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Abstract

This thesis1 contains two independent parts. The first part is devoted to the realization of
perfectoid rings as Thom spectra, which generalizes the classical Hopkins-Mahowald theorem for
finite fields Fp. As a byproduct, we construct a spherical version of Fontaine's pro-infinitesimal
thickening for perfectoid rings. Furthermore, we also realize the ring of integers OK for any totally
ramified extensions K/Qp, and complete regular local rings as Thom spectra.

In the second part, we first develop an animated analogue of ring-ideal pairs, PD-pairs and PD-
envelopes. This allows us to generalize classical results to non-flat, non-finitely-generated settings.
Next, we develop several approaches to derived crystalline cohomology, and establish compar-
ison theorems. In particular, we show that the derived crystalline cohomology coincides with the
classical crystalline cohomology when, roughly speaking, the (affine) scheme in question is quasisyn-
tomic, which generalizes B. Bhatt's result for syntomic schemes. We also develop a non-completed
animated analogue of prisms and prismatic envelopes. We prove a variant of the Hodge-Tate
comparison for animated prismatic envelopes from which we deduce a result about flat cover of the
final object for quasisyntomic algebras, which generalizes several known results under smoothness
and finiteness conditions.

Keywords: perfectoid ring, Thom spectrum, prism, (derived) crystalline cohomology, animation,
prismatic cohomology

Résumé

Il y a deux parties indépendantes de cette thèse1. La première partie est consacrée à la réali-
sation des anneaux perfectoïdes comme spectres de Thom, ce qui généralise le théorème classique
de Hopkins-Mahowald pour les corps finis Fp. Comme conséquence, nous construisons une version
sphérique d'épaississement pro-infinitésimal de Fontaine. De plus, nous réalisons l'anneau des
entiers OK, pour tout extension totalement ramifiées K /Qp et les anneaux locaux, reguliers et
complets.

Dans la seconde partie, nous développons tout d'abord un analogue animé de paires d'anneau-
idéal, de PD-paires (c'est-à-dire, de paires à puissances divisées) et de PD-enveloppes. Cela nous
permet de généraliser des résultats classiques aux situations non-plates et non-finies. Ensuite, nous
developpons quelques approches à la cohomologie cristalline dérivée et montrer des théorèmes de
comparaison. En particulier, nous démonstrons que la cohomologie cristalline dérivée coïncide avec
la cohomologie cristalline classique quand le schéma (affine) est, grosso modo, quasi-syntomique,
ce qui généralise le résultat de B. Bhatt pour les schémas syntomiques. Nous developpons aussi
un analogue animé et non-complété des prismes et de l'enveloppe prismatique. Nous prouvons une
variante du théorème de comparison de Hodge-Tate et en déduisons un résultat sur des recouvre-
ment plat de l'objet final pour les algèbres quasi-syntomiques, ce qui généralise quelques résultats
connus sous des hypothèses de lissité et de finitude.

Mots-clés: anneau perfectoïde, spectre de Thom, prisme, cohomologie cristalline (dérivée), ani-
mation, cohomologie prismatique

1. This document has been written using GNU TEXMACS.
1. Ce document a été rédigé avec GNU TEXMACS.
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Introduction

Here we give a short introduction to the background of the topics covered in the current thesis,
which is made up of two independent chapters. More detailed introductions can be found at the
beginning of each chapter.

Let X be a smooth projective variety over C and let Xan denote the complex manifold asso-
ciated to X . Then we know that there is a canonical isomorphism H i(Xan;C) =�HdR

i (X) where
the left hand side is the singular cohomology and the right hand side is the de Rham cohomology.
Note that the de Rham cohomology could be computed algebraically by defining equations of X,
so we see that the cohomology of Xan with C-coefficients could be computed algebraically.

Question. Could we determine the cohomology H i(Xan; Z) of Xan with Z-coefficients �alge-
braically�? Or more simply, how much do we know about H i(Xan;Fp) via algebraic means?

By spreading out, we know that X comes from a smooth projective variety over a finitely gener-
ated ring. We restrict ourselves to the special case that X comes from a smooth projective scheme
over Z[N¡1] for some N 2N. By abuse of notation, we still denote by X the smooth projective
scheme over Z[N¡1]. Let p=/ ` be two distinct primes which not divide N . Then by proper base
change and étale-singular comparison, we haveH i(Xan;F`)=Het

i (X;F`)=Het
i (Xp�FpFp;F`) where

Xp :=X �Spec(Z[N¡1]) Spec(Fp) is the fiber of X over the closed point Spec(Fp)! Spec(Z[N¡1])
(more explicitly, it is given by the defining equations of X modulo p). Unfortunately, the étale
cohomology Het

i (Xp�FpFp;F`) is not obviously algebraically computable.
We remark that there is a cohomology theory which is algebraically computable �when `= p�,

namely the de Rham cohomology. Then the following question is natural:

Question. How to relate Het
i (Xp�FpFp;F`) for `=/ p and HdR

i (Xp)?

Before going further, let us summarize the cohomology theories �H i(Xp;F`)� that appeared
above in a table. We understand X1 as X(C).

cohomology p=2 p=3 p=5 . . . p=1
`=2 de Rham étale étale étale = singular
`=3 étale de Rham étale étale = singular
`=5 étale étale de Rham étale = singular
. . .

`=1 ? ? ? de Rham = singular

We can ask a more general question: how to relate all these cohomology theories? To do so, it
is natural to pass to some kind of �neighborhoods� and study the deformation. We could deform
both in p-direction and `-direction. For example, for the fiber Xp, we can deform ` both in the
case that `= p and the case that `=/ p: the former is given by the crystalline cohomology, and the
later is given by the `-adic cohomology. On the other hand, for deforming p, we could take the
formal neighborhood Spf(Zp)!Spec(Z[N¡1]) of the closed point Spec(Fp)!Spec(Z[N¡1]). The
prismatic cohomology , introduced in [BS19], is a framework to cover various cohomology theories
where both p and ` are deformed1.

Now we summarize the contents of the thesis in terms of the previous discussions. Chapter 1
exhibits a further deformation: instead of the world of rings, we deform Spec(Fp) to a formal neigh-
borhood Spf(Sp^), which is closely related to the computation of topological Hochschild homology.
In Chapter 2, we study generalizations of the previous picture to the non-smooth cases. We also
briefly discuss the analytic theory by replacing the formal neighborhood Spf(Zp)!Spec(Z[N¡1])
by analytic versions in the sense of condensed mathematics [Sch19a]. For example, at the generic
point of Z[N¡1], we coud consider the �analytic neighborhoods� AnSpec(C;M<q)!Spec(Z[N¡1])
for different q.

1. More precisely, for prismatic cohomology, we have p= `, but the two are not necessarily �deformed in the
same way�. We thank Prof. K¦stutis �esnavi£ius for this point.
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Chapter 1
Perfectoid rings as Thom spectra 1

Abstract. The Hopkins�Mahowald theorem realizes the Eilenberg�MacLane spectra HFp as
Thom spectra for all primes p2N>0. In this article, we record a known proof of a gener-
alization of Hopkins�Mahowald theorem, realizing Hk as Thom spectra for perfect rings
k, and we provide a further generalization by realizing HR as Thom spectra for perfectoid
rings R. We also discuss even further generalizations to prisms (A; I) and indicate how to
adapt our proofs to Breuil�Kisin case.

1.1. Introduction

In this article, since most of our results are p-typical, we fix a prime p 2N>0. We first describe
the classical Hopkins�Mahowald theorem. We know that Fp=�Zp/p, that is to say, Fp is the free
Zp-algebra in which p=0. For some reasons, we need to extend this kind of results to a category
of �less linear� algebras in which the addition is not commutative or even associative on the nose,
but only up to coherent homotopy. To be more precise, we need to understand whether the
(Eilenberg�MacLane) ring spectrum HFp is still the free object in the category of Sp^-algebras
satisfying certain associativity and commutativity with p= 0? The classical Hopkins�Mahowald
theorem answers this affirmatively: they are the free object in the category of E2-Sp^-algebras
with p= 0. There are two ways to describe �free E2-algebras with p=0�. In this article, we will
mainly adopt the description via Thom spectra. We will go to another, more direct and natural
but technically more burdened description in Section 1.7. We start with formal definitions of Thom
spectra with informal illustrations and refer to [AB19] for further discussions.

Definition 1.1.1. Given a ring spectrum R, we define the 1-category BGL1(R) to be the full
subcategory of LModR' spanned by left R-module spectra equivalent to R, where we denote by C'
the maximal groupoid associated to an 1-category C.

Remark 1.1.2. The 1-category BGL1(R) is in fact an 1-groupoid, and if we further suppose
that R is an En+1-ring spectrum, then BGL1(R) inherits an En-monoidal structure from LModR.

We admit the following result, which could be understand as an analogue of the fact that
�1(BG)=G for any discrete group G:

Proposition 1.1.3. �1(BGL1(R))=GL1(�0R) for any ring spectra R. Concretely, an invertible
element a2�0R corresponds to a multiplication map ma :R!R in BGL1(R).

Remark 1.1.4. In fact, BGL1(R) is a delooping of the group of invertible elements in R.

Now we recall the definition of Thom spectra:

Definition 1.1.5. Given a ring spectrum R, a space X and a map f :X!BGL1(R), the Thom
spectrum Mf associated to f is the colimit of the composition

X!BGL1(R)!LModR

We note that by definition of colimits, we can understand the colimit as a kind of �free objects
satisfying several equations�. We will choose a special space X to encode the E2-commutativity
(understood as a generalized version of classical associativity, a collection of equations) and a map
f :X!BGL1(R) to encode the �equation� p=0.

1. Extracted from [Mao20].

7



Remark 1.1.6. As a special case of [Lur09, Proposition 4.1.2.6], any homotopy equivalence of
Kan complexes is cofinal, therefore the formation of the colimit does not depend on the choice of
models of the space X.

Remark 1.1.7. In this article, we only consider the case that R is a connective E1-ring spectrum.
As a consequence, we can replace LModR by ModR and the Thom spectrum Mf is connective.

Remark 1.1.8. In Definition 1.1.5, if X is endowed with anEn-algebra structure, and f is assumed
to be En-monoidal, then the Thom spectrum Mf naturally inherits an En-R-algebra structure.
In this case, we will call Mf the En-Thom spectrum associated to f .

In the classical Hopkins�Mahowald theorem, we will choose X =
2 S3, the free E2-group in
the 1-category S of spaces.

Remark 1.1.9. As a special case, �1(BGL1(Sp^))=GL1(Zp)=fa2Zp jamod p=/ 0g. The invertible
element 1¡ pu in Zp gives rise to a map S1!BGL1(Sp^) where u2GL1(Zp) is an invertible element
in Zp. Since the p-adic sphere spectrum Sp

^ is an E1-ring spectrum, by Remark 1.1.2 this map
extends to a double loop map 
2S3'
2�2S1!BGL1(Sp^), which we denote by fFp;pu.

We note that the choice of 1¡ p u essentially imposes an equation 1¡ p u=1. This could be
seen by the fact that taking the colimit along fFp;pu is essentially taking the homotopy orbits of
the 
2S3-action, which is somehow �multiplying by� 1¡ p u.

Remark 1.1.10. In the first drafts of this article, we simply took u=1: Later, we realized that
it might be easier to introduce u to fix a gap in commutative algebra for technical reasons.

Now we formulate the classical Hopkins�Mahowald theorem (cf. [AB19, Theorem 5.1], where
u=1, but the proof works for the general case. See also [KN, Theorem A.1]):

Theorem 1.1.11. (Hopkins�Mahowald) The Eilenberg�MacLane spectrum HFp is the E2-
Thom spectrum associated to the map fFp;pu : 


2S3!BGL1(Sp^).

This arouses a natural question: what other discrete rings are Thom spectra in a similar fashion?
The first guess will come from the observation that Zp=�W (Fp), so it would be natural to ask
whether we have similar results for perfect Fp-algebras?

In this article, our main purpose is to show that this is the case for perfectoid rings (which
is inspired by computational results of topological Hochschild homology of perfectoid rings in
[BMS19]), and consequently, for perfect Fp-algebras. In order to do so, we need the concept of
spherical Witt vectors W+(k) for perfect Fp-algebras k, which we will recall in section 1.2. For
the moment, we will take advantage of the fact that �0(W+(k))=W (k) where W (k) is the ring of
(classical) Witt vectors. One example is that W+(Fp)'Sp

^.

Remark 1.1.12. Given a perfectoid ring R, denote by � a generator of the kernel of Fontaine's
pro-infinitesimal thickening � :W (R[)!R, which we will review in section 1.4. As in Remark 1.1.9,
the invertible element in W (R[), 1¡ � 2GL1(W (R[)) = �1(BGL1(W+(R[))) gives rise to a map
S1!BGL1(W+(R[)) which extends to a double loop map fR;� : 
2S3!BGL1(W+(R[)).

Theorem 1.1.13. (Main Theorem) The Eilenberg�MacLane spectrum HR is the E2-Thom
spectrum associated to the map fR;� for any perfectoid ring R.

Fontaine's pro-infinitesimal thickening � is in fact surjective. Note that R=�W (R[)/�, and our
result amounts to saying that the ring spectrum HR is a free E2-W+(R[)-algebra with �=0.

Remark 1.1.14. When R is a perfect Fp-algebra, we can take � = p u where u 2GL1(R) is an
invertible element in R, and we note that R[=R. Especially, when R=Fp, fR;pu coincides with
fFp;pu, hence Theorem 1.1.13 generalizes Theorem 1.1.11.

8 Perfectoid rings as Thom spectra



Remark 1.1.15. The composite map W+(R[)!!!!!!!!!!!!!!!!!!!!!!!!!!
��0

HW (R[)!!!!!!!!!!!!!!!!!!!!!!H� HR should be understood as a
spherical analogue of Fontaine's map � :W (R[)!R. We will establish a universal property, Propo-
sition 1.4.18, similar to Fontaine's, Proposition 1.4.16, which might be of independent interest.

The motivation to realize HFp as a free E2-algebra with p=0 is that it describes a direct �gen-
eration-relation� like description with respect to the (p-completed) sphere spectrum Sp

^. Similarly,
realization of HR as a free E2-W+(R)-algebra with �=0 enables us to relate HR more directly to
the ring W+(R[) of spherical Witt vectors, which allows us to deduce �topological� results about
these rings. For example, as a consequence, we can compute the topological Hochschild homology
THH(HR) (of a perfectoid ring R) as an E1-ring spectrum and deduce Bökstedt's periodicity. By
[KN, Proposition 4.7], as in the proof of Theorem 4.1 there, we have

Proposition 1.1.16. The (relative) topological Hochschild homology THH(HR/W+(R[))'HR


S3 as E1-W+(R[)-algebras for any perfectoid ring R.

The proof is somehow technical, but essentially it is similar to the classical computation of
the Hochschild homology HH(R/W (R[)), via resolving R by W (R[)-CDGAs. We refer to first
paragraphs of the proof of [HN19, Theorem 1.3.2] for this classical case. As a consequence of
Proposition 1.1.16, we have (see subsection 1.5.5):

Proposition 1.1.17. The (absolute) topological Hochschild homology THH(HR)p^'HR

S3 as
E1-ring spectra.

By known results on the homology of 
S3 (a classical reference is [Bot82]), we deduce Bökstedt's
periodicity for perfectoid rings (cf. [BMS19, Theorem 6.1]).

Corollary 1.1.18. (Bökstedt's periodicity) ��(THH(HR)p^)=�R[u] where u is any generator
of �2(THH(HR)p^) as a �0(THH(HR)p^)-module.

In fact, our question was motivated by Bökstedt's periodicity for perfectoid rings: we wanted
to understand why Bökstedt's periodicity holds.

Further generalizations of Theorem 1.1.13 to prisms, the concept introduced in [BS19], seem
plausible. However, we are only capable to reach another special case of prisms motivated by
Breuil�Kisin cohomology, parallel to the perfectoid case, proposed by Matthew Morrow:

Theorem 1.1.19. Let A be complete discrete valuation ring of mixed characteristic with residue
field k being perfect of characteristic p. Then the Eilenberg�MacLane spectrum HA is the E2-Thom
spectrum associated to a map fE : 
2S3!BGL1(W+(k)[[u]]).

Inspired by [KN19, Section 9], we will also provide a version of Hopkins�Mahowald theorem
for complete regular local rings:

Theorem 1.1.20. Let (A;m) be a complete regular local ring of mixed characteristic with residue
field k being perfect of characteristic p. Let (a1;:::;an)�m be a regular sequence which generates the
maximal ideal m. Then the Eilenberg�MacLane spectrum HA is the E2-Thom spectrum associated
to a map fA : 
2S3!BGL1(W+(k)[[u1; : : : ; un]]).

In this article, we will first review spherical Witt vectors. We then record a known proof of
perfect rings being Thom spectrum, the special case of Theorem 1.1.13 for perfect rings, which
we learn from Sanath Devalapurkar, but the proof is also well-known to experts such as Achim
Krause and Thomas Nikolaus, see [KN19]. This result is needed in the proof of the general case of
Theorem 1.1.13. Then we start with recalling the definition and some basic properties of perfectoid
rings, and prove Theorem 1.1.13. As far as we know, although this is known to several experts,
the proof is not found in the literature. We will finally discuss further generalizations to prisms in
Section 1.6, and especially Hopkins�Mahowald theorem for Breuil�Kisin cases, which seems also to
be known by experts (see [KN19, Remark 3.4]). We take an opportunity to write down those proofs.
The author thanks Matthew Morrow for various suggestions during the construction of this article.

1.1 Introduction 9



Warning 1.1.21. For spectra M;N , we will denote the smash product of M;N by M 
N . Let
R be an E1-ring (spectrum), M a right R-module (spectrum) and N a left R-module (spectrum),
we will denote the relative tensor product by M 
RN . In order to avoid possible ambiguities,
for discrete rings A, right A-modules P and left A-modules Q, we will denote the ordinary (alge-
braic) tensor product by Tor0A(P ; Q) (instead of P 
AQ). It is important that in general the
Eilenberg�MacLane spectrum H Tor0A(P ; Q) do not coincide with the relative tensor product
HP 
HAHQ of spectra. Rather, the relative tensor HP 
HA HQ coincides with the Eilen-
berg�MacLane spectrumH(P 
ALQ) of the derived tensor product. Since the concept of the derived
tensor product does not play a great role in this article, we will not use the notation 
AL, and we
will uniformly preserve the notation 
 for smash products and relative tensor products of spectra.

Notation 1.1.22. In this article, we mainly adopt notations in [ Lur17], [ Lur18a] and [ Lur18b].
In particular, we will let LModR denote the 1-category of an E1-ring R, let ModR denote the
symmetric monoidal 1-category of an E1-ring R and let AlgR

En denote the 1-category of En-R-
algebras for an E1-ring R and a positive integer n2N>0. In particular, we will denote AlgR

E1 by
CAlgR, referred to as the 1-category of commutative R-algebras. On the other hand, we will denote
ModR

~ the 1-category of discrete R-modules, and CAlgR
~ the 1-category of discrete commutative

R-algebras.

1.2. Recollection of spherical Witt vectors

In this section, we will review the definition and some basic properties of spherical Witt vectors.
We quote some definitions and propositions from [Lur18a, Section 5.2].

Definition 1.2.1. ([Lur18a, Definition 5.2.1]) Let A be a connective E1-ring, let I ��0A be
a finitely generated ideal, and set A0=�0(A)/I. Suppose that we are given a commutative diagram
of connective E1-rings

A !!!!!!!!
f

B

 
¡ �  
¡

HA0 !!!!!!!!!!!!!!!!
f0

HB0

where B0 is a discrete commutative ring. We will say that � exhibits f as an A-thickening of f0
if the following conditions are satisfied:

a) The E1-ring B is I-complete as an A-module;

b) The diagram � induces an isomorphism of commutative rings �0(B)/I �0(B)!B0;

c) Let R be any connective E1-algebra over A which is I-complete. Then the canonical map

MapCAlgA(B;R)!HomCAlgA0
~ (B0; �0(R)/I �0(R))

is a homotopy equivalence. In particular, the mapping space MapCAlgA(B;R) is discrete up
to homotopy equivalence, that is, each connected component is contractible.

Remark 1.2.2. (Uniqueness, [Lur18a, Remark 5.2.2]) Let A be a connective E1-ring, let
I ��0A be a finitely generated ideal, and set A0=�0(A)/I. Suppose that we are given a homo-
morphism of commutative rings f0 :A0!B0. It follows immediately from the definition that if
there exists a diagram �:

A !!!!!!!!f B

 
¡ �  
¡

HA0 !!!!!!!!!!!!!!!!
f0

HB0

which exhibits f as an A-thickening of f0, then the morphism f (and the diagram �) is uniquely
determined up to equivalence.
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Remark 1.2.3. ([Lur18a, Remark 5.2.4]) Suppose that we are given a commutative diagram
of commutative E1-rings

A !!!!!!!!f B

 
¡

 
¡

A0 !!!!!!!!!!!!!!!!
f 0

B 0

 
¡

 
¡

HA0 !!!!!!!!!!!!!!!!
f0

HB0

Assume that A0;B0 are discrete rings and the left vertical maps induce surjective ring morphisms
�0A!�0A

0!A0 whose composition has kernel I��0A. Suppose that the outer rectangle exhibits
f as an A-thickening of f0 and that the upper square exhibits B 0 as an I-completion of B 
AA0.
Then the lower square exhibits f 0 as an A0-thickening of f0.

Theorem 1.2.4. ([Lur18a, Theorem 5.2.5]) Let A be a connective E1-ring, let I ��0A be a
finitely generated ideal, and set A0=�0(A)/I. Suppose that A0 is an Fp-algebra such that HA0 is
almost perfect as an A-module and that the Frobenius map 'A0 :A0!A0 is flat. Let f :A0!B0 be
a morphism of commutative Fp-algebras which is relatively perfect, then there exists a diagram

A !!!!!!!!f B

 
¡ �  
¡

HA0 !!!!!!!!!!!!!!!!
f0

HB0

which exhibits f as an A-thickening of f0. Moreover, � is a pushout square.

Example 1.2.5. (Classical Witt vectors, [Lur18a, Example 5.2.6]) In the statement of
Theorem 1.2.4 take A=HZp and I = pZp. Then A0= �0(A)/I is the finite field Fp and a map
f0 :A0!B0 of discrete rings is relative perfect if and only if B0 is a perfect Fp-algebra. If this
condition is satisfied, then Theorem 1.2.4 allows us to lift B0 to an E1-HZp-algebra which is
complete with respect to the ideal pZp and for which the quotient �0(B)/p�0(B) is isomorphic to
B0. This Zp-algebra is in fact the Eilenberg�MacLane spectrum of the ring of Witt vectorsW (B0).
See also [Ser79, Section II.5, Proposition 10] for a classical description of this universal property.

Example 1.2.6. (Spherical Witt vectors, [Lur18a, Example 5.2.7]) In the statement of
Theorem 1.2.4 take A=Sp

^ and I =(p). Then A0=�0(A)/I is the finite field Fp and a morphism
f0 :A0!B0 is relative perfect if and only if B0 is a perfect Fp-algebra. If this condition is satisfied,
Theorem 1.2.4 allows us to lift B0 to an E1-Sp^-algebra which is complete with respect to the ideal
(p) and the tensor product HFp
Sp

^B'�0(B)/p�0(B) is isomorphic to B0. This is the E1-ring
W+(B0) of �spherical� Witt vectors.

Proposition 1.2.7. �0(W+(k)) is isomorphic to W (k), the ring of Witt vectors, and HW (k)'
W+(k)
Sp

^HZp for any perfect Fp-algebra k.

Proof. First, we have a commutative diagram

S
∧

p
//

��

W
+(k)

��

HZp

��

HFp
// Hk

Figure 1.2.1.
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where the outer square is given by Theorem 1.2.4. The right vertical map W+(k)!Hk factors
through the pushoutW+(k)
Sp

^HZp in the category of E1-rings. Note that Sp^ is a coherent ring
as in Definition A.0.10, and HZp'H�0(Sp^) is an almost perfect Sp^-module by Corollary A.0.12,
which implies that W+(k)
Sp

^HZp is an almost perfect W+(k)-module by Proposition A.0.8.
By Definition 1.2.1, W+(k) is a p-complete E1-Sp^-algebra, therefore by Proposition A.0.27, the
spectrum W+(k)
Sp

^HZp is p-complete. Now we take A=Sp
^, A0=HZp, A0=HFp, B=W+(k),

B 0=W+(k)
Sp
^HZp and B0=Hk in Remark 1.2.3, we deduce that the lower square

HZp ¡! W+(k)
Sp
^HZp

 
¡

 
¡

HFp ¡! Hk

constitutes a commutative diagram of thickening as in Definition 1.2.1. Then it follows from
Remark 1.2.2 and Example 1.2.5 that W+(k)
Sp

^HZp is equivalent to HW (k) as E1-HZp-alge-

bras, which implies thatW (k)=��0(HW (k))=�Tor0
�0(Sp

^)(�0(W+(k));�0(HZp))=�Tor0
Zp(�0(W+(k));

Zp)=��0(W+(k)). �

Proposition 1.2.8. (Recognition of Thickenings, [Lur18a, Proposition 5.2.9]) Let A be a
connective E1-ring, let I��0A be a finitely generated ideal, and set A0=�0(A)/I. Suppose that A0
is an Fp-algebra which is almost perfect as an A-module and that the Frobenius map 'A0 :A0!A0
is flat. Suppose we are given a commutative diagram of connective E1-rings �:

A !!!!!!!!
f

B

 
¡ �  
¡

A0 !!!!!!!!!!!!!!!!
f0

B0

where f0 is a relative perfect morphism of commutative Fp-algebras. Then � exhibits f as an A-
thickening of f0 if and only if the following conditions are satisfied:

i. The E1-ring B is I-complete as an A-module;

ii. The diagram � is a pushout square.

1.3. Perfect rings being Thom spectra

We first admit a (superficially) slightly stronger Hopkins�Mahowald's theorem for sake of conve-
nience. Given a perfect Fp-algebra k and an invertible element u2GL1(W (k)), as a special case
of Remark 1.1.12, we have a map fk;pu : 
2S3!BGL1(W+(k)).

Theorem 1.3.1. (Hopkins�Mahowald for k) The Eilenberg�MacLane spectrum Hk is the E2-
Thom spectrum associated to the map fk;pu.

For technical reasons, we start with the special case that u 2GL1(Zp)�GL1(W (k)). In this
case, it is a direct consequence of that for Fp:

Lemma 1.3.2. Theorem 1.3.1 is true when u2GL1(Zp)�GL1(W (k)).

Proof. We note that the image of the multiplication map m1¡pu : Sp^! Sp
^ given by 1¡ p u 2

�0(Sp^)=�Zp under the canonical (symmetric monoidal) functorW+(k)
Sp
^¡ :ModSp

^!ModW+(k)

is still a multiplication map m1¡pu :W+(k)!W+(k) given by 1¡ p u2 �0(W+(k)) =�W (k), and
therefore the map fk;pu coincides with the composition map


2S3 ¡!
fFp;puBGL1(Sp^)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

W+(k)
S p̂
¡

BGL1(W+(k))

Since MfFp;pu'HFp as E2-ring spectra by Theorem 1.1.11,

Mfk;pu'W+(k)
Sp
^MfFp;pu'W+(k)
Sp

^HFp'Hk

12 Perfectoid rings as Thom spectra



as E2-ring spectra, where the first equivalence follows from the fact that the functor W+(k)
Sp
^¡

is a left adjoint therefore commutes with colimits and the last equivalence is given by the last claim
in Theorem 1.2.4. �

In order to prove Theorem 1.3.1, it suffices to show that Mfk;pu'Mfk;p holds for all u 2
GL1(W (k)), thereforeMfk;pu'Mfk;p'Hk by Lemma 1.3.2. We will base the proof on a universal
property of Thom spectra which we will not use elsewhere, and the author looks forward to an
alternative proof which does not depend on this universal property.

Lemma 1.3.3. (Proposition 4.9 in [AB19] along with the discussions after Lemma
4.6) The E2-Thom spectrum Mfk;pu satisfies the following universal property: For all E2-W+(k)-
algebras A, the mapping space MapAlg

W+(k)
E2 (Mfk;pu;A) could be naturally identified with the space

of null-homotopies of the composite map W+(k) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
mpu

W+(k) !!!!!!!!!!
�
A in the category of W+(k)-

modules where � :W+(k)!A is the canonical map given by the E2-W+(k)-algebra structure, and
mpu :W+(k)!W+(k) is the multiplication map given by pu2W (k)=�0(W+(k)).

Proof of Theorem 1.3.1. Note that the multiplication map mu :W+(k)!W+(k) is an equiv-
alence of W+(k)-modules since u2W (k) = �0(W+(k)) is invertible. Hence by Lemma 1.3.3, the
map mu induces an equivalence of spaces MapAlg

W+(k)
E2 (Mfk;p;A)!MapAlg

W+(k)
E2 (Mfk;pu;A) which

is natural in A. By the Yoneda lemma, we deduce that Mfk;pu'Mfk;p as E2-W+(k)-algebras. �

1.4. Recollection of perfectoid rings

In this section, we will review basic definitions and properties of perfectoid rings.

1.4.1. Basic definitions and properties

Definition 1.4.1. Let A be a ring and I �A be an ideal. Then the ring A is called I-adically
complete if the canonical map from A to the (inverse) limit of the tower

� � � !A/In! � � � !A/I2!A/I

is an isomorphism. The ring A is called I-adically separated if the intersection
T
n=0
1 In=0.

Warning 1.4.2. In the literature, sometimes authors call a ring A is I-adically complete when
the canonical map A! limn2(N;>) (A/In) is only supposed to be surjective, and our I-adic com-
pleteness is equivalent to their I-adic completeness plus I-adic separateness.

Definition 1.4.3. Let A be an Fp-algebra. The direct limit perfection Aperf of A is the direct limit
of the telescope A!!!!!!!!!!!!' A!!!!!!!!!!!!' A!!!!!!!!!!!!' � � �.

Definition 1.4.4. An Fp-algebra A is called semiperfect if the Frobenius map ' :A!A is sur-
jective.

Remark 1.4.5. For a semiperfect Fp-algebra A, the direct limit perfection Aperf coincides with
Ared=A/ 0

p
, by checking that Ared satisfies the universal property of Aperf.

Remark 1.4.6. The canonical map R!Rperf is initial among all Fp-algebra morphisms R! S
such that S is a perfect Fp-algebra. This follows directly from the universal property of direct
limits in the definition of direct limit perfections.

Definition 1.4.7. Let R be a commutative ring which is p-adically complete. The tilt of R, denoted
by R[, is a perfect Fp-algebra defined by the limit of the tower

� � � !!!!!!!!!!!!
'
R/p!!!!!!!!!!!!

'
R/p!!!!!!!!!!!!

'
R/p

where ' :R/p!R/p is the Frobenius map. In particular, if R is an Fp-algebra, then R[ is the
inverse limit perfection of R, and if furthermore R is semiperfect, then the canonical map R[!R
is a surjection.
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We need the following classical proposition to define the Fontaine's pro-infinitesimal thickening
map. We omit the proof which is routine. One can find a proof in, say, [HN19, Section 1.3].

Proposition 1.4.8. Let R be a p-adically complete commutative ring. Then there exists a mul-

tiplicative map (that is to say, a morphism of multiplicative monoids) R[ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
(¡)]

R that sends
a= (xn)n2N 2R[ to a] := limn!1 yn

pn where (xn)n2N satisfies '(xn+1) = xn for all n 2N, and
(yn)n2N2RN is any sequence such that for each n 2N, yn is a lift of xn2R/p in R. We note
that a] does not depend on choice of (yn)n2N.

Definition 1.4.9. Fontaine's map � :W (R[)!R is given by �(
P
i=0
1 [ai] pi)=

P
i=0
1 ai

] pi, where
[¡] :R[!W (R[) is the Teichmüller representative.

Definition 1.4.10. ([BMS18, Definition 3.5]) A commutative ring R is perfectoid if there
exists � 2R such that p 2 �pR, such that the ring R is (�)-adically complete, such that the Fp-
algebra R/p is semiperfect, and such that the kernel of � :W (R[)!R is a principal ideal.

Definition 1.4.11. Let R be a perfectoid ring. The special fiber, denoted by �, is the direct limit
perfection of R/p, that is to say � := (R/p)perf=R/ pR

p
since R/p is semiperfect.

Notation 1.4.12. Let R be a perfectoid ring. We denote by � a generator of Fontaine's map
� :W (R[)!R.

Proposition 1.4.13. ([BMS18, Lemma 3.13]) Let R be a perfectoid ring. Then the commutative
diagram

W (R[) !!!!!!!!
�

R

 
¡

 
¡

W (�) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !modp
�

is a Tor-independent pushout square.

Corollary 1.4.14. Let R be a perfectoid ring. For any generator �2ker�, there exists an invertible
element u2GL1(W (�)) such that the image of � 2W (R[) in W (�) is pu.

Proof. By Proposition 1.4.13, the image of u2W (R[) in W (�) is a generator of the ideal pW (�).
Since p2W (�) is not a zero divisor, we deduce the result that we need. �

Proposition 1.4.15. Let R be a perfectoid ring. Then the kernel of the composition R[!R/p!�

is �R[
q

.

Proof. The kernel of the composition W (R[)!R/p! � is pW (R[)+ �W (R[)
q

whose image

under the canonical map W (R[)!R[ is �R[
q

. �

1.4.2. Universal properties of Fontaine's map (and a spherical analogue)
The results of this subsection will not be used later. However, we find it better to under-
stand that Fontaine's map � :W (R[)!R and its spherical analogue W+(R[)! ��0(W+(R[))'
HW (R[) !!!!!!!!!!!!!!!!!!!!!!

H�
HR satisfy a universal property, which is related to the thickening defined in

Definition 1.2.1. Roughly speaking, they are mixed characteristic �absolute� versions of thick-
enings in Definition 1.2.1. The following proposition is essentially due to Fontaine (see [Fon94],
Theorem 1.2.1), rephrased in the modern language:

Proposition 1.4.16. ([HN19, Proposition 1.3.4]) Let R be a perfectoid ring. Then Fontaine's
map � :W (R[)!R is initial among surjections �D :D!R of rings such that the ring D is both p-
adically complete and ker �D-adically complete.

We will sketch the proof in [HN19] for the universal property, that is, assume that the p-adic
completeness and the �-adic completeness of W (R[) is already given, we show that Fontaine's map
� :W (R[)!R is initial as claimed.
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Proof. Let �D :D!R be a map of rings such that D is both p-adically complete and ker �D-
adically complete. We need to show that �D factors uniquely through � :W (R[)!R. In view of
Example 1.2.5 and Definition 1.2.1, we have a bijection

HomCAlgZp
~ (W (R[); D)!!!!!!!!!!!!!!=

�
HomCAlgFp

~ (R[; D/p)

(here everything is discrete therefore classical, but in order to avoid conflicts of notations with
other parts of the article, we retain the cumbersome notations CAlgZp

~ and CAlgFp
~ ) which is given

as follows: for any map W (R[)!D of discrete Zp-algebras, we compose it with the canonical map
D!D/p to get the map W (R[)!D/p, which factors uniquely through W (R[)!W (R[)/p=�R[
therefore gives rise to a map R[!D/ p. Note that �R= idR :R!R serves as a special choice
of �D since the perfectoid ring R is p-adically complete by Definition 1.4.10 and tautologically
ker(�R)= (0)-adically complete. That is to say, we also have a bijection

HomCAlgZp
~ (W (R[); R)!!!!!!!!!!!!!!=

�
HomCAlgFp

~ (R[; R/p)

The map �D :D!R gives rise to a commutative diagram

HomCAlgZp
~ (W (R[); D) !!!!!!!!!!!!!!=

�
HomCAlgFp

~ (R[; D/p)

 
¡

 
¡

HomCAlgZp
~ (W (R[); R) !!!!!!!!!!!!!!=

�
HomCAlgFp

~ (R[; R/p)

So in order to show that the map �D :D!R factors through the canonical map �, or equivalently put,
the preimage of the element �2HomCAlgZp

~ (W (R[);R) under the induced map HomCAlgZp
~ (W (R[);

D)!HomCAlgZp
~ (W (R[); R) is a singleton, it suffices to show that the preimage of the element

(R[! R/ p) 2 HomCAlgFp
~ (R[; R/ p) under the map HomCAlgFp

~ (R[; D / p)! HomCAlgFp
~ (R[; R/

p) is a singleton, or equivalently put, the canonical map � :R[!R/p lifts uniquely through the
map �D :D/p!R/p induced by the map �D :D!R. Note that the surjectivity of �D implies that
of �D. Since the ring D is (p; ker �D)-adically complete, the ring D/p is ker�D-adically complete.

We can conclude the existence and the uniqueness of lift of the map � :R[!R/p along the
surjection �D :D/ p! R/ p simply by the fact that the Fp-algebra R[ is perfect and thus the
cotangent complex LR[/Fp is contractible, which implies the existence and the uniqueness of such
lift.

However, we prefer to give a direct argument: We set the Fp-algebra A :=R[ to stress that
we only depend on the fact that A is a perfect Fp-algebra, but not on the properties of the map
� :A!R/p. Denote by 'B :B!B; x 7! xp the Frobenius map on any Fp-algebra A. Then the
Frobenius map 'A is an isomorphism by assumption.

For each a 2A, we choose a sequence (bn)n=01 2 (D/ p)N such that for each n 2N, we have
�D(bn)=�('A

¡n(a)).
Note that the sequence ('D/p

n (bn))n=01 converges ker �D-adically: �D(bn ¡ bn+1
p ) = �D(bn) ¡

�D(bn+1)p = �('A
¡n(a)) ¡ �

¡
'A
¡(n+1)(a)

�
p = �('A

¡n(a)) ¡ �('A('A¡n(a))) = 0 and therefore
'D/p
n (bn)¡ 'D/p

n+1(bn+1)= 'D/p
n (bn¡ bn+1

p )2 'D/pn (ker�D)� (ker �D)p
n
. Let b := limn!1 'D/p

n (bn).

We first note that �D(b) = �(a), since �('D/p
n (bn)) = �(bn

pn) = �(bn)p
n
= �('A

¡n(a))p
n
=

�('An('A
¡n(a)))=�(a) for all n2N.

Now the value b2D/p does not depend on the choice of (bn), since for any other choice (cn),
we have cn¡ bn 2 ker �D, thus 'D/p

n (bn)¡ 'D/pn (cn) = 'D/p
n (bn¡ cn) 2 'D/pn (ker �D)� (ker �D)p

n

which implies that limn!1 'D/p
n (cn)= b.

Combining the preceding discussions, we have shown that for each a 2A, we can associate a
b2D/p such that �D(b)=�(a). It is routine to check that a 7! b defines a map A!D/p of rings
which serves as a lift of �:A!R/p. Furthermore, the uniqueness essentially follows from the above
argument that the value b2D/p does not depend on the choice of (bn). �
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Remark 1.4.17. In fact, we can weaken our assumption on D to be derived p-complete and that
the map D!R is Adams complete (due to [Car08] while the terminology is coined in [Bha12b])
by using some basic facts about Adams complete surjective maps of animated rings.

Now we give a spherical version of Fontaine's universal property:

Proposition 1.4.18. Let R be a perfectoid ring. We compose Fontaine's map � :W (R[)!R with
the 0th Postnikov section W+(R[)! ��0(W+(R[)) =HW (R[), obtaining the map � :W+(R[)!
HR. Then we have

1. The E1-Sp^-algebra W+(R[) of spherical Witt vectors is (p; ker �)-complete. Furthermore,
the discrete ring �0(W+(R[))/p is ker �/(p�0(W+(R[))+ ker �)-adically separated.

2. The map � :W+(R[)!HR is initial among all maps �D :D!HR surjective on �0 where D
is an E1-Sp^-algebra such that D is (p; ker �D)-complete and the discrete ring �0(D)/p is
ker �D/(p �0(D) + ker �D)-adically separated, where we denote the map �0(�D) : �0(D)!R
by �D.

Remark 1.4.19. In Proposition 1.4.18, the technical conditions imposed on the E1-Sp^-algebra D
are somewhat complicated. However, we can restrict to the full subcategory of �D such that �0(D)
is (p;ker �D)-adically complete, where � :W+(R[)!HR lives (see the proof of Proposition 1.4.18)
and hence � is still an initial object in this full subcategory.

Remark 1.4.20. Using Remark 1.4.17, we can drop the adic completeness of �0(D)/p in Propo-
sition 1.4.18.

Now we want to establish some computational results about homotopy groups of the ringW+(k)
of spherical Witt vectors of a perfect Fp-algebra k. First, we need the following proposition, which
follows from Serre's computations of homotopy groups of spheres:

Proposition 1.4.21. The sphere spectrum S is connective, �0(S) =Z, and for all n 2N>0, the
nth (stable) homotopy group �n(S) is finite.

Thus for each n2N, the homotopy group �n(S) has bounded p-torsion. Combined with Milnor
sequence of homotopy groups, we have

Corollary 1.4.22. The p-adic sphere spectrum Sp
^ is connective, �0(Sp^)=Zp and for all n2N>0,

the nth (stable) homotopy group �n(Sp^) is a finite direct sum of finite abelian groups of form
Z/pr=�Zp/pr for some positive integer r2N>0.

We need a result announced in [Lur18a, Example 5.2.7] the argument of which we learn from
Matthew Morrow:

Proposition 1.4.23. Let k be a perfect Fp-algebra. Then the ring of spherical Witt vectors W+(k)
is a flat Sp

^-module.

Proof. First, by Proposition 1.2.7, �0(W+(k)) =�W (k) which is a torsion-free Zp-module. Since
Zp is a valuation ring, we deduce that W (k) is a flat Zp-module (see [Sta21, Tag 0539]). Now we
consider the Postnikov tower (��nSp^)n2N of the p-adic sphere spectrum Sp

^, which induces a tower
Xn := (��n Sp^)
Sp

^W+(k). Note that Xn/Xn¡1=��nH�n(Sp^)
Sp
^W+(k). We have shown in

Corollary 1.4.22 that �n(Sp^) is a direct sum of finite abelian groups of form Zp/pr, which allows us

to realize H�n(Sp^) as a direct sum of spectra of form cofib
�
HZp!!!!!!!!!!!!!!!!

pr

HZp

�
. Note that the smash

product ¡
Sp
^W+(k) commutes with taking cofibers, we deduce that H�n(Sp^) 
Sp

^W+(k) =�
H Tor0

Zp(�n(Sp^);W (k)). Thus the tower (Xn)n2N constitutes the Postnikov tower of the spectrum

W+(k), therefore �n(W+(k))=�Tor0
�0(Sp

^)(�n(Sp^);W (k)). �

Corollary 1.4.24. Let k be a perfect Fp-algebra. Then the ring of spherical Witt vectors W+(k)
is connective, �0(W+(k))=W (k), and for all n2N>0, the nth (stable) homotopy group �n(W+(k))
is a finite direct sum of W (k)-modules of form W (k)/pr.
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We are now ready to prove Proposition 1.4.18:

Proof of Proposition 1.4.18. We check two statements one by one:

1. Proposition 1.4.16 tells us that the discrete ring �0(W+(R[))=�W (R[) is (p; ker �)-adically
complete, therefore by Proposition A.0.28, it is (p;ker�)-complete. Furthermore, we deduce
from (p;ker �)-adic completeness that �0(W+(R[)) is ker �/(p�0(W+(R[))+ker �)-adically
separated. In view of Theorem A.0.25, it remains to show that for each n 2N>0, the
homotopy group �n(W+(R[)) is (derived) (p; ker �)-complete as a discrete W (R[)-module.
However, by Corollary 1.4.24, we have realized �n(W+(R[)) as a direct sum of cofibers of
(p; ker �)-complete modules, therefore it is (p; ker �)-complete.

2. This part is parallel to the proof of Proposition 1.4.16. We start with the following commu-
tative diagram induced by the map �D :D!HR:

MapCAlgS p̂
(W+(R[); D) !!!!!!!!!!!!!!' HomCAlgFp

~ (R[; �0(D)/p)
 
¡

 
¡

MapCAlgS p̂
(W+(R[);HR) !!!!!!!!!!!!!!' HomCAlgFp

~ (R[; R/p)

as in the proof of Proposition 1.4.16. It follows from Definition 1.2.1 and Example 1.2.6
that the horizontal maps are homotopy equivalences, which implies that the connected
components of each space on the left are all contractible. We pick the connected component
of MapCAlgS p̂

(W+(R[); HR) corresponds to the map � :W+(R[)!HR. In order to show
that � is an initial object, it suffices to show that there exists one and only one connected
component in MapCAlgS p̂

(W+(R[);D) which maps to the connect component corresponding
to �. Note that the image of � in HomCAlgFp

~ (R[;R/p) along the bottom horizontal map coin-

cides with �2HomCAlgFp
~ (R[;R/p) defined in the proof of Proposition 1.4.16. In view of the

commutative diagram, it remains to show that the preimage of �2HomCAlgFp
~ (R[;R/p) in

HomCAlgFp
~ (R[; �0(D)/p). The rest of the proof is identical to that of Proposition 1.4.16. �

1.5. Proof of the main theorem

Fix a perfectoid ring R and a generator � of Fontaine's map � :W (R[)!R, the goal of this section
is to prove Theorem 1.1.13. We first need a much weaker version which says that the 0th homotopy
group of the E2-Thom spectrum in question, as a ring, is isomorphic to R:

Lemma 1.5.1. The 0th homotopy group �0(MfR;�) of the Thom spectrum associated to fR;� is
isomorphic to R for any perfectoid ring R.

Proof. We mimic a segment of the proof of Theorem A.1 in [KN]:
We note that MfR;� is connective, so we have

�0(MfR;�)=��0(W+(R[)h
3S3)=��0(W+(R[))�0(
3S3)

where the �0(
3S3)=�Z-action on �0(W+(R[))=�W (R[) is given by multiplication by 1¡ �, hence

�0(W+(R[))�0(
3S3)=�W (R[)/(1¡ (1¡ �))=�R �

In view of Lemma 1.5.1, in order to prove Theorem 1.1.13, it suffices to show that

Proposition 1.5.2. The 0th Postnikov section tR;� :MfR;�! ��0MfR;�'HR, being an E2-map
a priori, is an equivalence of spectra.

To begin with, we first note that the special case when R is a perfect Fp-algebra is already
covered by previous considerations:

1.5 Proof of the main theorem 17



Lemma 1.5.3. The tR;� in question is an equivalence of spectra when R is a perfect Fp-algebra.

Proof. Theorem 1.3.1 tells us that there is an equivalence MfR;�!HR. The lemma follows from
the fact thatHR lives in (ModW+(R))�0 and that the 0th Postnikov section is essentially unique. �

We first note that both MfR;� and HR admit canonical W+(R[)-module structures. Our
strategy breaks up into several steps:

1. Prove some finiteness and completeness results of MfR;� and HR as W+(R[)-modules;

2. Show that tR;� is an equivalence after the base change along W+(R[)!W+(�), and hence
an equivalence after a further base change along W+(�)!H� to the special fiber H�;

3. The compositionW+(R[)!W+(�)!H� coincides with the compositionW+(R[)!HR[!
H�, and a Nakayama-like argument shows that tR;� is an equivalence after base change
along W+(R[)!HR[;

4. Deduce that tR;� is an equivalence by completeness.

To proceed, by Corollary 1.4.14, we also fix an invertible element u2GL1(W (�)) associated to �
so that the image of � in W (�) is p u.

1.5.1. Finiteness and completeness of MfR;� and HR as W+(R[)-mod-
ules

Lemma 1.5.4. HW (k) is an almost perfect W+(k)-module for any perfect Fp-algebra k.

Proof. If k=Fp, then W+(Fp)'Sp
^ is a coherent ring as in Definition A.0.10, and HW (Fp)'

HZp'H�0(W+(Fp)) is an almost perfect Sp^-module by Corollary A.0.12.
In general, by Proposition 1.2.7, we have HW (k)'W+(k)
Sp

^HZp, hence HW (k) is almost
perfect by Proposition A.0.8. �

Corollary 1.5.5. HR is an almost perfect W+(R[)-module.

Proof. HR is the cofiber of the multiplication map m� :HW (R[)!HW (R[) where the domain
and the codomain are almost perfect (Lemma 1.5.4), hence HR is also almost perfect (Proposi-
tion A.0.7). �

We need a nontrivial input from algebraic topology:

Proposition 1.5.6. There exists a Kan complex X� which is homotopy equivalent to the double
loop space 
2S3 of the 3-sphere such that Xn is a finite set for each [n]2�op.

Proof. This is essentially due to [Wal65, Thm A and B] and Serre. We first note that, the loop
space 
2S3 is a loop space therefore simple [MP12, Cor 1.4.5]. Now we show that 
2S3 is of finite
type, i.e. homotopy equivalent to a CW-complex with finite skeleta. By [MP12, Thm 4.5.2], it suf-
fices to show thatHi(
2S3;Z) are finitely generated for all i2N>0. The argument is standard (due
to Serre): we know that Hi(S3;Z) are finitely generated for all i2N. Applying [tD08, Thm 20.4.1]
to the fiber sequence 
S3!�!S3 in S, we deduce thatHi(
S3) are finitely generated for all i2N.
We apply again [tD08, Thm 20.4.1] to the fiber sequence
2S3!�!
S3, we deduce thatHi(
2S3)
are finitely generated. Now the result follows from the simplicial approximation theorem. �

Lemma 1.5.7. MfR;� is an almost perfect W+(R[)-module.

Proof. We first pick up a Kan complex X� representing 
2 S3 where each Xn is a finite set as
in Proposition 1.5.6. It follows from Bousfield-Kan formula (see, for example, Corollary 12.3 in
[Sha18]) that MfR;� could be written as the geometric realization of a simplicial object N� where
each Nn is a free W+(R[)-module of finite rank, hence almost perfect by Proposition A.0.7. �
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Corollary 1.5.8. cofib(tR;�) is an almost perfect W+(R[)-module.

Proof. The subcategory of almost perfect modules are closed under taking cofibers and base
changes (Proposition A.0.7). The statement then follows from Corollary 1.5.5 and Lemma 1.5.7. �

Lemma 1.5.9. The spectrum HR is p-complete.

Proof. By definition of perfectoid rings, R is p-adically complete, therefore HR is p-complete by
Proposition A.0.28. �

Lemma 1.5.10. The spectrum MfR;� is p-complete.

Proof. We note that W+(R[) is p-complete by definition of spherical Witt vectors, and MfR;� is
almost perfect, therefore p-complete by Proposition A.0.27. �

Corollary 1.5.11. The spectrum cofib(tR;�) is p-complete.

Proof. It follows from Corollary 1.5.8 and Proposition A.0.27. �

1.5.2. tR;� is an equivalence after the base change along W+(R[)!
W+(�)

The proof is similar to that of Theorem 1.3.1, except that we need to be more careful to identify
the maps.

Lemma 1.5.12. There is a canonical equivalence Mf�;pu !!!!!!!!!!!!!!
'

W+(�)
W+(R[)MfR;� of W+(�)-
modules.

Proof. We first note that the image of the multiplication map m1¡� :W+(R[)!W+(R[) under
the base change functor W+(�)
W+(R[)¡ :ModW+(R[)!ModW+(�) is the multiplication map
m1¡pu :W+(�)!W+(�).

Therefore f�;pu coincides with the composition


2S3!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
fR;�

BGL1(W+(R[))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
W+(�)


W+(R[)¡
BGL1(W+(�))

Along with the fact that the functor W+(�)
W+(R[)¡ :ModW+(R[)!ModW+(�) commutes with
small colimits, or to be more precise, that the natural transformation colimi(W+(�)
W+(R[)Mi)!
W+(�)
W+(R[) (colimiMi) is an equivalence for any diagram (Mi)i in ModW+(R[), we deduce that
there is a canonical equivalence Mf�;pu!!!!!!!!!!!!!!

'
W+(�)
W+(R[)MfR;� as W+(�)-modules. �

Lemma 1.5.13. Given a morphism of perfect Fp-algebras k!K, the commutative diagram of E1-
rings

W+(k) ¡! W+(K)

 
¡

 
¡

HW (k) ¡! HW (K)
is a pushout square.

Proof. Consider the commutative diagram of E1-rings

Sp
^ ¡! W+(k) ¡! W+(K)

 
¡

 
¡

 
¡

HZp ¡! HW (k) ¡! HW (K)

By Proposition 1.2.7, we know that the left square and the outer square are pushout squares,
therefore so is the right square. �

Lemma 1.5.14. There is a canonical equivalence W+(�)
W+(R[)HR!H� of W+(�)-modules.
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Proof. Combining two pushout squares in the category of E1-rings:

W+(R[) ¡! W+(�)

 
¡ �  
¡

HW (R[) ¡! HW (�)

 
¡ �  
¡

HR ¡! H�

where � is a pushout square by Lemma 1.5.13 and � is a pushout square by Proposition 1.4.13. �

Lemma 1.5.15. The map W+(�)
W+(R[) tR;� :W+(�)
W+(R[)MfR;�!W+(�)
W+(R[)HR is
equivalent to t�;pu :Mf�;pu!H�.

Proof. In view of Lemma 1.5.12 and Lemma 1.5.14, we only need to show that t�;pu :Mf�;pu!
H� coincides with the composition of the equivalences Mf�;pu!W+(�) 
W+(R[)MfR;�,
W+(�)
W+(R[) tR;� and W+(�)
W+(R[)HR!H�. In other words, it suffices to show that the
composition in question is the 0th Postnikov section. We only need to check that the compo-
sition induces an isomorphism on �0 by basic properties of t-structures, since ��0Mf�;pu'H�.
It suffices to show that W+(�)
W+(R[) tR;� induces an isomorphism on �0, and this follows from
the fact that all spectra in question are connective and that tR;� induces an isomorphism on
�0 by Lemma 1.5.1. �

Corollary 1.5.16. H�
W+(R[) tR;� is an equivalence of spectra.

Proof. It follows from Lemma 1.5.15 and Lemma 1.5.3. �

1.5.3. tR;� is an equivalence after the base change alongW+(R[)!HR[

Lemma 1.5.17. Let M be an HR[-module which is bounded below and almost perfect. If there exists
an r 2N such that �r�n(M)=0 for all n2Z, and H�
HR[M ' 0, then M ' 0.

Proof. We show inductively on n that �nM =0.

� Since M is bounded below, �nM =0 for n� 0;

� Suppose that for m<n we have �mM =0. Then by unrolling Definition A.0.6, �nM is a
compact object in the category of discrete R[-modules, therefore is finitely presented and
in particular finitely generated. Now we have

0=�n(H�
HR[M)=Tor0R
[

(�; �nM):

By Proposition 1.4.15 and that �r�n(M)= 0, we have

Tor0R
[

(�; �nM)=Tor0
R[/�r(�; �nM)

We note that ker(R[/ �r!�) lies in the (nil-radical, therefore) Jacobson radical of R[/ �r,
thus �nM =0, by Nakayama's lemma along with the fact that �nM is finitely generated. �

Remark 1.5.18. Matthew Morrow told us that in Lemma 1.5.17, the hypothesis �r �n(M) = 0
is redundant, since the kernel of the map R[! � of Fp-algebras lies in the radical of the ideal
� R[�Rad(R[) where Rad(R[) is the Jacobson radical of the Fp-algebra R[ and the inclusion
� R[�Rad(R[) is deduced from the � R[-adically completeness of the Fp-algebra R[. Since the
Jacobson radical is �radical�, the kernel of the map R[!� also lies in the Jacobson radical Rad(R[).
We decide to preserve the original version to reflect our real thoughts.

Corollary 1.5.19. HR[
W+(R[) tR;� is an equivalence of spectra.

Proof. Note that

�0(HR[
W+(R[)MfR;�)=Tor0
W (R[)(R[; �0(MfR;�))=R[/ �R[
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and

�0(HR[
W+(R[)HR)=Tor0
W (R[)(R[; R)=R[/�R[

and that HR[
W+(R[)MfR;�, HR[
W+(R[)HR are connective E1-rings, we conclude that the
homotopy groups of these E1-rings are �-torsion groups, which implies that for all n2Z,

�2�n(cofib(HR[
W+(R[) tR;�))= 0

In addition, since the subcategory of almost perfect modules are closed under base changes (Proposi-
tion A.0.8), we deduce from Corollary 1.5.8 that cofib(HR[
W+(R[) tR;�)'HR[
W+(R[)cofib(tR;�)
is almost perfect. On the other hand, being the cofiber of a map of connective spectra, it is
also connective. Then we invoke Lemma 1.5.17 along with Corollary 1.5.16 to conclude that
cofib(HR[
W+(R[) tR;�)' 0. �

1.5.4. Conclude: tR;� is an equivalence
We are now at the final stage to conclude a proof of Proposition 1.5.2, and consequently, The-
orem 1.1.13.

Proof of Proposition 1.5.2. We recall that by Theorem 1.2.4 and Example 1.2.6, there is a
pushout square of E1-rings:

Sp
^ ¡! W+(R[)

 
¡

 
¡

HFp ¡! HR[

Therefore by Corollary 1.5.19 we have

0' cofib(HR[
W+(R[) tR;�)'HR[
W+(R[) cofib(tR;�)'HFp
Sp
^ cofib(tR;�)

We then invoke Corollary A.0.32 with Corollary 1.5.11 to deduce that cofib(tR;�)' 0. �

1.5.5. An intermezzo: Identifying THH(¡/W+(k)) with THH(¡) after
p-completion

In this subsection, we will show that Proposition 1.1.17 follows from Proposition 1.1.16. It suffices
to prove the following lemma:

Lemma 1.5.20. Let R be an E1-algebra over W+(k) where k is a perfect Fp-algebra. Then the
canonical map THH(R)!THH(R/W+(k)) induced by S!Sp

^ is an equivalence after p-comple-
tion.

Proof. Note that THH(R/W+(k))'W+(k)
THH(W+(k))THH(R). We are left to show that the
canonical map THH(W+(k))!W+(k) is an equivalence after p-completion. In view of Corol-
lary A.0.32, we only need to check it after tensoring with HFp. We note that the base changed
map HFp
THH(W+(k))!HFp
W+(k) fits into the commutative diagram

HFp
THH(W+(k)) ¡! HFp
W+(k)

 
¡ �

==

THH(HFp
W+(k)/HFp) ¡! HFp
W+(k)

 
¡ �  
¡

THH(Hk/HFp) ¡! Hk

where the commutativity of � follows from the functoriality of the base change functor of THH,
and the commutative of � follows from the functoriality of the natural transformation THH(¡/
HFp)! (¡). All vertical maps are equivalences of spectra: the upper left map is the base change
equivalence, and the lower right map is the equivalence by Proposition 1.2.7, and the lower left map
is the image of this equivalence under the functor THH(¡/HFp) and hence also an equivalence.
The bottom horizontal map is an equivalence by the fact that k is a perfect Fp-algebra. �
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1.6. Analogues

It is worth to note that in Bhatt and Scholze's recent work [BS19], they introduced the concept of
prisms (A; I) which serves as a �non-perfect� version of perfectoid rings. Especially, the category
of perfect prisms (A; I) is equivalent to that of perfectoid rings A/I, and given a perfectoid ring
R, the corresponding perfect prism is given by (W (R[); ker �). It is interesting to know whether
we can generalize our description for general orientable prisms (A; I), that is to say,

Question 1. Given an orientable prism (A; I = (d)) . When can we find an E1-ring spectrum
A+ (which satisfies some hypotheses related to A. A naive guess would be that �0(A+)=A) and a
map 
2S3!BGL1(A+) to which the associated E2-Thom spectrum (possibly after p-completion)
coincides with A/I.

We don't know the answer in this generality. However, we will discuss another special class of
prism (related to Breuil�Kisin cohomology) for which an analogue holds. This result is more-or-less
known by experts. In fact, it is essentially equivalent to Remark 3.4 in [KN19] of which no proof
is presented. In this section, we will first recall some basic facts about complete discrete valuation
rings, then we will indicate briefly how to adapt our proof above to this special class.

1.6.1. Preparations

Definition 1.6.1. ([Ser79, Section I.1]) A ring A is called a discrete valuation ring, or a
DVR, if it is a principal ideal domain that has a unique non-zero prime ideal m. In this case, since
A is local, we also denote the DVR A by (A;m). The field A/m is called the residue field of A.
A generator of m, unique up to multiplication by an invertible element, is called a uniformizer,
usually denoted by $.

Definition 1.6.2. A DVR (A;m) is called of mixed characteristics (0; p) if the field of fraction
Frac(A) of A is of characteristics 0 while the residue field A/m is of characteristics p, which implies
that 0=/ p2m.

Definition 1.6.3. ([Ser79, Section I.1]) Let (A;m) be a DVR. The valuation of an element
x2A n 0 is defined to be the maximal integer n2N such that x2mn, which always exists, denoted
by v(x)2N.

Definition 1.6.4. ([Ser79, Section II.5]) Let (A;m) be a DVR of mixed characteristics (0; p).
Then the integer e= v(p) is called the absolute ramification index of A.

Definition 1.6.5. ([Ser79, Chapter II]) A DVR (A;m) is called complete if it is complete with
respect to the m-adic topology, that is to say, the canonical map from A to the limit of the tower

� � � !A/mn! � � � !A/m2!A/m
is an isomorphism.

Proposition 1.6.6. ([Ser79, Section II.5, Theorem 4]) Let (A;m) be a complete DVR of
mixed characteristics (0; p) with residue field k being perfect. Let e be its absolute ramification index.
Let $2m be a uniformizer. Then there exists an EisensteinW (k)-polynomial E(u)2W (k)[u] (that
is, a W (k)-polynomial E(u)=ue+

P
j=0
e¡1 ajuj such that p j aj for j=0; : : : ; e¡ 1 and p2 - a0, where

W (k) is the ring of Witt vectors as before) along with an isomorphismW (k)[u]/(E(u))!!!!!!!!!!!!!!
�
A which

maps u to the uniformizer $ 2m.

In the rest of this section, we will fix a complete DVR (A;m) of mixed characteristics (0; p) with
residue field k being perfect, absolute ramification index e and a uniformizer $2m. We also fix a
choice of an EisensteinW (k)-polynomial E(u)2W (k)[u] as in Proposition 1.6.6. We first note that

Proposition 1.6.7. The element 1¡E(u)2W (k)[[u]] is invertible.

Proof. Write E(u)=ue+
P
j=0
e¡1

aj u
j as in Proposition 1.6.6. Note that W (k) is p-adically com-

plete, therefore 1¡a0 is invertible inW (k), which implies that 1¡E(u)2W (k)[[u]] is invertible. �
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Let W+(k)[u] be the �single variable polynomial W+(k)-algebra�, that is, the E1-W+(k)-
algebra W+(k)
SS[N]. Since the space N is endowed with discrete topology, we have

Proposition 1.6.8. As aW+(k)-module,W+(k)[u] is equivalent to the direct sum
L

j=0
1 ujW+(k),

a free W+(k)-module. The graded homotopy group ��(W+(k)[u]), as a (graded-commutative)
��(W+(k))-algebra, is equivalent to ��(W+(k))[u], where deg u=0.

Now let W+(k)[[u]] be the (u)-completion of the E1-W+(k)-algebra W+(k)[u]. To study
W+(k)[[u]], we need some preparations.

Proposition 1.6.9. Let n2N be a natural number. Let mun :W+(k)[u]!W+(k)[u] be the multi-
plication map given by un2�0(W+(k)[u])=W (k)[u]. Then the W+(k)[u]-module cofib(mun) as a
W+(k)-module is a freeW+(k)-module

L
j=0
n¡1ujW+(k) of rank n, which admits an E1-W+(k)[u]-

algebra structure. In particular, we have the cofiber sequence

W+(k)[u]!!!!!!!!!!!!!!!!!!!!!!!!
mu

W+(k)[u]!W+(k)

of W+(k)[u]-modules.

Proof. For any space X 2S, we let X+2S� denote the pointed discrete space f�g[X. Especially,
N+= f�g [N and (N<n)+= f�g[N<n. The addition map N!N; m 7!n+m induces a map of
pointed spaces �n :N+!N+. Note that in the1-category S of spaces, we have a pushout diagram

N+ !!!!!!!!!!!!!!!!!!!!
�n

N+

 
¡

 
¡

f�g ¡! (N<n)+

to which we apply the functor �1 : S�! Sp, left adjoint of the functor 
�1 : Sp! S� therefore

preserving colimits, we get a cofiber sequence S[u]!!!!!!!!!!!!!!!!!!!!u
n

S[u]!
L

j=0
n¡1uj S. A further base change

to W+(k) gives rise to the result. In addition, the multiplication structure could be seen from the
fact that the addition map N!N;m 7!n+m in fact defines a monoidal action. �

Corollary 1.6.10. Let n2N be a natural number. Let mun :W+(k)[u]!W+(k)[u] be the multi-
plication map. Then homotopy groups ��(cofib(mun)) of the cofiber as ��(W+(k)) could be identified
with ��(W+(k))[u]/(un), and the long exact sequence of homotopy groups associated to the cofiber
sequence W+(k)[u] !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !mun

W+(k)[u]! cofib(mun) decomposes as short exact sequences, which
assemble to a short exact sequence of graded ��(W+(k))[u]-modules:

0!��(W+(k))[u]!!!!!!!!!!!!!!!!!!!!
un

��(W+(k))[u]!��(W+(k))[u]/(un)! 0

Furthermore, this sequence is functorial in n2 (N; >).

Proposition 1.6.11. The E1-W+(k)-algebra W+(k)[[u]] is connective. The zeroth homotopy
group of �0(W+(k)[[u]]) is isomorphic to the (u)-adic completion of the polynomial W (k)-algebra
W (k)[u], that is, the formal power series W (k)-algebra W (k)[[u]], as W (k)-algebras.

Our proof is incomplete: we only identify the W (k)-module structures on homotopy groups.
A formal identification of algebra structures would require more rudiments about the symmetric
monoidal structure on the completion functor than we know.

Proof. We reinterpret Proposition A.0.19 as follows: since the limit functor is exact, it commutes
with cofibers, therefore we can rewrite W+(k)[[u]] = (W+(k)[u])(u)

^ as the limit of the tower

� � � ! cofib
�
W+(k)[u]!!!!!!!!!!!!!!!!!!u

2

W+(k)[u]
�
! cofib

¡
W+(k)[u]!!!!!!!!!!u W+(k)[u]

�
After passage to homotopy groups, by Corollary 1.6.10, we get the tower of graded ��(W+(k))[u]-
modules

� � � !��(W+(k))[u]/(un)! � � � !��(W+(k))[u]/(u2)!��(W+(k))[u]/(u) (1.6.1)
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which is degree-wise a tower of surjective maps. It follows from Milnor's sequence that the graded
��(W+(k))[u]-module ��(W+(k)[[u]]) is isomorphic to the (ordinary) inverse limit of the tower
(1.6.1), that is, ��(W+(k))[[u]]. Take �=0, we get the result. �

The following lemma serves as a key tool in our proof:

Lemma 1.6.12. Let M be a W+(k)[u]-(or W+(k)[[u]]-)module (spectrum). If the spectrum
W+(k)
W+(k)[u]M (or W+(k)
W+(k)[[u]]M respectively) is contractible, then so is the (u)-com-
pletion of the spectrum M. In particular, if furthermore W+(k)[u]-(or W+(k)[[u]]-)module M is
assumed to be (u)-complete, then the spectrum M is contractible.

Proof. We first assume that the spectrum W+(k)
W+(k)[u]M is contractible. In this case, we
apply the exact functor ¡
W+(k)[u]M to the cofiber sequence

W+(k)[u]!!!!!!!!!!!!!!!!!!!!!!!!mu
W+(k)[u]!W+(k) (1.6.2)

indicated in Proposition 1.6.9 obtaining that the base-changed map M !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
mu
W+(k)[u]M

M is an
equivalence of spectra. Note that this map is just the multiplication map, denoted by mM;u. Now
we look at Proposition A.0.19: the (u)-completion of the W+(k)[u]-module M is the cofiber of the
canonical map T (M)!M , where T (M) is the limit of the tower

� � � !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
mM;u

M !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
mM;u

M !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
mM;u

M

Since all maps in the tower are equivalences of spectra, we deduce that the canonical map T (M)!
M is an equivalence of spectra, which implies that the (u)-completion of the W+(k)[u]-module M
is contractible. In particular, the W+(k)[u]-module M is assumed to be (u)-complete, therefore
the spectrum M is contractible.

If, on the other hand, W+(k)
W+(k)[[u]]M is contractible, then to adopt the proof above, it
suffices to establish the cofiber sequence

W+(k)[[u]]!!!!!!!!!!!!!!!!!!!!!!!!mu
W+(k)[[u]]!W+(k) (1.6.3)

We apply the (u)-complete functor to the cofiber sequence (1.6.2), and note that the W+(k)[u]-
moduleW+(k) is (u)-nilpotent (in fact, multiplying u is the zero map onW+(k)), thereforeW+(k)
is (u)-complete by Corollary A.0.17, which leads to the cofiber sequence (1.6.3). The rest of the
proof is same as before. �

1.6.2. The Breuil�Kisin case
As before, we fix a complete DVR (A;m) of mixed characteristics (0; p) with residue field k being
perfect, absolute ramification index e, a uniformizer $ 2m and an Eisenstein W (k)-polynomial
E(u) 2W (k)[u] which induces an isomorphism W (k)[u] / (E(u)) !!!!!!!!!!!!!!� A; u 7!$ as in Proposi-
tion 1.6.6. As in Remark 1.1.9 and Remark 1.1.12, 1¡E(u)2W (k)[[u]] = �1(BGL1(W+(k)[[u]]))
gives rise to a map fE :
2S3!BGL1(W+(k)[[u]]). The proof of Lemma 1.5.1 results in the following
analogue:

Lemma 1.6.13. The zeroth homotopy group of the E2-Thom spectrum MfE associated to the map
fE is isomorphic to the W (k)-algebra W (k)[[u]]/(E(u))=�W (k)[u]/(E(u))=�A.

The W (k)[u]-module structure on A gives rise to a W+(k)[u]-module structure on HA. Since
A is m=($)-adically complete, the W (k)[u]-module structure on A also gives rise to a W (k)[[u]]-
module structure on A and consequently a W+(k)[[u]]-module structure on HA. We readily check
that these structures are compatible, in the sense that the W+(k)[u]-module structure on HA
coincides with the image of theW+(k)[[u]]-module HA under the forgetful functor ModW+(k)[[u]]!
ModW+(k)[u]. Matthew Morrow proposed the following analogue of the Hopkins�Mahowald the-
orem:

Theorem 1.6.14. The truncation map tE :MfE!H�0(MfE)=�HA of E2-W+(k)[[u]]-algebras is
an equivalence of spectrum. Thus the Eilenberg�MacLane spectrum HA is the E2-Thom spectrum
MfE associated to the map fE : 
2S3!BGL1(W+(k)[[u]]).
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Corollary 1.6.15. (see [KN19, Remark 3.4]) The E2-HA-algebra HA
W+(k)[[u]]HA is a free
E2-HA-algebra on a single generator in degree 1.

Proof. The strategy is already covered in the proof of Lemma 1.3.2 and Lemma 1.5.12. Since
this pattern will appear again soon, we find it beneficial to present again. Let's recall that the E2-
Thom spectrum MfE is the colimit of the composite functor


2S3!!!!!!!!!!!!!!!!!!
fE BGL1(W+(k)[[u]])!ModW+(k)[[u]]

which by abuse of notation will be still denoted by fE.
Since the base change functor HA 
W+(k)[[u]]¡ :ModW+(k)[[u]]!ModHA is a left adjoint, it

commutes with colimits, we deduce that HA 
W+(k)[[u]]MfE 'M (fE 
W+(k)[[u]]HA), where
fE
W+(k)[[u]]HA is the map 
2S3!BGL1(HA).

As in the proof of Lemma 1.3.2, we can identify map as follows: we pick the image of 1¡
E(u)2GL1(W (k)[[u]]) under the map GL1(W (k)[[u]])!GL1(A), that is, the element 12GL1(A)=�
�1(BGL1(HA)), which gives rise to the constant map S1! BGL1(HA) and consequently the
constant map fA : 
2S3!BGL1(HA), as in Remark 1.1.9 and Remark 1.1.12.

In conclusion, the map fE 
W+(k)HA : 
2 S3!BGL1(HA) coincides with the constant map
fA, and the E2-Thom spectrum MfA is thus the colimit of a constant map, which evaluates to
HA

2S3, the free E2-HA-algebra on a single generator in degree 1. �

Recall that E(u)2W (k)[u] is an EisensteinW (k)-polynomial. Let a0 denote the constant term
of E(u). By assumption, p j a0 but p2 - a0. Let a0= p b0 where b02W (k). Since p is not a zero-
divisor in W (k), we have p - b0, which implies that the image of b0 inW (k)/p=�k is invertible since
k is a field. Now since W (k) is p-adically complete, we have b02GL1(W (k)).

The strategy to prove Theorem 1.6.14 is similar to the approach to attack Theorem 1.1.13.
We first show that the base change of the truncation map tE along the map W+(k)[[u]]!W+(k)
coincides with the truncation map tk;a0, then it follows from Lemma 1.5.3 that the base changed
map W+(k)
W+(k)[[u]] tE' tk;a0 is an equivalence of spectra, and by completeness, we deduce that
the map tE is also an equivalence of spectra by Lemma 1.6.12.

Lemma 1.6.16. There is a canonical equivalence Mfk;a0 !!!!!!!!!!!!!!
'

W+(k)
W+(k)[[u]]MfE of W+(k)-
modules.

Proof. We will duplicate the proof of Lemma 1.5.12. The image of the multiplication mapm1¡E(u) :
W+(k)[[u]]!W+(k)[[u]] under the base change functor W+(k) 
W+(k)[[u]] ¡ :ModW+(k)[[u]]!
ModW+(k) is the multiplication map m1¡a0 :W+(k)!W+(k). Note also that the base change
functor is symmetric monoidal. Now we conclude that the map fk;a0 coincides with the com-
posite map


2S3!!!!!!!!!!!!!!!!!!fE BGL1(W+(k)[[u]])!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
W+(k)


W+(k)[[u]]¡
BGL1(W+(k))

Thus by commuting the colimit and the base-change, we obtain

Mfk;a0 = colim(W+(k)
W+(k)[[u]] fE)

!!!!!!!!!!!!!!
'

W+(k)
W+(k)[[u]] colim fE

= W+(k)
W+(k)[[u]]MfE

where by abuse of notation, the colimit of the maps fk;a0 (or fE respectively) are understood as the
colimit of the maps fk;a0 (or fE respectively) composed with the functor BGL1(W+(k))!ModW+(k)

(or BGL1(W+(k)[[u]])!ModW+(k)[[u]] respectively) as in the definition of Thom spectra. �

Lemma 1.6.17. There is a canonical equivalence W+(k)
W+(k)[[u]]HA!!!!!!!!!!!!!!
'
Hk of W+(k)-modules.

Proof. As in the proof of Lemma 1.6.12, we identify W+(k) with the cofiber of the multiplication
map mu :W+(k)[[u]]!W+(k)[[u]] which gives us an equivalence

W+(k)
W+(k)[[u]]HA' cofib
¡
HA!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

mHA;u
HA

�
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Now by the definition of the W+(k)[[u]]-module structure on HA and that u is not a zero-divisor
in A, we have the equivalence cofib

¡
HA!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

mHA;u
HA

�
'H

¡
coker

¡
A!!!!!!!!!!!!!!

$
A
��
'Hk. Thus we obtain

an equivalence W+(k)
W+(k)[[u]]HA'Hk. We can readily check that this equivalence could be
described as follows: consider the commutative diagram in the 1-category of E1-rings

W+(k)[[u]] ¡! W+(k)

 
¡

 
¡

HA ¡! Hk

where the left vertical map is the composite map W+(k)[[u]] ! H(�0(W+(k)[[u]])) '
H(W (k)[[u]]) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !u 7!$

HA (where the first map is the Postnikov section). The commutative dia-
gram induces a map W+(k) 
W+(k)[[u]] HA!Hk (note that the left hand side is a pushout
of E1-rings), which coincides with the equivalence obtained above. �

Lemma 1.6.18. The equivalences in Lemma 1.6.16 and Lemma 1.6.17 assembles into a commuta-
tive diagram:

Mfk;a0 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
tk;a0

Hk

 
¡' ¡!'

W+(k)
W+(k)[[u]]MfE ¡! W+(k)
W+(k)[[u]]HA

where the top horizontal map is the 0th Postnikov section tk;a0 defined in Proposition 1.5.2 and
the bottom horizontal map is the base-changed 0th Postnikov section W+(k)
W+(k)[[u]] tE.

Proof. As in the proof of Lemma 1.5.15, it suffices to show that the composite map on the
0th homotopy group �0(Mfk;a0)! �0(W+(k) 
W+(k)[[u]]MfE)! �0(W+(k) 
W+(k)[[u]]HA)!
�0(Hk)=� k is an isomorphism, which follows from an explicit element chasing. �

Combined with Lemma 1.5.3, we obtain that

Corollary 1.6.19. The base-changed map W+(k) 
W+(k)[[u]] tE :W+(k) 
W+(k)[[u]]MfE!
W+(k)
W+(k)[[u]]HA is an equivalence of W+(k)-modules.

Apply Lemma 1.6.12 to the cofiber cofib(tE), we deduce that

Corollary 1.6.20. The map tE :MfE!HA is an equivalence of spectra after (u)-completion.

As in Lemma 1.5.9, we deduce from Theorem A.0.25 that

Lemma 1.6.21. The W+(k)[[u]]-module HA is (u)-complete.

Now, given the nontrivial topological input Proposition 1.5.6, as in Lemma 1.5.10 and Corol-
lary 1.5.11, we deduce that

Lemma 1.6.22. The W+(k)[[u]]-module MfE is (u)-complete.

Corollary 1.6.23. The cofiber cofib(tE) is a (u)-complete W+(k)[[u]]-module, and thus the map
tE is an equivalence of spectra by Corollary 1.6.20.

This completes the proof of Theorem 1.6.14.

1.6.3. Complete regular local rings
Inspired by [KN19, Section 9], we will provide a Hopkins�Mahowald theorem for complete regular
local rings of mixed characteristic. We will show how to modify our proof of Theorem 1.6.14 to
deduce this. Note that this is also a special case of Question 1, by [BS19, Remark 3.11].
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We need some preparations in higher algebra:
Let W+(k)[u1; : : : ; un] be the �n-variate polynomial W+(k)-algebra�, that is, the E1-W+(k)-

algebraW+(k)
SS[Nn]. Since the space Nn is endowed with discrete topology, parallel to Propo-
sition 1.6.8, we have

Proposition 1.6.24. As a W+(k)-module, W+(k)[u1; : : : ; un] is equivalent to the direct sumL
�2Nnu

�W+(k), a free W+(k)-module. The graded homotopy group ��(W+(k)[u1; : : : ; un]), as a
(graded-commutative) ��(W+(k))-algebra, is equivalent to ��(W+(k))[u1;:::;un], where degu1= ���=
deg un=0.

Now letW+(k)[[u1;:::;un]] be the (u1;:::;un)-completion of theE1-W+(k)-algebraW+(k)[u1;:::;
un]. By induction on n2N>0 and argue as in Proposition 1.6.11, we obtain:

Proposition 1.6.25. The E1-W+(k)-algebra W+(k)[[u1;:::; un]] is connective. The zeroth homo-
topy group of �0(W+(k)[[u1; : : : ; un]]) is isomorphic to the (u1; : : : ; un)-adic completion of the
polynomialW (k)-algebraW (k)[u1;:::;un], that is, the formal power seriesW (k)-algebraW (k)[[u1;:::;
un]], as W (k)-algebras.

Similarly, argue inductively on n2N>0 as in Lemma 1.6.12, we obtain:

Lemma 1.6.26. Let M be a W+(k)[u1; : : : ; un]-(or W+(k)[[u1; : : : ; un]]-)module (spectrum). If the
spectrum W+(k)
W+(k)[u1; : : : ;un]M (or W+(k)
W+(k)[[u1; : : : ;un]]M respectively) is contractible,
then so is the (u1;:::; un)-completion of the spectrumM. In particular, if furthermore W+(k)[u1;:::;
un]-(or W+(k)[[u1; : : : ; un]]-)module M is assumed to be (u1; : : : ; un)-complete, then the spectrum
M is contractible.

We note that in these inductive arguments, we heavily depend on Proposition A.0.23.

Now we are ready to formulate the Hopkins�Mahowald theorem for complete regular local
rings. We fix a positive integer n2N>0, a perfectoid ring R. As in Section 1.5, let � :W (R[)!R

be Fontaine's pro-infinitesimal thickening. Let �2W (R[)[[u1; : : : ; un]] be formal power series such
that �(0; : : : ; 0) 2W (R[) is a generator of ker �. We recall that ker � is principal by definition.
We note that the element 1¡ �(u1; : : : ; un)2W (R[)[[u1; : : : ; un]] is invertible, since 1¡ �(0; : : : ;
0) 2W (R[) is invertible as the ring W (R[) is ker �-adically complete. As in Remark 1.1.9 and
Remark 1.1.12, the element 1¡ �(u1; : : : ; un)2GL1(W (R[)[[u1; : : : ; un]]) gives rise to an E2-map
f :
2S3!BGL1(W (R[)[[u1; :: :; un]]). The proof of Lemma 1.5.1 results in the following analogue:

Lemma 1.6.27. The zeroth homotopy group of the E2-Thom spectrum Mf associated to the map
f is isomorphic to the W (R[)-algebra W (R[)[[u1; : : : ; un]]/(�(u1; : : : ; un)).

We now phrase the following variant of the Hopkins�Mahowald theorem:

Theorem 1.6.28. The truncation map t :Mf!H�0(Mf)=�HW (R[)[[u1; : : : ; un]]/(�(u1; : : : ; un))
of E2-W+(R[)[[u1; : : : ; un]]-algebras is an equivalence of spectrum. Thus the Eilenberg�MacLane
spectrum HW (R[)[[u1; ::: ; un]]/(�(u1;: :: ; un)) is the E2-Thom spectrum Mf associated to the map
f : 
2S3!BGL1(W+(R[)[[u1; : : : ; un]]).

The proof is parallel to that of Theorem 1.6.14, which we will omit. Now let (A;m) be a complete
regular local ring with residue field k=A/m being perfect of characteristic p. We also assume that
p=/ 0 in A. Let (a1; : : : ; an)�m be a regular sequence which generates the maximal ideal m. We
need the following lemma:

Lemma 1.6.29. ([KN19, Lemma 9.2]) There exists a map W (k)[[u1; : : : ; un]]!A of rings given
by ui 7! ai for i= 1; : : : ; n, which is surjective with kernel being principal, generated by a formal
power series �2W (k)[[u1; : : : ; un]] with �(0; : : : ; 0)= p.
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Proof. First, the isomorphism k!A/m lifts to a map W (k)!A since A is m-adically complete,
see Example 1.2.5 or [Ser79, Section II.5, Proposition 10]. The map W (k)[[u1; : : : ; un]]!A is
then well-defined since A is m-adic complete. Let C;K be the cokernel and the kernel of the map
W (k)[[u1;:::; un]]!A of W (k)[[u1;:::;un]]-modules. By right-exactness of classical tensor products,
we have

Tor0
W (k)[[u1; : : : ;un]](C;W (k))=� coker(W (k)! k)=� 0

Now by inspecting the exact sequence 0!m!A! k! 0, we deduce that A is a finitely gen-
erated W (k)[[u1; : : : ; un]]-module, therefore so is C. We deduce from Nakayama's lemma that
C=� 0, therefore the map W (k)[[u1; : : : ; un]] is surjective. Now we obtain a short exact sequence of
W (k)[[u1; : : : ; un]]-modules

0!K!W (k)[[u1; : : : ; un]]!A! 0

which gives rise to an exact sequence of W (k)-modules

Tor1
W (k)[[u1; : : : ;un]](A;W (k))!Tor0

W (k)[[u1; : : : ;un]](K;W (k))!W (k)! k! 0

Since (a1; : : : ; an) is a regular sequence, it is also Koszul regular [Sta21, Tag 062F], hence
Tor1

W (k)[[u1; : : : ;un]](A;W (k))=� 0. Thus

Tor0
W (k)[[u1; : : : ;un]](K;W (k))=� ker(W (k)! k)=� pW (k)

We pick a lift �2K of p 2 pW (k). By Nakayama's lemma, the W (k)[[u1; : : : ; un]] module (and
hence the ideal) K is generated by the element �2K. Furthermore, by multiplying an invertible
element in W (k), we can assume that the lift � is so chosen that �(0; : : : ; 0)= p. �

Remark 1.6.30. Our proof of Lemma 1.6.29 leads to a more general result: Let A be a com-
mutative ring with an ideal I � A generated by a (Koszul) regular sequence (a1; : : : ; an) � I.
If A is both p-adically complete and I-adically complete, and R := A/I is a perfectoid ring,
then by Proposition 1.4.16, there exists a unique map W (R[)!A such that the composite map
W (R[)!A!R coincides with Fontaine's map, which allows us to view A as aW (R[)-algebra. Now
we consider the map ' :W (R[)[[u1; : : : ; un]]!A of W (R[)-algebras given by ui 7! ai for i=1; : : : ;
n. Our proof of Lemma 1.6.29 implies that the map ' is surjective with kernel being principal,
generated by a formal power series �2W (R[)[[u1;:::; un]] such that �(0;:::;0) generates the kernel
ker(�) of Fontaine's map � :W (R[)!R.

Corollary 1.6.31. Let � 2W (k)[[u1; : : : ; un]] be a power series as described in Lemma 1.6.29.
Let f : 
2 S3!BGL1(W+(k)[[u1; : : : ; un]]) be the map given by the element 1¡ �(u1; : : : ; un) 2
GL1(W (k)[[u1; : : : ; un]]). Then the E2-Thom spectrum Mf associated to the map f is as an E2-
W+(k)[[u1; : : : ; un]]-algebra equivalent to the Eilenberg�MacLane spectrum HA of the complete
regular local ring A (of mixed characteristic).

Proof. It follows from Theorem 1.6.28 by taking R= k and Lemma 1.6.29. �

1.7. Characterizing Thom spectra as quotients of free
E2-algebras

In this section, we will discuss an alternative characterization of Thom spectra which we learn from
[AB19]. This characterization will enable us to peel off some redundant restraints in the definition
of Thom spectra. We will rephrase Question 1 more broadly, and give a toy example related to the
Breuil�Kisin case. We note that in fact, we have already used this characterization in Lemma 1.3.3.

We first present a theorem which we learn from Antolín-Camarena and Barthel's paper:

Remark 1.7.1. Let R be an E1-ring. Let R[
2S2] be the free E2-R-algebra on a single generator
in degree 0. Then for all E2-R-algebra S and elements x 2 �0(S), the universal property of free
E2-R-algebras gives rise to a map R[
2 S2]! S which maps the generator (in fact, a connected
component) to x. We will call this map the evaluation map of R[
2S2] at x.
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Theorem 1.7.2. ([AB19, Theorem 4.10]) Let R be an E1-ring and � 2 �1(BGL1(R)) =�
GL1(�0R). Let q :S1!BGL1(R) a loop representing �2 �1(BGL1(R)). Let f : 
2S3!BGL1(R)
be the double loop map associated to q (see Remark 1.1.2). Then the E2-Thom spectrum Mf
associated to the E2-map f fits into a pushout diagram of E2-R-algebras:

R[
2S2] ¡! R

 
¡

 
¡

R ¡! Mf

where R[
2S2] =�R
S�+1S2 is the free E2-R-algebra on a single generator in degree 0, and two
maps R[
2S2]!R are evaluation maps of R[
2S3] at 02�0R and 1¡�2�0R respectively.

Remark 1.7.3. Theorem 1.7.2 shows that the Thom spectrum description is equivalent to the
pushout-diagram description. However, we note that the pushout-diagram description is more
general in the sense that even if �2�0R is not invertible, the pushout-diagram description is still
valid while we can no longer, at least superficially, give a Thom spectrum description. We find
it easier to write down proofs for Thom spectrum description so we adapted the Thom spectrum
description for perfectoid rings.

We can now rephrase Question 1 as follows:

Question 2. Given an orientable prism (A;I=(d)) . When can we find an E1-ring spectrum A+

(which satisfies some hypotheses related to A. A naive guess would be that �0(A+) =A) so that
the Eilenberg�MacLane spectrum H(A/I) as an E2-A+-algebra fits into a pushout diagram

A+[
2S2] ¡! A+

 
¡

 
¡

A+ ¡! H(A/I)

such that two maps A+[
2S2]!A+ are evaluation maps of the free E2-A+-algebra A+[
2S2] at
02�0(A+) and d2�0(A+) respectively.

Remark 1.7.4. Theorem 1.7.2 shows that Theorem 1.1.13 answers this question affirmatively
when (A; I) is a perfect prism (W (R[); ker �), with A+ :=W+(R[).

Remark 1.7.5. Similarly, Theorem 1.6.14 answers this question affirmatively when (A; I) is a
prism (W (k)[[u]]; (E(u))) associated to Breuil�Kisin cohomology where k is a perfect Fp-algebra
and E(u)2W (k)[u] is an Eisenstein polynomial.

We now announce a toy example of a variant of Theorem 1.6.14. As there, we fix a complete
DVR (A;m) of mixed characteristics (0; p) with residue field k being perfect, absolute ramification
index e, a uniformizer $ 2m and an Eisenstein W (k)-polynomial E(u)2W (k)[u] which induces
an isomorphism W (k)[u]/(E(u))!!!!!!!!!!!!!!� A; u 7!$ as in Proposition 1.6.6.

Theorem 1.7.6. The (u)-completion of the total cofiber of the commutative diagram of E2-
W+(k)[u]-algebras

W+(k)[u]
SS[
2S2] ¡! W+(k)[u]

 
¡

 
¡

W+(k)[u] ¡! HA

is contractible, where two maps W+(k)[u]
SS[
2S3]!W+(k)[u] are given by evaluation maps at
02�0(W+(k)[u]) and E(u)2�0(W+(k)[u]) respectively. Equivalently put, the commutative diagram
above induces an equivalence ofW+(k)[u]-modules from the E2-pushout of the diagramW+(k)[u] 
W+(k)[u]
SS[
2S2]!W+(k)[u] to the Eilenberg�MacLane spectrum HA after (u)-completion.

Corollary 1.7.7. ([KN19, Remark 3.4]) The E2-HA-algebra HA 
W+(k)[u]HA is the (p)-
completion of the free E2-HA-algebra on a single generator in degree 1.
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Proof. Note that E(u) vanishes after tensoring HA, and that (u)-completion coincides with (p)-
completion for HA since $e/p is an invertible element, the result follows. �

We sketch a proof of Theorem 1.7.6, which is totally parallel to that of Theorem 1.6.14.

A sketch of a proof of Theorem 1.7.6. Let X be the pushout of the diagram W+(k)[u] 
W+(k)[u]
SS[
2S2]!W+(k)[u] in question. We first check that the induced map X!HA is
the 0th Postnikov section. Then we perform a base changeW+(k)
W+(k)[u]¡. We show that after
such a base change, the induced map X!HA becomes an equivalence, given by Theorem 1.7.2
and Lemma 1.5.3. We then conclude the result by Corollary 1.6.20. �
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Appendix A

Recollection of Higher Algebra

This appendix is devoted to a recollection of basic facts in Higher Algebra needed in the main text.
Our main reference is [Lur17], [Lur18b] and [Lur18a].

A.0.1. Finiteness properties of rings and modules
We will include some definitions and properties from [Lur17, Section 7.2.4].

Definition A.0.1. ([Lur17, Notation 7.1.1.10, Proposition 7.1.1.13]) Given a connec-
tive E1-ring R, there is a canonical accessible t-structure on LModR determined by subcategories
(LModR)�0 and (LModR)�0, where (LModR)�0 is the full subcategory of LModR spanned by
those left R-modules M for which �nM =� 0 for n < 0, and (LModR)�0 is the full subcategory
of LModR spanned by those left R-modules M for which �nM =� 0 for n> 0.

Proposition A.0.2. ([Lur17, Proposition 7.1.1.13]) Let R be a connective E1-ring, then the
subcategories (LModR)�0; (LModR)�0�LModR are stable under small products and small filtered
colimits.

Definition A.0.3. ([Lur17, Proposition 7.2.2.10]) Let M be a left module over an E1-ring R.
We will say that M is flat if the following conditions are satisfied:

1. The homotopy group �0M is flat as a left module over �0R in the usual sense.

2. For each n2Z, the natural map Tor0
�0R(�nR; �0M)!�nM is an isomorphism of abelian

groups.

Definition A.0.4. ([Lur17, Definition 7.2.4.1]) Let R be an E1-ring. We let LModR
perf denote

the smallest stable subcategory of LModR which contains R (regarded as a left module over itself)
and is closed under retracts. We will say that a left R-moduleM is perfect if it belongs to LModR

perf.

Definition A.0.5. ([Lur17, Definition 7.2.4.8]) Let C be a compactly generated 1-category.
We will say that an object C2C is almost compact if ��nC is a compact object of ��nC for all n�0.

Definition A.0.6. ([Lur17, Definition 7.2.4.10]) Let R be a connective E1-ring. We will say
that a left R-module M is almost perfect if there exists an integer k such that M 2 (LModR)�k
and is almost compact as an object of (LModR)�k. We let LModR

aperf denote the full subcategory
of LModR spanned by the almost perfect left R-modules.

Proposition A.0.7. ([Lur17, Proposition 7.2.4.11]) Let R be a connective E1-ring. Then:

1. The full subcategory LModR
aperf�LModR is closed under translation and finite colimits, and

is therefore a stable subcategory of LModR;

2. The full subcategory LModR
aperf�LModR is closed under retracts;

3. Every perfect left R-module is almost perfect;

4. The full subcategory (LModR
aperf)�0�LModR is closed under geometric realizations of sim-

plicial objects;

5. Let M be a left R-module which is connective and almost perfect. Then M can be obtained
as the geometric realization of a simplicial left R-module P� such that each Pn is a free R-
module of finite rank.
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Proposition A.0.8. Let f :A!A0 be a map of connective E1-rings. Let M be a connective left
A-module and set M 0=A0
AM. If M is an almost perfect left A-module, then M 0 is an almost
perfect left A0-module.

Proof. Since M is connective and almost perfect, by Proposition A.0.7, there exists a simplicial
object P� in LModA such that each Pn is a free A-module of finite rank and M is equivalent to the
geometric realization of P�. Therefore M 0 is equivalent to the geometric realization of A0
AP�, by
the fact the tensor products commute with small colimits. On the other hand, eachA0
APn is a free
A0-module of finite rank, hence perfect, thus almost perfect. NowM 0 is equivalent to the geometric
realization of almost perfect modules, therefore M 0 is almost perfect by Proposition A.0.7. �

Definition A.0.9. ([Lur17, Definition 7.2.4.13]) A discrete associative ring R is left coherent
if every finitely generated left ideal of R is finitely presented as a left R-module.

Definition A.0.10. ([Lur17, Definition 7.2.4.16]) Let R be an E1-ring. We will say that R
is left coherent if the following conditions are satisfied:

1. The E1-ring R is connective;

2. The discrete associative ring �0R is left coherent;

3. For each n� 0, the homotopy group �nR is finitely presented as a left module over �0R:

Proposition A.0.11. ([Lur17, Proposition 7.2.4.17]) Let R be an E1-ring and M a left R-
module. Suppose that R is left coherent. Then M is almost perfect if and only if the following
conditions are satisfied:

i. For m� 0, �mM =0;

ii. For every integer m, �mM is finitely presented as a left �0R-module.

Corollary A.0.12. Let R be a left coherent E1-ring, then H �0(R) as a left R-module is almost
perfect.

A.0.2. Nilpotent, local and complete modules
We will include several definitions and propositions from [Lur18b], Chapter 7.

Definition A.0.13. ([Lur18b, Definition 7.1.1.1, Example 7.1.1.2]) Let R be a connective
E1-ring and let x 2 �0R. An R-module M is x-nilpotent if the localization M [1/x] vanishes.
Equivalently, M is x-nilpotent if and only if the action of x on ��M is locally nilpotent, that is, if
and only if for each y 2�jM, there exists an integer n� 0 such that xn y=0 in �jM for all j 2Z.

Definition A.0.14. ([Lur18b, Definition 7.1.1.6]) Let R be a connective E1-ring and let
I ��0R be an ideal. We say that an R-module M is I-nilpotent if it is x-nilpotent for each x2 I.

Definition A.0.15. ([Lur18b, Definition 7.2.4.1]) Let R be a connective E1-ring and let
I ��0R be an ideal. We say that an R-module M is I-local if for every I-nilpotent R-module N,
the mapping space MapModR(N;M) is contractible.

Definition A.0.16. ([Lur18b, Definition 7.3.1.1]) Let R be a connective E1-ring and let
I ��0R be an ideal. We will say that an R-module M is I-complete if for every I-local R-module
N, the mapping space MapModR(N;M) is contractible.

Corollary A.0.17. Let R be a connective E1-ring and let I � �0R be an ideal. If M is an I-
nilpotent R-module, then it is also an I-complete R-module.

Proposition A.0.18. ([Lur18b, Proposition 7.3.1.4 and Notation 7.3.1.5]) Let R be a
connective E1-ring and let I � �0R be a finitely generated ideal. Then every left R-module M
fits into an (essentially unique) fiber sequence M 0!M!M 00, where M 0 is I-local and M 00 is I-
complete. Moreover, there is a functor, called the I-completion functor, ModR!ModR, which maps
M to M 00. We denote by MI

^ the image of M under the I-completion functor.

32 Recollection of Higher Algebra



We can compute the I-completion functor when I is principal:

Proposition A.0.19. ([Lur18b, Proposition 7.3.2.1]) Let R be a connective E1-ring and let
x2 �0R be an element. For any R-module M 2ModR, let T (M) denote the limit of the tower

� � � !!!!!!!!!!x M!!!!!!!!!!x M !!!!!!!!!!x M !!!!!!!!!!x M

Then T (M) is (x)-local and the (x)-completion of M can be identified with the cofiber of the
canonical map � :T (M)!M.

Corollary A.0.20. ([Lur18b, Corollary 7.3.2.2]) Let R be a connective E1-ring and let
x2 �0R be an element. The following conditions on an R-module M 2ModR are equivalent:

1. The module M is (x)-complete.

2. The limit of the tower

� � � !!!!!!!!!!
x
M!!!!!!!!!!

x
M !!!!!!!!!!

x
M !!!!!!!!!!

x
M

vanishes.

Corollary A.0.21. ([Lur18b, Corollary 7.3.2.3]) Let R be a connective E1-ring, I ��0R an
ideal and x2�0R an element. Then the (x)-completion functor ModR!ModR;M 7!M(x)

^ carries
I-complete modules to I-complete modules.

Corollary A.0.22. ([Lur18b, Corollary 7.3.2.4]) Let R be a connective E1-ring, x2 �0R
and let M be an R-module.

1. If the R-module M is connective, then the (x)-completion M(x)
^ is connective.

2. If M 2 (ModR)�0, then M(x)
^ 2 (ModR)�1.

Proof. Let T (M) be the limit of the tower
¡
� � � !!!!!!!!!!x M!!!!!!!!!!x M!!!!!!!!!!x M

�
. Then by Proposition A.0.19,

we have the cofiber sequence T (M)!M!M(x)
^ which gives rise to a long exact sequence

� � � !�n(T (M))! �n(M)!�n(M(x)
^ )!�n¡1(T (M))! �n¡1(M)!�n¡1(M(x)

^ )! � � �

Furthermore, let Tn(M)� be the tower

� � � !!!!!!!!!!x �n(M)!!!!!!!!!!x �n(M)!!!!!!!!!!x �n(M)

Then there is a Milnor sequence

0! lim1Tn+1(M)�!�n(T (M))! limTn(M)�! 0

Especially, if M is assumed to be connective, then Tn(M)� is a tower of 0 for n< 0, which implies
that �n¡1(T (M)) vanishes when n< 0. We deduce from the long exact sequence that �n(M(x)

^ )
vanishes when n < 0. Similarly, if M 2 (ModR)�0, then Tn(M)� is a tower of 0 for n > 0, thus
�n(T (M)) vanishes when n� 0. We deduce from the long exact sequence that �n(M(x)

^ ) vanishes
when n> 0. �

Proposition A.0.23. ([Lur18b, Corollary 7.3.3.3]) Let R be a connective E1-ring and I �
�0R be a finitely generated ideal. Let M be an R-module. Then the following conditions on M are
equivalent:

1. M is I-complete;

2. For each x2 I, M is (x)-complete;

3. There exists a set of generators x1; : : : ; xn for the ideal I such that M is (xi)-complete for
i=1; : : : ; n.

Remark A.0.24. ([Lur18b, Corollary 7.3.3.6]) Let � :R!R0 be a morphism of connective
E1-rings, I ��0R a finitely generated ideal and I 0= �(I)�0(R0) the ideal generated by the image
of I. Then

1. An R0-module M is I 0-complete if and only if it is I-complete as an R-module;
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2. For every R0-module M , the canonical map M!MI 0̂ exhibits MI 0̂ as an I-completion of
M , regarded as a morphism of R-modules.

Theorem A.0.25. ([Lur18b, Theorem 7.3.4.1]) Let R be an E1-ring, let I ��0R be a finitely
generated ideal and let M be an R-module. The following conditions are equivalent:

a) The R-module M is I-complete;

b) For every integer k, the homotopy group �kM satisfies the condition that for each x2 I, we
have ExtA0(A[1/x]; �kM)=0=ExtA1(A[1/x]; �kM) where A=�0R:

Proposition A.0.26. ([Lur18b, Proposition 7.3.4.8]) Let R be a connective E1-ring, let
I � �0R be a finitely generated ideal, and let x2 �0R be an element whose image in (�0R)/I is
invertible. If M is an I-complete left R-module, then multiplication by x induces an equivalence
from M to itself.

Proposition A.0.27. ([Lur18b, Proposition 7.3.5.7]) Let R be a connective E1-ring, let
I ��0R be a finitely generated ideal, and let M be an almost perfect R-module. If R is I-complete,
then so is M.

Proposition A.0.28. ([Lur18b, Corollary 7.3.6.3]) Let R be a discrete commutative ring, let
I �R be a finitely generated ideal, and let M be a discrete R-module. The following conditions are
equivalent:

a) The module M is I-adically complete;

b) The module HM is I-complete and M is I-adically separated.

Warning A.0.29. By Proposition A.0.28, the concept of I-adic completeness does not coincide
with the concept of I-completeness for discrete modules over discrete commutative rings. Rather,
the former is stronger than the latter.

Definition A.0.30. A spectrum X is called p-complete if it is (p)-complete as an S-module. For
any spectrum X, the p-completion of X, denoted by Xp^, is the (p)-completion of X as an S-module.

Remark A.0.31. WhenM is an R-module for a connective E1-ring R, (p) is also an ideal of �0R.
In this case, it follows from Remark A.0.24 that M is (p)-complete as an S-module if and only if it
is (p)-complete as an R-module, so there is completely no ambiguity to talk about p-completeness.
Similarly, Remark A.0.24 implies the p-completion of an R-module M is the underlying spectrum
of the (p)-completion of M as an R-module.

Corollary A.0.32. Let X be a bounded below spectrum. If X is p-complete and HFp
X ' 0,
then X ' 0.

Proof. We will show inductively on n2Z that �nX =0.

1. Since X is bounded below, �nX =0 for n� 0.

2. Suppose now that for every m<n, we have �mX =0. We will show that �nX =0. In this
case, we have 0=�n(HFp
X)=�Tor0Z(Fp; �nX). Thus for each x2 �nX , there exists (by
axiom of choice) a sequence (xj)j2N2 (�nX)N such that x0=x and xj= pxj+1 for all j2N,
which gives rise to a map 'x :Z[1/p]! �nX of abelian groups given by '(1/ pj) = xj.
Theorem A.0.25 tells us that 'x=0, and especially, x=0. In conclusion, we have proved
that x=0 for each x2�nX, thus �nX =0. �

34 Recollection of Higher Algebra



Chapter 2

Revisiting derived crystalline cohomology

Abstract. We prove that the 1-category of surjections of animated rings is projectively gen-
erated, introduce and study the notion of animated PD-pairs - surjections of animated rings
with a �derived� PD-structure. This allows us to generalize classical results to non-flat and
non-finitely-generated situations.

Using animated PD-pairs, we develop several approaches to derived crystalline coho-
mology and establish comparison theorems. As an application, we generalize the comparison
between derived and classical crystalline cohomology from syntomic (affine) schemes (due
to Bhatt) to quasisyntomic schemes.

We also develop a non-completed animated analogue of prisms and prismatic envelopes.
We prove a variant of the Hodge�Tate comparison for animated prismatic envelopes from
which we deduce a result about flat cover of the final object for quasisyntomic schemes,
which generalizes several known results under smoothness and finiteness conditions.

2.1. Introduction

2.1.1. Background and main results

Regular sequences and local complete intersections play an important role in the study of Noethe-
rian rings. However, in arithmetic geometry, Noetherianness is not preserved by operations related
to perfectoids. Various generalizations to the non-Noetherian case are available. In [BMS19], it
has been shown that, the quasiregularity (à la Quillen) is a particularly good candidate to replace
the (Koszul) regularity in classical algebraic geometry: an ideal I of a ring A is called quasiregular
(Definition 2.3.47) if the A/I-module I /I2 is flat and the homotopy groups �i(L(A/I)/A) of the
cotangent complex vanish for i > 1, or equivalently put, L(A/I)/A' (I /I2)[1]. In particular, if an
ideal is generated by a Koszul-regular sequence, then it is also quasiregular.

Let us briefly review some details in the simple case of characteristic p (instead of mixed
characteristic). An Fp-algebra R is called perfect if the Frobenius map R!R; x 7!xp is bijective.
An Fp-algebra S is called quasiregular semiperfect if there exists a perfect Fp-algebra R along
with a surjective map R� S of rings of which the kernel I � R is quasiregular. In this case,
[BMS19, Thm 8.12] shows that the derived de Rham cohomology of R with respect to the base
Fp is concentrated in degree 0, and as a ring, it is equivalent to the PD-envelope of (R; I). Since
the cotangent complex LR/Fp vanishes, the base Fp of the derived de Rham cohomology could be
replaced by R.

This result was already known [Bha12a, Thm 3.27] when the kernel I of the map R� S in
question is Koszul regular. In other words, [BMS19] generalizes the classical results about Koszul-
regular ideals to quasiregular ideals.

In this article, we develop a different approach which works in greater generality: we do not
need the base to be perfect, of characteristic p or even �p-local� such as Zp or a perfectoid ring.
We build a machinery to extrapolate results about Koszul-regular ideals to quasiregular ideals in
a systematic fashion. We say that a map R!S of animated rings [CS19, �5.1] is surjective if the
induced map �0(R)!�0(S) is surjective (Definition 2.3.21).

Theorem. (Theorem 2.3.23) The 1-category of surjective maps of animated rings is projectively
generated. The set fZ[x1; : : : ; xm; y1; : : : ; yn]�Z[x1; : : : ; xm] jm; n2Ng of objects forms a set of
compact projective generators.
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For technical reasons, we will introduce the 1-category of animated pairs, which is equivalent
to the 1-category of surjective maps of animated rings. By the formalism of left derived functors
(Proposition B.0.10), given a functor defined for �standard� Koszul-regular pairs (Z[X; Y ]; (Y ))
where X= fx1; : : : ; xmg and Y = fy1; : : : ; ymg, we get a functor defined on all animated pairs, and
in particular, on classical ring-ideal pairs (A; I), and any comparison map between such functors
is determined by the restriction to these Koszul-regular pairs.

In order to formulate a reasonable generalization of the result for quasiregular semiperfect
rings, just as we need animated pairs, we also need animated PD-pairs (Definition 2.3.15), denoted
by (A�A00; 
) (Notation 2.3.25). There is a canonical forgetful functor from the 1-category of
animated PD-pairs to the 1-category of animated pairs, which preserves small colimits (Propo-
sition 2.3.34). This is remarkable since the forgetful functor from the 1-category of PD-pairs to
the 1-category of ring-ideal pairs does not preserve small colimits (Remark 2.3.35). The formalism
gives us the left adjoint to the forgetful functor, called the animated PD-envelope functor .

In general, the animated PD-envelope, considered as a kind of derived functor, is different
from the PD-envelope. We will show that, there is a canonical filtration on the animated PD-
envelope of Fp-pairs2.1.1 (i.e. pairs (A; I) where A is an Fp-algebra), called the conjugate filtration
(Definition 2.3.59), of which we can control the associated graded pieces:

Theorem. (Corollaries 2.3.60 and 2.3.54) Let A be an Fp-algebra and I �A an ideal. Then

1. the animated PD-envelope of (A; I) admits a natural animated 'A�(A/I)-algebra structure.

2. for every i2N, the (¡i)-th associated graded piece of the animated PD-envelope of A is, as
a 'A�(A/I)-module spectrum, naturally equivalent to 'A�(¡A/I

i (L(A/I)/A[¡1])), where ¡A/Ii is
the i-th derived divided power.

As a corollary, the quasiregularity provides an important acyclicity condition: along with a
mild assumption, the animated PD-envelope coincides with the classical PD-envelope:

Theorem. (Corollary 2.3.68) Let A be an Fp-algebra, I �A a quasiregular ideal. Suppose that
the (derived) Frobenius twist (A/I)
A;'A

L A is concentrated in degree 0, i.e., TorAi (A/I ; A) =� 0
(where the last A is viewed as an A-module via the Frobenius 'A :A!A) for all i2N>0. Then the
animated PD-envelope of (A; I) coincides with the classical PD-envelope.

We want to point out that (A/I) 
A;'A
L A being concentrated in degree 0 is a very mild

assumption. For example, when I �A is generated by a Koszul-regular sequence, then this holds
automatically [Bha12a, Lem 3.41]. This also happens when (A; I) comes from a �good� PD-
envelope, see Remark 2.4.62. Using this, we show that

Theorem. (Proposition 2.3.72) Let A be a ring and I�A an ideal generated by a Koszul-regular
sequence. Then the animated PD-envelope of (A; I) coincides with the classical PD-envelope.

Moreover, this mild assumption is not needed if we are only interested in associated graded
pieces of the PD-filtration, which answers a question of Illusie:

Theorem. (Propositions 2.3.77 and 2.3.83) Let A be an Fp-algebra, I�A a quasiregular ideal.
Then there is a canonical comparison map from the animated PD-envelope to the classical PD-
envelope of (A; I) compatible with PD-filtrations which induces equivalences on associated graded
pieces. Furthermore, these associated graded pieces are given by divided powers of I /I2 over A/I.

The key point is that animated PD-envelopes admit natural PD-filtrations of which we can
control the associated graded pieces (Proposition 2.3.77).

Based on animated PD-pairs, we develop a theory of derived crystalline cohomology (Defin-
ition 2.4.17) based on a technical construction called derived de Rham cohomology of a map of
animated PD-pairs (Definition 2.4.9) which generalizes the derived de Rham cohomology of a map
of animated rings. In other words, our derived crystalline cohomology should be understood as a
variant of derived de Rham cohomology, not site-theoretic cohomology. These functors preserve
small colimits by Proposition 2.4.19 and Lemma 2.4.12, therefore formal properties such as base
change compatibility and �Künneth� formula hold (Corollaries 2.4.20, 2.4.21, and 2.4.22).

2.1.1. Or more generally, of animated Fp-pairs.
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In fact, the animated PD-envelope is, roughly speaking, a special case of derived crystalline
cohomology:

Theorem. (Proposition 2.4.64) Let (A�A00; 
A) be an animated PD-pair and A00�R be a
surjective map. Let (B�R; 
B) be the relative animated PD-envelope of A�R with respect to
(A� A00; 
A). Then the underlying E1-Z-algebra of B is equivalent to the derived crystalline
cohomology of R with respect to (A�A00; 
A).

From this we deduce a generalization of [BMS19, Thm 8.12] under quasiregularity and the Tor-
independent assumption mentioned above. To see this, similar to the animated PD-envelope, we
introduce the conjugate filtration on the derived crystalline cohomology (Definition 2.4.41) and on
the relative animated PD-envelope (Definition 2.4.58) in characteristic p, and we have a similar
control of associated graded pieces for the conjugate filtration on relative animated PD-envelopes
(Corollary 2.4.59) and also on the derived crystalline cohomology, which is a crystalline variant of
the Cartier isomorphism:

Theorem. (Proposition 2.4.46) Let (A;I ; 
) be a PD-Fp-pair. Note that the Frobenius map 'A :
A!A factors through A�A/I, giving rise to a natural map '(A;I) :A/I!A (cf. Lemma 2.4.36).
Then for every animated A/I-algebra R and n2N, the (¡i)-th associated graded piece of the con-
jugate filtration on the derived crystalline cohomology of R relative to (A; I ; 
) is, as a '(A;I)� (R)-
module spectrum, equivalent to '(A;I)

� (
V
R
i LR/(A/I))[¡i].

On the other hand, similar to [Ber74], we develop an affine crystalline site (Definition 2.4.65)
based on animated PD-pairs (Bhatt had already indicated such a possibility, see the paragraph
before [Bha12a, Ex 3.21]). Recall that a map A! R of rings is called quasisyntomic (Defini-
tion 2.4.85) if it is flat and the cotangent complex LR/A, as an R-module spectrum, has Tor-
amplitude in [0; 1]. We could also compare the derived crystalline cohomology to the site-theoretic
cohomology:

Theorem. (Propositions 2.4.66, 2.4.87, and 2.4.90) Let (A; I ; 
A) be a PD-pair and R an
A/I-algebra.

1. There is a comparison map from the derived crystalline cohomology of R with respect to
(A; I ; 
A) to the cohomology of the affine crystalline site, which is an equivalence when as
an A/I-algebra, R is either of finite type, or quasisyntomic.

2. There is a comparison map from the cohomology of the affine crystalline site to the (clas-
sical) crystalline cohomology of R with respect to (A; I ; 
A). When R is a quasisyntomic
A/I-algebra,

a. Supposing that p is nilpotent in A, then the comparison map is an equivalence.

b. Supposing that A is p-torsion free, then the comparison map becomes an equivalence
after derived p-completion, or equivalently, after derived modulo p.

The theorem above generalizes [Bha12a, Prop 3.25] which is established for syntomic algebras.
We do not know whether the derived crystalline cohomology and the cohomology of the affine

crystalline site are equivalent without any assumption, we reduced this equivalence to a descent
property of the derived crystalline cohomology �with respect to the base animated PD-pair� (Propo-
sition 2.4.70).

In addition to PD-pairs and the crystalline cohomology, we also introduce animated �-rings
and animated �-pairs, and a non-complete but animated version of prisms, the static version of
which was introduced in [BS19]. Similar to animated PD-envelopes, the non-completed animated
prismatic envelope, which generalizes2.1.2 the prismatic envelope for local complete intersections
[BS19, Prop 3.13], admits the conjugate filtration of which the associated graded pieces are easily
determined by a variant of the Hodge�Tate comparison:

2.1.2. More precisely, it is a non-completed version.
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Theorem. (Theorem 2.5.46) Let (A;d) be a prism and J �A/d an ideal. Then for every i2N,
the (¡i)-th associated graded piece of non-completed prismatic envelope, as an A/(d; J)-module
spectrum, is equivalent2.1.3 to ¡A/(d;J)

i (L(A/(d;J))/(A;d)[¡1]).

As a corollary, similar to animated PD-envelopes, when the ideal J is p-completely quasiregular,
roughly speaking, the (p;d)-completed animated prismatic envelope satisfies the universal property
of the prismatic envelope in [BS19, Prop 3.13] (Remark 2.5.51). Furthermore, the non-completed
prismatic envelope satisfies a faithful flatness (Proposition 2.5.49), which leads to a technical result
which is essentially about the flat cover of the final object (Proposition 2.5.55), and a similar
argument shows the (p; d)-completed variant:

Theorem. (Proposition 2.5.56) Let (B;d) be a bounded oriented prism, R a derived p-complete
and p-completely quasisyntomic B /d-algebra. Let P be a derived (p; d)-complete animated �-B-
algebra which is (p; d)-completely quasismooth over B, equipped with a surjection P �R of B-
algebras. Then the (completed) prismatic envelope of P �R exists and is a flat cover of the final
object in the prismatic site.

We stress that our theory is non-completed. Technically, it is easier to deal with non-completed
version than with p-completed version because the 1-category of p-completed objects is usually
not projectively generated. For example, Zp2Dcomp(Zp) is not a compact object. We could over-
come this issue by applying the techniques developed in Subsection 2.2.5, but it would make the
theory inconvenient.

However, thanks to Clausen-Scholze's condensed mathematics, the non-completed version could
serve a cornerstone of an analytic version which allows us to put �topologies� and �analytic struc-
tures� on our animated rings. We will sketch a theory of analytic pairs, analytic PD-pairs and
analytic PD-envelope in Section 2.6.

Remark. In a future work, we will develop the theory of analytic crystalline cohomology . We
now briefly describe how it would lead to classical crystalline cohomology: An analytic PD-pair
((A;M)� A00; 
) consists of the datum of an analytic ring (A;M), a surjection A�A00 of
condensed ring and a condensed PD-structure 
. We recall that Huber pairs (A;A+) give rise to
analytic rings [Sch19a, Prop 13.16]. In particular, (Zp;Zp) is a Huber pair, which gives rise to an
analytic ring Zp;�. In general, given an analytic PD-pair ((A;M)�A00; 
), we have a canonical
analytic structure M00 on A00, and we would like to define the analytic crystalline cohomology
for any map (A00;M00)! (R;N ) of analytic rings under certain condition such as nuclearity. In
particular, any Fp-algebra R gives rise to a map Fp;�!R� of analytic rings, and we expect that the
analytic crystalline cohomology of R� with respect to the analytic PD-pair (Zp;��Fp; 
) would
recover the classical crystalline cohomology of R.

2.1.2. Main techniques We systematically adopt two techniques in this article: the ani-
mation and a kind of local-global principle for Z. We briefly summarize them as follows:

There is a procedure to associate to 1-projectively generated 1-categories projectively generated
1-categories, called the animation, introduced in [CS19, �5.1], and defined by the non-abelian
derived category of a set of compact 1-projective generators.

Example. The abelian category of R-modules admits a set of compact 1-projective generators
given by free R-modules of finite rank. The animation of this category is the connective part
D�0(R) of the derived category D(R).

Example. The 1-category of rings admits a set of compact 1-projective generators given by
polynomial rings on finitely many variables.

Remark. It is not a coincidence that the sets of compact 1-projective generators above are given by
�finite free objects�. Indeed, it is a corollary of Proposition B.0.31, applied to the pairs Set�ModR
and Set�Ring of adjoint functors.

2.1.3. Here we suppress the Breuil�Kisin twists.
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We review the definition of animation and summarize its main properties in Subsection B.0.3.
When applying this construction to the 1-category of rings, we get the 1-category of animated
rings. We apply this construction to the 1-category of �-rings, obtaining the 1-category of ani-
mated �-rings (Definition 2.5.5).

The technical advantage of this construction is that, to produce a sifted-colimit-preserving
functor from a projectively generated 1-category, it suffices to produce a functor from the full
subcategory spanned by a set of compact projective generators which, as we have seen, is given by
�finite free objects�.

Now we want to apply this procedure to the 1-category of ring-ideal pairs. Unfortunately,
the 1-category of ring-ideal pairs is not 1-projectively generated. However, it is reasonable to say
that �standard� Koszul-regular pairs (Z[x1; : : : ; xm; y1; : : : ; yn]; (y1; : : : ; yn)) are �finite free objects�.
We pick the non-abelian derived category of the full category spanned by these pairs, and the 1-
category of ring-ideal pairs embeds fully faithfully into it (Proposition 2.3.17). This1-category is
equivalent to the1-category of surjections of animated rings (Theorem 2.3.23). Similarly, we apply
this �modified animation� to the 1-category of PD-pairs, obtaining the 1-category of animated
PD-pairs. The PD-envelope functor gives rise to the animated PD-envelope (Definition 2.3.15): a
�good enough� pair of adjoint functors between 1-projectively generated 1-categories give rise to
a pair of adjoint functors between animations (Corollary 2.2.3). However, here the story is a bit
more complicated due to our �modification� of the animation.

In a similar fashion, we apply this animation formalism to �-pairs, obtaining animated �-pairs
(Definition 2.5.8), and we use similar techniques to define and analyze non-completed animated
prismatic envelopes. We also use the animation techniques to define the �de Rham context� dRCon,
the �crystalline context� CrysCon, the derived de Rham cohomology and the derived crystalline
cohomology in Subsection 2.4.1.

Now we describe the second main technique that we used: the local-global principle for Z.
Some techniques are only valid in characteristic p. For example, we do not know how to define
the conjugate filtration on the derived crystalline cohomology beyond characteristic p. However,
these arithmetic objects, such as PD-structures, usually degenerate in characteristic 0. In view
of these, we can usually then glue the results for each prime number p 2N and the result after
rationalization. The simplest case is the following: Let X 2 Sp be a spectrum. Suppose that the
spectrum X /Lp is equivalent to 0 for every prime number p2N, and that X is also contractible
after rationalization. Then the spectrum X itself is contractible. We establish similar results
(Lemmas 2.3.69 and 2.3.71) under connectivity assumptions. These results allow us to deduce
integral results.

2.1.3. Leitfaden Here is a Leitfaden of the article: Section 2.2 is devoted to technical prepa-
rations. We suggest the readers skip it in the first reading. Section 2.3 is devoted to the theory of
animated pairs and animated PD-pairs, and to the study of the animated PD-envelope. Section 2.4
is devoted to relative animated PD-envelopes, derived crystalline cohomology, cohomology of the
affine crystalline site and their comparisons. Section 2.5 is devoted to animated �-rings, animated
�-pairs, non-complete animated prisms, non-completed animated prismatic envelope and a variant
of the Hodge�Tate comparison. Appendix B is a collection of basic facts about animations and
projectively generated categories (which we suggest the reader read first if they have not seen this
concept before). Appendix C is about symmetric monoidal 1-categories, which does not play an
important role in this article and the reader should feel free to ignore it.

2.1.4. Notations and terminology In this article, since we often work in the 1-cat-
egory of certain �derived� categories, we try to distinguish the �ordinary� objects and �derived�
objects by choosing different words.

Given an 1-category C and a diagram Y  X!Z in C, the pushout of the diagram is denoted by
Y qXZ. In particular, if C admits an initial object, the coproduct of two objects Y ;Z is denoted
by Y qZ.

We will denote by S the 1-category of (small) animae, that is, the simplicial nerve of the
simplicial category of (small) Kan complexes [Lur09, Def 1.2.16.1].
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We say that an anima X 2S or a spectrum X 2 Sp is static2.1.4 if �i(X)=� 0 for all i=/ 0. For
two spectra X;Y 2Sp, we will denote by X 
LY the smash product. Rings are always static and
commutative, while En-rings are En-algebras in the symmetric monoidal 1-category (Sp;
L).

Given a ring A, we will refer to a �classical� A-module a static A-module. The category of static
A-modules will be denoted by ModA. The category of ring-module pairs (A;M) where M 2ModA
is denoted by Mod. An object in the derived 1-category D(A) an A-module spectrum.

Given an E1-ring A, the 1-category of left (resp. right) A-module spectra will be denoted by
LModA (resp. RModA). Given a right A-module spectrum M and a left A-module spectrum N ,
their relative tensor product is denoted by M 
ALN , to avoid confusion with the ordinary tensor
product of static modules.

Given an E1-ring A, the 1-category of A-module spectra is denoted by D(A). In particular,
we have Sp=D(S). An En-A-algebra is an En-algebra in the symmetric monoidal 1-category
(D(A);
AL).

Acknowledgments. The author thanks their thesis advisor Matthew Morrow for various sug-
gestions and patient readings during the construction of this article (and more). We also thank
Denis Nardin for discussions about1-categories and in particular, of simplicial homotopy theory
in 1-categories, and Yu Min for several discussions.

2.2. Categorical preparations

In this section, we will do some technical preparations of1-categories which will be used throughout
this article. We try our best to refer to this section explicitly so that the reader could first skip
this section and read back when needed.

2.2.1. Animation of adjoint functors This subsection is devoted to proving that ani-
mation behaves well for certain �monadic� pairs of adjoint functors. Here is a general lemma.

Lemma 2.2.1. Let n2N>0[f1g. Let C be a small n-category which admits finite coproducts and
D a locally small n-category which admits small colimits. Let f :C!D be a functor which preserves
finite coproducts. Then

1. There is a pair of adjoint functors P�;n(C)��������������
G

F

D (Notations B.0.6 and B.0.23) where F is

the left derived functor (Propositions B.0.10 and B.0.27) of f and G is the functor given
by D 7!MapD(f(�); D)2P(C).

2. Suppose that for all objects C 2 C, the object f(C)2D is compact and n-projective. Then
the functor G preserves filtered colimits and geometric realizations. Under this assumption,
if f is further assumed to be fully faithful, then so is F.

3. Suppose that the set ff(C) jC 2Cg�D generates D under small colimits. Then the functor
G is conservative.

Proof. We exhibit the proof for n =1. First, the functor f : C ! D extends uniquely to a
functor F~ : P(C)!D which preserves small colimits by [Lur09, Thm 5.1.5.6]. Since P�(C) �
P(C) is stable under sifted colimits, it follows that the functor F is equivalent to the composite

P�(C) ,!P(C) !!!!!!!!!!!!
F~
D. The functor F~ admits a right adjoint by [Lur09, Cor 5.2.6.5] which is

equivalent to the composite D!!!!!!!!!!!!!!G P�(C) ,!P(C), therefore (F ;G) is a pair of adjoint functors.
Part 2 follows from the fact that P�(C)�P(C) is stable under sifted colimits (Proposition B.0.7).

The later statement follows from Proposition B.0.11.

2.1.4. This is usually called discrete in homotopy theory. We follow Clausen-Scholze's terminology in condensed
mathematics to call them static to distinguish from the point-set topological discreteness. In particular, the static
object Zp might be equipped with the p-adic topology which is different from the discrete topology.
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Suppose that ff(C) jC 2Cg generates D under small colimits, then for any map X!Y in D, if
the induced map G(X)!G(Y ) is an equivalence in P�(C), then for all objects C 2C, the induced
map MapD(f(C); X)!MapD(f(C); Y ) is an equivalence. Let D 0�D be the full subcategory
spanned by those D2D such that the induced map MapD(D;X)!MapD(D;Y ) is an equivalence.
Then D0 is stable under colimits, and f(C)2D0 for all C 2C. The result follows. �

It then follows from Lemma B.0.26 and Corollary B.0.30 that

Corollary 2.2.2. Let C ;D be two small n-categories which admit finite coproducts and f : C!D
a functor which preserves finite coproducts. Then

1. There is a pair of adjoint functors P�;n(C)��������������
G

F

P�;n(D) where G is given by P�;n(D)3H 7!

H �F 2P�;n(C) and F is the left derived functor of the composite functor C!!!!!!!!f D ,!P�;n(D).

2. The functor G preserves sifted colimits, and the canonical map ��m �G!G� ��m of func-
tors is an equivalence for all m 2N (cf. [ Lur09, Rem 5.5.8.26] and the discussion before
Lemma B.0.39).

3. If f is fully faithful, then so is the functor F.

4. If f is essentially surjective, then the functor G is conservative.

Now we apply this to animations:

Corollary 2.2.3. Let C��������������
G

F

D be a pair of adjoint functors between 1-categories such that

1. The 1-category D admits filtered colimits and reflexive coequalizers (or equivalently, geo-
metric realizations, by Remark B.0.21), and G preserves filtered colimits and reflexive
coequalizers.

2. The 1-category C is projectively generated.

3. The functor G is conservative.

Then D is 1-projectively generated, and we have a pair Ani(C)��������������������������������������������������� �
Ani(G)

Ani(F )
Ani(D) of adjoint functors

between 1-categories after animation. Furthermore, the functor Ani(G) is conservative, preserves
sifted colimits, and the canonical map ��0 �Ani(G)!G � ��0 of functors is an equivalence. If G
preserves small colimits, then so does Ani(G).

Proof. It follows from Proposition B.0.31 that the 1-category D is 1-projectively generated,
therefore C ;D admit small colimits which are preserved by F . Furthermore, let C0�C be the full
subcategory spanned by finite coproducts of a chosen set of compact 1-projective generators for
C, and D0�D the full subcategory spanned by the images of objects of C under F , then there are
equivalences C ' P�;1(C0) and D'P�;1(D0) of 1-categories by Proposition B.0.29 (note that F
preserves finite coproducts).

Let f :C0!D0 be the functor induced by F , which preserves finite coproducts and is essentially
surjective. It follows from Corollary 2.2.2 with n=1 and the uniqueness of the right adjoint functor
that the functor G :D!C is equivalent to P�;1(D0)!P�;1(C0);H 7!H � f .

We invoke again Corollary 2.2.2 with n=1 to obtain a pair of adjoint functors P�(C0)�
P�(D0) induced by f . It follows from the definitions that Ani(C)'P�(C0), Ani(D)'P�(D0) and
that the functor P�(C0)!P�(D0) obtained above is equivalent to Ani(F ). LetG0 :Ani(D)!Ani(C)
be the right adjoint to Ani(F ). Since f is essentially surjective, G0 is conservative. It remains to
show that G0 is equivalent to Ani(G).

Indeed, both G0 and Ani(G) preserve sifted colimits. Since the functor G :D!C is equivalent
to P�;1(D0)!P�;1(C0); H 7!H � f , the restrictions of G0 and Ani(G) to the full subcategory
D0 � Ani(D) are equivalent. It then follows from Proposition B.0.10 that G0 and Ani(G) are
equivalent. The colimit preserving properties follow from Corollary B.0.38. �
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Now we look at two simple examples:

Example 2.2.4. Let R! S be a map of rings. Then there is a pair ModR ������������������������������������� �
�
RS

ModS of
adjoint functors between the categories of static modules. Since the forgetful functor ModS!
ModR is conservative, and preserves small colimits, we have the pair of adjoint functors

Ani(ModR)����������������������������������������������������������������������������� �
Ani(�
RS)

Ani(ModS). Under the equivalences Ani(ModR)'D�0(R) and Ani(ModS)'
D�0(S), the functor Ani(� 
RS) is equivalent to the functor � 
RLS.

Example 2.2.5. Let Ring be the 1-category of rings and Ab the 1-category of abelian groups.

Then we have a pair Ab ����������������������������������������� �
SymZ

Ring of adjoint functors. Since the forgetful functor Ring!
Ab is conservative, and preserves filtered colimits and reflexive coequalizers, we get a pair

D�0(Z)����������������������������������������������������� �
LSymZ

Ani(Ring) of adjoint functors.

In Corollary 2.2.3, the functor G (resp. Ani(G)) exhibits D (resp. Ani(D)) as monadic over C
(resp. Ani(C)). The associated endomorphism monad is given by G�F (resp. Ani(G) �Ani(F )'
Ani(G �F ) by Proposition B.0.40).

Lemma 2.2.6. Let C ��������������
G

F

D be a pair of adjoint functors between 1-categories. Let K be a small

simplicial set. Then G � F preserves K-indexed colimits if G preserves K-indexed colimits. The
converse is true if G exhibits D as monadic over C.

Proof. If G preservesK-indexed colimits, since F is a left adjoint, it follows that so does T :=G�F .
Conversely, if G exhibits D as monadic over C, then D' LModT(C) and the result follows from
[Lur17, Cor 4.2.3.5]. �

2.2.2. Diagram categories and undercategories In this subsection, we will show
that diagram n-categories and undercategories of n-projectively generated categories are n-pro-
jectively generated, for which we give an explicit choice of n-projective generators. We first show
the version for 1-categories, then list the analogues for n-categories for which the proof is nearly
verbatim. We start with diagram categories.

Lemma 2.2.7. Let (C�)�2T be a small collection of projectively generated 1-category. Then the
1-category

Q
�2T C� is projectively generated. More precisely, let 1� denote the initial objects of

C�. If the collections S��C� of objects are sets of compact projective generators for C�, then the
collection fis;� j s2S� ; � 2T g�

Q
�2T C� is a set of compact projective generators for

Q
�2T C�,

where is;� 2
Q
�2T C� is given by

�(
s � 0= �

1� 0 �
0=/ �

�
� 02T

.

Proof. Since the small colimits in
Q
C� are computed pointwise, it follows that

Q
C� is cocomplete.

Now given S� and is;�, let D�
Q
C� be the full subcategory generated by fis;�g under colimits. For

all � 2 T , the fully faithful embedding j� : C�!
Q
C� given by C 7!

�(
C � 0= �

1� 0 �
0=/ �

�
� 02T

preserves

small colimits, and j�(s)= is;t. Thus the �skyscraper� functor j�(C) is an object of D for C 2C�.
Finally, we can write any object F 2

Q
C� as a small colimit colim�2T j�(F�), therefore D=Q

C�. �

Now let C be a cocomplete 1-category, K 2 Set� a small simplicial set and K0�K the set of

vertices. Then we have a pair of adjoint functors Fun(K0;C)������������������������������������������������������������������������� �
(K0!K)�

LanK0!K

Fun(K;C) where LanK0,!K

is the functor of left Kan extension along the map K0!K, and (K0!K)� denotes the restriction
along K0!K.
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Warning 2.2.8. In an early draft, we calledK0!K an �inclusion�. However, any map of simplicial
sets is equivalent to a cofibration up to a trivial fibration in Joyal model structure. That is to
say, the concept of �non-full subcategory� is not model-independent. We decided to suppress such
model-dependent expressions.

It then follows from Proposition B.0.15 and Lemma 2.2.7 that

Corollary 2.2.9. Let C be a projectively generated 1-category and K 2 Set� a small simplicial
set. Then the 1-category Fun(K; C) of functors is projectively generated.

Next, we study undercategories.

Lemma 2.2.10. Let C be a projectively generated 1-category and Z 2C an object. Then the under-
category CZ/ is projectively generated. More precisely, letting S�C be a set of projective generators
for C, then the set fZ!X qZ jX 2Sg is a set of compact projective generators for the undercat-
egory CZ/.

Proof. Consider the pair C����������������������������������������������������������������������������������������������������������������� �
Y 7!(Z!Y )

X 7!(Z!XqZ)
CZ/ of adjoint functors. The forgetful functor CZ/!C

� is conservative, since an object in CZ/ could be identified with a map �1!C ; 0 7!Z, and
a map in CZ/ between two objects could be identified with a homotopy between two maps
�1� C, then we invoke [Lur20, Tag 01DK] to conclude.

� preserves sifted colimits. It suffices to show that for every sifted simplicial set K, the
inclusion K ,! f�g?K :=L is cofinal. In view of a variant [Lur09, Theorem 4.1.3.1] of
Quillen's Theorem A, it is equivalent to check that M :=K �LLX/ is weakly contractible
for all X 2L. When X is the distinguished point �, M 'K as 1-categories. When X 2K,
M 'KX/ as 1-categories, and [Lur17, Lemma 5.5.3.12] tells us that KX/!K is cofinal,
therefore a weak homotopy equivalence by [Lur09, Proposition 4.1.1.3(3)]. In all cases,
M is weak equivalent to K as simplicial sets, which is weakly contractible by [Lur09,
Proposition 5.5.8.7].

We then invoke Proposition B.0.15 to conclude2.2.1. �

Now we list the n-categorical analogues:

Lemma 2.2.11. Let C be an n-projectively generated n-category and K 2 Set� a small simplicial
set. Then the n-category Fun(K; C) of functors is n-projectively generated.

Lemma 2.2.12. Let C be an n-projectively generated n-category and Z 2 C an object. Then the
undercategory CZ/ is n-projectively generated. More precisely, let S � C be a set of n-projective
generators for C, then the set fZ!X qZ jX 2Sg is a set of compact n-projective generators for
the undercategory CZ/.

Now we deduce the corollaries for animations.

Corollary 2.2.13. Let C be an n-projectively generated n-category. Then there is a canonical
equivalence Ani(Fun((�1)op; C))!Fun((�1)op;Ani(C)) of 1-categories, or equivalently, a canon-
ical equivalence Ani(Fun(�1; C))!Fun(�1;Ani(C)) of 1-categories.

Proof. Let S � C be a set of compact n-projective generators for C. Spelling out the proof of
Corollary 2.2.9 (more precisely, its analogue Lemma 2.2.11), we extract an explicit set of compact

n-projective generators for Fun((�1)op; C), namely, T := fX 0 jX 2 Sg [
n
X                           

idX
X jX 2 S

o
.

Note that Fun((�1)op; C)� Fun((�1)op;Ani(C)) is a full subcategory, and again by the proof of
Corollary 2.2.9, it follows that T is a set of compact projective generators for Fun((�1)op;Ani(C)).
The result follows. �

2.2.1. We believe that our argument could be vastly simplified. However, we point out that the mapK ,!f�g?K
is not necessarily cofinal if the simplicial set K is not sifted. For example, take K to be a discrete set with at least
two elements.
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The same proof leads to the following (compare with [Rak20, Cons 4.3.4]).

Corollary 2.2.14. Let C be an n-projectively generated n-category. Then there are canonical
equivalences

Ani(Fun((Z;�); C)) ¡! Fun((Z;�);Ani(C))
Ani(Fun(Z; C)) ¡! Fun(Z;Ani(C))

Ani(Fun(f0; 1g; C)) ¡! Fun(f0; 1g;Ani(C))
Ani(CZ/) ¡! Ani(C)Z/

of 1-categories. The same for replacing Z's by N's.

2.2.3. Comma categories and base change In this subsection, we will discuss
comma categories, which serves as our basic language to discuss various base changes.

Definition 2.2.15. Let C ;D be 1-categories and F : C !D a functor. The comma category,
sometimes denoted by F #D, is given by the simplicial set C �Fun(f0g;D)Fun(�1;D), where the map
C! Fun(f0g;D) is given by F and the map Fun(�1;D)! Fun(f0g;D) is induced by the vertex
f0g!�1.

Example 2.2.16. Consider the functor idAni(Ring) :Ani(Ring)!Ani(Ring). The comma category
Ani(Ring)�Fun(f0g;Ani(Ring))Fun(�1;Ani(Ring)) is equivalent to Fun(�1;Ani(Ring)). An object is
simply given by a base A2Ani(Ring) and an A-algebra A!R.

Example 2.2.17. Consider the functor Pair! Ring; (A; I) 7!A/I and the composite functor
PDPair!Pair!Ring. Concretely, the objects in the comma category PDPair�Fun(f0g;Ring)Fun(�1;
Ring) are given by a PD-pair (A; I ; 
) along with an A/I-algebra A/I!R. This is the non-
animated version of CrysCon that will be introduced in Subsection 2.4.1.

Remark 2.2.18. A similar comma category plays an role for prismatic cohomology. We will study
a non-complete version in Subsection 2.5.3.

Lemma 2.2.19. Let C ; D be 1-categories and F : C ! D a functor. Then the simplicial set
C �Fun(f0g;D)Fun(�1;D) is an 1-category.

Proof. It follows from [Lur09, Corollary 2.3.2.5] applied to the inner fibration D! f�g that
Fun(�1;D)! Fun(f0g;D) is an inner fibration. Then it follows [Lur09, Corollary 2.4.6.5] that
Fun(�1;D)!Fun(f0g;D) is a categorical fibration. The result follows. �

Remark 2.2.20. The canonical projection C �Fun(f0g;D)Fun(�1;D)!C admits a fully faithful
section induced by D!Fun(�1;D);D 7! idD which is also a left adjoint of the projection in question.

Lemma 2.2.21. Let C ;D be 1-categories and F : C!D a functor. Suppose that D admits finite
coproducts. Then the functor C �Fun(f0g;D)Fun(�1;D)!C�D induced by Fun(�1;D)!Fun(f1g;
D)'D admits a left adjoint informally given by (C;D) 7! (C;F (C)!F (C)qD).

Proof. We need the concept of relative adjunctions [Lur17, �7.3.2]. In fact, the adjunction is
relative to C.

To see this, we start with the special case that C =D and F = idD. The point is that, the
pair D �D� Fun(�1;D) of adjoint functors satisfies [Lur17, Prop 7.3.2.1], where the functor
D�D!Fun(�1;D) is given by left Kan extension along the functor f0; 1g!�1, and the functor
Fun(�1;D)!D�D is simply given by the restriction along f0; 1g!�1.

The general case follows from [Lur17, Prop 7.3.2.5] by base change along F : C!D. �

It follows from Proposition B.0.15 that
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Corollary 2.2.22. Let C ;D be projectively generated 1-categories and F :C!D a functor. Then
the comma category C �Fun(f0g;D) Fun(�1;D) is projectively generated. More precisely, let S � C
and T �D be sets of compact projective generators. Then f(C;F (C)!F (C)qD) jC 2S;D2T g
is a set of compact projective generators for C �Fun(f0g;D)Fun(�1;D).

It follows from [Lur09, Lem 5.4.5.5] that the colimits in comma categories exist and are easy
to describe under the assumption that the functor in question preserves colimits:

Lemma 2.2.23. Let C ;D be 1-categories and F : C !D a functor. Let K be a simplicial set.
Suppose that C ;D admits K-indexed colimits which are preserved by F. Then the comma category
C �Fun(f0g;D) Fun(�1;D) admits K-indexed colimits which are preserved by projection to either
factor.

Remark 2.2.24. (Base change) Let C ;D be1-categories which admit finite colimits and F :C!
D a functor which preserves finite colimits. Given an object (C;F (C)!D)2C�Fun(f0g;D)Fun(�1;
D), there is a unique map (C; idF (C))! (C; F (C)!D) (which is in fact the unit map for the
adjunction in Remark 2.2.20). For all maps C!C 0 in C, we have the pushout of the diagram
(C 0; idF (C 0)) (C; idF (C))! (F (C)!D) in C, which is (C 0; D qF (C) F (C 0)) by Lemma 2.2.23.
At the beginning of this section, we said that the objects in C are considered as �bases�. Thus we
understand this pushout as �base change�.

Example 2.2.25. In Example 2.2.16, given a map A!B of animated rings, the base change of
A!R along A!B is B!R
ALB. Since the cotangent complex functor L�/� :Fun(�1;Ani(Ring))!
Ani(Mod) preserves small colimits (Lemma 2.2.35), we get the base change property: the natural
map LR/A
ALB!LR
ALB/B is an equivalence (here we implicitly used Lemma 2.2.36). Similarly,
we get the base change property HH(R/A)
ALB'HH(R
ALB/B) for Hochschild homology (the
reader should feel free to ignore this since it will not be used in this article).

Example 2.2.26. In Example 2.2.17, given a map (A; I ; 
)! (B; J ; �) of PD-pairs, the base
change of ((A; I ; 
); A/I!R) along (A; I ; 
)! (B; J ; �) is ((B; J ; �); B/J!R
A/I (B/J)).

Remark 2.2.27. We have a prismatic version of base change by Remark 2.2.18.

Remark 2.2.28. (Colimits over a fixed base) Let C ;D be cocomplete 1-categories and
F : C!D a functor which preserves small colimits. Given an object C 2 C, a small simplicial set
K and a diagram q :K!DF (C)/, we associate a diagram K!C �Fun(f0g;D)Fun(�1;D) informally
given by k 7! (C; F (C)! q(k)) (the formal description necessitates a discussion of �fat� overcate-
gories [Lur09, �4.2.1]). By Lemma 2.2.23, the colimit of this diagram is given by (C; colim q). We
understand this colimit as taking colimits over a fixed base.

Example 2.2.29. In Example 2.2.16, given an animated ring A and two A-algebras R;S, the map
(A!R
ALS), seen as an object of Fun(�1;Ani(Ring)), is the pushout of the diagram (A!R) (A;
idA)! (A!S). Since the cotangent complex functor L�/� :Fun(�1;Ani(Ring))!Ani(Mod) (which
we will review in Definition 2.2.33) preserves small colimits (Lemma 2.2.35), we get the �Künneth
formula�: the natural map LR/A
RL (R
ALS)�LS/A
SL (R
ALS)!L(R
ALS)/A is an equivalence
(again we used Lemma 2.2.36, and also the form of colimits in Ani(Mod)). Similarly, we have
HH(R/A)
ALHH(S/A)'HH(R
ALS/A) for Hochschild homology (again, Hochschild homology
is not needed in this article).

Remark 2.2.30. In view of Remark 2.2.18, prismatic cohomology has a similar �Künneth formula�
[AL19a, Prop 3.5.1].

Remark 2.2.31. (Transitivity) Let C ; D be 1-categories which admit finite colimits and
F : C !D a functor which preserves finite colimits. Given a map C!C 0 in C, any object (C 0;
F (C 0)!D)2C�Fun(f0g;D)Fun(�1;D) could be written as the pushout of the diagram (C;F (C)!
D) (C; F (C)! F (C 0))! (C 0; idF (C 0)). This is closely related to transitivity sequence in the
cohomology theory, as shown in examples below.
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Example 2.2.32. In Example 2.2.16, for any maps A!B!R of animated rings, the �relative�
map B! R, viewed as an object of Fun(�1; Ani(Ring)), is the pushout of the diagram (A!
R) (A!B)! (idB :B!B). Since the cotangent complex functor L�/� :Fun(�1;Ani(Ring))!
Ani(Mod) preserves small colimits (Lemma 2.2.35), we get the transitivity sequence

LB/A
BLR¡!LR/A¡!LR/B

(Lemma 2.2.36 was used) Similarly, we have HH(R/A)
HH(B/A)
L B 'HH(R/B) for Hochschild

homology.

Finally, we briefly review the theory of the cotangent complex of maps of animated rings, mean-
while we explain how this �coincides� with the theory of cotangent complex of maps of animated
A-algebra for some ring A. By Corollary 2.2.13, the 1-category AniArr := Fun(�1;Ani(Ring))
is projectively generated, and the proof leads to a set fZ[X ]!Z[X; Y ] jX; Y 2Fing of compact
projective generators. Let AniArr0�AniArr denote the full subcategory spanned by those compact
projective generators.

Definition 2.2.33. The cotangent complex functor AniArr!Ani(Mod) is defined to be the left
derived functor (Proposition B.0.10) of the functor AniArr0!Ani(Mod); (A!B) 7! (B;
B/A

1 ).
The image of an object (A!B)2AniArr is denoted by (B;LB/A).

Remark 2.2.34. In fact, this functor is also the animation of the functor Fun(�1;Ring)!Mod;
(A!B) 7! (B;
B/A

1 ). We do not take this as the definition since later we will apply the same idea
to functors which are not defined by the animation of a functor.

Since the functor AniArr0!Ani(Mod); B 7! (B;
B/A
1 ) preserves finite coproducts, by Propo-

sition B.0.10, we get

Lemma 2.2.35. The cotangent complex functor AniArr!Ani(Mod) preserves small colimits.

Now we consider the functor Ani(Ring)!AniArr; A 7! (idA :A!A). This functors preserves
small colimits2.2.2, thus so does the composite functor Ani(Ring)!AniArr!!!!!!!!!!!!!!!!!!!!!!!!!!!!

L�/�
Ani(Mod), con-

cretely given by A 7! (A;LA/A). The next simple2.2.3 lemma is key to the �independence of the
choice of the base�, which was already used in examples before:

Lemma 2.2.36. The composite functor Ani(Ring)!AniArr!!!!!!!!!!!!!!!!!!!!!!!!!!!!
L�/�

Ani(Mod) above coincides with
the functor Ani(Ring)!Ani(Mod); A 7! (A; 0).

Proof. By the colimit-preserving property above and Proposition B.0.10, it suffices to check this
for polynomial rings A=Z[x1; : : : ; xn], but this follows directly from the definitions. �

We now consider the full subcategory P0 of Fun(�1;Ring) spanned by maps A[X ]!A[X;Y ]
with A 2 Ring and X; Y 2 Fin. The functor Fun(�1; Ring)!Ani(Mod); (A! B) 7! (B; 
B/A

1 )
restricts to a functor G :P0!Ani(Mod). By Proposition B.0.10, the restriction F of the cotan-
gent complex functor AniArr!Ani(Mod) to the full subcategory P0 is left Kan extended from
AniArr0�P0, therefore we have a comparison map F !G, which becomes an equivalence after
restricting to the full subcategory AniArr0. By Example 2.2.25, this comparison map is an equiv-
alence since G also has the �base change property�.

Now we fix a ring A, and let AniArrA denote the 1-category Fun(�1;Ani(AlgA)). As before,
by Corollary 2.2.13, it is projectively generated with a set fA[X]! A[X; Y ] j X; Y 2 Fing of
compact projective generators, which spans a full subcategory AniArrA0 � AniArrA. Note that
the functor AniArrA0 ! Ani(Mod); (B! C) 7! (C; 
C/B

1 ) coincides with the composite functor

AniArrA0!P0!!!!!!!!!!!!!!
G

Ani(Mod), and since F 'G, this composite functor is just the cotangent complex
functor applied to the underlying map of animated rings. It follows from Proposition B.0.10 that

2.2.2. In fact, this is fully faithful. However, in order to apply the same idea to later contexts, we only abstract
out the colimit-preserving property.

2.2.3. We warn the reader that this lemma is not tautological.
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Lemma 2.2.37. The composite functor AniArrA!AniArr!Ani(Mod); (B!C) 7! (C;LC/B) is
equivalent to the left derived functor of AniArrA0!Ani(Mod); (A[X]!A[X;Y ]) 7!
A[X;Y ]/A[X]

1 .

That is to say, the definition of the cotangent complex does not depend on the choice of the base.
This argument applies to similar situations, such as animated PD-envelope, and such phenomenon
will appear frequently in this article.

2.2.4. 1-category of graded and filtered objects In this section, we recollect
basic properties of the1-category of graded and filtered objects. Our main reference is [Rak20, �3].

The 1-category of (Z-)graded objects in an 1-category C is the 1-category Gr(C) :=Fun(Z; C)
of functors, where Z is the set of integers as an 1-category. Given a graded object G2Gr(C), we
will denote the value of G at i2Z by X i. This defines a functor (�)i :Gr(C)!C.

When the 1-category C is presentable, for all i2Z, the functor (�)i admits a fully faithful left
adjoint insi :C!Gr(C) simply given by X 7!G where Gj=

�
X j= i
0C otherwise

where 0C2C is the initial
object.

We say that a graded object G2Gr(C) is nonnegatively graded (resp. nonpositively graded) if
the restriction F jZ<0 (resp. F jZ>0) is constantly 0C. The full subcategory spanned by nonnega-
tively graded (resp. nonpositively graded) objects is denoted by Gr�0(C) (resp. Gr�0(C)), which
is canonically equivalent to Fun(Z�0; C) (resp. Fun(Z�0; C)).

Similarly, the1-category of (Z-)filtered objects in an1-category C is the1-category Fil(C) :=
Fun((Z;�); C) of functors. Given a filtered object F 2 Fil(C), we will systematically denote the
value of F at i2Z by Fili F instead of F (i) to indicate that we consider it as a filtered object.
This defines a functor Fili :Fil(C)!C.

When the 1-category C is presentable, for all i 2Z, the functor Fili admits a fully faithful
left adjoint insi : C ! Fil(C) given by the left Kan extension along fig! (Z;�). Given X 2 C,
Filj(insi(X))=

�
X j � i
0C j > i

where 0C 2C is the initial object.

We say that a filtered object F 2 Fil(C) is nonnegatively filtered if the restriction F jZ�0 is a
constant functor (Z�0;�)!C. We denote by Fil�0(C)�Fil(C) the full subcategory spanned by
nonnegatively filtered objects, which is canonically equivalent to Fun((Z�0;�); C). Similarly, we
say that a filtered object F 2Fil(C) is nonpositively filtered if the restriction F jZ>0 is constantly
0C. We denote by Fil�0(C)�Fil(C) the full subcategory spanned by nonpositively filtered objects,
which is canonically equivalent to Fun((Z�0;�); C).

Given a filtered object F 2Fil(C), the union Fil¡1 is defined to be the colimit colim(Z;�)F

(when it exists). When C admits all sequential colimits, this defines a functor Fil¡1 :Fil(C)!C.

Remark 2.2.38. To avoid confusions, our filtrations are always decreasing. When we need
increasing filtrations, we invert the sign to get a decreasing filtration.

Now let (C ;
) be a presentable symmetric monoidal1-category. Note that Z (resp. (Z;�)) has
a symmetric monoidal structure given by the addition +, so the 1-category Gr(C) (resp. Fil(C))
admits a presentable symmetric monoidal structure given by the Day convolution 
Day [Nik16, �3].
Informally, given two graded (resp. filtered) objects F ;G, we have (F 
DayG)i=

L
j+k=iF

j
Gk

(resp. Fili (F 
Day G) = colimj+k�i Filj F 
 FilkG). Under this symmetric monoidal structure,
(�)0 :Gr(C)!C (resp. Fil0 : Fil(C)!C) is lax symmetric monoidal, while the fully faithful left
adjoint ins0 : C!Gr(C) (resp. C!Fil(C)) is symmetric monoidal.

The stable subcategory Gr�0(C)�Gr(C) (resp. Gr�0(C)�Gr(C)) inherits a presentable sym-
metric monoidal structure, and the 0th piece (�)0 :Gr�0(C)!C (resp. Gr�0(C)!C) is symmetric
monoidal.

Similarly, the stable subcategory Fil�0(C) � Fil(C) (resp. Fil�0(C) � Fil(C)) inherits a pre-
sentable symmetric monoidal structure, and the 0th piece Fil0 :Fil�0(C)!C (resp. Fil�0(C)!C)
is symmetric monoidal.

Now we study the relation between graded objects and filtered objects. First, the symmetric
monoidal functor Z! (Z;�) induces a lax symmetric monoidal functor Fil(C)!Gr(C), which
admits a symmetric monoidal left adjoint I :Gr(C)!Fil(C), the left Kan extension along Z! (Z;
�). Concretely, it is given by G 7!F where FiliF =

`
j�iG

j.
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All of the functors mentioned above preserve small colimits. From now on, let C be a presentable
stable symmetric monoidal 1-category. Then these functors are exact. Now we consider the
associated graded functor gr :Fil(C)!Gr(C); F 7!G where Gi= cofib(F i+1F!FiliF ). It turns
out that the functor gr behaves well:

Proposition 2.2.39. ([Lur15, Prop 3.2.1] [GP18, Prop 2.26]) Let C be a presentable stable
symmetric monoidal 1-category. Then there exists a symmetric monoidal structure on the functor
gr� :Fil(C)!Gr(C). Moreover, this symmetric monoidal structure can be chosen so that the com-

posite functor Gr(C)!!!!!!!!I Fil(C)!!!!!!!!!!!!!!!!!!!!!!gr
�

Gr(C) is homotopic to the identity as a symmetric monoidal
functor.

We also need the Beilinson t-structure on the 1-category Fil(C) of filtered objects. As before,
let (C ;
; 1C) be a presentable stable symmetric monoidal 1-category. Moreover, we assume that
C admits an accessible t-structure (C�0; C�0) such that 1C 2C�0 and C�0 is closed under 
.

Lemma 2.2.40. Under the assumptions above, the heart C~ := C�0\C�0 admits a canonical sym-
metric monoidal structure 
~ given by X 
~Y := ��0(X 
Y ), and the embedding C~!C is then
lax symmetric monoidal.

The following is the 1-categorical enrichment of [Bei87, App].

Proposition 2.2.41. ([Rak20, Prop 3.3.11]) Let Fil(C)�0B �Fil(C) be the full subcategory spanned
by X 2 Fil(C) such that gri(X)2 C�¡i for all i 2Z. Then 1ins0(1C) 2 Fil(C)�0B , Fil(C)�0B is closed
under 
Day and is the connective part of an accessible t-structure, called the Beilinson t-struc-
ture, whose heart is equivalent as symmetric monoidal 1-categories to the 1-category Ch(C~)
of chain complexes with �stupid� truncation FiliK=K�¡i for all i2Z and K 2Ch(C~).

In particular, when C is the derived1-category of a ring R, the filtered derived category DF(R)
is the1-category Fil(D(R)) of filtered objects in the derived1-category D(R) with the symmetric
monoidal structure given by the derived tensor product � 
RL �, and DF�0(R) is the 1-category
Fil�0(D(R)) of nonnegatively filtered objects in D(R). In this case, we will still denote by � 
RL �
the Day convolution.

Remark 2.2.42. ([Rak20, Cons 4.3.4]) Let R be a ring. The 1-category DF(R) admits a
structure of derived algebraic context [Rak20, Def 4.2.1], of which the derived commutative algebras
are called filtered derived (commutative) R-algebras. When R = Z, they are also called filtered
derived rings. Although we will not use this fact, we might comment when a filtered E1-Z-algebra
admits such a structure.

We need the following lemma, which follows from the fact that left Kan extensions are pointwise
colimits which preserve cofibers and filtered colimits:

Lemma 2.2.43. Let C be an 1-category, C0� C a full subcategory, E a stable 1-category which
admits filtered colimits, and F~ : C ! Fil(E) a functor left Kan extended along the fully faithful
embedding C0 ,!C. Then

1. The composite functor gr� �F~ : C!Fil(E)!!!!!!!!!!!!!!!!!!!!!!gr
�

Gr(E) is left Kan extended along C0 ,!C.

2. The composite functor Fil¡1 �F~ : C!Fil(E)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
Fil¡1

E is left Kan extended along C0 ,!C.

2.2.5. Reflective subcategories In this subsection, we will develop the necessary
machinery to deal with the (derived) p-complete or more generally I-complete situations. We
start with the general formalism of reflective subcategories.

Definition 2.2.44. ([Lur09, Rem 5.2.7.9 & Def 5.2.7.2]) Let C be an 1-category. We say
that a full subcategory D�C is reflective if the inclusion D ,!C admits a left adjoint L :C!D. In
such case, we call the left adjoint L : C!D a localization.
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Proposition 2.2.45. ([Lur09, Prop 5.2.7.8]) Let C be an 1-category. A full subcategory C0�C
is reflective if and only if for every object C 2 C, there exists an object D 2 C0 along with a map
f :C!D which induces an equivalence MapC(D;E)!MapC(C;E) for each object E 2C0 (in this
case, LC'D where L : C!C0 is the localization).

Example 2.2.46. Let Dcomp(Zp)�D(Z) be the p-complete derived category of Z, consisting of
(derived) p-complete Zp-module spectra. Then Dcomp(Zp)�D(Z) is reflective. The localization is
the (derived) p-completion functor D(Z)!Dcomp(Zp). Similarly, Dcomp;�0(Zp)�D�0(Z) is the
reflective subcategory of connective p-complete Zp-module spectra.

Example 2.2.47. More generally, let A be an animated ring and I ��0(A) a finitely generated
ideal. Then the I-complete derived category Dcomp(A) is a reflective subcategory of the derived
category D(A). The same for Dcomp;�0(A)�D�0(A).

Now we study the left derived functors. Unfortunately, the localization does not in general map
compact projective objects to compact projective objects. For example, Z2D(Z) is compact and
projective but Zp2Dcomp(Zp) is not. We suspect that Dcomp(Zp) is not projectively generated,
therefore we are probably unable to left derive �arbitrary� functors as in the projectively generated
case. However, most functors in practice are good enough to have a reasonable theory of left derived
functors2.2.4. We start with a general discussion about the interaction between localization and
left Kan extension [Lur09, Def 4.3.2.2].

Setup 2.2.48. Let C be an 1-category and D�C a reflective (full) subcategory with the localization
L :C!D. Let C0�C be a full subcategory, D0�D the full subcategory spanned by objects LC where
C runs through all objects in C0. Let C1�C be the full subcategory spanned by vertices of both C0
and D0.

It follows from definitions that

Lemma 2.2.49. In Setup 2.2.48, D0�C1 is a reflective subcategory with localization LjC1 :C1!D0
being the restriction of L : C!D.

Example 2.2.50. One of the crucial example for the setup above: C is the 1-category of ani-
mated rings, D is the full subcategory of p-complete animated Zp-algebras, and C0�C is the full
subcategory spanned by polynomial rings Z[X1;:::;Xn]. More generally, let A be an animated ring
and I ��0(A) a finitely generated ideal. Then we can consider the case that C is the 1-category
of animated A-algebras and D�C is the full subcategory of I-complete animated A-algebras, and
C0�C is the full subcategory spanned by polynomial A-algebras A[X1;:::;Xn] :=Z[X1;:::;Xn]
Z

LA.

Lemma 2.2.51. In Setup 2.2.48, let E be an 1-category and F~ :C!E a functor left Kan extended
from the fully faithful embedding C0 ,!C. Then the restriction F je D is left Kan extended from the
fully faithful embedding D0 ,!D.

Proof. It follows from [Lur09, Lem 5.2.6.6] that the restriction F~jD is a left Kan extension of
F~ along L : C!D, therefore is left Kan extended from the composite functor C0 ,!C !!!!!!!!!!!!L D. The
composite functor C0 ,!C!D could be rewritten as the composite C0!!!!!!!!!!!!L D0 ,!D, therefore F~ jD
is left Kan extended from D0 ,!D. �

Example 2.2.52. In Example 2.2.50, the cotangent complex L�/Z : C = Ani(Ring)!D(Z) is
left Kan extended from PolyZ � Ring. Consequently, the restriction L�/ZjD : D!D(Z) is left
Kan extended from p-completed polynomial rings. Similarly, the p-completed cotangent com-
plex (L�/Z)p^ :Ani(Ring)!Dcomp(Zp) is left extended from PolyZ�Ring, therefore the restriction
(L�/Z)p^jD :D!Dcomp(Zp) is left extended from p-completed polynomial rings.

2.2.4. This approach is essentially depicted in the special case of p-completed rings in Bhatt's Eilenberg Lectures
notes [Bha18, Lecture VII]. We are informed by Yu Min of this approach in private discussions.
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Setup 2.2.53. In Setup 2.2.48, let F :D0!E be a functor equipped with a left Kan extension

F~ : C!E along the fully faithful inclusion C0 ,!C of the composite functor C0!!!!!!!!!!!!L D0!!!!!!!!!!!!F E.

Remark 2.2.54. In our applications, C will be a projectively generated 1-category (Defini-
tion B.0.3) with a set S of compact projective generators. We will choose C0�C to be the full
subcategory spanned by finite coproducts of objects in S, and E will be a cocomplete1-category.
In this case, the left Kan extension in question always exists (Propositions B.0.10 and B.0.12).
More generally, if C0 is a small subcategory and that C is assumed to be locally small, then the
left Kan extension exists.

In Setup 2.2.53, we first assume without loss of generality that LjD= idD by [Lur09, Prop 5.2.7.4],

then L2= L. Now we let F1 : C1!E denote the composite C1!D0 !!!!!!!!!!!!
F
E , which is an exten-

sion of the composite C0!D0 !!!!!!!!!!!!
F
E along C0!C1. Since F~jC1 : C1!E is, by definition, a left

Kan extension of C0!D0 !!!!!!!!!!!!
F
E along C0! C1, there exists an essentially unique comparison

map F~jC1! F1 of functors C1� E . Restricting to the full subcategory D0� C1, we get a com-
parison map F~jD0!F . It follows from Lemma 2.2.51 that

Corollary 2.2.55. In Setup 2.2.53, if we assume that the comparison map F~ jD0! F is an
equivalence, then F~jD is the left Kan extension of F along the fully faithful embedding D0 ,!D.

We need the following concept:

Proposition 2.2.56. ([Lur09, Prop 5.2.7.12]) Let C be an 1-category and let L : C!LC � C
be a localization functor. Let S denote the collection of all morphisms f in C such that Lf is an
equivalence. Then for every 1-category D, composition with L induces a fully faithful functor
 :Fun(LC ;D)!Fun(C ;D). Moreover, the essential image of  consists of those functors F :C!D
such that F (f) is an equivalence in D for each f 2S.

Definition 2.2.57. Let C be an 1-category, L : C ! LC � C a localization functor and D an
1-category. We say that a functor F :C!D is L-invariant if for every morphism f in C such that
Lf is an equivalence, then so is F (f) in D.

Now we come back to our previous discussion.

Lemma 2.2.58. Under the above discussion, consider the following conditions:

i. The left Kan extension F~ : C!E is L-invariant.
ii. The comparison map F~ jC1!F1 constructed above is an equivalence.

iii. The comparison map F~ jD1!F constructed above is an equivalence.

We have

1. Conditions ii and iii are equivalent.

2. Condition i implies condition iii.

3. Under the assumptions in Remark 2.2.54, condition ii implies condition i.

Proof. First, restricting the comparison map F~ jC1!F1 to C0, we get the identity, so conditions
ii and iii are equivalent.

If F~ is L-invariant, then for all X 2C1, the unit map X!LX induces a commutative diagram

F~(X) ¡! F~(LX)

 
¡

 
¡

F1(X) ¡! F1(LX)

with the horizontal maps being equivalences. In particular, for all Y 2D0, there exists X 2C0 such
that Y ' LX. Then F~(X)! F1(X) is an equivalence, therefore so are F~(LX)! F1(LX) and
F~(Y )!F1(Y ), which proves condition ii.
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We now assume that we are in the special case described in Remark 2.2.54. Suppose that
condition ii holds. Note that F1 is, by definition, L-invariant, therefore for all X 2C0, F~ maps the
unit map X!LX to an equivalence. Let C 0�C be the full subcategory spanned by those X 2C
such that F~ maps X!LX to an equivalence. Then C0�C 0. It follows from Propositions B.0.10
and B.0.12 that F~ preserves sifted colimits. Since L preserves small colimits, C 0 is closed under
sifted colimits, therefore C 0=C by Lemma B.0.9. �

Remark 2.2.59. We conjecture that all conditions in Lemma 2.2.58 are equivalent under
Setup 2.2.53 without the assumptions in Remark 2.2.54.

Now we describe how the setups above give rise to derived prismatic cohomology in [BS19].
Let (A; I) be a bounded prism [BS19, Def 3.2]. Let C =Ani(AlgA/I) be the 1-category of A/I-
algebras and D � C the full subcategory of p-completed A/I-algebras. Let C0 � C be the full
subcategory of polynomial A/I-algebras. Then D0�D is the full subcategory of p-completed
polynomial A/I-algebras. [BS19, �4.2] defines the functors F :=M�/A :D0!Dcomp(A) and G :=
M�/A :D0!Dcomp(A/I), where Dcomp(A) is the1-category of (p; I)-complete A-module spectra,
and Dcomp(A/I) is the 1-category of p-complete A/I-module spectra. In Setup 2.2.53 and
Remark 2.2.54, we claim that the functor F~ and G~ are left Kan extended from D0 after restric-
tion to D. That is to say, F~ and G~ are left derived functors LM�/A and LM�/A defined in [BS19,
Cons 7.6]. Thanks to Lemma 2.2.58, it suffices to show that F~ and G~ are L-invariant. We will
first describe our proof, then we offer the lemmas used in the proof.

We start with G~ . Composing G with the Postnikov tower Dcomp(A/I)!DFcomp(A/I); X 7!
(��nX)n2(Z;�) where DFcomp(A/I) :=Fil(Dcomp(A/I)) is the filtered derived 1-category of p-
completed A/I-module spectra, we get a functor GP :D0!DFcomp(A/I) such that the union (see
Corollary 2.2.61) Fil¡1GP :D0!Dcomp(A/I) is equivalent to G. It follows from the Hodge�Tate
comparison [BS19, Prop 6.2] that the functorial comparison map (

ViL�/(A/I)f¡ig[¡i])p^! gr¡i �
GP is an equivalence). Now Remark 2.2.54 shows that GP : D0! DFcomp(A/I) gives rise to
GPe : C!DFcomp(A/I) and the functor (

Vi
L�/(A/I)f¡ig[¡i])p^ :D0!DFcomp(A/I) gives rise to

some C!DFcomp(A/I), which is (
ViL�/(A/I)f¡ig[¡i])p^ by Example 2.2.52, and in particular, L-

invariant. It follows from Lemma 2.2.43 that the associated graded pieces gr¡i�GPe are L-invariant
and therefore the L-invariance of G~ follows from Corollary 2.2.61.

Note that F~ coincides with G~ composed with the derived modulo I , that is, the composite

functor Ani(AlgA/I)!!!!!!!!!!!!
F~
Dcomp(A)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

�
̂AL (A/I)
Dcomp(A/I). We deduce by derived Nakayama [Sta21,

Tag 0G1U] that F~ is also L-invariant.
Here are the lemmas that we used in the argument above:

Lemma 2.2.60. Let C be an 1-category and D�C a reflective subcategory with localization L :C!
D. Let E be a stable 1-category. Let F :C!Fil�0(E) be a functor. If the associated graded pieces
gri �F~ are L-invariant for all i2Z, then so is F~.

Proof. For all C 2 C, we inductively show that the unit map C! LC induces an equivalence
Fili(F~(C))!Fili(F~(LC)). By assumption, this is true for all i>0. Now consider the commutative
diagram

Fili+1(F~(C)) ¡! Fili(F~(C)) ¡! gri(F~(C))

 
¡

 
¡

 
¡

Fili+1(F~(LC)) ¡! Fili(F~(LC)) ¡! gri(F~(LC))

where the horizontal maps are fiber sequences. Suppose that the result is true for i+1. Then the
leftmost and the rightmost vertical maps are equivalences, therefore so is the middle vertical maps,
which shows that the result is true for i. �

It then follows from definitions that

Corollary 2.2.61. Under the assumptions in Lemma 2.2.60, if we further assume that E admits

filtered colimits, then the union Fil¡1 �F~ : C!Fil(E)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !Fil¡1 E is also L-invariant.
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2.3. Animated ideals and PD-pairs

In this section, we will first give an informal exposition of Smith ideals introduced in [Hov14] in
terms of 1-categories. See also [WY17b, WY17a] for various generalizations. Then we will show
how to apply these ideas to define and study �ideals� of animated rings and animated PD-pairs,
which are the cornerstones of the animated theory of crystalline cohomology.

2.3.1. Smith ideals We fix a presentable stable symmetric monoidal 1-category (C ;
).
See Appendix C for this terminology. The reader should feel free to take the special case that
C=Sp is the 1-category of spectra and 
 is the smash product of spectra.

Consider the 1-simplex �1, which is simply the 1-category associated to the ordinal [1] = f0< 1g.
The opposite category (�1)op has a symmetric monoidal structure given by max f�; �g2.3.1.

Thus the presentable stable1-category Fun((�1)op;C) admits a presentable symmetric monoidal
structure given by the Day convolution 
Day [Nik16, �3].

Informally, the unit object 1Fun((�1)op;C) is given by (1C 0) 2 Fun((�1)op; C), and given n

functors F1; : : : ; Fn2Fun((�1)op; C), the Day convolution F1
Day � � � 
DayFn is given as follows:
F1; : : : ; Fn determines an n-cube F : (�1)op� � � � � (�1)op!C ; (e1; : : : ; en) 7!F1(e1)
 � � � 
Fn(en).
This cube, except the final vertex, determines a �cubical pushout� mapping to the final vertex:
(F (0; : : : ; 0) colim(�1)op�� � ��(�1)opn(0; : : : ;0)F ), which is F1
Day � � � 
DayFn.

In particular, when n=2, the Day convolution of (X0 X1) and (Y0 Y1) is given by (X0
Y0 
(X0
Y1)qX1
Y1(X1
Y0)). This is essentially equivalent to the pushout product monoidal structure
in [Hov14, Thm 1.2].

On the other hand, there exists a pointwise symmetric monoidal structure 
 on the stable
1-category Fun(�1; C) where F1
 � � � 
Fn is given by the functor e 7!F1(e)
 � � � 
Fn(e).

There is a comparison between these two stable symmetric monoidal 1-categories:

Proposition 2.3.1. There is an equivalence Fun((�1)op; C) ' Fun(�1; C) of presentable stable
symmetric monoidal 1-categories. The equivalence is given by Fun((�1)op; C) 3 F 7! (F (0)!
cofib(F (1)! F (0))) 2 Fun(�1; C) of which the inverse is given by Fun(�1; C) 3 G 7! (G(0) 
fib(G(0)!G(1)))2Fun((�1)op; C).

Proof. The pair of inverse functors are clearly well-defined and exact. It remains to show that
the functor Fun((�1)op;C)3F 7! (F (0)! cofib(F (1)!F (0)))2Fun(�1;C) is symmetric monoidal
and so is its inverse. We give an informal argument for the first as follows:

Given n functors F1;:::; Fn2Fun((�1)op;C), as previous, let F denote the n-cube ((�1)op)�n!
C ; (e1; : : : ; en) 7! F1(e1) 
 � � � 
 Fn(en). The cofiber of the Day convolution (F (0; : : : ; 0) 
colim(�1)op�� � ��(�1)opn(0; : : : ;0) F ) is the total cofiber of the cube F , which could be computed
inductively in each direction, and since the tensor product � 
 � : C � C ! C preserves finite col-
imits separately in each variable, one can inductively show that the total cofiber is the tensor
product of cofibers. �

Now we assume that C admits a symmetric monoidal t-structure (C�0;C�0) (see Definition C.0.5).
This is the case when C = Sp and (C�0; C�0) is the canonical t-structure for spectra. Then so
does Fun((�1)op; C), that is to say, Fun((�1)op; C)�0 :=Fun((�1)op; C�0) and Fun((�1)op; C)�0 :=
Fun((�1)op; C�0). Transferring this t-structure along the equivalence in Proposition 2.3.1, we get
a t-structure on Fun(�1; C) where Fun(�1; C)�0� Fun(�1; C) is spanned by edges f :X! Y in
C such that X 2 C�0 and fib(Y !X) 2 C�0, or equivalently, X; Y 2 C�0 and f is 1-connective
(that is to say, �0(f) is surjective). In summary,

Corollary 2.3.2. The equivalence in Proposition 2.3.1 induces an equivalence of presentable
symmetric monoidal full subcategories Fun((�1)op;C�0)'Fun(�1;C)�0, where the full subcategory
Fun((�1)op; C)�0 is spanned by maps Y  X in C�0.

2.3.1. This is informed to us by Denis Nardin.
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Passing to En-algebras for any n2N[f1g, we get

Corollary 2.3.3. There is an equivalence between the 1-category of En-algebras in (Fun((�1)op;
C);
Day) and the 1-category of En-maps between En-algebras in (C ;
). This equivalence induces
an equivalence between the full subcategory spanned by connective En-algebras in (Fun((�1)op;C);

Day) and the full subcategory spanned by 1-connective En-maps between connective En-algebras
in (C ;
).

Explicitly, for any En-algebra in ((Fun(�1)op;C);
Day) of which the underlying object is (A 
I), the object A2C, the cofiber cofib(I!A) and the map A! cofib(I!A) admit canonical En-
algebra structures. We can then understand I as an �ideal� of En-algebra A. When A is connective,
the previous identification also describes connective �ideals� of A. This is the Smith ideal in
[Hov14], which gives rise to a reasonable theory of ideals (resp. connective ideals) of En-rings
(resp. connective En-rings) when C is the presentable stable symmetric monoidal 1-category Sp
of spectra.

In the rest of this section, we will study the animated analogue of the preceding equivalence,
that is to say, �ideals� and �PD-ideals� of an animated ring. To do so, we need to exploit more
structures of D(Z).

2.3.2. Animated (PD-)pairs In this subsection, we introduce the central object of this
section: animated pairs and (absolute) animated PD-pairs.

Let Pair denote the 1-category of ring-ideal pairs (A; I), that is, a (commutative) ring A along
with an ideal I �A. Let PDPair denote the 1-category of divided power rings (A; I ; 
) [Sta21,
Tag 07GU]. We recall that the forgetful functor PDPair!Pair admits a left adjoint, called the
(absolute) PD-envelope functor [Sta21, Tag 07H9]. The PD-envelope of (A; I) will be denoted by
DA(I)2PDPair.

Let Fun((�1)op;Ab)inj� Fun((�1)op;Ab) be the full subcategory spanned by injective maps
M�M 0. We note that there is a pair Fun((�1)op;Ab)inj�Pair of adjoint functors where Pair!
Fun((�1)op;Ab) is the forgetful functor (A;I) 7! (A I), and Fun((�1)op;Ab)!Pair is the �sym-
metric product� (M�M 0) 7! (SymZ(M);M 0 SymZ(M)) where SymZ(M)�M 0 SymZ(M) is the
ideal generated by elements in M 0.

Unfortunately, Fun((�1)op;Ab)inj does not seem to be 1-projectively generated. In particular,
we cannot apply Corollary 2.2.3 to deduce that Pair is 1-projectively generated (we believe that
it is not), and to construct �Ani(Pair)�. In fact, we need to embed Pair as a full subcategory of a
1-projectively generated 1-category and then the 1-category of animated pairs coincides with the
animation of that larger 1-category.

We begin by analyzing the full subcategory Fun((�1)op;Ab)inj�Fun((�1)op;Ab). Note that
fZ 0; idZ :Z Zg�Fun((�1)op;Ab)inj is a set of compact 1-projective generators for Fun((�1)op;
Ab) by Lemma 2.2.11. Let C0�Fun((�1)op;Ab) denote the finite coproducts of objects in fZ 0;
idZ :Z Zg, taken in Fun((�1)op;Ab), which is effectively a full subcategory of Fun((�1)op;Ab)inj.
It follows from Proposition B.0.29 that there is an equivalence P�;1(C0) !!!!!!!!!!!!!!

'
Fun((�1)op;Ab) of

1-categories. It then follows from Lemma 2.2.1 that the fully faithful embedding Fun((�1)op;
Ab)inj ,!P�;1(C0) admits a left adjoint given by the left derived functor of C0 ,!Fun((�1)op;Ab)inj.
We claim that

Lemma 2.3.4. The essential image of Fun((�1)op;Ab)inj ,!P�;1(C0) is spanned by those finite-
product-preserving functors F : (C0)op!Set which maps the edge (Z 0)! (idZ :Z Z) in C0 to
an injective map of sets.

Proof. The functors Fun((�1)op;Ab)�Set corepresented by idZ2C0 and (Z 0)2C0 are given
by (A A0) 7!A0 and (A A0) 7!A respectively, and the edge (Z 0)! (idZ :Z Z) gives rise
to the natural map A A0 of the two functors. It follows that an object F 2Fun((�1)op;Ab) lies
in Fun((�1)op;Ab)inj if and only if the value of the natural map on F is an injection. The result
then follows from the equivalence P�;1(C0)!!!!!!!!!!!!!!

'
Fun((�1)op;Ab). �
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LetD0�Pair denote the full subcategory spanned by images of C0 under the functor Fun((�1)op;
Ab)inj!Pair, concretely spanned by pairs of the form (Z[X;Y ]; (Y )) Then by Corollary 2.2.2,

Lemma 2.3.5. The essentially surjective functor C0!D0 gives rise to the forgetful functor
P�;1(D0)!Fun((�1)op;Ab) which is conservative and preserves sifted colimits.

Lemma 2.2.1 gives us a canonical pair of adjoint functors P�;1(D0)�Pair, where P�;1(D0)!
Pair is the left derived 1-functor (Proposition B.0.27) of the inclusion D0 ,! Pair, and Pair!
P�;1(D0) is the given by the restricted Yoneda embedding (A; I) 7!HomPair(�; (A; I)). We first
note that the forgetful functors are compatible:

Lemma 2.3.6. There is a commutative diagram

Pair //

��

PΣ,1(D
0)

��

Fun((∆1)op,Ab)inj
�

�

// Fun((∆1)op,Ab)

of 1-categories.

Proof. Given a pair (A; I)2Pair, the image in P�;1(D0) is given by D03 (B; J) 7!HomPair((B;
J); (A; I)), subsequently mapped to C0 3 (M �M 0) 7! HomPair((SymZ(M); M 0 SymZ(M)); (A;
I))=�HomFun((�1)op;Ab)(M�M 0; A� I). The other composite is the same. This identification is
functorial in (A; I). �

Now we show that Pair!P�;1(D0) is an embedding to a 1-projectively generated 1-category
that we want. The trick is to talk about maps (Z[X ];0)!(A;I) and (Z[X]; (X))!(A;I) in place of
elements in A and I respectively to do certain �element chasing�. We remind the reader that PolyZ
is a set of compact projective objects for Ring, which gives rise to an equivalence P�;1(PolyZ)'Ring
of 1-categories, where PolyZ is the 1-category of polynomial rings.

Lemma 2.3.7. The functor Pair!P�;1(D0) is fully faithful.

Proof. The faithfulness follows from Lemma 2.3.6 and the faithfulness of the forgetful functor
Pair!Fun((�1)op;Ab)inj. Given two pairs (A; I); (B; J) in Pair and a natural map

HomPair(�; (A; I))j(D0)op!HomPair(�; (B; J))j(D0)op

of finite-product-preserving functors (D0)op� Set, we need to show that this is induced by some
map (A; I)! (B; J) of pairs.

By Lemma 2.3.6, there exists a unique map (A� I)! (B� J) in Fun((�1)op;Ab)inj which
corresponds to the natural transform after composition (C0)op! (D0)op�Set.

Similarly, since P�;1(PolyZ)'Ring, there exists a unique map A!B of rings which corresponds
to the natural transform after composition PolyZ

op! (D0)op� Set where PolyZ!D0 is given by
R 7! (R; 0).

It then follows from the commutativity of the diagram

Free
fin
Z

Sym
//

��

Poly
Z

��

C0 // D0

Figure 2.3.1

of 1-categories, where FreeZfin is the 1-category of finite free abelian groups, with finite-coproduct-
preserving functors that the two maps (A� I)! (B�J) in Fun((�1)op;Ab)inj and A!B in Ring
are compatible, which gives rise to a map (A; I)! (B; J) in Pair. �
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Now we characterize the image of this embedding:

Lemma 2.3.8. The square in Lemma 2.3.6 is Cartesian. Equivalently by Lemma 2.3.4, the essential
image of the fully faithful functor Pair ,!P�;1(D0) is spanned by those finite-product-preserving
functors F : (D0)op!Set which maps the edge (Z[X ]; 0)! (Z[X ]; (X)) in D0 to an injective map
of sets.

Proof. Let F : (D0)op!Set be a functor which preserves finite products such that the composite

(C0)op! (D0)op!!!!!!!!!!!!F Set belongs to the full subcategory Fun((�1)op;Ab)inj under the identification
P�(C0)'Fun((�1)op;Ab). The goal is to show that there exists a pair (A;I)2Pair which represents
F .

Let (A� I)2Fun((�1)op;Ab)inj correspond to the composite functor (C0)op! (D0)op!!!!!!!!!!!!F Set,
and the mapA�I of underlying sets is precisely induced by the map (Z[X];0)!(Z[X ]; (X)) in D0.

The ring structure is given as follows: the functor PolyZ!D0 given by R 7! (R; 0) preserves

finite coproducts, thus the composite functor PolyZ
op! (D0)op !!!!!!!!!!!!F Set preserves finite products,

which corresponds to a ring structure on A. The compatibility follows from Figure 2.3.1.
Now we show that A� I is an ideal, that is to say, the ring multiplication A�A!A restricts

to a map A� I! I. By the above construction, A=F (Z[Y ]; 0) and I =F (Z[X ]; (X)), and since
F preserves finite products, A� I =F (Z[X;Y ]; (X)). Consider (Z[T ]; (T ))2D0. The map (Z[T ];
(T ))! (Z[X;Y ]; (X)); T 7!XY in D0 induces a map A� I! I. The commutative diagram

(Z[X;Y ]; 0) ¡! (Z[T ]; 0)

 
¡

 
¡

(Z[X;Y ]; (X)) ¡! (Z[T ]; (T ))

in D0 shows that the preceding map A � I! I is compatible with the ring structure and the
inclusion I!A.

It remains to construct an isomorphism F!FunPair(�; (A;I))j(D0)op of finite-product-preserving
functors (D0)op� Set. Composing with the functor (C0)op! (D0)op denoted by j, we get a map
F � j!FunPair(�; (A; I)) � j of functors (C0)op�Set which is an equivalence by construction (and
the adjunction Fun(�1;Ab)inj�Pair). We need to show that this equivalence descends along the
essentially surjective functor j.

First, for any (B;J)2D0, by picking any lift under j, the map F (B;J)!FunPair((B;J); (A;I))
could be described as follows: for any f 2F (B;J) and any b2B, the element b corresponds uniquely
to a map b : (Z[t]; 0)! (B;J) of pairs. Note that b�(f)2F (Z[t]; 0)=�A. The image of f , as a map
(B;J)! (A;I) of pairs, is concretely given by b 7! b�(f), which is independent of the choice of the
lift of (B; J).

Now it remains to show that, for any map ' : (B; J)! (C;K) of pairs, the diagram

F (B; J) ¡! FunPair((B; J); (A; I))

¡! ¡!

F (C;K) ¡! FunPair((C;K); (A; I))

is commutative. Indeed, for any f 2 F (C; K), the image in FunPair((C; K); (A; I)) is given by
c 7!c�(f), and the image in FunPair((B;J); (A;I)) is given by b 7!'(b)�(f). On the other hand, the
image of f in F (B;J) is '�(f), and the image in FunPair((B;J); (A; I)) is given by b 7! b�('�(f)).
The result follows from the fact that ' � b= '(b) as maps (Z[t]; 0)� (C;K) of pairs. �

Remark 2.3.9. The 1-category P�;1(D0) contains more objects than Pair. They might be of
independent interest. For example, let A be a ring and I an invertible A-module along with a
map j : I!A of A-modules. If the map j in question is not injective, then it does not �faithfully�
correspond to a ring-ideal pair such as (A; im(j)), that is to say, it represents an object in P�;1(D0)
which is different from (A; im(j)). In fact, the 1-category P�;1(D0) could be identified with the
1-category of commutative algebra objects in Fun(�1; Ab)surj with pushout product monoidal
structure, 1-categorical version of Subsection 2.3.1.
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We now develop a PD analogue as follows: let E0�PDPair denote the full subcategory spanned
by the images of (A; I) 2 D0 under the functor of PD-envelope [Sta21, Tag 07H9], denoted by
(DA(I)�A/I ; 
) instead of the cumbersome notation (DA(I); ker(DA(I)�A/I); 
). Then by
Lemma 2.2.1, we get a pair P�;1(E0)�PDPair of adjoint functors. Explicitly, the objects in E0
are of the form DZ[X;Y ](Y ).

Remark 2.3.10. The notations D0 and E0 are temporary. However, they will be occasionally
used in Subsections 2.3.3, 2.3.4, and 2.3.5.

On the other hand, it follows from Corollary 2.2.2 that

Lemma 2.3.11. The essentially surjective functor D0! E0 gives rise to the forgetful functor
P�;1(E0)!P�;1(D0) which is conservative and preserves sifted colimits.

There is another forgetful functor PDPair!Pair. These functors are compatible:

Lemma 2.3.12. The diagram

PDPair //

��

PΣ,1(E
0)

��

Pair
�

�

// PΣ,1(D
0)

is a commutative diagram of 1-categories.

Proof. For any PD-pair (A; I ; 
)2PDPair, the image in P�;1(E0) is given by E0 3 (B; J ; �) 7!
HomPDPair((B; J ; �); (A; I ; 
)), which is subsequently mapped to an object in P�;1(D0) given by
D03 (B;J) 7!HomPDPair(DJ(B); (A;I ; 
)). On the other hand, the image of (A;I ; 
) in Pair is (A;
I), which is subsequently mapped to an object in P�;1(D0) given by D03 (B;J) 7!HomPair((B;J);
(A;I)). It then follows from the functorial isomorphism HomPDPair(DJ(B); (A;I ; 
))=�HomPair((B;
J); (A; I)) by adjunction. �

Similarly, we have the embedding:

Lemma 2.3.13. The functor PDPair!P�;1(E0) is fully faithful.

Proof. The proof is similar to that of Lemma 2.3.7. The faithfulness follows from Lemma 2.3.12
and the faithfulness of the forgetful functor PDPair! Pair. Given two PD-pairs (A; I ; 
) and
(B; J ; �) in PDPair and a map

F :=HomPDPair(�; (A; I ; 
))j(E0)op!HomPDPair(�; (B; J ; �))j(E0)op :=G

of finite-product-preserving functors (E0)op� Set, we need to show that this is induced by some
map (A; I ; 
)! (B; J ; �) of PD-pairs.

By Lemma 2.3.7, there exists a unique map (A; I)! (B; J) of pairs which correspond to the
natural transform after composition (D0)op! (E0)op� Set. It remains to show that this map
preserves the PD-structure.

Indeed, any x2 I corresponds to a map (¡Z(t)�Z; 
0)! (A; I ; 
) of PD-pairs, i.e., an element
x2F (¡Z(t)�Z; 
0), and the image y of x2 I in J is given by the image y2G(¡Z(t)�Z; 
0) under
the map F!G. For any n2N>0, there is a canonical endomorphism (¡Z(t)�Z; 
0)! (¡Z(t)�Z;

0); t 7! 
n(t) of PD-pairs which induces endomorphisms F (¡Z(t)�Z; 
0)!F (¡Z(t)�Z; 
0) and
G(¡Z(t)�Z; 
0)!G(¡Z(t)�Z; 
0) compatible with the map F !G. In particular, the image,
denoted by xn, of x under the first endomorphism maps to the image, denoted by yn, of y under
the second endomorphism. We note that xn corresponds to 
n(x) and yn corresponds to 
n(y).
Thus the map (A; I)! (B; J) maps 
n(x) to 
n(y). �

With the following description of the essential image (cf. Lemma 2.3.8):
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Lemma 2.3.14. The square in Lemma 2.3.12 is Cartesian. Equivalently by Lemma 2.3.8, the
essential image of the fully faithful functor PDPair!P�;1(E0) is spanned by those finite-product-
preserving functors F : (E0)op!Set which maps the edge (Z[X ];0;0)! (¡Z(X)�Z; 
) in E0 to an
injective map of sets.

Proof. The proof is similar to that of Lemma 2.3.8. Let F : (E0)op! Set be a functor such that
the composite (D0)op! (E0)op !!!!!!!!!!!!F Set lies in the essential image of the fully faithful functor
Pair!P�;1(D0). We need to construct a PD-pair (A;I ; 
)2PDPair which represents the functor F .

Let (A; I) represent the composite functor (D0)op! (E0)op!!!!!!!!!!!!F Set. Unrolling the definitions,
we see that A = F (Z[t]; 0; 0), I = F (¡Z(t)� Z; 
) and the map I! A is induced by the map
(Z[t]; 0; 0)! (¡Z(t)�Z; 
) of PD-pairs. We endow a PD-structure (A; I) as follows: there exists a
canonical endomorphism 
n : (¡Z(t)�Z; 
)! (¡Z(t)�Z; 
); t 7! 
n(t) of PD-pair, which induces
a map 
n : I! I for all n2N>0. We need to check that (
n)n2N>0 satisfies the axioms of divided
power structure [Sta21, Tag 07GL], setting 
0= id. We spell out the verification of two of them:


n(x+ y)=
P

i 
i(x) 
n¡i(y) for (x; y)2 I
2. First, in the PD-pair (¡Z(X;Y )�Z; 
), the

identity 
n(X +Y )=
P
i 
i(X) 
n¡i(Y ) holds. This implies that the composite

(¡Z(T )�Z; 
)! (¡Z(T0; : : : ; Tn)�Z; 
)! (¡Z(X;Y )�Z; 
)

where the first map is induced by T 7!
P
i Ti, and the second map is induced by Ti 7!


i(X) 
n¡i(Y ), coincides with the composite

(¡Z(T )�Z; 
)!!!!!!!!!!!!!!!!!!

n (¡Z(T )�Z; 
)! (¡Z(X;Y )�Z; 
)

where the second map is induced by T 7!X+Y . Applying F to the two compositions, using
the fact that F preserves finite products, and that (x; y)2 I2 corresponds to an element in
F (¡Z(X;Y )�Z; 
), we get the result (for the part Ti 7! 
i(X) 
n¡i(Y ), one need to separate
i=0 and i > 0).


n(ax)= an 
n(x) for (a; x)2A� I. In the PD-pair (¡Z[Y ](X)� Z[Y ]; 
), the identity

n(YX)=Y n 
n(X) holds. This implies that the composite

(¡Z(T )�Z; 
)! (¡Z[T1; : : : ;Tn](t)�Z[T1; : : : ; Tn]; 
)! (¡Z[Y ](X)�Z[Y ]; 
)

where the first map is induced by T 7!T1 � � � Tn t, and the second map is induced by Ti 7!Y
and t 7!X , coincides with the composite

(¡Z(T )�Z; 
)!!!!!!!!!!!!!!!!!!

n (¡Z(T )�Z; 
)! (¡Z[Y ](X)�Z[Y ]; 
)

where the second map is induced by T 7!XY . Applying F to the two compositions, using
the fact that F preserves finite products, and that (a; x)2A� I corresponds to an element
in F (¡Z[Y ](X)�Z[Y ]; 
), we get the result.

Finally, the proof of the fact that (A; I ; 
) represents F is parallel to the corresponding part of
the proof of Lemma 2.3.8. �

Now we arrive at the definition of animated pairs and animated PD-pairs:

Definition 2.3.15. The 1-category AniPair of animated pairs is defined to be the 1-category
P�(D0), and the 1-category AniPDPair of animated PD-pairs is defined to be the 1-category
P�(E0).

The forgetful functor AniPair!Fun(�1;D(Z)�0) is given by the pair P�(C0)�P�(D0) obtained
by applying Corollary 2.2.2 to the essentially surjective functor C0!D0.

The forgetful functor AniPDPair!AniPair and the animated PD-envelope functor AniPDEnv :
AniPair!AniPDPair are given by the pair P�(D0)�P�(E0) obtained by applying Corollary 2.2.2
to the essentially surjective functor D0!E0 given by PD-envelope.

It follows from Corollary 2.2.2 that

Corollary 2.3.16. The forgetful functors AniPair! Fun((�1)op; D(Z)�0) and AniPDPair!
AniPair are conservative and preserve sifted colimits.
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These forgetful functors are compatible with canonical embeddings Pair ,!P�;1(D0) ,!AniPair
and PDPair ,!P�;1(E0) ,!AniPDPair:

Proposition 2.3.17. The diagram

PDPair
�

�

//

��

AniPDPair

��

Pair �
�

//

��

AniPair

��

Fun((∆1)op,Ab)inj
�

�

// Fun((∆1)op, D(Z)≥0)

is a commutative diagram of 1-categories. Moreover, the squares are Cartesian.

Proof. The commutativity follows from Remark B.0.35 and Lemmas 2.3.6 and 2.3.12. The last
claim follows from Lemmas 2.3.8 and 2.3.14. �

Remark 2.3.18. The embeddings Pair ,!AniPair and PDPair ,!AniPDPair admits left adjoints
given by the composite functors AniPair!!!!!!!!!!!!!!!!!!!!!!!!!!

��0 P�;1(D0)!Pair and AniPDPair!!!!!!!!!!!!!!!!!!!!!!!!!!
��0 P�;1(E0)!

PDPair (see Remark B.0.35 for ��0). We will give an explicit description of the functor AniPair!
Pair in Proposition 2.3.29.

Taking the left adjoints to the upper square of the diagram in Proposition 2.3.17, we get

Corollary 2.3.19. The diagram

AniPair //

��

Pair

��

AniPDPair // PDPair

is a commutative diagram of 1-categories.

In particular, we rewrite the PD-envelope in terms of animated PD-envelope:

Corollary 2.3.20. The PD-envelope functor Pair!PDPair coincides with the composite functor
Pair ,!AniPair!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !AniPDEnv

AniPDPair!PDPair.

In fact, there is a more concrete description of AniPair, given by the following:

Definition 2.3.21. The 1-category of surjective maps of animated rings is the full subcategory
Fun(�1;Ani(Ring))�0�Fun(�1;Ani(Ring)) of maps A!A00 such that the induced map �0(A)!
�0(A00) on the 0th homotopy groups is surjective.

We now show that the strategy to prove Corollary 2.3.3 adapts to our case. Indeed, by
Corollary 2.3.2, we have the equivalence Fun((�1)op;D(Z)�0)'Fun(�1;D(Z))�0 of 1-categories,
therefore a set of compact projective generators for Fun((�1)op; D(Z)�0) gives rise to a set of

compact projective generators for Fun(�1;D(Z))�0:
n
Z!!!!!!!!!!!!!!

id
Z;Z!0

o
. Now we study two adjunc-

tions over these 1-categories.
We have a pair Fun(�1; D(Z)�0)� Fun(�1; Ani(Ring)) of adjoint functors induced by the

pair D(Z)�0 ����������������������������������������������������� �
LSymZ

Ani(Ring) of adjoint functors. Restricting to full subcategories, we get a
pair Fun(�1; D(Z))�0� Fun(�1; Ani(Ring))�0, the later is defined before Corollary 2.3.2. We
summarize the preceding discussion by the diagram

P�(D0) Fun(�1;Ani(Ring))�0 � Fun(�1;Ani(Ring))

¡!  
¡

¡!  
¡

¡!  
¡

Fun((�1)op; D(Z)�0) !!!!!!!!!!!!!!
'

Fun(�1; D(Z))�0 � Fun(�1; D(Z)�0)

(2.3.1)
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We note that both full subcategories are stable under small colimits, therefore the forgetful functor
Fun(�1; Ani(Ring))�0! Fun(�1; D(Z))�0 preserves sifted colimits. Since the forgetful functor
is also conservative, it follows by Proposition B.0.15 that Fun(�1; Ani(Ring))�0 is projectively

generated, for which
n
Z[t]!!!!!!!!!!!!!!

id
Z[t];Z[t]!Z

o
is a set of compact projective generators. Let Z �

Fun(�1;Ani(Ring))�0 denote the full subcategory spanned by finite coproducts of these objects,
which is effectively a full subcategory of Fun(�1;Ring). The following lemma is then obvious:

Lemma 2.3.22. There is an equivalence D0'Z of 1-categories given by D0!Z ;(A;I) 7!(A�A/I)
and Z!D0; (A�A00) 7! (A; ker(A�A00)).

It follows from previous discussion that

Theorem 2.3.23. There is an equivalence AniPair=P�(D0)!!!!!!!!!!!!!!
'

Fun(�1;Ani(Ring))�0 of 1-cat-
egories which fits into ( 2.3.1), making the left square a commutative square2.3.2.

Remark 2.3.24. Corollary 2.3.3 says that the 1-category of E1-algebras in the symmetric
monoidal 1-category Fun((�1)op; D(Z)�0) is equivalent to that of E1-algebras in the symmetric
monoidal1-category Fun(�1;D(Z))�0 since two symmetric monoidal1-categories are equivalent.
Our result essentially says that both 1-categories admits endomorphism monads which is also
preserved under this equivalence, therefore the module categories over these monads are equivalent.

Notation 2.3.25. Given the equivalence in Theorem 2.3.23, we will symbolically denote an object
in AniPDPair by (A�A00; 
) where A�A00 is the image under the forgetful functor AniPDPair!
AniPair!!!!!!!!!!!!!!' Fun(�1;Ani(Ring))�0. When the PD-structure is the �obvious� one (like ¡Z[X](Y )�
Z[X]), by abuse of notation, we will omit the 
 in question. Under this notation, objects in D0
could be identified with Z[X;Y ]�Z[X], and objects in E0 could be identified with ¡Z[X](Y )�Z[X ].

Remark 2.3.26. In Theorem 2.3.23, we can replaceD(Z) by any derived algebraic context C [Rak20,
Def 4.2.1] and then both Fun((�1)op; C) and Fun(�1; C) admit canonical structures of derived
algebraic contexts which are preserved under the equivalence Fun((�1)op; C)! Fun(�1; C), and
Theorem 2.3.23 essentially generalizes to the equivalence between the 1-categories of connective
maps of derived commutative algebras [Rak20, Rem 4.2.24] (note that AniPair'DAlg(Fun((�1)op;
D(Z)))cn and Fun(�1;Ani(Ring))�0'DAlg(Fun(�1; D(Z)))cn).

Remark 2.3.27. In our future work, we will show that Bhatt-Mathew's machinery in [Rak20,
�4] allows us to define the 1-category of derived PD-pairs of which the connective objects spans
a full subcategory equivalent to the 1-category of animated PD-pairs.

Warning 2.3.28. We warn the reader that the heart DAlg(Fun((�1)op; D(Z)))~ in [Rak20,
Rem 4.2.24] is equivalent to the 1-category P�;1(D0), not the 1-category Pair.

We also identify the equivalence in Theorem 2.3.23 restricted to the full subcategory Pair�
AniPair:

Proposition 2.3.29. Let Fun(�1; Ring)surj� Fun(�1; Ring) be the full subcategory spanned by
those surjective maps A�A00 of rings. Then the equivalence Pair! Fun(�1;Ring)surj; (A; I) 7!
(A�A/I) fits into a canonical commutative diagram

Pair
≃

//
� _

��

Fun(∆1
,Ring)surj� _

��

AniPair
≃

// Fun(∆1
,Ani(Ring))≥0

2.3.2. More precisely, there are two possible left squares in (2.3.1). However, by uniqueness of left/right adjoint,
roughly speaking, one commutes if and only if the other commutes.
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of 1-categories. Furthermore, the localization AniPair!Pair (Remark 2.3.18) could be identified
with Fun(�1;Ani(Ring))�0!Fun(�1;Ring)surj; (A�A00) 7! (�0(A)� �0(A00)).

Proof. We note that Fun(�1; Ring)� Fun(�1; Ani(Ring)) is the reflective subcategory (Defin-
ition 2.2.44) spanned by the 1-truncated objects, of which the localization is given by Fun(�1;
Ani(Ring))!Fun(�1;Ring); (A!A00) 7!(�0(A)!�0(A00)) by Corollary 2.2.13 and Remark B.0.35.
Restricting to the full subcategory Fun(�1;Ani(Ring))�0�Fun(�1;Ani(Ring)), we get a localiza-
tion Fun(�1;Ani(Ring))�0!Fun(�1;Ring)surj. Consider the diagram

AniPair
≃

//

��

Fun(∆1
,Ani(Ring))≥0

��

Pair
≃

// Fun(∆1
,Ring)surj

of1-categories, where the vertical arrows are localizations (Remark 2.3.18). We claim that this is
a commutative diagram. Indeed, both compositions commute with filtered colimits and geometric
realizations (in fact, all small colimits, since both vertical arrows are localizations in Defini-
tion 2.2.44), and when restricting to D0�AniPair, both compositions are canonically equivalent.
Then the claim follows from Proposition B.0.10.

Another way to show the commutativity is to show that the top right composition is (AniPair!
Pair)-invariant in Definition 2.2.57, then invoke Proposition 2.2.56.

Then the result follows by taking the right adjoints to the vertical arrows. �

Corollary 2.3.30. The lower square in Proposition 2.3.17 is left-adjointable [ Lur17, Def 4.7.4.13],
which gives rise to a commutative diagram

AniPair //

��

Pair

��

Fun((∆1)op, D(Z)≥0) // Fun((∆1)op,Ab)inj

of 1-categories, where the vertical arrows are forgetful functors.

Warning 2.3.31. The upper square in Proposition 2.3.17 is not left-adjointable. That is to say, the
localizations AniPair!Pair and AniPDPair!PDPair are not compatible with forgetful functors,
otherwise the forgetful functor PDPair!Pair would commute with small colimits, which is false
(see Remark 2.3.35).

It follows from Propositions 2.3.17 and 2.3.29 that

Proposition 2.3.32. The essential image of the fully faithful embedding PDPair ,!AniPDPair is
spanned by those animated PD-pairs (A�A00; 
) such that both A and A00 are static.

To understand the difference between Pair and P�;1(D0)' ��0(AniPair) better, we compute
the following example:

Example 2.3.33. Consider (Z/4Z; (2))2Pair as an animated pair. By Proposition 2.3.29, this
corresponds to the surjective map Z/4 Z� F2 of rings. Let us study the coproduct (Z/4 Z;
(2))q (Z/4Z; (2)) taken in AniPair. Thanks to Theorem 2.3.23, this corresponds to the surjective
map Z/4Z
Z

LZ/4Z�F2
Z
LF2 of animated rings. The underlying map in Fun(�1;Ani(Ring))�0

is given by

(Z/4Z)[1]�Z/4Z�F2[1]�F2

induced by 0 : (Z/4Z)[1]!F2[1] and the canonical projection Z/4Z�F2. Under the forgetful
functor AniPair!Fun((�1)op; D(Z)�0), the image of (Z/4Z; (2))q (Z/4Z; (2)) is thus given by

(Z/4Z)[1]�Z/4Z  ¡ fib((Z/4Z)[1]�Z/4Z�F2[1]�F2)
              ' (Z/4Z)[1]�F2� 2Z/4Z
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induced by F2!0 and other maps are canonical. Since the forgetful functor AniPair!Fun((�1)op;
D(Z)�0) commutes with ��0 (Remark B.0.35), we can identify the underlying object of ��0((Z/4Z;
(2))q(Z/4Z; (2))) in Fun((�1)op;Ab) with (Z/4Z F2�2Z/4Z), which is not injective. Roughly
speaking, the localization P�(D0)!Pair will kill the kernel F2.

We now prove a stronger colimit-preserving property of the forgetful functor from animated
PD-pairs to animated pairs, which does not seem to be obvious without this identification:

Proposition 2.3.34. The forgetful functor AniPDPair!AniPair preserves small colimits.

Proof. By Proposition B.0.10, it suffices to show that the composite functor E0 ,!AniPDPair!
AniPair preserves finite coproducts. We first �simplify� this composition, then we compute the
finite coproducts by hand.

Since E0 ,!AniPDPair factors as E0 ,!PDPair ,!AniPDPair, it follows from Proposition 2.3.17
that the composite functor E0 ,!AniPDPair!AniPair is equivalent to the composite functor
E0 ,!PDPair!Pair ,!AniPair. Under the equivalence in Theorem 2.3.23, this functor is concretely
given by E03 (A;I ; 
) 7!(A�A/I)2Fun(�1;Ani(Ring))�0. Since Fun(�1;Ani(Ring))�0�Fun(�1;
Ani(Ring)) is stable under small colimits, we can take the finite coproducts in the larger1-category
Fun(�1;Ani(Ring)).

Every object in E0 is the PD-envelope of a pair of form (Z[X1;:::;Xm;Y1;:::;Yn];(Y1;:::;Yn)), which
we will denote by ¡Z[X1; : : : ;Xm](Y1;:::; Yn)�Z[X1;:::;Xm]. Now the result follows from the fact that

¡Z[X](Y )
Z
L¡Z[X 0](Y 0)'¡Z[X;X 0](Y ; Y 0)

and

Z[X]
Z
LZ[X 0]'Z[X;X 0]

where X =(X1; : : : ; Xm), X 0=(X1
0; : : : ; Xm0

0 ), Y =(Y1; : : : ; Yn) and Y 0=(Y10; : : : ; Yn00 ). �

Remark 2.3.35. Proposition 2.3.34 implies that the forgetful functor P�;1(E0)!P�;1(D0) pre-
serves small colimits, cf. Lemma 2.3.11. However, the forgetful functor PDPair!Pair does not
preserve small colimits, even pushouts [Sta21, Tag 07GY]. The counterexample there is given by
two PD-structures on the pair (Z/4Z; (2)). We explain the incompatibility of the localizations in
Warning 2.3.31 by Example 2.3.33: the localization AniPair!Pair kills the kernel F2, while the
localization AniPDPair!PDPair kills more, since the PD-structure does not necessarily pass to
the quotient, so one needs to quotient out more relations.

Corollary 2.3.36. The composite functor AniPair !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !AniPDEnv
AniPDPair!AniPair preserves

small colimits where AniPDPair!AniPair is the forgetful functor.

2.3.3. Basic properties In this subsection, we will discuss basic properties of animated
pairs (resp. animated PD-pairs).

First, we recall that, given a pair (A; I), let (B;J ; 
) be its PD-envelope, then there is a canonical
equivalence A/I =�B/J [Sta21, Tag 07H7]. There is an analogue for animated PD-envelope:

Lemma 2.3.37. The composite functor F :AniPair!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !AniPDEnv
AniPDPair!AniPair is compatible

with the evaluation ev[1] :AniPair'Fun(�1;Ani(Ring))�0!Ani(Ring) at [1]2�1. That is to say,

the composite functor AniPair!!!!!!!!!!!!F AniPair!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
ev[1]

Ani(Ring) is homotopy equivalent to the functor
AniPair!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

ev[1]
Ani(Ring).

Proof. Both functors are left derived functors, therefore it suffices to check on the full subcategory
PolyZ�AniPair, which follows from a direct identification. �

We note that the functor Ani(Ring)!Fun(�1;Ani(Ring)); A 7! (idA :A!A) is fully faithful,
admits a left adjoint ev[1] and a right adjoint ev[0]. Restricting to the fully faithful embedding
AniPair ,!Fun(�1;Ani(Ring)), we get
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Lemma 2.3.38. The functor Ani(Ring)!AniPair; A 7! (idA :A!A) is fully faithful and admits
a left adjoint ev[1] :AniPair!Ani(Ring); (A�A00) 7!A00 and a right adjoint ev[0] :Ani(Ring)!
AniPair; (A�A00) 7!A.

This functor preserves small colimits, therefore by Proposition B.0.10, it is the left derived
functor of the composite functor PolyZ!D0 ,!AniPair; A 7! (A; 0). Apply Corollary 2.2.2 to the
composite PolyZ!D0!E0, we get:

Lemma 2.3.39. The composite functor Ani(Ring)!AniPair!AniPDPair is fully faithful, where
the first functor is Ani(Ring)!AniPair; A 7! (idA :A!A), and the second functor AniPair!
AniPDPair is the animated PD-envelope functor (Definition 2.3.15), and a further composition
Ani(Ring)!AniPDPair!AniPair is equivalent to the fully faithful functor Ani(Ring)!AniPair;
A 7! (idA :A!A) above.

Despite Warning 2.3.31, the image of an animated PD-pair (A�A00; 
) under the localization
AniPDPair!PDPair is of the form �! ��0(A00):

Lemma 2.3.40. There is a canonical commutative diagram

AniPDPair //

��

AniPair
ev[1]

// Ani(Ring)

τ≤0

��

PDPair // Pair
ev[1]

// Ring

of 1-categories.

Proof. We first note that the composite functor AniPDPair!AniPair!Ani(Ring)!Ring pre-
serves small colimits, therefore is a left derived functor (Proposition B.0.10), hence left Kan
extended along E0 ,!AniPDPair. The diagram is canonically commutative on the full subcategory
E0�AniPDPair. It remains to show the existence of the extension of the equivalence in question.

Now consider the diagram

Ring
� � //

� _

��

Pair // PDPair

��

Ani(Ring)
� � // AniPair // AniPDPair

of 1-categories where the functors Ring!Pair and Ani(Ring)!AniPair are given by A 7! (A; 0)
and A 7! (idA :A!A) respectively, and the functor Pair! PDPair and the functor AniPair!
AniPDPair are the PD-envelope (resp. animated PD-envelope) functors. This is a commutative dia-
gram by Lemma 2.3.39. Taking the right adjoints, we get the commutativity by Lemma 2.3.38. �

Next, we show that animated PD-envelope �does nothing� after rationalization. More precisely,

Lemma 2.3.41. Consider the unit map � from the functor idAniPair to the composite functor
AniPair! AniPDPair! AniPair where the first functor is the animated PD-envelope functor
and the second is the forgetful functor. Then the composite of � with the rationalization functor

AniPair'Fun(�1;Ani(Ring))�0!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
�
Z

LQ
Fun(�1;Ani(AlgQ))�0 is an equivalence of functors.

Proof. Since the rationalization functor preserves filtered colimits and geometric realizations, by
Proposition B.0.10, it suffices to show the equivalence on D0�AniPair. Concretely, it is saying
that the canonical map Z[X; Y ]! ¡Z[X](Y ) becomes an equivalence after rationalization, which
follows from definitions. �

Now we consider the base change. Given a surjective map (A�A00)2 Fun(�1;Ani(Ring))�0
and a map A!B of animated rings, the base changed map B!A00
ALB is also surjective. The
key observation is that this base change is a pushout (A�A00)q(idA:A!A) (idB :B!B). Since
the animated PD-envelope functor, being a left adjoint, and the forgetful functor preserve small
colimits (Proposition 2.3.34), it follows from Lemma 2.3.39 that (to compare with Remark 2.2.24).
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Lemma 2.3.42. The composite functor AniPair!AniPDPair!AniPair is compatible with base
change, where the first functor is the animated PD-envelope functor and the second is the forgetful
functor. More precisely, there is an equivalence from (C 
ALB�C 00
ALB) to the animated PD-
envelope of B!A00
ALB between animated pairs, where (C�C 00; 
) is the animated PD-envelope

of (A�A00), which is functorial with respect to the diagram

A ¡� A00

 
¡

B

in Ani(Ring).

Remark 2.3.43. (General base) Let R be a ring. We could then replace Z by R in the theory of
animated pairs and PD-pairs. For example, the 1-category Ab is replaced by ModR, the1-category
D(Z) is replaced by D(R), the 1-category Ani(Ring) is replaced by Ani(AlgR), the 1-category
D0 is replaced by DR0 consisting the pairs of the form (R[X; Y ]; (Y )), and E0 is replaced by ER0
consisting the PD-pairs of the form ¡R[X](Y )�R[X ], etc. We get AniPairR and AniPDPairR. There
are canonical base change functors Ani(Ring)!Ani(AlgR), AniPair!AniPairR and AniPDPair!

AniPDPairR essentially induced by the base change D(Z)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !�
Z
LR

D(R).

It follows from Corollary 2.2.14 that

Lemma 2.3.44. There are canonical equivalences of 1-categories

Ani(AlgR) !!!!!!!!!!!!!!
'

Ani(Ring)R/
AniPairR !!!!!!!!!!!!!!

'
AniPair(idR:R!R)/

AniPDPairR !!!!!!!!!!!!!!
'

AniPDPair(idR:R!R;0)/

By the proof of Lemma 2.2.37, it follows from Lemma 2.3.42 that

Lemma 2.3.45. Let R be a ring. Then there is a canonical commutative diagram

AniPairR
//

��

AniPDPairR

��

AniPair // AniPDPair

of 1-categories where the vertical arrows are forgetful functors and the horizontal arrows are
animated PD-envelope functors.

Moreover, again by Lemma 2.3.42, we have

Lemma 2.3.46. Let R be a ring. Then there is a canonical commutative diagram

AniPair //

��

AniPDPair

��

AniPairR
// AniPDPairR

of 1-categories, where the horizontal arrows are animated PD-envelope functors and the vertical
arrows are base change functors.

2.3.4. Quasiregular pairs This subsection is devoted to comparison of animated theory
of pairs and PD-pairs with the classical version. Quasiregularity, introduced by Quillen, play an
important role:

Definition 2.3.47. ([Qui67, Thm 6.13]) We say that a pair (A; I) 2 Pair is quasiregular if
the shifted cotangent complex L(A/I)/A[¡1] 2D(A/I) is a flat A/I-module. We will denote by
QReg�Pair the full subcategory spanned by quasiregular pairs.
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Example 2.3.48. Let A be a ring and I �A an ideal generated by a Koszul-regular sequence.
Then L(A/I)/A' (I/I2)[1] [Sta21, Tag 08SJ], and I/I2 is a free A/I-module [Sta21, Tag 062I]. We
warn the reader that Quillen's quasiregular is different from �quasi-regular� in [Sta21, Tag 061M],
and the later is not used in this article.

The first goal of this subsection is to show that there is a �derived� version of the adic filtration
on animated pairs. Furthermore, for pairs, there is a natural comparison map from the �derived�
version to the classical version (strictly speaking, our comparison is slightly more general), which
becomes an equivalence when the pair in question is quasiregular. We refer to Subsection 2.2.4 for
concepts and notations about filtrations. We need the following results, which relates the cotangent
complex to powers of ideals.

Lemma 2.3.49. ([Sta21, Tag 08RA]) There exists a map �(I/I2)!L(A/I)/A in D(A/I) which
is functorial in (A; I)2Pair, such that the composite map �(I /I2)!L(A/I)/A! ��1L(A/I)/A is
an equivalence.

Remark 2.3.50. By abuse of terminology, by a mapM(A;I)!N(A;I) inD�0(A/I) being functorial
in (A;I)2Pair, we mean that the map in question is a map between two functors (A;I)�Ani(Mod)
given by (A; I) 7! (A/I ;M(A;I)) and (A; I) 7! (A/I ;N(A;I)) respectively.

Lemma 2.3.51. ([Sta21, Tag 08SI]) For any (A; I)2D0�Pair, the cotangent complex L(A/I)/A
is 1-truncated.

Corollary 2.3.52. There exists an equivalence �(I /I2)!L(A/I)/A in D�0(A/I) functorial in
(A; I)2D0.

We now define the adic filtration on animated pairs. Consider the classical adic filtration functor
AdFil :Pair!CAlg(DF�0(Z)); (A; I) 7! (In)n2N�0. Restricting to the full subcategory D0�Pair
and applying Proposition B.0.10, we get a functor LAdFil :AniPair!CAlg(DF�0(Z)), called the
adic filtration functor .

Remark 2.3.53. By the same argument, there is a natural structure of filtered derived ring
(Remark 2.2.42) on LAdFil, which we will not use in this article.

By Theorem 2.3.23, we can identify Fil0�LAdFil :AniPair!CAlgZ with the composite functor

Fun(�1;Ani(Ring))!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
ev[0]

Ani(Ring)!CAlgZ; (A�A00) 7!A

and gr0 �LAdFil :AniPair!CAlgZ with the composite functor

Fun(�1;Ani(Ring))!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
ev[1]

Ani(Ring)!CAlgZ; (A�A00) 7!A00

Combining Corollary 2.3.52, Proposition B.0.10, sifted-colimit-preserving properties of L Sym�,
and the concrete analysis of pairs in D0�AniPair, we get

Corollary 2.3.54. For every (A�A00)2AniPair, the shifted cotangent complex LA00/A[¡1]'
gr1(LAdFil(A�A00)) is connective, and there exists an equivalence

L SymA00� (gr1(LAdFil(A�A00)))! gr�(LAdFil(A�A00))

of graded E1-Z-algebras functorial in (A�A00)2AniPair.

Now we construct a comparison map between the �derived� filtration LAdFil and the �non-
derived� filtration AdFil. We apply a trick used in the proof of Proposition 2.3.29 and Lemma B.0.39.
Consider the functor LAdFil :AniPair!CAlg(DF�0(Z)) and the composite functor AniPair!
Pair !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

AdFil
CAlg(DF�0(Z)) where AniPair! Pair is the localization (Remark 2.3.18). A com-

parison map from the former L AdFil to the later is furnished by Proposition B.0.10 and the
universal property of left Kan extensions, which is essentially unique. Our next goal is to show
that the comparison map is an equivalence after restriction to QReg�AniPair.
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Since the forgetful functor CAlg(DF�0(Z))!DF�0(Z) is conservative, we can show the equiv-
alence after forgetting the E1-structure.

The previous discussion show that the comparison map is an equivalence after composing with
Fil0 :DF�0(Z)!D(Z) and gr0 :DF�0(Z)!D(Z) on the 1-category Pair (not only for quasiregular
pairs). We define the functor gr[0;n) :DF�0(Z)!D(Z);F 7!cofib(Filn(F )!Fil0(F )). Thus it suffice
to prove that the comparison map is an equivalence after composing with gr[0;n) :DF�0(Z)!D(Z)
for all n> 1 for quasiregular pairs. Note that by definition, the essential image of gr[0;n) �AdFil
already lies in Ab�D(Z). We show a more general statement (cf. the proof of Proposition 2.3.29
and Lemma B.0.39):

Lemma 2.3.55. There is a commutative diagram

AniPair
gr[0,n) ◦LAdFil

//

��

D(Z)≥0

τ≤0

��

Pair
gr[0,n) ◦AdFil

// Ab

of 1-categories, where the comparison from the top-right composition to the bottom-left composi-
tion is induced by the comparison map LAdFil!AdFil� (AniPair!Pair) previously constructed.

Proof. The trick is to consider an auxiliary functor. Let (A�A00)2AniPair and let I :=fib(A�
A00)2D(Z)�0. We recall that, by Theorem 2.3.23, and (2.3.1) in particular, the forgetful functor
AniPair!Fun((�1)op; D(Z)�0) is just (A�A00) 7! (A I).

Then the map I!A in D(Z)�0 induces a map L SymZ
n I!L SymZ

n A. Composing with the
multiplication LSymZ

nA!A, we get the map LSymZ
n I!A. We consider the functor F :AniPair!

D(Z)�0; (A�A00) 7! cofib(LSymZ
n I!A).

First, the functor F preserves filtered colimits and geometric realizations, since the functor
LSymZ and the forgetful functor AniPair!Fun((�1)op;D(Z)�0) do (Lemma 2.3.5). In fact, F is
the left derived functor (Proposition B.0.10) of the functor D0!D(Z)�0; (A;I) 7! cofib(SymZ

n I!
A).

Next, note that for (A;I)2D0, the map SymZ
n I!A factors functorially as SymZ

n I!In!A and
the map SymZ

n I! In is surjective. It follows that there is a natural surjective map cofib(SymZ
n I!

A)!A/In, which gives rise to a map F!gr[0;n)�LAdFil of functors which becomes an equivalence
after composition with ��0 :D(Z)�0!Ab.

We now show that the functor ��0�F :AniPair!Ab factors through the localization AniPair!
Pair. First, since Ab is a 1-category, it factors through AniPair!P�;1(D0). Given (A�A00)2
P�;1(D0), let I = fib(A�A00) as before. Then (A I)2P�;1(C0)'Fun((�1)op;Ab), therefore A;
I are static. Let I 0= im(I!A). It follows that the localization P�;1(D0)!Pair maps (A�A00)
to (A; I 0)2Pair. By Proposition 2.2.56, it suffices to show that F maps (A�A00)! (A; I 0) to an
equivalence. This simply follows from the fact that L SymZ

n I!L SymZ
n I 0 is a surjection on �0,

and the �multiplication� map LSymZ
n I!A factors as L SymZ

n I!LSymZ
n I 0!A.

In conclusion, we have already shown that there exists an equivalence of two compositions in
the diagram that we need to prove. To show that this equivalence is the equivalence that we want,
we note that the top right composition preserves filtered colimits and geometric realizations, then
the first paragraph of the proof of Lemma 2.3.40 applies. �

In particular, when (A;I) is quasiregular, it follows from Corollary 2.3.54 that grn(LAdFil(A�
A/I))2D(Z)�0 is static for all n2N, which implies that gr[0;n)(LAdFil(A�A/I)) is static for
all n2N. Consequently, we have

Proposition 2.3.56. The comparison map from the functor LAdFil :AniPair!CAlg(DF(Z)) to

the composite functor AniPair!Pair!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
AdFil

CAlg(DF(Z)) becomes an equivalence after restricting
to the full subcategory QReg�AniPair.

Corollary 2.3.57. ([Qui67, 6.11]) For every quasiregular pair (A; I), the canonical map
SymA/I

� (I /I2)!
L

I�/I�+1 of graded rings is an equivalence.
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Proof. It suffices to show that the equivalence given by Corollary 2.3.54 coincides with the
canonical map induced by the multiplicative structure on A. For any element x1 ���xn2SymA/In (I/
I2), we pick a lift x1;:::;xn2I, which gives rise to a map (B;J) :=(Z[X1;:::;Xn];(X1;:::;Xn))!(A;I)
of pairs, which induces the commutative diagram

Symn
B/J (J/J

2) //

��

Jn/Jn+1

��

LSymn
A/I(gr

1(LAdFil(A ։ A/I))) // grn(LAdFil(A ։ A/I))

in the 1-category D(Z)�0. Taking ��0 and trace the element X1 � � �Xn2 SymB/J
n (J /J2), we get

the result. �

We are unable to answer the following question in full generality:

Question 3. Let (A;I) be a quasiregular pair. Let (B�B 00; 
) denote its animated PD-envelope.
Is it true that B;B 00 are static, so by Proposition 2.3.32 and Corollary 2.3.20, it coincides with the
classical PD-envelope?

However, we are able to answer it under certain flatness. First, it follows from Lemma 2.3.41
that when A is a Q-algebra, the animated PD-envelope of (A; I) is just A�A/I, which is also
the classical PD-envelope.

Now we consider the characteristic p> 0 case, switching the ground ring from Z to Fp (which
is valid by Lemma 2.3.45). We will use the notations D0 and E0 in Subsection 2.3.2 but the
occurrences of Z are replaced by Fp. We recall that the Frobenius map A!A; x 7! xp of an Fp-
algebra A gives rise to an endomorphism ' : idAlgFp

! idAlgFp
of the identity functor idAlgFp

:
AlgFp!AlgFp, which gives rise to an endomorphism idAni(AlgFp)

! idAni(AlgFp)
still denoted by '.

We now introduce the conjugate filtration on the animated PD-envelope of animated Fp-pairs that
we learned from [Bha12a].

Let (A; I) be an Fp-pair such that the Frobenius 'A :A!A is flat, and let (B;J ; 
) denote its
PD-envelope. We first note that there is a 'A�(A/I)-algebra structure on B since f p= p 
p(f)=0
for all f 2J .

We have a filtration on B given by Fil¡nB for n � 0 to be the 'A� (A/I)-submodule of B
generated by f
k1p(f1) � � � 
kmp(fm) j k1+ � � � + km� n and f1; : : : ; fm2 Ig, which gives rise to a
structure of nonpositively filtered 'A� (A/I)-algebra. We note that the filtration is exhaustive, i.e.
Fil¡1B = colimn2(Z;�) Fil¡nB!B is an isomorphism, and we can rephrase the nonpositively
filtered 'A

� (A/I)-algebra structure as a map 'A
� (A/I)!FilB2.3.3 of nonpositively filtered ring.

We need the following result:

Lemma 2.3.58. ([Bha12a, Lem 3.42]) Let (A; I) be an Fp-pair such that I /I2 is a flat A/I-
module and the Frobenius 'A :A!A is flat. The PD-envelope (B; J ; 
) and the filtration Fil�B
are constructed above.

Then there is a comparison map 'A
�(¡A/I

i (I /I2))! gr¡i B of 'A�(A/I)-modules induced by
the maps (
kp)k2N which is functorial in (A; I). For example, when I /I2 is free, an element in

¡A/I
i (I /I2) represented by f
i

i!
will be mapped to 
ip(f) for f 2 I.

Furthermore, if I �A is generated by a Koszul-regular sequence2.3.4, then the comparison map
above is an isomorphism.

Now we define the conjugate filtration on the animated PD-envelope.

Definition 2.3.59. The conjugate filtration functor (on the animated PD-envelope) LConjFil :
AniPairFp! CAlg(DF�0(Fp)) together with the structure map of functors AniPairFp �
CAlg(DF�0(Fp)) from (A�A00; 
) 7! 'A

�(A00) =A00
A;'A
L A to LConjFil is defined to be the left

derived functor (Proposition B.0.10) of D03(A;I) 7!('A�(A/I)!FilB)2Fun(�1;CAlg(DF�0(Fp)))
constructed above.

2.3.3. We will from time to time suppress the asterisk in Fil� to avoid confusion with '�.
2.3.4. We only need the special case that (A; I)2D0.
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We note that the conjugate filtration is exhaustive, i.e. the filtration Fil¡1 �LConjFiljD0 is
given by the animated PD-envelope, so is LConjFil, which follows either from Proposition B.0.10
and Lemma 2.2.43 or the fact that AniPair'P�(D0)�P(D0) is stable under filtered colimits
(Proposition B.0.7). It follows from Lemma 2.3.58 that

Corollary 2.3.60. For every (A�A00)2AniPairFp, there exists an equivalence

'A
�(¡A00i (gr1(LAdFil(A�A00))))! gr¡i(LConjFil(A�A00))

in D('A�(A00))�0 for all i2N which is functorial in (A!A00)2AniPairFp.

Remark 2.3.61. One might wonder what precisely the functor is, since the target category
D('A�(A00))�0 depends on (A�A00)2AniPairFp. One can rigorously describe this 'A�(A00)-algebra
structure in terms of structure maps (as in Definition 2.3.59). However, this is cumbersome and
we keep the current �imprecise� presentation.

We now apply this to a quasiregular pair (A; I)2QRegFp. We first recall that

Definition 2.3.62. ([Lur17, Def 7.2.2.10]) Let A be an E1-ring. We say that a right A-module
spectrum M is flat if

1. The homotopy group �0(M) is a flat right �0(A)-module.

2. For each n 2 Z, the canonical map �0(M) 
�0(A) �n(A)! �n(M) is an isomorphism of
abelian groups.

The same concept applies to left A-module spectra.

Remark 2.3.63. ([Lur17, Rem 7.2.2.11 & 7.2.2.12]) Let R be an E1-ring and M a flat right
R-module spectrum. By definition, if R is connective (resp. static), then so is R. In particular,
when R is static, a flat R-module spectrum is simply a flat R-module, therefore we will sometimes
refer to flat module spectra simply as flat modules since there is no ambiguity.

Lemma 2.3.64. Let A be a connective E1-ring, and M 0!M!M 00 a fiber sequence of right A-
module spectra. If M 0;M 00 are flat right A-modules, then so is M.

Proof. First,M 0;M 00 are connective by flatness, therefore so is M . For every static left A-module
N , we have a fiber sequence N 
ALM 0!N 
ALM!N 
ALM 00. By flatness of M 0 and M 00 and
[Lur17, Prop 7.2.2.13], the spectra N 
ALM 0 and N 
ALM 00 are static, therefore so is N 
ALM . The
result then follows from [Lur17, Thm 7.2.2.15]. �

For future usages, we need to generalize slightly the concept of quasiregular pairs:

Definition 2.3.65. We say that an animated pair A�A00 is quasiregular if the shifted cotangent
complex LA00/A[¡1]2D(A00) is a flat A00-module spectrum. We will denote by AniQReg�AniPair
the full subcategory spanned by quasiregular animated pairs. The same for AniQRegFp�AniPairFp.

Corollary 2.3.66. Let (A�A00)2AniQRegFp be a quasiregular animated Fp-pair, and let (B�
B 00; 
) denote its animated PD-envelope. Then B is a flat 'A�(A00)-module spectrum.

Proof. It follows from Corollary 2.3.60, ¡� and base change preserving flatness ([Lur18b,
Cor 25.2.3.3] & [Lur17, Prop 7.2.2.16]) that gr¡i(L ConjFil(A� A00)) is a flat 'A�(A00)-module
spectrum. The result follows from the fact that the full subcategory spanned by flat modules
over a connective E1-ring is stable under extension (Lemma 2.3.64) and under filtered colimits
by [Lur17, Thm 7.2.2.14(1)]. �

Remark 2.3.67. In fact, by Lemma 2.5.48, the map 'A�(A00)!B in Corollary 2.3.66 is faithfully
flat.

It follows from Proposition 2.3.32, Corollaries 2.3.20 and 2.3.66, and Remark 2.3.63 that
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Corollary 2.3.68. Let (A; I)2QRegFp be a quasiregular pair. Suppose that 'A�(A/I) is static.
Then the animated PD-envelope (B�B 00; 
) of (A�A/I) belongs to PDPairFp, therefore coin-
cides with the classical PD-envelope.

We want to point out that such results for Fp will be used to deduce integral results, which is
based on the following lemmas:

Lemma 2.3.69. Let M 2Sp�0 be a connective spectrum. Suppose that the rationalization M 
S
LQ

is static, and for every prime p 2N, the homotopy groups of M /Lp := cofib
¡
M !!!!!!!!!!p M

�
are

concentrated in degree 0; 1. Then M is static.

Proof. Since Q is S-flat, �i(M ) 
Z Q =� �i(M 
S
L Q) =� 0 when i =/ 0. On the other hand,

�i+1(M /Lp) =� 0 for i > 0 implies that the map �i(M) !!!!!!!!!!
p

�i(M) is injective for every prime
p2N and i > 0. It follows that �i(M)=� 0 for every i > 0. �

Warning 2.3.70. Lemma 2.3.69 is false if M is not assumed to be connective. A counterexample
is given by M =(Q/Z)[¡1], for whichM 
S

LQ'0 and M /Lp'Fp for every prime number p2N.

Lemma 2.3.71. (cf. [Sta21, Tag 039C]) Let A be an animated ring andM 2D�0(A) a connective
A-module spectrum. Then the following conditions are equivalent:

1. M is a flat A-module.

2. M 
Z
LQ is a flat A
Z

LQ-module, and for every prime p2N, M /Lp is a flat A/Lp-module.

Proof. The first implies the second by the stability of flatness under base change [Lur17,
Prop 7.2.2.16]. We now assume the second. By [Lur17, Thm 7.2.2.15], it suffices to show that
for each static A-module N , the tensor product M 
ALN is also static. Indeed,

(M 
ALN)
S
LQ' (M 
ALN)
Z

LQ' (M 
Z
LQ)
A
Z

LQ
L (N 
Z

LQ)

is static by the Z-flatness of Q and the flatness of M 
Z
LQ. On the other hand,

(M 
ALN)/Lp' (M /Lp)
A/LpL (N /Lp)

for every prime p2N. Since M /Lp is A/Lp-flat,

�i((M /Lp)
A/LpL (N /Lp))'�0(M /Lp)
�0(A/Lp)�i(N /Lp)=� 0

for all i>1 by [Lur17, Prop 7.2.2.13]. It then follows from Lemma 2.3.69 thatM 
ALN is static. �

We record a simple consequence (compare with [BS19, Lem 2.42]):

Proposition 2.3.72. Let A be a ring and I �A an ideal generated by a Koszul-regular sequence.
Then the animated PD-envelope (B�B 00; 
) of (A�A/I) belongs to PDPair, therefore coincides
with the classical PD-envelope.

Proof. Note thatB 00'A/I is static by Lemma 2.3.37. It follows from Lemma 2.3.41 that B
Z
LQ'

A is static. Let (f1; : : : ; fr) be a Koszul-regular sequence which generates I. Fix a prime p2N>0.
Let A0 denote A/Lp. We follow the argument in [Bha12a, Lem 3.41]:

'A0
� ((A/I)/Lp) ' 'A0

� (A0/L(f1))
A0
L � � � 
A0

L 'A0
� (A0/Lfr)

' (A0/Lf1
p)
A0L � � � 
A0L (A0/Lfr

p)
' A0/L(f1

p; : : : ; fr
p)

' (A/L(f1
p; : : : ; fr

p))/Lp
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Note that since (f1; : : : ; fr) is Koszul-regular, so is (f1
p; : : : ; fr

p), which implies that �i('A0
� ((A/

I)/Lp))=�0 for i=/ 0;1. It follows from Corollary 2.3.66 and the base change property (Lemma 2.3.46)
that �i(B/Lp)=� 0 for i=/ 0; 1. The result then follows from Lemma 2.3.69. �

2.3.5. Illusie's question Given a ring A and an ideal I �A generated by a Koszul-regular
sequence, let (B;J ; 
) denote the PD-envelope of (A;I). It is known that the canonical comparison
map ¡A/I� (I/I2)!J [�]/J [�+1] is an isomorphism, cf. [Ber74, I. Prop 3.4.4], where J [�] are divided
powers of J in B. In [Ill72, VIII. Ques 2.2.4.2], Illusie asked whether this holds for quasiregular
pairs (A; I). The answer is affirmative, and the goal of this section is to furnish a proof by our
theory of animated PD-pairs.

Our strategy is similar to Subsection 2.3.4: both the animated PD-envelope and the PD-envelope
of a pair (A; I) admit a canonical filtration, and there is a natural comparison between the two.
Although for general quasiregular pairs (A; I) we do not know whether the animated PD-envelope
coincides with the PD-envelope, the comparison map induces equivalences on graded pieces. The
associated graded of the animated PD-envelope admits a natural structure of divided power algebra,
and an element tracing proves that the equivalence coincides with the comparison map in Illusie's
question.

We start with the PD-filtration on animated PD-pairs. We refer to Subsection 2.2.4 for concepts
and notations about filtrations. Recall that given a PD-pair (A;I ; 
)2PDPair and a natural number
n2N, the classical divided power ideal I [n]�A is the ideal generated by elements 
i1(x1) ��� 
ik(xk)
where x1; : : : ; xk 2 I and (i1; : : : ; ik)2Nk with i1+ � � � + ik � n. For example, for (¡Z(x)�Z)2
PDPair with kernel I, the kernel I [n]� ¡Z(x) is generated by f
i(x) j i � ng (which is different
from the ideal (
n(x))). The classical PD-filtration on A is given by A� I � I [2]� � � � endowing
A with the structure of filtered ring. A filtered ring is naturally a (nonnegatively) filtered E1-
ring, and we get a functor PDFil :PDPair!CAlg(DF�0(Z)).

Definition 2.3.73. The PD-filtration functor LPDFil :AniPDPair!CAlg(DF�0(Z)) is defined
to be the left derived functor (Proposition B.0.10) of the composite functor E0 ,! PDPair!
CAlg(DF�0(Z)). For an animated PD-pair (A�A00; 
)2AniPDPair, we will call the image the
E1-Z-algebra A with PD-filtration.

Remark 2.3.74. By the same argument, the PD-filtration in fact gives rise to a structure of
filtered derived ring (Remark 2.2.42), which we will not use in this article.

Similar to Corollary 2.3.54, by Proposition B.0.10, sifted-colimit-preserving property of the
(derived) divided power functor ¡� :Ani(Mod)!CAlg(Gr�0(D(Z))) and the concrete analysis of
(A; I ; 
)2E0, we get

Lemma 2.3.75. For every (A�A00; 
)2AniPDPair, there exists an equivalence

¡A00� (gr1(LPDFil(A�A00; 
)))! gr�(LPDFil(A�A00; 
))

of graded E1-Z-algebras which is functorial in (A�A00; 
)2AniPDPair.

Furthermore, we can compare the adic filtration on an animated pair and the PD-filtration on
the animated PD-filtration. We first compare them on D0, then extend the comparison to AniPair
by Proposition B.0.10, obtaining

Lemma 2.3.76. For every (A�A00)2AniPair, let (B�B 00; 
)2AniPDPair denote its animated
PD-envelope. Then there is a canonical comparison map

gr�(LAdFil(A�A00))! gr�(LPDFil(B�B 00; 
))

of graded E1-Z-algebras which is functorial in (A�A00)2AniPair. Furthermore, this map induces
equivalences in D(Z) when �=0; 1.
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Analogous to Subsection 2.3.4, by universal property of left Kan extensions, there
exists a essentially unique comparison map cPDFil from the composite functor AniPair!
AniPDPair !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !LPDFil

CAlg(DF�0(Z)) to the composite functor AniPair ! Pair !
PDPair!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

PDFil
CAlg(DF�0(Z)), where AniPair!AniPDPair is the animated PD-envelope functor

and AniPair! Pair is the localization in Remark 2.3.18. The main result of this subsection is
the following:

Proposition 2.3.77. The comparison map cPDFil constructed above becomes an equivalence after
composition QReg ,!AniPair�CAlg(DF�0(Z))!!!!!!!!!!!!!!!!!!!!!!

gr�
CAlg(Gr�0(Z)).

Remark 2.3.78. As seen in Question 3, we do not know whether the comparison is an equivalence
when we replace gr� :CAlg(DF�0(Z))!CAlg(Gr�0(Z)) by Fil0 :CAlg(DF�0(Z))!CAlgZ, though
it is true under assumptions of Corollary 2.3.68, which is the only obstruction for the comparison
map to be a filtered equivalence.

We start to prove this. Unfortunately, we are unable to establish a strong result like Lemma 2.3.55
essentially due to the complication discussed in Warning 2.3.31. Our trick is to show that after
replacing gr� by gr[0;n), both functors satisfy a common universal property.

As in Subsection 2.3.4, we can forget the E1-algebra structure then replace gr� by gr[0;n) :
DF�0(Z)!D(Z); F 7! cofib(FilnF!Fil0F ), i.e., it is equivalent to show that the natural com-
parison cPDFil

[0;n) from the composite functor

AniPair!AniPDPair!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !LPDFil
DF�0(D(Z))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !gr[0;n)

D(Z)

to the composite functor

AniPair!Pair ,!PDPair!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !PDFil
DF�0(D(Z))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !gr[0;n)

D(Z)

is an equivalence after restricting to the full subcategory QReg�AniPair. Note that the composite
functor gr[0;n) � PDFil is concretely given by (A; I ; 
) 7!A/I [n], which motivates the following
definition:

Definition 2.3.79. We say that a PD-pair (A; I ; 
) is PD-nilpotent of height n2N if I [n]=0.
We will denote by PDPair[n]�PDPair the full subcategory spanned by PD-nilpotent PD-pairs of
height n.

The following lemma could be checked directly, or (as 1-categories) by invoking [Lur09,
Prop 5.2.7.8]:

Lemma 2.3.80. The full subcategory PDPair[n] ,! PDPair is reflective of which the localization
Loc[n] : PDPair! PDPair[n] is given by killing the higher divided powers: (A; I ; 
) 7! (A/I [n];
I A/I [n]; 
) where 
(x)= 
(x) for all x2 I and x; 
(x) are images of x; 
(x) in A/I [n].

Then the composite functor gr[0;n)�PDFil :PDPair!D(Z);(A;I ; 
) 7!A/I [n] could be rewritten
as the composite PDPair!PDPair[n] ,!AniPDPair!D(Z) where the last functor is the functor
AniPDPair!D(Z); (A�A00; 
) 7!A. We now show that the composite functor gr[0;n) �LPDFil :
AniPDPair!D(Z) could also factor through AniPDPair!D(Z). In fact, it is a �derived� ver-
sion of the previous factorization.

Consider the composite functor E0! PDPair[n] ,! AniPDPair where the first functor E0!
PDPair[n] is the restriction of the localization Loc[n] :PDPair!PDPair[n] to the full subcategory
E0� PDPair. Let Red[n] its left derived functor (Proposition B.0.10) AniPDPair!AniPDPair.
We compose Red[n] with the functor AniPDPair!D(Z); (A�A00; 
) 7!A described above, we get
a functor AniPDPair!D(Z), which is equivalent to the composite functor gr[0;n) �L PDFil by
Proposition B.0.10 since both functors preserves filtered colimits and geometric realizations and
they are canonically identified on the full subcategory E0�AniPDPair.
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Then there is an essentially unique comparison map cPDRed
[n] from the composite functor

AniPair!AniPDPair!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
Red[n]

AniPDPair

which preserves filtered colimits and geometric realizations, to the composite functor

AniPair!Pair ,!PDPair!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
Loc[n]

PDPair[n] ,!AniPDPair

which is equivalent to cPDFil
[0;n) after composing the sifted-colimit-preserving functor AniPDPair!

D(Z) by checking on the full subcategory D0�AniPair and the universal property of the left Kan
extension. It remains to show that

Lemma 2.3.81. The comparison map cPDRed
[n] of functors AniPair�AniPDPair becomes an equiv-

alence after restricting to the full subcategory QReg�AniPair.

Proof. It follows from Lemmas 2.3.75 and 2.3.76, Corollary 2.3.54, and Proposition 2.3.32 and the
fact that the derived divided powers ¡� of a flat module is flat therefore static, that the essential
image of the composite functor

QReg ,!AniPair!AniPDPair!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !Red[n]
AniPDPair (2.3.2)

lies in the full subcategory PDPair�AniPDPair. We first show that the essential image further
lies in the full subcategory PDPair[n]�PDPair.

We fix a quasiregular pair (A; I) 2QReg. Let (C; K; 
) 2 PDPair denote the image of (A;
I)2QReg under the composite functor (2.3.2). Since (A; I) could be rewritten as a sifted colimit
colimj2I (Bj ; Jj) taken in AniPair, where (Bj ; Jj)2D0. Let (Cj ;Kj ; 
j)2E0 be the PD-envelope of

(Bj ;Jj). Then (C;K; 
)'colimj2I
¡
Cj/Kj

[n]
;KjCj/Kj

[n]
; 
j
�
taken in AniPDPair. For every x1;:::;

xm2K and i1; : : : ; im2N such that i1+ � � �+ im�n, we need to show that 
i1(x1) � � � 
im(xm)=0.
The elements x1;:::;xm define a map ' : (¡Z(X1;:::;Xm)�Z; �)!(C;K; 
) in PDPair�AniPDPair.
Since (¡Z(X1; : : : ; Xm)�Z; �)2AniPDPair is compact and projective and I is sifted, the map '

factors as (¡Z(X1; : : : ;Xm)�Z; �)!
¡
Cj/Kj

[n]
;KjCj/Kj

[n]
; 
j
�
! colimk2I

¡
Ck/Kk

[n]
;KkCk/Kk

[n]
;


k
�
for some j 2 I. Then the element 
i1(X1) � � � 
im(Xm)2¡Z(X1; : : : ; Xm) is killed by the first

map, hence 
i1(x1) � � � 
im(xm)=0.
Note that the composite of left adjoints Pair!PDPair!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

Loc[n]
PDPair[n] preserves small col-

imits, (C;K; 
)2PDPair[n] is isomorphic to the image of (A;I)2QReg�Pair under this composite
functor and the map (A; I)! (C; K) is the unit map under this isomorphism. The result then
follows from the uniqueness of universal objects. �

Remark 2.3.82. In fact, there is an1-category AniPDPair[n] of animated PD-pairs PD-nilpotent
of height n, defined to be the nonabelian derived category of the essential image of E0�Pair under
the functor Loc[n] : PDPair! PDPair[n]. Then there is a pair of adjoint functors AniPDPair�
AniPDPair[n] by Corollary 2.2.2. Furthermore, by mimicking the proof of Lemma 2.3.13, the
canonical functor PDPair[n]!AniPDPair[n] is fully faithful. This leads to an alternative proof of
Lemma 2.3.81. Although the functor PDPair[n]!PDPair is fully faithful, we conjecture that the
functor AniPDPair[n]!AniPDPair is not fully faithful, similar to the fact that the forgetful functor
D(Z/nZ)!D(Z) is not fully faithful though ModZ/nZ!Ab is so.

Now we answer Illusie's question:

Proposition 2.3.83. For every quasiregular pair (A; I) 2QReg, let (B; J ; 
) denote its PD-
envelope. Then the canonical map ¡A/I� (I/I2)!

L
J [�]/J [�+1] of graded rings induced by 
� : I! I

is an equivalence.

Proof. It follows from Corollary 2.3.54, Lemmas 2.3.76 and 2.3.75, and Proposition 2.3.77 that
there is a comparison map ¡A/I� (I /I2)!

L
J [�]/J [�+1] of graded rings. Then the result follows

from element tracing, a modification of the proof of Corollary 2.3.57 by replacing (Z[X1; : : : ; Xn];
(X1; : : : ; Xn)) with (¡Z(X1; : : : ; Xn)�Z; 
). �
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2.4. Derived crystalline cohomology

In this section, we define and study the Hodge-filtered derived crystalline cohomology , a filtered
E1-Z-algebra functorially associated to an animated PD-pair (A� A00; 
) along with a map
A00!R of animated rings. To do so, we will introduce an auxiliary construction, the Hodge-filtered
derived de Rham cohomology , functorially associated to a map (A� A00; 
)! (B� B 00; �) of
animated PD-pairs, which will be proved independent of the choice of B, and then we define the
Hodge-filtered derived crystalline cohomology for (A�A00; 
) along with A00!R as the Hodge-
filtered derived de Rham cohomology of the map (A�A00; 
)! (idR :R!R; 0). Furthermore,
we also define the cohomology of the affine crystalline site which could be endowed with Hodge-
filtration. The Hodge-filtered derived de Rham cohomology is, roughly speaking, equivalent to the
relative animated PD-envelope whenever A00!R is surjective (Proposition 2.4.64), and the Hodge-
filtered derived de Rham cohomology is equivalent to the cohomology of the affine crystalline
site with Hodge filtration when �0(R) is a finitely generated �0(A00)-algebra (Proposition 2.4.66)
or when R is a quasisyntomic A00-algebra (Proposition 2.4.87). Furthermore, the cohomology of
the affine crystalline site is equivalent to the classical crystalline cohomology when everything is
classically given, at least up to p-completion, due to the fact that our theory is non-completed
(Proposition 2.4.90).

Remark 2.4.1. Our theory is characteristic-independent. As a cost, the derived de Rham coho-
mology does not coincide with algebraic de Rham cohomology even under smoothness condition,
although this is true when the base is of characteristic p. In particular, for a map (A� A00;

)! (B�B 00; �) of animated PD-pairs where A is an animatedQ-algebra, the underlying E1-ring
of our Hodge-filtered derived de Rham cohomology is constantly A, cf. Lemma 2.4.11. However, in
this case, the non-completed crystalline cohomology (Definition 2.4.88) is also A, so the derived de
Rham cohomology is as �bad� as the non-completed derived crystalline cohomology. On the other
hand, the Hodge-filtration allows us to recover the �correct� cohomology theory in characteristic 0
after taking Hodge completion by [Bha12a, Rem 2.6].

As a corollary, we deduce that the (usual) derived de Rham cohomology dRZ/Z[x] is, as an
E1-Z[x]-algebra, equivalent to the PD-polynomial algebra ¡Z(x). Bhatt showed an p-completed
version of this [Bha12a, Thm 3.27].

Remark 2.4.2. In fact, our theory stems from the observation that the p-completed derived de
Rham cohomology (dRZ/Z[x])p^ coincides with the p-completed PD-polynomial ring ¡Z(x)p^, and
the rationalization becomes Q[x].

The virtue of our Hodge-filtered derived crystalline cohomology is that it preserves small col-
imits. We will show that this implies several properties of derived crystalline cohomology, such as
�Künneth formula� and base change property (Corollaries 2.4.29, 2.4.30, and 2.4.31).

Remark 2.4.3. In our future work, we will show that our Hodge-filtered derived de Rham coho-
mology admits a natural enrichment to derived PD-pairs, Remark 2.3.27, and the Hodge filtration
is given by the PD-filtration of the derived PD-pair in question.

2.4.1. Derived de Rham cohomology In this subsection, we define the derived de
Rham cohomology for maps of animated PD-pairs. We need the definition of modules of PD-
differentials2.4.1.

Definition 2.4.4. ([Sta21, Tag 07HQ]) Let (A; I ; 
)! (B; J ; �) be a map of PD-pairs and M
an B-module. A PD A-derivation into M is a map � :B!M which is additive, �(a)=0 for a2A,
satisfies the Leibniz rule �(b b0)= b �(b 0)+ b0 �(b) and that

�(�n(x))= �n¡1(x) �(x)

2.4.1. It is about differentials preserving PD-structure, rather than a module with a PD-structure.
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for all n� 1 and x2 J.
In this situation, there exists a universal PD A-derivation

d(B;J)/(A;I) :B!
(B;J)/(A;I)
1

such that for any PD A-derivation � :B!M, there exists a unique B-linear map � :
(B;J)/(A;I)
1 !

M such that �= � �d(B;J)/(A;I). We also call 
(B;J)/(A;I)
1 the module of PD-differentials.

Remark 2.4.5. In Definition 2.4.4, the PD-structure on A is irrelevant. However, we will soon
see that the derived version of module of PD-differentials does depend on the PD-structure on A.

Definition 2.4.6. ([Sta21, Tag 07HZ]) Let (A; I ; 
)! (B; J ; �) be a map of PD-pairs such
that 
(B;J)/(A;I)

1 is a flat B-module2.4.2. The de Rham complex (
(B;J)/(A;I)� ; d) is given by

(B;J)/(A;I)
i =

V
B
i 
(B;J)/(A;I)

1 and d :
(B;J)/(A;I)
i !
(B;J)/(A;I)

i+1 is the unique A-linear map deter-
mined by

d(f0df1^ � � � ^ dfi)=df0^ � � � ^dfi

We recall that a commutative differential graded A-algebra (abbrev. A-CDGA) is a commutative
algebra object in the symmetric monoidal abelian 1-category Ch(ModA) of chain complexes2.4.3

in static A-modules for a ring A. Then any nonpositively graded A-CDGA gives rise to an E1-
A-algebra, and in particular, the de Rham complex constructed above gives rise to the de Rham
cohomology as an E1-A-algebra.

To see this, we need the filtered derived 1-category DF(A) along with the Day convolu-
tion reviewed in Subsection 2.2.4. Indeed, we can identify the heart DF(A)~ with respect to the
Beilinson t-structure (Proposition 2.2.41) with the abelian 1-category Ch(ModA). Furthermore, the
fully faithful embedding Ch(ModA) ,!DF(A) is lax symmetric monoidal (Lemma 2.2.40). Thus an
A-CDGA gives rise to an E1-algebra in DF(A).

Remark 2.4.7. When restricting to the full subcategory Ch�¡1(ModA[ )�Ch(ModA) spanned by
bounded below chain complexes of flat A-modules, the fully faithful embedding Ch�¡1(ModA[ ) ,!
DF(A) is in fact symmetric monoidal. We will refer to this later.

The embedding Ch(ModA) ,! DF(A) restricts to a lax symmetric monoidal embedding
Ch�0(ModA)! DF�0(A). Thus a nonpositively graded A-CDGA gives rise to an E1-algebra
in DF�0(A), which is mapped to an E1-A-algebra by the symmetric monoidal functor DF�0(A)!
D(A).

Remark 2.4.8. The composite functor Ch�0(ModA) ,!DF�0(A)!D�0(A) maps any complex
to its underlying module spectrum.

Furthermore, the truncation map (
(B;J)/(A;I)� ;d)!
(B;J)/(A;I)
0 =B is a map of CDGAs, where

B is concentrated in degree 0. Passing to the cohomology, we get a map of E1-Z-algebras, called
the de Rham cohomology of (A; I)! (B; J).

Now we define the derived de Rham cohomology for PD-pairs. By Corollary 2.2.9, the 1-cat-
egory dRCon := Fun(�1; AniPDPair) (abbrev. for de Rham context) admits a set of compact
projective generators given by maps of PD-pairs of the form (¡Z[X](Y )�Z[X ])! (¡Z[X;X 0](Y ;
Y 0)�Z[X;X 0]) where each of X;Y ;X 0; Y 0 consists of a finite set (including empty) of variables.
These objects span a full subcategory dRCon0� dRCon stable under finite coproducts. Then it
follows from Proposition B.0.12 that there is an equivalence P�(dRCon0)!dRCon of1-categories.
The de Rham cohomology, along with the truncation map mentioned above, restricts to a functor
dRCon0!Fun(�1;CAlgZ) where CAlgZ is the 1-category of E1-Z-algebras.

2.4.2. We assume the flatness only to avoid the appearance of the ordinary tensor product 
 and the exterior
power

V
, since for flat modules, these coincide with the derived versions. In fact, we only need the very special

case that ((A; I ; 
)! (B; J ; �))2dRCon defined before Definition 2.4.9.
2.4.3. We identify cochain complexes (K�; d) with chain complexes (K¡�;d).
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Definition 2.4.9. The derived de Rham cohomology functor dR�/� : dRCon!CAlgZ along with
a canonical map dR(B�B 00;�)/(A�A00;
)!B of functors dRCon�CAlgZ is defined to be the left
derived functor (Proposition B.0.10) of the functor dRCon0! Fun(�1;CAlgZ) described above.
Given a map (A�A00; 
)! (B�B 00; �) of animated PD-pairs, its derived de Rham cohomology,
i.e. the image under the derived de Rham cohomology functor, is denoted by dR(B�B 00;�)/(A�A00;
),
or simply dR(B�B 00)/(A�A00) when there is no ambiguity.

We first explain that this is a generalization of classical derived de Rham cohomology. We recall
that the functor Ani(Ring)!AniPDPair;A 7! (idA :A!A;0) is fully faithful (Lemma 2.3.39), thus
so is the functor Fun(�1;Ani(Ring))!dRCon.

Lemma 2.4.10. The composite functor Fun(�1;Ani(Ring))! dRCon !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
dR�/�

CAlgZ; (A!B) 7!
dR(idB:B!B;0)/(idA:A!A;0) is equivalent to the classical derived de Rham cohomology functor (A!
B) 7!dRB/A.

Proof. The crucial point is that, Fun(�1;Ani(Ring)) is projectively generated for which f(Z[X ]!
Z[X; Y ])g forms a set of compact projective generators, which follows from Corollary 2.2.9
and Lemma 2.3.39. The result then follows from Proposition B.0.10 and the definition of the
classical derived de Rham cohomology functor. �

We compute concretely the de Rham complex on dRCon0. Fix an object (¡Z[X 0](Y 0)�Z[X 0])!
(¡Z[X;X 0](Y ; Y 0)�Z[X;X 0])2dRCon0, to simplify notations, we will write A :=¡Z[X 0](Y 0); A00 :=
Z[X 0]. Then this object could be rewritten as (A�A00; 
)! (B := ¡A[X](Y )�A00[X]; 
~) where
X=(x1;:::; xm) and Y =(y1;:::; yn) with the module of PD-differentials 
1=B dx1�����B dxn�
B dy1� � � � � B dyn and the universal PD-derivation B! 
1 is determined by d(X� 
�(Y )) =P
i=1
m �ix1

�1 � � � xi�i¡1 � � � xm�m
�(Y ) dxi+
P
j=1
n X� 
�1(y1) � � � 
�j¡1(yj) � � � 
�n(yn) dyj (with multi-

index product).
As we mentioned earlier, derived de Rham cohomology is considered uninteresting in character-

istic 0. Informally, the derived de Rham cohomology dR(B�B 00)/(A�A00) is functorially equivalent
to A after rationalization. More precisely, we will show that

Lemma 2.4.11. There is a comparison map A! dR(B�B 00)/(A�A00) of functors dRCon�CAlgZ

which becomes an equivalence after composing with the rationalization � 
Z
LQ :CAlgZ!CAlgQ.

Proof. We first construct the comparison map in question. We have the composite of forgetful
functors AniPDPair!AniPair!Ani(Ring)!CAlgZ; (A�A00; 
) 7!A. Further composing with
the evaluation map dRCon!AniPDPair at [0]2�1, we get a functor dRCon!CAlgZ; ((A�A00;


)! (B�B 00; �)) 7!A. We restrict this functor to dRCon0, getting a functor dRCon0!CAlgZ,
which coincides with the composite functor dRCon0!Ring= CAlg(Ab) ,!CAlg(Ch�0(Ab))!
CAlgZ given by the �same� formula ((A�A00; 
)! (B�B 00; �)) 7!A. Note that there is a canon-
ical map of functors from dRCon0!Ring!CAlg(Ch�0(Ab)) to the de Rham complex functor
dRCon0!CAlg(Ch�0(Ab)), which is given by the A-CDGA structure on the de Rham complex.
Now Proposition B.0.10 gives us a comparison map of the left derived functors dRCon�CAlgZ.

It remains to see that this comparison map is an equivalence after rationalization. First, we
note that the rationalization CAlgZ!CAlgQ preserves small colimits, and in particular, filtered
colimits and geometric realizations, it follows from Proposition B.0.10 that both functors are still
left derived functors after rationalization, therefore it suffices to check the equivalence on dRCon0.
The Poincaré lemma imply that the comparison map of functors dRCon0� CAlg(Ch�0(Ab))
becomes a homotopy equivalence after composing with CAlg(Ch�0(Ab))!CAlg(Ch�0(ModQ)),
which implies that it becomes an equivalence after composing with CAlg(Ch�0(Ab))!CAlgQ by
Remark 2.4.8. �

Another consequence of this computation is that the de Rham cohomology functor dRCon0!
CAlgZ preserves finite coproducts, which follows from the fact that the de Rham cohomology
functor dRCon0! CAlg(Ch�¡1(FreeAb)) preserves finite coproducts, and that the composite
functor Ch�¡1(FreeAb) ,!DF�0(Z)!D(Z) is symmetric monoidal, cf. Remark 2.4.7. By Propo-
sition B.0.10, we have
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Lemma 2.4.12. The derived de Rham cohomology functor dRCon!CAlgZ preserves small col-
imits.

Now we show that the derived de Rham cohomology associated to the map (A�A00; 
)!
(B�B 00; �) does not depend on B, and define the derived crystalline cohomology. To formally
define the 1-category of animated PD-pairs (A�A00; 
) along with a map A00!R of animated
rings, we need the concept of comma categories in Subsection 2.2.3. Consider the comma category
CrysCon :=AniPDPair�Ani(Ring)Fun(�1;Ani(Ring)) (abbrev. for crystalline context) where the
functor AniPDPair!Ani(Ring) is the composite functor AniPDPair!AniPair!Ani(Ring); (A�
A00; 
) 7!A00 and the functor Fun(�1;Ani(Ring))!Ani(Ring) is the evaluation (A00!R) 7!A00 at
02�1. It follows from Corollary 2.2.22 that CrysCon admits a set of compact projective generators
of the form ((¡Z[X](Y )�Z[X]; 
);Z[X]!Z[X;Z]) where each of X; Y ; Z consists of a finite set
of variables, which spans a full subcategory CrysCon0�CrysCon stable under finite coproducts.

We note that there is a canonical functor dRCon!CrysCon induced by the evaluation dRCon=
Fun(�1;AniPDPair)!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

ev[0]
AniPDPair and the functor dRCon!Fun(�1;Ani(Ring)) which is itself

induced by the composite of the forgetful functors AniPDPair!AniPair!Ani(Ring); (A�A00;

) 7!A00. Concretely, the functor dRCon!CrysCon is given by ((A�A00; 
)! (B�B 00; �)) 7!
((A� A00; 
); A00! B 00). Since both functors preserves small colimits (we have used Proposi-
tion 2.3.34), we deduce that

Lemma 2.4.13. The canonical functor dRCon!CrysCon preserves small colimits.

It follows from Proposition B.0.10 that dRCon!CrysCon is the left derived functor of the
composite functor dRCon0!CrysCon0!CrysCon; ((¡Z[X](Y )�Z[X])! (¡Z[X;X 0](Y ;Y 0)�Z[X;
X 0])) 7! ((¡Z[X](Y )�Z[X ]);Z[X ]!Z[X;X 0]). It then follows from Corollary 2.2.2 that

Lemma 2.4.14. The canonical functor dRCon!CrysCon admits a right adjoint CrysCon!dRCon
which preserves sifted colimits.

One can verify (see also Lemma 2.3.39) that

Lemma 2.4.15. The right adjoint CrysCon! dRCon is concretely given by ((A�A00; 
); A00!
R) 7! ((A�A00; 
)! (idR :R!R; 0)).

In particular, the counit map is an equivalence, therefore the functor CrysCon! dRCon is
fully faithful. The unit map between functors dRCon� dRCon is concretely given by ((A�A00;

)! (B�B 00; �))! ((A�A00; 
)! (idB 00 :B 00!B 00; 0)). Applying the derived de Rham functor
dRCon!CAlgZ, we get the comparison map dR(B�B 00;�)/(A�A00;
)! dR(idB 00;0)/(A!A00;
). The
independence is formally formulated as follows:

Proposition 2.4.16. The map dR(B�B 00;�)/(A�A00;
)!dR(idB 00;0)/(A!A00;
) of functors dRCon�
CAlgZ constructed above is an equivalence functorial in ((A�A00; 
)! (B!B 00; �))2dRCon. In
other words, the derived de Rham cohomology functor dRCon!CAlgZ is (dRCon!CrysCon)-
invariant (Definition 2.2.57).

Proof. Both functors preserves sifted colimits, so by Proposition B.0.10, it suffices to estab-
lish the equivalence for the full subcategory dRCon0� dRCon. For every (¡Z[X 0](Y 0)�Z[X 0])!
(¡Z[X;X 0](Y ; Y 0)�Z[X;X 0])2dRCon0 simply denoted by ((A�A00; 
)! (¡A[X](Y )�A00[X ]; 
)),
we need to show that the map

dR(¡A[X](Y )�A00[X])/(A�A00)! dR(idA00[X]:A00[X]!A00[X];0)/(A�A00)

is an equivalence. Note that the constructed map

(¡A[X](Y )�A00[X]; 
)! (idA00[X] :A00[X ]!A00[X]; 0)

in AniPDPair/(A�A00;
) factors as

(¡A[X](Y )�A00[X ]; 
)!!!!!!!!!!!!� (A[X]�A00[X ]; 
)!!!!!!!!!!� (idA00[X] :A00[X ]!A00[X ]; 0)
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Thus it suffices to show that both maps � and � induces equivalences after passing to the
functor dR�/(A�A00;
) : AniPDPair/(A�A00;
)! CAlgZ. Note that (A[X]�A00[X]; 
) 2 dRCon0,
dR�/(A�A00;
) could be computed by de Rham complexes, which corresponds a homotopy equiv-
alence of de Rham complexes by the divided power Poincaré's lemma [Sta21, Tag 07LC].

It remains to show that dR�/(A�A00;
) is also an equivalence. For this, we need to resolve
(idA00[X] :A00[X ]!A00[X ]; 0) simplicially under (A[X]�A00[X]; 
). Recall that A=¡Z[X 0](Y 0) and
A00=Z[X 0]. The key point is that we can resolve A00 simplicially by divided power polynomial A-
algebras, in the same way as resolving Z simplicially by polynomial Z[t]-algebras, which essentially
follows from a bar construction of N, see [Bha12a, Rem 3.31]. For every divided power polynomial
A-algebra ¡A(Z), (¡A[X](Z)�A00[X]; 
) belongs to dRCon0, and the map dR(A[X]�A00[X])/(A�A00)!
dR(¡A[X](Z)�A00[X])/(A�A00) (functorial in ¡A(Z)) is an equivalence again by the divided power
Poincaré's lemma [Sta21, Tag 07LC]. It follows that dR�/(A�A00;
) is indeed an equivalence. �

In view of Proposition 2.2.56, we define the derived crystalline cohomology functor which
corresponds to the (dRCon!CrysCon)-invariant functor dR�/�:

Definition 2.4.17. The derived crystalline cohomology functor CrysCoh :CrysCon!CAlgZ is

defined to be the composite CrysCon!dRCon!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
dR�/�

CAlgZ.

Notation 2.4.18. We will denote the derived crystalline cohomology of ((A�A00; 
); A00!R)2
CrysCon by CrysCohR/(A�A00;
) (or CrysCohR/(A�A00) even CrysConR/A when there is no ambi-
guity).

Now we show that

Proposition 2.4.19. The derived crystalline cohomology functor CrysCon! CAlgZ preserves
small colimits.

Proof. The functor CrysCon! dRCon preserves sifted colimits and dR�/� :dRCon!CAlgZ pre-
serves small colimits, it follows that the derived crystalline cohomology functor CrysCoh preserves
sifted colimits. By Proposition B.0.10, it remains to show that CrysCohjCrysCon0 preserves finite
coproducts. The point is that every (¡Z[X 0](Y 0)� Z[X 0];Z[X 0]!Z[X; X 0]) 2 CrysCon0 lifts to
(¡Z[X 0](Y 0)�Z[X 0])! (¡Z[X;X 0](Y ; Y 0)�Z[X;X 0])2 dRCon0, the functor dRCon0!CrysCon0

preserves finite coproducts, and the functor dR�/� preserves finite coproducts. �

Now we apply the discussions in Subsection 2.2.3 to deduce some formal properties. First, by
Remark 2.2.24, we have

Corollary 2.4.20. The derived crystalline cohomology is compatible with base change. More
precisely, let ((A�A00; 
A);A00!R)2CrysCon and let (A�A00; 
A)! (B�B 00; 
B) be a map of
animated PD-pairs. Then the canonical map

CrysCohR/(A�A00;
A)
ALB¡!CrysCoh(R
A00L B 00)/(B�B 00;
B)

is an equivalence.

Next, by Remark 2.2.28, we have

Corollary 2.4.21. The derived crystalline cohomology is symmetric monoidal. More precisely,
let (A�A00; 
A) 2AniPDPair and let A!R, A! S be two maps of animated rings. Then the
canonical map

CrysCohR/(A�A00)
ALCrysCohS/(A�A00)¡!CrysCoh(R
A00L S)/(A�A00)

is an equivalence.

Finally, by Remark 2.2.31, we have
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Corollary 2.4.22. The derived crystalline cohomology is transitive. More precisely, let (A�A00;

A)! (B�B 00; 
B) be a map of animated PD-pairs, and let B 00!R be a map of animated rings.
Then the canonical map

CrysCohR/(A�A00)
CrysCohB 00/(A�A00)
L B¡!CrysCohR/(B�B 00)

is an equivalence, where the map CrysCohB 00/(A�A00) ! B is CrysCohB 00/(A�A00) !
CrysCohB 00/(B�B 00)'B.

Remark 2.4.23. In particular, if we take (A�A00; 
A)= (Z; 0;0) in Corollary 2.4.22, we see that,
fix an animated PD-pair (B�B 00; 
B), any derived crystalline cohomology CrysCohR/(B�B 00) is
completely determined by the derived de Rham cohomology dRR/Z. However, without the theory
of derived crystalline cohomology, we do not know how to construct the map dRB 00/Z!B in terms
of the PD-structure on B�B 00.

2.4.2. Filtrations In this subsection, we will define the Hodge filtration on the derived
de Rham cohomology and show that most of our previous discussions are compatible with the
Hodge filtration. Furthermore, in characteristic p, we will define the conjugate filtration, which
is of technical importance to control the cohomology. We start with the definition of the Hodge
filtration.

Definition 2.4.24. (cf. [BO78, �6.13]) Let (A; I ; 
)! (B;J ; �) be a map of PD-pairs such that

(B;J)/(A;I)
1 is a flat B-module. The Hodge filtration FilH� on the de Rham complex (
(B;J)/(A;I)� ;d)

is given by the differential graded ideals FilHm
(B;J)/(A;I)� := J [m¡�]
(B;J)/(A;I)� �
(B;J)/(A;I)� .

As CDGAs give rise to E1-Z-algebras, (nonnegatively) filtered CDGAs give rise to (nonneg-
atively) filtered E1-Z-algebras. Moreover, the truncation map (
(B;J)/(A;I)� ; d)! B is a map
of filtered CDGAs, which gives rise to a map of filtered E1-Z-algebras. Thus we get a functor
dRCon0!Fun(�1;CAlg(DF�0(Z))).

Definition 2.4.25. The Hodge-filtered derived de Rham cohomology functor FilH� dR�/� :dRCon!
CAlg(DF�0(Z)) together with a canonical map FilH� dR(B�B 00)/(A�A00)!FilPD� B is defined to be
the left derived functor (Proposition B.0.10) of the functor dRCon0!Fun(�1;CAlg(DF�0(Z)))
above, where FilPD� B is the image of (B�B 00; 
B)2AniPDPair under the PD-filtration functor
LPDFil :AniPDPair!CAlg(DF�0(Z)) (Definition 2.3.73).

Most of properties in Subsection 2.4.1 hold with a similar proof:

Lemma 2.4.26. The composite Fun(�1; Ani(Ring))! dRCon! CAlg(DF�0(Z)); (A! B) 7!
FilH� dR(idB:B!B;0)/(idA:A!A;0) is equivalent to the classical Hodge-filtered derived de Rham coho-
mology functor (A!B) 7!FilH� dRB/A.

Lemma 2.4.27. The map in Lemma 2.4.11 admits a natural enrichment, that is to say, a map
FilPD� A! FilH� dR(B�B 00)/(A�A00) of functors dRCon�CAlg(DF�0(Z)). As in Lemma 2.4.11,
this map becomes an equivalence after rationalization CAlg(DF�0(Z))!CAlg(DF�0(Q)).

Lemma 2.4.28. The Hodge-filtered derived de Rham cohomology functor dRCon!CAlg(DF�0(Z))
preserves small colimits.

Similar to Corollaries 2.4.20, 2.4.21, and 2.4.22, we have

Corollary 2.4.29. The Hodge-filtered derived crystalline cohomology is compatible with base
change. More precisely, let ((A�A00; 
A); A00!R)2CrysCon and let (A�A00; 
A)! (B�B 00;

B) be a map of animated PD-pairs. Then the canonical map

FilH CrysCohR/(A�A00;
A)
FilPDA
L FilPDB¡!FilHCrysCoh(R
A00L B 00)/(B�B 00;
B)

is an equivalence.
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Corollary 2.4.30. The derived crystalline cohomology is symmetric monoidal. More precisely,
let (A�A00; 
A) 2AniPDPair and let A!R, A! S be two maps of animated rings. Then the
canonical map

FilH CrysCohR/(A�A00)
LFilH CrysCohS/(A�A00)!FilH CrysCoh(R
A00L S)/(A�A00)

is an equivalence, where the tensor product on the left is relative to FilPDA.

Corollary 2.4.31. The derived crystalline cohomology is transitive. More precisely, let (A�A00;

A)! (B�B 00; 
B) be a map of animated PD-pairs, and let B 00!R be a map of animated rings.
Then the canonical map

FilH CrysCohR/(A�A00)
FilHCrysCohB 00/(A�A00)
L FilPDB¡!FilH CrysCohR/(B�B 00)

is an equivalence, where the map FilH CrysCohB 00/(A�A00)! B is equivalent to the map
FilH CrysCohB 00/(A�A00)!FilH CrysCohB 00/(B�B 00)'FilPDB.

And this allows us to define the Hodge-filtration on the derived crystalline cohomology, due
to the following proposition, which follows from the proof of Proposition 2.4.16 by replacing the
Poincaré lemma by the filtered Poincaré lemma, cf. [BO78, Thm 6.13]:

Proposition 2.4.32. The map FilH� dR(B�B 00;�)/(A�A00;
)!FilH� dR(idB 00;0)/(A!A00;
) of functors
dRCon�CAlg(DF�0(Z)) induced by the counit map associated to ((A�A00; 
)! (B�B 00; �))2
dRCon is an equivalence. In other words, the Hodge-filtered de Rham cohomology functor dRCon!
CAlg(DF�0(Z)) is (dRCon!CrysCon)-invariant (Definition 2.2.57).

Definition 2.4.33. The Hodge-filtered derived crystalline cohomology functor
FilH� CrysCoh : CrysCon ! CAlg(DF�0(Z)) is defined to be the composite CrysCon !
dRCon!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

FilH� dR�/�
CAlg(DF�0(Z)).

Proposition 2.4.34. The Hodge-filtered derived crystalline cohomology functor CrysCon!
CAlg(DF�0(Z)) preserves small colimits.

Now we come to the characteristic p > 0 case. We start with an analysis of the Frobenius
map on an animated PD-Fp-pair. Let (A; I ; 
)2AniPDPairFp

0 be an animated PD-Fp-pair of the
form ¡Fp[X](Y )�Fp[X ]. We also have similar definitions for dRConFp; dRConFp

0 and CrysConFp;

CrysConFp
0 , and a parallel theory for Fp-stuff. We first point out that, by Corollary 2.4.20 along

with the proof of Lemma 2.2.37 (to compare with Lemmas 2.3.45 and 2.3.46), we have

Lemma 2.4.35. The derived crystalline cohomology CrysConFp!CAlg(D(Fp)) fits into the com-
mutative diagram

CrysCon
Fp

//

��

CrysCon

��

CAlg(D(Fp)) // CAlg(D(Z))

of 1-categories, where the horizontal arrows are forgetful functors. The same for the derived de
Rham cohomology. Furthermore, this diagram is left-adjointable (roughly speaking, if we replace
the horizontal arrows by their left adjoints, it is still a commutative diagram of 1-categories).

Then the Frobenius map 'A :A!A factors uniquely through the quotient map A�A/I , which
gives rise to a map A/I!A. It then follows from Proposition B.0.10 that

Lemma 2.4.36. For any animated PD-Fp-pair (A� A00; 
) 2AniPDPairFp, the Frobenius map
'A :A!A factors functorially through the map A�A00, which gives rise to the a map A00!A,
denoted by '(A�A00;
) or 'A�A00 when there is no ambiguity (when (A�A00; 
) comes from a PD-
Fp-pair (A; I ; 
), it will also be denoted by '(A;I;
) or '(A;I)).
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Now we point out that in the char p-case, the de Rham complex is �Frobenius-linear� (com-
pare with Definition 2.3.59): given an object (A; I ; 
)! (B; J ; �) in dRConFp

0 , each graded piece

(B;J;�)/(A;I;
)
i admits a natural B-module structure therefore also a '(A;I)

� (B/J)-module struc-
ture induced by the map '(A;I)

� (B /J) := (B /J)
A/I ;'(A;I)
L A!B, the linearization of '(B;J) :

B/J!B. Furthermore, the differential d is '(A;I)
� (B/J)-linear, which makes the de Rham com-

plex (
(B;J;�)/(A;I;
)� ; d) a '(A;I)
� (B /J)-CDGA. In other words, there is a map '(A;I)

� (B /J)!
(
(B;J ;�)/(A;I;
)� ;d) of Fp-CDGAs, where '(A;I)

� (B/J) is concentrated in degree 0.
The derived de Rham cohomology dR(B;J;�)/(A;I;
) is computed by the de Rham complex

(
(B;J ;�)/(A;I;
)� ;d). The Whitehead tower (��ndR(B;J;�)/(A;I;
))n2(Z;�) defines a nonpositive2.4.4

exhaustive filtration, thus the map '(A;I)
� (B /J)! (
(B;J;�)/(A;I;
)� ; d) is a map of filtered Fp-

CDGAs (where '(A;I)
� (B /J) is trivially filtered), which gives rise to a map of filtered E1-Fp-

algebras. Combined with the map above, we get a functor dRConFp
0 !Fun(�1;CAlg(DF�0(Fp))).

Definition 2.4.37. The conjugate-filtered derived de Rham cohomology functor
Filconj� dR�/� : dRConFp! CAlg(DF�0(Fp)) along with the structure map '(A�A00)

� (B 00)!
Filconj� dR(B�B 00;�)/(A�A00;
) is defined to be the left derived functor (Proposition B.0.10) of the
functor dRConFp

0 !Fun(�1;CAlg(DF�0(Fp))) above.

It follows either from Proposition B.0.10 and Lemma 2.2.43 or the fact that AniPair'P�(D0)�
P(D0) is stable under filtered colimits (Proposition B.0.7) that

Lemma 2.4.38. The conjugate filtration on the derived de Rham cohomology is exhaustive.

We now prove the corresponding results of Subsection 2.4.1 for the conjugate filtration.

Lemma 2.4.39. The conjugate-filtered derived de Rham cohomology functor dRConFp!
CAlg(DF�0(Fp)) preserves small colimits (note that so does the functor dRConFp!CAlgFp; ((A�
A00; 
)! (B�B 00; �)) 7! '(A�A00)

� (B 00)).

Proof. First, we note that, for any connective E1-ring A, the Whitehead-tower functor D(A)!
DF(A);M 7! (��nM)n2(Z;�) is canonically lax symmetric monoidal (recall that DF(A) is endowed
with the Day convolution). We give an informal description: given M;N 2D(A), for all m;n2Z,
the canonical map ��mM!M and ��nN!N gives rise to a map (��mM)
AL (��nN)!M 
ALN .
Since (��mM)
AL (��nN) is (m+n)-connective, this gives rise to a map (��mM)
AL (��nN)!
��m+n(M 
ALN). Assembling these maps, we get the lax symmetric monoidal structure. Next,
when A is given by a field, in particular, A=Fp, the structure above is in fact symmetric monoidal,
since (��mM)
AL (��nN)! ��m+n(M 
ALN) is an equivalence for all m;n2Z.

Now recall that in a symmetric monoidal1-category, finite coproducts of commutative algebra
objects are given by tensor products. It follows from Lemma 2.4.12 that the conjugate-filtered
derived de Rham cohomology functor dRConFp!CAlg(DF�0(Fp)) is the left derived functor of a
finite-coproduct-preserving functor, and then the result follows from Proposition B.0.10. �

Note that by the divided power Poincaré's lemma [Sta21, Tag 07LC], the conjugate filtration
on the divided power polynomial algebra is trivial. The proof of Proposition 2.4.16 leads to

Proposition 2.4.40. The natural transformation Filconj� dR(B�B 00;�)/(A�A00;
) !
Filconj� dR(idB 00;0)/(A!A00;
) of functors dRCon�CAlg(DF�0(Z)) induced by the counit map asso-
ciated to ((A�A00; 
)! (B�B 00; �))2 dRCon is an equivalence. In other words, the conjugate-
filtered de Rham cohomology functor dRCon!CAlg(DF�0(Z)) is (dRCon!CrysCon)-invariant
(Definition 2.2.57) (note that so is the functor dRConFp! CAlgFp; ((A� A00; 
)! (B�B 00;
�)) 7! '(A�A00)

� (B 00)).

Definition 2.4.41. The conjugate-filtered derived crystalline cohomology functor Filconj� CrysCoh :
CrysCon!CAlg(DF�0(Fp)) along with the structure map '(A�A00;
)

� (R)!CrysCohR/(A�A00;
) is
defined to be the composite CrysCon!dRCon!Fun(�1;CAlg(DF�0(Fp))), where the later functor
is the conjugate-filtered derived de Rham cohomology functor combined with the structure map.

2.4.4. In the literature, the conjugate filtration is increasing. We make it decreasing by negating the sign.
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By Lemma 2.4.38, we have

Lemma 2.4.42. The conjugate filtration on the derived crystalline cohomology is exhaustive.

Similar to Proposition 2.4.19, we have

Proposition 2.4.43. The conjugate-filtered derived crystalline cohomology functor CrysCon!
CAlg(DF�0(Fp)) preserves small colimits.

Now we analyze the associated graded pieces of the conjugate filtration. Let (A;I ; 
)!(B;J ;�)
be an element in dRCon0. We recall the inverse2.4.5 Cartier map C¡1 : '(A;I)� (
(B/J)/(A/I)? )!
H?(
(B;J)/(A;I)� ;d) of graded '(A;I)� (B/J)-algebras (where ? is the grading), then we deduce that
this is in fact an isomorphism. Our presentation is adapted from the proof of [Kat70, Thm 7.2].

?=0. This is the composite map '(A;I)
� (B/J)!B!H0(
(B;J)/(A;I)� ;d), i.e., the '(A;I)� (B/

J)-algebra structure on H0(
(B;J)/(A;I);d).

?=1. Consider the map B!H1(
(B;J)/(A;I)� ;d) of sets given by f 7! [f p¡1df ]. We first check
that this map is additive: in 
Z[u;v]/Z

1 , we have

(u+ v)p¡1d(u+ v)¡up¡1du¡ vp¡1dv = 1
p
(d((u+ v)p)¡ d(up)¡ d(vp))

= 1
p
d

0@X
j=1

p¡1 �
p
j

�
uj vp¡1¡j

1A
= d

0@X
j=1

p¡1
1
p

�
p
j

�
uj vp¡1¡j

1A
We deduce the additivity by the map Z[u; v]!B; u 7! f ; v 7! g.

Now we note that the map f 7! [f p¡1df ] satisfies Leibniz rule (recall thatH1(
(B;J)/(A;I)� ;

d) is a '(A;I)
� (B /J)-module, therefore a B /J -module). Indeed, [(f g)p¡1 d(f g)] =

f p [gp¡1dg] + gp [f p¡1df ].
Thus we get a derivation B/J!H1(
(B;J)/(A;I)� ; d), which gives rise to a B/J-linear

map 
(B/J)/(A/I)
1 !H1(
(B;J)/(A;I)� ;d) and after linearization, we get '(A;I)

� 
(B/J)/(A;I)
1 !

H1(
(B;J)/(A;I)� ;d).

?> 1. Taking the exterior power of the map for ?=1.

Now we show the Cartier isomorphism:

Lemma 2.4.44. Let (A; I ; 
)! (B; J ; �) be an element in CrysConFp
0 . Then the inverse Cartier

map C¡1 : '(A;I)� (
(B/J)/(A/I)? )!H?(
(B;J)/(A;I)� ; d) is an isomorphism of graded '(A;I)
� (B/J)-

algebras.

Proof. Recall that (B; J ; �) is of the form (¡A[X](Y )� (A/I)[X ]; �). It is then direct to check
that the inverse Cartier map C¡1 factors as '(A;I)

� (
(B/J)/(A/I)? )!H?(
(A[X];IA[X])/(A;I)� ; d)!
H?(
(B;J)/(A;I)� ; d), where the first map is the inverse Cartier map associated to (A� A/I ;

)! (A[X ]; I A[X ]; 
), and the second map is an isomorphism by the divided power Poincaré's
lemma [Sta21, Tag 07LC].

Thus we can assume that (B; J ; �)= (A[X ]; IA[X]; 
). In this case, the inverse Cartier map is
base-changed from that for (A; 0; 0)! (A[X]; 0; 0) along (A; 0; 0)! (A; I ; 
), thus we can assume
that I =0, which is [Kat70, Thm 7.2]. �

It then follows from Proposition B.0.10 that

2.4.5. A priori, the �inverse� Cartier map C¡1 is not defined to be the inverse of a map, but just defined to be
a map.
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Proposition 2.4.45. There exists a natural isomorphism2.4.6

C¡1 : '(A�A00)
� (

V
B 00
? LB 00/A00)[¡?]! grconj

¡? dR(B�B 00)/(A�A00)

in CAlg(Gr�0(D('A�A00
� (B 00)))), called the derived Cartier isomorphism (cf. [ Bha12a, Prop 3.5]),

which is functorial2.4.7 in ((A�A00; 
)! (B�B 00; �))2 dRConFp.

Note that both functors are (dRConFp!CrysConFp)-invariant (Definition 2.2.57), it follows
from Proposition 2.2.56 that

Proposition 2.4.46. There exists a natural isomorphism

C¡1 : '(A�A00)
� (

V
R
? LR/A00)[¡?]! grconj

¡? CrysCohR/(A�A00)

in CAlg(Gr�0(D('A�A00
� (R)))), called the derived Cartier isomorphism, which is functorial in

((A�A00; 
); A00!R)2CrysConFp.

2.4.3. Relative animated PD-envelope As in the classical case [Sta21, Tag 07H9],
there is a relative version of animated PD-envelope, which is needed to study the derived crystalline
cohomology, which is defined by the adjunction of undercategories:

Lemma 2.4.47. (dual to [Lur09, Prop 5.2.5.1]) Let C��������������
G

F

D be an adjoint pair of 1-categories.

Assume that the 1-category D admits pushouts and let D 2D be an object. Then

1. The induced functor g :DD/!CGD/ admits a left adjoint f.

2. The functor f is equivalent to the composition

CGD/!!!!!!!!!!!!!!!!
f 0 DFGD/!!!!!!!!!!!!!!!!!!!!

f 00 DD/

where f 0 is induced by F and f 00 is induced by the pushout along the counit map FGD!D.

We note that this construction is functorial in D 2D.

Notation 2.4.48. We denote the comma category AniPDPair �AniPair Fun(�1; AniPair) by
PDEnvCon, an object of which is denoted by (A�A00; 
)! (B�B 00), instead of the cumber-
some notation ((A�A00; 
); (A�A00)! (B�B 00)).

Definition 2.4.49. Let (A�A00; 
)2AniPDPair be an animated PD-pair. The (relative) ani-
mated PD-envelope of an animated pair in AniPair(A�A00)/ is the image under the functor
AniPair(A�A00)/!AniPDPair(A�A00;
)/ induced by the animated PD-envelope functor AniPair!
AniPDPair by Lemma 2.4.47.

Concretely, let B � B 00 be an object in AniPair(A�A00)/ and let (C � A00; 
C) and (D�
B 00; 
D) denote the animated PD-envelopes of A� A00 and B� B 00 respectively (we have tac-
itly used Lemma 2.3.37). Then the relative animated PD-envelope of B�B 00 is given by (A�
A00; 
)q(C�A00;
C) (D�B 00; 
D) where the map (C�A00; 
C)! (A�A00; 
) is the counit map
associated to (A�A00; 
)2AniPDPair and the map (C�A00; 
C)! (D�B 00; 
D) is the image
of (A�A00)! (B�B 00) under the animated PD-envelope functor.

This defines the (relative) animated PD-envelope functor RelPDEnv :PDEnvCon! Fun(�1;
AniPDPair).

Example 2.4.50. Let (A�A00; 
)2AniPDPair be an animated PD-pair. Then the animated PD-
envelope of A�A00 relative to (A�A00; 
) is given by (A�A00; 
). This follows from the fact that
A�A00 relative to (A�A00; 
) is the base change of idZ :Z!Z relative to (idZ :Z!Z; 0) along
the map (idZ :Z!Z; 0)! (A�A00; 
) of animated PD-pairs. Compare with Lemma 2.4.56.

2.4.6. To avoid the ambiguity of symbols, we suppress the asterisk on Fil� to avoid confusion with the pullback
symbol '�.

2.4.7. Here we use the same convention as in Remark 2.3.61.
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Example 2.4.51. Let (A�A00; 
) 2AniPDPair be an animated PD-pair. Then the animated
PD-envelope of idA00 :A00�A00 relative to (A�A00; 
) is given by (idA00 :A00!A00; 0). This fol-
lows from checking the universal property of the unit map at idA00 :A00�A00 of the adjunction
AniPair(A�A00)/�AniPDPair(A�A00;
)/.

It follows immediately from Lemma 2.3.41 that

Lemma 2.4.52. Let (A�A00; 
)2AniPDPair be an animated PD-pair, (B�B 00)2AniPair(A�A00)/

an animated pair under A�A00. Let (C�B 00; �) denote its relative animated PD-envelope. Then
the unit map (B�B 00)! (C�B 00) becomes an equivalence after rationalization.

Recall that given a PD-pair (A;I ; 
) and a map (A; I)! (B;J) of pairs with A!B being flat,
the PD-structure 
 extends to B, i.e, there exists a unique PD-structure 
 on (B; IB) such that
the map (A; I)! (B; J) of pairs gives rise to a map (A; I ; 
)! (B; IB; 
) of PD-pairs. Then the
PD-envelope of (B; J) with respect to (A; I ; 
) is the same as that with respect to the PD-pair
(B; IB; 
), which corresponds to the crystalline cohomology of B/J with respect to (B; IB; 
).
We now show an animated analogue (without flatness).

Let CrysConsurj denote the full subcategory AniPDPair �Ani(Ring) Fun(�1; Ani(Ring))�0 �
CrysCon spanned by objects ((A�A00; 
); A00!R) such that A00!R is also surjective. There
is a canonical functor PDEnvCon! CrysConsurj given as follows: for every object ((A� A00;

)! (B�B 00))2PDEnvCon, we get the commutative diagram

A ¡� A00

 
¡

 
¡

B ¡� B 00

in Ani(Ring), which gives rise to two surjective maps B 
ALA00�B 00 and B�B 
ALA00. Fur-
thermore, the later admits a PD-structure: it is the underlying animated pair of the pushout
(idB :B!B; 0)q(idA:A!A;0) (A�A00; 
) in AniPDPair. We denote by (B� B 
ALA00; �) this
pushout. Then we get an object ((B�B 
ALA00; �); B 
ALA00�B 00) in PDEnvCon.

One verifies that

Lemma 2.4.53. The functor PDEnvCon!CrysConsurj constructed above admits a fully faithful
right adjoint CrysConsurj!PDEnvCon given by ((A�A00; 
); A00�R) 7! ((A�A00; 
)! (A�
R)).

Thus CrysConsurj could be seen as a reflective subcategory (Definition 2.2.44) of PDEnvCon.
Now we claim that

Lemma 2.4.54. The relative animated PD-envelope functor PDEnvCon!Fun(�1;AniPDPair) is
(PDEnvCon!CrysConsurj)-invariant (Definition 2.2.57).

Proof. For every object (A�A00; 
)! (B�B 00) in PDEnvCon, we have a map (A�A00; 
)!
(B�A00
ALB; �) of animated PD-pairs. By the concrete description of the relative animated PD-
envelope functor, it suffices to show that this map along with the counit maps forms a pushout
diagram of animated PD-pairs. As discussed above, (B�A00
ALB;�) is the pushout (idB :B!B;
0)q(idA:A!A;0) (A�A00; 
). The counit maps for (idA;0) and (idB;0) are identities (Lemma 2.3.39).
The result then follows from Proposition 2.3.34, which implies that counit maps are compatible
with small colimits. �

Consequently, in order to study the relative animated PD-envelope functor, it suffices to study
the composite CrysConsurj!PDEnvCon!Fun(�1;AniPDPair). By abuse of terminology, we will
simply denote this functor as RelPDEnv as well and call the image (or after evaluation at 12�1)
the animated PD-envelope of an object ((A�A00; 
); A00�R)2CrysConsurj. We remark that the
functor CrysConsurj!PDEnvCon preserves small colimits by Proposition 2.3.34, therefore so does
the composite functor.

We note that CrysConsurj is projectively generated: let CrysConsurj0 �CrysConsurj be the full
subcategory spanned by objects ((¡Z[Y ;Z](X)�Z[Y ;Z]; 
);Z[Y ; Z]�Z[Z]) for all finite sets X;
Y ; Z.
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Lemma 2.4.55. The full subcategory CrysConsurj0 �CrysConsurj constitutes a set of compact pro-
jective generators for CrysConsurj.

Proof. We only sketch the proof, which is similar to that of Theorem 2.3.23. The key observa-
tion is that the composite of forgetful functors CrysConsurj0 ! Fun(�2;Ani(Ring))surj! Fun(�2;
D(Z)�0)surj; ((A�A00; 
);A00�R) 7!(A�A00�R), which preserves filtered colimits and geometric
realizations by Proposition 2.3.34, admits a left adjoint, where Fun(�2; C)surj�Fun(�2; C) is the
full subcategory spanned by (X!Y !Z)2Fun(�2;C) such that X!Y and Y !Z are surjective,
for C=D(Z)�0 and C=Ani(Ring).

The1-category Fun(�2;D(Z)�0)surj admits a set fZX�ZY �ZZ�ZY �ZZ�ZZ jX;Y ;
Z 2Fing of compact projective generators which spans the full subcategory Fun(�2; D(Z)�0)surj0 ,
which follows from the fact that the left adjoint to the left derived functor P�(Fun(�2;D(Z)�0)surj0 )!
Fun(�2; D(Z)�0)surj0 is conservative (cf. the proof of [Lur17, Prop 25.2.1.2]).

The result then follows from Proposition B.0.15. �

By Proposition B.0.10, the functor CrysConsurj!Fun(�1;AniPDPair) is the left derived functor
of the restricted functor CrysConsurj0 !Fun(�1;AniPDPair), which is concretely given as follows:

Lemma 2.4.56. The relative animated PD-envelope of an object ((¡Z[Y ;Z](X) � Z[Y ;
Z ]; 
); Z[Y ; Z ]� Z[Z ]) 2 CrysConsurj0 is functorially given by (¡Z[Z](X; Y )� Z[Z ]; 
~) 2
AniPDPair(¡Z[Y ;Z](X)�Z[Y ;Z];
)/, i.e. coincides with the classical relative PD-envelope.

Proof. First, by the adjointness, there exists a functorial comparison map from the relative
animated PD-envelope to (¡Z[Z](X;Y )�Z[Z]; 
~). It suffices to show that this is an equivalence.

In this case, ((¡Z[Y ;Z](X)�Z[Y ;Z]; 
);¡Z[Y ;Z](X)�Z[Z])2PDEnvCon is the base change of
((idZ[Y ;Z]; 0);Z[Y ; Z]�Z[Z])2PDEnvCon along (idZ[Y ;Z]; 0)! (¡Z[Y ;Z](X)�Z[Y ; Z]; 
). The
result then follows from the base-change property of the relative adjunction, along with the simple
fact that the (absolute) animated PD-envelope of Z[Y ;Z]�Z[Z] is (¡Z[Z](Y )�Z[Z]; 
). �

As a generalization of Definition 2.3.59, we now introduce the conjugate filtration on the relative
animated PD-envelope in char p. Let (A�A00; 
)2PDPairFp be a PD-pair and I �A00 an ideal.
We recall that there is a canonical �Frobenius� map 'A�A00 :A00!A by Lemma 2.4.36. We suppose
that 'A�A00 is flat2.4.8. Let (B; J ; �) denote the classical PD-envelope of (A�A00/I) relative to
(A�A00; 
). We note that B/J =�A00/I. As in the absolute case, due to the PD-structure (B; J ;
�), there is a canonical 'A�A00

� (A00/I)-algebra structure on B, and we consider the nonpositive
filtration on B given by Fil¡n(B) for n2N being the 'A�A00

� (A00/I)-submodule of B generated by
f
i1p(f1) � � � 
imp(fm) j i1+ � � �+ im�n and f1; : : : ; fm2 Ig. We have the following relative version
of Lemma 2.3.58, for which the proof of [Bha12a, Lem 3.42] adapts:

Lemma 2.4.57. Let (A�A00; 
) be a PD-Fp-pair such that 'A�A00 is flat, and let I �A00 be an
ideal such that I /I2 is a flat A00/I-module. The relative PD-envelope (B; J ; �) and the filtration
Fil�B are constructed above.

Then there is a comparison map 'A�A00
� (¡A00/I

i (I /I2))! gr¡i B of 'A�A00
� (A00/I)-modules

induced by the maps (
ip)i2N (as in Lemma 2.3.58) which is functorial in ((A�A00; 
); A00�
A00/I) in a subcategory of CrysConFp;surj. Furthermore, if I �A00 is generated by a Koszul-reg-
ular sequence2.4.9, then the comparison map above is an isomorphism.

Definition 2.4.58. The conjugate filtration functor (on the animated PD-envelope) LConjFil :
CrysConFp;surj!CAlg(DF�0(Fp)) together with the structure map of functors CrysConFp;surj�
CAlg(DF�0(Fp)) from ((A�A00; 
);A00�R) 7!'A�A00

� (R)=R
A00;'A�A00
L A to LConjFil is defined

to be the left derived functor (Proposition B.0.10) of CrysConFp;surj
0 3 ((A�A00; 
); A00�A00/

I) 7! ('A�A00
� (A00/I)!Fil�B)2Fun(�1;CAlg(DF�0(Fp))) constructed above.

2.4.8. This is satisfied when (A�A00; 
)2 E0, which is the only case that we need to develop the theory. For
more examples, see Remark 2.4.62.

2.4.9. We only need the simple case that ((A�A00; 
); A00�A00/I) 2CrysConFp;conj, which �simplifies� the
proof in the sense that a �brute-force� computation suffices.
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As in the absolute case (including Remark 2.3.61), it follows from Lemma 2.4.57 that

Corollary 2.4.59. For every ((A�A00; 
);A00�R)2CrysConFp;surj, there exists an equivalence

'A�A00
� (¡Ri(gr1(LAdFil(A00�R))))! gr¡i(LConjFil((A�A00; 
); A00�R))

in D('A�A00
� (R))�0 for all i2N which is functorial in ((A�A00; 
); A00�R)2CrysConFp;surj.

As in the absolute case, we have

Corollary 2.4.60. For every ((A� A00; 
); A00�R) 2 CrysConFp;surj such that A00� R is a
quasiregular animated pair, let (B�R;�) denote the relative animated PD-envelope. Then B is a
flat 'A�A00

� (R)-module.

and similar to Proposition 2.3.72, we have

Proposition 2.4.61. Let (A�A00; 
)2PDPair be a PD-pair and I �A00 an ideal generated by a
Koszul-regular sequence. Let (B�B 00; �) denote the relative animated PD-envelope of ((A�A00;

); A00!A00/I)2CrysCon. Then (B�B 00; �) is a PD-pair, therefore coincides with the classical
relative PD-envelope.

Remark 2.4.62. More precisely, in Corollary 2.3.66, the map 'A�A00
� (R)! B is induced by

the Frobenius map 'B�R :R!B (which could be seen by left deriving the special case that
((A�A00; 
); A00!R)2CrysConFp;surj

0 ). In particular, if the Frobenius map 'A�A00 :A00!A is
flat, then so is the Frobenius map 'B�R :R!B.

For example, when R is a quasiregular semiperfect Fp-algebra [BMS19, Def 8.8], we set (A�A00;


)= (idR[ :R[!R[;0) and the map A00!R to be the canonical map, by definition, R[ is a perfect
Fp-algebra therefore 'R[ is flat. Then the animated PD-envelope B�R of A00!R satisfies the
condition that the Frobenius map 'B!R :R!B is flat and hence B is static. It follows that
(R�B; �) is a PD-pair (Proposition 2.3.32).

Note that the associated graded pieces of derived crystalline cohomology and relative ani-
mated PD-envelope of a �surjective� crystalline context ((A�A00; 
); A00�R)2CrysConFp;surj,
with respect to conjugate filtrations, are equivalent by Corollaries 2.4.59 and 2.3.54 and Proposi-
tion 2.4.46. In fact, we have

Lemma 2.4.63. There is a canonical equivalence

FilconjCrysCohR/(A�A00;
)!LConjFil((A�A00; 
); A00�R)

in CAlg(DF�0('A�A00
� (R))) which is functorial2.4.10 in ((A�A00; 
); A00�R)2CrysConFp;surj.

Proof. We first point out how to produce the comparison map of underlying E1-Fp-alge-
bras, i.e., ignoring the 'A�A00

� (R)-algebra structures and conjugate filtrations. This is logically
not necessary but it benefits our understanding. Given ((A�A00; 
); A00� R), let (B�R; �)
denote its relative animated PD-envelope. It follows from Proposition 2.4.16 that the crystalline
cohomology CrysCohR/(A�A00;
) is naturally equivalent to the derived de Rham cohomology
dR(B�R;�)/(A�A00;
), and by definition, it is equipped with a map dR(B�R;�)/(A�A00;
)!B of
E1-Fp-algebras, which gives rise to the underlying comparison map that we want.

By Lemma 2.4.55 and Proposition B.0.10, it suffices to construct the equivalence restricted
to the full subcategory CrysConFp;surj

0 � CrysConFp;surj, i.e., to establish the equivalence for all
((¡Fp[Y ;Z](X)� Fp[Y ; Z]; 
0); Fp[Y ; Z]� Fp[Z]) 2 CrysConFp;surj

0 . This is essentially [Bha12a,
Lem 3.29 & Thm 3.27]. We will briefly sketch the argument. The preceding paragraph has already
established a comparison map of underlying E1-Fp-algebras. The key point is that both sides
are static: the relative animated PD-envelope is static by definition, and the derived crystalline
cohomology is static by Cartier isomorphism (Proposition 2.4.46) and the fact that static mod-
ules are closed under extension and filtered colimits, see Corollary 2.3.68 for a similar argument.
Then the result follows from explicit simplicial resolution. �

2.4.10. Here we apply the same convention as in Remark 2.3.61.
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We now deduce the integral version of the comparison above. We recall that L PDFil :
AniPDPair! CAlg(DF�0(Z)) is the PD-filtration functor (Definition 2.3.73), and FilH is the
Hodge-filtration.

Proposition 2.4.64. There is a canonical equivalence

FilH CrysCoh!LPDFil �RelPDEnv

of functors CrysConsurj�CAlg(DF�0(Z)).

Proof. The comparison map is established in the same way as in the proof of Lemma 2.4.63. It
suffices to show that this is an equivalence.

We first show that this becomes an equivalence after passing to underlying E1-Z-algebras, i.e.
ignoring the Hodge filtration. By conservativity of the forgetful functor CAlgZ!D(Z), it suffices to
show the equivalence for underlying Z-module spectra, which follows from Lemmas 2.4.63, 2.4.52,
and 2.4.11.

To establish the equivalence of filtered E1-Z-algebras, it remains to show that the comparison
map induces equivalences after passing to associated graded pieces, and by Lemma 2.2.1, it suffices
to prove the result restricted to the full subcategory CrysConsurj0 �CrysConsurj, which is essentially
due to [Ill72, Cor VIII.2.2.8], see [Bha12a, Rem 3.33]. �

2.4.4. Affine crystalline site We now turn to the site-theoretic aspects of the derived
crystalline cohomology by showing that the derived crystalline cohomology is equivalent to the
cohomology of the affine crystalline site under a mild smoothness condition. We warn the reader
again that our theory is non-completed. Fix a crystalline context ((A�A00; 
A);A00!R)2CrysCon.

Definition 2.4.65. The affine crystalline site Cris(R/(A�A00; 
A)) is defined to be the opposite
1-category of animated PD-pairs (B�B 00; 
B) under (A�A00; 
A) along with an equivalence
R!!!!!!!!!!!!!!' B 00 of A-algebras, depicted by the diagram

A //

��
��

B

��
��

A′′ // R
≃

// B′′

which we will simply denoted by
¡
R!!!!!!!!!!!!!!' B 00�B

�
2Cris(R/(A�A00; 
A)). More formally, it is the

homotopy fiber of the functor AniPDPair(A�A00)/!Ani(Ring)A00/; (B�B 00; 
B) 7!B 00 at the object
R2Ani(Ring)A00/. The endowed Grothendieck topology is indiscrete.

The structure presheaf Cris(R/(A�A00; 
A))op!CAlgA, denoted by OCRIS(R/(A�A00;
A)) (or
simply O when there is no ambiguity), is induced by the evaluation AniPDPair(A�A00;
A)/!
Ani(Ring)A/!CAlgA/. Concretely, it is given by

¡
R!!!!!!!!!!!!!!

'
B 00�B

�
7!B.

Although the affine crystalline site is not small, the cohomology of the structure presheaf exists
in CAlgA by �ech-Alexander calculation (which we will reproduce in Proposition 2.4.70). We will
simply call it the cohomology of the crystalline site and denote by R¡(Cris(R/(A�A00; 
A));O).
Furthermore, the structure sheaf admits the PD-filtration (Definition 2.3.73), which gives rise to
a filtration on the cohomology of the crystalline site, called the Hodge-filtration and denoted by
FilH. We now have a comparison between the derived crystalline cohomology and the cohomology
of the crystalline site, which becomes an equivalence after Hodge-completion:

Proposition 2.4.66. There is a natural comparison map

FilH CrysCohR/(A�A00;
A)!FilHR¡(Cris(R/(A�A00; 
A));O)

in the 1-category CAlg(DF�0(A)). After passing to the associated graded pieces, i.e. composition
with the functor CAlg(DF�0(A))!CAlg(Gr�0(A)), the comparison map above becomes an equiv-
alence. Moreover, when �0(R) is a finitely generated �0(A00)-algebra, then the comparison map is
an equivalence.

We need some preparation about cosimplicial objects in 1-categories.
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Definition 2.4.67. ([Lur09, Def 6.1.2.2]) Let C be an 1-category. A cosimplicial object of C is
a functor X� :�!C. The value of this functor at [�]2� is denoted by X�. A map of cosimplicial
objects X�! Y � is simply a map of functors.

We note that there are two inclusions f0g ,! [1] - f1g viewed as two maps [0]� [1], and a
constant map [1]! [0], which induce three functors i0, i1: �'�/[0]��/[1] and � :�/[1]!�/[0]'
�. For any 1-category C, let i0� (resp. i1�) denote the induced functor Fun(�/[1]; C)!Fun(�;C),
and let �� denote the induced functor Fun(�; C)!Fun(�/[1]; C).

Definition 2.4.68. ([Lur17, Def 7.2.1.6]) Let C be an 1-category and let f and g be two maps
X��Y � of cosimplicial objects. A simplicial homotopy from f to g is a map h : ��(X�)! ��(Y �)
of functors �/[1]� C such that the map i0�(h) :X�! Y � (resp. i1�(h) :X�! Y �), being a map of
cosimplicial objects, is equivalent to f (resp. g). When X�=Y �, we say that the simplicial homotopy
h : ��(X�)! ��(X�) is constant if it is equivalent to id��(X�).

Lemma 2.4.69. Let C be an 1-category and X�;Y � two cosimplicial objects of which the totalization
exist in C. Let f and g be two maps X��Y � of cosimplicial objects such that there exists a simplicial
homotopy from f to g. Then the maps f ; g induces equivalent2.4.11 maps lim�X�� lim� Y � of
totalizations.

Proof. (Denis Nardin) For every cosimplicial object X� in C, there are two observations:

1. The canonical map lim�/[1] �
�(X�)! lim�X� is an equivalence (this involves the existence

of the limit as the source). Indeed, it suffices to show that the map � :�/[1]!� is coinitial.
By Joyal's version of Quillen's Theorem A [Lur09, Thm 4.1.3.1], it suffices to show that, for
every [n]2�, the category �/[1]���/[n] is weakly contractible. Its geometric realization
is �1��n, which is known to be weakly contractible.

2. The two maps lim�X = lim� i�� ��(X�)! lim�/[1] �
�(X�) for � =0; 1 are equivalences, and

these two maps are equivalent. Indeed, both are inverses of the equivalence lim�/[1]�
�(X�)!

lim�X
� above.

Note that the map lim� f (resp. lim� g) could be identified with the composite

lim
�
X = lim

�
i�
� ��(X�)¡! lim

�/[1]

��(X�)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
lim�/[1](h)

lim
�/[1]

��(Y �)¡! lim
�
Y �

for �=0 (resp. �=1). The result then follows. �

Proof of Proposition 2.4.66. There is a map from the constant presheaf FilH CrysCohR/(A�A00;
A)

on the affine crystalline site to the structure presheaf O given by the canonical map in Def-
inition 2.4.25, which induces the comparison map in question.

Now we show that this map becomes an equivalence after passing to the associated graded
pieces. We first note that, when the map A00!R is surjective, i.e. ((A� A00; 
A); A00!R) 2
CrysConsurj, the result follows directly from Proposition 2.4.64. Our strategy is to reduce the
general case to this special case via �ech-Alexander computation.

We pick a polynomial A-algebra P (of possibly infinitely many variables) along with a surjection
P�R of A-algebras. Let P �!R denote the �ech conerve of the object P!R in the1-category
(Ani(Ring)A/)/R. Concretely, it is given by P � :=P
A

L(�+1), and the map P �!R is simply given
by the composite map P �! P ! R which is surjective. In other words, we get a cosimplicial
object (P ��R) 2 Fun(�;AniPair(A�A00)/). Let (D��R; 
D�)2 Fun(�;AniPDPair(A�A00;
A)/)
denote the cosimplicial relative animated PD-envelope, i.e. applying the functor AniPair(A�A00)/!
AniPDPair(A�A00;
A)/ (Definition 2.4.49) pointwise. This effectively gives rise to a cosimplicial object
�!Cris(R/(A�A00; 
A))op. Composing with the Hodge-filtered presheaf FilHO :Cris(R/(A�
A00; 
A))op!CAlg(DF�0(A)), we get a cosimplicial filtered E1-A-algebra �!CAlg(DF�0(A)),
the limit of which computes the cohomology FilHR¡(Cris(R/(A�A00; 
A));O). In plain terms,
this cosimplicial filtered E1-A-algebra is just the PD-filtration of the cosimplicial animated PD-
pair (D��R; 
D�).

2.4.11. Or called �homotopic�. We avoid the terminology �homotopic� to avoid confusion with the simplicial
homotopy.
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For this cosimplicial object, the comparison map constructed above is concretely given by

FilH dR(D��R;
D�)/(A�A00;
A)!FilPDD� (2.4.1)

Now Proposition 2.4.64 and Lemma 2.4.53 gives us an equivalence

FilH CrysCohR/(P��P�
ALA00;
P�)!FilPDD�

which is effectively given by

FilH dR(D��R;
D�)/(P��P�
ALA00;
P�)!FilPDD�

by chasing the proof. In other words, (2.4.1) could be rewritten as the natural map

FilH dR(D��R;
D�)/(A�A00;
A)!FilH dR(D��R;
D�)/(P��P�
ALA00;
P�)

or equivalently, the natural map

FilH CrysCohR/(A�A00;
A)!FilH CrysCohR/(P��P�
ALA00;
P�)

It remains to show that this cosimplicial map gives rise to an equivalence after taking the limit,
i.e., the totalization, and passing to associated graded pieces. We isolate the remaining part into
Lemma 2.4.77. �

Before proving Lemma 2.4.77, we isolate an important observation in the previous proof into
a proposition:

Proposition 2.4.70. For every crystalline context ((A�A00; 
A);A00!R)2CrysCon, the follow-
ings are equivalent:

1. The comparison map in Proposition 2.4.66 is an equivalence.

2. There exists a polynomial A-algebra P (of possibly infinitely many variables) along with a
surjection P �R of A-algebras, and letting P �!R denote the �ech conerve of P!R in
the 1-category (Ani(Ring)A/)/R as in the proof of Proposition 2.4.66, then the natural maps

FilHCrysCohR/(A�A00;
A)!FilH CrysCohR/(P ��P�
ALA00;
P�) (2.4.2)

form a limit diagram in CAlg(DF�0(A)).

3. For all polynomial A-algebras P (of possibly infinitely many variables) along with a sur-
jection P �R of A-algebras, and letting P �!R denote the �ech conerve of P ! R in
the 1-category (Ani(Ring)A/)/R, then the natural maps ( 2.4.2) form a limit diagram in
CAlg(DF�0(A)).

4. (After proving Lemma 2.4.77) There exists a (or equivalently, for every) polynomial A-
algebra P (of possibly infinitely many variables) along with a surjection P�R of A-algebras,
and letting P �!R denote the �ech conerve of P!R in the 1-category (Ani(Ring)A/)/R
as in the proof of Proposition 2.4.66, then the natural maps

CrysCohR/(A�A00;
A)!CrysCohR/(P ��P �
ALA00;
P�)

form a limit diagram in CAlg(D(A)).

In order to deal with associated graded pieces of the Hodge filtration, we need a variant of the
Katz-Oda filtration in [GL20, Cons 3.12]. We need an auxiliary construction:

Definition 2.4.71. The cotangent complex functor L�/� :dRCon!Ani(Mod) is defined to be the
left derived functor (Proposition B.0.10) of the functor dRCon0!Ani(Mod); ((A; I ; 
A)! (B; J ;

B)) 7! (B;
(B;J)/(A;I)

1 ).

The proof of Lemma 2.4.10 leads to

Lemma 2.4.72. The composite functor Fun(�1;Ani(Ring))!dRCon!Ani(Mod) is equivalent to
the classical cotangent complex functor.
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We now introduce the �stupid� filtration FilB on the Hodge-filtered derived de Rham cohomology
FilH dR�/�. For each ((A; I ; 
A)! (B;J ; 
B))2dRCon0, consider the filtration (
(B;J;
B)/(A;I;
A)

�n ;

d)n2(N;�) of the Hodge-filtered CDGA, which gives rise to a bifiltered E1-Z-algebra. By Propo-
sition B.0.10, we get a functor CAlg(Fun((N; �) � (N; �); D(Z))); ((A� A00; 
A)! (B� B 00;

B)) 7!FilB FilH dR(B�B 00)/(A�A00).

Warning 2.4.73. Unlike the Hodge filtration, the �stupid� filtration does not descend to CrysCon,
that is to say, it depends on the choice of B in question.

We now analyze the associated graded pieces with respect to the �stupid� filtration:

Lemma 2.4.74. Let ((A�A00; 
A)! (B�B 00; 
B))2 dRCon be a de Rham context. Then asso-
ciated graded pieces grBi FilH dR(B�B 00)/(A�A00) could be functorially identified with insi(

V
B
i

L(B�B 00)/(A�A00)[¡i]) 
BL FilPD B as a FilPD B-module in DF�0(B) (where � 
BL FilPD B
is the base change from DF�0(B) to the 1-category of FilPD B-modules). Furthermore,
FilBi grH

j dR(B�B 00)/(A�A00)' 0 when i > j.

Proof. By Proposition B.0.10, it suffices to check the equivalences on dRCon0, which follows from
definitions. �

We are now ready to introduce the Katz-Oda filtration:

Definition 2.4.75. (cf. [GL20, Cons 3.12]) Let (A� A00; 
A)! (B � B 00; 
B) be a
map of animated PD-pairs and B 00! R a map of animated rings. The Katz-Oda filtration
on the Hodge-filtered derived crystalline cohomology FilH CrysCohR/(A�A00) rewritten as
FilHCrysCohR/(A�A00)
FilHdR(B�B 00)/(A�A00)

L FilH dR(B�B 00)/(A�A00) is induced by the �stupid� fil-
tration on FilH dR(B�B 00)/(A�A00).

We now have

Lemma 2.4.76. (cf. [GL20, Lem 3.13]) Let (A�A00; 
A)! (B�B 00; 
B) be a map of animated
PD-pairs and B 00!R a map of animated rings. Then

1. The associated graded pieces grKO
i FilH CrysCohR/(A�A00) are functorially equivalent to

FilH CrysCohR/(B�B 00)
FilPDB
L (insi(

V
B
i L(B�B 00)/(A�A00)[¡i])
BLFilPDB)

as FilPDB-modules in DF�0(Z) for all i2N, where the functor insi is defined in Subsec-
tion 2.2.4.

2. The induced Katz-Oda filtration on grH� CrysCohR/(A�A00) is complete. In fact, for i > j,
we have FilKO

i grH
j CrysCohR/(A�A00)' 0.

Proof. We have seen (Corollary 2.4.31) that the canonical map

FilH CrysCohR/(A�A00)
FilHdR(B�B 00)/(A�A00)
L FilPDB!FilH CrysCohR/(B�B 00)

is an equivalence. Then both follow from Lemma 2.4.74. �

The convergence of Katz-Oda filtration on associated graded pieces is the key to Lemma 2.4.77.

Lemma 2.4.77. In Proposition 2.4.70, the maps ( 2.4.2) form a limit diagram after passing to the
associated graded pieces, i.e. after composition with the functor CAlg(DF�0(A))!CAlg(Gr�0(A)).
Furthermore, if the �0(A00)-algebra �0(R) is of finite type, then the maps ( 2.4.2) form a limit
diagram.

Proof. Note that the map (2.4.2) is the canonical map FilH CrysCohR/(A�A00) !
grKO
0;(�) FilH CrysCohR/(A�A00), the Katz-Oda filtration with respect to the cosimplicial system

((A�A00; 
A)! (P �! P � 
ALA00; 
P�); P �!R). By the completeness in Lemma 2.4.76, for the
equivalence on associated graded pieces, it suffices to show that, for every i 2N>0, the total-
ization lim�2� grKO

i;(�)FilH CrysCohR/(A�A00) is contractible.
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The key observation is that insi(
V
iL(P�!P�
ALA00)/(A�A00)[¡i]) is homotopy equivalent to 0

as a cosimplicial B�-module spectrum [Bha12b, Lem 2.6] when i > 0 (this is of course false when
i=0). It follows that the cosimplicial object grKO

i;(�)FilHCrysCohR/(A�A00) is homotopy equivalent
to 0 as FilPDB-modules by [Sta21, Tag 07KQ] and Lemma 2.4.76.

Finally, if �0(R) is a finitely generated �0(A00)-algebra, we could pick a polynomial A-algebra
P of finitely many variables along with a surjection P �R. In this case, the Katz-Oda filtration
is finite and the above argument works. �

Warning 2.4.78. One should be careful about homotopy equivalences. In an earlier draft of this
article, we came up with the following �proof�: the Hodge-filtered derived de Rham cohomology
FilH CrysCohR/(A�A00) could be rewritten as

FilH CrysCohR/(A�A00)
FilHdR¡
P��P�
A

LA00
�
/(A�A00)

L FilH dR(P ��P �
ALA00)/(A�A00)

and since the map A ! P � is a homotopy equivalence as A-algebras, the map
FilH dR(P ��P �
ALA00)/(A�A00) ! FilPD P � is also a homotopy equivalence �therefore�
the constant cosimplicial algebra FilH CrysCohR/(A�A00) is homotopy equivalent to
FilH CrysCohR/(A�A00)
FilHdR¡

P��P�
A
LA00

�
/(A�A00)

L FilPDP �'FilH CrysCohR/(P��P�
ALA00) there-

fore the conditions in Proposition 2.4.70.
This argument is incorrect: when playing with homotopy equivalences, one cannot replace the

base cosimplicial algebra by a homotopy equivalent algebra without justification. In fact, the last
homotopy equivalence obtained above is also incorrect: if it were the case, we consider the special
case that (A�A00; 
A) is given by (idA :A!A; 0), and CrysCohR/P � is just the animated PD-
envelope of P ��R (see the proof of Proposition 2.4.66). We inspect the homotopy equivalence of
cosimplicial objects that we assumed:

dRR/A'HoEq dRR/P �

when A is a static Fp-algebra and R is a smooth A-algebra such that dRR/A is not static, the
map P ��R is Koszul regular and the derived de Rham cohomology dRR/P� is simply the PD-
envelope, therefore static. Applying �i to the homotopy equivalence, where i=/ 0 is so chosen that
�i(dRR/A)=/ 0, we get a contradiction.

In view of this warning, our proof of Lemma 2.4.77 tells us that the associated graded pieces with
respect to the Katz-Oda filtration are homotopy equivalent, but the homotopy equivalences could
not be glued, even after forgetting all the richer structures to the underlying 1-category D(Z).

When the �0(A)-algebra �0(R) is not of finite type, we can still prove that the comparison map
is an equivalence with mild smoothness of A00!R (Proposition 2.4.87). We start with another
sufficient condition in characteristic p which is essentially a variant of [LL20, Prop 2.17] by Propo-
sition 2.4.70.

Lemma 2.4.79. Let ((A�A00; 
A); A00!R)2CrysConFp. Suppose that

1. The cotangent complex LR/A002D�0(R) has Tor-amplitude in [0; 1].

2. The derived Frobenius twist 'A�A00
� (R) (see Lemma 2.4.36) is bounded above, i.e.

�i('A�A00
� (R))=� 0 for i� 0.

Then the comparison map in Proposition 2.4.66 is an equivalence.

Proof. Our proof is also adapted from [LL20, Prop 2.17]. By Proposition 2.4.70 and Lemma 2.4.77,
it suffices to that the natural maps

CrysCohR/(A�A00;
A)¡!CrysCohR/(P ��P �
ALA00;
P�) (2.4.3)

form a limit diagram in CAlg(D(A)). We endow both sides with conjugate filtration (Defini-
tion 2.4.41), and show that this forms in fact a limit diagram in CAlg(DF�0(A)).
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We show that, after passing to associated graded pieces with respect to the conjugate filtration,
the maps (2.4.3) form a limit diagram, which implies that the natural maps (2.4.3) form limit
diagrams after passing to finite level of quotients, and then we control the convergence to deduce
the result. To show the result for associated graded pieces, by Proposition 2.4.46, it suffices to
show that the maps

'A�A00
� (

V
R
? LR/A00)[¡?]¡! 'P��P�
ALA00

� (
V
R
? LR/(P�
ALA00))[¡?] (2.4.4)

form a limit diagram in Gr�0(D(A)).
Let R1 := 'A�A00

� (R). Note that the Frobenius map 'P ��P�
ALA00 factors as P � 
AL A00!
'A
�(P �)! P � where the second map is the Frobenius map of P � relative to A. Then the maps

(2.4.4) could be rewritten as the mapsV
R1
? LR1/A[¡?]¡! (

V
R1
? LR1/'A�(P�))[¡?]
'A�(P�)

L P �

or equivalently, the maps

grH? dRR1/A¡! grH? dRR1/'A�(P�)
'A�(P�)
L P �

by an inverse application of Lemma 2.4.74 (recall that for derived de Rham cohomology of animated
rings, the �stupid� filtration coincides with the Hodge filtration). We again consider the Katz-
Oda filtration associated to the cosimplicial system A! 'A

�(P �)!R1 (Lemma 2.4.76) and by
completeness, we could pass to associated graded pieces for i=0:

grH? dRR1/'A�(P�)¡! grH? dRR1/'A�(P �)
'A�(P�)
L P � (2.4.5)

and i2N>0:

grH? dRR1/'A�(P�)
'A�(P�)
L

¡V
'A
�(P�)
i L'A�(P�)/A[¡i]

�
¡! 0

As in Lemma 2.4.77, the later maps constitute a homotopy equivalence by [Bha12b, Lem 2.6] and
[Sta21, Tag 07KQ], therefore constitutes a limit diagram by Lemma 2.4.69. On the other hand, by
Lemma 2.4.82, the maps (2.4.5) constitute a limit diagram.

Now we control the convergence. Again by Lemma 2.4.74, we rewrite the maps (2.4.5) as the
maps V

R1
? LR1/'A�(P�)[¡?]¡! (

V
R1
? LR1/'A�(P�)[¡?])
'A�(P �)

L P �

Now consider the transitivity sequence

L'A�(P�)/A
'A�(P�)
L R1¡!LR1/A¡!LR1/'A�(P�)

For every static R1-module M , we get the fiber sequence

L'A�(P�)/A
'A�(P�)
L M ¡!LR1/A
R1

L M ¡!LR1/'A�(P �)
R1
L M

Since LR/A00 2 D�0(R) has Tor-amplitude in [0; 1], so does LR1/A 2 D�0(R1), therefore
�j(LR1/A 
R1

L M ) =� 0 for j =/ 0; 1. Note that L'A�(P�)/A is a flat 'A
�(P �)-module. It follows

that �j(LR1/'A� (P �) 
R1
L M ) =� 0 for j =/ 0; 1. Furthermore, since 'A

�(P �)! R1 is surjective,
�0(LR1/'A�(P �) 
R1

L M) =� 0. It follows that LR1/'A�(P �)[¡1] is a flat R1-module, and so is
V
R1
?

LR1/'A�(P�)[¡?]'¡R1
? (LR1/'A�(P�)[¡1]). By assumption, R1 is bounded above, therefore so is

V
R1
?

LR1/'A�(P�)[¡?].
It remains to show that the associated graded pieces are uniformly bounded above, which implies

that (2.4.3) form a limit diagram, by Lemma 2.4.84 and that the conjugate filtration is exhaustive
(Lemma 2.4.42). Suppose that the homotopy groups of R1 are concentrated in the range [a;b], then
the associated graded pieces of the target could be rewritten as ¡R1

? (LR1/'A�(P�)[¡1])
'A�(P �)
L P �,

where ¡R1
? (LR1/'A�(P�)[¡1]) is a flat R1-module therefore the homotopy groups of it is also

concentrated in the range [a; b]. Since the relative Frobenius 'A
�(P �)! P � is flat, we get

�j(¡R1
? (LR1/'A�(P�)[¡1])
'A�(P�)

L P �)=��j(¡R1? (LR1/'A�(P �)[¡1]))
�0('A�(P�))�0(P �)=�0 for j2/ [a;b]. �

We need the following lemmas:
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Lemma 2.4.80. Let C be an 1-category which admits finite coproducts. Let ? denote the initial
object of C, and let X; Y be two objects of C. Then for any two maps g0; g1 2HomC(X; Y ), the
induced maps X�� Y � of �ech conerves X� of X (i.e. of ?!X) and Y � of Y (i.e. of ?! Y)
are homotopic. More precisely, there exists a simplicial homotopy from g0

� to g1� which is functorial
in g0 and g1. In particular, if X =Y and g0= g1, then the simplicial homotopy is constant.

Proof. We start with the special case that C is a 1-category. We define the simplicial homotopy
h : ��(X�)! ��(Y �) as follows: for every (�n : [n]! [1]) 2�/[1], we note that (X�)(�n) =Xn=
X q � � � qX and (Y �)(�n) = Y n = Y q � � � q Y , and we set h�n =

`
i=0
n g�n(i) :X

n! Y n. By
construction, i0�(h)�=h[�]!!!!!!!!!0 [1]

=
`
i=0
n g0= g0

� and i1�(h)�= g1
�.

We need to check that this is a map of functors. For every map  : (�n : [n]! [1])! (�m : [m]!
[1]) in �/[1], we need to check that the diagram

X
n

hαn

//

ψ∗

��

Y
n

ψ∗

��

X
m

hαm

// Y
m

commutes, where the vertical maps  � :Xn!Xm and  � : Y n! Y m are induced by  . For this
end, let ji :X!Xn be the i-th canonical map for 0� i�n.

Then the composite h�n � ji :X!Xn! Y n could be rewritten as the composite ji � gan(i) :
X! Y ! Y n, and the composite  � � h�n � ji :X! Y m is equivalent to the composite j (i) �
g�n(i) :X!Y ! Y m. Similarly, the composite  � � ji :X!Xn!Xm is equivalent to the  (i)-th
canonical map j (i) :X!Xm, and the composite h�m� �� ji could be identified with the composite
j (i) � g�m( (i)) :X! Y !Y m.

Since �m( (i))=�n(i), it follows that  � �h�n� ji=h�m �  � � ji for every 0� i�n. It follows
that  ��h�n=h�m� �. The other claims for the 1-category C follow directly from the construction.

Now we claim that the result for 1-categories follows from that for 1-categories. The point
is that there exists a universal 1-category2.4.12 C0 along with two objects X0; Y02C and two maps
X0�Y0, which admits all finite products, such that for every1-category C as in the assumption of
this lemma, there exists an essentially unique functor C0!C which preserves finite coproducts: let
K be the diagram ���, and then take the presheaf1-category P(K)=Fun(Kop;S). Then we can
take C0 to be the full subcategory of P(K) spanned by finite coproducts of the two vertices of K. �

Corollary 2.4.81. Let C be an 1-category with finite coproducts, and two objects X; Y in C.
Let i :X!Y be a map which admits a left inverse r :Y !X. Then there is a �strong deformation
retract�, i.e. a simplicial homotopy from idY � to i� � r�, which restricts to a constant simplicial
homotopy of X� along i� :X�!Y �, where X� (resp. Y �) is the �ech conerve of X (resp. Y), and
i� :X�!Y � and r� :Y �!X� are induced simplicial maps.

Proof. We apply Lemma 2.4.80 to idY ; i�r2HomC(Y ;Y ), getting the desired simplicial homotopy.
To see the later statement, it suffices to inspect the commutative diagram

Y ������������������������
i�r

idY
Y

¡! ¡!

X ��������������������������
idX

idX
X

and invoke the functoriality. �

Lemma 2.4.82. Let A2CAlgcn be a connective E1-ring and let B!C be a faithfully flat map of
connective E1-A-algebras. Let B� (resp. C�) denote the �ech conerve of the map A!B (resp.
A!C). Then for any cosimplicial B�-module N�, the natural cosimplicial map

N�¡!N�
B�L C�

2.4.12. This is informed to us by Denis Nardin.
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induces an equivalence after totalization lim�2� in D(A), where the cosimplicial map B�!C� is
induced by B!C.

Proof. Let D�;� denote the cosimplicial �ech conerve of B�!C� (each D�;� is the �ech conerve
of B�!C�), which is a bicosimplicial object in CAlgA. We note that there is a unique cosimplicial
map B�!D�;� for all [�]2�. Consider the bicosimplicial object M�;�:

�2 ¡! D(A)
([�]; [�]) 7¡! N� 
B�L D�;�

and its limit I := lim([�];[�])M
�;�. The map which we need to show to be an equivalence factors

as lim[�]N
�! lim([�];[�])M

�;�! lim[�]M
�;0' lim[�]N

�
B�L C�. It suffices to show that both maps
are equivalences.

For the first map, in fact, for every [�]2�, the map N�! lim[�]2�M
�;� is an equivalence by

faithfully flat descent.
For the second map, since�inj

op!�op is cofinal [Lur09, Lem 6.5.3.7] where�inj�� is the (non-
full) subcategory with strictly increasing maps [m]! [n], we can replace lim� (�) by lim�inj (�). By
[Lur09, Cor 4.4.4.10], it suffices to show that, for every injective map [�1]! [�2] in�, the induced
map lim[�]M

�;�1! lim[�]M
�;�2 is an equivalence. Every injective map [�1]! [�2] admits a retract

in �, therefore by Corollary 2.4.81, the induced map D�;�1!D�;�2 is a homotopy equivalence of
cosimplicial E1-B�-algebras, therefore M�;�1!M�;�2 is a homotopy equivalence of cosimplicial
A-modules by [Sta21, Tag 07KQ]. The result then follows from Lemma 2.4.69. �

Remark 2.4.83. When A is a static Fp-algebra, B is a polynomial A-algebra and C=B
A;'A
L A

is the Frobenius twist of B, we recover [BS19, Lem 5.4].

Lemma 2.4.84. Let (Mi
�)i2(Z�0;�)2Fun(�� (Z�0;�);Sp) be a cosimplicial filtered spectra. Sup-

pose that it is uniformly bounded above, i.e. there exists N 2N such that for every i 2Z�0 and
� 2�, we have �j(Mi

�) =� 0 for all j > N. Let M� := colimi!¡1Mi
�. Then the canonical map

colimi!¡1 lim�2�Mi
�! lim�2�M

� is an equivalence.

Proof. We could rewrite lim�2� as limn!1 lim�2��[n] . Furthermore, the functor ��[n]
inj !

��[n] is right cofinal, therefore we can replace lim�2��[n] by lim�2��[n]
inj which is a finite limit,

therefore commutes with colimi!¡1. For any cosimplicial spectrum X�, there is a canonical
map lim�2�X�! lim�2��[n]X

�. If X� is assumed to be uniformly bounded above, then the
coconnectivity of fib(lim�2�X

�! lim�2��[n]X
�) tends to ¡1 as n!1 by [Lur17, Cor 1.2.4.18].

The result then follows. �

For the integral version, we need to introduce the following concept of smoothness:

Definition 2.4.85. (cf. [BMS19, Def 4.9]) We say that a map R! S of animated rings is
quasisyntomic if it is flat and the cotangent complex LS/R has Tor-amplitude in [0; 1].

Example 2.4.86. Any smooth map, or more generally, any syntomic map of static rings is
quasisyntomic.

We now phrase the integral comparison:

Proposition 2.4.87. Let ((A�A00; 
A); A00!R)2CrysCon such that A is bounded above (that
is, �n(A) =� 0 for n� 0) and the map A00!R is quasisyntomic. Then the comparison map in
Proposition 2.4.66 is an equivalence.

Proof. We again appeal to Proposition 2.4.70. It suffices to show that the map

CrysCohR/(A�A00;
A)¡! lim
�2�

CrysCohR/(P ��P �
ALA00;
P�)
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is an equivalence of Z-module spectra (since the forgetful functor is conservative), which could
be checked by base change along Z! Z/ p for all prime numbers p 2N>0 and along Z!Q.
The latter follows from Lemma 2.4.11 and that the map A! P is faithfully flat therefore the
canonical map A! lim�2�P

� is an equivalence (in fact, this is induced by a homotopy equivalence
of cosimplicial objects, but we do not need this). For every prime number p, by base change
property (Lemma 2.4.35) and Lemma 2.4.79, where the flatness of A00!R implies the flatness of
A/Lp! 'A/Lp�A00/Lp

� (R/Lp), therefore the Frobenius twist in question is bounded above. �

Finally, we want to compare the cohomology of the affine crystalline site and the classical
crystalline cohomology. We first describe a non-complete variant of the classical affine crystalline
site, which we will name after static affine crystalline site.

Definition 2.4.88. Let (A;I ; 
A)2PDPair be a PD-pair and let A/I!R be a map of rings. Note
that ((A�A/I ; 
A);A/I!R)2CrysCon is a crystalline context. The static affine crystalline site
Crisst(R/(A;I ; 
A)) is the full subcategory of Cris(R/(A�A/I ; 
A)) spanned by those (B�B/J ;

B) along with a map R!B /J, i.e., the animated PD-pair in question is given by a PD-pair,
equipped with the indiscrete topology.

We note that the structure presheaf O on Cris(R/(A� A/I ; 
A)) restricts to a presheaf
Crisst(R/(A; I ; 
A)), still called the structure presheaf , which is canonically equipped with PD-
filtration, of which the cohomology is called the cohomology of the static crystalline site (resp.
Hodge-filtered cohomology of the static crystalline site), denoted by R¡(Crisst(R/(A; I ; 
A));O)
(resp. FilHR¡(Crisst(R/(A;I ; 
A));O). By definition, there is a comparison map FilHR¡(Cris(R/
(A�A/I ; 
A));O)!FilHR¡(Crisst(R/(A; I ; 
A));O) of filtered E1-A-algebras.

Warning 2.4.89. Here the PD-filtration is that for animated PD-envelope, although we are
considering PD-pairs. However, when I = 0, thanks to Proposition 2.3.77, we can consider the
classical PD-envelope instead.

Now the cohomology of the affine crystalline site coincides with the classical version:

Proposition 2.4.90. Let (A; I ; 
A)2PDPair be a PD-pair and A/I!R a quasisyntomic map of
rings (R is static by flatness). Then the comparison map

FilHR¡(Cris(R/(A�A/I ; 
A));O)!FilHR¡(Crisst(R/(A; I ; 
A));O)

of filtered E1-A-algebras constructed above is an equivalence.

Proof. We adapt the �ech-Alexander computation in Proposition 2.4.66. We pick a polynomial
A-algebra P (of possibly infinitely many variables) along with a surjection P �R. Let P �!R

denote the �ech conerve of the object P ! R in (AlgA)/R. Concretely, P � = P
A(�+1). Note
that since A! P is flat, the classical tensor product coincides with the derived tensor product,
therefore the cosimplicial pair P �!R coincides with the cosimplicial animated pair in the proof
of Proposition 2.4.66, and then FilHR¡(Crisst(R/(A; I ; 
A));O) is computed by the classical PD-
envelope of P ��R with respect to (A; I ; 
A), equipped with the PD-filtration.

Let (D��R; 
D�) denote the cosimplicial animated PD-envelope of (P ��R) relative to (A;I ;

A). It suffices to show that (D��R; 
D�) is given by a PD-pair for all � 2�, or equivalently, the
underlying animated ring D� is static, by virtue of Proposition 2.3.32 and Lemma 2.3.37, which
follows from Lemma 2.4.91 below. �

Lemma 2.4.91. Let (A�A00; 
A) be an animated PD-pair, A00!R a quasisyntomic map of ani-
mated rings, P a polynomial A-algebra (of possibly infinitely many variables) and P�R a surjection
of A-algebras. Let (D� R; 
D) denote the animated PD-envelope of P � R relative to (A�
A00; 
A). Then D is a flat A-module.

Proof. This is a �quasi� variant of �flatness of PD-envelope� [BS19, Lem 2.42]. By Lemma 2.3.71,
it suffices to show that D
Z

LQ is a flat A
Z
LQ-module, and for every prime p2N, D/Lp is a flat

A/Lp-module.
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By Lemma 2.4.52, the map P 
Z
LQ!D
Z

LQ is an equivalence. Since A!P is flat, so is the
map A
Z

LQ!D
Z
LQ.

For every prime p 2N, by base change property (a relative version of Lemma 2.3.46, with
a similar proof), D0 := D /Lp is the animated PD-envelope of P /Lp� R/Lp relative to the
animated PD-pair (A�A00; 
A). To simplify notations, we let P0 :=P /Lp;R0 :=R/Lp;A0 :=A/Lp;
A0
00 :=A00/Lp. Since A!R is quasisyntomic, so is A0!R0. Consider the transitivity sequence

LP0/A0
P0
L R0¡!LR0/A0¡!LR0/P0

For every static R0-module M , we get a fiber sequence

LP0/A0
P0
L M ¡!LR0/A0
R0

L M ¡!LR0/P0
R0
L M

Since P0 is a polynomial A0-algebra, LP0/A0 is a flat P0-module. The map A0!R0 is quasisyntomic,
therefore ��(LR0/A0 
R0L M) =� 0 for � =/ 0; 1. It follows that ��(LR0/P0 
R0L M) =� 0 for � =/ 0; 1.
Furthermore, since P0! R0 is surjective, �0(LR0/P0 
R0

L M) =� 0. It follows that P0� R0 is a
quasiregular animated pair. By Corollary 2.4.60, D0 is a flat 'P0�P0
A0

L A0
00

� (R0)-module where

'P0�P0
A0
L A0

00 :P0
A0L A0
00! P0 is the Frobenius map (Lemma 2.4.36). It remains to see that the

composite map A0!P0! 'P0�P0
A0
L A0

00
� (R0)=R0
P0
A0L A0

00
L P0 is flat, where the second map is the

�map into the second factor�.
We note that the Frobenius 'P0�P0
A0

L A0
00 factors as P0
A0

L A0
00!'A0

� (P0)!P0 where the second
map is the Frobenius of P0 relative to A0. Let R1 denote R0
A000;'A0�A0

00
L A0. Since A000!R0 is flat,

so is A0!R1, and we have

'P0�P0
A0
L A0

00
� (R0)'R1
'A0� (P0)

L P0

as a pushout of A0-algebras. The relative Frobenius 'A0
� (P0)!P0 is flat, therefore the map R1!

R1
'A0� (P0)
L P0. The result then follows since flatness is stable under composition. �

Remark 2.4.92. If we examine the proof of Lemma 2.4.91 closely, we see that, instead of being a
polynomial, what we really need to impose on the map A!P is that the map is quasismooth (i.e.
it is flat and LP /A is a flat P -module), and for every prime p2N, the Frobenius of P /Lp relative
to A/Lp is flat.

2.5. Animated prismatic structures

We fix a prime p2N. In this section, we will develop the theory of animated �-rings, that of ani-
mated �-pairs, a non-complete theory of prisms and prove a variant of the Hodge�Tate comparison,
from which we deduce a result about �flat covers of the final object�. Almost every ring that we
will discuss is a Z(p)-algebra, we will simply denote AniPairZ(p) by AniPair and AniPDPairZ(p) by
AniPDPair.

2.5.1. Animated �-rings and �-pairs In this section, we will define animated �-rings
and animated �-pairs and discuss the interaction between the �-structure and the PD-structure.
Recall that

Definition 2.5.1. ([BS19, Def 2.1]) A �-ring is a pair (R; �) where R is a Z(p)-algebra and
� :R!R is an endomorphism of the underlying set R such that

1. �(x+ y)= �(x)+ �(y)¡P (x; y) for all x; y 2R where P (X;Y )2Z[X;Y ] is the polynomial

(X +Y )p¡Xp¡Y p

p
:=
X
j=1

p¡1
1
p

�
p
j

�
Xp¡jY j

2. �(x y)=xp �(y)+ yp �(x)+ p �(x) �(y).

3. �(1)=0.
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A map f : (R; �)! (S; �) of �-rings is a map f :R!S of rings such that f � �= � � g as maps of
sets. These form the 1-category of �-rings, denoted by Ring�.

Remark 2.5.2. ([BS19, Rem 2.2]) Given a �-ring (R; �), we write ' : R! R for the map
x 7!xp+ p �(x). Then ' is a ring endomorphism of R which lifts the Frobenius map R/p!R/p,
i.e. '(x)�xp (mod p) for every x2R.

The 1-category Ring� admits an initial object Z(p) [BS19, Ex 2.6], and more generally, all small
colimits and small limits, and the forgetful functor Ring�!AlgZ(p) preserves them [BS19, Rem 2.7].
The forgetful functor Ring�! Set admits a left adjoint Set!Ring�, which sends a set S to the
free �-ring generated by S, denoted by Z(p)fSg. Indeed, when S = fxg is a singleton, it is given
by the free �-ring Z(p)fxg of which the underlying Z(p)-algebra is isomorphic to the polynomial
Z(p)-algebra Z(p)[x; �(x); �2(x); : : : ] [BS19, Lem 2.11], and the general case follows by taking the
coproduct of S-copies of Z(p)fxg. It then follows from Corollary 2.2.3 that

Lemma 2.5.3. The 1-category Ring� is 1-projectively generated, therefore presentable.

By the adjoint functor theorem, the forgetful functor Ring�!AlgZ(p) admits a left adjoint. A
further application of Corollary 2.2.3 leads to

Lemma 2.5.4. There is a pair Ani(AlgZ(p))�Ani(Ring�) of adjoint functors, being the animation
of the pair AlgZ(p)�Ring� of adjoint functors. We will call the functor Ani(Ring�)!Ani(AlgZ(p))
the free animated �-ring functor2.5.1. The functor Ani(Ring�)!Ani(AlgZ(p)), called the forgetful
functor, is conservative and preserves small colimits (and as a right adjoint, it preserves small
limits as well).

Definition 2.5.5. The 1-category of animated �-rings is defined to be the animation Ani(Ring�),
of which an object is called an animated �-ring, formally denoted by (R;�) where R is the image of
(R; �) under the forgetful functor Ani(Ring�)!Ani(AlgZp), or simply by R when the �-structure
is unambiguously obvious.

Concretely, a set of compact projective generators for Ani(Ring�) is given by free �-rings
generated by a finite set, which spans a full subcategory Ring�0 �Ring�. Recall that Ring� ,!
Ani(Ring�) is a full subcategory (Remark B.0.35). Now we characterize this full subcategory in
terms of the underlying animated ring:

Lemma 2.5.6. Let (R; �)2Ani(Ring�) be an animated �-ring. Then the followings are equivalent:

1. The animated �-ring (R; �)2Ani(Ring�) is n-truncated.

2. The underlying animated ring R2Ani(AlgZ(p)) is n-truncated.

3. For every m2N>n, the homotopy group �m(R) vanishes.

Proof. The equivalence of parts 2 and 3 is [Lur18b, Prop 25.1.3.3]. On the other hand, part 1
is equivalent to say that, for every free �-ring F generated by a finite set, the mapping anima
MapAni(Ring�)(F ;R) is n-truncated by [Lur09, Rem 5.5.8.26]. Since any such F is a finite coproduct
of Z(p)fxg, it is equivalent to MapAni(Ring�)(Z(p)fxg;R) being n-truncated, which is equivalent to
part 3 since

MapAni(Ring�)(Z(p)fxg; R)'MapS(fxg; R)'R �

Now we define the Frobenius map on animated �-rings. We note that the identity functor
id :Ani(Ring�)!Ani(Ring�) is the animation of the identity functor id :Ring�!Ring�.

Definition 2.5.7. The Frobenius endomorphism is the endomorphism of the identity functor
id :Ani(Ring�)!Ani(Ring�) defined to be the animation of the Frobenius endomorphism (described
in Remark 2.5.2) of the identity functor id :Ring�!Ring�.

2.5.1. The non-animated version was called the ��-envelope� in [GLQ20, Def 1.1].
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Recall that a �-pair is the datum (A;I) of a �-ring A along with an ideal I �A [BS19, Def 3.2].
Similar to animated pairs, we have an �animated version� of �-pairs:

Definition 2.5.8. The 1-category of animated �-pairs AniPair� is defined to be the fiber pro-
duct Ani(Ring�)�Ani¡AlgZ(p)

�AniPair where the functor Ani(Ring�)!Ani(AlgZ(p)) is the forgetful

functor and the functor AniPair!Ani(AlgZ(p)) is the evaluation (A�A00) 7!A. An animated �-
pair is an object in AniPair� which we will denote by ((A; �);A�A00), or simply by A�A00 when
there is no ambiguity.

It follows from Lemma 2.5.4 and [Lur09, Lem 5.4.5.5] which characterizes colimits in the fiber
products, that

Lemma 2.5.9. The 1-category AniPair� is cocomplete, and the forgetful functor AniPair�!
AniPair is conservative and preserves small colimits.

Explicitly, an animated �-pair is given by an animated �-ring (A; �) along with a surjection
A�A00 of animated Z(p)-algebras. Since Pair�AniPair is a full subcategory (Proposition 2.3.17)
and so is Ring� �Ani(Ring�) (Remark B.0.35), the 1-category of �-pairs is a full subcategory of
the 1-category of animated �-pairs. Similar to the 1-category of animated pairs, we have

Lemma 2.5.10. The forgetful functor AniPair�!AniPair admits a left adjoint, and the 1-category
AniPair� is projectively generated.

Proof. The left adjoint AniPair! AniPair� concretely given by (A� A00) 7! ((A�; �); (A��
A00
AL A�)) where A� is the image of A 2Ani(AlgZ(p)) under the free animated �-ring functor
Ani(AlgZ(p))! Ani(Ring�). Now the result follows from Corollary 2.2.3 and Lemmas 2.5.3
and 2.5.4. �

Concretely, a set of compact projective generators for AniPair� is given by the set f(Z(p)fX;Y g;
(Y )) jX;Y 2Fing of �-pairs, which spans a full subcategory AniPair�0�AniPair�. Now we turn to
the PD-structure. Recall that

Lemma 2.5.11. ([BS19, Lem 2.11]) The Frobenius endomorphism 'Z(p)fxg :Z(p)fxg!Z(p)fxg on
the free �-ring Z(p)fxg, which is in fact induced by x 7! '(x)=xp+ p �(x), is faithfully flat. The
same holds for free �-rings generated by arbitrary sets (not-necessarily finite).

We remark that, thanks to Lemma 2.3.71, it is not necessary to pass to the polynomial ring of
finitely many variables to invoke the fiberwise criterion of flatness.

We now relate �-structure to divided powers. Note that, for any p-torsion free Z(p)-algebra A,
any element y 2A and any n2N, we have

yn

n!
2 yn

pvp(n!)
GL1(Z(p))

In particular, yp/p! (resp. yp2/(p2)!) differs multiplicatively from yp/p (resp. yp2/pp+1) by a unit.
When A is a p-torsion free �-ring, we have '(y)= yp+ p �(y) and yp/p!2A[p¡1] belongs to A if
and only if '(y) is divisible by p.

Now we define the animated �-ring Z(p)fx; '(x)/pg to be the pushout of the diagram

Z(p){y}
y 7→pz

//

y 7→ϕ(x)

��

Z(p){z}

Z(p){x}

in the1-category Ani(Ring�). Since the Frobenius map ' :Z(p)fyg!Z(p)fxg is faithfully flat, so
is the map Z(p)fzg!Z(p)fx; '(x)/pg. It follows that Z(p)fx; '(x)/pg is static and p-torsion-free
by Remark 2.3.63, therefore it is a �-ring by Lemma 2.5.6 (this is essentially [BS19, Lem 2.36]).
We need another characterization of the underlying ring of Z(p)fx; '(x)/pg:
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Lemma 2.5.12. ([BS19, Lem 2.36]) There is a natural isomorphism

DZ(p)fxg(x)¡!Z(p)fx; '(x)/pg
of p-torsion-free Z(p)-algebras.

This map transfers the surjective map DZ(p)fxg(x)�Z(p)fxg/(x) to a surjective map Z(p)fx;
'(x)/ pg� Z(p)fxg/(x), the existence of which does not seem to be a priori clear (which is
implicitly involved in [BS19, Lem 2.35]).

Note that since x2DZ(p)fxg(x) is a non-zero-divisor, the map from the animated PD-envelope of
(Z(p)fxg; (x)) to the classical PD-envelope is an equivalence, by base change of (Z(p)[x]; (x)) along
the flat map Z(p)[x]!Z(p)fxg'Z(p)[x; �(x); �2(x); : : : ], or alternatively by Proposition 2.3.72. We
could replace x by a finite number of variables, which leads to

Corollary 2.5.13. There exists a canonical �-pair structure on the animated PD-envelope of every
�-pair (Z(p)fX; Y g; (Y ))2AniPair�0. More formally, there exists a canonical functor AniPair�0!
AniPair� which fits into a commutative diagram

AniPair
0

δ
//❴❴❴❴❴❴❴❴❴❴❴❴❴

��

AniPairδ

��

AniPair
AniPDEnv

// AniPDPair // AniPair

of 1-categories.

Proof. The functoriality of AniPair�0!AniPair� needs explanation: a map (Z(p)fX; Y g; (Y ))!
(Z(p)fX 0; Y 0g; (Y 0)) of �-pairs induces a map (QfX; Y g; (Y ))! (QfX 0; Y 0g; (Y 0)) of pairs after
inverting p which is �Frobenius�-equivariant, where QfX; Y g :=Z(p)fX; Y g[p¡1]. A careful vp-
analysis implies that this map restricts to a map Z(p)fX;Y ; '(Y )/pg!Z(p)fX 0; Y 0; '(Y 0)/pg of
Z(p)-subalgebras, which gives rise to the functoriality. �

It follows from Propositions B.0.10 and 2.3.34, Lemma 2.5.9, and Corollary 2.5.13 that

Corollary 2.5.14. There exists a canonical animated �-pair structure on the animated PD-
envelope of every animated �-pair. More formally, there exists a canonical functor AniPair�!
AniPair� which fits into a commutative diagram

AniPairδ
//❴❴❴❴❴❴❴❴❴❴❴❴❴

��

AniPairδ

��

AniPair
AniPDEnv

// AniPDPair // AniPair

of 1-categories. Moreover, the functor AniPair�!AniPair� preserves small colimits.

We give an analysis of the conjugate filtration on the PD-envelope of (Fpfxg; (x)) where
Fpfxg :=Z(p)fxg/Lp, which is the base change of the PD-envelope of (Z(p)fxg; (x)) along Z(p)!
Fp. Recall that

1. The (animate) PD-envelope DFp[x](x) is a free Fp[x] /(xp)-module generated by the set
f
kp(x) j k 2Ng of divided powers of x.

2. For i2N�0, the (¡i)-th piece of the conjugate filtration of DFp[x](x) is generated by f
kp(x) j
k � ig as an Fp[x]/(xp)-submodule.

By the base change property (Lemma 2.3.46), we have

1. The (animate) PD-envelope DFpfxg(x) is a free Fpfxg/(xp)-module generated by the set
f
kp(x) j k 2Ng.
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2. For i 2N�0, the (¡i)-th piece of the conjugate filtration of DFpfxg(x) is generated by
f
kp(x) j k � ig as an Fpfxg/(xp)-submodule.

We follow the argument of [BS19, Lem 2.35]: for every y 2Z(p)fxg with yp/p2Z(p)fxg, we have

�

�
yp

p

�
= 1

p

�
'(y)p

p
¡
�
yp

p

�p�
= (yp+ p �(y))p

p2
¡ yp

2

pp+1

= 1
p2

 
yp

2
+ p2 yp(p¡1) �(y)+

X
k=0

p¡2 �
p
k

�
ykp (p �(y))p¡k

!
¡ yp

2

pp+1

= pp¡1¡ 1
pp+1

yp
2+ yp(p¡1) �(y)+

X
k=0

p¡2

pp¡2¡k
�
p
k

�
ykp �(y)p¡k (2.5.1)

Letting z=xp/p, it follows from pp¡1¡ 12GL1(Z(p)) that

1. The set fza0 �(z)a1 (�2(z))a2 � � � (�r(z))ar j r 2N; 0� a0; a1; : : : ; ar< pg forms a basis of the
free Fpfxg/(xp)-module Z(p)fx; '(x)/pg/Lp'DFpfxg(x).

2. For every i2N, the (¡i)-th piece of the conjugate filtration of DFpfxg(x) is generated by
fza0 �(z)a1 (�2(z))a2 � � � (�r(z))ar j 0� a0; a1; : : : ; ar< p; a0+ a1 p+ a2 p2+ � � �+ ar pr� ig.

Remark 2.5.15. In a bit more imprecise terms, �k(z) differs from 
pk(x) up to a unit, modulo
�lower terms�.

This generalizes to multivariable case with the same argument:

Lemma 2.5.16. Let (A; I) := (Z(p)fX; Y g; (Y )) 2AniPair�0 be a �-pair and let (B; J ; 
) be the
(animated) PD-envelope of (FpfX;Y g; (Y )). Let Y = fy1; y2; : : :g and zj := '(yj)/p. Then

1. The 'A�(A/I)-module B is freely generated by the subset f
Q
j;k (�

k(zj))aj;k j0�aj;k<pg�B.

2. For every i 2 N, the (¡i)-th piece of the conjugate filtration of B is generated by
f
Q
j;k (�

k(zj))aj;k j 0�aj;k< p;
P
j;k aj;k p

k� ig as a 'A�(A/I)-submodule.

2.5.2. Oriented prisms In this subsection, we will study animated �-rings viewed as �non-
complete oriented prisms�. Recall that a orientable prism is a �-pair (A; I) such that the ideal
I �A is principal, the �-ring A is I-torsion free, derived (p; I)-complete, and p2 I+ '(I)A [BS19,
Def 3.2]. For technical reasons, we will study the �non-complete� analogues where the completeness
and the torsion-freeness are dropped.

We fix a �-ring A along with a chosen non-zero-divisor d2A. In practice, we are only interested
in the special case that A=Z(p)fdg and some variants like A=Z(p)fd; �(d)¡1g. We denote by
Ring�;A the 1-category (Ring�)A/ of �-A-algebras. It follows from Lemma 2.2.10 that

Lemma 2.5.17. The 1-category Ring�;A is 1-projectively generated, therefore presentable. A set of
compact 1-projective generators is given by fAfXg :=A
Z(p)

L Z(p)fXg jX 2Fing, which spans a
full subcategory of Ring�;A denoted by Ring�;A0 .

Definition 2.5.18. Let B be an animated �-ring. The 1-category of animated �-B-algebras is
defined to be the undercategory Ani(Ring�)B/. When B is static, it is equivalent to the animation
Ani(Ring�;B) by Corollary 2.2.14.

By Lemma 2.4.47, we get an adjunction AlgA�Ring�;A, where the forgetful functor Ring�;A!
AlgA preserves all small colimits (and as a right adjoint, it preserves small limits as well). It follows
from Corollary 2.2.3 that
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Lemma 2.5.19. There is a pair Ani(AlgA)�Ani(Ring�;A) of adjoint functors, being the animation
of the pair AlgA�Ring�;A of adjoint functors. We will call the functor Ani(Ring�;A)!Ani(AlgA)
the free animated �-A-algebra functor. The functor Ani(Ring�;A)!Ani(AlgA), called the forgetful
functor, is conservative and preserves small colimits (and as a right adjoint, it preserves small
limits as well).

Definition 2.5.20. The 1-category of animated �-A-pairs AniPair�;A is defined to be the undercat-
egory (AniPair�)(idA:A!A)/, which is equivalent to the fiber product Ani(Ring�;A)�Ani(AlgA)AniPairA
by [ Lur09, Lem 5.4.5.4].

The set f(AfX;Y g;(Y )) jX;Y 2Fing form a set of compact projective generators for AniPair�;A
by by Lemma 2.2.10, which spans a full subcategory AniPair�;A0 � AniPair�;A. It follows from
Lemmas 2.4.47 and 2.5.10 that

Lemma 2.5.21. The forgetful functor AniPair�;A!AniPairA admits a left adjoint.

There is a canonical functor Ani(Ring�;A)!AniPair�;A given by B 7! (B�B/Ld). We observe
that

Lemma 2.5.22. The functor Ani(Ring�;A)!AniPair�;A; B 7! (B�B /Ld) admits a left adjoint
AniPair�;A!Ani(Ring�;A), given by the left derived functor (Proposition B.0.10) of AniPair�;A0 !
Ani(Ring�;A); (AfX;Y g; (Y )) 7!AfX;Y /dg where AfX;Y /dg is an abbreviation for the free �-
A-algebra Afx1; x2; : : : ; y1/d; y2/d; : : : g2.5.2.

Proof. Let G denote the functor Ani(Ring�;A)!AniPair�;A; B 7! (B�B/Ld). Then we have a
functor F :AniPair�!Fun(Ani(Ring�);S)op which preserves small colimits and sends (B�B 00)2
AniPair�;A0 to the functor MapAniPair�;A(B�B 00;G(�)). By Proposition B.0.10, it is the left derived
functor of its restriction to the full subcategory AniPair�;A0 �AniPair�;A.

We now show that, for every (AfX; Y g; (Y ))2AniPair�;A0 , the functor F ((AfX; Y g; (Y ))) is
equivalent to the functor MapAni(Ring�;A)(AfX; Y /dg; �). In other words, the essential image of
F jAniPair�;A0 lies in the full subcategory Ring�;A0 ,!Ani(Ring�;A) ,! Fun(Ani(Ring�;A); S)op. By
adjunctions Fun((�1)op;D(Z)�0)�AniPairA�AniPair�;A (Definition 2.3.15 and Lemma 2.5.21),
we have

F (AfX;Y g; (Y ))(B) ' MapAniPairA(A[X;Y ]�A[X ]; B�B/Ld)

' MapFun((�1)op;D(Z)�0)
�
X Z�Y Z Y Z; B          

d
B
�

' BCard(Y )�BCard(X)

' MapAni(Ring�;A)(AfX;Y /dg; B)

which are functorial in B 2Ani(Ring�;A) (note that naively speaking, the �values� of Y /d corre-

spond to the �preimages� of Y under the map B          d B, therefore the formal notation Y /d).
Since the Yoneda embedding Ani(Ring�;A) ,! Fun(Ani(Ring�;A); S)op is stable under small

colimits, it follows that the essential image of F lies in Ani(Ring�;A), which proves that G admits
a left adjoint L :AniPair�;A!Ani(Ring�;A), and that L(AfX;Y /dg)'AfX;Y /dg.

We still need to show that LjAniPair�;A0 coincides with the functor defined in the obvious way.
We have shown this objectwise, and since L(AniPair�;A0 ) lies in the full subcategory Ring�;A0 ,!
Ani(Ring�;A) which is a 1-category, we only need to show that the image of morphisms coincide
with the �obvious� choice, i.e. without higher categorical complication. This can be checked putting
different d-torsion-free �-A-algebras B 2Ring�;A into the functorial isomorphism

HomPair�;A((AfX;Y g; (Y )); (B; (d)))=�HomRing�;A(AfX;Y /dg; B)

given by the adjunction. �

Now we introduce a variant of Definition 2.5.20:

2.5.2. These generators yi/d are in fact formal variables zi. This notation indicates that the counit map
(AfX;Y g; (Y ))! (AfX; Y /dg�AfX; Y /dg/Ld) is induced by xi 7!xi and yi 7! zi d.
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Definition 2.5.23. The 1-category of animated �-(A; d)-pairs AniPair�;(A;d) is defined
to be the undercategory (AniPair�;A)(A�A/Ld)/, which is equivalent to the fiber product
Ani(Ring�;A)�Ani(AlgA)AniPair(A�A/Ld)/ by [ Lur09, Lem 5.4.5.4].

By Lemma 2.2.10, we have

Lemma 2.5.24. The 1-category AniPair�;(A;d) is projectively generated. A set of compact pro-
jective generators is given by f(AfX; Y g; (d; Y )) jX; Y 2Fing, which spans a full subcategory of
AniPair�;(A;d) denoted by AniPair�;(A;d)

0 .

Note that A is initial in AniPair�;A. It follows from Lemmas 2.4.47 and 2.5.22 that

Corollary 2.5.25. The functor Ani(Ring�;A)!AniPair�;(A;d); B 7! (B�B /Ld) admits a left
adjoint AniPair�;(A;d)!Ani(Ring�;A), which will be denoted by PrismEnv2.5.3, given by the left
derived functor (Proposition B.0.10) of AniPair�;(A;d)

0 !Ani(Ring�;A); (AfX;Y g; (d;Y )) 7!AfX;
Y /dg.

Furthermore, for every B 2 Ani(Ring�;A), by unrolling the definitions, the counit map
PrismEnv(B�B/Ld)!B is an equivalence, therefore

Lemma 2.5.26. The functor Ani(Ring�;A)!AniPair�;(A;d) is in fact fully faithful, the image of
which is a reflective subcategory (Definition 2.2.44).

The following concept is not strictly necessary, but it would help us to understand when we
need to �divide by d�:

Definition 2.5.27. Let A be a �-ring and d2A a non-zero-divisor. Let M 2D(A/Ld) be a A/Ld-
module spectrum. For every n2Z, the n-th Breuil�Kisin twist of M with respect to (A;d), denoted
by M fng, is defined to be M 
A/LdL (dA/d2A)



A/Ld
L n

.

Note that when d2A is a non-zero-divisor, the A/Ld-module dnA/dn+1A is a free of rank
1, therefore equivalent to A/Ld. The Breuil�Kisin twists are strictly necessary when we want to
generalize to non-orientable prisms. In our case, we understand M f1g �formally multiplied by d�
and M f¡1g �formally divided by d�, just as the formal notations yi/d in Lemma 2.5.22.

Finally, we introduce a variant of the concept of distinguished elements [BS19, Def 2.19]:

Definition 2.5.28. Let A be a �-ring. We say that an element d2A is weakly distinguished if
the ideal (d; �(d)) is the unital ideal A, or equivalently, �(d) is invertible in A/d.

Remark 2.5.29. Let A be a �-ring and d2Rad(A) an element in the Jacobson radical. Then d
is weakly distinguished if and only if it is distinguished.

The following lemma is a motivation for the introduction of weakly distinguished elements:

Lemma 2.5.30. (cf. [BS19, Lem 2.23]) Let A be a �-ring, I=(d)�A a principal ideal. Then for
any invertible element u2GL1(A), the principal ideals �(d) (A/I) and �(ud) (A/I) are the same.
In particular, when I is generated by a non-zero-divisor, the principal ideal �(d) (A/I) does not
depend on the choice of the generator d2 I.

Proof. We have �(ud)='(u) �(d)+ �(u)dp�'(u) �(d) (modud). Since u is invertible, so is '(u),
and the result follows. �

Corollary 2.5.31. Let A be a �-ring, I �A a principal ideal generated by a non-zero-divisor.
Then the followings are equivalent:

1. There exists a weakly distinguished generator d of I.

2. Every generator d of I is weakly distinguished.

2.5.3. This is understood as a �non-complete� prismatic envelope when p lies in the Jacobson radical Rad(A)
and d2A is weakly distinguished (Definition 2.5.28).
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Remark 2.5.32. (Bhatt) We have a variant of Corollary 2.5.31 which does not involve non-zero-
divisors, by replacing a principal ideal I by the equivalence classes of maps A!A of A-modules,
and the proof of Lemma 2.5.30 implies that the concept of �weakly distinguished� is invariant under
this equivalence. More generally, we can consider the equivalence classes of an invertible A-module
I along with a map I!A, and define the concept of such a map I!A being weakly distinguished
when p2Rad(A). This generalizes to animated �-rings.

Recall that an animated ring A is p-local if the element p2�0(A) lies in the Jacobson radical2.5.4

Rad(�0(A)).

Lemma 2.5.33. Let A be a p-local �-ring and d2A a weakly distinguished element. Then for every
n2N, 'n(�(d)) is invertible in A/d.

Proof. By induction, it suffices to show that, for every u2A of which the image inA/d is invertible,
then so is the image of '(u) in A/d. It follows from the identity '(u)=up+ p�(u), since the image
of up in A/d invertible, and p2Rad(A/d). �

2.5.3. Conjugate filtration In this subsection, we will introduce the conjugate filtration
on �non-complete prismatic envelopes�, which plays a similar role as the conjugate filtrations on
animated PD-envelopes and derived crystalline cohomology. Let A be a p-local �-ring, d 2A a
weakly distinguished non-zero-divisor. To simplify the presentation, we mostly concentrate on the
�single variable� case: PrismEnv(Afyg; (d; y))/Ld'Afy/dg/Ld as an Afyg/L(d; y)-algebra (or
module).

First, note that the identity

�(up) = ('(up)¡up2)/p
= ((up+ p �(u))p¡up2)/p

=
X
k=1

p �
p
k

�
up(p¡k) pk¡1 �(u)k (2.5.2)

holds in the free �-ring Z(p)fug, therefore it is an identity in any �-ring.
We now compute �n(y) in terms of �n(z) where y= z d in the free �-A-algebra Afyg:

�(y) = �(z d)
= �(z) '(d)+ zp �(d)

�2(y) = �(�(z) '(d)+ zp �(d))

= �(�(z) '(d))+ �(zp �(d))¡
X
k=1

p¡1
1
p

�
p
k

�
(�(z) '(d))p¡k (zp �(d))k|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

:=R2

= �2(z) '2(d)+ �(z)p �('(d))+ �(zp) �('(d))+ zp
2
�2(d)¡R2

= �2(z) '2(d)+ '(�(d)) (1+ pp¡1) �(z)p+
X
k=1

p¡1

� � �+ zp2 �2(d)¡R2

where we used the fact that '� �= � � ' and (2.5.2) (which leads to the summand
P
k=1
p¡1 � � �), and

in general, we have

Lemma 2.5.34. Let Afzg be the free �-A-algebra and y :=zd. For every n2N, there exists a unique
polynomial Pn2A[X0; : : : ; Xn¡1] with degXn¡1Pn� p such that

�n(y)= �n(z) 'n(d)+Pn(z; �(z); : : : ; �n¡1(z))

Moreover, there exists a unique Qn 2 A[X0; : : : ; Xn¡1] with degXn¡1 Qn < p such that Pn =
an '

n¡1(�(d))Xn¡1
p + Qn where an are partial sums

P
k=0
n¡1 pk(p¡1) of the geometric progression

(pk(p¡1))k2N. Note that an2GL1(Z(p)) for n> 0. On the other hand, if we endow Xi with degree
pi, then Pn is homogeneous of degree pn.

2.5.4. The Jacobson radical Rad(A) of a ring A is defined to be the subset (and a fortiori, the ideal) of elements
x2A such that for every a2A, the element 1+ a x is invertible in A.
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Proof. The uniqueness follows from the freeness. We prove the existence inductively on n 2N.
When n=0, this is obvious. Now let n2N>0, and assume that this is true for every m<n, Now
we have

�n(y) = �(�n¡1(y))
= �(�n¡1(z) 'n¡1(d)+Pn¡1(z; �(z); : : : ; �n¡2(z)))
= �(�n¡1(z) 'n¡1(d))+ �(Pn¡1(z; �(z); : : : ; �n¡2(z)))¡Rn

where �(�n¡1(z) 'n¡1(d))= �n(z) 'n(d)+ (�n¡1(z))p'n¡1(�(d)) and

Rn :=
X
k=1

p¡1
1
p

�
p
k

�
(�n¡1(z) 'n¡1(d))p¡k (Pn¡1(z; �(z); : : : ; �n¡2(z)))k

Note that the �degree� of �n¡1(z) in Rn is strictly less than p. Let bn¡1=an¡1'n¡2(�(d)), we have

�(Pn¡1(z; �(z); : : : )) = �(bn¡1 (�n¡2(z))p+Qn¡1(z; �(z); : : : ))

= �(bn¡1 (�n¡2(z))p)+ �(Qn¡1(z; �(z); : : : ))¡
X
k=1

p¡1

� � �|||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
:=Rn
0

= '(bn¡1) �((�n¡2(z))p)+ �(Qn¡1(� � �))+ �(bn¡1) (�n¡2(z))p
2

¡Rn0

and only '(bn¡1) �((�n¡2(z))p) has contribution on �n¡1(z)p, and

�((�n¡2(z))p)=
X
k=1

p �
p
k

�
(�n¡2(z))p(p¡k) pk¡1 (�n¡1(z))k

has contribution on �n¡1(z)p only at k= p, i.e. pp¡1�n¡1(z)p. Note that '(bn¡1)=an¡1'n¡1(�(d)),
the result then follows. �

We now rewrite Afyg!Afzg; y 7!zd as the sequential composite (i.e. the Afyg-algebra Afzg
is equivalent to the sequential colimit of)

Afyg¡!Afyg
B0
L C0¡!Afyg
B1

L C1¡! � � � (2.5.3)

where An :=A[z; : : : ; �n¡1(z)]; Bn :=An[�n(y)] and Cn :=An[�n(z)] are polynomial algebras, and
the map Bn! Cn is given by the evaluation �n(y) 7! �n(z) 'n(d) + Pn(z; �(z); : : : ; �n¡1(z)) by
Lemma 2.5.34. Thus Bn!Cn could be written as the composite (where we replace �n(y) by u and
�n(z) by v)

Bn=An[u]!An[u; v]/(u¡ 'n(d) v¡Pn(z; �(z); : : : ; �n¡1(z)))=�An[v] =Cn (2.5.4)

In other words, Bn!Cn is essentially formally adjoining2.5.5 (�n(y)¡Pn(z; �(z); : : : ; �n¡1(z)))/
'n(d) to Bn as an (animated) A-algebra, and the Afyg-algebra Afzg is obtained by formally
adjoining (�n(y)¡Pn(z; �(z); : : : ; �n¡1(z)))/'n(d) iteratively from Afyg.

The conjugate filtration on Afy/dg/Ld is given by Filconj
¡i (Afy/dg/Ld) being the Afyg/L(y;

d)-submodule of Afy/dg/Ld spanned by f(y/d)a0 �(y/d)a1 (�2(y/d))a2 � � � (�r(y/d))ar j r 2N;
0�a0; a1; : : : ; ar< pg. Passing to the multivariable version, we get:

Lemma 2.5.35. Let A be a p-local �-ring and d2A a weakly distinguished non-zero-divisor. Then
there exists a canonical functor Filconj� (PrismEnv(�)/Ld) : AniPair�;(A;d)0 ! CAlg(DF�0(A/Ld))
which preserves finite coproducts, along with a functorial map Filconj� (PrismEnv(B; J)/Ld)!
PrismEnv(B; J)/Ld, understood as the conjugate filtration on PrismEnv(B; J)/Ld, such that

1. The conjugate filtration is exhaustive, that is to say, the induced map Filconj
¡1(PrismEnv(B;

J)/Ld)!PrismEnv(B; J)/Ld is an equivalence in D(A).

2.5.5. Note that this is true although 'n(d) is not necessarily a non-zero-divisor.
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2. The filtration Filconj� (PrismEnv(Afyg�Afyg/L (y; d))/Ld) coincides with the filtration
Filconj� (Afy/dg/Ld) constructed above.

3. The maps Filconj
¡i (PrismEnv(Afxg�Afxg/Ld)/Ld)!PrismEnv(Afxg�Afxg/Ld)/Ld'

Afxg/Ld are equivalences for all i2N, that is to say, the conjugate filtration on (A/Ld)fxg
is �constant2.5.6�.

Proof. The conjugate filtration on each object PrismEnv(B; J) for (B; J) 2 AniPair�;(A;d)
0 is

completely determined by these properties and that the functor preserves finite coproducts, since
every (B; J) could be written as a coproduct of Afxg� Afxg/Ld and Afyg� Afyg/L (y;
d). Concretely, Filconj

¡i (AfX; Y /dg/Ld) are generated, as an AfX; Y g/(d; Y )-submodule, by
�standard monomials�

Q
(r;y)2E�

r(y/d) �of total degree� i� where E�N�Y is a finite subset and

the element �r(y/d) is of degree pr for r2N and y 2Y . One verifies that this indeed gives rise to
a functor.

Alternatively, if we further assume that d is weakly transversal (Definition 2.5.39), then we can
invoke Lemma 2.5.42 to reduce significantly the computations. �

Definition 2.5.36. Let A be a p-local �-ring and d2A a weakly distinguished non-zero-divisor.
Then the conjugate filtration on PrismEnv(B�B 00)/Ld for (B�B 00)2AniPair�;(A;d) is given by
the left derived functor (Proposition B.0.10) AniPair�;(A;d)!CAlg(DF�0(A/Ld)) of the functor
AniPair�;(A;d)

0 !CAlg(DF�0(A/Ld)) in Lemma 2.5.35.

It follows from Lemma 2.2.43 that

Lemma 2.5.37. Let A be a p-local �-ring and d2A a weakly distinguished non-zero-divisor. Then the
conjugate filtration on PrismEnv(B�B 00)/Ld for every (B�B 00)2AniPair�;(A;d) is exhaustive,
i.e. Fil¡1PrismEnv(B�B 00)/Ld!PrismEnv(B�B 00)/Ld is an equivalence.

We now analyze the �denominators� 'n(d) when A is p-local and d is weakly distinguished:

Lemma 2.5.38. (cf. [AL19b, Lem 3.5]) Let A be a p-local �-ring and d2A a weakly distinguished
element. Then for every n2N>0, there exists a unit u2GL1(A/d) such that 'n(d)� pu (modd).

Proof. We will construct inductively on n 2N>0 a sequence (un)n 2AN>0 such that for every
n 2N>0, the image of un in A/d is invertible, and 'n(d)¡ dpn= p un. We take u1= �(d), and
suppose that um are already constructed for 1�m<n, then

'n(d) = 'n¡1('(d))
= 'n¡1(dp+ p �(d))
= ('n¡1(d))p+ p'(�(d))
= (dp

n¡1
+ p un¡1)p+ p'(�(d))

= dp
n
+ p

 
'(�(d))+

X
k=1

p �
p
k

�
dp

n¡1(p¡k) pk¡1un¡1
k

!

We pick un= �(d)+
P
k=1
p �

p
k

�
dp

n¡1(p¡k) pk¡1 un¡1
k . Note that the second summand

P
k=1
p � � � is

canonically divisible by p (separating the cases k=0 and k > 1), thus un� �(d) (mod p) of which
the image in A/(p; d) is invertible. The result then follows from the fact that p2Rad(A/d). �

We introduce the following temporary terminology:

Definition 2.5.39. Let A be a �-ring. We say that an element d2A is weakly transversal if it is
weakly distinguished and the sequence (d; p) is regular in A, that is to say, d is a non-zero-divisor
and A/d is p-torsion-free.

2.5.6. More precisely, it is constant after restriction to Z�0, but this restriction is expected as the conjugate
filtration is non-positive.
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Recall that for a ring A, the Zariski localization of A along an ideal I �A is defined to be the
localization of A at the multiplicative set 1+ I . The image of I in (1+ I)¡1A lies in the Jacobson
radical.

Example 2.5.40. The element d in the p-local �-ring Z(p)fd; �(d)¡1g(p) is weakly transversal. In
fact, this special case suffices for our applications.

Now we assume that d 2 A is weakly transversal. In the �single variable� case Afyg/L (d;
y)!Afy/dg/Ld, by Lemmas 2.5.38 and 2.5.34, the sequence (z; �(z); �2(z); : : : ) forms a system
similar to that of divided pr-powers (
pr)r2N up to a multiplication of a unit after modulo d:

p �(z) � ¡a1 �(d) zp (modB)
p �2(z) � ¡a2 '(�(d)) �(z)p (modB[�(z)])
p �3(z) � ¡a3 '2(�(d)) �2(z)p (modB[�(z); �2(z)])

where B :=Afyg/L(d; y) and an'n¡1(�(d))2GL1(A/d) (cf. Remark 2.5.15). We now translate
this observation to an analysis of the conjugate filtration, which seems hard to attack directly. We
look at the maps B0/L(d; y)!C0/Ld and Bn/Ld!Cn/Ld for n2N>0 induced by the map (2.5.4).
We first note that the map B0/L(d; y)!C0/Ld is the polynomial algebra in single variable z.

If we further (derived) modulo p, we see that Bn/L(d; p)!Cn/L(d; p) for n2N>0 is killing a
polynomial �n(y)¡Pn(z;�(z);:::;�n¡1(z))monic in �n¡1(z) of degree p, and then adjoining a formal

variable �n(z). In view of (2.5.3), we see that the map Afyg/L(d; p; y)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !y 7!zd
Afzg/L(d; p) is the

composition of consecutively adjoining a root of a monic polynomial of degree p, and consequently,
as a Afyg/L(d; p; y)-module, Afzg/L(d; p) is freely generated by fza0 �(z)a1 (�2(z))a2 ��� (�r(z))ar j
r 2N; 0� a0; a1; : : : ; ar< pg.

On the other hand, if we invert p, we see that, for every n2N>0, the maps (Bn/Ld)[p¡1]!
(Cn/Ld)[p¡1] are equivalences, therefore (Afyg/L(d; y))[p¡1]! (Afzg/Ld)[p¡1] is the polynomial
algebra in one variable z.

The mod p conjugate filtration Filconj
¡i (Afzg/L (d; p)) /Lp is then freely generated by

fza0 �(z)a1 (�2(z))a2 � �� (�r(z))ar j r2N;0�a0; a1; :: :; ar< p;a0+ pa1+ �� �+ prar� ig. On the other
hand, the rationalized conjugate filtration Filconj

¡i (Afzg/L(d; p))[p¡1] is given by the (Afyg/L(d;
y))[p¡1]-polynomials in z of degree � i. This follows from the following lemma, which can be
established by induction on n:

Lemma 2.5.41. In the rationalized free �-ring Z(p)fxg[p¡1]=�Q[x; '(x); '2(x);:::], for every n2N,
the image of �n(x)2Z(p)fxg in Q[x; '(x); '2(x);:::] is given by a polynomial Dn(x; '(x);:::; 'n(x))
such that degxDn= pn with leading term (¡p¡1)1+p+� � �+pnxpn for all n2N.

We summarize the �multi-variable� version as follows:

Lemma 2.5.42. Let A be a p-local �-ring and d2A a weakly transversal element. Let (AfX; Y g;
(d; Y ))2AniPair�;(A;d)

0 . Then

1. The generator
�Q

(r;y)2E �
r(y/d)

	
E for Filconj

¡i (AfX;Y /dg/Ld) as an AfX;Y g/L(d;Y )-
submodule, �of total degree � i� where E �N�Y is a finite subset and the element �r(y/d)
is of degree pr, becomes an basis after (derived) modulo p. This also holds for i=+1.

2. The (¡i)-th piece of the rationalized conjugate filtration Filconj
¡i (AfX; Y /dg/Ld)[p¡1]�

(AfX; Y /dg/Ld)[p¡1] is given by the AfX; Y g/L(d; Y )-polynomials in variables Y /d of
total degree � i. This also holds for i=+1.

Furthermore, an element x2AfX;Y /dg/Ld belongs to the (¡i)-th piece of the conjugate filtration
Filconj
¡i (AfX;Y /dg/Ld) if and only if so does it after (derived) modulo p and after rationalization.

Remark 2.5.43. In some vague terms, in Lemma 2.5.42, the derived modulo p is about �controlling
the denominators�, and the rationalization is about �controlling the degree�.
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Recall that for every (B;J)2AniPair�;(A;d)0 , there exists a canonical mapB/Ld'B
AL(A/Ld)!
B/J which is in fact surjective. Then we have the following �multivariable� version:

Lemma 2.5.44. Let A be a p-local �-ring and d2A a weakly transversal element. For every (AfX;
Y g; (d; Y )) :=(B; J)2AniPair�;(A;d)0 , let K :=ker(B/Ld!B/J). Note that K/K2 is naturally a
B/J-module. Then there exists a comparison map

¡B/J� ((K/K2)f¡1g)¡! grconj
¡� (PrismEnv(B; J)/Ld)

of graded B/J-algebras induced by [
n(zi)] 7!
Q
j=0
r
�

�j(zi)

¡aj'j(�(d))

�nj
where Y = fy1; : : :g, zi= yi/p

and n=
P
j=0
r

nj p
j is the p-adic expansion of n. The comparison map is functorial in (B; J)2

AniPair�;(A;d)
0 .

Proof. The comparison map is induced by
�

n
¡ y
d

��
7!
Q
j=0
r
�

�j(y/d)

¡aj'j(�(d))

�nj
for every y in the

ideal (d; Y ). To see that this is well-defined, the most nontrivial part is to show that this vanishes
when y 2 (d; Y 2). By the multiplicity of the conjugate filtration, we can assume that nr=1 and
nj=0 for j =/ r, and it suffices to analyze �r(y/d) when y 2 (d; Y 2), which can be reduced to the
special case that y= y1 y2 where y1; y22Y .

By Lemma 2.5.41, the element �r(y1 y2/d) 2A[p¡1][X; Y /d; '(Y ); '2(Y /d); : : : ] is a poly-
nomial in y1 y2/d= y1 z2; '(y1 y2); : : : ; 'r(y1 y2). The crucial point is that y1 y2/d= (y1/d) (y2/
d)d=0 in AfX;Y /dg/Ld, therefore after rationalization, �r(y1 y2/d) lies in Filconj0 (PrismEnv(B;
J)/Ld)[p¡1].

By Lemma 2.5.34, �r(y1 z2) = �r(z2) 'r(y1) + Pr(z2; : : : ; �r¡1(z2)) where Pr is an Afy1g-poly-
nomial. Note that 'r(y1)= 'r(z1 d)= 'r(z1) 'r(d)� 0 (mod (d; p)) by Lemma 2.5.38. Since Pr is
homogeneous of degree pr when deg(�j(z2))= pj, it follows that for every monomial

Q
jTj

nj of Pr,
there exists a j such that nj � p, but then �j(z2)nj is a linear combination of basis elements in
Lemma 2.5.42 which shows that

Q
j (�

j(z2))nj 2 Filconj
¡(pr¡1)(PrismEnv(B; J)/Ld)/Lp. The result

then follows from the last part of Lemma 2.5.42. �

It again follows from Lemma 2.5.42, via derived modulo p and rationalization, that

Lemma 2.5.45. Let A be a p-local �-ring and d2A a weakly transversal element. For every (B;
J)2AniPair�;(A;d)

0 , the comparison map in Lemma 2.5.44 is an equivalence.

After such a long march, let us harvest the Hodge�Tate comparison, which is a prismatic ana-
logue of Corollary 2.3.60. Note that for every (B�B 00)2AniPair�;(A;d), note that the commutative
diagram

A ¡! B

 
¡

 
¡

A/Ld ¡! B 00

induces a natural map B/Ld'B 
AL (A/Ld)!B 00 which is surjective, that is to say, B/Ld�B 00

is an animated pair. It then follows from Lemma 2.5.45 and Proposition B.0.10 that

Theorem 2.5.46. (Hodge�Tate) Let A be a p-local �-ring and d2A a weakly transversal ele-
ment. Then for every animated �-(A; d)-pair (B�B 00)2AniPair�;(A;d), there exists a canonical
equivalence

¡B 00i (gr1(LAdFil(B/Ld�B 00))f¡1g)¡! grconj
¡i (PrismEnv(B�B 00)/Ld)

which is functorial in (B�B 00)2AniPair�;(A;d), where LAdFil is the adic filtration functor defined
before Corollary 2.3.54.

Let R be an E1-ring. Recall that a right R-module M is faithfully flat if it is flat (Defin-
ition 2.3.62) and �0(M) is a faithfully flat right �0(R)-module. A map R! S of E1-rings is
faithfully flat if S is faithfully flat as an R-module. There is a useful characterization of faithfully
flat algebras:
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Lemma 2.5.47. ([Lur04, Lemma 5.5]) Let f :R!S be a map of static (commutative) rings. Then
f is faithfully flat if and only if f is flat, injective and that coker(f) taken in the category of R-
modules is flat.

Lemma 2.5.48. Let f :R!S a map of E1-rings. If f is faithfully flat, then cofib(f) taken in the
1-category of R-module spectra is flat. The converse is true if R is supposed to be connective.

Proof. Assume first that f is faithfully flat. Let M := coker(�0(R)!�0(S)). By Lemma 2.5.47,
the map �0(R)!�0(S) is injective and the �0(R)-module M is flat, Then for every n2Z, we have
the exact sequence

Tor1
�0(R)(�n(R);M)!�n(R)!�n(R)
�0(R)�0(S)!�n(R)
�0(R)M! 0

which implies that the map �n(R)!�n(R)
�0(R)�0(S) is injective. Since f is flat, the canonical
map �n(R)
�0(R)�0(S)!�n(S) is an isomorphism, therefore the map �n(R)!�n(S) is injective.
Then the long exact sequence associated to the fiber sequence R!S! cofib(f) splits into short
exact sequences

0¡!�n(R)¡!�n(S)¡!�n(cofib(f))¡! 0

which implies that the canonical map M!�0(cofib(f)) is an isomorphism. Furthermore, we have
a morphism of short exact sequences

0 // πn(R) //

∼

��

πn(R)⊗π0(R) π0(S) //

∼

��

πn(R)⊗π0(R) M //

��

0

0 // πn(R) // πn(S) // πn(cofib(f)) // 0

By the short five lemma, the map �n(R)
�0(R)M! �n(cofib(f)) is an isomorphism, therefore
cofib(f) is flat.

Now we assume that R is connective and that cofib(f) is flat. By definition, cofib(f) is con-
nective and so is S by the fiber sequence R!S! cofib(f). For every static R-module M , we have
the fiber sequence

M ¡!M 
RLS¡!M 
RL cofib(f)

By flatness of cofib(f) and [Lur17, Prop 7.2.2.13],M 
RLcofib(f) is static, therefore so isM 
RLS. It
then follows from [Lur17, Thm 7.2.2.15] that S is a flat R-module. It remains to show that the map
�0(R)!�0(S) is faithfully flat. By Lemma 2.5.47, it suffices to show that �0(R)!�0(S) is injective
and coker(�0(R)!�0(S)) is flat. The first follows from the connectivity of cofib(f), and the later
follows from the isomorphism coker(�0(R)!�0(S))=��0(cofib(f)) and the flatness of cofib(f). �

Now we have a prismatic analogue of Corollary 2.3.66, with a similar argument:

Proposition 2.5.49. Let A be a p-local �-ring and d2A a weakly transversal element. Let (B�
B 00)2AniPair�;(A;d) be an animated �-(A;d)-pair such that the canonical animated pair B/Ld�B 00

is quasiregular. Then the unit map B 00!PrismEnv(B�B 00)/Ld is faithfully flat.

Proof. By Theorem 2.5.46 and the quasiregularity of B /Ld� B 00, for every i 2N, the B 00-
module grconj

¡i (PrismEnv(B�B 00)/Ld) is flat. By Lemma 2.3.64, for every i 2N>0, cofib(B 00!
Filconj
¡i (PrismEnv(B�B 00)/Ld)) is flat. Since the conjugate filtration is exhaustive (Lemma 2.5.35)

and the collection of flat modules is stable under filtered colimits [Lur17, Lem 7.2.2.14(1)],
we get cofib(B 00! PrismEnv(B�B 00)/Ld) is a flat B 00-module. Then the result follows from
Lemma 2.5.48. �

Remark 2.5.50. In Proposition 2.5.49, if we further assume that B 00 is static, then so is
PrismEnv(B�B 00)/Ld. This does not imply that PrismEnv(B�B 00) is static. However, it implies
that, after taking d-completion, PrismEnv(B�B 00) becomes static which should be understood
as a �static d-completed envelope�.
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Remark 2.5.51. There is a p-completed analogue of Proposition 2.5.49: suppose that the ani-
mated pair B /Ld� B 00 is p-completely2.5.7 quasiregular, that is to say, the shifted cotangent
complex LB 00/(B/Ld)[¡1] is a p-completely flat B 00-module, then the same proof shows that the
unit map B 00!PrismEnv(B�B 00)/Ld is p-completely faithfully flat (i.e., it becomes faithfully
flat after derived modulo p).

In particular, if if (B;d) is a bounded oriented prism [BS19, Def 3.2] and that B 00 is static and
has bounded p-power torsion, then the p-completion of PrismEnv(B�B 00)/Ld is static. Moreover,
by [BS19, Lem 3.7(2,3)], the (p; d)-completion of C := PrismEnv(B�B 00) is static and thus it
follows from a formal argument that (C(p;d)

^ ; d) is the prismatic envelope of the �-pair B�B 00 as
long as it is d-torsion free. In other words, we generalize [BS19, Prop 3.13] by weakening regularity
to quasiregularity.

As we will explain in Section 2.6, we prefer to deal with completeness (and complete flatness)
in the general framework of condensed (or more precisely, solid) mathematics.

We record a simple corollary which furnishes a quite general class of �flat covers of the final
object� in the affine prismatic site (similar to Definition 2.4.65) which will be studied in a future
work. For this, we need the following definition:

Definition 2.5.52. Let A be a �-ring, d 2 A an element and B an animated �-A-algebra.
The 1-category of �-(B; d)-pairs, denoted by AniPair�;(B;d), is defined to be the undercategory
(AniPair�;(A;d))(B�B/Ld)/.

Let A be a p-local �-ring and d 2 A a weakly distinguished non-zero-divisor. Let B be an
animated �-A-algebra, and R an animated B /Ld-algebra. Similar to Definition 2.4.65, we can
consider the category of animated �-B-algebras C along with a map2.5.8 R!C /Ld of animated
B/Ld-algebras, which we will denoted by R!C /Ld�C, depicted by the commutative diagram

B //

��
��

C

��
��

B/Ld // R // C/Ld

More formally, this is the fiber product Ani(Ring�)B/�Ani(Ring)(B/Ld)/Ani(Ring)R/ of1-categories,
the opposite category of which will be denoted by M(R/(B;d))2.5.9. In a future work, we will show
that the 1-category M(R/(B; d)) admits a Grothendieck topology given by flat covers.

Now let P be an animated �-B-algebra along with a surjection P�R of animated B-algebras
such that the cotangent complex LP /B/Ld is a flat P /Ld-module.

Remark 2.5.53. We note that such P exists in abundance. For example, this happens when R is
a smooth B/Ld-algebra which admits a smooth B-lift P with a �-structure compatible with that
on B, or P is a polynomial B-algebra B[xi] (of possibly infinitely many variables) with �(xi)= 0
along with a surjection P �R of animated B-algebras.

Then the animated pair P �R admits a canonical animated �-(B; d)-pair structure, and thus
the animated �-ring PrismEnv(P�R) gives rise to an object ofM(R/(B;d)) (by abuse of notation,
we will still denote by PrismEnv(P �R) the object of M(R/(B; d))).

Remark 2.5.54. By Lemma 2.5.26, when P � R is �already� a non-completed prism in the
sense that the induced map P /Ld!R is an equivalence, the non-completed prismatic envelope
PrismEnv(P �R) is equivalent to P itself.

2.5.7. �p-complete� concepts are usually applied to p-complete objects. However, this is not necessary because
we can always derived p-complete a non-complete object.

2.5.8. Unlike the crystalline case, here we do not assume that the map R!C/Ld is an equivalence.
2.5.9. In [BS19], they used the notation (R/A)M. However, this notation is usually devoted to topoi (such as

Xet and Xcris). We therefore adopt the traditional notation for sites.
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For any object (R!C /Ld�C)2M(R/(B; d)), by unrolling the definitions, the product of
(R! C /Ld� C) and PrismEnv(P �R) in M(R/(B; d)) is given by PrismEnv(P 
BLC�R).
We have therefore a map C /Ld!PrismEnv(P 
BLC�C /Ld)/Ld of animated R-algebras. The
following proposition is essentially equivalent to the �flat cover of the final object�, cf. [Cha20,
Prop 1.1.2]2.5.10.

Proposition 2.5.55. Let A be a p-local �-ring and d2A a weakly transversal element. Let B be
an animated �-A-algebra and P �R an animated �-(B; d)-pair such that the cotangent complex
LP /B /Ld is a flat P /Ld-module. Then for every (R! C /Ld� C) 2 M(R/(B; d)), the map
C /Ld!PrismEnv(P 
BLC�C /Ld)/Ld is faithfully flat.

Proof. By Proposition 2.5.49, it suffices to show that the map (P /Ld)
B/LdL (C/Ld)!C /Ld is
quasiregular. To simplify the notations, let P 00 :=P /Ld, B 00 :=B/Ld and C 00 :=C/Ld. We have
the transitivity sequence

L(P 00
B 00L C 00)/C 00
P 00
B 00L C 00
L C 00!LC 00/C 00' 0!LC 00/(P 00
B 00L C 00)

associated to the maps C 00!P 00
B 00L C 00!C 00 whose composite is idC 00. Note thatL(P 00
B 00L C 00)/C 00'
LP 00/B 00 
B 00L C 00 is a flat P 00 
B 00L C 00-module. It follows that LC 00/(P 00
B 00L C 00)[¡1] is a flat C 00-
module. �

We first learned the possibility of such kind of result from [MT, Prop 3.4] (which is closely
related to [Cha20, Prop 1.1.2]). Later we came up with an argument which is essentially equivalent
to the proof of Proposition 2.5.55, but the foundation was lacking then, therefore the current article
could be understood as paving the way to this proof. Now we want to point out that, with minor
modifications, this proof would imply [MT, Prop 3.4] and the relevant technical lemmas in the
recent works by Y. Tian and by A. Ogus [Ogu21] announced in Illusie conference. Furthermore,
when the proper foundation is laid, the same proof would lead to a flat cover of the final object in
the absolute prismatic site, and in particular, it would recover [AL19a, Lem 5.2.8]. We now show
this implication.

As in Remark 2.5.51, we assume that (B;d) is a bounded oriented prism,R is derived p-complete
and the map B/Ld!R is a p-completely quasisyntomic (i.e. the map B/Ld!R is p-completely
flat and the cotangent complex LR/(B/Ld) has p-complete Tor-amplitude in [0; 1] as an R-module
spectrum). Then by [BMS19, Lem 4.7], R is static and has bounded p-power torsion. Let P be
a derived (p; d)-complete animated �-B-algebra which is (p; d)-completely quasismooth (i.e. the
map B!P is (p; d)-completely flat and the cotangent complex LP /B is a (p; d)-completely flat B-
module). Then by [BS19, Lem 3.7(2,3)], P is static and for every n2N, the multiplication map
dn :P!P is injective and P /dn has bounded p-power torsion.

Now suppose that we are given a surjection P �R of B-algebras. Then by Remark 2.5.51,
the derived (p; d)-completion of PrismEnv(P �R) is static and the prism defined by this (p; d)-
completed algebra is the prismatic envelope in the sense of [BS19, Prop 3.13], where the d-torsion-
freeness follows from the complete flatness of B!P and [BS19, Lem 3.7(2)]. Moreover, since both
B/Ld!R and R!PrismEnv(P �R)/Ld is p-completely flat, the map B!PrismEnv(P �R)
is (p; d)-completely flat (this in fact generalizes the flatness in [BS19, Prop 3.13]). The proof of
Proposition 2.5.55 shows that

Proposition 2.5.56. Let (B; d) be a bounded oriented prism, R a derived p-complete and p-
completely quasisyntomic B/d-algebra. Let P be a derived (p; d)-complete animated �-B-algebra
which is (p; d)-completely quasismooth over B, equipped with a surjection P �R of B-algebras.
Then the (p; d)-completion of PrismEnv(P�R) is static which gives rise to a prism (C;d) in the
prismatic site2.5.11 defined in [ BS19, Def 4.1] of R relative to the base prism (B;d). Furthermore,
(C; d) is a flat cover of the final object in this site.

2.5.10. This characterization was already implicit in the Faltings's proof of �independence of the choice of the
framing�.

2.5.11. It is the non-animated but (p; d)-completed version of our M(R/(B; d)).
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This implies virtually all the similar technical cover results for relative prismatic site mentioned
above, cf. Remark 2.5.54.

Remark 2.5.57. For the absolute prismatic site, the proof also works in the special case of [AL19a,
Lem 5.2.8], but we are not aware of a statement as general as Proposition 2.5.56.

2.6. Sketch of an analytic theory

As we mentioned before, our theory of crystalline cohomology is non-completed. That is to say,
given a smooth Fp-algebra R, the derived crystalline cohomology of R with respect to the PD-pair
(Zp; (p)) does not coincide with the classical crystalline cohomology of R. One could recover the
classical version by taking the derived p-completion. Instead, we take a more systematic approach:
we will introduce the concept of analytic PD-pairs (A�A00; 
;M) which serves as rudiments
of analytic crystalline cohomology in a future work. In particular, roughly speaking, we will put
a topology on the PD-pair (Zp; (p)) along with an analytic structure, such that the analytic
crystalline cohomology of a smooth Fp-algebra is essentially the classical crystalline cohomology
equipped with the p-adic topology.

Here are some very succinct recollection of condensed mathematics [Sch19b]: given two topolog-
ical spaces X;Y , we will denote by C(X;Y ) the set of continuous maps X!Y . Recall that CHaus
is the category of compact Hausdorff spaces and ExtrDisc�CHaus is the full subcategory spanned
by extremally disconnected sets, that is, the projective objects in the category CHaus. Concretely, a
compact Hausdorff spaceX is extremally disconnected if for every surjective map Y!Z of compact
Hausdorff spaces, the induced map C(X;Y )!C(X;Z) is also surjective [Sta21, Tag 08YN]. Every
extremally disconnected set is profinite [Sta21, Tag 08YI]. Given a presentable 1-category C, the
1-category Cond(C) of condensed objects in C is defined to be the full subcategory of the functor
category Fun(ExtrDiscop; C) spanned by those functors F :ExtrDiscop!C which preserve finite
limit along with a set-theoretic technical condition that there is a strong limit cardinal � such that
the functor F is left Kan extended from the full subcategory ExtrDisc�

op�ExtrDiscop spanned by
�-small extremally disconnected sets, i.e., the cardinality of the underlying set is less than �.

Analytic (PD-)pairs In this subsection, we will first introduce the concept of condensed
(PD-)pairs, and then we indicate how to put an analytic structure.

Definition 2.6.1. A condensed pair (resp. condensed PD-pair)2.6.1 is a condensed object in the
1-category AniPair (resp. AniPDPair). The 1-category of condensed pairs (resp. condensed PD-
pairs) is denoted by Cond(AniPair) (resp. Cond(AniPDPair)).

Example 2.6.2. There is a canonical way to view an animated pair (resp. animated PD-pair) as a
condensed animated pair (resp. condensed animated PD-pair). More precisely, there is a canonical
functor AniPair!Cond(AniPair) (resp. AniPDPair!Cond(AniPDPair)). We explain the functor
AniPair!Cond(AniPair) in more details: given a pair (A; I)2AniPair0 (which was denoted by
D0 in Subsection 2.3.2), note that for every extremally disconnected set S, (C(S;A); C(S; I)) is
naturally a ring-ideal pair, which defines a functor AniPair0!Cond(Pair)�Cond(AniPair). Then
the functor AniPair!Cond(AniPair) is defined to be the left derived functor (Proposition B.0.10)
of the functor AniPair0!Cond(AniPair) above.

Example 2.6.3. Consider the condensed ring Zp given by the functor ExtrDisc3S 7!C(S;Zp)2
Ring along with the surjective map Zp�Fp of condensed rings, or more precisely, profinite rings,
where the surjectivity follows from S being projective in CHaus. This gives rise to a condensed pair.

Moreover, for every S 2ExtrDisc, the ring C(S;Zp) is p-torsion free and there is a canonical
PD-structure on the pair C(S;Zp)�C(S;Fp), which gives rise to a condensed object in PDPair�
AniPDPair, thus we get a condensed PD-pair (Zp�Fp; 
).

2.6.1. We ignore the adjective �animated� to make the terminology shorter.
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Example 2.6.4. ([Sch19a, Prop 6.8 & Thm 6.9]) Let 0< r < 1. Consider the condensed
ring Z((T ))>r given by S 7!

S
r<r~<1
c�0

f
P
n�¡1 an T

n j an 2C(S;Z) and
P
n�¡1 janj r~

n� cg �

Z((T ))(S). Let 0< r 0< r, then the map �r 0 :Z((T ))>r!R induced by T 7! r 0 is surjective on
f�g2ExtrDisc with the kernel generated by a non-zero-divisor. Furthermore, it is surjective as a
map of condensed sets by [Sch19a, Prop 7.2]. Thus we get a condensed pair Z((T ))>r�R.

Concretely, it follows from Theorem 2.3.23 that a condensed pair is given by a surjective
map A�A00 of condensed animated rings, where the surjectivity means that the induced map
�0(A)! �0(A00) of static condensed rings is surjective. As in Notation 2.3.25, we will denote a
condensed PD-pair by (A�A00; 
). We need the following result:

Lemma 2.6.5. The animated PD-envelope functor AniPair!AniPDPair preserves finite products.

Proof. This follows from Lemmas 2.3.46 and 2.3.41 and the conjugate filtration. �

Note that, given a small category C which admits finite products, we have an adjunction
Fun(C ; AniPair)� Fun(C ; AniPDPair) induced by the adjunction AniPair� AniPDPair. This
is a direct corollary of the alternative definition of adjoint functors in [Lur20, Tag 02EP]2.6.2.
Restricting to full subcategories spanned by functors which preserves finite products, we get an
adjunction Fun�(C ;AniPair)�Fun�(C ;AniPDPair). Setting C=ExtrDisc�

op and taking the colimit
over all uncountable strong limit cardinals �, we get

Corollary 2.6.6. There is a canonical pair Cond(AniPair)�Cond(AniPDPair) of adjoint func-
tors. We will call the functor Cond(AniPair)! Cond(AniPDPair) the condensed PD-envelope
functor.

Definition 2.6.7. An analytic pair (resp. analytic PD-pair) is given by the datum of a normalized
[ Sch19a, Def 12.9] analytic ring (A;M) along with a condensed pair A�A00 (resp. a condensed
PD-pair (A!A00; 
)), which will be denoted by (A;M)�A00 (resp. ((A;M)�A00; 
). The 1-
category AnPair of analytic pairs (resp. AnPDPair of analytic PD-pairs) is defined to be the fiber
product AnRing�Cond(Ani(Ring))Cond(AniPair) (resp. AnRing�Cond(Ani(Ring))Cond(AniPDPair)).

Remark 2.6.8. The1-categories in Definition 2.6.7 are a priori simplicial sets. They are effectively
1-categories since Cond(AniPDPair)!Cond(Ani(Ring)) and Cond(AniPair)!Cond(Ani(Ring))
are categorical fibrations.

Remark 2.6.9. We remark that, given an analytic pair (A;M)�A00, there is a canonical nor-
malized analytic structureM00 on A00 given by S 7!M(S)
ALA00 (see [Sch19a, Prop 12.8] for the
associative analogue), which gives rise to a map (A;M)! (A00;M00) of analytic rings, therefore
our notation (A;M)�A00 is an abuse of notation of (A;M)� (A00;M00).

Example 2.6.10. Any condensed pair A�A00 (resp. condensed PD-pair (A�A00; 
)) gives rise
to an analytic pair (resp. analytic PD-pair) by taking the trivial analytic structureM[S] =A[S]
for S 2ExtrDisc.

Example 2.6.11. Consider the analytic ring Zp;� given by the condensed ring Zp along with
the functor S 7! Zp;�[S] := Zp[S]� (see [Sch19a, Prop 7.9], essentially because Zp is a compact
idempotent in the derived category D(Z�) of solid abelian groups). By Example 2.6.3, we get an
analytic PD-pair (Zp;��Fp; 
).

Example 2.6.12. ([Sch19a, Thm 6.9]) Let 0<r 0<1 and 0<p<1. Set r=(r 0)p. Then combining
with Example 2.6.4, we get an analytic pair (Z((T ))>r;M)�R of analytic rings induced by T 7!r 0,
where the induced analytic structure on R is precisely given byM<p. It would be interesting if we
could apply techniques in arithmetic geometry to this analytic pair to study the homotopy theory
of real manifolds.

2.6.2. We are informed by Denis Nardin in private conversation.
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Now we prove the existence of analytic PD-envelope.

Proposition 2.6.13. The forgetful functor AnPDPair!AnPair admits a left adjoint, called the
analytic PD-envelope functor.

Proof. Let (A;M)�A00 be an analytic pair. Let (B�A00; 
) be the condensed PD-envelope of
A�A00. Then similar to Remark 2.6.9, the unit map A!B gives rise to an analytic structure N
on B, given by ExtrDisc3S 7!N [S] :=M[S]
ALB. One then checks the initiality of ((B;N )�A00;

). �
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Appendix B
Animations and projectively generated categories

In this appendix, we recollect basic category-theoretic facts about animations [CS19] and projec-
tively generated categories needed in the text.

B.0.1. Projectively generated 1-categories We recall that S is the 1-category
of animae (see Section 2.1). In very few places, we will encounter large animae of which the
1-category will be denoted by Ŝ. One way to distinguish small objects and large objects is to fix
a Grothendieck universe.

Definition B.0.1. ([Lur09, Rem 5.5.8.20]) Let C be a cocomplete 1-category and X 2 C an
object. We say that X is compact and projective, or that X is a compact projective object, if the
functor C!Ŝ ; Y 7!MapC(X;Y ) corepresented by X commutes with filtered colimits and geometric
realizations.

Remark B.0.2. Here we need Ŝ in lieu of S because the 1-category C is not necessarily locally
small. In practice, the 1-categories that we encounter, e.g. projectively generated 1-categories,
are a fortiori locally small, but not necessarily a priori locally small.

Definition B.0.3. ([Lur09, Def 5.5.8.23]) Let C be a cocomplete 1-category and S � C a
(small) collection of objects of C. We say that S is a set of compact projective generators for C if
the following conditions are satisfied:

1. Each element of S is a compact projective object of C.
2. The full subcategory of C spanned by finite coproducts of elements of S is essentially small.

3. The set S generates C under small colimits.

We say that an 1-category C is projectively generated if it is cocomplete and there exists a set S
of compact projective generators for C.

Remark B.0.4. Let C be a cocomplete1-category and C0�C an essentially small full subcategory.
Then we will abuse the terminology by saying that C0 is a set of compact projective generators for
C if a skeleton of C0 is a set of compact generators for C.

A closely related concept is that of sifted colimits which is based on the following definition:

Definition B.0.5. ([Lur09, Def 5.5.8.1]) A simplicial set K is called sifted if it satisfies the
following conditions:

1. The simplicial set K is nonempty.

2. The diagonal map K!K �K is cofinal.

Projectively generated 1-categories are essentially determined by a set of compact projective
generators. More precisely, we have the following:

Notation B.0.6. ([Lur09, Def 5.5.8.8]) Let C be a small 1-category which admits finite coprod-
ucts. We let P�(C) denote the full subcategory of P(C) :=Fun(Cop; S) spanned by those functors
Cop!S which preserves finite products.

Proposition B.0.7. ([Lur09, Prop 5.5.8.10]) Let C be a small 1-category which admits finite
coproducts. Then

1. The 1-category P�(C) is an accessible localization of P(C), therefore presentable.
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2. The Yoneda embedding j : C!P(C) factors through P�(C). Moreover, the induced functor
C!P�(C) preserves finite coproducts.

3. Let D be a presentable 1-category and let P(C)��������������
G

F

D be a pair of adjoint functors. Then

G factors through P�(C) if and only if f =F � j : C!D preserves finite coproducts.

4. The full subcategory P�(C)�P(C) is stable under sifted colimits.

We recall that, for a small1-category C, Ind(C)�P(C) is the full subcategory generated under
filtered colimits by the essential image of the Yoneda embedding C!P(C), [Lur09, Prop 5.3.5.3
& Cor 5.3.5.4]. It follows from [Lur09, Prop 5.3.5.11] that

Lemma B.0.8. Let C be a small 1-category which admits finite coproducts. Then the fully faithful
embedding C ,!P�(C) extends uniquely to a functor Ind(C)!P�(C) which preserves filtered colimit.
This functor Ind(C)!P�(C) is fully faithful.

Lemma B.0.9. Let C be a small 1-category which admits finite coproducts. Then the 1-category
P�(C) is projectively generated for which C �P�(C) is a set of projective generators. In fact, for
any X 2P�(C), there exists a simplicial object U� :�op! Ind(C) whose colimit is X.

Proof. First, since P�(C) � P(C) is a accessible localization, P�(C) is presentable [Lur09,
Rem 5.5.1.6] therefore cocomplete. Since P�(C) � P(C) is stable under sifted colimits (Propo-
sition B.0.7), the objects of C are compact and projective. The last statement then follows from
[Lur09, Lem 5.5.8.14]. �

Proposition B.0.10. ([Lur09, Prop 5.5.8.15]) Let C be a small 1-category which admits finite
coproducts and let D be an 1-category which admits filtered colimits and geometric realizations. Let
Fun�(P�(C);D) denote the full subcategory spanned by those functors P�(C)!D which preserve
filtered colimits and geometric realizations. Then

1. Composition with the Yoneda embedding j :C!P�(C) induces an equivalence � :Fun�(P�(C);
D)!Fun(C ;D) of categories. The inverse �¡1 is given by the left Kan extension along j.
In this case, we will call �¡1(f) the left derived functor of f 2Fun(C ;D).

2. Any functor g 2Fun�(P�(C);D) preserves sifted colimits.

3. Assume that D admits finite coproducts. A functor g 2 Fun�(P�(C);D) preserves small
colimits if and only if g � j preserves finite coproducts.

Proposition B.0.11. ([Lur09, Prop 5.5.8.22]) Let C be a small 1-category which admits
finite coproducts, D an 1-category which admits filtered colimits and geometric realizations, and
F :P�(C)!D a left derived functor of f =F � j : C!D, where j : C!P�(D) denotes the Yoneda
embedding. Consider the following conditions:

1. The functor f is fully faithful.

2. The essential image of f consists of compact projective objects of D.
3. The 1-category D is generated by the essential image of f under filtered colimits and geo-

metric realizations.

If 1 and 2 are satisfied, then F is fully faithful. Moreover, F is an equivalence if and only if 1, 2
and 3 are satisfied.

Proposition B.0.12. ([Lur09, Prop 5.5.8.25]) Let C be a projectively generated 1-category
with a set S of compact projective generators for C. Then

1. Let C0� C be the full subcategory spanned by finite coproducts of the objects in S. Then
C0 is essentially small, and the left derived functor F : P�(C0)! C is an equivalence of
1-categories. In particular, C is a compactly generated presentable 1-category.

2. Let C 2C be an object. The following conditions are equivalent:

a. The object C 2C is compact and projective.
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b. The functor C!S corepresented by C preserves sifted colimits.

c. There exists an object C 02C0 such that C is a retract of C 0.

Proof. We explain more details of the first point than [Lur09, Prop 5.5.8.25]. It follows from
definitions that C0 is essentially small. Then it follows from Proposition B.0.11 that the left derived
functor F :P�(C0)!C is fully faithful. Since C0�C is stable under finite coproducts taken in C, the
embedding C0 ,!C preserves finite coproducts. It follows from Proposition B.0.10 that F preserves
small colimits, thus the essential image of F is stable under small colimits. By assumption, S
generates C under small colimits, therefore F is essentially surjective. �

Corollary B.0.13. Let C be a projectively generated 1-category and let D be an 1-category which
admits filtered colimits and geometric realizations. If a functor C!D preserves filtered colimits
and geometric realizations, then it also preserve sifted colimits.

Warning B.0.14. Filtered colimits and geometric realizations are sifted colimits, therefore if a
functor preserves sifted colimits, then it also preserves filtered colimits and geometric realizations.
However, the converse is in general false.

The following proposition is extremely useful to detect projectively generated 1-categories:

Proposition B.0.15. ([Lur17, Cor 4.7.3.18]) Given a pair C��������������
G

F

D of adjoint functors between

1-categories. Assume that

1. The 1-category D admits filtered colimits and geometric realizations, and the functor G
preserves filtered colimits and geometric realizations.

2. The 1-category C is projectively generated.

3. The functor G is conservative.

Then

1. The 1-category D is projectively generated.

2. An object D 2D is compact and projective if and only if there exists a compact projective
object C 2C such that D is a retract of F (C).

3. The functor G preserves all sifted colimits.

B.0.2. Projectively generated n-categories In this subsection, we will briefly
describe the n-categorical analogue of Subsection B.0.1. We say that an anima X is n-trun-
cated for n2N�0 if the homotopy groups �i(X; x) = 0 for every point x2X and every i2N>n,
and (¡1)-truncated if X is either empty or contractible, and (¡2)-truncated if X=?. An 1-cat-
egory C is an n-category [Lur09, Prop 2.3.4.18] if for every pair (X; Y ) 2 C � C of objects, the
mapping anima MapC(X; Y ) is (n ¡ 1)-truncated. We will denote by S�n the 1-category of
n-truncated animae, and by Ŝ�n the 1-category of large n-truncated animae.

Remark B.0.16. 1-categories are just categories in the classical category theory. If we define
1-categories as quasicategories as in [Lur09], this identification is given by the nerve construction.
Since in our texts, categories often mean 1-categories, we usually add �1-� to avoid possible
ambiguities.

In fact, for the text, we only need results for n = 1 (and n =1 in some sense), but the
generalization to general n2N>0 is quite cost-free.

Proposition B.0.17. ([Lur09, Cor 2.3.4.8]) Let C be an n-category and K a simplicial set.
Then Fun(K; C) is an n-category.

Definition B.0.18. Let C be a cocomplete n-category and X 2 C an object. We say that X is
compact and n-projective, or that X is a compact n-projective object, if the functor C! Ŝ�n¡1;
Y 7!MapC(X;Y ) corepresented by X commutes with filtered colimits and geometric realizations.
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Remark B.0.19. In fact, an object X 2 C is called n-projective if and only if the functor C!
Ŝ�n¡1; Y 7!MapC(X;Y ) corepresented by X commutes with geometric realizations. In particular,
when C is an abelian 1-category, an object X 2 C is 1-projective if and only if it is a �projective
object� of the abelian 1-category C.

Remark B.0.20. Let C be a cocomplete n-category and X 2C a compact n-projective object. In
general,X is not a compact projective object of C as an1-category. In fact, the inclusion Ŝ�n¡1!
Ŝ does not commute with geometric realizations. That is to say, for general simplicial objects
Y� :�op!C, the geometric realization jMapC(X;Y�)j�2�op is not in general (n¡ 1)-truncated.

Remark B.0.21. There is another way to characterize geometric realizations in an n-category C.
In fact, the fully faithful embedding��[n]

op ,!�op is �n-cofinal�, therefore the geometric realization
of a simplicial object�op!C exists if and only if colimit of the composite functor��[n]

op ,!�op!C
exists, and the two colimits are equivalent. Furthermore, for any diagram ��[n]

op !C, the left Kan
extension along ��[n]

op ,!�op always exists. Thus for a cocomplete n-category C, an object X 2C
is n-projective if and only if the functor MapC(X; �) corepresented by X preserves ��[n]

op -indexed
colimits. See [Nar16] and the proof of [Lur17, Lem 1.3.3.10].

Definition B.0.22. Let C be a cocomplete n-category and S �C a (small) collection of objects of
C. We say that S is a set of compact n-projective generators for C if the following conditions are
satisfied:

1. Each element of S is a compact n-projective object of C.

2. The full subcategory of C spanned by finite coproducts of elements of S is essentially small.

3. The set S generates C under small colimits.

We say that an n-category C is n-projectively generated if it is cocomplete and there exists a set S
of compact n-projective generators for C.

Similar to 1-categories, we have

Notation B.0.23. Let C be a small n-category which admits finite coproducts. We let P�;n(C)
denote the full subcategory of Pn(C) := Fun(Cop; S�n¡1) spanned by those functors Cop!S�n¡1
which preserves finite products.

Proposition B.0.24. Let C be a small n-category which admits finite coproducts. Then

1. The 1-category P�;n(C) is an accessible localization of Pn(C), therefore presentable.

2. The Yoneda embedding j :C!Pn(C) factors through P�;n(C). Moreover, the induced functor
C!P�;n(C) preserves finite coproducts.

3. Let D be a presentable n-category and let P(C)��������������
G

F

D be a pair of adjoint functors. Then G

factors through P�;n(C) if and only if f =F � j : C!D preserves finite coproducts.

4. The full subcategory P�;n(C)�Pn(C) is stable under sifted colimitsB.0.1.

Lemma B.0.25. Let C be a small n-category which admits finite coproducts. Then the fully faithful
embedding C ,!P�;n(C) extends uniquely to a functor Ind(C)!P�;n(C) which preserves filtered
colimit. This functor Ind(C)!P�;n(C) is fully faithful.

Lemma B.0.26. Let C be a small n-category which admits finite coproducts. Then the n-category
P�;n(C) is n-projectively generated for which C �P�;n(C) is a set of n-projective generators. In fact,
for any X 2P�;n(C), there exists a simplicial object U� :�op! Ind(C) (or equivalently, a diagram
��n

op ! Ind(C) by Remark B.0.21) whose colimit is X.

B.0.1. We do not introduce n-sifted diagrams, so a priori it is a sifted diagram defined in [Lur09, Def 5.5.8.1].
However, here one can replace sifted diagrams by n-sifted diagram. See Remark B.0.21.
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Proposition B.0.27. Let C be a small n-category which admits finite coproducts and let D be an
n-category which admits filtered colimits and geometric realizations. Let Fun�(P�;n(C);D) denote
the full subcategory spanned by those functors P�;n(C)!D which preserve filtered colimits and
geometric realizations. Then

1. Composition with the Yoneda embedding j : C ! P�;n(C) induces an equivalence � :
Fun�(P�;n(C);D)!Fun(C ;D) of categories. The inverse �¡1 is given by the left Kan exten-
sion along j. In this case, we will call �¡1(f) the left derived functor of f 2Fun(C ;D).

2. Any functor g 2Fun�(P�;n(C);D) preserves sifted colimits.

3. Assume that D admits finite coproducts. A functor g 2 Fun�(P�;n(C);D) preserves small
colimits if and only if g � j preserves finite coproducts.

Proposition B.0.28. Let C be a small n-category which admits finite coproducts, D an n-category
which admits filtered colimits and geometric realizations, and F :P�;n(C)!D a left derived functor
of f =F � j : C!D, where j : C!P�;n(D) denotes the Yoneda embedding. Consider the following
conditions:

1. The functor f is fully faithful.

2. The essential image of f consists of compact n-projective objects of D.
3. The n-category D is generated by the essential image of f under filtered colimits and geo-

metric realizations.

If 1 and 2 are satisfied, then F is fully faithful. Moreover, F is an equivalence if and only if 1, 2
and 3 are satisfied.

Proposition B.0.29. Let C be a n-projectively generated n-category with a set S of compact
n-projective generators for C. Then

1. Let C0� C be the full subcategory spanned by finite coproducts of the objects in S. Then
C0 is essentially small, and the left derived functor F : P�;n(C0)!C is an equivalence of
n-categories. In particular, C is a compactly generated presentable n-category.

2. Let C 2C be an object. The following conditions are equivalent:

a. The object C 2C is compact and n-projective.

b. The functor C!S�n¡1 corepresented by C preserves sifted colimits.

c. There exists an object C 02C0 such that C is a retract of C 0.

Corollary B.0.30. Let C be a projectively generated n-category and let D be an n-category which
admits filtered colimits and geometric realizations. If a functor C!D preserves filtered colimits
and geometric realizations, then it also preserve sifted colimits.

As in the case of 1-categories, the following proposition is essential:

Proposition B.0.31. ([Lur17, Cor 4.7.3.18]) Given a pair C��������������
G

F

D of adjoint functors between

n-categories. Assume that

1. The n-category D admits filtered colimits and geometric realizations, and the functor G
preserves filtered colimits and geometric realizations.

2. The n-category C is n-projectively generated.

3. The functor G is conservative.

Then

1. The n-category D is n-projectively generated.

2. An object D2D is compact and n-projective if and only if there exists a compact n-projective
object C 2C such that D is a retract of F (C).

3. The functor G preserves all sifted colimits.

Animations and projectively generated categories 117



B.0.3. Animation of n-projectively generated n-categories In this subsec-
tion, we describe a procedure, called animation, introduced in [CS19, �5.1], to produce a projectively
generated 1-category from an n-projectively generated n-category. Roughly speaking, this pro-
jectively generated 1-category is determined by a set of compact n-projective generators for
the n-category in question.

Definition B.0.32. Let C be an n-projectively generated n-category. We choose a set S � C of
compact n-projective generators for C. Let C0�C be the full subcategory spanned by finite coproducts
of the objects in S. Then the animation of C, denoted by Ani(C), is defined to be the projectively
generated 1-category P�(C0).

Remark B.0.33. The definition of the animation does not depend on the choice of the set of
compact n-projective generators. The key is that if S 0 is another compact n-projective generators,
then it follows from Proposition B.0.29 that every object X 02S 0 is a retract of an object X 2C0
in Definition B.0.32. The same applies to the discussions below.

Example B.0.34. Let Ab be the abelian category of abelian groups. Then Ani(Ab) coincides
with the (connective) derived category D�0(Ab).

Remark B.0.35. In the context of Definition B.0.32, we have C'P�;n(C0) by Proposition B.0.29
and Ani(C)'P�(C0). It follows that the n-category C could be identified with n-truncated objects
in Ani(C). In particular, there exists a left adjoint ��n¡1 :Ani(C)!C to the fully faithful embedding
C ,!Ani(C), cf. [Lur09, Rem 5.5.8.26].

We now discuss the animation of functors.

Definition B.0.36. ([CS19, �5.1.4]) Let C ;D be two n-projectively generated n-categories and
F : C!D a functor. Then the animation of the functor F, denoted by Ani(F ) :Ani(C)!Ani(D),
is defined as follows:

We choose a set S�C of compact n-projective generators for C. Let C0�C be the full subcategory
spanned by finite coproducts of the objects in S. Then the functor F : C ! D gives rise to the
composite C0!C!D!Ani(D). We define Ani(F ) :Ani(C)!Ani(D) to be the left derived functor
(in Proposition B.0.10) of C0!Ani(D).

Example B.0.37. Let F :Ab!Ab be an additive functor. Then the animation Ani(F ) :Ani(Ab)!
Ani(Ab) coincides with the left derived functor LF :D�0(Ab)!D�0(Ab) in homological algebra.

It follows from Propositions B.0.27, B.0.29, B.0.10, and B.0.12 that

Corollary B.0.38. In Definition B.0.36, if F preserves sifted colimits (cf. Corollary B.0.30),
then so does Ani(F ). Furthermore, if F preserves small colimits, then so does Ani(F ).

In homological algebra, there is a natural comparison map H0 �LF!F �H0, which becomes
an equivalence when F is assumed to be right exact. Now we study the animated analogue. In

the context of Definition B.0.36, the composite functor Ani(C)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
��n¡1 C !!!!!!!!!!!!F D ,!,!,!,!,!,!,!,!,!,!,!,!,!,!,!

jD
Ani(D) is an

extension of the composite functor C !!!!!!!!!!!!
F
D ,!Ani(D). Since Ani(F ) : Ani(C)!Ani(D) is the

left Kan extension, there exists an essentially unique map Ani(F )! jD � F � ��n¡1 of functors
Ani(C)�Ani(D). By adjunction, we get a canonical map ��n¡1 �Ani(F )!F � ��n¡1 of functors
Ani(C)�D.

Lemma B.0.39. ([CS19, �5.1.4]) In Definition B.0.36, suppose that the functor F :C!D (between
n-categories) preserves sifted colimits. Then the map ��n¡1 � Ani(F )! F � ��n¡1 of functors
constructed above is an equivalence of functors.

Proof. First, note that the map ��n¡1 �Ani(F )!F � ��n¡1 of functors Ani(C)�D is an equiv-
alence of functors after composing with the inclusion C0 ,!Ani(C). We claim that both functors
��n¡1 �Ani(F ) and F � ��n¡1 preserve sifted colimits, thus belonging to Fun�(Ani(C);D) which
becomes an equivalence after mapped along Fun�(Ani(C);D)!Fun(C ;D), and hence by Proposi-
tion B.0.10, the constructed map of functors is an equivalence.
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In fact, since ��n¡1 is a left adjoint, therefore commutes with small colimits, which implies that
��n¡1 �Ani(F ) commutes with sifted colimits. On the other hand, F : C!D is a functor which
preserves sifted colimits, therefore also preserves sifted colimits since C ;D are n-categories. Thus
F � ��n¡1 also preserves sifted colimits. �

In homological algebra, leftly deriving functors is not compatible with compositions, therefore
neither is animation of functors in general. However, recall that with some acyclicity conditions
[Sta21, Tag 015M], there is a compatibility of leftly deriving functors and compositions. Here is
such a condition in the world of animations:

Proposition B.0.40. ([CS19, Prop 5.1.5]) Let C ;D; E be three n-projectively generated n-cate-
gories and F :C!D;G :D!E two functors preserving sifted colimits (cf. Corollary B.0.30). Then

1. There is a natural transformation from the composite Ani(G) �Ani(F ) to Ani(G � F ) (In
fact, for this, we only need that G preserves sifted colimits).

2. Let C0�C and D0�D be full subcategories determined by a choice of set of compact n-projec-
tive generators as in Definition B.0.32. If either F (C0)� Ind(D0) in D or (Ani(G))(F (C0))�
E in Ani(E), then the natural transformation Ani(G) �Ani(F )!Ani(G � F ) is an equiv-
alence.
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Appendix C

Stable symmetric monoidal 1-categories

In this section, we recall some basic facts about stable symmetric monoidal 1-categories that we
need in our text. Roughly speaking, a symmetric monoidal 1-category (C ;
) is an 1-category
with an operation �
� :C�C!C which is commutative and associative �up to coherent homotopies�.
The precise definition is the following:

Definition C.0.1. ([Lur17, Def 2.0.0.7 & Rem 2.1.2.20]) A symmetric monoidal 1-category
is a coCartesian fibration of simplicial sets p : C
!Fin� with the following property:

For each n2N�0, the maps (�i : hni! h1i)1�i�n induce functors �!i : Chni

 !Ch1i


 which deter-
mines an equivalence Chni


 !!!!!!!!!!!!!!' (Ch1i

 )n, where �i is the map given by

�i(j) :=
�
1; i= j
�; otherwise

In particular, when n=0, we see that Ch0i

 is a singleton.

In this case, we will refer to the fiber C :=Ch1i

 as the underlying 1-category of C
. The active

morphism � : h2i! h1i; 0 7! 0; 1 7! 1; 2 7! 1 induces the tensor bifunctor � 
 � : C � C!C. We will
abuse terminology by referring to C or (C ;
) as a symmetric monoidal 1-category. The unique
map h0i!h1i induces a functor Ch0i


 !Ch1i

 =C which determines a distinguished object of C, which

we will denote by 1C.

Most symmetric monoidal1-categories that we consider are presentable and the tensor product
behaves well with colimits:

Definition C.0.2. ([Nik16, �2]) A symmetric monoidal 1-category (C ;
) is called presentable
symmetric monoidal if the underlying 1-category C is presentable and the tensor bifunctor � 
 � :
C �C!C preserves small colimits separately in each variable.

In most cases in which we are interested, the underlying1-category C is stable, which satisfies
some compatibility conditions formulated as follows:

Definition C.0.3. ([Nik16, Def 4.1]) A symmetric monoidal 1-category (C ;
) is called stable
symmetric monoidal if the underlying 1-category C is stable and the tensor bifunctor �
 � :C�C!C
preserves finite colimits separately in each variable.

Corollary C.0.4. A presentable symmetric monoidal 1-category (C ; 
) is stable symmetric
monoidal if and only if the underlying 1-category C is stable.

We usually need to impose a t-structure which is compatible with the symmetric monoidal
structure:

Definition C.0.5. Let (C ;
) be a stable symmetric monoidal 1-category. A symmetric monoidal
t-structure on the underlying stable 1-category C is a t-structure (C�0; C�0) such that 1C 2 C�0
and C�02C is closed under tensor product: X 
Y 2C�0 for all X;Y 2C�0. In this case, (C�0;
)
is a symmetric monoidal 1-category and the inclusion C�0 ,!C is symmetric monoidal.
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