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Abstract 

The finite element method has been widely used since the 1970s to predict the behavior of structures 

such as automobiles, airplanes, machines, bridges or buildings. The modeling choices are essential to 

build a representative model and control the number of degrees of freedom. Many works have sought to 

optimize the model from a mesh point of view, namely by proposing adaptive meshing techniques. On 

the other hand, concerning the theory choice, seldom work has been carried out to obtain an optimal 

finite element model. 

In the context of static and vibratory linear analysis, this thesis aims to propose an adaptive modeling 

methodology in order to obtain an optimal finite element model from the theory choice point of view. 

The mesh, composed only of solid elements, is refined at each iteration of the methodology. An 

appropriate choice between beam, shell and 3D elasticity theories is made on each finite element of the 

model at each analysis. In areas where beam or shell theories are relevant, specific displacement fields 

are applied. New solid-shell and solid-beam approaches, based respectively on shell theory and beam 

theory, have been developed for this purpose. For each of these two approaches, first-order and higher-

order theories are proposed. In these areas, the application of kinematic relations at nodes of the solid 

mesh, by using linear equations, leads to a reduction of the number of degrees of freedom. In the context 

of static and vibratory analysis, several examples are treated to evaluate the methodology of adaptive 

modeling. The numerical results obtained are always very close to those of a reference solid model and 

the adaptive modeling method leads to a significant reduction in the model size. 

Key words: Adaptive modeling, Solid finite element, Solid-beam element, Solid-shell element, Beam 

theory, Plate or shell theory, Displacement fields 

  



 

 

 



 

 

Résumé 

La méthode des éléments finis est couramment utilisée depuis les années 1970 pour prédire le 

comportement de structures telles que des automobiles, des avions, des machines, des ponts ou des 

bâtiments. Les choix de modélisation sont essentiels afin de construire un modèle représentatif, tout en 

maîtrisant le nombre de degrés de liberté. De nombreux travaux ont cherché à optimiser le modèle d’un 

point de vue du maillage en proposant notamment des techniques de maillage adaptatif. En revanche, 

concernant le choix de théorie, peu de travaux ont été menés pour obtenir un modèle éléments finis 

optimal. 

Dans le contexte de l’analyse linéaire statique et vibratoire, cette thèse a pour objectif de proposer 

une méthodologie de modélisation adaptative afin d’obtenir un modèle éléments finis optimal d’un point 

de vue du choix de théorie. Le maillage, composé uniquement d’éléments volumiques, est raffiné à 

chaque itération de la méthodologie. Un choix approprié entre les théories de poutre, de coque et 

d’élasticité 3D est effectué sur chaque élément fini à l’issue de chaque analyse. Dans les zones où les 

théories de poutre ou de coque sont pertinentes, des champs de déplacements spécifiques sont appliqués. 

De nouvelles approches volume-coque et volume-poutre, basées respectivement sur la théorie des 

coques et la théorie des poutres, sont développées à cet effet. Pour chacune de ces approches, des théories 

de premier ordre et d’ordre supérieur sont proposées. Dans ces zones l’application de relations 

cinématiques aux nœuds du maillage volumique, se traduisant par des équations linéaires, mène à une 

réduction du nombre de degrés de liberté. Dans le cadre de l’analyse statique et vibratoire, plusieurs 

exemples sont traités pour évaluer la méthodologie de modélisation adaptative. Les résultats numériques 

obtenus sont toujours très proches de ceux d’un modèle volumique de référence et la modélisation 

adaptative mène à une réduction significative de la taille du modèle. 

Mots clés : Modélisation adaptative, Elément fini volumique, Elément fini volume-poutre, Elément fini 

volume-coque, Théorie de poutre, Théorie de plaque ou coque, Champs de déplacement 
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Chapter 1 

General introduction 

1.1 Introduction 

The complex practical problems in both academic and industrial contexts are usually described by 

ordinary/partial differential equations (ODEs/PDEs), but it is a challenge to obtain analytical solutions. 

The numerical simulation technique transforms a physical problem into a discrete mathematical 

description. Then the algebraic equations derived from ODEs/PDEs are solved by a computer. The Finite 

Element Method (FEM) is one of the most well established and widespread numerical techniques for 

multi-physical problems in recent decades. A brief history of FEM is recalled. Some strengths and 

difficulties are also presented. Finally, some drawbacks of the current finite element modeling process 

are discussed. 

1.1.1 Brief history of FEM 

 As early as 1870, Rayleigh used assumed "trial functions" to solve complex differential equations. 

In 1909, Ritz developed it into a numerical approximation method, laying a solid foundation for modern 

finite element methods. In the 1940s, due to the rapid development of the aviation industry, designers 

needed to accurately design and calculate the aircrafts structures. Then, they gradually produced matrix 

mechanics analysis methods in engineering. In 1943, Courant [1] published the first paper using the 

triangular area's polynomial function to solve the torsion problem. In 1954, Argyris [2] published the 

first work on energy principles and matrix methods in structural analysis. In 1956, Turner, Clough, 

Martin, and Topp [3] of Boeing Company systematically studied the element stiffness expressions of 

discrete trusses, beams, and triangles when analyzing aircraft structures. In 1960, Clough [4, 5] first 

proposed and used the name "finite element method" when dealing with plane elasticity. In 1967, 

Zienkiewicz and Cheung [6] published the first monograph on finite element analysis. In 1969, Szabo 

and Lee [7] pointed out that the weighted residual method, especially the Galerkin method, can be used 

to derive the standard finite element process from solving non-structural problems. After 1970, the finite 

element method began to deal with nonlinear and large deformation problems. With the rapid 

development of computer technology, many software based on the principles of finite element methods 

have appeared, and they have played an increasingly important role in actual engineering. At present, 

there are well-known internationally general-purpose finite element analysis software, including 

ABAQUS, ANSYS, and some specialized finite element analysis software, such as FELAC, DEFORM, 

etc. 
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1.1.2 Strengths and difficulties of FEM 

As described above, the finite element method (FEM) has attracted a lot of scientists and had a rapid 

development in recent decades due to its many strengths. From a global viewpoint, the FEM utilizes 

finite and interrelated elements to simulate complex geometry so that the results can be calculated by 

modeling and analysis. The FEM succeeds in multiphysics analysis, combining structural analysis and 

thermal analysis for example. Moreover, the physics fields are accurately approximated by increasing 

the number of elements or the order of elements. Another strength for the FEM is the ability to combine 

different types of formulations, namely mixed formulations, which seems difficult in other methods, 

such as the finite volume method. From the industrial application viewpoint, the FEM provides a simple 

visualization of results, decreases the design cycle and testing time, and helps to save a lot of costs. For 

example, it helps engineers with residual stress analysis for predicting failure location. It is not easy to 

predict without the FEM unless the engineer has years of experience. Fig. 1.1 shows some domains in 

which the FEM is widely used. 

 

Fig. 1.1. Examples of the FEM applications. 

The difficulties of effectively using the FEM are also apparent. The first one is the accuracy of the 

results mainly depends on the mesh, requiring a high quality of the mesh to obtain good results. The 

experience of FE modeling, the definition of boundary conditions, and whether the loading meets the 

physical reality, matter much. Moreover, the computational time for large models is significant, leading 

to an expensive cost. 

1.1.3 Drawbacks of the current finite element modeling process 

A finite element analysis is usually composed of three parts [8] with different proportions of effort: 

pre-processing (70% of total effort), run of program/solver (5% of total effort), post-processing (25% of 

total effort). The pre-processing step includes preparation of geometry, material properties, loading, 
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boundary conditions, selection of elements, and mesh creation. The post-processing step consists of the 

observation and interpretation of the results, but also of the refinement of mesh if convergence of results 

is not met. All these above are so-called finite element modeling, which is a significant part of finite 

element analysis. 

The current finite element modeling process is summarized in three main steps. Firstly, theory (3D 

solid, shell, or beam) is selected using rules acquired through experience, and a simulation scenario is 

defined. In some cases, for complex structures or systems (for example a finite element model of a car), 

different theories are used in the same model. Secondly, the geometry is created, and material properties 

are defined. The third step deals with the creation of the mesh. A consistent mesh is obtained thanks to 

a convergence study. During past decades, numerous studies were performed about the adaptive 

meshing issue, leading to optimal meshes. In 1978, Babuska and Rheinboldt [9] proposed a pioneering 

work of error estimation in computational processes, which is a great inspiration for the latter researches 

of adaptive mesh. A further bibliography study about this issue is highlighted in Chapter 4. In an 

industrial context, rules acquired from experience are often used to define the mesh size. Deficiencies 

appear in this existing finite element modeling process. 

Some of these difficulties are highlighted through examples, as presented in Fig. 1.2. Choosing an 

appropriate theory may be difficult when geometry, boundary conditions, loadings, and materials are 

complex. For instance, the best choice of theory is ambiguous when objects have complex shapes or 

contain stiffeners (Fig. 1.2a). The limitation of beam and shell theories is also a difficult issue for 

composite or sandwich structures. For example, even if an automotive windscreen is thin from a 

geometric viewpoint, shell theory may be inappropriate for this type of sandwich structure. When shell 

theory is chosen, starting with the solid geometric definition of the object under study, a mid-surface 

geometry is required. This task is often difficult for an industrial application, and existing tools generally 

fail in this context. The solid-shell finite elements have been developed to avoid creating a mid-surface 

geometry. In 1986, Graf et al. [10] firstly presented the “three-dimensional thick shell elements” using 

solid geometry and displacements, without any rotation degree of freedom. After which, several types 

of solid-shell elements have been proposed for decades and it is still a promising field until today. A 

further bibliography study of this aspect is highlighted in Chapter 2. In the same way, when beam theory 

is chosen, difficulties may appear to make a mid-axis geometry. So solid-beam finite elements have also 

been developed. In 2013, Frischkorn and Reese [11] introduced the “solid-beam” expression and 

proposed an eight-node solid-beam element with only displacement degrees of freedom. To our best 

knowledge, no other solid-beam element has been developed till now. Fig. 1.2b shows a fan blade, which 

is a combination of massive (cylinder area) and thin structure. The optimal model is certainly made of 

solid elements and shell elements. But mixing different types of elements in the same model requires 

some specific numerical treatment. Namely, at the interfaces between solid and shell areas, specific 

relations between the degrees of freedom are necessary to ensure the compatibility between solid and 

shell elements. 
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Fig. 1.2. Examples of complex structures: (a) pedal support, (b) fan blade. 

1.2 Motivations and outline 

Due to the rapid development of 3D geometry software and Reverse Engineering (RE) technology 

in recent decades, it has become easier to obtain 3D geometries. In finite element analysis, 3D models 

have many strengths compared with 1D or 2D models. Firstly, the 3D model uses fewer assumptions 

from the dimension viewpoint, facilitating the application of loads and boundary conditions closer to 

actual issues. Secondly, 3D models are more convenient when simulating complex structures, especially 

for some assembled structures. In terms of presenting the results, the 3D model is richer. However, the 

computational cost for 3D finite element analysis is usually higher than 1D or 2D analysis. 

1.2.1 Motivations 

The final objective of this research is to define a methodology to identify, in the context of linear 

static or dynamic analysis, optimal finite element models from both theory and mesh points of view. 

Indeed, a finite element model is optimal if the choice of the solid, shell, or beam theory and the choice 

of the mesh are both relevant. As discussed above, many papers have been published about subjects 

relative to this problem. As far as the authors know, the overall problem proposed here, involving an 

adaptive choice of theory, has not been described in the literature. This study is performed in the context 

of the so-called Verification and Validation [12, 13, 14] methodology to improve the predictive 

capability of finite element models. 

An adaptive modeling method should include two aspects: the adaptive meshing and the adaptive 

choice of theory. As an already relatively reliable technology, the adaptive meshing aspect is not 

considered in this PhD thesis. On the contrary, the adaptive choice of theory, which was rarely treated 

before, is discussed here. The methodology is supposed to be based only on solid mesh and elements. 

The proposed iterative process of the methodology for a given structure contains several steps: the initial 

finite element analysis of a solid model with coarse mesh, the local choice of appropriate theories, the 

mesh refinement, the application of solid-shell and solid-beam approaches in the areas concerned, the 

finite element analysis with a new adaptive model, the calculation of convergence criterion of the 

methodology.  

Our methodology is based on a solid model containing several elements in the different directions 

of the structure of interest. In particular, in thin-walled areas, the mesh contains several elements through 
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the thickness or cross-section.  In the areas where beam or shell theory is suitable, specific treatments 

are applied and lead to solid-beam and solid-shell approaches respectively. Therefore, before proposing 

the overall adaptive modeling method, new solid-shell and solid-beam approaches based on solid 

elements is first presented. Then it is shown how our methodology exploits a mix of solid, solid-shell 

and solid-beam areas. One problem may be the compatibility at the interface between the different areas. 

It is shown that the compatibility conditions are naturally met with our approach. 

1.2.2 Outline 

The manuscript is organized into five chapters: 

− Chapter 1 deals with the general introduction and motivations. 

− In the context of adaptive modeling methodology, chapter 2 presents a new solid-shell approach 

based on the standard solid elements instead of developing a new element. Three plate or shell 

theories, including the classical first-order plate theory, a modified first-order plate theory and 

a higher-order plate theory, are considered. The static and vibration examples considering thin 

to thick structures are treated to verify the relevance and to assess the performances of the 

approach. 

− In chapter 3, we propose a new solid-beam approach in the same way with the solid-shell 

approach. Beam in a plane, involving membrane and bending effects, is first considered. Then 

beam in space with rectangular cross-section, taking into account torsion effects. For beam in a 

plane, three theories including the Timoshenko first-order beam theory, a modified first-order 

beam theory and a higher-order beam theory, are considered. For beam in space, two variants 

for the description of warping of the cross-section, are presented. As for the solid-shell 

approach, static and vibration examples considering thin to thick structures are treated. 

− Next, the adaptive modeling methodology is presented in chapter 4. The criterion used to choose 

the local appropriate theories, the convergence criterion of the methodology, the 

implementations of the methodology and the special treatment for vibration are described. 

Cantilever structures and “T” shape plates are considered for both static examples and vibration 

examples. 

− Chapter 5 presents the conclusions and perspectives. 
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Chapter 2 

A new solid-shell approach 

In the context of adaptive modeling methodology, a new solid-shell approach dedicated to thin to 

very thick structures is presented. An original aspect is that plate or shell displacement fields are 

directly applied on a solid finite element model which contains several elements through the 

thickness. Moreover any plate or shell theory based on kinematic assumptions can be used, three 

theories have been considered.  

 

2.1 Introduction 

A lot of natural or industrial structures have one dimension small compared to other ones. These 

structures are called plates and shells. Since the pioneering works of Germain [15] two centuries ago, a 

lot of researchers, namely Kirchhoff [16] and Love [17], contributed to this theory currently known as 

the Love-Kirchhoff theory dedicated to thin structures without transverse shear effects. About one 

century later, Reissner [18] and Mindlin [19] developed the plate theory with transverse shear effects, 

called the Reissner-Mindlin theory, dedicated to thick as well as thin structures. In these first-order 

theories, the in-plane and out-of-plane displacements are linear and constant through the thickness 

respectively. Then higher-order theories were proposed. In the context of the derivation of a shell theory, 

in 1957 Naghdi [20] proposed a quadratic out-of-plane displacement which includes the transverse 

normal strain. In 1975, Reissner [21] developed a higher-order theory with cubic in-plane displacements 

and quadratic out-of-plane displacements. This approach considers out-of-plane effects characterized by 

the bending phenomenon but neglects in-plane effects. In 1977, Lo, Christensen and Wu [22] enriched 

the displacement field to take into account in-plane as well as out-of-plane effects. The in-plane 

displacement contains constant, linear, quadratic and cubic terms, while out-of-plane displacement 

contains constant, linear and quadratic terms. In 1978, Lo, Christensen and Wu [23] modified the method 

described above to improve the evaluation of transverse shear and normal stresses using the integration 

of equilibrium equations. This type of refined theory, or variants, is commented and tested by several 

authors (Kant [24], Rehfield and Valisetty [25]). Levinson [26] and Reddy [27] used cubic in-plane 

displacements again, but keep a constant out-of-plane displacement. Voyadjis and Baluch [28] enriched 

the kinematic assumptions with order five for in-plane displacements and order four for transverse 

displacements. Levinson [29] developed a higher-order plate theory based on studies in foundation 

theory. He suggested using of more or less complex shape functions to describe the through-the-
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thickness distributions of in-plane and out-of-plane displacements. Other variants of plate theories were 

proposed, in particular for multilayered composite structures and sandwich ones. The scope of this 

chapter is limited to homogeneous structures, so multilayered composite structures which have led to a 

lot of research are not considered in this bibliography study.  

The analytical resolution of examples treated with these theories is limited to some academic 

examples. Consequently, finite element method is widely used for the treatment of plates and shells 

applications. Since the sixties, an impressive number of formulations have been developed and assessed, 

to improve the performances of plate and shell finite elements. Most of the formulations concern the 

Love-Kirchhoff and Reissner-Mindlin first-order theories.  

For these finite elements, the most popular approach requires a mesh of the mid-surface and the 

degrees of freedom are displacements and rotations at nodes. Up to now a lot of literature has been 

published about this issue, most of the papers dealing with Reissner-Mindlin plate and shell elements. 

In a review paper containing about 200 references, Cen and Shang [30] describe the state of the art 

concerning Reissner-Mindlin plate elements. The reader is invited to refer to this paper for detailed 

information. The reason why a lot of literature deals with these finite elements is that they lead to several 

specific numerical problems. The most problematic one is transverse shear locking which leads to very 

bad results when the structure is thin. Another numerical problem, linked to the techniques used for 

solving the locking phenomenon, is rank deficiency which may cause spurious zero-energy modes. 

Several techniques were proposed to alleviate these problems. The most popular ones are reduced or 

selective numerical integration (Zienckiewicz et al. [31], Pawsey and Clough [32], Hughes et al. [33]), 

Assumed Natural Strain (ANS) method (Hughes and Tezduyar [34]) and its variants, namely the mixed 

interpolation tensorial components (Bathe and Dvorkin [35]) and the discrete gap method (Bletzinger et 

al. [36]), Enhanced Assumed Stress (EAS) method (Simo et al. [37]), discrete shear approach (Batoz 

and Lardeur [38]), mixed or hybrid approach (Spilker and Munir [39], Lee and Pian [40]). In order to 

prevent spurious modes or zero strain energy modes due to the rank deficiency of the stiffness matrix, 

stabilization methods have been proposed (Belytschko et al. [41]). Research to improve further and 

identify best plate and shell finite elements based on first-order theories is still currently an active area 

(Katili et al. [42]). 

Some research has also been carried out for the formulation of finite elements based on higher-order 

plate theories. The applications of these theories to homogeneous plates and shells are considered here. 

In 1982, Kant et al. [43] developed a nine-node quadrilateral element based on the Reissner refined 

theory introduced above [21]. The element only takes bending effects into consideration and has six 

degrees of freedom per node, compared to three for classical first-order plate elements. Voyadjis and 

Becquet [44] integrated their theory introduced in [28] in an eight-node quadrilateral element. The 

number of degrees of freedom is the same as for classical plate elements. Tessler [45] criticized higher-

order theories and stated that they are unattractive, namely because they often use a large number of 

degrees of freedom at each node. Using kinematic assumptions close to those introduced in [20] with 
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membrane and bending effects and improving the transverse stresses, he described a three-node 

triangular finite element with five degrees of freedom per node, just like classical plate elements. Up to 

now, in commercial finite element software, only plate and shell elements based on first-order theories 

are available. 

Another possibility is to exploit only the solid geometry, in this case a mid-surface geometry is not 

required. As soon as 1970, Ahmad et al. [46] presented an element based on solid geometry but with 

thick shell assumptions. This leads to a sixteen-node hexahedron element and a twenty-four-node 

hexahedron element with classical shell degrees of freedom, that is to say three displacements and two 

rotations. This approach is also known as the degenerated shell element concept. But the so-called solid-

shell only uses displacements at nodes, without rotations. This approach has several advantages. First 

solid and solid-shell elements can be used in the same model, without difficulty. Indeed, sometimes, for 

the same industrial application, it is justified to use solid theory in some areas of the structure and shell 

elements in other ones. In this situation, the use of solid and solid-shell elements avoids the development 

of specific solid-to-shell techniques to correctly connect shell and solid elements. A second advantage 

is that there is no need to make and exploit a mid-surface mesh, which may lead to severe difficulties 

and some errors for complex applications. Moreover, in the solid-shell approach, all terms of the strain 

and stress tensors can be considered and a three-dimensional constitutive law can be used, even if this 

issue may lead to some difficulties known as the thickness locking phenomenon mentioned below. 

Finally loading can be naturally applied on the top or bottom faces of the structure. The first contribution 

was presented in 1986 by Graf et al. [10] who introduced the “three-dimensional thick shell elements” 

using a solid geometry and displacements, without any rotation. Hexahedral elements with eight, sixteen 

or eighteen nodes were proposed, with a hybrid/mixed formulation based on the Hellinger-Reissner 

variational principle. The elements are free from shear or membrane locking phenomena. These 

numerical problems led to a lot of research for classical plate and shell finite elements and are also 

relevant for solid-shell elements. Ausserer and Lee [47] also proposed a hexahedral eighteen-node solid 

element for thin shell analysis based on the same variational principle. The spurious modes problem due 

to the rank deficiency of the stiffness matrix is discussed and a method to control this numerical problem 

is detailed. In addition to membrane locking, shear locking and spurious modes, solid-shell elements 

also suffer from other numerical problems due to the solid nature of these elements. These pathologies 

include trapezoidal locking, Poisson thickness locking and volumetric locking. Techniques developed 

to solve these numerical problems are generally similar to those cited above for the development of 

efficient classical plate and shell elements. Of course, some difficulties as Poisson thickness locking are 

specific to solid-shell elements and may lead to particular treatments. The main objective of the 

numerous research works is to control all these numerical difficulties as far as possible. Generally, two 

or more of the techniques cited above are used together to improve the performances of the elements. 

Most of the contributions concern the eight-node hexahedral element, see for example Graf et al. [10], 

Parisch [48], Hauptmann and Schweizerhof [49] who introduced the “solid-shell” expression in 1998, 
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Sze and Yao [50], Abed-Meraim and Combescure [51, 52], Schwarze and Reese [53], Naceur et al. [54], 

Ben Bettaieb et al. [55], Bishara and Jabareen [56]. Sixteen-node or eighteen-node hexahedral elements 

were proposed by Graf et al. [10], Assurer and Lee [47], Parisch [48], Sze et al. [57]. Bassa et al. [58] 

presented a nine-node hexahedral element which uses an additional node at the center of the element. 

Twenty-node hexahedral element was proposed by Abed-Meraim et al. [59] and Wang et al. [60]. But 

for complex geometries, due to difficulties with meshes made up only of hexahedra, prismatic elements 

are necessary. Abed-Meraim et al. [59] and Wang et al. [60] proposed a fifteen-node prismatic element. 

As for classical shell elements, research to improve further solid-shell elements finite elements is 

currently an active area. In 2020 Bishara and Jabareen [56] use the Assumed Natural Inhomogeneous 

Strain (ANIS) method and the EAS one to improve the eight-node hexahedral element. 

In this chapter, a new solid-shell approach, based on applications of first-order or higher-order plate 

and shell equations to standard solid finite element models, is presented. In Section 2.2, the basic ideas 

of the methodology proposed, as well as the first-order and higher-order theories of interest, are recalled. 

In Section 2.3, the approach relying on the master and slave nodes concept is described. In Section 2.4, 

three static examples with thin and thick cases are treated, and a comparison with solid and shell models 

in terms of model size is also presented. Two vibration examples with thin and thick cases are presented 

in Section 2.5. Some conclusions and perspectives are drawn in Section 2.6. 

2.2 Presentation of a new solid-shell approach – theoretical aspects 

2.2.1 Context and basic ideas  

The new solid-shell approach proposed in this chapter is developed in the context of a more general 

methodology. The aim of this methodology is to propose an adaptive modeling technique based on the 

use of solid elements, for any type of structure. As stated in Section 1, for the same application, it is 

sometimes justified to use solid theory in some areas of the structure and shell theory in other ones. The 

solid-shell approaches developed up to now lead to specific finite elements. Consequently, if it is 

justified to use both solid and shell theory in the same model, two different finite elements must be 

managed. Moreover, one characteristic and advantage of classical solid-shell elements is that generally 

only one finite element is required through the thickness of the structure. On the contrary, in the solid 

areas, generally due to local effects in the boundary conditions or loading areas, several finite elements 

through the thickness are necessary to get relevant results meeting the convergence conditions. 

Consequently, at the interface between the solid and solid-shell areas, severe meshing difficulties may 

appear. To prevent this problem, our adaptive modeling technique uses only solid elements and the mesh 

systematically contains several elements through the thickness of the structure. This leads to 

homogeneous and regular meshes over the whole structure. In solid areas, there is no specific treatment 

and in the solid-shell areas, plate and shell displacement fields are applied using a specific approach. In 

this chapter the formulation associated with the solid-shell areas is presented and assessed.  
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Classically, to develop plate or shell finite element models, equations of the 3D theory of elasticity 

are modified to give new theoretical equations, characteristic of the plate or shell theory retained. Then, 

based on these equations, a plate or shell numerical formulation is developed, leading to a surface mesh. 

The contrary is proposed here. The structure is first modeled with solid finite elements, then through-

the-thickness plate or shell equations are applied directly on the solid model to modify the system of 

algebraic equations and obtain the plate or shell numerical solution. 

The main characteristics of the proposed solid-shell approach, dedicated to plate or shell structures, 

are described below. 

− The solid-shell model must give results very close to the reference results given by the solid 

model. 

− The methodology is dedicated to thin to very thick structures and is applicable for statics and 

dynamics. In the static case presented in this chapter, it must provide correct displacements and 

stresses. In the thin case, plane stresses 𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑥𝑦  are concerned. In the thick case, the 

transverse stresses 𝜎𝑥𝑧, 𝜎𝑦𝑧 and 𝜎𝑧𝑧  are also of interest.  

− Only solid elements are used. The finite element selected must have good performances and 

must not suffer from severe numerical deficiencies. In particular, the element must be free of 

severe locking phenomena. In this chapter existing twenty-node hexahedral element is exploited. 

Some results obtained with eight-node hexahedral element will also be mentioned. Of course, a 

new solid element formulation could be considered. 

− The mesh contains several elements through the thickness. A convergence study makes it 

possible to choose the appropriate refinement level. 

− The 3D constitutive law is used. This means that all strains and stresses are considered in the 

strain energy. No modification of this constitutive law is allowed. This prohibits for example 

the use of transverse shear correction coefficients which are classically associated with first-

order theories. 

− First-order as well as higher-order displacement fields are considered.  

− Plate or shell displacement fields are directly applied on the solid finite element model which 

contains several elements through the thickness. 

− From a numerical point of view, kinematic relations between the degrees of freedom of the 

various nodes through the thickness, are applied. These degrees of freedom are displacements 

exclusively because solid elements are used, in contrast with plate and shell elements which use 

rotations and possibly other types of variables, namely in the higher-order theories case. For this 

purpose, the concept of slave and master nodes is used. After application of equations, only 

master nodes are kept in the model.  

− This process leads to a reduction of the model size compared to the initial solid model.  
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2.2.2 Displacement fields  

2.2.2.1 Classical first-order displacement field 

Three displacement fields are considered in this study. The first one, considered in this section, is 

given by the classical Reissner-Mindlin plate theory. It considers bending effects as well as transverse 

shear ones. It is widely used in plate and shell finite element formulations. This displacement field is 

defined by: 

{

𝑢(𝑧) = 𝑢0 − 𝑧𝜑𝑦
𝑣(𝑧) = 𝑣0 − 𝑧𝜑𝑥
𝑤(𝑧) = 𝑤0

 
(2.1) 

where 𝑢0 , 𝑣0 and 𝑤0  are the displacements of a node on the mid-surface, 𝜑𝑥  and 𝜑𝑦 are the rotations 

around 𝑥 and 𝑦  axes respectively.   

This displacement field uses displacements as well as rotations. In our approach which relies on 

solid elements and which is described further in Section 3, only displacements at nodes are used. It is 

relevant and well suited to rewrite the displacement field of Eq. (2.1) in the simple following form: 

{

𝑢(𝑧) = 𝑧𝑎1 + 𝑎2
𝑣(𝑧) = 𝑧𝑏1 + 𝑏2
𝑤(𝑧) = 𝑐1

 
(2.2) 

where 𝑎1, 𝑎2, 𝑏1, 𝑏2 and 𝑐1 are coefficients to be determined.  

As will be shown and justified in Section 2.4.1, this displacement field does not lead to good results, 

in the context of our approach.  

2.2.2.2 Modified first-order displacement field 

To justify a relevant modification of the Reissner-Mindlin theory, it is useful to observe the through-

the-thickness displacements of a moderately thin (l/h=20) square plate modeled with solid elements. For 

the bending case, the plate is clamped along its four edges and subjected to uniform pressure applied on 

the top face. For the membrane case, the plate is clamped along one edge and submitted to a distributed 

traction loading at the opposite edge. The through-the-thickness distributions of displacements are 

shown in Fig. 2.1. For the bending case, in good agreement with the classical first-order theory, the 

displacements u and v are linear. But the displacement w is quadratic, while the classical first-order 

theory considers that this component is constant over the entire thickness. For the membrane case, in 

good agreement with the classical first-order theory, the displacements u and v are constant. But the 

displacement w is linear, while the classical first-order theory considers that this component is equal to 

zero over the entire thickness. In summary, to be fully consistent with solid theory, the classical first-

order theory must be corrected. The displacement w needs to be enriched and must contain a linear term 

as well as a quadratic one. This does not mean that the classical Mindlin-Reissner plate theory is not 

consistent. Indeed, this theory neglects the effect of the transverse strain 𝜀𝑧𝑧 and the transverse stress 

𝜎𝑧𝑧. Consequently, the assumption stating that w is constant through the thickness has no consequence 
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on the results. One may say that this theory is self-consistent but does not reproduce all the effects 

observed in the 3D theory of elasticity. 

 
Fig. 2.1. Moderately thin square plate under membrane or bending loading – Distribution of through-the-

thickness displacements.  

The consistency between linear distribution for u and v and quadratic distribution for w can also be 

demonstrated. First, as commonly accepted and highlighted in Fig. 2.1, for a given line in the z-direction, 

assuming that both membrane and bending effects exist, linear through-the-thickness distributions are 

assumed for u and v:  

{
𝑢(𝑧) = 𝑧𝑎1 + 𝑎2
𝑣(𝑧) = 𝑧𝑏1 + 𝑏2

 
(2.3) 

where 𝑎1, 𝑎2, 𝑏1 and 𝑏2 are coefficients to be determined for each line.  

Then the strains 𝜀𝑥𝑥 ,  𝜀𝑦𝑦 and 𝛾𝑥𝑦 are linear: 

{

𝜀𝑥𝑥 = 𝑢,𝑥 = 𝑧𝑎3 + 𝑎4
𝜀𝑦𝑦 = 𝑣,𝑦 = 𝑧𝑏3 + 𝑏4
𝛾𝑥𝑦 = 𝑢,𝑦 + 𝑣,𝑥 = 𝑧𝑑1 + 𝑑2

  (2.4) 

where 𝑎3, 𝑎4, 𝑏3, 𝑏4, 𝑑1 and 𝑑2 are coefficients to be determined for each line.  

For thin or moderately thick plates, the assumption 𝜎𝑧𝑧 = 0 is acceptable, leading to the classical 

relation between plane stresses and strains: 

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦

} =
𝐸

1 − 𝜈2
[

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈

2

] {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

} (2.5) 

In this case, from 3D solid stress-strain relation for isotropic material, the expression of  𝜀𝑧𝑧  is 

deduced: 



14 

 

𝜀𝑧𝑧 = 𝑤,𝑧 = −
𝜈

𝐸
(𝜎𝑥𝑥 + 𝜎𝑦𝑦) (2.6) 

Eq. (2.5) shows that the stresses 𝜎𝑥𝑥,  𝜎𝑦𝑦 and 𝜎𝑥𝑦 are linear. From Eq. (2.6), it is deduced that the 

strain 𝜀𝑧𝑧, which is due to the Poisson effect, is linear. By integration of Eq. (2.6), one highlights the 

quadratic expression of w. The displacement field given in Eq. (2.3) can then be completed as follows: 

{

𝑢(𝑧) = 𝑧𝑎1 + 𝑎2
𝑣(𝑧) = 𝑧𝑏1 + 𝑏2  

𝑤(𝑧) = 𝑧2𝑐1 + 𝑧𝑐2 + 𝑐3  

 (2.7) 

where 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2 and 𝑐3 are coefficients to be identified. 

This displacement field also corresponds to the theory introduced by Naghdi [20].  

2.2.2.3 Higher-order displacement field 

The example presented in Section 2.2.2.1 and treated for a moderately thin plate, is now considered 

for a thick case (l/h=5). The through-the-thickness distribution of displacements is shown in Fig. 2.2. 

For the bending case, the displacements u and v seem to have a cubic variation, while w is again almost 

quadratic. For this bending case, these observations correspond to the displacement field introduced by 

Reissner [21]. 

{

𝑢(𝑧) = 𝑧𝜓x + 𝑧
3𝜙x

𝑣(𝑧) = 𝑧𝜓y + 𝑧
3𝜙y 

𝑤(𝑧) = 𝑤0 + 𝑧
2𝜉𝑧  

 (2.8) 

It is worth noting that this displacement field uses classical variables: 𝑤0, 𝜓x, 𝜓y  but also other 

variables: 𝜙x,  𝜙y,  𝜉𝑧 which may be difficult to be interpreted and managed, for example to define 

boundary conditions or loading. In the approach proposed, displacement field of Eq. (2.8) is rewritten 

in the simple following form: 

{

𝑢(𝑧) = 𝑧3𝑎1 + 𝑧𝑎2
𝑣(𝑧) = 𝑧3𝑏1 + 𝑧𝑏2 

𝑤(𝑧) = 𝑧2𝑐1 + 𝑐2  

 (2.9) 

where 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1 and 𝑐2 are coefficients to be identified. 

For the membrane case, the displacement w is almost linear, while the displacements u and v have 

a more complex distribution. Anyway, a quadratic distribution which will be considered hereafter should 

lead to correct results and seems to be a good choice, even if higher-order terms would certainly have 

an influence. If one considers membrane and bending effects, compared to the displacement filed 

proposed by Reissner [21], constant and quadratic terms must be added for u and v, and linear term must 

be added for w. These observations correspond to the displacement field introduced by Lo et al. [22]. 

{

𝑢(𝑧) = 𝑢0 + 𝑧𝜓x + 𝑧
2𝜉𝑥 + 𝑧

3𝜙x
𝑣(𝑧) = 𝑣0 + 𝑧𝜓y + 𝑧

2𝜉𝑦 + 𝑧
3𝜙y 

𝑤(𝑧) = 𝑤0+𝑧𝜓z + 𝑧
2𝜉𝑧  

 (2.10) 
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One can observe again that this displacement field uses classical variables but also other variables 

due to higher-order terms. Finally, 11 variables are necessary for this theory. Lo et al. [22] state that this 

type of theory is not convenient to use. The displacement field of Eq. (2.10) is exploited in the simple 

following form: 

{

𝑢(𝑧) = 𝑧3𝑎1 + 𝑧
2𝑎3 + 𝑧𝑎2 + 𝑎4

𝑣(𝑧) = 𝑧3𝑏1 + 𝑧
2𝑏3 + 𝑧𝑏2 + 𝑏4 

𝑤(𝑧) = 𝑧2𝑐1 + 𝑧𝑐3 + 𝑐2  

 (2.11) 

where 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑐1, 𝑐2 and 𝑐3 are coefficients to be identified. 

 

Fig. 2.2. Thick square plate under membrane or bending loading – Distribution of through-the-thickness 

displacements. 

2.3 Presentation of a new solid-shell approach – numerical aspects and implementation 

The objective of this section is to explain how the displacement fields presented in Section 2.2.2 are 

applied on the solid finite element mesh leading to solid-shell models. In all cases, equations are applied 

on the assembled finite element model. Three solid-shell models are described. Eq. (2.2) leads to the 

First-Order Solid-Shell (FOSS) model. In the same way, Eq. (2.7) gives the Modified First-Order Solid-

Shell (MFOSS) model and Eq. (2.11) the Higher-Order Solid-Shell (HOSS) one. The principle, 

illustrated in Fig. 2.3, consists in imposing a selected displacement field for each line of nodes in the z 

direction. For each line slave degrees of freedom and master degrees of freedom are defined. Slave 

degrees of freedom are eliminated from the system of equations to be solved. Each equation leads to the 

elimination of one degree of freedom. Consequently, the number of degrees of freedom eliminated 

corresponds exactly to the number of equations applied. 
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2.3.1 FOSS model 

For each through-the-thickness line, the FOSS model uses two master nodes T and B, the bottom 

and the top ones, as described in Fig. 2.3. Eq. (2.2) contains two coefficients (  𝑎1 and 𝑎2 ) to be 

determined for u, two coefficients ( 𝑏1 and 𝑏2)  for v and one coefficient (𝑐1 ) for w. To identify these 

five coefficients, the following set of five equations is used: 

{
 
 

 
 
𝑢(𝑧𝐵) = 𝑢𝐵 = 𝑧𝐵𝑎1 + 𝑎2
𝑢(𝑧𝑇) = 𝑢𝑇 = 𝑧𝑇𝑎1 + 𝑎2
𝑣(𝑧𝐵) = 𝑣𝐵 = 𝑧𝐵𝑏1 + 𝑏2
𝑣(𝑧𝑇) = 𝑣𝑇 = 𝑧𝑇𝑏1 + 𝑏2
𝑤(𝑧𝐵) = 𝑤𝐵 = 𝑐1

 (2.12) 

where 𝑢𝐵, 𝑢𝑇 , 𝑣𝐵, 𝑣𝑇 and 𝑤𝐵 are displacements at top and bottom nodes; 𝑧𝐵 and 𝑧𝑇 are the coordinates 

in the z direction of bottom and top nodes respectively. 

Solving Eq. (2.12) gives the expressions of coefficients identified for each through-the-thickness 

line: 

{
 
 
 
 

 
 
 
 𝑎1 =

𝑢𝑇 − 𝑢𝐵
𝑧𝑇 − 𝑧𝐵

𝑎2 = −
𝑧𝑇𝑢𝐵 − 𝑧𝐵𝑢𝑇
𝑧𝑇 − 𝑧𝐵

𝑏1 =
𝑣𝑇 − 𝑣𝐵
𝑧𝑇 − 𝑧𝐵

𝑏2 = −
𝑧𝑇𝑣𝐵 − 𝑧𝐵𝑣𝑇
𝑧𝑇 − 𝑧𝐵

𝑐1 = 𝑤𝐵

 (2.13) 

Considering Eq. (2.13) in Eq. (2.2), one obtains: 

{
 
 

 
 𝑢(𝑧) = 𝑧

𝑢𝑇 − 𝑢𝐵
𝑧𝑇 − 𝑧𝐵

+
𝑧𝐵𝑢𝑇−𝑧𝑇𝑢𝐵
𝑧𝑇 − 𝑧𝐵

𝑣(𝑧) = 𝑧
𝑣𝑇 − 𝑣𝐵
𝑧𝑇 − 𝑧𝐵

+
𝑧𝐵𝑣𝑇−𝑧𝑇𝑣𝐵
𝑧𝑇 − 𝑧𝐵

𝑤(𝑧) = 𝑤𝐵

 (2.14) 

Equations to be applied are obtained by replacing 𝑧 by 𝑧𝑖 in Eq. (2.14), 𝑧𝑖 being the coordinate of 

the slave node i in the z direction: 

{
 
 

 
 𝑢(𝑧𝑖) = 𝑢𝑖

𝑆 = 𝑧𝑖
𝑢𝑇 − 𝑢𝐵
𝑧𝑇 − 𝑧𝐵

+
𝑧𝐵𝑢𝑇−𝑧𝑇𝑢𝐵
𝑧𝑇 − 𝑧𝐵

𝑣(𝑧𝑖) = 𝑣𝑖
𝑆 = 𝑧𝑖

𝑣𝑇 − 𝑣𝐵
𝑧𝑇 − 𝑧𝐵

+
𝑧𝐵𝑣𝑇−𝑧𝑇𝑣𝐵
𝑧𝑇 − 𝑧𝐵

𝑤(𝑧𝑖) = 𝑤𝑖
𝑆 = 𝑤𝐵

 (2.15) 

For a given line in the z direction, the displacements  𝑢𝐵, 𝑢𝑇 ,  𝑣𝐵, 𝑣𝑇 and 𝑤𝐵 must be calculated and 

are the master degrees of freedom. All other degrees of freedom, called the slave degrees of freedom, 

are expressed in terms of master degrees of freedom and are eliminated using Eq. (2.15). Concerning 

the displacements u and v, Eq. (2.15) is applied at all through-the-thickness nodes, except bottom and 

top ones. The displacements u of other nodes of the line are dependent of  𝑢𝐵  and 𝑢𝑇 . In the same way 
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the displacements v of other nodes of the line are dependent of  𝑣𝐵  𝑎𝑛𝑑 𝑣𝑇 . Concerning w, Eq. (2.15) is 

applied at all through-the-thickness nodes, except bottom one. The displacement w of other nodes is 

dependent of 𝑤𝐵. This description shows that the methodology relies on slave and master degrees of 

freedom. For the sake of simplicity, one distinguishes master and slave nodes. It is considered here that 

a given node is a master node if it contains at least one master degree of freedom. The FOSS model 

contains five master degrees of freedom per line. It can be observed that Eq. (2.15) defines linear 

relations between the slave and the master degrees of freedom. One complementary remark is that as far 

as one needs two master nodes, it seems natural to select the top and bottom nodes, as described here. 

But two other nodes through the thickness could be selected as well, leading to equivalent results. 

 

Fig. 2.3. Master nodes and slave nodes through-the-thickness of a 3D plate model. 

2.3.2 MFOSS model 

The methodology described in Section 2.3.1 for the FOSS model is now applied to build the MFOSS 

model. This model exploits three master nodes T, B and M, as shown in Fig. 2.3. Eq. (2.7) contains two 

coefficients ( 𝑎1 and 𝑎2) to be determined for u, two coefficients ( 𝑏1 and 𝑏2)  for v and three coefficients 

( 𝑐1, 𝑐2 and 𝑐3) for w. The coefficients 𝑎1, 𝑎2, 𝑏1 and 𝑏2 are the same as for the FOSS model. To identify 

 𝑐1 to 𝑐2 the following equations are used: 

{

𝑤(𝑧𝐵) = 𝑤𝐵 = 𝑐1𝑧𝐵
2 + 𝑐3𝑧𝐵 + 𝑐2

𝑤(𝑧𝑀) = 𝑤𝑀 = 𝑐1𝑧𝑀
2 + 𝑐3𝑧𝑀 + 𝑐2

𝑤(𝑧𝑇) = 𝑤𝑇 = 𝑐1𝑧𝑇
2 + 𝑐3𝑧𝑇 + 𝑐2

 (2.16) 

where 𝑤𝐵, 𝑤𝑀 and 𝑤𝑇 are displacements at master nodes; 𝑧𝐵, 𝑧𝑀 𝑎𝑛𝑑 𝑧𝑇 are the coordinates of master 

nodes in the z direction. 

The expressions of coefficients identified for each through-the-thickness line are: 
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{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑎1 =

𝑢𝑇 − 𝑢𝐵
𝑧𝑇 − 𝑧𝐵

𝑎2 = −
𝑧𝑇𝑢𝐵 − 𝑧𝐵𝑢𝑇
𝑧𝑇 − 𝑧𝐵

𝑏1 =
𝑣𝑇 − 𝑣𝐵
𝑧𝑇 − 𝑧𝐵

𝑏2 = −
𝑧𝑇𝑣𝐵 − 𝑧𝐵𝑣𝑇
𝑧𝑇 − 𝑧𝐵

𝑐1 =
𝑤𝐵𝑧𝑀 −𝑤𝑀𝑧𝐵 −𝑤𝐵𝑧𝑇 +𝑤𝑇𝑧𝐵 +𝑤𝑀𝑧𝑇 −𝑤𝑇𝑧𝑀

(𝑧𝐵 − 𝑧𝑇)(𝑧𝐵𝑧𝑀 − 𝑧𝐵𝑧𝑇 + 𝑧𝑀𝑧𝑇 − 𝑧𝑀
2 )

𝑐2 = −
𝑤𝐵𝑧𝑀

2 − 𝑤𝑀𝑧𝐵
2 −𝑤𝐵𝑧𝑇

2 +𝑤𝑇𝑧𝐵
2 +𝑤𝑀𝑧𝑇

2 −𝑤𝑇𝑧𝑀
2

(𝑧𝐵 − 𝑧𝑇)(𝑧𝐵𝑧𝑀 − 𝑧𝐵𝑧𝑇 + 𝑧𝑀𝑧𝑇 − 𝑧𝑀
2 )

𝑐3 = −
−𝑤𝑇𝑧𝐵

2𝑧𝑀 +𝑤𝑀𝑧𝐵
2𝑧𝑇 +𝑤𝑇𝑧𝐵𝑧𝑀

2 −𝑤𝑀𝑧𝐵𝑧𝑇
2 −𝑤𝐵𝑧𝑀

2 𝑧𝑇 +𝑤𝐵𝑧𝑀𝑧𝑇
2

(𝑧𝐵 − 𝑧𝑇)(𝑧𝐵𝑧𝑀 − 𝑧𝐵𝑧𝑇 + 𝑧𝑀𝑧𝑇 − 𝑧𝑀
2 )

 (2.17) 

Considering Eq. (2.17) and replacing 𝑧 by 𝑧𝑖 in Eq. (2.7), one obtains equations to be applied at 

slave node i: 

{
 
 
 
 
 

 
 
 
 
 𝑢(𝑧𝑖) = 𝑢𝑖

𝑆 = 𝑧𝑖
𝑢𝑇 − 𝑢𝐵
𝑧𝑇 − 𝑧𝐵

+
𝑧𝐵𝑢𝑇−𝑧𝑇𝑢𝐵
𝑧𝑇 − 𝑧𝐵

𝑣(𝑧𝑖) = 𝑣𝑖
𝑆 = 𝑧𝑖

𝑣𝑇 − 𝑣𝐵
𝑧𝑇 − 𝑧𝐵

+
𝑧𝐵𝑣𝑇−𝑧𝑇𝑣𝐵
𝑧𝑇 − 𝑧𝐵

𝑤(𝑧𝑖) = 𝑤𝑖
𝑆 = 𝑧𝑖

2𝑤𝐵𝑧𝑀 −𝑤𝑀𝑧𝐵 −𝑤𝐵𝑧𝑇 +𝑤𝑇𝑧𝐵 +𝑤𝑀𝑧𝑇 −𝑤𝑇𝑧𝑀
(𝑧𝐵 − 𝑧𝑇)(𝑧𝐵𝑧𝑀 − 𝑧𝐵𝑧𝑇 + 𝑧𝑀𝑧𝑇 − 𝑧𝑀

2 )

−𝑧𝑖
𝑤𝐵𝑧𝑀

2 −𝑤𝑀𝑧𝐵
2 −𝑤𝐵𝑧𝑇

2 +𝑤𝑇𝑧𝐵
2 +𝑤𝑀𝑧𝑇

2 −𝑤𝑇𝑧𝑀
2

(𝑧𝐵 − 𝑧𝑇)(𝑧𝐵𝑧𝑀 − 𝑧𝐵𝑧𝑇 + 𝑧𝑀𝑧𝑇 − 𝑧𝑀
2 )

−
−𝑤𝑇𝑧𝐵

2𝑧𝑀 +𝑤𝑀𝑧𝐵
2𝑧𝑇 +𝑤𝑇𝑧𝐵𝑧𝑀

2 −𝑤𝑀𝑧𝐵𝑧𝑇
2 −𝑤𝐵𝑧𝑀

2 𝑧𝑇 +𝑤𝐵𝑧𝑀𝑧𝑇
2

(𝑧𝐵 − 𝑧𝑇)(𝑧𝐵𝑧𝑀 − 𝑧𝐵𝑧𝑇 + 𝑧𝑀𝑧𝑇 − 𝑧𝑀
2 )

 (2.18) 

The MFOSS contains seven master degrees of freedom per through-the-thickness line. As for the 

FOSS model, Eq. (2.18) describes linear relations between slave and master degrees of freedom. 

2.3.3 HOSS model 

The methodology is now applied to build the HOSS model. This model requires four master nodes 

T, B, M and P, as described in Fig. 2.3. Eq. (2.11) contains four coefficients ( 𝑎1 to 𝑎4) to be determined 

for u, four coefficients ( 𝑏1 to 𝑏4) for v and three coefficients ( 𝑐1 to 𝑐3) for w. To identify these eleven 

coefficients, the following set of eleven equations is used: 
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{
 
 
 
 
 
 

 
 
 
 
 
 
𝑢(𝑧𝐵) = 𝑢𝐵 = 𝑎1𝑧𝐵

3 + 𝑎3𝑧𝐵
2 + 𝑎2𝑧𝐵 + 𝑎4

𝑢(𝑧𝑀) = 𝑢𝑀 = 𝑎1𝑧𝑀
3 + 𝑎3𝑧𝑀

2 + 𝑎2𝑧𝑀 + 𝑎4
𝑢(𝑧𝑃) = 𝑢𝑃 = 𝑎1𝑧𝑃

3 + 𝑎3𝑧𝑃
2 + 𝑎2𝑧𝑃 + 𝑎4

𝑢(𝑧𝑇) = 𝑢𝑇 = 𝑎1𝑧𝑇
3 + 𝑎3𝑧𝑇

2 + 𝑎2𝑧𝑇 + 𝑎4
𝑣(𝑧𝐵) = 𝑣𝐵 = 𝑏1𝑧𝐵

3 + 𝑏3𝑧𝐵
2 + 𝑏2𝑧𝐵 + 𝑏4

𝑣(𝑧𝑀) = 𝑣𝑀 = 𝑏1𝑧𝑀
3 + 𝑏3𝑧𝑀

2 + 𝑏2𝑧𝑀 + 𝑏4
𝑣(𝑧𝑃) = 𝑣𝑃 = 𝑏1𝑧𝑃

3 + 𝑏3𝑧𝑃
2 + 𝑏2𝑧𝑃 + 𝑏4

𝑣(𝑧𝑇) = 𝑣𝑇 = 𝑏1𝑧𝑇
3 + 𝑏3𝑧𝑇

2 + 𝑏2𝑧𝑇 + 𝑏4
𝑤(𝑧𝐵) = 𝑤𝐵 = 𝑐1𝑧𝐵

2 + 𝑐3𝑧𝐵 + 𝑐2
𝑤(𝑧𝑀) = 𝑤𝑀 = 𝑐1𝑧𝑀

2 + 𝑐3𝑧𝑀 + 𝑐2
𝑤(𝑧𝑇) = 𝑤𝑇 = 𝑐1𝑧𝑇

2 + 𝑐3𝑧𝑇 + 𝑐2

 (2.19) 

where 𝑢𝐵, 𝑢𝑀 , 𝑢𝑃 , 𝑢𝑇 , 𝑣𝐵, 𝑣𝑀 , 𝑣𝑃 , 𝑣𝑇 , 𝑤𝐵, 𝑤𝑀  and  𝑤𝑇  are the displacements at master nodes; 

𝑧𝐵, 𝑧𝑀 , 𝑧𝑃 and 𝑧𝑇  are the coordinates of master nodes in the z direction. 

The expressions of coefficients identified for each through-the-thickness line are: 

{
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

𝑎1 = −

(

𝑢𝐵𝑧𝑀𝑧𝑃
2 − 𝑢𝐵𝑧𝑀

2 𝑧𝑃 − 𝑢𝑀𝑧𝐵𝑧𝑃
2 + 𝑢𝑀𝑧𝐵

2𝑧𝑃 + 𝑢𝑃𝑧𝐵𝑧𝑀
2 − 𝑢𝑃𝑧𝐵

2𝑧𝑀 − 𝑢𝐵𝑧𝑀𝑧𝑇
2 + 𝑢𝐵𝑧𝑀

2 𝑧𝑇
+𝑢𝑀𝑧𝐵𝑧𝑇

2 − 𝑢𝑀𝑧𝐵
2𝑧𝑇 − 𝑢𝑇𝑧𝐵𝑧𝑀

2 + 𝑢𝑇𝑧𝐵
2𝑧𝑀 + 𝑢𝐵𝑧𝑃𝑧𝑇

2 − 𝑢𝐵𝑧𝑃
2𝑧𝑇 − 𝑢𝑃𝑧𝐵𝑧𝑇

2 + 𝑢𝑃𝑧𝐵
2𝑧𝑇

+𝑢𝑇𝑧𝐵𝑧𝑃
2 − 𝑢𝑇𝑧𝐵

2𝑧𝑃 − 𝑢𝑀𝑧𝑃𝑧𝑇
2 + 𝑢𝑀𝑧𝑃

2𝑧𝑇 + 𝑢𝑃𝑧𝑀𝑧𝑇
2 − 𝑢𝑃𝑧𝑀

2 𝑧𝑇 − 𝑢𝑇𝑧𝑀𝑧𝑃
2 + 𝑢𝑇𝑧𝑀

2 𝑧𝑃

)

[(𝑧𝑃 − 𝑧𝑇)(𝑧𝑀𝑧𝑃 + 𝑧𝑀𝑧𝑇 − 𝑧𝑃𝑧𝑇 − 𝑧𝑀
2 ) (

𝑧𝐵
2𝑧𝑀 + 𝑧𝐵

2𝑧𝑃 + 𝑧𝐵
2𝑧𝑇 − 𝑧𝐵

3 − 𝑧𝐵𝑧𝑀𝑧𝑃
−𝑧𝐵𝑧𝑀𝑧𝑇 − 𝑧𝐵𝑧𝑃𝑧𝑇 − 𝑧𝑀𝑧𝑃𝑧𝑇

)]

𝑎3 =

(

𝑢𝐵𝑧𝑀𝑧𝑃
3 − 𝑢𝐵𝑧𝑀

3 𝑧𝑃 − 𝑢𝑀𝑧𝐵𝑧𝑃
3 + 𝑢𝑀𝑧𝐵

3𝑧𝑃 + 𝑢𝑃𝑧𝐵𝑧𝑀
3 − 𝑢𝑃𝑧𝐵

3𝑧𝑀 − 𝑢𝐵𝑧𝑀𝑧𝑇
3 + 𝑢𝐵𝑧𝑀

3 𝑧𝑇
+𝑢𝑀𝑧𝐵𝑧𝑇

3 − 𝑢𝑀𝑧𝐵
3𝑧𝑇 − 𝑢𝑇𝑧𝐵𝑧𝑀

3 + 𝑢𝑇𝑧𝐵
3𝑧𝑀 + 𝑢𝐵𝑧𝑃𝑧𝑇

3 − 𝑢𝐵𝑧𝑃
3𝑧𝑇 − 𝑢𝑃𝑧𝐵𝑧𝑇

3 + 𝑢𝑃𝑧𝐵
3𝑧𝑇

+𝑢𝑇𝑧𝐵𝑧𝑃
3 − 𝑢𝑇𝑧𝐵

3𝑧𝑃 − 𝑢𝑀𝑧𝑃𝑧𝑇
3 + 𝑢𝑀𝑧𝑃

3𝑧𝑇 + 𝑢𝑃𝑧𝑀𝑧𝑇
3 − 𝑢𝑃𝑧𝑀

3 𝑧𝑇 − 𝑢𝑇𝑧𝑀𝑧𝑃
3 + 𝑢𝑇𝑧𝑀

3 𝑧𝑃

)

[(𝑧𝑃 − 𝑧𝑇)(𝑧𝑀𝑧𝑃 + 𝑧𝑀𝑧𝑇 − 𝑧𝑃𝑧𝑇 − 𝑧𝑀
2 ) (

𝑧𝐵
2𝑧𝑀 + 𝑧𝐵

2𝑧𝑃 + 𝑧𝐵
2𝑧𝑇 − 𝑧𝐵

3 − 𝑧𝐵𝑧𝑀𝑧𝑃
−𝑧𝐵𝑧𝑀𝑧𝑇 − 𝑧𝐵𝑧𝑃𝑧𝑇 − 𝑧𝑀𝑧𝑃𝑧𝑇

)]

𝑎2 = −

(

𝑢𝐵𝑧𝑀
2 𝑧𝑃

3 − 𝑢𝐵𝑧𝑀
3 𝑧𝑃

2 − 𝑢𝑀𝑧𝐵
2𝑧𝑃

3 + 𝑢𝑀𝑧𝐵
3𝑧𝑃

2 + 𝑢𝑃𝑧𝐵
2𝑧𝑀

3 − 𝑢𝑃𝑧𝐵
3𝑧𝑀

2 − 𝑢𝐵𝑧𝑀
2 𝑧𝑇

3 + 𝑢𝐵𝑧𝑀
3 𝑧𝑇

2

+𝑢𝑀𝑧𝐵
2𝑧𝑇

3 − 𝑢𝑀𝑧𝐵
3𝑧𝑇

2 − 𝑢𝑇𝑧𝐵
2𝑧𝑀

3 + 𝑢𝑇𝑧𝐵
3𝑧𝑀

2 + 𝑢𝐵𝑧𝑃
2𝑧𝑇
3 − 𝑢𝐵𝑧𝑃

3𝑧𝑇
2 − 𝑢𝑃𝑧𝐵

2𝑧𝑇
3 + 𝑢𝑃𝑧𝐵

3𝑧𝑇
2

+𝑢𝑇𝑧𝐵
2𝑧𝑃

3 − 𝑢𝑇𝑧𝐵
3𝑧𝑃

2 − 𝑢𝑀𝑧𝑃
2𝑧𝑇
3 + 𝑢𝑀𝑧𝑃

3𝑧𝑇
2 + 𝑢𝑃𝑧𝑀

2 𝑧𝑇
3 − 𝑢𝑃𝑧𝑀

3 𝑧𝑇
2 − 𝑢𝑇𝑧𝑀

2 𝑧𝑃
3 + 𝑢𝑇𝑧𝑀

3 𝑧𝑃
2

)

[(𝑧𝑃 − 𝑧𝑇)(𝑧𝑀𝑧𝑃 + 𝑧𝑀𝑧𝑇 − 𝑧𝑃𝑧𝑇 − 𝑧𝑀
2 ) (

𝑧𝐵
2𝑧𝑀 + 𝑧𝐵

2𝑧𝑃 + 𝑧𝐵
2𝑧𝑇 − 𝑧𝐵

3 − 𝑧𝐵𝑧𝑀𝑧𝑃
−𝑧𝐵𝑧𝑀𝑧𝑇 − 𝑧𝐵𝑧𝑃𝑧𝑇 − 𝑧𝑀𝑧𝑃𝑧𝑇

)]

𝑎4 =
(

 
 

𝑢𝑇𝑧𝐵
3𝑧𝑀

2 𝑧𝑃 − 𝑢𝑃𝑧𝐵
3𝑧𝑀

2 𝑧𝑇 − 𝑢𝑇𝑧𝐵
3𝑧𝑃

2𝑧𝑀 + 𝑢𝑃𝑧𝐵
3𝑧𝑇

2𝑧𝑀 + 𝑢𝑀𝑧𝐵
3𝑧𝑃

2𝑧𝑇 − 𝑢𝑀𝑧𝐵
3𝑧𝑇

2𝑧𝑃
−𝑢𝑇𝑧𝑀

3 𝑧𝐵
2𝑧𝑃 + 𝑢𝑃𝑧𝑀

3 𝑧𝐵
2𝑧𝑇 + 𝑢𝑇𝑧𝑃

3𝑧𝐵
2𝑧𝑀 − 𝑢𝑃𝑧𝑇

3𝑧𝐵
2𝑧𝑀 − 𝑢𝑀𝑧𝑃

3𝑧𝐵
2𝑧𝑇 + 𝑢𝑀𝑧𝑇

3𝑧𝐵
2𝑧𝑃

+𝑢𝑇𝑧𝑀
3 𝑧𝑃

2𝑧𝐵 − 𝑢𝑃𝑧𝑀
3 𝑧𝑇

2𝑧𝐵 − 𝑢𝑇𝑧𝑃
3𝑧𝑀

2 𝑧𝐵 + 𝑢𝑃𝑧𝑇
3𝑧𝑀

2 𝑧𝐵 + 𝑢𝑀𝑧𝑃
3𝑧𝑇
2𝑧𝐵 − 𝑢𝑀𝑧𝑇

3𝑧𝑃
2𝑧𝐵

−𝑢𝐵𝑧𝑀
3 𝑧𝑃

2𝑧𝑇 + 𝑢𝐵𝑧𝑀
3 𝑧𝑇

2𝑧𝑃 + 𝑢𝐵𝑧𝑃
3𝑧𝑀
2 𝑧𝑇 − 𝑢𝐵𝑧𝑇

3𝑧𝑀
2 𝑧𝑃 − 𝑢𝐵𝑧𝑃

3𝑧𝑇
2𝑧𝑀 + 𝑢𝐵𝑧𝑇

3𝑧𝑃
2𝑧𝑀)

 
 

[(𝑧𝑃 − 𝑧𝑇)(𝑧𝑀𝑧𝑃 + 𝑧𝑀𝑧𝑇 − 𝑧𝑃𝑧𝑇 − 𝑧𝑀
2 ) (

𝑧𝐵
2𝑧𝑀 + 𝑧𝐵

2𝑧𝑃 + 𝑧𝐵
2𝑧𝑇 − 𝑧𝐵

3 − 𝑧𝐵𝑧𝑀𝑧𝑃
−𝑧𝐵𝑧𝑀𝑧𝑇 − 𝑧𝐵𝑧𝑃𝑧𝑇 − 𝑧𝑀𝑧𝑃𝑧𝑇

)]

   (2.20) 
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{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑏1 = −

(

𝑣𝐵𝑧𝑀𝑧𝑃
2 − 𝑣𝐵𝑧𝑀

2 𝑧𝑃 − 𝑣𝑀𝑧𝐵𝑧𝑃
2 + 𝑣𝑀𝑧𝐵

2𝑧𝑃 + 𝑣𝑃𝑧𝐵𝑧𝑀
2 − 𝑣𝑃𝑧𝐵

2𝑧𝑀 − 𝑣𝐵𝑧𝑀𝑧𝑇
2 + 𝑣𝐵𝑧𝑀

2 𝑧𝑇
+𝑣𝑀𝑧𝐵𝑧𝑇

2 − 𝑣𝑀𝑧𝐵
2𝑧𝑇 − 𝑣𝑇𝑧𝐵𝑧𝑀

2 + 𝑣𝑇𝑧𝐵
2𝑧𝑀 + 𝑣𝐵𝑧𝑃𝑧𝑇

2 − 𝑣𝐵𝑧𝑃
2𝑧𝑇 − 𝑣𝑃𝑧𝐵𝑧𝑇

2 + 𝑣𝑃𝑧𝐵
2𝑧𝑇

+𝑣𝑇𝑧𝐵𝑧𝑃
2 − 𝑣𝑇𝑧𝐵

2𝑧𝑃 − 𝑣𝑀𝑧𝑃𝑧𝑇
2 + 𝑣𝑀𝑧𝑃

2𝑧𝑇 + 𝑣𝑃𝑧𝑀𝑧𝑇
2 − 𝑣𝑃𝑧𝑀

2 𝑧𝑇 − 𝑣𝑇𝑧𝑀𝑧𝑃
2 + 𝑣𝑇𝑧𝑀

2 𝑧𝑃

)

[(𝑧𝑃 − 𝑧𝑇)(𝑧𝑀𝑧𝑃 + 𝑧𝑀𝑧𝑇 − 𝑧𝑃𝑧𝑇 − 𝑧𝑀
2 ) (

𝑧𝐵
2𝑧𝑀 + 𝑧𝐵

2𝑧𝑃 + 𝑧𝐵
2𝑧𝑇 − 𝑧𝐵

3 − 𝑧𝐵𝑧𝑀𝑧𝑃
−𝑧𝐵𝑧𝑀𝑧𝑇 − 𝑧𝐵𝑧𝑃𝑧𝑇 − 𝑧𝑀𝑧𝑃𝑧𝑇

)]

𝑏3 =

(

𝑣𝐵𝑧𝑀𝑧𝑃
3 − 𝑣𝐵𝑧𝑀

3 𝑧𝑃 − 𝑣𝑀𝑧𝐵𝑧𝑃
3 + 𝑣𝑀𝑧𝐵

3𝑧𝑃 + 𝑣𝑃𝑧𝐵𝑧𝑀
3 − 𝑣𝑃𝑧𝐵

3𝑧𝑀 − 𝑣𝐵𝑧𝑀𝑧𝑇
3 + 𝑣𝐵𝑧𝑀

3 𝑧𝑇
+𝑣𝑀𝑧𝐵𝑧𝑇

3 − 𝑣𝑀𝑧𝐵
3𝑧𝑇 − 𝑣𝑇𝑧𝐵𝑧𝑀

3 + 𝑣𝑇𝑧𝐵
3𝑧𝑀 + 𝑣𝐵𝑧𝑃𝑧𝑇

3 − 𝑣𝐵𝑧𝑃
3𝑧𝑇 − 𝑣𝑃𝑧𝐵𝑧𝑇

3 + 𝑣𝑃𝑧𝐵
3𝑧𝑇

+𝑣𝑇𝑧𝐵𝑧𝑃
3 − 𝑣𝑇𝑧𝐵

3𝑧𝑃 − 𝑣𝑀𝑧𝑃𝑧𝑇
3 + 𝑣𝑀𝑧𝑃

3𝑧𝑇 + 𝑣𝑃𝑧𝑀𝑧𝑇
3 − 𝑣𝑃𝑧𝑀

3 𝑧𝑇 − 𝑣𝑇𝑧𝑀𝑧𝑃
3 + 𝑣𝑇𝑧𝑀

3 𝑧𝑃

)

[(𝑧𝑃 − 𝑧𝑇)(𝑧𝑀𝑧𝑃 + 𝑧𝑀𝑧𝑇 − 𝑧𝑃𝑧𝑇 − 𝑧𝑀
2 ) (

𝑧𝐵
2𝑧𝑀 + 𝑧𝐵

2𝑧𝑃 + 𝑧𝐵
2𝑧𝑇 − 𝑧𝐵

3 − 𝑧𝐵𝑧𝑀𝑧𝑃
−𝑧𝐵𝑧𝑀𝑧𝑇 − 𝑧𝐵𝑧𝑃𝑧𝑇 − 𝑧𝑀𝑧𝑃𝑧𝑇

)]

𝑏2 = −

(

𝑣𝐵𝑧𝑀
2 𝑧𝑃

3 − 𝑣𝐵𝑧𝑀
3 𝑧𝑃

2 − 𝑣𝑀𝑧𝐵
2𝑧𝑃

3 + 𝑣𝑀𝑧𝐵
3𝑧𝑃

2 + 𝑣𝑃𝑧𝐵
2𝑧𝑀

3 − 𝑣𝑃𝑧𝐵
3𝑧𝑀

2 − 𝑣𝐵𝑧𝑀
2 𝑧𝑇

3 + 𝑣𝐵𝑧𝑀
3 𝑧𝑇

2

+𝑣𝑀𝑧𝐵
2𝑧𝑇

3 − 𝑣𝑀𝑧𝐵
3𝑧𝑇

2 − 𝑣𝑇𝑧𝐵
2𝑧𝑀

3 + 𝑣𝑇𝑧𝐵
3𝑧𝑀

2 + 𝑣𝐵𝑧𝑃
2𝑧𝑇

3 − 𝑣𝐵𝑧𝑃
3𝑧𝑇

2 − 𝑣𝑃𝑧𝐵
2𝑧𝑇

3 + 𝑣𝑃𝑧𝐵
3𝑧𝑇

2

+𝑣𝑇𝑧𝐵
2𝑧𝑃

3 − 𝑣𝑇𝑧𝐵
3𝑧𝑃

2 − 𝑣𝑀𝑧𝑃
2𝑧𝑇

3 + 𝑣𝑀𝑧𝑃
3𝑧𝑇
2 + 𝑣𝑃𝑧𝑀

2 𝑧𝑇
3 − 𝑣𝑃𝑧𝑀

3 𝑧𝑇
2 − 𝑣𝑇𝑧𝑀

2 𝑧𝑃
3 + 𝑣𝑇𝑧𝑀

3 𝑧𝑃
2

)

[(𝑧𝑃 − 𝑧𝑇)(𝑧𝑀𝑧𝑃 + 𝑧𝑀𝑧𝑇 − 𝑧𝑃𝑧𝑇 − 𝑧𝑀
2 ) (

𝑧𝐵
2𝑧𝑀 + 𝑧𝐵

2𝑧𝑃 + 𝑧𝐵
2𝑧𝑇 − 𝑧𝐵

3 − 𝑧𝐵𝑧𝑀𝑧𝑃
−𝑧𝐵𝑧𝑀𝑧𝑇 − 𝑧𝐵𝑧𝑃𝑧𝑇 − 𝑧𝑀𝑧𝑃𝑧𝑇

)]

𝑏4 =
(

 
 

𝑣𝑇𝑧𝐵
3𝑧𝑀

2 𝑧𝑃 − 𝑣𝑃𝑧𝐵
3𝑧𝑀

2 𝑧𝑇 − 𝑣𝑇𝑧𝐵
3𝑧𝑃

2𝑧𝑀 + 𝑣𝑃𝑧𝐵
3𝑧𝑇

2𝑧𝑀 + 𝑣𝑀𝑧𝐵
3𝑧𝑃

2𝑧𝑇 − 𝑣𝑀𝑧𝐵
3𝑧𝑇

2𝑧𝑃
−𝑣𝑇𝑧𝑀

3 𝑧𝐵
2𝑧𝑃 + 𝑣𝑃𝑧𝑀

3 𝑧𝐵
2𝑧𝑇 + 𝑣𝑇𝑧𝑃

3𝑧𝐵
2𝑧𝑀 − 𝑣𝑃𝑧𝑇

3𝑧𝐵
2𝑧𝑀 − 𝑣𝑀𝑧𝑃

3𝑧𝐵
2𝑧𝑇 + 𝑣𝑀𝑧𝑇

3𝑧𝐵
2𝑧𝑃

+𝑣𝑇𝑧𝑀
3 𝑧𝑃

2𝑧𝐵 − 𝑣𝑃𝑧𝑀
3 𝑧𝑇

2𝑧𝐵 − 𝑣𝑇𝑧𝑃
3𝑧𝑀

2 𝑧𝐵 + 𝑣𝑃𝑧𝑇
3𝑧𝑀

2 𝑧𝐵 + 𝑣𝑀𝑧𝑃
3𝑧𝑇
2𝑧𝐵 − 𝑣𝑀𝑧𝑇

3𝑧𝑃
2𝑧𝐵

−𝑣𝐵𝑧𝑀
3 𝑧𝑃

2𝑧𝑇 + 𝑣𝐵𝑧𝑀
3 𝑧𝑇

2𝑧𝑃 + 𝑣𝐵𝑧𝑃
3𝑧𝑀

2 𝑧𝑇 − 𝑣𝐵𝑧𝑇
3𝑧𝑀

2 𝑧𝑃 − 𝑣𝐵𝑧𝑃
3𝑧𝑇
2𝑧𝑀 + 𝑣𝐵𝑧𝑇

3𝑧𝑃
2𝑧𝑀)

 
 

[(𝑧𝑃 − 𝑧𝑇)(𝑧𝑀𝑧𝑃 + 𝑧𝑀𝑧𝑇 − 𝑧𝑃𝑧𝑇 − 𝑧𝑀
2 ) (

𝑧𝐵
2𝑧𝑀 + 𝑧𝐵

2𝑧𝑃 + 𝑧𝐵
2𝑧𝑇 − 𝑧𝐵

3 − 𝑧𝐵𝑧𝑀𝑧𝑃
−𝑧𝐵𝑧𝑀𝑧𝑇 − 𝑧𝐵𝑧𝑃𝑧𝑇 − 𝑧𝑀𝑧𝑃𝑧𝑇

)]

𝑐1 =
𝑤𝐵𝑧𝑀 −𝑤𝑀𝑧𝐵 − 𝑤𝐵𝑧𝑇 +𝑤𝑇𝑧𝐵 +𝑤𝑀𝑧𝑇 −𝑤𝑇𝑧𝑀

(𝑧𝐵 − 𝑧𝑇)(𝑧𝐵𝑧𝑀 − 𝑧𝐵𝑧𝑇 + 𝑧𝑀𝑧𝑇 − 𝑧𝑀
2 )

𝑐1 =
𝑤𝐵𝑧𝑀 −𝑤𝑀𝑧𝐵 − 𝑤𝐵𝑧𝑇 +𝑤𝑇𝑧𝐵 +𝑤𝑀𝑧𝑇 −𝑤𝑇𝑧𝑀

(𝑧𝐵 − 𝑧𝑇)(𝑧𝐵𝑧𝑀 − 𝑧𝐵𝑧𝑇 + 𝑧𝑀𝑧𝑇 − 𝑧𝑀
2 )

𝑐2 = −
−𝑤𝑇𝑧𝐵

2𝑧𝑀 +𝑤𝑀𝑧𝐵
2𝑧𝑇 +𝑤𝑇𝑧𝐵𝑧𝑀

2 −𝑤𝑀𝑧𝐵𝑧𝑇
2 −𝑤𝐵𝑧𝑀

2 𝑧𝑇 +𝑤𝐵𝑧𝑀𝑧𝑇
2

(𝑧𝐵 − 𝑧𝑇)(𝑧𝐵𝑧𝑀 − 𝑧𝐵𝑧𝑇 + 𝑧𝑀𝑧𝑇 − 𝑧𝑀
2 )

 

After replacing 𝑧 by 𝑧𝑖 in Eq. (2.11), one obtains equations to be applied at slave node i: 

{

𝑢(𝑧𝑖) = 𝑢𝑖
𝑆 = 𝑧𝑖

3𝑎1 + 𝑧𝑖
2𝑎3 + 𝑧𝑖𝑎2 + 𝑎4

𝑣(𝑧𝑖) = 𝑣𝑖
𝑆 = 𝑧𝑖

3𝑏1 + 𝑧𝑖
2𝑏3 + 𝑧𝑖𝑏2 + 𝑏4 

𝑤(𝑧𝑖) = 𝑤𝑖
𝑆 = 𝑧𝑖

2𝑐1 + 𝑧𝑖𝑐3 + 𝑐2  

 (2.21) 

with coefficients 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑐1, 𝑐2 and 𝑐3 defined in Eq. (2.19). 

The HOSS model contains 11 master degrees of freedom per through-the-thickness line. Eq. (2.21) 

describes linear relations between slave and master degrees of freedom. 

2.3.4 Remarks 

As shown in Sections 2.3.1 to 2.3.3, the methodology is the same for the three theories considered. 

Only the number of master degrees of freedom per through-the-thickness line is different, namely five, 



21 

 

seven and eleven for the FOSS, MFOSS and HOSS solid-shell models respectively. The number of 

equations applied is equal to the number of slave degrees of freedom which are systematically eliminated. 

Consequently, the size of the system to be solved is given by the number of master degrees of freedom 

and does not depend on the number of nodes through the thickness. The level of mesh refinement in the 

thickness direction has no consequence on the size of the final model. As highlighted above, the relations 

between slave and master degrees of freedom are linear. From a practical point of view, in Abaqus [61], 

the “*EQUATION” keyword is used to consider these linear equations. Of course, in the post-processing 

step, displacements at slave as well as master nodes are available. Then the stresses can be calculated in 

all the finite elements of the mesh. The average value at nodes technique is retained to evaluate the 

stresses. 

The solid-shell approach proposed exploits displacements exclusively, without any other type of 

degree of freedom. This is a hopeful characteristic of our methodology, in particular for higher-order 

theories which initially use displacements, rotations, but also other types of degrees of freedom (see Eq. 

(2.10)). Furthermore, there is no limitation for applying other displacement fields in our approach, which 

means it can be developed for an even higher-order plate or shell theory if necessary.  

2.4 Static examples 

The new solid-shell approach for FOSS, MFOSS and HOSS models is here used for the treatment 

of three examples with thin and thick cases in the context of static analysis: a square plate, a quarter of 

cylinder, and a quarter of hyperboloid. Each static example is presented. A convergence study is made 

for each example. The displacement and the von Mises stress are studied. The finite element results 

obtained with the solid-shell models are evaluated by comparison with a reference solid model. The 

reduction of model size due to the solid-shell approach is discussed. The compatibility of the solid-shell 

approach with another efficient solid element is also proved. 

2.4.1 Clamped square plate under distributed loading 

2.4.1.1 Presentation of the example 

The first example presented in Fig. 2.4 is a square plate, clamped along its four edges and submitted 

to a distributed loading applied on the upper surface. Two values of the l/h ratio are considered: 20 and 

5, leading respectively to a relatively thin plate case and a thick plate one. 
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Fig. 2.4. Clamped square plate under distributed loading – Presentation of the example. 

2.4.1.2 Convergence study 

First a convergence study is presented, to ensure that our approach preserves the convergence quality 

of the solid finite element used. Namely it is useful to compare the convergence characteristics of models 

based on the approach proposed and the intrinsic convergence performance of the solid element used. 

As mentioned before, our approach is compatible with any solid finite element. Here the twenty-node 

hexahedral element C3D20 of Abaqus [61] is used. The evolution of displacement on the bottom face 

in the center of the plate (see point O in Fig. 2.4) is observed, for several mesh refinement levels. A solid 

model with a very fine 10×80×80 mesh is chosen to provide the reference results. It is considered here 

that convergence is achieved if the error is less than 0.5% compared with this reference. Results 

presented in Fig. 2.5 show that for the HOSS model convergence is obtained with 4×24×24 and 4×16×16 

meshes for the thin and thick cases respectively. For both the thin and thick cases, the convergence of 

the HOSS model is similar to the convergence of the solid model. For the thin or thick plate case, the 

FOSS model converges to values which are completely wrong compared to the reference solution. The 

MFOSS model also converges and the result is correct for the thin plate. However, some discrepancy 

appears in the thick case. This is due to the basic kinematic assumptions used in this MFOSS model.  
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Fig. 2.5. Clamped square plate under distributed loading – Convergence study.  

2.4.1.3 Displacements and stresses in the thin plate case 

Displacements and stresses are observed over the whole structure. Fig. 2.6 shows a comparison 

between the results obtained with solid, MFOSS and HOSS models. Due to unsatisfactory convergence 

results, the FOSS model is not considered in this comparison. Anyway, it will be discussed further for 

a better analysis of its deficiencies. The results presented in this section are obtained with the 4×24×24 

mesh, which meets the convergence criterion as highlighted in Section 2.4.1.2. The three models lead 

to quite similar results for vertical displacements as well as for von Mises stresses.  

Fig. 2.7 shows the distribution of vertical displacement and von Mises stress on the lower face along 

the AB line defined in Fig. 2.4. The solid-shell models are compared with the solid model and a shell 

model. Again the 4×24×24 mesh is used for the solid and solid-shell models. For the shell model, a 

1×24×24 mesh, which meets the convergence criterion, is considered. All the models give very similar 

results for displacements and von Mises stress, except the FOSS model which leads to significant errors. 

These errors are due to a spurious σzz
 stress state highlighted and discussed below. 
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Fig. 2.6. Clamped square plate under distributed loading – Displacement and von Mises stress distributions in 

the thin plate case. 

 

 

Fig. 2.7. Clamped square plate under distributed loading – Distribution of vertical displacement (a) and von 

Mises stress (b) along a line on the lower face, in the thin case. 

Fig. 2.8 shows the through-the-thickness distribution of displacements and stresses at point C (see 

Fig. 2.4), the reference results being given by the solid model. First, one can see that the FOSS model 

gives unsatisfactory results. In particular, displacement w (Fig. 2.8b) is wrong and a high level σzz
 stress 
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(Fig. 2.8e) is observed. This spurious σzz
 stress is due to the fact that w is considered as constant through 

the thickness. Consequently, the zz strain which is natural because of the Poisson effect, is prevented. 

In the context of 3D theory of elasticity, this nonphysical assumption considerably disturbs the state of 

stress and in particular, it implies large σzz
 stresses, while this stress should remain very small in this thin 

plate case. The von Mises stress which depends on the different stress components is affected by this 

wrong σzz
 stress. These bad results confirm that this kinematic assumption, although valid and consistent 

in the context of the classical plate theory, is not compatible with the 3D theory of elasticity. This 

phenomenon is usual for solid-shell elements and is known as the Poisson thickness locking. The FOSS 

model also leads to a constant σxz distribution (Fig. 2.8d). This is a well-known result and a limitation of 

the Mindlin-Reissner plate theory. A usual approach is to use integration of equilibrium equations to 

obtain a correct and quadratic distribution of transverse shear stresses.  

Reference displacement v (Fig. 2.8a) is linear through the thickness and one can observe a perfect 

fit between the solid model and the MFOSS and HOSS models. The distribution of w is perfectly 

predicted as well by these solid-shell models. This distribution seems to be quite constant through the 

thickness but a detailed observation shows a slight quadratic tendency. The σxx stress (Fig. 2.8c) is linear 

through the thickness and again very good results are obtained with the MFOSS and HOSS models. The 

classical quadratic distribution of σxz is well reproduced by the HOSS model. Namely, the free-face 

condition σxz=0 is almost met at top and bottom faces. The MFOSS model highlights a quadratic 

tendency, thanks to the quadratic w distribution, but the difference with the reference distribution is 

significant. Moreover, the free-face condition σxz=0 is not met at top and bottom faces. This is not very 

important for thin structures because transverse shear stresses are generally neglected in this case and 

influence of transverse shear effects on displacements is small.  

In summary, the HOSS model gives excellent results for the thin plate case. The MFOSS model is 

also satisfactory but it is not able to correctly reproduce the transverse shear effects. Anyway, these 

effects can be neglected for a thin structure and so this model is quite convenient for thin structures. 

Finally, the FOSS model gives unacceptable results. Therefore, this model is not considered for the rest 

of the study. 
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Fig. 2.8. Clamped square plate under distributed loading – Through-the-thickness displacements and stresses 

at point C, in the thin case. 

2.4.1.4 Displacements and stresses in the thick plate case 

Displacements and stresses are observed over the whole structure. Fig. 2.9 shows a comparison 

between the results obtained with solid, MFOSS and HOSS models. The 4×16×16 mesh, which meets 

the convergence criterion, is used. For this global observation, the solid model and the HOSS model 

highlight similar results. For the MFOSS model, in this very thick plate case, some discrepancy is 

observed on displacement and von Mises stress.  

 

Fig. 2.9. Clamped square plate under distributed loading – Displacement and von Mises stress distribution in 

the thick plate case. 

Fig. 2.10 shows the distribution of vertical displacement and von Mises stress on the lower face 

along the AB line defined in Fig. 2.5. The solid-shell models are compared with the solid model and a 
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shell model. Again the 4×16×16 mesh is used for the solid and solid-shell models. For the shell model, 

a 1×20×20 mesh, which meets the convergence criterion, is considered. For displacement, the HOSS 

model fits very well with the solid one. Some error is obtained with the shell approach and the MFOSS 

model. For von Mises stress, again the HOSS model fits very well with the solid one. The shell model 

and the MFOSS models lead to some errors, in particular in the boundary conditions area. Some 

discrepancy is also observed with the MFOSS model within the plate. This is due to a rough calculation 

of the transverse stresses which are significant in the thick case, this issue is highlighted and discussed 

below. These results confirm that the HOSS model is necessary to correctly predict the transverse shear 

effects and so the mechanical behaviour of a thick plate.  

 

Fig. 2.10. Clamped square plate under distributed loading – Distribution of vertical displacement (a) and von 

Mises stress (b) along a line on the lower face, in the thick case.  

Fig. 2.11 shows the through-the-thickness distribution of displacements and stresses at point C (see 

Fig. 2.4), the reference results being given by the solid model. The MFOSS model has several limitations. 

The quadratic tendency of w (Fig. 2.11b) is well reproduced but the displacement values are not correct, 

this result means that the stiffness of the structure is not well estimated. This is due to the fact that the 

transverse shear stiffness, which depends on the through-the-thickness transverse shear strains and 

stresses, is not precisely calculated. Indeed, the distribution of σxz (Fig. 2.11d) is not correct. The 

reference quadratic distribution of σxz is not well reproduced by the MFOSS model. Namely, as for the 

thin case, the free-face condition σxz=0 is not met at top and bottom faces. And in the thick case with a 
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small l/h ratio, this is a problem because by the contrary of the thin plate case, the transverse shear effects 

are significant. Classically the Mindlin-Reissner plate theory is associated with shear correction factors 

to compensate the limitation due to kinematic assumptions. But in our solid-shell approach, no 

correction factor is used and consequently the MFOSS model suffers from some error concerning the 

transverse shear stiffness of the structure. Of course, this wrong σxz distribution also leads to errors on 

the von Mises stress, as observed in Fig. 2.10. Moreover, this MFOSS model is not able to reproduce 

the slightly nonlinear distribution of v (Fig. 2.11a) and σxx. On the contrary, one can observe a very good 

fit between the solid model and the HOSS model. The quadratic distribution of displacements is 

correctly predicted by this model. The reference stress σxx (Fig. 2.11c) is also slightly nonlinear and the 

HOSS model reproduces this result very well. The reference quadratic distribution of σxz is also well 

reproduced by the HOSS model. Namely, as for the thick case, the free-face condition σxz=0 is almost 

met at top and bottom faces.  

 

Fig. 2.11. Clamped square plate under distributed loading – Through-the-thickness displacements and stresses 

at point C, in the thick case. 

2.4.1.5 Accuracy synthesis of solid-shell models 

Table 2.1 summarizes the errors obtained with the solid-shell models, in the thin and thick plate 

cases. These errors are calculated on the maximal displacement observed at the centre of the plate and 

on the maximum von Mises stress observed in the boundary conditions area. The MFOSS model gives 

good results in the thin plate case. The errors are less than 1% for the displacement and the von Mises 

stress. Anyway, even in this case the HOSS model is better because transverse shear effects are small 

but not completely negligible. Indeed, the l/h ratio is equal to 20, which is not characteristic of a very 

thin plate. In the thick plate case, the HOSS model remains very satisfactory, the errors do not exceed 
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1%, while the MFOSS model leads to some discrepancy. With this model the error is about 5% for the 

displacement and 10% for the von Mises stress.  

In summary, the HOSS model gives excellent results in the thin as well as the thick cases, while the 

MFOSS model is convenient for thin plates only.  

In addition, this study was performed again with another type of solid element, the 8-node solid 

hexahedron element C3D8I [49] of Abaqus, has been used. Similar results have been obtained, 

demonstrating that the methodology proposed can be applied with any efficient solid finite element. 

Table 2.1. Clamped square plate under distributed loading – Accuracy synthesis for maximal displacement 

and maximal von Mises stress. 

Examples Models 
Displacement w  von Mises stress  

Maximum (×10-3mm) Error (%) Maximum (MPa) Error (%) 

Relatively 

thin plate 

Solid  -1093 − 89.33 − 

HOSS  -1093 0.1 88.96 0.4 

MFOSS -1086 0.6 88.41 1.0 

Very thick 

plate 

Solid  -6.895 − 8.515 − 

HOSS  -6.882 0.2 8.424 1.1 

MFOSS -6.562 4.8 7.671 9.9 
 

2.4.2 Quarter of cylinder under pressure 

2.4.2.1 Presentation of the example 

The second example presented in Fig. 2.12 is a quarter of cylinder, clamped along its two ends and 

submitted to a pressure applied on the outer surface. The outside radius is 200 mm and two values:  10 

mm and 50 mm, are considered for the thickness, leading respectively to a thin shell case and a thick 

shell one. The main difference with the first example is that the structure is now curved, allowing natural 

coupling between membrane and bending effects. For this example, in order to apply kinematic relations 

on the solid model to obtain a solid-shell model, local coordinate systems are created for each line of 

nodes through the thickness of the structure. The equations involving the degrees of freedom concerned 

are applied using these local coordinate systems. 
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Fig. 2.12. Quarter of cylinder under pressure – Presentation of the example.  

2.4.2.2 Convergence study 

First a convergence study is presented. The approach already detailed for the first example is 

repeated here. Again, the twenty-node hexahedron element C3D20 from Abaqus [61] is used. The 

evolution of displacement on the inner face in the center of the structure (see point O in Fig. 2.12) is 

observed, for several mesh refinement levels. A solid model with a very fine 10×80×80 mesh is chosen 

to provide the reference results. It is considered that convergence is achieved if the error is less than 0.5% 

compared with this reference model. Results are reported in Tables 2.2 and 2.3 for the HOSS model. 

Convergence is obtained with 4×20×20 mesh and 4×16×16 meshes for the thin and thick cases 

respectively. Moreover, convergence characteristics are similar for the HOSS model and the solid model. 

As for the first example, due to basic assumptions used, for the MFOSS model the convergence criterion 

defined above is never achieved because this model does not exactly converge to the reference solution. 

Indeed, some discrepancy appears concerning the value of displacement, in particular for the thick case. 

Anyway, convergence is observed also for this model. 

Table 2.2. Quarter of cylinder under pressure − Convergence study of displacement 

w at point O for the thin shell case. 

Mesh  Models Displacement w (×10-1mm) Error (%) 

10×80×80 Reference -5.176 − 

1×6×6 
Solid  -5.854 13 

HOSS − − 

2×10×10 
Solid  -5.259 1.6 

HOSS -5.271 1.8 

4×20×20 
Solid  -5.169 0.1 

HOSS -5.182 0.1 
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Table 2.3. Quarter of cylinder under pressure − Convergence study of displacement w at 

point O for the thick shell case. 

Mesh  Models Displacement w (×10-1mm) Error (%) 

10×80×80 Reference -1.691 − 

1×4×4 
Solid  -1.509 10 

HOSS − − 

2×8×8 
Solid  -1.656 2.1 

HOSS -1.652 2.3 

4×16×16 
Solid  -1.689 0.1 

HOSS -1.688 0.2 
 

2.4.2.3 Displacements and stresses in the thin shell case 

Displacements and stresses are observed over the whole structure. Fig. 2.13 shows a comparison 

between the results obtained with solid, MFOSS and HOSS models. The results presented in this section 

are obtained with the 4×20×20 mesh, which meets the convergence criterion as highlighted in Section 

2.4.2.2. The three models lead to quite similar results for displacements as well as for von Mises stresses.  

 

Fig. 2.13. Quarter of cylinder under pressure - Displacement and von Mises stress distributions in the thin 

shell case. 

Fig. 2.14 shows the distribution of vertical displacement in the global coordinate system and von 

Mises stress on the lower face along the AB line defined in Fig. 2.12. The solid-shell models are 
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compared with the solid model and a shell model. Again the 4×20×20 mesh is used for the solid and 

solid-shell models. For the shell model, a 1×20×20 mesh, which meets the convergence criterion, is 

considered. All the models give very similar results for displacements and von Mises stress. 

 

Fig. 2.14. Quarter of cylinder under pressure – Distribution of vertical displacement (a) and von Mises stress 

(b) along a line on the lower face, in the thin case.  

2.4.2.4 Displacements and stresses in the thick shell case 

Displacements and stresses are observed over the whole structure. Fig. 2.15 shows a comparison 

between the results obtained with solid, MFOSS and HOSS models. The results presented in this section 

are obtained with the 4×16×16 mesh, which meets the convergence criterion. The three models lead to 

close results, some minor differences can be observed on displacements as well as on von Mises stresses.  
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Fig. 2.15. Quarter of cylinder under pressure - Displacement and von Mises stress distributions in the thick 

shell case. 

Fig. 2.16 shows the distribution of vertical displacement in the global coordinate system and von 

Mises stress on the lower face along the AB line defined in Fig. 2.12. The solid-shell models are 

compared with the solid model and a shell model. Again the 4×16×16 mesh is used for the solid and 

solid-shell models. For the shell model, a 1×20×20 mesh, which meets the convergence criterion, is 

considered. For displacement, the HOSS model fits very well with the solid one. Some minor error is 

observed with the MFOSS model. For von Mises stress, again the HOSS model fits very well with the 

solid one. The MFOSS model leads to some errors. As explained for the first example, this is due to a 

rough calculation of the transverse shear stresses which are not negligible in the thick case. These results 

confirm that the HOSS model is necessary to correctly predict the transverse shear effects and so the 

mechanical behaviour of a thick shell. Results obtained with the HOSS approach are fully satisfactory. 

It is worth noting that in this thick shell case, the shell model gives bad displacement and von Mises 

stress results. This is due to the fact that the distributed pressure loading is applied on a face of the 

structure. This surface is naturally correct with a solid or solid-shell model, but with the shell approach, 

the mid-surface is used to define loading. For a curved structure, the area of this mid-surface is 

significantly wrong in the thick case, leading to an error on loading. This is also a limitation of the shell 

approach and from this point of view the solid-shell approach is preferable. 
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Fig. 2.16. Quarter of cylinder under pressure – Distribution of vertical displacement (a) and von Mises stress 

(b) along a line on the lower face, in the thick case.  

2.4.2.5 Accuracy synthesis of solid-shell models 

Table 2.4 summarizes the errors obtained with the solid-shell models, in the thin and thick quarter 

of cylinder cases. As for example 1, these errors are calculated on the maximal displacement and on the 

maximum von Mises stress. The results are similar compared with example 1. The MFOSS model gives 

good results in the thin shell case. The errors are less than 0.5% for the displacement and about 2% for 

the von Mises stress. As for example 1 even in this case the HOSS model is better because transverse 

shear effects are small but not completely negligible. In the thick shell case, the HOSS model remains 

very satisfactory, indeed the errors are limited to about 1%, while the MFOSS model leads to some 

discrepancy. Indeed, the error is about 2% for the displacement and 7% for the von Mises stress.  

In summary, from a theoretical point of view, the HOSS model gives excellent results in the thin as 

well as the thick cases, while the MFOSS model is convenient for thin structures only. These results 

show that for thick structures, the higher-order theory introduced by Reissner [21] and Lo et al. [22] is 

more efficient than the first-order theory. Concerning numerical aspects, the approach based on a solid 

model constrained by through-the-thickness kinematic relations to obtain a solid-shell model works well. 

Moreover, the concept of master and slave nodes, involving linear equations between the concerned 

degrees of freedom, is also efficient. 
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In addition, this study was performed again with the 8-node solid hexahedral element C3D8I [62] 

of Abaqus. Similar results have been obtained, demonstrating that the methodology proposed can be 

applied with any efficient solid finite element. 

Table 2.4.  Quarter of cylinder under pressure – Accuracy synthesis of maximal displacement and maximal 

von Mises stress.  

Examples Models 
Displacement w  von Mises stress  

Maximum (×10-1mm) Error (%) Maximum (×102MPa) Error (%) 

Thin 

cylinder 

Solid  -8.805 − 45.34 − 

HOSS  -8.792 0.1 45.23 0.2 

MFOSS -8.773 0.4 44.50 1.9 

Thick 

cylinder 

Solid  -2.415 − 4.315 − 

HOSS  -2.406 0.4 4.261 1.3 

MFOSS -2.369 1.9 4.013 7.0 
 

2.4.3 Quarter of hyperboloid under pressure 

2.4.3.1 Presentation of the example 

The third example presented in Fig. 2.17 is a quarter of hyperboloid, clamped along its two ends 

and submitted to a pressure applied on the outer surface. The outside radius at ends is 200 mm and the 

outside radius in the middle is 150 mm. Two values of thickness: 10mm and 50 mm, lead respectively 

to thin and thick shell cases. This example also allows natural coupling between membrane and bending 

effects but with a structure more complex than a quarter of cylinder. To apply kinematic relations on the 

solid model to obtain a solid-shell model, local coordinate systems are created for each line of nodes 

through the thickness of the structure. The equations involving the degrees of freedom concerned are 

applied using these local coordinate systems. 

 

Fig. 2.17. Quarter of hyperboloid under pressure − Presentation of the example. 



36 

 

2.4.3.2 Convergence study 

A convergence study of mesh is presented. The approach already detailed for the first and second 

examples is repeated here. Again, the twenty-node hexahedron element C3D20 from Abaqus is used. 

The evolution of displacement on the inner surface in the center of the structure (see point O in Fig. 

2.17) is observed, for several mesh refinement levels. A solid model with a very fine 10×80×80 mesh is 

chosen to provide the reference results. It is considered that convergence is achieved if the error is less 

than 0.5% compared with this reference model. Results are reported in Tables 2.5 and 2.6 for the HOSS 

model. Convergence is obtained with 4×16×20 mesh for the thin and thick cases. Moreover, 

convergence characteristics are similar for the HOSS model and the solid model. Due to basic 

assumptions used, for the MFOSS model the convergence criterion defined above is never achieved 

because this model does not exactly converge to the reference solution. Indeed, some discrepancy 

appears concerning the value of displacement, in particular for the thick case. Anyway, convergence is 

observed also for this model. 

Table 2.5. Quarter of hyperboloid under pressure − Convergence study of 

displacement w at point O for the thin shell case. 

Mesh  Models Displacement w (×10-1mm) Error (%) 

8×32×40 Reference -7.458 − 

1×4×5 
Solid  -7.137 4.3 

HOSS − − 

2×8×10 
Solid  -7.384 1.0 

HOSS -7.379 1.1 

4×16×20 
Solid  -7.445 0.2 

HOSS -7.444 0.2 
 

 

Table 2.6. Quarter of hyperboloid under pressure − Convergence study of 

displacement w at point O for the thick shell case. 

Mesh  Models Displacement w (×10-1mm) Error (%) 

8×32×40 Reference -1.235 − 

1×4×5 
Solid  -1.155 6.5 

HOSS − − 

2×8×10 
Solid  -1.219 1.3 

HOSS -1.214 1.7 

4×16×20 
Solid  -1.232 0.2 

HOSS -1.229 0.5 
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2.4.3.3 Displacements and stresses in the thin shell case 

Displacements and stresses are observed over the whole structure. Fig. 2.18 shows a comparison 

between the results obtained with solid, MFOSS and HOSS models. The results presented in this section 

are obtained with the 4×16×20 mesh, which meets the convergence criterion. The three models lead to 

quite similar results for displacements as well as for von Mises stresses.  

 

Fig. 2.18. Quarter of hyperboloid under pressure - Displacement and von Mises stress distributions in the thin 

shell case. 

Fig. 2.19 shows the distribution of vertical displacement in the global coordinate system and von 

Mises stress on the inner surface along the AB line defined in Fig. 2.17. The solid-shell models are 

compared with the solid model and a shell model. The 4×16×20 mesh is used for the solid and solid-

shell models. For the shell model, a 1×16×20 mesh, which meets the convergence criterion, is considered. 

The HOSS model and the reference solid model give very similar results for displacements and von 

Mises stress. The MFOSS model leads to some errors for stresses, that is due to a rough calculation of 

the transverse shear stresses which are not negligible in this relatively thin case. The shell model gives 

different results both for displacements and stresses because it is based on the mid-surface, leading to 

some geometrical modeling differences at the ends. 
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Fig. 2.19. Quarter of hyperboloid under pressure − Distribution of vertical displacement (a) and von Mises stress 

(b) along a line on the lower face, in the thin case. 

2.4.3.4 Displacements and stresses in the thick shell case 

Displacements and stresses are observed over the whole structure. Fig. 2.20 shows a comparison 

between the results obtained with solid, MFOSS and HOSS models. The results presented in this section 

are obtained with the 4×16×20 mesh. The three models lead to close results, some minor differences can 

be observed on displacements as well as on von Mises stresses. 

 

Fig. 2.20. Quarter of hyperboloid under pressure − Displacement and von Mises stress distributions in the thick 

shell case. 
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Fig. 2.21 shows the distribution of vertical displacement in the global coordinate system and von 

Mises stress on the inner surface along the AB line defined in Fig. 2.17. The solid-shell models are 

compared with the solid model and a shell model. Again the 4×16×20 mesh is used for the solid and 

solid-shell models. For the shell model, a 1×16×20 mesh, which meets the convergence criterion, is 

considered. For both the displacement and von Mises stress, the HOSS model fits very well with the 

solid one. Some minor error is observed with the MFOSS model. As explained for the first and second 

examples, this is due to a rough calculation of the transverse shear stresses which are not negligible in 

the thick case. These results confirm that the HOSS model is necessary to correctly predict the transverse 

shear effects and so the mechanical behavior of a thick shell. Results obtained with the HOSS approach 

are fully satisfactory. It is worth noting that in this thick shell case, the shell model gives bad 

displacement and von Mises stress results. This is due to the fact that the distributed pressure loading is 

applied on a face of the structure. This surface is naturally correct with a solid or solid-shell model, but 

with the shell approach, the mid-surface is used to define loading. For a curved structure, the area of this 

mid-surface is significantly wrong in the thick case, leading to an error on loading. This is also a 

limitation of the shell approach and from this point of view the solid-shell approach is preferable. 

Another reason is as described for the thin case, the shell model is based on the mid-surface, leading to 

some geometrical modeling differences at the ends. It is also a limitation of the shell approach. 

 

Fig. 2.21. Quarter of hyperboloid under pressure − Distribution of vertical displacement (a) and von Mises stress 

(b) along a line on the lower face, in the thick case. 

2.4.3.5 Accuracy synthesis of solid-shell models 

Table 2.7 summarizes the errors obtained with the solid-shell models, in the thin and thick shell 

cases. As for examples 1 and 2, these errors are calculated on the maximal displacement and on the 
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maximum von Mises stress. The MFOSS model gives good results in the thin shell case. The errors are 

less than 0.9% for the displacement and about 0.7% for the von Mises stress. The HOSS model is better 

because transverse shear effects are small but not completely negligible. In the thick shell case, the 

HOSS model remains very satisfactory, indeed the errors are limited to about 0.4%, while the MFOSS 

model leads to some discrepancy. Indeed, the error is about 5% for the displacement and 7% for the von 

Mises stress. In summary, from a theoretical point of view, the HOSS model gives excellent results in 

the thin as well as the thick cases, while the MFOSS model is convenient for thin structures only. 

Concerning numerical aspects, the approach based on a solid model constrained by through-the-

thickness kinematic relations to obtain a solid-shell model works well. Moreover, the concept of master 

and slave nodes, involving linear equations between the concerned degrees of freedom, is also efficient. 

Table 2.7. Quarter of hyperboloid under pressure − Accuracy synthesis of maximal displacement and 

maximal von Mises stress.  

Examples Models 
Displacement w  von Mises stress  

Maximum (×10-1mm) Error (%) Maximum (×102MPa) Error (%) 

Thin 

hyperboloid 

Solid  -7.868 − 12.98 − 

HOSS  -7.868 0 12.99 0.1 

MFOSS -7.797 0.9 13.07 0.7 

Thick 

hyperboloid 

Solid  -1.456 − 3.146 − 

HOSS  -1.454 0.1 3.159 0.4 

MFOSS -1.385 4.9 2.940 6.5 
 

2.4.4 Model size 

Compared with the solid model, our solid-shell models lead to a reduction of the number of degrees 

of freedom, which is interesting from a computational time point of view. Fig. 2.22 shows the 

comparison of the number of degrees between the solid approach and the solid-shell ones. The results 

are reported for the plate example, but the same trends can be observed also on other examples. The 

reduction of the number of degrees of freedom increases with the number of elements, which is a hopeful 

characteristic of the solid-shell approach proposed. As mentioned in Section 2.3.4, the number of master 

degrees of freedom remaining after application of equations is independent of the number of nodes 

through the thickness. Consequently, the size of the final solid-shell model does not depend on the 

number of nodes through the thickness. For fine meshes, the gain is quite significant with solid-shell 

models compared with solid models. Of course, the gain obtained with the MFOSS model is bigger 

compared with the HOSS model because it requires a smaller number of master nodes. 
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Fig. 2.22. Influence of the meshing refinement level on the number of degrees of freedom for different 

modeling approaches. 

It’s useful to compare the MFOSS and HOSS models with classical shell element performances in 

terms of model size. Fig. 2.23 shows the comparison of the number of degrees of freedom between 

different modeling approaches. The results are reported for the quarter of cylinder example, but the same 

trends can be observed also on other examples. For solid and solid-shell models, the results are reported 

for a mesh which meets the convergence condition, that is to say 4×20×20 and 4×16×16 in the thin and 

thick cases respectively. In addition, a shell model is also considered, with the same refinement level 

through the mid-surface of the structure, in order to compare the solid-based approaches and the shell 

one. The trends observed are the same for the thin and thick cases. Results confirm that solid-shell 

approach allows quite significant reduction of the problem size, compared with the solid approach. 

Moreover, the number of degrees of freedom is close for the MFOSS model and the shell one. Indeed, 

the difference is limited to 15%. This means that in term of model size, these two approaches are 

comparable. From the model size point of view, the HOSS model is intermediate between the shell 

model and the solid one. 

 

Fig. 2.23. Comparison of the number of degrees of freedom between different modeling approaches.  

2.5 Vibration examples 

The new proposed solid-shell approach with FOSS, MFOSS and HOSS models is now used for the 

treatment of two examples in the context of vibration analysis: a square plate and a cylindrical panel, in 
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both thin and thick cases. A convergence study is made for each example. The frequencies and mode 

shapes obtained with solid-shell and the reference solid models are compared. 

2.5.1 Square plate 

2.5.1.1 Presentation of the example 

The geometries of square plates described in Fig 2.4 are used here in the context of free-free 

vibration analysis, with the density equal to 7.89×10-9 t/mm3. The l/h ratio equals 20 and 5, representing 

the relatively thin and very thick cases respectively.  

2.5.1.2 Convergence study 

The thin and very thick structures are discretized with the twenty-node hexahedral element C3D20 

in Abaqus. For the two square plates, a convergence study is made for the free-free vibration analysis 

of the first eight natural frequencies. For the reference solid, HOSS and MFOSS models, the 4×24×24 

and 4×16×16 meshes meet the convergence requirement for the relatively thin and very thick plates 

respectively. For the shell models, the 1×24×24 and 1×16×16 meshes, which meet the convergence 

criterion, are considered for the relatively thin and very thick plates respectively. 

2.5.1.3 Mode shapes 

For the reference solid, HOSS, and MFOSS models in the relatively thin plate case, the first eight 

mode shapes are shown in Fig. 2.24. It is observed the mode 7 is a torsion mode, modes 8, 9, 12, 13 and 

14 are bending modes, modes 10 and 11 combine bending and torsional effects. All the models give 

very similar results for these modes. 

The first eight mode shapes for the reference solid, HOSS, and MFOSS models in the very thick 

plate case, are shown in Fig. 2.25. It is observed mode 7 is a torsion mode, modes 8 and 9 are bending 

modes, modes 10 and 11 combine the torsion and bending effects, modes 12, 13 and 14 are the 

membrane modes. All the models presented here lead to similar mode shapes. 
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Fig. 2.24. Square plate in free-free vibration – First eight mode shapes obtained with the reference solid, HOSS 

and MFOSS models for the relatively thin case. 

 

Fig. 2.25. Square plate in free-free vibration – First eight mode shapes obtained with the reference solid, HOSS, 

and MFOSS models for the very thick case. 
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For a further comparison of these modes between our solid-shell models and the reference solid 

models, the Modal Assurance Criterion (MAC) is used. The MAC is expressed as: 

𝑀𝐴𝐶(𝜙𝑠, 𝜙𝑠𝑠) =
𝜙𝑠 ⋅ 𝜙𝑠𝑠

‖𝜙𝑠‖ × ‖𝜙𝑠𝑠‖
 (2.22) 

where 𝜙𝑠 and 𝜙𝑠𝑠 are respectively the eigenvectors for the solid model and the solid-shell model. 

The MAC values calculated between the HOSS model and the reference solid model for both the 

relatively thin and very thick square plates are reported in Fig. 2.26. The MAC values are always greater 

than 0.9, it indicates strongly correlated modes. Very similar results have been observed for the MAC 

values between MFOSS model and reference solid model. For both the relatively thin and very thick 

plates, a perfect consistency is observed between the MFOSS, HOSS and the reference solid models. 

 

Fig. 2.26. Square plate in free-free vibration – MAC matrix between the solid-shell and the reference models 

for the relatively thin and very thick plates. 

2.5.1.4 Frequencies 

The first eight angular frequencies of the square plate are obtained for reference solid, HOSS, 

MFOSS, FOSS and shell models in the relatively thin case, and for reference solid, HOSS, MFOSS and 

shell models in the thick case. In order to compare the results of these models with the analytical results 

of Liew et al. [63] based on Mindlin’s plate theory for thick plates, the non-dimensional frequency 

parameter is introduced. This parameter is expressed as 

𝜆 = 𝜔𝑙2√12 × (1 − 𝜈2) 𝜌 𝐸ℎ2⁄  (2.23) 

where ω is the angular frequency, 𝜌 is the material density and other quantities are defined in Fig. 2.4. 

The non-dimensional frequency parameters are reported in Table 2.8 for the relatively thin and thick 

cases. Errors on this parameter compared with the reference solid models are presented in Table 2.9 for 

solid, HOSS, MFOSS, FOSS, shell and Liew’s [63] models. It is observed the FOSS model gives bad 

results for the non-dimensional frequency parameter due to a spurious σzz stress state, as described in 

static examples. The FOSS error is systematically significant and greater than 10% for mode 9. The 
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MFOSS models provide correct results compared with the reference solid models for both the relatively 

thin plate and very thick plate. But for some complex modes, especially for the very thick plate, errors 

more than 1% are observed. Indeed, the transverse shear stiffness is not well evaluated in this case. The 

HOSS models highlight results very close to the reference results, with errors less than 0.1% for both 

the relatively thin plate and the very thick plate. The shell models also give good results. The results 

obtained by Liew [63] for the very thick plate have a good consistency with the reference solid, HOSS 

and shell models. 

Table 2.8. Square plate in free-free vibration – Non-dimensional frequency parameters of different models for 

the relatively thin and very thick plates. 

l/h ratio  Model 
Mode 

7 8 9 10 11 12 13 14 

20 

Solid 13.144 19.426 24.018 33.726 33.726 59.470 59.470 60.732 

HOSS 13.144 19.426 24.018 33.726 33.726 59.470 59.470 60.732 

MFOSS 13.170 19.431 24.033 33.808 33.808 59.587 59.587 60.972 

FOSS 13.242 19.802 27.109 34.768 34.768 63.191 64.820 64.820 

Shell 13.144 19.426 24.018 33.721 33.721 59.480 59.480 60.712 

5 

Solid 11.711 17.434 21.253 27.650 27.650 40.191 42.775 42.775 

HOSS 11.712 17.435 21.256 27.657 27.657 40.191 42.775 42.775 

MFOSS 11.826 17.514 21.402 28.035 28.035 40.198 42.832 42.832 

Shell 11.705 17.413 21.216 27.592 27.592 40.233 42.864 42.864 

Liew et al. [51] 11.701 17.400 21.194 27.574 27.574 − − − 
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Table 2.9. Square plate in free-free vibration – Errors (%) on non-dimensional frequency parameters of 

different models for the relatively thin and very thick plates. 

l/h ratio  Model 
Mode 

7 8 9 10 11 12 13 14 

20 

HOSS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

MFOSS 0.2 0.0 0.1 0.2 0.2 0.2 0.2 0.4 

FOSS 0.7 1.9 12.9 3.1 3.1 6.3 9.0 6.7 

Shell 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5 

HOSS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

MFOSS 1.0 0.5 0.7 1.4 1.4 0.0 0.1 0.1 

Shell 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.2 

Liew et al. [51] 0.1 0.2 0.3 0.3 0.3 − − − 
  

 

2.5.2 Cylindrical panel 

2.5.2.1 Presentation of the example 

The second vibration example presented in Fig. 2.27 is a cylindrical panel clamped along its four 

edges. Density of the material, characteristic of steel, is equal to 7.89×10-9 t/mm3. Two cases, one with 

an outside radius of 400 mm and a thickness of 4 mm, the other with an outside radius of 200 mm and 

a thickness of 50 mm, leading respectively to a thin cylindrical panel (R/t=100) and a thick one (R/t=4). 

The main difference with the plate example is that the structure is now curved. For this example, to 

obtain a solid-shell model, local coordinate systems are created for each line of nodes through the 

thickness of the structure to apply kinematic relations on the solid model. The equations involving the 

degrees of freedom concerned are applied using these local coordinate systems. 
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Fig. 2.27. Clamped cylindrical panel in free vibration – Presentation of the example. 

2.5.2.2 Convergence study 

The thin and thick cylindrical panels are discretized with the twenty-node hexahedral element 

C3D20 in Abaqus. For the two cases, a convergence study of the first eight natural frequencies is made, 

considering clamped boundary conditions along the four edges. For the reference solid, HOSS and 

MFOSS models, the 4×20×20 mesh meets the convergence requirement for both the thin and thick 

panels. For the shell model, the 1×20×20 mesh, which meets the convergence criterion, is considered 

for both the thin and thick cases.  

2.5.2.3 Mode shapes 

For the reference solid, HOSS and MFOSS models in the thin cylindrical panel, the first eight mode 

shapes are shown in Fig. 2.28. All the models give very similar results for these modes. 

 

Fig. 2.28. Clamped cylindrical panel in free vibration – First eight mode shapes with the reference solid, 

HOSS, and MFOSS models for the thin case. 

The first eight mode shapes for the reference solid, HOSS and MFOSS models in the thick 

cylindrical panel are shown in Fig. 2.29. The HOSS and MFOSS models lead to similar model shapes 

with the reference solid model.  
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Fig. 2.29. Clamped cylindrical panel in free vibration – First eight mode shapes with the reference solid, HOSS, 

and MFOSS models for the thick case. 

The MAC values calculated between the HOSS model and the reference solid model for both the 

thin and thick cylindrical panels are reported in Fig. 2.30. The MAC values are always greater than 0.9, 

it indicates strongly correlated modes. Very similar results have been observed for the MAC values 

calculated between MFOSS and reference solid. Perfect consistency is observed between the solid-shell 

models and the reference solid model for both the thin and thick cylindrical panels. 

 

Fig. 2.30. Clamped cylindrical panel in free vibration – MAC matrix between the solid-shell and the reference 

models for the thin and thick panels. 
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2.5.2.4 Frequencies 

The first eight angular frequencies of the cylindrical panel are obtained for reference solid, HOSS, 

MFOSS and shell models in the thin and thick cases. In order to compare the results of these models 

with the analytical results of Li et al. [64], the non-dimensional frequency parameter is calculated. The 

non-dimensional frequency parameters are reported in Table 2.10 for the thin and thick cases. Errors on 

this parameter compared with the reference solid models are reported in Table 2.11 for solid, HOSS, 

MFOSS, shell and Li’s [64] models. The MFOSS models provide correct results compared with the 

reference solid models for the thin cylindrical panel. But in the thick case, moderate errors limited to 

about 3% are observed. Indeed, the transverse shear stiffness is not well evaluated in the thick case. The 

HOSS models show almost the same results as the reference solid ones for both the thin and thick 

cylindrical panels. The shell models provide satisfactory results for the thin cylindrical panel but gives 

an error limited to 3% for the thick one. The analytical solutions obtained by Li are similar to the results 

of the shell model for the thin case. 

Table 2.10. Clamped cylindrical panel in free vibration – Non-dimensional frequency parameters of different 

models for the thin and thick panels. 

R/t ratio Model 
Mode 

1 2 3 4 5 6 7 8 

100 

Solid 141.29 144.67 208.43 218.73 229.41 283.76 286.38 289.09 

HOSS 141.35 144.70 208.49 218.79 229.57 283.89 286.46 289.21 

MFOSS 141.46 144.75 208.59 218.90 229.87 284.21 286.61 289.47 

Shell 140.33 144.42 207.87 218.13 227.55 281.82 285.86 287.85 

Li et al. [52] 140.41 144.44 207.76 217.91 226.34 279.92 285.47 286.96 

4 

Solid 42.72 52.99 54.30 67.49 69.63 70.87 86.76 88.52 

HOSS 42.77 53.05 54.41 67.61 69.65 70.95 86.91 88.60 

MFOSS 43.10 53.73 55.74 69.13 69.72 72.30 88.96 89.04 

Shell 42.10 52.44 52.89 65.87 69.35 70.26 84.84 89.28 
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Table 2.11. Clamped cylindrical panel in free vibration – Errors (%) on non-dimensional frequency 

parameters of different models for the thin and thick panels. 

R/t ratio Model 
Mode 

1 2 3 4 5 6 7 8 

100 

HOSS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

MFOSS 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 

Shell 0.7 0.2 0.3 0.3 0.8 0.7 0.2 0.4 

Li et al. [52] 0.6 0.2 0.3 0.4 1.3 1.4 0.3 0.7 

4 

HOSS 0.1 0.1 0.2 0.2 0.0 0.1 0.2 0.1 

MFOSS 0.9 1.4 2.7 2.4 0.1 2.0 2.5 0.6 

Shell 1.5 1.0 2.6 2.4 0.4 0.9 2.2 0.9 
 

2.6 Conclusion 

A new and specific solid-shell approach dedicated to thin to very thick structures has been presented. 

Plate or shell displacement fields are directly applied on a solid finite element model which contains 

several elements through the thickness. Three theories based on kinematic assumptions have been 

considered. The classical first-order Mindlin-Reissner theory, a modified first-order theory and a higher-

order theory lead to the FOSS, the MFOSS and the HOSS models respectively. Kinematic relations are 

imposed at nodes to meet through-the-thickness plate or shell displacement fields. From a numerical 

point of view, linear equations are applied on the assembled finite element model. The methodology 

relies on the slave and master nodes technique. Slave nodes are eliminated, leading to a reduction of the 

model size. Consequently, the number of degrees of freedom eliminated corresponds exactly to the 

number of equations applied. Three static examples have been presented: a clamped square plate under 

distributed loading, a quarter of cylinder under pressure and a quarter of hyperboloid under pressure. 

For the thin and thick cases, displacements and von Mises stresses have been observed. The FOSS model 

suffers from a Poisson thickness locking phenomenon due to an inconsistency between the 3D theory 

of elasticity and the constant through-the-thickness assumption for displacement w. Consequently, this 

FOSS model leads to unacceptable results. The MFOSS model is satisfactory for thin structures and 

leads to moderate errors in the thick case. The HOSS model gives excellent results in the thin as well as 

the thick cases, by comparison with the solid approach. These results show that for thick structures, the 

higher-order theory introduced by Reissner [21] and Lo et al. [22] leads to a significant gain compared 

to the first-order theory. Two vibration examples have also been presented. The frequencies obtained by 

solid, HOSS, MFOSS, FOSS and shell models under different boundary conditions lead to conclusions 

similar to the static case. The FOSS model leads to bad results. The MFOSS model works well for thin 

structures but gives less precise results in the thick case, especially for complex modes. The HOSS 
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model gives excellent frequencies in both thin and thick cases, compared with the solid approach. For 

the modal shapes, all the models give a good consistency. The approach presented is also efficient from 

a model size point of view. For the MFOSS model, it is comparable with that induced by the use of shell 

elements. The model size of the HOSS model is intermediate between the shell model and the solid one. 

The perspectives of further applications of this approach are numerous. The results presented have 

been obtained with a twenty-node solid element but other solid finite elements may be exploited. More 

complex as well as industrial examples will be treated. The approach will be extended to multilayered 

composite structures. In this study, for a given finite element model, a choice has been made between 

first-order or higher-order theory. The application of this methodology is possible with different theories 

in the same model, in the context of an adaptive modeling approach in which different theories may be 

required depending on the area concerned. In this chapter, three theories have been considered but the 

methodology is compatible with any other theory. In particular, it can be exploited to test new higher-

order plate and shell theories, avoiding the development of specific new finite elements which may lead 

to numerous numerical problems.  
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Chapter 3 

A new solid-beam approach 

In the context of adaptive modeling methodology, a new solid-beam approach dedicated to thin 

to very thick structures is presented. An original aspect is that beam displacement fields are directly 

applied on a solid finite element model which contains several elements within the cross-section. 

Moreover, any beam theory based on kinematic assumptions can be used, three theories for a beam 

in plane and two theories for a beam in space have been considered. 

 

3.1 Introduction  

A lot of natural or industrial structures have two dimensions small compared to the third one. These 

structures are called beams. The first beam theory was developed during the 18th century and is known 

as the Euler-Bernoulli beam theory. The main assumption is that plane sections normal to the 

undeformed neutral axis remain plane and normal to the deformed neutral axis. Many references 

describe this theory, see for example [65]. This theory, which does not consider transverse shear effects, 

is dedicated to thin beams. At the beginning of the 20th century, Timoshenko [66,67] proposed a more 

general beam theory which considers transverse shear effects as well as rotatory inertia. Sections normal 

to the undeformed neutral axis remain plane but not necessarily normal to the deformed neutral axis. 

This theory can be applied to thin and thick beams. The main shortcoming of this theory is that the 

displacement field leads to a constant transverse shear distribution throughout the cross-section, whereas 

it is rather quadratic. Timoshenko introduced the so-called transverse shear correction coefficient. Then 

a lot of research works concerned correction coefficients. Several papers have been specifically 

dedicated to this issue (Cowper [68], Jensen [69] and Hutchinson [70]).   

Many higher-order beam theories were developed to better describe the deformation of beams. In 

1975, Essenburg [71] enriched the displacement field with a quadratic transverse displacement 

assumption, leading to a theory which considers transverse shear and normal strain effects. Stephen and 

Levinson [72] proposed a second-order beam theory which considers transverse shear stresses, 

transverse direct stresses and rotatory inertia. It contains two coefficients depending on the cross-section 

shape. Levinson [73] proposed a higher-order beam theory for rectangular sections. The assumption that 

cross-sections normal to the undeformed neutral axis remain plane after deformation is abandoned. 

Indeed, a cubic distribution of axial displacement allows warping of the cross-sections. In this theory no 

shear coefficient is necessary. Rehfield and Murthy [74] proposed a refined beam theory accounting for 
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transverse shear and normal effects. In its initial version, the displacement field is order 5 for the axial 

displacement and order 4 for the transverse displacement. Rehfield and Murthy show that an axial 

displacement with order 3 and a transverse displacement of order 2 is quite satisfactory and gives results 

very close to the exact 3D elasticity solutions. Extension to beams in space requires the consideration 

of other effects. Bending in the second plane can be treated like bending in the first plane. However, 

torsion justifies specific developments. Initially de Saint-Venant studied this phenomenon leading to the 

Saint-Venant’s uniform torsion theory [75]. Vlasov [76] introduced the non-uniform warping 

deformation and this theory is suitable for thin-walled open cross-sections. Benscoter [77] proposed a 

more general theory which is valid for thin-walled open and also for closed cross-sections. These 

theories were assessed namely by Shakourzadeh et al. [78], for different types of cross-sections. Other 

3D beam approaches require cross-section analysis to determine sectional modes to enrich the 

displacement fields. The so-called Generalized Beam Theory (GBT), proposed by Schardt [79] and 

namely developed by Habtemariam et al. [80], exploits predetermined cross-sectional deformation 

modes for the description of warping. The identification of these modes may be obtained by a 2D finite 

element analysis of the cross-section (El Fatmi [81], Naccache et El Fatmi [82]). In this approach, modes 

are extracted from the computation of the so-called 3D Saint-Venant’s problem. Solving the Saint-

Venant problem led to other beam theories (Ladevèze and Simmonds [83], Romano et al. [84], Faghidian 

[85]). Complementary information about beam theories can be found in the books of Goodier and 

Timoshenko [86] and Carrera et al. [87].  Other variants of beam theories were proposed, in particular 

for multilayered composite structures and sandwich ones. The scope of this paper is limited to 

homogeneous structures, so multilayered composite structures which have led to a lot of research are 

not considered in this bibliography study.  

The analytical resolution of examples treated with these theories is limited to some academic 

examples. Consequently, finite element method is widely used for the treatment of beam applications. 

For these finite elements, the most popular approach requires a discretization of the mid-axis and the 

degrees of freedom are displacements and rotations at nodes. A lot of formulations have been developed 

and assessed, to improve the performances of beam finite elements. Most of the formulations concern 

the Euler-Bernoulli and Timoshenko first-order beam theories. Finite elements based on Timoshenko 

theory or higher-order theories lead to several numerical problems. The most problematic one is locking, 

in particular transverse shear locking, which leads to very bad results when the structure is thin. Another 

numerical problem, linked to the techniques used for solving the locking phenomenon, is rank deficiency 

which may cause spurious zero-energy modes. Several techniques were proposed to alleviate these 

problems. The same numerical problems exist in plate and shell finite elements and many research works 

were developed for this type of elements. For further information, the reader can refer to the review 

paper of Cen and Shang [30] which describes the state of the art concerning Reissner-Mindlin plate 

elements. The methods and techniques proposed to improve plate and shell elements have also been 

tested and adapted for beam elements. The most popular ones are reduced or selective numerical 
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integration (Prathap and Bashyam [88], Reddy [89], Bouclier el al. [90], Adam et al. [91]), assumed 

natural strain (ANS) method and its variants (Bouclier el al. [90]), mixed approach (Addessi et al. [92]). 

Yunhua [93] and Reddy [89] presented the field consistence approach to prevent membrane locking as 

well as transverse shear locking, leading to efficient elements. Some beam elements have the 

superconvergence character and provide exact displacement and forces, using only one element per 

structural member (Shakourzadeh et al. [78], Reddy [89]). 

Several developments commented hereafter are based on a continuum theory approach but lead to 

beam elements which finally contain displacements and rotations, that is to say classical beam degrees 

of freedom. Their geometry is defined by the mid-axis, just like a classical beam element. In some cases, 

additional degrees of freedom are considered for representing warping of the cross-section. Lee and Kim 

[95] proposed the discretization of the cross-section of a beam to consider a refined warping effect. 

Degrees of freedom are displacements and translations, as well as numerous additional degrees of 

freedom for warping. Zivkovic [96] developed a beam superelement which contains 3D continuum 

theory for the description of the deformation of the cross-section. Curiel Sosa et al. [97] developed a 

continuum-based beam element which is an extension of a formulation proposed by Belytschko et al. 

[98], in the framework of explicit-FEM. This element uses the concept of master and slave nodes to 

impose beam theory kinematic assumptions. Yoon et al. [99,100] proposed a continuum-based element 

built from an assemblage of solid elements. Again, beam theory assumptions are applied at cross-

sectional nodes. 

Another possibility is to exploit only the solid geometry, in this case a mid-axis geometry is not 

required, leading to the so-called solid-beam element. This approach has several advantages. First solid 

and solid-beam elements can be used in the same model, without difficulty. On the contrary, using 

classical beam and solid elements in the same model requires the development of specific solid-to-beam 

techniques to correctly connect beam and solid elements (Ziyaeifar and Noguchi [94]). A second 

advantage is that there is no need to make and exploit a mid-axis mesh, which may lead to severe 

difficulties and some errors for complex applications. Moreover, in the solid-beam approach, all terms 

of the strain and stress tensors can be considered and a three-dimensional constitutive law can be used, 

even if this issue may lead to some difficulties known as the thickness locking phenomenon mentioned 

in this paper. Finally loading can be naturally applied on the top or bottom faces of the structure.  On 

the contrary of elements described above, a solid-beam element looks like a solid element from a 

geometry point of view. Moreover, degrees of freedom are only displacements. Inspired by solid-shell 

elements, Frischkorn and Reese [11], who introduced the “solid-beam” expression in 2013, proposed an 

eight-node solid-beam element with only displacement degrees of freedom. The formulation is derived 

from the solid-shell formulation of Schwarze and Reese [101]. To prevent locking problems, assumed 

natural strain and enhanced assumed strain methods embedded in a reduced integration technique, are 

applied. For several linear or nonlinear examples, good results are obtained by using only one element 
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within the cross-section. Frischkorn and Reese [102] applied this solid-beam element for the analysis of 

Nitinol stents.  

In this chapter, a new solid-beam approach, based on applications of first-order or higher-order beam 

equations to standard solid finite element models, is presented. Our approach aims to reduce the number 

of degrees of freedom of the solid mesh by imposing displacement fields of beam theories. The chapter 

is organized as follows. In Section 3.2, the basic ideas of the methodology proposed, as well as the first-

order and higher-order theories of interest, are recalled. In Section 3.3, the approach relying on master 

and slave nodes concept is described. In Section 3.4, two static examples, namely a straight beam and a 

curved beam, in the thin and thick cases, are treated. In Section 3.5, two free-free vibration examples 

with the same structures as the static examples are treated. Moreover, a comparison with solid and beam 

models in terms of model size is presented. Some conclusions and perspectives are drawn in Section 3.6. 

3.2 Presentation of a new solid-beam approach – theoretical aspects 

3.2.1 Basic ideas 

The new solid-beam approach is developed in the context of a general adaptive modeling 

methodology using solid elements only, for any type of structure. As stated above, it is often justified to 

apply solid theory in some areas affected by local effects, but beam or shell theory is suitable on the rest 

of the structure. The use of different types of elements in the same model leads to meshing difficulties 

and mechanical incompatibilities of the displacement field at the interfaces between beam, shell and 

solid areas. Namely, beam and shell elements contain displacements and rotations but solid elements 

contain only displacements. Specific numerical treatment is necessary at the interfaces to improve 

compatibility between the different meshing areas. This approach involves theoretical problems in all 

cases as well as practical difficulties for complex structures. Our adaptive modeling method uses only 

solid elements and uniform meshes over the structure. There is no specific treatment in solid areas, and 

beam or shell displacement fields are applied in the solid-beam or solid-shell areas respectively, by using 

a specific approach.  

In this chapter, the formulation associated with the solid-beam areas is presented and assessed. 

Classically, to develop beam finite element models, first equations of the 3D theory of elasticity are 

modified to give new beam theory equations. Then, based on these equations, a beam finite element is 

developed, leading to a 1D mesh. The contrary is proposed here. The structure is first modeled with 

solid finite elements, then equations throughout the cross-section are applied directly on the solid model 

to modify the system of algebraic equations and obtain the beam numerical solution. The main 

characteristics of the new solid-beam approach are described below. 

− The solid-beam model must give results very close to the reference results given by the 

solid model. 



57 

 

− Only solid elements without severe locking phenomena are used. In this chapter, an existing 

hexahedral element with twenty nodes is exploited and an eight-node hexahedral element 

is also mentioned. Moreover, it is possible to consider a new solid element formulation. 

− The 3D constitutive law is used. It means all stresses and strains are considered in the strain 

energy. There is no modification of this constitutive law, consequently no use of transverse 

shear correction coefficients classically associated with first-order beam theories. 

− First-order and higher-order beam displacement fields are considered. The beam 

displacement fields are directly applied to the solid finite element model which has several 

elements throughout the cross-section. 

− From a numerical point of view, kinematic relations between the degrees of freedom of 

nodes throughout the cross-section, are applied. These degrees of freedom are 

displacements exclusively because solid elements are used. For this purpose, slave and 

master nodes are introduced and only master nodes are kept in the model after the 

application of equations. 

− This process leads to a reduction of the model size and consequently of the computational 

cost, compared to a reference solid model. 

3.2.2 Displacement fields for a beam in plane 

3.2.2.1 Classical first-order displacement field 

In this chapter totally five displacement fields are considered. The first one is given by the classical 

Timoshenko beam theory. It considers membrane and bending effects as well as transverse shear ones. 

It is widely used in beam finite element formulations. This 2D displacement field is defined by: 

{

𝑢(𝑦, 𝑧) = 𝑢0 + 𝑧𝜑𝑦
𝑣(𝑦, 𝑧) = 0

𝑤(𝑦, 𝑧) = 𝑤0

 (3.1) 

where 𝑢0 and 𝑤0 are the displacements of a node on the mid-axis, 𝜑y is the rotation around 𝑦 axis. 

This displacement field uses displacements as well as rotations. In our approach, only displacements 

at nodes are used. It is relevant and well suited to rewrite the displacement field of Eq. (3.1) in the simple 

following form: 

{

𝑢(𝑦, 𝑧) = 𝑧𝑎1 + 𝑎2
𝑣(𝑦, 𝑧) = 0

𝑤(𝑦, 𝑧) = 𝑐1

 (3.2) 

where 𝑎1, 𝑎2 and 𝑐1 are coefficients to be determined. 

As will be shown and justified in Section 3.4.1.3, this displacement field does not lead to good 

results, in the context of our approach. 
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3.2.2.2 Modified first-order displacement field 

To assess a relevant modification of the classical Timoshenko beam theory, it is helpful to observe 

the displacements throughout the cross-section of a moderately thin (l/h=20) square-section beam 

modeled with solid elements. For the bending case, the beam is clamped at its two ends and submitted 

to a uniform pressure on the top surface. For the membrane case, the beam is clamped at one end and 

subjected to a distributed traction loading at the opposite end. Fig. 3.1 shows the distribution of 

displacements through the thickness. For the bending case, the displacements u is linear, which fits well 

with the classical first-order theory. The displacement w is almost constant with z but with a slight 

quadratic contribution, while the classical first-order beam theory considers it as constant through the 

thickness. For the membrane case, the displacements u fits well with the classical first-order theory, 

showing a constant distribution. But the displacement component w is linear, which is different from the 

zero through-the-thickness assumption of the classical first-order beam theory. In summary, the classical 

first-order beam theory should be modified to be completely consistent with solid theory. The 

displacement w is required to be enriched so linear and quadratic terms are added. This does not mean 

that the classical first-order beam theory is inconsistent. Indeed, the assumption of constant displacement 

w in this theory has no consequence on the results due to the fact that the effect of the transverse strain 

𝜀𝑧𝑧 and the transverse stress 𝜎𝑧𝑧 are neglected. One may say that the classical first-order beam theory is 

self-consistent but cannot reproduce all the effects of the 3D theory of elasticity. 

 

Fig. 3.1. Thin beam under bending or membrane loading – Distribution of through-the-thickness 

displacements. 

The consistency between linear distribution for u and quadratic distribution for w can be 

demonstrated. First, for a given cross-section, considering both membrane and bending effects in plane 

x-z, linear through-the-thickness distributions is assumed for u:  

𝑢(𝑦, 𝑧) = 𝑧𝑎1 + 𝑎2 (3.3) 
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in which 𝑎1 and 𝑎2 are coefficients to be determined for each cross-section. So the 𝜀𝑥𝑥 strain is linear 

with respect to z: 

𝜀𝑥𝑥 = 𝑢,𝑥 = 𝑧𝑎3 + 𝑎4 (3.4) 

where 𝑎3 and 𝑎4 are coefficients to be determined for each cross-section.  

For isotropic material, the 3D solid stress-strain relationship is: 

{
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 (3.5) 

For 2D beam structures, the 𝜎𝑦𝑦 and 𝜎𝑧𝑧 stresses are small and can be neglected, leading to the 

following relations: 

𝜎𝑥𝑥 = 𝐸𝜀𝑥𝑥 (3.6) 

𝜀𝑦𝑦 = 𝑣,𝑦 = −
𝜈

𝐸
𝜎𝑥𝑥 = −𝜈𝜀𝑥𝑥 (3.7) 

𝜀𝑧𝑧 = 𝑤,𝑧 = −
𝜈

𝐸
𝜎𝑥𝑥 = −𝜈𝜀𝑥𝑥 (3.8) 

Eqs. (3.7) and (3.8) show that 𝜀𝑦𝑦 and 𝜀𝑧𝑧 are due to the Poisson effect and because 𝜀𝑥𝑥 is linear 

with respect to z, 𝜀𝑦𝑦 and 𝜀𝑧𝑧 must also be linear through the thickness. By integration of Eq. (3.7), one 

highlights the expression of v: 

𝑣(𝑦, 𝑧) = 𝑦𝑧𝑏1 + 𝑦𝑏2 + 𝑏3 + 𝑓1(𝑧)  (3.9) 

where b1 to b3 are coefficients and 𝑓1(𝑧) is a function to be determined for each cross-section. The 

coefficient 𝑏3 represents a global displacement of a cross-section in the y direction. This displacement 

is zero for a beam in a plane, so hereafter 𝑏3 = 0 is considered. 

In the same way, by integration of Eq. (3.8), one highlights the expression of w: 

𝑤(𝑦, 𝑧) = 𝑧2𝑐1 + 𝑧𝑐2 + 𝑐3 + 𝑓2(𝑦) (3.10) 

where c1 to c3 are coefficients and 𝑓2(𝑦) a function to be determined for each cross-section. 

Taking into account the expressions of v and w given in Eqs. (3.9) and (3.10), the 𝛾𝑦𝑧  strain is 

defined by: 

𝛾𝑦𝑧 = 𝑣,𝑧 +𝑤,𝑦  (3.11) 

with 

𝑣,𝑧 = 𝑦𝑏1 + 𝑓1(𝑧),𝑧 (3.12) 

and 

𝑤,𝑦 = 𝑓2(𝑦),𝑦 (3.13) 

So the 𝛾𝑦𝑧 strain is at least linear with respect to y and at least constant in the z direction. In order to 

have consistent contributions of the two terms 𝑣,𝑧 and 𝑤,𝑦, they must both have a linear variation in the 
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y direction. The choice to meet this condition is such that 𝑓1(𝑧) = 0 and 𝑓2(𝑦) is quadratic with respect 

to y.  

Finally the modified first-order displacement field is: 

{

𝑢(𝑦, 𝑧) = 𝑧𝑎1 + 𝑎2
𝑣(𝑦, 𝑧) = 𝑦𝑧𝑏1 + 𝑦𝑏2
𝑤(𝑦, 𝑧) = 𝑧2𝑐1 + 𝑦

2𝑐4 + 𝑧𝑐2 + 𝑐3

 (3.14) 

where 𝑎1 to 𝑎2, 𝑏1 to 𝑏2, 𝑐1 to 𝑐4 are coefficients to be determined. 

To verify the relevancy of this displacement field, the deformation of the cross-section of a beam under 

bending or membrane loading, studied with a solid model, has been observed (see Fig. 3.2). The 

displacement field given in Eq. (3.14) is consistent with the results observed. In particular, in the bending 

case, the quadratic contribution of w with respect to y is highlighted. This displacement field allows the 

warping of each cross-section. As our best knowledge, this modified first-order displacement field has 

not been proposed in the literature. However, Hutchinson [70] proposed a similar displacement field 

without consideration of the membrane effect. 

 

 

Fig. 3.2. Beam under bending or membrane loading – Deformation of a cross-section. 

3.2.2.3 Higher-order displacement field 

The example presented above is now considered for a thick beam (l/h=5). The through-the-thickness 

distribution of displacements is presented in Fig. 3.3. 

For the bending case, the displacements u seems to have a cubic variation, while displacement w is 

again almost quadratic. The cubic distribution corresponds to the displacement u introduced by Levinson 

[72]. 

𝑢(𝑦, 𝑧) = 𝑧3𝜙𝑥 + 𝑧𝜓𝑥 (3.15) 

where 𝜙𝑥 is the warping function and 𝜓𝑥 represents the rotation of a cross-section of the beam. 
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Fig. 3.3. Thick beam under bending or membrane loading – Distribution of through-the-thickness 

displacements. 

This cubic distribution is consistent with results presented in Fig. 3.3. Moreover, it is a relevant 

choice to obtain a good approximation of transverse shear stresses through the thickness. Indeed, for a 

2D beam, the distribution of 𝜎𝑥𝑧 transverse shear stress is almost quadratic. This 𝜎𝑥𝑧 stress is given by: 

𝜎𝑥𝑧 = 𝐺(𝑢,𝑧 +𝑤,𝑥) (3.16) 

First-order beam theories which use linear variation of u and constant variation of w through the 

thickness are not able to reproduce correctly transverse shear effects. Namely these assumptions lead to 

a constant distribution of 𝜎𝑥𝑧 through the thickness, which is not correct. This is the reason why, from 

the one hand generally integration of equilibrium equations is used for calculating transverse shear 

stresses, and from the other hand transverse shear correction coefficient is required for the assessment 

of transverse shear stiffness [68, 69, 70, 71]. If 𝑢 is cubic and w is quadratic with respect to z, both terms 

𝑢,𝑧 and 𝑤,𝑥 can be quadratic with respect to z, leading to a consistent and precise distribution of the 𝜎𝑥𝑧 

stress, without any correction. This point is highlighted in the examples section. 

Refined beam theories, namely that proposed by Levinson [72], uses the classical variables 𝜓x but 

also another variable 𝜙x which is difficult to be interpreted and managed, for instance to define loading 

and boundary conditions. In the approach proposed, this difficulty is prevented because, as highlighted 

in Section 3.3, only displacements at nodes are exploited, without any other variable. For bending case, 

the component u is directly inspired by the Levinson displacement field. For the general case with 

membrane and bending effects a constant contribution is added for u while v and w are the same as for 

the modified first-order theory. The displacement field of the proposed refined beam theory, involving 

nine terms, is written as: 

{

𝑢(𝑦, 𝑧) = 𝑧3𝑎1 + 𝑧𝑎2 + 𝑎3
𝑣(𝑦, 𝑧) = 𝑦𝑧𝑏1 + 𝑦𝑏2
𝑤(𝑦, 𝑧) = 𝑧2𝑐1 + 𝑦

2𝑐4 + 𝑧𝑐2 + 𝑐3

 (3.17) 
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where 𝑎1to 𝑎3, 𝑏1 to 𝑏2, 𝑐1 to 𝑐4 are coefficients to be determined. 

This displacement field allows the warping of each cross-section. As our best knowledge, this 

higher-order displacement field has not been proposed in the literature. Anyway the cubic variation of 

𝑢 had already been proposed, namely by Levinson.  

3.2.3 Displacement fields for a beam in space 

Two displacement fields including torsion effects are proposed for a square or rectangular cross-

section beam in space. 

3.2.3.1 Torsion for square or rectangular cross-section beam 

To obtain an appropriate displacement field for adequately representing a spatial beam, a torsion 

state, especially the cross-section deformation, is studied. A spatial beam modeled with solid elements 

in Abaqus is submitted to a torque. Two different cross-sections: square (a=b) and rectangular (a/b=2) 

are considered. The warping of the cross-sections is highlighted in Fig. 3.4. A complex and 

centrosymmetric deformation for both the square and rectangular cross-sections is observed. This means 

a linear approximation of displacement u is not able to reproduce the warping phenomenon. Thus, the 

curve fitting toolbox in Matlab [103] is used to fit these cross-section deformations by polynomials. The 

interpolation, smoothing splines and localized regression techniques are used for this fitting process. In 

terms of the contribution to displacement u, the terms 𝑦𝑧3 and 𝑧𝑦3 are found useful for a square cross-

section and the terms 𝑦𝑧3, 𝑧𝑦3 and yz are important for a rectangular cross-section.  

 

Fig. 3.4. The cross-section deformations of a spatial beam structure under pure torsion.  

Fig. 3.5 shows the distribution of displacements u and v through the thickness for both the square 

and rectangular cross-sections. The displacement components v and w are the same in a spatial beam. It 

is observed at least a cubic relation with respect to z for displacement u due to the warping effect, and a 

linear relation with respect to z for displacement v and so displacement w. The three terms (𝑦𝑧3, 𝑧𝑦3 

and 𝑦𝑧) of displacement u in Eq. (3.18) are consistent with Fig. 3.5, which means they play a significant 

role for the torsion of a spatial beam with square or rectangular cross-sections. Therefore, by using the 
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polynomial to represent the cross-section deformation, the displacement field for pure torsion of a spatial 

beam can be expressed as:   

{
𝑢(𝑦, 𝑧) = 𝑦𝑧3𝑎1 + 𝑧𝑦

3𝑎2 + 𝑦𝑧𝑎3 + 𝑎4
𝑣(𝑦, 𝑧) =  𝑦𝑏1 + 𝑧𝑏2 + 𝑏3 
𝑤(𝑦, 𝑧) =  𝑦𝑐1 + 𝑧𝑐2 + 𝑐3

 (3.18)  

where 𝑎1 to 𝑎4, 𝑏1 to 𝑏3, and 𝑐1 to 𝑐3 are coefficients to be determined. 

 

Fig. 3.5. Displacements of nodes through the thickness of spatial beam model for torsion.  

3.2.3.2 First displacement field of a beam in space 

Considering that for a spatial beam y and z play the same role, the displacement w in Eq. (3.14) can 

be extended as: 

𝑤(𝑦, 𝑧) = 𝑦2𝑐1 + 𝑧
2𝑐2 + 𝑦𝑧𝑐3 +  𝑦𝑐4 + 𝑧𝑐5 + 𝑐6 (3.19) 

where 𝑐1 to 𝑐6 are coefficients to be determined.  

Taking Eq. (3.18) into account, the Eq. (3.14) can be extended for a spatial beam displacement field: 

{

𝑢(𝑦, 𝑧) = 𝑦𝑧3𝑎1 + 𝑧𝑦
3𝑎2 + 𝑦𝑧𝑎3 + 𝑦𝑎4 + 𝑧𝑎5 + 𝑎6

𝑣(𝑦, 𝑧) = 𝑦2𝑏1 + 𝑧
2𝑏2 + 𝑦𝑧𝑏3 +  𝑦𝑏4 + 𝑧𝑏5 + 𝑏6 

𝑤(𝑦, 𝑧) = 𝑦2𝑐1 + 𝑧
2𝑐2 + 𝑦𝑧𝑐3 +  𝑦𝑐4 + 𝑧𝑐5 + 𝑐6

 (3.20) 

where 𝑎1 to 𝑎6, 𝑏1 to 𝑏6, and 𝑐1 to 𝑐6 are coefficients to be determined.  

3.2.3.3 Second displacement field of a beam in space 

Considering the torsion effects, the extension of Eq. (3.17) for a spatial beam with square or 

rectangular cross-sections can be expressed as: 
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{

𝑢(𝑦, 𝑧) = 𝑦3𝑧𝑎1 + 𝑧
3𝑦𝑎2 + 𝑦

3𝑎3 + 𝑧
3𝑎4 + 𝑦𝑧𝑎5 + 𝑦𝑎6 + 𝑧𝑎7 + 𝑎8

𝑣(𝑦, 𝑧) = 𝑦2𝑏1 + 𝑧
2𝑏2 + 𝑦𝑧𝑏3 +  𝑦𝑏4 + 𝑧𝑏5 + 𝑏6 

𝑤(𝑦, 𝑧) = 𝑦2𝑐1 + 𝑧
2𝑐2 + 𝑦𝑧𝑐3 +  𝑦𝑐4 + 𝑧𝑐5 + 𝑐6

 (3.21) 

where 𝑎1 to 𝑎8, 𝑏1 to 𝑏6, and 𝑐1 to 𝑐6  are coefficients to be determined.  

3.3 Presentation of a new solid-beam approach – numerical aspects and implementation  

This section explains how the displacement fields presented in Section 3.2.2 and Section 3.2.3 are 

applied on the solid element mesh, leading to solid-beam models. Equations are applied on the 

assembled finite element models. Five solid-beam models are described. Eq. (3.2) gives the First-Order 

Solid-Beam (FOSB) model. In the same way, Eq. (3.14) leads to the Modified First-Order Solid-Beam 

(MFOSB) model and Eq. (3.17) leads to the Higher-Order Solid-Beam (HOSB) one. Moreover, Eq. 

(3.20) leads to the first Solid-Beam in space (SB1-3D) model and Eq. (3.21) leads to the second Solid-

Beam in space (SB2-3D) one. The principles consisting of imposing a displacement field at nodes 

throughout the cross-section are illustrated in Fig. 3.6 and Fig. 3.7. Master degrees of freedom and slave 

degrees of freedom are defined for each cross-section. All slave degrees of freedom can be eliminated 

from the system of equations to be solved. Each equation leads to the elimination of one degree of 

freedom. Consequently, the number of degrees of freedom eliminated corresponds exactly to the number 

of equations applied. 

3.3.1 FOSB model 

For each cross-section of the beam, the FOSB model uses two master nodes at points A and B as 

described in Fig. 3.6. Eq. (3.2) contains two coefficients 𝑎1 and 𝑎2 to be determined for u and one 

coefficient 𝑐1 for w. To identify these three coefficients, the following set of three equations is used: 

{

𝑢(𝑦𝐴, 𝑧𝐴) = 𝑢𝐴 = 𝑧𝐴𝑎1 + 𝑎2
𝑢(𝑦𝐵, 𝑧𝐵) = 𝑢𝐵 = 𝑧𝐵𝑎1 + 𝑎2
𝑤(𝑦𝐴, 𝑧𝐴) = 𝑤𝐴 = 𝑐1

 (3.22) 

where 𝑢𝐴, 𝑢𝐵, 𝑤𝐴 are the displacements at points A and B, 𝑦𝐴 , 𝑧𝐴, 𝑦𝐵 , 𝑧𝐵 are the coordinates of points 

A and B in the y and z directions. 

Solving Eq. (3.22) gives the expressions of coefficients identified for each cross-section: 

{
 
 

 
 𝑎1 =

𝑢𝐴 − 𝑢𝐵
𝑧𝐴 − 𝑧𝐵

𝑎2 = −
𝑧𝐴𝑢𝐵 − 𝑧𝐵𝑢𝐴
𝑧𝐴 − 𝑧𝐵

𝑐1 = 𝑤𝐴

  (3.23) 

By taking into account Eq. (3.23) into Eq. (3.2), one obtains: 



65 

 

{

𝑢(𝑦, 𝑧) = 𝑧
𝑢𝐴 − 𝑢𝐵
𝑧𝐴 − 𝑧𝐵

+
𝑧𝐵𝑢𝐴−𝑧𝐴𝑢𝐵
𝑧𝐴 − 𝑧𝐵

𝑣(𝑦, 𝑧) = 0

𝑤(𝑦, 𝑧) = 𝑤𝐴

 (3.24) 

Equations to be applied are obtained by replacing 𝑧 by 𝑧𝑖 in Eq. (3.24), 𝑧𝑖 being the coordinate of 

the slave node i in the z direction: 

{
 
 

 
 𝑢(𝑦𝑖 , 𝑧𝑖) = 𝑢𝑖

𝑆 = 𝑧
𝑢𝐴 − 𝑢𝐵
𝑧𝐴 − 𝑧𝐵

+
𝑧𝐵𝑢𝐴−𝑧𝐴𝑢𝐵
𝑧𝐴 − 𝑧𝐵

𝑣(𝑦𝑖 , 𝑧𝑖) = 𝑣𝑖
𝑆 = 0

𝑤(𝑦𝑖 , 𝑧𝑖) = 𝑤𝑖
𝑆 = 𝑤𝐴

 (3.25) 

 

 

Fig. 3.6. Master nodes and slave nodes in the cross-section of a solid-beam model in a plane. 

For a given cross-section of the beam, the displacements 𝑢𝐴, 𝑢𝐵 and 𝑤𝐴 must be calculated because 

they are the master degrees of freedom. All other degrees of freedom are the slave degrees of freedom. 

As highlighted in Eq. (3.25), they can be expressed in terms of master degrees of freedom, so they can 

be eliminated from the system of equations to be solved. Concerning the displacements u, Eq. (3.25) is 

applied at all nodes of the cross-sections, except points A and B. The displacements u of other nodes of 

the cross-section are dependent of  𝑢𝐴  and 𝑢𝐵. Eq. (3.24) shows that displacement v is systematically 

equal to zero, so this equation is applied at all the nodes of the model. Concerning the displacements w, 

Eq. (3.25) is applied at all nodes of the cross-sections, except point A. The displacement component w 
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of other nodes is in the same way dependent of 𝑤𝐴. This description shows that the methodology relies 

on slave and master degrees of freedom. For the sake of simplicity, one distinguishes between master 

and slave nodes. A given node is considered as a master node if it contains at least one master degree of 

freedom. This model contains three master degrees of freedom per cross-section. It can be observed that 

Eq. (3.25) defines linear relations between the slave and the master degrees of freedom. One 

complementary remark is that if two master nodes are needed, it is natural to select points A and B. But 

two other nodes could be selected as well, which leads to equivalent results. 

3.3.2 MFOSB model 

The methodology described in Section 3.3.1 is now applied to build the MFOSB model. This model 

exploits five master nodes, as shown in Fig. 3.6. Eq. (3.14) contains two coefficients (𝑎1 and 𝑎2 ) to be 

determined for displacement u, two coefficients (𝑏1 and 𝑏2) for displacement v and three coefficients 

(𝑐1 ,  𝑐2 ,  𝑐3  and 𝑐4) for displacement w. The coefficients 𝑎1 and 𝑎2 are the same as the FOSB model. To 

identify other coefficients, the following equations are used: 

{
  
 

  
 
𝑣(𝑦𝐷 , 𝑧𝐷) = 𝑣𝐷 = 𝑦𝐷𝑧𝐷𝑏1 + 𝑦𝐷𝑏2
𝑣(𝑦𝐸 , 𝑧𝐸) = 𝑣𝐸 = 𝑦𝐸𝑧𝐸𝑏1 + 𝑦𝐸𝑏2
𝑤(𝑦𝐴, 𝑧𝐴) = 𝑤𝐴 = 𝑧𝐴

2𝑐1 + 𝑦𝐴
2𝑐4 + 𝑧𝐴𝑐2 + 𝑐3

𝑤(𝑦𝐵, 𝑧𝐵) = 𝑤𝐵 = 𝑧𝐵
2𝑐1 + 𝑦𝐵

2𝑐4 + 𝑧𝐵𝑐2 + 𝑐3
𝑤(𝑦𝐶 , 𝑧𝐶) = 𝑤𝐶 = 𝑧𝐶

2𝑐1 + 𝑦𝐶
2𝑐4 + 𝑧𝐶𝑐2 + 𝑐3

𝑤(𝑦𝐷 , 𝑧𝐷) = 𝑤𝐷 = 𝑧𝐷
2𝑐1 + 𝑦𝐷

2𝑐4 + 𝑧𝐷𝑐2 + 𝑐3

 (3.26) 

where  𝑣𝐷 , 𝑣𝐸 , 𝑤𝐴, 𝑤𝐵, 𝑤𝐶 and 𝑤𝐷 are displacements at master nodes; 𝑦𝐴, 𝑦𝐵 , 𝑦𝐶 , 𝑦𝐷 , 𝑦𝐸 , 

𝑧𝐴, 𝑧𝐵, 𝑧𝐶 , 𝑧𝐷 and 𝑧𝐸 are the coordinates of master nodes in the y or z direction. 

The expressions of coefficients identified for each cross-section are: 
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{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑎1 =

𝑢𝐴 − 𝑢𝐵
𝑧𝐴 − 𝑧𝐵

𝑎2 = −
𝑧𝐴𝑢𝐵 − 𝑧𝐵𝑢𝐴
𝑧𝐴 − 𝑧𝐵

𝑏1 =
𝑣𝐷𝑦𝐸 − 𝑣𝐸𝑦𝐷
𝑦𝐷𝑦𝐸(𝑧𝐷 − 𝑧𝐸)

𝑏2 =
𝑣𝐸𝑦𝐷𝑧𝐷 − 𝑣𝐷𝑦𝐸𝑧𝐸
𝑦𝐷𝑦𝐸(𝑧𝐷 − 𝑧𝐸)

𝑐1 = −
(

 
 

𝑤𝐴𝑦𝐵
2𝑧𝐶 − 𝑤𝐴𝑦𝐶

2𝑧𝐵 −𝑤𝐵𝑦𝐴
2𝑧𝐶 +𝑤𝐵𝑦𝐶

2𝑧𝐴 +𝑤𝐶𝑦𝐴
2𝑧𝐵 −𝑤𝐶𝑦𝐵

2𝑧𝐴 −𝑤𝐴𝑦𝐵
2𝑧𝐷

+𝑤𝐴𝑦𝐷
2𝑧𝐵 + 𝑤𝐴𝑦𝐴

2𝑧𝐷 −𝑤𝐵𝑦𝐷
2𝑧𝐴 −𝑤𝐷𝑦𝐴

2𝑧𝐵 +𝑤𝐷𝑦𝐵
2𝑧𝐴 −𝑤𝐶𝑦𝐵

2𝑧𝐴 − 𝑤𝐴𝑦𝐵
2𝑧𝐷

+𝑤𝐴𝑦𝐶
2𝑧𝐷 −𝑤𝐴𝑦𝐷

2𝑧𝐶 −𝑤𝐶𝑦𝐴
2𝑧𝐷 +𝑤𝐶𝑦𝐷

2𝑧𝐴 +𝑤𝐷𝑦𝐴
2𝑧𝐶 −𝑤𝐷𝑦𝐶

2𝑧𝐴 − 𝑤𝐵𝑦𝐶
2𝑧𝐷

+𝑤𝐵𝑦𝐷
2𝑧𝐶 +𝑤𝐶𝑦𝐵

2𝑧𝐷 −𝑤𝐶𝑦𝐷
2𝑧𝐵 −𝑤𝐷𝑦𝐵

2𝑧𝐶 +𝑤𝐷𝑦𝐶
2𝑧𝐵 )

 
 

(

−𝑦𝐴
2𝑧𝐵
2𝑧𝐶 + 𝑦𝐴

2𝑧𝐵
2𝑧𝐷 + 𝑦𝐴

2𝑧𝐶
2𝑧𝐵 − 𝑦𝐴

2𝑧𝐷
2𝑧𝐵 − 𝑦𝐴

2𝑧𝐶
2𝑧𝐷 + 𝑦𝐴

2𝑧𝐷
2𝑧𝐶 + 𝑦𝐵

2𝑧𝐴
2𝑧𝐶 − 𝑦𝐵

2𝑧𝐴
2𝑧𝐷

−𝑦𝐵
2𝑧𝐶

2𝑧𝐴 + 𝑦𝐵
2𝑧𝐷

2𝑧𝐴 + 𝑦𝐵
2𝑧𝐶

2𝑧𝐷 − 𝑦𝐵
2𝑧𝐷

2𝑧𝐶 − 𝑦𝐶
2𝑧𝐴

2𝑧𝐵 + 𝑦𝐶
2𝑧𝐴

2𝑧𝐷 + 𝑦𝐶
2𝑧𝐵

2𝑧𝐴 − 𝑦𝐶
2𝑧𝐷

2𝑧𝐴
−𝑦𝐶

2𝑧𝐵
2𝑧𝐷 + 𝑦𝐶

2𝑧𝐷
2𝑧𝐵 + 𝑦𝐷

2𝑧𝐴
2𝑧𝐵 − 𝑦𝐷

2𝑧𝐴
2𝑧𝐶 − 𝑦𝐷

2𝑧𝐵
2𝑧𝐴 + 𝑦𝐷

2𝑧𝐶
2𝑧𝐴 + 𝑦𝐷

2𝑧𝐵
2𝑧𝐶 ∓ 𝑦𝐷

2𝑧𝐶
2𝑧𝐵

)

𝑐4 = −

(

𝑤𝐴𝑧𝐵𝑧𝐶
2 −𝑤𝐴𝑧𝐶𝑧𝐵

2 −𝑤𝐵𝑧𝐴𝑧𝐶
2 +𝑤𝐵𝑧𝐶𝑧𝐴

2 +𝑤𝐶𝑧𝐴𝑧𝐵
2 −𝑤𝐶𝑧𝐵𝑧𝐴

2 −𝑤𝐴𝑧𝐵𝑧𝐷
2 +𝑤𝐴𝑧𝐷𝑧𝐵

2

+𝑤𝐵𝑧𝐴𝑧𝐷
2 −𝑤𝐵𝑧𝐷𝑧𝐴

2 −𝑤𝐷𝑧𝐴𝑧𝐵
2 +𝑤𝐵𝑧𝐵𝑧𝐴

2 +𝑤𝐴𝑧𝐶𝑧𝐷
2 −𝑤𝐴𝑧𝐷𝑧𝐶

2 −𝑤𝐶𝑧𝐴𝑧𝐷
2 +𝑤𝐶𝑧𝐷𝑧𝐴

2

+𝑤𝐷𝑧𝐴𝑧𝐶
2 −𝑤𝐷𝑧𝐶𝑧𝐴

2 −𝑤𝐵𝑧𝐶𝑧𝐷
2 +𝑤𝐵𝑧𝐷𝑧𝐶

2 +𝑤𝐶𝑧𝐵𝑧𝐷
2 −𝑤𝐶𝑧𝐷𝑧𝐵

2 −𝑤𝐷𝑧𝐵𝑧𝐶
2 +𝑤𝐷𝑧𝐶𝑧𝐵

2

)

(

−𝑦𝐴
2𝑧𝐵

2𝑧𝐶 + 𝑦𝐴
2𝑧𝐵

2𝑧𝐷 + 𝑦𝐴
2𝑧𝐶

2𝑧𝐵 − 𝑦𝐴
2𝑧𝐷

2𝑧𝐵 − 𝑦𝐴
2𝑧𝐶

2𝑧𝐷 + 𝑦𝐴
2𝑧𝐷

2𝑧𝐶 + 𝑦𝐵
2𝑧𝐴

2𝑧𝐶 − 𝑦𝐵
2𝑧𝐴

2𝑧𝐷
−𝑦𝐵

2𝑧𝐶
2𝑧𝐴 + 𝑦𝐵

2𝑧𝐷
2𝑧𝐴 + 𝑦𝐵

2𝑧𝐶
2𝑧𝐷 − 𝑦𝐵

2𝑧𝐷
2𝑧𝐶 − 𝑦𝐶

2𝑧𝐴
2𝑧𝐵 + 𝑦𝐶

2𝑧𝐴
2𝑧𝐷 + 𝑦𝐶

2𝑧𝐵
2𝑧𝐴 − 𝑦𝐶

2𝑧𝐷
2𝑧𝐴

−𝑦𝐶
2𝑧𝐵

2𝑧𝐷 + 𝑦𝐶
2𝑧𝐷

2𝑧𝐵 + 𝑦𝐷
2𝑧𝐴

2𝑧𝐵 − 𝑦𝐷
2𝑧𝐴

2𝑧𝐶 − 𝑦𝐷
2𝑧𝐵

2𝑧𝐴 + 𝑦𝐷
2𝑧𝐶

2𝑧𝐴 + 𝑦𝐷
2𝑧𝐵

2𝑧𝐶 ∓ 𝑦𝐷
2𝑧𝐶

2𝑧𝐵

)

𝑐2 =

(

𝑤𝐴𝑦𝐵
2𝑧𝐶

2 −𝑤𝐴𝑦𝐶
2𝑧𝐵
2 −𝑤𝐴𝑦𝐴

2𝑧𝐶
2 +𝑤𝐵𝑦𝐶

2𝑧𝐴
2 +𝑤𝐶𝑦𝐴

2𝑧𝐵
2 −𝑤𝐶𝑦𝐵

2𝑧𝐴
2 −𝑤𝐴𝑦𝐵

2𝑧𝐷
2 +𝑤𝐴𝑦𝐷

2𝑧𝐵
2

+𝑤𝐵𝑦𝐴
2𝑧𝐷

2 −𝑤𝐵𝑦𝐷
2𝑧𝐴

2 −𝑤𝐷𝑦𝐴
2𝑧𝐵

2 +𝑤𝐷𝑦𝐵
2𝑧𝐴

2 +𝑤𝐴𝑦𝐶
2𝑧𝐷

2 −𝑤𝐴𝑦𝐷
2𝑧𝐶

2 −𝑤𝐶𝑦𝐴
2𝑧𝐷
2 +𝑤𝐶𝑦𝐷

2𝑧𝐴
2

+𝑤𝐷𝑦𝐴
2𝑧𝐶
2 −𝑤𝐷𝑦𝐶

2𝑧𝐴
2 −𝑤𝐵𝑦𝐶

2𝑧𝐷
2 +𝑤𝐵𝑦𝐷

2𝑧𝐶
2 +𝑤𝐶𝑦𝐵

2𝑧𝐷
2 −𝑤𝐶𝑦𝐷

2𝑧𝐵
2 −𝑤𝐷𝑦𝐵

2𝑧𝐶
2 +𝑤𝐷𝑦𝐶

2𝑧𝐵
2

)

(

−𝑦𝐴
2𝑧𝐵
2𝑧𝐶 + 𝑦𝐴

2𝑧𝐵
2𝑧𝐷 + 𝑦𝐴

2𝑧𝐶
2𝑧𝐵 − 𝑦𝐴

2𝑧𝐷
2𝑧𝐵 − 𝑦𝐴

2𝑧𝐶
2𝑧𝐷 + 𝑦𝐴

2𝑧𝐷
2𝑧𝐶 + 𝑦𝐵

2𝑧𝐴
2𝑧𝐶 − 𝑦𝐵

2𝑧𝐴
2𝑧𝐷

−𝑦𝐵
2𝑧𝐶
2𝑧𝐴 + 𝑦𝐵

2𝑧𝐷
2𝑧𝐴 + 𝑦𝐵

2𝑧𝐶
2𝑧𝐷 − 𝑦𝐵

2𝑧𝐷
2𝑧𝐶 − 𝑦𝐶

2𝑧𝐴
2𝑧𝐵 + 𝑦𝐶

2𝑧𝐴
2𝑧𝐷 + 𝑦𝐶

2𝑧𝐵
2𝑧𝐴 − 𝑦𝐶

2𝑧𝐷
2𝑧𝐴

−𝑦𝐶
2𝑧𝐵
2𝑧𝐷 + 𝑦𝐶

2𝑧𝐷
2𝑧𝐵 + 𝑦𝐷

2𝑧𝐴
2𝑧𝐵 − 𝑦𝐷

2𝑧𝐴
2𝑧𝐶 − 𝑦𝐷

2𝑧𝐵
2𝑧𝐴 + 𝑦𝐷

2𝑧𝐶
2𝑧𝐴 + 𝑦𝐷

2𝑧𝐵
2𝑧𝐶 ∓ 𝑦𝐷

2𝑧𝐶
2𝑧𝐵

)

𝑐3 =
(

 
 

𝑤𝐷𝑦𝐴
2𝑧𝐵
2𝑧𝐶 − 𝑤𝐶𝑦𝐴

2𝑧𝐵
2𝑧𝐷 −𝑤𝐷𝑦𝐴

2𝑧𝐶
2𝑧𝐵 +𝑤𝐶𝑦𝐴

2𝑧𝐷
2𝑧𝐵 +𝑤𝐵𝑦𝐴

2𝑧𝐶
2𝑧𝐷 − 𝑤𝐵𝑦𝐴

2𝑧𝐷
2𝑧𝐶

−𝑤𝐷𝑦𝐵
2𝑧𝐴

2𝑧𝐶 +𝑤𝐶𝑦𝐵
2𝑧𝐴

2𝑧𝐷 +𝑤𝐷𝑦𝐷
2𝑧𝐶

2𝑧𝐴 −𝑤𝐶𝑦𝐵
2𝑧𝐷

2𝑧𝐴 −𝑤𝐴𝑦𝐵
2𝑧𝐶

2𝑧𝐷 + 𝑤𝐴𝑦𝐵
2𝑧𝐷

2𝑧𝐶
+𝑤𝐷𝑦𝐶

2𝑧𝐴
2𝑧𝐵 −𝑤𝐵𝑦𝐶

2𝑧𝐴
2𝑧𝐷 −𝑤𝐷𝑦𝐶

2𝑧𝐵
2𝑧𝐴 +𝑤𝐵𝑦𝐶

2𝑧𝐷
2𝑧𝐴 +𝑤𝐴𝑦𝐶

2𝑧𝐵
2𝑧𝐷 − 𝑤𝐴𝑦𝐶

2𝑧𝐷
2𝑧𝐵

−𝑤𝐶𝑦𝐷
2𝑧𝐴

2𝑧𝐵 +𝑤𝐵𝑦𝐷
2𝑧𝐴

2𝑧𝐶 +𝑤𝐶𝑦𝐷
2𝑧𝐵

2𝑧𝐴 −𝑤𝐵𝑦𝐷
2𝑧𝐶

2𝑧𝐴 −𝑤𝐴𝑦𝐷
2𝑧𝐵

2𝑧𝐶 + 𝑤𝐴𝑦𝐷
2𝑧𝐶

2𝑧𝐵)

 
 

(

−𝑦𝐴
2𝑧𝐵

2𝑧𝐶 + 𝑦𝐴
2𝑧𝐵

2𝑧𝐷 + 𝑦𝐴
2𝑧𝐶

2𝑧𝐵 − 𝑦𝐴
2𝑧𝐷

2𝑧𝐵 − 𝑦𝐴
2𝑧𝐶

2𝑧𝐷 + 𝑦𝐴
2𝑧𝐷

2𝑧𝐶 + 𝑦𝐵
2𝑧𝐴

2𝑧𝐶 − 𝑦𝐵
2𝑧𝐴

2𝑧𝐷
−𝑦𝐵

2𝑧𝐶
2𝑧𝐴 + 𝑦𝐵

2𝑧𝐷
2𝑧𝐴 + 𝑦𝐵

2𝑧𝐶
2𝑧𝐷 − 𝑦𝐵

2𝑧𝐷
2𝑧𝐶 − 𝑦𝐶

2𝑧𝐴
2𝑧𝐵 + 𝑦𝐶

2𝑧𝐴
2𝑧𝐷 + 𝑦𝐶

2𝑧𝐵
2𝑧𝐴 − 𝑦𝐶

2𝑧𝐷
2𝑧𝐴

−𝑦𝐶
2𝑧𝐵

2𝑧𝐷 + 𝑦𝐶
2𝑧𝐷

2𝑧𝐵 + 𝑦𝐷
2𝑧𝐴

2𝑧𝐵 − 𝑦𝐷
2𝑧𝐴

2𝑧𝐶 − 𝑦𝐷
2𝑧𝐵

2𝑧𝐴 + 𝑦𝐷
2𝑧𝐶

2𝑧𝐴 + 𝑦𝐷
2𝑧𝐵

2𝑧𝐶 −+𝑦𝐷
2𝑧𝐶

2𝑧𝐵

)

   (3.27) 

Considering Eq. (3.27) and replacing y and 𝑧 by 𝑦𝑖 and 𝑧𝑖 in Eq. (3.14), one obtains equations to be 

applied at slave node i: 
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{

𝑢(𝑦𝑖 , 𝑧𝑖) = 𝑢𝑖
𝑆 = 𝑧𝑖𝑎1 + 𝑎2

𝑣(𝑦𝑖 , 𝑧𝑖) = 𝑣𝑖
𝑆 = 𝑦𝑖𝑧𝑖𝑏1 + 𝑦𝑖𝑏2

𝑤(𝑦𝑖 , 𝑧𝑖) = 𝑤𝑖
𝑆 = 𝑧𝑖

2𝑐1 + 𝑦𝑖
2𝑐4 + 𝑧𝑖𝑐2 + 𝑐3

 (3.28) 

This model contains eight master degrees of freedom per cross-section. Eq. (3.28) describes linear 

relations between slave and master degrees of freedom. 

3.3.3 HOSB model 

The methodology is now applied to build the HOSB model. This model exploits five master nodes 

A, B, C, D and E, as shown in Fig. 3.6. Eq. (3.17) contains three coefficients (𝑎1 , 𝑎2  and 𝑎3) to be 

determined for displacement u, two coefficients (𝑏1 and 𝑏2) for displacement v and four coefficients 

(𝑐1 ,  𝑐2 ,  𝑐3  and 𝑐4) for displacement w. To identify the nine coefficients, the following equations are 

used: 

{
 
 
 
 
 

 
 
 
 
 
𝑢(𝑦𝐴, 𝑧𝐴) = 𝑢𝐴 = 𝑎1𝑧𝐴

3 + 𝑎2𝑧𝐴 + 𝑎3
𝑢(𝑦𝐵 , 𝑧𝐵) = 𝑢𝐵 = 𝑎1𝑧𝐵

3 + 𝑎2𝑧𝐵 + 𝑎3
𝑢(𝑦𝐶 , 𝑧𝐶) = 𝑢𝐶 = 𝑎1𝑧𝐶

3 + 𝑎2𝑧𝐶 + 𝑎3
𝑣(𝑦𝐷 , 𝑧𝐷) = 𝑣𝐷 = 𝑦𝐷𝑧𝐷𝑏1 + 𝑦𝐷𝑏2
𝑣(𝑦𝐸 , 𝑧𝐸) = 𝑣𝐸 = 𝑦𝐸𝑧𝐸𝑏1 + 𝑦𝐸𝑏2
𝑤(𝑦𝐴, 𝑧𝐴) = 𝑤𝐴 = 𝑧𝐴

2𝑐1 + 𝑦𝐴
2𝑐4 + 𝑧𝐴𝑐2 + 𝑐3

𝑤(𝑦𝐵, 𝑧𝐵) = 𝑤𝐵 = 𝑧𝐵
2𝑐1 + 𝑦𝐵

2𝑐4 + 𝑧𝐵𝑐2 + 𝑐3
𝑤(𝑦𝐶 , 𝑧𝐶) = 𝑤𝐶 = 𝑧𝐶

2𝑐1 + 𝑦𝐶
2𝑐4 + 𝑧𝐶𝑐2 + 𝑐3

𝑤(𝑦𝐷 , 𝑧𝐷) = 𝑤𝐷 = 𝑧𝐷
2𝑐1 + 𝑦𝐷

2𝑐4 + 𝑧𝐷𝑐2 + 𝑐3

 (3.29) 

where 𝑢𝐴, 𝑢𝐵, 𝑢𝐶 , 𝑣𝐷 , 𝑣𝐸 , 𝑤𝐴, 𝑤𝐵, 𝑤𝐶 and 𝑤𝐷 are the displacements at master nodes; 𝑦𝐴,   

𝑦𝐵, 𝑦𝐶 , 𝑦𝐷 , 𝑦𝐸 , 𝑧𝐴, 𝑧𝐵, 𝑧𝐶 , 𝑧𝐷 and 𝑧𝐸  are the coordinates of master nodes. 

The expressions of coefficients 𝑏1 , 𝑏2,  𝑐1 ,  𝑐2 ,  𝑐3  and 𝑐4 are the same as expressed in Eq. (3.28), 

coefficients 𝑎1, 𝑎2  and 𝑎3 identified for each cross-section are: 

{
 
 
 
 

 
 
 
 𝑎1 =

𝑢𝐴𝑧𝐵 − 𝑢𝐵𝑧𝐴 − 𝑢𝐴𝑧𝐶 + 𝑢𝐶𝑧𝐴 + 𝑢𝐵𝑧𝐶 − 𝑢𝐶𝑧𝐵
(𝑧𝐴 − 𝑧𝐵)(𝑧𝐴

2𝑧𝐵 − 𝑧𝐴
2𝑧𝐶 + 𝑧𝐴𝑧𝐵

2 − 𝑧𝐴𝑧𝐵𝑧𝐶 − 𝑧𝐵
2𝑧𝐶 + 𝑧𝐶

3)

𝑎2 = −
𝑢𝐴𝑧𝐵

3 − 𝑢𝐵𝑧𝐴
3 − 𝑢𝐴𝑧𝐶

3 + 𝑢𝐶𝑧𝐴
3 + 𝑢𝐵𝑧𝐶

3 − 𝑢𝐶𝑧𝐵
3

(𝑧𝐴 − 𝑧𝐵)(𝑧𝐴
2𝑧𝐵 − 𝑧𝐴

2𝑧𝐶 + 𝑧𝐴𝑧𝐵
2 − 𝑧𝐴𝑧𝐵𝑧𝐶 − 𝑧𝐵

2𝑧𝐶 + 𝑧𝐶
3)

𝑎3 = −
−𝑢𝐶𝑧𝐴

3𝑧𝐵 + 𝑢𝐵𝑧𝐴
3𝑧𝐶 + 𝑢𝐶𝑧𝐵

3𝑧𝐴 − 𝑢𝐵𝑧𝐶
3𝑧𝐴 + 𝑢𝐴𝑧𝐵

3𝑧𝐶 − 𝑢𝐴𝑧𝐶
3𝑧𝐵

(𝑧𝐴 − 𝑧𝐵)(𝑧𝐴
2𝑧𝐵 − 𝑧𝐴

2𝑧𝐶 + 𝑧𝐴𝑧𝐵
2 − 𝑧𝐴𝑧𝐵𝑧𝐶 − 𝑧𝐵

2𝑧𝐶 + 𝑧𝐶
3)

 (3.30) 

After considering Eqs. (3.28) and (3.30) and replacing y and 𝑧 by 𝑦𝑖 and 𝑧𝑖 in Eq. (3.17), one obtains 

equations to be applied at slave node i: 
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{

𝑢(𝑦𝑖 , 𝑧𝑖) = 𝑢𝑖
𝑆 = 𝑧𝑖

3𝑎1 + 𝑧𝑖𝑎2 + 𝑎3
𝑣(𝑦𝑖 , 𝑧𝑖) = 𝑣𝑖

𝑆 = 𝑦𝑖𝑧𝑖𝑏1 + 𝑦𝑖𝑏2
𝑤(𝑦𝑖 , 𝑧𝑖) = 𝑤𝑖

𝑆 = 𝑧𝑖
2𝑐1 + 𝑦𝑖

2𝑐4 + 𝑧𝑖𝑐2 + 𝑐3

  (3.31) 

The HOSB model contains nine master degrees of freedom per cross-section. Eq. (3.31) describes 

linear relations between slave and master degrees of freedom.  

3.3.4 SB1-3D model 

The methodology is now applied to build the SB1-3D model. This model exploits six master nodes 

A, B, D, E, F and G, as shown in Fig. 3.7. Eq. (3.20) contains six coefficients (𝑎1 to 𝑎6) to be determined 

for displacement u, six coefficients (𝑏1 to 𝑏6) for displacement v and six coefficients (𝑐1 to 𝑐6) for 

displacement w. To identify the eighteen coefficients, the following equations are used: 

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
𝑢(𝑦𝐴, 𝑧𝐴) = 𝑢𝐴 = 𝑦𝐴𝑧𝐴

3𝑎1 + 𝑦𝐴
3𝑧𝐴𝑎2 + 𝑦𝐴𝑧𝐴𝑎3 + 𝑦𝐴𝑎4 + 𝑧𝐴𝑎5 + 𝑎6

𝑢(𝑦𝐵 , 𝑧𝐵) = 𝑢𝐵 = 𝑦𝐵𝑧𝐵
3𝑎1 + 𝑦𝐵

3𝑧𝐵𝑎2 + 𝑦𝐵𝑧𝐵𝑎3 + 𝑦𝐵𝑎4 + 𝑧𝐵𝑎5 + 𝑎6
𝑢(𝑦𝐷 , 𝑧𝐷) = 𝑢𝐷 = 𝑦𝐷𝑧𝐷

3𝑎1 + 𝑦𝐷
3𝑧𝐷𝑎2 + 𝑦𝐷𝑧𝐷𝑎3 + 𝑦𝐷𝑎4 + 𝑧𝐷𝑎5 + 𝑎6

𝑢(𝑦𝐸 , 𝑧𝐸) = 𝑢𝐸 = 𝑦𝐸𝑧𝐸
3𝑎1 + 𝑦𝐸

3𝑧𝐸𝑎2 + 𝑦𝐸𝑧𝐸𝑎3 + 𝑦𝐸𝑎4 + 𝑧𝐸𝑎5 + 𝑎6
𝑢(𝑦𝐹 , 𝑧𝐹) = 𝑢𝐹 = 𝑦𝐹𝑧𝐹

3𝑎1 + 𝑦𝐹
3𝑧𝐹𝑎2 + 𝑦𝐹𝑧𝐹𝑎3 + 𝑦𝐹𝑎4 + 𝑧𝐹𝑎5 + 𝑎6

𝑢(𝑦𝐺 , 𝑧𝐺) = 𝑢𝐺 = 𝑦𝐺𝑧𝐺
3𝑎1 + 𝑦𝐺

3𝑧𝐺𝑎2 + 𝑦𝐺𝑧𝐺𝑎3 + 𝑦𝐺𝑎4 + 𝑧𝐺𝑎5 + 𝑎6
𝑣(𝑦𝐴, 𝑧𝐴) = 𝑣𝐴 = 𝑦𝐴

2𝑏1 + 𝑧𝐴
2𝑏2 + 𝑦𝐴𝑧𝐴𝑏3 + 𝑦𝐴𝑏4 + 𝑧𝐴𝑏5 + 𝑏6

𝑣(𝑦𝐵, 𝑧𝐵) = 𝑣𝐵 = 𝑦𝐵
2𝑏1 + 𝑧𝐵

2𝑏2 + 𝑦𝐵𝑧𝐵𝑏3 + 𝑦𝐵𝑏4 + 𝑧𝐵𝑏5 + 𝑏6
𝑣(𝑦𝐷 , 𝑧𝐷) = 𝑣𝐷 = 𝑦𝐷

2𝑏1 + 𝑧𝐷
2𝑏2 + 𝑦𝐷𝑧𝐷𝑏3 + 𝑦𝐷𝑏4 + 𝑧𝐷𝑏5 + 𝑏6

𝑣(𝑦𝐸 , 𝑧𝐸) = 𝑣𝐸 = 𝑦𝐸
2𝑏1 + 𝑧𝐸

2𝑏2 + 𝑦𝐸𝑧𝐸𝑏3 + 𝑦𝐸𝑏4 + 𝑧𝐸𝑏5 + 𝑏6
𝑣(𝑦𝐹 , 𝑧𝐹) = 𝑣𝐹 = 𝑦𝐹

2𝑏1 + 𝑧𝐹
2𝑏2 + 𝑦𝐹𝑧𝐹𝑏3 + 𝑦𝐹𝑏4 + 𝑧𝐹𝑏5 + 𝑏6

𝑣(𝑦𝐺 , 𝑧𝐺) = 𝑣𝐺 = 𝑦𝐺
2𝑏1 + 𝑧𝐺

2𝑏2 + 𝑦𝐺𝑧𝐺𝑏3 + 𝑦𝐺𝑏4 + 𝑧𝐺𝑏5 + 𝑏6
𝑤(𝑦𝐴, 𝑧𝐴) = 𝑤𝐴 = 𝑦𝐴

2𝑐1 + 𝑧𝐴
2𝑐2 + 𝑦𝐴𝑧𝐴𝑐3 + 𝑦𝐴𝑐4 + 𝑧𝐴𝑐5 + 𝑐6

𝑤(𝑦𝐵, 𝑧𝐵) = 𝑤𝐵 = 𝑦𝐵
2𝑐1 + 𝑧𝐵

2𝑐2 + 𝑦𝐵𝑧𝐵𝑐3 + 𝑦𝐵𝑐4 + 𝑧𝐵𝑐5 + 𝑐6
𝑤(𝑦𝐷 , 𝑧𝐷) = 𝑤𝐷 = 𝑦𝐷

2𝑐1 + 𝑧𝐷
2𝑐2 + 𝑦𝐷𝑧𝐷𝑐3 + 𝑦𝐷𝑐4 + 𝑧𝐷𝑐5 + 𝑐6

𝑤(𝑦𝐸 , 𝑧𝐸) = 𝑤𝐸 = 𝑦𝐸
2𝑐1 + 𝑧𝐸

2𝑐2 + 𝑦𝐸𝑧𝐸𝑐3 + 𝑦𝐸𝑐4 + 𝑧𝐸𝑐5 + 𝑐6
𝑤(𝑦𝐹 , 𝑧𝐹) = 𝑤𝐹 = 𝑦𝐹

2𝑐1 + 𝑧𝐹
2𝑐2 + 𝑦𝐹𝑧𝐹𝑐3 + 𝑦𝐹𝑐4 + 𝑧𝐹𝑐5 + 𝑐6

𝑤(𝑦𝐺 , 𝑧𝐺) = 𝑤𝐺 = 𝑦𝐺
2𝑐1 + 𝑧𝐺

2𝑐2 + 𝑦𝐺𝑧𝐺𝑐3 + 𝑦𝐺𝑐4 + 𝑧𝐺𝑐5 + 𝑐6

 (3.32) 

where 𝑢𝐴, 𝑢𝐵, 𝑢𝐷 , 𝑢𝐸 , 𝑢𝐹 , 𝑢𝐺 , 𝑣𝐴, 𝑣𝐵, 𝑣𝐷 , 𝑣𝐸 , 𝑣𝐹 , 𝑣𝐺 , 𝑤𝐴, 𝑤𝐵, 𝑤𝐷, 𝑤𝐸 , 𝑤𝐹 and 𝑤𝐺 are the displacements at 

master nodes; 𝑧𝐴, 𝑧𝐵, 𝑧𝐷 , 𝑧𝐸 , 𝑧𝐹 , 𝑧𝐺  and 𝑦𝐴, 𝑦𝐵 , 𝑦𝐷 , 𝑦𝐸 , 𝑦𝐹 , 𝑦𝐺  are the coordinates of master nodes in the z 

and y directions respectively. 
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Fig. 3.7. Master nodes and slave nodes in the cross-section of a solid-beam model in space. 

For simplification, point A in the cross-section can be supposed as the relative origin in the 

coordinate system. Therefore, some equality relations between the coordinates can be expressed as: 

{
 
 

 
 
𝑦𝐵 = 0
𝑦𝐷𝐴 = 𝑦𝐷 − 𝑦𝐴 = 𝑦𝐸𝐴 = 𝑦𝐺𝐴
𝑦𝐹𝐴 = 𝑦𝐹 − 𝑦𝐴
𝑧𝐷 = 0
𝑧𝐵𝐴 = 𝑧𝐵 − 𝑧𝐴 = 𝑧𝐹𝐴 = 𝑧𝐸𝐴
𝑧𝐺𝐴 = 𝑧𝐺 − 𝑧𝐴

 (3.33) 

where 𝑦𝐷𝐴, 𝑦𝐸𝐴, 𝑦𝐹𝐴, 𝑦𝐺𝐴, 𝑧𝐵𝐴, 𝑧𝐸𝐴, 𝑧𝐹𝐴 and 𝑧𝐺𝐴 are the relative coordinates of points B, D, E, F and G 

to point A in the y and z directions.  

Considering Eq. (3.33), the expressions of coefficients identified for each cross-section are: 
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 𝑎1 =

(𝑢𝐷𝑧𝐵𝐴 − 𝑢𝐺𝑧𝐵𝐴 − 𝑢𝐷𝑧𝐺𝐴 + 𝑢𝐸𝑧𝐺𝐴)

𝑦𝐷𝐴𝑧𝐵𝐴𝑧𝐺𝐴(𝑧𝐵𝐴 + 𝑧𝐺𝐴)(𝑧𝐵𝐴 − 𝑧𝐺𝐴)

𝑎2 =
𝑢𝐵𝑦𝐷𝐴 − 𝑢𝐵𝑦𝐹𝐴 − 𝑢𝐹𝑦𝐷𝐴 + 𝑢𝐸𝑦𝐹𝐴

𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴(𝑦𝐷𝐴
2 − 𝑦𝐹𝐴

2 )

𝑎3 =
(

 
 

𝑢𝐵𝑦𝐷𝐴
3 𝑧𝐺𝐴

4 + 𝑢𝐴𝑦𝐹𝐴
3 𝑧𝐺𝐴

3 + 𝑢𝐷𝑦𝐹𝐴
3 𝑧𝐵𝐴

3 − 𝑢𝐵𝑦𝐹𝐴
3 𝑧𝐺𝐴

3 − 𝑢𝐺𝑦𝐹𝐴
3 𝑧𝐵𝐴

3 − 𝑢𝐷𝑦𝐹𝐴
3 𝑧𝐺𝐴

3

−𝑢𝐹𝑦𝐷𝐴
3 𝑧𝐺𝐴

3 + 𝑢𝐸𝑦𝐹𝐴
3 𝑧𝐺𝐴

3 − 𝑢𝐴𝑦𝐷𝐴
2 𝑦𝐹𝐴𝑧𝐺𝐴

3 − 𝑢𝐷𝑦𝐷𝐴
2 𝑦𝐹𝐴𝑧𝐵𝐴

3 + 𝑢𝐺𝑦𝐷𝐴
2 𝑦𝐹𝐴𝑧𝐵𝐴

3

+𝑢𝐷𝑦𝐷𝐴
2 𝑦𝐹𝐴𝑧𝐺𝐴

3 − 𝑢𝐵𝑦𝐷𝐴
3 𝑧𝐵𝐴

2 𝑧𝐺𝐴 − 𝑢𝐴𝑦𝐹𝐴
3 𝑧𝐵𝐴

2 𝑧𝐺𝐴 + 𝑢𝐵𝑦𝐹𝐴
3 𝑧𝐵𝐴

2 𝑧𝐺𝐴
+𝑢𝐹𝑦𝐷𝐴

3 𝑧𝐵𝐴
2 𝑧𝐺𝐴 + 𝑢𝐴𝑦𝐷𝐴

2 𝑦𝐹𝐴𝑧𝐵𝐴
2 𝑧𝐺𝐴 − 𝑢𝐺𝑦𝐷𝐴

2 𝑦𝐹𝐴𝑧𝐵𝐴
2 𝑧𝐺𝐴 )

 
 

𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴(𝑧𝐵𝐴 + 𝑧𝐺𝐴)(𝑧𝐵𝐴 − 𝑧𝐺𝐴)(𝑦𝐷𝐴
2 − 𝑦𝐹𝐴

2 )

𝑎4 = −
𝑢𝐴 − 𝑢𝐷
𝑦𝐷𝐴

𝑎5 = −
𝑢𝐴 − 𝑢𝐵
𝑧𝐵𝐴

𝑎6 = 𝑢𝐴

𝑏1 =
(

 
 
 
 

𝑣𝐴𝑦𝐷𝐴𝑧𝐺𝐴
2 − 𝑣𝐷𝑦𝐷𝐴𝑧𝐵𝐴

2 + 𝑣𝐷𝑦𝐷𝐴𝑧𝐵𝐴
3 − 𝑣𝐵𝑦𝐷𝐴𝑧𝐺𝐴

2 + 𝑣𝐺𝑦𝐷𝐴𝑧𝐵𝐴
2 − 𝑣𝐺𝑦𝐷𝐴𝑧𝐵𝐴

3

−𝑣𝐴𝑦𝐹𝐴𝑧𝐺𝐴
2 + 𝑣𝐷𝑦𝐹𝐴𝑧𝐵𝐴

2 − 𝑣𝐷𝑦𝐹𝐴𝑧𝐵𝐴
3 + 𝑣𝐵𝑦𝐹𝐴𝑧𝐺𝐴

2 − 𝑣𝐺𝑦𝐹𝐴𝑧𝐵𝐴
2 + 𝑣𝐺𝑦𝐹𝐴𝑧𝐵𝐴

3

−𝑣𝐴𝑦𝐷𝐴𝑧𝐵𝐴𝑧𝐺𝐴 + 𝑣𝐵𝑦𝐷𝐴𝑧𝐵𝐴𝑧𝐺𝐴 + 𝑣𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴 − 𝑣𝐵𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴 + 𝑣𝐷𝑦𝐷𝐴𝑧𝐵𝐴𝑧𝐺𝐴
−𝑣𝐷𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴 − 𝑣𝐸𝑦𝐷𝐴𝑧𝐵𝐴𝑧𝐺𝐴 + 𝑣𝐸𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴 − 𝑣𝐴𝑦𝐷𝐴𝑧𝐵𝐴𝑧𝐺𝐴

2 + 𝑣𝐴𝑦𝐷𝐴𝑧𝐵𝐴
2 𝑧𝐺𝐴

+𝑣𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴
2 − 𝑣𝐴𝑦𝐹𝐴𝑧𝐵𝐴

2 𝑧𝐺𝐴 − 𝑣𝐷𝑦𝐷𝐴𝑧𝐵𝐴
2 𝑧𝐺𝐴 + 𝑣𝐷𝑦𝐹𝐴𝑧𝐵𝐴

2 𝑧𝐺𝐴 + 𝑣𝐹𝑦𝐷𝐴𝑧𝐵𝐴𝑧𝐺𝐴
2

−𝑣𝐹𝑦𝐷𝐴𝑧𝐵𝐴
2 𝑧𝐺𝐴 + 𝑣𝐸𝑦𝐷𝐴𝑧𝐵𝐴

2 𝑧𝐺𝐴 − 𝑣𝐸𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴
2 )

 
 
 
 

𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴(𝑦𝐷𝐴 − 𝑦𝐹𝐴)(𝑧𝐵𝐴 − 𝑧𝐺𝐴)

𝑏2 =
𝑣𝐷𝑧𝐵𝐴 − 𝑣𝐸𝑧𝐵𝐴 − 𝑣𝐷𝑧𝐺𝐴 + 𝑣𝐸𝑧𝐺𝐴

𝑧𝐵𝐴𝑧𝐺𝐴(𝑧𝐵𝐴 − 𝑧𝐺𝐴)

𝑏3 = −

𝑣𝐴𝑧𝐺𝐴
2 − 𝑣𝐷𝑧𝐵𝐴

2 + 𝑣𝐷𝑧𝐵𝐴
3 − 𝑣𝐵𝑧𝐺𝐴

2 + 𝑣𝐺𝑧𝐵𝐴
2 − 𝑣𝐺𝑧𝐵𝐴

3 − 𝑣𝐷𝑧𝐵𝐴𝑧𝐺𝐴
2 + 𝑣𝐸𝑧𝐵𝐴𝑧𝐺𝐴

2

−𝑣𝐴𝑧𝐵𝐴𝑧𝐺𝐴 + 𝑣𝐵𝑧𝐵𝐴𝑧𝐺𝐴 + 𝑣𝐷𝑧𝐵𝐴𝑧𝐺𝐴 − 𝑣𝐸𝑧𝐵𝐴𝑧𝐺𝐴
𝑦𝐷𝐴𝑧𝐵𝐴

2 𝑧𝐺𝐴(𝑧𝐵𝐴 − 𝑧𝐺𝐴)

𝑏4 = −
(

 
 
 
 
 

𝑣𝐴𝑦𝐷𝐴
2 𝑧𝐺𝐴

2 − 𝑣𝐷𝑦𝐷𝐴
2 𝑧𝐵𝐴

2 + 𝑣𝐷𝑦𝐷𝐴
2 𝑧𝐵𝐴

3 − 𝑣𝐵𝑦𝐷𝐴
2 𝑧𝐺𝐴

2 + 𝑣𝐺𝑦𝐷𝐴
2 𝑧𝐵𝐴

2 − 𝑣𝐺𝑦𝐷𝐴
2 𝑧𝐵𝐴

3

−𝑣𝐴𝑦𝐷𝐴
2 𝑧𝐵𝐴𝑧𝐺𝐴

2 + 𝑣𝐴𝑦𝐷𝐴
2 𝑧𝐵𝐴

2 𝑧𝐺𝐴 + 𝑣𝐴𝑦𝐹𝐴
2 𝑧𝐵𝐴𝑧𝐺𝐴

2 − 𝑣𝐴𝑦𝐹𝐴
2 𝑧𝐵𝐴

2 𝑧𝐺𝐴 − 𝑣𝐷𝑦𝐷𝐴
2 𝑧𝐵𝐴

2 𝑧𝐺𝐴
−𝑣𝐷𝑦𝐹𝐴

2 𝑧𝐵𝐴𝑧𝐺𝐴
2 + 𝑣𝐷𝑦𝐹𝐴

2 𝑧𝐵𝐴
2 𝑧𝐺𝐴 + 𝑣𝐹𝑦𝐷𝐴

2 𝑧𝐵𝐴𝑧𝐺𝐴
2 − 𝑣𝐹𝑦𝐷𝐴

2 𝑧𝐵𝐴
2 𝑧𝐺𝐴 + 𝑣𝐸𝑦𝐷𝐴

2 𝑧𝐵𝐴
2 𝑧𝐺𝐴

−𝑣𝐴𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐺𝐴
2 + 𝑣𝐷𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴

2 − 𝑣𝐷𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴
3 + 𝑣𝐵𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐺𝐴

2 − 𝑣𝐺𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴
2

+𝑣𝐺𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴
3 − 𝑣𝐴𝑦𝐷𝐴

2 𝑧𝐵𝐴𝑧𝐺𝐴 + 𝑣𝐵𝑦𝐷𝐴
2 𝑧𝐵𝐴𝑧𝐺𝐴 + 𝑣𝐷𝑦𝐷𝐴

2 𝑧𝐵𝐴𝑧𝐺𝐴 − 𝑣𝐸𝑦𝐷𝐴
2 𝑧𝐵𝐴𝑧𝐺𝐴

+𝑣𝐷𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴
2 − 𝑣𝐸𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴

2 + 𝑣𝐴𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴 − 𝑣𝐴𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴
−𝑣𝐵𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴 − 𝑣𝐷𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴 + 𝑣𝐸𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴 )

 
 
 
 
 

𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴(𝑦𝐷𝐴 − 𝑦𝐹𝐴)(𝑧𝐵𝐴 − 𝑧𝐺𝐴)

𝑏5 = −
(𝑣𝐴𝑧𝐺𝐴

2 − 𝑣𝐷𝑧𝐵𝐴
2 − 𝑣𝐵𝑧𝐺𝐴

2 + 𝑣𝐺𝑧𝐵𝐴
2 − 𝑣𝐺𝑧𝐵𝐴𝑧𝐺𝐴 + 𝑣𝐵𝑧𝐵𝐴𝑧𝐺𝐴 + 𝑣𝐷𝑧𝐵𝐴𝑧𝐺𝐴 − 𝑣𝐸𝑧𝐵𝐴𝑧𝐺𝐴)

𝑧𝐵𝐴𝑧𝐺𝐴(−𝑧𝐵𝐴
2 + 𝑧𝐺𝐴𝑧𝐵𝐴)

𝑏6 = 𝑣𝐴

      (3.34) 
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{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑐1 =
(

 
 
 
 

𝑤𝐴𝑦𝐷𝐴𝑧𝐺𝐴
2 − 𝑤𝐷𝑦𝐷𝐴𝑧𝐵𝐴

2 +𝑤𝐷𝑦𝐷𝐴𝑧𝐵𝐴
3 −𝑤𝐵𝑦𝐷𝐴𝑧𝐺𝐴

2 +𝑤𝐺𝑦𝐷𝐴𝑧𝐵𝐴
2 −𝑤𝐺𝑦𝐷𝐴𝑧𝐵𝐴

3

−𝑤𝐴𝑦𝐹𝐴𝑧𝐺𝐴
2 +𝑤𝐷𝑦𝐹𝐴𝑧𝐵𝐴

2 −𝑤𝐷𝑦𝐹𝐴𝑧𝐵𝐴
3 +𝑤𝐵𝑦𝐹𝐴𝑧𝐺𝐴

2 −𝑤𝐺𝑦𝐹𝐴𝑧𝐵𝐴
2 +𝑤𝐺𝑦𝐹𝐴𝑧𝐵𝐴

3

−𝑤𝐴𝑦𝐷𝐴𝑧𝐵𝐴𝑧𝐺𝐴 +𝑤𝐵𝑦𝐷𝐴𝑧𝐵𝐴𝑧𝐺𝐴 +𝑤𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴 −𝑤𝐵𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴 +𝑤𝐷𝑦𝐷𝐴𝑧𝐵𝐴𝑧𝐺𝐴
−𝑤𝐷𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴 −𝑤𝐸𝑦𝐷𝐴𝑧𝐵𝐴𝑧𝐺𝐴 +𝑤𝐸𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴 −𝑤𝐴𝑦𝐷𝐴𝑧𝐵𝐴𝑧𝐺𝐴

2 +𝑤𝐴𝑦𝐷𝐴𝑧𝐵𝐴
2 𝑧𝐺𝐴

+𝑤𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴
2 −𝑤𝐴𝑦𝐹𝐴𝑧𝐵𝐴

2 𝑧𝐺𝐴 −𝑤𝐷𝑦𝐷𝐴𝑧𝐵𝐴
2 𝑧𝐺𝐴 +𝑤𝐷𝑦𝐹𝐴𝑧𝐵𝐴

2 𝑧𝐺𝐴 +𝑤𝐹𝑦𝐷𝐴𝑧𝐵𝐴𝑧𝐺𝐴
2

−𝑤𝐹𝑦𝐷𝐴𝑧𝐵𝐴
2 𝑧𝐺𝐴 +𝑤𝐸𝑦𝐷𝐴𝑧𝐵𝐴

2 𝑧𝐺𝐴 −𝑤𝐸𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴
2 )

 
 
 
 

𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴(𝑦𝐷𝐴 − 𝑦𝐹𝐴)(𝑧𝐵𝐴 − 𝑧𝐺𝐴)

𝑐2 =
𝑤𝐷𝑧𝐵𝐴 −𝑤𝐺𝑧𝐵𝐴 − 𝑤𝐷𝑧𝐸𝐴 +𝑤𝐸𝑧𝐺𝐴

𝑧𝐵𝐴𝑧𝐺𝐴(𝑧𝐵𝐴 − 𝑧𝐺𝐴)

𝑐3 = −

𝑤𝐴𝑧𝐺𝐴
2 −𝑤𝐷𝑧𝐵𝐴

2 +𝑤𝐷𝑧𝐵𝐴
3 −𝑤𝐵𝑧𝐺𝐴

2 +𝑤𝐺𝑧𝐵𝐴
2 −𝑤𝐺𝑧𝐵𝐴

3 −𝑤𝐷𝑧𝐵𝐴𝑧𝐺𝐴
2 +𝑤𝐸𝑧𝐵𝐴𝑧𝐺𝐴

2

−𝑤𝐴𝑧𝐵𝐴𝑧𝐺𝐴 +𝑤𝐵𝑧𝐵𝐴𝑧𝐺𝐴 +𝑤𝐷𝑧𝐵𝐴𝑧𝐺𝐴 −𝑤𝐸𝑧𝐵𝐴𝑧𝐺𝐴
𝑦𝐷𝐴𝑧𝐵𝐴

2 𝑧𝐺𝐴(𝑧𝐵𝐴 − 𝑧𝐺𝐴)

𝑐4 = −
(

 
 
 
 
 

𝑤𝐴𝑦𝐷𝐴
2 𝑧𝐺𝐴

2 −𝑤𝐷𝑦𝐷𝐴
2 𝑧𝐵𝐴

2 +𝑤𝐷𝑦𝐷𝐴
2 𝑧𝐵𝐴

3 −𝑤𝐵𝑦𝐷𝐴
2 𝑧𝐺𝐴

2 +𝑤𝐺𝑦𝐷𝐴
2 𝑧𝐵𝐴

2 − 𝑤𝐺𝑦𝐷𝐴
2 𝑧𝐵𝐴

3

−𝑤𝐴𝑦𝐷𝐴
2 𝑧𝐵𝐴𝑧𝐺𝐴

2 +𝑤𝐴𝑦𝐷𝐴
2 𝑧𝐵𝐴

2 𝑧𝐺𝐴 +𝑤𝐴𝑦𝐹𝐴
2 𝑧𝐵𝐴𝑧𝐺𝐴

2 −𝑤𝐴𝑦𝐹𝐴
2 𝑧𝐵𝐴

2 𝑧𝐺𝐴 −𝑤𝐷𝑦𝐷𝐴
2 𝑧𝐵𝐴

2 𝑧𝐺𝐴
−𝑤𝐷𝑦𝐹𝐴

2 𝑧𝐵𝐴𝑧𝐺𝐴
2 +𝑤𝐷𝑦𝐹𝐴

2 𝑧𝐵𝐴
2 𝑧𝐺𝐴 +𝑤𝐹𝑦𝐷𝐴

2 𝑧𝐵𝐴𝑧𝐺𝐴
2 −𝑤𝐹𝑦𝐷𝐴

2 𝑧𝐵𝐴
2 𝑧𝐺𝐴 +𝑤𝐸𝑦𝐷𝐴

2 𝑧𝐵𝐴
2 𝑧𝐺𝐴

−𝑤𝐴𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐺𝐴
2 +𝑤𝐷𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴

2 −𝑤𝐷𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴
3 +𝑤𝐵𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐺𝐴

2 − 𝑤𝐺𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴
2

+𝑤𝐺𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴
3 −𝑤𝐴𝑦𝐷𝐴

2 𝑧𝐵𝐴𝑧𝐺𝐴 +𝑤𝐵𝑦𝐷𝐴
2 𝑧𝐵𝐴𝑧𝐺𝐴 +𝑤𝐷𝑦𝐷𝐴

2 𝑧𝐵𝐴𝑧𝐺𝐴 − 𝑤𝐸𝑦𝐷𝐴
2 𝑧𝐵𝐴𝑧𝐺𝐴

+𝑤𝐷𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴
2 −𝑤𝐸𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴

2 +𝑤𝐴𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴 −𝑤𝐴𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴
−𝑤𝐵𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴 −𝑤𝐷𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴 +𝑤𝐸𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴 )

 
 
 
 
 

𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴(𝑦𝐷𝐴 − 𝑦𝐹𝐴)(𝑧𝐵𝐴 − 𝑧𝐺𝐴)

𝑐5 = −
(𝑤𝐴𝑧𝐺𝐴

2 −𝑤𝐷𝑧𝐵𝐴
2 −𝑤𝐵𝑧𝐺𝐴

2 +𝑤𝐺𝑧𝐵𝐴
2 −𝑤𝐺𝑧𝐵𝐴𝑧𝐺𝐴 +𝑤𝐵𝑧𝐵𝐴𝑧𝐺𝐴 +𝑤𝐷𝑧𝐵𝐴𝑧𝐺𝐴 −𝑤𝐸𝑧𝐵𝐴𝑧𝐺𝐴)

𝑧𝐵𝐴𝑧𝐺𝐴(−𝑧𝐵𝐴
2 + 𝑧𝐺𝐴𝑧𝐵𝐴)

𝑐6 = 𝑤𝐴

 

After replacing 𝑦, 𝑧 by 𝑦𝑖 , 𝑧𝑖 in Eq. (3.20), one obtains equations to be applied at slave node i: 

{

𝑢(𝑦𝑖 , 𝑧𝑖) = 𝑢𝑖
𝑆 = 𝑦𝑖𝑧𝑖

3𝑎1 + 𝑧𝑖𝑦𝑖
3𝑎2 + 𝑦𝑖𝑧𝑖𝑎3 + 𝑦𝑖𝑎4 + 𝑧𝑖𝑎5 + 𝑎6

𝑣(𝑦𝑖 , 𝑧𝑖) = 𝑣𝑖
𝑆 = 𝑦𝑖

2𝑏1 + 𝑧𝑖
2𝑏2 + 𝑦𝑖𝑧𝑖𝑏3 + 𝑦𝑖𝑏4 + 𝑧𝑖𝑏5 + 𝑏6  

𝑤(𝑦𝑖 , 𝑧𝑖) = 𝑤𝑖
𝑆 = 𝑦𝑖

2𝑐1 + 𝑧𝑖
2𝑐2 + 𝑦𝑖𝑧𝑖𝑐3 + 𝑦𝑖𝑐4 + 𝑧𝑖𝑐5 + 𝑐6

 (3.35) 

with coefficients 𝑎1 to 𝑎6, 𝑏1 to 𝑏6, and 𝑐1 to 𝑐6 defined in Eq. (3.34). 

This model contains eighteen master degrees of freedom per cross-section. Eq. (3.35) describes 

linear relations between slave and master degrees of freedom. 

3.3.5 SB2-3D model 

The methodology is now applied to build the SB2-3D model. This model exploits eight master nodes 

A, B, C, D, E, F, G and H, as shown in Fig. 3.7. Eq. (3.21) contains eight coefficients (𝑎1 to 𝑎8) to be 

determined for displacement u, six coefficients (𝑏1 to 𝑏6) for displacement v and six coefficients (𝑐1 and 

𝑐6) for displacement w. Besides, the coefficients 𝑏1 to 𝑏6 and 𝑐1 to 𝑐6 are the same as the coefficients 

defined in Section 3.3.4. To identify the first eight coefficients, the following equations are used: 
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{
 
 
 
 

 
 
 
 
𝑢(𝑦𝐴, 𝑧𝐴) = 𝑢𝐴 = 𝑦𝐴𝑧𝐴

3𝑎1 + 𝑦𝐴
3𝑧𝐴𝑎2 + 𝑦𝐴

3𝑎3 + 𝑧𝐴
3𝑎4 + 𝑦𝐴𝑧𝐴𝑎5 + 𝑦𝐴𝑎6 + 𝑧𝐴𝑎7 + 𝑎8

𝑢(𝑦𝐵, 𝑧𝐵) = 𝑢𝐵 = 𝑦𝐵𝑧𝐵
3𝑎1 + 𝑦𝐵

3𝑧𝐵𝑎2 + 𝑦𝐵
3𝑎3 + 𝑧𝐵

3𝑎4 + 𝑦𝐵𝑧𝐴𝑎5 + 𝑦𝐵𝑎6 + 𝑧𝐵𝑎7 + 𝑎8
𝑢(𝑦𝐶 , 𝑧𝐶) = 𝑢𝐶 = 𝑦𝐶𝑧𝐶

3𝑎1 + 𝑦𝐶
3𝑧𝐴𝑎2 + 𝑦𝐶

3𝑎3 + 𝑧𝐶
3𝑎4 + 𝑦𝐶𝑧𝐶𝑎5 + 𝑦𝐶𝑎6 + 𝑧𝐶𝑎7 + 𝑎8

𝑢(𝑦𝐷 , 𝑧𝐷) = 𝑢𝐷 = 𝑦𝐷𝑧𝐷
3𝑎1 + 𝑦𝐷

3𝑧𝐷𝑎2 + 𝑦𝐷
3𝑎3 + 𝑧𝐷

3𝑎4 + 𝑦𝐷𝑧𝐴𝑎5 + 𝑦𝐷𝑎6 + 𝑧𝐷𝑎7 + 𝑎8
𝑢(𝑦𝐸 , 𝑧𝐸) = 𝑢𝐸 = 𝑦𝐸𝑧𝐸

3𝑎1 + 𝑦𝐸
3𝑧𝐸𝑎2 + 𝑦𝐸

3𝑎3 + 𝑧𝐸
3𝑎4 + 𝑦𝐸𝑧𝐸𝑎5 + 𝑦𝐸𝑎6 + 𝑧𝐸𝑎7 + 𝑎8

𝑢(𝑦𝐹 , 𝑧𝐹) = 𝑢𝐹 = 𝑦𝐹𝑧𝐹
3𝑎1 + 𝑦𝐹

3𝑧𝐹𝑎2 + 𝑦𝐹
3𝑎3 + 𝑧𝐹

3𝑎4 + 𝑦𝐹𝑧𝐴𝑎5 + 𝑦𝐹𝑎6 + 𝑧𝐹𝑎7 + 𝑎8
𝑢(𝑦𝐺 , 𝑧𝐺) = 𝑢𝐺 = 𝑦𝐺𝑧𝐺

3𝑎1 + 𝑦𝐺
3𝑧𝐺𝑎2 + 𝑦𝐺

3𝑎3 + 𝑧𝐺
3𝑎4 + 𝑦𝐺𝑧𝐺𝑎5 + 𝑦𝐺𝑎6 + 𝑧𝐺𝑎7 + 𝑎8

𝑢(𝑦𝐻 , 𝑧𝐻) = 𝑢𝐻 = 𝑦𝐻𝑧𝐻
3𝑎1 + 𝑦𝐻

3𝑧𝐻𝑎2 + 𝑦𝐻
3𝑎3 + 𝑧𝐻

3𝑎4 + 𝑦𝐻𝑧𝐻𝑎5 + 𝑦𝐻𝑎6 + 𝑧𝐻𝑎7 + 𝑎8

 (3.36) 

where 𝑢𝐴, 𝑢𝐵, 𝑢𝐶 , 𝑢𝐷 , 𝑢𝐸 , 𝑢𝐹 , 𝑢𝐺 , 𝑢𝐻 are the displacements at master nodes; 𝑧𝐴, 𝑧𝐵, 𝑧𝐶 , 𝑧𝐷 , 𝑧𝐸 , 𝑧𝐹 , 𝑧𝐺 , 𝑧𝐻 

and 𝑦𝐴, 𝑦𝐵, 𝑦𝐶 , 𝑦𝐷 , 𝑦𝐸 , 𝑦𝐹 , 𝑦𝐺 , 𝑦𝐻 are the coordinates of master nodes. 

For simplification, point A on the cross-section can be supposed as the relative origin in the 

coordinate system. Therefore, some equality relations between the coordinates can be expressed as: 

{
 
 

 
 
𝑦𝐵 = 𝑦𝐶 = 0
𝑦𝐷𝐴 = 𝑦𝐷 − 𝑦𝐴 = 𝑦𝐸𝐴 = 𝑦𝐺𝐴
𝑦𝐹𝐴 = 𝑦𝐹 − 𝑦𝐴 = 𝑦𝐻𝐴
𝑧𝐷 = 𝑧𝐻 = 0
𝑧𝐵𝐴 = 𝑧𝐵 − 𝑧𝐴 = 𝑧𝐹𝐴 = 𝑧𝐸𝐴
𝑧𝐺𝐴 = 𝑧𝐺 − 𝑧𝐴 = 𝑧𝐶

 (3.37) 

where 𝑦𝐷𝐴, 𝑦𝐸𝐴, 𝑦𝐹𝐴, 𝑦𝐺𝐴, 𝑦𝐻𝐴, 𝑧𝐵𝐴, 𝑧𝐸𝐴, 𝑧𝐹𝐴, 𝑧𝐺𝐴  and 𝑧𝐻𝐴 are the relative coordinates of points B, D, 

E, F, G and H to point A in the y and z directions. 

Considering Eq. (3.37), the expressions of coefficients identified for each cross-section are: 
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{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑎1 = −

𝑢𝐴𝑧𝐵𝐴 − 𝑢𝐶𝑧𝐵𝐴 − 𝑢𝐴𝑧𝐺𝐴 − 𝑢𝐷𝑧𝐵𝐴 + 𝑢𝐵𝑧𝐺𝐴 + 𝑢𝐺𝑧𝐵𝐴 + 𝑢𝐷𝑧𝐺𝐴 − 𝑢𝐸𝑧𝐺𝐴
𝑦𝐷𝐴𝑧𝐵𝐴𝑧𝐺𝐴(𝑧𝐵𝐴 + 𝑧𝐺𝐴)(𝑧𝐵𝐴 − 𝑧𝐺𝐴)

𝑎2 = −
𝑢𝐴𝑦𝐷𝐴 − 𝑢𝐵𝑦𝐷𝐴 − 𝑢𝐴𝑦𝐹𝐴 + 𝑢𝐵𝑦𝐹𝐴 + 𝑢𝐷𝑦𝐹𝐴 + 𝑢𝐹𝑦𝐷𝐴 − 𝑢𝐻𝑦𝐷𝐴 − 𝑢𝐸𝑦𝐹𝐴

𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴(𝑦𝐷𝐴
2 − 𝑦𝐹𝐴

2 )

𝑎3 =
𝑢𝐴𝑦𝐷𝐴 − 𝑢𝐴𝑦𝐹𝐴 + 𝑢𝐷𝑦𝐹𝐴 − 𝑢𝐻𝑦𝐷𝐴

𝑦𝐷𝐴𝑦𝐹𝐴(𝑦𝐷𝐴
2 − 𝑦𝐹𝐴

2 )

𝑎4 =
𝑢𝐴𝑧𝐵𝐴 − 𝑢𝐶𝑧𝐵𝐴 − 𝑢𝐴𝑧𝐺𝐴 + 𝑢𝐵𝑧𝐺𝐴

𝑧𝐵𝐴𝑧𝐺𝐴(𝑧𝐵𝐴
2 − 𝑧𝐺𝐴

2 )

𝑎5 = −
(

 
 
 
 

𝑢𝐴𝑦𝐹𝐴
3 𝑧𝐵𝐴

3 + 𝑢𝐴𝑦𝐷𝐴
3 𝑧𝐺𝐴

3 − 𝑢𝐵𝑦𝐷𝐴
3 𝑧𝐺𝐴

3 − 𝑢𝐶𝑦𝐹𝐴
3 𝑧𝐵𝐴

3 − 𝑢𝐴𝑦𝐹𝐴
3 𝑧𝐺𝐴

3

−𝑢𝐷𝑦𝐹𝐴
3 𝑧𝐵𝐴

3 + 𝑢𝐵𝑦𝐹𝐴
3 𝑧𝐺𝐴

3 + 𝑢𝐺𝑦𝐹𝐴
3 𝑧𝐵𝐴

3 + 𝑢𝐷𝑦𝐹𝐴
3 𝑧𝐺𝐴

3 + 𝑢𝐹𝑦𝐷𝐴
3 𝑧𝐺𝐴

3

−𝑢𝐻𝑦𝐷𝐴
3 𝑧𝐺𝐴

3 − 𝑢𝐸𝑦𝐹𝐴
3 𝑧𝐺𝐴

3 − 𝑢𝐴𝑦𝐷𝐴
2 𝑦𝐹𝐴𝑧𝐵𝐴

3 + 𝑢𝐶𝑦𝐷𝐴
2 𝑦𝐹𝐴𝑧𝐵𝐴

3

+𝑢𝐷𝑦𝐷𝐴
2 𝑦𝐹𝐴𝑧𝐵𝐴

3 − 𝑢𝐺𝑦𝐷𝐴
2 𝑦𝐹𝐴𝑧𝐵𝐴

3 − 𝑢𝐴𝑦𝐷𝐴
3 𝑧𝐵𝐴

2 𝑧𝐺𝐴 + 𝑢𝐵𝑦𝐷𝐴
3 𝑧𝐵𝐴

2 𝑧𝐺𝐴
−𝑢𝐹𝑦𝐷𝐴

3 𝑧𝐵𝐴
2 𝑧𝐺𝐴 + 𝑢𝐻𝑦𝐷𝐴

3 𝑧𝐵𝐴
2 𝑧𝐺𝐴 + 𝑢𝐴𝑦𝐷𝐴

2 𝑦𝐹𝐴𝑧𝐵𝐴
2 𝑧𝐺𝐴 − 𝑢𝐵𝑦𝐷𝐴

2 𝑦𝐹𝐴𝑧𝐵𝐴
2 𝑧𝐺𝐴

−𝑢𝐷𝑦𝐷𝐴
2 𝑦𝐹𝐴𝑧𝐵𝐴

2 𝑧𝐺𝐴 + 𝑢𝐸𝑦𝐷𝐴
2 𝑦𝐹𝐴𝑧𝐵𝐴

2 𝑧𝐺𝐴 )

 
 
 
 

𝑦𝐷𝐴𝑦𝐹𝐴𝑧𝐵𝐴𝑧𝐺𝐴(𝑧𝐵𝐴 + 𝑧𝐺𝐴)(𝑧𝐵𝐴 − 𝑧𝐺𝐴)(𝑦𝐷𝐴
2 − 𝑦𝐹𝐴

2 )

𝑎6 = −
𝑢𝐴𝑦𝐷𝐴

3 − 𝑢𝐴𝑦𝐹𝐴
3 + 𝑢𝐷𝑦𝐹𝐴

3 − 𝑢𝐻𝑦𝐷𝐴
3

𝑦𝐷𝐴𝑦𝐹𝐴(𝑦𝐷𝐴
2 − 𝑦𝐹𝐴

2 )

𝑎7 = −
𝑢𝐴𝑧𝐵𝐴

3 − 𝑢𝐶𝑧𝐵𝐴
3 − 𝑢𝐴𝑧𝐺𝐴

3 + 𝑢𝐵𝑧𝐺𝐴
3

𝑧𝐵𝐴𝑧𝐺𝐴(𝑧𝐵𝐴
2 − 𝑧𝐺𝐴

2 )

𝑎8 = 𝑢𝐴

 (3.38) 

As mentioned above, the coefficients 𝑏1 to 𝑏6, 𝑐1 to 𝑐6 are the same as the coefficients defined in 

Section 3.3.4. After replacing 𝑦, 𝑧 by 𝑦𝑖 , 𝑧𝑖 in Eq. (3.21), one obtains equations to be applied at slave 

node i: 

{

𝑢(𝑦𝑖 , 𝑧𝑖) = 𝑢𝑖
𝑆 = 𝑦𝑖𝑧𝑖

3𝑎1 + 𝑧𝑖𝑦𝑖
3𝑎2 + 𝑦𝑖

3𝑎3 + 𝑧𝑖
3𝑎4 + 𝑦𝑖𝑧𝑖𝑎5 + 𝑦𝑖𝑎6 + 𝑧𝑖𝑎7 + 𝑎8

𝑣(𝑦𝑖 , 𝑧𝑖) = 𝑣𝑖
𝑆 = 𝑦𝑖

2𝑏1 + 𝑧𝑖
2𝑏2 + 𝑦𝑖𝑧𝑖𝑏3 + 𝑦𝑖𝑏4 + 𝑧𝑖𝑏5 + 𝑏6  

𝑤(𝑦𝑖 , 𝑧𝑖) = 𝑤𝑖
𝑆 = 𝑦𝑖

2𝑐1 + 𝑧𝑖
2𝑐2 + 𝑦𝑖𝑧𝑖𝑐3 + 𝑦𝑖𝑐4 + 𝑧𝑖𝑐5 + 𝑐6

 (3.39) 

with coefficients 𝑎1 to 𝑎8, 𝑏1 to 𝑏6, and 𝑐1 to 𝑐6 defined in Eq. (3.38) and Section 3.3.4. 

. This model contains twenty master degrees of freedom per cross-section. Eq. (3.39) describes 

linear relations between slave and master degrees of freedom. 

3.3.6 Remarks 

The method is the same for the five beam theories considered in Sections 3.3.1 to 3.3.5. The only 

difference is the number of master degrees of freedom per cross-section, namely three, eight, nine, 

eighteen and twenty for the FOSB, MFOSB, HOSB, SB1-3D and SB2-3D models respectively. Among 

them, the first three models for a beam in plane will be assessed through static examples, and the latter 
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two models for a beam in space will be assessed through vibration examples. The number of equations 

applied is equal to the number of slave degrees of freedom which are eliminated. Consequently, the 

model size does not depend on the number of nodes in each cross-section but is given by the number of 

master degrees of freedom. As described above, all the relations between master and slave degrees of 

freedom are linear. For implementation, the “*EQUATION” keyword in Abaqus [61] is used to 

introduce these linear equations. In the post-processing step, displacements are available for all the nodes. 

Then the stresses can be calculated in all the elements. The average value at nodes is retained to evaluate 

the stresses.  

This new solid-beam approach uses displacements exclusively, without rotations or other types of 

degrees of freedom. It is an interesting characteristic of our methodology, particularly for higher-order 

theories that initially use not only displacements and rotations but also other types of degrees of freedom. 

Moreover, other displacement fields can also be applied in our approach, for instance, an even higher-

order beam theory can be considered if necessary. 

3.4 Static examples 

The new solid-beam approach for FOSB, MFOSB and HOSB models is here used for the treatment 

of two examples with thin and thick cases in the context of static analysis: a straight beam with square 

cross-section under distributed loading and a curved beam with square cross-section under distributed 

loading. A convergence study is made for each example. The displacement and the von Mises stress are 

studied. The finite element results obtained with the solid-beam models are evaluated by comparison 

with a reference solid model. The reduction of model size due to the solid-beam approach is discussed. 

The compatibility of the solid-beam approach with another efficient solid element is also proved. 

3.4.1 Straight beam with square cross-section under distributed loading 

3.4.1.1 Presentation of the example 

The straight beam with square cross-section is presented in Fig. 3.8. The structure is clamped at its 

two ends and submitted to a distributed loading applied on the upper surface. A relatively thin beam 

case (l/h=20) as well as a thick beam one (l/h=5), are considered. 
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Fig. 3.8. Straight beam with square cross-section under distributed loading − Presentation of the example.  

3.4.1.2 Convergence study 

A convergence study is presented, to ensure that solid-beam approach meets the convergence 

conditions and to compare its performances with those of the solid approach. In this example, the twenty-

node hexahedral finite element C3D20 of Abaqus [61] is used. The displacement for several mesh 

refinement levels is observed in the center (point M in Fig. 3.8) of the bottom surface. The solid models 

with very fine 8×8×100 and 8×8×60 meshes are respectively chosen as the reference for thin and thick 

cases. Convergence is considered to be achieved if the error is less than 0.5% compared with these 

reference models. The results of thin and thick cases are reported in Table 3.1 and Table 3.2 respectively. 

The solid model and the HOSB model give very close results and convergence is obtained with a 4×4×40 

mesh in the thin case and a 4×4×20 mesh in the thick one. The MFOSB model is satisfactory in the thin 

case but leads to a small error in the thick one, even for a refined mesh. The FOSB model converges to 

completely wrong values compared with the reference solid model. Consequently this model is 

unacceptable. 
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Table 3.1. Straight beam with square cross-section under distributed loading − 

Convergence study of displacement w at point M in the thin case.  

 

Mesh  Models Displacement w (mm) Error (%) 

8×8×100 Reference  -2.427 − 

1×1×10 

Solid  -2.314 4.7 

HOSB − − 

MFOSB − − 

FOSB -1.825 24.8 

2×2×20 

Solid  -2.400 1.1 

HOSB -2.406 0.9 

MFOSB -2.396 1.3 

FOSB -1.830 24.6 

4×4×40 

Solid  -2.420 0.3 

HOSB -2.422 0.2 

MFOSB -2.417 0.4 

FOSB -1.831 24.6 

 

Table 3.2. Straight beam with square cross-section under distributed loading − 

Convergence study of displacement w at point M in the thick case.  

Mesh  Models Displacement w (×10-2mm) Error (%) 

8×8×60 Reference  -1.316 − 

1×1×6 

Solid  -1.203 8.6 

HOSB − − 

MFOSB − − 

FOSB -1.075 18.3 

2×2×10 

Solid  -1.288 2.1 

HOSB -1.285 2.4 

MFOSB -1.280 2.7 

FOSB -1.077 18.2 

4×4×20 

Solid  -1.310 0.5 

HOSB -1.309 0.5 

MFOSB -1.299 1.3 

FOSB -1.078 18.1 
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3.4.1.3 Displacements and stresses in the thin case 

First displacements as well as von Mises stresses are observed over the whole structure. The 

comparison of the results between solid, HOSB and MFOSB models are presented in Fig. 3.9. The 

FOSB model is not considered because its convergence performance is not satisfactory. These results 

are obtained with the 4×4×40 mesh, which meets the convergence criterion as highlighted in Section 

3.4.1.2. The vertical displacements and von Mises stresses obtained with the three models are very 

similar to each other. 

 

Fig. 3.9. Straight beam with square cross-section under distributed loading − Displacement w and von Mises 

stress distribution in the thin case.  

The distribution of vertical displacement along the mid-axis and von Mises stress along a line on 

the lower surface is shown in Fig. 3.10. The solid-beam models are compared with the solid model and 

two classical beam models. The elements B21 and B23 in Abaqus are used for representing the thick 

beam and thin beam models respectively. A mesh containing forty B21 or B23 finite elements, which 

meets the convergence criterion, is considered for the thin beam and thick beam models. All the models 

have similar results for displacements and stresses except the FOSB model which shows significant 

errors. These errors are essentially due to a spurious σzz stress state being discussed below. 
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Fig. 3.10. Straight beam with square cross-section under distributed loading − Distribution of vertical 

displacement along the mid-axis (a) and von Mises stress along a line on the lower surface (b), in the thin 

case. 

Fig. 3.11 presents the through-the-thickness distribution of displacements and stresses along a line 

JK (see Fig. 3.8). The solid model is considered as the reference. Firstly, the FOSB model shows 

unsatisfactory results, especially for displacement w (Fig. 3.11b) and σzz stress (Fig. 3.11e). Because w 

is considered as constant through the thickness, the εzz strain is equal to zero, which is not correct due to 

the Poisson effect. This nonphysical assumption greatly disturbs the state of stress in the 3D elasticity 

situation. Particularly, it implies large σzz stress, which should remain very small in this thin beam case. 

Therefore, the von Mises stress depending on the different stress components is affected and this 

explains the bad results reported in Fig. 3.10. These poor results confirm that this kinematic assumption 

is not compatible with 3D theory of elasticity, although consistent and valid in the context of the classical 

beam theory. Furthermore, the FOSB model also gives a constant σxz stress distribution (Fig. 3.11d), 

which is a well-known limitation of the Timoshenko beam theory. Usually, the integration of 

equilibrium equations is used to obtain a quadratic and correct distribution of transverse shear stresses. 

The reference displacement u (Fig. 3.11a) is linear and both the MOFSB and HOSB models perfect 

fit this distribution. The displacement w is also well predicted by these two solid-beam models. This 

component seems to be constant but actually has a slight quadratic tendency. One can observe linear 

distribution of σxx stress (Fig. 3.11c) and again the MOFSB and HOSB models provide good results. 

The HOSB model accurately reproduces the classical quadratic distribution of σxz stress. Namely, the 



80 

 

free-face condition σxz = 0 is almost met at top and bottom surfaces. Thanks to the quadratic distribution 

of displacement w, the MFOSB model also exhibits a quadratic trend, but a significant discrepancy with 

the reference result is observed. Namely the free-face condition mentioned above is not met. However, 

it is not important for this thin case since transverse shear stresses are usually neglected in thin structures 

and the influence of transverse shear effects on displacements is small. In summary the HOSB model 

gives outstanding results for the thin case, while the MOFSB model is also satisfactory but cannot 

perfectly reproduce the transverse shear effects. Anyway, one can neglect these effects for a thin 

structure. Finally, the FOSB model is not able to provide good results, and thus is not considered for the 

rest of the study. 

 

Fig. 3.11. Straight beam with square cross-section under distributed loading − Through-the-thickness 

displacement and stresses along a line JK, in the thin case. 

3.4.1.4 Displacements and stresses in the thick case 

As for the thin case first of all displacements and von Mises stresses are observed over the whole 

structure. The comparison of results obtained with the solid, MOFSB and HOSB models are shown in 

Fig. 3.12. The 4×4×20 mesh, which meets the convergence criterion as highlighted in Section 3.4.1.2, 

is used. The solid model and the HOSB model perform similar results in this global observation. For the 

MOFSB model, some little difference appears on displacement and von Mises stress in this thick beam 

case. 
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Fig. 3.12. Straight beam with square cross-section under distributed loading − Displacement w and von Mises 

stress distribution in the thick case.  

Fig. 3.13 presents the distribution of vertical displacement along the mid-axis and von Mises stress 

along a line on the lower surface. The solid model and solid-beam models use the 4×4×20 mesh, while 

the beam models use a mesh with twenty elements, which both satisfy the convergence criterion. For 

displacement, the HOSB model fits very well with the solid one. Significant error is obtained with the 

thin beam model which neglects transverse shear effects. Relatively small errors appear with the thick 

beam model and the MFOSB model. For von Mises stress, again the HOSB model has a perfect fit with 

the reference, while the beam models lead to small errors in the boundary conditions area. The 

discrepancy shown with the MFOSB model is due to a rough calculation of transverse stresses which 

play a significant role in thick structures. Therefore, the HOSB model is confirmed to properly predict 

the mechanical behavior of a thick beam which is submitted to significant transverse shear effects. 
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Fig. 3.13. Straight beam with square cross-section under distributed loading − Distribution of vertical 

displacement along the mid-axis (a) and von Mises stress along a line on the lower surface (b), in the thick 

case. 

Fig. 3.14 shows the distribution of displacements and stresses along a line JK (see Fig. 3.8), again 

the solid model being the reference. Several limitations are shown with the MFOSB model. The 

quadratic tendency of displacement w (Fig. 3.14b) is reproduced but the values are incorrect, which 

means the stiffness is not well estimated. This is due to the fact that transverse shear stiffness is not 

precisely calculated. Namely, this model fails in reproducing the quadratic distribution of the reference 

stress σxz (Fig. 3.14d). Moreover, the free-face condition σxz = 0 is not met at top and bottom surfaces. 

And obviously, the transverse shear effects play an important role in the thick case. The classical 

Timoshenko beam theory is associated with shear correction factors to avoid the limitation caused by 

kinematic assumptions. But in our solid-beam approach, no correction factor is introduced. Of course, 

this wrong σxz distribution consequently leads to errors on the von Mises stress, as highlighted in Fig. 

3.13. Besides, this MFOSB model cannot replicate the slight nonlinear distribution of displacement u 

(Fig. 3.14a) and stress σxx (Fig. 3.14c). On the contrary, the HOSB model shows an excellent fit with 

the solid model. It correctly predicts the quadratic distribution of displacement w, the nonlinear 

distribution of stress σxx and the quadratic distribution of stress σxz. In particular, the free-face condition 

σxz = 0 is almost met at top and bottom surfaces. Moreover the distribution of stress σzz (Fig. 3.14e) is 

also correctly predicted. 
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Fig. 3.14. Straight beam with square cross-section under distributed loading − Through-the-thickness 

displacement and stresses along a line JK, in the thick case. 

3.4.1.5 Accuracy synthesis of solid-beam models 

Table 3.3 summarizes the errors obtained with the solid-beam models in the thin and thick cases. 

These errors are calculated at center (point Q in Fig. 3.8) and corner (point N in Fig. 3.8) corresponding 

to the maximal displacement and von Mises stress respectively. The MFOSB model shows good 

performance in the thin case, the maximal error being limited to about 1% for the displacement and von 

Mises stress. The HOSB model even works better because transverse shear effects are not completely 

negligible in this thin case. Actually, the l/h ratio equaling to 20 is not characteristic of a very thin beam. 

For the thick case, the HOSB model remains satisfactory with errors not exceeding 1.5%. The MFOSB 

model is less efficient, errors are close to 5% for the displacement and 9% for the von Mises stress. 

Summarily, the MFOSB model is convenient for the thin case only, while the HOSB model gives 

excellent results in both the thin and thick cases. Additionally, the same study has been performed with 

the eight-node hexahedral element C3D8I of Abaqus. Similar results have been obtained showing that 

the solid-beam methodology can be used with any efficient solid element. 
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Table 3.3. Straight beam with square cross-section under distributed loading − Errors on maximal 

displacement and maximal von Mises stress. 

Examples Models 
Displacement w  von Mises stress  

Maximum (×10-2mm) Error (%) Maximum (MPa) Error (%) 

Thin case 

Solid  -243.2 − 184.5 − 

HOSB  -242.9 0.1 183.6 0.5 

MFOSB -242.0 0.5 182.4 1.1 

Thick case 

Solid  -1.361 − 11.76 − 

HOSB  -1.355 0.4 11.59 1.4 

MFOSB -1.299 4.6 10.76 8.5 
 

3.4.2 Curved beam with square cross-section under distributed loading 

3.4.2.1 Presentation of the example 

The second example is a curved beam with a square cross-section. The structure is clamped at its 

two ends and submitted to a distributed vertical loading applied on the top surface, as shown in Fig. 

3.15a. A relatively thin beam case (r/h=10) as well as a thick beam one (r/h=10/3), are considered. This 

structure is curved, which leads to the coupling of bending and membrane effects, compared with the 

first example for which the structure is submitted to pure bending effects only. Furthermore, local 

coordinate systems (see in Fig. 3.15b) are created for each cross-section to apply kinematic relations. 

 

Fig. 3.15. Curved beam with square cross-section under distributed loading − Presentation of the example. 

3.4.2.2 Convergence study 

The same type of convergence study detailed in Section 3.4.1.2 is presented here. Again, the element 

C3D20 is used. The evolution of displacement for different mesh refinement levels at point M (see Fig. 
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3.15a) is observed. A solid model with a very fine 8×8×100 mesh is chosen to be a reference. The 

convergence is considered to be achieved if the error is less than 0.5% compared with the reference. The 

results of thin and thick cases are reported in Table 3.4 and Table 3.5 respectively. The observations are 

similar, compared to the first example. The solid model and the HOSB model give very close results 

and convergence is obtained with a 4×4×50 mesh in the thin and thick cases. The MFOSB model is 

satisfactory in the thin case but leads to a small error in the thick one, even for a refined mesh. 

Table 3.4. Curved beam with square cross-section under distributed loading − 

Convergence study of displacement w at point M in the thin case.  

Mesh Models Displacement w (×10-1mm) Error (%) 

8×8×100 Reference -9.723 − 

1×1×10 

Solid  -8.380 13.8 

HOSB − − 

MFOSB − − 

2×2×30 

Solid  -9.632 0.9 

HOSB -9.615 1.1 

MFOSB -9.613 1.1 

4×4×50 

Solid  -9.700 0.2 

HOSB -9.679 0.4 

MFOSB -9.676 0.5 
 

 

Table 3.5. Curved beam with square cross-section under distributed loading − 

Convergence study of displacement w at point M in the thick case.  

Mesh Models Displacement w (×10-2mm) Error (%) 

8×8×100 Reference -10.23 − 

1×1×10 

Solid  -9.867 3.6 

HOSB − − 

MFOSB − − 

2×2×30 

Solid  -10.17 0.7 

HOSB -10.12 1.1 

MFOSB -10.10 1.3 

4×4×50 

Solid  -10.21 0.2 

HOSB -10.18 0.5 

MFOSB -10.15 0.8 
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3.4.2.3 Displacements and stresses in the thin case 

Displacement w and von Mises stress are observed over the whole structure. Fig. 3.16 shows a 

comparison of results between the solid, MFOSB and HOSB models. The results are obtained with the 

4×4×50 mesh, which meets the convergence criterion. Similar displacements and von Mises stress 

results are obtained with the three models. 

 

Fig. 3.16. Curved beam with square cross-section under distributed loading − Displacement and von Mises 

stress distributions in the thin case. 

Fig. 3.17 presents the distribution of vertical displacement in the global coordinate system along the 

mid-axis and von Mises stress along a line on the lower surface. Again the 4×4×50 mesh is chosen for 

the solid and solid-beam models. For the thin beam and thick beam models, a mesh containing fifty 

elements is considered. Almost all the models give similar results of displacements and von Mises stress. 

The thin beam model leads to some minor difference compared with the reference. Indeed the structure 

is not very thin and consequently, transverse shear effects, which are not taken into account by in the 

thin beam theory, are not completely negligible. 
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Fig. 3.17. Curved beam with square cross-section under distributed loading − Distribution of vertical 

displacement along the mid-axis (a) and von Mises stress along a line on the lower surface (b), in the thin 

case. 

3.4.2.4 Displacements and stresses in the thick case 

As for the thin case displacements and von Mises stresses are observed over the whole structure. 

Fig. 3.18 shows a comparison of results obtained with solid, MFOSB and HOSB models. The 4×4×50 

mesh, which meets the convergence criterion, is used. The three models show close results, some minor 

differences on displacements and von Mises stresses can be observed. 
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Fig. 3.18. Curved beam with square cross-section under distributed loading − Displacement and von Mises 

stress distributions in the thick case. 

Fig. 3.19 gives the distribution of vertical displacement in the global coordinate system along the 

mid-axis and von Mises stress along a line on the lower surface. The solid model is considered as a 

reference. Again the 4×4×50 mesh is used for the solid and solid-beam models. For the beam models, a 

mesh containing fifty elements is used. The HOSB model fits well with the solid one for displacement, 

while some minor error is found with the MFOSB model. The HOSB model gives excellent result for 

von Mises stress, but the MFOSB model leads to some errors. These results confirm that the HOSB 

model is necessary to better reproduce the transverse shear effects which are significant in the thick 

beam case. It is worth mentioning that in this thick curved beam case, the thin beam model gives bad 

displacement and von Mises stress results. Moreover, even the thick beam model appears unsatisfactory 

for calculating von Mises stress. In Fig. 3.15a, one can see that the distributed loading is applied on the 

upper face of the structure. This is correctly taken into account with a solid or solid-beam model, but in 

the beam models, loading is applied on the mid-axis, except if specific techniques are used. For a curved 

and thick structure, the length of the mid-axis is significantly different from the length of the line on the 

upper face, leading to a loading error. It is a limitation of the beam approach and so the solid-beam 

approach is preferable from this point of view. 
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Fig. 19. Curved beam with square cross-section under distributed loading − Distribution of vertical 

displacement along the mid-axis (a) and von Mises stress along a line on the lower surface (b), in the thick 

case. 

3.4.2.5 Accuracy synthesis of solid-beam models 

Table 3.6 summarizes the errors obtained with the solid-beam models, in the thin and thick curved 

beam cases. These errors are calculated at center (point Q in Fig. 3.15a) and point N (in Fig. 3.15a) for 

displacement and von Mises stress, corresponding to the maximal displacement and von Mises stress 

respectively. The MFOSB model gives good results in the thin case, with errors around 1% for the 

displacement and von Mises stress. Similar to the first example, the HOSB model performs better. In 

the thick case, the HOSB model remains satisfactory with the errors limited to about 1%. The MFOSB 

model leads to some discrepancy, but the errors: about 2% for displacement and 3% for von Mises stress, 

remain limited. In summary, the HOSB model gives excellent results in both the thin and thick cases, 

while the MFOSB model is convenient for thin structures only. Again, similar results have been obtained 

by element C3D8I, which confirms that the methodology can be exploited with any efficient solid finite 

element. 
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Table 3.6. Curved beam with square cross-section under distributed loading − Errors on maximal 

displacement and maximal von Mises stress. 

Examples Models 
Displacement w  von Mises stress  

Maximum (×10-2mm) Error (%) Maximum (MPa) Error (%) 

Thin curved  

beam 

Solid  -97.28 − 432.6 − 

HOSB  -96.75 0.5 430.6 0.5 

MFOSB -96.03 1.2 429.7 0.7 

Thick curved 

beam 

Solid  -10.34 − 94.92 − 

HOSB  -10.28 0.6 93.86 1.1 

MFOSB -10.11 2.2 91.95 3.2 
 

3.4.3 Model size  

Fig. 3.20 compares the number of degrees of freedom between the solid model, and our solid-beam 

models. The results are obtained for the straight beam example, but other examples share the same trends. 

The size reduction is due to equations which lead to an elimination of slave degrees of freedom. It is an 

expected and hopeful characteristic of the solid-beam approach that the reduction of the number of 

degrees of freedom increases with the number of elements. For fine meshes, the gain is significant with 

solid-beam models compared with reference solid models. Of course, the gain of the MFOSB model is 

slightly larger compared with the HOSB model due to a smaller number of master nodes. 

 

Fig. 3.20. Influence of the meshing refinement level on the number of degrees of freedom between solid, 

HOSB and MFOSB models. 

It’s interesting to compare the MFOSB and HOSB models with classical beam elements in terms of 

computational cost. Fig. 3.21 presents the comparison of the number of degrees of freedom for the 

curved beam example. For the solid-beam models, the results are reported with a 4×4×50 mesh which 

meets the convergence condition. The beam model with the same refinement level along the length of 

the structure is also considered, to compare the solid-beam approaches and the beam one. Results 

confirm that the beam or solid-beam approach gives a significant gain compared with the solid approach. 
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It can also be observed that the HOSB model requires only a little more degrees of freedom than the 

MFOSB model. 

 

Fig. 3.21. Comparison of the number of degrees of freedom between solid, HOSB, MFOSB and beam models 

for the curved beam example. 

3.5 Vibration examples 

The new proposed solid-beam approach with MFOSB-3D and HOSB-3D models is now used for 

the treatment of two examples in the context of vibration analysis: a straight beam and a curved beam, 

in both thin and thick cases, described in Fig. 3.8 and Fig. 3.15 respectively. A convergence study is 

made for each example. The mode shapes and natural frequencies obtained by solid-beam models and 

reference solid model are compared.  

3.5.1 Straight beam with square cross-section 

3.5.1.1 Presentation of the example 

The geometries of straight beam with square cross-section described in Fig. 3.8 are used in the 

context of free-free vibration analysis, with the density equal to 7.89×10-9 t/mm3. The l/h ratio equals 20 

or 5, representing the thin and thick cases.  

3.5.1.2 Convergence study 

The thin and very thick structures are discretized with the twenty-node hexahedral element C3D20 

from Abaqus. For the two straight beams, a convergence study is made for the free-free vibration 

analysis of the first eight natural frequencies. For the reference solid, SB2-3D and SB1-3D models, the 

4×4×40 and 4×4×20 meshes meet the convergence requirement for the thin and very thick cases 

respectively. Meshes containing forty B31 or B33 finite elements, which meet the convergence criterion, 

are considered for the thin beam models. Meshes containing twenty elements are considered for the 

thick beam models. 
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3.5.1.3 Mode shapes 

For the reference solid, SB2-3D, and our SB2-3D models in the thin straight beam case, the first 

eight mode shapes are shown in Fig. 3.22. Mode 13 is a torsion mode and the others are bending modes. 

It is observed that all the models give very similar results for these modes. 

 

Fig. 3.22. Straight beam in free-free vibration − First eight mode shapes for the reference solid, SB2-3D, and 

SB1-3D models in the thin case. 

The first eight mode shapes for the reference solid, SB2-3D, and SB1-3D models in the thick beam 

case, are shown in Fig. 3.23. Modes 7, 8, 10, 11 and 14 are bending modes, modes 9 and 13 are torsion 

modes, and mode 12 is a membrane mode. All the models give very similar results for these modes. 
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Fig. 3.23. Straight beam in free-free vibration − First eight mode shapes for the reference solid, SB2-3D, and 

SB1-3D models in the thick case. 

The MAC values calculated between the SB2-3D model and the reference solid model for both the 

thin and thick straight beams, are reported in Fig. 3.24. The MAC values are always greater than 0.9, it 

indicates strongly correlated modes. Very similar results have been observed for the MAC values 

calculated between SB1-3D and reference solid models. For both the thin and thick cases, a perfect 

consistency is observed between the SB1-3D, SB2-3D models and the reference solid model. 

 

Fig. 3.24. Straight beam in free-free vibration − MAC matrix between the SB2-3D model and the reference 

models for the thin and thick beams. 
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3.5.1.4 Natural frequencies 

The first eight natural frequencies obtained with the reference solid model, SB2-3D model, SB1-3D 

model, thin (B33 element in Abaqus) and thick (B31 element in Abaqus) beam models for thin and thick 

straight beams are presented in Fig. 3.25 and Fig. 3.26 respectively. The errors on natural frequencies 

are reported in Table 3.7. For the thin case, all the models show results similar to the reference solid 

ones except the thin beam model for modes 11, 12 and 14. For the thick case, the thin beam model gives 

incorrect results compared with the reference solid model. The SB1-3D model shows correct results but 

with errors about 2% for modes 10 and 11 (see Table 3.7), and error about 3% for mode 14, because the 

transverse shear stiffness is not precisely calculated. The thick beam model also provides a correct result 

but with errors of 1% for modes 10 and 11, and error about 2% for mode 14. The SB2-3D model gives 

excellent results with errors less than 0.5% compared to the reference solid one. 

 

Fig. 3.25. Straight beam in free-free vibration − Natural frequencies for the reference solid model, SB2-3D 

model, SB1-3D model, thin and thick beam models in the thin case. 

 

 

Fig. 3.26. Straight beam in free-free vibration − Natural frequencies for the reference solid model, SB2-3D 

model, SB1-3D model, thin and thick beam models in the thick case. 
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Table 3.7. Straight beam in free-free vibration – Errors (%) on natural frequency parameters with different 

models for the thin and thick cases. 

l/h ratio  Model 
Mode 

7 8 9 10 11 12 13 14 

20 

SB2-3D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

SB1-3D 0.1 0.1 0.2 0.2 0.4 0.4 0.0 0.6 

Thick beam 0.1 0.1 0.1 0.1 0.2 0.2 0.0 0.3 

Thin beam 0.9 0.9 2.5 2.5 4.8 4.8 0.0 7.8 

5 

SB2-3D 0.0 0.0 0.1 0.2 0.2 0.1 0.3 0.3 

SB1-3D 0.6 0.6 0.1 1.7 1.7 0.1 0.3 2.6 

Thick beam 0.7 0.7 0.1 1.2 1.2 0.2 0.3 1.8 

Thin beam 12.8 12.8 0.1 16.9 32.5 13.7 0.5 21.0 
  

3.5.2 Curved beam with square cross-section 

3.5.2.1 Presentation of the example 

The second example with the same geometries as described in Fig. 3.15 are here used in the context 

of free-free vibration analysis, with the density equal to 7.89×10-9 t/mm3. The ratio r/h equals 10 or 10/3, 

representing the thin and thick cases respectively.  

3.5.2.2 Convergence study 

The thin and thick structures are discretized with the twenty-node hexahedral element C3D20 in 

Abaqus. For the two curved beams, a convergence study is made for the free-free vibration analysis of 

the first eight natural frequencies. For the reference solid, SB2-3D and SB1-3D models, the 4×4×50 

mesh meets the convergence requirement for the thin and thick beams respectively. A mesh containing 

fifty B31 or B33 finite elements, which meets the convergence criterion, is considered for the thin and 

thick cases. 

3.5.2.3 Mode shapes 

For the reference solid, SB2-3D and SB1-3D models in the thin curved beam case, the first eight 

mode shapes are shown in Fig. 3.27. They range from simple bending or torsional modes to more 

complex combined bending and torsional modes. The SB2-3D model and SB1-3D model show similar 

mode shapes compared with the reference model. 
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Fig. 3.27. Curved beam in free-free vibration − First eight mode shapes for the reference solid, SB2-3D and 

SB1-3D models in the thin case. 

The first eight mode shapes for the reference solid, SB2-3D, and SB1-3D models in the thick curved 

beam case, are shown in Fig. 3.28. They range from simple bending or torsional modes to more complex 

combined bending and torsional modes. All the models presented here lead to similar mode shapes. 
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Fig. 3.28. Curved beam in free-free vibration − First eight mode shapes for the reference solid, SB2-3D, and 

SB1-3D models in the thick case. 

The MAC values calculated between the SB2-3D model and the reference solid model for both the 

thin and thick curved beams, are reported in Fig. 3.29. The MAC values are always greater than 0.9, it 

indicates strongly correlated modes. Very similar results have been observed for the MAC values 

calculated between the SB1-3D model and reference solid models. For both the thin and thick cases, a 

perfect consistency is observed between the solid-beam models and the reference solid model. 

 

Fig. 3.29. Curved beam in free-free vibration − MAC matrix between the SB2-3D solid-beam and the 

reference models for the thin and thick beams. 
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3.5.2.4 Natural frequencies 

The first eight natural frequencies for thin and thick curved beam structures are presented in Fig. 

3.30 and Fig. 3.31 respectively. The reference solid model, SB2-3D model, SB1-3D model, thin (B33 

element in Abaqus) and thick (B31 element in Abaqus) beam models are considered. The errors on 

natural frequencies are reported in Table 3.8. Results similar to the straight beam example are obtained. 

For the thin case, all the models show good results except the thin beam model giving slight errors about 

2% for modes 10, 11, 12, 13 and 14. For the thick case, the thin beam model gives incorrect results with 

errors up to 12%. The SB1-3D model shows correct results but with errors more than 2% for modes 10 

and 14, and errors about 5% for modes 8 and 11 compared with the reference solid model. The thick 

beam model also provides the correct result but with errors about 2% for modes 9, 12 and 14. Again, 

the SB2-3D model gives almost the same results as the reference solid one with errors less than 0.6%. 

 

Fig. 3.30. Curved beam in free-free vibration − Natural frequencies for the reference solid model, SB2-3D 

model, SB1-3D model, thin and thick beam models in the thin case. 

 

 

Fig. 3.31. Curved beam in free-free vibration − Natural frequencies for the reference solid model, SB2-3D 

model, SB1-3D model, thin and thick beam models in the thick case. 
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Table 3.8. Curved beam in free-free vibration – Errors (%) on natural frequency parameters of different 

models for the thin and thick cases. 

r/h ratio  Model 
Mode 

7 8 9 10 11 12 13 14 

10 

SB2-3D 0.4 0.3 0.2 0.2 0.5 0.1 0.3 0.3 

SB1-3D 0.8 0.3 0.6 0.3 0.8 0.3 0.7 0.4 

Thick beam 0.1 0.0 0.3 0.1 0.3 0.1 0.4 0.0 

Thin beam 0.2 0.8 0.7 1.6 1.6 2.6 2.9 1.3 

10/3 

SB2-3D 0.6 0.2 0.4 0.2 0.2 0.4 0.3 0.2 

SB1-3D 0.8 5.4 1.0 2.4 4.9 1.4 1.8 3.2 

Thick beam 0.9 0.3 1.9 0.6 0.7 2.1 0.8 2.2 

Thin beam 1.7 5.2 5.9 3.6 3.5 11.9 10.3 2.3 
  

3.5.3 Model size  

It’s interesting to compare the SB1-3D and SB2-3D models with classical beam elements in terms 

of model size. Fig. 3.32 presents the comparison of the number of degrees of freedom for the free-free 

vibration analysis of the curved beam. For the solid-beam models, the results are reported with a 4×4×50 

mesh which meets the convergence condition. The beam model with the same refinement level along 

the length of the structure is also considered, to compare the solid-beam approaches and the beam one. 

Results confirm that the beam or solid-beam approach gives a significant gain compared with the solid 

approach. In terms of model size and consequently of computational time, the solid-beam models have 

a great reduction compared with the reference solid model. It can also be observed that the SB2-3D 

model requires only a little more degrees of freedom than the SB1-3D model. 

 

Fig. 3.32. Comparison of the number of degrees of freedom between solid, SB2-3D, SB1-3D and beam 

models. 
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3.6 Conclusion 

A new solid-beam approach dedicated to thin to thick beam structures under bending, membrane 

and torsion effects has been presented. Beam displacement fields are directly applied on a solid finite 

element model which contains several elements throughout the cross-section. Three theories for a beam 

in plane and two theories for a beam in space, based on kinematic assumptions are considered. For a 

beam in plane, the classical first-order Timoshenko theory, the modified first-order beam theory and a 

higher-order beam theory lead to the FOSB, the MFOSB and the HOSB models respectively. For a beam 

in space, two proposed displacement fields lead to the SB1-3D and SB2-3D models respectively. The 

methodology relies on the slave and master nodes technique. Kinematic relations are imposed at slave 

nodes throughout the cross-sections to meet the beam displacement fields. From a numerical point of 

view, linear equations are applied on the assembled finite element model. All slave nodes are eliminated, 

resulting in a reduction of the model size. Two static examples have been presented: a straight beam and 

a curved beam with a square cross-section under distributed loading. Displacements and von Mises 

stresses have been observed for thin and thick cases. The FOSB model suffers from the Poisson 

thickness locking phenomenon, leading to wrong results. The HOSB model gives excellent results in 

both the thin and thick cases, compared with the reference solid approach. The MFOSB model is 

satisfactory for thin cases and leads to moderate errors for thick beams. These results show that the 

higher-order beam theory leads to a significant gain compared with the first-order beam theory for thick 

beams. This new solid-beam approach is efficient from the model size point of view. The MFOSB and 

HOSB models have considerable model size reduction compared with the reference solid model. Two 

free-free vibration examples with the same structures as the static examples have also been presented to 

assess the SB1-3D and SB2-3D models. Mode shapes and natural frequencies have been observed for 

thin and thick cases. For the natural frequency, the SB2-3D model gives excellent results in both the 

thin and thick cases, compared with the reference solid approach. The SB1-3D model also gives 

satisfactory results for thin cases and leads to slight errors for thick beams when higher-order modes are 

concerned. For the modal shapes, all the models give similar results. The SB1-3D and SB2-3D models 

also have considerable model size reduction compared with the reference solid model. 

Many perspectives of development and applications of this solid-beam approach are possible. The 

extension to spatial beam with different types of cross-sections, leading to the treatment of more 

complex examples, is currently in progress. In particular warping namely due to torsion is a complex 

mechanical phenomenon as highlighted by numerous research works. From this point of view, we are 

quite confident in the ability of our approach to take into account all possible and complex coupling 

effects highlighted in literature. Besides the solid elements considered in this chapter, other solid finite 

elements with good performance could be exploited. This solid-beam approach can be extended to 

multilayered composite beam structures. An extension of the methodology is possible in the context of 

an adaptive approach in which different theories may be required depending on the area concerned. 
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Indeed, several beam, shell, as well as the 3D theory of elasticity, can be taken into account in the same 

finite element model. Finally, the application to natural and industrial structures is a quite promising 

perspective. 
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Chapter 4 

Adaptive modeling methodology 

In the context of static and vibration linear analysis, an original adaptive modeling methodology 

is proposed to obtain an optimal finite element model from the theory point of view. For each solid 

finite element of the mesh, an appropriate choice between the beam theory, the plate or shell theory, 

and the solid theory is made. 

 

4.1 Introduction 

For finite element modeling of academic or industrial structures, rules acquired from experience are 

often used to choose a type of element and a strategy of mesh refinement. Without specific strategy, the 

verification of the mesh convergence can lead to a very fine mesh over the whole structure and so to a 

high computational cost. During past decades, numerous studies investigated the adaptive meshing issue 

to determine an optimal mesh [104, 105, 106]. Some error estimations [107, 108] are proposed to 

evaluate an approximation of the exact error in order to optimize the mesh discretization. From an initial 

coarse mesh, this iterative technique aims an optimal local size of the mesh. 

The type of element is associated with the theory to be chosen. This choice can be the beam theory, 

the plate or shell theory or the solid theory. For thin and thick structures, beam theory and plate or shell 

theory have been developed to avoid a 3D mesh associated with the solid theory. In this case, the normal 

to cross-section of a beam or the thickness direction of a plate or shell must be identified when the 

corresponding theory is chosen. For a complex structure, the automatic identification of these 

geometrical characteristics of beams or plates from the 3D geometry is difficult. About this issue, 

techniques have been developed to lead to offset curves [109] and surfaces [110, 111]. Moreover, for a 

given structure to be modeled, made of thin and 3D parts of geometry, the connection between different 

types of finite elements is often a challenge. Several modeling techniques [61, 114, 115, 122], leading 

to specific kinematic relations applied at the interfaces between mesh areas which contain different types 

of elements, have been proposed. A mesh composed with only solid elements can be chosen to avoid 

this difficulty, but the 3D elasticity theory is not always relevant. 

In order to improve the management of these different aspects, a methodology of adaptive modeling 

is here introduced in the context of structures modeled by finite elements for static and vibration linear 

analysis. This methodology is original from the theory choice point of view. To the author’s knowledge, 
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until now finite element modeling dealing with a local and optimal choice of theory has not been 

investigated in the literature. The methodology proposed is based on a 3D geometry discretized with 

solid elements, so the initial CAD geometry is kept. This unique type of element avoids the difficulties 

of connecting different types of finite elements mentioned above. As the methodology is adaptive, 

several iterations are needed and a local choice of theory is determined at each iteration. Beam or shell 

displacement fields are directly applied on the solid finite element model. It leads to a possible 

significant reduction of the number of degrees of freedom when the chosen theories are the beam theory 

and the plate or shell theory. Concerning mesh strategy during the iterations of the methodology, a basic 

voxel technique [116, 117] is considered. The first mesh is coarse and the mesh is refined over the whole 

structure at each iteration without determining an optimal mesh. As the mesh is made up only of 

hexahedra and the choice of theory can be the beam theory or the shell theory, a first approach is also 

presented to identify a normal to cross-section of a beam and a thickness direction of a plate or shell 

when the corresponding theory is chosen.  

The outline of this chapter is as follows. In Section 4.2, the general principles of the methodology 

of adaptive modeling are presented. The criterion for the choice of theory and the convergence criterion 

of the methodology are respectively introduced in Sections 4.3 and 4.4. Section 4.5 is dedicated to a first 

proposition to identify the normal to cross-section for a beam structure and the thickness direction for a 

plate or shell structure. In Section 4.6, the implementation of the methodology is detailed. Section 4.7 

gives a specific treatment for vibration analysis. Static examples are presented in Section 4.8, then 

vibration examples in Section 4.9. Finally, some conclusions and perspectives are drawn in Section 4.10. 

4.2 General principles of the proposed methodology  

General principles of the adaptive modeling methodology proposed are presented here. The different 

steps of the procedure are described by the flowchart in Fig. 4.1. An initial finite element analysis of a 

solid model with a coarse mesh is needed, then the iterative process highlights the adaptive aspect of the 

methodology. An iteration starts with the optimal choice of theory which exploits a criterion based on 

the local principal stresses obtained from the previous finite element analysis. Next, a mesh refinement 

is done according to a basic rule. Afterwards, at nodes of this new solid mesh, displacement fields 

described in chapter 2 and chapter 3 are applied corresponding to the chosen theory. The new finite 

element model possibly contains a mix of different theories. For beam theory, a solid-beam approach is 

used. For plate or shell theory, a solid-shell approach is applied. For solid theory, the original solid 

element is kept and no specific treatment is necessary. For the adaptive modeling obtained at a given 

iteration, the analysis of the finite element model is then performed. Finally, a convergence indicator 

based on strain energy is applied on two successive iterations. The iterative process stops when the 

convergence is achieved, the model can then be considered as optimal from theory point of view. For a 
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given structure to be modeled, Fig. 4.2 shows an example of local choice with relevant theories, leading 

to a mix of solid-beam, solid-shell and solid approaches. 

 

Fig. 4.1. Flowchart of the adaptive modeling process. 

After this general description of the adaptive modeling methodology, the main characteristics are 

highlighted below. 

- For any type of structure, the solid geometry is always exploited, regardless of that one or 

two dimensions are small compared to the others. A mid-axis or mid-surface geometry is 

never required. 

- Only solid finite elements with good performance are used. A twenty-node and an eight-

node hexahedral elements from Abaqus have been exploited. Of course, another solid 

element formulation could also be considered.  

- The theory choice criterion is based on the principal stresses in each solid element. Strain 

energy is also considered to calculate the criterion. 

- In the solid-beam and solid-shell areas, beam and shell displacements fields are applied 

respectively. The criterion is calculated in each element but the displacement fields are 

applied at nodes. For this purpose, kinematic relations between degrees of freedom are 

applied at nodes. 

- At the interface between two different theories, a conservative approach is applied. For 

example, at the interface between beam and shell areas, shell theory is applied. 

- The approach using solid elements combined with solid-beam, solid-shell or solid 

approaches allows to avoid all possible connection difficulties between the different areas 

of the structure. 
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- The mesh strategy is close to a basic voxel technique, that is well suited to the application 

of displacement fields at nodes of the solid mesh. 

- The adaptive modeling methodology proposed leads to a reduction of the model size 

compared to a reference solid model when beam and shell theories are chosen in some areas 

of the structure. 

 

Fig. 4.2. Example of an optimal choice of theory for a given structure. 

4.3 Theory choice criterion  

The methodology of adaptive modeling needs a criterion to select the most relevant theory in the 

different areas of the structure. Some criteria from the literature dealing with adaptive mesh issue are 

available, such as a shape quality criterion [106] or an energy criterion [107, 108]. But these criteria are 

not well adapted to choose an appropriate theory. Therefore, an original criterion for the choice of theory, 

based on the principal stresses obtained on each solid element, is introduced to define the relevant 

modeling of the different areas of the structure by solid-beam, solid-shell or solid approaches. Strain 

energy is also used as a weighting coefficient to lead to a well-chosen theory choice criterion. First, the 

calculation of the principal stresses is recalled. Then, a criterion for choosing the adapted theory is 

presented. 

4.3.1 Principal stresses  

From the Cauchy stress tensor formulation [118, 119], the relations between the components of 

stress tensor and the principal stresses are expressed as: 

{

(𝜎𝑥𝑥 − 𝜎𝑖)𝑙𝑖 + 𝜏𝑥𝑦𝑚𝑖 + 𝜏𝑥𝑧𝑛𝑖 = 0

𝜏𝑥𝑦𝑙𝑖 + (𝜎𝑦𝑦 − 𝜎𝑖)𝑚𝑖 + 𝜏𝑦𝑧𝑛𝑖 = 0

𝜏𝑥𝑧𝑙𝑖 + 𝜏𝑦𝑧𝑚𝑖 + (𝜎𝑧𝑧 − 𝜎𝑖)𝑛𝑖 = 0

 
(4.1) 

where 𝜎𝑖 are the principal stresses with i=1,2,3 and 𝑙𝑖, 𝑚𝑖 and 𝑛𝑖 are the components along each axis of 

the corresponding principal directions. 

Eq. (4.1) is a homogeneous system of linear equations, the condition for non-zero solution is that 

the determinant of the resulting matrix is equal to zero: 
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|

𝜎𝑥𝑥 − 𝜎𝑖 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦𝑦 − 𝜎𝑖 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧𝑧 − 𝜎𝑖

| = 0 
(4.2) 

For 3D stress states, principal stresses equal the roots of the general stress-cubic equation: 

𝜎3 − 𝐼1𝜎
2 + 𝐼2𝜎 − 𝐼3 = 0 

(4.3) 

where I1, I2, and I3 are known as the stress invariants and are given by: 

{

𝐼1 = 𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧

𝐼2 = 𝜎𝑥𝑥𝜎𝑦𝑦 + 𝜎𝑦𝑦𝜎𝑧𝑧 + 𝜎𝑥𝑥𝜎𝑧𝑧 − 𝜏𝑥𝑦
2 − 𝜏𝑦𝑧

2 − 𝜏𝑧𝑥
2

𝐼3 = 𝜎𝑥𝑥𝜎𝑦𝑦𝜎𝑧𝑧 + 2𝜏𝑥𝑦𝜏𝑦𝑧𝜏𝑧𝑥 − 𝜎𝑥𝑥𝜏𝑦𝑧
2 − 𝜎𝑦𝑦𝜏𝑥𝑦

2 − 𝜎𝑧𝑧𝜏𝑧𝑥
2

 
(4.4) 

Therefore, the stresses 𝜎1, 𝜎2,and 𝜎3 are expressed as： 

{
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3
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3
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(4.5) 

with 

𝜃 = arccos [−
𝑞

2
(−

𝑝3

27
)

−
1
2

] 

𝑝 =
3𝐼2 − 𝐼1

2

3

𝑞 =
9𝐼1𝐼2 − 2𝐼1

3 − 27𝐼3
27

 

The biggest principal stress is 𝜎1 and the smallest is 𝜎3. 

(4.6) 

4.3.2 Criterion based on principal stresses 

In order to choose relevant theory in different areas of the structure, a criterion based on principal 

stresses is presented here. The three principal stresses calculated at the center of each solid element are 

compared to define the appropriate solid-beam, solid-shell or solid approach for each of them. The 

criterion tends to choose the beam theory when only one principal stress is significant. The optimal 

choice tends to be the shell theory when two principal stresses are significant. Otherwise, the solid theory 

is chosen when the three principal stresses are of the same order of magnitude. These rules work well if 

the state of stress is dominated by normal stresses. However, if shear stresses are significant, the situation 

is more complex. For example, for a beam under pure torsion, one can observe two principal stresses 

with equal absolute values but opposite signs. When a case closed to this situation is detected, the rule 

presented above has to be modified. A stress ratio parameter ρ is used to define a critical gap between 

the three components and a weighting coefficient ω is calculated considering the strain energy. The 

value of parameter ρ depends on the studied structure and may be different depending on whether it is 
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a static or vibration analysis. For each example, some preliminary tests allow a relevant choice of this 

parameter value. Typically, the parameter ρ may be comprised between 20 and 100. The weighting 

coefficient ω is expressed in terms of strain energy to improve the criterion in different areas of the 

structure, in order to be less severe in areas where strain energy density is small. The expression of 

elastic strain energy density per unit volume is recalled: 

𝜋 =
1

2
∑ 𝜎𝑖𝑗𝜀𝑖𝑗

3

𝑖,𝑗 =1

 (4.7) 

where 𝜎𝑖𝑗 are the normal or shear stresses and 𝜀𝑖𝑗 are the normal or shear strains.  

    The maximum elementary elastic strain energy density 𝜋𝑚𝑎𝑥  is also considered.  The weighting 

coefficient ω is defined by: 

ω = (𝜋 𝜋𝑚𝑎𝑥⁄ )𝑛 (4.8) 

where n is a parameter which must be determined for each example. 

From the three principal stresses 𝜎1, 𝜎2 and 𝜎3, we define the 𝜎𝑚𝑎𝑥, 𝜎𝑚𝑖𝑑 and 𝜎𝑚𝑖𝑛 as the maximum, 

intermediate and minimum absolute values respectively. Finally, the criterion in order to select the 

relevant theory for each element is defined by the following rules:  

1. If the condition 𝜎𝑚𝑎𝑥 ≥ 𝜌𝜔𝜎𝑚𝑖𝑑 is met, the beam theory is selected, leading to a solid-beam 

approach. 

2. If the conditions 𝜎𝑚𝑎𝑥 < 𝜌𝜔𝜎𝑚𝑖𝑑 and  𝜎𝑚𝑎𝑥 ≥ 𝜌𝜔𝜎𝑚𝑖𝑛 are met, the shell theory is selected, 

leading to a solid-shell approach. To verify this situation does not correspond to shear stress 

state, the ratio 𝜎1/𝜎3 is calculated. If this ratio is close to -1, the shear stress is predominant and 

consequently beam theory is selected, leading to solid-beam approach. 

3. If the condition 𝜎max < 𝜌𝜔𝜎mid and  𝜎max < 𝜌𝜔𝜎min are met, the solid theory is selected. 

4.4 Convergence criterion of the methodology 

As described by Fig. 4.1, the convergence of the adaptive modeling process is achieved when an 

optimal finite element model is obtained from the theory point of view. A convergence criterion is here 

introduced that exploits the internal strain energy 𝚷𝑖𝑛𝑡  of the system. In the context of the iterative 

process, the convergence criterion is applied between two successive iterations i and i+1. Therefore, the 

strain energy relative error 𝐸𝑟 is defined by: 

𝐸𝑟 =
‖𝚷𝑖𝑛𝑡

𝑖+1‖ − ‖𝚷𝑖𝑛𝑡
𝑖 ‖

‖𝚷𝑖𝑛𝑡
𝑖+1‖

  
(4.9) 

with the internal strain energy at the iteration i for a mesh composed with n elements: 
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‖𝚷𝑖𝑛𝑡
𝑖 ‖ =

1

2
∑‖𝜺𝑇𝝈‖𝑒

𝑛

𝑒=1

 
(4.10) 

For static and vibration analysis, it is considered that convergence of the methodology is achieved 

if the error Er is less than 0.1% between two successive iterations of the adaptive modeling. This criterion 

is used in the static and vibration examples respectively in Sections 4.8 and 4.9. During the iterations of 

adaptive modeling process, the stability of theory choice over the whole structure can be observed and 

it could be considered as another convergence criterion which has not been considered here. Indeed, the 

local areas of the structure composed of solid-beam, solid-shell, and solid approaches tend to be 

relatively stable after several iterations. The criterion proposed in Eq (4.9) is a global one. As a 

perspective, local criteria could also be developed to better take into account local effects. 

4.5 Normal to cross-section or thickness direction identification of the structure 

For the current classical finite element modeling process, the creation of mid-axis or mid-surface 

geometry is needed when respectively the beam theory or the shell theory is chosen. For the adaptive 

modeling methodology proposed, only the solid geometry is exploited. Therefore, the identification of 

the normal to cross-section or thickness direction is required respectively to apply the solid-beam or 

solid-shell approaches. A first technique based on the principal directions is here proposed to identify 

the normal to cross-section or the thickness direction of a structure. Identification of principal directions 

leads to some difficulties because these directions calculated by finite elements are approximate due to 

the fact that the stresses are associated with some errors. These difficulties have been highlighted in this 

research work but further investigations are necessary to improve the implementation of this technique. 

This issue is one of the perspectives of our methodology. In this research, normal to cross-section and 

thickness directions are directly imposed. 

4.5.1 Calculation of principal directions 

The components of principal directions, relative to the principal stresses 𝜎1 ,  𝜎2  and 𝜎3 , are 

respectively 𝑙𝑖, 𝑚𝑖 and 𝑛𝑖 with i=1,2,3 and meet the relation: 

𝑙𝑖
2 +𝑚𝑖

2 + 𝑛𝑖
2 = 1 

(4.11) 

with 

{
 
 
 
 

 
 
 
 𝑙𝑖 =

𝐴𝑖

√𝐴𝑖
2 + 𝐵𝑖

2 + 𝐶𝑖
2

𝑚𝑖 =
𝐵𝑖

√𝐴𝑖
2 + 𝐵𝑖

2 + 𝐶𝑖
2

𝑛𝑖 =
𝐶𝑖

√𝐴𝑖
2 + 𝐵𝑖

2 + 𝐶𝑖
2

 
(4.12) 
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where  

{

𝐴𝑖 = 𝜏𝑥𝑦𝜏𝑦𝑧 − (𝜎𝑦 − 𝜎𝑖)𝜏𝑥𝑧
𝐵𝑖 = 𝜏𝑥𝑦𝜏𝑥𝑧 − (𝜎𝑥 − 𝜎𝑖)𝜏𝑦𝑧

𝐶𝑖 = (𝜎𝑥 − 𝜎𝑖)(𝜎𝑦 − 𝜎𝑖) − 𝜏𝑥𝑦
2

 
(4.13) 

4.5.2 Normal to cross-section or thickness direction 

For the solid-beam approach, the normal to cross-section is considered as the principal direction 

corresponding to the maximum principal stress. For the solid-shell approach, the thickness direction is 

considered as the principal direction corresponding to the minimum principal stress. As shown in Fig. 

4.3, the normal to cross-section is defined by the principal direction (l1, m1, n1) for the solid-beam 

approach and the thickness direction is defined by the principal direction (l3, m3, n3) for the solid-shell 

approach. 

 

Fig. 4.3. Description of the normal to cross-section of a beam (a) and the thickness direction of a plate (b). 

This principle of identification is highlighted on a model of cantilever structure described in section 

4.7.1 for case 2 of this example. An optimal model has been obtained from the theory point of view. As 

shown in Fig. 4.4, the arrows indicate the normal to cross-section for the solid-beam area in blue and 

the thickness direction for the solid-shell area in green. The solid area is described in red. The result of 

the identification is satisfactory for the bending structure. In solid-beam area, the arrows corresponding 

to the normal to cross-section are in the direction of the maximum principal stress. In solid-shell area, 

the arrows corresponding to the thickness direction are in the direction of the minimum principal stress.  
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Fig. 4.4. Normal to cross-section of solid-beam approach and thickness direction of solid-shell approach for 

an optimal model of cantilever structure. 

4.6 Implementation of the methodology 

The iterations of the methodology described in Fig. 4.1 are composed of a choice of the theory made 

on each solid element, a mesh refinement and an application of displacement fields at concerned nodes. 

Some specific aspects of the methodology implementation are here introduced concerning the mesh 

refinement, the displacement field and rules at the interface between two different theory choices. 

4.6.1 Mesh refinement 

The meshing strategy for the methodology proposed is basic and is closed to a voxel meshing 

method [13, 14]. The discretization is defined by a regular three-dimensional mesh with a hexahedral 

element. The mesh is refined at each iteration to achieve the methodology convergence, with the mesh 

size divided by two in the three directions. Of course, the adaptive modeling proposed is compatible 

with adaptive mesh techniques, but it is not implemented here. 

4.6.2 Displacement fields 

After the mesh refinement at each iteration of the adaptive process, displacement fields are applied 

at concerned nodes of the solid element. These displacement fields are applied in beam and shell areas, 

but no treatment is made at nodes of the solid areas. For solid-shell and solid-beam approaches, the 

displacement fields are respectively described in chapters 2 and 3. Currently, the displacement field of 

the modified first-order solid-shell approach is chosen for the shell theory. The displacement field of the 

modified first-order solid-beam approach for 3D beam is chosen for the beam theory. The application 

of the corresponding equations is achieved by using the master and slave nodes technique. Consequently, 

solid-shell and solid-beam approaches allow a significant reduction of the problem size, compared to 

the solid approach. 
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4.6.3 Special treatment of interface 

As it was recalled, a theory choice is made for each solid element and a corresponding displacement 

field is applied at nodes. At the interface between two types of theory, a conservative rule is used for the 

concerned nodes. As illustrated in Fig. 4.5, the solid theory is chosen rather than a shell and a beam 

theory; the shell theory is selected rather than a beam theory. 

  

Fig. 4.5. Rules at the interface between two different types of theories. 

4.7 Specific step for vibration analysis 

The adaptive modeling methodology is proposed in the context of static and vibration linear analysis. 

A specific step is needed to manage different modes in the case of vibration analysis.  Indeed, as mode 

shapes are different one from other, the choice of theory provides an optimal modeling for each mode. 

At each iteration of the methodology, a synthesis of these choices is so needed to lead to only one optimal 

model. The global flowchart of the methodology described in Fig. 4.1 is kept and a step of synthesis is 

added after the local choice of theory, as shown in Fig. 4.6. This synthesis is conservative, the solid 

theory is chosen rather than the shell and beam theory; the shell theory is selected rather than the beam 

theory. An example illustrated by Fig. 4.7 shows the result of synthesis at each iteration process for 

different modes. 
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Fig. 4.6. Flowchart of adaptive modeling process for vibration analysis. 

 

Fig. 4.7. Example of a synthesis concerning the local choice of theory for vibration analysis during the 

iterative process. 

4.8 Static examples 

The adaptive modeling methodology is applied here on cantilever structures and on “T” shape plates 

in the context of static analysis. First each static example is presented. The evolution of theory choice is 

presented for each iteration of the adaptive modeling process. At convergence the quality of the finite 

element results obtained with the optimal model is evaluated by comparison with a reference solid model. 
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The reduction of model size due to the application of solid-shell and solid-beam approaches is discussed. 

The compatibility of the adaptive modeling methodology with another efficient solid element is also 

proved. 

4.8.1 Cantilever structures with three width/thickness ratios 

4.8.1.1 Presentation of the example 

Cantilever structures are presented in Fig. 4.8 with three different geometries, three width/thickness 

ratios are considered. The three structures are clamped at one end and submitted to a distributed loading 

f at the other end. The first case is a beam-like structure with a square section b1/h=1. The second case 

is an intermediate structure with b2/h=3. The third case is a square plate-like structure with b3/h=10. 

 

Fig. 4.8. Cantilever structures – Presentation of the example for three width/thickness ratios. 

4.8.1.2 Adaptive theory choice 

The theory choice is now observed at each iteration of the process for the three cantilever structures. 

The criterion based on principal stresses and weighted by strain energy provides a distribution of solid-

beam, solid-shell and solid areas. The stress ratio parameter ρ described in Section 4.3.2 is equal to 100 

for this example. This value is a compromise between small values that lead to larger solid-beam or 

solid-shell areas and high values that lead to larger solid areas. For the weighting coefficient, n equal to 

0.5 has been used in Eq. (4.8). Fig. 4.9 shows the chosen theory in each solid element for the initial 

model and for two successive adaptive models. The blue, green and red colors correspond respectively 

to the solid-beam, solid-shell and solid approaches. The obtained results are discussed for the optimal 

model corresponding to the adaptive model 2. In case 1, a large area of solid-beam approach is obtained 

for the cantilever beam-like structure with a square section. Some solid-shell and solid approaches are 

chosen at ends of this structure due to local effects caused by loading and boundary conditions 

respectively. In case 2 which is intermediate, a mixed distribution of solid-beam, solid-shell and solid 

areas are observed. In case 3, the solid-shell area predominates except at ends of the square plate-like 
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structure where boundary conditions and loading are applied, leading to local effects justifying solid 

elements. A few solid-beam areas are also observed according to the theory choice criterion. 

 

Fig. 4.9. Cantilever structures – Evolution of the theory choice during the iterative process in the three cases.  

4.8.1.3 Convergence of the methodology  

The three cantilever structures are discretized with the twenty-node hexahedral element C3D20 from 

Abaqus [120, 121]. An initial coarse and regular mesh is generated to start the adaptive modeling process 

and the mesh refinement strategy presented in Section 4.6.1 is then applied. The convergence of the 

methodology is assessed with the strain energy criterion described in Section 4.4. It is considered that 

convergence is achieved if the error Er is less than 0.1% between two successive iterations of the 

adaptive modeling process. For the three cantilever structures, Fig. 4.10 shows the values of strain 

energy and the convergence criterion values for the first four models. These models are the initial solid 

model and three adaptive models. Model 3 is the second adaptive model and it corresponds to the optimal 

model which meets the convergence criterion for the three cases. 
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Fig. 4.10. Cantilever structures – Convergence of the methodology in the three cases. 

4.8.1.4 Finite element results of the optimal model 

The finite element results of the optimal model obtained with the adaptive modeling process is 

evaluated. The reference model is a solid model that meets the convergence requirements. First, a global 

comparison of the finite element results is made between the optimal model and reference solid model 

for the three cantilever structures. Fig. 4.11 shows the distributions of displacement and von Mises stress 

for the solid and optimal models in the three cases. For the two types of models, these results are quite 

similar, showing that the adaptive modeling approach seems to be very satisfactory.  

 

Fig. 4.11. Cantilever structures – Displacement and von Mises stress distributions for the reference solid and 

optimal models in cases 1, 2 and 3. 

In order to quantify the difference on these finite element results, Table 4.1 shows the errors on the 

maximum displacement and von Mises stress by comparing the optimal and the reference solid models. 

The errors do not exceed 0.5% for the three cases. These insignificant errors between the optimal and 

reference solid models confirm the adaptive modelling process is fully satisfactory. It also confirms that 

new proposed solid-shell and solid-beam approaches work well. 
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Table 4.1 Cantilever structures – Errors on maximum displacement and von Mises stress between 

optimal and reference solid models in cases 1, 2 and 3. 

Case 

Maximum displacement (mm) Maximum von Mises stress (MPa) 

Solid 

model 

Optimal 

model 
Error (%) Solid 

model 

Optimal 

model 
Error (%) 

1 -1.904 -1.902 0.1 58.86 58.84 0.1 

2 -1.880 -1.877 0.2 57.17 56.84 0.5 

3 -1.826 -1.821 0.3 58.50 58.21 0.5 
 

For further understanding the error distribution over the whole structure, the error on displacement 

at each node and the error on von Mises stress at the center of each element are studied. For the three 

cantilever structures, Fig. 4.12 shows the errors on displacement and von Mises stress by comparing the 

optimal model and the reference solid model over the whole structure. The errors on displacement are 

lower than 0.3%. The analysis of errors on von Mises stress is discussed from global and local aspects. 

From a global point of view, almost all the errors are smaller than 1%. Especially, the areas of boundary 

conditions highlight very low errors where the stresses are maximum. From a local point of view, some 

errors on von Mises stress are slightly higher than 1% in the loading areas (cases 1 and 2) or at free 

edges (case 3). But these areas are not significant due to small values of stresses, as can be seen in Figure 

4.11. Again, for the displacement and von Mises stress, the comparison between the optimal and 

reference solid models indicates that the adaptive modelling process is entirely satisfactory. 

 

Fig. 4.12. Cantilever structures – Errors on displacement and von Mises stress between optimal and reference 

models over the whole structure in cases 1, 2 and 3. 
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4.8.1.5 Reduction of the model size 

The optimal model based on solid-beam and solid-shell approaches induces a reduction of the model 

size compared with the solid model. Fig. 4.13 shows the evolution of the number of degrees of freedom 

(DOFs) during the adaptive modeling process for the three cases. The initial solid model with a coarse 

mesh and two adaptive models are considered. The reduction of the number of DOFs for the optimal 

model compared with the reference solid model is also observed. For the three cases, the second iteration 

corresponding to model 3 gives the most significant reduction. The gain is calculated as a ratio of the 

number of DOFs between the reference solid model and the optimal model with same meshes. In cases 

1, 2 and 3, the gain is respectively equal to 5.0, 2.6 and 2.1 for the optimal model. The gain is maximal 

in case 1 because the solid-beam approach, which leads to the larger reduction of the model, is widely 

applied. Anyway, the gain is significant even when the solid-shell approach predominates, which 

happens in case 3.  

 

Fig. 4.13. Cantilever structures – Number of degrees of freedom for the adaptive models during the iterative 

process and for the reference solid models in cases 1, 2 and 3. 

4.8.1.6 Adaptive modelling process with another solid element 

To prove the adaptive modeling process is compatible with any efficient solid element, the eight-

node hexahedral element C3D8I [19] from Abaqus is used here to model the cantilever structures. This 

solid element with incompatible modes was introduced in 1973 by Wilson et al. [122, 123]. The 

convergence study of the methodology is quite similar for the element C3D8I and the previous element 

C3D20. For the three cases, the convergence is achieved for the adaptive model 2. Fig. 4.14 shows the 

evolution of theory choice during the iterative process using the element C3D8I. From the initial solid 

model with a coarse mesh to two successive adaptive models, the theory choice criterion provides solid-

beam, solid-shell and solid areas respectively illustrated in blue, green and red. The comparison between 

Figures 4.10 and 4.14 shows that globally in terms of optimal theory choice, the tendencies obtained 

with the element C3D8I are similar to those obtained with the element C3D20. 
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Fig. 4.14. Cantilever structures – Evolution of the theory choice during the iterative process with the element 

C3D8I. 

The finite element results of the optimal model obtained with the adaptive modeling process are 

evaluated for the element C3D8I. Fig. 4.15 shows the displacement and von Mises stress distributions 

for the three cantilever structures. Globally, the distributions of the displacements and von Mises stresses 

obtained with the optimal model are quite similar to those obtained with the reference solid model. 

 

Fig. 4.15. Cantilever structures – Displacement and von Mises stress distributions for the reference solid and 

optimal models in cases 1, 2 and 3 with the element C3D8I. 
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Table 4.2 shows the errors on the maximum displacement and von Mises stress by comparing the 

optimal model and the reference solid model. For the three cases, the errors do not exceed 0.2%. These 

errors confirm that with the element C3D8I the adaptive modelling process is fully satisfactory as well. 

It also confirms that the solid-shell and solid-beam approaches work well with this element.  

Table 4.2 Cantilever structures – Errors on maximum displacement and von Mises stress by comparing 

optimal models and reference models with the element C3D8I. 

Case 

Maximum displacement (mm) Maximum von Mises stress (MPa) 

Solid 

model 

Optimal 

model 
Error (%) Solid 

model 

Optimal 

model 
Error (%) 

1 -1.901 -1.900 0.1 61.45 61.39 0.1 

2 -1.877 -1.876 0.1 59.50 59.42 0.1 

3 -1.826 -1.823 0.2 59.99 59.90 0.2 
 

As for the reduction of model size with the element C3D8I, the same trends can be observed that 

with the element C3D20. The reduction of the number of degrees of freedom is very significant for case 

1 and significant for cases 2 and 3, thanks to solid-beam and the solid-shell approaches. 

4.8.2 “T” shape plates 

4.8.2.1 Presentation of the example 

The second example, presented in Fig. 4.16, is a “T” shape plates assembly in the context of static 

analysis. One face of the vertical plate is submitted to a pressure p and two edges of the horizontal plate 

are clamped. 

 

Fig. 4.16. “T” shape plates – Presentation of the example. 

4.8.2.2 Adaptive theory choice 

The theory choice is presented here at each iteration for the adaptive modeling of “T” shape plates. 

The criterion based on principal stresses and weighted by strain energy determines solid-beam, solid-

shell or solid approaches for each element. Again, the stress ratio parameter ρ is equal to 100 for this 
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example. For the weighting coefficient, n equal to 0.5 has been used in Eq. (4.8). Fig. 4.17 shows the 

selected approaches for the initial solid model and three successive adaptive models. The blue, green, 

and red colors indicate respectively the solid-beam, solid-shell and solid areas. For adaptive model 3, 

when the convergence of the methodology is achieved, the solid-shell approach is automatically chosen 

for most of the elements. The solid approach is chosen in the boundary conditions areas and at the 

junction between the two plates. The current version of theory choice criterion identifies a few solid-

beam areas in this example. However, from a theoretical point of view, it seems difficult to justify the 

beam theory and identify the relevant cross-sections here. Thus, the solid-shell approach is chosen as a 

replacement. 

 

Fig. 4.17. “T” shape plates – Evolution of the theory choice during the iterative process. 

4.8.2.3 Convergence of the methodology 

The “T” shape plates assembly is discretized with the twenty-node hexahedral element C3D20 from 

Abaqus. From an initial coarse mesh, the adaptive modeling methodology is applied by taking into 

account the mesh refinement strategy described in Section 4.6.1. The convergence of the methodology 

is achieved when the strain energy indicator is less than 0.1% between two iterations of the adaptive 

modeling process. For “T” shape plates, Fig. 4.18 shows the values of the strain energy and the 

convergence criterion for an initial solid model with a coarse mesh and four successive adaptive models. 

The model 4 corresponds to the third adaptive model which meets the convergence criterion, it is the 

optimal model. 
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Fig. 4.18. “T” shape plates – Convergence of the methodology. 

4.8.2.4 Finite element results of the optimal model 

For “T” shape plates, the evaluation of finite element results of the optimal model obtained with the 

adaptive modeling process is presented here. Again, the reference model is a solid model that meets the 

convergence requirement. Fig. 4.19 illustrates a global comparison of displacement and von Mises stress 

distributions between the optimal model and reference solid model. These two models lead to close 

results, showing the adaptive modeling approach is very satisfactory for modeling the “T” shape plates 

assembly. 

 

Fig. 4.19. “T” shape plates – Displacement and von Mises stress distributions for the optimal model and 

reference solid model.  

Table 4.3 reports the errors on the maximum displacement and the maximum von Mises stress at 

point M (Fig. 4.19) by comparing the optimal model and the reference solid model. For this example, 

the error on displacement does not exceed 1% and the error on von Mises stress is close to 1%. These 

errors can be considered as small. 
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Table 4.3 “T” shape plates – Errors on maximum displacement and von Mises stress between the optimal 

model and reference solid model. 

Maximum displacement (mm) Maximum von Mises stress (MPa) 

Solid 

model 

Optimal 

model 
Error (%) Solid 

model 

Optimal 

model 
Error (%) 

5.188 5.146 0.8 305.1 301.8 1.1 
 

The error distribution is now observed over the whole structure. Fig. 4.20 shows the error on 

displacement at each node and the error on von Mises stress at the center of each element by comparing 

the optimal and the reference solid models. The errors on displacement are always less than 0.8%.  The 

global observation of errors on von Mises stress highlights almost all the values are smaller than 1%. 

However, some singularity in the boundary conditions area leads to local errors higher than 1.5%. Thus, 

the errors between the optimal and the reference solid models can be considered as small. The optimal 

model of “T” shape plates with a very predominant use of solid-shell approach remains very satisfactory. 

 

Fig. 4.20. “T” shape plates – Errors on displacement at each node and von Mises stress at the center of each 

element over the whole structure by comparing the optimal model and the reference solid model. 

4.8.2.5 Computational cost 

Compared with the reference solid model, the optimal model leads to a reduction of the number of 

degrees of freedom, which is interesting from a computational cost point of view. For this “T” shape 

plates example, the optimal model contains a large use of the solid-shell approach. The number of 

degrees of freedom and CPU time are reported in Table 4.4, the corresponding reduction and gain for 

the optimal model compared with the reference solid model are also given. All computational times are 

obtained with a PC i5-8265U @ 1.60GHz, 8GB RAM. In terms of number of DOFs, the gains are 2.5 

and 3.1 for the adaptive models 3 and 4 respectively. And in terms of CPU time, the gains are 2.1 and 

6.2 for the adaptive models 3 and 4 respectively. The adaptive modeling methodology leads to an 

optimal model for “T” shape plates with a significant reduction in problem size and computational cost. 
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Table 4.4 “T” shape plates – Number of degrees of freedom and CPU time for adaptive models and 

corresponding reference solid models. 

No. of mesh Type of model 
Degrees of freedom CPU time 

value gain value (s) gain  

Mesh 4 
Reference model 385731 

2.5 
133 

2.1 
Adaptive model 3  156639 63.6 

Mesh 5 

Reference model 2917635 

3.1 

3997.6 

6.2 
Adaptive model 4 929159 640.4 

 

4.8.2.6 Adaptive modelling process with another solid element 

The eight-node hexahedral element C3D8I [61] from Abaqus is used here to model “T” shape plates 

with the adaptive modeling process to prove its compatibility with another efficient solid element. For 

element C3D8I, the convergence study of the methodology is quite similar to that of element C3D20. 

The third adaptive model meets the convergence criterion and corresponds to the optimal model. For 

the element C3D8I, Fig. 4.21 shows the theory choices during the adaptive modeling process. As for the 

element C3D20, when convergence of the methodology is achieved, a predominant use of the solid-

shell approach is obtained. The solid approach is selected in the boundary conditions areas and the 

junction between the two plates.  

 

Fig. 4.21. “T” shape plates – Evolution of the choice of theory during the iterative process with the element 

C3D8I. 

For the “T” shape plates example, displacement and von Mises stress distributions obtained with 

the optimal model and the reference solid model are reported in Fig. 4.22. These finite element results 

are quite similar, showing that the adaptive modeling approach is globally convincing. 
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Fig. 4.22. “T” shape plates – Displacement and Von Mises stress distributions for the optimal model and 

reference solid model with the element C3D8I. 

 

Table 4.5 “T” shape plates – Errors on maximum displacement and von Mises stress between the optimal 

model and reference solid model with the element C3D8I. 

Maximum displacement (mm) Maximum von Mises stress (MPa) 

Solid 

model 

Optimal 

model 
Error (%) Solid 

model 

Optimal 

model 
Error (%) 

5.137 5.118 0.4 259.9 262.2 0.9 
 

Table 4.5 shows the errors on the maximum displacement and von Mises stress at point M (Fig. 4.22) 

with the element C3D8I. For this “T” shape plates example, the errors do not exceed 0.9%. Finally, in 

terms of problem size, the number of degrees of freedom are respectively equal to 58399 and 100035 

for the optimal model and reference solid model, leading to a gain equal to 1.7 for “T” shape plates with 

the element C3D8I.  

4.9 Vibration examples 

The adaptive modeling methodology is now applied on the three structures described in Fig. 4.8 and 

on “T” shape plates illustrated in Fig. 4.16, in the context of free-free vibration analysis. For each mode, 

the theory choice is presented and a synthesis of these choices is made. The natural frequencies obtained 

with the optimal model and a reference solid model are compared. The reduction of the model size due 

to solid-shell and solid-beam approaches is discussed. 
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4.9.1 Beam to plate moderately thick structures with three width/thickness ratios 

The three structures described in Fig. 4.8 are now studied in free-free vibration, with density equal 

to 7.89×10-9 t/mm3. For the three cases, the structure is discretized with the twenty-node hexahedral 

element C3D20 from Abaqus. Concerning the theory choice criterion, the stress ratio parameter ρ and 

the weighting coefficient 𝜔 in Eq. (4.8) have been investigated for this free-free vibration example. 

According to some preliminary tests, relevant values for parameter ρ are comprised between 20 to 100. 

Here, taking the result accuracy as a primary goal and considering calculation efficiency, an optimal 

choice equals 20, 50 and 40 for cases 1, 2 and 3 respectively. For the weighting coefficient, n equal to 1 

has been used in Eq. (4.8). The convergence of the methodology is achieved when the strain energy 

criterion described in Section 4.4 is met for each mode. The first seven modes are retained to evaluate 

the adaptive modeling process compared with a reference solid model for the cases 1, 2 and 3. 

4.9.1.1 Case 1 

The first case described in Fig. 4.8 is a beam-like structure with a square section. For a reference 

solid model, the first seven mode shapes are reported in Fig. 4.23. It is observed that modes 7, 8, 9, 10, 

12 and 13 are bending modes, mode 11 is a torsion mode. On the contrary of other modes, this torsion 

mode corresponds to a state of stress dominated by shear stresses. 

 

Fig. 4.23. Moderately thick structures − First seven mode shapes for a reference solid model in case 1.  

During the process of adaptive modeling in case 1, the theory choice is applied for each mode except 

the torsion mode. The adaptive model retained will be assessed a posteriori for this torsion mode. From 

the initial solid model and with two iterations of the adaptive modeling process, Fig. 4.24 shows the 

theory choice for each mode. For the first modes, beam theory is chosen over the whole structure, but 

this is not true for higher modes. This is a hopeful characteristic of our adaptive modeling methodology 

which corresponds to a well-known physical phenomenon relative to the wavelength. Beam theory may 

be relevant for the first modes but higher modes require refined displacement fields throughout the cross-

section. The synthesis of the theory choices leads to only one adaptive model at each iteration, as 

described in Fig. 4.24. The application of the theory choice criterion leads to large areas of the solid-
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beam approach for case 1, but also a fairly large solid area. At the second iteration of the adaptive 

modeling, the bending modes 9 and 10 highlight a local choice corresponding to the shell theory, with 

orthogonal thickness directions one from the other. Indeed, for this beam-like structure with a square 

section, modes 9 and 10 are bending modes in two orthogonal planes. Consequently, for these modes a 

conservative choice is to use the solid approach. The same type of remark is made for bending modes 

12 and 13. For mode 11 which is a torsion mode, we observe that the beam theory has been selected 

over the whole structure, even if two principal stresses are significant in this case. The convergence of 

the methodology is achieved for the adaptive model 2 corresponding to the optimal model. 

 

Fig. 4.24. Moderately thick structures − Theory choice for the first seven modes in case 1. 

The natural frequencies obtained with the adaptive model are now investigated. The first seven 

natural frequencies are reported in Fig. 4.25 for the optimal model, the reference solid model, thick beam 

model (B31 element) and thin beam model (B33 element). The relative errors on natural frequencies 

between the optimal and reference solid models are calculated, the values are less than 0.5%. It can be 

noticed a good result is observed for the pure torsion mode (mode 11) because the displacement field 

used for the solid-beam approach is a 3D beam formulation. The optimal model obtained by the 

synthesis of theory choices leads to very satisfactory results for the first seven natural frequencies of the 

beam-like structure with a square section, even for the natural frequency corresponding to the torsion 

mode. The comparison with a thick beam element, which considers the transverse shear effects, shows 

that for the first modes all the models give similar results, however slight differences are observed for 
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higher modes 12 and 13. The comparison with a thin beam element shows more errors because the 

transverse shear effects has not been considered. These results highlight some discrepancies when beam 

theory is used. 

 

Fig. 4.25. Moderately thick structures − First seven natural frequencies for the beam models, optimal 

model and reference solid model in case 1. 

In terms of problem size, the number of degrees of freedom are respectively equal to 5331 and 10995 

for the optimal model and the reference solid model. Thanks to the adaptive modeling methodology, the 

gain of the number of DOFs is equal to 2.1 for the free-free vibration analysis in case 1. These gains 

may be increased or decreased depending on the number of modes considered in the adaptive modeling 

process. 

4.9.1.2 Case 2 

The second case described in Fig. 4.8 is an intermediate structure between cases 1 and 3. Fig. 4.26 

shows the first seven mode shapes obtained with a reference solid model. Modes 7, 9, 10 and 12 are 

bending modes, mode 8 is a torsion mode, mode 11 combines bending and torsional effects, and mode 

13 is a membrane mode.  
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Fig. 4.26. Moderately thick structures − First seven mode shapes for a reference solid model in case 2. 

From the initial solid model and two iterations of the adaptive modeling process, the theory choice 

criterion based on principal stresses is applied to case 2. For the first modes, beam theory or shell theory 

are chosen over the whole structure, but for higher modes solid theory is chosen in some areas. As for 

case 1, this is a hopeful characteristic of the adaptive modeling methodology. Fig. 4.27 shows the 

selected solid-beam, solid-shell or solid areas for modes 7 to 13. When convergence of the methodology 

is achieved, the synthesis theory choices of the second adaptive model leads to large areas of the solid-

shell approach. Nevertheless, the solid theory is selected in the middle of the structure and the beam 

theory at the corners.  

 

Fig. 4.27. Moderately thick structures − Theory choice for the first seven modes in case 2. 
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For the optimal model, the finite element results are now investigated. The first seven natural 

frequencies are reported in Fig. 4.28 for the optimal model and the reference solid model. The relative 

errors on natural frequencies are less than 0.5%. For case 2, the second choices synthesis leads to an 

optimal model composed of a predominant solid-shell approach with very satisfactory values of natural 

frequencies for the first seven modes.  

 

Fig. 4.28. Moderately thick structures − First seven natural frequencies for the optimal model and reference 

solid model in case 2. 

The numbers of degrees of freedom are respectively equal to 18579 and 29571 for the optimal model 

and the reference solid model. The gain of the problem size reaches 1.6 thanks to the adaptive modeling 

methodology for the free-free vibration analysis in case 2.  

4.9.1.3 Case 3 

The third case described in Fig. 4.8 is a square plate-like structure. Fig. 4.29 shows the first seven 

mode shapes obtained with a reference solid model. Mode 7 is a torsion mode, modes 8, 9, 12 and 13 

are bending modes, modes 10 and 11 combine bending and torsional effects.  

 

Fig. 4.29. Moderately thick structures − First seven mode shapes for a reference solid model in case 3. 

For case 3, the adaptive modeling methodology is applied. For the first modes, shell theory is 

predominant over the whole structure, but for higher modes solid theory is chosen in some areas. Again, 
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this is a hopeful characteristic of the adaptive modeling methodology. Fig. 4.30 shows the selected solid-

beam, solid-shell or solid areas for modes 7 to 13. After two iterations, the convergence of the 

methodology is achieved, leading to large areas of the solid-shell and solid approaches. 

 

Fig. 4.30. Moderately thick structures − Theory choice for the first seven modes in case 3. 

After the second synthesis of the theory choice, the first seven natural frequencies are calculated for 

the optimal model, shell model (S4R element) and the comparison with the reference solid model is 

reported in Fig. 4.31. It is observed the relative differences between the optimal and reference solid 

models are less than 0.5% for the first seven modes in case 3. Again, the results of the optimal model 

remain very satisfactory in the context of free-free vibration analysis. The comparison with a shell 

element, which considers the transverse shear effects, shows that for the first modes all the models give 

similar results, however very slight differences are observed for higher modes 12 and 13. 
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Fig. 4.31. Moderately thick structures − First seven natural frequencies for the shell model, optimal model 

and reference solid model in case 3. 

The number of degrees of freedom are respectively equal to 71291 and 94587 for the optimal model 

and reference solid model, leading to a gain of the number of DOFs equal to 1.3. The optimal model in 

case 3 leads to a gain less than for cases 1 and 2, because the solid area is large for case 3. 

4.9.2 “T” shape plates 

The adaptive modeling methodology is applied here on “T” shape plates described in Fig. 4.16 in 

the context of free-free vibration analysis, with density equal to 7.89×10-9 t/mm3. The structure is 

discretized with the twenty-node hexahedral element C3D20 from Abaqus. The first seven modes are 

studied, Fig. 4.32 illustrates mode shapes obtained with a reference solid model, they range from simple 

bending or torsional modes to more complex combined bending and torsional modes. For the choice 

criterion of theory, the value of n in Eq. (4.8) is equal to 0.5 and the stress ratio parameter ρ is equal to 

100 for this example. The convergence of the methodology is achieved for each mode, the adaptive 

model 2 meets the convergence criterion.  

 

Fig. 4.32. “T” shape plates − First seven mode shapes for a reference solid model. 

For the initial solid model and two iterations of the adaptive modeling process, Fig. 4.33 shows the 

selected solid-beam, solid-shell and solid areas for modes 7 to 13. The second synthesis of the theory 
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choices leads to a large solid-shell area and some solid area in the vicinity of the junction of the two 

plates. 

 

Fig. 4.33. “T” shape plates − Theory choice for the first seven modes. 

The first seven natural frequencies are reported in Fig. 4.34 for the optimal model, shell model (S4R 

element) and the reference solid model. It is observed the relative differences between the optimal model 

and reference solid model are less than 0.5% for the first seven modes of “T” shape plates. In the context 

of free-free vibration analysis, the optimal model provides again very satisfactory results. The natural 

frequencies obtained with the shell model lead to slight differences for modes 9 to 13, compared with 

the reference solid model. In this example, a problem is highlighted due to the junction between two 

plates. The shell geometry is based on mid-surfaces, a local treatment is necessary to correctly connect 

the plates at the junction. This treatment involves some errors on the stiffness and on the mass of the 

structure. For example, in this “T” shape plates, the error on the mass is about 2%. In summary, a 

junction between two plates is better modeled with solid geometry, in particular, when the plates are 

thick. 
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Fig. 4.34. “T” shape plates − First seven natural frequencies for the shell model, optimal model and reference 

solid model. 

In terms of problem size, the number of degrees of freedom are respectively equal to 38075 and 

53619 for the optimal model and reference solid model of the "T" shape plates. The gain of the number 

of DOFs is equal to 1.4. Compared with the cases 1 and 2 of the previous example, this reduction is less 

significant, essentially due to the fact that the vicinity of the junction between the two plates is modeled 

with solid approach. 

4.10 Conclusions 

In the context of linear static and vibration analysis, an original methodology of adaptive modeling 

has been proposed to lead to an optimal model from theory choice point of view in the different areas 

of the structure. The 3D geometry is discretized with solid elements. A criterion of theory choice based 

on principal stresses and weighted by strain energy is applied on each element. Depending on the stress 

state, the obtained optimal model possibly contains solid-beam, solid-shell and solid areas. The modified 

first-order displacement fields proposed in chapters 2 and 3 are applied at concerned nodes of the mesh 

when respectively solid-shell and solid-beam approaches are selected. For vibration analysis, a specific 

synthesis of theory choice is needed at each iteration of the process to define a single optimal model for 

all the modes studied. The convergence of the methodology is achieved when a strain energy criterion 

is met.  

For three cantilever structures and a "T" shape plates assembly, this iterative process has been 

applied and has provided an optimal model in the context of static analysis. The obtained displacement 

and von Mises stress are very close to the results given by a reference solid model. The optimal model 

leads to a significant reduction of the number of degrees of freedom and an interesting CPU time gain. 

The reduction of the problem size depends on the number of elements corresponding to solid-beam and 

solid-shell approaches. 

For three beam to plate moderately thick structures and a "T" shape plates assembly, the adaptive 

modeling methodology has led to an optimal model in the context of free-free vibration analysis. For 
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the first seven mode shapes of these structures, the natural frequencies of the optimal model are very 

satisfactory compared with a reference solid model. A significant gain in terms of the number of degrees 

of freedom is obtained. These gains may be increased or decreased depending on the number of modes 

considered in the adaptive modeling process. 

In perspective, the methodology of adaptive modeling is a promising approach based on new 

displacement fields proposed in chapters 2 and 3. We can distinguish two types of perspectives, first on 

the one hand, different aspects of the methodology should be improved and from the other hand further 

applications are numerous. Concerning the theory choice criterion, the principal stresses work well but 

still can be optimized for some special situation, for example pure torsion of a beam, consequently the 

criterion should be improved. The stress ratio parameter plays an important role in this criterion and 

depends on the studied structure. The choice of this parameter could be identified in an automatic way, 

for example by using machine learning techniques. An error indicator could also be proposed to evaluate 

the theory choice. Currently, a global criterion is used to assess the convergence of the methodology, a 

local criterion could also be developed to better take into account local effects. As the methodology 

associates a solid mesh with beam theory or shell theory, the identification of the normal to cross-section 

for a beam and the thickness direction for a shell requires complementary research. An approach based 

on principal directions of the stress tensor has been proposed, but this issue needs new investigations 

for complex structures. Also, the mesh refinement uses a basic voxel technique and can be improved by 

coupling the iterative methodology with adaptive mesh technique. Finally, the extension of development 

and applications of the adaptive modeling are numerous, especially for composite structures. 
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Chapter 5 

Conclusions and perspectives 

5.1 Conclusions 

An adaptive modeling methodology for the optimal finite element static and dynamic analysis of 

structures has been proposed. In the context of which, the present works have been focused on the local 

adaptive choice of appropriate theories. A new solid-shell approach and a new solid-beam approach are 

presented since only solid geometry, mesh, and element are preserved in this methodology. As far as the 

author knows, both the proposed new solid-shell or solid-beam approaches and the proposed adaptive 

local choice of appropriate theory are original. 

A new and specific solid-shell approach dedicated to thin to very thick structures has been presented. 

The classical first-order Mindlin-Reissner theory, a modified first-order plate theory, and a higher-order 

plate theory have been considered for this approach. These three theories are based on kinematic 

relations, and the plate or shell displacement fields are directly imposed at the through-the-thickness 

nodes of solid model which contains several elements through the thickness. This leads to the first-order 

solid-shell (FOSS), modified first-order solid-shell (MFOSS), and higher-order solid-shell (HOSS) 

models respectively. The master and slave nodes technique is used. Linear equations based on 

displacement fields eliminate degrees of freedom of slave nodes, resulting in a reduction of model size. 

Consequently, the number of degrees of freedom eliminated corresponds exactly to the number of 

equations applied. In static examples, the FOSS model fails in both thin and thick plate or shell structures 

due to the Poisson thickness locking phenomenon. The MFOSS model gives a satisfactory performance 

in the thin cases but shows moderate errors in the thick ones. The through-the-thickness linear 

assumptions of the displacement components u and v cannot accurately reproduce reference results. The 

HOSS model shows excellent results both in the thin and thick structures compared with the reference 

solid model. In dynamics, the frequencies obtained by solid, HOSS, MFOSS, FOSS and shell models 

under different boundary conditions lead to conclusions similar to the static case. The FOSS model leads 

to bad results. The MFOSS model works well for thin structures but gives less precise results in the 

thick case, especially for higher-order modes. The HOSS model gives excellent frequencies in both thin 

and thick cases, compared with the solid approach. For the modal shapes, all the solid-shell models give 

results close to the reference. Moreover, the solid-shell models are efficient from a model size point of 

view thanks to the reduction of the number of degrees of freedom. From this point of view, the MFOSS 

model is comparable with that induced by the use of shell elements, and the HOSS model is intermediate 

between the shell model and the solid one. 
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Up to now, few solid-beam elements have been developed. For the new solid-beam approach, a 

beam in plane and a beam in space are presented separately. Similar to the solid-shell approach, the 

classical first-order Timoshenko theory, a modified first-order beam theory, and a higher-order beam 

theory are considered for a beam in plane. It leads to the first-order solid-beam (FOSB), modified first-

order solid-beam (MFOSB), and higher-order solid-beam (HOSB) models respectively. These models 

take into account membrane, bending and transverse shear effects. For a beam in space, a modified first-

order beam theory and a higher-order beam theory, which contain the torsion effect for rectangular cross-

sections, are considered. This leads to the SB1-3D model and the SB2-3D model respectively. The 

implementation of this solid-beam approach is quite similar to the solid-shell approach, except that 

kinematic relations are imposed at the nodes throughout the cross-section for a beam instead of the nodes 

through the thickness for a shell. Static examples have been studied to verify the solid-beam approach 

for a beam in plane. The FOSB, MFOSB and HOSB models for beam structures give similar 

performances to the FOSS, MFOSS and HOSS models respectively for plate or shell structures 

described above. Two free-free vibration analyses allowed assessment to the performances of SB1-3D 

and SB2-3D models. Again, similar tendencies are observed to the MFOSS and HOSS models described 

above for the solid-shell approach. In terms of model size, the solid-beam models have considerable 

reduction compared with the reference solid model.  

In the context of linear static and vibration analysis, an original methodology of adaptive modeling 

has been proposed to lead to an optimal model from a theory choice point of view in the different areas 

of the structure. The 3D geometry is discretized with the solid element. A criterion of theory choice 

based on principal stresses and weighted by strain energy is applied on each element. Depending on the 

thin, thick or solid 3D areas of the structure, the obtained optimal model possibly contains solid-beam, 

solid-shell and solid approaches. The modified first-order displacement fields proposed in chapters 2 

and 3 are applied at the nodes of the mesh when respectively solid-shell and solid-beam approaches are 

selected. For vibration analysis, a specific synthesis of theory choice is needed at each iteration of the 

process to define only one optimal model for all the modes studied. The convergence of the methodology 

is achieved when a strain energy criterion is met. In the context of static analysis, the iterative process 

has been applied on three cantilever structures and "T" shape plates, leading to optimal models. The 

obtained displacements and von Mises stresses are very close to the reference results given by a 

reference solid model. In the context of free-free vibration analysis, the methodology of adaptive 

modeling has led to optimal models for three moderately thick structures and "T" shape plates. For the 

first seven mode shapes of these structures, the natural frequencies of the optimal model are very 

satisfactory compared with a reference solid model. The optimal model results in a significant reduction 

of the number of degrees of freedom and an interesting CPU time gain. The reduction of the problem 

size depends on the number of elements corresponding to solid-beam and solid-shell approaches.  
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The main characteristics and strengths of the overall adaptive modeling methodology are 

summarized as: (1) The proposed iterative process leads to an optimal model considering the local 

choice of appropriate theory. Beam, shell and solid theories can be used simultaneously in this optimal 

model. (2) Compared with the reference solid model, our optimal model achieves almost the same results 

with less computational cost due to the reduced number of degrees of freedom. (3) For the beam or shell 

areas of the optimal model, compared with the shell or beam approach (shell or beam models), no mid-

surface or mid-axis geometries are required in our proposed approach, which leads to fewer difficulties 

concerning the link between Computer Aided Design (CAD) and Computer Aided Engineering (CAE). 

(4) For the beam or shell areas of the optimal model, compared with the solid-shell or solid-beam 

elements of the literatures, our method uses only standard solid elements, leading to more adaptabilities 

to commercial finite element software. (5) Moreover, the interfaces difficulties due to the different types 

of elements or different mesh refinements are also avoided. There are also some difficulties and 

shortcomings of the current version of our methodology. For example, the criterion of theory choice is 

limited and should be improved. The normal to cross-section for a beam and the thickness direction for 

a shell should be clearly identified for complex structures. The adaptive modeling method should be 

considered from an optimal mesh point of view.  

5.2 Perspectives 

Three original methods, including the new solid-shell, solid-beam approaches, and the adaptive 

modeling methodology, have been proposed. Thus, it gives a possibility to numerous perspectives. 

− Other refined plate or shell theories can be applied in the solid-shell or solid-beam approach. 

− An extension of the proposed solid-shell or solid-beam approach to multilayered composite 

structures is possible.  

− Other cross-section shapes can be considered in the solid-beam approach. 

− The criterion for theory choice has to be improved. A criterion based on principal stresses is not 

perfect and needs special treatment for some cases, namely pure torsion for a beam. The optimal 

stress ratio parameter of this criterion depends on the studied structure, the choice of this 

parameter could be identified by using machine learning techniques.  

− An error indicator could also be proposed to evaluate the choice of theory. 

− As the methodology associates a solid mesh with beam theory or shell theory, the identification 

of the normal to cross-section for a beam and the thickness direction for a shell requires further 

works. This aspect needs new investigations for complex structures. 

− The refinement of the mesh uses a basic voxel technique and can be improved by coupling the 

iterative methodology with adaptive mesh technique. 

− The adaptive modeling methodology has to be applied to more complex structures, in particular 

industrial examples. 
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