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Chapter 1

Introduction

The face contains a lot of semantic information about a person, such as
his gender, age, or ethnicity, and can even give a glimpse of his personality
or his cognitive state. Several works in psychology [121][15][158] have also
highlighted the importance of the face in human communication. For exam-
ple, it was shown in [121] that facial expression contributes to 55% in the
impact of a spoken message, while textual content and speech signals (e.g.
word accentuation, punctuation) contribute only to 7% and 38% respectively.
During social interaction, humans thus mainly analyse their respective faces
to adjust their behaviour accordingly.

For several decades, automatic face analysis has become a very active re-
search topic in computer vision, providing the opportunity (1) to save human
resources, (2) to process data rapidly, continuously and on a large scale, and
(3) to obtain objective face descriptors. A broad range of applications take
advantage of this technology, such as security (e.g. to improve identification
via biometrics authentification or to deploy surveillance systems on a large
scale), robotics (e.g. to recognize, interpret, process, and simulate human af-
fects allowing human-machine interaction), healthcare (e.g. to improve facial
communication or to measure the intensity of apparent suffering), entertain-
ment (e.g. to generate avatars for video games or to measure emotional
engagement in front of an advertisement).

In order to automate face analysis tasks, most approaches use machine
learning techniques for their capacity to automatically extract knowledge
from training data and to learn task-specific face patterns. However, current
face analysis systems are still struggling to adapt to the immense variety
of morphological traits, head poses, or objects that can occlude the face.

4



Thus, the scientific objective of this thesis is to improve their robustness
in unconstrained environments that can involve many variations in the face
appearance.

To this end, the choice of the model architecture and the learning algo-
rithm is therefore crucial to ensure the robustness. With an ever-increasing
amount of data and computational resources, deep neural networks (DNN)
based methods have often led to significant advances for many machine learn-
ing problems, including face analysis. However, DNN generalize poorly on
out-of-distribution data, thus limiting their capacity to adapt to the most
extreme variations not observed in the training data. On the other hand,
ensemble methods are a promising approach to address this issue. Indeed,
instead of a single strong predictor, they use several base predictors, whose
combination leads to reduce the variance in prediction errors and improve
the overall robustness. Throughout this thesis, we then propose to merge
DNN-based methods and ensemble methods to develop an accurate and ro-
bust face analysis system. It takes place in the frame of the FacIL project
(supported by the French National Agency - ANR). FacIL is an acronym
standing for ”Face Interpretation with deep and ensemble Learning”.
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1.1 Face analysis pipeline

Face detection

Facial expression 
recognized

Preprocess Facial expression recognition

    Representation       Prediction

Face alignment

Figure 1.1: A classical face analysis pipeline.

As illustrated in Figure 1.1, a face analysis pipeline contains several ele-
ments. Given an image displaying somebody, a preprocess is first performed
by detecting the face in order to keep only the global face appearance. In
addition, face alignment can be conducted to refine the face localization and
to obtain information about the face geometry as well as shape-indexed local
appearances that can help to better learn task-specific face patterns. Then,
the face appearance and shape information are used to extract a face rep-
resentation upon which a predictor can be trained from training data. In
particular, in this thesis, we perform facial expression recognition.

1.1.1 Preprocess

Face detection. Face detection is a specific case of object detection, fo-
cusing on the presence and location of one or more human faces in an image.
As illustrated in Figure 1.1 (left), the objective is to output the smaller rect-
angular bounding box encompassing a face. The image is then cropped from
the detected face bounding box to remove non-face related information as
much as possible and keep only the face appearance.

Face alignment. Face alignment consists in locating facial landmarks (eye-
brows, eyes, nose, mouth, jaw) that form the face shape. This is an active
research topic, whose modeling techniques may have similarities with those
used for human pose estimation [112]. It allows to identify the geometric
structure of the face and to determine the shape of face components (e.g.
smile, open/closed eyes). On the other hand, the shape-indexed local ap-
pearances allows to detect highly-discriminative local texture patterns that

6



cannot be identified by the face shape alone (e.g. dimples in the mouth
corner). In addition to providing knowledge about the face structure, face
alignment also enables to better crop the face image by using the smaller
bounding box containing all the facial landmarks.

1.1.2 Facial expression recognition

From the texture and geometric information of the face, it is then possible to
model a multitude of higher-level face analysis tasks, such as face recognition
[83] or face reconstruction [14]. In this thesis, we address in particular the
issue of facial expression recognition, which can be used to estimate the
cognitive state about a person. Three main approaches allow to recognize
facial expression (FE): (1) a categorical model, (2) a dimensional model, or
(3) the facial action coding system.

Categorical model. A first approach is to classify FEs into several cate-
gories. Ekman et al. [47] have retained six prototypical FEs that have been
validated through an inter-cultural consensus: happiness, surprise, sadness,
anger, fear, and disgust. To this list can be added the neutral FE. This
categorical approach is currently the most popular to model FEs due to the
simplicity of image annotation. Indeed, a small number of categories makes
it easier to obtain an inter-cultural consensus, thus reducing the risk of an-
notation inconsistencies between different human labellers. In addition, it
is the simplest strategy for annotating very large datasets [123]. Finally, it
can be noticed that the FE probabilities can provide additional nuances, by
describing a FE as a mixture of several basic FEs, as illustrated in Figure
1.2 (left).

Dimensional model. Facial expression can also be described by two di-
mensions [139]: (1) the valence, which measures its attractiveness from pleas-
ant (positive valence) to unpleasant (negative valence), and (2) the arousal,
which measures its intensity from excited (positive arousal) to calm (negative
arousal). For example, a scream associated with fear has negative valence
and positive arousal. Two other dimensions can be added [51]: the control
and expectancy, which respectively measures the feeling of dominance and
unpredictability. However, most dimensional approaches use only valence
and arousal. Figure 1.2 (middle) illustrates different possible projections of
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Figure 1.2: Three main approaches to recognize facial expression (FE). Cat-
egorical model: classification of the 7 basic FEs. Dimensional model:
possible 2d-projections of basic FEs in terms of valence (from unpleasant to
pleasant) and arousal (from calm to excited). Excerpt from [85]. Facial ac-
tion coding system: each FE can be described by a combination of action
units, i.e. activation of one of the 44 facial muscles. Excerpt from [118].

categorical FEs on the two-dimensional valence/arousal space. Contrary to
the categorical approach, it is difficult to establish a consensus to annotate
each face image. It requires expert human labellers to ensure annotation
quality, thus limiting the availability of annotated data.

Facial action coding system. As the facial expression is linked with
the contraction of particular facial muscles, other approaches have instead
implemented a coding system mapping each FE towards a combination of
contracted facial muscles. The most used coding system is the Facial Action
Coding System (FACS) proposed by Ekman et al. [48]. The FACS manual
divides the face into 44 facial muscles. The contraction of a specific facial
muscle is called an action unit (AU). Anatomical studies have then led to
describe each basic FE by a specific combination of AUs, which can be used
for example to better capture micro-expressions [98]. Figure 1.2 (right) illus-
trates the most common AUs from upper and lower face parts. For example,
happiness is typically associated with the smile described by lip corner puller
(AU12) and with cheek raise (AU6). Unfortunately, few annotated data are
available to learn AU detection. Indeed, this requires human experts in FACS
labeling, whose specific skills take time to assimilate.
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1.2 Factors of variation in the data

The face analysis tasks presented above are well modeled in lab-controlled
conditions: each face is frontal and well exhibited, allowing to capture a
maximum of semantic information during training and to obtain a good
accuracy during testing under similar conditions. However, in real conditions,
the model performance can be strongly degraded due to factors exogenous to
the given task, acting as noise. Indeed, a great variety of head poses or objects
(e.g. glasses, mask, hat, and so on) can affect the face visibility and corrupt
the input features fed to the model. In addition, identity-related information
(e.g. morphological traits, age, ethnicity) can also be an important source
of variations affecting the face appearance, leading to deteriorate the model
performance. Generally speaking, three factors of variation are particularly
challenging today to obtain a robust face analysis system: identity, head
pose, and partial occlusions. The objective of this thesis is to improve the
robustness of face analysis systems to each of these factors.

1.2.1 Identity variations

Figure 1.3: Identity variations. Images from VGGFace2 [23].

A face can be identified by several attributes, such as gender, age, eth-
nicity, and specific morphological traits. There is an immense variability of
such identity-related information, which is then one of the main sources of
variation in face images. Given a face analysis task, it is then difficult to
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learn a model that can adapt to all possible variations in identity. For in-
stance in facial expression recognition (FER), a large intra-class variance is
often observed and can be attributed to the strong variations in identity. As
illustrated in Figure 1.3, we can see that for each FE class (top to bottom:
anger, fear, happiness), identity-related information has a strong impact in
the face appearance, which can lead to corrupt the input features fed to the
FER model and degrade its performance.

1.2.2 Head pose variations

Figure 1.4: Head pose variations. Images from 300W-LP [199].

The face appearance can also be greatly influenced by head pose with
report to the camera. The head pose is defined by three Euler angles around
each of the 3D-axes. These angles are called yaw (rotation around the y-axis),
pitch (rotation around the x-axis) and roll (rotation around the z-axis). Fig-
ure 1.4 shows the impact of yaw intensities on the face appearance of three
different subjects. We can then observe that head pose variations rapidly
modify the face appearance, which can degrade at the same time the perfor-
mance of a face analysis model. In particular, the most extreme orientations
lead to hide face parts that can be highly discriminative depending on the
task. For example in face alignment, a profile face (i.e. associated with ex-
treme yaw) hides almost half of the face, as illustrated in Figure 1.4 (right).
The model should then be able to estimate the facial landmarks coordinates
in this non-visible part without having access to their surrounding texture.
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1.2.3 Partial occlusions

Figure 1.5: Partial occlusion variations. Images from COFW [20].

Partial occlusion is another important factor of variations in the face
images. Indeed, a great variability of face parts can be hidden by an infinity of
possible objects with various textures and orientations. Figure 1.5 illustrates
the diversity of possible objects that can occlude a face, such as a hat, hair,
glasses, mask, bubbles, corn, and so on. In addition, as we have seen above,
certain face parts can also be self-occluded by extreme head pose. Any model
cannot capture all possible occlusions. Its architecture and/or its learning
algorithm should then be able to learn to adapt to this great diversity of
appearances, otherwise its performance is severely affected. The robustness
to occlusions, in addition to identity and head pose variations, thus remains
a challenge for current face analysis systems.
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1.3 Contributions

In order to increase the overall robustness in unconstrained environments, we
propose to merge three approaches commonly used in the literature: deep
neural networks-based methods, ensemble methods, and adaptive methods
that explicitly integrate a specific factor of variation into the model to better
adapt it to the most extreme variations related to this factor.

Given a target task (e.g. face alignment or facial expression recognition),
and a model layer (e.g. representation or prediction layer), we use an ensem-
ble of base networks, whose decisions are adaptively weighted by a so-called
gating variable, identified as an important source of variations exogenous to
the task (e.g. head pose). Thus, these base networks are each specialized on
a region of the gating space (e.g. left-oriented faces), so that the model can
select the most relevant base networks depending on the input, even under
the most extreme conditions.

To sum it up, the main contributions of our approach are three-folds:

• From an architectural standpoint, we propose a new adaptive deep
ensemble architecture using (1) an efficient gating structure, allowing
to jointly learn the base networks and a hierarchical partition of the
gating space upon which specialize them, and (2) a suitable exogenous
gating variable to better adapt the base networks to the most extreme
conditions.

• From a learning standpoint, we propose a new training loss encouraging
to remove the exogenous information from the endogenous representa-
tion deciphering the target task, further improving the overall learning
algorithm and the robustness of base networks to exogenous variations.

• From an experimental standpoint, we propose generic methods that
can be applied to multiple layers (e.g. prediction, representation layer)
and multiple face analysis tasks (e.g. face alignment, facial expression
recognition), and even more generally to any predictive task where an
important source of exogenous variations can be identified (e.g. digit
recognition with rotation variations, shape recognition with scale vari-
ations). We experimentally validate our approach on synthetic and
realistic datasets. In particular, we show that our face analysis system
is particularly robust to large variations in head pose, identity, and
partial occlusions.
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These contributions have led to multiple publications in international
journals and conferences:

Preprint

• E. Arnaud, A. Dapogny, and K. Bailly, ”THIN: THrowable Information
Networks and application for facial expression recognition in the wild”,
under review for IEEE Transactions on Image Processing, 2020.

Journal paper

• E. Arnaud, A. Dapogny, and K. Bailly, “Tree-gated deep mixture-of-
experts for pose-robust face alignment,” IEEE Transactions on Bio-
metrics, Behavior, and Identity Science, 2019.

Conference papers

• E. Arnaud, A. Dapogny, and K. Bailly, ”Tree-gated deep regressor
ensemble for face alignment in the wild”, in IEEE International Con-
ference on Automatic Face and Gesture Recognition, 2019.

• S. Bernheim, E. Arnaud, A. Dapogny and K. Bailly, ”MoDuL: Deep
Modal and Dual Landmark-wise gated network for facial expression
recognition”, in IEEE International Conference on Automatic Face and
Gesture Recognition, 2020.

Seminar

• E. Arnaud, A. Dapogny, and K. Bailly, ”Tree-gated deep regressor
ensemble for face alignment in the wild”, Reconnaissance des Formes,
Image, Apprentissage et Perception, 2020.

In addition, we have released the open-source Python code framework
(running on top of TensorFlow) in [4], allowing to perform end-to-end facial
expression recognition and face alignment in unconstrained environments.
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1.4 Outline

This thesis is organized as follows. In Chapter 2, we review the main meth-
ods used for face alignment and facial expression recognition, then discuss
those improving their robustness. In Chapter 3, we introduce deep ensem-
ble methods that allow both to be accurate due to DNN-based methods that
have a strong representational capacity while being robust to large variations
due to ensemble methods that reduce the variance of prediction errors. We
also discuss adaptive methods that allow to emphasize on the most infor-
mative parts of the model depending on the input image. These methods
then allow us to generically define several adaptive deep ensemble methods,
which are first evaluated on synthetic datasets, then on real-world datasets
in Chapter 4, thus validating the robustness of our face analysis framework
to large variations in head pose, identity, and partial occlusions. Finally, we
conclude and discuss future works in Chapter 5.
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Chapter 2

Related work

In this chapter, we present the methods used in the literature to model face
alignment [79][179] and facial expression recognition [142][99]. These meth-
ods differ mainly by (1) the model architectures, which can use handcrafted-
or learning-based approaches to extract a global or local representation of
the face, and (2) the learning algorithms. All these items are discussed in
the following sections.

For face alignment (in Section 2.1) and facial expression recognition (in
Section 2.2) respectively, we first review the main methods with an emphasis
on deep learning approaches that have led to significant advance in these
fields. We then present the methods explicitly integrating a specific factor
of variation in their model architecture or learning algorithm, in order to
increase the robustness to variations related to this factor. In Section 2.3, we
conclude and discuss the different advantages of these methods, so that they
can be merged to take advantage of their respective benefits and provide a
robust model.
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2.1 Face alignment

From a 2D face image I, face alignment aims to locate P facial landmarks that
form the face shape y ∈ R2×P (the p-th column of this matrix corresponds
to the 2D-coordinates of the p-th facial landmark). It typically starts from
an initial shape ŷ(0), then iteratively updates the landmark coordinates until
convergence.

Two main types of models can be used for face alignment:

• Appearance model, which processes the pixel intensities, either by using
a single holistic model for the global face appearance, or by using P
local models for the shape-indexed local appearances.

• Shape model, which processes the landmark-wise distances to ensure
that these landmarks form a feasible face shape. It allows to integrate
shape constraints in the face alignment model.

In this section, we first present parametric methods that use explicitly
shape constraints to align face appearance and shape models. We then
present regression-based methods that directly learn the mapping from face
appearance to landmark coordinates, thus using implicitly the shape con-
straints. Finally, we detail the methods integrating a specific factor of vari-
ation in their model architecture of learning algorithm.

2.1.1 Parametric methods

Parametric face alignment methods use deformable appearance and shape
models, whose the control parameters are fitted for each test image. These
methods mainly differ according to the approach used to model the face
appearance: either a holistic approach with Active Appearance Models as
representative, or a local approach with Constrained Local Models.

2.1.1.1 Active Appearance Models

Holistic appearance model. Holistic face appearance is defined by the
shape-free texture, i.e. the pixel intensities of the warped image onto a given
shape. Each training face image is warped onto the mean shape to generate
the face appearance g. Face appearance can then be modeled by applying
Principal Component Analysis (PCA) to learn a set of basis appearances
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forming the column matrix Pg that captures the appearance variations from
a mean appearance ḡ. Any face appearance g can then be generated as
follows:

g = ḡ + Pgbg (2.1)

where ḡ is the mean appearance, Pg the matrix containing the main modes of
appearance variations, and bg the appearance parameter vector controlling
the deformation of the generated appearance.

Shape model. Face shapes are commonly first normalized by removing
rigid transformations (translation, scaling, rotation) with Procrustes analysis
[57]. Second, they are modeled by applying PCA to learn a set of basis shapes
forming the column matrix Ps that contains the main modes of face shape
variations from the mean shape s̄. Any normalized face shape s can then be
generated as follows:

s = s̄ + Psbs (2.2)

where s̄ is the mean shape, Ps the matrix containing the main modes of
face shape variations, and bs the shape parameter vector controlling the
deformation of the generated shape.

Aligning appearance and shape models. Active Appearance Models
(AAM) [27] estimate landmark coordinates by aligning the appearance and
shape models to a test image. Given shape parameters (i.e. including PCA,
translation, scaling and rotation parameters) and appearance parameters,
the alignment is evaluated by comparing the generated appearance and the
test image warped by the generated shape.

This usually involves minimizing the sum of pixel squares of their appear-
ance difference, called residual image. This optimization problem is solved
by a search algorithm that iteratively updates model parameter estimations.
Figure 2.1 illustrates iterative updates from an AAM search, by showing the
generated appearance within the generated shape.

Two types of search algorithms can then be used to minimize the resid-
ual image: (1) analytic methods by using the gradients of residual image
with report to the parameters in a Gauss-Newton fashion [119][10], and (2)
regression-based methods by regressing the mapping between the residual
image and the remaining parameter updates [65][141].

Unfortunately, AAM generalize poorly on unseen data by their limited
capacity to capture all possible variations in the PCA matrices. Nevertheless,
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Figure 2.1: The iterative process of the convergence of the AAM. Fore clarity,
the facial landmarks are linked. Excerpt from [96].

advances on AAM have recently been proposed to improve their robustness:
(1) by using in-the-wild training data [160], (2) by representing face appear-
ance otherwise than the raw pixels, such as HOG [3], SIFT [162], SURF [26],
or Haar-like features [9], (3) by fitting with advanced strategies [161]. How-
ever, the robustness to certain factors of variation such as partial occlusion
remains difficult to achieve.

2.1.1.2 Constrained Local Models

Rather than modeling the face appearance in a holistic fashion, Constrained
Local Models (CLM) learn P independent local appearance models for each
facial landmark, whose the decisions are regularized by a global face shape
model.

Given a face image I, CLM can be formulated as searching the shape
parameter b that maximizes the product of the likelihood P(b) of the gen-
erated shape ŷ and the P independent local appearance likelihoods of each
facial landmark:

b∗ = arg max
b

P(b)
P∏
p=1

P(ŷ.,p = y.,p|ŷ.,p, I) (2.3)

where P(ŷ.,p = y.,p|ŷ.,p, I) is the probability that the p-th true facial landmark
is located at position ŷ.,p given the local appearance provided by the ŷ.,p-
centered image patch (illustrated in Figure 2.2).

Thus, the local appearances modeled by P(ŷ.,p = y.,p|ŷ.,p, I) allow to
estimate the landmark coordinates forming a face shape, whose likelihood is
measured by P(b) thus acting as a regularizer of the local appearance models.

The local appearance models can then be categorized into two groups:
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Figure 2.2: Constrained Local Models [179]. The local appearance models
are independent from each other to estimate landmark coordinates. The
global shape model ensures the consistency of the generated face shape.

• Classifier-based models [8][30]: for each facial landmark p, a binary
classifier is trained to predict whether the ŷ.,p-centered patch is aligned
with the true y.,p-centered patch.

• Regression-based models [105][31]: for each facial landmark p, a regres-
sor is trained to predict the remaining displacement ∆ŷ.,p = y.,p − ŷ.,p
towards the ground truth, depending on the current ŷ.,p-centered patch.

After independently estimating the coordinates of each landmark, the
global face shape should be consistent. CLM then use a parametric face
shape model to regularize and refine the local appearance models. Most
CLM model the global face as a Gaussian multivariate, whose the covariance
matrix is used to measure the likelihood of landmark-wise distances, and thus
penalizing the infeasible face shapes.

The optimization problem in Equation 2.3 is then solved by a search
algorithm that alternatively estimates the landmark coordinates that best fit
the local appearance models independently, then refines them with the global
shape model. This alternative optimization is repeated until convergence.

Although CLM is often better than AAM due to the local approach, which
can for example alleviate the influence of partial occlusion, their robustness
to large variations is nevertheless limited by their low capacity to capture all
possible variations.
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2.1.2 Landmark coordinates regression methods

Rather than using parametric methods to handle or regularize the face shape
variations, regression-based methods aim to learn directly the mapping func-
tion from face appearance to landmark coordinates. We can then divide these
methods into two categories:

• Direct regression: given a face image I, the objective is to learn a
regression mapping function R between appearance features φ(I) and
landmark coordinates y:

R : φ(I)→ y ∈ R2×P (2.4)

• Cascaded regression: given a face image I and an initial face shape
y(0) (typically the mean shape), the objective is to sequentially learn
a cascade of regression mapping function Rt between shape-indexed
local appearance features φ(y(t), I) and remaining displacements ∆y(t)

in the shape space:

Rt : φ(y(t−1), I)→ ∆y(t) ∈ R2×P (2.5)

Different regressor architectures and appearance features can be used for
these methods. In particular, it is possible to learn them jointly by employing
deep learning techniques.

2.1.2.1 Direct regression

Direct regression methods consist in learning directly (one single stage) the
mapping from image appearance to landmark coordinates, without initializa-
tion. There are then two types of direct regression methods: local (by using
a set of local patches), and global (by using the holistic appearance image).

Local direct regression methods randomly sample patches in the face
image and learn the displacements towards the true landmark coordinates
by using the patch-wise local appearance features. Unlike CLM that pre-
dict landmark-wise displacements independently, direct regression learns all
displacements simultaneously. Random forests [181][34] (for regression) are
often used to handle local patches, where each tree uses the appearance fea-
tures related to a specific patch. The main drawback to these local methods
is the randomly sampling of the patches. Indeed, highly informative parts of
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the face can be under-represented and poorly captured by the patches. In
addition, it can lead to a high sensitivity to occlusions.

Global direct regression methods use instead the holistic image appear-
ance to better capture all the facial parts that can be informative. This
approach is the most direct but can rapidly lead to overfitting if the amount
of training data available is not large enough, or underfitting if the repre-
sentational capacity is not strong enough. In the last decade, new datasets
annotated in landmark coordinates have been published [89][140][20][199],
containing a lot of in-the-wild data. Combined with the availability of pow-
erful computational resources, it then became possible to take advantage of
the strong representational capacity of large deep neural networks (DNN),
which can encompass many possible variations in the data. DNN-based meth-
ods [92][187][191] have thus allowed to significantly improve the localization
performance compared to previous approaches, especially in unconstrained
environments.

2.1.2.2 Cascaded regression

As direct regression in one-stage is very challenging, other approaches have
instead divided the regression task into several tasks. They use sequentially
several regressors, each predicting the remaining displacements between the
landmark coordinates estimated by the previous regressors and the target
coordinates. This is called cascaded regression.

Starting from a face image I and an initial guess ŷ(0) (typically the mean
shape), a first regressor R1 is trained to predict the displacements ∆y(1) =
y − ŷ(0) from initial landmark coordinates towards the target. The input
of R1 is usually the shape-indexed local appearance features φ(I, ŷ(0)) of the
initial guess. At the end of this stage, a first landmark coordinates estimation
is given by ŷ(1) = ŷ(0) +R1(φ(I, ŷ(0))). Then a second regressor R2 is trained
to predict the remaining displacements ∆y(2) = y− ŷ(1) from the estimation
ŷ(1), and so on. Figure 2.3 illustrates the cascaded regression procedure for
face alignment, whose the pseudo-code is summarized in Algorithm 1.

Thus, at each cascade stage, the predictions are refined in order to im-
prove the displacements predicted at the previous stages. Training is then
performed in a coarse-to-fine fashion: the first stages of the cascade cap-
ture large deformations (e.g. translation, scaling), while the last stages focus
on more subtle deformations to better align locally with the face (e.g. the
contours of the mouth, eyes or jaw).
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Figure 2.3: Cascaded regression. From the initial mean shape, cascaded re-
gressors are trained to sequentially update the landmark coordinates towards
the ground truth. Excerpt from [84].

Algorithm 1 Cascaded regression
Input
Face image: I
True landmark coordinates: y
Initial landmark coordinates estimation ŷ(0) (e.g. mean shape)

Procedure

1: for t = 1, ..., T do
2: Train a regressor Rt from shape-indexed features φ(I, ŷ(t−1)) to the

remaining displacements ∆y(t) = y− ŷ(t−1)

3: Update landmark coordinates estimation:

ŷ(t) = ŷ(t−1) +Rt(φ(I, ŷ(t−1))) (2.6)

Output
Landmark coordinates estimation: ŷ = ŷ(T )

Cascaded regression methods depend on the model architecture of the re-
gressor Rt and how the features are extracted through φ. The early work was
proposed by Cao et al. [24], with a fern for the regressor and pixel intensity
differences for shape-indexed local appearance features. Xiong et al. [180]
use instead a cascade of linear regressors based on SIFT descriptors applied
to each patch. However, these regressors are rapidly limited in their ability
to capture many possible variations. The strong representational capacity of
deep neural networks have then allowed to address this issue.

Sun et al. [153] were the first to use convolutional layers for each feature
extractor φt at each stage t in the cascade. Note that the feature extractors
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are indexed by t, and are thus different from one stage to another in the cas-
cade, contrary to the previous methods. At the first stage, they use a deep
CNN with four convolution layers to estimate the coordinates of 5 facial land-
marks. Then, for each landmark, they refine locally the previous estimation
using a shallower CNN. In the same vein, Zhou et al. [196] localize 68 facial
landmarks. But instead of refining the landmark coordinates independently,
they divide the face by components (eyebrows, eyes, mouth and nose), then
share network parameters on each of these component to refine locally the
coordinates of landmark subsets.

On the other hand, other approaches train the cascaded regressors in an
end-to-end fashion [35][159]. For instance, Trigeorgis et al. [159] propose to
mimic cascaded behaviour by a recurrent neural network. By sharing convo-
lutional layers in all cascade stages, the feature extraction can be improved.
In addition, learning simultaneously all cascaded regressors allows the land-
mark displacements to follow a more optimized trajectory, leading to increase
the overall accuracy.
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2.1.3 Methods explicitly integrating a factor of varia-
tion

Although the strong representational capacity of DNN-based methods have
significantly improved the robustness in unconstrained environments by en-
compassing more possible variations, recent approaches also integrate a spe-
cific factor of variations to better adapt the model architecture and/or the
learning algorithm, leading to achieve a better robustness to large variations
in this factor. In what follows, we review such methods according to the
factor of variation: facial expression, partial occlusion and head pose.

Facial expression. Face appearance and shape can be strongly affected
by various facial expressions (FEs). Compared to neutral expression, each
FE involves localized and complex changes in each facial component, de-
pending on the FE intensity. Some approaches have been developed to be
explicitly robust to FE variations. For instance, the authors in [146][178][103]
use the multi-task learning framework to jointly locate facial landmarks and
recognize facial action units. By sharing a common representation, what is
learned for one task can help to better learn the other task, leading to im-
prove their respective generalization capacities and accuracies. In particular,
using AU recognition as co-task allow to better adapt the landmark detector
to FE variations. Indeed, AU describes the facial expression, and learning
to recognize them leads to identify certain discriminative face parts that can
help both to better locate facial landmarks and to alleviate the influence of
FE. It is also possible to add more tasks (e.g. facial attributes classification
[192][135]) to further take advantage of the multi-task learning techniques
and learn a more robust representation. However, these techniques require
additional data annotated with auxiliary attributes.

Partial occlusion. Regarding partial occlusion, several difficulties have
to be overcome to alleviate its influence: predicting the visible part of the
face so as to use the associated local appearance to predict all the land-
mark coordinates, and being flexible enough to detect an immense variety
of occlusions. Several strategies have thus been proposed in the literature
[20][55][177][186][190]. These approaches generally consist in explicitly pre-
dicting the occluded part of the face. Mainly, these methods differ in three
ways.
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First, these methods differ in the way they predict occlusions. A first ap-
proach is to manually predefine several regions in the face image, then train
an occlusion detection model predicting which region is occluded. In [20],
they divide the face image into nine uniform parts, whereas [186] divide the
image into facial components from the current landmark coordinates. An-
other way is to estimate the occlusion probability of each landmark [55][177].
It allows to emphasize on the local appearances of the visible landmarks.

Second, these methods differ in how are used the information related to
the occluded regions. For example, in [186], the corresponding features of
a region detected as occluded are discarded. Conversely, Zhang et al. [190]
use denoising auto-encoders to recover the appearance of the occluded region
and use this information to perform alignment, as shown in Figure 2.4.

Figure 2.4: Examples of face images denoised by auto-encoders in [190] to
better locate landmarks (occluded or not). The first row shows the origin
occluded faces. The second raw shows the denoised images. The third row
shows the occlusion location estimation.

Finally, these methods differ on the type of training data that is used
to learn the occlusion detector. For example, [55] use non-occluded face
images augmented with synthetically generated occlusions, while [20] use real
occluded data with manually annotated landmark visibility ground truth.
In both cases, the data used are either non-realistic or tedious and time
consuming to collect.
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Head pose. Regarding head pose, a first approach to alleviate its influence
on the localization performance is to train pose-dependent models, by having
a specific model for a given range of pose (e.g. frontal, left and right profile).
For instance, Cootes et al. [28] propose multi-view AAM by training one spe-
cific AAM for each pose range. At inference time, the landmark coordinates
are estimated by the AAM model having the smallest fitting error among the
three. Zhu et al. [198] extend multi-view methods with more complex model
architectures and use more pose ranges.

Rather than directly predicting 2D landmark coordinates, other approaches
predict 3D face shape to better handle the self-occluded landmarks. For in-
stance, Jourabloo et al. [81] use a 3D deformable face shape model. They
train a cascaded CNN models to iteratively update the 3D shape parameters
from the face appearance. At each iteration of the cascade, a 3D-to-2D pro-
jection model is then used to predict the 2D landmark coordinates. However,
it requires 3D scans of the face which are difficult to collect to be able to
train the models with a lot of data.

Finally, other approaches instead explicitly use the head pose informa-
tion into the model [92][200]. For instance, Kumar et al. [92] propose to
integrate head pose estimation in the architecture to weight through gates
several heatmaps, each estimating landmark coordinates. Thus, the model
learns to extract pose-specific heatmaps, and uses gates to emphasize on
the most relevant heatmaps, leading to improve the robustness to large pose
variations. To the best of our knowledge, no face alignment model proposes
to use it upstream in the network, which could allow to better condition
the representation, upon which the regressor better adapt to locate facial
landmarks.

Whether head pose or partial occlusion, we have therefore reviewed meth-
ods that explicitly integrate them into the model architecture to better cope
with their variations. As we will see in Chapter 3 and validate in Chapter
4, our method also allows to integrate these factor of variations to several
model layers in order to better locate facial landmarks and to increase the
robustness to the most extreme variations.
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2.2 Facial expression recognition

In this section, we present the main methods of facial expression recognition
(FER). We have seen in Section 1.1.2 that the categorical approach classifying
facial expression (FE) into 7 categories (i.e. happiness, surprise, sadness,
anger, fear, disgust, and neutral) due to the annotation simplicity. In what
follows, we then limit the review to categorical FER methods.

First, we briefly present in Section 2.2.1 the early work that used hand-
crafted representations on which to learn a FE classifier. Second, we review
in Section 2.2.2 the DNN-based methods that have significantly increased the
performance of FER models, especially in unconstrained environments. Fi-
nally, we review in Section 2.2.3 the methods explicitly integrating a specific
factor of variation.

2.2.1 Handcrafted features based methods

As described in [142], the early works used handcrafted features upon which
to learn a classifier, usually relying on SVM [78][144][148][195][164]. These
models differ mainly according to the image descriptor: either by using only
the face shape to extract geometric features, or by using the pixel intensities
to extract appearance features. There are a multitude of possible descrip-
tors: histogram, Gabor, Bag-of-Words, NMF, or part-based representations.
Figure 2.5 illustrates these different descriptors given a face image.

Face shape. A first approach is to directly use the raw facial landmark
coordinates [130]. Some typical patterns of facial expressions (e.g. smile)
can then be detected by comparing distances or angles between different
landmarks. Ignoring the pixel intensities allows then to be illumination-
invariant. On the other hand, when the neutral face is available for each
subject, the face deformation given by differential landmark coordinates can
be used to recognize FE, as shown in Figure 2.5 - (a). However, the neutral
face is often not available, and the accuracy of the FER model strongly
depends on the robustness of the face alignment model. Finally, using the
face shape alone may not be sufficient to represent FEs in some case. In
particular, certain appearance patterns (e.g. dimples) not detectable by face
shape may provide highly-discriminative information to recognize FE. It is
therefore wiser to combine appearance and shape features to maximize the
FER accuracy.
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Figure 2.5: Handcrafted features extraction [142]. (a) Face shape; (b) LBP
histograms; (c) LPQ histograms; (d) HoG; (e) Gabor-based representation;
(f) Bag-of-Words; (g) NMF; (h) part-based SIFT; (i) part-based NMF.
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Histogram-based methods. Histogram methods [40][145][128] divide the
face image into several small uniform regions to extract local features on each
of these regions. A pooling over regions allows to obtain local histograms.
The overall features then correspond to the concatenation of these local his-
tograms which are each normalized. These methods have been very popular
for their implementation simplicity and low runtime, while allowing to ef-
ficiently extract discriminative low-level appearance features under variable
illumination conditions. However, they are very sensitive to identity vari-
ations. The most popular histogram methods are Local Binary Patterns
(LBP) [2] and Local Phase Quantization (LPQ) [126], illustrated in Fig-
ure 2.5 - (b)(c) respectively. In both cases, these methods describe local
appearance variation around each pixel with an integer in [0, 255]. The his-
tograms then give the distribution of each integer for each region of the face
image. Other popular methods such as Histogram of Gradients (HoG) [33]
or Scale-Invariant Feature Transform (SIFT) [110], illustrated in Figure 2.5
- (d), locally describe the direction of the edges by histograms giving the
distributions of the image gradient magnitudes.

Gabor-based methods. Another approach to extract handcrafted ap-
pearance features is to use Gabor-based methods [113] by convolving the
face image with a set of Gabor filters of various scales and orientations, as
illustrated in Figure 2.5 - (e). These convolution operations generate high
dimensional features, especially if the number of filters is large, thus re-
quiring dimension reduction techniques (e.g. PCA). Similar to the above,
Gabor-based methods are quite robust to illumination variations, but are
very sensitive to identity variations.

Bag-of-Words. From local features (e.g. extracted by SIFT descriptors)
describing local appearance variations, Bag-of-Words (BoW) [148] aims to
learn a set of features called visual words (e.g. centroids resulting from
K-means clustering), and then measure the similarity between the extracted
local features and each of the visual words. The face image is then translated
into a set of visual words that represent the facial expression. Figure 2.5 -
(f) illustrates this method by representing each visual word by a symbol (e.g.
circle, triangle, square) for each region of the image. In particular, visual
words can be pooled hierarchically to extract features at various scales, as
performed in [148] with spatial pyramid matching.
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NMF-based methods. Non-negative matrix factorization (NMF) aims to
factorize a matrix X into two matrix B and A, such that the three matrices
have no negative elements for interpretability. For FER, X is the matrix
containing all the training face images: the i-th column corresponds to the
pixel intensities of the i-th face image. Thus, each face image is written
as a linear combination of basis images B such that: X.,i = BA.,i. The
features correspond to the weights A.,i = (a1, ..., an) used to reconstruct the
face image from the base images. Figure 2.5 - (g) illustrates the image basis
learned by NMF with associated weights for the given face image. NMF
methods aim at minimizing the distance between X and its reconstruction
BA, sometimes adding sparsity constraints for more interpretability, so as
to more emphasize some basis image to represent facial expressions. The
robustness of these methods to variations in illumination or identity depends
on the variability of the face images in the training data. With sufficient
variability, NMF-based methods tend to be more robust to identity variations
than previous methods by learning identity-free basis images. However, the
linearity of the model limits performance.

Part-based methods. Part-based methods extract local appearance fea-
tures from patches centered around each facial landmark. Figure 2.5 - (h)(i)
illustrates part-based methods using SIFT and NMF descriptors respectively.
The local descriptors are then independent of each other, leading to ignore
the spatial relationships of the whole face and decrease the sensitivity to
head pose variations. These methods are robust to illumination, but remain
sensitive to identity variations. Furthermore, although part-based methods
are less sensitive to head pose variations than previous methods, the local
appearance is still affected by large poses, rapidly limiting the robustness to
extreme conditions.

Handcrafted features based methods adapt well under lab-controlled con-
ditions with little variation, but their performance is strongly deteriorated in
unconstrained environments due to their limited representational capacity,
thus preventing to model complex variations. As we will see in the following,
DNN-based methods allow to address this limitation.
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2.2.2 DNN-based methods

With an ever-increasing amount of labeled (in-the-wild) data and computa-
tional resources, DNN-based methods have become the mainstream approach
to model facial expressions. It has allowed to significantly improve the accu-
racy of the FER models compared to the previous methods.

In what follows, we present the main DNN-based methods for FER: either
(1) by finetuning classical pretrained networks for FER, (2) by improving the
model architecture or (3) by improving the learning algorithm.

2.2.2.1 Finetuning a pretrained DNN

Rather than directly training deep FER models from scratch from relatively
small datasets (several thousands of data), a first approach is to use classical
networks (e.g. AlexNet, VGG, ResNet) for their strong representational ca-
pacity over large domains (usually pretrained on ImageNet containing several
millions of data and several thousands of labels) and finetune them specifi-
cally for FER.

It is also possible to perform a multistage finetuning, by successively fine-
tuning a pretrained network for more and more specialized tasks (e.g. object
recognition (OR) → face recognition (FR) → facial expression recognition
(FER)). In [88], Knyazev et al. have shown that using a FR network, pre-
trained on a large FR dataset, improves the learning of FER. Indeed, since
the domain gap between FER and FR is narrow, finetuning robust FR rep-
resentation leads to learn robust FE representation with few additional data
annotated in FE. Another approach is to successively finetune a pretrained
network on more and more specialized datasets by using transfer learning
techniques. In [125], Ng et al. use a network pretrained on a first FER
dataset (FER2013) and then finetune it on the target dataset (EmotiW),
leading to increase the overall accuracy.

The drawback of finetuning strategy is that the final model is likely to
use non-discriminative information for FER. For example, finetuning a FR
network may lead to remain sensitive to identity variations because the FE
representation can stay close to the identity representation. To address this
issue, Ding et al. [43] propose to finetune only the representation layer (i.e.
convolutional layers) and to jointly learn the prediction layer (i.e. fully-
connected layers) from scratch, leading to improve the discriminative power
of the FE representation.
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2.2.2.2 Improving the model architecture

Rather than simply finetuning a classical network for FER, another approach
is to improve the model architecture, either by adding auxiliary layers or by
using deep ensemble methods.

Auxiliary layers. Several approaches add auxiliary layers to classical DNN
in order to be specifically more effective for FER. For instance, Acharya et
al. [1] have introduced covariance pooling to integrate second-order statistics
into the architecture in order to better capture face deformations induced by
FE, while Hasani et al. [60] have enhanced the ResNet architecture with more
complex skip-connections. On the other hand, Zeng et al. [188] propose to
learn an auxiliary network to model the latent truth from the inconsistent
annotations between databases in order to improve cross-database accuracy.
These methods have significantly improved FER accuracy, especially on in-
the-wild datasets containing large variations.

Deep ensemble methods. In order to increase the robustness to large
variations, another way to improve the model architecture is to combine
DNN-based methods and ensemble methods. By using an ensemble of base
networks instead of a single network, it allows to diversify the possible predic-
tions, allowing to decrease the variance of errors, thus increasing the overall
robustness. For example. Bargal et al. [11] propose to use the features
extracted from several pretrained networks (VGG13, VGG16 and ResNet).
Then, these features are concatenated to train a single FE classifier. Wen
et al. [172] propose instead to jointly learn several convolutional networks,
each initialized in a different way to ensure diversity. Fan et al. [49] propose
in addition to specialize each of them on a specific face part (e.g. eyes, nose,
mouth) by using the corresponding local appearances.

Rather than simply averaging or performing a majority vote on the en-
semble decisions, it may be wiser to use a weighted averaging so as to em-
phasize on the most relevant base networks. For example, Fan et al. [49] sets
the weights with an a priori on the discriminativeness of each facial region:
4/7 for the base networks using the eyes appearance, 2/7 for those using the
mouth appearance, and 1/7 for those using the nose appearance. Kim et
al. [86] propose instead to weight the base network predictions depending
on their accuracies on a validation set. These deep ensemble methods have
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particularly improved the robustness to the most extreme variations in the
data.

2.2.2.3 Improving the learning algorithm

The learning algorithm can also be improved to better learn FE represen-
tation, either by designing specific loss functions or by using the multi-task
framework.

Specific loss functions. A large intra-class variance is often observed for
FER in-the-wild. To address this issue, some approaches have been inspired
by the center loss [173] that penalizes the distance between the features and
the centroid of the corresponding class. For instance, Cai et al. propose
the island loss [22] to penalize the pairwise-distance between different FE
class centroids. To both reduce intra- and increase inter-class variances, Li
et al. propose the separate loss [101] that maximizes intra-class similarity
while minimizing the similarity between different FE classes. Figure 2.6 then
illustrates the feature separation induced by this training strategy. Other
methods follow advances in metric learning by using sample pairs. For in-
stance, Li et al. propose the locality-preserving loss [100] to penalize the
pairwise-distance between features of the same class, in order to compress
local features space of each class. All these methods have thus allowed to
improve the discriminative power of the FE representation.

Multi-task learning. Another approach to improve the FE representa-
tion is to learn it jointly with other correlated tasks in the multi-task learn-
ing framework, so as to regularize the training and boost the generalization
capacities of each task, leading to improve the overall robustness. Typically,
the model uses a backbone, which extracts a representation common to all
tasks, then the higher layers are specific to each one.

Devries et al. [39] thus show that jointly learning facial landmark local-
ization and FER is beneficial for each of these tasks. Indeed, representing
facial expressions leads to identify certain discriminative face parts and can
then help to better locate facial landmarks, and conversely, locating facial
landmarks allows to better take into account the spatial relationships and
can help to better discriminate facial expressions. Rather than using fa-
cial landmarks localization as co-task for FER, Pons et al. [132] propose to
jointly learn to recognize basic FE and to detect facial action units. Knowing
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Figure 2.6: Visualization of the intra-class features learned with/without
separate loss [101]. This specific loss function allows to reduce intra-class
variance while increasing inter-class variance, thus improving the discrimina-
tive power of the FE representation.

the categorical FE helps to recognize the combination of activated muscles
that characterizes the expression, and conversely, knowing the combination
of AUs helps to categorize the facial expression.

The disadvantage of these methods is that not all annotations are nec-
essarily available for all tasks simultaneously. To address this issue, some
approaches only update task-specific networks whose task-labels are avail-
able. For instance, Ranjan et al. [135] use several datasets, each contain-
ing different labels for different tasks (face detection, face alignment, head
pose estimation, gender recognition, smile detection, age estimation and face
recognition), in order to alternately train the different task-specific networks.
It thus allows to take advantage of a lot of data, leading to learn robust fea-
tures for each task.

34



2.2.3 Methods explicitly integrating a factor of varia-
tion

In the above, we have presented DNN-based methods that increase the ro-
bustness to large variations by improving model architectures or using more
efficient learning algorithms. In the same vein as what has been developed
for face alignment in Section 2.1.3, a greater robustness can be achieved by
explicitly integrating in the method (model architecture or learning algo-
rithm) an information related to a specific factor of variation, in order to
better adapt the system to the most extreme variations in this factor. In
what follows, we review recent methods using this strategy according to the
factor of variation: partial occlusion, head pose, and identity.

Partial occlusion. Regarding partial occlusion, several approaches have
been proposed in the literature, generally consisting in explicitly predict-
ing the occluded part of the face. Similar to what has been done for face
alignment, these methods differ in three ways.

First, these methods differ in the way they predict occlusions. For exam-
ple, Huang et al. [72] divide the face into three parts (eyes, nose, mouth)
and a sparse representation based occlusion detector allows to only use the
visible and FE-discriminative face part. In contrast, Dapogny ey al. [36]
divide the face into much finer parts and an auto-encoder is used to estimate
the occlusion probability of each part, measured by the reconstruction er-
ror, in order to emphasize on the visible face part. On the other hand, it is
also possible to jointly learn the FE classifier and an occlusion detector, as
proposed by Li et al. [102] with their Patch-Gated CNN illustrated in Fig-
ure 2.7. They use gates to weight shape-indexed local appearance features,
and can automatically learn the ”unobstructed-ness” of each corresponding
patch by assigning the highest weights to the unoccluded FE-discriminative
face parts, as illustrated in Figure 2.7 (top).

Second, these methods differ in how are used the information related to
the occluded face parts. For example, in [72], the features associated with
occluded parts are discarded, while in [136], they use a generative model to
recover the appearance of the occluded face parts to better classify FE.

Finally, these methods differ on the type on training data that is used to
learn an occlusion-robust FE classifier, either non-occluded face images aug-
mented with synthetically generated occlusions [36][29][91], or real occluded
data [102].
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Figure 2.7: Patch-Gated CNN for Occlusion-aware FER [102]. The unoc-
cluded face parts (left patches) are associated with high weights, and the
occluded ones (right patches) are associated with low weights.

Head pose. Regarding head pose, a first approach to alleviate its influence
on the FER model is to train one single FE classifier per pose cluster. At test
time, head pose is first estimated, and is then used to weight the classifier
predictions so as to select or emphasize on the most relevant ones. Following
this strategy, Moore et al. [124] predefine pose clusters bins of 15◦ in yaw
orientation, and train for each of these clusters a SVM to classify the facial
expression from LBP features. During testing, a single SVM is then selected
depending on the estimated pose. It is also possible to jointly learn the pose-
specific FE classifiers and a pose estimation network, as proposed by Liu et
al. [108]. At inference time, the estimated pose-cluster distribution provide
then the weights of each FE classifier prediction, leading to emphasize on
the most relevant FE classifiers. However, as we have discussed for face
alignment, we argue that using head pose estimation upstream in the model
could allow to better alleviate its influence on the representation, and thus
better adapt the FE classifier to the most extreme pose variations.

A second approach consists in frontalizing the face to remove the influence
of head pose on the face appearance while preserving the (pose-invariant)
expressive information upon which train a FE classifier. For example, Vieriu
et al. [167] propose to project 3D scans of face onto a 2D representation of
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the frontalized face, but it requires high-resolution 3D images, which are very
expensive to collect. Recently, Generative Adversarial Networks (GAN) [56]
are used to generate very realistic frontalized faces to learn pose-invariant
FER models. In [95], the generator frontalizes the face while preserving
the expressive information and the discriminator distinguishes the real and
fake (frontalized) face. The expressive information thus extracted is then
directly feeded to a FE classifier. As this information is isolated from the
pose component, the model is less sensitive to large pose variations. In the
other hand, a GAN-based model can also be used to generate different FEs
with multiple poses to enlarge and enrich the trainset for FER, as proposed
in [189]. However, the training of GANs is difficult to tune, instable, and
computationally expensive.

Identity. Learning FER models that are robust to identity variations re-
quires having enough training data from different subjects in order to reflect
the immense variability of identity-related information, such as morphologi-
cal traits, age, gender, and ethnicity. Such data have recently been collected
via webscrapping techniques [100][123][193], and are mainly process using
DNN-based methods [122][107][106][182][183] to cope identity variations. In
particular, these methods usually employ metric learning or adversarial learn-
ing techniques.

Regarding metric learning, Meng et al. [122] propose to design a con-
trastive loss, which consists in jointly learning similarity metrics related to
FEs and identity from pairs of samples annotated with either information.
Instead of using only pairs of samples, Liu et al. [107] propose to use a
triplet loss, by jointly decreasing the distance between an anchor and a pos-
itive sample (i.e. same FE class and different identities) and increasing the
distance between the anchor and a negative sample (i.e. different FE classes
and same identity). In a later work [106], the same authors fix instead the
neutral expression for the anchor to better capture the expressive informa-
tion. Since neutral faces are not necessarily available, they propose to use a
GAN to provide synthetic and realistic neutral faces.

Generating the corresponding neutral face while preserving identity-related
information is equivalent to performing a de-expression process that is in-
variant to identity, thus enabling to extract FE features robust to identity
variations. Following this strategy, Yang et al. have proposed De-expression
Residue Learning [182]: during the de-expression process, the expressive in-
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formation is still embedded in the intermediate layers of the generator, which
then filters-out this information by learning the residue (containing the ex-
pressive component) that remains in the intermediate layers to generate the
corresponding neutral face. As a FE can be regarded as the combination
of a neutral face image and an expressive component, the identity-invariant
expressive information thus extracted is directly fed into a FE classifier.

Another GAN-based method for identity-invariant FER is to generate
each prototypic FE from any input face images while preserving the identity-
related information. For instance, Yang et al. [183] propose an Identity-
Adaptive generation model with two parts. First, several GANs are trained
to generate images of the same subject with different FEs. Second, for each
sample, the generated expressive face images are each fed into a pretrained
CNN for FER, to determine which one is closest to the original image by
comparing their respective features in this CNN, thus classifying the FE.
However, the training data (from CK+ [111], Oulu-CASIA [194], BU-3DFE
[185] and BU-4DFE [184] databases) have been collected in lab-controled
conditions and are annotated in identity so as to have several expressive face
images per subject. Unfortunately, the most recent in-the-wild FER datasets
containing a lot of spontaneous FEs [100][123] are not annotated in identity,
preventing to supervise the training of this approach. In addition, as said
above, the training of GANs is difficult to tune, instable, and computationally
expensive.
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2.3 Outline

The main approaches proposed above allow us to retain several methods
favouring the robustness both for face alignment and facial expression recog-
nition: (1) DNN-based methods, (2) adaptive methods, and (3) ensemble
methods.

DNN-based methods. Deep learning has become the mainstream ap-
proach in computer vision, including face analysis. With an increasing
amount of in-the-wild labeled data, these techniques allow to jointly learn
powerful predictors and complex high level representations that can encom-
pass a lot of variations. It gives the opportunity to define a generic method
that can be applied to multiple layers into the model (representation or pre-
diction layer) for multiple face analysis tasks. We have also seen that design-
ing specific model architecture or learning algorithm for face analysis tasks
could lead to better performance than simply finetuning a pretrained model.

Adaptive methods. To better adapt to the most extreme variations of
a given factor, most approaches explicitly integrate it into the model archi-
tecture or the learning algorithm. Regarding partial occlusion, an occlusion
detector is often used, as seen for face alignment [20][55][177][186][190], but it
is also possible to use gates to adaptively emphasize on the most visible and
discriminative face parts, as seen in occlusion-aware FER [102]. Regarding
head pose, gates can also be used in the model architecture to emphasize
on the most relevant model parts depending on head pose estimation, as
seen both for face alignment [92] and FER [108]. Regarding identity, most
approaches use specific learning algorithms (e.g. metric learning [122][107])
to alleviate sensitivity to inter-subject variations, or GAN-based methods
[183][182] that can generate prototypic facial expressions. But these methods
require auxiliary annotations or are computationally expensive and difficult
to tune. To the best of our knowledge, no identity-robust FER models explic-
itly integrate an identity representation in their architecture (e.g. by using
the features extracted by a deep face recognition network) to adaptively em-
phasize on the most relevant model parts. For all these reasons, we propose
to develop an adaptive DNN-based method that integrate into the model
architecture an embedding related to an important source of variations.

39



Ensemble methods. Instead of using a single strong predictor that adapts
to all possible variations, some approaches use instead an ensemble of base
predictors, each specialized on predefined clusters of this factor. For instance,
regarding head pose, multi-view models are proposed for face alignment [34]
or FER [108] by specializing one single predictor per predefined pose clus-
ter. These models thus use ensemble methods, which have already proven
their efficiency both for face alignment and FER, e.g. by using random for-
est [137][84][34] or deep neural forest [37]. We then propose to develop an
adaptive deep ensemble method, which use gates to emphasize on the most
relevant base predictors depending on the input image. In addition, instead
of predefining clusters upon which specialize each base predictor (e.g. pre-
defined pose clusters for multi-view FER [108]), we propose to learn the
clusters jointly with the whole system by using differentiable gates. The
resulting adaptive deep ensemble method is detailed in the next chapter.

40



Chapter 3

Adaptive deep ensemble
methods

In this chapter, we present our generic framework that can be applied for
multiple layers of the model (e.g. prediction, representation layer) and mul-
tiple predictive tasks (e.g. face alignment, facial expression recognition). In
Section 3.1, we first introduce ensemble methods and the benefits of using
several base predictors rather than a single strong predictor. In Section 3.2,
we detail the different modules to build an accurate and diverse ensemble, by
varying training data, features or architectures used by each base predictor.
In particular, modeling the base predictors with deep neural networks allows
to merge deep and ensemble learning to take full advantage of their respec-
tive benefits and ultimately obtain a complex, accurate, and robust system
that can be learned in an end-to-end fashion. In Section 3.3, we focus on
adaptive networks allowing to emphasize on the most informative part of the
system by the use of gates. In Section 3.4, we present the Mixture-of-Experts
architecture that combines the above approaches: an adaptive deep ensemble
model whose predictions are weighted by a gating variable that specializes
each base predictor on a region of the input space. We finally detail in Sec-
tion 3.5 our generic method extending the Mixture-of-Experts. In order to
be more robust to large variations, we propose (1) a hierarchical gating struc-
ture to improve the specialization of the base predictors, (2) an exogenous
gating variable, identified as an important source of variation in the data,
to better adapt the model to the most extreme variations of this exogenous
variable, and (3) a new training loss to remove undesirable exogenous-related
information from the discriminative variable deciphering the task.
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3.1 Ensemble methods: an introduction

Figure 3.1: An ensemble of decision tree classifiers. The ensemble is more
robust than any individual decision tree.

The main idea of ensemble methods can be summarized as follows: it
is often better to combine several individual opinions than to choose the
opinion of a single individual. Applied to machine learning, ensemble meth-
ods consists in combining accurate and diverse base predictors specialized on
different data or feature subsets, instead of using a single strong predictor.
In the literature, the notion of base predictor can be found as weak learner
[52], or expert [76]. The search space of possible predictors is then further
explored, leading to an accuracy higher than the one obtained with any of
the base predictors. Recently, Fernandez-Delgado et al. [50] compared 179
classifiers from 17 families on 121 datasets (from UCI and other real-world
problems) and showed that ensemble methods led to the best accuracy in
most cases.

Consider a simple binary classification task. Figure 3.1 shows the deci-
sion borders of an ensemble of 10 decision tree classifiers trained on MOON
[131], a toy dataset showing two interleaving half circles in the 2d plan. The
trees share the same features (i.e. point coordinates), but each use different
training data to diversify their training settings and to learn different deci-
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sion borders in the input space. It can be seen that these borders are very
irregular, illustrating an overfitting: each tree has perfectly memorized its
training data but can’t generalize on unseen ones. In particular, we can see
that the two outliers located in the middle of the blue points push the trees
to segment the space so as to contain them. The borders do not reflect then
the data structure, and many unseen neighbors would be misclassified. By
combining the trees for each data, the decision borders are then much more
regular and allows the ensemble to be more robust to unseen data.

In [42], Dietterich identified three main reasons explaining the success of
ensemble methods. First, the generalization capacity is improved by smooth-
ing the decision borders, as illustrated above. Second, the decision borders
of the ensemble cannot be learned by each base predictor. In the example
above, each d-depth tree cannot segment the input space in the same way
as the ensemble. The decision borders of the ensemble could only be ap-
proximated by a d′-depth tree with d′ >> d. Thus, an ensemble method
increases the search space of possible predictors. Third, specially for predic-
tors trained with local search algorithms (e.g. gradient-based methods for
neural network), an ensemble method decreases the risk of achieving a local
optima. Indeed, many of these predictors can get stuck in local optima even
if the trainset is large enough, thus limiting the exploration of the search
space of possible predictors.

Ensemble methods are then a promising approach to improve the gener-
alization capacity and therefore the robustness to large variations. In order
to be able to take advantage of these methods, two conditions must be veri-
fied. First, the accuracy of each predictor of the ensemble should be better
than those obtained in a fully random fashion, because if the majority of
the predictors are wrong, then the ensemble is wrong. Second, the ensem-
ble predictions should be as diverse and decorrelated as possible. Indeed, if
they are strongly correlated and some predictors are wrong, then the others
are also wrong and no gains can be obtained from the ensemble. Therefore,
sufficient diversity between predictions is needed so that the predictors are
able to cooperate, i.e. some predictors take over if others are wrong.
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3.2 Modules to build an ensemble method

Combiner

Model module Combiner moduleFeatures moduleData module

Figure 3.2: The use of one or more of the following modules allows to build
an ensemble method [94]. Data module: different trainsets can be used for
each base predictor, by sampling the original trainset. Feature module:
different features can be used for each base predictor, by selecting them from
a common feature set or by using different feature extractors. Model mod-
ule: different architectures can be used for each base predictor. Combiner
module: the predictions are either fused to generate a final decision, or a
single one is selected depending on the input image.

Consider a dataset D where each sample has the form (Ii,yi), with Ii ∈ I
the pixel intensities of the i-th image and yi ∈ Y a categorical variable (i.e.
Y = {1, ..., K}) for classification or a continuous variable (i.e. Y = R) for
regression. An ensemble method approximates the unknown true mapping
between the input space I and the output space Y by using L base predictors,
noted c1, c2, ..., cL respectively, whose predictions are combined to obtain a
final decision. In order to achieve the accuracy and diversity properties,
several modules can be used to build the ensemble method: data, features,
model or combiner module.

In this section, we present each of these modules, illustrated in Figure
3.2. In the data module (Section 3.2.1), each base predictor is trained with
its own trainset by randomly sampling the original trainset. In the feature
module (Section 3.2.2), different features are used for each base predictor by
selecting features from a common feature set or by using different feature
extractors. In the model module (Section 3.2.3), different architectures are
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used for each base predictor. In the combiner module (Section 3.2.4), the en-
semble predictions are combined to generate a final decision: either by fusing
the predictions (e.g. averaging or voting), or by selecting the prediction of a
single base predictor depending on the region where the input is located.

3.2.1 Data module

Parallel sampling Sequential sampling

Figure 3.3: Two approaches to diversify the trainsets used by each base
predictor. Parallel sampling: a single sampling distribution is used to
create L new trainsets for each base predictor. Sequential sampling: the
original trainset is uniformely sampled to train the first base predictor. Then,
at step l, a new sampling distribution is used to train the l-th base predictor,
by emphasizing on the hardest data misclassified by the previous trained
base predictors. Each circle corresponds to a data. A blue one means that
it is used in the training. Its size is proportional to its weight in the sample
distribution. Excerpt from [133].

In order to diversify and decorrelate the ensemble predictions, it is pos-
sible to vary the trainsets used by each of them. This is the functionality of
the data module: training an ensemble of L models by sampling the origi-
nal trainset D to generate L new trainsets. Each base predictor cl is then
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trained with its own trainset Dl. Sampling distributions can be parallel or
sequential, as illustrated in Figure 3.3.

Parallel sampling. Parallel sampling allows to train the ensemble in par-
allel by using a single distribution to create L new trainsets for each base
predictor. The base predictors can then be trained independently of each
other from different training data, leading them to make their decisions as
decorrelated as possible. Moreover, parallel sampling may improve runtime
by using multi-core computing processors or parallel computers.

The most famous ensemble method using parallel sampling is bagging
[17], standing for Bootstrap AGGregatING. Bagging uses bootstrap tech-
nique [156] to generate a new trainset Dl for each base predictor, by sam-
pling the original trainset D uniformly from a bootstrap distribution. Once
trained, the models are usually combined by voting (for classification) or by
averaging (for regression) their decisions [149][150].

Sequential sampling. Contrary to parallel sampling which generates each
trainset Dl independently of each other, sequential sampling adapts each new
trainset depending on the accuracies of the previous trained base predictors,
so as to emphasize on the hardest data misclassified. More specifically, at
step l, the base predictor cl is trained by sampling the original trainset D
with a new distribution D(l) giving more weight to the examples that are the
most difficult to predict with the earlier combination of base predictors build
at step (l − 1). The ensemble is thus trained sequentially, so that each base
predictor is mainly trained on the regions of the input space that have been
the most difficult to predict for the previously trained base predictors.

Boosting methods, with AdaBoost [52] as representative, are the most
famous approaches using sequential sampling. Boosting has been studied
a lot, with a solid theoretical background, and largely applied in several
applications. However, boosting has been observed to be very sensitive to
noise [41]. In order to improve the robustness, several approaches use other
loss functions to implicitly reduce the weights of the outliers (e.g. LogitBoost
[53], GentleBoost [53]), or regularization techniques to explicitly bound the
weights of each training data (e.g. MadaBoost [44], FilterBoost [16]), or more
robust model architectures (e.g. XGBoost [25]).
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3.2.2 Feature module

Extraction of feature subsetsSelection of feature subsets

Figure 3.4: Two approaches to diversify the features used by each base predic-
tor. Selection of feature subsets: one single feature extractor F outputs
a feature set x, and diverse feature subsets of x can be selected for each base
predictor. Extraction of feature subsets: diverse feature subsets can be
outputted by different feature extractors.

Generally speaking, given an input image I, a feature extractor F : I 7→ x
is used to output a feature set x upon which a predictor can be trained.
Regarding ensemble methods, an approach to diversify and decorrelate the
ensemble predictions can be to use different features for each base predictor.
As illustrated in Figure 3.4, two approaches then allow to generate diverse
feature sets: (1) by selecting different subsets of x, or (2) by using different
feature extractors instead of a single one.

Selection of feature subsets. Given a p-dimensional feature set x, a
first method to diversify the features is to select a q-dimensional (q < p)
feature subset xl of x for each base predictor. These feature subsets can
be selected either (1) in parallel, or (2) sequentially. For (1), the features
are selected independently of the other subsets. For instance, the random
subspace method [63] randomly select features in x for each base predictor.
For (2), the features in a subset xl are selected depending on the previously
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built subsets {xk, k < l}. For instance, Grabner et al. [58] propose a boost-
ing procedure for feature selection, which selects the l-th feature subset so
as to optimally refine the ensemble accuracy of the previously trained base
predictors {ck, k < l}.

Given a subset xl, several feature selection methods can be used. First,
the selection can be done in a fully-random fashion, as in the random sub-
space method [63]. Second, it can be done in a non-random fashion [59],
using either filter methods to select the features in x most correlated with
the outcome variable y, or wrapper methods to select the features in con-
junction with the training of the associated base predictor (e.g. search for
the feature subset xl that maximizes the accuracy of the base predictor cl).

Extraction of feature subsets. Another method to diversify the features
is to use different feature extractors for each base predictor.

First, the feature extractors can differ in nature (e.g. the first base pre-
dictor uses HoG features, the second one uses SIFT features, and so on).
For instance, Senechal et al. [143] use both geometric and appearance fea-
tures into a multi-kernel SVM framework, while Oliveira et al. [127] use
both handcrafted and learned features by combining HoG-based SVM and
convolutional networks.

Second, the feature extractors can differ depending on the region of the
image they take as input. Regarding the architecture, they can be based on
a diverse fixed local region, as in [49] where each feature extractor is special-
ized on the local appearances of a specific face part (e.g. eyes, nose, mouth).
Regarding the learning algorithm, diverse data augmentations, e.g. by ran-
domly cropping the image for each feature extractor [45], can be performed
to improve the overall robustness of the ensemble.

Finally, it is also possible to learn different feature extractors by using
several DNNs (e.g. convolutional networks, auto-encoders) with diverse ar-
chitectural and training hyperparameters. For instance regarding convolu-
tional networks, it is possible to diversify the number of convolution layers
and the size of the filters [172] or to use different parameter initializations
[73].
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3.2.3 Model module

Architectures Learning algorithms

Figure 3.5: Examples of methods to diversify the base predictor models.
Architectures: the base predictors use different architectures. Learning
algorithms: the base predictors use different training hyperparameters for
the same architecture (e.g. different parameter initializations).

As illustrated in Figure 3.5, a third approach to diversify and decorrelate
the ensemble predictions is to use (1) different architectures or (2) differ-
ent learning algorithms for each base predictor. In what follows, each base
predictor is a deep neural network, for its strong representational power, its
flexibility, and its ability to be learned in an end-to-end fashion. For (1), one
can either vary architecture hyperparameters or use a specific architecture
that behave as a deep ensemble method. For (2), one can either vary training
hyperparameters or use specific learning and regularization techniques (e.g.
snapshot ensemble, dropout) that behave as deep ensemble methods.

Varying hyperparameters. Consider a deep neural network cθ with θ the
trainable parameters. The dimension of θ is mostly very large (e.g. several
millions of parameters), leading the training of cθ to be extremely sensitive
to its hyperparameters H: either the architecture ones (e.g. depth, width,
cardinality) or the training ones (e.g. θ initialization, type of optimizer,
learning rate, batch size, regularization parameters).
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Modifying only one of these hyperparameters often lead to a drastically
different result. To address this issue, a first method is to train cθ several
times with different hyperparameters, e.g. by initializing θ in L different
ways. This method is thus equivalent to learn different networks, where each
network cθl of the ensemble is a version of cθ, whose its parameters θl are
trained with its own hyperparameters Hl.

Thus, it first allows to take the maximum advantages of ensemble meth-
ods described in Section 3.1: the search space of possible networks being
particularly large and complex, different hyperparameters generate diverse
local optimas, leading to learn simply an ensemble model with a high rep-
resentational power, while improving the generalization capacity. Second,
the networks can be trained independently and limit the need to tune the
hyperparameters, which is the main problem for deep learning practitioners.
However, the main drawbacks are that it’s heavy to load in memory, and
time-consuming to process at inference time.

Specific architecture. Some deep neural networks have an architecture
that makes them behave like a deep ensemble, e.g. the residual networks
(ResNet) [61]. ResNet uses skip-connections that bypass each layer by adding
the input and output layers. By propagating the gradients through the skip-
connections, the early layers receive more signals from the last layers, fa-
cilitating representation learning and allowing to train very deep networks.
Thus, the input both traverses and bypasses each layer, and can flow from
any layer directly to any subsequent layers. Veit et al. [166] then rewrite
residual networks containing N layers as a collection of 2N paths. They have
experimentally shown that removing any layers has a negligible impact on
performance. In particular, by removing more and more layers, they show
that the overall performance reduces smoothly and the collection of paths in
residual networks behave like ensembles.

Snapshot ensemble. Regarding the learning algorithm, another approach
to diversify the ensemble predictions is snapshot ensemble method [69]. It
saves the L best versions of a network cθ during a single training run, de-
pending on its performance on a validation set. A version is called snapshot
or checkpoint model. This method is thus equivalent to sequentially learn L
different networks, where the l-th network cθl is a snapshot of cθ, whose its
parameters θl are initialized by the trained ones θl−1 of the (l−1)-th network
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and are then finetuned with the same hyperparameters as before. In order
to avoid to get stuck in a local optima reached by cθl−1

and to explore more
regions in the search space of the different possible versions of cθ, it is also
possible to update the hyperparameters, such as restarting the learning rate
[109].

Regularization. Several regularization techniques can also be used to sta-
bilize the training of cθ, some of which behave as an ensemble method.
Dropout [151] is a well-known regularization technique for training deep neu-
ral networks that can simulate having a large number of different network
architectures. It’s consists in randomly dropping a proportion of units in cθ
for each training iteration, thus temporarily stopping the parameters updates
of the dropped units. Thus, it forces the neighboring units to generalize more
and prevents co-adaptation between units. The network is then less sensitive
to the specific parameters of each unit.

Dropping a proportion of units in cθ is equivalent to sample a sub-network
from it. For a network containing N units, there are 2N possible sub-networks
whose parameters are shared. Therefore, training cθ with dropout can be
regarded as training L = 2N networks with parameters sharing, and where
each network is trained very rarely [62][151].

At test time, all the units of cθ are used, but the parameters are rescaled:
if a unit has a probability p of being retained during training, their specific
parameters are multiplied by p during testing. Instead of storing an exponen-
tial number of trained networks that share parameters, training with dropout
then simulates it with only one network.

On the other hand, rather than dropping out some units in each layer,
other approaches propose to drop out some connection parameters (Drop-
Connect [168]) to better prevent co-adaptation between the output units,
or entire feature maps (SpatialDropout [157]) to better decorrelate them, or
entire layers (deep networks with stochastic depth [70]) to better train the
earlier layers by shorting the network during training.
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3.2.4 Combiner module

Fusion Selection

Figure 3.6: Examples of combination methods to produce a final decision
from the ensemble predictions. Fusion: the ensemble predictions are av-
eraged by weighting coefficients g0 that do not depend on x. Selection:
the final decision is the one that is generated by the most specialized base
predictor depending on the location of x in the input space.

Let’s note Z ∈ ZL the decision profile of x, containing all the predictions
zl ∈ Z. For regression, each base predictor outputs a scalar, i.e. Z = R.
For classification with K labels, each base predictor outputs either a binary
decision vector, i.e. Z = {0, 1}K , or a continuous one, i.e. Z = [0, 1]K , giving
the posterior probabilities of each class.

From an input representation x and the corresponding decision profile Z,
a combiner ζ generates a final decision z. As illustrated in Figure 3.6, there
are two types of combination methods :

• Fusion: all the ensemble predictions are used in the combiner, and the
combination doesn’t depend on the input x.

z = ζ(Z)

• Selection: the final decision is the one that is generated by the most
specialized base predictor depending on the location of x in the input
space.

z = ζ(Z,Xr(x)) = Zr(x)

52



where r : X → {1, ..., L} maps an input x towards a predefined re-
gion Xr(x) of the input space containing x and acting as the region of
specialisation of a single base predictor.

3.2.4.1 Fusion

Averaging. For regression, the most popular combination method is to
simply average the ensemble predictions, as follows:

ŷ =
1

L
ΣL
l=1ŷl (3.1)

where ŷl is the l-th prediction.
Let’s note y the ground truth, and µ, σ,Σ the averaged bias, variance,

covariance respectively of the base predictors:

µ =
1

L
ΣL
l=1E(ŷl − y)

σ =
1

L
ΣL
l=1E((ŷl − E(ŷl))

2)

Σ =
1

L(L− 1)
ΣL
l1=1ΣL

l2=1,l2 6=l1E((ŷl1 − E(ŷl1))(ŷl2 − E(ŷl2)))

(3.2)

By the bias-variance decomposition [163], it can be proved that:

E((ŷ − y)2) = µ2 +
1

L
σ + (1− 1

L
)Σ (3.3)

If the base predictors are unbiased and decorrelated, then the error vari-
ance of the ensemble is L times smaller than a single predictor on average.
Even if these assumptions rarely hold true (the base predictors are often cor-
related because they are trained for the same task), this combination method
is the most popular for its simplicity and efficiency. It can be noticed that
the median can be used instead of the average to reduce the sensitivity to
extreme values.

Voting. For classification, the most popular combination methods are vot-
ing. Let’s assume that the decision profile has binary values, i.e. Z ∈
{0, 1}K×L where Zk,l = 1 if the l-th predictor assigns the k-th label to x
and Zk,l = 0 otherwise. The main voting methods are the following:
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• Plurality voting. The predicted class is the one that takes the largest
number of votes:

k∗ = arg max
k∈{1,...,K}

ΣL
l=1Zk,l (3.4)

• Majority voting. The predicted class is the one that takes more than
half of the votes, with a reject option:

k∗ =

{
j if ΣL

l=1Zj,l >
1
2
ΣK
k=1ΣL

l=1Zk,l

reject otherwise
(3.5)

In the case of binary classification (K = 2), plurality and majority voting
are the same method.

Stacking. In the above, the combiner uses a predefined rule to fuse the
ensemble predictions. But it is possible to train a learner to perform the
role of a combiner. Following this strategy, stacking methods [174][18] train
a so-called meta-learner (e.g. a simple linear estimator, a decision tree or
a deep neural network) to combine the ensemble predictions. The original
trainset D is firstly used to train the base predictors, then a new trainset D′ is
generated: the inputs of D′ are the decision profiles on D and the outputs are
still the same as in D. This method then allows to recognize patterns in the
decision profiles to better fusing the base predictors. However, the training of
the meta-learner is separated from the training of the base predictors, losing
the interest of learning in an end-to-end fashion with deep neural networks.

3.2.4.2 Selection

Instead of fusing the ensemble predictions, another combination method is
to select the decision of a single predictor of the ensemble depending on the
input subspace where x is located. The selected predictor is then called the
expert of the region to which x belongs. In what follows, the decision profile
Z is assumed to have continuous values.

Cluster and selection. A first approach is to predefine regions X1, ...,XL
in the input space X to obtain specialized predictors on each of these regions
[93]. For example, these regions can be build by using the K-means algorithm
[115] on the trainset D.

54



Let’s note Dl the dataset containing the training data in the l-th region:

Dl = {(x, y) ∈ D : x ∈ Xl} (3.6)

Two approaches allow then to specialize the predictors:

• Each predictor cθl is trained by using the dataset Dl, and is thus spe-
cialized in Xl. If a new data x is located in Xl, then cθl is selected.

• Each predictor cθl is trained by using the entire trainset D. Then, for
each region Xl, we select the predictor that has the best performance
on Dl. This predictor is then the most specialized for Xl, and is selected
if a new data is in Xl.

Dynamic classifier selection. Rather than predefining regions of special-
ization on which a single predictor is selected, a second approach is to use
the neighborhood of a given input x to adaptively select the most accurate
predictor on this neighborhood [32].

Given an input x, the selected predictor is the one that maximizes the av-
erage accuracy of the n-nearest samples from x in the trainset or a validation
set. However, the ensemble predictions must be evaluated for each sample in
the neighborhood, thus leading to be very expensive computationally.

3.2.4.3 Discussion

By using all the ensemble predictions at once to generate a final decision, fu-
sion methods reduce the variance of prediction errors, which is an advantage
for robustness to large variations. However, these methods don’t explicitly
adapt to the region in the input space where x is located. Conversely, selec-
tion methods allow to use only the most relevant predictor of the ensemble
to decipher x. However, this is not necessarily robust to large variations.
Indeed, let’s assume x belongs to a region Xi and the i-th predictor is the
most relevant to decipher it. If noise is added and pushes x in a neighboring
region Xj, the j-th predictor will be used (which is not necessarily suitable
for deciphering x) instead of the i-th one.

To address this issue, it is possible to merge these methods, by weighting
all the ensemble predictions whose weights depend on the region of the input
space where x is located. The Mixture-of-Experts architecture [76] is a such
instance, which we will detail in Section 3.4.
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3.2.5 Ensemble method instances

An ensemble method then combines several of the modules presented so far,
taking advantage of their respective benefits. The combination of several
methods from different modules allows to further diversify the ensemble than
using each of them individually.

Random forest. A first instance of such a method is to combine the data
module and the feature module. Following this strategy, Breiman et al. [19]
proposed random forest (RF), which is one of the most popular ensemble
methods. For the data module, RF uses bagging to diversify the trainsets of
each predictor. For the feature module, RF uses random subspace method
to diversify the features of each predictor. For the model module, RF uses a
decision tree for the architecture of each predictor. The ensemble is called a
forest.

Given an input representation xl ∈ Xl of a sample from a trainset Dl and
a decision tree with split nodes S and terminal nodes T , the prediction zl of
the l-th predictor can then written as:

zl =
∑
t∈T

(
∏
s∈S

ds(xl)
1t↙s(1− ds(xl))1t↘s)πt (3.7)

where πt is the prediction of the t-th terminal node of the decision tree,
ds(xl) = 11ws.xl−bs>0 the binary routing function with the trainable param-
eters (ws, bs) of the s-th split node, and t ↙ s is true if the t-th terminal
node belongs to the left subtree of the s-th split node. Thus, the l-th deci-
sion tree splits hierarchically the input space Xl, where each subspace is as
homogeneous as possible (e.g. by using Gini impurity criteria).

The forest predictions are finally combined by averaging (for regression),
or voting (for classification).

It is also possible to use boosting instead of bagging, as proposed by
Bernard et al. [12] with the dynamic random forest. The forest is then
built sequentially so as to train each new decision tree with the hardest data,
i.e. generating the most errors with previously built trees. This allows to
take advantage of the diversity of features used by each tree, the diversity of
training subsets used by each tree and specifically built to boost the ensemble
accuracy.
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Neural forest. Recently, Kontschieder et al. [90] proposed neural forest
(NF). Similarly to RF, NF is a set of trees using each different features
and different training data, and whose ensemble predictions are combined
by averaging or voting. However, the routing of each tree is probabilistic
and modeled by a differentiable function jointly trainable with a gradient-
based optimization algorithm, contrary to a decision tree whose routing is
deterministic and not differentiable. It allows to learn more complex splits
in the input space, leading to increase the accuracy. Each tree is then called
neural tree.

At split node s and given an input x, the probability to reach the left
child is modeled by:

ds(x) = σ(ws.x− bs) (3.8)

where σ is the sigmoid function, replacing the binary routing in decision tree.
The predictions of each neural tree are then computed in the same way

as in Equation 3.7, thus corresponding the expectation of the predictions πt
of each terminal node.

For classification, πt corresponds to the posterior probabilities on Y esti-
mated by the terminal node t, initialized by an uniform distribution: πt =
(|Y|−1, ..., |Y|−1). The matrix π containing all the predictions of the terminal
nodes is then trained with an offline learning approach: at the end of each
epoch, π is updated to solve a convex optimization problem and a global so-
lution can be easily determined. On the other hand, the routing parameters
are trained by varying mini-batches for each neural tree in order to diversify
the training subsets, similarly to bagging. For regression, terminal nodes can
also be fixed at the beginning of the training, so as to train only the routing
parameters, as proposed in [37].

3.2.6 Conclusion

We have presented the four modules that allow to build an ensemble method
by diversifying the trainsets, the features or the architectures of each predic-
tor. Different ways to combine their predictions have been also reviewed, as
well as ensemble methods methods combining several modules.

In particular, modeling the predictors and the combiner with deep neural
networks allows to learn them jointly, thus improving the two fundamental
properties of ensemble methods described in 3.1: (1) a better accuracy for
each base predictor, and (2) a better cooperation between them.
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In addition, as described in 3.2.4, using a combiner that weights the en-
semble predictions adaptively to the input also reduces the variance of pre-
diction errors (like fusion methods) while emphasizing on the most relevant
predictors deciphering the input (like selection methods). This adaptation
mechanism is therefore a promising approach to better adapt the model to
the most extreme variations.

In what follows, we review adaptive networks, i.e. deep neural networks
incorporating an adaptation mechanism.
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3.3 Adaptive networks

The strong representational capacity of deep neural networks allows to model
many possible variations in the data, under the condition that the network is
deep enough and the layers are large enough. All network layers are jointly
trained to encompass these variations. The network has thus to learn the
same transformation functions for all the samples. Given a sample, some
layers can then extract irrelevant features to decipher the task.

To alleviate this constraint, some approaches aim instead to adapt the
transformations according to the sample. Generally speaking, it consists in
using adaptive gates to emphasize or select the most informative parts of
the network depending on the sample. The gating function can be regarded
as an attention mechanism. Its differentiability makes it possible to learn
it jointly with the entire network, and to obtain an adaptive network that
better decipher the input, especially under the most extreme conditions.

It is then possible to apply gates at different levels of the model archi-
tecture: (1) either in an intra-layer fashion to select the feature maps and
the spatial regions containing the discriminative informations, or (2) in an
inter-layer fashion to select the most specific layers of the network.

3.3.1 Intra-layer gates

Given an input image and a convolutional layer of the model architecture,
let’s note x ∈ RH×W×C the feature maps extracted, i.e. 3D visual features
along the 1D-channel and 2D-spatial axes. In order to improve its repre-
sentation power, gates can be applied to each of these dimensions, so as to
emphasize on the most informative parts of x. Gating the channel axis allows
to emphasize on the most informative feature maps. Gating the spatial axes
allows to emphasize on the most informative spatial regions of each feature
map.

Channel gates. Each feature map can be regarded as a visual feature
detector (e.g. detecting a dimple). Channel gates focuses then on ”what”
are the feature detectors of x useful to decipher the task. To emphasize on
some feature maps rather than others, Hu et al. [66] introduced Squeeze-and-
Excitation block, in which gates are used to adaptively weight each feature
map. A squeeze function G

(ch)
sq : x ∈ RH×W×C 7→ c ∈ RC first extracts

a channel descriptor c by squeezing the global spatial information of x on
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each of its channels with an average-pooling along the spatial axes. Then,
an excitation function G

(ch)
ex : c ∈ RC 7→ g(ch) ∈ [0, 1]C uses the channel

descriptor to weight each feature map with channel-gates. The c-th feature
map of the channel-weighted features x′ can then be written as:

x′.,.,c = g(ch)
c .x.,.,c (3.9)

where g(ch) = G
(ch)
ex ◦G(ch)

sq (x).

The excitation function G
(ch)
ex is modeled with a 2-FC network, thus cap-

turing the inter-channel dependencies. The most informative feature maps
are then the most weighted ones, and are then emphasized by feeding x′ into
the subsequent layers.

Spatial gates. Spatial gates focuses on ”where” is the discriminative part
of x, which is then complementary with channel attention. Woo et al. [175]
thus propose to sequentially use channel and spatial gates, as illustrated in
Figure 3.7.

First, a channel attention module outputs channel-gates to weight each
feature map of x in the same way as SE block. However, these channel-gates
are computed from two different channel descriptors (i.e. average-pooling
and max-pooling along the spatial axes respectively). They experimentally
validated that using these two descriptors significantly improves the repre-
sentation power rather than using each independently.

Second, given the channel-weighted features x′, a spatial attention mod-
ule outputs spatial-gates to weight each local unit of x′. In particular, a
squeeze function G

(sp)
sq : x′ ∈ RH×W×C 7→ s ∈ RH×W×2 first extracts a spatial

descriptor by concatenating the global information with an average-pooling
and a max-pooling along the channel axis of x′. Then, an excitation func-
tion G

(sp)
ex : s ∈ RH×W×2 7→ g(sp) ∈ [0, 1]H×W extracts spatial-gates g(sp) to

weight each local unit of all feature maps. The c-th feature map of the refined
features x′′ can then be written as:

x′′.,.,c = g(sp) ⊗ x′.,.,c (3.10)

where ⊗ is the element-wise operator, and g(sp) = G
(sp)
ex ◦G(sp)

sq (x′).

The excitation function G
(sp)
ex is modeled with a shallow convolutional net-

work, thus capturing the inter-spatial dependencies. The most informative
spatial regions are then the most weighted ones.
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Channel-gates
Spatial-gates

Figure 3.7: Channel and spatial attention emphasize on the most informa-
tive parts of a convolutional layer [175]. Channel attention module extracts
channel-gates to weight each feature map. Spatial attention module extracts
spatial-gates to weight each local unit of all feature maps.

Woo et al. have experimentally shown that using sequentially channel
and spatial attention improves the representational power rather than using
each independently. In particular, spatial attention helps to remove the noise
generated by certain factors of variation in the feature maps, leading to
better capture the visual structure that allows to decipher the task. It is also
possible to directly learn a 3D-mask that combines both channel and spatial
gates, as proposed in [169]. However, Woo et al. have shown that separating
channel-gates and spatial-gates limits the number of trainable parameters
while improving performance.

Therefore, a first approach to design an adaptive network is to use intra-
layer gates for each representation layer: either on the channel axis to em-
phasize on the most suited feature maps depending on the input, or on the
spatial axes to emphasize on the most discriminative regions while removing
the noise related to the factor of variations. Recent work [68][134] relies on
this approach to better adaptively select the most informative parts of the
representation layers.
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3.3.2 Inter-layer gates

A second approach to design an adaptive network is to use inter-layer gates
to emphasize or select the most sample-specific layers. It allows to specialize
each layer on data subsets, preventing a redundancy of information between
layers and improving the overall performance.

Given an input image x0, traditional feed-forwark networks extract inter-
mediate representations {x1, ...,xL} by sequentially applying transformations
through layers, which can then be written recursively as follows:

xl = Fl(xl−1) (3.11)

where Fl is the transformation of the l-th layer extracting the intermediate
representation xl from the input layer xl−1.

To use an inter-layer gating mechanism, Srivastava et al. [152] introduced
Highway Network, in which each input layer xl−1 is fed into a gating function
Gl taking values in [0, 1] to modulate the signals of xl−1 and Fl(xl−1) in the
output layer, as follows:

xl = Gl(xl−1).Fl(xl−1) + (1−Gl(xl−1)).xl−1 (3.12)

If Gl(xl−1) = 1, the l-th layer is suited to handle the input image and
Fl(xl−1) is fully fed into the (l+ 1)-th layer. If Gl(xl−1) = 0, the l-th layer is
not suited to handle the input image and the transformation Fl is bypassed.
The input layer xl−1 is then directly fed to the (l+ 1)-th layer. By modeling
the gating function as Gl(xl−1) = σ(WGl

.xl−1 +bGl
) where WGl

and bGl
are

the trainable parameters, its differentiability allows to learn it jointly with
the entire network. Thus, the inter-layer gating functions {G1, ..., GL} allow
to filter the information through the entire network depending on the input
image x0.

Recently, Veit et al. [165] have applied this approach to ResNet architec-
tures. As a remember, ResNet uses skip-connections that bypass each layer
by adding the input and output layers, as follows:

xl = Fl(xl−1) + xl−1 (3.13)

Veit et al. then propose Adaptive Inference Graph (AIG): for each ResNet
layer l, a binary gate Gl(xl−1) ∈ {0, 1} selects or skips the transformation Fl
depending on the input layer, as follows:

xl = Gl(xl−1).Fl(xl−1) + xl−1 (3.14)
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To incorporate binary gates, Veit et al. use differentiable approxima-
tions techniques for discrete nodes in neural networks [116][77]. As above,
if Gl(xl−1) = 1, then the l-th layer is suited to handle the input image. If
Gl(xl−1) = 0, then the l-th layer is not suited and is bypassed by directly
feeding xl−1 into the (l+1)-th layer. In contrast to Highway Networks which
executes all layers at inference time, the binary gates in AIG allow to execute
only the selected layers that are specific to the input image, leading to save
computations.

In the same vein, other approaches [74][155] have designed an adaptive
network with inter-layer gates, but whose layers are hierarchically distributed
in a tree-structured network. These approaches progressively transform the
input image at each split node of the tree to both route the network and
extract intermediate representations deciphering the task. Traversing the
root-to-leaf path in the tree thus allows to select only the transformations
specific to the input image. In addition, the hierarchical structure of the tree
saves computations better than a flat structure (like AIG).

In all these approaches, it has been empirically validated that using inter-
layer gates allows to learn distinct paths for different categories: for example,
some layers are specialized for man-made object categories, while others are
specialized for animal categories. Inter-layer gates thus allows to learn spe-
cialized layers on data subsets. Moreover, Veit et al. have validated the
robustness of the gates to additional noise in the data. It can then be as-
sumed that the factors identified as source of important variations in the
data don’t affect the inference in the graph and don’t prevent to select the
more specialized layers depending on the input image.

3.3.3 Conclusion

We have presented different adaptive networks that use gates to select or
emphasize on the most suited parts of the network given an input image.
Intra-layer gates emphasize on the most informative channels and spatial
regions of feature maps. Inter-layer gates emphasize on the most specific
intermediate representations of the input image.

In these approaches, the gates sequentially select the sample-specific trans-
formations to extract the representation. In what follows, we present Mixture-
of-Experts, an adaptive deep ensemble model whose gates are used to em-
phasize on the most sample-specific predictors of the deep ensemble, which
are then distributed in parallel by sharing the same input representation.
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3.4 Mixture-of-Experts

The gating mechanism can also be applied to deep ensemble methods, allow-
ing each base network to be specialized in regions of the input space. The
Mixture-of-Experts (MoE) architecture is an instance of a such adaptive deep
ensemble method. In what follows, we first present the original MoE archi-
tecture. Second, we review several extensions, consisting in stacking several
MoE layers which outputs each an intermediate representation.

3.4.1 The MoE architecture

g

Soft-gates
Deep ensemble

Figure 3.8: The Mixture-of-Experts architecture. A deep neural network
ensemble outputs L decisions, then are adaptively weighted by gates given
the input x to generate the final decision. Gates are outputted by a L-
dimensional softmax layer.

The MoE architecture was introduced by Jacobs et al. [76][75]. They
propose to use the divide-and-conquer principle in which the target task is
divided between multiple base predictors, called experts, whose outputs are
adaptively weighted by gates in order to emphasize on the most relevant
experts depending on the input.

In the same vein as selection in the combiner module (described in 3.2.4.2),
the objective of MoE is to learn subspaces X1, ...,XL forming a soft-partition
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of the input space X , on which to specialize the experts on each of these re-
gions. But instead of selecting a single expert to generate the final decision,
the combiner uses gates, which output a mixture of coefficients allowing to
weight each expert prediction. The highest coefficients are then attributed
to the most relevant experts.

As illustrated in Figure 3.8, each expert cθl : x ∈ X 7→ zl ∈ Z is a
neural network with parameters θl based on the input representation x and
generating a decision zl (e.g. logits vector for classification). It should be
noticed that all the experts share the same input.

The gates g are outputted by a gating function Gψ : x ∈ X 7→ g ∈ [0, 1]L

with parameters ψ and such that ΣL
l=1gl = 1. The l-th gate gl can be

interpreted as the probability that the expert cθl is the most relevant expert
to evaluate the input x. The gating function Gψ is modeled by L-dimensional
softmax layer. The weight gl of the expert cθl is then written as:

gl =
ewl.x+bl

ΣL
l=1e

wl.x+bl
(3.15)

where ψ = {wl, bl}l=1,...L are the trainable parameters. From a geometric
view, the vector wl define a hyperplan in the input space X , thus delimiting
the region of specialization of the l-th expert.

The final decision z can then be calculated in several ways:

• Winner-takes-all: the final decision is that of the expert with the most
weight in the mixture.

z = zl∗ (3.16)

where l∗ = arg maxLl=1 gl

• Stochastic selection: the final decision is randomly selected among the
experts. Each expert decision zl has a probability gl to be chosen.

z = zU (3.17)

where U ∼MultiNomial(g1, ...,gL)

• Weighting: the final decision is the average of the expert decisions
weighted by the gates. This corresponds to the expectation of stochas-
tic selection.

z = ΣL
l=1glzl (3.18)
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In the original paper, the training is carried out in an alternative way
by the EM algorithm [38]: given the ensemble of expert networks, train
the gating network; then for the pretrained gating network, train the expert
networks according to the mixture specified by the gates; and so on. However,
MoE can also be seen as a single neural network with a complex structure. It
is then possible to train it with the gradient-based optimization techniques
usually used for deep neural networks.

3.4.2 Stacked MoE

Soft-gates
Deep ensemble

Soft-gates
Deep ensemble

Figure 3.9: Stacked MoE with two layers [46].

In the above, MoE is considered as a layer modeling the mapping between
a high-level representation and the ground truth. However, it is possible to
stack several MoE layers, where each MoE layer generates an intermediate
representation.

Eigen et al. [46] were the first to propose such an approach, by stacking
two MoE layers, as illustrated in Figure 3.9. The model can then represent an
exponential number of effective experts through all the different combinations
of experts at each layer. Indeed, different inputs generate different paths in
the network, exponentially multiplying the number of possible combinations
with the depth of the network.
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Shazeer et al. [147] introduce sparsity in stacked MoE by keeping the
top-k values in the logits vector (w1.x + b1, ...,wL.x + bL) of the Equation
3.15 and set the other values to −∞ so that the corresponding gate is equal
to 0. Sparse gates allow to save computation by processing the data x only
for the k most relevant experts, thus providing the ability to use a large
number of experts (L > 1000 experts per layer in their experiments) and to
increase the capacity of representation.

Very recently, Wang et al. [171] propose to extend the MoE architecture
to convolutional networks, with another gating variable than the input x
used by the experts. In particular, they use a single embedding which acts
as gating variable for all model layers. This embedding is extracted by an
auxiliary CNN based on the image input and jointly learned with the entire
system. It allows to learn how to improve the specialization of the experts
in a more suited gating space. However, it is very challenging to learn from
scratch such an embedding. They propose then to add an intermediate su-
pervision loss to encourage this embedding to predict the outcome variable
y and to maximize its semantic level, a method often used to increase the
discriminative power of the lower layers of a DNN [154][67]. However, in
order to be robust to an exogenous variable identified as an important source
of variations in the data, we argue that it is more relevant to use a gating
variable that predicts this exogenous variable rather than the outcome vari-
able. As we will see in Section 3.5, using this exogenous variable as a gating
variable also provides the ability to design learning algorithms removing this
exogenous information in the expert networks, and leading to increase the
robustness to the most extreme variations in this exogenous variable.

3.4.3 Conclusion

Instead of using a single strong network that has to adapt to all possible vari-
ations in the input space X , MoE allows to jointly learn a soft-partition of X
and the base networks specialized in each region. The gates then allow to em-
phasize on the most specialized base networks according to the region where
the input is located, leading to improve the overall robustness. Moreover,
stacking several MoE layers allows to learn intermediate representations by
using an intra-layer adaptive network which selects the most specific trans-
formations according to the region where the input is located. Finally, it is
possible to use another gating variable aiming to better specialize the experts
in a more suited gating space.
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3.5 Adaptive deep ensemble methods

So far, we have presented deep ensemble methods allowing to jointly learn
complex representation and prediction functions (by using deep learning tech-
niques), while being robust to large variations in unconstrained environments
(by using ensemble methods). Adaptive networks have also been reviewed to
emphasize on certain parts of the network conditioned on the input, leading
to a better specialization of the model to large variations. Several compo-
nents can then be used to develop the intended robust face analysis system:
deep ensemble and adaptive components. A method combining these compo-
nents is Mixture-of-Experts (MoE) which uses an ensemble of base networks
for the deep ensemble component, and gates for the adaptive one. The en-
semble accuracy can be improved by a better cooperation between the base
networks. This can be handled either by (1) the gating structure, (2) the
gating variable conditioning the task, or (3) the learning algorithm.

For (1), we propose tree-structured gates (described in Section 3.5.1) in
order to learn a hierarchical clustering of the base networks, leading to a more
efficient selection and therefore specialization of them. For (2), we propose
to embed an exogenous variable (described in Section 3.5.2), identified as an
important source of variation, in order to better condition the target task
and to better specialize the base networks. Thus, we separate exogenous and
endogenous representations: the first captures the exogenous variable while
the second deciphers the target task. For (3), we propose to disentangle these
representations (described in Section 3.5.3) in order to encourage the removal
of exogenous information from the endogenous representation by using a new
training loss.

To sum it up, the main contributions of our approach are thus three-folds:

• From an architectural standpoint, we propose a new adaptive deep
architecture using (1) a hierarchical gating structure to learn more effi-
ciently input space clusters, and (2) a gating variable exogenous to the
target task to better condition it and learn base networks more robust
to these exogenous variations.

• From a learning standpoint, we propose a new training loss encour-
aging to remove the exogenous information from the endogenous rep-
resentation, further improving the overall learning algorithm and the
robustness of base networks to exogenous variations.
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• From an experimental standpoint, we propose generic methods that can
be applied to multiple layers (e.g. prediction, representation layer) and
multiple predictive tasks (e.g. face alignment, facial expression recog-
nition). We experimentally validate our approach on synthetic and
realistic datasets. In particular, we show that our method significantly
improves the robustness to large variations.

3.5.1 Tree-gated MoE

Tree-gates
Deep ensemble

Figure 3.10: Tree-gated MoE. A deep neural network ensemble outputs L
decisions, then are weighted by tree-gates depending on the input x. Tree-
gates correspond to the leaf probabilities of a log2(L)-deep neural tree.

In the MoE architecture (described in section 3.4), the gates correspond
to a L-dimensional vector g = (g1, ...,gL) such that ΣL

l=1gl = 1, where gl
can be interpreted as the probability that the l-th base network is the most
relevant to evaluate the input x. These gates, that we called soft-gates, are
outputted by a L-dimensional softmax layer based on the input x.

The objective is thus to learn a soft-partition of the input space:

X =
L⋃
l=1

Xl

with Xl the region where the l-th base network is specialized. However,
an overlap between the L regions can occur, thus limiting the diversity of
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specialization of each base network. To address this issue, we propose to
use a neural tree (described in section 3.2.5), as illustrated in Figure 3.10.
Indeed, the tree structure allows to learn a hierarchical partition of X (i.e.⋂L
l=1Xl = ∅). In addition, the differentiability of a neural tree allows to learn

the partition jointly with the whole system.
The region Xl where the l-th base network is specialized then corresponds

to the l-th leaf of the neural tree. We then define tree-gates, defined as the
concatenation of the L = 2D leaf probabilities of a single neural tree of depth
D. Thus, if an input x is in the Xl region, the specialized base network cθl has
the most weight in the final decision, and others from the most remote regions
have the least weights. Moreover, tree-gates allows a hierarchical pooling of
the base networks over large regions of the input space X , as follows:

zn = dn(x).zn+ + (1− dn(x)).zn− (3.19)

where dn(x) the probability to reach the left subtree at split node n
given x and zn, zn+, zn− are the decisions respectively outputted by the n-
th split node, the left and right subtrees. Tree-gates allows then to learn
a hierarchical clustering of base networks and can be used to interpret the
decisions at different levels of the tree.

The core idea of a hierarchical gating structure to weight the base network
predictions has been introduced in [80]. However, the learning algorithm used
(EM algorithm) constrains the tree-gated MoE architecture to be applied
only to the prediction layer. Similar to the soft-gated MoE architecture
which has been extended to other layers of a deep architecture (described in
section 3.4.2), we propose to extend tree-gated MoE to other layers of the
model, whose learning algorithm uses the latest gradient-based optimization
techniques for end-to-end training.

Figure 3.11 illustrates the differences between soft-gates and tree-gates
on MOON [131]. At each epoch of the training, we can see the region Xl
where the l-th base predictor cθl is specialized (yellow surface, i.e. when the
corresponding gate gl is close to 1), as well as its prediction zl in the input
space X (red/blue surfaces).

By using tree-gates, we can observe at the first epoch that cθ2 and cθ4
first partition the space horizontally by comparing g2 and g4. At the second
epoch, cθ4 then cooperates with cθ3 by subdividing the half-high region. Fi-
nally, cθ2 specializes to the right of the half-low region and lets cθ3 separating
the red/blue points to the left of this region.
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Figure 3.11: Visualization of MoE during training depending on the gating
structure. Left: soft-gates. Right: tree-gates. The first four lines show the
regions of specialization of each base network. The next four lines show the
predictions of each base network on the input space. The last line shows the
ensemble predictions and the accuracy obtained at the end of each epoch.
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By using soft-gates, we can see in the first epoch that cθ2 and cθ4 share the
same region of specialization. Although this region tends to be attributed to
cθ2 on the latest epochs, soft-gates struggle to avoid overlap between regions
of specialization, unlike tree-gates which are sparser by using only three base
networks. Due to this overlap, soft-gates limits then the specialization of
the base networks, leading to a lower overall accuracy (95.1% with soft-gates
instead of 96.7% with tree-gates).

Finally, it can be noted that the single base network separating red/blue
points in their region of specialization (i.e. cθ3 in both cases at the last
epoch) has a finer decision borders if tree-gates are used. This means that
tree-gates have allowed to better specialize this base network by increasing his
prediction confidence (i.e. by decreasing the entropy of the class probability
distribution).

Therefore, tree-gates have the following advantages compared to soft-
gates: first, tree-gates allow to better distribute the base networks in the
input space by avoiding overlaps between their regions of specialization. Sec-
ond, tree-gates are sparser, allowing to restrict the number of base networks.
Third, tree-gates allow to better specialize the base networks with more con-
fidence in their decisions.

The hierarchical gating structure is thus a first approach to improve the
cooperation between the base networks and ensemble accuracy. As we discuss
in the following, this can be strengthened by the use of a more suitable gating
variable.
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3.5.2 Exogenous tree-gated MoE

Exogenous representation

Endogenous representation

Tree-gates
Deep ensemble

Figure 3.12: Exogenous tree-gated MoE. The exogenous representation cap-
tures an exogenous variable, which is (1) identified as an important source
of variations in the data and (2) modeled with sufficient accuracy. It acts as
a better gating variable than the endogenous representation deciphering the
task.

By jointly learning a partition of the input space and the base networks
specialized in each region, tree-gated MoE allows the model to better adapt
to unconstrained environments by emphasizing on the most specialized base
networks depending on the input. The input is thus used twice: as a dis-
criminative variable to decipher the task through the base networks, and as
a gating variable to select the most relevant base networks depending the
region to which it belongs.

However, some exogenous variations can corrupt the input x and push it
into a wrong region Xl, leading to the use of an inappropriate base network.
Figure 3.13 shows two predictive tasks where an exogenous variable can be
identified as an important source of variation. In Figure 3.13 - left, the
rotation can greatly influence the appearance to the digit. For the most
extreme rotations (close to ±90◦), digit features can thus vary greatly from
one region to another, leading to an inefficient use of the base networks.
In the same vein, in Figure 3.13 - right, the scale can influence the shape
recognition by strongly varying the shape features.
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Figure 3.13: Examples of predictive task where an exogenous variable can
be identified. Left: digit recognition with rotation as the exogenous vari-
able. Right: shape recognition with the scale. The endogenous variable
deciphering the task is sensitive to variations in the exogenous variable.

To address this issue, we propose to distinguish the discriminative and
the gating variables to specialize the base networks in a more adapted gating
space, as illustrated in Figure 3.12. In particular, if an exogenous variable
can be (1) identified as an important source of variation in the data, and
(2) modeled with sufficient accuracy, we argue that its representation is an
ideal gating variable. We then call it exogenous representation. In this way,
each base network is specialized in a region of the exogenous representation
space, allowing the model to better adapt to the most extreme exogenous
variations. Moreover, the discriminative variable has less constraint to cap-
ture exogenous variations (already handled by gates), leading to improve
the discriminative power of its representation. We then call it endogenous
representation.

To model the exogenous variable, we train a deep neural network eσ(Eτ (x))
where eσ is the exogenous predictor with parameters σ and using the exoge-
nous representation xexo outputted by the network Eτ with parameters τ and
based on the input x. If the input x is the image, the exogenous model is
firstly trained, then the parameters τ are kept frozen so that the exogenous
representation xexo can then be integrated within another deep neural net-
work. In addition, it allows to train the model on a separate trainset from
the one used for the target task, thus removing the constraint of having the
ground truth annotations for both the exogenous variable and the labels of
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Table 3.1: Accuracies of the exogenous classifiers. For Rotation and Scale,
the range is [−90◦, 90◦] and [0.5, 1], respectively.

Exogenous variable Accuracy
Rotation (MNIST-R) 3.020
Scale (dSprites) 0.0291

the target task.
We have experimentally validated this approach for two predictive tasks

where an exogenous variable verifies conditions (1) and (2).
Digit classification under rotation on the MNIST-Rotated or

MNIST-R database. From the well-known digit handwritten digit MNIST
database [97], we have augmented each image by a random rotation from
−90◦ to 90◦ (18 rotation classes with bins of 10◦). In this case, the rotation
can then be identified as an exogenous variable to the digit recognition. We
use 60k samples for training and 10k for testing both the digit classifier and
the rotation classifier.

Shape recognition on the dSprites database [120] is commonly used
for learning disentangled representations. Each sample is a grayscale image
containing a shape (heart, ellipse, square) generated by 5 independent factors
(scale, color, rotation, x and y positions). We have annotated the scales with
10 different classes, by bins of 0.05 from 0.5 to 1. We have then defined the
scale as the exogenous variable so as to select 60k samples for training and
10k for testing both the shape classifier and the scale classifier.

Implementation details. For both MNIST-R and dSprites, the ex-
ogenous network eτ consists in 2 convolutional layers 16@3 × 3 with max-
pooling and ReLU activation, and the classification layer cσ consists in 2
fully-connected layers containing a hidden layer of 256 units (also with ReLU
activation). With this configuration, the exogenous classifier can predict the
exogenous variable with a high accuracy, as reported by Table 3.1. Condi-
tions (1) and (2) are thus verified: rotation (resp. scale) is an exogenous
variable to digit (resp. shape) recognition greatly affecting the digit (resp.
shape) appearance, and the rotation (resp. scale) classifier is accurate enough
to integrate it into the digit- (resp. scale-) classifier. Then, the endogenous
network Fφ also consists in 2 convolutional layers 16@3×3. The deep ensem-
ble CΘ consists in L = 8 base networks, where each base classifier cθl contains
a hidden layer of 32 units. For tree-gates, the neural tree Gψ is thus of depth
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Table 3.2: Comparison of tree-gated MoE methods in term of average ac-
curacy (%) on MNIST-R and dSprites databases. †: oracle classifier (i.e.
exogenous tree-gated MoE conditionned by the ground truth exogenous vari-
able).

Method MNIST-R dSprites
Tree-gated MoE 97.31 95.91
Exogenous tree-gated MoE 98.07 98.1
Oracle† 98.06 98.43

(0, 30] (30, 60] (60, 90]
96.00

96.50

97.00

97.50

98.00

98.50

97.74
97.91

96.29

98.15 98.06 98

98.27 98.21

97.7

Tree-gated MoE Exogenous tree-gated MoE Oracle

A
cc

ur
ac

y 
(%

)

Figure 3.14: Comparison of tree-gated MoE methods in term of average
accuracy (%) by absolute rotation variation on MNIST-R.

log2(8) = 3. Training is done by optimizing the standard cross-entropy over
the parameters for endogenous representation φ, classification Θ and gating
ψ layers. These parameters are trained jointly in an end-to-end manner by
applying ADAM optimizer [87] with a learning rate of 1e−3 and batch size
32.

Evaluation. From a quantitative standpoint, we compare the accuracy
differences according to the gating variable used on both MNIST-R and
dSprites in Table 3.2. The exogenous variable thus appears as a better gat-
ing variable than the endogenous one, by improving the average accuracy by
+2.3% on dSprites, and +0.8% on MNIST-R. Figure 3.14 also compares the
accuracies according to the intensity of variation of the exogenous variable in
the case of MNIST-R with three ranges of rotation variation. Using rotation
as gating variable allows then to improve the overall robustness, especially
for the most extreme rotation variations where the accuracy gap is strongly
increased. Thus, by specializing the base networks in the exogenous repre-
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Tree-gated MoE Exogenous tree-gated MoE

Figure 3.15: Visualization of the endogenous representation on MNIST-R.

sentation space instead of the endogenous one, they are much more adapted
to the extreme variations in the exogenous variable. It can also be observed
that the performance of exogenous tree-gated MoE is close to the oracle clas-
sifier (i.e. an exogenous tree-gated MoE with the ground truth exogenous
variable) which can be considered as a ceiling in this experiment.

From a qualitative standpoint, we use t-SNE [114] to visualize the class
distribution of MNIST-R in the 2d-projection of the endogenous representa-
tion (Figure 3.15). We can then observe that using exogenous representation
as gating variable allows a clearer distribution of the different digit classes in
the features space. This highlights that the endogenous representation has
less the constraint of capturing exogenous variations (which are already han-
dled by gates), leading to improve its discriminative power and the overall
performance.

Therefore, defining the gating variable as an exogenous variable identified
as an important source of variation has the following advantages: first, it al-
lows to better specialize the base networks on a more suitable gating space.
Second, it allows to better adapt them to the most extreme variations in the
exogenous variable. Last but not least, it improves the discriminative power
of the endogenous representation. As we discuss in the following, this can be
strengthened by a more suitable learning algorithm aiming to remove unde-
sirable exogenous-related information from the endogenous representation.
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3.5.3 THrowable Information Networks

Exogenous representation

Endogenous representation

Tree-gates
Deep ensemble

Exogenous classifier
Figure 3.16: THIN. The exogenous variable is used twice in a throwable
fashion: (1) as a gating variable to condition the task, and (2) as an anchor to
remove exogenous-related information from the endogenous representation.

Although the exogenous variable appears to be a better gating variable to
specialize the base networks, exogenous-related information may be retained
in the endogenous variable. A strong variation of the exogenous variable
can thus lead to a strong variation of the endogenous variable. Ideally, the
prediction of each base network should be invariant to the variations of the
exogenous variable. We then aim to encourage the removal of exogenous
information from the endogenous representation xendo, by throwing from it
any discriminatory power predicting the exogenous variable.

Suppose that the exogenous network eτ and the endogenous network Fφ
have the same architecture (i.e. E = F but τ 6= φ). It is then possible to feed

xendo into the exogenous classifier eσ to generate a prediction z
(endo)
exo of the ex-

ogenous variable and compare it with the prediction z
(exo)
exo obtained with the

exogenous representation xexo. If xendo contains discriminative information
predicting the exogenous variable, then z

(endo)
exo and z

(exo)
exo are similar. This

similarity can be measured by their angular distance, defined as follows:
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Lsim =| cos(z(exo)
exo , z(endo)

exo ) |= | z(exo)
exo .z

(endo)
exo |

||z(exo)
exo ||2.||z(endo)

exo ||2
(3.20)

In order to remove exogenous-related information from the endogenous
representation, z

(endo)
exo must be as unsimilar as possible to z

(exo)
exo . We then

propose a new training loss encouraging to semantically orthogonalize the
exogenous representation xexo and the endogenous representation xendo by
penalizing their similarity in the the exogenous space modeled by the classifier
cσ, as illustrated in Figure 3.16.

The parameters φ of the endogenous representation layer are thus trained
to minimize both the loss Ltarget of the target task in order to learn discrim-
inative features, and the dispelling loss Lsim in order to remove undesirable
exogenous-related information. The final loss can then be written as:

L(Θ, φ, ψ) = Ltarget(Θ, φ, ψ) + λLsim(φ) (3.21)

where Θ, φ, ψ are the parameters for the deep ensemble, the endogenous
representation and the gating layers respectively, and λ > 0 the penalization
coefficient of the dispelling loss whose setting depends on the experiment.

The exogenous variable is thus used twice in a throwable fashion: (1)
as a gating variable to condition the task, and (2) as an anchor to remove
exogenous-related information from the endogenous representation. We call
then this method THIN, standing for THrowable Information Networks.

We have experimentally validated this approach both on MNIST-R and
dSprites with the same training settings as before. From a quantitative stand-
point, Figure 3.17 shows the accuracies of several THIN models depending
on the penalization coefficient λ used in the dispelling loss Lsim during the
training. If λ is too strong (λ > 0.01 in this case), the training is too involved
in removing rotation-related information from the digit features rather than
improving its discriminative power for the digit classification, thus leading to
decrease the overall performance. However, if we set λ = 0.005 or λ = 0.01,
it is possible to balance these two objectives, leading to increase the overall
accuracy by 0.2%.

From a qualitative standpoint, we visualize the class distribution on
MNIST-R in the 2d-projection of the endogenous representation (Figure
3.18). We can then observe that encouraging the removal of exogenous infor-
mation in the endogenous representation allows a slightly better distribution
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Table 3.3: Comparison of exogenous tree-gated MoE methods in term of
average accuracy (%) on MNIST-R and dSprites databases.

Method MNIST-R dSprites
Exogenous tree-gated MoE 98.07 98.1
THIN 98.26 98.5
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Figure 3.17: Ablation study for the penalization coefficient λ in term of
accuracy (%) on MNIST-R.

Exogenous tree-gated MoE THIN

Figure 3.18: Visualization of the endogenous representation on MNIST-R.
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of the different digit classes in the features space, indicating a greater dis-
criminative power of the endogenous representation.

Therefore, our training loss has the following advantage: first, it removes
undesirable exogenous-related information from the endogenous representa-
tion, limiting the endogenous representation variations induced by exogenous
variations. Second, it improves the discriminative power of the endogenous
representation.

3.5.4 Conclusion

In order to improve the robustness to large variations, we have presented
a new adaptive deep ensemble method inspired by the Mixture-of-Experts:
an ensemble of base networks whose decisions are adaptively weighted by a
gating variable that specializes each base network on a region of the gating
space.

First, we propose a hierarchical gating structure in order to learn a hi-
erarchical partition of the gating space to improve the specialization of the
base networks both in their distribution in the gating space and in their
prediction confidence. Second, instead of using the endogenous representa-
tion of the task as a gating variable (i.e. like MoE), we propose to use the
representation of an exogenous variable, identified as an important source of
variation and modeled with sufficient accuracy. Thus, the base networks are
specialized in order to be able to adapt to the most extreme variations of
this exogenous variable. Finally, we propose a new training loss to remove
undesirable exogenous-related information from the endogenous representa-
tion. Thus, it reduces the sensitivity of the endogenous variable to variations
in the exogenous variable and improves its discriminative power.

In this chapter, we have illustrated and experimentally validated our ap-
proach in the prediction layer for predictive tasks that are relatively easy to
model. As we will see in the next chapter, our method can be applied to other
layers in the model (e.g. representation layer [5]), and to other tasks much
more complex to model (e.g. face alignment [6][5], facial expression recog-
nition [7]), thus proving the relevance of our approach in real in-the-wild
conditions.
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Chapter 4

Applications

In order to develop a face analysis system robust in unconstrained environ-
ments containing large variations, our framework presented in Section 3.5
can be used to model each task of the system (i.e. face alignment, facial
expression recognition) and can be applied to each of the layers constituting
the models (i.e. representation, prediction). As illustrated in Figure 4.1, sev-
eral variables can be identified as important source of exogenous variations.
For face alignment (left), head pose variations affect the face appearance re-
gardless of the face shape, while being exogenous to it. For facial expression
recognition (right), identity variations affect the face appearance regardless
of the facial expression, while being exogenous to it. We then propose to
explicitly use these exogenous variables to better adapt the system to their
most extreme variations.

In this chapter, we experimentally validate the genericity of our approach
through quantitative and qualitative evaluations on the most recent and chal-
lenging databases. In Section 4.1, we apply our framework to face alignment
[6][5]. We first show that adaptive deep ensemble methods significantly in-
crease the overall robustness of the face alignment model. In particular, using
head pose estimation as gating variable in the representation layer further
allows to extract specific features for each pose cluster, leading the model
to better adapt to the most extreme variations in pose. In Section 4.2, our
framework is applied to facial expression recognition [7]. In particular, we ar-
gue that identity is an ideal gating variable to increase the robustness of the
model. Finally, we validate that a better representation of facial expression
can be learned by using our new dispelling loss to remove identity-related
information from it, leading to increase the overall robustness.
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Identity variationsHead pose variations

Face alignment Facial expression recognition

Figure 4.1: Exogenous variations in several face analysis tasks. Face align-
ment: Head pose variations greatly affect the face appearance regardless of
the face shape, while being exogenous to it. Images from 300W-LP [199].
Facial expression recognition: Identity variations greatly affect the face
appearance regardless of the facial expression, while being exogenous to it.
Images from VGGFace2 [23].
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4.1 Face alignment

As presented in Section 2.1, face alignment aims to locate P facial landmarks
that form the face shape y ∈ R2×P (the p-th column of this matrix corre-
sponds to the 2D-coordinates of the p-th facial landmark). This is a regression
problem that we address in a cascade fashion, as is often done in literature:
from an image I and an initial shape y(0) (typically the mean shape), the
objective is to sequentially learn a cascade of regression mapping functions
Rt : (I,y(t−1)) → ∆y(t) between the shape-indexed local appearances and
remaining displacements for each cascade stage t. We then propose to apply
our approach to model each regression mapping function of the cascade: the
datasets used are presented in Section 4.1.1 and the methodology as well as
the experimental validations are described in Section 4.1.2. In addition, as
shown in Figure 4.2 (middle), head pose can be identified as an important
source of variation in face alignment datasets. Head pose estimation is then
an ideal gating variable to condition landmark localization and thus better
adapt the model to variations at large poses, as detailed in Section 4.1.3.

4.1.1 Datasets

Several databases can be used to train and test the face alignment models.
As illustrated in Figure 4.2, they can be divided into three categories: those
containing moderate variations, head pose variations, or partial occlusions.

Moderate variations. The 300W database [140] is the most commonly
used to train and test face alignment models. It contains three datasets with
moderate variations in head pose, occlusions, illuminations or facial expres-
sions: LFPW (811 images for training, 224 images for testing), HELEN
(2000 images for training, 330 images for testing), AFW (337 images for
training). This represents a total of 3148 images for training and 554 for
testing. Each image of 300W is annotated with the 2D-coordinates of 68
facial landmarks.

Head pose variations. The 300W database contains a fourth dataset:
I-BUG (135 images for testing), acting as the challenging subset of 300W,
with mainly head pose variations and some occlusions. However, training the
models by using the 300W database (which contains moderate variations)
greatly limits the generalization capability on large head pose range.
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LFPW HELEN IBUG COFWAFLW-2000300W-LP

Moderate variations Head pose variations Occlusions

Figure 4.2: Face alignment datasets. For clarity, the 29 facial landmarks of
COFW are displayed as dots and the 68 ones of the other datasets are linked.

To address this issue, Zhu et al. [199] produced the 300W-LP database:
for each image in 300W, they generated head pose variations, ranging from
−90◦ to +90◦ along the yaw axis. It allows to generate a total of 61225
images, leading to learn pose-robust face alignment models. For real large
head pose variations, the AFLW2000-3D dataset contains the first 2000
images of the Annotated Facial Landmarks in-the-Wild database [89]. This
dataset is divided into three head pose ranges, depending on absolute degree
yaw: 1306 samples in the [0, 30] range, 462 examples in the [30, 60] range and
232 examples in the [60, 90] range. Each image of 300W-LP and AFLW2000-
3D are annotated with the real 2D-coordinates of 68 facial landmarks: the
self-occluded landmarks (due to extreme head pose) are not projected on the
visible part of the face contrary to 300W, as illustrated by the annotation
differences between the 3-th and 4-th columns in Figure 4.2. As done in the
literature [200], all images from 300W-LP are used for training, and those of
AFLW2000-3D for testing.
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Occlusions. The COFW or Caltech Occluded Faces in the Wild dataset
[20] is commonly used to learn face alignment models robust to partial oc-
clusions. It contains only occluded face images with moderate variations in
head pose, as illustrated in Figure 4.1.1 (right). It contains 500 images for
training and 507 images for testing. Each image is annotated with the 2D-
coordinates of 29 facial landmarks. In what follows, we use only the COFW
testet to test the robustness of the models trained on 300W and predicting
68 landmarks. As done in [55], we perform a linear mapping between the 68
predicted landmarks to the 29 landmarks.

4.1.2 Tree-gated MoE in the prediction layer

In order to model the regression mapping functions of each cascade stage, we
propose to apply our framework described in Section 3.5. A first instance is
to apply the tree-gated MoE (Section 3.5.1) in the prediction layer. We then
define several models that incrementally add the architectural components
of the model (i.e. deep ensemble, adaptive gates), as well as implementation
details to ensure reproducibility of the results (i.e. evaluation metric, training
hyperparameters). Second, we compare the architectures with each other and
with the state-of-the-art approaches, and conduct qualitative evaluations.

4.1.2.1 Methodology

Architectures. The architectures presented below are defined for each cas-
cade stage, whose the different layers are illustrated in Figure 4.3: patches
extraction, representation and regression layers.

Given a 150x150-grayscale face image I and initial facial landmark co-
ordinates y(0) ∈ R2×P , we first extract 32x32-patches centered around each
landmark to get P local appearances. The pixels are centered so that they
take values in [−1, 1].

Second, we feed each of them into a single convolutional network Fφ
to extract features for each landmark. In particular, it contains 5 strided
convolutional layers (20@5x5 → 40@5x5 → 80@3x3 → 160@3x3 → 30@1x1)
allowing to output 30 features per landmark. By concatenating these shape-
indexed local appearance features, we then obtain a vector x of size 30× P
(2040 with P = 68 landmarks) representing the whole face.

Third, several architectures can be defined in the regression layer, as
illustrated in Figure 4.3 (bottom):
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Representation layer Regression layer

Tree-gates

Deep ensembleDeep ensemble
g

Soft-gates

Deep ensembleDeep ensemble

Soft-gated MoE

Deep ensemble

Tree-gated MoESingle regressor
Deep ensembleBaseline

Figure 4.3: Architectures overview for a given cascade stage. Top: Several
layers transform sequentially the image I from the input shape y(t−1): patches
extraction, representation and regression layers. Bottom: The different
proposed architectures in the regression layer. For clarity, we omit the t-
indexing.

• Baseline: a single strong 2-FC regressor CΘ containing 8192 hidden
units.

• Deep ensemble: a deep ensemble of L = 64 base 2-FC regressors,
each containing 128 hidden units. The predictions are equally weighted:
g = ( 1

L
, . . . , 1

L
).

• Soft-gated MoE: a deep ensemble of L = 64 base 2-FC regressors,
each containing 128 hidden units. The predictions are weighted by
soft-gates outputting by a 64-dimensional softmax layer Gψ.

• Tree-gated MoE: a deep ensemble of L = 64 base 2-FC regressors,
each containing 128 hidden units. The predictions are weighted by
tree-gates outputting by a 6-depth neural tree Gψ (26 = 64 terminal
nodes).
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With this configuration, each architecture has roughly the same total
number of parameters (18 million parameters total for each cascade stage),
allowing a fair comparison between them.

Evaluation metric. Given a dataset containing N samples in the form
(Ii,yi) where Ii and yi are the i-th image and the true landmark coordi-
nates respectively, the common metric used in the literature to evaluate a
prediction ŷi is the normalized mean error (NME). It corresponds to the av-
erage landmark-wise distance between the ground truth and the prediction,
normalized by the inter-pupil distance:

NME =
1

N

N∑
i=1

||ŷi − yi||2
||gi,l − gi,r||2

(4.1)

where gi,l and gi,r are respectively the left and right pupil centers of the i-th
face image.

Learning. As often done in the literature, we train 4 cascade stages. For
each sample, we augment the initial landmark coordinates (i.e. mean shape)
by a random translation t ∼ N (0, 10) and a random scaling s ∼ N (1, 0.1).
Training is done by optimizing the NME over the parameters for represen-
tation φ, regression Θ and gating ψ layers. These parameters are optimized
jointly in an end-to-end fashion by using ADAM optimizer [87] with a learn-
ing rate of 1e−3 and batch size 32.

4.1.2.2 Evaluations

Table 4.1: Comparison of different architectures in term of NME (%).
Method LFPW + HELEN I-BUG COFW

Baseline 4.22 8.89 5.9
Deep ensemble 4.06 8.95 5.87
Soft-gated MoE 4.01 8.8 5.84
Tree-gated MoE 4.01 8.38 5.76

Architecture comparison. Table 4.1 shows the accuracy of each archi-
tecture obtained according to the category of variations: moderate vari-
ations (LFPW + HELEN), head pose variations (I-BUG) and occlusions
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(COFW). As these architectures were trained on 300W annotated with the
2D-coordinates landmarks of the visible parts of the face, the 300W-LP and
AFLW2000-3D testsets are not used in this experiment. We can then observe
that using a deep ensemble of base regressors slightly improves performance
(4.22 → 4.06 on moderate variations, 5.9 → 5.87 on occlusions). The ro-
bustness to head pose variations and occlusions is mostly achieved by using
gates. Indeed, soft-gates increase the accuracy on all types of variations
(4.22 → 4.01 on moderate variations, 8.95 → 8.8 on head pose variations,
and 5.9 → 5.84 on occlusions). The hierarchical structure of the tree-gates
further improves the robustness of the soft-gates to large variations in pose
and occlusion (8.8 → 8.38 on head pose variations, 5.84 → 5.76 on occlu-
sions). Thus, Tree-gated MoE is a first approach to improve the robustness
of a simple regressor in an unconstrained environment containing large vari-
ations, such as partial occlusions or head pose variations.

Table 4.2: Comparison with state-of-the-art approaches in term of NME (%).
Method LFPW + HELEN I-BUG COFW

RCPR [20] 6.18 17.3 8.50
SDM [180] 5.57 15.4 7.70
PIFA [82] 5.43 9.98 -
LBF [137] 4.87 11.98 13.7

TCDCN [192] 4.80 8.60 -
CSP-dGNF [37] 4.76 12.00 -

ERCLM [13] 4.58 8.90 -
RCN+ [64] 4.20 7.78 -

DRDA [190] - 10.79 6.46
SFLD [176] - - 6.40

Tree-gated MoE 4.01 8.38 5.76

Comparison with state-of-the-art approaches. Table 4.2 shows a com-
parison between Tree-gated MoE and other recent state-of-the-art methods
for each category of variations. We can then observe that our approach out-
performs these methods, except on head pose variations where RCN+ [64]
outperforms Tree-gated MoE. This method uses indeed additional data to
regularize the training of the model, thus explaining the greater robustness
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observed on head pose variations. Finally, our method achieves a new state-
of-the-art on the COFW testset, illustrating the relevance of our approach
to occlusion robustness.

Soft-gated MoE Tree-gated MoE

Figure 4.4: Cumulative top-weighted base regressor distribution by using
either soft-gates (left) or tree-gates (right).

Qualitative evaluation. In addition to the quantitative evaluation pre-
sented above, we conducted other experiments to qualitatively evaluate our
approach. Figure 4.4 shows the average cumulative sum of the gate values
of the base regressors, sorted in descending order, depending on whether the
training was performed with soft-gates (left) or tree-gates (right). This al-
lows to have a measure of the sparsity of the gates, giving an estimate of
the average number of base regressors involved in the final prediction. For
instance, at the first cascade stage, soft-gates allow 10% of the base regres-
sors to explain 40% of the final prediction, while tree-gates allow 10% of the
base regressors to explain 60% of the final prediction. We can then observe
that the gates are on average more sparse on the first cascade stages than
on the last ones. Indeed, the first cascade stages tend to capture coarse
landmark displacements (e.g. translation, scaling), thus requiring fewer base
predictors to model these displacements. However, the last cascade stages
capture finer and more subtle landmark displacement, requiring more base
regressors. This is more prominent with tree-gates. Indeed, its structure
allows to hierarchically pool the base predictors (as seen in Equation 3.19),
leading to a better cooperation between them and an overall more efficient
learning.
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In addition, the runtime of Tree-gated MoE is low with 4, 72 ms per image
on a NVIDIA GTX 1080 GPU, i.e. 211 fps. It can be improved by selecting
a small proportion of the base regressors, so as not to have to compute the
predictions of the unselected ones, as done in [147]. However, the selected
ones must be sufficiently accurate. Figure 4.4 shows that we can obtain
approximately the same level of accuracy with few base regressors, especially
on the first cascade stages and by using tree-gates rather than soft-gates.
This is confirmed by Figure 4.5, which shows the face shapes generated by
the top-weighted base regressor (i.e. maximum value of the gate) depending
on whether the training was performed with tree-gates or soft-gates. We can
then see that tree-gates allow to learn much more accurate base regressors,
whose predictions generate plausible face shapes that are close to the ground
truth. This reinforces the fact that tree-gates allow an overall more efficient
learning of the deep ensemble.

4.1.2.3 Conclusion

The experiments described above allow us to validate our approach in the
prediction layer for face alignment. In particular, it has been shown that (1)
using several base predictors leads to increase the robustness to head pose
variations and occlusions compared to a single strong predictor, (2) using
an adaptive mixture allows to better specialize the base regressors, and (3)
using tree-gates improves the overall robustness while reducing the number
of accurate base predictors.

In what follows, we extend our approach to the representation layer in
order to better adapt feature extraction to the most extreme variations and
thus obtain a robust representation to better regress facial landmark local-
ization.
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Figure 4.5: Visualisations of the predictions generated by the top-weighted
(maximum value of either soft-gates or tree-gates) base regressor, for each
cascade stage. Images from 300W testset.
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4.1.3 Exogenous tree-gated MoE in the representation
layer

Deep ensemble
Head pose estimation Tree-gates

Representation
Tree-gates

Figure 4.6: Exogenous tree-gated MoE for face alignment, with head pose
estimation as gating variable in the representation layer.

The robustness of the last face alignment model can be further improved
if the representation layer is better adapted to large variations. Thus, we
propose to use an adaptive deep ensemble model for the representation layer,
as an instance of the exogenous tree-gated MoE described in Section 3.5.2.
Instead of using the raw pixel intensities as gating variable, which are high-
dimensional with a low semantic level, we propose to use head pose which is
(1) an important source of exogenous variations in face alignment datasets
(e.g. 300W-LP, AFLW2000-3D) while being exogenous to landmark local-
ization, and (2) can be modeled with high accuracy. Head pose estimation is
therefore an ideal gating variable to condition feature extraction. Figure 4.6
illustrates the resulting model, called Pose tree-gated MoE and presented
in the following.

4.1.3.1 Methodology

Architecture. To extend our adaptive deep ensemble method in the rep-
resentation layer, we use L = 8 base convolutional networks (instead of the
single strong one used in Tree-gated MoE), whose outputs are combined de-
pending on head pose estimation.

Similar as before, all the patches are used for each base CNN to extract
facial features. Each base CNN then contains as many layers to keep ex-
tracting 30 features per landmark, but uses fewer convolutional kernels in
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each layer so as to keep the same number of trainable parameters: (7@5x5→
14@5x5→ 28@3x3→ 56@3x3→ 30@1x1).

The facial features of the CNN ensemble are then adaptively weighted by
head pose estimation (outputted by the model described below) through 3-
depth tree-gates (i.e. 23 = 8 terminal nodes) in order to specialize each base
CNN on a hierarchical partition of the head pose space. The convolutional
kernels learned by each base CNN are thus specialized on a region of the head
pose space, leading the model to better adapt feature extraction, especially
for large poses. At the top of the representation, the regression layer is
then the same as in Tree-gated MoE. Thus, head pose estimation allows to
extract a more suitable representation upon which the regressor ensemble
better adapt to locate facial landmarks.

ResNet-50
backbone

Head pose estimation

Figure 4.7: Head pose estimation.

Head pose model. To model head pose, we adopted the approach [138]
which uses a pretrained ResNet-50 backbone to extract a high-level rep-
resentation xω (2048 units) from the face image I, upon which to regress
head pose. In [138], the regressor is a deep network that uses several fully-
connected layers predicting the three head pose angles at once. We have
obtained greater accuracy by using instead three separate regressors, i.e. one
for each component pose, in a multi-task learning fashion as illustrated in
Figure 4.7.

Head pose estimation Ω ∈ [−π, π]3 is then the concatenation of the pre-
dictions outputted by the pitch regressor Ωα with parameters α, the yaw
regressor Ωβ with parameters β, and the roll regressor Ωχ with parameters
χ, as follows:

Ω = Ωα(xω)||Ωβ(xω)||Ωχ(xω) (4.2)
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where || is the concatenation operator.
The parameters for pitch, yaw and roll can thus be trained jointly. Lastly,

we also finetune the ResNet-50 backbone parameters to further improve the
representation and the regression accuracy.

Table 4.3: Mean absolute error between the prediction and the ground truth
for each pose angle on 300W-LP testset. The range is [−90◦, 90◦].

Head pose angle Mean absolute error

Pitch 5.42
Yaw 7.22
Roll 5.09

Table 4.3 shows the accuracies obtained on the 300W-LP testsets. With
a mean absolute error of 5.91◦, we validate the strong accuracy of our head
pose model. Thus, head pose verifies the properties described in Section 3.5.2
to be considered as an ideal gating variable, which is indeed (1) identified
as an important source of variations in the data while being exogenous to
landmark localization, and (2) modeled with high accuracy.

Evaluation metric. In order to evaluate the robustness of this approach
to the most extreme head pose variations, we will use 3D-face alignment
datasets, annotated with the 2D-coordinates of the true landmarks, (i.e. self-
occluded or not) instead of their projections on the visible part of the face
(i.e. as in 2D-face alignment datasets). For 3D-face alignment, the common
evaluation metric used in the literature [200] is still a normalized mean error
(i.e. average landmark-by-landmark distance between the ground truth yi
and the prediction ŷi of the i-th sample), but the normalization coefficient
is the size of the face bounding box encompassing all the landmarks:

NME =
1

N

N∑
i=1

||ŷi − yi||2√
hi × wi

(4.3)

where hi, wi the height and width of the face bounding box, respectively.

Learning. Training is done with the same hyperparameters as for Tree-
gated MoE. However, the training loss used is either the 2D-NME for 2D-
face alignment datasets (i.e. 300W and COFW), or the 3D-NME for 3D-face
alignment datasets (i.e. 300W-LP and AFLW2000-3D).
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4.1.3.2 Evaluations

Table 4.4: Comparison of different architectures in term of 2D-NME (%).
Method LFPW + HELEN I-BUG COFW

Baseline 4.22 8.89 5.9
Tree-gated MoE 4.01 8.38 5.76

Pose tree-gated MoE 4.02 7.5 5.58

Architecture comparison. Table 4.4 shows the accuracy of tree-gated
deep ensemble models on 300W and COFW. Without drastically degrading
the performance for moderate variations (4.01→ 4.02 on average on LFPW
and HELEN testets), Pose tree-gated MoE allows to significantly improve
the accuracy for head pose variations (8.38 → 7.5 on I-BUG). Indeed, by
conditioning feature extraction by head pose estimation, the representation
is better adapted and more robust to head pose variations, leading to a better
accuracy. This better generalization capability is also observed for occluded
faces (5.76 → 5.58 on COFW). By modeling both representation and re-
gression layers with our deep ensemble method, robustness and accuracy are
thus greatly improved in these unconstrained environments containing large
variations.

Table 4.5: Comparison with state-of-the-art approaches on AFLW2000-3D
in term of NME (%) for several yaw ranges.

Method [0, 30] [30, 60] [60, 90] Mean

LBF [137] 8.15 9.49 12.91 10.19
ESR [24] 4.60 6.70 12.67 7.99

CFSS [197] 4.77 6.71 11.79 7.76
RCPR [20] 4.26 5.96 13.18 7.80
MDM [159] 4.85 5.92 8.47 6.41
SDM [180] 3.67 4.94 9.76 6.12

3DDFA [200] 2.84 3.57 4.96 3.79

Tree-gated MoE 2.84 4.01 4.93 3.92
Pose tree-gated MoE 2.78 3.97 4.76 3.84
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Comparison with state-of-the-art approaches. Table 4.5 shows a com-
parison between our tree-gated deep ensemble methods and other recent
state-of-the-art methods on AFLW2000-3D for several yaw ranges. First,
we can observe that Pose tree-gated MoE improves the average accuracy
of Tree-gated MoE (3.92 → 3.84). In particular, the performance gap is
maximal on the [60, 90] yaw range (4.93 → 4.76). Specializing several base
networks on regions of the head pose space thus allows to extract a more
robust representation to the most extreme head pose variations, leading to
increase the overall accuracy.

Second, Pose tree-gated MoE outperforms most of the other methods
evaluated on AFLW2000-3D, except 3DDFA [200] which remains the state-
of-the-art method on the [30, 60] yaw range by leveraging a parametric face
model. Our model allows to reach similar performances without the need
to compute the parameters of a morphable model by directly predicting the
landmark coordinates. Last but not least, our method allows to reach a new
state-of-the-art in the [60.90] yaw range. Thus, our method is particularly
efficient in the most extreme conditions, by using a more suitable represen-
tation upon which the regressor ensemble locate the facial landmarks.

Qualitative evaluation. In addition to quantitative evaluations, we also
introspected the model to study the learned hierarchical partition of the head
pose space. Figure 4.8 (bottom) shows the face images of AFLW2000-3D in
the head pose 3D-space with yaw (red axis), pitch (green axis), and roll (blue
axis). Each face image is colored according to the top-weighted base CNN in
the first cascade stage. For more visibility, each face image is projected on
the unit sphere. Figure 4.8 (top) shows the colors associated with each base
CNN, so as to visualize how the tree splits the head pose space. By comparing
the purple/blue images and orange/brown ones, we can then observe that the
first level of the tree thus splits the head pose space according to the yaw
angle (red axis). Indeed, the model has been trained on 300W-LP where
each face image is augmented in yaw, which is therefore the dominant factor
of head pose variations. By focusing only on the face images with positive
yaw (in right figure), we can then see that the second level of the tree splits
mostly according to the roll angle (blue axis), which is the second factor of
head pose variation. Thus, the partition learned by Pose tree-gated MoE has
well captured hierarchically the importance of the main factors of head pose
variations, i.e. first yaw then roll, in the representation layer.
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Figure 4.8: Hierarchical partition of the head pose space (learned by Pose
tree-gated MoE on AFLW2000-3D). Top: Colors of each region of the par-
tition. Each face image is colored according to the top-weighted base CNN.
Bottom: Partition of the head pose space: yaw (red axis), pitch (green
axis), roll (blue axis). Left: The first level of the tree splits the head pose
space on the yaw axis. Right: For faces with positive yaw, the second level
of the tree splits mostly on the roll axis.

This robust representation thus provides greater predictive power for the
base regressors in the prediction layer. Figure 4.9 shows the face shapes gen-
erated by the top-weighted base regressor for each cascade stage. Compared
to Tree-gated MoE in Figure 4.9, we can see that Pose tree-gated MoE has
allowed to learn a strong representation to (1) generate a very likely face
shape with only one single base predictor, and (2) even under extreme head
pose conditions (up to 90◦ in absolute yaw). The final predictions (5th and
11th columns) are then very close to the ground truth (6th and 12th columns),
whether to estimate head pose or to locate facial landmarks.

4.1.3.3 Conclusion

We have evaluated our framework in the representation layer, by using an
ensemble of base convolutional networks whose the outputs are adaptively
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Figure 4.9: Visualisations of the predictions generated by the top-weighted
base regressor, for each cascade stage. Head pose estimation is also displayed,
as well as the ground truth. Images from AFLW2000-3D.
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combined by a gating variable. For face alignment, head pose estimation
is an ideal gating variable because it is a high-level semantic information
that greatly affects the face appearance while being exogenous to landmark
localization. Conditioning feature extraction by head pose estimation then
increases the robustness of the model to the most extreme pose variations. In
addition, the tree-gates have captured hierarchically the importance of each
head pose component. The extracted features are then more suitable and
robust to large poses, thus providing a strong representation upon which the
regressor ensemble better adapt to locate facial landmarks.

Adaptive deep ensemble methods can therefore significantly improve the
face alignment accuracy, especially under the most extreme conditions, and
even more when applied to several model layers (i.e. representation and pre-
diction layers). In what follows, we apply our framework to facial expression
recognition.
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4.2 Facial expression recognition

As seen in Section 1.1.2, facial expression (FE) can be described by using
(1) a categorical model, (2) a dimensional model, or (3) the facial action
coding system. The most recent and challenging datasets presented in Section
4.2.1 have large amounts of in-the-wild data annotated in categorical FE
among the 7 basic FEs (happiness, surprise, sadness, anger, fear, disgust, and
neutral) to establish cross-cultural consensus. We then propose in Section
4.2.2 to apply our adaptive deep ensemble methods to classify the 7 basic
FEs under wild conditions. In particular, as shown in Figure 4.10, identity-
related information (encompassing specific morphological traits, gender, age
or ethnicity) greatly affect the face appearance while being exogenous to
FER. By modeling it accurately enough, identity can then be considered as
an ideal gating variable and thus better adapt the FE classifier to identity
variations. Finally, we detail in Section 4.2.3 how to further improve the
robustness of the FE representation to identity variations by using our new
dispelling loss (described in Section 3.5.3).

4.2.1 Datasets

Several databases can be used to train and test the FER models. In particu-
lar, we have chosen the three most recent and challenging databases: RAF-
DB, AffectNet and ExpW. Figure 4.10 shows examples of face images for
each of these databases and for each facial expression. We can then observe
that identity-related information accounts for a large part of the intra-class
variability and therefore can be identified as an important source of variation
in these data.

The Real-world Affect database or RAF-DB [100] is one of the
most used FER databases with a good trade-off between data quantity and
annotation quality. It contains 30k face images, annotated in categorical FE:
either the 7 basic FEs, or compound FEs. As used mostly in literature, we
use only the face images annotated with the 7 basic FEs, accounting for a
total of 12271 samples for training and 3068 samples for testing. Identity-
related information is an important source of variability in RAF-DB: by
gender (52% female, 43% male, 5% unsure), age (from 0 to 70 years old),
ethnicity (77% Caucasian, 8% African-American, and 15% Asian), and by
the great variability in morphological traits as illustrated in Figure 4.10 (left).
RAF-DB was annotated by 315 different human coders, and each image face
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Figure 4.10: Facial expression recognition databases. Identity can be identi-
fied as an important source of variations in these data, while being exogenous
to the FER task.

was annotated at least 40 times before obtaining the final annotation via
crowdsourcing methods, thus validating the quality of the annotations.

The AffectNet database [123] is the largest FER database. It contains
400k face images, manually annotated by 12 different human coders in both
categorical FE (the 7 basic FEs) and two-dimensional FE (valence/arousal
intensities). These images have been collected by querying three search en-
gines (Google, Bing, Yahoo) using 1250 expression related keywords in six
different languages. Thus, webscrapping techniques have made it possible to
collect a very large amount of data, with a lot of variability, especially in
terms of identity, as illustrated in Figure 4.10 (middle). We use only the face
images annotated with the 7 basic FEs, representing a total of 280k samples
for training and 3, 5k samples for testing. As used mostly in literature, we
train the models by sampling uniformely the FE classes for each mini-batch.
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The Expression in-the-Wild or ExpW [193] is the most recent FER
database. It contains 91793 face images, manually annotated with the 7
basic FEs. These images were collected by querying a list of emotion-related
keywords using the Google search image API. A face detector was then used
to obtain face regions and measure face confidence in order to filter non-face
images or cartoon-like images. As done in the literature, we use the images
with a face confidence greater than 60, accounting for a total of 26701 samples
for training and 6673 samples for testing. Similar to AffectNet, webscrapping
techniques used to collect ExpW has led to obtain many identity variations,
as illustrated in Figure 4.10 (right).

4.2.2 Exogenous tree-gated MoE in the prediction layer

Tree-gates
Deep ensemble

Identityrepresentation

FErepresentation

Figure 4.11: Exogenous tree-gated MoE for FER, with identity representa-
tion as gating variable in the prediction layer.

In order to classify the 7 basic FEs in unconstrained environments, we
propose to use an adaptive deep ensemble method for the prediction layer,
as an instance of the exogenous tree-gated MoE described in Section 3.5.2.
As we have seen above, identity-related information can be identified as an
important source of variations in the data, while being exogenous to the
FER task. An identity representation, extracted by an accurate deep face
recognition system, can thus be considered as an ideal gating variable to
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better condition FER. Figure 4.11 illustrates the resulting model, presented
in the following.

4.2.2.1 Methodology

Architectures. In the same vein as done in Section 4.1.2.1 for face align-
ment, we then define several models that incrementally add the architectural
components of our method to recognize FE (i.e. deep ensemble, adaptive
gates, identity as the exogenous gating variable).

For the representation layer, we use the VGG16 convolutional layers Eφ
with parameters φ. It thus allows to extract a FE representation xendo con-
taining 512 feature maps of size 7x7. The parameters φ are pretrained either
on ImageNet (denoted as VGG16) or for face recognition (denoted as VG-
GFace) and are finetuned for FER.

For the classification layer, several different architectures can be defined,
as illustrated in Figure 4.12, whose the parameters are trained from scratch:

• Baseline: a single strong 3-FC classifier CΘ containing two hidden
layers with 4096 units each, and an output layer to classify the 7 facial
expressions.

• Deep ensemble: a deep ensemble of L = 32 base 3-FC classifiers,
each containing two hidden layers with 512 units each. The predictions
are equally weighted: g0 = ( 1

L
, . . . , 1

L
).

• Tree-gated MoE: a deep ensemble of L = 32 base 3-FC classifiers,
each containing two hidden layers with 512 units each. The predictions
are weighted by tree-gates outputted by a 5-depth neural tree Gψ and
based on the (endogenous) FE representation xendo.

• Identity tree-gated MoE: a deep ensemble of L = 32 base 3-FC
classifiers, each containing two hidden layers with 512 units each. The
predictions are weighted by tree-gates outputted by a 5-depth neural
tree Gψ and based on the (exogenous) identity representation xexo.

With this configuration, each architecture has roughly the same total
number of parameters (100 millions parameters total), allowing a fair com-
parison between the models.
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Single classifier
Deep ensembleBaseline

Deep ensembleIdentity tree-gated MoEDeep ensembleTree-gated MoE

Tree-gates
Deep ensemble

Identityrepresentation
FErepresentation

Tree-gates
Deep ensembleFErepresentation

FErepresentation
Deep ensembleDeep ensembleFErepresentation

Figure 4.12: Architectures overview. Baseline: a single strong classifier.
Deep ensemble: an ensemble of 32 base classifiers. Tree-gated MoE: the
base classifiers are specialized in the FE representation space. Identity tree-
gated MoE: the base classifiers are specialized in the identity representation
space. Identity representation Identity classifier

Figure 4.13: Identity model.

Identity model. To model identity, we use a VGG16 deep network trained
for face recognition [129], as illustrated in Figure 4.13. In particular, we use
the trained parameters available in [117]. The representation layer Eτ with
parameters τ consists in 13 convolution layers. It allows to extract an identity
representation xexo containing 512 feature maps of size 7x7. The classification
layer cσ with parameters σ then consists in 3-FC layers containing two hid-
den layers with 4096 units each and an output layer to classify 2622 unique
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identities (celebrity names) from the logits zexo. It was trained with 1000
face images per subject. This deep face recognition network allows to reach
98.95% accuracy on Labeled Faces in the Wild (LFW) [71], a benchmark
dataset to evaluate face recognition models. Thus, it verifies the properties
described in Section 3.5.2 to be considered as an ideal gating variable, which
is indeed (1) identified as an important source of variations while being to
the FER task, and (2) modeled with high accuracy. We then propose to
condition a deep FE classifier ensemble by the identity representation xexo,
which is robust and informative enough to characterize a great variability of
identities.

Evaluation metric. Given a dataset containing N samples in the form
(Ii, yi) where Ii and yi are respectively the i-th image and the class label,
two metrics are used in the literature to evaluate a label prediction ŷi.

A first evaluation metric is the overall accuracy Acc corresponds to the
proportion of samples that are correctly classified:

Acc =
1

N
ΣN
i=111yi=ŷi (4.4)

To evaluate the accuracy independently of the class distribution, a second
evaluation metric is the confusion matrix M , giving the proportion of samples
with label c that are classified with label p:

Mc,p =
1

N
ΣN
i=111yi=c11ŷi=p (4.5)

Some approaches in the literature use then the average accuracy per class,
corresponding to the average of the M -diagonal values.

Learning. Preprocessing is done by first resizing the face image to 224x224,
then by augmenting it with random rotation θ ∼ Uniform([−10◦,+10◦]),
random horizontal flip, and random brightness, saturation, hue and contrast
variations, as it is traditionally the case in the literature. Training is done by
optimizing the standard cross-entropy over the parameters for FE represen-
tation φ, classification θ and gating ψ layers. These parameters are jointly
trained in an end-to-end fashion by using ADAM optimizer [87] with a learn-
ing rate of 1e−5 and batch size 16. The parameters τ and σ of the identity
model are kept frozen. For each experiment, we generate a validation set
by randomly sampling 256 data from the trainset. We then select the best
model in terms of accuracy on this validation set after 100k iterations.
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4.2.2.2 Evaluations

Table 4.6: Comparison of different architectures in term of overall accuracy
(%).

Method RAF-DB AffectNet ExpW

Baseline (VGG16) 82.99 61.31 70.96
Baseline (VGGFace) 84.06 61.66 71.57
Deep ensemble 85.59 63.00 75.05
Tree-gated MoE 86.38 63.34 75.17
Identity tree-gated MoE 87.29 63.71 75.74

Architecture comparison. Table 4.4 shows the accuracy of each model
on RAF-DB, AffectNet and ExpW databases. First, using a VGG16 pre-
trained for face recognition leads to a better accuracy than using a VGG16
pretrained on ImageNet (+1.29% on RAF-DB, +0.57% on AffectNet,+0.86%
on ExpW). Indeed, the domain gap is narrower between FER and face recog-
nition compared to object recognition.

Second, using several base predictors instead of a single strong predictor
significantly increases the accuracy (+1.82% on RAF-DB, +2.17% on Affect-
Net, +4.86% on ExpW). It confirms that the robustness to large intra-class
variations (as is the case in these FER datasets) can be improved by deep
ensemble methods. This is also verified by the inter-class/intra-class ratio,
which increases from 0.27/0.24/0.20 on RAF-DB/AffectNet/ExpW respec-
tively for the baseline to 0.44/0.34/0.40 for the deep ensemble.

Third, using tree-gates to weight the predictions of the deep ensemble fur-
ther improves the accuracy (+0.92% on RAF-DB, +0.54% on AffectNet,+0.16%
on ExpW). It confirms that the gates allows to better adapt the deep en-
semble to the most extreme variations by specializing each base predictor
on specific regions of the gating space (here, the FE representation) so as to
emphasize on the most relevant ones depending on the image input.

Finally, using identity representation as gating variable instead of the FE
representation further increases the accuracy (+1.05% on RAF-DB, +0.58%
on AffectNet,+0.76% on ExpW), Indeed, it allows to better specialize the
base predictors and improve the overall robustness. It confirms that an ex-
ogenous variable identified as an important source of variation in the data is
an ideal variable gating for combining base predictors.
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neutral, happy, sad, surprise, fear, disgust, angerIdentity tree-gated MoETree-gated MoEBaseline (VGGFace)

PCA variance explained: 39% PCA variance explained: 53% PCA variance explained: 60%

Figure 4.14: Visualization of the FE classes distribution of RAF-DB in the
FE representation space. At the top of each figure, the percentage of variance
explained on the first three axes of the PCA.

FE representation comparison. From a qualitative standpoint, Figure
4.14 shows the FE classes distribution of RAF-DB in the 2D-projection of the
FE representation space, by using the t-SNE algorithm [114] for dimension
reduction. We can then observe that our adaptive deep ensemble methods
allow to learn a clearer distribution of the different FE classes in the rep-
resentation space, illustrating their better robustness. In particular, using
identity representation as gating variable further improves the distribution
of the FE classes (e.g. sad, surprise). This highlights that the FE repre-
sentation has less the constraint of capturing identity variations (which are
already handled by gates), leading to improve its discriminative power and
the overall performance.

4.2.2.3 Conclusion

The experiments described above allow us to validate our approach in the
prediction layer for FER. Quantitative and qualitative evaluations have vali-
dated that (1) using several base predictors increases the robustness to iden-
tity variations compared to a single strong predictor, (2) using tree-gates
allows to better specialize the base predictors and to better distribute the
FE classes in the FE representation space, and (3) using identity as gating
variable is better suited for the robustness in these FER datasets.
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In what follows, we show how the dispelling loss introduced in Sec-
tion 3.5.3 allows to learn a better FE representation by removing unde-
sirable identity-related information from it, leading to increase the overall
performance and to achieve a new state-of-the-art of these challenging FER
databases.

4.2.3 THrowable Information Networks

Although we have showed that identity features is a better gating variable to
specialize the base predictors, identity-related information may be retained
in the FE representation. A strong identity variation without modifying the
facial expression can thus strongly vary the FE representation fooling the
base predictors. Ideally, each base predictor should be invariant to iden-
tity variations. We then aim to encourage the removal of identity-related
information from the FE representation.

4.2.3.1 Methodology

In the identity tree-gated MoE architecture, FE and identity representation
layers have the same structure. Thus, the FE representation xendo can be feed
into the identity classifier eσ to generate a prediction z

(endo)
exo (logits vector),

as illustrated in Figure 4.15. This identity prediction can then be compared
with the prediction z

(exo)
exo obtained with the identity representation xexo. If

xendo contains discriminative information predicting the true identity, then
z

(endo)
exo and z

(exo)
exo are similar. To remove identity-related information in the

FE representation, we then propose to penalize the similarity between FE
and identity representations during training, by using our dispelling loss Lsim
described in Section 3.5.3:

Lsim(φ) =| cos(z(exo)
exo , z(endo)

exo ) |= | z(exo)
exo .z

(endo)
exo |

||z(exo)
exo ||2.||z(endo)

exo ||2
(4.6)

The parameters φ of the FE representation layer are thus trained to min-
imize both the cross-entropy Ltarget in order to learn discriminative features,
and to minimize its similarity with the identity representation through our
new dispelling loss Lsim in order to remove undesirable identity-related in-
formation from it. The final loss can then be written as:

L(Θ, φ, ψ) = Ltarget(Θ, φ, ψ) + λLsim(φ) (4.7)
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Tree-gates
Deep ensemble

Identity representation
FE representation

Identity classifier
Figure 4.15: THIN overview. To remove identity-related information in the
FE representation, we penalize the similarity between FE and identity rep-
resentations in the identity classification space during training.

where Θ, φ, ψ are the parameters for the deep ensemble, the endogenous
representation and the gating layers respectively, and λ > 0 the penalization
coefficient of the dispelling loss whose setting is discussed in the following.

4.2.3.2 Evaluations

Table 4.7: Comparison of different architectures in term of accuracy (%).
Method RAF-DB AffectNet ExpW

Identity tree-gated MoE 87.29 63.71 75.74
THIN 87.81 63.97 76.08

Architecture comparison. Table 4.7 shows the gain in accuracy that
can be obtained on the three FER databases, by adding the dispelling loss
in the training of Identity tree-gated MoE (+0.60% on RAF-DB, +0.41% on
AffectNet, +0.45% on ExpW). Thus, encouraging the removal of identity-
related information in the FE representation improves the discriminative
power of the representation upon which the base predictors are based, leading
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Figure 4.16: Ablation study for the coefficient of dispelling loss in term of
accuracy (%) on RAF-DB.

to a better robustness to identity variations.
However, similarly to the toy experiments showcased in Section 3.5.3, the

penalization coefficient λ of the dispelling loss must be carefully calibrated.
Figure 4.16 shows the accuracies of several THIN models depending on the
penalization coefficient λ used in the dispelling loss Lsim during the train-
ing. If λ is too strong (λ > 0.1 on RAF-DB), the training is too involved
in removing rotation-related information from the FE representation rather
than improving its discriminative power for FER, thus leading to decrease
the overall performance. However, if we set λ = 0.005 or λ = 0.01, it is
possible to balance these two objectives. It allows then to remove undesir-
able identity-related information from the FE representation while learning
to recognize FE, leading to improve the robustness to identity variations and
to increase the overall accuracy.

Comparison with state-of-the-art approaches. Table 4.8 shows a com-
parison between THIN and other recent state-of-the-art approaches on RAF-
DB, AffectNet and ExpW. We can then observe that THIN allows to reach a
new state-of-the-art on the three FER databases which are the largest, most
recent and most challenging ones (87.00→ 87.81 on RAF-DB, 63.54→ 63.97
on AffectNet, 71.90→ 76.08 on ExpW). Our method has therefore effectively
leveraged identity information, as an important source of variation in these
data, to improve both prediction (by using it as gating variable to better spe-
cialize the base predictors) and representation (by using it in the dispelling
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Table 4.8: Comparison with state-of-the-art approaches in term of overall
accuracy (%).

Method RAF-DB AffectNet ExpW

PG-CNN [102] 83.27 55.33 -
Separate loss [101] 86.38 58.89 -
IPA2LT [188] 86.77 57.31 -
RAN [170] 86.9 59.5 -
Covariance pooling [1] 87.00 - -
SNA [54] - 62.7 -
BReG-Net [60] - 63.54 -
PAT-VGG [21] 86.28 - 71.5
EAFR [104] 82.69 - 71.90
THIN 87.81 63.97 76.08

loss to remove undesirable identity-related information) layers. Moreover,
our method is at most close to the consensus of annotations between human
coders. Indeed, on AffectNet, the annotators agree for 65.3% of the testset. It
can then be considered as a ceiling. THIN thus generalizes well on AffectNet,
i.e. the largest FER database containing the most identity variations.

We also display in Figure 4.18 the confusion matrices for THIN on each
testset. First, we can see that happy and neutral expressions are generally
well classified, and that fear and disgust are the least well classified. Second,
predictions tend to be misclassified to neutral, especially on ExpW. One
strategy to address this issue may be to balance the mini-batches in terms of
FE classes, as is done for AffectNet, so as to better balance the predictions.
Third, as is often observed in literature, surprise and fear are most often
confused. Indeed, these FEs use roughly the same action units (open eyes
and mouth) making it more difficult to differentiate them, even for humans.

In addition, it is important to note that the quality of annotations, in
particular for the databases whose images have been webscrapped (i.e. Af-
fectNet and ExpW), can be low on a significant amount of samples that have
not been re-annotated. Figure 4.17 shows examples of well or badly clas-
sified samples. We can then see that some face images, whose action units
associated to each FE are well activated (e.g. smile and squinted eyes for
the happy expression), have been well classified by our model despite wrong
annotations thus penalizing the overall accuracy.
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disgust | disgust anger | anger sad | sad fear | fear neutral | neutral

anger | anger disgust | disgust fear | fear neutral | neutral happy | happy

happy | happy sad | sad fear | fear surprise | surprise neutral | neutral

anger | happy neutral | disgust sad | neutral happy | surprise fear | surprise

surprise | neutral disgust | anger fear | happy sad | neutral neutral | sad

anger | happy sad | neutral fear | neutral disgust | neutral surprise | fear

RAF-DB
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AffectNet ExpW

happy | happy anger | anger surprise | surprise sad | sad disgust | disgust
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fear | surprise neutral | anger sad | happy surprise | happy disgust | anger

Figure 4.17: Examples of good (green) and bad (red) predictions on RAF-
DB, AffectNet and ExpW. For each sample, we display the true FE class (in
black) and the prediction (in green or red). Misclassifications can be due to
wrong annotations, especially on AffectNet and ExpW.
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Figure 4.19: Distributions of absolute cosine distances Lsim(φ) on the RAF-
DB testset. Left: λ = 0 (no dispelling loss). Right: λ = 0.01. Our dispelling
loss allows to effectively orthogonalize the FE and identity representations.

Dispelling identity in the FE representation. Several qualitative eval-
uations validate that our dispelling loss allows to remove undesirable identity-
related information in the FE representation, leading to improve the overall
accuracy, as we have seen in the above.

Figure 4.19 shows the distribution of similarities between FE and identity
representations on the RAF-DB testset (i.e. cosine distances between their
respective identity logits vectors), depending on whether our dispelling loss is
used during training (i.e. λ = 0.01) or not (i.e. λ = 0). We can then observe
that cosine distances tend to average more towards 0 if our dispelling loss
is used, showing that THIN has indeed semantically orthogonalized FE and
identity representations, thus making them less similar.

To evaluate the sensitivity of our models to identity variations, we study
how its FE representation varies between two face images depending on
whether it is from the same person or not, so as to see if the FE repre-
sentation is invariant to identity. From the LFW database (which can con-
tain several images of the same person), we then generated positive pairs (i.e.
same identity) and negative pairs (i.e. different identities). Figure 4.20 shows
the distance distributions of FE representations for positive (red curve) and
negative (green curve) pairs.

In Figure 4.20 (left), we show these distributions in the identity represen-
tation space, corresponding to the case where the identities are separated as
much as possible. Above the figure is displayed the Intersection-over-Union
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Figure 4.20: Distance distributions in the FE representation space between
sample pairs of LFW [71]. Red: positive sample pairs (i.e. same identity).
Green: negative sample pairs (i.e. different identity).
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(IoU) measuring the overlap between the distributions. Thus, in this case,
the distributions do not overlap much, indicating that it is easy to distinguish
positive and negative pairs, which is natural because the identity represen-
tation is used to recognize a specific person.

In Figure 4.20 (middle), we show these distributions in the FE representa-
tion space of the tree-gated MoE. We can then see that the FE representation
is much more invariant to identity than in the previous case. Indeed, the dis-
tributions overlap much more (IoU increases from 6% to 37%). As the FE
representation is initialized by the identity representation at the beginning
of the training, it means that it is optimal to remove some identity-related
information for FE representation learning. It reinforces the idea that FER
and face recognition are semantically orthogonal tasks.

In Figure 4.20 (right), we can then observe that the identity tree-gated
MoE increases very slightly the overlap of the distributions (IoU increases
from 37% to 39%). While tree-gated MoE must retain some identity-related
information in the FE representation so that the base predictors can adapt
the classification, the identity tree-gated MoE has less this constraint be-
cause the gates already contain identity information, leading to learn a FE
representation more invariant to identity variations.

Figure 4.21 shows the distance distributions in the FE representation
space for THIN models. We can then observe that the stronger the coef-
ficient λ is, the higher the IoU increases. This means that our dispelling
loss decreases well the sensitivity of the FE representation to identity vari-
ations. However, as we have seen in the quantitative evaluations, one must
be careful not to choose too strong coefficients λ that focus the training on
identity-dispelling and limit the FE representation learning.

FE representation comparison. Figure 4.22 shows the FE classes dis-
tribution of RAF-DB in the 2D-projection of the FE representation space.
We can then observe that THIN allows to learn a clearer distribution of the
different FE classes in the representation space (e.g. fear, surprise), lead-
ing to improve its discriminative power. This better distribution is further
confirmed the 2D-projection quality of THIN: the percentage of variance ex-
plained on the first three axes of the PCA increase from 60% to 66%. It
illustrates that our dispelling loss allows to learn a more robust FE represen-
tation to the identity variations, facilitating the base predictors to recognize
FE.
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Figure 4.22: Visualization of the FE classes distribution of RAF-DB in the
FE representation space depending on whether our dispelling loss is used or
not. At the top of each figure, the percentage of variance explained on the
first three axes of the PCA.

4.2.3.3 Conclusion

The experiments described above allow us to validate our dispelling loss to
learn a better FE representation, leading to increase the overall accuracy and
to achieve a new state-of-the-art on the most recent and challenging FER
datasets, containing large identity variations. Thus, our method leverages
the identity information twice: first as gating variable to best specialize the
base predictors, second to remove undesirable identity-related information in
the FE representation so as to make it more invariant and robust to identity
variations, leading to these high performances.
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4.3 Outline

In this chapter, we have experimentally validated the genericity of our frame-
work through several machine learning problems in unconstrained environ-
ments (i.e. regression for face alignment and classification for facial expres-
sion recognition) and several model layers (i.e. prediction and representation
layers).

First, we have shown that using several base networks increases the ro-
bustness to large variations compared to a single strong network. Second,
using an adaptive combiner allows to better specialize the base networks.
Similarly to the toy experiments showcased in Section 3.5, we have validated
that a gating variable identified as an important source of variations while
being exogenous to the task is better suited for the robustness of the base
networks to large variations in this exogenous variable. In addition, the hi-
erarchical structure of the tree-gates increases the overall robustness while
reducing the number of accurate base networks, thus reinforcing their respec-
tive specializations. Finally, we have shown that our dispelling loss allows to
learn a better endogenous representation by removing undesirable exogenous
information from it, leading to increase the robustness and invariance to the
exogenous variations.

Our framework has allowed to reach the top of state-of-the-art on today’s
most recent and challenging databases. Adaptive deep ensemble methods
can therefore significantly improve the overall accuracy, especially under the
most extreme conditions, and even more when applied sequentially to all
model layers.
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Chapter 5

Conclusion and Future works

5.1 Conclusion

Throughout this thesis, we have proposed a framework (model architecture
and learning algorithm) aiming to increase the robustness to large variations
in the data. In particular, it has allowed to develop a robust face analysis
system both to localize facial landmarks and recognize facial expressions
while dealing with a great variety of head poses, morphological traits, or
objects that can occlude the face.

As seen in Chapter 2, three main approaches aim to increase the robust-
ness of face analysis systems:

• DNNs-based methods, by jointly learning predictor and complex rep-
resentation, which can encompass many possible variations.

• Ensemble methods, by using several base predictors whose the diversity
of decisions allows to decrease the variance of prediction errors.

• Adaptive methods, by explicitly integrating a specific factor of variation
into the model to extract more suitable features and to better adapt
the model to the most extreme variations related to this factor.

We have merged these approaches to take advantage of each of their
respective benefits and proposed adaptive deep ensemble methods. Given a
target task (e.g. face alignment) and a model layer (e.g. a representation
or prediction layer), we use an ensemble of base networks whose decisions
are adaptively weighted by a gating variable (e.g. head pose estimation)
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that specializes each of these base networks on a region of the gating space
(e.g. left-oriented faces). The ensemble accuracy can then be improved by
a better cooperation between the base networks, which is handled either by
(1) the gating structure, (2) the gating variable conditioning the task, or (3)
the learning algorithm.

For (1), we propose a hierarchical gating structure in order to learn a
hierarchical partition of the gating space to improve the specialization of
the base networks both in their distribution in the gating space and in their
prediction confidence. For (2), we propose to integrate an exogenous variable,
identified as an important source of variation and modeled with sufficient
accuracy, in order to better condition the target task and to better specialize
the base networks. Thus, the base networks are specialized in order to be
able to adapt to the most extreme variations of this exogenous variable. For
(3), we propose a new training loss to remove undesirable exogenous-related
information from the endogenous representation deciphering the task. Thus,
it reduces the sensitivity of the endogenous variable to variations in the
exogenous variable and improves its discriminative power.

Through several experiments, we have validated our approach for different
predictive tasks in various domains (both on synthetic and realistic datasets),
and by applying it to different model layers (prediction and representation
layers). In particular, our framework has allowed to reach the top of state-
of-the-art on today’s most recent and challenging databases. Thus, adaptive
deep ensemble methods significantly improve the overall accuracy for several
face analysis tasks, such as face alignment or facial expression recognition,
especially under the most extreme conditions, and even more when applied
sequentially to all model layers.

To sum it up, the main contributions of our approach are three-folds:

• From an architectural standpoint, we propose a new adaptive deep en-
semble architecture using (1) a hierarchical gating structure to learn
more efficiently input space clusters, and (2) a gating variable exoge-
nous to the target task to better condition it and learn base networks
more robust to these exogenous variations.

• From a learning standpoint, we propose a new training loss encour-
aging to remove the exogenous information from the endogenous rep-
resentation, further improving the overall learning algorithm and the
robustness of base networks to exogenous variations.
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• From an experimental standpoint, we propose generic methods that
can be applied to multiple layers (e.g. prediction, representation layer)
and multiple predictive tasks (e.g. face alignment, facial expression
recognition, digit recognition, shape recognition). We experimentally
validate our approach on synthetic and realistic datasets. In particular,
we show that our method significantly improves the robustness to the
most extreme variations.

These contributions led to multiple publications in international confer-
ences and journals [6][5][7], as well as a Python code framework that have
been released open-source [4] for performing face analysis in the wild (facial
expression recognition, face alignment, head pose estimation, face recogni-
tion).

5.2 Future works

Our framework provides several interesting directions from an architectural,
learning or experimental standpoint.

5.2.1 Architectural standpoint

Gating variable. A first architectural direction is to learn a more suitable
gating space in which to specialize the base networks. Rather than adapting
the model according to an exogenous variable related to a single factor of
variations, we could use one that encapsulates all the factors. To this end,
we could first use unsupervised disentanglement methods to learn represen-
tations related to each factor of variations in the data. In particular, these
methods use an auto-encoder, whose encoder extracts several embeddings
each capturing a specific factor of variation. Second, we could retrieve these
embeddings and condition the target task by a linear combination of them,
whose weighting coefficients are jointly trained with the entire system. Thus,
it allows to learn the importance of each of the factor of variations in the data
and capture more exogenous variations through the gating variable, leading
to better adapt the model to all exogenous variations.

Gating structure. A second architectural direction is to learn a better
clustering of the gating space. Rather than fixing the structure of the neural
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tree (i.e. binary tree with arbitrary depth), we could progressively grow the
tree jointly with the learning of the entire system. To this end, we could use
the growth procedure of the adaptive neural tree proposed in [155]. It would
not require to arbitrarily set the depth of the tree (i.e. and therefore the
number of clusters in the gating space), leading to further exploration of the
space of possible trees that may be unbalanced (i.e. and thus learning more
efficient clustering).

5.2.2 Learning standpoint

Dispelling loss. In order to improve the learning algorithm, a first direc-
tion is to use a more efficient dispelling loss to better remove undesirable
information related to the exogenous variable in the endogenous represen-
tation. Rather than encouraging to orthogonalize the exogenous and en-
dogenous variables in the exogenous prediction space, we could employ an
adversarial technique by training the parameters of the endogenous represen-
tation layer so as to both minimize the loss of the target task and maximize
the loss used to model the exogenous variable.

Multi-task learning. A second direction to improve the learning algo-
rithm is to use multi-task learning techniques. Consider an adaptive deep
ensemble where xendo is the endogenous representation and xexo is the ex-
ogenous one. Since the exogeneity relation is symmetric (i.e. if xendo is
exogenous to xexo, then xexo is exogenous to xendo), then xendo is a suitable
gating variable to condition the predictor of the exogenous variable. We could
then jointly learn the xexo-conditioned predictor of the endogenous variable
and the xendo-conditioned predictor of the exogenous variable. Following the
multi-task framework, what is learned for one predictor can help the other
one to better learn representation. We can also perform alternative learning:
first train a first predictor by fixing the second one, then train the second
one by fixing the first one, and so on, to iteratively refine them. Thus, by
using the endogenous representation two times (i.e. to decipher the target
task and condition the exogenous task), its generalization capacity can be
improved, leading to facilitate the predictive power of the base predictors.
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5.2.3 Experimental standpoint

Applications to real use-cases. It would be interesting to deploy our
face analysis system on practical applications, such as (1) measuring the
likelihood of a facial expression mimed by a child with autism in order to
help him better transmit his emotions, or (2) measuring the level of respi-
ratory suffering of a person under respiratory assistance in order to detect
the dyspnea disease. Indeed, for (1), our system is robust to identity varia-
tions, allowing it to adapt accurately to children’s face appearance. For (2),
it would be more appropriate to describe FE by using a dimensional model
(i.e. valence/arousal) to detect and measure the intensity of the unpleas-
ant feeling, or the FACS manual to detect certain facial muscles that may
reflect a respiratory gene. In particular, we could use transfer learning tech-
niques from our FE classifier pretrained on large datasets (i.e. AffectNet)
and whose representations robust to identity variations and occlusions can
greatly help to regress valence/arousal or to detect action units (which are
highly correlated tasks) with few additional data.

Applications to other machine learning problems. The contributions
of our framework have been experimentally validated for two predictive tasks
in real conditions that contained large variations. Although we showed the
genericity of our approach in other domains from synthetic datasets, the
predictive tasks (i.e. digit recognition, shape recognition) were relatively
easy to model. It would then be interesting to investigate other real domains
drastically different from those related to the faces. For computer vision, our
framework could be applied to other domains in recognition such as gesture
recognition with the body orientation as the exogenous gating variable, or
for other categories of tasks such as image segmentation with the nature
of landscape as gating variable. For natural language processing, we could
apply our framework to various tasks such as question answering with topic
features as gating variable. Last but not least, our approach could be applied
to other types of machine learning, such as unsupervised learning by training
auto-encoders, each specialized in a region of a suitable gating space.
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[128] C. Orrite, A. Gañán, and G. Rogez, “Hog-based decision tree for facial
expression classification,” in IbPRIA, 2009.

[129] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
in BMVC, 2015.

[130] R. A. Patil, V. Sahula, and A. S. Mandal, “Facial expression recogni-
tion in image sequences using active shape model and svm,” in UK-
Sim, 2011.

[131] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E.
Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of
machine learning research, 2011.

133



[132] G. Pons and D. Masip, “Multi-task, multi-label and multi-domain
learning with residual convolutional networks for emotion recogni-
tion,” arXiv preprint arXiv:1802.06664, 2018.

[133] A. Porras Garrido, What is the difference between bagging and boost-
ing? https://quantdare.com/what-is-the-difference-between-

bagging-and-boosting, 2010.

[134] S. Qiao, L.-C. Chen, and A. Yuille, “Detectors: Detecting objects with
recursive feature pyramid and switchable atrous convolution,” arXiv
preprint arXiv:2006.02334, 2020.

[135] R. Ranjan, S. Sankaranarayanan, C. D. Castillo, and R. Chellappa,
“An all-in-one convolutional neural network for face analysis,” in FG,
2017.

[136] M. Ranzato, J. Susskind, V. Mnih, and G. Hinton, “On deep genera-
tive models with applications to recognition,” in CVPR, 2011.

[137] S. Ren, X. Cao, Y. Wei, and J. Sun, “Face alignment at 3000 fps via
regressing local binary features,” in CVPR, 2014.

[138] N. Ruiz, E. Chong, and J. M. Rehg, “Fine-grained head pose estima-
tion without keypoints,” in CVPR workshops, 2018.

[139] J. A. Russell, “A circumplex model of affect,” Journal of personality
and social psychology, 1980.

[140] C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. P. Zafeiriou, and M.
Pantic, “300 faces in-the-wild challenge: Database and results,” Image
and vision computing, 2016.

[141] J. Saragih and R. Goecke, “A nonlinear discriminative approach to
aam fitting,” in ICCV, 2007.

[142] E. Sariyanidi, H. Gunes, and A. Cavallaro, “Automatic analysis of
facial affect: A survey of registration, representation, and recognition,”
Transactions on pattern analysis and machine intelligence, 2014.

[143] T. Senechal, V. Rapp, H. Salam, R. Seguier, K. Bailly, and L. Prevost,
“Combining aam coefficients with lgbp histograms in the multi-kernel
svm framework to detect facial action units,” in FG, 2011.

[144] ——, “Facial action recognition combining heterogeneous features via
multikernel learning,” Transactions on systems, man, and cybernetics,
2012.

134



[145] C. Shan, S. Gong, and P. W. McOwan, “Facial expression recognition
based on local binary patterns: A comprehensive study,” Image and
vision computing, 2009.

[146] Z. Shao, Z. Liu, J. Cai, and L. Ma, “Deep adaptive attention for joint
facial action unit detection and face alignment,” in ECCV, 2018.

[147] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer,” in ICLR, 2017.

[148] K. Sikka, T. Wu, J. Susskind, and M. Bartlett, “Exploring bag of
words architectures in the facial expression domain,” in ECCV, 2012.

[149] M. Skurichina and R. P. Duin, “Bagging for linear classifiers,” Pattern
recognition, 1998.

[150] ——, “Bagging and the random subspace method for redundant fea-
ture spaces,” in MCS workshops, 2001.

[151] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” Journal of machine learning research, 2014.

[152] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,”
in ICML workshops, 2015.

[153] Y. Sun, X. Wang, and X. Tang, “Deep convolutional network cascade
for facial point detection,” in CVPR, 2013.

[154] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convo-
lutions,” in CVPR, 2015.

[155] R. Tanno, K. Arulkumaran, D. Alexander, A. Criminisi, and A. Nori,
“Adaptive neural trees,” in ICML, 2019.

[156] R. J. Tibshirani and B. Efron, “An introduction to the bootstrap,”
Monographs on statistics and applied probability, 1993.

[157] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Ef-
ficient object localization using convolutional networks,” in CVPR,
2015.

[158] F. Torre and J. F. Cohn, “Facial expression analysis,” Visual analysis
of humans, 2011.

135



[159] G. Trigeorgis, P. Snape, M. A. Nicolaou, E. Antonakos, and S. Zafeiriou,
“Mnemonic descent method: A recurrent process applied for end-to-
end face alignment,” in CVPR, 2016.

[160] G. Tzimiropoulos, J. Alabort-i-Medina, S. P. Zafeiriou, and M. Pantic,
“Active orientation models for face alignment in-the-wild,” Transac-
tions on information forensics and security, 2014.

[161] G. Tzimiropoulos and M. Pantic, “Optimization problems for fast aam
fitting in-the-wild,” in ICCV, 2013.

[162] ——, “Fast algorithms for fitting active appearance models to uncon-
strained images,” International journal of computer vision, 2017.

[163] N. Ueda and R. Nakano, “Generalization error of ensemble estima-
tors,” in ICNN, 1996.

[164] M. F. Valstar, B. Jiang, M. Mehu, M. Pantic, and K. Scherer, “The
first facial expression recognition and analysis challenge,” in FG, 2011.

[165] A. Veit and S. Belongie, “Convolutional networks with adaptive in-
ference graphs,” in ECCV, 2018.

[166] A. Veit, M. J. Wilber, and S. Belongie, “Residual networks behave
like ensembles of relatively shallow networks,” in NIPS, 2016.

[167] R.-L. Vieriu, S. Tulyakov, S. Semeniuta, E. Sangineto, and N. Sebe,
“Facial expression recognition under a wide range of head poses,” in
FG, 2015.

[168] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regulariza-
tion of neural networks using dropconnect,” in ICML, 2013.

[169] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang,
and X. Tang, “Residual attention network for image classification,”
in CVPR, 2017.

[170] K. Wang, X. Peng, J. Yang, D. Meng, and Y. Qiao, “Region attention
networks for pose and occlusion robust facial expression recognition,”
Transactions on image processing, 2020.

[171] X. Wang, F. Yu, L. Dunlap, Y.-A. Ma, R. Wang, A. Mirhoseini, T.
Darrell, and J. E. Gonzalez, “Deep mixture of experts via shallow
embedding,” in UAI, 2020.

136



[172] G. Wen, Z. Hou, H. Li, D. Li, L. Jiang, and E. Xun, “Ensemble of deep
neural networks with probability-based fusion for facial expression
recognition,” Cognitive computation, 2017.

[173] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature
learning approach for deep face recognition,” in ECCV, 2016.

[174] D. H. Wolpert, “Stacked generalization,” Neural networks, 1992.

[175] S. Woo, J. Park, J.-Y. Lee, and I. So Kweon, “Cbam: Convolutional
block attention module,” in ECCV, 2018.

[176] Y. Wu, C. Gou, and Q. Ji, “Simultaneous facial landmark detection,
pose and deformation estimation under facial occlusion,” in CVPR,
2017.

[177] Y. Wu and Q. Ji, “Robust facial landmark detection under significant
head poses and occlusion,” in ICCV, 2015.

[178] ——, “Constrained joint cascade regression framework for simultane-
ous facial action unit recognition and facial landmark detection,” in
CVPR, 2016.

[179] ——, “Facial landmark detection: A literature survey,” International
journal of computer vision, 2019.

[180] X. Xiong and F. De la Torre, “Supervised descent method and its
applications to face alignment,” in CVPR, 2013.

[181] H. Yang and I. Patras, “Privileged information-based conditional re-
gression forest for facial feature detection,” in FG workshops, 2013.

[182] H. Yang, U. Ciftci, and L. Yin, “Facial expression recognition by de-
expression residue learning,” in CVPR, 2018.

[183] H. Yang, Z. Zhang, and L. Yin, “Identity-adaptive facial expression
recognition through expression regeneration using conditional gener-
ative adversarial networks,” in FG, 2018.

[184] L. Yin, X. Chen, Y. Sun, T. Worm, M. Reale, and A. High-resolution,
“A high-resolution 3d dynamic facial expression database,” in FG,
2008.

[185] L. Yin, X. Wei, Y. Sun, J. Wang, and M. J. Rosato, “A 3d facial
expression database for facial behavior research,” in FG, 2006.

137



[186] X. Yu, Z. Lin, J. Brandt, and D. N. Metaxas, “Consensus of regression
for occlusion-robust facial feature localization,” in ECCV, 2014.

[187] L. Yue, X. Miao, P. Wang, B. Zhang, X. Zhen, and X. Cao, “Atten-
tional alignment networks.,” in BMVC, 2018.

[188] J. Zeng, S. Shan, and X. Chen, “Facial expression recognition with
inconsistently annotated datasets,” in ECCV, 2018.

[189] F. Zhang, T. Zhang, Q. Mao, and C. Xu, “Joint pose and expression
modeling for facial expression recognition,” in CVPR, 2018.

[190] J. Zhang, M. Kan, S. Shan, and X. Chen, “Occlusion-free face align-
ment: Deep regression networks coupled with de-corrupt autoencoders,”
in CVPR, 2016.

[191] Z. Zhang, P. Luo, C. C. Loy, and X. Tang, “Facial landmark detection
by deep multi-task learning,” in ECCV, 2014.

[192] ——, “Learning deep representation for face alignment with auxil-
iary attributes,” Transactions on pattern analysis and machine intel-
ligence, 2015.

[193] ——, “From facial expression recognition to interpersonal relation
prediction,” International journal of computer vision, 2018.

[194] G. Zhao, X. Huang, M. Taini, S. Z. Li, and M. PietikäInen, “Facial
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