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Abstract

The inverse problem consists of finding the parameter values of a physical

model given a set of measurements. In mechanical engineering problems, material

behavior’s characterization requires an inverse method to identify the material

parameters. The deterministic identification problem is generally sensitive to data,

and one way to resolve this issue is to consider uncertainties in the data. While

several such methods exist in the literature, most of them use least-square minimiza-

tion or Bayesian approaches. This thesis explores how non-probabilistic uncertainty

(interval-based) approaches can help obtain a solution to the inverse problem,

particularly when measurements are inconsistent with one another. Our approach

intrinsically differs from the previously mentioned ones. It does not rely on minimiz-

ing the average error but rather on selecting a subset of consistent measurements.

The identification strategy is based on the set theory developed, which allowed

us to take into account both prior information about the parameters and measure-

ment uncertainty in the form of sets (interval or boxes) during the inversion process.

In this strategy, we developed some indicators of consistency of the measurements

to characterize inconsistent measurements, i.e., outliers in the data. We applied

this strategy to identify the elastic parameters of an isotropic material. The main

advantage of this strategy is that it helps to obtain a feasible set of parameters,

but that it can also detect the outliers among noisy measurements. The strategy

is subsequently combined with surrogate modeling for identification problems in

high dimensional settings. We also applied our strategy to detect damage in the

material.

Keywords: Inverse problem, Uncertainty representation, Interval method, Outliers.





Résumé

Le problème inverse consiste à trouver les valeurs des paramètres d’un modèle

physique à partir d’un ensemble de mesures. Dans les problèmes de génie mé-

canique, la caractérisation du comportement des matériaux nécessite une méthode

inverse pour identifier les paramètres des matériaux. Le problème d’identification

déterministe est généralement sensible aux données, et une façon de résoudre

ce problème est de prendre en compte les incertitudes dans les données. Bien

que plusieurs de ces méthodes existent dans la littérature, la plupart d’entre elles

utilisent la minimisation des moindres carrés ou les approches bayésiennes. Cette

thèse explore comment les approches d’incertitude non probabiliste (basées sur des

intervalles) peuvent aider à obtenir une solution au problème inverse, en particulier

lorsque les mesures sont incompatibles les unes avec les autres. Notre approche

diffère intrinsèquement de celles mentionnées précédemment. Il ne repose pas sur

la minimisation de l’erreur moyenne mais plutôt sur la sélection d’un sous-ensemble

de mesures cohérentes.

La stratégie d’identification est basée sur la théorie des ensembles développée,

qui nous a permis de prendre en compte à la fois les informations préalables sur

les paramètres et l’incertitude de mesure sous forme d’ensembles (intervalle ou

boîtes) lors du processus d’inversion. Dans cette stratégie, nous avons développé

des indicateurs de cohérence des mesures pour caractériser les mesures inco-

hérentes, c’est-à-dire les valeurs aberrantes dans les données. Nous avons appliqué

cette stratégie pour identifier les paramètres élastiques d’un matériau isotrope. Le

principal avantage de cette stratégie est qu’elle permet d’obtenir un ensemble réal-

isable de paramètres, mais qu’elle peut également détecter les valeurs aberrantes

parmi les mesures bruyantes. La stratégie est ensuite combinée à une modélisation

de substitution pour les problèmes d’identification dans des environnements de

grande dimension. Nous avons également appliqué notre stratégie pour détecter

les dommages dans le matériau.

Mots clés: Problème inverse, Représentation de l’incertitude, Méthode d’intervalle,

Valeurs aberrantes.
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Introduction

Material characterization is one of the key element for engineers to design the

optimum structures which offer the required performance. The characterization of

material behavior requires (under heterogeneous conditions, e.g., complex loading,

geometry, or material) an inverse method to identify the material parameters. Iden-

tifying the parameters of a physical model from a set of measurements is a common

task in many fields such as image processing (tomographic reconstruction [Chetih

and Messali, 2015]), acoustic(source identification [Eller and Valdivia, 2009]), or

mechanics (material parameter identification [Tam et al., 2017]). Such a problem

is known as the inverse problem and is the converse of the so-called forward

problem, that simply consists in estimating output values from the model, knowing

its parameters and input values. While the forward problem is usually well-posed,

it is not the case of the inverse problem [Hadamard, 1902]. Indeed, whenever

there is noise in the measurements or error in the model, such a problem may well

end-up having no solutions [Tikhonov, 1995] as the number of measurements is

typically quite higher than the number of parameters to retrieve. The deterministic

identification problem is generally highly sensitive to data quality, and one way to

resolve this issue is to take into account uncertainties in the data.

Common solutions to this issue that have been proposed in the literature are to

consider either Least-square minimization techniques [Teughels and Roeck, 2005]

or Bayesian approaches [Gogu et al., 2010] to cope with the noise in measurements.

The first approach simply tries to find the parameter values minimizing the average

distance (i.e., the squared error) between the reconstructed and the observed

measurements. While this approach may be very efficient (especially for linear

models [Kong et al., 2019]). A way around it is the use of Bayesian approaches,

where measurement and model errors are modeled by probability distributions,

and where a posterior distribution over parameter values is obtained by combining

these distributions with a prior distribution on the parameters.

Both these approaches, however, can be quite sensitive to outliers [Blais, 2010,

Chen et al., 2000] or to aberrant measurements. In addition to that, Bayesian

approaches require to carefully model the errors and to assess precise probabilities,

which may not be easy to get in some situations. Indeed, many authors have
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argued that in case of incomplete information about the noise, precise Bayesian

approaches often require to make extra assumptions that may be false, hence

may lead to misleading results [Chen et al., 2000]. As an alternative, there are

other non-probabilistic approaches, such as imprecise probabilities [Walley, 1991],

intervals [Moore, 1966], fuzzy sets [Zadeh, 1965], possibility theory [Baudrit and

Dubois, 2006], and theory of belief function (evidence theory [Shafer, 1976]), to

model the uncertainty on the imprecise information.

In the context of the inverse problem, non-probabilistic methods is a less

explored area. In this work, we explore how interval-based approaches can be

used to obtain a solution to the inverse problem, in particular when measurements

are inconsistent with one another. Interval-valued approaches [Moens and Hanss,

2011, Ferson and Ginzburg, 1996, Helton and Johnson, 2011] make a minimal

amount of assumptions about the nature of the involved uncertainties (epistemic or

aleatory) and only require to define the region in which should be the measurement.

In the context of the interval-valued approaches, there are two main challenges:

(1) representing prior information about parameters and measurements, and (2)

determining the consistency of measurements. The present work addresses these

issues by proposing a set-valued inverse method that is not only able to identify

a feasible set of the parameters but is also able to detect inconsistencies and

outliers in the measurements. Our approach uses intervals or sets [Jaulin et al.,

2001] to model uncertainty on the information. Recently [Faes et al., 2019, Mierlo

et al., 2019, Fedele et al., 2012, Jaulin and Walter, 1993, Braems et al., 2001],

a few interval-based methods have been proposed to identify parameters from

measurements. These methods do not specifically address the issues of determining

the inconsistency of measurements, which is a one of the goal of this work.

In this work, we propose an inverse strategy relying on interval analysis to deal

with uncertain measurements and methods to detect inconsistent measurements

(outliers). We apply the proposed strategy in experimentation concerning the

identification of material elastic parameters in the presence of possibly inconsistent

measurements (here, full-field displacements [Peters and Ranson, 1982]). In the

context of structural damage detection, we apply the proposed strategy to show

how available measurement data is useful to estimate the location of the damage

in the material. The thesis is organized as follows.

• Chapter 1 presents the methods to represent uncertainty on the information,

including probability theory and interval theory. It also introduces the inverse

methods with probabilistic and non- probabilistic uncertainty representation.

Concerning the non-probabilistic approaches, we will limit ourselves to the

interval-valued case as our work focus on this particular case and extensions
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to other theories is left for future investigations.

• Chapter 2 presents the basic identification strategy based on intervals and

sets. It also discusses our proposed outlier detection algorithms and numerical

implementation of the identification strategy.

• Chapter 3 presents the application of the identification strategy to the me-

chanical inverse problem and how to deal with inconsistent measurements

in inverse problems. It also compares of outlier detection criteria among

themselves as well as the proposed identification strategy with the Bayesian

inference method in terms of sensitivity to outliers.

• Any identification strategy becomes computationally complex when either

a large number of parameters to identify or available measurements are

in the large number. Chapter 4 presents how surrogate modeling can be

useful when the identification strategy used with high dimensional data. It

also illustrates one more critical application of identification strategy, in the

context of structural damage detection, to estimate the location of the damage

in the material.
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1.1 Inverse problem

We use inverse problems for predicting or characterizing the parameters of any

physical model from experimental measurements given the physics of the model

under study. The inverse problem is the reverse of a forward or direct problem.

Forward problems deal with computing the response of any physical model knowing

its parameters. It can be stated in a simple example as:

find u = u(θ) such that g(u, θ) = 0,with θ given (1.1)

where u is the response of the model, θ denotes the model parameters, and g is

the function derived from the physics. The inverse problem can be formulated as

follows:

find θ ∈ Θ such that g(ũ,θ) = 0, (1.2)

where ũ is the measured response corresponding to u, and Θ denotes the parameter

space in which θ is searched. Unlike standard forward problems, inverse problems

are usually ill-posed because they do not satisfy the Hadamard well-posedness

conditions [Hadamard, 1902]: (1) a solution exists; (2) the solution is unique;

(3) the solution’s behaviour changes continuously with the initial conditions.

Both the forward and inverse problems make use of information. In the non-

deterministic case, uncertainty on the information plays a significant role in the

solution of the forward and inverse problems. For the first, the uncertainty on

input parameter information, i.e. parameter uncertainty and uncertainty on the

numerical model which approximates the physical model,i.e. the model uncertainty

affects the solution. For the inverse problem, in addition to the parameter and

model uncertainty, uncertainty on the measurement information affects the solution.

Modeling uncertainty in the information can be useful to formulate a well-posed

problem.

Uncertainty is inevitable in the inverse problem. Many researchers divide it into

two types [Hora, 1996, Helton et al., 2004]: aleatoric uncertainty arises due to the

system or physical quantity variability; epistemic uncertainty arises due to the lack

of knowledge or incomplete information. The first one is irreducible, has a random

nature, and is generally represented by a probability distribution when sufficient

information is available. While the second one, in contrast to aleatoric uncertainty,

is reducible with additional information. The experimental information related to

data measured during the experimental tests, i.e., measurement uncertainty, is often

linked to aleatory uncertainty. In contrast, the model and parameter uncertainties

are often linked to epistemic uncertainty. The use of a probabilistic approach for
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the representation of epistemic uncertainty often raised questions. In the literature,

a lot of researchers argued that probabilistic methods are not well suited for

representing and propagating epistemic uncertainty [Moens and Hanss, 2011,

Ferson and Ginzburg, 1996, Helton and Johnson, 2011]. As an alternative, there

are non-probabilistic approaches such as imprecise probabilities [Walley, 1991],

intervals [Moore, 1966], fuzzy sets [Zadeh, 1965], possibility theory [Baudrit and

Dubois, 2006], and theory of belief function (evidence theory [Shafer, 1976]) to

model the uncertainty of incomplete or imprecise information. As our thesis work

focuses on non-probabilistic uncertainty representation with intervals and sets, we

will limit ourselves to interval theory. In this thesis work, we emphasize on how to

deal with inconsistent measurements in the inverse problem. In the next section,

we review existing deterministic and non-deterministic inverse methods.

1.2 Deterministic inverse problem

In the context of the deterministic inverse problem, a way to solve the inverse prob-

lem in the presence of measurement uncertainty is to find the value θ minimizing

the error between the reconstructed data and the observed measurements. If one

adopts a least-square minimization, this comes down to solve the optimization

problem as

θopt = Arg Min
θ∈Θ

J(θ) (1.3)

where J(θ) = ‖u(θ)− ũ‖22. Non-uniqueness and ill-posedness of the solution are

inevitable in the inverse problem. To solve this problem, some authors suggested

regularization [Engl and Ramlau, 2015] in the optimization problem. The idea

is to explore prior information about parameters in addition to the measurement

information. The Tikhonov regularization [Tikhonov et al., 1995] technique takes

prior information about parameters into account by adding a stabilizing function

to the original objective function as

J (θ) = J(θ) + αR(θ), (1.4)

where J(.) defines the discrepancy between the predicted data and measurements.

The coefficient α is the regularization parameter, andR(.) is the stabilizing function.

One of the ways to choose R(.) is

R(θ) = ‖θ − θ0‖
2
2, (1.5)
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where θ is considered to be close to the prior value θ0. The selection of the coeffi-

cient α is a vital point for Tikhonov regularization. There are various ways to select

the optimal value of α such as the L-curve method [Hansen, 1992, Kindermann

and Raik, 2020].

The identification method described above is a part of deterministic strategies.

They mainly focus on predicting the parameters that best fit with the measurement

data and estimate a single value. They can be coupled with Tikhonov regularization

techniques that consider prior information, but they do not model uncertainty on

the measurement data. Due to their averaging nature, such methods will typically

work well if measurement errors are comparable (i.e., there are no outliers) and do

not suffer from a constant bias (i.e., they are evenly spread around zero). They may

work poorly in case of such a systematic bias, and will certainly be very sensitive to

the presence of outliers.

1.3 Non-deterministic inverse problem based on the

probability theory

In this section, we discuss the inverse method based on the probability theory. Prob-

ability theory [Jaynes, 2003, Zio and Pedroni, 2013] is one of the tools traditionally

used to represent uncertainty in risk assessment. Probability is a measure of the

occurrence of an event, and it is a single-valued measure of uncertainty, i.e., a

single number p(A) represents the uncertainty about the occurrence of an event

A. Different interpretations of probabilities exist, such as the relative frequency

(the frequentist view ) and the subjective or Bayesian (the subjective (Bayesian)

view). For the first one, the probability is the fraction of times an event A occurs if

the situation is to occur an infinite number of times. For the latter, the probability

of an event A represents the degree of belief of the assigner for the occurrence of

A. Next, we will discuss the probability theory in uncertainty representation and

propagation.

1.3.1 Uncertainty representation in probability theory

In the probability theory, a random variable represents the uncertainty of the

random events. Consider Ω to be the sample space of a random events, which is a

set of all possible outcomes. A real random variable X is a measurable mapping:

X : Ω −→ E ⊆ R
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The random variable is discrete when E is discrete; otherwise, it is continuous. A

real random vector X is a measurable mapping:

X : Ω −→ E ⊆ R
d

The real random vector is a vector whose components are random variables. In

probability theory, random variable X is used to model uncertainties. These can be

simple real-valued random variables or more complex objects such as stochastic

processes or random fields [Batou and Soize, 2013, Gong et al., 2020].

Now we will discuss the uncertainty propagation in probability theory in the

case of the forward problem. We consider a model of the form:

Y = f(X)

where X = (X1, ....., Xd) is a random vector with a given probability law, and f is

a function which associates a value x of X to a value y of the variable of interest

Y . The choice of a probability law or distribution for X depends on the availability

of data: 1) If no data are available, we can introduce some a priori information

to directly construct a probability law for X, e.g., with the maximum entropy

principle [Harremoës and Topsoe, 2001, De Martino and De Martino, 2018]. 2) If

data are available, we can use statistical inference methods. Monte Carlo simulation

(MCS) is one of the techniques [Anderson, 1976, Couto et al., 2013, Cunha et al.,

2014] used for the propagation of the uncertainties from X to Y . Next, we will

discuss the inverse method based on the probability theory.

1.3.2 Inverse method based on Bayesian Inference

In this section, we discuss the non-deterministic inverse method based on Bayesian

inference. In this method, uncertainty on the information is modeled with the

probabilistic approach. In the context of Bayesian inference, the main idea is to find

the posterior probability distribution of model parameters θ given the observed

measurement data ũ. The result is defined by applying Bayes’ formula:

p(θ | ũ) =
p(ũ | θ)p(θ)

∫

p(ũ | θ)p(θ)dθ
(1.6)

where p(ũ | θ) is the likelihood of measurement data, i.e., p(ũ | θ) depends on the

probability distribution of the error ε = u − ũ on the measurements, p(θ) is the

prior probability distribution of model parameters which corresponds to the prior

knowledge on θ. As the denominator term in Equation ((1.6)) is a constant, i.e.,
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c = p(ũ) =
∫

p(ũ | θ)p(θ)dθ , a simplified form of the above formulation is

p(θ | ũ) ∝ p(ũ | θ)p(θ) (1.7)

The idea of identification in the Bayesian inverse method is to generate a posterior

distribution of parameters from the probability distribution of measurements and

prior knowledge about parameters. To estimate a posterior distribution, one of the

ways is the Markov chain Monte Carlo(MCMC) sampling method [van Ravenzwaaij

et al., 2016]. Bayesian inverse methods find their application in various fields such

as mechanical parameter identification [Emery et al., 2016], finance [Ota et al.,

2019], and artificial intelligence [Tipping, 2004]. In the context of identification of

mechanical models, Bayesian inverse methods have been used, for example, for the

identification of elastic properties from full-field displacement measurements [Gogu

et al., 2010]. Unlike the deterministic least-squares approach, the Bayesian inverse

method results in a probability distribution to represent the possible values of the

identified parameter. The key feature of the Bayesian inverse method is that it

takes prior information about parameters using a probability distribution. A way

to choose the prior distribution can be from subjective engineering judgment or

maximum entropy principle. The choice of the prior distribution plays a vital role in

Bayesian inverse method. However, in the case of incomplete knowledge or partial

ignorance, researchers have debated a lot about the limitations of the probability

theory to represent uncertainty [Moens and Hanss, 2011, Ferson and Ginzburg,

1996, Helton and Johnson, 2011]. [Hose and Hanss, 2019] describes the limitation

of probability theory to represent partial ignorance with the following example:

"Suppose, you have the same knowledge about a certain positive variable x > 0, e.g.

the proportion of alcohol in a liquid, and about its reciprocal y = 1
x
. Then, x ∈ [a, b]

is equivalent to y ∈ [1
b
, 1
a
], but a uniform distribution on [a, b] is not compatible

with a uniform distribution on [1
b

, 1
a
]. Therefore, uniform probability distributions

cannot represent total ignorance since invariance under transformations cannot be

guaranteed".

Even though probability theory is well suited to model aleatory uncertainty

but in the case of incomplete information related to measurements or parameters,

Bayesian inverse methods can give false predictions [Chen et al., 2000]. Bayesian

methods can be very efficient and accurate if the model is right. However, as for

the least-square methods, Bayesian methods can be quite sensitive to outliers (as

we shall see in the experiments of Chapter 3) and require a strong modeling effort

to be accurate and not be subject to model misspecification biases. In this sense,

their robustness can be limited, even if they are the first choice when it comes to
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model and process measurement uncertainty.

1.4 Non-deterministic inverse problem based on the

non-probabilistic approach

In the last section, we discussed the limitation of probability theory to represent

imprecise or incomplete information. Alternative non-probabilistic approaches

are proposed in the literature to represent uncertainty on the data irrespective

of its nature or source, and it includes imprecise probabilities [Walley, 1991],

intervals [Moore, 1966], fuzzy sets [Zadeh, 1965], possibility theory [Baudrit and

Dubois, 2006] and theory of belief function (evidence theory [Shafer, 1976]). They

play an essential role in solving the inverse and the forward problem taking into

account uncertainty propagation. Concerning the non-probabilistic approaches, we

will limit ourselves to the intervals and sets to represent uncertainty as our work

focuses on this particular case. However, intervals are the basis of the other theories

and extensions to these theories is left for future investigations.

1.4.1 Intervals to represent uncertainty

Within the framework of interval analysis, an interval [x] in R is a closed set of

connected real values noted by [x] = [x, x] = {x ∈ R | x ≤ x ≤ x} where x ∈ R

is the lower bound and x is the upper bound [Jaulin et al., 2001]. In the context

of uncertainty representation, unlike probability theory, with intervals the idea is

that the actual value of the uncertain quantity is between two bounds without

requiring information on the likelihood of each value within that interval. In our

work, we choose to describe uncertainty on the measurements in interval form,

as such a description requires almost no assumption regarding the nature and

source of uncertainty [Zio and Pedroni, 2013]. To describe prior information about

parameters, we use a multidimensional extension of intervals, i.e. hypercube or box

of Rn defined as the Cartesian product of n intervals. The set of all n-dimensional

boxes will be denoted by IR
n. For example, in the case of two parameters, x1 and x2,

information on them is described by set X such that X = [x] = [x1]× [x2] = [x1, x1]×

[x2, x2] as illustrated in Figure 1.1. Boxes correspond to the multidimensional sets

that are easiest to describe sets.

How intervals can be used to solve the forward or inverse problem apart

from their role as the uncertainty representation? The answer to this question is

uncertainty propagation with intervals. We discuss this in the next section.
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X or[x]

x1

x2

x1 x1

x2

x2

Figure 1.1 – A box [x] of IR2

1.4.2 Uncertainty propagation with intervals

We consider a function from R
n to R

m as

y = f(x) (1.8)

The function f extends to its interval form as

[y] = [f ]([x]) (1.9)

where [f ] is an interval function. The role of this function in the context of the

forward interval uncertainty propagation is to obtain quantity y in interval form

with input quantity x in the interval form. The commonly used method for interval

propagation includes interval arithmetic [Moore, 1966], optimization [Moens and

Hanss, 2011], the vertex method [Dong and Shah, 1987, Akpan et al., 2001],

perturbation method [Chen et al., 2002, Jaulin et al., 2001], Interval finite element

method [Muhanna and Mullen, 2001, Zhang, 2005]. Before discussing them, we

try to give some notions related to intervals.

The width of any non-empty interval [x] is defined as

w([x]) = x− x (1.10)

The midpoint or centre of any bounded and non-empty interval [x] is defined as

m([x]) =
x+ x

2
(1.11)
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In the context of set-theoretic operations, the intersection of two intervals [x1] and

[x2] is given as

[x1] ∩ [x2] = {z ∈ R | z ∈ [x1] and z ∈ [x2]} = [max{x1, x2},min{x1, x2}] (1.12)

The union of two intervals [x1] and [x2] is given as

[x1] ∪ [x2] = {z ∈ R | z ∈ [x1] or z ∈ [x2]} = [min{x1, x2},max{x1, x2}] (1.13)

1.4.2.1 Interval arithmetic

The fundamental arithmetic operations [Moore, 1966] for non-empty closed

intervals can be defined as:

[x1] + [x2] = [x1 + x2, x1 + x2] (1.14)

[x1]− [x2] = [x1 − x2, x1 − x2] (1.15)

[x1] ∗ [x2] = [min{x1x2, x1x2, x1x2, x1x2}, max{x1x2, x1x2, x1x2, x1x2}] (1.16)

1/[x2] = ∅ if [x2] = [0, 0],

1/[x2] = [1/x2, 1/x2] if 0 /∈ [x2],
(1.17)

[x1]/[x2] = [x1] ∗ 1/[x2] (1.18)

In many problems, these simple interval arithmetic operations can be used

in a straightforward way to propagate intervals through functions to obtain the

interval output. Interval arithmetic is a very convenient tool, but it is not without

drawback, in particular in terms of the conservatism of the obtained result [Zhang,

2005, Jaulin et al., 2001]. Consider a function f(x) = x ∗ x + x from R to R ,

and the aim is to propagate interval [x] = [−1, 1] through it. If we use interval

arithmetic technique, the output of this function is [−2, 2]. We can express the

same function in its equivalent form (x + 1
2
)2 − 1

4
, and if we propagate interval

[x] = [−1, 1] through it, then the output of this function is [−1
4
, 2]. If we compare

the two outputs, then the width of the second one is smaller than the first one, i.e.,

the output result is less conservative. The reason for getting an overestimated result

is that there are multiple occurrences of the interval variable [x] in the first form of

the function. Since interval arithmetic treats each interval variable as different and

independent, it can not take into account dependency of the same interval variable

when it occurs several times in the expression. Many authors [Sofi and Romeo,

2016, Zhang, 2005, Moore, 1966, Faes and Moens, 2019] called this dependency

phenomenon. Nevertheless, this interval arithmetic techniques can be useful in
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some cases.

1.4.2.2 Optimization method

As discussed in the previous section, interval arithmetic has some limitations

to propagate interval through the model in some cases. Another way to solve

the interval problem without using interval arithmetic is the use of optimization

method [Moens and Hanss, 2011]. Consider a function y = f(x) from R to R, and

we want to propagate interval [x] through it to obtain interval output of y, i.e.,

the range of [y]. In this method, to calculate range, [y], the function is optimized

at possible values of x that falls within the range of [x]. The range of [y] as an

optimization problem is given as

y = min
x∈[x]

f(x)

y = max
x∈[x]

f(x)
(1.19)

In this method, we avoid the dependence problem easily as we evaluate the

function deterministically with no interval propagation explicitly. This method can

be useful when the function under evaluation has a non-monotonic nature. However,

with practical engineering problem such as industrial Finite Element problem,

the number of function evaluations increases with the number of input interval

parameters which then leads to high computational cost for the optimization

problem.

1.4.2.3 Vertex method

Another way to solve the interval problem without using interval arithmetic is the

use of the vertex method [Dong and Shah, 1987, Akpan et al., 2001]. If we want to

propagate interval [x] through a function y = f(x) from R to R to obtain the range

of [y] then in this method, the function is evaluated at possible values of x that falls

within the range of [x]. The range of [y] with the vertex method is given as

[y, y] = [min(f(x), f(x)),max(f(x), f(x))] (1.20)

In this method, we avoid the dependence problem easily as the interval propagation

does not happen explicitly. This method can be useful only when the function under

evaluation has a monotonic nature, otherwise, we only obtain an inner approxima-

tion of the true result. However, the number of function evaluations increases with

the number of input interval parameters that leads to high computational cost.
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1.4.2.4 Perturbation method

Another way to solve the interval problem without using interval arithmetic is the

use of a perturbation method [Chen et al., 2002, Jaulin et al., 2001], which aims at

obtaining a tight enclosure of the interval output. In this method, we approximate

the function f(x) from R to R evaluation around the middle point of the input

interval parameter, i.e., m[x] with the first-order Taylor series expansion

f(x) ≈ f(m[x]) + f ′(x)(x−m[x]) (1.21)

This approximated function can then be used with the optimization problem(1.19)

to know the interval output.The perturbation method with a first-order approxi-

mation is only applicable when the width of the input interval parameter is small

enough to obtain the bounded output. Higher-order approximation helps to improve

the performance of the perturbation method; however, this may entail cumbersome

calculations.

1.4.2.5 Interval Finite Element method

The Finite Element(FE) method is a widely used method for solving problems of

engineering such as structural mechanics, heat transfer, fluid flow, mass transport,

and electromagnetic potential. It is a mathematical tool to solve partial differential

equations representing the physics. Let us consider a simple example of linear

elasticity of 1D bar with 2 elements and 3 nodes. The FE formulation [Fish and

Belytschko, 2007] of this problem results in a linear system of equations as:

KU = F (1.22)

where K is the global stiffness matrix, U is the vector of nodal displacements, and

F is a force vector. Its interval linear system is given as:

[K][U ] = [F ] (1.23)

The global stiffness matrix [K] is obtained from assembling two elemental stiffness

matrices for this particular example as:

[K] = [K1]+ [K2] =







[K11, K11] [K12, K12] 0

[K21, K21] [K22, K22] + [K22, K22] [K23, K23]

0 [K32, K32] [K33, K33]






(1.24)
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where K1 and K2 are given as

[K1] =







[K11, K11] [K12, K12] 0

[K21, K21] [K22, K22] 0

0 0 0







[K2] =







0 0 0

0 [K22, K22] [K23, K23]

0 [K32, K32] [K33, K33]







When we represent uncertainty on stiffness parameter with intervals, during the

assembling process in Equation (1.24), we can observe stiffness parameter [K22]

occurred twice. In the FE problems, as the number of nodes and elements increases,

the size of the global stiffness matrix increases that can lead to multiple occurrences

of the stiffness parameters. As discussed in section 1.4.2.1, propagation of the

interval stiffness parameter through Equation (1.22) by interval arithmetic will

provide overly conservative results, due to dependency issues. To tackle the issue

of dependency, in the context of Interval FE method, [Muhanna and Mullen,

2001, Zhang, 2005] have proposed Element-by-Element(EBE) method, which

is useful in assembling the global stiffness matrix. In this method, the idea is

to detach elements so that there are no connections between elements to avoid

element coupling in the element assembly procedure. This method has shown to

provide sharp bounds on interval output in the context of the Interval FE method.

The Interval FE method consists of solving a linear interval system of equations.

[Neumaier, 1990, Shary, 2001, Garloff, 2008] have proposed methods such as

interval Gauss-seidel method, or interval Gaussian elimination to solve the linear

interval system.

1.4.3 Non-deterministic inverse problem based on the interval

theory

In this section, we review existing inverse methods based on intervals and sets.

1.4.3.1 Set inversion based approach to solve the inverse problem

Consider a function f from R
n to R

m and Y a subset of Rm, then the set inver-

sion [Jaulin et al., 2001] problem is defined as the characterization of the set

X = {x ∈ R
n | f(x) ∈ Y} = f−1(Y) (1.25)
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For function f , the set Y is represented as [y], which is a known interval vector

of m measurements, and the set X which is to be characterized is represented as

[x], which is a box to which X is guaranteed to belong. A way to approximate

the compact set X in a guaranteed way is the use of subpavings. A subpaving of

a box [x] is the union of non-empty and non-overlapping sub boxes of [x]. The

inverse set solution approximates X between two subpavings X and X such that

X ⊆ X ⊆ X using SIVIA (Set inversion via Interval Analysis) method [Jaulin and

Walter, 1993, Braems et al., 2001] which is described in Algorithm 1.

Algorithm 1: SIVIA

Input: f , [y], [x](0), ε

Output: X such thatX ⊆ X ⊆ X

1 begin

2 X := ∅; // Initialization

3 X := ∅; // Initialization

4 L := {[x](0)} ;

5 Pull [x] from L ;

6 if [f ]([x]) ∩ [y] = ∅ then

7 return; // Figure 1.2(b)

8 if [f ]([x]) ⊂ [y] then

9 X := X ∪ [x]; X := X ∪ [x]; return; // Figure 1.2(c)

10 if w([x]) < ε then

11 X := X ∪ [x]; return; // Figure 1.2(d)

12 else

13 bisect [x] and push into L ;

14 if L 6= ∅ then

15 go to line 5

16 return X;

SIVIA method first requires a search box [x](0) of parameters to which X belongs.

The search process then needs to create the sub boxes of [x](0). The sub boxes can

be created with regular subpaving [Tornil-Sin et al., 2010, Jaulin et al., 2001] of

[x](0), i.e., each of its boxes obtained from a finite succession of bisections and

selections. Figure 1.2 describes the basic cases of SIVIA using Algorithm 1. They

are explained as follows.

1. If [f ]([x]) ⊃ [y], then [x] may contain a part of the solution set (see Fig-

ure 1.2(a)). In this situation [x] is said to be undertermined. If w([x]) is

greater than a precision parameter ε, then it should be bisected (line 10 and

line 13) so that we again continue to search the solution set of parameters
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(a)

[x0]

x − space

Y

y − space

[ f ]([x0])

(b)

[x1]
Y

[ f ]([x1])

(c)

[x2]

Y[ f ]([x2])

(d)

[x3]

Y[ f ]([x3])

Figure 1.2 – SIVIA cases (a) the box [x0] to be checked is undetermined and will be

bisected; (b) the box [f ]([x1]) does not intersect Y and [x1] is rejected; (c) the box [f ]([x2])
is included in Y; and [x2] is accepted; (d) the box [x3] is undetermined but to small to be

bisected but stored in X
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from line 5.

2. If [f ]([x]) ∩ [y] = ∅(see Figure 1.2(b)), then [x] does not belong to X and is

excluded from further bisection.

3. If [f ]([x]) ⊂ [y](see Figure 1.2(c)), then [x] does belong to solution subpaving

X, and is stored in X and X.

4. The last case is described in Figure 1.2(d). If the box considered is determined,

but its width is lower than ε, then it is stored in the outer approximation X of

X.

SIVIA method finds its application in robotics and control system [Jaulin

et al., 2001] to identify guaranteed enclosure of parameters when uncertainty

on measurements is described with intervals. To compute [f ]([x]), the SIVIA

method makes use of interval uncertainty propagation methods described in the

section 1.4.2 and they also affect the final quality(overestimation) of the solution set.

The complexity of the SIVIA method quickly increases as the number of parameters

to identify increases, which is why it is not really well adapted to high-dimensional

mechanical problems

The presented SIVIA method gives an empty solution set of parameters in the

presence of outliers in the measurements. The fact that [f ]([x])∩ [y] = ∅ can be due

to the fact that at least one measurement is inconsistent from the box [y] is well-

known in interval analysis. A common method to solve such issues is to consider

the so-called q-intersection method [Drevelle and Bonnifait, 2012, Sandretto et al.,

2014]. Given a set X = {X1, . . . ,Xm} of set-valued solutions corresponding to [y1]

to [ym] interval measurements, their q-intersection consists in applying the formula

q

X =
⋃

E⊆X ,|E|=q

⋂

Xi∈E

Xi, (1.26)

that is to take the union over all possible intersections of q elements. We illustrate

the q-relaxed intersection method (see Figure 1.3). Consider a set X = {X1, . . . ,X4}

of set-valued solutions corresponding to [y1] to [y4] interval measurements. If all

the four measurements are consistent with one another we get the non-empty

solution set (see Figure 1.3(a)). If all the four measurements are not consistent

with one another then we get the empty solution set (see Figure 1.3(b)). To

obtain non-empty solution set, if we use q-relaxed intersection method with q=2

then we get final result with [y2] considered as outlier. While such an approach

brings good results if the number m is not too large, and if q is close to m, it
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Figure 1.3 – q-relaxed intersection method (a) all the four measurements are consistent

with one another; (b) all the four measurements are not consistent with one another; (c)

non-empty solution set with q=2

becomes quickly intractable when the number m of sets to merge increases, as

the complexity of applying Equation (2.6) increases factorially with the number

m− q. Therefore, in the setting of inverse mechanical problems where the minimal

number of measurements is some dozens and where it is not unusual to have

thousands of measurements (for large mechanical structures), the q-intersection

method is not applicable.

1.4.3.2 Inverse problem based on the Interval Finite Element method

To solve the mechanical structural inverse problem under the presence of uncertain

interval measurements, [Xiao, 2005, Fedele et al., 2012, Xiao et al., 2013] have

proposed methods based on the Interval Finite Element(FE) method. For a linear

static structure, the linear system of equations after Finite Element formulation is

given as:

KU = F (1.27)

The corresponding Interval FE linear system is given as

[K][U ] = [F ] (1.28)

The inverse Interval FEM problem consists of estimating the tight enclosure of

stiffness parameters from interval displacement measurement. Like forward Interval

FE method, inverse Interval FE method also faces the issue of the overestimation

in the output and dependency phenomenon (assembly of global stiffness matrix).

It is solved in the same way as in the case of the former. The Interval FE method

is still a work in progress [Sofi and Romeo, 2016, Faes and Moens, 2019] in the

context of the forward or interval uncertainty propagation. Recently, in the context
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of Interval FEM, [Faes and Moens, 2019] have proposed an interval field approach

to take into account the dependency of the interval variables.

1.4.3.3 Discussion about SIVIA and inverse Interval FE method

Both SIVIA and inverse Interval FE methods are inverse methods based on the non-

probabilistic representation of uncertainty. They make use of interval uncertainty

propagation techniques in solving the inverse problem and focus on obtaining tight

enclosure of the parameters to identify the solution set. SIVIA method has the

advantage of providing guarantees, in the sense that the approximation is known

to contain the actual solution set, but can be computationally intensive, especially

for high-dimensional problems. The inverse Interval FE method is specifically

introduced to solve the mechanical inverse problem. Still, it has some limitations to

solve the problem of identification with a large number of measurements because

of its complex Interval FEM formulation [Xiao, 2005, Sofi and Romeo, 2016].

In practice, the mechanical inverse problem consists of solving the problem of

identification with a large number of measurements, e.g., full-field displacement

measurements. Both methods are useful in situations where one is interested

in identifying parameters with a tight enclosure from a limited number of mea-

surements. Still, they have limitations in terms of identification with inconsistent

interval measurements when they are in a large amount.

1.5 Summary

In this chapter, we presented some of the most common and recent deterministic

and non-deterministic inverse methods. For the deterministic way of solving the

inverse problem, we discussed its limitations in solving the inverse problem in

the presence of highly inconsistent measurement data. Next, we discussed the

non-deterministic Bayesian inverse method, a probabilistic approach. It has an

advantage when sufficient data are available to solve an inverse problem. Still, in the

case of incomplete information, they have certain limitations, such as susceptibility

to the presence of outliers in the data, they often require to make extra assumptions

of Bayesian model that may be false, hence may lead to misleading results. Our

thesis work focuses on the development of the inverse strategy in the case of non-

probabilistic uncertainty representation method. We presented interval theory as a

means to model uncertainty on the information, and interval propagation methods

in the forward and inverse problem. We reviewed existing inverse strategy based on

interval theory such as SIVIA and Interval FEM and their limitations with dealing
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with a large number of inconsistent measurements. In our thesis, we continue

our research on an inverse strategy based on the interval approach to deal with

inconsistent measurements in a large number, and strategy presented in the next

chapter.
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2.1 Introduction

In this chapter, we explore how interval-based approaches can help to obtain

a solution to the inverse problem, mainly when measurements are inconsistent

with one another. We use intervals that allow us to take into account both prior

information about the parameters as well as measurement uncertainty in the form

of sets (interval or boxes) during the inversion process and we construct a solution

set.

2.2 Preliminaries and related works

We introduce the set-based solution to the inverse problem in Section 2.2.1, and

then detail how the problem of inconsistent measurements is commonly solved in

the literature in Section 2.2.2.

2.2.1 Set-valued inverse problem

We consider an inverse problem where we want to identify some parameters of

a model y = f(θ) from measurements made on quantity y ∈ R
N . The model f

yields the relationship between the M model parameters θ ∈ R
M and the measured

quantity, under given experimental conditions. We will denote by ỹ ∈ R
N the

measurements made on y. In this section, we consider that the model is accurate, in

the sense that any discrepancy between f(θ∗), θ∗ being the true parameter values,

and ỹ is due to some measurement errors, i.e., noise, systematic bias, etc. This

means that we leave the issue of integrating model error for future investigations.

In this work, we will consider that our uncertainty on any real-valued measure-

ment ỹ is provided by an interval [y] [Jaulin et al., 2001], that is a closed set of

connected real values noted by [y] = [y, y] = {y ∈ R | y ≤ y ≤ y} where y and y

are respectively the lower and the upper bounds of the interval. One advantage of

using intervals is that it requires almost no assumption regarding the nature and

source of uncertainty [Zio and Pedroni, 2013].

In particular, our uncertainty on each measurement ỹk will be described by such

an interval, and the overall uncertainty on all measurements will correspond to a

hyper-cube Sy

Sy =
N
∏

k=1

[ỹk, ỹk] ⊂ R
N (2.1)

where each measurement is described by its lower bound ỹk and upper bound ỹk.
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Figure 2.1 – Set description through a box. (a) Prior set (S0θ) (b) Solution set (Sθ).

Similarly, we will assume that our prior information about the parameters θ is

provided by a hyper-cube S
0
θ ⊂ R

M that gives a simple description of the physical

boundaries in which θ can lie (see Figure 2.1(a)). The set-valued solution Sθ to

the inverse problem can then be simply described (see Figure 2.1(b)) as the set

of all parameter values within S
0
θ that are consistent with the observed uncertain

measurements, i.e.,

Sθ = {θ ∈ S
0
θ | f(θ) ∈ Sy}. (2.2)

Since in the current approach all measurements are considered independent of

each other, due to the fact that we take their Cartesian product, computing Sθ can

alternatively be written as the result of the intersection (see Figure 2.2)

Sθ =
N
⋂

k=1

S
k
θ (2.3)

where

S
k
θ = {θ ∈ S

0
θ | fk(θ) ∈ [ỹk, ỹk]} s.t fk(θ) ∈ R (2.4)

is the set of parameter values consistent with the kth measurement. In general,

obtaining S
k
θ can be done through some set-inversion algorithm, for instance the

SIVIA algorithm [Jaulin et al., 2001], or grid-based approaches as described in

Section 2.4.

Example 1. We illustrate the set-valued inverse problem on a toy example. We

consider a spring-mass system shown in Figure 2.3 which can be described by the
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equation

F/p = f(θ) = y (2.5)

where F represents the force applied on the spring in Newton(N), p is the

spring stiffness constant (N/m), is the parameter to estimate. y is the measured

displacement of the spring in meter (m). We consider a case where a force F=100

N is applied on the spring and a displacement ỹ1=0.01 m is measured. Here, the

inverse problem consists of determining the parameter from the measurement ỹ1.

To do so, we describe uncertainty on the prior knowledge about the parameter

(θ = p) and the measurement in the interval form such that

S
0
θ = [P ] = [8000 , 12000]

and our uncertainty ỹ on the measurement as

Sy = [ỹk, ỹk] = [0.009 , 0.0110].
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Figure 2.4 – Empty intersection of solution sets

Here, Equation (2.4) can be solved analytically, and we obtain

S1
θ = [P,P] = [9090.90 , 11111.11]

both the lower and upper bounds respectively obtained by considering y = ỹ(=

0.0110) and y = ỹ(= 0.009) in Equation (2.5). In the one dimensional case, the

length of the interval, i.e., P− P measures the area of [P], A([P]).

In chapter 3, we will consider a less illustrative example that is a typical

mechanical inverse problem. It will consider the case where θ corresponds to

the elastic Lamé parameters (λ and µ) and ỹ corresponds to full-field displacement

data obtained after applying a given load, corresponding to the experimental

conditions, on a material specimen.

In the general case, with multiple measurements, if all measurements are

consistent, that is in our case if all intervals [ỹk, ỹk] include the true value of the

measured quantity yk, then the solution set Sθ will be non-empty, as all Sk
θ in

Equation (2.3) will have a non-empty intersection. However, it is very likely that

some measurements will not contain this true value, and that they will be globally

inconsistent. In such a case, we will have Sθ = ∅ as
⋂N

k=1 S
k
θ = ∅ as illustrated

in Figure 2.4. There may be several reasons for the inconsistency between the

measurements and the model, such as the presence of measurement outliers or

model error. Section 2.3 will present our solution to solve this issue, but before that

we will recall the main solutions proposed in the literature, and the reasons why

they may be unsatisfying in some cases.
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2.2.2 Dealing with inconsistent measurements: issues with stan-

dard methods

In this section, we review existing methods to deal with the case of inconsistent

measurements, that is when the exact inverse problem solution is the empty set,

due to measurement uncertainty.

2.2.2.1 Average error minimization

A first way to solve the inverse problem in the presence of measurement uncertainty

is to find the value θ∗ minimizing the discrepancy between the reconstructed data

f(θ) = y and the observed measurements ỹ. Such techniques(least-squares) are

discussed in the Section 1.2, and also, these methods have been extended to

interval as well as to fuzzy approaches for identification problems, where one

usually estimate first the central value of the interval (a.k.a. midpoint), before

fixing its length (a.k.a. radius). We refer to [Faes and Moens, 2019, Section 5]

for a short and relevant review of such techniques. In the case of intervals, they

provide as answer an interval valued parameter [θ]∗. These methods can be very

sensitive to the presence of outliers. It should also be noted that nothing in their

basic principles ensure that they will be consistent with existing measurements, in

the sense that the result will have a non-empty intersection with some S
k
θ .

2.2.2.2 Bayesian inference method

We discussed the Bayesian inference method in Section 1.3. We refer to [Dashti and

Stuart, 2017] for a full, recent study of such methods. Bayesian methods can be

very efficient and accurate if the model is right. However, as for the least-squares

methods, Bayesian methods can be quite sensitive to outliers (as we shall see in

the experiments of Chapter 3), and require a strong modeling effort to be accurate

and not be subject to model misspecification biases [Müller, 2013]. In this sense,

their robustness can be limited, even if they are the first choice when it comes to

model and process measurement uncertainty.

2.2.2.3 Q-intersection method

The fact that multiple set estimations can be inconsistent and have an empty

intersection, as can happen in Equation (2.3), is a well-known fact in interval

analysis. A common method to solve such issues is to consider the so-called q-

intersection method [Sandretto et al., 2014, Drevelle and Bonnifait, 2012]. Given a

set S = {S1, . . . , Sn} of set-valued solutions, their q-intersection consists in applying
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the formula
q

S =
⋃

E⊆S,|E|=q

⋂

Si∈E

Si, (2.6)

that is to take the union over all possible intersections of q elements. While such an

approach brings good results if the number n is not too large, and if q is close to n,

it becomes quickly intractable when the number n of sets to merge increases, as the

complexity of applying Equation (2.6) increases factorially with the number n− q.

Therefore, in the setting of inverse mechanical problems where the minimal

number of measurements is some dozens and where it is not unusual to have

thousands of measurements (e.g. digital image correlation data), the q-intersection

method is not applicable. However, the methods proposed in the next Section 2.3.3

could be seen as a proxy of such an approach, where one searches to identify

through heuristic methods a maximal subset of measurements within S whose

intersection is non-empty.

2.2.2.4 Data consistency through relaxation

The method developed in [Hegde et al., 2018] and [Feeley et al., 2004] and hence-

forth called DC (for data consistency), applied to reaction modelling in chemistry, is

very close in purpose to ours, as its intent is to quantify the inconsistency of a set of

measurements and to provide a measurement-wise quantification of inconsistency.

The method works as follows: let us denote by

S
k±δ
θ = {θ ∈ S

0
θ | f(θ) ∈ [ỹk − δ, ỹk + δ]} (2.7)

the solution of the inverse problem when the kth measurement is broadened by a

value δ. [Hegde et al., 2018] and [Feeley et al., 2004] propose to evaluate a data

set inconsistency as

δ0 = min {δ ∈ R |
N
⋂

k=1

S
k±δ
θ 6= ∅}

which is negative if the measurements are consistent, and all the more positive as

they become inconsistent. A way to define measurement-wise inconsistency is then

provided through the use of Lagrange multipliers. The agenda of this method is

very close to ours, yet we can notice some key differences:

• the DC method assumes that interval bounds are to a large extent subjective

and modifiable, and search for a minimal correction making them consistent,

while our approach does not modify the provided interval bounds;

• DC provides a refined consistency analysis and evaluation of measurement
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inconsistency, at the expense of a costly optimization that lead to remove

measurements with surgical precision. In contrast, our approach use coarser

but easier to compute and handle evaluations, that are instrumental when

one wants to solve the inverse problem by primarily (but not necessarily only)

removing the most inconsistent measurements;

• while DC can be used to solve the inverse problem (i.e., provide a set of

possible parameters), its primary goal is to finely detect inconsistencies

between the measurements and the model. Conversely, while our approach

can be used to analyse inconsistencies between the measurements and the

model, its primary goal is to offer a solution to the inverse problem and

propose a final set of parameter values.

While both methods rely on intervals to model uncertainty and consider similar

notions of inconsistencies, they measure it differently and, most importantly, pursue

different primary agendas.

2.3 Approaches to select sets of consistent measure-

ments

We now describe our approach to tackle the presence of inconsistent measurements

in the set-valued treatment of the inverse problem. Basically, our approach will aim

at finding an important subgroup of consistent measurements by removing those

measurements that are the most inconsistent with most of others.

This is different from the Bayesian and least-square approaches, as these

methods try to find a compromise between all measurements, and do not discard

any of them. Our methods are indeed closer to the q-intersection method, but

do not consider every possible subgroup of q measurements, for reasons we just

mentioned.

We first define how to assess the consistency of measurements (Sections 2.3.1

and 2.3.2) and then propose different outlier detection methods (Section 2.3.3)

in the context of the identification strategy outlined in Section 2.2.1. We also

discuss in Section 2.4 the implementation of the identification strategy in terms of

a discrete description of sets to solve the set-valued inverse problems.

2.3.1 Pairwise measures of consistency

We first discuss measures of consistency between pairs of measurements, as they are

intuitively easier to explain, and are instrumental to build more global consistency
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measures.

2.3.1.1 Pairwise degree of inclusion

For any two solution sets S
k
θ and S

k′

θ corresponding respectively to [ỹk] and [ỹk′ ]

measurements, (k, k′) ∈ {1, ..., N}2, we define the degree of inclusion (DOI) of one

solution set Sk
θ with respect to another Sk′

θ as

DOIkk′ =
A(Sk

θ ∩ S
k′

θ )

A(Sk′

θ )
(2.8)

where A(S) denotes the area of the set. The DOI between two solution sets is

non-symmetric, i.e., DOIkk′ 6= DOIk′k, and reaches its boundary values in the

following situations

DOIkk′ =

{

1 iff Sk′

θ ⊆ S
k
θ

0 iff Sk
θ ∩ S

k′

θ = ∅
(2.9)

that are illustrated in Figure 2.5. The larger the value of DOI between one solution

set and another, the higher the possibility of Sk
θ included in S

k′

θ .

Example 2. Pursuing Example 1, we consider this time three measurements when

a force F=100 N is applied on the spring, resulting in ỹ1=0.01 m, ỹ2=0.0101 m,

and ỹ3=0.0110 m.

Assuming that our uncertainty on measurements is described by [ỹ1, ỹ1] =

[0.009 , 0.0110], [ỹ2, ỹ2] = [0.0091 , 0.0111], [ỹ3, ỹ3] = [0.01 , 0.0120], we obtain by

inversion of Equation (2.5) the estimations [P1] = [9090.90 , 11111.11] , [P2] =

[9009 , 10989], [P3] = [8333.33 , 10000].

As they have a non-empty intersection, they result in the final estimation

[P] = [9090.90 , 10000]. They are such that A([P1]) = 2020.20, A([P2]) = 1980.00,

A([P3]) = 1666.70, A([P1]∩ [P2]) = 1898.10, A([P1]∩ [P3]) = 909.10, A([P2]∩ [P3]) =

991, hence by knowing this information one can compute degree of inclusion

between two measurements i.e., DOI12 = 0.9586, DOI21 = 0.9396, DOI13 = 0.5454,

DOI31 = 0.4500, DOI23 = 0.5946, DOI32 = 0.5005, respectively.

2.3.1.2 Pairwise degree of consistency

We also define the degree of consistency (DOC) between two solution sets cor-

responding to S
k
θ and S

k′

θ , which measures to which extent they agree with one

another, considering that they fully agree (or are logically consistent) when one of

them is totally included in the other. Indeed, such a situation means that they are

in accordance, but that one is just more precise than the other. The following index
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translates this idea:

DOCkk′ =
A(Sk

θ ∩ S
k′

θ )

min(A(Sk
θ),A(S

k′

θ ))
= max(DOIkk′ , DOIk′k). (2.10)

It is symmetric (DOCkk′ = DOCk′k) unlike the degree of inclusion, and reaches its

boundary values in the following situations

DOCkk′ =

{

1 iff Sk
θ ⊆ S

k′

θ or Sk′

θ ⊆ S
k
θ

0 iff Sk
θ ∩ S

k′

θ = ∅
(2.11)

that are illustrated in Figure 2.5.

Example 3. Using the numbers of Example 2, we have DOC12 = 0.9586, DOC13 =

0.5454, DOC23 = 0.5946. These values reflect how much each pair of measurements

agree with one another, pairwisely.

2.3.2 Global measures of consistency

Pairwise measurements are interesting as they are easy to compute and limited in

numbers, being equal to N(N − 1) if N is the number of measurements. However,

focusing only on pairwise measurements may limit our perception of the problem,

as we may well have non-null pairwise agreement between all sets, while having a

global inconsistency between those sets.

For instance, the three sets S1
θ = [3, 7], S2

θ = [6, 10] and S
3
θ = [2, 4]∪ [8, 11] all have

pairwise non-empty intersections, but a global inconsistency as ∩iS
i
θ = ∅. In the N-

dimensional case, such a situation is even possible with convex sets. For this reason,

we also consider global measures of consistency for a set of measurements, that

we introduce now. By global measures, we understand measures that consider all

measurements at once, be it directly in their definition or by aggregating different

pairwise measurements. Note that a particular case occurs if for a given k we have
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S
k
θ = ∅, yet we will not consider this case, as we can just discard measurements

that are inconsistent with the model.

2.3.2.1 Global degree of consistency (GDOC) of a measurement

We now introduce a measurement-wise consistency degree from a set of mea-

surements. By using the pairwise degree of inclusion (DOI) of the solution sets

corresponding to the measurements, we define the global degree of consistency

(GDOC) of any kth measurement with respect to all other measurements as

GDOC(k) =

∑N

k′=1

A(Sk
θ
∩Sk

′

θ
)

A(Sk
θ
)

+
∑N

k′=1

A(Sk
θ
∩Sk

′

θ
)

A(Sk
′

θ
)

2N
=

∑N

k′=1(DOIkk′ +DOIk′k)

2N
,

(2.12)

which reaches its boundary values in the following situations

GDOC(k) =

{

1 iff S
1
θ = S

2
θ, ...,= S

N
θ

0 iff S
k
θ ∩ S

k′

θ = ∅, ∀ k′ ∈ {1, ..., N}
(2.13)

The value of GDOC(k) will always be between 0 and 1. It should be noted that

the conditions imposed on this index to reach its boundary values are very strong, as

having GDOC = 1 for one measurement requires all sets to be absolutely identical,

the strongest possible consistency between sets. On the other side, GDOC(k) = 0

corresponds to the case where the kth measurement is a complete outlier, i.e., has

empty intersection with all other sets. Therefore, a high value of GDOC for the kth

measurement indicates that it has a high consistency with the other measurements.

GDOC is therefore a good measure of the consistency of a single measurement, and

can be used as a selection method, as suggested in Section 2.3.3.1 and Algorithm 2.

Nevertheless, even if the measure accounts for all measurements, it makes sense to

complement its measurement-centered view by a group-wise measure.

Example 4. Using results from Example 1, we can compute GDOC of each mea-

surement i.e., GDOC(1) = 0.8156, GDOC(2) = 0.8322, GDOC(3) = 0.6818. These

values provide the consistency of individual measurements.

2.3.2.2 General measure of consistency

Note that while GDOC is a global measure, it may still suffer from the draw-

backs illustrated in the example given at the beginning of Section 2.3.2. So,

we now define a global consistency measure for a group of measurements. Let

S = {S1
θ, . . . , S

k
θ , . . . , S

N
θ } be the set of solutions to the inverse problems for the

measurements {ỹ1,..ỹk...,ỹN}, with S
k
θ ⊆ R

M . We define the general consistency
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(GCONS) for any subset E ⊆ S of solution sets corresponding to a subset of the

measurements as

GCONS(E) =
A(

⋂

Sk
θ
∈E S

k
θ)

min
Sk
θ
∈E
A(Sk

θ)
(2.14)

It has the following properties:

1. It is insensitive to permutation of the sets of measurement (commutativity).

2. The value of GCONS is monotonically decreasing with the size of the set E, in

the sense that for any subsets E and F , with E ⊆ F , we have GCONS(F ) ≤

GCONS(E). It also means that the more measurements we have, the less

consistent they can be with one another.

3. The boundary values of equation (2.14) are obtained for the following

situations

GCONS(E) =















1 iff A(
⋂

S
k
θ)

Sk
θ
∈E

= min
Sk
θ
∈E
A(Sk

θ)

0 iff A(
⋂

S
k
θ)

Sk
θ
∈E

= ∅

where the first case means that at least one measurement is fully consistent

(i.e., included) with all the other measurements corresponding to E, that

therefore have a non-empty intersection between them.

4. When |E| = 2, GCONS(E) boils down to Equation (2.10), therefore effec-

tively generalizing DOC to any subset of solution sets, and not only pairs.

Example 5. Using the numbers of Example 2, we can compute GCONS of the set of

three measurements i.e., GCONS(E) = 0.5454 using Equation (2.14). From this,

we can already see that all measurements taken together are reasonably consistent

with each others.

2.3.3 Algorithmic procedures

We propose three algorithms describing different outlier detection methods, which

make use of the GDOC, the pairwise degree of consistency DOC and the GCONS

measure, respectively. The ideas of these algorithms is that they are efficient

heuristics to retrieve a set E ⊆ S corresponding to consistent measurements, that

is they aim at removing a small number of measurements while ensuring a high

consistency of the remaining measurements, the goal being to have an informative

and reliable solution to the inverse problem.
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2.3.3.1 Individual approach

The first approach we will describe relies on the individual measures of global

consistency based on GDOC. To describe it, let us first consider the permutation

π : {1, . . . , N} → {1, . . . , N} such that GDOC(π(i)) ≥ GDOC(π(j)) if i < j,

where π(k) is the index of the measurement within {[ỹ1], . . . , [ỹN ]} that has the kth

biggest GDOC measure. That is, we rank the measurements from the most globally

consistent to the least consistent. We now introduce the function fGDOC : [1, N ]→

[0, 1] such that for each k ∈ {1, . . . , N} we have

fGDOC(k) = GDOC(π(k)), (2.15)

and a linear interpolation between any two of those points (used to detect and

better visualize the inflection point as detailed below). Such a decreasing function

is plotted in Figure 3.5. The idea of our first method, described in Algorithm 2,

is straightforward: removing measurements with the lowest GDOC values, until

the increase of the minimal GDOC of the remaining measurements after one

suppression is negligible and it is based on the bending of the curve (see Figure 3.5).

Note that in those cases where an inflection point cannot be found, one can always

set a pre-defined threshold τ in line 8 of Algorithm 2. However, we never witnessed

this situation in our experiments.

Algorithm 2: GDOC method

Input: Set S = {S1
θ, . . . , S

N
θ } of inverse problem solutions

Output: Subset E of selected measurements
1 begin

2 E ← ∅ ;
3 for all pairs [ỹi], [ỹj] of measurements do

4 Compute DOIij, DOIji ;
5 for 1 ≤ k ≤ N do

6 Compute GDOC(k) from Equation (2.12) ;
7 Detect point x∗ of inflection of fGDOC ;
8 τ ← fGDOC(x

∗) ;
9 return E ← {Si

θ ∈ S : GDOC(i) > τ};

2.3.3.2 Pairwise approach

While the previous approach focused on removing the measurements that were

globally the most inconsistent with the others, it did not look at potential interaction

of such measurements, in the sense that once some measurements are removed, a
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measurement at first deemed poorly consistent could well be consistent with the

remaining ones.

An easy way to capture such potential interaction is through pairs of measure-

ments, and our second method follows this idea by using the degree of consistency

(DOC) between two solution sets corresponding to kth and k′th measurement given

by Equation (2.10). To handle them, we first build a N ×N matrix C as follows:

C =













DOC11 DOC12 .. DOC1N

DOC21 DOC22 .. DOC2N

.. .. .. ..

DOCN1 DOCN2 .. DOCNN













(2.16)

It is easy to see that this is a symmetric matrix (Ckk′ = Ck′k), as DOC is a

symmetric measure, that its diagonal elements always1 have value 1, and the

off-diagonal elements are all within [0, 1].

Given the characteristic of matrix C, any kth row or column of the matrix

represents the pairwise DOC values of the kth measurement. Basically, each kth row

provides some idea of the overall consistency of the kth measurement with respect

to other measurements. This is similar to GDOC, yet we abstain to aggregate such

values, thus preserving more details about the measurement interactions.

To detect which measurements should be removed according to this pairwise

information, we will associate to each measurement a consistency count, that we

will denote by Count : {1, . . . , N} → N, with Count(k) the count associated to

the kth measurement. Basically, the idea behind those counts is to assess whether

removing a measurement from matrix C could significantly increase the minimal

value of pairwise consistencies. This is also why, in practice, we will focus on small

pairwise consistencies, as we are not interested in removing measurements quite

consistent with all the others. Algorithm 3 summarises the procedure:

• Line 4 in the algorithm limits the search to the measurements having the

highest pairwise inconsistency.

• Loop 7 to 12 starts from the most inconsistent pair, and then looks which of

the two involved measurements (ik and jk) is also the most inconsistent with

respect to other measurements (using standard notations, we denote by Cik:

and C:jk the ikth line and jkth column of C).

• Lines 13 and 14 simply ensure that if index ik or jk appears in a further

1Unless one has an inconsistent measurement Sk
θ
= ∅, but such measurement should be removed

before starting any further analysis, so we can assume that we have none.
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iterations, then the minimum in lines 7 to 10 will not be obtained for Cikjk ,

avoiding some double counting.

Algorithm 3: Count method

Input: C matrix, threshold τ of minimal DOC value
Output: Function Count

1 begin

2 for k ∈ {1, . . . , N} do

3 Count(k)← 0
4 Cτ ← {Cij : Cij < τ};
5 Sort Cτ such that Ci1j1 ≤ . . . ≤ Ci|Cτ |j|Cτ |

;

6 for k ∈ {1, . . . , |Cτ |} do

7 if (min{Cik: \ Cikjk} > min{C:jk \ Cikjk} then

Count(jk)← Count(jk) + 1;
8 if (min{Cik: \ Cikjk} < min{C:jk \ Cikjk} then

9 Count(ik)← Count(ik) + 1
10 if (min{Cik: \ Cikjk} = min{C:jk \ Cikjk} then

11 Count(ik)← Count(ik) + 1 ;
12 Count(jk)← Count(jk) + 1 ;

13 Cikjk ← 1 ;
14 Cjkik ← 1 ;

15 return Count;

Example 6. We consider the following illustrative C matrix, collected from 4

measurements.

C =













1 0.7 0.8 0.05

0.7 1 0.6 0.2

0.8 0.6 1 0.1

0.05 0.2 0.1 1













From Matrix C, we can observe that the fourth measurement has a low DOC

value with the first, second, and third measurements, and is therefore a likely

outlier or bad measurement. Applying Algorithm 3 to this matrix with a threshold

of τ = 0.15, we get a set2 C = {C14, C34}, with i1 = 1, j1 = 4 and i2 = 3, j2 = 4. The

first application of Loops 7-14 in the Algorithm shows that min{C1: \ C14} = 0.7 >

min{C:4 \C14} = 0.1 and we therefore increment Count(4) from 0 to 1. Finally, after

the second loop, we get Count(4) = 2 and Count(k) = 0 for all other k ∈ {1, 2, 3}.

Our next step is to determine which measurements should be removed according

to our count function. Similarly to what was done in Section 2.3.3.1, let us consider

2Note that we can focus only on the upper/lower triangle part of the matrix, as it is symmetric.
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the permutation π : {1, . . . , N} → {1, . . . , N} such that Count(π(i)) ≥ Count(π(j))

if i < j, where π(k) is the index of the measurements within {[ỹ1], . . . , [ỹN ]} that

has the kth biggest count. That is, we rank the measurements from the one with the

most count (i.e., the most inconsistent according to the second method) to the one

with the fewest. We now introduce the function fCount : [1, N ]→ [0, 1] such that for

each k ∈ {1, . . . , N} we have

fCount(k) = Count(π(k)), (2.17)

and a linear interpolation between any two of those points. Such a decreasing

function is plotted in Figure 3.7(b). We then apply the same strategy as before,

except that this time we retain all measurements whose count is lower than the

one corresponding to fCount inflection point. This is summarised in Algorithm 4.

Algorithm 4: Count selection method

Input: Set S = {S1
θ, . . . , S

N
θ } of inverse problem solutions, fCount

Output: Subset E of selected measurements
1 begin

2 Detect point x∗ of inflection of fCount ;
3 τ ← fCount(x

∗) ;
4 return E ← {Si

θ ∈ S : Count(i) < τ};

2.3.3.3 Global approach

Algorithm 5: GCONS selection method

Input: Sorted set S = {S1
θ, . . . , S

N
θ } such that

GDOC(1) ≥ . . . ≥ GDOC(N), threshold τ
Output: Subset E of solution sets corresponding to the selected

measurements
1 begin

2 E ← {S1
θ, S

2
θ} ; // Initialization

3 for k ∈ {3, . . . , N} do

4 if GCONS(E ∪ S
k
θ) ≥ τ then E ← E ∪ S

k
θ ;

5 return E;

Our third method considers global consistency information rather than more

localized ones, and rely on the properties of GCONS introduced in the Sec-

tion 2.3.2.2. In theory, a good principle to choose a subset of consistent mea-

surements would be to search for the largest subset E ⊆ S (corresponding to

the maximal number of measurements) that has a reasonable consistency, that
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is for which GCONS(E) is above some threshold τ . Yet, such a search could be

at worst exponential in N , which as recalled in Section 2.2.2 can be quite large

in mechanical problems, where it is not rare to have thousands, if not tens of

thousands of measurements. Such an approach would therefore be untractable.

This is why we propose a greedy algorithm (Algorithm 5) that makes use of GDOC

measures to find a suitable subset E. The idea is again quite straightforward:

starting from the most consistent solution set corresponding to the most consistent

measurement according to GDOC and ordering them according to their individual

consistency, we iteratively add new solution set corresponding to measurements to

E unless they bring the global consistency GCONS under a pre-defined threshold,

that is unless they introduce too much inconsistency.

2.4 Implementation with discrete description of sets

Before applying any of the methods we just described, a pre-requisite is to obtain the

sets S1
θ, . . . , S

N
θ , or a numerical approximation of them. There are multiple ways to

obtain such approximations, such as using boxes and bi-section methods, of which

SIVIA algorithm [Jaulin and Walter, 1993] is a well-known example, or using a grid

of points for which the solution is known. The first solution has the advantage to

provide guarantees, in the sense that the approximation is known to contain the true

set, but can be computationally intensive, especially for high-dimensional problems.

The second solution seems more fitted to our case, as having strong guarantees

is not essential (as long as the approximation is sufficiently accurate), and as

the number of measurements and the dimensions can be quite high, especially

compared to robotics applications where the input dimensions is usually limited

to 2 or 3 dimensions for localisation problems, and the number of measurements

(issued from sensors or satellites) is usually at most around 10. In those cases

where even using a uniform grid of points is prohibitive (due to many input or

parameter dimensions or a costly model to run), one can resort to several different

strategies to speed up the computations, such as the use of adaptive, non-uniform

grids [Sui et al., 2018], the use of surrogate models [Fang et al., 2018, Xiaoguang

et al., 2019] or of techniques dedicated to the application at hand when those exist.

Here, we use the same description as in [Sui et al., 2018], that is a grid of points,

θi, i ∈ {1, ..., Ng} as shown in Figure 2.6(a) where Ng is the number of grid points.

Such a description, illustrated by Figure 2.6(b), is convenient when comparing or

intersecting the sets since the grid of points is the same for all measurements and

all sets. Any set Sθ ⊂ S
0
θ is then characterized through its discrete characteristic
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S
0
θ

θi

(a)

S
0
θ

θi

Sθ

χSθ
(θi) = 1

χSθ
(θi) = 0

(b)

Figure 2.6 – Discrete description of sets. (a) Prior set (S0θ). (b) Characterized set (Sθ)

function, defined at any point θi ∈ S
0
θ of the grid as

χSθ
(θi) =

{

1 if θi ∈ Sθ

0 otherwise
(2.18)

In this work, a uniform grid is chosen to describe the prior parameter set S0
θ, but

it is not mandatory. In our method, each S
k
θ is therefore described by its discrete

characteristic function, defined at any point of the grid as

χSk
θ

(θi) =

{

1 if ỹk ≤ f(θi) ≤ ỹk

0 otherwise
(2.19)

These discrete characteristic functions can be collected in a Ng ×N matrix X as

columns of boolean values as follows

X =













1 1 .. 1

0 1 .. 1

.. .. .. ..

1 1 .. 0













(2.20)

where χSk
θ

(θi) is the element of column k and line i. Using matrix X, a N × N

symmetric matrix T = XTX can be obtained, whose components are directly

proportional to the areas of the sets Si
θ, and can therefore be used as an estimation

of such areas, i.e.,

T ∝













A(S1
θ) A(S1

θ ∩ S
2
θ) .. A(S1

θ ∩ S
N
θ )

A(S2
θ ∩ S

1
θ) A(S2

θ) .. A(S2
θ ∩ S

N
θ )

.. .. .. ..

A(SN
θ ∩ S

1
θ) A(S

N
θ ∩ S

2
θ) .. A(SN

θ )













(2.21)
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Indeed, the diagonal element Tkk of T represents the number of grid points that

are in the solution set of the inverse problem for the kth measurement, and it is

proportional to A(Sk
θ). The non-diagonal element Tkk′ of T represents the number

of grid points for which both kth and k′th measurements are consistent and it is

proportional to A(Sk
θ ∩ S

k′

θ ). Hence, GDOC can be computed from matrix T for any

kth measurement as

GDOC(k) =

∑N

k′=1
T
k′k

Tkk

+
∑N

k′=1
T
kk′

T
k′k′

2N
. (2.22)

2.5 Summary

In this Chapter, we have presented a new parameter identification strategy relying

on set theory and on interval measurements. In this approach, we have used

intervals to describe uncertainty on measurements and parameters. We have

presented different consistency measures for measurements and used them to

propose three measurement selection methods taking advantage of GDOC, Count

and GCONS. We have also discussed the implementation of the identification

strategy using discrete description of sets and how such a description of the sets

helps to find the area of the solution set. The next Chapter will be devoted to the

application of the identification strategies to an identification problem of elastic

properties. We will in particular focus on the problem of identifying outliers, and

will compare our approaches with the standard Bayesian approach, showing that in

the presence of outliers, our approaches indeed provide more reliable results, while

we remain competitive with the Bayesian method in the ideal situation where the

assumptions of the Bayesian model are verified.
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Ω

ΓtΓu Ωm

Figure 3.1 – Mechanical model for identification

3.1 Introduction

This chapter focuses on applying a set-valued inverse method to obtain a solution

to the mechanical inverse problem, mainly when measurements are inconsistent

with one another. The mechanical inverse problem we have considered consists of

identifying mechanical properties of materials based on parametrized mechanical

models. We try to identify the mechanical properties of a homogeneous isotropic

elastic structure using the full-field displacement measurements. In this work, the

full-field displacement measurements are assumed to be obtained using digital

image correlation (DIC) from CCD camera images [Grédiac and Hild, 2012]. We

also illustrate three selection (outlier detection) methods to deal with inconsis-

tent measurements and compare the set-valued inverse method to the Bayesian

inference method in situations where the model is well specified and where it is

not.

3.2 Mechanical model

This section discusses the mechanical model (elastic structure) using continuum

mechanics equations that also describe the experiment’s modelling. Then, we

briefly introduce the Finite Element Method (FEM) used to discretize continuum

mechanics equations.

3.2.1 Mechanical model

Continuum solid mechanics defines the behaviour of solid materials, e.g., motion

and deformation under external loadings. Mechanical models usually contain
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parameters characterizing mechanical systems (e.g., loadings, geometry, mechanical

property such as elasticity, elastoplasticity, etc.) and their relations. In this work, we

aim at the identification of elastic material properties. Thus, we only describe the

linear isotropic elastic mechanical model. We consider the solid structure shown in

Figure 3.1, which describes a 2D domain Ω. The model equations that govern the

behaviour of the structure follow the below assumptions

• deformations are small;

• the behaviour of the material is linear;

• dynamic effects are neglected;

• the material is homogeneous.

The governing equations are as follows:

• on Ω:

Equilibrium equation:

divσ = 0, (3.1)

Kinematics equation (strain–displacement relation):

ε =
1

2
(∇u+∇Tu), (3.2)

Constitutive equation (stress–strain relation):

σ = D(θ)ε (3.3)

where u is the displacementent field, σ is the stress field, ε is the strain field,

D(θ) is the elastic tensor field which can be described using parameters θ

that denoting the elastic properties. In this work, parameters θ are λ and µ.

They are termed as Lamé parameters and denote the elastic properties;

• on Γu: u = ud, where ud is a known Dirichlet boundary condition(here it is a

displacement);

• on Γt: σ · n = tn, where tn is a known Neumann boundary condition(here it

is a traction), and we also assume that Γu ∪ Γt = Γ and Γu ∩ Γt = ∅ ;

• on Ωm: u = ũ, where ũ is the displacement related to the DIC measurement

on a sub-domain Ωm ⊂ Ω.
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From Equations (3.1) to (3.3) and the boundary conditions on Γu and Γt, a well-

posed direct problem can be defined. Its solution is given as

u = u(θ) (3.4)

We perform the identification of parameters θ by comparing u(θ) with ũ on Ωm

which gives some information on θ.

3.2.2 Finite Element Method

The Finite Element Method is used to discretize Equation (3.1). The weak form

of (3.1) is written as:

W∗ =

∫

Ω

u∗ · div(σ)dΩ = 0, ∀ u∗ ∈ H1
0 (Ω), (3.5)

where u∗ denotes a virtual displacement field, H1
0 (Ω) is a Hilbert space, σ is the

stress field which can be written in vector form (2D case):

σ = (σxx, σyy, σxy)
T

The strain field in the 2D case can be written as:

ε = (εxx, εyy, εxy)
T

Correspondingly, the elastic tensor D(θ) in the 2D case is represented by a 3 ×

3 matrix. In 2-D problems, the matrix D depends on whether one assumes a plane

stress or a plane strain condition. In our work we choose plain strain condition and

in that case for 2D isotropic linear elasticity problem it is given as:







λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ







By applying the partial integration formula, we can transform Equation (3.5) into

the following form:

W∗ =

∫

Ω

ε∗ · σdΩ +

∫

Γt

u∗ · σ · ndΓ, ∀ u∗ ∈ H1
0 (Ω), (3.6)

where ε∗ is the virtual strain field associated with the virtual displacement field

u∗. Then Equations (3.2) and (3.3) are taken into account to have a weak form in
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terms of displacements. Considering u∗ is null on Γu and considering the Neumann

boundary condition, the boundary terms are written as:

∫

Γ

u∗ · σ · ndΓ =

∫

Γt

u∗ · tndΓ (3.7)

To discretize Equation (3.6), the division of the domain into elementary polyhe-

drons (called Finite Element meshing) should be done firstly. Then the weak form

can be discretized and appears as a sum of elementary terms

W∗ =
nelt
∑

e=1

(W e
Ω −W e

BC) = 0, (3.8)

with

W e
Ω =

∫

Ωe

ε∗ ·D(θ) · εdΩ (3.9)

W e
BC =

∫

Γe
t

u∗ · tndΓ, (3.10)

where Ω is the integral domain, BC corresponds to the boundary conditions, Ωe

is the domain of a single finite element (Ωe ⊂ Ω), Γe
t is the boundary of Ω, if any,

which locates on the considered finite element). The number nelt is the number of

finite elements used to create the mesh. The displacement fields(u and u∗) of each

element are represented by the displacements in each node and corresponding

approximation:

u(x) =
ne
∑

i=1

Ni(x)ui, (3.11)

where ui is the displacement of the node i, Ni(x) is the shape function corresponding

to the node i and ne is the number of nosed on element. The shape functions depend

only on the coordinates of the elements nodes. By substituting Equation (3.11) into

Equation (3.8), we can transform the weak form into the discrete matrix form as:

W∗ =
nelt

A
e=1

(Ue
∗
)T (KeUe

− F e) = 0, ∀Ue
∗
, (3.12)

where the symbol A is the operator that assembles the elementary matrices into

a global matrix. The vector Ue
∗

collects the nodal components of the virtual

displacement. The matrix Ke is the elementary matrix and F e is the nodal force

vector. They can be written as

Ke =

∫

Ωe

BeTDeBedΩ, (3.13)
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F e =

∫

Γe
t

N eT tndΓ, (3.14)

where Be is the gradient matrix of the shape functions, De is the matrix associated

with the material properties, N e is the element shape function matrix. As u∗ is

totally independent from actual displacements, we can write Equation (3.12) as

follows:
nelt

A
e=1

(KeUe
− F e) = 0 (3.15)

Assembling the elementary local matrices and vectors, we can obtain a global linear

system of equations:

KU = F (3.16)

where K is the stiffness matrix with 2n× 2n size, U is the vector of displacement

with size 2n× 1 and F is the vector of external force with size 2n× 1. The value

n is the total number of nodes. In the next section and Chapter, we will denote

displacement with a notation y and full-field displacement measurement with a

notation ỹ. We use Equation (3.16) to compute the displacement y corresponding

to the parameters (λ and µ) and external load F .

3.3 Numerical applications

In this Section, we apply the set-valued inverse method to identify elastic properties

(Lamé parameters: λ and µ) of a homogeneous 2D plate under plane strain as

shown in Figure 3.2(a). The plate is clamped on the left side and loaded on the right

side by a uniform traction f = 1000 N/m. To generate displacement measurement

data ỹ (386 measurements), exact displacement data yRef are simulated by a

Finite Element (FE) model (193 nodes, 336 elements) as shown in Figure 3.2(b)

considering the reference values λ0 = 1.15 · 105MPa and µ0 = 7.69 · 104MPa. We

also consider a Gaussian noise with 0 mean (no systematic bias) and with standard

deviation σ, taken here as 5% of the average of all the exact displacement values.

In practical cases, it can be assumed that σ can be deduced from the measurement

technique.

To apply our methods, the uncertainty on the measurements has to be given

in interval form. Therefore, each measurement is modelled as [ỹk − 2σ, ỹk + 2σ].

The width of 2σ ensures that sufficient measurements will be consistent with one

another. Prior information about the parameters (S0
θ) is considered as a 2D box

λp× µp with λp = [0.72 · 105, 1.90 · 105]MPa and µp = [ 7.2 · 104, 8.15 · 104]MPa. All

grids used in the experiments counts 3600 points (60 × 60). In the next section,

we illustrate the effect of our approach in two situations: when data is noiseless,
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(a) (b)

Figure 3.2 – A homogeneous plate and its model. (a) 2D homogeneous plate. (b) FEM

mesh.

and when some noise is present in the data.

3.3.1 Identification with different outlier detection methods:

illustration

Before proceeding to a statistical analysis of our different approaches, we first

provide some illustrations of how they work, respectively for the GDOC, Count,

and GCONS selection methods presented in Chapter 2.

In each case, we consider two situations:

1. in the first one the measurement data are exact, i.e., ỹ =yRef and the

information on the measurement ỹ was described in an interval form: [

ỹ − 2σ, ỹ + 2σ ];

2. in the second one, we first add to each ỹ a random Gaussian white noise

(with 0 mean) having a standard deviation of σ. The resulting value ỹ is then

transformed into an interval [ ỹ − 2σ, ỹ + 2σ ]

3.3.1.1 GDOC method

Figure 3.3 shows (in yellow) the intersection of the 386 computed sets S1
θ , . . . , S

N
θ

in absence of noise. Of course, since there are no errors, there is no inconsistency

in the measurements and the feasible set contains the true parameter values. It can

be noted that the absence of noise and the modeling of error by [ ỹ − 2σ, ỹ + 2σ ]

leads to an overestimation of the identification of a solution set.
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Figure 3.3 – Feasible set of parameters
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Figure 3.4 – Identification with GDOC method. (a) Empty solution set (all measurements).

(b) Solution set after selection.
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Figure 3.5 – Measurement selections with GDOC method
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Figure 3.6 – Identification with Count method with noise in the data. (a) Empty solution

set. (b) DOC value of all possible pair of measurements.

Figure 3.4(a) then shows that in the case of noisy data, the identified set

(green color) is empty due to inconsistency within the measurements, hence

the need to remove some measurements. Figure 3.5 shows the function fGDOC

(see Equation (2.15)), providing the GDOC values of all the measurements in

decreasing order. It can be observed that the value of GDOC starts to decrease

abruptly on this example where GDOC is between 0.65 and 0.52. As indicated

in Algorithm 2, a possible criterion to select measurements could be to detect

this abrupt decrease of the estimator of consistency of the data. This detection

should of course be performed automatically, and will be so in our statistical

analysis, but in this illustrative case the threshold was manually set at 0.65. The

corresponding identified set (yellow color) is presented in Figure 3.4 (b), where 86

measurements were removed. The solution set in yellow still contains the reference

values λ0 = 1.15 · 105MPa and µ0 = 7.69 · 104MPa shown by red mark, albeit it is

close to the border of the set.

3.3.1.2 Count method

When all measurements are consistent and noiseless, the count method provides

just the same solution as the first approach. We therefore only show the results in

the noisy case.

In this case, Figure 3.6(a) shows that the identified set (green color) is empty

due to inconsistency within the measurements. It is also obvious from Figure 3.6(b)

that displays ordered values of the DOC consistency measure (Equation (2.10)) for

all pairs of measurements. Indeed, a lot of these values are very low, including some

that have value zero (meaning that some pairs of measurements are completely

inconsistent with one another).
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Figure 3.7 – Identification with Count method and Count curve. (a) Feasible set of

parameters. (b) Count curve

We have therefore applied Algorithm 3 to this case, using a DOC threshold τ

of 0.1, by observing DOC curve in Figure 3.6(b). Figure 3.7(b) shows the counts

of all the measurements in decreasing order, i.e., the function fCount given by

Equation (2.17), and it can be observed that the value of count starts to decrease

abruptly on this example when the count value is between 33 and 5. Again,

identifying this inflection will be performed automatically in our analysis, yet in this

first example, the threshold was set to 5 counts. The corresponding identified set

(yellow color) is presented in Figure 3.7(a), where 46 measurements were removed

whose count is strictly greater than 5. The solution set in yellow still contains the

reference values λ0 = 1.15 · 105MPa and µ0 = 7.69 · 104MPa shown by red mark,

and is smaller than the one obtained with the first method.

3.3.1.3 GCONS method

Finally, Figure 3.8 shows the solution set resulting from applying Algorithm 5

based on the GCONS function with a threshold τ = 0.1. Again, it still contains

the reference values λ0 = 1.15 · 105MPa and µ0 = 7.69 · 104MPa, that are on the

border of the set, despite it being significantly larger. The feasible set (yellow color)

of the identified parameter using GCONS method was obtained by removing 55

measurements.

We saw that the GDOC, Count and GCONS methods remove 86, 46, and 55

measurements, respectively, but a question that remains is whether the methods

remove the same measurements, or really differ qualitatively? To measure the

similarity in terms of which measurements are removed by any two methods,

we use the Jaccard index (J), also known as Intersection over Union, for two

sets. We denote the three sets of removed measurements for GDOC, Count, and
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Figure 3.8 – Feasible set of parameters (GCONS)

GCONS method as R1, R2, and R3, respectively. We found that | R1 ∩ R2 |= 40,

| R1 ∪ R2 |= 92, | R1 ∩ R3 |= 49, | R1 ∪ R3 |= 92, | R2 ∩ R3 |= 31, | R2 ∪ R3 |= 70.

Table 3.1 – Jaccard Index(J) to measure the similarity in terms of which measurements

are removed by any two methods

Methods Jaccard Index(J)

GDOC and Count J(R1,R2) =
|R1∩R2|
|R1∪R2|

= 0.4348

GDOC and GCONS J(R1,R3) =
|R1∩R3|
|R1∪R3|

= 0.5326

Count and GCONS J(R2,R3) =
|R2∩R3|
|R2∪R3|

= 0.44297

From the results reported in Table 3.1, we can see that the Jaccard index values

are similar for all pairs of method, and also relatively high. This shows that the

methods will, in general, remove different measurements (with of course some

overlap), which means that comparing their efficiencies in different settings, as

done in the next sections, makes sense.

In the next section, we perform a statistical comparison of these different

approaches, comparing them to the Bayesian approach, as well as in term of

precision and accuracy.

3.3.2 Comparison of selection methods with noisy measure-

ments

We will now make a statistical comparison of our three selection methods on the

same numerical example, as well as with a standard Bayesian approach, in the case

where measurements are noisy.

We will apply the set-valued inverse method and Bayesian inference method

to identify the elastic properties (Lamé parameters: λ and µ) of a homogeneous
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Figure 3.9 – Feasible sets of parameters (GDOC + Bayes)

2D plate with 386 measurements. For the set-valued inverse method, information

on the measurement ỹ is described in an interval form: [ ỹ − 2σ, ỹ + 2σ ] with

σ = 0.0020 and prior information about the parameters (S0
θ) is considered as a 2D

box λp×µp with λp = [0.72 · 105, 1.90 · 105]MPa and µp = [ 7.2 · 104, 8.15 · 104]MPa.

For the Bayesian inference method, error on the measurement ỹ is modeled by a

Gaussian white noise:∼ N (0, σ2) with σ = 0.0020 and the prior information about

the parameter is modeled by a uniform distribution:Uλ(0.72 · 10
5, 1.90 · 105)MPa ,

Uµ(7.2 · 10
4, 8.15 · 104)MPa. This means that the Bayesian model is in this case well

specified, and should perform well.

3.3.2.1 Comparison with Bayesian inference

To perform a comparison between our set-valued approach and a Bayesian inference

method, we will transform the resulting posterior distribution on parameters of

the Bayesian inference in a set-valued estimate. To do so, we will estimate a 90%

credibility set of the Bayesian approach.

Figure 3.9 shows the feasible set (yellow color) of the identified parameter using

GDOC method with 86 measurements removed and the feasible set (red color)

corresponding to the 90% credibility set of the Bayesian approach. The results

showed that both identified sets are not completely consistent with one another

and we can define the degree of consistency (Cc) between them as

Cc =
A(Ss ∩ Bs)

min(A(Ss),A(Bs))
(3.17)

where Ss and Bs represent the solution set corresponding to the set-valued inverse

method and the Bayesian inference method, respectively. This comes down to apply

Equation (2.10) to the two different approaches.



3.3. NUMERICAL APPLICATIONS 57

a) GDOC method b) Count method c) GCONS method

Figure 3.10 – Comparison of selection methods in terms of consistency(Cc) with Bayesian

inference method

To make our comparison, we generated 100 experiments with 386 measure-

ments to which were added a Gaussian white noise:∼ N (0, σ2) with σ = 0.0020 for

each experiment, that is

ỹ = yref +N (0, σ2).

The same 100 experiments have been used while comparing all three methods with

respect to Bayesian inference method. In the case of GDOC and Count method

, we use Matlab function (knee_pt.m [Kaplan, 2021]) to detect the bend of the

curve and automatically detect measurements to remove while performing the

100 experiments. In the case of GCONS method, we set the threshold τ used in

Algorithm 5 to 0.1.

Table 3.2 – Comparison of selection methods in terms of consistency (Cc) with Bayesian

inference method

Method Mean of Cc Standard deviation of Cc

GDOC 0.75 0.20

Count 0.94 0.12

GCONS 0.96 0.05

Figures 3.10(a) to 3.10(c) show the distribution of consistency values Cc for

the three methods. The results show that all three methods are in general in good

agreement with the Bayesian inference approach when this latter makes the right

model assumption. Yet one easily see that the GDOC distribution is much less

peaked, and has much more elements far away from one. This is also visible in the

mean and variance of the distributions reported in Table 3.2: the mean is much

lower and the variance much higher for Algorithm 2. We suspect that this is due

to the fact that the algorithm does not really account for interactions between

removed measurements.

The fact that the Cc value is quite high for the GCONS and Count methods
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Table 3.3 – Comparison of selection methods in terms of DOI between set-valued inverse

method and Bayesian inference method

Method Mean of Standard deviation Mean of Standard deviation
DOIBs ⊆ Ss

of DOIBs ⊆ Ss
DOISs ⊆ Bs

of DOISs ⊆ Bs

GDOC 0.75 0.20 0.19 0.0445

Count 0.94 0.12 0.32 0.13

GCONS 0.96 0.05 0.16 0.0150

indicate that they are often consistent with the 90% credible set of the Bayesian

approach, hence that one is often included in the others. Figure 3.9 suggests

that in practice, the Bayesian approach is often more precise than our proposed

methods. This is confirmed by the numbers in Table 3.3, that reports the degrees

of inclusion(see Equation 2.10) of the solution set Bs ⊆ Ss and vice-versa for

the 100 experiments. We can easily see that the first two columns are the same

as the numbers in Table 3.2, while the numbers for DOISs ⊆ Bs
are much lower.

This confirms that, in practice, the Bayesian approach will often induce a more

precise solution set, which could be expected by the fact that our approaches reject

measurements, hence rely on less information, while the Bayesian approach tries

to build a compromise between all measurements.

3.3.2.2 Precision and accuracy of selection methods

Let us now compare the methods between themselves, first in term of precision

or size of the obtained set, and then in terms of accuracy. Figure 3.11 shows the

distribution of the sizes of the obtained solution sets for the three approaches, and

Table 3.4 provides summary statistics (mean and variance) of these distributions.

From this, we can conclude that while GCONS method provides sets with a more

stable size, such sets also tend to be larger than the ones obtained with the two

other approaches, with the Count method tending to give the smallest sets. We

can explain the observed variance of the GDOC and Count methods by the fact

that the inflection point, used as a threshold, is much more likely to vary from

experiment to experiment.

Table 3.4 – Comparison of selection methods: statistical summary

Method Mean of Size of set Standard deviation of Size of set

GDOC 95.18 33.65

Count 79.56 35.87

GCONS 142.54 7.08
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Figure 3.11 – Comparison of selection methods in terms of the size (number of grid points)

of the solution set

A second aspect that is important in identification methods is whether the

approaches can retrieve the true solution. For this, we computed the accuracy value

AC =
|{Soli : θ∗ ∈ Soli}|

K
(3.18)

where Soli is the solution set obtained for the ith experiment, and K is the total

number of experiments. Table 3.5 provides such an information, as it summarises

the number of experiments for which the true parameter values are included in the

solutions sets. Both the Count and GCONS methods retrieve the true solution in

all experiments, while for the GDOC method, this is only true for 90 experiments,

which is comparable to what the Bayesian inference would achieve with more

precise solution sets, as we take the 90% credibility intervals. So in this case both

the Count and GCONS methods clearly provide superior results, at least in terms

of accuracy. Coupled with the fact that the Count method provides more precise

sets in general, this method clearly seems preferable.

Table 3.5 – Comparison of selection methods in terms of accuracy

Method AC

GDOC 90

Count 100

GCONS 100

Figure 3.12 provides a complementary information in the form of the distribu-

tions of number of measurements that are removed from the initial set to obtain

the final solutions. It clearly shows that the GCONS and Count methods tend to

remove fewer measurements than the GDOC approach. Together with the results
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Figure 3.12 – Comparison of selection methods in terms of the number of measurements

removed

presented in Figure 3.11, this indicates that the number of removed measurements

is not directly linked to the size of the obtained final sets, as GCONS was giving

the larger sets, while generally removing less measurements than GDOC.

To summarise, it appears that the three methods provide results that are

qualitatively comparable, but remain quantitatively different. Accounting for in-

teractions seem to increase results reliability and accuracy, while choosing a data-

or experiment-dependent selection threshold seem to result in smaller solution

sets. The price to pay for a high reliability, compared to a well-specified Bayesian

approach, is a higher conservativeness. So, in those cases where the Bayesian

model is well-specified and we do not require strong guarantees, Bayesian inference

seems preferable. Let us now look at what happens when the Bayesian model is

misspecified, i.e., do not perfectly represent data and measurement processes.

3.3.3 Comparison in presence of outliers and misspecified

Bayesian model

In this section, we compare the set-valued inverse methods and the Bayesian

inference method in presence of outliers i.e, when some data become aberrant. To

do this, we use 8 sets of 100 experiments (each experiment with 386 measurements)

in a way such that for each set the percentage of outlier measurements will increase.

In practice, we use the following scheme:

ỹ0 = yRef + ε (3.19)

ỹ = ỹ0 + αIε (3.20)
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Figure 3.13 – Sensitivity to outliers

where ỹ0 are noisy measurements similar to the one of the previous section, with

ε ∼ N (0, σ2) being the initial noise. We then create outliers by considering α ∈ R
+

as a multiplicative factor of the initial noise ε, applied to an average proportion

pi of the initial noisy measurements, this average proportion being obtained by

setting I ∼ B(pi) as a Bernoulli variable with parameter pi that will vary between

sets of 100 experiments. For our experiments, we set α = 5 and we used the values

0%, 3%, 5%, 7%, 9%, 11%, 13%, 15% for pi, starting from no outliers to an average

of 15%.

For each set of experiments (thus for 800 experiments), we have performed

identification using our set-valued inverse methods and Bayesian inference. Fig-

ure 3.13 reports the average values of the consistency coefficient Cc given by

Equation (3.17) for all 100 experiments and each percentage of outliers. From

this, one can easily see that for all our three methods, the consistency with the

Bayesian approach decreases as the percentage of outliers increases. This is less

severe for the GCONS approach, as this latter one tends to provide larger solution

sets, that more often include the Bayesian solution. Clearly, these graphs show

that in presence of outliers, the probabilistic approach and our methods behave

differently.

However, if the probabilistic and set-valued methods provide different results, it

remains to determine which one gives the best. Figure 3.14 provides some answer

to that, by reporting the average number of times that each method includes

the true parameter values, given by the value Ac. It can be observed that as the
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Figure 3.14 – Consistency with exact parameter values

quantity of outliers increase, the performances of both the Bayesian and the GDOC

approaches decrease dramatically, to the point that the 90% credible Bayesian

region contains the true parameter only about 50% of the time, and this with only

15% of outliers. GDOC is also sensitive to outliers, albeit to a lesser extent. Again,

this is probably due to the fact that GDOC does not really consider interactions

between measurements when removing them, something that seems essential

to detect outliers. In contrast, both the Count and GCONS methods behave

remarkably well, as the Count method nearly always contains the true parameter

values, while GCONS always contains them.

Of course, one could include the outliers characteristic in a Bayesian approach

and obtain a well-specified model, but this would mean being able to assess the

nature and quantity of such outliers, as well as a quite higher computational

burden. In contrast, the Count and GCONS approaches can deal with them with

an identical computational price, and without any knowledge of the nature and

quantity of outliers.

This experiment shows that the two methods intrinsically differ: while the

Bayesian approach requires reliable probabilistic information in order to work

and will consider every measurement as informative, our approach rely on less as-

sumptions (only requiring boundary values) and can consider some measurements

are completely uninformative or even damaging for the inference. The Bayesian

approach requiring stronger assumptions and knowledge, it will usually perform

better (i.e., provide more precise and equally accurate results) in those cases where
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these assumptions are valid, but will also possibly suffer an important bias in case

they are not. Our method seems therefore advisable in those sensitive engineering

or mechanical applications where this knowledge is not present, so as to avoid

possible bias.

We also check how effectively the three outlier detection methods are removing

some of the noisy measurements which are converted into outliers. For a given

experiment, we denote the list of such outliers by Lpi, and by Re the list of total

inconsistent measurements we remove by each method. For each experiment, we

compute the two values

Ce =
| Lpi ∩ Re |

| Lpi |
,

and

Cr =
| Lpi ∩ Re |

| Re |

, that respectively compute the percentage of outliers we get within the removed

measurements, out of the total number of possible outliers, and the percentage

of those removed measurements that are outliers. Before commenting the results,

detailed in Tables 3.6 and 3.7, two remarks are in order: first, given the way we

generate outliers, it is clear that an identified outlier for which the value I = 1 in

Equation (3.20) may actually suffer from a very small noise (in case the random

noise ε is small), so may not truly be an outlier; second, given that non-outliers

also suffer from a random normal, possible unbounded noise, those latter will also

induce inconsistencies (potentially even more important than designed outliers).

Table 3.6 – The effectiveness of three outlier detection methods to remove some of the

noisy measurements which are converted into outliers.

Method Average value of Ce over 100 experiments

- 0% 3% 5% 7% 9% 11% 13% 15%
GDOC − 0.8350 0.8338 0.8267 0.8143 0.7979 0.79 0.7894
Count − 0.8040 0.8015 0.7967 0.7864 0.7867 0.7849 0.7835

GCONS − 0.5070 0.50 0.5033 0.5018 0.5048 0.4996 0.5115

However, even accounting for these two facts, we can see in Table 3.6 that

all methods are able to capture a fair number of the designed outliers (i.e., those

measurements for which I = 1), and that this number is stable for different

percentage of outliers. From the results, it seems that the GCONS approach

tends to select less outliers, maybe because the underlying measure does not

rely on pairwise inconsistency measures, aggregated or not. Indeed, one may

expect outliers to be strongly detected by pairwise measure, as by definition they
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are inconsistent with most single measurements. It is also not surprising to not

reach 100% detection, given the general remarks we have made about the outlier

simulation process.

Table 3.7 – The % of outliers among the removed measurements in Re

Method Average value of Cr over 100 experiments

- 0% 3% 5% 7% 9% 11% 13% 15%
GDOC − 0.1169 0.1474 0.1917 0.2749 0.4114 0.4711 0.4836
Count − 0.1650 0.2099 0.27 0.3636 0.4633 0.5029 0.5138

GCONS − 0.0949 0.1203 0.1619 0.2347 0.3240 0.3626 0.3829

Results of Table 3.7 are in line with expectation, as the percentage of outliers

within the removed measurements increases as the number of outliers increases as

well. Indeed, we cannot expect Cr to be high when having 3% outliers, as 3% of

386 means about 10 measurements, while the methods tends to remove about 50

to 100 measurements (in this sense, the numbers in the 3% column of Table 3.7 are

in line with expectation). The increase in the percentages show that all methods

are able to catch more outliers as their quantity grows.

3.3.4 Choice of the threshold value τ in the selection methods

We discussed the three selection methods in the previous Section to remove

inconsistent or outlier measurements. The common factor in all three methods

is that we need to choose some threshold value τ to use these methods. All the

definitions of consistency measure we discussed in Section 2.2.2 tell us in a general

sense to choose a low threshold value. We can set a general criterion to choose a

data or experiment-dependent threshold value. For example, in the GDOC and

Count method, we can always rely on the GDOC and DOC curve to get an idea

about the threshold value. But, in the case of the GCONS method, we do not have

any predefined idea about choosing a threshold value except it should be a low

value. We propose that we can use the DOC curve to choose the threshold value

for the GCONS method. GCONS is a global measure, but it turns into a pairwise

measure in the case of two measurements (see 2.3.2.2, property 4). This gives us

insight that the DOC curve can help choosing a threshold value for the GCONS

method.

We will now illustrate why it is advisable to choose a low DOC threshold value

for the Count method. We considered the same example as in Section 3.3.1.2.

Figure 3.15 shows the ordered values of DOC consistency measure (Equation 2.10)

for all pairs of measurements. The Figure 3.16 (a,b,c,d,e,f,g) shows the Count
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Figure 3.15 – DOC value of all possible pair of measurements( DOC curve to choose

threshold τ .

curve for the different threshold values, such as τ = 0.10,0.3,0.4,0.52,0.81 and

0.96. We have observed that as the threshold value of DOC increases Count curve

starts to become unstable i.e., in terms of smoothness of the curve. The Count

curve in Figure 3.16(a) has a smooth nature in contrast to Figure 3.16(g), and it is

complicated to select the number of inconsistent measurements based on the count

value in Figure 3.16(g). Hence, to effectively obtain the count of the measurements,

i.e. Count curve, one should use a low threshold value of DOC, the reason is that

the low value of DOC is a kind of indicator of low consistency between the two

measurements. It is possible to decide the low threshold value of DOC by observing

the DOC curve’s nature shown in Figure 3.15.

3.4 Summary

In this chapter, we have considered the issue of solving the inverse problem in

the presence of interval-valued uncertainty in the measurements. While most

common strategies such as least-square minimization or Bayesian inference intend

to find a solution that is not too far away from all the observed measurements, we

considered the possibility of removing some of the measurements, only keeping a

subset of measurements for which the inverse problem solutions were consistent.

While such a view is not entirely new and is for example at work in the Q-

intersection method [Drevelle and Bonnifait, 2012], this latter solution is not

really applicable when the number of measurements is high, which is quite often

the case in mechanical problems.

The selection (outlier detection) methods we applied to detect inconsistent

measurements have the advantage that they are easy to compute, making them

affordable even for a large number of measurements.
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We applied our various strategies to identify the elastic properties of homoge-

neous isotropic material, comparing them to a Bayesian model in two situations:

one where the Bayesian model was accurate, the other where it was misspecified.

Our main conclusions from these experiments are that:

• The Bayesian and set-valued approaches deliver solutions of similar quality

when the former makes the right assumptions, but the Bayesian approach

is quite sensitive to misspecification and the presence of outliers, while our

approaches are much more robusts.

• When selecting measurements, it seems essential to integrate possible inter-

actions between the removed measurements to ensure a good identification,

especially when the presence of outliers of anomalies is suspected.

In the next chapter, we will extend the application of the set-valued inverse method

to identify parameters when measurements are in a large amount and damage

detection in a material.
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4.1 Introduction

This chapter presents two applications of the set-valued inverse method:

• Identification from full-field displacement measurements when they are in a

large amount.

• Damage detection of the material

Any identification strategy becomes computationally complex when we have either

a large number of parameters to identify or of available measurements. To tackle

this issue, we illustrate the use of a non-uniform(sparse) grid of points to describe

the prior information about parameters and surrogate modeling. In the last chapter,

our focus was on removing inconsistent or outlier measurements to obtain the

solution to the inverse problem as the inconsistency was only due to measurement

error. However, as we shall see here, our outlier detection methods, can help to

distinguish between outliers due to measurement and model error. In the damage

detection problem, we solve the inverse problem and detect outlier measurements

due to model error that indirectly determines the location of damage in the material.

4.2 Identification in a higher dimensional context

The mechanical inverse problem that we considered in Chapter 3 consists of

identifying the two parameters with a small number of measurements. This problem

can become computationally complex in three cases:

1. a larger number of parameters to identify,

2. with the large FE model,

3. large data set or available measurements are numerous.

In this section, we will discuss the methods to improve computational efficiency of

the set-valued inverse method in a higher dimensional context such as

1. sparse grid of points using Latin hypercube sampling (LHS),

2. surrogate model,

respectively with targeted applications:

• higher dimensional parameter space,

• large FE model.
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Figure 4.1 – Description of parameters with a grid of points.

4.2.1 Higher dimensional parameter identification

In the case of 2D parameter identification and with a small number of measure-

ments, we described the prior information about parameters with a uniform grid of

points. Figure 4.1 shows the 2D box of the grid of points, where the coordinates

represents the values of the parameters λ, µ, and x represents the position of the

grid point. The description shown is uniform(regular), but it can be non-uniform.

When considering higher dimension, for the uniform description of the grid of

points, the number of grid points are given as

Ng = nM
g (4.1)

where Ng is the number of grid points, ng is the number of chosen points for each

dimension, M is the number of parameters.

In our application, we need to solve the Finite Element(FE) model at each grid

point to compute displacements corresponding to the parameters. If the inverse

problem consists of identification of a large number of parameters, then that leads

to high computational cost. One way to reduce the computational cost, in the case

of higher dimensional parameter identification, is to describe prior information

about parameters with a non-uniform grid of points. There are various methods

to generate the grid of points non-uniformly, such as Halton sequences [Halton,

1960, Wang and Hickernell, 2000] or Latin hypercube sampling (LHS) [McKay

et al., 1979, Saliby and Pacheco, 2003, Shields and Zhang, 2016]. [Sui, 2017]

compares how accurately one can describe the set with a non-uniform grid of
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points using LHS and Halton sequences compared to the regular(uniform) grid of

points. In this work, we use the LHS sampling method to describe prior information

about parameters with the non-uniform description of the grid of points. Such a

non-uniform description of a grid of points reduces the number of times one has to

solve FE calculations because the number of FE calculation is equal to the number

of grid points. Let us considere an example of the description of four parameters

with uniform description, with ng = 60 and M = 4, the number of grid points, Ng,

is equal to 12960000 due to the so-called curse of dimensionality.

Now, we illustrate how we can solve 4D identification problem with the use

of non-uniform description of the grid of points. We considered the application

where we want to identify 4 parameters (λ1, µ1, λ2, µ2) of a heterogeneous material

shown in Figure 4.2. λ1 and µ1 represents the properties of the material described

with blue color and λ2 and µ2 represents the properties of the material described

with yellow color.

To perform the identification using the set-valued inverse method of a het-

erogeneous 2D plate under plane strain as shown in Figure 4.2, we simulate

a plate clamped on the left side and loaded on the right side by a uniform

traction f = 1000 N/m. To generate displacement measurement data ỹ (386

measurements), exact displacement data yRef are simulated by a Finite Element(FE)

model(193 nodes, 336 elements) as shown in Figure 4.2 considering the reference

values λ01 = 1.15 · 105MPa, µ01 = 7.69 · 104MPa and λ02 = 5.76 · 104MPa,

µ02 = 3.84 · 104MPa. We also consider a Gaussian white noise with 0 mean (no

systematic bias) and with standard deviation σ, taken here as 5% of the average of

all the exact displacement values. To apply our methods, the uncertainty on the

measurements has to be given in interval form. Therefore, each measurement is

modelled as [ỹk−2σ, ỹk+2σ]. The width of 2σ ensures that sufficient measurements
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Figure 4.4 – 4D identification with GDOC method. (a) Solution set(λ1×µ1). (b) Solution

set (λ2 × µ2).

will be consistent with one another. Prior information about the parameters (S0
θ)

is considered as a 4D box described by a grid of points λp
1 × µp

1 × λp
2 × µp

2 with

λp
1 = [1.03 · 105, 1.26 · 105]MPa, λp

2 = [4.61 · 104, 6.92 · 104]MPa and µp
1 = [ 6.92 · 104,

8.46 · 104]MPa, µp
2 = [ 3.07 · 104, 4.61 · 104]MPa. With LHS sampling method, to

describe 4D box of non-uniform grid of points, we used 20000 points for the grid.

We solved the inverse problem with the random noise in the data. Figure 4.3

shows the function fGDOC (see Equation (2.15)), providing the GDOC values of

all the measurements in decreasing order. It can be observed that the value of

GDOC starts to decrease abruptly on this example when GDOC is between 0.67

and 0.56. As indicated in Algorithm 2, a possible criterion to select measurements

could be to detect this abrupt decrease of the estimator of consistency of the data.

The threshold was manually set at 0.65. We obtain the corresponding identified

set of 4 parameters such that the solution set(Sθ)=λ1 × µ1 × λ2 × µ2. Figure 4.4

represents the solution set in terms of the projection of Sθ on λ1, µ1, and λ2, µ2
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axis respectively, where 34 measurements were removed. The solution set still

contains the reference values λ01 = 1.15 · 105MPa, µ01 = 7.69 · 104MPa and

λ02 = 5.76 · 104MPa, µ02 = 3.84 · 104MPa. We solved 4D identification using a

non-uniform description of the grid of points. We used a 20000 number of grid

points, which is quite reasonable if we compare it to 12960000 points in the case

uniform description when M=4. In the above example, with 20000 points, we

get a reasonable solution set. There is always a question of how many points one

should choose to describe a higher dimension set accurately with a non-uniform

grid of points. We did not do a detailed study on this topic and chosen a sufficient

number of points such that we will not get an empty solution set in the context of

the set-valued inverse method. [Sui, 2017] has proposed a method to choose the

number of points to describe the set accurately.

4.2.2 Identification with a large FE model

In practice, the mechanical inverse problem based on DIC data consists of solving

an inverse problem with thousands of measurements, which is quite higher than

the number we considered in the application of chapter 3, where we used a

minimal number of measurements to illustrate different outlier detection criteria.

In this section, we identify the elastic properties (Lamé parameters: λ and µ) of a

homogeneous 2D plate under plane strain, as shown in Figure 3.2 with a large FE

model. In our numerical applications, a large FE model(mesh) with a large number

of nodes and elements means that a large number of measurements (number of

measurements = number of nodes × 2). But in practice, it is not always the case;

in DIC measurements, measurement data grids and FE mesh are not the same.

Figure 4.1 shows the 2D box of the grid of points, where each coordinates

represents the values of the parameters λ, µ, and x represents the position of the

grid points. In our application, we need to solve the Finite Element(FE) model

at each grid point to compute displacements corresponding to the parameters. If

the inverse problem consists of identification from a large FE model with a large

number of nodes and elements, then that leads to high computational cost. To

reduce the computational cost, i.e., to avoid solving FE calculations at each grid

point, we use the radial basis function (RBF) interpolation method [Ozcanan and

Atahan, 2020, Toja-Silva et al., 2014, Bajer and Holena, 2012] to build a surrogate

model. In this method, we solve the FE calculations at a few sample grid points,

and then using the surrogate model, we compute an approximated displacement at

any grid point that helps to reduce computational cost. Now we describe the steps

to build the surrogate model to compute the displacement at any grid point using
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Figure 4.5 – 2D grid of points (a) Sample grid of points, Ns (b) Total number of grid of

points, Ng

the RBF interpolation method.

1. To build the surrogate model, initially, we randomly choose(using LHS

sampling) Ns sample grid points out of Ng number of grid points. We solve

the FE model to calculate the displacement vectors at these Ns grid points

(see Figure 4.5(a)). We obtain the Ns displacement vectors which we can

store in the matrix X as

X = [y1, ..., yNs
] (4.2)

The size of the matrix X is N ×Ns, where N is the size of the displacement

column vector, y.

2. In the second step, we perform the singular value decomposition (SVD) of

the matrix X as

SV D(X) = UΣV T (4.3)

where U is an N × N unitary matrix and its columns are called the left-

singular vectors, Σ is an N ×Ns diagonal matrix whose diagonal entries are

known as the singular values of X, V is an Ns ×Ns unitary matrix and its

columns are called the right-singular vectors. We use the left-singular vectors

as basis vectors corresponding to the largest singular values to approximate

the displacement vector, y, at any grid point x as

y(x) =

Nb
∑

k=1

αk(x)φk = [φ]α (4.4)

where φ is the matrix of the size, N ×Nb, Nb is the number of basis vectors

such that Nb ≤ Ns, α ∈ R
Nb are the unknown coefficients.
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3. In the next step, the idea is to find the values of the unknown α coefficients

at chosen Ns sample grid points. As we know the values of the displacement

vector, y, at chosen Ns sample grid points, thanks to the FE calculations, hence

using Least-squares minimization problem, we can compute an unknown

vector α of coefficients at any ith sample grid point for i = 1 to Ns as

α(x) = Arg Min
α∈RNb

J(α) (4.5)

where J(α) = ‖
∑Nb

k=1 φkαk(x) − y(x)‖22. Then it is possible to compute dis-

placement vector y at any sampled grid point xi using Equation (4.4).

4. In order to calculate displacement at any grid point x as we have a total Ng

number of grid points (see Figure 4.5(b)), we need to know the values of

the coefficients α at any grid point x. For that, we use the RBF interpolation

method. In this method, we compute the unknown vector at any grid point

x from known vector α at Ns sample grid points. We approximate the row

vector α of the size 1×Nb at any grid point x by defining radial basis function

at Ns number of sampled grid points as

α(x) =

Nb
∑

k=1

Ns
∑

i=1

ϕ(‖x− xi‖)wik = [ϕ][w] (4.6)

where ϕ is a radial basis function, ϕ is the matrix of size, 1 × Ns, and w is

the matrix of the unknown weights with size Ns ×Nb. We choose Gaussian

RBF function such that ϕ(‖x − xi‖) = exp(−( x−xi

2σrbf
)2) and this function is

parametrised by the shape parameter value, i.e, 1
2σrbf

. The unknown weights

w at any grid point xi can be computed by solving following linear system of

the equations:

[ϕglobal][w] = [αglobal] (4.7)

where ϕglobal is the matrix of size, Ns ×Ns and which is given as













ϕ(‖x1 − x1‖) ϕ(‖x2 − x1‖) . . . ϕ(‖xNs
− x1‖)

ϕ(‖x1 − x2‖) ϕ(‖x2 − x2‖) . . . ϕ(‖xNs
− x2‖)

...
...

. . .
...

ϕ(‖x1 − xNs
‖) ϕ(‖x2 − xNs

‖) . . . ϕ(‖xNs
− xNs

‖)













,

w is the matrix of size, Ns ×Nb and which is given as
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











w11 . . . w1Nb

w21 . . . w2Nb

...
...

...

wNs1 . . . wNsNb













,

αglobal is the matrix of size, Ns ×Nb and which is given as













α1(x1) . . . αNb
(x1)

α1(x2) . . . αNb
(x2)

...
...

...

α1(xNs
) . . . αNb

(xNs
)













.

We can solve Equation (4.7) to compute w by following equation

w = [ϕglobal]
−1αglobal (4.8)

We can compute the unknown row vector α at any grid point x by knowing

weights w using Equation (4.6). If we know the values of α then we can compute

the displacement vector, y, at any grid point x that helps to avoid solving FE

calculations at each grid point.

Now, we apply the set-valued inverse method along with GCONS outlier

detection method (Algorithm 2.3.3.3) to identify the set of elastic parameters when

there is random noise in the data. To generate the displacement measurement

data ỹ (12096 measurements), exact displacement data yRef is simulated by a

Finite Element (FE) model (6048 nodes, 12094 elements) as shown in Figure 3.2

considering the reference values λ0 = 1.15 · 105MPa and µ0 = 7.69 · 104MPa. We

also consider a possible Gaussian white noise with 0 mean (no systematic bias) and

with standard deviation σ. In the current work, σ was taken as 5% of the average of

all the exact displacement values and in practical cases it can be assumed that σ can

be deduced from the measurement technique. The information on the measurement

ỹ was described in an interval form: [ ỹ − 2σ, ỹ + 2σ ]. Prior information about

the parameters (S0
θ) is considered as a uniform 2D box (see Figure 4.5(b)) λp × µp

with λp = [1.03 · 105, 1.26 · 105]MPa and µp = [ 6.92 · 104, 8.46 · 104]MPa. For

the surrogate modeling with RBF interpolation method, we have used Ns = 50,

Ng = 3600, σrbf = 0.0293. The value of σrbf plays important role in the accuracy

of RBF surrogate modeling. We have optimized σrbf using L2 norm between the

displacement vector y computed using the FE model and the surrogate model,i.e.,

‖yFE − ysurrogate‖
2
2 at one sample grid point. We selected σrbf which minimizes the
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L2 norm as shown in the Figure 4.6.

Figure 4.7(a) shows that the identified set (green color) when taking all the

measurements is empty due to inconsistency within the measurements. To obtain a

non-empty solution set, we use our proposed solution and Algorithm 2.3.3.3 with

the value of the GCONSthreshold(τ) settled to 0.1. We use a low value of GCONS to

ensure that a high enough number of measurements will be included. Figure 4.7(b)

shows the feasible set (yellow color) of the identified parameter using GCONS

method, with 1233 measurements removed. We can note here that the exact value

of the parameter is included in the solution set (shown by red mark).

We solve this identification problem using a surrogate model based on the RBF

interpolation method. It took a total time of 55 minutes to solve the problem on a

standard laptop. If solved without surrogate modeling, it would have taken almost

one day. Yet in the set-valued inverse method, computation time is divided into

two parts; the first one corresponding to the solving of the FE model to compute

displacement at each grid point, and the second part is related to the post-processing

of a large number of measurements with GCONS outlier detection algorithm. For

the first part, we can use surrogate modeling to reduce computational time, and in

this application, out of 55 minutes, it has taken 22 minutes. Hence, the GCONS

algorithm takes 33 minutes to process 12096 measurements to detect outliers.

One way to reduce the computation time with the GCONS algorithm is that,

generally, in the GCONS algorithm, we start with the first two measurements
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Figure 4.7 – 2D identification with GCONS method with a large number of measurements.

(a) Empty solution set. (b) Solution set after detecting outlier

with the largest GDOC values (line 2 of the Algorithm 2.3.3.3). To reduce the

time when we have a large number of measurements, one way is to start with

a subgroub of measurements whose GDOC values are high so that it reduces

the time for computation with GCONS algorithm. In this application with the

GCONS algorithm, out of 12096 measurements, the initial subgroub is fixed to

the first 8000 measurements with high GDOC value. Then time taken by the

GCONS algorithm reduces to 14 minutes from 33 minutes (when starting with

the first two measurements with high GDOC value). The total time taken to solve

the identification problem is 22+14=36 minutes. With this modification in the

GCONS algorithm, we did not notice the change in the final result of the solution

set.

We also solved the sample problem of identification with a large FE model

without surrogate modeling, and Figure 4.8 shows the result of the identified

solution set. We can notice that both results(see Figure 4.7(b) with surrogate

modeling and Figure 4.8 without surrogate modeling) include the true parameter

value, but the solution set’s shape is different. The possible reason may be due to

the use of the surrogate model to solve the large FE model, but at the same time,

we can reduce the computation time with surrogate modeling.

We provided the above application to show how we can solve the identification

problem with a set-valued inverse problem when we have a large FE model using

surrogate modeling. In our work, we also studied the same application even with a

larger number of measurements, i.e., 37224 full-field displacement measurements.

To do this, with the same problem, we increased the number of nodes to 18612 and

number of elements to 37222 for the FE mesh. We solved the same identification

problem with set-valued inverse method using the surrogate modeling. With the
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Figure 4.8 – Solution set without surrogate modeling

Figure 4.9 – 2D identification with GCONS method with a large number of measurements

(N=37224)

GCONS outlier detection method and by setting the GCONSthreshold(τ) settled

to 0.1, we obtained the solution set of the parameters as shown in Figure 4.9.

To obtain non-empty solution set we removed 3515 inconsistent measurements.

The above results showed how we could solve set-valued inverse problems using

surrogate modeling, especially when we have a large FE model and large number

of inconsistent measurements.

4.3 Application of the identification strategy to dam-

age detection

Damage detection plays an important role in structural health monitoring (SHM) of

mechanical or civil engineering structures [Del Grosso, 2013, Cawley, 2018]. The

term SHM refers to the process of applying a damage detection and characterization

strategy for engineering structures. Within the framework of damage detection in

the material structures, there are various ways to define the criterion of damage
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λ , µ

a) A plate with hole b) FEM mesh

Figure 4.10 – Homogeneous isotropic elastic structure

in the material [Sinou, 2009]. In our work, we use "a reduction in stiffness of a

structure," as the definition of damage to indicate the presence of damage in the

structure. There are two types of data, which are dynamical and static response

data, which are useful for solving the inverse problem to detect damage to the

structure [Truman and Terlaje, 2006]. When it comes to dynamical response data,

it includes vibrational data [Doebling et al., 1998] that helps to identify modal

parameters (natural frequencies, mode shapes, and modal damping). These modal

parameters are functions of the structure’s physical properties (mass, damping and

stiffness (including elastic properties)). A criterion of damage in the material using

dynamical response data is that the reduction in natural frequencies leads to a

decrease in the structure’s stiffness, which helps detect damage in the material.

The static response data includes displacement or strain data [Truman and Terlaje,

2006]. The displacements are the function of the structure’s overall stiffness. Due

to the static nature of the experimental test [Truman and Terlaje, 2006, Augusto

S. Terlaje and Truman, 2007], identification methods use static response data with

inverse methods to detect damage in the material to check whether the structure

stiffness is reduced or not.

In our work, we use static response data along with a set-valued inverse method

to determine the location of damage in a homogeneous isotropic elastic structure.

In this application, the measure we choose is that if there is a reduction in values

of elastic parameters at a given location from its initial values, then that location is

considered as a damaged part of the structure.

A square plate with a hole is chosen to represent such a homogeneous isotropic

elastic structure in Figure 4.10. The plate is clamped on the left side and loaded on

the right side by a uniform traction f = 1000 N/m. To create the measurements that
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λ02, µ02

λ01, µ01

Figure 4.11 – A model to create measurements which are affected due to damage

are affected by the damage in the material, we first generate through simulation

exact displacement data yRef by a Finite Element (FE) model (236 nodes, 408

elements) as shown in Figure 4.11. To do this, we consider the reference/exact

values λ01 = 1.15 · 105MPa and µ01 = 7.69 · 104MPa for the region outside the red

boundaries and λ02 = 9.23 · 104MPa and µ02 = 6.15 · 104 MPa for the area inside

the red boundaries such that λ02 < λ01 and µ02 < µ01. To detect the damage, we use

strain measurements instead of displacement. We derive strain from displacements

such that each element of the FE mesh consists of three strain measurements, εxx,

εxy, and εyy respectively. Hence, we have a total of 1224 strain measurements, as

there are 408 elements. We also consider a possible Gaussian white noise with 0

mean (no systematic bias) and with standard deviation σ. In the current work, σ was

taken as 5% of the average of all the exact strain values. We represent each strain

measurements in xx direction in their interval form such that [ε̃xx − 3σ1, ε̃xx + 3σ1]

where σ1 = 5 % of the average of all the exact strain values in the xx direction.

Similarly, for the xy and yy direction, we define each stain measurement in its

interval form as: [ε̃xy − 3σ2, ε̃xy + 3σ2] , [ε̃yy − 3σ3, ε̃yy + 3σ3]. Prior information

about the parameters (S0
θ) is considered as a 2D box λp × µp with λp = [0.8 105,

1.5 105]MPa and µp = [ 5.38 104, 1 105]MPa.
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a) Identification of parameters b) Identification of the damage location

Figure 4.12 – Damage detection

4.3.1 Damage detection when there is no noise in the strain

measurement data

We first apply the set-valued inverse method to identify the set of elastic parameters

when there is no noise in the data. The measurement data was chosen such that

ε̃ =εRef , and the information on the measurement ε̃ was described in an interval

form: [ε̃xx − 3σ1, ε̃xx + 3σ1], [ε̃xy − 3σ2, ε̃xy + 3σ2] , [ε̃yy − 3σ3, ε̃yy + 3σ3].

To detect damage location, we apply the proposed strategy to identify the elastic

parameters of an isotropic structure from full-field strain measurements affected

due to damage and detect outliers in the measurements assuming the material

model is still isotropic homogeneous. Figure 4.12(a) shows the identified solution

set of parameters with 116 strain measurements removed out of 1224. As in this

particular case, we do not have measurement error, we can conclude that the

116 removed strain measurements are due to model error, i.e., due to damage.

Thanks to our GCONS outlier detection method, we can detect outliers, which are

due to measurement or model error. We determine the location of removed strain

measurement, i.e., to which mesh element they belong. A maximum of 3 outliers

can be present on each element as each element consists of 3 strain measurements.

For that, we use a colormap (see Figure 4.12(b)) that maps the sum (number of

outliers present on the element) from 0 to 3 over each mesh element. To determine

the location of measurements that are outlier due to model error, the criterion

we choose is that the sum over element should be greater than and equal to 2,

i.e., each element contains two or three removed measurements present on them.

The damaged area corresponds to the elements that contain two or three outliers

present on them and these elements should be spatially connected with one another.

We found such 12 elements that determine the location of the damaged part of the
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structure as shown in the Figure 4.12(b). Indeed, these are 12 elements that are

inside the red boundaries, as shown in Figure 4.11 and where we changed material

parameter values such that λ02 < λ01 and µ02 < µ01. Here, we need to note that

the identified solution set in Figure 4.12(a) corresponds to the undamaged part

of the material as we removed outliers due to model error. The solution set still

contains the reference values (λ01, µ01) denoted by the red mark corresponding to

the undamaged or homogeneous part of the material.

4.3.2 Damage detection when there is a random noise in the

strain measurement data

We apply the set-valued inverse method to identify the set of elastic parameters

when there is a random noise in the data. The measurement data ε̃ is created

from εRef by adding to it a Gaussian white noise with standard deviation σ, and

the information on the measurement ε̃ was described in an interval form: [ε̃xx −

3σ1, ε̃xx + 3σ1], [ε̃xy − 3σ2, ε̃xy + 3σ2] , [ε̃yy − 3σ3, ε̃yy + 3σ3].

Figure 4.13(a) shows the identified solution set of parameters with 275 strain

measurements removed out of 1224 using GCONS outlier detection algorithm.

The solution set still contains the reference values (λ01, µ01) denoted by the red

mark corresponding to the undamaged or homogeneous part of the material. As in

this case, we do have both measurement error and model error, the 275 removed

strain measurements may be due either to measurement or model error, i.e., due

to damage. We determine the location of removed strain measurement, i.e., to

which mesh element they belong. A maximum of 3 outliers can be present on

each element as each element consists of 3 strain measurements. For that, we use

a colormap (see Figure 4.13(b)) that maps the sum (number of outliers present

on the element) from 0 to 3 over each mesh element. We use a random noise to

create the measurement error; hence the location of the removed measurement

that are affected due to measurement error should not display spatial coherence.

Such a fact is illustrated in Figure 4.13(b) where we can see a few elements which

contain two removed measurement, but are not connected to each other. Then

how can one detect the damaged location when we have inconsistencies due to

both measurement error and model error? The answer is to find elements that

contain two or three removed measurement, and are spatially connected with one

another. By using this criterion, we choose 17 such elements (elements with yellow

color) which represent the approximated damaged zone in the material, as shown

in Figure 4.13(c). These 17 elements contain 51 strain measurements, and the

intersection of all the solution sets corresponding to those measurements gives a
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a) b)

c) d)

Figure 4.13 – Damage detection when there is a noise in the data: a) Identification of

parameters, b) Location of removed measurements c) approximated damage location, d)

identification from the approximated damaged part.



86 CHAPTER 4. APPLICATION OF SET-VALUED INVERSE METHOD

λ2, µ2

λ1, µ1

Figure 4.14 – Heterogeneous material with approximated damaged zone (after damage

detection)

solution set of parameters (yellow color), shown in Figure 4.13(d). Though small,

this solution set does not contain the reference value (λ01, µ01) denoted by the red

mark, which corresponds to the material’s undamaged or homogeneous part. We

can see that the value of the parameter (yellow mark in Figure 4.13(d) is decreased

compared to the parameter values that correspond to the identification from the

undamaged part (see Figure 4.13 (a)), and this also confirms the damage in the

material, i.e, the values of the parameters λ, µ (damaged part) in Figure 4.13(d)

are close to reference values (λ02, µ02) such that λ02 < λ01 and µ02 < µ01. This

method to validate the approximate damage zone may not work well because of

the hypothesis that the material remains homogeneous even when considering 51

strain measurements.

Hence, for this particular application, another way to validate the approximated

damaged zone is to perform a 4D parameter identification, i.e., λ1, µ1 represents the

parameters for the undamaged part, and λ2, µ2 represents the parameters for the

damaged part from strain measurements affected due to damage (see Figure 4.14).

The idea is to check whether λ2 is less than λ1, and µ2 is less that µ1 because

a reduction in the values of the material properties confirms the damage in the

material.

We performed 4D identification with the same strain measurement data, which

is used to detect damage in the material. Here, the only difference is that (see

Figure 4.14) material has become heterogeneous, i.e., (λ1 6= λ2 ) and (µ1 6=

µ2), thanks to the approximated location of the damage. Prior information about

the parameters (S0
θ) is considered as a non-uniform 4D box of grid of points

λp
1 × µp

1 × λp
2 × µp

2 with λp
1 = [0.8 · 105, 1.5 · 105]MPa, λp

2 = [0.64 · 104, 1.2 · 104]MPa
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(a) (b)

Figure 4.15 – 4D identification with GCONS method. (a) Solution set(λ1 × µ1). (b)

Solution set (λ2 × µ2).

λ02, µ02

λ01, µ01

a) Plate with hole b) FE mesh

Figure 4.16 – A model to create large number of measurements which are affected due to

damage

and µp
1 = [ 5.38 · 104, 10 · 104]MPa, µp

2 = [ 4.3 · 104, 8 · 104]MPa. With LHS sampling

method, to describe 4D box of non-uniform grid of points, we used 20000 points

for the grid.

We solved the inverse problem with the GCONS outlier detection method, as

usual, with the value of the GCONSthreshold(τ) settled to 0.1. The corresponding

identified set of 4 parameter is presented in Figure 4.15 , where 319 measurements

were removed. The solution set still contains the reference values λ01 = 1.15 ·

105MPa, µ01 = 7.69 · 104MPa and λ02 = 9.23 · 104MPa, µ02 = 6.15 · 104MPa

and these are the values we used to create data affected due to damage. This 4D

identification confirms that λ2 < λ1 and µ2 < µ1.

In our work, we also studied the same application of damage detection, even

with a large number of measurements, i.e., 37824 full-field strain measurements.

With the same problem, we increased the number of nodes to 6482 and the number

of elements to 12608 for the FE mesh 4.16(a). We solved the identification problem
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a) Solution set after outlier detection b) Damage identification

Figure 4.17 – Damage detection with large number of measurements

Figure 4.18 – Damage identification (location of outliers due to measurement and model

error )

with the set-valued inverse method using surrogate modeling. We created measure-

ment data affected due to damage in the same way as before (see Figure 4.16(b))

such that λ02 < λ01 and µ02 < µ01.

With the GCONS outlier detection method and by setting the GCONSthreshold(τ)

settled to 0.1, we obtained the solution set of the parameters as shown in Fig-

ure 4.17(a). To obtain a non-empty solution set, we removed 6522 inconsistent

measurements. Thanks to the GCONS outlier detection method, we could differ-

entiate between outliers due to model and measurement error. Like in the previous

example, we can also see in Figure 4.17(b) a few elements contain 2 or 3 outliers

present on them. We can approximate damage location by finding elements that

contain two or three outliers present on them, and that are connected with one

another as shown in Figure 4.18. It should be noted that Figures 4.17(b) and 4.18

are the same; in order to visualize clearly, we transformed the sum 2 and 3 in

Figure 4.17(b) and sum 1 in Figure 4.17(b) in to 1 and 0 respectively. In this
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application, we have shown that how the proposed strategy can be useful when we

need to detect damage in the material.

4.4 Summary

In this chapter, we presented the set-valued inverse method applications when

identifying high dimensional data and damage detection in the material structure.

In the case of identifying a large number of parameters or with a large number

of measurements, we can face a too important computational complexity with

the set-valued inverse method. To solve such complexity, firstly, we presented a

non-uniform description of a grid of points using Latin hypercube sampling when

we have to identify a large number of parameters. We also demonstrated the use

of surrogate modeling along with the set-valued inverse method when FE model

is large or measurements are in a large number. The results also showed how we

could deal with a large number of inconsistent measurements using the outlier

detection method. The second application we considered is damage detection in

the material structure. With this application, we showed how we could differentiate

between outliers due to measurement and model error. To conclude, we say that

interestingly, the set-valued inverse method does not only help to obtain a feasible

set of parameters and detect outliers but extend its capability to identify the nature

of outliers in the measurements.





Conclusion

In this thesis, an efficient inverse problem strategy has been developed based

on a non-probabilistic approach to uncertainty representation. Our strategy uses

sets or intervals within the non-probabilistic uncertainty modeling approach to

represent uncertainty on measurements and prior information on parameters. Our

methodology has proved effective for estimating material property parameters from

full-field displacement measurements, especially when dealing with inconsistent

measurements or outliers. Unlike other set-based identification strategies such as

Q-intersection method [Drevelle and Bonnifait, 2012], the proposed strategy is

efficient when dealing with inconsistent measurements in the inverse problem

when they are in large amounts. The identification strategy makes it possible to

solve critical application in structural damage detection, to estimate the location of

the damage in the material.

The identification strategy makes use of the information such as measurement

and prior information about parameters. The interesting thing about this strategy

is that the amount of needed assumptions about uncertainty is minimal, as we use

intervals. The prior information about parameters is described through hypercubes,

i.e., a multidimensional extension of intervals. In this set-valued inverse strategy,

we use a grid of points to describe the hypercube or sets numerically. Thanks to set

theory, we introduced indicators of consistency of measurements, using them to

propose selection methods to detect inconsistent or outlier measurements. Unlike

other interval-valued inverse methods, this strategy does not require to propagate

intervals through the model while solving the inverse problem.

The following numerical applications have been studied:

1. identification of the elastic properties of homogeneous isotropic material with

the proposed outlier detection methods;

2. the comparison of the set-valued inverse method with the Bayesian inference

method in two situations: one where the Bayesian model was accurate, the

other where it was misspecified;

3. identification with higher dimensional space;
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4. identification of damage location in the material structure.

Our main conclusions from applications 1 and 2 are:

• The Bayesian and set-valued approaches deliver solutions of similar quality

when the former makes the right assumptions. Still, the Bayesian approach

is quite sensitive to misspecification and the presence of outliers, while our

approaches are much more robust.

• When selecting measurements, it seems essential to integrate possible inter-

actions between the removed measurements to ensure a good identification,

especially when the presence of outliers of anomalies is suspected.

With application 3 that concerns higher dimensional space, we have shown how

using a non-uniform description of a grid of points to describe prior information

about parameters and surrogate modeling helps to solve computational complexity

with the set-valued inverse method. Application 4 demonstrates how we could

differentiate between inconsistent measurements due to measurement and model

error to detect the material’s damage location.

To conclude, the set-valued inverse method helps obtain a feasible set of

parameters and detect inconsistent or outlier measurements , and can also be

instrumental to identify the nature of outliers in the measurements. The presented

strategy is generic to any inverse problem, especially when we have incomplete

information to solve the inverse problem .

In future work, the following aspects would be interesting to investigate:

• The application of strategy to non-linear material models.

• Composite materials are heterogeneous in nature, and their characterization

requires analysis at different scales, i.e., micro and macro. In the context of

damage detection for composite structure, it would be interesting to know

that one could identify subgroups of consistent measurements at different

scales that are not consistent between them, hence potentially identifying

damaged zones that behave differently.

• Experimental validation of proposed outlier detection methods.

• Is it possible to integrate introduced indicators of consistency measures with

other interval-valued approaches or non-probabilistic uncertainty methods

while solving an inverse problem?

• Application of outlier detection methods to fault detection problems.
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