Keywords: Anomaly Detection, Time Series, Multivariate, Deep Learning, Unsupervised

Anomaly detection in multivariate time series is a major issue in many fields. The growing complexity of systems and the explosion of the quantity of data have made its automation essential. Methods based on Deep Learning have shown good results in terms of detection but do not meet the industrial requirements due to their long training and limited robustness. To meet the industrial needs, this thesis proposes a new unsupervised method for anomaly detection in multivariate time series called USAD based on an auto-encoder architecture and adversarial training. This method meets the requirements of robustness and speed of training of the industrial world while achieving state-of-the-art performance in terms of detection. However, deep neural network methods suffer from a limitation in their ability to extract features from the data since they only rely on local information. Thus, in order to improve the performance of these methods, this thesis presents a feature engineering strategy that introduces non-local information. This strategy increases the performance of neural network based approaches without increasing the training time. Given the good performance of deep learning methods for anomaly detection in multivariate time series in recent years, researchers have neglected all other methods in their benchmark, causing the complexity of the proposed methods to explode in the current publication. This lack of comparison with more conventional methods in the literature does not allow to assert that the progress reported in the benchmarks is not illusory and that this increasing complexity is necessary. To address this issue, this thesis proposes a comparison of sixteen methods for anomaly detection in multivariate time series grouped into three categories: Conventional methods, machine-learning methods and approaches based on deep neural networks. This study shows that there is no evidence that deep neural networks are a necessity to address this problem.

Résumé

La détection d'anomalie dans les séries temporelles multivariées est un enjeu majeur dans de nombreux domaines. La complexité croissante des systèmes et l'explosion de la quantité de données ont rendu son automatisation indispensable. Les méthodes basées sur le Deep Learning ont montré de bons résultats en termes de détection mais ne répondent pas aux besoins industriels en raison de leur long apprentissage et de leur robustesse limitée. Pour répondre aux besoins industriels, cette thèse propose une nouvelle méthode non supervisée de détection d'anomalies dans les séries temporelles multivariées appelée USAD basée sur une architecture d'auto-encodeur et un entraînement adversaire. Cette méthode répond aux exigences de robustesse et de rapidité d'apprentissage du monde industriel tout en atteignant des performances de pointe en termes de détection. Cependant, les méthodes de réseaux de neurones profonds souffrent d'une limitation dans leur capacité à extraire des caractéristiques des données puisqu'elles ne s'appuient que sur des informations locales. Ainsi, afin d'améliorer les performances de ces méthodes, cette thèse présente une stratégie d'ingénierie des caractéristiques qui introduit des informations non-locales. Cette stratégie permet d'augmenter les performances des approches basées sur les réseaux de neurones sans augmenter le temps d'apprentissage. Compte tenu de la bonne performance des méthodes d'apprentissage profond pour la détection d'anomalies dans les séries temporelles multivariées ces dernières années, les chercheurs ont négligé toutes les autres méthodes dans leur benchmark, ce qui a provoqué l'explosion de la complexité des méthodes proposées dans les publications actuelles. Ce manque de comparaison avec des méthodes plus conventionnelles dans la littérature ne permet pas d'affirmer que les progrès rapportés dans les benchmarks ne sont pas illusoires et que cette complexité croissante est nécessaire. Pour répondre à cette problématique, cette thèse propose une comparaison de seize méthodes de détection d'anomalies dans les séries temporelles multivariées regroupées en trois catégories : Les méthodes conventionnelles, les méthodes d'apprentissage automatique et les approches basées sur les réseaux neuronaux profonds. Cette étude montre que rien ne prouve que les réseaux de neurones profonds soient une nécessité pour résoudre ce problème.

Mots-clés: Détection d'anomalies, séries temporelles, multivariées, univariées, apprentissage profond, non supervisé. 
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Context and Motivations

Time series and their analysis are becoming increasingly important due to the massive production of these data. Time series are used in a large number of fields such as industrial control systems [START_REF] Audibert | USAD: UnSupervised Anomaly Detection on Multivariate Time Series[END_REF], finance [START_REF] Panayiotis | Predicting Shifts in the Mean of a Multivariate Time Series Process: An Application in Predicting Business Failures[END_REF], and healthcare [START_REF]From Univariate to Multivariate Time Series Anomaly Detection with Non-Local Information[END_REF]. Time series analysis consists in extracting information from points arranged in a chronological order, i.e. the time series, and it can serve multiple purposes. The most common is to observe the history of a variable in order to make a forecast. This involves predicting future values of such variable based on previously observed values of it. Another common objective is to discover correlations between time series. This allows to understand the interactions between different variables in a system. Many other objectives explain the popularity of time series analysis such as the search for trends, cycles, seasonal variations or the detection of unusual behavior.

Detecting unexpected behaviors or patterns that do not conform to the expected behavior is an active research discipline called anomaly detection in time series [START_REF]Are Deep Neural Networks Methods Needed for Anomaly Detection on Multivariate Time Series? References[END_REF].

Anomaly detection is an important field. It consists in detecting rare events or, more generally, observations that are aberrant and different from the majority of data. These rare events can be of various types and they are present in multiple and different domains (fraudulent financial transactions, medical problems or network intrusions). Detecting these rare events is a major issue for many fields. For example, detecting bank transaction fraud could save 32 billion dollars worldwide by 2020 [START_REF][END_REF].

It is therefore essential for the industry to be able to detect anomalies in their system.

Introduction

This thesis focuses the critical task of anomaly detection. Specifically, it focuses on a subset of time series anomaly detection methods, which is unsupervised detection. Unlike supervised detection, unsupervised detection methods do not require a label associated to the data samples. The objective is then to detect behavior that would be different from previously observed data [7]. Finally, this thesis focuses on multivariate time series, since it is the most generic context as the univariate time series are only a special case of the multivariate context with m = 1 as presented in the section 2.1.1.

Over the last decade, there has been an increased enthusiasm around deep neural networks (DNNs) [START_REF] Lecun | Deep learning[END_REF] thanks to their demonstrated ability to infer high-order correlations in complex data with potentially large volume and dimensionality [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] He | Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[END_REF].

Anomaly detection in time series has not escaped this trend. DNN-based methods aim to learn deep latent representations of the multivariate time series to infer a model of variability, that is then used for anomaly grading in unseen data. The rationale behind the increased use of DNN architectures lies in the need of learning potentially complex data patterns underlying the temporal evolution of multivariate data. Thus, many approaches have emerged, mainly based on recurrent neural networks to capture temporal information [START_REF] Park | A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder[END_REF][START_REF] Li | MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks[END_REF][START_REF] Su | Robust anomaly detection for multivariate time series through stochastic recurrent neural network[END_REF]. However, these methods obtain good results at the expense of their training speed. Indeed, none of these methods takes into account the training time in their performance criteria. This is why it is necessary to develop methods with performances equivalent to the state of the art in terms of anomaly detection, while favoring architectures that allow fast and energy-efficient training.

As with any machine learning method, the performance of deep learning methods is correlated to the quality of the extracted features [14]. Feature engineering for augmenting time series data is usually done by bringing external but correlated information as an extra variate to the time series. This, however, requires domain knowledge about the measured process. Another strategy for machine learning methods is to create local features on the time series, such as moving averages or local maximum and minimum. Both strategies, as they are manual, are not very efficient, time consuming and require high domain knowledge expertise [START_REF] Chalapathy | Deep learning for anomaly detection: A survey[END_REF]. In theory, DNNs have emerged as a promising alternative given their demonstrated capacity to automatically learn local features, thus addressing the limitations of more conventional statistical and machine learning methods. Despite their demonstrated power to learn such local features, it has been shown that feature engineering can accelerate
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and improve the learning performance of DNNs [START_REF] Carta | A Local Feature Engineering Strategy to Improve Network Anomaly Detection[END_REF] and an intrinsic limitation of DNN-learned features is that they rely solely on local information. However, there is currently no well established method in the literature that addresses this issue for time series.

As a result of the good performance demonstrated by DNNs in multiple fields [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] He | Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[END_REF]17,18], in recent years there has been a boom of DNN-based methods for multivariate time series anomaly detection (Table 1.1). These works, however, have moved away from comparisons with more traditional methods, i.e. machine learning [START_REF] Hodge | A survey of outlier detection methodologies[END_REF] and conventional/statistical methods (e.g. [START_REF] Zong | Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[END_REF][START_REF] Audibert | USAD: UnSupervised Anomaly Detection on Multivariate Time Series[END_REF][START_REF] Su | Robust anomaly detection for multivariate time series through stochastic recurrent neural network[END_REF]) while suggesting methodological advances and improved performance of DNN-based methods. This trend has encouraged the community to develop even more complex models to improve the performance of DNN-based methods, without any theoretical or empirical evidence that these are superior to the more established body of methods in the literature. DNN-based models are complex to train, involving the estimation of a large amount of parameters and requiring large training sample sizes and computational resources. Moreover, their complexity continues to grow as larger models continue to be developed. Instead, conventional models are simpler, lighter, easier to interpret, and often better adapted to the constraints of real-world applications. It is therefore crucial to determine if the complexity brought in by DNN-based methods is a necessary price to pay for a gain in performance or if the progress reported in recent years is illusory [20] and the use of conventional methods should be preferred.

The lack of a general comparison covering all families of methods does not allow to answer this question and hinders the translation and use of DNN-based methods in real-world applications. A complete benchmark of such characteristics is currently missing in the literature. [START_REF] Xu | Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications[END_REF] Variational Autoencoder Private Bagel [START_REF] Li | Robust and Unsupervised KPI Anomaly Detection Based on Conditional Variational Autoencoder[END_REF] Conditional Variational Autoencoder Private RGAN [START_REF] Lüer | Anomaly Detection in Time Series using Generative Adversarial Networks[END_REF] Recurrent Generative Adversarial Networks MIT-BIH OmniAnomaly [START_REF] Su | Robust anomaly detection for multivariate time series through stochastic recurrent neural network[END_REF] Gated Recurrent Unit and Variational Autoencoder MSL, SMAP, SMD, SWaT, WADI BeatGAN [START_REF] Zhou | BeatGAN: Anomalous Rhythm Detection using Adversarially Generated Time Series[END_REF] Autoencoder and Generative Adversarial Network CMU Motion Capture MAD-GAN [START_REF] Li | MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks[END_REF] Generative Adversarial Networks SWaT , WADI, KDDCUP99 LSTM-VAE [START_REF] Park | A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder[END_REF] LSTM-Variationnal Autoencoder MSL, SMAP, SMD, SWaT, WADI DeepAnT [START_REF] Munir | DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection in Time Series[END_REF] Convolutional neural network Yahoo Webscope MTS-DCGAN [START_REF] Liang | Robust unsupervised anomaly detection via multi-time scale DCGANs with forgetting mechanism for industrial multivariate time series[END_REF] Deep Convolutional Generative Adversarial Network Genesis D., Satellite, Shuttle, Gamma P. USAD [START_REF] Audibert | USAD: UnSupervised Anomaly Detection on Multivariate Time Series[END_REF] Adversely trained Autoencoders MSL, SMAP, SMD, SWaT, WADI FuseAD [START_REF] Munir | FuseAD: Unsupervised Anomaly Detection in Streaming Sensors Data by Fusing Statistical and Deep Learning Models[END_REF] ARIMA and Convolutional neural network Yahoo Webscope, NAB Telemanom [START_REF] Hundman | Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding[END_REF] Vanilla LSTMs SMAP , MSL RADM [START_REF] Ding | Multivariate-Time-Series-Driven Real-time Anomaly Detection Based on Bayesian Network[END_REF] Hierarchical Temporal Memory and Bayesian Network NAB DAGMM [START_REF] Zong | Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[END_REF] Deep Autoencoding Gaussian Mixture Model MSL, SMAP, SMD, SWaT, WADI MTAD-TF [START_REF] He | MTAD-TF: Multivariate Time Series Anomaly Detection Using the Combination of Temporal Pattern and Feature Pattern[END_REF] Convolutional and Graph Attention Network MSL, SMAP, SMD 

Introduction

Structure of thesis

The content of the following chapters is summarized in this section.

• Chapter 2 is divided into two main parts. The first one presents the time series and their characteristics. The second part is dedicated to the anomaly detection in time series and presents a state of the art of the methods classified in three main categories: Conventional, Machine-Learning and Deep-Learning methods.

• Chapter 3 introduces a unsupervised anomaly detection method on multivariate time series composed of an adversely trained auto-encoders architecture and shows the performance of the method on five real-world open datasets as well as on Orange's proprietary data.

• Chapter 4 presents a feature engineering strategy that transforms univariate time series into multivariate ones by introducing non-local information and shows that this strategy addresses a limitation of Deep Neural Networks, and demonstrates that the combination outperforms each method individually without increasing computational time.
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• Chapter 5 questions the need for ever more complex methods based mainly on Deep Neural Networks for anomaly detection in multivariate time series and proposes a study on sixteen methods belonging to the three categories presented in chapter 2.The performance analysis shows that none of the three categories outperform the others. And is discussed the possible performance illusion of Deep Neural Networks based methods in multivariate time series anomaly detection benchmarks.

• Finally, Chapter 6 summarizes the main contributions presented in this work and present some thoughts on the possible continuation of this research.

Publications

This thesis is based on research that has led to the publication of articles. Portions of the contents that appear in this dissertation have been published before in: 

Challenge participation

Part of the methods developed in this thesis participated in the KDDCUP2021, on the challenge "Multi-dataset Time Series Anomaly Detection". The participating method obtained the 16th place over 565 participants.

Chapter 2

Anomaly detection in time-series This chapter presents in a first part what are time series and their characteristics. Then in a second part, the problem of anomaly detection in time series is formalized, followed by a description of the different methods to solve this problem.

Anomaly detection in time-series

Time Series

A time series is defined as a sequence of ordered continuous values, which represents the evolution of a numerical variable over time. It is the measurement of a system evolving in time with numerical attributes: for example, the temperature of a computer server, the value of a company's stock or the electrical activity of the heart (ECG). A time series is, therefore, any sequence of observations indexed by time. A time series carries a lot of information about the measured system. This information can be used to ensure the proper functioning of the system.

Univariate vs Multivariate

A univariate time series is a set of measured values that model and represent the behavior of a process over time. A multivariate time series is a set of measurements correlated with each other over time, which models and represents the behavior of a multivariate process in time.

More formally, a univariate time series is a sequence of data points T = {x 1 , . . . , x T }, each one being an observation of a process measured at a specific time t. Univariate time series contain a single variable at each time instant, while multivariate time series record more than one variable at a time; Multivariate time series are denoted by T = {x 1 , . . . , x T }, x ∈ R m .

Decomposition of a time series

A time series (T) is considered to be the result of different fundamental components:

Trend, seasonality, level and noise.

Trend

The trend (Z t ) represents the long-term evolution of the series studied. It reflects the "average" behavior of the series. For example, the series shown in Figure 2.1 shows an increasing trend from zero to 2000 and a decreasing trend from 2000 to 4000. 
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Seasonality

Seasonal compounding or seasonality corresponds to a phenomenon that repeats itself at regular time intervals (periodicity). For example, the Figure 2.2 shows an annual seasonality. We can see four periods between 2013 and 2017.

Level

The level of a time series corresponds to the mean of the time series. If a time series has a trend, then its level changes.

Noise

The residual component or noise corresponds to irregular fluctuations, generally of low intensity but of a random nature. For example, the Figure 2.3 shows a time series (top), then its decomposition, i.e. the time series without noise (middle) and the noise (bottom)
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Stationarity

The notion of stationarity characterizes the capacity of a process to decorrelate itself completely from the temporal index. The time series T is said to be stationary at low order, or stationary at second order if the first (mean) and second (variance and autocovariance) moments of the process exist and are independent of t.

Stationarity is a property of stability, the distribution of {x 1 , . . . , x t } is identical to the distribution of {x 2 , . . . , x t+1 }. The series oscillates around its mean with a constant variance. The link between x t and x t-k then depends only on the interval k and not on the date t.

Anomaly Detection

An anomaly can be defined as an observation that is unexpected with respect to a set of other pre-established observations considered as normal. More formally, in a set D containing n observations noted x i , then x p ∈ A will be considered as abnormal if it differs, by its characteristics, from the other observations, i.e. from those contained in the set A \ {x p }. The definition of the term anomaly is specific
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to the use case. The most common one in the field of detection is an observation which is different from the others by its singularity: it could result from a set of rules which are different from the other observations [START_REF] Douglas | Identification of outliers[END_REF] Anomalies in time series, also called outliers, are points or sequences of points that do not correspond to normal behavior [START_REF] Chandola | Anomaly detection: A survey[END_REF]. The concept of normal behaviour is difficult to formalize. Therefore, another possible definition for anomalies could be a pattern in data that is not expected in comparison to what has been seen before [START_REF] Chandola | Anomaly detection: A survey[END_REF].

In fact, an implicit assumption is that anomalies are rare events. Anomalies should not be confused with the noise present in the time series. Noise is a phenomenon which, unlike anomalies, has less interest in being analyzed.

However, anomalies may indicate a significant problem in several applications.

For example, an anomaly in industrial control systems may indicate a malfunction, financial anomalies may be the result of a fraud, or they may indicate diseases in healthcare. Being a critical task, there is a wide range of methods that have been developed to address it [START_REF] Blázquez-García | A Review on outlier/Anomaly Detection in Time Series Data[END_REF][START_REF] Domingues | A comparative evaluation of outlier detection algorithms: Experiments and analyses[END_REF].

Anomaly detection refers to the task of identifying an unseen observation xt , t > T , based on the fact that it differs significantly from T, thus assuming that T contains only normal points. The amount by which the unseen sample xt and the normal set T differ is measured by an anomaly score, which is then compared to a threshold to obtain an anomaly label.

Types of Anomalies in Time Series

Chandola et al. [START_REF] Chandola | Anomaly detection: A survey[END_REF] propose to classify time series anomalies into three types, point, contextual and collective anomalies.

• Point anomalies. This is the simplest type of anomaly. It corresponds to a point that differs from the rest of the data (Figure 2.4).

• Contextual anomalies. A contextual anomaly can be defined as follows : A data point is anomalous in a specific context, but is considered normal in another context, meaning that observing the same point through different contexts does not always give a sign of abnormal behavior. For example, a temperature of 30°C during summer is normal, while the same temperature in winter is abnormal. • Collective anomalies A collective anomaly corresponds to a group of anomaly points. Each individual point might not be an anomaly, but their appearance together is an anomaly (Figure 2.6).

Supervised vs Unsupervised method

Supervised learning consists of input variables x and an output variable Y . You use an algorithm to learn the mapping function f from the input to the output.

Y = f (x)
The goal is to learn the mapping function such that when you have new input data

x, you can predict the output variables Y for that data. Unsupervised learning involves having only input data x and no corresponding output variables. The goal of unsupervised learning is to model the underlying structure or distribution in the data in order to learn more about the data.

In supervised anomaly detection, if we want a model to be able to detect anomalies, it must characterize the system very precisely both in normal behavior and in the presence of anomalies. However, normal behaviors can be multiple, as well as behaviors in the presence of anomalies. The large number of system behaviors leads to the need to provide a large amount of labeled data to capture a maximum of 
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different behaviors both normal and abnormal. This is even more complicated as anomalies are rare events. Thus, the shorter the training dataset, the less anomalies it contains, which are precisely the elements we want to be able to discriminate efficiently.

Thus, unsupervised learning is perfectly adapted to the problem of anomaly detection since it is not necessary to label large data sets. Moreover, a part of the anomalies come from new behaviors of the system. By definition, these behaviors could not be correctly classified with supervised anomaly detection methods.

Taxonomy

The taxonomy consists of three classes of anomaly detection methods for multivariate time series. These are: conventional approaches, machine learning-based and DNN-based methods.

Conventional approaches, which are also referred to statistical methods by some authors [START_REF] Makridakis | Statistical and Machine Learning forecasting methods: Concerns and ways forward[END_REF], rely on the assumption that the observed data is generated by a stochastic model and their aim is to estimate a model's parameters from the data and then use the model for prediction [START_REF] Breiman | Statistical modeling: The two cultures[END_REF]. It is often the case that the model hypothesis is considered linear [START_REF] Makridakis | Statistical and Machine Learning forecasting methods: Concerns and ways forward[END_REF].

The boundary between conventional and machine learning-based approaches is not fully clear. Machine learning-based models produce predictions about the results of complex mechanisms by mining databases of inputs for a given problem, without necessarily having an explicit assumption about a model's hypothesis. In this setup, a method aims to learn a function that operates an input data to predict output responses [START_REF] Breiman | Statistical modeling: The two cultures[END_REF].

Finally, DNN-based methods are a subclass of non-linear machine learningbased methods which use neural networks with multiple layers [START_REF] Lecun | Deep learning[END_REF].

Conventional methods

The methods presented in this section offer many different approaches. They are classified into five categories. Control chart, where the objective is to monitor variations in the statistical characteristics of a process. Prediction methods, where the objective is to predict the next point. Decomposition techniques, based on the 2.2 Anomaly Detection search for unusual patterns in time series using decomposition and finally similaritysearch model based on the search for similar sub-sequences in the data.

Control Charts methods

Control charts are a statistical process control tool. Their goal is to track the mean and variance of a time series over time and to detect abrupt changes in its statistical behaviour. These methods are based on the use of Sequential Probability Ratio Tests (SPRT) [START_REF] Lowry | A review of multivariate control charts[END_REF]. Two methods are considered: Multivariate CUmulated SUMs control chart (MCUSUM) and Multivariate Exponential Weighted Moving Average (MEWMA).

In [START_REF] William | Multivariate CUSUM Quality-Control Procedures[END_REF], Woodall and Ncube proposed to monitor the performance of multiple variables in a manufacturing system using a control chart called Multivariate CUmulated SUMs control chart (MCUSUM). The MCUSUM uses the fact that the cumulative sum St of the recursive residuals of a statistic s compared to a normal value (like the mean) : St = s(x t-k+1 , . . . , x t ) is stable for normal data and increasing after the change. Using this property, the MCUSUM anomaly score g t is based on the comparison of the increase of S t with a threshold h:

g t = max(0, St -µ + g t-1 ) (2.1)
with g 0 = 0 and µ the value of St for normal data. MCUSUM iterates over g t as long as g t < h. If g t ≥ h, an alarm is raised and the iteration over g t is restarted with g 0 = 0 in order to detect another change point. Due to this sequential restarting of the test, MCUSUM detects small but persistent structural changes.

The Multivariate Exponential Weighted Moving Average (MEWMA) [START_REF] Lowry | A Multivariate Exponentially Weighted Moving Average Control Chart[END_REF] is based, as its name indicates, on the exponential smoothing of data. For a given constant λ ∈ [0, 1], the successive data are smoothed using:

g t = λx t + (1 -λ)g t-1 (2.2)
Unlike MCUSUM, MEWMA gives more importance to recent history values.

Forecast methods

Control Charts methods are usually based on the hypothesis that the individual data in the time-series are independent and identically distributed. This assumption is rarely satisfied in practice. A generic way to handle this issue is to built a 2. Anomaly detection in time-series mathematical model, incorporating the known or assumed sequential correlations of the time-series. Using this model, the value x t of the data indicator at t is expressed as x t = z t + e t , where z t is accounting for normal sequential correlations within the data and e t (the residual) is the noise. Once a mathematical model representing time-series evolution is chosen, a usual approach is to predict at time t the expected value xt+1 . The anomaly score can then be expressed as the difference between xt+1 and the actual value x t+1 .

The most commonly used forecast method in multivariate time series is the Vector Autoregressive (VAR) method. VAR is a statistical model that captures the inter-dependencies between several time series. In a VAR model, variables are treated symmetrically so that each variable is explained by its own past values and by the past values of the other variables. For example, in [START_REF] Pan | Using vector autoregressive residuals to monitor multivariate processes in the presence of serial correlation[END_REF], VAR is used to monitor multivariate processes or detect anomalies in aviation systems [START_REF] Melnyk | Vector Autoregressive Model-Based Anomaly Detection in Aviation Systems[END_REF].

Decomposition methods

Methods in this category use basis functions for decomposing the time series. Given

x t , a point of a multivariate time series, it can be expanded in terms of the eigenfunctions φ j [START_REF] Victor | Cramér-Karhunen-Loève representation and harmonic principal component analysis of functional time series[END_REF] as:

x t = ∞ j=1 α j φ jt , (2.3) 
where the coefficients α j are given by the projection of x t on the respective eigenfunctions.

Anomaly detection is then performed by computing the projection of each new point onto the eigenvectors, and a normalized reconstruction error. The normalized error is used as the anomaly score. Three methods are discussed under this subcategory: Principal Component Analysis (PCA), Singular Spectrum Analysis (SSA) and Independent Component Analysis (ICA).

Principal Component Analysis (PCA).

The idea of PCA [START_REF] Shyu | A Novel Anomaly Detection Scheme Based on Principal Component Classifier[END_REF] is to group datapoints into clusters defined as an ellipsoid in R m containing the normal data. The idea is that the length of the principal axes of the ellipsoid represents the direction of the variability of the data instances.

The (always positive) eigenvalues λ i with i = 1, . . . , k corresponding to the principal component v i characterize the variability in the dataset captured by the eigen-
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vector v i . A subspace S ⊂ R m is selected using the r eigenvectors v i corresponding the r largest eigenvalues.

In [START_REF] Jackson | Control Procedures for Residuals Associated with Principal Component Analysis[END_REF], the Q-statistic [START_REF] Jackson | Control Procedures for Residuals Associated With Principal Component Analysis[END_REF] that characterizes the PCA projection residual statistics is used to define the threshold h α , such that the anomaly score is:

| x t | > h α then x t is an anomaly with 1 -α confidence where α ∈ [0, 1] is a manually defined parameter.
Singular Spectrum Analysis (SSA) considers a time series as a projection of the trajectory of a dynamical system in a vector space V = R m where x t is the position at time t of a state of the system. From dynamical systems theory, it is known that physically observable states of a dynamical system in R m are lying on attractors of the dynamics (i.e. subsets of the R m capturing all the long term evolution of the system). Future observable states should normally continue to be located on these attractors. As such, xt are assumed to be located on (or close to) an attractor of the dynamics. So, the distance between xt and the attractor computed at time t is evaluated and used as anomaly score [START_REF] Dong | Exploration of Singular Spectrum Analysis for Online Anomaly Detection in CRNs[END_REF][START_REF] Golyandina | Singular Spectrum Analysis for Time Series[END_REF].

Independent Component Analysis (ICA) [START_REF] Zonglin | Multi-dimensional traffic anomaly detection based on ICA[END_REF] assumes that the different physical processes that generate multivariate time series are statistically independent of each other [START_REF] Baragona | Outliers Detection in Multivariate Time Series by Independent Component Analysis[END_REF].

ICA decomposes a multivariate time series into "independent" components by orthogonal rotation and by maximizing the statistical independence between the components assuming their non-Gaussianity. In [START_REF] Reza | Multivariate Outlier Detection Using Independent Component Analysis[END_REF], the authors use Kurtosis, a classical measure of non-Gaussianity, as an anomaly score. A negative Kurtosis indicates a uniformly distributed factor, indicating a clustered structure and a high positive Kurtosis identifies a multivariate anomaly.

Similarity-search approach

Similarity search methods [START_REF] Xia | Similarity search in time series data sets[END_REF] are designed to identify patterns in a multivariate time series. These methods compute the distance between all the sub-sequences of the time series. The minimum distance between a sub-sequence and all others is used as an anomaly score.

The Matrix-Profile (MP) [START_REF] Yeh | Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets[END_REF][START_REF] Yeh | Matrix profile vi: meaningful multidimensional motif discovery[END_REF] is a data structure for time series analysis. It consists of three elements. The first element is the distance profile, which is a vector
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of Euclidean distances between a given sub-sequence W and each sub-sequence in the set A of all sub-sequences of the multivariate time series. The distance is measured using the z-normalized Euclidean distance between sub-sequences. The distance profiles are arranged into a data structure denoted the distance matrix, which corresponds to the second element in MP. The distance matrix stacks together all the distance profiles that have been computed for each reference sub-sequence. Finally, the matrix profile is the simplification of the distance matrix by looking only at the closest neighbor for each sub-sequence. The vector obtained corresponds to the smallest values of each row in the matrix. It is defined as :

M P (i) = min(d(W i , W j )) (2.4) with W j ∈ A \ {W i }.
A low value in the matrix profile indicates that the sub-sequence has at least one relatively similar sub-sequence located somewhere in the original series. In [START_REF] Linardi | Matrix profile goes MAD: variable-length motif and discord discovery in data series[END_REF], it is shown that a high value indicates that the original series must have an abnormal sub-sequence. Therefore the matrix profile can be used as an anomaly score, with a high value indicating an anomaly.

Machine learning-based methods

The methods presented in this section fall into three categories : Isolation, Neighbourhoodbased and Domain-based methods, which have been proposed in the survey by Domingues et al. [START_REF] Domingues | A comparative evaluation of outlier detection algorithms: Experiments and analyses[END_REF]. Isolation algorithms consider a point as an anomaly when it is easy to isolate from others. Neighbourhood-based models look at the neighbourhood of each data point to identify outliers. Domain-based methods rely on the construction of a boundary separating the nominal data from the rest of the input space.

A common characteristic of machine learning-based techniques is that they typically model the dependency between a current time point and previous ones by transforming the multivariate time series T into a sequence of windows W = {W 1 , . . . , W T }, where W t is a time window of length K at a given time t :

W t = {x t-K+1 , . . . , x t-1 , x t }. (2.5) 
Figure 2.7 shows this process. In this setup, learning-based anomaly detection methods assign to a window W t , t > T , a label y t to indicate a detected anomaly at time t, i.e. y t = 1, or not (y t = 0) based on the window's anomaly score. This notation will be used in the following.
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Isolation methods

Isolation methods focus on separating outliers from the rest of the data points. These methods attempt to isolate the anomalies rather than mapping the normal points.

The Isolation Forest (IF) algorithm [START_REF] Fei | Isolation Forest[END_REF][START_REF] Qin | Hydrological Time Series Anomaly Pattern Detection based on Isolation Forest[END_REF] is based on decision trees, similarly to the Random Forest [START_REF] Breiman | Random forests[END_REF]. IF calculates, for each time window an anomaly score.

To calculate this score, the algorithm isolates the sample recursively: it chooses a feature and a "cut-off point" at random, then evaluates whether this isolates the sample; if so, the algorithm stops, otherwise, it chooses another feature and another cut-off point at random, and so on until the data is isolated from the rest.

Recursive data partitioning can be represented as a decision tree, and the number of cuts needed to isolate a sample simply corresponds to the path taken in the tree from the root to the leaf, representing the isolated sample. The path length defines the anomaly score: a sample with a very short path, i.e. sample that is easy to isolate, is also likely to be an anomaly since it is very far from the other samples in the dataset as can be seen in Figure 2.8. As with random forests, it is possible to do this independently by using several trees, to combine their results to improve performance. In this case, the anomaly score is the average of the path lengths on the different trees. 
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Neighbourhood-based methods

Among neighborhood-based methods, which study the neighborhoods of every point to identify anomalies, the Local Outlier Factor (LOF) [START_REF] Breunig | LOF: Identifying Density-Based Local Outliers[END_REF] measures the local deviation of a given data point with respect to its neighbours. Based on the K-nearest neighbors [START_REF] Ramaswamy | Efficient Algorithms for Mining Outliers from Large Data Sets[END_REF], the local density of an observation is evaluated by considering the closest K observations in its neighbourhood. The anomaly score is then calculated by contrasting its local density with those of its k-nearest neighbors. A high score indicates a lower density than its neighbors and therefore potentially an anomaly. It has been applied to multivariate time series [START_REF] Oehmcke | Event Detection in Marine Time Series Data[END_REF], demonstrating its ability to detect anomalies in long-term data.

Density-based spatial clustering of applications with noise (DBSCAN) [START_REF] Ester | A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[END_REF] is a clustering method that groups data points in high density areas (many nearby neighbors) and marks points in low-density regions (few neighbors) as anomalous. DBSCAN thus classifies the points into three categories. Core points are points containing at least minP ts in their distance neighborhood. The density-reachable points are the points containing at least one core point in their neighborhood. The other points are considered as anomaly. To handle multivariate time series, DB-SCAN considers each time window as a point with the anomaly score being the distance from the point to the nearest cluster [START_REF] Chen | Unsupervised Anomaly Detection via DBSCAN for KPIs Jitters in Network Managements[END_REF]. 
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Domain-based methods

Domain-based methods aim to construct a boundary between normal samples and the rest of the input space. The distance of a points to this boundary is used as the anomaly score. Among these, the One-Class Support Vector Machine (OC-SVM) [START_REF] Schölkopf | Estimating Support of a High-Dimensional Distribution[END_REF] method learns the smallest hypersphere containing of all the training data points (Figure 2.10). The learned model classifies points inside the hypersphere as normal and labels those in the rest of the space as anomalous. An anomaly score can also be obtained by taking the signed distance from the hyper-sphere.

The signed distance is positive for a normal value and negative for an abnormal. As other machine learning methods One-class SVM has been used for time series anomaly detection by using time windows rather than the raw series. J.Ma and S.Perkins [START_REF] Ma | Time-series novelty detection using one-class support vector machines[END_REF] use this approach, while proposing to combine the one-class SVM output for different time windows to produce more robust detection results.

Deep learning-based methods

DNN-based methods are a are sub-category of machine learning-based approaches, which rely on deep neural networks. Given the explosion of DNN-based methods over the last years, they are presented as a separate category. The Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative Adversarial Nets[END_REF] have the ability to know whether an input sample is normal or not. A GAN is an unsupervised artificial neural network based on a two-player minimax adversarial game between two networks, which are trained simultaneously. One network, the generator (G), aims to The Long Short-Term Memory Variational Auto-Encoders (LSTM-VAE) [START_REF] Park | A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder[END_REF] combines the LSTM [START_REF] Hochreiter | Long Short-Term Memory[END_REF] which is a recurrent neural network architecture with a variational auto-encoder (VAE) by replacing the feed-forward network in a VAE with a long short-term memory (LSTM). The LSTM-VAE models the time dependence of time series through LSTM networks. During encoding, the LSTM-VAE projects the input data and its time dependencies into a latent space. During decoding, it uses the latent space representation to estimate the output distribution.
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Finally, the LSTM-VAE detects an anomaly when the log-likelihood of the current data is below a threshold. In [START_REF] Lin | Anomaly Detection for Time Series Using VAE-LSTM Hybrid Model[END_REF], S.Lin et al. show that the LSTM-VAE is capable of identifying anomalies that span over multiple time scales. The Multivariate Anomaly Detection with Generative Adversarial Networks (MAD-GAN) [START_REF] Li | MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks[END_REF] is based on a Generative adversarial network (GAN) [START_REF] Goodfellow | Generative Adversarial Nets[END_REF] architecture composed of LSTMs. MAD-GAN uses an anomaly score called DRscore to detect anomalies. This score is composed of the discrimination between real data and fake data of the discriminator and the reconstruction error of the generator. Indeed, because of the smooth transitions of the latent space, the generator produces similar samples if the entries in the latent space are identical. Thus, we can use the residuals between the test data and their transformation by the generator to identify anomalies in the test data. The Recurrent Conditional Generative Adversarial Networks (RCGAN) [START_REF] Lüer | Anomaly Detection in Time Series using Generative Adversarial Networks[END_REF] is an adaptation of AnoGAN [START_REF] Schlegl | Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery[END_REF] using recurrent neural networks. The method The Real-Time Anomaly Detection in Multivariate Time Series (RADM) [START_REF] Ding | Multivariate-Time-Series-Driven Real-time Anomaly Detection Based on Bayesian Network[END_REF] is based on Hierarchical Temporal Memory (HTM) [START_REF] Hawkins | On intelligence[END_REF] and Bayesian Network (BN) [START_REF] Friedman | Bayesian network classifiers[END_REF]. It is divided into two phases. The first one is the detection of anomalies in the univariate time series composing the multivariate time series using the HTM. This first anomaly score is calculated by the HTM using the distribution of anomaly scores to calculate the anomaly likelihood. Thus, the anomaly score depends on the prediction history of the HTM of the anomaly which defines the degree of anomaly of the state the current state is anomalous based on the prediction history of the 2. Anomaly detection in time-series HTM model. In the second phase, a Naive Bayesian Network takes as input the discretized values of the anomaly likelihoods of each univariate series to assign the corresponding weights to each time series according to the structure of the multivariate series. Then the junction tree method [START_REF] Finn | Optimal junction trees[END_REF] is used to infer the classification of anomalies, in order to obtain the list of anomaly regions. between features and is based on a graph attention network [START_REF] Veličković | Graph Attention Networks[END_REF]. The combination of these two parts provides a prediction. The anomaly score is the squared error between the predicted value and the actual value. The Adversarially Learned Anomaly Detection (ALAD) [START_REF] Zenati | Adversarially Learned Anomaly Detection[END_REF] ALAD is based on bi-directional GANs that derive adversarially learned features for the anomaly detection task. Unlike GANs, bi-directional GANs are architectures composed of three networks. A Generator, a Discriminator and an Encoder whose role is to project the input data to the latent space. Thus, the encoder is the inverse of the generator. ALAD then uses the reconstruction errors as an anomaly score. As suggested by [START_REF] Xu | Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications[END_REF], the reconstruction can be evaluated by a conditional probability. The anomaly score used is then the probability of reconstruction. A high score means that the input can be well reconstructed. If an observation follows normal time series patterns, it can be reconstructed with high confidence. On the other hand, the lower the score, the less well the observation can be reconstructed and the more likely it is to be anomalous. This chapter proposes a fast and stable method called UnSupervised Anomaly Detection for multivariate time series (USAD) based on adversely trained autoencoders.
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Its autoencoder architecture makes it capable of learning in an unsupervised way.

The use of adversarial training and its architecture allows it to isolate anomalies while providing fast training. The study of the properties of the method through experiments on five public datasets demonstrates its robustness, learning speed and high performance in anomaly detection. Through a feasibility study using Orange's proprietary data, the method validates Orange's requirements. The rest of this chapter is organized as follows. Section 3.2 presents the limitations of Auto-Encoders (AE) and Generative Adversarial Networks (GANs). Section 3.3 discusses the details of the method, describe the experiments and demonstrate the state-of-the-art performance of the method.

Auto-Encoders and Generative Adversarial Networks limitations

Autoencoder-based anomaly detection uses the reconstruction error as the anomaly score. Points with a high score are considered to be anomalies. Only samples from normal data are used at training. At inference, the AE will reconstruct normal data very well, while failing to do so with anomaly data which the AE has not encountered. If the anomaly is too small, i.e. it is relatively close to normal data, the reconstruction error will be small and thus the anomaly will not be detected.

UnSupervised Anomaly Detection (USAD)

This occurs because the AE aims to reconstruct input data as well (as close to normality) as possible. To overcome this problem, the AE should be able to identify if the input data contains no anomaly before doing a good reconstruction.

The GAN is trained in an adversarial way between the Generator and the Discriminator. GAN-based anomaly detection uses the output of the Discriminator as the anomaly score during inference. GAN training is not always easy, due to problems such as mode collapse and non-convergence [START_REF] Arjovsky | Towards Principled Methods for Training Generative Adversarial Networks[END_REF], often attributed to the imbalance between the generator and the discriminator. Indeed, if an imbalance is created between the generator and the discriminator, the network is no longer able to learn correctly since one of the two is overwhelmed by the performance of the other. Techniques exist to stabilize the training and ensure a good convergence, have been proposed as the WGAN algorithm (Wasserstein GAN [START_REF] Arjovsky | Wasserstein GAN[END_REF]), but it remains to be improved, especially because of the added complexity that these methods involve.

UnSupervised Anomaly Detection (USAD)

The UnSupervised Anomaly Detection (USAD) method is formulated as an AE architecture within a two-phase adversarial training framework. On one hand, this allows to overcome the intrinsic limitations of AEs by training a model capable of identifying when the input data does not contain an anomaly and thus perform a good reconstruction. On the other hand, the AE architecture allows to gain stability during adversarial training, therefore addressing the problem of collapse and nonconvergence mode encountered in GANs.

Method

USAD is composed of three elements: an encoder network E and two decoder networks D 1 and D 2 . As depicted in Figure 3.1 and 3.2, the three elements are connected into an architecture composed of two autoencoders AE 1 and AE 2 sharing the same encoder network:

AE 1 (W ) = D 1 (E(W )), AE 2 (W ) = D 2 (E(W )) (3.1)
The architecture from Eq. 3.1 is trained in two phases. First, the two AEs are trained to learn to reconstruct the normal input windows W . Secondly, the two AEs are trained in an adversarial way, where AE 1 will seek to fool AE 2 and AE 2 aims

Unsupervised Anomaly Detection on Multivariate Time Series

to learn when the data is real (coming directly from W ) or reconstructed (coming from AE 1 ) . Further details are provided in the following. 

L AE 1 = W -AE 1 (W ) 2 L AE 2 = W -AE 2 (W ) 2 (3.2)
Phase 2: Adversarial training. In the second phase, the objective is to train 

AE 2 to
min AE 1 max AE 2 W -AE 2 (AE 1 (W )) 2 (3.3)
which account to the following losses where the proportion of each part evolves with time:

L AE 1 = + W -AE 2 (AE 1 (W )) 2 L AE 2 = -W -AE 2 (AE 1 (W )) 2 (3.4 
L AE 1 = 1 n W -AE 1 (W ) 2 + 1 - 1 n W -AE 2 (AE 1 (W )) 2 (3.5) L AE 2 = 1 n W -AE 2 (W ) 2 -1 - 1 n W -AE 2 (AE 1 (W )) 2 (3.6)
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and n denotes a training epoch. The two-phase training process is summarized in Algorithm 1.

It is important to remark that AE 2 does not act as a discriminator in the strict sense of GANs, because if its input is the original data, it is the loss from Eq 3.2

that intervenes. When its input is a reconstruction, the objective from Eq. 3.3-3.4

intervenes instead.

Algorithm 1 USAD training algorithm

Input: Normal windows Dataset W = {W 1 , ..., W T } , Number epochs N Output: Trained AE 1 , AE 2 E, D 1 , D 2 ← initialize weights n ← 1 repeat for t = 1 to T do Z t ← E(W t ) W 1 t ← D 1 (Z t ) W 2 t ← D 2 (Z t ) W 2 t ← D 2 (E(W 1 t )) L AE 1 ← 1 n W t -W 1 t 2 + 1 - 1 n W t -W 2 t 2 L AE 2 ← 1 n W t -W 2 t 2 -1 -1 n W t -W 2 t 2 E, D 1 , D 2 ← update weights using L AE 1 and L AE 2 end for n ← n + 1 until n = N
Inference. During the detection phase (Algorithm 2), the anomaly score is defined as:

A ( W ) = α W -AE 1 ( W ) 2 + β W -AE 2 (AE 1 ( W )) 2 (3.7)
where α+β = 1 and are used to parameterize the trade-off between false positives and true positives. If α is greater than β, the number of true positives and the number of false positives is reduced. Conversely, if a α less than β is taken, the number of true positives and also the number of false positives is increased. Thus, α < β denotes a scenario with high detection sensitivity and α > β a low detection sensitivity one.

This parametrization scheme is of great industrial interest. It allows, using a single 

} for t = 1 to T * do W 1 t ← D 1 (E( W t )) W 2 t ← D 2 (E( W 1 t )) A ← α W t -W 1 t 2 + β W t -W 2 t 2 if A ≥ λ then y t ← 1 else y t ← 0 end if end for

Implementation

This method of anomaly detection is divided into three stages. There is a first data pre-processing stage common to training and detection where data is normalized If the anomaly score of a window is higher than a defined anomaly threshold, the new time window is declared as abnormal.

Experimental setup

This section describes the datasets and the performance metrics used in the experiments and the feasibility study.

Datasets

Five publicly available datasets were used in the experiments. Table 3.1 summarizes the datasets characteristics and they are briefly described in the following.

Secure Water Treatment (SWaT) Dataset

The SWaT dataset1 is a scaled down version of a real-world industrial water treatment plant producing filtered A window is labeled as an anomaly as soon as one of the points it contains is detected as anomalous.
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In [START_REF] Su | Robust anomaly detection for multivariate time series through stochastic recurrent neural network[END_REF], the authors compute the F1 score using the average precision and average recall. For the sake of completeness, this measure is also reported when comparing the method to their benchmark. This measure is denoted the F1* score:

F 1 * = 2 • P • R P + R
where P , R denote the average precision and recall, respectively.

Performance is assessed by comparing the results of each evaluated method with the annotated ground truth. To allow a direct comparison with the benchmark proposed by [START_REF] Su | Robust anomaly detection for multivariate time series through stochastic recurrent neural network[END_REF] their approach is used. Anomalous observations usually occur in the form of contiguous anomaly segments. In this approach, if at least one observation of an anomalous segment is correctly detected, all the other observation of the segment are also considered as correctly detected, even if they were not. The observations outside the ground truth anomaly segment are treated as usual. This approach is denoted point-adjust. The performance without point-adjust is also evaluated on the two datasets (SWaT and WADI) not belonging to the benchmark [START_REF] Su | Robust anomaly detection for multivariate time series through stochastic recurrent neural network[END_REF]. 
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Experiments and Results

The key properties of USAD are studied by assessing its performance and comparing it to other state of the art methods (3. ). Finally, in Section 3.3.4.5 a feasibility study using Orange's internal data is reported to demonstrate that USAD meets the requirements needed to be deployed in production.

Overall performance

To demonstrate the overall performance of USAD is compared with five unsupervised methods for the detection of multivariate time series anomalies. These are: Isolation Forests (IF) [START_REF] Fei | Isolation Forest[END_REF], autoencoders (AE), LSTM-VAE [START_REF] Park | A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder[END_REF], DAGMM [START_REF] Zong | Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[END_REF], Om-niAnomaly [START_REF] Su | Robust anomaly detection for multivariate time series through stochastic recurrent neural network[END_REF]. As not all of the anomaly detection methods used for comparison provide a mechanism to select anomaly thresholds,the possible anomaly thresholds for each model are tested and the results linked to the highest F1 score is reported. Table 3.2, 3.3 and 3.4 detail the obtained performance results for all methods on the public datasets. On Table 3.2 and Table 3.3, the results obtained with SWaT and WADI datasets are presented, whereas the Table 3.4 reports obtained results from the benchmark proposed by [START_REF] Su | Robust anomaly detection for multivariate time series through stochastic recurrent neural network[END_REF], using three remaining datasets. USAD outperforms all methods on SWaT, MSL, SMAP and WADI without point-adjust datasets, and its F1 is the second best on the SMD dataset. On average over all datasets (Table 3.5) is the best performing method exceeding by 0.096 the current state-of-the-art [START_REF] Su | Robust anomaly detection for multivariate time series through stochastic recurrent neural network[END_REF].
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Overall, IF and DAGMM present the lowest performance. These are two unsupervised anomaly detection methods that do not exploit temporal information between observations. For time series, temporal information is important and necessary because observations are dependent and historical data are useful for reconstructing current observations. In USAD, for both training and detection, the input is a sequence of observations that contains the temporal relationship to retain this information.

Despite the relative poor results in most datasets, IF achieves the highest F1 score with point-adjust on WADI. This is explained by the natures of the point-adjust method and the WADI dataset. IF considers each observation/time-point independently and assigns a label to a single time-point and not to a window. WADI's anomalies lasting in time, the point-adjust validates the entirety of an anomaly as being well detected. Thus IF is little impacted by its bad predictions (FPs) affecting only one observation at a time, compared to the advantage obtained with the pointadjust which validates whole segments of good prediction despite having potentially missed several abnormalities.

Differently, AE, LSTM-VAE, use sequential observations as input allowing the two methods to retain temporal information. These methods perform the best possible reconstruction regardless of the existence of an anomaly in the input window. This does not allow them to detect anomalies close to the normal data. USAD compensates for this drawback of AE-based methods through its adversarial training. A similar situation occurs with OmniAnomaly, as it does not have a mechanism that allows to amplify "mild" anomalies.

Effect of parameters

In this section, the effects that different parameters and factors that can have impact on the performance of USAD is studied. All experiments were done using the SWaT dataset.

The first factor studied is how USAD responds to different down-sampling rates of the training data. Down-sampling speeds up learning by reducing the size of the data and also has a denoising effect. However, it can have a negative effect if too much information is lost. Figure 3.3(A) summarizes the obtained results using 5

different rates [START_REF] Zong | Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[END_REF][START_REF]Are Deep Neural Networks Methods Needed for Anomaly Detection on Multivariate Time Series? References[END_REF][START_REF] He | Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[END_REF]20,[START_REF] Baragona | Outliers Detection in Multivariate Time Series by Independent Component Analysis[END_REF]. Results show that USAD's performance is relatively insensitive to down-sampling, with a relatively constant performance across sampling rates. This indicates that the choice of the down-sampling rate is not critical to the method. For this experiments, a rate of 5 is selected. This is the best trade-off between denoising the training data and limiting the loss of information. Moreover, it allows to reduce by 5 the training time needed for USAD.

The second factor investigated is how USAD responds to different window sizes in the data. The window size has an impact on the type of abnormal behaviors that can be detected a direct impact on the speed of anomaly detection since the speed of detection is defined by the duration of a window. . USAD can detect behavior changes faster when the window is smaller since each observation has a greater impact on the anomaly score. A window that is too large will have to wait for more observations to detect an anomaly. However, a larger window will detect longer anomalies. If an anomaly is however too short, it may be hidden in the number of points that a too-large window has. For Orange, a small window is better since it allows both faster training and faster detection.

The latent variables Z sit in a m-dimensional space, which is assumed to be smaller than one of the original data. The role of m in the performance of USAD is studied. Figure 3.3(C) presents the results for m ∈ [START_REF]Are Deep Neural Networks Methods Needed for Anomaly Detection on Multivariate Time Series? References[END_REF][START_REF] He | Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[END_REF]20,[START_REF] Lowry | A Multivariate Exponentially Weighted Moving Average Control Chart[END_REF][START_REF] Audibert | From Univariate to Multivariate Time Series Anomaly Detection with Non-Local Information[END_REF]. Results show that a very small dimension for Z causes a large loss of information at the encoding stage that the decoder is not then able to recover, thus leading to a poor performance.

On the other extreme, using a large value for m results in memorization of the training data causing and a drop in performance. Instead, mid-range values of m do not seem to have a strong effect in the performance, showing both relatively high and stable F1 scores.

USAD is trained under the assumption that the training set is formed using only normal samples. But in practice the training set do not only consist of normal data. Therefore, I investigate to which level the performance of the method is affected when this assumption is broken by injecting noise in the training dataset.

A Gaussian noise (µ = 0, σ = 0.3)is injected in a random selection of time-points representing a percentage of the training dataset size.This percentage varies from 1% to 30%. The noise is injected after down-sampling (rate= 5) to avoid noise attenuation by the down-sampling. Figure 3.3(D) shows the performance of the method, in terms of P, R and F1, as the level of noise increases. USAD demonstrates its robustness with a relatively constant, high performance for noise levels of up to 5%. When the training set noise is of 10% a slight drop in the performance starts to be observed. However, the overall performance, measured by the F1 score, remains good. Interestingly, this performance drop is caused by a lower precision. As the recall remains relatively constant, this implies that with higher noise in the training set the method begins to be more prone to detect false positives. This behavior suggests that as the noise starts to increase, USAD is no longer able to properly learn the most complex behaviors existing within the training set. As a result, the number of false positives Finally, a significant drop in performance can be observed for high noise levels (30%).

However, such a high anomaly rate during training in a production environment is not realistic. This means that for a given period of time, 30% of the samples are unnoticed anomalies. As there are so many anomalies in production, it is not realistic that such a large number of incidents are missed by Orange's incident supervision. Thus, it is unlikely that USAD will be confronted with such a high rate of anomalies during its training in a production environment at Orange. Finally, the role of the sensitivity threshold (equation 3.7) is studied. A large α corresponds to giving more importance to the reconstruction of the AE 1 autoencoder in the anomaly score, while a large β corresponds to giving more importance to the reconstruction of the AE 2 autoencoder (see Figure 3.1). The possibility to tune the detection sensitivity without having to re-train the model is of great importance for Orange. We can observe that by increasing α and reducing β it is possible to reduce the number of FPs (by a maximum of 50% when passing from 0.0 to 0.9) while limiting the drop in the number of TPs (3% from 0.0 to 0.9). Thus, the regulation of α and β allows parameterizing the sensitivity of USAD to meet the requirements of a production environment. With a model, it is possible to achieve different levels of sensitivity so that detection meets the needs of the different levels of hierarchy within Orange's supervision teams. Managers prefer a lower sensitivity levels, limiting the number of false positives but warning them in case of important incidents, while technicians will prefer a high level of sensitivity, allowing them to miss a minimum of incidents.

Training time

In this section the computational performance of USAD is studied and compared to OmniAnomaly, the method offering the closest performance in anomaly detection (see Table 3.5). To do this, the average time taken per epoch on the 5 public data sets is measured. The reference time for SMD, SMAP and MSL is the average time for one epoch over all entities (i.e. 28 machines of the SMD, 55 of the SMAP and 27 of the MSL). Both methods were trained using a NVIDIA GeForce GTX 1080 Ti.

Table 3.7 presents the obtained results. USAD provides good performance in unsupervised anomaly detection over multivariate time series while reducing training time by an average of 547 times. 3.4, bottom).
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Feasibility study

The automation of the supervision of complex IT systems is a challenge for Orange.

After studying the properties of USAD and assessing its performance in using public datasets, the company must ensure that the method is as effective on its data.

Table 3.8 reports the results obtained in the internal dataset. USAD was able to detect all significant incidents in less than 30 minutes over the two months length of test data. For example, USAD was able to detect in less than 30 minutes an incident that took 24 hours to be detected by the operators in charge of supervision at Orange (Figure 3.5). This incident was caused by an error introduced in the configuration files allowing to assign advertising displays to unexpected partners. This caused the number of advertising displays (total impressions) to increase, while reducing the average display prices (total average ecpm). As a result, important business indicators such as the revenue (total cpm cpc revenue) remained stable and so, the operators were unable to detect the incident quickly. Faced with the large amount of indicators to survey, people in charge of supervision concentrated their efforts on supervising indicators with high business impact, therefore, explaining, the 24 hours needed to detect this configuration incident.
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Conclusion

This chapter proposes USAD, an UnSupervised Anomaly Detection for multivariate time series method based on autoencoders and trained within an adversarial train- Orange's supervision teams essential functionalities enabling the use of the method in production on large-scale infrastructure. Since the teams need to be able to lower the sensitivity of the detection to prevent only major incidents when their workload becomes too high, the ability to multiply detection sensitivities during inference makes the model extremely scalable within the company and brings major advantages. First of all, it allows to limit the time needed to train the supervision models by limiting their number to just one. Secondly, a deep learning model put into production must be monitored and supervised by teams. Limiting the number of models allows to reduce the time spent supervising models in production and therefore free up time from supervisors to be devoted to different tasks.The feasibility study performed using Orange's internal data provided conclusive results which confirm that USAD suggests a promising direction for the automation of IT systems supervision at Orange. It also signaled some of the difficulties that might be encountered on the way to deployment and execution. For example, the data collection process (Section 3.3.3.2) faced the unexpected difficulty of gathering a continuous training period not containing too many anomalies. This is an interesting aspect that makes think on the infrastructure that will need to be put in place to have USAD succesfully deployed.

Chapter 4

From This chapter presents a feature engineering strategy to transform univariate time series into a multivariate one by introducing non-local information in the augmented data. In this way, this strategy aims to address an intrinsic limitation of the features learned by DNNs, which is they rely on local information only. The performance of this combination is compared to each individual method and shows that the method achieves better performance without increasing computational time on a set of 250 univariate time series proposed by the University of California, Riverside at the 2021 KDDCup competition.

From Univariate to Multivariate Time Series Anomaly Detection with Non-Local Information

Introduction

This chapter proposes a novel feature engineering strategy to augment time series data in the context of anomaly detection using DNNs. The goal is two-fold. First, it aims to transform univariate time series into multi-variate time series to improve DNNs performance. Second, it aims to use a feature engineering strategy that introduces non-local information into the time series, which DNNs are not able to learn. To achieve this, a data structure called Matrix-Profile is used as a generic non-trivial feature. Matrix-Profile allows to extract non-local features corresponding to the similarity among the sub-sequences of a time series. The main contributions of this chapter are:

• It proposes an approach that transforms univariate time series into multivariate by using a feature engineering strategy that introduces non-local information to improve the performance of DNNs.

• It studies and analyzes the performance of this approach and of each method separately using the KDDCup 2021 dataset consisting of 250 univariate time series.

The rest of this chapter is organized as follows. Section 4.2 briefly reviews other works on feature engineering for anomaly detection in time series. The section 4.3 presents the transformation of univariate time series into multivariate one and the methods which constitute the framework. Section 4.4 describe the experiments and demonstrate the performance of this approach. This chapter concludes with some discussion and perspectives in section 4.5.

Related works

Different studies have raised the importance of feature engineering for the detection of anomalies and the superiority of multivariate models in time series. A first study conducted by Carta et al [START_REF] Carta | A Local Feature Engineering Strategy to Improve Network Anomaly Detection[END_REF] shows that in network anomaly detection, the introduction of new features is essential to improve the performance of state-of-the-art solutions. Fesht et al [START_REF] Chalapathy | Deep learning for anomaly detection: A survey[END_REF] compare the performance of manual and automatic feature engineering methods on drinking-water quality anomaly detection. The study concludes that automatic feature engineering methods obtain better performances 4.3 From univariate to multivariate time series in terms of F1-score. Ouyand et al [START_REF] Ouyang | Hierarchical time series feature extraction for power consumption anomaly detection[END_REF] shows that feature extraction is one of the essential keys for machine learning and proposes a method called hierarchical time series feature extraction used for supervised binary classification. Panda et al [START_REF] Panda | Developing an Efficient Feature Engineering and Machine Learning Model for Detecting IoT-Botnet Cyber Attacks[END_REF] demonstrates that appropriate feature engineering in addition to deep learning methods provides better detection of IoT-Botnet cyber attacks than methods alone. Fan et al [START_REF] Cheng Fan | Deep learning-based feature engineering methods for improved building energy prediction[END_REF] proposes three feature engineering methods based on Auto-Encoders and GANs. Their performance on building energy prediction shows that these methods outperform conventional feature engineering methods. Santos et al [START_REF] André | Comparing Univariate and Multivariate Models to Forecast Portfolio Value-at-Risk[END_REF] compares univariate and multivariate models for predicting portfolio value at risk (VaR). Their comparison on both simulated and real data concludes that the multivariate models outperform their univariate equivalents. Finally, in [START_REF] Aboagye-Sarfo | A comparison of multivariate and univariate time series approaches to modelling and forecasting emergency department demand in Western Australia[END_REF], the authors conclude that multivariate models provided a more precise and accurate forecast with smaller confidence intervals and better measures of accuracy. Thus, studies have demonstrated the importance of feature engineering to improve anomaly detection models as well as the performance of multivariate methods compared to univariate ones on time series. Motivated by these ideas, this work aims to investigate how feature engineering using non-local information to achieve variate augmentation in time series can improve the performance of anomaly detection DNN models in univariate time series.

From univariate to multivariate time series

To take advantage of the performance of multivariate methods of anomaly detection on univariate time series it is necessary to transform the univariate time series into multivariate one. This can be achieved by adding external information to the time series, which requires specific domain knowledge. This strategy, instead, transforms the univariate time series into a multivariate one, without any further information than the original time series, and is generic in that no specific knowledge on what the time series represents is required.

The strategy consists in building another time series (i.e. another variate) by extracting non-local information from the raw time series, which DNN approaches fail to obtain as they typically operate in local neighborhood. To this end, the Matrix-Profile (MP) [START_REF] Yeh | Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets[END_REF][START_REF] Yeh | Matrix profile vi: meaningful multidimensional motif discovery[END_REF], a data structure for time series analysis is used. The proposed strategy is illustrated in Figure 4.1. The Matrix profile estimates the minimal distance between all sub-sequences of a time series. Thus, the Matrix-Profile value for a given sub-sequence is the minimum pairwise Euclidean distance to all other sub-sequences of the time series. A low value in the matrix profile indicates that this sub-sequence has at least one relatively similar sub-sequence located somewhere in the original series. In [START_REF] Linardi | Matrix profile goes MAD: variable-length motif and discord discovery in data series[END_REF], it is shown that a high value indicates that the original series must have an abnormal subsequence. Therefore the matrix profile can be used as an anomaly score, with a high value indicating an anomaly.

From Univariate to Multivariate Time Series Anomaly Detection with Non-Local Information

In this approach, the anomaly score obtained by Matrix-Profile is used over a given time series and merge it point-by-point with the original data. This can be 4.3 From univariate to multivariate time series thus seen as a data augmentation procedure using non-local information from the same signal.

As the new time series is just a multivariate time series, any given anomaly detection method can be used to identify anomalous points in it. In this work, three different estimation model-based techniques [START_REF] Blázquez-García | A Review on outlier/Anomaly Detection in Time Series Data[END_REF] are investigated as base anomaly detection methods. Among these category of methods, the auto-encoder [START_REF] Rumelhart | Learning Internal Representations by Error Propagation[END_REF] is among the most commonly used. An auto-encoder (AE) is an artificial neural network combining an encoder E and a decoder D. The encoder part takes the input window W and maps it into a set of latent variables Z, whereas the decoder maps the latent variables Z back into the input space as a reconstruction W . The difference between the original input vector W and the reconstruction W is called the reconstruction error. Thus, the training objective aims to minimize this error.

Auto-encoder-based anomaly detection uses the reconstruction error as the anomaly score. Time windows with a high score are considered to be anomalies [START_REF] Cheng Fan | Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data[END_REF].

Alongside the AE, a more complex approach based on a Variational AutoEncoder (VAE) coupled with a recurrent neural network is considered, the Long Short-Term Memory Variational Auto-Encoders (LSTM-VAE) [START_REF] Park | A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder[END_REF]. In the LSTM-VAE, the feed forward network iof the VAE is replaced by a Long Short-Term Memory (LSTM), which allows to model the temporal dependencies. As in the AE, the input data is projected in a latent space. However, differently from the AE, this representation is then used to estimate an output distribution and not to simply reconstruct a sample. An anomaly is detected when the log-likelihood is below a threshold. The third estimation model-based method considered is denoted UnSupervised Anomaly Detection (USAD) [START_REF] Audibert | USAD: UnSupervised Anomaly Detection on Multivariate Time Series[END_REF]. USAD is composed of three elements: an encoder network and two decoder networks. The three elements are connected into an architecture composed of two auto-encoders sharing the same encoder network within a two-phase adversarial training framework. The adversarial training allows to overcome the intrinsic limitations of AEs by training a model capable of identifying when the input data does not contain an anomaly and thus perform a good reconstruction.

At the same time, the AE architecture allows to gain stability during adversarial training of the two decoders.

The architecture is trained in two phases. First, the two AEs are trained to learn to reconstruct the normal input windows. Secondly, the two AEs are trained in an adversarial way, where the first one seeks to fool the second one, while this latter one aims to learn when the data is real (coming directly from the input) or reconstructed
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Table 4.1: Hyper-parameter settings of the different methods The AE is implemented using Pytorch and publicly available implementations is used for MP [START_REF] Zong | Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[END_REF] 1 , LSTM-VAE2 and USAD3 . Table 4.1 details the hyper-parameter setup used for each method. Where a parameter is not specified, it indicated that those set by default in the original implementation were used.

Method

All experiments are performed on a machine equipped with an Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz and 270 GB RAM, in a docker container running CentOS 7 version 3.10.0 with access to an NVIDIA GeForce GTX 1080 Ti 11GB GPU.

Results

Table 4.2 presents the results obtained by the different methods in terms of performance accuracy and computational times. Interestingly, the performance of DNNbased methods on univariate time series is very low and largely surpassed by the more conventional approach, the matrix profile. However, once the same techniques use the proposed data transformation strategy, an important boost in their performance can be observed. The Auto-Encoder and the LSTM-VAE score almost 2. times higher when the combination of the matrix profile and real data is used as input instead of the original data. Similarly, USAD's performance increases by 1.8 times when the matrix profile and raw time series combination is used compared to its performance using only the raw time series.

Nevertheless, the non-local transformation alone is not enough to boost the performance of DNN methods. For instance, if the input consists only of the univariate time series transformed using the matrix profile, while there is some increased performance, this one is milder than when using a multivariate time series. This confirms that DNN methods perform better in a multivariate setup for anomaly detection.

Regarding the use of local features, i.e. the moving average, adding it does not allow USAD, LSTM-VAE and AE to increase their performance. Indeed, the combination of raw time series and moving average degrades the performance of AE and USAD by about 0.1 and the performance of LSTM-VAE by about 0.06. This suggests that any local features that might be discriminative can be extracted by the DNNs and introducing new manually crafted ones may be detrimental.

Finally, as it is expected, the computational time of DNN-based methods is much longer than the MP. However, what is interesting in the findings is that the computa- 

Discussion and Conclusions

This chapter proposes an approach to augment univariate time series using a feature engineering strategy that introduces non-local information in the generation of an additional variate to the series. In this way, this strategy expects to address a limitation of DNNs, as they are not conceived to learn automatically non-local features.

Automatic non-local feature extraction is achieved by relying on the Matrix-Profile, a method that computes the minimum pairwise Euclidean distance of all subsequences of the time series, and by combining its output with the original time series.

The KDDcup 2021 competition containing 250 univariate time series is used to study the performance of this method. The performance analysis highlighted the relevance of transforming the univariate time series using the proposed feature engineering and data augmentation strategy. The results show that introducing nonlocal information to augment the dimension of the series improves the performance of DNN methods. For instance, by using a very simple method, such as an autoencoder, a gain in performance of 230% was obtained, without significantly increasing the computational time. As such, the preliminary results suggest that non-local information represents an important source of additional information that can increase performance of DNN methods.

While this approach focuses on the particular case of transforming uni-to multivariate time series, this idea could be used to augment time series, which are multivariate at origin, as a way to introduce non-local information. 

Discussion and Conclusions

Finally, the findings are consistent with one of the results of the time series prediction competition, the M4 challenge [START_REF] Makridakis | The M4 Competition: 100,000 time series and 61 forecasting methods[END_REF], which highlighted the predictive power of ensemble approaches combining learning-based with more conventional statistical methods. Due to the great success of DNN methods in the recent years, it is now often the case that more traditional methods are overseen. The results suggest that the use of hybrid approaches should be further explored. [START_REF] Makridakis | Statistical and Machine Learning forecasting methods: Concerns and ways forward[END_REF][START_REF] Vegard Antun | On instabilities of deep learning in image reconstruction and the potential costs of AI[END_REF][START_REF] Heaven | Why deep-learning AIs are so easy to fool[END_REF][START_REF] Jiao | Does deep learning always outperform simple linear regression in optical imaging?[END_REF]. While some of this works have focused on pointing out to the weaknesses of DNN-based methods [START_REF] Vegard Antun | On instabilities of deep learning in image reconstruction and the potential costs of AI[END_REF][START_REF] Heaven | Why deep-learning AIs are so easy to fool[END_REF], other works have been able to demonstrate the superiority of more conventional approaches [START_REF] Makridakis | Statistical and Machine Learning forecasting methods: Concerns and ways forward[END_REF][START_REF] Jiao | Does deep learning always outperform simple linear regression in optical imaging?[END_REF].

The main contributions of this chapter are the following:

• during training, which leads to unstable results. Furthermore, Heaven [START_REF] Heaven | Why deep-learning AIs are so easy to fool[END_REF] showed small changes in a DNN's input, usually imperceptible to humans, can destabilize the best neural networks, thus pointing to the lack of robustness of DNN-based methods and their dependence on large amounts of data. Most recently, in the context of medical image segmentation, Fu et al. [START_REF] Fu | Keep it simple, scholar": an experimental analysis of few-parameter segmentation networks for retinal vessels in fundus imaging[END_REF] showed that simpler DNN configurations have better generalization properties than state-of-the-art models but more complex DNN models, thus challenging the current trend towards continuously increasing the model complexity.

Related work

In the specific context of time series analysis, the results of the M3 challenge on time series forecasting [START_REF] Makridakis | Statistical and Machine Learning forecasting methods: Concerns and ways forward[END_REF] showed that the accuracy of learning-based models, in general, was lower than that one of conventional approaches, while their computational requirements were considerably greater than those of conventional statistical methods. Similarly, one of the main outcomes of the follow-up M4 competition [START_REF] Makridakis | The M4 Competition: 100,000 time series and 61 forecasting methods[END_REF] was that none of the pure ML methods participating was able to outperform the combination of learning-based and statistical (i.e. conventional) methods. For instance, only one DNN approach was more accurate than a naïve random walk model that assumed future values will be the same as those of the last known observation [START_REF] Makridakis | The M4 Competition: Results, findings, conclusion and way forward[END_REF].

Experimental setup

This section describes the datasets and the performance metrics used in the experiments.

Public Datasets

The same five datasets as the previous chapter were used in this experiments. Table 5.1 summarizes the datasets characteristics and the type of anomalies present in each dataset.

Are Deep Neural Networks Methods Needed for Anomaly

Detection on Multivariate Time Series? 

Evaluation Metrics

As in the previous chapter, performance is assessed by comparing the results of each evaluated method with the annotated ground truth. Precision (P), Recall (R), and F1 score (F1) were used to evaluate anomaly detection performance. The average precision (AP) is computed from anomaly scores. AP summarizes a precision-recall curve as the weighted mean of precision achieved at every given anomaly score threshold, with the increase in recall from the previous threshold used as the weight:

AP = n (R n -R n-1 )P n
where P n and R n are the precision and recall at the n-th threshold. Finally, the area under the Receiver operating characteristic (AUC) curve is computed.

In the experiments, a window is considered labeled as an anomaly as soon as one of the points it contains is detected as anomalous. For methods that do not use a time window, an anomaly is considered detected if the detection occurs within 12 time points on either side of the anomaly. the point-adjust approach is used as in the previous chapter since anomalous observations usually occur in the form of contiguous anomaly segments.

Experiments and Results

The performance of the sixteen methods discussed in Section 2.2 is studied on the five datasets discussed in Section 5.3.1 in terms of precision, recall, F1-score, AP and AUC (5.4.1). An analysis of the results is performed by comparing the anomalies
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detected by the conventional methods and the learning-based approaches (5.4.2).

The impact of the training set size (5.4.3) is studied. Finally, a synthesis of the results is proposed and discussed (5.4.4).

Benchmark Performance

The performance of the sixteen anomaly detection methods are assessed on the five public real-world datasets. Train and testing splits are reported in Table 5.1.

As not all of the anomaly detection approaches provide a mechanism for selecting anomaly thresholds,a thousand possible anomaly thresholds are tested for each model. The anomaly score is normalized between 0 and 1 and then test on one thousand thresholds in steps of 0.001. For every method, the results associated to the highest achieved F1 score, the AUC and the AP are reported. Table 5.2 reports mean, minimum and maximum performance of each group of methods (conventional, ML or DNN) on every dataset. Where the minimum value is reported as "-", it denotes that a method in that category did not provide any results after more than ten days of execution in my experiments. Concretely, this occurrs for VAR and SSA on SWaT and WADI dataset, and for MP on WADI dataset. At a first instance, the results suggest that learning-based methods, and in particular DNNbased, outperform conventional ones in terms of average performance, while often reporting the highest performing models (maximum value). Instead, conventional methods typically report the lowest performing method (minimum values). This behaviour is most evident in the SWaT and MSL datasets.

The estimation of precision, recall and the F1 score requires the computation of a threshold, which can be extremely complicated to define. The AUC-ROC and AP metrics allow to obtain a score that takes into account the ability of the methods to rank the anomalies without having to define a threshold and provide a complementary information w.r.t P, R and F1. In particular, AP is more sensitive to the positive class, i.e. the anomalies, than the AUC-ROC, so it is better suited to highly unbalanced data [START_REF] Saito | The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets[END_REF], as it is the case in anomaly detection problem. A detailed comparison of the performance of the different methods in terms of AP shows that conventional methods outperform all families of methods in the MSL dataset and they are the second best ranked after DNN methods for the remaining datasets.

Are Deep Neural Networks Methods Needed for Anomaly Detection on Multivariate Time Series?

A Welch's t-test over the obtained results indicates that only AP in WADI shows a significant difference among the different families of methods. Thus, only WADI can differentiate performance between the three categories of approaches. This result indicates that while DNN methods would perform better in some cases, more globally, there is no significant difference in performance between the method families in four out of five datasets.

Analysis of WADI

A more detailed analysis is performed on the performance results obtained for each type of method. The WADI dataset is used because it is the only dataset that shows a significant difference in performance between the method families. In other words, a value of 1.0 represents an anomaly labeled as normal by all the conventional techniques. The second plot represents the same information for the machine learning models and the third one for DNN approaches. The fourth series in green represents the false negatives of the conventional approaches which are true positives for the DNNs methods. In other words, a value of 1.0 corresponds to an anomaly detected by at least one DNN algorithm but by no conventional methods.

Finally, the purple series shows the ground truth labels. Overall, WADI contains 14 anomalies distributed over the test (Figure 5.1 bottom).

An inspection of the plots shows that four anomalies are not detected by any of the DNNs approaches, while seven anomalies are not detected by the conventional and machine learning models. Thus, these three anomalies explain the performance gap between the DNNs and conventional methods, which are the second best performing family in terms of AP on this dataset (see fourth series).

Figure 5.2 presents a detailed view of the first anomaly from the green series.

It is caused by the variate 1_MV_001 increasing its value to 2.0 before the variate 1_LT_001 has reached its mininimal expected value [START_REF] Lowry | A Multivariate Exponentially Weighted Moving Average Control Chart[END_REF]. It is a contextual anomaly, as the separate behavior of each variate does not constitute an anomalous behavior on its own. The remaining two anomalies also shows that they are contextual anomalies. This suggests that the performance gap between DNNs and conventional methods comes from a better detection of contextual anomalies by DNNs approaches. the training set size, meaning this has little impact in their performance. Instead, ML and DNN methods perform better when increasing the size of the training dataset, except for IF on the WADI dataset which performs slightly better when only 50% of the dataset is kept. This can be explained by the fact that the isolation of anomalous points can be more complex when the training set is larger. In general, it is only above 50% that DNNs approaches seem to perform better than conventional methods.

Discussion

The experimental results for multivariate anomaly detection using conventional, machine learning and DNN methods did not prove the superiority of one category over the others over the datasets. However, there are some indications that in the particular case of contextual anomalies, DNN-based methods perform better and may be necessary. However, this analysis is only true when the dataset is large enough for them to learn properly, otherwise conventional methods seem to outperform them.

While a detailed analysis of the performance of different methods in contextual anomalies is, therefore, necessary, it is complicated to obtain real datasets containing contextual anomalies to validate this hypothesis. Indeed, contextual anomalies are by definition difficult to detect visually by experts since taken alone the series seem normal. It is therefore challenging for the community to obtain datasets containing contextual anomalies without these having been manually induced. In view of these results, it is impossible to affirm that the most complex methods based on

DNNs have allowed a real advance in the problem of anomaly detection in multivariate time series. It is therefore essential for the community to reintegrate machine learning methods, but also conventional methods in the benchmarks to ensure that the new methods proposed improve the performance in the detection of anomalies in time series. Furthermore, the lack of good results from the most complex methods in some cases, invites to encourage the community to continue to propose methods from all three categories and not to focus only on DNN-based methods. This chapter focuses on some aspects of the performance of different types of methods, while leaving aside a detailed analysis of the computational times required Another important observation from this study regards scalability. Some conventional methods failed to converge when the data set was too large (i.e. VAR and SSA on SWaT and WADI and MP only on WADI). Therefore, the size of the datasets is an important criterion in the choice of a methods to use. While DNN-based methods are a more suitable choice for larger sets of data, despite their overhead in computational time during training, conventional approaches seem to be a better choice in a small data regime.

Finally, an important point to consider is also the difficulty to reproduce the results of DNN-based methods compared to the other two categories of methods. Indeed, there is a plethora of open implementations of conventional1 and machine learning based methods2 , while some DNN-based approaches can be difficult to implement, sometimes no implementation is available or it is difficult to set up.

Conclusion

This chapter provides a comparative analysis of conventional, machine learningbased and DNN-based methods. The performance of sixteen algorithms is evaluated on five open real-world datasets to understand whether the complexity provided by DNN-based approaches is necessary for anomaly detection in multivariate time series. The impact of the training set size on the performance of these methods is studied. The performance analysis did not allow to observe a superiority of one category of methods over the others in terms of performance. The results showed that all three categories can outperform the other two according to the criteria of the dataset. The DNN based methods seem to perform better when the dataset contains contextual anomalies. However, this finding could only be made on one of the five datasets, so more experimentation is needed to confirm that DNN methods outperform the other categories in terms of contextual anomaly detection. Furthermore, if the training set is not large enough, the conventional methods outperform the other two categories. Thus, the size of the training set is an important criterion in the choice of the category of methods to detect anomalies in multivariate time series. Some conventional methods have failed to scale on large data sets.

Conclusion

In view of all these results, it is not possible to affirm that the performance claimed in recent years in benchmark papers that omitted one of the three categories are not illusory [20]. I therefore encourage the community to reincorporate the three categories of methods in the benchmarks of anomaly detection in multivariate time series. Moreover, it seems essential to multiply the number of datasets compared in the benchmarks in order to ensure that all eventualities are covered. For this, the community will have to obtain new real world datasets containing contextual Chapter 6
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Conclusion and Perspectives

Conclusion

This thesis focuses on the unsupervised detection of anomalies in multivariate time series. Being able to detect anomalous behavior is an increasingly complex task due to the growing size and complexity of the systems being measured. However, anomaly detection is one of the key issues for a large number of domains such as finance, health or supervision. To this end, this thesis proposed a method called USAD that can partially address the problem of anomaly detection in multivariate time series such as the automation of the supervision of large computer systems in Orange since it meets the constraints of scalability and fast learning while offering possibilities of managing the level of detection and very good performance compared to other deep neural network methods of the state of the art. This thesis also presents a feature engineering strategy to improve the performance of DNN methods such as USAD by introducing non-local information and to transform a univariate time series into a multivariate one. However, while these methods appear to be effective for time series anomaly detection and their performance on contextual anomalies could be important for automating the supervision of large computer systems, it is currently impossible to argue that their larger complexity compared to conventional methods is really necessary to solve this problem as shown in the study proposed in this thesis. It is important to encourage the community to reintegrate all three families of methods into future benchmarks to ensure that the announced progress is achieved.

Finally, this thesis highlighted the power of ensemble approaches combining learningbased and more conventional statistical methods and suggest that the use of hybrid

Conclusion and Perspectives

approaches should be further explored.

Chapter 3 proposes a new method called UnSupervised Anomaly Detection for multivariate time series (USAD) [START_REF] Audibert | USAD: UnSupervised Anomaly Detection on Multivariate Time Series[END_REF] based on an autoencoder architecture whose learning is inspired by GANs. The intuition behind USAD is that the adversarial learning of its encoder-decoder architecture allows it to learn to amplify the construction error of inputs containing anomaly, while gaining stability over methods based on GANs architectures. The method has demonstrated superior performance to state-of-the-art techniques on public benchmark datasets. In addition, its learning speed, robustness to parameter selection and stability allow a high scalability of the model in an industrial context. USAD also offers the possibility to parameterize its sensitivity and to produce, from a single model, a set of detection levels.

Chapter 4 investigates a new feature engineering strategy for augmenting time series data in the context of anomaly detection using deep neural networks [START_REF] Audibert | From Univariate to Multivariate Time Series Anomaly Detection with Non-Local Information[END_REF].

The objective is to transform univariate time series into multivariate time series to improve performance. But also, the use of a feature engineering strategy that introduces non-local information in the time series. This chapter therefore proposes a strategy that consists in engineering another time series (i.e. another variable) by extracting non-local information from the raw time series, which deep neural network approaches fail to obtain because they usually operate in a local neighborhood. To this purpose, Matrix Profile (MP), a method that computes the minimum pairwise Euclidean distance of all subsequences of the time series is used, and its result is combined with the original time series. The performance on the KDDcup 2021 competition data containing 250 univariate times shows that introducing non-local information to increase the dimension of the time series improves the performance of the deep neural network method. Although this approach focuses on the special case of transforming univariate time series into multivariate time series, this idea could be used to augment time series, which are multivariate in origin, as a way to introduce non-local information.

Chapter 5 presents an in-depth comparison between conventional methods, machine learning-based approaches and more recent approaches based on deep neural networks. Indeed, the lack of a general comparison covering all families of methods in the literature and the explosion of more and more complex methods based on deep neural networks, has called into question the methodological advances and performance improvements reported in the benchmarks for anomaly detection in multivariate time series. The analysis of the performance of sixteen methods on 6.2 Perspectives five datasets did not allow to observe a superiority of one category of methods over the others. The results showed that the three categories can perform better than the other two depending on the dataset criteria. The deep neural network based methods seem to perform better when the dataset contains contextual anomalies or when the datasets are large, while the conventional techniques perform better when the dataset is small.

Perspectives

This thesis opens several research perspectives.

First, Chapter 5 shows that it would appear that deep neural networks would perform better on contextual anomalies, however, this finding could only be made on one of the five datasets, so further experimentation is needed to confirm that deep neural network methods perform better than the other categories in terms of contextual anomaly detection. It seems then essential to multiply the number of datasets compared in the benchmarks in order to ensure that all eventualities are covered. To do so, the community will have to obtain new real-world datasets containing contextual anomalies but the difficulty for experts to visually label contextual anomalies in multivariate time series makes it difficult to obtain test sets covering this criterion. Obtaining these new sets will potentially allow the community to answer the question: Are deep neural network methods really necessary in the detection of anomalies in multivariate time series? Second, the results in Chapter 4 suggest that the use of hybrid approaches could be an alternative to the choice between different families of methods. This would require exploring other feature engineering techniques that can provide non-local information, as well as other deep neural network methods for anomaly detection.

Thus, the creation of hybrid approaches could potentially address the limitations and constraints of each family of methods in order to get closer to the automatic supervision of large computer systems. Third, in order to limit the complexity of the models, low complexity model ensembling could be considered. Indeed, the very recent results of the KDDCUP2021 on anomaly detection in univariate time series show that the podium of solutions are based on a low complexity model ensembling with selection mechanisms based on anomaly scores. Thus, the approach of model ensembling seems promising and is complementary with a hybrid approach as proposed previously.

Conclusion and Perspectives

Finally, the ability to detect abnormal behavior in a complex system is not the only important task. To be able to use these models in a real industrial environment, it seems important to be able to identify the variables causing the anomaly. Indeed, detecting an abnormal period in a time series is only the first step. After the detection it is essential to be able to identify the causes in order to apply the adequate countermeasures. Thus, this work will have to be extended in this direction before taking its full place in the industrial world.

USAD Hyper-parameters for each dataset

For each dataset we have 4 parameters. The size of the windows, corresponding to the size of the sequence of time series we have in input. The number of epochs, the dimension of Z which is the USAD latent space and finally the down-sampling rate during pre-processing. The down-sampling is done by taking the median value of each feature. 

USAD Implementation

The input size corresponds to the size of the window multiplied by the number of dimensions of the multivariate time series.

Encoder

• Linear : input size -> input size / 2

• Relu

• Linear : input size /2 -> input size / 4

• Relu

• Linear : input size /4 -> latent space size

• Relu
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 21 Figure 2.1: Time series with an increasing trend until the 2000 point, a decreasing trend from the 2000 point to the 4000 point and an increasing trend again after the 4000 point.
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 22 Figure 2.2: Time series representing the average temperature (°C) each day between 2013 and 2017.

Figure 2 . 3 :

 23 Figure 2.3: Top: Time series with noise. Middle: Time series without noise. Bottom: Noise.
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 2 5 illustrates a contextual anomaly, where the 2. Anomaly detection in time-series
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 24 Figure 2.4: An example of a point anomaly (in red)
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 25 Figure 2.5: An example of a contextual anomaly (in red)
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 26 Figure 2.6: An example of a collective anomaly (in red)
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 27 Figure 2.7: Splitting a time series into a sequence of time windows
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 28 Figure 2.8: Path length to isolate a normal point (left) and an anomalous point (right)
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 29 Figure 2.9: Overview of DBSCAN
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 210 Figure 2.10: Overview of the OC-SVM
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 211 Figure 2.11: Auto-Encoder architecture
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 2 Anomaly Detection generate realistic data, whereas the second one acts as a discriminator (D) trying to discriminate real data from that one generated by G. The training objective of G is to maximize the probability of D making a mistake, whereas the training objective D is to minimize its classification error. Similarly to AE-based, GAN-based anomaly detection uses normal data for training. After training the discriminator is used as an anomaly detector. If the input data is different from the learned data distribution, the discriminator considers it as coming from the generator and classifies it as fake, i.e. as an anomaly.
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 212 Figure 2.12: Generative Adversarial Network architecture
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 2 Figure 2.13: LSTM-VAE architecture
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 2 Figure 2.14: Donut architecture
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 2 Figure 2.15: Bagel architecture
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 2 Figure 2.16: DeepAnt architecture

Figure 2 . 17 :

 217 Figure2.17: DAGMM architecture. Source[START_REF] Zong | Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[END_REF] 
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 2 Figure 2.18: MAD-GAN architecture
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 2 Anomaly Detection is thus based on recurrent GANs. The reconstruction error of the generator is used as an anomaly score.
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 2 Figure 2.19: RCGAN architecture
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 2 Figure 2.20: MSCRED architecture
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 221 Figure 2.21: MTS-DCGAN architecture
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 2 Figure 2.22: BeatGan architecture
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 2 Figure 2.23: FuseAD architecture
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 2 Figure 2.24: RADM architecture
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 225 Figure 2.25: MTAD-TF architecture
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 2 Figure 2.26: ALAD architecture
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 2363 Figure 2.27: OmniAnomaly architecture
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 3 Unsupervised Anomaly Detection on Multivariate Time Series3.1 IntroductionThis chapter presents a new method called UnSupervised Anomaly Detection for multivariate time series (USAD) based on an autoencoder architecture[START_REF] Rumelhart | Learning Internal Representations by Error Propagation[END_REF] whose learning is inspired by GANs. The intuition behind USAD is that the adversarial training of its encoder-decoder architecture allows it to learn how to amplify the reconstruction error of inputs containing anomalies, while gaining stability compared to methods based on GANs architectures. Its architecture makes it fast to trained meeting Orange's expectations in terms of scalability and algorithm efficiency. The main contributions of this chapter are:• It proposes an encoder-decoder architecture within an adversarial training framework that allows to combine the advantages of autoencoders and adversarial training, while compensating for the limitations of each technique.• It performs an empirical study on publicly available datasets to analyze robustness, training speed and performance of the proposed method.• It performs a feasibility study with Orange's proprietary data to analyze if the proposed method meets the company's requirements on scalability, stability, robustness, training speed and high performance.

Phase 1 :

 1 Autoencoder training. At a first stage, the objective is to train each AE to reproduce the input. Input data W is compressed by encoder E to the latent space Z and then reconstructed by each decoder. The training objectives are :

)

  Two-phase training.In this architecture, autoencoders have a dual purpose. AE 1 minimizes the reconstruction error of W (phase 1) and minimizes the difference between W an the reconstructed output of AE 2 (phase 2). As AE 1 , AE 2 minimizes the reconstruction error of W (phase 1) but, it then maximizes the reconstruction error of the input data reconstructed by AE 1 (phase 2). The dual purpose training objective of each AE is expressed as the combination of Equations 3.2, 3.4 in an evolutionary scheme,

Figure 3 . 1 :

 31 Figure 3.1: Proposed architecture illustrating the information flow at training.

3. 3 Figure 3 . 2 :

 332 Figure 3.2: Proposed architecture illustrating the information flow at detection stage.

3 . 4 . 1 )

 341 , analyzing how different parameters affect the performance of the method (3.3.4.2), estimating its computational performance (3.3.4.3) and through an ablation study where, at each time, one is suppress of the training phases (3.3.4.4

Figure 3 . 3 (B) presents 3 .

 333 Unsupervised Anomaly Detection on Multivariate Time Series the obtained results for five different window sizes K ∈ [5, 10, 20, 50, 100]. The best result was achieved for window size K = 10

Figure 3 . 3 :

 33 Figure 3.3: Effect of parameters. Precision, Recall and F1-score as a function of A) the training set's down-sampling rate, B) the window size K, C) the dimension of the latent space Z and D) the percentage of anomalies in the training set

Figure 3 .

 3 4 presents a performance comparison in terms of the F1score using USAD (Combined), USAD with only phase one training (Autoencoders) and with only phase 2 training (Adversarial). Training USAD without adversarial learning accounts to using the objective presented in equation 3.2, whereas suppressing the autoencoder accounts to use the objective from Equations 3.3-3.4. GAN-inspired adversarial training represents an increase in performance of 5.88% (F1 score) with respect to the second best option which is USAD without adversarial training and 24.09% with respect to using only adversarial training. This can be explained by the amplified reconstruction error effect introduced by USAD regardless of the presence or not of an anomaly in the input window. Thus, USAD without its adversarial training cannot detect the anomalies closest to the normal data. USAD's poor performance with only adversarial training is explained by the fact that the method does not have the autoencoder training to orientate the weights in a favorable place before starting phase 2 of adversarial training. In conclusion, ablation of any of the training phases leads to poorer performance. For instance, both ablated versions of USAD have a lower F1 score than that of several of the bench-marked methods (Table

Figure 3 . 4 :

 34 Figure 3.4: Impact with and without adversarial training on USAD

Figure 3 . 5 :

 35 Figure 3.5: Example of a time series from the feasibility study where a configuration incident was detected by USAD. Twenty-four out of the 33 time variables are shown. The orange boxes highlight the variables referred to. In orange, the series referred to in section 3.3.4.5.
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 3 Unsupervised Anomaly Detection on Multivariate Time Series ing inspired by the Generative Adversarial Networks. Its autoencoder architecture makes it an unsupervised method and allows it to show great stability during the adversarial training. A set of five public reference datasets were used to to study the desired properties of USAD. The method demonstrated superior performance over state-of-the-art techniques on public reference datasets in terms of standard F1-score. In addition, its demonstrated fast training, robustness to the choice of parameters and stability allows for high scalability of the model within an industrial setting. USAD also provides the possibility to parameterize its sensitivity and to produce, from a single model, a set of detection levels. This possibility offers

Figure 4 . 1 :

 41 Figure 4.1: Top: DNN automatic feature learning and extraction is limited to a local neighborhood, which is typically represented by the input window information. Middle: the matrix profile algorithm relies on non-local features, which are obtained by comparing every window of the time series. Bottom: the proposed strategy brings non-local feature information to a DNN by transforming the original univariate time series into a multivariate one by combining the raw time series and the non-local information obtained with matrix profile.

Paramaters MP window_size = 100 ,

 100 discords = T rue AE window_size = 100, latent_dimension = 10, Epochs = 100 LSTM-VAE window_size = 100, Epochs = 100 USAD window_size = 100, latent_dimension = 10, Epochs = 100 with MP, respectively (TS+MP)-AE, (TS+MP)-LSTM-VAE and (TS+MP)-USAD are assessed. To validate the relevance of the use of non-local information in the transformation of the time series, an identical combination with a local feature engineering strategy is considered. In particular, in the experiments the moving average (MA), respectively (TS+MA)-AE, (TS+MA)-LSTM-VAE and (TS+MA)-USAD) is used. 4.4.2.1 Implementation.

3
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 4 From Univariate to Multivariate Time Series Anomaly Detection with Non-Local Information

Figure 4 . 2 :

 42 Figure 4.2: Anomaly correctly detected by USAD only with a multivariate input combining Matrix-Profile and original univariate time series

Figure 4 . 3 :

 43 Figure 4.3: Anomaly correctly detected by USAD only with a multivariate input combining Matrix-Profile and original univariate time series

4 .

 4 From Univariate to Multivariate Time Series Anomaly Detection with Non-Local Information tional time of DNN methods is very little impacted when the dimension of the time series increases. In fact, the AE's computational time goes from 21993 seconds in the fastest univariate configuration to 22491 seconds in the multivariate case. This means an increase of only 2.2% on computational time for a gain in performance of 230%.

  It studies and analyze the performance of sixteen of the most commonly used methods for anomaly detection in multivariate time series grouped into three categories: Conventional, machine learning-based and DNN-based over five open real-world data sets. • It discusses the need for DNN-based approaches and the importance of conventional methods in future benchmarks for multivariate time series anomaly detection. The rest of this chapter is organized as follows. Section 5.2 briefly reviews other works comparing modern DNN-based methods to previous non-DNN-based works. Sections 5.3 and 5.4 describe the experiments and analyze the performance on the data sets.
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 51 Figure 5.1 (top) represents the false negatives of all the conventional methods.
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 51 Figure 5.1: Top row: False negatives of conventional methods; Second row: False negatives of Machine learning algorithms; Third row: False negatives of DNNs approaches; Fourth row: False negatives of conventional methods that were well predicted by DNNs methods; Fifth row: Ground truth Labels
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 52 Figure 5.2: Contextual anomaly in red due to the activation of a motorized valve (1_MV_001) which causes the filling of the tank (1_LT_001) before it reaches the switching threshold (located at 40)
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 53 Figure 5.3: Area under the Receiver operating characteristic curve (AUC) on SWaT dataset.
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 54 Figure 5.4: Average precision (AP) on SWaT dataset.
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 55 Figure 5.5: Area under the Receiver operating characteristic curve (AUC) on WADI dataset.
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3.1 Proposed architecture illustrating the information flow at training. . .

Table 1 . 1 :

 11 Peer-reviewed deep learning-based methods for anomaly detection in multivariate time series from 2018 to 2021

	Methods	Description	Datasets
	AE [21]	Autoencoder	MSL, SMAP, SMD, SWaT, WADI
	Donut		

  distinguish the real data from the data coming from AE 1 , and to train AE 1 to fool AE 2 . Data coming from AE 1 is compressed again by E to Z and then reconstructed by AE 2 . Using an adversarial training configuration, the objective of AE 1 is to minimize the difference between W and the output of AE 2 . The objective of AE 2 is to maximize this difference. AE 1 trains on whether or not it succeeds in fooling AE 2 , and AE 2 distinguishes the candidates reconstructed by AE 1 from the real data. The training objective is :

  3. Unsupervised Anomaly Detection on Multivariate Time Seriestrained model, to obtain during the inference a set of different sensitivity anomaly scores. This is further illustrated in Section 3.3.4.2. Test windows Dataset W : ( W 1 , ..., W T * ) , threshold λ , parameters α and β Output: Labels y : {y 1 , ..., y T *

	Algorithm 2 USAD Detection algorithm
	Input:

Table 3 . 1 :

 31 Benchmarked Datasets. (%) is the percentage of anomalous data points in the dataset. with TP the True Positives, FP the False Positives, and FN the False negatives.

	Dataset	Train	Test Dimensions Anomalies (%)
	SWaT	496800 449919	51	11.98
	WADI	1048571 172801	123	5.99
	SMD	708405 708420	28*38	4.16
	SMAP	135183 427617	55*25	13.13
	MSL	58317	73729	27*55	10.72
	Orange 2781000 5081000	33	33.72

water

[START_REF] Goh | A Dataset to Support Research in the Design of Secure Water Treatment Systems[END_REF]

. The collected dataset

[START_REF] Mathur | SWaT: a water treatment testbed for research and training on ICS security[END_REF] 

consists of 11 days of continuous operation: 7 days collected under normal operations and 4 days collected with attack scenarios.

Water Distribution (WADI) Dataset This dataset 1 is collected from the WADI testbed, an extension of the SWaT tesbed

[START_REF] Mathur | SWaT: a water treatment testbed for research and training on ICS security[END_REF]

. It consists of 16 days of continuous operation, of which 14 days were collected under normal operation and 2 days with attack scenarios.

Server Machine Dataset SMD is a new 5-week-long dataset from a large Internet company collected and made publicly available 2

[START_REF] Su | Robust anomaly detection for multivariate time series through stochastic recurrent neural network[END_REF]

. It contains data from 28 server machines each one monitored by m = 33 metrics. SMD is divided into two subsets of equal size: the first half is the training set and the second half is the testing set.

Table 3 . 2 :

 32 Performance comparison.Precision (P), recall (R) and F1 score with and without point-adjust (Without) in SWaT datasets.

	Methods			SWaT		
			Without			With
		P	R	F1	P	R	F1
	AE	0.9903 0.6295 0.7697 0.9913 0.7040 0.8233
	IF	0.9512 0.5884 0.7271 0.9620 0.7315 0.8311
	LSTM-VAE	0.9897 0.6377 0.7756 0.7123 0.9258 0.8051
	DAGMM	0.4695 0.6659 0.5507 0.8292 0.7674 0.7971
	OmniAnomaly 0.9825 0.6497 0.7822 0.7223 0.9832 0.8328
	USAD	0.9851 0.6618 0.7917 0.9870 0.7402 0.8460

Table 3 .

 3 

	3: Performance comparison. Precision (P), recall (R) and F1 score with and
	without point-adjust (Without) in WADI datasets.		
	Methods			WADI		
			Without			With
		P	R	F1	P	R	F1
	AE	0.9947 0.1310 0.2315 0.3970 0.3220 0.3556
	IF	0.2992 0.1583 0.2071 0.6241 0.6155 0.6198
	LSTM-VAE	0.9947 0.1282 0.2271 0.4632 0.3220 0.3799
	DAGMM	0.0651 0.9131 0.1216 0.2228 0.1976 0.2094
	OmniAnomaly 0.9947 0.1298 0.2296 0.2652 0.9799 0.4174
	USAD	0.9947 0.1318 0.2328 0.6451 0.3220 0.4296

Table 3 .

 3 

	5: Average performance (± standard deviation) over all datasets using point-
	adjust.			
		P	R	F1	F1*
	AE	0.77(0.21)	0.76(0.24)	0.73(0.19) 0.86 (0.04)
	IF	0.64(0.17)	0.68(0.11)	0.62(0.12) 0.60 (0.09)
	LSTM-VAE	0.72(0.15)	0.80(0.25) 0.75 (0.18) 0.86 (0.04)
	DAGMM	0.62(0.21)	0.76(0.29)	0.65(0.22) 0.79 (0.04)
	OA	0.73(0.25) 0.95(0.04)	0.78(0.19) 0.91( 0.04)
	USAD	0.84(0.12)	0.80(0.25) 0.79(0.18) 0.91(0.04)

Table 3 . 6 :

 36 Anomaly detection results with various sensitivity thresholds for SWaT dataset

	α	β	FP	TP	F1
	0.0 1.0 604 35,616 0.7875
	0.1 0.9 580 35,529 0.7853
	0.2 0.8 571 35,285 0.7833
	0.5 0.5 548 34,590 0.7741
	0.7 0.3 506 34,548 0.7738
	0.9 0.1 299 34,028 0.7684

Table 3 .

 3 6 reports the effect of varying α, β in the number of detected FPs, TPs and the F1 score.

Table 3

 3 

	.7: Training Time (min) per epoch on each dataset
	Methods	SWAT WADI SMD SMAP MSL
	OmniAnomaly	13	31	87	48	11
	USAD	0.06	0.12 0.06	0.08 0.03
	Acceleration factor	216	258 1331	581	349
	3.3.4.4 Ablation Study					
	Using SMD, SMAP and MSL datasets, the effects of the two-phase training of USAD
	is investigated.					

Table 3 . 8 :

 38 Anomaly detection results on Orange internal Dataset (without pointadjust)

	Method Precision Recall F1-score
	USAD	0.7448 0.6428	0.6901

Table 4 . 2 :

 42 Methods performance and computational time.

	Method	Performance Train and Test time
			(s×10 3 )
	Matrix-Profile	0.416	1.47
	AE	0.236	22.00
	LSTM-VAE	0.198	85.31
	USAD	0.276	29.00
	MP-AE	0.292	22.16
	MP-LSTM-VAE	0.344	84.30
	MP-USAD	0.404	29.10
	(TS+MA)-AE	0.148	22.38
	(TS+MA)-LSTM-VAE	0.134	85.43
	(TS+MA)-USAD	0.176	29.12
	(TS+MP)-AE	0.536	22.50
	(TS+MP)-LSTM-VAE	0.446	85.83
	(TS+MP)-USAD	0.488	29.28

  Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . 69 5.3.1 Public Datasets . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . 70 5.4 Experiments and Results . . . . . . . . . . . . . . . . . . . 70 5.4.1 Benchmark Performance . . . . . . . . . . . . . . . . . . . 71 5.4.2 Analysis of WADI . . . . . . . . . . . . . . . . . . . . . . 72 5.4.3 Impact of training set size . . . . . . . . . . . . . . . . . . 74 5.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76This chapter studies the anomaly detection performance of sixteen conventional, machine learning-based and, deep neural network approaches on five real-world open datasets. By analyzing and comparing the performance of each of the sixteen methods, it shows that no family of methods outperforms the others. Thus, it is impossible to affirm that deep neural networks are superior to previous methods.

	Chapter 5 Are Deep Neural Networks Methods Needed for Anomaly Detection on Multivariate Time Series? Contents 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Detection on Multivariate Time Series? 5.1 Introduction This chapter presents a comparison between conventional methods, machine learning-based and more recent DNN-based approaches. This work is motivated by different recent works, which have reported on the limitations and drawbacks of DNN-based 5.2 5. Are Deep Neural Networks Methods Needed for Anomaly methods in different application fields

  Different studies have raised the question about the real gain of DNN-based methods in several application fields. A first study by Fernandez-Delgado et al.[START_REF] Fernández-Delgado | Do we need hundreds of classifiers to solve real world classification problems?[END_REF] pre-

	5.3 Experimental setup
	of accuracy. In [94], Jiao et al. showed how conventional linear regression meth-
	ods outperform DNN-based techniques in two showcased optical imaging problems,
	i.e. an optical cryptosystem attack and blind reconstruction in single pixel imaging.
	Autun et al. [92] proposed a stability test to demonstrates how DNN-based methods
	for image reconstruction are very sensitive to tiny perturbations in the input images
	sented a comprehensive evaluation of 179 classifiers from a collection of 17 families
	of methods, (including neural networks, support vector machines, random forests,
	generalized linear models, nearest-neighbors, partial least squares and principal com-
	ponent regression among others) on a large number of classification tasks from the
	UCI Machine Learning Repository 1 . The empirical studied suggested that a rela-
	tively simple algorithm, the random forest, was overall the best classifier in terms

Table 5 . 1 :

 51 Benchmarked Datasets. (%) is the percentage of anomalous data points in the dataset.

	Dataset	Train	Test Dimensions Anomalies (%) Type of anomaly
	SWaT	496800 449919	51	11.98	P, C, Col
	WADI	1209601 172801	123	5.99	P, C, Col
	SMD	708405 708420	28*38	4.16	P, Col
	SMAP	135183 427617	55*25	13.13	P, Col
	MSL	58317 73729	27*55	10.72	P, Col
	P: Point Anomaly, C: Contextual anomaly, Col: Collective anomaly

  Using WADI and SWaT datasets, The impact of the training set size on the performance of the methods is studied. the size of the training set is reduced by keeping the most recent points, i.e. the closest to the test set. 10% , 25% , 50% and 75% of the original training points are kept. For each set, one model per method is trained and its performance assessed. Figures 5.3 and 5.4 present respectively the AUC and the AP obtained on the SWaT dataset and Figures 5.5 and 5.6 on the WADI dataset. Conventional methods globally obtain better results when the dataset size is less than 50% of the original one. For example, on the SwaT dataset, MP, PCA and ICA outperform in terms of AP all ML and DNN methods when the training set is 50% or less. Their performance is matched by OC-SVM at 50%, and it is outperformed only when three quarters of the training dataset is retained. The performance of conventional approaches remains relatively constant, despite changes in

	5. Are Deep Neural Networks Methods Needed for Anomaly
	Detection on Multivariate Time Series?
	5.4.3 Impact of training set size

Table 5 . 2 :

 52 Summarized performance measures per each category of methods. For each measure the mean ± standard deviation, and the [minimum, maximum] values per category are reported. Values are reported as % [60.2,98.2] 84.8±13.6 [71.2,99.1] R 74.5±2.6 [-,78.5] 80.8±11.4 [73.8,97.7] 82.4±12.3 [70.4,98.3] F1 70.6±22.2 [-,82.7] 80.9±4.4 [74.5,84.3] 82.1±2.0 [79.7,84.6] AUC 74.9±13.4 [-,81.5] 76.1±11.4 [59.1,83.3] 83.0±0.8 [82.2,84.0] AP 59.4±26.4 [-,71.6] 57.0±30.0 [12.0,72.7] 72.8±0.7 [71.5,73.4] WADI P 29.8±15.5 [-,50.8] 49.4±42.2 [9.1,98.5] 39.9±16.8 [22.3,64.5] R 30.1±4.1 [-,32.5] 64.9±37.5 [15.9,95.1] 42.9±31.3 [19.8,98.0] F1 27.7±6.0 [-,32.5] 34.6±19.3 [16.6,61.7] 35.8±8.9 [20.9,43.0] AUC 50.8±0.8 [-,51.3] 57.6±10.0 [48.6,70.8] 63.9±2.8 [59.3,66.8]

	Dataset Metric	Conventional	Machine learning	DNN
	SWaT	P 84.8±16.8 AP 75.1±31.4 [-,92.5] 16.1±6.7 [-,20.3] 15.4±5.7 [7.5,20.4]	25.5±3.0 [21.5,29.3]
		P	72.9±23.4 [21.7,89.1] 72.2±18.8 [47.0,92.6] 86.7±11.7 [67.3,98.1]
		R	70.1±7.1 [56.3,78.0] 95.6±6.2 [86.3,99.0]	86.9±8.0 [78.8,96.2]
	SMD	F1	62.9±20.8 [20.4,80.1] 75.6±13.1 [56.8,87.2] 84.8±9.3 [72.3,94.4]
		AUC	66.2±3.9 [59.9,70.1]	72.4±4.8 [66.3,77.1]	74.4±3.2 [69.5,77.5]
		AP	24.9±7.1 [17.2,34.6]	23.3±9.8 [8.7,29.5]	29.6±3.7 [26.1,35.2]
		P	60.0±17.4 [38.7,78.4] 74.9±9.7 [60.5,80.5]	72.7±4.2 [66.3,77.0]
		R	96.4±3.5 [89.0,98.8] 92.1±11.5 [74.9,98.7] 98.3±0.9 [97.6,99.8]
	SMAP	F1	64.5±16.4 [42.8,82.0] 79.6±8.5 [66.9,84.3]	77.4±4.3 [71.2,81.9]
		AUC	59.8±4.2 [52.7,65.7]	58.4±4.6 [52.8,63.9]	63.5±1.7 [60.7,65.2]
		AP	24.4±4.0 [16.7,28.8]	21.5±5.7 [14.7,26.4]	27.3±1.6 [24.9,29.1]
		P	71.6±15.0 [49.3,87.3] 81.0±8.9 [70.1,91.3]	85.3±5.9 [75.6,91.4]
		R	94.2±4.3 [84.7,97.1]	83.6±6.9 [73.7,89.8]	96.0±4.0 [88.9,98.0]
	MSL	F1	74.4±15.1 [51.0,90.1] 78.1±7.5 [69.3,86.0]	87.0±3.9 [81.1,91.1]
		AUC	60.9±3.0 [55.3,64.7]	60.1±3.6 [56.3,63.4]	62.5±0.5 [61.8,63.2]
		AP	25.0±4.0 [20.2,29.8] 21.6±5.9 [15.1,27.0]	24.4±1.5 [22.5,26.1]

Table 1 :

 1 USAD Hyper-parameters for each dataset. K denotes the window size and m the dimension of the latent space.

	Datasets K Epochs	m Down-sampling
	SWat	12	70 40	5
	WADI	10	70 100	5
	SMD	5	250 38	5
	SMAP	5	250 55	5
	MSL	5	250 33	5

https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/#swat

https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/#wadi

https://github.com/smallcowbaby/OmniAnomaly

https://stumpy.readthedocs.io

https://github.com/TimyadNyda/Variational-Lstm-Autoencoder

https://github.com/robustml-eurecom/usad

https://archive.ics.uci.edu/ml/index.php

PYOD : https://github.com/yzhao062/pyod

Scikit Learn : https://scikit-learn.org/
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(coming from the other autoencoder). As with the base AE, the anomaly score is obtained as the difference between the input data and the data reconstructed by the concatenated autoencoders.

Experiments and Results

This section first describes the datasets used and the experimental setup used in this work. Then, The performance of the proposed approach is studied and compared against other techniques.

Datasets

In 

Experimental setup

The percentage of correctly labeled series is used to evaluate the performance of the method. A time series is considered to be correctly predicted when the index of the point labeled as anomalous is included in a window of 100 points around the true anomaly. This method is compared against the matrix-profile (MP), the auto-encoder (AE), anomalies. Indeed, the difficulty for experts to visually label contextual anomalies in multivariate time series makes it difficult to obtain test sets covering this criterion.

It is then complicated to assert that DNN methods are necessary although it seems that they are able to outperform conventional approaches in this domain when the data set is large enough. 

Packages Used in the Implementation

The relevant packages and their versions used in the algorithm implementation are listed as follows:

• python==3.6.8

• pytorch==1.3.1

• cuda==10.0

• scikit-learn==0.20.2 

A.2 Material for Benchmark Reproducibility

Experimental Setting

All experiments are performed on a machine equipped with an Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz and 270 GB RAM, in a docker container running CentOS 7 version 3.10.0 with access to an NVIDIA GeForce GTX 1080 Ti 11GB GPU. 

Parameters