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Abstract

Anomaly detection in multivariate time series is a major issue in many
fields. The growing complexity of systems and the explosion of the
quantity of data have made its automation essential. Methods based
on Deep Learning have shown good results in terms of detection but
do not meet the industrial requirements due to their long training and
limited robustness. To meet the industrial needs, this thesis proposes a
new unsupervised method for anomaly detection in multivariate time se-
ries called USAD based on an auto-encoder architecture and adversarial
training. This method meets the requirements of robustness and speed
of training of the industrial world while achieving state-of-the-art per-
formance in terms of detection. However, deep neural network methods
suffer from a limitation in their ability to extract features from the data
since they only rely on local information. Thus, in order to improve the
performance of these methods, this thesis presents a feature engineering
strategy that introduces non-local information. This strategy increases
the performance of neural network based approaches without increasing
the training time. Given the good performance of deep learning meth-
ods for anomaly detection in multivariate time series in recent years,
researchers have neglected all other methods in their benchmark, caus-
ing the complexity of the proposed methods to explode in the current
publication. This lack of comparison with more conventional methods in
the literature does not allow to assert that the progress reported in the
benchmarks is not illusory and that this increasing complexity is neces-
sary. To address this issue, this thesis proposes a comparison of sixteen
methods for anomaly detection in multivariate time series grouped into
three categories: Conventional methods, machine-learning methods and
approaches based on deep neural networks. This study shows that there
is no evidence that deep neural networks are a necessity to address this
problem.

Keywords: Anomaly Detection, Time Series, Multivariate, Deep Learn-
ing, Unsupervised



Résumé

La détection d’anomalie dans les séries temporelles multivariées est un
enjeu majeur dans de nombreux domaines. La complexité croissante des
systèmes et l’explosion de la quantité de données ont rendu son automa-
tisation indispensable. Les méthodes basées sur le Deep Learning ont
montré de bons résultats en termes de détection mais ne répondent pas
aux besoins industriels en raison de leur long apprentissage et de leur
robustesse limitée. Pour répondre aux besoins industriels, cette thèse
propose une nouvelle méthode non supervisée de détection d’anomalies
dans les séries temporelles multivariées appelée USAD basée sur une ar-
chitecture d’auto-encodeur et un entraînement adversaire. Cette méth-
ode répond aux exigences de robustesse et de rapidité d’apprentissage du
monde industriel tout en atteignant des performances de pointe en termes
de détection. Cependant, les méthodes de réseaux de neurones profonds
souffrent d’une limitation dans leur capacité à extraire des caractéris-
tiques des données puisqu’elles ne s’appuient que sur des informations
locales. Ainsi, afin d’améliorer les performances de ces méthodes, cette
thèse présente une stratégie d’ingénierie des caractéristiques qui introduit
des informations non-locales. Cette stratégie permet d’augmenter les
performances des approches basées sur les réseaux de neurones sans aug-
menter le temps d’apprentissage. Compte tenu de la bonne performance
des méthodes d’apprentissage profond pour la détection d’anomalies dans
les séries temporelles multivariées ces dernières années, les chercheurs ont
négligé toutes les autres méthodes dans leur benchmark, ce qui a provo-
qué l’explosion de la complexité des méthodes proposées dans les publica-
tions actuelles. Ce manque de comparaison avec des méthodes plus con-
ventionnelles dans la littérature ne permet pas d’affirmer que les progrès
rapportés dans les benchmarks ne sont pas illusoires et que cette com-
plexité croissante est nécessaire. Pour répondre à cette problématique,
cette thèse propose une comparaison de seize méthodes de détection
d’anomalies dans les séries temporelles multivariées regroupées en trois



catégories : Les méthodes conventionnelles, les méthodes d’apprentissage
automatique et les approches basées sur les réseaux neuronaux profonds.
Cette étude montre que rien ne prouve que les réseaux de neurones pro-
fonds soient une nécessité pour résoudre ce problème.

Mots-clés: Détection d’anomalies, séries temporelles, multivariées, uni-
variées, apprentissage profond, non supervisé.
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Chapter 1

Introduction

1.1 Context and Motivations

Time series and their analysis are becoming increasingly important due to the mas-
sive production of these data. Time series are used in a large number of fields such
as industrial control systems [2], finance [3], and healthcare [4].
Time series analysis consists in extracting information from points arranged in a

chronological order, i.e. the time series, and it can serve multiple purposes. The
most common is to observe the history of a variable in order to make a forecast.
This involves predicting future values of such variable based on previously observed
values of it. Another common objective is to discover correlations between time
series. This allows to understand the interactions between different variables in a
system. Many other objectives explain the popularity of time series analysis such as
the search for trends, cycles, seasonal variations or the detection of unusual behavior.
Detecting unexpected behaviors or patterns that do not conform to the expected

behavior is an active research discipline called anomaly detection in time series [5].
Anomaly detection is an important field. It consists in detecting rare events or,
more generally, observations that are aberrant and different from the majority of
data. These rare events can be of various types and they are present in multiple and
different domains (fraudulent financial transactions, medical problems or network
intrusions). Detecting these rare events is a major issue for many fields. For example,
detecting bank transaction fraud could save 32 billion dollars worldwide by 2020 [6].
It is therefore essential for the industry to be able to detect anomalies in their
system.

1



1. Introduction

This thesis focuses the critical task of anomaly detection. Specifically, it focuses
on a subset of time series anomaly detection methods, which is unsupervised detec-
tion. Unlike supervised detection, unsupervised detection methods do not require a
label associated to the data samples. The objective is then to detect behavior that
would be different from previously observed data [7]. Finally, this thesis focuses on
multivariate time series, since it is the most generic context as the univariate time
series are only a special case of the multivariate context with m = 1 as presented in
the section 2.1.1.
Over the last decade, there has been an increased enthusiasm around deep neural

networks (DNNs) [8] thanks to their demonstrated ability to infer high-order cor-
relations in complex data with potentially large volume and dimensionality [9, 10].
Anomaly detection in time series has not escaped this trend. DNN-based methods
aim to learn deep latent representations of the multivariate time series to infer a
model of variability, that is then used for anomaly grading in unseen data. The
rationale behind the increased use of DNN architectures lies in the need of learning
potentially complex data patterns underlying the temporal evolution of multivariate
data. Thus, many approaches have emerged, mainly based on recurrent neural net-
works to capture temporal information [11, 12, 13]. However, these methods obtain
good results at the expense of their training speed. Indeed, none of these methods
takes into account the training time in their performance criteria. This is why it
is necessary to develop methods with performances equivalent to the state of the
art in terms of anomaly detection, while favoring architectures that allow fast and
energy-efficient training.
As with any machine learning method, the performance of deep learning meth-

ods is correlated to the quality of the extracted features [14]. Feature engineering
for augmenting time series data is usually done by bringing external but correlated
information as an extra variate to the time series. This, however, requires domain
knowledge about the measured process. Another strategy for machine learning meth-
ods is to create local features on the time series, such as moving averages or local
maximum and minimum. Both strategies, as they are manual, are not very efficient,
time consuming and require high domain knowledge expertise [15]. In theory, DNNs
have emerged as a promising alternative given their demonstrated capacity to auto-
matically learn local features, thus addressing the limitations of more conventional
statistical and machine learning methods. Despite their demonstrated power to
learn such local features, it has been shown that feature engineering can accelerate

2



1.1 Context and Motivations

and improve the learning performance of DNNs [16] and an intrinsic limitation of
DNN-learned features is that they rely solely on local information. However, there
is currently no well established method in the literature that addresses this issue for
time series.
As a result of the good performance demonstrated by DNNs in multiple fields [9,

10, 17, 18], in recent years there has been a boom of DNN-based methods for multi-
variate time series anomaly detection (Table 1.1). These works, however, have moved
away from comparisons with more traditional methods, i.e. machine learning [19]
and conventional/statistical methods (e.g. [1, 2, 13]) while suggesting methodolog-
ical advances and improved performance of DNN-based methods. This trend has
encouraged the community to develop even more complex models to improve the
performance of DNN-based methods, without any theoretical or empirical evidence
that these are superior to the more established body of methods in the literature.
DNN-based models are complex to train, involving the estimation of a large

amount of parameters and requiring large training sample sizes and computational
resources. Moreover, their complexity continues to grow as larger models continue
to be developed. Instead, conventional models are simpler, lighter, easier to inter-
pret, and often better adapted to the constraints of real-world applications. It is
therefore crucial to determine if the complexity brought in by DNN-based methods
is a necessary price to pay for a gain in performance or if the progress reported in
recent years is illusory [20] and the use of conventional methods should be preferred.
The lack of a general comparison covering all families of methods does not allow to
answer this question and hinders the translation and use of DNN-based methods in
real-world applications. A complete benchmark of such characteristics is currently
missing in the literature.

3



1. Introduction

Table 1.1: Peer-reviewed deep learning-based methods for anomaly detection in mul-
tivariate time series from 2018 to 2021
Methods Description Datasets

AE [21] Autoencoder MSL, SMAP, SMD, SWaT, WADI
Donut [22] Variational Autoencoder Private
Bagel [23] Conditional Variational Autoencoder Private
RGAN [24] Recurrent Generative Adversarial Networks MIT-BIH
OmniAnomaly [13] Gated Recurrent Unit and Variational Autoencoder MSL, SMAP, SMD, SWaT, WADI
BeatGAN [25] Autoencoder and Generative Adversarial Network CMU Motion Capture
MAD-GAN [12] Generative Adversarial Networks SWaT , WADI, KDDCUP99
LSTM-VAE [11] LSTM-Variationnal Autoencoder MSL, SMAP, SMD, SWaT, WADI
DeepAnT [26] Convolutional neural network Yahoo Webscope
MTS-DCGAN [27] Deep Convolutional Generative Adversarial Network Genesis D., Satellite, Shuttle, Gamma P.
USAD [2] Adversely trained Autoencoders MSL, SMAP, SMD, SWaT, WADI
FuseAD [28] ARIMA and Convolutional neural network Yahoo Webscope, NAB
Telemanom [29] Vanilla LSTMs SMAP , MSL
RADM [30] Hierarchical Temporal Memory and Bayesian Network NAB
DAGMM [1] Deep Autoencoding Gaussian Mixture Model MSL, SMAP, SMD, SWaT, WADI
MTAD-TF [31] Convolutional and Graph Attention Network MSL, SMAP, SMD

1.2 Contributions

This thesis is a CIFRE (Convention Industrielle de Formation par la Recherche)
thesis which is a collaboration between Orange and EURECOM. Orange is a French
telecommunications company. It has nearly 270 million customers worldwide. Thus,
the contributions and methods developed during this thesis are intended to be inte-
grated into the industrial environment of Orange. All the contributions of the thesis
are the following:

• A fast and stable method called UnSupervised Anomaly Detection for multi-
variate time series (USAD) based on adversarialy trained auto-encoders. Its
auto-encoder architecture makes it capable of unsupervised learning. The use
of adversarial training and its architecture allow it to isolate anomalies while
providing fast training.

• A novel feature engineering strategy to augment time series data in the context
of anomaly detection using DNNs. The goal is two-fold. First, to transform
univariate time series into multivariate time series to improve DNNs perfor-
mance. Second, to use a feature engineering strategy that introduces non-local
information into the time series, which DNNs are not able to learn. This is
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done by using a data structure called Matrix-Profile as a generic non-trivial
feature. Matrix-Profile allows to extract non-local features corresponding to
the similarity among the sub-sequences of a time series. The performance
compared to each individual method shows that the method achieves better
performance without increasing the computation time.

• A study of the performance of anomaly detection for sixteen conventional,
machine learning-based and deep neural network-based approaches including
USAD on five open real-world datasets. The analysis and comparison of the
performance of each of the sixteen methods, shows that no family of methods
outperforms the others. While deep neural networks appear to perform better
when the dataset contains contextual anomalies or when the datasets are large,
conventional techniques perform better when the dataset is small. Thus, it is
impossible to claim that deep neural networks are superior to previous methods
and the community should reincorporate the three categories of methods in
the anomaly detection in multivariate time series benchmarks.

1.3 Structure of thesis

The content of the following chapters is summarized in this section.

• Chapter 2 is divided into two main parts. The first one presents the time
series and their characteristics. The second part is dedicated to the anomaly
detection in time series and presents a state of the art of the methods classified
in three main categories: Conventional, Machine-Learning and Deep-Learning
methods.

• Chapter 3 introduces a unsupervised anomaly detection method on multivari-
ate time series composed of an adversely trained auto-encoders architecture
and shows the performance of the method on five real-world open datasets as
well as on Orange’s proprietary data.

• Chapter 4 presents a feature engineering strategy that transforms univari-
ate time series into multivariate ones by introducing non-local information
and shows that this strategy addresses a limitation of Deep Neural Networks,
and demonstrates that the combination outperforms each method individually
without increasing computational time.
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• Chapter 5 questions the need for ever more complex methods based mainly
on Deep Neural Networks for anomaly detection in multivariate time series
and proposes a study on sixteen methods belonging to the three categories
presented in chapter 2.The performance analysis shows that none of the three
categories outperform the others. And is discussed the possible performance
illusion of Deep Neural Networks based methods in multivariate time series
anomaly detection benchmarks.

• Finally, Chapter 6 summarizes the main contributions presented in this work
and present some thoughts on the possible continuation of this research.

1.4 Publications

This thesis is based on research that has led to the publication of articles. Portions
of the contents that appear in this dissertation have been published before in:

• Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and
Maria A. Zuluaga. USAD: UnSupervised Anomaly Detection on Multivari-
ate Time Series. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD ’20).

• Julien Audibert, Frédéric Guyard, Sébastien Marti, and Maria A. Zuluaga.
From Univariate to Multivariate Time Series Anomaly Detection with Non-
Local Information. In Proceedings of the 6th Workshop on Advanced Analytics
and Learning on Temporal Data at ECML PKDD 2021.

• Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and
Maria A. Zuluaga. On the Benefits of Deep Neural Networks for Multivariate
Time Series Anomaly Detection under review at Pattern Recognition 2021.

1.5 Challenge participation

Part of the methods developed in this thesis participated in the KDDCUP2021, on
the challenge "Multi-dataset Time Series Anomaly Detection". The participating
method obtained the 16th place over 565 participants.
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Chapter 2

Anomaly detection in time-series

Contents
2.1 Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Univariate vs Multivariate . . . . . . . . . . . . . . . . . . 8

2.1.2 Decomposition of a time series . . . . . . . . . . . . . . . 8

2.1.3 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Types of Anomalies in Time Series . . . . . . . . . . . . . 11

2.2.2 Supervised vs Unsupervised method . . . . . . . . . . . . 12

2.2.3 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 Conventional methods . . . . . . . . . . . . . . . . . . . . 14

2.2.5 Machine learning-based methods . . . . . . . . . . . . . . 18

2.2.6 Deep learning-based methods . . . . . . . . . . . . . . . . 21

This chapter presents in a first part what are time series and their characteristics.
Then in a second part, the problem of anomaly detection in time series is formalized,
followed by a description of the different methods to solve this problem.
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2. Anomaly detection in time-series

2.1 Time Series

A time series is defined as a sequence of ordered continuous values, which repre-
sents the evolution of a numerical variable over time. It is the measurement of a
system evolving in time with numerical attributes: for example, the temperature of
a computer server, the value of a company’s stock or the electrical activity of the
heart (ECG). A time series is, therefore, any sequence of observations indexed by
time. A time series carries a lot of information about the measured system. This
information can be used to ensure the proper functioning of the system.

2.1.1 Univariate vs Multivariate

A univariate time series is a set of measured values that model and represent the
behavior of a process over time. A multivariate time series is a set of measurements
correlated with each other over time, which models and represents the behavior of
a multivariate process in time.
More formally, a univariate time series is a sequence of data points

T = {x1, . . . , xT},

each one being an observation of a process measured at a specific time t. Univariate
time series contain a single variable at each time instant, while multivariate time
series record more than one variable at a time; Multivariate time series are denoted
by T = {x1, . . . ,xT}, x ∈ Rm.

2.1.2 Decomposition of a time series

A time series (T) is considered to be the result of different fundamental components:
Trend, seasonality, level and noise.

2.1.2.1 Trend

The trend (Zt) represents the long-term evolution of the series studied. It reflects
the "average" behavior of the series. For example, the series shown in Figure 2.1
shows an increasing trend from zero to 2000 and a decreasing trend from 2000 to
4000.
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2.1 Time Series

Figure 2.1: Time series with an increasing trend until the 2000 point, a decreasing
trend from the 2000 point to the 4000 point and an increasing trend again after the
4000 point.

Figure 2.2: Time series representing the average temperature (°C) each day between
2013 and 2017.

2.1.2.2 Seasonality

Seasonal compounding or seasonality corresponds to a phenomenon that repeats
itself at regular time intervals (periodicity). For example, the Figure 2.2 shows an
annual seasonality. We can see four periods between 2013 and 2017.

2.1.2.3 Level

The level of a time series corresponds to the mean of the time series. If a time series
has a trend, then its level changes.

2.1.2.4 Noise

The residual component or noise corresponds to irregular fluctuations, generally of
low intensity but of a random nature. For example, the Figure 2.3 shows a time
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2. Anomaly detection in time-series

Figure 2.3: Top: Time series with noise. Middle: Time series without noise. Bottom:
Noise.

series (top), then its decomposition, i.e. the time series without noise (middle) and
the noise (bottom)

2.1.3 Stationarity

The notion of stationarity characterizes the capacity of a process to decorrelate itself
completely from the temporal index. The time series T is said to be stationary at
low order, or stationary at second order if the first (mean) and second (variance and
autocovariance) moments of the process exist and are independent of t.
Stationarity is a property of stability, the distribution of {x1, . . . , xt} is identical

to the distribution of {x2, . . . , xt+1}. The series oscillates around its mean with a
constant variance. The link between xt and xt−k then depends only on the interval
k and not on the date t.

2.2 Anomaly Detection

An anomaly can be defined as an observation that is unexpected with respect to
a set of other pre-established observations considered as normal. More formally,
in a set D containing n observations noted xi, then xp ∈ A will be considered as
abnormal if it differs, by its characteristics, from the other observations, i.e. from
those contained in the set A \ {xp}. The definition of the term anomaly is specific
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2.2 Anomaly Detection

to the use case. The most common one in the field of detection is an observation
which is different from the others by its singularity: it could result from a set of
rules which are different from the other observations [32]
Anomalies in time series, also called outliers, are points or sequences of points

that do not correspond to normal behavior [33]. The concept of normal behaviour is
difficult to formalize. Therefore, another possible definition for anomalies could be a
pattern in data that is not expected in comparison to what has been seen before [33].
In fact, an implicit assumption is that anomalies are rare events. Anomalies should
not be confused with the noise present in the time series. Noise is a phenomenon
which, unlike anomalies, has less interest in being analyzed.
However, anomalies may indicate a significant problem in several applications.

For example, an anomaly in industrial control systems may indicate a malfunction,
financial anomalies may be the result of a fraud, or they may indicate diseases in
healthcare. Being a critical task, there is a wide range of methods that have been
developed to address it [34, 35].
Anomaly detection refers to the task of identifying an unseen observation x̂t, t > T ,

based on the fact that it differs significantly from T, thus assuming that T contains
only normal points. The amount by which the unseen sample x̂t and the normal set
T differ is measured by an anomaly score, which is then compared to a threshold to
obtain an anomaly label.

2.2.1 Types of Anomalies in Time Series

Chandola et al. [33] propose to classify time series anomalies into three types,
point, contextual and collective anomalies.

• Point anomalies. This is the simplest type of anomaly. It corresponds to a
point that differs from the rest of the data (Figure 2.4).

• Contextual anomalies. A contextual anomaly can be defined as follows
: A data point is anomalous in a specific context, but is considered normal
in another context, meaning that observing the same point through different
contexts does not always give a sign of abnormal behavior. For example, a
temperature of 30°C during summer is normal, while the same temperature
in winter is abnormal. Figure 2.5 illustrates a contextual anomaly, where the

11



2. Anomaly detection in time-series

Figure 2.4: An example of a point anomaly (in red)

values of the two time-series are not abnormal taken individually, but, seen in
context, the values of the bottom time-series should be close to 0.

• Collective anomaliesA collective anomaly corresponds to a group of anomaly
points. Each individual point might not be an anomaly, but their appearance
together is an anomaly (Figure 2.6).

2.2.2 Supervised vs Unsupervised method

Supervised learning consists of input variables x and an output variable Y . You use
an algorithm to learn the mapping function f from the input to the output.

Y = f(x)

The goal is to learn the mapping function such that when you have new input data
x, you can predict the output variables Y for that data.
Unsupervised learning involves having only input data x and no corresponding

output variables. The goal of unsupervised learning is to model the underlying
structure or distribution in the data in order to learn more about the data.
In supervised anomaly detection, if we want a model to be able to detect anoma-

lies, it must characterize the system very precisely both in normal behavior and in
the presence of anomalies. However, normal behaviors can be multiple, as well as
behaviors in the presence of anomalies. The large number of system behaviors leads
to the need to provide a large amount of labeled data to capture a maximum of
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2.2 Anomaly Detection

Figure 2.5: An example of a contextual anomaly (in red)

Figure 2.6: An example of a collective anomaly (in red)
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2. Anomaly detection in time-series

different behaviors both normal and abnormal. This is even more complicated as
anomalies are rare events. Thus, the shorter the training dataset, the less anomalies
it contains, which are precisely the elements we want to be able to discriminate
efficiently.
Thus, unsupervised learning is perfectly adapted to the problem of anomaly de-

tection since it is not necessary to label large data sets. Moreover, a part of the
anomalies come from new behaviors of the system. By definition, these behaviors
could not be correctly classified with supervised anomaly detection methods.

2.2.3 Taxonomy

The taxonomy consists of three classes of anomaly detection methods for multivari-
ate time series. These are: conventional approaches, machine learning-based and
DNN-based methods.
Conventional approaches, which are also referred to statistical methods by

some authors [36], rely on the assumption that the observed data is generated by a
stochastic model and their aim is to estimate a model’s parameters from the data
and then use the model for prediction [37]. It is often the case that the model
hypothesis is considered linear [36].
The boundary between conventional and machine learning-based approaches is

not fully clear. Machine learning-based models produce predictions about the
results of complex mechanisms by mining databases of inputs for a given problem,
without necessarily having an explicit assumption about a model’s hypothesis. In
this setup, a method aims to learn a function that operates an input data to predict
output responses [37].
Finally, DNN-based methods are a subclass of non-linear machine learning-

based methods which use neural networks with multiple layers [8].

2.2.4 Conventional methods

The methods presented in this section offer many different approaches. They
are classified into five categories. Control chart, where the objective is to monitor
variations in the statistical characteristics of a process. Prediction methods, where
the objective is to predict the next point. Decomposition techniques, based on the
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2.2 Anomaly Detection

search for unusual patterns in time series using decomposition and finally similarity-
search model based on the search for similar sub-sequences in the data.

2.2.4.1 Control Charts methods

Control charts are a statistical process control tool. Their goal is to track the mean
and variance of a time series over time and to detect abrupt changes in its statistical
behaviour. These methods are based on the use of Sequential Probability Ratio
Tests (SPRT) [38]. Two methods are considered: Multivariate CUmulated SUMs
control chart (MCUSUM) and Multivariate Exponential Weighted Moving Average
(MEWMA).
In [39], Woodall and Ncube proposed to monitor the performance of multiple vari-

ables in a manufacturing system using a control chart called Multivariate CUmu-
lated SUMs control chart (MCUSUM). The MCUSUM uses the fact that the
cumulative sum St of the recursive residuals of a statistic s compared to a normal
value (like the mean) : St = s(xt−k+1, . . . ,xt) is stable for normal data and increas-
ing after the change. Using this property, the MCUSUM anomaly score gt is based
on the comparison of the increase of St with a threshold h:

gt = max(0, St− µ+ gt−1) (2.1)

with g0 = 0 and µ the value of St for normal data. MCUSUM iterates over gt as
long as gt < h. If gt ≥ h, an alarm is raised and the iteration over gt is restarted with
g0 = 0 in order to detect another change point. Due to this sequential restarting of
the test, MCUSUM detects small but persistent structural changes.
The Multivariate Exponential Weighted Moving Average (MEWMA)

[40] is based, as its name indicates, on the exponential smoothing of data. For a
given constant λ ∈ [0, 1], the successive data are smoothed using:

gt = λxt + (1− λ)gt−1 (2.2)

Unlike MCUSUM, MEWMA gives more importance to recent history values.

2.2.4.2 Forecast methods

Control Charts methods are usually based on the hypothesis that the individual
data in the time-series are independent and identically distributed. This assump-
tion is rarely satisfied in practice. A generic way to handle this issue is to built a
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mathematical model, incorporating the known or assumed sequential correlations of
the time-series. Using this model, the value xt of the data indicator at t is expressed
as xt = zt + et, where zt is accounting for normal sequential correlations within the
data and et (the residual) is the noise. Once a mathematical model representing
time-series evolution is chosen, a usual approach is to predict at time t the expected
value x̂t+1. The anomaly score can then be expressed as the difference between x̂t+1

and the actual value xt+1.
The most commonly used forecast method in multivariate time series is the Vec-

tor Autoregressive (VAR) method. VAR is a statistical model that captures
the inter-dependencies between several time series. In a VAR model, variables are
treated symmetrically so that each variable is explained by its own past values and
by the past values of the other variables. For example, in [41], VAR is used to
monitor multivariate processes or detect anomalies in aviation systems [42].

2.2.4.3 Decomposition methods

Methods in this category use basis functions for decomposing the time series. Given
xt, a point of a multivariate time series, it can be expanded in terms of the eigen-
functions φj [43] as:

xt =
∞∑
j=1

αjφjt, (2.3)

where the coefficients αj are given by the projection of xt on the respective eigen-
functions.
Anomaly detection is then performed by computing the projection of each new

point onto the eigenvectors, and a normalized reconstruction error. The normalized
error is used as the anomaly score. Three methods are discussed under this sub-
category: Principal Component Analysis (PCA), Singular Spectrum Analysis (SSA)
and Independent Component Analysis (ICA).
Principal Component Analysis (PCA).
The idea of PCA[44] is to group datapoints into clusters defined as an ellipsoid in

Rm containing the normal data. The idea is that the length of the principal axes of
the ellipsoid represents the direction of the variability of the data instances.
The (always positive) eigenvalues λi with i = 1, . . . , k corresponding to the prin-

cipal component vi characterize the variability in the dataset captured by the eigen-
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vector vi. A subspace S ⊂ Rm is selected using the r eigenvectors vi corresponding
the r largest eigenvalues.
In [45], the Q-statistic [46] that characterizes the PCA projection residual statistics

is used to define the threshold hα, such that the anomaly score is:

|x̃t| > hα

then xt is an anomaly with 1− α confidence where α ∈ [0, 1] is a manually defined
parameter.
Singular Spectrum Analysis (SSA) considers a time series as a projection of

the trajectory of a dynamical system in a vector space V = Rm where xt is the
position at time t of a state of the system. From dynamical systems theory, it
is known that physically observable states of a dynamical system in Rm are lying
on attractors of the dynamics (i.e. subsets of the Rm capturing all the long term
evolution of the system). Future observable states should normally continue to be
located on these attractors. As such, x̂t are assumed to be located on (or close to) an
attractor of the dynamics. So, the distance between x̂t and the attractor computed
at time t is evaluated and used as anomaly score [47, 48].
Independent Component Analysis (ICA) [49] assumes that the different

physical processes that generate multivariate time series are statistically indepen-
dent of each other [50].
ICA decomposes a multivariate time series into "independent" components by

orthogonal rotation and by maximizing the statistical independence between the
components assuming their non-Gaussianity. In [51], the authors use Kurtosis, a
classical measure of non-Gaussianity, as an anomaly score. A negative Kurtosis
indicates a uniformly distributed factor, indicating a clustered structure and a high
positive Kurtosis identifies a multivariate anomaly.

2.2.4.4 Similarity-search approach

Similarity search methods [52] are designed to identify patterns in a multivariate
time series. These methods compute the distance between all the sub-sequences of
the time series. The minimum distance between a sub-sequence and all others is
used as an anomaly score.
The Matrix-Profile (MP) [53, 54] is a data structure for time series analysis. It

consists of three elements. The first element is the distance profile, which is a vector
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of Euclidean distances between a given sub-sequenceW and each sub-sequence in the
set A of all sub-sequences of the multivariate time series. The distance is measured
using the z-normalized Euclidean distance between sub-sequences. The distance
profiles are arranged into a data structure denoted the distance matrix, which cor-
responds to the second element in MP. The distance matrix stacks together all the
distance profiles that have been computed for each reference sub-sequence.
Finally, the matrix profile is the simplification of the distance matrix by looking

only at the closest neighbor for each sub-sequence. The vector obtained corresponds
to the smallest values of each row in the matrix. It is defined as :

MP (i) = min(d(W i,W j)) (2.4)

with W j ∈ A \ {W i}.
A low value in the matrix profile indicates that the sub-sequence has at least one

relatively similar sub-sequence located somewhere in the original series. In [55], it
is shown that a high value indicates that the original series must have an abnormal
sub-sequence. Therefore the matrix profile can be used as an anomaly score, with a
high value indicating an anomaly.

2.2.5 Machine learning-based methods

The methods presented in this section fall into three categories : Isolation, Neighbourhood-
based and Domain-based methods, which have been proposed in the survey by
Domingues et al. [35]. Isolation algorithms consider a point as an anomaly when it
is easy to isolate from others. Neighbourhood-based models look at the neighbour-
hood of each data point to identify outliers. Domain-based methods rely on the
construction of a boundary separating the nominal data from the rest of the input
space.
A common characteristic of machine learning-based techniques is that they typi-

cally model the dependency between a current time point and previous ones by trans-
forming the multivariate time series T into a sequence of windowsW = {W1, . . . ,WT},
where Wt is a time window of length K at a given time t :

Wt = {xt−K+1, . . . ,xt−1,xt}. (2.5)

Figure 2.7 shows this process. In this setup, learning-based anomaly detection meth-
ods assign to a window Ŵt, t > T , a label yt to indicate a detected anomaly at time
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2.2 Anomaly Detection

Figure 2.7: Splitting a time series into a sequence of time windows

t, i.e. yt = 1, or not (yt = 0) based on the window’s anomaly score. This notation
will be used in the following.

2.2.5.1 Isolation methods

Isolation methods focus on separating outliers from the rest of the data points.
These methods attempt to isolate the anomalies rather than mapping the normal
points.
The Isolation Forest (IF) algorithm [56, 57] is based on decision trees, similarly

to the Random Forest [58]. IF calculates, for each time window an anomaly score.
To calculate this score, the algorithm isolates the sample recursively: it chooses a
feature and a "cut-off point" at random, then evaluates whether this isolates the
sample; if so, the algorithm stops, otherwise, it chooses another feature and another
cut-off point at random, and so on until the data is isolated from the rest.
Recursive data partitioning can be represented as a decision tree, and the number

of cuts needed to isolate a sample simply corresponds to the path taken in the tree
from the root to the leaf, representing the isolated sample. The path length defines
the anomaly score: a sample with a very short path, i.e. sample that is easy to
isolate, is also likely to be an anomaly since it is very far from the other samples
in the dataset as can be seen in Figure 2.8. As with random forests, it is possible
to do this independently by using several trees, to combine their results to improve
performance. In this case, the anomaly score is the average of the path lengths on
the different trees.
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Figure 2.8: Path length to isolate a normal point (left) and an anomalous point
(right)

2.2.5.2 Neighbourhood-based methods

Among neighborhood-based methods, which study the neighborhoods of every point
to identify anomalies, the Local Outlier Factor (LOF) [59] measures the local de-
viation of a given data point with respect to its neighbours. Based on the K-nearest
neighbors [60], the local density of an observation is evaluated by considering the
closest K observations in its neighbourhood. The anomaly score is then calculated
by contrasting its local density with those of its k-nearest neighbors. A high score
indicates a lower density than its neighbors and therefore potentially an anomaly. It
has been applied to multivariate time series [61], demonstrating its ability to detect
anomalies in long-term data.
Density-based spatial clustering of applications with noise (DBSCAN)

[62] is a clustering method that groups data points in high density areas (many
nearby neighbors) and marks points in low-density regions (few neighbors) as anoma-
lous. DBSCAN thus classifies the points into three categories. Core points are points
containing at least minPts in their ε distance neighborhood. The density-reachable
points are the points containing at least one core point in their neighborhood. The
other points are considered as anomaly. To handle multivariate time series, DB-
SCAN considers each time window as a point with the anomaly score being the
distance from the point to the nearest cluster [63].
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Figure 2.9: Overview of DBSCAN

2.2.5.3 Domain-based methods

Domain-based methods aim to construct a boundary between normal samples and
the rest of the input space. The distance of a points to this boundary is used as the
anomaly score. Among these, the One-Class Support Vector Machine (OC-
SVM) [64] method learns the smallest hypersphere containing of all the training
data points (Figure 2.10). The learned model classifies points inside the hypersphere
as normal and labels those in the rest of the space as anomalous. An anomaly
score can also be obtained by taking the signed distance from the hyper-sphere.
The signed distance is positive for a normal value and negative for an abnormal.
As other machine learning methods One-class SVM has been used for time series
anomaly detection by using time windows rather than the raw series. J.Ma and
S.Perkins [65] use this approach, while proposing to combine the one-class SVM
output for different time windows to produce more robust detection results.

2.2.6 Deep learning-based methods

DNN-based methods are a are sub-category of machine learning-based approaches,
which rely on deep neural networks. Given the explosion of DNN-based methods
over the last years, they are presented as a separate category.
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Figure 2.10: Overview of the OC-SVM

An Auto-Encoder (AE) [66] is an artificial neural network combining an en-
coder E and a decoder D. The encoder part takes the input window W and maps
it into a set of latent variables Z, whereas the decoder maps the latent variables Z
back into the input space as a reconstruction Ŵ . The difference between the original
input vector W and the reconstruction Ŵ is called the reconstruction error. Thus,
the training objective aims to minimize this error. Auto-encoder-based anomaly
detection uses the reconstruction error as the anomaly score. Time windows with a
high score are considered to be anomalies [21].

Figure 2.11: Auto-Encoder architecture

The Generative Adversarial Networks (GANs) [67] have the ability to know
whether an input sample is normal or not. A GAN is an unsupervised artificial
neural network based on a two-player minimax adversarial game between two net-
works, which are trained simultaneously. One network, the generator (G), aims to
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generate realistic data, whereas the second one acts as a discriminator (D) trying to
discriminate real data from that one generated by G. The training objective of G is
to maximize the probability of D making a mistake, whereas the training objective
D is to minimize its classification error. Similarly to AE-based, GAN-based anomaly
detection uses normal data for training. After training the discriminator is used as
an anomaly detector. If the input data is different from the learned data distribu-
tion, the discriminator considers it as coming from the generator and classifies it as
fake, i.e. as an anomaly.

Figure 2.12: Generative Adversarial Network architecture

The Long Short-TermMemory Variational Auto-Encoders (LSTM-VAE)
[11] combines the LSTM [68] which is a recurrent neural network architecture with
a variational auto-encoder (VAE) by replacing the feed-forward network in a VAE
with a long short-term memory (LSTM). The LSTM-VAE models the time depen-
dence of time series through LSTM networks. During encoding, the LSTM-VAE
projects the input data and its time dependencies into a latent space. During de-
coding, it uses the latent space representation to estimate the output distribution.
Finally, the LSTM-VAE detects an anomaly when the log-likelihood of the current
data is below a threshold. In [69], S.Lin et al. show that the LSTM-VAE is capable
of identifying anomalies that span over multiple time scales.
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Figure 2.13: LSTM-VAE architecture

Donut [22] is based on a variational autoencoder (VAE), whose means are ob-
tained from linear layers and the standard deviations are determined from soft-plus
layers. Donut is trained using the M-ElBO [70] as objective training. Finally, the
anomaly score used is the negative reconstruction probability [70]. Bagel [23] is
an extension of Donut that can handle anomalies related to temporal information,
using the conditional variational autoencoder to incorporate temporal information
and the dropout layer to avoid overfitting. The calculation of the anomaly score is
identical to Donut.

Figure 2.14: Donut architecture
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Figure 2.15: Bagel architecture

DeepAnt [26] consists of two modules. The first module is a time series predic-
tor that creates a time series prediction using a deep convolutional neural network
(CNN) [71]. The second module uses the predicted value to detect anomalies. The
detection module calculates the Euclidean distance between the actual and predicted
value. Thus, the Euclidean distance is used as anomaly score.

Figure 2.16: DeepAnt architecture

The Deep Autoencoding Gaussian Mixture Model (DAGMM) [1] jointly
considers a Deep Auto-encoder and a Gaussian Mixture Model (GMM) to model
the density distribution of multidimensional data. The purpose of the Deep Auto-
encoder is to generate a low-dimensional representation and a reconstruction error
for each input data time window. This representation is used as input of a Gaussian
Mixture Model (GMM). The parameters of the Deep Auto-encoder and the mixture
model are optimized simultaneously from end to end, taking advantage of a separate
estimation network to facilitate the learning-based of the parameters of the mixture
model. The DAGMM then uses the likelihood to observe the input samples as an
anomaly score.
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Figure 2.17: DAGMM architecture. Source [1]

The Multivariate Anomaly Detection with Generative Adversarial Net-
works (MAD-GAN) [12] is based on a Generative adversarial network (GAN) [67]
architecture composed of LSTMs. MAD-GAN uses an anomaly score called DR-
score to detect anomalies. This score is composed of the discrimination between
real data and fake data of the discriminator and the reconstruction error of the gen-
erator. Indeed, because of the smooth transitions of the latent space, the generator
produces similar samples if the entries in the latent space are identical. Thus, we can
use the residuals between the test data and their transformation by the generator
to identify anomalies in the test data.

Figure 2.18: MAD-GAN architecture

TheRecurrent Conditional Generative Adversarial Networks (RCGAN)
[24] is an adaptation of AnoGAN [72] using recurrent neural networks. The method
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is thus based on recurrent GANs. The reconstruction error of the generator is used
as an anomaly score.

Figure 2.19: RCGAN architecture

TheMulti-Scale Convolutional Recurrent Encoder-Decoder (MSCRED)
[73] consists of four steps. First, it constructs signatures matrices based on the pair-
wise inner product of the time series (i.e., the correlation matrix at each time point)
which is encoded via convolutional neural networks [71]. The temporal patterns are
learned using attention-based convolutional LSTM networks. The signature matri-
ces are decoded via deconvolutional neural networks. Finally, the residuals between
the input and reconstructed matrix signatures are used as anomaly scores.

Figure 2.20: MSCRED architecture

TheMTS-DCGAN [27] is based on a Deep Convolutional Generative Adversarial
Network. As with MSCRED the first step is to create signature matrices of different
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time window sizes. The matrices are then sent to a DCGAN [27]. The generator is
composed of two fully connected layers and a CNN and the discriminator is composed
of a CNN, a flattened layer and two fully connected layers that allow to capture the
correlations. A forgetting mechanism in the sliding window allows the recent points
to be weighted more heavily. The output probabilities of the discriminator are used
as anomaly score.

Figure 2.21: MTS-DCGAN architecture

The BeatGAN [25] is based on a CNN Auto-Encoder and a Discriminator. The
objective function during the training is composed of the usual objective of the auto-
encoders which is to minimize the difference between its input and its output as well
as an adversarial training of the GANs where the generator is the auto-encoder and
must fool the discriminator by making the reconstructed data look real. During the
detection only the auto-encoder is used. The anomaly score is the residual between
the input data and the reconstructed data.
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Figure 2.22: BeatGan architecture

FuseAD [28] combines ARIMA [74] and Convolutional Neural Networks. FuseAD
is composed of two modules. The first module is called the forecasting pipeline. It
consists in combining the value predicted by an ARIMA and a CNN. The anomaly
score is produced by a second module called Anomaly detector. It corresponds to
the difference between the predicted value and the real value.

Figure 2.23: FuseAD architecture

TheReal-Time Anomaly Detection in Multivariate Time Series (RADM)
[30] is based on Hierarchical Temporal Memory (HTM) [75] and Bayesian Network
(BN) [76]. It is divided into two phases. The first one is the detection of anomalies
in the univariate time series composing the multivariate time series using the HTM.
This first anomaly score is calculated by the HTM using the distribution of anomaly
scores to calculate the anomaly likelihood. Thus, the anomaly score depends on the
prediction history of the HTM of the anomaly which defines the degree of anomaly
of the state the current state is anomalous based on the prediction history of the
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HTM model. In the second phase, a Naive Bayesian Network takes as input the
discretized values of the anomaly likelihoods of each univariate series to assign the
corresponding weights to each time series according to the structure of the multi-
variate series. Then the junction tree method [77] is used to infer the classification
of anomalies, in order to obtain the list of anomaly regions.

Figure 2.24: RADM architecture

The Multivariate Time Series Anomaly Detection Using the combina-
tion of Temporal pattern and Feature pattern (MTAD-TF) [31] can be split
into two main parts. The first part is called Temporal convolution component. It is
based on a multiscale 1D convolution that allows to detect temporal patterns. The
second part is called Graph attention component. It allows to learn the correlation
between features and is based on a graph attention network [78]. The combination
of these two parts provides a prediction. The anomaly score is the squared error
between the predicted value and the actual value.
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Figure 2.25: MTAD-TF architecture

The Adversarially Learned Anomaly Detection (ALAD) [79] ALAD is
based on bi-directional GANs that derive adversarially learned features for the
anomaly detection task. Unlike GANs, bi-directional GANs are architectures com-
posed of three networks. A Generator, a Discriminator and an Encoder whose role
is to project the input data to the latent space. Thus, the encoder is the inverse of
the generator. ALAD then uses the reconstruction errors as an anomaly score.
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Figure 2.26: ALAD architecture

Finally, OmniAnomaly (OA) [13] is a stochastic recurrent neural network for
multivariate time series anomaly detection that learns robust multivariate time se-
ries’ representations with a stochastic variable connection and a planar normaliz-
ing flow, and uses the reconstruction probabilities to determine anomalies. Omni-
Anomaly uses the Gated Recurrent Unit (GRU) to model the time dependencies of
multivariate time series. The method also uses a VAE to learn a mapping of the
input data W to a representation in a latent space. To model time dependencies
in the latent space, OmniAnomaly uses a stochastic variable connection technique.
As suggested by [80], the reconstruction can be evaluated by a conditional probabil-
ity. The anomaly score used is then the probability of reconstruction. A high score
means that the input can be well reconstructed. If an observation follows normal
time series patterns, it can be reconstructed with high confidence. On the other
hand, the lower the score, the less well the observation can be reconstructed and the
more likely it is to be anomalous.
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Figure 2.27: OmniAnomaly architecture
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Chapter 3

Unsupervised Anomaly Detection on
Multivariate Time Series
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This chapter proposes a fast and stable method called UnSupervised Anomaly De-
tection for multivariate time series (USAD) based on adversely trained autoencoders.
Its autoencoder architecture makes it capable of learning in an unsupervised way.
The use of adversarial training and its architecture allows it to isolate anomalies
while providing fast training. The study of the properties of the method through
experiments on five public datasets demonstrates its robustness, learning speed and
high performance in anomaly detection. Through a feasibility study using Orange’s
proprietary data, the method validates Orange’s requirements.
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3.1 Introduction

This chapter presents a new method called UnSupervised Anomaly Detection for
multivariate time series (USAD) based on an autoencoder architecture [66] whose
learning is inspired by GANs. The intuition behind USAD is that the adversarial
training of its encoder-decoder architecture allows it to learn how to amplify the
reconstruction error of inputs containing anomalies, while gaining stability compared
to methods based on GANs architectures. Its architecture makes it fast to trained
meeting Orange’s expectations in terms of scalability and algorithm efficiency. The
main contributions of this chapter are:

• It proposes an encoder-decoder architecture within an adversarial training
framework that allows to combine the advantages of autoencoders and ad-
versarial training, while compensating for the limitations of each technique.

• It performs an empirical study on publicly available datasets to analyze ro-
bustness, training speed and performance of the proposed method.

• It performs a feasibility study with Orange’s proprietary data to analyze if the
proposed method meets the company’s requirements on scalability, stability,
robustness, training speed and high performance.

The rest of this chapter is organized as follows. Section 3.2 presents the limitations
of Auto-Encoders (AE) and Generative Adversarial Networks (GANs). Section 3.3
discusses the details of the method, describe the experiments and demonstrate the
state-of-the-art performance of the method.

3.2 Auto-Encoders and Generative Adversarial Net-
works limitations

Autoencoder-based anomaly detection uses the reconstruction error as the anomaly
score. Points with a high score are considered to be anomalies. Only samples from
normal data are used at training. At inference, the AE will reconstruct normal
data very well, while failing to do so with anomaly data which the AE has not
encountered. If the anomaly is too small, i.e. it is relatively close to normal data,
the reconstruction error will be small and thus the anomaly will not be detected.
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This occurs because the AE aims to reconstruct input data as well (as close to
normality) as possible. To overcome this problem, the AE should be able to identify
if the input data contains no anomaly before doing a good reconstruction.
The GAN is trained in an adversarial way between the Generator and the Dis-

criminator. GAN-based anomaly detection uses the output of the Discriminator
as the anomaly score during inference. GAN training is not always easy, due to
problems such as mode collapse and non-convergence [81], often attributed to the
imbalance between the generator and the discriminator. Indeed, if an imbalance is
created between the generator and the discriminator, the network is no longer able
to learn correctly since one of the two is overwhelmed by the performance of the
other. Techniques exist to stabilize the training and ensure a good convergence, have
been proposed as the WGAN algorithm (Wasserstein GAN [82]), but it remains to
be improved, especially because of the added complexity that these methods involve.

3.3 UnSupervised Anomaly Detection (USAD)

The UnSupervised Anomaly Detection (USAD) method is formulated as an AE
architecture within a two-phase adversarial training framework. On one hand, this
allows to overcome the intrinsic limitations of AEs by training a model capable of
identifying when the input data does not contain an anomaly and thus perform a
good reconstruction. On the other hand, the AE architecture allows to gain stability
during adversarial training, therefore addressing the problem of collapse and non-
convergence mode encountered in GANs.

3.3.1 Method

USAD is composed of three elements: an encoder network E and two decoder net-
works D1 and D2. As depicted in Figure 3.1 and 3.2, the three elements are con-
nected into an architecture composed of two autoencoders AE1 and AE2 sharing
the same encoder network:

AE1(W ) = D1(E(W )), AE2(W ) = D2(E(W )) (3.1)

The architecture from Eq. 3.1 is trained in two phases. First, the two AEs are
trained to learn to reconstruct the normal input windowsW . Secondly, the two AEs
are trained in an adversarial way, where AE1 will seek to fool AE2 and AE2 aims
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to learn when the data is real (coming directly from W ) or reconstructed (coming
from AE1) . Further details are provided in the following.

Phase 1: Autoencoder training. At a first stage, the objective is to train each
AE to reproduce the input. Input data W is compressed by encoder E to the latent
space Z and then reconstructed by each decoder. The training objectives are :

LAE1 = ‖W − AE1(W )‖2
LAE2 = ‖W − AE2(W )‖2

(3.2)

Phase 2: Adversarial training. In the second phase, the objective is to train
AE2 to distinguish the real data from the data coming from AE1, and to train
AE1 to fool AE2. Data coming from AE1 is compressed again by E to Z and then
reconstructed by AE2. Using an adversarial training configuration, the objective of
AE1 is to minimize the difference between W and the output of AE2. The objective
of AE2 is to maximize this difference. AE1 trains on whether or not it succeeds in
fooling AE2, and AE2 distinguishes the candidates reconstructed by AE1 from the
real data. The training objective is :

min
AE1

max
AE2

‖W − AE2(AE1(W ))‖2 (3.3)

which account to the following losses

LAE1 = + ‖W − AE2(AE1(W ))‖2
LAE2 = −‖W − AE2(AE1(W ))‖2

(3.4)

Two-phase training.
In this architecture, autoencoders have a dual purpose. AE1 minimizes the re-

construction error of W (phase 1) and minimizes the difference between W an the
reconstructed output of AE2 (phase 2). As AE1, AE2 minimizes the reconstruction
error of W (phase 1) but, it then maximizes the reconstruction error of the input
data reconstructed by AE1 (phase 2). The dual purpose training objective of each
AE is expressed as the combination of Equations 3.2, 3.4 in an evolutionary scheme,
where the proportion of each part evolves with time:

LAE1 =
1

n
‖W − AE1(W )‖2 +

(
1− 1

n

)
‖W − AE2(AE1(W ))‖2 (3.5)

LAE2 =
1

n
‖W − AE2(W )‖2 −

(
1− 1

n

)
‖W − AE2(AE1(W ))‖2 (3.6)
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and n denotes a training epoch. The two-phase training process is summarized in
Algorithm 1.
It is important to remark that AE2 does not act as a discriminator in the strict

sense of GANs, because if its input is the original data, it is the loss from Eq 3.2
that intervenes. When its input is a reconstruction, the objective from Eq. 3.3-3.4
intervenes instead.

Algorithm 1 USAD training algorithm
Input: Normal windows Dataset W = {W1, ...,WT} , Number epochs N
Output: Trained AE1, AE2

E,D1, D2 ← initialize weights
n← 1

repeat
for t = 1 to T do
Zt ← E(Wt)

W 1′
t ← D1(Zt)

W 2′
t ← D2(Zt)

W 2′′
t ← D2(E(W 1′

t ))

LAE1 ←
1

n

∥∥Wt −W 1′
t

∥∥
2

+

(
1− 1

n

)∥∥Wt −W 2′′
t

∥∥
2

LAE2 ←
1

n

∥∥Wt −W 2′
t

∥∥
2
−
(
1− 1

n

) ∥∥Wt −W 2′′
t

∥∥
2

E,D1, D2 ← update weights using LAE1 and LAE2

end for
n← n+ 1

until n = N

Inference. During the detection phase (Algorithm 2), the anomaly score is defined
as:

A (Ŵ ) = α‖Ŵ − AE1(Ŵ )‖2 + β‖Ŵ − AE2(AE1(Ŵ ))‖2 (3.7)

where α+β = 1 and are used to parameterize the trade-off between false positives and
true positives. If α is greater than β, the number of true positives and the number of
false positives is reduced. Conversely, if a α less than β is taken, the number of true
positives and also the number of false positives is increased. Thus, α < β denotes a
scenario with high detection sensitivity and α > β a low detection sensitivity one.
This parametrization scheme is of great industrial interest. It allows, using a single
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trained model, to obtain during the inference a set of different sensitivity anomaly
scores. This is further illustrated in Section 3.3.4.2.

Algorithm 2 USAD Detection algorithm

Input: Test windows Dataset Ŵ : (Ŵ1, ..., ŴT ∗) , threshold λ , parameters α and β
Output: Labels y : {y1, ..., yT ∗}
for t = 1 to T ∗ do
Ŵ 1′
t ← D1(E(Ŵt))

Ŵ 2′′
t ← D2(E(Ŵ 1′

t ))

A ← α
∥∥∥Ŵt − Ŵ 1′

t

∥∥∥
2

+ β
∥∥∥Ŵt − Ŵ 2′′

t

∥∥∥
2

if A ≥ λ then
yt ← 1

else
yt ← 0

end if
end for

Figure 3.1: Proposed architecture illustrating the information flow at training.

3.3.2 Implementation

This method of anomaly detection is divided into three stages. There is a first data
pre-processing stage common to training and detection where data is normalized
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Figure 3.2: Proposed architecture illustrating the information flow at detection stage.

and split into time windows of length K. The second stage is used for training
the method. The training is offline and aims to capture the normal behaviors of
predefined portions (a few weeks/months) of multivariate time series and to produce
an anomaly score for each time window. This offline training procedure can be
performed automatically at regular time intervals, taking care to select a training
period that does not include too many periods considered abnormal. The last stage
is anomaly detection. It is performed online using the model trained at the second
stage. As a new time window arrives, the model is used to obtain an anomaly score.
If the anomaly score of a window is higher than a defined anomaly threshold, the
new time window is declared as abnormal.

3.3.3 Experimental setup

This section describes the datasets and the performance metrics used in the exper-
iments and the feasibility study.

3.3.3.1 Datasets

Five publicly available datasets were used in the experiments. Table 3.1 summarizes
the datasets characteristics and they are briefly described in the following.

Secure Water Treatment (SWaT) Dataset The SWaT dataset 1 is a scaled
down version of a real-world industrial water treatment plant producing filtered

1https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/#swat
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Table 3.1: Benchmarked Datasets. (%) is the percentage of anomalous data points
in the dataset.

Dataset Train Test Dimensions Anomalies (%)

SWaT 496800 449919 51 11.98
WADI 1048571 172801 123 5.99
SMD 708405 708420 28*38 4.16
SMAP 135183 427617 55*25 13.13
MSL 58317 73729 27*55 10.72
Orange 2781000 5081000 33 33.72

water [83]. The collected dataset [84] consists of 11 days of continuous operation: 7
days collected under normal operations and 4 days collected with attack scenarios.

Water Distribution (WADI) Dataset This dataset 1 is collected from the
WADI testbed, an extension of the SWaT tesbed [84]. It consists of 16 days of
continuous operation, of which 14 days were collected under normal operation and
2 days with attack scenarios.

Server Machine Dataset SMD is a new 5-week-long dataset from a large In-
ternet company collected and made publicly available 2 [13]. It contains data from
28 server machines each one monitored by m = 33 metrics. SMD is divided into
two subsets of equal size: the first half is the training set and the second half is the
testing set.

Soil Moisture Active Passive (SMAP) satellite and Mars Science Labora-
tory (MSL) rover Datasets SMAP and MSL are two real-world public datasets,
expert-labeled datasets from NASA [85]. They contain respectively the data of 55/27
entities each monitored by m = 25/55 metrics.

1https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/#wadi
2https://github.com/smallcowbaby/OmniAnomaly
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3.3.3.2 Feasibility study: Orange’s dataset

The collected data come from technical and business indicators from Orange’s ad-
vertising network in its website. The data represent a total of m = 33 continuous
variables including 27 technical and 6 business measurements. The dataset is di-
vided into two subsets: a train set corresponding to about 32 days and a test set
corresponding to about 60 days of activity. 60 days of testing were selected corre-
sponding to a critical period for Orange. To obtain this training set, the previous
consecutive days without any major incident for the company were selected allowing
to obtain a training set of 32 mainly normal days. Anomalies in the test set were
labeled by domain experts based on incident reports. Its main characteristics are
reported in Table 3.1.

3.3.3.3 Evaluation Metrics

Precision (P), Recall (R), and F1 score (F1) were used to evaluate anomaly detection
performance:

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 = 2 · P ·R

P +R

with TP the True Positives, FP the False Positives, and FN the False negatives.
A window is labeled as an anomaly as soon as one of the points it contains is

detected as anomalous.
In [13], the authors compute the F1 score using the average precision and average

recall. For the sake of completeness, this measure is also reported when comparing
the method to their benchmark. This measure is denoted the F1* score:

F1∗ = 2 · P̄ · R̄
P̄ + R̄

where P̄ , R̄ denote the average precision and recall, respectively.
Performance is assessed by comparing the results of each evaluated method with

the annotated ground truth. To allow a direct comparison with the benchmark
proposed by [13] their approach is used. Anomalous observations usually occur in the
form of contiguous anomaly segments. In this approach, if at least one observation of
an anomalous segment is correctly detected, all the other observation of the segment
are also considered as correctly detected, even if they were not. The observations
outside the ground truth anomaly segment are treated as usual. This approach is
denoted point-adjust. The performance without point-adjust is also evaluated on
the two datasets (SWaT and WADI) not belonging to the benchmark [13].
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Table 3.2: Performance comparison.Precision (P), recall (R) and F1 score with and
without point-adjust (Without) in SWaT datasets.

Methods SWaT
Without With

P R F1 P R F1

AE 0.9903 0.6295 0.7697 0.9913 0.7040 0.8233
IF 0.9512 0.5884 0.7271 0.9620 0.7315 0.8311
LSTM-VAE 0.9897 0.6377 0.7756 0.7123 0.9258 0.8051
DAGMM 0.4695 0.6659 0.5507 0.8292 0.7674 0.7971
OmniAnomaly 0.9825 0.6497 0.7822 0.7223 0.9832 0.8328
USAD 0.9851 0.6618 0.7917 0.9870 0.7402 0.8460

3.3.4 Experiments and Results

The key properties of USAD are studied by assessing its performance and comparing
it to other state of the art methods (3.3.4.1), analyzing how different parameters
affect the performance of the method (3.3.4.2), estimating its computational perfor-
mance (3.3.4.3) and through an ablation study where, at each time, one is suppress
of the training phases (3.3.4.4). Finally, in Section 3.3.4.5 a feasibility study using
Orange’s internal data is reported to demonstrate that USAD meets the require-
ments needed to be deployed in production.

3.3.4.1 Overall performance

To demonstrate the overall performance of USAD is compared with five unsuper-
vised methods for the detection of multivariate time series anomalies. These are:
Isolation Forests (IF) [56], autoencoders (AE), LSTM-VAE [11], DAGMM [1], Om-
niAnomaly [13]. As not all of the anomaly detection methods used for comparison
provide a mechanism to select anomaly thresholds,the possible anomaly thresholds
for each model are tested and the results linked to the highest F1 score is reported.
Table 3.2, 3.3 and 3.4 detail the obtained performance results for all methods on the
public datasets. On Table 3.2 and Table 3.3, the results obtained with SWaT and
WADI datasets are presented, whereas the Table 3.4 reports obtained results from
the benchmark proposed by [13], using three remaining datasets. USAD outperforms
all methods on SWaT, MSL, SMAP andWADI without point-adjust datasets, and its
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Table 3.3: Performance comparison. Precision (P), recall (R) and F1 score with and
without point-adjust (Without) in WADI datasets.

Methods WADI
Without With

P R F1 P R F1

AE 0.9947 0.1310 0.2315 0.3970 0.3220 0.3556
IF 0.2992 0.1583 0.2071 0.6241 0.6155 0.6198
LSTM-VAE 0.9947 0.1282 0.2271 0.4632 0.3220 0.3799
DAGMM 0.0651 0.9131 0.1216 0.2228 0.1976 0.2094
OmniAnomaly 0.9947 0.1298 0.2296 0.2652 0.9799 0.4174
USAD 0.9947 0.1318 0.2328 0.6451 0.3220 0.4296

F1 is the second best on the SMD dataset. On average over all datasets (Table 3.5)
is the best performing method exceeding by 0.096 the current state-of-the-art [13].
Overall, IF and DAGMM present the lowest performance. These are two unsuper-

vised anomaly detection methods that do not exploit temporal information between
observations. For time series, temporal information is important and necessary
because observations are dependent and historical data are useful for reconstruct-
ing current observations. In USAD, for both training and detection, the input is
a sequence of observations that contains the temporal relationship to retain this
information.
Despite the relative poor results in most datasets, IF achieves the highest F1 score

with point-adjust on WADI. This is explained by the natures of the point-adjust
method and the WADI dataset. IF considers each observation/time-point indepen-
dently and assigns a label to a single time-point and not to a window. WADI’s
anomalies lasting in time, the point-adjust validates the entirety of an anomaly as
being well detected. Thus IF is little impacted by its bad predictions (FPs) affecting
only one observation at a time, compared to the advantage obtained with the point-
adjust which validates whole segments of good prediction despite having potentially
missed several abnormalities.
Differently, AE, LSTM-VAE, use sequential observations as input allowing the two

methods to retain temporal information. These methods perform the best possible
reconstruction regardless of the existence of an anomaly in the input window. This
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Table 3.4: Performance comparison in SMAP, MSL and SMD datasets with point-
adjust. P, R F1, and F1* are reported.

Methods SMAP
P R F1 F1*

AE 0.7216 0.9795 0.7776 0.8310
IF 0.4423 0.5105 0.4671 0.4739
LSTM-VAE 0.7164 0.9875 0.7555 0.8304
DAGMM 0.6334 0.9984 0.7124 0.7751
OmniAnomaly 0.7585 0.9756 0.8054 0.8535
USAD 0.7697 0.9831 0.8186 0.8634

Methods MSL
P R F1 F1*

AE 0.8535 0.9748 0.8792 0.9101
IF 0.5681 0.6740 0.5984 0.6166
LSTM-VAE 0.8599 0.9756 0.8537 0.9141
DAGMM 0.7562 0.9803 0.8112 0.8537
OmniAnomaly 0.9140 0.8891 0.8952 0.9014
USAD 0.8810 0.9786 0.9109 0.9272

Methods SMD
P R F1 F1*

AE 0.8825 0.8037 0.8280 0.8413
IF 0.5938 0.8532 0.5866 0.7003
LSTM-VAE 0.8698 0.7879 0.8083 0.8268
DAGMM 0.6730 0.8450 0.7231 0.7493
OmniAnomaly 0.9809 0.9438 0.9441 0.9620
USAD 0.9314 0.9617 0.9382 0.9463
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Table 3.5: Average performance (± standard deviation) over all datasets using point-
adjust.

P R F1 F1*

AE 0.77(0.21) 0.76(0.24) 0.73(0.19) 0.86 (0.04)
IF 0.64(0.17) 0.68(0.11) 0.62(0.12) 0.60 (0.09)
LSTM-VAE 0.72(0.15) 0.80(0.25) 0.75 (0.18) 0.86 (0.04)
DAGMM 0.62(0.21) 0.76(0.29) 0.65(0.22) 0.79 (0.04)
OA 0.73(0.25) 0.95(0.04) 0.78(0.19) 0.91( 0.04)
USAD 0.84(0.12) 0.80(0.25) 0.79(0.18) 0.91(0.04)

does not allow them to detect anomalies close to the normal data. USAD compen-
sates for this drawback of AE-based methods through its adversarial training. A
similar situation occurs with OmniAnomaly, as it does not have a mechanism that
allows to amplify “mild” anomalies.

3.3.4.2 Effect of parameters

In this section, the effects that different parameters and factors that can have impact
on the performance of USAD is studied. All experiments were done using the SWaT
dataset.
The first factor studied is how USAD responds to different down-sampling rates

of the training data. Down-sampling speeds up learning by reducing the size of the
data and also has a denoising effect. However, it can have a negative effect if too
much information is lost. Figure 3.3(A) summarizes the obtained results using 5
different rates [1, 5, 10, 20, 50]. Results show that USAD’s performance is relatively
insensitive to down-sampling, with a relatively constant performance across sampling
rates. This indicates that the choice of the down-sampling rate is not critical to the
method. For this experiments, a rate of 5 is selected. This is the best trade-off
between denoising the training data and limiting the loss of information. Moreover,
it allows to reduce by 5 the training time needed for USAD.
The second factor investigated is how USAD responds to different window sizes

in the data. The window size has an impact on the type of abnormal behaviors
that can be detected a direct impact on the speed of anomaly detection since the
speed of detection is defined by the duration of a window. Figure 3.3(B) presents
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the obtained results for five different window sizes K ∈ [5, 10, 20, 50, 100]. The best
result was achieved for window size K = 10. USAD can detect behavior changes
faster when the window is smaller since each observation has a greater impact on the
anomaly score. A window that is too large will have to wait for more observations
to detect an anomaly. However, a larger window will detect longer anomalies. If
an anomaly is however too short, it may be hidden in the number of points that
a too-large window has. For Orange, a small window is better since it allows both
faster training and faster detection.
The latent variables Z sit in a m−dimensional space, which is assumed to be

smaller than one of the original data. The role of m in the performance of USAD is
studied. Figure 3.3(C) presents the results for m ∈ [5, 10, 20, 40, 100]. Results show
that a very small dimension for Z causes a large loss of information at the encoding
stage that the decoder is not then able to recover, thus leading to a poor performance.
On the other extreme, using a large value for m results in memorization of the
training data causing and a drop in performance. Instead, mid-range values of m do
not seem to have a strong effect in the performance, showing both relatively high
and stable F1 scores.
USAD is trained under the assumption that the training set is formed using only

normal samples. But in practice the training set do not only consist of normal
data. Therefore, I investigate to which level the performance of the method is
affected when this assumption is broken by injecting noise in the training dataset.
A Gaussian noise (µ = 0, σ = 0.3)is injected in a random selection of time-points
representing a percentage of the training dataset size.This percentage varies from
1% to 30%. The noise is injected after down-sampling (rate= 5) to avoid noise
attenuation by the down-sampling.
Figure 3.3(D) shows the performance of the method, in terms of P, R and F1,

as the level of noise increases. USAD demonstrates its robustness with a relatively
constant, high performance for noise levels of up to 5%. When the training set
noise is of 10% a slight drop in the performance starts to be observed. However, the
overall performance, measured by the F1 score, remains good. Interestingly, this
performance drop is caused by a lower precision. As the recall remains relatively
constant, this implies that with higher noise in the training set the method begins
to be more prone to detect false positives. This behavior suggests that as the noise
starts to increase, USAD is no longer able to properly learn the most complex
behaviors existing within the training set. As a result, the number of false positives
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Figure 3.3: Effect of parameters. Precision, Recall and F1-score as a function of A)
the training set’s down-sampling rate, B) the window size K, C) the dimension of the
latent space Z and D) the percentage of anomalies in the training set

increases in the test set, since USAD detects complex normal behaviors as anomalies.
Finally, a significant drop in performance can be observed for high noise levels (30%).
However, such a high anomaly rate during training in a production environment is
not realistic. This means that for a given period of time, 30% of the samples are
unnoticed anomalies. As there are so many anomalies in production, it is not realistic
that such a large number of incidents are missed by Orange’s incident supervision.
Thus, it is unlikely that USAD will be confronted with such a high rate of anomalies
during its training in a production environment at Orange.
Finally, the role of the sensitivity threshold (equation 3.7) is studied. A large α

corresponds to giving more importance to the reconstruction of the AE1 autoencoder
in the anomaly score, while a large β corresponds to giving more importance to the
reconstruction of the AE2 autoencoder (see Figure 3.1). The possibility to tune the
detection sensitivity without having to re-train the model is of great importance for
Orange.

49



3. Unsupervised Anomaly Detection on Multivariate Time Series

Table 3.6: Anomaly detection results with various sensitivity thresholds for SWaT
dataset

α β FP TP F1

0.0 1.0 604 35,616 0.7875
0.1 0.9 580 35,529 0.7853
0.2 0.8 571 35,285 0.7833
0.5 0.5 548 34,590 0.7741
0.7 0.3 506 34,548 0.7738
0.9 0.1 299 34,028 0.7684

Table 3.6 reports the effect of varying α, β in the number of detected FPs, TPs
and the F1 score.
We can observe that by increasing α and reducing β it is possible to reduce the

number of FPs (by a maximum of 50% when passing from 0.0 to 0.9) while limiting
the drop in the number of TPs (3% from 0.0 to 0.9). Thus, the regulation of α
and β allows parameterizing the sensitivity of USAD to meet the requirements of a
production environment. With a model, it is possible to achieve different levels of
sensitivity so that detection meets the needs of the different levels of hierarchy within
Orange’s supervision teams. Managers prefer a lower sensitivity levels, limiting the
number of false positives but warning them in case of important incidents, while
technicians will prefer a high level of sensitivity, allowing them to miss a minimum
of incidents.

3.3.4.3 Training time

In this section the computational performance of USAD is studied and compared to
OmniAnomaly, the method offering the closest performance in anomaly detection
(see Table 3.5). To do this, the average time taken per epoch on the 5 public data
sets is measured. The reference time for SMD, SMAP and MSL is the average time
for one epoch over all entities (i.e. 28 machines of the SMD, 55 of the SMAP and
27 of the MSL). Both methods were trained using a NVIDIA GeForce GTX 1080
Ti.
Table 3.7 presents the obtained results. USAD provides good performance in

unsupervised anomaly detection over multivariate time series while reducing training
time by an average of 547 times.
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Table 3.7: Training Time (min) per epoch on each dataset

Methods SWAT WADI SMD SMAP MSL

OmniAnomaly 13 31 87 48 11
USAD 0.06 0.12 0.06 0.08 0.03
Acceleration factor 216 258 1331 581 349

3.3.4.4 Ablation Study

Using SMD, SMAP and MSL datasets, the effects of the two-phase training of USAD
is investigated. Figure 3.4 presents a performance comparison in terms of the F1-
score using USAD (Combined), USAD with only phase one training (Autoencoders)
and with only phase 2 training (Adversarial). Training USAD without adversarial
learning accounts to using the objective presented in equation 3.2, whereas suppress-
ing the autoencoder accounts to use the objective from Equations 3.3-3.4.
GAN-inspired adversarial training represents an increase in performance of 5.88%

(F1 score) with respect to the second best option which is USAD without adversarial
training and 24.09% with respect to using only adversarial training. This can be
explained by the amplified reconstruction error effect introduced by USAD regardless
of the presence or not of an anomaly in the input window. Thus, USAD without
its adversarial training cannot detect the anomalies closest to the normal data.
USAD’s poor performance with only adversarial training is explained by the fact
that the method does not have the autoencoder training to orientate the weights
in a favorable place before starting phase 2 of adversarial training. In conclusion,
ablation of any of the training phases leads to poorer performance. For instance,
both ablated versions of USAD have a lower F1 score than that of several of the
bench-marked methods (Table 3.4, bottom).

3.3.4.5 Feasibility study

The automation of the supervision of complex IT systems is a challenge for Orange.
After studying the properties of USAD and assessing its performance in using public
datasets, the company must ensure that the method is as effective on its data.
Table 3.8 reports the results obtained in the internal dataset. USAD was able to

detect all significant incidents in less than 30 minutes over the two months length of
test data. For example, USAD was able to detect in less than 30 minutes an incident
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Figure 3.4: Impact with and without adversarial training on USAD

Table 3.8: Anomaly detection results on Orange internal Dataset (without point-
adjust)

Method Precision Recall F1-score

USAD 0.7448 0.6428 0.6901
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Figure 3.5: Example of a time series from the feasibility study where a configuration
incident was detected by USAD. Twenty-four out of the 33 time variables are shown.
The orange boxes highlight the variables referred to. In orange, the series referred to
in section 3.3.4.5.

that took 24 hours to be detected by the operators in charge of supervision at Orange
(Figure 3.5). This incident was caused by an error introduced in the configuration
files allowing to assign advertising displays to unexpected partners. This caused the
number of advertising displays (total impressions) to increase, while reducing
the average display prices (total average ecpm). As a result, important business
indicators such as the revenue (total cpm cpc revenue) remained stable and
so, the operators were unable to detect the incident quickly. Faced with the large
amount of indicators to survey, people in charge of supervision concentrated their
efforts on supervising indicators with high business impact, therefore, explaining,
the 24 hours needed to detect this configuration incident.

3.4 Conclusion

This chapter proposes USAD, an UnSupervised Anomaly Detection for multivariate
time series method based on autoencoders and trained within an adversarial train-
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ing inspired by the Generative Adversarial Networks. Its autoencoder architecture
makes it an unsupervised method and allows it to show great stability during the
adversarial training. A set of five public reference datasets were used to to study
the desired properties of USAD. The method demonstrated superior performance
over state-of-the-art techniques on public reference datasets in terms of standard
F1-score. In addition, its demonstrated fast training, robustness to the choice of
parameters and stability allows for high scalability of the model within an indus-
trial setting. USAD also provides the possibility to parameterize its sensitivity and
to produce, from a single model, a set of detection levels. This possibility offers
Orange’s supervision teams essential functionalities enabling the use of the method
in production on large-scale infrastructure. Since the teams need to be able to
lower the sensitivity of the detection to prevent only major incidents when their
workload becomes too high, the ability to multiply detection sensitivities during
inference makes the model extremely scalable within the company and brings major
advantages. First of all, it allows to limit the time needed to train the supervision
models by limiting their number to just one. Secondly, a deep learning model put
into production must be monitored and supervised by teams. Limiting the number
of models allows to reduce the time spent supervising models in production and
therefore free up time from supervisors to be devoted to different tasks.The feasibil-
ity study performed using Orange’s internal data provided conclusive results which
confirm that USAD suggests a promising direction for the automation of IT systems
supervision at Orange. It also signaled some of the difficulties that might be encoun-
tered on the way to deployment and execution. For example, the data collection
process (Section 3.3.3.2) faced the unexpected difficulty of gathering a continuous
training period not containing too many anomalies. This is an interesting aspect
that makes think on the infrastructure that will need to be put in place to have
USAD succesfully deployed.
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From Univariate to Multivariate
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This chapter presents a feature engineering strategy to transform univariate time
series into a multivariate one by introducing non-local information in the augmented
data. In this way, this strategy aims to address an intrinsic limitation of the features
learned by DNNs, which is they rely on local information only. The performance of
this combination is compared to each individual method and shows that the method
achieves better performance without increasing computational time on a set of 250
univariate time series proposed by the University of California, Riverside at the 2021
KDDCup competition.
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4.1 Introduction

This chapter proposes a novel feature engineering strategy to augment time series
data in the context of anomaly detection using DNNs. The goal is two-fold. First,
it aims to transform univariate time series into multi-variate time series to improve
DNNs performance. Second, it aims to use a feature engineering strategy that
introduces non-local information into the time series, which DNNs are not able to
learn. To achieve this, a data structure called Matrix-Profile is used as a generic
non-trivial feature. Matrix-Profile allows to extract non-local features corresponding
to the similarity among the sub-sequences of a time series. The main contributions
of this chapter are:

• It proposes an approach that transforms univariate time series into multivari-
ate by using a feature engineering strategy that introduces non-local informa-
tion to improve the performance of DNNs.

• It studies and analyzes the performance of this approach and of each method
separately using the KDDCup 2021 dataset consisting of 250 univariate time
series.

The rest of this chapter is organized as follows. Section 4.2 briefly reviews other
works on feature engineering for anomaly detection in time series. The section 4.3
presents the transformation of univariate time series into multivariate one and the
methods which constitute the framework. Section 4.4 describe the experiments and
demonstrate the performance of this approach. This chapter concludes with some
discussion and perspectives in section 4.5.

4.2 Related works

Different studies have raised the importance of feature engineering for the detection
of anomalies and the superiority of multivariate models in time series. A first study
conducted by Carta et al [16] shows that in network anomaly detection, the intro-
duction of new features is essential to improve the performance of state-of-the-art
solutions. Fesht et al [15] compare the performance of manual and automatic fea-
ture engineering methods on drinking-water quality anomaly detection. The study
concludes that automatic feature engineering methods obtain better performances
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in terms of F1-score. Ouyand et al [86] shows that feature extraction is one of the
essential keys for machine learning and proposes a method called hierarchical time
series feature extraction used for supervised binary classification. Panda et al [87]
demonstrates that appropriate feature engineering in addition to deep learning meth-
ods provides better detection of IoT-Botnet cyber attacks than methods alone. Fan
et al [88] proposes three feature engineering methods based on Auto-Encoders and
GANs. Their performance on building energy prediction shows that these methods
outperform conventional feature engineering methods. Santos et al [89] compares
univariate and multivariate models for predicting portfolio value at risk (VaR). Their
comparison on both simulated and real data concludes that the multivariate models
outperform their univariate equivalents. Finally, in [90], the authors conclude that
multivariate models provided a more precise and accurate forecast with smaller con-
fidence intervals and better measures of accuracy. Thus, studies have demonstrated
the importance of feature engineering to improve anomaly detection models as well
as the performance of multivariate methods compared to univariate ones on time
series. Motivated by these ideas, this work aims to investigate how feature engi-
neering using non-local information to achieve variate augmentation in time series
can improve the performance of anomaly detection DNN models in univariate time
series.

4.3 From univariate to multivariate time series

To take advantage of the performance of multivariate methods of anomaly detection
on univariate time series it is necessary to transform the univariate time series into
multivariate one. This can be achieved by adding external information to the time
series, which requires specific domain knowledge. This strategy, instead, transforms
the univariate time series into a multivariate one, without any further information
than the original time series, and is generic in that no specific knowledge on what
the time series represents is required.
The strategy consists in building another time series (i.e. another variate) by

extracting non-local information from the raw time series, which DNN approaches
fail to obtain as they typically operate in local neighborhood. To this end, the
Matrix-Profile (MP) [53, 54], a data structure for time series analysis is used. The
proposed strategy is illustrated in Figure 4.1.
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Figure 4.1: Top: DNN automatic feature learning and extraction is limited to a
local neighborhood, which is typically represented by the input window information.
Middle: the matrix profile algorithm relies on non-local features, which are obtained
by comparing every window of the time series. Bottom: the proposed strategy brings
non-local feature information to a DNN by transforming the original univariate time
series into a multivariate one by combining the raw time series and the non-local
information obtained with matrix profile.

The Matrix profile estimates the minimal distance between all sub-sequences of a
time series. Thus, the Matrix-Profile value for a given sub-sequence is the minimum
pairwise Euclidean distance to all other sub-sequences of the time series. A low
value in the matrix profile indicates that this sub-sequence has at least one relatively
similar sub-sequence located somewhere in the original series. In [55], it is shown
that a high value indicates that the original series must have an abnormal sub-
sequence. Therefore the matrix profile can be used as an anomaly score, with a high
value indicating an anomaly.
In this approach, the anomaly score obtained by Matrix-Profile is used over a

given time series and merge it point-by-point with the original data. This can be
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thus seen as a data augmentation procedure using non-local information from the
same signal.
As the new time series is just a multivariate time series, any given anomaly de-

tection method can be used to identify anomalous points in it. In this work, three
different estimation model-based techniques [34] are investigated as base anomaly
detection methods. Among these category of methods, the auto-encoder [66] is
among the most commonly used. An auto-encoder (AE) is an artificial neural net-
work combining an encoder E and a decoder D. The encoder part takes the input
window W and maps it into a set of latent variables Z, whereas the decoder maps
the latent variables Z back into the input space as a reconstruction Ŵ . The dif-
ference between the original input vector W and the reconstruction Ŵ is called
the reconstruction error. Thus, the training objective aims to minimize this error.
Auto-encoder-based anomaly detection uses the reconstruction error as the anomaly
score. Time windows with a high score are considered to be anomalies [21].
Alongside the AE, a more complex approach based on a Variational AutoEncoder

(VAE) coupled with a recurrent neural network is considered, the Long Short-Term
Memory Variational Auto-Encoders (LSTM-VAE) [11]. In the LSTM-VAE, the feed
forward network iof the VAE is replaced by a Long Short-Term Memory (LSTM),
which allows to model the temporal dependencies. As in the AE, the input data is
projected in a latent space. However, differently from the AE, this representation
is then used to estimate an output distribution and not to simply reconstruct a
sample. An anomaly is detected when the log-likelihood is below a threshold.
The third estimation model-based method considered is denoted UnSupervised

Anomaly Detection (USAD) [2]. USAD is composed of three elements: an encoder
network and two decoder networks. The three elements are connected into an archi-
tecture composed of two auto-encoders sharing the same encoder network within a
two-phase adversarial training framework. The adversarial training allows to over-
come the intrinsic limitations of AEs by training a model capable of identifying when
the input data does not contain an anomaly and thus perform a good reconstruction.
At the same time, the AE architecture allows to gain stability during adversarial
training of the two decoders.
The architecture is trained in two phases. First, the two AEs are trained to learn

to reconstruct the normal input windows. Secondly, the two AEs are trained in an
adversarial way, where the first one seeks to fool the second one, while this latter one
aims to learn when the data is real (coming directly from the input) or reconstructed
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(coming from the other autoencoder). As with the base AE, the anomaly score is
obtained as the difference between the input data and the data reconstructed by the
concatenated autoencoders.

4.4 Experiments and Results

This section first describes the datasets used and the experimental setup used in this
work. Then, The performance of the proposed approach is studied and compared
against other techniques.

4.4.1 Datasets

In this experiments 250 univariate time series proposed by the University of Cal-
ifornia, Riverside at the 2021 KDDCup competition, consisting of univariate time
series from many different fields are used. The 250 time series are composed of a
training part containing data considered as normal and a test part containing one
anomaly. The time series range from 6680 points for the smallest to 900000 points
for the largest. The length of the training set represents on average 31% of the total
length of the time series (i.e. a training on the first 31% points of the time series
and a test on the next 69% points) with a minimum length of 2.5% and a maximum
of 76.9%. All the time series are min-max normalized.

4.4.2 Experimental setup

The percentage of correctly labeled series is used to evaluate the performance of the
method. A time series is considered to be correctly predicted when the index of the
point labeled as anomalous is included in a window of 100 points around the true
anomaly.
This method is compared against the matrix-profile (MP), the auto-encoder (AE),

the LSTM-VAE and USAD without the transformation of the time series. The
performance of the three anomaly detection methods AE, LSTM-VAE and USAD
on a transformed univariate time series obtained using only non-local information,
i.e. with Matrix-profile (MP-AE, MP-LSTM-VAE and MP-USAD) is compared.
The AE, LSTM-VAE and USAD’s performance using the proposed multivariate
transformation, consisting of the original raw time series and the series obtained
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Table 4.1: Hyper-parameter settings of the different methods

Method Paramaters
MP window_size = 100, discords = True

AE window_size = 100, latent_dimension = 10, Epochs = 100

LSTM-VAE window_size = 100, Epochs = 100

USAD window_size = 100, latent_dimension = 10, Epochs = 100

with MP, respectively (TS+MP)-AE, (TS+MP)-LSTM-VAE and (TS+MP)-USAD
are assessed. To validate the relevance of the use of non-local information in the
transformation of the time series, an identical combination with a local feature
engineering strategy is considered. In particular, in the experiments the moving
average (MA), respectively (TS+MA)-AE, (TS+MA)-LSTM-VAE and (TS+MA)-
USAD) is used.

4.4.2.1 Implementation.

The AE is implemented using Pytorch and publicly available implementations is
used for MP[1]1, LSTM-VAE2 and USAD3. Table 4.1 details the hyper-parameter
setup used for each method. Where a parameter is not specified, it indicated that
those set by default in the original implementation were used.
All experiments are performed on a machine equipped with an Intel(R) Xeon(R)

CPU E5-2699 v4 @ 2.20GHz and 270 GB RAM, in a docker container running
CentOS 7 version 3.10.0 with access to an NVIDIA GeForce GTX 1080 Ti 11GB
GPU.

4.4.3 Results

Table 4.2 presents the results obtained by the different methods in terms of perfor-
mance accuracy and computational times. Interestingly, the performance of DNN-
based methods on univariate time series is very low and largely surpassed by the
more conventional approach, the matrix profile. However, once the same techniques
use the proposed data transformation strategy, an important boost in their perfor-
mance can be observed. The Auto-Encoder and the LSTM-VAE score almost 2.3

1https://stumpy.readthedocs.io
2https://github.com/TimyadNyda/Variational-Lstm-Autoencoder
3https://github.com/robustml-eurecom/usad
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Table 4.2: Methods performance and computational time.

Method Performance Train and Test time
(s×103)

Matrix-Profile 0.416 1.47
AE 0.236 22.00
LSTM-VAE 0.198 85.31
USAD 0.276 29.00
MP-AE 0.292 22.16
MP-LSTM-VAE 0.344 84.30
MP-USAD 0.404 29.10
(TS+MA)-AE 0.148 22.38
(TS+MA)-LSTM-VAE 0.134 85.43
(TS+MA)-USAD 0.176 29.12
(TS+MP)-AE 0.536 22.50
(TS+MP)-LSTM-VAE 0.446 85.83
(TS+MP)-USAD 0.488 29.28

times higher when the combination of the matrix profile and real data is used as
input instead of the original data. Similarly, USAD’s performance increases by 1.8
times when the matrix profile and raw time series combination is used compared to
its performance using only the raw time series.
Nevertheless, the non-local transformation alone is not enough to boost the per-

formance of DNN methods. For instance, if the input consists only of the univariate
time series transformed using the matrix profile, while there is some increased perfor-
mance, this one is milder than when using a multivariate time series. This confirms
that DNN methods perform better in a multivariate setup for anomaly detection.
Regarding the use of local features, i.e. the moving average, adding it does not

allow USAD, LSTM-VAE and AE to increase their performance. Indeed, the com-
bination of raw time series and moving average degrades the performance of AE
and USAD by about 0.1 and the performance of LSTM-VAE by about 0.06. This
suggests that any local features that might be discriminative can be extracted by
the DNNs and introducing new manually crafted ones may be detrimental.
Finally, as it is expected, the computational time of DNN-based methods is much

longer than the MP. However, what is interesting in the findings is that the computa-
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Figure 4.2: Anomaly correctly detected by USAD only with a multivariate input
combining Matrix-Profile and original univariate time series

Figure 4.3: Anomaly correctly detected by USAD only with a multivariate input
combining Matrix-Profile and original univariate time series
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tional time of DNN methods is very little impacted when the dimension of the time
series increases. In fact, the AE’s computational time goes from 21993 seconds in
the fastest univariate configuration to 22491 seconds in the multivariate case. This
means an increase of only 2.2% on computational time for a gain in performance of
230%.

4.5 Discussion and Conclusions

This chapter proposes an approach to augment univariate time series using a feature
engineering strategy that introduces non-local information in the generation of an
additional variate to the series. In this way, this strategy expects to address a limi-
tation of DNNs, as they are not conceived to learn automatically non-local features.
Automatic non-local feature extraction is achieved by relying on the Matrix-Profile, a
method that computes the minimum pairwise Euclidean distance of all subsequences
of the time series, and by combining its output with the original time series.
The KDDcup 2021 competition containing 250 univariate time series is used to

study the performance of this method. The performance analysis highlighted the
relevance of transforming the univariate time series using the proposed feature en-
gineering and data augmentation strategy. The results show that introducing non-
local information to augment the dimension of the series improves the performance
of DNN methods. For instance, by using a very simple method, such as an autoen-
coder, a gain in performance of 230% was obtained, without significantly increasing
the computational time. As such, the preliminary results suggest that non-local in-
formation represents an important source of additional information that can increase
performance of DNN methods.
While this approach focuses on the particular case of transforming uni- to mul-

tivariate time series, this idea could be used to augment time series, which are
multivariate at origin, as a way to introduce non-local information. In this work,
three methods of anomaly detection based on Deep Neural Networks were used in
combination with Matrix profile. The good performance on a simple auto-encoder, a
recurrent network such as LTSM-VAE and USAD, a state-of-the-art neural network,
suggest that this combination could generalize to other DNN methods. Therefore,
future works should explore other feature engineering techniques that can provide
non-local information, as well as other multivariate DNN anomaly detection meth-
ods.
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Finally, the findings are consistent with one of the results of the time series pre-
diction competition, the M4 challenge [91], which highlighted the predictive power
of ensemble approaches combining learning-based with more conventional statistical
methods. Due to the great success of DNN methods in the recent years, it is now
often the case that more traditional methods are overseen. The results suggest that
the use of hybrid approaches should be further explored.
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Chapter 5

Are Deep Neural Networks Methods
Needed for Anomaly Detection on
Multivariate Time Series?
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This chapter studies the anomaly detection performance of sixteen conventional,
machine learning-based and, deep neural network approaches on five real-world open
datasets. By analyzing and comparing the performance of each of the sixteen meth-
ods, it shows that no family of methods outperforms the others. Thus, it is impossible
to affirm that deep neural networks are superior to previous methods.
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5.1 Introduction

This chapter presents a comparison between conventional methods, machine learning-
based and more recent DNN-based approaches. This work is motivated by different
recent works, which have reported on the limitations and drawbacks of DNN-based
methods in different application fields [36, 92, 93, 94]. While some of this works
have focused on pointing out to the weaknesses of DNN-based methods [92, 93],
other works have been able to demonstrate the superiority of more conventional
approaches [36, 94].
The main contributions of this chapter are the following:

• It studies and analyze the performance of sixteen of the most commonly used
methods for anomaly detection in multivariate time series grouped into three
categories: Conventional, machine learning-based and DNN-based over five
open real-world data sets.

• It discusses the need for DNN-based approaches and the importance of con-
ventional methods in future benchmarks for multivariate time series anomaly
detection.

The rest of this chapter is organized as follows. Section 5.2 briefly reviews other
works comparing modern DNN-based methods to previous non-DNN-based works.
Sections 5.3 and 5.4 describe the experiments and analyze the performance on the
data sets.

5.2 Related work

Different studies have raised the question about the real gain of DNN-based meth-
ods in several application fields. A first study by Fernandez-Delgado et al. [95] pre-
sented a comprehensive evaluation of 179 classifiers from a collection of 17 families
of methods, (including neural networks, support vector machines, random forests,
generalized linear models, nearest-neighbors, partial least squares and principal com-
ponent regression among others) on a large number of classification tasks from the
UCI Machine Learning Repository1. The empirical studied suggested that a rela-
tively simple algorithm, the random forest, was overall the best classifier in terms

1https://archive.ics.uci.edu/ml/index.php
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of accuracy. In [94], Jiao et al. showed how conventional linear regression meth-
ods outperform DNN-based techniques in two showcased optical imaging problems,
i.e. an optical cryptosystem attack and blind reconstruction in single pixel imaging.
Autun et al. [92] proposed a stability test to demonstrates how DNN-based methods
for image reconstruction are very sensitive to tiny perturbations in the input images
during training, which leads to unstable results. Furthermore, Heaven [93] showed
small changes in a DNN’s input, usually imperceptible to humans, can destabilize the
best neural networks, thus pointing to the lack of robustness of DNN-based methods
and their dependence on large amounts of data. Most recently, in the context of
medical image segmentation, Fu et al. [96] showed that simpler DNN configurations
have better generalization properties than state-of-the-art models but more complex
DNN models, thus challenging the current trend towards continuously increasing the
model complexity.
In the specific context of time series analysis, the results of the M3 challenge on

time series forecasting [36] showed that the accuracy of learning-based models, in
general, was lower than that one of conventional approaches, while their computa-
tional requirements were considerably greater than those of conventional statistical
methods. Similarly, one of the main outcomes of the follow-up M4 competition [91]
was that none of the pure ML methods participating was able to outperform the com-
bination of learning-based and statistical (i.e. conventional) methods. For instance,
only one DNN approach was more accurate than a naïve random walk model that
assumed future values will be the same as those of the last known observation [97].

5.3 Experimental setup

This section describes the datasets and the performance metrics used in the ex-
periments.

5.3.1 Public Datasets

The same five datasets as the previous chapter were used in this experiments.
Table 5.1 summarizes the datasets characteristics and the type of anomalies present
in each dataset.
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Table 5.1: Benchmarked Datasets. (%) is the percentage of anomalous data points
in the dataset.

Dataset Train Test Dimensions Anomalies (%) Type of anomaly

SWaT 496800 449919 51 11.98 P, C, Col
WADI 1209601 172801 123 5.99 P, C, Col
SMD 708405 708420 28*38 4.16 P, Col
SMAP 135183 427617 55*25 13.13 P, Col
MSL 58317 73729 27*55 10.72 P, Col

P: Point Anomaly, C: Contextual anomaly, Col: Collective anomaly

5.3.2 Evaluation Metrics

As in the previous chapter, performance is assessed by comparing the results of each
evaluated method with the annotated ground truth. Precision (P), Recall (R), and
F1 score (F1) were used to evaluate anomaly detection performance.
The average precision (AP) is computed from anomaly scores. AP summarizes

a precision-recall curve as the weighted mean of precision achieved at every given
anomaly score threshold, with the increase in recall from the previous threshold used
as the weight:

AP =
∑
n

(Rn −Rn−1)Pn

where Pn and Rn are the precision and recall at the n-th threshold. Finally, the area
under the Receiver operating characteristic (AUC) curve is computed.
In the experiments, a window is considered labeled as an anomaly as soon as one

of the points it contains is detected as anomalous. For methods that do not use a
time window, an anomaly is considered detected if the detection occurs within 12
time points on either side of the anomaly.
the point-adjust approach is used as in the previous chapter since anomalous ob-

servations usually occur in the form of contiguous anomaly segments.

5.4 Experiments and Results

The performance of the sixteen methods discussed in Section 2.2 is studied on the
five datasets discussed in Section 5.3.1 in terms of precision, recall, F1-score, AP and
AUC (5.4.1). An analysis of the results is performed by comparing the anomalies
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detected by the conventional methods and the learning-based approaches (5.4.2).
The impact of the training set size (5.4.3) is studied. Finally, a synthesis of the
results is proposed and discussed (5.4.4).

5.4.1 Benchmark Performance

The performance of the sixteen anomaly detection methods are assessed on the five
public real-world datasets. Train and testing splits are reported in Table 5.1.
As not all of the anomaly detection approaches provide a mechanism for select-

ing anomaly thresholds,a thousand possible anomaly thresholds are tested for each
model. The anomaly score is normalized between 0 and 1 and then test on one
thousand thresholds in steps of 0.001. For every method, the results associated to
the highest achieved F1 score, the AUC and the AP are reported.
Table 5.2 reports mean, minimum and maximum performance of each group of

methods (conventional, ML or DNN) on every dataset. Where the minimum value is
reported as "-", it denotes that a method in that category did not provide any results
after more than ten days of execution in my experiments. Concretely, this occurrs for
VAR and SSA on SWaT and WADI dataset, and for MP on WADI dataset. At a first
instance, the results suggest that learning-based methods, and in particular DNN-
based, outperform conventional ones in terms of average performance, while often
reporting the highest performing models (maximum value). Instead, conventional
methods typically report the lowest performing method (minimum values). This
behaviour is most evident in the SWaT and MSL datasets.
The estimation of precision, recall and the F1 score requires the computation

of a threshold, which can be extremely complicated to define. The AUC-ROC
and AP metrics allow to obtain a score that takes into account the ability of the
methods to rank the anomalies without having to define a threshold and provide a
complementary information w.r.t P, R and F1. In particular, AP is more sensitive
to the positive class, i.e. the anomalies, than the AUC-ROC, so it is better suited
to highly unbalanced data [98], as it is the case in anomaly detection problem. A
detailed comparison of the performance of the different methods in terms of AP
shows that conventional methods outperform all families of methods in the MSL
dataset and they are the second best ranked after DNN methods for the remaining
datasets.
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A Welch’s t-test over the obtained results indicates that only AP in WADI shows a
significant difference among the different families of methods. Thus, only WADI can
differentiate performance between the three categories of approaches. This result
indicates that while DNN methods would perform better in some cases, more glob-
ally, there is no significant difference in performance between the method families
in four out of five datasets.

5.4.2 Analysis of WADI

A more detailed analysis is performed on the performance results obtained for each
type of method. The WADI dataset is used because it is the only dataset that shows
a significant difference in performance between the method families.
Figure 5.1 (top) represents the false negatives of all the conventional methods.

In other words, a value of 1.0 represents an anomaly labeled as normal by all the
conventional techniques. The second plot represents the same information for the
machine learning models and the third one for DNN approaches. The fourth series
in green represents the false negatives of the conventional approaches which are true
positives for the DNNs methods. In other words, a value of 1.0 corresponds to an
anomaly detected by at least one DNN algorithm but by no conventional methods.
Finally, the purple series shows the ground truth labels. Overall, WADI contains 14
anomalies distributed over the test (Figure 5.1 bottom).
An inspection of the plots shows that four anomalies are not detected by any of the

DNNs approaches, while seven anomalies are not detected by the conventional and
machine learning models. Thus, these three anomalies explain the performance gap
between the DNNs and conventional methods, which are the second best performing
family in terms of AP on this dataset (see fourth series).
Figure 5.2 presents a detailed view of the first anomaly from the green series.

It is caused by the variate 1_MV_001 increasing its value to 2.0 before the vari-
ate 1_LT_001 has reached its mininimal expected value (40). It is a contextual
anomaly, as the separate behavior of each variate does not constitute an anoma-
lous behavior on its own. The remaining two anomalies also shows that they are
contextual anomalies. This suggests that the performance gap between DNNs and
conventional methods comes from a better detection of contextual anomalies by
DNNs approaches.
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Figure 5.1: Top row: False negatives of conventional methods; Second row: False neg-
atives of Machine learning algorithms; Third row: False negatives of DNNs approaches;
Fourth row: False negatives of conventional methods that were well predicted by DNNs
methods; Fifth row: Ground truth Labels

Figure 5.2: Contextual anomaly in red due to the activation of a motorized valve
(1_MV_001) which causes the filling of the tank (1_LT_001) before it reaches the
switching threshold (located at 40)
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5.4.3 Impact of training set size

Using WADI and SWaT datasets, The impact of the training set size on the perfor-
mance of the methods is studied. the size of the training set is reduced by keeping
the most recent points, i.e. the closest to the test set. 10% , 25% , 50% and 75% of
the original training points are kept. For each set, one model per method is trained
and its performance assessed. Figures 5.3 and 5.4 present respectively the AUC
and the AP obtained on the SWaT dataset and Figures 5.5 and 5.6 on the WADI
dataset. Conventional methods globally obtain better results when the dataset size
is less than 50% of the original one. For example, on the SwaT dataset, MP, PCA
and ICA outperform in terms of AP all ML and DNN methods when the training
set is 50% or less. Their performance is matched by OC-SVM at 50%, and it is
outperformed only when three quarters of the training dataset is retained. The per-
formance of conventional approaches remains relatively constant, despite changes in
the training set size, meaning this has little impact in their performance. Instead,
ML and DNN methods perform better when increasing the size of the training
dataset, except for IF on the WADI dataset which performs slightly better when
only 50% of the dataset is kept. This can be explained by the fact that the isola-
tion of anomalous points can be more complex when the training set is larger. In
general, it is only above 50% that DNNs approaches seem to perform better than
conventional methods.

5.4.4 Discussion

The experimental results for multivariate anomaly detection using conventional, ma-
chine learning and DNN methods did not prove the superiority of one category over
the others over the datasets. However, there are some indications that in the partic-
ular case of contextual anomalies, DNN-based methods perform better and may be
necessary. However, this analysis is only true when the dataset is large enough for
them to learn properly, otherwise conventional methods seem to outperform them.
While a detailed analysis of the performance of different methods in contextual
anomalies is, therefore, necessary, it is complicated to obtain real datasets contain-
ing contextual anomalies to validate this hypothesis. Indeed, contextual anomalies
are by definition difficult to detect visually by experts since taken alone the series
seem normal. It is therefore challenging for the community to obtain datasets con-
taining contextual anomalies without these having been manually induced. In view
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Figure 5.3: Area under the Receiver operating characteristic curve (AUC) on SWaT
dataset.

of these results, it is impossible to affirm that the most complex methods based on
DNNs have allowed a real advance in the problem of anomaly detection in multivari-
ate time series. It is therefore essential for the community to reintegrate machine
learning methods, but also conventional methods in the benchmarks to ensure that
the new methods proposed improve the performance in the detection of anomalies in
time series. Furthermore, the lack of good results from the most complex methods
in some cases, invites to encourage the community to continue to propose methods
from all three categories and not to focus only on DNN-based methods.
This chapter focuses on some aspects of the performance of different types of

methods, while leaving aside a detailed analysis of the computational times required
by each technique. It is now relatively well established that ML and DNN-based
approaches are more computationally demanding than conventional methods. This
is mainly due to the fact that training time can be very expensive, especially for
DNN-based methods. Conventional methods have the advantage of not requiring a
training phase, which is where ML and DNN-based methods consume most of the
computational resources. However, at inference time, DNN-based methods can be
much faster. As an example, Matrix-Profile is a fast conventional approach [99],
which, however, requires to compute the distance of every new sub-sequence w.r.t.
old available data.
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Figure 5.4: Average precision (AP) on SWaT dataset.

Another important observation from this study regards scalability. Some conven-
tional methods failed to converge when the data set was too large (i.e. VAR and SSA
on SWaT and WADI and MP only on WADI). Therefore, the size of the datasets
is an important criterion in the choice of a methods to use. While DNN-based
methods are a more suitable choice for larger sets of data, despite their overhead
in computational time during training, conventional approaches seem to be a better
choice in a small data regime.
Finally, an important point to consider is also the difficulty to reproduce the results

of DNN-based methods compared to the other two categories of methods. Indeed,
there is a plethora of open implementations of conventional 1 and machine learning
based methods 2, while some DNN-based approaches can be difficult to implement,
sometimes no implementation is available or it is difficult to set up.

5.5 Conclusion

This chapter provides a comparative analysis of conventional, machine learning-
based and DNN-based methods. The performance of sixteen algorithms is evaluated
on five open real-world datasets to understand whether the complexity provided by

1PYOD : https://github.com/yzhao062/pyod
2Scikit Learn : https://scikit-learn.org/
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Figure 5.5: Area under the Receiver operating characteristic curve (AUC) on WADI
dataset.

DNN-based approaches is necessary for anomaly detection in multivariate time se-
ries. The impact of the training set size on the performance of these methods is
studied. The performance analysis did not allow to observe a superiority of one
category of methods over the others in terms of performance. The results showed
that all three categories can outperform the other two according to the criteria of
the dataset. The DNN based methods seem to perform better when the dataset
contains contextual anomalies. However, this finding could only be made on one of
the five datasets, so more experimentation is needed to confirm that DNN methods
outperform the other categories in terms of contextual anomaly detection. Further-
more, if the training set is not large enough, the conventional methods outperform
the other two categories. Thus, the size of the training set is an important criterion
in the choice of the category of methods to detect anomalies in multivariate time
series. Some conventional methods have failed to scale on large data sets.
In view of all these results, it is not possible to affirm that the performance claimed

in recent years in benchmark papers that omitted one of the three categories are
not illusory [20]. I therefore encourage the community to reincorporate the three
categories of methods in the benchmarks of anomaly detection in multivariate time
series. Moreover, it seems essential to multiply the number of datasets compared
in the benchmarks in order to ensure that all eventualities are covered. For this,
the community will have to obtain new real world datasets containing contextual
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Figure 5.6: Average precision (AP) on WADI dataset.

anomalies. Indeed, the difficulty for experts to visually label contextual anomalies in
multivariate time series makes it difficult to obtain test sets covering this criterion.
It is then complicated to assert that DNN methods are necessary although it seems
that they are able to outperform conventional approaches in this domain when the
data set is large enough.
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Table 5.2: Summarized performance measures per each category of methods. For
each measure the mean ± standard deviation, and the [minimum, maximum] values
per category are reported. Values are reported as %
Dataset Metric Conventional Machine learning DNN

SWaT

P 75.1±31.4 [-,92.5] 84.8±16.8 [60.2,98.2] 84.8±13.6 [71.2,99.1]
R 74.5±2.6 [-,78.5] 80.8±11.4 [73.8,97.7] 82.4±12.3 [70.4,98.3]
F1 70.6±22.2 [-,82.7] 80.9±4.4 [74.5,84.3] 82.1±2.0 [79.7,84.6]

AUC 74.9±13.4 [-,81.5] 76.1±11.4 [59.1,83.3] 83.0±0.8 [82.2,84.0]
AP 59.4±26.4 [-,71.6] 57.0±30.0 [12.0,72.7] 72.8±0.7 [71.5,73.4]

WADI

P 29.8±15.5 [-,50.8] 49.4±42.2 [9.1,98.5] 39.9±16.8 [22.3,64.5]
R 30.1±4.1 [-,32.5] 64.9±37.5 [15.9,95.1] 42.9±31.3 [19.8,98.0]
F1 27.7±6.0 [-,32.5] 34.6±19.3 [16.6,61.7] 35.8±8.9 [20.9,43.0]

AUC 50.8±0.8 [-,51.3] 57.6±10.0 [48.6,70.8] 63.9±2.8 [59.3,66.8]
AP 16.1±6.7 [-,20.3] 15.4±5.7 [7.5,20.4] 25.5±3.0 [21.5,29.3]

SMD

P 72.9±23.4 [21.7,89.1] 72.2±18.8 [47.0,92.6] 86.7±11.7 [67.3,98.1]
R 70.1±7.1 [56.3,78.0] 95.6±6.2 [86.3,99.0] 86.9±8.0 [78.8,96.2]
F1 62.9±20.8 [20.4,80.1] 75.6±13.1 [56.8,87.2] 84.8±9.3 [72.3,94.4]

AUC 66.2±3.9 [59.9,70.1] 72.4±4.8 [66.3,77.1] 74.4±3.2 [69.5,77.5]
AP 24.9±7.1 [17.2,34.6] 23.3±9.8 [8.7,29.5] 29.6±3.7 [26.1,35.2]

SMAP

P 60.0±17.4 [38.7,78.4] 74.9±9.7 [60.5,80.5] 72.7±4.2 [66.3,77.0]
R 96.4±3.5 [89.0,98.8] 92.1±11.5 [74.9,98.7] 98.3±0.9 [97.6,99.8]
F1 64.5±16.4 [42.8,82.0] 79.6±8.5 [66.9,84.3] 77.4±4.3 [71.2,81.9]

AUC 59.8±4.2 [52.7,65.7] 58.4±4.6 [52.8,63.9] 63.5±1.7 [60.7,65.2]
AP 24.4±4.0 [16.7,28.8] 21.5±5.7 [14.7,26.4] 27.3±1.6 [24.9,29.1]

MSL

P 71.6±15.0 [49.3,87.3] 81.0±8.9 [70.1,91.3] 85.3±5.9 [75.6,91.4]
R 94.2±4.3 [84.7,97.1] 83.6±6.9 [73.7,89.8] 96.0±4.0 [88.9,98.0]
F1 74.4±15.1 [51.0,90.1] 78.1±7.5 [69.3,86.0] 87.0±3.9 [81.1,91.1]

AUC 60.9±3.0 [55.3,64.7] 60.1±3.6 [56.3,63.4] 62.5±0.5 [61.8,63.2]
AP 25.0±4.0 [20.2,29.8] 21.6±5.9 [15.1,27.0] 24.4±1.5 [22.5,26.1]
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Chapter 6

Conclusion and Perspectives

6.1 Conclusion

This thesis focuses on the unsupervised detection of anomalies in multivariate time
series. Being able to detect anomalous behavior is an increasingly complex task
due to the growing size and complexity of the systems being measured. However,
anomaly detection is one of the key issues for a large number of domains such as
finance, health or supervision. To this end, this thesis proposed a method called
USAD that can partially address the problem of anomaly detection in multivariate
time series such as the automation of the supervision of large computer systems in
Orange since it meets the constraints of scalability and fast learning while offering
possibilities of managing the level of detection and very good performance compared
to other deep neural network methods of the state of the art. This thesis also presents
a feature engineering strategy to improve the performance of DNN methods such as
USAD by introducing non-local information and to transform a univariate time series
into a multivariate one. However, while these methods appear to be effective for time
series anomaly detection and their performance on contextual anomalies could be
important for automating the supervision of large computer systems, it is currently
impossible to argue that their larger complexity compared to conventional methods
is really necessary to solve this problem as shown in the study proposed in this
thesis. It is important to encourage the community to reintegrate all three families of
methods into future benchmarks to ensure that the announced progress is achieved.
Finally, this thesis highlighted the power of ensemble approaches combining learning-
based and more conventional statistical methods and suggest that the use of hybrid
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approaches should be further explored.
Chapter 3 proposes a new method called UnSupervised Anomaly Detection for

multivariate time series (USAD) [2] based on an autoencoder architecture whose
learning is inspired by GANs. The intuition behind USAD is that the adversarial
learning of its encoder-decoder architecture allows it to learn to amplify the con-
struction error of inputs containing anomaly, while gaining stability over methods
based on GANs architectures. The method has demonstrated superior performance
to state-of-the-art techniques on public benchmark datasets. In addition, its learn-
ing speed, robustness to parameter selection and stability allow a high scalability of
the model in an industrial context. USAD also offers the possibility to parameterize
its sensitivity and to produce, from a single model, a set of detection levels.
Chapter 4 investigates a new feature engineering strategy for augmenting time

series data in the context of anomaly detection using deep neural networks [100].
The objective is to transform univariate time series into multivariate time series
to improve performance. But also, the use of a feature engineering strategy that
introduces non-local information in the time series. This chapter therefore proposes
a strategy that consists in engineering another time series (i.e. another variable) by
extracting non-local information from the raw time series, which deep neural network
approaches fail to obtain because they usually operate in a local neighborhood. To
this purpose, Matrix Profile (MP), a method that computes the minimum pairwise
Euclidean distance of all subsequences of the time series is used, and its result is
combined with the original time series. The performance on the KDDcup 2021
competition data containing 250 univariate times shows that introducing non-local
information to increase the dimension of the time series improves the performance
of the deep neural network method. Although this approach focuses on the special
case of transforming univariate time series into multivariate time series, this idea
could be used to augment time series, which are multivariate in origin, as a way to
introduce non-local information.
Chapter 5 presents an in-depth comparison between conventional methods, ma-

chine learning-based approaches and more recent approaches based on deep neural
networks. Indeed, the lack of a general comparison covering all families of meth-
ods in the literature and the explosion of more and more complex methods based
on deep neural networks, has called into question the methodological advances and
performance improvements reported in the benchmarks for anomaly detection in
multivariate time series. The analysis of the performance of sixteen methods on
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five datasets did not allow to observe a superiority of one category of methods over
the others. The results showed that the three categories can perform better than
the other two depending on the dataset criteria. The deep neural network based
methods seem to perform better when the dataset contains contextual anomalies or
when the datasets are large, while the conventional techniques perform better when
the dataset is small.

6.2 Perspectives

This thesis opens several research perspectives.
First, Chapter 5 shows that it would appear that deep neural networks would

perform better on contextual anomalies, however, this finding could only be made
on one of the five datasets, so further experimentation is needed to confirm that
deep neural network methods perform better than the other categories in terms
of contextual anomaly detection. It seems then essential to multiply the number
of datasets compared in the benchmarks in order to ensure that all eventualities
are covered. To do so, the community will have to obtain new real-world datasets
containing contextual anomalies but the difficulty for experts to visually label con-
textual anomalies in multivariate time series makes it difficult to obtain test sets
covering this criterion. Obtaining these new sets will potentially allow the commu-
nity to answer the question: Are deep neural network methods really necessary in
the detection of anomalies in multivariate time series?
Second, the results in Chapter 4 suggest that the use of hybrid approaches could

be an alternative to the choice between different families of methods. This would
require exploring other feature engineering techniques that can provide non-local
information, as well as other deep neural network methods for anomaly detection.
Thus, the creation of hybrid approaches could potentially address the limitations
and constraints of each family of methods in order to get closer to the automatic
supervision of large computer systems.
Third, in order to limit the complexity of the models, low complexity model en-

sembling could be considered. Indeed, the very recent results of the KDDCUP2021
on anomaly detection in univariate time series show that the podium of solutions
are based on a low complexity model ensembling with selection mechanisms based
on anomaly scores. Thus, the approach of model ensembling seems promising and
is complementary with a hybrid approach as proposed previously.

83



6. Conclusion and Perspectives

Finally, the ability to detect abnormal behavior in a complex system is not the
only important task. To be able to use these models in a real industrial environment,
it seems important to be able to identify the variables causing the anomaly. Indeed,
detecting an abnormal period in a time series is only the first step. After the
detection it is essential to be able to identify the causes in order to apply the adequate
countermeasures. Thus, this work will have to be extended in this direction before
taking its full place in the industrial world.
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Appendices

A.1 Material for USAD Reproducibility

Experimental Setting

All experiments are performed on a machine equipped with an Intel(R) Xeon(R)
CPU E5-2699 v4 @ 2.20GHz and 270 GB RAM, in a docker container running Cen-
tOS 7 version 3.10.0 with access to an NVIDIA GeForce GTX 1080 Ti 11GBGDDR5X
GPU. The Isolation Forest (IF) comes from the scikit-learn 1 implementation. The
DAGMM comes from a Tensorflow implementation on Github 2. The LSTM-VAE
comes from a Github implementation 3. The OmniAnomaly comes from the authors’
Tensorflow implementation of Github 4. Finally, the USAD and AE were developed
by me in Pytorch.

Packages Used in the Implementation

The relevant packages and their versions used in the algorithm implementation are
listed as follows:

• python==3.6.8

• pytorch==1.3.1

• cuda==10.0

• scikit-learn==0.20.2
1https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

IsolationForest.html
2https://github.com/tnakae/DAGMM
3https://github.com/Danyleb/Variational-Lstm-Autoencoder
4https://github.com/NetManAIOps/OmniAnomaly
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• numpy==1.15.4

USAD Hyper-parameters for each dataset

For each dataset we have 4 parameters. The size of the windows, corresponding to
the size of the sequence of time series we have in input. The number of epochs, the
dimension of Z which is the USAD latent space and finally the down-sampling rate
during pre-processing. The down-sampling is done by taking the median value of
each feature.

Table 1: USAD Hyper-parameters for each dataset. K denotes the window size and
m the dimension of the latent space.

Datasets K Epochs m Down-sampling

SWat 12 70 40 5
WADI 10 70 100 5
SMD 5 250 38 5
SMAP 5 250 55 5
MSL 5 250 33 5

USAD Implementation

The input size corresponds to the size of the window multiplied by the number of
dimensions of the multivariate time series.

Encoder

• Linear : input size -> input size / 2

• Relu

• Linear : input size /2 -> input size / 4

• Relu

• Linear : input size /4 -> latent space size

• Relu

100



A.2 Material for Benchmark Reproducibility

Decoder

Both decoders have the same architecture.

• Linear : latent space size -> input size / 4

• Relu

• Linear : input size /4 -> input size / 2

• Relu

• Linear : input size /4 -> input size

• Sigmoid

As optimizer we use Adam’s pytorch implementation with his default learning
rate.

A.2 Material for Benchmark Reproducibility

Experimental Setting

All experiments are performed on a machine equipped with an Intel(R) Xeon(R)
CPU E5-2699 v4 @ 2.20GHz and 270 GB RAM, in a docker container running
CentOS 7 version 3.10.0 with access to an NVIDIA GeForce GTX 1080 Ti 11GB
GPU.
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Implementation

Methods Implementation

VAR https://www.statsmodels.org/stable/index.html
MCUSUM https://github.com/Marco-Christiani/MITTEN
MEWMA https://github.com/Marco-Christiani/MITTEN
MP https://stumpy.readthedocs.io
PCA https://github.com/yzhao062/pyod
SSA https://github.com/kieferk/pymssa
ICA Implementation based on scikit-learn
IF https://github.com/yzhao062/pyod
LOF https://scikit-learn.org
OC-SVM https://scikit-learn.org
DBSCAN https://scikit-learn.org
AE Implementation based on Pytorch
LSTM-VAE https://github.com/TimyadNyda/Variational-Lstm-Autoencoder
DAGMM https://github.com/tnakae/DAGMM
OmniAnomaly https://github.com/NetManAIOps/OmniAnomaly
USAD https://github.com/robustml-eurecom/usad

Parameters

All unspecified parameters were used by default in the implementation.
Methods Parameters

VAR maxlags = 100
MCUSUM k = 0.5
MEWMA -
MP window_size = 100, discords = True
PCA n_components = 20
SSA n_components = 20, novelty = True
ICA n_components = 20
IF -
LOF novelty = True
OC-SVM -
DBSCAN eps = 0.15,min_samples = 25
AE window_size = 12, latent_dimension = 40, Epochs = 70
LSTM-VAE window_size = 12
DAGMM -
OmniAnomaly window_size = 12
USAD window_size = 12, Epochs = 70
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