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ABSTRACT 

Understanding fractions is critical for the holistic development of mathematical 

knowledge. While fraction instruction typically begins in elementary school, children 

often encounter relational numerical concepts much earlier in their environment (e.g. 

sharing candies, varying the sweetness of a drink, baking muffins). A recently 

proposed theory, the Ratio Processing System (RPS), posits that the understanding 

of non-symbolic relational magnitudes and symbolic fractions are fundamentally 

intertwined. However, research on the RPS theory and fraction learning interventions 

in the classroom are limited. In this dissertation, we examine both symbolic and non-

symbolic relational magnitude processing from the perspectives of both cognitive 

neuroscience and educational game-based approaches. First, performance accuracy 

on a match-to-sample task reveals individuals with varied mathematics skills to be 

perceptually sensitive to non-symbolic ratios but not to symbolic fractions. Second, 

univariate and multivariate analyses of neural activity patterns using an fMRI-

adaptation paradigm suggest an absence of overlapping neural activations in all 

participants for absolute (represented as lines and as numbers) and relational 

magnitudes (represented as line ratio and as fractions). Third, analyses of fifth grader’s 

fraction knowledge after playing a fraction educational game developed in the context 

of this thesis (Math Mathews Fractions) revealed that the game did not improve overall 

fraction skills above traditional classroom instruction. However, it was successful at 

improving decimal knowledge. The results of this thesis lead us to argue for fraction 

instruction focused on both perceptual methods as well as building connections 

between the multiple constructs of fractions. Future research holds great potential for 



 

 xi 

examining fraction games that support teachers in building a holistic fraction 

understanding, rooted in the percept-concept links. 

Keywords: ratio processing system; fractions; fMRI; game-based learning; 

math cognition 
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RÉSUMÉ 

La comprehension des fractions est essentielle au développement général des 

connaissances mathématiques. Bien que l'enseignement des fractions commence 

généralement à l'école primaire, les enfants rencontrent souvent des concepts liés aux 

fractions bien plus tôt dans leur environnement (par exemple, en partageant des 

bonbons, en variant le goût sucré d'une boisson, en préparant des muffins). Une 

théorie récemment proposée < the ratio processing system theory > postule que la 

compréhension des fractions et des rapports de grandeurs (i.e. ratio) sous forme non 

symbolique est fondamentalement liée. Cependant, les recherches sur la théorie RPS 

et les interventions d'apprentissage des fractions en classe sont limitées. Dans cette 

thèse, nous examinons le traitement de ratios, sous forme symbolique et non 

symbolique, du point de vue des neurosciences cognitives et de l'approche 

pédagogique basée sur le jeu. Tout d'abord, la précision de la performance dans une 

tâche d'appariement à l'échantillon révèle que des personnes ayant des compétences 

variées en mathématiques sont perceptivement sensibles aux ratios non symboliques 

mais pas aux ratios symboliques (i.e. les fractions). Deuxièmement, des analyses 

univariées et multivariées des schémas d'activité neuronale à l'aide d'un paradigme 

d'adaptation par IRMf n'ont trouvé aucune preuve d'activations communes dans le 

sulcus intrapariétal de tous les participants pour les grandeurs absolues (représentées 

sous forme de lignes et sous forme de nombres) et relationnelles (représentées sous 

forme de rapport de lignes et sous forme de fractions). Troisièmement, des analyses 

de la compréhension des fractions chez les élèves de cinquième année (CM2), soit 

après l’utilisation d’un jeu en classe sur les fractions (Math Mathews Fractions), soit 

après un enseignement classique (sans jeu), ont révélé que le jeu n'a pas amélioré 

les compétences générales sur les fractions par rapport à l'enseignement classique 
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(sans jeu). En revanche, il a amélioré la compréhension des nombres décimaux. Les 

résultats de cette thèse nous amènent à plaider en faveur d'un enseignement des 

fractions axé, d’une part sur des méthodes perceptives et d’autre part, sur la 

construction de liens entre les différents aspects des fractions. Les recherches futures 

offrent un grand potentiel pour l'étude de jeux sur les fractions qui aident les 

enseignants à développer, chez leurs élèves, une compréhension générale des 

fractions, enracinée dans les liens percept-concept. 

Mots clés : ratio processing system ; fractions ; IRMf ; apprentissage par le jeu; 

la cognition mathématique 
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DESCRIPTION DU PROJET 

La compréhension des fractions est essentielle pour un développement général 

des compétences mathématiques. L'importance de la compréhension des fractions ne 

se limite pas au milieu scolaire, mais il est également démontré qu'elle est essentielle 

pour la santé et l'emploi (Handel, 2016 ; Chakkalakal et al., 2017 ; Osborn et al., 2013). 

Bien que l'enseignement des fractions commence à l'école primaire, les enfants et les 

adultes ont montré des difficultés persistantes à comprendre les fractions (Chan, Leu, 

& Chen, 2007 ; Ni, 2001 ; Yoshida & Sawano, 2002). Les difficultés persistantes dans 

la compréhension des fractions ont conduit certains à postuler que l'architecture 

neurocognitive humaine n'est pas conçue pour traiter les fractions (Gallistel & Gelman 

1992 ; Feigenson, Dehaene, & Spelke, 2004). D'autres ont adopté une approche 

moins pessimiste, attribuant les difficultés liées aux fractions à un enseignement qui 

ne tire pas parti de l'ensemble des architectures neurocognitives pouvant servir à 

soutenir les compétences en fractions (Lewis et al., 2016). Les théories contradictoires 

concernant l'existence d'un code primitif et abstrait pour les grandeurs relationnelles 

exigent des recherches supplémentaires dans ce domaine théorique.  

Par conséquent, l'objectif principal de cette thèse était de faire la lumière sur 

l'ensemble des architectures neurocognitives (i.e. Ratio Processing System, RPS) qui 

pourraient sous-tendre le traitement des grandeurs relationnelles, représentées sous 

forme non symboliques et symboliques. Dans l'étude I, nous avons utilisé un 

paradigme dit de « match to sample » pour mesurer la sensibilité au ratio chez des 

individus ayant différents niveaux de compétences en mathématiques. Nous avons 

constaté qu'indépendamment de leurs compétences en mathématiques, tous les 

participants ont montré une sensibilité perceptive au ratio de deux grandeurs non 
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symboliques (i.e. représenté par un rapport de lignes) mais pas au ratio de deux 

grandeurs symboliques (i.e. ratio représenté par une fraction). Nous avons également 

constaté que les adultes présentaient cette sensibilité lorsqu'ils devaient estimer 

l’ordre de grandeur d’une fraction, révélant ainsi un rôle limité du RPS (Bhatia et al., 

2020). Alors que l'étude I utilisait un paradigme comportemental, dans l'étude II, nous 

avons utilisé l'imagerie par résonance magnétique fonctionnelle pour examiner les 

activations cérébrales associées aux représentations symboliques et non 

symboliques en termes de grandeurs absolues et relatives. Dans l'étude II, nous avons 

utilisé un paradigme d'adaptation passive pour examiner les effets de l'adaptation 

neuronale pour les grandeurs absolues (représentées sous forme de lignes et sous 

forme de nombres) et relationnelles (représentées sous forme de rapport de lignes et 

sous forme de fractions). Contrairement à notre hypothèse, nous n'avons pas trouvé 

de preuve d’activations communes dans le sulcus intra-pariétal pour ces deux 

représentations. Cependant, les adultes ayant une plus grande maîtrise des 

mathématiques ont montré des activations dans le sulcus intra-pariétal gauche pour 

les grandeurs absolues, ce qui indique que les participants ayant une plus grande 

maîtrise des mathématiques pourraient être en mesure de recruter des régions 

cérébrales similaires pour le traitement des grandeurs absolues symboliques et non 

symboliques. Il est intéressant de noter que les analyses multivariées ont également 

révélé des modèles d'activité neuronale dissociables entre les grandeurs absolues et 

relationnelles dans le cortex préfrontal rostrolatéral (RLPFC) et les zones visuelles du 

cerveau. Étant donné le rôle du RLPFC dans le raisonnement relationnel, ces résultats 

pourraient suggérer les différentes manières dont les grandeurs absolues et 

relationnelles sont traitées au niveau neuronal. De plus, les participants adultes ne 

présentent pas de preuve de « recyclage neuronal » pour les grandeurs relationnelles 
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telles que les fractions et les rapports de lignes. Par conséquent, les résultats des 

études I et II nous amènent à penser que la sensibilité perceptive aux grandeurs 

relationnelles non symboliques pourrait dépendre de la tâche. Il est important de noter 

que des recherches futures utilisant différents paradigmes et outils pour examiner le 

RPS pourraient aider les chercheurs et les éducateurs à concevoir des interventions 

centrées sur l'apprentissage perceptif pour favoriser la compréhension des fractions. 

Alors qu'une méthode pour favoriser la compréhension des fractions pourrait 

consister à exploiter la sensibilité perceptive aux grandeurs relationnelles non 

symboliques (Lewis et al., 2016), une autre méthode complémentaire pourrait se 

concentrer sur l'établissement de liens entre les différentes interprétations des 

fractions (Pitkethly & Hunting, 1996 ; Misquitta, 2011). Sans aucun doute, ces 

différentes interprétations rendent le concept de fraction difficile à comprendre. Par 

conséquent, l'objectif secondaire de cette thèse était d'évaluer l'efficacité d'un jeu 

(Math Mathews Fractions) qui aide à établir des liens entre les différentes 

interprétations des fractions. Dans l'étude III, nous avons réparti au hasard des élèves 

de CM2 entre un groupe de contrôle et un groupe de jeu. L'étude a comporté un total 

de huit sessions et s'est déroulée sur quatre semaines. Au cours de ces sessions, les 

élèves du groupe expérimental ont travaillé les fractions avec Math Mathews Fractions 

en classe, avec une interaction limitée de l'enseignant. En revanche, les élèves du 

groupe témoin ont travaillé les mêmes notions sur les fractions, sous forme papier-

crayon et avec leur enseignant. Les résultats indiquent que le jeu n’a pas eu d’effets 

significativement positifs par rapport à l'apprentissage traditionnel pour les 

performances globales sur les fractions. Cependant, le jeu a eu un effet positif sur 

l'apprentissage des nombres décimaux. Nous avons également constaté une relation 

positive entre les paramètres du jeu et les scores de connaissances globales des 
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fractions. Cela suggère que des jeux tels que Math Mathews Fractions pourraient 

jouer un rôle dans l'enseignement traditionnel en classe en aidant les élèves à 

apprendre des représentations spécifiques des fractions et en aidant les enseignants 

à établir des liens entre les fractions et les nombres décimaux.  

Enfin, la portée plus large de ces résultats dans le domaine des neurosciences 

cognitives et de la recherche en éducation est discutée. Un modèle conceptuel 

d'utilisation des résultats de cette étude pour l'enseignement des fractions est 

également proposé dans la discussion générale. Nous espérons que les efforts de 

recherche futurs utiliseront des paradigmes variés pour examiner la théorie RPS qui 

pourrait aider l'enseignement des fractions en classe. De plus, les recherches futures 

qui aideront les enseignants à utiliser des jeux tels que Math Mathews Fractions dans 

le cadre du programme scolaire pourraient faire la lumière sur les méthodes qui aident 

les élèves à développer une compréhension générale des fractions.  
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INTRODUCTION 

Numerical information is ubiquitous and so numeracy plays an invaluable role 

in today’s contemporary society. According to the OECD, numeracy is defined as, “the 

ability to access, use, interpret and communicate mathematical information and ideas, 

in order to engage in and manage the mathematical demands of a range of situations 

in adult life” (OECD, 2016, p.49). Several studies in the past have evaluated the short-

term and long-term implications of low numeracy skills for both society and individuals 

(Gross et al., 2009; Parsons & Bynner, 2005). Particularly, for individuals, poor 

numeracy skills are not only associated with lower financial outcomes but also impact 

physical and mental well-being (Bynner & Parsons, 1997; Rivera-batiz, 1992; 

Rothman et al., 2008; Parsons & Bynner, 2005). Consequently, there has been 

considerable interest in examining the difficulties individuals encounter with numeracy, 

both in terms of brain and behavior.  

Among the varied mathematics skills, rational numbers are shown to be 

notoriously challenging for both children and adults globally (National Mathematics 

Advisory Panel, 2008; Siegler, Fazio, Bailey, & Zhou, 2013). They form a crucial 

component of mathematical proficiency by acting as a bridge between middle school 

and high school mathematics development (Bailey, Hoard, Nugent, & Geary, 2012; 

Booth & Newton, 2012). Less acknowledged is the role they play in domains such as 

health and employment (Handel, 2016; Chakkalakal et al., 2017). For example, studies 

on health numeracy show rational numbers to be strong predictors of health outcomes 

(Osborn et al., 2013). In fact, the Covid-19 crisis is an unfortunate example of how 

people struggle to understand proportional data related to the pandemic (such as the 

fatality and mortality rates) and ignore critical health guidelines (Roozenbeek et al., 
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2020). Though these factors indicate the far-reaching effects of rational number 

difficulties, they also highlight the potential impact of research on understanding the 

brain-behavior basis of these difficulties in learners. 

Accordingly, in this thesis, we were interested to investigate the neurocognitive 

correlates of fraction processing and learning. Just like any other mathematical 

domain, learning fractions (𝑛𝑢𝑚𝑏𝑒𝑟𝑠  𝑎𝑏  𝑤ℎ𝑒𝑟𝑒 𝑏 ≠ 0) requires individuals to 

understand new mathematical notations (numerator and denominator) and concepts 

(part-whole, measure, operator, etc.). These new concepts can be built upon pre-

existing knowledge, but can also contradict it (Rosenberg-Lee, 2021). For example, 

prior knowledge of whole numbers can help learners understand that all numbers have 

magnitudes, however, some whole number properties like having unique successors 

and a unique symbol do not apply to fractions (Rosenberg-Lee, 2021; Siegler, Fazio, 

Bailey, & Zhou, 2013). Therefore, the pre-existing knowledge about whole numbers is 

not as easily applicable to fractions and requires some form of conceptual change (Ni 

& Zhou, 2005). Undoubtedly, fractions pose severe difficulties for both learners and 

teachers (Newton, 2008; Post, Harel, Behr, & Lesh, 1991; Reyna & Brainerd, 2008; 

Stigler, Givvin, & Thompson, 2010). Two divergent hypotheses that explain possible 

reasons for fraction difficulties exist. On the one hand, researchers claim that problems 

with fraction learning exist due to their incompatibility with the core human 

neurocognitive systems (Gallistel & Gelman, 1992; Feigenson, Dehaene, & Spelke, 

2004; Ni & Zhou, 2005). On the other hand, recent evidence suggests the presence 

of neurocognitive architectures (the Ratio Processing System) that are specifically 

suited for supporting fractions and relational magnitudes (Lewis, Matthews, & 

Hubbard, 2016). The authors of the latter account claim the pervasive difficulties with 

fraction learning to arise as a result of ineffective teaching methods that do not 
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leverage the pre-existing abilities. To provide evidence for this relatively novel account, 

in this thesis, we tested the hypothesis for the presence of a Ratio Processing System 

in individuals with varying levels of mathematics abilities. We also examined for a 

neural basis of this system in adults using functional magnetic resonance imaging. 

While the abovementioned part focuses on exploring the neurocognitive bases of 

fraction representation and processing, a more practical, on-ground work of this thesis 

involves investigating the effectiveness of a game-based intervention on fraction 

learning of fifth-graders. Particularly, the game, Math Mathews Fractions 

(https://kiupe.com/games/math-mathews-fractions-en/) focuses on the multifaceted, 

complex representations of fractions and aims to provide support to teachers during 

fraction instruction. Thus, in a pre-registered randomized controlled study, we 

investigate whether Math Mathews Fractions may serve as a useful tool to enhance 

students' fraction knowledge. 

Therefore, the thesis is divided into three introductory chapters that review the 

literature on the current knowledge about fraction representation and learning. The 

thesis begins with the what and why of fractions. The first chapter describes the 

construct of fractions and some of the major difficulties reported in the literature. The 

second chapter puts forward the two major accounts that hypothesize the reasons for 

difficulties in fraction learning. Here, we also provide emerging evidence in support of 

the RPS theory and its hypothesized role in fraction learning. The third chapter reviews 

the potential role of game-based learning in supporting fraction understanding. These 

three chapters are then followed by the experimental part which includes three studies. 

Study I, presented in chapter 4, uses a match-to-sample paradigm to investigate the 

existence of the RPS and its role in symbolic fraction processing. Chapter 5 includes 

Study II that examines the neural bases of the RPS. In this study, we test whether the 

https://kiupe.com/games/math-mathews-fractions-en/
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culturally developed ability to represent numbers and fractions relies on the neural 

representations of lines and line ratios respectively. Lastly, in efforts to understand the 

role of game-based learning in supporting fraction instruction, Study III uses a pre-

registered randomized controlled design to assess the effectiveness of Math Mathews 

Fractions on fraction learning outcomes of fifth-graders. The thesis concludes with a 

general discussion that speculates on the wider scope of the experimental results on 

fraction understanding and learning. In this section, we also comment on the potential 

role of the RPS in symbolic fraction understanding and recommend future research 

directions that could potentially explore the links between the Ratio Processing 

System, Math Mathews Fractions, and fraction instruction in the classroom.  
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CHAPTER I  

FRACTIONS: THE WHAT AND WHY? 

“Covid-19 is less fatal than the seasonal flu” was a key narrative in the United 

States and some other parts of the world around March 2020. This fallacious belief 

may have stemmed from a basic lack of rational number knowledge, specifically 

fractions (Thompson et al., 2021). While the number of people infected with Covid-19 

worldwide was far less than the seasonal flu, the trend for the number of deaths was 

inverse (Mielicki et al., 2021). The relation between these two data points was difficult 

for many to decipher (e.g. case fatality rate, infection rate, etc). The case fatality rate 

(CFR), used as a measure to test disease severity, is calculated by dividing the total 

number of deaths by the total number of cases during a definite period multiplied by 

100 (WHO, 2020; Rajgor et al., 2020). While the estimates are variable due to the 

ongoing pandemic, the case fatality rate was much higher for Covid-19 (2.1 %) as 

compared to the seasonal flu (0.1 %) (Rajgor et al., 2020; Piroth et al., 2021). Most 

people, however, focused exclusively on either the total number of cases or the 

number of deaths but not their relational magnitude (CFR), which led many to 

disregard critical health guidelines. This is just one example of how fraction knowledge 

taught at the middle school level is extremely crucial for making informed health 

choices in society. Additionally, from a practical perspective, fraction knowledge is 

important for making sound financial decisions and laying the foundation for careers 

in science, technology, engineering, and mathematics (Lortie-Forgues, Tian, & 

Siegler, 2015). From an educational perspective, fractions form a central part of the 

mathematics curriculum at the middle school level and are the basic building blocks 

for algebra and calculus (Bailey, Hoard, Nugent, & Geary, 2012; Booth & Newton, 
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2012). Indeed, a large-scale, longitudinal study on a nationally representative 

population in both the USA and UK revealed fifth grader's fraction knowledge to predict 

their high school mathematics achievement and algebra skills even after controlling 

for IQ, reading, working memory, and whole number knowledge (Siegler et al., 2012). 

Though fraction instruction begins early in school, individuals continue to struggle with 

fractions throughout life (Stigler, Givvin, & Thompson, 2010; Van Hoof, Lijnen, 

Verschaffel, & Van Dooren, 2013). This chapter delves deeper into what exactly 

fractions are, the different ways in which they can be represented, and the difficulties 

associated with fraction understanding in both children and adults. 

1.1 What is a Fraction? 

1.1.1 The terminology 

The term fraction is derived from the Latin word frangere which means ‘to break’ 

and is most often associated with the ‘part of a whole’ or ‘equal number of parts’ 

concept. Precisely, a fraction is a notation of a rational number, where the rational 

number is defined as a number to the solution of an equation, 𝑏 × 𝑥 = 𝑎, where a and 

b are integers and b can be any non-zero quantity. Thus, fraction notation refers to a 

three-part notation (the numerator, the denominator, and the line that separates the 

two) for writing any real number. In this particular notation 
𝑎𝑏, a and b are real numbers 

and b is non-zero. Thus, all rational numbers can be written in the fraction notation 

(called specifically fraction). However, not every fraction notation represents a rational 

number. For example, 
√22  is an irrational number (Lamon, 2012). Despite this 

conceptual distinction, the terminology used in mathematics education has not been 

quite consistent. Several researchers use different terms such as ‘rational numbers’, 

‘fractional numbers’, and ‘fraction symbols’ interchangeably (Payne, 1976; Kieren, 
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1995). To add to the complexity, rational numbers and fractions have also been used 

interchangeably in elementary schools (Lamon, 2012). This interchangeable 

terminology made the already difficult concept of fractions more complex. Therefore, 

researchers in the past stressed the need to clearly define the term ‘fraction’ and its 

meaning (Lamon, 2012). Simply put, ‘fractions’ can now be interpreted in a three-fold 

manner; as the bipartite structure or fractional notation, as a positive rational number 

(Lamon, 2007; 2012), and as a broader fraction concept (Kieren, 1976; Behr et al., 

1993). While the original terminology of fractions focuses on the bipartite notation, 

particularly the part-whole concept, the fraction concept is a broad, multifaceted 

construct.  

1.1.2 The construct 

The holistic framework used to understand the broad concept of fractions was 

conceptualized independently by Kieren, Vergnaud, and Freudenthal in the ’70s and 

’80s. They recognized the different ways in which the fraction concept could be 

interpreted. Kieren (1976) developed the theoretical framework that included multiple, 

inter-related sub-constructs such as the ratio, the operator, the quotient, and the 

measure. During the same period, Vergnaud (1983) and Freudenthal (1983) also 

proposed similar aspects to fraction concepts focussing on the multiplicative relations 

and partitioning scheme respectively. Acknowledging the complexity of fractions, 

Freudenthal (1983) further notes, “In spite of the many-sided classification and the 

wealth of possible examples, the approach to fractions from the point of view of “part-

whole” is much too restricted not only phenomenologically but also mathematically” 

(Freudenthal, 1983, p. 144). Kieren (1976) also emphasized that a good 

comprehension of fraction concepts requires an understanding of all the sub-

constructs and their inter-relatedness. While Kieren’s theoretical model is the most 
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widely accepted framework (Behr et al., 1983; Charalambous & Pitta-Pantazi, 2007; 

Tsai & Li, 2017), it is not the only way to understand the construct of fraction. For 

instance, Hecht and colleagues (2003) considered the part-whole and measurement 

interpretation to be meaningful for conceptual fraction knowledge. Another framework 

focuses on the alternate notations of decimals and fractions and the way they capture 

continuous and discrete entities (Rapp et al., 2015). In this framework, fraction best 

represents countable discrete objects (6/8 of the balls are blue) such that the ratio 

formed between the two sets of integers; the numerator and the denominator capture 

the value of the object. On the other hand, decimal is better at capturing the 

uncountable, continuous entities (i.e. easier to understand 0.4 feet than 2/5 of a foot). 

So, fraction represents a two-dimensional relation (a/b) whereas decimal is a one-

dimensional magnitude (a/b = c) (Rapp et al., 2015). Thus, the abovementioned 

literature reveals the multiple ways in which the construct fraction and its associated 

framework are conceived. While no particular framework on the interpretation of 

fractions is universal, Kieren’s model captures the complex, multifaceted concept of 

fractions and mostly includes all the other frameworks. Therefore, to further 

comprehend the complexity associated with each of the different subconstructs of 

fractions, Kieren’s theoretical model will be discussed in detail. 

1.1.2.1 The Five Subconstructs of Fractions  

Earlier conceptions of the model included the four subconstructs: measure, 

ratio, quotient, and operator where the part-whole concept was implied to be 

embedded in each of the subconstructs (Kieren, 1976). Later, Behr and colleagues 

(1983) developed this model by including the part-whole concept as a distinct sub-

construct. They further expanded the model by connecting the different interpretations 

of fractions to the basic operations like equivalence, multiplication, addition, and 
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problem solving (Figure 1). The following sub-sections describe the different 

subconstructs of fractions and their importance in understanding the broader construct 

of fraction concepts. 

 

Figure 1: The different subconstructs of fraction and their inter-relationships (Figure from 

Charalambous & Pitta-Pantazi, 2007) 

1.1.2.1.1 Part-Whole / Partitioning  

The part-whole subconstruct of fractions is based on the partitioning scheme 

where the learner has to partition a continuous or discrete quantity into equal-sized 

parts or sets (Behr et al., 1983; Lamon, 1999). Here, the learner needs to develop 

mastery of partitioning the total number of parts or the whole into equal-sized parts. 

Also, it is important to understand the relationship between the parts and the whole 

such that (a) the more parts the whole is divided into the smaller the size of individual 

parts become (b) the parts are components of the whole and must exhaust the whole 

(Lamon 1999; Charalambous & Pitta-Pantazi, 2007). Failure to understand this 

relationship leads to misconceptions when counting the parts. For instance, students’ 

misidentified the fraction 2/3 as 2/5 as they counted the parts twice, once for the 

numerator and another time for the denominator (Charalambous & Pitta-Pantazi, 
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2007). Despite the first concept to be introduced to students to explain fractions (Fuchs 

et al., 2013), the part-whole concept is found to be challenging for learners across a 

wide range of age groups (Ciosek & Samborska, 2016).  

1.1.2.1.2 Ratio 

The ratio subconstruct of a fraction is the comparative relationship between two 

quantities (a numerator and a denominator) that elucidates the notion of a relative 

magnitude (Behr et al., 1983; Kieren, 1993). Here, the learners must understand the 

covariance-invariance property of ratios which means that the two quantities must 

change together such that the relationship remains invariant (Charalambous & Pitta-

Pantazi, 2007). For instance, if the ratio is one-half, then the numerator ‘2’ and the 

denominator ‘4’ of a fraction (24) both have to change together (
48) to maintain the 

relative magnitude as one-half. In other words, the proportional relation between the 

numerator and the denominator will hold the ratio constant, i.e. a change in the 

numerator will lead to an expected change in the denominator (Charalambous & Pitta-

Pantazi, 2007; Marshall, 1993). Thus, this subconstruct plays a critical role in building 

a better understanding of the concept of equivalence (Kieren, 1976; Marshall, 1993). 

Its importance is also emphasized in later mathematical concepts such as calculus 

(Tsai & Li, 2017). Recently, it has also been shown to play a key role in building an 

intuitive understanding of fractions (Lewis, Matthew, & Hubbard, 2016). The ratio 

subconstruct is an important part of this thesis and will be present in study I and II. 

1.1.2.1.3 Quotient 

This interpretation refers to the way the notation of the fraction 
𝑎𝑏  can be seen 

as a mathematical operation of division (a ÷ b) (Kieren, 1993). Unlike the part-whole 
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subconstruct, this subconstruct has no constraint on the size of the numerator. Thus, 

the quantity that results from equal partitioning or division can be less, equal, or greater 

than the whole unit (Streefland, 1993). Thus, it can help students understand that 

fraction magnitude can be both greater and smaller than 1 (Charalambous & Pitta-

Pantazi, 2007). For the understanding of this particular subconstruct learners need to 

understand the concepts of division, particularly the roles of the dividend and the 

divisor (Kieren, 1993). So, the quotient subconstruct can also be thought of as a 

process that begins with two entities; the numerator (divisor) and the denominator 

(dividend), and results in a single quantity through partitive or quantitative division (e.g. 84  = 8 ÷ 4 = 2) (Behr et al., 1993). Another interpretation of quotient could be a number 

such that 
𝑎𝑏 when multiplied by ‘b’ results in ‘a’. Thus, the quotient subconstruct aids 

students in both the understanding of the whole number operation as well as its 

connection with the fraction concept. In fact, prior studies have shown proficiency in 

division tasks to support student’s fraction understanding (Siegler & Pyke, 2013; Ye et 

al., 2016).  

1.1.2.1.4 Operator 

Another one of the five subconstructs of fractions, the operator works as an 

operation or function that is to be performed on a number or sets of objects (Behr et 

al, 1993; Kieren, 1976; Tsai & Li, 2017). To master the concept of the operator, 

students should be able to understand the different ways in which the operator could 

function (e.g. 2/4 can be 2 x [¼ of a unit] or ¼ x 2 units) (Charalambous & Pitta-Pantazi, 

2007). An example of a question that includes the operator concept could be where a 

student is asked to solve 
34  of 12 meters. Here, the operator first stretches the original 

quantity and then shrinks it (e.g. 
34  of 12 is stretched to-12 multiplied by 3 which is 36, 
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then divided by 4 which shrinks to- 9) (Behr et al., 1993). This example shows how a 

sound understanding of the operator concept can help comprehend the concept of 

fraction multiplication (Behr et al., 1993). 

1.1.2.1.5  Measure 

This subconstruct is particularly used with the number lines where the unit 

fraction is used to determine the distance from a starting point (Lamon, 2001). It also 

contains two interpretations; first, the fraction holds an inherent magnitude (Siegler et 

al., 2011) and second, the fraction can be used as a measure such as a distance or a 

size (Charalambous & Pitta-Pantazi, 2007). Here, the unit fraction can be used to 

repeatedly measure the distance between a certain point from the starting point (Behr 

et al., 1993; Marshall, 1993). A graphical representation of the measure subconstruct 

is shown in Figure 2. Additionally, the iteration of unit fractions can be used to 

understand the concept of improper fractions (e.g. iteration of 1/4 can result in 2/4, 

3/4, 4/4, 5/4, 6/4, and so on). The measure concept also aids in building an 

understanding of the property of density of rational numbers (Behr et al., 1993; 

Pitkethly & Hunting, 1996). This property is novel and complex for students who have 

learned the counting sequence in the past as it implies an infinite number of fractions 

exist between any two fractions (Lamon, 1999). To develop a comprehensive 

understanding of the measure construct of fractions, the student should be able to 

locate the fraction on the number line as well as identify it on a specific point on the 

number line (Smith, 2002). Intervention studies also show that practicing number line 

tasks may lead to improved knowledge of fractions (Barbieri et al., 2019; Fuchs et al., 

2016; Saxe et al., 2013).  
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Figure 2: Graphical representation of the measure subconstruct of fraction showing a 

whole partitioned into 4 equal parts and ¾ is measuring 3 units of size ¼ (Figure from Tsai 

& Li, 2017). 

Conclusively, the above-mentioned five subconstructs focus on the different 

properties of fractions that are required to attain mastery in this domain. Each 

subconstruct is required for a holistic understanding of fractions (Pitkethly & Hunting, 

1996; Tsai & Li., 2017). However, curriculum and pedagogy worldwide have focussed 

disproportionately on the part-whole concept (Behr, Lesh, Post, & Silver, 1983; NMAP, 

2008; Fuchs et al., 2013). Predictably, fractions are difficult to learn and mathematics 

educators and researchers worldwide have noted a pervasive lack of fraction 

understanding among students (Chan, Leu, & Chen, 2007; Ni, 2001; Yoshida & 

Sawano, 2002). Nonetheless, the disproportionate focus on the subconstructs of 

fractions is just one of the many reasons for difficulties encountered during fraction 

learning. In the section below, we will describe some reasons for the difficulties 

associated with fraction understanding. 

1.2 Why are Fractions Difficult? 

Several researchers and educators have examined why children and adults 

struggle to learn fractions (Hiebert, 1985; Mack, 1995; Ni & Zhou, 2005; Pitkethly & 
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Hunting, 1996; Behr et al., 1983; Lortie-Forgues et al., 2015). Three main reasons that 

contribute to fraction difficulties are discussed below. 

1.2.1 Multiple subconstructs of fractions 

As mentioned above, fractions comprise multiple subconstructs or 

interpretations. These subconstructs are required to build a coherent understanding 

of fractions (Behr et al., 1983). For instance, the part-whole subconstruct helps 

understand the concept of equipartitioning, the measure subconstruct focuses on the 

property of density of rational numbers, the operator interpretation aids in fraction 

multiplication, and the ratio builds the foundation for fraction equivalence 

(Charalambous & Pitta-Pantazi, 2007). Over-reliance on any one subconstruct leads 

to constraints on understanding fractions (Kieren, 1993). For example, a 

disproportionate focus on the part-whole construct in schools may lead to difficulties 

in understanding improper fractions, but also to difficulties in grasping properties of 

equivalence, infinite rational numbers between any two natural numbers, and fair 

shares (Misquitta, 2011). Therefore, proficiency in fraction knowledge requires 

developing a balanced understanding of all the subconstructs and their inter-

relationships. 

1.2.2 The natural-number bias 

Both natural numbers and rational numbers can be placed and ordered on a 

number line by the virtue of their inherent property of magnitude (Siegler & Lortie-

Forgues, 2017). However, they differ widely in other properties (Figure 3). While 

natural numbers can be counted, have predecessors and successors, and unique 

symbols (e.g. 7), between any two fractions there is an infinite number of other 

numbers and infinite ways to represent the same magnitude (e.g.  ½ = 2/4 = 0.5) 
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(Obersteiner et al., 2019). Natural number schemes can therefore be inhibiting when 

it comes to generating new fraction knowledge (Pitkethly & Hunting, 1996). Indeed, 

research indicates children’s prior whole number knowledge impedes the acquisition 

of fraction concepts (Gallistel & Gelman, 1992). The phenomenon, known as the 

whole-number/ natural number bias1, often leads to errors in problems that require 

holistic processing of fractions (Ni, 2001; Ni & Zhou, 2005; Vamvakoussi et al., 2012; 

Van Hoof et al., 2013).  

Additionally, the bipartite structure of fractions (two natural numbers separated 

by a horizontal line, 
𝑎𝑏) adds to the complexity of learning overall fraction magnitudes 

(Hiebert, 1985). It often leads learners to overly rely on fraction components (a- 

numerator and b- denominator) to estimate fraction magnitudes. Fraction notation is 

difficult to process and even though learning occurs gradually, it requires more 

cognitive resources such as working memory when solving a fraction problem (23/66 

+ 34/78) than a whole number problem (78 + 67) (Hecht & Vagi, 2010). During the 

early stages of fraction learning, children often misconceive a fraction as familiar 

distinct whole numbers or arithmetic operations (e.g. 2/3 as 2 and 3 or 2+3) (Hartnett 

& Gelman, 1998). Thus, the physical notation of fractions also contributes to the 

natural-number bias. 

Further, the erroneous assumption that properties of natural numbers are 

similar to that of fractions causes difficulties when processing fraction arithmetic 

(Siegler, Fazio, Bailey, & Zhou, 2013). For instance, when 13-year-old students are 

asked to solve the addition problem 12/13 +7/8, most of them choose 19 or 21. This 

                                            

1 Both terms have been used to describe the phenomenon. 
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indicates that they have summed either the numerator or the denominator 

respectively, instead of approximating the overall magnitude (Carpenter et al., 1980; 

Lortie-Forgues et al., 2015). Response patterns on a fraction magnitude comparison 

task, where participants are asked to judge the relative fraction magnitudes (e.g. is 7/9 

more or less than 2/8), also indicates that sometimes participants rely on the 

components of fraction rather than the overall magnitude of the fraction (Dewolf, 

Grounds, Bassok, & Holyoak, 2014; Schneider & Siegler, 2010). In another study, 

community college students also showed the natural number bias by adding 

numerators and denominators separately across the fractions (e.g. 1/2 + 2/3 = 3/5) 

(Stigler et al., 2010). The natural number bias is not only restricted to children but is 

also observed in adults, even expert mathematicians (Meert, Gregoire, & Noel, 2010; 

DeWolf & Vosniadou, 2015; Vamvakoussi, Van Dooren, & Verschaffel, 2012; 

Obersteiner et al., 2013). Therefore, successful learning of fractions demands an 

understanding of the different properties of fractions and natural numbers and 

inhibition of the ‘intuitive’ natural number bias when processing fractions (Van Hoof, 

Verschaffel, De Neys, Van Dooren, 2020). 
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Figure 3: Differences between the properties of natural numbers and fractions (Figure 

from Obersteiner et al., 2019). 

1.2.3 Varied and distinct fraction arithmetic procedures 

The importance of fraction arithmetic extends beyond mathematics 

achievement to other domains such as physics, chemistry, statistics, economics, and 

many more (Lortie-Forgues, Tian, & Siegler, 2015). It further extends to daily skills 

such as banking, baking, and medical dosage calculation. The concepts required to 

master fraction arithmetic are complex and ambiguous. For instance, both fraction 

addition and subtraction require equal denominators but this is not the case for fraction 

multiplication and division. Further, fraction division is a procedurally complex two-step 

process that requires the inversion of the denominator and multiplication of the 

fractions (e.g. 3/6 ÷ 4/8 = 3/6 x 8/4 = 24/24). Thus, the number of distinct procedures 

required to master fraction arithmetic is far more than what elementary students have 

ever encountered before (Lortie-Forgues, Tian, & Siegler, 2015). 
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A prior study on 6th and 8th graders recruited from three public school districts 

in the US noted a success rate of only 41% and 57% on fraction arithmetic problems 

(Siegler & Pyke, 2013). Further, these students showed better performance on fraction 

addition and subtraction problems (60 and 68% correct respectively) as compared to 

fraction multiplication and division (48% and 20% correct respectively). In general, 

students and adults are also less accurate on fraction multiplication and division 

problems than fraction addition and subtraction (Givvin et al., 2011; Stigler et al., 2010; 

Braithwaite et al., 2017; Siegler & Lortie-Forgues, 2017).  

A variety of factors contribute to these statistics. A limited understanding of 

fraction arithmetic procedures by teachers, rote memorization of procedures by 

students, minimal practice and instruction on fraction division, and limited conceptual 

understanding are some of the factors that exacerbate students’ difficulties with 

fraction arithmetic (Lortie-Forgues, Tian, & Siegler, 2015). Thus, mastery of fraction 

arithmetic entails a multi-pronged approach that builds a strong conceptual 

understanding of fraction magnitudes, that explicitly focuses on the variety of 

procedures, and involves a thorough and balanced practice of all types of fraction 

arithmetic problems.  

1.3 Summary 

Learning and teaching fractions is undeniably challenging. The initial 

conceptualization of number theory by children that focuses on the counting sequence 

results in resistance to learning fractions (Lamon, 1999). This resistance leads to 

misconceptions in fraction concepts for many adults. Thus, a reconceptualization of 

number theory is a prerequisite for building proficiency in rational number knowledge 

(Stafylidou and Vosniadou, 2004). The current chapter highlighted some studies that 
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examined the source of fraction difficulties in children and adults. The forthcoming 

chapters will shed light on the neurocognitive correlates of fraction understanding and 

recent game-based interventions to overcome the struggles associated with fraction 

learning. 
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CHAPTER II  

THE NEUROCOGNITIVE BASIS OF FRACTION LEARNING 

“Intuition is important to build mathematical knowledge” 

- Beth & Piaget 1966 

Human cognition is postulated to be built on specific innate intuitions, also 

known as the core systems of knowledge2(Spelke, 2000; Spelke & Kinzler, 2007). The 

core systems of knowledge, namely, object representation, agent and goal-directed 

action, the geometry of the environment, and, the number representations3 support 

evolutionarily relevant functions in most species (Spelke, 2004; Spelke & Kinzler, 

2007). Present from infancy, these systems serve as foundational blocks for building 

complex knowledge systems required to advance human cognitive development 

(Spelke & Kinzler, 2007). Specifically, the number sense, or the ability to perceive 

numerical quantity, found in animals, pre-verbal infants, and human adults (Dehaene, 

1997, 2001; Nieder, 2019; but see: Leibovich et al., 2017; Wilkey & Ansari, 2019) is 

hypothesized to support the development of symbolic number knowledge in humans 

(Bailey, Hoard, Nugent, & Geary, 2012; Dehaene & Cohen, 2007; Feigenson et al., 

2004; Gallistel & Gelman, 1992; Piazza, 2010; Neider, 2005, 2017; for a review see 

De Smedt, Noel, Gilmore, & Ansari, 2013). While these systems help guide the 

acquisition of new knowledge, they can also pose limitations and constraints when the 

                                            

2Developmental theories find their roots in Nativist (Kant, Chomsky), Constructionist (Piaget), and/or 
Empiricist (Skinner) approaches. In addition to the core knowledge theory mentioned above, some other 
cognitive development theories include connectionism, theory theory, modularity, and dynamic systems 
theory (detailed review in Newcombe, 2013). 
3 A fifth core system for social interactions has also been proposed (Spelke & Kinzler, 2007). 
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new knowledge violates the principles of the core system (Geary, 2006). Proponents 

of this view, the Innate Constraint account, argue that pervasive difficulties in fraction 

learning may stem from the inability of the core systems to represent and process 

relational quantities, mainly because these systems are exclusively evolved to deal 

with discrete numerosities (Bonato et al., 2007; Dehaene, 1997; Gallistel & Gelman, 

1992; Geary, 2007; Piazza, 2010). Contrarily, the Cognitive Primitive approach posits 

the presence of core perceptual systems or intuitions that are tuned to process 

relational quantities (Lewis, Matthews, & Hubbard, 2016; Matthews & Ziols, 2019). 

Researchers supporting this account believe fraction difficulties arise as a result of 

teaching practices and curriculum that does not leverage the existing intuitive abilities 

to process ratios and proportions (Ni & Zhou, 2005; Lewis, Matthews, & Hubbard, 

2016). Thus, whether the human cognitive architecture can or cannot support 

fractional magnitudes remains elusive. This question has inspired a significant amount 

of work in this thesis and so the objective of the current chapter is to provide a review 

of the literature on the neural and behavioral correlates of fraction learning.  

1.1 Fraction Learning: Innate constraint or cognitive primitive? 

The question of why fractions are difficult to master is a matter of current debate 

(Lewis et al., 2015; Mohring et al., 2016). Two contrasting accounts have been 

proposed, namely, the innate constraint and the cognitive primitive approach. The 

innate constraint account is supported by two main sources of evidence (Ni & Zhou, 

2005). First, there are severe and pervasive difficulties encountered by individuals 

globally when learning fractions and rational numbers (Bialystok & Codd, 2000; Chan, 

Leu, & Chen, 2007; Hartnett & Gelman, 1998; Ni, 2001; Yoshida & Sawano, 2002), 

and second, there is an observed early competence with discrete quantities in animals 

and human infants (Brannon & Terrace, 1998; Cantlon & Brannon, 2006; Dehaene, 
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1992, 1997; Koechlin, Dehaene, & Mehler, 1997; Starkey, Spelke, & Gelman, 1990). 

Dehaene (2011) captures this account cogently in his book: 

I would like to suggest that these mathematical entities (negative integers, 

irrational numbers, and fractions except ½ and 1/4) are so difficult for us to accept, 

and so defy intuition, because they do not correspond to any pre-existing category in 

our brain. To function in an intuitive mode, our brain needs images- and as far as 

number theory is concerned, evolution has endowed us with an intuitive picture only 

of positive integers (p. 76). 

According to the innate constraint theorists, neurocognitive architecture is 

endowed with an innate ability to process only discrete magnitudes (Gallistel & 

Gelman 1992; Wynn 1992). One of the core systems that support this ability is known 

as the Approximate Number System (ANS)4, which estimates the non-symbolic 

quantities approximately (Dehaene, 1997). The ANS is shown to be present in many 

animal species, including rats, pigeons, monkeys, chimpanzees (Agrillo et al., 2011; 

Beran, 2001; Dehaene, Dehaene-Lambertz, & Cohen, 1998a; Ditz & Nieder, 2015; 

Nieder et al., 2002; Scarf, Hayne, & Colombo, 2011; Xia, Emmerton, Siemann, & 

Delius, 2001; for a review see: Boysen & Capaldi, 1993 and Nieder, 2019). Studies 

also suggest that human infants possess an ANS. For instance, a seminal study using 

the habituation paradigm on five to six-month-old infants showed that infants who were 

habituated to two dots looked longer at displays containing three dots, and vice versa 

(Starkey & Cooper, 1980), thus indicating that infants can discriminate between these 

two non-symbolic quantities (Hyde & Spelke, 2011; Wood & Spelke, 2005; Xu & 

                                            

4 The other system, the object tracking system (OTS) which is relatively more precise but only for 
processing smaller number of items (about one to four) (Dehaene, 2011; Nieder, 2019). 
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Arriaga, 2007). Crucially, this innate ability to represent magnitudes mentally is 

approximate, imprecise, and follows Weber’s law (Halberda, 2011). First discovered 

for the sensation of weights, Weber’s law is found to apply to other sensory intensities 

and importantly to numerical discrimination (Weber, 1850; Moyer & Landauer, 1967). 

Weber’s Law for numerical discrimination refers to the ability to discriminate 

numerosities as a function of their ratio, i.e., as the ratio between the numerosities 

increases so does the ease of discriminability (Halberda, 2011). In other words, 

Weber’s law captures both the distance (e.g., 2 and 6 is easier to compare than 2 and 

3) and the size effects (e.g., 10 and 14 is easier to discriminate than 40 and 44). The 

precision with which the infants can discriminate between the numerical stimuli (i.e., 

Weber fraction) improves with age (Figure 4). While newborns can discriminate 

numerosity arrays with a 1:3 ratio, six-month-old infants can discriminate 1:2 and ten-

month-old infants can discriminate a 2:3 ratio (Lipton & Spelke, 2003; Wood & Spelke, 

2005; Xu & Arriaga, 2007). An infant's ability to perceive numerical stimuli in the 

environment is not only limited to perceptual discrimination between numerosities but 

also extends to rudimentary arithmetic calculations like addition and subtraction 

(Wynn, 1992, 2004). 
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Figure 4: Figure depicting the developmental change in the estimated Weber fraction for 

each age group from different models (decreasing Weber fraction = increase of ANS 

acuity) (Figure from Halberda & Feigenson, 2008) 

Studies comparing children’s ease to acquire whole number skills as compared 

to rational numbers further add to the argument for the innate constraint account. For 

example, several studies have shown that the whole number strategy exerts a strong 

and persistent interference during fraction learning (Mack, 1995; Ni, 2001; Streefland, 

1993; Zhang, Fang, Gabriel, & Szücs, 2014), also known as the whole-number bias 

(this was discussed in detail in Chapter I). These studies support the idea that the 

innate mechanisms responsible for supporting the representation of discrete quantities 

interfere and impede the acquisition of fraction and rational numbers (Feigenson, 

Dehaene, & Spelke, 2004).  

In his evolutionary theory, Geary (2006) also proposed a distinction between 

whole numbers and rational numbers. Specifically, while whole numbers were 

proposed to be biologically primary, fractions and other number types were considered 

to be biologically secondary, indicating that a lack of innate ability might be the reason 
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for the difficulty in acquiring fraction concepts (Siegler, Thompson, & Schneider, 2011). 

The innate constraint proponents suggest that “when humans push number 

representations further to embrace fractions, square roots, negative numbers, and 

complex numbers, they move even further from the intuitive sense of number provided 

by the core systems.” (Feigenson et al., 2004, p. 313). Therefore, theorists of this 

account suggest that the innate mechanisms assumed to help children learn discrete 

number concepts are not designed to deal with a relative, continuous quantities and 

so acquiring fraction and rational number concepts is challenging. However, evidence 

from animal and infant studies that show discrimination for discrete numerosities 

(Brannon & Terrace, 1998; Cantlon & Brannon, 2006; Dehaene, 1992, 1997; Koechlin, 

Dehaene, & Mehler, 1997; Starkey, Spelke, & Gelman, 1990) does not automatically 

suggest the absence to comprehend continuous, relational magnitudes. Unless 

proven, it is incorrect to assume the non-existence of mental representations for 

continuous numerosities.  

Indeed, emerging evidence from both animal and infant studies falsifies the 

proposal of the innate constraint account, which privileges discrete quantities. Some 

have even suggested perceptions of relative quantities to be more primitive than 

absolute, discrete quantities (Ni & Zhou, 2005), arguing for the number sense to 

represent rational numbers (Clarke & Beck, 2021). Recently, a similar system to the 

ANS, the ratio processing system (RPS) has been proposed (Lewis, Matthews, & 

Hubbard, 2016). Studies indicate that the RPS might be a phylogenetically ancient 

system that processes non-symbolic ratios such as relative lengths of two lines or 

areas of two figures or dot arrays (Jacob, Vallentin, & Nieder, 2012; Matthews & 

Chesney, 2015). According to the cognitive primitive hypothesis, the RPS might serve 

as a neurocognitive startup tool (Piazza, 2010) to build robust fraction knowledge 
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(Lewis et al., 2016). Following the relation between ANS and symbolic math 

achievement (Chen & Li, 2014; Bugden et al., 2016; Piazza et al., 2004; for contrary 

views Reynvoet & Sasanguie, 2016, Leibovich et al., 2017), proponents of the RPS 

believe that leveraging this innate perceptual sensitivity can help develop a better 

understanding of symbolic fraction magnitudes. Since a major part of this thesis 

involves exploring the behavioral and neural correlates of the RPS, the following 

sections will provide a detailed account of the literature so far. 

1.2 The Ratio Processing System and the Neurocognitive Correlates of 

Fraction Learning 

Recent evidence suggests the presence of a perceptual-cognitive system for 

processing relational non-symbolic magnitudes. Indeed, perceptual sensitivity to non-

symbolic relational magnitudes has been shown in non-human primates (Drucker et 

al., 2016; Eckert et al., 2018; Tecwyn et al., 2017; Vallentin & Nieder, 2008, 2010; 

Woodruff & Premack, 1981), infants (Denison & Xu, 2014; McCrink & Wynn., 2007), 

school-aged children (Bhatia et al., 2020; Boyer, Levine, & Huttenlocher, 2008; Meert, 

Grégoire, Seron, & Noël, 2013; Sophian, 2000; Spinillo & Bryant, 1999; Szkudlarek & 

Brannon, 2021), and both typically achieving adults (Bhatia et al., 2020; Hollands & 

Dyre, 2000; Jacob & Nieder, 2009 a, b; Matthews & Chesney, 2015; Meert, Grégoire, 

Seron, & Noël, 2011) and adults with mathematics difficulties (Bhatia et al., 2020). This 

widespread ability to process non-symbolic relational magnitudes - among nonhuman 

animals and individuals with varying levels of mathematics skills – demonstrates the 

evidence for a long-standing ratio processing system (Jacob, Vallentin, & Nieder, 

2012). Focusing on both human and nonhuman animals, the next sections will 

highlight the important behavioral, neuroimaging, and neurophysiological experiments 

that reveal evidence for the RPS.  
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1.2.1 Behavioral experiments 

Assessing relational magnitudes provides animals the evolutionary advantage 

in behaviors like social interactions, hunting, and mating. For instance, estimating the 

ratio between the size of the opponent invader and their group helps determine female 

lions and chimpanzees whether or not to attack (McComb et al., 1994; Wilson et al., 

2002). Foraging behavior in ducks also shows preference to proportional magnitudes 

(Harper, 1982). Thus, the understanding of proportionality is required for key life skills. 

However, these behavioral patterns observed in field studies could very well be 

explained by low-level sensory processes. To this end, several controlled laboratory 

experiments have examined whether or not the ability to discriminate between ratios 

extends beyond these low-level sensory-driven processes.  

Using the operant conditioning paradigm, researchers trained pigeons to peck 

arrays that consisted of an equal number of blue and red dots (Honig & Stewart, 1989; 

Emmerton, 2001). The pigeons were also trained to learn that one specific color was 

not rewarded (e.g. blue). Thereafter, the birds were tested with different ratios of the 

two discrete dot colors. A similar experiment was also performed with continuous 

horizontal bars of colors (Emmerton, 2001). Results revealed that irrespective of the 

absolute number of dots, pigeons responded more frequently to arrays that contained 

a greater proportion of rewarded color (e.g. red). In another study, Vallentin & Nieder 

(2008) tested both monkeys and human adults on a proportion discrimination task 

(Figure 5). They presented a delayed match to sample task where target non-symbolic 

line proportions had to be matched with their correct match proportion (1:4, 2:4, 3:4, 

4:4). The presentation time was short to prevent calculation or verbalization of the 

stimuli by human adult participants. Also, the individual line lengths differed so that the 

participants could not rely on absolute line lengths. Results showed a similar level of 
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performance for both human adults and monkeys (Figure 5). These studies also 

revealed the signature for an analog magnitude representation, i.e., the distance effect 

(which reveals an abstract understanding of proportionality). 

 

Figure 5: A. Delayed match to sample task using line proportions. B. The average 

performance of 18 human adults and two monkeys on the task (Figure from Vallentin & 

Nieder, 2008) 

Similar to animals, pre-verbal infants have also shown sensitivity to 

proportionality. For instance, McCrink & Wynn, 2007 observed that five to six months 

old infants habituated to specific non-symbolic ratios looked longer at novel ratios 

(differing by a factor of two), indicating that infants as young as six months can process 

differences between non-symbolic ratios. By the age of four, children can also 

accurately perform addition and subtraction on non-symbolic part-whole 

representations of fractions (Mix, Levine, & Huttenlocher, 1999). Taken together, these 

A. 

B. 
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studies raise the possibility of an evolutionarily old system, the RPS, involved in 

processing non-symbolic relational magnitudes. It has also been argued that the RPS 

might provide a scaffold to build symbolic fraction knowledge in humans (Lewis, 

Matthews, & Hubbard, 2016). Indeed, in a recent study 85 first and second graders (~ 

6-8 years old) performed non-symbolic (dot arrays) and symbolic (numerals) ratio 

comparison tasks where they were asked to select the machine which would give them 

the best chance of giving a specific color (blue/white) of gumball. Practice trials were 

conducted to ensure that children did not rely on absolute numbers of gumballs. 

Results revealed an above-chance performance on both symbolic and non-symbolic 

ratio comparison tasks (Szkudlarek & Brannon, 2021). Importantly, the findings show 

that children who performed the non-symbolic ratio task first were much better at 

symbolic ratio reasoning than the other way around (Szkudlarek & Brannon, 2021). 

This result might indicate that the non-symbolic ratio reasoning provides a basis for 

symbolic ratio understanding.  

This idea of the RPS acting as a building block for symbolic relational 

magnitude understanding is also supported by other recent studies. For instance, 

individual differences in non-symbolic ratio processing have been shown to relate to 

individual differences in symbolic fraction processing in school-aged children 

(Möhring, Newcombe, Levine, & Frick, 2016) and adults (Matthews, Lewis, & Hubbard, 

2016). Further, when adults compare the magnitude of symbolic fractions as well as 

the magnitude of non-symbolic ratios (e.g., pairs of lines), their performance depends 

on the ratio between the magnitudes (i.e., a Ratio of Ratios, RoR) (Hurst & Cordes, 

2016; Matthews & Ziols, 2019) For example, participants are faster and more accurate 

at comparing symbolic fractions and non-symbolic ratios when the RoR is large (e.g., 

2/6 versus 1/9 = 3:1) than when it is small (e.g., 4/5 versus 2/3 = 6:5) (Hurst & Cordes, 
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2016). This effect – also observed with whole numbers – is generally thought to 

indicate that numerical magnitudes are ordered along a mental number line (Moyer & 

Landauer, 1967). Accordingly, representations of magnitudes are more difficult to 

distinguish when the distance between them decreases (i.e., a distance effect) and 

when the overall magnitude increases (i.e., a size effect). Another study has found 

that adults are faster at comparing symbolic fractions to non-symbolic fractions (i.e., a 

mixed-format comparison) than symbolic fractions to symbolic fractions (i.e., a within-

format comparison) (Matthews & Chesney, 2015), suggesting a shared magnitude 

code that might be accessed intuitively when performing mixed-format comparisons 

(Matthews & Chesney, 2015; Matthews, Chesney, & McNeil, 2014). Together, these 

studies provide important evidence for the presence of the RPS and support for the 

cognitive primitive approach.  

1.2.2 Neuroimaging experiments 

While much is known about the neural correlates of absolute magnitude, until 

recently there was no data on the neural representations of relative magnitudes. This 

lack of evidence might have contributed towards strengthening the innate constraint 

theorists’ account. Jacob & Nieder (2009a) were the first to conduct an fMRI study with 

human adults using an adaptation paradigm to explore the cortical areas responsible 

for processing non-symbolic ratios (line lengths and dot arrays). The adaptation 

paradigm (Grill-Spector and Malach, 2001) relies on the phenomenon of repetition-

suppression whereby repeated presentation of a particular stimulus leads to 

suppression in the neuronal activity (adaptation effect). Presentation of novel stimuli 

will then lead to an increase in neuronal activity (or recovery from the adapted state). 

In the study, adult participants were repeatedly presented with a specific non-symbolic 

ratio (e.g. 1:5) which led to a decrease in blood oxygen level-dependent (BOLD) 
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activity in the neuronal populations sensitive to that ratio. Presentation of close (2:5 

and 3:5) and far (5:5 and 4:5) deviants then activated a different neuronal population 

to recover from the adaptation with a stronger BOLD activity. Particularly, the 

adaptation effect was observed in the bilateral IPS, the precentral, and the prefrontal 

cortex. Additionally, the difference in the strength of BOLD activity was modulated by 

how far the novel stimulus ratio was from the adapted ratio. This distance effect was 

found to be invariant to changes in the representation of the stimuli (line ratios or dot 

arrays). Further, an overlap of the distance effect with that observed for only 

numerosities revealed that both absolute and relative magnitudes were processed by 

the same brain regions i.e. bilateral intra-parietal sulcus and the lateral prefrontal 

cortex (Jacob & Nieder, 2009a). Since this was a passive viewing paradigm, 

participants were not asked to perform any task (e.g. magnitude comparison), further 

supporting the idea that representation of non-symbolic proportions is implicit and 

automatic in the human brain. Rhesus monkeys trained on a delayed match to sample 

task (described above) with non-symbolic ratios also showed selective neural tuning 

for preferred ratios in the prefrontal and parietal regions (Vallentin & Nieder, 2010). 

Specific populations of neurons displayed the signature distance effect responses, i.e., 

neurons tuned to 1/4 activated more strongly in response to 1/4, less strongly for ratios 

closer in distance, and weakly for distant ratios. Therefore, these results indicate that 

both humans and monkeys demonstrate an abstract understanding of proportionality. 

Supporting the behavioral data discussed above, the abovementioned neuroimaging 

study along with the others discussed below hints at the possibility for the presence of 

the ratio processing system. 

Evidence for the use of an analog code for processing symbolic proportions 

comes from another study by Jacob & Nieder (2009 b). In this study, adults were 
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adapted to symbolic fractions (approximately 1:6) and then presented with deviants in 

two formats, fraction numerals (
424) and fraction words (one-half). Similar to non-

symbolic ratios, participants passively viewed symbolic fractions and showed an 

adaptation effect in the bilateral IPS. Importantly, the effect was independent of the 

notation of the deviants (numerals and words) (Figure 6). Therefore, the invariance to 

the notation of deviants and the observed distance effect in this cross-format notation 

hints at an amodal representation of magnitude (i.e. a mental number line; Siegler et 

al., 2011). Remarkably, another study on symbolic fractions reveals that the right IPS 

does not respond as a function of the distance between the components (numerator 

and denominator), but specifically gets modulated by the total distance between the 

fraction magnitudes (Ischebeck et al., 2010), indicating that the human brain does 

represent the real numerical value of the fractions. 

 

Figure 6: Functional MRI adaptation experiments for non-symbolic ratios and fractions A. 

Non-symbolic stimuli representing proportions in both line ratios and dot arrays. B. 

Overlapping brain regions for absolute (red: numerosity) and relative (blue: dot and line 

proportion) magnitudes C. In another experiment, participants were adapted to 1:6, and 
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deviants were presented in both numerals and fraction words D. Overlapping brain 

activation in the bilateral IPS and prefrontal cortex for both fraction notations (fraction 

numerals and fraction words) (Figures from Jacob & Nieder, 2009 a, b) 

While the evidence above suggests that both non-symbolic ratios and symbolic 

fractions are encoded holistically at the neural level and hint at the existence of the 

RPS, not much research exists on identifying a common neural substrate for relative 

magnitude processing (independent of the symbolic or non-symbolic format). To this 

end, Mock and colleagues (2018) designed a magnitude comparison task with both 

symbolic (fractions and decimals) and non-symbolic proportions (dot patterns and pie 

charts). Participants had to perform a timed magnitude comparison task in all four 

formats in the MRI scanner. The fractions were chosen specifically to avoid 

componential processing (i.e. participants could not rely on the numerical values of 

the numerator and/ or denominator alone to arrive at the correct answer e.g. 5/9 < 2/3, 

but 5 > 2 and 9 > 3). Therefore, the task aimed at eliciting the holistic magnitude of the 

fraction. Conjunction analysis revealed activations in the occipito-parietal network 

including the right IPS (Figure 7). Notwithstanding the relatively limited sample size (n 

= 24), this work provides the first evidence for a shared neural correlate for relative 

magnitude processing irrespective of the presentation format. 

Overall, the abovementioned behavioral and neuroimaging evidence hints at 

the presence of an evolutionarily ancient system for relative magnitudes, known as the 

RPS. While research is still in its infancy, if the proposition holds, RPS could be 

leveraged to help foster a deeper, intuitive understanding of symbolic fraction 

magnitudes (Lewis et al., 2016).  
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Figure 7: Joint activation of brain regions (red) for both symbolic and non-symbolic 

formats (e.g. fractions, decimals, dot patterns, pie charts) (Figure from Mock et al., 2018) 

1.3 Can the RPS help in developing an understanding of symbolic fractions? 

To inform fraction intervention and instruction, several questions on the RPS 

model of learning still need to be examined. For instance, some of the most compelling 

questions include (but are not limited to)- what is the developmental trajectory of the 

RPS? Where is the brain’s ratio processing system and how is it connected to other 

systems? At what age is the RPS most important in symbolic fraction instruction? How 

does formal education impact RPS acuity? What is the role of the RPS in mathematics 

learning difficulty? 

However, a preliminary hypothesis on how RPS can be leveraged to support 

fraction learning has been put forward by Lewis, Matthews, & Hubbard (2016). Given 

the pervasive difficulties in fraction learning, there is no doubt that conventional 

fraction instruction might not be as efficient. Indeed, as mentioned earlier a 

disproportionate focus on the partitioning construct (Pitkethly & Hunting, 1996; Siegler 

et al., 2010) leads students to overgeneralize the whole number strategies to fractions 

(Ni & Zhou, 2005). For instance, early fraction instruction often relies on children to 

identify the shaded fractions for which they count the number of shaded parts and the 

number of total parts. This count-based strategy could lead students to apply whole 



 

 37 

number schemas to fractions (Mack, 1995). According to the hypothesized model 

(Lewis et al., 2016), such instruction might not be able to take advantage of the innate 

capabilities of the RPS. Therefore, the authors emphasize fraction teaching that uses 

pie-charts and number lines (continuous, uncountable representations) that helps in 

the holistic magnitude understanding of fractions and aids in building the symbol-

percept links implicitly (Lewis et al., 2016). They argue for instruction that helps in 

building the symbol-percept links, or links between symbolic fractions and their non-

symbolic instantiations (e.g. line ratios, circle areas, etc) which can aid in an intuitive 

understanding of holistic fraction magnitudes. The importance of understanding the 

holistic magnitude of fractions has also been emphasized by Siegler and colleagues 

(2011) in their integrated theory of numerical development. Particularly, fraction 

magnitude knowledge is shown to predict proficiency in fraction arithmetic (Siegler et 

al., 2011) which further predicts success on high school mathematics concepts like 

algebra (Booth & Newton, 2012). Additionally, the RPS acuity might differ between 

individuals and future research on individual differences in RPS acuity and their 

relation to symbolic fraction knowledge might be able to provide a better understanding 

of the role of RPS in fraction learning.  

 

Figure 8: Conceptual model of the role of RPS in fraction learning (Figure from Lewis et 

al., 2016) 



 

 38 

 

1.4 Summary 

The notoriously difficult concept of fractions, interference by whole number 

strategies, and paucity of research on relative magnitudes might have led the innate 

constraint theorists to relegate fractions to a biologically secondary concept. On the 

contrary, emerging evidence has revealed specific cortical regions to be tuned to non-

symbolic ratios and symbolic fractions. Proponents of the cognitive primitive or the 

RPS theory believe that the challenges encountered during fraction learning arise from 

the current teaching methodologies that do not leverage the existing perceptual 

abilities (Ni & Zhou, 2005; Lewis, Matthews, & Hubbard, 2016). In their hypothesized 

model, Lewis and colleagues (2016) further suggest leveraging the RPS to improve 

fraction instruction in the classroom. They urge educational experiences to focus on 

building symbol-percept links to strengthen the pre-existing RPS abilities. Specifically, 

they support pedagogical practices that build connections between the non-symbolic 

(pie charts, number lines) and symbolic (fractions, decimals) formats and resist 

instructional practices that rely solely on counting and partitioning schemes that may 

activate the incompatible ANS structures. To shed light on the relatively novel RPS 

theory, Study I and II examined the presence of the RPS using both behavioral and 

neuroimaging methods. 
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CHAPTER III 

THE ROLE OF GAME-BASED LEARNING IN FRACTION UNDERSTANDING 

Play has long been acknowledged as an important tool for the cognitive 

development of children. Piaget (1962), for instance, describes play as an integral tool 

to build connections between prior knowledge and new information. Vygotsky (1980) 

considers play to create a zone of proximal development, or scaffolded learning, which 

helps children to comprehend and grasp complex content. Csikszentmihalyi (1990) 

also finds the state of flow5 during play to result in deeper engagement with the task 

and, thus, a deeper form of learning. Over the years, researchers and psychologists 

have studied the significance of play in learning (e.g., Gee 2003; Kafai and Ching 

1996; Malone 1981; Prensky 2001; Squire 2002). This has led national educational 

institutions and international organizations to recommend playful learning as part of 

the curriculum (ASER, 2020; NCTM, 2014; NMAP 2008; OECD, 2019). With 

technological advancement, the role of play has informed the principles of game-

based learning and hence, an increased interest in the adoption of serious video 

games in educational spaces (Plass, Homer, & Kinzer, 2015). Research on digital 

game-based learning has shown the potential for learning abstract concepts, 

supporting classroom instruction, and presenting content engagingly and innovatively 

(Al-Azawi, Al-Faliti, & Al-Blushi, 2016; Prensky, 2001). Despite their potential, some 

notable drawbacks of game-based learning include lack of acceptance by educators 

as educational tools, the difficulty of integration into formal schooling, and the lack of 

                                            

5 “a state in which people are so involved in an activity that nothing else seems to matter; the experience 
is so enjoyable that people will continue to do it even at great cost, for the sheer sake of doing it.” 
(Cskikszentmihalyi, 1990, p.4). 



 

 41 

transfer of knowledge gained in the game to the real world (Egenfeldt-Nielsen 2006; 

Ferdig 2007; Gros, 2015). The objective of this chapter, therefore, is to provide an 

overview of game-based learning in the domain of mathematics. The current 

landscape of education technology for fraction understanding will also be detailed in 

this chapter. Lastly, the design of the fraction game Math Mathews Fractions, which 

was designed in our laboratory by Prof. Marie-Line Gardes (my co-advisor on this 

thesis) and used in Study III, will be discussed in detail. 

1.1 Game-based Learning: Definition and Terminology 

To date, there is no consensus on the definition of game-based learning. This 

is mainly due to the variety of games that target different disciplines, learning design 

principles, and a wide variety of learning outcomes (skills, motivation, engagement, 

behavior, etc) (Boyle et al., 2016; Connolly et al., 2012). For instance, Salen & 

Zimmerman (2004) define it as “a system in which players engage in an artificial 

conflict, defined by rules, that results in a quantifiable outcome (p.5)”; Hays (2005) 

provides the following definition “game is an artificially constructed, competitive activity 

with a specific goal, a set of rules and constraints that is located in a specific context 

(p.15)”; Chen & Michael (2005) state “games that do not have entertainment, 

enjoyment or fun as their primary purpose”; and Van Eck (2015) defines it as “the use 

of games within an existing lesson, classroom, or other instructional contexts where 

the intent is at least as much to learn rather than to (exclusively) have fun (p. 144)”. 

Most definitions, therefore, focus on specific features of a game-based learning 

environment. These include quantifiable learning outcomes (Shaffer, Halverson, 

Squire, & Gee, 2005), the balance between content and play (Plass, Perlin, & 

Nordlinger, 2010), feedback (Prensky, 2001), and a set of rules and conflicts to engage 

the players (Salen & Zimmerman, 2004). While the debate on the definition of game-
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based learning is hard to reconcile (Plass, Homer, & Kinzer, 2015), the 

abovementioned features are necessary to consider when referring to or designing 

game-based learning environments. The games discussed in this chapter mostly 

include these features and so does the game that is designed in our lab (Math 

Mathews Fractions). 

Similar to the issues related to the definition of game-based learning, extensive 

debate exists around the usage of terminology. Some common terms include serious 

games, instructional games, learning games, game-based learning, and computer 

games (Boyle et al., 2016; Connolly et al., 2012; Hays, 2005; Tobias & Fletcher, 2012; 

Wouters & van Oostendorp, 2013). In educational research, the terms serious games, 

educational video games, and game-based learning (Boyle et al., 2016; Connolly et 

al., 2012) are most commonly used. Here, in this dissertation, the term game-based 

learning will be used to refer to all digital games intended for educational purposes (for 

both cognitive and affective outcomes). 

1.2 Game-based Learning in Mathematics Instruction 

While the use of game-based learning has gathered interest for improving 

learning outcomes across all disciplines, this trend is particularly strong for the domain 

of science and mathematics (Hainey et al., 2016). The use of technology for 

mathematics teaching and learning is strongly emphasized in many curricula (ASER, 

2020; NCTM, 2014). Mostly, this emphasis on game-based learning might have 

emerged due to outdated methods of teaching that are disproportionately focused on 

rote memorization of procedures and facts (Hoyles, 2016; Schoenfeld, 2004). This 

type of pedagogy is practiced in most mathematics classrooms in many countries 

(Albert & Kim, 2013; Ayinde, 2014). To date, similar methods, where the teacher is the 
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authority and procedural content is disproportionately favored over problem-solving 

skills, prevail (Conway & Sloane, 2005; MaaB & Artigue, 2013). Predictably, 

mathematics learning that disproportionately focuses on rote memorization of 

procedures has led to issues with the motivation and engagement of learners (Hoyles, 

2016; Star et al., 2014). As mentioned above, this has led educational organizations 

to press for the need for curricular reform in mathematics instruction, especially 

focusing on game-based learning environments (ASER, 2020; NCTM, 2014). It is 

imperative to note that while game-based learning might aid in the motivation and 

problem-solving skills of learners, mastery of procedural content and facts is equally 

important for mathematical literacy (Kadijevich, 2018).  

Game-based learning has the capability to transform mathematics instruction 

by helping students construct and engage with complex mathematical knowledge 

(Bray & Tangney, 2017). It also has a positive impact on student’s motivation and 

attitude towards mathematics (Rosas et al., 2003; Ke & Grabowski, 2007; Ke, 2008). 

For instance, the game Beyond Nintendo was designed in line with the curriculum on 

basic mathematics and reading comprehension for first and second graders in Chile. 

The study reviewing the game Beyond Nintendo in 1274 students showed a positive 

influence of the game on student’s motivation and engagement (Rosas et al., 2003). 

Besides motivation, a game-based mathematics summer program also found 

improvement in students’ attitudes towards mathematics (Ke, 2008). Additionally, a 

meta-analysis by Dvijak and Tomic (2011) found pedagogically designed game-based 

learning to enhance positive attitudes of students towards mathematics. Both positive 

attitudes towards mathematics and higher motivation are associated with mathematics 

achievement (Schiefele & Csikzentmihalyi, 1995; Singh, Granville, & Dika, 2002; Chen 

et al., 2018). Though many studies reveal positive affective outcomes (motivation, 
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engagement, interest, and attitude towards math) of game-based learning, data on the 

cognitive outcomes (achievement in mathematics) is still inconclusive.  

A recent meta-analysis examining the effectiveness of game-based learning in 

mathematics notes a staggeringly low percentage (11%) of studies assessing the 

empirical effectiveness of games on learning (Byun & Joung, 2018). Of the studies 

that did examine the effectiveness of games, the authors found a small to moderate 

effect of the game intervention for a majority of studies (9 out of 17), with an overall 

effect size of d = 0.376. This was higher than the effect size found in a previous meta-

analysis d = 0.16 (Cheung & Slavin, 2013). These effect sizes are likely inflated 

because of publication bias. Indeed, it has been found that effect sizes reported in 

studies that are published in peer-reviewed journals are higher than effect sizes 

reported in unpublished studies and/or studies in proceedings (journals: d = 0.44, 

unpublished: d = 0.14, proceedings: d = 0.08) (Wouters & van Oostendorp, 2013). The 

small to moderate effect sizes observed in prior studies were mostly due to a lack of 

randomized studies (Cheung & Slavin, 2013; Li & Ma, 2010; Slavin & Lake, 2008), 

small sample sizes (Cheung & Slavin, 2013), study’s methodological quality (Young, 

2017), and issues with aligning the game outcome measures to outside-game 

measures of learning outcomes (Slavin & Lake, 2008). Additionally, Byun & Jeong 

(2018) point out that most mathematics games reviewed in the meta-analysis were 

predominantly “drill and practice games” that focus on procedural fluency and hence, 

posed limitations for building more complex problem-solving skills. Further, factors 

such as game design, transfer of knowledge and skills, and adequate teacher support 

were often overlooked in the game-based learning environments (Barnett & Ceci, 

                                            

6 d < 0.2 – small, d ~ 0.5 – moderate, and d > 0.8 – large effect, Cohen (1998). 
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2002; Linderoth, 2012; Tobias et al., 2014; Rick & Weber, 2010). As Drijvers (2015) 

rightly states “ The three factors (design, teacher, and educational context) identified 

above may seem very trivial, and to a certain extent they are quite straightforward 

indeed; however, their importance, I believe, can hardly be overestimated and to take 

them into account in educational practice is far from trivial (p.14)”. Therefore, 

technology-enhanced mathematics instruction may be of great advantage to learners 

specifically in developing robust, complex, and flexible mathematical knowledge, only 

if it considers a strong game design, adequate support of the teacher, and transfer of 

skills to real-world problems. 

1.3 The Role of Game-based Learning in Fraction Understanding 

As reviewed in chapter I, the fraction concept is a complex construct composed 

of multiple subconstructs or interpretations. These different interpretations make 

mastery in fractions challenging. Besides, most often the part-whole concept of 

fractions takes the major share in classroom instruction (Fuchs et al., 2013) as well as 

in textbooks (de Souza & Powell, 2021). This over-representation of the part-whole 

subconstruct hinders the acquisition of other fraction subconstructs and concepts like 

improper fractions and the infinite divisibility of fractions (Pitkethly & Hunting, 1996 as 

in Misquitta, 2011) leading students to err on basic fraction concepts. Predictably, 

researchers and educators demand a more holistic understanding of all interpretations 

of fractions (Kieren, 1993; Lamon, 2001 as in Charalambous & Pitta-Pantazi, 2007). 

Game-based learning, in particular, offers unique affordances (e.g. visualizations, 

manipulations, the introduction of complex scenarios, experiential and immersive 

integration of curricula; Geiger et al., 2010; Olive et al., 2010 as in Bray & Tangney, 

2017, Vandercruysse et al., 2017) that can be utilized to build a better understanding 

of the complex construct of fractions. To this end, studies on the impact of game-based 
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learning on fraction outcomes have been conducted. Here, we will discuss five serious 

games in the domain of fractions; Refraction (Martin, Petrick-Smith, Forsgren, 

Aghababyan, & Janisiewicz, & Baker, 2015), Semideus (Ninaus, Kiili, Mcmullen, 

Moeller, 2017; Kiili et al., 2018), Motion math (Riconscente, 2013), Abydos (Masek, 

Boston, Lam, & Corcoron, 2017), and Slice fractions (Cyr et al., 2019). These game-

based learning environments on fractions have typically focused on specific 

subconstructs, for example, the game Refraction and Slice fractions focus on the 

partition subconstruct (Martin et al., 2015; Cyr et al., 2019), whereas the game 

Semideus and Motion math focus on the measurement interpretation (Ninaus et al., 

2017; Riconscente, 2013). While it is important to develop a deeper understanding of 

each of these subconstructs, to date, no game exists on addressing the multiple 

representations of fractions. Additionally, the transfer of knowledge to real-world 

outcomes (assessments) is something that is largely missing in these games. To this 

end, Math Mathews Fractions was designed to support teachers in building 

connections between the different subconstructs of fractions and each level of the 

game was specifically aligned to the learning outcomes in the french school curriculum 

(Zarpas & Gardes, 2019). The game, Math Mathews Fractions is designed for students 

who already have prior knowledge of fractions. A detailed introduction to Math 

Mathews Fractions will be provided in the next section. Meanwhile, an exhaustive 

overview of games that have helped improve fraction learning outcomes is provided 

here. The games in the domain of fraction learning discussed here include Refraction 

(Martin et al., 2015), Semideus (Ninaus et al., 2017; Kiili et al., 2018), Motion math 

(Riconscente, 2013), Abydos (Masek et al., 2017), and Slice fractions (Cyr et al., 

2019). We will describe each of them below. 
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Refraction (Martin et al., 2015) is based on the partitioning subconstruct of 

fractions. The study is designed to examine how different ways of splitting or 

partitioning can influence students' (third graders) understanding of fractions. In this 

game, players save animals in the spaceship by powering the ships with the correct 

amount of laser beam. The amount of fraction required is displayed on the spaceship 

(e.g. 1/12) and the students have to split the laser beam (using 1/2 or 1/3 splitters) to 

create the correct fractional amounts (Figure 9). Feedback is provided through a 

message- warning if the player is incorrect.  

To assess the impact of the game Refraction on third grader’s partitioning 

construct, the authors made use of the log data in the game to cluster students 

according to their splitting strategies and frequency. The log data was also used to 

analyze the performance on transfer tests of fraction knowledge. Thus, the log data 

helped to group the students according to their splitting strategies and frequencies and 

was also used to assess the impact of splitting on students' overall fraction knowledge. 

Findings reveal that the game improves students’ fraction understanding on the 

transfer tests. Additionally, the more the students explored the different ways of 

splitting the laser beam the better their performance was on the transfer test. 

Interestingly, the study highlights the importance of learning complex mathematical 

concepts (like fractions) through means of exploration. In terms of assessing the 

effectiveness of the intervention, the major drawback of the study was the lack of a 

control group and standardized assessments (Bertram, 2020). Therefore, this makes 

it difficult to attribute the learning gains exclusively to the game. Also, the game 

exclusively focuses on the partitioning construct of fractions which is already practiced 

more in the classroom as compared to the other constructs (Fuchs et al., 2013). This 
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disproportionate focus on partitioning could essentially impede the learning of other 

concepts and thus impact the transfer of learning outside the game.  

 

Figure 9: Example of the spaceship and the laser beam that needs to be split to generate 

the correct fraction amount (1/12) (Figure from Martin et al., 2015) 

Similar to Refraction, the game Slice fractions (Cyr et al., 2019) begins with a 

visual representation of the concept of splitting fractions (part-whole representation of 

fractions) but gradually advances to concepts like fraction comparison and equivalent 

fractions. The players are required to remove obstacles that are blocking the path of 

a mammoth. To remove the obstacles, they have to split pieces of ice and lava. As the 

game progresses, the students advance from visual representations to symbolic 

representations of fractions (Figure 10). Using a quasi-experimental design, the 

impact of the game was assessed on third graders' fraction understanding (Cyr et al., 

2019). For the fraction knowledge test, the authors selected 13 items from the Trends 

in International Mathematics and Science Study (TIMMS). These items mostly 

consisted of part-whole visual representations and symbolic fraction magnitude 

comparison type of questions. Notwithstanding the relatively small sample size (n = ~ 

18 per group) and the lack of structured feedback, the study shows a positive impact 



 

 49 

of the game on fraction learning which indicates that the game group performed better 

than the group with only traditional instruction. 

 

Figure 10: Examples of the different levels in the game Slice Fractions (Figure from Cyr 

et al., 2019). Panels A and B show levels with visual representations of fractions and 

Panels C and D present symbolic notations of fractions 

The third game, Motion math (Riconscente, 2013) was designed based on the 

measure interpretation of fractions (detailed in Chapter I, the measurement 

interpretation signifies the inherent property of magnitudes of fraction) utilizing number 

lines to teach fraction concepts. Here, the player has to tilt the device (iPad) to direct 

the falling fraction (percentage and decimal are also presented) to the correct place 

on the number line (Figure 11). Feedback in the form of audiovisual responses is 

generated for both correct and incorrect answers. Interestingly, incorrect answers also 

generate instructional hints in the form of arrows in the direction of the right answer. 

Fractions are presented both in symbolic (numerals) and non-symbolic (pie-charts) 
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representations. To examine the effectiveness of the game on fraction learning of fifth 

graders, 122 students participated in this study (Riconscente, 2013). Findings of the 

study evaluating Motion math reveal significant improvement in fraction knowledge (as 

measured by an adapted test that consisted of both NAEP and TIMMS items) in the 

game group as compared to the comparison control. Additionally, the findings also 

show a positive influence of the game on students’ self-efficacy and attitude towards 

fraction learning. However, one drawback in terms of assessing the effectiveness of 

the game was that teachers were explicitly asked to not teach fractions in the 

comparison control group, therefore, it is hard to comment on the effectiveness of the 

game as compared to other modes of instruction.  

 

Figure 11: Examples of the different level’s that players encounter during the game Motion 

Math (Figure from Riconscente, 2013) 

Semideus (Kiili et al., 2015) was also designed based on the measure construct 

of fractions to address the understanding of rational numbers as magnitudes (using 

number lines). The game's foundation is based on the integrated theory of numerical 

development (Siegler et al., 2011). According to the theory, all types of real numbers 

have numerical magnitudes and, hence, can be mapped onto number lines. 
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Importantly, the number line can be used to teach students the unique property of 

density of rational numbers (Behr et al., 1993). Indeed, intervention studies show that 

practicing number line tasks lead to improved fraction knowledge (Barbieri et al., 2019; 

Fuchs et al., 2016; Saxe et al., 2013). Therefore, the game includes four different task 

types that make use of number lines. These are magnitude estimation, magnitude 

ordering, magnitude comparison, and density tasks. The task of the player is to collect 

coins while solving these four tasks. In the study assessing the effectiveness of 

Semideus, 54 fourth graders were assigned to either a game group or a control group 

(Kiili et al., 2018). Findings show significantly better performance of the game group 

on magnitude estimation and ordering tasks (Figure 12) as compared to the control 

group. The study also analyzed the in-game performance and showed the overall 

game performance to be associated with student’s post-test rational number 

knowledge. Thus, in addition to testing for the effectiveness of game-based learning, 

the study also supports the use of in-game metrics as learning indicators that might 

help teachers personalize instruction in the classroom.  

 

Figure 12: An example of magnitude estimation and ordering tasks in the Semideus game 

(Figure from Kiili et al., 2018) 

Finally, Abydos (Masek et al., 2017) includes three mini-games based on real-

world problems. These mini-games focused on the concepts of equivalent fractions, 
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identifying least common multiples, addition, and subtraction of fractions (Figure 13). 

Within each game, the level of difficulty increases as the player advances. Students in 

Australia (aged 10-11) participated in this study over four weeks. The intervention and 

control groups both practiced fraction concepts during this time. Since the study was 

based on a Blended Learning model (a system of instruction where both technology 

and teacher-mediated support is present during learning; Graham, 2006), the teacher 

played an active role in the game group by debriefing and discussing the fraction 

concepts practiced in the game. The students were administered a pretest and 

posttest based on a modified version of standard assessments and country-specific 

curriculum. These questions particularly addressed the competencies practiced in the 

game such as equivalence of fractions, finding the least common multiple, the addition 

of proper and improper fractions with both like and unlike denominators. The results 

revealed a significant increase in the post-test scores for the game group as compared 

to the control group.  

 

Figure 13: Example of the three mini-games in Abydos. A. The task depicted here is to 

determine the least common multiple of the set of numbers. B. The equivalence task C. 

The addition and subtraction task 

The aforementioned studies demonstrate the potential of game-based learning 

in supporting fraction knowledge. They also provide a model for other researchers and 

game developers to consider when designing future technology on fraction learning. 

Likewise, depending on their students’ needs teachers can use existing game-based 
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platforms to design classroom instruction. However, as mentioned above, one of the 

major limitations of prior game-based fraction learning platforms is the lack of support 

for teachers and students to build a holistic understanding of all subconstructs of 

fractions and the transfer of knowledge to real-world outcomes or assessments. 

Despite researchers and educators' demand for a more holistic understanding of all 

interpretations or sub-constructs of fractions (Kieren, 1993; Lamon, 2001 as in 

Charalambous & Pitta-Pantazi, 2007), prior games all focus on a specific 

interpretation/sub-construct of fractions (Behr et al., 1993) (Figure 14). To this end, 

Math Mathews Fractions was developed to provide support to educators to build 

connections between multiple representations of fractions. 

 

Figure 14: The different game-based learning environments and their underlying fraction 

constructs 

1.4 Math Mathews Fractions 

Math Mathews Fractions is an educational video game developed by the studio 

Kiupe in collaboration with my co-advisor. The game is about the adventures of a pirate 

who has to collect gems (treasure) by solving different challenges (i.e., modules). The 

game progression is in line with the objectives and curriculum standards of the French 

school system for children aged 9-12. Thus, the play situations (i) increase in difficulty 
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throughout the game and (ii) remain appropriate for children aged 9-12. The modules 

are typically different types of questions involving rational numbers. Players must 

choose or construct the answer to proceed further. For example, in the Dragon 

module, students are asked to feed the dragon the specified amount of fraction (e.g. 

2/6). For gaining maximum gems on this module, the students must slice the rectangle 

into six parts and feed two parts to the dragon in their first attempt. If the students err 

on any of the modules they cannot proceed to the next stage. There are 13 modules 

that are based on specific curriculum standards in the French school system. Each 

module is presented ten times throughout the game and can be presented several 

times during a level. The modules include specific fraction competencies like fraction 

concepts, arithmetic, word problems, number lines, and decimals. Given below is a 

detailed description of each module and the associated learning competency. 

1.4.1 Hungry Dragon 

The hungry dragon module focuses on the part-whole subconstruct by making 

connections between the symbolic form of the fraction to the unit surface provided for 

constructing the fraction. In this module, the student has to feed the dragon by 

partitioning the object/ surface according to the fraction displayed on the screen 

(Figure 15). As the level increases, the nature of the fraction progresses from less 

than 1 to greater than 1, and the written form of fraction changes from simple (
𝑎 𝑏 ) to 

mixed (𝑎 +  1𝑏  ) fractions.  
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Figure 15: The Hungry Dragon module where the student has to cut the object in 6 parts 

and feed 2 parts to the dragon 

1.4.2 Broken Cogs 

In this module, the part-whole subconstruct of fractions is emphasized. Here, 

the student has to reconstruct a disk by using different sized parts provided to them 

(Figure 16). The task here is to advance the learner’s knowledge of unit fractions and 

understand the property of equal and unequal shares. As the levels increase, the 

complexity of the task increases by increasing the number of disks to be reconstructed, 

the number of different sized parts to choose from, and the size of the fractions ranging 

from smaller than 1 (levels 1 to 6) to greater than 1 (level 7 onwards). 
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Figure 16: Example of the module Broken Cogs where the student has to reconstruct the 

entire disk/cog by the two equal disks provided below. An example of a more complex 

problem on this module would include extra parts to choose from when constructing the 

entire disk. 

1.4.3 Warrior 

This module is based on associating the partitioned surface that is provided in 

different shapes (rectangle, pentagon, hexagon, trapezoid) with simple and mixed 

types of fractions. The students have the option to select the number of unit surfaces 

(by clicking on ‘+’) required to construct the fractions (Figure 17). The units are 

indicated on the small panel next to the figures. For example, if the learner has to 

make the fraction 
85 , they can select two equally partitioned pentagons and then select 

all 5 parts in one pentagon and 3 parts in the second pentagon to proceed. 

Additionally, the concept of equivalence and addition of fractions is also included in 

the higher levels of this module. For instance, if the student has to construct the 

fraction 
23 with each unit area sliced into 6 equal parts, for the correct answer in this 

module the student would be required to understand equivalence and select 4 out of 

the 6 equal parts. 
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Figure 17: Example of the Warrior Module A. The student has to select the unit surface 

to make the fraction 
34. For this, they can use one-unit surface and select three parts of the 

four parts on the rectangle to proceed forward. B. Here, the student is tested for the 

property of equivalence, they have to select 7 triangular parts of the three equally sized 

parts on the three-unit surfaces to generate a fraction equivalent to 
146   ( e. g.  73). 

1.4.4 Trapped passage 

The trapped passage module is focused on the measure construct of fractions. 

In this module, the student is required to place the fraction on the graduated number 

line (Figure 18). This module is aimed at developing an understanding of fraction 

magnitudes. The module begins from level 6 of the game and the complexity of the 

fractions to be placed on the number line increases with the levels. The simple 

fractions (e.g. halves and thirds) are presented in levels 5 and 6 and the more difficult 

fractions (e.g. fifths’, sevenths’, eighths) are presented in levels 8, 9, 10, and 11. 

Additionally, the concept of equivalence is also tested by asking the learner to place 

the fraction 
𝑎𝑏 on the line that is graduated into 2b equal parts. Fraction addition with 

like denominators is also tested on this module at higher levels. 
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Figure 18: In this example of Trapped Passage, the student has to place the fraction 4/2 

on the number line 

1.4.5 Door with weights 

This module requires the student to make connections between the symbolic 

fractions and the corresponding colored surface (Figure 19). The competency 

practiced in this module is using fractions to measure the quantities and making 

connections between the symbolic form of fractions and the pictorial representations. 

The increased difficulty of the module is based on the type of fraction (simple, mixed) 

and the type of surface (rectangle, hexagon, pentagon) presented. Additionally, the 

students also practice the concept of equivalence and addition of fractions by making 

connections between the symbolic and pictorial representations. For instance, the 

student will see the question 
26 + 

86 written on the weights on the left side. They are 

required to solve the addition task and then place the resultant fraction on the correct 

pictorial representation. 
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Figure 19: An example of Door with Weights module. Here, the students have to place 

the three fractions corresponding to the colored surface on the right. For example, 
106   

needs to be placed on the first surface where the hexagon is cut into six parts, each part 

corresponding to 
106  

1.4.6 Graduated Bridge 

In this module, students have to select the fraction corresponding to the marked 

point on the number line. In addition to understanding the measure subconstruct, the 

students also practice equivalence concepts. Fractions are presented with a blocked 

numerator or denominator to enforce students to utilize the concepts of equivalence 

on the number line. For example, if the number line is segmented into three parts and 

each part corresponds to one third, by blocking the denominator of the fraction to 6 

the student must explore the relationship between 
16 and 

13 to successfully solve the 

problem. The module increases in difficulty by modulating the relationship between 

the denominator of the fraction and the graduated number line.  
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Figure 20: The Graduated Bridge Module. Here, the denominator is locked to 6 and the 

point corresponds to 
83,  the student must understand the relation between one-sixth and 

one-third and then find the numerator of the fraction equivalent to 
83 

1.4.7 Totem 

Here, the student has to construct the totem of a given length by using multiple 

units of the totems provided. The unit is represented by the totem with ‘1’ written below 

it. This module also aids in understanding the operator construct of the fraction. For 

instance, in the given example (Figure 21), the student must construct the totem of 

value 
12  with an option to choose multiple totems of values one-fourth, one-half, or 

one-third. To solve this problem with one-fourth, the student must understand the 

operation; a x 
14 =  12 , to be able to use two totems of one-fourth value. Similar to other 

modules, the complexity of this module increases with the type of fraction to be 

constructed and the types of fractions that are provided for the same. This module is 

also present in decimal form and helps students to build connections between the 

magnitudes of decimals and fractions (Figure 14. B).  
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Figure 21: Example of the Totem module. A. Here the learner can use either one half or 

two one-fourths to construct the one-half. B. This is a complex version of the same module 

where the learner has to create a totem of length 
1210  ( or 1.2) by using the totems 0.5 and 

0.1  

1.4.8 Organs 

The concept practiced in this module includes the comparison of fractions and 

using the fractions to measure length. The unit is represented by the red tube with ‘1’ 

marked on the top. The student has to choose the length of the segment that 

corresponds to the given fraction of unit length. The module is present in levels 1, 2, 

3, 4, 7, and 8. The complexity of the module increases by introducing both proper and 

improper fractions to the students. Additionally, higher levels also include some 

unnecessary tubes that may not have any corresponding fractions. 
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Figure 22: Example of the module Organs. A. The learner has to place the tubes with the 

arrows shown in the bottom to the correct fractions on the right. B. The learner has placed 

the tubes correctly by placing the smaller tube on the one-eighth fraction and the larger 

tube on the fraction marked as one-third 

1.4.9 Skull 

In this module, the students have to arrange the fractions in an increasing order. 

The focus of this module is to understand the concept of fraction as a number with a 

specific magnitude to be able to arrange the fractions in increasing or decreasing 

order. To increase the complexity of the module, the fractions are presented with 

common multiples of the denominator (Figure 23) and different denominators. 

Additionally, the fractions to be compared increase from two to three and finally to four 

at the higher levels of the game. 
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Figure 23: An example of the module Skull. Here, two fractions have denominators that 

are multiples of each other. One of the concepts the students might use is to reduce the 

fraction 
1216 to 

68 and then compare that magnitude with 
98 

1.4.10 Pit, Trapped Chest, and Spider 

All these modules are based on the concept of finding an equivalent fraction or 

association of two equivalent fractions (Figure 24). The numbers to be compared are 

presented in the form of a simple fraction, mixed fraction, and decimal. While the 

module Pit and Trapped Chest are present in lower levels of the game, the module 

spider is present after level 8 and includes the addition of fractions with unlike 

denominators. 
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Figure 24: Example of the module Pit, Trapped Chest, and Spider. A. In Pit, students 

must choose from the two fractions in yellow on the left to match the fraction in red. B. 

Trapped Chest module requires students to find the correct equivalent fraction to match 

the decimal presented on the banner on the left side. C. In the module Spider, the students 

have to associate two equivalent fractions, sometimes this module also has addition 

problems that have to be associated with the correct answer 

1.4.11 Riddles 

This module comprises word problems. The complexity of the word problems 

is linked to the number of steps and operations required to arrive at the correct answer. 

The word problems are related to the following expression a/b × b = a, and the three 

types of questions include 1. What is the quantity ‘a’? (Figure 25 A) 2. What is the 

quantity ‘b’? (Figure 25 B) and 3. What is the fraction ‘a/b’? (Figure 25 C). 



 

 65 

 

Figure 25: Example of a word problem in the module Riddles. A. Surprised by the bravery 

and strength of the children, a third of the 66 pirates jumped overboard, and the rest 

quickly capitulated. How many pirates jumped over the board? B. One last Ptot hits 

another mango tree with his club and knocks down a third of its fruit. He puts 20 fruits in 

his bag. How many fruits were there in the tree? C. So, admire my collection of rare pearls. 

I have 60 of them if you take 20- I'll give you a good price. The Ptot shook his head again 

and this time he got angry. What fraction does it represent? (Translated to English) 

The abovementioned 13 modules focus on the different representations of 

fractions. These modules help students understand fractions as a measure, operator, 

quotient, part-whole subconstructs as well as focus on important concepts included in 

assessments like equivalence, fraction arithmetic, and problem-solving. The game 

includes 12 levels and increases in difficulty to provide a scaffolded learning 

environment to the students.  

The game was played through an application pre-installed on the tablets. Each 

student had to create a profile with a pseudonym before starting the game. The first 

level was preceded by a small video to familiarize players with the basic controls and 

rules of the game as well as to guide them about the objective of the game. The game 
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was configured in a way that each player had to correctly perform in all the modules 

that were visible to them in the game to finish the levels and only then could they 

proceed to the next level. The interface of the game also consists of a journal and a 

calculator. The journal was used to teach the player about the rules of each module 

and the fraction concepts involved in the module. Students could consult the journal 

anytime during the game by tapping on the icon. Additionally, the in-game 

performance of each of the students could also be measured by the different variables. 

These variables include the maximum level achieved, the number of attempts on each 

minigame, and the overall game performance. Study III of this dissertation is focused 

on analyzing the effectiveness of Math Mathews Fractions on fraction learning 

outcomes of fifth graders. 

1.5 Summary 

Traditional methods of fraction instruction are disproportionately focused on 

either a specific concept of fraction or on developing rote memorization of rules for 

procedural knowledge. Naturally, the difficulties encountered by students during 

fraction learning are persistent. In the era of technology, game-based learning, if 

designed and utilized appropriately can provide an efficient support system to 

educators. Game-based learning might support the understanding of complex 

concepts like fractions through visualization, manipulation, and building immersive 

environments. When coupled with adequate teacher support, students might be able 

to overcome misconceptions as well as enhance their motivation towards learning. To 

this end, we pre-registered a randomized controlled study to assess the effectiveness 

of Math Mathews Fractions on fraction learning outcomes of students in the fifth grade 

(study III). 
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RESEARCH AGENDA AND HYPOTHESES 

Rational numbers play a critical role in bridging early natural number skills to 

domains such as algebra, geometry, and calculus. The importance of rational number 

computation is not only restricted to mathematics but also necessary for biology, 

physics, statistics, economics, sociology, and many other disciplines (Lortie-Forgues, 

Tian, & Siegler, 2015). Indeed, 68% of participants in a nationally representative 

sample of the United States workforce reported using fractions at work (Handel, 2016). 

Despite their importance, rational numbers, specifically fractions are difficult to 

understand. In 1978, for the National Assessment of Educational Progress (NAEP), 

8th graders (13-14-year old’s) from all over the US were asked to choose the correct 

answer to the sum of 12/13 +7/8. The most common answer was ‘19’ and only 24% of 

the students were able to choose the correct answer (Carpenter et al., 1980). 

Recently, this item (12/13 + 7/8) was administered again to 48 eighth-graders to 

assess the impact of change in fraction instruction over the years. It was noted that 

the performance remained largely unchanged, i.e., 27% solved it correctly as 

compared to 24% in 1978 (Lortie-Forgues et al., 2015).  

To this end, several researchers and educators sought to investigate the 

reasons for the challenges encountered during fraction learning (see Chapter I). In the 

ensuing years, several researchers in the field of numerical cognition postulated the 

innate constraint account (Ni & Zhou, 2005). The innate constraint account holds 

fractions to be biologically secondary and thus, not supported by the human 

neurocognitive architecture (Dehaene, 1997; Gallistel & Gelman, 1992; Geary, 2007). 

Recent studies, however, revealed processing of non-symbolic relational magnitudes 

by non-human primates, infants, and human adults (Jacob, Vallentin, & Nieder, 2012), 
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indicating the presence of a Ratio Processing System (RPS) (see Chapter II). These 

two conflicting propositions (innate constraint and the ratio processing system) 

demand further investigation in this domain. For this, the first part of the thesis is 

focused on using both neuroimaging and behavioral tools to examine the perceptual 

processing of non-symbolic relational magnitudes and their relation to symbolic 

fraction understanding thereby, shedding light on the RPS (Study I and II). 

Understanding the RPS might potentially help in designing perceptual learning 

interventions for symbolic fraction learning. Further, given the complex, multifaceted 

construct of fractions, both learning and teaching fractions might be challenging. 

Indeed, many adults and teachers have shown a limited understanding of fraction 

concepts (Ma, 1999; Newton, 2008; Siegler & Lortie-Forgues, 2015). To this end, the 

Math Mathews Fractions game was designed in the lab to support teachers during 

fraction instruction in the classroom. Specifically, the game focuses on building 

connections between the multiple representations of fractions thereby, building a 

better understanding of the mega concept of fractions. Thus, the second part of the 

thesis assesses the impact of the game on fraction learning outcomes of students in 

the fifth grade (Study III).  

Experimental Hypotheses 

The overarching aim of the thesis was twofold. The first aim was to shed light 

on the neurocognitive bases of fractions and add evidence to the ongoing debate on 

the innate constraint versus the RPS account. This objective might help cognitive 

psychologists and mathematics educators better understand the core cognitive 

systems that are involved in fraction skills which might further help design instruction 

and educational interventions. The second objective was to assess the effectiveness 

of a game-based intervention in the classroom for supporting complex fraction 
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concepts. The research data in this thesis is drawn from three separate studies, Study 

I and II examined the neurocognitive bases of fraction processing at both the 

behavioral and cerebral levels and Study III examined the effectiveness of a specific 

game (designed in the lab, Math Mathews Fractions) on fraction learning outcomes of 

fifth graders. Given below is a brief introduction of each study, highlighting the aim, 

hypotheses, as well as research design employed. 

In study I, we aimed to investigate the presence of the ratio processing system 

in individuals with varying levels of math skills. We adapted a match to sample task 

(Matthews, 2015) in which participants were asked to match the stimuli (non-symbolic 

line ratio or symbolic fraction) on the left side of the screen (i.e. target) to one of the 

correct stimuli on the right side of the screen (i.e. match and distractor). The ratio was 

varied between the match and the distractor (i.e Ratio of Ratios, RoR) such that it was 

small in half of the trials and large in the other half. We hypothesized that if participants’ 

accuracy was sensitive to the ratio between the match and the distractor (a ratio of 

ratios, RoR), then this would serve as evidence for the existence of the RPS. Indeed, 

representations of magnitudes are more difficult to distinguish when the distance 

between them decreases (i.e., a distance effect) and when the overall magnitude 

increases (i.e. a size effect). This combined effect of distance and size results in 

performance that varies with the ratio between the magnitudes (in the case of fractions 

a RoR) and is generally taken to indicate an intuitive representation of magnitude on 

an internal mental number line (Moyer & Landauer, 1967). Also, participants in the 

study varied in their mathematics skills from those who might be proficient in fraction 

processing (i.e., adults) to elementary school children who are in the process of 

acquiring fraction skills. By examining participants with varying levels of mathematical 

knowledge, we could also measure if the sensitivity to ratio magnitudes was affected 
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by the level of their mathematics skills. Thus, if there is an intuitive representation of 

ratio magnitudes (RPS) as posited in prior studies (McCrink & Wynn, 2007; Kalra et 

al, 2020; Jacob & Nieder, 2009; Woodruff & Premack, 1981), then irrespective of 

participants’ level of symbolic mathematical knowledge or fraction competence, all 

participants would show the RoR effect. To this end, we also tested whether adults 

with dyscalculia (i.e., a learning disability that severely affects the acquisition of math 

skills; Iuculano, 2016; Price & Ansari, 2013) exhibit an RoR effect in that task. 

Additionally, to test for a single amodal representation of magnitudes (as hypothesized 

by Matthews & Chesney, 2015), we also tested another group of typically achieving 

adults on cross-format comparisons (i.e. matching a non-symbolic line ratio with the 

correct symbolic fraction). If these participants showed RoR effects for cross-format 

comparisons, then this might suggest intuitive access to abstract fractional 

magnitudes. 

In study II, we aimed to test whether the culturally developed ability to represent 

both absolute and relative magnitudes symbolically (e.g., using natural numbers and 

fractions) relies on the neural representations of absolute and relative magnitudes in 

a non-symbolic format (as was posited by the neuronal recycling hypothesis, Nieder, 

2016). To this aim, we adapted an fMRI adaptation paradigm used in Girard et al., 

2021, and Perrachione et al., 2016 to investigate the neural representations of 

absolute and relative magnitudes in different formats. FMRI adaptation refers to the 

idea that repeatedly presenting a series of visual stimuli with a common property leads 

to a decrease in the activity of neurons that are sensitive to that property (Grill-Spector 

and Malach, 2001). This sensitivity is captured by the neural adaptation effect, 

measured by comparing blocks of stimuli that differ from one another with respect to 

the property (i.e., no-adaptation blocks) to blocks of stimuli that do not (i.e., adaptation 
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blocks). We assessed whether the processing of symbolic stimuli (i.e., numbers and 

fractions) relies on neural mechanisms supporting non-symbolic stimuli (i.e., lines and 

ratios) by examining the neural adaptation effects in these regions. It was 

hypothesized that if symbolic processing of magnitudes relies on mechanisms 

subserving non-symbolic processing, then the neural adaptation effect for non-

symbolic (lines and line ratios) and symbolic (numbers and fractions) magnitudes will 

be observed in overlapping regions. Additionally, we used multivariate methods to 

explore the relationship between the patterns of activation associated with symbolic 

and non-symbolic stimuli across magnitude types. Here, we hypothesized that if the 

patterns of activity are similar between symbolic and non-symbolic stimuli (and may 

only depend on the type of numerical magnitudes, i.e., absolute versus relative), then 

this evidence would provide further support for the idea that the processing of symbolic 

magnitudes relies on the processing of non-symbolic magnitudes. 

In study III, we aimed to evaluate the effectiveness of a game-based training of 

rational number skills on fraction knowledge of children in 5th grade. The game, i.e., 

Math Mathews Fractions, was designed to complement fraction learning in the 

classroom with a focus on understanding and building connections with the multiple 

representations of fractions. The study involved a total of eight sessions and was 

conducted over four weeks. During these sessions, students from the experimental 

group played with Math Mathews Fractions in the classroom (each student had a 

tablet) with limited teacher interaction. In contrast, students from the control group 

practiced similar rational number concepts with their teacher. Fraction knowledge of 

both groups was assessed pre and post-intervention using paper-based tests. We pre-

registered three hypotheses. First, if the overall score on the fraction knowledge test 

is higher in the experimental group as compared to the control group, then Math 
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Mathews Fractions is a more effective tool than classroom instruction alone (which 

was matched on rigor and competency). Second, since the game is specifically 

designed for fraction learning, no difference between control and experimental groups 

on arithmetic fluency was hypothesized. Third, if the game influences affective 

outcomes, then students in the experimental group will show lower math anxiety 

scores at post-test as compared to the control group. 
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CHAPTER IV: STUDY I 

Bhatia, P., Delem, M., Léone, J., Boisin, E., Cheylus, A., Gardes, M. L., & Prado, J. 

(2020). The ratio processing system and its role in fraction understanding: Evidence 

from a match-to-sample task in children and adults with and without 

dyscalculia. Quarterly Journal of Experimental Psychology, 73(12), 2158-2176. 

Abstract 

It has been hypothesized that the human neurocognitive architecture may 

include a perceptual Ratio Processing System (RPS) that supports symbolic fraction 

understanding. In the present study, we aimed to provide further evidence for the 

existence of the RPS by exploring whether individuals with a range of math skills are 

indeed perceptually sensitive to non-symbolic ratio magnitudes. We also aimed to test 

to what extent the RPS may underlie symbolic fraction processing in those individuals. 

In a match-to-sample task, typical adults, elementary school children, and adults with 

dyscalculia were asked to match a non-symbolic ratio (i.e., target) to one of two non-

symbolic ratios (i.e., the match and distractor). We found that all groups of participants 

were sensitive to the ratio between the match and the distractor, suggesting a common 

reliance on the RPS. This ratio sensitivity was also observed in another group of typical 

adults who had to choose which of two symbolic fractions match a non-symbolic ratio, 

indicating that the RPS may also contribute to symbolic fraction understanding. 

However, no ratio dependence was observed when participants had to choose which 

of two symbolic fractions match another symbolic fraction, suggesting that reliance on 

the RPS in symbolic fraction processing is limited and may not support exact fraction 

processing.
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CHAPTER V: STUDY II  

Bhatia, P., Longo, L., Chesnokova, H., & Prado, J. (submitted). Neural representations 

of absolute and relative magnitudes in symbolic and non-symbolic formats 

Abstract 

Although many animal species can represent magnitudes non-symbolically 

(e.g., ••), humans are unique in their use of symbols to represent numerical information 

(e.g., two or 2). This symbolic representation of numerical magnitudes has long been 

thought to emerge from the ‘neural recycling’ of brain mechanisms processing non-

symbolic magnitudes in the intraparietal sulcus (IPS), a hypothesis that has been 

applied to both absolute (i.e., numbers) and relative (i.e., fractions) magnitudes. Yet, 

evidence for the neuronal recycling hypothesis is inconsistent for absolute magnitudes 

and scarce for relative magnitudes. Here, we investigated to what extent the neural 

representations of symbolic absolute and relative magnitudes overlap with the neural 

representations of non-symbolic absolute and relative magnitudes in the IPS. In an 

fMRI adaptation design, adult participants were presented with blocks of (1) non-

symbolic absolute magnitudes (lines), (2) symbolic absolute magnitudes (numbers), 

(3) non-symbolic relative magnitudes (line ratios), and (4) symbolic relative 

magnitudes (fractions). Univariate analyses provided limited evidence for the neuronal 

recycling hypothesis, with an overlap between symbolic and non-symbolic 

representations in the IPS that was restricted to absolute magnitudes and depended 

upon participants’ fluency in symbolic math. Multivariate analyses did not provide any 

evidence that similar IPS brain regions support both non-symbolic and symbolic 

magnitudes across all participants. Instead, a region of the right IPS encoded 

differences in format (non-symbolic versus symbolic) across both absolute and relative 
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magnitudes. Therefore, our study suggests that IPS activity during numerical tasks 

may depend on the presentation format (non-symbolic versus symbolic) more than it 

depends on the type of magnitude (absolute versus relative), at least for most adult 

participants. 

Introduction 

Humans possess the ability to represent magnitudes both non-symbolically 

(e.g., ••) and symbolically (e.g., two or 2). This ability is both shared and unique among 

other animals. On the one hand, infants and many animal species can estimate and 

discriminate non-symbolic absolute magnitudes, suggesting that the human brain may 

be endowed with a non-symbolic Approximate Number System (ANS) that is innate 

and evolutionarily old (Barth, La Mont, Lipton, & Spelke, 2005; Boysen & Capaldi, 

1993; Brannon, 2005; Dehaene, Dehaene-Lambertz, & Cohen, 1998; Dehaene, 1997; 

Pica, Lemer, Izard, & Dehaene, 2004; Xu, Spelke, & Goddard, 2005). On the other 

hand, the ability to represent absolute magnitudes as symbolic natural numbers is only 

found in humans and is largely believed to be a product of culture and language 

(Ansari, 2008). Yet, it has long been proposed that this culturally developed ability is 

grounded in the evolutionarily old capacity to process non-symbolic magnitudes 

(Dehaene et al., 2003; Ansari, 2008). For instance, the ‘neuronal recycling’ hypothesis 

argues that learning symbolic natural numbers relies on the co-option of brain 

mechanisms supporting non-symbolic magnitude processing, which are largely 

thought to be located in the intra-parietal sulcus (IPS) (Nieder, 2016). In other words, 

it has been claimed that the same mechanisms of the IPS may represent both non-

symbolic and symbolic magnitudes at an abstract level in adults (Dehaene & Cohen, 

2007), such that symbolic natural numbers may automatically activate the neural 
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representations of absolute magnitudes in that region (Eger, Sterzer, Russ, Giraud, & 

Kleinschmidt, 2003). 

Symbolic mathematical skills, however, go largely beyond the ability to 

represent absolute magnitudes in humans. They also involve the ability to represent 

magnitudes in relation with one another, for instance using fractions or decimals (i.e., 

rational numbers). Although the neuronal recycling theory was initially developed in 

the context of natural numbers, a similar proposal has recently emerged to explain the 

cultural acquisition of symbolic rational numbers (Lewis, Matthews, & Hubbard, 2016). 

Indeed, a growing body of evidence shows that infants and non-human primates are 

sensitive to ratios and relational quantities (Drucker et al., 2016; Eckert et al., 2018; 

Tecwyn et al., 2017; Vallentin & Nieder, 2008, 2010; Woodruff & Premack, 1981; 

Denison & Xu, 2014; McCrink & Wynn., 2007). This suggests the existence of an 

evolutionary old non-symbolic Ratio Processing System (RPS) akin to the ANS but 

tuned exclusively to relative quantities (Lewis, Matthews, & Hubbard, 2016). This 

cognitive system might provide the foundation for the acquisition of symbolic rational 

numbers (Lewis, Matthews, & Hubbard, 2016). Though the neural basis of this RPS is 

less clear than that of the ANS, this line of thought suggests that overlapping brain 

regions may represent both non-symbolic and symbolic ratios abstractly. In other 

words, symbolic rational numbers may automatically activate the neural 

representations of relative magnitudes.  

To date, evidence that the acquisition of either natural or rational numbers relies 

on the recycling of brain pathways dedicated to the processing of non-symbolic 

magnitudes remains equivocal. Overall, neuroimaging studies focusing on the 

processing of natural numbers have consistently found involvement of the IPS in both 

symbolic (Arabic digits or number words) and non-symbolic (dot patterns) tasks 
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(Neider, 2016; Sokolowski, Fias, Mousa, & Ansari, 2017). However, studies that 

directly compared the neural substrates of symbolic and non-symbolic natural number 

processing within the same participants show inconsistent results (Cohen Kadosh, 

Cohen Kadosh, Kaas, Henik, & Goebel, 2007; Cohen Kadosh, Bahrami, Walsh, 

Butterworth, Popescu, & Price, 2011; Damarla & Just, 2013; Bulthé, De Smedt, & Op 

de Beeck, 2014; Eger, Michel, Thirion, Amadon, Dehaene, Kleinsch-midth, 2009; 

Piazza et al., 2007). For instance, in a seminal study using fMRI adaptation, Piazza et 

al. (2007) found that Arabic digits and dot patterns were represented in the same 

region of the IPS, supporting the neuronal recycling hypothesis. Some studies using 

multivariate analysis have also shown some degree of overlap between the brain 

mechanisms supporting symbolic and non-symbolic magnitude processing (Eger et 

al., 2009). However, other studies concluded that Arabic numerals and dot patterns 

are supported by different neural populations in the IPS and surrounding brain regions 

(Bulthe, De Smedt, & Op de Beeck, 2013; Cohen Kadosh, Cohen Kadosh, Kaas, 

Henik, & Goebel, 2007; Cohen Kadosh, Bahrami, Walsh, Butterworth, Popescu, & 

Price, 2011). Overall, neuroimaging evidence is inconsistent regarding whether a 

natural number is represented abstractly or in a format-dependent manner in the 

human brain (Ansari, 2016; Damarla & Just, 2013; Wilkey & Ansari, 2019). 

Compared to the neuroimaging literature on the representations of natural 

numbers, few studies have investigated the neural representations and processing of 

rational numbers. Therefore, support for the idea that the neural substrates of the RPS 

may be ‘recycled’ for the processing of symbolic fractions is scarce (Lewis, Matthews, 

& Hubbard, 2016; Mock et al., 2018). Nonetheless, the available studies suggest that 

the IPS is involved in the processing of both symbolic fractions (DeWolf et al., 2016; 

Jacob & Neider, 2009b; Ischebeck, Schocke, & Delazer, 2009) and non-symbolic line 
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ratios (Jacob & Neider, 2009a) in adults. To our knowledge, there is only one study 

comparing the neural bases of symbolic and non-symbolic relative magnitude 

processing within the same participants (Mock et al., 2018, 2019). In that study, fMRI 

activity was measured while adult participants performed a magnitude comparison 

task in four formats (fractions, dot patterns, decimals, and pie charts) (Mock et al., 

2018). Results point to overlapping activation between symbolic (e.g., fractions and 

decimals) and non-symbolic (e.g., dot patterns and pie charts) proportions in the IPS, 

but also to format-dependent activity in other brain regions. To some extent, the 

format-independent activity found in the IPS supports the idea that there might be an 

abstract representation of relative magnitudes in the human brain. However, because 

this study used active tasks, it is unclear whether any overlapping neural activation is 

due to common processing of relative magnitudes or to a common reliance on 

response selection processes that also rely on the IPS (Göbel, Johansen-Berg, 

Behrens, & Rushworth, 2004). 

Here, we aimed to test whether the culturally developed ability to represent both 

absolute and relative magnitudes symbolically (e.g., using natural numbers and 

fractions) relies on the neural representations of absolute and relative magnitudes in 

a non-symbolic format. To this aim, we adapted a passive blocked fMRI adaptation 

paradigm used in Girard et al., 2021 and Perrachione et al., 2016 to investigate the 

neural representations of absolute and relative magnitudes in different formats, while 

avoiding confounds due to active tasks. FMRI adaptation refers to the idea that 

repeatedly presenting a series of visual stimuli with a common property leads to a 

decrease in the activity of neurons that are sensitive to that property (Grill-Spector and 

Malach, 2001). This sensitivity is captured by the neural adaptation effect, measured 

by comparing blocks of stimuli that differ from one another with respect to the property 
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(i.e., no-adaptation blocks) to blocks of stimuli that do not (i.e., adaptation blocks). In 

the present study, participants were presented with adaptation and no-adaptation 

blocks of (1) non-symbolic absolute magnitudes (lines), (2) symbolic absolute 

magnitudes (numbers), (3) non-symbolic relative magnitudes (line ratios), and (4) 

symbolic relative magnitudes (fractions) (Figure 1). Adaptation and no-adaptation 

blocks differed with respect to the numerical distance separating lines, numbers, line 

ratios, or fractions within a block, such that stimuli were close in magnitude from one 

another in adaptation blocks and further apart in no-adaptation blocks.  

We tested the neuronal recycling hypothesis of absolute and relative 

magnitudes using both univariate and multivariate methods. First, using univariate 

analyses, we aimed to identify the neural regions that may be sensitive to a change in 

numerical distance between stimuli across all participants, either with respect to their 

absolute magnitude (for lines and numbers) or relative magnitude (for line ratios and 

fractions). This should translate into a decrease of activity in adaptation compared to 

no-adaptation blocks in these regions (i.e., a neural adaptation effect). The neuronal 

recycling hypothesis assumes that processing symbolic stimuli (i.e., numbers and 

fractions) relies on neural mechanisms supporting non-symbolic stimuli (i.e., lines and 

ratios). Thus, this hypothesis predicts that overlapping regions of the IPS may be 

associated with a neural adaptation effect for (1) numbers and lines and (2) fractions 

and ratios. Second, using multivariate analyses, we aimed to explore the relations 

between the patterns of activation associated with symbolic and non-symbolic stimuli 

across magnitude types. Specifically, because the neuronal recycling hypothesis 

assumes that similar IPS mechanisms process symbolic and non-symbolic stimuli, it 

predicts that patterns of IPS activity may be similar between symbolic and non-
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symbolic stimuli and are more likely to depend on the type of numerical magnitude 

(i.e., absolute versus relative). 

Material and methods 

Participants 

Fifty-three right-handed adults participated in the experiment. Participants were 

contacted through advertisements on social media. Five participants were excluded 

from the study because of technical errors in the experimentation set-up (n=4) and 

contraindications to the MRI (n=1). Therefore, 48 adults (Mean age = 22.09, 34 

females) were included in the main analyses. All adults were native French speakers 

and with no history of neurological or psychiatric disorders. Participants gave written 

informed consent and were paid 80 euros for their participation. The study was 

approved by a national ethics committee (CPP- Strasbourg Est IV).  

Psychometric testing 

Verbal IQ and spatial IQ were estimated using the verbal reasoning and matrix 

reasoning subtest of the WAIS-IV (Wechsler, 2008). Fluency in symbolic math was 

assessed using the Math Fluency of the Woodcock-Johnson Test of Achievement 

(WJ-III) (Woodcock, Mather, McGrew, & Wendling, 2001). In this test, participants 

have to solve as many single-digit addition, subtraction, multiplication, and division 

problems as they can within 3 min. Participants also completed the Applied Problems 

subtest of the WJ-III. Unlike the Math Fluency subtest, this test is un-timed and 

measures the ability to analyze basic numerical concepts and oral word problems. The 

test stops after 6 consecutive errors or when the last item is reached. Reading fluency 

was assessed with the Alouette-R test (Lefavrais, 1967). This test requires participants 
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to read a 265-word text aloud in 3 minutes and measures the number of words read 

correctly to evaluate the reading precision and speed. 

In-scanner task 

Participants were presented with a passive blocked adaptation paradigm 

adapted from Girard et al., 2021 and Perrachione et al., 2016. In this paradigm, 

participants are passively presented with blocks of stimuli at the center of the screen. 

Here we presented four types of stimuli in four different runs of approximately 5 min: 

lines, numbers, line ratios, and fractions (Figure 1.). Numbers ranged from 1 to 62 (~ 

1.72° of visual angle), fractions ranged from 
124 to 1 in magnitude (~ 3.45° of visual 

angle), and lines ranged from 0.98 to 17.8 cm in length on a 37 cm screen 

(corresponded to ~ 0.69 - 12.24° of visual angle). All stimuli were shown in white on a 

black background. Within each run, participants were presented with adaptation and 

no-adaptation blocks (Figure 1). Adaptation and no-adaptation blocks differed with 

respect to the numerical distance between the stimuli. Specifically, adaptation blocks 

consisted in the sequential presentation of 8 quantities in a total of which 4 quantities 

were the same in magnitude and the other 4 quantities were relatively close. For 

instance, in the number adaptation block of 23, 26, 25, 26, 24, 26, 21, 26, four stimuli 

(e.g., 26) are identical and the other four stimuli have a minimum distance of 1 and a 

maximum distance of 5 between each other. Similarly, for fractions, adaptation to 1:4 

was composed of four exact equivalent fractions 2/8, 1/4, 4/16, 7/28 and the rest of 

the stimuli had the denominator changed by adding or subtracting 1 to the original 

fractions (i.e., 3/11, 5/19, 8/31,6/23). Half of the stimuli for the adaptation block of 

fractions were constructed by small changes to the denominator (+1 or -1) to prevent 

the participant from reducing the fraction to its lowest form, thereby avoiding 
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confounds due to calculation. No-adaptation blocks consisted in the sequential 

presentation of 8 quantities that were relatively far from one another in magnitude 

(e.g., a minimum distance of 2 and a maximum distance of 55 between consecutive 

numbers in a block, and minimum magnitude of 1/24 to maximum magnitude of 11/12 

for a block of fractions). The size of the individual line lengths and line ratios 

corresponded to those used for numbers and fractions. So, for line ratios, the length 

of the smaller line was calculated as the ratio of the longer line length such that a 

fraction corresponding to 
315 would be a line ratio where the smaller line length is 

315  as 

long as the longer line length. Thus, the absolute line lengths did not vary with 

proportion. The shorter line was always on the left (i.e., corresponding to the 

numerator of a proper fraction) while the longer line was always on the right (i.e., 

corresponding to the denominator of a proper fraction). The complete list of stimuli can 

be found in Appendix B. 
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Figure 1: Experimental design. Participants were adapted to the sequential presentation 

of four types of stimuli that varied in format (non-symbolic versus symbolic) and magnitude 

type (absolute versus relative). A. Adaptation to lines. B. Adaptation to numbers. C. 

Adaptation to line ratios. D. Adaptation to fractions. 

Experimental timeline 

In each adaptation and no-adaptation block, stimuli remained on the screen for 

700 ms, with a 500 ms inter-stimulus interval (for a total block duration of 9.6 seconds). 

Ten adaptation blocks and ten no-adaptation blocks were presented along with ten 

blocks of visual fixation (duration = 9.6 seconds) in each run. Block presentation was 

pseudo-randomized such that 2 blocks of the same type could not follow each other. 

Finally, 10 target stimuli (a triangle) randomly appeared in each run (outside of the 
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blocks) to ensure that participants paid attention to the stimuli. Participants were asked 

to press a button every time this target appeared. The task was presented using 

Psychopy (Peirce et al., 2019).  

fMRI Data Acquisition 

Images were collected with a Siemens Prisma 3T MRI scanner (Siemens 

Healthcare, Erlangen, Germany) at the CERMEP Imagerie du vivant in Lyon, France. 

The BOLD signal was measured with a susceptibility-weighted single-shot EPI 

sequence. Imaging parameters were as follows: TR = 2000 ms, TE = 24 ms, flip angle 

= 80°, matrix size = 128 × 120, field of view = 220 × 206 mm, slice thickness = 3 mm 

(0.48 mm gap), number of slices = 32. A high-resolution T1-weighted whole-brain 

anatomical volume was also collected for each participant. Parameters were as 

follows: TR = 3500 ms, TE = 2.24 ms, flip angle = 8°, matrix size = 256 × 256, field of 

view = 224 × 224 mm, slice thickness = 0.9 mm, number of slices = 192. 

fMRI data preprocessing  

fMRI data analysis was performed using SPM12 

(http://www.fil.ion.ucl.ac.uk/spm, Welcome department of Cognitive Neurology, 

London, UK). The first 3 images of each run were discarded to allow for T1 

equilibration effects. Functional images were corrected for slice acquisition delays and 

spatially realigned to the first image of the first run to correct for head movements. 

Realigned images were smoothed with a Gaussian filter (4 × 4 × 7 mm full-width at 

half maximum). Using ArtRepair (https://www.nitrc.org/projects/art_repair/), functional 

volumes with a global mean intensity greater than 3 standard deviations from the 

average of the run or a volume-to-volume motion greater than 2 mm were identified 

as outliers and substituted by the interpolation of the 2 nearest non-repaired volumes 

http://www.fil.ion.ucl.ac.uk/spm
https://www.nitrc.org/projects/art_repair/
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(Romeo et al., 2018). Finally, functional images were normalized into the standard 

Montreal Neurological Institute (MNI) space. This was done in two steps. First, after 

coregistration with the functional data, the structural image was segmented into grey 

matter, white matter, and cerebrospinal fluid by using a unified segmentation algorithm 

(Ashburner and Friston, 2005). Second, the functional data were normalized to the 

MNI space by using the normalization parameters estimated during unified 

segmentation (normalized voxel size, 2 × 2 × 3.5 mm
3
). 

Univariate analyses 

For each participant and each run, a general linear model analysis was 

conducted on brain activity associated with adaptation and no-adaptation blocks. 

Blocks were modeled as epochs with onsets time-locked to the beginning of each 

block and a duration of 9.6 sec per block. All epochs were convolved with a canonical 

hemodynamic response function. The time-series data were high-pass filtered 

(1/128Hz), and serial correlations were corrected using an auto-regressive AR (1) 

model. The neural adaptation effect was measured by subtracting activity associated 

with adaptation blocks from activity associated with no-adaptation blocks. These 

subject-specific contrasts were then submitted to the second level for group-level 

random effect analyses. Clusters were considered significant at a FWE-corrected 

threshold of p < .05 (using a cluster-defining threshold of p < .005, uncorrected). 

Multivariate analyses 

In addition to the main univariate analysis, we also used the CosmoMVPA 

toolbox (https://www.cosmomvpa.org/) to perform an exploratory RSA analysis 

assessing the similarity and dissimilarity of neural activation patterns associated with 

different magnitude types (absolute versus relative) and presentation formats 

https://www.cosmomvpa.org/
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(symbolic versus non-symbolic). This analysis was conducted on the four beta maps 

corresponding to the contrasts of lines versus fixation, numbers versus fixation, line 

ratios versus fixation, and fractions versus fixation (collapsing across adaptation and 

no-adaptation blocks). First, we created two 4x4 theoretical representation 

dissimilarity matrices (RDMs), corresponding to (1) the expected dissimilarity between 

absolute and relative magnitudes (and expected similarity between symbolic and non-

symbolic stimuli) and (2) the expected dissimilarity between symbolic and non-

symbolic stimuli (and expected similarity between absolute and relative magnitudes). 

In the absolute versus relative RDM (see Figure. 4A), all stimuli of the same 

magnitude type (numbers - numbers, numbers - lines, fractions - fractions, fractions - 

line ratios) had a dissimilarity coefficient of 0, whereas all stimuli of a different 

magnitude type (numbers - fractions, numbers – line ratios, fractions - lines, lines – 

line ratios) had a dissimilarity coefficient of 1. In the symbolic versus non-symbolic 

RDM (see Figure. 5A), all stimuli of the same format (numbers - numbers, numbers - 

fractions, lines - lines, lines - line ratios) had a dissimilarity coefficient of 0, whereas all 

stimuli of a different format (numbers - lines, numbers – line ratios, lines - fractions, 

line ratios - fractions) had a dissimilarity coefficient of 1. Second, we extracted brain 

activity from the four contrasts (i.e., lines versus fixation, numbers versus fixation, line 

ratios versus fixation, and fractions versus fixation) using spherical searchlights (1.4 

cc, i.e., 100 voxels) at every voxel in the brain. A 4x4 neural DSM was constructed for 

each searchlight, which each cell representing 1 minus the Pearson correlation 

between the voxel-wise beta value for each pair of contrasts. The Pearson correlation 

between the neural DSM and each theoretical DSM was then calculated for each 

searchlight and converted to a z value using a Fisher transform. The Fisher-

transformed correlation coefficient for each searchlight was systematically associated 
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with the central voxel of that searchlight. Fisher-transformed correlation maps were 

then submitted to second-level one-sample t-tests across all participants to identify 

voxels for which the correlation between the theoretical and neural DSMs was greater 

than 0. Clusters were considered significant at a FWE-corrected threshold of p < .05 

(using a cluster-defining threshold of p < .005, uncorrected). 

Data and software availability 

For each participant and each task, whole-brain unthresholded maps of 

adaptation effects will be publicly available via NeuroVault. The general and custom 

scripts used to analyze fMRI data are available on https://github.com/BBL-lab/BBL-

batch-system. 

Results 

Psychometric testing and in-scanner performance 

Standardized verbal IQ ranged from 85 to 140 (mean = 117.29), while 

standardized spatial IQ ranged from 70 to 120 (mean = 94.68). Thus, participants’ IQ 

was in the normal to the superior range. The number of arithmetic problems correctly 

solved in 3 min in the Math fluency subtest ranged from 47 to 160 (mean = 114.25), 

suggesting a substantial variability in arithmetic fluency among participants. The 

untimed Applied problems subtest indicated less variability, with scores ranging from 

39 to 61 (mean = 49.06). Finally, participants’ reading precision scores ranged from 

90.18 to 100 (mean = 98.28), and reading speed ranged from 336.69 to 787.11 (mean 

= 551.198) (the optimal cut-off for dyslexia is a reading precision score above 87 or 

reading speed above 402.26; Cavalli et al., 2018). 

https://github.com/BBL-lab/BBL-batch-system
https://github.com/BBL-lab/BBL-batch-system
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To make sure participants were attentive to the stimuli in the scanner, a target 

detection task was inserted in all four tasks. Participants had to press a button when 

they saw a triangle during the task. Average performance on detection of the target 

for the different runs was 95.3% (SD = 0.152) for fraction, 92.7% (SD = 0.186) for 

numbers, 91.4% (SD = 0.208) for line ratios, and 92.4% (SD = 0.194) for lines. There 

was no difference in target detection between the four tasks (all t’s < 1.9, all p’s > 

0.06), indicating that participants paid equal attention to the stimuli in the tasks. The 

response to target stimuli was not correlated with math fluency and applied problem 

skills (all r’s >- 0.24, all p’s > 0.10).  

Univariate analyses 

For each stimulus type (lines, numbers, line ratios, and fractions), brain activity 

associated with adaptation blocks was subtracted from activity associated with no-

adaptation blocks to identify brain regions showing a neural adaptation effect across 

all participants. For lines, a neural adaptation effect was observed in the bilateral IPS 

as well as in a wider network of brain regions encompassing the precentral and 

occipital cortices (see Table 1 and Figure 2A). For numbers, the only region showing 

a significant neural adaptation effect was located in the left fusiform gyrus (see Table 

1 and Figure 2B). No significant adaptation effect was observed in any brain region 

for either fractions or line ratios.  

Contrary to our assumptions, lines were the only stimuli associated with a 

significant neural adaptation effect in the IPS across all participants. Therefore, we did 

not find any evidence that common neural mechanisms in the IPS may process both 

symbolic and non-symbolic stimuli. However, there was relatively large variability in 

participants’ fluency with symbolic math (as suggested by the Math fluency subtest, 
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see above). It is thus possible that the neural adaptation effect for symbolic stimuli 

may depend on participants’ levels of fluency. This would be consistent with the results 

of our previous study using a similar paradigm, in which we found a positive correlation 

between neural adaptation to numbers and Math fluency scores (Girard et al., 2021). 

In other words, because our paradigm is passive, magnitudes of symbolic stimuli such 

as numbers and fractions may only be automatically processed by the most fluent 

participants. To examine this possibility, we performed an exploratory analysis in 

which we regressed neural adaptation effects on participants’ Math fluency scores 

across the whole brain. We did not find any positive relation between math fluency 

and neural adaptation effect for fractions, lines, or line ratios. For numbers, however, 

the neural adaptation effect increased with math fluency in a region of the left IPS (see 

Figure. 3A). Critically, a conjunction analysis revealed that this region overlapped with 

the region showing an overall neural adaptation effect across all participants for lines 

(center of mass: x=-28, y=-42, z=55, the volume of overlap = 70mm3) (see Figure. 

3B). Thus, increased math fluency was linked to an enhanced neural adaptation effect 

for numbers in the same left IPS region that exhibited a neural adaptation effect across 

all participants for lines. 
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Figure 2: Neural adaptation effects across all participants (univariate analyses). A. Brain 

regions showing a neural adaptation effect for lines. B. Brain regions showing a neural 

adaptation effect for numbers. 
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Figure 3: Relation between arithmetic fluency and neural adaptation effects (univariate 

analyses). A. Brain region showing a positive relation between arithmetic fluency and 

neural adaptation effect for numbers. B. Brain region showing both a positive relation 

between arithmetic fluency and neural adaptation effect for numbers and a neural 

adaptation effect for lines across all participants (conjunction analysis).  
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Table 1: Brain regions showing an effect of neural adaptation across all participants (univariate 

analyses). 

Anatomical Location Cluster level 

P FWE-corrected 

Cluster size 

(cc) 

MNI coordinates t-score 

 

   x y z  

       

Line adaptation task 

L. Inferior Occipital Gyrus .000 28.55 -32 -90 -4 5.89 

L. Intraparietal Sulcus - - -34 -50 51 3.33 

R. Inferior Occipital Gyrus .000 21.01 40 -84 -12 5.48 

R. Intraparietal Sulcus - - 30 -58 55 3.99 

R. Thalamus .019 2.13 10 -16 13 5.44 

R. Supplementary Motor area .000 6.27 2 12 66 5.16 

R. Hippocampus .004 2.74 22 -20 -12 4.81 

L. Caudate .026 2.0 -14 -2 13 4.37 

R. Precentral Gyrus .033 1.9 -44 4 52 4.33 

R. Precentral Gyrus .003 2.85 54 -2 44 4.31 

L. Posterior Cingulate .025 2.01 -6 -42 16 4.31 

 

Number adaptation task 

L. Occipital Fusiform Gyrus .004 2.81 -26 -90 -12 4.46 

 

Line Ratio adaptation task 

              No suprathreshold cluster 

Fraction adaptation task 

No suprathreshold cluster 

Notes. L = left; R = right; MNI: Montreal Neurological Institute; FWE-corr: Family-wise error corrected. 
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Multivariate analyses 

 As described above, the univariate analyses only provided limited evidence for 

common brain mechanisms in the IPS processing non-symbolic and symbolic 

magnitudes. We then turned to multivariate analyses (RSA) to test whether patterns 

of IPS activity may depend on the type of numerical magnitude (and be similar 

between non-symbolic and symbolic stimuli) or on the presentation format (and be 

similar between absolute and relative magnitudes). This was done by evaluating the 

degree of (1) dissimilarity between patterns of activation associated with absolute and 

relative magnitudes (and similarity between non-symbolic and symbolic stimuli) (see 

Figure 4A) and (2) dissimilarity between patterns of activation associated with 

symbolic and non-symbolic stimuli (and similarity between absolute and relative 

magnitudes) (see Figure 5A). On the one hand, as shown in Figure 4B and Table 2, 

a limited brain system distinguished between absolute and relative magnitudes while 

representing similarly non-symbolic and symbolic magnitudes. This system was 

composed of the right occipital cortex and left rostro-lateral prefrontal cortex. Critically, 

this system did not include the IPS. On the other hand, as shown in Figure 5B and 

Table 2, a larger brain system distinguished between symbolic and non-symbolic 

format while representing similarly absolute and relative magnitudes. This system 

encompassed the bilateral occipital and middle temporal cortices, but also included 

the right IPS. Overall, these results suggest that patterns of IPS activity depend on the 

presentation format (non-symbolic versus symbolic) more so than they depend on the 

type of magnitudes (absolute versus relative). 
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Figure 4: Results of the Representational Similarity Analysis for the Absolute versus 

Relative model (multivariate analysis). A. Hypothesized Model for the RSA, the matrix 

represents a dissimilarity matrix where red denotes dissimilar items (0) and yellow denotes 

similar items (1). B. Brain regions representing differently absolute and relative 

magnitudes while representing similarly non-symbolic and symbolic magnitudes.  
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Figure 5: Results of the Representational Similarity Analysis for the Symbolic versus Non-

symbolic model (multivariate analysis). A. Hypothesized Model for the RSA, the matrix 

represents a dissimilarity matrix where red denotes dissimilar items (0) and yellow denotes 

similar items (1). B. Brain regions representing differently non-symbolic and symbolic 

magnitudes while representing similarly absolute and relative magnitudes. 
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Discussion 

In the present study, we used univariate and multivariate analyses to test the 

neuronal recycling hypothesis of absolute and relative magnitudes. Participants 

passively attended to numerical stimuli in the scanner, presented as symbolic 

fractions, non-symbolic line ratios, symbolic numbers, and non-symbolic lines. Each 

Table 2: Brain regions identified in Representational Similarity Analysis (multivariate analyses) 

Anatomical Location Cluster level 

P FWE-corrected 

Cluster size 

(cc) 

MNI coordinates t-score 

 

   x y z  

       

Symbolic versus Non-symbolic 

L. Inferior Occipital Gyrus .00 91.44 -34 -84 -4 8.18 

L. Supramarginal Gyrus .012 1.51 -50 -38 34 4.76 

L. Postcentral Gyrus .00 4.11 -30 -30 66 4.72 

R. Superior Parietal Lobule .00 7.91 26 -46 58 4.60 

R. Intra-parietal sulcus - - 30 -58 55 2.75 

 

Absolute versus Relative 

L. Superior Occipital Gyrus .00 3.09 -10 -90 27 4.74 

L. Lingual Gyrus .009 1.61 -28 -62 -1 4.36 

L. Superior Frontal Gyrus .046 1.21 -24 60 13 3.74 

L. Middle Frontal Gyrus - - -28 48 13 3.74 

R. Middle Occipital Gyrus .00 7.15 38 -84 20 5.29 

 

Notes. L = left; R = right; MNI: Montreal Neurological Institute; FWE-corr: Family-wise error corrected. 
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of these stimuli was presented in adaptation and no-adaptation blocks, wherein the 

numerical quantity presented was near and far in magnitude (respectively). In the 

following, we will first discuss the result of the univariate analyses (comparing the 

difference in activity between no-adaptation and adaptation blocks, or neural 

adaptation effect, for the four stimuli). We will then discuss the findings of multivariate 

analyses.  

Univariate analyses provide limited evidence for neuronal recycling of absolute 

magnitudes 

In line with the neuronal recycling hypothesis of both absolute and relative 

magnitudes, we predicted that symbolic and non-symbolic magnitudes would rely on 

overlapping brain mechanisms in the IPS. This would have translated into neural 

adaptation effects in similar regions of the IPS for symbolic and non-symbolic 

magnitudes, suggesting an abstract representation of magnitudes in the IPS. Across 

all participants, we found a neural adaptation effect for non-symbolic absolute 

magnitudes (i.e., lines) in a relatively wide network of brain areas encompassing the 

bilateral IPS, the occipital, the supplementary motor area, and the precentral cortices. 

These results (particularly concerning the recruitment of occipito-parietal areas) are in 

line with prior passive viewing paradigms investigating the representation of non-

symbolic absolute magnitudes (Ansari & Dhital., 2006; Demeyere, Rotshtein, & 

Humphreys, 2014; Pinel et al., 2004; Roggeman et al., 2011). In fact, a recent meta-

analysis revealed that non-symbolic magnitude processing was associated with 

consistent activations in the bilateral parietal cortex and occipital gyri across studies 

(Sokolowski et al., 2017). A recent study using a magnitude comparison task involving 

both dot patterns and lines of different lengths also revealed overlapping activations 

for these conditions in the bilateral parietal and occipital cortices (Borghesani et al., 
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2019). Overall, the fact that the IPS exhibits a neural adaptation effect for lines in our 

study is consistent with a long line of studies pointing to the IPS as a major locus for 

the representation of non-symbolic absolute magnitudes in the human brain (Nieder, 

2016).  

In contrast to our predictions, however, we failed to find any neural adaptation 

effect for symbolic absolute magnitudes (i.e., numbers) in the IPS. Instead, a neural 

adaptation effect was only found in the left fusiform gyrus, which may reflect the visual 

processing of numerals (e.g., Holloway et al., 2013). At first glance, the lack of IPS 

activation is in contrast to the majority of literature on the role of left-lateralized IPS in 

the development of symbolic magnitude processing (Vogel, Goffin, & Ansari, 2014). 

However, it is important to note that, in contrast to most previous studies, our 

adaptation paradigm is passive and therefore captures an automatic representation of 

numerical magnitude from the viewing of symbolic stimuli. This is critical because the 

IPS is also involved in response selection (Cappelletti et al., 2010; Göbel et al., 2004). 

Previous studies using active tasks (e.g., number comparison tasks, in which 

participants select the largest number; Ansari et al., 2005; Cohen Kadosh et al., 2005; 

Lyons & Ansari, 2009; Holloway & Ansari, 2010) may have thus confounded 

magnitude-related activity in the IPS with response demands. In other words, access 

to magnitudes from symbolic stimuli may not be as automatic as often argued. In fact, 

our study provides some evidence that it may depend on participants’ fluency with 

symbolic math. Indeed, we found that neural adaptation for numbers in the IPS 

increased with arithmetic fluency. This result was similar to a prior study performed on 

children using digits (Girard et al., 2021). Similar to findings reported here, Girard and 

colleagues (2021) did not find a digit adaptation effect in the IPS but did report IPS 

activity in children with higher arithmetic fluency. Together with that study, our findings 
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suggest that participants with higher levels of mathematics fluency might be more able 

to automatically access numerical magnitudes than participants with lower levels of 

mathematics fluency. Interestingly, the IPS cluster in which this relation was found 

overlapped with the cluster showing a neural adaptation for lines across all 

participants. Therefore, it might be that individuals with higher levels of math fluency 

are able to better recruit and recycle the IPS pathways involved in non-symbolic 

magnitude processing for symbolic magnitude tasks, thereby creating stronger links 

between the two magnitude formats (but see Schwartz et al., 2021). 

Univariate analyses fail to capture automatic processing of relative magnitudes 

Contrary to our expectations, we did not observe any neural adaptation effect 

for fractions and line ratios. While research on relative magnitudes is limited, these 

findings conflict with prior studies that also used adaptation tasks (Jacob & Nieder, 

2009 a, b). A major difference between our study and that of Jacob & Nieder (2009) is 

that the stimuli used here were more complex, mostly because all of the ten adaptation 

blocks corresponded to different ratios (e.g. 1:5, 2:3, 2:5, 1:4, 3:5, 2:9). Contrarily, 

Jacob & Nieder (2009) used only one simple adapting ratio of 1:6 for symbolic fractions 

with a higher repetition frequency of the stimuli (Jacob & Nieder, 2009). Therefore, 

there is a possibility that during that task participants were able to explicitly compute 

the magnitude of these simple fractions. However, this was near to impossible in the 

task used here because each adaptation block for a specific adapting ratio (there were 

10 adapting ratios in total) included only eight fraction stimuli. Therefore, as compared 

to the prior study, the task used in the current study was better controlled for confounds 

related to the calculation of the magnitude. In any case, the lack of neural adaptation 

effect for fractions in the current study suggests a lack of automatic processing of the 

relative magnitudes of symbolic fractions. The lack of adaptation effect for line ratios 
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also highlights the absence of automatic processing for non-symbolic relative 

magnitudes. While behavioral studies in children, typically achieving adults and adults 

with mathematics difficulty indicate access to proportional information when 

comparing and estimating non-symbolic line ratios (Matthews, Lewis, & Hubbard, 

2015; Bhatia et al., 2020), research on the neural representation of line ratios is scarce 

(Jacob & Nieder, 2009a). It is possible that the contradictory results may have been 

due to the differences in the task design. For example, the task in the current study 

used a greater variety of ratios (e.g., 1:3, 1:4, 1:5, 2:3, 2:5, 3:5, 2:9, 3:7, 1:6, 2:7) than 

in prior studies (e.g., Jacob & Nieder, 2009b). Future experiments varying the 

complexity of ratios while controlling for calculation and estimation strategies are 

needed to identify the source of inconsistencies between studies. In any case, it is 

difficult from the lack of neural adaptation effect for fractions and line ratios in the 

present study to evaluate the neuronal recycling hypothesis of relative magnitudes. 

Multivariate analyses do not provide evidence for neuronal recycling of 

magnitudes in the IPS 

To provide further evidence for the neuronal recycling hypothesis, we 

complemented univariate analyses with searchlight RSA. This allowed us to explore 

the relations between the patterns of activation associated with symbolic and non-

symbolic stimuli across magnitude types. Specifically, if similar IPS mechanisms 

process symbolic and non-symbolic stimuli, we reasoned that patterns of IPS activity 

may depend on the type of numerical magnitude (i.e., absolute versus relative) more 

so than they may depend on the presentation format (i.e., non-symbolic versus 

symbolic). In contrast to this hypothesis, RSA revealed differences between neural 

representations of absolute and relative magnitudes (across presentation formats) in 

the left rostro lateral prefrontal cortex (RLPFC) and the right occipital cortices, but not 
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in the IPS. That is, we did not find any evidence that patterns of activity were similar 

between symbolic and non-symbolic stimuli in the IPS (and only depended on the type 

of numerical magnitude). Interestingly, several studies have suggested that the 

RLPFC may support relational comparisons and integrating relational information 

(Krawczyk, 2012). Specifically, relative magnitudes such as fractions cannot be 

understood without relating the two components (numerator and denominator) to each 

other. Similarly, for line ratios, the correct magnitude cannot be determined unless the 

magnitude of the two lines are thought in relation to each other. In line with this claim, 

recent studies have highlighted the role of relational thinking in processing fractions 

and rational numbers (Dewolf et al., 2015; Kalra et al., 2020). Therefore, our finding 

might provide initial evidence linking relational reasoning and relative magnitude 

processing at the neural level. 

Not only did we not find evidence that the IPS represented similarly non-

symbolic and symbolic magnitudes (while distinguishing between absolute and 

relative magnitudes), we found evidence that a cluster of the right IPS represented 

differently non-symbolic and symbolic magnitudes (while representing similarly 

absolute and relative magnitudes). This cluster was part of a larger occipital-parieto-

temporal network distinguishing between non-symbolic and symbolic magnitudes. 

Therefore, multivariate results suggest that patterns of activity in several brain regions 

depend on the presentation format (non-symbolic versus symbolic) more so than they 

depend on the type of magnitudes (absolute versus relative). Although some studies 

have found evidence for overlapping activity between non-symbolic and symbolic 

stimuli, these findings are consistent with a stream of recent evidence suggesting that 

non-symbolic and symbolic magnitudes rely on separate neural resources (Cohen 

Kadosh and Walsh, 2009; Cohen Kadosh et al., 2011 ; Roi Cohen Kadosh et al., 2007). 
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A recent study using MVPA decoding also found distinguishable neural patterns of 

dots and digits in occipital, parietal, frontal, and temporal areas (Bluthé et al., 2014). 

A growing body of evidence on hemispheric specialization within the parietal lobes 

also challenges the idea that a single system processes numbers abstractly. That is, 

the left IPS is often shown to be involved in processing symbolic numbers (Vogel et 

al., 2014) while the right IPS is more often found to be activated during non-symbolic 

number processing, indicating different regions within the parietal lobe for both 

notations (Cantlon et al., 2006; Holloway & Ansari, 2010). Furthermore, a 

developmental meta-analysis focused on symbolic and non-symbolic number 

processing in children also showed the influence of the notation of numbers on the 

neural activation patterns within and outside the parietal areas (Kaufman et al., 2011). 

Therefore, the multivariate results reaffirm the growing body of literature suggesting 

that separate neural regions process both symbolic and non-symbolic magnitudes. 

Conclusion 

In conclusion, the current study shows limited support for the neuronal recycling 

hypothesis. On the one hand, consistent with the hypothesis, univariate analyses do 

show some overlap between the brain regions supporting non-symbolic and symbolic 

absolute magnitudes. However, this overlap was limited to absolute (not relative) 

magnitudes and dependent upon the degree of symbolic math fluency of participants. 

That is, we found an increase in the adaptation effect for numbers (not fractions) as a 

function of math fluency in a region of the left IPS that supports the representation of 

non-symbolic absolute magnitudes. Thus, individuals with higher levels of math 

fluency might be able to better recruit and recycle the IPS pathways involved in non-

symbolic magnitude processing for symbolic tasks. On the other hand, inconsistent 

with the neuronal recycling hypothesis, univariate and multivariate analyses do not 
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provide any evidence that similar IPS brain regions support both non-symbolic and 

symbolic magnitudes across all participants. Instead, we found a region of the right 

IPS encoding differences in format (non-symbolic versus symbolic) across both 

absolute and relative magnitudes. Therefore, our study suggests that IPS activity 

depends on the presentation format (non-symbolic versus symbolic) more than it 

depends on the type of magnitude (absolute versus relative) for most participants. 
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CHAPTER VI: STUDY III 

Bhatia, P., Le Diagon, S., Langlois, E., William, M., Prado, J., & Gardes, M-L. 

(submitted). Impact of a game-based intervention on fraction learning for fifth-grade 

students: A pre-registered randomized controlled study. 

Abstract 

Digital game-based learning is gaining increased attention from both 

researchers and educators for improving mathematics instruction. However, the 

evidence for game-based learning is mixed and research with rigorous research 

design and analyses are limited. Here, in a pre-registered randomized controlled 

study, we investigated whether a fraction game designed collaboratively by 

educational experts and professional game developers may serve as a useful tool to 

enhance students' fraction knowledge. We assigned French fifth-graders to either an 

experimental group who used the game (n=110) or a control group (n=78) who 

received traditional instruction on fractions. Fraction knowledge was assessed pre- 

and post-intervention using a curriculum-based fraction test. Results show students in 

the experimental group did not have superior overall fraction performance than 

students in the control group at the end of the intervention. However, the game had a 

positive effect on decimal learning. We also found a positive relation between game 

performance and overall fraction knowledge scores at post-test. The study highlights 

the critical role of instructional support during game-based learning and the importance 

of game metrics as indicators of personalized assessment tools. Given the increased 

usage of games in learning mathematics, our results may inform rational number 

instruction.  
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Introduction 

Mathematical proficiency is critical for success in later life outcomes, including 

professional and personal prospects (Parsons & Bynner, 2006). Among the range of 

math skills, fraction knowledge forms a crucial component of mathematical proficiency 

because it acts as a bridge between middle school and high school mathematical 

development (Bailey, Hoard, Nugent, & Geary, 2012; Booth & Newton, 2012). Indeed, 

fraction knowledge at 5th grade predicts gains in algebra, calculus, and overall 

mathematics achievement (Bailey et al., 2012; Siegler, Duncan, Davis-Kean, 

Duckworth, Claessens, Engel, Susperreguy, & Chen, 2012). Moreover, mastery of 

fraction computations is also associated with success in other domains like biology, 

chemistry, physics, and many others (Lortie-Forgues, Tian, & Siegler, 2015). Thus, 

fraction knowledge is not only limited to success in mathematics but also central to 

many other domains. However, as detailed below, fractions are particularly difficult to 

learn and teach (Chan, Leu, & Chen, 2007; Ni, 2001; Yoshida & Sawano, 2002).  

Difficulties with fractions 

Difficulties with fraction learning can be attributed to at least two broad reasons. 

First, students often struggle to make connections between the various sub-constructs 

of fractions. Behr and colleagues (1983) suggest that there are six sub-constructs or 

ways to represent fractions: Part-whole, Decimals, Ratios, Quotient, Operators, and 

Measurements. Over-reliance on any one of these sub-constructs leads to constraints 

on understanding fractions (Kieren, 1993). For example, a disproportionate focus on 

the part-whole construct in schools may lead to difficulties in understanding improper 

fractions, but also to difficulties in grasping properties of equivalence, infinite rational 

numbers between any two natural numbers, and fair shares (Behr, Lesh, Post, & 
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Silver, 1983; Pitkethly & Hunting, 1996 as in Misquitta, 2011). Additionally, common 

struggles include the inability to comprehend the infinite ways in which rational number 

magnitudes can be represented (e.g., 2/4 = 1/2 = 0.50) (Vamvakoussi & Vosniadou, 

2010) and the complex procedures involved when solving fraction arithmetic (Lortie-

Forgues et al., 2015; Siegler, Fazio, Bailey, & Zhou, 2013). Thus, successful learning 

of fractions involves making adequate connections between the various ways fractions 

can be represented. 

Second, students often experience difficulties in understanding the magnitude 

of fractions (Van Hoof et al., 2013), which may lead to errors in fraction arithmetic and 

fraction comparison. These difficulties mainly arise due to the phenomenon known as 

the whole number bias. The bias leads individuals to process the components of 

fractions (numerator and denominator) separately, usually because students over-

generalize natural number properties when processing rational numbers. For 

example, a recent study found that eighth-graders were found to choose 19 or 21 as 

the correct answer when solving fraction addition problems 12/13 + 7/8, indicating that 

they summed the numerators or the denominators separately (Lortie-Forgues et al., 

2015). Other studies have shown that even undergraduates excessively rely on the 

magnitude of the components (numerator and denominator) to compare fractions 

(Bonato, Fabbri, Umilta, & Zorzi, 2007; Schneider & Siegler, 2010). Therefore, the 

whole number bias is not restricted to children but is also observed in adults, even 

expert mathematicians (Alibali & Sidney, 2015; Meert, Gregoire, & Noel, 2010; DeWolf 

& Vosniadou, 2015; Vamvakoussi, Van Dooren, & Verschaffel, 2012; Obersteiner et 

al., 2013). Successful learning of fractions involves being able to go beyond 

component magnitudes to grasp the holistic magnitude of fractions. 
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Digital game-based learning: A promising way to teach mathematics with 

conflicting evidence to date 

Research on digital game-based learning (DGBL) has shown potential for 

learning abstract concepts, supporting classroom instruction, and presenting content 

engagingly and innovatively (Al-Azawi, Al-Faliti, & Al-Blushi, 2016; Prensky, 2001). 

Educational researchers have also advocated for using DGBL in curriculum delivery 

due to improvements in student engagement and pedagogical outcomes (Lumsden et 

al., 2016; Prensky, 2001; Squire, 2003; Tompson & Dass, 2000). In keeping with the 

observations above, prior research has shown that DGBL may support mathematics 

learning (Kiili, Devlin, & Multisilta, 2015; Li & Ma, 2010; Gaggi, Ciraulo, & Casagrande, 

2018; Gaggi & Petenazzi, 2019; Riconscente, 2013). In their exhaustive review of the 

literature, Dvijak & Tomic (2011) note that DGBL may contribute “to a more efficient 

and quicker realization of educational goals at all levels of education” (p. 27, Dvijak & 

Tomic, 2011).  

However, evidence for the impact of DGBL on learning is very contrasted. A 

recent meta-analysis examining the effectiveness of DGBL in mathematics learning 

notes a staggeringly low percentage (11%) of studies assessing the empirical 

effectiveness of games (Byun & Joung, 2018). Of the studies that did examine the 

effectiveness of games, the authors found a small effect of the game intervention for 

a majority of studies (9 out of 17), with an overall effect size of d=0.377. This was 

higher than the effect size found in a previous meta-analysis d = 0.16 (Cheung & 

Slavin, 2013). However, these effect sizes are likely inflated because of publication 

bias. Indeed, effect sizes reported in studies that are published in peer-reviewed 

                                            

7 d < 0.2 – small, d ~ 0.5 – moderate, and d > 0.8 – large effect, Cohen (1998) 
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journals are higher than effect sizes reported in unpublished studies and/or studies in 

proceedings (journals: d = 0.44, unpublished: d = 0.14, proceedings: d = 0.08) 

(Wouters & van Oostendorp, 2013). The high variability of effect sizes observed in the 

meta-analysis of Byun & Joung (2018) are also indicative of differences in the 

methods, design, and, content of the games. Approximately 50% of these empirical 

studies had a modest sample size (n ≤ 50) (Ke & Grabowski, 2007; Lin et al., 2013; 

Plass et al., 2013; Sedig, 2007, 2008; Shin, Sutherland, Norris, & Soloway, 2012; Yang 

& Chen, 2010). This is problematic because small sample sizes are biased to produce 

large effect sizes when an effect is found (Cheung & Slavin, 2013). Critically, only 

three studies (out of the 17 analyzed in the meta-analysis) employed a randomized 

controlled design (Plass et al., 2013; Ke, 2008; Kebritchi, Hirumi, & Bai, 2010), which 

provides the most robust evidence in educational studies (Bertram, 2020). Further, 

most of the games that are evaluated for effectiveness are either designed for 

research or include an educational expert (Gresalfi, Rittle-Johnson, Loehr, & Nichols 

2018). This leaves a large proportion of games that self-identify as ‘educational’ 

unevaluated for their support in learning. Therefore, previous studies paint a mixed 

picture of the effectiveness of DGBL in mathematics learning. 

DGBL may complement traditional classroom instruction 

The mixed findings on the effectiveness of DGBL require more rigorous 

experimental studies, with random assignment of participants in experimental and 

control groups and pre-registration of hypotheses, research design, and methods to 

limit analytic flexibility. It also requires a critical examination of the limitations of game-

based learning. A balanced discourse around educational games and their role in 

learning can help increase learning outcomes by improving the design of the 

intervention and the development of future games. Here we review some difficulties 
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reported in the literature on digital games and their recommendations to enhance 

game-based learning.  

The first difficulty pertains to the pedagogical validity of the games, i.e., the 

game design and transfer of knowledge and skills (Linderoth, 2012; Tobias, Fletcher, 

& Wind, 2014). Not all games are inherently educational and have the potential to 

facilitate learning (Linderoth, 2012). Thus, it is important to design games while 

focusing on the learning content and an in-depth performance and exploration of the 

content using game-play (Linderoth, 2012). Indeed, a collaboration between the game 

designers and educational experts might be the best way forward when designing 

games for teaching and learning. Most technological tools focused on mathematics 

learning and teaching are generally designed by technologists or game experts (Gaggi 

& Petenazzi, 2019). Since these commercial games do not use insights from teachers 

or mathematics education researchers, they tend to focus primarily on procedural 

knowledge rather than concepts (Kiili, Moeller, & Ninaus, 2018). Contrarily, serious 

video games that have been shown to influence learning are often developed by 

concerted efforts between mathematics education researchers and game designers 

(Cyr, Charland, Riopel, & Bruyere, 2019). Thus, the design of the game is critical when 

supporting learning outcomes.  

A second difficulty is the ability to transfer the skills learned in the game to real-

world problems or assessments (Barnett & Ceci, 2002; Rick & Weber, 2010). Indeed, 

even if games might improve some sets of skills, it is often not clear that this could be 

transferred to other related tasks. Therefore, it is important to use pre and post-test 

standardized instruments or country-based assessments to evaluate the effects of 

interventions (Bertram, 2020).  
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A third difficulty is the ability to contextualize the learning content of game 

(Tobias et al., 2014). This can often be improved by debriefing and discussions with 

the teacher and/or peers. The use of game-based learning along with traditional 

instruction might be helpful to support classroom instruction and allow for a more 

personalized learning experience (Osguthorpe & Graham, 2003). Instructional support 

has also been shown to enhance game-based learning environments by focusing the 

cognitive resources of learners on content rather than the narrative of the game 

(Wouters & van Oostendorp, 2013). For instance, students can benefit from their peers 

and teachers when solving problems matched at their competency and skill levels. 

Overall, while the impact of DGBL alone on learning is debatable, incorporating DGBL 

with classroom instruction may help teachers to teach abstract and difficult concepts 

and also aid in student learning and engagement.  

Fractions and DGBL 

As reviewed above, fractions are notoriously difficult to teach and learn. 

Integrating thoroughly designed educational games to aid in fraction instruction might 

support teachers and learners when learning fraction concepts and procedures. To 

our knowledge, there are five serious video games in the domain of fraction learning 

mentioned in the literature. These include Refraction (Martin, Petrick-Smith, Forsgren, 

Aghababyan, & Janisiewicz, & Baker, 2015), Semideus (Ninaus, Kiili, Mcmullen, 

Moeller, 2017; Kiili et al., 2018), Motion math (Riconscente, 2013), Abydos (Masek, 

Boston, Lam, & Corcoron, 2017), and Slice fractions (Cyr et al., 2019). The games 

were developed by either the researchers themselves or educators and aimed at 

enhancing conceptual knowledge of fractions. These games focus on specific fraction 

concepts.  
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Refraction (Martin et al., 2015) and Slice fractions (Cyr et al., 2019) are based 

on the concept of splitting fractions (part-whole representation of fractions). Both of 

these games have been found effective in previous studies (Martin et al., 2015; Cyr et 

al., 2019), with gains in the post-test assessment of fraction knowledge. Motion math 

(Riconscente, 2013) and Semideus (Kiili et al., 2018) were designed based on the 

measurement interpretation of fractions and used number lines to teach fraction 

concepts. The study evaluating Motion math did not include a comparison control 

group but showed significant improvement in fraction knowledge in the game group 

(Riconscente, 2013). On the other hand, the study evaluating Semideus had a 

comparison control group and showed significantly better performance in post-test 

fraction knowledge in the game group (Kiili et al., 2018). While both the games showed 

learning gains in fraction knowledge, it is difficult to comment on the relative 

effectiveness of the game as compared to other fraction learning approaches 

(Riconscente, 2013; Kiili et al., 2018). Lastly, Abydos (Masek et al., 2017) included 

high-level fraction concepts such as equivalent fractions, identifying least common 

multiples, addition, and subtraction of fractions. The study showed a significant 

increase in post-test scores in the game group as compared to the control group.  

While the aforementioned studies indicate some effectiveness of previously 

developed fraction games, these games and the associated studies have several 

important limitations. First, despite researchers and educators' demand for a more 

holistic understanding of all interpretations or sub-constructs of fractions (Kieren, 

1993; Lamon, 2001 as in Charalambous & Pitta-Pantazi, 2007), the games all focus 

on a specific interpretation/sub-construct of fractions (Behr et al., 1993). For instance, 

Refraction and Slice fraction focus on the concept of splitting or equipartitioning, 

whereas Semideus and motion math makes exclusive use of fractions number lines. 
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While each of these aspects is supported by previous research (Hackenberg & Lee, 

2016; Fuchs, Schumacher, Long, Namkung, Hamlett et al., 2013), over-reliance on 

any one sub-construct of the fraction may lead to misconceptions and constraints in 

understanding (Kieren, 1993; Pitkethly & Hunting, 1996). Second, some of the studies 

evaluating the effectiveness are these games tend to have modest sample sizes (e.g., 

Semideus: n = 54, Slice fractions: n = 18 to 25 per group), which raises power issues 

(Brysbaert, 2019). Third, studies evaluating Semideus (Ninaus et al., 2017), Refraction 

(Martin et al., 2015), and Motion math (Riconscente, 2013) did not include a control 

group. This makes it impossible to (1) know whether learning gains can be attributed 

solely to the game and (2) conclude about the effectiveness of the game relative to 

other methods of rational number instruction (including traditional classroom 

instruction). Fourth, studies on fraction games that did include a control group (i.e., 

Abydos (Masek et al., 2017), Slice fraction (Cyr et al., 2019), Semideus (Kiili et al., 

2018)) exclusively employed frequentist statistics, making it difficult to know if any lack 

of difference between the experimental and control groups supports the null 

hypothesis or if it may reflect a lack of power (Wagenmakers et al., 2008). Finally, 

studies have not always used an exhaustive, standardized, or country-based 

assessment to test for fraction skills (Martin et al., 2015; Kiili et al., 2018). The studies 

that did use fraction test items from standardized assessments also vary in their 

selection of the test items, raising the possibility that the results are dependent upon 

that selection (Riconscente, 2013; Masek et al., 2017). This highlights the need for 

pre-registering hypotheses and methods when assessing the impact of an intervention 

(Bertram, 2020; Nosek, Ebersole, Dehaven, & Mellor, 2018). However, to our 

knowledge, there has not been any preregistered study on DGBL and fraction learning. 
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The current study 

In the current pre-registered randomized controlled study, we aimed to evaluate 

the effectiveness of a game-based training of rational number skills on fraction 

knowledge of children in 5th grade. The game, i.e. Math Mathews Fractions, was 

designed to complement fraction learning in the classroom with a focus on 

understanding and building connections with the multiple representations of fractions. 

Fraction instruction in the classroom is often disproportionately focused on a specific 

representation of fractions, such as part-whole (Fuchs et al., 2013). This over-

representation may hinder the acquisition of other fraction concepts like improper 

fractions and the infinite divisibility of fractions (Pitkethly & Hunting, 1996 as in 

Misquitta, 2011) leading students to err on basic fraction concepts. Based on bridging 

the multiple representations of fractions (e.g., part-whole, measurement, and 

operations), we expected that Math Mathews Fractions might serve as a tool to help 

teachers teach the various representations of fractions in the classroom. In addition, 

the game includes elements of a personalized learning environment such as self-

regulated learning (increased complexity of levels, repetition of tasks) and real-time 

feedback (wrong attempts decrease total points) (Basham, Hall, Carter, & Stahl, 

2016). 

Participants were recruited from five public schools (i.e., 10 classrooms) in 

Lyon, France. Classrooms were randomly assigned either to the experimental group 

(n=110) or the control group (n=78). The study involved a total of eight sessions and 

was conducted over four weeks. During these sessions, students from the 

experimental group played with Math Mathews Fractions in the classroom (each 

student had a tablet) with limited teacher interaction. In contrast, students from the 

control group practiced similar rational number concepts with their teacher. Fraction 
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knowledge of both groups was assessed pre and post-intervention using paper-based 

tests. The tests, hypotheses (based on prior research on serious video games and 

mathematics learning), and analytic strategy were pre-registered. 

Methods 

Participants 

Participants were 193 fifth graders recruited from five public schools in France. 

Data were collected for two years at the middle of their school year (typically around 

the time when fraction instruction was practiced in class), i.e., December 2018, 

February 2019 for year 1, January 2020, and February 2020 for year 2. The 

experiment was approved by the school board (who designated the schools) and was 

performed following the ethical standards established by the Declaration of Helsinki. 

Parents gave their written informed consent and children gave their assent to 

participate in the experiment. Three schools were located in a neighborhood in which 

the median equivalized disposable income is above the national median equivalized 

income of € 20,809 (i.e., € 26,190), whereas two schools were located in a 

neighborhood in which the median equivalized disposable income is below that 

national median equivalized income (i.e., €19,032) 

(https://www.insee.fr/fr/statistiques). Enrollment in all public schools in France is 

mostly based on the neighborhood in which the children live and is free of charge for 

parents. Therefore, the sample enrolled was most likely representative of the 

population of the district. 

From the original sample of 193 students, children were excluded if they had a 

diagnosed disability (n=3) or if their parents did not give consent (n=2). Therefore, our 

final sample consisted of 188 students (mean age = 10.5; SD = 0.32; 91 males). The 

https://www.insee.fr/fr/statistiques
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classes were randomly assigned to the two conditions (control and experimental) by 

lottery. The control group had 78 students and the experimental group consisted of 

110 students. Participants from the two groups did not differ in age (BF01 = 4.57, F 

(1,182) = 0.642, p < 0.424) and gender (χ² (1, N = 188) = 1.58, p = 0.209). Note that 

we also presented a sample of fourth-graders with the game. At the end of the first 

year of testing, however, we realized that the game (particularly in its highest levels) 

was not appropriate for children in 4th grade. Indeed, most children could not reach the 

highest levels, teachers reported several difficulties encountered by students, and we 

observed several instances of students guessing and skipping levels during a 

classroom observation. Therefore, we decided to stop collecting data at that level. The 

only exception was for mixed-grade classrooms (i.e., classrooms with both fourth and 

fifth graders), in which the game was presented to all children for practical reasons 

(only data on 5th graders were analyzed). 

Pre-registration 

The study was pre-registered using the AsPredicted.org template via the Open 

Science Framework at OSF link. There were four main differences with the pre-

registration. First, frequentist analyses are presented along with the pre-registered 

Bayesian analyses. Second, a delayed post-test could not be conducted in the second 

year due to Covid-19 and school closures in France. Third, the total number of children 

that were analyzed (n = 188) was less than those pre-registered (n = 240). This was 

because of absenteeism, lack of parental consent, and diagnosed disability. This was 

also because we realized that the game was not appropriate for 4th graders and had 

to reorient our recruiting strategy towards 5th graders. Finally, the mathematics anxiety 

test used in the first year (Carey, Hill, Devine, & Szűcs, 2017) was replaced in the 

second year by a more detailed test (Henschel & Roick, 2018) due to the difficulties 

https://osf.io/zxm5c/?view_only=d2b0e9e89aab4fcc963900b8e249f765
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encountered by students when filling the questionnaire. Particularly, students had 

difficulties understanding several sentences in the French translation of the original 

questionnaire. 

Measures 

Both groups were tested for their (1) arithmetic fluency, (2) mathematics 

anxiety, and (3) fraction knowledge at two separate time points (before and after the 

intervention).  

First, arithmetic fluency was measured using the Math Fluency subtest of the 

Woodcock-Johnson III battery. The Math Fluency sub-test is a timed test in which 

participants have to solve as many single-digit additions, subtraction, multiplication, 

and division problems as they can within 3 min (Woodcock et al., 2001). The test was 

administered in the classroom by the researcher with the support of the teacher. The 

items were marked and coded by two research assistants and verified independently 

by another researcher. Raw scores range from 0 to 160. The score is calculated based 

on the total number of correctly solved items in 3 minutes. 

Second, mathematics anxiety was measured using two different tests. The 

modified abbreviated mathematics anxiety scale (Carey et al., 2017) was used in 2019 

whereas the affective and cognitive mathematics anxiety test was used in 2020 

(Henschel & Roick, 2018). For both the tests, items were read aloud by the researcher 

or the teacher, and children were given extra time, in the end, to fill the questionnaire 

or clarify their doubts. The modified mathematics anxiety (Carey et al., 2017) score 

was calculated by the addition of all responses on the 5-point Likert scale for all the 9-

items (score ranged from 9 to 45). The affective and cognitive mathematics anxiety 
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test had 36 items measured by a 4-point Likert scale. The score is calculated based 

on the average of the score on each sub-test (scores range from 1 to 4).  

Third, fraction knowledge was assessed using a test that was designed to 

assess fraction skills according to the French national curriculum standards. The test 

consisted of 24 questions with different items. Specifically, it assessed 6 

competencies, some based on prior research (Rodrigues, Jordan, & Hansen, 2019): 

fraction concepts, fraction arithmetic, symbolic representation, number line, word 

problems, and decimals. Fraction concepts were measured using a total of 10 

questions (question no. 1, 2, 3, 4, 5,10, 11, 16, 17, 18). The items assessed part-whole 

understanding of area models, set models, equivalence, comparing fractions, ordering 

fractions, and, mixed fractions. Fraction arithmetic skills were measured using 4 

questions (Q.12, 13, 19, 20). Each question had 3 to 5 items and participants were 

presented with addition and subtraction problems written in symbolic form. Symbolic 

representation of fractions was tested using 2 types of questions (Q. 6, 7) consisting 

of 4 items each. The first type was identifying the verbal representations of fractions 

(e.g. three halves) and writing the symbolic form (
32). The second type was identifying 

the symbolic form and writing verbal representation. Fraction number line was 

assessed using two questions (Q. 8, 9). The questions involved placing four fractions 

on the number line (e.g. 
85, 

45, 
165 , 

105  Q.8a), and the other type involved finding the 

fractions marked on the number line. Word problem-solving skills were measured 

using four-word problems (Q. 21, 22, 23, 24). Lastly, decimal skills were measured 

using two questions requiring conversion of the fraction to decimals and vice-versa 

(Q.14,15). Cronbach’s α ranged from 0.719 to 0.832 across all 6 measures (fraction 

concepts: 0.815, arithmetic skills: 0.830, symbolic representation: 0.771, number line: 
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0.832, word problems: 0.719, decimals: 0.822), indicating acceptable to very good 

internal consistency. The inter-rater reliability for the categorization of questions by 

three independent researchers for all the above measures was very good (Cohen’s 

kappa = 0.84).  

The fraction achievement test was scored using a template with correct 

answers by two independent research assistants and a researcher. The data entry 

was checked independently by two other research assistants to identify incorrect 

entries as well as correction errors on the paper-based tests. Any discrepancy in 

scoring or data entry was discussed among the three coders and if one of the coders 

was not convinced the item was marked for rechecking by a researcher in 

mathematics education in the lab. The inter-rater reliability between the final two 

researchers was very strong (Cohen’s kappa = 1). For each item, the correct response 

was scored 1 and the incorrect/ no response (marked as ‘do not know/?’ by the 

participant) was scored 0. The percentage correct was calculated for each of the six 

competencies.  

Fraction game 

Math Mathews Fractions is an educational video game developed by the studio 

Kiupe in collaboration with a mathematics education researcher (the last author of the 

current paper). The game is about the adventures of a pirate who has to collect gems 

(treasure) by solving different challenges (i.e., modules). The game progression is in 

line with the objectives and curriculum standards of the French school system for 

children aged 9-12. Thus, the play situations (i) increase in difficulty throughout the 

game and (ii) remain appropriate for children aged 9-12. The modules are typically 

different types of questions involving rational numbers. Players must choose or 



 

 148 

construct the answer to proceed further. For example, in the Dragon module, students 

are asked to feed the dragon the specified amount of fraction (e.g. 2/6). For gaining 

maximum gems on this module, the students must slice the rectangle into six parts 

and feed two parts to the dragon in their first attempt. There are 13 modules based on 

the curriculum standards in the French school system (Table 1 and Fig. 1). Each 

module is presented ten times throughout the game and can be presented several 

times during a level. The modules include specific fraction competencies like fraction 

concepts, arithmetic, word problems, number lines, and decimals (Table 1). The game 

consists of 12 levels. The game was played through an application pre-installed on the 

tablets. Each student had to create a profile with a pseudonym before starting the 

game. The first level was preceded by a small video to familiarize players with the 

basic controls and rules of the game as well as to guide them about the objective of 

the game. The game was configured in a way that each player had to correctly perform 

in all the modules that were visible to them in the game to finish the levels and only 

then could they proceed to the next level. The interface of the game also consists of a 

journal and a calculator. The journal was used to teach the player about the rules of 

each module and the fraction concepts involved in the module. Students could consult 

the journal anytime during the game by tapping on the icon.  
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Figure 1. Examples of the interface of the game showing the different modules that 

include different representations of fractions. A. Here the player has to split the block to 

feed the dragon 
26  . B. Player must select 

34 of the rectangular surfaces to proceed. Here, 

the player has to select 6 blocks from the total of 8 blocks. C. Player must associate each 

fraction (
32, 

106 , 
63) to the shaded hexagons, trapezoids, and, rectangles. D. Player has to 

place the fraction 
42  on the 0-2 number line. E. Player must move the square number blocks 

to indicate the fraction marked on the number line. F. Player must find the segment that 

measures 
13 and 

18  of the red segment. On the picture the student has already placed the 13 segment correctly 
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Table 1: Description of the game modules and objectives in the French national curriculum 

Curriculum Objective Modules Fraction Competencies 

Make connections between different 

representations of fractions 

Use fractions to divide quantities 

Broken Wheel 

Dragon 

Warrior 

Weight Door 

Fraction Concept (part-whole, 

area=circle) 

Place fractions on a graduated 

number line 

 

Trapped Passage Fraction Number Line 

Identify fractions on a graduated 

number line 

 

Graduated bridge Fraction Number Line 

Use fractions to measure quantities 

Make connections between different 

representations of fractions 

Compare two simple fractions 

Totem 

Organ 

Fraction Concept - measure, 

Length 

Sorting fractions in ascending / 

descending order 

 

Skull Fraction Concept - Ordering 

Establish equality between two simple 

fractions/ equivalence 

Compare two simple fractions 

Add fractions with the same 

denominator 

Pit 

Trapped Chest 

Spider 

Fraction Concept- Equivalence 

Fraction Arithmetic (Level 7 to 9, 

11) 

 

Solve Word Problems Using Simple 

Fractions 

Riddles Word Problem 

 

Game metrics 

The Math Mathews game recorded the player’s individual scores on each level. 

The data logged as per the pseudonym data profiles included: 
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i. Maximum Level Achieved: the highest level that a player successfully 

completed 

ii. Number of attempts on each mini-game: number of times a player re-

tried a module in a level before they moved on to the next module. 

iii. Maximum points on a module: number of gems that could be obtained 

when the player correctly solved the module in a level. 

iv. Obtained points on a module: number of gems that player collected on 

each module within a level. 

v. Game Performance: (obtained points/ maximum points) *100. 

Procedure 

The study was conducted in eight sessions and varied in duration between the 

two years depending on teacher availability (4 to 5 weeks). Before the study, teachers 

were presented with the objectives of the game and the practice book that could be 

used in the control group. Teachers were also given tablets to play and understand 

the game before the sessions started. They were free to use the game either as part 

of instruction in the classroom or as independent work time for students. Thereafter, 

in the first week of experimentation, all students completed the pre-tests on two 

separate days. The first day included the arithmetic fluency and mathematics anxiety 

test and the second day assessed the untimed fraction achievement test. The 

following four weeks included paper-based practice sessions for the control group and 

individual game sessions for the experimental group (two 45 min pre-tests – four 45 

min game-play and paper-based practice sessions – two 45 min post-test sessions). 

The control group started with an introduction to the fraction concepts and then solved 

problems either individually or in groups depending on the teacher’s mode of 

instruction. The problems practiced during the session were matched on competency 
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and rigor to the experimental group (see Figure 2). All teachers were asked to select 

the problems from a specific book (Anselmo & Zucchetta, 2018). The experimental 

group had students build their profiles on the tablet during the first session and 

thereafter the students played the game individually on the tablets. The students were 

allowed to help each other during the playing sessions and seek guidance from the 

teacher and the experimenter. Even though the game included sound effects, the 

students had to keep the game muted in the classroom. Students in both groups could 

review and discuss fraction concepts encountered during the paper and game-based 

sessions with the teacher or the experimenter. After the fourth session, the 

experimenter administered the post-tests in two sessions similar to the pre-test.  

 

Figure 2. Examples of exercises practiced in the control group (in the original French). In 

Exercise 11, students have to using the unity band to measure the length of segments. In 

Exercise 47, students have to indicate the value of the marked point A on the number line. 

In Exercise 35, students have to match the equal numbers in the two columns. In Exercise 

68, students are given different cut-outs of shapes. They have to cut and paste the shapes 

that correspond to 8/12 of the surface shown. In Exercise 77, students are given different 

cut-outs of shapes. They have to cut and paste the shapes that correspond to the sum of 
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2/5 + 4/5 of the surface shown. In Exercise 79, students are shown with a total surface. 

For each colored rectangle on the left, they have to choose the correct fraction on the 

right. 

Analyses 

Data were analyzed using both frequentist and Bayesian statistics. Due to 

absenteeism, missing data were removed listwise for the specific tests analyzed (less 

than 15% of the data on each test). Post-test arithmetic fluency scores, post-test 

mathematics anxiety scores (separately for each year), and post-test fraction 

achievement scores were entered in frequentist ANCOVAs with the between-subject 

factor Group (control, experimental). Pre-test scores were entered as a covariate to 

control for potential differences in baseline scores.  

Additionally, Bayesian statistics were used to estimate the strength of evidence 

for both the null (no difference between groups, H0) and alternate hypothesis 

(difference between groups, H1). Post-test scores were entered as outcome variables 

of Bayesian ANCOVAs with the between-subject factor Group (control, experimental) 

and pre-test scores as covariate. Following Jeffreys (1961), a BF< 3 was considered 

anecdotal evidence, a 3<BF< 10 was considered substantial evidence, a 10 < BF < 

30 was considered strong evidence, a 30< BF< 100 was considered very strong 

evidence, and BF > 100 was extreme evidence that our data are more likely under the 

alternate than the null hypothesis (i.e., BF10) or under the null hypothesis than the 

alternate hypothesis (i.e., BF01).  

Finally, we calculated frequentist and Bayesian bivariate correlations between 

the game metrics and the fraction competency scores. All analyses were performed 

with the JAMOVI software (The Jamovi project, 2019). 
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Data Availability 

All tests (translated and original versions) and anonymized scored data for each 

participant are available via the Open Science Foundation (OSF) at OSF Link. A brief 

demonstration of the Math Mathews Fractions game is available online 

Results 

Pre-registered hypotheses  

We made 3 pre-registered predictions. First, we expected a higher overall score 

on the fraction knowledge test for the experimental group as compared to the control 

group at the end of the intervention. Second, we expected this effect to be specific to 

fraction learning, with no post-test difference in performance between the control and 

the experimental group on arithmetic fluency. Third, because it involves learning math 

with a video game, we expected that the intervention might have an effect on children’s 

mathematics anxiety levels (with higher post-test mathematics anxiety scores in the 

control group as compared to the experimental group).  

Confirmatory findings  

Post-test scores for each group are shown in Figure 3. First, in contrast to our 

prediction, fraction post-test scores were not higher in the experimental than in the 

control group. Frequentist analyses even showed that fraction post-test scores were 

lower in the experimental than in the control group after controlling for pre-test scores 

(F (1,162) = 5.66, p = 0.019, η2p = 0.034), though Bayesian analyses only indicated 

anecdotal evidence for this difference (BF10 = 2.16). Second, in line with our 

predictions, there was no significant main effect of group on arithmetic fluency post-

test scores after controlling for pre-test scores (F (1,158) = 0.53, p = 0.468, η2p = 

https://osf.io/zxm5c/?view_only=d2b0e9e89aab4fcc963900b8e249f765
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0.003). Bayesian statistics also indicated substantial evidence for a lack of difference 

between groups (BF01= 4.56). Third, in contrast to our predictions, no significant main 

effect of the group was observed for post-test mathematics anxiety scores after 

controlling for pre-test anxiety scores (2020: F (1,107) = 0.027, p = 0.871, η2p = 0.000, 

2019: F (1,58) = 1.13, p = 0.293, η2p = 0.019). Bayesian statistics indicated substantial 

and anecdotal evidence for a lack of difference between groups (2020: BF01 = 4.73; 

2019: BF01 = 2.46). Thus, there was no evidence, across all children and skills 

practiced in the game, that children who experienced the video game learned more 

about fractions than children who did not experience the game.  
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Figure 3. Student performance in the post-test (after controlling for baseline scores) for 

the control and experimental group. A. Fraction Knowledge. B. Arithmetic Fluency. C. 

Mathematics Anxiety Year 2019 D. Mathematics Anxiety Year 2020. Each dot represents 

the score of a student. Error bars depict the standard error of the mean. 

Exploratory findings: Are effects dependent on competency? 

The pre-registered analyses above show that the intervention does not 

positively affect overall fraction scores in children. However, the fraction knowledge 

test assessed 6 major competencies: fraction concepts, fraction arithmetic, symbolic 
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representation, fraction word problems, fraction number lines, and decimals. 

Therefore, it is possible that the intervention may affect some competencies more than 

others. To test for this possibility, frequentist and Bayesian ANCOVAs were conducted 

on each of the 6 competency sub-scores (controlling for their specific baseline scores) 

(Figure 4). First, frequentist ANCOVAs revealed a main effect of group on fraction 

concepts (F (1,162) = 6.19, p = 0.014, η2p = 0.037) and fraction arithmetic (F (1,161) 

= 14.52, p < 0.001, η2p = 0.083), with lower post-test scores in the experimental as 

compared to the control group (Fig. 4A and Fig. 4B). Bayesian statistics indicated 

anecdotal evidence for a difference between groups on fraction concepts (BF10 = 2.74) 

and strong evidence for a difference between groups on fraction arithmetic (BF10 = 

99.41). Second, there was no main effect of group (all Fs < 1.95, all ps > 0.164) on 

symbolic representation (Fig. 4C), fraction word problems (Fig. 4D), fraction number 

lines (Fig. 4E). Bayesian statistics indicates a substantial evidence for a lack of 

difference between groups on symbolic representation (BF01 = 5.40) and fraction 

number line (BF01 = 3.01) and an anecdotal evidence for word problems (BF01 = 2.44). 

Third, frequentist ANCOVAs revealed a main effect of group on decimals (F (1,161) = 

7.23, p = 0.008, η2p = 0.043), with higher post-test scores in the experimental as 

compared to the control group (Fig. 4F). Bayesian statistics also indicated substantial 

evidence for a difference between groups on decimals (BF10= 4.81). Therefore, the 

only fraction competency for which we measured a positive effect of the game was the 

understanding of decimals.  
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Figure 4: Student performance on different fraction competencies in the paper-based 

post-tests (after controlling for baseline scores) for the control and experimental group. A. 

Fraction Concepts. B. Fraction Arithmetic. C. Symbolic Representation D. Word Problem. 

E. Fraction Number Line F. Decimal. Each dot represents the score of a student. Error 

bars depict standard error of the mean. 

Exploratory Findings: Are effects dependent on individual differences in-game 

usage? 

It is possible that the intervention may only affect the competencies of children 

who progressed the most at the game, thereby benefiting from its content. To test for 

this possibility, we used frequentist and Bayesian correlation analyses to identify 

relations between game metrics and fraction knowledge while controlling for pre-test 

scores (see Table 2 and Figure 5). Frequentist analysis revealed a significant positive 

correlation between overall game performance and fraction post-test scores (r (92) = 

0.292; p = 0.005), indicating that greater overall in-game performance (obtained 
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points/maximum points*100) was associated with better fraction knowledge at post-

test. Bayesian analyses also indicated substantial evidence for this correlation (BF10 = 

6.57). Therefore, the more children gain points in the game, the greater their score at 

post-test. However, maximum level attained (r (92) = 0.182; p = 0.083) and number of 

attempts (r (92) = -0.038; p = 0.718) did not correlate significantly with the fraction 

post-test scores. Bayesian analyses indicated anecdotal (BF01 = 1.74) and substantial 

(BF01 = 7.198) evidence for no association between the variables respectively.  

 

Figure 5: Correlation of fraction post-test scores and game variables. Grey shaded area 

indicates 95% confidence region for the correlation. 
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Table 2: Semipartial Correlations between fraction post-test scores and game metrics for 

the experimental group 

   1. 2. 3. 4. 

1. Fraction post-test scores r - - - - 

BF10  

2. Game Performance r 0.292** - - - 

BF10 6.57 

3. Maximum Level Attained r 0.182 0.356*** - - 

BF10 0.573 50.093  

4. Number of Attempts  r -0.038 -0.601*** 0.294** - 

BF10 0.139 5.012e+7 6.999 

Notes. * p < 0.05 ** p < 0.01, *** p < 0.001.  

BF10 indicates the strength of the evidence for the alternative (there is an association between the 

variables). Bayes factors BF < 3 are considered anecdotal; 3 < BFs < 10 are considered substantial; 10 

< BFs < 30 are considered strong; 30 < BFs < 100 are considered very strong and BFs > 100 are 

considered decisive. BFs > 3 are indicated in bold. All variables are controlled for baseline fraction pre-

test scores.  

 

Discussion 

To our knowledge, this is the first pre-registered, randomized controlled study 

to examine the impact of a game-based intervention on fraction knowledge of fifth 

graders. In the following, we first discuss the findings of the impact of the game on 

fraction learning and then elaborate on the game metrics to better understand the 

game-based intervention and its impact on fraction learning.  
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Math Mathews Fractions does not promote overall fraction knowledge  

Contrary to our preregistered hypothesis, the students in the experimental 

group did not outperform the control group on fraction knowledge. These results are 

inconsistent with the nascent literature on game-based interventions and fraction 

knowledge development. However, as mentioned in the introduction, prior literature 

has several limitations that might partially account for these conflicting results. For 

example, unlike several other studies on fraction learning and game-based 

intervention (Kiili et al., 2018; Riconscente, 2013; Masek et al., 2017; Cyr et al., 2019), 

our study included an active control group, meaning that the teachers were given a 

sample book (Anselmo & Zucchetta, 2018) to practice fraction concepts matched in 

rigor and competency to the game. Control groups in prior studies included either 

regular math instruction or regular fraction-based instruction. Hence, the two groups 

are not often matched on rigor or the competencies practiced, which makes it difficult 

to compare game-based intervention and traditional instruction. Our findings are 

consistent with game-based interventions that have utilized an active and well-

matched control group (Carr, 2012; Singer, 2015). Unlike several other studies 

(Riconcente, 2013; Cyr et al., 2019; Kiili et al., 2018), our study also included a 

relatively large sample size and both frequentist and Bayesian analyses thereby 

providing robust evidence for the findings without compromising on the power.  

What, then, could explain the lack of benefits from the game across all 

participants? We can mention two potential reasons for this lack of positive difference 

between the two groups. First, it might be attributed to the limited instructional support 

in the experimental group. Indeed, the essential role of instructional support during 

gameplay has been highlighted often in literature (Wouters & van Oostendorp, 2013). 

The use of well-designed instructional support during DGBL can help learners focus 
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on relevant information in the game that contributes to learning (e.g. modeling, 

reflection, context integration) (Wouters et al., 2008; Wouters & van Oostendorp, 2013, 

2017). Though the teachers were given two training sessions before the study began, 

these were limited to understanding the interface and objectives of the game. Our 

observations in the classroom also indicated that the teacher and student interactions 

were relatively limited in the experimental group (mostly when students asked 

questions about the game interface or a specific concept). Thus, students were 

essentially playing the game individually without much debriefing or intermittent 

instructional sessions by the teachers. Therefore, future research designed to promote 

the active involvement of teachers during the game-based intervention might promote 

fraction learning. 

Second, in efforts to match the rigor and competency in both groups, we might 

have introduced a solid method to teach and practice fraction curriculum to the 

teachers in the control group. Classrooms in the control group included group-based 

learning with peer-to-peer interactions and also other concrete activities that were 

provided in the book (see Figure 2). Teachers who used the exercises from the book 

systematically could have inadvertently led the instruction using the Concrete Pictorial 

Abstract (CPA) method. The CPA method is a learning approach to teach 

mathematical concepts that have shown improvement in mathematical learning 

outcomes in elementary and high school students (Salingay & Tan, 2018; M Salimi et 

al., 2020). The method is based on reconstructing knowledge using a three-stage 

approach through manipulation of concrete objects, representation of images, and, 

finally, abstract notation or symbols (Witzel, 2005). Indeed, the book provided tools for 

physically manipulating concrete objects and learning through images (Anselmo & 

Zucchetta, 2018). Thus, it might be possible that in our effort to match the two groups 
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on competencies, we created a particularly efficient control group. This might explain 

the fact that students from that group showed better overall fraction knowledge at the 

post-test than the experimental group. 

Math Mathews Fractions promotes decimal knowledge  

Though the game did not show any impact on the overall fraction learning 

scores, we examined the impact of the game on different competencies in the pre and 

post-paper-based tests (fraction concepts, fraction arithmetic, symbolic 

representation, fraction word problems, fraction number lines, and decimals). These 

exploratory analyses indicated that the game had no or limited effect on the symbolic 

representation, fraction word problems, and fraction concepts (i.e., which only showed 

anecdotal evidence for a difference). It did, however, have an effect (with at least 

substantial evidence in Bayesian terms) for decimals and fraction arithmetic.  

First, students who experienced the game scored higher on decimal knowledge 

at post-test than the control group. The difference in performance could be attributed 

to the structure of the typical instructional sequence for rational numbers in traditional 

classrooms (i.e. fraction first, decimals next, and percentages last) as compared to the 

game which focused on building connections between the two notations (fractions and 

decimals). Understanding and translating between multiple interpretations of rational 

numbers and the three notations (decimals, fractions, and percentages) is a requisite 

skill for mastery of rational number knowledge (Tian & Siegler, 2017). Studies have 

shown that children and adults face difficulties when translating between decimals and 

fractions, thus revealing their poor understanding of these alternate numerical 

notations (Stigler et al., 2010; Vamvakoussi & Vosniadou, 2010). A curriculum 

intervention study on fourth graders aimed at building these connections noted a 
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higher performance on translation tasks (fractions to decimals) in the experimental 

group as compared to the control group (typical teaching condition: fractions first, 

decimals, and percentages later) (Moss & Case, 1999). In the current study, despite 

the control classrooms practicing decimal concepts in the latter part of the sessions, 

the students did not perform better than the experimental group on decimals (level 9 

onwards). Thus, this might highlight the importance of instruction based on making 

connections between multiple notations of rational numbers rather than teaching them 

as distinct number types. Another reason could be the type of decimal problems in the 

pre and post-test. These were limited to conversion of decimals to fractions and vice 

versa (e.g. 0.25 =? , 
710 = ?). Interestingly, this is the key skill that was practiced by 

students in the experimental group. An example of the decimal games practiced is 

shown in Figure 6. Here, the students have to select or choose the fraction that is 

equal to the given decimal, similar to the paper-based tests. Therefore, this along with 

the mode of instruction might explain the better performance of students in the 

experimental group as compared to the control group on decimals.  
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Figure 6: Examples of the core decimal concepts that were present in the game. 

Second, fraction arithmetic performance was lower in the experimental than in 

the control group after the intervention. One can speculate that the control group 

practiced more problems with the teacher than the experimental group. This is mainly 

because in the game the problems on fraction arithmetic are at higher levels (above 

level 7, see Table 1.). Thus, the game may not allow for enough training to perform 

these procedural concepts. Prior literature has also shown fraction arithmetic rules to 

be varied and complex (Siegler & Lortie-Forgues, 2017). The complexity and the 

procedural nature of these problems might then benefit from a more instructional, 

teacher-led practice approach. Again, this highlights the importance of instructional 

support during DGBL (Wouters & van Oostendorp, 2013, 2017), as well as the 

presence of an active control group when comparing game-based interventions to 

traditional classroom instruction.  
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Taken together, these exploratory findings indicate two interesting aspects of 

game-based training. First, our game-based training was more effective than 

traditional classroom instruction for making connections between fraction and decimal 

magnitude representations. Second, given the complexity of fraction arithmetic 

procedures, a rigorous teacher-led practice approach might be more helpful than 

game-based training. These two results extend the nascent literature on fraction 

game-based learning and highlight the importance of different instructional methods 

for different representations of fractions. This is relevant as not all game-based 

interventions designed by experts are empirically assessed in the educational setting 

(Gresalfi et al., 2018). Nevertheless, evidence-based pedagogy is critical for teachers 

and educators to understand the specific, beneficial aspects of the game so that they 

can choose appropriate interventions for their students. 

Game metrics as a potential tool for personalized instruction and assessment  

Prior studies note the importance of correlational research designs for 

understanding various aspects of game variables such as player behavior, 

engagement, and training success (Boyle, Hainey, Connolly, Gray, Earp, Ott et al., 

2016). The game metrics in the current study reflect different aspects of student 

learning such as accuracy (higher overall game performance), increased guessing 

(higher number of attempts), and progression on task (maximum level attained). 

Through our exploratory analyses, we observed that overall game performance was 

positively associated with students' fraction knowledge at post-test. This indicates that 

better game performance was related to higher performance on post-training fraction 

learning outcomes. These results are consistent with another game-based study 

where the overall game performance notes positive associations with both math 

grades and paper-based post-test scores (Kiili et al., 2018). Thus, in-game metrics 
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might be useful for teachers to assess learning outcomes in real time (Serrano-

Laguna, Martínez-Ortiz, Haag, Regan, Johnson, & Fernández-Manjón, 2017; Kiili et 

al., 2018; Zaki, Zain, Noor, & Hashim 2020).  

Additionally, we did not find any significant relationship between the level 

attained on the game and fraction post-test scores. This is not in line with findings from 

prior studies on another game on rational number knowledge (Kiili et al., 2018). One 

interpretation of this finding could be based on the fact that not all students who attain 

higher levels in the game do so by learning the content. Some students could have 

used other techniques such as guessing or choosing answers similar to their peers. 

This indicates that individual differences in the level attained may not explain 

differential learning effects in the game group. Further support for this speculation 

comes from the significant positive correlation between the number of attempts and 

the level attained in the game. Students who are unsure about their answers attempt 

the modules often by guessing thereby reaching higher levels. Importantly, no 

association between the number of attempts and fraction post-test scores was 

observed. This finding is consistent with another study using the semideus game (Kiili 

et al., 2018). Again, this could be connected to students guessing the answers and not 

necessarily focusing on the content. Observations in the classroom corroborate this 

speculation. Despite the journal feature of the game and encouraging students to ask 

peers, teachers, and researchers in the classroom, some students continued to either 

guess or ask their partners for answers without explanations. Thus, the game metrics 

not only provide important insights on game-based learning but also act as 

personalized assessment tools to understand individual-level performance.  

Future studies with more information on these variables might serve as 

evidence for understanding student’s problem-solving strategies during learning. For 
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instance, the number of attempts could be detailed to provide the answers generated 

in each attempt by the students highlighting core misconceptions. Conclusively, the 

game metrics provide critical information on the game design and the intervention 

making it an invaluable tool as a predictor of training success in future studies (Kiili et 

al., 2018) and also a real-time assessment indicator for teachers and educators. 

Limitations 

There are at least three potential limitations concerning the results of this study. 

The first limitation concerns the lack of qualitative data. A mixed-methods study is 

informative to determine the mechanisms involved in learning as well as to better 

understand the methods (Bertram, 2020). Classroom discussions, student 

interactions, and the type of questions asked during the game-based training would 

have enriched our quantitative measures. A second potential limitation is the passive 

role of teachers in the game-based group. The role of instructional support during 

DGBL cannot be undermined (Wouters & van Oostendorp, 2017). Despite conducting 

sessions for teachers to understand the objectives of the game and its interface, we 

did not provide a structured, rigorous training session on teaching with the game in the 

classroom. As a result, all teachers in the experimental group played a passive role in 

student learning, which might affect the outcome of the intervention. Finally, because 

of school closures during the COVID-19 outbreak, we could not investigate the 

possible long-term effects of game-based training.  

Conclusion 

In the present pre-registered, randomized controlled intervention study, we 

evaluated the impact of game-based training on rational number concepts. The game, 

Math Mathews Fractions was designed according to the French National Curriculum 
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by a mathematics education researcher and game developers. By including an active 

control group that practiced fraction concepts matched on rigor and competency, we 

aimed to assess the effectiveness of the game with respect to traditional learning of 

fractions. Our results indicate that the game was not superior to traditional learning for 

overall fraction performance. However, the game had a positive effect on the learning 

of some rational number concepts. We also found a relation between the game metrics 

and overall fraction knowledge scores. This suggests that games such as Math 

Mathews Fractions might play a role in traditional classroom instruction by helping 

students learn specific fraction representations and supporting teachers to help build 

connections between fraction and decimal representations.  
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CHAPTER VII: DISCUSSION 

Growing evidence suggests the presence of a Ratio Processing System and its 

likely role in the acquisition of symbolic fraction concepts. Prior work includes both 

behavioral and brain imaging studies (review in Chapter II). However, research on the 

RPS is relatively new and limited in its use of the tasks and paradigms employed. 

Therefore, in addition to shedding light on the RPS theory, this work may offer new 

insights both theoretically and experimentally to assess and examine the presence of 

the RPS. Further, the RPS could potentially serve as an interesting concept in the 

design of learning environments to support fraction understanding. Additionally, there 

is a decent scope of improvement in the literature on learning environments for fraction 

instruction. Given their multifaceted nature, fractions are typically hard for both 

learners and teachers. To this end, we examined a game-based intervention 

specifically designed to build connections between the multiple representations of 

fractions, thereby supporting teachers in classroom instruction. The overarching aim 

of the thesis, therefore, was to examine the neurocognitive bases of fraction 

processing and learning in children and adults. In this general discussion, we first 

summarize the findings for all the three studies presented. Thereafter, we speculate 

on the implications of these findings in the wider context of fraction learning and 

teaching. 

1.1 Summary of the experimental results 

In Study I, we tested for the existence of the Ratio Processing System in 

individuals with varying levels of mathematics skills. It was hypothesized that if the 

performance accuracy of participants were sensitive to the ratio magnitudes, then this 

would serve as evidence for the existence of the RPS. Here, we adapted a match-to-
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sample task developed by Matthews (2015), where participants were asked to choose 

the correct match from two non-symbolic ratios or symbolic fractions (both these 

formats were presented in separate blocks) that corresponded to the target fraction or 

line ratio. The results show that all participants (irrespective of their mathematics skills) 

have perceptual sensitivity when processing non-symbolic line ratios. This sensitivity 

is also present in typically achieving adults when they perform cross notation tasks 

where the symbolic fractions have to be matched with a non-symbolic ratio. However, 

the perceptual sensitivity is not observed when participants matched only the symbolic 

fractions. These findings indicate a limited role of the RPS, such that sensitivity to non-

symbolic relational magnitudes is present only in tasks that require participants to 

approximate/estimate the ratio magnitudes. Taken together, these findings add to the 

growing evidence for an intuitive, perceptual sensitivity for non-symbolic relational 

magnitudes, but challenges the current literature that claims for perceptual sensitivity 

to symbolic fractions. 

While study I provided initial evidence for the RPS using a behavioral paradigm, 

in Study II we investigated the neural correlates of both absolute and relative 

magnitudes to examine the presence of overlapping neural regions for both these 

representations. To this end, a passive-viewing fMRI adaptation paradigm (Girard et 

al., 2021; Perrachione et al., 2016) was used to determine the neural activity of both 

symbolic and non-symbolic absolute and relative magnitudes. We also examined 

whether the culturally developed ability to represent symbolic numbers and fractions 

relies on the neural representations of their non-symbolic counterparts (the neuronal 

recycling hypothesis; Nieder, 2016). The findings reveal the absence of an adaptation 

effect for the relative magnitudes, line ratios and symbolic fractions. For the non-

symbolic and symbolic absolute magnitudes, the neural adaptation effect was shown 
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to be dependent on the symbolic mathematics fluency skills of the participants. This 

means that individuals with higher mathematics fluency were better able to recruit and 

recycle neural pathways for lines and numbers in the left intra-parietal sulcus. Contrary 

to prior studies (Jacob & Nieder, 2009 a, b; Mock et al., 2018), the absence of the 

neural adaptation effect for relative magnitudes indicates that it might not be possible 

to automatically access the magnitudes of the line ratios and fractions. Interestingly, 

the multivariate analyses revealed a region in the right intra-parietal sulcus that 

showed differentiation in the activity patterns for non-symbolic and symbolic formats 

across both absolute and relative magnitudes. This indicates that the IPS activity may 

depend on the presentation format (non-symbolic versus symbolic) more than it may 

depend on the type of magnitude (absolute versus relative). While Study I provides 

some behavioral support for the RPS account, Study II provides neuroimaging 

evidence contradicting the RPS account by demonstrating a lack of adaptation effect 

for relative magnitudes. Some probable explanations for these contradictory findings 

will be discussed in the sections below. 

Further, the complex, multifaceted construct of fractions might pose limitations 

on fraction teaching and learning. Therefore, study III was focused on examining how 

the complex fraction representations might be accessed in formal educational 

environments. Game-based learning environments offer unique affordances such as 

manipulations and visualizations that might help teachers during fraction instruction to 

link the multiple representations of fractions. To this end, Math Mathews Fractions was 

designed collaboratively by professional game developers and an educational expert 

to bridge the multiple representations of fractions. In a pre-registered randomized 

controlled study, we assigned fifth-graders to either an experimental group that used 

the game or a control group that received traditional instruction on fractions. Fraction 
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knowledge was assessed pre-and post-intervention using a curriculum-based fraction 

test. Contrary to our predictions, the results show that students in the experimental 

group did not have higher overall fraction performance than students in the control 

group. However, the game did have a positive effect on decimal learning. We also 

found a positive relation between game performance and overall fraction knowledge 

scores at post-test. Taken together, these findings highlight the importance of 

adequate teacher support along with game-based learning for the acquisition of 

complex rational number concepts. 

1.2 Evidence for the Ratio Processing System and its potential role in symbolic 

fraction understanding 

Can individuals perceptually access the meaning of symbolic fractions and non-

symbolic ratios? Why are magnitudes of symbolic fractions particularly difficult to 

grasp? How can the perceptual ability to access non-symbolic ratio aid in symbolic 

fraction understanding? These were some of the questions that initiated study I and II 

in this thesis. The findings reviewed earlier suggest that the RPS may exist as a 

system that supports the processing of non-symbolic relative magnitudes, though its 

role in symbolic fraction processing is limited. In line with prior studies, study I 

presented here shows evidence for a perceptual route to process approximate 

magnitudes of fractions when presented as non-symbolic ratios. Importantly, this 

perceptual sensitivity was also present in individuals with lower math skills like children 

in fourth and fifth grade as well as adults with dyscalculia. On the other hand, it was 

somewhat surprising to note the absence of neural adaptation effects for line ratios in 

study II. This finding is contrary to prior research that suggests automatic access to 

non-symbolic proportional magnitudes in the parietal cortex (Jacob & Nieder, 2009; 

Jacob et al., 2012). Furthermore, the absence of both a perceptual sensitivity to 
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symbolic fractions in study I and the neural adaptation effects for symbolic fractions in 

study II indicate the inaccessibility to implicitly access the fraction magnitudes and 

thus, hints at the complexity of symbolic fraction representations. On the one hand, 

these findings are consistent with research that indicates difficulty in accessing the 

holistic magnitudes of fractions for both children and adults (Kallai & Tzelgov, 2009, 

2012; Stafylidou & Vosniadou, 2004). On the other hand, they conflict with prior studies 

that suggest the RPS contributes to symbolic fraction processing (Kalra et al., 2020; 

Matthews & Chesney, 2015; Schneider & Siegler, 2010). The abovementioned 

findings will be discussed in the sections below. 

1.2.1 Is perceptual sensitivity to relational magnitudes abstract and automatic? 

As mentioned in Chapter II, research on the RPS is relatively recent. The 

studies that do investigate the perceptual sensitivity to non-symbolic ratios mostly rely 

on tasks that encourage participants to estimate approximate magnitudes (Kalra et al., 

2020; Park et al., 2020; Matthews & Chesney, 2015). In these tasks, participants are 

asked to compare the relative size of the two ratios. These tasks explicitly focus 

participants' attention on the numerical aspect of the stimuli (by using number words 

like “greater than” or “smaller than”). Study I in this thesis uses a match-to-sample 

paradigm in which participants are asked to match the target ratio to the correct match. 

Here, participants must access the relational meanings between the individual line 

lengths and the three-line ratios, thereby focusing on the relative magnitudes. Overall, 

these behavioral studies provide converging evidence for the presence of perceptual 

sensitivity to non-symbolic ratios in school-age children, adults, and adults with 

dyscalculia (Bhatia et al., 2020; Kalra et al., 2020; Matthews & Chesney, 2015). 

Additionally, performance in the cross-notation task (where adults had to match the 

non-symbolic line ratios with the correct symbolic fraction) was also ratio-dependent. 
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This finding is in line with prior studies using cross-format notations (Kalra et al., 2020; 

Matthews et al., 2014; Park et al., 2020). Further, the cross-format comparison tasks 

are argued to provide evidence for a shared system for non-symbolic and symbolic 

magnitudes as they rely on the abstract nature of magnitude between the different 

notations (Matthews & Chesney, 2015). While these results suggest an abstract nature 

of relational magnitudes, the absence of ratio effect in the symbolic fraction task, as 

well as the neuroimaging study (Study II), show otherwise. Both these results are in 

contrast to prior studies. For instance, studies have found that performance on 

symbolic fraction comparison tasks is influenced by linear or RoR distance (Kalra et 

al., 2020; Matthews & Chesney, 2015; Schneider & Siegler, 2010). The possible 

reason for this discrepancy could be the task design. For instance, magnitude 

comparison tasks might encourage participants to estimate approximate magnitudes. 

While there is a possibility to approximate ratios in the match to sample task, the 

equivalence task may prompt participants' attention to use exact values of fractions. 

Therefore, while children, typical adults, and adults with dyscalculia may rely on an 

intuitive sense of ratios to process non-symbolic ratio magnitudes, our findings raise 

the possibility that this sense may only drive performance in tasks that encourage 

subjects to approximate ratios. Indeed, the results of study II using a passive viewing 

design add further evidence to this claim. Our findings, therefore, suggest that the RPS 

might be task-dependent. 

The absence of neural adaptation effects for line ratios and fractions in study II 

suggests a lack of automatic access to relational magnitudes. Contrarily, prior studies 

show automatic access for both non-symbolic and symbolic relative magnitudes 

(Jacob & Nieder, 2009 a, b; Mock et al., 2018). The discrepancy between the results 

of prior neuroimaging studies and study II might also be attributed to the difference in 
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task design. For instance, in the study by Mock & colleagues (2018), the task required 

participants to compare the magnitudes of the non-symbolic ratios (pie charts and dot 

patterns). Participants were therefore required to attend to the numerical stimuli in the 

task and revealed activations in the occipito-parietal areas. Another study that 

examined the neural representations of non-symbolic ratios and symbolic fractions 

used an adaptation paradigm (Jacob & Nieder, 2009). One possible explanation for 

the observed activations in the IPS in this particular study could be due to the simple 

ratios that were presented to adult participants. Adult participants with years of formal 

education likely are leveraging a heuristic for these simple ratios that are most 

frequently encountered in their environment (Siegler, Thompson, & Schneider, 2011). 

These heuristics might lead them to automatically access the numerical magnitudes 

of these ratios. On the contrary, the stimuli used in study II might be better controlled 

than the abovementioned study (Jacob & Nieder, 2009 a, b). The stimuli was 

composed of a complex variety of non-symbolic line ratios and symbolic fractions. 

These varied and complex stimuli might have made it more difficult for participants to 

apply the heuristics to access their magnitudes automatically, especially when the task 

did not require them to do so. While future work is required to establish the properties 

of the RPS as an abstract system for relational magnitudes, the present results might 

be a significant first step in revealing that the RPS might be a task-dependent system. 

Additionally, the presence of perceptual sensitivity for non-symbolic ratios in 

individuals with varying levels of math skills indicates that participants with lower math 

abilities can access the relational magnitudes of non-symbolic ratios; these abilities 

might be harnessed early on in development to help individuals utilize them as a visual 

aid for perceptual learning of fractions.  
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1.2.2 Implications for the role of RPS in fraction learning 

The RPS theory posits that understanding of rational number concepts acquired 

during formal math instruction is rooted in the perceptions of proportions and ratios 

(Jacob et al., 2012; Lewis et al., 2016). The theory further argues that the observed 

difficulties and misconceptions in symbolic fraction understanding arise due to the 

instructional methods that do not leverage the existing perceptual abilities (Lewis et 

al., 2016). Given the recently developing literature on whether or not the RPS is utilized 

for processing symbolic fractions and its abstract nature, the implications must be 

interpreted with caution. The combination of findings in the current study might provide 

some conceptual support for the potential role of the RPS in symbolic fraction learning. 

Two major assumptions will be addressed here: First, we will assume the existence of 

the RPS as an abstract code for relational magnitudes, thereby serving as a core 

system of representation (Feigenson et al., 2004) for relative magnitudes, and second, 

we will depict that even in the absence of such a system the core ideas might be 

utilized for a better understanding of fraction concepts in the classroom (see Figure 

27).  

If we assume the RPS to be a universal, primitive, core cognitive system for the 

representation of abstract relative magnitudes, leveraging the RPS might help re-

imagine conventional fraction instruction. Note, however, that this does not mean a 

complete reinvention of fraction instruction. Indeed, current classroom practices do 

utilize non-symbolic tools to teach fractions (e.g. sharing a pizza), particularly for the 

part-whole subconstruct of fractions, to build an informal understanding of sharing 

(Siegler et al., 2010). Yet, these approaches aim towards building an informal 

understanding using visual representations (Mack, 1990; Siegler et al., 2010). With 

the RPS as a pre-existing ability, instruction could be approached by utilizing the 
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foundational non-symbolic abilities to build symbolic fraction concepts (Lewis et al., 

2016). For young children, fraction instruction in the classroom that uses conventional 

discrete, non-symbolic pie-charts (that use whole number counting procedures; Boyer 

et al., 2008) might shift to more continuous, uncountable non-symbolic ratios like lines 

and blobs (Park et al., 2020). This would help children to utilize their inherent 

perceptual sensitivities of non-symbolic ratios to understand relative magnitudes with 

unique properties and without the need to use whole-number strategies like counting. 

For instance, using non-symbolic line ratios as a teaching tool to help children make 

judgments of the relative value of the line lengths may help children in understanding 

relational magnitudes. These could then be used to make associations with symbolic 

fraction concepts which could further help students at estimating the holistic 

magnitudes of fractions.  

Another speculation could be in the design of targeted interventions for adults 

with dyscalculia. Preliminary findings suggest that adults with dyscalculia possess 

sensitivity to discriminate between non-symbolic relational magnitudes but not their 

symbolic counterparts (Bhatia et al., 2020). Strategies to build links between percept-

concept of relational magnitudes might aid these individuals to access underlying 

representations to support symbolic fraction understanding. For instance, a training 

intervention using both within and cross-format comparisons could include both 

implicit, perceptual fluency building processes and explicit verbally mediated 

connectional understandings between representations (Figure 26) (Rau & Matthews, 

2017). The first step in such a targeted intervention could focus on building perceptual 

fluency on within-format and cross-format tasks. Once individuals can link the cross-

format representations of relative magnitudes, instruction could then focus on helping 

them verbalize their sense-making processes (but see Rau, Aleven, & Rummel, 2017). 
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The difficulty of the tasks could also be modulated so that each individual is in their 

zone of proximal development8. Gradually increasing practice and reflection of the 

heuristics used by individuals could then further lead to fluency in understanding the 

holistic symbolic relational magnitudes. This instruction could also make use of 

blended learning systems where the role of the technology might be to help educators 

personalize this intervention (perhaps depending on each individual’s RPS acuity 

score). 

 

Figure 26: Example of an intervention using the RPS framework.1. Building perceptual 

fluency: Here, students could start from within format tasks and progress to cross-format 

tasks. The difficulty could also be modulated within each task by presenting conditions 

with the same and different components. 2. Building connectional understanding using 

                                            

8 Defined by Vygotsky (1978) as “the distance between the actual developmental level as determined 
by independent problem solving and the level of potential development as determined through problem 
solving under adult guidance or in collaboration with more capable peers” (p. 86) 
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reflection questions (exemplars). This step focuses on verbalizing the process and making 

sense of the implicit perceptual sensitivity  

Even if the RPS is found to be a task-dependent system that does not 

automatically activate relative magnitudes, non-symbolic relational magnitudes using 

continuous representations might serve as better instructional tools than the discrete 

or discretized representations that are currently used in the classroom (e.g. count 

shaded parts) (Jeong, Levine, & Huttenlocher, 2007; Ni & Zhou, 2005). Indeed, 

perceptual learning interventions on fractions and algebra have shown considerable 

gains that go beyond classroom instruction alone (Kellman et al., 2008). So, the 

prototype of the targeted intervention on perceptual learning detailed above (Figure 

26) could perhaps improve the learner's rational number understanding. However, 

given the debate on sense-making first or fluency-first hypothesis (Rau, Aleven, & 

Rummel, 2017), this hypothetical account must be approached with caution. 

Perceptual learning theory majorly involves discovery and fluency effects 

(Kellman, 2002). The discovery effect refers to learners finding relevant information 

while ignoring irrelevant information to form and process higher-level concepts 

(Kellman et al., 2008). The practice of similar concepts leads to an increased 

attentional selectivity which helps learners to extract invariant information quickly and 

categorize the new information (Petrov, Dosher, and Lu, 2005). In the context of the 

role of RPS in fraction learning, discovery effects may help learners by selectively 

ignoring componential processing during a comparison fraction task with different 

components and attend to the relative value of the components, thereby processing 

the holistic magnitudes. With increased practice and reflection, the fluency effects 

(which refer to the efficiency to extract relevant information) could ultimately lead to 

automatic processing of the symbolic magnitudes (Kellman et al., 2008). An important 
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design learning principle of the perceptual learning approach essentially involves 

presenting the learner with a large number of classification trials to make learners 

interact with a varied set of problem types (Kellman et al., 2008). Therefore, employing 

a similar design to study I but with more varied trials might possibly be used as a 

perceptual learning intervention. While much about the RPS remains speculative and 

needs more research both at the theoretical and intervention levels, the findings 

presented here, the different paradigms used (match-to-sample and adaptation), and 

the speculative recommendations for fraction interventions might aid future research 

efforts on the RPS. 

1.3 Neuronal recycling hypothesis for absolute and relative magnitudes 

Prior studies using functional magnetic resonance imaging adaptation (fMRI-A) 

paradigms reveal convergent findings on the passive processing of symbolic numbers 

in the left intra-parietal lobule and passive processing of non-symbolic magnitudes in 

the bilateral parietal lobes (Sokolowski et al., 2017). This might indicate that both 

overlapping, as well as distinct brain regions, are responsible for the automatic 

processing of magnitudes (in the absence of tasks). However, most studies included 

in the meta-analysis (passive viewing paradigms) included either a symbolic (Cohen 

Kadosh et al., 2007; Notebaert et al., 2011; Price & Ansari, 2011; Holloway et al., 

2013; Vogel et al., 2017) or non-symbolic (Piazza et al., 2004; Ansari et al., 2006; 

Cantlon et al., 2006; Jacob & Nieder, 2009; Roggeman et al., 2011; Demeyere et al., 

2014) stimuli but not both. Some passive viewing studies that have used both 

conditions within the same sample of participants (Piazza et al., 2007; Roggeman et 

al., 2007; Damarla & Just, 2013) show contrasting results of either overlapping (Piazza 

et al., 2007) or distinct (Cohen Kadosh et al., 2011; Sokolowski, Hawes, Peters, & 

Ansari, 2021) brain regions supporting the different magnitude formats. The 
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fundamental question of whether the culturally acquired symbolic abilities co-opt or re-

use the primitive neural pathways for non-symbolic quantities remains unanswered. 

The findings of our study mostly support the argument that the human adult brain 

processes symbolic and non-symbolic magnitudes using distinct pathways (except for 

participants with high mathematics fluency and only for absolute magnitudes). In fact, 

similar to a recent study (Sokolowski et al, 2021), the multivariate analyses in Study II 

reveal that the right intra-parietal sulcus (among the larger cluster of occipito-parieto-

temporal network) represents the two formats (symbolic and non-symbolic) differently. 

While the present results cannot conclusively answer the question of whether 

there is an abstract neural code for magnitudes (and thereby the neuronal recycling 

hypothesis), they do reveal some interesting findings that might guide future research 

efforts. First, for absolute magnitudes, participants with higher mathematics fluency 

showed an overlap for both lines and numbers in the left intra-parietal sulcus. This 

might indicate that individuals with higher math fluency are able to recruit similar neural 

pathways for processing both non-symbolic and symbolic absolute magnitudes. 

Second, irrespective of the format (symbolic or non-symbolic) absolute and relative 

magnitudes show distinct patterns of brain activity in the RLPFC and the visual cortex. 

These distinct brain activity patterns between absolute and relative magnitudes seem 

to suggest diverse ways in which these two magnitudes could be neurally processed. 

Both these findings are discussed in detail below. 

1.3.1 Is neuronal recycling related to arithmetic skills? 

The answer to this question as well as the direction of the relation is presently 

difficult to explicate. The result of study II (for absolute magnitudes) is in contrast to a 

recent study that reports a developmental shift in the relationship between non-
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symbolic and symbolic overlapping representation patterns in the brain and arithmetic 

skills (Schwartz et al., 2021). The authors in that study report that while children who 

are less proficient in arithmetic skills might rely on common mechanisms for both 

symbolic and non-symbolic magnitude processing, young adults do not (Schwartz et 

al., 2021). Notwithstanding the difference in experimental design, the studies might 

suggest completely opposing ideas: 1) participants with better math fluency might be 

able to recruit primitive brain regions when processing symbolic numbers, and 2) 

participants with a lower arithmetic fluency might need to rely on common neural 

mechanisms for symbolic and non-symbolic magnitude processing. Interestingly, a 

recent study on children revealed similar results to study II where the children with 

higher arithmetic fluency showed overlapping activation in the intra-parietal sulcus for 

both dots and digits (Girard et al., 2021). An additional question in this domain might 

be with regards to the direction of these phenomena. So, does better symbolic 

arithmetic fluency result from the ability to recruit primitive brain regions of non-

symbolic processing for symbolic magnitude processing? or Does the presence of 

overlapping brain regions between symbolic and non-symbolic magnitudes determine 

the acquisition of symbolic mathematics skill? There is also a possibility that neuronal 

recycling might not be a universal phenomenon governing all symbolic mathematics 

skills but is dependent on the task or the paradigm used (Marinova et al., 2018). This 

means that depending on the task given to the participants as well as their math 

abilities, the co-option of brain pathways for symbolic and non-symbolic magnitudes 

might differ.  

The symbol-grounding problem (i.e. how symbols acquire their meaning) has 

long been a question of great interest in the field of numerical cognition. In addition to 

the neural recycling account that posits perception of symbolic numbers to be 
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grounded in the same neural areas as their non-symbolic counterparts, alternative 

accounts on the relationship between symbolic and non-symbolic number processing 

have been proposed. While the cardinal principle hypothesis focuses on other core 

systems of representation (object tracking or parallel individuation) than the 

approximate number system, the symbolic estrangement account provides a 

developmental account of the link between the symbolic and non-symbolic magnitudes 

(Carey, 2001; Carey & Barner, 2019; Sasanguie & Reynvoet, 2017; Lyons, Ansari, & 

Beilock, 2012). According to the cardinal principle hypothesis, learning symbolic 

numbers cannot rely on approximations alone as it requires an understanding of 

specific properties of numbers like cardinality (Carey & Barner, 2019). Therefore, 

symbolic number processing may be associated with the more precise object tracking 

system (i.e. grasping a small set of objects about 1 to 4 in a fast but precise manner) 

which might initially help children acquire the idea of counting and thus, the property 

of cardinality (Carey & Barner, 2019). On the other hand, the symbolic estrangement 

account emphasizes the role of development in symbol-non-symbol links. The authors 

of this account posit that during the early stages of numerical development symbolic 

and non-symbolic numerical abilities might be linked, however, over the years and with 

the increasing complexity of symbolic number skills these two representations might 

become estranged (Lyons, Ansari, & Beilock, 2012). Indeed, a recent study on the 

development of these two representations over three different time points for Grade I 

students indicates both non-symbolic and symbolic skills to be related to each other 

at the beginning of the academic year, and later the symbolic magnitude processing 

skills predict non-symbolic skills but not vice-versa (Matjeko & Ansari 2016). 

Additionally, the absence of overlapping activation patterns for non-symbolic and 

symbolic magnitudes using RSA and MVPA studies on adult participants could also 
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be argued to be evidence of the symbolic estrangement (Wilkey & Ansari, 2019) or the 

cardinal principle account. Given the current inconsistent evidence, further research is 

required to shed light on these accounts, which in turn may help in understanding the 

development and acquisition of symbolic mathematics skills. 

1.3.2 Differential processing of absolute and relative magnitudes 

An important unexpected finding in study II (multivariate analyses) revealed 

differences between neural representations of absolute and relative magnitudes in the 

left rostro-lateral prefrontal cortex (RLPFC) and the right occipital cortices. Prior 

studies have suggested that the RLPFC may support relational comparisons as well 

as integrating relational information (Krawczyk, 2012). Recent studies have also 

highlighted the role of relational thinking in processing fractions (Dewolf et al., 2015; 

Kalra et al., 2020). However, to our knowledge, this is the first neural study that 

suggests the relationship between relative magnitudes and RLPFC. While future 

research aimed at examining the similarities and differences in processing absolute 

and relative magnitudes are required, initial speculation on these results seems to 

suggest the role of relational reasoning in fraction understanding. Understanding the 

relation between the two numbers for a fraction (numerator and denominator) and the 

two-line lengths for line ratios is essential to access their holistic magnitudes. The 

same strategy, however, does not apply for accessing absolute magnitudes. 

Therefore, the results on the dissociation of neural representation patterns for absolute 

and relative magnitudes suggest that access to these two magnitude types might 

engage different neural areas. Given these findings, there is a possibility that fraction 

learning that makes use of relational reasoning might aid learners in fraction 

understanding. Additionally, a recent study on 194-second grade and 145 fifth grade 

students showed relational reasoning to be a significant predictor of fraction 
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knowledge, even after controlling for non-verbal IQ, overall mathematics knowledge, 

and fraction magnitude processing (Kalra et al., 2020). Thus, we can imagine that the 

perceptual learning approach described above (Figure 26) might potentially help link 

relational reasoning and symbolic fraction understanding. Furthermore, the 

dissociable activity patterns for the two magnitudes might highlight the importance of 

building an explicit understanding of the differences and similarities in the properties 

of the two number types (whole numbers and fractions) (Rosenberg-Lee, 2021).  

1.4 Can game-based learning help fraction instruction? 

The findings of study III reviewed above show that the students in the game 

group did not outperform the control group on the fraction knowledge test. However, 

the game group showed higher performance at decimals than the control group. 

Further, a positive association was found between the overall game performance and 

student’s fraction knowledge indicating that better game performance was related to 

higher scores on fraction post-test learning outcomes. Therefore, the answer to the 

question, ‘can game-based learning help fraction instruction?’ might not be a simple 

yes or no. Indeed, game-based learning environments offer unique affordances such 

as manipulations and visualization of complex mathematical concepts. Additionally, 

they also show positive affective outcomes for students towards mathematics learning. 

Students are more engaged and show positive attitudes towards mathematics during 

game-based learning (Rosas et al., 2003; Ke & Grabowski, 2007; Ke, 2008). However, 

as reviewed in Chapter III, there is mixed evidence on the effectiveness of game-

based learning for mathematics learning outcomes. Though game-based learning 

environments do have their benefits yet inadequate game design, teacher support, 

and transfer of knowledge (Tobias et al., 2014; Wouters & van Oostendorp, 2013) 

might limit their potential. The game design and transfer of knowledge were already 
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well established in the game Math Mathews Fractions. The conceptual model 

presented here provides details on these factors, with a specific focus on what teacher 

support in the classroom might look like when using the game Math Mathews 

Fractions. 

1.4.1 How might the game Math Mathews Fractions support the development of 

fraction knowledge in the classroom? 

To support the development of fraction knowledge in the classroom, we 

propose three aspects of game-based learning environments that need to be 

considered. These include the game design, transfer of learning, and teacher support. 

First, the design of the game, Math Mathews Fractions was based on addressing the 

complexity of the multifaceted construct of fractions. Prior research notes fraction 

instruction in the classroom to be disproportionately focused on the part-whole 

construct of fractions (Fuchs et al., 2013). This might hinder the acquisition of other 

constructs as well as limit the development of holistic knowledge of fractions (Pitkethly 

& Hunting, 1996). Indeed, as noted by Rau & Matthews (2017), “no single visual 

representation can convey the multiplicity of related but only partially overlapping ideas 

that constitute the fractions mega-concept” p.3. In this vein, a mathematics education 

expert and professional game designer collaboratively developed Math Mathews 

Fractions to complement fraction learning in the classroom with a focus on building 

connections with the multiple representations of fractions. The game progression was 

designed in line with the objectives and curriculum standards of the French school 

system for children aged 9-12. Thus, the play situations (i) increase in difficulty 

throughout the game and (ii) remain appropriate for children aged 9-12. Additionally, 

the game includes elements of a personalized learning environment such as self-

regulated learning (increased complexity of levels, repetition of tasks) and real-time 



 

 198 

feedback (wrong attempts decrease total points) (Basham, Hall, Carter, & Stahl, 

2016). Therefore, Math Mathews Fractions addressed the elements of game design 

by including the content aligned with national curriculum standards as well as engaged 

play situations for the specific age group. Through multiple modules focused on the 

visual understanding of multiple subconstructs and building connections between 

different representations of fractions, Math Mathews Fractions aims to build a holistic 

understanding of the fraction construct. 

Second, the different modules in the game were designed similar to the fraction 

tasks students might encounter on real-world assessments, possibly supporting the 

transfer of knowledge. For instance, the module focused on the measure interpretation 

of fractions includes a number line task where the pirate has to place the fraction by 

jumping on the number line and find the fraction on the number line corresponding to 

a point by rotating a panel. Though the representations in the game modules were 

similar to real-world fraction tasks which might aid in the near transfer of knowledge, 

the role of the teacher to leverage the game modules for far transfer effects must not 

be underestimated.  

Finally, it has been shown that adequate teacher support complements game-

based learning (Wouters & Oostendorp, 2012) and helps with learning outcomes. Math 

Mathews Fractions is designed for students with prior knowledge of fractions. So, 

teachers were given a short training before the experiment in study III to help utilize 

the game to build connections between the fraction constructs. Varying levels of 

teacher support in the game and control group might have possibly influenced the 

results of the pre-registered study. Indeed, observations in the classroom revealed 

minimal teacher support in the game group. While possible reasons for the findings 

are discussed in detail in study III, in this section we speculate on an exemplar lesson 
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in the classroom with Math Mathews Fractions (inspired by the blended learning 

approach; Graham, 2006).  

The classroom instruction could possibly be divided into three phases: Before 

the game, between the session, and after the game. Specific questions to initiate 

reflection and review of concepts could be practiced in these phases. For instance, 

before the game is provided to the students, the teacher could review one or two 

constructs of fractions with the entire class. The game metrics could potentially guide 

this discussion (especially if the game has been used in the classroom before). So, if 

the game metrics reveal the average level of the class to be around 4, the teacher 

could review specific curriculum objectives from level 4 before the game. This session 

could be solely teacher-led. During the game session, the teacher might be able to 

gauge some of the most challenging tasks or concepts that students encounter in the 

game. These could generate active whole group discussions in the classroom where 

the challenging concepts are re-visited. Finally, a debrief session after the game can 

help students to synthesize their knowledge. This session could be related to fraction 

concepts or more general reflection questions aimed at a new concept acquired, a 

misconception realized, or different problem-solving techniques that students used 

during the session. Adequate teacher instruction with Math Mathews Fractions could 

potentially lead to higher fraction learning outcomes. However, the lack of acceptance 

of serious games as educational tools by teachers and the difficulty of integration into 

formal schooling has been shown to limit the potential of games (Egenfeldt-Nielsen 

2006; Ferdig 2007; Gros, 2015). Besides, the learning potential of technology has also 

been shown to be directly related to the teacher’s ability to leverage it to make 

connections with the curriculum (Hutchison et al., 2012). Therefore, future 

investigations with Math Mathews Fractions might aim at providing teachers an 
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exhaustive training to develop such lesson plans or to provide them with pre-made 

lessons to help them visualize classroom instruction with the game. Additionally, these 

future studies might also help in establishing the validity of the game Math Mathews 

Fractions as an instruction and personalization tool in the classroom. 

1.5 Integrating RPS and Math Mathews Fraction: implications for fraction 

learning 

A complex concept such as fractions possibly needs a multipronged approach 

during instruction. The current approaches to fraction instruction mostly involve a 

combination of declarative and procedural learning. Declarative knowledge deals with 

facts and concepts whereas procedural knowledge focuses on specific rules and 

sequence of steps to be enacted (Kellman et al., 2008). An approach that is typically 

missing from fraction instruction in the classroom is the perceptual learning approach 

– an experience-based improvement in the learner’s ability to extract patterns and 

relationships from the environment (Goldstone, 1998; Kellman, 2002). Abstract 

concepts such as fractions which might require a conceptual change about numbers 

in young learners (Ni & Zhou, 2005) as well as pose high cognitive demands due to 

their physical structure (Cognitive Load Theory; Mayer, 2002), might benefit from a 

balanced approach using declarative, procedural, and perceptual learning 

approaches. One potential example of using these three learning approaches by 

utilizing the perceptual sensitivity to non-symbolic ratios and Math Mathews Fractions 

is discussed below.  

While we do acknowledge that the RPS literature is nascent and needs further 

exploration, humans have been shown to possess the ability to extract visual 

information from the environment and make sense of it. Also, the ubiquitous perceptual 



 

 201 

ability to process non-symbolic magnitudes (length, numerosity, area, etc.) (Leibovich, 

Kallai, & Itamar, 2016) might be foundational for developing perceptual learning 

interventions as well as instruction on rational numbers. Here, we speculate a 

conceptual model of how the knowledge that we gained in the past three years on 

RPS and game-based learning might help teachers in the classroom. Of course, this 

is just a hypothetical model and further research is required to make any claims on the 

validity of this approach.  

As shown in the Figure below, fraction instruction might require a three-pronged 

approach. Beginning from the perceptual learning perspective, learners could be 

introduced to fraction learning by making use of non-symbolic continuous magnitudes. 

Technology can serve an important function here by incorporating the principles of 

perceptual learning. Specifically, a large number of trials with varied stimuli can aid 

learners to assess the invariant and variant properties that are required to make 

correct judgments on relative magnitudes (as described in section 1.2.2). The 

relational reasoning skills of learners could also be harnessed and developed in this 

approach. Eventually, when learners have built fluency to extract the right information 

from both within and cross-format trials they could be introduced to symbolic fractions. 

At this stage, they must have sound declarative and procedural knowledge to 

complement their perceptual learnings. This could potentially be achieved with the 

help of Math Mathews Fractions (see section 1.4). Teachers could integrate the game 

during instruction to help build connectional understandings between the complex 

subconstructs of fractions and provide for a more holistic understanding of fractions. 

As mentioned before, it is still too early to be definitively providing answers to complex 

questions about fraction instruction and interventions. Future studies using robust 
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methods like randomized controlled trials should be undertaken to investigate the 

validity of these speculations. 

 

Figure 27: A conceptual model of fraction learning using declarative, procedural, and 

perceptual learning approaches 
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CONCLUSION 

In this dissertation, we examined the neurocognitive correlates of fraction 

processing and learning. The thesis is divided into two main parts. The first part tests 

a relatively recent theory, the Ratio Processing System for processing relational 

magnitudes and the second part focuses on the effectiveness of a game-based 

intervention on fraction learning.  

First, our results show a limited role of the RPS in symbolic fraction processing. 

On the one hand, the findings support the idea that the RPS underlies non-symbolic 

ratio processing in children, typically achieving adults, and adults with developmental 

dyscalculia. Interestingly, typically achieving adults also show perceptual sensitivity in 

a cross-format task. On the other hand, the absence of perceptual sensitivity to 

process symbolic fraction magnitudes indicates a relatively limited role of the RPS. 

Taken together, these findings indicate that the RPS may be utilized mainly when 

participants are required to approximate or estimate the magnitudes of ratios. Second, 

the fMRA study shows that in a passive viewing task with varied fractions and line 

ratios, adults did not show any neural adaptation effects to either fractions or line ratios 

in the intra-parietal regions. Additionally, we found non-symbolic and symbolic 

absolute magnitudes to share overlapping neural regions in the left IPS in participants 

with higher mathematics fluency. Further, multivariate analyses revealed a 

dissociation of neural activation patterns in the right intra-parietal region for non-

symbolic and symbolic formats across magnitude types. Integrating these results, we 

speculate that the RPS might be utilized when approximation or estimation of relational 

magnitudes is required. Third, the results of the game-based intervention, Math 

Mathews Fractions, indicate the game to be effective for building links between fraction 
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and decimal representations, but not overall fraction knowledge. In addition to that, 

performance in the game is positively related to overall fraction knowledge at post-

test. This study highlights the critical role of instructional support during game-based 

learning and the importance of game metrics as indicators for personalized 

assessment tools.  

The insights gained from the abovementioned studies may help in re-imagining 

symbolic fraction instruction. However, future research is required to establish both 

the RPS and the game Math Mathews Fractions’ role in fraction instruction. While a 

natural progression of this work will be to analyze the cross-format tasks in children 

(before and after fraction instruction) as well as adults with dyscalculia, more broadly, 

to establish the role of the RPS in symbolic fraction understanding, research focussed 

on utilizing different paradigms in participants with differing levels of fraction 

knowledge might be required. It might also be interesting to test the effectiveness of 

an RPS based intervention on symbolic fraction learning of individuals. Specifically, 

testing interventions that can aid in explicit sense-making processes for cross-format 

tasks that might aid in improving magnitude understanding and thus, connectional 

fluency between different representations (Rau et al., 2017). Additionally, future 

studies could also test the strategies participants use when solving both magnitude 

comparison tasks and match to sample tasks in the symbolic fraction format. This 

could provide some insights into how individuals might be processing these two tasks 

distinctly, but more importantly could aid in understanding the development of 

symbolic fraction skills (Obersteiner et al., 2020; Sidney & Alibali, 2017). Continued 

efforts are also needed to understand the neural mechanisms behind the RPS as well 

as the distinct neural regions that might be involved in processing absolute and relative 

magnitudes. Furthermore, investigations using randomized controlled trials where 
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teachers are provided with specific training or lesson plans to adequately integrate 

Math Mathews Fractions in the classroom could provide definitive evidence for the role 

of game-based tools in fraction learning. Lastly, the pursuit of understanding the RPS 

using both neuroimaging and behavioral tools could potentially help enhance teacher 

training, support individuals with disabilities, and help design better educational games 

on fractions. 
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APPENDIX A 

STUDY I 

Table 1: Fractions generated for 3:1 RoR (Note: Nt = numerator of target, Nd = 

numerator of distractor) 

Nt = Nd Nt ≠ Nd 
  target  match distractor   target  match distractor 

 2/4 5/10 2/12  9/12 3/4 2/8 
 2/4 4/8 2/12  6/8 3/4 1/4 
 1/3 3/9 1/9  3/4 6/8 1/4 
 2/3 6/9 2/9  3/12 1/4 1/12 
 3/4 9/12 3/12  6/8 3/4 3/12 
 1/3 2/6 1/9  3/5 6/10 2/10 
 2/4 3/6 2/12  8/12 6/9 2/9 
 1/2 2/4 1/6  4/12 1/3 1/9 
 2/4 6/12 2/12  3/9 1/3 1/9 
 2/3 4/6 2/9  6/9 8/12 2/9 
 2/4 1/2 2/12  4/6 8/12 2/9 
 1/2 5/10 1/6  6/12 1/2 1/6 
 1/3 4/12 1/9  3/6 6/12 2/12 
 1/2 6/12 1/6  8/12 4/6 2/9 
 1/2 4/8 1/6  8/12 2/3 2/9 
 1/4 2/8 1/12  4/8 2/4 1/6 
 1/4 3/12 1/12  5/10 6/12 2/12 
 3/4 6/8 3/12  3/6 1/2 2/12 
 2/3 8/12 2/9  6/12 4/8 1/6 
 1/2 3/6 1/6  3/4 6/8 2/8 

 

Table 2: Fractions generated for 4:3 RoR 

Nt = Nd Nt ≠ Nd 
  target  match distractor   target  match distractor 

 3/9 1/3 3/12  8/12 4/6 5/10 
 4/6 6/9 4/8  2/3 6/9 5/10 
 1/3 3/9 1/4  4/12 3/9 2/8 
 3/6 1/2 3/8  4/12 3/9 1/4 
 6/9 2/3 6/12  6/9 8/12 5/10 
 2/3 4/6 2/4  8/12 2/3 4/8 
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 2/6 1/3 2/8  1/3 4/12 2/8 
 3/6 4/8 3/8  4/8 1/2 3/8 
 4/6 8/12 4/8  6/9 8/12 3/6 
 1/3 4/12 1/4  4/6 6/9 5/10 
 4/6 2/3 4/8  8/12 4/6 3/6 
 3/6 2/4 3/8  1/3 4/12 3/12 
 5/6 10/12 5/8  6/9 4/6 1/2 
 3/9 4/12 3/12  2/3 4/6 1/2 
 6/9 8/12 6/12  4/12 1/3 2/8 
 2/6 4/12 2/8  2/5 4/10 3/10 
 1/3 2/6 1/4  2/3 8/12 3/6 
 6/9 4/6 6/12  1/2 6/12 3/8 
 3/6 5/10 3/8  4/5 8/10 6/10 
 2/6 3/9 2/8  4/12 1/3 1/4 

 

Table 3: Fractions generated for 2:1 RoR 

Nt = Nd Nt ≠ Nd 
  target  match distractor   target  match distractor 

 1/5 2/10 1/10  8/12 6/9 3/9 
 4/6 6/9 4/12  8/10 4/5 2/5 
 1/2 5/10 1/4  4/8 3/6 1/4 
 3/4 9/12 3/8  3/9 2/6 2/12 
 2/5 4/10 2/10  3/12 1/4 1/8 
 2/4 3/6 2/8  4/6 6/9 2/6 
 2/4 4/8 2/8  6/12 5/10 1/4 
 2/6 1/3 2/12  5/10 6/12 3/12 
 3/6 1/2 3/12  6/12 4/8 2/8 
 2/3 4/6 2/6  6/8 3/4 3/8 
 2/4 1/2 2/8  8/12 6/9 1/3 
 1/3 2/6 1/6  4/6 2/3 1/3 
 1/4 2/8 1/8  5/10 4/8 1/4 
 1/3 3/9 1/6  2/3 4/6 3/9 
 3/6 4/8 3/12  5/10 4/8 2/8 
 3/6 5/10 3/12  2/8 1/4 1/8 
 4/5 8/10 4/10  8/12 4/6 1/3 
 3/6 6/12 3/12  8/12 6/9 4/12 
 2/6 4/12 2/12  4/8 3/6 3/12 
 1/2 3/6 1/4  1/2 5/10 3/12 
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Table 4: Fractions generated for 6:5 RoR 

Nt = Nd Nt ≠ Nd 
  target  match distractor   target  match distractor 

 4/10 2/5 4/12  3/6 4/8 5/12 
 5/10 2/4 5/12  10/15 6/9 5/9 
 6/10 3/5 6/12  6/9 2/3 5/9 
 5/10 4/8 5/12  12/14 6/7 10/14 
 5/10 3/6 5/12  6/15 2/5 3/9 
 2/10 1/5 2/12  4/8 6/12 5/12 
 2/5 6/15 2/6  12/15 8/10 6/9 
 1/5 3/15 1/6  4/8 7/14 5/12 
 4/10 6/15 4/12  4/8 1/2 5/12 
 6/10 9/15 6/12  12/15 4/5 2/3 
 4/5 12/15 4/6  3/15 1/5 1/6 
 8/10 4/5 8/12  6/10 3/5 3/6 
 5/10 1/2 5/12  12/15 4/5 10/15 
 8/10 12/15 8/12  3/5 9/15 2/4 
 3/5 9/15 3/6  9/15 3/5 2/4 
 2/5 4/10 2/6  2/5 4/10 3/9 
 1/5 2/10 1/6  4/6 8/12 5/9 
 3/5 6/10 3/6  6/12 2/4 5/12 
 5/10 6/12 5/12  6/10 3/5 4/8 
 2/10 3/15 2/12  2/4 4/8 5/12 
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APPENDIX B 

STUDY II 

Table 1: Stimuli used for fractions and line ratios. 

Block Numerator Denominator 

No-Adapt 2 6 

3 7 

11 32 

9 17 

7 9 

2 7 

11 70 

5 48 

No-Adapt 2 4 

12 15 

6 17 

16 26 

2 15 

16 54 

13 28 

5 6 

Adapt_1:3 1 3 

4 12 

6 19 

3 9 

8 25 

2 7 
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5 15 

7 22 

No Adapt 14 15 

11 32 

1 8 

13 27 

34 62 

7 26 

12 39 

7 11 

No Adapt 15 19 

1 4 

14 35 

8 13 

12 31 

5 18 

3 23 

8 10 

Adapt_1:6 2 12 

1 6 

8 48 

6 36 

4 24 

3 17 

5 29 

7 41 

Adapt_1:5 1 5 

3 15 
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5 26 

8 40 

2 11 

6 30 

4 21 

7 35 

No Adapt 3 5 

15 19 

7 14 

8 62 

4 21 

9 19 

45 68 

4 37 

Adapt_2:3 8 12 

6 9 

2 3 

10 16 

4 7 

12 18 

14 22 

16 24 

Adapt_2:5 4 10 

8 19 

14 35 

6 15 

12 29 

10 25 
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16 39 

2 5 

Adapt_3:5 3 5 

6 10 

15 25 

18 31 

9 16 

12 21 

24 40 

21 35 

No Adapt 1 3 

21 67 

5 24 

3 16 

24 54 

5 8 

3 5 

1 8 

Adapt_2:9 2 9 

4 18 

8 35 

6 26 

10 45 

12 54 

14 63 

16 71 

No Adapt 8 9 

11 14 
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3 8 

14 41 

2 5 

21 33 

2 3 

8 19 

Adapt_3:7 18 41 

6 14 

3 7 

9 20 

12 28 

15 34 

21 49 

24 55 

Adapt_1:4 2 8 

3 11 

5 19 

8 31 

1 4 

6 23 

4 16 

7 28 

No Adapt 4 9 

16 18 

15 35 

2 6 

13 31 

8 9 



 

 240 

12 34 

11 27 

Adapt_2:7 2 7 

4 14 

6 22 

8 28 

10 35 

12 43 

14 49 

16 57 

No Adapt 21 66 

3 4 

2 26 

13 23 

5 5 

9 11 

7 17 

14 36 

No Adapt 5 9 

15 29 

14 31 

3 8 

2 16 

34 62 

11 12 

1 24 
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Table 2: Stimuli used for lines and numbers 

Block Magnitude 

No Adapt 5 

14 

33 

2 

9 

17 

6 

10 

Adapt 8 

6 

8 

10 

8 

7 

8 

9 

No-Adapt 32 

6 

18 

3 

17 

7 

22 

11 

No-Adapt 4 

18 
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22 

5 

34 

9 

7 

62 

No Adapt 19 

4 

35 

44 

6 

18 

3 

10 

Adapt 23 

26 

25 

26 

24 

26 

21 

26 

No-Adapt 1 

14 

7 

28 

4 

40 
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16 

37 

Adapt 11 

14 

16 

11 

12 

11 

17 

11 

Adapt 33 

31 

36 

31 

32 

31 

35 

31 

Adapt 6 

5 

4 

6 

3 

6 

7 

6 

No Adapt 3 

10 



 

 244 

32 

6 

15 

8 

25 

9 

Adapt 23 

25 

26 

23 

23 

24 

23 

27 

No Adapt 2 

13 

7 

14 

20 

11 

25 

39 

Adapt 53 

52 

55 

52 

54 

52 
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56 

52 

Adapt 9 

8 

5 

9 

7 

9 

11 

9 

No-Adapt 36 

18 

2 

6 

16 

35 

8 

21 

Adapt 3 

5 

3 

4 

3 

6 

3 

2 

No Adapt 8 

29 
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17 

54 

16 

9 

36 

5 

Adapt 16 

17 

15 

16 

16 

13 

16 

11 

No-Adapt 1 

16 

25 

18 

9 

4 

33 

2 
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