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Introduction 

Functional (nano)materials constituted by thin molecular layers and or micro/nano 

molecular patterns on supporting surfaces (metals, semi-conductors, insulators) are gaining 

interest in numerous research fields for a wide series of applications, such as catalysis, batteries, 

(bio)sensors, or even biomedicine. Indeed, the fine tuning of the molecular layer properties 

allows optimizing the performance of the final device toward targeted uses. For the specific 

case of hybrid structures made of metallic supports functionalized by molecules, richer 

(electro)chemical functionalities can be reached through the design of complex electroactive 

molecular architectures, with respect to classic devices based on macro inorganic structure. 

Ultimately, the great potentialities and virtually limitless possibility of modulation of 

functional molecular materials encourage today the research towards more and more fine 

developments and successive integration in operational devices. 

The elaboration of new functional (nano)materials and the understanding of complex 

(bio)interfaces, useful for instance in electrocatalysis, requires the development of analytical 

tools with a sufficient sensitivity, which can operate at the nanoscale and under the conditions 

of operation of these materials (in situ, operando, in vitro). Ultimately, establishing structure-

reactivity relationships would allow directing the design of functionalized substrates towards 

specific and targeted applications. 

Compositional and structural analysis of low cross-section material like molecular films 

can be achieved via a myriad of microscopic and spectroscopic techniques, although often their 

operation conditions can strongly limit/compromise in situ applications (e.g. use of ultrahigh 

vacuum, signal screening by the solvent or by the atmosphere). Scanning Probe Microscopies 

SPMs stand as great alternatives to X-ray and electron microscopies to access the structure of 

functional surfaces at the (sub)nanoscale in the ambient and in liquids, with minimal 

interference of the probe with the system under study (no beam damages). Among benchtop 

spectroscopies, instead, the Raman technique has shown spectacular characterization abilities 

especially since the introduction, in the early 70’s, of Surface-Enhanced Raman Spectroscopy 

(SERS), which circumvented its classical issue of poor sensitivity and brought the detection 

threshold down to the molecular level. 

Tip-Enhanced Raman Spectroscopy (TERS, or nanoRaman), which combines SPMs 

with enhanced-Raman microscopy, was introduced in the late 90s, but almost remained at the 
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conceptual stage of its development for many years, being the privilege of only a handful of 

research groups worldwide. The exceptional sensitivity of TERS and the wealth of information 

contained in its vibrational signatures was demonstrated in 2013 1 through the imaging under 

vacuum of the vibration modes of a single porphyrin molecule on an Ag(111) surface, and in 

2014 2 through the composition imaging in the ambient of a single carbon nanotube with a 1.7 

nm resolution. The demonstration of its implementation in water in 2009 3 and under 

electrochemical conditions (EC) a few years later 4 has paved the road to the characterization 

of functional (nano)materials in their operating conditions.  

This work has been dedicated to the characterization of electroactive molecular layers 

through important developments and optimizations of EC-TERS measurements, using a 

scanning tunnelling microscope (STM-TERS) for the precise control of the TERS tip-sample 

distance. On one side, our efforts were focused on the study of molecular structures involving 

different classes of compounds carrying redox active entities (thiol-based self-assembled 

monolayers SAMs and 2D-3D molecular architectures built via the electroreduction of 

diazonium derivatives). On the other side, we attempted the development of real-time 

measurements to characterize the chemical transformation pathways occurring during 

electrochemical redox processes of the electroactive layer. Moreover, to get a better 

understanding of the structure-reactivity relationships of molecular-based devices, the 

reactivity of well-organized 2D monolayers and randomly organized 3D structures were cross-

compared through the screening of their potential-dependent composition by EC-STM-TERS. 

This work around the development of electrochemical tip-enhanced Raman 

spectroscopy and the characterization of SAM and diazonium-based electroactive molecular 

architectures is divided into 4 independent chapters, organized as follows. 

Chapter 1 will describe in detail the characteristics of thiol- and diazonium-derived 

substrates, expose their fabrication procedures and discuss the influence of their structures on 

the overall system reactivity. Therefore, a series of in situ and operando methods, which have 

been employed for the characterization of the aforementioned molecular structures (both at the 

micro- and nano-scale) will be reviewed. Finally, an excursus about the EC-TERS technique, 

from the first prototypes to the last innovations, will be presented, along with a final note 

regarding the challenges that are actually faced by the TERS community. 

Chapter 2 will be dedicated to the experimental and technical developments that were 

carried out in this work to optimize the performances of EC-STM-TERS analyses, including 
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the fabrication of metal probes used as Raman signal plasmonic amplifiers, the design and 

optimization of electrochemical tools and methods suitable for reliable in situ TERS 

measurements. 

Chapter 3 will present the first proof-of-concept of dynamic nanospectroscopic 

investigations under electrochemical conditions. This was achieved by using EC-TERS to 

monitor in real time the composition evolution of a model thiol SAM (4-nitrobenzyl mercaptan 

4-NBM) subjected to reductive conditions. The insights on the reaction mechanism of nitro-

based molecular compounds, deduced from 4-NBM analyses, will serve as a base to Chapter 

4. 

Chapter 4 aims at screening the structure-reactivity relationships in more complex 

molecular architectures, i.e. 4-nitrobenzene (4-NB) layers at different thicknesses, obtained by 

reduction of the corresponding diazonium salt.  

In conclusion, we will summarize the most important results achieved through this work 

and present the envisaged future perspectives. 
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Chapter 1 State of the art 

1.1. Introduction 

Nowadays the massive request of novel technological devices, with specifically 

designed characteristic and minimal size, leads several research fields to turn towards the 

realization of nano-functionalized (bio)interfaces and, on the other side, towards the 

development of feasible measurement techniques for the analysis of the final systems in their 

working conditions. Ideally, the characterization methods should have a great sensitivity, so 

that to obtain signals even from single thin molecular layers or isolated nano-objects, and an 

extraordinary resolution, in order to distinguish among adjacent structures on the surface and 

not to get just an overall averaged information. Besides, getting insights in the reaction 

mechanisms that involve these nanostructures requires for the characterization method to be 

compatible with the operating conditions of the functionalized devices (in terms of instrumental 

setup, environment, time resolution, and so on). 

In the following paragraphs we will first discuss about the chemistry of surface 

functionalization, focusing in particular on two kinds of molecular species. Later on, we will 

review a few characterization methods that have been so far implemented with the aim of 

analysing operando functional materials at the macro/micro and nano scale. Finally, we will 

present the electrochemical tip-enhanced Raman spectroscopy (EC-TERS) technique, which is 

so far one of the best developments for carrying out in situ chemical characterization at the 

nanoscale and on which this thesis work is based. 

1.2. Surface modification 

Patterning a surface with chemical species, nano-objects or even proteins presents 

numerous advantages: first, upon decreasing the size of chemically active regions, molecular 

mass transfer limitations can be overcome, meaning that the intrinsic chemical activity can be 

fully exploited. This is particularly interesting in the field of catalysis, where the efficiency and 

selectivity for certain kinds of reaction (as oxygen reduction reaction 5, water splitting 6, or CO2 

conversion 7) can be specifically tuned. 

Moreover, nanoscale motifs can provide the underlying substrate with new properties, 

as hydrophobicity 8, adhesion 9, electric conductivity or insulation 10, and can also work as 

precursors for click-chemistry reactions that immobilize specific objects on top of the original 

substrate (as nanoparticles 11, biosensors 12 or cubes for memory storage 13). Besides, patterned 
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surfaces seem promising for the development of safer and more efficient electrocatalytic 

materials for energy storage 14 or conversion 15. 

Structuring an organic layer on a surface requires a precise knowledge of the type of 

interactions formed between the molecules and the substrate atoms. In general, strongly 

attached layers are obtained if chemical bonds are formed, while simple physisorption occurs 

when the molecules establish weaker interactions (e.g. Van der Waals or hydrogen bonds) with 

the substrate. The presence of either or both kind of bonds is mostly related to the nature of the 

organic compound, but also the experimental conditions adopted for the layer formation can 

play a role (as solvent or temperature, which can push the process rather towards the 

thermodynamic or the kinetic deposition product) and on the substrate (nature, crystalline 

structure, presence of surface defects, etc.). 

More specifically, in the following paragraphs we will focus on two classes of organic 

compounds (thiols and diazonium salts), which represent good candidates for surface 

functionalization, and will discuss about their structuration over a substrate. 

1.2.1 Thiols 

Alkyl and aryl thiols are organosulfur compounds characterized by a –SH head-group, 

whose high affinity for metals promotes thiols adsorption on both crystalline and semi-

crystalline surfaces, where they spontaneously arrange in self-assembled monolayers (SAMs) 

16 (Figure 1.1). 

 

Figure 1.1. Schematic diagram of an ideal, single-crystalline SAM of alkanethiolates supported on a 

gold surface with a (111) texture. The anatomy and characteristics of the SAM are highlighted. Adapted 

from [16]. 

The assembling process depends only on the environment at the interface between 

liquid (or gas) and metal and does not need any guidance from an external source 17. The final 
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structure is defined by a specific molecular orientation (with respect to the surface and between 

adjacent species) and a surface coverage rate, which determines also the overall compactness 

of the layer. Thiol-based SAMs can be prepared either by electrochemically induced adsorption 

18 or by electroless deposition from gas 19 or from liquid phase; the latter method is the most 

employed and consists simply in incubating the desired substrate in the precursor thiol solution 

for a certain time 16. 

1.2.1.1. Structure of the film 

The SAM structuration is influenced by many parameters, starting from the 

concentration of the thiol species in solution. For instance, AFM images recorded on 4-

nitrothiophenol (4-NTP) SAMs exhibited a dramatic decrease in the surface coverage when the 

concentration of the functionalizing solution was decreased from 7 (Figure 1.2a) to 3.5 

mmol.L-1 (Figure 1.2b) 20. Besides, the incubation time was shown to have an effect on the 

stability and orientation of the molecular species within the SAM. Investigations of the bonding 

strength of cysteamine SAMs on gold via single-molecule force spectroscopy evidenced the 

reaching of a maximum in the binding force with the substrate within 30 minutes from 

immersion in the precursor solution, (without any significant variations in the following 24 

hours), followed by a decrease in the next 5 days due to thiol re-dissolution 21. Moreover, 

evolutions in the orientation of alkanethiolate chains from lying-down to standing-up 

arrangements with time (Figure 1.2c) have been evidenced during the deposition process in 

both gas 22 and liquid phase 17,23. 

The structure of the film is also greatly influenced by the nature and the morphology of 

the underlying substrate. Comparative XPS and STM studies, performed along with DFT 

calculations, have shown different SAM orientations and coverage on Au, Ag, Cu, Pt, Pd and 

Ni substrates, influenced, among others, by the S-metal bond strength, the presence of defects 

or impurities on the reconstructed surfaces, and the surface geometry (planar, nanoparticle or 

nanocluster) 17. In particular, DFT calculations modelled the absorption of SAMs on different 

Au crystal phases and showed different S-Au binding geometries and strengths depending on 

the reciprocal arrangement of the gold atoms and on the presence of adatoms defects 24. More 

specifically, as Figure 1.2d shows, close-packed Au(111) surfaces preferentially form staple-

motif bonds (where the S atom is linked to a superficial Au and an Au adatom), while more 

“open” Au(100) and (110) faces privileges bridging bonds (S connecting two superficial Au 

atoms). 
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Figure 1.2. Effects of incubation parameters on SAM structure - Thiol precursor concentration: 

AFM phase images (a, color scale: -27 – 29°, and b, color scale: 0 - 15°) of Au nanoplates covered 

with 4-NTP after 12h immersion in a 7.0 mmol.L-1 solution (a, full coverage evidenced from phase 

color of the gold nanotriangle, different from the underlying substrate) and 3 mmol.L-1 solution (b, 

partial coverage evidenced by few darker zones on the nanohexagone). Adapted from [20]; 

Incubation time: c) Schematic view of an alkanethiol geometrical arrangement evolution with 

time on an Au(111) substrate during deposition from gas phase: (i) initial physisorption; (ii) 

adsorption in lying-down arrangement; (iii) partial stand-up rearrangement; (iv) final stand-up 

close-packed arrangement. Adapted from [22]; Substrate crystalline structure: d) Top view 

(upper panel) and side view (lower panel) of the optimized structures for methylthiolate on Au(111) 

surface (packed structure, favoring staple motifs via Au adatom), and on Au(100) and Au(110) surfaces 

(open structures, favoring thiol bridges). Only the topmost surface layer is shown. Au, red; Au adatom, 

yellow; S, blue; C, grey; H, white. Adapted from [24]. 

Last but not least, the nature itself of the thiol species influences the interactions 

established with the substrate and between adjacent tethered species, thus influencing the 

structure of the film. For instance, infrared, contact angle and STM analyses evidenced that the 

higher polarity of rigid 4’-substituted-4-mercaptobiphenyls, with respect to their alkanethiolate 

analogues, confer them lower tilting angles from the metal surface normal 25,26, thus increasing 

the spacing between adjacent molecules. This is why, thanks to the higher flexibility in their 

bonding angles, alkanethiolates establish stronger intermolecular interactions, thus yielding 

SAMs with higher surface coverages and denser structures, as it was shown by STM mapping 

27 (Figure 1.3a). 
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Figure 1.3. Influence of the thiol species on the SAM structure and stability – a) Morphologies of 

(i) decanethiol and (ii) benzenethiol SAMs on Au(111). Examples of gold vacancy and adatom islands 

are highlighted by circles and squares, respectively. In (i) the SAM is formed by large, densely packed 

domain separated by vacancy islands, while in (ii) the molecules form more separated domains, 

intercalated by a series of small vacancy islands and gold adatoms (induced by the aromatic thiols 

during the deposition process). Adapted from [27]; b) Upper: Typical reductive desorption 

voltammograms for an aromatic and an aliphatic thiols on Au(111). The peak potential value (Ep) and 

the charge involved in the peaks (white areas) are indicated. Lower: representation of the models used 

for DFT calculations: adsorbed thiols for aromatic and staples moieties for aliphatic thiols. Golden: Au 

surface atoms, orange: Au adatoms, green: S atoms, gray: C atoms, white: H atoms, red: O atom. 

Adapted from [28]; c) Cyclic voltammetry curves for Au-S-CH2-C6H5, Au-S-CH2-C6H4-O-CH3,and 

Au-S-CH2-C6H4-O-C16H33 monolayers. The cathodic peak reveals the reductive desorption of the 

studied layer. Adapted from [29]. 

1.2.1.2. Stability of the SAMs 

Probably the major drawback of thiol-based SAMs relies on the weakness of the S-metal bond 

that leads to easy desorption processes, thus compromising the stability of the modified surface. 

However, this limitation can be controlled in different manners. For instance, the organisation 

of the SAMs at the surface was shown to influence the stability of the whole layer. Indeed, 

close-packed structures were found to be more resistant to electrochemical desorption with 

respect to less dense layers, as it was evidenced by DFT calculations performed on model 

aliphatic and aromatic SAMs 28 (Figure 1.3b). This effect was remarked also by comparing 

packing density and electrochemical stability, evaluated from cyclic voltammetry (CV) 



 

14 

 

experiments, of thiophenols and benzyl mercaptan derivatives 29. Thanks to the presence of a 

methyl group between the benzene ring and the SH groups, benzyl mercaptans are more 

flexible and form denser structures, with stronger intermolecular interactions. These are 

furtherly stabilized when the length of the para substituents increases 29,30 (Figure 1.3c). 

The effect of the thiol adsorption on the bond strength between the superficial Au 

adatom and the bulk Au was also evaluated. Single-molecule force microscopy measurements 

showed that stronger Au-S interactions were established when incubating partially oxidized 

gold surfaces on functionalizing solutions at high pH 21. These conclusions suggested that thiol 

deposition occurs by chemisoprtion, which should indeed be facilitated by the cleavage of the 

S-H bond in alkaline conditions and the condensation of the H+ with the shallow –OH groups 

(which leave as water). However, more recent studies, carried out by scanning tunnelling 

microscope-break junction, compared the values of conductance in solution and in the air 

between two gold contacts through a SAM. From the results it was concluded that, despite 

chemisorption actually occurs during the incubation process (high conductance in liquid), the 

S-H bond eventually forms again upon sample drying (low conductance in air) and is retained 

in the final structure, thus leading to a bare SAM physisorption onto the substrate 31. 

1.2.1.3. Reactivity of the SAMs 

The reactivity of the SAMs is mainly controlled by their structure. Typically, the surface 

coverage of the layer, controlled by the incubation time, the concentration in solution and the 

co-presence on the surface of different thiol species, has an important impact on the properties 

and reactivity of the whole metal-layer system. For instance, absorption spectro-

electrochemical experiments on perylenediimide-derived SAMs evidenced the influence of the 

molecular surface coverage over the sample optical properties 32. A non-linear shift in the 

absorbance maxima was indeed recorded (Figure 1.4a) when the pure perylenediimide layer 

was “diluted” by co-adsorbing shorter hexanethiol chains, which altered the original 

intermolecular interactions and generated higher tilting angles inside the layer. 

The nature of the thiols itself can strongly affect the electronic property of the grafted 

substrate. Indeed, CV experiments, carried out in a ferrocene solution on gold electrodes 

modified with benzothiophenol and benzyl mercaptan, showed that the higher short-range 

order in the SAM of the second compound facilitated the electron transfer process across the 

layer and therefore did not isolate completely the conductive substrate 33 (Figure 1.4b). 
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Figure 1.4. Structure-reactivity relationships in thiols SAMs – a) Modification of the optical 

properties: Absorption spectroelectrochemical experiments on mixed SAMs in 0.1 mol.L-1 

Bu4NPF6/CH2Cl2 at 10 mV.s-1 and 293 K. On the time axis, 0, 6 and 12 s correspond to the potentials -

0.25 (first vertex), -1.05 (potential of reverse scan) and -0.25 V (second vertex) of the CV experiments. 

From (i) to (ii) the perylenediimide full steady-state coverage rate decreases from 96% to 4%. The 

overall absorbance decreases too and the absorption maxima shift. Adapted from [32]; b) Conductive 

substrate passivation: (i) shows the voltammograms recorded on both bare and functionalized gold 

substrates in 1 mmol.L-1 K4[Fe(CN)6] containing 1 mol.L-1 KNO3. Despite in these latter the ferrocene 

electrochemical signature decreases considerably, the passivating effect is more consistent in BT layers, 

whose looser arrangement is shown in the STM map (ii), while the gold surface is not completely 

insulated by BM layers, with a denser structure shown in (iii). Adapted from [33]; c) Influence of a 

mixed-monolayer structure on ET: Oxidation peaks of naphthol for PSA sandwich-complex-MUDA 

SAM (single alkylthiol monolayer), PSA sandwich-complex-APBA SAM (single arenethiol 

monolayer) and PSA sandwich-complex-mixed SAM (24 h incubation). The electron transfer through 

the layer is more efficient in the mixed SAM (wider peak area). Adapted from [34]. d) Substrate 

modification via layer electrochemical transformation: Sequence of STM images (35x35 nm2) 

showing the formation of island during the reduction of 4-NTP on Au (111) in 50 mmol.L-1 Na2SO4. 

The applied potentials are -230 mV (i) and -240 mV (ii-vi) vs SCE. As the polarization time increases, 

gold islands appear and nucleate. Images are affected by slight thermal drift. Adapted from [35]. 

However, if the anchored molecular species contain electroactive groups, their 

reactivity might be damped by the excessive compactness of the layer. For instance, it has been 

shown that the reduction kinetics of azobenzene groups inside close-packed structures is 

slowed because the conformational changes that accompany its transformation are sterically 

hindered 36. Besides, also the electron transfer processes among the redox moieties and the 

electrode surface might be altered, as it has been shown for dense ferrocenyl-azobenzene-

butanethiol layers, where the ferrocenyl and the azobenzene groups were respectively at the 

extremity and in the middle of the thiol chain 37. Upon CV recording, the only electrochemical 
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response was yielded by the ferrocenyl groups, since the compactness of the anchored chains 

did not allow the incorporation of charge-compensating cations that could promote the 

azobenzene reduction. A restoration of the ion-gated electron transfer process with the 

electrode surface within the film was obtained by introducing smaller electrolyte cations (i.e. 

H+) that could penetrate the layer, or else by co-adsorption of a second thiol species, which can 

improve the “accessibility” of the electrolyte to the azobenzene reactive centres 37. The co-

adsorption of two thiol species at different lengths on the surface can as well improve the 

electron transfer process across the layer: this is the case, for instance, of mixed 

APBA/butanethiol layer, where the APBA angle with respect to the surface normal is tilted 

more perpendicularly by the presence of butanethiol species 34. This orients vertically the π-

conjugated backbone and allows more efficient electron transfers through the SAM, thus 

improving the detection of external biomolecules (Figure 1.4c). 

The adsorption of layers can, in some cases, generate modifications on the substrate 

superficial structure, as it was seen before in the example reported in Figure 1.3a, where the 

deposition of arenethiols on gold (differently from alkanethiols) provoked the “extraction” of 

Au adatoms from the surface 35. Besides, additional changes to the substrate structure can be 

promoted by the layer electrochemical reactions. This has been observed by STM mapping in 

situ (in sodium sulphate solution) of the reduction process of a 4-NTP-functionalized gold 

substrate: when sweeping the potential negatively, the apparition and nucleation of islands 

(Figure 1.4d) was attributed to gold surface reconstruction induced by the transformation of 

the original species into the reaction product(s). These islands disappeared at -380 mV vs SCE, 

where the anchored species are expected to electrochemically desorb and the original gold 

surface is restored. 

Additionally, the layer dipole might influence the substrate electronic properties, as it 

has been evidenced for mixed undecanethiol and 11-ferrocene-1-undecanethiol architectures: 

while the dipolar moment of the pure ferrocene-derived layer, pointing towards the substrate, 

increased the gold work function, partial substitution with non-electroactive chains provoked 

a net change in the overall dipole orientation, accompanied by a negative shift in the work 

function value 38. 

Thiols based SAMs can be advantageous for applications where the layer is not 

subjected to harsh conditions (e.g. desorbing electric potential or immersion in solvents that 

can induce the chains re-dissolution) or, on the other hand, where it has to be easily removed 
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(e.g. when it is used as a template 10,16). However, in other cases the relatively moderate force 

of the Au-S interactions might be detrimental for the stability of the layers, which should be 

rather covalently bonded to the metal surface. The next paragraph will discuss about another 

kind of surface-functionalizing structures that can fulfil this requirement. 

1.2.2 Diazonium salts 

Differently than thiols, diazonium salts have the advantage of unambiguously form 

stronger, covalent bonds 39,40. Most of the knowledge we have today around the chemistry of 

aryl diazonium salts is due to the thorough and extensive work of Pinson and collaborators, 

who studied the grafting of these species under different operating conditions, in terms of 

nature of the solvent (organic or aqueous), solution pH, methodology and substrate 41–43. 

1.2.2.1. Reduction mechanism 

Figure 1.5 shows the general mechanism accounted for electrochemically-induced 

grafting 40: first, the diazonium salt is activated by the transfer of 1 electron from the substrate, 

which provokes the homolytic cleavage of the C-N bond between the benzene ring and the 

diazonium functionality. While the diazonium leaves as N2, the formed aryl radical is highly 

instable and tends to react quickly with the surrounding species. If these are solvent molecules 

or other radicals, it will transform into inactive byproducts. However, if the aryl radical is at 

close proximity to the substrate, it can covalently graft to it. The covalent nature of the bond 

between the diazonium derivative and the surface has been shown by resistance of the layer to 

ultrasonic bath in various solvents (e.g. acetonitrile, dimethylformamide or acetone) 40, but also 

by the presence of specific spectroscopic bands attributed to the bond 44, which were in some 

cases observed up to 700 K in ultra-high vacuum 40. 

 

Figure 1.5. General grafting mechanism of an aryl diazonium salts on a reductive substrate. 
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1.2.2.2. Diazonium-substrate bond 

Although the ET from the grafting surface to the diazonium salt is usually promoted by 

electrochemical polarization of the substrate (via cyclic voltammetry (CV) or 

chronoamperometry 40,45), the weakly negative (or even slightly positive) reduction potentials 

of most diazonium salts can induce a spontaneous ET from the substrate surface. It was 

evidenced that layers grown from 4-NBD solutions in H2SO4 onto gold either under 

electrochemical polarization or at the open-circuit potential (OCP) had comparable surface 

coverage and thickness values 46, despite layers spontaneously formed were less resistant to 

sonication. This was attributed either to a higher amount of physisorbed species or to a 

difference in the binding sites with respect to the electrochemical process 46. 

The strength and nature of the diazonium-substrate bond depend as well on the nature 

of the grafted substrate. Several kinds of surfaces have been successfully modified with 

diazonium salts, ranging from carbon-based materials 41,47–52, to semiconductors 40,53, to metals 

42,44,46,54,55. Specifically, TOF-SIMS spectrometric analyses showed that diazonium grafting on 

carbonaceous materials usually proceeds towards the formation of either C-C bonds (with the 

carbon surface) or C-O bonds (with its superficial oxides) 48. However, the presence of 

superficial oxides on carbon surfaces has been suspected to promote the grafting of diazonium 

salts without dediazonation (Figure 1.6), since mass spectrometry investigations revealed the 

presence of C(OH)-C-N=N-C6H5
+ fragments on close-to-monolayer polyphenylene structures 

55. XPS and IR measurements carried out on diazonium-modified metals surfaces concluded 

that also in this case both C-metal 42,44,56 and C-metal oxide bonds 46 can be formed, although 

the presence of the latter is minor for some substrates (e.g. copper) 55 or can be minimized 

under particular working conditions (i.e. substrate polishing before reduction 40 or grafting in 

deoxygenated solvents 40 or in acid media 56). In any case, the absence of evidences for direct 

N=N-metal bonds formation proves that grafting onto these surfaces occurs preferentially via 

dediazonation (rather than through the diazonium functionality), most likely because of the 

weaker electron-donor nature of metals 55. 

 

Figure 1.6. Schematic representation of grafting without dediazonation promoted by residual oxides on 

a carbon surface C. Adapted from [55]. 
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1.2.2.3. Multilayer formation 

Previously we used the term “layer” to describe the structure formed by diazonium 

grafting. In this case, though, this word does not indicate the formation of monolayer structures, 

as it was intended for thiol-based SAMs, but more generally the assembly of more complex 

architectures. This can be clearly evinced by the observation of the general trend of a grafting 

voltammogram: as shown for the electrografting of 4-nitrobenzene diazonium (4-NBD) on 

glassy carbon 40 or gold 57 surfaces, the first cycle shows the appearance of a huge and broad 

peak upon scanning the potential towards negative values (Figure 1.7a), which was attributed 

to the 1-electron-induced radicalization of the diazonium species and occurs irreversibly, since 

no corresponding anodic peaks are registered in the backward potential scan 40. Analogously, 

the several peaks recorded on gold (Figure 1.7b) were assigned to the same reduction 

mechanism occurring on different gold crystal facets 57. The absence of the cathodic peak and 

of any other feature in the following scans suggests the formation of a passivating structure 

that inhibits the charge transfer from the electrode surface to the diazonium species left in 

solution 40. 

 

Figure 1.7. Electrografting via CV of a) 4-NBD salt (2 mmol-1 solution in 0.1 mol.L-1 NBu4BF4 in 

acetonitrile) onto a glassy carbon disk electrode (Ø = 3 mm). (a) first CV scan, b) second CV scan and 

c) CV of the same electrode in 0.1 mol.L-1 NBu4BF4 in acetonitrile (without diazonium salt in solution). 

Adapted from [40]; b) diazonium salts (4-NBD, black solid line, and fluorinated benzene diazonium, 

red dashed line; 0.005 mmol.L-1 solution in 0.05 mol.L-1 TEAP in acetonitrile) onto a gold-on-glass 

electrode. Adapted from [57]. 

EQCM measurements performed during the electrografting of various diazonium salts 

on gold in acetonitrile 56 showed that the deposition process follows two steps: during the first 

one, the increase of mass recorded on the substrate has been assimilated to the formation of a 

monolayer-like structure. This process terminates concomitantly with the end of the cathodic 

wave on the CV. The second step is instead characterized by slower increases in mass (as the 

number of scans increase), thus evidencing the growth of thick multilayers 56. The same effect 
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has been observed when the electrografting is performed via chronoamperometry: studies 

performed on 4-NBD grafting on gold showed that the multilayer formation is favoured as the 

substrate potential is lowered 58, while investigations on carbonaceous materials underlined the 

influence of the diazonium salts concentration and the electrolysis time on the final film 

thickness 41. 

Doppelt et al. explained the formation of multilayer structures considering the electron-

rich nature assumed by the species grafted onto the substrate, which can promote the attack of 

the diazonium-derived radicals in solution 55. The proposed mechanism, illustrated in Figure 

1.8 (red circles), is supposed to proceed until damping of the electron transfer through the layer, 

which makes this reaction self-limiting 45. Moreover, QCM results evidenced the occurrence 

of layer delamination after a high number of cycles 58. As it was observed for the substrate 

grafting mechanism, also the formation of side branches might proceed without dediazonation 

of the species in solution (green circles in Figure 1.8), thus leading to the presence of azo 

bridges inside the layer 55, as evidenced by XPS, IR and TOF-SIMS analyses 56,59. 

 

Figure 1.8. General mechanism for the formation of C-C branches via radical attack (red circles) and 

azo bonds via diazonium attack (green circles) in a diazonium-derived organic layer (S = substrate). 

Adapted from [55]. 

In a similar way as it was discussed for thiols, also in this case the presence of thick and 

dense structures impacts the overall structure reactivity. This was already demonstrated by the 

surface passivation effect observed during the multilayer grafting, but can also affect the 

reactivity of the grafted molecules, if they possess electroactive functionalities. For instance, 

CV measurements on the reactivity in acid medium of azobenzene moieties inside a 

nitroazobenzene multilayers, grafted on carbon, showed a negative shift of the azobenzene 

reduction peak with the increase in the layer thickness, related to variations in the dielectric 

properties and slower proton diffusion rates inside the film 60. 
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For some applications, the blocking effect of dense, covalently bonded multilayers can 

be advantageous. This is the case, for instance, of interference-free glucose amperometric 

biosensors, obtained by immobilizing glucose oxidase enzymes on fluorophenyl multilayers, 

grown from the corresponding diazonium salt on platinum 61. Thanks to the blocking properties 

of the thick structure, the only electrochemical response derive from the selected ET to the 

enzymes, while the reaction of interfering substances on the substrate was inhibited. Moreover, 

thick 3,5-di(trifluoromethyl)benzene layers were grown on copper meshes to obtain super-

hydrophobic an super-oleophilic metal structures, which can be efficiently used e.g. for 

oil/water separation or self-cleaning surfaces 8. However, in most of the case the unpredictable 

three-dimensional arrangement of the multilayers makes it difficult to implement their use for 

more specific and precise application. The next section will review some of the proposed 

approaches for modulating the diazonium grafting deposition. 

1.2.2.4. Thickness control 

In order to gather control over the grafting procedure, and therefore tuning the final 

structure and reactivity of the structure, several methods have been proposed. The easiest way 

consists in varying the diazonium solution concentration, as well as the grafting electrolysis 

charge 53 or time 41. This approach was employed by Allongue et al. for modulating the CV 

grafting of different aryldiazonium salts on glassy carbon (GC) or highly oriented pyrolized 

graphite (HOPG) 41. On the basis of the post-grafting measurements obtained by XPS and 

PMIRRAS, an empirical formula was elaborated that allowed predicting the final surface 

coverages depending on the diazonium solution concentration and the scanning speed. 

Nevertheless, the calculated values were slightly underestimated with respect to the analytical 

results and a proper monolayer structure could not be formed 41. 

Another possible way to control the layer growth consists in employing bulky 

substituents on the benzene rings, which sterically hinder the formation of branches after the 

grafting of the first layer on the substrate 52. A thorough study in this extent was carried out by 

Combellas et al. 62, who showed that only molecules presenting encumbering substituents in 

positions 3 and 5 of the benzene ring could efficiently gather a monolayer structure. This result 

was confirmed later on by a study of Greenwood et al., who compared STM images acquired 

on 3,5-D-t-BuBD layers with those obtained on 4-nitrobenzene diazonium (4-NBD) structures 

(Figure 1.9a) 52: since 4-NBD is not “protected” by bulky groups, it tends promoting branching 
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already at low concentration (most likely on the ortho position with respect to the nitro group), 

thus yielding rougher and thicker profiles with respect to 3,5-D-t-BuBD. 

 

Figure 1.9. Approaches for controlling the grafting of aryldiazonium layer - a) Bulky substituents 

in positions 3 and 5: On top, the schematized view of the grafting processes with 4-NBD (multilayer 

formation) and 3,5-D-t-BuBD (monolayer formation) is shown. On the bottom, STM height images 

(BV = -0.7 V, IT = 80 pA) acquired on layers grafted from 1 mmol.L-1 solutions of (i) 4-NBD and (ii) 

3,5-D-t-BuBD. The insets show the profiles extracted from the sections evidenced in the corresponding 

maps: in (i) tall and spaced clusters are formed (clustered multilayers), while in (ii) the formed layer is 

thinner and more homogeneous (dense monolayer). Adapted from [52]; b) 2-step 

formation/degradation: Schematic view of the (a) formation of multilayers from disulfide (top 

molecule) or aryl alkyl hydrazone (bottom molecule) derivatives and (b) subsequent cleavage by acid 

electrolysis to obtain a single monolayer. Adapted from [63]; c) 2-step protection/deprotection: 

Schematic view of the grafting of trialkyl silyl-protected ethynyl aryldiazonium salts in ordered 

monolayers (left) and subsequent protecting group removal in TBAF (right) to yield an ethynyl-

functionalized monolayer. The inter-molecular spacing is determined by the size of the protecting 

group. Adapted from [64]; d) redox cross-inhibition: Schematic view of the inhibition mechanism of 

DPPH, which reduces on the sample surface and then diffuse to re-oxidize at the expenses of 4-NBD. 

This forms the corresponding aryl radical and is deactivated in the solution bulk, therefore it cannot 

form branches with the surface-grafted species. Adapted from [49]. 

In order to extend the possibility of forming controlled structures also on molecules that 

do not possess already encumbering substituents, Daasbjerg et al. adopted a two-step 

formation/degradation approach (Figure 1.9b): this consists in an initial grafting on GC of 

multilayers, derived from aryldiazonium salts substituted in position 4 with sterically hindering 

aryl disulfide 65 or alkyl hydrazone groups 63, which limit already the layer thickness (formation 
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step). Later on, acid hydrolysis can be used to cleave the bond of the surface-grafted molecules 

with the branches and therefore to obtain a single monolayer (degradation step) 63,65. 

A similar strategy was proposed by Leroux et al., who used bulky Si-derivatives (as 

TIPS 66, TMS or TES 64) to protect the ethynyl function in position 4 of the aryl diazonium salt 

(Figure 1.9c): in this case, the steric hindrance does not allow the formation of multilayers, 

hence a monolayer is formed (more or less compact, depending on the dimension of the 

protective group 64), which can be subsequently de-protected in 0.1 mol.L-1 TBAF in THF to 

restore the ethynyl group. For both approaches, the post-grafting evaluation of the layers 

thicknesses and coverages corresponded to those expected for near monolayers 63,64, which can 

be therefore employed as such or modified upon desire via “click chemistry”. For instance, 

TIPS-protected diazonium monolayer grown on carbon could be later on deprotected and 

“clicked” by cycloaddition with differently terminated azides, in order to create molecular 

bilayers that can improve the tunneling ET with top carbon electrodes (thanks to the energy 

level alignments) 67 or work as a (bio)chemical sensors (thanks to the introduction of redox-

active probes) 12. 

In alternative, a growth control method proposed by Breton’s group is based on the use 

of molecular inhibitors (as DPPH or quinone derivatives). Initially, it was thought that these 

species were working as radical scavengers, hence removing the exceeding electron from the 

diazonium-derived radicals in order to inhibit their polymerization on the surface 68–70. 

However, more recent studies 49,50,71 showed that inhibitors are rather involved in a redox 

“cross-reaction” (Figure 1.9d), which leads to the deactivation of diazonium-radicals far from 

the electrode surface and, in turn, to their impossibility of reacting on the substrate-anchored 

molecules. AFM “scratch” images of layers grafted onto HOPG, in presence of 4-substituted 

diazonium salts and an excess of DPPH, showed a 3 to 7-fold decrease in the thickness with 

respect to the same layers grafted without inhibitor 50, which corresponded to the formation of 

a monolayer structure. With respect to the previous approach, this latter has the advantage of 

fabricating layers that bear already the desired substituents and in a single reaction step. 

However, the choice of the best inhibitor for the chosen molecular species and of the proper 

concentration for obtaining more or less thick layers is not trivial; further details will be 

provided in Chapter 3. Also in this case post-functionalization of the monolayers can be 

performed and has shown to be more effective than for multilayer structures. This has been 

evidenced by attaching a redox and electrocatalytic TEMPO unit on top of a 4-NBD-derived 
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monolayer on carbon (obtained via DPPH inhibition), which resulted in higher surface 

coverages and improved interfacial reactivity (faster ET) with respect to the what obtained on 

thick, disordered structures 72.  

Ultimately, structures derived from both thiols and diazonium salts can be conveniently 

prepared for the most different applications, thanks to the vast range of properties they can be 

designed to possess in terms of reactivity, substrate modification, interactions with the outer 

environment, and so on. In order to gather a precise knowledge of the characteristics and 

behaviours of these systems, with the aim of developing more and more specific designs for 

targeted applications, the techniques employed to investigate them should be able to operate in 

their working conditions and at very low resolution, hence at the scale of single molecules. The 

next paragraph will review some of the dynamic investigations technique so-far implemented. 

1.2. Dynamic investigations 

As it was previously discussed, layer-functionalized surfaces present novel structural 

properties that influence their response to external stimuli. In order to interpret correctly their 

behavior and modulate it for the envisaged applications, an investigation technique should 

ideally be able to correlate the surfaces composition (in terms of arrangement on the substrate, 

intermolecular orientation and packing) with their reactivity in real working conditions (i.e. in 

situ or operando). For this purpose, several methods have been developed throughout the years, 

aiming more and more to increase the analytical sensitivity from macro to micro and, most 

recently, even to nano structures. In the following paragraphs we will briefly review a few of 

the more striking analytical techniques allowing to characterize in situ or operando the 

properties of molecular layers, thiol- and diazonium-based layers mostly. 

1.2.2 Characterization at the macro/microscale 

1.2.2.1. Quartz Crystal Microbalance 

The working principle of QCM relies on the use of a disk made of a piezoelectric 

material, i.e. of crystalline structures with no inversion symmetry, which can deform 

mechanically under the application of an external electric field across two thin metal electrodes 

deposited on each side. Vice versa, these materials can be electrically polarized when subjected 

to a mechanical stress 73. In both cases, the intensity of the deformation and the polarization 

are proportional to each other. Hence, an alternate voltage (MHz regime) will induce a constant 

oscillation on the crystal and can excite the crystal to resonance, the frequency of which 
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depends on the thickness (mass) of the disc. When the piezo-material is modified by the 

deposition of a molecular layer on its surface, a shift in the resonance frequency is recorded 

and can be related to the mass of the deposited layer thanks to the Sauerbrey relationship. The 

sensitivity of the technique, called microbalance, can detected mass variations (increase, 

decrease) ranging from several hundreds of micrograms down to nanograms 73,74. 

 

Figure 1.10. (E)QCM application for the study of thiol- and diazonium-based structures on gold 
– a) On the left, schematic view of the adsorption process of alkylthiole species on the gold-coated 

QCM chip (first physisorption in lying-down arrangement, then structuration in standing-up 

conformation). In the right, comparison between experimental and simulated data for the thiols 

coverage rate as a function of time at different working temperature. The close proximity of the values 

for each set of data confirms the sensitivity of QCM for precise analytical investigations. Adapted from 

[19]; b) EQCM responses for the reductive desorption of (a) C8-SH SAM, (b) C12-SH SAM, and (c) 

C-16 SH SAM. In all the potential sweep, the appearance of a first cathodic peak and of a weaker one 

at lower potentials is due to the heterogeneous substrate reactivity and/or to the influence of the 

molecular coverage on the desorption process. The frequency (i.e. mass) variations recorded for each 

sample are related to the cation adsorption onto the substrate, which follows the reduction process and 

is dependent on the chain length (as shorter-chain SAMs will facilitate the penetration of solution 

cations, which can adsorb even prior to thiol desorption). Adapted from [75]; c) Mass-potential curves 

(top) and CV plot (bottom) of a gold electrode in 0.1 mol.L-1 NBu4BF4 + 5mmol.L-1 4-NBD in 

acetonitrile (scan rate = 5 mV.s-1). The highest increase of mass on the gold substrate coincide with the 

end of the cathodic peak on the first voltammetric cycle (monolayer formation), then the mass increases 

more slowly with the number of cycles (multilayer formation). Adapted from [56]; d) Decrease of the 

resonance frequency of the quartz (i) from the bare gold substrate, to the adsorption of 11-

mercaptoundeanoic acid SAM (20 Hz shift), to the final addition of NHS/EDC cross-linker (15 Hz 

shift), which can couple specifically with antibodies; (ii) upon reaction of the antibody-modified cross 

linker with the antigen (injected with a pump at a flux of 1 μg.mL-1, 3 Hz shift). Adapted from [76]. 
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Among the possible piezoelectric materials, quartz (Quartz Crystal Microbalance 

QCM) is usually preferred for its good chemical stability, high shear modulus and low 

resistance to acoustic wave propagation 73. Since the quartz crystal is sandwiched between gold 

contacts, functionalization with thiol or diazonium-based structures is possible and interesting 

for the investigation of their structures and properties. 

For instance, the comparison between measurements on QCM chips before and after 

the deposition of 11-mercapto-1-undecanol SAMs allowed formulating a novel 

adsorption/desorption kinetic model for thiol deposition, which takes into account the 

dependency on the temperature and incubation times 19 (Figure 1.10a). Note that Quartz 

Crystal Microbalance with dissipation monitoring (QCM-D) measures an additional parameter, 

the dissipation ΔD, which gives information about the energy losses in the system and is 

particularly useful in the study of soft layers and quantification of their properties. 

However, for monitoring in situ the reaction processes, an important development of 

this technique is constituted by the electrochemical QCM (EQCM), where one metal contact 

of the quartz crystal is used as working electrode and the recorded mass variation can be related 

to a variation in the electrical charges (thanks to the combination of the Sauerbrey relationship 

with the Faraday law) 73. For this purpose, specific cells were designed to perform analyses in 

both aqueous and organic electrolytes 73. This allowed monitoring in real time the thiols 

adsorption process and to assess the role of the solvent: for instance, fabrication of stable SAMs 

of dodecylthiol was shown to occur faster and more straightforwardly in DMF, rather than in 

ACN 77. Successive EQCM investigation on SAMs of alkanethiols of different lengths showed 

that the stability to desorption is also influenced by the heterogeneous reactivity of the substrate 

and to the molecular layer density, and that electrolyte cations tend to replace the empty spaces 

left inside the layer after partial chains desorption 75 (Figure 1.10b). 

The possibility of performing in situ electrochemical reactions was exploited also to 

study the diazonium salts grafting process: as it was previously mentioned in Section 1.2.2.3, 

EQCM could reveal the occurrence of two distinct steps in the CV-induced electrografting of 

aryldiazonium salts 56,58 (Figure 1.10c). Besides, it provided evidence for direct aryl radical-

gold bonding (e.g. in the case of anthraquinone-based diazonium salts 78) and revealed the 

influence of the electron-withdrawing nature of 4-substituted diazonium precursor on the 

efficiency of the attack to the gold surface and on the tendency for multilayer formation 79. 
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Moreover, modifying EQCM chips with thiol- or diazonium-based layers, decorated 

with specific functionalities, paved the road to a whole new series of electrogravimetric 

measurements. These exploit the (enhancing or passivating) ET properties provided by the 

molecular layers, along with their anchored functional groups, to use EQCM as an extremely 

sensitive detector for biomolecules (as antigens, antibodies, DNA) 76,80, but also inorganic 

water pollutants 81,82 (Figure 1.10d). Apart from the obvious advantages they can provide, 

these methods can be also employed to investigate the surface-structure reactivity relationships 

of post-functionalized molecular layers prior to their application in real devices. 

The extreme sensitivity of (E)QCM (whose limit of detection is of few ng per unit of 

frequency shift in Hz), along with the possibility of working in controlled environment (e.g. 

under vacuum 73 or in Ar 58), results advantageous for measuring the size of very thin layers. 

Besides, its label-free nature makes it ideal as in situ sensing technique 83. However, films can 

be properly analyzed only if they are homogeneously spread over the quartz, rigidly attached 

to it and not heavier than the 2% of the crystal weight 73. Moreover, no information about the 

nature of the species and/or of the chemical transformations occurring on the sample surfaces 

can be revealed. 

1.2.2.2. Spectro-electrochemistry 

Classic optical spectroscopy 

Optical spectroscopies employ light sources in the 100-2000 nm wavelength range, 

spacing from the ultraviolet (UV) to the infrared (IR) radiations, thus stimulating transitions 

involving the electronic/vibrational/rotational (vibronic) levels of the studied sample. These 

spectroscopies can be coupled to optical microscopes providing spatial resolution. More 

specifically, the lateral resolution Δx is limited by the Rayleigh criterion 84: 

∆𝑥 > (0.61 𝜆)/(𝑛 sinθ)                                                    (1.1) 

where 𝜆 is the wavelength of the incident radiation and 𝑁𝐴 = 𝑛 sin𝜃𝑐𝑜𝑙𝑙 is the objective lens 

numerical aperture (depending on the refractive index 𝑛 of the measuring medium and on the 

half angle 𝜃𝑐𝑜𝑙𝑙 of the illuminating cone). This means that for visible light (𝜆 = 300-800 nm) 

the resolution will be limited to around 0.2-0.4 μm 84 and improves to tens of μm in UV; 

however, shorter wavelengths would need to be used to reach lower resolutions and therefore 

observing smaller objects. The depth resolution (along the z axis) is instead defined by the 



 

28 

 

Abbe criterion and is significantly lower than the lateral resolution (in the order of 1 to 2 µm, 

depending on the wavelength of illumination): 

 ∆𝑧 = 2λ/𝑁𝐴2                                                         (1.2) 

The transitions observed in optical spectroscopy are schematized in the Jablonski 

diagram (Figure 1.11). If the light energy matches exactly the difference between the ground 

level and an excited level, it will be absorbed and used to promote the electrons to the upper 

state. According to the Boltzmann distribution principle, this brings instability in the system, 

which naturally tends to keep an overall low energy. In order to regain stability, it will therefore 

proceed to the repopulation of the ground state by electron decay. This process is accompanied 

by an emission that can be radiative or non-radiative (the absorbed photon is converted to heat). 

In the first case, the molecular spin can stay unchanged (fluorescence) or can have a transition 

among singlet and triplet, forming a so-called inter-crossing system, before relaxing to the 

ground state (phosphorescence). These phenomena are exploited in UV-vis and fluorescence 

spectroscopy. 

 

Figure 1.11. Jablonski diagram showing the photon transitions stimulated in the IR to UV light range. 

Si stands for singulet state, Ti for triplet state, while 𝜈i represent the vibrational states. The colored 

dashed arrows indicate vibrational relaxation, while the black dashed arrow identifies an inter-crossing 

system. 

Absorption also occurs with photons at lower frequency, in the near, mid and far IR 

regions (4000-400 cm-1), as their energy matches the difference between vibrational levels. 
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Also in this case the Boltzmann distribution is valid, hence the most numerous and intense 

transitions are expected to start from the ground vibrational level. Nevertheless, some hot bands 

may originate from vibrational levels different from the ground one. 

Raman effect: an inefficient inelastic scattering process 

It is also possible that the photon energy is intermediate between the ground level and 

the first excited electronic level; in this case, absorption cannot occur and the photon will be 

scattered. Most commonly, the scattering occurs elastically, hence the scattered photon 

maintains the same energy as the incoming one (Rayleigh scattering). However, if the photon 

is scattered inelastically, its final energy will show a negative (Stokes shift) or positive (anti-

Stokes shift) variation that matches the energy between two vibrational levels. While the signal 

originated by the elastic scattering does not gather any chemical information on the sample, 

the inelastic scattering is at the basis of the Raman technique 85. 

Despite the intrinsically different nature of the Raman scattering with respect to the IR 

absorption, both techniques are in fact employed to probe the transitions among vibrational 

levels in the studied systems and can sometimes yield complementary information. This is due 

to their particular “selection rules”, i.e. to the conditions a vibrational transition should fulfil to 

be detected by either of the two spectroscopic techniques. Specifically, absorption in IR will 

be observed if the transition generates a variation in the molecular dipolar moment, while 

Raman scattering will be produced when a change in the molecular polarizability occurs. 

Because vibrations often modify only one of the two parameters and leave the other unaffected, 

IR and Raman results are usually considered as complementary 86. 

As in this work we mainly employed Raman spectroscopy, we will focus in the 

following on its description. Raman scattering experiments are generally easy and 

straightforward to perform, as they do not require any sample preparation and can be performed 

in normal ambient conditions. In a basic setup, the sample is mounted on the sample stage and 

illuminated through a confocal microscope (see Chapter 2) with a visible or NIR laser light 

source. The signal scattered back from the sample is collected again by the objective and 

directed towards the spectrometer, where it is detected. According to Equation (1.1), the 

achievable lateral resolution reaches values down to a few microns. Note that the spatial 

resolution in Raman spectroscopy is nearly constant along the spectrum, as a typical Raman 

shift (up to 4000 cm-1) is contained within 30 to 200 nm depending on the monochromatic 
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excitation wavelength. This is not the case for IR spectroscopy, which uses broad band sources 

like globars. The range of the mid-infrared domain is typically between 4000 cm-1 and 400 cm-

1 (or between 2.5 µm and 25 µm)., thus the spatial resolution varies along the spectrum between 

~1 to 10 µm. This aspect, along with the lower sensitivity of Raman spectroscopy to water 

(whose vibrations are accompanied by small changes in the polarizability, hence by weak 

scattering), makes it preferable to the IR technique, especially in those applications (such as 

biological and medical compositional analyses 87–89) where the samples need to be kept in a 

wet state. 

However, standard Raman analyses on nanostructured materials are not expected to 

detect precisely the characteristics of single adsorbed molecules, but rather to obtain a 

collective signal averaged over large (micrometric) areas. Besides, because of the low Raman 

scattering efficiency, signals are usually very weak and difficult to detect when arising from 

thin molecular layers. In general, when a molecule scatters an external light source, the total 

intensity of the radiation is proportional to the square of the induced dipole moment: 

𝐼 =
16𝜋4

3𝑐3 𝜈4 ∙ 𝜇𝑖,0
2                                                         (1.3) 

where 𝑐 is the speed of light and 𝜇𝑖,0 is the amplitude of the induced dipole moment. Due to its 

dependence on the fourth power of the frequency 𝜈, the scattered intensity is much stronger for 

radiations of short wavelength, i.e. high frequency. The intensities of the scattered lines depend 

also on the intrinsic properties of the studied system, more specifically on the cross-section 𝜎, 

which is defined as the ratio between the total scattered power (in W) and the irradiance of the 

incoming radiation (in W.m-2) and has therefore the dimensions of an area. For a single Stokes 

transition i, the number 𝑁𝑠 of light quanta inelastically scattered per atom, per length of material 

𝑑𝑧 per solid angle element 𝑑𝛺, can be defined as 90: 

𝑑𝑁𝑠 = 𝑁𝑎𝑁𝑜 (
𝜕𝜎𝑖

𝜕𝛺
)
𝑖
𝑑𝛺𝑑𝑧                                                (1.4) 

where 𝑁𝑎 is the number of molecule per unit volume in the lower energy state, 𝑁0 is the number 

of incident light quanta and the ratio (
𝜕𝜎𝑖

𝜕𝛺
)
𝑖
 is the differential cross section, described by a 

complex formula 91. Respect to the other optical spectroscopies, the Raman effect appears to 

have the lowest cross section: averagely, for an incident flux of 108 photons, only one photon 

will be inelastically scattered. For comparison, a single fluorescent impurity with a quantum 

yield of 0.1 can produce ten fluorescence photon for the same incident flux. In summary, not 
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only the Raman transitions are difficult to observe, but also they can be easily and completely 

covered by other light-emitting effects (as fluorescence). 

Nevertheless, despite the low sensitivity of Raman spectroscopy, McCreery’s group 

proved the possibility of imaging in air diazonium-derived layers (presumably multilayers) 

grafted on carbon thanks to the use of short-wavelength lasers, powerful CCD detectors and, 

mostly, a spectrometer configuration optimized to yield the best collection efficiency 92,93. The 

same analyses could be performed also upon immersion of the sample in an electrolyte solution 

94, paving the way to the spectro-electrochemical analyses presented in the next paragraph. 

Raman spectroelectrochemistry (SEC) 

As the name itself suggests, Raman-SEC analyses are performed by introducing an 

electrochemical cell inside a Raman spectrometer setup. This is particularly easy to do, thanks 

to the open configuration of the Raman microscope (which does not require a particular 

working environment), and can be developed more conveniently than the corresponding IR-

SEC setup, because it is not restricted to the use of transparent electrodes, non-aqueous 

solvents, nor thin layers of aqueous solvent and transparent samples 86. 

 

Figure 1.12. Raman-SEC – a) First proof of concept: Raman-SEC spectra acquired on 4-

nitroazobenzene layers on GC, from top to bottom: in air; in liquid at 400 mV; in liquid at -1000 mV; 

subtraction of the -1000 mV spectrum to the 400 mV spectrum, showing the apparition of some bands 

(1107 and 1594 cm-1) and the disappearance of others (1135, 1398 and 1444 cm-1) due to the reduction 

process. Laser power: 8.2 mW, acquisition time: 100s, supporting electrolyte: 1.0 mol.L-1 TBABF4 in 

acetonitrile, reference electrode: Ag/Ag+. Adapted from [94]; b) Raman-μSEC: (a) Picture of the 

experimental setup; (b) Scheme of the sample with the graphene layers (working electrode, WE) 

contacted via silver epoxy and copper wire, microscope objective and a micropipette, which contains 

reference (RE) and counter electrodes (CE) and is connected to a micromanipulator and microinjector. 

Adapted from [95]. 
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In the pioneering work of Itoh and McCreery 94, the laser was focused through a 

sapphire window on the electrochemical cell (~1 mm thick), filled with acetonitrile and 

containing the functionalized GC sample, which acted as a working electrode in a three-

electrode system (reference Ag/Ag+). Spectral modifications occurring in situ on the grafted 4-

nitroazobenzene layer could be detected upon application of reductive potentials on the 

substrate (Figure 1.12a), thus allowing to propose a hypothesis relative to the nature of the 

chemical transformations. Moreover, the authors signaled that the potential application 

generated also an electric field at the substrate solution interface, which was considered 

responsible for a change in the frequency and intensity of the recorded Raman bands and 

attributed to surface-enhancing effects (see Section 1.2.2.3). Changes in the spectral intensity 

were in some cases related to electrochemically induced chemical enhancements, due to the 

different nature of the grafted species after electroreduction 96. Later on, Raman-SEC 

experiments have been also carried out on gold-grafted samples, as in the case of thionine 

diazonium-derived layers, which were subjected to polarization at different pH to monitor the 

effect of the solution composition on the oligomerization reaction, occurring in real time 97. 

However, the total immersion of the sample inside the electrochemical cell only allows 

the polarization of the whole electrode surface at once 98, thus averaging also the 

electrochemical response over a large area. Moreover, this classic setup possesses a few 

technical limitations, as the presence of the window that distorts the optical path, or else the 

need for a proper sealing of the electric contact to the working electrode. As an alternative, a 

microdroplet Raman-SEC (Raman-μSEC) system was implemented, which localizes the 

electrochemical cell within a single droplet (diameter ~10-20 μm), produced at the extremity 

of a micropipette 98. This setup was employed to study the ET rate of several redox mediators 

through a variable number of graphene monolayers (Figure 1.12b) and could successfully 

demonstrate the strong influence of the ET process on the particular local surface conditions 

95. Raman-μSEC spectra recorded on inorganic hole-transport CuSCN layers, deposited on both 

carbon and carbon-free substrates, were also proved to be very sensitive to changes in C-S bond 

delocalization (revealed by spectral band shifts) provoked by the local charges of oxygen-

bearing groups on the substrate 98. 

Despite this implementation improves considerably the performances of Raman-SEC, 

the issues related to the low scattering intensity and the generally poor spectral resolution are 

not resolved. In fact, in order to collect enough signal, both high laser powers (up to 10 mW 
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96) and long acquisition times (up to 100 s 94) needed to be used, which could be detrimental 

for the sample (beam damages). This aspect can be ameliorated through the signal enhancing 

effect provided by some substrates, as it will be detailed in the next paragraph. 

1.2.2.3. Enhanced Raman spectroscopy 

Plasmonics 

Enhancement of electromagnetic fields can be achieved on plasmonic surfaces. 

Plasmon states are observed in those materials (as silver, gold, copper or aluminum) whose 

superficial conductive-band electrons, at the interface with a dielectric medium (e.g. air), are 

in a quasi-free state. Under the effect of an external electromagnetic field, these electrons will 

start oscillating coherently with the field, thus generating a propagating wave named surface 

plasmon polariton (SPP) 99,100 (Figure 1.13). This surface plasmon resonance (SPR) 

phenomenon is responsible for the intensification of the electromagnetic field. In 1908, Mie 99 

relied the occurrence of this effect to the particular complex dielectric constant of plasmonic 

materials, which is characterized by a negative real part and a slightly positive imaginary part 

within a certain wavelength range 99. 

 

Figure 1.13. Schematic diagram illustrating a surface plasmon polariton (or propagating plasmon). 

Adapted from [100]. 

SPPs can propagate over the surface for tens or even hundreds of micrometers, while 

along the z axis their propagation has an evanescent nature and decays quickly within a length 

1/e (around 200 nm) 100. However, if the surface does not extend on the plane but it is confined 

in a nanostructure (as a roughness grain or a nanoparticle), whose dimensions are inferior to 

the excitation wavelength, then the SPP starts oscillating locally around the nanostructure with 
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a typical frequency, thus generating a localized surface plasmon resonance (LSPR, illustrated 

in Figure 1.14) 100. Differently from SPR, for LSPR the resonating frequency does not only 

depend on the metal nature and on the external medium, but also on the nanostructure size and 

shape. 

When this is approximated to a sphere of radius a, much smaller than the excitation 

wavelength 𝜆, so that the magnitude of the z-polarized external electric field 𝐸0 appears static 

around the particle (quasi-static approximation), then the solution for the electromagnetic field 

outside the nanoparticle can be found via Maxwell’s equation: 

𝐸𝑜𝑢𝑡 𝑁𝑃(𝑥, 𝑦, 𝑧) = 𝐸0𝐳̂ −  (
𝜀−𝜀𝑚

𝜀+2𝜀𝑚
) 𝑎3𝐸0 (

𝐳̂

𝑟3 −
𝑧

𝑟5 (𝑥𝐱̂ + 𝑦𝐲̂ + 𝑧𝐳̂))        (1.5) 

where 𝜀 and 𝜀𝑚 are the dielectric constants, respectively, of the nanoparticle and of the 

external medium. The second term of Equation (1.5) dictates the dielectric resonance 

conditions, which are satisfied when 𝜀 = −2𝜀𝑚 and provoke the enhancement of the incident 

electromagnetic field 100. 

 

Figure 1.14. Schematic diagram illustrating a localized surface plasmon (LSPR). Adapted from [100]. 

Surface-enhanced Raman spectroscopy 

All the phenomena described so far were fundamental for the development of surface-

enhanced Raman spectroscopy (SERS), which relies on the enhancing properties provided by 

a rough or nano-shaped plasmonic metal substrate for increasing the signal intensity of a 

surface adsorbate. 

The very first observations of the SERS effect were made by chance upon attempt of 

following by Raman spectroscopy the electrochemical reactivity of molecules adsorbed on 

metal surfaces: measurements carried out on platinum foils modified with droplets of mercury 
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salts solutions 101, or else on pyridine adsorbed on roughened silver wires 102 and plates 103, 

showed indeed an incredible signal enhancements («roughly 5 times as intense» with respect 

to liquid samples103). Later, in 1977, Van Duyne decided to replicate and optimize the control 

over the experiments on silver-adsorbed pyridine 104, in order to quantify precisely the 

enhancement effect. He reached the conclusion that the recorded signal was 106 times more 

intense than for liquid samples and that the enhancement depended on both the molecular 

orientation (with molecule perpendicular to the surface more enhanced than the flat-lying ones) 

and on the potential applied to the surface 104. 

In fact, despite the electromagnetic (EM) enhancement provided by the metal LSPR 

accounts for the majority of the SERS effect (and therefore depends on the metal nature and 

the surface structure), also the presence of molecules at close proximity to the metal surface 

(distance 𝑧 ≪ 𝜆) plays an important role. As Philpott theorized in 1975, when the external 

source illuminates the metal substrate at a frequency close to the one of surface plasmons, 

where the electronic states of the metal are very dense, charge transfer can occur from the metal 

to the first excited state of the nearby molecules. These will in turn transfer this excitation 

energy to the adjacent species through either radiative interactions (on long distances) or 

dipole-dipole interactions (on short ones) 105. This broadens the width of the excited levels and 

influences the scattering intensity, so that resonant Raman effect can be observed at a frequency 

for which isolated molecules would only show normal (non-resonant) Raman scattering 105. 

This phenomenon is called chemical or charge-transfer enhancement and, despite it is less 

pronounced than the EM effect, it still contributes to the overall SERS enhancement 99. The 

total enhancing factor for SERS is defined as follow: 

𝐸𝐹𝑆𝐸𝑅𝑆 =
𝐼𝑆𝐸𝑅𝑆/𝑁𝑆𝐸𝑅𝑆

𝐼𝑁𝑅𝑆/𝑁𝑁𝑅𝑆
                                               (1.6) 

where 𝑁𝑆𝐸𝑅𝑆 represents the number of molecules probed by SERS (correspondent to the species 

adsorbed on the metal surface) and 𝑁𝑁𝑅𝑆 those yielding normal Raman scattering (contained 

in the sample bulk) 99. It has been estimated 99 that EM contributes to the 𝐸𝐹𝑆𝐸𝑅𝑆 up to 108-109 

orders of magnitude, while chemical enhancement only up to 102-103. The two enhancing 

effects do not act over the same range 100: this was deduced, for instance, from the decrease of 

the SERS signal intensity of a pyridine layer adsorbed on metal NPs upon progressive 

thickening of an alumina layer at the metal/molecule interface. As a consequence, it was 

concluded that chemical enhancement operates on much shorter ranges than EM and that the 

SER signal evolution can be described as: 
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𝐼𝑆𝐸𝑅𝑆 = (1 +
𝑧

𝑎
)
−10

                                                    (1.7) 

where a is the radius of the enhancing nanostructure. This result shows that SERS is mostly a 

“long-range” effect (z from 1 to 10 nm) and that close proximity between metal and sample is 

essential for chemical enhancement 100. 

 

Figure 1.15. SERS effect - Raman spectra of NAB chemisorbed to (A) smooth and (B) rough Ag (2-

min incubation of the substrates in 1 mmol.L-1 NAB diazonium ion in acetonitrile). (A) is averaged over 

five 5-second spectra, acquired with 35 mW laser power, while (B) is obtained from a single, 1-second 

exposure with 0.35 mW of laser power. This aspect, along with the large difference in intensity scale 

for the two spectra, underline the importance of the plasmonic metal nanostructures for the enhancement 

effect. Adapted from [106]. 

As a consequence, Raman characterization of thin films deposited on plasmonic 

substrates is expected to yield more intense chemical signatures with respect to non-enhanced 

experiments, and moreover at shorter acquisition times and lower illumination powers. This 

was proved by McCreery comparing the spectra of 4-nitroazobenzene in liquid and upon 

grafting on PPF and silver substrates 106. Although films anchored on PPF and smooth Ag 

substrates gave already more intense spectra than solution molecules (chemical enhancement), 

a neat 103 fold enhancement could only be obtained when performing SERS measurements on 

molecular layers grafted on rough Ag surfaces (Figure 1.15). This confirmed the prime 

importance of the nanostructuration of the plasmonic substrate (LSPR effect) for obtaining a 

proper EM enhancement. However, the authors pointed out that coarsely roughened structures 

might not always be ideal substrates for the final system use, e.g. for molecular junctions, where 

shortcuts could occur upon insertion of top contacts on irregular substrates 106. In alternative, 
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plasmonic nano-objects can be fabricated and used as local surface enhancers, as it will be 

discussed in the next paragraph.  

SERS effect in nanostructures 

In order to gather a better control over the characteristic of the enhancing structures, it 

is possible to fabricate and tune the plasmonic properties of different kinds of nanosystems, 

such as metal nanoparticles (NPs), heterogeneous core-shell nanostructures, or also ordered 

arrangements of nano-objects. 

 

Figure 1.16. Influence of the NP shape and of the substrate on the light scattering enhancement - 

Longitudinal extinction spectra measured for (i) single gold nanorod (with aspect ratio length/diameter 

= 3) and (ii) single gold nanobipyramid (aspect ratio = 2.7) on silica (blue squares) and carbon (red 

circles) substrates, with light polarization parallel to their long axes. Lorentzian fits of these spectra are 

shown by solid lines. TEM images of the nanoparticles on carbon are shown in inset. Adapted from 

[107]. 

As it was previously mentioned, the enhancing conditions can be calculated precisely 

for spherical NPs of small radius. However, since the light scattering cross-section scales with 

the sixth power of the sphere diameter, reducing too much the size of the nanoparticle would 

compromise its scattering efficiency 108. On the other hand, when the NP radius increases, its 

resonant frequency red shifts and starts broadening, due to the no longer negligible multipole 

contributions 109, hence the analytical formulation will no longer be valid. This is why 

alternative shapes to spheres have been designed for the plasmonic nanostructures 109,110, 

although their enhancing effects are not directly accessible as for nanospheres and can be 

influenced by numerous factors. 

Optical extinction spectra acquired, for instance, on gold nano-bipyramids and 

nanorods deposited on silica or carbon surfaces evidenced the dependency of the LSPR, apart 

from the substrate nature, also on the particle shape and on its particular orientation over the 

substrate 107 (Figure 1.16). Besides, since the LSPR frequency depends also on the dielectric 
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constant of the surrounding environment, it will be affected (generally red-shifted) by the 

presence of an adsorbate or an external coating, as it has been shown for Ag nanostructures 

functionalized with thiol SAMs 111 or coated with TiO2 (which also influenced the plasmon 

decay dynamics) 112. Moreover, because the highest enhancement for a specific Raman 

vibrational mode of the molecular system is achieved when the LSPR frequency falls half-way 

between the frequency of this mode and the excitation wavelength 100, tuning the nanoparticle 

structure depending on the studied system is essential to achieve the highest signal 

intensification and reach the lowest detection limit. 

 

Figure 1.17. Nanoparticle structuration on the sample surface – a) Patterning of metal substrate: 
Gold nano-cylinders (geometrical details on the figure), fabricated by electron beam lithography on a 

60 nm gold layer (evaporated on a 3 nm chromium adhesion layer) and successively grafted in presence 

of 4-NBD (spontaneously, by incubation in a 1 mmol.L-1 solution in 1 mmol.L-1 H2SO4 for 12 h) for the 

SERS measurements. Adapted from [113]; b) Nanocrystals immobilized on the substrate via 

molecular layers: Intensity maps constructed with reflectance spectra acquired every 10 mV between 

−500 and –130 mV (i) or +700 mV (ii) vs MSE, after normalization by their maximum, on (i) gold 

wafer modified with 5.2 nm diameter Ag NCs caped with hydrophobic ligands (hindering of electrolyte 

penetration) and (ii) platinum electrode modified with Au NCs caped with hydrophilic ligands 

(electrolyte permeation). Both the polarization and the nature of the organic ligand affect the LSPR of 

the NPs. Adapted from [114]; c) Ordered arranges of multiple nanoparticles: (i) AFM image of 3D 

C12SAg5nm NP SLs of different thicknesses (detailed on the figure) and (ii) associated reflectance 

spectra. The different trends in the spectra evidence the influence of the 3D superlattice thickness on its 

optical properties. Adapted from [115]. 

Also the distribution of the enhancing particles on the sample surface can influence the 

optical properties. More or less uniform coverages of nanoparticles can be obtained by simple 

drop casting from solution 116, but more often they are arranged in an ordinate fashion, so that 

to exploit the additional enhancement effect generated by the proximity of two enhancing 



 

39 

 

objects (and depending on their reciprocal distance). This can be achieved by simple metal 

surface nano-patterning via electron beam lithography, which guarantees a precise control over 

the geometrical parameters of the nanostructures 113,117. For instance, SERS investigations on 

gold nanocylinders, grafted with different diazonium salts derivatives (Figure 1.17a), revealed 

the preferential enhancement of few vibrational modes, from which the orientation of the 

molecule on the surface and the preferential sites for side-chains branching could be deduced 

113. 

In alternative, thiol- or, more recently, diazonium-based layer can also be used to attach 

SERS-active NPs on substrates 118. As an example, gold or silver colloidal crystals, composed 

of nanoparticles branched together with dodecanethiol or oleylamine chains, were first self-

assembled on a gold surface, and then used to immobilize redox molecules and probe in situ 

their electrochemical reactivity 114. The variation of the nanocrystal optical properties with the 

potential variation was shown to depend on the more or less hydrophobic nature of the 

connecting molecular layer (Figure 1.17b). Another method consists in fabricating structures 

containing several metal NPs 119–121, which increases the number of enhancing hotspots and 

therefore guarantees intense enhancement and homogeneous SERS signals. This is the case of 

3D superlattices, containing several metal nanoparticles interconnected via alkanethiol chains: 

the modification of the NP nature and of their reciprocal distance allows tuning their optical 

properties (Figure 1.17c) and adapt their SERS response to the studied system, as it was shown 

for 4-NTP SAM investigations 115. 

 

Figure 1.18. SHINERS method – a) Proof-of-concept: The SHINERS signal of H adsorbed on Pt is 

revealed by the presence of a NPs deposited on the Pt surface and coated with a thin insulating layer 

(top), while no signatures are recorded when illuminating the bare substrate (middle) or a when the NP 

coating is too thick (bottom). Adapted from [122]. b) Application to Li-ion batteries in situ 

investigations: The SHINERS are deposited on top of the tin anode of the Li-ion battery, where the 

passivating solid-electrolyte interface (SEI) layer forms upon subjecting the battery to charge/discharge 

cycles. Thanks to the enhancing effect of the SHINERS, the evolution in the SEI composition with the 

applied current could be monitored in situ. Adapted from [123].  
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On the other hand, if interactions with the surrounding molecular species (such as 

adsorption or catalytic reactions) want to be avoided, the NPs can be covered with a thin 

dielectric coating (e.g. silica or alumina), which provides insulation and (electro)chemical 

inertia, without affecting their enhancing properties (Figure 1.18a) 122. This shell-isolated 

nanoparticle-enhanced Raman spectroscopy (or SHINERS) method has been recently 

exploited in our research group to perform operando investigations of interfaces in Li-ion 

batteries (Figure 1.18b): thanks to the deposition of non-reactive NPs onto the anode surface, 

chemical transformation occurring at the interface with the electrolyte could be monitored 

during the charge/discharge cycles 123. 

 

Figure 1.19. Tip-SERS method: On the left, schematic view of the experimental setup for in situ 

measurements and functionalization of the gold tip with a few 4-NTP molecules. On the right, tip-SERS 

spectra recorded on the same tip in 50 mmol.L-1 H2SO4. Each spectrum was acquired at Etip = −200 mV 

vs Ag with a 100 μW laser power and a 5 s integration time after a CV (scan rate: 100 mV.s–1) covering 

the range [+250 mV – Evertex]. Evertex was set to −200 mV down to −500 mV vs Ag. Red and blue dashed 

lines highlight the band associated with 4-NTP and 4-ATP respectively. Adapted from [124]. 

Another method successfully implemented in our team consisted in absorbing 

electroactive molecules on conical-shaped metal probes (microelectrode) with radii of 

curvature in the nanometer size, which can provide further enhancement thanks to the 

combination of antenna effect (due to the charge separation inside the conical structure under 

the effect of the external field) with lightning rod effect (i.e. the concentration of the surface 

charge density on the probe apex) 125,126. This so-called tip SERS technique, which stands as a 

single hot-spot platform, showed an extraordinary sensitivity, as it was able to detect a neat 

spectral signature for the 4-NTP molecular species adsorbed on the limited area of the tip apex 

and allowed monitoring in situ their electrochemical reactivity 124 (Figure 1.19). However, the 

real-time tracking of the SERS signal at the tip apex during the potential exploration turned out 

to be challenging due to a sudden surge of signal intensity (leading to the detector saturation), 

which is up-to-date not understood. 
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In conclusion, SERS is a very versatile technique, which can be easily adapted for the 

detection of a wide range of samples on virtually any substrate and in different working 

conditions, including in situ and operando reactivity analyses. Besides, the enhancement of the 

signal up to 1010 with respect to classical Raman spectroscopy (combining both EM and 

chemical enhancement effect) makes it ideal for the detection of very small molecular 

quantities. However, it lacks of spatial resolution, which is still limited by classical optical 

diffraction 127. The next paragraph will present a technique that can partially circumvent this 

issue. 

1.2.2.4. SECM 

The scanning electrochemical microscope (SECM) is a local electrochemical probe 

technique based on the use of an ultramicroelectrode (UME) that can be used to probe the 

electrochemical reactivity of numbers of interfaces 128, including the electrochemical behavior 

of film-modified substrates. 

 

Figure 1.20. SECM investigations on surfaces functionalized with thiol-based SAMs – a) 

Schematic diagram of a SECM experiment with a gold substrate partially covered with a long-chain, 

non-electroactive thiol layer. The monolayer defects are assumed to be disc-shaped. The rate of 

mediator regeneration at the SAM-passivated surface is negligible. The tip current is a function of the 

surface coverage and of the average defect radius. Adapted from [129]; b) Electron transfer rate 

constants measured on mixed azobenzene (AZO)/2-polyethyl phenyl (PET) monolayers on gold, kept 

under a 436 nm illumination (trans AZO) or a 366 nm illumination (cis AZO). Approach curves were 

recorded through the trans AZO SAM (black dots), the cis AZO SAM (circles) and the PET SAM 

(black triangle). The error bars represent the standard deviation of the apparent rate constants. Adapted 

from [130]. 

Particularly, SECM in feedback (FB) mode, which uses a redox probe generated at the 

UME to investigate indirectly the electronic property of the sample, has been widely employed 

to characterize both insulating and electroactive films deposited on surfaces. This strategy was 

employed to evaluate quantitatively the electron transfer (ET) process at various organic 
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monolayers and film-modified surfaces, such as those occurring through SAMs made of alkyl 

thiols adsorbed on metal surfaces, as schematized in Figure 1.20a 129. The rate constant of the 

ET through the SAM could be extracted and the presence of pinholes within the film was 

revealed. This methodology was further employed to probe dynamically the evolution of the 

pinholes during the adsorption of the SAM on gold surface.129 

Such SECM investigations allowed demonstrating the possibility to have additional 

tunneling currents flowing between the redox probe and the surface through the SAMs, which 

depends on their chain length 131 but also on their spatial arrangement. This second aspect has 

been investigated 130 for mixed azobenzene/2-phenylethyl (PET) thiol SAMs (with different 

ratios of the two species), which were imaged by SECM under constant irradiation in order to 

keep all the azo group in their cis (366 nm) or trans (436 nm) form. The highest ET rates were 

recorded for those layers where the azobenzene molecules were kept in cis conformation 

(thinner layer) and dispersed by the presence of consistent amount of PET, while pure trans 

azobenzene monolayer (thicker) or PET monolayer (more packed) showed higher insulating 

properties (Figure 1.20b). 

Diazonium-based films immobilized on conductive substrates were also studied by 

SECM. This was for instance used to evidence the spontaneous grafting of 4-nitrobenzene 

diazonium salts on both glassy carbon and gold electrodes 132. Specifically, the formation of 

the spontaneous layer, upon partial immersion of the substrate in the diazonium salt solution, 

was revealed by recording SECM images in feedback mode as shown in Figure 1.21a. Such 

an image, recorded by sweeping the UME on the XY plane while keeping a constant Z distance 

from the surface (typical few µm), represents the contrast of conductivity of the surface 

recorded due to the presence of the thick layer on half of the scanned area. 
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Figure 1.21. SECM imaging on diazonium-modified surfaces – a) Image of a half-modified gold 

substrate by immersion for 1 h in a 4-nitrobenzene diazonium (4-NBD) solution, obtained with a 12.5 

μm radius Pt tip (IT,∞ = 17 nA) in 5 mmol.L-1 in 0.1 mol.L-1 KCl solution (Etip = 0.5 V/AgCl/Ag). 

Adapted from [132]; b) Image of a “M” motif patterned monolayer (grafted on glassy carbon) recorded 

with dopamine as redox probe in H2SO4 aqueous solution. Adapted from [133]. 

SECM was also suitably used to image (and modify) diazonium monolayers grown on 

glassy carbon. These were first grafted thanks to the use of a protecting group, which hindered 

the uncontrolled branching mechanism and yielded a thin film (~2.5 nm thick), and then 

patterned with a Pt UME, which removed locally the grafted species to leave the surface 

uncovered 133. FB mode imaging performed without surface polarization (minimization of the 

tunneling current contribution) and with a dopamine redox probe (which, differently from 

classic ferrocene, reacted specifically on the substrate) allowed retrieving the patterned profile 

by contrast from the conductive map, as depicted in Figure 1.21b. 

Quantitative analyses of charge transfer processes can be carried out via SECM also on 

anchored films that contain redox active species. In such conditions, three kind of transfers 

occur, depicted in Figure 1.22a: (i) bimolecular reactions between anchored and solution redox 

species, (ii) electron tunneling inside the layer and (iii) pinhole ET to the solution redox probe. 

The various contributions can be separated and gather information, for instance, about the 

effect of the anchoring on the electroactivity of the redox species 134, or about the influence of 

the layer structure on the transfer rate 135,136. 

This was shown to be crucial on thiol-based SAMs: studies carried out on layer 

terminated with ferrocene 134 or porphyrin 135 moieties showed that longer anchoring alkyl 

chains increased the molecular surface coverage, thus leading on one side to a decrease in the 

tunneling and pinhole ET rate constant (higher insulating properties), and on the other side to 
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an increase of the bimolecular ET with the redox probe. Mixed thiol structures and different 

redox probes can as well have an effect on the reactivity of the anchored redox group 134. 

 

Figure 1.22. SECM on conductive surfaces modified with electroactive layers – a) Schematic view 

of the processes involved in the SECM measurements of ET across an electroactive SAM:  (i) 

bimolecular reaction between anchored/solution redox species; (b) direct electron tunneling through 

monolayer; (c) ET through pinholes. Adapted from [134]. b) Charge transfer mechanism in the polyaryl 

multilayers containing the immobilized ferrocenyl moieties. Decamethylferrocene (DcMeFc) and tri-p-

tolylamine (PTA) work as redox mediators in solution. Adapted from [137]. 

On diazonium-derived layers, such SECM investigation also revealed the occurrence 

of electron hopping phenomena among adjacent redox moieties, facilitated by their dense 

packing inside the multilayer structures. On ferrocene-functionalized structures, FB mode 

studies on unbiased surfaces with weakly reductive or oxidizing redox mediators only showed 

the insulating properties of the film, while strongly oxidizing probe (as PTA+) yielded 

consistent positive feedbacks. This was attributed to ET among ferrocene centers inside the 

layers, which leads to the re-oxidation of the solution redox mediator in order to maintain the 

charge balance within the layer in steady-state conditions (Figure 1.22b) 137. 

Ultimately, SECM shows a great potential for in situ and even operando investigations 

of structure-reactivity relationships. Thanks to this information, the (electro)activity of the final 

system can be precisely tuned depending on the sample fabrication procedure, or vice versa it 

can be predicted from the observation of its structural characteristics. However, the use of a 

UME affects consistently the spatial resolution and, as it is for every electrochemical tools, this 

technique alone is not able to yield any information about the chemical composition of the 

samples. This means that the compounds involved in the electrochemical reactions need to be 

known a priori, as their nature cannot be revealed just by their electrochemical signature. 
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All the techniques presented so far showed very interesting performances for in situ and 

operando characterization of the composition and reactivity of functional molecular structures. 

However, they all lack of a resolving power that could allow distinguishing spatially two 

adjacent nano-objects. Recently, further technical developments allowed achieving such low 

resolution; a few state-of-art implementations will be presented in the next paragraphs.  

1.2.3 Characterization at the nanoscale 

1.2.3.1. Scanning electrochemical cell microscopy 

Scanning electrochemical cell microscopy (SECCM) can be considered as an evolution 

of SECM, implemented with the aim of reaching single-entity sensitivities. Instead of an UME, 

in SECCM the probe is constituted by a single or double barrel (theta) nano- or micropipette, 

filled with the electrolyte solution and integrating a quasi-reference electrode (QRE). Similarly 

to what was observed for Raman-μSEC, also in this case the interactions between the probe 

and the substrate are limited by a meniscus of few micro- or nano-liters, which localizes the 

origin of the signal from a restricted sample area. The pipette can therefore be scanned over 

the surface and collect an array of measurements, which will yield a surface reactivity mapping. 

For instance, SECCM was shown to reach better resolution than conventional SECM 

in the detection of pinholes in a 4-NBD-derived layers grown onto glassy carbon: thanks to the 

coupling with numerical simulations, details down to 20 nm, much smaller than the pipette size 

itself, could be successfully resolved 138 (Figure 1.23). 

 

Figure 1.23. SECCM measurements – On the left, schematic view of the pinhole detection in 4-NBD-

dervived disordered layers, grafted on GC. The single-barrel nanopipette is electrochemically connected 

to the substrate (which is not completely insulated) and filled with a solution of ferrocene methanol, 

which acts as redox probe. On the right, currents measured on bare GC (left) and grafted GC (right) at 

large overpotential (0.4 V). The yellow and green spots, which reports higher surface current, 

corresponds to the presence of pinholes inside the aryl layer. Adapted from [138]. 
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Besides, SECCM can be used to perform fast voltammetric measurements on single, 

localized spots and simultaneously probe the sample response by recording the resulting 

superficial current. This allows collecting broad sets of data on large samples and monitoring, 

for instance, the influence of the substrate superficial structure on the reactivity of molecular 

species at its interface. Step-edges (≤ 1 nm thick) in HOPG electrodes were therefore proved 

to be more efficient than terraces in promoting the electrolyte reduction and, hence, the 

formation of SEI upon Li-ion battery cycling 139, while different activities for hydrazine 

reduction, especially in the presence of atmospheric oxygen, where observed for (111) and 

(100) nanocrystal domains on Pt surfaces 140. 

SECCM can also work as a precise tool for designing molecular patterns over both 

conductive and non-conductive surfaces. This was shown by growing spatially resolved 

polyaniline motifs (Figure 1.24) on mixed substrates with the use of a dual pipette to promote 

the electropolymerization 141. While the pattern width was limited by the pipette size to ~1 μm, 

the thickness could be modified by modulating the applied current and reduced to less than 1 

nm. Another nanolithographic approach with SECCM consisted in using a single-barrel 

nanopipette to fabricate in situ H2 micro-bubbles, produced by water electrolysis, which were 

then deposited onto the desired substrate and worked as templates for the polymerization of 

pyrrole in the shape of micro-containers 142. 

 

Figure 1.24. SECCM for patterning - On the left, schematic view of a dual micropipette (which can 

work on both conductive and insulating surfaces). On the right, SEM image of the three-dimensional 

polyaniline pattern (green), formed both on a conductive (beige) and on an insulating (grey) surface. 

The drawings 1-3 show the displacement effectuated from the pipette to yield this particular structure. 

Adapted from [141]. 

In conclusion, SECCM is a very powerful and versatile tool for the characterization and 

manipulation of small molecular assemblies, down to single entities. It can as well be 
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implemented on both conductive and insulating substrate and is very sensitive to the influence 

of their structure on the electrochemical reactivity of the adsorbed molecules. However, the 

resolution of dual pipettes is strongly limited by the larger aperture required to fit the channel 

for the two barrels. Moreover, as for SECM, it cannot give any compositional information 

regarding the studied sample. Finally, to the best of our knowledge, only few studies report so 

far the use of SECCM on organic samples. This might be due to the most difficult realization 

of a stable meniscus in organic solvents, although developments in this direction were recently 

made 143. 

1.2.3.2. AFM-SECM 

Another improvement to the resolution and the versatility of the SECM consists in its 

combination with AFM (Figure 1.25a), which enables the access to the nanometer scale and 

to a more precise control of the tip-sample separation. Besides, a direct correlation between the 

surface electrochemical activity and its morphological changes can be achieved 144. 

Demaille’s group, for instance, demonstrated the possibility of probing individual 

nanoparticles (diameter ~20 nm) 145 or single gold nanodots (diameter ~15 nm) ranged in dense 

arrays 146 thanks to their functionalization with ferrocene(Fc)-terminated polyethylene glycol 

(PEG) chains, where Fc moieties act as redox labels. These are then oxidized by direct contact 

with the SECM-AFM probe (mediator-tethered Mt mode), which can quantify them from the 

oxidation current response and correlate this information with the nanostructures positions and 

sizes, obtained by the topographic image. The correlation of the two information guarantees 

the achievement of high lateral resolution (down to few tens of nm) in short investigation times 

146 (Figure 1.25b). 
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Figure 1.25. SECM-AFM imaging –a) Experimental setup: On the left, schematic view (in cross 

section) of an integrated AFM-SECM tip fabricated by using FIB technology. On the right, (i) shows a 

FIB image of an integrated frame submicroelectrode (gold) with Parylene C insulation (electrode edge 

length: 770 nm), while (ii) illustrates a reshaped AFM-tip and tilt correction for a cantilever mounting 

angle of 10° in a tapping-mode liquid cell. Adapted from [147]. b) Use of a redox label: Mt/AFM-

SECM in situ imaging of Fc-PEG-functionalized nanodots ranged in an array: (i) topographic AFM 

image and (ii) tip current SECM image. Cross sections of the images taken along the column of 

nanodots, indicated by a vertical white dotted line, are shown below. Adapted from [146]; c) Probing 

catalytic reactions: (i) Mechanism of glucose detection: as glucose molecules crosses the 

polycarbonate membrane, they are intercepted and oxidized by glucose oxidase enzymes, tethered to 

the AFM-SECM probe; (ii) Calibration curve for AFM-tip-integrated biosensor; (iii) Topographic AFM 

image and (iv) tip current SECM image revealing the transport of glucose through the polycarbonate 

membrane. Adapted from [148]. 

The use of a redox label in Mt-SECM-AFM mode was proved to be extremely useful 

for characterizing the properties of several kinds of species immobilized on a surface 149: these 

can be simple molecular layers (e.g. PEG chains), for which the thickness and the end-to-end 

diffusion coefficient can be easily extracted by both the topographic and the current 

information 150, but also more complex biological structures. For instance, high-resolution 

images (~100 nm) of proteins could be obtained thanks to their labeling with Fc-PEG-antibody 

redox probes 151. Alternatively, the SECM-AFM probe can be functionalized to detect a 

specific analyte: for instance, functionalizing the tip with glucose oxidase allowed detecting 

the diffusion of glucose through a polycarbonate membrane 148 (Figure 1.25c). As it is shown 

by these examples, SECM-AFM can be conveniently applied to image a wide range of 
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biological samples 152 with exceptional sensitivity and lateral resolution, although the need for 

labeling and/or probe specific functionalization prior to the analyses might be a limitation. 

 

Figure 1.26. SECM-AFM for electro-induced patterning – (i) AFM image recorded after 

electroinduced patterning via SECM-AFM on a gold substrate immerged in a mixture of 4-NBD and 

vinyl monomers. The section in the bottom identifies the height profile reported in (ii). Adapted from 

[153]. 

Also label-free SECM-AFM analyses were implemented, aiming at studying, for 

instance, the spatial variations in the catalytic activity of heterogeneous surfaces for the oxygen 

reduction reaction 154, or else the ET phenomena occurring at the electrode/electrolyte 

interfaces in redox flow batteries (which are known to impact the batteries kinetics and 

operational reversibility) 155. Besides, as it was previously observed for SECCM, also SECM-

AFM probes could be used as electrochemical lithographic tools: for example, they were used 

to pattern a homogeneous gold substrate immerged in a mixture of 4-NBD and vinylic 

monomers 153. In the experimental setup, the substrate was polarized negatively while the probe, 

acting as counter electrode, scanned the surface following a precise pattern to trigger locally 

the 4-NBD electroreduction and subsequent radical grafting. Because the vinylic monomers 

are not electroactive, they branches as side chains to the diazonium-derived anchored structures 

via radical activation. The final pattern (Figure 1.26) showed a thickness of around 35 nm and 

had a width comparable to the tip size 153. 

These were only a few examples among the recently developed nano-investigation 

methods, each one presenting very good imaging skills at the molecular or atomic scale and 

very high sensitivity for little amount of samples. However, the lack of a straightforward way 

to characterize also the system chemical composition remain a major drawback in their use. In 

fact, it must be pointed out that, differently from SECCM, the use of a metal tip in SECM-

AFM might theoretically open the road to possible implementations of nanospectroscopy, 

where the tip could act as a SERS enhancer. However, to the best of our knowledge, no 
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successful results have been reported so far because of the technical challenges related to 

system stability, or else to the Raman activity of the polymeric coating used to partially insulate 

the tip. 

This issue can be overcome by the TERS technique, which has been employed in this 

thesis work and whose characteristics will be presented in detail in the next paragraph. 

1.3. Electrochemical tip-enhanced Raman spectroscopy 

In the panorama of nanoscale dynamic investigation techniques, electrochemical tip-

enhanced Raman spectroscopy (EC-TERS) can be considered as a very successful hyphenation 

of powerful and complementary techniques. Indeed, EC-TERS gathers together the 

atomic/molecular-size spatial resolution provided by scanning probe microscopy (as STM or 

AFM), the extraordinary chemical sensitivity and wealth of information of SERS (chemical 

signal enhancement) and even the characteristics of an electrochemical probe, which can be 

conveniently employed for the investigation and/or promotion of electrochemical reaction 

under in situ and operando conditions. 

In the next paragraphs we will first introduce the original developments of the TERS 

technique and its implementation within different SPM setups. Later on, we will focus on the 

most recent state-of-art configurations that allows its use in liquid and under electrochemical 

conditions. Finally, we will present the issues and challenges that are currently impeding the 

large and fast development of this technique. 

1.3.1 First TERS developments 

A first precursor of the TERS technique can be considered the scanning near-field 

microscope (SNOM). The principle of this technique was first proposed theoretically by Synge 

in 1928 as a solution to overcome the problem of diffraction-limited spatial resolution in optical 

microscopes 156. Synge’s idea consisted in illuminating the sample through a minute aperture, 

whose diameter is smaller than the wavelength 𝜆 of the beam that crosses it, and that is placed 

at a distance z (≪ 𝜆) from the measured surface, i.e. at near-field distance 84,156. Thanks to this 

expedient, the lateral resolution was expected to be no longer limited by diffraction (i.e. by the 

use of optic lenses), and to depend only on the size of the aperture (which determines also the 

sampled volume) 84. Almost 60 years passed before Synge’s idea could be put in practice: the 

breakthrough consisted in the invention of STM and, successively, of the other SPM techniques 

that allow placing a probe at very close proximity to the sample surface 84. 
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In order to improve the resolution and, at the same time, intensify the signal in SNOM, 

it was proposed to substitute open optical fibers with apertureless probes, whose tapered apexes 

can enhance the electromagnetic field of the far-field illuminating source 157 and behave like a 

light scatterer. This had first been theorized when it was observed that the light travelling inside 

an open probe had a maximum enhancement in the lobes near the aperture rims. This means 

that field confinement was limited by the size of the aperture diameter, which should have been 

reduced to a single point to provide the strongest field localization (and corresponding 

enhancement) 157, as it was also observed for the tip-SERS technique. Moreover, because of 

the lateral resolution dependency on the tip diameter, reducing this parameter was also 

expected to improve the imaging quality. 

 

Figure 1.27. First TERS proof of concept – a) Evidence of tip enhancing ability: TERS spectra of 

brilliant cresyl blue (BCB) dispersed on a glass support, measured with a silver-coated AFM probe with 

the tip retracted (blue) and in contact (red) with the sample. Estimated EF > 2000; b) Spatial resolution: 

TERS spectra recorded on two different positions of the sample surface (on the BCB layer or on the 

bare glass substrate) in tip-scan mode, while the same sample spot remains in the laser focus. In both 

(a) and (b) the evidenced spectral range (1630-1680 cm-1) corresponds to the main BCB Raman band. 

Each spectrum was acquires for 60 s. Adapted from [158]. 

These considerations suggested that sharp apertureless probes, thanks to their 

enhancing abilities, could be used as nanoscopic light sources for the illumination of sample 

surfaces 84,157. A first attempt in this direction was reported in 2000 by Deckert and Zenobi 158 

and consisted in the use of either AFM probes coated with silver (diameter ≤ 50 nm) or etched 

gold wires (diameter ≤ 20 nm, shear-force microscopy ShFM), illuminated by a laser source 

and raster scanning the sample surface. The illuminating objective was placed below the 

sample (inverted Raman microscope) and focused the laser beam on semi-transparent samples 

(thin films of BCB or C60 fullerene deposited on glass), which were either translated while 

keeping the tip in place (sample scanner) or, vice versa, maintained still on the laser focus while 

scanning the tip (tip scanner). This prototypical implementation of tip-enhanced Raman 
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spectroscopy (TERS) measurements in an AFM-Raman coupled configuration presented 

already very high enhancing factors and moreover, differently from the SERS technique, it 

could resolve spatially the spectral information 158. Indeed, recognizable spectral features on 

the sample could only be detected when the tip was brought in close contact to the sample 

surface (Figure 1.27a), i.e. when coupling the EM effect of the illuminated tip with the 

chemical enhancement provided by the proximity of the molecular layers with the plasmonic 

nanoamplifier. The estimated enhancement factors ranged from 103 up to 104, thus allowing a 

neat distinction between the near-field signal at the tip-sample junction and the far-field 

background. Besides, different signatures could be recorded depending on the tip position on 

the surface, e.g. over the bare glass or the molecular layer (Figure 1.27b). Therefore, differently 

from SERS, TERS could gather spatially resolved chemical information, with a lateral 

resolution of around 50 nm. Besides, because the enhancement derives always from the same 

hotspot (and not from multiple, possibly heterogeneous enhancing sites, as in SERS) and is 

therefore supposed to be uniform, the authors proposed the possibility of performing 

quantitative measurements 158. 

During the same year, other research groups published pioneering studies based on 

TERS 159–161. More specifically, Kawata and Inouye (who had already successfully 

implemented the scattering SNOM technique a few year before 162) performed studies on 

Rhodamine 6G molecules adsorbed on a silver substrates with a similar configuration as the 

first one proposed 160. Although their enhancement factor was estimated to 40, lower than the 

previous experiment, they could still record sharp spectra at shorter acquisition times and lower 

laser power. Besides, as it was pointed out later 163, their far-field spectra presented already 

evident molecular spectroscopic signature, more likely due to the SERS activity of the 

substrate, but still the signal recorded with the tip in contact on the surface resulted more 

intense: this would suggest that a single hotspot in TERS can be as efficient as a series of 

SERS-active hotspots. Even better performances were achieved from the implementation of 

TERS in a STM setup, proposed by Pettinger 161, which allowed decreasing to 1 nm the distance 

between the tip (an electrochemically etched gold wire) and the sample (BCB deposited onto 

a thin, smooth gold layer, transparent to the bottom illumination source) during the 

measurements. This had the effect to increase the enhancing factor up to 104 at very low laser 

powers (50 μW), which avoided the occurrence of photobleaching or fluorescence phenomena. 
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1.3.1.1. Enhancing factor and influencing parameters 

More specifically, the aforementioned TERS enhancement factor, originated by the tip 

EM enhancing effect, can be expressed as 163 

𝐸𝐹𝑇𝐸𝑅𝑆 = (
𝐼𝑛𝑓+𝐼𝑓𝑓

𝐼𝑓𝑓
− 1)

𝑉𝑓𝑓

𝑉𝑛𝑓
                                                 (1.8) 

𝐼𝑓𝑓 represents the far-field intensity, recorded when the tip is retracted from the sample, 

which arises from the focal volume 𝑉𝑓𝑓. This is approximated to a cylinder with diameter 

coincident to the laser beam size (𝑅𝑓𝑜𝑐𝑢𝑠) and height equal to the effective focus depth. Upon 

tip landing on the sample surface, the sampled volume decreases to the so-called TERS volume 

𝑉𝑛𝑓, approximated to a cone with radius equal to the tip radius of curvature (𝑅𝑡𝑖𝑝) and height 

coincident to the near-field separation 163. In this case, the near-field intensity term 𝐼𝑛𝑓 adds up 

to 𝐼𝑓𝑓 in the expression for the total recorded intensity. The first term of the Equation (1.8) 

represents the TERS contrast and is usually employed to express the enhancement quality. As 

for the second term, it expresses the dependency of the enhancement factor on the reciprocal 

tip-sample distance and on the tip geometrical shape. Indeed, for thin samples, the focus depth 

can be considered as coincident to the near-field separation height 163, hence Equation (1.8) can 

be rewritten as 

𝐸𝐹𝑇𝐸𝑅𝑆 = 4(
𝐼𝑛𝑓+𝐼𝑓𝑓

𝐼𝑓𝑓
− 1) (

𝑅𝑓𝑜𝑐𝑢𝑠

𝑅𝑡𝑖𝑝
)
2

cos(𝛼)                                  (1.9) 

where the term cos(𝛼) corrects the elliptical shape of the illuminating beam by the 

angle to the normal surface. 

Equation (1.9) expresses clearly the dependence of the enhancing factor on the tip 

dimensions. In fact, although only a single nanoparticle at the apex of the tip is responsible for 

the enhancement of the incoming field, the plasmon resonance arises from the coupling of all 

the adjacent illuminated nanoparticles 108. These will support together the propagating SPP and 

transform the tip apex into a “plasmonic antenna” (Figure 1.28a), i.e. an oscillating nano-

dipole, upon induced electric charge alternation across its structure 108. In addition to the 

antenna effect, if the tip presents an extremity with a small radius of curvature, both the SPP 

and the induced dipole will concentrate on the sharp apex surface and be furtherly intensified 

(lightning rod effect) 157. All these enhancing effects lead to localized second-harmonic 
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generation on the tip apex, which is responsible for the creation of a confined photon source 

164. 

 

Figure 1.28. Antenna effect and plasmon characteristics of TERS probes - a) Calculated image 

(COMSOL Multiphysics® software) of the effect of an incident p-polarised laser (of wave vector k) 

with an electric field (E) parallel to the tip-axis at a metal or metal-coated tip (radius: 15 nm). The red 

color around the tip apex attests of the confined enhancement of the EM field; b) Light scattering spectra 

from silver- and gold-coated silicon AFM tips, showing the different plasmonic properties of the two 

metals. Adapted from [126]. 

Of course, as it was mentioned for SERS, the nature of the plasmonic metal used for 

the tip has still an essential role on the optical properties of the final structure (Figure 1.28b), 

but in this case it can also affect the tip mechanical stability and its resistance to contamination. 

Therefore, fabricating sharp and stable TERS probes in a reproducible way constitutes one of 

the most important factors to consider when performing TERS measurements. As it was 

mentioned in the previous examples, tips are usually obtained by vacuum deposition of metal 

on a dielectric tip or by electrochemical etching of metal wires. The first method is often 

employed for functionalizing commercially available AFM probes (usually made of insulating 

silicon nitride). The deposition procedure generally forms a metallic film made of small 

nanoparticles aggregates and confers to the tip a rough morphology. Depending on the 

dimension of the grains and on their reciprocal distance, a variation in the tip LSPR frequency 

and in its enhancing properties is observed 108 . As Figure 1.29 shows, rougher structures are 

expected to provide higher EF, although they are also most sensitive to carbon contamination, 

especially if employed in normal atmospheric conditions 165. 
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Figure 1.29. Effect of the metal coating over an insulating probe on the enhancing properties of 

the TERS tip - Enhancement provided by (a) a tip with discretely arranged grains, (b) a rough 

corrugated granular tip, (c) a smooth tip. The EF is evaluated by approaching (tip in) and retracting (tip 

out) the probe from a graphene sample (excitation wavelength: 488 nm). Adapted from [108]. 

For STM applications, instead, it is usually preferred to produce probes via 

electrochemical etching of bulk wires, which insures a better mechanical stability on the final 

structure and a more homogeneous current flow. Both requirements are essential for 

establishing good tunneling conditions at the tip-sample gap and performing reliable STM 

measurements. Further details about STM tips fabrications will be provided in Chapter 2.  

Regarding the choice of the feedback technique for controlling the tip-sample distance, 

the previous examples showed that the TERS setups are mostly implemented in AFM and STM 

setups. AFM bases its working principle on the local forces experienced by the tip, placed at 

the extremity of a flexible cantilever, when it approaches the sample surface. A laser beam 

focused on the end of the cantilever and reflected toward a quadrant photodiode detector, 

allows to precisely track the vertical (deflection) and lateral (torsion) motions of the probe. The 

deflection of the cantilever, when the tip encounters a protruding or depleted structure on the 

sample, induces a change of the beam position on the photodiode and triggers the response of 

a feedback loop acting on the displacement of the piezo-stage acting as tip- or sample-scanner. 

A variant of the AFM, called shear-force microscopy, uses a tuning fork carrying the probe on 

one of its prong (instead of a cantilever) to position and scan the tip on the surface: in this case, 

the feedback loop is based on the change of resonance frequency of the fork upon the shear 

forces experienced by the tip 126. In STM, an atomic-scale gap is established between the 

scanning probe and the sample allowing some electrons to pass across the planar tunnel barrier 

(or work function). A bias voltage BV applied between the two generates the flow of a net 

tunnelling current IT 166,167. In this case, the feedback loop acts on the piezo-stage to keep a 

constant IT value so that to keep the tip at a fixed distance from the surface during the scanning. 

The exponential dependence of IT with the tip-sample distance explains the extreme sensitivity 

of the technique. 
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The choice among these different setups can be based on the degree of sensitivity and 

resolution required by the analyses: overall, STM establishes the closest and most stable tip-

sample interaction and is therefore preferred for highly resolved measurements 168,169. On the 

other hand, working in particular operating conditions and/or using delicate samples (e.g. 

biological tissues), which are not compatible with polarization, limits the choice of the 

feedback only to AFM 170 or tuning fork 171 setups. Besides, it must be considered that the 

classical Raman selection rules can be altered by chemical processes (especially in AFM) or 

by electric field gradients in the tip-sample gap (as in the case of STM), and hence that using a 

particular setup might provoke the appearance in TERS of normally prohibited vibration modes 

and associated energy transitions. 

All these aspects have been investigated in the past few years to optimize the TERS 

technique and have gathered a whole new series of information on the sample structure, 

composition and reactivity at the nanoscale. The next paragraphs will review some of the most 

striking results achieved so far. 

 

Figure 1.30. TERS as both probing and manipulating technique at the nanoscale – a) Revealing 

the packing dynamics of SAMs: On the left, schematic view of the variation in the inter-molecular 

arrangement of a pyridine-terminated SAM at different stages of the assembling process, monitored by 

the TERS probe (depicted in the center). On the right, spectra acquired at different assembling times, 

revealing the modification of the SAM packing by the shift in the aromatic C=C stretching band. 

Adapted from [172]; b) Inducing and detecting photocatalysed reactions: On the left, schematic 

view of the photocatalytic effect of the Ag-coated AFM tip on the 4-NTP coupling into DMAB, 

adsorbed on gold, under a 532 nm excitation. On the right, TERS time maps acquired at 633 nm (no 

photocatalytic effects) to probe the variation in the sample spectral signature before and after the 

photocatalytic illumination step (individuated by the white band). Adapted from [20]. 

1.3.2 TERS developments in air 

On the wave of success of the first pioneering approaches, successive developments in 

the TERS field were made to improve the signal enhancement, the collection efficiency and 

the spatial and temporal resolution, with the aim of characterizing at the local scale functional 
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materials under their operating conditions (e.g. gas atmosphere other than air) and performing 

localized modifications (e.g. photocatalytic reaction). 

For instance, TERS was used to probe the variations in the molecular orientations of 

pyridine-terminated arenethiol SAMs at several stage of the assembly process 172 (Figure 

1.30a). These could be revealed by the shift of the Raman ring stretching band, which is 

sensitive to the π-stacking between adjacent molecules and evidenced an initial strengthening 

of the intermolecular interactions, which fades at longer incubation times. Such analyses are 

particularly interesting to investigate the ET efficiency through a SAM, which, as it was 

mentioned in Section 1.2.1.3, is strongly dependent on the structure of its layer. 

Another interesting application consists in exploiting the TERS tip both to induce 

(photo)chemical reactions and to probe straight after the effects on the sample surface. For 

instance, Deckert’s group 20 acted on single 4-NTP molecules deposited on gold to promote in 

situ their photocatalytic dimerization into DMAB by illumination with a green laser source 

(Figure 1.30b). The successful outcome of the reaction was revealed by comparison of TERS 

time maps, acquired with a non-photocatalytic red laser source before and after the green laser 

illumination. Later on, a similar TERS experiments carried out by Bin Ren et al. revealed that 

the efficiency of the photocatalytic-induced dimerization of 4-NTP (and 4-ATP) molecules 

depended in fact on the particular molecular arrangement over the surface and on the nature of 

the metal substrate 173. 

These examples showed the great analytic interest in using the TERS technique to probe 

structure-reactivity relationships of functional materials. Further developments in other 

working environments than air will be presented in the next paragraphs. 

1.3.3 TERS in liquid and under electrochemical conditions 

A much ambitious task endeavored this last decade in the TERS community has 

consisted in implementing the TERS setups under liquid conditions. Liquid-TERS indeed 

allows to perform in situ imaging of either more sensitive samples, as biological tissues, which 

need to be kept in wet state in order not to collapse 3, or of functional devices under their 

conditions of operations (operando analyses). A first success was achieved in 2009 by Zenobi’s 

group, which carried out measurements over a thiophenolate (PhS) SAM on gold in liquid 

environment thanks to an Ag-coated tip, protected with an ethanethiolate (EtS) layer and 

mounted on an inverted AFM setup 3. As Figure 1.31a shows, the measurements were 

performed in the solution meniscus between the tip scanner and the sample. Besides, the tip 
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movements could be precisely followed thanks to presence of a window just above the 

cantilever head that allowed focusing the tracing laser beam; this did not interfere with the laser 

beam used for TERS measurements, since the system worked in bottom-illumination mode and 

back scattering 3. The presence of the EtS protective layer was shown to be essential to avoid 

the contamination of the tip apex with the thiol sample, which could partially re-dissolute and 

adsorb on the silver surface. Although the presence of this coating affects the EF (which 

decreases from 104 to 103), the obtained signal was still very sharp and resolved (Figure 1.31b). 

 

Figure 1.31. First TERS experiment in liquid conditions – a) Schematic diagram of the TERS setup 

in aqueous environment (AFM system, bottom illumination); b) Proof of principle of the feasibility of 

TERS in liquid and importance of the tip coating: (a) TERS spectrum of a PhS SAM recorded in liquid 

with an EtS-coated tip, (b) spectrum recorded after (a) on a clean gold surface (the absence of the PhS 

signature attests of the non-contamination of the tip); (c) far-field spectrum corresponding to 

measurement (a) (the comparison between the two demonstrates the enhancing effect provided by the 

TERS-active probe even in liquid and upon coating). Each spectrum was collected for 10 s. Adapted 

from [3]. 

This first important implementation of TERS measurements in liquid was shortly after 

followed by a series of development aiming at transforming the sample holder in an 

electrochemical cell, which could access in situ or operando characterization of 

electrochemical processes occurring on a surface with exceptional sensitivity and spatial 

resolution. 

The first prototype of an EC-TERS setup was proposed in 2015 by Bin Ren’s group 4, 

who designed an electrochemical cell; adapted to the sample holder of a homemade STM-

TERS setup, using a side-illumination configuration (Figure 1.32a). Both the tip and the 

sample constituted the working electrodes (WEs) and their polarization was controlled against 

a common reference electrode (RE) by a bi-potentiostat. This allowed applying a defined 

potential on the two WEs at the same time and recording the evolution in time of a 4-PBT SAM 
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sample adsorbed on gold under a fixed -500 mV potential 4. Besides, small spectral changes in 

the molecular response of 4-PBT could be detected by TERS measurements at different 

potentials, which were not observed by SERS analyses performed in the same conditions. This 

evidenced the higher accuracy of TERS-active probes with respect to SERS-active substrates, 

where the presence of multiple hotspots can affect both the spatial and spectral resolution 4. 

 

Figure 1.32. EC-TERS in side illumination - a) First implementation of an EC-TERS setup: 
Schematic view of the first EC-STM-TERS setup, where the bottom of the sample 

holder/electrochemical cell is tilted of 10° towards the glass wall of the cell. The long-distance objective 

can therefore be placed horizontally and illuminate the tip with a 90° angle. Adapted from [4]; b) State-

of-art improvement of the side-illumination configuration for EC-TERS: On the left, a schematic 

view of the new side-illumination setup, where the glass window is tilted towards the water immersion 

objective, to which it is optically coupled through a thin layer of water. On the right, examples of TERS 

spectra acquired on anthraquinone-based SAMs adsorbed on gold and subjected in situ to irreversible 

reduction, as it can be evinced from the modification of the spectral signatures. Adapted from [174]. 

However, the particular geometry chosen for the tip illumination was not ideal for the 

collection efficiency, since it employed a long-distance air objective at low numerical aperture. 

As a consequence, both the incoming and the scattered light were heavily refracted in their 

optical path, due to the presence of multiple interfaces at different refractive indexes, and could 

not be effectively captured in back scattering, thus the overall detected intensity was quite 

weak. An improved configuration, recently reported, 174 substituted the vertical glass wall with 

a 55°-tilted glass window on the side of the EC cell (later employed also by Domke’s 168 and 

Van Duyne’s 175,176 groups), so that to avoid tilting the sample, and, more importantly, 

introduced the use of a short-length immersion objective (Figure 1.32b). This has the 

advantage of reducing the diffraction at the objective/window interface and, thanks to the 

higher numerical aperture of the objective, of increasing the light collection efficiency. As a 

consequence, a 5-fold increase in the sensitivity with respect to previous setup was recorded 

and well-resolved redox signatures arising from the irreversible reduction of anthraquinone-

based SAMs on Au could be acquired 174. Although, a main drawback of this configuration 

consists in the immobility of the sample position, which means that the nanometric 
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displacements of the tip and the objective need to be precisely synchronized in order not to lose 

the best optical alignment. 

 

Figure 1.33. EC-TERS in: a) bottom-illumination configuration: On the left, schematic view of the 

AFM/inverted optical Raman microscope coupling for bottom-illumination on the AFM tip and on the 

sample cell. Adapted from [177]. On the right, AFM image (left) and formal reduction potential map 

(right) acquired on the edge between a gold nanotriangles and the underlying ITO, both covered by a 

sub-monolayer of NB, in a neutral buffer. The formal reduction potential on the maps were extracted 

(through the Nernst equation) from the corresponding intensity of the spatial TERS map. Areas of 

different color evidence the heterogeneities of the NB reduction process on the two substrates. Adapted 

from [178]. 

In alternative, Van Duyne’s group resumed the use of an inverted configuration, which 

was implemented for EC-TERS measurements in an AFM setup 177,178 (Figure 1.33). Indeed, 

the vertical laser/tip alignment provided by the bottom-illumination mode, along with the 

imposition of a radial polarization to the laser (more than 4-fold EM enhancement with respect 

to linear polarization 126), guarantees the best possible enhancing conditions in TERS, yielding 

up to 10 time higher sensitivities with respect to side-illumination configurations 174. Besides, 

the light refraction at the objective/glass interface is also in this case minimized by using an 

oil-immersion objective. This configuration allowed monitoring the spatially dependent redox 

behavior of sparse Nile Blue (NB) molecules, deposited partially on semi-transparent Au 

nanotriangles (3.5 % coverage rate) and partially on the underlying indium tin oxide (ITO) 

substrate (0.5 % coverage rate): upon polarization towards progressively negative potentials, a 

bimodal distribution of NB formal reduction potentials could be recognized on ITO, due to the 

higher heterogeneity of its surface with respect to the gold plates 178 (Figure 1.33). However, 

this configuration is limited to the use of transparent samples and, besides, it cannot be easily 

implemented in STM setups, because the mechanical coupling generated by the vertical 

alignment of the components might perturb the flowing of the tunneling current and thus lead 

to tip crashing over the surface. 
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Figure 1.34. EC-TERS in top-illumination configuration – a) EC-STM-TERS: On top, schematic 

view of the setup with a water-immersion objective illuminating from the top the sample surface and 

the bent STM tip approaching from the side. On the bottom, the TERS spectra (i) extracted from the 

pixel indicated by the white dotted line on the spatial TERS map (ii), recorded simultaneously to the 

corresponding STM map (iii) on azobenzene-derived alkanethiol SAMs adsorbed onto gold and 

immerged in 50 mmol.L-1 Na2SO4, under fixed polarization of 0 V. The lateral resolution of the maps 

was of 8 nm. Adapted from [169]; b) EC-AFM-TERS: On top, schematic view of the setup with a 

water-immersion objective illuminating both the AFM cantilever (for detecting its deflection) and the 

TERS-active tip. A sample scanner is used, so that the objective and the tip stay in place and do not lose 

their alignment. On the bottom, potential-dependent TERS spectra of 2.2 nm PANI on Au film in 0.1 

mol.L-1 HCl solution, showing the change in the spectral signature at different stages of the PANI redox 

reaction. Adapted from [179].  

The third alternative consists in a top-illumination configuration, where the tip 

approaches from the side and is tilted to fit below the focus of the overlying objective. This 

configuration was successfully implemented in our group 169 (Figure 1.34a) and possess the 

main advantage of using a short-distance water-immersion objective that can plunge inside the 

electrochemical cell, hence minimizing the light refraction effect. Thanks to this expedient, 

STM-TERS maps could be recorded on gold, functionalized with a non-electroactive SAM, 

with a lateral resolution of 8 nm and under constant polarization 169 (Figure 1.34a). 

Recently, also by Bin Ren 179 developed a top-illumination configuration in an AFM 

setup (Figure 1.34b), which has the advantage of using the same objective to focus both the 

laser recording the AFM cantilever displacement and the light source for illuminating the tip. 

Besides, the presence of a sample scanner avoids the displacement of the tip and the objective, 



 

62 

 

which therefore do not lose their optimal alignment: this allowed observing the reversible 

transformations of a polyaniline layer deposited on gold when subjected to oxidative potentials 

(Figure 1.34b). 

1.3.3.1. Issues associated to electrochemical STM-TERS 

The extreme sensitivities and resolving powers obtained for the top-illumination EC-

STM-TERS setup encouraged us to pursue the optimization of this configuration to reach even 

higher quality results and, most importantly, to follow the occurrence of electrochemical 

reactions in their real working conditions. Nonetheless, this achievement is fundamentally 

complicated by the influence of the STM parameters on the TERS enhancement qualities. 

 

Figure 1.35. Effect of the STM measurement parameters on the TERS enhancement - Raw spectra 

recorded on SAMs of thiophenol (inset molecular structure), adsorbed onto gold, in Ar (green) and in 

water (blue) at a) constant BV = 0.04 V and variable IT (from 0.3 to 0.8 to 1.3 nA) and b) constant IT 

=1.3 nA and variable BV (from 0.1 to 0.04 to 0.02 V). For each series, 20 nm retraction spectra (far-

field) are included in black. Gray rectangles indicate the characteristic thiophenol bands, whose 

intensities variate more drastically in Ar and under the effect of BV decreasing at a constant IT value. 

Adapted from [180]. 

Domke’s group thoroughly investigated this matter by evaluating the dependency of 

the bias voltage (BV) and tunneling current (IT), imposed to the STM tip, on the TERS intensity 

recorded on thiophenol monolayers, adsorbed onto gold, both in deoxygenated Ar environment 

and in liquid 180 (Figure 1.35). As it will be further detailed in Chapter 3, increasing the IT set-

point and/or decreasing the BV imposed between the tip and the sample is expected to reduce 

the dimension of the tip-sample gap and, therefore, to improve the signal enhancement. 

However, the experimental measurements evidenced that the two parameters do not follow the 

same trends: while decreasing the BV from 0.5 to 0.02 V provoked an exponential increase in 

the thiophenol intensity signal, increasing IT from 0.1 to 1.7 nA provoked a linear intensity 
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variation. This was proved, though, to have a more dramatic effects on the signal intensities in 

Ar than in liquid environment 180. Additionally, the authors pointed out that variating the BV 

between the tip and the sample, as it occurs when the latter is polarized for in situ EC-TERS 

experiments, provoked a variation in the Au-S bond strength, as it was evidenced by a shift in 

the Raman band at 245 cm-1, attributed to the correspondent stretching mode. 

As a consequence, the values of IT and BV need to be carefully controlled in order to 

achieve at any time the best enhancement for the sample signal, and their potential influence 

on the bands position should be taken into account. Additionally, it must be reminded that the 

electrochemical processes occurring on the surface can sometime interfere with the 

spectroscopic acquisition and alter the light-matter interaction. For instance, when polarizing 

the sample substrate in immerged in the liquid cell, both the Fermi level of the metal and the 

dielectric constant of the interfacial electrolyte will be modified, thus influencing the chemical 

enhancing effect of the sample 181. Besides, an electrochemical double-layer forms at the 

sample surface/electrolyte interface that generates a static EC field , which influences the 

interactions between metal and adsorbates, the orientation of the adsorbates and the double-

layer structure itself 181. All these matters have to be considered when performing an EC-TERS 

measurement, in order to discern between the observations related to the real sample behaviour 

and the artefacts due to the interactions between spectroscopic and electrochemical processes, 

and to interpret correctly the experimental data. 

Our current challenge, which is at the center of this thesis work, consists in exploiting 

the skills of EC-STM-TERS to probe in situ the electrochemical reactivity of functionalized 

nanomaterials. In order to do that, our efforts were partially profused in the amelioration and 

optimization of the above-mentioned measuring setup, as it will be detailed in Chapter 2. First 

proof-of-concept analyses, performed on thiol-based model samples, will be the object of 

Chapter 3. Therefore, Chapter 4 will present the results obtained on more complex systems, 

whose controlled structuration on the substrate constituted another essential part of the work. 

Finally, we will summarize the main achieved results and propose some perspectives for future 

investigations. 
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Chapter 2 STM-TERS under electrochemical conditions - 

Experimental developments & implementation 

2.1. Introduction 

TERS stands as a great alternative to ultrahigh vacuum techniques to characterize low 

cross section materials with minimal beam damages. Although introduced in the early 2000’s, 

the fast TERS development has been hampered by the lack of TERS effective optical probes 

and robust optical coupling and its use has been therefore limited until recently to only a few 

laboratories worldwide. The development and use of TERS (nanoRaman) is currently booming 

after years of “immobilization” thanks to reliable commercial AFM/Raman coupling systems 

(AIST/Horiba, NT-MDT, Park Scientific) and the demonstration of TERS in liquid in 2009 by 

the Zenobi group 3 that paved the road to the in situ/operando characterization of functional 

material. Note that NanoIR is getting also extremely popular (Anasys – NeaSpec) in material 

and life science, but the strong IR absorption of water (and many organic solvents) has left so 

far the leadership to TERS for in situ measurements. Only a few groups worldwide have 

emerged so far as precursors and leaders for TERS* and as by 2021, only a handful of these 

groups have successfully implemented TERS in liquid or under electrochemical conditions by 

developing their own technical solutions. 

Our group in Sorbonne University joined the TERS community in 2015 after acquiring 

a TERS-ready SPM/Raman coupling system and has since published a few relevant works. The 

group 125 proposed the first demonstration of TERS mapping of a non-Raman resonant 

molecular compound in an organic solvent 182 and then introduced EC-Tip-SERS 

measurements 124, which benefit from the sensitivity of TERS and give access to time-resolved 

measurements, though without spatial information. The technical developments required for 

EC-Tip-SERS however laid the foundation for the implementation of TERS under 

electrochemical conditions and the mapping with an unprecedented 8 nm lateral resolution 169. 

The groups’ research focus in these last three years has consisted in securing the reproducibility 

and the ease of TERS implementation under electrochemical conditions, in STM (this work) 

                                                 
* In Europe, B. Pettinger, A. Meixner, V. Deckert, M.R Lacroix, K. Domke (Germany), R. Zenobi, N. 

Kumar, L. Novotny (Switzerland) and specifically in France R. Ossikovski (LPICM), M. Lamy de la Chapelle 

(Paris 13 University), S. Bonhommeau, D. Talaga (GSM, Bordeaux), B. Humbert (IMN, Nantes). On the 

international level, TERS is developed by Kawata (Japan), P. El Khoury (USA), B. Ren (China) and R. Van 

Duyne, D. Kurouski (USA). In bold, groups working on TERS in liquid or EC-TERS.  
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but also in AFM mode (PhD work of A. Pavlič), and to explore new orientations like SECM-

TERS (preliminary data obtained in this work are not presented in this manuscript), enabling 

local modification (molecular patterning) and immediate characterization. The experience 

accumulated by the group these last few years has led to the development of a commercial set-

up enabling EC-STM-TERS in collaboration with Horiba and the French manufacturer of 

electrochemical instrumentation Origalys.  

In the continuity of Chapter 1, which covered the theoretical principles of TERS and 

the progress achieved so far in the characterization of electroactive systems with this technique, 

this new chapter will present the practical aspects of its implementation and the issues 

encountered in this work when pushing further the development of EC-STM-TERS analyses. 

First, we will recall the procedure for the elaboration of performant TERS-active probes for 

measurements in STM mode in liquid medium. Afterwards, we will present the 

instrumentations and protocols enabling STM-TERS analyses and finally depict the required 

technical developments for in situ measurements, including a design of TERS-compatible 

spectro-electrochemical cells.  

2.2. Elaboration of TERS-active bulk metal probes 

The microfabrication of sharp and mechanically stable probes for EC-STM-TERS 

experiments is essential to ensure an accurate tracking of the sample topography and to access 

nanospectroscopic analyses. Home-preparation of TERS-active SPM probes is often preferred 

by academic groups to acquisition of commercial probes, as it allows a fine tuning of their 

properties according to studied systems (e.g. characterization of hard catalytic surfaces or of 

soft biological objects, triggering and study of photo-chemical processes using specific 

metal/excitation combinations, measurement in the air or in liquid, etc.).  

2.2.1 Design of plasmonic amplifiers 

More specifically, for STM-TERS applications the most employed fabrication 

procedure consists in etching bulk metal wires 175,183,184 to obtain a tapered profile terminated 

with a sharp tip apex. The nature of the metal, as well as the opening angle (half cone angle) 

of the tip and its radius of curvature, are critical parameters to achieve a strong TERS activity 

at a specific excitation and a mechanical stability suitable for raster-scan nano-imaging. 
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Tapered gold and silver wires with diameter in the 100-200µm range and small radii of 

curvature (in the order of tens of nm) can provide high-quality topography images in STM 

mode. The mechanical properties (rigidity and wear resistance) of these probes is determined 

by the ductility of the metal (gold is more ductile than silver). Moreover, the sharply curved 

surface at the probe apex acts as a nano-antenna, as it concentrates and strongly localizes the 

electric field resulting in a strong amplification of both the incoming light and the scattered 

signal intensity from the sample in close proximity 108,185. Hence, they can act also as TERS 

efficient probes using visible excitations. Plasmon resonance and signal enhancement are 

indeed usually achieved using red and green excitations for gold and silver, respectively (UV 

irradiation being suitable for aluminum TERS probes). Note that the roughness of the tip, the 

nature of the sample and of the environment (dielectric properties) can also determine the 

plasmonic properties of the tip-sample junction and the amplitude of the signal enhancement. 

The so-called gap-mode configuration, reached when not only the tip, but also the sample 

substrate is made of a plasmonic metal, and therefore form a plasmonic junction 186, provides 

additional signal enhancement, in a similar way to what observed for nanoparticle dimers 163. 

It has been noted that on dielectric substrates (where no gap-mode occurs) TERS activity can 

be recovered/enhanced using highly corrugated (AFM) tips. Any alteration of the surrounding 

medium (air, liquid) or coating of the probe with plasmonic or dielectric materials (for 

protection against wear or oxidation) shift or damp the plasmon resonance.  

2.2.2 TERS probe from etched gold wires 

The main advantage of fabricating probes by etching of bulk wires consists in the 

relatively fast and easy operation procedure, which does not require any specific nor expensive 

instrumentation. For the targeted applications in this study (alkaline media), gold was preferred 

to silver due to its better resistance against chemical and atmospheric oxidation, its stability 

over a large electrochemical potential range (although mostly reductive polarizations were used 

here) and because the etching sequence for silver has not yet been fully optimized (and yields 

larger radii of curvature). Figure 2.1a schematizes the employed etching station, developed as 

soon as 2015 in our group (internship of A. Dauphin), and its working principle. A three-

electrode configuration was adopted, where a ~1 cm-long segment of gold wire (250 μm-thick, 

MaTeck, Germany) acts as anode and working electrode (WE), a platinum ring as cathode and 

counter-electrode (CE) and a silver wire covered in solid silver chloride as an Ag/AgCl 

reference electrode (RE). Although the presence of a RE in the etching electrochemical setup 
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had already been introduced from 2015 in our group, only recently its use and the consequent 

asset have been reported in the literature 187. Classical electrochemical etching stations 

consisting in a simple two-electrode setups 188,189 were developed historically by physicists 

working on STM. The precise control over the tip potential provided by the association of a 

RE and a potentiostatic regulation of the polarization (not galvanostatic) allows to control the 

dissolution regime (nature and rate, as explained below) and to minimize the solvent oxidation, 

prerequisite to the reproducibility of the etching process.  

 
Figure 2.1. Gold wire etching station - a) Schematic view of the etching working principle: on the 

left, the ongoing process of progressive dissolution of gold at the air/liquid is magnified in the inset 

circle. On the right, when the lower extremity of the tip drops off and a sudden decrease in the flowing 

current is registered, the cut-off voltage box disconnects the Pt ring counter-electrode and interrupts the 

polarization; b) Picture of the real etching setup. 

In our setup (Figure 2.1b), a micrometric positioning stage allows adjusting the wire 

position inside the platinum ring, so that it is exactly centered and protruding a few millimeters 

below it, while the RE is kept just outside the ring and in its close proximity. Since all points 
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on the lateral surface of the wire are equidistant from the ring contour, the current density 

during the etching process will flow homogeneously. All the electrodes are plunged inside a 5 

mL beaker, containing the etching solution, in order for the platinum ring to be just below the 

liquid surface. This means that the etching process occurs at the solid/liquid/air interface, where 

the solvent forms a meniscus on the wire. As the process goes on, the immerged part of the 

wire starts detaching from the upper one (see inset in Figure 2.1a) until it falls inside the bulk 

of the solution, leaving a sharp extremity behind. Boyle’s group 189 stressed the importance of 

leaving a reasonable length of wire immerged in solution (~3-4 mm), as longer or shorter 

segments might not have the proper weight to trigger a neat detachment and yield a blunt tip. 

2.2.2.1. Gold etching mechanism 

As for the choice of the etching solution, chlorinated media are most likely used, as 

they etch gold at relatively low potentials 190: 

AuCl2
− + e−  ←⃗⃗⃗  Au + 2Cl−                 (E0 = 1.154 V vs SHE)                     (2.1) 

AuCl4
− + 3e−  ←⃗⃗⃗  Au + 4Cl−               (E0 = 1.002 V vs SHE)                     (2.2) 

AuCl4
− + 2e−  ←⃗⃗⃗  AuCl2

− + 2Cl−         (E0 = 0.926 V vs SHE)                     (2.3) 

CN- solutions would actually be ideal to get very smooth tip surfaces, but they are very 

toxic and require the application of potentials superior to 10 V 165. Normally, good-quality 

results can be obtained with mixtures containing concentrated HCl (≥ 37%). However, a too 

high HCl concentration provokes an intense gas evolution (Cl2 and O2) on the wire surface, 

which may cause strong convection movements compromising the smoothness of the produced 

tip 188 and also the sharpness (early detachment of the hanging wire in solution). On the other 

hand, an excessive dilution of the solution leads to a dramatic increase in the etching times 188. 

To compromise between the two extremes, it was chosen to employ a 1:1 (v:v) mixture of 37% 

HCl and absolute ethanol, often reported in the literature 165. As it is renown in the silicon 

industry, the presence of absolute ethanol limits the formation of gas bubbles 165, thus 

preserving the smoothness of the tip and avoiding the risk of current oscillation (see below). 

However, it is essential for the solution to be freshly prepared just before starting the etching, 

as an excessive absorption of atmospheric water could compromise the etchant quality. A pre-

treatment of the wire with nail varnish has also been reported to prevent the detrimental effect 

of the bubbling on its surface 189; as this issue was not encountered, no pre-treatments were 

performed on our experimental wires. 
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2.2.2.2. Taming of the etching process 

Once the electrochemical cell is set, the etching process can take place. Several 

dissolution regimes can be observed depending on the polarization, as summarized in Figure 

2.2a. When gold etching proceeds, the immediate surroundings of the wire become rich in gold-

chlorine complexes and poor in Cl-. Gold cations start therefore reacting with oxygen, forming 

insulating gold oxides that temporarily passivate the gold wire 165. Dissolution can resume 

temporally when chlorine complexes diffuse away (relaxation), giving rise to current spikes. 

At higher potential, spikes of dissolution overlay with the oxidation of the solvent (gas 

evolution). A shift in potential of the gold electrochemical response, along with a strong 

oscillation regime, observed in a two-electrode configuration, as compared to a three-electrode 

setup, is illustrated in Figure 2.2a. Moreover, when using a DC polarization (2.2 V) without 

reference electrode, the potential of the gold wire keeps oscillating and shifting toward higher 

values, as illustrated on Figure 2.2b.  

The use of AC potential pulses, instead of DC polarization, allows a fine control of the 

etching process. By selecting a proper AC bias, dissolution at higher potential and relaxation 

at lower potential can alternate in a controlled manner. This procedure allows shortening 

considerably the etching process, especially when thick wires are used, and its success has been 

the basis for the developments of highly performant and reproducible potential pulses etching 

routines191,192. 

 
Figure 2.2. Importance of the potential control during electrochemical etching of gold – a) 
Electrochemical response of a 200µm-diameter gold wire in HCl/EtOH (V:V, 50:50) in a 2-electrode 

cell (blue; CE : platinum ring) and in a 3-electrode cell (red; Ag/AgCl pseudo reference electrode, CE 

: platinum ring), linear potential sweep: 0-3V; b) Evolution during a DC polarization at 2.2 V in a 2-

electrode configuration (CE: Pt) of the gold wire potential measured vs Ag/AgCl using a high 

impedance voltmeter. Adapted from Alice Dauphin bachelor report (LISE laboratory, 2015). 



 

71 

 

2.2.2.3. Etching termination 

As it was emphasized by Billot et al. 188 in a “DC voltage” approach, the etching of the 

gold wire proceeds along two main stages observable on the chronoamperometric response. 

During the first etching stage, the wire is sharpened horizontally, i.e. axially, and starts 

assuming a typical cone shape as the position of the solution meniscus progressively lowers. 

At this stage, the current decreases almost linearly as the etching time increases, until it drops 

abruptly and then starts decreasing slowly again. This marks the passage to the second etching 

stage, which proceeds vertically along the wire, thus making the tip blunter and blunter and 

useless for STM-TERS purposes. The curve of the current evolution against the etching time 

is shown in Figure 2.3, along with its first derivative that clearly shows an inflexion point 

separating the two etching regimes. This point corresponds to the Istop value, i.e. the current 

value for which the etching process should be manually stopped, in order to produce sharp 

probe with a tapered profile.  

 
Figure 2.3. Current variation versus time during the etching process and first derivative curve obtained 

for an applied voltage of 12 V Adapted from [188]. 

An additional “cut-off” voltage box connected between the counter-electrode and the 

potentiostat has been developed in LISE to automatize and precisely control the termination of 

the etching process and avoid over-etching of the gold wire. The “cut-off” box is configured to 

physically disconnect the CE when the current flowing in the system falls below a set threshold 

value, which is adjusted to be in proximity to the Istop value previously mentioned. As the CE 

is disconnected, the etching process is interrupted and the etching sequence on the potentiostat, 

which is apparently still running, reads zero current. Note that as the “cut-off” box uses a 
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current/voltage converter, the voltage associated to the desired current threshold depends 

strongly on the current range set in the potentiostat. 

 
Figure 2.4. Aspect and performances of tips fabricated by electrochemically etching of gold wires in 

a 1:1 (v/v) mixture of 37% HCl and absolute ethanol, using potential pulses. SEM images at three 

different magnifications and STM maps, acquired on a bare gold plate (500x500 nm2, 256x256 pixels, 

IT=1000 pA), are shown for two tips, with radius 9.5 nm (a) and 84 nm (b) respectively. A comparison 

of the TER spectra recorded with the two tips on the same sample is shown in (c). Each spectra has 

been recorded by accumulating 3 spectra, acquired for 3 s each, with 160 μW power of the 632.8 nm 

laser line. 

2.2.2.4. Tip taper profile and performances 

The influence of the “cut-off” current value on the performance of the tip is illustrated 

in the following paragraph. However, neither the “cut-off” values nor the parameters of the 

electrochemical sequence will be disclosed here, as a Soleau envelop protecting this know-how 

has been filed in 2015. For each combination of pulses and “cut-off” values, the set of etched 

tips was first analyzed via SEM to closely observe their morphology and shape. Their STM 

imaging performance and TERS activity were eventually tested in the air on a bare gold 

electrode and on a model 4-nitrobenzyl mercaptan (4-NBM) SAM deposited on gold. 

Depending on the cut-off value, the radii of curvature can strongly vary, ranging from ~10 to 

90 nm as shown in Figure 2.4a-b. Note that the opening angle (half cone of the tip apex) is 

quite different as well. Albeit, the produced tips looked sturdy and smooth and surprisingly 

gave decent topographies, which showed in detail terraces steps on flamed-annealed gold 

surfaces. 



 

73 

 

As for the Raman signal enhancement, Figure 2.4c confirms (as affirmed before) that 

the spectral intensity depends on the tip apex dimension. In the shown example, decreasing the 

radius of curvature by a factor of ~8 induces a 4-fold increase in the number of counts for the 

same spectral signature. Nonetheless, even the tip with a larger apex showed quite good 

performances: the overall signature was quite neat and sharp, and the most intense peak almost 

reached 2000 counts, far above the background. Similar STM and TERS performances were 

observed also for the other tips obtained following the same etching procedure, with 

intermediate radii of curvature. We can therefore conclude that, in spite of the variation in the 

tip profiles, the probes fabricated following this protocol can be reliably used for STM-TERS 

investigation. Note the resulting quality of the tip is strongly user-dependent, as many 

parameters (non-fresh solutions, water contamination, CE passivation and “polluted” RE, 

contact resistance due to corrosion with acid vapors, etc.) influence the correct outgoing of the 

procedure. The specific probe preparation for liquid application (insulation, bending) will be 

detailed later on, when presenting the implementation of the EC-STM-TERS setup. 

2.3. Raman and STM coupling: technical implementation 

As it was previously mentioned, in a STM-TERS setup the same probe is employed 

simultaneously to map the sample morphology and to enhance its Raman signature by acting 

as a plasmonic resonator. This can only be possible, though, if a robust optical coupling is 

implemented. Therefore, the focus of the laser Raman probe on the tip, which occurs through 

the piezo-controlled objective lens, must be perfectly adjusted on the hotspot position at the tip 

apex and remain stable over time, while the signal scattered from the sample and enhanced by 

the tip must be efficiently collected. Several instrument manufacturers have ventured and 

successfully achieved the realization of hybrid STM/AFM-nanoRaman setups that can be 

conveniently used for TERS purposes: notable examples are the alpha300 RA (WITec, 

Germany), the NTEGRA Spectra II (NT-MDT, Russia), or also the hyphenation between the 

inViaTM confocal Raman microscope and the Dimension Icon® AFM, obtained from the 

collaboration of two different enterprises (Renishaw, UK, and Bruker, US, respectively). 

The TERS-ready platform in LISE lab, shown in Figure 2.5, couples two different 

setups: a LabRAM HR Evolution Raman spectrometer (HORIBA Scientific, Japan-France) and 

an OmegaScope 1000 scanning probe microscope (AIST-NT, US). The characteristics and 

specifics of the two different instruments will be discussed separately in the next paragraphs. 
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Figure 2.5. NanoRaman platform in LISE, consisting in the hyphenation of an OmegaScope 1000 

optical platform carrying a piezo-controlled objective and coupling the upright SPM microscope 

SmartSPM (on the left) to a LabRAM HR Evolution Raman spectrometer (on the right). An inverted 

SPM microscope (Combiscope) positioned behind the OmegaScope can be also coupled optically to the 

Raman spectrometer. 

2.3.1 Optical construction of the Raman microscope 

The LabRam Evolution spectrometer is equipped with 5 different laser lines (from the 

near-UV 473 nm to the near-NIR 785 nm) and also of two detectors, an EM-CCD† detector 

with back illumination (Newton 971, Andor, Oxford Instruments), for fast Raman acquisition 

(in time or spatial mapping), and a CCD detector (Syncerity, Horiba), with a higher sensitivity 

(quantum efficiency of 55% at 800 nm, only 27% at 250 nm) in the near-infrared. The 

spectrometer is coupled to a true confocal microscope enabling to spatially filter the analysis 

volume of the sample, both in xy (lateral resolution) and in z (depth resolution), through the 

adjustment of a pinhole aperture positioned at the entrance of the spectrometer. This guarantees 

a high resolution, both spatially (at the diffraction limit ~ half of the illumination wavelength) 

and spectrally (thanks to the 800 nm focal length of the single stage spectrometer). 

In order to perform ultra-fast confocal imaging, two recent implementations were 

introduced: the SWIFTTM mode, where an optimized detector-stage coordination enables a fast 

(sub-second) spectral acquisition and also the DuoScanTM technology, which provides ultra-

fast movements of two piezo-controlled optical mirrors to create specific laser raster scans over 

the sample surface (line, square, disc). This latter mode, also used on sensitive sample to 

                                                 
† The acronym EM stands for Electron Multiplier, since the charge stored in each pixel is multiplied 

before readout, thus lowering in theory the limit of detection to a single photon.   
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distribute the energy over the surface and minimize sample damages during the Raman 

recording cannot be used in TERS because of the strong divergence of the beam induced over 

the distance. 

As illustrated in Figure 2.6, the optical path of the spectrometer can be modified 

depending on the desired use, and configured toward the optical microscope attached to the 

facade of the spectrometer or toward the OmegaScope setup positioned on the left side (see 

Figure 2.5). The OmegaScope is an optical coupling system hosting both an optical microscope 

(equipped with two vertical and side piezo-mounted objectives) and the scanning probe 

microscope (Smart SPM, AIST).  

Laser and signal filtering. The Raman spectrometer construction is depicted in Figure 

2.6. Before entering into the Raman spectrometer, the laser passes through narrow bandpass 

“cleaning” filters that suppress non-lasing lines (i.e. background plasma and secondary 

emissions). Afterwards, the pre-filtered laser enters through the input E2 and is directed to the 

main path by the mirrors M3 and M4. It therefore passes through the polarizer P1 to reach the 

laser intensity attenuation filter F3. This consists in a software-driven wheel hosting 9 different 

neutral density (ND) filters, each with a different optical density (100%, 50%, 25%, 10%, 5%, 

1%, 0.1% and 0.01%), to tune the laser power depending on the sample sensitivity and/or the 

measurement requirements. An additional ND filter wheel, which can be manually operated, 

has been added to furtherly modulate the laser power, allowing to transmit 100%, 79%, 63%, 

50%, 32% and 25% of the already filtered source power. The outgoing beam passes through 

the beam expander lens L1, which focuses it on the pinhole H1, and reaches F4. F4 is a laser 

rejection filter (consisting in a stop-band notch filter for the laser lines at 632.8nm, or in pass-

band Edge filters for lines at 473, 532, 591 and 785 nm) which acts here as a mirror reflecting 

the laser toward the microscope objective lens‡. Afterwards, the reflected beam passes through 

lens L2 and a retractable mirror directs it towards either the microRaman microscope head, 

holding several objective lenses, or the OmegaScope optical microscope. In the latter, another 

retractable mirror reflects the beam either to the top or to the side objective. The OmegaScope 

is placed on the same optical table as the spectrometer (as shown in Figure 2.5) in order to 

                                                 
‡ Notch filters can selectively block a small wavelength portion (with over 99% of efficiency)193, and are 

preferred when both Stokes and anti-Stokes Raman acquisitions are needed. Edge filters instead can only reject 

all the light passing above or below a certain wavelength, and they usually have less sharp transitions amongst the 

high-diffraction and high-transmission zone 193. 
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insure a proper optical coupling amongst the two. The optical signal, back-scattered from the 

sample, is collected through the same objective and directed toward the spectrometer, where 

again the filter F4 (rejection filter) suppresses the elastic scattering (i.e. Rayleigh) 

contributions. The beam can also pass through an optional element F5, consisting usually in a 

polarizer or in an ultra-low frequency filters (ULF). This latter allows observing spectral 

signatures down to 10 cm-1 off of the laser line. 

 
Figure 2.6. Schematic view of the LabRAM HR Evolution optical path and spectrograph and of its 

optical coupling with the microRaman optical microscope and the OmegaScope SPM. 

Confocality. The signal reaches therefore an adjustable pinhole aperture, constituted by 

two holes H2 and H3, spaced by the lenses L3 and L4. This system enables to control the 

confocality of the microscope: the smaller the hole, the smaller the volume of the analysis, 

hence the better the depth and lateral resolutions of the analysis 87. In TERS, the confocality 

guarantees a better focus of the Raman probe on the tip, hence a stronger intensification of the 

near-field signal at the expenses of the far-field background contributions. 
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Signal detection/resolution. The beam then reaches a shutter positioned after H3 at the 

entrance of the spectrometer (the shutter operates during normal spectral acquisition, but not 

in SWIFT mode), and is then reflected by the mirror M10. Here the beam enters a symmetric 

Czerny-Turner monochromator: after reflection in mirror Ms1, the beam is collimated by the 

spherical mirror Msp1 and hits the diffraction grating. Two different diffraction gratings (with 

300 or 1200 grooves per mm, gr.mm-1) can be selected depending on the resolution desired for 

the acquired spectra. As the number of grooves per mm increases, the optical signal is more 

spread out on the photodetector, thus improving the spectral resolution as the expense of the 

spectral range accessible. For our experiment, we privileged the possibility to measure a larger 

spectral window at once, hence the 300 gr.mm-1 grating was the most employed. The Newton 

(Andor) EM-CCD photo detector consists of a 1600 x 400 array of 16μm-wide pixels, giving 

for the 633 nm Raman probe (and for a 300 gr.mm-1 grating) a resolution of 1.4 cm-1 and a 165-

2360 cm-1 spectral range. A “binning” parameter (number of camera pixels employed to yield 

a single spectrum pixel) can be used to artificially record more intense spectra at the expense 

of the spectral resolution. Note that, as a result of the proximity of the OmegaScope platform 

with the spectrometer, STM performances can be impacted by mechanical noise originated 

from the CCD or laser cooling system, or else from the movement of optical parts in the 

spectrometer (pinhole adjustment, mechanical shutter). To reduce the environmental noise 

during STM-TERS operation, the fan-cooled built-in 633 nm laser, initially positioned within 

the LabRam enclosure, was transferred to an optical bench at the rear of the spectrometer 

together with the other lasers. This allows turning off the fan cooling system during STM 

operation and hence decreasing the noise. Additionally, a water-cooling system was installed 

on the EM-CCD camera to minimize mechanical noise and improve the detector sensitivity 

(reduction of the “dark” current of the detector at lower cooling temperature accessible to the 

thermoelectric Peltier device). 

2.3.2 SPM/ Raman coupling platform and choice of the illumination 

geometry 

The OmegaScope 1000 used in this work and presented earlier on Figure 2.5 was 

specifically designed to optically couple Raman spectroscopy with the SmartSPM microscope. 

The latter is provided with different measuring heads depending on the imaging mode 

implemented, i.e. AFM, shear-force microscopy (ShFM, using tuning forks) and STM. Only 

this latter was used in this work, in order to carry out ex or in situ STM-TERS experiments. 



 

78 

 

The STM head consists in a simple platform holding in place both the tip holder and a 

conductive unit connected to the tip and the sample (Figure 2.7a.). The conductive unit 

establishes a bias voltage between the tip and the sample (typically 0.1 V) and also measures 

the net tunneling current flowing between them. Several amplifications gains are available, 

allowing currents from pA to µA to be measured. The current feedback loop should have a 

bandwidth large enough to allow fast adjustment of the tip-sample distance. However, since 

the noise level increases with the bandwidth, this should also not be too large. In this work, 

low-pas cutting frequency was set to 25 kHz. 

The open design of the microscope head (clearly visible in Figure 2.7b) allows a high 

flexibility over the experimental conditions, easing, for instance, the introduction of more 

elaborated tip and/or sample holder designs or the coupling to external instrumentations (see 

EC-STM-TERS setup, presented later). Note that on the SmartSPM microscope, a sample 

piezo-scanner ensures the raster scanning for topography/composition imaging of the sample 

without compromising the optical coupling, i.e. the precise focusing of the laser beam on the 

tip apex using a piezo-controlled objective lens (carried by the OmegaScope coupling 

platform). This represents an advantage respect to Ren’s STM-TERS configuration, described 

in Section 1.3.3. The accessible x, y, z scanning range of the sample scanner is 100x100x15 

µm, 30x30x10 µm for the objective scanner. 

 
Figure 2.7. STM mode on the SmartSPM microscope - a) STM head design, b) STM head carrying 

both the tip holder and the conductive unit (connected to both the tip and substrate) and mounted on the 

microscope. Images taken from the SmartSPM 1000 Instruction Manual (Horiba, AIST).  

Choice of the illumination geometry - Since the relative position/orientation of the tip 

shaft, of the objective lens and of the substrate influences the efficiency of the TERS signal 

excitation and collection (see Section 1.3.3), it is not trivial to select an ideal configuration, and 

especially in liquid where the multiple interfaces brings up issues of optical path distortion. 
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Different configurations can be distinguished, bottom, side and top illumination, which are 

schematized in Figure 2.8. 

 
Figure 2.8. TERS illumination configurations - Schematic illustrations of laser/probe optical 

coupling: a) bottom-illumination (inverted SPM microscope, transparent sample; b) side-illumination 

and c) top-illumination and upright SPM microscopes. Adapted from [126]. 

Bottom illumination. As it was said in Section 1.3.3, the inverted configuration using 

bottom illumination (Figure 2.8a) has been the very first one employed to carry out AFM-

TERS measurements in liquid, by Zenobi’s group 3. In their setup, the tip was illuminated 

through the sample (functionalized glass cover slip) using a high-NA oil immersion objective. 

Bottom illumination combined with radially polarized laser and high NA objectives provide an 

optimal TERS signal enhancement 108 while minimizing the far-field background contributions 

from both the liquid and the sample 108. Van Duyne’s group 177, further developed this 

configuration for in situ EC-AFM-TERS experiments. Such configuration, though accessible 

in LISE using the inverted microscope (CombiScopeTM), was not developed for STM-TERS 

purposes because of the microscope mechanical instability and the mechanical coupling 

between the sample and the oil-immersion objective through the thin oil layer, which leads to 

repeated crashes of the tip over the sample surface. 

Side- and top-illumination setups are preferred when working with non-transparent 

substrates, despite the difficult signal excitation/ collection through the air/liquid interface.  

Side illumination. For side-illumination (Figure 2.8b), long-working objectives, 

oriented with a 45-70° angle with respect to the tip shaft, are combined with p-polarized laser, 

so that the largest component of light electric field is set parallel to its axis, for maximum TERS 

signal enhancement 194. In side illumination, the beam spot assumes a large elliptical shape 

when reaching the sample, hence higher laser powers will be required for the excitation to be 

more effective 108,194. An original solution, introduced by Ren’s group 4, employs a vertical 

STM tip and a 10° angle tilted sample immobilized in a transparent liquid cell, which allows 



 

80 

 

the  illumination of the tip from the side using a long-distance objective positioned horizontally. 

The light can therefore reach the probe from a 90° angle without being blocked by the sample; 

however, its optical path is distorted by the presence of the glass window on the cell wall. This 

effect can be minimized by employing an immersion objective, separated from the cell window 

by a water or an oil droplet 174 (depending on the objective specifics). Another improvement 

proposed by Domke et al. 195 consists in using a liquid crystal display that, thanks to the 

electrical and optical anisotropy of the crystals, allows the modulation of light polarization until 

the best enhancement conditions are reached. 

Top illumination. Top illumination (Figure 2.8c) is also used for TERS, but combined 

with slightly bent probes (AFM or STM) for the laser to be focused on the apex of the tip. 

Measurements in this configuration have been successfully performed both by Ren’s 179 and 

our own group 169,182. They could be carried out either using a 100x air objective (Mitutoyo 

MY100X-806 - Plan Apochromat Objective, NA: 0.7, working distance WD: 6mm) focused 

on thin layers of non-volatile liquids, with limited distortion of the optical path, or else using a 

water-dipping objective (Olympus, LUM PlanFLN – 40x, NA: 0.8, WD: 3mm - 60x, NA: 1, 

WD: 2mm) directly in contact with the electrolyte solution. In this configuration, the signal 

excitation/collection efficiency is higher than with the 100x air objective thanks to the 

suppression of the air/liquid interface, to the higher angle of collection and to the smaller 

working distances of such objective lens.  

More specifically, the angle of collection is related to the numerical aperture NA 

according to the expression 

NA = 𝑛 sin𝜃𝑐𝑜𝑙𝑙                                                          (2.4) 

where 𝑛 is the refractive index of the immersion medium (equal to 1 for air and to 1.33 

for water and aqueous solvents) and 𝜃𝑐𝑜𝑙𝑙 is the half-angle of the lens collection cone 196. This 

parameter influences also the fraction 𝑓NA of photons emitted by an isotropic source, which can 

be expressed as 

𝑓NA =
1−cos𝜃𝑐𝑜𝑙𝑙

2
=

1−√1−(
NA

𝑛
)2

2
                                              (2.5) 

This means that an objective possessing a high NA, i.e. working in water (high 𝑛) and/or 

at short distance from the illuminated source (high 𝜃𝑐𝑜𝑙𝑙), will be able to gather a very intense 

signal 196.  
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Given the short working distance of water-dipping objective, the STM probe design has 

to be optimized so that the tip apex can reach the focal point of the objective at a final angle of 

30-50°. This allows a beam/tip alignment suitable for TERS signal enhancement 125,169,197, 

while ensuring a mechanical stability for STM imaging. 

Additional improvements in the overall EC-STM-TERS setup were introduced in this 

work and will be presented in the next section. 

2.4. EC-STM-TERS analyses: setups and modus operandi 

Electrochemical STM-TERS measurements have been demonstrated in our group 125 

by developing an EC-cell prototype, a tip holder compatible with the use of short working 

distance water dipping objectives and a specific electrochemical instrumentation. In this work, 

important efforts have been engaged to secure the reproducibility and the ease of EC-STM-

TERS implementation by revisiting the design of the cell, optimizing and introducing new 

protocols and further developing the electrochemical instrumentation. 

 
Figure 2.9. First EC-STM-TERS set-up developed in the group: a) 4-electrode cell prototype and 

b) set-up showing the cluttered arrangement of the EC-Cell (with electrical connections), the tip-holder 

(conductive unit behind) and of the water-dipping objective lens. Adapted from [125]. 

2.4.1 First prototype of the EC-STM-TERS setup 

When performing EC-STM-TERS, a 4-electrode system must be used, where the tip 

and the sample act both as working electrodes (WEs), whose potential is set against a reference 

electrode (RE), while the counter-electrode (CE) provides the required current flowing through 

the two WEs. This double potential regulation implies the use of a bi-potentiostat, the major 

difficulty here being to integrate to it the conductive unit of the SmartSPMTM. This is necessary 

to ensure the efficient control over the STM tip-sample distance using the tunneling current as 

a feedback parameter. A dedicated bi-potentiostat was designed in LISE to provide potential 
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control and exploration while maintaining a constant bias voltage between the tip and the 

sample, and to enable the proper amplification of the tunneling current measurement by the 

conductive unit. 

Figure 2.9 shows the cell prototype designed by T. Touzalin 125. The sample is 

immobilized on a poly-ether-ether-ketone (PEEK) support, and above it is glued to a rubber O-

ring, which defines the actual volume of the electrochemical cell (capacity of ~1 mL of 

electrolyte) and constitutes its wall. Both the rubber and the PEEK are resistant to aqueous and 

organic solvents. A gold wire, following the contour of the O-ring inner walls, is used as CE, 

while a silver wire protruding inside the cell works as RE. Both are fixed to the PEEK support 

and, along with the gold surface, are connected to external bi-potentiostat by long and thin 

copper wires. The overall setup is quite bulky and cluttered, but sufficiently light and stable at 

the same time to ensure proper topography tracking by STM. However, within this design the 

electrodes are all very close to each other and their position is difficult to adjust, hence shortcuts 

can occur quite easily. Moreover, sample damage and contamination can easily occur upon 

gluing of the O-ring. Also, the thin and long wires employed as connectors for the electrodes 

are not shielded, with the risk of electrical noise and shortcuts. 

 
Figure 2.10. Homemade STM-tip holder - This specific design use a bent tube (needle) carrying the 

slightly bent gold STM-TERS tip to accommodate the profile of the water-dipping objective shown in 

Figure 2.9b, hence allowing the tip apex to reach the focal point of the objective. All metallic parts in 

contact with the electrolyte are insulated with bi-component epoxy glue and Zapon varnish. 

As for the tip, it also needed to be mounted on a homemade-designed tip holder, since 

the commercial one, provided by AIST-NT, is neither adapted for the top-illumination 

configuration, nor for the cell geometry. Figure 2.10 shows the tip holder, consisting in a right 

trapezoidal prism, made of stainless steel, with a tube (~ 300 µm diameter needle) glued along 

the oblique part. In the top part, the needle extremity is electrically linked to the input of the 

electric connector, which can be plugged in the STM conductive unit. On the bottom part, the 

needle is bent so that its shape can fit inside the electrochemical cell below the immersion 

objective. The etched tip is inserted inside the needle for a few millimeters, and its protruding 
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part is bent of around 45°. As it was mentioned before, this allows positioning the very apex of 

the tip at the focal point of the objective lens while ensuring some component of the electric 

field of the p-polarized incoming laser beam to be aligned with the shaft of the tip. 

Finally, both the gold tip and the part of the needle in contact with the electrolyte are 

covered with Zapon varnish (Laverdure) (Figure 2.11a-b). Zapon shows no Raman signature, 

differently from the Apiezon resin classically used in the SPM community. As Apiezon, though, 

Zapon provides great electrical insulation and is not too viscous, thus leaving only the very 

apex of the tip uncovered upon drying. Moreover, Zapon turns out to be chemically stable in 

aqueous solution under “soft” acidic or alkaline conditions (not in organic solvents, e.g. ethanol 

or acetonitrile). 

 
Figure 2.11. Zapon coating on TERS-active probes – a) Optical image (10x objective magnification) 

and b) SEM image of a gold TERS tip coated with Zapon varnish; c) Evaluation of Zapon insulation 

properties by CV in 1.8 mM K4Fe(CN)6 in 0.1 mol.L-1 KCl. On the left, a well-coated tip shows a 

steady-state current regime and therefore acts as an UME. On the right, a tip with a bad coating shows 

a transient regime, characteristic of a millimeter-size electrode. The active areas, indicated on the graph, 

were calculated from the Randles-Sevcik equation. 

When performing measurements in liquid, the Zapon coating minimizes leakage 

currents, associated to faradaic reactions of the electrolyte (reduction of dissolved oxygen, 

reduction or oxidation of the solvent), on the exposed parts of the tip (Figure 2.11c). It is indeed 

important that faradaic currents are much smaller than tunneling currents to guarantee the 

effectiveness of the STM feedback for the control of the tip-sample distance over time. Usually, 

two applications of Zapon, followed each time by 10-minute drying in the oven (at around 

80°C), are sufficient to yield well-insulated tips.  

In conclusion, the overall fabrication protocol of the tip/tip-holder system resulted quite 

robust and convenient for routine application, and was therefore followed in this work.  
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2.4.2 Optimization of the EC-STM-TERS setup  

To circumvent the critical technical points associated to the prototype described above, 

a new cell design was proposed, whose schematic view is shown in Figure 2.12. 

 
Figure 2.12. Schematic view of the homemade EC-STM-TERS setup associating: a magnetic liquid 

cell mounted on a thin ferromagnetic sample holder, a bi-potentiostat connected to a platinum counter 

electrode, a real Ag/AgCl reference electrode, the sample (working electrode WE 2), the STM-TERS 

tip (WE1) connected to the conductive unit and maintained at the virtual ground of the current amplifier. 

A waveform generator can be connected to the external voltage input of channel 1 and/or 2 to adjust 

and sweep the potential of the tip (EWE1 = VWE1 – Vref) and/or of the sample (EWE2 = VWE2 – Vref). The 

current response of channel 2 (WE2) can be recorded on an oscilloscope. The tunneling current between 

the tip and the substrate is measured and amplified by the conductive unit. 

EC cell. To avoid possible contamination related to the manipulation and gluing of the 

O-ring on the sample, a new cell made of PEEK was designed with a flat ring shape hosting 6 

small magnets (SuperMagnet) and an O-ring. Thanks to the magnets, this cell can be 

immobilized on the sample holder, made of a thin ferromagnetic plate (size 30x20x0.3 mm). 

This latter, inspired from the AIST sample holders, can also be easily mounted/dismounted on 

the sample scanner. The pressure on the cell/O-ring/sample/metallic plate applied by the six 

magnets is sufficient to avoid any possible leakage of electrolyte, while still allowing an easy 

dismantling of the cell after use, leaving the sample intact. To further preserve the sample, its 

electrical contact is ensured through the use of a conductive magnet placed on its surface 

outside of the cell.  

Additional electrodes. A platinum ring attached to a ferromagnetic holder can be 

conveniently positioned on the electrochemical cell magnet and act as CE. Additionally, an 

Ag/AgCl home-made electrode, employed as RE, is approached from the side of the cell and 
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immersed into the electrolyte in the meniscus formed on the objective lens. The use of a real 

Ag/AgCl reference electrode, instead of an Ag wire pseudo reference, guarantees a better 

control of the potential, especially in alkaline medium, where the surface composition of the 

silver wire can evolve with time and induce a potential drift. The total cell weight was kept 

minimal, similar to the previous prototype and only around 3 g heavier than the commercial 

AIST sample holder, designed for measurements in the air. This insured similar performances 

in liquid compared to those realized in the air, particularly for the minimization of the drifts. A 

close view of the real system (comprising the cell set with all the electrodes in place and the 

objective) can be seen in Figure 2.13a.  

 
Figure 2.13. New design of the EC-STM-TERS setup: a) the electrochemical cell is immobilized via 

magnets on a ferromagnetic sample holder mounted on the sample stage of the SmartSPMTM, the 

platinum ring CE electrode is mounted on the cell magnets, while the RE is approach to the side (left) 

the tip is introduced in the middle of the cell and the immersion objective is lowered down) ; b) and the 

connected external units (oscilloscope, bi-potentiostat and waveform generator), placed in close 

proximity. 

Electrical connections and polarization. Another amelioration regards the connections 

employed for the sample (WE2) and the CE: instead of thin, long and bare wires, shorter 

segments of insulated copper wires were used to link the sample and the CE connections to a 

socket placed on the side of the OmegaScope unit. From the socket, two shielded cables insure 

the connection to the bi-potentiostat. Also the RE is connected with a shielded cable to the 

potentiostat. This reduces the risk of capturing electrical noise during the measurements and 

avoids the accidental detachment or rupture of the wires during the experimental preparation. 

In our setup, we choose to keep using the conductive unit from AIST because it provides 

a low noise current signal to the feedback loop. It was verified that the tip was poised at V = 0 
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V vs ground, as it is the norm when using current-tension converters based on operational 

amplifiers. Therefore, in order to control the electrochemical potential difference Etip = Vtip – 

Vref = e1 (e.g. in cyclic voltammetry or chronoamperometry), the bi-potentiostat unit applies –

e1 to the reference electrode. The sample potential (directly related to the bias voltage control) 

is applied through a differential stage included in the bi-potentiostat. With this configuration, 

we observed that the noise level in liquids was kept below 20 pA, provided that the tip 

insulation is correct. 

Real-time measurements. A waveform generator (Trueform 33500B Series, Keysight), 

is connected to the external voltage input of the bi-potentiostat of channel 1 (WE1) and 2 (WE2) 

to apply potential ramps (linear sweep, cyclic voltammetry) or potential step 

(chronoamperometry) to the two electrode simultaneously or independently while still (see 

Figure 2.12 and Figure 2.13b). A four-channel oscilloscope (DSO9104A, Agilent 

Technologies), allows the real-time observation and recording of potentials and currents 

involved in the electrochemical reaction process. In a normal EC-STM-TERS experiment, the 

first channel is employed to observe the potential sequence designed on the function generator, 

while the second and the third channels show, respectively, the current and the potential 

evolutions on the sample surface (WE 2). The fourth channel of the oscilloscope is connected 

to the external trigger of the waveform generator (which is in turn linked to the output of the 

Andor EM-CCD camera). Thanks to this configuration, the square pulses generated by the 

camera at each Raman acquisition can be recorded and used as a trigger of the potential 

sequence on the waveform generator, thus allowing a perfect synchronization between the 

spectral acquisition and the electrochemical experiment. This technical development allows the 

real-time assessment of the effective polarization of the cell (hence of the actual 

electrochemical potentials, along with the occurrence of side reactions or ohmic drops), and 

the dynamic observation of the composition changes occurring on the sample upon polarization 

(time-resolved TERS measurements). A few successful applications of this configuration will 

be presented in the next paragraphs. 
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2.4.3 EC-STM-TERS analyses - Step-by-step implementation 

2.4.3.1. STM-TERS measurements in the air  

Before implementing the delicate STM-TERS measurements in situ (in liquid 

environment), it is preferable to assess first if the quality of the tip and/or the sample in the air 

is suitable for STM and TERS characterization.  

Rough optical alignment. The cell-sample-holder assembly and the STM tip holder are 

mounted to the SmartSPM microscope and connected to the AIST-NT conductive unit. The 

SmartSPM is attached to the OmegaScope platform, which carries a 50x air objective lens 

(Mitutoyo MY50X-805 - Plan Apochromat Objective, NA: 0.55, WD 13mm) set vertically 

above the tip-holder. The tip apex is brought to the focal point of the objective using three 

millimeter-precision screws (two for the xy displacements and one for z) acting on the position 

of the SmartSPM microscope on the OmegaScope platform. 

Tip-sample approach and landing in the air. The bias voltage BV and the tunneling 

current IT are set to 0.1V and 1000 pA, respectively. These values of BV and IT should 

correspond to a distance of less than 1 nm between the tip and the sample when the STM 

feedback control is enabled. Note that the conductive unit grounds the tip (Vtip = 0 V) and 

applies the polarization on the sample (opposite value of the chosen bias voltage BV, e.g. for 

BV = 0.1 V, Vsample = -0.1 V). The sample is therefore approached to the tip first through a 

rough motorized movement of the sample stage, and then by an automatized mechanism. This 

latter consists in the progressive approach of the sample piezo-scanners and of the step-motor 

to the tip by little upward steps of a few microns per second (usually 5 μm.s-1). Between one 

step and the other, the instrument checks whether the tunneling conditions are reached; if so, 

the approach ends, otherwise it keeps going on. The tip, if well prepared and mechanically 

stable, should reach the sample surface without crashing on it, nor showing major current 

oscillations (recorded on the oscilloscope of the AIST-NT software). 

Hotspot screening. Once the tip has “landed” on the sample surface (Figure 2.14a), 

its position at the focal point of the objective is readjusted. This approximated positioning, 

though, does not guarantee a good focus of the laser beam on the hotspot, i.e. on the point of 

the tip apex that provides the maximal signal enhancement. A finer adjustment is therefore 

carried out by displacement along the XY and the XZ plans of the piezo scanners carrying the 

objective lens, while acquiring the enhanced Raman signal at the tip-sample junction (TERS). 
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An example of a XY hyperspectral objective map of the tip apex (in liquid conditions) is shown 

in Figure 2.14b: each pixel on the map corresponds to a single spectrum, while the color code 

is representative of the relative intensity of a certain spectral range (black to white for low to 

high intensity). 

 
Figure 2.14. a) Tip visual optical micrograph, captured from the 40x immersion objective; b) TERS 

XY map acquired on the tip apex by scanning of the objective piezo-scanner. The map was recorded on 

a 5x5 μm2 area with 10x10 pixels, each corresponding to a spectrum acquired in 0.3 s with 160 μW 

power (1% of the nominal laser power) of the 632.8 nm laser line. The colored bar indicates the intensity 

scale (arbitrary units); c) individual spectra associated to the blue and green crosses on the objective 

map. 

The map shows a few bright pixels surrounded by many others at lower intensities. As 

it can be observed in Figure 2.14c, the brightest pixel corresponds in fact to a sharp spectral 

signature, while one of the black pixels only shows a background noise spectra. The tip hotspot 

is therefore expected to be somewhere in proximity of the brightest pixel, since it guarantees 

the acquisition of the most intense spectra on the sample surface, and the focal point of the 

objective can be positioned in correspondence to it. The same procedure is replicated several 

times in both the XY and the XZ planes, until the best objective position (with respect to the 

tip) is found. 

Assessment of STM performances. The stability and ability of the STM probe to track 

the sample topography are evaluated by performing a STM scan over the sample surface (e.g. 

on a 1x1 μm2 area, with 256x256 or 256x128 pixels, at 1 Hz; see Figure 2.15a), while acquiring 

single TER spectra. After the adjustment of the STM feedback parameters (gain, imaging rate), 
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if the image shows topographic details with reduced noise/drift, and if the TERS signal does 

not fade during the imaging process, the tip can be conveniently employed as both STM and 

TERS probe. 

 

Figure 2.15. STM mapping – Maps acquired a) in the air or b)-c) in liquid environment on 1x1 μm2 

areas (left) or 500x500 nm2 areas (right), with 256x256 pixels in both cases (BV = 0.1 V, IT = 1 nA). 

Images on a bare gold substrate reported in b) were acquired just after a) after filling the sample holder 

cell with KCl 0.1 mol.L-1. Due to the still non-optimized configuration of the sample holder, a poor 

topography is shown due to drift issues. Images in c) were acquired on a gold substrate functionalized 

with 4-NBM in the optimized setup and under the bi-potentiostat control in an alkaline buffer at pH 

10.7. 

2.4.3.2. In situ STM-TERS measurements  

Once the probe performances are validated in the air, the cell-sample-holder assembly 

is retracted from the tip of a few millimeters, so that the system can be modified to be used 
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under electrochemical conditions. The air objective is substituted with the 40x water-dipping 

objective described earlier, the sample is disconnected from the AIST-NT conductive unit and 

reconnected to the bi-potentiostat, along with the CE, while the RE is approached from the 

side. The ground of the conductive unit and of the bi-potentiostat are connected to ensure the 

potentiostatic polarization of the STM tip and the application of the STM bias between the tip 

and the sample. 

The cell is then filled with the electrolyte (previously deoxygenated by argon bubbling 

for at least 15 minutes) and the cell-sample-holder assembly is approached to the STM probe. 

Only when all the four electrodes and the objective are well immerged in the solution, the bi-

potentiostat is switched on after the input potentials associated to channels 1 and 2 are adjusted, 

so that to avoid possible electrochemical transformation of the functionalized sample, or 

oxidation/reduction of the solvent on the tip or the sample surfaces. The stability and low value 

of the tunneling current (< 100 pA) measured and amplified by the conductive unit guarantees 

the proper insulation of the tip and tip holder with Zapon varnish (IF << IT). If strong current 

oscillations occur, the tip-holder is coated again with Zapon before use. 

The BV voltage is set to 0.1 V by adjusting the electrochemical potential of the tip 

(+100 mV vs Ag/AgCl) and of the substrate (0 V vs Ag/AgCl) respectively. The tip-sample 

approach can therefore proceed until the IT value reaches the STM set-point value (1000 pA). 

The STM (Figure 2.15b-c) and TERS performances are assessed after the tip hotspot 

positioned is screened according to the aforementioned procedure. The EC-STM-TERS 

analysis can finally start.  

2.4.4 Assessment of the TERS signal stability with the potential 

As it will be described in Chapter 3, the real-time STM-TERS study of the reactivity 

of electroactive 4-NBM SAMs in alkaline medium requires the recording of the TERS signal 

while scanning the potential of the derivatized gold electrode on large potential ranges (down 

to -1 V vs SCE). However, it has been shown in Chapter 1 that, in STM mode, the TERS signal 

of SAMs shows a strong dependency with the bias voltage (BV) and tunneling current (IT) 180. 

This was explained by the alteration of the signal enhancement at the tip-sample junction 

(particularly in gaseous atmosphere as compared to liquid), due to changes in the tip/sample 

distance and also, possibly, in the interactions between the metal and the adsorbates (e.g. charge 

transfer or change in the molecular orientation). In this section, the different strategies to 



 

91 

 

explore large potential ranges in EC-STM-TERS will be discussed and the stability of TERS 

signal with the potential will be assessed.  

Specificity of STM tip/sample junction under EC conditions. Exploring the 

spectroscopic transformations on the functionalized sample upon polarization at highly 

negative potential indeed raised a crucial question: which potential should the STM-tip 

assume? Should it be kept at a constant BV from the sample or should it be maintained at the 

higher potential value? 

 
Figure 2.16. Influence of the polarization of the tip-sample junction on STM-TERS - a) Possible 

detrimental effect to the STM feedback effectiveness when polarizing the tip at too negative potentials, 

while keeping a low bias voltage (close tip-sample distance): promotion of Faradaic current associated 

to electrolyte reduction (gas evolution) which can dominate the tunnelling current flowing in the tip-

sample gap ; b) Possible detrimental effect to the TERS signal amplitude when applying a too high bias 

voltage while keeping constant the tunnelling current value (increased tip-sample distance): loss of 

near-field coupling, hence of TER effect. 

In fact, the answer is not trivial, as both choices could be detrimental for the good 

outcome of the measurement. It must be recalled that the tip sample distance using STM 

feedback regulation depends both on the BV and the tunnelling current IT:  

𝑑 =
1

𝛽
ln (

BV

IT ∙𝑅(𝑧0)
)                                                       (2.6) 

with 𝛽 the tunneling decay constant (dependent on the barrier height, or working function) and 

𝑅(𝑧0) the junction resistance at landing position 𝑧0. This relationship is obtained by 

considering Simmons’ description of the electron transport between electrodes separated by a 

thin insulating film in the low bias range 180, so it can be easily assimilated to our experimental 

conditions.  

In turn, the TERS intensity 𝐼𝑇𝐸𝑅𝑆 depends on the tip-sample distance 𝑑 180: 
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𝐼𝑇𝐸𝑅𝑆~(1 +
𝑑

𝜌
)
−𝑝

                                                  (2.7) 

where 𝜌 is the dipole (hence, the tip) radius and 𝑝 is a factor linked to the scattering process 

(for instance, it is equal to 10 for fully incoherent scattering). 

When the BV is kept constant (situation illustrated in Figure 2.16a) the tip might reach 

very low potential values, which could promote the electrolyte reduction (hence the formation 

of gaseous hydrogen bubbles, in aqueous media) in the close proximity of the probe. If bubbles 

develop in the interspace between the tip shaft and the Zapon coating, this might no longer 

insulate properly the probe. Also residual molecular oxygen can reduce on the tip apex due to 

the low polarizations. The Faradaic currents deriving from these reduction processes risk to be 

of the same order of magnitude or even higher than the imposed tunnelling current value, thus 

perturbing the effectiveness of the STM feedback control and hence the tip-sample distance. 

As a consequence, the instability of the plasmonic coupling at the tip-sample junction leads to 

TERS signal fluctuation. In the worst case, the tip could simply crash repeatedly on the sample 

surface, promoting its contamination and compromising both its TERS activity and its imaging 

capability. 

Sweeping of the bias-voltage. One alternative consists in keeping the tip at a constant 

potential while increasing the BV (Figure 2.16b). However, this affects the tip-sample distance 

𝑑 according to the previous Equation (2.6) 180 and may provoke a dramatic decay in the TER 

signal intensity, thus making it impossible to follow the electrochemical modifications 

occurring in real time on the sample. A systematic study was carried out by Domke’s group on 

thiophenol SAMs to verify the validity of these expression in predicting the TER signal trend 

when variating BV and IT 
180. The influence of the imposed BV was proved to be more crucial 

than IT on the quality of the signal enhancement, which increased abruptly when decreasing 

the BV value from 500 to 20 mV. However, choosing such a low BV can also be detrimental 

for the measurements sake, as the strong and localized electric field in the gap may affect the 

molecules orientation and therefore alter their signal 180. It should also not be neglected the role 

of the reaction medium. Working in liquid rather than in air comports already a loss in the 

signal intensity, due to beam aberrations and laser distortion. Besides, as the junction resistance 

decreases in liquid, an additional loss in intensity can be expected, with respect to 

measurements in the air at equal experimental conditions. On the other hand, it was remarked 
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that the variations in the signal intensity among different applied BV values was lower in liquid 

than in the air 180. 

TERS signal stability with the potential. To evaluate the TERS-intensity dependence 

with the potential and the bias voltage, real time EC-STM-TERS measurements were carried 

out on an aminothiophenol (4-ATP) molecular layer self-assembled on a gold plate while 

scanning the potential. A composite potential ramp from -100 to -850 mV at 50 mV.s-1 was 

applied by keeping the potential of the tip at 0 V vs Ag/AgCl and varying the bias-voltage (Etip 

- Esubstrate from 100 to 850mV). The full description of the experiment and the Raman band 

assignment can be found in Chapter 3. Figure 2.17a-b shows the time dependent voltage and 

current response of the electrode and the corresponding evolution of the TERS intensity. No 

electroactivity of 4-ATP is expected in the potential range explored. The slight drop in current 

(Figure 2.17a) is indeed attributed to the slight electrolyte reduction. As can be seen on Figure 

2.17b, the intensity of the spectral features of 4-ATP remain constant on the full potential range 

explored, confirming the possibility  to follow TERS signature of molecular compounds in real 

time and on large potential ranges in STM.  

 
Figure 2.17. EC-STM-TERS measurements on 4-ATP SAM in alkaline medium: a) polarization 

sequence (a “composite” potential ramp), b) spectral signature dependence with the potential. Each line 

on the map corresponds to a single Raman spectrum (acquired in 1 s with 250 μW power of the 632.8 

nm laser line, BV variable, IT = 1 nA) and to a 50 mV potential shift. The spectra have been subjected 

to background removal. 

This important founding will be exploited in Chapter 3 for the EC-TERS 

characterization of 4-NBM SAMs. Note that in Chapter 4, dedicated to the study of 
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electrochemically grafted 4-NB layers, highly negative polarization during STM-TERS 

mapping will be accessible through a combination of large BV and polarization of the substrate. 

2.5. Conclusion  

In this work, the developments initiated by the group before 2018 were pushed further 

to secure the ease and reproducibility of EC-STM-TERS implementation and to access 

electrochemical techniques (e.g. multisteps chronoamperometry, linear sweep and cyclic 

voltammetry) and time-resolved EC-TERS measurements.  

In this optic, a new 4-electrode EC-cell was designed to ease the cell assembly, 

minimize sample damages, facilitate the positioning of the electrodes and avoid 

shortcut/disconnection/noise (thanks to the reliable shielded electrical connections). The open 

configuration of the cell enables the use of a real reference electrode for an accurate control of 

the potential applied to the STM tip and to the sample. Also, the electrochemical 

instrumentation (bi-potentiostat) developed in the lab was hyphenated with a waveform 

generator and an oscilloscope synchronized with the CCD detector of the Raman spectrometer. 

This allows the real-time assessment of the effectiveness/adequacy of the polarization applied 

on the electrochemical system under scrutiny, and above all insures the correlation of the TERS 

response at the tip-sample junction to the potential perturbation at the interface. Specific 

polarization sequences can be designed in STM-TERS to access highly negative polarizations 

of the substrates without compromising the signal enhancement at the tip/sample junction. 

Further developments, not presented in this manuscript, aimed at applying ultra-short 

potential pulses to the STM-TERS tip and specific scanning patterns (lithography tool) to 

locally modify the composition of the functionalized sample. This yields the generation of 

molecular nanopatterns that can be characterized immediately in situ by EC-STM-TERS. If the 

use of nanoelectrodes for patterning is not new 198,199, the simultaneous characterization by 

TERS is unprecedented.  

The low-cost fabrication of gold STM probes with strong TERS activity and STM 

mechanical stability, the design of a probe holder compatible with the use of high-NA dipping 

objective (for maximum TERS signal excitation/collection efficiency), together with the 

efficient insulation of STM probes with non-Raman active coatings are additional important 

developments which have paved the road to routine STM-TERS measurements under 

electrochemical conditions. Two studies illustrating the power of EC-STM measurements to 
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analyze electrochemical systems, i.e. electroactive self-assembled monolayers and electro-

grafted molecular layers, will be detailed in Chapters 3 and 4. 
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Chapter 3 Study of a complex reduction mechanism on a 

model sample 

3.1. Introduction 

This chapter illustrates the ability of the EC-STM-TERS setup (presented in Chapter 2) 

in solving complex reaction mechanisms. Following the work of T. Touzalin in our group, who 

focused on single hot-spot SERS characterization of electrochemical transformation on 

nitrobenzene derivatives, we have decided to push further the investigation using EC-TERS. 

p-Nitrobenzene derivatives have been widely employed for functionalization: they can, for 

instance, induce p-type doping in graphene sheets 200, tune the electronic properties of silicon 

substrates 201, or mediate the immobilization of NPs on metal surfaces (through their NO2 group 

5 or its reduced form NH2 
13). Moreover, their affinity for adsorption on metal surfaces has been 

exploited to selectively retrieve and separate them from superficial water streams, where they 

can be present as pollutants 202,203. Once immobilized on a surface, these compounds are 

subjected to a series of modifications involving the nitro group, which can undergo different 

kinds of transformations. 

In order to investigate these phenomena, the most employed model sample in literature is 

4-nitrothiophenol (4-NTP) 204–206, whose SAMs show uniform reactivity, along with sharp and 

recognizable electrochemical features 35,207. These have been object of thorough 

electrochemical studies, as they arise from a complex mechanism that involves several reaction 

paths and is pH-dependent 204,208. Besides, 4-NTP has been often employed for enhanced 

Raman experiments thanks to the easy interpretation and sharpness of its signature 205. This 

characteristic makes it an ideal probe to study, for instance, the SERS performances of active 

substrates, as it allows separating the EM from the chemical enhancement effects (see Section 

1.2.2.3) 204,207,209. Both 4-NTP and its reduced amine form (4-ATP) have also been used in 

enhanced Raman spectroscopy to study and correlate the efficiency of the photo-induced 

coupling of nitro groups with the excitation wavelength, the underlying substrate, or also the 

surrounding environment 204,209,210. 

4-NTP has been therefore previously employed 206 in our research group, to introduce 

the use of single hot-spot SERS platform (i.e. the tip-SERS technique presented in Section 

1.2.2.3) for the study of electroactive molecules and molecular architectures. 4-NTP-

functionalized SERS-active probes were subjected to in situ enhanced Raman measurements, 
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acquired before and after applying several voltammetric cycles at more and more negative 

potentials 206. This led to the progressive disappearance of the 4-NTP spectroscopic signatures 

and to the appearance of new bands, attributed to 4-ATP, although no reaction intermediates 

were detected. Besides, upon negative polarization of the tip, a strong surge of signal occurred 

leading to the saturation of the detector. This phenomenon, whose origin has not yet been 

identified, made it impossible to follow in real time the evolution of the sample signature during 

the potential ramp. Another critical point encountered in this work regarded the apparently low 

stability of the thiol bond with the gold surface: contamination of the sample holder and of the 

underlying substrate was suspected to derive from an easy desorption of 4-NTP from the tip. 

This led to the choice, for our work, of using an analogue of 4-NTP, i.e. the 4-

nitrobenzyl mercaptan (4-NBM), as model sample. This species differs from 4-NTP only for 

an additional methyl group CH2, which separates the benzene ring from the SH group, and 

which seems providing 4-NBM with a higher chemical stability 30 , thus limiting contamination 

issues. Thanks to this model sample, we could work on the development and implementation 

of EC-STM-TERS measurements in the setup presented in Section 2.4.2. 

With respect to the first prototype designed in our group 182, which could be used for 

TERS measurements in liquid under polarization, this new setup has the main advantage of 

performing simultaneously spectral and electrochemical measurements on electroactive 

molecular layers in a dynamic way (potential ramps), thus enabling a real-time deduction of 

the ongoing reaction process. Different analytical strategies were explored in our work: Raman 

signatures of 4-NBM SAMs were acquired on single sample spots or averaged over larger 

areas, either at fixed potentials or under polarization ramps, and in different pH conditions 

(which, as for 4-NTP 206, are expected to influence the kinetics of the nitro groups 

electroreduction). The ultimate aim of these investigations consisted in capturing the possible 

reaction intermediates, in order to get a better understanding of electrochemical reduction 

mechanism of nitrobenzene derivatives. Additionally, the obtained results can yield 

information about the surface reactivity (e.g. in terms of homogeneity in the current density 

distribution) and the influence of the probe on the studied process (i.e. the occurrence of photo- 

or hot-electron-induced processes). 

To summarize, in the following paragraphs we will first investigate the 4-NBM SAM 

reduction mechanism ex situ, at two different solution pH, so that to compare the reactivity of 

this sample to the results obtained on 4-NTP. Later on, we will discuss about the technical 
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issues that needed to be overcome in order to perform dynamic electrochemical investigations 

while recording STM-TERS maps, with the aim of detecting in real time the ongoing chemical 

transformation on the sample under polarization. Finally, the results obtained by EC-TERS will 

be presented and, based on them, a hypothesis for the reduction mechanism of 4-NBM SAM 

in the employed working conditions will be proposed. 

3.2. 4-NBM as model system 

3.2.1 SAM sample preparation 

4-nitrobenzyl mercaptan (4-NBM) powder was obtained from Sigma-Aldrich and used 

without further purification to prepare a 10-4 mol.L-1 solution in absolute ethanol, purchased 

from VWR. This solution was employed to functionalize both the gold disk electrodes (for the 

preliminary electrochemical analysis) and the gold plates (for EC-STM-TERS measurements). 

Before use, the gold disk electrode surface (OrigaLys, 3 mm diameter) was first polished on a 

polishing disk covered in 0.1 µm diamond paste, and then sonicated in acetone and in ethanol 

(180s each). A final cleaning step consisted in applying three voltammetric cycles from -100 

to +1500 mV vs SCE at 50mV.s-1 in a 0.5 mol.L-1 solution of H2SO4 
211. As it can be seen in 

Figure 3.1, this provokes the subsequent formation and dissolution of gold oxides on the 

surface, thus reconstructing the original Au(111) surface. Moreover, blanks were performed on 

the electrode before functionalizing it to insure that no residual molecules were left adsorbed 

on the surface. 

The gold plates were prepared by high-vacuum thermal evaporation of a 100-nm gold 

layer on a mica substrate. The evaporation was preceded by 1-hour heating at 430 °C and 

followed by 2-hour annealing at the same temperature. In order to insure the homogeneity of 

the mica surface before depositing the gold layer, the most superficial layer was peeled-off 

prior to the insertion in the evaporation chamber. The so-obtained gold plates do not show any 

SERS effect and their root mean square roughness, evaluated via AFM, is in the order of 

hundreds of pm (see Figure 4.8a in Chapter 4). 

The deposition of 4-NBM was achieved by incubation of the desired gold surface in the 

10-4 mol.L-1 solution and lasted 10-15 minutes for disk electrodes and a few hours (up to 

overnight) for the plates. Afterwards, the surfaces were incubated again in absolute ethanol for 

5 or 30 minutes (in the case of disk electrodes or plates, respectively), in order to remove the 

physisorbed species, and finally dried under an argon stream. 
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Figure 3.1. Surface reconstruction of a gold disk electrode – Gold electrodes were subjected to 

repeated potential scans in acidic medium (cyclic voltammetry CVs) from -100 to +1500 mV vs SCE 

(scan rate 50 mV.s-1, supporting electrolyte 0.5 mol.L-1 H2SO4, reference electrode Saturated Calomel 

Electrode SCE). 

The ex situ electrochemical measurements were carried out on three different 

potentiostats: an Autolab PGSTAT100N (Metrohm), a Gamry 600+ (Gamry Instruments) or a 

CHI 600 E (CH Instruments). Unless where specified, all the potentials reported in the next 

paragraphs are referred to an Ag/AgCl electrode (with a saturated KCl solution, E°Ag/AgCl = 

+197 mV vs SHE at 293 K) 

3.2.2 Electrochemical measurements 

Cyclic voltammetry (CV) experiments were performed on 4-NBM SAM adsorbed on 

gold disk electrodes, in order to study ex situ the transformation of the nitro group under 

polarization. The same experiments had been previously carried out also on 4-NTP 206, which 

was probed in a 50 mmol.L-1 H2SO4 solution: as Figure 3.2 illustrates, during the first 

voltammetric cycle the current dropped abruptly in the forward scan, then gave rise to an anodic 

peak in the backward scan. The voltammetric reduction peak at around -250 mV vs SCE had 

been attributed to the total, irreversible reduction of the nitro into the amine function, thus to 

the formation of 4-aminothiophenol (4-ATP), in a global 6-proton/6-electron step. 
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Figure 3.2. Electrochemical reduction of a 4-NTP in acidic medium – A 4-NTP functionalized gold 

sphere electrode was subjected to cyclic voltammetry (CV) in a 50 mM H2SO4 solution (scan rate: 100 

mV s-1) with a -250 mV vs SCE vertex potential. 4-NTP is partially reduced to 4-hydroxylamine 

thiophenol (4-HATP) below -100 mV vs SCE. 4-HATP is reversibly oxidized into 4-nitrosothiophenol 

(NSTP) at +241 mV vs SCE. Insert: full irreversible reduction of 4-NTP into 4-ATP at potential as low 

as -600 mV vs SCE. Reproduced from [206]. 

However, if the potential excursion was not negative enough, this reaction did not 

transform all the 4-NTP molecules adsorbed on the surface: some of them only underwent a 

partial reduction into 4-hydroxylamino-thiophenol (4-HATP), through an overall 4-proton/4-

electron mechanism. In fact, the process should be divided in two successive 2-proton/2-

electron steps, involving 4-nitrosothiophenol (4-NSTP) as intermediate species. Nevertheless, 

because the reduction potential of 4-NSTP is more positive than the one of 4-NTP 204, not only 

the cathodic wave of the 4-NTP4-NSTP was not observed, but 4-NSTP transformed also 

right away into 4-HATP. Since this transformation is reversible, the part of NHOH groups that 

did not reduce completely could oxidize back to NO, which explains the presence of the anodic 

peak in the backward scan. When performing several voltammetric cycles, all the 4-HATP 

molecules eventually converted into 4-ATP: this can be deduced by the progressive lowering 

in intensity of the anodic peak as the number of scan increased (dark and light grey curves in 

Figure 3.2). 
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In our experiments, we chose to perform the characterization in the same acid medium, 

so that to compare the reactivity of 4-NBM with 4-NTP, but also in a basic environment. Since 

the nitrobenzene reduction mechanism is pH-dependent, it is expected to be less 

thermodynamically favoured when the medium alkalinity increases, and also its kinetics might 

be affected 212. However, 0.1 mol.L-1 solutions of electrolytes as NaOH 208 or KOH 213, usually 

employed for characterizing nitrobenzene reactivity, have a pH of around 13 that is not 

compatible with the experimental setup for EC-TERS. Such a basic solution could in fact 

corrode the immersion objective and seriously damage the piezo-sensor stage in case of 

leakage. As a consequence, it was preferred to perform the analysis in a bicarbonate buffer, 

obtained by mixing 100 mL of 0.05 mol.L-1 NaHCO3 (NORMAPUR®) with 40.4 mL of 0.1 

mol.L-1 NaOH (Carlo Erba). The pH of the resulting solution was verified by mean of a pH-

meter and yielded a value of 10.7, which should guarantee the protection of the opto-

mechanical setup. Moreover, thanks to the presence of the conjugated acid/base species, this 

solution should contain enough ionic species to avoid current flow limitations due to charge 

migration issues. This could not be the case if the same pH should have been reached by 

dilution of stronger bases. 

Figure 3.3 shows cyclic voltammetry (CV) experiments, carried out in acid and alkaline 

media, on 4-NBM- functionalized gold disks electrodes. Note that the species illustrated in 

both Figure 3.2 and Figure 3.3 have the same functional groups, while the thiolate part is 

different: TP stands for thiophenol (Ar-S-) while BM for benzyl mercaptan (Ar-CH2-S-). 

During the forward scan of the first cycle, a cathodic peak arises (at -723 mV at pH 11, -299 

mV at pH 1), followed by an anodic peak in the backward scan (at -229 mV at pH 11, +297 

mV at pH 1). A second, smaller cathodic peak appears then in the forward scan of the second 

cycle, almost at the same position of the anodic peak (-255 mV at pH 11, +272 mV at pH 1). 

The backward scan of the second cycle shows again the anodic peak, though weaker in 

intensity. This result resembles to some extent to what observed for 4-NTP in acid medium 206 

(Figure 3.2), hence the main cathodic peak (corresponding to the current drop in the 4-NTP 

CV) should arise from the irreversible reduction of 4-NBM into the reaction intermediates 

(partial reduction) or into 4-ABM (total reduction). 

The presence of the anodic/cathodic couple at higher potentials attests instead of the 

reversible 4-HABM↔4-NSBM transformation (2-proton/2-electron) 71,206. As it was observed 

for 4-NTP 206, also in this case the anodic peak decreases in intensity after the first cycle, 
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meaning that part of the 4-HABM formed during the first cycle has been irreversibly reduced 

during the second one. CV analysis on monolayers can also be useful to evaluate the molecular 

surface coverage on the electrode surface 71, as it will be explained in the next paragraph. 

 
Figure 3.3. Influence of the pH on the electrochemical response of 4-NBM - CV acquired on 4-

NBM adsorbed on a gold disk electrode (Ø = 1.5 mm). The supporting electrolyte consisted in a 

bicarbonate buffer solution (black curve, scan range -100/-850 mV) or in a 50 mmol.L-1 H2SO4 solution 

(red curve, scan range +500/-350 mV). The solid and the dotted lines represent the first and the second 

cycles, respectively. The scanning speed was v = 50 mV.s-1. 

Calculation of the surface molecular coverage via CV - Due to the high nitrobenzene 

reduction yields, it is possible to consider that all the NO2 groups have been reduced (partially 

or totally) at the end of the first forward scan. This means that the total amount of NO2 groups 

present on the surface before the potential ramp can be deduced from the charge 𝑄𝑟𝑒𝑑 integrated 

from the cathodic peak. This charge can be expressed as the sum of two contributions: 

𝑄𝑟𝑒𝑑 = 𝑄4−𝐻𝐴𝐵𝑀 + 𝑄4−𝐴𝐵𝑀                                               (3.1) 

where 𝑄4−𝐻𝐴𝐵𝑀 and 𝑄4−𝐴𝐵𝑀 are the charges associated, respectively, to the 4-proton/4-electron 

reduction into 4-HABM and 6-proton/6-electron reduction into 4-ABM. In order to quantify 

the relative contributions of the two charges to the total integration of the reduction peak, it is 

assumed that all the 4-HABM formed at low potentials re-oxidizes completely into 4-NSBM 

during the backward scan, through a 2-proton/2-electron exchange. Therefore, the charge 𝑄𝑜𝑥 

integrated from the anodic peak can be expressed as: 
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𝑄𝑜𝑥 = 𝑄4−𝑁𝑆𝐵𝑀 =
𝑄4−𝐻𝐴𝐵𝑀

2
                                              (3.2) 

where 𝑄4−𝑁𝑆𝐵𝑀 is the charge associated to the 4-HABM4-NSBM oxidation and therefore 

corresponds to half of the charge needed to reduce 4-NBM into 4-HABM. By substitution of 

the Equation (3.2) in the Equation (3.1), it is obtained: 

𝑄𝑟𝑒𝑑 = 𝑄4−𝐴𝐵𝑀 + 2𝑄𝑜𝑥; 𝑄4−𝐴𝐵𝑀 = 𝑄𝑟𝑒𝑑 − 2𝑄𝑜𝑥                   (3.3) 

Now, the surface coverage 𝛤 is expressed as the number of moles of adsorbate per unit 

of surface. Because the total number of reacting adsorbates can be retrieved from the charge of 

𝑄𝑟𝑒𝑑, it is possible to express 𝛤 as: 

𝛤 =
𝑄𝑟𝑒𝑑

𝑛𝐹𝑆
                                                             (3.4) 

where 𝑛 is the number of electrons involved in the reaction, 𝐹 is the Faraday constant (~96500 

C.mol-1) and 𝑆 is the electrode surface (in cm-2). Equation (3.4) can be rearranged by taking 

into account Equations (3.1) and (3.3), and by introducing the effective number of electrons 

involved in the two reduction processes of 4-NBM: 

𝛤 =
1

𝐹𝑆
(
𝑄4−𝐴𝐵𝑀

6
+

𝑄4−𝐻𝐴𝐵𝑀

4
) =

1

𝐹𝑆
(
𝑄4−𝐴𝐵𝑀

6
+

2𝑄𝑜𝑥

4
) =

1

𝐹𝑆
(
𝑄4−𝐴𝐵𝑀+3𝑄𝑜𝑥

6
) =

1

𝐹𝑆
(
𝑄𝑟𝑒𝑑+𝑄𝑜𝑥

6
)      

 (3.5) 

In conclusion, Equation (3.5) allows calculating the nitrobenzene surface coverage from 

the integrated areas of the first cathodic and anodic peaks.  

Since the potential excursion is not negative enough at pH 1, the surface coverage was 

estimated only from the CV at pH 11 in Figure 3.3 and yielded a value of 7.06.10-10 mol.cm-2. 

This result is consistent with the data reported for both 4-NTP 125 and 4-NBD 71 monolayers 

and confirms, along with the symmetrical bell shape of the peaks in the voltammograms, that 

the 4-NBM is well anchored on the gold surface in an ordered monolayer. As for the slight 

slope in the voltammogram background, it is most likely due to the presence of residual oxygen 

in the electrolyte solution, despite thorough deoxygenation by Ar bubbling before performing 

the electrochemical characterization. 
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3.3. EC-STM-TERS: real-time following of the reduction 

mechanism 

3.3.1 EC-TERS experimental conditions 

In situ measurements on 4-NBM-functionalized gold plates were performed on the 

novel EC-STM-TERS setup described in Section 2.4.2. Before starting the analysis, the sample 

is mounted on the sample stage, fixed with the PEEK electrochemical cell (which also hosted 

the counter-electrode) and accommodated in the AIST Omegascope setup along with the 

Ag/AgCl reference. The three electrodes are connected to the homemade bi-potentiostat, 

controlled in turn by the function generator. Then, the electrolyte buffer, previously 

deoxygenated by Ar bubbling for at least fifteen minutes, is poured in the cell volume. Finally, 

the tip is introduced inside the cell and its position adjusted at the centre of the 40x immersion 

optical objective. The sample vertical position is first adjusted manually in order to bring the 

surface as close as possible to the tip apex. Therefore, the bi-potentiostat is switched on to 

maintain a 0.1 V BV between the two working electrodes while controlling their respective 

potential versus the reference electrode. If the tip is properly coated with the Zapon varnish, 

the noise level remains below 100 pA, which is negligible respect to the set-point tunnelling 

current threshold (i.e. IT = 1000 pA). This allows the piezo scanner performing precisely the 

final approach between the tip and the sample, until the tunnelling conditions are reached. EC-

TERS measurements have been performed during extended time (for 3-4 hours), scanning the 

tip potential as high as +470 and as low as -400 mV (see Chapter 4), without noticing any 

instability in the current value recorded on it. This proves the resistance of the Zapon coating 

under the experimental conditions of electrolyte pH, BV and IT. It occurred that a few already-

used tips could still be employed for other measurement sessions without any current instability 

issues. However, more often the noise recorded on the tip current had substantially increased 

from one day to another. In this case, covering the tip with another Zapon layer was usually 

sufficient to re-establish a uniform insulating coating prior to use. 

As described earlier in Chapter 2, it was first tested in our experimental setup the 

possibility of keeping a constant BV value of 0.1 V while decreasing the respective potentials 

of the tip and the sample. However, important current oscillations were recorded on the tip 

(retracted from the sample) when it was polarized below -400 mV, thus making the landing on 

the sample surface impossible. It was then tested the possibility to perform a potential ramp on 

the tip (down to -600 mV, at 50 mV.s-1) while it was already in the landing position; also in 



 

106 

 

this case, though, when reaching a potential of around -400 mV the tip automatically retracted 

from the sample and the current dropped to 0. It was therefore chosen to keep the tip at 0 V and 

modifying only the sample potential, in a variable range from -0.1 to -1 V (see example in 

Figure 4.15), either by chronoamperometric steps or by cyclic ramps. By doing so, no dramatic 

changes were observed on the noise level of the tip current, neither when it was retracted nor 

when it landed on the sample. Moreover, with tips for which the hot spot could be clearly 

identified at the beginning of the experiment, the TER signal was always observed, even at low 

potentials. 

3.3.2 Mapping at fixed potential 

Before proceeding to the reduction of the 4-NBM SAM, its distribution on the sample 

surface was mapped by STM-TERS while keeping a fixed polarization of 0 V on the tip and -

100 mV on the sample (BV = 0.1 V). No transformations are expected to occur on 4-NBM at 

-100 mV, since this value is close to the system open circuit potential (OCP). After performing 

a first map, the sample was subjected to a reductive potential ramp from -100 to -850 mV and 

back (BV ranging from 0.10 to 0.85 V), at the end of which another STM-TERS mapping at 

the OCP was recorded. Finally, the sample was brought at -400 mV (BV = 0.4 V) and imaged 

again; as it is shown in Figure 3.3, at this potential value 4-NSBM is expected to have 

reconverted into 4-HABM. The spectra averaged over all the pixels of the TERS maps are 

shown in Figure 3.4a (corresponding maps in Figure 3.5); besides, in order to help the spectral 

features attribution, μRaman spectra were acquired on the powders of 4-NBM and of a few 

compounds bearing the same functional groups as the expected intermediates, i.e. 

nitrosobenzene (TCI), N-phenylhydroxylamine, 4-ATP and azobenzene (Sigma-Aldrich) and 

reported in Figure 3.4b. Raman signatures of adsorbed species and of reference samples 

(powders), are reported in Table 3.1 at the end of this section, together with the mean spectral 

feature assignment (vibration modes) found in the literature. 

Before reduction (Figure 3.4a, top), the average spectrum recorded on the whole 

imaged area matches with the one observed for the 4-NBM powder (Figure 3.4b, top): the 

characteristic signature is represented by the symmetric NO2 stretching, which falls at 1346 

cm-1 (1352 cm-1 in the powder). Other remarkable features are the CH bending at 1107 cm-1 

(1110 cm-1 in the powder) and the ring stretching at 1594 cm-1 (1600 cm-1); however, as all the 

compounds involved in the reaction possess a benzene ring, these bands are present in all the 
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spectra, even though more or less shifted in frequency, so they are less useful for the 

unequivocal compound characterization. 

 
Figure 3.4. TERS signatures upon reduction of 4-NBM in alkaline medium and comparison to 

the Raman signature of benzene derivative analogues - a) TERS spectra obtained by integration of 

all the pixels for each TERS map recorded in situ and presented in Figure 3.5. b) From top to bottom: 

confocal Raman spectra of powder samples of 4-NBM (λexc = 785 nm), nitrosobenzene (λexc = 632.8 

nm), hydroxylamine (λexc = 532 nm), azobenzene (λexc = 632.8 nm) and 4-aminothiophenol (λexc = 632.8 

nm). The legend indicates the position of the signature bands for each compound. 
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After reduction, the spectrum recorded at the OCP (Figure 3.4a, middle) shows that the 

ring stretching band keeps being quite intense, while the signal at 1346 cm-1 broadens, weakens 

and shows a new shoulder at 1343 cm-1, suggesting the reduction of 4-NBM into 4-NSBM. 

This signature should indeed correspond to the band at 1403 cm-1 in the powder spectrum of 

nitrosobenzene in Figure 3.4b, which is attributed to the N-O stretching. Moreover, along with 

it, another weak feature appears at 1309 cm-1, which should arise from the combination of CN 

stretching and ring modes in the totally reduced 4-ATP species (1288 cm-1 in the 4-ATP powder 

of Figure 3.4b). The presence of this product might be proved also by the appearance of a 

shoulder at 1165 cm-1, corresponding to the CH bending (band at 1177 cm-1 in the 4-ATP 

powder). Overall, despite some local heterogeneities on the substrate might have inhibited the 

reduction process for few NO2 groups, as it has already been observed 206, it is possible to 

consider that the majority of them converted in the reduction products. Additionally, new 

intense features appear at 1138, 1408 and 1452 cm-1, which could match with the ag-type bands 

of azobenzene (attributed to the C-N stretching and to the N=N stretching modes). The reason 

for the presence of this band will be further discussed in the next paragraphs. 

The overall spectral look after reduction does not change significantly when sweeping 

the potential down to -400 mV (Figure 3.4a, bottom). However, the CV of Figure 3.3 shows 

that at this potential the 4-NSBM is supposed to have reduced again into 4-HABM (reversible 

cathodic peak at -255 mV). Hence, since nitrosobenzene and hydroxylamine powder spectra 

show some dissimilarities (Figure 3.4b), it was expected also for the average spectra extracted 

from the maps at -100 and -400 mV to differ from each other. Recording in situ maps at fixed 

potential might therefore not be the more suitable method to capture intermediates and 

therefore solve the reaction mechanism of the adsorbed species. 

Nonetheless, some information about the layer composition and the substrate reactivity 

can be retrieved already from static analyses. Let us look first at the TERS maps on the right 

column of Figure 3.5, which are obtained by integration and superposition of the bands 

intensities in the ranges of NO2 stretching (blue), N=N stretching (green) and ring stretching 

(red), as shown in Figure 3.4a. The map on top, recorded before reduction, shows a majority 

of blue pixels, which are sparse over the whole surface, thus attesting of the uniform coverage 

of the gold substrate with the 4-NBM species. On the other hand, once subjected to reduction, 

the scanned area assumes an overall green coloration, while only few bright blue pixels remain: 
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this confirms again that almost all the NO2 groups were irreversibly reduced and that 

transformation into reaction products has occurred. 

 
Figure 3.5. In situ TERS mapping in alkaline medium - STM-TERS maps acquired on 4-NBM 

before and after reduction at -100 mV (top and middle maps) and after reduction at -400 mV (bottom). 

The STM maps showed in the left column were acquired simultaneously to the TERS maps, presented 

in the other two columns, which are obtained by integration of the band energy ranges shown in (Figure 

3.4b): the intensity of the three ranges is summed in the middle column (to show the overall molecular 

distribution) and superposed in the right column (to show the distribution of the predominant species 

among the pixels. The colored bars indicate the height (nm) and the intensity (arbitrary units) scales in 

the STM and TERS maps, respectively. All the maps were acquired on 200x100 nm2 areas with 50x25 

pixels, each one corresponding to a single Raman spectrum, acquired in 0.5 s with 250 µW 

power(1.56% of the nominal laser power) of the 632.8 nm laser line (BV = 0.1 V, IT = 1 nA). The STM 

maps were treated with the AIST software tool. The areas encircled in blue and in green identify, 

respectively, a terrace edge and a flat protuberance. 

The maps on the middle column of Figure 3.5 result instead from the sum of the 

intensities recorded in the three above-mentioned ranges, with the aim of observing variations 

in the total TER signal over the scanned surface. These can be compared also to the 

correspondent STM maps (on the left column of Figure 3.5), which were recorded 

simultaneously to the TERS maps and report the height profiles over the scanned area. Each 

pixel in the maps has a dimension of 4 nm, which is quite high respect to the usual resolution 

achieved by STM. As a consequence, the cartographies only show a blurred image of the 

substrate, where the gold terraces are just hinted and no clear presence of molecular layers is 

noticed. In fact, the molecular layers were not observed either when performing STM alone (at 

better spatial resolution) on functionalized-substrates (see Figure 2.15c). Nevertheless, it is 

possible to remark that the TERS intensity trends seem following the height profiles: the bright 
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zones correspond to terraces edges in the STM maps (e.g. in the areas encircled in blue in 

Figure 3.5), because these curved surfaces have a higher effective area for adsorption and can 

therefore host a higher number of molecules, or else enhance more strongly the local electric 

field 214. Oppositely, flat protuberances correspond in the TERS map to darker zones (as in the 

zone identified by the green circle in Figure 3.5). Loss of signal on these terraces could be 

explained by less efficient topography tracking by STM, or partial gold oxidation leading to 

partial desorption of the mercaptan species 215 or to possible temporary loss of “gap mode” 

enhancement.  

Table 3.1. Attributions of the main bands observed in the TERS (adsorbates) and µRaman (powder) 

spectra of the compounds involved in the 4-nitrobenzene reduction mechanism. Intensities: vs (very 

strong), s (strong), m (medium) and w (weak). 

Attribution 𝝂̃ –TERS (cm-1) – 

adsorbates 

𝝂̃ – μRaman (cm-1) – powders References 

Nitrobenzene 

δ (C-H) 1107 w (1098 w) 1110 m (1108 m) [204,208] 

CH2 wag. + ring 

stretching 

1220 w (1222 s) 1220 w (1222 s) [216] 

ν (N-O)sym 1346 vs (1339 vs) 1352 vs (1346 vs) [204,208] 

Ring stretching 1594 s (1586 s) 1600 s (1586 s) [204,208] 

Monomers 

δ (C-H) 1165 m, 1504 w (1170 w, 

1494 w amino) 

1001 vs (1002 vs nitroso) 

1005 s (996 m hydroxylamine) 

1177 w (1178 w amino) 

[125,208,216] 

ν (C-S) + 

ring modes 

- 1006 w, 1087 vs 

(1002 w,  1076 vs amino) 

[216] 

ν (C-N) + 

ring modes 

1309 w ? 1288 w, 1493 w 

(1284 w, 1484 w amino) 

[208,216] 

ν (N-O) 1343 m ? (1332 m  nitroso) 1252 m + 1403 m 

(1265 s + 1407 m nitroso) 

1230 m (1230 hydroxylamine) 

[125,208,217] 

Ring stretching 1592 s (1589 s nitroso, 1585 

s hydroxylamine, 

1595 s amino) 

1587 s (1593 s nitroso) 

1606 m (1585 m hydroxylamine) 

1591 s (1588 s  amino) 

[208,216] 

ν (C-H) - 3067 w (nitroso) 

3020 s (hydroxylamine) 

3054 w (3055 s) 

[218] 

ν (N-H) - 3244 w (hydroxylamine) 

3336 w (3355 m amine) 

[218] 
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Dimers 

δ (C-H) - 1000 m, 1183 m 

(1002 s,1182 m azobenzene) 

[208,219] 

ν (C-N) + 

ring modes 

1138 s 

(1144 s azoxybenzene, 1146 

s azobenzene ) 

1146 s 

(1147 s azobenzene) 

[208,219] 

ν (N=N) + 

ring modes 

1408 m, 1452 s 

(1388 m, 1424 s, 

1463 w azobenzene) 

1439 vs, 1471 m, 1491 m 

(1440 vs, 1472 m, 

1492 m azobenzene) 

[208,219] 

 

Ring stretching 1578 m 

(1590 m azoxybenzene, 

1592 m azobenzene) 

1589 m (1590 m azobenzene) [208,219] 

 

These results manifest the utility of STM-TERS not only as mere spectroscopic 

technique, but also as highly sensitive tool for structural investigations. However, there are still 

some questions that could not be properly answered by fixed-potential space maps: why no 

evident spectral changes occur when polarizing negatively after reduction? And what is the 

origin of azobenzene bands? Time-resolved EC-TERS investigations are expected to provide 

answers to these interrogatives, which will be discussed in the next paragraphs. 

3.3.3 Deciphering of the reaction mechanism by real-time TERS 

3.3.3.1. Hypotheses for the reaction mechanism 

First and second hypotheses: mono vs bimolecular paths. In Section 3.2.2 we 

proposed a reduction mechanism for nitrobenzene derivatives that is summarized by the black 

path shown in Figure 3.6. Since all the reaction steps involve the presence of protons, it is 

expected that performing the reduction in acid or even neutral media leads quite fast and 

directly towards the final amino product, following a first-order reaction path, as it has been 

previously observed 206. 

However, Figure 3.6 shows also a bimolecular path, in blue, that involves the 

condensation of adjacent NHOH and NO groups into a dimeric species, the 4,4’-dimercapto-

azoxybenzene (DMAOB), which reduces irreversibly into 4,4’-dimercaptoazobenzene 

(DMAB). This, in turn, can convert reversibly into 4,4’-dimercaptohydrazobenzene 

(DMHAB), its “open” form, which finally splits into two amino monomers. All these processes 

follow a 2-proton/2-electron reaction scheme. It was observed that this bimolecular mechanism 

mostly occurs in alkaline media, where the nitrosyl group becomes strongly electrophilic 204 
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and therefore promotes the coupling with hydroxylamine and the formation of DMAOB. An 

in situ study on the two different reaction mechanisms was carried out already in 1988 by Gao 

et al. 208. In this work, the electrochemical and spectral signatures of nitrobenzene (initially in 

solution) were observed upon its adsorption (irreversible or not) onto a roughened gold rotating 

disk electrodes, either in acid or in basic media. In both conditions, the application of negative 

potential values led to a progressive disappearance of the NO2 band and the appearance of NO 

spectral features. However, only in alkaline environment the backward scan showed the 

appearance of additional bands, attributed to the azoxybenzene and/or the azobenzene groups. 

Nonetheless, these were observed only for solution-phase experiments, whereas they were very 

weak or invisible in case of irreversibly adsorbed nitrobenzene. No characteristic 

electrochemical peaks were observed in the voltammograms either for adsorbed nitrobenzene, 

except for the cathodic wave of the total reduction of nitro into amine. 

 
Figure 3.6. Possible reaction mechanisms involving nitrobenzene derivatives: first-

order/monomolecular (black), second-order/bimolecular (blue) and photoactivated (green). 

Third hypothesis: photochemical effect. The analogies among Gao’s observations and 

our own results would suggest that our experimental conditions favour the occurrence of the 

second-order mechanism. However, a third hypothetic reaction path (shown in green in Figure 

3.6) has been recently proposed by Zhao et al. 204. In their work, they developed a metallic 

cluster model for DFT calculations that allowed investigating the thermodynamics and kinetics 
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of 4-NTP reduction on gold and silver, and comparing the SERS with the SEIRA (surface-

enhanced infrared adsorption) spectra simulated on the reduction products. According to their 

results, while the electro-reduction of 4-NTP proceeds fully towards 4-ATP under IR 

irradiation, illumination via visible light (employed in Raman analyses) seems to play an 

important role in the formation of dimeric products. On silver, this can occur by direct photo-

reduction (or photoxidation) of adjacent 4-NTP (or 4-ATP) molecules, since the illumination 

of the surface promotes the metal-to-molecule (or molecule-to-metal) charge transfer. 

However, gold surfaces have been reported to promote less efficiently these reactions 210,220. 

Only gold sols, which have higher surface areas respect to flat substrates and limit the plasmons 

propagation decay (thanks to the presence of several hot sites for LSPR) showed some 

important catalytic effects upon irradiation with a 632.8 nm source 210.  

 
Figure 3.7. Energy diagram of photo-induced CT transitions of 4-NTP on gold and silver within 

visible light irradiation. Blue and red lines represent the electronic state on gold and silver, 

respectively. Solid and dashed lines are the HOMOs and LUMOs of the surface complexes. Dotted 

lines are the metal Fermi levels. Reproduced from [204]. 

Nonetheless, Zhao’s calculations of the metal-to-molecule charge-transfer transition 

energies (summarized in Figure 3.7) predict that photo-induced reduction of 4-NTP adsorbates 

(into 4-NSTP and, later on, into 4-HATP) should actually be thermodynamically favoured on 

gold surfaces illuminated by visible light. Therefore, since the LUMO of 4-HATP is too high 

in energy and would require excitation wavelengths in the ultraviolet range in order to reduce 

to 4-ATP, 4-HATP might tend to accumulate on the surface and react with 4-NSTP to yield 

DMAOB 204. Also DMAOB and DMAB can be photo-chemically reduced, while the LUMO 

of DMHAB is too high for it to convert into 4-ATP under light irradiation. This means that 

these specific reaction intermediates could form even without any electrochemical trigger. In 

our case dimerization may also be favoured by a larger flexibility provided by the addition CH2 

unit in 4-NBM compared to 4-NTP. 
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Azo or amino? Ambiguous bands attribution. The three presented mechanisms are 

susceptible to occur under specific conditions, i.e. using silver (possibly gold) SERS platforms, 

green (possibly red) irradiations and electrochemical polarisation; they might thus compete 

with each other and generate confusion over the real processes occurring in the studied system. 

This is the case especially for the bands arising from the C-N and N=N stretching modes, whose 

real origin of has been object of debates. Although for many years these bands have been 

unanimously attributed to the dimeric intermediates 208, a SERS study  carried out by Kim et 

al. 221 on 4-ATP and DMAB adsorbed on gold (λexc = 633 nm) showed that the two compounds, 

when observed in alkaline media, have coincident spectral features that make them 

undistinguishable from one another. However, in acid media the situation is different: while 

DMAB shows still its characteristic features, in 4-ATP they progressively disappear as the pH 

decreases. This observation was explained considering the different nature of the vibrational 

modes from which such bands originate in the two compounds. In DMAB, they arise from 

total-symmetric ag-type modes and correspond indeed to the C-N and to the N=N stretching 

vibrations of dimers. In 4-ATP, instead, they consists in b2-type symmetry bands, arising from 

the π  π* molecular transition (1A1  1B1) at 300 nm. This transition violates standard Raman 

selection rules, hence the b2-mode cannot be detected by μRaman analyses on powder or liquid 

samples. However, upon adsorption on SERS-active substrates, a lift of the selection rules 

occur due to the different electron density distribution, and symmetry-forbidden transitions can 

be observed 221. This ultimately allows the detection of the b2-type mode bands, the intensity 

of which though will strictly depend on the sample polarization, on the excitation wavelength 

and especially on the medium pH. When the acidity increases too much (pH ≤ 4), the amino 

functionality is protonated, hence the gap between the highest and the lowest occupied 

molecular orbitals (HOMO and LUMO) becomes too wide for the transitions to be excited in 

the visible range 221 and the bands disappear. 

Ultimately, in order to discern among the different reaction mechanisms and to 

recognize the origin of the recorded signals, static and dynamic analyses were performed on 

both 4-NBM and 4-ATP SAMs under different experimental conditions. Conclusions drawn 

from the comparison of the results allowed us elaborating a hypothesis for the overall reaction 

mechanism involving 4-NBM SAM. 
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3.3.3.2. Specific experimental conditions for time-resolved measurements 

As it was for the acquisition of space maps at fixed potentials, also time-resolved 

spectral analyses were performed on the newly developed EC-STM-TERS setup. The only 

difference respect to previous experiments stands in the configuration of the function generator, 

delivering the potential sweep command to the bipotentiostat, which is triggered externally by 

the CCD camera. Thanks to this expedient, it is possible to synchronize the spectral acquisition 

time with the potential ramp, hence to observe the evolution in the spectral signature at each 

potential interval. For our measurements, a specific sequence was designed that consisted in: 

(i) a first chronoamperometric step at the highest voltage potential (= OCP); (ii) a cathodic 

ramp down to the lowest voltage potential; (iii) a first anodic ramp up to an intermediate 

potential (chosen in order to be placed just before the 4-HABM reconversion into 4-NSBM, 

see Figure 3.2 and Figure 3.3); (iv) a second chronoamperometric step at the same 

intermediate potential; (v) a second anodic ramp back to the OCP; (vi) a final 

chronoamperometric step at the OCP. For the steps (ii), (iii) and (v), the total time of the ramp 

was adjusted in order for the potential to be scanned at a speed of 50 mV.s-1. Since the 

spectrometer was set to record a spectrum per second, each spectrum recorded during those 

steps corresponded to a 50 mV potential variation. 

The potentials values were adapted depending on the electrolyte chosen (see Figure 

3.3) to perform the reduction, i.e. either the bicarbonate buffer (pH 10.7) or a 1 mmol.L-1 

solution of 96 % H2SO4 (Carlo Erba, final pH 2.7); in this case, using a less acidic electrolyte 

is necessary to avoid dramatic tunnelling current noises (due to gas evolution and large 

Faradaic currents) observed at lower pH values. Thanks to the open configuration of the cell, 

it was possible, when required, to change the electrolyte between measurements without losing 

the tip/laser optical alignment and, as a consequence, to redefine the tip hot-spot position that 

provides the highest TERS signal level using only slight displacements of the objective 

scanner. For these experiments, the cell was first emptied from the first electrolyte with a 

syringe, then it was filled/emptied twice with distilled water and gently dried, in order to 

remove the residues of the first electrolyte, and finally it was filled again with the second 

electrolyte. 
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3.3.3.3. Real-time spectral acquisition during potential ramp 

In order to get closer insights into the reaction mechanism of the 4-NBM SAM, it was 

first chosen to acquire TERS time maps during the reductive ramp (from -100 to -850 mV, 

with the intermediate step at -400 mV), while scanning the sample surface under STM control. 

Thanks to the CCD camera/function generator synchronization, set as previously explained, 

each evolution in the spectral time map could be related to the corresponding applied potential, 

as shown in Figure 3.8a-b. The overall CV is illustrated in Figure 3.8c, while Figure 3.8d 

reports a few salient spectra and the values of polarization at the time of their acquisition. 

Before starting the ramp (spectrum 1 of Figure 3.8e), the classic 4-NBM signature is 

observed, clearly recognizable from the NO2 and ring stretching bands. This signature stays 

unaltered until around -550 mV, when the ring stretching broadens and a few bands start 

appearing in few zones below 1400 cm-1. Then, at -700 mV, the NO2 mode disappears 

completely, in correspondence with the peak of the cathodic wave on the CV. Going even lower 

in potential, at -800 mV, a sudden arise of intense signatures occurs in the energy range 

belonging to the bands of CH bending and CN stretching (1110-1200 cm-1 range), NO 

stretching (1300-1400 cm-1 range) and N=N stretching (1400-1500 cm-1). The overall spectral 

intensity drops when ramping the potential towards the higher voltage, however the signal 

never disappears completely and the ring stretching band keeps staying sharp. 

This indicates that the new bands arise from species that are well anchored to the gold 

substrate and that the studied system is unaffected by desorption phenomena. This also 

demonstrates that the tip-sample feedback current control is operative even for the high BV 

values reached during the negative scan (0.85 V at the lowest limit), as a TERS signal can still 

be observed. Moreover, the stronger TERS intensity recorded at highly negative polarisation 

could originate, as mentioned earlier, from the densification of the electrons at the tip-sample 

junction, resulting in an extra signal enhancement. 

The new signatures, only hinted at low potentials, become sharper and more 

recognizable during the chronoamperometric step at -400 mV (spectrum 2 of Figure 3.8e). The 

overall spectral profile is then maintained almost unaltered during the final backward ramp and 

at the OCP (spectrum 3 of Figure 3.8e), albeit the CV shows a clear anodic current peak 

attributed earlier to the reconversion of 4-HABM into 4-NSBM. The appearance of a small 

intensity signature at 1277 cm-1, which might arise from the NO stretching of either nitroso or 

azoxybenzene, could be the consequence of this oxidation reaction. 
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Figure 3.8. EC-STM-TERS measurement on 4-NBM SAM in alkaline medium: a) polarization 

sequence (three potential ramps), b) spectral signature dependence with the potential, c) resulting I-E 

curve (cyclic voltammogram), d) most significant spectra extracted from  (b) at potential values marked 

by the red dotted lines in (b), e) averaged spectra from the chronoamperometric steps signalled in (a) 

by the grey dots. Each line on the map corresponds to a single Raman spectrum (acquired in 1 s with 

160 μW power (1% of the nominal laser power) of the 632.8 nm laser line, BV variable, IT = 1 nA) and 

to a 50 mV potential shift. The spectra have been subjected to background removal. 
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3.3.3.4. Origin of dimer bands 

Although in the previous paragraph we associated some of the novel bands, evidenced 

in green in Figure 3.8e, to the CH stretching and the N=N modes of the azobenzene moiety, 

their definitive origin and unequivocal identification cannot yet be claimed. First, if these bands 

were to actually belong to azobenzene, this latter could be formed either through the 

“bimolecular” electrochemical path or through the photoactivated path (light-induced 

dimerization). Besides, these bands could originate in alkaline medium from surface-induced 

promotion of b2-forbidden modes in the amino product as observed by Kim 221. 

 
Figure 3.9. Influence of the Raman probe - STM-TER spectra acquired in the alkaline buffer after a 

2-min irradiation of the sample using a red laser (632.8 nm) at increasing illuminating power (original 

source power increasing from 250 μW to 4 mW (1.56% to 25% of the nominal laser power), BV = 0.1 

V, IT = 1 nA). Each spectrum was acquired for 1 s and the tip was let scanning during the whole 

experiment. The spectra have been lightly smoothed, while the background was not removed. The green 

dotted lines identify the range where the “dimer” bands should be observed. 

Assessment of photo-induced NO2 dimerization. As it was previously mentioned, the 

occurrence of photochemical effects can be induced by the generation of “hot electrons” on the 

gold tip apex maintained in close vicinity to the molecular layer. In our experimental work, this 

phenomenon was minimized by carrying out the measurements at the minimum possible laser 

power (i.e. 160-250 μW max, 1-1.5% of the nominal laser power) and by constant raster 

scanning of the tip across the surface during the TERS acquisition (temporal mapping) 

synchronized to the potential ramp. Besides, the influence of the irradiation on the TERS 

response of the 4-NBM SAM at the tip-sample junction was evaluated. For that the Raman 

response of the functionalized substrate in the alkaline buffer was recorded at the OCP using 
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the 632.8 nm laser line at increasing laser power. As shown in Figure 3.9, even at the highest 

power (i.e. 4 mW) no dimeric bands can be detected, only an increase in the background noise 

can be observed. This suggests that the influence of photo-induced effects on the formation of 

the “dimers” signature observed by EC-TERS is minimal and, therefore, can be, if not 

neglected, considered secondarily in the interpretation of the reaction mechanism. 

Exclusion of photo-induced NH2 dimerization. Once ruled out the contribution of the 

photo-activated processes on the nitro groups’ transformation, it was necessary to understand 

if the new intense bands that appeared upon reduction belong rather to the azobenzene dimer 

or to the amino product. In order to do that, EC-STM-TERS measurements were performed on 

an aminothiophenol (4-ATP) molecular layer self-assembled on a gold plate (according to the 

same procedure described for 4-NBM) and mounted in the EC-TERS cell filled with the 

bicarbonate buffer. Therefore, the composite ramp between -100 and -850 mV described 

previously was launched, while the TERS probe kept scanning the sample surface, in order to 

monitor the uniformity of the transformations over the whole scanned area, while minimizing 

photo-activated reactions. All the results are summarized in Figure 3.10. 

As expected, no characteristic electrochemical features are observed in the 

voltammogram, as 4-ATP is the end reduction product of the irreversible nitrobenzene 

reduction path, therefore is not supposed to be furtherly reduced or re-oxidized in the potential 

range explored. The slight drop in current (Figure 3.10a) and the hysteresis in the backward 

scan at lower potentials (Figure 3.10c) is indeed attributed the slight electrolyte reduction only. 

This is confirmed by the TERS time map (Figure 3.10b) and by the comparison of the spectra 

recorded before and after the ramps (Figure 3.10d), which do not show any change in the 

vibrational signature of 4-ATP. Interestingly, all the spectra present the same bands at 1140, 

1392 and 1440 cm-1, which match with those indicated in Kim’s paper as the b2-type bands 221. 

Nonetheless, this result alone is not sufficient to rule out the hypothesis of attribution 

of these signatures to dimeric species. In fact, a tendency for dimerization has been observed 

220 on 4-ATP samples adsorbed on silver and gold nanoparticles, depending on the wavelength 

and on the power of the irradiating source. Oxidation of aniline to azobenzene under laser 

irradiation is indeed reported to occur via the combined effects of SPR and adsorbed triplet 

oxygen molecule 3O2
 on 4-ATP-capped Ag or Au NPs. The process on gold occurs more 

efficiently upon red laser (632.8 nm) illumination, whereas green light (514.5 nm) is more 

effective on silver. However, while conversion of 4-ATP into DMAB on silver is observed 
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already at low laser power (250 nW), gold surfaces, which are more inert because of the 

formation of superficial oxides, generally require more intense illumination (up to 650 μW to 

detect a 1:1 intensity ratio between 4-ATP and DMAB bands) 220. 

 
Figure 3.10. EC-STM-TERS measurements on 4-ATP SAM in alkaline medium: a) polarization 

sequence (two “composite” potential ramps), b) spectral signature dependence with the potential, c) 

resulting I-E curve (cyclic voltammogram) and d) spectra recorded before and after the ramp (a). Each 

line on the map corresponds to a single Raman spectrum (acquired in 1 s with 250 μW power (1.56% 

of the nominal laser power) of the 632.8 nm laser line, BV variable, IT = 1 nA) and to a 50 mV potential 

shift. The spectra have been subjected to background removal. The red rectangles highlight the band 

initially attributed to the “dimer” products but which could stand for forbidden mode of ATP in alkaline 

medium.   

In our working conditions the oxidizing effects due to atmospheric O2 are supposed to 

be minimized, first because the experiences are carried out on a liquid electrolyte, which in 

addition damps partially the power of the illuminating source. Moreover, because the solution 

was degassed prior to the measurements, it is expected to have a very low content of molecular 

oxygen. Finally, as for the EC-TERS study of 4-NBM, possible photo-induced effect promoted 
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at the tip-sample junction were prevented by using illumination powers never higher than 250 

μW and keeping the tip scanning the surface. 

 
Figure 3.11. TERS/SERS signature dependence with the media for 4-ATP: a) TER spectra in 

different media recorded on a 4-ATP-functionalized gold plate subjected to a polarisation sequence 

similar to the one used for 4-NBM (exploration of reductive potential ranges). The plate was subjected 

to a first potential ramp (370 to -380 mV, scan rate: 50 mV.s-1) in 1 mmol.L-1 H2SO4 (pH ~3) and then 

to a second one (-100 to -850 mV) after swapping the electrolyte to bicarbonate buffer (pH ~11). The 

red rectangles highlight the band expected for a “dimer” reaction products. Each spectrum was averaged 

from a TERS time map, before and during the potential sweep (30 x 1s spectra, recorded during the 30s 

time map, power of the 632.8 nm laser line: 160 μW (1% of the nominal laser power), BV variable, IT 

= 1 nA). b) SER spectra acquired on gold surface functionalized with DMAB thiol (left) and 4-ATP 

(right) at different pH values using 632.8 nm radiation as the excitation source. Adapted from [221]. 

To push further the investigation of the possible contribution of photo-dimerization 

processes, we assessed the influence of the pH of the medium on the TERS response of 4-ATP 

under similar polarization conditions as the one used for the study of 4-NBM (exploration of 

reductive potential range). We proceeded as follow: first, the 4-ATP sample was imaged and 

then subjected to a potential ramp at pH 2.7. The polarisation was temporally stopped, the 

TERS probe slightly retracted and the electrolyte changed for the buffer at pH 10.7, the hot-

spot position checked after the tip was brought back in contact with the sample and a second 

ramp was acquired. The two ramps were built as described for the experiment in Figure 3.10, 

but in acidic environment the scan range was readjusted to +370 and -380 mV as higher and 

lower voltage values, respectively (see pH dependence of the potential range on Figure 3.3), 

while the tip was kept at +470 mV. Figure 3.11a-b compare the results obtained on 4-ATP in 

this study with those reported by Kim 221 for both DMAB and 4-ATP at different pH values. 

In fact, differently from the spectra reported in the literature for 4-ATP, we observed spectral 
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features in the 1400-1500 cm-1 energy range in alkaline but also in acidic medium, which could 

indicate the formation of the dimer DMAB. These features though do not stand out sharply 

since the spectra are quite noisy, even after averaging 30 x 1s-acquisition spectra. On the other 

hand, in our study the band at 1140 cm-1 appears neat in basic environment but turns out to be 

absent in acid medium. This results, along with Kim’s observation for 4-ATP 221, suggests that 

this latter does not dimerize into DMAB under the studied conditions. 

 
Figure 3.12. TERS signature dependence with the media and polarization for 4-NBM: a) TER 

spectra taken on a 4-NBM-functionalized gold plate. The plate was subjected to a first potential ramp 

(-100 to -850 mV at a speed of 50 mV.s-1) in bicarbonate buffer (pH 10.7) and, right after, to a second 

one (+150 to -600 mV at the same speed) in 1 mmol.L-1 H2SO4 (pH 2.7). Each spectrum is the average 

of the first or the last chronoamperometric step in the complex potential ramp (5x1s-spectrum, acquired 

with 160 μW power (1% of the nominal laser power) of the 632.8 nm laser line). The intensities of the 

spectra taken in acid medium were multiplied by a factor 2 in order to better observe their features; b) 

Superposition of the two CVs recorded during the EC-TERS experiment in the alkaline buffer (black) 

and in the acidic medium (red). 

Confirmation of the electrochemical formation of dimers. Finally, a similar 

experiment as the last one described was performed on 4-NBM, aiming to recognize whether 

the 1140 and 1400-1500 cm-1 signatures belonged to the amino product or to the dimeric 

intermediates generated upon negative polarization of the electrode. In this case, the sample 

was first cycled in the buffer (from -100 to -850 mV), then transferred into the acid electrolyte 

and cycled again (from +150 to -600 mV). Note that by polarising the electrode in acidic 

medium, one can expect to promote the reduction of the dimer into the amino analogue as 

illustrated on Figure 3.6. As Figure 3.12a shows, on the reduced 4-NBM the characteristic 

bands of the dimers (in the green ranges), and especially the signature at 1140 cm-1, which in 

the 4-ATP example disappeared completely at low pH, are still strong after changing the 

electrolyte from the buffer to the acidic medium. This suggests that the observed signatures 
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truly belong to the dimeric species and not to the amino product, and that the reaction proceeded 

along the second-order reaction path when working in basic electrolyte. 

Besides, the presence of azobenzene bands even after the second reductive cycle in acidic 

medium suggests that the dimeric compound is stable enough not to convert totally to the amino 

product. The amino product (4-ABM) though, might still form to some extent, along with the other 

monomeric intermediates (4-HABM, 4-NSBM), as it can be seen from the signatures in the orange 

ranges of Figure 3.12a. At the end of the second cycle, however, these bands are expected to 

belong to the sole 4-ABM, as the correspondent voltammogram (Figure 3.12b) does not show 

any longer the anodic peak of reconversion from 4-HABM to 4-NSBM, meaning that all the 

intermediate monomers disappeared (either by total reduction to amino or by coupling into 

dimers). 

3.4. Discussions and conclusions 

Through important technical developments (4-electrode cell optimization, 

synchronization of the TERS signal collection with the polarization steps), we have 

demonstrated in this work that TERS mapping with high lateral resolution (4-nm pixel size) 

and time-resolved (1s) TERS measurements could be implemented in situ to get a deeper 

understanding of the electrochemical transformation of non-Raman resonant electroactive 

molecular layers (4-nitrobenzene mercaptan 4-NBM).  

This analogue of 4-nitrothiophenol (4-NTP), largely studied by SERS in air and under 

electrochemical conditions, shows a very similar electrochemical reactivity, although it turns 

out to be less prone to desorption as contaminations of the TERS during in situ experiments or 

cross contaminations of samples between successive experiments using the TERS 

electrochemical cell were not observed (as with 4-NTP).  

A previous work of our group (T. Touzalin) was dedicated to the study of 4-NTP 

electrochemical transformation in acidic medium via single hot-spot EC-SERS experiments 

(“tip-SERS”: SERS-active gold microelectrode functionalized with 4-NTP). However, only a 

partial understanding of the system transformation was achieved, because of the fast conversion 

of 4-NTP to 4-ATP in acidic medium (high proton concentration). Also, real-time SERS signal 

tracking during the potential exploration was complicated by the sudden surge of signal 

intensity (leading to the detector saturation), the cause of which is still not understood. In the 

study presented herein, alkaline medium was favoured to acidic medium as the low 
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concentration of protons may stabilize reaction intermediates (extended lifetime) and their 

possible detection by time-resolved TERS.  

However, when working in alkaline medium, the extended potential range which has to 

be explored to fully reduce the 4-NBM compounds constitutes a major bottleneck to EC-TERS 

implementation using STM feedback for the control of the tip-sample distance. We showed in 

this work that by holding the gold STM tip at potentials where no electrolyte reduction takes 

place (Faradaic current lower than tunnelling current), the STM bias between the tip and the 

sample could be adjusted (increased and decreased) to mimic potential scans (CVs) while 

allowing strong TERS signals to be registered in real time over large potential windows. No 

signal surge, as for tip-SERS on 4-NTP, was observed either for 4-NBM or 4-ATP. More 

importantly, the STM feedback for the tip-sample distance control was not impacted in the 

alkaline medium by the large bias values that were used. This is, to our knowledge, the first 

demonstration of EC-TERS experiments at such negative polarisation (down to -1 V).  

The information gathered by TERS on the dynamics of the sample composition 

evolution upon polarisation, along with all the considerations drawn from the additional 

implemented tests (TERS study of the amino compound 4-ATP, influence of the pH), allows 

us formulating a hypothesis regarding the reduction mechanism of 4-NBM under the employed 

conditions. In alkaline medium, 4-NBM should first reduce partially into hydroxy-amino 4-

HABM at around -550 mV: this would explain the apparition of weak CH bending and NO 

stretching bands at this stage. The irreversible reduction of all the nitro groups would then 

occur around -700 mV, but the main reduction products (i.e. the amino analogue 4-ABM and 

the dimers, mostly the azobenzene DMAB analogue of 4-NBM) form concomitantly only at 

lower potentials (-800 mV). We showed that dimers do not originate from 4-ABM photo-

oxidation, upon irradiation of the gold tip-sample junction in solution with a red laser, but 

rather from condensation of 4-HABM with residual nitroso derivative 4-NSBM (or even 4-

HABM self-condensation). The conversion of 4-HABM, though, does not seem to be complete, 

as its re-oxidation into NSBM is manifested in the CV by the anodic peak and hinted in the 

TER spectrum from the new weak bands appearing above -400 mV. 

Several species are therefore present at the end of a single reduction cycle. However, 

when performing more explorations of the negative potential range, the monomeric 

intermediates (NSBM,4-HABM) vanish, as evinced by the disappearance of their bands, thus 

leaving 4-ABM and DMAB analogue as the most abundant and stable reduction products (as 
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shown in Figure 3.12). This means that the reaction does not get to completion, i.e. DMAB 

azo bond cannot be “opened” to form DMHAB (and eventually split into two 4-ABM 

monomers) as suggested by Gao’s mechanism (see Figure 3.6). On one hand, the competitive 

reaction path leading to 4-ABM and to the DMAB analogue could be explained by the 

particular working conditions employed (mild alkaline environment, reductive polarizations 

limited to -0.85V) to study the reaction; acidic conditions and repeated polarizations at more 

negative potentials might help pushing further the reduction process, towards the formation of 

the sole 4-ABM product. On the other hand, the simultaneous presence of different products 

might also be a consequence of the heterogeneity on the gold surface structure 206, revealed by 

the STM-TERS mapping. Such inhomogeneity may promote a non-uniform charge distribution 

over the whole active area during the surface polarization and therefore a distribution of 

reactivity. 

These first results obtained on a model 4-nitrobenzene sample show the potential of the 

EC-STM-TERS experiments to unveil complex reduction mechanisms. Further studies on 4-

NBM could aim at investigating other experimental conditions (in terms of pH, potential range, 

laser excitation power, wavelength, etc.) and at assessing further the possible impact/ 

contribution of photo-induced processes. The influence of the distance between the NO2 

electroactive group and the anchoring SH group on the kinetics of the electron transfer 

(between the gold electrode and the nitrobenzene derivative) and on the resulting reduction 

mechanism would be of great interest. As for the reduction mechanism of anchored 4-

nitrobenzene derivatives, the knowledge acquired from the study of the model thiolated sample 

can be applied for the investigation of more complex molecular structures, as it will be the case 

for the subject of the following Chapter 4. 

  



 

126 

 

  



 

127 

 

Chapter 4 Diazonium-based structures: influence of the 

thickness on the electrochemical reactivity 

4.1. Introduction 

Controlling the modulation of the growth of the molecular assemblies, along with 

understanding its impact on the overall reactivity of the functionalized electrode system, is 

essential to design robust and device-oriented fabrication procedures. This chapter will focus 

at establishing the relationship between the structure of electroactive molecular layers and their 

electrochemical reactivity by implementing EC-TERS measurements. More specifically, it will 

be dedicated to the study of layers obtained by electro-reduction of aryldiazonium precursors. 

As already described in Chapter 1, the electrochemical reduction process generates a highly 

reactive radical intermediate, leading to the spontaneous formation of multilayers in a non-

organized fashion. The grafting process can be however controlled using the so-called redox 

“cross-inhibitor” method, allowing in the best scenario the production of monolayers. 

For diazonium precursors carrying redox-active entities, the reactivity of the resulting 

grafted layers will strongly depends on the distribution of the redox group within the produced 

3D structure 222, which impacts both the electron transfer (distance of the redox group to the 

electrode) and the transport phenomena (e.g. accessibility of the redox groups to water 

molecules and protons from the electrolyte). The first phenomenon has been observed, for 

instance, on Si(100) grafted with ferrocene-containing triazene derivatives 223, where the 

electron transfer rate between the substrate and the ferrocene center decreased dramatically 

(down to 164 s-1) when thick multilayers were formed, while the second accounts for the 

reduced bromine reactivity (only 60 %) inside bromoethylphenyl layers 59. Menanteau et al. 

showed the impact of both factors in a study carried out on 4-nitrobenzene layers: these were 

first subjected to reduction to transform the nitro groups into amine, and then the amine 

function was used to attach a TEMPO unit, which has both redox and electrocatalytic properties 

72. When the 4-nitrobenzene species were arranged in multilayers, not only the rate of 

conversion into amine was lower than for the monolayer structures (slower ET rate), but also 

the TEMPO units, which could be partially inserted inside the thick architectures and therefore 

less accessible to the electrolyte, showed a dramatic decreases in their electrochemical 

reactivity. In conclusion, gathering control over the growth of diazonium-derived layers is 

essential for fabricating device-oriented structures. 
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While the previous Chapter 3 focused on the reactivity of well-organized structures, 

self-assembled in homogeneous monolayers, this new section will evaluate the reactivity of 

more complex architectures, covalently bounded to the substrate (characteristic of the 

aryldiazonium salt chemistry, as described in Chapter 1). 4-nitrobenzene diazonium (4-NBD) 

was selected in this work as a grafting precursor to produce electroactive molecular layers 

carrying nitro redox entities 51,56,222. Since important insights in the reduction mechanism of 

nitro-functionalized molecular compounds have been gained through the EC-TERS study of 4-

NBM (described in Chapter 3), these will be used as a base for establishing the impact of the 

layer structure on its reactivity (preferential intermediate formations, extent of reaction, etc.). 

The strategy developed in this work consists first in controlling the reactivity of 4-NBD 

in the presence of redox “cross-inhibitors” (see Chapter 1) to produce layers of 4-nitrobenzene 

of different thicknesses on various substrates (gold mostly, although attempts have been made 

on glassy carbon). Optimization of the grafting conditions (concentration of inhibitor, electro-

grafting setup, polarization sequence) was achieved through the assessment of the 

electrochemical performances and ex situ characterization of the grafted electrodes using 

various analytical techniques (AFM, ellipsometry, XPS). Based on the progress achieved on 

the instrumentation side (Chapter 2) and on the understanding of the electrochemical reactivity 

of nitro-based molecular layers (Chapter 3), EC-STM-TERS measurements will be carried out 

on 4-NB functionalized electrodes. The investigations will be performed in alkaline medium 

(where, due to the slower reduction kinetics, it is expected to detect more easily the reaction 

intermediates) and will aim at evaluating the impact of the layers structure on their 

electrochemical reactivity. 

4.2. Elaboration of functionalized surfaces by controlling 

diazonium chemistry 

The first part of the work consisted in studying how to control the growth of 4-NB-

derived layers on gold surfaces. In this section we will first illustrate the methods employed to 

perform electrochemical grafting of 4-nitrobenzene layers from the reduction of the 

corresponding diazonium salts, then present the inhibition approach experimentally applied to 

control the layer thickness. Finally, the post-grafting characterization analyses performed in 

situ on the produced layer will be discussed. 
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4.2.1 Electrochemical grafting of 4-NB radicals on gold 

Grafting solutions for gold electrode functionalization were prepared by solubilisation 

of 4-nitrobenzene diazonium tetrafluoroborate (4-NBD, Sigma Aldrich) and n-tetrabutyl 

ammonium tetrafluoroborate (NBu4BF4, Sigma Aldrich) in dry acetonitrile, taken either from 

a solvent dispenser, or from a septum-sealed bottle (DriSolv®, purity ≥95%, VWR). The final 

concentrations were 1 or 0.1 mmol.L-1 for 4-NBD and 0.1 mol.L-1 for NBu4BF4, used as the 

supporting electrolyte. Before use, the grafting solution was deoxygenated by argon bubbling 

for at least 5 minutes. The modification was performed either on home-made gold sphere 

electrodes (prepared according to the procedure in ref. [224]) or on a commercial gold disk 

electrode (as in Chapter 3); in both cases, the same gold reconstruction procedure was carried 

out. In the electrochemical setup, gold electrodes always constituted the WEs and the platinum 

wire the CE. As for the reference electrode, initially it was chosen to employ a SCE for the 

characterization and a simple Ag wire (pseudo Ag/Ag+ reference) for the grafting, so that to 

avoid dipping the SCE in the non-aqueous grafting solutions 225. However, it was later noticed 

that the potential of the pseudo Ag electrode tended to shift between experiments and it was 

therefore not as reliable as a real reference. As a consequence, after this observation we chose 

to employ also for the grafting a commercial SCE or a home-made Ag/AgCl reference 

electrode (E°Ag/AgCl ~ -40 mV vs SCE in acetonitrile 225) of smaller dimensions, which could 

be more conveniently introduced inside the electrochemical cell. 

In Section 1.2.2.1 it was explained that diazonium salts produce radicals through a 1-

electron reduction process, promoted by a reductive electrode surface, to which the aryl radicals 

graft. If acid aqueous media were used for the grafting solution, there might be the risk that 

also the nitro groups of 4-NBD reduce during the process (following the same mechanisms 

presented for 4-NBM in Chapter 3) when in close proximity to the surface, while it has been 

observed that diazonium salts are usually instable at pH higher than 2-3 40. Instead, using an 

organic solvent as acetonitrile should prevents this issue, since the potential needed to perform 

the reduction will be shifted toward more negative values. 
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Figure 4.1. a) Electrochemical reduction of 4-NBD via cyclic voltammetry on a gold sphere electrode: 

2 cycles from +0.5 to -0.4 V vs Ag/Ag+, scan speed 100 mV.s-1, in a 0.1 mmol.L-1 4-NBD solution. b) 

Second out of three steps of a 4-NB grafting chronoamperometry on a gold plate: -0.6 V vs SCE 

potential hold for 300 s in a 1 mmol.L-1 4-NBD solution. The first and third steps (not shown) consisted 

in holding the potential at +0.8 vs SCE for 10 and 30 s, respectively. In both (a) and (b), the supporting 

electrolyte consists in a 0.1 mol.L-1 NBu4BF4 solution in dry acetonitrile, deoxygenated for at least 5 

minutes prior to use. 

Experimentally, grafting via electroreduction of diazonium salts can be performed either by 

sweeping the electrode potential (i.e. by CV) or by applying potential steps 

(chronoamperometry), after immerging the surface in the diazonium salt solution. Figure 4.1a 

shows the first approach: starting from a +0.5 V polarization, where no reaction occurs (I = 0), 

the potential is lowered down to -0.4 V (forward scan), thus giving rise to two cathodic peaks 

at around +0.32 and +0.14 V, respectively. The two cathodic peaks observed in the first cycle 

belong therefore to the 4-NBD specie and represents its 1-electron reduction into radical. In 

fact, on carbon-based electrodes it is more common to observe a single, broad cathodic peak 

40, while on gold the reaction can take place on different crystallographic facets and therefore 

show two or more peaks 45. During the backward scan, the current goes back to zero and does 

not evolve anymore during the second cycle, nor in the following ones. This trend has been 

typically observed for diazonium salts 40,45 and attests of their blocking properties on the sample 

surface due to the formation of a thick layer of molecules on the whole electrode surface that 

provokes its passivation. Similarly, as shown in Figure 4.1b, the electroreduction of the 

diazonium can be performed by chronoamperometry by maintaining a fixed potential allowing 

its reduction (herein -0.6 V vs SCE). As it is characteristic for the reduction of aryldiazonium 

salts 45, the current density drops already few seconds after the application of the potential and 
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returns slowly to 0, as it can be expected for a diffusion-limited process that, in addition, 

involves surface passivation. 

In conclusion, the uncontrolled electrografting of 4-NB radicals on gold surfaces leads 

to the fast formation of thick surface layers, with passivating properties. As explained in 

Chapter 1, this can occur for many diazonium-derived species, which is why several methods 

have been developed to gather control over the layer growth. In the next paragraph we will 

present the specific procedure we adopted to limit this multilayer formation, with the aim of 

reaching a single layer of molecules. 

4.2.2 Control of 4-NBD layer growth with a redox cross-inhibitor 

Among all the proposed approaches for tuning the thickness of the layers, we decided 

to follow the one elaborated by the researchers of Moltech, Angers (France), who optimized 

the use of the so-called redox “cross-inhibitors” for grafting of diazonium salts on carbon-based 

surface (as pyrolized photoresistive films PPF or glassy carbon GC) 50,70,71,213. 

 

Figure 4.2. Schematic view of the cross-redox mechanism of chloranil (ChA) for the inhibition of the 

4-NBD layers growth. Adapted from [213]. 

A schematic view of the inhibition process, exemplified with 4-NBD as diazonium salt 

and tetrachloro-1,4-benzoquinone (Chloranil, ChA) as inhibiting agent, is illustrated in Figure 

4.2. The two molecular species are introduced simultaneously in solution, therefore they can 

both be reduced at the electrode surface. 4-NBD reduction leads to the formation of a radical, 

which grafts right away onto the nearby surface. On the contrary, ChA molecules reduce 

reversibly to their radical anion form (semiquinone), which is more stable than 4-NB radicals 

and can diffuse far from the electrode interface 213. If in their way they encounter a diazonium 
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molecule, the ChA radical anions can therefore oxidize again and provoke 4-NBD reduction 

far from the electrode surface. Since 4-NB radicals are very reactive, they should not have the 

time to diffuse towards the electrode and graft on it: instead, they would react faster with the 

solvent or with each other, thus forming deactivated side products 213. Eventually, only the 4-

NBD species that were already close to the electrode surface when its polarization started, or 

those who managed to diffuse from the solution bulk to the electrode interface, will be electro-

reduced and grafted. 

The thickness of the grafted layer is expected to decrease proportionally to the increase 

in inhibitor concentration and, in the best scenario, hinder the formation of multilayer 

structures. Although DPPH is more often used to control the grafting of 4-NB layers from the 

corresponding diazonium salt 70,213, herein we preferred employing ChA 213, which is less toxic 

and easier to manipulate (ChA solutions are less opaque). 

 

Figure 4.3. 1st and 2nd CV cycles recorded at 500 mV.s-1 on a gold disk electrode (Ø = 3 mm) in 

presence of 4-NBD (1 mmol.L-1) and ChA (1 mmol.L-1). Electrolyte: 0.1 mol.L-1 NBu4BF4 in dry 

acetonitrile. 

Figure 4.3 shows a typical voltammogram recorded on a solution containing both 4-

NBD and ChA. The electrochemical signature of ChA appears as a reversible peak, falling 

around -0.02 V in the forward scan and around 0.05 V in the backward scan, respectively. Note 

that the observation of these signatures is only possible using a relatively fast potential sweep 

(500 mV.s-1), which prevents the immediate electrode passivation of the electrode though the 

4-NBD electroreduction (irreversible peak at E < 0.4V). Since the reduction potential of ChA 

is more negative than the one of 4-NBD, a grafting procedure using CV would promote the 4-
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NBD reduction before the activation of ChA, therefore a chronoamperometry at a potential 

more negative than both the 4-NBD and the ChA cathodic peaks was preferred to enhance the 

inhibitive effect of ChA 71. 

Furtherly, to avoid the issue of spontaneous grafting, the working electrode to 

functionalize was always immerged in the grafting solution immediately before starting the 

polarization and pulled out at the end of the electrochemical sequence. Nevertheless, the 

occurrence of this process, even to a limited extent, cannot be completely excluded, since it is 

expected that, at the open circuit potential (OCP) of the cell (~ +0.40 V 213), 4-NBD might 

already reduce to its radical form, while ChA does not transform and cannot therefore inhibit 

the grafting process. This issue was partially solved by Breton’s group 213 by elaborating an 

adapted ChA-controlled grafting protocol consisting in the application of two subsequent 

potential pulses 213: (1) a 10-s chronoamperometry at +0.80 V, potential higher than the OCP 

at which no reduction of either of the two species can occur, so that to minimize spontaneous 

grafting; (2) a 5-min grafting chronoamperometry at -0.60 V, which is lower than the reduction 

potentials of both 4-NBD and ChA and therefore allows exploiting the inhibitive effect. In our 

experimental work, a third and last step was added to this protocol, adapted from what reported 

elsewhere for DPPH 50: (3) a 30-s polarization at +0.80 V, which prevents the uncontrolled 

immobilization of diazonium salt, caused by the slow system relaxation toward an arbitrary 

potential after the negative step (2) 50. In Breton’s group work, all the potentials were referred 

against an Ag/AgNO3 quasi reference, whereas, in our case, a bare Ag wire or sintered SCE 

and Ag/AgCl electrodes were used. Note that the potential of Ag/AgNO3 is around +300 mV 

against Ag/AgCl 6, which means that the potentials applied in our experiments are actually 

more positive than those used in literature. Nonetheless, the lower potential (-0.60 V) was still 

negative enough to trigger the simultaneous reduction of both species, while no side effects 

(e.g. oxidation or desorption phenomena) were remarked upon application of the higher 

potential (+0.80 V). 

As it will be illustrated in the following paragraphs, the three-step chronoamperometric 

grafting protocol was eventually successful in controlling the layer growth thanks to the 

inhibiting action of ChA. Moreover, when applying the same electrochemical sequence for 

grafting in presence of DPPH, higher quantities of this inhibitor were required to equal the 

performances observed for lower concentrations of ChA (see Annexes). This confirms the 
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potentiality and reliability of such protocol for controlling the growth of 4-NBD layers on gold 

surfaces. 

4.2.3 Characterization of the grafted layers 

In order to evaluate the inhibiting effect of ChA, our strategy consisted first in 

performing electrografting from mixtures of fixed 4-NBD concentration and variable inhibitor 

content, and therefore in characterizing the grafted electrodes, so that to evaluate the effect of 

the inhibitor concentration on the layer structure and thickness.  

Following the aforementioned protocol, different gold substrates (plates or disks, 

depending on the post-grafting characterization method) were functionalized in solutions of 4-

NBD 1 mmol.L-1 only or mixed with ChA (TCI Chemicals) 0.1, 0.25 and 0.30 mmol.L-1, in 

dry acetonitrile with NBu4BF4 0.1 mol.L-1. In all the experiments, the CE was a platinum wire, 

while the RE was a saturated calomel electrode (SCE). The solutions were always 

deoxygenated for at least 5 minutes before use. After the functionalization, the surfaces were 

thoroughly rinsed with acetone, whose excess was dried with an argon stream and/or wiped 

out. The following paragraphs will illustrate the different kinds of analysis performed on the 

grafted surfaces and discuss the results. 

4.2.3.1. Electrochemical evaluation of the electrode surface coverage 

The electrochemical characterization of 4-NBD was carried out in a similar way as for 

4-NBM in Chapter 3, i.e. on gold disk electrodes (Origalys), which were polished and 

reconstructed before use, and in alkaline medium. Both before and after the chrono-

amperometric grafting, in presence of different ChA concentrations, the disk electrodes were 

subjected to cyclic voltammetry experiments in bicarbonate buffer at pH 10.7. The results of 

the CVs on the grafted electrodes are reported in Figure 4.4, while the ones performed before 

grafting acted as blanks and attested that no residual species were still grafted on the electrode 

between two different experiments. 

Similarly to what has already been observed by Menanteau et al. 69, upon structuration 

of nitrobenzene layers of different thickness from reduction of the corresponding diazonium 

(under DPPH control), the peak intensities arising from NO2 reduction tend to decrease with 

the increase in inhibitor content, while the main cathodic peak shifts towards less negative 

potential (of around 15 mV 69). Similar results were obtained by Brooksby and Downard 226 

upon functionalization of PPF substrates in the presence of 4’-nitrobenzene-4-azobenzene 
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diazonium at different electrografting times and were related to a decrease in the molecular 

layer thickness. These observations evidence the inhibition properties of ChA: as its 

concentration increases, the layer growth is inhibited, therefore less nitro groups are anchored 

on the surface and can be reduced during the forward scan of the voltammogram. This explains 

the decrease in the peaks intensities, but can also explain the shift of the cathodic peak potential: 

when the layer is thinner, it presumably also contains less hydrophobic “branches” of aryl 

groups, which means that the electrolyte molecules can solvate better the nitro groups and ease 

their reduction 45. 

 

Figure 4.4. CVs recorded in bicarbonate buffer on grafted gold plates (from -0.1 to -1.3 V vs SCE, at 

50 mV/s). Grafting was previously achieved in the presence of 1 mmol.L-1 4-NBD and different ChA 

concentrations (indicated in the legend on the graph). The dashed black curve represents the second 

cycle performed on the disk grafted without ChA. 

Also in this case the surface coverage can be evaluated by integration of the cathodic 

and anodic peaks areas, according to the Equation (3.5) presented in Chapter 3. Figure 4.6 

illustrates the results of these calculations in comparison with the thickness estimation, 

obtained by ellipsometry analyses on grafted plates, hence they will be discussed more 

extensively in the following paragraph. 

4.2.3.2. Thickness evaluation by ellipsometry 

After growing layers in presence of different ChA concentrations, their thickness was 

measured with a mono wavelength (λ = 633 nm) SE 400 adv ellipsometer (Sentech), interfaced 

with the homonymous software (version 2.20) that allowed building a layered model 
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(exemplified in Figure 4.5) to represent the samples. The lower layer was identified with the 

gold substrate, from which the characteristic refractive index n and adsorption coefficient k 

were extracted by preliminary ellipsometric measurements (before grafting). The middle layer 

corresponded to the grafted 4-NB architecture, to which it was attributed a refractive index 

value of 1.46, plausible for organic compounds 227. Since no changes in color were observed 

on the gold substrate before and after the grafting procedure, it was assumed that the layer did 

not adsorb in the visible range, hence k was set equal to 0. Finally, the upper layer was 

constituted by the medium that surrounds the substrate during the measurements, i.e. air, in our 

experimental conditions. 

 

Figure 4.5. Empirical model designed on the SE 400 adv ellipsometry software to retrieve the molecular 

layer thickness. 

Measurements were carried out on commercial gold-coated-silicon plates (Aldrich), 

which were preliminary sonicated in absolute ethanol and measured by ellipsometry on 10 

different spots to retrieve the average n and k values of the gold surface. Afterwards, they were 

subjected to the aforementioned grafting procedure in the presence of variable concentrations 

of ChA and finally measured again on 10 different spots to yield an average thickness for each 

sample. The results, compared to the surface coverage values obtained by CV, are shown in 

Figure 4.6. 

As it was expected from the evolution in the voltammograms intensity observed in 

Figure 4.4, an increase of the ChA content in the grafting mixture corresponds to a decrease 

in both the thickness and the surface coverage values for the 4-NB layer. More specifically, a 

0.25 mmol.L-1 ChA concentration yields a surface coverage of around 9*10-10 mol.cm-2, which 

is consistent with what has been reported for a monolayer on gold 56. In fact, the surface 

coverage is strictly dependent on the substrate roughness: while values down to 2.5*10-10 

mol.cm-2 have been reported for smooth PPF surfaces 45, higher rates were recorded on rougher 

carbon 70,71 and gold 56 electrodes. The layer thickness correspondent to the same ChA 

concentration showed a value of 1.41 nm, slightly higher but still consistent with what has been 
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reported for 4-NB monolayers (between 0.6 and 0.9 nm) 39,56,71. However, increasing the 

inhibitor quantity up to 0.30 mmol.L-1 provokes a consistent drop in the surface coverage value, 

while using an intermediate concentration of 0.27 mmol.L-1 does not seem to have a relevant 

impact on the layer thickness. As a consequence, a ChA concentration of 0.25 mmol.L-1 was 

estimated as the most suitable for the formation of a “monolayer-like” 4-NB structure. Below 

this limit, thick multilayers are obtained, whereas increasing the quantity of ChA leads to the 

formation of incomplete sub-monolayers. 

 

Figure 4.6. Evolution of the thickness (black dots) and the surface coverage (red diamonds, determined 

in bicarbonate buffer) of 4-NBD layers on gold as a function of the ChA concentration in the grafting 

mixture. The dotted lines mark the ranges of values reported in the literature for 4-NB monolayers 

thickness 39,56,71 and electrode surface coverage 56,70,71, while the shadowed areas evidence the 

experimental values for which it would be expected to obtain a monolayer. 

It must be pointed out, though, that the two parameters compared in Figure 4.6 do not 

follow the same decreasing trend: the thickness drops much faster already at very low ChA 

concentrations, then it declines slowly starting from 0.15 mmol.L-1 of ChA. On the opposite, 

the surface coverage decreases just slowly at the beginning and drops at higher values. In fact, 

the method used for the calculation of the surface coverage relies on the reactivity of the nitro 

functions, which should all react and reduce during the CV scan in order for this method to be 

completely reliable. However, as it was mentioned before, the density of the multilayers, 

accentuated by the presence of forked branches, complicates the proton diffusion inside the 

molecular structure and therefore affects the reduction process 226. Indeed, many NO2 groups 

will not react and remain “silent” during the CV, thus leading to an underestimation of the 

surface coverage value. This is why at low ChA concentrations (0.05 mmol.L-1) the formed 
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layer, which is still so dense that its electroactive groups cannot react, shows almost the same 

surface coverage value as the layer grown without inhibitor control. In fact, the evaluation of 

surface coverage via integration of CV areas can only be actually reliable for monolayers, or 

at least to very thin layers 45. 

4.2.3.3. Comparison between 4-NBM and 4-NB monolayers 

Following the results obtained by ellipsometry, the CV corresponding to the 4-NB 

“monolayer-like” structure (blue curve of Figure 4.4) is compared to the one obtained with the 

4-NBM (Figure 3.3 in Chapter 3) as shown in Figure 4.7. Due to the similarity between the 

4-NBD and 4-NBM layers, both bearing an electroactive nitrobenzene functionality, we 

expected to observe similar electrochemical signatures in their CVs: a huge cathodic peak 

(falling around -920 mV vs SCE for 4-NBD), corresponding to the total 4-nitrobenzene (4-NB) 

reduction into 4-aminobenzene (4-AB), and the couple of redox peaks (whose anodic signature 

rises around -240 mV vs SCE) indicating the reversible transformation of 4-hydroxylamine 

benzene (4-HAB) into 4-nitrosobenzene (4-NSB).  

However, significant differences are observed among the two of them. First, a marked 

shift of the cathodic peak towards less negative potential is observed for 4-NBM. On one hand, 

this observation might indicate that the ordered arrangement of the thiol molecules in the SAM 

structure eases the solvation of the nitro functionalities, which can therefore be reduced more 

easily (as it was mentioned before). On the other hand, though, it may also attest that the 

“monolayer-like” 4-NB contains in fact some branches and therefore has a partial multilayer 

structure. This is suggested also by the difference in broadness of the cathodic peak, which is 

wider for 4-NB since it should collect the electrochemical contributions of several NO2 

population, more or less solvated inside the structure, hence with different reactivity for the 

reduction process. Nonetheless, the dissimilar nature of the two grafted species might also play 

a role on the electronic transfers between the substrate and the electroactive centre. 

Another difference observed between the two molecular species is the intensity of the 

peaks corresponding to the reversible HAB(M)↔NSB(M) formation (~ -240 mV and -330 mV, 

respectively, for the anodic and cathodic peak). In fact, because in the diazonium-derived layers 

the main cathodic peak appears at more negative potentials, it might be possible that the total, 

irreversible reduction of nitro groups into amino (final reduction product) will occur at higher 
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yield for these systems, therefore less hydroxylamine might be able to reconvert into 

nitrosobenzene in the backward scan. 

 

Figure 4.7. Comparison between CVs recorded in bicarbonate buffer at 50 mV/s on 4-NB “monolayer-

like” structure (blue curve in Figure 4.4) and 4-NBM SAM (Figure 3.3 in Chapter 3), both deposited 

on gold electrodes. For further experimental details, please look at the captions of the original figures.  

In conclusion, the dissimilarities between the two CVs strongly suggest a difference in 

the organization of the layer structures for the two compounds. In fact, despite the ellipsometric 

results reveal the presence of a monolayer on the 4-NB sample, those measurements are 

averaged over a micrometric area and therefore are not sensitive to local heterogeneities at the 

nano scale. Additionally, an evaluation of the molecular species distribution over the grafted 

surface was carried out thanks to AFM imaging, which will be presented in the next paragraph.  

4.2.3.4. Structure characterization by AFM imaging 

Gold plates were analysed via AFM before and after electrografting in order to visualize 

the overall substrate morphology upon molecular functionalization. The choice of AFM over 

STM is motivated by its higher performances in imaging soft molecular layers, particularly 

when working in semi-contact mode (tapping mode), as it was done experimentally. In this 

AFM mode, the tip periodically touches or taps the surface of the sample and can follow the 

layers profile without affecting their structure. On the contrary, the STM probe operates at very 

close distance with the probed surface for the IT to flow. Since this so-called tunnelling gap is 

usually lower than 1 nm, the tip is susceptible to penetrate inside the molecular structures 

(which might have a low electrical conductivity) and therefore will not be able to measure its 

profile 228. 
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Figure 4.8. AFM maps acquired on gold plates, either (a) bare or grafted with 4-NBD (1 mmol.L-1) in 

presence of (b) 0, (c) 0.10 or (d) 0.25 mmol.L-1 ChA. All the maps were acquired in 500x500nm2 areas 

with 256x256 pixels in AFM tapping mode. From the colored section shown in the maps, the 

corresponding morphology profiles (e) were extracted. 

Since the commercial gold plates previously used for ellipsometric characterizations 

were not smooth enough to distinguish the molecular structures from the gold electrode surface 

features, it was decided to use the homemade plates of gold on mica (produced as explained in 

Chapter 3). As it is observed in Figure 4.8a, a bare Au substrate is constituted by relatively 

large terraces, whose roughness, evaluates from the morphology profile (black section), is 

averagely 0.5 nm (with maximal peaks of ~1 nm). After electrografting of 4-NBD in presence 
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of different ChA concentrations, the overall aspect of the surface changes considerably: grainy 

structures seem nucleating in proximity of the terraces edges and spreading over them (Figure 

4.8b-d). Without ChA control, these structures are more abundant and thicker: in the section 

evidenced in Figure 4.8e, they reach a 5-nm thickness, corresponding to ~7 layers. As the ChA 

concentration increases, the structures become less abundant and also their thickness 

diminishes: the maximum height is around 4 nm (~5 layers) for a 0.1 mmol.L-1 ChA 

concentration and 3 nm (~4 layers) for 0.25 mmol.L-1 ChA. 

On one hand, these observations confirm the inhibiting role of ChA, but on the other 

hand they show that molecules rather tend to aggregate in clustered structures, which follow 

the shape of the terraces edges, instead of yielding uniform layers, as it was expected from the 

results of ellipsometry (and as reported previously on PPF substrates 222). It might be possible 

that the molecules arrangement in clusters derives from a heterogeneous current distribution 

on the gold surface, caused by its fragmentation in terraces, and from the surface roughness, 

which is still comparable to the size of a monolayer. 

In order to limit the influence of the substrate morphology on the arrangement of the 

grafted molecules, it was chosen to produce ultra-flat gold plates through a cryogenic cleavage 

method 229, which is illustrated in Figure 4.9. The first step (Figure 4.9a) consists in 

evaporating gold on mica substrates, following the same protocol used to produce the 

aforementioned plates (1-h heating of mica at 430 °C before evaporation, then growth of a 100-

nm Au layer, followed by a 2-h annealing at the same temperature). Afterwards, a p-doped Si 

plate (previously cleaned by 3-minute sonicating baths in acetone, ethanol and distilled water, 

successively) was immobilized on top of the gold surface with a biphasic epoxy glue (Figure 

4.9b). After a minimum resting time of 24 hours, the mica/Au/glue/Si sandwich was immerged 

in a Dewar flask filled with liquid nitrogen, until a cracking noise signaled the cleavage of the 

mica substrate 229 (Figure 4.9c). 
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Figure 4.9. Fabrication of ultra-flat gold substrates by cryogenic method: (a) gold evaporation on mica, 

(b) gluing of Si plate on Au-on-mica substrate, (c) immersion in liquid nitrogen and detachment of the 

Au-on-Si plate. d) AFM maps of the Au-on-Si substrate morphology and roughness profiles on the 

marked section. The root-mean-square roughness in the evidenced section is ~68 pm. 

AFM images taken on the so-produced gold plates (Figure 4.9d) show a much smoother 

surface than the one obtained by simple evaporation of gold on mica (Figure 4.8a): not only 

the edges of the terraces are no longer distinguishable, but also the roughness profile shows a 

maximum peak-to-peak distance of around 400 pm. 

These ultra-flat gold substrates were electrografted as well with 4-NBD in the presence 

of different ChA concentration, then subjected to AFM imaging. The resulting maps, illustrated 

in Figure 4.10a-c, evidence still the formation of molecular clusters, rather than compact 

layers, which are though more spread and uniformly distributed on the surface (with respect to 

the rougher substrate). Similarly to the previous situation, when no ChA control is applied 

(Figure 4.10a) the clusters are densely packed, while they become more loose and disperse as 

ChA is added (Figure 4.10b) and even show the underlying gold terraces at higher 

concentrations (Figure 4.10c). Also the height profiles (Figure 4.10d) follow a similar trend 

to the one previously observed: while the layers grown without inhibitor can reach thicknesses 

of 9 nm (~12 layers), these values decrease progressively to 6 nm (~8 layers) with 0.1 mmol.L-

1 of ChA and 4 nm (~5 layers) with 0.25 mmol.L-1 of ChA. 
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Figure 4.10. AFM maps acquired on ultra-flat gold plates, grafted with 4-NBD (1 mmol.L-1) in presence 

of (a) 0, (b) 0.10 or (c) 0.25 mmol.L-1 ChA concentrations. All the maps were acquired in 500x500nm2 

areas with 256x256 pixels in AFM tapping mode. From the colored section shown in the maps, the 

corresponding morphology profiles (d) were extracted. 

In conclusion, even when using smoother and more uniform gold grafting substrates, 

clustered architectures are always observed, rather than compact layers, especially when the 

thickness decreases. In fact, despite having the characteristic surface coverage of a monolayer 

(as it was evinced from the electrochemical analysis), even the structure grafted in presence of 

0.25 mmol.L-1 ChA is actually composed by isolated chains of molecules, where up to 5 

nitrobenzene units can branch together. This result differs from what was observed on PPF 222, 

where the morphological profile, extracted from the AFM images on the sample at the 

layer/scratch border, showed compact structures. However, the presence of irregularities in the 

morphology of 4-NB layers deposited on gold has already been observed 230 upon control of 

their growth via DPPH inhibition: this was revealed by an increase in the gold surface 

roughness from 1-2 to 6.5 nm before and after grafting of a 4-NB multilayer 230. Therefore, it 

is possible that the formation of clustered structures is due partly to the irregularities of the 

gold surfaces, which might generate local variations on the electrode charge density and 

therefore heterogeneities in its reactivity, and partly to the presence of the inhibitor molecules, 

which compete with the diazonium for the reduction on the gold surface and can therefore 



 

144 

 

hinder its grafting. In any case, since the average thickness and the surface coverage of the 4-

NB layer grafted with 0.25 mmol.L-1 ChA were comparable to those obtained for monolayers, 

we will from now on refer to the architecture obtained in such conditions as a “monolayer-like” 

structure. 

4.2.3.5. Composition analysis: IRRAS and XPS 

Additional ex situ spectroscopic analyses, presented in the next paragraphs, were 

carried out on 4-NB-grafted gold plates as additional proofs of concept of the inhibition 

mechanism and to verify that the layers maintained their chemical nature after grafting. For 

both IRRAS and XPS, the same samples subjected to ellipsometry were employed, grafted on 

commercial gold plates. 

 

Figure 4.11. a) IRRAS spectrum of a gold surface modified by 4-NBD electrografting (solution without 

ChA). b) IRRAS absorbances as a function of the ChA concentration in the grafting mixture, measured 

at 1349 cm-1 (green, symmetric NO2 stretching), 1526 cm-1 (red, antisymmetric NO2 stretching) and 

1597 cm-1 (blue, aromatic ring stretching). 

Layer composition analyses: IRRAS and XPS.  

The IRRA spectra of modified plates were recorded using a purged (low CO2, dry air) 

FT/IR-6100 Fourier transform infrared spectrometer (JASCO), equipped with a mercury–

cadmium–telluride detector. For each spectrum, 1000 scans were accumulated with a spectral 

resolution of 4 cm–1. Before starting the acquisition on functionalized substrates, the 

background was recorded on a clean, bare gold substrate. 

The main IR vibrational features of grafted 4-NB are illustrated in Figure 4.11a: the 

most intense bands arise at 1349 and 1526 cm-1, corresponding, respectively, to the symmetric 
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and anti-symmetric NO2 stretching modes, while the ring stretching mode is observed at 1597 

cm-1 218. 

Figure 4.11b shows the evolution of the band intensities when ChA is added to the 

grafting solution: as the inhibitor concentration increases, the absorbance first drops abruptly, 

then declines slightly starting from 0.20 mmol.L-1 and reaches almost zero for the 

submonolayer (0.30 mmol.L-1 ChA). The trend resembles mostly to the one observed for the 

thickness in Figure 4.6, thus confirming the higher accuracy of ellipsometry, with respect to 

the CV-based surface coverage evaluation, in predicting the effect of the increase in inhibitor 

amount on the layer growth. It also supports the hypothesis that the peculiar trend observed for 

the surface coverage was related to the limited electrochemical reactivity of NO2 groups in 

thick multilayers.  

 

Figure 4.12. a) N1s contributions to the XP spectrum: experimental curve (black) and deconvolutions. 

b) Sum of all N1s peaks for each sample (calculated as the sum of the area of all the N1s peaks in counts 

per second per eV) as a function of ChA concentration. It was chosen to sum up all the N1s peaks, and 

not only the NO2 peak at 406 eV, because of the consistent reduction of nitro groups under the X-ray 

beam. 

XPS measurements were performed using a K Alpha system (Thermo Fisher Scientific, 

East-Grinstead, UK) fitted with a microfocused and monochromatic Al Kα X-ray source 

(1486.6 eV, spot size: 400 μm). The pass energy was set to 150 and 40 eV for the survey and 

the high-resolution spectra, respectively. The spectra were calibrated against the C−C/C−H C 

1s component set at 285 eV. The chemical composition was determined with the Avantage 

software (version 5.9902) by using the manufacturer sensitivity factors. 

Figure 4.12a illustrates a detail of the XP spectrum recorded on a 4-NB-grafted sample 

(without ChA inhibition), showing the energy range where the nitrogen atom bands are found. 
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The most intense band belongs again to the NO2 groups and falls at ~406 eV 70,231, while the 

one slightly above 402 eV is generally attributed to the partially reduced nitrosyl (NO) and 

hydroxylamine (NHOH) functionalities 70. As for the peak just before 400 eV, it could either 

belong to the NO2 total reduction into amine (NH2) 
232, or else it could signal the formation of 

N=N bonds inside the multilayer 70. In fact, despite it would be expected to find azote only in 

the 4-NBD nitro function, it is likely that the layer partially reduces during the XPS 

measurement (due to the reducing conditions of the environment during the measurements), 

thus originating bands belonging also to the nitro monomolecular reduction products. 

However, if the peak at 400 eV arises from the N=N functionality, this might attest of the 

formation of branches via azo bridges inside the layer 70. As it was explained in Section 1.2.2.3, 

this might occur if the molecules grafted directly on the surface are particularly electron-rich 

and promote the branching of the species in solution through the diazonium functionality, 

rather than through the radical. 

The sum of the intensities of all the peaks belonging to N atoms were calculated for 

each substrates and plotted against the ChA concentration employed for their grafting: the 

resulting graph, shown in Figure 4.12b, has a less neat decrease, but still shows a similar trend 

to those previously observed for ellipsometry and IRRAS analysis. 

4.2.4 STM-TERS mapping in air 

Before following in situ the chemical modifications occurring under polarization, the 

layers were analysed in the ambient via STM-TERS. For both these and EC-STM-TERS 

measurements it was chosen to use the samples grafted onto gold-on-mica substrates. In fact, 

in spite of the smoother gold surface obtained with the cryogenic cleavage method, the 

thickness of the silicon support (3 mm) compromises the sample holder stability, because the 

magnets on the PEEK cell are less efficient in holding it still to the underlying stainless steel 

plate. The modified substrates were loaded on the homemade sample holder (presented in 

Chapter 2) and polarized against the tip with a BV of 0.1 V, under the AIST control; the 

tunnelling current was set at 1000 pA. After mapping the probe surface to find the hotspot, 

STM-TERS maps were recorded. With respect to the maps acquired on 4-NBM, in this case 

imaging was performed on smaller areas and with a higher pixel resolution.  
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Figure 4.13. a) STM-TERS maps acquired in air on 4-NB grafted in presence of ChA 0.10 (left) and 

0.25 mmol.L-1 (right). The STM maps showed in the top line were acquired simultaneously to the TERS 

maps, presented in the other two lines, which are obtained by integration of the band ranges shown in 

(b): the intensity of the three ranges is summed in the middle line (to show the overall molecular 

distribution) and superposed in the bottom line (to show the distribution of the predominant species 

among the pixels. The colored bars indicate the height (nm) and the intensity (arbitrary units) scales in 

the STM and TERS maps, respectively. All the maps were acquired on 300x150 nm2 areas with 100x50 

pixels, each one corresponding to a single Raman spectrum, acquired in 0.5 s with 160 µW power (1% 

of the nominal laser power) of the 632.8 nm laser line. For STM, it was set BV = 0.1 V and IT = 1000pA. 

b) Spectra obtained by integration of all the pixels for each map presented in (a). 

Results for the samples grafted with 0.1 and 0.25 mmol.L-1 ChA are shown in Figure 

4.13a. The overall spectral profiles, averaged from the TERS maps (Figure 4.13b), resemble 

the one observed for grafted 4-NBM (Figure 3.4 in Chapter 3), although the band positions are 
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slightly red-shifted for the diazonium-derived layers. This is due to the stronger, covalent bond 

they form with the gold surface, differently from the mercaptans, which are expected to be less 

tightly bonded to the gold substrate than diazonium salts 39. More specifically, the main band 

at 1327 cm-1 belongs to the symmetric NO2 stretching, while the weaker signatures at 1080 and 

1568 cm-1 are attributed, respectively, to the O-N-O scissoring (coupled with ring modes) and 

to the ring stretching modes 44. A summary of all the signatures encountered in these and the 

following spectra are reported in Table 4.1. 

However, when comparing to each other the two spectra of the diazonium samples, 

some differences can be noticed. First, the intensity of the spectrum decreases abruptly with 

the increase in ChA concentration: if on one hand this proves the effectiveness of the inhibition 

effect, on the other hand it complicates the detection of the 4-NB “monolayer-like” structure. 

This is evidenced also in the TERS maps (Figure 4.13a): while in the sample grafted with less 

ChA the pixels are brighter and uniformly distributed, an increase in inhibitor content provokes 

an overall decrease in the pixel intensity and the aggregation of the brightest spots in few, 

limited areas. This is consistent with what observed by AFM, where the molecular clusters 

seemed more uniformly distributed over the gold surface on thicker sample, while they become 

sparser and smaller upon increase in ChA content. Additionally, in the thicker layer it can be 

noticed the presence of some bands in the N=N stretching range, which do not appear in the 

“monolayer-like” structure. As it was also observed for the XPS results (Figure 4.12a), these 

bands most likely arise from the branching of 4-NBD species in solution to the pre-grafted 

layers through the diazo moiety 55,59: when this occurs, an azo bridge is formed between the 

grafted and the incoming molecule. For PPF substrates, Menanteau et al showed that the 

number of N=N bonds (evaluated by XPS) increases with the inhibitor concentration, and 

related this result to the decrease in surface coverage and to the modification in the grafting 

mechanism onto the substrate provoked by the presence of the inhibitor 69. This might seem in 

contrast with our results; however, Doppelt et al observed that carbon surfaces can already 

promote the grafting of the first layer of molecules through the diazo function if they present 

residual oxygens, while this has not been reported for metal surfaces 55. As a consequence, it 

is assumed that the N=N bonds will be formed only in the middle of the branched chains and 

not at the branching point on the gold substrate, therefore it is less likely to find them if the 

chains length decreases. 
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A consideration must be done regarding the STM maps. In spite of the impossibility of 

imaging the molecular species, because of the tip penetration inside the layers, we expected 

that a higher spatial resolution could be achieved, with respect to the maps previously acquired 

on 4-NBM samples, by decreasing the scanning size and increasing the number of pixels. 

However, not only no improvements in the topography could be remarked, but also consistent 

drifts issues were noticed, most likely due to the longer total acquisition time. This is 

particularly evident in the TERS maps on the right side of Figure 4.13a, which show a black 

horizontal band on their upper part, most likely corresponding to a temporal loss of the hotspot 

due to a random tip/objective misalignment. Hence, in order to avoid instabilities in the system 

during the measurements, lateral resolution should rather be sacrificed in favour of speed. 

In conclusion, the results obtained from the different analytical techniques confirm the 

efficiency of ChA, already at low concentrations, in controlling the 4-NB electrografting 

process on gold by reducing the excessive layer growth. Without inhibitor (or in presence of 

very small quantities), the layers tend to arrange in disordered multilayers, where each new 

unity can branch forming a C-C bond (grafting via 4-NB radical formation) or through an azo 

bridge (grafting via diazo function). These tendency is less and less pronounced as the inhibitor 

amount increases, even though the molecules rather aggregate in shorter and sparse clusters, 

instead of forming compact and uniform layers. In a “monolayer-like” structure, which is 

expected to be obtained for a 0.25 mmol.L-1 concentration of ChA, the presence of azo bonds 

is not detected, meaning that branching occurs only to limited extent and, if so, mostly via the 

formation of radical intermediates. 

4.3. Surface reactivity screening by EC-TERS mapping 

Through ex situ characterizations of the 4-NB layers produced by reduction of 

diazonium salts, important insights on their structure and composition could be gathered. In 

the following paragraph, the impact of layer properties on the electrochemical reactivity of the 

derivatized electrodes will be assessed, by extracting the (electro)chemical signatures of the 

nitro entities distributed within 2D or 3D network of aryl groups interconnected via C-C or azo 

bonds. The level of complexity of the 4-NBD-derived layer architecture is expected to impact 

the homogeneity of the nitro reduction reaction and/or to affect its kinetics. To address this 

question, EC-STM-TERS measurements were carried out on 4-NB-functionalized electrode, 

prepared via the controlled 4-NBD electroreduction in the presence of ChA. 
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As the kinetics of the nitro electrochemical reduction is not expected to be 

homogeneous across the electrode surface, the dynamics of composition at the nanoscale 

accessible through time-resolved TERS measurements, as demonstrated in Chapter 3, would 

provide an incomplete/inaccurate depiction of the reactivity of 4-NB layers. Instead, spatially-

resolved composition mappings (hyperspectral TERS maps) were performed in situ at specific 

polarizations of the derivatized electrodes, in contact with the same alkaline buffer electrolyte 

used in Chapter 3. 

4.3.1 Measurement setup 

The EC-TERS setup is similar to the one presented in Chapter 3. Briefly, the open 

spectro-electrochemical cell specifically designed for EC-STM-TERS uses a partially insulated 

and bended TERS-active gold STM probe as WE1, a flat 4-NB-derivatized gold electrode as 

WE2, a platinum ring as CE and a silver wire as pseudo RE (instead of Ag/AgCl), both attached 

to the cell wall, and a 40X water-dipping objective lens. The cell was filled with the bicarbonate 

buffer, previously deoxygenated, and connected to the homemade bi-potentiostat. This latter 

controls the electrochemical polarization of both WEs while maintaining a potential difference 

(STM bias voltage, BV) to ensure a net tunneling current flow upon contact of the STM tip 

with the sample surface. The tunneling current is measured and amplified by the conductive 

unit connected to the STM-tip (maintained at the virtual ground). Chronoamperometric 

potential steps can be applied to both electrodes using a waveform generator connected to the 

voltage inputs of channels 1 and 2 of the bi-potentiostat.  

The issue of the instability of the tip position on the sample surface and/or of the TER 

signal under large polarization in alkaline medium (already raised in Section 2.4.4) applies here 

as well. The choice between large polarization of both WEs at constant bias voltage, or large 

bias voltage at constant tip WE1 potential (polarization of substrate WE2 only) depends mainly 

on the sequence envisaged for the potential exploration (fast or slow potential scan, lower and 

higher potential limits), on the electrode nature and on the electrolyte. In the previous study 

with 4-NBM presented in Chapter 3, where the potential was swept at relatively high scan rate, 

increasing the BV while maintaining the tip potential at 0 V did not affect the TERS signal 

intensity. However, as Figure 4.7 showed, the reduction of the nitro moieties in the diazonium-

derived layers occurs at lower potential than in 4-NBM SAMs, therefore larger BV (typically 

Etip-Esubstrate > 0.6 V) should be applied during TER mapping to explore their electroactivity. 

This aspect, along with the particular working conditions employed for the following analyses, 
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where each potential step lasts a few minutes, might induce the weakening or disappearance of 

spectral features (even after averaging the signal over all the pixels). The following paragraph 

will present the experimental conditions adopted to overcome this issue and the results obtained 

on the 4-NB layers subjected to potential-step reduction. 

4.3.2 TERS mapping under polarization 

Three gold samples functionalized with 4-NB layers of various thickness and structure 

were subjected to in situ TERS measurements: a first one functionalized without inhibition 

control, a second one with a moderate ChA quantity (0.10 mmol.L-1) and a third one with a 

“monolayer-like” structure, obtained with larger ChA quantity (0.25 mmol.L-1). 

4.3.2.1. Polarization sequence 

Initial conditions for the EC-TERS analyses consisted in the application of Etip = +100 

mV and Esample = 0 V vs Ag/Ag+ (thus BV = 0.1 V) and of a set-point value of the tunneling 

current IT = 1 nA. Then, during the exploration of the [0; -500mV] potential range, the potential 

of both the tip and the sample were decreased by negative steps of 100 mV while keeping the 

BV at 0.1 V, therefore until Etip = -400 mV and Esubstrate = -500 mV (Figure 4.14a). For more 

negative potential explorations, the tip potential was not further lowered to limit the occurrence 

of side reactions (electrolyte and/or oxygen reduction) and the recording of high associated 

faradaic currents, which could compromise the efficiency of the STM regulation for the control 

of the tip-sample distance. By maintaining Etip = -400 mV and applying negative potential steps 

down to – 1 V only to the sample (effective BV increase up to 0.6 V, Figure 4.14b), clear 

TERS spectral signatures could be recorded even when reaching very negative polarizations. 

Finally, the sample potential was brought back directly to -600 mV and then gradually 

increased (always in steps of 100 mV) up to 0 V. The tip potential and/or the BV were changed 

accordingly. 
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Figure 4.14. Chronoamperometric EC-TERS measurements on the “monolayer-like” sample: a) 

scheme of tip/sample polarizations and BVs for Esample ≤ - 500 mV vs Ag and b) for Esample > - 500 mV 

vs Ag; c) example of STM-TERS mappings recorded at Esample = -400 mV on the 4-NBD + 0.25 mmol.L-

1 ChA sample (the scale bars represent 10 nm, while the lateral color scale identifies the height trends 

in the STM map); d) two individual TERS spectra extracted from the TERS map (c) (star symbols).The 

top STM map in (c) was acquired simultaneously to the TERS maps below, which are obtained by 

integration of the band intensity on the 3 energy ranges blue, green, and red in (d) (same as the ones 

shown in Figure 4.13b). The intensity of the three ranges is summed in the middle map (to highlight 

the overall molecular distribution) and superposed on the bottom map (to show the distribution of the 

predominant species among the pixels. The colored bars indicate the height (nm) and the intensity 

(arbitrary units) scales in the STM and TERS maps, respectively. All the maps were acquired on the 

same 300x10 nm2 area with a resolution of 30x2 pixels (with an acquisition time of 0.5 s/pixel, 160 µW 

power (1% of the nominal laser power) of the 632.8 nm laser line, BV variable, IT = 1 nA). Background 

removal and smoothing were performed on all the spectra. 

4.3.2.2. EC-STM-TERS mapping 

For each potential step, the position of the tip hotspot was readjusted by slight 

displacement of the objective piezo-scanner and control of the recorded TERS intensity, then 

a STM-TERS map was acquired on a 300x10 nm2 area with a 30x2 pixels resolution (0.5 s 

acquisition per pixel). Figure 4.14c reports, as an example, the maps acquired on the 

“monolayer-like” structure polarized at -400 mV. Analogously to what observed for 4-NBM, 

it was possible to correlate the gold sample surface morphology with the molecular distribution. 

More specifically, the highest molecular density (identified by the brightest spots in the TERS 

map obtained by the sum of the pixel intensities) seems to be located in the dark zone of the 
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STM map. This is likely to correspond to an area (most likely an edge) between two adjacent 

gold terraces, hence it supports the hypothesis (formulated on the basis of the AFM mapping 

results) that the molecular clusters tend to form preferentially in these zones. 

 

Figure 4.15. TERS signature dependence with the potential - TER spectra averaged from the 60-

pixel 300x10 nm2 maps (acquisition 0.5 s/pixel, 160 µW power (1% of the nominal laser power) of the 

632.8 nm laser line), recorded in situ onto derivatized gold electrodes in bicarbonate buffer at some of 

the applied potential steps. The samples were gold plates modified by electroreduction of 4-NBD in 

presence of 0, 0.10 and 0.25 mmol.L-1 of ChA (from left to right). BV indicates the tip-sample bias 

voltage applied during each polarization step. From one map to the other, the scanned area was shifted 

respect to the previous one to minimize the production and detection of photo-induced reaction 

products. Background removal and smoothing were performed on all the spectra. 

Moreover, thanks to the TERS map reporting the overlaid intensities for three different 

spectral ranges, it is possible to assess the spatial distribution of composition (and therefore the 

reactivity heterogeneity) on the sample surface with a resolution of few nanometers. This 

aspect is evidenced in Figure 4.14d, which reports the different spectral signatures acquired 

on two adjacent pixels: while in the blue pixel (marked by the orange star) the nitrobenzene 

signature is still recognizable, in the red/green pixel (black star) it has already disappeared and 

the azobenzene bands can be identified, while the sample polarization is only -400 mV. Note 

that the constant raster scanning of the tip, although on a limited scan area (300x10 nm2), 
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reduces the risk of photo-induced transformations (formation of dimers); it also increases the 

probability to extract the composition of the molecular clusters, which are rather sparse on the 

surface of the “monolayer-like” sample (as highlighted earlier by ex situ AFM measurements). 

After each acquisition and before the application of the following potential step, the 

STM-TERS tip was temporarily retracted from the sample surface to minimize possible tip 

crashing induced by possible transient electrochemical currents impacting the STM regulation 

of the tip-sample distance control. TERS data at different potential step could be recorded every 

5 to 6 minutes. Ultimately, to better assess the difference of reactivity of the three samples, 

their respective composition at a given potential step was evaluated from the spectral signatures 

averages on each 30x2 pixels TERS map. All the results, for different samples and potentials, 

are illustrated in Figure 4.15, while all the Raman band assignment can be found in Table 4.1. 

4.3.2.3. TERS analysis of the thickest 4-NB layer 

In the thickest sample (grafted without ChA, Figure 4.15a) the average spectrum 

acquired at 0 V (before starting the reduction) shows quite a noisy background and is 

characterized by a higher number of characteristic bands than the standard nitrobenzene 

spectrum. This suggests the presence of disordered and intricate structures on the gold surface, 

in which molecules with different orientations and different environment may be associated to 

vibrational bands at various shifted energy positions 44. For instance, the main NO2 band at 

1327 cm-1 is accompanied by a blue-shifted component at 1345 cm-1, while the O-N-O 

scissoring, usually observed above 1110 cm-1 in monolayers, red-shifts at 1080 cm-1 in the 

multilayer structures 44. Additionally, as it was already observed in XPS and further supported 

by ex situ STM-TERS measurements, the presence of bands around 1400 cm-1 may suggest the 

presence of azo bonds inside the grafted layer that do not derive by electrochemical or 

photocatalytic reactions, but rather from the diazo-mediated branching of the species in 

solution 55. The overall spectral profile does not change at -200 mV, even though an increase 

in intensity is observed, especially for the main band at 1327 cm-1. This effect might originate 

from a possible intensification of the local plasmon enhancement while exploring negative 

polarizations, although not observed with 4-ATP. At -400 mV the nitro group starts reducing, 

as it can be seen from the drop in its band intensity, and from its total disappearance at -800 

mV. Concomitantly, a weak signature at 1271 cm-1 arises, maintains its intensity at negative 

potential and then disappears when scanning the potential backwards to more positive values. 

This behavior of the band at 1271 cm-1 could be associated to the N-O stretching mode of the 
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intermediate 4-HAB, which is expected to form upon partial reduction of 4-NB but has not 

been clearly identified for 4-NBM. Meanwhile, the N=N bands grow in intensity and become 

the dominating features, both at the lowest potential and after re-oxidation of the sample. This 

is in agreement with what previously observed for 4-NBM. It was then concluded that the 

bimolecular reaction path may be favored in alkaline medium and may lead to the preferential 

formation of azo species, which do not (easily) reduce irreversibly to amine. 

Table 4.1. Assignment of the main bands observed in the TERS spectra of the compounds involved in 

the 4-nitrobenzene reduction mechanism. Intensities: vs (very strong), s (strong), m (medium) and w 

(weak). Denominations: SL (single layer), ML (multilayer). The reference values for ML were obtained 

by calculations in ref. [44]. 

Attribution 𝝂̃ – EC-STM-TERS (cm-1) – adsorbates References 

Nitrobenzene 

O-N-O scissoring + 

ring modes 

1080 w, 1107 w (1110 SL; 1091 ML) [44] 

Ring breathing 1296 w (1250, 1282 SL;1248, 1289 ML) [44] 

ν (N-O)sym 1327 vs, 1345 m (1344 SL; 1325, 1365 ML) [44] 

Ring stretching 1568 m (1589 SL; 1510, 1598 ML) [44] 

Monomers 

ν (N-O) 1271 w (1230 hydroxylamine) 

1322 w (1320 m nitroso)? 

[125,208] 

Ring stretching 1557 m (1585 s hydroxylamine) [208] 

Azobenzene 

δ (C-H) 1009 m (996 m) [208,219] 

ν (C-N) + 

ring modes 

1140 m (1143 vs) [219] 

ν (N=N) + 

ring modes 

~1380 s, 1440 m (1388 m, 1424 s, 1463 w) [204,219] 

Ring stretching 1585 m (1583 m) [204,219] 

4.3.2.4. Intermediate 4-NB thickness 

When measuring the response of a slightly thinner layer (grafting with 0.10 mmol.L-1 

ChA, Figure 4.15b), the results are overall similar: the NO2 and the N=N signals are present 

from the OCP and the azo bands become the most intense after reduction of the nitro function. 

However, the average spectral intensity is lower (proportionally to the lower surface coverage 
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expected for a partially controlled grafting of the layer) and also the background observed for 

multilayer structures is less intense. The bands previously assigned to 4-HAB (at 1271 and 

1577 cm-1) are not detected on this sample, although a weak signature appearing at 1322 cm-1 

in the -200mV backward step could belong to the N=O stretching of the 4-NSB product, 

deriving from the re-oxidation of 4-HAB. 

4.3.2.5. TERS analysis of the “monolayer-like” sample 

Finally, in the “monolayer-like” structure (Figure 4.15c), the spectral profile at the 

OCP decreases even more in intensity but, at the same time, becomes also neater and sharper, 

thus showing only the standard Raman bands of nitrobenzene, reported for monolayer 

structures. Moreover, as it was observed for measurements in air, no N=N bands are noticed 

prior to negative polarizations; they only start arising at -400 mV, concomitantly with the NO2 

band disappearance. However, differently from the other sample, the “monolayer-like” 

assembly did not show any spectral signature neither upon polarization at -1 V, nor during the 

backward steps towards less negative potentials. This would suggest that the reaction did not 

“stop” at the formation of dimers but instead continue towards the 4-AB final product. This 

compound is known to have less intense signatures with respect to 4-NB when adsorbed on a 

surface 208. Nevertheless, similarly to what was shown for 4-ATP by TERS in Chapter 3 (and 

to what reported by SERS investigations 221), we would have expected also for 4-AB to observe 

the b2-type modes signatures (similar to those of the dimers) in alkaline solution. The absence 

of these bands, though, might be explained by a difference in the nature of the two kinds of 

molecules, which differ by a sulfur atom: this is supposed to influence the 4-ATP interaction 

with the gold substrate (in terms of metal-molecule charge transfers and reciprocal orientation) 

and therefore to have an effect on the optical properties and/or the CT enhancement of the 

tethered molecule under TERS investigation. In conclusion, it could be plausible that 4-AB is 

actually formed, but that its signature cannot be (easily) revealed. A confirmation of this 

hypothesis could be yielded by performing TERS measurements on a sample grafted with 4-

AB by electroreduction of its diazonium salt derivative. 

Nonetheless, it cannot be excluded that also detection issues could have occurred, either 

because of the excessive sparseness of the molecular structures on the surface, or because of 

the inefficient tip enhancement over little quantities of molecules. 
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4.3.3 Structure-reactivity relationships 

The comparison of the averaged spectra evolution among the different samples shows 

that stable N=N dimers form in the thickest architectures, while the “monolayer-like” structure 

should reduce completely to 4-AB. This seems suggesting that thicker layers have slower 4-

NB reduction kinetics, most likely due to their disordered molecular architectures and long 

branched chains, which are expected to hinder the charge transfer through the aryl layer 

between the metal and the redox groups disseminated within the 3-D structure. Besides, the 

compactness of the chains inside the layer might promote the coupling of reaction 

intermediates, given their proximity in the structure, thus explaining the detection of bands 

belonging to azobenzene groups at potential as high as -400 mV. These add up to the other azo 

bridges that had formed during the grafting procedure because of the diazo-mediated branching 

mechanism. Ultimately, the appearance of N=N spectral features already at the beginning of 

the reduction process, which stay sharp even at low potentials and on the backward potential 

scan, attests of their high stability and might suggest a densification of the molecular 

architecture due to the formation of novel inter-molecular bonds. This explains why, even when 

polarizing the substrate at more negative potential with respect to the cathodic peak in the CV 

experiment (Figure 4.4), the formation of amino moieties is expected to occur only to a limited 

extent and is therefore not detected. 

On the contrary, “monolayer-like” structures seem containing less (or no) azo bridges 

inside their chains before the application of negative polarizations on the sample. Beside, their 

arrangement in sparse clusters, where the short molecular chains are supposed to be more rigid 

and farther from each other than in the multilayer samples, might be a deterrent for the 

formation of dimeric species during the 4-NB reduction. Dimers are shown to appear only 

around -400 mV and seem proceeding quickly towards total reduction into 4-AB, as suggested 

by the disappearance of any signature upon polarization at -1 V and the absence of signals also 

when bringing the potential back towards more positive values. These results seems in 

disagreement with what observed in the CV experiment (Figure 4.4), which showed the anodic 

peak belonging to the 4-HAB  4-NSB transformation in the backward scan and therefore 

proves that not all the 4-NB groups converted irreversibly to 4-AB. However, it must be 

reminded that in EC-STM-TERS analyses the samples are subjected to reducing potentials for 

longer times than the in the CV measurement, hence their transformations can actually get to 

completion. 
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Contrary to expectations, 4-NBM SAM show a more similar reactivity to 4-NBD 

multilayers, rather than to the “monolayer-like” structure: also in the thiol-functionalized 

surfaces azobenzene appears in short times, becomes the most abundant species and reduces 

slowly to 4-ABM. This might be due to a difference in the efficiency of the metal-to-molecule 

charge transfer, which in 4-NB “monolayer-like” samples is supposed to occur faster, since 

molecules are either grafted directly on the substrate or, if branched, separated by few (~2-3) 

units from it. On the other hand, in 4-NBM the transfer might be damped by the presence of 

the methyl group, which separates the aromatic ring from the sulfur atom linked to the surface, 

while in 4-NB multilayer the damping effect is most likely due to the longer extension of the 

branched chains. Besides, the high flexibility of the 4-NBM molecules on the surface, due to 

the presence of the methyl group, should ease the dimerization process among adjacent species 

and lead to a stabilization of the N=N bond, as it is expected to occur in multilayers. However, 

these considerations are merely speculative: a proper comparison among the two different 

systems might be done only after subjecting both to either dynamic or step-by-step EC-TERS 

analyses. 

4.4. Conclusions 

To summarize, this experimental work satisfied two important requests. On one side, it 

allowed elaborating an optimized procedure for controlling the growth of 4-NBD layers on 

gold under electrochemical conditions. This was possible thanks to the use of the ChA species, 

which works as redox cross-inhibitor and prevents the excessive formation of 4-NBD-derived 

radicals close to the sample surface. All the characterization analyses performed on the grafted 

layers attest of a sharp decrease in the layer thickness with the increase in inhibitor content. 

More precisely, according to thickness evaluation by ellipsometry, a “monolayer-like” 

structure is expected to be obtained with a 0.25 mmol.L-1 ChA concentration. Only the surface 

coverage seems decreasing more slowly with the increase in the amount of ChA in the grafting 

mixture. However, this apparent effect is due to the unsuitability of the electrochemical 

approach for surface coverage evaluation in thick multilayers. Since their disordered and 

compact architectures hinder the reduction of the electroactive NO2 groups inside the layer 

bulk, these remain silent and lead to an underestimation of the surface coverage value. Albeit, 

images acquired on the functionalized surfaces show that, rather than spreading uniformly on 

the sample surface, molecular species tend always to assemble in clusters. These nucleate first 

on the gold terraces edges, then propagate towards their center, and are observed to be less 
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thick and sparser as the ChA content in the grafting medium increases. The superficial 

roughness of the substrate plays as well a role in the clusters distribution, as smoother and more 

uniform surfaces will favor the densification of the clusters and yield more homogeneous 

structures. 

Once gathered the control over the fabrication of the diazonium-derived layers and the 

knowledge over their chemical composition and structure, our work focused on the correlation 

of this information with the layer electrochemical reactivity in in situ conditions. This was 

possible thanks to the EC-STM-TERS setup, which was employed to image the evolution in 

the chemical composition of the samples surfaces while subjecting them to 

chronoamperometric steps. Spatially resolved STM-TERS maps allowed at the same time 

distinguishing among zones of heterogeneous reactivity on the same surface, and also relating 

the molecular distribution with the surface morphology. Besides, very low potential values 

(down to – 1 V) could be applied on the sample without affecting the detection efficiency. This 

was possible by finding a compromise for the tip/sample distance, which had to guarantee a 

good probe stability and, at the same time, a strong TER effect. Finally, average spectra 

extracted from all the maps at different potentials were conveniently used to evaluate the 

electrochemical behavior evolution of the layers under polarization. While thick, compact 

layers seem to privilege the formation of stable azo bridges, rather than the total reduction into 

amine, “monolayer-like” structure are suspected to react quicker and to be more prone to reduce 

totally and irreversibly. Further EC-TERS dynamic studies and TERS investigation on 4-AB 

grafted layers would be needed to confirm this hypothesis. 

In conclusion, the versatility of the employed EC-STM-TERS setup, in terms of limit 

of detection, spatial resolution and adaptability to work in real operating conditions (i.e. in 

liquid and under polarization) makes it an ideal analytical tool for relying the reactivity of a 

functionalized surface with the evolution in its chemical nature and structure. 
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Conclusions and perspectives 

In this thesis work, the level of sophistication reached in the development of the EC-

STM-TERS technique has opened the way to dynamical analyses of the electrochemical 

transformations occurring on electroactive layers, immobilized on conducting surfaces, over a 

wide range of potential and with a lateral resolution down to 4 nm. The strong analytical 

potential of this methodology is illustrated by the dynamic or spatially resolved 

characterization of the chemical transformations involving the nitro functionality, immobilized 

on gold surfaces through either thiol- or aryldiazonium-derived species. 

The wide knowledge of the chemistry of thiols and diazonium salts accumulated over 

the last decades makes their use strategic for efficient surface functionalization. Nevertheless, 

the structures elaborated via the two approaches show different interactions and organizations 

(between molecules and with the metal substrate) that impact the electrochemical behavior of 

the modified surface. Indeed, thiols form well organized but weakly bonded SAMs, whereas 

the reduction of aryl diazonium produces robust multilayers (covalent bonding) whose growth 

and organization are difficult to control. To characterize in real time electrochemical processes 

occurring on such modified surfaces, the most effective operando/in situ techniques developed 

so far show the required sensitivity for small molecular assemblies, but are limited in terms of 

spatial resolution. Only a few of them, developed lately, give access to the (electro)chemical 

reactivity at the nanoscale, although rarely in combination with the chemical signature. Among 

them, EC-TERS has proved to be particularly interesting and already allowed studying 

electrochemical processes occurring at functionalized surfaces, even if it is still at its infancy 

for real-time measurements, with respect to its non-spatially resolved SERS analogue.  

To this end, we put a particular effort on the technical developments of the EC-STM-

TERS, including the fabrication of STM-TERS gold probes adapted for in situ measurements 

(etching to produce tapered profile, shaping to be integrated within the EC-TERS cell and 

effective insulation), and the conception of a new 4-electrode TERS-compatible spectro-

electrochemical cell, which secures the ease and reproducibility of EC-STM-TERS analyses. 

The new developed setup has been first employed for assessing the reactivity of a non-

Raman resonant electroactive molecular layers (4-nitrobenzene mercaptan 4-NBM) self-

assembled on gold. We have demonstrated that TERS mapping with high lateral resolution (4-

nm pixel size) and time-resolved (1 s) measurements could be implemented in situ and on a 

large potential range, thus yielding a deeper understanding of the electrochemical 
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transformation occurring on nitro-functionalized SAMs. Indeed, a reduction mechanism 

pathway involving intermediates that cannot be detected electrochemically could be proposed. 

In particular, our results suggest that the formation of dimers do not originate from photo-

oxidation, upon irradiation of the gold tip-sample junction in solution with a red laser, but 

rather from condensation of reaction intermediates. 

More importantly, the knowledge acquired from the study of the model thiolated sample 

with nitro-entities turned essential for understanding the relationship between the layer 

structure and its reactivity in more complex architectures, as those obtained by electroreduction 

of aryl diazonium salts (4-NBD). The control over the layer growth was successfully achieved 

on gold electrodes through the use of a redox “cross-inhibitor” (ChA), already optimized for 

carbonaceous electrodes, which enabled the deposition of electroactive molecular structures 

(4-NB) with controlled thicknesses on gold surfaces. Several ex situ characterization 

techniques confirmed the effectiveness of the grafting inhibition; however, they also revealed 

the tendency of the molecular species to assemble in clusters, which was not observed on 

carbonaceous materials and could be explained by the heterogeneity of the gold surface. 

Moreover, spatially resolved composition mappings by EC-TERS at specific, progressive 

polarizations suggest that thick layers are more subjected to dimer formation, while thin 

clustered structures are suspected to react quicker and to be more prone to reduce totally and 

irreversibly. This is, to our knowledge, the first demonstration of EC-TERS experiments at 

polarizations as negative as -1 V. 

The investigations performed in this PhD work underlined the efficiency and reliability 

of the EC-STM-TERS technique for highly resolved, sensitive and rich characterizations of 

thin molecular layers. This approach could be then furtherly used for many other applications 

and more complex systems. Among them, surface-immobilized molecular layers decorated 

with electroactive species that act as (bio)sensors or catalysts might be of particular interest. 

The TERS-active probe could indeed scan the sample and detect the spectral features of the 

reaction products in the course of their formation, thus allowing to map the distribution of the 

active sites and assess their efficiency. It should also be able to capture the signatures of the 

reactive intermediates (such as in electrocatalytic processes), to further decipher the 

mechanism of their formation. Besides, EC-TERS might be used to monitor in situ the chemical 

transformations occurring upon electro-induced molecular motions, as in the case of the 

“molecular machines” fabricated from giant rotaxanes. Nonetheless, EC-STM-TERS might not 
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be ideal for the investigation of softer materials or weakly bounded molecular complexes, 

whose structures might be heavily altered by the close proximity of the tip in tunneling 

conditions. A valid alternative for these system could be constituted by an EC-TERS 

configuration implemented in an AFM setup, where the use of a cantilever in non- or semi-

contact mode as scanning probe should prevent this risk. Despite some studies in this extent 

have already been reported, the robustness of AFM-TERS under electrochemical conditions 

remains still to demonstrate. 

An additional implementation of the EC-TERS setup, suggested by some preliminary 

results obtained in this work (but not presented in this manuscript), would consist in using the 

tip as both nanolithographic tool for the realization of molecular patterns on a surface, and as 

TERS-probe for their characterization. Similarly to SECM-based techniques, in this mode the 

occurrence of electrochemical reactions would be limited to the area under the tapered probe 

but with a much higher resolution (few tens of nm expected). This aspect would allow, for 

instance, reducing small quantities (or even single entities) of diazonium salts in solution, thus 

promoting the formation of few (or single) aryl radicals that graft locally below the tip. As a 

consequence, a precise motif of strongly bonded molecular species could be obtained. This 

method could also be extended to those molecular species that radicalize by photoactivation: 

in this case, the tip would work as a nanosource of illumination and, thanks to the strong 

enhancement provided by its tapered apex, could promote localized photopolymerization and 

photoreduction reactions at minimal excitation powers. 
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Annexes 

Comparison of ChA and DPPH performances as inhibitors 

 

Figure. Comparison ChA vs DPPH for the inhibition of 4-NBD-derived layers- CVs 

recorded in KOH 0.1 mol.L-1 on grafted gold plates (from -0.1 to -1.3 V vs SCE, at 50 mV.s-

1). Grafting was previously achieved in the presence of 1 mmol.L-1 4-NBD and different a) 

ChA and b) DPPH concentrations (indicated in the legend on the graph). The dashed black 

curve represents the second cycle performed on the disk grafted without inhibitor. The values 

of surface coverage, extracted by the integration of the voltammetric peaks (see Equation (3.5) 

in Chapter 3), are reported in c) for the two inhibitors (ChA, red diamonds, and DPPH, blue 

squares). The results show that ChA allows obtaining thinner structures at lower concentrations 

(e.g. for “monolayer-like”, 0.25 mmol.L-1 for ChA against 0.40 mmol.L-1 of DPPH). The 

overestimation of the surface coverage for 0.20 mmol.L-1 of DPPH might be due to the 

formation of a less dense layer in the presence of small quantities of inhibitor, which ease the 

solution accessibility to the electroactive groups. 
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Abbreviations 

AC                     Alternated Current 

AFM                  Atomic Force Microscopy 

CCD                  Charge-Coupled Device 

CE                      Counter-Electrode 

CV                     Cyclic Voltammetry 

DC                     Direct Current 

DFT                   Density Functional Theory 

EC                      Electrochemical 

EM                     Electromagnetic 

EQCM               Electrochemical QCM 

ET                      Electron Transfer 

FB                      Feedback Mode (in SECM) 

FIB                    Focused Ion Beam 

IR                       Infrared 

LSPR                 Localized SPR 

Mt                      Mediator-tethered mode (in SECM-AFM) 

NC                     Nanocrystal 

NIR                    Near Infrared 

NP                      Nanoparticle 

OCP                   Open Circuit Potential 

ORR                  Oxygen Reduction Reaction 

PMIRRAS         Phase-Modulation Infrared Reflection Absorption Spectroscopy 

QCM                 Quartz Crystal Microbalance 
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QRE                   Quasi-Reference Electrode 

RE                      Reference Electrode 

SAM                  Self-Assembled Monolayers 

SCE                   Saturated Calomel Electrode 

SEC                   Spectro-Electrochemistry 

SECCM             Scanning Electrochemical Cell Micrscopy 

SECM                Scanning Electrochemical Microscopy 

SEI                     Solid Electrolyte Interphase 

SERS                 Surface-Enhanced Raman Spectroscopy 

SHE                   Standard Hydrogen Electrode 

ShFM                 Shear-force Microscopy 

SHINERS          Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy 

SNOM               Scanning Near-field Optical Microscopy 

SPM                   Scanning Probe Microscopy 

SPP                    Surface Plasmon Polariton 

SPR                    Surface Plasmon Resonance 

STM                  Scanning Tunneling Microscopy 

TERS                 Tip-Enhanced Raman Spectroscopy 

TOF-SIMS        Time-of-Flight – Secondary Ion Mass Spectrometry 

UME                  UltraMicroElectrode 

UV                     Ultraviolet 

WE                     Working Electrode 

XPS                    X-ray Photoelectron Spectroscopy 
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Acronyms of chemical compounds 

3,5-D-t-BuBD          3,5-Bis-tert-butylbenzene Diazonium 

4-ATP                       4-Aminothiophenol 

4-NBD                      4-Nitrobenzene Diazonium (tetrafluoroborate) 

4-NTP                       4-Nitrothiophenol 

4-PBT                       (4′-(Pyridin-4-yl)biphenyl-4-yl)methanethiol 

ACN                         Acetonitrile 

APBA                       4-(2-(4-Acetylthio)phenyl)ethynyl) Benzoic Acid 

BCB                          Brilliant Cresyl Blue 

BM                           Benzyl Mercaptan 

BT                             Benzothiophene 

ChA                          Tetrachloro-1,4-Benzoquinone (Chloranil) 

DMAB                     Dimercapto Azobenzene 

DPPH                       2,2-Diphenyl-1-Picrylhydrazyl 

EDC                          1-(3-(Dimethylamino)propyl)-3-ethylcarbodimide Hydrochloride 

EtS                            Ethanethiolate 

Fc                              Ferrocene 

GC                            Glassy Carbon 

HOPG                       Highly Oriented Pyrolized Graphite 

ITO                           Indium Tin Oxide 

MUDA                     11-Mercaptoundecanoic Acid 
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NB                            Nile Blue 

NHS                          N-Hydroxysuccinimide 

PANI                        Polyanline 

PEEK                        Poly Ether-Ether Ketone 

PEG                          Polyethylene Glycol 

PET                           2-Phenylethyl 

PhS                           Thiophenolate 

PPF                           Pyrolized Photoresistive Film 

PSA                          Prostate Specific Antigen 

PTA                          Tri-p-tolylamine 

TBABF4                   Tetrabutylammonium Tetrafluoroborate 

TBAF                       Tetra-n-butylammonium Fluoride 

TEAP                        Tetraethylammonium Perchlorate 

TEMPO                    (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl 

TMS                         Trimethylsilyl 

TES                           Triethylsilyl 

THF     Tetrahydrofuran 

TIPS                         Tri(isopropyl)silyl 
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Symbols and units 

a                                 Radius of a nanostructure                    nm 

BV                             Bias Voltage                                          V or mV 

c                                 Speed of light                                        ~ 3.108 m.s-1 

EF                              Enhancement Factor                             - 

IT                                Tunneling Current                                nA or pA 

n                                 Refractive index                                    - 

NA                             Numerical Aperture                              - 

WD                            Working Distance                                 mm 

z                                 Vertical distance                                   nm 

Δx                               Lateral Resolution                                μm or nm 

Δz                               Depth Resolution                                  μm or nm 

ε                                 Dielectric Constant (of the metal)        - 

εm                               Dielectric Constant (of the medium)   - 

λ                                 Wavelength                                            nm 
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