is chosen to provide the reference results. It is considered here
that convergence is achieved if the error is less than 0.5% compared with this reference. Results
presented in Fig. 2.5 show that for the HOSS model convergence is obtained with 4x24x24 and 4x16x16
meshes for the thin and thick cases respectively. For both the thin and thick cases, the convergence of
the HOSS model is similar to the convergence of the solid model. For the thin or thick plate case, the
FOSS model converges to values which are completely wrong compared to the reference solution. The
MFOSS model also converges and the result is correct for the thin plate. However, some discrepancy

appears in the thick case. This is due to the basic kinematic assumptions used in this MFOSS model.
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Fig. 2.5. Clamped square plate under distributed loading — Convergence study.

2.4.1.3 Displacements and stresses in the thin plate case

Displacements and stresses are observed over the whole structure. Fig. 2.6 shows a comparison
between the results obtained with solid, MFOSS and HOSS models. Due to unsatisfactory convergence
results, the FOSS model is not considered in this comparison. Anyway, it will be discussed further for
a better analysis of its deficiencies. The results presented in this section are obtained with the 4x24x24

mesh, which meets the convergence criterion as highlighted in Section 2.4.1.2. The three models lead

to quite similar results for vertical displacements as well as for von Mises stresses.

Fig. 2.7 shows the distribution of vertical displacement and von Mises stress on the lower face along
the AB line defined in Fig. 2.4. The solid-shell models are compared with the solid model and a shell
model. Again the 4x24x24 mesh is used for the solid and solid-shell models. For the shell model, a
1x24x24 mesh, which meets the convergence criterion, is considered. All the models give very similar

results for displacements and von Mises stress, except the FOSS model which leads to significant errors.

These errors are due to a spurious o, stress state highlighted and discussed below.
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Fig. 2.6. Clamped square plate under distributed loading — Displacement and von Mises stress distributions in

the thin plate case.
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Fig. 2.7. Clamped square plate under distributed loading — Distribution of vertical displacement (a) and von

Mises stress (b) along a line on the lower face, in the thin case.

Fig. 2.8 shows the through-the-thickness distribution of displacements and stresses at point C (see
Fig. 2.4), the reference results being given by the solid model. First, one can see that the FOSS model

gives unsatisfactory results. In particular, displacement w (Fig. 2.8b) is wrong and a high level oz stress
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(Fig. 2.8e) is observed. This spurious o, stress is due to the fact that w is considered as constant through
the thickness. Consequently, the g, strain which is natural because of the Poisson effect, is prevented.
In the context of 3D theory of elasticity, this nonphysical assumption considerably disturbs the state of
stress and in particular, it implies large o, stresses, while this stress should remain very small in this thin
plate case. The von Mises stress which depends on the different stress components is affected by this
wrong 0z stress. These bad results confirm that this kinematic assumption, although valid and consistent
in the context of the classical plate theory, is not compatible with the 3D theory of elasticity. This
phenomenon is usual for solid-shell elements and is known as the Poisson thickness locking. The FOSS
model also leads to a constant oy, distribution (Fig. 2.8d). This is a well-known result and a limitation of
the Mindlin-Reissner plate theory. A usual approach is to use integration of equilibrium equations to
obtain a correct and quadratic distribution of transverse shear stresses.

Reference displacement v (Fig. 2.8a) is linear through the thickness and one can observe a perfect
fit between the solid model and the MFOSS and HOSS models. The distribution of w is perfectly
predicted as well by these solid-shell models. This distribution seems to be quite constant through the
thickness but a detailed observation shows a slight quadratic tendency. The oy stress (Fig. 2.8c) is linear
through the thickness and again very good results are obtained with the MFOSS and HOSS models. The
classical quadratic distribution of oy, is well reproduced by the HOSS model. Namely, the free-face
condition 0x=0 is almost met at top and bottom faces. The MFOSS model highlights a quadratic
tendency, thanks to the quadratic w distribution, but the difference with the reference distribution is
significant. Moreover, the free-face condition ox=0 is not met at top and bottom faces. This is not very
important for thin structures because transverse shear stresses are generally neglected in this case and
influence of transverse shear effects on displacements is small.

In summary, the HOSS model gives excellent results for the thin plate case. The MFOSS model is
also satisfactory but it is not able to correctly reproduce the transverse shear effects. Anyway, these
effects can be neglected for a thin structure and so this model is quite convenient for thin structures.
Finally, the FOSS model gives unacceptable results. Therefore, this model is not considered for the rest
of the study.
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Fig. 2.8. Clamped square plate under distributed loading — Through-the-thickness displacements and stresses

at point C, in the thin case.

2.4.1.4 Displacements and stresses in the thick plate case

Displacements and stresses are observed over the whole structure. Fig. 2.9 shows a comparison
between the results obtained with solid, MFOSS and HOSS models. The 4x16x16 mesh, which meets
the convergence criterion, is used. For this global observation, the solid model and the HOSS model
highlight similar results. For the MFOSS model, in this very thick plate case, some discrepancy is
observed on displacement and von Mises stress.

Magnitude of displacement (X 10-3mm)
6.895
5.171
3.447
1.724
0

von Mises stress (MPa)
8.515

6.386

2.129
6.627 X108
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Fig. 2.9. Clamped square plate under distributed loading — Displacement and von Mises stress distribution in

the thick plate case.

Fig. 2.10 shows the distribution of vertical displacement and von Mises stress on the lower face

along the AB line defined in Fig. 2.5. The solid-shell models are compared with the solid model and a
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shell model. Again the 4x16x16 mesh is used for the solid and solid-shell models. For the shell model,
a 1x20x20 mesh, which meets the convergence criterion, is considered. For displacement, the HOSS
model fits very well with the solid one. Some error is obtained with the shell approach and the MFOSS
model. For von Mises stress, again the HOSS model fits very well with the solid one. The shell model
and the MFOSS models lead to some errors, in particular in the boundary conditions area. Some
discrepancy is also observed with the MFOSS model within the plate. This is due to a rough calculation
of the transverse stresses which are significant in the thick case, this issue is highlighted and discussed
below. These results confirm that the HOSS model is necessary to correctly predict the transverse shear

effects and so the mechanical behaviour of a thick plate.
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Fig. 2.10. Clamped square plate under distributed loading — Distribution of vertical displacement (a) and von

Mises stress (b) along a line on the lower face, in the thick case.

Fig. 2.11 shows the through-the-thickness distribution of displacements and stresses at point C (see
Fig. 2.4), the reference results being given by the solid model. The MFOSS model has several limitations.
The quadratic tendency of w (Fig. 2.11b) is well reproduced but the displacement values are not correct,
this result means that the stiffness of the structure is not well estimated. This is due to the fact that the
transverse shear stiffness, which depends on the through-the-thickness transverse shear strains and
stresses, is not precisely calculated. Indeed, the distribution of oy, (Fig. 2.11d) is not correct. The
reference quadratic distribution of oy, is not well reproduced by the MFOSS model. Namely, as for the

thin case, the free-face condition 0x=0 is not met at top and bottom faces. And in the thick case with a
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small I/h ratio, this is a problem because by the contrary of the thin plate case, the transverse shear effects
are significant. Classically the Mindlin-Reissner plate theory is associated with shear correction factors
to compensate the limitation due to kinematic assumptions. But in our solid-shell approach, no
correction factor is used and consequently the MFOSS model suffers from some error concerning the
transverse shear stiffness of the structure. Of course, this wrong oy, distribution also leads to errors on
the von Mises stress, as observed in Fig. 2.10. Moreover, this MFOSS model is not able to reproduce
the slightly nonlinear distribution of v (Fig. 2.11a) and ox. On the contrary, one can observe a very good
fit between the solid model and the HOSS model. The quadratic distribution of displacements is
correctly predicted by this model. The reference stress ox (Fig. 2.11c) is also slightly nonlinear and the
HOSS model reproduces this result very well. The reference quadratic distribution of oy, is also well
reproduced by the HOSS model. Namely, as for the thick case, the free-face condition g,,=0 is almost

met at top and bottom faces.

1.0 ¥ ¥
¥ (b)
® %
# e .
0.5 % % —%— Solid
m&g *%} —=— HOSS
: P —+— MFOSS
0.0f 3 Yo
-56 -52 -48
w (x10*mm)
- i 1.0}
1.0 J %/Eﬂ (d) (e)
%
0.5¢ % 0.5t
=
i';r\% %
0.0+ e \% 0.0t A
-2.5 0.0 2.5 -1.0 -0.5 0.0 -1.5 0.0 1.5
c, (MPa) c_(MPa) c_ (MPa)

Fig. 2.11. Clamped square plate under distributed loading — Through-the-thickness displacements and stresses

at point C, in the thick case.

2.4.1.5 Accuracy synthesis of solid-shell models

Table 2.1 summarizes the errors obtained with the solid-shell models, in the thin and thick plate
cases. These errors are calculated on the maximal displacement observed at the centre of the plate and
on the maximum von Mises stress observed in the boundary conditions area. The MFOSS model gives
good results in the thin plate case. The errors are less than 1% for the displacement and the von Mises
stress. Anyway, even in this case the HOSS model is better because transverse shear effects are small
but not completely negligible. Indeed, the I/h ratio is equal to 20, which is not characteristic of a very

thin plate. In the thick plate case, the HOSS model remains very satisfactory, the errors do not exceed
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1%, while the MFOSS model leads to some discrepancy. With this model the error is about 5% for the
displacement and 10% for the von Mises stress.

In summary, the HOSS model gives excellent results in the thin as well as the thick cases, while the
MFOSS model is convenient for thin plates only.

In addition, this study was performed again with another type of solid element, the 8-node solid
hexahedron element C3D8I [49] of Abaqus, has been used. Similar results have been obtained,

demonstrating that the methodology proposed can be applied with any efficient solid finite element.

Table 2.1. Clamped square plate under distributed loading — Accuracy synthesis for maximal displacement

and maximal von Mises stress.

Displacement w von Mises stress
Examples Models - ;
Maximum (x10mm) | Error (%) | Maximum (MPa) | Error (%)

Solid -1093 - 89.33 -

Relatively
thin plate HOSS -1093 0.1 88.96 0.4
MFOSS -1086 0.6 88.41 1.0
Solid -6.895 - 8.515 -

Very thick
plate HOSS -6.882 0.2 8.424 1.1
MFOSS -6.562 4.8 7.671 9.9

2.4.2 Quarter of cylinder under pressure
2.4.2.1 Presentation of the example

The second example presented in Fig. 2.12 is a quarter of cylinder, clamped along its two ends and
submitted to a pressure applied on the outer surface. The outside radius is 200 mm and two values: 10
mm and 50 mm, are considered for the thickness, leading respectively to a thin shell case and a thick
shell one. The main difference with the first example is that the structure is now curved, allowing natural
coupling between membrane and bending effects. For this example, in order to apply kinematic relations
on the solid model to obtain a solid-shell model, local coordinate systems are created for each line of
nodes through the thickness of the structure. The equations involving the degrees of freedom concerned

are applied using these local coordinate systems.
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Fig. 2.12. Quarter of cylinder under pressure — Presentation of the example.

2.4.2.2 Convergence study

First a convergence study is presented. The approach already detailed for the first example is
repeated here. Again, the twenty-node hexahedron element C3D20 from Abaqus [61] is used. The
evolution of displacement on the inner face in the center of the structure (see point O in Fig. 2.12) is
observed, for several mesh refinement levels. A solid model with a very fine 10x80x80 mesh is chosen
to provide the reference results. It is considered that convergence is achieved if the error is less than 0.5%
compared with this reference model. Results are reported in Tables 2.2 and 2.3 for the HOSS model.
Convergence is obtained with 4x20%20 mesh and 4x16x16 meshes for the thin and thick cases
respectively. Moreover, convergence characteristics are similar for the HOSS model and the solid model.
As for the first example, due to basic assumptions used, for the MFOSS model the convergence criterion
defined above is never achieved because this model does not exactly converge to the reference solution.
Indeed, some discrepancy appears concerning the value of displacement, in particular for the thick case.

Anyway, convergence is observed also for this model.

Table 2.2. Quarter of cylinder under pressure — Convergence study of displacement

w at point O for the thin shell case.

Mesh Models Displacement w (x10*mm) | Error (%)
10x80x80 Reference -5.176 -
Solid -5.854 13
1x6%6
HOSS - _
Solid -5.259 1.6
2x10x10
HOSS -5.271 1.8
Solid -5.169 0.1
4x20%x20
HOSS -5.182 0.1
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Table 2.3. Quarter of cylinder under pressure — Convergence study of displacement w at

point O for the thick shell case.

Mesh Models Displacement w (x10"*mm) | Error (%)
10x80%80 | Reference -1.691 -
Solid -1.509 10
1x4x4
HOSS - -
Solid -1.656 2.1
2x8x8
HOSS -1.652 2.3
Solid -1.689 0.1
4x16x16
HOSS -1.688 0.2

2.4.2.3 Displacements and stresses in the thin shell case

Displacements and stresses are observed over the whole structure. Fig. 2.13 shows a comparison
between the results obtained with solid, MFOSS and HOSS models. The results presented in this section
are obtained with the 4x20x20 mesh, which meets the convergence criterion as highlighted in Section

2.4.2.2. The three models lead to quite similar results for displacements as well as for von Mises stresses.
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Fig. 2.13. Quarter of cylinder under pressure - Displacement and von Mises stress distributions in the thin

shell case.

Fig. 2.14 shows the distribution of vertical displacement in the global coordinate system and von

Mises stress on the lower face along the AB line defined in Fig. 2.12. The solid-shell models are
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compared with the solid model and a shell model. Again the 4x20x20 mesh is used for the solid and
solid-shell models. For the shell model, a 1x20x20 mesh, which meets the convergence criterion, is

considered. All the models give very similar results for displacements and von Mises stress.
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Fig. 2.14. Quarter of cylinder under pressure — Distribution of vertical displacement (a) and von Mises stress

(b) along a line on the lower face, in the thin case.

2.4.2.4 Displacements and stresses in the thick shell case

Displacements and stresses are observed over the whole structure. Fig. 2.15 shows a comparison
between the results obtained with solid, MFOSS and HOSS models. The results presented in this section
are obtained with the 4x16x16 mesh, which meets the convergence criterion. The three models lead to

close results, some minor differences can be observed on displacements as well as on von Mises stresses.
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Fig. 2.15. Quarter of cylinder under pressure - Displacement and von Mises stress distributions in the thick

shell case.

Fig. 2.16 shows the distribution of vertical displacement in the global coordinate system and von
Mises stress on the lower face along the AB line defined in Fig. 2.12. The solid-shell models are
compared with the solid model and a shell model. Again the 4x16x16 mesh is used for the solid and
solid-shell models. For the shell model, a 1x20x20 mesh, which meets the convergence criterion, is
considered. For displacement, the HOSS model fits very well with the solid one. Some minor error is
observed with the MFOSS model. For von Mises stress, again the HOSS model fits very well with the
solid one. The MFOSS model leads to some errors. As explained for the first example, this is due to a
rough calculation of the transverse shear stresses which are not negligible in the thick case. These results
confirm that the HOSS model is necessary to correctly predict the transverse shear effects and so the
mechanical behaviour of a thick shell. Results obtained with the HOSS approach are fully satisfactory.
It is worth noting that in this thick shell case, the shell model gives bad displacement and von Mises
stress results. This is due to the fact that the distributed pressure loading is applied on a face of the
structure. This surface is naturally correct with a solid or solid-shell model, but with the shell approach,
the mid-surface is used to define loading. For a curved structure, the area of this mid-surface is
significantly wrong in the thick case, leading to an error on loading. This is also a limitation of the shell

approach and from this point of view the solid-shell approach is preferable.
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Fig. 2.16. Quarter of cylinder under pressure — Distribution of vertical displacement (a) and von Mises stress

(b) along a line on the lower face, in the thick case.

2.4.2.5 Accuracy synthesis of solid-shell models

Table 2.4 summarizes the errors obtained with the solid-shell models, in the thin and thick quarter
of cylinder cases. As for example 1, these errors are calculated on the maximal displacement and on the
maximum von Mises stress. The results are similar compared with example 1. The MFOSS model gives
good results in the thin shell case. The errors are less than 0.5% for the displacement and about 2% for
the von Mises stress. As for example 1 even in this case the HOSS model is better because transverse
shear effects are small but not completely negligible. In the thick shell case, the HOSS model remains
very satisfactory, indeed the errors are limited to about 1%, while the MFOSS model leads to some
discrepancy. Indeed, the error is about 2% for the displacement and 7% for the von Mises stress.

In summary, from a theoretical point of view, the HOSS model gives excellent results in the thin as
well as the thick cases, while the MFOSS model is convenient for thin structures only. These results
show that for thick structures, the higher-order theory introduced by Reissner [21] and Lo et al. [22] is
more efficient than the first-order theory. Concerning numerical aspects, the approach based on a solid
model constrained by through-the-thickness kinematic relations to obtain a solid-shell model works well.
Moreover, the concept of master and slave nodes, involving linear equations between the concerned

degrees of freedom, is also efficient.
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In addition, this study was performed again with the 8-node solid hexahedral element C3D8I [62]
of Abaqus. Similar results have been obtained, demonstrating that the methodology proposed can be

applied with any efficient solid finite element.

Table 2.4. Quarter of cylinder under pressure — Accuracy synthesis of maximal displacement and maximal

von Mises stress.

Displacement w von Mises stress
Examples | Models - -
Maximum (x10*mm) | Error (%) | Maximum (x10°MPa) | Error (%)
Solid -8.805 - 45.34 -
Thin 1 Hoss 8.792 0.1 45.23 0.2
cylinder s ' ' '
MFOSS -8.773 0.4 44,50 19
Solid -2.415 - 4.315 -
Thick
cylinder HOSS -2.406 0.4 4.261 1.3
MFOSS -2.369 19 4.013 7.0

2.4.3 Quarter of hyperboloid under pressure
2.4.3.1 Presentation of the example

The third example presented in Fig. 2.17 is a quarter of hyperboloid, clamped along its two ends
and submitted to a pressure applied on the outer surface. The outside radius at ends is 200 mm and the
outside radius in the middle is 150 mm. Two values of thickness: 10mm and 50 mm, lead respectively
to thin and thick shell cases. This example also allows natural coupling between membrane and bending
effects but with a structure more complex than a quarter of cylinder. To apply kinematic relations on the
solid model to obtain a solid-shell model, local coordinate systems are created for each line of nodes
through the thickness of the structure. The equations involving the degrees of freedom concerned are

applied using these local coordinate systems.

r1=200 mm

2= 150 mm

t= 10 mm or 50 mm
p=10MPa E=210000 MPa v=0.3 [ =400 mm

Fig. 2.17. Quarter of hyperboloid under pressure — Presentation of the example.
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2.4.3.2 Convergence study

A convergence study of mesh is presented. The approach already detailed for the first and second
examples is repeated here. Again, the twenty-node hexahedron element C3D20 from Abaqus is used.
The evolution of displacement on the inner surface in the center of the structure (see point O in Fig.
2.17) is observed, for several mesh refinement levels. A solid model with a very fine 10x80x80 mesh is
chosen to provide the reference results. It is considered that convergence is achieved if the error is less
than 0.5% compared with this reference model. Results are reported in Tables 2.5 and 2.6 for the HOSS
model. Convergence is obtained with 4x16x20 mesh for the thin and thick cases. Moreover,
convergence characteristics are similar for the HOSS model and the solid model. Due to basic
assumptions used, for the MFOSS model the convergence criterion defined above is never achieved
because this model does not exactly converge to the reference solution. Indeed, some discrepancy
appears concerning the value of displacement, in particular for the thick case. Anyway, convergence is

observed also for this model.

Table 2.5. Quarter of hyperboloid under pressure — Convergence study of

displacement w at point O for the thin shell case.

Mesh Models | Displacement w (x10™*mm) | Error (%)
8x32x40 | Reference -7.458 -
Solid -7.137 4.3
1x4x5
HOSS - -
Solid -7.384 1.0
2x8%10
HOSS -7.379 1.1
Solid -7.445 0.2
4x16%20
HOSS -7.444 0.2

Table 2.6. Quarter of hyperboloid under pressure — Convergence study of

displacement w at point O for the thick shell case.

Mesh Models | Displacement w (x10*mm) | Error (%)
8x32x40 | Reference -1.235 -
Solid -1.155 6.5
1x4x5
HOSS - -
Solid -1.219 1.3
2x8x10
HOSS -1.214 1.7
Solid -1.232 0.2
4x16%20
HOSS -1.229 0.5
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2.4.3.3 Displacements and stresses in the thin shell case

Displacements and stresses are observed over the whole structure. Fig. 2.18 shows a comparison
between the results obtained with solid, MFOSS and HOSS models. The results presented in this section
are obtained with the 4x16x20 mesh, which meets the convergence criterion. The three models lead to

quite similar results for displacements as well as for von Mises stresses.

Magnitude of displacement (X 10-' mm)

10.53
7.901
5.267
2.634
0

12.98
9.878
6.772
3.666

y

0.560

Fig. 2.18. Quarter of hyperboloid under pressure - Displacement and von Mises stress distributions in the thin

shell case.

Fig. 2.19 shows the distribution of vertical displacement in the global coordinate system and von
Mises stress on the inner surface along the AB line defined in Fig. 2.17. The solid-shell models are
compared with the solid model and a shell model. The 4x16x20 mesh is used for the solid and solid-
shell models. For the shell model, a 1x16x20 mesh, which meets the convergence criterion, is considered.
The HOSS model and the reference solid model give very similar results for displacements and von
Mises stress. The MFOSS model leads to some errors for stresses, that is due to a rough calculation of
the transverse shear stresses which are not negligible in this relatively thin case. The shell model gives
different results both for displacements and stresses because it is based on the mid-surface, leading to

some geometrical modeling differences at the ends.
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—#— Solid
—=5— HOSS
—#— MFOSS
—o— Shell

! I I |
0.0 0.2 0.4 0.6 0.8 1.0
x/l

von Mises stress (x10°MPa) Displacement w (x10"'mm)

Fig. 2.19. Quarter of hyperboloid under pressure — Distribution of vertical displacement (a) and von Mises stress

(b) along a line on the lower face, in the thin case.

2.4.3.4 Displacements and stresses in the thick shell case

Displacements and stresses are observed over the whole structure. Fig. 2.20 shows a comparison
between the results obtained with solid, MFOSS and HOSS models. The results presented in this section
are obtained with the 4x16x20 mesh. The three models lead to close results, some minor differences can
be observed on displacements as well as on von Mises stresses.

Magnitude of displacement (X 10" mm)

x Solid

Fig. 2.20. Quarter of hyperboloid under pressure — Displacement and von Mises stress distributions in the thick

shell case.
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Fig. 2.21 shows the distribution of vertical displacement in the global coordinate system and von
Mises stress on the inner surface along the AB line defined in Fig. 2.17. The solid-shell models are
compared with the solid model and a shell model. Again the 4x16x20 mesh is used for the solid and
solid-shell models. For the shell model, a 1x16x20 mesh, which meets the convergence criterion, is
considered. For both the displacement and von Mises stress, the HOSS model fits very well with the
solid one. Some minor error is observed with the MFOSS model. As explained for the first and second
examples, this is due to a rough calculation of the transverse shear stresses which are not negligible in
the thick case. These results confirm that the HOSS model is necessary to correctly predict the transverse
shear effects and so the mechanical behavior of a thick shell. Results obtained with the HOSS approach
are fully satisfactory. It is worth noting that in this thick shell case, the shell model gives bad
displacement and von Mises stress results. This is due to the fact that the distributed pressure loading is
applied on a face of the structure. This surface is naturally correct with a solid or solid-shell model, but
with the shell approach, the mid-surface is used to define loading. For a curved structure, the area of this
mid-surface is significantly wrong in the thick case, leading to an error on loading. This is also a
limitation of the shell approach and from this point of view the solid-shell approach is preferable.
Another reason is as described for the thin case, the shell model is based on the mid-surface, leading to
some geometrical modeling differences at the ends. It is also a limitation of the shell approach.

0.0
-04
-0.8
-1.2
—— Solid
—=— HOSS
—x— MFOSS
Shell

b

0.8

0.4

0.0

von Mises stress (x10*°MPa) Displacement w (x10™' mm)

Fig. 2.21. Quarter of hyperboloid under pressure — Distribution of vertical displacement (a) and von Mises stress

(b) along a line on the lower face, in the thick case.

2.4.3.5 Accuracy synthesis of solid-shell models

Table 2.7 summarizes the errors obtained with the solid-shell models, in the thin and thick shell

cases. As for examples 1 and 2, these errors are calculated on the maximal displacement and on the
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maximum von Mises stress. The MFOSS model gives good results in the thin shell case. The errors are
less than 0.9% for the displacement and about 0.7% for the von Mises stress. The HOSS model is better
because transverse shear effects are small but not completely negligible. In the thick shell case, the
HOSS model remains very satisfactory, indeed the errors are limited to about 0.4%, while the MFOSS
model leads to some discrepancy. Indeed, the error is about 5% for the displacement and 7% for the von
Mises stress. In summary, from a theoretical point of view, the HOSS model gives excellent results in
the thin as well as the thick cases, while the MFOSS model is convenient for thin structures only.
Concerning numerical aspects, the approach based on a solid model constrained by through-the-
thickness kinematic relations to obtain a solid-shell model works well. Moreover, the concept of master

and slave nodes, involving linear equations between the concerned degrees of freedom, is also efficient.

Table 2.7. Quarter of hyperboloid under pressure — Accuracy synthesis of maximal displacement and

maximal von Mises stress.

Displacement w von Mises stress
Examples | Models - -
Maximum (x10*mm) | Error (%) | Maximum (x102MPa) | Error (%)

Solid -7.868 - 12.98 -
Thin HOSS -7.868 0 12.99 0.1

hyperboloid : ' :
MFOSS -71.797 0.9 13.07 0.7

Solid -1.456 - 3.146 -

Thick

hyperboloid HOSS -1.454 0.1 3.159 0.4
MFOSS -1.385 4.9 2.940 6.5

2.4.4 Model size

Compared with the solid model, our solid-shell models lead to a reduction of the number of degrees
of freedom, which is interesting from a computational time point of view. Fig. 2.22 shows the
comparison of the number of degrees between the solid approach and the solid-shell ones. The results
are reported for the plate example, but the same trends can be observed also on other examples. The
reduction of the number of degrees of freedom increases with the number of elements, which is a hopeful
characteristic of the solid-shell approach proposed. As mentioned in Section 2.3.4, the number of master
degrees of freedom remaining after application of equations is independent of the number of nodes
through the thickness. Consequently, the size of the final solid-shell model does not depend on the
number of nodes through the thickness. For fine meshes, the gain is quite significant with solid-shell
models compared with solid models. Of course, the gain obtained with the MFOSS model is bigger

compared with the HOSS model because it requires a smaller number of master nodes.
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Fig. 2.22. Influence of the meshing refinement level on the number of degrees of freedom for different

modeling approaches.

It’s useful to compare the MFOSS and HOSS models with classical shell element performances in
terms of model size. Fig. 2.23 shows the comparison of the number of degrees of freedom between
different modeling approaches. The results are reported for the quarter of cylinder example, but the same
trends can be observed also on other examples. For solid and solid-shell models, the results are reported
for a mesh which meets the convergence condition, that is to say 4x20%20 and 4x16x16 in the thin and
thick cases respectively. In addition, a shell model is also considered, with the same refinement level
through the mid-surface of the structure, in order to compare the solid-based approaches and the shell
one. The trends observed are the same for the thin and thick cases. Results confirm that solid-shell
approach allows quite significant reduction of the problem size, compared with the solid approach.
Moreover, the number of degrees of freedom is close for the MFOSS model and the shell one. Indeed,
the difference is limited to 15%. This means that in term of model size, these two approaches are
comparable. From the model size point of view, the HOSS model is intermediate between the shell
model and the solid one.

3 Solid
TN HOSS
% 24507 MFOSS
E 9 L Shell
QO 15963
) 14091
s
E 1 8967 7686 9163
g 5831 4998
Z

0

Thin case Thick case

Fig. 2.23. Comparison of the number of degrees of freedom between different modeling approaches.

2.5 Vibration examples

The new proposed solid-shell approach with FOSS, MFOSS and HOSS models is now used for the

treatment of two examples in the context of vibration analysis: a square plate and a cylindrical panel, in
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both thin and thick cases. A convergence study is made for each example. The frequencies and mode

shapes obtained with solid-shell and the reference solid models are compared.
2.5.1 Square plate

2.5.1.1 Presentation of the example

The geometries of square plates described in Fig 2.4 are used here in the context of free-free
vibration analysis, with the density equal to 7.89x10° t/mm?. The I/h ratio equals 20 and 5, representing

the relatively thin and very thick cases respectively.

2.5.1.2 Convergence study

The thin and very thick structures are discretized with the twenty-node hexahedral element C3D20
in Abaqus. For the two square plates, a convergence study is made for the free-free vibration analysis
of the first eight natural frequencies. For the reference solid, HOSS and MFOSS models, the 4x24x24
and 4x16x16 meshes meet the convergence requirement for the relatively thin and very thick plates
respectively. For the shell models, the 1x24x24 and 1x16x16 meshes, which meet the convergence
criterion, are considered for the relatively thin and very thick plates respectively.

2.5.1.3 Mode shapes

For the reference solid, HOSS, and MFOSS models in the relatively thin plate case, the first eight
mode shapes are shown in Fig. 2.24. It is observed the mode 7 is a torsion mode, modes 8, 9, 12, 13 and
14 are bending modes, modes 10 and 11 combine bending and torsional effects. All the models give
very similar results for these modes.

The first eight mode shapes for the reference solid, HOSS, and MFOSS models in the very thick
plate case, are shown in Fig. 2.25. It is observed mode 7 is a torsion mode, modes 8 and 9 are bending
modes, modes 10 and 11 combine the torsion and bending effects, modes 12, 13 and 14 are the

membrane modes. All the models presented here lead to similar mode shapes.
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Mode 10

¢oé

Mode 11 Mode 13 Mode 14

Fig. 2.24. Square plate in free-free vibration — First eight mode shapes obtained with the reference solid, HOSS
and MFOSS models for the relatively thin case.

Solid > ,
HOSS ,
MFOSS : ,
Mode 10
oS ‘
MFOSS -

Mode 11 Mode 12 Mode 13 Mode 14

Fig. 2.25. Square plate in free-free vibration — First eight mode shapes obtained with the reference solid, HOSS,

and MFOSS models for the very thick case.

43



For a further comparison of these modes between our solid-shell models and the reference solid
models, the Modal Assurance Criterion (MAC) is used. The MAC is expressed as:

_ Ps s
llpsl X llpss|l (2.22)

where ¢, and ¢ are respectively the eigenvectors for the solid model and the solid-shell model.

MAC (s, dss) =

The MAC values calculated between the HOSS model and the reference solid model for both the
relatively thin and very thick square plates are reported in Fig. 2.26. The MAC values are always greater
than 0.9, it indicates strongly correlated modes. Very similar results have been observed for the MAC
values between MFOSS model and reference solid model. For both the relatively thin and very thick

plates, a perfect consistency is observed between the MFOSS, HOSS and the reference solid models.

HOSS HOSS
7 8 9 10 11 12 13 14 7 8 9 10 11 12 13 14 1
7 7
8 0.8 8 0.8
? 0.6 ? 0.6
210 =10
311 04 A1l 0.4
12 12
0.2 .
13 13 0.2
14 0 14 0
Thin plate Thick plate

Fig. 2.26. Square plate in free-free vibration — MAC matrix between the solid-shell and the reference models

for the relatively thin and very thick plates.

2.5.1.4 Frequencies

The first eight angular frequencies of the square plate are obtained for reference solid, HOSS,
MFOSS, FOSS and shell models in the relatively thin case, and for reference solid, HOSS, MFOSS and
shell models in the thick case. In order to compare the results of these models with the analytical results
of Liew et al. [63] based on Mindlin’s plate theory for thick plates, the non-dimensional frequency

parameter is introduced. This parameter is expressed as

1= wl?J12 x (1 —v2) p/Eh? (2.23)
where w is the angular frequency, p is the material density and other quantities are defined in Fig. 2.4.
The non-dimensional frequency parameters are reported in Table 2.8 for the relatively thin and thick
cases. Errors on this parameter compared with the reference solid models are presented in Table 2.9 for
solid, HOSS, MFOSS, FOSS, shell and Liew’s [63] models. It is observed the FOSS model gives bad
results for the non-dimensional frequency parameter due to a spurious 6z, Stress state, as described in

static examples. The FOSS error is systematically significant and greater than 10% for mode 9. The
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MFOSS models provide correct results compared with the reference solid models for both the relatively
thin plate and very thick plate. But for some complex modes, especially for the very thick plate, errors
more than 1% are observed. Indeed, the transverse shear stiffness is not well evaluated in this case. The
HOSS models highlight results very close to the reference results, with errors less than 0.1% for both
the relatively thin plate and the very thick plate. The shell models also give good results. The results
obtained by Liew [63] for the very thick plate have a good consistency with the reference solid, HOSS

and shell models.

Table 2.8. Square plate in free-free vibration — Non-dimensional frequency parameters of different models for

the relatively thin and very thick plates.

Mode

I/h ratio Model
7 8 9 10 11 12 13 14

Solid 13.144119.426 | 24.018 | 33.726 | 33.726 | 59.470 | 59.470 | 60.732
HOSS 13.144119.426 | 24.018 | 33.726 | 33.726 | 59.470 | 59.470 | 60.732

20 MFOSS 13.170|19.431|24.033 | 33.808| 33.808 | 59.587 | 59.587 | 60.972
FOSS 13.242119.802 |27.109 | 34.768 | 34.768 | 63.191 | 64.820 | 64.820
Shell 13.144|19.426 | 24.018 | 33.721 | 33.721 | 59.480 | 59.480 | 60.712

Solid 11.711|17.434|21.253 | 27.650 | 27.650 | 40.191 | 42.775 | 42.775
HOSS 11.712|17.435|21.256 | 27.657 | 27.657 | 40.191 | 42.775 | 42.775

5 MFOSS 11.826|17.514|21.402|28.035|28.035|40.198 | 42.832|42.832
Shell 11.705|17.413|21.216|27.592|27.592 | 40.233 | 42.864 | 42.864

Liew et al. [51]|11.701|17.400|21.194|27.574|27.574| - - -
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Table 2.9. Square plate in free-free vibration — Errors (%) on non-dimensional frequency parameters of

different models for the relatively thin and very thick plates.

Mode
I/h ratio Model

7 8 9 10 11 12 13 14
HOSS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MFOSS 0.2 0.0 0.1 0.2 0.2 0.2 0.2 0.4
20 FOSS 0.7 19 12.9 3.1 3.1 6.3 9.0 6.7
Shell 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HOSS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MFOSS 1.0 0.5 0.7 14 14 0.0 0.1 0.1
> Shell 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.2
Liewetal. [51]| 0.1 0.2 0.3 0.3 0.3 - - -

2.5.2 Cylindrical panel

2.5.2.1 Presentation of the example

The second vibration example presented in Fig. 2.27 is a cylindrical panel clamped along its four
edges. Density of the material, characteristic of steel, is equal to 7.89x10° t/mm?2. Two cases, one with
an outside radius of 400 mm and a thickness of 4 mm, the other with an outside radius of 200 mm and
a thickness of 50 mm, leading respectively to a thin cylindrical panel (R/t=100) and a thick one (R/t=4).
The main difference with the plate example is that the structure is now curved. For this example, to
obtain a solid-shell model, local coordinate systems are created for each line of nodes through the
thickness of the structure to apply kinematic relations on the solid model. The equations involving the

degrees of freedom concerned are applied using these local coordinate systems.

E=210000 MPa
v=03

a=b=400 mm

R =200 mm or 400 mm
t=50 mm or 4 mm

p = 7.89x107 t/mm?
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Fig. 2.27. Clamped cylindrical panel in free vibration — Presentation of the example.

2.5.2.2 Convergence study
The thin and thick cylindrical panels are discretized with the twenty-node hexahedral element

C3D20 in Abaqus. For the two cases, a convergence study of the first eight natural frequencies is made,
considering clamped boundary conditions along the four edges. For the reference solid, HOSS and
MFOSS models, the 4x20x20 mesh meets the convergence requirement for both the thin and thick
panels. For the shell model, the 1x20x20 mesh, which meets the convergence criterion, is considered

for both the thin and thick cases.

2.5.2.3 Mode shapes
For the reference solid, HOSS and MFOSS models in the thin cylindrical panel, the first eight mode

shapes are shown in Fig. 2.28. All the models give very similar results for these modes.

Solid
HOSS A
Ehins
MFOSS [ i il
Hl '.5

=B

Mode 4

Fig. 2.28. Clamped cylindrical panel in free vibration — First eight mode shapes with the reference solid,

HOSS, and MFOSS models for the thin case.

The first eight mode shapes for the reference solid, HOSS and MFOSS models in the thick
cylindrical panel are shown in Fig. 2.29. The HOSS and MFOSS models lead to similar model shapes

with the reference solid model.
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Fig. 2.29. Clamped cylindrical panel in free vibration — First eight mode shapes with the reference solid, HOSS,
and MFOSS models for the thick case.

The MAC values calculated between the HOSS model and the reference solid model for both the
thin and thick cylindrical panels are reported in Fig. 2.30. The MAC values are always greater than 0.9,
it indicates strongly correlated modes. Very similar results have been observed for the MAC values
calculated between MFOSS and reference solid. Perfect consistency is observed between the solid-shell

models and the reference solid model for both the thin and thick cylindrical panels.

HOSS HOSS
7 8 9 10 11 12 13 14 7 8 9 10 11 12 13 14
7 7
8 8 0.8
) i 0.6
= 10 =10
211 @11 0.4
12 12
13 13 |0-2
14 14 0
Thin cylindrical panel Thick cylindrical panel

Fig. 2.30. Clamped cylindrical panel in free vibration — MAC matrix between the solid-shell and the reference

models for the thin and thick panels.
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2.5.2.4 Frequencies

The first eight angular frequencies of the cylindrical panel are obtained for reference solid, HOSS,
MFOSS and shell models in the thin and thick cases. In order to compare the results of these models
with the analytical results of Li et al. [64], the non-dimensional frequency parameter is calculated. The
non-dimensional frequency parameters are reported in Table 2.10 for the thin and thick cases. Errors on
this parameter compared with the reference solid models are reported in Table 2.11 for solid, HOSS,
MFOSS, shell and Li’s [64] models. The MFOSS models provide correct results compared with the
reference solid models for the thin cylindrical panel. But in the thick case, moderate errors limited to
about 3% are observed. Indeed, the transverse shear stiffness is not well evaluated in the thick case. The
HOSS models show almost the same results as the reference solid ones for both the thin and thick
cylindrical panels. The shell models provide satisfactory results for the thin cylindrical panel but gives
an error limited to 3% for the thick one. The analytical solutions obtained by Li are similar to the results
of the shell model for the thin case.

Table 2.10. Clamped cylindrical panel in free vibration — Non-dimensional frequency parameters of different
models for the thin and thick panels.

Mode
R/t ratio Model

Solid 141.29 | 144.67 | 208.43 | 218.73 | 229.41 | 283.76 | 286.38 | 289.09
HOSS 141.35|144.70 | 208.49 | 218.79 | 229.57 | 283.89 | 286.46 | 289.21
100 MFOSS | 141.46 | 144.75 | 208.59 | 218.90 | 229.87 | 284.21 | 286.61 | 289.47
Shell 140.33 | 144.42 | 207.87 | 218.13 | 227.55 | 281.82 | 285.86 | 287.85
Lietal [52] |140.41 | 144.44 | 207.76 | 217.91 | 226.34 | 279.92 | 285.47 | 286.96
Solid 42,72 | 52.99 | 54.30 | 67.49 | 69.63 | 70.87 | 86.76 | 88.52
HOSS 42.77 | 53.05 | 54.41 | 67.61 | 69.65 | 70.95 | 86.91 | 88.60
MFOSS 43.10 | 53.73 | 55.74 | 69.13 | 69.72 | 72.30 | 88.96 | 89.04
Shell 42.10 | 52.44 | 52.89 | 65.87 | 69.35 | 70.26 | 84.84 | 89.28
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Table 2.11. Clamped cylindrical panel in free vibration — Errors (%) on non-dimensional frequency

parameters of different models for the thin and thick panels.

Mode
R/t ratio Model
1 2 3 4 5 6 7 8
HOSS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MFOSS 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1
+0 Shell 0.7 0.2 0.3 0.3 0.8 0.7 0.2 04
Lietal. [52] | 0.6 0.2 0.3 04 1.3 14 0.3 0.7
HOSS 0.1 0.1 0.2 0.2 0.0 0.1 0.2 0.1
4 MFOSS 0.9 14 2.7 24 0.1 2.0 25 0.6
Shell 15 1.0 2.6 24 0.4 0.9 2.2 0.9

2.6 Conclusion

A new and specific solid-shell approach dedicated to thin to very thick structures has been presented.
Plate or shell displacement fields are directly applied on a solid finite element model which contains
several elements through the thickness. Three theories based on kinematic assumptions have been
considered. The classical first-order Mindlin-Reissner theory, a modified first-order theory and a higher-
order theory lead to the FOSS, the MFOSS and the HOSS models respectively. Kinematic relations are
imposed at nodes to meet through-the-thickness plate or shell displacement fields. From a numerical
point of view, linear equations are applied on the assembled finite element model. The methodology
relies on the slave and master nodes technique. Slave nodes are eliminated, leading to a reduction of the
model size. Consequently, the number of degrees of freedom eliminated corresponds exactly to the
number of equations applied. Three static examples have been presented: a clamped square plate under
distributed loading, a quarter of cylinder under pressure and a quarter of hyperboloid under pressure.
For the thin and thick cases, displacements and von Mises stresses have been observed. The FOSS model
suffers from a Poisson thickness locking phenomenon due to an inconsistency between the 3D theory
of elasticity and the constant through-the-thickness assumption for displacement w. Consequently, this
FOSS model leads to unacceptable results. The MFOSS model is satisfactory for thin structures and
leads to moderate errors in the thick case. The HOSS model gives excellent results in the thin as well as
the thick cases, by comparison with the solid approach. These results show that for thick structures, the
higher-order theory introduced by Reissner [21] and Lo et al. [22] leads to a significant gain compared
to the first-order theory. Two vibration examples have also been presented. The frequencies obtained by
solid, HOSS, MFOSS, FOSS and shell models under different boundary conditions lead to conclusions
similar to the static case. The FOSS model leads to bad results. The MFOSS model works well for thin

structures but gives less precise results in the thick case, especially for complex modes. The HOSS
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model gives excellent frequencies in both thin and thick cases, compared with the solid approach. For
the modal shapes, all the models give a good consistency. The approach presented is also efficient from
a model size point of view. For the MFOSS model, it is comparable with that induced by the use of shell
elements. The model size of the HOSS model is intermediate between the shell model and the solid one.

The perspectives of further applications of this approach are numerous. The results presented have
been obtained with a twenty-node solid element but other solid finite elements may be exploited. More
complex as well as industrial examples will be treated. The approach will be extended to multilayered
composite structures. In this study, for a given finite element model, a choice has been made between
first-order or higher-order theory. The application of this methodology is possible with different theories
in the same model, in the context of an adaptive modeling approach in which different theories may be
required depending on the area concerned. In this chapter, three theories have been considered but the
methodology is compatible with any other theory. In particular, it can be exploited to test new higher-
order plate and shell theories, avoiding the development of specific new finite elements which may lead

to numerous numerical problems.
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Chapter 3

A new solid-beam approach

In the context of adaptive modeling methodology, a new solid-beam approach dedicated to thin
to very thick structures is presented. An original aspect is that beam displacement fields are directly
applied on a solid finite element model which contains several elements within the cross-section.
Moreover, any beam theory based on kinematic assumptions can be used, three theories for a beam

in plane and two theories for a beam in space have been considered.

3.1 Introduction

A lot of natural or industrial structures have two dimensions small compared to the third one. These
structures are called beams. The first beam theory was developed during the 18th century and is known
as the Euler-Bernoulli beam theory. The main assumption is that plane sections normal to the
undeformed neutral axis remain plane and normal to the deformed neutral axis. Many references
describe this theory, see for example [65]. This theory, which does not consider transverse shear effects,
is dedicated to thin beams. At the beginning of the 20th century, Timoshenko [66,67] proposed a more
general beam theory which considers transverse shear effects as well as rotatory inertia. Sections normal
to the undeformed neutral axis remain plane but not necessarily normal to the deformed neutral axis.
This theory can be applied to thin and thick beams. The main shortcoming of this theory is that the
displacement field leads to a constant transverse shear distribution throughout the cross-section, whereas
it is rather quadratic. Timoshenko introduced the so-called transverse shear correction coefficient. Then
a lot of research works concerned correction coefficients. Several papers have been specifically
dedicated to this issue (Cowper [68], Jensen [69] and Hutchinson [70]).

Many higher-order beam theories were developed to better describe the deformation of beams. In
1975, Essenburg [71] enriched the displacement field with a quadratic transverse displacement
assumption, leading to a theory which considers transverse shear and normal strain effects. Stephen and
Levinson [72] proposed a second-order beam theory which considers transverse shear stresses,
transverse direct stresses and rotatory inertia. It contains two coefficients depending on the cross-section
shape. Levinson [73] proposed a higher-order beam theory for rectangular sections. The assumption that
cross-sections normal to the undeformed neutral axis remain plane after deformation is abandoned.
Indeed, a cubic distribution of axial displacement allows warping of the cross-sections. In this theory no

shear coefficient is necessary. Rehfield and Murthy [74] proposed a refined beam theory accounting for
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transverse shear and normal effects. In its initial version, the displacement field is order 5 for the axial
displacement and order 4 for the transverse displacement. Rehfield and Murthy show that an axial
displacement with order 3 and a transverse displacement of order 2 is quite satisfactory and gives results
very close to the exact 3D elasticity solutions. Extension to beams in space requires the consideration
of other effects. Bending in the second plane can be treated like bending in the first plane. However,
torsion justifies specific developments. Initially de Saint-Venant studied this phenomenon leading to the
Saint-Venant’s uniform torsion theory [75]. Vlasov [76] introduced the non-uniform warping
deformation and this theory is suitable for thin-walled open cross-sections. Benscoter [77] proposed a
more general theory which is valid for thin-walled open and also for closed cross-sections. These
theories were assessed hamely by Shakourzadeh et al. [78], for different types of cross-sections. Other
3D beam approaches require cross-section analysis to determine sectional modes to enrich the
displacement fields. The so-called Generalized Beam Theory (GBT), proposed by Schardt [79] and
namely developed by Habtemariam et al. [80], exploits predetermined cross-sectional deformation
modes for the description of warping. The identification of these modes may be obtained by a 2D finite
element analysis of the cross-section (El Fatmi [81], Naccache et EI Fatmi [82]). In this approach, modes
are extracted from the computation of the so-called 3D Saint-Venant’s problem. Solving the Saint-
Venant problem led to other beam theories (Ladevéze and Simmonds [83], Romano et al. [84], Faghidian
[85]). Complementary information about beam theories can be found in the books of Goodier and
Timoshenko [86] and Carrera et al. [87]. Other variants of beam theories were proposed, in particular
for multilayered composite structures and sandwich ones. The scope of this paper is limited to
homogeneous structures, so multilayered composite structures which have led to a lot of research are
not considered in this bibliography study.

The analytical resolution of examples treated with these theories is limited to some academic
examples. Consequently, finite element method is widely used for the treatment of beam applications.
For these finite elements, the most popular approach requires a discretization of the mid-axis and the
degrees of freedom are displacements and rotations at nodes. A lot of formulations have been developed
and assessed, to improve the performances of beam finite elements. Most of the formulations concern
the Euler-Bernoulli and Timoshenko first-order beam theories. Finite elements based on Timoshenko
theory or higher-order theories lead to several numerical problems. The most problematic one is locking,
in particular transverse shear locking, which leads to very bad results when the structure is thin. Another
numerical problem, linked to the techniques used for solving the locking phenomenon, is rank deficiency
which may cause spurious zero-energy modes. Several techniques were proposed to alleviate these
problems. The same numerical problems exist in plate and shell finite elements and many research works
were developed for this type of elements. For further information, the reader can refer to the review
paper of Cen and Shang [30] which describes the state of the art concerning Reissner-Mindlin plate
elements. The methods and techniques proposed to improve plate and shell elements have also been

tested and adapted for beam elements. The most popular ones are reduced or selective numerical
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integration (Prathap and Bashyam [88], Reddy [89], Bouclier el al. [90], Adam et al. [91]), assumed
natural strain (ANS) method and its variants (Bouclier el al. [90]), mixed approach (Addessi et al. [92]).
Yunhua [93] and Reddy [89] presented the field consistence approach to prevent membrane locking as
well as transverse shear locking, leading to efficient elements. Some beam elements have the
superconvergence character and provide exact displacement and forces, using only one element per
structural member (Shakourzadeh et al. [78], Reddy [89]).

Several developments commented hereafter are based on a continuum theory approach but lead to
beam elements which finally contain displacements and rotations, that is to say classical beam degrees
of freedom. Their geometry is defined by the mid-axis, just like a classical beam element. In some cases,
additional degrees of freedom are considered for representing warping of the cross-section. Lee and Kim
[95] proposed the discretization of the cross-section of a beam to consider a refined warping effect.
Degrees of freedom are displacements and translations, as well as numerous additional degrees of
freedom for warping. Zivkovic [96] developed a beam superelement which contains 3D continuum
theory for the description of the deformation of the cross-section. Curiel Sosa et al. [97] developed a
continuum-based beam element which is an extension of a formulation proposed by Belytschko et al.
[98], in the framework of explicit-FEM. This element uses the concept of master and slave nodes to
impose beam theory kinematic assumptions. Yoon et al. [99,100] proposed a continuum-based element
built from an assemblage of solid elements. Again, beam theory assumptions are applied at cross-
sectional nodes.

Another possibility is to exploit only the solid geometry, in this case a mid-axis geometry is not
required, leading to the so-called solid-beam element. This approach has several advantages. First solid
and solid-beam elements can be used in the same model, without difficulty. On the contrary, using
classical beam and solid elements in the same model requires the development of specific solid-to-beam
techniques to correctly connect beam and solid elements (Ziyaeifar and Noguchi [94]). A second
advantage is that there is no need to make and exploit a mid-axis mesh, which may lead to severe
difficulties and some errors for complex applications. Moreover, in the solid-beam approach, all terms
of the strain and stress tensors can be considered and a three-dimensional constitutive law can be used,
even if this issue may lead to some difficulties known as the thickness locking phenomenon mentioned
in this paper. Finally loading can be naturally applied on the top or bottom faces of the structure. On
the contrary of elements described above, a solid-beam element looks like a solid element from a
geometry point of view. Moreover, degrees of freedom are only displacements. Inspired by solid-shell
elements, Frischkorn and Reese [11], who introduced the “solid-beam” expression in 2013, proposed an
eight-node solid-beam element with only displacement degrees of freedom. The formulation is derived
from the solid-shell formulation of Schwarze and Reese [101]. To prevent locking problems, assumed
natural strain and enhanced assumed strain methods embedded in a reduced integration technique, are

applied. For several linear or nonlinear examples, good results are obtained by using only one element
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within the cross-section. Frischkorn and Reese [102] applied this solid-beam element for the analysis of
Nitinol stents.

In this chapter, a new solid-beam approach, based on applications of first-order or higher-order beam
equations to standard solid finite element models, is presented. Our approach aims to reduce the number
of degrees of freedom of the solid mesh by imposing displacement fields of beam theories. The chapter
is organized as follows. In Section 3.2, the basic ideas of the methodology proposed, as well as the first-
order and higher-order theories of interest, are recalled. In Section 3.3, the approach relying on master
and slave nodes concept is described. In Section 3.4, two static examples, namely a straight beam and a
curved beam, in the thin and thick cases, are treated. In Section 3.5, two free-free vibration examples
with the same structures as the static examples are treated. Moreover, a comparison with solid and beam

models in terms of model size is presented. Some conclusions and perspectives are drawn in Section 3.6.
3.2 Presentation of a new solid-beam approach — theoretical aspects

3.2.1 Basic ideas

The new solid-beam approach is developed in the context of a general adaptive modeling
methodology using solid elements only, for any type of structure. As stated above, it is often justified to
apply solid theory in some areas affected by local effects, but beam or shell theory is suitable on the rest
of the structure. The use of different types of elements in the same model leads to meshing difficulties
and mechanical incompatibilities of the displacement field at the interfaces between beam, shell and
solid areas. Namely, beam and shell elements contain displacements and rotations but solid elements
contain only displacements. Specific numerical treatment is necessary at the interfaces to improve
compatibility between the different meshing areas. This approach involves theoretical problems in all
cases as well as practical difficulties for complex structures. Our adaptive modeling method uses only
solid elements and uniform meshes over the structure. There is no specific treatment in solid areas, and
beam or shell displacement fields are applied in the solid-beam or solid-shell areas respectively, by using
a specific approach.

In this chapter, the formulation associated with the solid-beam areas is presented and assessed.
Classically, to develop beam finite element models, first equations of the 3D theory of elasticity are
modified to give new beam theory equations. Then, based on these equations, a beam finite element is
developed, leading to a 1D mesh. The contrary is proposed here. The structure is first modeled with
solid finite elements, then equations throughout the cross-section are applied directly on the solid model
to modify the system of algebraic equations and obtain the beam numerical solution. The main

characteristics of the new solid-beam approach are described below.
— The solid-beam model must give results very close to the reference results given by the

solid model.
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— Only solid elements without severe locking phenomena are used. In this chapter, an existing
hexahedral element with twenty nodes is exploited and an eight-node hexahedral element
is also mentioned. Moreover, it is possible to consider a new solid element formulation.

— The 3D constitutive law is used. It means all stresses and strains are considered in the strain
energy. There is no modification of this constitutive law, consequently no use of transverse
shear correction coefficients classically associated with first-order beam theories.

— First-order and higher-order beam displacement fields are considered. The beam
displacement fields are directly applied to the solid finite element model which has several
elements throughout the cross-section.

— From a numerical point of view, kinematic relations between the degrees of freedom of
nodes throughout the cross-section, are applied. These degrees of freedom are
displacements exclusively because solid elements are used. For this purpose, slave and
master nodes are introduced and only master nodes are kept in the model after the
application of equations.

— This process leads to a reduction of the model size and consequently of the computational

cost, compared to a reference solid model.
3.2.2 Displacement fields for a beam in plane

3.2.2.1 Classical first-order displacement field

In this chapter totally five displacement fields are considered. The first one is given by the classical
Timoshenko beam theory. It considers membrane and bending effects as well as transverse shear ones.
It is widely used in beam finite element formulations. This 2D displacement field is defined by:

u(y,z) = ug + zo,

v(y,2) =0 3.1)
W(y'Z) =Wy

where uo and wyo are the displacements of a node on the mid-axis, ¢y is the rotation around y axis.

This displacement field uses displacements as well as rotations. In our approach, only displacements
at nodes are used. It is relevant and well suited to rewrite the displacement field of Eqg. (3.1) in the simple
following form:

u(y,z) = za; + a,
v(y,2) =0 (3.2)
w(y, z) = ¢

where a4, a, and c; are coefficients to be determined.
As will be shown and justified in Section 3.4.1.3, this displacement field does not lead to good

results, in the context of our approach.
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3.2.2.2 Modified first-order displacement field

To assess a relevant modification of the classical Timoshenko beam theory, it is helpful to observe
the displacements throughout the cross-section of a moderately thin (I/h=20) square-section beam
modeled with solid elements. For the bending case, the beam is clamped at its two ends and submitted
to a uniform pressure on the top surface. For the membrane case, the beam is clamped at one end and
subjected to a distributed traction loading at the opposite end. Fig. 3.1 shows the distribution of
displacements through the thickness. For the bending case, the displacements u is linear, which fits well
with the classical first-order theory. The displacement w is almost constant with z but with a slight
quadratic contribution, while the classical first-order beam theory considers it as constant through the
thickness. For the membrane case, the displacements u fits well with the classical first-order theory,
showing a constant distribution. But the displacement component w is linear, which is different from the
zero through-the-thickness assumption of the classical first-order beam theory. In summary, the classical
first-order beam theory should be modified to be completely consistent with solid theory. The
displacement w is required to be enriched so linear and quadratic terms are added. This does not mean
that the classical first-order beam theory is inconsistent. Indeed, the assumption of constant displacement
w in this theory has no consequence on the results due to the fact that the effect of the transverse strain
&2z and the transverse stress o, are neglected. One may say that the classical first-order beam theory is

self-consistent but cannot reproduce all the effects of the 3D theory of elasticity.
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Fig. 3.1. Thin beam under bending or membrane loading — Distribution of through-the-thickness

displacements.

The consistency between linear distribution for u and quadratic distribution for w can be
demonstrated. First, for a given cross-section, considering both membrane and bending effects in plane

x-z, linear through-the-thickness distributions is assumed for u:

u(y, z) = za; + a, (3.3)

58



in which a, and a, are coefficients to be determined for each cross-section. So the ¢, strain is linear
with respect to z:

Exx = Uy = 2a3 + Ay (3.4)
where a5 and a, are coefficients to be determined for each cross-section.

For isotropic material, the 3D solid stress-strain relationship is:

(Sxx\ 1 i V4 i V4 0 0 0 (O'xx

[ vy | [—v 1 —v 0 0 0 ] | Oy |
€z 1|l—v —-v 1 0 0 0 Oz,

{ny}:E| 0 0 0 2(1+v) 0 0 |4axy} (3.5)
Vaz 0 0 0 0 2(1+v) 0 |low

Uyzj lo o o 0 0 2(1 + v)J \Gyz)

For 2D beam structures, the o,,,, and a,, stresses are small and can be neglected, leading to the

following relations:

Oxx = E€yy (3.6)
v

€yy = Vy = TFOxx T TV (3.7)
v

€2z =Wz = _Eo'xx = TVExx (3.8)

Egs. (3.7) and (3.8) show that ¢,,, and ¢,, are due to the Poisson effect and because ¢, is linear
with respect to z, &, and €,, must also be linear through the thickness. By integration of Eq. (3.7), one
highlights the expression of v:

v(y,z) = yzby + yb; + b3 + f1(2) (3.9)
where b to bs are coefficients and f;(z) is a function to be determined for each cross-section. The
coefficient b5 represents a global displacement of a cross-section in the y direction. This displacement
is zero for a beam in a plane, so hereafter b; = 0 is considered.

In the same way, by integration of Eq. (3.8), one highlights the expression of w:

w(y,z) = z%c; + 2, + c3 + fo(9) (3.10)
where ¢ to ¢ are coefficients and £, (y) a function to be determined for each cross-section.

Taking into account the expressions of v and w given in Egs. (3.9) and (3.10), the y,, strain is

defined by:

Yyz =Vt W, (3.11)

with
v, =ybi + f1(2), (3.12)

and
wy = f2(0)y (3.13)

So the y,,, strain is at least linear with respect to y and at least constant in the z direction. In order to

have consistent contributions of the two terms v, and w,,, they must both have a linear variation in the
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y direction. The choice to meet this condition is such that f; (z) = 0 and f,(y) is quadratic with respect
toy.
Finally the modified first-order displacement field is:
u(y,z) =za; +a,
v(y,z) = yzb; + yb, (3.14)
w(y,z) = z%c; + y2cy + zcy + 5

where a; to a,, b, to b,, c; to ¢, are coefficients to be determined.

To verify the relevancy of this displacement field, the deformation of the cross-section of a beam under
bending or membrane loading, studied with a solid model, has been observed (see Fig. 3.2). The
displacement field given in Eq. (3.14) is consistent with the results observed. In particular, in the bending
case, the quadratic contribution of w with respect to y is highlighted. This displacement field allows the
warping of each cross-section. As our best knowledge, this modified first-order displacement field has
not been proposed in the literature. However, Hutchinson [70] proposed a similar displacement field
without consideration of the membrane effect.

T [T

ST o <o
y y
Bending Membrane

Fig. 3.2. Beam under bending or membrane loading — Deformation of a cross-section.

3.2.2.3 Higher-order displacement field

The example presented above is now considered for a thick beam (1/h=5). The through-the-thickness
distribution of displacements is presented in Fig. 3.3.

For the bending case, the displacements u seems to have a cubic variation, while displacement w is
again almost quadratic. The cubic distribution corresponds to the displacement u introduced by Levinson
[72].

u(,z) = 2°¢y + 21y (3.15)

where ¢, is the warping function and i, represents the rotation of a cross-section of the beam.
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Fig. 3.3. Thick beam under bending or membrane loading — Distribution of through-the-thickness

displacements.

This cubic distribution is consistent with results presented in Fig. 3.3. Moreover, it is a relevant
choice to obtain a good approximation of transverse shear stresses through the thickness. Indeed, for a
2D beam, the distribution of a,., transverse shear stress is almost quadratic. This a,., stress is given by:

Oxz = Gy +wy) (3.16)

First-order beam theories which use linear variation of u and constant variation of w through the
thickness are not able to reproduce correctly transverse shear effects. Namely these assumptions lead to
a constant distribution of g,., through the thickness, which is not correct. This is the reason why, from
the one hand generally integration of equilibrium equations is used for calculating transverse shear
stresses, and from the other hand transverse shear correction coefficient is required for the assessment
of transverse shear stiffness [68, 69, 70, 71]. If u is cubic and w is quadratic with respect to z, both terms
u, and w,, can be quadratic with respect to z, leading to a consistent and precise distribution of the o,,
stress, without any correction. This point is highlighted in the examples section.

Refined beam theories, namely that proposed by Levinson [72], uses the classical variables 1, but
also another variable ¢, which is difficult to be interpreted and managed, for instance to define loading
and boundary conditions. In the approach proposed, this difficulty is prevented because, as highlighted
in Section 3.3, only displacements at nodes are exploited, without any other variable. For bending case,
the component u is directly inspired by the Levinson displacement field. For the general case with
membrane and bending effects a constant contribution is added for u while v and w are the same as for
the modified first-order theory. The displacement field of the proposed refined beam theory, involving
nine terms, is written as:

u(y,z) = z3a, + za, + az

v(y,z) = yzb, + yb,
w(y,z) = z%¢c; + y2c, + zc, + ¢4

(3.17)
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where a;t0 a3, b; t0 b,, ¢; to c, are coefficients to be determined.
This displacement field allows the warping of each cross-section. As our best knowledge, this
higher-order displacement field has not been proposed in the literature. Anyway the cubic variation of

u had already been proposed, namely by Levinson.

3.2.3 Displacement fields for a beam in space

Two displacement fields including torsion effects are proposed for a square or rectangular cross-

section beam in space.

3.2.3.1 Torsion for square or rectangular cross-section beam

To obtain an appropriate displacement field for adequately representing a spatial beam, a torsion
state, especially the cross-section deformation, is studied. A spatial beam modeled with solid elements
in Abaqus is submitted to a torque. Two different cross-sections: square (a=b) and rectangular (a/b=2)
are considered. The warping of the cross-sections is highlighted in Fig. 3.4. A complex and
centrosymmetric deformation for both the square and rectangular cross-sections is observed. This means
a linear approximation of displacement u is not able to reproduce the warping phenomenon. Thus, the
curve fitting toolbox in Matlab [103] is used to fit these cross-section deformations by polynomials. The
interpolation, smoothing splines and localized regression techniques are used for this fitting process. In
terms of the contribution to displacement u, the terms yz3 and zy? are found useful for a square cross-

section and the terms yz3, zy3 and yz are important for a rectangular cross-section.

Square cross-section Rectangular cross-section
a=b a=2b

Fig. 3.4. The cross-section deformations of a spatial beam structure under pure torsion.

Fig. 3.5 shows the distribution of displacements u and v through the thickness for both the square
and rectangular cross-sections. The displacement components v and w are the same in a spatial beam. It
is observed at least a cubic relation with respect to z for displacement u due to the warping effect, and a
linear relation with respect to z for displacement v and so displacement w. The three terms (yz3, zy3
and yz) of displacement u in Eq. (3.18) are consistent with Fig. 3.5, which means they play a significant

role for the torsion of a spatial beam with square or rectangular cross-sections. Therefore, by using the
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polynomial to represent the cross-section deformation, the displacement field for pure torsion of a spatial
beam can be expressed as:

u(y,z) = yz3a, + zy3a, + yzas + a,
v(y,z) = yby + zb, + b3 (3.18)
w(y,z) = ycq +2zcy +c3

where a; to a4, by to bz, and c; to c3 are coefficients to be determined.
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Fig. 3.5. Displacements of nodes through the thickness of spatial beam model for torsion.

3.2.3.2 First displacement field of a beam in space

Considering that for a spatial beam y and z play the same role, the displacement w in Eq. (3.14) can
be extended as:

w(y,z) = y2c; + z%c, + yzes + yeu + zcs + ¢ (3.19)

where c; to ¢, are coefficients to be determined.
Taking Eq. (3.18) into account, the Eq. (3.14) can be extended for a spatial beam displacement field:

u(y,z) = yz3a, + zy3a, + yzas + ya, + zas + ag
v(y,z) = y?b;y + z°b, + yzbs + yb, + zbs + bg (3.20)
w(y,z) = y2c; + z%c, + yzes + yea + zcs + cg

where a; to ag, by to bg, and c; to ¢4 are coefficients to be determined.

3.2.3.3 Second displacement field of a beam in space

Considering the torsion effects, the extension of Eq. (3.17) for a spatial beam with square or

rectangular cross-sections can be expressed as:
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u(y,z) = y3za, + z3ya, + y3a; + z3a, + yzas + yag + za; + ag
v(y,z) = y?by + z?b, + yzbs + yb, + zbs + bg (3.21)
w(y,z) = y%c; + z%¢c, + yzcs + ycu + zcs + ¢

where a; to ag, b, to bg, and c; to cg are coefficients to be determined.

3.3 Presentation of a new solid-beam approach — numerical aspects and implementation

This section explains how the displacement fields presented in Section 3.2.2 and Section 3.2.3 are
applied on the solid element mesh, leading to solid-beam models. Equations are applied on the
assembled finite element models. Five solid-beam models are described. Eq. (3.2) gives the First-Order
Solid-Beam (FOSB) model. In the same way, Eq. (3.14) leads to the Modified First-Order Solid-Beam
(MFOSB) model and Eqg. (3.17) leads to the Higher-Order Solid-Beam (HOSB) one. Moreover, Eq.
(3.20) leads to the first Solid-Beam in space (SB1-3D) model and Eqg. (3.21) leads to the second Solid-
Beam in space (SB2-3D) one. The principles consisting of imposing a displacement field at nodes
throughout the cross-section are illustrated in Fig. 3.6 and Fig. 3.7. Master degrees of freedom and slave
degrees of freedom are defined for each cross-section. All slave degrees of freedom can be eliminated
from the system of equations to be solved. Each equation leads to the elimination of one degree of
freedom. Consequently, the number of degrees of freedom eliminated corresponds exactly to the number
of equations applied.

3.3.1 FOSB model

For each cross-section of the beam, the FOSB model uses two master nodes at points A and B as
described in Fig. 3.6. Eq. (3.2) contains two coefficients a, and a, to be determined for u and one
coefficient ¢, for w. To identify these three coefficients, the following set of three equations is used:

U(Ya,za) = Uy = 2401 + ay

u(yp,zg) = Up = zpa; + a, (3.22)
W(Ya,24) =Wy = €1

where uy, ug, w, are the displacements at points A and B, y4,z4, V5 , 5 are the coordinates of points
Aand B in the y and z directions.
Solving Eq. (3.22) gives the expressions of coefficients identified for each cross-section:

_Up—Up
a, =
Zp — ZB

o s = 75 (329
I Zy — Zp

kcl = WA

By taking into account Eq. (3.23) into Eq. (3.2), one obtains:
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Uy — Up " ZpUg—ZpUp

u(y,z) =z
Zy — Zp Zjy — Zp
v(y,z) =0 (3.24)
w(y,2) =wy
Equations to be applied are obtained by replacing z by z; in Eq. (3.24), z; being the coordinate of
the slave node i in the z direction:

(

Uy — U ZpUr—Z U
s Us—Up  ZpUy—ZpUp
!u(}’i»zi) =u; =z +

Zp — ZB Zp — ZB
v(y,z) =v; =0 (3.25)
LW(YirZi) = Wis = Wy
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Fig. 3.6. Master nodes and slave nodes in the cross-section of a solid-beam model in a plane.

For a given cross-section of the beam, the displacements u,, ug and w, must be calculated because
they are the master degrees of freedom. All other degrees of freedom are the slave degrees of freedom.
As highlighted in Eq. (3.25), they can be expressed in terms of master degrees of freedom, so they can
be eliminated from the system of equations to be solved. Concerning the displacements u, Eqg. (3.25) is
applied at all nodes of the cross-sections, except points A and B. The displacements u of other nodes of
the cross-section are dependent of u, and ug. Eq. (3.24) shows that displacement v is systematically
equal to zero, so this equation is applied at all the nodes of the model. Concerning the displacements w,

Eq. (3.25) is applied at all nodes of the cross-sections, except point A. The displacement component w
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of other nodes is in the same way dependent of w,. This description shows that the methodology relies
on slave and master degrees of freedom. For the sake of simplicity, one distinguishes between master
and slave nodes. A given node is considered as a master node if it contains at least one master degree of
freedom. This model contains three master degrees of freedom per cross-section. It can be observed that
Eq. (3.25) defines linear relations between the slave and the master degrees of freedom. One
complementary remark is that if two master nodes are needed, it is natural to select points A and B. But
two other nodes could be selected as well, which leads to equivalent results.

3.3.2 MFOSB model

The methodology described in Section 3.3.1 is now applied to build the MFOSB model. This model
exploits five master nodes, as shown in Fig. 3.6. Eq. (3.14) contains two coefficients (a; and a, ) to be
determined for displacement u, two coefficients (b; and b,) for displacement v and three coefficients
(cy, ¢z, c3 and c,) for displacement w. The coefficients a, and a, are the same as the FOSB model. To
identify other coefficients, the following equations are used:

(v(¥p,Zp) = vp = YpZpby + ypb,

v(Yg, 2g) = Vg = YgZghy + ygb,

wW(Va,Za) = Wy = 25C1 + YACs + 24C5 + C3

w(Vp,2p) = W = ZhCy + YjCa + 2pCy + C3
w(Ve, 2c) = we = z¢cy + yéca + 2¢Co +¢3

w(yp,zp) = Wp = zhCy + yhca + zpcy + C3

(3.26)

where vy, vg, wyu, wg, we and wp are displacements at master nodes; v4, vs, Yo, Yo, Ve,
Z4, Zg, Zc, Zp and zy are the coordinates of master nodes in the y or z direction.

The expressions of coefficients identified for each cross-section are:
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_ UpYE — VEYD
! yoYe(2p — zg)

VgYpZp — VpYEZE
b2 =
yoYe(2p — zg)

WaYbZc — WaYézZp — WRYAZc + WYEZa + WeYiZp — WeVBZa — WaYhZp
+WaYhzp + WaYiZp — WpYHZa — WpYiZp + WpYhZs — WeYhZa — WaYEZp
+WaYEzZp — WaYBZc — WeYiZp + WeYhza + WpYaze — WpYEza — WeYézp

\ +WpYhzc + WeYBzp — WeYbZp — WpYiZe + WpYEzZp

~Yyizhac +yizhzp + yizézp — yizhzg — yizézp + Yizhac + yhzizc — YhZi7p
~Y5287a + Y52hza + Yh2E2p — YEZhZc — VEZAZE + Ve2iZp + Y25z — Vi 252
—y¢zizp + ¥ézhzp + Y3252 — VhZhZc — VhZhZa + VHZiZa + ViZEZc F ¥EZE78

N~

C]_:_

WAZZE — WaZoZh — WRZuZE + WpZcZh + WeZuZh — WeZpZa — WaZgzh + Wazpzh
+WpZZ3 — WpZpZs — WpZazE + WpZpZzs + Wyzczh — Wazpzi — wezazh + wezpzi | (3:27)
+WDZAZ§ - WDZCZE - WBZCZ[2) + WBZDZE + WCZBZL% - WCZDZ§ - WDZBZE + WDZCZ§

~YAzhzc + Vizhzp + yizézs — yizhzs — yizéap + Yizbzc + VEzizc — VhZiep

~Yh2Ezs + Y52hzs + VEZEZp — V2B Zc — Vézi2p + Yézizp + YEzgza — Y252,

2.2 2.2 2.2 2.2 2.2 2.2 2.2 T 2.2
—Y(ZpZp * Y¢ZpZp t YpZaZp — YpZiZc — VpZpZa + VpZiZa + YpZpZc + VpZiZp

C4=_

2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2
WAYBZ( — WaYV(Zp — WaYAZE + WBYCZL + WcYaZg — WeYBZ) — WaYVpZp + WaYpZp
n 2.2 2.2 2,2 4 2,2 4 2.2 2.2 2,2 4 2.2
WpYaZp —WBYpZg — WpYaZpg T WpYpZy T WyYcZp — WaYpZc — WcYaZp T WceYpZg
2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2
+WpYAZi —WpYiZ) —WgYiZp + WpYpZi + WeYpZp — WcYpZg — WpYpZi + WpYiZp
—v2727. + V2727, + y22275 — V2Zizn — V2z2Zp 4+ V7R, + V23227, — VEZ2Z
YAZpZc T YAZBZp T YAZcZg — YAZpZp — YAZcZp T YaZpZc T YpZaZc — YBZaZp
2.2 2,2 2,2 2.2 2.2 2.2 2.2 2.2
—YBZ;Zp t YZpZa t Y5ZiZp — YgZpZc — YcZaZp t ViZaZp * YcZpZy — V(iZpZa
2.2 2.2 2,2 2,2 2,2 2,2 2,2, T 2.2
—Y¢ZgZp t YcZpZp + VpZiZp — YpZiZc — YpZpZa + YpZ(Za t+ YpZgZc + YpZ(iZp

C2:

WpYAZhZc — WeYZZhzp — WDY;%ZEZB +wcyizhzg + WBYEZEZD — WpYAzpzc
~WpYBZAZc + WeYEZAzZp + WpYHzEza — WeYBZHZa — WaYh2EZp + WaYEZh2c
+WpYEzizg — WpYEzizp — WpYEzhzs + WeYEzZhZa + WaYEzEZp — WaYEzhzp
—WcYBZi2p + WpYHzize + WeYhZEza — WpYEZEzs — WaYhZEZe + WaYpZE2p
~Yizhzc + yizhap + yizizg — yizhzg — yizézp + yizhzc + yhzhzc — YhZi2p
~Y52EZa + Vh2h2a + V5ZEZp — VEZBZc — VEZAZE + YEZiZp + VEZEZa — YEZHZa
\ —Yézizp + ¥Ezhzp + Vh2iZs — ViZiZc — ViZhZa + V27 + YD 2E7c — +V5ZE7p

C3 =

Considering Eq. (3.27) and replacing y and z by y; and z; in Eq. (3.14), one obtains equations to be
applied at slave node i:
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u(y,z) = uf = zia; +a,
v(yy,2) = v = yiziby + yib, (3.28)
w(i,z) =wi = zfey + yies +zic, + 3

This model contains eight master degrees of freedom per cross-section. Eq. (3.28) describes linear
relations between slave and master degrees of freedom.

3.3.3 HOSB model

The methodology is now applied to build the HOSB model. This model exploits five master nodes
A, B, C, D and E, as shown in Fig. 3.6. Eq. (3.17) contains three coefficients (a,, a, and a3) to be
determined for displacement u, two coefficients (b, and b,) for displacement v and four coefficients

(cy, ¢z, c3 and c,) for displacement w. To identify the nine coefficients, the following equations are
used:

(U(Ya,Zg) = Uy = 125 + apz4 + a3

u(yp, 2p) = up = a1z3 + ayzp + as

u(ye, z¢) = uc = 122 + azzc + az

v(Yp,Zp) = Vp = YpZpby + ypb,

1 vV, zg) = Vg = Ygzgby + yeby (3.29)
W(Va,24) = Wy = 25C1 + Y5Cs + ZpCy + €3

w(Yp,Zp) = Wp = 21 + YiCs + ZpCy + C3

w(Ve, 2c) = We = zcy + yEcy + z¢Cy + 3

w(Yp,zp) = Wp = zpCy + yhCa + ZpCy + €3

where uy, ug, Uc, Vp, Vg, Wa, Wg, We and wy are the displacements at master nodes; y,,
Ye, Yo Yo» VE» 24, Z, Zc, Zp and zp are the coordinates of master nodes.

The expressions of coefficients by, b,, ¢;, ¢, c3 and c, are the same as expressed in Eq. (3.28),
coefficients a4, a, and as identified for each cross-section are:

UyZg — URZy — UpZe + UcZy + UpZy — UcZp
al -

(24 — 2p) (2525 — z32¢ + Zp2f — ZaZpzc — 252¢ + 27)

UpZD — UpZy — UyZE + UcZy + UpZd — UcZ)

_ 3.30
(z4 — 25) (2225 — 222¢ + 223 — 242p2c — ZB2¢c + 23) (3.30)

—uCZjZB + uszZC + uczng — uBzng + qung — qung

az = —

(24 — 2p) (2525 — z32¢ + 22} — Zpzpzc — 252¢ + 23)

After considering Egs. (3.28) and (3.30) and replacing y and z by y; and z; in Eq. (3.17), one obtains
equations to be applied at slave node i:
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u(y, z;) = uj = zja; + zia; + az
v(yy2) = vP = yiziby + y;b, (3.31)
wi,z) =w = zfc; +yie, +zic; + ¢3

The HOSB model contains nine master degrees of freedom per cross-section. Eq. (3.31) describes

linear relations between slave and master degrees of freedom.

3.3.4 SB1-3D model

The methodology is now applied to build the SB1-3D model. This model exploits six master nodes
A, B, D, E, Fand G, as shown in Fig. 3.7. Eq. (3.20) contains six coefficients (a; to a) to be determined
for displacement u, six coefficients (b, to bg) for displacement v and six coefficients (c; to ¢g) for

displacement w. To identify the eighteen coefficients, the following equations are used:

U(Ya24) = Uy = YaZaly + V32405 + YaZalz + Yaay + 2405 + ag
u(yp, 2p) = Up = YpZpay + Y32p0ay + YpzZpas + Ypay + Zpas + ag
u(yp,zp) = up = YpzZpay + Yp2Zpa, + YpZpaz + ypas + zpas + ag
u(Vg, 2p) = U = YpZpay + Y3Zgay + Ypzpas + Ypas + Zpas + ag
u(yr, zp) = Up = YpZpay + YPZpay + Ypzpaz + Yray + zpas + ag
u(yg,26) = Ug = YZia1 + Y3z, + Y62ca3 + Y s + Zgas + ag
V(Ya,24) = Vg = Yiby + 25by + Yazabs + yaby + 24bs + b

v(yp, zp) = Vg = Yiby + z8b, + ypzpbs + ypby + zgbs + b
v(yp,2p) = Vp = yiby + z5by + ypzpbs + ypbs + zpbs + bg
v(yg, zg) = vg = YEby + 2Eby + ygzpbs + yeby + zpbs + by

v(Yp, 2p) = Vg = YEby + 2£by + Ypzpbs + ypby + zpbs + by
v(¥6,26) = Vg = Y¢by + 28by + Y6zgbs + ygba + zgbs + by
wW(Ya,24) = Wa = YZC1 + 25Co + YaZaC3 + YaCa + ZaCs + Co

w(yp, zp) = Wg = y5C1 + 25C, + YpZpC3 + ypCy + ZpCs + Co
w(y¥p, Zp) = Wp = Y51 + 25, + YpZpCs + ypCa + Zpcs + co
Ww(Yg, Zg) = Wg = YECy + 25Cy + YgZpCs + YgCa + ZgCs + Co

w(Yp, 2Zp) = Wp = YEC; + ZFCy + YpZpCz + YpCy + ZpCs + Co

W (Y6, 26) = Wg = Yé¢1 + 26Co + Yg26¢3 + YoCa + 26C5 + Co

(3.32)

where uy, ug, Up, Ug, Up, Ug, V4, Vg, Vp, Vg, Vg, Vg, Wa, Wg, Wp, Wg, Wr and wg; are the displacements at
master nodes; z4, zg, Zp, Zg, Zr, Zg aNd V4, Y5, Yp, Vi, VF, Vi are the coordinates of master nodes in the z
and y directions respectively.
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Fig. 3.7. Master nodes and slave nodes in the cross-section of a solid-beam model in space.

For simplification, point A in the cross-section can be supposed as the relative origin in the
coordinate system. Therefore, some equality relations between the coordinates can be expressed as:

(YB =0
Ypa =Yp —Ya = Vea = VGaA
lyFA =Yr—JYa
zp =0 (3.33)

ZBA = Zp — Zp = Zpp = ZEA
ZGA = 26 — 27

Where ypa, Vea, Vrar Year Zea» Zear Zra and z; 4 are the relative coordinates of points B, D, E, Fand G

to point A in the y and z directions.
Considering Eq. (3.33), the expressions of coefficients identified for each cross-section are:
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A

( (UpZpa —UgZpa — UpZga + UpZga)

a; =
YpaZeaZca(Zga + Zga) (Zga — Za)
_ UpYpa — UpYFra — UFYpa T UpYFa
az = 7 ( 2 .2 )
YpaYraZa\Ypa — VFa
3 4 3.3 3.3 3.3 3.3 3 .3
/uByDAZGA t UAYFaZGa t UpYFaZpa — UBYFaZca — UGYFaZaa — UDYFAZGa
3 .3 3.3 2 3 2 3 2 3
—UFYpaZca T UEYFaZGa — UaVDAYFAaZGa — UDYDAYFaZBa T UcYDAYFAZEA
2 3 3 .2 3,2 3,2
tUpYDaYFaZca — UBYDaZBaZGA — UaYraZaaZca + UBYFaZBaZca
3 .2 2 2 2 2
0 = FUFYDaZBaZca t UaYDaYFaZBaZ6A — U6 YDAYFAZBAZGA
3~ 2 2
YpaYraZpaZoa(Zpa + Zga)(Zpa — ZGA)(yDA - )’FA)

Uy —Up

a, = —
Ypa

Uy —Uup

a5 = —
ZBA

Ag = Uy

VAYpaZEa = VDYpaZba + VDYDAZBA — VBYDAZEA + V6YDAZEA — VGYDAZBA
~VpYraZéa + VDYFaZEa — VDYraZia + VEYFaZéa — V6YraZba + VG YraZia
—VaYpaZpaZca v VBYpaZBaZGa t VaYFaZpaZca — VBYFaZBaZea T VpDYpaZBaZca
—VpYraZpaZca — VEYpAZBaZGa T VEYFaZBAZGA — vAyDAZBAZgA + VaYpaZhaZea
YVUAYFaZBAZEs — VaYFaZBaZ6A — VDYDAZEAZ6A + VDYFAZBaZea + VFYDAZBAZEA
by = —VpYpaZbaZea * VEYDAZBaZGA — vEyFAZBAZéA
YpaYraZpaZoa(Ypa — Yra)(Zpa — Zga)

_ VUpZpa — VgZpa — VpZga t VEZGa

b, =
2
ZgaZca(Zpa — Zga)
2 2 3 2 2 3 2 2
VAZGa — VpZga + VpZga — VBZGa + VGZga — V6Zea — VpZBaZGa + VEZBAZGA
ba = — —VaZpaZca t VBZpaZca * VpZpaZoa — VEZBaZca
3=

}’DAZ§AZGA (Zpa — Zga)

UAle)AZ(Z;A - UDyL%AZ)%A + UDYL%AZJSA - UBYI%AZ§A + val%AzéA - vagAzlgA
_UAYL%AZBAZ(ZJA + VaYhaZbaZoa + UAY}%AZBAZ(Z;A — VaYFaZbaZea — VpYbaZhaZa
—~VUpYFaZpaZéa + VpYiaZEaZoa + VEVbAZBaZia — VFYEaZBaZca + VEVDAZEaZcA
—VaYpAYFaZéa + VDYDAYFaZba — VDYpaYraZia + VBYpaYraZéa — VeYpaYraZba
+V6YDAYFAZBA — VaYbaZraZa + VBYbaZpaZea + VpYbaZpaZoa — VEYhaZpaZea

+UD3’DA}’FAZBAZc2;A - vEyDAyFAZBAZCZ;A + VaYpaYraZpaZca — VaYpaYFaZpaZca
b, —VBYpaYFaZpaZa — VpYpaYraZpaZca t VEYpaYFaZpaZca

YpaYraZpaZoa(Ypa — Yra)(Zpa — Zga)

2 2 2 2
_ (VaZGa — VpZga — VBZia t VGZEa — V6ZpaZoa + VBZBaZGa t VDZBaZGa — VEZBAZGA)

b5 =
2
ZpaZca(—Zpp + ZGaZpa)

\be = UA
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/ WA)’DAZGA WDyDAzéA + WpYpaZia — WpY¥paZéa + WGyDAZl%A WGyDAZBA \
~WaYFaZéa + WpYraZba — WpYraZpa + WYraZéa — WeYraZha + WeYraZpa
| ~WaYpaZpaZea + WsYpaZaaZca + WaYraZsaZoa — WB}’FAZBAZGA + WDyDAZBAZGA I
| ~WpYraZpaZca — WEYpaZpaZoa t WEyFAZBAZGA WAyDAZBAZGA + WaYpaZbaZa |
\"‘WAYFAZBAZGA WAYrAZBaZGa — WDyDAZBAZGA + WDyFAZBAZGA + WFyDAZBAZGA/
_WFyDAzéAZGA + WEyDAZBAZGA - WEyFAZBAZGA
YpaYraZpaZoa(Ypa — Yra)(Zpa — Zga)

WpZpa — WgZpa — WpZga + WEZgy

C2 =
ZgaZca(Zga — Zga)

2 2 3 2 2 3 2 2
WaZia — WpZga + WpZpa — WBZGa t WGZga — WGZpa — WpZpaZia + WEZBaZGa
—WaZppaZga + WpZpaZga + WpZpaZga — WEZBaZGa

yDAZl%AZGA (Zpa — Zga)

WAY[Z)AZEA - WDyLZJAng + WDyLZJAZgA - WByL%AZéA + WGyL%Ang - WGJ’[2>AZ§A
_WAylz)AZBAZgA + WaYBaZhaZga + WA}’I%AZBAZgA ~ WaYFaZBaZca — WpYbaZbaZa
~WpYFaZpaZéa + WpYFaZbaZea + WEYbaZpaZéa — WeYbaZhaZoa + WeYbaZhaZea
~WAYpaYraZéa + WpYpaYraZba — WpYpaVraZia + WeYpaYraZéa — WeYpaYraZha
+W6YpaYraZia — WaYhaZpaZa + WeYhaZpaZoa + WpYbaZpaZoa — WEYbaZpaZea

+WpYpaVraZpaZéa — WEyDAyFAZBAZéA + WaYpaYraZpaZea — WaYpaYraZpaZca
—WBYpaYraZpaZca — WpYpaYraZpaZea t WEYpaYraZpaZca
YpaYraZeaZoa(Vpa — Yra)(Zpa — Zga)

2 2 2 2
(WaZGg — WpZga — WpZGa + W6Zg4 — WGZBaZga + WpZpaZa + WpZpaZoa — WEZBaZGa)

Zpazea(—2h4 + Z6aZa)

Cg = —

Ce = Wy

After replacing y, z by y;, z; in Eq. (3.20), one obtains equations to be applied at slave node i:

u(y,z) =ui = yizia; + Zi}’i3a2 +Yiziaz + Yia4 + Z;s + ag
v(y;,z) = 17 =Y bl + z; b2 + yizibs + y;ibsy + z;bs + be (3.35)
w(y;, z;) = w = yfc; +zfc, + yizics + yicy + zics + 6

with coefficients a; to ag, by to bg, and ¢, to cg defined in Eq. (3.34).

This model contains eighteen master degrees of freedom per cross-section. Eq. (3.35) describes

linear relations between slave and master degrees of freedom.

3.3.5 SB2-3D model

The methodology is now applied to build the SB2-3D model. This model exploits eight master nodes
A B, C,D, E, F, G andH, as shown in Fig. 3.7. Eq. (3.21) contains eight coefficients (a; to ag) to be
determined for displacement u, six coefficients (b, to bg) for displacement v and six coefficients (c; and
ce) for displacement w. Besides, the coefficients b, to by and ¢, to ¢4 are the same as the coefficients

defined in Section 3.3.4. To identify the first eight coefficients, the following equations are used:
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(U(Va,Za) = Uy = YaZRay + YAZa0y + Y3 a3 + 2304 + YaZaas + yaae + Zaa; + ag
u(yp, 2p) = Up = YpzZjay + Y3zpa, + y3az + z3a, + ypzsas + ypas + zga; + ag
u(ye, 2¢) = Uc = Yezday + Y240, + YEas + z3as + Yozeas + yYeas + zcaz + ag
u(yp,zp) = up = Ypzpay + Ypzpa + ypas + zpas + ypzaas + ypae + zpaz + ag
u(yg, zg) = up = YpZpay + y3zpa, + yaz + zpa, + ypzpas + ypae + zga; + ag
u(yr, zp) = Up = YpzZpay + YPzpay + yRaz + 230y + ypz4as + yrae + zpa; + ag
u(ye, ) = Ug = V2o + YiZey +Yoas + 230y + Y6Z6as + Vs + Zgay + ag
u(yy, zy) = Uy = Yuzihay + Yizuay + yias + 20y + yuzyas + yyag + zya; + ag

(3.36)

where uy, ug, uc, Up, Ug, Up, Ug, Uy are the displacements at master nodes; zy, zg, Z¢, Zp, Zg, Zr, Z, Zy
and y4, Y5, Ve, Yo, Yu, Vi) Yo, Vg are the coordinates of master nodes.
For simplification, point A on the cross-section can be supposed as the relative origin in the
coordinate system. Therefore, some equality relations between the coordinates can be expressed as:
(YB =Yc = 0
lyDA =Yp —Ya = YEa = YA

Yra = YF — YA = YHA
Zp=2zy =0 (337)

ZBA = Zp — Zp = Zpp = ZEA
ZG6A = 26 — 24 = Z¢c

Where ypa, Vear Vrar Yoar Viar Zear ZEar Zrar Zca and zy, are the relative coordinates of points B, D,
E, F, G and H to point A in the y and z directions.
Considering Eq. (3.37), the expressions of coefficients identified for each cross-section are:
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( _  UaZpa —UcZpa — UaZga — UpZpa + UpZga + UcZpa + UpZea — UpZga

a, =
VYpaZpaZoa(Zga + Zga)(Zga — Zga)
q, = _ taYpa = UYpa ~ UaYra + UpYra + UpYFa T UFYpa — UnYpa — UEYFA
2= 2 2
YpaYraZea(Vpa — Yia)
_ UaYpa — UsYFa T UpYra — UyYpa
“= V2 — V2D
YpaAYFa\YDpa — YFa
. = taZpa ~ UcZpa — UnZGa + UpZga
4= 2 2
ZBAZGA(ZBA - ZGA)
3 .3 3 .3 3 .3 3 .3 3 .3
/ UpYraZpa + UaYDaZGa — UBYDAZGAa — UcYFaZBa — UaYFAZGa \
3.3 3 .3 3 .3 3 .3 3 .3
) | —UpYraZga t UpYFaZca T UGYFaZpa T UpYFaZca + UFrYDaZca | (339)
3 .3 3 .3 2 3 2 3 :
—UpYDaZca — UEYFaZGA — UaYVDaYFaZpa + UcYDaYFaZpa
2 3 2 3 3 .2 3 .2
tUpYpaYFraZaa — UGYDAYFAZBA — UaYDaZBaZca T UBYDAZBAaZGA
3 .2 3 .2 2 2 2 2
\_quDAZBAZGA t+ UpYDaZpaZoa + UaYpaVraZpaZoa — uByDAyFAZBAZGA/
2 2 2 2
@ = —UpYpaYraZpaZea t UEYDaYFraZeaZca
5= 2 2
YpaYraZpaZca(Zpa t Zca)(Zpa — Z6a) Vb4 — Via)
3 3 3 3
0 = _ taYba ~ UaYia + UpYra — UnYba
6 — 2 2
VpaYra(Vba — Via)
3 3 3 3
0 = _ daZia ~ UcZia — UaZia + UpZgy
7= 2 2
ZpaZca(Zgp — ZGa)
Kag = Uy

As mentioned above, the coefficients b; to bg, c; to ¢4 are the same as the coefficients defined in
Section 3.3.4. After replacing y, z by y;, z; in Eq. (3.21), one obtains equations to be applied at slave
node i:

—_ S — 3 3 3 3
u(yi zi) =u) =yiz;a; + zjyjaz +y; az + z; a4 + yiz;as + yia¢ + z;a7 + ag
v(yi,2) = Vi = yPby + zby + yiz;bs + yiby + z;bs + b (3.39)
w(;,2) = wi = yicy + zf ¢y + yizic3 + Yica + 205 + Co

with coefficients a; to ag, by to bg, and c; to cg defined in Eq. (3.38) and Section 3.3.4.
—This model contains twenty master degrees of freedom per cross-section. Eq. (3.39) describes

linear relations between slave and master degrees of freedom.

3.3.6 Remarks

The method is the same for the five beam theories considered in Sections 3.3.1 to 3.3.5. The only
difference is the number of master degrees of freedom per cross-section, namely three, eight, nine,
eighteen and twenty for the FOSB, MFOSB, HOSB, SB1-3D and SB2-3D models respectively. Among

them, the first three models for a beam in plane will be assessed through static examples, and the latter
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two models for a beam in space will be assessed through vibration examples. The number of equations
applied is equal to the number of slave degrees of freedom which are eliminated. Consequently, the
model size does not depend on the number of nodes in each cross-section but is given by the number of
master degrees of freedom. As described above, all the relations between master and slave degrees of
freedom are linear. For implementation, the “*EQUATION” keyword in Abaqus [61] is used to
introduce these linear equations. In the post-processing step, displacements are available for all the nodes.
Then the stresses can be calculated in all the elements. The average value at nodes is retained to evaluate
the stresses.

This new solid-beam approach uses displacements exclusively, without rotations or other types of
degrees of freedom. It is an interesting characteristic of our methodology, particularly for higher-order
theories that initially use not only displacements and rotations but also other types of degrees of freedom.
Moreover, other displacement fields can also be applied in our approach, for instance, an even higher-
order beam theory can be considered if necessary.

3.4 Static examples

The new solid-beam approach for FOSB, MFOSB and HOSB models is here used for the treatment
of two examples with thin and thick cases in the context of static analysis: a straight beam with square
cross-section under distributed loading and a curved beam with square cross-section under distributed
loading. A convergence study is made for each example. The displacement and the von Mises stress are
studied. The finite element results obtained with the solid-beam models are evaluated by comparison
with a reference solid model. The reduction of model size due to the solid-beam approach is discussed.

The compatibility of the solid-beam approach with another efficient solid element is also proved.
3.4.1 Straight beam with square cross-section under distributed loading

3.4.1.1 Presentation of the example

The straight beam with square cross-section is presented in Fig. 3.8. The structure is clamped at its
two ends and submitted to a distributed loading applied on the upper surface. A relatively thin beam
case (I/h=20) as well as a thick beam one (I/h=5), are considered.
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Fig. 3.8. Straight beam with square cross-section under distributed loading — Presentation of the example.

3.4.1.2 Convergence study

A convergence study is presented, to ensure that solid-beam approach meets the convergence
conditions and to compare its performances with those of the solid approach. In this example, the twenty-
node hexahedral finite element C3D20 of Abaqus [61] is used. The displacement for several mesh
refinement levels is observed in the center (point M in Fig. 3.8) of the bottom surface. The solid models
with very fine 8x8x100 and 8x8x60 meshes are respectively chosen as the reference for thin and thick
cases. Convergence is considered to be achieved if the error is less than 0.5% compared with these
reference models. The results of thin and thick cases are reported in Table 3.1 and Table 3.2 respectively.
The solid model and the HOSB model give very close results and convergence is obtained with a 4x4x40
mesh in the thin case and a 4x4x20 mesh in the thick one. The MFOSB model is satisfactory in the thin
case but leads to a small error in the thick one, even for a refined mesh. The FOSB model converges to
completely wrong values compared with the reference solid model. Consequently this model is

unacceptable.
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Table 3.1. Straight beam with square cross-section under distributed loading —

Convergence study of displacement w at point M in the thin case.

Mesh Models Displacement w (mm) | Error (%)
8x8x100 | Reference -2.427 -
Solid -2.314 4.7
HOSB - -
1x1x10
MFOSB - -
FOSB -1.825 24.8
Solid -2.400 11
HOSB -2.406 0.9
2x2%20
MFOSB -2.396 1.3
FOSB -1.830 24.6
Solid -2.420 0.3
HOSB -2.422 0.2
4x4x40
MFOSB -2.417 0.4
FOSB -1.831 24.6

Table 3.2. Straight beam with square cross-section under distributed loading —

Convergence study of displacement w at point M in the thick case.

Mesh Models Displacement w (x10mm) | Error (%)
8x8x60 | Reference -1.316 -
Solid -1.203 8.6
HOSB — -
1x1x6
MFOSB - —
FOSB -1.075 18.3
Solid -1.288 2.1
HOSB -1.285 2.4
2x2x10
MFOSB -1.280 2.7
FOSB -1.077 18.2
Solid -1.310 0.5
HOSB -1.309 0.5
4x4%20
MFOSB -1.299 1.3
FOSB -1.078 18.1
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3.4.1.3 Displacements and stresses in the thin case

First displacements as well as von Mises stresses are observed over the whole structure. The
comparison of the results between solid, HOSB and MFOSB models are presented in Fig. 3.9. The
FOSB model is not considered because its convergence performance is not satisfactory. These results
are obtained with the 4x4x40 mesh, which meets the convergence criterion as highlighted in Section
3.4.1.2. The vertical displacements and von Mises stresses obtained with the three models are very

similar to each other.

Displacement (mm)
3.696x10+

-6.076x10"!
-1.216

-1.824

o EENNNNNER

-2.432

von Mises stress (MPa)
199.4

149.7
99.95
50.20
4.448x10"! Solid HOSB MFOSB

.

Fig. 3.9. Straight beam with square cross-section under distributed loading — Displacement w and von Mises

stress distribution in the thin case.

The distribution of vertical displacement along the mid-axis and von Mises stress along a line on
the lower surface is shown in Fig. 3.10. The solid-beam models are compared with the solid model and
two classical beam models. The elements B21 and B23 in Abaqus are used for representing the thick
beam and thin beam models respectively. A mesh containing forty B21 or B23 finite elements, which
meets the convergence criterion, is considered for the thin beam and thick beam models. All the models
have similar results for displacements and stresses except the FOSB model which shows significant

errors. These errors are essentially due to a spurious o, stress state being discussed below.
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Fig. 3.10. Straight beam with square cross-section under distributed loading — Distribution of vertical
displacement along the mid-axis (a) and von Mises stress along a line on the lower surface (b), in the thin

case.

Fig. 3.11 presents the through-the-thickness distribution of displacements and stresses along a line
JK (see Fig. 3.8). The solid model is considered as the reference. Firstly, the FOSB model shows
unsatisfactory results, especially for displacement w (Fig. 3.11b) and o, stress (Fig. 3.11e). Because w
is considered as constant through the thickness, the &, strain is equal to zero, which is not correct due to
the Poisson effect. This nonphysical assumption greatly disturbs the state of stress in the 3D elasticity
situation. Particularly, it implies large o, stress, which should remain very small in this thin beam case.
Therefore, the von Mises stress depending on the different stress components is affected and this
explains the bad results reported in Fig. 3.10. These poor results confirm that this kinematic assumption
is not compatible with 3D theory of elasticity, although consistent and valid in the context of the classical
beam theory. Furthermore, the FOSB model also gives a constant oy, stress distribution (Fig. 3.11d),
which is a well-known limitation of the Timoshenko beam theory. Usually, the integration of
equilibrium equations is used to obtain a quadratic and correct distribution of transverse shear stresses.

The reference displacement u (Fig. 3.11a) is linear and both the MOFSB and HOSB models perfect
fit this distribution. The displacement w is also well predicted by these two solid-beam models. This
component seems to be constant but actually has a slight quadratic tendency. One can observe linear
distribution of oy stress (Fig. 3.11c) and again the MOFSB and HOSB models provide good results.

The HOSB model accurately reproduces the classical quadratic distribution of oy, stress. Namely, the
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free-face condition oy, = 0 is almost met at top and bottom surfaces. Thanks to the quadratic distribution
of displacement w, the MFOSB model also exhibits a quadratic trend, but a significant discrepancy with
the reference result is observed. Namely the free-face condition mentioned above is not met. However,
it is not important for this thin case since transverse shear stresses are usually neglected in thin structures
and the influence of transverse shear effects on displacements is small. In summary the HOSB model
gives outstanding results for the thin case, while the MOFSB model is also satisfactory but cannot
perfectly reproduce the transverse shear effects. Anyway, one can neglect these effects for a thin

structure. Finally, the FOSB model is not able to provide good results, and thus is not considered for the

rest of the study.
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Fig. 3.11. Straight beam with square cross-section under distributed loading — Through-the-thickness

displacement and stresses along a line JK, in the thin case.

3.4.1.4 Displacements and stresses in the thick case

As for the thin case first of all displacements and von Mises stresses are observed over the whole
structure. The comparison of results obtained with the solid, MOFSB and HOSB models are shown in
Fig. 3.12. The 4x4x20 mesh, which meets the convergence criterion as highlighted in Section 3.4.1.2,
is used. The solid model and the HOSB model perform similar results in this global observation. For the
MOFSB model, some little difference appears on displacement and von Mises stress in this thick beam

case.
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Fig. 3.12. Straight beam with square cross-section under distributed loading — Displacement w and von Mises

stress distribution in the thick case.

Fig. 3.13 presents the distribution of vertical displacement along the mid-axis and von Mises stress
along a line on the lower surface. The solid model and solid-beam models use the 4x4x20 mesh, while
the beam models use a mesh with twenty elements, which both satisfy the convergence criterion. For
displacement, the HOSB model fits very well with the solid one. Significant error is obtained with the
thin beam model which neglects transverse shear effects. Relatively small errors appear with the thick
beam model and the MFOSB model. For von Mises stress, again the HOSB model has a perfect fit with
the reference, while the beam models lead to small errors in the boundary conditions area. The
discrepancy shown with the MFOSB model is due to a rough calculation of transverse stresses which
play a significant role in thick structures. Therefore, the HOSB model is confirmed to properly predict

the mechanical behavior of a thick beam which is submitted to significant transverse shear effects.
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Fig. 3.13. Straight beam with square cross-section under distributed loading — Distribution of vertical
displacement along the mid-axis (a) and von Mises stress along a line on the lower surface (b), in the thick

case.

Fig. 3.14 shows the distribution of displacements and stresses along a line JK (see Fig. 3.8), again
the solid model being the reference. Several limitations are shown with the MFOSB model. The
guadratic tendency of displacement w (Fig. 3.14b) is reproduced but the values are incorrect, which
means the stiffness is not well estimated. This is due to the fact that transverse shear stiffness is not
precisely calculated. Namely, this model fails in reproducing the quadratic distribution of the reference
stress oy (Fig. 3.14d). Moreover, the free-face condition oy, = 0 is not met at top and bottom surfaces.
And obviously, the transverse shear effects play an important role in the thick case. The classical
Timoshenko beam theory is associated with shear correction factors to avoid the limitation caused by
kinematic assumptions. But in our solid-beam approach, no correction factor is introduced. Of course,
this wrong oy, distribution consequently leads to errors on the von Mises stress, as highlighted in Fig.
3.13. Besides, this MFOSB model cannot replicate the slight nonlinear distribution of displacement u
(Fig. 3.14a) and stress ox (Fig. 3.14c). On the contrary, the HOSB model shows an excellent fit with
the solid model. It correctly predicts the quadratic distribution of displacement w, the nonlinear
distribution of stress ox and the quadratic distribution of stress ox.. In particular, the free-face condition
ox: = 0 is almost met at top and bottom surfaces. Moreover the distribution of stress o, (Fig. 3.14e) is

also correctly predicted.
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Fig. 3.14. Straight beam with square cross-section under distributed loading — Through-the-thickness

displacement and stresses along a line JK, in the thick case.

3.4.1.5 Accuracy synthesis of solid-beam models

Table 3.3 summarizes the errors obtained with the solid-beam models in the thin and thick cases.
These errors are calculated at center (point Q in Fig. 3.8) and corner (point N in Fig. 3.8) corresponding
to the maximal displacement and von Mises stress respectively. The MFOSB model shows good
performance in the thin case, the maximal error being limited to about 1% for the displacement and von
Mises stress. The HOSB model even works better because transverse shear effects are not completely
negligible in this thin case. Actually, the I/h ratio equaling to 20 is not characteristic of a very thin beam.
For the thick case, the HOSB model remains satisfactory with errors not exceeding 1.5%. The MFOSB
model is less efficient, errors are close to 5% for the displacement and 9% for the von Mises stress.
Summarily, the MFOSB maodel is convenient for the thin case only, while the HOSB model gives
excellent results in both the thin and thick cases. Additionally, the same study has been performed with
the eight-node hexahedral element C3D8I of Abaqus. Similar results have been obtained showing that

the solid-beam methodology can be used with any efficient solid element.
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Table 3.3. Straight beam with square cross-section under distributed loading — Errors on maximal

displacement and maximal von Mises stress.

Displacement w von Mises stress

Examples Models Maximum (x102mm) | Error (%) | Maximum (MPa) | Error (%)
Solid -243.2 - 184.5 -
Thin case HOSB -242.9 0.1 183.6 0.5
MFOSB -242.0 0.5 182.4 1.1
Solid -1.361 - 11.76 -
Thick case HOSB -1.355 0.4 11.59 14
MFOSB -1.299 4.6 10.76 8.5

3.4.2 Curved beam with square cross-section under distributed loading

3.4.2.1 Presentation of the example

The second example is a curved beam with a square cross-section. The structure is clamped at its
two ends and submitted to a distributed vertical loading applied on the top surface, as shown in Fig.
3.15a. A relatively thin beam case (r/h=10) as well as a thick beam one (r/h=10/3), are considered. This
structure is curved, which leads to the coupling of bending and membrane effects, compared with the
first example for which the structure is submitted to pure bending effects only. Furthermore, local

coordinate systems (see in Fig. 3.15b) are created for each cross-section to apply kinematic relations.

EIN Y
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Y :
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(a) (b)

Fig. 3.15. Curved beam with square cross-section under distributed loading — Presentation of the example.

3.4.2.2 Convergence study

The same type of convergence study detailed in Section 3.4.1.2 is presented here. Again, the element

C3D20 is used. The evolution of displacement for different mesh refinement levels at point M (see Fig.
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3.15a) is observed. A solid model with a very fine 8x8x100 mesh is chosen to be a reference. The
convergence is considered to be achieved if the error is less than 0.5% compared with the reference. The
results of thin and thick cases are reported in Table 3.4 and Table 3.5 respectively. The observations are
similar, compared to the first example. The solid model and the HOSB model give very close results
and convergence is obtained with a 4x4x50 mesh in the thin and thick cases. The MFOSB model is

satisfactory in the thin case but leads to a small error in the thick one, even for a refined mesh.

Table 3.4. Curved beam with square cross-section under distributed loading —

Convergence study of displacement w at point M in the thin case.

Mesh Models Displacement w (x10tmm) | Error (%)

8x8x100 Reference -9.723 -

Solid -8.380 13.8

1x1x10 HOSB - -
MFOSB - -

Solid -9.632 0.9

2x2x30 HOSB -9.615 11
MFOSB -9.613 11

Solid -9.700 0.2

4x4x50 HOSB -9.679 0.4
MFOSB -9.676 0.5

Table 3.5. Curved beam with square cross-section under distributed loading —

Convergence study of displacement w at point M in the thick case.

Mesh Models Displacement w (x102mm) | Error (%)

8x8%100 Reference -10.23 -
Solid -9.867 3.6

1x1x10 HOSB - —
MFOSB - -

Solid -10.17 0.7

2x2x30 HOSB -10.12 11
MFOSB -10.10 1.3

Solid -10.21 0.2

4x4x50 HOSB -10.18 0.5
MFOSB -10.15 0.8
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3.4.2.3 Displacements and stresses in the thin case

Displacement w and von Mises stress are observed over the whole structure. Fig. 3.16 shows a
comparison of results between the solid, MFOSB and HOSB models. The results are obtained with the
4x4x50 mesh, which meets the convergence criterion. Similar displacements and von Mises stress
results are obtained with the three models.

Displacement w (x102mm)
7.041

-19.04
-45.12

-71.20

-97.28

713.9

536.0

358.2

180.3 i
Solid HOSB MFOSB

von Mises stress (MPa)

2.482

Fig. 3.16. Curved beam with square cross-section under distributed loading — Displacement and von Mises

stress distributions in the thin case.

Fig. 3.17 presents the distribution of vertical displacement in the global coordinate system along the
mid-axis and von Mises stress along a line on the lower surface. Again the 4x4x50 mesh is chosen for
the solid and solid-beam models. For the thin beam and thick beam models, a mesh containing fifty
elements is considered. Almost all the models give similar results of displacements and von Mises stress.
The thin beam model leads to some minor difference compared with the reference. Indeed the structure
is not very thin and consequently, transverse shear effects, which are not taken into account by in the
thin beam theory, are not completely negligible.
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Fig. 3.17. Curved beam with square cross-section under distributed loading — Distribution of vertical
displacement along the mid-axis (a) and von Mises stress along a line on the lower surface (b), in the thin

case.

3.4.2.4 Displacements and stresses in the thick case

As for the thin case displacements and von Mises stresses are observed over the whole structure.
Fig. 3.18 shows a comparison of results obtained with solid, MFOSB and HOSB models. The 4x4x50
mesh, which meets the convergence criterion, is used. The three models show close results, some minor
differences on displacements and von Mises stresses can be observed.
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Fig. 3.18. Curved beam with square cross-section under distributed loading — Displacement and von Mises

stress distributions in the thick case.

Fig. 3.19 gives the distribution of vertical displacement in the global coordinate system along the
mid-axis and von Mises stress along a line on the lower surface. The solid model is considered as a
reference. Again the 4x4x50 mesh is used for the solid and solid-beam models. For the beam models, a
mesh containing fifty elements is used. The HOSB model fits well with the solid one for displacement,
while some minor error is found with the MFOSB model. The HOSB model gives excellent result for
von Mises stress, but the MFOSB model leads to some errors. These results confirm that the HOSB
model is necessary to better reproduce the transverse shear effects which are significant in the thick
beam case. It is worth mentioning that in this thick curved beam case, the thin beam model gives bad
displacement and von Mises stress results. Moreover, even the thick beam model appears unsatisfactory
for calculating von Mises stress. In Fig. 3.15a, one can see that the distributed loading is applied on the
upper face of the structure. This is correctly taken into account with a solid or solid-beam model, but in
the beam models, loading is applied on the mid-axis, except if specific techniques are used. For a curved
and thick structure, the length of the mid-axis is significantly different from the length of the line on the
upper face, leading to a loading error. It is a limitation of the beam approach and so the solid-beam

approach is preferable from this point of view.
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Fig. 19. Curved beam with square cross-section under distributed loading — Distribution of vertical
displacement along the mid-axis (a) and von Mises stress along a line on the lower surface (b), in the thick

case.

3.4.2.5 Accuracy synthesis of solid-beam models

Table 3.6 summarizes the errors obtained with the solid-beam models, in the thin and thick curved
beam cases. These errors are calculated at center (point Q in Fig. 3.15a) and point N (in Fig. 3.15a) for
displacement and von Mises stress, corresponding to the maximal displacement and von Mises stress
respectively. The MFOSB model gives good results in the thin case, with errors around 1% for the
displacement and von Mises stress. Similar to the first example, the HOSB model performs better. In
the thick case, the HOSB model remains satisfactory with the errors limited to about 1%. The MFOSB
model leads to some discrepancy, but the errors: about 2% for displacement and 3% for von Mises stress,
remain limited. In summary, the HOSB model gives excellent results in both the thin and thick cases,
while the MFOSB model is convenient for thin structures only. Again, similar results have been obtained
by element C3D8I, which confirms that the methodology can be exploited with any efficient solid finite

element.
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Table 3.6. Curved beam with square cross-section under distributed loading — Errors on maximal

displacement and maximal von Mises stress.

Displacement w von Mises stress
Examples Models Maximum (x102mm) | Error (%) | Maximum (MPa) | Error (%)
Solid -97.28 - 432.6 -
Thin curved
HOSB -96.75 0.5 430.6 0.5
beam
MFOSB -96.03 1.2 429.7 0.7
Solid -10.34 - 94.92 -
Thick curved
beam HOSB -10.28 0.6 93.86 1.1
MFOSB -10.11 2.2 91.95 3.2

3.4.3 Model size

Fig. 3.20 compares the number of degrees of freedom between the solid model, and our solid-beam
models. The results are obtained for the straight beam example, but other examples share the same trends.
The size reduction is due to equations which lead to an elimination of slave degrees of freedom. It is an
expected and hopeful characteristic of the solid-beam approach that the reduction of the number of
degrees of freedom increases with the number of elements. For fine meshes, the gain is significant with
solid-beam models compared with reference solid models. Of course, the gain of the MFOSB model is

slightly larger compared with the HOSB model due to a smaller number of master nodes.
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Fig. 3.20. Influence of the meshing refinement level on the number of degrees of freedom between solid,
HOSB and MFOSB models.

It’s interesting to compare the MFOSB and HOSB models with classical beam elements in terms of
computational cost. Fig. 3.21 presents the comparison of the number of degrees of freedom for the
curved beam example. For the solid-beam models, the results are reported with a 4x4x50 mesh which
meets the convergence condition. The beam model with the same refinement level along the length of
the structure is also considered, to compare the solid-beam approaches and the beam one. Results

confirm that the beam or solid-beam approach gives a significant gain compared with the solid approach.
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It can also be observed that the HOSB model requires only a little more degrees of freedom than the
MFOSB model.
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Fig. 3.21. Comparison of the number of degrees of freedom between solid, HOSB, MFOSB and beam models

for the curved beam example.

3.5 Vibration examples

The new proposed solid-beam approach with MFOSB-3D and HOSB-3D models is now used for
the treatment of two examples in the context of vibration analysis: a straight beam and a curved beam,
in both thin and thick cases, described in Fig. 3.8 and Fig. 3.15 respectively. A convergence study is
made for each example. The mode shapes and natural frequencies obtained by solid-beam models and

reference solid model are compared.
3.5.1 Straight beam with square cross-section

3.5.1.1 Presentation of the example

The geometries of straight beam with square cross-section described in Fig. 3.8 are used in the
context of free-free vibration analysis, with the density equal to 7.89x10° t/mm?3. The I/h ratio equals 20
or 5, representing the thin and thick cases.

3.5.1.2 Convergence study

The thin and very thick structures are discretized with the twenty-node hexahedral element C3D20
from Abaqus. For the two straight beams, a convergence study is made for the free-free vibration
analysis of the first eight natural frequencies. For the reference solid, SB2-3D and SB1-3D models, the
4x4x40 and 4x4x20 meshes meet the convergence requirement for the thin and very thick cases
respectively. Meshes containing forty B31 or B33 finite elements, which meet the convergence criterion,
are considered for the thin beam models. Meshes containing twenty elements are considered for the

thick beam models.
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3.5.1.3 Mode shapes

For the reference solid, SB2-3D, and our SB2-3D models in the thin straight beam case, the first
eight mode shapes are shown in Fig. 3.22. Mode 13 is a torsion mode and the others are bending modes.

It is observed that all the models give very similar results for these modes.

Solid

SB2-3D

SB1-3D

Solid

SB2-3D

SB1-3D

Mode 11 Mode 12 Mode 13 Mode 14

Fig. 3.22. Straight beam in free-free vibration — First eight mode shapes for the reference solid, SB2-3D, and
SB1-3D models in the thin case.

The first eight mode shapes for the reference solid, SB2-3D, and SB1-3D models in the thick beam
case, are shown in Fig. 3.23. Modes 7, 8, 10, 11 and 14 are bending modes, modes 9 and 13 are torsion

modes, and mode 12 is a membrane mode. All the models give very similar results for these modes.
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Fig. 3.23. Straight beam in free-free vibration — First eight mode shapes for the reference solid, SB2-3D, and
SB1-3D models in the thick case.

The MAC values calculated between the SB2-3D model and the reference solid model for both the
thin and thick straight beams, are reported in Fig. 3.24. The MAC values are always greater than 0.9, it
indicates strongly correlated modes. Very similar results have been observed for the MAC values
calculated between SB1-3D and reference solid models. For both the thin and thick cases, a perfect
consistency is observed between the SB1-3D, SB2-3D models and the reference solid model.

SB2-3D SB2-3D
7 8 9 10 11 12 13 14 7 8 9 10 11 12 13 14
7 1 7 1
8 0.8 8 0.8
9 9
= 10 0.6 <10 0.6
@ 11 04 311 0.4
12 0.2 12 0.2
13 13
14 0 14 0
Thin beam Thick beam

Fig. 3.24. Straight beam in free-free vibration — MAC matrix between the SB2-3D model and the reference

models for the thin and thick beams.
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3.5.1.4 Natural frequencies

The first eight natural frequencies obtained with the reference solid model, SB2-3D model, SB1-3D
model, thin (B33 element in Abaqus) and thick (B31 element in Abaqus) beam models for thin and thick
straight beams are presented in Fig. 3.25 and Fig. 3.26 respectively. The errors on natural frequencies
are reported in Table 3.7. For the thin case, all the models show results similar to the reference solid
ones except the thin beam model for modes 11, 12 and 14. For the thick case, the thin beam model gives
incorrect results compared with the reference solid model. The SB1-3D model shows correct results but
with errors about 2% for modes 10 and 11 (see Table 3.7), and error about 3% for mode 14, because the
transverse shear stiffness is not precisely calculated. The thick beam model also provides a correct result
but with errors of 1% for modes 10 and 11, and error about 2% for mode 14. The SB2-3D model gives
excellent results with errors less than 0.5% compared to the reference solid one.
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= 8&r [ SB2-3D
% ‘ﬁ ﬁ . ¥r SBI-3D
5 O Thick beam
[} .
5 | <] Thin beam
z 4 & @
[
o =
o L1 I I 1 I | I I
7 8 9 10 11 12 13 14 Mode

Fig. 3.25. Straight beam in free-free vibration — Natural frequencies for the reference solid model, SB2-3D

model, SB1-3D model, thin and thick beam models in the thin case.
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Fig. 3.26. Straight beam in free-free vibration — Natural frequencies for the reference solid model, SB2-3D

model, SB1-3D model, thin and thick beam models in the thick case.
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Table 3.7. Straight beam in free-free vibration — Errors (%) on natural frequency parameters with different

models for the thin and thick cases.

Mode
7 8 9 10 11 12 13 14

I/h ratio Model

SB2-3D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SB1-3D 0.1 0.1 0.2 0.2 0.4 0.4 0.0 0.6

20 Thick beam 0.1 0.1 0.1 0.1 0.2 0.2 0.0 0.3
Thin beam 0.9 0.9 2.5 2.5 4.8 4.8 0.0 7.8

SB2-3D 0.0 0.0 0.1 0.2 0.2 0.1 0.3 0.3

. SB1-3D 0.6 0.6 0.1 1.7 1.7 0.1 0.3 2.6

Thick beam 0.7 0.7 0.1 1.2 1.2 0.2 0.3 1.8
Thin beam 128 | 128 | 0.1 169 | 325 | 137 | 05 21.0

3.5.2 Curved beam with square cross-section

3.5.2.1 Presentation of the example

The second example with the same geometries as described in Fig. 3.15 are here used in the context
of free-free vibration analysis, with the density equal to 7.89x10° t/mm?. The ratio r/h equals 10 or 10/3,

representing the thin and thick cases respectively.

3.5.2.2 Convergence study

The thin and thick structures are discretized with the twenty-node hexahedral element C3D20 in
Abagqus. For the two curved beams, a convergence study is made for the free-free vibration analysis of
the first eight natural frequencies. For the reference solid, SB2-3D and SB1-3D models, the 4x4x50
mesh meets the convergence requirement for the thin and thick beams respectively. A mesh containing
fifty B31 or B33 finite elements, which meets the convergence criterion, is considered for the thin and
thick cases.

3.5.2.3 Mode shapes

For the reference solid, SB2-3D and SB1-3D models in the thin curved beam case, the first eight
mode shapes are shown in Fig. 3.27. They range from simple bending or torsional modes to more
complex combined bending and torsional modes. The SB2-3D model and SB1-3D model show similar

mode shapes compared with the reference model.
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Fig. 3.27. Curved beam in free-free vibration — First eight mode shapes for the reference solid, SB2-3D and
SB1-3D models in the thin case.

The first eight mode shapes for the reference solid, SB2-3D, and SB1-3D models in the thick curved
beam case, are shown in Fig. 3.28. They range from simple bending or torsional modes to more complex

combined bending and torsional modes. All the models presented here lead to similar mode shapes.
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Fig. 3.28. Curved beam in free-free vibration — First eight mode shapes for the reference solid, SB2-3D, and

SB1-3D models in the thick case.

The MAC values calculated between the SB2-3D model and the reference solid model for both the
thin and thick curved beams, are reported in Fig. 3.29. The MAC values are always greater than 0.9, it
indicates strongly correlated modes. Very similar results have been observed for the MAC values
calculated between the SB1-3D model and reference solid models. For both the thin and thick cases, a

perfect consistency is observed between the solid-beam models and the reference solid model.

SB2-3D SB2-3D
7 8 9 10 11 12 13 14 7 8 9 10 11 12 13 14

7 ! 7 "

8 0.8 8 0.8

9 9
= 10 0.6 E 10 0.6
g 11 0.4 & 11 04

12 12

13 0.2 13 0.2

14 0 14 0

Thin curved beam Thick curved beam

Fig. 3.29. Curved beam in free-free vibration — MAC matrix between the SB2-3D solid-beam and the

reference models for the thin and thick beams.
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3.5.2.4 Natural frequencies

The first eight natural frequencies for thin and thick curved beam structures are presented in Fig.
3.30 and Fig. 3.31 respectively. The reference solid model, SB2-3D model, SB1-3D model, thin (B33
element in Abaqus) and thick (B31 element in Abaqus) beam models are considered. The errors on
natural frequencies are reported in Table 3.8. Results similar to the straight beam example are obtained.
For the thin case, all the models show good results except the thin beam model giving slight errors about
2% for modes 10, 11, 12, 13 and 14. For the thick case, the thin beam model gives incorrect results with
errors up to 12%. The SB1-3D model shows correct results but with errors more than 2% for modes 10
and 14, and errors about 5% for modes 8 and 11 compared with the reference solid model. The thick
beam model also provides the correct result but with errors about 2% for modes 9, 12 and 14. Again,

the SB2-3D model gives almost the same results as the reference solid one with errors less than 0.6%.
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Fig. 3.30. Curved beam in free-free vibration — Natural frequencies for the reference solid model, SB2-3D

model, SB1-3D model, thin and thick beam models in the thin case.
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Fig. 3.31. Curved beam in free-free vibration — Natural frequencies for the reference solid model, SB2-3D

model, SB1-3D model, thin and thick beam models in the thick case.
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Table 3.8. Curved beam in free-free vibration — Errors (%) on natural frequency parameters of different

models for the thin and thick cases.

Mode
7 8 9 10 11 12 13 14
SB2-3D 04 0.3 0.2 0.2 0.5 0.1 0.3 0.3
SB1-3D 0.8 0.3 0.6 0.3 0.8 0.3 0.7 0.4

r/h ratio Model

+0 Thick beam 0.1 0.0 0.3 0.1 0.3 0.1 0.4 0.0
Thin beam 0.2 0.8 0.7 1.6 1.6 2.6 2.9 1.3
SB2-3D 0.6 0.2 0.4 0.2 0.2 0.4 0.3 0.2
SB1-3D 0.8 5.4 1.0 2.4 4.9 14 1.8 3.2
10/3

Thick beam 0.9 0.3 1.9 0.6 0.7 2.1 0.8 2.2
Thin beam 1.7 5.2 5.9 3.6 3.5 119 | 103 | 23

3.5.3 Model size

It’s interesting to compare the SB1-3D and SB2-3D models with classical beam elements in terms
of model size. Fig. 3.32 presents the comparison of the number of degrees of freedom for the free-free
vibration analysis of the curved beam. For the solid-beam models, the results are reported with a 4x4x50
mesh which meets the convergence condition. The beam model with the same refinement level along
the length of the structure is also considered, to compare the solid-beam approaches and the beam one.
Results confirm that the beam or solid-beam approach gives a significant gain compared with the solid
approach. In terms of model size and consequently of computational time, the solid-beam models have
a great reduction compared with the reference solid model. It can also be observed that the SB2-3D
model requires only a little more degrees of freedom than the SB1-3D model.

2

| Solid
|SB2-3D
| SB1-3D
| Beam
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Number of DOFs (x10%
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Fig. 3.32. Comparison of the number of degrees of freedom between solid, SB2-3D, SB1-3D and beam

models.
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3.6 Conclusion

A new solid-beam approach dedicated to thin to thick beam structures under bending, membrane
and torsion effects has been presented. Beam displacement fields are directly applied on a solid finite
element model which contains several elements throughout the cross-section. Three theories for a beam
in plane and two theories for a beam in space, based on kinematic assumptions are considered. For a
beam in plane, the classical first-order Timoshenko theory, the modified first-order beam theory and a
higher-order beam theory lead to the FOSB, the MFOSB and the HOSB models respectively. For a beam
in space, two proposed displacement fields lead to the SB1-3D and SB2-3D models respectively. The
methodology relies on the slave and master nodes technique. Kinematic relations are imposed at slave
nodes throughout the cross-sections to meet the beam displacement fields. From a numerical point of
view, linear equations are applied on the assembled finite element model. All slave nodes are eliminated,
resulting in a reduction of the model size. Two static examples have been presented: a straight beam and
a curved beam with a square cross-section under distributed loading. Displacements and von Mises
stresses have been observed for thin and thick cases. The FOSB model suffers from the Poisson
thickness locking phenomenon, leading to wrong results. The HOSB model gives excellent results in
both the thin and thick cases, compared with the reference solid approach. The MFOSB model is
satisfactory for thin cases and leads to moderate errors for thick beams. These results show that the
higher-order beam theory leads to a significant gain compared with the first-order beam theory for thick
beams. This new solid-beam approach is efficient from the model size point of view. The MFOSB and
HOSB models have considerable model size reduction compared with the reference solid model. Two
free-free vibration examples with the same structures as the static examples have also been presented to
assess the SB1-3D and SB2-3D models. Mode shapes and natural frequencies have been observed for
thin and thick cases. For the natural frequency, the SB2-3D model gives excellent results in both the
thin and thick cases, compared with the reference solid approach. The SB1-3D model also gives
satisfactory results for thin cases and leads to slight errors for thick beams when higher-order modes are
concerned. For the modal shapes, all the models give similar results. The SB1-3D and SB2-3D models
also have considerable model size reduction compared with the reference solid model.

Many perspectives of development and applications of this solid-beam approach are possible. The
extension to spatial beam with different types of cross-sections, leading to the treatment of more
complex examples, is currently in progress. In particular warping namely due to torsion is a complex
mechanical phenomenon as highlighted by numerous research works. From this point of view, we are
quite confident in the ability of our approach to take into account all possible and complex coupling
effects highlighted in literature. Besides the solid elements considered in this chapter, other solid finite
elements with good performance could be exploited. This solid-beam approach can be extended to
multilayered composite beam structures. An extension of the methodology is possible in the context of

an adaptive approach in which different theories may be required depending on the area concerned.
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Indeed, several beam, shell, as well as the 3D theory of elasticity, can be taken into account in the same
finite element model. Finally, the application to natural and industrial structures is a quite promising

perspective.
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Chapter 4

Adaptive modeling methodology

In the context of static and vibration linear analysis, an original adaptive modeling methodology
is proposed to obtain an optimal finite element model from the theory point of view. For each solid
finite element of the mesh, an appropriate choice between the beam theory, the plate or shell theory,

and the solid theory is made.

4.1 Introduction

For finite element modeling of academic or industrial structures, rules acquired from experience are
often used to choose a type of element and a strategy of mesh refinement. Without specific strategy, the
verification of the mesh convergence can lead to a very fine mesh over the whole structure and so to a
high computational cost. During past decades, numerous studies investigated the adaptive meshing issue
to determine an optimal mesh [104, 105, 106]. Some error estimations [107, 108] are proposed to
evaluate an approximation of the exact error in order to optimize the mesh discretization. From an initial

coarse mesh, this iterative technique aims an optimal local size of the mesh.

The type of element is associated with the theory to be chosen. This choice can be the beam theory,
the plate or shell theory or the solid theory. For thin and thick structures, beam theory and plate or shell
theory have been developed to avoid a 3D mesh associated with the solid theory. In this case, the normal
to cross-section of a beam or the thickness direction of a plate or shell must be identified when the
corresponding theory is chosen. For a complex structure, the automatic identification of these
geometrical characteristics of beams or plates from the 3D geometry is difficult. About this issue,
techniques have been developed to lead to offset curves [109] and surfaces [110, 111]. Moreover, for a
given structure to be modeled, made of thin and 3D parts of geometry, the connection between different
types of finite elements is often a challenge. Several modeling techniques [61, 114, 115, 122], leading
to specific kinematic relations applied at the interfaces between mesh areas which contain different types
of elements, have been proposed. A mesh composed with only solid elements can be chosen to avoid

this difficulty, but the 3D elasticity theory is not always relevant.

In order to improve the management of these different aspects, a methodology of adaptive modeling
is here introduced in the context of structures modeled by finite elements for static and vibration linear

analysis. This methodology is original from the theory choice point of view. To the author’s knowledge,
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until now finite element modeling dealing with a local and optimal choice of theory has not been
investigated in the literature. The methodology proposed is based on a 3D geometry discretized with
solid elements, so the initial CAD geometry is kept. This unique type of element avoids the difficulties
of connecting different types of finite elements mentioned above. As the methodology is adaptive,
several iterations are needed and a local choice of theory is determined at each iteration. Beam or shell
displacement fields are directly applied on the solid finite element model. It leads to a possible
significant reduction of the number of degrees of freedom when the chosen theories are the beam theory
and the plate or shell theory. Concerning mesh strategy during the iterations of the methodology, a basic
voxel technique [116, 117] is considered. The first mesh is coarse and the mesh is refined over the whole
structure at each iteration without determining an optimal mesh. As the mesh is made up only of
hexahedra and the choice of theory can be the beam theory or the shell theory, a first approach is also
presented to identify a normal to cross-section of a beam and a thickness direction of a plate or shell
when the corresponding theory is chosen.

The outline of this chapter is as follows. In Section 4.2, the general principles of the methodology
of adaptive modeling are presented. The criterion for the choice of theory and the convergence criterion
of the methodology are respectively introduced in Sections 4.3 and 4.4. Section 4.5 is dedicated to a first
proposition to identify the normal to cross-section for a beam structure and the thickness direction for a
plate or shell structure. In Section 4.6, the implementation of the methodology is detailed. Section 4.7
gives a specific treatment for vibration analysis. Static examples are presented in Section 4.8, then

vibration examples in Section 4.9. Finally, some conclusions and perspectives are drawn in Section 4.10.

4.2 General principles of the proposed methodology

General principles of the adaptive modeling methodology proposed are presented here. The different
steps of the procedure are described by the flowchart in Fig. 4.1. An initial finite element analysis of a
solid model with a coarse mesh is needed, then the iterative process highlights the adaptive aspect of the
methodology. An iteration starts with the optimal choice of theory which exploits a criterion based on
the local principal stresses obtained from the previous finite element analysis. Next, a mesh refinement
is done according to a basic rule. Afterwards, at nodes of this new solid mesh, displacement fields
described in chapter 2 and chapter 3 are applied corresponding to the chosen theory. The new finite
element model possibly contains a mix of different theories. For beam theory, a solid-beam approach is
used. For plate or shell theory, a solid-shell approach is applied. For solid theory, the original solid
element is kept and no specific treatment is necessary. For the adaptive modeling obtained at a given
iteration, the analysis of the finite element model is then performed. Finally, a convergence indicator
based on strain energy is applied on two successive iterations. The iterative process stops when the

convergence is achieved, the model can then be considered as optimal from theory point of view. For a
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given structure to be modeled, Fig. 4.2 shows an example of local choice with relevant theories, leading

to a mix of solid-beam, solid-shell and solid approaches.

Finite element analysis of
solid model with coarse mesh

!

Local choice of
appropriate theory

| Mesh refinement |

Local application of displacement fields at _

nodes of the “beam” areas and “shell” arcas [teration

Finite element analysis of
adaptive model

Fig. 4.1. Flowchart of the adaptive modeling process.

After this general description of the adaptive modeling methodology, the main characteristics are
highlighted below.

- For any type of structure, the solid geometry is always exploited, regardless of that one or
two dimensions are small compared to the others. A mid-axis or mid-surface geometry is
never required.

- Only solid finite elements with good performance are used. A twenty-node and an eight-
node hexahedral elements from Abaqus have been exploited. Of course, another solid
element formulation could also be considered.

- The theory choice criterion is based on the principal stresses in each solid element. Strain
energy is also considered to calculate the criterion.

- In the solid-beam and solid-shell areas, beam and shell displacements fields are applied
respectively. The criterion is calculated in each element but the displacement fields are
applied at nodes. For this purpose, kinematic relations between degrees of freedom are
applied at nodes.

- At the interface between two different theories, a conservative approach is applied. For
example, at the interface between beam and shell areas, shell theory is applied.

- The approach using solid elements combined with solid-beam, solid-shell or solid
approaches allows to avoid all possible connection difficulties between the different areas

of the structure.
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- The mesh strategy is close to a basic voxel technique, that is well suited to the application
of displacement fields at nodes of the solid mesh.

- The adaptive modeling methodology proposed leads to a reduction of the model size

compared to a reference solid model when beam and shell theories are chosen in some areas
of the structure.

/ ' B Solid theory

3D geometry of the structure Shell theory

I Bcam theory

Choice of theory
Fig. 4.2. Example of an optimal choice of theory for a given structure.
4.3 Theory choice criterion

The methodology of adaptive modeling needs a criterion to select the most relevant theory in the
different areas of the structure. Some criteria from the literature dealing with adaptive mesh issue are
available, such as a shape quality criterion [106] or an energy criterion [107, 108]. But these criteria are
not well adapted to choose an appropriate theory. Therefore, an original criterion for the choice of theory,
based on the principal stresses obtained on each solid element, is introduced to define the relevant
modeling of the different areas of the structure by solid-beam, solid-shell or solid approaches. Strain
energy is also used as a weighting coefficient to lead to a well-chosen theory choice criterion. First, the
calculation of the principal stresses is recalled. Then, a criterion for choosing the adapted theory is
presented.

4.3.1 Principal stresses

From the Cauchy stress tensor formulation [118, 119], the relations between the components of
stress tensor and the principal stresses are expressed as:
(Oxx — Ol + Tyym; + Tyym; = 0
Teyli + (ayy - ai)ml- +7y,n; =0 4.1)
Tuzli + Ty,m; + (05, —0)n; =0
where g; are the principal stresses with i=1,2,3 and [;, m; and n; are the components along each axis of
the corresponding principal directions.
Eg. (4.1) is a homogeneous system of linear equations, the condition for non-zero solution is that

the determinant of the resulting matrix is equal to zero:

106



Oxx — Oj Txy Txz
Ty Oyy — 0; Tyz [=0

Txz Tyz Ozz — Oj (4'2)
For 3D stress states, principal stresses equal the roots of the general stress-cubic equation:
3 _ 2 _ _
o Lo*+1L,0—-13=0 (4.3)
where 1y, I2, and I3 are known as the stress invariants and are given by:
IL = 0y + Oyy + 0z,
I, = OxxOyy + Oyy0z; + Oxx0z7 — T%y - szzz - ‘L'sz (4.4)
I 3 = OxxOyyOzz + ZTxyTszzx - O-xijzzz - O-nyJ%y - Gzszzx
Therefore, the stresses a4, 0,,and o5 are expressed as:
I 0
(01 = §1+ 2 ’—gcosg
I D 0 .0
<02=§— —§(cos§—\/§sm§) (4.5)
I ] 0
|03 = 51 - —g(cos§ + \/§sin§)
with
L
6 = arccos _a _p_3 :
2 27
3L —1IF
P=—"3 (4.6)
91, =213 = 2714
1= 27

The biggest principal stress is a; and the smallest is o5.
4.3.2 Criterion based on principal stresses

In order to choose relevant theory in different areas of the structure, a criterion based on principal
stresses is presented here. The three principal stresses calculated at the center of each solid element are
compared to define the appropriate solid-beam, solid-shell or solid approach for each of them. The
criterion tends to choose the beam theory when only one principal stress is significant. The optimal
choice tends to be the shell theory when two principal stresses are significant. Otherwise, the solid theory
is chosen when the three principal stresses are of the same order of magnitude. These rules work well if
the state of stress is dominated by normal stresses. However, if shear stresses are significant, the situation
is more complex. For example, for a beam under pure torsion, one can observe two principal stresses
with equal absolute values but opposite signs. When a case closed to this situation is detected, the rule
presented above has to be modified. A stress ratio parameter p is used to define a critical gap between
the three components and a weighting coefficient ® is calculated considering the strain energy. The

value of parameter p depends on the studied structure and may be different depending on whether it is
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a static or vibration analysis. For each example, some preliminary tests allow a relevant choice of this
parameter value. Typically, the parameter p may be comprised between 20 and 100. The weighting
coefficient ® is expressed in terms of strain energy to improve the criterion in different areas of the
structure, in order to be less severe in areas where strain energy density is small. The expression of

elastic strain energy density per unit volume is recalled:

3
Z 0ijéij 4.7

ij=1

T =

N =

where o;; are the normal or shear stresses and ¢;; are the normal or shear strains.

The maximum elementary elastic strain energy density m,,,, iS also considered. The weighting
coefficient w is defined by:
® = (T /Tpax)™ (4.8)

where n is a parameter which must be determined for each example.

From the three principal stresses a;, g, and a3, we define the 6,4, Omia and o, as the maximum,
intermediate and minimum absolute values respectively. Finally, the criterion in order to select the

relevant theory for each element is defined by the following rules:

1. If the condition g,,,, = pway,iq IS Met, the beam theory is selected, leading to a solid-beam
approach.

2. If the conditions ;4 < PWORig AN Oy = PWOMi, are met, the shell theory is selected,
leading to a solid-shell approach. To verify this situation does not correspond to shear stress
state, the ratio /05 is calculated. If this ratio is close to -1, the shear stress is predominant and
consequently beam theory is selected, leading to solid-beam approach.

3. Ifthe condition gy, < PWORig ANd Opax < PWTMin are met, the solid theory is selected.

4.4 Convergence criterion of the methodology

As described by Fig. 4.1, the convergence of the adaptive modeling process is achieved when an
optimal finite element model is obtained from the theory point of view. A convergence criterion is here
introduced that exploits the internal strain energy I1;,; of the system. In the context of the iterative
process, the convergence criterion is applied between two successive iterations i and i+1. Therefore, the
strain energy relative error E, is defined by:

_ ||"§?§t1|| — ”nlint”
iz | (49)

int

E

with the internal strain energy at the iteration i for a mesh composed with n elements:
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n
1
I T
MG || = Z;HS alle (4.10)

For static and vibration analysis, it is considered that convergence of the methodology is achieved
if the error E; is less than 0.1% between two successive iterations of the adaptive modeling. This criterion
is used in the static and vibration examples respectively in Sections 4.8 and 4.9. During the iterations of
adaptive modeling process, the stability of theory choice over the whole structure can be observed and
it could be considered as another convergence criterion which has not been considered here. Indeed, the
local areas of the structure composed of solid-beam, solid-shell, and solid approaches tend to be
relatively stable after several iterations. The criterion proposed in Eq (4.9) is a global one. As a
perspective, local criteria could also be developed to better take into account local effects.

4.5 Normal to cross-section or thickness direction identification of the structure

For the current classical finite element modeling process, the creation of mid-axis or mid-surface
geometry is needed when respectively the beam theory or the shell theory is chosen. For the adaptive
modeling methodology proposed, only the solid geometry is exploited. Therefore, the identification of
the normal to cross-section or thickness direction is required respectively to apply the solid-beam or
solid-shell approaches. A first technique based on the principal directions is here proposed to identify
the normal to cross-section or the thickness direction of a structure. Identification of principal directions
leads to some difficulties because these directions calculated by finite elements are approximate due to
the fact that the stresses are associated with some errors. These difficulties have been highlighted in this
research work but further investigations are necessary to improve the implementation of this technique.
This issue is one of the perspectives of our methodology. In this research, normal to cross-section and

thickness directions are directly imposed.

4.5.1 Calculation of principal directions

The components of principal directions, relative to the principal stresses oy, o, and o3, are

respectively [;, m; and n; with i=1,2,3 and meet the relation:

I} +mf+nf=1 (4.11)

with

A;
[Al? + B? + C?
B;
42 + B2 + C? (4.12)
Ci

A? + B + C?
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where
Aj = Ty Ty, — (Gy - Gi)sz
Bi = TxyTXZ - (Ux - O-i)TyZ (413)
C; = (Gx - O-i)(o-y - O-l') - Tf'y

4.5.2 Normal to cross-section or thickness direction

For the solid-beam approach, the normal to cross-section is considered as the principal direction
corresponding to the maximum principal stress. For the solid-shell approach, the thickness direction is
considered as the principal direction corresponding to the minimum principal stress. As shown in Fig.
4.3, the normal to cross-section is defined by the principal direction (l;, ms, ni) for the solid-beam

approach and the thickness direction is defined by the principal direction (ls, ms, n3) for the solid-shell

(lg,mg,n (I3, m3,n3)
jm (L3, my,ny) (I, my,n,)
/ H
|

approach.

(ll,ml,nl) (llnmlrnl)

(a) beam (b) plate

Fig. 4.3. Description of the normal to cross-section of a beam (a) and the thickness direction of a plate (b).

This principle of identification is highlighted on a model of cantilever structure described in section
4.7.1 for case 2 of this example. An optimal model has been obtained from the theory point of view. As
shown in Fig. 4.4, the arrows indicate the normal to cross-section for the solid-beam area in blue and
the thickness direction for the solid-shell area in green. The solid area is described in red. The result of
the identification is satisfactory for the bending structure. In solid-beam area, the arrows corresponding
to the normal to cross-section are in the direction of the maximum principal stress. In solid-shell area,

the arrows corresponding to the thickness direction are in the direction of the minimum principal stress.
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Normal to
cross-section

Thickness direction

B solid theory

Shell theory

- Beam theory

Fig. 4.4. Normal to cross-section of solid-beam approach and thickness direction of solid-shell approach for

an optimal model of cantilever structure.

4.6 Implementation of the methodology

The iterations of the methodology described in Fig. 4.1 are composed of a choice of the theory made
on each solid element, a mesh refinement and an application of displacement fields at concerned nodes.
Some specific aspects of the methodology implementation are here introduced concerning the mesh

refinement, the displacement field and rules at the interface between two different theory choices.

4.6.1 Mesh refinement

The meshing strategy for the methodology proposed is basic and is closed to a voxel meshing
method [13, 14]. The discretization is defined by a regular three-dimensional mesh with a hexahedral
element. The mesh is refined at each iteration to achieve the methodology convergence, with the mesh
size divided by two in the three directions. Of course, the adaptive modeling proposed is compatible

with adaptive mesh techniques, but it is not implemented here.

4.6.2 Displacement fields

After the mesh refinement at each iteration of the adaptive process, displacement fields are applied
at concerned nodes of the solid element. These displacement fields are applied in beam and shell areas,
but no treatment is made at nodes of the solid areas. For solid-shell and solid-beam approaches, the
displacement fields are respectively described in chapters 2 and 3. Currently, the displacement field of
the modified first-order solid-shell approach is chosen for the shell theory. The displacement field of the
modified first-order solid-beam approach for 3D beam is chosen for the beam theory. The application
of the corresponding equations is achieved by using the master and slave nodes technique. Consequently,
solid-shell and solid-beam approaches allow a significant reduction of the problem size, compared to

the solid approach.
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4.6.3 Special treatment of interface

As it was recalled, a theory choice is made for each solid element and a corresponding displacement
field is applied at nodes. At the interface between two types of theory, a conservative rule is used for the
concerned nodes. As illustrated in Fig. 4.5, the solid theory is chosen rather than a shell and a beam

theory; the shell theory is selected rather than a beam theory.

H Interfacesﬂ U

- Solid theory
[ Shell theory

B Bcam theory

Fig. 4.5. Rules at the interface between two different types of theories.
4.7 Specific step for vibration analysis

The adaptive modeling methodology is proposed in the context of static and vibration linear analysis.
A specific step is needed to manage different modes in the case of vibration analysis. Indeed, as mode
shapes are different one from other, the choice of theory provides an optimal modeling for each mode.
At each iteration of the methodology, a synthesis of these choices is so needed to lead to only one optimal
model. The global flowchart of the methodology described in Fig. 4.1 is kept and a step of synthesis is
added after the local choice of theory, as shown in Fig. 4.6. This synthesis is conservative, the solid
theory is chosen rather than the shell and beam theory; the shell theory is selected rather than the beam
theory. An example illustrated by Fig. 4.7 shows the result of synthesis at each iteration process for

different modes.
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Finite element analysis of solid
model with coarse mesh
!
Local choice of appropriate theory <
for each mode shape

v

Choices synthesis

Y

| Mesh refinement | Iteration

:

Local application of displacement fields at
nodes of the solid mesh

!

Finite element analysis of
adaptive model

No
Convergence ?

Yes

Fig. 4.6. Flowchart of adaptive modeling process for vibration analysis.

- Solid theory Shell theory - Beam theory

Mode 1 Mode 1

Theory

Theory . . )
choice . Synthesis  choice : Synthesis
Mesh Mesh ‘_ y
refinement refinement
Mode m
Initial solid model Local theory choices . Local theory choices .
with coarse mesh for each mode Adaptive model 1 for each mode Adaptive model 2

Fig. 4.7. Example of a synthesis concerning the local choice of theory for vibration analysis during the

iterative process.
4.8 Static examples

The adaptive modeling methodology is applied here on cantilever structures and on “T” shape plates
in the context of static analysis. First each static example is presented. The evolution of theory choice is
presented for each iteration of the adaptive modeling process. At convergence the quality of the finite

element results obtained with the optimal model is evaluated by comparison with a reference solid model.
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The reduction of model size due to the application of solid-shell and solid-beam approaches is discussed.
The compatibility of the adaptive modeling methodology with another efficient solid element is also

proved.
4.8.1 Cantilever structures with three width/thickness ratios
4.8.1.1 Presentation of the example

Cantilever structures are presented in Fig. 4.8 with three different geometries, three width/thickness
ratios are considered. The three structures are clamped at one end and submitted to a distributed loading
f at the other end. The first case is a beam-like structure with a square section bi/h=1. The second case
is an intermediate structure with bo/h=3. The third case is a square plate-like structure with bs/h=10.

L L T T T T O

~

b
Y ll b,
RN I %Y
TYYYYY YYYY VY YYVYYVYYY
f f S
Case 1: Case 2: Case 3:
b, =100 mm b, =300 mm b3 =1000 mm

E=210000 MPa {=1000 mm JS=1N/mm?
v=03 h =100 mm

Fig. 4.8. Cantilever structures — Presentation of the example for three width/thickness ratios.
4.8.1.2 Adaptive theory choice

The theory choice is now observed at each iteration of the process for the three cantilever structures.
The criterion based on principal stresses and weighted by strain energy provides a distribution of solid-
beam, solid-shell and solid areas. The stress ratio parameter p described in Section 4.3.2 is equal to 100
for this example. This value is a compromise between small values that lead to larger solid-beam or
solid-shell areas and high values that lead to larger solid areas. For the weighting coefficient, n equal to
0.5 has been used in Eq. (4.8). Fig. 4.9 shows the chosen theory in each solid element for the initial
model and for two successive adaptive models. The blue, green and red colors correspond respectively
to the solid-beam, solid-shell and solid approaches. The obtained results are discussed for the optimal
model corresponding to the adaptive model 2. In case 1, a large area of solid-beam approach is obtained
for the cantilever beam-like structure with a square section. Some solid-shell and solid approaches are
chosen at ends of this structure due to local effects caused by loading and boundary conditions
respectively. In case 2 which is intermediate, a mixed distribution of solid-beam, solid-shell and solid

areas are observed. In case 3, the solid-shell area predominates except at ends of the square plate-like

114



structure where boundary conditions and loading are applied, leading to local effects justifying solid

elements. A few solid-beam areas are also observed according to the theory choice criterion.

- Solid theory - Shell theory - Beam theory

Theory Theory
choice choice
Case | |:> I:>
Mesh Mesh
refinement refinement
Case 2 ' ’
Initial solid model Adaptive model 1 Adaptive model 2

with coarse mesh

Fig. 4.9. Cantilever structures — Evolution of the theory choice during the iterative process in the three cases.

4.8.1.3 Convergence of the methodology

The three cantilever structures are discretized with the twenty-node hexahedral element C3D20 from
Abaqus [120, 121]. An initial coarse and regular mesh is generated to start the adaptive modeling process
and the mesh refinement strategy presented in Section 4.6.1 is then applied. The convergence of the
methodology is assessed with the strain energy criterion described in Section 4.4. It is considered that
convergence is achieved if the error E; is less than 0.1% between two successive iterations of the
adaptive modeling process. For the three cantilever structures, Fig. 4.10 shows the values of strain
energy and the convergence criterion values for the first four models. These models are the initial solid
model and three adaptive models. Model 3 is the second adaptive model and it corresponds to the optimal

model which meets the convergence criterion for the three cases.
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Fig. 4.10. Cantilever structures — Convergence of the methodology in the three cases.

4.8.1.4 Finite element results of the optimal model

The finite element results of the optimal model obtained with the adaptive modeling process is

evaluated. The reference model is a solid model that meets the convergence requirements. First, a global

comparison of the finite element results is made between the optimal model and reference solid model

for the three cantilever structures. Fig. 4.11 shows the distributions of displacement and von Mises stress

for the solid and optimal models in the three cases. For the two types of models, these results are quite

similar, showing that the adaptive modeling approach seems to be very satisfactory.

Magnitude of displacement (mm)

1.910
1.432
0.955
0.477

1.885
1.414
0.943
0.471
0

1.831
1.373
0915
0.458

Solid model Optimal model

von Mises stress (MPa)

%
%
%

58.86
49.15
34.58
1515
0.579

57.17
42.93
28.68
14.43
0.187

58.50
43.90
29.29
14.69
0.082

Solid model Optimal model

Fig. 4.11. Cantilever structures — Displacement and von Mises stress distributions for the reference solid and

optimal models in cases 1, 2 and 3.

In order to quantify the difference on these finite element results, Table 4.1 shows the errors on the

maximum displacement and von Mises stress by comparing the optimal and the reference solid models.

The errors do not exceed 0.5% for the three cases. These insignificant errors between the optimal and

reference solid models confirm the adaptive modelling process is fully satisfactory. It also confirms that

new proposed solid-shell and solid-beam approaches work well.
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Table 4.1 Cantilever structures — Errors on maximum displacement and von Mises stress between

optimal and reference solid models in cases 1, 2 and 3.

Maximum displacement (mm) Maximum von Mises stress (MPa)
| sl o e | Sote | O e
1 -1.904 -1.902 0.1 58.86 58.84 0.1
2 -1.880 -1.877 0.2 57.17 56.84 0.5
3 -1.826 -1.821 0.3 58.50 58.21 0.5

For further understanding the error distribution over the whole structure, the error on displacement
at each node and the error on von Mises stress at the center of each element are studied. For the three
cantilever structures, Fig. 4.12 shows the errors on displacement and von Mises stress by comparing the
optimal model and the reference solid model over the whole structure. The errors on displacement are
lower than 0.3%. The analysis of errors on von Mises stress is discussed from global and local aspects.
From a global point of view, almost all the errors are smaller than 1%. Especially, the areas of boundary
conditions highlight very low errors where the stresses are maximum. From a local point of view, some
errors on von Mises stress are slightly higher than 1% in the loading areas (cases 1 and 2) or at free
edges (case 3). But these areas are not significant due to small values of stresses, as can be seen in Figure
4.11. Again, for the displacement and von Mises stress, the comparison between the optimal and

reference solid models indicates that the adaptive modelling process is entirely satisfactory.

Error on displacement (%)
0.3

0.2
0.1
0

Error on von Mises stress (%)
1.5
1.0
0.5

Case 1 Case 3

Fig. 4.12. Cantilever structures — Errors on displacement and von Mises stress between optimal and reference

models over the whole structure in cases 1, 2 and 3.
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4.8.1.5 Reduction of the model size

The optimal model based on solid-beam and solid-shell approaches induces a reduction of the model
size compared with the solid model. Fig. 4.13 shows the evolution of the number of degrees of freedom
(DOFs) during the adaptive modeling process for the three cases. The initial solid model with a coarse
mesh and two adaptive models are considered. The reduction of the number of DOFs for the optimal
model compared with the reference solid model is also observed. For the three cases, the second iteration
corresponding to model 3 gives the most significant reduction. The gain is calculated as a ratio of the
number of DOFs between the reference solid model and the optimal model with same meshes. In cases
1, 2 and 3, the gain is respectively equal to 5.0, 2.6 and 2.1 for the optimal model. The gain is maximal
in case 1 because the solid-beam approach, which leads to the larger reduction of the model, is widely
applied. Anyway, the gain is significant even when the solid-shell approach predominates, which
happens in case 3.

—&— Solid model —@— Adaptive model

b 10 é é 10

- X

I s = 5

(7] [ &

o) o) @)

2o ! 2 0.0 . 2 0 '

1 2 3 1 2 3 1 2 3

Mesh Mesh Mesh
Case 1 Case 2 Case 3

Fi

g. 4.13. Cantilever structures — Number of degrees of freedom for the adaptive models during the iterative

process and for the reference solid models in cases 1, 2 and 3.

4.8.1.6 Adaptive modelling process with another solid element

To prove the adaptive modeling process is compatible with any efficient solid element, the eight-
node hexahedral element C3D8I [19] from Abaqus is used here to model the cantilever structures. This
solid element with incompatible modes was introduced in 1973 by Wilson et al. [122, 123]. The
convergence study of the methodology is quite similar for the element C3D8I and the previous element
C3D20. For the three cases, the convergence is achieved for the adaptive model 2. Fig. 4.14 shows the
evolution of theory choice during the iterative process using the element C3D8I. From the initial solid
model with a coarse mesh to two successive adaptive models, the theory choice criterion provides solid-
beam, solid-shell and solid areas respectively illustrated in blue, green and red. The comparison between
Figures 4.10 and 4.14 shows that globally in terms of optimal theory choice, the tendencies obtained

with the element C3D8I are similar to those obtained with the element C3D20.
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Fig. 4.14. Cantilever structures — Evolution of the theory choice during the iterative process with the element

C3D8lI.

The finite element results of the optimal model obtained with the adaptive modeling process are

evaluated for the element C3D8I. Fig. 4.15 shows the displacement and von Mises stress distributions

for the three cantilever structures. Globally, the distributions of the displacements and von Mises stresses

obtained with the optimal model are quite similar to those obtained with the reference solid model.

Magnitude of displacement (mm)

1.907 61.45
1.430 46.43
0.953 31.42
0.477 16.41
0 1.394
1.882 59.50
1.412 44.82
0.941 30.14
0.471 15.46
0 0.779
1.828 59.99
1.371 45.10
0.914 30.21
0.457 15.32
0 0.431

Solid model Optimal model

von Mises stress (MPa)

Solid model Optimal model

Fig. 4.15. Cantilever structures — Displacement and von Mises stress distributions for the reference solid and

optimal models in cases 1, 2 and 3 with the element C3D8lI.
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Table 4.2 shows the errors on the maximum displacement and von Mises stress by comparing the
optimal model and the reference solid model. For the three cases, the errors do not exceed 0.2%. These
errors confirm that with the element C3D8lI the adaptive modelling process is fully satisfactory as well.

It also confirms that the solid-shell and solid-beam approaches work well with this element.

Table 4.2 Cantilever structures — Errors on maximum displacement and von Mises stress by comparing

optimal models and reference models with the element C3D8lI.

Maximum displacement (mm) | Maximum von Mises stress (MPa)
Case | Solid | Optimal Solid | Optimal
0, 0,
model model Error (%) model model Error (%)
1 -1.901 | -1.900 0.1 61.45 61.39 0.1
2 -1.877 | -1.876 0.1 59.50 59.42 0.1
3 -1.826 | -1.823 0.2 59.99 59.90 0.2

As for the reduction of model size with the element C3D8lI, the same trends can be observed that
with the element C3D20. The reduction of the number of degrees of freedom is very significant for case

1 and significant for cases 2 and 3, thanks to solid-beam and the solid-shell approaches.

4.8.2 “T” shape plates

4.8.2.1 Presentation of the example

The second example, presented in Fig. 4.16, is a “T” shape plates assembly in the context of static
analysis. One face of the vertical plate is submitted to a pressure p and two edges of the horizontal plate

are clamped.

« .
I
!

E=210000 MPa
v=0.3
p=0.5MPa

[=2000 mm
b= 1000 mm

h =500 mm
t=50 mm

Fig. 4.16. “T” shape plates — Presentation of the example.
4.8.2.2 Adaptive theory choice

The theory choice is presented here at each iteration for the adaptive modeling of “T”” shape plates.
The criterion based on principal stresses and weighted by strain energy determines solid-beam, solid-

shell or solid approaches for each element. Again, the stress ratio parameter p is equal to 100 for this
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example. For the weighting coefficient, n equal to 0.5 has been used in Eq. (4.8). Fig. 4.17 shows the
selected approaches for the initial solid model and three successive adaptive models. The blue, green,
and red colors indicate respectively the solid-beam, solid-shell and solid areas. For adaptive model 3,
when the convergence of the methodology is achieved, the solid-shell approach is automatically chosen
for most of the elements. The solid approach is chosen in the boundary conditions areas and at the
junction between the two plates. The current version of theory choice criterion identifies a few solid-
beam areas in this example. However, from a theoretical point of view, it seems difficult to justify the
beam theory and identify the relevant cross-sections here. Thus, the solid-shell approach is chosen as a
replacement.

- Solid theory - Shell theory - Beam theory

Theory
LhOlCC
—
Mcsh
refincment

Initial solid model Adaptive Adaptive Adaptive
with coarse mesh model 1 model 2 model 3

Fig. 4.17. “T” shape plates — Evolution of the theory choice during the iterative process.

4.8.2.3 Convergence of the methodology

The “T” shape plates assembly is discretized with the twenty-node hexahedral element C3D20 from
Abaqgus. From an initial coarse mesh, the adaptive modeling methodology is applied by taking into
account the mesh refinement strategy described in Section 4.6.1. The convergence of the methodology
is achieved when the strain energy indicator is less than 0.1% between two iterations of the adaptive
modeling process. For “T” shape plates, Fig. 4.18 shows the values of the strain energy and the
convergence criterion for an initial solid model with a coarse mesh and four successive adaptive models.
The model 4 corresponds to the third adaptive model which meets the convergence criterion, it is the
optimal model.
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Fig. 4.18. “T” shape plates — Convergence of the methodology.

4.8.2.4 Finite element results of the optimal model

For “T” shape plates, the evaluation of finite element results of the optimal model obtained with the
adaptive modeling process is presented here. Again, the reference model is a solid model that meets the
convergence requirement. Fig. 4.19 illustrates a global comparison of displacement and von Mises stress
distributions between the optimal model and reference solid model. These two models lead to close

results, showing the adaptive modeling approach is very satisfactory for modeling the “T” shape plates

assembly.

Magnitude of displacement (mm)

5.188
3.891
2.594
1.297

von Mises stress (MPa

496.3
372.3
248.3
1243
0.273

Solid model Optimal model

Fig. 4.19. “T” shape plates — Displacement and von Mises stress distributions for the optimal model and

reference solid model.

Table 4.3 reports the errors on the maximum displacement and the maximum von Mises stress at
point M (Fig. 4.19) by comparing the optimal model and the reference solid model. For this example,
the error on displacement does not exceed 1% and the error on von Mises stress is close to 1%. These

errors can be considered as small.
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model and reference solid model.

Table 4.3 “T” shape plates — Errors on maximum displacement and von Mises stress between the optimal

Maximum displacement (mm)

Maximum von Mises stress (MPa)

Solid Optimal Error (%) Solid Optimal Error (%)
model model model model
5.188 5.146 0.8 305.1 301.8 1.1

The error distribution is now observed over the whole structure. Fig. 4.20 shows the error on
displacement at each node and the error on von Mises stress at the center of each element by comparing
the optimal and the reference solid models. The errors on displacement are always less than 0.8%. The
global observation of errors on von Mises stress highlights almost all the values are smaller than 1%.
However, some singularity in the boundary conditions area leads to local errors higher than 1.5%. Thus,
the errors between the optimal and the reference solid models can be considered as small. The optimal

model of “T” shape plates with a very predominant use of solid-shell approach remains very satisfactory.

Error on von Mises stress (%)

1.5
1.0
0.5
0

Singularity

Error on displacement (%)

y f

Fig. 4.20. “T” shape plates — Errors on displacement at each node and von Mises stress at the center of each

element over the whole structure by comparing the optimal model and the reference solid model.
4.8.2.5 Computational cost

Compared with the reference solid model, the optimal model leads to a reduction of the number of
degrees of freedom, which is interesting from a computational cost point of view. For this “T” shape
plates example, the optimal model contains a large use of the solid-shell approach. The number of
degrees of freedom and CPU time are reported in Table 4.4, the corresponding reduction and gain for
the optimal model compared with the reference solid model are also given. All computational times are
obtained with a PC i5-8265U @ 1.60GHz, 8GB RAM. In terms of number of DOFs, the gains are 2.5
and 3.1 for the adaptive models 3 and 4 respectively. And in terms of CPU time, the gains are 2.1 and
6.2 for the adaptive models 3 and 4 respectively. The adaptive modeling methodology leads to an

optimal model for “T” shape plates with a significant reduction in problem size and computational cost.
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Table 4.4 “T” shape plates — Number of degrees of freedom and CPU time for adaptive models and

corresponding reference solid models.

Degrees of freedom CPU time
No. of mesh Type of model
value gain value (s) gain
Reference model 385731 133
Mesh 4 2.5 2.1
Adaptive model 3 156639 63.6
Reference model 2917635 3997.6
Mesh 5 3.1 6.2
Adaptive model 4 929159 640.4

4.8.2.6 Adaptive modelling process with another solid element

The eight-node hexahedral element C3D8I [61] from Abaqus is used here to model “T” shape plates
with the adaptive modeling process to prove its compatibility with another efficient solid element. For
element C3D8lI, the convergence study of the methodology is quite similar to that of element C3D20.
The third adaptive model meets the convergence criterion and corresponds to the optimal model. For
the element C3D8lI, Fig. 4.21 shows the theory choices during the adaptive modeling process. As for the
element C3D20, when convergence of the methodology is achieved, a predominant use of the solid-
shell approach is obtained. The solid approach is selected in the boundary conditions areas and the

junction between the two plates.

- Solid theory - Shell theory - Beam theory

Theory

choice

Mesh
refinement

B

Initial solid model Adaptive Adaptive Adaptive
with coarse mesh model 1 model 2 model 3

Fig. 4.21. “T” shape plates — Evolution of the choice of theory during the iterative process with the element
C3Dal.

For the “T” shape plates example, displacement and von Mises stress distributions obtained with
the optimal model and the reference solid model are reported in Fig. 4.22. These finite element results

are quite similar, showing that the adaptive modeling approach is globally convincing.
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Magnitude of displacement (mm)

5:137
3.852
2.568
1.284

von Mises stress (MPa)

262.2
196.7
131.3
44.03
0.405

Solid model Optimal model

Fig. 4.22. “T” shape plates — Displacement and Von Mises stress distributions for the optimal model and

reference solid model with the element C3D8I.

Table 4.5 “T” shape plates — Errors on maximum displacement and von Mises stress between the optimal
model and reference solid model with the element C3D8I.

Maximum displacement (mm) Maximum von Mises stress (MPa)

Solid Optimal 0 Solid Optimal .
model | model | EMOrCO 1 el odel | ETr (%)

5.137 5.118 0.4 259.9 262.2 0.9

Table 4.5 shows the errors on the maximum displacement and von Mises stress at point M (Fig. 4.22)
with the element C3D8I. For this “T” shape plates example, the errors do not exceed 0.9%. Finally, in
terms of problem size, the number of degrees of freedom are respectively equal to 58399 and 100035
for the optimal model and reference solid model, leading to a gain equal to 1.7 for “T” shape plates with
the element C3D8l.

4.9 Vibration examples

The adaptive modeling methodology is now applied on the three structures described in Fig. 4.8 and
on “T” shape plates illustrated in Fig. 4.16, in the context of free-free vibration analysis. For each mode,
the theory choice is presented and a synthesis of these choices is made. The natural frequencies obtained
with the optimal model and a reference solid model are compared. The reduction of the model size due

to solid-shell and solid-beam approaches is discussed.
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4.9.1 Beam to plate moderately thick structures with three width/thickness ratios

The three structures described in Fig. 4.8 are now studied in free-free vibration, with density equal
to 7.89x10° t/mm?. For the three cases, the structure is discretized with the twenty-node hexahedral
element C3D20 from Abaqus. Concerning the theory choice criterion, the stress ratio parameter p and
the weighting coefficient w in Eq. (4.8) have been investigated for this free-free vibration example.
According to some preliminary tests, relevant values for parameter p are comprised between 20 to 100.
Here, taking the result accuracy as a primary goal and considering calculation efficiency, an optimal
choice equals 20, 50 and 40 for cases 1, 2 and 3 respectively. For the weighting coefficient, n equal to 1
has been used in Eq. (4.8). The convergence of the methodology is achieved when the strain energy
criterion described in Section 4.4 is met for each mode. The first seven modes are retained to evaluate

the adaptive modeling process compared with a reference solid model for the cases 1, 2 and 3.
49.1.1 Case 1

The first case described in Fig. 4.8 is a beam-like structure with a square section. For a reference
solid model, the first seven mode shapes are reported in Fig. 4.23. It is observed that modes 7, 8, 9, 10,
12 and 13 are bending modes, mode 11 is a torsion mode. On the contrary of other modes, this torsion
mode corresponds to a state of stress dominated by shear stresses.

Mode 8
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Fig. 4.23. Moderately thick structures — First seven mode shapes for a reference solid model in case 1.

During the process of adaptive modeling in case 1, the theory choice is applied for each mode except
the torsion mode. The adaptive model retained will be assessed a posteriori for this torsion mode. From
the initial solid model and with two iterations of the adaptive modeling process, Fig. 4.24 shows the
theory choice for each mode. For the first modes, beam theory is chosen over the whole structure, but
this is not true for higher modes. This is a hopeful characteristic of our adaptive modeling methodology
which corresponds to a well-known physical phenomenon relative to the wavelength. Beam theory may
be relevant for the first modes but higher modes require refined displacement fields throughout the cross-
section. The synthesis of the theory choices leads to only one adaptive model at each iteration, as

described in Fig. 4.24. The application of the theory choice criterion leads to large areas of the solid-
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beam approach for case 1, but also a fairly large solid area. At the second iteration of the adaptive
modeling, the bending modes 9 and 10 highlight a local choice corresponding to the shell theory, with
orthogonal thickness directions one from the other. Indeed, for this beam-like structure with a square
section, modes 9 and 10 are bending modes in two orthogonal planes. Consequently, for these modes a
conservative choice is to use the solid approach. The same type of remark is made for bending modes
12 and 13. For mode 11 which is a torsion mode, we observe that the beam theory has been selected
over the whole structure, even if two principal stresses are significant in this case. The convergence of

the methodology is achieved for the adaptive model 2 corresponding to the optimal model.

Thickness
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Fig. 4.24. Moderately thick structures — Theory choice for the first seven modes in case 1.

The natural frequencies obtained with the adaptive model are now investigated. The first seven
natural frequencies are reported in Fig. 4.25 for the optimal model, the reference solid model, thick beam
model (B31 element) and thin beam model (B33 element). The relative errors on natural frequencies
between the optimal and reference solid models are calculated, the values are less than 0.5%. It can be
noticed a good result is observed for the pure torsion mode (mode 11) because the displacement field
used for the solid-beam approach is a 3D beam formulation. The optimal model obtained by the
synthesis of theory choices leads to very satisfactory results for the first seven natural frequencies of the
beam-like structure with a square section, even for the natural frequency corresponding to the torsion
mode. The comparison with a thick beam element, which considers the transverse shear effects, shows

that for the first modes all the models give similar results, however slight differences are observed for
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higher modes 12 and 13. The comparison with a thin beam element shows more errors because the
transverse shear effects has not been considered. These results highlight some discrepancies when beam

theory is used.
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Fig. 4.25. Moderately thick structures — First seven natural frequencies for the beam models, optimal

model and reference solid model in case 1.

In terms of problem size, the number of degrees of freedom are respectively equal to 5331 and 10995
for the optimal model and the reference solid model. Thanks to the adaptive modeling methodology, the
gain of the number of DOFs is equal to 2.1 for the free-free vibration analysis in case 1. These gains

may be increased or decreased depending on the number of modes considered in the adaptive modeling

process.

4.9.1.2 Case 2
The second case described in Fig. 4.8 is an intermediate structure between cases 1 and 3. Fig. 4.26

shows the first seven mode shapes obtained with a reference solid model. Modes 7, 9, 10 and 12 are
bending modes, mode 8 is a torsion mode, mode 11 combines bending and torsional effects, and mode

13 is a membrane mode.
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Fig. 4.26. Moderately thick structures — First seven mode shapes for a reference solid model in case 2.

From the initial solid model and two iterations of the adaptive modeling process, the theory choice
criterion based on principal stresses is applied to case 2. For the first modes, beam theory or shell theory
are chosen over the whole structure, but for higher modes solid theory is chosen in some areas. As for
case 1, this is a hopeful characteristic of the adaptive modeling methodology. Fig. 4.27 shows the
selected solid-beam, solid-shell or solid areas for modes 7 to 13. When convergence of the methodology
is achieved, the synthesis theory choices of the second adaptive model leads to large areas of the solid-
shell approach. Nevertheless, the solid theory is selected in the middle of the structure and the beam

theory at the corners.
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Fig. 4.27. Moderately thick structures — Theory choice for the first seven modes in case 2.
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For the optimal model, the finite element results are now investigated. The first seven natural
frequencies are reported in Fig. 4.28 for the optimal model and the reference solid model. The relative
errors on natural frequencies are less than 0.5%. For case 2, the second choices synthesis leads to an

optimal model composed of a predominant solid-shell approach with very satisfactory values of natural

frequencies for the first seven modes.
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Fig. 4.28. Moderately thick structures — First seven natural frequencies for the optimal model and reference

solid model in case 2.

The numbers of degrees of freedom are respectively equal to 18579 and 29571 for the optimal model
and the reference solid model. The gain of the problem size reaches 1.6 thanks to the adaptive modeling

methodology for the free-free vibration analysis in case 2.

49.1.3 Case 3
The third case described in Fig. 4.8 is a square plate-like structure. Fig. 4.29 shows the first seven

mode shapes obtained with a reference solid model. Mode 7 is a torsion mode, modes 8, 9, 12 and 13

are bending modes, modes 10 and 11 combine bending and torsional effects.

Mode 9 Mode 10

Mode 7

Mode 11 Mode 12 Mode 13

Fig. 4.29. Moderately thick structures — First seven mode shapes for a reference solid model in case 3.

For case 3, the adaptive modeling methodology is applied. For the first modes, shell theory is

predominant over the whole structure, but for higher modes solid theory is chosen in some areas. Again,
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this is a hopeful characteristic of the adaptive modeling methodology. Fig. 4.30 shows the selected solid-
beam, solid-shell or solid areas for modes 7 to 13. After two iterations, the convergence of the

methodology is achieved, leading to large areas of the solid-shell and solid approaches.
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Fig. 4.30. Moderately thick structures — Theory choice for the first seven modes in case 3.

After the second synthesis of the theory choice, the first seven natural frequencies are calculated for
the optimal model, shell model (S4R element) and the comparison with the reference solid model is
reported in Fig. 4.31. It is observed the relative differences between the optimal and reference solid
models are less than 0.5% for the first seven modes in case 3. Again, the results of the optimal model
remain very satisfactory in the context of free-free vibration analysis. The comparison with a shell
element, which considers the transverse shear effects, shows that for the first modes all the models give

similar results, however very slight differences are observed for higher modes 12 and 13.
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Fig. 4.31. Moderately thick structures — First seven natural frequencies for the shell model, optimal model

and reference solid model in case 3.

The number of degrees of freedom are respectively equal to 71291 and 94587 for the optimal model
and reference solid model, leading to a gain of the number of DOFs equal to 1.3. The optimal model in

case 3 leads to a gain less than for cases 1 and 2, because the solid area is large for case 3.

4.9.2 “T” shape plates

The adaptive modeling methodology is applied here on “T” shape plates described in Fig. 4.16 in
the context of free-free vibration analysis, with density equal to 7.89x10° t/mm?®. The structure is
discretized with the twenty-node hexahedral element C3D20 from Abaqus. The first seven modes are
studied, Fig. 4.32 illustrates mode shapes obtained with a reference solid model, they range from simple
bending or torsional modes to more complex combined bending and torsional modes. For the choice
criterion of theory, the value of n in Eq. (4.8) is equal to 0.5 and the stress ratio parameter p is equal to
100 for this example. The convergence of the methodology is achieved for each mode, the adaptive

model 2 meets the convergence criterion.

Mode 8 Mode 9 Mode 10

Mode 12 Mode 13

Fig. 4.32. “T” shape plates — First seven mode shapes for a reference solid model.

For the initial solid model and two iterations of the adaptive modeling process, Fig. 4.33 shows the

selected solid-beam, solid-shell and solid areas for modes 7 to 13. The second synthesis of the theory
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choices leads to a large solid-shell area and some solid area in the vicinity of the junction of the two

plates.
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Fig. 4.33. “T” shape plates — Theory choice for the first seven modes.

The first seven natural frequencies are reported in Fig. 4.34 for the optimal model, shell model (S4R
element) and the reference solid model. It is observed the relative differences between the optimal model
and reference solid model are less than 0.5% for the first seven modes of “T” shape plates. In the context
of free-free vibration analysis, the optimal model provides again very satisfactory results. The natural
frequencies obtained with the shell model lead to slight differences for modes 9 to 13, compared with
the reference solid model. In this example, a problem is highlighted due to the junction between two
plates. The shell geometry is based on mid-surfaces, a local treatment is necessary to correctly connect
the plates at the junction. This treatment involves some errors on the stiffness and on the mass of the
structure. For example, in this “T” shape plates, the error on the mass is about 2%. In summary, a
junction between two plates is better modeled with solid geometry, in particular, when the plates are
thick.
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Fig. 4.34. “T” shape plates — First seven natural frequencies for the shell model, optimal model and reference

solid model.

In terms of problem size, the number of degrees of freedom are respectively equal to 38075 and
53619 for the optimal model and reference solid model of the "T" shape plates. The gain of the number
of DOFs is equal to 1.4. Compared with the cases 1 and 2 of the previous example, this reduction is less
significant, essentially due to the fact that the vicinity of the junction between the two plates is modeled

with solid approach.

4.10 Conclusions

In the context of linear static and vibration analysis, an original methodology of adaptive modeling
has been proposed to lead to an optimal model from theory choice point of view in the different areas
of the structure. The 3D geometry is discretized with solid elements. A criterion of theory choice based
on principal stresses and weighted by strain energy is applied on each element. Depending on the stress
state, the obtained optimal model possibly contains solid-beam, solid-shell and solid areas. The modified
first-order displacement fields proposed in chapters 2 and 3 are applied at concerned nodes of the mesh
when respectively solid-shell and solid-beam approaches are selected. For vibration analysis, a specific
synthesis of theory choice is needed at each iteration of the process to define a single optimal model for
all the modes studied. The convergence of the methodology is achieved when a strain energy criterion

is met.

For three cantilever structures and a "T" shape plates assembly, this iterative process has been
applied and has provided an optimal model in the context of static analysis. The obtained displacement
and von Mises stress are very close to the results given by a reference solid model. The optimal model
leads to a significant reduction of the number of degrees of freedom and an interesting CPU time gain.
The reduction of the problem size depends on the number of elements corresponding to solid-beam and

solid-shell approaches.

For three beam to plate moderately thick structures and a "T" shape plates assembly, the adaptive

modeling methodology has led to an optimal model in the context of free-free vibration analysis. For
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the first seven mode shapes of these structures, the natural frequencies of the optimal model are very
satisfactory compared with a reference solid model. A significant gain in terms of the number of degrees
of freedom is obtained. These gains may be increased or decreased depending on the number of modes

considered in the adaptive modeling process.

In perspective, the methodology of adaptive modeling is a promising approach based on new
displacement fields proposed in chapters 2 and 3. We can distinguish two types of perspectives, first on
the one hand, different aspects of the methodology should be improved and from the other hand further
applications are numerous. Concerning the theory choice criterion, the principal stresses work well but
still can be optimized for some special situation, for example pure torsion of a beam, consequently the
criterion should be improved. The stress ratio parameter plays an important role in this criterion and
depends on the studied structure. The choice of this parameter could be identified in an automatic way,
for example by using machine learning techniques. An error indicator could also be proposed to evaluate
the theory choice. Currently, a global criterion is used to assess the convergence of the methodology, a
local criterion could also be developed to better take into account local effects. As the methodology
associates a solid mesh with beam theory or shell theory, the identification of the normal to cross-section
for a beam and the thickness direction for a shell requires complementary research. An approach based
on principal directions of the stress tensor has been proposed, but this issue needs new investigations
for complex structures. Also, the mesh refinement uses a basic voxel technique and can be improved by
coupling the iterative methodology with adaptive mesh technique. Finally, the extension of development

and applications of the adaptive modeling are numerous, especially for composite structures.
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Chapter 5

Conclusions and perspectives

5.1 Conclusions

An adaptive modeling methodology for the optimal finite element static and dynamic analysis of
structures has been proposed. In the context of which, the present works have been focused on the local
adaptive choice of appropriate theories. A new solid-shell approach and a new solid-beam approach are
presented since only solid geometry, mesh, and element are preserved in this methodology. As far as the
author knows, both the proposed new solid-shell or solid-beam approaches and the proposed adaptive
local choice of appropriate theory are original.

A new and specific solid-shell approach dedicated to thin to very thick structures has been presented.
The classical first-order Mindlin-Reissner theory, a modified first-order plate theory, and a higher-order
plate theory have been considered for this approach. These three theories are based on kinematic
relations, and the plate or shell displacement fields are directly imposed at the through-the-thickness
nodes of solid model which contains several elements through the thickness. This leads to the first-order
solid-shell (FOSS), modified first-order solid-shell (MFOSS), and higher-order solid-shell (HOSS)
models respectively. The master and slave nodes technique is used. Linear equations based on
displacement fields eliminate degrees of freedom of slave nodes, resulting in a reduction of model size.
Consequently, the number of degrees of freedom eliminated corresponds exactly to the number of
equations applied. In static examples, the FOSS model fails in both thin and thick plate or shell structures
due to the Poisson thickness locking phenomenon. The MFOSS model gives a satisfactory performance
in the thin cases but shows moderate errors in the thick ones. The through-the-thickness linear
assumptions of the displacement components u and v cannot accurately reproduce reference results. The
HOSS model shows excellent results both in the thin and thick structures compared with the reference
solid model. In dynamics, the frequencies obtained by solid, HOSS, MFOSS, FOSS and shell models
under different boundary conditions lead to conclusions similar to the static case. The FOSS model leads
to bad results. The MFOSS model works well for thin structures but gives less precise results in the
thick case, especially for higher-order modes. The HOSS model gives excellent frequencies in both thin
and thick cases, compared with the solid approach. For the modal shapes, all the solid-shell models give
results close to the reference. Moreover, the solid-shell models are efficient from a model size point of
view thanks to the reduction of the number of degrees of freedom. From this point of view, the MFOSS
model is comparable with that induced by the use of shell elements, and the HOSS model is intermediate

between the shell model and the solid one.
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Up to now, few solid-beam elements have been developed. For the new solid-beam approach, a
beam in plane and a beam in space are presented separately. Similar to the solid-shell approach, the
classical first-order Timoshenko theory, a modified first-order beam theory, and a higher-order beam
theory are considered for a beam in plane. It leads to the first-order solid-beam (FOSB), modified first-
order solid-beam (MFOSB), and higher-order solid-beam (HOSB) models respectively. These models
take into account membrane, bending and transverse shear effects. For a beam in space, a modified first-
order beam theory and a higher-order beam theory, which contain the torsion effect for rectangular cross-
sections, are considered. This leads to the SB1-3D model and the SB2-3D model respectively. The
implementation of this solid-beam approach is quite similar to the solid-shell approach, except that
kinematic relations are imposed at the nodes throughout the cross-section for a beam instead of the nodes
through the thickness for a shell. Static examples have been studied to verify the solid-beam approach
for a beam in plane. The FOSB, MFOSB and HOSB models for beam structures give similar
performances to the FOSS, MFOSS and HOSS models respectively for plate or shell structures
described above. Two free-free vibration analyses allowed assessment to the performances of SB1-3D
and SB2-3D models. Again, similar tendencies are observed to the MFOSS and HOSS models described
above for the solid-shell approach. In terms of model size, the solid-beam models have considerable
reduction compared with the reference solid model.

In the context of linear static and vibration analysis, an original methodology of adaptive modeling
has been proposed to lead to an optimal model from a theory choice point of view in the different areas
of the structure. The 3D geometry is discretized with the solid element. A criterion of theory choice
based on principal stresses and weighted by strain energy is applied on each element. Depending on the
thin, thick or solid 3D areas of the structure, the obtained optimal model possibly contains solid-beam,
solid-shell and solid approaches. The modified first-order displacement fields proposed in chapters 2
and 3 are applied at the nodes of the mesh when respectively solid-shell and solid-beam approaches are
selected. For vibration analysis, a specific synthesis of theory choice is needed at each iteration of the
process to define only one optimal model for all the modes studied. The convergence of the methodology
is achieved when a strain energy criterion is met. In the context of static analysis, the iterative process
has been applied on three cantilever structures and "T" shape plates, leading to optimal models. The
obtained displacements and von Mises stresses are very close to the reference results given by a
reference solid model. In the context of free-free vibration analysis, the methodology of adaptive
modeling has led to optimal models for three moderately thick structures and "T" shape plates. For the
first seven mode shapes of these structures, the natural frequencies of the optimal model are very
satisfactory compared with a reference solid model. The optimal model results in a significant reduction
of the number of degrees of freedom and an interesting CPU time gain. The reduction of the problem

size depends on the number of elements corresponding to solid-beam and solid-shell approaches.
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The main characteristics and strengths of the overall adaptive modeling methodology are
summarized as: (1) The proposed iterative process leads to an optimal model considering the local
choice of appropriate theory. Beam, shell and solid theories can be used simultaneously in this optimal
model. (2) Compared with the reference solid model, our optimal model achieves almost the same results
with less computational cost due to the reduced number of degrees of freedom. (3) For the beam or shell
areas of the optimal model, compared with the shell or beam approach (shell or beam models), no mid-
surface or mid-axis geometries are required in our proposed approach, which leads to fewer difficulties
concerning the link between Computer Aided Design (CAD) and Computer Aided Engineering (CAE).
(4) For the beam or shell areas of the optimal model, compared with the solid-shell or solid-beam
elements of the literatures, our method uses only standard solid elements, leading to more adaptabilities
to commercial finite element software. (5) Moreover, the interfaces difficulties due to the different types
of elements or different mesh refinements are also avoided. There are also some difficulties and
shortcomings of the current version of our methodology. For example, the criterion of theory choice is
limited and should be improved. The normal to cross-section for a beam and the thickness direction for
a shell should be clearly identified for complex structures. The adaptive modeling method should be

considered from an optimal mesh point of view.

5.2 Perspectives

Three original methods, including the new solid-shell, solid-beam approaches, and the adaptive

modeling methodology, have been proposed. Thus, it gives a possibility to numerous perspectives.

— Other refined plate or shell theories can be applied in the solid-shell or solid-beam approach.

— An extension of the proposed solid-shell or solid-beam approach to multilayered composite
structures is possible.

— Other cross-section shapes can be considered in the solid-beam approach.

— The criterion for theory choice has to be improved. A criterion based on principal stresses is not
perfect and needs special treatment for some cases, hamely pure torsion for a beam. The optimal
stress ratio parameter of this criterion depends on the studied structure, the choice of this
parameter could be identified by using machine learning techniques.

— Anerror indicator could also be proposed to evaluate the choice of theory.

— As the methodology associates a solid mesh with beam theory or shell theory, the identification
of the normal to cross-section for a beam and the thickness direction for a shell requires further
works. This aspect needs new investigations for complex structures.

— The refinement of the mesh uses a basic voxel technique and can be improved by coupling the
iterative methodology with adaptive mesh technique.

— The adaptive modeling methodology has to be applied to more complex structures, in particular

industrial examples.
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