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1

Introduction

Efficiency in industrial processes, transportation and society in general is important,
today more than ever. Indeed, our modern societies have scaled up, as well as their
underlying complexity and entanglement. For instance, logistics and transportation
play a key role in the functioning of our societies. Optimising the underlying pro-
cesses, as well as every activity indispensable to services, is therefore important, most
especially in the context of climate change and societal transition. Indeed, energy and
money savings are important to preserve the quality of life of every citizen as much
as possible in such a context.

Operations Research precisely consists in modelling a problem with mathematical
variables and constraints and to solve the modelled problem. Operations Research
concentrates on the practical resolution of problems and therefore uses solving tech-
niques from several fields. Different techniques exist to solve these problems, some
easier to implement in code than others, some being able to guarantee the nonexis-
tence of solutions or the optimality of a solution, some being faster in practice than
others, and so on. The diversity of solving techniques allows for selecting the appro-
priate one depending on the project constraints (skills, time for developments, time
to find a solution, ability to prove optimality or not, etc.).

Problems whose objective is to find a solution are generally called Constraint Sat-
isfaction Problems (CSP) and Constraint Optimisation Problems (COP) whenever
there is an objective-function to minimise or maximise in addition of the CSP. These
problems have in common to be combinatorial, that is the set of possibilities is very
large. Various types of problems are modelled as CSP and COP. Just to cite a few,
it goes from maintenance scheduling in the electricity industry [Fro+16], to logis-
tics transportation and delivery problems (generally called Vehicle Routing Problems
[GRW08; KP12; MS20]), or building the timetable of trains in stations [Bai15; CGT15]
or even the conception of the new French keyboard [JK19; Fei+21] (modelled as a spe-
cialisation of the Quadratic Assignment Problem [BK57]).

In the context of this thesis, we concentrate on a solving technique called Con-
straint Programming (CP), which is a declarative paradigm, that is the user specifies
the problem into a constraint language, interpretable by a software called a constraint
solver, whose task is to solve the problem. This "black box" behaviour exists from
the beginning of the field and in the mind of researchers: "Constraint programming
represents one of the closest approaches computer science has yet made to the Holy
Grail of programming: the user states the problem, the computer solves it" as stated
Freuder in [Fre97]. Indeed, CP distinguishes from other techniques such as Linear
Programming by the great expressivity it allows for constraints, as well as in the pos-
sibility to integrate into constraint solvers algorithms and techniques from other fields.
Sadly, this great expressivity and permissiveness of CP leads to complex constraint
solvers, which require a certain expertise in order to efficiently model and express a
problem into and efficiently solve it. We can call this behaviour a "white box": the
solver allows many things, but it requires expertise to configure it efficiently. In this
thesis, we will be closer to the "white box" behaviour than the "black box" one.



2 Introduction

Context and contributions

To solve problems in CP, one first needs to model the problem at stake by the means
of variables and constraints. For instance, let us say that you want to schedule the
maintenance of a fleet of trains. You have a set of tasks, each one corresponding to
a maintenance activity. The objective of your problem is to decide when to process
each of the task, given resource constraints (two trains cannot occupy the same rail
at the same time, timetable of the skilled workers, etc.) and planning constraints
(the trains arrive and leave the maintenance centre at specific time to respect their
commercial schedule for instance). Considering that tasks have a fixed duration to be
processed, the start variables of the tasks define a solution of the problem if none of
the constraints is violated. The modeller can also specify how the search space will
be explored: we consider it part of the modelling phase. Once the modelling phase is
completed, the solver starts exploring the search space, looking for solutions. All the
variable-value assignments defined in this phase constitute the search space.

The solver alternates between two phases: propagation and branching. The role of
propagation is to infer that some variable-value assignments cannot lead to a solution
of the problem given the definitions of the constraints. For instance, if it was already
decided that the electricity maintenance of a given train would be done from t1 to
t2 and that there are machines to do electricity maintenance only for one train at a
time, then the propagation engine can enforce that other electricity maintenance tasks
of other trains ends before t1 or starts after t2. This propagation phase can lead to
great cuts into the search space and should therefore not be underestimated. However,
these inferences have a certain algorithmic cost, generally the stronger the inference,
the costly it is to find it. In this thesis, we will give attention to this interesting
trade-off.

Whenever the inference rules of constraints cannot find failing variable-value as-
signments anymore, either all variables are instantiated and a solution has been found,
either there are contradictions between constraints inferences and we should go back
to a previous valid state of the search, either it is undecided between the two former.
In this third case, a branching is done, i.e. the solver takes a decision (for instance
electricity maintenance of train A will be done at time t1) and propagates this deci-
sion. The contradiction of this decision will also be explored. This is why Constraint
Programming is categorised as a complete search method: it explores all possibilities
and therefore can guarantee the nonexistence of solutions or the optimality of a solu-
tion (for example, it can guarantee that no valid schedule taking less total time can be
found). Choosing the good decision to branch on first can be crucial for performance.

As a matter of fact, in his speech during the ACP Research Excellence Award
(CP’13)1, Jean-Charles Régin explains that paying attention to the modelling phase,
to the exploration of the search space and to the implementation (especially to data
structures) is important, the potential gain in efficiency following this order and being
inverse to the probability of success. That is, among these three phases, the highest
gain of efficiency can be found in the modelling phase, but there is in fact few chances
of actually getting an efficiency improvement.

Another point of attention, despite not really in the hands of modellers and solvers’
users, is the propagation engine: how it is implemented and articulated might have a
great importance in practice when solving problems, as was shown by Prud’Homme

1“Simple solutions for complex problems”, Jean-Charles Régin. ACP Research Excellence Award,
CP2013(Uppsala, Suède).
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et al. [Pru14; Pru+14]. More especially, great knowledge of a solver and its inner
functioning can lead to greater performance in practice as the implementation will be
adapted to the solver’s specifics. For all these reasons, we will give particular attention
to implementation details all along this thesis.

In this thesis, we will explore different aspects presented earlier. We mainly fo-
cus on improving the practical performance of solving scheduling problems. More
especially, we exploit the great expressivity of CP to introduce into constraint solvers
other techniques from Combinatorial Optimisation. Doing so has proven to be very
efficient in the past: the use of explanations (a technique coming from SAT solvers)
[Jus03; Sch+09; Sch+11; SFS13] have led to impressive results on classical scheduling
problems, and is a strong asset of CP to efficiently solve scheduling problems. Sadly, it
takes a lot of code development efforts to interface explanations with the propagation
engine of the solver (as was done in Choco [PFL17]) or to natively take them into
account (such as in lazy-clause generation (LCG) solvers such as Chuffed [Chu+16] or
OR-Tools [PF], also called CP-SAT solvers). Also, explanations can face difficulties:
for instance, the explained decomposed version of the cumulative constraint [AB93]
can consume a very large amount of memory if the schedule can be built over a large
time period. This excludes the use of explanations in memory-limited environments,
where explanations might lose in efficiency as some clauses are forgotten (which is
done by LCG solvers in memory-limited environments). For these reasons, we con-
centrate on other techniques, which are complementary with explanations.

The contributions of this thesis are twofold. First, we revisit the allDiffPrec
constraint, which was introduced by Bessiere et al. [Bes+11] as an allDifferent
constraint with precedence constraints between variables. We present in details all
state-of-the-art results on this constraint, and show how to correct the existing filter-
ing algorithm. We also give another filtering algorithm based on the same idea but
whose worst-case time complexity is different. Then, we present our main contribution
on this constraint, which is a stronger filtering algorithm that considers variables’ do-
mains as sets instead of intervals. We will experimentally show that, despite its high
worst-case time complexity, our new filtering rule can have great effects in practice.
We will especially analyse the behaviour of each filtering algorithm depending on the
density of the domains.
On a second hand, we explore on the use of list ordering algorithms in constraint
solvers. List ordering algorithms are problem-specific algorithms that build a solution
from a list of the variables. We introduce a new generic constraint, called Order, that
embeds the inner reasoning of the list ordering algorithm and show how models can
be improved using additional variables and constraints, most especially the Order
constraint. We will apply this methodology on several scheduling problems, showing
how to implement the Order constraint for these problems, and we will compare ex-
perimentally the new resulting model with the former one. We will stress the resulting
propagators and application cases to show potential limits of the methodology.

Organisation of the thesis

The first part of this thesis introduces all the notions that are needed to deeply under-
stand our research. Chapter 1 gives the key fundamentals on algorithms’ complexity
and theoretical computer models that will be used all along the thesis. Chapter 2
presents Constraint Programming, giving details to understand the different phases
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of CP, i.e. modelling, propagation and branching, and how each of these phases work.
As we said, CP allows a great expressivity and diversity of solving techniques. We
will therefore specify in Chapter 2 which ones are used in the context of these re-
searches. Finally, Chapter 3 present in details the scheduling problems on which the
Order constraint will be applied on, as well as minimal CP models for these problems.

In a second part, we revisit the allDiffPrec constraint. In Chapter 4, we con-
centrate on the definition and presentation of each filtering algorithm, including our
new stronger one. A deep analysis compares the different schemes in terms of filter-
ing strength as well as worst-case time complexity. In Chapter 5, we discuss on the
implementation details of each filtering scheme. More especially, we discuss on the
data structures used in the algorithms and how they should be implemented to be
efficient in practice. Different implementations are also discussed for the greedy filter-
ing scheme. Finally, the experimental protocol and results are presented and analyse.

The third part is dedicated to the introduction of list ordering reasoning into CP,
through the new Order constraint. Chapter 6 presents the generic Order constraint
and a basic filtering scheme for it. Generic notations and notions are given, show-
ing what needs to be concretely defined in applications of the constraint. Chapter 7
presents our results for the Parallel Machine Scheduling Problem with Additional Unit
Resources (PMSPAUR), most of which were published in [God+20]. Application of
the Order constraint, in the form of the leftShifted constraint, to the Resource-
Constrained Project Scheduling Problem (RCPSP) is given in Chapter 8. In Chap-
ter 9, we show how to specify the Order constraint to the Unit Execution Time-Unit
Communication Time (UET-UCT) problem where duplication of tasks are authorised.

Finally, we will summarise the contributions of this thesis and gives insight on
further research that can be lead on the subjects treated in this thesis.
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Part I

State of the art
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Chapter 1

Complexity and Graph Theory

In this chapter, basic notions of complexity theory in Computer Science will be defined.
More especially will be discussed how algorithms’ theoretical execution speed is defined
and how it is used to compare algorithms. On a second part of this chapter, some
notions of graph theory will be defined. All the notions defined in this chapter will
either be used within next chapters or help painting a broad picture of the field.

1.1 Basic notions of Complexity Theory

1.1.1 The Bachmann-Landau notation

First, let us remind some mathematical notions that were introduced by Bachmann
[Bac94] and adopted and extended by Landau [Lan09]. Let f be a mathematical
function defined over reals R. We consider a strictly positive function g over reals R.
The idea is for g to represent the asymptotic behaviour of function f on some part of
the real set R.

Definition 1.1 (Bachmann-Landau notation). Let a ∈ R be a real. The Bachmann-
Landau notations or big O notations are defined as following:

• f(x) =
x→∞

O(g(x)) iff ∃x0 ∈ R,M > 0,∀x ≥ x0, |f(x)| ≤Mg(x)

• f(x) =
x→a

O(g(x)) iff ∃M, ε > 0,∀x ∈ [a− ε, a+ ε], |f(x)| ≤Mg(x)

The first Bachmann-Landau notation can be extended to the set of integers N. In
such a case, functions f and g are defined over N and their values are still in R for
f and in R+ for g. In Computer Science, only the first notation will be used, that is
when x → ∞. As such, we will note in the remainder of this thesis f(n) = O(g(n))
instead of f(n) =

n→∞
O(g(n)).

Even if the function g can have various forms, some are very common. Whenever
g is a sum of sub-functions, only the ones with the largest growth rate are kept in the
final notation, the rest being omitted. For instance, even if g(n) = n2 +3n+2 is more
detailed, only n2 is considered important to characterise the asymptotic behaviour
of f for a big O notation. Constant coefficients are also removed from g function
because it does not change the asymptotic behaviour, nor the definition. Whenever g
is a polynomial of degree k, we will therefore note O(nk).

Finally, let us remark that in the Bachmann-Landau notation the use of the =
sign is an abuse of notation: the notation is not reversible. For example, n = O(n2)
but the reverse is not true.



8 Chapter 1. Complexity and Graph Theory

1.1.2 On computability and decidability

In the 19th century, Italian mathematician Giuseppe Peano wrote down the 8 first-
order axioms on natural numbers and arithmetic. The idea behind this clarification
was to build the fundamentals of arithmetic and understand if all formulas can be
derived and verified only using these axioms, that is the formal system is complete.

At the beginning of the 20th century, mathematicians work a lot on formal systems,
and more especially on the notion of decidability. In mathematical logic, it is said of a
set T that it is closed if it contains every formula φ that can be logically deduced from
T (using the axioms of the formal system). A logical consequence is a combination of
uses of authorised manipulations of the formal system’s symbols and axioms from one
true statement to another. A theory T , that is a set of sentences closed under logical
consequence, is decidable if and only if there exists an effective method for determining
if a formula is in the theory. A formal system is complete if any formula or its negation
can be logically proved from the axioms. It is consistent if it is not possible to prove
a formula and its negation from the axioms. In 1931, Kurt Gödel showed that any
consistent formal system embedding Peano’s axioms of arithmetic is incomplete, that
is there exist some statements that can be neither proved nor disproved [Göd31].

On a more general context, Hilbert and Ackermann asks in 1928 whether it is
possible, from a given set of symbols and axioms defining authorised operations and
relations on it, to find an effective method to determine from the axioms if a given
statement is true of false: the Entscheidungsproblem [HA28]. In 1936, Alonzo Church
[Chu36b; Chu36a] and Alan Turing [Tur36] both proved that it is impossible to find a
general solution to the Entscheidungsproblem, the former using lambda calculus and
the latter using Turing machines (both being proven Turing-equivalent by Turing).

In the remainder of this subsection, we will concentrate on a more formal definition
of the notions needed in the next subsection on analysis of algorithms. The precedent
paragraphs were only for historical purpose, but it is interesting to see where these
notions came from, as it might not been that obvious nowadays.

Even if there exist other types of Turing machines, we will concentrate here on 1-
tape deterministic Turing machine, which we will call Turing machine without former
ambiguity. A Turing machine is an abstract machine consisting of an infinite tape
divided into cells. Each cell contains either a symbol from a given alphabet either a
blank symbol. This tape is scanned by a tape head which is able to read and write
symbols from the alphabet into the cell it is currently over. The machine has a set of
authorised states. A move of the head consists of:

1. An update of the state (possibly the same),

2. An update of the symbol in the scanned cell (possibly the same),

3. And a move of the tape head to the direct cell on the left or the right.

Initially, the tape head is at the far left of the input and in an initial state. Finally,
a transition function defines what the machine does, that is how the tape head moves,
given a state and a cell as inputs.

A Turing machine halts whenever it is in a final state.

Definition 1.2 (Computable function [Tur36]). Considering the model of computation
of the Turing machines, a function f : Nk → N is computable if and only if there
exists a Turing machine that terminates while computing f(x) with x ∈ Nk.
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Definition 1.3 (Decidability). Considering a formal system and its axioms and sym-
bols, a statement is decidable if and only if there exists a Turing machine, with the
statement as input and whose transition function is defined only using the formal sys-
tem’s axioms, that terminates with a "true" or "false" answer for the statement. It
is undecidable otherwise.

The halting problem consists in answering, for a given input and Turing machine,
if the Turing machine will halt or run forever. In [Tur36], Turing shows that the
Entscheidungsproblem is undecidable by showing that there does not exist a general
Turing machine solving the halting problem for all possible program-input pairs.

Definition 1.4 (Turing completeness and equivalence). A model of computation is
Turing complete if it can compute all computable functions.

A model of computation is Turing-equivalent if it can simulate a Turing machine
and if a Turing machine can simulate it.

1.1.3 Analysis of algorithms

An algorithm is defined by a finite sequence of logical and well-defined instructions
to solve a given problem (sorting integers, finding the maximum number within a
list, computing the ith decimal place of π, etc.). Such instructions can be assigning
a value to a variable, adding two variables, and so on. For its good execution, an
algorithm needs some resources, more especially time and memory space. Therefore,
estimations of these resources that the algorithm is going to consume upon its run-
time is very interesting for analysing and comparing algorithms as well as to anticipate
their execution. In Computer Science, such estimations are commonly called the space
complexity, i.e. the estimation of maximum memory needed to be allowed to the
algorithm for its good execution, and the time complexity, i.e. the estimation of the
run-time of the algorithm. Given that, nowadays, memory is cheap and easy to add
to most computers, intensive focus is done on the time complexity. Space complexity
is still interesting to keep in mind (see Remark 1.1), and can even be essential in
a space-limited environment as embarked robotics, satellites, etc. Therefore, from
here, we might simplify "time complexity" into "complexity". If there is a risk of
misunderstanding, we will precise which type of complexity is discussed about.

Remark 1.1. Despite memory being cheap and easy to add to most computers, mem-
ory consumption should still be in every developer’s mind. Indeed, every computer’s
memory is limited and thus all software cannot consume more and more memory on
their own. This is among the main reasons of computer replacements: slowdown of the
system because of the lack of memory. When all software are using lots of memory, the
entire computer system tends to get slower. Therefore, software ecodesign encourages
developers to optimise the memory-consumption of the software they develop as well
as the run-time.

The time complexity of a given algorithm is not given in terms of time per se, but
rather as a function of the inputs’ size whose result is the number of basic instructions,
also called unit-cost operations. As an example of a time complexity expressed with
more than one input, the Hopcroft-Karp algorithm [HK73], that will be seen later
in this chapter, has a time complexity of O(m

√
n) with m the number of edges and

n the number of nodes (these notions will be seen with more details in Section 1.2).
The unit-cost operations are different from one model of computation to another. Two
very common models used in analysis of algorithms are Turing machines and random-
access memory machines (or RAM machines) which was first described by Cook and
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Reckhow [CR73]. Turing machines are more of a theoretical interest, while RAM
machines are closer to the functioning of real-life computers. Unit-cost operations, as
listed in [AHU74], are: LOAD, STORE, ADD, SUB, MULT, DIV, READ, WRITE (8
operand operations), JUMP, JGTZ, JZERO (3 label operations) and HALT. These 12
unit-cost operations allow to describe all algorithms within the RAM machines model
of computation. We will not go into details for each of these operations and will just
say that any basic mathematical operation (addition, subtraction, multiplication and
division) between values are unit-cost operations as well as reading and writing values
within the memory.

Currently, there are two main cost models commonly admitted and used to eval-
uate the time complexity of an algorithm, both formally described in 1974 by Aho et
al. [AHU74]. The logarithmic cost model offers more details as it distinguishes the
cost of every unit-cost operations. In fact, the logarithmic cost model details the cost
proportionally to the number of bits used during the operation. However, such a de-
tailed approach takes time to compute an algorithm’s time complexity. It is critical in
some contexts, such as cryptography, but common analyses of algorithms do not need
as many details. The uniform cost model considers that all unit-cost operations have
the same cost: 1 unit of time. Even if all the operations do not take the same amount
of time in practice (a multiplication could be 100 times slower than an addition), this
is a realistic model for most use cases in Computer Science.

In the remainder of this thesis, all time complexities of algorithms will be ex-
pressed with the hypothesis of a uniform cost model for RAM machines in mind as it
is Turing-equivalent [CR73; HPV75].

Now that we have a model of computation, we can compute the time complexity
of an algorithm. For this, we associate to each instruction the number of unit-cost
operations it needs to be correctly executed and multiply it with the number of times
the instruction is executed during the algorithm’s run-time. The time complexity
of the algorithm is the sum of the cost of all instructions, i.e. the total number of
unit-cost operations that were executed along the run-time of the algorithm.

Given the input’s size n, several type of analyses can be done on algorithms.
The two most used are the average-case complexity and the worst-case complexity.
The average-case complexity focuses on the complexity of the algorithm to solve the
problem in average, that is the complexity is defined with respect to a probabilistic
distribution of the inputs. The worst-case complexity, which is probably the most
used type of algorithms analyses, gives the complexity of the algorithm for the worst
input of a given size n. For the worst-case complexity, it is common to compute an
upper bound of the real worst-case complexity. However, one should be careful when
computing the complexity as an algorithm with O(n log(n)) complexity is also an
O(n2) algorithm, but when looking for the better algorithm to solve a given problem,
one is inclined to select the faster algorithm, that is the one with the smallest time
complexity.

Finally, we would remind that algorithms’ complexities are theoretical tools. How-
ever, the performance estimated by these tools is not necessarily a good reflection
of the performance measured in practice. Let us take, as an example, the prob-
lem of sorting a list of n integers into increasing order. Among the most efficient
known algorithms for this problem, there are the merge sort algorithm [NT63] and
the quicksort algorithm [Hoa61]. The former has an average-case complexity of
O(n log(n)) and a worst-case complexity ofO(n log(n)), while the latter has an average-
case complexity of O(n log(n)) and a worst-case complexity of O(n2). One could be
inclined to choose the merge sort algorithm as its complexities in average and worst
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cases are better or equivalent to the complexities of the quicksort algorithm. However,
it has been shown that the quicksort algorithm is faster in practice than the merge
sort algorithm in certain situations (type data structure used for the list, etc.). When
selecting an algorithm to solve a given problem, one should therefore not necessarily
rely only on the algorithms’ complexities as algorithms with worse complexities can
be in fact faster in practice than algorithms with better complexities.

1.1.4 On complexity classes

From the complexities computed with the notions seen in the previous subsection,
problems have been grouped into families and the complexities have been classified
depending on how high they are.

Definition 1.5 (Polynomial complexity). An algorithm, whose worst-case complexity
can be written as f(n), has a polynomial complexity if and only if its complexity is
bound by a polynomial of order k (k ∈ N can be as high as necessary), i.e. ∃k ∈
N, f(n) ≤ nk. We also say that such an algorithm is polynomial.

A decision problem is a mathematical problem whose expected solution is either
"yes" or "no". For instance, knowing if it is possible to go from Nantes, France to
Lille, France by car in less than 700km is a decision problem.

Definition 1.6 (Class P). P is a class of complexity that contains all the decision
problems that are decidable and for which decidability can be proven with a polynomial
algorithm.

Definition 1.7 (Class NP). NP is a class of complexity that contains all the decision
problems for which a solution can be checked with a polynomial algorithm, that is there
is a polynomial algorithm that attests if a given assignment of variables is a valid
solution of the problem or not.

It is obvious that P ⊆ NP. The question is still open whether P = NP or
P 6= NP, notwithstanding it is assumed by most mathematicians and computer sci-
entists that P 6= NP (most results are built upon this hypothesis).

It is common to distinguish a problem from its instances. A problem is then a gen-
eral mathematical problem based on fixed but unknown data, whereas an instance of a
problem has the same definition of the problem but the data are known. Throughout
this thesis, we will be meticulous to talk about problems for the general mathemati-
cal form and of instance for a form of a given problem with specified data. Given a
decision problem Π, we note IΠ the set of its instances.

In the theory of complexity, as we can already see, all problems are not as easy to
solve and a hierarchy can be done. To help with this, reductions are powerful tools.
The most known and used one is the Turing reduction.

Definition 1.8 (Turing reduction). Let Π and Π′ be two decision problems. A Turing
reduction, noted ≤T , reducing problem Π to problem Π′ is a function f : IΠ → IΠ′

such that:

• f is computable in polynomial time

• Given a function g(P, IP ) answering yes or no to the instance IP of problem P ,
then: ∀IΠ ∈ IΠ, g(Π, IΠ) ⇐⇒ g(Π′, f(IΠ))
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Proposition 1.1 (Transitivity of Turing reduction). Turing reductions are transitive,
that is if Π1 ≤T Π2 and Π2 ≤T Π3, then Π1 ≤T Π3.

Definition 1.9 (NP-completeness). A decision problem Π is NP-complete if and
only if:

• Π ∈ NP

• ∀ Π′ ∈ NP,Π′ ≤T Π

The notion of NP-completeness was introduced by Cook [Coo71] when he proved
that the SATISFIABILITY (or SAT) problem was NP-complete. His work was ex-
tended by Karp in [Kar72] and his "21 NP-complete problems". Given existing
NP-complete problems, Lemma 1.1 shows how to prove that a given problem is NP-
complete.

Lemma 1.1. Let Π be a decision problem. To show that Π is NP-complete, it is
sufficient to show that:

• Π ∈ NP

• ∃ Π′ NP-complete such that Π′ ≤T Π

Definition 1.10 (NP-hardness). A decision problem Π is NP-hard if and only if
it can be reduced to any NP-complete problem: ∃ Π′ NP-complete, Π′ ≤T Π. Thus,
having an oracle for a NP-hard problem, any NP-complete problem can be solved in
polynomial time.
NP-hard problems can be seen as problems that are "at least as hard" as NP

problems to solve.

NP-complete problems are problems that are in NP and that are NP-hard.
Garey and Johnson gave an extensive survey on the notion of NP-hardness in

[GJ79]. This reference book gives a list of known NP-complete and NP-hard prob-
lems as well as all notions needed for these theories.

Decision problems are not the only kind of problems that computer scientists
aim to solve. Among them are also solution problems which are similar to decision
problems in such matter that they ask to exhibit the solution that is used to answer
the decision problem. Optimisation problems are problems that aim to minimise a
given quantity. For instance, "What is the minimal distance to visit all cities in
France?" (which is an instance of the famous Travelling Salesman Problem) is an
optimisation problem. Solution problems and optimisation problems have their given
classes of complexity (see [Pap94] for details), which are similar to the ones of decision
problems, such that it is common to amalgamate them in the names of the complexity
classes of decision problems. We are well aware of such a notation’s abuse but will do
so in this thesis for commodity.

1.2 Basic notions of Graph Theory

In this section, we will present notions of Graph Theory that will be of use in coming
chapters. These notions mostly come from [GM95], that curious readers can look at
for further information.
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1.2.1 Introduction to Graph Theory with the problem of the seven
bridges of Königsberg

Graphs are mathematical structures that present a wide variety of use, both theoret-
ically and practically. The foundation of Graph Theory can be traced back to 1736
with a paper of Leonhard Euler [Eul36]. Königsberg was set on both sides of the
Pregel River. Two islands were connected to each other or to both parts of the main-
land by a total of seven bridges (see Figure 1.1a). Euler discussed the possibility to
cross all seven bridges during a walk without crossing twice the same bridge, which
is now known as "The problem of the seven bridges of Königsberg". To answer such
a question, he introduced a mathematical structure, represented in Figure 1.1b, that
is called nowadays a graph. A graph is composed of vertices (also called nodes) and
of edges, which are links between two vertices. In Figure 1.1b, each edge represents a
bridge, while vertices represent either an island or a mainland. Vertex A represents
the left island, vertex D the right island, while vertex B represents the upper mainland
and vertex C represents the lower mainland.

(a) Map that inspired the problem1 (b) Graph representation of the problem of
the seven bridges of Königsberg

Figure 1.1: The problem of the seven bridges of Königsberg

The order n of a graph is the total number of vertices. The size m of a graph is the
number of edges. As the edges are not oriented, the graph is said to be undirected (it
is directed otherwise). If an edge is oriented, it can be used only in the given direction,
in which case we talk about arcs instead of oriented edges. Formally, a graph is noted
G = (V,E) with V being the set of vertices and E the set of edges. An edge between
vertices v and w is noted (v, w). In an undirected graph, we suppose that (v, w) ∈ E
and (w, v) ∈ E. In a directed graph, (v, w) ∈ E if and only if there is an arc from v
to w. If (v, w) ∈ E and (w, v) /∈ E, there is an arc from v to w but not from w to
v. The degree of a vertex is the number of incident edges. Two edges with a common
vertex are said to be adjacent.

A finite sequence of edges of E is a walk. If all edges are distinct, it is a trail. A
path is a trail where all the vertices are distinct. Whenever the first and last vertices
of a path are the same, the path is characterised as a cycle. If the graph does not
have any cycle, it is acyclic. If, for any two different vertices v, w ∈ V , there exists a
path from v to w, the graph is connected. If this property is true in a directed graph,
the graph is strongly connected. G′ = (V ′, E′) is a subgraph of G = (V,E) if and

1This image, made by Bogdan Giuşcă, is distributed under Creative Commons Attribution-Share
Alike 3.0 Unported License.

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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only if V ′ ⊆ V , E′ ⊆ E and ∀(v, w) ∈ E′, v ∈ V ′ and w ∈ V ′. A strongly connected
component of a graph G is a maximal strongly connected subgraph of G, that is the
strongly connected component cannot be extended with other nodes of G without
violating the strongly connected property. In [Tar72], Tarjan gives an algorithm to
find all connected components of a graph in linear time. This algorithm also gives all
the articulation points, that is the vertices such that their removal would increase the
number of connected components.

The neighbourhood N(v) of a vertex v in an undirected graph G = (V,E) is the
set of vertices w ∈ V such that (v, w) ∈ E: N(v) = {w ∈ V | (v, w) ∈ E}. In a
directed graph, the predecessors of a vertex v are its neighbours w ∈ V such that
(w, v) ∈ E and its successors are its neighbours z ∈ V such that (v, z) ∈ E. The set
of predecessors is noted N−(v) while the set of successors is noted N+(v).

For the graph representation of the problem of the seven bridges of Königsberg
(Figure 1.1b), the graph has an order of 4, a size of 7 and is connected. Euler proved
that the problem of the seven bridges of Königsberg cannot be solved: he showed that
such a walk can exist only if there are exactly zero or two nodes of odd degree (it was
later showed that it is also a sufficient condition).

A forest is an acyclic graph. A tree is a particular type of graphs G = (V,E) that
are connected and acyclic. They have the particular property that |E| = |v| − 1. A
tree is generally represented with a node at the top, the root node, and a recursive
form: each node is linked to a node in top of itself (its parent node) and a number of
nodes below itself (its children nodes). A binary tree is a tree such that nodes have
at most 2 children nodes. Nodes that don’t have any children nodes are called leaves,
other ones being called internal nodes. A branch of a tree starts from an edge of a
parent node to a leaf node.

A bipartite graph is a graph G = (V,E) such that vertices can be divided into two
disjoint sets V ′ and V ′′ such that edges are necessarily from one set to the other, i.e.
∀(v, w) ∈ E, v ∈ V ′ ∧ w ∈ V ′′ ∨ v ∈ V ′′ ∧ w ∈ V ′. A bipartite graph is usually noted
G = (U, V,E) with U and V the two parts, i.e. the two disjoint sets, and E the set of
edges. In such a notation, the order of the graph is n = |U |+ |V |.

1.2.2 Matching theory

Definition 1.11 (Matching). Given a graph G = (V,E), a matching M is a subset
of the edges such that no two edges in M share a vertex. Edges in M are said to be
matched, and unmatched otherwise. A vertex is matched if it is an endpoint of a
matched edge, and unmatched otherwise. The size of a matching M , noted |M |, is
the number of matched edges.

Definition 1.12 (Maximal matching). A matching M of a graph G = (V,E) is
maximal if and only if there is no matching M ′ of G that contains M . In other
words, every edge in E is either matched, either adjacent to a matched edge.

Definition 1.13 (Maximum matching). A matching M of a graph G = (V,E) is
maximum if and only if there is no matching of G of greater size, i.e. M is maximum
iff |M | = max

M ′ is a matching of G
|M ′|.

Every maximum matching is of course maximal, but the converse is not true. Fig-
ure 1.2 shows two maximal matchings of the same graph, one of them being maximum.
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(a) Maximal matching (b) Maximum matching

Figure 1.2: Maximal and maximum matchings

Definition 1.14 (Perfect matching). A matching M of a graph G = (V,E) is perfect
if and only if all the vertices are matched.

Research have been led to found a maximum matching in a graph. Let us see how.

Definition 1.15 (Alternating path). Given a matching M of a graph G = (V,E), an
alternating path with M is a path that starts with an unmatched vertex and such that
visited edges are alternatively unmatched and matched.

Definition 1.16 (Augmenting path). Given a matching M of a graph G = (V,E),
an augmenting path with M is an alternating path with M that starts and finishes on
unmatched vertices. Such vertices are also said to be free.

Lemma 1.2 (Berge’s Lemma [Ber57]). A matching M of a graph G = (V,E) is
maximum iff there is no augmenting path with M.

From Berge’s Lemma (Lemma 1.2), it is possible to compute a maximummatching.
We first start with a given matching M (that can be obtained by randomly selecting
edges that are unmatched and that are not adjacent to matched edges until none are
available) of size k. If an augmenting path P is found, the matching can be extended
by removing all matched edges of P from M and by adding all unmatched edges of P
to M . We now have a matching M of size k + 1. Following Berge’s Lemma, we can
repeat this process until no augmenting path can be found anymore. The resulting
matching M is then maximum.

For a time, the Hungarian algorithm [Kuh55] was used to find a maximum match-
ing in bipartite graphs. Originally with a time complexity of O(|V |4) [Kuh55], the
complexity was improved to O(|V |3) by Edmonds and Karp [EK72] and by Tomizawa
[Tom71]. In term of space complexity, the Hungarian algorithm has a worst-case
complexity of O(|V |2).

In 1973, Hopcroft and Karp came with a better algorithm for finding maximum
matching in bipartite graphs [HK73]. This algorithm, designed for bipartite graphs,
has a worst-case time complexity of O(m

√
n) and a worst-case space complexity of

O(n), with n the number of vertices and m the number of edges. As m ≤ n2, one
can easily see the gain in both time and space complexities, despite both algorithms
being based on Berge’s Lemma.
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Algorithm 1.1: Hopcroft-Karp algorithm
1 Function FindMaximumMatching(G = (U, V,E) : bipartite graph) : integer
2 begin
3 for i ∈ U ∪ V do
4 matched[i]← −1

5 end
6 F ← U ∪ V
7 do
8 found← false
9 for u ∈ F ∩ U do

10 mate← BFS(G, u, F )
11 if mate 6= −1 then
12 F ← F \ {u,mate}
13 j ← mate
14 do
15 k ← next[j]
16 matched[j]← k
17 matched[k]← j
18 j ← next[k]

19 while k 6= u
20 found← true
21 end
22 end
23 while found
24 return |{i ∈ U ∪ V | matched[i] 6= −1}|/2
25 end

To implement the Hopcroft-Karp algorithm for a bipartite graph G = (U, V,E),
we consider without loss of generality that nodes in U are numbered from 0 to |U |−1
and nodes in V are numbered from |U | to |U |+ |V | − 1. For convenience in notation,
we will use the nodes’ notation as their corresponding integer value. We consider an
array of integers next[] of size |U |+ |V | that will be used to represent the augmented
path, should one exists, with next[i] = j meaning that node j is after node i in the
path. F is the set of free nodes, that is nodes that are still unmatched. Q is a queue,
and we will note push() (respectively pop()) the function to add a value at the end
of the queue (respectively remove a value at the beginning of the queue). in is a set
of integers representing the nodes that have been visited during the Breadth-First
Search. Finally, an array of integer matched[] of size |U | + |V | is used to indicate
matched edges, matched[i] = j meaning that the current matching contains the edge
(i, j) (of course, we have matched[j] = i).

Algorithm 1.2 shows a Breadth-First Search (BFS) within the bipartite graph that
is looking for an augmented path from the matching given by array matched. Line 3
initialises the path to be empty and Line 4 initialises the queue with the free node i
and last as true because we want to start with unmatched edges. While the queue Q
is not empty (Line 5), the current searched node (j, last) is removed from Q (Line 6).
Given the value of last, the set of nodes to visit next in the search are added to set
visit (Line 7). If last is true (meaning that last taken edge was matched), we want to
visit all neighbours but the matched value, else we need to visit the matched value to
guarantee the path is an alternating path. For each node to visit next (Line 12), if this
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Algorithm 1.2: Breadth-First Search (BFS) algorithm
1 Function BFS(G = (U, V,E) : bipartite graph, i : integer, F : set of free

vertices) : integer
2 begin
3 in← ∅
4 Q.push((i, true))
5 while Q 6= ∅ do
6 (j, last)← Q.pop()
7 if last then
8 visit← N(j) \ {matched[j]}
9 else

10 visit← {matched[j]}
11 end
12 for k ∈ visit do
13 if k /∈ in then
14 next[k]← j
15 if matched[k] = j then
16 Q.push((k, true))
17 else
18 Q.push((k, false))
19 end
20 in← in ∪ {k}
21 if k ∈ F then
22 return k

23 end
24 end
25 end
26 end
27 return −1

28 end

node k is not in the path (Line 13), then we add k to the path (array next represents
the path in the converse sense it was visited during the search) and add k to Q. If k
is a free node (Line 21), the search can be stopped immediately as we have found a
new augmenting path. The algorithm returns the value ending the augmenting path,
should one was found, and returns −1 otherwise.

Algorithm 1.1 is the main algorithm of the Hopcroft-Karp algorithm. It starts by
initiating the matching to be empty (Line 3) and the set of free nodes F as all the
nodes (Line 6). found is a boolean indicating if an augmenting path was found. So
while it is the case (Line 7), we loop and look for a new augmenting path, should
one exists. For each free node u in U (Line 9), we call the BFS to see if there is an
augmenting path (Line 10). If an augmenting path is found (Line 11), i.e. mate 6= −1,
u and mate are removed from the free nodes (Line 13) and the matching is updated
(Line 14). found is then updated to indicate that an augmenting path was found and
the algorithm should loop again (Line 20). Finally, the algorithm returns the size of
the maximum matching that was computed (Line 24).

Figure 1.3 shows an example of how to find maximum matching with an augment-
ing path. The left graph shows the bipartite graph and a matching (represented in
red). The middle graph shows free nodes thicker and an augmenting path in dashed
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lines. Finally, the right graph shows the resulting matching, which is maximum in
this example.
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(c) Maximum matching

Figure 1.3: Example of finding maximum matching with augmenting
paths

Micali and Vazirani had later given an algorithm of the same time complexity
as the Hopcroft-Karp algorithm that finds a maximal matching in a general graph
[MV80].
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Chapter 2

Constraint Programming

In order to solve satisfaction and optimisation problems, programming paradigms,
such as Linear Programming or Boolean Satisfiability, are used. However, these
paradigms come with a certain framework, which could lead to impossibility to express
some particular constraints, or hardly doing it with ingenuity. To bypass this difficulty,
Constraint Programming (CP) arose in the 1970s and 1980s as a new paradigm to
solve satisfaction and optimisation problems, among foundational papers are [Mon74;
Lau78; Hen89]. The strength of Constraint Programming is its high expressiveness in
the variety of constraints that can be used. In this chapter, we are going to present
fundamental notions and notations in Constraint Programming that are necessary
to present the contributions described in Part II and Part III. The sections of this
chapter add each a key notion of Constraint Programming that, when put together,
allow to understand how this framework solves problems. Section 2.1 presents how to
model a given problem. Section 2.2 presents very key notions of Constraint Program-
ming, which are the propagation process and the notions of consistencies. Section 2.3
explains how a given model is solved.

Most of the notations we will use in this chapter come directly from the Handbook
of Constraint Programming [RBW06]. For readers that want to deepen into the no-
tions presented in this chapter, we recommend the reading of this book. Notions in
Section 2.1 and Section 2.2 are mostly approached in the chapter by Christian Bessière
[Bes06] and the chapter by Christian Schulte and Mats Carlsson [SC06] and the ones
in Section 2.3 in the chapter by Peter van Beek [Bee06].

2.1 A flexible modelling paradigm

2.1.1 Basic notions and notations

Constraint Satisfaction Problems (CSP) and Constraint Optimisation Problems
(COP) are mathematical problems that are described with variables, domains and
constraints. The (initial) domain D(x) of a variable x is the set of values that can be
affected to this variable. Domains are finite most of the time. Without loss of gener-
ality, finite domains can be mapped to the set Z of integers, thus we will consider all
along this manuscript that we manipulate integer variables whose domain is therefore
a finite subset of Z. Constraints specify relations between variables that are allowed.
A solution of the problem is an affectation of a value to each variable from its domain
such that all constraints are satisfied.

Definition 2.1 (Constraint [Bes06]). A constraint c is a relation defined on a sequence
of k variables scope(c) = 〈x1, . . . , xk〉. c is the subset of Z|scope(c)| that contains the
combinations of values (or tuples) τ ∈ Z|scope(c)| that satisfy c. Such a tuple τ is also
called a solution of the constraint c and we note τ ∈ c. We note τ [xi] the assigned
value to xi in a tuple solution.
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A constraint can be either specified extensionally by giving the set of its satisfying
tuples, either intensionally by a mathematical formula. For instance, we can define the
constraint c1(x, y, z) ≡ ((1, 1, 2), (1, 2, 2), (2, 3, 3)) extensionally. The constraint c1 is
satisfied only when the variables x, y and z take simultaneously values that correspond
to one of the listed tuples. x = 1, y = 1, z = 2 is a solution of the constraint, whereas
x = 1, y = 1, z = 1 is not a solution of the constraint. The constraint allDifferent
can be intensionally defined as following: allDifferent(x1, . . . , xn) ≡ (

∧
1≤i<j≤n

xi 6=

xj). In other words, no two variables in the scope of the constraint can simultaneously
take the same value.

Definition 2.2 (Constraint Network [Bes06]). A constraint network is a triplet
〈X,D,C〉 defined as:

• X = (x1, . . . , xn) is a finite sequence of integer variables

• D = D(x1)×· · ·×D(xn) is the cartesian’s product of the domain of each variable,
with D(xi) ⊂ Z for all xi ∈ X

• C = {c1, . . . , ce} is the set of constraints whose corresponding scopes are subsets
of X.

A Constraint Satisfaction Problem (CSP) is the problem consisting in looking
for a solution of a given constraint network. A Constraint Optimisation Problem
(COP) is defined as a CSP and an objective we want to optimise (either minimise or
maximise), that is the minimisation or maximisation of an evaluation function (also
called objective-function) f : X −→ Z of the variables. Any solution whose evaluation
value is minimal (or maximal given the objective-function) is an optimal solution.

Example 2.1. Let x, y and z be three variables whose domains are D(x) = {1, 3, 4},
D(y) = {2, 3, 4} and D(z) = {3, 4, 5, 7, 9}. We consider the two constraints c1(x, y) ≡
x ≤ y and c2(x, y, z) ≡ 2x + y ≤ z. This is a CSP, whose solutions are the tuples
(1, 2, 4), (1, 3, 5), (3, 3, 9). We can build a COP from this CSP by minimising the fol-
lowing objective-function: f(x, y, z) = 5x−2y+z. The only optimal solution is (1, 3, 5)
which evaluates at 4. If, for the same CSP, we want to minimise the objective-function
f(x, y, z) = z, then the optimal solution is (1, 2, 4) whose evaluation is 4.

Definition 2.3 (Instantiation [Bes06]). Given a constraint network N = 〈X,D,C〉:

• An instantiation I on Y = (x1, . . . , xk) ⊆ X is an assignment of values v1, . . . ,vk
to the variables x1, . . . , xk, that is I is a tuple on Y . We will note
I = {x1 −→ v1, . . . , xk −→ vk}.

• An instantiation I on Y is valid if for all xi ∈ Y, I[xi] ∈ D(xi).

• An instantiation I on Y is locally consistent iff it is valid and for all c ∈ C with
scope(c) ⊆ Y , I[scope(c)] satisfies c. If I is not locally consistent, it is locally
inconsistent.

• A solution to a network N is an instantiation I on X which is locally consistent.

• An instantiation I on Y is globally consistent (or consistent) if it can be ex-
tended to a solution (i.e. there exists a solution to N such that I is the subset
of this solution over Y ).

For convenience, and as we will often refer to these notions in this thesis, we
introduce here notions and notations important for the rest of the thesis.
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Notation 2.1. The lower bound is the smallest value in the domain of the variable
and is noted with a line underneath the variable: x = min(D(x)). The upper bound
is the greatest value in the domain of the variable and is noted with a line overhead
the variable: x = max(D(x)).

A variable x is instantiated whenever its domain contains only one value:
|D(x)| = 1.

2.1.2 An example : The N-queens problem

In this section, we show how to model in CP a famous mathematical puzzle: the
8-queens puzzle, and some of its variant. The 8-queens puzzle was first presented
by chess composer Max Bezzel in 1848. The idea is to find how to place 8 queens
on a chess board so that no two queens threaten each other. As, in chess, the queen
threatens all squares within its row, its columns and its diagonals. The puzzle consists
in finding how to place the 8 queens on a 8× 8 board so that no two pieces share the
same row, column or diagonal. Figure 2.1 shows two solutions of the 8-queens puzzle.

(a) Solution 1 (b) Solution 2

Figure 2.1: Example of solutions for the 8-queens problem1

From this puzzle rapidly arose the more general N-queens problem, which con-
sists in finding how to place n queens on a n×n board so that no two queens threaten
each other. In 1969, Hoffman et al. showed that there exist solutions for all natural
number n except for 2 and 3 [HLM69]. Let us mention that, in 1991, Chabrier et al.
showed how to solve this problem up to 1 million queens [CCT91]. Let us see how to
model such a problem.

We introduce variables bi,j for all (i, j) ∈ [1, n]2 such that bi,j = 1 if there is a
queen on the square at row i and column j, and bi,j = 0 otherwise. Such variables
are called boolean variables. Figure 2.2 shows one model for the N-queens problem.
Equation 2.1 enforces that there can be only one queen on each row. Equation 2.2 is
equivalent for the columns. Equations 2.3 and 2.4 enforce that no two queens can be
on the same diagonal.

We thus have built a CP model for the general N-queens problem using n2 variables
of domains’ size 2 and 4n constraints. However, this is not the only model possible to
solve this problem. See for instance a model using integer variables in Figure 2.3. In

1The author would like to thank Apronus for the authorisation to use their online tool to generate
the chess diagrams.

https://www.apronus.com/chess/
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∀i ∈ [1, n],
∑
j∈[1,n]

bi,j = 1 (2.1)

∀j ∈ [1, n],
∑
i∈[1,n]

bi,j = 1 (2.2)

∀k ∈ [1, 2n− 1],
∑

(i,j)∈[1,n]2

n−j+i=k

bi,j ≤ 1 (2.3)

∀k ∈ [2, 2n],
∑

(i,j)∈[1,n]2

i+j=k

bi,j ≤ 1 (2.4)

∀(i, j) ∈ [1, n]2, D(bi,j) = {0, 1} (2.5)

Figure 2.2: MIP Boolean model for the N-queens problem

this model, we use n integer variables x1, . . . , xn, one for each row, and whose value
indicates the column of the queen at the corresponding row. For instance, if x3 = 2,
it means that the queen in row 3 is on the square at column 2. Equation 2.6 thus
enforces that no two queens can share the same row or column. Equations 2.7, 2.8
and 2.9 together enforce that two different queens cannot be on the same diagonal.
This model uses 3n variables of domains’ size n and 2n+ 3 constraints.

allDifferent(x1, . . . , xn) (2.6)

∀i ∈ [1, n],

{
yi = i+ xi

zi = i− xi
(2.7)

allDifferent(y1, . . . , yn) (2.8)

allDifferent(z1, . . . , zn) (2.9)

∀i ∈ [1, n], D(xi) = {1, . . . , n} (2.10)

Figure 2.3: Integer model for the N-queens problem

This is an example that there does not exist one single CP model for a given
problem. Moreover, for the integer model presented in Figure 2.3, we have introduced
variables whose only purpose is to help to build the model. We thus distinguish
decision variables (x1, . . . , xn in our example), whose instantiation is the minimal
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way to write a solution of the problem, from auxiliary variables (y1, . . . , yn, z1, . . . , zn
in our example), whose only purpose is to help building the model.

2.1.3 Finding a solution

To find a solution of the problem described by the CSP, one should explore the search
space, i.e. the set of all tuples, which is the cartesian product of the domains of the
decision variables. As explained in [Bee06], there are different possibilities to explore
the search space, the three most important ones being the backtracking search, the
local search and dynamic programming. In the context of this thesis, we are going
to present only the basic principles behind backtracking search, even if some of the
contributions could easily be applied in local searches.

The backtracking search in Constraint Programming consists in a search tree, a
node of which corresponding to a state of the domains of the variables. The idea
is to recursively branch on uninstantiated variables and observe the effect on the
constraints: whenever it is detected that a constraint cannot be satisfied anymore,
the exploration of the branch is stopped and we go back to the parent node. This is
called a backtrack, during which the domains of the variables are restored to the state
they were in before branching. More generally, we qualify of backtrackable any data
structure that is restored during backtrack.

In Section 2.2, we will look deeper into the process that checks whether a constraint
can still be satisfied or not after a branching: the propagation. During this phase, we
will see several mechanisms that remove values v from D(x) whenever assigning x to
v leads the current instantiation I on the variables X to be locally inconsistent. In
Section 2.3, we will look deeper into the branching process, also called search, and
most especially on how we select variables and values to branch on.

2.2 Propagation and consistencies

2.2.1 Generalised Arc Consistency

To find a solution to a constraint network, we need to find an assignment of a value to
each variable from its domain such that all constraints are satisfied. To avoid losing
time on values that cannot lead to a solution, Constraint Programming highly relies
on a principle called constraint propagation. The idea is to call each constraint to
filter values in domains of variables in its scope that it identifies as values that do not
appear in any of the constraint’s solutions. Such values are said to be inconsistent.

In Constraint Programming, there exist several types of consistencies, that is level
of confidentiality that remaining values in variables’ domains will lead to a solution
of the problem. The oldest and most well-known one is (generalised) arc consistency.
It is also known as the domain consistency and was introduced in [HSD94].

Definition 2.4 ((Generalised) Arc Consistency ((G)AC) [Bes06]). Given a constraint
network N = 〈X,D,C〉, a constraint c ∈ C, and a variable x ∈ scope(c),

• A value v ∈ D(x) is consistent with c in D iff there exists a valid tuple τ
satisfying c such that v = τ [x]. Such a tuple is called a support for (x, v) on c.

• The domain D is (generalised) arc consistent on c for x iff all the values in D(x)
are consistent with c in D.

• The network N is (generalised) arc consistent iff D is (generalised) arc consistent
for all variables in X on all constraints in C.
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• The network N is arc consistent iff ∅ is the only domain tighter than D which
is (generalised) arc consistent for all variables on all constraints.

As most of the time, there is no ambiguity on the different notations, we will often
say ’constraint c is GAC’ instead of ’D is arc consistent on c for all x ∈ scope(c)’.
The same abuse of language is done for arc consistency for a value: we will say ’value
v is (arc) consistent’ instead of ’value v is consistent with c in D’.

Before presenting other consistencies, let us go back to the constraint propaga-
tion process. As we said, constraint propagation consists in calling each constraint
to remove invalid values from variables’ domain. This is done until no more value
can be removed from any variables’ domain by any constraint. This particular state,
where no more value can be removed, is called the fixpoint. In [Mac77], Alan Mack-
worth proposed AC3, an algorithm that achieves (generalised) arc consistency on a
network. Whenever this algorithm stops, either we know for sure that the network is
inconsistent, either a fixpoint has been reached.

Algorithm 2.1: Revise function
1 Function Revise(x : variable, c : constraint) : boolean
2 begin
3 filt ←− false
4 foreach v ∈ D(x) do
5 if @τ ∈ c s.t. τ [x] = v then
6 D(x)← D(x) \ {v}
7 filt ←− true
8 end
9 end

10 return filt
11 end

Algorithm 2.2: AC3 algorithm
1 Function PropagateAC3(N = 〈X,D,C〉 : constraint network) : boolean
2 begin
3 Q←− {(xi, c) | c ∈ C, xi ∈ scope(c)}
4 while Q 6= ∅ do
5 (xi, c)←− Q.pop()
6 if Revise(xi, c) then
7 if D(xi) = ∅ then
8 return false
9 else

10 Q←− Q ∪ {(xj , c′) | c′ ∈ C ∧ c′ 6= c ∧ xi, xj ∈ scope(c′) ∧ i 6= j}
11 end
12 end
13 end
14 return true
15 end

See Algorithms 2.1 and 2.2 for the AC3 algorithm. Algorithm 2.1 takes as parame-
ters a variable and a constraint in which scope it is in and looks for a support for every
value in the domain of such a variable according to the constraint. If none can be



2.2. Propagation and consistencies 25

found, the value is removed from the variable’s domain. Finally, the algorithm returns
true if it removed at least one value from the variable’s domain. Algorithm 2.2 is the
main algorithm, which will call Algorithm 2.1, that aims to reach the fixpoint. If a
filtering occurs for variable x in constraint c, the domain D(x) of variable x is checked.
If it is empty, we have reached a dead end and the algorithm returns false. Otherwise,
we want to revise all the other variables in the constraint’s scope. The algorithm
continues while there are variables to revise. It returns true in the end, meaning that
a fixpoint has been reached without finding any contradiction (emptying a domain).

Whenever a fixpoint is reached, if there are uninstantiated variables, then we will
have to test and try the different possibilities. This process in described in more
details in Section 2.3.

Note that, as AC3 is non optimal, other algorithms have since been proposed
to achieve arc-consistency for constraint propagation: AC4 [MH86], AC6 [BC93],
AC2001 [Bes+05], AC7 [BFR95; BR97; BFR99], AC8 [CJ98], AC3.2 and AC3.3
[LBH03]. In [Rég05], Régin presented AC-*, a configurable, generic and adaptive
arc-consistency algorithm, that allows to combine several techniques used by other
existing arc-consistency algorithms at the same time.

2.2.2 Fastening the propagation process with weaker consistencies

In general, assuming P 6= NP, enforcing GAC is not tractable. However, it does
not mean that it is impossible to filter any inconsistent value in practice. Other
consistencies have therefore been introduced to characterise the state of the domains of
the variables with respect to the constraints’ satisfaction. In the context of this thesis,
we will not talk about consistencies that are stronger than GAC. More information on
them can be found in [Bes06]. Here, we concentrate on consistencies that are weaker
than GAC, i.e. fewer values are filtered than for GAC, but generally faster to enforce.
While enforcing these consistencies can still take exponential time in general, focus is
made on theoretical speed of polynomial algorithms.

Definition 2.5 (Consistencies on bounds [Cho+06; Bes06]). Given a constraint net-
work N = 〈X,D,C〉, given a constraint c, a bound support τ on c is a tuple that
satisfies c and such that for all x ∈ scope(c), x ≤ τ [x] ≤ x. A bound support in which
each variable is assigned a value in its domain is a support.

• A constraint c is bound(Z) consistent (BC(Z)) iff for all x ∈ scope(c), (x, x)
and (x, x) belong to a bound support on c.

• A constraint c is range consistent (RC) iff for all x ∈ scope(c), for all v ∈ D(x),
(x, v) belongs to a bound support on c.

• A constraint c is bound(D) consistent (BC(D)) iff for all x ∈ scope(c), (x, x)
and (x, x) belong to a support on c.

The network N is bound(Z) / range / bound(D) consistent iff all its constraints
are bound(Z) / range / bound(D) consistent.

Interestingly, more focus has been made on the bound(Z) consistency than on the
bound(D) consistency, especially because finding support can be NP-hard for some
constraints. Thus, in the literature, when people talk about bounds consistency (BC),
they refer to the bound(Z) consistency.

Example 2.2. This example is the one depicted in [Bes06] to show differences of fil-
tering between BC(Z), BC(D), RC and GAC. In this example, the constraint network
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is composed of 6 variables x1, . . . , x6 of respective domains D(x1) = D(x2) = {1, 2},
D(x3) = D(x4) = {2, 3, 5, 6}, D(x5) = {5}, D(x6) = {3, 4, 5, 6, 7}. The only con-
straint is allDifferent(x1, . . . , x6). The state of the domains after BC(Z), BC(D),
RC and GAC are enforced on the allDifferent constraint can be seen in Figure 2.4.

Figure 2.4: Propagation difference of BC(Z), BC(D), RC and GAC
on the allDifferent(x1, . . . , x6) constraint of Example 2.2 [Bes06]

Theorem 2.1 ([Bes06]). Generalised arc consistency is strictly stronger than range
and bound(D) consistencies, which are themselves strictly stronger than bound(Z) con-
sistency, which is itself strictly stronger than Forward Checking (see Definition 2.6).
Bound(D) consistency and range consistency are incomparable.

Figure 2.5: Graphical representation of the comparison of consisten-
cies’ strength

As we have seen, there are several consistencies, and thus different way to apply
a constraint’s filtering. More specifically, the line 5 of Algorithm 2.1 is modified to
respect the wanted consistency’s definition. Moreover, specific algorithms have been
designed over the years for many different constraints to filter inconsistent values and
for different consistencies. These algorithms are a sort of rewriting of Algorithm 2.1
(and most specifically of line 5) and are called filtering algorithms.

If we focus on the allDifferent constraint for instance, Jean-Charles Régin
[Rég94] presented a O(n2d2) algorithm that enforces GAC, n being the number of
variables in the scope of the constraint and d the number of different values that all
variables can take. In 1996, Michel Leconte gave a filtering scheme for the Range
Consistency for the allDifferent constraint [Lec96]. Later, Mehlhorn and Thiel
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[MT00] gave a O(n log(n)) algorithm to enforce Bounds Consistency. Lopez-Ortiz et
al. [Lóp+03] also gave a O(n log(n)) algorithm to enforce Bounds Consistency, their
algorithm being faster in practice. Furthermore, let us note that in order to allow
better solving performance in practice, it might be beneficial to know when to apply
such or such consistency to best filter the variables’ domains. Boisberranger et al.
[Boi+13] studied when it is worthwhile to propagate GAC for the allDifferent
constraint instead of only Bounds Consistency.

We would like to remark that it is possible for a filtering algorithm not to have a
characterised consistency. For instance, in [Sha04], Paul Shaw gives a filtering algo-
rithm for the BinPacking constraint. His filtering algorithm is better than bound(Z)
consistency but does not achieve GAC, neither it does RC. Therefore, it has an un-
defined consistency, being strictly between BC and RC.

Finally, there is a trade-off between the strength of filtering (consistency) and
the speed of execution (worst-case time complexity). When solving some problems,
it might be interesting to filter less but to explore nodes quicker, either to find at
least one solution or even to do the proof of optimality. However, the contrary is
also true: stronger filtering can lead to great cuts of the search space and therefore
to quickly find a solution or do the proof of optimality. This notion of trade-off is
of great importance in practice. For this reason, we will greatly concentrate on this
notion all along this thesis.

2.2.3 Fastening the propagation process with fewer calls to the fil-
tering algorithms

Another way to make the propagation process quicker is to avoid calling the filtering
algorithms whenever we know that they will have no effect on the domains of the
variables. To this end, in [FW91], Freuder and Wallace proposed a technique to
estimate when filtering is likely to be effective, therefore reducing the number of calls
to constraints’ filtering algorithms.

Forward Checking [GB65; HE80] has also been proposed to reduce the number
of calls to the Revise function (Algorithm 2.1). The idea is to call the function only
on uninstantiated variables xj that are in the scope of constraints c ∈ C such that
xj ∈ scope(c) and such that there is a variable xi ∈ scope(c) that has just been
instantiated.

Definition 2.6 (Forward Checking [Bes06]). Let N = 〈X,D,C〉 be a binary network,
i.e. a constraint network with only binary constraints, and Y ⊆ X such that |D(xi)| =
1 for all xi ∈ Y . N is forward checking consistent (FC) according to the instantiation
I on Y iff I is locally consistent and for all xi ∈ Y , for all xj ∈ X \ Y , for all
c(xi, xj) ∈ C, xj is arc consistent on c(xi, xj).

FC can be extended to general constraint network in several ways. Van Hentenryck
proposed a basic one in [Hen89]: A network is FC according to a partial instantiation
I on a subset Y of X iff I is locally consistent and for all xj ∈ X \ Y , for all c ∈ C
such that scope(c) \ Y = {xj}, xj is arc consistent on c (formulation from [Bes06]).
Bessiere et al. gave five other extension of FC to non-binary constraints [Bes+02].

2.2.4 Global constraints

Earlier, we presented the allDifferent constraint. This constraint is particular
as it expresses a certain modelling pattern. For the allDifferent constraint, the
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modelling pattern expresses that every two variables in the scope of the constraint
must take different values. What is special with such a modelling pattern is that it
always has the same definition and authorises variable size of accepted tuples. For
instance, allDifferent(x1, x2, x3) or allDifferent(x1, x2, x3, x4, x5) are two dif-
ferent constraints, with different size of accepted tuples. However, the inner definition
of both constraints is the same: two different variables must take different values.
Thus, allDifferent is more a class of constraints rather than a single constraint.
Such a class of constraints are usually called global constraint. Whenever it is used, a
global constraint has a given arity, i.e. the size of accepted tuples. Bessiere and Van
Hentenryck [BH03] defined several levels of globality for constraints.

Definition 2.7 (Global Constraint [BH03]). A constraint c is semantically global if
there exists no decomposition of c into constraints of smaller arity.

A constraint c is operationally global if there exists no decomposition of c into
constraints of smaller arity such that the same level of consistency can be maintained
with the decomposition.

A constraint c is algorithmically global if there exists no decomposition of c into
constraints of smaller arity that can maintain the same level of consistency with the
same time and space complexities.

Global constraints have been heavily developed in the last two decades, authorising
a lot of different modelling patterns. All these global constraints allow for an important
expressiveness when modelling problems. Beldiceanu et al. made an extensive list of
the global constraints that were proposed across the years: the Global Constraint
Catalog [Bel+07]. By default, global constraints can be decomposed into simpler
constraints, most especially arithmetical constraints, allowing still for basic pruning
of inconsistent values. However, to allow for better filtering for global constraints,
intensive work is done to propose different dedicated filtering algorithms for global
constraints, either to decrease the theoretical worst-case time complexity to enforce a
specific consistency, either to propose a filtering algorithm of a given consistency for
a given global constraint.

2.2.5 Solver design : improving the propagation

In this section, we focus a bit more on internal mechanics of constraint solvers, es-
pecially how to efficiently do constraint propagation. As we have seen, constraints’
consistency can widely vary. However, this heterogeneity is not supported by the
AC3 algorithm and all its improvements and variants. Therefore, the propagation
process described in Algorithm 2.1 and Algorithm 2.2 should be revised to authorise
such a diversity of constraints’ consistency. To this end, we introduce the concept of
propagator.

Definition 2.8 (Propagator [SC06]). A propagator p is a decreasing and monotonic
function that maps domains to domains:

• p is decreasing means that p(D) ⊆ D for all domains D. This property guaran-
tees that constraint propagation only removes values.

• p is monotonic means that p(D1) ⊆ p(D2) whenever D1 ⊆ D2.

A propagator p is correct for a constraint c iff it does not remove any valid assignment
for c: D ∩ c = p(D)∩ c. The scope of a propagator is the set of variables it reads and
can filter and is noted scope(p) for a propagator p. A propagator p is said to have
reached a fixpoint whenever p(D) = D.
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A constraint can be defined by a set of propagators, each embedding a filtering
algorithm. Consistencies of propagators are defined identically as they are for con-
straints. The set of propagators of a constraint c is noted prop(c). We note P the set
of all propagators of a CSP 〈X,D,C〉: P =

⋃
c∈C

prop(c). Algorithm 2.3 shows a basic

propagation engine [SC06]. This algorithm is robust to the variety of propagators,
and most especially to the coexistence of different consistencies at the same time.

Algorithm 2.3: Basic propagation engine
1 Function Propagation(N = 〈X,D,C〉 : constraint network) : boolean
2 begin
3 Q←− P
4 while Q 6= ∅ do
5 p←− Q.selectAndRemove()
6 D′ ←− p(D)
7 if ∃xi ∈ X s.t. D′xi = ∅ then
8 return false
9 else

10 M ←− {xi ∈ X | D(xi) 6= D′xi}
11 Q←− Q ∪ {q ∈ P | scope(q) ∩M 6= ∅}
12 D ←− D′
13 end
14 end
15 return true
16 end

Whenever there are propagators to propagate (Line 4), we select a propagator
p and remove it from Q (Line 5). The new domain D′ is computed (Line 6). If it
leads to an empty domain (Line 7), the propagation has failed and the search should
backtrack. Otherwise, the set M represents the set of variables whose domain has
been filtered by propagator p (Line 10). The set of propagators to propagate Q is
updated by adding all propagators whose scope contains variables in M (Line 11).
Adding a propagator p to Q is called scheduling p. Finally, the domain of the CSP
D is updated with the filtered domain after the propagation of p (Line 12). This
algorithm returns, as for Algorithm 2.2, true whenever the propagation did not lead
to a failure and false otherwise.

Algorithm 2.3 represents a propagator-oriented propagation engine because Q con-
tains scheduled propagators. This is not the only way to build a propagation engine:
it can also be variable-oriented. Initially, Q contains all variables, and whenever a
variable is selected and removed from Q all propagators, whose scope it is in, are
propagated. All variables whose domain is modified by such propagations are added
to Q. The theoretical complexity of both orientations is the same for the propagation
engine, however differences of performance can be observed in practice as the size of
Q can largely vary depending on the orientation. The difference of order of calling
propagators might also lead to differences of performance.

When implementing a constraint solver, optimising the propagation process is an
obsession as it is a very frequent step that can be very costly. Indeed, recent solvers can
explore thousands of nodes of the search tree every second thanks to their optimised
implementations. In the remainder of this section, we are going to browse through
some useful techniques to this matter.
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Idempotent propagators In order to avoid running high-complexity filtering al-
gorithms multiple times, propagators can be made idempotent, which means that
running them again will result in no additional filtering. Whenever a propagator p is
idempotent, the equation p(p(D)) = p(D) holds for all domains D. Given a filtering
algorithm for a constraint c, the easiest way to make a propagator idempotent is to
run the algorithm until no more filtering is done. However, it might not be necessary
to run it several times. For instance, given the constraint c(x1, x2) ≡ x1 ≤ x2 and
domains D(x1) = {2, 3, 4, 5} and D(x2) = {1, 2, 3, 4}, the propagator whose filtering
algorithm is Algorithm 2.4 is already idempotent: running it once is sufficient.

Algorithm 2.4: Idempotent filtering algorithm for the constraint c(x1, x2) ≡
x1 ≤ x2

1 Function PropagateLeq(x1, x2 : integer variables)
2 begin
3 D(x2)← D(x2) ∩ [x1;∞[
4 D(x1)← D(x1)∩]−∞;x2]

5 end

Whenever a propagator is idempotent, it should not be scheduled after its own
propagation. In Algorithm 2.3, Line 11 should therefore be adapted to avoid to
schedule idempotent propagators.

List of priorities Implementing Q as a FIFO (First-In, First-Out) queue is com-
monly admitted to be a fair treatment of all propagators. However, as said earlier, the
order into which the scheduled propagators are called can make great differences of
performance. Indeed, it might be smart to run expensive filtering algorithms as late
as possible among all scheduled propagators in order to take into account filtering
from other propagators. Filtering algorithms with low time complexity can indeed
strengthen domains and thus might decrease the complexity of more complex filtering
algorithms (as their time complexity might depend, for example, on the size of the
domains). Schulte and Stuckey [SS08] proposed to give each propagator a priority.
The lower the priority, the earlier the propagator is run. In such a system, multi-
ple fixpoints are reached: all propagators of priorities i and lower should all have
reached a fixpoint (and thus be unscheduled) before selecting any scheduled propaga-
tor of priority i+ 1 or more. The number of priorities is up to the solver developers.
In [SS08], Schulte and Stuckey use seven priority levels (originating from [LO00]):
unary = 0, binary = 1, ternary = 2, linear = 3, quadratic = 4, cubic = 5 and
veryslow = 6. Each priority level’s name represents the arity of the propagator and
then the asymptotic runtime of the propagator. For example, binary priority level
is for binary constraints, whereas quadratic priority level is for propagators with n
variables whose filtering algorithm’s asymptotic runtime is O(n2). They ran experi-
ments showing performance improvements when using that many priority levels, but
also showed that good results can also be obtained with greater priority levels (up
to 14, two for each original priority, distinguishing in two levels, low and high) or
fewer priority levels (3 priority levels: unary ↔ ternary, linear ↔ quadratic and
cubic↔ veryslow).

Entailment and staged propagators In [SC06], Schulte and Carlsson give several
tips to improve the propagation process. Among them, there is the entailment of
propagators. A propagator is entailed whenever it will have no effect on the domain
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D: ∀D′ ⊆ D, p(D′) = D′ for an entailed propagator p. For instance, given the
constraint c(x1, x2) ≡ 2x1 ≤ x2 and the domains D(x1) = [1; 3] and D(x2) = [7; 10],
it is useless to call an affiliated propagator. Indeed, whatever the value in the domains
of x1 and x2, it will necessarily respect the constraint. By entailing the corresponding
propagator, we avoid running its filtering algorithm again. This property is a stronger
one than idempotency in the sense that idempotent propagators are not added to the
list of scheduled propagators after their execution whereas entailed propagators are
simply never executed again unless backtracking before the point where it became
entailed, i.e. entailment is a backtrackable property of propagators. Whenever a
propagator is not entailed, we said that it is disentailed. Entailment and disentailment
can be specified for different consistencies.

In [SS08], Schulte and Stuckey even extended this notion to the one of staged
propagators. Each propagator has a status, a stage, which has several purposes: it
can indicate if the propagator is entailed or not, but also which filtering algorithm
to use if developers do not create a propagator for each filtering algorithm. When
scheduled, it is the stage of the propagator that gives its level of priority. Schulte
and Stuckey give two main, but not limited to, use cases when staged propagators are
better than multiple propagators: costly propagation and constraints for which there
are "different propagation methods with different strength and efficiency available"
(which is the case of the cumulative constraint that we will see later).

Event-based propagation Among the first appearances of this technique in the
literature is by Laburthe et al. [LO00] for Choco solver. Since then, this technique
has proven to be very effective and is therefore implemented in numerous solvers.
The idea is to run propagators only where there are useful. For this, modifications of
variables are classified and, given a category of modification, a propagator knows if it
can indeed filter or not. Variables modifications are generally defined as [LO00; SC06;
SS08]: instantiation (inst), increase of lower bound (inc), decrease of upper bound
(dec) or removal of a value (rem). Of course, the events overlap, such that at least
one change of bounds (inc and/or dec) occurs whenever an instantiation (inst) occurs.
Similarly, event rem always occurs whenever one other occurs. From the knowledge of
the modifications that occur on each variable, propagators might execute only parts
of their filtering algorithm and thus lead to quicker propagation. Propagators only
run filtering algorithms that indeed filter some values.

Incrementality Incrementality plays an important role in propagators’ speed of
execution. It is obvious that not having to build from scratch data used in filtering
rules can lead to faster propagators. As the data are still needed to determine if
filtering should happen or not, updating only parts of these data might sometimes be
done and therefore avoid building the data from scratch. For instance, the bipartite
graph used for the GAC filtering algorithm for the allDifferent constraint [Rég94]
does not need to be built from scratch every time the propagator is called. With
a backtrackable graph structure as well as an updating algorithm, it is possible to
update the bipartite graph quicker for it to be used in the filtering algorithm. Events,
described in previous paragraph, play a key role in incrementality as the knowledge
they bring helps to quickly update changed parts of data structures. Therefore, several
solvers use a loop when executing a propagator: first events are used to update data
structures and possibly do basic filtering, and only then the main filtering algorithm
is called.
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Watched literals In the continuity of event-based propagation and incrementality,
watched literals have been introduced by Gent et al. [GJM06] to avoid some propaga-
tion. Initially, watched literals come from SAT solvers [Mos+01] and consist in having
a watcher on uninstantiated variables in a clause and wake up the filtering process
only when these variables have been modified. Adapting this technique to Constraint
Programming, for each propagator a watcher is added to a list for each pair variable-
value. Whenever a variable is modified by other propagators, the filtering algorithm
will be called only if certain watchers are not valid anymore, i.e. the value is not in
the variable’s domain anymore. This technique can be very useful, when applicable,
to reduce propagators’ scheduling and execution.

2.3 Solving process

Once the model is created, it should be solved. The set of all possible tuples for the
variables is also called the search space. The idea is to explore this search space in
order to find a solution, or an optimal solution in the case of a COP. This exploration
can be complete or incomplete: it is complete if it guarantees that a solution will be
found if one exists. If a complete search does not find a solution, it means that it does
not exist. If a search is not complete, then it is incomplete.

Complete searches offer guarantees but might become less useful when the size of
the problem increases. Indeed, in the general case, the bigger the problem (the size
of the cartesian product of the domains of the decision variables), the more difficult
it might be to solve it. It is most especially true in the context of Constraint Optimi-
sation Problems, where finding solutions can be easy, but finding an optimal one or
proving that it is optimal can be very hard in practice. In such particular problems,
incomplete searches might be very useful.

2.3.1 Generic search scheme

A backtracking search can be seen as a depth-first exploration of a search tree. Each
node of this tree represents a given state of the variables, that is the domains of the
variables are currently subset of the initial domains. A branch of the search tree
corresponds to the application of a constraint over a variable. The different branches
that are created from a node must be exhaustive and mutually exclusive in the case
of a complete search. For instance, on the left branch, we might force a variable xi to
be equals to k, whereas on the right branch, we force xi 6= k.

As we said, to each node of the search tree is associated a given state of the
domains. Backtracking means that when we return back to a node A from a node B,
with B being deeper than A in the search tree, the domains of the variables should be
restored to the state they were when the search reaches the node A for the first time.

The naive backtracking algorithm (BT) [Bee06], also commonly called Generate
and test search, consists in selecting, at each node, an uninstantiated variable, should
one exist, and branch on it, that is apply a branching constraint (a unary constraint).
Then the propagation phase is called. If all decision variables are instantiated, either
all the constraints are satisfied and we have found a solution, either at least one
constraint is unsatisfied. Else, if the propagation phase did not lead to a dead end, we
select another uninstantiated variable and branch on it. If the propagation phase leads
to a dead end or if a solution has been found, the search backtracks to a consistent
state of the variables.

There are three popular branching strategies that use unary constraints:
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• Enumeration: there are as many branches as they are values in the domain of
the selected variable, each branch being the instantiation of the variable to the
corresponding value.

• Binary choice points: two branches are created, the first one assigning a value
to the selected variable, the second removing the value from its domain.

• Domain splitting : the selected variable is not necessarily instantiated here, but
its domain is reduced. The mutually exclusive constraints are of the type x ≤ a
and x > a for a given a ∈ D(x).

Figure 2.6: Example of running a Binary choice points strategy for
the 4-queens problem with GAC for the allDifferent constraints:
each line represents a variable and each column represents a value

Other kind of branching strategies exist that do not post unary constraints, but we
are not going to treat them in the context of this thesis. We redirect curious readers
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to [Bee06].

The selection of the uninstantiated variable to branch on is done using a search
heuristic (or simply heuristic). This heuristic both selects the variable, as well as
the value used in the unary constraint for Binary choice points and Domain Splitting
strategies.

2.3.2 Focus on variable- and value-selection heuristics

To improve solving performance, it is better to use a search heuristic that is specific to
the problem at hand. However, it might demand a good knowledge and understanding
of the problem, which might take time to acquire, when one could want to quickly
get first results. To this matter, several generic heuristics have been proposed, with
strong results over benchmark with different kinds of problems.

For a long time, the variable-selecting heuristic dom [HE80], that consists in se-
lecting the uninstantiated variable with the current smallest domain’s size, have long
showed good results. The idea behind this heuristic is "To succeed, try first where
you are most likely to fail."

Bessiere and Regin [BR96] showed that it can yield better results by selecting the
uninstantiated variable with the smallest ratio of the domain’s size over the degree of
the variable, that is the number of constraints it is involved in.

It has been further improved by Boussemart et al. into the dom/wdeg variable se-
lecting heuristic [Bou+04]. At each conflict, the weight of each constraint is increased
by one. The uninstantiated variable is the one with the smallest ratio of the domain’s
size over the weighted degree of the variable, the weighted degree of a variable x being
defined as the sum of the weight of the constraints that have x in their scope and
that has at least one uninstantiated variable in their scope. Intuitively, this search
will examine the hard parts of the CSPs first, respecting the first-fail principle.

The dom/wdeg variable selecting heuristic has recently been refined to better guide
the search [Wat+19]. It is the weighted degree computation that has been refined by
increasing it, not only by one, but by a specific value depending on the situation when
the conflict arose.

Other kind of generic dynamic heuristics have been proposed and proven to be ef-
ficient in practice along the years. For instance, Impact-based search [Ref04], Activity-
based search [MH12] and Conflict history based search [HT19] are all based on statistics
done on gathered conflicts and value removals, such as for dom/wdeg. They differ in
the data they gather and how they treat these data. All of them have been proven to
be efficient in average and to excel for families of problems.

For instance, Impact-based search have been tuned specifically for scheduling prob-
lems [Wol08]. For scheduling problems in particular, Vilim et al. [VLS15] proposed
a generic search that can be very efficient, the Failure-Directed Search (FDS), which
concentrates on forcing conflicts to close the search tree. Scheduling problems being
generally considered as Constraint Optimisation Problems, FDS excels whenever a
solution of good quality with respect to the objective has been found. The authors
specify themselves that FDS should be used as a "plan B" strategy once the "plan A"
strategy is facing difficulties to improve on the best found solution. Also for schedul-
ing problems in particular, Gay et al. proposed the Conflict Ordering Search (COS)
[Gay+15].
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Finally, another generic search heuristic that is worth-noting is Counting-based
search [PQZ12; GP18; Bia+19] that consists in estimating, at each node of the search
tree, the probability that there exists a solution in each possible branch from the node.
One can then decide to branch on the lowest or highest probability. Branching on
the lowest probability tries to force conflicts in order to cut the search tree quickly,
whereas branching on the highest probability aims at finding solutions as quickly as
possible.

In the context of this thesis, we do not consider specific techniques such as restarts
or backjumping, as these mechanisms can be added to any search strategy and heuris-
tic, and we, once again, redirect the curious reader to [Bee06] as such techniques can
be crucial to dynamic searches.

In the remaining of this thesis, we will only consider the Binary choice points
strategy, as it is the one implemented by default in Choco solver [PFL17], which will
be used for experimentation. A generic scheme for the search process is given in Al-
gorithm 2.5.

Algorithm 2.5: Recursive generic scheme for the search
1 Function Search(N = 〈X,D,C〉 : constraint network)
2 begin
3 x← selectVariable(X)
4 if x 6= null then
5 v ← selectValue(x,D)
6 〈X,D′, C ′〉 ← copyCsp(X,D,C)
7 D(x)← {v}
8 if Propagation(〈X,D,C〉) then
9 Search(〈X,D,C〉)

10 end
11 D(x)′ ← D(x)′ \ {v}
12 if Propagation(〈X,D′, C ′〉) then
13 Search(〈X,D′, C ′〉)
14 end
15 else
16 recordSolution(X,D)
17 end
18 end

First, the search procedure starts by selecting an uninstantiated variable x (Line 3).
If none can be found, a solution has been found and it is recorded (Line 16). If there is
at least one, the selected variable x is selected through a variable-selection heuristic.
Then, a value v is selected for x through a value-selection heuristic (Line 5). Once
we have selected the variable to branch on and the value on which branching x, a
copy of the CSP is done (Line 6). The copy is what makes the backtrack works.
As copying is not the only option to allow backtracking, curious readers can find
more details of other methods in [Bee06]. The decision is done (Line 7) and is then
propagated through the constraint network (Line 8). If a domain has been emptied
by the propagation, the search fails and needs to backtrack. Otherwise, the search
continues (Line 9). The negated decision represents the other branch and is applied
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to the copied constraint network (Line 11). Once again, propagation is done (Line 12)
and either leads to a fail or the search can continue for this branch (Line 13).
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Chapter 3

Solving scheduling problems with
Constraint Programming

3.1 Scheduling problems

There are a lot of different kinds of scheduling problems [Kan76; Pin12; Bru13; SZ15b;
SZ15a; Bla+19]. For example, the tasks to be scheduled can be preemptive or non-
preemptive depending on whether they, respectively, can be interrupted or not during
their processing. For some scheduling problems, the durations of tasks depend on the
resource the task is processed by. This property is sometimes referred to as multi-
modal problems.

A scheduling problem can be generically defined as a problem of deciding how
to schedule, if it is possible, a set of tasks on a set of resources. The resources can
be of a variety of nature, such as the capacity of machines or workers for instance.
Precedence can be enforced between tasks, meaning that the starting time or the
ending time must be before or after the starting or ending time of another task or of
a set of tasks. The resources can be renewable or not, i.e. their capacity is fixed or
decreases in time depending on the tasks that consume this resource. The objective
is generally to minimise a quantity, such as the overall time took to process all the
tasks, or the money spent to process all the tasks in a given period, and so on.

3.1.1 Notations for scheduling problems

In this thesis, we will consider non-preemptive tasks T = {T1, . . . , Tn}. Each task Ti
has a start time si, a duration di and an end time ei. In all the scheduling problems
we consider in this thesis, tasks have a fixed duration or processing time. Thus the
treated scheduling problems will consist in determining the starting time of each task.
The ending time of a task is deduced by the relation si + di = ei.

Each task Ti can be seen as a data structure that aggregates a start time si, a
duration di and an end time ei. To ease notation and readiness, we will either use
the task, its start variable, duration variable, or end variable depending on the use
context. Moreover, tasks’ ending time and duration will be considered as variables
to simplify constraints’ readiness: the end variable can be seen as an offset view of
the start variable in our problems. In Constraint Programming, such a data structure
for tasks is often called task variable. We will therefore openly use "tasks" or "task
variables" for one another as we consider that, for each problem, a task variable is
created for each task.

Moreover, we will consider problems with a finite number of renewable resources
R1, . . . , Rs. Each resource Rj has a positive-integer maximal capacity Cj . For each
resource Rj , each task Ti has a positive consumption of this resource hi,j , that are
also called heights variables.
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Finally, all treated scheduling problems have the same objective, which is to min-
imise the makespan Cmax, that is the maximum completion time of all the tasks:
Cmax = max

i∈[1,n]
ei. The horizon Hor is the time-point such that all tasks should be

processed between 0 and the horizon. For our problems, the horizon will always be

the sum of the processing times of all the tasks: Hor =
n∑
i=1

di.

3.1.2 Characterising scheduling problems: Graham notation

Such a wide variety of constraints and objectives defining scheduling problems lead
naturally to several hierarchical families of problems that have properties in common.
In order to better describe these families of scheduling problems, a three-field notation
α | β | γ has been introduced by Graham et. al [Gra+79]. In this notation, α specifies
the machine environment, β indicates certain job characteristics, and γ denotes the
optimality criterion.

In their paper, Graham et al. [Gra+79] consider jobs, each of which is composed
of a given number of operations, each of which should be processed on a machine.
Machines can be identical, in which case every operation can be done on, or not and
the processing time of an operation depends on the machine it is processed on. In our
case, operations are considered as tasks. The processing time of a job Jj on machine
Mi is noted pi,j . The total number of machines is noted m.

Graham et al. [Gra+79] decompose α into two values α = α1α2. They present
the different values that α1 can take:

• α1 = ·: single machine ; p1,j = pj

• α1 = P : identical parallel machines ; ∀i, pi,j = pj

• α1 = Q: uniform parallel machines ; pi,j = qipj with qi the speed factor of
machine Mi

• α1 = R: unrelated parallel machines.

In these four cases, jobs can be directly seen as tasks in our vocabulary. Their
processing time depends on the problem described by the value of α1.

• α1 = O: the Open-Shop ; each job is composed of operations {o1,j , . . . , om,j}
for a job Jj , operation oi,j should be executed on machine Mi during pi,j time
units. There is no specific order of execution between operations.

• α1 = F : the Flow-Shop ; it is a specialisation of the Open-Shop where the
operations form a chain (o1,j is executed before o2,j , which is executed before
o3,j , and so on).

• α1 = J : the Job-Shop ; it is a specialisation of the Flow-Shop where operation
oi,j is executed on machine µi,j , with µi−1,j 6= µi,j .

These three new values of α1 allow to describe different types of scheduling prob-
lems, that the first four could not describe.

Whenever α2 is given, the number of machines m is finite and equal to α2. Some-
times, when the number of machines is infinite, an ∞ symbol can be indicated to
remove any ambiguity between the case where m is an input of the problem or where
m is infinite. Of course, whenever α1 = ·, α2 = 1.
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When project scheduling came along, a new notation had to be introduced. Project
scheduling problems are generalisation of Open-shop problems (and so of Flow-shop
and Job-shop problems). In our case, we will use the notation α = PS. Curious
readers can refer to [SZ15b; SZ15a] for notations for the different cases of project
scheduling problems.

As for the α value, β is decomposed into several values, from β1 to β6 by Graham
et al. [Gra+79] In [SZ15b; SZ15a], β is even decomposed into 13 different values, a
value βi in [Gra+79] meaning possibly something different from the same βi in [SZ15b;
SZ15a]. Here, we will present the decomposition proposed by Graham et al. [Gra+79],
and invite curious readers to look at [SZ15b; SZ15a] for a wider vision, especially to
describe project scheduling problems. The values for β = β1β2β3β4β5β6 means the
following:

• β1 ∈ {pmtn, ·}: β1 = pmtn means that tasks are preemptive, that is they can
be interrupted in their execution and finished later, whereas β1 = · means that
tasks are non-preemptive.

• β2 ∈ {res, res1, ·}: β2 = res supposes that there are s resources {R1, . . . , Rs},
each resource Rk has a capacity Ck and each task Tj uses an amount hj,k of
resource Rk when being processed, the resources are supposed to be renewable
; β2 = res1 means that there is only one resource, and β2 = · means that there
are no constraint resources.

• β3 ∈ {prec, tree, ·}: β3 = prec means that there exists a precedence graph
between jobs or tasks, meaning that a task should be processed before another
one if it is a predecessor of the second task in the precedence graph ; β3 =
tree means that the precedence graph is a tree where either each node has an
outdegree of at most 1, either each node has an indegree of at most 1 ; β3 = ·
means that there are no particular precedence constraints.

• β4 ∈ {rj , ·}: β4 = rj means that release dates, i.e. a task Tj cannot be processed
before its release date, are given for each task, while β4 = · means that each
task can be processed from time t = 0.

• β5 ∈ {mj ≤ m, ·}: β5 = mj ≤ m means that there is a constant upper bound
of the number of operations of each job Jj (only when α1 = J), while β5 = ·
means that no such bound is specified.

• β6 ∈ {pi,j = 1, p ≤ pi,j ≤ p, ·}: β6 = pi,j = 1 means that all tasks have a unit
processing time ; β6 = p ≤ pi,j ≤ p means that constant lower and upper bounds
are given for the processing time pi,j ; β6 = · means that there are no specific
constraints on the processing times.

It is common not to precise the values taken by β1, . . . , β6 when the value is ·. As
the possibility for each βi is listed and there is no redundant notations, problems can
be noted without ambiguity when some βi = · are not noted.

Finally, the value γ specifies the objective function to optimise. As all the treated
problems in this thesis aim to minimise the makespan, we will not go into much detail
for the value γ in the notation and report curious readers to the literature [Gra+79;
SZ15b; SZ15a]. Let us note that the maximum lateness Lmax, that is the maximal
difference between the end time of a task and its due date, might also appear to be
an interesting use case of some contributions presented in this thesis.
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Blazewicz et al. [BLK83] extend the specification of the β field such that β =
resλσδ indicates that each job requires δ units of up to λ resources, each of capacity
σ. A dot “.” instead of one such value denotes that it is part of the input.

These notations are standard in the literature to describe scheduling problems and
we will use them to describe each of the treated problems.

3.2 Modelling resources in Constraint Programming: a
focus on the disjunctive and cumulative constraints

To describe scheduling problems in Constraint Programming, Aggoun and Beldiceanu
introduce the cumulative constraint [AB93]. This constraint has been specifically
tailored to model the fact that a set of tasks should not consume more than a certain
amount of a renewable resource. Such a constraint can be used to model, for example,
the working capacity of a team. Let C be the maximum availability of the concerned
resource. The cumulative constraint can be defined as following:

cumulative({s1, . . . , sn}, {d1, . . . , dn}, {e1, . . . , en}, {h1, . . . , hn}, C)

⇐⇒
cumulative({T1, . . . , Tn}, {h1, . . . , hn}, C)

⇐⇒
∀i ∈ [1, n], si + di = ei

∀t ∈ [0;Hor],
∑

i∈[1,n]
si≤t<ei

hi ≤ C

The disjunctive constraint is a specialisation of the cumulative constraint
where the capacity is equal to 1. The disjunctive is therefore defined as:

disjunctive({s1, . . . , sn}, {d1, . . . , dn}, {e1, . . . , en}, {h1, . . . , hn})
⇐⇒

disjunctive({T1, . . . , Tn}, {h1, . . . , hn})
⇐⇒{

∀i ∈ [1, n], si + di = ei

∀i, j ∈ [1, n], hi = 1 ∧ hj = 1 =⇒ si ≥ ej ∨ ei ≤ sj

Sometimes, for the disjunctive constraint, whenever h1, . . . , hn variables are all
fixed to 1, we might remove them from the notation of the constraint to gain in clarity.

3.3 Example of scheduling problems

3.3.1 Resource-constrained Project Scheduling Problem (RCPSP)

The Resource-Constrained Project Scheduling Problem (RCPSP) was introduced in
1970 by Linus Schrage [Sch70] for the form of the problem that interests us. The
problem consists of a set of activities (each of which can be seen as a task, thus our
notation) T1, . . . , Tn and a number of resources s. Each activity Ti has a given fixed
duration di and is non-preemptive. Activities are subject to precedence constraints,
meaning that an activity cannot be processed until all its direct predecessors are
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entirely processed. The precedence form a directed acyclic graph. Each activity
requires a certain amount of only one given resource. Fixed durations and the use
of only one given resource (and a fixed amount of resource is consumed by a task) is
referred in the literature as the single-mode RCPSP. Each resource Rk is renewable,
which means that it is entirely recomposed at the end of an activity needing it, and
has a given availability Ck. Finally, the objective is to minimise the makespan. We
do not consider any release nor due date for all the tasks, which can therefore be
processed anytime during t = 0 and the horizon.

The RCPSP is denoted PS | prec | Cmax in the Graham notation. It is denoted
PS | res..., prec | Cmax in Blazewicz’s notation, which is simply noted PS | prec |
Cmax. The RCPSP was proven NP-hard by Blazewicz et al. [BLK83] as they prove
that a reduction of this problem, P2 | res111, chain, pi = 1 | Cmax, is already NP-
hard.

Here, we will present the simplest CP model for the RCPSP. However, it is inter-
esting to note that state-of-the-art approaches for the RCPSP have used the flexibility
of Constraint Programming’s solving process to introduce advanced mechanisms to
improve filtering on start variables. For instance, Brucker et al. [Bru+98] used the
Roy-Floyd-Warshall algorithm [Roy59; Flo62; War62] on the precedence network. No
redundant constraints are added to improve filtering, such as disjunctive constraint
on a set S of tasks that cannot be scheduled simultaneously as described by Baptiste
et al. [BP00].

To model an instance of the RCPSP in Constraint Programming, we introduce one
task for each activity. For each activity ai, si is the start variable of the activity and
ei its ending time. The res(·) operator is used to indicate the resource required by an
activity, and hi is the corresponding resource consumption for activity Ti (as activities
require one and only one resource). Let Γ− be the set of precedence, represented as
pair of integers (i, j) such that activity Ti precedes activity Tj .

minimise Cmax = max
i∈[1,n]

ei s.t.

∀(i, j) ∈ Γ−, ei ≤ sj (3.1)

∀k ∈ [1, s],cumulative({Ti | res(Ti) = Rk}, {hi | res(Ti) = Rk}, Ck) (3.2)

Figure 3.1: CPModel for the Resource-Constrained Project Schedul-
ing Problem (RCPSP)

3.3.2 Parallel Machine Scheduling Problem with Additional Unit
Resources (PMSPAUR)

The Parallel Machine Scheduling Problem with Additional Unit Resources
(PMSPAUR) was introduced by Pralet et. al [Pra+14] as a sub-problem of the obser-
vation satellites scheduling process. This sub-problem concentrates on the download
of files from one satellite to one ground station. Here, we will consider that the down-
load of one file is a task to be scheduled. When the satellite is inside the download
window, the ground station opens several communication channels. These channels
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are our machines or resources. Each machine can process only one task at a time.
All the machines are identical so each task takes as much time to be processed on
all machines. The duration of the tasks depends directly on the file’s size and is a
data of the problem. Finally, each file is stored on one hard-drive and the satellite
embeds several hard-drives. Only one file of a hard-drive can be read at a time. These
hard-drives are the additional unit resources.

The PMSPAUR is a sub-problem of P | res.11 | Cmax where each task is subject
to one additional unit resource [Heb+16]. It is NP-hard as it is a generalisation of
P | | Cmax which is already NP-hard [GJ78; BLK83].

Example 3.1. Let us consider the following example: d1 = 7, d2 = 2, d3 = 1,
d4 = 4, d5 = 3, d6 = 4, d7 = 2, d8 = 6, d9 = 3 and d10 = 2. The additional unit
resources are distributed as follows: R1 ≡ {T1, T2, T3, T4}, R2 ≡ {T5}, R3 ≡ {T6, T7}
and R4 ≡ {T8, T9, T10}. The number of machines is m = 3.

Figure 3.2 shows three examples of schedule for this example. Each task is rep-
resented by a rectangle, whose colour depicts the resource (R1 in blue, R2 in green,
R3 in orange and R4 in gold) and number indicates the id of the task. The schedule
in Figure 3.2a is not valid as T1 and T2 are scheduled concurrently while both having
R1 as additional unit resource, and T8 and T9 are scheduled concurrently while both
having R4 as additional unit resource. The schedule in Figure 3.2b is a valid schedule
of makespan Cmax = 15, which is not optimal. The schedule in Figure 3.2c shows an
optimal schedule of makespan Cmax = 14.

To the author’s best knowledge, the state-of-the-art CP model for the PMSPAUR
is given in [God+20] and is presented in the remainder of this subsection. n denotes
the number of tasks to process. We notem the number of machines and R1, . . . , Rs the
additional unit resources. The res(·) operator is used to indicate the additional unit
resource of a task. To simplify the notations we write Rj for the set of jobs requiring
the resource Rj , i.e. Rj ≡ {Ti | res(Ti) = Rj} ⊆ T . Tasks are necessarily processed,
so all the tasks have a height of 1. We take the liberty of not indicating them in
the cumulative and disjunctive constraints in the model, which is depicted in
Figure 3.3.

3.3.3 Unit Execution Time-Unit Communication Time (UET-UCT)

Let us consider the problem of scheduling tasks subject to precedence on a multi-
threaded processor. The idea is to determine when to start processing each task and
on which thread. From now on, with respect to common naming in scheduling, we
will talk about machines instead of threads. Machines can only process one task at a
time.

The problem we described was among the first ones to be researched on in the
field of Operations Research, and still have many applications nowadays. This prob-
lem has been extended by considering that the result of the processing of a task is
unknown from other machines for a certain duration after the end of its processing:
it is the time needed to communicate the result to other machines, simply called the
communication time. If the communication time might be negligible in the case of
scheduling tasks on a processor, it is not for other problems. Let us say that you have
a very large code database and you want to compile it. In order to save time, you
want to parallelise the compilation as much as possible such that the complete process
takes as few times as possible (you want to minimise the makespan). You can use a
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(a) Not-valid schedule

(b) Valid but non-optimal schedule

(c) Optimal schedule

Figure 3.2: Examples of not-valid, valid and optimal schedules for
Example 3.1

minimise Cmax = max
i∈[1,n]

ei s.t.

∀k ∈ [1, s],disjunctive({Ti | res(Ti) = Rk}) (3.3)

cumulative(T ,m) (3.4)

Figure 3.3: CP Model for the Parallel Machine Scheduling Problem
with Additional Unit Resources (PMSPAUR)

set of servers to do it, each one being able to compile one file at a time and automati-
cally communicating the compiled file to other servers. During compilation, some files
need to be compiled before to compile some other files (some files have dependence),
so we still have precedence between tasks. Furthermore, due to the communication
times, it might be interesting to compile the same file on several machines: we say
that duplications are authorised. This problem was the subject of the Final Round of
the Google Hash Code competition in 20191.

1https://storage.googleapis.com/coding-competitions.appspot.com/HC/2019/
hashcode2019_final_task.pdf

https://storage.googleapis.com/coding-competitions.appspot.com/HC/2019/hashcode2019_final_task.pdf
https://storage.googleapis.com/coding-competitions.appspot.com/HC/2019/hashcode2019_final_task.pdf
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In this subsection, we will consider a specialisation of this problem where the
processing time of each task has a duration of one time unit and the communica-
tion times also have a one time unit duration: this is the Unit Execution Time-Unit
Communication Time (UET-UCT) problem. We consider that tasks do not have any
release nor due date, that the objective is to minimise the makespan Cmax and that
duplication are authorised. In the Graham notation, the considered UET-UCT is
noted P | prec, dup, pi = 1, ci,j = c = 1 | Cmax, whereas the non-duplication case is
noted P | prec, pi = 1, ci,j = c = 1 | Cmax. The former one was proven NP-hard
by Veltman [Vel93], while the latter one was proven NP-hard by Rayward-Smith
[Ray87]. Note that, in the case where the number of machines is at least as high as
the number of tasks (we also talk of infinite number of machines), Colin and Chré-
tienne proved in [CC91] that the problem of minimising the makespan is polynomial
whenever the maximum communication time is smaller than the the smallest process-
ing time: P | prec, dup, ci,j ≤ pi | Cmax is in P.

Before giving a CP model for the UET-UCT, we would like to remind a lemma
from Munier and Hanen [MH97].

Lemma 3.1 ([MH97]). The subset of schedules for which all copies of a task are
performed at the same time is dominating with respect to the makespan.

Lemma 3.1 helps to reduce the number of variables. Indeed, when authorising
duplication, we would have declared one task variable (and subsequent start and end
variables) for each task and each machine. This lemma indicates that looking only for
schedules when all copies of a task are processed at the same time does not avoid to
find an optimal solution of the problem. Therefore, we will use only one task variable
for each task Ti and need to decide on which machines it is processed. For this, we
need to introduce assignment variables: bi,k = 1 whenever task Ti is processed on
machine k, and bi,k = 0 otherwise. We note m the number of machines. We also
consider classic variables in scheduling problems: Ti denotes the task variable for task
Ti, whose start variable is noted si, end variable is noted ei and duration is noted di.
The set of predecessors of a task Ti is noted Γ−(i) and its set of successors is noted
Γ+(i). The model is given in Figure 3.4.

Note that Equation 3.6 is the only difference between duplication and no duplica-
tion UET-UCT. Here there is an inequality as we authorise duplication, and we would
have put an equality if we were not. Equation 3.9 enforces that if a task is scheduled
directly after one of its predecessor, this predecessor must be processed on a machine
whenever the considered task is (otherwise, the communication will be over and there-
fore the considered task can be scheduled on any machine). The decision variables of
the model are start variables s1, . . . , sn and assignment variables b1,1, . . . , bn,m.



minimise Cmax = max
i∈[1,n]

ei s.t.

∀i ∈ [1, n], si + 1 = ei (3.5)

∀i ∈ [1, n],
m∑
k=1

bi,k ≥ 1 (3.6)

∀k ∈ [1,m],disjunctive(T , {b1,k, . . . , bn,k}) (3.7)

∀i ∈ [1, n],∀j ∈ Γ+(i), si + 1 ≤ sj (3.8)

∀i ∈ [1, n],∀j ∈ Γ+(i), si + 1 = sj =⇒ ∀k ∈ [1,m], bi,k ≥ bj,k (3.9)

Figure 3.4: CP Model for the Unit Execution Time-Unit Communi-
cation Time (UET-UCT)
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Part II

Managing the allDifferent
constraint with precedence
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Chapter 4

The allDiffPrec constraint and
its generalisation

The allDiffPrec is a global constraint defined as an allDifferent constraint and
a set of arithmetical constraints xi ≤ xj , also called precedence constraints. It was
first introduced by Bessiere et al. in [Bes+11] where they give a bounds(Z)-consistent
filtering algorithm, as well as some theoretical results.

In this chapter, we will explore deeper the allDiffPrec constraint. After a more
formal definition of the allDiffPrec constraint in Section 4.1 and a presentation
of generic filtering schemes for bounds(Z) and range consistencies in Section 4.2, we
will review the work of Bessiere et al. in Section 4.3 and Section 4.4. More especially,
in Section 4.3, we will discuss on the greedy bound support building algorithm of
Bessiere et al. for the different notions it introduces and on which we build further
filtering schemes based on Bessiere et al. theoretical results. We will also discuss
on the time complexities of these approaches. In Section 4.4, we will concentrate
on the BC(Z) filtering algorithm presented by Bessiere et al. in [Bes+11], for which
we present faulty behaviours as well as the corrections in the algorithm to fix these
behaviours. Based on the same idea underlying the algorithm, we present a similar
filtering algorithm.

After this deeper understanding of the state-of-the-art filtering schemes, we in-
troduce a new one in Section 4.5. This new filtering scheme exploits a Lemma in
[Bes+11], basically considering domains as sets and not as intervals. We show that
this new filtering scheme is strictly stronger than BC(Z) (resp. RC) if it is applied on
the bounds of the variables (resp. all the values in the domain). This filtering scheme
has a high time complexity, one run of the propagator being in O(n3d2 +n2d2

√
n+ d).

Section 4.6 gives an example where none of the filtering schemes are idempotent
where domains are sets. Section 4.7 summarises main results on consistencies and
time complexities of each filtering scheme. In Section 4.8, we introduce a generalisa-
tion of the allDiffPrec constraint, GeneralizedAllDiffPrec, which considers
precedence as boolean variables instead of constants. We show that bounds(Z) consis-
tency for the GeneralizedAllDiffPrec can be achieved in O(n2) amortised time
(down a branch of the search tree).

Finally, Section 4.9 summarises main results of the chapter.

The work presented in this chapter was submitted to the CP conference 2021.

4.1 Definition

The allDifferent constraint is probably the most "famous" global constraint. This
constraint specifies that all variables in the scope must take different values for the
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constraint to be satisfied. This constraint can be used to model lots of different sit-
uations. It is not uncommon to see the constraint with precedence constraints on
variables in the scope of the allDifferent constraint.

For instance, let us consider the scheduling problem of examination timetabling.
Every year, in France, competitive examinations are organised to enter in engineering
schools. Generally, every half-day, one and only one exam takes place (it is not entirely
true as there are sets of examinations for which two examinations take place the same
half-day, but we will not consider such cases to simplify the problem to the case we
want to describe). It is common to have two examinations on the same subject, such
as mathematics. Between these two exams, one takes place before the other: there is
a precedence. To model this problem, we can use a variable for each exam, and the
possible values are all the half-days during the week, from 0 (Monday morning) to
9 (Friday afternoon). If variables x0 and x1 represent the two mathematical exams,
then we have the precedence constraint x0 < x1.

Other examples are given in [Bes+11], as well as a similar examination timetabling
scheduling problem. In [Bes+11], Bessiere et al. introduce the allDiffPrec con-
straint to represent the modelling pattern consisting of an allDifferent constraint
and a set of precedence constraints.

Definition 4.1 (allDiffPrec [Bes+11]). Let X = {x1, . . . , xn} be a set of n inte-
ger variables, and let O = {oi,j | 1 ≤ i, j ≤ n} be n2 boolean constants representing
the precedence. oi,j is true iff variable xi precedes variable xj. As such, oi,i is al-
ways false. Moreover, to avoid cycles in the precedence graph (in which case, there
are no solution), we suppose that the formula ¬(oi,j ∧ oj,i) is always true for all
i, j ∈ [1, n], i 6= j, and that the precedence relations are transitive: if oi,j and oj,k
are true, then oi,k is true. The precedence constraints network, represented by vari-
ables O, is therefore the transitive closure of the precedence relation. The constraint
allDiffPrec is defined as:

allDiffPrec(X,O) ⇐⇒

{
allDifferent(X)

∀1 ≤ i, j ≤ n, oi,j =⇒ xi < xj
(4.1)

Notation 4.1. The predecessors of xj are in the set Γ−(xj) = {xi | oi,j} ⊆ X. The
successors of xj are in the set Γ+(xj) = {xi | oj,i} ⊆ X. We note Γ− the set of
predecessors sets and Γ+ the set of successors sets.

Throughout the chapter, we will discuss about algorithms’ worst-case time complex-
ity in terms of two parameters. Of course, the first one is the number of variables n.
The second one, noted d, is the number of different values within variables’ domains:
d = |

⋃
xi∈scope(c)

D(xi)| if we note c the considered allDiffPrec constraint.

4.2 General scheme for BC(Z) and RC filtering

Before talking about the different filtering algorithms for the allDiffPrec con-
straint, we should see the generic filtering scheme for bounds(Z) and range consisten-
cies, as this scheme can be used with every bound support building algorithms, as it
will be the case later in this chapter.

The schemes we are going to present are for a propagator. To define the propaga-
tor, we suppose the existence of a function hasBoundSupport(X,xi, α) that returns
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true if there exists a bound support for the propagator for the instantiation xi → α
and false otherwise. This function varies from one propagator to another given the
underlying definition of the propagator or of the constraint it represents.

Algorithm 4.1: Generic BC(Z) filtering scheme for a propagator
1 Function Propagate(X : variables)
2 begin
3 for xi ∈ X do
4 while ¬hasBoundSupport(X,xi, xi) do
5 D(xi)← D(xi) ∩ [xi + 1;∞[
6 end
7 while ¬hasBoundSupport(X,xi, xi) do
8 D(xi)← D(xi)∩]−∞;xi − 1]
9 end

10 end
11 end

Algorithm 4.2: Generic RC filtering scheme for a propagator
1 Function Propagate(X : variables)
2 begin
3 for xi ∈ X do
4 for d ∈ D(xi) do
5 if ¬hasBoundSupport(X,xi, d) then
6 D(xi)← D(xi) \ {d}
7 end
8 end
9 end

10 end

It is interesting to note that both algorithms have a worst-case time complexity of
O(n×d×f(n, d)) with f(n, d) the complexity of a call to function hasBoundSupport.
However, Algorithm 4.1 should be faster than Algorithm 4.2 in practice, which is
normal as BC(Z) is weaker than RC. Another point to note is that Algorithm 4.2
should be called only when variables’ domains can contain holes. Otherwise, in the
case of interval domains, Algorithm 4.2 will look for bound support for values within
the domain that cannot be removed, even if there is no bound support, as holes are
not authorised.

4.3 GreedyBC and GreedyRC : Greedy bound support
filtering schemes

4.3.1 Description

Building a bound support for the allDiffPrec constraint is not very different from
building a bound support for the allDifferent constraint. In [Bes+11], Bessiere et
al. explain how to adapt the algorithm for building a bound support for an instanti-
ation xi → α for α ∈ D(xi) for the allDiffPrec constraint.
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First, the idea is to compute m = min
xi∈X
|D(xi)|>1

xi and M = max
xi∈X
|D(xi)|>1

xi, as we are going

to iterate over all values between these two in increasing order. We also note D the set
of values taken by already instantiated variables: D =

⋃
xj∈X
|D(xj)|=1

D(xj). Let v ∈ [m,M ]

be the current value. We add in the set of available variables X ′, initiated as empty,
all the variables whose lower bound is v. If v /∈ D, we compute the minimum upper
bound of available variables: u = min

xi∈X′
xi. X ′′ is the subset of X ′ that contains all

variables whose upper bound is u. The bound support building algorithm for the
allDifferent constraint would break tie arbitrarily here. In [Bes+11], Bessiere et
al. say that only variables in X ′′ that do not have predecessors in X ′′ should be
selected, as otherwise such a predecessor would later be assigned to a greater value
than v and would violate the precedence constraint. The selected variable xk ∈ X ′′ is
assigned the value v and removed from X ′. The algorithm continues until all variables
are assigned to a value or until v = M .

Of course, for this algorithm to work, xi should be momentarily instantiated to d.
Bessiere et al. [Bes+11] also precise that all domains should be preprocessed, that is
that for each precedence constraint xj < xk we have xj ≤ xk and xj ≤ xk. For these
two points, they introduce domains after direct pruning, that they preprocess before
running the bound support building algorithm.

Definition 4.2 (Domains after direct pruning [Bes+11]). Let xv ∈ X and α ∈
D(xv). The domains after direct pruning of assignment xv = α are denoted
Ddp
α (x1), . . . , Ddp

α (xn) and defined as:

∀xu ∈ X,Ddp
α (xu) =



{α} if xu = xv

[xu, xu] \ [α, xu] if xu ∈ Γ−(xv)

[xu, xu] \ [xu, α] if xu ∈ Γ+(xv)

[xu, xu] \ {α} if α ∈ {xu, xu}
[xu, xu] otherwise

(4.2)

Within a call to hasBoundSupport, domains after direct pruning are useful to build
and to work on during the procedure. As such, at each call, these domains should be
built, preprocessed and used for the algorithm to work. The complete procedure for
building a bound support is given in Algorithm 4.3.

This algorithm can fail building a bound support when it detects a violation of a
Hall interval (Line 14). Using the notion of Hall intervals in filtering algorithms for
the allDifferent constraint goes back to the works of Leconte [Lec96] and Puget
[Pug98]. A Hall interval is an interval [a, b] such that there exists a set of variables
Va,b = {x ∈ X | [x, x] ⊆ [a, b]} whose union of interval domains is of the same size as
the Hall interval: |[a, b]| = |Va,b|. By a pigeonhole argument, for a given interval [a, b],
if Va,b contains a greater number of variables that there are values in [a, b], it means
that two variables would take the same value, which would make the allDifferent
constraint unsatisfiable: such an interval [a, b] is a violated Hall interval. Detecting
violations of Hall intervals is a key component of filtering for the allDifferent
constraint, and therefore for the allDiffPrec constraint.

Checking that all variables are assigned a value at the end of the algorithm is just
an additional verification that everything went well, as the assign array should not
contain −1 if the algorithm was not stopped earlier. Except for the use of domains



4.3. GreedyBC and GreedyRC : Greedy bound support filtering schemes 53

Algorithm 4.3: Greedy algorithm to find a bound support for
allDiffPrec
1 Function hasBoundSupport(X: set of variables, O: set of precedence, xi: a

variable, α: a value in D(xi)) : boolean
2 begin
3 Build the domains after direct pruning Ddp

α (xu) for all xu ∈ X
4 Preprocess all the domains after direct pruning: ∀oj,k ∈ O,

oj,k =⇒ min(Ddp
α (xj)) ≤ min(Ddp

α (xk))∧max(Ddp
α (xj)) ≤ max(Ddp

α (xk))

5 m← min
xj∈X
|D(xj)|>1

min(Ddp
α (xj))

6 M ← max
xj∈X
|D(xj)|>1

max(Ddp
α (xj))

7 D ←
⋃

xj∈X
|D(xj)|=1

D(xj)

8 ∀xj ∈ X, assign[j]← −1
9 X ′ ← ∅

10 for v ∈ [m,M ] in increasing order do
11 X ′ ← X ′ ∪ {xj ∈ X | min(Ddp

α (xj)) = v}
12 if v /∈ D then
13 u← min

xj∈X′
max(Ddp

α (xj))

14 if u < v then
15 return false
16 end
17 X ′′ ← {xj ∈ X ′ | max(Ddp

α (xj)) = u}
18 Choose xk ∈ X ′′ such that Γ−(xk) ∩X ′′ = ∅
19 X ′ ← X ′ \ {xk}
20 assign[k]← v

21 else
22 Select k ∈ [1, n] such that D(xk) = {v}
23 assign[k]← v

24 end
25 end
26 return

∧
xj∈X

assign[j] 6= −1

27 end

after direct pruning and Line 18, the algorithm is exactly the same as the bound
support building algorithm for the allDifferent constraint.

4.3.2 Complexity and prerequisites

The function hasBoundSupport described in Algorithm 4.3 has a worst-case time
complexity of O(n2d) (Greedy 1). However, using a Lemma from Bessiere et al.
[Bes+11] can lead to smaller time complexities of the filtering scheme.

Lemma 4.1 ([Bes+11]). Let allDifferent and precedence constraints be bounds(Z)
consistent over variables X. Let xv = α, α ∈ {xv, xv} be an assignment of a variable
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xv to its bound and Ddp
α (x1), . . . , Ddp

α (xn) be the domains after direct pruning of xv →
α. Then, xv → α is bounds(Z) consistent for the allDiffPrec constraint iff there
is a bound support for xv → α for allDifferent(x1, . . . , xn), where domains of
variables X are Ddp

α (x1), . . . , Ddp
α (xn).

From Lemma 4.1, for an instantiation xv → α with α ∈ D(xv), we see that finding
a bound support for the allDifferent constraint on domains after direct pruning
is the same as finding a bound support for the allDiffPrec constraint with original
domains. As we are interested in bound support here, we can store the domains after
direct pruning as intervals. As such, these domains can be stored in integer arrays.
As such, building the domains after direct pruning of xv → α can be done in O(n),
and enforcing precedence constraints on these domains can be done in O(n2). From
these domains, there are two ways to find a bound support: either use the greedy
bound support building algorithm (which is Algorithm 4.3 in which Line 18 is just
xk ∈ X ′′) that runs in O(nd) (Greedy 2), either runs the BC(Z) filtering algorithm
for the allDifferent constraint that runs in O(n) [Lóp+03] (Greedy 3).

All implementations of the greedy approach use domains after direct pruning and
run therefore in at least O(n2). As such, knowing if there exists a bound support for an
instantiation xv → α is done in O(n2d) for Greedy 1, in O(n(n+d)) for Greedy 2 and
in O(n2) for Greedy 3. It takes at least O(n2) to test the existence of a bound support
for allDiffPrec (instead of the O(n) announced by Bessiere et al. [Bes+11])1.

Therefore, using dichotomy as explained in [Bes+11], enforcing BC(Z) for
allDiffPrec with the greedy approach can be done in O(n3 log(d)). For RC, no
dichotomy can be used and the worst-case time complexity is therefore O(n3d).

Using Algorithm 4.1 for BC(Z) or Algorithm 4.2 for RC leads to a worst-case time
complexity of O(n3d) for a run.

We note GreedyBC the implementation of the allDiffPrec constraint using
Algorithm 4.1 and Algorithm 4.3 (which runs in O(n3d2) in total). Similarly, we
note GreedyRC the implementation of the allDiffPrec constraint using Algo-
rithm 4.2 and Algorithm 4.3 (which runs in O(n3d2) in total). In Section 5.2, only
these implementations were tested on the complete benchmark. Comparison of the
three approaches for the greedy filtering scheme (Greedy 1, Greedy 2 and Greedy 3)
is discussed in Section 5.1.

4.4 BessiereEtAl : Bessiere et al. filtering scheme

4.4.1 Description

In the same paper, Bessiere et al. [Bes+11] improve on the greedy bound support
building algorithm presented in previous section. Given that precedence constraints
and the allDifferent constraint have been filtered with bounds(Z) consistency,
they give an algorithm that enforces bounds(Z) consistency for the allDiffPrec
constraint. The idea is to update directly the upper bound of each variable instead
of looking iteratively for a bound support for each bound.

For a variable xi, the idea is to loop over the different variables and to assign
all non-successors to the lowest available value and to adapt the upper bound of
the variable xi according to values that would be taken by successors. For this, the
loop is done over variables by increasing upper bounds, and the upper bound of the
treated variable xi is updated at each step xj by computing the smallest value b such

1This correction was discussed and agreed on with one of the author
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that there are as many available values in the open interval [b, xj + 1) as there are
successors that have been processed since the beginning of the loop: xi could not be
valued greater than b − 1 (xi ≤ b − 1). This property of b is the invariant of the
algorithm. Algorithm 4.4 is the pseudo-code given in [Bes+11].

Algorithm 4.4: BC(Z) filtering algorithm for the allDiffPrec constraint
from Bessiere et al. [Bes+11]
1 Function pruneUpperBounds(X: set of variables, O: set of precedence) :

void
2 begin
3 Sort the variables by increasing upper bounds into a list L:

xL[idx] ≤ xL[idx+1]

4 m = min
xj∈X
|D(xj)|>1

xj

5 M = max
xj∈X
|D(xj)|>1

xj

6 for i ∈ [1, n] do
7 Create a disjoint set data structure T with integers from m to M
8 b← xL[1] + 1

9 for idx ∈ [1, n] do
10 j ← L[idx]
11 if xj /∈ Γ+(xi) then
12 S ← Find(xj , T )

13 v ← min(S)
14 Union(v,max(S) + 1, T )

15 end
16 if idx > 1 then
17 for k ∈ [1, xj − xL[idx−1]] do
18 b← max(Find(b, T )) + 1
19 end
20 if Find(v, T ) = Find(b, T ) ∧ v > b ∧ xj ∈ Γ+(xi) then
21 b← min(Find(b− 1, T ))
22 end
23 end
24 D(xi)← D(xi)∩]−∞; b− 1]

25 end
26 end
27 end

Bessiere et al. have proven in [Bes+11] that the algorithm described in Al-
gorithm 4.4 enforces bounds(Z) consistency for the allDiffPrec constraint, as
long as precedence constraints and the allDifferent constraint have been filtered
with bounds(Z) consistency beforehand. Sadly, this pseudo-code has some faulty be-
haviours.

4.4.2 Fixing faulty behaviours of the algorithm

In this subsection, we will describe some faulty behaviours of Algorithm 4.4 and show
how to fix these faulty behaviours. Let us see a first example.
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(a) Example 1’s precedence
graph

Variables xi xi
x1 0 1
x2 1 2
x3 0 2

(b) Variables’ domains

Figure 4.1: First example where faulty behaviour happens

Example 4.1. We consider here the example depicted in Figure 4.1. We consider
variable xi = x2. The variables are sorted by increasing upper bound as following:
L = [1, 3, 2]. We also initialise the union-find T with values 0, 1 and 2. The domains
of the variables are all bounds(Z) consistent. As the first variable in L is x1 and its
upper bound is 1, we initialise b to 2.

For j = 1, x1 is not a successor of x2 so we select the set S ∈ T that contains
x1 = 0 from T : S = {0}. Thus, v = min(S) = 0. We do the union between values
0 and 1. As it is the first step xj, we do not execute the rest of the loop. b is still
equal to 2, which is the correct value according to the invariant. However, applying
the filtering rule would lead x2’s upper bound to be updated to 1, which is incorrect as
the domains given in Figure 4.1b are already bounds(Z) consistent.

Remark 4.1. The body of their pseudo-code is composed of an update of the disjoint
data set structure T for non-successors of xi, an increase of b with a for loop and a
decrease of b for successors of xi as well as in specific cases of update of T .

First, all the steps but the for loop should be skipped when xj = xi, as the other
steps would make no sense when xj = xi. Indeed, xi is not a successor of itself but
does not use an available value neither, so no update on T or decrease of b should be
applied.

Secondly, xi should not be filtered until it has been encountered during the loop on
variables xj by increasing upper bound. Indeed, as the variables are sorted by increasing
upper bound, no successor of xi are encountered before xi as the precedence constraints
are supposed to be bounds(Z)-consistent prior to the execution of the algorithm. As
such, b is always equal to xj + 1 until xi is encountered, but filtering the upper bound
of xi to at most b − 1 at each xj step would necessarily filter the upper bound of xi
(unless xi is the variable with the smallest upper bound among all variables in the
scope of the constraint).

The algorithm’s behaviour on Example 4.1 becomes correct with such fixes.

The fixes proposed in Remark 4.1 do not need to be proven as they simply are
corrections of non-sense behaviours within the original pseudo-code. Most especially,
these fixes make sure that the invariant stays correct at each step, as it should be.

However, it sadly is not enough to completely fix the algorithm. Another faulty
behaviour is depicted in the following second example, depicted in Figure 4.2 and
Example 4.2.

Example 4.2. We consider here the example depicted in Figure 4.2. We consider
fixes already proposed in Remark 4.1 throughout this example.

Let us consider the variable xi = x0. The sorted list of the variables by increasing
upper bounds is L = [0, 3, 2, 1, 4, 6, 7, 5]. We also initialise the union-find T with values
from 0 to 8. b is initialised to xL[1] + 1 = x0 + 1 = 3.
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(a) Example 2’s precedence graph

Vars xi xi
x0 0 2 (to filter to 1)
x1 0 5
x2 3 4
x3 1 3
x4 1 5
x5 7 8
x6 4 5
x7 6 6

(b) Variables’ domains

Figure 4.2: Second example where faulty behaviour happens

For j = 0, following the fixes proposed in Remark 4.1, nothing is done as it is the
first step and xj = xi.

For j = 3, x3 is a successor of x0, therefore we ignore the first if. As x3− x0 = 1,
b is increased to 4. Finally, since x3 is a successor of x0, b is decreased to 3, which is
the value it should have at this step according to the invariant.

For j = 2, x2 is not a successor of x0. We select S that contains x2 = 3 from T :
S = {3}. Thus, v = min(S) = 3. We do the union between {3} and {4}. Then, as
x2 − x3 = 1, b is increased to 5. The last if is ignored as all conditions are false.

However, according to the invariant, b should be equal to 3 at this step of the
procedure.

Remark 4.2. To fix the faulty behaviour described in Example 4.2, b should be updated
with the for loop before updating T whenever xj is not a successor of xi, otherwise the
update of b might not be good with respect to the invariant.

The algorithm’s behaviour on Example 4.2 becomes correct with this fix.

This second fix, described in Remark 4.2, is already covered by the proof given
by Bessiere et al. in [Bes+11]: this fix changes the order into which the operations
are done such that the updates on b are done on a consistent data structure for the
invariant on b to be correct.

All in all, a fixed version of the algorithm of Bessiere et al. is given in Algorithm 4.5.
The implementation, noted BessiereEtAl, of the allDiffPrec constraint uses an
allDifferent constraint, precedence constraints as well as Algorithm 4.5 to enforce
bounds(Z) consistency. Later, we will describe a similar algorithm to update upper
bounds of variables based on the same ideas: this later algorithm is not the one used
in the implementation noted BessiereEtAl.

4.4.3 Complexity and prerequisites

The worst-case time complexity of Algorithm 4.5 depends greatly on the time com-
plexities of operations Union() and Find(), as well as the time complexity of finding
the minimum and maximum values of sets within the disjoint data set structure T .
Union() and Find() operations can be done in O(1) [GT85]. Similar implementation
techniques can be used to access the minimum and maximum values of each set in T
in O(1).

Considering that these four operations on T can each be done in O(1), the fixed
version of the algorithm presented by Bessiere et al. (inner behaviour of Algorithm 4.5)
has a worst-case time complexity of O(n + d): it is not in O(nd) as the for loop
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Algorithm 4.5: Fixed version of the BC(Z) filtering algorithm for the
allDiffPrec constraint from Bessiere et al. [Bes+11]
1 Function pruneUpperBounds(X: set of variables, O: set of precedence) :

void
2 begin
3 m← min

xj∈X
|D(xj)|>1

xj

4 M ← max
xj∈X
|D(xj)|>1

xj

5 for i ∈ [1, n] do
6 Sort the variables by increasing upper bounds into a list L:

xL[idx] ≤ xL[idx+1]

7 Create a disjoint data set structure T with integers from m to M
8 b← xL[1] + 1

9 encountered← false
10 for idx ∈ [1, n] do
11 j ← L[idx]
12 if idx > 1 then
13 for k ∈ [1, xj − xL[idx−1]] do
14 b← max(Find(b, T )) + 1
15 end
16 end
17 if j 6= i then
18 if xj /∈ Γ+(xi) then
19 S ← Find(xj , T )

20 v ← min(S)
21 Union(v,max(S) + 1, T )

22 end
23 if idx > 1 then
24 if Find(v, T ) = Find(b, T ) ∧ v > b ∧ xj ∈ Γ+(xi) then
25 b← min(Find(b− 1, T ))
26 end
27 end
28 else
29 encountered← true
30 end
31 if encountered then
32 D(xi)← D(xi)∩]−∞; b− 1]
33 end
34 end
35 end
36 end

increasing b is done d times over the complete for loop over idx ∈ [1, n]. As it
is applied for all variable xi ∈ X, the worst-case time complexity is O(n(n + d)).
Bessiere et al. explained how to modify the algorithm such that the time complexity
is in O(n2) [Bes+11].



4.4. BessiereEtAl : Bessiere et al. filtering scheme 59

We remind that Bessiere et al. specify that allDifferent and precedence con-
straints should have been filtered with bounds(Z) consistency before calling their
algorithm in order to enforce bounds(Z) consistency for the allDiffPrec constraint
[Bes+11].

4.4.4 Similar algorithm to prune upper bounds

Following on the ideas presented by Bessiere et al., a similar algorithm can be written.
In this algorithm, the invariant is almost the same as the one of the original algorithm.
This similar algorithm is given in Algorithm 4.6.

Algorithm 4.6: Other algorithm from the idea of Bessiere et al. [Bes+11]
1 Function PruneUpperBounds(X: set of variables, O: set of precedence) :

void
2 begin
3 for i ∈ [1, n] do
4 Sort variables in a list L such that xL[k] ≤ xL[k+1]

5 Create a disjoint set data structure T with the integers
[min(

⋃
xj∈X

D(xj)),max(
⋃

xj∈X
D(xj))]

6 nbSucc← 0
7 for k ∈ [1, n] do
8 j ← L[k]
9 if i 6= j then

10 if j /∈ Γ+(xi) then
11 S ← Find(xj , T )

12 Union(min(S),max(S) + 1, T )

13 else
14 nbSucc← nbSucc+ 1
15 end
16 end
17 if nbSucc > 0 then
18 a← xj
19 tmp← 1
20 while tmp ≤ nbSucc ∧ a ≥ xi do
21 S ← Find(a, T )
22 if S = ∅ then
23 a← xi − 1

24 else
25 a← min(S)− 1
26 end
27 end
28 D(xi)← D(xi)∩]−∞; a]

29 end
30 end
31 end
32 end

Let us describe the behaviour of this other filtering algorithm (Algorithm 4.6).
The variables can be filtered independently, as in the original algorithm. Let us
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consider that we are filtering variable xi. The idea, as in the original algorithm, is to
loop over the variables by increasing upper bounds and to look if there are enough
available values for the successors of xi, or to prune xi’s upper bound otherwise. To
this matter, when looping on the kth variable in the list xj = xL[k], either xj is a
successor of xi and the number of encountered successors is incremented by 1, either
xj is not a successor of xi and we attribute it the smallest available value from xj .
Attributing available values is done, as in the original algorithm, with Find() and
Union() operations. After this, we compute a the greatest available value for xi.
Within T , available values for successors of xi are only values that are the greatest
value of a set. To compute the highest available value for xi, we decrease a, as many
times as there are encountered successors from the beginning of the loop treating xi,
to the next available value, that is to min(Find(a, T ))− 1 (or to xi − 1 if a is not in
T ). The test on Line 22 is here mostly to assure the good behaviour of the algorithm,
as Find(a, T ) will return ∅ if a /∈ T .

This algorithm has a worst-case time complexity of O(n2) for a single variable
xi ∈ X, and therefore a worst-case time complexity of O(n3) in total. Algorithm 4.5
is therefore quicker as the invariant b is updated incrementally.

4.4.5 Discussion on filtering lower bounds

In contrast with Algorithm 4.3, Algorithm 4.5 and Algorithm 4.6 filter only upper
bounds of variables. To filter lower bounds of variables, mirror filtering can be applied.
For this, either a mirror version should be implemented in order to filter lower bounds
(which leads to more development work to implement, test and maintain this other
piece of code), either we can consider negative version of variables yi = −xi and as
such filtering the upper bound of yi is equivalent to filter the lower bound of xi. Both
versions are good possibilities for implementations within a constraint solver. In our
case, we consider the second version: integer arrays are maintained with lower and
upper bounds of variables (either the true variables x1, . . . , xn or their mirror versions
y1, . . . , yn) before applying the filtering algorithm. When filtering lower bounds, the
precedence constraints are also inverted: yi precedes yj if and only if xj precedes xi.

4.5 GodetBC and GodetRC : Better filtering when holes
are authorised in domains

4.5.1 Arc-inconsistent but range-consistent values for the
allDiffPrec constraint

Remember that Bessiere et al. prove that enforcing domain consistency for the
allDiffPrec constraint is NP-hard [Bes+11]. As such, the algorithms presented
in previous sections do not consider potential holes within domains. Indeed, as all
the algorithms relied on building bound support, only the bounds of the domains are
read, despite GreedyRC can create holes in domains.

However, it is possible, in some cases, considering holes in domains, to detect that
some bound supports could not be extended to supports.

Example 4.3. The Figure 4.3 presents an example where a range-consistent value
can be safely removed as it is not part of any support. The Figure 4.3a shows the
precedence graph and the Figure 4.3b shows the variables’ domains in the form of
a value graph. The domains are consistent with the precedence constraints and the
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(a) Precedence graph

x1

x2

x3

x4

1

2

3

4

5

6

(b) Variables’ domains

Figure 4.3: Situation where a range-consistent value can be removed.

allDifferent constraint with bounds(Z) consistency (they even are with generalized
arc-consistency in this example).

The value 3 should be removed from D(x1), which is why the edge is a dotted line,
as it is not part of any support. However, Range-consistency will not remove the value
because there exists a bound support for it: {x1 → 3, x2 → 4, x3 → 6, x4 → 5}.

4.5.2 Improving the filtering strength for the allDiffPrec constraint

We will now see how to detect such cases in order to remove such range-consistent
values that are not generalized-arc consistent.

Notation 4.2. From here, we will note the notation of domains after direct pruning
to a more suitable form, that could be extended to several instantiations:

∀xu ∈ X,Dxv→α(xu) =


{α} if xu = xv

D(xu) \ [α, xu] if xu ∈ Γ−(xv)

D(xu) \ [xu, α] if xu ∈ Γ+(xv)

D(xu) \ {α} otherwise

(4.3)

Domains after direct pruning of xv → α are noted Dxv→α and they are supposed
to be preprocessed:

∀oj,k ∈ O, oj,k =⇒

{
min(Dxv→α(xj)) < min(Dxv→α(xk))

max(Dxv→α(xj)) < max(Dxv→α(xk))
(4.4)

This new notation considers holes in domains. Domains after direct pruning of
instantiations xi → vi and xj → vj will be noted Dxi→vi,xj→vj .

Definition 4.3 (bipartite graph after direct pruning). Let xv ∈ X be a variable and
α ∈ D(xv) be a value in the domain of xv. We define the bipartite graph induced by
xv → α by :

Gxv→α = (U, V,E) such that


U = X

V =
⋃
xw∈X D(xw)

E = {(xu, k) | xu ∈ U, k ∈ Dxv→α(xu)}
(4.5)
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It is interesting to note that Gxv→α is a subgraph of the value graph introduced
by Regin [Rég94].

We note M(·) the operator that gives a maximum matching of a graph given in
parameter.

Lemma 4.2. Let xv ∈ X and α ∈ D(xv). A maximal matching M(Gxv→α) of size n
means that there exists a bound support for xv → α for the allDiffPrec constraint.

Proof. If M(Gxv→α) is of size n, then M(Gxv→α) is a support for the
allDifferent constraint where domains of variables x1, . . . , xn are Dxv→α(x1),. . . ,
Dxv→α(xn). As ∀xu ∈ X,Dxv→α(xu) ⊆ Ddp

α (xu), M(Gxv→α) is therefore a support
for the allDifferent constraint where domains of variables x1, . . . , xn are Ddp

α (x1),
. . . , Ddp

α (xn). As a support is by definition a bound support, we thus have a bound
support for xv → α for allDifferent(x1, . . . , xn), where domains of variables X are
Ddp
α (x1), . . . , Ddp

α (xn). By Lemma 4.1, there exists a bound support for xv → α for
the allDiffPrec constraint.

Lemma 4.3. Given that precedence constraints are bounds(Z) consistent, a bound sup-
port of allDifferent(X) can be transformed into a bound support for
allDiffPrec(X,O).

Proof. Let us consider a bound support for allDifferent(X). Either all precedence
constraints are satisfied and the bound support for allDifferent(X) is also a bound
support for allDiffPrec(X,O), either at least one precedence constraint is violated
within the bound support.

Let us consider two variables xi and xj such that we have the precedence xi < xj .
We note β (respectively γ) the value assigned to xi (respectively xj) in the bound sup-
port for allDifferent(X). Let us suppose that β > γ, such that the constraint is vi-
olated (as we are studying how to transform the bound support for allDifferent(X)
into a bound support allDiffPrec(X,O)). Since the precedence constraints are
supposed to be consistent, then we have xi < xj and xi < xj . Since β is assigned
to xi, then xi ≤ β ≤ xi. Similarly, xj ≤ γ ≤ xj . Finally, since β > γ, we have
xi < xj ≤ γ < β ≤ xi < xj . Therefore, β ∈ [xj , xj ] and γ ∈ [xi, xj ]. As such, we
could assign β to xj and γ to xi.

For each precedence constraint violated by the assignment built from the bound
support for allDifferent(X) or that becomes violated from a swap, we swap the
values of the two variables in the assignment. When there are no more violated con-
straints, the built assignment is therefore a bound support for allDiffPrec(X,O):
the allDifferent constraint is satisfied as we have n different values (as we started
from a bound support for allDifferent(X)) and all precedence constraints are
satisfied after swapping when needed.

We propose the following proposition as a filtering rule.

Proposition 4.1. Let xv ∈ X and α ∈ D(xv). If there is no maximum matching of
size n in Gxv→α, then α is inconsistent with allDiffPrec in D. The filtering rule
can be expressed as:

|M(Gxv→α)| < n =⇒ D(xv)← D(xv) \ {α} (4.6)

Proof. From Lemma 4.2, the existence of a maximum matching M(Gxv→α) of size n
implies the existence of a bound support for xv → α.
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By contraposition, suppose that α ∈ D(xv) is arc-consistent with
allDiffPrec in D. As such, for all i ∈ [1, n], there exists di ∈ Dxv→α(xi) such
that all these values satisfy the precedence constraints and di 6= dj for all i 6= j.
As di ∈ Dxv→α(xi) for all i ∈ [1, n], these assignments correspond to a maximum
matching M(Gxv→α) of size n.

x1

x2

x3

x4

1

2

3

4

5

6

Figure 4.4: Representation of Gx1→3 corresponding of example de-
picted in Figure 4.3

Example 4.4. Let us see the behaviour of Proposition 4.1 on the Example 4.3.
Let us see how to build the bipartite graph Gx1→3. First, all edges corresponding

to other values than 3 should be removed from the value graph for variable x1: (x1, 1).
The edges from any other variable than x1 to the value 3 are also removed: (x3, 3).
Finally, all precedence should be enforced within the graph. As x1 precedes x2, the edge
(x2, 2) is thus removed, which in turn removes edge (x3, 4) as x2 precedes x3. Similarly,
the edge (x4, 2) is removed as x1 precedes x4. All precedence are now respected within
the graph. The result is shown in Figure 4.4.

However, in Gx1→3, there is no matching of size 4. That means that, from Propo-
sition 4.1, there exists no support for the assignment x1 → 3. Therefore, we know
that we can remove 3 from D(x1).

Theorem 4.1. Applying the filtering rule from Proposition 4.1 on all variables xv ∈ X
and value α ∈ {xv, xv} achieves bounds(Z) consistency on the allDiffPrec con-
straint.

Proof. The proof is immediate with Lemma 4.2 and Proposition 4.1.

Theorem 4.2. Applying the filtering rule from Proposition 4.1 on any variable xv ∈ X
and value α ∈ D(xv) achieves range consistency on the allDiffPrec constraint.

Proof. The proof is immediate with Lemma 4.2 and Proposition 4.1.

4.5.3 Complexity and prerequisites

Theorem 4.3. Computing the existence of a bound support for xv → α for the
allDiffPrec constraint using the filtering of Proposition 4.1 can be done in O(n2d+
nd
√
n+ d) time with d = |

⋃
xv∈X D(xv)|.
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Proof. Building the domains after direct pruning can be done in O(nd), while their
preprocessing can be done in O(n2d).

A maximummatching of a bipartite graph of k nodes andm edges can be computed
in O(m

√
k) by using the Hopcroft-Karp algorithm [HK73]. It can therefore be done,

for a given variable xv ∈ X and α ∈ D(xv), in O(nd
√
n+ d) for each bipartite graph

Gxv→α. From Lemma 4.2, we know that if this maximum matching is of size n, then
there exists a bound support for xv → α for the allDiffPrec constraint.

It is interesting to note that it is not necessary to previously filter the
allDifferent constraint for our approach to work. Indeed, a maximal matching
M(Gxv→α) of size n is a support for xv → α for the allDifferent constraint.

We note GodetBC the implementation of the allDiffPrec constraint using
precedence constraints as well as Algorithm 4.1 and Proposition 4.1 as the has-
BoundSupport function. Similarly, GodetRC represents the implementation of the
allDiffPrec constraint using precedence constraints as well as Algorithm 4.2 and
Proposition 4.1 as the hasBoundSupport function.

4.5.4 Weaker filtering than GAC

As we said at the beginning of the previous subsection, Bessiere et al. show that
enforcing GAC for the allDiffPrec constraint is NP-hard [Bes+11]. We will give
here an example of an arc-inconsistent value that is not removed by our approach.
This example is depicted in Figure 4.5 and consistency is discussed in Example 4.5.

(a) Precedence graph
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(b) Variables’ domains

Figure 4.5: Situation where the filtering rule of Proposition 4.1 does
not remove an arc-inconsistent value

Example 4.5. The Figure 4.5 presents an example where the filtering rule of Propo-
sition 4.1 misses some arc-inconsistent values. The Figure 4.5a shows the prece-
dence graph and the Figure 4.5b shows the variables’ domains in the form of a value
graph. The domains are consistent with the precedence constraints, as well as the
allDifferent constraint with a generalized arc-consistency strength.
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Figure 4.6: Representation of Gx1→3 corresponding of example de-
picted in Figure 4.5

The value 3 should be removed from D(x1), which is why the edge is a dotted line.
There exists no support for the assignment x1 = 3, thus arc-consistency would remove
the value. However, the filtering rule of Proposition 4.1 would not remove the value
because there exists a matching of size 7 in Gx1→3 (which is shown in Figure 4.6):
{x1 → 3, x2 → 4, x3 → 5, x4 → 7, x5 → 8, x6 → 9, x7 → 6}. This matching is
obviously not a support because it would violate the precedence x5 < x7.

4.6 Non-idempotency of each filtering scheme

(a) Precedence graph used to show
non-idempotency

Variables Domains
x0 { 0,1,2,3,5,6 }
x1 { 0,1,4,5,6,7 }
x2 { 0,3,5,6,7 }
x3 { 1,2,3,4,5,6,7 }
x4 { 0,1,2,3,4,5,7 }
x5 { 0,1,3,4,5,6,7 }
x6 { 1,2,3,4,5,7 }

(b) Variables’ domains

Figure 4.7: Example of non-idempotency of each filtering scheme

In this section, we present an instance of the allDiffPrec constraint where none
of the algorithms presented above achieves idempotency in one run. The example is
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depicted in Figure 4.7, and the state of the domains before and after running the
filtering scheme an ith time (the step in our tables) are given in Tables 4.1, 4.2, 4.3,
4.4 and 4.5.

Step Before/After D(x0) D(x1) D(x2) D(x3) D(x4) D(x5) D(x6)

1 Before { 0,1,2,3,5,6 } { 0,1,4,5,6,7 } { 0,3,5,6,7 } { 1,2,3,4,5,6,7 } { 0,1,2,3,4,5,7 } { 0,1,3,4,5,6,7 } { 1,2,3,4,5,7 }
After { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5,7 } { 1,3,4,5,6 } { 5,7 }

2 Before { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5,7 } { 1,3,4,5,6 } { 5,7 }
After { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5,7 } { 3,4,5,6 } { 5,7 }

3 Before { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5,7 } { 3,4,5,6 } { 5,7 }
After { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5,7 } { 4,5,6 } { 7 }

4 Before { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5,7 } { 4,5,6 } { 7 }
After { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5 } { 4,5,6 } { 7 }

Table 4.1: States of domains at each step for BessiereEtAl

Step Before/After D(x0) D(x1) D(x2) D(x3) D(x4) D(x5) D(x6)

1 Before { 0,1,2,3,5,6 } { 0,1,4,5,6,7 } { 0,3,5,6,7 } { 1,2,3,4,5,6,7 } { 0,1,2,3,4,5,7 } { 0,1,3,4,5,6,7 } { 1,2,3,4,5,7 }
After { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5,7 } { 4,5,6 } { 7 }

2 Before { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5,7 } { 4,5,6 } { 7 }
After { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5 } { 4,5,6 } { 7 }

3 Before { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5 } { 4,5,6 } { 7 }
After { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5 } { 4,5,6 } { 7 }

Table 4.2: States of domains at each step for GreedyBC

Step Before/After D(x0) D(x1) D(x2) D(x3) D(x4) D(x5) D(x6)

1 Before { 0,1,2,3,5,6 } { 0,1,4,5,6,7 } { 0,3,5,6,7 } { 1,2,3,4,5,6,7 } { 0,1,2,3,4,5,7 } { 0,1,3,4,5,6,7 } { 1,2,3,4,5,7 }
After { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5,7 } { 4,5,6 } { 7 }

2 Before { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5,7 } { 4,5,6 } { 7 }
After { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5 } { 4,5,6 } { 7 }

3 Before { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5 } { 4,5,6 } { 7 }
After { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5 } { 4,5,6 } { 7 }

Table 4.3: States of domains at each step for GreedyRC

Step Before/After D(x0) D(x1) D(x2) D(x3) D(x4) D(x5) D(x6)

1 Before { 0,1,2,3,5,6 } { 0,1,4,5,6,7 } { 0,3,5,6,7 } { 1,2,3,4,5,6,7 } { 0,1,2,3,4,5,7 } { 0,1,3,4,5,6,7 } { 1,2,3,4,5,7 }
After { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5,7 } { 4,5,6 } { 7 }

2 Before { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5,7 } { 4,5,6 } { 7 }
After { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5 } { 4,5,6 } { 7 }

3 Before { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5 } { 4,5,6 } { 7 }
After { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5 } { 4,5,6 } { 7 }

Table 4.4: States of domains at each step for GodetBC

Step Before/After D(x0) D(x1) D(x2) D(x3) D(x4) D(x5) D(x6)

1 Before { 0,1,2,3,5,6 } { 0,1,4,5,6,7 } { 0,3,5,6,7 } { 1,2,3,4,5,6,7 } { 0,1,2,3,4,5,7 } { 0,1,3,4,5,6,7 } { 1,2,3,4,5,7 }
After { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5,7 } { 4,5,6 } { 7 }

2 Before { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5,7 } { 4,5,6 } { 7 }
After { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5 } { 4,5,6 } { 7 }

3 Before { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5 } { 4,5,6 } { 7 }
After { 0,1,2 } { 0,1 } { 3 } { 4,5,6 } { 4,5 } { 4,5,6 } { 7 }

Table 4.5: States of domains at each step for GodetRC

For GreedyBC, GreedyRC, GodetBC and GodetRC, the non-idempotency
is due to the allDifferent constraint more especially and not really to the
allDiffPrec constraint per say.

One should note that the non-idempotency of each of the presented algorithm
is due to holes in domains. Whenever considered domains (whether domains after
direct pruning or original domains) are interval domains, each of the presented filtering
algorithm is idempotent with respect to bounds(Z) or range consistencies.
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4.7 Comparison of filtering strength and prerequisites of
algorithms

Figure 4.8: allDiffPrec constraint’s consistencies and algorithms

It is now interesting to discuss all the filtering strength of each algorithm. In
Figure 4.8, we remind the comparison strength between bounds(Z), bounds(D), range
and generalised-arc consistencies: bounds(Z) consistency is strictly weaker than range
consistency and bounds(D) consistency, which are incomparable to one another and
are both strictly weaker than generalized-arc consistency. The line in red reminds that
computing support for the allDiffPrec constraint is NP-hard [Bes+11]. Each blue
circle represents an implementation of the allDiffPrec constraint presented earlier
in this chapter.

The algorithm of Bessiere et al. [Bes+11], with allDifferent and precedence
constraints bounds(Z) consistent, is equivalent to bounds(Z) consistency for the
allDiffPrec constraint. From Theorem 4.1 and Example 4.3, we know that
GodetBC is strictly stronger than bounds(Z) consistency, and from Theorem 4.2
and Example 4.3 that GodetRC is strictly stronger than range consistency. From
Example 4.5 we also know that our filtering rule is strictly weaker than generalised-
arc consistency, which is logical as our filtering rule has a polynomial complexity and
Bessiere et al. prove that enforcing GAC isNP-hard for the allDiffPrec constraint.

Approach Precedence constraints prior filtering allDifferent constraint prior filtering Complexity
BessiereEtAl [Bes+11] Yes Yes (O(n) only once before execution) O(n(n+ d))

GreedyBC No No O(n3d2)

GodetBC No No O(n3d2 + n2d2
√
n+ d)

Table 4.6: Comparison of requirements between BC(Z) algorithms

Table 4.6 and Table 4.7 give a summary of prior needed filtering and complexity
of each implementation over one run. Precedence constraints are not needed for
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Approach Precedence constraints prior filtering allDifferent constraint prior filtering Complexity
GreedyRC No No O(n3d2)

GodetRC No No O(n3d2 + n2d2
√
n+ d)

Table 4.7: Comparison of requirements between RC algorithms

GreedyBC, GreedyRC, GodetBC and GodetRC as they are using domains
after direct pruning, on which precedence are enforced before running the algorithm.

Note that the worst-case time complexity of our approach, as well as the one
based on the greedy algorithm, are the same for BC(Z) and RC versions. However,
in practice, we can expect that BC(Z) versions will be faster and should filter less
than RC versions. Note also that the complexity of GodetBC can be made in
O(n3d log(d)+n2d log(d)

√
n+ d) and the one of GreedyBC in O(n3d log(d)), looking

for bound support for bounds by dichotomy, but we did not indicate such complexities
as it is not how it was encoded.

4.8 The GeneralizedAllDiffPrec constraint

The allDiffPrec constraint can be generalised to treat the precedence as variables.

Definition 4.4 (GeneralizedAllDiffPrec). Let X = {x1, . . . , xn} be a set of n
integer variables, and let Ô = {ôi,j | i 6= j ∈ [1, n]} be n(n − 1) boolean variables
representing the precedence. The constraint GeneralizedAllDiffPrec is defined
as:

GeneralizedAllDiffPrec(X, Ô) ⇐⇒

{
allDifferent(X)

∀i 6= j ∈ [1, n], ôi,j =⇒ xi < xj

(4.7)

Notice that since the allDifferent constraint forces a total order on X, this
constraints entails ôi,j = ¬ôj,i, for any two distinct integers i and j in [1, n]. Therefore,
the implication in Equation 4.7 is in fact an equivalence.

This constraint can be useful for instance in scheduling problems to channel the
start times of tasks to their relative positions, as we will see in Chapter 8.

It is easy to see that GeneralizedAllDiffPrec indeed generalises
allDiffPrec. Given a n2 boolean matrix O, let Ô denote the set of n(n − 1)
boolean variables such that, for all distinct i, j ∈ [1, n], D(ôi,j) = {true} if and only
if oi,j is true and D(ôi,j) = {true, false} otherwise.

Lemma 4.4. An assignment of X is a solution of allDiffPrec(X,O) if and only
if it can be extended to a solution of GeneralizedAllDiffPrec(X, Ô).

Proof. It is easy to see that an assignment of X that can be extended to a solution
of GeneralizedAllDiffPrec(X, Ô) is a solution of allDiffPrec(X,O), since
Equation 4.7 and Equation 4.1 are equal.

Conversely, consider a solution of allDiffPrec(X,O). Then, for all distinct
i, j ∈ [1, n], assign the variable ôi,j to true if xi < xj and to false otherwise. Observe
that this assignment is valid. Indeed, every boolean variable contains the value true,
andD(ôi,j) contains false unless oi,j is true. Moreover, it is consistent, again because
Equation 4.7 and Equation 4.1 are equal.

A corollary of Lemma 4.4 is that a (bound) support of
GeneralizedAllDiffPrec(X, Ô) containing the instantiation xi → d exists if an
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only if there is a (bound) support containing the same instantiation for the constraint
allDiffPrec(X,O). In other words, when filtering the domains of the variables X,
one should ignore all unassigned precedence variables, and apply the pruning from
allDiffPrec with the weakest possible partial order O, since (bound) supports can
always be extended to the variables O.

However, it may be possible to prune the domain of variables in Ô, and hence
infer new precedence, as shown in Example 4.6.

Example 4.6. Let D(x1) = {1, 2, 3}, D(x2) = {2, 3, 4, 5, 6}, D(x3) = D(x4) = D(x5)
= {2, 3, 4, 5}. Moreover, let O be the boolean matrix where o1,3 = o1,4 = true and
oi,j = false otherwise. In such a case, D(ô1,3) = D(ô1,4) = {true} and D(ôi,j) =
{true, false} otherwise.

It can be verified that the constraint allDiffPrec(X,O) is arc consistent, how-
ever, the instantiation ô1,2 → 0 is not bounds consistent for
GeneralizedAllDiffPrec(X, Ô).

Moreover, we must maintain the transitivity of the precedence graph given by the
variables in Ô, i.e. the following constraint is implied by
GeneralizedAllDiffPrec(X, Ô):

Definition 4.5 (transitivity). Let Ô = {ôi,j | i 6= j ∈ [1, n]} be n(n − 1) Boolean
variables.

transitivity(Ô) ⇐⇒ ∀i 6= j 6= k ∈ [1, n], ôi,j ∧ ôj,k =⇒ ôi,k (4.8)

Therefore, in order to achieve bounds(Z) consistency on
GeneralizedAllDiffPrec(X, Ô), we must achieve bounds(Z) consistency on
transitivity(Ô). Observe, however, that transitivity pruning does not invalidate
Lemma 4.4 since a bound support satisfies all precedence if and only if it satisfies their
transitive closure.

Lemma 4.5. If the domains Dxi→di and Dxj→dj are bounds(Z) consistent for the
constraint allDifferent(X) but Dxi→di,xj→dj is unsatisfiable, then there exists an
interval [a, b] that contains di, dj and the domains of b−a variables other than xi and
xj.

Proof. Since the domain Dxi→di,xj→dj has no solution, there exists an interval [a, b]
containing the domains of at least b− a+ 2 variables. Suppose that di > b, then the
same interval exists in Dxj→dj , which contradicts the hypothesis. A similar argument
can be made for di < a, dj > b and dj < a.

Lemma 4.6. There is a bound support of GeneralizedAllDiffPrec(X, Ô) con-
taining the instantiation ôi,j → true if and only if after enforcing bounds(Z) consis-
tency on allDifferent(X) with domain Dxi→xi , we have xj > xi.

Proof. First, observe that the following weaker claim holds:
There is a bound support of GeneralizedAllDiffPrec(X, Ô) containing the

instantiation ôi,j → true if and only if there exists d ∈ D(xi) such that after enforcing
bounds(Z) consistency on allDifferent(X) with domain Dxi→d, we have xj > d.

• If (⇐): Since after enforcing bounds(Z) consistency on allDifferent(X) with
domain Dxi→d the upper bound of xj is xj , then there exists a bound support
of allDifferent(X) with domain Dxi→d,xj→xj .
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Moreover, by Lemma 4.3 this assignment can be turned into a bound support
of allDiffPrec(X,O) with domain Dxi→d,xj→xj .

Finally, by Lemma 4.4 we know that this assignment can be extended to a
solution of GeneralizedAllDiffPrec(X, Ô), with ôi,j → true, since xi < xj
as d < xj .

• Only If (⇒): Suppose that after enforcing bounds consistency on
allDifferent(X) with domain Dxi→d, we have xj < d.

Then allDifferent(X) is unsatisfiable for the domain Dxi→d,xj→d′ for any
d′ > d ∈ D(xj). As allDifferent is a specialization of allDiffPrec, if
allDifferent(X) is unsatisfiable, so is allDiffPrec(X,O).

Therefore, a bound support of allDifferent(X) with domain Dxi→d may
not be extended to GeneralizedAllDiffPrec(X, Ô) containing ôi,j → true
(since necessarily xi > xj).

Now, suppose that the claim is true for d > xi but is false for xi. Let u be
xj after enforcing bounds consistency on allDifferent(X) with domain Dxi→d.
We have xi < d < u. Observe that the domains Dxi→xi and Dxj→u have a bound
support for allDifferent(X), which is unsatisfiable with domain Dxi→xi,xj→u. By
Lemma 4.5, there exist a ≤ xi and b ≥ u such that [a, b] contains the domains of
b− a variables other than xi and xj . Therefore, if xi and xj are assigned respectively
to d and u, then the interval [a, b] contains the domains of b − a + 2 variables, and
hence allDifferent(X) is unsatisfiable with domain Dxi→d,xj→u. This contradicts
the hypothesis and therefore proves the Lemma.

Theorem 4.4. Bounds consistency on GeneralizedAllDiffPrec(X, Ô) can be
achieved in O(n3) down a branch of the search tree.

Proof. First, bounds(Z) consistency on the constraint transitivity(Ô) can be achieved
in O(n2) amortised time. In order to do that, we need to maintain the graph of prece-
dence and use an incremental algorithm. For instance, the algorithm proposed by
Ibaraki and Kato [IK83] takes O(n3) in total (i.e., over a branch of the search tree),
and hence O(n2) time amortized in a branch of length n.

Then, using the algorithm from [Bes+11], bounds consistency on
allDiffPrec(X,O) can be achieved in O(n2) time. By Lemma 4.4, every bound
support can be extended to the variables Ô, hence we know that the domains of
variables in X cannot be reduced further.

Next, we use Lemma 4.6 to prune the domains of the variables in Ô. Bounds(Z)
consistency on allDifferent(X) can be achieved in O(n) plus the time to sort the
variables twice (by their lower and upper bounds) [MT00]. We run this algorithm 2n
times, that is, on the domains Dxi→xi and Dxi→xi for every variable xi. However,
sorting the variables can be done in linear time at each iteration: suppose that the
variables x1, . . . , xn are sorted by non-decreasing lower bounds, and consider any
variable xi. First, all variables have the same lower bound in domains Dxi→xi , hence
the ordering is unchanged. Now, consider the domains Dxi→xi . The variables in
{x1, . . . , xi−1} have the same lower bound in Dxi→xi and hence do not need to be
sorted again. Moreover, the variables in {xi+1, . . . , xn} that are not successors of xi
according to the partial order Ô also have the same lower bounds and hence are still
pairwise sorted. The variables in {xi+1, . . . , xn} that are successors of xi according to
the partial order Ô have for lower bound the maximum between their previous lower
bounds and xi + 1. Therefore, they are still pairwise sorted. The two latter lists can
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be merged in linear time, hence we can sort the domains Dxi→xi(x1), . . . , Dxi→xi(xn)
by lower bounds in O(n).

Now, we compute two sorted lists of the variables in X, by non-decreasing lower
and upper bounds in O(n log n) time, and for every i ∈ [1, n− 1]:

• We “repair” the sort on each bound as shown above, and we enforce bounds(Z)
consistency on allDifferent(X) for the domains Dxi→xi and Dxi→xi in O(n)
time.

• For every j ∈ [i + 1, n], we use Lemma 4.6 to prune ôi,j (and ôj,i): if xi < xj
then ôi,j → false and ôj,i → true are bounds inconsistent. Similarly, if xi > xj
then ôi,j → true and ôj,i → false are bounds inconsistent. This can be done
in O(n) time.

The overall worst-case time complexity is therefore in O(n2) amortized: O(n2)
amortized for the transitivity; O(n2) to achieve bounds consistency on
allDiffPrec(X,O); O(n log n) for the two initial sorts; and O(n) for each of the
O(n) iterations of the loop. In the worst case, it is O(n3) for the transitivity plus
O(n2) for the rest.

4.9 Conclusion and future works

In this chapter, we gave a complete overview of the allDiffPrec constraint, intro-
duced by Bessiere et al. [Bes+11] as a global constraint combining an allDifferent
and precedence constraints. We discussed on state-of-the-art results and most espe-
cially on the worst-case time complexity of the filtering scheme based on the greedy
bound support building algorithm. We gave a correction of the state-of-the-art al-
gorithm and show how to build a similar one based on the same idea. Then we
introduced a new filtering rule that considers potential holes within domains. We
showed that this new rule leads to consistencies strictly greater than bounds(Z) and
range. Finally, we summarised the prior filtering and worst-case time complexities of
each filtering scheme.

Future works could be oriented to improve on the global complexity of the filtering
scheme of GodetBC. Indeed, it might be possible to decrease the worst-case time
complexity of the approach as Bessiere et al. did from the greedy bound support
building algorithm to their algorithm. Focusing on incrementality between runs might
be a way.
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Chapter 5

Implementing the allDiffPrec
constraint in a constraint solver

Implementation is often an overlooked part when developing new constraints and
propagators. However, paying attention on the code development as well as profiling
how and where CPU time is spent and trying to improve on this might lead to better
performance in practice. In this chapter, we discuss on implementation details of the
different configurations of the allDiffPrec constraint that were presented in Chap-
ter 4.

The chapter is organised in two sections. In Section 5.1, we discuss on implemen-
tation details of each filtering scheme within a constraint solver. We give insights on
which data structures to use and how to implement them, as well as how to organ-
ise the code of the propagator in order to improve execution speed of each filtering
scheme. In Section 5.2, we present an experimental protocol to compare the different
filtering schemes and discuss on the obtained results.

The work presented in this chapter was submitted to the CP conference 2021.

5.1 Implementation Schema

In this section, we will discuss about implementation details of each version of the
allDiffPrec constraint that we discussed all through the previous chapter. Pay-
ing attention to the implementation of all the algorithms lead to better performance,
whereas simple implementations can be quite slow in practice. Most especially, great
attention should be given to the data structures and the efficiency of operations on
them.

Let us remind that, in this thesis, we concentrate on Choco solver [PFL17]. As
such, some remarks and developments discussed in this section might not be true
for all constraint solvers, as they do not all rely on the same internal mechanisms.
Most especially, Choco solver relies on the use of lists of priorities for propagators, as
presented in Paragraph 5 in Section 2.2.5.

5.1.1 Propagator structure

We can first see from Table 4.6 and Table 4.7 that, whatever the implementation of
the allDiffPrec constraint, prior filtering are supposed to be done before running
the filtering algorithm associated with the implementation of the constraint. And
when it is not the case, doing so might lead to better performance in practice (as
we will see later). Precedence constraints are supposed to be bounds(Z) consistent
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before running any of the filtering algorithm. For the implementation BessiereEtAl,
the allDifferent constraint should also be bounds(Z) consistent before running the
filtering algorithm (Algorithm 4.5), let it be for lower bounds or upper bounds filtering.

Moreover, a particular attention should be given to the updates of variables to
assure that the domains stay consistent with respect to the precedence constraints, as
well as the allDifferent constraint in the case of the implementation BessiereEtAl.

Resting only on the internal mechanisms of the solver to guarantee these prior
filtering might be difficult or very inefficient. More especially, in Choco solver, propa-
gators are supposed to be idempotent by the scheduling module, which is in charge of
the priority lists and of calling the propagators that need to be ran. It is possible to
manually schedule a propagator, however the system is not conceived for this and later
developments in the solver might break such a functioning. To avoid such worries,
the propagator for the allDiffPrec constraint can manage itself the prior filtering
of precedence constraints and the allDifferent if needed.

Algorithm 5.1: Propagate function for the propagator for allDiffPrec
constraint
1 Function Propagate(X : variables, O : precedence set)
2 begin
3 do
4 do
5 priorF ilt← updateBound(true)
6 priorF ilt← priorF ilt ∨ updateBound(false)
7 if filtAllDifferent then
8 priorF ilt← priorF ilt ∨ allDifferent.filter()
9 end

10 while priorF ilt
11 while Filter(X,O)

12 end

Algorithm 5.1 presents the implementation that was done. The function update-
Bound is in charge of filtering the precedence constraints, filtering the lower bounds
whenever the parameter is true and filtering the upper bounds whenever the pa-
rameter is false. The function returns true whenever one bound has been filtered
during the procedure, and false otherwise. Let us note that, for a better efficiency
of this function, the precedence graph induced by O should be travelled following the
topological order. filtAllDifferent is a parameter of the propagator that is true
for BessiereEtAl and false for all other implementations. If filtAllDifferent
is true, then the allDifferent constraint is filtered with bounds(Z) consistency
using the filtering algorithm of Mehlhorn et al. [MT00]. Lines 4 to 10 are ran again
and again until a fixpoint is reached. Whenever it is the case, the function Filter() is
called, which ran the filtering algorithm associated with the wanted implementation
between GreedyBC, GreedyRC, BessiereEtAl, GodetBC or GodetRC.

In the following subsections, we are going to discuss the different implementation
of the function Filter(X,O) according to each filtering algorithm discussed in the
previous chapter. For convenience, we do not necessarily indicate all data structures
within parameters of functions, as it is up to the developers to rely on Object Oriented
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Programming or not, and as such how data structures are shared between the different
part of the code. For instance, the topological order to travel across the precedence
graph is computed once and for all at the creation of the propagator and is stored
in it, being shared to dedicated objects in charge of the filtering algorithms per say
when needed.

5.1.2 Implementation details for GreedyBC and GreedyRC

The computing of m = min
xj∈X
|D(xj)|>1

min(Ddp
α (xj)), M = max

xj∈X
|D(xj)|>1

max(Ddp
α (xj)) and

D ←
⋃

xj∈X
|D(xj)|=1

D(xj) can be done once and for all before running the algorithm. When-

ever running Algorithm 4.3 leads to the instantiation of a variable, D can be updated.

Building the domains after pruningDdp
α (x1), . . . , Ddp

α (xn) when looking for a bound
support for xv → α is done quite easily. In our case, we stored the minimal and maxi-
mal values of variables in integer arrays to manipulate domains after pruning without
changing the true domains, unless a removal should happen. Computing the domains
Ddp
α (x1), . . . , Ddp

α (xn), without enforcing precedence constraints on them, can be done
in O(n).

To accelerate the preprocessing of the domains after direct pruning, one should
travel the precedence graph following the topological order when updating lower
bounds and the inverse of the topological order when updating upper bounds of do-
mains after direct pruning. This way, all domains after direct pruning are consistent
with precedence constraints in O(n2). Thanks to the phase of preprocessing the do-
mains after direct pruning, variables can be updated as soon as a bound update is
detected, which can trigger a failure earlier if a domain is emptied.

Execution speed can be earned when adding available variables (variables whose
minimal value in domains after direct pruning is the current treated value v): when
looping over variables to see if they should be added to the list of available variables
or not, the next value for which the procedure of adding available variables should be
ran again can be computed during the loop as it is the smallest value strictly greater
than v among all minimal values of domains after direct pruning for non-assigned vari-
ables. When there are ranges of values v that are not minimal values of domains after
direct pruning, the loop of adding available variables (which is in O(n)) is avoided all
through the range.

Finally, let us discuss on the implementation of Greedy 1, Greedy 2 and Greedy 3
as introduced in Section 4.3. The implementation details on the domains after direct
pruning are true for all these three implementations as they all use these domains. As
discussed in Section 4.3, the distinction is after the build and filtering of the domains
after direct pruning. These three implementations were compared on a subset of the
benchmark composed of 30 instances of the allDiffPrec constraint of size n = 50
(see Section 5.2) for which GreedyBC (using Greedy 1 implementation) took more
than 1s to do the optimality proof. The idea was to compare the speed of execution
of each implementation on instances for which the time to proof was not too short
to avoid the experience to be influenced by the current charge of the processor. On
these 30 instances, Greedy 3 was 10% quicker than Greedy 1 in average and Greedy 2
was 12% quicker than Greedy 1 in average. As such, and even if it was not the case
for our own experiments, if one wants to implement the allDiffPrec constraint
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using the greedy filtering scheme, Greedy 2 or Greedy 3 implementations should be
favoured. Note that implementing Greedy 3 is not very hard if the bounds(Z) consis-
tency filtering algorithm for allDifferent [Lóp+03] is already implemented within
the constraint solver. Greedy 2 is in any case very easy to implement.

Despite it is not necessary that precedence constraints are bounds(Z) consistent
prior to the execution of the filtering algorithm, it greatly improves execution speed in
practice when they have been enforced bounds(Z) consistent. Indeed, it will avoid to
run the filtering algorithm, with the build and filtering of domains after direct pruning,
on instantiations xv → α that would have been filtered by precedence constraints.

5.1.3 Implementation details for BessiereEtAl

First, let us discuss about the UnionFind data structure. Let us first note that Tar-
jan proves in [Tar75] that the worst-case time complexity of m intermixed operations
Find and Union is O(mα(n)), where α(·) is the inverse Ackermann function, for the
disjoint-set forest implementation. As such, Find and Union operations have almost
near-constant time complexity. Whenever the values stored in the UnionFind data
structure are known in advance, Gabow and Tarhan presents a way to reduce the com-
plexity of these operations to O(1) [GT85]. However, these operations are not easy to
implement and the constant time complexities are, in fact, constant only in specific
cases. Let us also note that state-of-the-art implementations of the near-constant time
complexities for Find and Union operations appear to be really efficient in practice.
As such, we used this version of the UnionFind data structure.

Concerning Algorithm 4.5, the implementation is pretty straightforward. It quite
follows the algorithm. Before running the algorithm, the lower and upper bounds (or
their mirror values) are stored within integer arrays and these values are used all along
the algorithm to avoid violating precedence constraints or allDifferent constraint
whenever a bound update should be detected. Instead, the new upper bounds (or
lower bounds for the mirror version) are stored in an integer array and updates on
variables is done at the end of the algorithm. Whenever a bound update has been done
at the end of the algorithm, whether for its lower or upper bounds version, the function
Filter() immediately returns true for precedence constraints and the allDifferent
constraint to be made bounds(Z) consistent afresh. If no bound update is detected,
Filter() returns false.

5.1.4 Implementation details for GodetBC and GodetRC

The implementations of GodetBC and GodetRC are similar to the ones of
GreedyBC and GreedyRC. The filtering scheme is based on Algorithm 4.1 for
GodetBC and on Algorithm 4.2 for GodetRC. The hasBoundSupport function for
variable xv and value α ∈ D(xv) consists in building the bipartite graph Gxv→α based
on domains after direct pruning authorising holes, enforce precedence constraints on
it, and finally compute the size of the maximum matching over it.

For efficiency, the bipartite graph Gxv→α should be modified incrementally. As
such, the value graph is first built, and at each call to hasBoundSupport edge removals
are stored in order to restore them at the end of the function. This implementation
is faster than building from scratch the bipartite graph Gxv→α at each call to has-
BoundSupport. For efficiency, for a given value w, it is useful to access rapidly to the
smallest value strictly greater than w in the domain of a variable, and similarly to the
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greatest value strictly smaller than w in the domain of a variable. In Choco solver, we
use a DirectedGraph into which, for each node, sets of predecessors and successors are
maintained using BitSet data structures, which allows for quick accessing next or pre-
vious value of w (we will suppose that this operation is in O(1), but it is near-constant
in reality as the operation depends on the number of bits used to represent the size
of the BitSet). All in all, building the bipartite graph Gxv→α without enforcing the
precedence constraints on it can be done in O(nd).

Once the bipartite graph Gxv→α is built from the value graph, following the topo-
logical traversal of the precedence graph, Gxv→α is updated for domains after direct
pruning Dxv→α to be preprocessed. As for GreedyBC and GreedyRC, using the
topological traversal of the precedence graph achieves the preprocessing of domains
after direct pruning Dxv→α in O(n2d). It is not in O(n2) as for GreedyBC and
GreedyRC as updating the bound of a domain after direct pruning is in O(d) be-
cause of holes in the domains while GreedyBC and GreedyRC consider domains
as intervals.

Finally, the maximum matching is computed. For efficiency, and to avoid to com-
pute some augmenting paths, we first build a greedy matching by affecting to each
variable their smallest available value. Thanks to the BitSet implementations for sets
in the DirectedGraph, this can be done in O(n). If after this greedy matching proce-
dure, all variables have been matched, there is no need to look for augmenting paths,
as a maximum matching of size n has already been found, and the value α should not
be filtered from D(xv).

Attention should really be given to the building of Gxv→α as, in practice, it is
what takes the most time. With attention on the implementation, we achieve build-
ing Gxv→α almost 5 times faster than the implementation building it from scratch.

As for GreedyBC and GreedyRC, it is not necessary that precedence con-
straints have been enforced with bounds(Z) consistency prior to the execution of the
filtering algorithm. However, these prior filtering can avoid to spend time on instantia-
tions xv → α that would have been filtered by precedence constraints. More precisely,
doing these prior filtering improves on the execution speed by 10% for instances of
n = 50 and up to 30% for instances of size n = 200.

5.2 Experiments

5.2.1 Experimental protocol

In this section, we will present an experimental protocol to compare the performance
of the different versions of the allDiffPrec constraint.

5.2.1.1 Model for comparison

The comparison will be done on the Constraint Optimization Problem described in
Figure 5.1, which consists of an allDiffPrec constraint and of the minimization of
the maximum value taken by X variables.

As a base comparison, we wanted to compare to a decomposition of the
allDiffPrec constraint. For this, we use the allDifferent constraint as well
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minimise z = max
xv∈X

xv s.t.

allDiffPrec(X,O) (5.1)

Figure 5.1: Equations for allDiffPrec constraints description

as precedence constraints, all with bounds(Z) consistency. This model is referred to
as Decomposition.

We will compare this base-version of allDiffPrec with the ones described earlier
and summarized in Table 4.6 and Table 4.7: GreedyBC, GreedyRC,
BessiereEtAl, GodetBC and GodetRC.

In order to compare the filtering algorithms’ strength and speed of execution,
we use a non-dynamic search whose branching scheme is the same for all models:
inputOrderLb. It selects the first variable xi ∈ X that is not instantiated and branch
on it by instantiating it to its lower bound (xi ∈ X s.t. i = min({j ∈ [1, n] | |D(xj)| >
1})). This way, the search tree for each model should be very similar, the solving
difference being the speed of execution of each model and the search tree is smaller
for better consistencies.

5.2.1.2 Instance generation

All versions of allDiffPrec but GodetBC and GodetRC only use the bounds
of the variables, while these two consider holes in the domains of the variables. As
such, we expect that GodetBC and GodetRC versions should be better than the
other four when the density (the percentage of values between the lower and upper
bounds) of the domains of the variables is neither high (too close to true bounds(Z)
consistency) nor low (a few filtering leads to instantiation or fail).

In order to confirm this hypothesis, we randomly generate instances. Given a
density, all variables will have this density. Precedence O are randomly created with
either 20%, 40%, 60% or 80% probability for each (i, j) ∈ [1, n]2, with i < j, for xi to
precede xj .

We generate 25 instances for each precedence probability and each domains density
between 10% and 100% by 5%. In total, it leads to 1900 instances, 100 for each density.
We do this for several sizes n of instances: 50, 100, 150 and 200.

5.2.1.3 Execution environment

The Choco-solver library [PFL17] was used in its 4.10.5 version. A time limit of 15
minutes was given for each model and each instance. Every instance and piece of code
that were used can be found in a GitHub repository [God21c].

5.2.2 Experimental results

First, note that a benchmark of 1900 instances of size n = 20 was also generated. How-
ever, all configurations did the proof of optimality or absence of solution on all the
1900 instances, and the Decomposition was the quicker overall in average. This is
logical as the number of explored nodes by the Decomposition configuration (which
has the weaker filtering, not even enforcing the bounds(Z) consistency [Bes+11]) was
in average not high enough, such that the high speed of execution of the configuration
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(a) Number of proofs per density for each approach

(b) Mean time to proof per density for each approach

(c) Median time to proof per density for each approach

Figure 5.2: Results for instances of size n = 50

would largely compensate for the lack of filtering.

The results are given in Figure 5.2 for instances of size n = 50, in Figure 5.3 for in-
stances of size n = 100, in Figure 5.4 for instances of size n = 150 and in Figure 5.5 for
instances of size n = 200. In each figure and each graphic, the density of the domains
varies on the abscissa axis. We remind that for each size and density, we generated
100 instances. In each figure, the first graphic indicates the number of proofs that
were done by each configuration in function of the density of the domains, the second
one indicates the mean time to proof in function of the density of the domains of
each configuration, the third one indicates the median time to proof in function of
the density of the domains of each configuration. For the mean and median times
to proof, we included when the proof was not done: the considered value is, in such
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(a) Number of proofs per density for each approach

(b) Mean time to proof per density for each approach

(c) Median time to proof per density for each approach

Figure 5.3: Results for instances of size n = 100

a case, the time limit. Therefore, and more especially for the mean time to proof,
the configurations that miss to make the proof are not so many disadvantaged in the
results.

First, we can note that, whatever the size of the instances, the median time to
proof graphics show that a majority of instances are not very difficult to solve, and
therefore speed of execution prevails over filtering strength. We can temper this con-
clusion when observing the median time to proof for instances of size n = 150 and
n = 200, where Decomposition completely falls behind for densities between 45%
and 90%. Therefore, the BessiereEtAl implementation of the allDiffPrec con-
straint seems the most appropriate in most cases.
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(a) Number of proofs per density for each approach

(b) Mean time to proof per density for each approach

(c) Median time to proof per density for each approach

Figure 5.4: Results for instances of size n = 150

Notwithstanding, the graphics of the number of proofs and of the mean time to
proofs both show that the BessiereEtAl configuration faces challenges to do the
proof when the density is between 20% and 75%. Note that failing to do the proof
automatically degrades the mean time to proof, which is why graphics indicating the
number of proofs and the mean time to proof generally have similar shapes. As we
said, we expected all configurations except GodetBC and GodetRC to face diffi-
culties to do the proof when the density of the domains of the variables is neither high
(too close to true bounds(Z) consistency) nor low (a few filtering leads to instantia-
tion or fail). The experimental results completely validate this intuition, the higher
the size n the clearer the validation. As the curves of GreedyBC, BessiereEtAl
and GreedyRC are close to each other (except when n = 200 where GreedyRC
completely fall behind but we will discuss on this later), and we confirm it with the
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(a) Number of proofs per density for each approach

(b) Mean time to proof per density for each approach

(c) Median time to proof per density for each approach

Figure 5.5: Results for instances of size n = 200

raw results data, they face difficulties to do the proof on the same instances and only
speed of execution make a difference between these configurations.

One can easily see the great performance of our approach. Indeed, for instances
of size n = 50 and n = 100, both GodetBC and GodetRC configurations do the
proof on all the instances within the time limit. Despite having the same worst-case
time complexity, GodetBC is quicker than GodetRC in average to do the proof.
Let us remark that GodetBC maintains a high ratio of done proofs when the size of
instances gets higher, where GodetRC seems to scale quite badly. Another remark
we can make on GodetBC, when observing median time to proof graphics, is that
it gets close results with GreedyBC. This can be explained by the fact that both
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configurations are iteratively looking if an instantiation is inconsistent or not using do-
mains after direct pruning. It seems that it is the build and filtering of precedence on
these domains that take time, which is also what we can monitor in terms of CPU time.

When looking closer, both RC configurations (GreedyRC and GodetRC) face
difficulties when the size of instances gets greater. If for instances of size n = 150,
GreedyRC seems to keep close performance from GreedyBC, both GreedyRC and
GodetRC completely fall behind on instances of size n = 200. Interestingly, one can
remark that the greater the density becomes, the more difficulties both configurations
are facing. This can be explained by the fact that d gets greater as the density gets
greater, and therefore RC configurations fall behind because of their worst-case time
complexity greatly depending on d. Both GreedyBC and GodetBC, whose worst-
case time complexities also depend on d, do not fall behind because the algorithms are
not run d times, which would correspond to an instantiation or a fail of the filtered
variable.

5.3 Conclusion

In this chapter, we discussed the implementation within a constraint solver of the dif-
ferent configurations of the allDiffPrec constraint with execution speed in mind.
More especially, we discussed on the implementation details of the different configu-
rations and their data structures. We also showed how to share code between config-
urations to save development efforts. Finally, we described an experimental protocol
to compare fairly all configurations of the allDiffPrec constraint. We showed that,
whenever domains can contain holes, our new filtering rule, in its bounds version
(GodetBC) is the best compromise between execution speed and filtering strength.
Unless domains are intervals, one should consider to use this implementation of the
allDiffPrec constraint for greater performance. If the domains are intervals, ex-
perimental results showed that one should consider to implement the BessiereEtAl
version of the allDiffPrec constraint.
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Part III

Ordering variables to improve
scheduling problem solving
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Chapter 6

The generic Order constraint

In this chapter, we are going to discuss about a generic scheme on modelling and
search whose objective is to greatly reduce the size of the search space: from pure
exponential to factorial. Let us say that all variables have a domain of size d. Then
the search space is of size O(dn). Depending on the value of d and the number of
variables n, n! might be way smaller than dn, and as such the search space could be
explored quicker. Let us remark that this observation can be mitigated depending on
the filtering strength and the search heuristic.

6.1 Generic principle behind ordering variables

The scheme we describe in this chapter is based on what we call list ordering algo-
rithms.

Definition 6.1 (List ordering algorithm). Given a problem P and a list L, a list
ordering algorithm produces a solution of the problem from the list L.

For instance, if we consider the one dimensional Bin Packing problem, famous
algorithms as the First-Fit algorithm or the Best-Fit algorithm [Joh74] are both list
ordering algorithms: from a list of items, they build a solution of the Bin-Packing
problem, assigning items to bins such that no bin is overloaded.

A great source of list ordering algorithms can be found in approximation algorithms
[Vaz03]. Approximation algorithms are algorithms that build a solution of a problem
and such that the value of the objective-function of the built solution is guaranteed
to be under a certain value: if we note f() the objective-function to minimise, f(Sopt)
the value of the objective-function on an optimal solution and S the built solution,
then there exists α ∈]1,∞[ such that f(S) ≤ αf(Sopt). These algorithms build a solu-
tion from the data of the problem, that can generally be expressed in the form of a list.

As the approximation algorithms consider that there exists an optimal solution
that can be built by the approximation algorithm, then it is possible to build an opti-
mal solution by looking for the list that would lead to an optimal solution when being
given in parameter to the approximation algorithm. For convenience, we call such a
list an optimal list. Whenever the size of the data of the problem is n, then the search
space of all the possible lists is of size n!. With respect to the discussion on search
space’s size done in the introduction of the chapter, there are cases where looking for
the optimal solution might lead to a quicker search than with the classical model of
the problem.

In next section, we will discuss on a generic way on how to implement such an
idea into constraint solvers.
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6.2 The Order constraint: a constraint implementing list
ordering reasoning

We consider a problem for which there exists a list ordering algorithm that can build
an optimal solution. In the remaining of this chapter, we are going to present the
Order constraint as well as a simple filtering algorithm. All we are going to present
will stay generic, applications for several scheduling problems being presented in the
next chapters.

We will note X = {x1, . . . , xn} the set of decision variables of the problem: these
variables describe a solution of the problem when they are instantiated and all con-
straints are satisfied. Using the list ordering algorithm will instantiate these variables
given some data and already instantiated variables.

The list representing the order into which variables would be given to the list
ordering algorithm is modelled in the form of permutation variables p1, . . . , pn, which
set is noted P . Permutation variables take their values in [1, n] such that pi = j means
that variable xj is at the ith position within the list.

Definition 6.2. Given a problem, we consider that there exists a function
f(X,L, i, j,Data) that returns the value assigned to xj if placed at the ith position in
the list L given the i− 1 preceding variables in the list L. Such a function is the base
for the list ordering algorithm: given the list L, iteratively calling f(X,L, i, L[i], Data)
for i ∈ [1, n] will build the solution. Data is a notation used for data specific to the
problem, which should be specified for applications.

The Order constraint can be defined as:

Order(X,P, f) ⇐⇒ ∀i ∈ [1, n], xpi = f(X,P, i, pi, Data) (6.1)

The Order constraint represents as such the list ordering reasoning. Let us see
how to filter inconsistent values for this constraint. Whenever permutation variables
from p1 to pk are instantiated, the corresponding variables xp1 to xpk should be in-
stantiated according to the function f in order to respect the list ordering algorithm.
If the corresponding variables cannot be instantiated to the value returned by function
f , the propagator should fail during this phase.

Proposition 6.1. The Order constraint respects the list ordering reasoning behind
function f . As such, we have the following filtering rule:

∀i ∈ [1, n],
∧

1≤k≤i
|D(pk)| = 1 =⇒ D(xpi)← D(xpi)∩ {f(X,P, i, pi, Data)} (6.2)

Proof. The proof is straightforward with the list ordering reasoning.

Definition 6.3. The current permutation variable pidx is the permutation variable
with the greatest index idx and such that all preceding permutation variables p1, . . . ,
pidx−1 are instantiated and that is not instantiated itself: idx = min{k ∈ [1, n] |
|D(pk)| > 1}.

For every value j in the domain of the current permutation variable, if
f(X,P, idx, j,Data) /∈ D(xj), then xj could not be placed at the current position
without violating the Order constraint. From here, we deduce the filtering rule
given in Proposition 6.2.
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Proposition 6.2. The Order constraint respects the list ordering reasoning behind
function f . As such, we have the following filtering rule:

∀j ∈ D(pidx), f(X,P, idx, j,Data) /∈ D(xj) =⇒ D(pidx)← D(pidx) \ {j} (6.3)

Proof. Let us suppose that j is not removed from D(pidx) and such that v =
f(X,P, idx, j,Data) /∈ D(xj). If pidx gets instantiated to j, then the filtering rule
described in Equation 6.2 would remove all values in D(xj) except for v, which leads
for D(xj) to be empty.

From these two filtering rules, we can build a filtering algorithm, which is given in
Algorithm 6.1.

Algorithm 6.1: Propagator for the Order constraint
1 Function Propagate(X : variables, P : permutation variables, f : function

for the list ordering)
2 begin
3 i← 1
4 do
5 while |D(pi)| = 1 do
6 D(xpi)← D(xpi) ∩ {f(X,P, i, pi, Data)}
7 i← i+ 1

8 end
9 if i ≤ n then

10 for j ∈ D(pi) do
11 if f(X,P, i, j,Data) /∈ D(xj) then
12 D(pi)← D(pi) \ {j}
13 end
14 end
15 end
16 while |D(pi)| = 1 ∧ i ≤ n
17 end

Line 9 tests if all permutation variables are instantiated or not. The algorithm,
in order to be idempotent, as propagators in Choco solver should be, loops while
the current permutation variable has been instantiated by the for loop from Line 10
to Line 14. For efficiency during the solving phase, the integer i should be made
backtrackable in order to avoid running Line 5 to Line 8 each time the propagator
is called. Instead, with i being backtrackable, these lines will be ran only when nec-
essary, that is when the former current permutation variable has been instantiated
through branching or by other constraints.

One can easily see that it is hard to use the list ordering reasoning to filter permu-
tation variables succeeding the current permutation variable. As such, Algorithm 6.1
concentrates only on it, which can therefore not be characterised consistency-wise.
Following the same idea, the search should focus only on the current permutation
variable. As such, the inputOrder search is perfect for our case: it branches on the
first uninstantiated variable in a list given in parameter. The given list is composed
of the permutation variables P in the natural order. However, the value on which it
is branched on should be computed depending on the problem and, possibly, on the
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underlying idea of the list ordering algorithm.

Of course, one should note that the Order constraint is complementary with the
classical model for the problem. As such, filtering from all constraints are used to
reduce the search space. Whenever possible, one should also focus on potential addi-
tional constraints on permutation variables. Also, whenever possible, one should try to
make the Order constraint exploit the filtering from other constraints to strengthen
its own filtering: if the current state of domains of variables is not consistent with
instantiations the Order constraint would make, filtering the corresponding variable
from the current permutation variable should be done.

In following chapters, we will give several applications of this generic Order
constraint, concentrating on the underlying list ordering reasoning as well as its im-
plementation as a specialisation of the Order constraint.
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Chapter 7

Application to the PMSPAUR

Initially, it was for this problem that the idea of looking for an optimal list ordering
instead of the optimal schedule directly was thought out and introduced. It was only
after that it was extended to the leftShifted constraint (that will be presented in
Section 8.1) and generalised into the Order constraint.

Interestingly, we can share that first implementations of the approach were made
of two different propagators whose priorities were such that one propagator was ex-
ecuted before all the other ones and the second propagator was executed after all
propagators have reached their fixpoint. The propagator that was executed first is
the one that applies the filtering rule expressed in Proposition 6.1, while the one that
was executed after all the others applies the filtering rule expressed in Proposition 6.2.

In this chapter, we will explore how these two propagators were thought out. In
Section 7.1, we will give additional notations and notions that will be of use for our
two new propagators. Section 7.2 presents a proof that a list ordering algorithm based
on the Enqueue procedure [Heb+16] can yield an optimal schedule for the PMSPAUR.
Then, we introduce some cutting rules in Section 7.3. In Section 7.4, we present how
to implement the list ordering reasoning as well as the cutting rules in an efficient
way. Experimental results are given in Section 7.5. Finally, we briefly conclude on
these researches in Section 7.6.

The work presented in this chapter was published during the AAAI conference in
2020 [God+20]. We remind that the PMSPAUR was presented in Section 3.3.2.

7.1 Additional notations

In order to present the results on the PMSPAUR, we need additional notations, espe-
cially when it comes to prove the lemmas and theorems. The notions and notations
presented here are complementary to the ones presented in Section 3.3.2.

A schedule is a mapping σ : T 7→ N from tasks to starting times. Let si be the
starting time of task Ti, obviously we have si = σ(i). σ is said feasible if and only if
at any time t ∈ N:

|{Ti | si ≤ t ≤ ei}| ≤ m (7.1)
|{Ti | Ti ∈ Rj , si ≤ t ≤ ei}| ≤ 1 ∀j ∈ [1, s] (7.2)

Equation (7.1) ensures that no more thanm tasks can be simultaneously processed
and equation (7.2) that no two different tasks requiring the same unit resource can
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be simultaneously processed. Given a set of tasks T and a schedule σ, we denote1

eTmin the earliest idle time of any parallel machine, eTmax the earliest time at which all
parallel machines are idle, and eTRj

the latest usage time of resource Rj :

eTmin = min{t | t ∈ N ∧ |{i | si ≤ t ≤ ei}| < m} (7.3)

eTmax = min{t | t ∈ N ∧ |{i | si ≤ t ≤ ei}| = 0} (7.4)

eTRj
= max{ei | Ti ∈ Rj} (7.5)

Finally, we denote LT ′(Rj) the sum of the processing times of the tasks in T ′ ⊆ T
requiring resource j:

LT ′(Rj) =
∑

Ti∈Rj∩T ′
di

7.2 Existence of a list ordering algorithm building optimal
solutions

In this section, we recall some results from [Heb+16] and extend them in order to
be used in a CP solver, most especially as an extension of the Order constraint.
Algorithm 7.1 shows the basic procedure Enqueue.

Algorithm 7.1: Enqueue procedure
1 Function Enqueue(σ : schedule, Ti : task to insert)
2 begin
3 σ(i)← max(eTmin, e

T
res(Ti)

)

4 return σ

5 end

It simply inserts the task Ti given as argument at the “back” of the schedule, at the
earliest possible time. More precisely, it schedules it at time t equals to the maximum
between the earliest idle time of any machine eTmin and the maximum usage time
eTres(Ti) of res(Ti). Applying the procedure on a sequence of the tasks gives a feasible
schedule, as stated by Lemma 2 in [Heb+16]. Moreover, we get from Corollary 1 of the
same paper that calling Enqueue on any sequence of tasks is a (2− 1

m)-approximation
algorithm, for m parallel machines.

In the remainder of this section, we prove that there exists a sequence of operations
σ ← Enqueue(σ, Ti) that yields an optimal schedule, and hence can be the basis for
the use of the Order constraint. Moreover, we will show how to cut branches in the
corresponding search tree.

Definition 7.1. A schedule is left-shifted if no task can possibly be processed earlier
without violating a resource constraint.

Definition 7.2. A schedule is persistent if every pair of tasks sharing a unit resource
and immediately consecutive are processed on the same machine.

Definition 7.3. A schedule is dense if there is no t1 < t2 such that a machine is idle
during [t1, t2[ and in process at t2.

1In the following, the schedule σ is always clear from the context, so we do not include it in the
subscript.
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Lemma 7.1. There exists a left-shifted persistent dense optimal schedule.

Proof. The fact that there exists an optimal left-shifted schedule is trivial.
Consider a left-shifted optimal schedule with two tasks Ti and Tj requiring the

same unit resource such that ei = sj but processed on two distinct machines, Mx and
My, respectively. Then we can reassign Tj and all the trailing tasks on My to Mx,
and all the tasks subsequent to Ti on Mx to My. Clearly, this operation changes no
start time and cannot violate a resource constraint if it did not before the operation.
The solution obtained is therefore equivalent and the operation can be repeated until
there is no such occurrence. Therefore, there exists a left-shifted persistent optimal
schedule.

Now, suppose that, in such a left-shifted persistent schedule, a machine M is idle
in an interval [t1, t2[ and in process at time t2. Since the task starting at time t2 on
this machine is left-shifted, then there must exist a task sharing the same unit resource
and ending at time t2 on some other machine. However, this would contradict the
fact that this schedule is persistent.

Theorem 7.1. There exists a sequence of operations σ ← Enqueue(σ, Ti) that leads
to an optimal schedule.

Proof. Let σ be a left-shifted persistent dense optimal schedule, order the tasks by
their start times in σ in increasing order, and let us rename them accordingly.

We show by induction on the rank of the tasks in the ordering, that the corre-
sponding sequence of calls to Enqueue produces σ (up to machine symmetries). This
is trivially true for a single task. Suppose this is true until task Ti, and call σi the
schedule restricted to tasks T1 to Ti.

If the start time of Ti+1 is the earliest idle time t = eTmin of any machine in σi,
then there is no task requiring res(Ti+1) in process after t. If there was such a task,
since its start time is less than or equal to t, Ti+1 could not start at t in σ. Therefore,
Enqueue inserts that task on a machine with earliest idle time in σi yielding the same
start time as in σ.

If the start time of Ti+1 is not the earliest idle time eTmin of any machine in σi,
then, since σ is dense, no task Ti′ , with i′ > i, may be processed on the first-ending
machine in σ. Therefore, since the schedule is left-shifted, all tasks subsequent to
Ti must require one of the resources used at time si+1 (of which there are at most
m − 1). Since σ is persistent it has only one possible configuration: all the tasks of
each resource are processed by a single machine. Since Enqueue does insert task Ti+1

following the previous task requiring the same resource, task Ti+1 will have the same
starting time as in σ.

Therefore, there exists a sequence of calls to Enqueue that produces an optimal
schedule.

The search tree that explores the permutations of tasks to Enqueue is therefore
guaranteed to contain an optimal solution.

Remark 7.1. Moreover, from the proof of Theorem 7.1, we can observe that it is
sufficient to explore only the orderings consistent with the chronological order in the
resulting schedule. Notice that this might not be the case when the resource required
by the next task Ti is in use at time t and there is another task Ti′ with i′ > i that
might be inserted to start at time t. In that case, inserting first Ti and then Ti′ or the
reverse yields the same schedule.
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7.3 Cutting rules for the PMSPAUR

In the subsequent paragraphs, we propose rules to reduce the size of the search space by
cutting branches that are dominated. We assume that tasks are indexed by their order
on the branch we consider. Therefore, when inserting Ti, previous tasks T1, . . . , Ti−1

are already allocated to machines and have a fixed start time, whereas following tasks
are not scheduled yet.

Let us recall another algorithm presented in [Heb+16] that will be of use here:
MaxLoad (see Algorithm 7.2).

Algorithm 7.2: MaxLoad algorithm
1 Function MaxLoad(T : tasks)
2 begin
3 σ ← ∅
4 T ′ ← T
5 while T ′ 6= ∅ do
6 Let Rj be a resource with maximum load LT ′(Rj)
7 Pick any task Ti ∈ T ′ ∩Rj
8 T ′ ← T ′ \ {Ti}
9 σ ← Enqueue(σ, Ti)

10 end
11 return σ

12 end

Theorem 7.2. MaxLoad finds the optimal completion of any sequence of tasks if there
are no more than m resources required by the remaining tasks.

Proof. First, assume that the set of resources in use in the interval [eTmin, e
T
max[ is

disjoint from the resources required by the remaining tasks. In this case we can view
the problem as a generalisation where each parallel machine Mz has a release date
eMz .

We prove that MaxLoad is optimal in this case by induction on the number of ma-
chines m. For m = 1 this is trivial. Now suppose that this is true for m machines and
consider the case for m+ 1 machines. MaxLoad picks the resource Rj that maximises
LT ′(Rj) and will eventually process every task requiring Rj on the machine Mx with
earliest release time. If one of these tasks is the last completed task, then the solution
is optimal, so we assume that the last completed task is on another machine My and
requires Rk. The other choices made by the algorithm are completely independent
of those on machine Mx and therefore we know that the other tasks are optimally
scheduled on the m other machines. In particular, there is no resource except for
Rj whose tasks we can swap for tasks requiring Rk in order to improve the sched-
ule. However swapping the tasks of Rj with those of Rk does not help either since
LT ′(Rj) ≥ LT ′(Rk) and the release date of My is larger than or equal to that of Mx.

Now, suppose that there exist resources in use during [eTmin, e
T
max[ required by

at least one remaining task. We can transform the instance as follows: for every
machine Mz which is idle at time eMz , there is a unique resource in use in the interval
[eTmin, e

T
max[ (Lemma 2 in [Heb+16]). If this resource is required by some remaining

task, we create a task of length eMz − eTmin requiring that resource and we set the
release time of this machine to eTmin. Otherwise, we simply set the release time of
this machine to eMz . This new instance corresponds to the previous case and is thus



7.4. Implementation of the filtering and cutting rules in a new model for the
PMSPAUR 95

optimally solved by MaxLoad. Moreover, observe that the completion is such that
every task requiring a given resource is processed by the same machine, and therefore
the permutation of tasks on each machine does not matter. Therefore, this solution
is also optimal for the original case.

Let LT ′(Rj) denote the sum of the processing times of the tasks in T ′ that do not
require resource Rj .

Lemma 7.2. Let Rj be such that LT ′(Rj) is maximum. If LT ′(Rj) ≥ 2LT ′(Rj)/m
then the minimum makespan of any schedule of T is LT ′(Rj).

Proof. Trivially, LT ′(Rj) is a lower bound, therefore we only need to prove that the
condition of the lemma entails that there is a solution with that makespan.

By Theorem 3 in [Heb+16] MaxLoad is a (2 − 2
m+1)-approximation algorithm.

Moreover, the proof of this theorem shows that for any instance with set of tasks T ′,
either:

1. one resource is in use at all times in the optimal schedule;

2. or the makespan of σ found by MaxLoad is at most
(

2− 2
m+1

) ∑
Ti∈T ′

di

m .

Now suppose that the condition of the lemma holds and consider the schedule
where every task requiring resource Rj is processed on the same machine, and all
the remaining tasks on the m − 1 other machines. The makespan of this solution
is therefore the maximum between LT ′(Rj) and the makespan Cmax of the optimal
solution of the sub-instance containing every task in T ′ that do not require Rj and
onlym−1 parallel machines. By Theorem 3 in [Heb+16], the optimal makespan Cmax
for this instance is either LT (Rk) for some k, or at most (2 − 2

m)
LT ′ (Rj)
m−1 =

2LT ′ (Rj)
m .

Since LT ′(Rj) ≥ LT (Rk), we have in both cases max(LT ′(Rj), Cmax) = LT ′(Rj).

Lemma 7.3. Let Rj be such that LT ′(Rj) is maximum and pmax denote the duration
of the longest task not requiring Rj.

If LT ′(Rj) ≥ ((m − 2)pmax + LT ′(Rj))/(m − 1) then the minimum makespan is
LT ′(Rj).

Proof. The proof is exactly the same as that of Lemma 7.2, except that it uses The-
orem 2 instead of Theorem 3 in [Heb+16], where case 2 is: Cmax ≤ (

∑
Ti∈T ′ di)/m+(

1− 1
m

)
pmax

7.4 Implementation of the filtering and cutting rules in a
new model for the PMSPAUR

The model we present in this section leverages the previous results in order to im-
prove on the baseline constraint programming model. In particular, we add variables
standing for the ordering of operations Enqueue, and constraints emulating their be-
haviour and channelling with the original variables. Backtrack search will then find a
sequence of operations Enqueue(σ, Ti) that yields an optimal schedule, the existence
of which is assured by Theorem 7.1. To that extent, we use integer variables standing
for a permutation: for all k ∈ [1, n], pk is an integer variable of domain [1, n] such
that pk = i indicates that task Ti is enqueued kth. The set of permutation variables
is noted P . The advanced CP model for the PMSPAUR is given in Figure 7.1.
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minimise Cmax = max
i∈[1,n]

ei s.t.

∀k ∈ [1, s],disjunctive({Ti | res(Ti) = Rk}) (7.6)

cumulative(T ,m) (7.7)

allDifferent(P ) (7.8)

EnqueueCstr(P, T ) (7.9)

Figure 7.1: CP Model for the Parallel Machine Scheduling Prob-
lem with Additional Unit Resources (PMSPAUR) using permutation

variables.

The allDifferent constraint [Rég94] assures that P is a permutation of [1, n].
The EnqueueCstr constraint ensures the channelling between the permutation vari-
ables and the start variables. The dominance relation it enforces is correct by Theo-
rem 7.1 and Remark 7.1.

7.4.1 EnqueueCstr

Definition 7.4. The constraint EnqueueCstr ensures that start times are consistent
with a sequence of Enqueue operations given by the permutation variables.

EnqueueCstr(P, T ) ⇐⇒ ∀i ∈ [1, n], spi = max
(
e
{pk|k<i}
min , e

{pk|k<i}
res(Tpi )

)
(7.10)

EnqueueCstr is therefore satisfied whenever the start time of each task cor-
responds to the value returned by Enqueue when calling it iteratively on the tasks
following the permutation P . As such, EnqueueCstr can also be expressed as a
specialisation of the Order constraint:

EnqueueCstr(P, T ) ⇐⇒ Order(T , P, Enqueue) (7.11)

The propagation of this constraint is decomposed in two separate part: the forward
channelling from the permutation variables to the start variables, and the backward
channelling from start variables to permutation variables.

7.4.1.1 Forward Channelling

The forward channelling consists in instantiating the start variable spidx according to
Definition 7.4 with pidx being the current permutation variable as defined in Defini-
tion 6.3. More especially, the forward channelling corresponds to the filtering rule of
Proposition 6.1 with Enqueue as the function f .

Proposition 7.1. Forward channelling can be implemented to run in O(n×m) time
over a branch.
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Proof. We can keep a backtrackable integer idx for the current permutation vari-
able. When the variable pidx is instantiated, we increment idx until idx > n or
pidx is not instantiated, and we set the domain of every variable along the way to
max(eTmin, e

T
res(Tpidx )).

The earliest idle time of each machine can be stored in a backtrackable integer tx
for each machine Mx. On top of that, two backtrackable integers store the earliest
idle time eTmin and a machine Midle that is idle at eTmin. For each resource Rj , we
maintain a backtrackable integer yj that stores the machine on which resource Rj
is the resource of the latest processed task. Whenever no task of Rj is scheduled,
yj = −1.

eTres(Tpidx ) can be computed in O(1), as it is stored in tyj if yj 6= −1 or it is valued
to 0 otherwise.

As eTmin is stored in a backtrackable integer, it is therefore in O(1) to know its
value.

For forward channelling to be in O(n ×m) over a branch, we need to prove that
scheduling a task Tpidx with Enqueue can be done in O(m). Whenever pidx is instanti-
ated, we determine the machine on which to schedule it in O(1) as stated above (with
Rj = res(Tpidx), it is Midle if eTRj

< eTmin, or Myj otherwise). Let Mz be this machine.
tz is updated to tz + dpidx , yj to z and Midle is updated in O(m), which proves the
proposition.

Example 7.1. Consider the instance described in Example 3.1.
If we have p1 = 1, p2 = 5, p3 = 6, p4 = 7, and p5 = 8, the filtering algorithm of

EnqueueCstr will instantiate s1, s5, and s6 to 0, s7 to 4, and finally s8 to 3. The
resulting partial schedule is shown in Figure 7.2.

Figure 7.2: Partial schedule resulting from the permutation of Ex-
ample 7.1

7.4.1.2 Backward Channelling

From Remark 7.1, we see that we can restrict search to sequences of Enqueue opera-
tions that are chronologically compatible. Therefore, if t is the minimum value in the
domain of any task in [1, n] \ {pk | k < idx}, then we can prune the value i from the
domain of pidx if the domain of si does not contain t. Indeed, the task whose start
time can be t cannot require res(Ti) and therefore, enqueueing this task or task Ti in
any order yields the same schedule.

Proposition 7.2. Supposing that cumulative, disjunctive and allDifferent
constraints have reached their fixpoint, the filtering algorithm for backward channelling
runs in O(n) time.
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Proof. As cumulative and disjunctive constraints have reached their fixpoint, the
lower bound si of each start variable corresponds either to eTmin or to eTres(Ti), as these
constraints would have failed otherwise. Computing t = min

i∈D(pidx)}
si is done in O(n) as

|D(pidx)| ≤ n (and values in D(pidx) are all unscheduled tasks as the allDifferent
has reached its fixpoint). Removing all values i ∈ D(pidx) such that si > t can also
be done in O(n).

Remark 7.2. Note that this dominance rule, and the associated filtering, must be
called after that all other constraints have been propagated. This can be achieved by
setting a high priority to the propagator, that is that the propagator is executed after
all propagators for the cumulative, disjunctive and allDifferent constraints.

Example 7.2. Consider the same example as Example 7.1. The next permutation
variable to be instantiated is p6. In this example, t is equal to 7. Despite M3 being
idle at time 6, since there are tasks only from resources R1 and R4 that are not yet
scheduled, the earliest time t at which a task can be scheduled is 7 for tasks of resource
R1 on machine M1.

Since t = 7, EnqueueCstr’s backward filtering algorithm will remove values 9
and 10 from D(p6) because none of the corresponding start variables have 7 in their
domains. Therefore, after the call to EnqueueCstr’s backward filtering algorithm,
D(p6) = {2, 3, 4}.

7.4.2 Dominance rule using MaxLoad

As we have seen in Section 7.3, there are situations, described in Theorem 7.2,
Lemma 7.2 and Lemma 7.3, where MaxLoad optimally completes the partial schedule.
Therefore, we have a dominance rule on the permutation accepted by EnqueueCstr
as in the stopping conditions described in Theorem 7.2, Lemma 7.2 and Lemma 7.3,
the permutation is optimally completed by MaxLoad.

Proposition 7.3. Let Rj be such that LT ′(Rj) is maximum, LT ′(Rj) denote the sum
of the processing times of the tasks that do not require resource Rj and finally pmax
the duration of the longest task not requiring Rj.

If LT ′(Rj)≥
2LT ′ (Rj)

m or if LT ′(Rj)≥
(m−2)pmax+LT ′ (Rj)

m−1 or if there are no more
than m resources required by the remaining tasks, then the current schedule can be
completed by algorithm MaxLoad to the optimal schedule that we can get from the
current state.

Proof. This proposition is the direct application of Theorem 7.2, Lemma 7.2 and
Lemma 7.3.

Proposition 7.4. The filtering rule described in Proposition 7.3 runs in O(n× (s+
m)), s being the number of unit resources and m the number of machines.

Proof. Computing LT ′(Rk) for all resources Rk is done in O(n). Determining Rj such
that LT ′(Rj) is maximal as well as the value of LT ′(Rj) is done in O(s). Computing
pmax is done in O(n). Looking if there are no more than m resources required by the
remaining tasks is done in O(s) (it is s minus the number of resources Rk for which
LT ′(Rk) = 0). Finally, completing the current schedule into an optimal one given the
current state by algorithm MaxLoad is done in O(n× (s+m)). Therefore the filtering
rule described in Proposition 7.3 runs in O(n× (s+m)).
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7.5 Experiments

This section is decomposed into three parts. First we introduce the benchmark config-
uration. Then, we present the six approaches that were evaluated. Finally, we report
and discuss the results obtained by these approaches. The instances of the benchmark
and the code developed for these researches can be found on GitHub [God19].

7.5.1 Experimental protocol

Our benchmark is composed of 234 instances of the Parallel Machine Scheduling Prob-
lem with Additional Unit Resources (PMSPAUR), all of which have been randomly
generated. The randomness of the instances is on the processing time of the tasks,
but is also on the number of tasks in each resource.

Number of machines m Number of resources s
2 3, 4
3 4, 5, 6
5 6, 7, 8, 10
10 12, 15, 17, 20

Table 7.1: Configurations for m and s

Before generating the tasks and their processing times, we fixed several config-
urations for the number of machines and the number of resources, all of them are
summarised in Table 7.1. The basic idea was to generate, for each number of ma-
chines, instances such that the number of resources was 1.25, 1.5, 1.75 and 2.0 times
higher than the number of machines.

For each of these 13 configurations, we generated two types of instances: the first
one has the same number of tasks in each unit resource (which is the case in our
application, i.e. planning the download of acquisitions made by agile observation
satellites); the second type has a random, positive, number of tasks in each unit
resource.

We had two other ways to configure instances generation: the maximal number of
tasks requiring a resource, and the maximal processing time of any task. The maximal
number of tasks requiring a unit resource could be either 5, 10, or 20. The maximal
processing time of a task could be either 10, 100, or 1000.

The generated instances have a total number of tasks between 6 and 400 and have
very different shapes (size, number of machines and resources, short or large in time,
etc.).

The classic model (Figure 3.3) is used in three configurations whose name comes
from the search heuristic it is based on:: domOverWDeg [Bou+04], Smallest
and setTimes [Pap+94]. For remainder, Smallest selects the start variable with the
smallest lower bound and branches on this particular variable, assigning it its lower
bound. As SetTimes is close to the one we use in our approaches, we expect to find
similar results in terms of efficiency. The main difference between the two approaches
is that SetTimes will eventually branch on tasks that do not have minimum earliest
start time (est). Say that you have two mutually exclusive tasks Ta and Tb, with est
t and t + 1 respectively. SetTimes will schedule Ta first, and if failing, will not try
to schedule Ta first again, but it will try to schedule Tb first and Ta second. In our
model, Ta is the single candidate for the next insertion, and hence if that fails we will
backtrack.
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The Order and OrderA configurations are using the inputOrderLB search
heuristic over permutation variables, which consists in selecting variables by order
and selecting the lower bound of the selected variable as instantiation value (it is also
called the lexicographic order branching scheme). These two configurations are based
on the advanced model (Figure 7.1). Note that Order does not have the cutting
rules described in Section 7.4.2 whereas OrderA does include them in the filtering
of constraint EnqueueCstr.

The OrderAM model uses a custom search heuristic over permutation variables
based on a Algorithm 7.2 to determine the value to assign to the selected variable.
This configuration is also based on the advanced model (Figure 7.1).

All configurations were encoded and tested using Choco Solver [PFL17]. The
model depicted in Figure 3.3 was also implemented on the Chuffed lazy-clause gener-
ation solver with its default search heuristic [Chu+16]. This last implementation is
referred to as Chuffed in the results. The experiments were done on an Intel core
i7-8650U (up to 4.2 GHz) processor. A time limit of 30 minutes was given for each
configuration and each instance. The source code, the MiniZinc models and the data
files at .dzn format are all available on the project repository [God19].

7.5.2 Experimental results

domOverWDeg Smallest setTimes Chuffed Order OrderA OrderAM

#Proofs / #Solutions 86 / 234 148 / 234 127 / 234 77 / 115 172 / 234 174 / 234 213 / 234

TimeToProof (ms) 48757 1933 1916 20329 1875 342 137

Objective 1.8780 1.0304 1.0617 1.5653 1.0201 1.0180 1.0000

Table 7.2: Results of the benchmark on the 234 generated instances

domOverWDeg Smallest setTimes Chuffed Order OrderA OrderAM

#Proofs / #Solutions 56 / 86 75 / 86 81 / 86 50 / 86 81 / 86 81 / 86 83 / 86

TimeToProof (ms) 48910 765 828 19111 737 283 120

Objective 1.01638 1.00006 1.00000 1.01258 1.00000 1.00000 1.00000

Table 7.3: Results of the benchmark - small instances (86 instances
of size < 40)

domOverWDeg Smallest setTimes Chuffed Order OrderA OrderAM

#Proofs / #Solutions 25 / 97 58 / 97 39 / 97 16 / 35 76 / 97 76 / 97 87 / 97

TimeToProof (ms) 45765 3926 3911 30463 3791 641 204

Objective 1.3960 1.0212 1.0624 1.4768 1.0016 1.0014 1.0000

Table 7.4: Results of the benchmark - medium instances (97 in-
stances of size 40 ≥ and < 120)

Table 7.2 reports an overall of the results obtained on the 234 generated instances.
All our approaches obtain very good results at doing the proof of optimality for most
of the instances. All configurations find at least one solution, whatever its quality, for
every instance, except Chuffed that does not find any solution for 119 instances.

We can observe that our approaches are generally faster to prove optimality than
any other approach. Moreover, in general, our approaches get better solutions, as
shown by the line Objective. The values of the line Objective are computed as the
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domOverWDeg Smallest setTimes Chuffed Order OrderA OrderAM

#Proofs / #Solutions 5 / 51 15 / 51 7 / 51 11 / 13 15 / 51 17 / 51 43 / 51

TimeToProof (ms) 59004 17490 15780 294 17166 231 199

Objective 4.2295 1.0975 1.1638 4.6521 1.0893 1.0801 1.0000

Table 7.5: Results of the benchmark - large instances (51 instances
of size 120 ≥ and ≤ 400)

Figure 7.3: Number of proofs per milliseconds

mean of the ratio between the result of the approach (the makespan of the returned
solution) and the best solution obtained among the seven configurations. We observe
a clear advantage of our approaches (Order, OrderA and OrderAM), also with a
clear improvement from Order to OrderA and from OrderA to OrderAM. It is
interesting to note that the cutting rules allow to prove optimality at root node for 60
instances for OrderA and OrderAM. Analysing the results by considering the size
of the problems in terms of tasks confirms the previous observations. Consequently,
for respectively small instances (Table 7.3), medium instances (Table 7.4) and large
instances (Table 7.5) observations remain the same.

Finally, we can remark from Table 7.2 that Order does almost as many proofs of
optimality as OrderA, but Figure 7.3 shows that Order catches up with OrderA
only near the time limit, which really shows the interest of the cutting rules described
in Section 7.4.2. Of course, Table 7.2 and Figure 7.3 show the importance of a good
search for a same model (OrderAM vs OrderA, or Smallest vs domOverWDeg).

7.6 Conclusion

In this chapter, we have proven that a sequence of Enqueue operations can yield an
optimal schedule, which opens the way for an application of the Order constraint.
Then, we gave three inequalities such that whenever one is true, the partial schedule
can be optimally completed with the MaxLoad algorithm. Then, we showed how to
implement the Enqueue procedure into a propagator as a specialisation of the Order
constraint. We also discussed on the implementation of the cutting rules. Both these
implementation are taking advantage of the list of priorities [SS08] implemented in
Choco solver. We gave an extension of the CP model that uses these new constraints.
Finally, we presented an experimental protocol and gave the results of different con-
figurations of the state-of-the-art model and our new model. We analysed the results
and showed that our new CP model gets better results than state-of-the-art configura-
tions, therefore showing the interest of specifying the Order constraint. We also have
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seen that dedicated cutting rules and heuristic search can greatly improve results, as
the best results are obtained by the OrderAM configuration of our new model.
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Chapter 8

Application to the RCPSP

The Resource-Constraint Project Scheduling Problem (RCPSP) is among the most
known and studied scheduling problems. It is therefore normal to try our original ap-
proach on it. Of course, we were not expecting to get results as good as state-of-the-art
methods, most especially LCG solvers using explanations of the cumulative con-
straint that close all classical instances from the literature [Sch+09; Sch+11; SFS13].
The idea of testing the specialisation of the Order constraint for the RCPSP was
twofold. First, we wanted to see how well the idea thought for the PMSPAUR could
adapt to another problem. On another hand, we wanted to compare the results of
this approach to the classical model of the RCPSP as our method is quicker to im-
plement than a complete framework to manage explanations. The specialisation of
the Order constraint is therefore mostly addressed to CP solvers that do not embed
explanations, or for instances with very large horizon, on which explanations might
encounter difficulties because of memory consumption (this is true at least for the
explanation of the decomposition of the cumulative constraint).

First, in Section 8.1, we will introduce the leftShifted constraint as a speciali-
sation of the Order constraint and explain how the filtering scheme works. Then we
will show in Section 8.2 how to add this new constraint, as well as the list ordering
reasoning from the Order constraint, to the CP model for the RCPSP. Experimental
results are given in Section 8.3. Finally, we conclude on these researches in Section 8.4.

We remind that the RCPSP was presented in Section 3.3.1.

8.1 The leftShifted constraint

8.1.1 Defining the leftShifted constraint from the Order constraint

A common objective-function of scheduling problems is to minimize the makespan,
i.e. the total time to process the schedule which is represented by the maximum of
the end variables’ value. Even for an optimal schedule with respect to the makespan,
some tasks might have multiple available start time, even if all the other tasks stay
fixed.

Definition 8.1 (Left-shifted). Let us consider a scheduled task T within a (partial)
schedule. This task is left-shifted if it cannot be scheduled earlier without violating a
constraint of the problem.

A left-shifted schedule is a schedule whose tasks are all left-shifted.

The term left-shifted comes from the most common way to graphically represent
a schedule: each task is a rectangle whose left side represents the start time, the
right side the end time and the height of the rectangle corresponds to the task’s
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consumption of the given resource. As the time axis generally is represented from left
to right, the notion of left-shifted task becomes quite obvious. The notion of left-shift
was introduced in [SKD95], where the authors rather talk about active schedule than
left-shifted schedule.

Example 8.1. Consider a cumulative constraint whose maximal capacity is 2. In
its scope, there are three tasks T1, T2, T3. T1 has a processing time of 3 (d1 = 3) and
T2 and T3 both have a processing time of 2 (d2 = d3 = 2). The tasks have the following
resource consumption: h1 = h2 = h3 = 1. This cumulative constraint is noted c1.

For simplicity, let us suppose that the only other constraint is the following prece-
dence constraint: e1 ≤ s2. This precedence constraint is noted c2.

All tasks can be scheduled starting from time 0. We consider a partial schedule
such that s1 = s3 = 0. Both these tasks are left-shifted as they both start at time
0, the minimal possible value for all tasks, without violating c1 nor c2. According to
the cumulative constraint c1, T2 can be scheduled from t = 2 as scheduling T2 at
time 0 or time 1 would lead to a momentary resource consumption of 3 where resource
capacity is 2. However since T1 ends at time 3, the precedence constraint c2 indicates
that T2 cannot start before time 3.

As such, T2 cannot start before time 3 without violating a constraint. Nothing
prevents to schedule T2 at a time t ≥ 4. If T2 is scheduled at time 3, then it is left-
shifted and the schedule is also left-shifted. If T2 is scheduled at a time t ≥ 4, then it
is not left-shifted as it could be scheduled earlier without violating any constraint.

From the notion of left-shifted tasks and schedule, we can define a new constraint
which has only left-shifted schedules for solutions. Definition 8.2 gives the formal
definition of the leftShifted constraint.

Definition 8.2. Let T be a set of tasks variables and C the set of constraints that
have these tasks variables in their scope. The leftShifted constraint can be defined
as:

leftShifted(T , C) ⇐⇒ ∀Ti ∈ T ,∀t < si,∃c ∈ C, 〈s1, . . . , si−1, t, si+1, . . . , sn〉 /∈ c
(8.1)

Basically, authorising only left-shifted schedules can lead to great cuts of the
search tree. However, building a filtering scheme for the leftShifted constraint
can be difficult. Indeed, the leftShifted constraint is a sort of meta-constraint as
its definition is based on other constraints. We differentiate meta-constraints from
constraints by the fact that a constraint has its own definition, whereas the definition
of a meta-constraint depends on the definition of other constraints. As such, defining
a filtering algorithm for a meta-constraint relies on filtering algorithms for underlying
constraints. That said, meta-constraints can be considered as constraints as they be-
have similarly, having their own propagator.

Let us see how to build a filtering algorithm for the leftShifted constraint as a
derived constraint from the Order constraint presented in Chapter 6.

As it is already NP-hard to find a solution of the cumulative constraint [GJ78;
AB93], finding a support for the leftShifted constraint cannot be done in polyno-
mial time whenever one of the constraints is a cumulative constraint, which is very
common in scheduling problems.

Definition 8.3. Let us assume we have a partial schedule. Consider a constraint c
and a time t. For a start variable s of a task T, we call the minimum accepted value



8.1. The leftShifted constraint 105

mc
s(t) by the constraint c for the variable s the smallest time t′ ≥ t such that assigning

s at t′ does not violate c.
We note mC′

s (t) the minimum accepted value by a set of constraints C ′ for a vari-
able s, which is the smallest time t′ ≥ t such that none of the constraints in C ′ is
violated when assigning s to t′. Given a partial schedule, we note ms the unique time
at which s should be assigned to for its corresponding task to be left-shifted.

One can easily see the bridge with the Order constraint: ms is the result of
the problem-dependent function f on which relies the Order constraint. We will
build the filtering algorithm for the leftShifted constraint based on the notions of
minimum accepted values.

Example 8.2. We consider the case depicted in Example 8.1 with the partial schedule
defined by s1 = s3 = 0. In this case, we have mc1

s2(0) = 2 and mc2
s2(0) = 3. From

here, we want to recompute the minimum accepted values by each constraint to assure
satisfaction. We have mc1

s2(3) = 3 and mc2
s2(3) = 3, and therefore ms2 = 3.

One way to build a (partial) left-shifted schedule is to consider a list L of the tasks.
Following this list, tasks are iteratively made left-shifted by computing the minimum
accepted value from the partial left-shifted schedule composed of the already scheduled
tasks. This constitutes our list ordering algorithm, the function f here returning ms

for a given start variable s. This list ordering algorithm is named Serial Scheduling
Scheme (SSS) was introduced by Kelley in [Jr63]. Kolisch showed in [Kol96] that it
produces left-shifted schedule for the RCPSP.

Therefore, we can build filtering algorithms for the leftShifted constraint based
on the ones we described in Proposition 6.1 and Proposition 6.2, and encoded in
Algorithm 6.1, as the leftShifted constraint can be seen as a specialisation of the
Order constraint using the Serial Scheduling Scheme:

leftShifted(T , C) ⇐⇒ Order(T , P, SSS) (8.2)

8.1.2 Implementation for precedence constraints

Given a partial schedule and a task variable Tj , it is not hard to compute mc
sj (t)

for a precedence constraint c. One should simply loop over the predecessors of the
task Tj . mc

sj (t) is the maximum value among all predecessors’ end time and time t:

∀i ∈ [1, n],∀j ∈ D(pi),m
(k,j)∈Γ−
sj (t) = max(t, max

k∈{p1,...,pi−1}
ek).

8.1.3 Implementation for cumulative constraints

For the cumulative constraint, it is essential for solver performance to build the
partial schedule when looping over positioned tasks indicated by the instantiated
permutation variables. Of course, if integer i has been made backtrackable, the partial
schedule should also be backtrackable.

To compute mc
sj (t) for a given cumulative constraint c, we look for the smallest

value t′ ≥ t such that scheduling task Tj at time t′ does not violate the cumulative
constraint’s capacity. In our case, we relied on the Profile data structure presented in
[GHS15] which itself is built using a sweep-line algorithm [BC02; LBC12]. We loop
over the timestamps from t′ at which there is a resource consumption change (start of
a scheduled task or end of a scheduled task) until we found one at which scheduling
task Tj would not violate the resource’s capacity.
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8.1.4 Complexity to compute the minimum accepted value for a
start variable for precedence and cumulative constraints

Note that computing the minimum accepted value for task Tj over precedence con-
straints can be done once and for all: it is max

(k,j)∈Γ−

k∈{p1,...,pi−1}

ek. If cumulative constraints

cause a delay, then the new value will prevail over what is computed for precedence
constraints. One should therefore compute the minimum accepted value for task Tj
over precedence constraints once and for all and then loops only on the cumulative
constraints. As Tj has at most n − 1 predecessors, computing msj over precedence
constraints can be done in O(n).

It is possible to find themsj over cumulative constraints without looping over the
different cumulative constraints while one constraint delays the minimum accepted
value for sj . Let’s build a Profile data structure for all the cumulative constraints
at the same time: each rectangle indicating the consumption over the different re-
sources for its duration. Therefore, looping over the rectangles, we can check all the
cumulative constraints.

To check if a task Tj can be scheduled at the beginning of a rectangle, we look
at the resources’ availability from the different resources. If it exceeds the capacity
of one resource, then the next rectangle is checked. If it can be scheduled at the
time corresponding to the start point of the rectangle, we study two cases: either
the task is longer than the rectangle’s duration, either not. In the case where the
task has a smaller processing time than the rectangle’s duration, then the task can be
scheduled at the rectangle’s start. Whenever the task’s processing time is greater than
the rectangle’s duration, then we consider a new artificial task T ′ whose processing
time is the processing time of task Tj minus the duration of the rectangle, and we do
the same checking process with the artificial task T ′ on the next rectangle. As such,
checking if a task Tj can be scheduled at the beginning of a rectangle can be done in
O(k × dj) with k the number of cumulative constraints.

As there are at most O(n) rectangles in the Profile data structure, the worst-case
time complexity to compute msj for precedence and cumulative constraints is in
O(n× k × dj) for a task Tj .

8.2 Using the leftShifted constraint to solve the RCPSP

Here, we build over the classic model for the RCPSP, presented in Figure 3.1, using
the leftShifted constraint to reduce the size of the search space, hoping therefore
for better solving performance.

Lemma 8.1 ([Kol96]). There exists an optimal left-shifted schedule for the RCPSP.

The Lemma 8.1 shows a way to improve the classic model. Any left-shifted solution
of the RCPSP can be represented as a permutation of the activities. Indeed, building
the schedule can then be done by left-shifting the activities following the order given
by the permutation. Therefore looking only for left-shifted schedule is equivalent
to looking for one optimal permutation of the activities. To this end, we introduce
permutation variables P , each of domain [1, n], as expected for the filtering algorithm
for the Order constraint (Algorithm 6.1).

And, of course, the leftShifted constraint is also added to the model. As
explained for implementation of the leftShifted constraint in Section 8.1, given the
constraints applied to task variables, different implementation, and therefore data,
are needed. Here, we indicate all needed data and variables for the leftShifted
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constraint to work for the RCPSP. The permutation variables are used to represent
the partial schedule as explained earlier, the set of tasks T give of course information
linked to start and end variables, the set of consumption variables and the set of
resources’ capacities are used to build the partial schedule used for the Profile data
structure, and finally the set of precedence Γ− is used to compute the minimum
accepted value by precedence constraints for each start variable.

The permutation variables entirely describe solutions, as such the search space of
this model is of size O(n!).

Consider a simple example. There are 4 tasks T1, . . . , T4, T1 precedes T2 and
no other precedence are considered. All tasks have a duration of 2. We consider
two resources R1 and R2, such that h1,1 = h2,2 = h3,2 = h4,1 = 1 and all other
consumption variables are equals to 0. The permutation [1, 2, 3, 4] leads to start values
s1 = s3 = 0, s2 = s4 = 2, which leads to an optimal makespan of 4. The permutation
[1, 3, 2, 4] also leads to a makespan of 4 but tasks are sorted by increasing start time
within the permutation. In order to additionally improve the model, we consider the
following symmetry-breaking rule: tasks should be sorted by increasing start time
within the permutation.

To implement the symmetry-breaking rule, we introduce precedence variables Ô,
which are boolean variables, ôi,j being true whenever activity ai starts before activity
aj , ôi,j being false otherwise. The permutation respects the precedence property: an
activity ai cannot appear before its predecessors within the permutation, as it would
otherwise start before one of its predecessors and therefore violate a precedence con-
straint. Reflecting such precedence on the permutation variables can be done through
a GeneralizedAllDiffPrec constraint, as presented in Chapter 4, and an inverse
constraint, the latter one being defined as: inverse({x1, . . . , xn}, {y1, . . . , yn}) ⇐⇒
∀i, j ∈ [1, n], xi = j ⇐⇒ yj = i. Doing so needs to introduce intermediary variables,
which we note {z1, . . . , zn} here.

The Figure 8.1 shows the complete CP model using permutation variables for the
RCPSP.

8.3 Experiments

8.3.1 Experimental protocol

For each instance, we compare the performance between the two models described
in Figure 3.1 and Figure 8.1. For the classic model described in Figure 3.1, we use
two different search heuristics: Smallest and SetTimes [Pap+94].These configurations
will be referred to as Smallest and setTimes. For the model described in Fig-
ure 8.1, we use a decomposition of the GeneralizedAllDiffPrec constraint into
an allDifferent constraint and precedence constraints, all enforcing bounds(Z)
consistency. The search we use branches on the current permutation variable pidx.
The selected value to branch on corresponds to the start variable with the smallest
lower bound: v ∈ D(pidx) such that sv = min({sk | k ∈ D(pidx)}). This configuration
will be referred to as Decomposition. When the GeneralizedAllDiffPrec is
implemented using the fixed version of the algorithm of Bessiere et al. (Algorithm 4.5)
as well as an allDifferent and precedence constraints enforcing bounds(Z) consis-
tency, the configuration is noted BessiereEtAl. Finally, when the GeneralizedAllDiffPrec
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minimise Cmax = max
i∈[1,n]

ei s.t.

∀(i, j) ∈ Γ−, ei ≤ sj (8.3)

∀k ∈ [1; r],cumulative({Ti | Rk ∈ res(Ti)}, {hi,k | Rk ∈ res(Ti)}, Ck) (8.4)

GeneralizedAllDiffPrec({z1, . . . , zn}, Ô) (8.5)

inverse(P, {z1, . . . , zn}) (8.6)

∀1 ≤ v < w ≤ n, ôv,w = 1 ⇐⇒ sv ≤ sw (8.7)

leftShifted(P, T , {hi,k | Ti ∈ T , Rk ∈ R}, {Ck | k ∈ [1; r]},Γ−) (8.8)

Figure 8.1: CPModel for the Resource-Constrained Project Schedul-
ing Problem (RCPSP) using permutation variables.

constraint is implemented using the BC version of the approach presented in Sec-
tion 4.5 of Chapter 4 on the
GeneralizedAllDiffPrec constraint, we note this configuration GodetBC.

The instances we work on for the RCPSP are the classic ones from literature.
Despite they come from other papers, all the instances are centralised on one database:
the PSPLib [KS97]. We concentrated only on "hard" instances, i.e. the instances for
which at least the configuration Smallest or the configuration setTimes could not
do the proof of optimality within 5 minutes. Our RCPSP benchmark was so composed
of 126 j30 instances (out of 480), 143 j60 instances (out of 480), 144 j90 instances
(out of 480) and 448 j120 instances (out of 600). The detailed list of instances that
were used can be found in the GitHub repository [God21a].

Initially, we wanted to include the Failure-Directed Search of Vilim et al. [VLS15]
in our benchmark. However, as it is a "plan B" strategy, which was experimentally
confirmed on many instances, the statistics would be mostly incomparable. It is
interesting to note that the model described in Figure 8.1 tends to give very good
solutions, and as so can be used as the "plan A" strategy that would be completed
by Failure-Directed Search.

The Choco-solver library [PFL17] was used in its 4.10.5 version. A time limit of
30 minutes was given for each configuration and each instance.

Every instance and piece of code that were used can be found in the GitHub
repository [God21a].
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Figure 8.2: Number of proofs per milliseconds on the RCPSP in-
stances

8.3.2 Experimental results

The results are shown in the form of a graphic of the number of proofs per milliseconds
as well as tables that give more precise data. The first line of the table gives the number
of proofs that were done in the time limit of 30 minutes by each configuration. The
second line gives the mean time to do the proof when all approaches did the proof
(Smallest is excluded as it does too few proofs to allow a fair comparison between
the other configurations). The third line gives the mean ratio of the best makespan
found by the configuration on the best makespan found among the configurations.
For instance, if we note Ccmax(i) the best makespan found by configuration c in the
time limit for instance i, then the ratio rc(i) of configuration c for instance i would
be: rc(i) = Cc

max(i)

minc′∈C(Cc′
max(i))

with C being the set of configurations. The line Objective
gives the mean ratio of each configuration across all instances. Finally, the two last
lines give the number of instances for which the configuration finds (strictly) the
best found makespan among all configurations. All results are given in Figure 8.2,
Table 8.1, Table 8.2, Table 8.3, Table 8.4 and Table 8.5.

Smallest setTimes Decomposition BessiereEtAl GodetBC

#Proofs 34 91 138 113 117

TimeToProof (ms) / 248241 24972 112613 81867

Objective 1.0198 1.0304 1.0029 1.0104 1.0095

Nb times strictly best 0 94 292 0 0

Nb times best 287 289 767 407 438

Table 8.1: Results of the benchmark on the 861 RCPSP instances

Smallest setTimes Decomposition BessiereEtAl GodetBC

#Proofs 20 65 90 82 84

Objective 1.0363 1.0058 1.002 1.0072 1.0067

Nb times strictly best 0 8 9 0 0

Nb times best 55 104 118 102 103

Table 8.2: Results of the benchmark on the 126 j30 RCPSP instances
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Smallest setTimes Decomposition BessiereEtAl GodetBC

#Proofs 4 13 22 18 19

Objective 1.0311 1.0228 1.0069 1.0172 1.0157

Nb times strictly best 0 29 35 0 0

Nb times best 35 66 114 64 71

Table 8.3: Results of the benchmark on the 143 j60 RCPSP instances

Smallest setTimes Decomposition BessiereEtAl GodetBC

#Proofs 4 5 10 7 8

Objective 1.0183 1.0297 1.0029 1.0107 1.0099

Nb times strictly best 0 14 56 0 0

Nb times best 43 40 130 63 69

Table 8.4: Results of the benchmark on the 144 j90 RCPSP instances

Smallest setTimes Decomposition BessiereEtAl GodetBC

#Proofs 6 8 16 6 6

Objective 1.0121 1.0399 1.0019 1.0091 1.0082

Nb times strictly best 0 43 192 0 0

Nb times best 154 79 405 178 195

Table 8.5: Results of the benchmark on the 448 j120 RCPSP in-
stances

Globally, we can see from the different tables that the search space reduction al-
lowed by the model described in Figure 8.1 offers really good solving performance com-
pared to the classical model described in Figure 3.1. Indeed, all configurations based
on the model described in Figure 8.1 do a greater number of proofs than Smallest
and setTimes. Moreover, whenever setTimes, Decomposition, BessiereEtAl
and GodetBC all prove optimality of their best found solution, we can see that
all configurations based on Figure 8.1 are at least twice faster than setTimes,
Decomposition being the faster configuration overall and being 10 times faster as
setTimes.

Interestingly, when looking at the results instance by instance, we can see that
Decomposition is always better than GodetBC, which is in turn always better
than BessiereEtAl. This can be explained by the fact that the better filtering
offered by BessiereEtAl and GodetBC on {z1, . . . , zn} variables do not lead to
significant cut in the search space. In fact, despite doing some filtering sooner in
the search tree, BessiereEtAl and GodetBC explore, for most instances, as many
nodes as Decomposition to find the best solution and to do the proof. The difference
of performance is thus explained by the great practical speed of the decomposition
of the allDiffPrec constraint, while the greater filtering of GodetBC seems to
offer a greater trade-off than the greater speed of BessiereEtAl, whenever greater
filtering influences the exploration of the search tree. In our current use-case, it seems
that the decomposition of the GeneralizedAllDiffPrec constraint offers the best
trade-off between speed and filtering.

An important remark to do is that the great results presented here rely heavily on
the symmetry breaking over precedence variables Ô and the use of the
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GeneralizedAllDiffPrec constraint instead of a simple allDiffPrec constraint.
Indeed, using fixed precedence boolean O and an allDiffPrec constraint led to more
mitigated results, when not worse. This can be easily understood by the fact that
branching on permutation variables without precedence variable might not lead to
greater filtering than the classic model and might as such lead to explore a greater
number of nodes.

8.4 Conclusion

In this chapter, we introduced the leftShifted constraint, and showed how to im-
plement it as a specialisation of the Order constraint. Most especially, we gave some
insights on the working of a filtering scheme for the leftShifted constraint when it
is based on precedence and cumulative constraints, as it is the case for the RCPSP.
We also discussed on the complexity of this filtering scheme. Then, we gave a CP
model for the RCPSP which is the classical model described in Figure 3.1 and that
have additional constraints and variables. Indeed, we introduced the permutation
variables, on which precedence constraints can also be applied and is therefore an
application case of the GeneralizedAllDiffPrec constraint introduced in Chap-
ter 4. Of course, the leftShifted constraint introduced earlier is also part of these
additional constraints. Finally, we presented an experimental protocol and gave the
results of different configurations of the state-of-the-art model and our new model.
Most especially, we saw that, as expected from the discussions and analyses of Chap-
ter 5, the decomposition of the GeneralizedAllDiffPrec would most benefit here
as the intermediary variables should not contain holes in their domains. Our model
obtained good results compared to the state-of-the-art one, but it is more mitigated
than on the PMSPAUR as some instances are still better solved by the state-of-the-art
model. All in all, our model is the best one tested in average and is a good application
case of the Order constraint and, more generally, application case of list ordering
reasoning in CP to solve scheduling problems.

Note that the dominance rule of accepting only left-shifted schedules was already
explored by Chu and Stuckey [CS15] for the RCPSP. They elegantly modelled the
dominance rule with an element constraint [HC88]: any start variable si takes its
value in an array composed of a variable instantiated to 0 (or the origin of time of
the problem more generally) and all the end variables e1, . . . , en. Indeed, in the case
of the RCPSP, any left-shifted task Ti starts either at the beginning, either whenever
another task finishes, whether because it is one of its predecessors or because it thus
liberates enough resource for the task Ti to start. The existence of this particular
paper was pointed to us late in our research, which is why we did not compare to
this implementation of the leftShifted constraint. However, we do not have any
doubt that our implementation, as a specialisation of the Order constraint, would
probably face difficulty when compared to the standard model improved with an
element constraint as described above. Further research can validate such thoughts.
Nevertheless, this chapter still stands as it shows another example of specialisation of
the Order constraint.
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Chapter 9

Application to the UET-UCT

The Unit Execution Time-Unit Communication Time (UET-UCT) is a very specific
problem. As discussed in Section 3.3.3, it is a simplified version of the more general
problem of scheduling tasks on identical machines. The reason why we chose the
UET-UCT instead of the more general problem is that we were expecting the ex-
perimental results to be far more mitigated for the UET-UCT. Indeed, the fact that
both the execution and communication times are unitary implies that the horizon is
shorter and therefore schedules tend to be tight for the classical model and having
more impact on the domains’ filtering. The idea was thus to greatly stress the Order
constraint’s specialisation and see its limits.

First, in Section 9.1, we will show how to improve the filtering done in the propa-
gation phase using some additional constraints. The idea is to make better inference
on the assignment variables, as they are deeply involved in the combinatorial of the
problem. Then we will show in Section 9.2 how to adapt the List Algorithm [Pin12] to
the duplication UET-UCT using the notion of D-path of Munier and Hanen [MH97].
We thereafter show how to introduce the resulting list ordering algorithm into a prop-
agator, therefore specifying the Order constraint for the duplication UET-UCT. We
will also show how we can take advantage of the filtering of other constraints in the fil-
tering algorithm of our new propagator. Experimental results are given in Section 8.3.
Finally, we conclude on these researches in Section 8.4.

We remind that the UET-UCT was presented in Section 3.3.3.

9.1 Additional constraints to help filtering on assignment
variables

First, note that the inference of constraints on the model described in Figure 3.4
misses some easy-to-catch information. Let us see it in an example.

Example 9.1. Consider the following example of UET-UCT with duplication for
8 unit tasks. We consider the precedence described in Figure 9.1. The number of
machines is m = 3. Finally, we consider the case where a solution with a makespan of
5 has already been found and we are therefore looking for a solution with a makespan of
4, should one exist. The domains of the start variables are as following: D(s0) = {0},
D(s1) = {0, 1, 2, 3}, D(s2) = {0, 1, 2, 3}, D(s3) = {1}, D(s4) = {1}, D(s5) = {2},
D(s6) = {3} and D(s7) = {3}. There are still the values assigned to s1, s2 and
assignment variables b0,1, . . . , b7,3 to determine. Consider the case where b0,1 = 1,
b0,2 = 1, b3,1 = 1, b4,2 = 1 and b5,1 = 1. All other assignment variables are undefined.

Through propagation, the solver induces that b3,2 = 0, b4,1 = 0, b5,2 = 0, b6,2 = 0
and b7,2 = 0. The rest of the assignment variables are still not instantiated. However,
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Figure 9.1: Precedence graph of an UET-UCT instance

from the values of the variables s6 and s7, we can deduce that their common predecessor
T5, which is processed only one time unit before T6 and T7, should be executed on two
machines for T6 and T7 to be executed at time 3. As b5,2 = 0, we know that b5,3 = 1,
which would thus enforce b0,3 = 1 and b3,3 = 1. Depending on the filtering rules of the
disjunctive constraint, the propagation phase could also determine from here that
s1 ≥ 2 and s2 ≥ 2, as well as b1,1 = 0, b1,3 = 0, b2,1 = 0, b2,3 = 0, which would lead
to b1,2 = 1 and b2,2 = 1 with Equation 3.6.

Example 9.1 shows that additional constraints can greatly improve filtering. There-
fore, from here, we consider that the CP model described in Figure 3.4 also has the
following constraints:

∀i ∈ [1, n],

m∑
k=1

bi,k ≥ |{j ∈ Γ+(i) | sj = si + 1}| (9.1)

Indeed, these constraints enforce that there are at least as many copies of task Ti
that there are tasks Tj that directly follow Ti in the schedule.

Let us also note that some lower bounds on the makespan can easily be applied
at root node. Indeed, the makespan is at least the number of tasks divided by the
number of machines and, as we consider unit execution time tasks, is at least as high
as the longest chain in the precedence graph, which we note d:

Cmax ≥ max(
⌈ n
m

⌉
, d) (9.2)

From now on, we will also consider that these lower bounds have been applied on
the makespan. All in all, it leads to the CP model described in Figure 9.2.

9.2 Applying Order to the UET-UCT

The idea to build a schedule from an ordered list of the tasks for the UET-UCT is
not new. Indeed, Pinedo already presented what he called a List Algorithm [Pin12],
which builds a schedule for the non-duplication UET-UCT from an ordered list of
the tasks. Zinder et al. [Zin+10] built on this idea and proved that there exists
an optimal list such that an optimal schedule is built by the List Algorithm. They
also gave a branch-and-bound procedure to find such an optimal list. Sadly, their
procedure cannot be generalised to the duplication UET-UCT as they use specific
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minimise Cmax = max
i∈[1,n]

ei s.t.

∀i ∈ [1, n], si + 1 = ei (9.3)

∀i ∈ [1, n],

m∑
k=1

bi,k ≥ 1 (9.4)

∀k ∈ [1,m],disjunctive(T , {b1,k, . . . , bn,k}) (9.5)

∀i ∈ [1, n],∀j ∈ Γ+(i), si + 1 ≤ sj (9.6)

∀i ∈ [1, n],∀j ∈ Γ+(i), si + 1 = sj =⇒ ∀k ∈ [1,m], bi,k ≥ bj,k (9.7)

∀i ∈ [1, n],

m∑
k=1

bi,k ≥ |{j ∈ Γ+(i) | sj = si + 1}| (9.8)

Cmax ≥ max(
⌈ n
m

⌉
, d) (9.9)

Figure 9.2: CP Model for the Unit Execution Time-Unit Commu-
nication Time (UET-UCT) with additional constraints to improved

filtering

lower bounds computations. Note that their branch-and-bound procedure looks like
more of a meta-heuristic than a complete exploration procedure usually behind the
branch-and-bound name.

In the remaining of this section, we will see how to build a list ordering algo-
rithm for the duplication UET-UCT by adapting an approximation algorithm from
Munier and Hanen [MH97]. This list ordering algorithm will then be used within a
specialisation of the Order constraint for the duplication UET-UCT.

9.2.1 D-path and list ordering algorithm for the duplication UET-
UCT

To face the possibility of duplicating tasks, Munier and Hanen [MH97] introduced the
notion of D-path.

Definition 9.1 (D-path [MH97]). We consider a partial schedule σ and a task Ti such
that all its predecessors are scheduled into σ. We note ti the greatest time at which a
predecessor of Ti has been scheduled: ti = max

j∈Γ−(i)
sj. The D-path Di of Ti is a subset

of the precedence graph. If there are two tasks or more among Ti’s predecessors that
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are scheduled at ti, then the D-path Di of Ti is ∅. If there are at most one predecessor
Tj of Ti that is scheduled at ti, the D-path Di of Ti is the longest subpath of the
precedence graph that ends by Tj and such that for any arc (k, k′) ∈ Di, sk′ = sk + 1.
The first task in Di is noted li and is clearly such that ∀k ∈ Γ−(li), sli − sk ≥ 2.

Any task Tk that is part of the D-path Di has at most one predecessor scheduled at
sk − 1, which makes the D-path Di unique for all i ∈ [1, n].

Let us remind some properties of the D-path that Munier and Hanen gave in
[MH97].

Proposition 9.1 (Properties of the D-path [MH97]). Let us consider a partial sched-
ule and a task Ti all predecessors of which have been scheduled and such that its
D-path Di is not empty. We still note ti the greatest time at which a predecessor of
Ti is scheduled. We have the following properties:

• Let π be a machine which is free during the interval [ti+1, ti+2). Ti is schedulable
at time ti + 1 on π if and only if every task of Di is scheduled on π.

• Let k ∈ Di be a task scheduled on π. If π is free during the interval [tk+1, ti+2),
then Ti can be scheduled on π at time ti + 1 by duplicating on π successors of k
in Di. Di is then entirely performed on π.

• If π is free during the interval [tli , ti + 2), then Ti can be scheduled on π at time
ti + 1 by copying every task in Di on π.

These properties are useful to design a list ordering algorithm for the duplication
UET-UCT. We suppose that machines are identified by a unique integer and mean
by first available machine for D-path Di the machine with the smallest ID on which
the D-path Di and task Ti can be scheduled on at a given time t. Let’s build a
list ordering algorithm for the duplication UET-UCT from here. Let mk be the
kth machine. Algorithm 9.1 gives a pseudo-code of a list ordering algorithm for the
duplication UET-UCT: we did not describe how to check if Ti can be scheduled on
machine mk as it is pretty easy to code using an array of integer for each machine.
This check consists in looking if the D-path can be executed on machine mk using the
properties described in Proposition 9.1 if the D-path is not empty, or to assure that
machine mk is not use at time t otherwise.

Algorithm 9.1 is pretty straightforward. We iterate over the tasks given by the
list L and compute the D-path of the current task Ti. If the D-path is not empty,
then we try to find a machine that can process Ti and its D-path. Line 12 uses the
properties of Proposition 9.1 to check if Ti can be scheduled on machine mk. If no
machine can process Ti and its D-path Di, we schedule task Ti two time-units after
its latest predecessor on the first earliest available machine that can process it. While
looking for such a machine, we might have to increase time t at which to schedule Ti
if no machine is free at t.

Note that some optimal schedules cannot be built with Algorithm 9.1, an example
of which is described in Example 9.2.

Example 9.2. We consider the duplication UET-UCT instance described in Fig-
ure 9.1. Figure 9.3 presents two optimal schedules for this instance: each line corre-
sponds to a machine, and each column to a time unit. The optimal solution of Fig-
ure 9.3a can be built by Algorithm 9.1, using the following list: L = [0, 3, 4, 5, 6, 7, 1, 2]
(note that list L′ = [0, 3, 5, 4, 6, 7, 1, 2] produces the same schedule).
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Algorithm 9.1: List algorithm
1 Function List(L: list of tasks)
2 begin
3 σ ← ∅
4 for i′ ∈ [1, n] do
5 i← L[i′]
6 Compute the D-path Di

7 found← false
8 if Di 6= ∅ then
9 t← max

j∈Γ−(i)
sj + 1

10 k ← 1
11 while ¬found ∧ k ≤ m do
12 if Di and Ti can both be scheduled on mk then
13 found← true
14 Schedule Di on mk in σ
15 Schedule Ti at time t on mk in σ
16 end
17 k ← k + 1

18 end
19 end
20 if ¬found then
21 t← max

j∈Γ−(i)
sj + 2

22 while ¬found do
23 k ← 1
24 while ¬found ∧ k ≤ m do
25 if mk is free at time t then
26 found← true
27 Schedule Ti at time t on mk in σ
28 end
29 k ← k + 1

30 end
31 t← t+ 1

32 end
33 end
34 end
35 return σ

36 end

However, the optimal solution described in Figure 9.3b cannot be built using Al-
gorithm 9.1. Indeed, the second machine cannot be saved by the algorithm as task T4

appears necessarily before tasks T6 and T7 in the list as it precedes them. However, we
can easily see that these two solutions are the same by machine symmetry.

Theorem 9.1. For a given instance of the duplication UET-UCT, there exists a list
L such that Algorithm 9.1 produces an optimal schedule.

Proof. Consider an optimal schedule σopt such that all copies of a given task are
necessarily in the D-path of another task. Such a schedule always exists: if Ti has
several copies and at most one successor at time si + 1, then all other successors of
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0 3 5 6

0 4 1 2

0 3 5 7

(a) An optimal
schedule

0 3 5 6

0 3 5 7

0 4 1 2

(b) Another opti-
mal schedule

Figure 9.3: Two optimal schedules of the duplication UET-UCT
instance in Figure 9.1

Ti use the communication, meaning no copy other than the one on the machine with
j ∈ Γ+(i) and sj = si + 1 are useful and can therefore be removed from the schedule.

The list L is built pretty much following the timeline. While we build the list,
we also maintain a schedule σ that would be built by L through Algorithm 9.1. We
note ti(σ) the time at which task Ti would be scheduled by the list algorithm. The
idea is to iterate over time and add all the tasks in the list (and update the schedule
σ accordingly) by increasing number of machine’s id. If an operation of scheduling
task Ti by the list algorithm does not lead to the optimal schedule in such a case, it
means that the solution cannot be reached, but it can be after a swap between two
machines. When scanning tasks scheduled at time t, if ti(σ) < t then the task Ti must
be postponed in the list, as adding it now would not lead to the same schedule. It
arrives when there are copies of another task and a D-path is ongoing. Such a task Ti
should not be added to L until ti(σ) = si.

9.2.2 Specialisation of the Order constraint for the duplication UET-
UCT

In this subsection, we will see how to adapt the Order constraint to the duplication
UET-UCT. We will especially see how we can consider other constraints’ filtering in
our propagator to improve on the filtering of the Order constraint.

The specification of the function f is such that it returns the time to which schedule
task Ti following the list ordering algorithm (Algorithm 9.1). However, we can look
a bit further. Indeed, we can also consider a schedule σ′ that is built following the
list L as well as the actual value of the assignment variables. As such, thanks to
the filtering of other constraints, it might lead to postpone some tasks compared
to what it would be without taking into account these values: in such a case, we
have ti(σ) < ti(σ

′). Whenever ti(σ) 6= ti(σ
′) for a task Ti, then we can remove i

from the current permutation variable as such an instantiation would contradict other
constraints’ filtering on assignment variables. Note that we can also enforce start
variable si to be greater than ti(σ′) as it will necessarily be the case: the solver will
deduce it deeper in the tree following constraints’ consistency. Algorithm 9.2 gives the
propagator for the specialisation of the Order constraint to the duplication UET-
UCT. We encoded the fact that a task must be after its predecessors in L inside this
algorithm for performance purpose (instead of using an inverse constraint as well as
a GeneralizedAllDiffPrec constraint, as we did for the RCPSP).

The resulting CP model is the same as the one described in Figure 9.2, to which we
only add the Order constraint as the filtering of the inverse and
GeneralizedAllDiffPrec constraints is done directly in the propagator (see Al-
gorithm 9.2), contrary to what was done for the RCPSP.
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Algorithm 9.2: Propagator for the Order constraint for the duplication
UET-UCT
1 Function Propagate(X : variables, P : permutation variables)
2 begin
3 i← 1
4 σ ← ∅
5 do
6 while |D(pi)| = 1 do
7 Let mk be the machine corresponding to tpi(σ)
8 Schedule Di on mk in σ
9 Schedule Tpi at time tpi(σ) on mk in σ

10 D(spi)← D(spi) ∩ {tpi(σ)}
11 D(bpi,k)← {1}
12 i← i+ 1

13 end
14 if i ≤ n then
15 Build σ′ following σ, P and the assignment variables
16 for j ∈ D(pi) do
17 if Γ−(j) * {p1, . . . , pi−1} ∨ tj(σ) < sj ∨ tj(σ) 6= tj(σ

′) then
18 D(pi)← D(pi) \ {j}
19 end
20 end
21 end
22 while |D(pi)| = 1 ∧ i ≤ n
23 end

9.3 Experiments

9.3.1 Experimental protocol

For each instance, we compare the performance between the model described in Fig-
ure 9.2 and the model also using an Order constraint whose propagator is described
in Algorithm 9.2. For the classic model described in Figure 9.2, we use the search
heuristic Smallest, which selects the start variable with the smallest lower bound and
branches on this value. This configuration will be referred to as Smallest. For
the model also using an Order constraint whose propagator is described in Algo-
rithm 9.2, the search we use branches on the current permutation variable pidx. The
selected value to branch on corresponds to the start variable with the smallest lower
bound: v ∈ D(pidx) such that sv = min({sk | k ∈ D(pidx)}). This configuration will
be referred to as Order.

The instances we work on for the duplication UET-UCT are built as for the non-
duplication UET-UCT in [Zin+10]: we took precedence graphs from the Standard
Task Graph Set (STG) [Lab21], which is "a kind of benchmark for evaluation of
multiprocessor scheduling algorithms". As in [Zin+10], we use the graphs from the
STG as the precedence graphs in our UET-UCT instances, and fix the number of
machines to 2, 3, 4 or 5. The instances have 50, 100 or 300 tasks, and the precedence
graphs have various profile in terms of density, width, etc. In total, there are 2160
instances, 720 of size 50, 720 of size 100 and 720 of size 300.

The Choco-solver library [PFL17] was used in its 4.10.5 version. A time limit of 5
minutes was given for each configuration and each instance.
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Every instance and piece of code that were used can be found in the GitHub
repository [God21b].

9.3.2 Experimental results

First, note that we expect the experimental results of the Order configuration to be
very similar to the ones of the Smallest configuration. Indeed, since tasks have unit
processing times, the combinatorial gain of the Order configuration in comparison to
the Smallest configuration should be smaller as for other scheduling problems as the
horizon is n in the case of the UET-UCT. That said, the combinatorial from the as-
signment variables might still help the Order model to be better (as its combinatorial
is not modified from these variables, in contrary to the model described in Figure 9.2).

The results are given in the form of tables, the definition of the lines of which
were given in Section 8.3.2. Of course, here, the number of proofs is given for the
proofs done within a time limit of 5 minutes (instead of 30 minutes for the RCPSP)
as said in previous subsection. See that we removed "Nb times best" lines from the
tables as we have only two configurations here: the number of times a configuration
has 1.0 as objective ratio is the number of instances minus the sum of the times each
configuration is strictly better. All results are given in Table 9.1, Table 9.2, Table 9.3
and Table 9.4.

Smallest Order

#Proofs 1239 1272

TimeToProof (ms) 1295 1919

Objective 1.0194 1.0010

Nb times strictly best 43 547

Table 9.1: Results of the benchmark on the 2160 UET-UCT in-
stances

Smallest Order

#Proofs 345 380

TimeToProof (ms) 1055 796

Objective 1.021 1.0019

Nb times strictly best 19 205

Table 9.2: Results of the benchmark on the 720 UET-UCT instances
of size 50

The results in Table 9.1 confirm our hypothesis that the gain of using the Order
constraint should be smaller than for the RCPSP and the PMSPAUR. Indeed, the
Order configuration does a bit more proofs than the Smallest configuration, while
the latter is faster to do the proof when both configurations did the proof. We can also
see that Smallest and Order configurations got the same objective value within the
time limit for 1570 instances, which corresponds to two thirds of our benchmark. For
the last third of the benchmark, we can see that, overall, the Order configuration
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Smallest Order

#Proofs 401 399

TimeToProof (ms) 1406 2280

Objective 1.0244 1.0009

Nb times strictly best 20 201

Table 9.3: Results of the benchmark on the 720 UET-UCT instances
of size 100

Smallest Order

#Proofs 493 493

TimeToProof (ms) 1368 2391

Objective 1.0125 1.0001

Nb times strictly best 4 141

Table 9.4: Results of the benchmark on the 720 UET-UCT instances
of size 300

finds better solutions. Table 9.2, Table 9.3 and Table 9.4 allow us to see that the
phenomenon is quite evenly distributed among all the benchmark and that the Order
configuration is better than the Smallest configuration whatever the size of the
instances of the benchmark. The mean time to proof of each configuration shows
that, whenever both configurations did the proof, the Smallest configuration should
be preferred as it is faster in average.

9.4 Conclusion

In this chapter, we first gave a way to improve on the filtering of assignment variables
using additional variables and constraints. Then, we showed how to adapt the List
Algorithm [Pin12] into a list ordering algorithm for the duplication UET-UCT. After
that, we described how to embed this list ordering algorithm into a propagator, there-
fore specialising the Order constraint for the duplication UET-UCT. Finally, both
models, the improved one and the improved one with the Order constraint and vari-
ables, are experimentally compared. In average, the Order model got better results,
doing more proofs than its counterpart and finding strictly better solutions on almost
a third of the benchmark. As expected, the results are even more mitigated than
for the PMSPAUR and the RCPSP, but we can still see the interest of the Order
constraint for scheduling problems: the combinatorial gain leads to a greater number
of proofs or to better solutions within the time limit.
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Conclusion

Contributions

The allDiffPrec constraint is defined as an allDifferent constraint with prece-
dence between some variables. This constraint can be used in several contexts, such as
examination timetabling or to enforce precedence in the permutation constraint. In
Chapter 4, we explored the state-of-the-art filtering algorithms for the allDiffPrec
constraint. More especially, we revisited the constraint by going deeper in the anal-
ysis of each state-of-the-art filtering algorithm, correcting the pseudo-code given by
Bessiere et al. [Bes+11] into a working algorithm. A detailed review of the worst-
case time complexities was also made. Then, we exploited a lemma from Bessiere
et al. [Bes+11] in order to strengthen the filtering for the allDiffPrec constraint.
We showed that this new filtering algorithm enforces bounds(Z) consistency or range
consistency depending on the values on which it was applied (bounds only or all the
domain). It is also able to detect inconsistent but bounds(Z) consistent values, con-
sidering holes within domains. We also extended the allDiffPrec constraint into
the GeneralizedAllDiffPrec constraint, where the precedence are variables. We
showed that bounds(Z) consistency for the GeneralizedAllDiffPrec constraint
can be done in O(n3), and O(n2) (down a branch of the search tree). In Chapter 5,
we discussed on implementation details of each filtering algorithm presented in Chap-
ter 4. Particular attention was given to the implementation of data structures as well
as the global organisation of the code into the propagator, with respect to potential
needed prior filtering, to accelerate the speed of execution of the propagator. Finally,
we presented an experimental protocol to compare the solving capacities of each im-
plementation of the allDiffPrec constraint. We showed that, whenever domains
are intervals, one should use the filtering algorithm from Bessiere et al. [Bes+11] (see
Algorithm 4.5), whereas one should use our new filtering algorithm whenever domains
are sets (and therefore can contain holes).

On a second part, we explored the idea to use list ordering algorithms within
Constraint Programming. We first introduced in Chapter 6 the Order constraint,
for which we gave a basic filtering scheme using permutation variables. The underlying
idea is to introduce into constraint solvers reasoning behind list ordering algorithms
and explore the search space composed of the set of all permutations. We discussed
on the interest of this new constraint, which mostly relies on a reduction of the search
space’s size. One should therefore determine if such a reduction can indeed lead to
greater solving efficiency, that is whenever the set of all permutations is smaller than
the search space on decision variables of the basic model. For instance, for the RCPSP,
the search space’s size for the basic model is dn with d = Hor. Therefore, using the
Order constraint might get interesting whenever dn > n!.

Then, we showed in Chapter 7 how to use a specialisation of the Order constraint
to solve the Parallel Machine Scheduling Problem with Additional Unit Resources
(PMSPAUR), which was the first problem for which we used the idea of list ordering
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algorithm in CP. We also gave cutting rules specific to the PMSPAUR. We experi-
mentally showed on random instances that the cutting rules as well as the application
of the Order constraint for the PMSPAUR both increase the solving performance,
leading to a greater number of proofs of optimality and better results in average for
models based on the specialisation of the Order constraint.

In Chapter 8, we showed how to apply the Order constraint for the famous
Resource-Constrained Project Scheduling Problem (RCPSP): we introduced the
leftShifted constraint as a specialisation of the Order constraint for a set of
cumulative and end-before-start precedence constraints. We showed experimen-
tally that this approach led to great results thanks to the symmetry breaking rule
it allows. The improved model for the RCPSP was also the occasion to use the
GeneralizedAllDiffPrec constraint.

Finally, in Chapter 9, we presented a list ordering algorithm for the duplication
Unit Execution Time-Unit Communication Time (UET-UCT) based on the notion
of D-path [MH97]. This algorithm is of course very similar to the one of Munier
and Hanen [MH97] and to the list algorithm presented by Pinedo [Pin12] for the
non-duplication UET-UCT. This list ordering algorithm was then embedded in a
propagator as a specialisation of the Order constraint for the duplication UET-UCT.
We also showed how to improve the strength of inference on assignment variables
for the classical model as well as our new one, for which we also improve on the
global filtering by considering the filtering done by other constraints on the assignment
variables. This improved model was experimentally compared with a similar version
also using the Order constraint. We showed that the model based on the Order
constraint does more proofs of optimality in average, but the experimental results
were more mitigated for this problem as for the two previous problems, as will be
discussed in next section.

Limits of the contributions

Experimental results on the model described in Figure 8.1 show that additional
filtering for the allDiffPrec or the GeneralizedAllDiffPrec constraints is
not always beneficial. Indeed, it seems that the few additional filtering offered by
the BessiereEtAl and GodetBC implementations is not worth the reduction of
speed of execution due to higher complexities. The decomposed version of the
GeneralizedAllDiffPrec, being far more faster to run, yields the better overall
results thanks to its speed and the strong impact of the current permutation variable’s
instantiation on the propagation phase. Therefore, one should pay attention when us-
ing the allDiffPrec or the GeneralizedAllDiffPrec constraints to select the
appropriate implementation given the circumstances.

When it comes to the Order constraint and its specialisations to given problems,
the limits are twofold. First, the induced code developments might sadly not be gen-
eralised or re-used to solve other problems. Despite the possibility for great practical
performance, it also relies on the expertise on constraint solvers of users, which might
be disincentive on a wider use of the Order constraint to solve problems with con-
straint programming. The specialisations of the constraint for the treated problem
being hard-coded, the Order constraint can not really be used into languages such
as MiniZinc [Net+07] or XCSP3 [Aud+20]. The need of constraint solvers expertise
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to implement a specialisation of the Order constraint is the greater disincentive be-
tween these reasons as operations researchers and engineers are quite used to adapt
existing methods to their problem.

On another hand, all problems are not efficiently solved using a specialisation
of the Order constraint. Indeed, the case of the duplication UET-UCT is a great
example: the experimental results are quite similar between the classical model as well
as our new model, this new model based on the Order constraint still being better
to find better solutions or to do proofs of optimality. Similarly, for the RCPSP, the
application of the Order constraint was not as efficient as it was in the case of the
PMSPAUR. Moreover, there might exist dominance rules or symmetry breaking rules
dedicated to the problem: for instance, the left-shifted dominance rule we exploited
for the RCPSP was already proposed by Chu and Stuckey [CS15], using an element
constraint.

It shows that all problems do not have the same potential to be efficiently solved
using the Order constraint, depending on the efficiency to filter the permutation
variables as well as the reduction of the search space’s size offered by the methodology.

Perspectives and further research

Perspectives of further research on the allDiffPrec and the
GeneralizedAllDiffPrec constraints are multiple. First, experiments on the
allDiffPrec constraint alone have shown to be conclusive on the efficiency of our
new filtering rule whenever domains are not intervals. For the problem of exami-
nation timetabling, which would exactly be modelled with only one allDiffPrec
constraint, we can conclude of the efficiency of the new filtering rule in such a case.
However, as we saw in Chapter 8, where we used a GeneralizedAllDiffPrec
constraint in the advanced model for the RCPSP, experimental results show that the
decomposed version of the constraint is the most efficient one in this particular case.
Of course, this is also due to the search heuristic. Therefore, further research should
be led on the interaction of the different filtering algorithms for the allDiffPrec
constraint with other propagators, with complementary study on the interaction with
the search heuristic.

Remember that in most cases, the filtering algorithm of Bessiere et al. [Bes+11]
(Algorithm 4.5) is as efficient as our new filtering rule and is faster: experimental
results on the median time to proof show this. Therefore, another lead for fur-
ther research would be a statistical study on the behaviour of both filtering rules
(BessiereEtAl, GodetBC and GodetRC). Indeed, as in [Boi+13] for the
allDifferent constraint, it might be relevant to have a good estimator of when
our new filtering rule would be useful (compared to bounds(Z) consistency enforced
by the algorithm of Bessiere et al. [Bes+11]). If such an estimator would exist, then we
might reach a better overall trade-off between speed of execution and filtering strength.

The leads for further research on the Order constraint are legion. There are
numerous iterative solution-building algorithms for problems, a great source of which
can be found within approximation algorithms [Vaz03], and therefore there are as
many use-cases for the Order constraint in CP. One should be careful that it is
guaranteed that at least one optimal solution can be built by such an algorithm. We
gave several applications on scheduling problems, but other kinds of problems might
also be good case of application, such as packing problems, as they are similar to
scheduling problems in many ways. For instance, the one-dimensional Bin Packing



126 Conclusion

problem [EC71] could be a case of application, using the First-Fit algorithm [EC71;
GGU72]. Indeed, there exists an optimal packing that can be built with the First-Fit
algorithm when the items are given in the right order within the list given in parameter
to the First-Fit algorithm. It is not unthinkable that other kinds of problems might
also be good cases of application of the Order constraint, as long as a list ordering
algorithm that can build an optimal solution exists.

As said for the RCPSP (Chapter 8), using permutation variables with a special-
isation of the Order constraint might not be very efficient alone, but can be with
additional cutting rules or symmetry breaking rules. For instance, for the RCPSP,
enforcing tasks to be sorted by increasing start time within the permutation gives
great results. One can note that such a cutting rule is not applicable on the basic CP
model (Figure 3.1). This is another way to use the Order constraint and improve on
the global solving performance. The permutation variables are additional variables,
i.e. not necessary to model the problem, and are as such additional possibilities for
symmetry breaking and dedicated search heuristics, most especially because in the
case of the Order constraint the permutation variables entirely decide the problem
(they are decision variables).

Interestingly, this is not the first case of applications to scheduling problems. The
idea to look for a list instead of directly looking for the optimal schedule was first
explored by Zhou for the Job Shop Scheduling Problem (JSSP) [Zho97]. Note that the
application of the Order constraint for the RCPSP (see Chapter 8) was also directly
tested on the JSSP, as the RCPSP is a generalisation of the JSSP. The approach
developed by Zhou shows better results for the JSSP. As such, further research should
consist in implementing the approach of Zhou. This would lead to a fair comparison
on the same solver, and better comprehension of Zhou’s approach might give ideas
to improve the model using the Order constraint for the RCPSP. Also note that
Zinder et al. [Zin+10] developed a dedicated branch-and-bound algorithm in the case
of the non-duplication UET-UCT that looks for an optimal list for the List Algorithm
[Pin12]. Further research should also consists in comparing our results on the non-
duplication UET-UCT to the ones of Zinder et al. [Zin+10] to see how our generic
approach behaves in comparison to specific methods.

Finally, another lead for further research on the Order constraint can be found in
explanations [Jus03]. Indeed, explanations for the cumulative constraint [Sch+09;
Sch+11; SFS13] have proven to be very efficient to solve scheduling problems. As
filtering on other permutation variables than the current one is pretty weak, if not
non-existent, explanations might be of great help to filter other permutation variables
than the current one, and differently than through the allDifferent constraint (or
the allDiffPrec or GeneralizedAllDiffPrec constraints whenever such con-
straints might be useful).

The methodology developed for the Order constraint and its specialisations to
solve different problems is a reminder that the expressiveness of constraint program-
ming allows to implement dedicated solving techniques within constraint solvers. In-
troducing dedicated solving methods into constraint solvers might bring great perfor-
mance in practice.

As a takeaway, we would like to bring the reader’s attention on the hybridisation
of constraint programming with other solving techniques. Indeed, the permissiveness
and the expressiveness of constraint programming allows generally for the introduction
of such techniques within propagators, allowing CP to benefit from the efficiency of
such techniques. It led to great success stories in the past, as with explanations [Jus03]
which is a technique from SAT solvers, or with Benders decomposition [Hoo07], or
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with watch literals [GJM06; Gen13] which is another techniques from SAT solvers. It
seems therefore to be a good idea to inspire from other solving techniques from other
Combinatorial Optimisation fields and tools to improve on the practical efficiency of
constraint solvers.

On code development

This thesis was the occasion to get a better comprehension of how a constraint solver
works, in particular Choco solver. Whether for the developments for which we gave
details in the thesis, or for other developments on Choco solver itself that were done,
a particular attention was always given to the CPU time, testing different implemen-
tations of a same algorithm and see which one is the fastest in practice. Extensive
work on data structures is never a waste of time, neither is any analysis on CPU time
when one can afford it.
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Résumé long

Contexte

L’efficacité des processus industriels, des transports et de la société en général est
importante, aujourd’hui plus que jamais. En effet, nos sociétés modernes se sont
agrandies, de même que leur complexité sous-jacente. Par exemple, la logistique et le
transport jouent un rôle clé dans le fonctionnement de nos sociétés. L’optimisation
des processus sous-jacents, ainsi que de chaque activité indispensable aux services, est
donc importante, tout particulièrement dans le contexte du changement climatique et
de la transition sociétale. En effet, les économies d’énergie et d’argent sont importantes
pour préserver au maximum la qualité de vie de chaque citoyen dans un tel contexte.

La Recherche Opérationnelle consiste précisément à modéliser un problème avec
des variables et des contraintes mathématiques et à résoudre le problème modélisé.
La recherche opérationnelle se concentre sur la résolution pratique de problèmes et
utilise donc des techniques de résolution de plusieurs domaines. Différentes techniques
existent pour résoudre ces problèmes, certaines plus faciles à implémenter en code que
d’autres, certaines pouvant garantir l’inexistence de solutions ou l’optimalité d’une
solution, certaines étant plus rapides en pratique que d’autres, etc. La diversité des
techniques de résolution permet de sélectionner celle qui convient le mieux en fonction
des contraintes du projet (compétences, temps de développement, temps de recherche
d’une solution, capacité à prouver ou non l’optimalité, etc.).

Les problèmes dont l’objectif est de trouver une solution sont généralement appelés
problèmes de satisfaction sous contraintes (CSP, pour Constraint Satisfaction Prob-
lems en anglais) et problèmes d’optimisation sous contraintes (COP, pour Constraint
Optimisation Problems en anglais) chaque fois qu’il s’agit d’une fonction-objectif à
minimiser ou à maximiser en plus du CSP. Ces problèmes ont en commun d’être com-
binatoires, c’est-à-dire que l’ensemble des possibilités est très large. Divers types de
problèmes sont modélisés en tant que CSP et COP. Pour n’en citer que quelques-uns,
cela va de la planification de la maintenance dans l’industrie électrique [Fro+16],
aux problèmes logistiques de transport et de livraison (généralement appelés Ve-
hicule Routing Problems (VRP) en anglais [GRW08; KP12; MS20]), ou au problème
d’horairisation de circulations ferroviaires, qui consiste à attribuer une heure d’arrivée
et une heure de départ, ainsi qu’un parcours sur les rails, à chaque train pour une gare
donnée [Bai15; CGT15], ou encore la conception du nouveau clavier français [JK19;
Fei+21] (modélisée comme une spécialisation du problème d’affectation quadratique
[BK57]).

Dans le cadre de cette thèse, nous nous concentrons sur une technique de résolu-
tion appelée Programmation par Contraintes (PPC), qui est un paradigme déclaratif,
c’est-à-dire que l’utilisateur spécifie le problème dans un langage de contraintes, inter-
prétable par un logiciel appelé solveur de contraintes (ou simplement solveur), dont
la tâche est de résoudre le problème. Ce comportement "boîte noire" existe depuis le
début du domaine et dans l’esprit des chercheurs : « la programmation par contraintes
représente l’une des approches les plus proches que l’informatique ait faites du Saint
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Graal de la programmation : l’utilisateur pose le problème, l’ordinateur le résout »
comme l’a déclaré Freuder dans [Fre97]. En effet, la PPC se distingue d’autres tech-
niques telles que la Programmation Linéaire par la grande expressivité qu’elle permet
pour les contraintes, ainsi que par la possibilité d’intégrer dans les solveurs de con-
traintes des algorithmes et des techniques d’autres domaines. Malheureusement, cette
grande expressivité et permissivité de la PPC conduit à des solveurs de contraintes
complexes, qui nécessitent une certaine expertise afin de modéliser et d’exprimer ef-
ficacement un problème et de le résoudre tout aussi efficacement. Ce comportement
peut être vu comme une "boîte blanche" : le solveur permet beaucoup de choses,
mais il nécessite une expertise pour le configurer efficacement. Dans cette thèse, nous
serons plus proches du comportement "boîte blanche" que de celui "boîte noire".

Pour résoudre des problèmes en PPC, il faut d’abord modéliser le problème que l’on
souhaite résoudre au moyen de variables et de contraintes. Par exemple, supposons
que vous souhaitiez planifier la maintenance d’une flotte de trains. Vous disposez d’un
ensemble de tâches, chacune correspondant à une activité de maintenance. L’objectif
de votre problème est de décider quand traiter chacune des tâches, compte tenu des
contraintes de ressources (deux trains ne peuvent pas occuper le même rail en même
temps, horaire des ouvriers qualifiés, etc.) et des contraintes de planification (les trains
arrivent et quittent le centre de maintenance à une heure précise pour respecter leur
planning commercial par exemple). En considérant que les tâches ont une durée fixe
pour être traitées, les variables de début des tâches définissent une solution du prob-
lème si aucune des contraintes n’est violée. Le modélisateur peut également préciser
comment l’espace de recherche sera exploré : nous considérons que cela fait partie
de la phase de modélisation. Une fois la phase de modélisation terminée, le solveur
commence à explorer l’espace de recherche, à la recherche de solutions. L’ensemble
des affectations de valeurs aux variables définies dans cette phase constitue l’espace
de recherche.

Le solveur alterne entre deux phases : propagation et branchement. Le rôle de la
propagation est d’inférer que certaines affectations de valeurs aux variables ne peuvent
pas conduire à une solution du problème compte tenu des définitions des contraintes.
Par exemple, s’il a déjà été décidé que la maintenance électrique d’un train donné
se ferait de t1 à t2 et qu’il existe des machines pour faire la maintenance électrique
uniquement pour un train à la fois, alors le moteur de propagation peut appliquer
que les autres tâches de maintenance électrique des autres trains se terminent avant
t1 ou commencent après t2. Cette phase de propagation peut conduire à de grandes
coupures dans l’espace de recherche et ne doit donc pas être sous-estimée. Cependant,
ces inférences ont un certain coût algorithmique, généralement plus l’inférence est
forte, plus il est coûteux de la trouver. Dans cette thèse, nous nous intéresserons à ce
compromis intéressant.

Chaque fois que les règles d’inférence des contraintes ne peuvent plus trouver
d’affectations défaillantes, soit toutes les variables sont instanciées et une solution a été
trouvée, soit il y a une contradiction entre les inférences des contraintes et nous devons
revenir à un précédent état valide de la recherche, soit il y a indécision (il existe des
variables non instanciées sans qu’aucune contrainte ne soit violée). Dans ce troisième
cas, un branchement est effectué, c’est-à-dire le solveur prend une décision (par exem-
ple la maintenance électrique du train A sera effectuée à l’instant t1) et propage cette
décision. La contradiction de cette décision sera également explorée. C’est pourquoi
la Programmation par Contraintes est catégorisée comme méthode de recherche com-
plète : elle explore toutes les possibilités et peut donc garantir l’inexistence de solutions
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ou l’optimalité d’une solution (par exemple, elle peut garantir qu’il n’existe pas de
planning plus court que celui trouvé). Effectuer les bons branchements en premier
peut s’avérer crucial pour la performance.

En effet, dans son intervention lors de l’ACP Research Excellence Award (CP’13)1,
Jean-Charles Régin explique que prêter attention à la phase de modélisation, à
l’exploration de l’espace de recherche et à l’implémentation (notamment des struc-
tures de données) est important, le gain potentiel d’efficacité suivant cet ordre et
étant inverse à la probabilité de succès. C’est-à-dire que parmi ces trois phases, le
gain d’efficacité le plus élevé peut être trouvé dans la phase de modélisation, mais il y
a in fine peu de chances d’obtenir une amélioration de l’efficacité lors de la résolution.

Un autre point d’attention, bien que pas vraiment entre les mains des modélisa-
teurs et des utilisateurs de solveurs, est le moteur de propagation : la manière dont
il est codé et articulé peut avoir une grande importance en pratique lors de la réso-
lution de problèmes, comme l’ont montré Prud’Homme et al. [Pru14; Pru+14]. Plus
particulièrement, une grande connaissance d’un solveur et de son fonctionnement in-
terne peut conduire à de meilleures performances en pratique car la mise en œuvre
sera adaptée aux spécificités du solveur. Pour toutes ces raisons, nous accordons une
attention particulière à l’implémentation tout au long de cette thèse.

Dans cette thèse, nous explorons différents aspects présentés précédemment. Nous
nous concentrons principalement sur l’amélioration des performances de résolution en
pratique des problèmes d’ordonnancement. Plus particulièrement, nous exploitons la
grande expressivité de la PPC pour introduire dans les solveurs de contraintes d’autres
techniques issues de l’optimisation combinatoire. Cela s’est avéré très efficace dans
le passé : l’utilisation d’explications (une technique issue des solveurs SAT) [Jus03;
Sch+09; Sch+11; SFS13] a conduit à des résultats impressionnants sur les problèmes
d’ordonnancement classiques, et est un atout important de la PPC pour résoudre
efficacement les problèmes d’ordonnancement. Malheureusement, il faut beaucoup
d’efforts de développement pour interfacer les explications avec le moteur de propa-
gation du solveur (comme cela a été fait dans Choco [PFL17]) ou pour les prendre
en compte nativement (comme pour les solveurs LCG (pour Lazy-Clause Generation)
tels que Chuffed [Chu+16] ou OR-Tools [PF], également appelés solveurs CP-SAT).
De plus, les explications peuvent rencontrer des difficultés : par exemple, la version
décomposée expliquée de la contrainte cumulative [AB93] peut consommer une très
grande quantité de mémoire si le planning peut être construit sur une longue période
de temps. Cela exclut l’utilisation d’explications dans des environnements à mémoire
limitée, où les explications pourraient perdre en efficacité car certaines clauses sont
oubliées (ce qui est fait par les solveurs LCG dans des environnements à mémoire
limitée). Pour ces raisons, nous nous concentrons sur d’autres techniques, qui sont
complémentaires aux explications.

Les contributions de cette thèse sont doubles. Dans une première partie, nous nous
concentrons sur la contrainte allDiffPrec, qui est la composition d’une contrainte
allDifferent et de contraintes de précédence. Nous faisons une revue complète de
l’état-de-l’art sur cette contrainte, corrigeant un algorithme de filtrage, et proposons
une nouvelle règle de filtrage. Dans une seconde partie, nous nous intéressons à
l’utilisation d’algorithmes de liste ordonnée en PPC pour résoudre des problèmes

1« Des solutions simples à des problèmes complexes », Jean-Charles Régin. ACP Research Excel-
lence Award, CP2013(Uppsala, Suède).
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d’ordonnancement. Plus particulièrement, nous y développons comment ajouter des
variables de permutation et les filtrer peut amener à de meilleures performances de
résolution. Pour ceci, nous spécifions ce processus sur plus problèmes, montrant la
généricité de l’approche ainsi qu’un panel de performances, dont la variabilité montre
les limites de l’approche.

La contrainte allDiffPrec

La contrainte allDiffPrec est définie comme une contrainte allDifferent avec
des précédences entre certaines variables. Cette contrainte peut être utilisée dans
plusieurs contextes, tels que la planification d’examen ou pour imposer des précédences
dans la contrainte permutation. Dans le Chapitre 4, nous explorons et décrivons
l’ensemble des algorithmes de filtrage état-de-l’art pour la contrainte allDiffPrec.
Plus particulièrement, nous revisitons la contrainte en approfondissant l’analyse de
chaque algorithme de filtrage, en corrigeant le pseudo-code donné par Bessière et al.
[Bes+11] en un algorithme fonctionnel. Un examen détaillé des complexités tem-
porelles dans le pire cas est également effectué. Ensuite, nous utilisons un lemme de
Bessière et al. [Bes+11] afin de renforcer le filtrage de la contrainte allDiffPrec.
Nous démontrons que ce nouvel algorithme de filtrage applique la cohérence de bornes
(bounds(Z) consistency en anglais) ou la range consistency en fonction des valeurs sur
lesquelles il est appliqué (bornes uniquement ou tout le domaine). Ce nouvel algo-
rithme est également capable de détecter des valeurs incohérentes mais cohérentes aux
bornes, en tenant compte des trous dans les domaines. Nous étendons également la
contrainte allDiffPrec à la contrainte GeneralizedAllDiffPrec, où les précé-
dences sont des variables. Nous démontrons que la cohérence aux bornes pour la
contrainte GeneralizedAllDiffPrec peut être effectuée en O(n3), et en O(n2) le
long d’une branche de l’arbre de recherche.

Dans le Chapitre 5, nous discutons des détails d’implémentation de chaque algo-
rithme de filtrage présenté dans le Chapitre 4. Une attention toute particulière est
apportée à l’implémentation des structures de données ainsi qu’à l’organisation globale
du code dans le propagateur, notamment vis-à-vis des potentiels filtrages préalables
nécessaires, pour accélérer la vitesse d’exécution du propagateur. Enfin, nous présen-
tons un protocole expérimental pour comparer les capacités de résolution de chaque
implémentation de la contrainte allDiffPrec. Nous montrons que, chaque fois que
les domaines sont des intervalles, il faut utiliser l’algorithme de filtrage de Bessière et
al. [Bes+11] (voir Algorithme 4.5), alors qu’il faudrait utiliser notre nouvel algorithme
de filtrage chaque fois que les domaines sont des ensembles (et peuvent donc contenir
des trous).

Introduction d’algorithmes de liste ordonnée en PPC

Dans cette seconde partie, nous explorons l’idée d’utiliser des algorithmes de liste
ordonnée en programmation par contraintes. Nous introduisons d’abord dans le
Chapitre 6 la contrainte Order, pour laquelle nous donnons un schéma de filtrage de
base utilisant des variables de permutation. L’idée sous-jacente est d’introduire dans
les solveurs de contraintes le raisonnement derrière les algorithmes de liste ordonnée
et d’explorer l’espace de recherche composé de l’ensemble de toutes les permutations.
Nous discutons de l’intérêt de cette nouvelle contrainte, qui repose principalement sur
une réduction de la taille de l’espace de recherche. Il faut donc déterminer si une
telle réduction peut effectivement conduire à une plus grande efficacité de résolution,
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c’est-à-dire à chaque fois que l’ensemble de toutes les permutations est plus petit que
l’espace de recherche sur les variables de décision du modèle de base. Par exemple,
pour le RCPSP, la taille de l’espace de recherche pour le modèle de base est Horn. Par
conséquent, l’utilisation de la contrainte Order peut devenir intéressante chaque fois
que Horn > n!. Notons que le filtrage assez "faible" sur les variables de permutation
peut entraîner une résolution moins efficace.

Ensuite, nous montrons dans le Chapitre 7 comment utiliser une spécification
de la contrainte Order pour résoudre le problème d’ordonnancement de machines
parallèles avec des ressources unitaires supplémentaires (PMSPAUR pour Parallel
Machine Scheduling Problem with Additional Unit Resources en anglais), qui était le
premier problème pour lequel nous avons utilisé l’idée d’algorithme de liste ordonnée
en PPC. Nous donnons également des règles de coupe spécifiques au PMSPAUR. Nous
montrons expérimentalement sur des instances aléatoires que les règles de coupe ainsi
que l’application de la contrainte Order pour le PMSPAUR augmentent toutes les
deux les performances de résolution, conduisant à un plus grand nombre de preuves
d’optimalité et à de meilleurs résultats en moyenne pour les modèles basés sur la
spécification de la contrainte Order.

Dans le Chapitre 8, nous montrons comment appliquer la contrainte Order pour
le célèbre problème de gestion de projet à contraintes de ressources (RCPSP, pour
Resource-Constrained Project Scheduling Problem en anglais) : nous introduisons
la contrainte leftShifted comme une spécification de la contrainte Order pour
un ensemble de contraintes cumulative et de contraintes de précédence de type
fin-avant-début. Nous montrons expérimentalement que cette approche conduit à
d’excellents résultats grâce à la règle de cassage de symétrie qu’elle permet. Le
modèle amélioré pour le RCPSP a également été l’occasion d’utiliser la contrainte
GeneralizedAllDiffPrec.

Enfin, dans le Chapitre 9, nous présentons un algorithme de liste ordonnée pour
le problème de planification de tâches unitaires sur machines parallèles avec temps de
communication unitaires (UET-UCT, pour Unit Execution Time-Unit Communica-
tion Time en anglais) avec duplication, basé sur la notion de D-chemin [MH97]. Cet
algorithme est bien entendu très similaire à celui de Munier et Hanen [MH97] et à
l’algorithme de liste présenté par Pinedo [Pin12] pour l’UET-UCT sans duplication.
Cet algorithme de liste ordonnée est ensuite intégré dans un propagateur en tant que
spécification de la contrainte Order pour l’UET-UCT avec duplication. Nous mon-
trons également comment améliorer la force de filtrage sur les variables d’affectation
pour le modèle classique ainsi que notre nouveau modèle, pour lequel nous améliorons
également le filtrage global en prenant en compte le filtrage effectué par d’autres
contraintes sur les variables d’affectation. Ce modèle amélioré est comparé expéri-
mentalement à une version similaire utilisant également la contrainte Order. Nous
montrons que le modèle basé sur la contrainte Order fait plus de preuves d’optimalité
en moyenne, mais les résultats expérimentaux sont plus mitigés pour ce problème que
pour les deux problèmes précédents, comme nous le verrons dans la section suivante.

Conclusion

Les résultats expérimentaux sur le modèle décrit dans la Figure 8.1 montrent qu’un fil-
trage supplémentaire pour les contraintes allDiffPrec ou
GeneralizedAllDiffPrec n’est pas toujours bénéfique. En effet, il semble que les
quelques filtrages supplémentaires offerts par les implémentations BessiereEtAl et
GodetBC ne valent pas la réduction de vitesse d’exécution en raison de complexités
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plus élevées. La version décomposée de la contrainte GeneralizedAllDiffPrec,
étant beaucoup plus rapide à exécuter, donne les meilleurs résultats globaux grâce à
sa vitesse et au fort impact de l’instanciation de la variable de permutation actuelle
sur la phase de propagation. Par conséquent, il convient de faire attention lors de
l’utilisation des contraintes allDiffPrec ou GeneralizedAllDiffPrec à sélec-
tionner l’implémentation appropriée compte tenu des circonstances.

En ce qui concerne la contrainte Order et ses spécifications pour des prob-
lèmes donnés, les limites sont doubles. Premièrement, les développements de code
induits pourraient malheureusement ne pas être généralisés ou réutilisés pour ré-
soudre d’autres problèmes. Malgré la possibilité de grandes performances en pratique,
l’utilisation de la contrainte Order repose également sur l’expertise des utilisateurs
sur les solveurs de contraintes, ce qui pourrait décourager une utilisation plus large
de la contrainte Order pour résoudre des problèmes avec la programmation par con-
traintes. Les spécifications de la contrainte pour le problème traité étant codées "en
dur", la contrainte Order ne peut pas vraiment être utilisée dans des langages tels
que MiniZinc [Net+07] ou XCSP3 [Aud+20]. Le besoin d’expertise en solveurs de
contraintes pour implémenter une spécification de la contrainte Order reste le plus
dissuasif car les chercheurs et ingénieurs en recherche opérationnelle sont habitués à
adapter les méthodes existantes à leur problème.

D’un autre côté, tous les problèmes ne sont pas résolus efficacement en utilisant une
spécification de la contrainte Order. En effet, le cas de l’UET-UCT avec duplication
est un bel exemple : les résultats expérimentaux sont assez similaires entre le modèle
classique et notre nouveau modèle, ce nouveau modèle basé sur la contrainte Order
étant tout de même meilleur pour trouver de meilleures solutions ou faire des preuves
d’optimalité. De même, pour le RCPSP, l’application de la contrainte Order n’a pas
été aussi efficace que dans le cas du PMSPAUR. Cela montre que tous les problèmes
n’ont pas le même potentiel pour être résolus efficacement en utilisant la contrainte
Order, en fonction de l’efficacité à filtrer les variables de permutation ainsi que de
la réduction de la taille de l’espace de recherche offerte par l’approche.

Les perspectives de recherches ultérieures sur les contraintes allDiffPrec et
GeneralizedAllDiffPrec sont multiples. Premièrement, les expériences sur la
contrainte allDiffPrec seule se sont avérées concluantes sur l’efficacité de notre
nouvelle règle de filtrage lorsque les domaines ne sont pas des intervalles. Pour le
problème de planification d’examens, qui serait exactement modélisé avec une sim-
ple contrainte allDiffPrec, on peut conclure à l’efficacité de la nouvelle règle de
filtrage dans un tel cas. Cependant, comme nous l’avons vu au Chapitre 8, où nous
avons utilisé une contrainte GeneralizedAllDiffPrec dans le modèle avancé pour
le RCPSP, les résultats expérimentaux montrent que la version décomposée de la
contrainte est la plus efficace dans ce cas particulier. Bien sûr, cela est également
dû à l’heuristique de recherche. Par conséquent, des recherches supplémentaires de-
vraient être menées sur l’interaction des différents algorithmes de filtrage pour la
contrainte allDiffPrec avec d’autres propagateurs, avec une étude complémentaire
sur l’interaction avec l’heuristique de recherche.

Rappelons que dans la plupart des cas, l’algorithme de filtrage de Bessière et al.
[Bes+11] (Algorithm 4.5) est aussi efficace que notre nouvelle règle de filtrage et est
plus rapide : les résultats expérimentaux sur le temps médian pour faire la preuve
le montrent. Par conséquent, une autre piste de recherche serait une étude statis-
tique sur le comportement des deux règles de filtrage (BessiereEtAl, GodetBC
et GodetRC). En effet, comme dans [Boi+13] pour la contrainte allDifferent, il
pourrait être pertinent d’avoir un bon estimateur du moment où notre nouvelle règle
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de filtrage serait utile par rapport à la cohérence des bornes effectuée par l’algorithme
de Bessière et al. [Bes+11]. Si un tel estimateur existait, alors nous pourrions at-
teindre un meilleur compromis global entre la vitesse d’exécution et la force de filtrage.

Les pistes pour des recherches plus poussées sur la contrainte Order sont légion.
Il existe de nombreux algorithmes itératifs de construction de solutions pour les CSP et
COP, dont une grande source peut être trouvée dans les algorithmes d’approximation
[Vaz03], et donc il y a autant de cas d’utilisation pour la contrainte Order en PPC.
Il faut veiller à ce qu’il soit garanti qu’au moins une solution optimale puisse être
construite par un tel algorithme. Nous avons donné plusieurs applications pour des
problèmes d’ordonnancement, mais d’autres types de problèmes pourraient également
être de bons cas d’application, tels que les problèmes de packing, car ils sont similaires
aux problèmes d’ordonnancement à bien des égards. Par exemple, le problème de
Bin Packing unidimensionnel [EC71] pourrait être un cas d’application, en utilisant
l’algorithme First-Fit [EC71; GGU72]. En effet, il existe un packing optimal qui peut
être construit avec l’algorithme First-Fit lorsque les éléments sont donnés dans le
bon ordre au sein de la liste donnée en paramètre à l’algorithme First-Fit. Il n’est
pas impensable que d’autres types de problèmes puissent également être de bons cas
d’application de la contrainte Order, tant qu’il existe un algorithme de liste ordonnée
qui peut construire une solution optimale.

Comme indiqué pour le RCPSP (Chapitre 8), l’utilisation de variables de permu-
tation avec une spécification de la contrainte Order peut ne pas être très efficace
seule, mais peut l’être avec des règles supplémentaires de coupe ou de cassage de
symétrie. Par exemple, pour le RCPSP, imposer que les tâches soient triées par heure
croissante de début dans la permutation donne d’excellents résultats. On peut noter
qu’une telle règle de cassage de symétrie n’est pas applicable sur le modèle de base
CP (Figure 3.1). C’est une autre façon d’utiliser la contrainte Order et d’améliorer
les performances de résolution globales. Les variables de permutation sont des vari-
ables supplémentaires, c’est-à-dire non indispensables pour modéliser le problème,
et sont en tant que telles des possibilités supplémentaires de cassage de symétrie et
d’heuristiques de recherche dédiées, plus particulièrement parce que, dans le cas de la
contrainte Order, les variables de permutation décident entièrement le problème (ce
sont des variables de décision).

Fait intéressant, ce n’est pas le premier cas d’applications à des problèmes
d’ordonnancement. L’idée de rechercher une liste au lieu de rechercher directement
le planning optimal a été explorée pour la première fois par Zhou pour le Job Shop
Scheduling Problem (JSSP) [Zho97]. Notons que l’application de la contrainte Order
pour le RCPSP (voir Chapitre 8) a également été directement testée sur le JSSP, car
le RCPSP est une généralisation du JSSP. L’approche développée par Zhou montre de
meilleurs résultats pour le JSSP. A ce titre, d’autres recherches devraient consister à
implémenter l’approche de Zhou. Cela conduirait à une comparaison équitable sur le
même solveur, et une meilleure compréhension de l’approche de Zhou pourrait donner
des idées pour améliorer le modèle utilisant la contrainte Order pour le RCPSP. De
manière similaire, le fait de ne rechercher que des plannings left-shifted a également
déjà été mentionné pour le RCPSP par Chu et Stuckey [CS15], leur implémentation
étant basée sur une contrainte element. Notons également que Zinder et al. [Zin+10]
ont développé un algorithme par séparation et évaluation (branch and bound algorithm
en anglais) dédié dans le cas de l’UET-UCT sans duplication qui recherche une liste
optimale pour l’algorithme de liste [Pin12]. Des recherches supplémentaires devraient
également consister à comparer nos résultats sur l’UET-UCT sans duplication à ceux
de Zinder et al. [Zin+10] pour voir comment notre approche générique se comporte
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par rapport à des méthodes spécifiques.
Enfin, une autre piste pour de recherches plus poussées sur la contrainte Order

peut être trouvée dans les explications [Jus03]. En effet, les explications de la con-
trainte cumulative [Sch+09; Sch+11; SFS13] se sont avérées très efficaces pour ré-
soudre les problèmes d’ordonnancement. Comme le filtrage sur d’autres variables de
permutation que la variable actuelle est assez faible, voire inexistant, les explications
pourraient être d’une grande aide pour filtrer d’autres variables de permutation que la
variable actuelle, et différemment qu’à travers la contrainte allDifferent (ou bien
allDiffPrec ou GeneralizedAllDiffPrec chaque fois que de telles contraintes
peuvent être utiles).

La méthodologie développée pour la contrainte Order et ses spécifications pour
résoudre différents problèmes rappelle que l’expressivité de la programmation par con-
traintes permet d’implémenter des techniques de résolution dédiées au sein des solveurs
de contraintes.

En guise de conclusion, nous souhaitons attirer l’attention du lecteur sur
l’hybridation de la programmation par contraintes avec d’autres techniques de réso-
lution. En effet, la permissivité et l’expressivité de la programmation par contraintes
permettent l’introduction de telles techniques au sein de propagateurs, permettant à
la PPC de bénéficier de l’efficacité de telles techniques. Cela a conduit à de grandes
réussites par le passé, comme avec les explications [Jus03] qui est une technique is-
sue des solveurs SAT, ou avec la décomposition de Benders [Hoo07], ou bien avec les
littéraux d’observation (watch litterals en anglais) [GJM06; Gen13] qui est un autre
technique issue des solveurs SAT. Il semble donc être une bonne idée de s’inspirer des
techniques de résolution issues d’autres domaines et outils d’optimisation combinatoire
pour améliorer l’efficacité pratique des solveurs de contraintes.




	Acknowledgements
	Introduction
	I State of the art
	Complexity and Graph Theory
	Basic notions of Complexity Theory
	The Bachmann-Landau notation
	On computability and decidability
	Analysis of algorithms
	On complexity classes

	Basic notions of Graph Theory
	Introduction to Graph Theory with the problem of the seven bridges of Königsberg
	Matching theory


	Constraint Programming
	A flexible modelling paradigm
	Basic notions and notations
	An example : The N-queens problem
	Finding a solution

	Propagation and consistencies
	Generalised Arc Consistency
	Fastening the propagation process with weaker consistencies
	Fastening the propagation process with fewer calls to the filtering algorithms
	Global constraints
	Solver design : improving the propagation

	Solving process
	Generic search scheme
	Focus on variable- and value-selection heuristics


	Solving scheduling problems with Constraint Programming
	Scheduling problems
	Notations for scheduling problems
	Characterising scheduling problems: Graham notation

	Modelling resources in Constraint Programming: a focus on the disjunctive and cumulative constraints
	Example of scheduling problems
	Resource-constrained Project Scheduling Problem (RCPSP)
	Parallel Machine Scheduling Problem with Additional Unit Resources (PMSPAUR)
	Unit Execution Time-Unit Communication Time (UET-UCT)



	II Managing the allDifferent constraint with precedence
	The allDiffPrec constraint and its generalisation
	Definition
	General scheme for BC(Z) and RC filtering
	GreedyBC and GreedyRC : Greedy bound support filtering schemes
	Description
	Complexity and prerequisites

	BessiereEtAl : Bessiere et al. filtering scheme
	Description
	Fixing faulty behaviours of the algorithm
	Complexity and prerequisites
	Similar algorithm to prune upper bounds
	Discussion on filtering lower bounds

	GodetBC and GodetRC : Better filtering when holes are authorised in domains
	Arc-inconsistent but range-consistent values for the allDiffPrec constraint
	Improving the filtering strength for the allDiffPrec constraint
	Complexity and prerequisites
	Weaker filtering than GAC

	Non-idempotency of each filtering scheme
	Comparison of filtering strength and prerequisites of algorithms
	The GeneralizedAllDiffPrec constraint
	Conclusion and future works

	Implementing the allDiffPrec constraint in a constraint solver
	Implementation Schema
	Propagator structure
	Implementation details for GreedyBC and GreedyRC
	Implementation details for BessiereEtAl
	Implementation details for GodetBC and GodetRC

	Experiments
	Experimental protocol
	Model for comparison
	Instance generation
	Execution environment

	Experimental results

	Conclusion


	III Ordering variables to improve scheduling problem solving
	The generic Order constraint
	Generic principle behind ordering variables
	The Order constraint: a constraint implementing list ordering reasoning

	Application to the PMSPAUR
	Additional notations
	Existence of a list ordering algorithm building optimal solutions
	Cutting rules for the PMSPAUR
	Implementation of the filtering and cutting rules in a new model for the PMSPAUR
	EnqueueCstr
	Forward Channelling
	Backward Channelling

	Dominance rule using MaxLoad

	Experiments
	Experimental protocol
	Experimental results

	Conclusion

	Application to the RCPSP
	The leftShifted constraint
	Defining the leftShifted constraint from the Order constraint
	Implementation for precedence constraints
	Implementation for cumulative constraints
	Complexity to compute the minimum accepted value for a start variable for precedence and cumulative constraints

	Using the leftShifted constraint to solve the RCPSP
	Experiments
	Experimental protocol
	Experimental results

	Conclusion

	Application to the UET-UCT
	Additional constraints to help filtering on assignment variables
	Applying Order to the UET-UCT
	D-path and list ordering algorithm for the duplication UET-UCT
	Specialisation of the Order constraint for the duplication UET-UCT

	Experiments
	Experimental protocol
	Experimental results

	Conclusion


	Conclusion
	Bibliography
	Résumé long

