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Abstract

Trajectory prediction of surrounding agents is essential for autonomous driving in order
to effectively perform tactical path planning. In the thesis, we tackle the task of trajectory
prediction of a target vehicle in two different environments: one on a highway, and the
other in an urban setting. For this purpose, we develop deep learning-based solutions
using different input features. First, the target vehicle’s past trajectory reveals information
about the direction of its short-term future motion and the possible speed change range.
Therefore, our solutions exploit this information and model the temporal evolution of
the target agent using recurrent neural networks. In addition, the future trajectory of an
agent in the scene depends on its interaction with the surrounding agents and the static
scene. Thus, our first studies model the influence of the surrounding dynamic agents in a
highway environment using two different methods based on relational recurrent neural
networks [69] and a multi-head attention mechanism [68, 71]. Since autonomous vehicles
face more complex scenarios (intersections, roundabouts) in an urban environment,
additional information about the static scene context (road geometry, lane structure. . . ) is
required. Therefore, we focus on leveraging cues from the static scene using high fidelity
maps in our subsequent work [70]. In addition, in order to account for the uncertainty
of the future, we generate multiple predicted plausible trajectories and the probability of
occurrence of each one. We also ensure that the predicted trajectories are realistic and
compliant with the scene structure, which means that the predicted positions lie within
the drivable area. The developed solutions are trained and evaluated using the naturalistic
driving datasets NGSIM [44, 45], highD [55] and nuScenes [13].
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2 1.1. Context and Motivation

1.1 Context and Motivation

During recent decades, automobile manufacturers have been consistently working on
improving the driving experience and making road vehicles safer by developing driver
assistance technologies. In order to evaluate the extent of advances in driver assistance
technology, six levels of autonomy have been defined by the Society of Automotive
Engineers (SAE). These levels range from 0, which corresponds to fully manual driving, to
5 the fully autonomous which is the ultimate goal of the recent research made both by the
automotive industry and institutions. Today’s transportation systems have intermediate au-
tonomy levels going from the ability to control both steering and accelerating/decelerating,
to environmental detection and decision making capabilities, to intervening in critical
situations. However, they have significant room for improvement in order to reach
the full automation level.

To better understand the technological challenges facing automated driving, we
introduce the building blocks of autonomous driving systems: a perception module, a
prediction module and a planning module (cf. Figure 1.1).

Figure 1.1: Automated Driving Pipeline [42]

In order to perceive the surrounding environment, multiple exteroceptive sensors such
as cameras, LiDARs, radars and ultrasonic sensors are mounted on the vehicle to scan the
environment. The perception module examines the raw sensor data, detects and identifies
the static and dynamic scene objects; the different parts of the road structure (drivable area,
lanes etc.) and the other road users (cars, cyclists, pedestrians, etc.). Once the perception
task is completed, it outputs an estimation of the location of each detected object. For a
fully automated driving in complex urban scenes or high speed scenarios, estimating the
current location alone is insufficient to be able to interact with those objects. Therefore, a
prediction module is required to forecast the future behaviors of the surrounding agents, i.e.
future maneuvers or trajectories. Based on these predictions and on the final destination,
the appropriate ego trajectory is planned and translated to the actuators.

Each of the previously described modules requires further research and development in
order to meet the safety requirements of advanced driving autonomy levels. In particular,
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predicting the future behavior of agents surrounding an Autonomous Vehicle (AV) is one

of the main open challenges in order to reach a fully automated driving. Forecasting the

future motion of nearby road users is crucial to understand the surrounding interactions

and make reasonable decisions. However, the uncertainty of the future and the variety of

human behavior in response to different situations are challenging for an AV, especially

since the traffic rules are not always respected.

On the other hand, the recent advances in sensor modalities and technologies have

significantly contributed to the enhancement of the quality and availability of measurement

and information for AVs. In addition, the increased performance of embedded system

architectures and softwares enhances their computational power and their effectiveness

to meet real-time driving automation. It also allows the use of complex deep learning

architectures. Deep learning has produced great achievements in numerous fields such

as computer vision, Natural Language Processing (NLP) and time series modeling and

prediction. These recent technological and scientific advances have already promoted

today’s successes of autonomous driving to a notable extent. Nonetheless, further research

is essential to address the remaining challenges.

1.2 Problem Description and Objectives

AVs are presumed to navigate in highly uncertain and interactive environments shared

with other dynamic agents. For an efficient integration of AVs on roads, human-like

reasoning and decision making in complex traffic situations is necessary. Human drivers

make decisions based on their implicit reasoning about how surrounding drivers will

behave in the future. As communication between vehicles is not always possible, AVs

must perceive and anticipate the intentions of surrounding vehicles in order to plan

comfortable proactive motions and avoid urgent reactive decisions and conflicts with

others. In fact, motion prediction helps AVs understand possible future situations and

decide about a future behavior that minimizes the possible risks accordingly.

Figure 1.2 gives an example that shows the importance of motion prediction; An

AV wants to turn left while another car is approaching from the opposite direction. The

AV needs to predict the possible trajectories of the other car which are turning right

or continue straight on and infer the likelihood of each trajectory. Indeed, if the car

continues straight on it could interfere with the AV’s left turn. In order for the AV to

perform this maneuver safely, the AV should evaluate the possibility of interference

and plan its motion accordingly.

In this thesis, we tackle the task of trajectory prediction in different environments

(highway, urban) by introducing various deep learning-based architectures. The first
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Figure 1.2: Example of trajectory prediction scenario [42]

step here is to select the cues that provide the useful information to infer the future

behavior of a target vehicle. The target vehicles’ past states give relevant information

about the direction of its short-term future motion and the possible speed change range.

However, the trajectory taken by each vehicle in the future is not only dependent on its

own state history, the surrounding environment determines the possible future motion as

well. Indeed, the presence and actions of the neighboring vehicles have a great influence

on a vehicle’s behavior. For example, if a vehicle v1 proceeding a vehicle v2 in the same

lane decelerates, the vehicle v2 should at some point react to this change by adjusting

its speed to maintain the safety distance or performing a lane change if possible. In

addition, when we consider an urban environment, the static scene structure including

road and lane structure, sidewalks and crosswalks present important cues that determine

the possible ways and the general patterns.

The second challenge is to design an adequate Neural Network (NN) that aggregates

the relevant features from the input cues and models the dependencies between them.

Generally, to address the task of trajectory prediction, the first task is to model the

dynamics and the temporal dependencies of the past motion of the agents in the scene.

Second, the interactions between the neighboring vehicles should be analyzed in order

to retrieve information about the social context that influences the target agent’s future

trajectory. To do so, a human-like reasoning consists on paying selective attention to a

subset of surrounding vehicles that most influence the target vehicle’s future trajectory

while paying less attention to other vehicles. For example, a vehicle performing a lane

change maneuver will pay more attention to the vehicles in the target lane than those in

the other lanes. Consequently, its future behavior could be more dependent on distant

vehicles in the target lane than the close ones in the other lanes.

A major challenge in trajectory prediction is the high variability in the two context

cues; the static scene elements and the agents in a traffic scene can have various
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configurations. These two cues are tightly linked; each can inform the most salient
parts of the other. For example, the presence of a nearby pedestrian could make a
crosswalk in the path of the vehicle of interest a salient part of the static scene, as opposed
to if there were no nearby pedestrians. On the other hand, the presence of a crosswalk
would make a nearby pedestrian on the sidewalk a more salient part of the input context
as opposed to if there was no crosswalk. This dependency between the two cues should
be considered when addressing the trajectory prediction task.

Another challenge in trajectory prediction is the multimodality of the distribution of
future trajectories. The inherent uncertainty of the future imposes that there is not one
single correct possible future trajectory prediction. Given a history of an agent’s motion
and a similar context, there are multiple possible and plausible motions of this agent in the
future. In fact, the future trajectory of an agent in the scene depends on the agent’s goal
and behavioral characteristics or driving style and on the interaction with the surrounding
road users. However, the goals and behaviors are not externally observable. Therefore,
distinct possible goals could be defined and for each potential goal or behavior, there
could be a distinct possible future trajectory or mode. Even humans reason by accounting
for multiple possibilities of future motions and put more focus on the most probable one.
This evokes the problem of defining the different intentions corresponding to the different
possible trajectories in a specific context. In addition, it raises the question about the
plausibility of the predicted trajectories and how we evaluate it.

To address the above challenges, we propose different deep learning based methods
that employ various input cues. Then, we investigate different ways of modeling the
interactions between the neighboring agents and the static scene context. Since the
attention mechanism has great achievements in performing relational reasoning, we
focus, in this work, on vehicles interactions modeling using various techniques of
attention mechanism such as soft attention [6], multi-head dot product attention [107],
double attention [18], etc. We also explore various ways of mounting the attention
blocks to handle different sub-tasks of a trajectory prediction framework. Moreover, we
incorporate the uncertainty regarding the actions of human drivers using multimodal
trajectory predictions. We also study the use of different implicit and explicit distinct
generic intentions associated to each prediction mode in order to enhance the diversity
of the predicted trajectories.

The trajectory presents spatial and temporal information. In this thesis, we denote
the interactions with the surrounding agents and with the map as spatial information
and the motion evolution as temporal information. Since each agent motion depends
on the other surrounding agents and the static scene elements, the spatial and temporal
information are highly correlated.
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1.3 Thesis Outline

The organization and contents of the chapters of this thesis are presented below.

In Chapter 2, we analyze the state-of-the-art studies addressing the problem of

trajectory prediction. First, we describe the overall structure of a trajectory prediction

framework with a focus on the cues considered to infer the future motion in Section 2.1.

In addition, we consider the output forms (trajectories, maneuvers, etc.) and the different

methods of generating multimodal predictions. Then, we examine the different methods

of trajectory prediction starting by a brief description of the main classical approaches

in Section 2.2. Section 2.3 details the Deep Learning (DL) based methods and the

architectures deployed i.e. LSTMs, CNNs, Transformers, etc. Specifically, we investigate

the different methods of trajectory encoding and generation and interaction modeling

between the target agent and the static and dynamic context elements. Finally, we describe

publicly available naturalistic driving datasets and we compare them. We also give further

details about the datasets that we use in our experiments to evaluate our proposed methods.

In Chapter 3, we tackle the task of trajectory prediction on a highway. To do so, we

exploit two main cues; the past trajectory of the target vehicle and those of its surrounding

agents. A commonly encountered challenge here is modeling the interactions between

the agents and analyzing their influence on the future trajectory of the target vehicle.

Therefore, we propose two different methods of trajectory prediction with a focus on

interaction modeling; the first one, described in Section 3.3, applies simultaneous spatial

and temporal dependencies modeling at each time step based on Relational Recurrent

Neural Networks (RRNNs). It is composed of two main blocks: a Long Short-Term

Memory (LSTM) and a Multi-Head Attention (MHA) module. The second method

MHA-LSTM (cf. Section 3.4) is composed of the same building blocks. However, these

blocks are mounted differently which constitutes the singularity of each method. Our

MHA-LSTM applies attention on high level representations of the agents’ trajectories

which enable its interpretable interaction modeling. Indeed, the visualisation of attention

maps makes it possible to infer which agents most influence the target agent’s future

trajectory. We also investigate the advantages of each approach using experiments on

two publicly available naturalistic driving datasets in Section 3.5.

In Chapter 4, we consider the task of trajectory prediction in an urban environment.

For this purpose, we augment the MHA based method with additional information about

the static scene structure using a Bird Eye View (BEV) high definition map. In other

words, we apply MHA on a joint representation of the static scene and the surrounding

agents (cf. Section 4.1). We also take into account the uncertainty of the future by

proposing a multimodal solution. Actually, we use each attention head to generate
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a possible future trajectory. Then, in order to enhance the diversity of the predicted
trajectories and ensure that they cover all the possible paths, we augment our model by
different methods of defining drivers intentions. In other words, we attribute a distinct
intention to each prediction mode to avoid the mode collapse issue. In Section 4.2,
we propose to replace the MHA with alternative attention based modules such as the
Double Attention (DA) network in order to reduce the complexity of the model while
generating competitive predictions. To evaluate our proposed methods, we compare
them to recent state of the art methods using different metrics. Experiments and ablation
studies are conducted in Section 4.4.

Chapter 5 addresses the task of trajectory prediction in an urban environment using
an architecture that is better suited to the real time requirements of an AV. Section 5.2
presents our proposed non auto-regressive solution based mainly on Transformer blocks.
This architecture is interesting since it has the ability of parallel implementation on GPUs
during the training and the testing phase as well. We also augment the Transformer
architecture with an additional layer to simultaneously model the spatial and temporal
information. In addition, we built a multimodal solution based on a set predefined
intentions in form of anchor trajectories that we pass as inputs to the Transformer decoder.

Finally, Chapter 6 summarizes our contributions and gives an overview of future work.
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10 2.1. Overall Motion Prediction Framework

Motion prediction is a key task in many domains such as service robotics, advanced

surveillance systems and autonomous vehicles. Consequently, it has been addressed

in the literature in different contexts, for different dynamic objects and from different

perspectives. Considering various approaches, we notice that if one is applied in a

particular context, it can also be extended to another with minimal adjustments. Therefore,

even though we are tackling here the task of trajectory predictions for autonomous

vehicles, in this section, we consider the studies related to trajectory prediction of a

target agent in general, which represents a dynamic object of interest such as a robot,

pedestrian, cyclist, car or other. In addition, numerous motion prediction methods have

recently been proposed. Here, we give an overview of the deployed methods, focusing

on deep learning-based methods.

2.1 Overall Motion Prediction Framework

We follow Rudenko et al. [87] who divide the motion prediction problem into three main

components: stimuli, modeling approach and prediction.

2.1.1 Stimuli

The stimuli are the features that influence and help to determine the future intention

of the target agent. They are mainly composed of target agent cues and static and

dynamic environment features.

2.1.1.1 Target agent features

A future agent’s motion is a continuation of a previous behavior since each motion results

from a relatively slow (or fast) progressive change in the speed and direction that obeys

physics laws of motion. Therefore, the main observable target agent cues consist of its

past state observations (positions, orientation, velocities, acceleration, etc.). Moreover,

the type or class of the agent considered (pedestrian, cyclist, car, truck ...) represents an

important cue to predict its future motion since for each type of agent there is a limit to

the possible variations of its speed and, therefore, the possible patterns.

In the state-of-the-art, different target agents cues have been utilized. Lenz et al. [61] use

as input to their model only the current state of a set of neighboring vehicles in order to

achieve the Markov Property. However, most existing studies [2, 23, 24, 68, 69, 82] use

a sequence of past features to benefit from extra temporal information and exploit the

characteristics of the motion variation (direction, speed, pattern...) in the prediction task.
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2.1.1.2 Environment features

The environment features are composed of:

• Static elements including static obstacles and environment geometry.

• Dynamic elements representing the other traffic users.

Static scene elements (such as road, lanes, crosswalks ...) help to determine the reachable

areas and therefore the possible patterns of the target agent motion. Moreover, the

surrounding dynamic agents interact with each other and with the target agent. They have

an influence on its future motion. Different state-of-the-art studies exploit static scene

features [75, 90] or dynamic ones [1, 23, 24, 35, 110, 116] or both [16, 21, 28, 38, 59, 81,

85, 89, 120] to infer the motion of the target agent.

Context features are captured using the sensors mounted on the target agent or at a

specific location in the scene. They can be fed to the model as raw sensor data [14,

15, 75] such as camera images (bird’s-eye view images of the scene [89, 90, 100]) or

LiDAR data points [75, 83, 117] to tackle the tasks of detection and intention prediction

simultaneously. Other studies deal with converting raw data to input features prior to

the prediction task and use a high fidelity map [16, 21, 28, 38, 81] obtained after image

segmentation. Static features are fed to the prediction model as a single image of the

scene [16, 21, 28, 38, 81, 89, 120] at the prediction time or as a sequence of past scene

states [85].

Most of state-of-the-art studies present a dynamic context (composed of surrounding

agents) represented as a state vector or a sequence of states (positions, velocities,

accelerations, class, etc.). Differently, Ridel et al. [85] represent the past trajectories of

agents as a sequence of binary 2-D grids.

Djuric et al. [28] build a rasterized representation based on the high-definition map and

the surrounding agents of each vehicle (cf. Figure 2.1). It represents each agent by a

sequence of oriented bounding boxes corresponding to its position and orientation at

each past timestep. In addition, the static scene is represented by an image with various

map elements such as lanes, cross-walks and boundaries. To highlight the difference

between them, each map element is assigned a distinct form and an RGB color. The

drivable surface and the crosswalks are represented by two differently colored polygons

while lanes describing the driving path are exhibited by boundaries and directed lines.

This representation is adequate for CNNs. It was later used in several state-of-the-

art approaches [16, 21, 81].
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Figure 2.1: Rasterized representation of the static and dynamic scene elements

2.1.2 Modeling approach

With the recent development of deep learning-based methods and their great achievements

in numerous fields, most of recent studies on trajectory prediction are based on deep

learning methods. Therefore, we divide motion modeling approaches into two main

categories, recent modeling methods mainly based on deep learning approaches and

classical ones deploying hand-crafted features. Classical motion modeling methods

subdivide the prediction approaches by considering the agent motion representation [87].

Physics-based methods use dynamical models based on the physics laws of motion.

Pattern-based methods learn to generate trajectories from the agents’ motions. Planning-

based methods infer motion intention based on a policy considering rational agents.

Recent methods are categorized with respect to the deep learning architecture and

the approach used (recurrent, convolutional, generative or attention based) and their

interaction modeling form.

2.1.3 Prediction
2.1.3.1 Output Forms

Vehicle intention prediction is divided into two main types: maneuver [27, 82] and

trajectory prediction [2, 8, 113]. The former generates a high-level representation of the

motion such as lane changing and lane keeping. The latter outputs the predicted agent’s

states over time. These two types are combined in some studies [23, 24, 40]. Indeed,

maneuvers are first inferred in [40]. Then, trajectories are generated as realisations of the

selected maneuver.

Furthermore, state-of-the-art trajectory prediction studies develop models that generate
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either a prediction for a single agent using an agent-centric approach [23, 24, 85] and,

then, repeat the same reasoning to generate predictions of a bigger number of agents

or generate predictions for multiple agents in one-shot [35, 76]. The latter approach

commonly exploits important scene and agents’ features to reason simultaneously about

the behaviors of multiple agents.

Different forms of outputs can be computed in the motion prediction task. In [2, 35],

the exact future positions are predicted. Other studies [1, 23] generate the mean and

covariance over the positions in order to estimate the uncertainty in the prediction. Kim

et al. [50] generate the future motion prediction of vehicles as probabilities over an

occupancy grid map.

(a) Single-modal, time T (b) Two-modal, time T

(c) Single-modal, time T + 3 (d) Two-modal, time T + 3

Figure 2.2: Comparison of single and multimodal future vehicle trajectories predictions [21];
predicted trajectories are marked in blue, with their probabilities indicated at the end of the
trajectories.

2.1.3.2 Multi-Modal Output

The inherent uncertainty of the future imposes that there is not one single correct possible

future trajectory prediction. Given a history of an agent’s motion and a similar context,
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there are multiple possible and plausible motions of this agent in the future. In fact, the

future trajectory of an agent in the scene depends on the agent’s goal and behavioral

characteristics or driving style and on the interaction with the surrounding road users.

However, the goals and behaviors are not externally observable. Therefore, distinct

possible goals could be defined and for each potential goal or behavior, there could be

a distinct possible future trajectory or mode. Even humans reason by accounting for

multiple possibilities of future motions and put more focus on the most probable one.

Cui et al. [21] show that a model predicting a single trajectory (single-modal) leads to

mode-averaging. Such a model learns an average behavior that could represent a non

plausible prediction. Figure 2.2 shows an example of a single-modal and a multimodal

(two-modal) predictions given an input trajectory in an intersection. At the a prediction

time T, the single modal model predicts a turning right maneuver (cf. Figure 2.2a) while

the multimodal model infers the two possible future maneuvers; going straight on and

turning right with a higher likelihood (cf. Figure 2.2b). Three seconds later, as the vehicle

moves straight, the single-modal model generates a non plausible trajectory suggesting

that the vehicle would drive outside of the derivable area (cf. Figure 2.2c). In this case,

the predicted trajectory presents an average motion between going straight on and turning

right maneuvers. The two-modal model succeeds in predicting two plausible trajectories

corresponding to two possible maneuvers. It infers the probability of each predicted

trajectory reasonably (cf. Figure 2.2d). In sum, multi-modality assures that for a given

input trajectory, there are multiple possible future predictions that draw a probability

distribution over different output sequences.

Figure 2.3: Probabilistic multimodal trajectory prediction where each trajectory is represented
by a sequence of two-dimensional Gaussian distributions [12]. The three trajectories (red, blue
and green) present the three possible modes predicted and the Gaussian distributions present the
uncertainty within each mode.



2. State-Of-The Art 15

Recent approaches learn one to many mappings from input context to multiple future
trajectories. Some multi-modal techniques require labeling modes before the training.
Deo et al. [23] attribute one of six maneuvers to each trajectory in the training set
and learn to classify these modes and generate one trajectory per mode for each agent.
Other deployed approaches sample generative models such as Conditional Variational
Autoencoder (CVAE) [9, 59, 63, 91] and Generative Adversarial Networks (GANs) [35,
54, 89, 120]. Other methods sample a stochastic policy learnt by imitation or inverse
reinforcement learning [25, 65]. Ridel et al. [85] predict the probability distributions
over grids and generate multiple trajectory samples. Others [16, 21] utilise a mixture
model generating a fixed number L of plausible trajectories for an agent, where each
trajectory is represented by a sequence of two-dimensional Gaussians and a probability
associated with each of the L trajectories (cf. Figure 2.3).

2.2 Classical Methods for Trajectory Prediction

Existing approaches can be classified in three families according to the motion model
used: physics-based methods, pattern-based methods and planning-based methods. In
the following, we describe the main methods deployed in each class.

2.2.1 Physics-based methods

For these approaches, the future trajectory of an agent is predicted by propagating
forward its past trajectory using explicit physics-based dynamic or kinematic models [7,
60, 102, 108]. Linear motion models are often used for motion prediction. These
models assume that the target agent moves with Constant Velocity (CV) or with constant
acceleration (CA). Ammoun and Nashashibi [4] use a CV motion model to forecast
agents’ future trajectories and then estimate the collision risk. They also account for
the uncertainties in the agents’ states using multivariate Gaussian distributions. The
uncertainty is propagated in time using a Kalman filter. Similarly, in the task of collision
risk estimation, Rummelhard et al. [88] apply a CV model. Then, they project the
predicted states in an occupancy grid that is transformed to a risk grid. Elnagar [30]
also uses a Kalman filter for motion prediction of dynamic obstacles using a constant
acceleration model. However, assuming that the agents’ motion is linear is not realistic,
especially for complex motions, and limits these methods’ prediction horizon. Therefore,
another approach [46, 47] was deployed to model the general motion of agents. It consists
in defining different motion modes, such as linear movements with CV, accelerating,
decelerating or turning maneuvers. Each mode is characterised by a different dynamic
regime. Combined together, these modes can compose a sequence of complex motions.



16 2.2. Classical Methods for Trajectory Prediction

The challenge in this method is to select the modes that describe the best the future
trajectory knowing the agent’s recent states and its static and dynamic scene context. To
do so, other studies [46, 47] adopt a set of motion models using the Interacting Multiple
Model (IMM). A Kalman filter with the corresponding dynamics is associated to each
model. A probability distribution over the deployed Kalman filters is updated with each
observation. The predictions are computed as a weighted combination of the motion
predicted by each filter. As there are multiple factors that influence the behavior of an
agent, there is no specific analytical expression of the distribution on the predicted states.
Therefore, other studies [11] use Monte Carlo sampling to approximate this distribution.
Broadhurst et al. [11] assign a state update equation (evolution model) based on an
input signal to each object in the traffic scene (obstacle, pedestrian, car). Then, they
randomly sample the input variables of these models in order to generate plausible future
trajectories. They also introduce additional constraints so that: the predicted trajectories
remain inside the drivable region, do not result in a collision with other objects, and
satisfy the dynamic limits of the cars. Other factors are also taken into consideration in
predicting the trajectories distributions such as the level of risk and comfort.
In general, physics-based methods are basically built upon the motion’s low level
properties. Consequently, they are restricted to short-term motion prediction since they
lack the modeling of interaction and context.

2.2.2 Pattern-based methods

Pattern-based methods learn the behaviors of agents by fitting function approximators
to trajectory data. Aoude et al. [5] combine a physics-based approach with Gaussian
Processes based motion patterns to generate probabilistically weighted feasible motions of
the surrounding vehicles. Other methods subdivide the vehicle trajectory into a finite set
of typical patterns named maneuvers. They define the set of maneuvers considered
differently and deploy methods of maneuver recognition and prediction. Tran and
Firl [105] generate Gaussian process regression models which describe all the possible
situations. Then, they identify the vehicle maneuvers by comparing the likelihoods of
the observed track to the constructed non-parametric models. They extend their method
to generate multimodal prediction by applying the Monte Carlo method. Hermes et
al. [37] cluster the motion patterns into maneuvers using a mean-shift technique with a
rotationally-invariant distance metric. They predict a vehicle’s trajectory by matching its
observation data to the center of the trajectory cluster with the highest likelihood while
adopting a particle filtering approach. Schlechtriemen et al. [94] use a predefined set of
maneuvers (lane following, lane change). Then, they deploy a Naive Bayes Classifier to
estimate the probability of a sample of trajectory features belonging to each maneuver.
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They also integrate this classifier with a Hidden Markov Model (HMM), where each state
of the HMM corresponds to one of the maneuvers extracted from the naturalistic driving
data in order the improve the classification performance. Houenou et al. [40] design a
maneuvers recognition module that proceeds by comparing of the vehicle’s path and the
shape of the road. Then, they generate different continuous realizations of the predicted
maneuver and select the best trajectory that minimizes a comfort-based cost function. The
main limitation of these approaches is that they do not model the interactions between
the neighboring vehicles on the future trajectory. Kafer et al. [48] tackle the task of
joint pairwise vehicle trajectory prediction at intersections. They compare the observed
motion pattern to the database and extract, for each vehicle, possible predicted trajectories
independently. Then, they jointly compute, for each pair, the probability of possible
trajectories.
Most recent studies deploy deep learning-based methods. They will be detailed in
the Section 2.3.

2.2.3 Planning-based methods

Planning-based methods tackle the task of sequential decision-making by reasoning on
the motion intention of agents. They assume that agents perform rational actions when
modeling their motions. These models mainly consider the transitions between the states
and the impact of current actions on the future.
Many studies perform goal-informed predictions. They use optimal motion techniques
with a hand-crafted cost-function that models the agent’s preferences with reference to
the level of comfort (smoothness of the motion), the safety of each action, the energy
consumption and the adherence to the traffic rules.
Yi et al. [115] build an energy map to model the future behavior of agents moving inside
a crowd while accounting for three influence factors; the scene layout, stationary and
moving agents. They start by constructing an energy map per influence factor. The general
principle consists in having higher energy when the risk of collision is minimal for the
possible motion. Therefore, the energy increases with the distance between each position
in the scene and the influence factor. Different expressions of the energy were deployed
depending on the type of the influence factor. Then, the authors compute a combined
influence map by an elementwise multiplication of the three previously generated maps.
To predict the future trajectory, the Fast Marching algorithm is applied for a given source
and destination position to generate an optimal path based on the energy map.
Karasev et al. [49] tackle the task of trajectory prediction using a jump Markov Decision
Process (MDP) with the agent’s goal as a hidden variable. The goal is considered as a
slowly time-varying variable predicted at each time step using the agent’s recent states.
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They also model the agent’s motion as switching nonlinear dynamical systems. They use

an MDP stochastic policy that describes the agent’s motion dynamics given the predicted

goal and the current state. The predicted trajectory is sequentially generated according to

the optimal policy that maximizes a reward function considering the changes in the scene

context.

Sierra González et al. [96] deploy an MDP to represent the driver decision-making

strategy. They model a vehicle’s trajectory by a sequence of states. Then, they build a

cost function using a linear combination of static and dynamic features parameterizing

each state. In contrast to Karasev’s approach [49], Inverse Reinforcement Learning (IRL),

accounting for risk-aversive vehicles’ interactions, operates to learn the cost function

parameters from demonstrations. In addition, Sierra González et al. [97] extend their

model introduced in [97], by using Dynamic Bayesian Networks to better model vehicles’

interactions.

Planning-based approaches assume that agents are rational and that they always opt for

the most comfortable behavior that minimizes the risk and obeys the traffic regulations.

This assumption is not always true, which makes us question the performance of these

approaches.

Classic trajectory prediction approaches have a lot of limitations since they use hand

crafted features. In addition, they are based on relatively simple designed models that fail

to extract and efficiently exploit the dependencies between the target agent and the static

and dynamic scene context and then, to generate long-term trajectory predictions.

2.3 Deep Learning for Motion Prediction

Different deep learning architectures were designed to tackle specific tasks in different

domains. For instance, recurrent networks and attention mechanisms were mainly

deployed for language modeling in natural language processing and convolutional

networks are extensively used to solve the problem of image classification and object

recognition in computer vision. These architectures have been also extended and

adapted to other domains like financial forecasting and climate understanding. They are

also deployed in the autonomous driving domain and specifically, for vehicle motion

forecasting.

In this section, we present different deep learning-based approaches and we describe

how they are adapted for the trajectory prediction task. Most interaction aware trajectory

prediction frameworks are composed of three main modules: (i) A feature encoding

module: extracts important information from the inputs (target and surrounding agents

motion dynamics, scene representation). (ii) An interaction modeling module: models the
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interaction between the target agent and the surrounding agents and/or the environment.

(iii) A trajectory generator module: receives the representations produced by the two

previously described modules and generates predictions about the future motion of the

target agent.

These modules can be separate or combined depending on the architecture adopted.

In addition, the input feature encoder and the trajectory generator of each model are

tightly coupled. Therefore, we divide this section into two main parts. The first one

describes the different architectures deployed to extract salient features, model the agent

motion and generate a prediction. The second part examines the interaction between

the agent and its surrounding environment.

2.3.1 Different Architectures of Sequence Modeling and Prediction

In this part, we describe the different deep neural networks architectures deployed for

sequence modeling and prediction. Recurrent Neural Networks (RNNs) and their variants

(Long Short Term Memories (LSTMs) and Gated Recurrent Units (GRU)) are the most

popular networks used in the task of trajectory predictions. We describe the usage in

their regular form or as an encoder-decoder. Then, CNNs and their extensions to handle

time series (temporal CNNs, convolutional LSTMs) are detailed. Trajectory prediction is

also considered as a sequence generation task. Therefore, different forms of generative

models are used to produce multi-modal plausible predictions (details in 2.3.1.3). Finally,

we present the attention mechanism and the different manners in which it is used for

sequence modeling and prediction.

2.3.1.1 Recurrent Sequence-to-Sequence Model

Data collected over successive periods of time are denoted as a time series. Motion

prediction can be treated as a time series regression or classification problem. RNNs and

their variants are the main reason behind the significant advances in sequence modeling

and generation. They have shown promising results in diverse domains such as natural

language processing and speech recognition. Therefore, RNN-based approaches have

also been deployed in the tasks of maneuver and trajectory prediction. Unlike other

neural networks, they consider sequential information and model the dependency in

inputs. They act by performing the same operations for every input item of a sequence

while taking into consideration the computation of the previous input item (cf. Figure 2.4).

LSTMs are a particular implementation of RNNs. They are characterised by their

ability to capture and represent long-term relations in sequential data. They proceed by
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Figure 2.4: Recurrent Network A with input sequence xt and outputs ht

passing information about the previous steps to the next step of the sequence using a
hidden state vector. The latter stores information about the previously seen sequence data.
It acts as the LSTM’s memory.

Figure 2.5: RNN encoder-decoder

LSTMs have recently been deployed for predicting agents’ future behaviors. Different
LSTM-based models have been designed going from a simple LSTM with one or more
layers in [2, 50, 61, 82, 121] to different types of combinations and extensions: A dual
LSTM architecture was adopted in [113]: the first LSTM extracts high-level driver
behavior succeeded by a second one for continuous trajectory generation. Pfeiffer et
al. [80] use three input channels, each one includes an LSTM network. The first one
encodes the target agent’s past states. The second input features representing a 2D
occupancy grid, encoding the static obstacle information and the third encodes the states
of surrounding agents presented in a special hybrid grid. The three output vectors of
the LSTMs are fed sequentially to a common LSTM. On top of the latter LSTM, two
successive fully connected layers are mounted. The last layer outputs the sequence of
the future time steps states at once. Alahi et al. [1] use a social LSTM where each of the
surrounding agents’ motion is represented by an LSTM cell and interactions are modeled
by social pooling (further details about interaction modeling in section 2.3.2.2). Bartoli
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et al. [8] extend the social LSTM to model the interaction between the target agent and
static scene context.
Subsequent studies [76, 106] consider trajectory prediction as a sequence-to-sequence
learning task that maps the past trajectory to the future one. They employ the encoder-
decoder architecture in order to extract salient information about the past trajectory
pattern and generate the future trajectory sequence. The LSTM encoder receives the
embedding of the input sequence of the past states of the target agent and generates a
compact vector which represents the salient information of the past trajectory. The LSTM
decoder receives a fixed length vector representing the encoding vector with or without
information about static or dynamic objects of the scene context. Then, it recursively
produces the future trajectory (Figure 2.5).
In the work of Park et al. [76], the LSTM encoder receives the trajectories of the
surrounding vehicles as well as a sequence of the past states of the ego vehicle and
generates a compact vector that represents the salient information of the past trajectory.
Varshneya et al. [106] feed the LSTM encoder with a stack composed of the agent state
and the interaction with the static and dynamic representation at each past time step.
To generate each future state, the LSTM decoder attends to the encoder hidden states
using a soft attention mechanism. Tang and Salakhutdinov [100] jointly predict the future
trajectories of multiple agents. To do so, they employ a probabilistic framework using a
variational LSTM-based encoder-decoder with a discrete latent vector for each agent.
Other studies [43, 54, 91, 110] opt for simultaneous spatial and temporal reasoning. They
use LSTMs as models of spatio-temporal graphs (details in section 2.3.2.2).
Recurrent networks are also combined with different neural network architectures in
numerous studies. Almost all studies considering the spatial scene context as an input to
their network employ a CNN to generate the input scene image representation. Therefore,
recurrent networks are coupled with CNNs in numerous studies [59, 84, 89, 91, 106, 114,
120]. Furthermore, recurrent architectures are employed in motion prediction approaches
using generative models such as Generative adversarial networks (GANs) [35, 54, 89, 120]
and variational auto-encoder (VAE) [9, 59, 63, 91] to generate multi-modal predictions.
Combining LSTM with other deep learning architectures helps to better model the spatio-
temporal dependencies and thereby, enhances the prediction performance.

2.3.1.2 Convolutional Neural Networks for Trajectory Prediction

CNNs are mainly deployed for image features representation and related fields like
image classification, segmentation and object detection. Various architectures of CNNs
are widely applied in building algorithms among them we mention AlexNet, VGGNet,
GoogLeNet, ResNet, etc. The role of the CNN is to extract salient features from the



22 2.3. Deep Learning for Motion Prediction

input image by applying successive layers of convolutional and pooling operations.

A convolutional layer consists in sliding a learnt filter over the input feature spatial

dimension and applying it on each covered local part (Figure 2.6). Applying a same

filter to the input generates a feature map indicating the strength of the detected feature

in this input. While the first convolutional layers capture the Low-Level features like

color, edges, etc, deeper layers extract the High-Level features as well. This results in a

wholesome understanding of the input images.

The Pooling layers are responsible of extracting dominant features and discarding the

noisy activations. In addition, they reduce the spatial size of the input features considered.

This results in decreasing the computational power of feature learning and increasing the

efficiency of the training process. The two main types of Pooling deployed in CNNs are

max pooling and average pooling. The max pooling and average return the maximum

value and the average value respectively from the part of the features covered by the

Kernel.

Figure 2.6: CNN Layers

As CNNs are mainly applied to images, the image representation of the static or/and

dynamic context is the suitable input to a CNN. Recent state-of-the-art studies [16, 21, 28,

81] deploy deep CNNs to predict vehicle trajectories. The CNN, fed with the rasterized

representation of the scene, simultaneously infers relevant features and generates a set of

possible trajectories. In the rasterized representation of the scene, vehicle state history

is represented by a sequence of bounding boxes. Hong et al. [38] deploy a similar map

representation of the scene and combine it with a grid-based representation of the temporal

evolution of the target and surrounding agents in the scene. They build a fused complex

scene context presented as a convolutional grid. They feed the formed 3D tensor to a

CNN to jointly encode the spatio-temporal information (agents dynamics and interactions,

and scene context). Then, they compare two different decoding architectures. The first

one consists of a “one-shot” prediction of the entire output sequence. The second deploys
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an RNN-decoder which sequentially generates a distribution at each future step. The
CNN does not explicitly relate the sequence of the agent states. This makes us question
its ability to model the temporal evolution of dynamic agents’ motion.
As a remedy, Nikhil et al. [74] deploy a variation of CNN as a sequence-to-sequence
model, able to capture the spatio-temporal aspect of the input data. The sequence-to-
sequence CNN is composed of a hierarchy of temporal convolutions (convolutions are
computed across time). Predictions at each timestamp are based only on the elements
from the current timestamp or earlier in the previous layer. Unlike RNNs where inputs
are processed sequentially, convolutions are performed in parallel by the application of
the same filter in each layer, meaning that all time-steps are processed simultaneously.
Convolutional LSTMs (ConvLSTMs) [95] also use convolutional operations to represent
spatio-temporal data such as a sequence of images. They are built by integrating
convolutional structures in the form of the regular LSTMs. An LSTM captures the
dependencies between the input sequence of vectors. It proceeds by sequentially passing
the vector of hidden state from one cell to the next and storing the past sequence of
important features in it. However, the LSTM architecture can only handle the temporal
aspect of the input sequence, but, it fails to model the spatial aspect to some extent.
The convLSTM maintains the same general structure of the LSTM while introducing
convolutional operations in it to deal with the spatial information in the image sequence.
Unlike the LSTM, the input to the convLSTM cell are 3D image features processed by
convolutional layers. Furthermore, instead of the 1D hidden state vector used in LSTMs,
the extracted features flow through the ConvLSTM cells in the form of a 3D tensor
(same as the input dimension). This also requires modifications in the internal structures
of the ConvLSTM cells where the internal matrix multiplications are exchanged with
convolution operations.
Recent studies [64, 85] use ConvLSTM for trajectory prediction. While Li et al. feed
the ConvLSTM with only motion dynamics expressed by a three-dimensional tensor of
displacements at each time step, Ridel et al. [85] use a concatenation of bird’s-eye views
of the static context with motion dynamics grid as input to the ConvLSTM. Considering
the static scene context enables the convLSTM to generate more realistic predictions
compliant with the scene structure.
In a nutshell, CNNs and temporal CNNs have generally faster training than RNNs.
However, they have limits in simultaneously modeling spatial and temporal dependencies.
convLSTMs represent well the spatio-temporal dependencies, but since they are based
on a recurrent cell, they have comparable training time to the RNNs. They perform well
in the trajectory prediction task, especially when they model both the scene context
and agents’ interactions.
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2.3.1.3 Generative Models for Trajectory Prediction

Generative models consider the training data as samples from a data distribution. They

aim to learn a representation of that distribution estimate called a model distribution.

Generative models can be divided into two categories, models that explicitly learn the

model distribution and others only capable of generating samples from it. Generative

adversarial networks [33] (GAN), variational auto-encoder [53] (VAE) and their condi-

tional variants are approaches to generative modeling utilizing deep learning methods

like CNNs and RNNs. They have achieved impressive performances in representation

learning and distribution approximation tasks.

Generative adversarial networks
GANs don’t explicitly learn the distribution of the data. However, they are capable of

generating new realistic samples from the model distribution. A GAN is composed of

two sub-models, a generator and a discriminator, trained together using a minimax game.

The generator model takes a random vector as input and generates new examples. The

discriminator is fed by samples from the dataset and others generated by the generator

network. It learns to classify these examples as real (from the dataset) or fake (from the

generator). The training of GAN-based models enables the generator to learn to generate

plausible examples. This can be detected when the discriminator is fooled by about fifty

percent of the generated examples. Gupta et al. [35] were the first to introduce the LSTM-

based recurrent encoder-decoder based GAN for multi-modal trajectory prediction. The

encoder-decoder-based generator receives as input past trajectories. It encodes the history

of the agent, computes agents’ interaction vector using social pooling and generates the

future trajectory. The discriminator, fed with the ground truth and predicted trajectories,

classifies them as plausible or not. (cf. Figure 2.7)

Figure 2.7: Example of GAN based architecture [35]

Other subsequent studies [3, 54, 89, 120] also deploy GANs for trajectory prediction

with both scene context and social interactions. They generate multi-modal predictions

based on GANs couplet with different deep learning architectures such as LSTMs and
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CNNs. SoPhie [89], Social Ways [3] and MATF GAN [120] methods use an LSTM
for agent motion encoding and a CNN for map feature extraction then they compute
the agents and scene interaction features and feed them to the LSTM generator. The
discriminator, in the SoPhie [89], is composed of an LSTM that inputs a randomly
selected trajectory sample either from the ground truth or generated one and decides
whether it is a plausible prediction or not. Unlike SoPhie [89], the MATF GAN [120]
discriminator inputs the ground truth past trajectories concatenated with either the ground
truth or the generated trajectory. This helps the discriminator to make better decisions
based on the continuity of the overall trajectory. Kosaraju et al. [54] build a more
extended model Social-BiGat, based on conditional GAN with one generator and two
forms of discriminators; the first one is specialized in local agent scale, and the other in a
global scene-level scale. Similar to SoPhie [89] and MATF GAN [120], the generator
is composed of an LSTM encoder for the agent’s past states, a CNN to model the scene
context, an interaction extractor block and an LSTM decoder that receives the agents
and scene encoded features and generates a predicted trajectory. Differently, the local
discriminator comprises encoder LSTMs operating on agents while the global encloses
LSTM encoders for agents’ dynamics and a CNN for scene features representations. We
note that, unlike SoPhie [89] and MATF GAN [120], the global discriminator in Social-
BiGat [54] is conditioned on combined agent and scene interaction information. This
incites the generator to produce more scene compliant trajectories. GAN-based models
generally overcome the difficulty of approximating intractable probabilistic computations,
but they suffer from mode collapse problems.

Variational Autoencoders
The Variational Autoencoder (VAE) is made up of an encoder-decoder made up of deep
learning networks such as CNNs and LSTMs. This encoder-decoder architecture creates
a bottleneck (reduced representation) for data which ensures that only the important
features are retained and used to reconstruct or generate data. The encoder produces a
compressed representation from its input features as a distribution over the latent space.
The decoder learns to reconstruct the original data or to generate new data. It receives a
point sampled from the distribution over the latent space and outputs the parameters of
the probability distribution of the generated data. The distribution over the latent space is
enforced to be close to a standard normal distribution in order to ensure the continuity
and the completeness of the latent space using a regularizer (cf. Figure 2.8).

Recent studies [59, 91] use a Conditional VAE (CVAE) [98] to produce position
distributions for trajectory prediction. The DESIRE framework [59] consists of two
main modules. The first is a CVAE-based GRU encoder-decoder that generates multiple
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Figure 2.8: VAE architecture

predictions based on agents’ past states. These predictions, along with context, are fed
to the second module. The latter is a GRU-based module responsible for ranking and
refining the predictions by assigning a reward function to each prediction and proposing
a displacement vector to regress it sequentially at each time-step. In VAE, the encoded
training distribution is forced to match the prior one. However, the two distributions do
not match as expected in many cases since VAE assumes a standard Gaussian prior on
the latent variables. This causes a model bias and makes us question its ability to capture
multi-modal distributions.
As a remedy, Salzmannet al. [91] develop a CVAE and LSTM encoder-decoder-based
model for trajectory prediction. Here, a scene is represented as a directed spatiotemporal
graph, agents and their interactions as nodes and edges (cf. details in Section 2.3.2.2).
They produce the predicted trajectory distribution by deploying a discrete categorical
latent variable which presents the high-level latent behavior. As the latent distribution
is discrete, it enhances the interpretability of the model and the consistency between
the encoded latent distribution and the prior. Li et al. [63] use a double attention graph
(two attention blocks one on topological and the other on temporal features) based on
Wasserstein auto-encoder [103](WAE). This auto-encoder deploys a different regularizer
than the VAE’s: it minimizes a variant of the Wasserstein distance between the latent
distribution and the prior one. This induces a better match between the two distributions.
Bhattacharyya et al. [9] propose Conditional Flow Variational Autoencoders (CF-VAE),
a novel variant of CVAE. In this variant, the latent prior is transformed by layers of
conditional non-linear normalizing flows to a more complex prior distribution. Thus, a
new regularization method of CVAE is deployed to train the CF-VAE. Both the variational
posterior distribution and the conditional prior are jointly optimized. The variational
posterior distribution tries to match the conditional prior and vice-versa. The CF-VAE
with visual scene information is applied for multi-modal trajectory prediction and seems
to have a good performance compared to the regular CVAE.
Generative models produce multiple plausible trajectories adapted to new situations
(not encountered during the training) by sampling from random latent variables. But
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they have two obvious limitations: The first one is the difficulty of deciding about the
number of samples required to cover all the possible motions in practice. The other
limitation is that the generated trajectories are considered equal without any information
about the probability of each one.

2.3.1.4 Attention Mechanism for Trajectory Prediction

Most of the encoder and decoder blocks are composed of RNNs and/or CNNs. In this part,
we present the attention mechanism deployed as a building block of an encoder and/or
decoder and next in 2.3.2.2, we will present how it is used for interaction modeling.

Attention mechanism was introduced by Bahdanau et al. [6] for natural language
processing purposes. It directly relates distant features, learns dependencies and estimates
the relative importance of the keys’ vectors with regard to the query. Therefore, it enables
the network to put more focus on the relevant keys relative values. The Transformer [107]
is an encoder-decoder architecture used for sequence-to-sequence learning. It replaces
RNNs, usually deployed for sequence modeling, and it is composed mainly of Multi-Head
Attention blocks mounted on successive layers. As opposed to recurrent models, which
read the input sequentially, the transformer encoder reads the entire input sequence at
once. In order to preserve the positional information of the Transformer’s input sequence,
positional encoding is applied on this sequence embedding. In contrast to the RNN
encoder that outputs a single vector, the Transformer encoder maps the input sequence
to a sequence of latent vectors. It consists of a stack of identical layers. Each layer
is composed of two sub-layers (Figure 2.9). The first one is multi-head self-attention
mechanism where multiple attention heads jointly attend to information from different
representations at different positions. In the second sub-layer, all aggregated features
are combined using a position-wise fully connected feed-forward network and fed to the
next layer or to the decoder. The latter receives the encoded sequence and generates an
output. It also consists of a stack of identical layers. In addition to the components of
each encoder layer, the decoder has a third sub-layer consisting of multi-head attention
over the encoder’s output, in which every position in the decoder attends over the input
sequence.

Bidirectional Encoder Representations from Transformers (BERT) [26] is derived
from the regular Transformer and has been recently employed in many NLP tasks. It
is only composed of a Transformer encoder and it trains and infers using a masking
mechanism.
The Transformer and BERT have been recently deployed for trajectory prediction [32,
116]. Giuliari et al. [32] employ both the Transformer and the BERT networks. They
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Figure 2.9: The Transformer model architecture [107]

use the transfer encoder to encode each agent’s past trajectory and the decoder to

predict its future motion without considering agents or scene interactions. Similarly,

they deploy a BERT encoder and they show that the Transformer performs better than

BERT for trajectory prediction. Differently, Yu et al. [116] account for agents interactions

and present each set of surrounding agents as a graph. They tackle the task of the

spatio-temporal modeling of graph sequences with a Transformer architecture. They use

attention as the only building block of their STAR (Spatio-Temporal grAph tRansformer)

framework for trajectory prediction. In the STAR framework, each agent’s motion is

modeled with a temporal Transformer (instead of the RNN used in most recent trajectory

prediction studies), which captures the temporal dependencies. They also use a spatial

Transformer to model agents’ interactions. The STAR framework extracts the spatio-

temporal interactions among agents by interleaving between the spatial Transformer and

the temporal Transformer.

The main advantage of Transformers is their fast training since they largely perform

their computations in parallel. However, their abilities to model the recurrency in

the input sequence and to generalize to inputs not encountered during training are

questioned [22, 104].
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2.3.2 Agent Environment Interactions

Each agent’s motion depends on the surrounding agents’ recent motions and the scene

around them. Modeling these spatio-temporal dependencies is a task that many state-

of-the-art studies have approached using different methods.

2.3.2.1 Implicit Interaction Modeling

One of the most important parts in a driver intention prediction model is the surrounding

vehicles’ interaction extractor. It is also conceived differently in the state-of-the-art.

Some existing studies [2, 24, 50, 61, 82] implicitly infer the dependencies between

vehicles. They feed a sequence of surrounding vehicles’ features as inputs to their

model. Then, they assign to the LSTM the task of learning the influence of surrounding

vehicles on the target vehicle’s motion. However, the LSTM doesn’t perform well in

capturing both spatial and temporal dependencies. Therefore, more explicit interaction

modeling methods are deployed.

2.3.2.2 Explicit Interaction Modeling

Other approaches explicitly model the vehicles’ interactions using several combina-

tions of networks.

Social Pooling
Alahi et al. [1] introduced the social LSTM concept for the pedestrian trajectory prediction

task. They encode the motion of each agent using an LSTM block. Then, they extract

the interactions between agents by sharing the hidden states between all the LSTMs

corresponding to a set of neighboring pedestrians (cf. further details about social pooling

in Section 3.2.4.1). Hou et al [39] use a structural-LSTM network to learn high-level

dependencies between vehicles. Similarly to social LSTM, they attribute one LSTM

to each vehicle. The spatial-neighboring LSTMs share their cell and hidden states

by a radial connection; the output states of the LSTMs are treated recurrently in a

deeper layer. Finally, the decoder receives the outputs of the latter and generates all

the predicted trajectories.

Convolutional Neural Networks for Interaction Modeling
Deo et al. [23] extend the social pooling technique and deploy it for the vehicle trajectory

prediction task. They use an LSTM encoder to generate a representation of each vehicle’s

trajectory. Then, they use convolutional layers applying successive local operations on

the outputs from the encoders followed by a maxpool layer. Therefore, they generate a
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context vector that consists of a compact representation of the vehicles’ interactions. But
successive local operations are not always sufficient. Furthermore, the generated context
vector is independent of the target vehicle’s state (cf. further details about social pooling
in Section 3.2.4.2). Zhao et al. [120] extend convolutional social pooling to simultaneous
multi-agent trajectory prediction. They use an LSTM to generate trajectories encodings
of the surrounding agents. They apply a CNN on the bird’s-eye view image of the scene
to extract the context features. Then, they place the trajectories encodings on top of the
extracted features grid based on their positions to form a combined representation of the
context. This representation is fed to a CNN that generates the trajectory of each of the
agents considered. Subsequent studies [16, 21, 28, 38, 81] feed a CNN with a 3D tensor
combining scene map image and additional information about surrounding agents’ past
motions. They assign to the CNN the task of simultaneously capturing the spatio-temporal
dependencies required to predict the future motion of the target agent. The limitation of
using only a CNN for trajectory prediction is that it doesn’t explicitly model the temporal
evolution of the agents’ motions. Ridel et al. [85] propose a more explicit way to model
both the spatial and temporal evolution of the agents in the scene using a convLSTM.

Attention Mechanism for Interaction Modeling
Attention mechanism (cf. Section 2.3.1.4) is known for its ability to model dependencies
between features. Sadeghian et al. [90] use an LSTM to model the past motion of the
target agent and use its hidden state to attend to the salient regions top-view image of
the navigation scene at each time step. However, they don’t model interactions between
agents. In a subsequent study [89], they use an LSTM encoder to encode the trajectories
of surrounding agents and two attention blocks. The first attends to salient features in
the scene context. The second block, denoted social attention, extracts agents’ important
features based on their motions encodings. However, they don’t directly capture the
relation between the target agent and the surrounding agents since they use the soft
attention mechanism [6]. Similarly, Amirian et al. [3] use the social attention block to
model agents’ interactions.
In our work [68, 71], we were the first to use the multi-head attention mechanism (MHA)
[107] to model the interactions between agents in the task of trajectory prediction. Each
attention head learn to capture a specific aspect of dependencies between the surrounding
agents. Subsequent works [51, 67] deploy MHA to jointly forecast the trajectories for all
vehicles of the scene. While Kim et al. [51] use a simple encoder-decoder architecture
based on MHA, Mercat et al. [67] deploy two MHA layers; the first is mounted after
the trajectories encoding to incorporate interactions between vehicles at the current
time. The second MHA layer is added after the prediction step at forecasting time.
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Yu et al. [116] employ Transformers (TFs) to model the spatio-temporal evolution of
the agents’ motions. They alternate between temporal and spatial TFs. In this thesis,
we investigate the use of MHA and TFs for interaction modeling with the surrounding
context in the trajectory prediction framework.

Graph Neural Networks
Graph neural networks (GNNs) are widely employed in relational reasoning. Many recent
studies [43, 54, 91, 110] use it in the trajectory prediction task in order to model the
agents’ interactions. They present context as a graph, where agents’ states are nodes and
their relationships are edge features. In addition to the spatial edges, Vemula et al. [110]
attribute a temporal edge to each node to present the temporal evolution of each agent’s
motion. They associate an RNN to each node and edge (Figure 2.10). Then, they use an
attention module to compute a dot product attention between the temporal RNN and the
neighboring spatial RNN hidden states for each node. The computed attention vector is
fed to the node RNN that sequentially generates the predicted trajectory.

Figure 2.10: Example of spatio-temporal graph [110]

Salzmann et al. [91] deploy a directed graph where edge information is element-
wise summed from neighboring agents of the same class at each time step. Then, the
aggregated features are fed to an LSTM with weights shared across all edges of the same
type. The encodings from all edge types connected to the target agent node are aggregated
using an additive attention to obtain a context representation vector. Huang et al. [43] use
an LSTM encoder to generate a spatio-temporal representation of each agent’s motion
while considering the interactions between agents. They use Graph Attention Network
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(GAT) [109] over the hidden states of the encoder at each time step and feed it as input
to the encoder at the next time step. In all previous methods, spatial interactions are
captured by the graph at each time-step, which is computationally expensive. Kosaraju et
al. [54] propose using an LSTM to encode agents’ trajectories and then they apply GAT
to model the interactions between agents only at the prediction time.

2.4 Summary of Trajectory Prediction Deep Learning
based Studies

A trajectory prediction study consists first in selecting the input cues that reveal infor-
mation about the future motion of the target agent. Table 2.1 shows that state-of-the-art
studies use different forms of the input cues. Most of the studies rely on information about
the target agent’s past trajectory (past traj.) [1, 2, 23, 32, 35, 50, 59, 74, 76, 89–91, 116,
120]. Additional information about surrounding agents is used as input to the network in
order to be able to make interaction aware predictions [1, 2, 16, 21, 23, 32, 35, 59, 76,
85, 89, 91, 116, 120]. Static scene elements presented as bird’s-eye view (BEV) scene
images or high fidelity maps are also exploited to generate predictions more compliant
with the scene structure [16, 21, 59, 85, 89–91, 120]. We notice that the best performance
is achieved when using the target agent’s past motion, surrounding agents’ information
and scene elements [16, 21, 59, 85, 89, 91, 120].
The second step in trajectory prediction is extracting salient features from the inputs. To
do so, different networks are used to model input trajectories as time series: LSTMs [1,
2, 50, 90], LSTMs auto-encoders [23, 35, 59, 76, 89, 91, 120], temporal convolutions
(temp. CNN) [74], transformers (TF.) [32, 116]. The most deployed ones are LSTMs and
LSTM auto-encoders since they are mainly designed to model the temporal dependencies
between the elements of an input sequence. An LSTM or an LSTM autoencoder can be
deployed in two different ways. It is either fed with a sequence of vectors composed of
the past states of the target agents and the surrounding ones, and therefore it generates a
vector representing all the agents considered [2, 76]. It can also receive a sequence of
each agent’s trajectory separately and produce a representation vector for each agent [1,
23, 35, 59, 89, 91, 120]. We note the latter LSTMs as S-LSTMs. Temporal convolutions
are also employed [74] and they achieve competitive results with the LSTM-based models
while reducing inference time. Transformers have been recently introduced and deployed
in time series modeling [32, 116]. They achieve more parallelization in sequence training
than LSTMs. Since static scene information is mainly represented as images, CNNs are
usually used to extract salient features from these images [59, 85, 89–91].
Next, in some studies [1, 23, 35, 59, 74, 89–91, 116, 120] the dependencies between
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the target agent, the surrounding agents and the map are explicitly modeled using the

features extracted in the previous step and exploited to generate a compact representation

of the context (context encoding). Interactions with surrounding agents are modeled using

additional pooling (Add.) [1], fully connected layer (FC.) [35], CNN [23, 120], attention

mechanism (Attn.) [59, 89, 90] and Transformers (TF.) [116]. Additional pooling (Add.)

and fully connected layer (FC.) fail to adequately model the spatial locations of the agents.

CNNs consider the configuration of the agents in the scene. However, they produce

agents’ encoding independently of the target agent’s motion. Attention mechanism and

Transformers are more efficient in dependency modeling since they directly relate distant

agents’ features and evaluate their relation.

Interactions with the scene elements are represented using attention mechanism [89, 90]

or by simply adding the map extracted feature vector to the context encoding [59, 91].

The interactions with nearby agents and the scene can also be modeled simultaneously

using CNN [120] or convLSTM [85]. Simultaneous interaction modeling tends to

improve the trajectory prediction since it implicitly represents the dependencies between

the surrounding agents and the scene.

The previous two steps: feature extraction and interaction modeling are combined in some

studies [16, 21] using a CNN, which receives a rasterized representation of the scene and

agents. This representation exhibits the temporal evolution of agents’ states as a sequence

of bounding boxes. A CNN does not explicitly model the temporal dependencies in the

agents motions, which can induce a degradation in the prediction performance.

The final step is motion prediction. It consists in generating the predicted intention of the

target agent in the form of a trajectory, maneuvers (man.) or occupancy grid. In order to

account for the uncertainty of the future, multi-modal predictions are deployed in [16, 21,

23, 35, 50, 59, 76, 85, 89, 91, 120]. Multiple trajectories are generated using different

methods such as generating samples using generative approaches (GAN, CVAE) [35, 59,

89, 91, 120]. The main advantage of these approaches is their ability to generalise to

unseen situations. However, they are unable to infer the probability of each generated

sample in most cases [35, 59, 89, 120]. Therefore, other probabilistic approaches [16, 21,

23] that generate multiple possible trajectories with their corresponding probabilities are

deployed to better handle the prediction task.

Table 2.1 also shows our main contributions [69–71]. They were developed concurrently

with many of the state-of-the-art studies described above.
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Table 2.2: Overview of the motion trajectories datasets

Dataset Location Sensors Scene
description

Duration Tracks HD
maps

Rate Release
year

NGSIM [44,
45]

Highways Fixed
camera
network

US
Highway
101,
Interstate
80

90 min − None 10 Hz 2007

highD [55] Highways Fixed
camera
(Drone)

6 different
locations,
60
recordings

16.5 h 110500 None 25 Hz 2018

nuScenes [13] Urban Dynamic
camera,
Lidar

1000
scenes,
each

6 h 40000 Yes 2 Hz 2020

Lyft 5 [41] Urban Dynamic
camera,
Lidar

170000
scenes,
each 25 sec

1118 h − Yes 10 Hz 2020

ApolloScape
[111]

Urban Dynamic
camera,
Lidar

103 scenes 2h 81800 Yes 10 Hz 2019

Argoverse [17] Urban Dynamic
camera,
Lidar

324000
scenes

320h 324557 Yes 10 Hz 2019

Interaction
[118]

Urban Fixed
camera
(Drone)

11 locations 16.5 h 40054 Yes 10 Hz 2020

inD [10] Urban
(Intersec-
tions)

Fixed
camera
(Drone)

4 locations 10 h 11500 None 25 Hz 2020

rounD [56] Urban
(round-
abouts)

Fixed
camera
(Drone)

3 locations 6 h 13
746

Yes 25 Hz 2020

2.5 Datasets

Many naturalistic vehicle trajectory datasets of varying sizes and characteristics have re-
cently been released. They have have been recorded in different environments (highways/
urban) using different types of sensors (Camera/ Lidar/ radars..) deployed in different
manners (fixed in a drone, dynamic). Table 2.2 presents the different characteristics of the
existing vehicle trajectory datasets. In our work, we aim to tackle the trajectory prediction
task in different types of environments. We selected the datasets according to various
criteria; the environment (highway, urban), the size of the data, the placement of the
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deployed sensors (fixed, dynamic), the data provided (trajectories, velocities, maps), etc.
We started our experiments using datasets recorded on highways (NGSIM [44, 45] and
highD [55]). Then, we exploited a dataset of an urban environment. Trajectory prediction
in an urban environment requires ample information about the scene structure and road
geometry. Thus, we need a dataset with a high definition map. Furthermore, we opted
for a dataset captured using sensors mounted on a vehicle navigating different scenes
since it offers a more realistic representation of the trajectory prediction task and makes it
possible to train models capable of dealing with different prediction scenarios. Therefore,
we select nuScenes dataset. Moreover, its data format enables us to make relatively
long term (prediction horizon greater than 5 seconds) trajectory predictions compared to
Argoverse [17] (prediction horizon of 3 seconds). It also has a fair size of recorded data
compared to the ApolloScape [111] dataset.
In the following, we further describe the datasets that we use in our experiments.

2.5.1 Next Generation Simulation (NGSIM)

NGSIM [44, 45] is a large, publicly available dataset captured in 2005 at 10Hz recording
US Highway 101 and Interstate Freeway 80. It presents mild, moderate and congested
real freeway traffic conditions with mainly two types of vehicles (cars, trucks). It is
widely studied and used in the literature, especially for the task of future intention
prediction of vehicles [2, 23, 24, 61, 82]. We use this dataset to compare our model
with the state-of-the-art (Figure 2.11).

(a) US Highway 101 (b) Interstate Freeway 80

Figure 2.11: NGSIM dataset

We adopt the same data split into train (75%) and test (25%) sets as Deo et al. [23]
and many other subsequent studies. We split the trajectories into segments of 8s of
the trajectories composed of a track history of 3s and a prediction horizon of 5s. We
downsample each segment to get only 5 fps to reduce the complexity of the model.
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2.5.2 highD

highD [55] was captured in 2017 and 2018. It was recorded by camera-equipped drones
from an aerial perspective of six different German highways at 25 Hz. It is composed of
60 recordings of about 17 minutes each, covering a segment of about 420m of two-
way roads (Figure 2.12).

Figure 2.12: Highway drone dataset highD [55]

highD consists of vehicle position measurements from six different highways with 110
000 vehicles (about 12 times as many vehicles as NGSIM) and a total driven distance of
45 000 km. This dataset is of great importance since it has 5 600 recorded complete lane
changes and presents recent driver behaviors. It presents different traffic scenarios and
conditions since it is recorded at different times of the day and different recording sites.

2.5.3 nuScenes

The nuScenes [13] dataset was captured using vehicle mounted camera, radar and lidar
sensors driving through Boston and Singapore. It comprises 1000 scenes, each of which
is a 20 second record, capturing complex inner city traffic with different agent types, such
as pedestrians, bicycles, cars, trucks, etc. Each scene includes agent detection boxes and
tracks hand-annotated at 2 Hz, as well as high definition maps of the scenes. These scenes
present a diverse set of locations, times and weather conditions.
An official benchmark split is imposed for the nuScenes prediction challenge, with
32,186 prediction instances in the train set, 8,560 instances in the validation set, and
9,041 instances in the test set.
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Figure 2.13: nuScenes [13] dataset
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In this chapter, we tackle the task of trajectory prediction in a highway. For this
purpose, we consider the features that characterise the driver motion. Vehicles’ past states
give important information about its motion dynamics since the future trajectory is a
continuation of the past one. However, the trajectory taken by each vehicle in the future
is not only dependent on its own state history, the presence and actions of the neighboring
vehicles have a great influence on a vehicle’s behavior as well. Therefore, we propose to
model the interactions between the neighboring vehicles to represent the most relevant
information about the social context with a capability of learning long-range relations. In
our approach, we attempt to mimic human reasoning, which pays a selective attention
to a subset of surrounding vehicles in order to extract the elements that most influence
the target vehicle’s future trajectories while paying less attention to other vehicles. For
example, a vehicle performing a lane change maneuver will pay more attention to the
vehicles in the target lane than those in the other lanes. Consequently, its future behavior
could be more dependent on distant vehicles in the target lane than the close ones in the
other lanes.
As mentioned in Section 2.3, most of interaction aware trajectory prediction frameworks
are generally composed of three main modules: an input feature encoder, an interaction
modeling block and a trajectory generator. This is the case with our proposed methods.
These three modules can be deployed separately or combined. In this chapter, we present
two different methods to tackle the task of trajectory prediction:

• The first method, presented in Section 3.3, combines feature extracting and in-
teraction modeling. It is based on applying simultaneous spatial and temporal
dependencies modeling at each time step based on relational recurrent neural
networks (RRNNs). In addition, we form two variants of this method; scene RRNN
(Sc-RNNN) and lane RRNN (L-RRNN) using two different input representations.
Then, we evaluate the performance of each one.

• The second method, denoted (MHA-LSTM) and described in Section 3.4, has the
same building blocks than the first one. But, they are mounted in a more optimal
way so that the prediction performance is improved. Here, we use two separate
modules for feature extraction and interaction modeling.

Before presenting these method, we will describe the problem we want to solve and
the main NN building blocks used in our methods.
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3.1 Problem Definition

The goal of this chapter is to predict the future trajectory of a target vehicle T , knowing
its past states and the past states of its neighboring vehicles at observation time tobs.
We have as input the past tracks of the target and a set of its neighboring vehicles. The
input tracks of a vehicle i are defined as Xi = [x1

i , . . . , x
tobs
i ] where xti = (xti, yti) is the

state vector. We note XT the state of the target vehicle T .
The coordinates of all the considered vehicles, are expressed in a stationary frame of
reference where the origin is the position of the target vehicle at time tobs. The y-axis and
x-axis point respectively to one direction of motion on the highway and to the direction
perpendicular to it.
We also consider additional information about the considered vehicles such as velocity,
acceleration and type (xti = (xti, yti , vti , ati, type)) in some experiments.
In order to model the uncertainty in the trajectory prediction, our model outputs the
parameters characterizing a probability distribution over the predicted positions of
the target vehicle.

Ypred = [ytobs+1
pred , . . . , ytobs+tf

pred ]

Where yt = (xt, yt) is the predicted coordinates of the target vehicle.
Our model infers the conditional probability distribution P(Y|X).
The distribution over the possible positions at time t ∈ {tobs+1, . . . , tobs+ tf} can be pre-
sented as a bivariate Gaussian distribution with the parameters Θt = (µt,Σt) of the form:

yt ∼ N (µt,Σt)

Where µt is the mean vector and Σt is the covariance matrix:

µt =
(
µtx
µty

)
,Σt =

(
(σtx)2 σtxσ

t
yρ
t

σtxσ
t
yρ
t (σty)2

)
Before presenting our proposed methods, described in Sections 3.3 and 3.4 and deployed
to resolve the above problem, we introduce the main state-of-the-art methods that inspired
our work. In particular, we describe the main NN building blocks that we used in our
models: LSTMs and MHA mechanism.

3.2 Overview

Knowing the performance of LSTMs in sequence modeling and the power of attention
mechanism to capture long range dependencies, we propose methods composed of two
main building architectures. The first is the LSTM encoder decoder deployed for temporal
dependency modeling. The second is the multi-head attention (MHA) mechanism. In the
following, first, we describe the LSTM encoder decoder architecture as well as the MHA
mechanism. Then, we give the intuition behind each of our proposed methods.
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3.2.1 LSTM Encoder-Decoder

The long short-term memory (LSTM) is a special variant of RNN widely used for time

series modeling. It resolves the vanishing gradient problem of RNNs and therefore it is

characterized by an increased ability of learning long-term dependencies. The LSTM

is composed of a chain of neural networks repeating modules. The key element of an

LSTM is the cell memory that passes through the entire LSTM chain and stores the salient

information about the past input sequence. Gating mechanisms are deployed to control

the flow of information between the input, output, and cell memory (cf. Figure 3.1).

ft

ht−1

ct−1 ct

ht

it
c̃t

ot

Figure 3.1: Regular LSTM

ft = σ(Wxf · xt +Whf · ht−1 + bf ) (3.1)

it = σ(Wxi · xt +Whi · ht−1 + bi) (3.2)

c̃t = tanh(Wxc · xt +Whc · ht−1 + bc) (3.3)

ot = σ(Wxo · xt +Who · ht−1 + bo) (3.4)

ct = ft � ct−1 + it � c̃t (3.5)

ht = ot � tanh(ct) (3.6)

Where:

• σ(x) = 1
1+exp(x) : sigmoid function.

• x� y: element wise product.

• xt: input vector.

• Wxf ,Whf ,Wxi,Whi,Wxo,Who,Wxc,Whc: linear transformation matrices.
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• bf , bi, bo, bc: bias vectors.

• it, ft, ot: gating vectors.

• ct: cell memory state vector.

• ht: hidden state vector.

The LSTM operates by updating the cell memory ct based on the input vector xt, the

previous cell memory ct−1 and hidden state vector ht−1 and then generating the hidden

state ht using the resulting cell memory ct. To do so, gates composed of a sigmoid NN

layer and a pointwise multiplication are applied on the input vector xt and the previous

hidden state vector ht−1 to generate the input it, the forget ft and the output ot gating

vectors (cf. Equations 3.1, 3.2 and 3.4). Then, the input and the forget gating vectors

update the cell memory by removing unnecessary information from the previous cell

memory ct−1 or adding information based on the input vector xt and the previous hidden

state vector ht−1 (cf. Equation 3.5). Finally, the output gating vectors filters the cell state

ct in order to output the current hidden state ht (cf. Equation 3.6).

Sutskever et al. [99] extend the use of the LSTM and introduce the sequence to sequence

concept (named also sequential encoder decoder or auto-encoder architecture). It consists

in mapping a fixed-length input with a fixed-length output.

Trajectory prediction can be considered as a sequence to sequence learning task that

maps past trajectory to the future one. Recent studies [24, 72, 76] use an LSTM based

encoder decoder architecture to model the spatial interactions between neighboring

vehicles. Indeed, Park et al. [76] employ the encoder-decoder architecture in order

to extract salient information about the past trajectory pattern and generate the future

trajectory sequence (cf. Figure 3.2).

In their work [76], the LSTM encoder receives the trajectory of a neighboring vehicle

and generates a compact vector which represents the salient information of its past

motion dynamics. The LSTM decoder receives the encoding vector and recursively

produces its future trajectory.

LSTMs perform well in sequence modeling. However, they lack the spatio-temporal

structure to capture both, the temporal evolution and the spatial interactions between

vehicles in the driving scene. As a remedy, we propose the use of a new architecture

based on human like reasoning which selectively focuses attention on a subset of

surrounding vehicles motion features and efficiently retain pieces of information that

probably influence his future trajectory.
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Figure 3.2: LSTM encoder decoder [76]

3.2.2 Multi-Head Attention Mechanism

MHA was introduced by Vaswani et al. [107] for NLP purposes. They completely replaced

the recurrent blocks with MHA to model the dependencies between sequence elements.

MHA is currently integrated with different NN architectures such as CNNs [112] and

GANs [119] and deployed for different computer vision models. MHA is also integrated

into the LSTM cell [92] in order to enhance its ability to perform relational reasoning

on the input sequence.

r1 x1 r2

matmulK matmulKmatmulQ matmulQ

softmax

dot-prod

matmulV

QueryKey

Value

dot-prod

matmulVsoftmax

⊕

⊗ ⊗

softmax

z1

Figure 3.3: Computation of One Attention Head Explained: Attention over the vectors r1 and r2
conditioned on x1.
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The attention mechanism’s main advantage lies in its capability of learning high

quality features by considering the whole context and directly performing a relational

reasoning between both local and distant features. This relational reasoning enables to

evaluate the importance of each feature vector. Then, attention mechanism aggregates

features based on their importance. Figure 3.3 summarizes the main steps and operations

of computing the dot product attention over the vectors r1 and r2 conditioned on the

vector x1. First, x1 is projected to form the Query vector, while r1 and r2 are projected in

two different spaces to form the Keys and Values vectors. The dot product of the Query

and Keys followed by the Softmax operation determine the importance or the weight of

each of the Values corresponding to r1 and r2. The attention over r1 and r2 conditioned

on x1 is the sum of the Value vectors weighted by their corresponding weights. Further

details about MHA computation are illustrated in Figure 3.4.

Figure 3.4: An example of computing MHA using two inputs X and R

Figure 3.4 illustrates an example of computing MHA using two inputs X and R. In

this example, we want to aggregate features from the matrix R based on a relational

reasoning between the matrices X and R. We denote X = [x1;x2] and R = [r1; r2]
where xi and ri (i = 1, 2) represent the row vectors of the matrices X and R respectively.

The first step in calculating attention is to create three matrices; Query matrix Ql =[
ql1; ql2

]
, Key matrix Kl =

[
kl1; kl2

]
, and Value matrix Vl =

[
vl1; vl2

]
. The Query vectors qli

represent the projection of input feature vectors xi using the matrix WQ
l while kli and vli

are the projections of input feature vectors ri using the matricesWK
l andW V

l respectively.

The matrices WQ
l , WK

l and W V
l are network parameters that we learn during the training

process. Then, for each selected Query vector qli, the attention mechanism generates

attention weights αlij, (αlij ∈ R) that determine the relative importance of the Value
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vectors vlj, (j = 1, 2). These weights are computed by applying a Softmax function to
the dot product operation on that Query vector and each of the Key vectors klj, (j = 1, 2)
i.e. αli = Softmax( q

l
i transpose(K

l)√
d

). Therefore, the correlation between the Query vector
and a Key vector determine the relative importance of the corresponding Value vector. An
attention vector zli is generated for each Query vector qli as a weighted sum of the Value
vectors weighted by their corresponding attention weights zli = ∑

j α
l
ijv

l
j . Consequently,

we construct the resulting matrix Zl =
[
zl1; zl2

]
.

The key idea behind MHA is that instead of using only one attention mechanism
to perform a relational reasoning, multiple attention heads are used (We denote nh the
number of attention heads, in this example nh = 8). Indeed, multiple sets of Query,
Key and Value matrices (Ql, Kl and Vl respectively, l = 0, . . . , nh − 1) are generated
by projecting the input features into multiple different spaces using different linear
transformations (with parameters WQ

l , WK
l and W V

l respectively, l = 0, . . . , nh − 1).
The resulting matrices Zl =

[
zl1; zl2

]
are concatenated and projected using the matrix of

learnt parameters WO to generate a final attention matrix Z. The use of multiple attention
heads enables to boost the performance of the relational reasoning by capturing a different
aspects of dependencies between X and R with each attention head.
The three set of vectors Query Ql, Key Kl and Value Vl can be generated from the same
input feature matrices (i.e. X = R). In this case, we talk about self-attention.

Figure 3.5: Graph Attention Network: The graph illustrates MHA (with 3 heads) applied by a
node 1 on its neighborhood. The different arrow styles and colors correspond to the attention
heads. Then, the resultant features from each head are concatenated or averaged to form the node
1 representation.

The dependencies and the interactions between the neighboring vehicles in the scene
can be presented as a structured graph. In addition, Velickovic et al. [109] propose a
Graph ATtention network (GAT) that applies MHA on graph-structured data to specify
weights to nodes in a neighborhood. The GAT slightly modifies the MHA computation by
using the concatenation attention instead of the dot product for example. Our utilisation
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of MHA to model the interactions between vehicles (cf. Section 3.4) is comparable
to the GAT applied to a target vehicle.

3.2.3 Brief Description of our Proposed Methods

Here, we briefly describe our proposed methods by presenting their main building blocks
and the ways of connecting them. Our first method extends the basic LSTM encoder
decoder architecture (cf. Figure 3.6).

Scene 



⇒

Scene
E

m
bedding

LSTM Encoder LSTM Decoder

Figure 3.6: Basic LSTM Encoder Decoder Architecture

Our first method proceeds by simultaneously modeling spacial and temporal depen-
dencies between agents motions at each past time step by integrating MHA inside of the
LSTM block. However, it requires important computational resources since it performs
relational reasoning at each past time step (cf. Figure 3.7).

Scene 



⇒

Scene
E

m
bedding

LSTM Encoder

MHA

LSTM Decoder

MHA

Figure 3.7: RRNN Architecture

In order to further optimize our first method, we maintain the same building blocks
(LSTM and MHA) and mount them differently to form our second model (cf. Figure 3.8);
First, we use the LSTM to encode the trajectories of the target vehicle and its surroundings.
Then, we deploy the attention mechanism to derive the relative importance of surrounding
vehicles with respect to their whole past motion only at the prediction time and generate
a whole context vector.

3.2.4 Related Work

Our second method is inspired by two recent studies: social LSTM [1] and convolutional
social pooling [23] which will be described more in depth in the next subsections
3.2.4.1 and 3.2.4.2.
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Figure 3.8: MHA Pooling based Architecture

3.2.4.1 Social LSTM

Alahi et al. [1] introduced the social LSTM concept for pedestrian trajectory predic-
tion task. They simultaneously capture the spatial and temporal dependencies in the
neighboring agents recent motion at each time step using a regular LSTM and a social
pooling technique (cf. Figure 3.9).

Figure 3.9: Social LSTM [1]

In contrast to the work of Park at al. [76] that uses a single LSTM and feed it with
all the agents’ states, Alahi et al. [1] attribute an LSTM to each agent to model its
motion dynamics. The hidden state of each LSTM presents its past motion dynamics.
In order to model the interactions between the neighboring agents, they combine the
hidden states of the LSTMs corresponding to a set of neighboring pedestrians. To do so,
they compute the position of the neighboring agents with reference to the target agent
at each of the past time steps considered and place their hidden state on a grid based on
their positions. The combination of hidden states information from the LSTM cells of
neighboring agents forms a compact representation of the interactions between agents
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named also a context vector. The social pooling consists in feeding each target agent
LSTM cell with its corresponding context vector. Thus, at each time step, the target
agent LSTM cell is fed with not only the target agent position and its previous hidden
state, but also with the context vector. This enables the network to better model the
interactions between the neighboring agents.

3.2.4.2 Convolutional Social Pooling

Deo et al. [23] extend the social pooling technique and deploy it for vehicle trajectory
prediction task. In contrast to social LSTM [1] where a regular LSTM is deployed, Deo
et al. [23] use an LSTM encoder to generate a representation of each vehicle trajectory
(motion encoding). They also use a grid representation of the scene; Indeed, they place the
motion encoding of each agent based on its position in the grid at the prediction time. Then,
they use convolutional layers applying successive local operations on the outputs from
the encoders followed by a maxpool layer (cf. Figure 3.10). In this way, they generate a
context vector that consists in a compact representation of the vehicles interactions.

Figure 3.10: Convolutional Social Pooling [23]

Convolutional Social pooling improves the performance of Social LSTM. However,
it has some limitations. In fact, successive local operations are not always efficient at
capturing long range dependencies because of limited receptive fields. Furthermore,
the generated context vector is independent of the target vehicle’s state. This infers
that two agents in the same scene would have the same representation of the context
independently of their recent motion and their intention. This representation does not
properly follow human reasoning. Indeed, a human driver focuses more of the elements
of the scene that would influence his future motion. Therefore, his representation of
his context depends on his recent motion and his goal. In our approach, we take the
advantages of the convolutional social pooling and extend it using a different pooling
method that better imitates human reasoning.

Further detail about our proposed methods are presented in the following.
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3.3 Relational Recurrent Neural Networks based Meth-
ods (L-RRNN and Sc-RRNN)

In our first approach, we predict the future trajectory of a target vehicle by combining the

advantages of LSTMs in sequence modeling and the power of attention mechanism to

capture the spatial inter-vehicles dependencies. To that end, we bring Relational Networks

(RNs) based methods to the problem of interaction aware vehicle motion prediction. RNs

operates by extracting the dependencies and the relations between features, among them,

we list Relational Recurrent Neural Networks (RRNNs) [92]. Specifically, we propose

two variants of RRNN-based methods (Scene representation Sc-RRNN and per Lane

representation L-RRNN ) based on two different ways of considering the input data and

therefore modeling the interactions between the surrounding agents.

3.3.1 Overall Model

RRNNs extend the LSTM architecture by introducing interactive memory blocks using

Multi-Head Dot Product Attention inside of the LSTM block. Our first approach to

tackle the task of trajectory prediction is based on RRNNs encoder decoder. It is

characterized by:

• Per block information storing: Instead of using a memory vector (like in regular

LSTM), input vectors are selectively stored into separate interacting memory slots

based on their contents. Indeed, each memory attends to all of the other memories.

Then, it updates its content based on the attended information.

• Relational reasoning: The RRNN performs a complex relational reasoning having

two aspects: temporal and spatial. The relational reasoning across time consists in

comparing and contrasting features at different times steps. In addition, the RRNN

relates salient information about vehicles motions and therefore models their spatial

interactions. The attention mechanism with per slot information storing enables to

capture the dependencies between vehicles features by relating their current states

representations to different representations of their past tracks stored in the memory

blocks using multiple attention heads.

• No distance constrained analysis: The dependencies between input features is

not always tied to proximity in time or space. This is modeled in our approach by

attention mechanism since it directly relates distant features based on their content

rather than proximity.
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• Different focusing: The RRNN does not only extract information based on one
relational aspect between the input features. Different relations are encoded using
multiple selective attentions.

RRNNs are memory based recurrent neural networks able to perform relational reasoning
between input entities over time. They operate by slicing the memory and the input into
slots and heads and provoking interactions between them. Our model consists of a scene
embedding (cf. Section 3.3.3) and RRNNs based encoder and decoder (cf. Section 3.3.4).
Figure 3.11 illustrates the per lane representation L-RRNN described in 3.3.3.2. After the
scene embedding, the encoder learns the vehicle motion and captures the dependencies
in the input data using the Relational Memory Core (RMC) block. At each iteration,
the RMC is fed with the previous memory matrix M t and the current scene embedding
Embt. It applies the Multi-Head Dot Product Attention (MHDPA) (cf. 3.3.5) to provoke
the interaction between memory and input slots. MHDPA operates by projecting each
memory and input slot using row-wise shared weights W l

Q, W l
K and W l

V to generate the
queries Qt

l , keys Kt
l and values V t

l respectively. The MHDPA module is followed by
row-wise multilayer perceptron MLP, then, the resulting memory is gated to form the
next memory state and an output vector which are fed to the decoder at tobs. The decoder,
composed of RRNNs, outputs the predicted future trajectory of the target vehicle. Further
details about our RRNN based method will be presented in the following.

3.3.2 Inputs Representation

The first step to form our model is to determine the input cues and to embed them into an
adequate representation. In this case, we input to our model a sequence of the states of
the target vehicle and its surrounding vehicles in order to be able to model the interactions
between them. To do so, we define a 3D spatial grid Gt composed of the coordinates of
the target and its surrounding vehicles at time t based on their positions at time tobs.

Gt(m,n, :) = δmn(xtobs
i , ytobs

i )(xti, yti) ∀i ∈ AT (3.7)

δmn(x, y) is an indicator function equal to 1 if and only if (x, y) is in the cell (m,n), AT
is the set of neighboring vehicles in addition to the target one.
As we make trajectory prediction in a highway environment, we exploit the lane markings
to define the columns of our grid and associating them to the three lanes (cf. Figure 3.11).
We consider a grid size of (13, 3) centered on the target vehicle position and covering a
longitudinal distance of 58.5 meters (Grid cell size = 4.5m).
Unlike most of the state of the art works that consider the vehicles immediately around
the target vehicle, we adopt a grid over the neighboring area. This representation of
the scene has the following advantages:
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• It models the spatial distances between the vehicles in the scene and represents the

drivable areas.

• It enables us to consider different scenarios with different numbers of traffic

participants.

• It preserves the lane structure of the highway.

3.3.3 Inputs Embedding

Trajectory prediction depends on the input data format and their latent representation

generated using embedding. We feed our network with two different ways of embedding

the input data, and then we compare the results of the different methods.

3.3.3.1 Scene embedding (Sc-RRNN)

Our first method consists in considering the states of all the agents in the scene as an input

vector at each past time step. We embed each vector of states using a fully connected

layer to generate an embedding vector. These embedding vectors for the time steps

t = 1, . . . , tobs are sequentially fed to the RRNN encoder:

Embt = Ψ(Gt;Wemb)

where Ψ() is a fully connected function with LeakyReLU non linearity, Wemb is the learnt

embedding weights.

The RRNN with per slot memory storing using multiple attention heads infers the

interactions and the dependencies between the input vehicles.

3.3.3.2 Per lane representation (L-RRNN)

Here, we divide the scene based on lanes to generate an input matrix. We embed the

states of the agents at each lane using a fully connected layer Ψ to generate an embedding

matrix of size (3, size of embedding). The matrix embedding the scene for time steps

t = 1, . . . , tobs are sequentially fed to the RRNN encoder:

Embt(n, :) = Ψ(Gt(:, n, :);Wemb), n = 1, 2, 3

This model conserves the lane-wise structure of the road. It captures the spatio-temporal

interactions between vehicles in the same and adjacent lanes. It performs a lane-based

attention to focus on the lane-changing behavior. In this model, we consider three

memory slots to store lane-level information.
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3.3.4 Relational Recurrent Encoder-Decoder

We deploy an encoder decoder architecture in the task of trajectory prediction:

• RRNN encoder: receives the input sequence embedding, extracts the properties

of the target vehicle past trajectory and interaction information, compresses them

in an encoding vector and feeds this vector together with the memory block to the

decoder.

• RRNN decoder: learns to generate the predicted trajectory based on the received

information: At tobs time step, the decoder has as input the encoding vector and the

memory block. It makes prediction for the next time steps and generates the next

memory block. Then, we proceed by forming and passing the memory blocks and

reinjecting the decoder’s predictions into the decoder’s input of the next time step

to sequentially generate the predicted target vehicle positions.

The encoder and decoder are composed of RRNNs. RRNNs are memory based recurrent

neural networks able to perform relational reasoning between input entities over time.

They are based on iterative information selective storing into blocks and computing

interactions between them. In fact, each RRNN block contains a number of memory slots

where the pertinent information is stored.

RRNNs operate by slicing the memory and the input into slots and heads and provoking

interactions between them. Indeed, each memory slot is updated each time step based on:

• Memory-Memory attention: each memory slot attends over the other memory

slots. This captures the interactions and dependencies in the stored information.

Since the stored information here present the recent motions of a set of neighboring

vehicles, the MHA captures their interactions over time.

• Memory-Input attention: each memory slot attends over the input embedding

slots. Attention enables to decide which information from the input would be stored

in adequate memory slots based on its relation to what is already contained in the

memory. This infer inter-vehicles interactions as well.

3.3.5 Multi-Head Dot Product Attention (MHDPA):

In each RRNN block, we use linear projections of the previous memory M t and the

input embedding Embt at each time step t to generate the queries Qt
l = M t W l

Q, keys

Kt
l = [M t;Embt] W l

K and values V t
l = [M t;Embt] W l

V . While [M t;Embt] denotes the

row-wise concatenation of M t and Embt.
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In order to enable the memory slots to share different information and represent different
spatio-temporal interactions, we use multiple attention heads. Therefore, we generate nh
sets of queries, keys, and values for l = 1, . . . , nh using different projection matrices.
The memory is updated using multi-head dot product attention over the other memory
slots and the current input embedding:

M̃l
t+1 = A(Qt

l , K
t
l , V

t
l ) = softmax

(
Qt
l transpose(Kt

l )√
dk

)
︸ ︷︷ ︸

attention weights

V t
l (3.8)

M̃ t+1
l is an update of the memory where each slot is a weighted sum of the projections of

the previous memory slots and the projections of the current embedding input.
dk is a a scaling factor that corresponds to the dimensionality of the key vectors.
We apply the attention operation described above for each head. The resulting memory
M̃ t+1 is column-wise concatenation of the memories M̃ t+1

l for l = 1, . . . , nh.
We employ a residual connection [36] around the MHDPA followed by an MLP then
a second residual connection. These operations are encapsulated into an LSTM cell as
described in [92]. Therefore, the resulting memory block is gated and used as next
memory state M t+1.
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Figure 3.11: Per Lane Scene Representation RNN (L-RRNN) Model

3.3.6 Introducing MHA into an LSTM

In order to model the spatio-temporal evolution of the trajectories, the MHA is integrated
inside of an LSTM. To do so, the memory matrix M is randomly initialised in the LSTM,
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then, it is updated with M̃ at each time step. M can be considered as a matrix of cell
states c for a regular LSTM (cf. Section 3.2.1). The operations of an individual memory
mr (a row from the matrix M ) are nearly equivalent to those in a regular LSTM cell state.

fr,t = σ(Wxf · xt +Whf · hr,t−1 + bf ) (3.9)

ir,t = σ(Wxi · xt +Whi · hr,t−1 + bi) (3.10)

c̃r,t = tanh(Wxc · xt +Whc · hr,t−1 + bc) (3.11)

or,t = σ(Wxo · xt +Who · hr,t−1 + bo) (3.12)

mr,t = fr,t �mr,t−1 + ir,t � gΨ(m̃r,t) (3.13)

hr,t = or,t � tanh(mr,t) (3.14)

Same notations as in regular LSTM equations (cf. Section 3.2.1) are deployed (r is added
as a subscript to denote the row from a matrix) and gΨ is a memory-wise MLP with layer
normalisation.
We notice here that the main difference with a regular LSTM is that the gates are applied
for each memory row. In addition, a different kind of gating denoted ‘memory’ gating is
applied; Wxf , Whf , Wxi, Whi, Wxc, Whc, Wxo, Who are converted from weight matrices
(in regular LSTM) into weight vectors and element-wise product in the gating equations
(in regular LSTM) are replaced with scalar-vector multiplications.
We note that since all the parameters are shared for eachmi, different number of memories
can be used without affecting the number of parameters.

3.3.7 Implementation Details

The input grid is embedded into an embedding vector or matrix of sizes 64 and (3,64)
depending on the input embedding type. Then, we use the Leaky ReLU activation
function with α = 0.1.
We deploy RRNNs encoder decoder with two memory slots for Sc-RRNN and three for
L-RRNN. Each memory slot is 64 in size. We employ h = 2 parallel attention heads
over projected vectors of size 32. We use a batch size of 128. We adopt the Adam
optimizer [52]. The model is implemented using PyTorch [78].

3.4 Multi-head Attention based Method (MHA-LSTM)

In this section, we describe our second method based on LSTM encoder decoder
architecture and the MHA block. In this method, instead of computing the attention
at each time step to capture the dependencies between the input features, we adopt
the attention mechanism to derive the relative importance of surrounding vehicles with
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respect to their overall motion representation. In other words, we apply the MHA on the

whole past trajectories encodings only at the prediction time. The attention mechanism

selectively aggregates the features that model the interaction between the vehicles by

a weighted sum of the features representing all the surrounding vehicles’ trajectories

and thus directly relates vehicles based on their correlation without constraints on their

distance. In addition, using multiple attention heads enables to extract different types

of interactions and combine them to capture higher order relationships. This provides

a better understanding of the interactions in scene.

In the following, we start by presenting the overall model. Then, we describe

each building block of our model: the trajectory encoder, the vehicles interaction

module and the trajectory generator. We also propose another MHA-based method

of interaction modeling.

3.4.1 Overall Model

In this proposed method, we use an LSTM encoder decoder architecture with an attention

based pooling technique. In fact, instead of using an RRNN that performs relational

reasoning only at each past time step, we model interactions using the generated motion

encoding vectors at the prediction time which helps to reduce the model complexity.

Our model architecture is made up of three main components (cf. Figure 3.12):

• Encoding layer, where the temporal evolution of each vehicle trajectory and its

motion properties are encoded by an LSTM encoder.

• Attention Module, which links the hidden states of the encoder and decoder. It

explicitly evaluate the importance of the surrounding vehicles in determining the

future motion of the target vehicle using different operations based on their motion

encoding. Then, it forms a vector representing the context.

• Decoding layer, which receives the context vector containing the selected infor-

mation about the neighboring vehicles and the target vehicle motion encoding and

generates the parameters of the distribution over the target vehicle’s predicted future

positions.
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3.4.2 Trajectory Encoder

This encoding layer encodes the trajectories of the vehicles belonging to a neighborhood of
the target vehicle at time t = tobs. Each state vector xti of each vehicle i of the neighboring
area is embedded using a fully connected layer to form an embedding vector eti.

eti = Ψ(xti;Wemb)

where Ψ() is a fully connected function with LeakyReLU non linearity, Wemb is the learnt
embedding weights.
The LSTM encoder is fed by the embedding vectors of each vehicle i for time steps
t = 1, . . . , tobs:

hti = LSTM(ht−1
i , eti;Wencoder)

hti is the hidden state vector of the ith neighboring vehicle at time t. We note htT the hidden
state vector of the target vehicle at time t. Wencoder are the LSTM encoders weights. Each
LSTM encoder share the same weights Wencoder.
We built a 3D spatial grid H composed of the neighboring vehicles’ hidden states at
time tobs based on their positions at time tobs.

H(n,m, :) = δnm(xtobs
i , ytobs

i )htobs
i ∀i ∈ AT

δnm(x, y) is an indicator function that equals 1 if (x, y) is in the cell (n,m) and 0
otherwise. AT consists of the set of surrounding vehicles present in the considered area.
The columns correspond to the three lanes (M = 3). The considered spacial area
corresponding to the grid is centered on the target vehicle position and sized of (N,M).
It covers a longitudinal distance of 90 m with a grid cell size of 4.5 m. We note C the
dimension of the trajectory encoding vectors htobs

i and we reshape the grid H to (NM,C).

3.4.3 Vehicle Interaction Modules

As the behavior of vehicles on a highway could be highly correlated, it is important
to consider the interactions between the vehicles when predicting their future motion.
Attention is used to capture long-range spatio-temporal dependencies. The attention
module explicitly models the interactions between the target vehicle and the other vehicles
in the grid H and selects the surrounding vehicles to pay attention to when computing the
future trajectory of the target vehicle.
Instead of computing vehicle relationships at each time step, which is computationally
expensive, we use the hidden states of the encoder LSTM computed at the observation
time as inputs to the attention module. These hidden states are projected into a high-
dimensional space, if we consider all the attention heads. The vehicles interactions
can be exploited as follows:
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Figure 3.12: Description of the MHA Pooling based Model: The LSTM encoders, with shared
weights, generate a vector encoding of each vehicle motion. The multi-head attention module
models the interactions between the target (green car) and the neighboring vehicles based on
their importance. The decoder receives the interaction vector and the target vehicle encoding and
generates a distribution for the predicted trajectory.

• The hidden state of the target vehicle is mapped to a query Ql = θl(htobs
T ,Wθl

)

• The grid is mapped to form the keys Kl = φl(H,Wφl
) and the values Vl =

ρl(H,Wρl
).

Wθl
, Wφl

and Wρl
are the weight matrices that will be learned in each attention head l.

An attention feature headl is then calculated as a weighted sum of values vlj , where the
attention weights, αlj , weight the effect of surrounding vehicles on the target vehicle
future motions, based on their relative dynamics.

We investigate three possible ways to compute the attention weights αl:

headl =
NM∑
j=1

αljvlj

3.4.3.1 α-Attention

Attention weights are computed from the encoding vectors of the surrounding vehicles
independently of the target vehicle state. They are computed using a tanh function
and a fully-connected layer.

αl = softmax(wTl tanh(Kl))

wl is a learned weight, and αl ∈ R1×NM is the lth attention.
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3.4.3.2 Dot-Product Attention

The weights represent the effect of an interaction between a pair of vehicles based on

their relative dynamics. They are the product of the query Q with keys K.

αl = softmax

(
QlK

T
l√
d

)

QlK
T
l is matrix multiplication used to calculate dot product similarities. d is a scaling

factor that equals to the dimensionality of the projection space.

3.4.3.3 Concatenation Attention

The pairwise relation can be also represented by a concatenation operation, as in [93, 112].

αl = softmax(wTl concat(repeat(Ql), Kl))

One can notice that dot-product and concatenation attentions consider pairwise inter-

relationships, whereas α-attention does not.

3.4.4 High Order Interaction

We deploy a higher order interaction extractor based on multi-head attention to retain

different types of spatio-temporal relationships. The use of multi-head is inspired by

the Transformer [107] architecture. In fact, a single learned attention feature mainly

focuses on one inter-related subgroup of vehicles that may represent a single aspect of the

possible spatio-temporal relationships occurring in the neighborhood of the target vehicle.

In order to extend the attention to higher order interactions, different queries, keys and

values are generated nh times in parallel, in nh attention heads, with different learned

linear projections Ql, Kl and Vl, l ∈ {1, . . . , nh}.
The nh generated attention features represent nh subgroups of vehicles inter-related with

the target vehicle. These representations are concatenated and dynamically weighted to

extract complex interactions between the different subgroups.

z = Concat(head1, ..., headnh
) WO

z is the compact context vector that combines interaction information of all the vehicles.
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3.4.5 Trajectory Generation

LSTM Decoder is fed by the context vector z, which contains the selected information
about the vehicles interactions, and the motion encoding of the target vehicle: hdec =
Concat(htobs

T , z). It generates the predicted parameters of the distributions over the target
vehicle’s estimated future positions for time steps t = tobs + 1,. . . , tobs + tf .

Θt = Λ(LSTM(ht−1
dec ;Wdec))

where Θt is the predicted parameters of the positions distribution at time t, Λ() is a fully
connected function followed by a LeakyReLU non linearity, Wdec are the learnt weights
of the LSTM decoder and ht−1

dec is the hidden state vector of the decoder at time t− 1.
Our model is trained by minimizing the following negative log-likelihood loss function:

Lnll(Ypred) = −
∑

tobs+1≤t≤tobs+tf

{
log(PΘt(yt|X))

}

3.4.6 Another Variant: Local and Non Local Social Pooling

We propose to extend the non-local multi-head attention mechanism previously described
and to combine it with convolution blocks to model both local and distant influences of
vehicles, based on their relation with the autonomous vehicle.
This pooling mechanism builds a context vector which encodes the cues of surrounding
vehicles that most influence the future trajectory by combining the advantages of two
individual architectures:

• Convolution Layer captures the interactions of nearby vehicles and produces the
local context over which we use attention operations.

• Multiple head attentions learn different local and distant relationships and combine
them according to their importance.

Interaction between traffic participants can be complex. It is composed not only of local
but also non-local influences. In the proposed pooling module, convolutions and attention
complement each other to model local and distant dependencies. We define a spatial
grid Hα composed of the transformation of the encoders last hidden state of each of the
surrounding vehicles by a function α (defined later) based on their positions at time tobs.

Hα(m,n, :) =
∑
∀i∈AT

δmn(xtobs
i , ytobs

i )α(htobs
i ) (1)

δmn(x, y) is an indicator function equal to 1 if and only if (x, y) is in the cell (m,n), AT
is the set of neighboring vehicles.
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This representation preserves the spatial relationships between vehicles and the lane

structure. The columns correspond to the three lanes. Depending on the used dataset, we

consider two different grid sizes (13, 3) and (41, 3) covering a longitudinal distance of

respectively 58.5 and 184.5 meters. The greater size of the second grid is justified by the

relatively high inter-vehicles distances caused by high velocities in the HighD dataset.

3.4.6.1 Convolution Layer

Convolutions enable the model to learn local dependencies. We use a (3× 3) depthwise

convolution kernel [19] to capture the dependencies between nearby vehicles. We use

horizontal zero padding to maintain the three-lane road structure.

3.4.6.2 Non-local Multi-head Attention Mechanism

The attention mechanism enables us to get a compact representation which combines

information from all the surrounding vehicles based on their relationship with the target

vehicle. We build nh interaction vectors aj , j ∈ {1, . . . , nh} using the generic non-

local operation defined in [112]:

aj = 1
Cj(htobs

T )
∑

∀(m,n)∈grid
fj(htobs

T , htobs
i )⊗ Conv(Hgj

,W j
L)

⊗ represents an elementwise multiplication operation applied to the two grids fj(htobs
T , htobs

i )
and Conv(Hgj

,W j
L).

As defined in equation (1), Hgj
is the grid composed of the projections of the encoders

last hidden states htobs
i by the linear transformation gj(htobs

i ) = W j
gh

tobs
i . W j

L is the

convolution kernel and Cj(htobs
T ) is a normalization factor.

The vector describing the target vehicle motion htobs
T is transformed into a new feature

space by a linear function θj(htobs
T ) = W j

θ h
tobs
T . We build a second grid HΦj

composed

of the projections of the encoders last hidden states htobs
i by the linear transformation

Φj(htobs
i ) = W j

Φh
tobs
i .

The Gaussian function computes the influence of the position (m,n) in the grid HΦj

on the target vehicle’s motion in the projection space.

fj(htobs
T , htobs

i ) = etranspose(θj(htobs
T )) Conv(HΦj

,W j
L)

The normalization factor is

Cj(htobs
T ) =

∑
∀(m,n)∈grid

fj(htobs
T , htobs

i )
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The attention weight 1
Cj(htobs

T )
fj(htobs

T , htobs
i ) computes how much attention is put on the

(m,n) position in the grid when predicting the target vehicle’s motion.

The headj is a weighted sum of the features at all positions of the grid in the projection

space. We consider headj also as the jth attention head. We use a multi-head attention

approach to enable the model to differently focus on different positions in different

projection spaces.

The attention heads are concatenated and projected to form the output z of the attention

block:

z = WzConcat(head1, .., headnh
)

where nh is the number of the attention heads.

We employ a residual connection [36] around the attention block, followed by a nor-

malization layer.

3.4.7 Implementation Details

We deploy LSTM encoder with 64 units (C=64) and decoder with 128 units. The

dimension of the embedding space is 32. We use different numbers of parallel attention

operations applied on the projected vectors of size d=32. The batch size is 128 and the

adopted optimizer is Adam [52]. The model is implemented using PyTorch [78].

3.5 Experimental Evaluations

Evaluations have been performed on public driving datasets (NGSIM [44, 45] and

highD [55]) that are described in Section 2.5. Our proposed approaches Sc-RRNN,

L-RRNN and MHA-LSTM are compared with state-of-the-art quantitatively. Qualitative

results are also presented for further analysis.

3.5.1 Evaluation Metric

In our evaluation, we use Root of the Mean Squared Error (RMSE) metric since it averages

the distance between predicted trajectories and the ground truth.

LRMSE =

√√√√√ 1
tf

tobs+tf∑
t=tobs+1

(xtT − xtpred)2 + (ytT − ytpred)2

We use the means of the predicted distributions over the future trajectories to calcu-

late the RMSE.
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3.5.2 Models Compared

Evaluations have been performed by comparing our proposed methods with some recent

state of the art methods. To do so, we consider two types of approaches:

• Models without the social pooling technique: Vanilla LSTM (V-LSTM), Scene

LSTM Encoder Decoder (Sc-LSTM), our RRNN with scene representation (Sc-

RRNN) and our RRNN with per lane representation (L-RRNN).

• Models considering the interactions between surrounding vehicles with a variant

of social pooling: Social LSTM (S-LSTM) [1], Convolutional Social Pooling (CS-

LSTM) [23], Multi-Agent Tensor Fusion (MATF GAN) [120], our Non-local Social

Pooling (NLS-LSTM) and our Multi-head Attention Social Pooling (MHA-LSTM).

All models are fed with the track history of the target and the surrounding vehicles and

output distributions over the future trajectory of the target vehicle. In the following,

we compare each type of methods separately.

• Vanilla LSTM (V-LSTM): an encoder decoder LSTM based model. It uses the

track history of the target vehicle in the encoder LSTM and generates the output

trajectory with the LSTM decoder. This represents an independent trajectory

prediction model.

• Scene LSTM Encoder Decoder (Sc-LSTM): an encoder decoder based model

where the encoder encodes the trajectories of the target and surrounding vehicles.

The encoding vector is fed to the decoder which generates trajectory predictions.

• Social LSTM (S-LSTM) [1]: An LSTM encoder-decoder using a fully connected

social pooling.

• Convolutional Social Pooling (CS-LSTM) [23]: An LSTM encoder-decoder using

a convolutional social pooling.

(CS-LSTM(M)) generates multi-modal trajectory predictions based on six maneu-

vers (2 longitudinal and 3 lateral).

• Multi-Agent Tensor Fusion (MATF GAN) [120]: the model encodes the scene

context and vehicles’ past trajectories, then, deploys convolutional layers to cap-

ture interactions. Finally, the decoder generates the predicted trajectories, using

adversarial loss.

Our proposed methods:
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• Relational Recurrent Neural Network with scene representation (Sc-RRNN)

model described in section 3.3.3.1.

• Relational Recurrent Neural Network with per lane representation (L-RRNN)

model described in section 3.3.3.2.

• Non-local Social Pooling (NLS-LSTM) [68]: combines local and non local opera-

tions to generate an adapted context vector for social pooling. Five attention heads

are used in this approach. (cf. Section 3.4.6)

• Multi-head Attention Social Pooling (MHA-LSTM): This is the model described

previously using multi-head dot product attention with xti = (xti, yti), i.e. without

using velocity, acceleration and type information for each vehicle and with four

attention heads.

• Multi-head Attention Social Pooling (MHA-LSTM(+f)): MHA-LSTM with ad-

ditional input features (velocity, acceleration and type) and with three attention

heads.

3.5.3 Quantitative evaluation

3.5.3.1 Overall evaluation of RRNN

Table 3.1: Root mean squared prediction error (RMSE) in meters over a 5 second prediction
horizon for the models using highD dataset

Error Prediction Horizon (s) V-LSTM Sc-LSTM Sc-RRNN L-RRNN
Total 1 0.31 0.32 0.29 0.22

2 0.81 0.82 0.69 0.65
3 1.51 1.60 1.33 1.31
4 2.48 2.63 2.22 2.22
5 3.71 3.87 3.33 3.38

Lateral 1 0.10 0.10 0.08 0.05
2 0.32 0.20 0.18 0.14
3 0.46 0.33 0.30 0.26
4 0.57 0.45 0.43 0.37
5 0.65 0.56 0.53 0.48

Longitudinal 1 0.27 0.31 0.27 0.22
2 0.74 0.79 0.66 0.63
3 1.44 1.57 1.30 1.29
4 2.42 2.59 2.16 2.19
5 3.65 3.83 3.27 3.34
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Let us first compare LSTM based methods that don’t deploy a social pooling technique
even if they may model agents interactions. This includes Sc-LSTM, V-LSTM and two
variants of our RRNN based proposed method: Sc-RRNN and L-RRNN. Table 3.1 shows
the RMSE values for four of the models being compared over a prediction horizon of
five seconds on highD dataset. First, we observe that Sc-LSTM and V-LSTM have
comparable total RMSE errors. While Sc-LSTM produces better lateral error, it has larger
longitudinal error than V-LSTM. This may be due to the fact that the LSTM has limited
capability to capture the effects of surrounding vehicles on predicting the future motion of
the target vehicle. This also proves the effectiveness of considering neighboring vehicles
in the prediction of the lateral motion of the target vehicle.
Both proposed methods, Sc-RRNN and L-RRNN, lead to further improvement in pre-
diction error, suggesting the importance of the use of the multiple memory slots and the
attention across these memories in the task of motion prediction. We also note that the
improvement produced by the use of RRNNs seems to be more remarkable for longer
prediction horizons. This shows that LSTM without the MHA has limited capacity to
perform long term relational reasoning.
Additionally, the per-lane embedding of the scene has produced lower lateral error.
This can infer that explicit lane-wise division of the scene and the memory-input slots
interactions via MHDPA gives additional information about inter-lane dependencies.
This first step of evaluation highlights the importance of considering surrounding agents
in the trajectory prediction task. Furthermore, it infers that the input representation
influences the prediction performance. In addition to our proposed RRNNs based variants,
we presented a second approach that aims to improve vehicle motion prediction using
a social pooling technique.

3.5.3.2 Overall evaluation of MHA-LSTM

Let us now evaluate the set of methods that use a variant of social pooling. To compare
our MHA pooling based models, we consider the results reported in recent studies [23,
24] on the NGSIM dataset and we train S-LSTM and CS-LSTM on highD dataset as well.
We train and test the approaches on the NGSIM and highD datasets separately and we
notice that the RMSE values obtained on the NGSIM dataset are higher than the ones
computed on the highD dataset. This may be due to the difference in size of the two
datasets: highD contains about 12 times more vehicles than NGSIM. It can be also caused
by annotation inaccuracies resulting in physically unrealistic vehicle behaviors in the
NGSIM dataset, as observed by Coifman et al. [20].
Anyway, examining the RMSE values for either NGSIM or highD datasets leads to the
same order for the proposed methods. First, we compare the results reported in table 3.1
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Table 3.2: RMSE in meters over a 5-second prediction horizon for the models

Dataset Prediction Horizon (s) S-LSTM CS-LSTM CS-LSTM(M) MATF GAN NLS-LSTM MHA-LSTM MHA-LSTM(+f)
highD 1 0.22 0.22 0.23 - 0.20 0.19 0.06

2 0.62 0.61 0.65 - 0.57 0.55 0.09
3 1.27 1.24 1.29 - 1.14 1.10 0.24
4 2.15 2.10 2.18 - 1.90 1.84 0.59
5 3.41 3.27 3.37 - 2.91 2.78 1.18

NGSIM 1 0.65 0.61 0.62 0.66 0.56 0.56 0.41
2 1.31 1.27 1.29 1.34 1.22 1.22 1.01
3 2.16 2.09 2.13 2.08 2.02 2.01 1.74
4 3.25 3.10 3.20 2.97 3.03 3.00 2.67
5 4.55 4.37 4.52 4.13 4.30 4.25 3.83

and table 3.2 on highD dataset. We notice that, in general, social pooling based methods
perform better in the task of trajectory prediction. We also observe that our attention-
based approaches (NLS-LSTM, MHA-LSTM and MHA-LSTM(+f)) perform better than the
others. MHA-LSTM reduces the prediction error by about 10% compared to the CS-LSTM
while having comparable execution time. With MHA-LSTM(+f), we investigate the use of
additional features like the speed and acceleration. We notice that this leads to significant
improvements in the motion prediction accuracy, as MHA-LSTM(+f) outperforms all
the methods. This consolidates our assumption that the relation between vehicles is not
only related to their positions but also to their dynamics. The type of the transportation
(truck or car) also characterizes the speed and pattern of the motion. Table 3.2 shows the
RMSE values for the models using different social pooling techniques on the NGSIM and
highD datasets. Therefore, these results indicate that multi-head attention better models
the interdependencies of vehicle motion than convolutional social pooling. Moreover,
this suggests that considering the relative importance of surrounding vehicles using
both positions and dynamics when encoding the context is better than focusing on local
dependencies.
In order to further investigate the performance of our elected method MHA-LSTM, we
conduct further analysis in the following.

3.5.3.3 Effects of using multiple attention heads

In order to evaluate the influence of the number of attention heads on the prediction
accuracy, let us examine the RMSE values obtained by MHA-LSTM on the highD dataset
with 2, 3 4, 5 and 6 attention heads on Table 3.3. We notice that using several attention
heads improves the prediction accuracy since each attention head represents a set of
weights capturing one aspect of the effect of surrounding vehicles on the target vehicle.
In addition, combining the attention vectors helps extract higher order relations. The best
performance is reached with four attention heads.
We have conducted further experiments to evaluate the benefits of adding extra features,
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Table 3.3: RMSE in meters over a 5-second prediction horizon for different numbers of attention
heads on the highD dataset

Time(s)
Heads

2 3 4 5 6

1 0.21 0.20 0.19 0.20 0.21
2 0.61 0.61 0.55 0.57 0.59
3 1.20 1.19 1.10 1.13 1.16
4 1.96 1.99 1.84 1.87 1.92
5 2.95 3.01 2.78 2.83 2.93

including explicit vehicle dynamics and type (MHA-LSTM(+f)). We observe that we

outperform previous results when using different numbers of attention heads.

Considering the trade-off between the complexity of calculation and the MHA-LSTM(+f)

RMSE corresponding to different numbers of attention heads, we choose to deploy three

attention heads in the experiments that follow.

3.5.3.4 Comparison of attention methods

In Table 3.4, we show the performances of the three possible ways to compute the

attention weights in MHA-LSTM(+f), named α-attention, dot product attention, and

concatenation attention presented in Section 3.4.3. One can note that dot product and

concatenation attentions outperform the α-attention. Therefore, we conclude that both

the dynamics of the surrounding vehicles and their relationships with the target vehicle

are of great importance for trajectory prediction.

Table 3.4: RMSE in meters over a 5-second prediction horizon for different attention operations
on the highD dataset

Time(s)
Methods

α−attention Dot product Concatenation

1 0.06 0.06 0.07
2 0.10 0.09 0.11
3 0.26 0.24 0.25
4 0.62 0.59 0.61
5 1.25 1.18 1.20

3.5.3.5 Error evaluation per lane change

In order to complete the evaluation of our approach, we use the trained model MHA-

LSTM(+f) to estimate the lateral and longitudinal errors obtained while carrying out right

(RLC), left (LLC) lane change maneuvers or lane Following (LF) in the test set of the
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highD dataset (cf. Table 3.5).

One can notice that the observed lateral error is low even during lane changes maneuvers

Table 3.5: Longitudinal and lateral errors in meters over a 5-second prediction horizon for
different maneuvers on HighD dataset

Maneuver RLC LLC LF
Error Long Lat Long Lat Long Lat

1 0.07 0.03 0.20 0.03 0.05 0.01
2 0.12 0.06 0.32 0.07 0.07 0.02
3 0.34 0.18 0.42 0.19 0.22 0.06
4 0.79 0.43 0.88 0.45 0.54 0.14
5 1.43 0.76 1.74 0.78 1.10 0.22

(5% of the test data). This demonstrates the effectiveness of our method in predicting

lane changes. It may also be observed that the longitudinal and lateral errors are greater

during the LLC maneuvers. This may be due to the fact that the vehicle often speeds up

when it performs LLC, which is not the case for the other maneuvers (LF or RLC).

3.5.4 Qualitative Analysis of Predictions

To understand which vehicles are taken into account by each attention head in our method,

in Figure 3.13 we present the attention maps corresponding to two lane change maneuvers

carried out by the target vehicle. More precisely, a left lane change and a right lane change

are shown and the attention maps are computed at times tobs = tlc−2s, tobs = tlc−1s and

tobs = tlc where tlc is the time of crossing the lane mark during the lane change maneuver.

Each attention map corresponds to an attention head. The target vehicle is shown in

green in the center of the attention map, the grey rectangular region corresponds to the

2D drivable area described by the grid H and the colors of the other vehicles indicate

the attention weight associated to them in the attention head (they are darker when their

attention weight increases).

We can notice that each attention head focuses on a subset of vehicles in the grid that are

crucial to determine the future trajectory of the target vehicle. Moreover, like a human

driver, most of the attention is directed to vehicles positioned in front of the target vehicle,

the vehicles behind it being less considered.

We also notice that, in each example, one attention head considers all the vehicles in the

grid equally (attention head 2 for the left lane change and attention head 1 for the right

lane change). Moreover, at time tlc − 2s, attention map 3 is such that the most important

vehicles belong to the target lane even though some other vehicles are closer to the target

vehicle in another lane. This consolidates our assumption that the closest neighbors do
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(a) Left lane change at tobs =
tlc − 2s

(b) Left lane change at tobs =
tlc − 1s

(c) Left lane change at tobs =
tlc

(d) Left lane change at tobs = tlc − 2s: blue, red and yellow tracks represent respectively past, future and
predicted trajectories

(e) Right lane change at tobs =
tlc − 2s

(f) Right lane change at tobs =
tlc − 1s

(g) Right lane change at tobs =
tlc

(h) Right lane change at tobs = tlc − 2s: blue, red and yellow tracks represent respectively past, future and
predicted trajectories

Figure 3.13: Three heads attention maps for two different lane change maneuvers. For
visualisation, the target vehicle is added in green in the center of all the maps. The driving
direction is from left to right.

not always have the strongest influence on the motion of the target vehicle.
Some other factors such as the speed and the vehicle’s lane are also essential for correctly
estimating the importance of a neighbor. To emphasise that aspect, we consider the
relative speeds of the vehicles surrounding the target vehicle and belonging either to
the same lane as the target vehicle or to the target lane in examples 1 and 2. Table 3.6
summarizes the states of the considered interacting vehicles.

Table 3.6: Neighbor vehicles states.

Example 1 Vehicle Preceding Lead
State Sl S +

Example 2 Vehicle Preceding Following Lead Rear
State S + F Sl + F -

• Preceding, following: a vehicle belonging to the same lane as the target vehicle and
preceding or following it.
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• Lead, rear: a vehicle belonging to the target lane and positioned ahead or behind

the target vehicle.

• S, Sl, F: same speed, slower, faster than the target vehicle respectively.

• -, +: decelerating, accelerating respectively.

In example 1, the preceding vehicle is slower than the target vehicle. The latter has two

possible maneuvers: either to continue in the same lane and decelerate, or to accelerate

and make a left lane change. In the left lane, the lead vehicle is far away from the target

vehicle and has a similar velocity. This makes the lane change maneuver more likely.

In example 2, the preceding vehicle is accelerating and the following one is faster than

the target vehicle. Therefore, the target vehicle has two options, either to accelerate or to

make a right lane change.

In these two examples, we notice that even 2 seconds before performing a lane change, the

target vehicle focuses mainly on the vehicles that belong to the target lane and which may

have an influence on its future speed. Indeed, in both cases, the target vehicle performs

the lane change while accelerating or decelerating according to the situation.

In order to go beyond specific examples and visualize the general aspect of attention

maps, we also present the mean over each of the three attention heads of 100 vehicles

performing lane changes. We notice that there is always a focus on the preceding

vehicles in the current lane. Moreover, even 3s before the lane change the network

detects that the vehicles on the target lane are more important (have higher attention

weights) than vehicles on the other lane.

In order to further analyse the degree of the attention accorded to the surrounding

agents, we randomly sample vehicles traveling in the center lane; 100 performing a left

lane change and 100 performing right lane change. The samples correspond to different

scenes with different surrounding agents configurations. we present in figure 3.14 the

means of the three attention heads maps of our method MHA-LSTM(+f) over the 100
samples of target vehicles traveling in the center lane performing a left lane change (cf.

Figures 3.14a, 3.14b and 3.14c) and a right lane change (cf. Figures 3.14d, 3.14e and

3.14f). The attention maps are centred on the target vehicle position.

Considering all figures, we notice that, each attention map concentrates attention on

vehicles present in various regions of the grid depending on the performed maneuver;

They cooperate to capture different dependencies. In general, there is a focus on vehicles

in the same lane of the target vehicle and the target lane. In addition, we observe that,

the relatively high attention weights are not limited to nearby vehicles. Even the distant

vehicles are important in determining the target vehicle future trajectory. We also note
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(a) Left lane change at tobs = tlc−
3s

(b) Left lane change at tobs =
tlc − 2s

(c) Left lane change at tobs = tlc−
1s

(d) Right lane change at tobs =
tlc − 3s

(e) Right lane change at tobs =
tlc − 2s

(f) Right lane change at tobs =
tlc − 1s

Figure 3.14: Three heads of average attention maps over 100 vehicles with two different lane
change maneuvers (the attention maps are centered on the target vehicle position)

that the attention head 2 in Figures 3.14a, 3.14b and 3.14c is blue which means that the
surrounding vehicles have, on average, low and almost equal impact on the target vehicle
future trajectory. This is coherent with the observed attention head 2 in Figures 3.13a,
3.13b and 3.13c that presents a sample of a target vehicle performing a left lane change.

Figures 3.14a, 3.14b and 3.14c show that, on average, the vehicles intending to
perform a left lane change focus more attention to the motion of vehicles ahead of the
target one in the current and target lanes even 3 seconds before performing the maneuver.
Figures 3.14d, 3.14e and 3.14f illustrate the focus on vehicles present in three regions
in the case of a right lane change; ahead of the target vehicle in the current lane, ahead
of the target vehicle in target lane and behind of the target vehicle in target lane. This
consolidates our analysis of Figure 3.13 that presents a study considering two examples
of a target vehicle performing a lane change.

3.6 Conclusion

The two approaches presented in this chapter tackle the task of long-term (5s) trajectory
prediction on highway using RRNNs and MHA based pooling technique. They combine
the advantages of multi-head dot product attention mechanism and LSTMs to capture the
spatio-temporal dependencies between the input tracks.
The first model variants provided competitive results with the state-of-the-art on the
naturalistic driving large scale highD dataset based on the RMSE metric for both
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longitudinal and lateral position prediction. Therefore, The RRNN based architecture
represents a promising way for motion prediction of surrounding vehicles for autonomous
vehicle.
We also proposed an adapted MHA pooling based method for modeling vehicle interac-
tions during the tasks of vehicle trajectory prediction on highways. Experiments showed
that our approach MHA-LSTM(+f) significantly outperforms the state-of-the-art on two
naturalistic large-scale driving datasets based on the RMSE metric. Furthermore, the
presented visualisation of the attention maps enabled us to recognize the importance and
the dependencies between vehicles. It confirmed that the attention is directed based on
the future maneuver.
Our evaluation results confirmed our intuitions: the importance of the relative dynamics
and the efficiency of multi-head attention mechanism in modeling interactions between
vehicles to predict vehicle trajectories in a highway scenario.
Our proposed approach can be extended to consider heterogeneous and mixed traffic
scenarios with different road users, such as buses, trucks, cars, scooters, bicycles, or
pedestrians. However, further information about the road structure should be integrated
in our model for better representation of different driving scenes. This is described
in the next chapter.



4
Scene Aware Trajectory Prediction in an

Urban Environment: A Recurrent
Approach

Contents

4.1 Multi-head Attention with Joint Agent Map Representation (MHA-
JAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.1 Input Representation . . . . . . . . . . . . . . . . . . . . . . 76
4.1.2 Multimodal Output . . . . . . . . . . . . . . . . . . . . . . . 76
4.1.3 Encoding Layer . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.4 Separate Agent-Map plus Joint Conditioning MHA . . . . . . 78
4.1.5 Joint Agent-Map Attention . . . . . . . . . . . . . . . . . . . 80
4.1.6 Decoding Layer . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.1.7 Intention-based Prediction . . . . . . . . . . . . . . . . . . . 82
4.1.8 Dynamically-feasible Prediction . . . . . . . . . . . . . . . . 85
4.1.9 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Double Attention Based Model . . . . . . . . . . . . . . . . . . . . 89
4.2.1 Input and Output Representation . . . . . . . . . . . . . . . . 89
4.2.2 Encoding and Decoding layers . . . . . . . . . . . . . . . . . 89
4.2.3 Multi-head Double Attention . . . . . . . . . . . . . . . . . . 89
4.2.4 Double Attention for Scene Interaction (DA-JAM) . . . . . . 90

4.3 Simultaneous multi-vehicle trajectory prediction . . . . . . . . . 92
4.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.2 Multi-Head Attention for simultaneous multi-vehicle trajectory

prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3.3 Multi-Head Double Attention for simultaneous multi-vehicle

trajectory prediction . . . . . . . . . . . . . . . . . . . . . . 93
4.4 Experimental Analysis and Evaluations . . . . . . . . . . . . . . . 94

73



74 4. Scene Aware Trajectory Prediction: A Recurrent Approach

4.4.1 Training and Implementation Details . . . . . . . . . . . . . 95
4.4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.3 Models Compared . . . . . . . . . . . . . . . . . . . . . . . 96
4.4.4 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . 99
4.4.5 Ablation Experiments . . . . . . . . . . . . . . . . . . . . . 100
4.4.6 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . 103

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

In this chapter, we tackle the task of trajectory prediction in an urban environment
where an autonomous vehicle is more likely to encounter complex traffic scenes. In this
context, information about the target vehicle past motion and its surrounding agents are
not sufficient to predict the future motion of a target vehicle. Indeed, details about the
static scene structure are required in order to be able to infer the possible motions. Due
to the high variability in the scene structure and agent configurations, prior work has
employed the basic form of attention mechanism, applied separately to the scene and
agent configuration to learn the most salient parts of both cues. However, the two cues
are tightly linked. The agent configuration can inform what part of the scene is most
relevant to prediction. The static scene in turn can help to determine the relative influence
of agents on each other’s motion. For example, the presence of a nearby pedestrian could
make a crosswalk in the path of the vehicle of interest a salient part of the static scene,
as opposed to if there were no nearby pedestrians. On the other hand, the presence of a
crosswalk would make a nearby pedestrian on the sidewalk a more salient part of the input
context as opposed to if there was no crosswalk. Therefore, information from the two
modalities should be fused before extracting the salient features for trajectory prediction.
Moreover, the distribution of future trajectories is multimodal, with modes corresponding
to different agent’s intentions. For each agent’s intention, there are elements of the scene
and a set of surrounding agents that influence the execution of the corresponding motion.

Here, we propose a novel approach applying multi-head attention (MHA) by consid-
ering a joint representation of the static scene and the surrounding agents. Our method
attends to the shared representation of the agent trajectories and map while projecting
them into a joint space, where cross-modal correlation is computed by dot product
operation. We also use each attention head to generate a distinct future trajectory to
address multimodality of future trajectories. Then, we augment our approach by different
methods defining drivers intentions and attributing an intention to each mode in order to
enhance the trajectory prediction diversity. In addition, we propose to replace the MHA
with alternative attention based modules such as the Double Attention (DA) network in
order to reduce the complexity of the model while generating competitive predictions.

In the following, we start by presenting the main building blocks of our main model
Multi-head Attention with Joint Agent Map Representation in Section 4.1. Specifically,
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we define the inputs and the outputs of our model. Then, we describe the encoding layers

of our input features, different methods of modeling interaction with the context and the

decoding layer. In Section 4.2, we present an alternative method of interaction modeling

and generating a multimodal trajectory predictor using a double attention module. We

expand our proposed methods to deal with the problem of simultaneous multi-vehicle

trajectory prediction in Section 4.3. Section 4.4 presents the experiments done on the

nuScenes dataset to evaluate the performance of our proposed methods.

The first part of this work (our MHA-JAM [70]) has been done during a research visit

to the University of California San Diego (UCSD) in collaboration with the Laboratory

for Intelligent and Safe Automobiles (LISA) team.

4.1 Multi-head Attention with Joint Agent Map Repre-
sentation (MHA-JAM)

The attention mechanism has been used for trajectory prediction with approaches using

a single attention head [77, 89, 110]. In our methods Sc-RRNN, L-RRNN and MHA-

LSTM presented in Chapter 3, we used multiple attention heads to extract multiple aspects

of interactions between vehicles. In this part, we use MHA differently by generating

attention keys and values using a joint representation of the HD map and surrounding agent

motion, to model the existing spatio-temporal context interactions. Moreover, our model

incorporates multimodality by using each attention head to extract a different context

representation and generates a plausible trajectory conditioned on each context. We also

predict the probability of each generated trajectory being the best fit to the ground truth.

In the following, we describe the inputs of our proposed methods in Section 4.1.1.

Then, we present our multimodal outputs that form multiple plausible trajectories based

on distinct latent representations in Section 4.1.2. After that, we introduce two MHA-

based methods that model the interactions between the target vehicle and the static and

dynamic scene elements in Sections 4.1.4 and 4.1.5. In Section 4.1.7, we augment

our MHA-JAM with different intention definition techniques in order to enhance the

diversity of the generated trajectories. We also enforce dynamic constraints on our

MHA-JAM to enable it to generate dynamically-feasible trajectories in Section 4.1.8.

Finally, Section 4.1.9 presents the deployed loss functions: regression loss, classification

loss, off-road loss and diversity loss.
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4.1.1 Input Representation

Our goal is to predict the future trajectory of a target vehicle. For this purpose, we
exploit two main cues:

• The past trajectories of the target and its surrounding agents.

• The scene map presenting the road structure oriented toward the driving direction.

We define the interaction space of a target vehicle T as the area centered on its position
at the prediction time tpred and oriented toward its direction of motion. In the following,
we consider the set of agents present in this area AT and the map covering it. This
representation enables us to consider different numbers of interacting agents based on the
occupancy of this area.
Trajectory representation: Each agent i in the interaction space is represented by a
sequence of its states, for th past time steps between tpred − th and tpred,

Si = [Stpred−th
i , . . . , S

tpred

i ]. (4.1)

Each state is composed of a sequence of the agent relative coordinates xti and yti , velocity
velti , acceleration accti and yaw rate ωti ,

Sti = (xti, yti , velti, accti, ωti), t ∈ tpred − th, . . . , tpred. (4.2)

We note ST the state of the target vehicle T . The positions are expressed in a stationary
frame of reference where the origin is the position of the target vehicle at the prediction
time tpred, The y-axis is oriented toward the target vehicle’s direction of motion and
x-axis points to the direction perpendicular to it.

Map representation: The road geometry, driving area and lane divisions of the
interaction space map are fed to the model as a rasterized RGB image [21] denoted
M (cf. Figure 4.6a).

4.1.2 Multimodal Output

The inherent uncertainty of the future imposes that there is not one single correct possible
future trajectory prediction. Given a history of an agent’s motion and a similar context,
there are multiple possible and plausible motions of this agent in the future. In fact, the
future trajectory of an agent in the scene depends on the agent’s goal and behavioral
characteristics or driving style and on the interaction with the surrounding road users.
However, the goals and behaviors are not externally observable. Therefore, distinct
possible goals could be defined and for each potential goal or behavior, there could be
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Figure 4.1: MHA-JAM (MHA with Joint Agent Map representation): Each LSTM encoder
generates an encoding vector of one of the surrounding agent recent motion. The CNN backbone
transforms the input map image to a 3D tensor of scene features. A combined representation of the
context is build by concatenating the surrounding agents motion encodings and the scene features.
Each attention head models a possible way of interaction between the target (green car) and the
combined context features. Each LSTM decoder receives an context vector and the target vehicle
encoding and generates a possible distribution over a possible predicted trajectory conditioned on
each context.

a distinct possible future trajectory or mode. Even humans reason by accounting for
multiple possibilities of future motions and put more focus on the most probable one.
To address multimodality most existing approaches build one latent representation of the
context [23, 24, 35, 120] and then generate multiple possible trajectories based on this
representation. However, we believe that each possible future trajectory is conditioned
on a specific subset of surrounding agents’ behaviors and scene context features. For
each possible intention, a different partial context is important to understand the future
behavior.
We wish to estimate the probability distribution P (Y |S,M) over the future locations Y
of the target vehicle, conditioned on the past trajectories S of agents in AT , and the map
M. To account for multimodality of P (Y |S,M), we model it as a mixture distribution
with L mixture components. Each mixture component consists of predicted location
co-ordinates at discrete time-steps over a prediction horizon tf .

Yl = [Y tpred+1
l , . . . , Y

tpred+tf
l ], l = 1, . . . , L. (4.3)

Here, superscripts denote time, while subscripts denote the mixture component.
Each predicted location Y t

l is modeled as a bivariate Gaussian distribution. Our model
outputs the means µtl and variances Σt

l of the Gaussian distributions for each mixture
component at each time step.

Θl = [Θtpred+1
l , . . . ,Θtpred+tf

l ], where Θt
l = (µtl ,Σt

l), l = 1, . . . , L. (4.4)



78 4.1. Multi-head Attention with Joint Agent Map Representation (MHA-JAM)

Additionally, our model outputs the probabilities Pl associated to each generated trajec-
tory.

4.1.3 Encoding Layer

The state vectors of the target vehicle and its surrounding agents and the rasterized
representation of the map covering the interaction space are fed as input features to the
encoding layer. The latter is composed of two modules:
The trajectory encoding module: The state vector Sti of each agent is embedded using
a fully connected layer to a vector eti and encoded using an LSTM encoder,

hti = LSTM(ht−1
i , eti;Wenc), t = tpred − th, . . . , tpred. (4.5)

hti and htT are the hidden states vector of the ith surrounding agent and the target vehicle
respectively at time t. All the LSTM encoders share the same weights Wenc.
The scene feature extractor module: We use a CNN to extract high level features
from map. Actually, the CNN transforms the input image to a 3D tensor Fm of size
(M,N,Pm), where (M,N) corresponds to the size of the considered 2D spatial grid
of features and Pm the number of features.

4.1.4 Separate Agent-Map plus Joint Conditioning MHA

The interactions of the target vehicle with the static and dynamic context cues help to
infer its future trajectory. Separate attention mechanisms enable to extract the salient
parts of the static scene features and the surrounding agents motion encodings and gather
the essential information from each modality independently from the other. However, the
latter two cues are tightly linked; each can inform the most salient parts of the other.

In this subsection, we augment the separate attention with additional module in
order to establish a connection between static scene and agent motion attention and
integrate information from both of them. Consequently, we model the target vehicle
interactions with its context using two steps: a separate agent-map attention and a
joint conditioning attention.

4.1.4.1 Separate Attention:

The separate attention is a baseline method that considers the agents motion encodings
Fs and the map features Fm separately. It uses two separate attention modules. The first
attends to the agent motion encoding conditioned on the target agent motion. The target
agent motion is projected to form the query vector while the agents motion encodings Fs
are mapped to keys and values. This module captures the agents motions that influence
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the most the target vehicle future trajectory independently of the static scene context. The

second module establishes attention over map regions Fm conditioned on the target agent

motion encoding. Each attention module operates independently from the other. Then, we

concatenate the outputs of the two attention modules (cf. headal, headml in Figure 4.2).
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Figure 4.2: Separate agent-map representation for the attention heads: a baseline where
attention weights are separately generated for the map and agents features by generating keys and
values for each set of features independent of the other.

The separate attention generates an integrated vector which is simply the concatenation

of the two attention vectors headal and headml (cf. Figure 4.2). This vector is projected

and the target agent encoding vector is added to it using a skip connection to form an

intermediate context representation Cint.

4.1.4.2 Joint Conditioning Attention:

The second step of this method is also composed of two attention modules; The first

one attends to the surrounding agents motion encodings and the second aggregates map

features. Each module receives the intermediate context representation Cint and use it as
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a conditioning vector (a query) of the two attention modules. Actually, this combined
vector fuses information about the target agent motion, the surrounding agents trajectories
and the static scene to form a joint representation. Therefore, it is used in the first attention
module to attend to surrounding agents motion encodings. It extracts from them features
conditioned on the target agent motion encoding and the static scene context. Similarly,
the combined vector is used as a query for the second attention module. It captures the
important map features based on the target agent motion encoding and its surrounding
agents motions. The output vectors of the two steps and the target agent motion encoding
are combined to form the context vector zl.
This method enables to model the dependencies between the dynamic agents of the static
scene elements using the joint conditioning attention. To do so, it deploys four attention
modules which is computationally expensive. As a remedy, we propose another method
based on a joint agent-map representation.

4.1.5 Joint Agent-Map Attention

The first step in modeling vehicle-agents and vehicle-map interactions here, is to build
a combined representation of the global context. To do so, we first build a social tensor
Fs composed of the trajectories encoding of the surrounding agents htpred

i placed on
their corresponding positions on top of the 2D spatial grid of size (M,N) covering
the interaction space,
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Figure 4.3: Attention modules in MHA-JAM: We generate keys and values by applying 1x1
convolutional layers to a joint representation of the map and surrounding agents, while the
trajectory encoding of the target agent serves as the query.

Fs(m,n, :) = δmn(xtpred

i , y
tpred

i )htpred

i , ∀i ∈ AT , (4.6)



4. Scene Aware Trajectory Prediction: A Recurrent Approach 81

where δmn(x, y) is an indicator function equal to 1 if and only if (x, y) is in the cell (m,n)
of the 2D spatial grid at the prediction time.

Then, we concatenate the social features Fs and map features Fm to generate a spatio-

temporal representation of the global context C of size (M,N,Pc),

C = Concat(Fs, Fm). (4.7)

We use the attention mechanism to explicitly capture salient combined spatio-temporal

context features composed of maps and trajectories as follows (cf. Figure 4.3):

• The hidden state of the target vehicle is projected to form different queries Ql =
θl(h

t pred

T ,Wθl
).

• The combined trajectories and map features are projected in a joint space to form

different keys Kl = φl(C,Wφl
) and values Vl = ρl(C,Wρl

), l = 1 . . . L.

θl, φl and ρl are linear functions with the weight matrices, learned in each attention head

l, Wθl
, Wφl

and Wρl
.

An attention feature headl is calculated as a weighted sum of values vectors Vl(m,n, :),

headl =
M∑
m=1

N∑
n=1

αl(m,n)Vl(m,n, :), l = 1, . . . , L. (4.8)

αl(m,n) weights the effect of each context feature vector (m,n) on the target vehicle

future trajectory,

αl(m,n) = softmax(QlK
T
l (m,n, :)√
dm

). (4.9)

QlK
T
l (m,n, :) is a vector multiplication used to calculate the dot product between the

query Ql and each key context feature vector KT
l (m,n, :). dm is a scaling factor that

equals to the dimensionality of the projection space.

We use multiple attention heads l = 1, . . . , L to extract different latent representations

of the context zl.

zl = Concat(htpred

T , headl), l = 1, . . . , L. (4.10)

We use each context representation zl to generate a trajectory Ŷ l.

The main difference between the separate MHA and joint MHA is that the latter

generates keys and values in MHA using a joint representation of the map and agents while

the separate MHA computes keys and values of the map and agents features separately.
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4.1.6 Decoding Layer

Each context vector zl, representing the selected information about the target vehicle’s

interactions with the surrounding agents and the scene, and its motion encoding are

fed to l LSTM Decoders. The decoders generate the predicted parameters of the

distributions over the target vehicle’s estimated future positions of each possible trajectory

for next tf time steps,

Θt
l = Λ(LSTM(ht−1

dec , zl;Wdec)), t = tpred + 1, . . . , tpred + tf . (4.11)

All the LSTM decoders share the same weights Wdec and Λ is a linear layer.

Similar to MTP [21], we also predict the likelihood of each predicted trajectory. To do

so, we concatenate all the scene representation vectors zl, feed them to two successive

fully connected layers separated by an activation function. Then, we apply the softmax

function to estimate the probability of each trajectory.

4.1.7 Intention-based Prediction

A multimodal trajectory prediction solution consists in generating multiple plausible

trajectories corresponding to the possible future motions of a target vehicles. In order to

enhance the prediction performance, we attempt to ensure that the predicted trajectories

are diverse and cover most of the possible future paths using an intention based trajectory

prediction. In the following, we aim to enhance the diversity of the generated trajectories

in a multimodal solution by associating each predicted trajectory to a distinct intention.

The challenge here is how to define different intentions that guarantee the generation

of diverse trajectories.

In our basic MHA-JAM, we use multiple attention heads to generate different

trajectories. We assign to the network the task of learning different modes and generating

trajectories without defining a discrete implicit intention of each generated mode or

trajectory class. We deploy the best of L regression loss to train our model in order to

generate a diverse set of predicted trajectories (cf. Section 4.1.9).

In order to enhance the diversity of the predicted trajectories, we extend our approach

using three intention definition techniques: goal directed, anchors and region based

intention definition.
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4.1.7.1 Goal directed Trajectory Generation

A first intention definition technique consists in defining goals based on the final destina-

tions of the agents. In order to generate diverse trajectories that cover different possible

paths. We split the interaction space to distinct predefined regions corresponding to

specific goals or destinations gll, l = 1..L. Then, we train each attention head to learn to

generate trajectories with goals (end point or destination after the prediction time tf ) in

one specific region. This approach consists in defining trajectories classes based on their

goals. Each class characterises the trajectories having an endpoint in a specific region.

To do so, we proceed by dividing the training set trajectories into subsets accordingly

(the number of subsets equals the number of prediction modes). Then, we train each

prediction head to generate the trajectories corresponding to a specific class. In this case,

we don’t use the minimum over L loss. We compute the regression loss between the

ground truth trajectory with goal gll and the predicted trajectory by the prediction head l.

Figure 4.4 shows the interaction space division into L = 16 regions used in our

experiments on the nuScenes dataset. To divide the interaction space into different

destinations, we apply the K-means clustering algorithm on the end points of the future

trajectories of the training data prior to the training and we define each region by the

center of each cluster.

Figure 4.4: Interaction space Division into distinct Destination regions. The lines delimit each
considered destination region and the red dots present the centers of each endpoints’ cluster.

4.1.7.2 Anchor based Trajectory Generation

Taking into account the destination helps to determine the intention of an agent. However,

the general path pattern followed by the agent reveals additional information about its

future motion. Therefore, we investigate the use of a fixed set of future state-sequence

or anchor trajectories that correspond to modes of the trajectory distribution [16] as the
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generally followed trajectories. To generate the anchors, we use the K-means clustering
over the training set trajectories using the Euclidean distance and we consider the center
of each cluster. Figure 4.5 presents the generated anchors when the number of clusters
that corresponds to the number of modes equals 16. We notice that the anchors describe
different trajectories with different patterns, destinations and velocities. During the
training, each attention head generates trajectories that are the closest to a specific anchor
with reference to the Euclidean distance.

Figure 4.5: Anchor Trajectories

4.1.7.3 Region based Trajectory Generation

The possible trajectories of a target vehicle can be inferred using the map (road structure
and lanes configuration) and surrounding agents information. Our model learns to extract
different representations of the context using different attention heads. Each extracted
context representation corresponds to a latent intention. In order to enhance the diversity
of the predicted trajectories, we operate on the attention weight corresponding to each
attention head in order to direct the attention to a specific region.
A first way to define intentions is to split the generated joint map and agent features (with
respect to the spatial dimension) into regions prior to the training and force each attention
head to accord attention only to a specific region. In the evaluation section, we present an
application of this method with three attention heads and therefore we divide the context
into three regions (cf. Figure 4.15). This method can be extended using heuristics to
divide the context into a bigger number of regions.
A second way to enhance the diversity of the generated trajectories is to force the attention
heads to learn to specialise in specific regions using an auxiliary loss function denoted
diversity loss (cf. Section 4.1.9).
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4.1.8 Dynamically-feasible Prediction

In order to ensure that the predicted positions are realizable by the vehicle control, we
incorporate dynamics constraints to our proposed model MHA-JAM.

4.1.8.1 Dynamically-extended Unicycle Model

Similar to [91], we deploy the dynamically-extended unicycle [57] to model vehicles
dynamics control. In the real world, vehicles are controlled by accelerator pedals and
the steering wheel. Therefore, we choose the dynamically-extended unicycle model
since it utilizes the acceleration acc and the yaw rate ω as control inputs. It has the
following nonlinear continuous-time dynamics:

ẋ
ẏ

θ̇
˙vel

 =


vel cos(θ)
vel sin(θ)

ω
acc

 (4.12)

where x and y are the coordinates, vel is the velocity, and θ is the heading. Since we
consider discrete trajectories, we use the following discrete equivalent dynamics where
∆t represents the length of the sampling interval.

x(t+1)

y(t+1)

θ(t+1)

vel(t+1)

 =


x(t)

y(t)

θ(t)

vel(t)

+


vel(t)D

(t)
S + acc(t) sin(θ(t)+ω(t)∆t)∆t

ω(t) + acc(t)

ω(t) D
(t)
C

−vel(t)D(t)
C + acc(t) cos(θ(t)+ω(t)∆t)∆t

ω(t) + acc(t)

ω(t) D
(t)
S

ω(t)∆t
acc(t)∆t

 (4.13)

where D(t)
S =sin(θ(t) + ω(t)∆t)− sin(θ(t))

ω(t)

D
(t)
C =cos(θ(t) + ω(t)∆t)− cos(θ(t))

ω(t)

We use a slightly adapted set of dynamics [91] when |ω| < 10−3 to avoid singularities
in Equation 4.13. When the yaw rate value ω is small, we adopt the following dynamics,
obtained by computing the limit as ω → 0.


x(t+1)

y(t+1)

θ(t+1)

vel(t+1)

 =


x(t)

y(t)

θ(t)

vel(t)

+


vel(t) cos(θ(t)∆t+ 0.5 acc(t) cos(θ(t)(∆t)2

vel(t) sin(θ(t)∆t+ 0.5 acc(t) sin(θ(t)(∆t)2

0
acc(t)∆t

 (4.14)

In summary, the full dynamics are:
x(t+1)

y(t+1)

θ(t+1)

vel(t+1)

 =
{

Equation (4.13) if |ω| > ε
Equation (4.14) otherwise (4.15)
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4.1.8.2 Output Form

At each timestep, and for a specific latent value zl, our MHA-JAM generates a Gaussian

distribution over control actions instead of directly generating a Gaussian distribution

over positions as deployed previously. Then, the dynamically-extended unicycle model is

applied to obtain the positions sequence corresponding to the control actions distribution

generated by our MHA-JAM. In this case, our MHA-JAM outputs:

µu =
[
µω
µacc

]
Σu =

[
σ2
ω ρωaccσωσacc

ρωaccσωσacc σ2
acc

]
(4.16)

Mean Positions In order to obtain the output mean positions described in Section 4.1.2,

we apply the Equation 4.15 to the the mean control actions generated our MHA-JAM.

Covariance of the Positions In order to obtain the covariance, the Jacobians F and G

of the system dynamics in Equation 4.13 are computed as follows:

F(t) = ∂f
∂µs(t) =


1 0 vel(t)D(t)

c −
acc(t)D

(t)
S

ω(t) + acc(t) cos(θ(t)+ω(t)∆t)∆t
ω(t) D

(t)
S

1 0 vel(t)D
(t)
S + acc(t)D

(t)
C

ω(t) + acc(t) sin(θ(t)+ω(t)∆t)∆t
ω(t) −D(t)

C

0 0 1 0
0 0 0 1



G(t) = ∂f
∂µu(t) =


G

(t)
11

D
(t)
C

ω(t) + sin(θ(t)+ω(t)∆t)∆t
ω(t)

G
(t)
21

D
(t)
S

ω(t) − cos(θ(t)+ω(t)∆t)∆t
ω(t)

∆t 0
0 ∆t



where G(t)
11 =vel

(t) cos(θ(t) + ω(t)∆t)∆t
ω(t) − vel(t)D

(t)
S

ω(t) − 2acc(t) sin(θ(t) + ω(t)∆t)∆t
ω(t)2 − 2acc(t)D

(t)
C

ω(t)2

+ acc(t) cos(θ(t) + ω(t)∆t)(∆t)2

ω(t)

G
(t)
21 =vel

(t) sin(θ(t) + ω(t)∆t)∆t
ω(t) + vel(t)D

(t)
C

ω(t) + 2acc(t) cos(θ(t) + ω(t)∆t)∆t
ω(t)2 − 2acc(t)D

(t)
S

ω(t)2

+ acc(t) sin(θ(t) + ω(t)∆t)(∆t)2

ω(t)

Then, by applying the equations for the covariance of a sum of Gaussian random variables

[101], the covariance in position space Σp,θ,v is obtained as follows:

Σ(t+1)
p,θ,v = F(t)Σ(t)

p,θ,vF(t)T + G(t)Σ(t)
u G(t)T (4.17)
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4.1.9 Loss Functions

We train the model using the following loss functions:

4.1.9.1 Regression loss

While the model outputs a multimodal predictive distribution corresponding to L distinct

futures, we only have access to 1 ground truth trajectory for training the model. In order

to not penalize plausible trajectories generated by the model that do not correspond to the

ground truth, we use a variant of the best of L regression loss for training our model, as

has been previously done in [35]. This encourages the model to generate a diverse set of

predicted trajectories. Since we output the parameters of a bivariate Gaussian distribution

at each time step for the L trajectories, we compute the Negative Log-Likelihood (NLL)

of the ground truth trajectory under each of the Lmodes output by the model, and consider

the minimum of the L NLL values as the regression loss. The regression loss is given by

Lreg = min
l

tpred+tf∑
t=tpred+1

−log(PΘt(ytl |S)). (4.18)

4.1.9.2 Classification loss [21]

In addition to the regression loss, we consider the cross entropy,

Lcl = −
L∑
l=1

δl∗(l)log(pl), (4.19)

where δ is a function equal to 1 if l = l∗ and 0 otherwise. Here l∗ is the mode

corresponding to the minimum NLL in equation 4.18. Ŷ l∗ is the predicted trajectory

corresponding to l∗ and p∗l its predicted probability.

4.1.9.3 Off-road loss

While the loss given by equation 4.18 encourages the model to generate a diverse set

of trajectories, we wish to generate trajectories conforming to the road structure. Since

the regression loss only affects the trajectory closest to the ground-truth, we consider

the auxiliary loss function proposed in [73, 77] that penalizes points in any of the L

trajectories that lie off the road. The off-road loss Lor for each predicted location is the

minimum distance of that location from the drivable area. Figure 4.6b shows a heatmap

of the off-road loss for the layout in figure 4.6a.
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(a) Input scene representation (b) Off-road loss distance map

Figure 4.6: Off-road loss: an auxiliary loss function that penalizes locations predicted by the
model the fall outside the drivable area. It is proportional to the distance of a predicted location
from the nearest point on the drivable area.

4.1.9.4 Diversity loss

In order to avoid generating similar predictions and ensure that the attention mechanism
does not provide similar attention weights for all attention heads, we use a diversity
loss. This loss encourages the network to attend to a specific aspect (set of features)
consistently. It incites the attention map for each head to focus on a single region and
different heads attend to distinct regions.
We define the diversity loss as a soft subspace orthogonality constraint between the
attention weight vector (formed from attention map) of each head (space) as follows:

Ldiv = 1
Nbsamples

Nbsamples∑
m=1

L∑
p=1

L∑
q=1
p 6=q

MN∑
k=1

αp(k)αq(k) (4.20)

where αp are the attention weights of the attention head p and Nbsamples is the number of
samples considered.
The overall loss for training the model is given by

Loss = Lreg + λcl.Lcl + λor.Lor + λD.LD, (4.21)

where the weights λcl, λor and λD are empirically determined hyperparameters.
In this section, we introduced our main contribution: the MHA with Joint Agent

Map representation method (MHA-JAM). It deploys multiple attention heads and uses
each head to generate a plausible trajectory. We also deployed three different ways to
define intentions and forced each attention head to generate trajectories corresponding
to a specific intention. In the following, we propose another attention based method
that generates multiple possible trajectories based on global features of the joint agent
and map context.
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4.2 Double Attention Based Model

In order to predict trajectories of its surrounding agents, an autonomous vehicle needs
to analyze the traffic scene and build a global understanding of it. This understanding
requires different cues from the target vehicle and its context. In addition, a vehicle’s
trajectory is very correlated to the behavior of its surrounding agents and to the static
scene context and salient context information lies in both nearby and distant elements. e.g.,
intersection road, crosswalks. Therefore, recent studies about trajectory prediction deploy
attention mechanism in order to capture long-range dependencies to represent interactions
between vehicles and extract the global understanding of the visual scene. However, the
complexity of multi-head attention block is important since attention captures pair-wise
relations between the target vehicle representation and all feature map positions.
In this part, we deploy the attention mechanism differently to reduce the complexity of
the multi-head attention block deployed in the task of trajectory prediction by generating
a query-independent attention map that capture the context global features. Then, we
aggregate specific context representations based on the target vehicle trajectory using this
attention map to form a multimodal output. This attention block has less computation
cost than the original multi-head attention block, and it infers the future trajectories
with almost no decrease in accuracy.

4.2.1 Input and Output Representation

In our double attention (DA) based trajectory prediction approach, we use the same input
representations of agents trajectories and their surrounding scene as for our Multi-head
Attention with Joint Agent Map Representation (cf. Section 4.1).

4.2.2 Encoding and Decoding layers

We use the same encoding layers to generate feature representations of the past trajectories
Si of each agent i in the interaction space and the map imageM. Similarly, we use the
same decoding layer to output multimodal predictions.

4.2.3 Multi-head Double Attention

MHA consists in mapping the target vehicle to queries, and the 3D tensor presenting the
map and the surrounding agents features to keys and values. Then, it generates attention
vectors for the target vehicle. Such an approach exhaustively correlates the target vehicle
motion encoding with that of its neighbors and the map features. The DA models spatial
relationships in a computationally efficient manner.
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Figure 4.7: Double Attention Block applied on the joint agent and map representation conditioned
on the target vehicle motion encoding.

4.2.4 Double Attention for Scene Interaction (DA-JAM)

In a driving neighborhood, the drivers’ behaviors are correlated, which leads to similarities

in trajectories. However, distinct behaviors always exist due to different driving styles

and goals. Therefore, if we consider the entire interaction space, trajectories can be

grouped together when they are similar and distinguishable ones can be extracted to

form a compact representation of trajectory features. Moreover, some static elements of

the scene (e.g. lanes, road borders, crosswalks ...) have more influence on the vehicles

trajectories than others. Therefore, the key scene features can be aggregated together

with the surrounding agents motions to form a global understanding of the traffic context.

Then, the collective impact of the selected set of context features on each possible future

behavior of the target vehicle can be extracted.

This process can be modeled by a DA mechanism, introduced by Chen et al. [18] for

image/video recognition, to capture long-range vehicle motion feature interdependencies

via universal gathering and distribution functions. It is composed of two steps:

• Global features extractions: gathers a set of key scene features from the entire

grid into a compact set using attention.

• Adaptive features distribution: adaptively selects and distributes the key scene

features to form different contexts for the target vehicle possible future behavior

via another attention.
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4.2.4.1 Global features extractions

The first step of the DA network consists in generating global features. To do so, the 3D

tensor Fm presenting the joint context features is projected into two different spaces to

form two context representations C and E. Actually, C and E are the outputs of the two

different convolution layers (kernel size = (1, 1)) applied to the context features Fm.

C = θ(Fm;Wθ)T , C = [c1, . . . , cMN ] ∈ RdGF×MN (4.22)

E = φ(Fm;Wφ)T , E = [e1, . . . , eMN ] ∈ RNGF×MN , (4.23)

where dGF and NGF are the dimension and the number of the global features.

We rewrite the feature matrix E as:

E = [ē1, . . . , ēNGF
] , (4.24)

where ēi ∈ RMN is an MN -dimensional row vector of the matrix E.

The global features G =
[
g1, . . . , gNGF

]
are computed as:

gi = C softmax(ēi)T (4.25)

The term softmax(ēi) corresponds to the ith global attention map. This map is composed

of attention weights extracted from the context features Fm independently of the input

sequence of states.

We denote Ggather the function that adaptively aggregates global features from the entire

input joint context feature map Fm:

Ggather(Fm) = Csoftmax(E)T (4.26)

4.2.4.2 Adaptive features distribution

The previously extracted global features are used to generate specific features adapted to

the target vehicle past motion. To do so, we project the target vehicle motion encoding

in L different spaces of dimension NGF .

V = softmax(ρ(htpred

T ;Wρ)), V = [v1, . . . , vL] ∈ RNGF×L (4.27)

We note that
∑NGF
j=1 vlj = 1. The vector vl represents the attention weights of the global

vectors based on the target vehicle trajectory.

The function Fdistr distributes the gathered information to form a different context
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vectors characterizing each possible trajectory, conditioned on the target vehicle motion
encoding vector vl:

headl = Fdistr(Ggather(Fm), vl) (4.28)

= Ggather(Fm)vl (4.29)

=
∑
∀j
vljgj (4.30)

In sum, the DA network is composed of two attention blocks; the first gathers the global
features from the entire context representation and the second distributes them to form
different context representations, taking into account the target vehicle past motion
encoding. We denote these context representations headl, (l = 1, . . . , L) since they play
the same role as the attention heads deployed in the MHA-JAM method. But, they are
built in a more optimal way. It reduces the computation of MHA-JAM by LMN/N2

GF .
Actually, instead of relating the target vehicle motion encoding to every element of the
context feature map, the double attention computes the correlation between the target
vehicle motion encoding and the query independent global features.
As a result, each possible trajectory representation is composed of the target vehicle
motion encoding and its customized global information that is complementary to the
motion encoding features, facilitating the learning of complex relations with the target
vehicle surrounding environment.
These trajectory representations are fed to the LSTM decoder that generates simultane-
ously the predicted possible trajectories of the target vehicle. We use each representation
to generate a trajectory Ŷ l,

zl = Concat(htpred

T , headl), l = 1, . . . , L. (4.31)

4.3 Simultaneous multi-vehicle trajectory prediction

Let us now tackle the task of simultaneous multi-vehicle trajectory prediction. For this
purpose, we jointly reason about the interactions between a set of target vehicles and their
static and dynamic context elements and predict their future trajectories accordingly.

4.3.1 Problem Definition

In this section, we consider the problem of jointly predicting the future trajectories
of a selected set of vehicles belonging to the interaction area while considering their
interactions with their static and dynamic contexts. This problem is challenging since we
have limited information about the influence of neighboring vehicles on the borders of



4. Scene Aware Trajectory Prediction: A Recurrent Approach 93

the interaction area. However, it represents a more realistic representation of the driving
conditions with potential limited visibility.
In order to predict the trajectories of multiple vehicles simultaneously, we use two types
of frame of reference; one related to the interaction area and one associated to each agent.
To characterise the past trajectory of each vehicle in the scene, we use:

• its coordinates at the prediction time and its orientation in a stationary frame of
reference related to the interaction area.

• its past trajectory states (coordinates xti and yti , velocity velti , acceleration accti
and yaw rate ωti) with reference to a stationary frame of reference centered on its
position at the prediction time and oriented toward its direction of motion.

4.3.2 Multi-Head Attention for simultaneous multi-vehicle trajec-
tory prediction

A first idea to work on the problem of simultaneous multi-vehicle trajectory prediction
would be to extend the target vehicle trajectory prediction method presented in Section
4.1 to a subset of vehicles present in the interaction area and perform a similar prediction
process for each vehicle with a surrounding limited to the interaction area. This consists
in mapping the considered subset of target vehicles to queries and the surrounding
joint agent map context to keys and values and generating attention heads for these
vehicles. Such an approach exhaustively correlates each vehicle motion encoding with
all the features of its context with each attention head. This method will be our baseline
method for simultaneous multi-vehicle trajectory prediction, called the Multi-Vehicle
MHA-JAM (MV-MHA-JAM), and compared with the following approach that uses
the double attention mechanism.

4.3.3 Multi-Head Double Attention for simultaneous multi-vehicle
trajectory prediction

Here, we use the DA mechanism for simultaneous multi-vehicle trajectory prediction
to avoid relating each target vehicle to each of the context features. To do so, first, we
propose to extract global features from the joint Agent Map context to form a compact
representation of the context features. Then, the collective impact of the extracted global
features on each of the considered target vehicles in the scene can be extracted. Our
MV-MHDA-JAM method is composed of two steps (cf. Figure 4.8):

• Global features extractions: gathers a set of key context features from the joint
Agent Map context to form a compact set using a first attention mechanism.
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Figure 4.8: Double Attention Block applied on the joint agent and map representation for
simultaneous multiple trajectory prediction. This figure presents the prediction of one mode of
trajectory for all the target vehicles. We use L double attention blocks to generate multimodal
predictions.

• Adaptive features distribution: adaptively selects and distributes the key context
features to each vehicle to represent its interaction with the context via another
attention mechanism. We generate the trajectories of all the target vehicles based on
the same global context representation in order to increase the coherence between
the generated trajectories.

In addition, in order to generate multimodal predictions, we use multiple DA heads and
each head generates a possible trajectory for all the target vehicles. In other words, instead
of producing one global context, we extract L global contexts and we generate possible
trajectories for all target vehicles based on each global context.

4.4 Experimental Analysis and Evaluations

In order to evaluate our proposed methods, we train and test them on the publicly available
naturalistic dataset nuScenes. First, we compare our proposed methods to recent state of
the art methods according to different metrics. Then, we evaluate the relative contributions
of various cues and modules on the overall performance of our main method MHA with
Joint Agent Map representation (MHA-JAM) using ablation experiments. Moreover,
we conduct a qualitative evaluation on our MHA-JAM where we visualize and analyse
the generated trajectories and the attention maps. We also analyse the performance our
MHA-JAM when defining a distinct intention to each generated trajectory.
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4.4.1 Training and Implementation Details

The input states are embedded in a space of dimension 32. We use an image representation

of the scene map (cf. figure 4.6a) of size of (500, 500) with a resolution of 0.1 meters

per pixel. Similar to [81] representation, our input image extents are 40 m ahead of the

target vehicle, 10 m behind and 25 m on each side. We use ResNet-50 pretrained on

ImageNet to extract map features. This CNN outputs a map features of size (28, 28, 512)
on top of them we place the trajectories encodings. The deployed LSTM encoder and

decoder are of 64 and 128 randomly initialized units respectively. For MHA-JAM, we use

L = 16 parallel attention operations applied on the vectors projected on different spaces

of size dm = 64. Concerning our DA-JAM, we use NGF = 16 global features with the

dimension of the model dm = 64 and L = 10 output modes. We use a batch size of 32

and Adam optimizer [52]. The model is implemented using PyTorch [78].

4.4.2 Evaluation Metrics

MinADEK and MinFDEK : We report the minimum average and final displacement

errors over K most probable trajectories similar to prior approaches for multimodal

trajectory prediction [16, 21, 25, 35, 59].

MinADEK = min
k

 1
tf − tpred

tf∑
t=tpred+1

∥∥∥Y t − Y t
K

∥∥∥
 , (4.32)

MinFDEK = min
k

∥∥∥Y tf − Y tf
K

∥∥∥ , (4.33)

Our model outputs the likelihood of each of the L generated trajectories. Y1, . . . , YK are

the K most probable trajectories.

The minimum over K avoids penalizing the model for generating plausible future

trajectories that don’t correspond to the ground truth.

Miss rate: For a given distance d, and the K most probable predictions generated by

the model, the set of K predictions is considered a miss based on,

Missk,d =
{

1 if minŷ∈PK

(
max

t=tf
t=tpred

‖yt−ŷt‖
)
>d.

0 otherwise
(4.34)

The miss rate MissRateK,d computes the fraction of missed predictions over the test set.

Off-road rate: Similar to [25], we consider the off-road rate, which measures the fraction

of predicted trajectories that fall outside the drivable area of the map.
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Diversity score: Similar to the diversity loss, we use the diversity score to measure

the similarity between the attention maps of each head of predicted trajectories on

the test set samples.

Sdiv = 1
Nbsamples

Nbsamples∑
m=1

L∑
p=1

L∑
q=1
p6=q

MN∑
k=1

αp(k)αq(k) (4.35)

4.4.3 Models Compared

We compare our model to six baselines, two physics based approaches, and four recently

proposed models that represent the state of the art for multimodal trajectory prediction. All

deep learning based models generate up to L = 25 trajectories and their likelihoods. We

report the results considering the K most probable trajectories generated by each model.

4.4.3.1 Baselines

Constant velocity and yaw : Our simplest baseline is a physics based model that

computes the future trajectory while maintaining constant velocity and yaw of the current

state of the vehicle. Given the position (xtT , ytT ) and the velocity (veltTx, veltTy) of the

target vehicle, the model computes the next position using the following equation:[
xt+1
T

yt+1
T

]
=
[
xtT + veltTx∆t
ytT + veltTy∆t

]
(4.36)

where ∆t is the time gap between positions (xtT , ytT ) and (xt+1
T , yt+1

T ).

Physics oracle : An extension of the physics based model introduced in [81]. Based

on the current state of the vehicle (position, velocity, acceleration, yaw and yaw rate),

it computes the minimum average point-wise Euclidean distance over the predictions

generated by four on different kinematic models:

• Constant velocity and yaw: the model previously explained (cf. Equation 4.36).

• Constant velocity and yaw rate: Assuming that the velocity veltT and yaw rate

θ̇tT are constants and equal veltobsT and θ̇tobsT respectively, we compute the future

positions as follows:

x
t+1
T

yt+1
T

θt+1
T

 =

x
t
T + veltobsT cos(θtT )∆t
ytT + veltobsT sin(θtT )∆t

θtT + θ̇tobsT ∆t

 (4.37)
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• Constant acceleration and yaw: With constant acceleration and the heading, we
compute the future positions as follows:[

xt+1
T

yt+1
T

]
=
[
xtT + veltTx∆t+ 1

2acc
t
Tx∆t2

ytT + veltTy∆t+ 1
2acc

t
Ty∆t2

]
(4.38)

• Constant acceleration and yaw rate: We also consider a constant acceleration and
yaw rate to obtain: 

xt+1
T

yt+1
T

velt+1
T

θt+1
T

 =


xtT + veltT cos(θtT )∆t
yeltT + veltT sin(θtT )∆t
veltT + acctobsT ∆t
θtT + θ̇tobsT ∆t

 (4.39)

Multiple-Trajectory Prediction (MTP) [21]: The MTP model uses a CNN over a
rasterized representation of the scene and the target vehicle state to generate a fixed
number of trajectories (modes) and their associated probabilities (cf. Figure 4.9). It uses
a weighted sum of regression (cf. Equation4.18) and classification (cf. Equation4.19)
losses for training. We use the implementation of this model by [81].

Figure 4.9: MTP network architecture

Multipath [16]: Similar to MTP, the Multipath model uses a CNN with same input.
However, unlike MTP, it uses fixed anchors obtained from the train set to represent
the modes, and outputs residuals with respect to anchors in its regression heads. We
implement MultiPath as described in [16].

CoverNet [81]: The CoverNet model formulates multimodal trajectory prediction purely
as a classification problem. The model predicts the likelihood of a fixed trajectory set
(cf. Figure 4.10), conditioned on the target vehicle state.

Trajectron++ [91]: is a graph-structured recurrent model that predicts the agents
trajectories while considering agent motions and heterogeneous scene data.
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Figure 4.10: CoverNet Trajectory Set

4.4.3.2 Our proposed Methods

MHA-JAM: our basic MHA with joint agent map representation presented in Section

4.1.5.

MHA-JAM-DC our MHA with joint agent map representation and Dynamic Constraints

presented in Section 4.1.8.

MHA-JAM-G: MHA-JAM with goal based intention definition presented in Section

4.1.7.1.

MHA-JAM-A: MHA-JAM with anchor based intention definition presented in Section

4.1.7.2.

MHA-JAM-D: MHA-JAM with diversity loss presented in Section 4.1.7.3.

MHA-SAM+JC: MHA with Separate Agent Map plus Joint Conditioning Attention

presented in Section 4.1.4.

GA-JAM: our Global Attention (GA) based trajectory prediction with joint agent map

representation. It uses only the first attention block of the DA network. In other words, it

consists on generating L global features and passing each global feature with the target

vehicle motion encoding as input to each LSTM decoder (cf. description in Section 4.2.4).

DA-JAM: our basic DA with joint agent map representation presented in Section 4.2.4.
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Table 4.1: Results of comparative analysis on nuScenes dataset, over a prediction horizon of
6-seconds

MinADE1 MinADE5 MinADE10 MinADE15 MinFDE1 MinFDE5 MinFDE10 MinFDE15 MissRate5,2 MissRate10,2 Off-Road Rate

Const vel and yaw 4.61 4.61 4.61 4.61 11.21 11.21 11.21 11.21 0.91 0.91 0.14
Physics oracle 3.69 3.69 3.69 3.69 9.06 9.06 9.06 9.06 0.88 0.88 0.12
MTP [21] 4.42 2.22 1.74 1.55 10.36 4.83 3.54 3.05 0.74 0.67 0.25
Multipath [16] 4.43 1.78 1.55 1.52 10.16 3.62 2.93 2.89 0.78 0.76 0.36
CoverNet1 [81] - 2.62 1.92 - 11.36 - - - 0.76 0.64 0.13
Trajectron++1 [91] - 1.88 1.51 - 9.52 - - - 0.70 0.57 0.25

MHA-JAM 3.77 1.85 1.24 1.03 8.65 3.85 2.23 1.67 0.60 0.46 0.10
MHA-JAM (off-road)1 3.69 1.81 1.24 1.03 8.57 3.72 2.21 1.70 0.59 0.45 0.07

MHA-JAM-DC 4.18 1.88 1.38 - 9.49 3.61 2.34 - 0.70 0.65 0.16
MHA-JAM-DC (off-road) 3.92 1.83 1.39 - 8.82 3.47 2.36 - 0.71 0.66 1.12

MHA-SAM+JC 3.70 1.67 1.13 - 8.52 3.33 1.93 - 0.57 0.48 0.07
GA-JAM (GF = 10) 3.80 1.71 1.25 - 8.85 3.48 2.30 - 0.61 0.54 0.10
DA-JAM (GF = 16) 3.76 1.77 1.20 - 8.76 3.62 2.13 - 0.60 0.53 0.10

MV-MHA-JAM 4.23 1.94 1.42 - 9.89 4.14 2.77 - 0.69 0.65 0.28
MV-MHDA-JAM (GF = 8) 4.10 1.84 1.32 - 9.53 3.87 2.51 - 0.65 0.58 0.20

MV-MHA-JAM: our basic MHA with joint agent map representation applied for simul-

taneous multi-vehicle trajectory prediction presented in Section 4.3.

MV-MHDA-JAM: our multi-head DA with joint agent map representation applied for

simultaneous multi-vehicle trajectory prediction presented in Section 4.3.

Results of our proposed methods are evaluated when the models are trained without

and with off-road loss function. We add the off-road term Method (off-road) to denote

that the method is trained with off-road loss.

4.4.4 Quantitative Evaluation

First, we compare our model MHA-JAM (MHA with joint agent map representation

trained without and with off road loss) to various baselines doing experiments with

nuScenes dataset in table 4.1. Our model outperforms all baselines on 9 of the 11 reported

metrics, while being second on the remaining two.

For the MinADEK and MinFDEK metrics, our model achieves the best results for

K ∈ {1, 10, 15} and second best to Multipath [16] when K = 5. Having the best

performance for K ∈ {10, 15} shows that our method generates a diverse set of plausible

trajectories that match the ground truth. However, for K = 5, our classifier doesn’t

seem to succeed in selecting the closest trajectories to the ground truth among the 5 most

probable ones, while the Multipath classifier does.

Moreover, our method presents significant improvements compared to others when

considering miss rate and off-road rate metrics. Having the lowest miss rate suggests that

our predicted trajectories are less likely to deviate from the ground truth over a threshold

1 Results reported in the nuScenes challenge Leaderboard:
https://evalai.cloudcv.org/web/challenges/challenge-page/591/
leaderboard/1659

https://evalai.cloudcv.org/web/challenges/challenge-page/591/leaderboard/1659
https://evalai.cloudcv.org/web/challenges/challenge-page/591/leaderboard/1659
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of d = 2m. In addition, our model achieves significantly lower off-road rates especially

when trained with the off-road loss that penalizes predictions outside of the drivable

area. Therefore, it generates scene compliant trajectories.

In order to evaluate the performance of our model when applying dynamic constraints

MHA-JAM-DC (with and without using the off-road loss), we compare it with recent

state-of-the-art works and with our basic MHA-JAM. While our MHA-JAM-DC pro-

duces competitive results with the state-of-the-art methods according to most of the

metrics, we notice that imposing dynamics constraints on our MHA-JAM reduces its

performance. Actually, the dynamic unicycle model is a very simplified model of the real

motion of vehicles. It considers only the estimated action of the driver on the acceleration

and the direction (i.e. the steering wheel) and it omits many physical characteristics of

the vehicle like the the moment of inertia, the grip limit of the tires with the road, etc.

For specific values of these parameters, the vehicle could make unusual motion like over-

steering and skidding. However, the unicycle model does not handle these kind of motion.

We notice that our MHA-SAM+JC performs well in most metrics. However, it has a

relatively high complexity compared to the MHA-JAM since it encloses 4 MHA blocks

that compute attention through two steps.

We also compare our proposed DA based trajectory prediction approach to the state

of the art methods and to our proposed MHA-JAM. We observe that our DA-JAM has

competitive results with the MHA-JAM while having a lower complexity (about 30
times). In addition, we conduct an ablation experiment on our DA based method. We

only use the first attention block of the DA-JAM that generates global features and we

feed each of these features to each of the LSTM decoders to generate different possible

trajectories. This method that we denote GA-JAM, has comparable performance to

that of DA-JAM. We believe that the second attention block is important to extract

features adapted to the target vehicle motion. But, its impact is not clearly shown in

the experiments on the nuScenes dataset.

Finally, we consider the task of simultaneous multi-vehicle trajectory prediction. We

compare our MV-MHA-JAM to our MV-MHDA-JAM. We note that our MV-MHDA-
JAM slightly improves the prediction accuracy according to all the metrics compared to

our MV-MHA-JAM. This infers that using two steps of attention performs better than

applying MHDPA in the case of simultaneous multi-vehicle trajectory prediction.

4.4.5 Ablation Experiments

To get a deeper insight on the relative contributions of the various cues and modules

affecting the overall performance, we perform the following ablation experiments.
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(a) Input cues importance: evaluation metrics for different input features

(b) Context representation importance: comparison of MHA-SAM, MHA-JAM(JAH) and MHA-JAM

(c) Effect of off-road loss

Figure 4.11: Ablation experiments: We evaluate through ablation experiments, the importance
of input cues (top), the effectiveness of a joint agent map representation for generating keys and
values for attention heads (middle), the effectiveness of attention heads specialized for particular
modes of the multimodal predictive distribution (middle), and finally the effectiveness of the
auxiliary off-road loss (bottom). For each experiment we plot the metrics MinADEK (left),
MissRateK,2 (middle) and off-road rate (right) for the K likeliest trajectories output by the
models.
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4.4.5.1 Importance of input cues

Our model relies on two main inputs that help illustrate the interaction of the target vehicle
with its context: past motion of surrounding agents and the static scene context represented
by high definition maps. To investigate the importance of each input, we compare our
model MHA-JAM to two models: (1) MHA with purely agent inputs (MHA-A), and (2)
MHA with purely map inputs (MHA-M). When considering only the surrounding agents
without any information about the scene structure (MHA-A), the model shows poor results
according to the three metrics minADE, missRateK,2, and off-road rate (cf. Figure 4.11a).
This highlights the importance of the map information to make more accurate and scene
compliant predictions. Moreover, since MHA-JAM has the best performance, we infer
that considering the surrounding agents also helps our model make a better prediction.

4.4.5.2 Advantage of using multiple attention heads

We train our model with different numbers of attention heads (L) and we compare the
minADEL, minFDEL and MissRateL,2. Table 4.2 shows that all the metrics decrease
when we increase the number of the attention heads. This proves the usefulness of using
different attention heads to generate multimodal predictions.

Table 4.2: MinADE and MinFDE with different numbers of attention heads (L)

L 1 4 8 12 16 20
MinADE 3.48 1.72 1.26 1.13 1.02 1.00
MinFDE 8.01 3.54 2.29 1.91 1.64 1.60
MissRateL,2 0.91 0.76 0.59 0.50 0.40 0.40

4.4.5.3 Effectiveness of joint context representation

To prove the effectiveness of using joint context representation, we compare our model to
MHA-SAM (MHA with Separate-Agent-Map representation). MHA-SAM is composed
of two separate MHA blocks (cf. Figure 4.2): MHA on surrounding agents (similar
to MHA-A) and on map (similar to MHA-M). We concatenate their outputs to feed
them to the decoders. The main difference between MHA-SAM and MHA-JAM is
that MHA-JAM generates keys and values in MHA using a joint representation of the
map and agents while MHA-SAM computes keys and values of the map and agents
features separately. Figure 4.11b shows that MHA-JAM performs better compared to
MHA-SAM especially according to the off-road rate metric. This proves the benefit of
applying attention on a joint spatio-temporal context representation composed of map and
surrounding agents motion, over using separate attention blocks to model vehicle-map
and vehicle-agents interaction independently.
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4.4.5.4 Effectiveness of a specialized attention heads:

We also compare our method to MHA-JAM (with Joint-Attention-Heads JAH). While
MHA-JAM uses each attention head headl to generate a possible trajectory, MHA-JAM
with joint attention heads uses a fully connected layer to combine the outputs of all
attention heads headl, l = 1 . . . L. It generates each possible trajectory using a learnt
combination of all the attention heads.

Comparing MHA-JAM and MHA-JAM (JAH) reveals that conditioning each possible
trajectory on a context generated by one attention head performs better than generating
each trajectory based on a combination of all attention heads.

4.4.5.5 Role of the Off-road loss:

Figure 4.11c compares MHA-JAM trained with and without off-road loss (cf. Sec-
tion 4.1.9). We notice that the off-road loss helps generating trajectories more compliant
to the scene by reducing the off-road rate while maintaining good prediction precision.

4.4.6 Qualitative Evaluation
4.4.6.1 MHA-JAM Method

Figure 4.12 presents two examples of vehicle trajectory prediction, their corresponding
5 most probable generated trajectories and their associated attention maps. We notice
that our proposed model MHA-JAM (off-road) successfully predicts diverse possible
maneuvers; going straight on and turning left for the first Example 4.12a and going straight
on, turning left and right for the second Example 4.12b. In addition, it produces different
attention maps which implies that it learnt to create specific context features for each
predicted trajectories. For instance, the attention maps of the going straight on trajectories,
assign high weights to the drivable area in the straight direction and to the leading
vehicles (the dark red cells). Moreover, They show focus on relatively close features
when performed with low speed and further ones with high speed (cf. Example 4.12a).
For the left and right turns, in both examples, the corresponding attention maps seem
to assign high weights to surrounding agents that could interact with the target vehicle
while performing those maneuvers. For instance, in the left turn (cf. Example 4.12b),
the attention map assigns high weights to vehicles in the opposite lane turning right.
For the left turn of the first example and for the right turn of the second example, the
attention maps assign high weights to pedestrians standing on both sides of the crosswalks.
However, for the right turn, the model fails to take into account the traffic direction.

Figure 4.13 shows the average attention maps, for 4 generated possible maneuvers
(going straight with low and high speed, left and right), over all samples in the test set.
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(i) Predicted trajectories (ii) 5 most probable trajectories and their corresponding attention maps

(a) Example 1

(i) Predicted trajectories (ii) 5 most probable trajectories and their corresponding attention maps

(b) Example 2

Figure 4.12: Examples of produced attention maps and trajectories with MHA-JAM (off-road)
model

(a) Mean attention maps
going straight (low
speed)

(b) Mean attention maps
going straight (high
speed)

(c) Mean attention maps
going left

(d) Mean attention maps
going right

Figure 4.13: Visualisation of average attention maps over different generated maneuvers.

We note that each attention map assigns high weights, on average, to the leading vehicles,

to surrounding agents and to the map cells in the direction of the performed maneuvers.

This consolidates the previous observations in Figure 4.12. We conclude that our model

generates interpretable attention maps that focus on specific surrounding agents and scene

features depending on the future possible trajectory.
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Table 4.3: Results of comparative analysis on nuScenes dataset, over a prediction horizon of
6-seconds

MinADE1 MinADE5 MinADE10 MinADE15 MinFDE1 MinFDE5 MinFDE10 MinFDE15 MissRate5,2 MissRate10,2 Off-Road Rate

MHA-JAM 3.77 1.85 1.24 1.03 8.65 3.85 2.23 1.67 0.60 0.46 0.10
MHA-JAM (off-road)1 3.69 1.81 1.24 1.03 8.57 3.72 2.21 1.70 0.59 0.45 0.07

MHA-JAM-G 3.91 1.69 1.51 1.49 9.08 3.45 2.98 2.92 0.77 0.76 0.44
MHA-JAM-G (off-road) 4.20 1.75 1.33 1.21 9.41 3.67 2.55 2.24 0.69 0.57 0.08
MHA-JAM-A 3.94 1.69 1.55 1.53 9.06 3.48 3.04 2.99 0.79 0.78 0.40
MHA-JAM-A (off-road) 4.22 1.68 1.46 1.41 9.64 3.46 2.83 2.65 0.74 0.71 0.09
MHA-JAM-D 3.87 1.95 1.32 1.12 8.82 4.03 2.35 1.78 0.63 0.52 0.18
MHA-JAM-D (off-road) 3.87 1.94 1.34 1.13 8.86 4.04 2.40 1.82 0.63 0.50 0.10

4.4.6.2 Intention-based Prediction

In this subsection, we analyse the results obtained using intention based trajectory

prediction. We notice that results using different methods are competitive depending on

the deployed metric (cf. Table 4.3). In contrast to the basic MHA-JAM, results with

intention based methods have relatively high off-road rate. This infers that when defining

intentions, the model learning is more focused on the specific patterns characterizing

each intention rather than on the map information. The use of off-road loss reduces

the off-road rate significantly.

To further analyze the effect of the intention definition, we perform experiments

using three attention heads (cf. Table 4.4) and we visualise the attention maps when

using each intention definition method.

Table 4.4: Results of comparative analysis of intension based methods on nuScenes dataset, over
a prediction horizon of 6-seconds using 3 prediction modes

MinADE1 MinADE3 MinFDE1 MinFDE3 MissRate3, 2 Off-Road Rate Diversity Score

MHA-JAM 3.71 1.95 8.53 4.15 0.82 0.09 0.170
MHA-JAM-G 3.48 2.77 8.01 6.18 0.89 0.28 0.121
MHA-JAM-MA 4.02 2.04 9.12 4.27 0.84 0.10 0.000
MHA-JAM-D 3.92 2.01 9.00 4.15 0.81 0.08 0.004

Comparing the results in Table 4.1 and Table 4.4, we notice that the performances

and the ranking of the different methods depend on the number of prediction modes consid-

ered.

The results with three prediction modes show competitive performance when using

the different intention definition techniques. Our goal directed MHA-JAM-G has the

best MinADE1 and MinFDE1. Therefore, it has the best classifier that enables it to

infer the trajectory that fits the ground truth the best among the generated trajectories.

However, it has the worst off-road rate. This rate can be reduced using the off-loss. Our

basic MHA-JAM performs the best considering the metrics MinADE3 and MinFDE3.

This infers that, using our basic MHA-JAM, we are more likely to generate a prediction
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(a) Mean attention maps head 1 (b) Mean attention maps head 2 (c) Mean attention maps head 3

(d) Predicted Trajectories head 1 (e) Predicted Trajectories head 2 (f) Predicted Trajectories head 3

Figure 4.14: Visualisation of average attention maps and predicted trajectories over different
generated maneuvers

(among the three generated trajectories) that fits the best the ground truth according

to the metrics ADE and FDE.

The first experiment consists in defining three basic destinations corresponding to

continuing straight, turning right and turning left maneuvers. Figure 4.14 shows the mean

of each of the attention maps of the trajectories of the test set generated by each attention

head. It also presents the generated trajectories when using each attention head. We

notice that the model learns to generate trajectories with different intentions where each

intention corresponds to a specific destination. Moreover, the network learns to attribute

higher weights to the features in the direction of each specified destination. This method

guaranties to have diverse predictions. However, the main limitation of this method is

that the generated trajectories are more likely to be outside of the drivable area in some

situations. For example, if the road presents a deviation to the left, while the two first

attention heads can generate plausible trajectories, the last one will fail to adapt to the

road structure since it always generate trajectories with destinations on the right. This

justifies this method having the highest off-road rate (cf. Table 4.4).

The second intention based method consists in forcing the attention weights to focus

on specific regions defined prior to the training. To do so, we divide the map of features

into three regions of interest (left, middle and right) and we associate each region to

one of the attention heads. Then, we force the attention weights of each attention head

to be equal to zero outside its corresponding region of interest (cf. Figure 4.15). We

notice that the network generates trajectories in different directions with a focus on the
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(a) Mean attention maps head 1 (b) Mean attention maps head 2 (c) Mean attention maps head 3

(d) Predicted Trajectories head 1 (e) Predicted Trajectories head 2 (f) Predicted Trajectories head 3

Figure 4.15: Visualisation of average attention maps and predicted trajectories when considering
different regions of attention

direction of the considered region. For example, the third attention head corresponding

to the right region generates trajectories consisting mainly of going straight and going

right maneuvers. It also predicts going left but only with low speed since the features of

the left side of the scene are masked. We also see that adjusting the attention weights

influences the generated trajectories.

Knowing the influence of the attention weights on the generated trajectories, we

further put constraints on the attention weights to enhance the diversity of the produced

trajectories using the diversity loss previously defined. Then, we compare the attention

heads without using the diversity loss (cf. Figure 4.16) and after using it (cf. Figure 4.17).

We notice that, even without using the diversity loss the attention maps look different and

each one has high weights in different regions than the others. The use of the diversity

loss enhances the difference between the heads and forces each attention head to focus on

a specific region on the feature map different than the other attention heads. The diversity

score validates our observations concerning the diversity of the attention maps.

Figure 4.18 shows an example of trajectory prediction near an intersection using four

variants of MHA-JAM. We can see that the predicted trajectories are diverse enough

using all the four method. This diversity is exhibited through the generation of different

maneuvers (different directions of motion and different speed profiles are adopted in

each prediction mode).
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(a) Mean attention maps head 1 (b) Mean attention maps head 2 (c) Mean attention maps head 3

Figure 4.16: Visualisation of average attention maps of our basic MHA-JAM method

(a) Mean attention maps head 1 (b) Mean attention maps head 2 (c) Mean attention maps head 3

Figure 4.17: Visualisation of average attention maps when using the diversity loss

4.5 Conclusion

In this chapter, we tackled the task of vehicle trajectory prediction in an urban environment
while considering interactions between the target vehicle, its surrounding agents and
the scene. To this end, we deployed a MHA-based method on a joint agents and map
global context representation. The model enabled each attention head to explicitly extract
specific agents and scene features that help to infer the driver’s diverse possible behaviors.
Furthermore, the visualization of the attention maps reveals the importance of joint
agents and map features and the interactions occurring during the execution of each
possible trajectory. It confirmed that the attention is concentrated in the direction of
the future maneuver. In addition, we augmented our MHA-JAM with different methods
of attributing an intention to each prediction mode in order to enhance the diversity
of the predicted trajectories. We also proposed another attention based approach with
lower complexity and comparable performance. Experiments showed that our proposed
approaches outperform the existing methods according to most of the metrics considered,
especially the off-road metric. This highlights that the predicted trajectories comply
with the scene structure.
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(a) Predicted trajectories using MHA-
JAM

(b) Predicted trajectories using MHA-
JAM-G

(c) Predicted trajectories using MHA-
JAM-MA

(d) Predicted trajectories using MHA-
JAM-D

Figure 4.18: Visualisation of an example of trajectory prediction near an intersection using
different MHA-JAM based methods with three attention heads and a prediction horizon of three
seconds. The target vehicle presented in red and its surrounding agents in yellow. The three
predicted trajectories are green and the ground truth one is red.
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In this chapter, we propose a novel way of generating multimodal prediction using

Transformer-based architecture to perform trajectory prediction in an urban environment.

This approach is a non-autoregressive alternative to our methods deployed in the previous

chapter. It considers predefined anchor trajectories as generic intentions, and then refines

and adapts them to the context.

The Tranformer has shown a significant performance in sequence learning and gener-

ation tasks [26, 107]. Recent studies deployed it in the task of trajectory prediction [32,

116]. However, they do not use information about the scene structure. While Giuliari et

al. [32] make trajectory predictions independently of the context, STAR (Spatio-Temporal

grAph tRansformer framework) [116] models the spatio-temporal dependencies between

agents. To this end, it deploys two types of TFs; a spatial TF that focuses on agents’

interactions and a temporal TF that models the temporal evolution of the motion. This

framework interleaves the spatial and temporal TFs in two encoder blocks. They mount

the two types of TFs in parallel to form the first encoder and sequentially for the second

encoder. We consider this implementation comprising 4 TFs computationally expensive.

Therefore, we opt for an architecture based on the regular TF encoder-decoder and we

adapt it to integrate scene information.

The attention mechanism is widely used with entries from different modalities (text,

image, etc.). Libovicky et al. [66] add layers to the decoder in order to take into account

for information from different sources. Inspired by their work, we augment the regular

TF decoder module with an additional layer that we denote decoder map attention to

integrate map information.

Our main contributions are:

• Augmenting the TF architecture to simultaneously model the spatial and temporal

information.

• Generating probabilistic multimodal intention-based prediction using anchors

defined prior to the training.

• Applying a refinement approach to further model the dependencies between the

output sequence elements.

5.1 Transformers and LSTMs for Trajectory Prediction

An agent’s motion is a continuous temporal evolution of its states. Each state depends on

the previous ones and influences the future ones. This dependency needs to be integrated

in modeling surrounding agents’ behaviors.
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An LSTM is the primary method for modeling temporal evolution in trajectory

prediction. However, its structure is unable to simultaneously learn spatial and temporal

dependencies. Therefore, in the methods we previously proposed, we augment the LSTM

encoder and decoder with MHA to model the interactions between the target vehicle, its

surrounding agents and the static scene elements and we deduce that attention performs

well in the task of trajectory prediction.

MHA was introduced [107] as a stand-alone building block of the Transformer

(TF) network that replaces the entire LSTM encoder-decoder. It has shown significant

performance in sequence learning and generation tasks [26, 107]. Actually, the TF

addresses some of the limitations of LSTM. First, the LSTM processes the input data

sequentially by generating a sequence of hidden states, as a function of the previous

hidden state and the current input. It has to go through every input state one after another

to generate the encoding vector. This precludes parallelization in training. As a remedy,

the TF makes predictions by attending to input data in parallel and does not require any

sequential computation, which reduces the training time. In addition, the LSTM learns

dependencies between inputs sequentially which can result in loss of information between

distant elements, especially when dealing with relatively long sequences. In contrast,

the TF directly relates each element from the input sequence to the others and to the

decoder. This makes us question the use of the LSTM models and replace the LSTM

encoder and decoder with a TF to model temporal dependencies.

5.2 Multi-Modal Transformer for Trajectory Prediction

In the following, we describe our proposed spatio-temporal multimodal Transformer-

based architecture (ST-M-TF). First, we presents the inputs and the outputs of our model.

Then, we detail its building blocks.

5.2.1 Model Inputs

Similar to the MHA-JAM method, we use information about the target and its surrounding

agents’ trajectories and the scene map as input for our TF-based model. We also use the

same definition of the interaction space of a target vehicle T . However, we use a slightly

different representation of these inputs:

Trajectory representation: Similar to MHA-JAM, we present the target agent’s trajec-

tory as a sequence of its states, for th past time steps between tpred − th and tpred,

ST = [Stpred−th
T , . . . , S

tpred

T ]. (5.1)
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Figure 5.1: Spatio-Temporal Multimodal Transformer SF-M-TF

Each state is composed of a sequence of the target agent’s relative coordinates xtT and

ytT , velocity vtT , acceleration atT and yaw rate θ̇tT ,

StT = (xtT , ytT , vtT , atT , θ̇tT ), t ∈ tpred − th, . . . , tpred. (5.2)

The trajectories of the surrounding agents present in the interaction area are presented as a

sequence of oriented bounding boxes drawn on the input map representation image. Each

sequence characterizes the positions and orientations of an agent for the past timesteps.

Map representation: The road geometry, driving area and lane divisions of the in-

teraction space map as well as the surrounding vehicles representations are fed as a

rasterized [21] RGB image M to the model.

5.2.2 Model Output

Given the past motion sequence ST = [S1
T , ..., S

tpred

T ] and the context mapM, we aim

to estimate the probability distribution P (Y |S,M) over the future locations Y of the

target vehicle. To account for multimodality of P (Y |S,M), we model it as a mixture

distribution with L mixture components. Each mixture component consists of predicted

location co-ordinates at discrete time-steps over a prediction horizon tf .

Yl = [Y tpred+1
l , . . . , Y

tpred+tf
l ], l = 1, . . . , L. (5.3)
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A regular auto-regressive model (such as LSTMs and TFs) generates the distribution

over the output positions into a sequence of conditional probabilities with a left-to-

right causal structure:

P (Yl|S,M) =
tpred+tf∏
t=tpred+1

p(Y t
l |Y

tpred+1:t−1
l , S,M) (5.4)

We use a fixed set of anchor trajectories extracted prior to the training. These trajectories

represent different ways of dependencies among the future time steps. In our approach, we

assume that the time-step distributions are conditionally independent given a set of fixed

anchor trajectories. Therefore, we write p(Y t
l |S,M) instead of p(Y t

l |Y
tpred+1:t−1
l , S,M).

This assumption enables us to generate predictions for all the future time steps in a single

inference pass. This increases the efficiency of our model by reducing the inference time.

5.2.3 Positional Encoding

The LSTM receives and treats the input states sequentially. As the order of the input

sequence contains the information about the time of each state, the LSTM is able to model

the temporal evolution of the sequence. However, a TF processes the input positions

in parallel. Therefore, additional information about the time of each state is required

for the TF to be able to model the temporal evolution of the motion efficiently. The TF

uses “positional encoding” to retain the positional information of the input sequence and

integrate information about time in the embedding of each past and future input sequence

state.

The state vector StT of the target agent is embedded using a fully connected layer to

a vector etT . A positional encoding vector pt is added to the embeddings, of the same

dimensionality D = denc: ξtT = etT + pt

pt = {pt,d}Dd=1 , where pt,d =

sin( t

10000
d
D

)
cos( t

10000
d
D

) (5.5)

The sinusoid functions define the order of each dimension of the positional encoding

vector using a specific frequency that ensures a unique time stamp for each element of

the sequence considered. Therefore, for every input state, we have information about

its respective order and time. The same encoding is used to encode the anchor vectors,

as we detail in the following.
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5.2.4 Encoding Layer

The state vectors of the target vehicle and the rasterized representation of the map covering

the interaction area and describing the surrounding agents are fed as input features to the

encoding layer. The latter is composed of two independent modules: the first models the

temporal information using the target agent’s history and the second extracts spatial main

features from the rasterized representation of the map. It is composed of two modules:

The trajectory encoding module: The embedding vectors with the positional encoding

ξtT of the target agent trajectory are encoded using a TF encoder. The latter is composed

of a stack of Nl layers, each one formed of three building blocks:

• A multi-head attention module

• A feed-forward fully-connected module

• A residual connection after each of the previous blocks

The TF encoder models the temporal evolution of the target agent’s motion. It focuses on

the attention over the past time sequence of states. The embedding vectors of the input

states are projected to form queries, keys and values. The multi-head self-attention block

enables each vector presenting an input state to perform a relational reasoning with the

other vectors using each attention head in order to capture the temporal dependencies

in the input sequence. The sequence of information gathered by the attention block and

presenting each position is passed to a feed forward layer. The latter is applied to each

position separately. A residual connection is used after each of the previous blocks. It

helps preserve the positional and spatio-temporal information from the input sequences.

Then, each position in the encoder subsequent MHA layers attends to all positions in the

previous layer. Finally, the TF encoder generates a high level representation of the motion

dynamics of the target vehicle in the form of a sequence of vectors. This sequence is

projected to form the keys Kenc and values Venc and passed on to the TF encoder-decoder

attention block.

We note that in contrast to the LSTM, which generates an encoding vector, the TF encoder

maps the input sequence to a higher representation sequence of equal length.
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The scene feature extractor module: Similar to the MHA-JAM, we use a CNN to

extract high level features from map. The CNN transforms the input image to a 3D tensor

Fm of size (M,N,Pm), where (M,N) presents the size of the 2D spatial grid considered

and Pm the number of features.

CNNs, composed mainly of convolution operators, extract salient features by operating

on spatial and channel-wise elements within local receptive fields at each layer. Thus,

a CNN misses global information. We aim to strengthen the representational power of

the CNN and enhance its spatial encodings by directly extracting the most informative

features regardless of their locations using a Global Attention (GA) mechanism. GA

models spatial relationships in a computationally efficient manner. The 3D tensor Fm
presenting the joint context features is projected into two different spaces to form two

context representations C and E. Actually, C and E are the outputs of the two different

convolution layers (kernel size = (1, 1)) applied to the context features Fm.

C = θ(Fm;Wθ)T , C = [c1, . . . , cMN ] ∈ RdGF×MN (5.6)

E = φ(Fm;Wφ)T , E = [e1, . . . , eMN ] ∈ RNGF×MN , (5.7)

where dGF and NGF are the dimension and the number of the global features.

We rewrite the feature matrix E as:

E = [ē1, . . . , ēNGF
] , (5.8)

where ēi ∈ RMN is an MN -dimensional row vector of the matrix E.

The global features G =
[
g1, . . . , gNGF

]
are computed as:

gi = C softmax(ēi)T (5.9)

The term softmax(ēi) presents the ith global attention map composed of attention

weights extracted from the context features Fm independently of the input sequence of

states.

The scene feature extractor module generates NGF salient features where NGF/L is the

number of global features passed on to each TF decoder.

5.2.5 Decoding Layer

A regular TF decoder is composed of four building blocks:

• A self-attention module where each position in the decoder attends to the preceding

positions.
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• An encoder-decoder MHA module that receives the queries from the previous
decoder layer, and the keys and values from the encoder. Hence, every position in
the decoder attends to the high level representation sequence of the input generated
by the encoder.

• A feed-forward fully-connected module

• A residual connection after each of the previous blocks.

During the training, since we have the ground truth trajectories, the target sequence is fed
as input to the decoder in order to learn the dependencies between the output sequence
states. During the inference, the decoder performs an auto-regressive generation of the
predicted sequence; it generates a predicted position for the first iteration. This prediction
is fed to the decoder as input so that the next prediction attends to it (cf. Figure 5.2). Then,
it proceeds by generating each prediction by conditioning it on the previously generated
outputs till the end of the sequence. The output sequence generation requires tf iterations.

S1 S2 S3 S4

Encoder Block

Encoder Block

Encoder Block

Encoder Block

y0 y1 y2 y3

Decoder Block

Decoder Block

Decoder Block

Decoder Block

y1 y2 y3 y4

Figure 5.2: Regular Auto-regressive Transformer

We adapt the decoder architecture to meet the trajectory prediction requirements as fol-
lows:

5.2.5.1 Non Auto-regressive Multimodal Trajectory Generation

The auto-regressive property of TFs induces an important inference latency since an
auto-regressive model generates one predicted position at each iteration. As a remedy,
we propose to use a non-auto-regressive TF solution that generates all positions in one
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pass in the task of trajectory prediction. This increases the computational efficiency by

enabling parallel processing. This was inspired by the recent study on non-autoregressive

neural sequence modeling by Gu et al. [34] in the context of machine translation. In

addition, in order to consider the future uncertainty, we augment our Spatio-temporal

TF to an intention based multimodal trajectory predictor. Indeed, instead of feeding the

ground truth trajectories as input to the TF decoder as in the regular TF, we input to

the decoder a trajectory that describes a specific agent’s intention defined prior to the

training. In addition, we do not use a single intention, we define multiple trajectories

defining different intentions denoted as follows:

Al = [atpred+1
l , . . . , atpred+tf

l ], l = 1 . . . L (5.10)

We also deploy L decoders. Each one generates a trajectory corresponding to a specific

intention. Deploying multiple intentions enables the network to learn the different aspects

of dependency between the output sequence states.

5.2.5.2 Full Decoder Self-Attention

The regular TF decoder self-attention layer uses a causal self-attention mask that forces

each position to attend to only the previous positions. In our approach, we remove

that mask in order to enable all positions to attend to all other positions so that each

generated prediction is conditioned on the full information about the global future

intention (cf. Figure 5.3).

Causal Attention

x1 x2 x3 x4 x5 x6

(a) Causal self-attention

Self-Attention

x1 x2 x3 x4 x5 x6

(b) Full self-attention

Figure 5.3: Causal vs Full self-attention: The inputs sequence to the attention is marked as
circles, the outputs of the attention blocks are presented by vectors and the arrows present the
dependencies.
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5.2.5.3 Map-Decoder MHA Layer

In order to integrate information about the scene structure in the trajectory predictor,
we augment the regular TF decoder with an additional layer that we insert after the
encoder-decoder MHA module and we denote it map-decoder MHA. This layer enables
the resulting sequence from the previous decoder layer to attend to the map features in
order to extract information about the scene structure and therefore possible paths. The
GA extracts the global features of the map independently of the target vehicle’s trajectory
and intention. The map-decoder layer has as inputs the encoder-decoder layer output and
the global context features. It enables the network to attend to specific context features
based on the target vehicle’s past motion and its global intention.

5.2.6 Transformer Refinement

Non-autoregressive models generate all of the output sequences in one pass. However,
they attempt to directly model the joint distribution of all the sequence elements simul-
taneously without taking into consideration the dependencies of the decoding history
during generation. In order to further investigate modeling the dependencies among
the future trajectory states, we augment our non-autoregressive TF previously described
with an iterative refinement strategy [58].

5.2.6.1 Latent variable model

The main idea behind the refinement based TF model [58] is to exploit latent variables to
model the dependencies among the target sequence elements using an iterative inference
strategy. It consists in introducing latent variables and using them as a process of
iterative refinement without auto-regression. It infers the dependencies among target
trajectory states given the history and the map features by deploying R intermediate
random variables I0

l , . . . , I
R
l and marginalizing them out:

P (Yl|S,M) =
∑

I0
l
,...,IR

l

 tpred+tf∏
t=tpred+1

p
(
Y t
l | IRl , S,M

) tpred+tf∏
t=tpred+1

p
(
(Y t

l )R | IR−1
l , S,M

)
· · ·

 tpred+tf∏
t=tpred+1

p
(
(Y t

l )0 | S,M
)

(5.11)

The conditional probability P (Yl|S,M) of each of the possible trajectories is the sum
of the product of the probabilities of each output sequence state conditioned on an
intermediate variable Irl for r = 1, . . . , R, the past trajectory and the map features. Each
product term is implemented by a function approximator NN that receives as inputs
the previous intermediate variable, the past trajectory and the map features outputs the
conditional distribution over the future trajectory for each time step.
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5.2.6.2 Deterministic Approximation

The marginalization in Equation 5.11 is intractable. Therefore, a deterministic approxi-
mation is deployed so that the entire lower bound can be written as:

log(P (Yl|S,M)) >
 tpred+tf∑
t=tpred+1

log p
(
Y t
l | ÎRl , S,M

)+ · · ·+
 tpred+tf∑
t=tpred+1

log p
(
(Y t

l )1 | Î0
l , S,M

)
+
 tpred+tf∑
t=tpred+1

log p
(
(Ŷ t

l )0 | S,M
)

(5.12)

where (Ŷ t
l )0 refers to the most likely value according to its distribution p ((Y t

l )0 | S,M).

5.2.6.3 Iterative Refinement

The latent variables are constrained to be of the same type as the target sequence in
order to share an underlying neural network. Each set of latent variables becomes a
future trajectory we are predicting. Therefore, each conditional p

(
Irl | Îr−1

l , X
)

can be
considered as a step of refinement of a future trajectory Îr−1

l . The task of generating
those intermediate latent variables intuitively becomes the task of refining our target
sequence R times before we generate the final target sequence. This allows us to use
a simple supervised optimization to train those latent variables. At each refinement
step, we minimise the loss between the intermediate sequence that is generated and
the ground truth sequence.
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Figure 5.4: Spatio-Temporal Multimodal Transformer with refinement (ST-M-TF-R)
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5.2.7 Classification Layer

Our TF-based decoders generate L possible predictions of the future trajectory. However,

based on the target vehicle’s recent motions and its surrounding environment, some

trajectories are more likely to happen than others. A classification layer is added to

our model in order to infer the likelihood of each of the predicted trajectories. This

layer receives as inputs the last encoding vector of the TF encoder and the map global

features extracted by the global attention block. It is composed of two fully connected

layers separated by an activation function. A softmax function is applied to the output

to generate the probability of each of the predicted trajectories.

5.2.8 Multimodal Network Architecture

We augment our spatio-temporal TF with refinement blocks in form of TF decoders

sharing the parameters across the refinement steps. As a result, our overall model

is composed of the CNN and three transformer-based network blocks: a TF encoder

and two types of TF decoders.

• The first block is the TF encoder that encodes the input S.

• The second block is a decoder TF that models the first conditional log p
(
(Ŷ t

l )0 | S,M
)

.

Since we have a multimodal solution, we deploy L decoders with shared weights

to generate L possible trajectories.

The two previous blocks are mounted and deployed identically to our first approach

without refinement (cf. Figure 5.1).

• The third block is a decoder TF that we denote a refinement decoder modeling

log p
(
Irl | Îr−1

l , X
)
. The refinement is applied on top of the output of each of

the previous L decoders and therefore L refinement decoders with shared weights

are used. Each one receives as input the embedding of the trajectory predicted

by the previous decoder. In addition, the refinement is applied iteratively using R

refinement steps. As a result, the total number of refinement decoders is L × R
decoders with shared weights.

5.2.8.1 Prediction

The inference of our proposed multi-modal solution is entirely deterministic. We start

from the input S and first predict the initial L possible target sequences by (Ŷ t
l )0 =

argmax log p ((Y t
l )0 | S,M), for t = tpred + 1, · · · , tpred + tf and l = 1, · · · , L. We

continue refining each target sequence l by Îrt = argmax log p (Irt | S,M), for t =
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Table 5.1: Results of comparative analysis on nuScenes dataset, over a prediction horizon of 6
seconds

MinADE1 MinADE5 MinADE10 MinFDE1 MinFDE5 MinFDE10 MissRate5,2 MissRate10,2 Off-Road Rate

Multipath [16] 4.43 1.78 1.55 10.16 3.62 2.93 0.78 0.76 0.36
CoverNet1 [81] - 2.62 1.92 11.36 - - 0.76 0.64 0.13
Trajectron++1 [91] - 1.88 1.51 9.52 - - 0.70 0.57 0.25

MHA-JAM 3.77 1.85 1.24 8.65 3.85 2.23 0.60 0.46 0.10
MHA-JAM (off-road)1 3.69 1.81 1.24 8.57 3.72 2.21 0.59 0.45 0.07

T-M-TF 4.23 2.04 1.48 9.90 4.46 2.92 0.69 0.66 0.31
ST-M-TF 3.66 1.75 1.23 8.34 3.66 2.08 0.62 0.52 0.07
ST-M-TF-R 3.88 1.71 1.21 8.62 3.45 2.09 0.64 0.55 0.05

tpred + 1, · · · , tpred + tf .
We note that the number of refinement iterations increases the trajectory generation time
since each refinement is applied based on the previous output.

5.2.9 Loss Functions
5.2.9.1 Refinement loss

At each refinement step, we minimise the regression loss between the intermediate
sequence that is generated and the ground truth sequence.

Lref = −
R+1∑
r=0

(
T∑
t=1

log p
(
yt | Îr−1, X

))
(5.13)

5.2.9.2 Total loss

We train the model using a weighted sum of the regression, classification (cf. definitions
in Section 4.1.9) and refinement loss functions:

Loss = Lreg + λcl.Lcl + λref .Lref , (5.14)

where the weights λcl and λref are empirically determined hyperparameters.

5.3 Experimental Analysis and Evaluations

We train and test our proposed methods on the nuScenes dataset and we evaluate them
using the metrics described in Section 4.4.2.

5.3.1 Training and Implementation Details

The input states are embedded in a space of dimension 128. We use the same dimension
and resolution of the image representation of the scene map (cf. Figure 4.6a) as with
the MHA-JAM method. Similarly, we use ResNet-50 pretrained on ImageNet to extract
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map features. This CNN outputs a map features of size (28, 28, 512). The deployed

TF encoder and decoder are of 4 layers and 8 attention heads randomly initialized. We

use L = 10 parallel TF Decoders having the same parameters and R × L = 1 × 10
refinement decoders with the same parameters. We use a batch size of 32 and the Adam

optimizer [52]. The model is implemented using PyTorch [78].

5.3.2 Models Compared

We compare our model to three recently proposed baselines for multimodal trajectory

prediction, and two of our proposed models (cf. description in 4.4.3). We report the

results considering the K most probable trajectories generated by each model.

our proposed TF-based models:

Temporal Multimodal Transformer (T-M-TF): A basic Temporal Multimodal TF

without modeling the interactions with the scene.

Spatio-Temporal Multimodal Transformer (ST-M-TF): Our proposed Spatio-Temporal

Multimodal TF presented in Section 5.2.

Spatio-Temporal Multimodal Transformer with Refinement (ST-M-TF-R): Our

proposed Spatio-Temporal Multimodal TF with Refinement described in Section 5.2.6.

5.3.3 Quantitative Evaluation

We compare our model Spatio-Temporal TF with the predefined Anchors and Refinement

approach ST-M-TF-R to various baselines and to our recurrent approach MHA-JAM
using different metrics (cf. definitions in Section 4.4.2) in Table 5.1. Our model has

competitive results with the compared methods. It outperforms the state-of-the-art

methods Multipath [16], CoverNet [81] and Trajectron++ [91] according to all the

metrics considered. However, it performs better than our MHA-JAM on 5 of the 9

reported metrics.

In addition, our ST-M-TF-R achieves the lowest off-road rate even if it was not

trained with the off-road loss. This highlights the importance of using the additional

Map-Decoder MHA layer in generating scene compliant trajectories.

5.3.4 Ablation Experiments

To get a deeper insight into the relative contributions of the input cues and modules

affecting the overall performance, we perform the following ablation experiments.



5. Scene Aware Trajectory Prediction: A Non Recurrent Approach 125

5.3.4.1 Importance of the refinement approach

Our first experiment consists in evaluating the performance of the refinement step. To
do so, we train our model without the refinement step. We denote the resulting method
spatio-temporal TF with predefined anchors ST-M-TF. We observe that the model with
refinement ST-M-TF-R has comparable performance to the ST-M-TF. The contribution
of the refinement approach is not quite clear. Additional experiments with different
parameters will be conducted in future work to further investigate the importance of
the refinement steps.

5.3.4.2 Importance of map information

In order to evaluate the importance of the map-decoder layer, we remove it from the TF
decoder. We denote the resulting model temporal TF with predefined anchors T-M-TF.
This experiment evaluates the importance of the map features in determining the future
trajectory of the target vehicle. We train this model and we compare it with our ST-M-
TF. We observe a big degradation in the performance of the T-M-TF compared to the
ST-M-TF according to all the metrics considered (cf. Table 5.1). This highlights the
importance of the map features in predicting the possible trajectories of a target agent.
In addition, the T-M-TF has the lowest off-road rate. This implies that the generated
trajectories are not compliant with the scene structure.

5.3.5 Qualitative Evaluation

We perform a quantitative evaluation in order to visualise samples of the generated
trajectories and investigate the performance of our ST-M-TF-R. We also compare it with
the basic T-M-TF. Figure shows the 5 most probable trajectories predicted using the
two methods in different scenarios: an intersection, a roundabout and a curved road.
Let’s examine the general aspect of the generated trajectories. We note that the temporal
evolution of the motion is consistent even though each position is generated independently
of the previous ones.
Considering the first scenario, we notice that our ST-M-TF-R succeeded in generating

diverse trajectories compliant with the scene structure. Actually, it predicts two possible
maneuvers; moving straight on or turning right. Even though among the 5 most probable
trajectories, the turning right maneuver is not clearly predicted, we notice that they are
diverse enough since the moving straight on maneuver is predicted with different speed
profiles. We also observe that the T-M-TF predicts only the moving straight on maneuver
without any deviation, in contrast to the ST-M-TF-R, which generates trajectories that
follow the lane curvature.
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(a) Predicted trajectories using T-M-TF (b) Predicted trajectories using ST-M-TF-
R

(c) Predicted trajectories using T-M-TF (d) Predicted trajectories using ST-M-TF-
R

(e) Predicted trajectories using T-M-TF (f) Predicted trajectories using ST-M-TF-
R

Figure 5.5: Visualisation of predicted trajectories using two different transformer models; the
basic temporal TF (T-M-TF) and our spatio-temporal TF with prediction refinement (ST-M-TF-R).
The predicted trajectories are marked in green and the ground truth in red. Three different contexts
are presented: an intersection, a roundabout and a curved road.
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The second example shows a trajectory prediction scenario near a roundabout. In contrast
to the ST-M-TF-R, the T-M-TF generates more diverse predictions. However, the
trajectories predicted using ST-M-TF-R are more compliant to the scene; they follow the
lane mark and fit well to the ground truth.
The third example presents trajectory prediction on a curved road. Our ST-M-TF-R gener-
ates trajectories coherent with the context as well as fitting the best with the ground truth.

5.4 Conclusion

Following on the recent success of non-autoregressive neural sequence modeling, we
propose a Non-Autoregressive Transformer to tackle the task of trajectory prediction for
autonomous vehicles. This architecture is interesting since it has the ability of parallellized
implementation both during the training and the testing phase. We augment the TF
architecture with an additional layer to simultaneously model the spatial and temporal
information. In addition, we build a multimodal solution using a set of predefined
intentions in the form of anchor trajectories that we them pass as inputs to the TF decoder.
We also apply a refinement approach in order to implicitly capture the dependencies
among target sequence elements. We evaluate our proposed solution using nuScenes
dataset. It gives competitive results with the state-of-the-art methods.
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This chapter highlights our main contributions in this thesis as well as the future work

that can be derived from the accomplished goals along this thesis.

6.1 Contributions

In this thesis, we started by addressing the task of trajectory prediction in a highway

environment using two different methods; First, we brought RRNNs to tackle the

vehicle motion prediction problem. In other words, we proposed an RRNNs based

encoder-decoder architecture where the encoder analyzes the patterns and the dynamics

underlying the past trajectories and the decoder generates the future trajectory sequence.

The originality of this network is that it combines the advantages of the LSTM blocks

in representing the temporal evolution of trajectories and the attention mechanism to

model the relative interactions between the surrounding vehicles. We compared the

proposed approach with the LSTM encoder decoder using the new large scaled naturalistic

driving highD dataset.

Second, we adopted the attention mechanism to derive the relative importance of

surrounding vehicles with respect to their whole past motion: We use LSTM to encode

the trajectories of the target vehicle and its surroundings. Then, the attention mechanism

directly relates the target vehicle motion encoding to the surrounding vehicles’ ones

and deploy dot product operation to determine the importance of each vehicle. It

selectively aggregates the features that model the interaction between vehicles based on

their importance. We also used multiple attention heads in order to extract different types

of interactions and combined them to capture higher order relationships. This provided

a better understanding of the dynamic context of the target vehicle.

Then, we considered the task of trajectory prediction in an urban environment, We

proposed a novel method of applying MHA (MHA-JAM), that enhances modeling

the interdependence between the surrounding agents motion and the road elements, by

considering a joint representation of agents and maps features to generate keys and values

of the attention heads. To handle the future uncertainties, our proposed (MHA-JAM)

presented multimodal predictions, with each attention head specializing in one mode

of the predicted distribution. Our formulation allows each attention head to focus on

different subsets of the scene and surrounding agents, relevant to the corresponding

mode of the predictive distribution.

In order to enhance the diversity of the predicted trajectories, we extended our

method using three intention definition techniques: goal directed, anchors and region

based intention definition. Each of them associates an intention to each trajectory

prediction mode.
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Our MHA with Joint Agent Map representation (MHA-JAM) has competitive perfor-

mance compared to the state of the art on the benchmark nuScenes dataset [13], while

also allowing for additional interpretability through visualization of the attention weights.

Notably, our method ranked second place in the nuScenes motion prediction challenge.

In addition, we proposed an alternative attention based method using the double

attention (DA) network. This method reduces the complexity of the MHA-JAM while

producing competitive predictions. In addition, we expand our proposed methods to deal

with the problem of simultaneous multi-vehicle trajectory prediction.

Finally, we proposed a Non-Autoregressive Transformer to tackle the task of trajectory

prediction for autonomous vehicles in an urban environment. This architecture is

interesting since it has the ability of parallelized implementation during the training

and the testing phase as well. In fact, we augmented the basic TF architecture with

an additional layer to simultaneously model the spatial and temporal information. In

addition, we built a multimodal solution using a set of predefined intentions in form of

anchor trajectories that we pass as inputs to the TF decoder. We also applied a refinement

approach in order to implicitly capture the dependencies among target sequence elements.

6.2 Discussion

Let us now describe the main characteristics of the trajectory prediction methods in-

troduced in this manuscript:

When considering a highway environment, we proposed two different methods of

trajectory prediction; an RRNN based model and an MHA based pooling model. Both

methods combine the advantages of two modules: the multi-head dot product attention

mechanism and LSTMs to capture the spatio-temporal dependencies between the input

tracks. However, these modules are mounted differently which constitutes the singularity

of each method. The RRNN based model simultaneously captures spacial and temporal

dependencies between vehicles tracks for each past time step using an MHA encapsulated

in LSTM blocks. Therefore, it requires important computational resources. In contrast,

our MHA based pooling technique applies the MHA, only once at the prediction time, to

build a context representation based on the relative importance of surrounding vehicles

with respect to their overall motion representation. Another advantage of our MHA-

LSTM consists on its interpretable interaction modeling. Indeed, the visualisation of

the attention maps of our MHA-LSTM enabled us to derive the importance and the

dependencies between vehicles. Finally, by comparing the results of the experiments

conducted on the naturalistic large-scale driving highD dataset [55], we come up with

the deduction that our MHA-LSTM has better performance than RRNNs.
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Then, we move on to the task of vehicle trajectory prediction in an urban environment

while considering interactions between the target vehicle, its surrounding agents and

the scene. We proposed an MHA-based method on a joint agents and map global

context representation (MHA-JAM). Our MHA-JAM used each attention head to generate

a distinct future trajectory to address multimodality of future trajectories. Then, we

augmented it with different methods of defining drivers intentions and attributing an

intention to each mode. While defining an intention for each prediction mode enhances

the generated trajectories diversity, it slightly reduces the performance of our basic MHA-

JAM. Therefore, there is a trade-off between ensuring that the predicted trajectories cover

all the possible ways and generating more accurate predictions. Moreover, we investigated

the introduction of dynamic constraints [57] on our basic (MHA-JAM) model.We noticed

that the imposed constraints reduces the performance of our (MHA-JAM) model. Indeed,

there is a compromise between generating realistic trajectories that respect physical rules,

and producing more accurate predictions.

In addition, we proposed an alternative attention based module for interaction mod-

eling and multimodal trajectory generation based on the double attention network (DA-

JAM). While our DA-JAM has reduced complexity compared to our MHA-JAM, it has

also a competitive performance. However, the MHA-JAM has a more straight forward

interpretation capability. Indeed, the visualization of the attention maps of our MHA-JAM

reveals the importance of joint agents and map features and the interactions occurring

during the execution of each possible maneuver.

Finally, we proposed a spatio-temporal multimodal Non-Autoregressive TF based

model. This architecture deploys TF to model the target vehicle motion contrarily to the

previous methods that used the recurrent LSTMs. Our TF based model is interesting

since it has has competitive performance with our MHA-JAM. In addition, it has the

ability of parallelized implementation both during the training and the testing phase.

However, our current implementations of MHA-JAM and DA-JAM have comparable

execution times (around 11 ms) while our TF-based model’s execution time is on average

18 ms (run on NVIDIA GeForge GTX 1080-Ti GPU OC 11). In the future work, we will

further investigate the use of TF in the task of trajectory prediction and its advantages

compared to an LSTM based solution.

6.3 Research Perspectives

In the following, we present future work that can be derived from the accomplished

goals along this thesis.
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Additional Input Cues

In our work, we exploited two main contextual cues which are the surrounding agents

recent motions and the high definition map in order to infer a target agent future motion.

However, additional contextual cues are required for a more effective and plausible

prediction especially in an urban environment. Actually, information about the traffic

lights, road signs and one way roads are essential for inferring the possible future

maneuvers. In future work, we plan to investigate these cues and create convenient

representations for them.

Adapted Intention Definition

Drivers’ behaviors are not deterministic. In similar driving situations, they can perform

different maneuvers depending on their goal (destination) or even when doing the same

maneuver, the execution can be different in terms of speed and pattern. In order to

represent the uncertainty of the future, we proposed methods that predict a multi-modal

finite set of trajectories that correspond to distinct intentions.

In this work, we used two main approaches of defining intentions:

• Implicit intentions in form of latent variables presenting the underlying possible

modes.

• Explicit intentions (anchors or goals) defined prior to the training using heuristic

methods.

Other methods of defining intentions or identifying the goals adapted to each scene can

be explored in the future such as reinforcement learning methods.

Collision-free simultaneous multi-vehicle trajectory prediction

In this work, we considered the task of simultaneous multi-vehicle trajectory prediction.

However, in most cases, vehicles trajectories are coherent and collisions and dangerous

behaviors are avoided. In our future work, we are going to further explore this aspect

by ensuring that the predicted trajectories does not present unrealistic conflicting be-

haviors and collisions.
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Trajectory Prediction Methods Evaluation

In the future work, we aim to improve the way we are evaluating our predicted trajectories.
Actually, a multimodal predictor generates multiple trajectories. However, we have
only one ground truth trajectory. Therefore, we can evaluate only one of the predicted
trajectories. The other predicted trajectories are supposed to be plausible and diverse. In
our work, we consider the off-road metric to evaluate the plausibility of the generated
trajectories. In addition, we visualize samples of the predicted trajectories to verify their
diversity. These methods are not sufficient to accurately evaluate the performance of a
multi-modal solution. Further metrics should be conceived to evaluate the plausibility
and the diversity of the predicted trajectories for a fairer comparison of the different
multi-modal predictors.

In addition, we aim to evaluate the performance of our proposed prediction methods in
a prediction then planning pipeline so that the impacts of single vs multimodal trajectory
prediction to the closed-loop performance can be evaluated. The trajectory prediction will
be integrated in a simulator with many challenging and interactive scenarios in complex
scenes to evaluate their performance. For each scenario, the simulator includes virtual,
dynamic, and reactive agents as the surrounding agents of the target vehicle.
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