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ABSTRACT

Understanding fractions is critical for the holistic development of mathematical
knowledge. While fraction instruction typically begins in elementary school, children
often encounter relational numerical concepts much earlier in their environment (e.g.
sharing candies, varying the sweetness of a drink, baking muffins). A recently
proposed theory, the Ratio Processing System (RPS), posits that the understanding
of non-symbolic relational magnitudes and symbolic fractions are fundamentally
intertwined. However, research on the RPS theory and fraction learning interventions
in the classroom are limited. In this dissertation, we examine both symbolic and non-
symbolic relational magnitude processing from the perspectives of both cognitive
neuroscience and educational game-based approaches. First, performance accuracy
on a match-to-sample task reveals individuals with varied mathematics skills to be
perceptually sensitive to non-symbolic ratios but not to symbolic fractions. Second,
univariate and multivariate analyses of neural activity patterns using an fMRI-
adaptation paradigm suggest an absence of overlapping neural activations in all
participants for absolute (represented as lines and as numbers) and relational
magnitudes (represented as line ratio and as fractions). Third, analyses of fifth grader’s
fraction knowledge after playing a fraction educational game developed in the context
of this thesis (Math Mathews Fractions) revealed that the game did not improve overall
fraction skills above traditional classroom instruction. However, it was successful at
improving decimal knowledge. The results of this thesis lead us to argue for fraction
instruction focused on both perceptual methods as well as building connections

between the multiple constructs of fractions. Future research holds great potential for



examining fraction games that support teachers in building a holistic fraction

understanding, rooted in the percept-concept links.

Keywords: ratio processing system; fractions; fMRI; game-based learning;

math cognition
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RESUME

La comprehension des fractions est essentielle au développement général des
connaissances mathématiques. Bien que I'enseignement des fractions commence
généralement a I'école primaire, les enfants rencontrent souvent des concepts liés aux
fractions bien plus t6t dans leur environnement (par exemple, en partageant des
bonbons, en variant le go(t sucré d'une boisson, en préparant des muffins). Une
théorie récemment proposée < the ratio processing system theory > postule que la
compréhension des fractions et des rapports de grandeurs (i.e. ratio) sous forme non
symbolique est fondamentalement liée. Cependant, les recherches sur la théorie RPS
et les interventions d'apprentissage des fractions en classe sont limitées. Dans cette
thése, nous examinons le traitement de ratios, sous forme symbolique et non
symbolique, du point de vue des neurosciences cognitives et de I'approche
pédagogique basée sur le jeu. Tout d'abord, la précision de la performance dans une
tache d'appariement a I'échantillon révéle que des personnes ayant des compétences
variées en mathématiques sont perceptivement sensibles aux ratios non symboliques
mais pas aux ratios symboliques (i.e. les fractions). Deuxiemement, des analyses
univariées et multivariées des schémas d'activité neuronale a l'aide d'un paradigme
d'adaptation par IRMf n'ont trouvé aucune preuve d'activations communes dans le
sulcus intrapariétal de tous les participants pour les grandeurs absolues (représentées
sous forme de lignes et sous forme de nombres) et relationnelles (représentées sous
forme de rapport de lignes et sous forme de fractions). Troisiemement, des analyses
de la compréhension des fractions chez les éléves de cinquiéme année (CM2), soit
apres l'utilisation d’un jeu en classe sur les fractions (Math Mathews Fractions), soit
apres un enseignement classique (sans jeu), ont révélé que le jeu n'a pas amélioré
les compétences générales sur les fractions par rapport a I'enseignement classique
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(sans jeu). En revanche, il a amélioré la compréhension des nombres décimaux. Les
résultats de cette thése nous ameénent a plaider en faveur d'un enseignement des
fractions axé, d'une part sur des méthodes perceptives et d’autre part, sur la
construction de liens entre les différents aspects des fractions. Les recherches futures
offrent un grand potentiel pour I'étude de jeux sur les fractions qui aident les
enseignants a développer, chez leurs éleves, une compréhension générale des

fractions, enracinée dans les liens percept-concept.

Mots clés : ratio processing system ; fractions ; IRMf ; apprentissage par le jeu;

la cognition mathématique

Xiv



XV



DESCRIPTION DU PROJET

La compréhension des fractions est essentielle pour un développement général
des compétences mathématiques. L'importance de la compréhension des fractions ne
se limite pas au milieu scolaire, mais il est également démontré qu'elle est essentielle
pour la santé et 'emploi (Handel, 2016 ; Chakkalakal et al., 2017 ; Osborn et al., 2013).
Bien que l'enseignement des fractions commence a I'école primaire, les enfants et les
adultes ont montré des difficultés persistantes a comprendre les fractions (Chan, Leu,
& Chen, 2007 ; Ni, 2001 ; Yoshida & Sawano, 2002). Les difficultés persistantes dans
la compréhension des fractions ont conduit certains a postuler que l'architecture
neurocognitive humaine n'est pas congue pour traiter les fractions (Gallistel & Gelman
1992 ; Feigenson, Dehaene, & Spelke, 2004). D'autres ont adopté une approche
moins pessimiste, attribuant les difficultés liees aux fractions a un enseignement qui
ne tire pas parti de I'ensemble des architectures neurocognitives pouvant servir a
soutenir les compétences en fractions (Lewis et al., 2016). Les théories contradictoires
concernant l'existence d'un code primitif et abstrait pour les grandeurs relationnelles

exigent des recherches supplémentaires dans ce domaine théorique.

Par conséquent, I'objectif principal de cette thése était de faire la lumiére sur
I'ensemble des architectures neurocognitives (i.e. Ratio Processing System, RPS) qui
pourraient sous-tendre le traitement des grandeurs relationnelles, représentées sous
forme non symboliques et symboliques. Dans I'étude |, nous avons utilisé un
paradigme dit de « match to sample » pour mesurer la sensibilité au ratio chez des
individus ayant différents niveaux de compétences en mathématiques. Nous avons
constaté qu'indépendamment de leurs compétences en mathématiques, tous les

participants ont montré une sensibilité perceptive au ratio de deux grandeurs non
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symboliques (i.e. représenté par un rapport de lignes) mais pas au ratio de deux
grandeurs symboliques (i.e. ratio représenté par une fraction). Nous avons également
constaté que les adultes présentaient cette sensibilité lorsqu'ils devaient estimer
I'ordre de grandeur d’une fraction, révélant ainsi un réle limité du RPS (Bhatia et al.,
2020). Alors que I'étude | utilisait un paradigme comportemental, dans I'étude I, nous
avons utilisé l'imagerie par résonance magnétique fonctionnelle pour examiner les
activations cérébrales associées aux représentations symboliques et non
symboliques en termes de grandeurs absolues et relatives. Dans I'étude Il, nous avons
utilisé un paradigme d'adaptation passive pour examiner les effets de I'adaptation
neuronale pour les grandeurs absolues (représentées sous forme de lignes et sous
forme de nombres) et relationnelles (représentées sous forme de rapport de lignes et
sous forme de fractions). Contrairement a notre hypothese, nous n'avons pas trouvé
de preuve d’activations communes dans le sulcus intra-pariétal pour ces deux
représentations. Cependant, les adultes ayant une plus grande maitrise des
mathématiques ont montré des activations dans le sulcus intra-pariétal gauche pour
les grandeurs absolues, ce qui indique que les participants ayant une plus grande
maitrise des mathématiques pourraient étre en mesure de recruter des régions
cérébrales similaires pour le traitement des grandeurs absolues symboliques et non
symboliques. Il est intéressant de noter que les analyses multivariées ont également
révélé des modeles d'activité neuronale dissociables entre les grandeurs absolues et
relationnelles dans le cortex préfrontal rostrolatéral (RLPFC) et les zones visuelles du
cerveau. Etant donné le réle du RLPFC dans le raisonnement relationnel, ces résultats
pourraient suggérer les différentes manieres dont les grandeurs absolues et
relationnelles sont traitées au niveau neuronal. De plus, les participants adultes ne

présentent pas de preuve de « recyclage neuronal » pour les grandeurs relationnelles
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telles que les fractions et les rapports de lignes. Par conséquent, les résultats des
études | et Il nous aménent a penser que la sensibilité perceptive aux grandeurs
relationnelles non symboliques pourrait dépendre de la tache. Il est important de noter
que des recherches futures utilisant différents paradigmes et outils pour examiner le
RPS pourraient aider les chercheurs et les éducateurs a concevoir des interventions

centrées sur I'apprentissage perceptif pour favoriser la compréhension des fractions.

Alors qu'une méthode pour favoriser la compréhension des fractions pourrait
consister a exploiter la sensibilité perceptive aux grandeurs relationnelles non
symboliques (Lewis et al., 2016), une autre méthode complémentaire pourrait se
concentrer sur l'établissement de liens entre les différentes interprétations des
fractions (Pitkethly & Hunting, 1996 ; Misquitta, 2011). Sans aucun doute, ces
différentes interprétations rendent le concept de fraction difficile a comprendre. Par
conséquent, l'objectif secondaire de cette thése était d'évaluer I'efficacité d'un jeu
(Math Mathews Fractions) qui aide a établir des liens entre les différentes
interprétations des fractions. Dans I'étude Ill, nous avons réparti au hasard des éleves
de CM2 entre un groupe de contrdle et un groupe de jeu. L'étude a comporté un total
de huit sessions et s'est déroulée sur quatre semaines. Au cours de ces sessions, les
éleves du groupe expérimental ont travaillé les fractions avec Math Mathews Fractions
en classe, avec une interaction limitée de I'enseignant. En revanche, les éléves du
groupe témoin ont travaillé les mémes notions sur les fractions, sous forme papier-
crayon et avec leur enseignant. Les résultats indiquent que le jeu n’a pas eu d’effets
significativement positifs par rapport a I'apprentissage traditionnel pour les
performances globales sur les fractions. Cependant, le jeu a eu un effet positif sur
I'apprentissage des nombres décimaux. Nous avons également constaté une relation

positive entre les parametres du jeu et les scores de connaissances globales des
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fractions. Cela suggeéere que des jeux tels que Math Mathews Fractions pourraient
jouer un rble dans l'enseignement traditionnel en classe en aidant les éléves a
apprendre des représentations spécifiques des fractions et en aidant les enseignants

a établir des liens entre les fractions et les nombres décimaux.

Enfin, la portée plus large de ces résultats dans le domaine des neurosciences
cognitives et de la recherche en éducation est discutée. Un modéle conceptuel
d'utilisation des résultats de cette étude pour l'enseignement des fractions est
€galement proposé dans la discussion générale. Nous espérons que les efforts de
recherche futurs utiliseront des paradigmes variés pour examiner la théorie RPS qui
pourrait aider I'enseignement des fractions en classe. De plus, les recherches futures
qui aideront les enseignants a utiliser des jeux tels que Math Mathews Fractions dans
le cadre du programme scolaire pourraient faire la lumiére sur les méthodes qui aident

les éléves a développer une compréhension générale des fractions.
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INTRODUCTION

Numerical information is ubiquitous and so numeracy plays an invaluable role
in today’s contemporary society. According to the OECD, numeracy is defined as, “the
ability to access, use, interpret and communicate mathematical information and ideas,
in order to engage in and manage the mathematical demands of a range of situations
in adult life” (OECD, 2016, p.49). Several studies in the past have evaluated the short-
term and long-term implications of low numeracy skills for both society and individuals
(Gross et al., 2009; Parsons & Bynner, 2005). Particularly, for individuals, poor
numeracy skills are not only associated with lower financial outcomes but also impact
physical and mental well-being (Bynner & Parsons, 1997; Rivera-batiz, 1992;
Rothman et al., 2008; Parsons & Bynner, 2005). Consequently, there has been
considerable interest in examining the difficulties individuals encounter with numeracy,

both in terms of brain and behavior.

Among the varied mathematics skills, rational numbers are shown to be
notoriously challenging for both children and adults globally (National Mathematics
Advisory Panel, 2008; Siegler, Fazio, Bailey, & Zhou, 2013). They form a crucial
component of mathematical proficiency by acting as a bridge between middle school
and high school mathematics development (Bailey, Hoard, Nugent, & Geary, 2012;
Booth & Newton, 2012). Less acknowledged is the role they play in domains such as
health and employment (Handel, 2016; Chakkalakal et al., 2017). For example, studies
on health numeracy show rational numbers to be strong predictors of health outcomes
(Osborn et al., 2013). In fact, the Covid-19 crisis is an unfortunate example of how
people struggle to understand proportional data related to the pandemic (such as the

fatality and mortality rates) and ignore critical health guidelines (Roozenbeek et al.,



2020). Though these factors indicate the far-reaching effects of rational number
difficulties, they also highlight the potential impact of research on understanding the

brain-behavior basis of these difficulties in learners.

Accordingly, in this thesis, we were interested to investigate the neurocognitive

correlates of fraction processing and learning. Just like any other mathematical

domain, learning fractions (numbers %whereb # 0) requires individuals to

understand new mathematical notations (numerator and denominator) and concepts
(part-whole, measure, operator, etc.). These new concepts can be built upon pre-
existing knowledge, but can also contradict it (Rosenberg-Lee, 2021). For example,
prior knowledge of whole numbers can help learners understand that all numbers have
magnitudes, however, some whole number properties like having unique successors
and a unique symbol do not apply to fractions (Rosenberg-Lee, 2021; Siegler, Fazio,
Bailey, & Zhou, 2013). Therefore, the pre-existing knowledge about whole numbers is
not as easily applicable to fractions and requires some form of conceptual change (Ni
& Zhou, 2005). Undoubtedly, fractions pose severe difficulties for both learners and
teachers (Newton, 2008; Post, Harel, Behr, & Lesh, 1991; Reyna & Brainerd, 2008;
Stigler, Givvin, & Thompson, 2010). Two divergent hypotheses that explain possible
reasons for fraction difficulties exist. On the one hand, researchers claim that problems
with fraction learning exist due to their incompatibility with the core human
neurocognitive systems (Gallistel & Gelman, 1992; Feigenson, Dehaene, & Spelke,
2004; Ni & Zhou, 2005). On the other hand, recent evidence suggests the presence
of neurocognitive architectures (the Ratio Processing System) that are specifically
suited for supporting fractions and relational magnitudes (Lewis, Matthews, &
Hubbard, 2016). The authors of the latter account claim the pervasive difficulties with

fraction learning to arise as a result of ineffective teaching methods that do not



leverage the pre-existing abilities. To provide evidence for this relatively novel account,
in this thesis, we tested the hypothesis for the presence of a Ratio Processing System
in individuals with varying levels of mathematics abilities. We also examined for a
neural basis of this system in adults using functional magnetic resonance imaging.
While the abovementioned part focuses on exploring the neurocognitive bases of
fraction representation and processing, a more practical, on-ground work of this thesis
involves investigating the effectiveness of a game-based intervention on fraction
learning of fifth-graders. Particularly, the game, Math Mathews Fractions

(https://kiupe.com/games/math-mathews-fractions-en/) focuses on the multifaceted,

complex representations of fractions and aims to provide support to teachers during
fraction instruction. Thus, in a pre-registered randomized controlled study, we
investigate whether Math Mathews Fractions may serve as a useful tool to enhance

students' fraction knowledge.

Therefore, the thesis is divided into three introductory chapters that review the
literature on the current knowledge about fraction representation and learning. The
thesis begins with the what and why of fractions. The first chapter describes the
construct of fractions and some of the major difficulties reported in the literature. The
second chapter puts forward the two major accounts that hypothesize the reasons for
difficulties in fraction learning. Here, we also provide emerging evidence in support of
the RPS theory and its hypothesized role in fraction learning. The third chapter reviews
the potential role of game-based learning in supporting fraction understanding. These
three chapters are then followed by the experimental part which includes three studies.
Study |, presented in chapter 4, uses a match-to-sample paradigm to investigate the
existence of the RPS and its role in symbolic fraction processing. Chapter 5 includes

Study Il that examines the neural bases of the RPS. In this study, we test whether the


https://kiupe.com/games/math-mathews-fractions-en/

culturally developed ability to represent numbers and fractions relies on the neural
representations of lines and line ratios respectively. Lastly, in efforts to understand the
role of game-based learning in supporting fraction instruction, Study Ill uses a pre-
registered randomized controlled design to assess the effectiveness of Math Mathews
Fractions on fraction learning outcomes of fifth-graders. The thesis concludes with a
general discussion that speculates on the wider scope of the experimental results on
fraction understanding and learning. In this section, we also comment on the potential
role of the RPS in symbolic fraction understanding and recommend future research
directions that could potentially explore the links between the Ratio Processing

System, Math Mathews Fractions, and fraction instruction in the classroom.






CHAPTERI

FRACTIONS: THE WHAT AND WHY?

“Covid-19 is less fatal than the seasonal flu” was a key narrative in the United
States and some other parts of the world around March 2020. This fallacious belief
may have stemmed from a basic lack of rational number knowledge, specifically
fractions (Thompson et al., 2021). While the number of people infected with Covid-19
worldwide was far less than the seasonal flu, the trend for the number of deaths was
inverse (Mielicki et al., 2021). The relation between these two data points was difficult
for many to decipher (e.g. case fatality rate, infection rate, etc). The case fatality rate
(CFR), used as a measure to test disease severity, is calculated by dividing the total
number of deaths by the total number of cases during a definite period multiplied by
100 (WHO, 2020; Rajgor et al., 2020). While the estimates are variable due to the
ongoing pandemic, the case fatality rate was much higher for Covid-19 (2.1 %) as
compared to the seasonal flu (0.1 %) (Rajgor et al., 2020; Piroth et al., 2021). Most
people, however, focused exclusively on either the total number of cases or the
number of deaths but not their relational magnitude (CFR), which led many to
disregard critical health guidelines. This is just one example of how fraction knowledge
taught at the middle school level is extremely crucial for making informed health
choices in society. Additionally, from a practical perspective, fraction knowledge is
important for making sound financial decisions and laying the foundation for careers
in science, technology, engineering, and mathematics (Lortie-Forgues, Tian, &
Siegler, 2015). From an educational perspective, fractions form a central part of the
mathematics curriculum at the middle school level and are the basic building blocks

for algebra and calculus (Bailey, Hoard, Nugent, & Geary, 2012; Booth & Newton,



2012). Indeed, a large-scale, longitudinal study on a nationally representative
population in both the USA and UK revealed fifth grader's fraction knowledge to predict
their high school mathematics achievement and algebra skills even after controlling
for 1Q, reading, working memory, and whole number knowledge (Siegler et al., 2012).
Though fraction instruction begins early in school, individuals continue to struggle with
fractions throughout life (Stigler, Givvin, & Thompson, 2010; Van Hoof, Lijnen,
Verschaffel, & Van Dooren, 2013). This chapter delves deeper into what exactly
fractions are, the different ways in which they can be represented, and the difficulties

associated with fraction understanding in both children and adults.
1.1 What is a Fraction?
1.1.1 The terminology

The term fraction is derived from the Latin word frangere which means ‘to break’
and is most often associated with the ‘part of a whole’ or ‘equal number of parts’
concept. Precisely, a fraction is a notation of a rational number, where the rational
number is defined as a number to the solution of an equation, b X x = a, where a and
b are integers and b can be any non-zero quantity. Thus, fraction notation refers to a

three-part notation (the numerator, the denominator, and the line that separates the
two) for writing any real number. In this particular notation %, aand b are real numbers
and b is non-zero. Thus, all rational numbers can be written in the fraction notation
(called specifically fraction). However, not every fraction notation represents a rational
number. For example, % is an irrational number (Lamon, 2012). Despite this

conceptual distinction, the terminology used in mathematics education has not been
quite consistent. Several researchers use different terms such as ‘rational numbers’,

‘fractional numbers’, and ‘fraction symbols’ interchangeably (Payne, 1976; Kieren,
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1995). To add to the complexity, rational numbers and fractions have also been used
interchangeably in elementary schools (Lamon, 2012). This interchangeable
terminology made the already difficult concept of fractions more complex. Therefore,
researchers in the past stressed the need to clearly define the term ‘fraction’ and its
meaning (Lamon, 2012). Simply put, ‘fractions’ can now be interpreted in a three-fold
manner; as the bipartite structure or fractional notation, as a positive rational number
(Lamon, 2007; 2012), and as a broader fraction concept (Kieren, 1976; Behr et al.,
1993). While the original terminology of fractions focuses on the bipartite notation,
particularly the part-whole concept, the fraction concept is a broad, multifaceted

construct.

1.1.2 The construct

The holistic framework used to understand the broad concept of fractions was
conceptualized independently by Kieren, Vergnaud, and Freudenthal in the ’70s and
'80s. They recognized the different ways in which the fraction concept could be
interpreted. Kieren (1976) developed the theoretical framework that included multiple,
inter-related sub-constructs such as the ratio, the operator, the quotient, and the
measure. During the same period, Vergnaud (1983) and Freudenthal (1983) also
proposed similar aspects to fraction concepts focussing on the multiplicative relations
and partitioning scheme respectively. Acknowledging the complexity of fractions,
Freudenthal (1983) further notes, “In spite of the many-sided classification and the
wealth of possible examples, the approach to fractions from the point of view of “part-
whole” is much too restricted not only phenomenologically but also mathematically”
(Freudenthal, 1983, p. 144). Kieren (1976) also emphasized that a good
comprehension of fraction concepts requires an understanding of all the sub-
constructs and their inter-relatedness. While Kieren’s theoretical model is the most
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widely accepted framework (Behr et al., 1983; Charalambous & Pitta-Pantazi, 2007;
Tsai & Li, 2017), it is not the only way to understand the construct of fraction. For
instance, Hecht and colleagues (2003) considered the part-whole and measurement
interpretation to be meaningful for conceptual fraction knowledge. Another framework
focuses on the alternate notations of decimals and fractions and the way they capture
continuous and discrete entities (Rapp et al., 2015). In this framework, fraction best
represents countable discrete objects (6/8 of the balls are blue) such that the ratio
formed between the two sets of integers; the numerator and the denominator capture
the value of the object. On the other hand, decimal is better at capturing the
uncountable, continuous entities (i.e. easier to understand 0.4 feet than 2/5 of a foot).
So, fraction represents a two-dimensional relation (a/b) whereas decimal is a one-
dimensional magnitude (a/b = ¢) (Rapp et al.,, 2015). Thus, the abovementioned
literature reveals the multiple ways in which the construct fraction and its associated
framework are conceived. While no particular framework on the interpretation of
fractions is universal, Kieren’s model captures the complex, multifaceted concept of
fractions and mostly includes all the other frameworks. Therefore, to further
comprehend the complexity associated with each of the different subconstructs of

fractions, Kieren'’s theoretical model will be discussed in detail.

1.1.2.1 The Five Subconstructs of Fractions

Earlier conceptions of the model included the four subconstructs: measure,
ratio, quotient, and operator where the part-whole concept was implied to be
embedded in each of the subconstructs (Kieren, 1976). Later, Behr and colleagues
(1983) developed this model by including the part-whole concept as a distinct sub-
construct. They further expanded the model by connecting the different interpretations
of fractions to the basic operations like equivalence, multiplication, addition, and

9



problem solving (Figure 1). The following sub-sections describe the different
subconstructs of fractions and their importance in understanding the broader construct

of fraction concepts.

Part-whole / |m|1tt|nnmg

ﬁ ﬁ@

Measure
pﬂ

Figure 1: The different subconstructs of fraction and their inter-relationships (Figure from
Charalambous & Pitta-Pantazi, 2007)

1.1.2.1.1 Part-Whole / Partitioning

The part-whole subconstruct of fractions is based on the partitioning scheme
where the learner has to partition a continuous or discrete quantity into equal-sized
parts or sets (Behr et al., 1983; Lamon, 1999). Here, the learner needs to develop
mastery of partitioning the total number of parts or the whole into equal-sized parts.
Also, it is important to understand the relationship between the parts and the whole
such that (a) the more parts the whole is divided into the smaller the size of individual
parts become (b) the parts are components of the whole and must exhaust the whole
(Lamon 1999; Charalambous & Pitta-Pantazi, 2007). Failure to understand this
relationship leads to misconceptions when counting the parts. For instance, students’
misidentified the fraction 2/3 as 2/5 as they counted the parts twice, once for the

numerator and another time for the denominator (Charalambous & Pitta-Pantazi,
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2007). Despite the first concept to be introduced to students to explain fractions (Fuchs
et al., 2013), the part-whole concept is found to be challenging for learners across a

wide range of age groups (Ciosek & Samborska, 2016).
1.1.2.1.2 Ratio

The ratio subconstruct of a fraction is the comparative relationship between two
quantities (a numerator and a denominator) that elucidates the notion of a relative
magnitude (Behr et al., 1983; Kieren, 1993). Here, the learners must understand the
covariance-invariance property of ratios which means that the two quantities must
change together such that the relationship remains invariant (Charalambous & Pitta-

Pantazi, 2007). For instance, if the ratio is one-half, then the numerator 2’ and the

denominator ‘4’ of a fraction (%) both have to change together (g) to maintain the
relative magnitude as one-half. In other words, the proportional relation between the
numerator and the denominator will hold the ratio constant, i.e. a change in the
numerator will lead to an expected change in the denominator (Charalambous & Pitta-
Pantazi, 2007; Marshall, 1993). Thus, this subconstruct plays a critical role in building
a better understanding of the concept of equivalence (Kieren, 1976; Marshall, 1993).
Its importance is also emphasized in later mathematical concepts such as calculus
(Tsai & Li, 2017). Recently, it has also been shown to play a key role in building an

intuitive understanding of fractions (Lewis, Matthew, & Hubbard, 2016). The ratio

subconstruct is an important part of this thesis and will be present in study | and II.

1.1.2.1.3 Quotient

This interpretation refers to the way the notation of the fraction % can be seen

as a mathematical operation of division (a + b) (Kieren, 1993). Unlike the part-whole
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subconstruct, this subconstruct has no constraint on the size of the numerator. Thus,
the quantity that results from equal partitioning or division can be less, equal, or greater
than the whole unit (Streefland, 1993). Thus, it can help students understand that
fraction magnitude can be both greater and smaller than 1 (Charalambous & Pitta-
Pantazi, 2007). For the understanding of this particular subconstruct learners need to
understand the concepts of division, particularly the roles of the dividend and the
divisor (Kieren, 1993). So, the quotient subconstruct can also be thought of as a
process that begins with two entities; the numerator (divisor) and the denominator

(dividend), and results in a single quantity through partitive or quantitative division (e.g.

» | 0o

=8 +4 =2) (Behr et al., 1993). Another interpretation of quotient could be a number
such that % when multiplied by ‘b’ results in ‘a’. Thus, the quotient subconstruct aids

students in both the understanding of the whole number operation as well as its
connection with the fraction concept. In fact, prior studies have shown proficiency in
division tasks to support student’s fraction understanding (Siegler & Pyke, 2013; Ye et

al., 2016).
1.1.2.1.4 Operator

Another one of the five subconstructs of fractions, the operator works as an
operation or function that is to be performed on a number or sets of objects (Behr et
al, 1993; Kieren, 1976; Tsai & Li, 2017). To master the concept of the operator,
students should be able to understand the different ways in which the operator could
function (e.g. 2/4 can be 2 x ['/4 of a unit] or 4 x 2 units) (Charalambous & Pitta-Pantazi,

2007). An example of a question that includes the operator concept could be where a

student is asked to solve %of 12 meters. Here, the operator first stretches the original
quantity and then shrinks it (e.g. %of 12 is stretched to-12 multiplied by 3 which is 36,

12



then divided by 4 which shrinks to- 9) (Behr et al., 1993). This example shows how a
sound understanding of the operator concept can help comprehend the concept of

fraction multiplication (Behr et al., 1993).

1.1.2.1.5 Measure

This subconstruct is particularly used with the number lines where the unit
fraction is used to determine the distance from a starting point (Lamon, 2001). It also
contains two interpretations; first, the fraction holds an inherent magnitude (Siegler et
al., 2011) and second, the fraction can be used as a measure such as a distance or a
size (Charalambous & Pitta-Pantazi, 2007). Here, the unit fraction can be used to
repeatedly measure the distance between a certain point from the starting point (Behr
et al., 1993; Marshall, 1993). A graphical representation of the measure subconstruct
is shown in Figure 2. Additionally, the iteration of unit fractions can be used to
understand the concept of improper fractions (e.g. iteration of 1/4 can result in 2/4,
3/4, 4/4, 5/4, 6/4, and so on). The measure concept also aids in building an
understanding of the property of density of rational numbers (Behr et al., 19983;
Pitkethly & Hunting, 1996). This property is novel and complex for students who have
learned the counting sequence in the past as it implies an infinite number of fractions
exist between any two fractions (Lamon, 1999). To develop a comprehensive
understanding of the measure construct of fractions, the student should be able to
locate the fraction on the number line as well as identify it on a specific point on the
number line (Smith, 2002). Intervention studies also show that practicing number line
tasks may lead to improved knowledge of fractions (Barbieri et al., 2019; Fuchs et al.,

2016; Saxe et al., 2013).
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3 one-fourth units from 0 on the number line
I
1/4

14 ] 14

3 one-fourth units of a given area

Figure 2: Graphical representation of the measure subconstruct of fraction showing a
whole partitioned into 4 equal parts and %4 is measuring 3 units of size V4 (Figure from Tsai
& Li, 2017).

Conclusively, the above-mentioned five subconstructs focus on the different
properties of fractions that are required to attain mastery in this domain. Each
subconstruct is required for a holistic understanding of fractions (Pitkethly & Hunting,
1996; Tsai & Li., 2017). However, curriculum and pedagogy worldwide have focussed
disproportionately on the part-whole concept (Behr, Lesh, Post, & Silver, 1983; NMAP,
2008; Fuchs et al., 2013). Predictably, fractions are difficult to learn and mathematics
educators and researchers worldwide have noted a pervasive lack of fraction
understanding among students (Chan, Leu, & Chen, 2007; Ni, 2001; Yoshida &
Sawano, 2002). Nonetheless, the disproportionate focus on the subconstructs of
fractions is just one of the many reasons for difficulties encountered during fraction
learning. In the section below, we will describe some reasons for the difficulties

associated with fraction understanding.

1.2 Why are Fractions Difficult?

Several researchers and educators have examined why children and adults

struggle to learn fractions (Hiebert, 1985; Mack, 1995; Ni & Zhou, 2005; Pitkethly &
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Hunting, 1996; Behr et al., 1983; Lortie-Forgues et al., 2015). Three main reasons that

contribute to fraction difficulties are discussed below.

1.2.1 Multiple subconstructs of fractions

As mentioned above, fractions comprise multiple subconstructs or
interpretations. These subconstructs are required to build a coherent understanding
of fractions (Behr et al., 1983). For instance, the part-whole subconstruct helps
understand the concept of equipartitioning, the measure subconstruct focuses on the
property of density of rational numbers, the operator interpretation aids in fraction
multiplication, and the ratio builds the foundation for fraction equivalence
(Charalambous & Pitta-Pantazi, 2007). Over-reliance on any one subconstruct leads
to constraints on understanding fractions (Kieren, 1993). For example, a
disproportionate focus on the part-whole construct in schools may lead to difficulties
in understanding improper fractions, but also to difficulties in grasping properties of
equivalence, infinite rational numbers between any two natural numbers, and fair
shares (Misquitta, 2011). Therefore, proficiency in fraction knowledge requires
developing a balanced understanding of all the subconstructs and their inter-

relationships.

1.2.2 The natural-number bias

Both natural numbers and rational numbers can be placed and ordered on a
number line by the virtue of their inherent property of magnitude (Siegler & Lortie-
Forgues, 2017). However, they differ widely in other properties (Figure 3). While
natural numbers can be counted, have predecessors and successors, and unique
symbols (e.g. 7), between any two fractions there is an infinite number of other

numbers and infinite ways to represent the same magnitude (e.g. 2 = 2/4 = 0.5)
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(Obersteiner et al., 2019). Natural number schemes can therefore be inhibiting when
it comes to generating new fraction knowledge (Pitkethly & Hunting, 1996). Indeed,
research indicates children’s prior whole number knowledge impedes the acquisition
of fraction concepts (Gallistel & Gelman, 1992). The phenomenon, known as the
whole-number/ natural number bias', often leads to errors in problems that require
holistic processing of fractions (Ni, 2001; Ni & Zhou, 2005; Vamvakoussi et al., 2012;

Van Hoof et al., 2013).

Additionally, the bipartite structure of fractions (two natural numbers separated

by a horizontal line, %) adds to the complexity of learning overall fraction magnitudes

(Hiebert, 1985). It often leads learners to overly rely on fraction components (a-
numerator and b- denominator) to estimate fraction magnitudes. Fraction notation is
difficult to process and even though learning occurs gradually, it requires more
cognitive resources such as working memory when solving a fraction problem (23/66
+ 34/78) than a whole number problem (78 + 67) (Hecht & Vagi, 2010). During the
early stages of fraction learning, children often misconceive a fraction as familiar
distinct whole numbers or arithmetic operations (e.g. 2/3 as 2 and 3 or 2+3) (Hartnett
& Gelman, 1998). Thus, the physical notation of fractions also contributes to the

natural-number bias.

Further, the erroneous assumption that properties of natural numbers are
similar to that of fractions causes difficulties when processing fraction arithmetic
(Siegler, Fazio, Bailey, & Zhou, 2013). For instance, when 13-year-old students are

asked to solve the addition problem 12/13 +7/8, most of them choose 19 or 21. This

' Both terms have been used to describe the phenomenon.
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indicates that they have summed either the numerator or the denominator
respectively, instead of approximating the overall magnitude (Carpenter et al., 1980;
Lortie-Forgues et al., 2015). Response patterns on a fraction magnitude comparison
task, where participants are asked to judge the relative fraction magnitudes (e.g. is 7/9
more or less than 2/8), also indicates that sometimes participants rely on the
components of fraction rather than the overall magnitude of the fraction (Dewolf,
Grounds, Bassok, & Holyoak, 2014; Schneider & Siegler, 2010). In another study,
community college students also showed the natural number bias by adding
numerators and denominators separately across the fractions (e.g. 1/2 + 2/3 = 3/5)
(Stigler et al., 2010). The natural number bias is not only restricted to children but is
also observed in adults, even expert mathematicians (Meert, Gregoire, & Noel, 2010;
DeWolf & Vosniadou, 2015; Vamvakoussi, Van Dooren, & Verschaffel, 2012;
Obersteiner et al., 2013). Therefore, successful learning of fractions demands an
understanding of the different properties of fractions and natural numbers and
inhibition of the ‘intuitive’ natural number bias when processing fractions (Van Hoof,

Verschaffel, De Neys, Van Dooren, 2020).
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1. Representation
of Magnitude

2. Symbolic
Representation

3. Density

4. Operation

Natural numbers

Base-10 place-value structure
More digits—larger number
123 > 45

Unique for each number
2 as unique representation

Unique successors and
predecessors

Finite number of numbers
between two natural numbers
1,2.3.4,5, etc.

Multiplication as repeated
addition

3-4=4+4+4
Multiplication makes bigger,
division smaller
2-4=8,15+3=5

Fractions

Quotient of two numbers

Neither number of digits nor natural
number magnitudes as such determine
fraction magnitudes
3719
Multiple (infinitely many) fractions can
represent the same number

1 2 4

—=—=—=elc.

2 4 8
No unique successors and predecessors
Infinite number of numbers between two
fractions

3 s not the successor of 2

5 5

Multiplication as repeated addition
insufficient, more abstract definition
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Figure 3: Differences between the properties of natural numbers and fractions (Figure
from Obersteiner et al., 2019).

1.2.3 Varied and distinct fraction arithmetic procedures

The importance of fraction arithmetic extends beyond mathematics
achievement to other domains such as physics, chemistry, statistics, economics, and
many more (Lortie-Forgues, Tian, & Siegler, 2015). It further extends to daily skills
such as banking, baking, and medical dosage calculation. The concepts required to
master fraction arithmetic are complex and ambiguous. For instance, both fraction
addition and subtraction require equal denominators but this is not the case for fraction
multiplication and division. Further, fraction division is a procedurally complex two-step
process that requires the inversion of the denominator and multiplication of the
fractions (e.g. 3/6 + 4/8 = 3/6 x 8/4 = 24/24). Thus, the number of distinct procedures

required to master fraction arithmetic is far more than what elementary students have

ever encountered before (Lortie-Forgues, Tian, & Siegler, 2015).
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A prior study on 61" and 8" graders recruited from three public school districts
in the US noted a success rate of only 41% and 57% on fraction arithmetic problems
(Siegler & Pyke, 2013). Further, these students showed better performance on fraction
addition and subtraction problems (60 and 68% correct respectively) as compared to
fraction multiplication and division (48% and 20% correct respectively). In general,
students and adults are also less accurate on fraction multiplication and division
problems than fraction addition and subtraction (Givvin et al., 2011; Stigler et al., 2010;

Braithwaite et al., 2017; Siegler & Lortie-Forgues, 2017).

A variety of factors contribute to these statistics. A limited understanding of
fraction arithmetic procedures by teachers, rote memorization of procedures by
students, minimal practice and instruction on fraction division, and limited conceptual
understanding are some of the factors that exacerbate students’ difficulties with
fraction arithmetic (Lortie-Forgues, Tian, & Siegler, 2015). Thus, mastery of fraction
arithmetic entails a multi-pronged approach that builds a strong conceptual
understanding of fraction magnitudes, that explicitly focuses on the variety of
procedures, and involves a thorough and balanced practice of all types of fraction

arithmetic problems.
1.3 Summary

Learning and teaching fractions is undeniably challenging. The initial
conceptualization of number theory by children that focuses on the counting sequence
results in resistance to learning fractions (Lamon, 1999). This resistance leads to
misconceptions in fraction concepts for many adults. Thus, a reconceptualization of
number theory is a prerequisite for building proficiency in rational number knowledge

(Stafylidou and Vosniadou, 2004). The current chapter highlighted some studies that
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examined the source of fraction difficulties in children and adults. The forthcoming
chapters will shed light on the neurocognitive correlates of fraction understanding and
recent game-based interventions to overcome the struggles associated with fraction

learning.
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CHAPTERIII

THE NEUROCOGNITIVE BASIS OF FRACTION LEARNING

4

“Intuition is important to build mathematical knowledge’
- Beth & Piaget 1966

Human cognition is postulated to be built on specific innate intuitions, also
known as the core systems of knowledge?(Spelke, 2000; Spelke & Kinzler, 2007). The
core systems of knowledge, namely, object representation, agent and goal-directed
action, the geometry of the environment, and, the number representations® support
evolutionarily relevant functions in most species (Spelke, 2004; Spelke & Kinzler,
2007). Present from infancy, these systems serve as foundational blocks for building
complex knowledge systems required to advance human cognitive development
(Spelke & Kinzler, 2007). Specifically, the number sense, or the ability to perceive
numerical quantity, found in animals, pre-verbal infants, and human adults (Dehaene,
1997, 2001; Nieder, 2019; but see: Leibovich et al., 2017; Wilkey & Ansari, 2019) is
hypothesized to support the development of symbolic number knowledge in humans
(Bailey, Hoard, Nugent, & Geary, 2012; Dehaene & Cohen, 2007; Feigenson et al.,
2004; Gallistel & Gelman, 1992; Piazza, 2010; Neider, 2005, 2017; for a review see
De Smedt, Noel, Gilmore, & Ansari, 2013). While these systems help guide the

acquisition of new knowledge, they can also pose limitations and constraints when the

2Developmental theories find their roots in Nativist (Kant, Chomsky), Constructionist (Piaget), and/or
Empiricist (Skinner) approaches. In addition to the core knowledge theory mentioned above, some other
cognitive development theories include connectionism, theory theory, modularity, and dynamic systems
theory (detailed review in Newcombe, 2013).

3 A fifth core system for social interactions has also been proposed (Spelke & Kinzler, 2007).
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new knowledge violates the principles of the core system (Geary, 2006). Proponents
of this view, the Innate Constraint account, argue that pervasive difficulties in fraction
learning may stem from the inability of the core systems to represent and process
relational quantities, mainly because these systems are exclusively evolved to deal
with discrete numerosities (Bonato et al., 2007; Dehaene, 1997; Gallistel & Gelman,
1992; Geary, 2007; Piazza, 2010). Contrarily, the Cognitive Primitive approach posits
the presence of core perceptual systems or intuitions that are tuned to process
relational quantities (Lewis, Matthews, & Hubbard, 2016; Matthews & Ziols, 2019).
Researchers supporting this account believe fraction difficulties arise as a result of
teaching practices and curriculum that does not leverage the existing intuitive abilities
to process ratios and proportions (Ni & Zhou, 2005; Lewis, Matthews, & Hubbard,
2016). Thus, whether the human cognitive architecture can or cannot support
fractional magnitudes remains elusive. This question has inspired a significant amount
of work in this thesis and so the objective of the current chapter is to provide a review

of the literature on the neural and behavioral correlates of fraction learning.

1.1 Fraction Learning: Innate constraint or cognitive primitive?

The question of why fractions are difficult to master is a matter of current debate
(Lewis et al., 2015; Mohring et al., 2016). Two contrasting accounts have been
proposed, namely, the innate constraint and the cognitive primitive approach. The
innate constraint account is supported by two main sources of evidence (Ni & Zhou,
2005). First, there are severe and pervasive difficulties encountered by individuals
globally when learning fractions and rational numbers (Bialystok & Codd, 2000; Chan,
Leu, & Chen, 2007; Hartnett & Gelman, 1998; Ni, 2001; Yoshida & Sawano, 2002),
and second, there is an observed early competence with discrete quantities in animals
and human infants (Brannon & Terrace, 1998; Cantlon & Brannon, 2006; Dehaene,
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1992, 1997; Koechlin, Dehaene, & Mehler, 1997; Starkey, Spelke, & Gelman, 1990).

Dehaene (2011) captures this account cogently in his book:

I would like to suggest that these mathematical entities (negative integers,
irrational numbers, and fractions except Y2 and 1/4) are so difficult for us to accept,
and so defy intuition, because they do not correspond to any pre-existing category in
our brain. To function in an intuitive mode, our brain needs images- and as far as
number theory is concerned, evolution has endowed us with an intuitive picture only

of positive integers (p. 76).

According to the innate constraint theorists, neurocognitive architecture is
endowed with an innate ability to process only discrete magnitudes (Gallistel &
Gelman 1992; Wynn 1992). One of the core systems that support this ability is known
as the Approximate Number System (ANS)4 which estimates the non-symbolic
quantities approximately (Dehaene, 1997). The ANS is shown to be present in many
animal species, including rats, pigeons, monkeys, chimpanzees (Agrillo et al., 2011;
Beran, 2001; Dehaene, Dehaene-Lambertz, & Cohen, 1998a; Ditz & Nieder, 2015;
Nieder et al., 2002; Scarf, Hayne, & Colombo, 2011; Xia, Emmerton, Siemann, &
Delius, 2001; for a review see: Boysen & Capaldi, 1993 and Nieder, 2019). Studies
also suggest that human infants possess an ANS. For instance, a seminal study using
the habituation paradigm on five to six-month-old infants showed that infants who were
habituated to two dots looked longer at displays containing three dots, and vice versa
(Starkey & Cooper, 1980), thus indicating that infants can discriminate between these

two non-symbolic quantities (Hyde & Spelke, 2011; Wood & Spelke, 2005; Xu &

4 The other system, the object tracking system (OTS) which is relatively more precise but only for
processing smaller number of items (about one to four) (Dehaene, 2011; Nieder, 2019).
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Arriaga, 2007). Crucially, this innate ability to represent magnitudes mentally is
approximate, imprecise, and follows Weber's law (Halberda, 2011). First discovered
for the sensation of weights, Weber’s law is found to apply to other sensory intensities
and importantly to numerical discrimination (Weber, 1850; Moyer & Landauer, 1967).
Weber's Law for numerical discrimination refers to the ability to discriminate
numerosities as a function of their ratio, i.e., as the ratio between the numerosities
increases so does the ease of discriminability (Halberda, 2011). In other words,
Weber’s law captures both the distance (e.g., 2 and 6 is easier to compare than 2 and
3) and the size effects (e.g., 10 and 14 is easier to discriminate than 40 and 44). The
precision with which the infants can discriminate between the numerical stimuli (i.e.,
Weber fraction) improves with age (Figure 4). While newborns can discriminate
numerosity arrays with a 1:3 ratio, six-month-old infants can discriminate 1:2 and ten-
month-old infants can discriminate a 2:3 ratio (Lipton & Spelke, 2003; Wood & Spelke,
2005; Xu & Arriaga, 2007). An infant's ability to perceive numerical stimuli in the
environment is not only limited to perceptual discrimination between numerosities but
also extends to rudimentary arithmetic calculations like addition and subtraction

(Wynn, 1992, 2004).
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Figure 4: Figure depicting the developmental change in the estimated Weber fraction for
each age group from different models (decreasing Weber fraction = increase of ANS

acuity) (Figure from Halberda & Feigenson, 2008)

Studies comparing children’s ease to acquire whole number skills as compared
to rational numbers further add to the argument for the innate constraint account. For
example, several studies have shown that the whole number strategy exerts a strong
and persistent interference during fraction learning (Mack, 1995; Ni, 2001; Streefland,
1993; Zhang, Fang, Gabriel, & Szlcs, 2014), also known as the whole-number bias
(this was discussed in detail in Chapter |). These studies support the idea that the
innate mechanisms responsible for supporting the representation of discrete quantities
interfere and impede the acquisition of fraction and rational numbers (Feigenson,

Dehaene, & Spelke, 2004).

In his evolutionary theory, Geary (2006) also proposed a distinction between
whole numbers and rational numbers. Specifically, while whole numbers were
proposed to be biologically primary, fractions and other number types were considered

to be biologically secondary, indicating that a lack of innate ability might be the reason
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for the difficulty in acquiring fraction concepts (Siegler, Thompson, & Schneider, 2011).
The innate constraint proponents suggest that “when humans push number
representations further to embrace fractions, square roots, negative numbers, and
complex numbers, they move even further from the intuitive sense of number provided
by the core systems.” (Feigenson et al., 2004, p. 313). Therefore, theorists of this
account suggest that the innate mechanisms assumed to help children learn discrete
number concepts are not designed to deal with a relative, continuous quantities and
so acquiring fraction and rational number concepts is challenging. However, evidence
from animal and infant studies that show discrimination for discrete numerosities
(Brannon & Terrace, 1998; Cantlon & Brannon, 2006; Dehaene, 1992, 1997; Koechlin,
Dehaene, & Mehler, 1997; Starkey, Spelke, & Gelman, 1990) does not automatically
suggest the absence to comprehend continuous, relational magnitudes. Unless
proven, it is incorrect to assume the non-existence of mental representations for

continuous numerosities.

Indeed, emerging evidence from both animal and infant studies falsifies the
proposal of the innate constraint account, which privileges discrete quantities. Some
have even suggested perceptions of relative quantities to be more primitive than
absolute, discrete quantities (Ni & Zhou, 2005), arguing for the number sense to
represent rational numbers (Clarke & Beck, 2021). Recently, a similar system to the
ANS, the ratio processing system (RPS) has been proposed (Lewis, Matthews, &
Hubbard, 2016). Studies indicate that the RPS might be a phylogenetically ancient
system that processes non-symbolic ratios such as relative lengths of two lines or
areas of two figures or dot arrays (Jacob, Vallentin, & Nieder, 2012; Matthews &
Chesney, 2015). According to the cognitive primitive hypothesis, the RPS might serve

as a neurocognitive startup tool (Piazza, 2010) to build robust fraction knowledge
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(Lewis et al., 2016). Following the relation between ANS and symbolic math
achievement (Chen & Li, 2014; Bugden et al., 2016; Piazza et al., 2004; for contrary
views Reynvoet & Sasanguie, 2016, Leibovich et al., 2017), proponents of the RPS
believe that leveraging this innate perceptual sensitivity can help develop a better
understanding of symbolic fraction magnitudes. Since a major part of this thesis
involves exploring the behavioral and neural correlates of the RPS, the following

sections will provide a detailed account of the literature so far.

1.2 The Ratio Processing System and the Neurocognitive Correlates of

Fraction Learning

Recent evidence suggests the presence of a perceptual-cognitive system for
processing relational non-symbolic magnitudes. Indeed, perceptual sensitivity to non-
symbolic relational magnitudes has been shown in non-human primates (Drucker et
al., 2016; Eckert et al., 2018; Tecwyn et al., 2017; Vallentin & Nieder, 2008, 2010;
Woodruff & Premack, 1981), infants (Denison & Xu, 2014; McCrink & Wynn., 2007),
school-aged children (Bhatia et al., 2020; Boyer, Levine, & Huttenlocher, 2008; Meert,
Grégoire, Seron, & Noél, 2013; Sophian, 2000; Spinillo & Bryant, 1999; Szkudlarek &
Brannon, 2021), and both typically achieving adults (Bhatia et al., 2020; Hollands &
Dyre, 2000; Jacob & Nieder, 2009 a, b; Matthews & Chesney, 2015; Meert, Grégoire,
Seron, & Noél, 2011) and adults with mathematics difficulties (Bhatia et al., 2020). This
widespread ability to process non-symbolic relational magnitudes - among nonhuman
animals and individuals with varying levels of mathematics skills — demonstrates the
evidence for a long-standing ratio processing system (Jacob, Vallentin, & Nieder,
2012). Focusing on both human and nonhuman animals, the next sections will
highlight the important behavioral, neuroimaging, and neurophysiological experiments
that reveal evidence for the RPS.
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1.2.1 Behavioral experiments

Assessing relational magnitudes provides animals the evolutionary advantage
in behaviors like social interactions, hunting, and mating. For instance, estimating the
ratio between the size of the opponent invader and their group helps determine female
lions and chimpanzees whether or not to attack (McComb et al., 1994; Wilson et al.,
2002). Foraging behavior in ducks also shows preference to proportional magnitudes
(Harper, 1982). Thus, the understanding of proportionality is required for key life skKills.
However, these behavioral patterns observed in field studies could very well be
explained by low-level sensory processes. To this end, several controlled laboratory
experiments have examined whether or not the ability to discriminate between ratios

extends beyond these low-level sensory-driven processes.

Using the operant conditioning paradigm, researchers trained pigeons to peck
arrays that consisted of an equal number of blue and red dots (Honig & Stewart, 1989;
Emmerton, 2001). The pigeons were also trained to learn that one specific color was
not rewarded (e.g. blue). Thereafter, the birds were tested with different ratios of the
two discrete dot colors. A similar experiment was also performed with continuous
horizontal bars of colors (Emmerton, 2001). Results revealed that irrespective of the
absolute number of dots, pigeons responded more frequently to arrays that contained
a greater proportion of rewarded color (e.g. red). In another study, Vallentin & Nieder
(2008) tested both monkeys and human adults on a proportion discrimination task
(Figure 5). They presented a delayed match to sample task where target non-symbolic
line proportions had to be matched with their correct match proportion (1:4, 2:4, 3:4,
4:4). The presentation time was short to prevent calculation or verbalization of the
stimuli by human adult participants. Also, the individual line lengths differed so that the
participants could not rely on absolute line lengths. Results showed a similar level of
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performance for both human adults and monkeys (Figure 5). These studies also
revealed the signature for an analog magnitude representation, i.e., the distance effect

(which reveals an abstract understanding of proportionality).
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Figure 5: A. Delayed match to sample task using line proportions. B. The average
performance of 18 human adults and two monkeys on the task (Figure from Vallentin &
Nieder, 2008)

Similar to animals, pre-verbal infants have also shown sensitivity to
proportionality. For instance, McCrink & Wynn, 2007 observed that five to six months
old infants habituated to specific non-symbolic ratios looked longer at novel ratios
(differing by a factor of two), indicating that infants as young as six months can process
differences between non-symbolic ratios. By the age of four, children can also
accurately perform addition and subtraction on non-symbolic part-whole

representations of fractions (Mix, Levine, & Huttenlocher, 1999). Taken together, these
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studies raise the possibility of an evolutionarily old system, the RPS, involved in
processing non-symbolic relational magnitudes. It has also been argued that the RPS
might provide a scaffold to build symbolic fraction knowledge in humans (Lewis,
Matthews, & Hubbard, 2016). Indeed, in a recent study 85 first and second graders (~
6-8 years old) performed non-symbolic (dot arrays) and symbolic (numerals) ratio
comparison tasks where they were asked to select the machine which would give them
the best chance of giving a specific color (blue/white) of gumball. Practice trials were
conducted to ensure that children did not rely on absolute numbers of gumballs.
Results revealed an above-chance performance on both symbolic and non-symbolic
ratio comparison tasks (Szkudlarek & Brannon, 2021). Importantly, the findings show
that children who performed the non-symbolic ratio task first were much better at
symbolic ratio reasoning than the other way around (Szkudlarek & Brannon, 2021).
This result might indicate that the non-symbolic ratio reasoning provides a basis for

symbolic ratio understanding.

This idea of the RPS acting as a building block for symbolic relational
magnitude understanding is also supported by other recent studies. For instance,
individual differences in non-symbolic ratio processing have been shown to relate to
individual differences in symbolic fraction processing in school-aged children
(Méhring, Newcombe, Levine, & Frick, 2016) and adults (Matthews, Lewis, & Hubbard,
2016). Further, when adults compare the magnitude of symbolic fractions as well as
the magnitude of non-symbolic ratios (e.g., pairs of lines), their performance depends
on the ratio between the magnitudes (i.e., a Ratio of Ratios, RoR) (Hurst & Cordes,
2016; Matthews & Ziols, 2019) For example, participants are faster and more accurate
at comparing symbolic fractions and non-symbolic ratios when the RoR is large (e.g.,

2/6 versus 1/9 = 3:1) than when it is small (e.g., 4/5 versus 2/3 = 6:5) (Hurst & Cordes,
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2016). This effect — also observed with whole numbers — is generally thought to
indicate that numerical magnitudes are ordered along a mental number line (Moyer &
Landauer, 1967). Accordingly, representations of magnitudes are more difficult to
distinguish when the distance between them decreases (i.e., a distance effect) and
when the overall magnitude increases (i.e., a size effect). Another study has found
that adults are faster at comparing symbolic fractions to non-symbolic fractions (i.e., a
mixed-format comparison) than symbolic fractions to symbolic fractions (i.e., a within-
format comparison) (Matthews & Chesney, 2015), suggesting a shared magnitude
code that might be accessed intuitively when performing mixed-format comparisons
(Matthews & Chesney, 2015; Matthews, Chesney, & McNeil, 2014). Together, these
studies provide important evidence for the presence of the RPS and support for the

cognitive primitive approach.

1.2.2 Neuroimaging experiments

While much is known about the neural correlates of absolute magnitude, until
recently there was no data on the neural representations of relative magnitudes. This
lack of evidence might have contributed towards strengthening the innate constraint
theorists’ account. Jacob & Nieder (2009a) were the first to conduct an fMRI study with
human adults using an adaptation paradigm to explore the cortical areas responsible
for processing non-symbolic ratios (line lengths and dot arrays). The adaptation
paradigm (Grill-Spector and Malach, 2001) relies on the phenomenon of repetition-
suppression whereby repeated presentation of a particular stimulus leads to
suppression in the neuronal activity (adaptation effect). Presentation of novel stimuli
will then lead to an increase in neuronal activity (or recovery from the adapted state).
In the study, adult participants were repeatedly presented with a specific non-symbolic
ratio (e.g. 1:5) which led to a decrease in blood oxygen level-dependent (BOLD)
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activity in the neuronal populations sensitive to that ratio. Presentation of close (2:5
and 3:5) and far (5:5 and 4:5) deviants then activated a different neuronal population
to recover from the adaptation with a stronger BOLD activity. Particularly, the
adaptation effect was observed in the bilateral IPS, the precentral, and the prefrontal
cortex. Additionally, the difference in the strength of BOLD activity was modulated by
how far the novel stimulus ratio was from the adapted ratio. This distance effect was
found to be invariant to changes in the representation of the stimuli (line ratios or dot
arrays). Further, an overlap of the distance effect with that observed for only
numerosities revealed that both absolute and relative magnitudes were processed by
the same brain regions i.e. bilateral intra-parietal sulcus and the lateral prefrontal
cortex (Jacob & Nieder, 2009a). Since this was a passive viewing paradigm,
participants were not asked to perform any task (e.g. magnitude comparison), further
supporting the idea that representation of non-symbolic proportions is implicit and
automatic in the human brain. Rhesus monkeys trained on a delayed match to sample
task (described above) with non-symbolic ratios also showed selective neural tuning
for preferred ratios in the prefrontal and parietal regions (Vallentin & Nieder, 2010).
Specific populations of neurons displayed the signature distance effect responses, i.e.,
neurons tuned to 1/4 activated more strongly in response to 1/4, less strongly for ratios
closer in distance, and weakly for distant ratios. Therefore, these results indicate that
both humans and monkeys demonstrate an abstract understanding of proportionality.
Supporting the behavioral data discussed above, the abovementioned neuroimaging
study along with the others discussed below hints at the possibility for the presence of

the ratio processing system.

Evidence for the use of an analog code for processing symbolic proportions

comes from another study by Jacob & Nieder (2009 b). In this study, adults were
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adapted to symbolic fractions (approximately 1:6) and then presented with deviants in
two formats, fraction numerals (%) and fraction words (one-half). Similar to non-

symbolic ratios, participants passively viewed symbolic fractions and showed an
adaptation effect in the bilateral IPS. Importantly, the effect was independent of the
notation of the deviants (numerals and words) (Figure 6). Therefore, the invariance to
the notation of deviants and the observed distance effect in this cross-format notation
hints at an amodal representation of magnitude (i.e. a mental number line; Siegler et
al., 2011). Remarkably, another study on symbolic fractions reveals that the right IPS
does not respond as a function of the distance between the components (numerator
and denominator), but specifically gets modulated by the total distance between the
fraction magnitudes (lschebeck et al., 2010), indicating that the human brain does

represent the real numerical value of the fractions.

Adaptation Deviants

Adaptation Deviants { :7" Lo S

w— Dot proportion e Numerosity
Line proportion e=== QOverlap

Figure 6: Functional MRI adaptation experiments for non-symbolic ratios and fractions A.
Non-symbolic stimuli representing proportions in both line ratios and dot arrays. B.
Overlapping brain regions for absolute (red: numerosity) and relative (blue: dot and line
proportion) magnitudes C. In another experiment, participants were adapted to 1:6, and
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deviants were presented in both numerals and fraction words D. Overlapping brain
activation in the bilateral IPS and prefrontal cortex for both fraction notations (fraction
numerals and fraction words) (Figures from Jacob & Nieder, 2009 a, b)

While the evidence above suggests that both non-symbolic ratios and symbolic
fractions are encoded holistically at the neural level and hint at the existence of the
RPS, not much research exists on identifying a common neural substrate for relative
magnitude processing (independent of the symbolic or non-symbolic format). To this
end, Mock and colleagues (2018) designed a magnitude comparison task with both
symbolic (fractions and decimals) and non-symbolic proportions (dot patterns and pie
charts). Participants had to perform a timed magnitude comparison task in all four
formats in the MRI scanner. The fractions were chosen specifically to avoid
componential processing (i.e. participants could not rely on the numerical values of
the numerator and/ or denominator alone to arrive at the correct answer e.g. 5/9 < 2/3,
but 5> 2 and 9 > 3). Therefore, the task aimed at eliciting the holistic magnitude of the
fraction. Conjunction analysis revealed activations in the occipito-parietal network
including the right IPS (Figure 7). Notwithstanding the relatively limited sample size (n
= 24), this work provides the first evidence for a shared neural correlate for relative

magnitude processing irrespective of the presentation format.

Overall, the abovementioned behavioral and neuroimaging evidence hints at
the presence of an evolutionarily ancient system for relative magnitudes, known as the
RPS. While research is still in its infancy, if the proposition holds, RPS could be
leveraged to help foster a deeper, intuitive understanding of symbolic fraction

magnitudes (Lewis et al., 2016).

35



Figure 7: Joint activation of brain regions (red) for both symbolic and non-symbolic
formats (e.g. fractions, decimals, dot patterns, pie charts) (Figure from Mock et al., 2018)

1.3 Can the RPS help in developing an understanding of symbolic fractions?

To inform fraction intervention and instruction, several questions on the RPS
model of learning still need to be examined. For instance, some of the most compelling
questions include (but are not limited to)- what is the developmental trajectory of the
RPS? Where is the brain’s ratio processing system and how is it connected to other
systems? At what age is the RPS most important in symbolic fraction instruction? How
does formal education impact RPS acuity? What is the role of the RPS in mathematics

learning difficulty?

However, a preliminary hypothesis on how RPS can be leveraged to support
fraction learning has been put forward by Lewis, Matthews, & Hubbard (2016). Given
the pervasive difficulties in fraction learning, there is no doubt that conventional
fraction instruction might not be as efficient. Indeed, as mentioned earlier a
disproportionate focus on the partitioning construct (Pitkethly & Hunting, 1996; Siegler
et al., 2010) leads students to overgeneralize the whole number strategies to fractions
(Ni & Zhou, 2005). For instance, early fraction instruction often relies on children to
identify the shaded fractions for which they count the number of shaded parts and the

number of total parts. This count-based strategy could lead students to apply whole
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number schemas to fractions (Mack, 1995). According to the hypothesized model
(Lewis et al., 2016), such instruction might not be able to take advantage of the innate
capabilities of the RPS. Therefore, the authors emphasize fraction teaching that uses
pie-charts and number lines (continuous, uncountable representations) that helps in
the holistic magnitude understanding of fractions and aids in building the symbol-
percept links implicitly (Lewis et al., 2016). They argue for instruction that helps in
building the symbol-percept links, or links between symbolic fractions and their non-
symbolic instantiations (e.g. line ratios, circle areas, etc) which can aid in an intuitive
understanding of holistic fraction magnitudes. The importance of understanding the
holistic magnitude of fractions has also been emphasized by Siegler and colleagues
(2011) in their integrated theory of numerical development. Particularly, fraction
magnitude knowledge is shown to predict proficiency in fraction arithmetic (Siegler et
al., 2011) which further predicts success on high school mathematics concepts like
algebra (Booth & Newton, 2012). Additionally, the RPS acuity might differ between
individuals and future research on individual differences in RPS acuity and their
relation to symbolic fraction knowledge might be able to provide a better understanding

of the role of RPS in fraction learning.
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Figure 8: Conceptual model of the role of RPS in fraction learning (Figure from Lewis et
al., 2016)
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1.4 Summary

The notoriously difficult concept of fractions, interference by whole number
strategies, and paucity of research on relative magnitudes might have led the innate
constraint theorists to relegate fractions to a biologically secondary concept. On the
contrary, emerging evidence has revealed specific cortical regions to be tuned to non-
symbolic ratios and symbolic fractions. Proponents of the cognitive primitive or the
RPS theory believe that the challenges encountered during fraction learning arise from
the current teaching methodologies that do not leverage the existing perceptual
abilities (Ni & Zhou, 2005; Lewis, Matthews, & Hubbard, 2016). In their hypothesized
model, Lewis and colleagues (2016) further suggest leveraging the RPS to improve
fraction instruction in the classroom. They urge educational experiences to focus on
building symbol-percept links to strengthen the pre-existing RPS abilities. Specifically,
they support pedagogical practices that build connections between the non-symbolic
(pie charts, number lines) and symbolic (fractions, decimals) formats and resist
instructional practices that rely solely on counting and partitioning schemes that may
activate the incompatible ANS structures. To shed light on the relatively novel RPS
theory, Study | and Il examined the presence of the RPS using both behavioral and

neuroimaging methods.
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CHAPTER I

THE ROLE OF GAME-BASED LEARNING IN FRACTION UNDERSTANDING

Play has long been acknowledged as an important tool for the cognitive
development of children. Piaget (1962), for instance, describes play as an integral tool
to build connections between prior knowledge and new information. Vygotsky (1980)
considers play to create a zone of proximal development, or scaffolded learning, which
helps children to comprehend and grasp complex content. Csikszentmihalyi (1990)
also finds the state of flow® during play to result in deeper engagement with the task
and, thus, a deeper form of learning. Over the years, researchers and psychologists
have studied the significance of play in learning (e.g., Gee 2003; Kafai and Ching
1996; Malone 1981; Prensky 2001; Squire 2002). This has led national educational
institutions and international organizations to recommend playful learning as part of
the curriculum (ASER, 2020; NCTM, 2014; NMAP 2008; OECD, 2019). With
technological advancement, the role of play has informed the principles of game-
based learning and hence, an increased interest in the adoption of serious video
games in educational spaces (Plass, Homer, & Kinzer, 2015). Research on digital
game-based learning has shown the potential for learning abstract concepts,
supporting classroom instruction, and presenting content engagingly and innovatively
(Al-Azawi, Al-Faliti, & Al-Blushi, 2016; Prensky, 2001). Despite their potential, some
notable drawbacks of game-based learning include lack of acceptance by educators

as educational tools, the difficulty of integration into formal schooling, and the lack of

5 “a state in which people are so involved in an activity that nothing else seems to matter; the experience
is so enjoyable that people will continue to do it even at great cost, for the sheer sake of doing it.”
(Cskikszentmihalyi, 1990, p.4).
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transfer of knowledge gained in the game to the real world (Egenfeldt-Nielsen 2006;
Ferdig 2007; Gros, 2015). The objective of this chapter, therefore, is to provide an
overview of game-based learning in the domain of mathematics. The current
landscape of education technology for fraction understanding will also be detailed in
this chapter. Lastly, the design of the fraction game Math Mathews Fractions, which
was designed in our laboratory by Prof. Marie-Line Gardes (my co-advisor on this

thesis) and used in Study lll, will be discussed in detail.

1.1 Game-based Learning: Definition and Terminology

To date, there is no consensus on the definition of game-based learning. This
is mainly due to the variety of games that target different disciplines, learning design
principles, and a wide variety of learning outcomes (skills, motivation, engagement,
behavior, etc) (Boyle et al., 2016; Connolly et al., 2012). For instance, Salen &
Zimmerman (2004) define it as “a system in which players engage in an artificial
conflict, defined by rules, that results in a quantifiable outcome (p.5)”; Hays (2005)
provides the following definition “game is an artificially constructed, competitive activity
with a specific goal, a set of rules and constraints that is located in a specific context
(p.15)”; Chen & Michael (2005) state “games that do not have entertainment,
enjoyment or fun as their primary purpose”; and Van Eck (2015) defines it as “the use
of games within an existing lesson, classroom, or other instructional contexts where
the intent is at least as much to learn rather than to (exclusively) have fun (p. 144)”.
Most definitions, therefore, focus on specific features of a game-based learning
environment. These include quantifiable learning outcomes (Shaffer, Halverson,
Squire, & Gee, 2005), the balance between content and play (Plass, Perlin, &
Nordlinger, 2010), feedback (Prensky, 2001), and a set of rules and conflicts to engage
the players (Salen & Zimmerman, 2004). While the debate on the definition of game-

41



based learning is hard to reconcile (Plass, Homer, & Kinzer, 2015), the
abovementioned features are necessary to consider when referring to or designing
game-based learning environments. The games discussed in this chapter mostly
include these features and so does the game that is designed in our lab (Math

Mathews Fractions).

Similar to the issues related to the definition of game-based learning, extensive
debate exists around the usage of terminology. Some common terms include serious
games, instructional games, learning games, game-based learning, and computer
games (Boyle et al., 2016; Connolly et al., 2012; Hays, 2005; Tobias & Fletcher, 2012;
Wouters & van Oostendorp, 2013). In educational research, the terms serious games,
educational video games, and game-based learning (Boyle et al., 2016; Connolly et
al., 2012) are most commonly used. Here, in this dissertation, the term game-based
learning will be used to refer to all digital games intended for educational purposes (for

both cognitive and affective outcomes).

1.2 Game-based Learning in Mathematics Instruction

While the use of game-based learning has gathered interest for improving
learning outcomes across all disciplines, this trend is particularly strong for the domain
of science and mathematics (Hainey et al.,, 2016). The use of technology for
mathematics teaching and learning is strongly emphasized in many curricula (ASER,
2020; NCTM, 2014). Mostly, this emphasis on game-based learning might have
emerged due to outdated methods of teaching that are disproportionately focused on
rote memorization of procedures and facts (Hoyles, 2016; Schoenfeld, 2004). This
type of pedagogy is practiced in most mathematics classrooms in many countries

(Albert & Kim, 2013; Ayinde, 2014). To date, similar methods, where the teacher is the
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authority and procedural content is disproportionately favored over problem-solving
skills, prevail (Conway & Sloane, 2005; MaaB & Artigue, 2013). Predictably,
mathematics learning that disproportionately focuses on rote memorization of
procedures has led to issues with the motivation and engagement of learners (Hoyles,
2016; Star et al., 2014). As mentioned above, this has led educational organizations
to press for the need for curricular reform in mathematics instruction, especially
focusing on game-based learning environments (ASER, 2020; NCTM, 2014). It is
imperative to note that while game-based learning might aid in the motivation and
problem-solving skills of learners, mastery of procedural content and facts is equally

important for mathematical literacy (Kadijevich, 2018).

Game-based learning has the capability to transform mathematics instruction
by helping students construct and engage with complex mathematical knowledge
(Bray & Tangney, 2017). It also has a positive impact on student’s motivation and
attitude towards mathematics (Rosas et al., 2003; Ke & Grabowski, 2007; Ke, 2008).
For instance, the game Beyond Nintendo was designed in line with the curriculum on
basic mathematics and reading comprehension for first and second graders in Chile.
The study reviewing the game Beyond Nintendo in 1274 students showed a positive
influence of the game on student’s motivation and engagement (Rosas et al., 2003).
Besides motivation, a game-based mathematics summer program also found
improvement in students’ attitudes towards mathematics (Ke, 2008). Additionally, a
meta-analysis by Dvijak and Tomic (2011) found pedagogically designed game-based
learning to enhance positive attitudes of students towards mathematics. Both positive
attitudes towards mathematics and higher motivation are associated with mathematics
achievement (Schiefele & Csikzentmihalyi, 1995; Singh, Granville, & Dika, 2002; Chen

et al.,, 2018). Though many studies reveal positive affective outcomes (motivation,
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engagement, interest, and attitude towards math) of game-based learning, data on the

cognitive outcomes (achievement in mathematics) is still inconclusive.

A recent meta-analysis examining the effectiveness of game-based learning in
mathematics notes a staggeringly low percentage (11%) of studies assessing the
empirical effectiveness of games on learning (Byun & Joung, 2018). Of the studies
that did examine the effectiveness of games, the authors found a small to moderate
effect of the game intervention for a majority of studies (9 out of 17), with an overall
effect size of d = 0.376. This was higher than the effect size found in a previous meta-
analysis d = 0.16 (Cheung & Slavin, 2013). These effect sizes are likely inflated
because of publication bias. Indeed, it has been found that effect sizes reported in
studies that are published in peer-reviewed journals are higher than effect sizes
reported in unpublished studies and/or studies in proceedings (journals: d = 0.44,
unpublished: d = 0.14, proceedings: d = 0.08) (Wouters & van Oostendorp, 2013). The
small to moderate effect sizes observed in prior studies were mostly due to a lack of
randomized studies (Cheung & Slavin, 2013; Li & Ma, 2010; Slavin & Lake, 2008),
small sample sizes (Cheung & Slavin, 2013), study’s methodological quality (Young,
2017), and issues with aligning the game outcome measures to outside-game
measures of learning outcomes (Slavin & Lake, 2008). Additionally, Byun & Jeong
(2018) point out that most mathematics games reviewed in the meta-analysis were
predominantly “drill and practice games” that focus on procedural fluency and hence,
posed limitations for building more complex problem-solving skills. Further, factors
such as game design, transfer of knowledge and skills, and adequate teacher support

were often overlooked in the game-based learning environments (Barnett & Ceci,

6 d<0.2-small, d~ 0.5- moderate, and d > 0.8 — large effect, Cohen (1998).
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2002; Linderoth, 2012; Tobias et al., 2014; Rick & Weber, 2010). As Drijvers (2015)
rightly states “ The three factors (design, teacher, and educational context) identified
above may seem very trivial, and to a certain extent they are quite straightforward
indeed; however, their importance, | believe, can hardly be overestimated and to take
them into account in educational practice is far from trivial (p.14)”. Therefore,
technology-enhanced mathematics instruction may be of great advantage to learners
specifically in developing robust, complex, and flexible mathematical knowledge, only
if it considers a strong game design, adequate support of the teacher, and transfer of

skills to real-world problems.

1.3 The Role of Game-based Learning in Fraction Understanding

As reviewed in chapter |, the fraction concept is a complex construct composed
of multiple subconstructs or interpretations. These different interpretations make
mastery in fractions challenging. Besides, most often the part-whole concept of
fractions takes the major share in classroom instruction (Fuchs et al., 2013) as well as
in textbooks (de Souza & Powell, 2021). This over-representation of the part-whole
subconstruct hinders the acquisition of other fraction subconstructs and concepts like
improper fractions and the infinite divisibility of fractions (Pitkethly & Hunting, 1996 as
in Misquitta, 2011) leading students to err on basic fraction concepts. Predictably,
researchers and educators demand a more holistic understanding of all interpretations
of fractions (Kieren, 1993; Lamon, 2001 as in Charalambous & Pitta-Pantazi, 2007).
Game-based learning, in particular, offers unique affordances (e.g. visualizations,
manipulations, the introduction of complex scenarios, experiential and immersive
integration of curricula; Geiger et al., 2010; Olive et al., 2010 as in Bray & Tangney,
2017, Vandercruysse et al., 2017) that can be utilized to build a better understanding
of the complex construct of fractions. To this end, studies on the impact of game-based
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learning on fraction outcomes have been conducted. Here, we will discuss five serious
games in the domain of fractions; Refraction (Martin, Petrick-Smith, Forsgren,
Aghababyan, & Janisiewicz, & Baker, 2015), Semideus (Ninaus, Kiili, Mcmullen,
Moeller, 2017; Kiili et al., 2018), Motion math (Riconscente, 2013), Abydos (Masek,
Boston, Lam, & Corcoron, 2017), and Slice fractions (Cyr et al., 2019). These game-
based learning environments on fractions have typically focused on specific
subconstructs, for example, the game Refraction and Slice fractions focus on the
partition subconstruct (Martin et al.,, 2015; Cyr et al., 2019), whereas the game
Semideus and Motion math focus on the measurement interpretation (Ninaus et al.,
2017; Riconscente, 2013). While it is important to develop a deeper understanding of
each of these subconstructs, to date, no game exists on addressing the multiple
representations of fractions. Additionally, the transfer of knowledge to real-world
outcomes (assessments) is something that is largely missing in these games. To this
end, Math Mathews Fractions was designed to support teachers in building
connections between the different subconstructs of fractions and each level of the
game was specifically aligned to the learning outcomes in the french school curriculum
(Zarpas & Gardes, 2019). The game, Math Mathews Fractions is designed for students
who already have prior knowledge of fractions. A detailed introduction to Math
Mathews Fractions will be provided in the next section. Meanwhile, an exhaustive
overview of games that have helped improve fraction learning outcomes is provided
here. The games in the domain of fraction learning discussed here include Refraction
(Martin et al., 2015), Semideus (Ninaus et al., 2017; Kiili et al., 2018), Motion math
(Riconscente, 2013), Abydos (Masek et al., 2017), and Slice fractions (Cyr et al.,

2019). We will describe each of them below.
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Refraction (Martin et al., 2015) is based on the partitioning subconstruct of
fractions. The study is designed to examine how different ways of splitting or
partitioning can influence students' (third graders) understanding of fractions. In this
game, players save animals in the spaceship by powering the ships with the correct
amount of laser beam. The amount of fraction required is displayed on the spaceship
(e.g. 1/12) and the students have to split the laser beam (using 1/2 or 1/3 splitters) to
create the correct fractional amounts (Figure 9). Feedback is provided through a

message- warning if the player is incorrect.

To assess the impact of the game Refraction on third grader’s partitioning
construct, the authors made use of the log data in the game to cluster students
according to their splitting strategies and frequency. The log data was also used to
analyze the performance on transfer tests of fraction knowledge. Thus, the log data
helped to group the students according to their splitting strategies and frequencies and
was also used to assess the impact of splitting on students' overall fraction knowledge.
Findings reveal that the game improves students’ fraction understanding on the
transfer tests. Additionally, the more the students explored the different ways of
splitting the laser beam the better their performance was on the transfer test.
Interestingly, the study highlights the importance of learning complex mathematical
concepts (like fractions) through means of exploration. In terms of assessing the
effectiveness of the intervention, the major drawback of the study was the lack of a
control group and standardized assessments (Bertram, 2020). Therefore, this makes
it difficult to attribute the learning gains exclusively to the game. Also, the game
exclusively focuses on the partitioning construct of fractions which is already practiced

more in the classroom as compared to the other constructs (Fuchs et al., 2013). This
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disproportionate focus on partitioning could essentially impede the learning of other

concepts and thus impact the transfer of learning outside the game.

Figure 9: Example of the spaceship and the laser beam that needs to be split to generate
the correct fraction amount (1/12) (Figure from Martin et al., 2015)

Similar to Refraction, the game Slice fractions (Cyr et al., 2019) begins with a
visual representation of the concept of splitting fractions (part-whole representation of
fractions) but gradually advances to concepts like fraction comparison and equivalent
fractions. The players are required to remove obstacles that are blocking the path of
a mammoth. To remove the obstacles, they have to split pieces of ice and lava. As the
game progresses, the students advance from visual representations to symbolic
representations of fractions (Figure 10). Using a quasi-experimental design, the
impact of the game was assessed on third graders' fraction understanding (Cyr et al.,
2019). For the fraction knowledge test, the authors selected 13 items from the Trends
in International Mathematics and Science Study (TIMMS). These items mostly
consisted of part-whole visual representations and symbolic fraction magnitude
comparison type of questions. Notwithstanding the relatively small sample size (n = ~

18 per group) and the lack of structured feedback, the study shows a positive impact
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of the game on fraction learning which indicates that the game group performed better

than the group with only traditional instruction.

Figure 10: Examples of the different levels in the game Slice Fractions (Figure from Cyr
et al., 2019). Panels A and B show levels with visual representations of fractions and

Panels C and D present symbolic notations of fractions

The third game, Motion math (Riconscente, 2013) was designed based on the
measure interpretation of fractions (detailed in Chapter |, the measurement
interpretation signifies the inherent property of magnitudes of fraction) utilizing number
lines to teach fraction concepts. Here, the player has to tilt the device (iPad) to direct
the falling fraction (percentage and decimal are also presented) to the correct place
on the number line (Figure 11). Feedback in the form of audiovisual responses is
generated for both correct and incorrect answers. Interestingly, incorrect answers also
generate instructional hints in the form of arrows in the direction of the right answer.

Fractions are presented both in symbolic (numerals) and non-symbolic (pie-charts)
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representations. To examine the effectiveness of the game on fraction learning of fifth
graders, 122 students participated in this study (Riconscente, 2013). Findings of the
study evaluating Motion math reveal significant improvement in fraction knowledge (as
measured by an adapted test that consisted of both NAEP and TIMMS items) in the
game group as compared to the comparison control. Additionally, the findings also
show a positive influence of the game on students’ self-efficacy and attitude towards
fraction learning. However, one drawback in terms of assessing the effectiveness of
the game was that teachers were explicitly asked to not teach fractions in the
comparison control group, therefore, it is hard to comment on the effectiveness of the

game as compared to other modes of instruction.

Your first fraction is e

LT

Figure 11: Examples of the different level’s that players encounter during the game Motion

Math (Figure from Riconscente, 2013)

Semideus (Kiili et al., 2015) was also designed based on the measure construct
of fractions to address the understanding of rational numbers as magnitudes (using
number lines). The game's foundation is based on the integrated theory of numerical
development (Siegler et al., 2011). According to the theory, all types of real numbers

have numerical magnitudes and, hence, can be mapped onto number lines.
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Importantly, the number line can be used to teach students the unique property of
density of rational numbers (Behr et al., 1993). Indeed, intervention studies show that
practicing number line tasks lead to improved fraction knowledge (Barbieri et al., 2019;
Fuchs et al., 2016; Saxe et al., 2013). Therefore, the game includes four different task
types that make use of number lines. These are magnitude estimation, magnitude
ordering, magnitude comparison, and density tasks. The task of the player is to collect
coins while solving these four tasks. In the study assessing the effectiveness of
Semideus, 54 fourth graders were assigned to either a game group or a control group
(Kiili et al., 2018). Findings show significantly better performance of the game group
on magnitude estimation and ordering tasks (Figure 12) as compared to the control
group. The study also analyzed the in-game performance and showed the overall
game performance to be associated with student’s post-test rational number
knowledge. Thus, in addition to testing for the effectiveness of game-based learning,
the study also supports the use of in-game metrics as learning indicators that might

help teachers personalize instruction in the classroom.

Figure 12: An example of magnitude estimation and ordering tasks in the Semideus game
(Figure from Kiili et al., 2018)

Finally, Abydos (Masek et al., 2017) includes three mini-games based on real-

world problems. These mini-games focused on the concepts of equivalent fractions,
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identifying least common multiples, addition, and subtraction of fractions (Figure 13).
Within each game, the level of difficulty increases as the player advances. Students in
Australia (aged 10-11) participated in this study over four weeks. The intervention and
control groups both practiced fraction concepts during this time. Since the study was
based on a Blended Learning model (a system of instruction where both technology
and teacher-mediated support is present during learning; Graham, 2006), the teacher
played an active role in the game group by debriefing and discussing the fraction
concepts practiced in the game. The students were administered a pretest and
posttest based on a modified version of standard assessments and country-specific
curriculum. These questions particularly addressed the competencies practiced in the
game such as equivalence of fractions, finding the least common multiple, the addition
of proper and improper fractions with both like and unlike denominators. The results
revealed a significant increase in the post-test scores for the game group as compared

to the control group.

Figure 13: Example of the three mini-games in Abydos. A. The task depicted here is to
determine the least common multiple of the set of numbers. B. The equivalence task C.

The addition and subtraction task

The aforementioned studies demonstrate the potential of game-based learning
in supporting fraction knowledge. They also provide a model for other researchers and
game developers to consider when designing future technology on fraction learning.

Likewise, depending on their students’ needs teachers can use existing game-based
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platforms to design classroom instruction. However, as mentioned above, one of the
major limitations of prior game-based fraction learning platforms is the lack of support
for teachers and students to build a holistic understanding of all subconstructs of
fractions and the transfer of knowledge to real-world outcomes or assessments.
Despite researchers and educators' demand for a more holistic understanding of all
interpretations or sub-constructs of fractions (Kieren, 1993; Lamon, 2001 as in
Charalambous & Pitta-Pantazi, 2007), prior games all focus on a specific
interpretation/sub-construct of fractions (Behr et al., 1993) (Figure 14). To this end,
Math Mathews Fractions was developed to provide support to educators to build

connections between multiple representations of fractions.

_ Part-whole / partitioning «— Refraction
Slice Fraction
\
\
Math r___
—d \ " Motion Math
Fraction
\ -
-— =~ -
I‘ Equivalence | H Multiplication | Problem Solving | | Addition

T N/

Figure 14: The different game-based learning environments and their underlying fraction

constructs

1.4 Math Mathews Fractions

Math Mathews Fractions is an educational video game developed by the studio
Kiupe in collaboration with my co-advisor. The game is about the adventures of a pirate
who has to collect gems (treasure) by solving different challenges (i.e., modules). The
game progression is in line with the objectives and curriculum standards of the French

school system for children aged 9-12. Thus, the play situations (i) increase in difficulty
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throughout the game and (ii) remain appropriate for children aged 9-12. The modules
are typically different types of questions involving rational numbers. Players must
choose or construct the answer to proceed further. For example, in the Dragon
module, students are asked to feed the dragon the specified amount of fraction (e.g.
2/6). For gaining maximum gems on this module, the students must slice the rectangle
into six parts and feed two parts to the dragon in their first attempt. If the students err
on any of the modules they cannot proceed to the next stage. There are 13 modules
that are based on specific curriculum standards in the French school system. Each
module is presented ten times throughout the game and can be presented several
times during a level. The modules include specific fraction competencies like fraction
concepts, arithmetic, word problems, number lines, and decimals. Given below is a

detailed description of each module and the associated learning competency.
1.4.1 Hungry Dragon

The hungry dragon module focuses on the part-whole subconstruct by making
connections between the symbolic form of the fraction to the unit surface provided for
constructing the fraction. In this module, the student has to feed the dragon by
partitioning the object/ surface according to the fraction displayed on the screen

(Figure 15). As the level increases, the nature of the fraction progresses from less

than 1 to greater than 1, and the written form of fraction changes from simple (%) to

mixed (a + bl) fractions.
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Figure 15: The Hungry Dragon module where the student has to cut the object in 6 parts

and feed 2 parts to the dragon

1.4.2 Broken Cogs

In this module, the part-whole subconstruct of fractions is emphasized. Here,
the student has to reconstruct a disk by using different sized parts provided to them
(Figure 16). The task here is to advance the learner’s knowledge of unit fractions and
understand the property of equal and unequal shares. As the levels increase, the
complexity of the task increases by increasing the number of disks to be reconstructed,
the number of different sized parts to choose from, and the size of the fractions ranging

from smaller than 1 (levels 1 to 6) to greater than 1 (level 7 onwards).
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Figure 16: Example of the module Broken Cogs where the student has to reconstruct the
entire disk/cog by the two equal disks provided below. An example of a more complex
problem on this module would include extra parts to choose from when constructing the

entire disk.

1.4.3 Warrior

This module is based on associating the partitioned surface that is provided in
different shapes (rectangle, pentagon, hexagon, trapezoid) with simple and mixed
types of fractions. The students have the option to select the number of unit surfaces
(by clicking on ‘+’) required to construct the fractions (Figure 17). The units are

indicated on the small panel next to the figures. For example, if the learner has to
make the fraction g , they can select two equally partitioned pentagons and then select

all 5 parts in one pentagon and 3 parts in the second pentagon to proceed.
Additionally, the concept of equivalence and addition of fractions is also included in
the higher levels of this module. For instance, if the student has to construct the

fraction % with each unit area sliced into 6 equal parts, for the correct answer in this

module the student would be required to understand equivalence and select 4 out of
the 6 equal parts.
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Figure 17: Example of the Warrior Module A. The student has to select the unit surface
to make the fraction Z For this, they can use one-unit surface and select three parts of the

four parts on the rectangle to proceed forward. B. Here, the student is tested for the
property of equivalence, they have to select 7 triangular parts of the three equally sized

parts on the three-unit surfaces to generate a fraction equivalent to % (e.g g).

1.4.4 Trapped passage

The trapped passage module is focused on the measure construct of fractions.
In this module, the student is required to place the fraction on the graduated number
line (Figure 18). This module is aimed at developing an understanding of fraction
magnitudes. The module begins from level 6 of the game and the complexity of the
fractions to be placed on the number line increases with the levels. The simple
fractions (e.g. halves and thirds) are presented in levels 5 and 6 and the more difficult
fractions (e.g. fifths’, sevenths’, eighths) are presented in levels 8, 9, 10, and 11.

Additionally, the concept of equivalence is also tested by asking the learner to place

the fraction %on the line that is graduated into 2b equal parts. Fraction addition with

like denominators is also tested on this module at higher levels.
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Figure 18: In this example of Trapped Passage, the student has to place the fraction 4/2

on the number line

1.4.5 Door with weights

This module requires the student to make connections between the symbolic
fractions and the corresponding colored surface (Figure 19). The competency
practiced in this module is using fractions to measure the quantities and making
connections between the symbolic form of fractions and the pictorial representations.
The increased difficulty of the module is based on the type of fraction (simple, mixed)
and the type of surface (rectangle, hexagon, pentagon) presented. Additionally, the
students also practice the concept of equivalence and addition of fractions by making

connections between the symbolic and pictorial representations. For instance, the
student will see the question = + 2 written on the weights on the left side. They are

required to solve the addition task and then place the resultant fraction on the correct

pictorial representation.
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Figure 19: An example of Door with Weights module. Here, the students have to place
the three fractions corresponding to the colored surface on the right. For example, 1—60
needs to be placed on the first surface where the hexagon is cut into six parts, each part

corresponding to 1?0
1.4.6 Graduated Bridge

In this module, students have to select the fraction corresponding to the marked
point on the number line. In addition to understanding the measure subconstruct, the
students also practice equivalence concepts. Fractions are presented with a blocked
numerator or denominator to enforce students to utilize the concepts of equivalence
on the number line. For example, if the number line is segmented into three parts and

each part corresponds to one third, by blocking the denominator of the fraction to 6
the student must explore the relationship between % and § to successfully solve the

problem. The module increases in difficulty by modulating the relationship between

the denominator of the fraction and the graduated number line.

59



Figure 20: The Graduated Bridge Module. Here, the denominator is locked to 6 and the

point corresponds to g the student must understand the relation between one-sixth and

one-third and then find the numerator of the fraction equivalent tog

1.4.7 Totem

Here, the student has to construct the totem of a given length by using multiple
units of the totems provided. The unit is represented by the totem with ‘1’ written below
it. This module also aids in understanding the operator construct of the fraction. For

instance, in the given example (Figure 21), the student must construct the totem of
value % with an option to choose multiple totems of values one-fourth, one-half, or
one-third. To solve this problem with one-fourth, the student must understand the
operation; a x% = % , to be able to use two totems of one-fourth value. Similar to other

modules, the complexity of this module increases with the type of fraction to be
constructed and the types of fractions that are provided for the same. This module is
also present in decimal form and helps students to build connections between the

magnitudes of decimals and fractions (Figure 14. B).

60



Figure 21: Example of the Totem module. A. Here the learner can use either one half or
two one-fourths to construct the one-half. B. This is a complex version of the same module

where the learner has to create a totem of length %( or 1.2) by using the totems 0.5 and

0.1

1.4.8 Organs

The concept practiced in this module includes the comparison of fractions and
using the fractions to measure length. The unit is represented by the red tube with ‘1’
marked on the top. The student has to choose the length of the segment that
corresponds to the given fraction of unit length. The module is present in levels 1, 2,
3, 4,7, and 8. The complexity of the module increases by introducing both proper and
improper fractions to the students. Additionally, higher levels also include some

unnecessary tubes that may not have any corresponding fractions.
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Figure 22: Example of the module Organs. A. The learner has to place the tubes with the

arrows shown in the bottom to the correct fractions on the right. B. The learner has placed
the tubes correctly by placing the smaller tube on the one-eighth fraction and the larger
tube on the fraction marked as one-third

1.4.9 Skull

In this module, the students have to arrange the fractions in an increasing order.
The focus of this module is to understand the concept of fraction as a number with a
specific magnitude to be able to arrange the fractions in increasing or decreasing
order. To increase the complexity of the module, the fractions are presented with
common multiples of the denominator (Figure 23) and different denominators.
Additionally, the fractions to be compared increase from two to three and finally to four

at the higher levels of the game.
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Figure 23: An example of the module Skull. Here, two fractions have denominators that
are multiples of each other. One of the concepts the students might use is to reduce the

fraction E to g and then compare that magnitude with g

1.4.10 Pit, Trapped Chest, and Spider

All these modules are based on the concept of finding an equivalent fraction or
association of two equivalent fractions (Figure 24). The numbers to be compared are
presented in the form of a simple fraction, mixed fraction, and decimal. While the
module Pit and Trapped Chest are present in lower levels of the game, the module
spider is present after level 8 and includes the addition of fractions with unlike

denominators.
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Figure 24: Example of the module Pit, Trapped Chest, and Spider. A. In Pit, students

must choose from the two fractions in yellow on the left to match the fraction in red. B.
Trapped Chest module requires students to find the correct equivalent fraction to match
the decimal presented on the banner on the left side. C. In the module Spider, the students
have to associate two equivalent fractions, sometimes this module also has addition
problems that have to be associated with the correct answer

1.4.11 Riddles

This module comprises word problems. The complexity of the word problems
is linked to the number of steps and operations required to arrive at the correct answer.
The word problems are related to the following expression a/b x b = a, and the three
types of questions include 1. What is the quantity ‘a’? (Figure 25 A) 2. What is the

quantity ‘b’? (Figure 25 B) and 3. What is the fraction ‘a/b’? (Figure 25 C).
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Figure 25: Example of a word problem in the module Riddles. A. Surprised by the bravery

and strength of the children, a third of the 66 pirates jumped overboard, and the rest
quickly capitulated. How many pirates jumped over the board? B. One last Ptot hits
another mango tree with his club and knocks down a third of its fruit. He puts 20 fruits in
his bag. How many fruits were there in the tree? C. So, admire my collection of rare pearls.
| have 60 of them if you take 20- I'll give you a good price. The Ptot shook his head again
and this time he got angry. What fraction does it represent? (Translated to English)

The abovementioned 13 modules focus on the different representations of
fractions. These modules help students understand fractions as a measure, operator,
quotient, part-whole subconstructs as well as focus on important concepts included in
assessments like equivalence, fraction arithmetic, and problem-solving. The game
includes 12 levels and increases in difficulty to provide a scaffolded learning

environment to the students.

The game was played through an application pre-installed on the tablets. Each
student had to create a profile with a pseudonym before starting the game. The first
level was preceded by a small video to familiarize players with the basic controls and

rules of the game as well as to guide them about the objective of the game. The game
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was configured in a way that each player had to correctly perform in all the modules
that were visible to them in the game to finish the levels and only then could they
proceed to the next level. The interface of the game also consists of a journal and a
calculator. The journal was used to teach the player about the rules of each module
and the fraction concepts involved in the module. Students could consult the journal
anytime during the game by tapping on the icon. Additionally, the in-game
performance of each of the students could also be measured by the different variables.
These variables include the maximum level achieved, the number of attempts on each
minigame, and the overall game performance. Study Il of this dissertation is focused
on analyzing the effectiveness of Math Mathews Fractions on fraction learning

outcomes of fifth graders.

1.5 Summary

Traditional methods of fraction instruction are disproportionately focused on
either a specific concept of fraction or on developing rote memorization of rules for
procedural knowledge. Naturally, the difficulties encountered by students during
fraction learning are persistent. In the era of technology, game-based learning, if
designed and utilized appropriately can provide an efficient support system to
educators. Game-based learning might support the understanding of complex
concepts like fractions through visualization, manipulation, and building immersive
environments. When coupled with adequate teacher support, students might be able
to overcome misconceptions as well as enhance their motivation towards learning. To
this end, we pre-registered a randomized controlled study to assess the effectiveness
of Math Mathews Fractions on fraction learning outcomes of students in the fifth grade

(study I11).
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RESEARCH AGENDA AND HYPOTHESES

Rational numbers play a critical role in bridging early natural number skills to
domains such as algebra, geometry, and calculus. The importance of rational number
computation is not only restricted to mathematics but also necessary for biology,
physics, statistics, economics, sociology, and many other disciplines (Lortie-Forgues,
Tian, & Siegler, 2015). Indeed, 68% of participants in a nationally representative
sample of the United States workforce reported using fractions at work (Handel, 2016).
Despite their importance, rational numbers, specifically fractions are difficult to
understand. In 1978, for the National Assessment of Educational Progress (NAEP),
8t graders (13-14-year old’s) from all over the US were asked to choose the correct
answer to the sum of 12/13 +7/8. The most common answer was ‘19’ and only 24% of
the students were able to choose the correct answer (Carpenter et al., 1980).
Recently, this item (12/13 + 7/8) was administered again to 48 eighth-graders to
assess the impact of change in fraction instruction over the years. It was noted that
the performance remained largely unchanged, i.e., 27% solved it correctly as

compared to 24% in 1978 (Lortie-Forgues et al., 2015).

To this end, several researchers and educators sought to investigate the
reasons for the challenges encountered during fraction learning (see Chapter 1). In the
ensuing years, several researchers in the field of numerical cognition postulated the
innate constraint account (Ni & Zhou, 2005). The innate constraint account holds
fractions to be biologically secondary and thus, not supported by the human
neurocognitive architecture (Dehaene, 1997; Gallistel & Gelman, 1992; Geary, 2007).
Recent studies, however, revealed processing of non-symbolic relational magnitudes

by non-human primates, infants, and human adults (Jacob, Vallentin, & Nieder, 2012),
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indicating the presence of a Ratio Processing System (RPS) (see Chapter Il). These
two conflicting propositions (innate constraint and the ratio processing system)
demand further investigation in this domain. For this, the first part of the thesis is
focused on using both neuroimaging and behavioral tools to examine the perceptual
processing of non-symbolic relational magnitudes and their relation to symbolic
fraction understanding thereby, shedding light on the RPS (Study | and II).
Understanding the RPS might potentially help in designing perceptual learning
interventions for symbolic fraction learning. Further, given the complex, multifaceted
construct of fractions, both learning and teaching fractions might be challenging.
Indeed, many adults and teachers have shown a limited understanding of fraction
concepts (Ma, 1999; Newton, 2008; Siegler & Lortie-Forgues, 2015). To this end, the
Math Mathews Fractions game was designed in the lab to support teachers during
fraction instruction in the classroom. Specifically, the game focuses on building
connections between the multiple representations of fractions thereby, building a
better understanding of the mega concept of fractions. Thus, the second part of the
thesis assesses the impact of the game on fraction learning outcomes of students in

the fifth grade (Study III).

Experimental Hypotheses

The overarching aim of the thesis was twofold. The first aim was to shed light
on the neurocognitive bases of fractions and add evidence to the ongoing debate on
the innate constraint versus the RPS account. This objective might help cognitive
psychologists and mathematics educators better understand the core cognitive
systems that are involved in fraction skills which might further help design instruction
and educational interventions. The second objective was to assess the effectiveness
of a game-based intervention in the classroom for supporting complex fraction
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concepts. The research data in this thesis is drawn from three separate studies, Study
| and Il examined the neurocognitive bases of fraction processing at both the
behavioral and cerebral levels and Study Il examined the effectiveness of a specific
game (designed in the lab, Math Mathews Fractions) on fraction learning outcomes of
fifth graders. Given below is a brief introduction of each study, highlighting the aim,

hypotheses, as well as research design employed.

In study I, we aimed to investigate the presence of the ratio processing system
in individuals with varying levels of math skills. We adapted a match to sample task
(Matthews, 2015) in which participants were asked to match the stimuli (non-symbolic
line ratio or symbolic fraction) on the left side of the screen (i.e. target) to one of the
correct stimuli on the right side of the screen (i.e. match and distractor). The ratio was
varied between the match and the distractor (i.e Ratio of Ratios, RoR) such that it was
small in half of the trials and large in the other half. We hypothesized that if participants’
accuracy was sensitive to the ratio between the match and the distractor (a ratio of
ratios, RoR), then this would serve as evidence for the existence of the RPS. Indeed,
representations of magnitudes are more difficult to distinguish when the distance
between them decreases (i.e., a distance effect) and when the overall magnitude
increases (i.e. a size effect). This combined effect of distance and size results in
performance that varies with the ratio between the magnitudes (in the case of fractions
a RoR) and is generally taken to indicate an intuitive representation of magnitude on
an internal mental number line (Moyer & Landauer, 1967). Also, participants in the
study varied in their mathematics skills from those who might be proficient in fraction
processing (i.e., adults) to elementary school children who are in the process of
acquiring fraction skills. By examining participants with varying levels of mathematical

knowledge, we could also measure if the sensitivity to ratio magnitudes was affected
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by the level of their mathematics skills. Thus, if there is an intuitive representation of
ratio magnitudes (RPS) as posited in prior studies (McCrink & Wynn, 2007; Kalra et
al, 2020; Jacob & Nieder, 2009; Woodruff & Premack, 1981), then irrespective of
participants’ level of symbolic mathematical knowledge or fraction competence, all
participants would show the RoR effect. To this end, we also tested whether adults
with dyscalculia (i.e., a learning disability that severely affects the acquisition of math
skills; luculano, 2016; Price & Ansari, 2013) exhibit an RoR effect in that task.
Additionally, to test for a single amodal representation of magnitudes (as hypothesized
by Matthews & Chesney, 2015), we also tested another group of typically achieving
adults on cross-format comparisons (i.e. matching a non-symbolic line ratio with the
correct symbolic fraction). /f these participants showed RoR effects for cross-format
comparisons, then this might suggest intuitive access to abstract fractional

magnitudes.

In study I, we aimed to test whether the culturally developed ability to represent
both absolute and relative magnitudes symbolically (e.g., using natural numbers and
fractions) relies on the neural representations of absolute and relative magnitudes in
a non-symbolic format (as was posited by the neuronal recycling hypothesis, Nieder,
2016). To this aim, we adapted an fMRI adaptation paradigm used in Girard et al.,
2021, and Perrachione et al., 2016 to investigate the neural representations of
absolute and relative magnitudes in different formats. FMRI adaptation refers to the
idea that repeatedly presenting a series of visual stimuli with a common property leads
to a decrease in the activity of neurons that are sensitive to that property (Grill-Spector
and Malach, 2001). This sensitivity is captured by the neural adaptation effect,
measured by comparing blocks of stimuli that differ from one another with respect to

the property (i.e., no-adaptation blocks) to blocks of stimuli that do not (i.e., adaptation
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blocks). We assessed whether the processing of symbolic stimuli (i.e., numbers and
fractions) relies on neural mechanisms supporting non-symbolic stimuli (i.e., lines and
ratios) by examining the neural adaptation effects in these regions. It was
hypothesized that if symbolic processing of magnitudes relies on mechanisms
subserving non-symbolic processing, then the neural adaptation effect for non-
symbolic (lines and line ratios) and symbolic (numbers and fractions) magnitudes will
be observed in overlapping regions. Additionally, we used multivariate methods to
explore the relationship between the patterns of activation associated with symbolic
and non-symbolic stimuli across magnitude types. Here, we hypothesized that if the
patterns of activity are similar between symbolic and non-symbolic stimuli (and may
only depend on the type of numerical magnitudes, i.e., absolute versus relative), then
this evidence would provide further support for the idea that the processing of symbolic

magnitudes relies on the processing of non-symbolic magnitudes.

In study Ill, we aimed to evaluate the effectiveness of a game-based training of
rational number skills on fraction knowledge of children in 5" grade. The game, i.e.,
Math Mathews Fractions, was designed to complement fraction learning in the
classroom with a focus on understanding and building connections with the multiple
representations of fractions. The study involved a total of eight sessions and was
conducted over four weeks. During these sessions, students from the experimental
group played with Math Mathews Fractions in the classroom (each student had a
tablet) with limited teacher interaction. In contrast, students from the control group
practiced similar rational number concepts with their teacher. Fraction knowledge of
both groups was assessed pre and post-intervention using paper-based tests. We pre-
registered three hypotheses. First, if the overall score on the fraction knowledge test

is higher in the experimental group as compared to the control group, then Math
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Mathews Fractions is a more effective tool than classroom instruction alone (which
was matched on rigor and competency). Second, since the game is specifically
designed for fraction learning, no difference between control and experimental groups
on arithmetic fluency was hypothesized. Third, if the game influences affective
outcomes, then students in the experimental group will show lower math anxiety

scores at post-test as compared to the control group.
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CHAPTER IV: STUDY |

Bhatia, P., Delem, M., Léone, J., Boisin, E., Cheylus, A., Gardes, M. L., & Prado, J.
(2020). The ratio processing system and its role in fraction understanding: Evidence
from a match-to-sample task in children and adults with and without
dyscalculia. Quarterly Journal of Experimental Psychology, 73(12), 2158-2176.

Abstract

It has been hypothesized that the human neurocognitive architecture may
include a perceptual Ratio Processing System (RPS) that supports symbolic fraction
understanding. In the present study, we aimed to provide further evidence for the
existence of the RPS by exploring whether individuals with a range of math skills are
indeed perceptually sensitive to non-symbolic ratio magnitudes. We also aimed to test
to what extent the RPS may underlie symbolic fraction processing in those individuals.
In a match-to-sample task, typical adults, elementary school children, and adults with
dyscalculia were asked to match a non-symbolic ratio (i.e., target) to one of two non-
symbolic ratios (i.e., the match and distractor). We found that all groups of participants
were sensitive to the ratio between the match and the distractor, suggesting a common
reliance on the RPS. This ratio sensitivity was also observed in another group of typical
adults who had to choose which of two symbolic fractions match a non-symbolic ratio,
indicating that the RPS may also contribute to symbolic fraction understanding.
However, no ratio dependence was observed when participants had to choose which
of two symbolic fractions match another symbolic fraction, suggesting that reliance on
the RPS in symbolic fraction processing is limited and may not support exact fraction

processing.
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(Kloosterman, 2010; Stigler et al., 2010; Van Hoof et al.,
2013 ). Attesting to the problem, mathematic educators and
rescarchers worldwide have noted a pervasive lack of frac-
tion understanding among students (Chan et al., 2007; Mi,
20011 ; Yoshida & Sawano, 2002

Why are fractions difficult?

Research in mathematics education and cognitive science
has documented two main reasons that may ecplain why
adults and children across countrics face difficultics with
fractions. The first reason is that accessing the holistic mag-
nitude of symbolic fractions appears to be dithicult for most
individuals (Kallai & Tzelpow, 2009, 2012; Stafylidou &
Vosniadou, 2004). Being able to estimate the magnitude of
fractions is critical in the development of concepiual knowl
edpe of fractions and predicts success in fraction computa-
tion and arithmetic (Siegler & Pyke, 2013; Siegler et al.,
2011}, Unfortunately, the challenges o access and process
the holistic magnitude of fractions ar: all too common oven
fior ex pert mathematicians (Obersteiner of al, 2013).

Limited understanding of fraction magnitude is quite evi-
dent in children. For instance, a study of sixth and eighth
graders noded that one third of the students solved fraction
arithmetic problems by handling numeraiors and denomina-
tors scparaiely (Siegler & Pyke, 201530 In a one-to-one
mstructional session, seven out of eight sicth graders
responded 178 to be greater than 1.6 (Mack, 1990). 1t has also
been observed that students are challenged by the concepts
of equivalence because they fail to understand that different
symbolic fractions can represent the same magnitude (e.g.,
48 and 24} (Clarke & Roche, 2009). In addition, studies of
adult participants suggest that the holistic magniude of frac-
tioms cam be accessed when componential stategies rehying
on the scparate processing of numerators and denominators
fail (Meert et al., 2009, 2010, 201 ).

A second reason for the difficulty individuals face
with fractions is that they often assume that propertics of
whole numbers apply to all numbers (Siegler et al., 2013;
Vamvakoussi & Vosniadow, 20000). This so-called whole-
number bias (Braithwaite & Siegler, 2017; Ni & Zhou,
2005) leads to the misapplication of whole-number con-
cepts and procedures on fractions. For instance, children
might erroncously think that fractions, like whole num-
bers, have unigque successors, can be counted, can be rep-
resented by a single symbol, or increase in magnitude it
they are multiplied (Siegler et al, 20012). The whole-
number bias ofien leads to erroneous conclusions, such
as those reached when performing arithmetic operations
separaiely on the numerators and denominators of the
operands (e.g., /B + 1/E=216; Mack, 1995 Stgler
et al., 20010). For example, when estimating the answer to
a problem such as 12/13+ 78, T6% of 13-year-olds
choose cither 19 or 21 (i.e, the addition of numemtors
and denominators separately; Carpenter et al., 1980).

77

Importanthy, this bias is difficult to overcome. A qualita-
tive study on 52 seventh graders demonstrated that stu-
denis were persistent in their way of reasoning about
fractions. This indicaics that the most frequent errors
were not random but rooted in deep misconceptions
{Gonzdlez-Forte et al., 20019).

Finally, other sources of difficulties with fractions have
been noted by researchers on math education. For exam-
ple, these may stem from a limited understanding of pari-
wholk concepts (Pitkethly & Hunting, 1996; Steffe &
Dlive, 2010; Strecfland, 1991}, the multiple ways inwhich
rational numbers can be represented (Kieren, 1981), as
well as the variety of procedures that are involved in frac-
tion arithmetic {Siegler et al., 20013). For example, adding
fractions with common denominators (e.g., 26+ 3/6)
requires one o maintain the denominator constant and add
the numerator, whereas multiplying the same fractions
{e.g., 26 » 3/6) requires one to multiply both the numera-
tor and the denominator. Thus, the procedures used in frac-
tion arithmetic are varied and complex.

The innate constraint account

Owing to the severity of challenges faced, some research-
ers have arpued that the human cognitive architecture is
endowed with a foundational system that is exclusively
designed to deal with discrete quantities (Gelman & Meck,
1983; Leslic et al., 2008). This approximate number sys5-
tem (AMS) is thought to be inherited from evolution
becanse early competence with discrete guantitics can be
observed in many animal species, including rats, pigeons,
monkeys, chimpanzees, and several infant studies
{Rumbaurh, Washbum, Boysen ., & Capaldi, 1993;
Dehaene et al., 199E). In humans, the ANS iz also thought
to serve as & foundation for symbolic, whole-number con-
cepis (Bailey et al, 2012; Dehaene & Cohen, 2007;
Dehaene et al., 1998; Feigenson et al., 2004; Piazza, 2010;
but see De Smedt et al., 2013; Leibovich et al., 20017). As
this system is not designed to deal with the physical fea-
tures of fractional and rational number quantities, it has
been theorised that it may pose constraints on Bcquiring
ratiomal number concepts (Bonato et al., 2007 ; Feigenson
etal., 2004 According to this innate constraint account, it
is not surprising that acquiring elementary level skills in
wholke numbers is more efficient and easier compared with
fractions and mational numbers. Therefore, the innate
mechanism that is assumed to help children learn discrete
number concepts may impede and’or imterfere with chil-
dren's acquisition of frectional numbers,

The RFS

However, a growing body of evidence is difficult to recon-
cile with the innate constraint account. For instance,
McCrink and Wynn (2007} observed that &month-old
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infanis, when habituated fo specific non-symbolic matios,
tend to look longer at novel ratios (differing by a factor of
two), indicating that infants as young as & months can pro-
cess differences between non-symbolic ratios. By the age
of 4, children can also accurately perform addition and
subfraction on pari-whole representations of fractions
(M et al, 1999). Moreover, siudies on adubis have
revealed that non-symbolic matios are encoded by specific
neurenal populations in the parietal cortex and lateral pre-
frontal cortex (Jacob & MNieder, 20092, 2009%). Research
on nor-human primates also shows that rained monkeys
can match non-symbolic mtios accurately (Vallentin &
Mieder, 2010). Taken together, these studies raise the pos-
gibility that there exists an evolutionary old perceptual sys-
tem for representing and processing non-symbolic ratios in
the human brain. This system, which has been termed the
ratio processing sy stem (RPS), is thus also likely o be pre-
sent relatively early in children's development (Lewis,
Matthews, & Hubbard, 2001 6).

Critically, some have argued that the RPS might pro-
vide a basis for processing symbolic fraction magnitudes
in humans {Lowis et al_, 2016). This is suggested by four
lines of evidence. First, individual differences in non-sym-
bolic ratio processing relate to individual differences in
symbolic fraction processing in school-aged children
(Mihring et al., 2016) and adults (Matthews et al_, 201 ).
Second, when adults compare the magnitude of symbolic
fractions with the magnitude of non-symbaolic ratios (e.g.,
pairs of lines), their performance depends on the ratio
between the magnitudes (ie., a ratio of ratios [RoR])
{Hurst & Cordes, 2016; Matthews & Zioks, 201%). For
example, participants are faster and more accurate at com-
paring symbolic fractions with non-symbelic ratios when
the RoR is larpe (e.g., 26 ws. 1/9=3:1) than when it is
small {e.g.. 45 v5. 2'3=16:5; Hurst & Cordes, 2016} This
effect—also observed with whole numbers—is gencrally
thought to indicate that numerical magnitudes are ordered
along a mental number line (Moyer & Landaoer, 1967).
Accordingly, representations of magnitudes are more dif-
ficult to distinguish when the distance between them
decreases (ie., a distance effect) and when the owerall
magnitude increases (ie., a size effect). This combined
effect of distance and size results in performance that var-
ies with the ratio bebween magnitudes (in the case of RoR
fractions). Third, a study has found that adulis are faster at
comparing symbolic fractions with non-symbolic fractions
{i.e., a mixed-format comparison) than symbolic fractions
with symbolic fractions (i.c., a within-format comparison;
Matthews & Chesney, 2015). This also suggests that a
shared magnitude code might be accessed intuitively when
performing mixed-format  comparisons  (Matthews &
Chesney, 2015; Matthews et al., 2014). Fourth, functional
magnetic resonance imaging (IMRI) studies have shown
that processing both symbolic fractions and non-symbaolic
ratios rely on similar brain regions in and around the
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intraparietal sukcus (Ischebeck et al., 200% Jacoh &
Nieder, 2009, 200%%; Mock et al., 2018, 2019). Therefore,
both behavioural and neural evidence raise the possibility
that a percepiual sense of ratio might be involved in pro-
cessing symbolic fractions.

The current study

The goal of the current study is twofold. First, we aimed to
provide further evidence for the universality of the RPS by
exploring to what extent individuals with a range of math
skills are perceptually semsitive to non-symbolic ratio
magnitudes. To this end, we used a match-to-sample task
in which participants were asked to match a non-symbaolic
ratio (a pair of lines) presented on the left side of a screen
(ic., tarpet) to one of two non-symbolic ratios presented
on the right side {i.e., the match and distractor; see Figure
la). Critically, the ratio between the match and the distrac-
tor (i.e., the RoR) was systematically wvaried, such that it
was small in some trials and large in others. This task was
adapied from a preliminary study by Matthews (2015}, in
which an RoR effect {i.e., more accuraie performance for
large than small RoR) was found in both adults and 16
children from kindergarten. This suggests an early devel-
oping sensitivity to differences in non-symbolic ratios,
consistent with the RPS. In the present study, we aimed to
replicate these preliminary findings by testing individuals
whi are proficient in fraction processing (i.e., adults) and
individuals who are not {ie., elementary-schoo] children).
Wi also aimed to test whether adulis with dyscalculia {iLe.,
a learning disakbility that severely affects the acquisition of
math skills; Iuculano, 2006; Price & Ansari, 201 3) exhibit
an RoR effect in that task. Indeed, it has been argued that a
main cause of dyscakoulia is a deficit in processing approx-
imate non-symbolic numerosities (Mezzocoo et al., 2011;
Piazza et al., 20000 A major question, however, is whether
this deficit may extend to the RPS or whether individuals
with dyscakeulia have a relatively intact RPS despite poor
calculation skills.

A second goal of the present study was o examine (o
what extent the BP5 remains involved when participants
have to maich symbolic fractions (rather than non-sym-
bolic ratios) in this match-to-sample task. In other words,
we aimed to examine whether participants remain sensi-
tive to ratio magnitudes when these are expressed as sym-
bols. Although it has been argued that the RPS may
contribute to symbolic fraction understanding (Lewis
et al., 20 &), prior studies have largely relied on magnitude
comparison tasks that only reguire participants to access
and estimate the approximate value of fractions. In con-
trast, a match-to-sample task would involve asking partici-
pants to find which of two fractions is equivalent to a target
traction, which may encourage them to access the exact
values of the fractions (though strategices based on approxi-
mation may still be invobyed to some extent). Omn one hand,
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Figure |. Maich-to-zample task. (2} In each non-symibolic trizl participants had to match the pair of line segments on the left of
the screen to the equivalent palr of line segments on the right of the screen. (b) In sach symbolic orial, participants had to match
the fraction on the left of the screen 1o the eguivalent fraction on the right of the screen.

this task might trigger explicit calculation smategies that
rely on components of fractions (i.e., numerator and
denominator) and have little o do with the RPS. On the
other hand, if symbolic fraction understanding is grounded
in the KPS, participants may still infuitively access the
RPE even in such match- to-sample tasks. To test bebween
these possibilitics, we adapted the maich-to-sample task
described above and designed a condition in which the
pairs of lines were replaced by symbolic fractions repre-
senting the same ratios (see Figure 1b). We reasoned that,
if the RPS contributes to the understanding of symbolic
fractions in this task, there should be an RoR effect similar
to that obtained with non-symbolic mtios. In contrast, if
the RPS does not contribuie to the understanding of sym-
bolic fractions, performance should not depend on RoR.

Experiment |
Method

Porticpants. 1t has been argued that an effect stee of d=0.4
is a good estimate of the smallest effect size of interest in
experimental psychology (Brysbaeri, 2019). Theretore, to
be able to detect an effect of that stee with 3074 power ina
within-subject comparison, we planned to recruit about 50
participants.
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In all, 48 individuals from the University of Lyon vol-
unieered to participate in this experiment. Data collection
for the participants was carmried out in 2 days. Six partici-
pants were exclided because of technological issues (n=2)
and non-compliance with the imstructions (m=4). The
remaining 42 participants (A= 20.7years, range=18-34,
31 females) were included in the analyses, for an achieved
power of 72% (based on a hypothesised effect size of
d=0.4). As compensation, participanis received a book or
chocolate. The experiment was performed in accordance
with the ethical standards established by the Declaration of
Helsinki.

Materiagls. Participants completed a match-to-sample task
inwhich they were asked to match a ratio presented on the
left of the screen o one of two ratios presented on the right
of the screen (one of which was equivalent to the ratio on
the lett). The task was adapted from Matthews (2015). In
two separate blocks, ratios were presenied either as sym-
bolic fractions or as non-symbolic ratios (Figare 1),

Symbolic froctions. Symbolic fractions were composed
of numerators and denominators ranging from 1 to 15 and
were presented inoa font size of 20 point in Times New
Roman. In each trial, three fractions (target, match, and
distractor) werne presented simulianeously. The target was
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presented on the left of the screen and the match and dis-
tractor were presented on the right (see Figure 1), The matio
between the fractions presented as match and distractor
{i.c., an AoR) was varied such that it was large in half of
the trials and small in the other half. Large RoR were of 3:1
and 2:1. Small RoR were of 4:3 and 6:5. For instance, for
a4:3 RoR, a 23 match could be paired with a 4'8 distrac-
tor. These ratios were chosen based on Matthews (201 5).
Specifically, they comesponded to the two largest and the
two smallest ratios from this preliminary study. For each
FoR, 40 unique fraction pairs were generated (see Sup-
plemental Appendix). Following previous stadies (Meert
etal, 2000; Schneider & Siegler, 20100, we also genemated
an egual mixture of fractions where numerators of target
and distractor were either the same or different. Critically,
because there is often a relation between overall fraction
magnitude and size of the numerator, we found the matio
betwesn numerators of match and distractor to increase
with that of the RoR. That is, small and large RoRs were
associated with average ratios between numerators of
maich and distractor of 1.44 and 2.37 {respectively). This
maises the possibility that participants might just compare
the numerators of match with distractor to compleie the
task. To evaluate whether this was the case, fraction pairs
within small and large RoRs were further broken down
imto pairs for which the ratio bebween numerators of match
and distractor was small (i.e., smaller than 1.44 for small
FoRs and smaller than 2.37 for large RoRs) and pairs for
which the ratio between numerators of match and distrac-
tor was relatively larger (i.e., larger than 1.44 for small
Rols and larger than 237 for large RoBRs). This allowed us
to explore the effects of RoR and effects of ratio between
numerators of match and distractor independenthy.

Mon-symbolic rotiss. Non-symbolic ratiocs were com-
posed of pairs of line segments representing the same
ratios as those wsed in symbolic fractions. Individual line
lengths ranged between 10 and 160 px approccimately on
an 800 px = 994 px full screen. This comesponded to a
size between 0.2 and 3.2 cm (visual angle 0.19°-3.05%). As
for symbolic fractions, the ratio between the non-symbaolic
ratios presented as match and distractor was varied, such
that it was large (i.e, 3:1 and 2:1} in halt of the trials and
small {£:3 and 6:5) in the other half. For each RoR., 40 non-
symbolic matio pairs were generated. Since the mtio sre
determined the magnitude of the line lengths, participants
could not rely on individual line lengths and had to pro-
cess the relationship between the two lines. For instance,
for line ratios such as those shown in Figure 1, all the
stimuli (target, match, and distractor) had different sizes of
individual components. Furthermore, a ratio of 24 when
maiched to a ratio of 5/10 was composed of line segments
of 2/4 and 510 units of length, respectively, where a single
unit length of line segment was fixed in size. Because of
this, the mdividual components of the line ratios differed
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in sze but the relationship beraeen the ratios stayed the
same. In the following analyses, we consider the “numer-
tor” of each pair of line to be the shortest line of the pair.

Procedure. During the entire experiment, participants were
seated approximately &0 cm from & 14 in. screem. All
instructions were presented on the laptop screen in French.
Participants could ask questions about the task atter read-
ing the instructions and receive additional instructions if
they needed to. Participants were told that they would see
in each trial thres ratios {one on the left side of the screen
and two on the right side) presenied in either symbolic or
nor-symbolic format. For both notations, they were
instructed to match the ratio on the left (e, the target) to
the equivalent ratic on the right (i.e., the match) as accu-
rately and quickly as possible. They could do so by press-
ing the button “H™ if the upper stimulus was equivalent to
the target and the button “B7 if the lower stimulus was
equivalent to the target (on a QWERTY keyboard). The
threes ratios were presented for a duration of 3,000ms. Par-
ticipants could respond from the onset of stimuli until the
timeout at &,000ms.

Participants completed one bBlock of non-symbolic
ratios and one block of symbolic fractions. Each block
included 4 practice trials {with feedback) that were fol-
lowed by 40 experimental trials. Each block was made of
20 trials with a larpe RoR (i.e., 10 wrials with a RoR of 3:1
and 10 trials with a RoR of 2:1) and 20 trials with a small
RoR {ie., 10 irals with a Rol of 4:3 and 10 trials with a
FoR of 6:5). These trials were selected randomby from the
iriplets of fractions generated for each RoR. The practice
irials were constructed of easier RoR (4:1) and partici-
pants had to reach 100% accuracy to be presented with
experimental trials. Almost all participants were able to
complete the practice irials with 100% accuracy. Those
who did not were given additional instructions and were
successful in completing the practice frials. Block order
was counterbalanced and trial order was randomised
within blocks. The side of the presentation of the maich
was counterbalanced with halt of the match ratios on the
top and the other half at the bottom. The experiment was
designed using JavaScript and HTML. The entire experi-
ment lasted between 10 and 15 min

Results

The proportion correct was analysed in a repeated-meas-
ures analysis of variance (ANOVA) with the within-sub-
ject factors FoR (large, small), Motation (line, fraction],
Fatic between numerators of match and distractor (large,
small), and Numerator of the distractor (identical to the
target, different from the target). All analyses were car-
ricd out in Jamovi {www_jamovi.org’). The main cffects
and interactions relevant to our by potheses are presented
below.
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Figure 1. Resuls of Experment | {typical aduls). (2) Proportion correct 25 a function of Motation and RoR for trials In which
the numerator of the target was identical to the numerastor of the distractor and In which the ratio betwesn numerators of match
and distractor was small. (b} Proportion correct as a function of Motation and RoR for trals in which the numerator of the target
was |dentiond from the numerator of the distractor 2nd in which the ratlc between numerztors of match and distractor was larga.
(c) Proportion correct a2 a function of Motation and RoR for orialz in which the numerator of the target was different from the
numerator of the distractor and in which the rato betwesn numerztors of match and distractor was small. (d) Proportion correct
as a function of Motation and RoR for trials in which the numerator of the @rget was diferent from the numerator of the distractor
and In which the ratio between numerators of match and distractor was large. The bars here represent standard errors.

First, this ANOVA revealed a main effect of Notation
(F{1, 41)=16.36, p- 001, 11;= .2835) and a main effect
RoR (F(1, 41)=22.96, p-<.001, N, =.359), which werc
gualified by an interaction between Motation and RoR
(F(1, 411=49.79, p-_ .01, 11: =.548). Bonferroni cor-
rected r-tests revealed that participants wers more accol-
rate for large than small RoR when choosing bebaeen
non-symbolic tatios (g .001). However, there was no
accuracy difference between large and small RoR when
choosing between symbolic fractions (p=.701). This
interaction between notation and RoR was neither
aftected by numerator of the distractor (F(1. 411=10.45,
p=_.505, 11: =.011) mor by matio between numerators of
match and distractor (F{1,411=0.33, p= 567, 11: =.008).
Thus, RoR differently affected performance on non-sym-
bolic and symbolic stimuli across all ditferent trial types
(see Figure 2.
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Zecond, there was a significant interaction betwesn
Motation and Numerator of the distractor (F{1.41)=32.62,
o=, 1-1; =_443), revealing that participants were most
accurate when the numerator of the distractor was differ-
ent from the target for non-symbolic ratios (p-< 0017,
whereas they were most accurate when numerators were
identical across target and distractor for symbelic frac-
tions (P =2 000 ).

Third, the ANOVA revealed a main effect of Ratio
between numerators of match and distractor (F{1, 41)=5.53,
p=.024, n’ =.119), which was qualified by an interaction
with Motatron (F(1, 41)=4026, p- (601, 11: =_495). For
nior-symbolic ratics, participants were more accurate when
the ratio between numerators of match and distractor was
large tham small {p-.001). For symbolic fractions, how-
ever, performance was not affected by the ratio between
numerators of match and distractor (p= _378).
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Because frequentist statistics do not provide evidence
for a null hypothesis, we tumed to Bayesian statistics (Lee
& Wagenmakers, 201 3; Morey et al., 20016) to estimate the
strength of evidence (i.c., the Bayes factor [BF]) for a lack
of difference between larpe and small RoR (HO) versus a
higher accuracy tor large than small RoR (HI1) in both sym-
bolic and non-symbolic trials. Following Jeffreys (1961), a
BF =3 was considered anecdotal evidence, a 3 <2 BF < 1
was considered substantial evidence, a 102 BF <30 was
considersd strong evidence, a 30=BF = 10{) was consid-
ered very strong evidence, and a BF = 100 was considersd
exireme evidence that our data are more likely under the
altemnate than the null hy pothesis (i.e., BF+;) or under the
null hy pothesis than the alemate hypothesis (ie, BF;+).
Bayesian paired r-iests with defanlt priors (0.707) reveaked
strong evidence for HO versus H1 in the case of symbolic
fractions (BF,+=14.4). In contrast, there was extreme cvi-
dence for H1 wersus HO in the case of non-symbaolic ratios
{BF+,> 100). Therefore, while there was evidence that
large RoR was more accurate than small RoR for non-sym-
bolic ratios, there was alsn evidence that it was not the case
for symbolic fractions.

Discussion
In this first experiment, we explored the extent o which
typical adults are sensitive to mtio magnitedes when they
maich either non-symbolic ratios or symbolic fractions. The
findings demomstrate a clear RoR effect for non-symbolic
line ratios, with a higher accuracy for large RoR than for
small RoR. These findings replicate the preliminary resulis
described in Matthews (2015). They also suggest that adulis
are perceptually sensitive to matio magnitudes, even when
they have to match (and not only compare, as in magnitude
comparison tasks) non-symbolic stimuli. This supports the
claim that adults possess an RPS that may allow them to
access @ perceptual sense of matios, akin to the AMNS ftor
whole numerosities (Dehaene, 1997; Feigenson et al,
2004). Interestingly, our study indicates that some compo-
nential strategies may also be invobred in this task. For
example, in addition to the RoR effect, accuracy depended
on whether numerators of target and distractor {i.c., the
shortest line of each pair) were identical or different. It also
depended on the ratio between numerators of match and
distractor. This suggests that participants may have attended
to components of each pair of lines in addition to their over-
all ratio. This is broadly consistent with previous findings
that have shown that participants may rely on both holistic
and componential srategies when comparing fractions
{though these studies mainly focused on symbolic frac-
tions; Bonato et al., 2007; Faulkenbemy & Pierce, 2011;
Meert et al., 2010, 201 2; Obersteiner et al., 2003; Schoeider
& Siegler, 2010

A novel aspect of our study is that we asked participants
to match symbolic fractions in addition to non-symbolic
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ratios. In sharp conirast to the resulis obtained with non-
symbolic mtios, our resulis revealed an absence of RoR
eifect for symbolic fractions. This suggests that participanis
do not access a represeniation of fractional magnitudes
when they have to match symbolic fractions in this task.
Rather, they are likely to use componential stratepies, focus-
ing on the numerators and denominators separately. This is
suppested by the fact that participants” accuracy depended
on whether the numerator of the target was identical or dif-
ferent from the numerator of the distractor. Clearly, focusing
on the numerator is an efficient strategy when the numerator
of the target is the same as the distractor, becauwse it indicates
that these fractions are not equivalent However, the effec-
tiveness of such a componential stratery is kess obvious
when numerators differ between tarpet and distractorn. Yet,
our results chearly indicate that performance does not depend
on RoR, suggesting that participants do not rely on frac-
tional magnitudes to complete the task.

(Mier strategies that participants are likely to rely on in
Experiment | may involve calculating {e.g.. reducing a
fraction to its simplest form) and their mastery may emenge
afier years of practice in school. Therefore, reliance on
these strategics might depend on the degree of familiarity
with fractions as well as proficiency with arithmetic. Such
sirategics may also tex working memory and therefore
depend on the working memory resources of participants.
In other words, it is possible that participants with limited
practice with manipulating symbolic fractions, Limited
arithmetic tluency, or limited working memory resources
may rely on an infuitive sense of fractional magnitudes o a
greater extent than competent adublts. To test this hypothe-
sis, we presented the same task to children who are begin-
ning to learn about symbalic fractions in the fourth and fitkh
grades. These children should, therefore, have more limited
experience with the strategies used o solve fraction prob-
lems than adults. They should also have lower arithmetic
thuency and working memory ability than adulis (Coaran,
2016; De Brawwer et al., 20046; Imbo & Vandierendonck,
2008). Mome of these factors may influence the RPS,
becauss it is thought to be an evolutionarily old system that
requires few cognitive resowrces and is early developing.
However, these factors may affect the extent to which chil-
dren use strategies im the symbolic version of the task.
Therefore, we predicted that these children should rely (at
least to some exient) on the RPS to match symbolic frac-
tions a5 well as non-symbolic mtios (i.e., they should
exhibit a sensitivity to ratic magnitudes when maiching
non-sy mbolic ratios and symbolic fractions).

Experiment 1

Method

Partigpants. Children are introduced to symbolic fractions
during the fourth grade in France. Thus, we recruited 40
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fourth and fifth graders from a private school in Lyon,
France. The difference between large and small RoR for
non-symbolic stimuli in Experiment | was wery large
(Cohen's o= 01.43). Theretore, this sample size, which
would yield more than 9% power to detect an effect size
of d=0L80 in a within-subject comparison, was more than
adequately powered to detect an effect of that size. Two
children were excluded because of non-compliance with
instructions. The remaining 38 children (MW=9.92years,
range: 9-11, 26 females), 21 fourth graders and 17 fifth
graders, were included in the study. Data collection was
done during one school day. The experiment was per
formed in accordance with the cthical standards estab-
lished by the Declaration of Helsinki.

Materink and  procedwre. Materials and procedures
remained the same as in Experiment 1. However, children
were given oral rather than written instructions about the
task and were tested in groups of 4.

Results

Proportion correct was anabysed in 2 repeated measures
AMNOVA with the factors FoR (large, small}, Motation
(line, fraction), Ratic between numerators of match and
distractor (large, small), and Mumerator of the distractor
(identical to the target, different from the target).

First, the ANCOWVA revealed a main effect of RoR (F(1,
IT)=14.74, p- 001, 11: =285}, which was qualified by
an interaction bebw een RoB and Motation (FT(1, 37)1= 3976,
g 0, 11: =.518). Bonferroni-comected post hoc fests
showed that children were more accurate for large than
small RoR for non-symbolic ratios (p <2 .001). In contrast,
there was no difference im accuracy betwesn large and
small RoR for symbolic fractions (p= 1.000). The interac-
tion between Motation and RoR was neither affected by
Mumerator of the distractor (F(1, 3T)=0.56, p=.460,
1-1: = 015) nor by Ratio betaween nmnmm?m of match and
distractar (F(1, 37)=0.35, p=.462, n,=.015). Thus,
much like in typical adulis, RoR differently affected per-
formance on non-symbolic and symbolic stimuli across all
ditferent trial types in children (see Figure 3).

Second, the AMOVA revealed a main effect of Ratio
betareen mumerators of match and distractor (F(1, 37)=11.42,
=002, 11: =.236). Although the interaction with Notation
did mot meach significance (F(1, 3T)=151, p=.227,
11: =039}, follew-up Bonferroni tests indicated that the main
effect of Ratio besacen numerators of match and distractor
was driven by non-symbolic stimuli. For non-symbolic ratios,
children were more accurate when the ratio bebaeen numers-
tors of match and distractor was large than small (p= 011
For symbolic fractions, performance was not atfectsd by the
ratic bebween numerators of match and distractor (p=.892).

Bayesian paired r-tests with default priors (0.707)
revealed extreme evidence for H1 (ie., large RoR is
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associated with higher proportion correct than small RoR)
versus HO (ie, no difference between large and small
Rol) when children had to choose betaeen non-symbolic
ratios (BF+, > 100). There was, however, moderate evi-
dence tor HO wersus H1 when children had to choose
between symbolic fractions (BF +=6.92). Theretore,
much like adults in Experiment 1, there was evidence with
children that large RoR was more accurate than small RoR
for non-symbolic ratios. However, there was also evidence
that this was not the case for symbolic fractions.

Discussion

In Experiment 2, we presented the symbolic and non-sym-
bolic versions of the maich-to-sample task to children in
the fourth and fifth grades. Because children are intro-
duced to symbolic fractions in the fourth grade in France,
we reasoned that these participants may have less experi-
ence with manipulating symbolic fractions than adults and
lack practice with different sirategics. Accordingly, they
may rely to a lesser extent on these strategies when match-
ing symbolic fractions (and might mstead rely on a mome
intuitive sense of ratio magnitudes). Consistent with the
fact that these participants are less proficient with sym-
bolic fractions than adults, children matched symbolic
fractions with a relatively low accuracy of about 54.6% (as
opposed to 73.8% on average for adults in Experiment 1).
Accuracy was also comparable in trials inm which the
numerator of the target fraction was similar to that of the
distractor fraction (54.1%) and in trials in which the
numerator of the target fraction was different from that of
the distractor fraction (55.2%). This suggesis that children
struggled to perform this symbolic version of the task and
focused less systematically on mumerators than adults did
in Experiment 2 (similar to Zhang et al., 2014} Yet, the
pattern of results is largely similar to Experiment 1.

First, children exhibited RoR effects when matching
non-symbolic ratios, indicating that children around the
age of 10 are perceptually sensitive to ratio magnitudes.
This is in line with several prior studies also showing sen-
sitivity to non-symboelic ratio magnitudes in chikdren. For
example, in the prelimimary study by Matthews (20015). 16
preschoolers showed RoR effects when matching non-
symbolic matios. In another study, S-month-old infants
show similar discrimination acuity for non-symbolic ratios
as they do for non-symbolic numerosities in magnitude
discrimination tasks (McCrink & Wynn, 2007). Finally,
studies of non-symbolic proportional reasoning tasks
employing continuows quantities (in which participants
have to focus on the relationship between the guanfitics
becauss individual units cannot be counted) have shoam
that children as young as 6years old are successful in pro-
cessing proportional information across a wide mnge of
non-symbsolic formats (Boyer et al., 2008; Hurst & Cordes,
2018; Jeong et al., 2007; Meert et al., 2013). Theretore,
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Figure 3. Results of Experiment 2 (children). {a) Proportion correct as a function of Motation and Rof for trizk In which the
numerator of the targat was idention! to the numerator of the distractor and in which the ratio between numerators of match

and ditractor was small. (b} Proportion correct &5 a function of Motation and RoR for trals In which the numerator of the target
was identical from the numerztor of the distractor and In which the ratio betwesn numerators of match and distractor was large.
(c} Proportion correct a5 a functlon of Motation and Rof for trials In which the numerator of the target was diferent from the
numerztor of the distractor and In which the ratio betwesn numerators of match and distractor was small. {d) Proportion correct
& a functlon of Motatlon and RoR for trials In which the numerator of the target was different from the numerator of the distractor
and In which the ratio betwesn numerators of match and distractor was large. The bars here represent standard arrors,

together with these studies, our data are consistent with the
idea that the RPS is relatively early developing.

Second, despite a level of accuracy relatively similar
between the non-symbolic ratios and the symbolic fractions
(492.4% ws. 54.6%), children's accuracy in the symbolic
task was not dependent on the RoR. Therefore, confrary to
our prediction, even children with a lack of extensive expe-
rience with componential and other strategies do not appear
to access representations of magnitude when matching
symbuolic fractions. Of course, children are beginning o
learn about fractions in the fourth grade, as indicated by the
relatively high emror rates. It is thus possible that they were
not exposed to encugh instruction on rational numbers to
be able to access the underlying ratio magnitudes. To test
this possibility, we tuwned to adults with dyscalculia.

Dhyscalculia is a specific leaming disability affecting
the acquisition of numerical skills, despite normal
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intelligence and educational opportunities. Research has
shown that individuals with developmental dyscalculia
possess an impaired ANS as well as relatively poor
working memory ability (Geary, 20011; Tuculano, 200 6;
Mazzocco et al., 2001 ; Piazza ot al., 2000). This, in turm,
is thought to significantly affect arithmetic leaming.
Clearky, adults with dyscalculia have been exposed to
extensive instruction on rational numbers in school. Yet,
their impaired calculation skills may prevent them from
effectively using componential strategies when match-
ing symbolic fractions. Although this may translate into
greater use of the RPS, it is also possible that ANS
impairments in individuals with dyscalculia may exctend
te the RPS. Therefore, Experiment 3 investigated the
sensitivity to ratio magnitudes of adults with dyscalculia
who were asked to match both non-symbolic ratios and
symbolic fractions.
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Experiment 3

Methoed

Partidponts. Seventeen adult participants were recruited
using advertisements in social media, the university “mis-
sion-handicap,” and by word of mouth. Thirteen partici-
pants (M=23.5years, mnge: 1927, 12 females) met the
inclusion criteria based on clinical diagnosis and standard-
ised tests (described belea), yielding 80% power to detect
an cffect size of d=0.85 in a within-subject comparison.
Because the effect sizes associated with the difference in
accuracy between large and small RoR in Experiments |
and 2 were larger than d=0.85 (i.e, d= 143 and 4= 1.0E,
respectively ), we considered this sample size to be ade-
quate. The experiment was performed in accordance with
the ethical standards established by the Declaration of
Helsimki.

Stondardised tests. Adulis were administered various
tests to assess cognitive, numerical, and reading skills.
Using the Wechsler Adult Intelligence Scale—Fourth
edition (WAIS-IV; Wechsler, 2008), verbal [0} was esti-
mated using the wverbal reasoning subtest, while spatial
[} was estimated using the matrix reasoning sub-test.
Math skills were assessed using two sub-tests of the
Woodcock-Johnson Test of Achievement (WI-111)
(Woodcock et al., 2001): Math Fluency and Applied
Problems. The Math Fluency sub-test is a timed test in
which the participants have to solve as many single-
digit additions, subtraction, multiplication, and divi-
sion problems as they can within 3 min. The Applied
Problems sub-test is untimed and measures the ability
to analyse basic numerical concepts and oral wond
problems. This test stops after six consecutive errors or
when the last item is reached. Reading fluency was
assessed with the Alouette-R test (Lefawrais, 1967),
which is frequently used to test reading skills in French-
speaking couniries. This test requires participants o
read a 265 word text alowd in 3min and measures the
number of words read, the time required, and the num-
ber of pronunciation errors to evaluate the reading
speed and efficiency, respectively. Because the test is
standardised for children and adolescents but not for
adults, we used the guidelines of Cavalli et al. (2018) w
identify the cut-off criteria for dyslexia {i.c., reading
speed score above .7 and'or reading efficiency score
abowe 402_26)

Psychometric measures are shown in Table 1. To be clas-
sitied as having dyscalculia, participants had to have been
diagnosed by a clinical specialist, complained of mathemat-
ics difficultics since school, and perform at or below the
25th percentile on at least one of the math sub-tests of flu-
ency and applicd problems (Jordan et al., 201 3). In addition,
all 13 participants had to have a normal verbal I0), as
reflected by a score above the 30th percentile {ie., 92) 8|:|g

Table |. Psychometric measures of adulis with dyscaloulla.

Mezsura M (range)
WAIS-IV
Verbal rezsoning” | 10 {95~ 1300
Matrix reasoning” 20 {751 00)
Wil
Math fluency™ 0.5 (54-87)
Applied problems® B0 (T4 102)
Alouette-R
Reading efficlency* 437 (2E2-5332)
Feading spead- 9.28 {6.02-11.3)

WAISI: Wechskesr Adult intelipence Scle—Fourth sdition; Wllk
¥oodoock-johnson Test of Achievement.

"Standardized score (M= 100, 5D=15).

Eflaw score.

the werbal repsoming subtest of the WATS-TV. All but three
participants had reading scores above the cut-off criterion
for dyslecia (Cavalli et al, 20018).

Materiols and  procedures. Materials and  procedures
remained the same as in Experiment 1 with one excepiion.
Because the sample size was smaller than in Experiment 1,
wi presented participants in Experiment 3 with baice more
trials to improve individual estimates of performance. That
is, atter completing 4 practice trials in each block, partici-
panis evaluated B0 experimental trials. Theretore, there
was & totel of 160 trials (i.e., 80 non-symbolic mtios and
20 symbolic fractions). The whole experiment lasted about
20 min.

Results

As for Experiments 1 and 2, the proportion cormect was
analysed in a repeated- measures ANOVA with RoR (large,
small), Notation {line, fraction), Ratio between numerators
of match and distractor (large, small), and Mumerator of
the distractor (identical to the target, different from the tar-
get) as within-subject factors,

First, this ANOWVA revealed an interaction bebween
Motation and RoR {(F{1, 12}=35.04, p- 001, 11: =745
Bonferroni commected ~tests revealed that participants
were more accurate for large than small RoR when choos-
ing between non-symbolic ratios (pe< 001, However,
there was no accuracy difference between large and small
RoRwhen choosing between symbaolic fractions (p= . 106
This interaction bebween Nofation and RoR was neither
affected by Numerator of the distractor (F(1, 12)=0.36,
p=551, q: =029} nor by Ratio between numerators of
maich and distractor (F{1, 12)=1.47, p= 248, 11; =109
Thus, as in Experiments 1 and 2, RoR differently affected
performance on non-symbolic and symbolic  stimuli
across all different trial types in adults with dyscalculia

{see Figure 4).
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Sepcond, there was a significant interaction betaeesn
Modation and Mumerator of the distractor (F{1, 12)=20.04,
Fe - 1] 1-1: =626, revealing that participants were most
accurate when the numerator of the distractor was different
from the target for non-symbolic ratios (p= 017), whereas
this factor was no affecting accuracy for symbolic frac-
tioms (jp= 1 .000).

Third, the ANOVA revealed a main effect of Ratio
between numerators of match and distractor (F(1, 12)
=2217, p<.001, 1-1: =.64%), which was qualified by an
interaction with Motation (F{1, 12)=11.47, p=.0035,
11: =_48%). For non-symbolic ratios, participants were
more accurate when the ratio betwesn numerators of
match and distractor was large than small (p =< .001). For
symbolic fractions, however, performance was not
affected by the ratio between numerators of match and
distractor {p=_.522).

86

Bayesian paired rtests with default priors (0.707)
revealed exireme evidence tor HI {ie., large RoR is asso-
cigted with higher proportion correct than small RoR) ver-
sus HO {i.e., no ditference between large and small RoR)
when participants had to choose between mon-symbaolic
ratios (BF + | = 1(00). There was moderate evidence for HO
versus Hl when participants had to choose between sym-
bolic fractions (BF,+=10.89). Thus, adults with dyscal-
culia displayed a higher accuracy for large than small RoR
for non-symbolic ratios, but not for symbolic fractions.

Discussion

The results of Experiment 3 show that adults with dyscal-
culia exhibit & pattern of responses very similar to that of
children in Experiment 2. First, overall accuracy was low
on both non-symbolic mtios (534%) and symbolic fractions
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(62.6%). suggesting that participants completed the tasks
with some difficulty. Second, despite this relatively low
accuracy, there was a clear RoR effect with non-symbalic
ratios. This suggests that adults with dyscalculia have a
perceptual sensitivity o mtio magnitudes, much like nor-
mal adults in Experiment 1 and children in Experiment 2.
This is noteworthy because it presents evidence that adults
with dyscalculia may have access to a relatively intact
RPS. Interestingly. prior research on number acuity has
revedled an impaired AN in individuals with dyscalculia
(Mazrocco et al., 2011; Piazza et al., 2010; for a contrast-
ing view soz luculano et al., 2008). To our knowledge, the
present study is the first to examine the intuitive, percep-
tual ability to process non-symbolic ratios in this popula-
tion. Our findings raise the possibility that the RPS may be
relatively independent from the ANS and spared in dyscal-
culia. Mote, however, that these results come from a rela-
tively small sample size (despite moderate to large effect
size, 11: =344) and that future studies would need to con-
firm this claim by gathering concomitant measures of both
ANE and RPS in individuals with dyscalculia.

Third, we expected to observe an RoR effect for sym-
bolic fractions, due to less automatised calculative abilities
and lower working memory capacity in adults with dyscal
culia. However, performance on symbolic fractions was
not affected by RoR, indicating that adults with dyscaleu-
lia do not access a representation of ratio magnitudes when
they match symbolic fractions.

Crverall, the results of Experiment 3 are similar to the
results of Experiments | and 2 in that participants do mot
naturally appear to use the RPS to match symbolic frac-
tions in this task, independently of their level of math
skills. This, however, may not mean that they canmar use
the RPS when processing symbolic fractions. For exam-
ple. accessing the RPS may be necessary if participants are
forced to estimate the ratio that underliz a symbolic frac-
tion. To explore this hypothesis, we designed a mived-for-
mat version of the match-to-sample task in which another
sample of adults were asked to choose which of pvo sym-
bolic fractions comesponds to a non-symbolic ratio (see
Figure 5). Im such a task, participants are forced to estinare
(rather than precisely determing) which symbolic fraction
is the best match for the non-symbolic ratio. We expected
that such a mixed-format task would require participants to
pccess fractional magnitudes in & way that previous sym-
bolic versions of the task did not.

Experiment 4

Participants

Thirty-three participants (M=20_5years, range: 18-215, 25
females) from the University of Lyon voluntesred to par-
ticipate in the study. All of them were included in the anal-
yses, This yields 809 power to detect an effect size of
d=0.50 fwhich would be much smaller than the effect

v

Figure 5. Match-to-sample @:sk In mixed-notation condidon.
In each trial participants had to match the pair of line segments
on the left of the sorean to the equivalent fraction on the right
gide of the coraan.

reported for the difference bebaeen large and small RoR in
non-symbolic stimuli in the previous experiments). The
experiment was performed in accordance with the ethical
standards established by the Declaration of Helsinki.

Materials ond procedures. The procoedure remained the
same as in the experiments above. However, stimuli for the
match-to-sample task were modified. For this task, non-
symhbaolic ratiocs were presented on the left side of the
screen and symbolic fractions were presented on the right
side of the screen (see Figure 5). Participants were asked to
match the non-symbolic ratio on the left with the correct
symbolic fraction on the right. Participants completed one
block with 4 practice trials (with feedback) followed by B0
experimental triaks (consisting of 20 trials per RoR). The
entire experiment lasted for about 10 min.

Results

Proportion comect was analysed in a repeated-measures
ANOVA with the factor RoR (large, small). The analysis
revealed a main effect of RoR (F(1, 32)=63.9, p-. 001,
"‘11:. =_666), indicating that participants were more accurate
fior large RoR than small RoR (see Figure &).

In line with the results above, a Bayesian paired f-test
with default priors (0.707) revealed extreme evidence for
HI1 (i.e., large RoR are associated with higher proportion



2170

Quarterly Journal of Experimental Psychology 73(12)

1.0+
= -
z 0%
= l/
06—
£
= 04-=
:
a 0.2
0.0 : :
Small Large
Ratio of Ratios

Figure &. Results of Experiment 4 (adults, mixed-notation
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comect than small RoR) wersus HO (ie., no difference
between large and small RoR) across all trials of the exper-
iment (BF +, = 100). Therefore, there was evidence for a

difference in accuracy between large and small FoB.

Discussion

The results of Experiment 4 clearly show an RoR cffect in
this mixed-format version of the match-to-sample task,
indicating that adult participants do access fractional mag-
nitudes to complete this task. This demonstrates that the
lack of RoR effect in symbolic fractions in Experimenis
1-3 may not necessarily reflect an imability to use the RPS
to process symbolic fractions. Rather, it suggests that par-
ticipants do not naturally access this non-symbolic repre-
sentation when they are asked to match symbolic fractions
and are most likely reverting to componential sirategies.
Yet, it is interesting to note that overall accuracy in
Experiment 4 is reliably above chance (66%, §32)=T7.4E,
P ], af=1.30), suggesting that sirategies relying on an
intuitive understanding of fractional magnitudes may be
relatively efficient. The results of the four experiments are
discussed in detail below.

General discussion

In the above experiments, we aimed to test the hypothesis
that participants are sensitive to ratio magnitudes when
they match non-symbolic ratios as well as symbolic frac-
tions, therehy providing further evidence for the existence
of the RPS and its potential role in symbolic fraction pro-
cessing. Using aversion of a match-to-sample task devel-
oped by Matthews (2015), we asked participants to chonose
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which of two non-symbolic ratios or symbolic fractions
cormmesponded 0 a given non-symbolic ratio or fraction.
Chur results indicate that adults have a percepiual sensitiv-
ity o ratios when these are presented in a non-symbsolic
format. This sensitivity docs not appear to be affected by
the level of math skill, because it was also largely present
in individuals with lower math abilities (i.e., children in
fourth and fifth grades and adults with dyscakeulia).
Furthermore, this sensitivity was observed when symbsolic
tractions had to be matched with a non-symbolic ratio,
suggesting that the RPS may contribute to symbolic frac-
tion processing in some situations. However, performance
did not depend on the RoR when symbolic fractions had to
be matched with other symbaolic fractions.

A perceptual route to process the approximate
magnitude of froctions

Ower our first three experiments, the results clearly indi-
cate that parficipants’ performance is affected by the
RoR when they match non-symbolic ratios. Theretore,
our resulis add to the growing evidence that the human
cognitive architecture provides a percepiual route to pro-
cess approximate magnitudes of fractions when repre-
sented by non-symbolic ratios (Fazie et al., 2014;
Matthews & Chesney, 201 5; Matthews & Lewis, 2017).
For instance, Matthews (2001 5) noticed that preschoolers
may already possess some percepiual sensitivity towarnds
non-symbolic ratios and that the accuracy of some high-
achieving preschoolers might match adult  levels
(Matthews, 201 5; Matthews & Ziols, 2001 9). Furthermore,
this sensitivity has been shown to be present across spe-
cies, age groups, and even in socicties that lack formal
mathematic education (Jacob et al., 2002; leong et al.,
2007; Kalma et al., 2020; McCrink et al., 200 3; McCrink
& Wynn, 2007; Meert et al., 2002, 201 3; Sophian, 2000}.
Thus, this evidence points towards the RPS being an
early developing, evolutionarily ancient system (Lewis
et al, 2016).

We also observed that performance of fourth and fifih
graders on the nmon-symbolic mtic comparison task in
Experiment 2 was much lower than that of adulis in
Experiment | (comtrary to the preliminary sudy by
Matthews, 2001 5). This might be due to the fact that the RPS
might still be developing in children and'or that formal
mathematical experience might influence RPS acuity. This
would be relatively consistent with research on the ANG,
which shows that formal mathematical experience typically
improves ANS acuity (Halberda et al., 2008; Pica, 2004).
Similarky, even though the RPS might be an evolutionarily
ancient system present earty on in developmental years, its
acuity might be dependent on both the quantity and quality
of mathematical experience and the age.

Finally, we found clear RoR effects for non-symbaolic
line ratios in adults with dyscalculia. Dhyscalculia is a
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complex, multifaceted neurodevelopmental disorder that
hinders acquisition of mathematical concepts despite nor
mal intelligence (Tuculano, 2016}, Much of the research
on dyscalculia has focused on whether and how the disa-
bility affects the processing of whole-number magnitudes.
Some rescarchers have identified ANS deficits to be a
potential source of dyscaleulia (Butterworth, 2005, 2011;
Mezzocco et al., 2011; for a contrasting view, see De
Smedt & Gilmore, 2011; Iuculano et al., 2008; Rousselle
& Moel, 2007). To our know ledge, no research on percep-
tual sensitivity of relational magnitudes in adults with
dyscalculia exists. Owur results in adults with dyscalculia
highlight two imporant points. First, the fact that perfor-
mance of adults with dyscalculia depends on RoR in our
non-symbolic task suggests that these individuals possess
the perceptual ability to process ratios. This naturally sug-
gests a spare RPS in adults with dyscalculia. Second, per
formance of adults with dyscalculia in this task was much
lower than that of typical adulis, which could be attributed
cither to the quality of mathematical cxperience or a
slower development of the RPS system. Monetheless, our
findings raise the intriguing possibility that even though
adults with dyscalculia may experience difficulties with
whole-number concepts, they might still be able to lever
age the RPS to leamn fractions. One can speculate that this
ability to process relational magnitudes between numbers
might even be atilised to teach whole-number concepts
(Lewis et al., 20016). Future studies on larger sample size
and across different age groups will further help develop
a comprehensive picture of the development of the RPS in
individuals with dyscalculia. This know ledge might aid in
current efforts to develop identification criteria and
screeners for dyscaloulia in children (Rodrigues & Jordan,
20119} and adults.

A limited role for the RPS in symbaolic fraction
processing

The resuls of Experiment 4 suggest RPS mvolvement in
symbolic fraction processing. Specifically, we found that
typical adults exhibit the signature RoR effect when they
have to choose betwesn bwo symbolic fractions to match a
non-symbolic ratio, Cur results are in line with a prior study
done on cross-format comparisons revealing distance effects
seross different formats (dot amays, circle areas, symbolic
fractions) indicating magnitude abstraction (Matthews &
Chesney, 2015). It 5 noteworthy to mention that several
other studies on fraction magnitude comparison tasks have
also demonstrated a link between perceptual sensitivity to
non-symbolic mtios and symbolic fmction  processing
(Matthews et al., 2004). Furthermore, it has been argued that
the cross-tommat comparison tasks are key o understanding
a shared system for non-symbolic and symbolic magnitudes,
a5 they rely on the abstract natune of magnitude between the
different notations (Matthews & Chesney, 2015).
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However, we did not find any RoR effect when partici-
pants had o choose which of two symbolic fractions
matched another symbolic fraction. This was true for adults
{Experiment 1), children from fourth and fifth grades
{Experiment 2}, and adults with dyscalculia (Experiment
3). Thus, participants do not appear to access ratio magni-
tudes when performing this matching task. On one hand,
these findings are consistent with a body of literature show-
ing that accessing the holistic magnitude of fractions is
challenging for typical adults (Kallai & Tzelgow, 2009,
2012; Stafylidou & Vosniadow, 2004). On the other hand,
they somewhat condlict with prior studies that sugpest that
the RPS contributes to symbolic fraction processing. For
example, in contrast o our findings, studies have found that
performance on fraction comparison tasks is influenced by
limear or RoR distance (Kalra et al., 2020; Matthews &
Chesney, 201 5; Schneider & Siegler, 2010).

Interestingly, this difference between our results and
those prior findings does not seem to stem from a clear
difference in the timing of response. For example, the
average response time was 2284 ms for adults in
Experiment 1, which is only slightly higher than the aver
age response time of 1,995 ms found in the fraction com-
parison fask designed by Matthews & Chesney (2015);
consider also that three fractions are displayed simultans-
ously in a match-to-sample task, compared with only bao
fractions in a comparison task. It is also unlikely that our
participants may have chosen not to rely on fractional
magnitude because they used another analogical strategy
involving a comparison of the size of components of frac-
tions. Indeed, in contrast to what was found for non-sym-
bolic ratios (see below]), the ratio between numerators of
match and distractor did not influence performance on
symhbolic fractions. Thus, differences between our findings
and that of previows studies are more likely due to differ-
ences in the processes involved in magnitude comparison
wersus match-to-zample tasks. In magnitude comparison
tasks, participants are asked to compare the relative sizes
of two fractions (c.g., assess which fraction is larger). This
task can arguably be done without accessing the exact
value of each fraction. Thus, magnitude comparison tasks
are likely to encourage participants to simply cstimate
approximate magnitudes (which might promote strategies
relying on analogical processing). In our match-to-sample
task, however, we asked participants to find which of tao
fractions comesponded to & target fraction. Although we
acknowledge that it is possible to complete this task by
approximating ratios, we speculate that such an equiva-
lence task more likely prompts participants to access the
exact rather than the approximate value of fractions.
Theretore, although children, typical adults, and adults
with dyscalculia may rely on an intuitive sense of ratios to
process non-symbolic ratio magnitudes, our findings raise
the possibility that this sense may only drive performance
in tasks that encourage subjects to approximate ratios.
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The role of componential strategies in symbolic
fraction and noen-symbelic ratio processing
Orverall, our study clearty highlights an mfluence of compo-
nenis of fractions in typical adulis. Interestingly, this influ-
ence was not limited to symbolic fractions but was also
observed in non-symbolic line ratics. For ecample, in addi-
tion o Kol accurmcy in the non-symbolic task depended
upon {a) whether the numerator (i.e., smallest of the lines) of
the target was the same as the numerator of the distactor
and (b)) whether the matio bebween the numerators of the
maich and distracior was small or large. For symbolic frac-
tions, accuracy was also higher when numerators were iden-
tical bebween maitch amd distractor, indicating  that
participants might have used common components to pro-
cess magnitudes. This influence of components on fraction
processing is consistent with previous reports. For instance,
experts have been shown to make use of componential strat-
egies when they are efficient to solve fraction problems
{Obersteiner et al., 2013} Drawing on concepts from the
Dhvramic Straregy Choice account (Alibali & Sidney, 2015],
we argue that the specific task feature of a commion numera-
tor might have led participants to utilise a simple and effec-
tive “compare the denominator™ strategy. It is also possible
that the use of such a stratepy with symbolic fractions might
have influenced the adults to ufilise a similar strategy for
non-symbolic formats (in addition to the RPS). Note that it
is also possible that the use of rials inwhich the numerator
of the target was identical to that of the distractor might have
also encouraged participants to uss componential strategics,
even on other trials inwhich the numerator of the target was
different than that of the distractor. Although this equal mix-
ture of trials was chosen to present participants with a vari-
ety of fractions, fuhure studies might investigate to what
exient the use of componential strategies may depend on
different types of fractions on such match-to-sample tasks.
This shility o utilise and form new strategics to solve
problems may also develop with age and mathematical
X perience, consistent with the fact that the identity of the
numerator (i.e., same or different across target and distrac-
tor) intluenced performance in adults (Experiment 1) but
not in chikiren (Experiment 2} These results are similar to
a study done by Zhang and colleagues (200 4), whereby
based on accuracy rates the authors noted that adults are
better equipped to adopt componential processing sirate-
gies than children. Finmally, an imporiant question regand-
img the role of formal education in shaping perceptual
abilities was mised by Lewis et al. (2015) in their chapter.
We believe our resulis might have shed some light on this
phenomenon. The finding that processing non-symbolic
line ratios may rely on componential strategies might sug-
gest that tormal education and years of experience could
be responsible for the tansfer of these efficient strategics
from symbolic fractions to non-symbolic line ratios, thus
playing a role in shaping perceptual abilities.
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Symbolic fraction knowledge in adults with
dyscalculia

A couple of prior studics have investigated fraction
knowledge in children with dyscalculia. These studies
point to the difficultics encountered by children with dys-
calculia when processing symbolic fractions. For exam-
plz, it has been shown that children with dyscalculia fail
o order fractions, estimate the sum of two fractions, and
identify equivalent fractions (Hansen et al, 2017;
Mazzocoo & Devlin, 2008). In a study by Siegler and
Pyke (2013} and Bailey et al. {2015), understanding mag-
nitudes of fractions and performing arithmetic computa-
tions were shown to be challenging for children with
dyscalculia. Another study showed that children with
dyscalculia also persist tov iew visual models of fractions
as concrete representations until Grade 8, which mis-
guides them on Arabic fraction representations (Mazz occo
et al., 200 3). To our knowledge, no studies to date have
examined the difficulties and strategies used by adulis
with dyscalculia when performing fraction tasks.
Exploring how symbolic fractions are processed by
adults with dyscalculia might aid in understanding the
misconceptions and challenges faced by them on fraction
tasks. Our results show that the performance of adulis
with dyscalculia was lower for both symbolic and non-
symbolic tasks comparedwith typical adults. Furthermore,
effective effortful strategies like componential process-
ing were not utilised by adults with dyscalculia, which
might have been one of the reasons for a lower accuracy
score. This indicates that adults with dyscalculia struggle
with equivalent fractions and are unable to utilise compao-
nential processing sirategics effectively compared with
typical adults.

Conclusion

The aim of this rescarch was twofokd; first, to examine per-
ceptual sensitivity towards non-symbolic mtio magnitudes
in participants with varying levels of math skills and, sec-
ond, to mvestigate the extent towhich the perceptual ability
is utilised for symbolic fraction processing. We found evi-
dence for perceptual sensitivity towards non-symbolic ratio
magnitudes im all groups of participants, irmespective of
their age or level of math skill. A clear pattern that also
emerged in our study was that children and adults with and
without dyscalculia do not rely om the RPS when they have
to find equivalent symbolic fractions (Experiments 1-3).
However, they do rely on the RPS when the ratios behind
symbolic fractions have to be estimated (Experiment £).
Together these findings add to prowing evidence for an
intuitive, perceptual sensitivity for non-symbolic relatiomnal
magnitudes. They also imdicate that the role of the RPS in
symbolic fraction processing is limited to tasks in which
participants have to approximate the value of a fraction.
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CHAPTER V: STUDY Il

Bhatia, P., Longo, L., Chesnokova, H., & Prado, J. (submitted). Neural representations

of absolute and relative magnitudes in symbolic and non-symbolic formats

Abstract

Although many animal species can represent magnitudes non-symbolically
(e.g., **), humans are unique in their use of symbols to represent numerical information
(e.g., two or 2). This symbolic representation of numerical magnitudes has long been
thought to emerge from the ‘neural recycling’ of brain mechanisms processing non-
symbolic magnitudes in the intraparietal sulcus (IPS), a hypothesis that has been
applied to both absolute (i.e., numbers) and relative (i.e., fractions) magnitudes. Yet,
evidence for the neuronal recycling hypothesis is inconsistent for absolute magnitudes
and scarce for relative magnitudes. Here, we investigated to what extent the neural
representations of symbolic absolute and relative magnitudes overlap with the neural
representations of non-symbolic absolute and relative magnitudes in the IPS. In an
fMRI adaptation design, adult participants were presented with blocks of (1) non-
symbolic absolute magnitudes (lines), (2) symbolic absolute magnitudes (numbers),
(3) non-symbolic relative magnitudes (line ratios), and (4) symbolic relative
magnitudes (fractions). Univariate analyses provided limited evidence for the neuronal
recycling hypothesis, with an overlap between symbolic and non-symbolic
representations in the IPS that was restricted to absolute magnitudes and depended
upon participants’ fluency in symbolic math. Multivariate analyses did not provide any
evidence that similar IPS brain regions support both non-symbolic and symbolic
magnitudes across all participants. Instead, a region of the right IPS encoded

differences in format (non-symbolic versus symbolic) across both absolute and relative

96



magnitudes. Therefore, our study suggests that IPS activity during numerical tasks
may depend on the presentation format (non-symbolic versus symbolic) more than it
depends on the type of magnitude (absolute versus relative), at least for most adult

participants.

Introduction

Humans possess the ability to represent magnitudes both non-symbolically
(e.g., **) and symbolically (e.g., two or 2). This ability is both shared and unique among
other animals. On the one hand, infants and many animal species can estimate and
discriminate non-symbolic absolute magnitudes, suggesting that the human brain may
be endowed with a non-symbolic Approximate Number System (ANS) that is innate
and evolutionarily old (Barth, La Mont, Lipton, & Spelke, 2005; Boysen & Capaldi,
1993; Brannon, 2005; Dehaene, Dehaene-Lambertz, & Cohen, 1998; Dehaene, 1997;
Pica, Lemer, Izard, & Dehaene, 2004; Xu, Spelke, & Goddard, 2005). On the other
hand, the ability to represent absolute magnitudes as symbolic natural numbers is only
found in humans and is largely believed to be a product of culture and language
(Ansari, 2008). Yet, it has long been proposed that this culturally developed ability is
grounded in the evolutionarily old capacity to process non-symbolic magnitudes
(Dehaene et al., 2003; Ansari, 2008). For instance, the ‘neuronal recycling’ hypothesis
argues that learning symbolic natural numbers relies on the co-option of brain
mechanisms supporting non-symbolic magnitude processing, which are largely
thought to be located in the intra-parietal sulcus (IPS) (Nieder, 2016). In other words,
it has been claimed that the same mechanisms of the IPS may represent both non-
symbolic and symbolic magnitudes at an abstract level in adults (Dehaene & Cohen,

2007), such that symbolic natural numbers may automatically activate the neural
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representations of absolute magnitudes in that region (Eger, Sterzer, Russ, Giraud, &

Kleinschmidt, 2003).

Symbolic mathematical skills, however, go largely beyond the ability to
represent absolute magnitudes in humans. They also involve the ability to represent
magnitudes in relation with one another, for instance using fractions or decimals (i.e.,
rational numbers). Although the neuronal recycling theory was initially developed in
the context of natural numbers, a similar proposal has recently emerged to explain the
cultural acquisition of symbolic rational numbers (Lewis, Matthews, & Hubbard, 2016).
Indeed, a growing body of evidence shows that infants and non-human primates are
sensitive to ratios and relational quantities (Drucker et al., 2016; Eckert et al., 2018;
Tecwyn et al., 2017; Vallentin & Nieder, 2008, 2010; Woodruff & Premack, 1981;
Denison & Xu, 2014; McCrink & Wynn., 2007). This suggests the existence of an
evolutionary old non-symbolic Ratio Processing System (RPS) akin to the ANS but
tuned exclusively to relative quantities (Lewis, Matthews, & Hubbard, 2016). This
cognitive system might provide the foundation for the acquisition of symbolic rational
numbers (Lewis, Matthews, & Hubbard, 2016). Though the neural basis of this RPS is
less clear than that of the ANS, this line of thought suggests that overlapping brain
regions may represent both non-symbolic and symbolic ratios abstractly. In other
words, symbolic rational numbers may automatically activate the neural

representations of relative magnitudes.

To date, evidence that the acquisition of either natural or rational numbers relies
on the recycling of brain pathways dedicated to the processing of non-symbolic
magnitudes remains equivocal. Overall, neuroimaging studies focusing on the
processing of natural numbers have consistently found involvement of the IPS in both
symbolic (Arabic digits or number words) and non-symbolic (dot patterns) tasks
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(Neider, 2016; Sokolowski, Fias, Mousa, & Ansari, 2017). However, studies that
directly compared the neural substrates of symbolic and non-symbolic natural number
processing within the same participants show inconsistent results (Cohen Kadosh,
Cohen Kadosh, Kaas, Henik, & Goebel, 2007; Cohen Kadosh, Bahrami, Walsh,
Butterworth, Popescu, & Price, 2011; Damarla & Just, 2013; Bulthé, De Smedt, & Op
de Beeck, 2014; Eger, Michel, Thirion, Amadon, Dehaene, Kleinsch-midth, 2009;
Piazza et al., 2007). For instance, in a seminal study using fMRI adaptation, Piazza et
al. (2007) found that Arabic digits and dot patterns were represented in the same
region of the IPS, supporting the neuronal recycling hypothesis. Some studies using
multivariate analysis have also shown some degree of overlap between the brain
mechanisms supporting symbolic and non-symbolic magnitude processing (Eger et
al., 2009). However, other studies concluded that Arabic numerals and dot patterns
are supported by different neural populations in the IPS and surrounding brain regions
(Bulthe, De Smedt, & Op de Beeck, 2013; Cohen Kadosh, Cohen Kadosh, Kaas,
Henik, & Goebel, 2007; Cohen Kadosh, Bahrami, Walsh, Butterworth, Popescu, &
Price, 2011). Overall, neuroimaging evidence is inconsistent regarding whether a
natural number is represented abstractly or in a format-dependent manner in the

human brain (Ansari, 2016; Damarla & Just, 2013; Wilkey & Ansari, 2019).

Compared to the neuroimaging literature on the representations of natural
numbers, few studies have investigated the neural representations and processing of
rational numbers. Therefore, support for the idea that the neural substrates of the RPS
may be ‘recycled’ for the processing of symbolic fractions is scarce (Lewis, Matthews,
& Hubbard, 2016; Mock et al., 2018). Nonetheless, the available studies suggest that
the IPS is involved in the processing of both symbolic fractions (DeWolf et al., 2016;

Jacob & Neider, 2009b; Ischebeck, Schocke, & Delazer, 2009) and non-symbolic line
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ratios (Jacob & Neider, 2009a) in adults. To our knowledge, there is only one study
comparing the neural bases of symbolic and non-symbolic relative magnitude
processing within the same participants (Mock et al., 2018, 2019). In that study, fMRI
activity was measured while adult participants performed a magnitude comparison
task in four formats (fractions, dot patterns, decimals, and pie charts) (Mock et al.,
2018). Results point to overlapping activation between symbolic (e.g., fractions and
decimals) and non-symbolic (e.g., dot patterns and pie charts) proportions in the IPS,
but also to format-dependent activity in other brain regions. To some extent, the
format-independent activity found in the IPS supports the idea that there might be an
abstract representation of relative magnitudes in the human brain. However, because
this study used active tasks, it is unclear whether any overlapping neural activation is
due to common processing of relative magnitudes or to a common reliance on
response selection processes that also rely on the IPS (Gébel, Johansen-Berg,

Behrens, & Rushworth, 2004).

Here, we aimed to test whether the culturally developed ability to represent both
absolute and relative magnitudes symbolically (e.g., using natural numbers and
fractions) relies on the neural representations of absolute and relative magnitudes in
a non-symbolic format. To this aim, we adapted a passive blocked fMRI adaptation
paradigm used in Girard et al., 2021 and Perrachione et al., 2016 to investigate the
neural representations of absolute and relative magnitudes in different formats, while
avoiding confounds due to active tasks. FMRI adaptation refers to the idea that
repeatedly presenting a series of visual stimuli with a common property leads to a
decrease in the activity of neurons that are sensitive to that property (Grill-Spector and
Malach, 2001). This sensitivity is captured by the neural adaptation effect, measured

by comparing blocks of stimuli that differ from one another with respect to the property
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(i.e., no-adaptation blocks) to blocks of stimuli that do not (i.e., adaptation blocks). In
the present study, participants were presented with adaptation and no-adaptation
blocks of (1) non-symbolic absolute magnitudes (lines), (2) symbolic absolute
magnitudes (numbers), (3) non-symbolic relative magnitudes (line ratios), and (4)
symbolic relative magnitudes (fractions) (Figure 1). Adaptation and no-adaptation
blocks differed with respect to the numerical distance separating lines, numbers, line
ratios, or fractions within a block, such that stimuli were close in magnitude from one

another in adaptation blocks and further apart in no-adaptation blocks.

We tested the neuronal recycling hypothesis of absolute and relative
magnitudes using both univariate and multivariate methods. First, using univariate
analyses, we aimed to identify the neural regions that may be sensitive to a change in
numerical distance between stimuli across all participants, either with respect to their
absolute magnitude (for lines and numbers) or relative magnitude (for line ratios and
fractions). This should translate into a decrease of activity in adaptation compared to
no-adaptation blocks in these regions (i.e., a neural adaptation effect). The neuronal
recycling hypothesis assumes that processing symbolic stimuli (i.e., numbers and
fractions) relies on neural mechanisms supporting non-symbolic stimuli (i.e., lines and
ratios). Thus, this hypothesis predicts that overlapping regions of the IPS may be
associated with a neural adaptation effect for (1) numbers and lines and (2) fractions
and ratios. Second, using multivariate analyses, we aimed to explore the relations
between the patterns of activation associated with symbolic and non-symbolic stimuli
across magnitude types. Specifically, because the neuronal recycling hypothesis
assumes that similar IPS mechanisms process symbolic and non-symbolic stimuli, it

predicts that patterns of IPS activity may be similar between symbolic and non-

101



symbolic stimuli and are more likely to depend on the type of numerical magnitude

(i.e., absolute versus relative).

Material and methods

Participants

Fifty-three right-handed adults participated in the experiment. Participants were
contacted through advertisements on social media. Five participants were excluded
from the study because of technical errors in the experimentation set-up (n=4) and
contraindications to the MRI (n=1). Therefore, 48 adults (Mean age = 22.09, 34
females) were included in the main analyses. All adults were native French speakers
and with no history of neurological or psychiatric disorders. Participants gave written
informed consent and were paid 80 euros for their participation. The study was

approved by a national ethics committee (CPP- Strasbourg Est 1V).

Psychometric testing

Verbal 1Q and spatial IQ were estimated using the verbal reasoning and matrix
reasoning subtest of the WAIS-IV (Wechsler, 2008). Fluency in symbolic math was
assessed using the Math Fluency of the Woodcock-Johnson Test of Achievement
(WJ-IIl) (Woodcock, Mather, McGrew, & Wendling, 2001). In this test, participants
have to solve as many single-digit addition, subtraction, multiplication, and division
problems as they can within 3 min. Participants also completed the Applied Problems
subtest of the WJ-IIl. Unlike the Math Fluency subtest, this test is un-timed and
measures the ability to analyze basic numerical concepts and oral word problems. The
test stops after 6 consecutive errors or when the last item is reached. Reading fluency

was assessed with the Alouette-R test (Lefavrais, 1967). This test requires participants
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to read a 265-word text aloud in 3 minutes and measures the number of words read

correctly to evaluate the reading precision and speed.

In-scanner task

Participants were presented with a passive blocked adaptation paradigm
adapted from Girard et al., 2021 and Perrachione et al., 2016. In this paradigm,
participants are passively presented with blocks of stimuli at the center of the screen.
Here we presented four types of stimuli in four different runs of approximately 5 min:

lines, numbers, line ratios, and fractions (Figure 1.). Numbers ranged from 1 to 62 (~
1.72° of visual angle), fractions ranged from i to 1 in magnitude (~ 3.45° of visual

angle), and lines ranged from 0.98 to 17.8 cm in length on a 37 cm screen
(corresponded to ~ 0.69 - 12.24° of visual angle). All stimuli were shown in white on a
black background. Within each run, participants were presented with adaptation and
no-adaptation blocks (Figure 1). Adaptation and no-adaptation blocks differed with
respect to the numerical distance between the stimuli. Specifically, adaptation blocks
consisted in the sequential presentation of 8 quantities in a total of which 4 quantities
were the same in magnitude and the other 4 quantities were relatively close. For
instance, in the number adaptation block of 23, 26, 25, 26, 24, 26, 21, 26, four stimuli
(e.g., 26) are identical and the other four stimuli have a minimum distance of 1 and a
maximum distance of 5 between each other. Similarly, for fractions, adaptation to 1:4
was composed of four exact equivalent fractions 2/8, 1/4, 4/16, 7/28 and the rest of
the stimuli had the denominator changed by adding or subtracting 1 to the original
fractions (i.e., 3/11, 5/19, 8/31,6/23). Half of the stimuli for the adaptation block of
fractions were constructed by small changes to the denominator (+1 or -1) to prevent

the participant from reducing the fraction to its lowest form, thereby avoiding
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confounds due to calculation. No-adaptation blocks consisted in the sequential
presentation of 8 quantities that were relatively far from one another in magnitude
(e.g., a minimum distance of 2 and a maximum distance of 55 between consecutive
numbers in a block, and minimum magnitude of 1/24 to maximum magnitude of 11/12
for a block of fractions). The size of the individual line lengths and line ratios
corresponded to those used for numbers and fractions. So, for line ratios, the length

of the smaller line was calculated as the ratio of the longer line length such that a
fraction corresponding to 115 would be a line ratio where the smaller line length is 13—5 as
long as the longer line length. Thus, the absolute line lengths did not vary with
proportion. The shorter line was always on the left (i.e., corresponding to the
numerator of a proper fraction) while the longer line was always on the right (i.e.,

corresponding to the denominator of a proper fraction). The complete list of stimuli can

be found in Appendix B.
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Figure 1: Experimental design. Participants were adapted to the sequential presentation
of four types of stimuli that varied in format (non-symbolic versus symbolic) and magnitude
type (absolute versus relative). A. Adaptation to lines. B. Adaptation to numbers. C.
Adaptation to line ratios. D. Adaptation to fractions.

Experimental timeline

In each adaptation and no-adaptation block, stimuli remained on the screen for
700 ms, with a 500 ms inter-stimulus interval (for a total block duration of 9.6 seconds).
Ten adaptation blocks and ten no-adaptation blocks were presented along with ten
blocks of visual fixation (duration = 9.6 seconds) in each run. Block presentation was
pseudo-randomized such that 2 blocks of the same type could not follow each other.

Finally, 10 target stimuli (a triangle) randomly appeared in each run (outside of the
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blocks) to ensure that participants paid attention to the stimuli. Participants were asked
to press a button every time this target appeared. The task was presented using

Psychopy (Peirce et al., 2019).

fMRI Data Acquisition

Images were collected with a Siemens Prisma 3T MRI scanner (Siemens
Healthcare, Erlangen, Germany) at the CERMEP Imagerie du vivant in Lyon, France.
The BOLD signal was measured with a susceptibility-weighted single-shot EPI
sequence. Imaging parameters were as follows: TR = 2000 ms, TE = 24 ms, flip angle
= 80°, matrix size = 128 x 120, field of view = 220 x 206 mm, slice thickness = 3 mm
(0.48 mm gap), number of slices = 32. A high-resolution T1-weighted whole-brain
anatomical volume was also collected for each participant. Parameters were as
follows: TR = 3500 ms, TE = 2.24 ms, flip angle = 8°, matrix size = 256 x 256, field of

view = 224 x 224 mm, slice thickness = 0.9 mm, number of slices = 192.

fMRI data preprocessing

fMRI data analysis was performed using SPM12

(http://www. fil.ion.ucl.ac.uk/spm, Welcome department of Cognitive Neurology,
London, UK). The first 3 images of each run were discarded to allow for T1
equilibration effects. Functional images were corrected for slice acquisition delays and
spatially realigned to the first image of the first run to correct for head movements.
Realigned images were smoothed with a Gaussian filter (4 x 4 x 7 mm full-width at

half maximum). Using ArtRepair (https://www.nitrc.org/projects/art repair/), functional

volumes with a global mean intensity greater than 3 standard deviations from the
average of the run or a volume-to-volume motion greater than 2 mm were identified

as outliers and substituted by the interpolation of the 2 nearest non-repaired volumes
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(Romeo et al., 2018). Finally, functional images were normalized into the standard
Montreal Neurological Institute (MNI) space. This was done in two steps. First, after
coregistration with the functional data, the structural image was segmented into grey
matter, white matter, and cerebrospinal fluid by using a unified segmentation algorithm
(Ashburner and Friston, 2005). Second, the functional data were normalized to the

MNI space by using the normalization parameters estimated during unified

segmentation (normalized voxel size, 2 x 2 x 3.5 mmS).

Univariate analyses

For each participant and each run, a general linear model analysis was
conducted on brain activity associated with adaptation and no-adaptation blocks.
Blocks were modeled as epochs with onsets time-locked to the beginning of each
block and a duration of 9.6 sec per block. All epochs were convolved with a canonical
hemodynamic response function. The time-series data were high-pass filtered
(1/128Hz), and serial correlations were corrected using an auto-regressive AR (1)
model. The neural adaptation effect was measured by subtracting activity associated
with adaptation blocks from activity associated with no-adaptation blocks. These
subject-specific contrasts were then submitted to the second level for group-level
random effect analyses. Clusters were considered significant at a FWE-corrected

threshold of p < .05 (using a cluster-defining threshold of p < .005, uncorrected).

Multivariate analyses

In addition to the main univariate analysis, we also used the CosmoMVPA

toolbox (https:/www.cosmomvpa.org/) to perform an exploratory RSA analysis

assessing the similarity and dissimilarity of neural activation patterns associated with

different magnitude types (absolute versus relative) and presentation formats
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(symbolic versus non-symbolic). This analysis was conducted on the four beta maps
corresponding to the contrasts of lines versus fixation, numbers versus fixation, line
ratios versus fixation, and fractions versus fixation (collapsing across adaptation and
no-adaptation blocks). First, we created two 4x4 theoretical representation
dissimilarity matrices (RDMs), corresponding to (1) the expected dissimilarity between
absolute and relative magnitudes (and expected similarity between symbolic and non-
symbolic stimuli) and (2) the expected dissimilarity between symbolic and non-
symbolic stimuli (and expected similarity between absolute and relative magnitudes).
In the absolute versus relative RDM (see Figure. 4A), all stimuli of the same
magnitude type (numbers - numbers, numbers - lines, fractions - fractions, fractions -
line ratios) had a dissimilarity coefficient of 0, whereas all stimuli of a different
magnitude type (numbers - fractions, numbers — line ratios, fractions - lines, lines —
line ratios) had a dissimilarity coefficient of 1. In the symbolic versus non-symbolic
RDM (see Figure. 5A), all stimuli of the same format (numbers - numbers, numbers -
fractions, lines - lines, lines - line ratios) had a dissimilarity coefficient of 0, whereas all
stimuli of a different format (numbers - lines, numbers — line ratios, lines - fractions,
line ratios - fractions) had a dissimilarity coefficient of 1. Second, we extracted brain
activity from the four contrasts (i.e., lines versus fixation, numbers versus fixation, line
ratios versus fixation, and fractions versus fixation) using spherical searchlights (1.4
cc, i.e., 100 voxels) at every voxel in the brain. A 4x4 neural DSM was constructed for
each searchlight, which each cell representing 1 minus the Pearson correlation
between the voxel-wise beta value for each pair of contrasts. The Pearson correlation
between the neural DSM and each theoretical DSM was then calculated for each
searchlight and converted to a z value using a Fisher transform. The Fisher-

transformed correlation coefficient for each searchlight was systematically associated
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with the central voxel of that searchlight. Fisher-transformed correlation maps were
then submitted to second-level one-sample t-tests across all participants to identify
voxels for which the correlation between the theoretical and neural DSMs was greater
than 0. Clusters were considered significant at a FWE-corrected threshold of p < .05

(using a cluster-defining threshold of p < .005, uncorrected).

Data and software availability

For each participant and each task, whole-brain unthresholded maps of
adaptation effects will be publicly available via NeuroVault. The general and custom

scripts used to analyze fMRI data are available on https://github.com/BBL-lab/BBL-

batch-system.

Results

Psychometric testing and in-scanner performance

Standardized verbal IQ ranged from 85 to 140 (mean = 117.29), while
standardized spatial IQ ranged from 70 to 120 (mean = 94.68). Thus, participants’ I1Q
was in the normal to the superior range. The number of arithmetic problems correctly
solved in 3 min in the Math fluency subtest ranged from 47 to 160 (mean = 114.25),
suggesting a substantial variability in arithmetic fluency among participants. The
untimed Applied problems subtest indicated less variability, with scores ranging from
39 to 61 (mean = 49.06). Finally, participants’ reading precision scores ranged from
90.18 to 100 (mean = 98.28), and reading speed ranged from 336.69 to 787.11 (mean
= 551.198) (the optimal cut-off for dyslexia is a reading precision score above 87 or

reading speed above 402.26; Cavalli et al., 2018).
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To make sure participants were attentive to the stimuli in the scanner, a target
detection task was inserted in all four tasks. Participants had to press a button when
they saw a triangle during the task. Average performance on detection of the target
for the different runs was 95.3% (SD = 0.152) for fraction, 92.7% (SD = 0.186) for
numbers, 91.4% (SD = 0.208) for line ratios, and 92.4% (SD = 0.194) for lines. There
was no difference in target detection between the four tasks (all t's < 1.9, all p’s >
0.06), indicating that participants paid equal attention to the stimuli in the tasks. The
response to target stimuli was not correlated with math fluency and applied problem

skills (all r's >- 0.24, all p’s > 0.10).

Univariate analyses

For each stimulus type (lines, numbers, line ratios, and fractions), brain activity
associated with adaptation blocks was subtracted from activity associated with no-
adaptation blocks to identify brain regions showing a neural adaptation effect across
all participants. For lines, a neural adaptation effect was observed in the bilateral IPS
as well as in a wider network of brain regions encompassing the precentral and
occipital cortices (see Table 1 and Figure 2A). For numbers, the only region showing
a significant neural adaptation effect was located in the left fusiform gyrus (see Table
1 and Figure 2B). No significant adaptation effect was observed in any brain region

for either fractions or line ratios.

Contrary to our assumptions, lines were the only stimuli associated with a
significant neural adaptation effect in the IPS across all participants. Therefore, we did
not find any evidence that common neural mechanisms in the IPS may process both
symbolic and non-symbolic stimuli. However, there was relatively large variability in

participants’ fluency with symbolic math (as suggested by the Math fluency subtest,
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see above). It is thus possible that the neural adaptation effect for symbolic stimuli
may depend on participants’ levels of fluency. This would be consistent with the results
of our previous study using a similar paradigm, in which we found a positive correlation
between neural adaptation to numbers and Math fluency scores (Girard et al., 2021).
In other words, because our paradigm is passive, magnitudes of symbolic stimuli such
as numbers and fractions may only be automatically processed by the most fluent
participants. To examine this possibility, we performed an exploratory analysis in
which we regressed neural adaptation effects on participants’ Math fluency scores
across the whole brain. We did not find any positive relation between math fluency
and neural adaptation effect for fractions, lines, or line ratios. For numbers, however,
the neural adaptation effect increased with math fluency in a region of the left IPS (see
Figure. 3A). Critically, a conjunction analysis revealed that this region overlapped with
the region showing an overall neural adaptation effect across all participants for lines
(center of mass: x=-28, y=-42, z=55, the volume of overlap = 70mm?3) (see Figure.
3B). Thus, increased math fluency was linked to an enhanced neural adaptation effect
for numbers in the same left IPS region that exhibited a neural adaptation effect across

all participants for lines.
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Figure 2: Neural adaptation effects across all participants (univariate analyses). A. Brain
regions showing a neural adaptation effect for lines. B. Brain regions showing a neural
adaptation effect for numbers.
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Figure 3: Relation between arithmetic fluency and neural adaptation effects (univariate
analyses). A. Brain region showing a positive relation between arithmetic fluency and
neural adaptation effect for numbers. B. Brain region showing both a positive relation
between arithmetic fluency and neural adaptation effect for numbers and a neural

adaptation effect for lines across all participants (conjunction analysis).
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Table 1: Brain regions showing an effect of neural adaptation across all participants (univariate

analyses).
Anatomical Location Cluster level Cluster size MNI coordinates t-score

P rwE-corrected (cc)

X y z

Line adaptation task
L. Inferior Occipital Gyrus .000 28.55 -32 -90 -4 5.89
L. Intraparietal Sulcus - - -34 -50 51 3.33
R. Inferior Occipital Gyrus .000 21.01 40 -84 -12 5.48
R. Intraparietal Sulcus - - 30 -58 55 3.99
R. Thalamus .019 213 10 -16 13 5.44
R. Supplementary Motor area .000 6.27 2 12 66 5.16
R. Hippocampus .004 2.74 22 -20 -12 4.81
L. Caudate .026 2.0 -14 -2 13 4.37
R. Precentral Gyrus .033 1.9 -44 4 52 4.33
R. Precentral Gyrus .003 2.85 54 -2 44 4.31
L. Posterior Cingulate .025 2.01 -6 -42 16 4.31
Number adaptation task
L. Occipital Fusiform Gyrus .004 2.81 -26 -90 -12 4.46

Line Ratio adaptation task

No suprathreshold cluster
Fraction adaptation task

No suprathreshold cluster

Notes. L = left; R = right; MNI: Montreal Neurological Institute; FWE-corr: Family-wise error corrected.
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Multivariate analyses

As described above, the univariate analyses only provided limited evidence for
common brain mechanisms in the IPS processing non-symbolic and symbolic
magnitudes. We then turned to multivariate analyses (RSA) to test whether patterns
of IPS activity may depend on the type of numerical magnitude (and be similar
between non-symbolic and symbolic stimuli) or on the presentation format (and be
similar between absolute and relative magnitudes). This was done by evaluating the
degree of (1) dissimilarity between patterns of activation associated with absolute and
relative magnitudes (and similarity between non-symbolic and symbolic stimuli) (see
Figure 4A) and (2) dissimilarity between patterns of activation associated with
symbolic and non-symbolic stimuli (and similarity between absolute and relative
magnitudes) (see Figure 5A). On the one hand, as shown in Figure 4B and Table 2,
a limited brain system distinguished between absolute and relative magnitudes while
representing similarly non-symbolic and symbolic magnitudes. This system was
composed of the right occipital cortex and left rostro-lateral prefrontal cortex. Critically,
this system did not include the IPS. On the other hand, as shown in Figure 5B and
Table 2, a larger brain system distinguished between symbolic and non-symbolic
format while representing similarly absolute and relative magnitudes. This system
encompassed the bilateral occipital and middle temporal cortices, but also included
the right IPS. Overall, these results suggest that patterns of IPS activity depend on the
presentation format (non-symbolic versus symbolic) more so than they depend on the

type of magnitudes (absolute versus relative).

115



A. Absolute versus Relative Model
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Figure 4: Results of the Representational Similarity Analysis for the Absolute versus
Relative model (multivariate analysis). A. Hypothesized Model for the RSA, the matrix
represents a dissimilarity matrix where red denotes dissimilar items (0) and yellow denotes
similar items (1). B. Brain regions representing differently absolute and relative

magnitudes while representing similarly non-symbolic and symbolic magnitudes.
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A. Symbolic versus Non-symbolic Model
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Figure 5: Results of the Representational Similarity Analysis for the Symbolic versus Non-
symbolic model (multivariate analysis). A. Hypothesized Model for the RSA, the matrix
represents a dissimilarity matrix where red denotes dissimilar items (0) and yellow denotes
similar items (1). B. Brain regions representing differently non-symbolic and symbolic

magnitudes while representing similarly absolute and relative magnitudes.
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Table 2: Brain regions identified in Representational Similarity Analysis (multivariate analyses)

Anatomical Location Cluster level Cluster size MNI coordinates  t-score

P FWE-corrected (cc)

X y z

Symbolic versus Non-symbolic
L. Inferior Occipital Gyrus .00 91.44 -34 -84 -4 8.18
L. Supramarginal Gyrus .012 1.51 -50 -38 34 476
L. Postcentral Gyrus .00 4.11 -30  -30 66 4.72
R. Superior Parietal Lobule .00 7.91 26 -46 58 4.60
R. Intra-parietal sulcus - - 30 -58 55 2.75
Absolute versus Relative
L. Superior Occipital Gyrus .00 3.09 -10 -90 27 4.74
L. Lingual Gyrus .009 1.61 -28 62 -1 4.36
L. Superior Frontal Gyrus .046 1.21 -24 60 13 3.74
L. Middle Frontal Gyrus - - -28 48 13 3.74
R. Middle Occipital Gyrus .00 7.15 38 -84 20 5.29

Notes. L = left; R = right; MNI: Montreal Neurological Institute; FWE-corr: Family-wise error corrected.

Discussion

In the present study, we used univariate and multivariate analyses to test the

neuronal recycling hypothesis of absolute and relative magnitudes. Participants

passively attended to numerical stimuli in the scanner, presented as symbolic

fractions, non-symbolic line ratios, symbolic numbers, and non-symbolic lines. Each
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of these stimuli was presented in adaptation and no-adaptation blocks, wherein the
numerical quantity presented was near and far in magnitude (respectively). In the
following, we will first discuss the result of the univariate analyses (comparing the
difference in activity between no-adaptation and adaptation blocks, or neural
adaptation effect, for the four stimuli). We will then discuss the findings of multivariate

analyses.

Univariate analyses provide limited evidence for neuronal recycling of absolute

magnitudes

In line with the neuronal recycling hypothesis of both absolute and relative
magnitudes, we predicted that symbolic and non-symbolic magnitudes would rely on
overlapping brain mechanisms in the IPS. This would have translated into neural
adaptation effects in similar regions of the IPS for symbolic and non-symbolic
magnitudes, suggesting an abstract representation of magnitudes in the IPS. Across
all participants, we found a neural adaptation effect for non-symbolic absolute
magnitudes (i.e., lines) in a relatively wide network of brain areas encompassing the
bilateral IPS, the occipital, the supplementary motor area, and the precentral cortices.
These results (particularly concerning the recruitment of occipito-parietal areas) are in
line with prior passive viewing paradigms investigating the representation of non-
symbolic absolute magnitudes (Ansari & Dhital., 2006; Demeyere, Rotshtein, &
Humphreys, 2014; Pinel et al., 2004; Roggeman et al., 2011). In fact, a recent meta-
analysis revealed that non-symbolic magnitude processing was associated with
consistent activations in the bilateral parietal cortex and occipital gyri across studies
(Sokolowski et al., 2017). A recent study using a magnitude comparison task involving
both dot patterns and lines of different lengths also revealed overlapping activations
for these conditions in the bilateral parietal and occipital cortices (Borghesani et al.,
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2019). Overall, the fact that the IPS exhibits a neural adaptation effect for lines in our
study is consistent with a long line of studies pointing to the IPS as a major locus for
the representation of non-symbolic absolute magnitudes in the human brain (Nieder,

2016).

In contrast to our predictions, however, we failed to find any neural adaptation
effect for symbolic absolute magnitudes (i.e., numbers) in the IPS. Instead, a neural
adaptation effect was only found in the left fusiform gyrus, which may reflect the visual
processing of numerals (e.g., Holloway et al., 2013). At first glance, the lack of IPS
activation is in contrast to the majority of literature on the role of left-lateralized IPS in
the development of symbolic magnitude processing (Vogel, Goffin, & Ansari, 2014).
However, it is important to note that, in contrast to most previous studies, our
adaptation paradigm is passive and therefore captures an automatic representation of
numerical magnitude from the viewing of symbolic stimuli. This is critical because the
IPS is also involved in response selection (Cappelletti et al., 2010; Gébel et al., 2004).
Previous studies using active tasks (e.g., number comparison tasks, in which
participants select the largest number; Ansari et al., 2005; Cohen Kadosh et al., 2005;
Lyons & Ansari, 2009; Holloway & Ansari, 2010) may have thus confounded
magnitude-related activity in the IPS with response demands. In other words, access
to magnitudes from symbolic stimuli may not be as automatic as often argued. In fact,
our study provides some evidence that it may depend on participants’ fluency with
symbolic math. Indeed, we found that neural adaptation for numbers in the IPS
increased with arithmetic fluency. This result was similar to a prior study performed on
children using digits (Girard et al., 2021). Similar to findings reported here, Girard and
colleagues (2021) did not find a digit adaptation effect in the IPS but did report IPS

activity in children with higher arithmetic fluency. Together with that study, our findings
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suggest that participants with higher levels of mathematics fluency might be more able
to automatically access numerical magnitudes than participants with lower levels of
mathematics fluency. Interestingly, the IPS cluster in which this relation was found
overlapped with the cluster showing a neural adaptation for lines across all
participants. Therefore, it might be that individuals with higher levels of math fluency
are able to better recruit and recycle the IPS pathways involved in non-symbolic
magnitude processing for symbolic magnitude tasks, thereby creating stronger links

between the two magnitude formats (but see Schwartz et al., 2021).

Univariate analyses fail to capture automatic processing of relative magnitudes

Contrary to our expectations, we did not observe any neural adaptation effect
for fractions and line ratios. While research on relative magnitudes is limited, these
findings conflict with prior studies that also used adaptation tasks (Jacob & Nieder,
2009 a, b). A major difference between our study and that of Jacob & Nieder (2009) is
that the stimuli used here were more complex, mostly because all of the ten adaptation
blocks corresponded to different ratios (e.g. 1:5, 2:3, 2:5, 1:4, 3:5, 2:9). Contrarily,
Jacob & Nieder (2009) used only one simple adapting ratio of 1:6 for symbolic fractions
with a higher repetition frequency of the stimuli (Jacob & Nieder, 2009). Therefore,
there is a possibility that during that task participants were able to explicitly compute
the magnitude of these simple fractions. However, this was near to impossible in the
task used here because each adaptation block for a specific adapting ratio (there were
10 adapting ratios in total) included only eight fraction stimuli. Therefore, as compared
to the prior study, the task used in the current study was better controlled for confounds
related to the calculation of the magnitude. In any case, the lack of neural adaptation
effect for fractions in the current study suggests a lack of automatic processing of the
relative magnitudes of symbolic fractions. The lack of adaptation effect for line ratios
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also highlights the absence of automatic processing for non-symbolic relative
magnitudes. While behavioral studies in children, typically achieving adults and adults
with mathematics difficulty indicate access to proportional information when
comparing and estimating non-symbolic line ratios (Matthews, Lewis, & Hubbard,
2015; Bhatia et al., 2020), research on the neural representation of line ratios is scarce
(Jacob & Nieder, 2009a). It is possible that the contradictory results may have been
due to the differences in the task design. For example, the task in the current study
used a greater variety of ratios (e.g., 1:3, 1:4, 1:5, 2:3, 2:5, 3:5, 2:9, 3.7, 1:6, 2:7) than
in prior studies (e.g., Jacob & Nieder, 2009b). Future experiments varying the
complexity of ratios while controlling for calculation and estimation strategies are
needed to identify the source of inconsistencies between studies. In any case, it is
difficult from the lack of neural adaptation effect for fractions and line ratios in the

present study to evaluate the neuronal recycling hypothesis of relative magnitudes.

Multivariate analyses do not provide evidence for neuronal recycling of

magnitudes in the IPS

To provide further evidence for the neuronal recycling hypothesis, we
complemented univariate analyses with searchlight RSA. This allowed us to explore
the relations between the patterns of activation associated with symbolic and non-
symbolic stimuli across magnitude types. Specifically, if similar IPS mechanisms
process symbolic and non-symbolic stimuli, we reasoned that patterns of IPS activity
may depend on the type of numerical magnitude (i.e., absolute versus relative) more
so than they may depend on the presentation format (i.e., non-symbolic versus
symbolic). In contrast to this hypothesis, RSA revealed differences between neural
representations of absolute and relative magnitudes (across presentation formats) in
the left rostro lateral prefrontal cortex (RLPFC) and the right occipital cortices, but not
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in the IPS. That is, we did not find any evidence that patterns of activity were similar
between symbolic and non-symbolic stimuli in the IPS (and only depended on the type
of numerical magnitude). Interestingly, several studies have suggested that the
RLPFC may support relational comparisons and integrating relational information
(Krawczyk, 2012). Specifically, relative magnitudes such as fractions cannot be
understood without relating the two components (numerator and denominator) to each
other. Similarly, for line ratios, the correct magnitude cannot be determined unless the
magnitude of the two lines are thought in relation to each other. In line with this claim,
recent studies have highlighted the role of relational thinking in processing fractions
and rational numbers (Dewolf et al., 2015; Kalra et al., 2020). Therefore, our finding
might provide initial evidence linking relational reasoning and relative magnitude

processing at the neural level.

Not only did we not find evidence that the IPS represented similarly non-
symbolic and symbolic magnitudes (while distinguishing between absolute and
relative magnitudes), we found evidence that a cluster of the right IPS represented
differently non-symbolic and symbolic magnitudes (while representing similarly
absolute and relative magnitudes). This cluster was part of a larger occipital-parieto-
temporal network distinguishing between non-symbolic and symbolic magnitudes.
Therefore, multivariate results suggest that patterns of activity in several brain regions
depend on the presentation format (non-symbolic versus symbolic) more so than they
depend on the type of magnitudes (absolute versus relative). Although some studies
have found evidence for overlapping activity between non-symbolic and symbolic
stimuli, these findings are consistent with a stream of recent evidence suggesting that
non-symbolic and symbolic magnitudes rely on separate neural resources (Cohen

Kadosh and Walsh, 2009; Cohen Kadosh et al., 2011 ; Roi Cohen Kadosh et al., 2007).
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A recent study using MVPA decoding also found distinguishable neural patterns of
dots and digits in occipital, parietal, frontal, and temporal areas (Bluthé et al., 2014).
A growing body of evidence on hemispheric specialization within the parietal lobes
also challenges the idea that a single system processes numbers abstractly. That is,
the left IPS is often shown to be involved in processing symbolic numbers (Vogel et
al., 2014) while the right IPS is more often found to be activated during non-symbolic
number processing, indicating different regions within the parietal lobe for both
notations (Cantlon et al., 2006; Holloway & Ansari, 2010). Furthermore, a
developmental meta-analysis focused on symbolic and non-symbolic number
processing in children also showed the influence of the notation of numbers on the
neural activation patterns within and outside the parietal areas (Kaufman et al., 2011).
Therefore, the multivariate results reaffirm the growing body of literature suggesting

that separate neural regions process both symbolic and non-symbolic magnitudes.

Conclusion

In conclusion, the current study shows limited support for the neuronal recycling
hypothesis. On the one hand, consistent with the hypothesis, univariate analyses do
show some overlap between the brain regions supporting non-symbolic and symbolic
absolute magnitudes. However, this overlap was limited to absolute (not relative)
magnitudes and dependent upon the degree of symbolic math fluency of participants.
That is, we found an increase in the adaptation effect for numbers (not fractions) as a
function of math fluency in a region of the left IPS that supports the representation of
non-symbolic absolute magnitudes. Thus, individuals with higher levels of math
fluency might be able to better recruit and recycle the IPS pathways involved in non-
symbolic magnitude processing for symbolic tasks. On the other hand, inconsistent
with the neuronal recycling hypothesis, univariate and multivariate analyses do not
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provide any evidence that similar IPS brain regions support both non-symbolic and
symbolic magnitudes across all participants. Instead, we found a region of the right
IPS encoding differences in format (non-symbolic versus symbolic) across both
absolute and relative magnitudes. Therefore, our study suggests that IPS activity
depends on the presentation format (non-symbolic versus symbolic) more than it

depends on the type of magnitude (absolute versus relative) for most participants.
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CHAPTER VI: STUDY Il

Bhatia, P., Le Diagon, S., Langlois, E., William, M., Prado, J., & Gardes, M-L.
(submitted). Impact of a game-based intervention on fraction learning for fifth-grade
students: A pre-registered randomized controlled study.

Abstract

Digital game-based learning is gaining increased attention from both
researchers and educators for improving mathematics instruction. However, the
evidence for game-based learning is mixed and research with rigorous research
design and analyses are limited. Here, in a pre-registered randomized controlled
study, we investigated whether a fraction game designed collaboratively by
educational experts and professional game developers may serve as a useful tool to
enhance students' fraction knowledge. We assigned French fifth-graders to either an
experimental group who used the game (n=110) or a control group (n=78) who
received traditional instruction on fractions. Fraction knowledge was assessed pre-
and post-intervention using a curriculum-based fraction test. Results show students in
the experimental group did not have superior overall fraction performance than
students in the control group at the end of the intervention. However, the game had a
positive effect on decimal learning. We also found a positive relation between game
performance and overall fraction knowledge scores at post-test. The study highlights
the critical role of instructional support during game-based learning and the importance
of game metrics as indicators of personalized assessment tools. Given the increased
usage of games in learning mathematics, our results may inform rational number

instruction.
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Introduction

Mathematical proficiency is critical for success in later life outcomes, including
professional and personal prospects (Parsons & Bynner, 2006). Among the range of
math skills, fraction knowledge forms a crucial component of mathematical proficiency
because it acts as a bridge between middle school and high school mathematical
development (Bailey, Hoard, Nugent, & Geary, 2012; Booth & Newton, 2012). Indeed,
fraction knowledge at 5" grade predicts gains in algebra, calculus, and overall
mathematics achievement (Bailey et al., 2012; Siegler, Duncan, Davis-Kean,
Duckworth, Claessens, Engel, Susperreguy, & Chen, 2012). Moreover, mastery of
fraction computations is also associated with success in other domains like biology,
chemistry, physics, and many others (Lortie-Forgues, Tian, & Siegler, 2015). Thus,
fraction knowledge is not only limited to success in mathematics but also central to
many other domains. However, as detailed below, fractions are particularly difficult to

learn and teach (Chan, Leu, & Chen, 2007; Ni, 2001; Yoshida & Sawano, 2002).

Difficulties with fractions

Difficulties with fraction learning can be attributed to at least two broad reasons.
First, students often struggle to make connections between the various sub-constructs
of fractions. Behr and colleagues (1983) suggest that there are six sub-constructs or
ways to represent fractions: Part-whole, Decimals, Ratios, Quotient, Operators, and
Measurements. Over-reliance on any one of these sub-constructs leads to constraints
on understanding fractions (Kieren, 1993). For example, a disproportionate focus on
the part-whole construct in schools may lead to difficulties in understanding improper
fractions, but also to difficulties in grasping properties of equivalence, infinite rational

numbers between any two natural numbers, and fair shares (Behr, Lesh, Post, &
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Silver, 1983; Pitkethly & Hunting, 1996 as in Misquitta, 2011). Additionally, common
struggles include the inability to comprehend the infinite ways in which rational number
magnitudes can be represented (e.g., 2/4 = 1/2 = 0.50) (Vamvakoussi & Vosniadou,
2010) and the complex procedures involved when solving fraction arithmetic (Lortie-
Forgues et al., 2015; Siegler, Fazio, Bailey, & Zhou, 2013). Thus, successful learning
of fractions involves making adequate connections between the various ways fractions

can be represented.

Second, students often experience difficulties in understanding the magnitude
of fractions (Van Hoof et al., 2013), which may lead to errors in fraction arithmetic and
fraction comparison. These difficulties mainly arise due to the phenomenon known as
the whole number bias. The bias leads individuals to process the components of
fractions (numerator and denominator) separately, usually because students over-
generalize natural number properties when processing rational numbers. For
example, a recent study found that eighth-graders were found to choose 19 or 21 as
the correct answer when solving fraction addition problems 12/13 + 7/8, indicating that
they summed the numerators or the denominators separately (Lortie-Forgues et al.,
2015). Other studies have shown that even undergraduates excessively rely on the
magnitude of the components (numerator and denominator) to compare fractions
(Bonato, Fabbri, Umilta, & Zorzi, 2007; Schneider & Siegler, 2010). Therefore, the
whole number bias is not restricted to children but is also observed in adults, even
expert mathematicians (Alibali & Sidney, 2015; Meert, Gregoire, & Noel, 2010; DeWolf
& Vosniadou, 2015; Vamvakoussi, Van Dooren, & Verschaffel, 2012; Obersteiner et
al., 2013). Successful learning of fractions involves being able to go beyond

component magnitudes to grasp the holistic magnitude of fractions.
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Digital game-based learning: A promising way to teach mathematics with

conflicting evidence to date

Research on digital game-based learning (DGBL) has shown potential for
learning abstract concepts, supporting classroom instruction, and presenting content
engagingly and innovatively (Al-Azawi, Al-Faliti, & Al-Blushi, 2016; Prensky, 2001).
Educational researchers have also advocated for using DGBL in curriculum delivery
due to improvements in student engagement and pedagogical outcomes (Lumsden et
al., 2016; Prensky, 2001; Squire, 2003; Tompson & Dass, 2000). In keeping with the
observations above, prior research has shown that DGBL may support mathematics
learning (Kiili, Devlin, & Multisilta, 2015; Li & Ma, 2010; Gaggi, Ciraulo, & Casagrande,
2018; Gaggi & Petenazzi, 2019; Riconscente, 2013). In their exhaustive review of the
literature, Dvijak & Tomic (2011) note that DGBL may contribute “to a more efficient
and quicker realization of educational goals at all levels of education” (p. 27, Dvijak &

Tomic, 2011).

However, evidence for the impact of DGBL on learning is very contrasted. A
recent meta-analysis examining the effectiveness of DGBL in mathematics learning
notes a staggeringly low percentage (11%) of studies assessing the empirical
effectiveness of games (Byun & Joung, 2018). Of the studies that did examine the
effectiveness of games, the authors found a small effect of the game intervention for
a majority of studies (9 out of 17), with an overall effect size of d=0.377. This was
higher than the effect size found in a previous meta-analysis d = 0.16 (Cheung &
Slavin, 2013). However, these effect sizes are likely inflated because of publication

bias. Indeed, effect sizes reported in studies that are published in peer-reviewed

7d<0.2-small, d~ 0.5 - moderate, and d > 0.8 — large effect, Cohen (1998)
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journals are higher than effect sizes reported in unpublished studies and/or studies in
proceedings (journals: d = 0.44, unpublished: d = 0.14, proceedings: d = 0.08)
(Wouters & van Oostendorp, 2013). The high variability of effect sizes observed in the
meta-analysis of Byun & Joung (2018) are also indicative of differences in the
methods, design, and, content of the games. Approximately 50% of these empirical
studies had a modest sample size (n < 50) (Ke & Grabowski, 2007; Lin et al., 2013;
Plass et al., 2013; Sedig, 2007, 2008; Shin, Sutherland, Norris, & Soloway, 2012; Yang
& Chen, 2010). This is problematic because small sample sizes are biased to produce
large effect sizes when an effect is found (Cheung & Slavin, 2013). Critically, only
three studies (out of the 17 analyzed in the meta-analysis) employed a randomized
controlled design (Plass et al., 2013; Ke, 2008; Kebritchi, Hirumi, & Bai, 2010), which
provides the most robust evidence in educational studies (Bertram, 2020). Further,
most of the games that are evaluated for effectiveness are either designed for
research or include an educational expert (Gresalfi, Rittle-dJohnson, Loehr, & Nichols
2018). This leaves a large proportion of games that self-identify as ‘educational’
unevaluated for their support in learning. Therefore, previous studies paint a mixed

picture of the effectiveness of DGBL in mathematics learning.

DGBL may complement traditional classroom instruction

The mixed findings on the effectiveness of DGBL require more rigorous
experimental studies, with random assignment of participants in experimental and
control groups and pre-registration of hypotheses, research design, and methods to
limit analytic flexibility. It also requires a critical examination of the limitations of game-
based learning. A balanced discourse around educational games and their role in
learning can help increase learning outcomes by improving the design of the
intervention and the development of future games. Here we review some difficulties
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reported in the literature on digital games and their recommendations to enhance

game-based learning.

The first difficulty pertains to the pedagogical validity of the games, i.e., the
game design and transfer of knowledge and skills (Linderoth, 2012; Tobias, Fletcher,
& Wind, 2014). Not all games are inherently educational and have the potential to
facilitate learning (Linderoth, 2012). Thus, it is important to design games while
focusing on the learning content and an in-depth performance and exploration of the
content using game-play (Linderoth, 2012). Indeed, a collaboration between the game
designers and educational experts might be the best way forward when designing
games for teaching and learning. Most technological tools focused on mathematics
learning and teaching are generally designed by technologists or game experts (Gaggi
& Petenazzi, 2019). Since these commercial games do not use insights from teachers
or mathematics education researchers, they tend to focus primarily on procedural
knowledge rather than concepts (Kiili, Moeller, & Ninaus, 2018). Contrarily, serious
video games that have been shown to influence learning are often developed by
concerted efforts between mathematics education researchers and game designers
(Cyr, Charland, Riopel, & Bruyere, 2019). Thus, the design of the game is critical when

supporting learning outcomes.

A second difficulty is the ability to transfer the skills learned in the game to real-
world problems or assessments (Barnett & Ceci, 2002; Rick & Weber, 2010). Indeed,
even if games might improve some sets of skills, it is often not clear that this could be
transferred to other related tasks. Therefore, it is important to use pre and post-test
standardized instruments or country-based assessments to evaluate the effects of

interventions (Bertram, 2020).
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A third difficulty is the ability to contextualize the learning content of game
(Tobias et al., 2014). This can often be improved by debriefing and discussions with
the teacher and/or peers. The use of game-based learning along with traditional
instruction might be helpful to support classroom instruction and allow for a more
personalized learning experience (Osguthorpe & Graham, 2003). Instructional support
has also been shown to enhance game-based learning environments by focusing the
cognitive resources of learners on content rather than the narrative of the game
(Wouters & van Oostendorp, 2013). For instance, students can benefit from their peers
and teachers when solving problems matched at their competency and skill levels.
Overall, while the impact of DGBL alone on learning is debatable, incorporating DGBL
with classroom instruction may help teachers to teach abstract and difficult concepts

and also aid in student learning and engagement.

Fractions and DGBL

As reviewed above, fractions are notoriously difficult to teach and learn.
Integrating thoroughly designed educational games to aid in fraction instruction might
support teachers and learners when learning fraction concepts and procedures. To
our knowledge, there are five serious video games in the domain of fraction learning
mentioned in the literature. These include Refraction (Martin, Petrick-Smith, Forsgren,
Aghababyan, & Janisiewicz, & Baker, 2015), Semideus (Ninaus, Kiili, Mcmullen,
Moeller, 2017; Kiili et al., 2018), Motion math (Riconscente, 2013), Abydos (Masek,
Boston, Lam, & Corcoron, 2017), and Slice fractions (Cyr et al., 2019). The games
were developed by either the researchers themselves or educators and aimed at
enhancing conceptual knowledge of fractions. These games focus on specific fraction

concepts.
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Refraction (Martin et al., 2015) and Slice fractions (Cyr et al., 2019) are based
on the concept of splitting fractions (part-whole representation of fractions). Both of
these games have been found effective in previous studies (Martin et al., 2015; Cyr et
al., 2019), with gains in the post-test assessment of fraction knowledge. Motion math
(Riconscente, 2013) and Semideus (Kiili et al., 2018) were designed based on the
measurement interpretation of fractions and used number lines to teach fraction
concepts. The study evaluating Motion math did not include a comparison control
group but showed significant improvement in fraction knowledge in the game group
(Riconscente, 2013). On the other hand, the study evaluating Semideus had a
comparison control group and showed significantly better performance in post-test
fraction knowledge in the game group (Kiili et al., 2018). While both the games showed
learning gains in fraction knowledge, it is difficult to comment on the relative
effectiveness of the game as compared to other fraction learning approaches
(Riconscente, 2013; Kiili et al., 2018). Lastly, Abydos (Masek et al., 2017) included
high-level fraction concepts such as equivalent fractions, identifying least common
multiples, addition, and subtraction of fractions. The study showed a significant

increase in post-test scores in the game group as compared to the control group.

While the aforementioned studies indicate some effectiveness of previously
developed fraction games, these games and the associated studies have several
important limitations. First, despite researchers and educators' demand for a more
holistic understanding of all interpretations or sub-constructs of fractions (Kieren,
1993; Lamon, 2001 as in Charalambous & Pitta-Pantazi, 2007), the games all focus
on a specific interpretation/sub-construct of fractions (Behr et al., 1993). For instance,
Refraction and Slice fraction focus on the concept of splitting or equipartitioning,

whereas Semideus and motion math makes exclusive use of fractions number lines.
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While each of these aspects is supported by previous research (Hackenberg & Lee,
2016; Fuchs, Schumacher, Long, Namkung, Hamlett et al., 2013), over-reliance on
any one sub-construct of the fraction may lead to misconceptions and constraints in
understanding (Kieren, 1993; Pitkethly & Hunting, 1996). Second, some of the studies
evaluating the effectiveness are these games tend to have modest sample sizes (e.g.,
Semideus: n = 54, Slice fractions: n = 18 to 25 per group), which raises power issues
(Brysbaert, 2019). Third, studies evaluating Semideus (Ninaus et al., 2017), Refraction
(Martin et al., 2015), and Motion math (Riconscente, 2013) did not include a control
group. This makes it impossible to (1) know whether learning gains can be attributed
solely to the game and (2) conclude about the effectiveness of the game relative to
other methods of rational number instruction (including traditional classroom
instruction). Fourth, studies on fraction games that did include a control group (i.e.,
Abydos (Masek et al., 2017), Slice fraction (Cyr et al., 2019), Semideus (Kiili et al.,
2018)) exclusively employed frequentist statistics, making it difficult to know if any lack
of difference between the experimental and control groups supports the null
hypothesis or if it may reflect a lack of power (Wagenmakers et al., 2008). Finally,
studies have not always used an exhaustive, standardized, or country-based
assessment to test for fraction skills (Martin et al., 2015; Kiili et al., 2018). The studies
that did use fraction test items from standardized assessments also vary in their
selection of the test items, raising the possibility that the results are dependent upon
that selection (Riconscente, 2013; Masek et al., 2017). This highlights the need for
pre-registering hypotheses and methods when assessing the impact of an intervention
(Bertram, 2020; Nosek, Ebersole, Dehaven, & Mellor, 2018). However, to our

knowledge, there has not been any preregistered study on DGBL and fraction learning.
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The current study

In the current pre-registered randomized controlled study, we aimed to evaluate
the effectiveness of a game-based training of rational number skills on fraction
knowledge of children in 51" grade. The game, i.e. Math Mathews Fractions, was
designed to complement fraction learning in the classroom with a focus on
understanding and building connections with the multiple representations of fractions.
Fraction instruction in the classroom is often disproportionately focused on a specific
representation of fractions, such as part-whole (Fuchs et al., 2013). This over-
representation may hinder the acquisition of other fraction concepts like improper
fractions and the infinite divisibility of fractions (Pitkethly & Hunting, 1996 as in
Misquitta, 2011) leading students to err on basic fraction concepts. Based on bridging
the multiple representations of fractions (e.g., part-whole, measurement, and
operations), we expected that Math Mathews Fractions might serve as a tool to help
teachers teach the various representations of fractions in the classroom. In addition,
the game includes elements of a personalized learning environment such as self-
regulated learning (increased complexity of levels, repetition of tasks) and real-time
feedback (wrong attempts decrease total points) (Basham, Hall, Carter, & Stahl,

2016).

Participants were recruited from five public schools (i.e., 10 classrooms) in
Lyon, France. Classrooms were randomly assigned either to the experimental group
(n=110) or the control group (n=78). The study involved a total of eight sessions and
was conducted over four weeks. During these sessions, students from the
experimental group played with Math Mathews Fractions in the classroom (each
student had a tablet) with limited teacher interaction. In contrast, students from the
control group practiced similar rational number concepts with their teacher. Fraction
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knowledge of both groups was assessed pre and post-intervention using paper-based
tests. The tests, hypotheses (based on prior research on serious video games and

mathematics learning), and analytic strategy were pre-registered.

Methods

Participants

Participants were 193 fifth graders recruited from five public schools in France.
Data were collected for two years at the middle of their school year (typically around
the time when fraction instruction was practiced in class), i.e., December 2018,
February 2019 for year 1, January 2020, and February 2020 for year 2. The
experiment was approved by the school board (who designated the schools) and was
performed following the ethical standards established by the Declaration of Helsinki.
Parents gave their written informed consent and children gave their assent to
participate in the experiment. Three schools were located in a neighborhood in which
the median equivalized disposable income is above the national median equivalized
income of € 20,809 (i.e., € 26,190), whereas two schools were located in a
neighborhood in which the median equivalized disposable income is below that
national median equivalized income (i.e., €19,032)

(https://www.insee.fr/fr/statistiques). Enrollment in all public schools in France is

mostly based on the neighborhood in which the children live and is free of charge for
parents. Therefore, the sample enrolled was most likely representative of the

population of the district.

From the original sample of 193 students, children were excluded if they had a
diagnosed disability (n=3) or if their parents did not give consent (n=2). Therefore, our

final sample consisted of 188 students (mean age = 10.5; SD = 0.32; 91 males). The
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classes were randomly assigned to the two conditions (control and experimental) by
lottery. The control group had 78 students and the experimental group consisted of
110 students. Participants from the two groups did not differ in age (BFo1 = 4.57, F
(1,182) = 0.642, p < 0.424) and gender (x* (1, N= 188) = 1.58, p = 0.209). Note that
we also presented a sample of fourth-graders with the game. At the end of the first
year of testing, however, we realized that the game (particularly in its highest levels)
was not appropriate for children in 4" grade. Indeed, most children could not reach the
highest levels, teachers reported several difficulties encountered by students, and we
observed several instances of students guessing and skipping levels during a
classroom observation. Therefore, we decided to stop collecting data at that level. The
only exception was for mixed-grade classrooms (i.e., classrooms with both fourth and
fifth graders), in which the game was presented to all children for practical reasons

(only data on 5™ graders were analyzed).

Pre-reqistration

The study was pre-registered using the AsPredicted.org template via the Open
Science Framework at OSF link. There were four main differences with the pre-
registration. First, frequentist analyses are presented along with the pre-registered
Bayesian analyses. Second, a delayed post-test could not be conducted in the second
year due to Covid-19 and school closures in France. Third, the total number of children
that were analyzed (n = 188) was less than those pre-registered (n = 240). This was
because of absenteeism, lack of parental consent, and diagnosed disability. This was
also because we realized that the game was not appropriate for 4" graders and had
to reorient our recruiting strategy towards 5" graders. Finally, the mathematics anxiety
test used in the first year (Carey, Hill, Devine, & Szlics, 2017) was replaced in the
second year by a more detailed test (Henschel & Roick, 2018) due to the difficulties
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encountered by students when filling the questionnaire. Particularly, students had
difficulties understanding several sentences in the French translation of the original

questionnaire.

Measures

Both groups were tested for their (1) arithmetic fluency, (2) mathematics
anxiety, and (3) fraction knowledge at two separate time points (before and after the

intervention).

First, arithmetic fluency was measured using the Math Fluency subtest of the
Woodcock-Johnson Il battery. The Math Fluency sub-test is a timed test in which
participants have to solve as many single-digit additions, subtraction, multiplication,
and division problems as they can within 3 min (Woodcock et al., 2001). The test was
administered in the classroom by the researcher with the support of the teacher. The
items were marked and coded by two research assistants and verified independently
by another researcher. Raw scores range from 0 to 160. The score is calculated based

on the total number of correctly solved items in 3 minutes.

Second, mathematics anxiety was measured using two different tests. The
modified abbreviated mathematics anxiety scale (Carey et al., 2017) was used in 2019
whereas the affective and cognitive mathematics anxiety test was used in 2020
(Henschel & Roick, 2018). For both the tests, items were read aloud by the researcher
or the teacher, and children were given extra time, in the end, to fill the questionnaire
or clarify their doubts. The modified mathematics anxiety (Carey et al., 2017) score
was calculated by the addition of all responses on the 5-point Likert scale for all the 9-

items (score ranged from 9 to 45). The affective and cognitive mathematics anxiety
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test had 36 items measured by a 4-point Likert scale. The score is calculated based

on the average of the score on each sub-test (scores range from 1 to 4).

Third, fraction knowledge was assessed using a test that was designed to
assess fraction skills according to the French national curriculum standards. The test
consisted of 24 questions with different items. Specifically, it assessed 6
competencies, some based on prior research (Rodrigues, Jordan, & Hansen, 2019):
fraction concepts, fraction arithmetic, symbolic representation, number line, word
problems, and decimals. Fraction concepts were measured using a total of 10
questions (questionno. 1,2, 3,4,5,10, 11, 16, 17, 18). The items assessed part-whole
understanding of area models, set models, equivalence, comparing fractions, ordering
fractions, and, mixed fractions. Fraction arithmetic skills were measured using 4
questions (Q.12, 13, 19, 20). Each question had 3 to 5 items and participants were
presented with addition and subtraction problems written in symbolic form. Symbolic
representation of fractions was tested using 2 types of questions (Q. 6, 7) consisting

of 4 items each. The first type was identifying the verbal representations of fractions
(e.g. three halves) and writing the symbolic form (%). The second type was identifying

the symbolic form and writing verbal representation. Fraction number line was

assessed using two questions (Q. 8, 9). The questions involved placing four fractions

on the number line (e.g.

b

w1 | o
ul |

: % 15—0 Q.8a), and the other type involved finding the

fractions marked on the number line. Word problem-solving skills were measured
using four-word problems (Q. 21, 22, 23, 24). Lastly, decimal skills were measured
using two questions requiring conversion of the fraction to decimals and vice-versa
(Q.14,15). Cronbach’s a ranged from 0.719 to 0.832 across all 6 measures (fraction

concepts: 0.815, arithmetic skills: 0.830, symbolic representation: 0.771, number line:
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0.832, word problems: 0.719, decimals: 0.822), indicating acceptable to very good
internal consistency. The inter-rater reliability for the categorization of questions by
three independent researchers for all the above measures was very good (Cohen’s

kappa = 0.84).

The fraction achievement test was scored using a template with correct
answers by two independent research assistants and a researcher. The data entry
was checked independently by two other research assistants to identify incorrect
entries as well as correction errors on the paper-based tests. Any discrepancy in
scoring or data entry was discussed among the three coders and if one of the coders
was not convinced the item was marked for rechecking by a researcher in
mathematics education in the lab. The inter-rater reliability between the final two
researchers was very strong (Cohen’s kappa = 1). For each item, the correct response
was scored 1 and the incorrect/ no response (marked as ‘do not know/?’ by the
participant) was scored 0. The percentage correct was calculated for each of the six

competencies.

Fraction game

Math Mathews Fractions is an educational video game developed by the studio
Kiupe in collaboration with a mathematics education researcher (the last author of the
current paper). The game is about the adventures of a pirate who has to collect gems
(treasure) by solving different challenges (i.e., modules). The game progression is in
line with the objectives and curriculum standards of the French school system for
children aged 9-12. Thus, the play situations (i) increase in difficulty throughout the
game and (ii) remain appropriate for children aged 9-12. The modules are typically

different types of questions involving rational numbers. Players must choose or
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construct the answer to proceed further. For example, in the Dragon module, students
are asked to feed the dragon the specified amount of fraction (e.g. 2/6). For gaining
maximum gems on this module, the students must slice the rectangle into six parts
and feed two parts to the dragon in their first attempt. There are 13 modules based on
the curriculum standards in the French school system (Table 1 and Fig. 1). Each
module is presented ten times throughout the game and can be presented several
times during a level. The modules include specific fraction competencies like fraction
concepts, arithmetic, word problems, number lines, and decimals (Table 1). The game
consists of 12 levels. The game was played through an application pre-installed on the
tablets. Each student had to create a profile with a pseudonym before starting the
game. The first level was preceded by a small video to familiarize players with the
basic controls and rules of the game as well as to guide them about the objective of
the game. The game was configured in a way that each player had to correctly perform
in all the modules that were visible to them in the game to finish the levels and only
then could they proceed to the next level. The interface of the game also consists of a
Jjournal and a calculator. The journal was used to teach the player about the rules of
each module and the fraction concepts involved in the module. Students could consult

the journal anytime during the game by tapping on the icon.
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Figure 1. Examples of the interface of the game showing the different modules that
include different representations of fractions. A. Here the player has to split the block to

feed the dragon % . B. Player must select 3 of the rectangular surfaces to proceed. Here,
the player has to select 6 blocks from the total of 8 blocks. C. Player must associate each

fraction (%, % g) to the shaded hexagons, trapezoids, and, rectangles. D. Player has to

place the fraction % on the 0-2 number line. E. Player must move the square number blocks
to indicate the fraction marked on the number line. F. Player must find the segment that

measures % and % of the red segment. On the picture the student has already placed the

1
5 segment correctly
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Table 1: Description of the game modules and objectives in the French national curriculum

Curriculum Objective Modules Fraction Competencies
Make connections between different Broken Wheel Fraction Concept (part-whole,
representations of fractions Dragon area=circle)
Use fractions to divide quantities Warrior
Weight Door

Place fractions on a graduated

number line

Identify fractions on a graduated

number line

Use fractions to measure quantities
Make connections between different
representations of fractions
Compare two simple fractions

Sorting fractions in ascending /
descending order

Establish equality between two simple
fractions/ equivalence
Compare two simple fractions
Add fractions with the same
denominator
Solve Word Problems Using Simple
Fractions

Trapped Passage

Graduated bridge

Totem
Organ

Skull

Pit
Trapped Chest
Spider

Riddles

Fraction Number Line

Fraction Number Line

Fraction Concept - measure,
Length

Fraction Concept - Ordering

Fraction Concept- Equivalence
Fraction Arithmetic (Level 7 to 9,
11)

Word Problem

Game metrics

The Math Mathews game recorded the player’s individual scores on each level.

The data logged as per the pseudonym data profiles included:
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i.  Maximum Level Achieved: the highest level that a player successfully
completed

i.  Number of attempts on each mini-game: number of times a player re-
tried a module in a level before they moved on to the next module.

ii.  Maximum points on a module: number of gems that could be obtained
when the player correctly solved the module in a level.

iv.  Obtained points on a module: number of gems that player collected on
each module within a level.

v. Game Performance: (obtained points/ maximum points) *100.

Procedure

The study was conducted in eight sessions and varied in duration between the
two years depending on teacher availability (4 to 5 weeks). Before the study, teachers
were presented with the objectives of the game and the practice book that could be
used in the control group. Teachers were also given tablets to play and understand
the game before the sessions started. They were free to use the game either as part
of instruction in the classroom or as independent work time for students. Thereafter,
in the first week of experimentation, all students completed the pre-tests on two
separate days. The first day included the arithmetic fluency and mathematics anxiety
test and the second day assessed the untimed fraction achievement test. The
following four weeks included paper-based practice sessions for the control group and
individual game sessions for the experimental group (two 45 min pre-tests — four 45
min game-play and paper-based practice sessions — two 45 min post-test sessions).
The control group started with an introduction to the fraction concepts and then solved
problems either individually or in groups depending on the teacher's mode of
instruction. The problems practiced during the session were matched on competency
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and rigor to the experimental group (see Figure 2). All teachers were asked to select
the problems from a specific book (Anselmo & Zucchetta, 2018). The experimental
group had students build their profiles on the tablet during the first session and
thereafter the students played the game individually on the tablets. The students were
allowed to help each other during the playing sessions and seek guidance from the
teacher and the experimenter. Even though the game included sound effects, the
students had to keep the game muted in the classroom. Students in both groups could
review and discuss fraction concepts encountered during the paper and game-based
sessions with the teacher or the experimenter. After the fourth session, the

experimenter administered the post-tests in two sessions similar to the pre-test.

Exercice 11

En utilisant la bande-unité u distribuée, mesure les segments ci-dessous. Ao

s ; 1 1 Voici une surface unité.
Ecris la mesure au-dessus du segment. (réponse U et; u)

Tu as plusieurs exemplaires disponibles.

/ Découpe et colle ce qu'il te faut pour construire % de cette surface.
Exercice 47 Exercice 77
Indique I'abscisse du point A repéré sur I'axe gradué. Voici une surface unité.
Le point A a pour abscisse .........c.c...... Tu as plusieurs exemplaires disponibles.

2 ’ o
Découpe et colle ce qu'il te faut pour constrmre; + % de cette surface.

Relie les nombres égaux entre eux : Voici une surface unité : DID

1 Relie chaque surface a la fraction correspondante.
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Figure 2. Examples of exercises practiced in the control group (in the original French). In
Exercise 11, students have to using the unity band to measure the length of segments. In
Exercise 47, students have to indicate the value of the marked point A on the number line.
In Exercise 35, students have to match the equal numbers in the two columns. In Exercise
68, students are given different cut-outs of shapes. They have to cut and paste the shapes
that correspond to 8/12 of the surface shown. In Exercise 77, students are given different
cut-outs of shapes. They have to cut and paste the shapes that correspond to the sum of
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2/5 + 4/5 of the surface shown. In Exercise 79, students are shown with a total surface.
For each colored rectangle on the left, they have to choose the correct fraction on the
right.

Analyses

Data were analyzed using both frequentist and Bayesian statistics. Due to
absenteeism, missing data were removed listwise for the specific tests analyzed (less
than 15% of the data on each test). Post-test arithmetic fluency scores, post-test
mathematics anxiety scores (separately for each year), and post-test fraction
achievement scores were entered in frequentist ANCOVAs with the between-subject
factor Group (control, experimental). Pre-test scores were entered as a covariate to

control for potential differences in baseline scores.

Additionally, Bayesian statistics were used to estimate the strength of evidence
for both the null (no difference between groups, HO) and alternate hypothesis
(difference between groups, H1). Post-test scores were entered as outcome variables
of Bayesian ANCOVAs with the between-subject factor Group (control, experimental)
and pre-test scores as covariate. Following Jeffreys (1961), a BF< 3 was considered
anecdotal evidence, a 3<BF< 10 was considered substantial evidence, a 10 < BF <
30 was considered strong evidence, a 30< BF< 100 was considered very strong
evidence, and BF > 100 was extreme evidence that our data are more likely under the
alternate than the null hypothesis (i.e., BF10) or under the null hypothesis than the

alternate hypothesis (i.e., BFo1).

Finally, we calculated frequentist and Bayesian bivariate correlations between
the game metrics and the fraction competency scores. All analyses were performed

with the JAMOVI software (The Jamovi project, 2019).
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Data Availability

All tests (translated and original versions) and anonymized scored data for each
participant are available via the Open Science Foundation (OSF) at OSF Link. A brief

demonstration of the Math Mathews Fractions game is available online

Results

Pre-reqgistered hypotheses

We made 3 pre-registered predictions. First, we expected a higher overall score
on the fraction knowledge test for the experimental group as compared to the control
group at the end of the intervention. Second, we expected this effect to be specific to
fraction learning, with no post-test difference in performance between the control and
the experimental group on arithmetic fluency. Third, because it involves learning math
with a video game, we expected that the intervention might have an effect on children’s
mathematics anxiety levels (with higher post-test mathematics anxiety scores in the

control group as compared to the experimental group).

Confirmatory findings

Post-test scores for each group are shown in Figure 3. First, in contrast to our
prediction, fraction post-test scores were not higher in the experimental than in the
control group. Frequentist analyses even showed that fraction post-test scores were
lower in the experimental than in the control group after controlling for pre-test scores
(F (1,162) = 5.66, p = 0.019, n?% = 0.034), though Bayesian analyses only indicated
anecdotal evidence for this difference (BFio = 2.16). Second, in line with our
predictions, there was no significant main effect of group on arithmetic fluency post-

test scores after controlling for pre-test scores (F (1,158) = 0.53, p = 0.468, n?% =

154


https://osf.io/zxm5c/?view_only=d2b0e9e89aab4fcc963900b8e249f765

0.003). Bayesian statistics also indicated substantial evidence for a lack of difference
between groups (BFo1= 4.56). Third, in contrast to our predictions, no significant main
effect of the group was observed for post-test mathematics anxiety scores after
controlling for pre-test anxiety scores (2020: F (1,107) = 0.027, p=0.871, n% = 0.000,
2019: F(1,58) = 1.13, p=0.293, n% = 0.019). Bayesian statistics indicated substantial
and anecdotal evidence for a lack of difference between groups (2020: BFo1 = 4.73;
2019: BFo1 = 2.46). Thus, there was no evidence, across all children and skills
practiced in the game, that children who experienced the video game learned more

about fractions than children who did not experience the game.
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Figure 3. Student performance in the post-test (after controlling for baseline scores) for
the control and experimental group. A. Fraction Knowledge. B. Arithmetic Fluency. C.
Mathematics Anxiety Year 2019 D. Mathematics Anxiety Year 2020. Each dot represents

the score of a student. Error bars depict the standard error of the mean.

Exploratory findings: Are effects dependent on competency?

The pre-registered analyses above show that the intervention does not
positively affect overall fraction scores in children. However, the fraction knowledge

test assessed 6 major competencies: fraction concepts, fraction arithmetic, symbolic
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representation, fraction word problems, fraction number lines, and decimals.
Therefore, it is possible that the intervention may affect some competencies more than
others. To test for this possibility, frequentist and Bayesian ANCOVAs were conducted
on each of the 6 competency sub-scores (controlling for their specific baseline scores)
(Figure 4). First, frequentist ANCOVAs revealed a main effect of group on fraction
concepts (F (1,162) = 6.19, p = 0.014, n% = 0.037) and fraction arithmetic (F (1,161)
= 14.52, p < 0.001, n% = 0.083), with lower post-test scores in the experimental as
compared to the control group (Fig. 4A and Fig. 4B). Bayesian statistics indicated
anecdotal evidence for a difference between groups on fraction concepts (BF10=2.74)
and strong evidence for a difference between groups on fraction arithmetic (BF10 =
99.41). Second, there was no main effect of group (all Fs < 1.95, all ps > 0.164) on
symbolic representation (Fig. 4C), fraction word problems (Fig. 4D), fraction number
lines (Fig. 4E). Bayesian statistics indicates a substantial evidence for a lack of
difference between groups on symbolic representation (BFo1 = 5.40) and fraction
number line (BFo1 = 3.01) and an anecdotal evidence for word problems (BFo1 = 2.44).
Third, frequentist ANCOVAs revealed a main effect of group on decimals (F (1,161) =
7.23, p = 0.008, n% = 0.043), with higher post-test scores in the experimental as
compared to the control group (Fig. 4F). Bayesian statistics also indicated substantial
evidence for a difference between groups on decimals (BF1o= 4.81). Therefore, the
only fraction competency for which we measured a positive effect of the game was the

understanding of decimals.
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Figure 4: Student performance on different fraction competencies in the paper-based
post-tests (after controlling for baseline scores) for the control and experimental group. A.
Fraction Concepts. B. Fraction Arithmetic. C. Symbolic Representation D. Word Problem.
E. Fraction Number Line F. Decimal. Each dot represents the score of a student. Error

bars depict standard error of the mean.

Exploratory Findings: Are effects dependent on individual differences in-game

usage?

It is possible that the intervention may only affect the competencies of children
who progressed the most at the game, thereby benefiting from its content. To test for
this possibility, we used frequentist and Bayesian correlation analyses to identify
relations between game metrics and fraction knowledge while controlling for pre-test
scores (see Table 2 and Figure 5). Frequentist analysis revealed a significant positive
correlation between overall game performance and fraction post-test scores (r (92) =

0.292; p = 0.005), indicating that greater overall in-game performance (obtained
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points/maximum points*100) was associated with better fraction knowledge at post-

test. Bayesian analyses also indicated substantial evidence for this correlation (BF10=

6.57). Therefore, the more children gain

points in the game, the greater their score at

post-test. However, maximum level attained (r (92) = 0.182; p = 0.083) and number of

attempts (r (92)

-0.038; p = 0.718) did not correlate significantly with the fraction

post-test scores. Bayesian analyses indicated anecdotal (BFo1 = 1.74) and substantial

(BFo1 = 7.198) evidence for no association between the variables respectively.

r=0.292, p=0.005
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Figure 5: Correlation of fraction post-test scores and game variables. Grey shaded area

indicates 95% confidence region for the correlation.
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Table 2: Semipartial Correlations between fraction post-test scores and game metrics for

the experimental group

1 2 3. 4

1. Fraction post-test scores r - - - -
BF1o0

2. Game Performance r 0.292" - - -
BF1o 6.57

3. Maximum Level Attained r 0.182 0.356™ - -
BF1o 0.573 50.093

4. Number of Attempts r -0.038 -0.601™ 0.294" -
BF1o 0.139 5.012e+7 6.999

Notes. * p < 0.05 ** p < 0.01, *** p < 0.001.

BF1o indicates the strength of the evidence for the alternative (there is an association between the
variables). Bayes factors BF < 3 are considered anecdotal; 3 < BFs < 10 are considered substantial; 10
< BFs < 30 are considered strong; 30 < BFs < 100 are considered very strong and BFs > 100 are
considered decisive. BFs > 3 are indicated in bold. All variables are controlled for baseline fraction pre-

test scores.

Discussion

To our knowledge, this is the first pre-registered, randomized controlled study
to examine the impact of a game-based intervention on fraction knowledge of fifth
graders. In the following, we first discuss the findings of the impact of the game on
fraction learning and then elaborate on the game metrics to better understand the

game-based intervention and its impact on fraction learning.
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Math Mathews Fractions does not promote overall fraction knowledge

Contrary to our preregistered hypothesis, the students in the experimental
group did not outperform the control group on fraction knowledge. These results are
inconsistent with the nascent literature on game-based interventions and fraction
knowledge development. However, as mentioned in the introduction, prior literature
has several limitations that might partially account for these conflicting results. For
example, unlike several other studies on fraction learning and game-based
intervention (Kiili et al., 2018; Riconscente, 2013; Masek et al., 2017; Cyr et al., 2019),
our study included an active control group, meaning that the teachers were given a
sample book (Anselmo & Zucchetta, 2018) to practice fraction concepts matched in
rigor and competency to the game. Control groups in prior studies included either
regular math instruction or regular fraction-based instruction. Hence, the two groups
are not often matched on rigor or the competencies practiced, which makes it difficult
to compare game-based intervention and traditional instruction. Our findings are
consistent with game-based interventions that have utilized an active and well-
matched control group (Carr, 2012; Singer, 2015). Unlike several other studies
(Riconcente, 2013; Cyr et al., 2019; Kiili et al., 2018), our study also included a
relatively large sample size and both frequentist and Bayesian analyses thereby

providing robust evidence for the findings without compromising on the power.

What, then, could explain the lack of benefits from the game across all
participants? We can mention two potential reasons for this lack of positive difference
between the two groups. First, it might be attributed to the limited instructional support
in the experimental group. Indeed, the essential role of instructional support during
gameplay has been highlighted often in literature (Wouters & van Oostendorp, 2013).
The use of well-designed instructional support during DGBL can help learners focus
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on relevant information in the game that contributes to learning (e.g. modeling,
reflection, context integration) (Wouters et al., 2008; Wouters & van Oostendorp, 2013,
2017). Though the teachers were given two training sessions before the study began,
these were limited to understanding the interface and objectives of the game. Our
observations in the classroom also indicated that the teacher and student interactions
were relatively limited in the experimental group (mostly when students asked
questions about the game interface or a specific concept). Thus, students were
essentially playing the game individually without much debriefing or intermittent
instructional sessions by the teachers. Therefore, future research designed to promote
the active involvement of teachers during the game-based intervention might promote

fraction learning.

Second, in efforts to match the rigor and competency in both groups, we might
have introduced a solid method to teach and practice fraction curriculum to the
teachers in the control group. Classrooms in the control group included group-based
learning with peer-to-peer interactions and also other concrete activities that were
provided in the book (see Figure 2). Teachers who used the exercises from the book
systematically could have inadvertently led the instruction using the Concrete Pictorial
Abstract (CPA) method. The CPA method is a learning approach to teach
mathematical concepts that have shown improvement in mathematical learning
outcomes in elementary and high school students (Salingay & Tan, 2018; M Salimi et
al., 2020). The method is based on reconstructing knowledge using a three-stage
approach through manipulation of concrete objects, representation of images, and,
finally, abstract notation or symbols (Witzel, 2005). Indeed, the book provided tools for
physically manipulating concrete objects and learning through images (Anselmo &

Zucchetta, 2018). Thus, it might be possible that in our effort to match the two groups
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on competencies, we created a particularly efficient control group. This might explain
the fact that students from that group showed better overall fraction knowledge at the

post-test than the experimental group.

Math Mathews Fractions promotes decimal knowledge

Though the game did not show any impact on the overall fraction learning
scores, we examined the impact of the game on different competencies in the pre and
post-paper-based tests (fraction concepts, fraction arithmetic, symbolic
representation, fraction word problems, fraction number lines, and decimals). These
exploratory analyses indicated that the game had no or limited effect on the symbolic
representation, fraction word problems, and fraction concepts (i.e., which only showed
anecdotal evidence for a difference). It did, however, have an effect (with at least

substantial evidence in Bayesian terms) for decimals and fraction arithmetic.

First, students who experienced the game scored higher on decimal knowledge
at post-test than the control group. The difference in performance could be attributed
to the structure of the typical instructional sequence for rational numbers in traditional
classrooms (i.e. fraction first, decimals next, and percentages last) as compared to the
game which focused on building connections between the two notations (fractions and
decimals). Understanding and translating between multiple interpretations of rational
numbers and the three notations (decimals, fractions, and percentages) is a requisite
skill for mastery of rational number knowledge (Tian & Siegler, 2017). Studies have
shown that children and adults face difficulties when translating between decimals and
fractions, thus revealing their poor understanding of these alternate numerical
notations (Stigler et al., 2010; Vamvakoussi & Vosniadou, 2010). A curriculum

intervention study on fourth graders aimed at building these connections noted a
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higher performance on translation tasks (fractions to decimals) in the experimental
group as compared to the control group (typical teaching condition: fractions first,
decimals, and percentages later) (Moss & Case, 1999). In the current study, despite
the control classrooms practicing decimal concepts in the latter part of the sessions,
the students did not perform better than the experimental group on decimals (level 9
onwards). Thus, this might highlight the importance of instruction based on making
connections between multiple notations of rational numbers rather than teaching them
as distinct number types. Another reason could be the type of decimal problems in the

pre and post-test. These were limited to conversion of decimals to fractions and vice
versa (e.g. 0.25 =7, 17—0 = 7). Interestingly, this is the key skill that was practiced by

students in the experimental group. An example of the decimal games practiced is
shown in Figure 6. Here, the students have to select or choose the fraction that is
equal to the given decimal, similar to the paper-based tests. Therefore, this along with
the mode of instruction might explain the better performance of students in the

experimental group as compared to the control group on decimals.
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Figure 6: Examples of the core decimal concepts that were present in the game.

Second, fraction arithmetic performance was lower in the experimental than in
the control group after the intervention. One can speculate that the control group
practiced more problems with the teacher than the experimental group. This is mainly
because in the game the problems on fraction arithmetic are at higher levels (above
level 7, see Table 1.). Thus, the game may not allow for enough training to perform
these procedural concepts. Prior literature has also shown fraction arithmetic rules to
be varied and complex (Siegler & Lortie-Forgues, 2017). The complexity and the
procedural nature of these problems might then benefit from a more instructional,
teacher-led practice approach. Again, this highlights the importance of instructional
support during DGBL (Wouters & van Oostendorp, 2013, 2017), as well as the
presence of an active control group when comparing game-based interventions to

traditional classroom instruction.
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Taken together, these exploratory findings indicate two interesting aspects of
game-based training. First, our game-based training was more effective than
traditional classroom instruction for making connections between fraction and decimal
magnitude representations. Second, given the complexity of fraction arithmetic
procedures, a rigorous teacher-led practice approach might be more helpful than
game-based training. These two results extend the nascent literature on fraction
game-based learning and highlight the importance of different instructional methods
for different representations of fractions. This is relevant as not all game-based
interventions designed by experts are empirically assessed in the educational setting
(Gresalfi et al., 2018). Nevertheless, evidence-based pedagogy is critical for teachers
and educators to understand the specific, beneficial aspects of the game so that they

can choose appropriate interventions for their students.

Game metrics as a potential tool for personalized instruction and assessment

Prior studies note the importance of correlational research designs for
understanding various aspects of game variables such as player behavior,
engagement, and training success (Boyle, Hainey, Connolly, Gray, Earp, Ott et al.,
2016). The game metrics in the current study reflect different aspects of student
learning such as accuracy (higher overall game performance), increased guessing
(higher number of attempts), and progression on task (maximum level attained).
Through our exploratory analyses, we observed that overall game performance was
positively associated with students' fraction knowledge at post-test. This indicates that
better game performance was related to higher performance on post-training fraction
learning outcomes. These results are consistent with another game-based study
where the overall game performance notes positive associations with both math
grades and paper-based post-test scores (Kiili et al., 2018). Thus, in-game metrics
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might be useful for teachers to assess learning outcomes in real time (Serrano-
Laguna, Martinez-Ortiz, Haag, Regan, Johnson, & Fernandez-Manjon, 2017; Kiili et

al., 2018; Zaki, Zain, Noor, & Hashim 2020).

Additionally, we did not find any significant relationship between the level
attained on the game and fraction post-test scores. This is not in line with findings from
prior studies on another game on rational number knowledge (Kiili et al., 2018). One
interpretation of this finding could be based on the fact that not all students who attain
higher levels in the game do so by learning the content. Some students could have
used other techniques such as guessing or choosing answers similar to their peers.
This indicates that individual differences in the level attained may not explain
differential learning effects in the game group. Further support for this speculation
comes from the significant positive correlation between the number of attempts and
the level attained in the game. Students who are unsure about their answers attempt
the modules often by guessing thereby reaching higher levels. Importantly, no
association between the number of attempts and fraction post-test scores was
observed. This finding is consistent with another study using the semideus game (Kiili
et al., 2018). Again, this could be connected to students guessing the answers and not
necessarily focusing on the content. Observations in the classroom corroborate this
speculation. Despite the journal feature of the game and encouraging students to ask
peers, teachers, and researchers in the classroom, some students continued to either
guess or ask their partners for answers without explanations. Thus, the game metrics
not only provide important insights on game-based learning but also act as

personalized assessment tools to understand individual-level performance.

Future studies with more information on these variables might serve as
evidence for understanding student’s problem-solving strategies during learning. For
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instance, the number of attempts could be detailed to provide the answers generated
in each attempt by the students highlighting core misconceptions. Conclusively, the
game metrics provide critical information on the game design and the intervention
making it an invaluable tool as a predictor of training success in future studies (Kiili et

al., 2018) and also a real-time assessment indicator for teachers and educators.

Limitations

There are at least three potential limitations concerning the results of this study.
The first limitation concerns the lack of qualitative data. A mixed-methods study is
informative to determine the mechanisms involved in learning as well as to better
understand the methods (Bertram, 2020). Classroom discussions, student
interactions, and the type of questions asked during the game-based training would
have enriched our quantitative measures. A second potential limitation is the passive
role of teachers in the game-based group. The role of instructional support during
DGBL cannot be undermined (Wouters & van Oostendorp, 2017). Despite conducting
sessions for teachers to understand the objectives of the game and its interface, we
did not provide a structured, rigorous training session on teaching with the game in the
classroom. As a result, all teachers in the experimental group played a passive role in
student learning, which might affect the outcome of the intervention. Finally, because
of school closures during the COVID-19 outbreak, we could not investigate the

possible long-term effects of game-based training.

Conclusion

In the present pre-registered, randomized controlled intervention study, we
evaluated the impact of game-based training on rational number concepts. The game,

Math Mathews Fractions was designed according to the French National Curriculum
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by a mathematics education researcher and game developers. By including an active
control group that practiced fraction concepts matched on rigor and competency, we
aimed to assess the effectiveness of the game with respect to traditional learning of
fractions. Our results indicate that the game was not superior to traditional learning for
overall fraction performance. However, the game had a positive effect on the learning
of some rational number concepts. We also found a relation between the game metrics
and overall fraction knowledge scores. This suggests that games such as Math
Mathews Fractions might play a role in traditional classroom instruction by helping
students learn specific fraction representations and supporting teachers to help build

connections between fraction and decimal representations.
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CHAPTER VII: DISCUSSION

Growing evidence suggests the presence of a Ratio Processing System and its
likely role in the acquisition of symbolic fraction concepts. Prior work includes both
behavioral and brain imaging studies (review in Chapter Il). However, research on the
RPS is relatively new and limited in its use of the tasks and paradigms employed.
Therefore, in addition to shedding light on the RPS theory, this work may offer new
insights both theoretically and experimentally to assess and examine the presence of
the RPS. Further, the RPS could potentially serve as an interesting concept in the
design of learning environments to support fraction understanding. Additionally, there
is a decent scope of improvement in the literature on learning environments for fraction
instruction. Given their multifaceted nature, fractions are typically hard for both
learners and teachers. To this end, we examined a game-based intervention
specifically designed to build connections between the multiple representations of
fractions, thereby supporting teachers in classroom instruction. The overarching aim
of the thesis, therefore, was to examine the neurocognitive bases of fraction
processing and learning in children and adults. In this general discussion, we first
summarize the findings for all the three studies presented. Thereafter, we speculate
on the implications of these findings in the wider context of fraction learning and

teaching.

1.1 Summary of the experimental results

In Study |, we tested for the existence of the Ratio Processing System in
individuals with varying levels of mathematics skills. It was hypothesized that if the
performance accuracy of participants were sensitive to the ratio magnitudes, then this

would serve as evidence for the existence of the RPS. Here, we adapted a match-to-
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sample task developed by Matthews (2015), where participants were asked to choose
the correct match from two non-symbolic ratios or symbolic fractions (both these
formats were presented in separate blocks) that corresponded to the target fraction or
line ratio. The results show that all participants (irrespective of their mathematics skills)
have perceptual sensitivity when processing non-symbolic line ratios. This sensitivity
is also present in typically achieving adults when they perform cross notation tasks
where the symbolic fractions have to be matched with a non-symbolic ratio. However,
the perceptual sensitivity is not observed when participants matched only the symbolic
fractions. These findings indicate a limited role of the RPS, such that sensitivity to non-
symbolic relational magnitudes is present only in tasks that require participants to
approximate/estimate the ratio magnitudes. Taken together, these findings add to the
growing evidence for an intuitive, perceptual sensitivity for non-symbolic relational
magnitudes, but challenges the current literature that claims for perceptual sensitivity

to symbolic fractions.

While study | provided initial evidence for the RPS using a behavioral paradigm,
in Study Il we investigated the neural correlates of both absolute and relative
magnitudes to examine the presence of overlapping neural regions for both these
representations. To this end, a passive-viewing fMRI adaptation paradigm (Girard et
al., 2021; Perrachione et al., 2016) was used to determine the neural activity of both
symbolic and non-symbolic absolute and relative magnitudes. We also examined
whether the culturally developed ability to represent symbolic numbers and fractions
relies on the neural representations of their non-symbolic counterparts (the neuronal
recycling hypothesis; Nieder, 2016). The findings reveal the absence of an adaptation
effect for the relative magnitudes, line ratios and symbolic fractions. For the non-

symbolic and symbolic absolute magnitudes, the neural adaptation effect was shown
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to be dependent on the symbolic mathematics fluency skills of the participants. This
means that individuals with higher mathematics fluency were better able to recruit and
recycle neural pathways for lines and numbers in the left intra-parietal sulcus. Contrary
to prior studies (Jacob & Nieder, 2009 a, b; Mock et al., 2018), the absence of the
neural adaptation effect for relative magnitudes indicates that it might not be possible
to automatically access the magnitudes of the line ratios and fractions. Interestingly,
the multivariate analyses revealed a region in the right intra-parietal sulcus that
showed differentiation in the activity patterns for non-symbolic and symbolic formats
across both absolute and relative magnitudes. This indicates that the IPS activity may
depend on the presentation format (non-symbolic versus symbolic) more than it may
depend on the type of magnitude (absolute versus relative). While Study | provides
some behavioral support for the RPS account, Study Il provides neuroimaging
evidence contradicting the RPS account by demonstrating a lack of adaptation effect
for relative magnitudes. Some probable explanations for these contradictory findings

will be discussed in the sections below.

Further, the complex, multifaceted construct of fractions might pose limitations
on fraction teaching and learning. Therefore, study Ill was focused on examining how
the complex fraction representations might be accessed in formal educational
environments. Game-based learning environments offer unique affordances such as
manipulations and visualizations that might help teachers during fraction instruction to
link the multiple representations of fractions. To this end, Math Mathews Fractions was
designed collaboratively by professional game developers and an educational expert
to bridge the multiple representations of fractions. In a pre-registered randomized
controlled study, we assigned fifth-graders to either an experimental group that used

the game or a control group that received traditional instruction on fractions. Fraction
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knowledge was assessed pre-and post-intervention using a curriculum-based fraction
test. Contrary to our predictions, the results show that students in the experimental
group did not have higher overall fraction performance than students in the control
group. However, the game did have a positive effect on decimal learning. We also
found a positive relation between game performance and overall fraction knowledge
scores at post-test. Taken together, these findings highlight the importance of
adequate teacher support along with game-based learning for the acquisition of

complex rational number concepts.

1.2 Evidence for the Ratio Processing System and its potential role in symbolic

fraction understanding

Can individuals perceptually access the meaning of symbolic fractions and non-
symbolic ratios? Why are magnitudes of symbolic fractions particularly difficult to
grasp? How can the perceptual ability to access non-symbolic ratio aid in symbolic
fraction understanding? These were some of the questions that initiated study | and |l
in this thesis. The findings reviewed earlier suggest that the RPS may exist as a
system that supports the processing of non-symbolic relative magnitudes, though its
role in symbolic fraction processing is limited. In line with prior studies, study |
presented here shows evidence for a perceptual route to process approximate
magnitudes of fractions when presented as non-symbolic ratios. Importantly, this
perceptual sensitivity was also present in individuals with lower math skills like children
in fourth and fifth grade as well as adults with dyscalculia. On the other hand, it was
somewhat surprising to note the absence of neural adaptation effects for line ratios in
study Il. This finding is contrary to prior research that suggests automatic access to
non-symbolic proportional magnitudes in the parietal cortex (Jacob & Nieder, 2009;
Jacob et al., 2012). Furthermore, the absence of both a perceptual sensitivity to
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symbolic fractions in study | and the neural adaptation effects for symbolic fractions in
study Il indicate the inaccessibility to implicitly access the fraction magnitudes and
thus, hints at the complexity of symbolic fraction representations. On the one hand,
these findings are consistent with research that indicates difficulty in accessing the
holistic magnitudes of fractions for both children and adults (Kallai & Tzelgov, 2009,
2012; Stafylidou & Vosniadou, 2004). On the other hand, they conflict with prior studies
that suggest the RPS contributes to symbolic fraction processing (Kalra et al., 2020;
Matthews & Chesney, 2015; Schneider & Siegler, 2010). The abovementioned

findings will be discussed in the sections below.

1.2.1 Is perceptual sensitivity to relational magnitudes abstract and automatic?

As mentioned in Chapter Il, research on the RPS is relatively recent. The
studies that do investigate the perceptual sensitivity to non-symbolic ratios mostly rely
on tasks that encourage participants to estimate approximate magnitudes (Kalra et al.,
2020; Park et al., 2020; Matthews & Chesney, 2015). In these tasks, participants are
asked to compare the relative size of the two ratios. These tasks explicitly focus
participants' attention on the numerical aspect of the stimuli (by using number words
like “greater than” or “smaller than”). Study | in this thesis uses a match-to-sample
paradigm in which participants are asked to match the targetratio to the correct match.
Here, participants must access the relational meanings between the individual line
lengths and the three-line ratios, thereby focusing on the relative magnitudes. Overall,
these behavioral studies provide converging evidence for the presence of perceptual
sensitivity to non-symbolic ratios in school-age children, adults, and adults with
dyscalculia (Bhatia et al., 2020; Kalra et al., 2020; Matthews & Chesney, 2015).
Additionally, performance in the cross-notation task (where adults had to match the
non-symbolic line ratios with the correct symbolic fraction) was also ratio-dependent.
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This finding is in line with prior studies using cross-format notations (Kalra et al., 2020;
Matthews et al., 2014; Park et al., 2020). Further, the cross-format comparison tasks
are argued to provide evidence for a shared system for non-symbolic and symbolic
magnitudes as they rely on the abstract nature of magnitude between the different
notations (Matthews & Chesney, 2015). While these results suggest an abstract nature
of relational magnitudes, the absence of ratio effect in the symbolic fraction task, as
well as the neuroimaging study (Study 1), show otherwise. Both these results are in
contrast to prior studies. For instance, studies have found that performance on
symbolic fraction comparison tasks is influenced by linear or RoR distance (Kalra et
al., 2020; Matthews & Chesney, 2015; Schneider & Siegler, 2010). The possible
reason for this discrepancy could be the task design. For instance, magnitude
comparison tasks might encourage participants to estimate approximate magnitudes.
While there is a possibility to approximate ratios in the match to sample task, the
equivalence task may prompt participants' attention to use exact values of fractions.
Therefore, while children, typical adults, and adults with dyscalculia may rely on an
intuitive sense of ratios to process non-symbolic ratio magnitudes, our findings raise
the possibility that this sense may only drive performance in tasks that encourage
subjects to approximate ratios. Indeed, the results of study Il using a passive viewing
design add further evidence to this claim. Our findings, therefore, suggest that the RPS

might be task-dependent.

The absence of neural adaptation effects for line ratios and fractions in study Il
suggests a lack of automatic access to relational magnitudes. Contrarily, prior studies
show automatic access for both non-symbolic and symbolic relative magnitudes
(Jacob & Nieder, 2009 a, b; Mock et al., 2018). The discrepancy between the results

of prior neuroimaging studies and study |l might also be attributed to the difference in
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task design. For instance, in the study by Mock & colleagues (2018), the task required
participants to compare the magnitudes of the non-symbolic ratios (pie charts and dot
patterns). Participants were therefore required to attend to the numerical stimuli in the
task and revealed activations in the occipito-parietal areas. Another study that
examined the neural representations of non-symbolic ratios and symbolic fractions
used an adaptation paradigm (Jacob & Nieder, 2009). One possible explanation for
the observed activations in the IPS in this particular study could be due to the simple
ratios that were presented to adult participants. Adult participants with years of formal
education likely are leveraging a heuristic for these simple ratios that are most
frequently encountered in their environment (Siegler, Thompson, & Schneider, 2011).
These heuristics might lead them to automatically access the numerical magnitudes
of these ratios. On the contrary, the stimuli used in study Il might be better controlled
than the abovementioned study (Jacob & Nieder, 2009 a, b). The stimuli was
composed of a complex variety of non-symbolic line ratios and symbolic fractions.
These varied and complex stimuli might have made it more difficult for participants to
apply the heuristics to access their magnitudes automatically, especially when the task
did not require them to do so. While future work is required to establish the properties
of the RPS as an abstract system for relational magnitudes, the present results might
be a significant first step in revealing that the RPS might be a task-dependent system.
Additionally, the presence of perceptual sensitivity for non-symbolic ratios in
individuals with varying levels of math skills indicates that participants with lower math
abilities can access the relational magnitudes of non-symbolic ratios; these abilities
might be harnessed early on in development to help individuals utilize them as a visual

aid for perceptual learning of fractions.
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1.2.2 Implications for the role of RPS in fraction learning

The RPS theory posits that understanding of rational number concepts acquired
during formal math instruction is rooted in the perceptions of proportions and ratios
(Jacob et al., 2012; Lewis et al., 2016). The theory further argues that the observed
difficulties and misconceptions in symbolic fraction understanding arise due to the
instructional methods that do not leverage the existing perceptual abilities (Lewis et
al., 2016). Given the recently developing literature on whether or not the RPS is utilized
for processing symbolic fractions and its abstract nature, the implications must be
interpreted with caution. The combination of findings in the current study might provide
some conceptual support for the potential role of the RPS in symbolic fraction learning.
Two major assumptions will be addressed here: First, we will assume the existence of
the RPS as an abstract code for relational magnitudes, thereby serving as a core
system of representation (Feigenson et al., 2004) for relative magnitudes, and second,
we will depict that even in the absence of such a system the core ideas might be
utilized for a better understanding of fraction concepts in the classroom (see Figure

27).

If we assume the RPS to be a universal, primitive, core cognitive system for the
representation of abstract relative magnitudes, leveraging the RPS might help re-
imagine conventional fraction instruction. Note, however, that this does not mean a
complete reinvention of fraction instruction. Indeed, current classroom practices do
utilize non-symbolic tools to teach fractions (e.g. sharing a pizza), particularly for the
part-whole subconstruct of fractions, to build an informal understanding of sharing
(Siegler et al., 2010). Yet, these approaches aim towards building an informal
understanding using visual representations (Mack, 1990; Siegler et al., 2010). With
the RPS as a pre-existing ability, instruction could be approached by utilizing the
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foundational non-symbolic abilities to build symbolic fraction concepts (Lewis et al.,
2016). For young children, fraction instruction in the classroom that uses conventional
discrete, non-symbolic pie-charts (that use whole number counting procedures; Boyer
et al., 2008) might shift to more continuous, uncountable non-symbolic ratios like lines
and blobs (Park et al., 2020). This would help children to utilize their inherent
perceptual sensitivities of non-symbolic ratios to understand relative magnitudes with
unique properties and without the need to use whole-number strategies like counting.
For instance, using non-symbolic line ratios as a teaching tool to help children make
judgments of the relative value of the line lengths may help children in understanding
relational magnitudes. These could then be used to make associations with symbolic
fraction concepts which could further help students at estimating the holistic

magnitudes of fractions.

Another speculation could be in the design of targeted interventions for adults
with dyscalculia. Preliminary findings suggest that adults with dyscalculia possess
sensitivity to discriminate between non-symbolic relational magnitudes but not their
symbolic counterparts (Bhatia et al., 2020). Strategies to build links between percept-
concept of relational magnitudes might aid these individuals to access underlying
representations to support symbolic fraction understanding. For instance, a training
intervention using both within and cross-format comparisons could include both
implicit, perceptual fluency building processes and explicit verbally mediated
connectional understandings between representations (Figure 26) (Rau & Matthews,
2017). The first step in such a targeted intervention could focus on building perceptual
fluency on within-format and cross-format tasks. Once individuals can link the cross-
format representations of relative magnitudes, instruction could then focus on helping

them verbalize their sense-making processes (but see Rau, Aleven, & Rummel, 2017).
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The difficulty of the tasks could also be modulated so that each individual is in their
zone of proximal developmenté. Gradually increasing practice and reflection of the
heuristics used by individuals could then further lead to fluency in understanding the
holistic symbolic relational magnitudes. This instruction could also make use of
blended learning systems where the role of the technology might be to help educators
personalize this intervention (perhaps depending on each individual’'s RPS acuity

score).

I‘ 4 I
| x
| 16
| 3 |
16

Reflection Questions

1. What steps did you use to match the target on the left with the
correct match on the right?

2. What aspects of the task would you think of as irrelevant when
comparing the holistic magnitudes?

3. What are some of the aspects that are relevant for successful
completion of this task?

Figure 26: Example of an intervention using the RPS framework.1. Building perceptual
fluency: Here, students could start from within format tasks and progress to cross-format
tasks. The difficulty could also be modulated within each task by presenting conditions

with the same and different components. 2. Building connectional understanding using

8 Defined by Vygotsky (1978) as “the distance between the actual developmental level as determined
by independent problem solving and the level of potential development as determined through problem
solving under adult guidance or in collaboration with more capable peers” (p. 86)
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reflection questions (exemplars). This step focuses on verbalizing the process and making
sense of the implicit perceptual sensitivity

Even if the RPS is found to be a task-dependent system that does not
automatically activate relative magnitudes, non-symbolic relational magnitudes using
continuous representations might serve as better instructional tools than the discrete
or discretized representations that are currently used in the classroom (e.g. count
shaded parts) (Jeong, Levine, & Huttenlocher, 2007; Ni & Zhou, 2005). Indeed,
perceptual learning interventions on fractions and algebra have shown considerable
gains that go beyond classroom instruction alone (Kellman et al., 2008). So, the
prototype of the targeted intervention on perceptual learning detailed above (Figure
26) could perhaps improve the learner's rational number understanding. However,
given the debate on sense-making first or fluency-first hypothesis (Rau, Aleven, &

Rummel, 2017), this hypothetical account must be approached with caution.

Perceptual learning theory majorly involves discovery and fluency effects
(Kellman, 2002). The discovery effect refers to learners finding relevant information
while ignoring irrelevant information to form and process higher-level concepts
(Kellman et al.,, 2008). The practice of similar concepts leads to an increased
attentional selectivity which helps learners to extract invariant information quickly and
categorize the new information (Petrov, Dosher, and Lu, 2005). In the context of the
role of RPS in fraction learning, discovery effects may help learners by selectively
ignoring componential processing during a comparison fraction task with different
components and attend to the relative value of the components, thereby processing
the holistic magnitudes. With increased practice and reflection, the fluency effects
(which refer to the efficiency to extract relevant information) could ultimately lead to

automatic processing of the symbolic magnitudes (Kellman et al., 2008). An important
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design learning principle of the perceptual learning approach essentially involves
presenting the learner with a large number of classification trials to make learners
interact with a varied set of problem types (Kellman et al., 2008). Therefore, employing
a similar design to study | but with more varied trials might possibly be used as a
perceptual learning intervention. While much about the RPS remains speculative and
needs more research both at the theoretical and intervention levels, the findings
presented here, the different paradigms used (match-to-sample and adaptation), and
the speculative recommendations for fraction interventions might aid future research

efforts on the RPS.

1.3 Neuronal recycling hypothesis for absolute and relative magnitudes

Prior studies using functional magnetic resonance imaging adaptation (fMRI-A)
paradigms reveal convergent findings on the passive processing of symbolic numbers
in the left intra-parietal lobule and passive processing of non-symbolic magnitudes in
the bilateral parietal lobes (Sokolowski et al., 2017). This might indicate that both
overlapping, as well as distinct brain regions, are responsible for the automatic
processing of magnitudes (in the absence of tasks). However, most studies included
in the meta-analysis (passive viewing paradigms) included either a symbolic (Cohen
Kadosh et al., 2007; Notebaert et al., 2011; Price & Ansari, 2011; Holloway et al.,
2013; Vogel et al., 2017) or non-symbolic (Piazza et al., 2004; Ansari et al., 2006;
Cantlon et al., 2006; Jacob & Nieder, 2009; Roggeman et al., 2011; Demeyere et al.,
2014) stimuli but not both. Some passive viewing studies that have used both
conditions within the same sample of participants (Piazza et al., 2007; Roggeman et
al., 2007; Damarla & Just, 2013) show contrasting results of either overlapping (Piazza
et al., 2007) or distinct (Cohen Kadosh et al., 2011; Sokolowski, Hawes, Peters, &
Ansari, 2021) brain regions supporting the different magnitude formats. The
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fundamental question of whether the culturally acquired symbolic abilities co-opt or re-
use the primitive neural pathways for non-symbolic quantities remains unanswered.
The findings of our study mostly support the argument that the human adult brain
processes symbolic and non-symbolic magnitudes using distinct pathways (except for
participants with high mathematics fluency and only for absolute magnitudes). In fact,
similar to a recent study (Sokolowski et al, 2021), the multivariate analyses in Study Il
reveal that the right intra-parietal sulcus (among the larger cluster of occipito-parieto-

temporal network) represents the two formats (symbolic and non-symbolic) differently.

While the present results cannot conclusively answer the question of whether
there is an abstract neural code for magnitudes (and thereby the neuronal recycling
hypothesis), they do reveal some interesting findings that might guide future research
efforts. First, for absolute magnitudes, participants with higher mathematics fluency
showed an overlap for both lines and numbers in the left intra-parietal sulcus. This
might indicate that individuals with higher math fluency are able to recruit similar neural
pathways for processing both non-symbolic and symbolic absolute magnitudes.
Second, irrespective of the format (symbolic or non-symbolic) absolute and relative
magnitudes show distinct patterns of brain activity in the RLPFC and the visual cortex.
These distinct brain activity patterns between absolute and relative magnitudes seem
to suggest diverse ways in which these two magnitudes could be neurally processed.

Both these findings are discussed in detail below.

1.3.1 Is neuronal recycling related to arithmetic skills?

The answer to this question as well as the direction of the relation is presently
difficult to explicate. The result of study Il (for absolute magnitudes) is in contrast to a

recent study that reports a developmental shift in the relationship between non-
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symbolic and symbolic overlapping representation patterns in the brain and arithmetic
skills (Schwartz et al., 2021). The authors in that study report that while children who
are less proficient in arithmetic skills might rely on common mechanisms for both
symbolic and non-symbolic magnitude processing, young adults do not (Schwartz et
al., 2021). Notwithstanding the difference in experimental design, the studies might
suggest completely opposing ideas: 1) participants with better math fluency might be
able to recruit primitive brain regions when processing symbolic numbers, and 2)
participants with a lower arithmetic fluency might need to rely on common neural
mechanisms for symbolic and non-symbolic magnitude processing. Interestingly, a
recent study on children revealed similar results to study Il where the children with
higher arithmetic fluency showed overlapping activation in the intra-parietal sulcus for
both dots and digits (Girard et al., 2021). An additional question in this domain might
be with regards to the direction of these phenomena. So, does better symbolic
arithmetic fluency result from the ability to recruit primitive brain regions of non-
symbolic processing for symbolic magnitude processing? or Does the presence of
overlapping brain regions between symbolic and non-symbolic magnitudes determine
the acquisition of symbolic mathematics skill? There is also a possibility that neuronal
recycling might not be a universal phenomenon governing all symbolic mathematics
skills but is dependent on the task or the paradigm used (Marinova et al., 2018). This
means that depending on the task given to the participants as well as their math
abilities, the co-option of brain pathways for symbolic and non-symbolic magnitudes

might differ.

The symbol-grounding problem (i.e. how symbols acquire their meaning) has
long been a question of great interest in the field of numerical cognition. In addition to

the neural recycling account that posits perception of symbolic numbers to be
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grounded in the same neural areas as their non-symbolic counterparts, alternative
accounts on the relationship between symbolic and non-symbolic number processing
have been proposed. While the cardinal principle hypothesis focuses on other core
systems of representation (object tracking or parallel individuation) than the
approximate number system, the symbolic estrangement account provides a
developmental account of the link between the symbolic and non-symbolic magnitudes
(Carey, 2001; Carey & Barner, 2019; Sasanguie & Reynvoet, 2017; Lyons, Ansari, &
Beilock, 2012). According to the cardinal principle hypothesis, learning symbolic
numbers cannot rely on approximations alone as it requires an understanding of
specific properties of numbers like cardinality (Carey & Barner, 2019). Therefore,
symbolic number processing may be associated with the more precise object tracking
system (i.e. grasping a small set of objects about 1 to 4 in a fast but precise manner)
which might initially help children acquire the idea of counting and thus, the property
of cardinality (Carey & Barner, 2019). On the other hand, the symbolic estrangement
account emphasizes the role of development in symbol-non-symbol links. The authors
of this account posit that during the early stages of numerical development symbolic
and non-symbolic numerical abilities might be linked, however, over the years and with
the increasing complexity of symbolic number skills these two representations might
become estranged (Lyons, Ansari, & Beilock, 2012). Indeed, a recent study on the
development of these two representations over three different time points for Grade |
students indicates both non-symbolic and symbolic skills to be related to each other
at the beginning of the academic year, and later the symbolic magnitude processing
skills predict non-symbolic skills but not vice-versa (Matjeko & Ansari 2016).
Additionally, the absence of overlapping activation patterns for non-symbolic and

symbolic magnitudes using RSA and MVPA studies on adult participants could also
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be argued to be evidence of the symbolic estrangement (Wilkey & Ansari, 2019) or the
cardinal principle account. Given the current inconsistent evidence, further research is
required to shed light on these accounts, which in turn may help in understanding the

development and acquisition of symbolic mathematics skills.

1.3.2 Differential processing of absolute and relative magnitudes

An important unexpected finding in study Il (multivariate analyses) revealed
differences between neural representations of absolute and relative magnitudes in the
left rostro-lateral prefrontal cortex (RLPFC) and the right occipital cortices. Prior
studies have suggested that the RLPFC may support relational comparisons as well
as integrating relational information (Krawczyk, 2012). Recent studies have also
highlighted the role of relational thinking in processing fractions (Dewolf et al., 2015;
Kalra et al.,, 2020). However, to our knowledge, this is the first neural study that
suggests the relationship between relative magnitudes and RLPFC. While future
research aimed at examining the similarities and differences in processing absolute
and relative magnitudes are required, initial speculation on these results seems to
suggest the role of relational reasoning in fraction understanding. Understanding the
relation between the two numbers for a fraction (numerator and denominator) and the
two-line lengths for line ratios is essential to access their holistic magnitudes. The
same strategy, however, does not apply for accessing absolute magnitudes.
Therefore, the results on the dissociation of neural representation patterns for absolute
and relative magnitudes suggest that access to these two magnitude types might
engage different neural areas. Given these findings, there is a possibility that fraction
learning that makes use of relational reasoning might aid learners in fraction
understanding. Additionally, a recent study on 194-second grade and 145 fifth grade
students showed relational reasoning to be a significant predictor of fraction
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knowledge, even after controlling for non-verbal IQ, overall mathematics knowledge,
and fraction magnitude processing (Kalra et al., 2020). Thus, we can imagine that the
perceptual learning approach described above (Figure 26) might potentially help link
relational reasoning and symbolic fraction understanding. Furthermore, the
dissociable activity patterns for the two magnitudes might highlight the importance of
building an explicit understanding of the differences and similarities in the properties

of the two number types (whole numbers and fractions) (Rosenberg-Lee, 2021).

1.4 Can game-based learning help fraction instruction?

The findings of study lll reviewed above show that the students in the game
group did not outperform the control group on the fraction knowledge test. However,
the game group showed higher performance at decimals than the control group.
Further, a positive association was found between the overall game performance and
student’s fraction knowledge indicating that better game performance was related to
higher scores on fraction post-test learning outcomes. Therefore, the answer to the
question, ‘can game-based learning help fraction instruction?’ might not be a simple
yes or no. Indeed, game-based learning environments offer unique affordances such
as manipulations and visualization of complex mathematical concepts. Additionally,
they also show positive affective outcomes for students towards mathematics learning.
Students are more engaged and show positive attitudes towards mathematics during
game-based learning (Rosas et al., 2003; Ke & Grabowski, 2007; Ke, 2008). However,
as reviewed in Chapter lll, there is mixed evidence on the effectiveness of game-
based learning for mathematics learning outcomes. Though game-based learning
environments do have their benefits yet inadequate game design, teacher support,
and transfer of knowledge (Tobias et al., 2014; Wouters & van Oostendorp, 2013)
might limit their potential. The game design and transfer of knowledge were already

196



well established in the game Math Mathews Fractions. The conceptual model
presented here provides details on these factors, with a specific focus on what teacher
support in the classroom might look like when using the game Math Mathews

Fractions.

1.4.1 How might the game Math Mathews Fractions support the development of

fraction knowledge in the classroom?

To support the development of fraction knowledge in the classroom, we
propose three aspects of game-based learning environments that need to be
considered. These include the game design, transfer of learning, and teacher support.
First, the design of the game, Math Mathews Fractions was based on addressing the
complexity of the multifaceted construct of fractions. Prior research notes fraction
instruction in the classroom to be disproportionately focused on the part-whole
construct of fractions (Fuchs et al., 2013). This might hinder the acquisition of other
constructs as well as limit the development of holistic knowledge of fractions (Pitkethly
& Hunting, 1996). Indeed, as noted by Rau & Matthews (2017), “no single visual
representation can convey the multiplicity of related but only partially overlapping ideas
that constitute the fractions mega-concept” p.3. In this vein, a mathematics education
expert and professional game designer collaboratively developed Math Mathews
Fractions to complement fraction learning in the classroom with a focus on building
connections with the multiple representations of fractions. The game progression was
designed in line with the objectives and curriculum standards of the French school
system for children aged 9-12. Thus, the play situations (i) increase in difficulty
throughout the game and (ii) remain appropriate for children aged 9-12. Additionally,
the game includes elements of a personalized learning environment such as self-
regulated learning (increased complexity of levels, repetition of tasks) and real-time
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feedback (wrong attempts decrease total points) (Basham, Hall, Carter, & Stahl,
2016). Therefore, Math Mathews Fractions addressed the elements of game design
by including the content aligned with national curriculum standards as well as engaged
play situations for the specific age group. Through multiple modules focused on the
visual understanding of multiple subconstructs and building connections between
different representations of fractions, Math Mathews Fractions aims to build a holistic

understanding of the fraction construct.

Second, the different modules in the game were designed similar to the fraction
tasks students might encounter on real-world assessments, possibly supporting the
transfer of knowledge. For instance, the module focused on the measure interpretation
of fractions includes a number line task where the pirate has to place the fraction by
jumping on the number line and find the fraction on the number line corresponding to
a point by rotating a panel. Though the representations in the game modules were
similar to real-world fraction tasks which might aid in the near transfer of knowledge,
the role of the teacher to leverage the game modules for far transfer effects must not

be underestimated.

Finally, it has been shown that adequate teacher support complements game-
based learning (Wouters & Oostendorp, 2012) and helps with learning outcomes. Math
Mathews Fractions is designed for students with prior knowledge of fractions. So,
teachers were given a short training before the experiment in study Il to help utilize
the game to build connections between the fraction constructs. Varying levels of
teacher support in the game and control group might have possibly influenced the
results of the pre-registered study. Indeed, observations in the classroom revealed
minimal teacher support in the game group. While possible reasons for the findings
are discussed in detail in study Ill, in this section we speculate on an exemplar lesson
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in the classroom with Math Mathews Fractions (inspired by the blended learning

approach; Graham, 2006).

The classroom instruction could possibly be divided into three phases: Before
the game, between the session, and after the game. Specific questions to initiate
reflection and review of concepts could be practiced in these phases. For instance,
before the game is provided to the students, the teacher could review one or two
constructs of fractions with the entire class. The game metrics could potentially guide
this discussion (especially if the game has been used in the classroom before). So, if
the game metrics reveal the average level of the class to be around 4, the teacher
could review specific curriculum objectives from level 4 before the game. This session
could be solely teacher-led. During the game session, the teacher might be able to
gauge some of the most challenging tasks or concepts that students encounter in the
game. These could generate active whole group discussions in the classroom where
the challenging concepts are re-visited. Finally, a debrief session after the game can
help students to synthesize their knowledge. This session could be related to fraction
concepts or more general reflection questions aimed at a new concept acquired, a
misconception realized, or different problem-solving techniques that students used
during the session. Adequate teacher instruction with Math Mathews Fractions could
potentially lead to higher fraction learning outcomes. However, the lack of acceptance
of serious games as educational tools by teachers and the difficulty of integration into
formal schooling has been shown to limit the potential of games (Egenfeldt-Nielsen
2006; Ferdig 2007; Gros, 2015). Besides, the learning potential of technology has also
been shown to be directly related to the teacher’s ability to leverage it to make
connections with the curriculum (Hutchison et al., 2012). Therefore, future

investigations with Math Mathews Fractions might aim at providing teachers an
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exhaustive training to develop such lesson plans or to provide them with pre-made
lessons to help them visualize classroom instruction with the game. Additionally, these
future studies might also help in establishing the validity of the game Math Mathews

Fractions as an instruction and personalization tool in the classroom.

1.5 Integrating RPS and Math Mathews Fraction: implications for fraction

learning

A complex concept such as fractions possibly needs a multipronged approach
during instruction. The current approaches to fraction instruction mostly involve a
combination of declarative and procedural learning. Declarative knowledge deals with
facts and concepts whereas procedural knowledge focuses on specific rules and
sequence of steps to be enacted (Kellman et al., 2008). An approach that is typically
missing from fraction instruction in the classroom is the perceptual learning approach
— an experience-based improvement in the learner’s ability to extract patterns and
relationships from the environment (Goldstone, 1998; Kellman, 2002). Abstract
concepts such as fractions which might require a conceptual change about numbers
in young learners (Ni & Zhou, 2005) as well as pose high cognitive demands due to
their physical structure (Cognitive Load Theory; Mayer, 2002), might benefit from a
balanced approach using declarative, procedural, and perceptual learning
approaches. One potential example of using these three learning approaches by
utilizing the perceptual sensitivity to non-symbolic ratios and Math Mathews Fractions

is discussed below.

While we do acknowledge that the RPS literature is nascent and needs further
exploration, humans have been shown to possess the ability to extract visual

information from the environment and make sense of it. Also, the ubiquitous perceptual
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ability to process non-symbolic magnitudes (length, numerosity, area, etc.) (Leibovich,
Kallai, & Itamar, 2016) might be foundational for developing perceptual learning
interventions as well as instruction on rational numbers. Here, we speculate a
conceptual model of how the knowledge that we gained in the past three years on
RPS and game-based learning might help teachers in the classroom. Of course, this
is just a hypothetical model and further research is required to make any claims on the

validity of this approach.

As shown in the Figure below, fraction instruction might require a three-pronged
approach. Beginning from the perceptual learning perspective, learners could be
introduced to fraction learning by making use of non-symbolic continuous magnitudes.
Technology can serve an important function here by incorporating the principles of
perceptual learning. Specifically, a large number of trials with varied stimuli can aid
learners to assess the invariant and variant properties that are required to make
correct judgments on relative magnitudes (as described in section 1.2.2). The
relational reasoning skills of learners could also be harnessed and developed in this
approach. Eventually, when learners have built fluency to extract the right information
from both within and cross-format trials they could be introduced to symbolic fractions.
At this stage, they must have sound declarative and procedural knowledge to
complement their perceptual learnings. This could potentially be achieved with the
help of Math Mathews Fractions (see section 1.4). Teachers could integrate the game
during instruction to help build connectional understandings between the complex
subconstructs of fractions and provide for a more holistic understanding of fractions.
As mentioned before, it is still too early to be definitively providing answers to complex

questions about fraction instruction and interventions. Future studies using robust
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methods like randomized controlled trials should be undertaken to investigate the

validity of these speculations.
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Figure 27: A conceptual model of fraction learning using declarative, procedural, and

perceptual learning approaches
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CONCLUSION

In this dissertation, we examined the neurocognitive correlates of fraction
processing and learning. The thesis is divided into two main parts. The first part tests
a relatively recent theory, the Ratio Processing System for processing relational
magnitudes and the second part focuses on the effectiveness of a game-based

intervention on fraction learning.

First, our results show a limited role of the RPS in symbolic fraction processing.
On the one hand, the findings support the idea that the RPS underlies non-symbolic
ratio processing in children, typically achieving adults, and adults with developmental
dyscalculia. Interestingly, typically achieving adults also show perceptual sensitivity in
a cross-format task. On the other hand, the absence of perceptual sensitivity to
process symbolic fraction magnitudes indicates a relatively limited role of the RPS.
Taken together, these findings indicate that the RPS may be utilized mainly when
participants are required to approximate or estimate the magnitudes of ratios. Second,
the fMRA study shows that in a passive viewing task with varied fractions and line
ratios, adults did not show any neural adaptation effects to either fractions or line ratios
in the intra-parietal regions. Additionally, we found non-symbolic and symbolic
absolute magnitudes to share overlapping neural regions in the left IPS in participants
with higher mathematics fluency. Further, multivariate analyses revealed a
dissociation of neural activation patterns in the right intra-parietal region for non-
symbolic and symbolic formats across magnitude types. Integrating these results, we
speculate that the RPS might be utilized when approximation or estimation of relational
magnitudes is required. Third, the results of the game-based intervention, Math

Mathews Fractions, indicate the game to be effective for building links between fraction
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and decimal representations, but not overall fraction knowledge. In addition to that,
performance in the game is positively related to overall fraction knowledge at post-
test. This study highlights the critical role of instructional support during game-based
learning and the importance of game metrics as indicators for personalized

assessment tools.

The insights gained from the abovementioned studies may help in re-imagining
symbolic fraction instruction. However, future research is required to establish both
the RPS and the game Math Mathews Fractions’ role in fraction instruction. While a
natural progression of this work will be to analyze the cross-format tasks in children
(before and after fraction instruction) as well as adults with dyscalculia, more broadly,
to establish the role of the RPS in symbolic fraction understanding, research focussed
on utilizing different paradigms in participants with differing levels of fraction
knowledge might be required. It might also be interesting to test the effectiveness of
an RPS based intervention on symbolic fraction learning of individuals. Specifically,
testing interventions that can aid in explicit sense-making processes for cross-format
tasks that might aid in improving magnitude understanding and thus, connectional
fluency between different representations (Rau et al., 2017). Additionally, future
studies could also test the strategies participants use when solving both magnitude
comparison tasks and match to sample tasks in the symbolic fraction format. This
could provide some insights into how individuals might be processing these two tasks
distinctly, but more importantly could aid in understanding the development of
symbolic fraction skills (Obersteiner et al., 2020; Sidney & Alibali, 2017). Continued
efforts are also needed to understand the neural mechanisms behind the RPS as well
as the distinct neural regions that might be involved in processing absolute and relative

magnitudes. Furthermore, investigations using randomized controlled trials where
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teachers are provided with specific training or lesson plans to adequately integrate
Math Mathews Fractions in the classroom could provide definitive evidence for the role
of game-based tools in fraction learning. Lastly, the pursuit of understanding the RPS
using both neuroimaging and behavioral tools could potentially help enhance teacher
training, support individuals with disabilities, and help design better educational games

on fractions.
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APPENDIX A

STUDY |

Table 1: Fractions generated for 3:1 RoR (Note: Nt = numerator of target, Nd =

numerator of distractor)

Nt = Nd Nt # Nd

target match | distractor target | match | distractor
2/4 5/10 2/12 9/12 | 3/4 2/8
2/4 4/8 2/12 6/8 3/4 1/4
1/3 3/9 1/9 3/4 6/8 1/4
2/3 6/9 2/9 312 | 1/4 1/12
3/4 9/12 3/12 6/8 3/4 3/12
1/3 2/6 1/9 3/5 6/10 2/10
2/4 3/6 2/12 8/12 | 6/9 2/9
1/2 2/4 1/6 412 | 1/3 1/9
2/4 6/12 2/12 3/9 1/3 1/9
2/3 4/6 2/9 6/9 8/12 2/9
2/4 1/2 2/12 4/6 8/12 2/9
1/2 5/10 1/6 6/12 | 1/2 1/6
1/3 4/12 1/9 3/6 6/12 2/12
1/2 6/12 1/6 8/12 | 4/6 2/9
1/2 4/8 1/6 8/12 | 2/3 2/9
1/4 2/8 1/12 4/8 2/4 1/6
1/4 3/12 1/12 510 |6/12 2/12
3/4 6/8 3/12 3/6 1/2 2/12
2/3 8/12 2/9 6/12 | 4/8 1/6
1/2 3/6 1/6 3/4 6/8 2/8

Table 2: Fractions generated for 4:3 RoR

Nt = Nd Nt # Nd

target | match | distractor target | match | distractor
3/9 1/3 3/12 8/12 | 4/6 5/10

4/6 6/9 4/8 2/3 6/9 5/10

1/3 3/9 1/4 4/12 | 3/9 2/8

3/6 1/2 3/8 4/12 | 3/9 1/4

6/9 2/3 6/12 6/9 8/12 5/10

2/3 4/6 2/4 8/12 | 2/3 4/8
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2/6 1/3 2/8 1/3 4/12 2/8
3/6 4/8 3/8 4/8 1/2 3/8
4/6 8/12 4/8 6/9 8/12 3/6
1/3 4/12 1/4 4/6 6/9 5/10
4/6 2/3 4/8 8/12 | 4/6 3/6
3/6 2/4 3/8 1/3 4/12 3/12
5/6 10/12 5/8 6/9 4/6 1/2
3/9 4/12 3/12 2/3 4/6 1/2
6/9 8/12 6/12 4/12 | 1/3 2/8
2/6 4/12 2/8 2/5 4/10 3/10
1/3 2/6 1/4 2/3 8/12 3/6
6/9 4/6 6/12 1/2 6/12 3/8
3/6 5/10 3/8 4/5 8/10 6/10
2/6 3/9 2/8 412 | 1/3 1/4
Table 3: Fractions generated for 2:1 RoR
Nt = Nd Nt # Nd
target | match | distractor target | match | distractor
1/5 2/10 1/10 8/12 | 6/9 3/9
4/6 6/9 4/12 8/10 | 4/5 2/5
1/2 5/10 1/4 4/8 3/6 1/4
3/4 9/12 3/8 3/9 2/6 2/12
2/5 4/10 2/10 312 | 1/4 1/8
2/4 3/6 2/8 4/6 6/9 2/6
2/4 4/8 2/8 6/12 | 5/10 1/4
2/6 1/3 2/12 510 |6/12 3/12
3/6 1/2 3/12 6/12 | 4/8 2/8
2/3 4/6 2/6 6/8 3/4 3/8
2/4 1/2 2/8 8/12 | 6/9 1/3
1/3 2/6 1/6 4/6 2/3 1/3
1/4 2/8 1/8 5/10 | 4/8 1/4
1/3 3/9 1/6 2/3 4/6 3/9
3/6 4/8 3/12 5/10 | 4/8 2/8
3/6 5/10 3/12 2/8 1/4 1/8
4/5 8/10 4/10 8/12 | 4/6 1/3
3/6 6/12 3/12 8/12 | 6/9 4/12
2/6 4/12 2/12 4/8 3/6 3/12
1/2 3/6 1/4 1/2 5/10 3/12
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Table 4: Fractions generated for 6:5 RoR

Nt = Nd Nt # Nd
target | match | distractor target | match | distractor
4/10 | 2/5 4/12 3/6 4/8 5/12
510 | 2/4 5/12 10/15 | 6/9 5/9
6/10 | 3/5 6/12 6/9 2/3 5/9
510 | 4/8 5/12 12/14 | 6/7 10/14
510 | 3/6 5/12 6/15 |2/5 3/9
2/10 | 1/5 2/12 4/8 6/12 5/12
2/5 6/15 2/6 12/15 | 8/10 6/9
1/5 3/15 1/6 4/8 7/14 5/12
4/10 | 6/15 4/12 4/8 1/2 5/12
6/10 | 9/15 6/12 12/15 | 4/5 2/3
4/5 12/15 | 4/6 3/15 [ 1/5 1/6
8/10 | 4/5 8/12 6/10 |3/5 3/6
510 | 1/2 5/12 12/15 | 4/5 10/15
8/10 |12/15 |8/12 3/5 9/15 2/4
3/5 9/15 3/6 9/15 | 3/5 2/4
2/5 4/10 2/6 2/5 4/10 3/9
1/5 2/10 1/6 4/6 8/12 5/9
3/5 6/10 3/6 6/12 | 2/4 5/12
510 |6/12 5/12 6/10 |3/5 4/8
2/10 | 3/15 2/12 2/4 4/8 5/12
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APPENDIX B

STUDY I

Table 1: Stimuli used for fractions and line ratios.

Block Numerator Denominator

No-Adapt 2 6
3 7
11 32
9 17
7 9
2 7
11 70
5 48

No-Adapt 2 4
12 15
6 17
16 26
2 15
16 54
13 28
5 6

Adapt_1:3 1 3
4 12
6 19
3 9
8 25
2 7
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5 15

7 22

No Adapt 14 15
11 32

1 8

13 27

34 62

7 26

12 39

7 11

No Adapt 15 19
1 4

14 35

8 13

12 31

5 18

3 23

8 10

Adapt_1:6 2 12
1 6

8 48

6 36

4 24

3 17

5 29

7 41

Adapt_1:5 1 5
3 15
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5 26
8 40
2 11
6 30
4 21
7 35
No Adapt 3 5
15 19
7 14
8 62
4 21
9 19
45 68
4 37
Adapt_2:3 8 12
6 9
2 3
10 16
4 7
12 18
14 22
16 24
Adapt_2:5 4 10
8 19
14 35
6 15
12 29
10 25
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16 39

2 5

Adapt_3:5 3 5
6 10

15 25

18 31

9 16

12 21

24 40

21 35

No Adapt 1 3
21 67

5 24

3 16

24 54

5 8

3 5

1 8

Adapt_2:9 2 9
4 18

8 35

6 26

10 45

12 54

14 63

16 71

No Adapt 8 9
11 14
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3 8

14 41

2 5

21 33

2 3

8 19

Adapt_3:7 18 41
6 14

3 7

9 20

12 28

15 34

21 49

24 55

Adapt_1:4 2 8
3 11

5 19

8 31

1 4

6 23

4 16

7 28

No Adapt 4 9
16 18

15 35

2 6

13 31

8 9
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12 34
11 27
Adapt_2:7 2 7
4 14
6 22
8 28
10 35
12 43
14 49
16 57
No Adapt 21 66
3 4
2 26
13 23
5 5
9 11
7 17
14 36
No Adapt 5 9
15 29
14 31
3 8
2 16
34 62
11 12
1 24
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Table 2: Stimuli used for lines and numbers

Block

Magnitude

No Adapt

5

14

33

2

9

17

6

10

Adapt

8

6

8

10

No-Adapt

32

18

17

22

11

No-Adapt

18
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22

34

62

No Adapt

19

35

44

18

10

Adapt

23

26

25

26

24

26

21

26

No-Adapt

14

28

40

242




—_
(o))

W
~

Adapt

—
—

—
N

—_
(o))

—
—

—_
N

—
—

—_
~

—
—

Adapt

wW
w

w
—_

w
»

w
—_

w
e}

w
—_

w
(6)]

w
—_

Adapt

No Adapt

W O N O W o &~ O o

—_
o

243




32

15

25

Adapt

23

25

26

23

23

24

23

27

No Adapt

13

14

20

11

25

39

Adapt

53

52

55

52

54

52
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17
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16

36
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16
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16
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