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RÉSUMÉ

En fonction du point de vue, une émotion peut être comprise comme la représentation consciente de ce qu'un individu ressent (perspective psychologique), ou réponse complexe et moins consciente du corps à un stimulus émotionnel donné (perspective neuro-psychologique). Dans cette thèse, nous suivons la position décrite dans [START_REF] Valenzi | Individual classification of emotions using eeg[END_REF], à savoir "une position médiane tentant de définir comment les changements physiologiques ont lieu quand nos ressentis changent ".

Au sein des recherches sur les émotions humaines, l'informatique affective vise à permettre à des " systèmes intelligents de reconnaître, ressentir, déduire et interpréter " de telles émotions [START_REF] Poria | A review of affective computing : From unimodal analysis to multimodal fusion[END_REF]. Une part importante des recherches en informatique affective se focalise sur la prédiction, à partir de données physiologiques, d'émotions produites chez un sujet par le biais de stimuli spécifiques. Usuellement, les sujets annotent l'émotion ressentie selon le plan valence/arousal [START_REF] Mehrabian | An approach to environmental psychology[END_REF].

C'est dans ce cadre que s'inscrit la mise en place de systèmes de reconnaissance automatique d'émotions, en parallèle avec la constitution de bases de données émotionnelles.

La reconnaissance automatique d'émotions s'effectue généralement de la manière suivante :

-Des émotions sont produites chez le participant par le biais de stimuli spécifiques. Dans le cadre de cette thèse, nous nous intéressons aux stimuli audiovisuels (vidéos). En parallèle de l'enregistrement de signaux physiologiques, le participant annote l'émotion ressentie. L'annotation peut se faire pendant ou après la stimulation. -Ensuite, une représentation de caractéristiques (features) est choisie. Selon cette représentation, des features sont extraites de l'EEG du participant. Bien entendu, le choix de la représentation est crucial aussi bien pour la performance de la classification que pour l'explication physique des features. -En utilisant les features extraites à l'étape préc dente et les annotations du participant, un classifieur d'émotions est alors appris sur un set d'entraînemen et évalué sur un set de test, selon une métrique d'évaluation donnée.

Les travaux sur la reconnaissance automatique d'émotion sont basés principaleiii ment sur des modalités comme la parole, l'expression faciale ou le regard [START_REF] Keltner | Facial expression of emotion[END_REF][START_REF] Schuller | Recognising realistic emotions and affect in speech : State of the art and lessons learnt from the first challenge[END_REF][START_REF] Bal | Emotion recognition in children with autism spectrum disorders : Relations to eye gaze and autonomic state[END_REF]. Ces modalités sont principalement limitées par leur altérabilité, qu'elle soit volontaire ou non [START_REF] Fiebig | A framework for the study of emotions in organizational contexts[END_REF], limitation dont ne souffrent pas des signaux physiologiques comme les électroencéphalogrammes (EEG). Ces derniers permettent de capturer des informations non observable de manière externe. C'est pourquoi l'EEG, dont il a été démontré qu'elle contient des indices précieux pour la classification d'émotion [START_REF] Bajaj | BIBLIOGRAPHIE Human emotion classification from eeg signals using multiwavelet transform[END_REF], attire l'attention des chercheurs en informatique affective. Et c'est pourquoi nous nous focalisons, dans cette thèse, sur la reconnaissance d'émotion à base d'EEG.

Traditionnellement, la reconnaissance d'émotion via EEG se fait par extraction de caractéristiques dans des bandes de fréquence prédéfinies, connues en neuro-sciences pour leur lien avec l'émotion : bandes alpha, bêta, gamma... Cette approche traditionnelle ne tient pas compte de la forte variabilité inter-sujet des réponses EEG à un même stimulus, en plus de nécessiter des connaissances a priori quant aux bandes de fréquence à considérer.

Une problématique centrale de la reconnaissance d'émotion à base d'EEG est la variabilité des réponses individuelles aux stimuli, que ce soit au niveau émotionnel ou physiologique. En effet, d'un sujet à l'autre :

-le même stimulus peut produire des émotions différentes [START_REF] Khomami Abadi | Multimodal engagement classification for affective cinema[END_REF] -une même émotion annotée peut correspondre à différentes réponses physiologiques d'un sujet à l'autre [START_REF] Morioka | Learning a common dictionary for subject-transfer decoding with resting calibration[END_REF].

La tendance en machine learning consiste en l'apprentissage de représentations adaptées à la tâche de classification. Un cadre robuste d'extraction automatique de features devrait permettre de résoudre le problème de la dépendance de l'EEG aux sujets. Dans cette optique, un dictionnaire commun représentant les données peut être appris à partir du set d'entraînement. Ensuite, les données sont projetées sur ce dictionnaire pour obtenir des features de classification. Par l'apprentissage de dictionnaire, on recherche la " reprśentation appropriée de sets de données par le biais de sous-espaces à dimensions réduites. " [START_REF] Tosic | Dictionary learning[END_REF].

Dans ce contexte, nous utilisons la Nonnegative Matrix Factorization (NMF) [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF] qui permet, à partir de la matrice de densité spectrale de puissance, d'extraire un dictionnaire d'atomes fréquentiels et une matrice d'activation de ces atomes. L'activation des atomes est ensuite utilisée pour entraîner des classifieurs de valence/arousal. Bien que l'utilisation de la NMF mène globalement à une amélioration des résultats (en comparaison avec une baseline de features traditionnelles) sur les bases de données HCI MAHNOB [START_REF] Soleymani | A multimodal database for affect recognition and implicit tagging[END_REF] et EMOEEG [START_REF] Conneau | Emoeeg : A new multimodal dataset for dynamic eeg-based emotion recognition with audiovisual elicitation[END_REF], cette amélioration n'est pas encore satisfaisante. En intra-sujet, les résultats de classification varient encore beaucoup d'un sujet à l'autre. En inter-sujet, les améliorations observées dépendent la baseline et de la dimension (valence/arousal). D'où l'idée, en inter-sujet, de rendre l'apprentissage de représentation sensible aux variations entre sujets. Une variante de la NMF, la Group NMF [START_REF] Lee | Group nonnegative matrix factorization for eeg classification[END_REF][START_REF] Serizel | BIBLIOGRAPHIE Group nonnegative matrix factorisation with speaker and session variability compensation for speaker identification[END_REF], permet une telle considération. Il s'agit de faire en sorte que certains atomes du dictionnaire appris présentent une certaine similarité s'ils sont extraits à partir des données du même sujet. Mais en comparaison avec la NMF simple, une telle configuration de GNMF n'améliore par les résultats de classification. Par ailleurs, on se rend compte que les résultats dépendent beaucoup du niveau d'émotion annotée. Ainsi, la classification est moins performante lorsque l'arousal est faible.

Le constat de cette dépendance vis-à-vis de la nature de l'émotion a motivé notre étude de l'effet de cette dernière sur la corrélation des signaux EEG entre sujets qui ont regardé le même stimulus. Pour quantifier cette corrélation, nous avons utilisé l'Inter-Subject Correlation (ISC) [START_REF] Jacek P Dmochowski | Correlated components of ongoing eeg point to emotionally laden attention-a possible marker of engagement[END_REF][START_REF] Jacek P Dmochowski | Audience preferences are predicted by temporal reliability of neural processing[END_REF][START_REF] Ki | Attention strongly modulates reliability of neural responses to naturalistic narrative stimuli[END_REF], en proposant différents schémas de calcul. En étudiant les variations du score d'ISC en fonction du niveau de valence et d'arousal annotés, nous avons constaté une augmentation significative du score d'ISC lorsque l'arousal augmente, et une diminution de ce score lorsque la valence augmente. Cela permet de fournir une explication quant à la dépendance observée des performances de classification vis-à-vis de l'émotion. Forts de cette nouvelle information, nous avons alors décidé de redéfinir notre manière d'utiliser la GNMF. Au lieu de définir les groupes par sujet ou session, nous les définissons désormais par le niveau de valence et d'arousal annotés. L'apprentissage de features se fait alors de manière multi-tâche, l'information relative aussi bien à la valence et l'arousal servant à l'apprentissage de features pour classifier les deux dimensions. Cependant, dans les fonctions objectif à minimiser, les paramètres relatifs aux similarités de la GNMF varient pour la classification de chacune desdites dimensions. Cette nouvelle GNMF (GNMF-val/aro) offre de bien meilleurs résultats que la précédente. L'apprentissage de features par niveau d'émotion semble donc plus porter ses fruits que celui par sujet.

Cette utilisation de l'ISC est indirecte : en effet, la variation de l'ISC en fonction de la valence et de l'arousal nous a donné l'idée de définir nos groupes en fonction de ces dernières. Dès lors, pourquoi ne pas définir directement les groupes de la GNMF par le score d'ISC, au lieu de passer par l'intermédiaire valence/arousal ? C'est ce que nous avons fait sur la base de données HCI (les sujets de EMOEEG n'ayant pas tous vu les mêmes vidéos).

Dans un premier temps, nous avons pris en compte l'ISC de manière légère, dans l'étape d'apprentissage du classifieur, en pondérant les observations par le score d'ISC. Cette première initiative n'a pas donné des résultats sensiblement différents de GNMFval/aro. Ensuite, nous avons décidé de prendre l'ISC en compte plus en amont, lors de l'apprentissage de features. Au lieu de discriminer les features en fonction des niveaux de v valence/arousal, nous les discriminons uniquement en fonction du niveau d'ISC discrétisé (bas/haut). Ce nouveau schéma de GNMF (GNMF-ISC), où les groupes sont définis en fonction du niveau d'ISC, donne des scores encore plus hauts que GNMF-val/aro. Ces résultats placent donc l'ISC au coeur de la problématique de la reconnaissance de l'émotion via EEG. Des travaux futurs porteront non plus sur l'utilisation de l'ISC discrétisé pour définir des groupes de GNMF, mais sur l'incorporation directe du score d'ISC continu dans la fonction objectif de la NMF.

Au-delà de l'effet de l'ISC à proprement parler, la reconnaissance d'émotion via EEG reste fortement tributaire de la taille des bases de données utilisées, que ce soit en nombre de sujets ou en nombre de stimuli présentés à chaque sujet. C'est ce nombre-là qui, décuplé, pourrait permettre une plus grande efficacité de la GNMF, en s'assurant que les données soient assez nombreuses pour que l'extraction de features se fasse avec précision.

Une autre question peu approfondie au cours de cette thèse concerne les différences entre techniques d'annotation de l'émotion. Bien que nous nous soyons focalisés sur les dimensions classiques valence/arousal, l'utilisation de descripteurs plus qualitatifs (emotional words) pourrait modifier la manière de concevoir la GNMF. 
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INTRODUCTION

Emotion can be defined as a "distinct, integrated, psycho-physiological response system", an "organized highly structured reaction to an event that is relevant to the needs, goals, or survival of the organism" [START_REF] Watson | Mood and temperament[END_REF]. In particular, an emotion must be distinguished from a mood, which is also a transient episode of affect. The main differences are that :

-the duration of the episode is typically shorter in the case of the emotion -emotions are response systems activated by specific stimuli. The use of such stimuli to this end is referred to as emotion elicitation.

Depending on the standpoint, an emotion can be understood either as the conscious representation of what an individual feels (psychological perspective), or the complex and less conscious body response to a given emotional stimulus (neuro-psychological perspective). In this thesis, we follow the position described in [START_REF] Valenzi | Individual classification of emotions using eeg[END_REF], that is "a middle position by trying to define how physiological changes occur when our feelings change", the assumption being that "when participants recognize their emotions well, the association between physiological data and perception of different feelings will be reliable." Among the research on human emotions, affective computing is a large field that aims at enabling "intelligent systems to recognize, feel, infer and interpret" these emotions [START_REF] Poria | A review of affective computing : From unimodal analysis to multimodal fusion[END_REF]. Therefore, a significant part of the investigations in affective computing research seeks to predict the emotions elicited from a subject using specific stimuli based on the subject's physiological responses to such stimuli. In line with this effort, automatic emotion recognition systems are set up, motivating the constitution of numerous emotional Contributions to automatic emotion recognition mainly rely on modalities such as speech, facial expressions, or eye gaze [START_REF] Keltner | Facial expression of emotion[END_REF][START_REF] Schuller | Recognising realistic emotions and affect in speech : State of the art and lessons learnt from the first challenge[END_REF][START_REF] Bal | Emotion recognition in children with autism spectrum disorders : Relations to eye gaze and autonomic state[END_REF]. The main limitation of these modalities is their alterability, whether voluntary or not [START_REF] Fiebig | A framework for the study of emotions in organizational contexts[END_REF]. On the other hand, physiological modalities such as Electroencephalography (EEG) do not suffer from such a drawback. As stated in [START_REF] Zheng | Multichannel eeg-based emotion recognition via group sparse canonical correlation analysis[END_REF], "EEG signals are directly recorded from human's brain cortex and hence they could be more reliable in reflecting the inner emotional states of the brain", with a remarkable advantage in comparison to other physiological modalities : the information EEG can capture is not necessarily observable externally. Thus, EEG has attracted the attention of researchers in the field of affective computing and it has been shown to hold precious cues for emotion classification [START_REF] Bajaj | BIBLIOGRAPHIE Human emotion classification from eeg signals using multiwavelet transform[END_REF]. This has motivated the focus on EEG-based emotion classification in this thesis.

To perform EEG-based emotion classification, one has to cope with the variability of individual responses to stimuli, whether it be at the emotion level or at the physiological signal level. Indeed, from one subject to another :

-the same stimulus can elicit different emotions [START_REF] Khomami Abadi | Multimodal engagement classification for affective cinema[END_REF] ; -the same elicited emotion translates into different physiological responses across participants [START_REF] Morioka | Learning a common dictionary for subject-transfer decoding with resting calibration[END_REF].

Many factors of decision can have an impact to address this stability issue. Which stimuli to use ? Should emotion classification be done individually or in an inter-subject fashion ? Which features to extract from the physiological data ? How should such features be normalized ? And, more deeply, how to take into account the variabilities exposed above in the chosen feature representation ? These have been our focuses in this thesis.

Stimuli choice

Even if they induce harder emotion classification tasks than image stimuli, audiovisual stimuli offer the advantage of eliciting dynamic emotions, which is more consistent with realworld applications. Therefore, this thesis focuses on the use of audiovisual stimuli.

The duration of such stimuli is chosen such that it is both not too long to hamper the subject's concentration, and not too short in order to capture the dynamics of emotion. As 1.2. EMOTION ANNOTATION the order of magnitude of emotional reactions length was found to be around 10 seconds [START_REF] Franz | A method for quantifying the emotional intensity and duration of a startle reaction with customized fractal dimensions of eeg signals[END_REF], a usual order of magnitude for the duration of audiovisual stimuli is 20-30 seconds.

Across the available emotional databases, different types of audiovisual stimuli are used, according to the considered task. Such stimuli are often short movie excerpts [START_REF] Soleymani | A multimodal database for affect recognition and implicit tagging[END_REF] or music videos [START_REF] Koelstra | Deap : A database for emotion analysis ; using physiological signals[END_REF], which induces different elicitation. Some databases can also focus on specific types of emotions, such as negative ones [START_REF] Conneau | Emoeeg : A new multimodal dataset for dynamic eeg-based emotion recognition with audiovisual elicitation[END_REF].

Emotion annotation

Given a choice of stimuli, emotion has to be accurately translated by the participant. This raises the issue of emotion annotation, that is to say the assessment by the participant of the emotion he/she felt as a result of each stimulus.

To be more accurate, emotion annotation can take the form of a verbal description using specific keywords. However, a scalar representation offers the advantage of both systematizing and simplifying the annotation. To this end, emotions are often represented in a two-dimensional valence-arousal space [START_REF] Mehrabian | An approach to environmental psychology[END_REF], which respectively describe the pleasure or displeasure felt by a person and her degree of excitement. In Figure 1.1, some specific emotions are placed onto this space. In this thesis, emotion annotation corresponds to a double scalar annotation, that is to say valence and arousal information. Valence and arousal annotation can either be continuous or discretized. Even though a discrete representation on the valence and arousal axes "may not reflect the subtlety and complexity of the affective states" [START_REF] Gunes | Emotion representation, analysis and synthesis in continuous space : A survey[END_REF], such a discretization is a straightforward way of obtaining meaningful labels with a view to elicited emotion classification. Most discretization models decompose each axis into two or three labels, respectively low/high and low/average/high.

The emotional state (valence-arousal) self-assessment by the participants can be made in an online fashion while watching the stimulus, or after the end of its exposure.

While the first option can help capture the variations of valence and arousal more accurately in the audio-visually stimulated case, it might hamper the participants' concentration towards the stimuli.

As for the annotation itself, it can either globally describe the stimulus, or be decomposed so as to describe sub-parts of the stimulus, in order to capture the dynamics of emotion.

Factors of variability for the EEG response

As stated earlier, numerous factors affect the EEG response stability, making EEGbased emotion classification a challenging task.

The same stimulus can elicit different emotions among individuals. For instance, as made clear in [START_REF] Hazer | Emotion elicitation using film clips : Effect of age groups on movie choice and emotion rating[END_REF], age differences can induce valence/arousal rating differences for the same stimulus. Gender differences have also been found to have an effect in the rating of negative emotions [START_REF] Bradley | Emotion and motivation ii : sex differences in picture processing[END_REF]. Differences of annotation can be caused either by theses differences in the emotion felt or by inter-subject variability of emotion representation, that is to say the way subjects interpret emotional keywords or valence/arousal axes. This results in high inter-subject variability of the EEG responses to the same stimuli [START_REF] Thulasidas | Robust classification of eeg signal for brain-computer interface[END_REF].

Along with other works, the distinction made in [START_REF] Bradley | Emotion and motivation ii : sex differences in picture processing[END_REF] between negative and positive emotions when it comes to gender differences makes it clear that inter-subject variability depends on the emotion type. This is also emphasized by many classification results such as the ones obtained in [START_REF] Soleymani | A multimodal database for affect recognition and implicit tagging[END_REF], which shows differences of classification performance according to the emotion type. -intra-subject emotion classification performance varies a lot from one subject to another [START_REF] Winkler | Frontal eeg asymmetry based classification of emotional valence using common spatial patterns[END_REF] -inter-subject emotion classification tasks are complex because the generalization of features across subjects is difficult. Therefore, compared to intra-subject tasks, inter-subject classification performance is deteriorated.

In order to perform valid intra-subject analysis, we need EEG emotional datasets with enough experimental repetitions for each subject, so that enough subject specific information is available. This raises the issue of the subject's fatigue : if we want both enough repetitions per subject and to avoid any fatigue, multiple sessions for the same subject should be considered. Another related issue is thus raised, that is inter-session variability of the EEG signal. From an inter-subject classification point of view, enough subjects should participate to the experiments so that the problem of inter-subject variability, which remains a challenging issue, could be tackled. More focus on EEG emotional datasets is made in Chapter 2.

Objective and contributions

This thesis aims at introducing original EEG-based emotion classification methods that take into account factors of variability in EEG responses to audiovisual emotional stimuli. To this end, our contributions to the problem are the following :

-Features that are classically extracted from EEG data to perform emotion classification are the spectral power for each considered electrode in specific frequency bands (theta, slow alpha, alpha, beta, gamma) that are well known for their role in emotional and cognitive processes [START_REF] Yuvaraj | Emotion classification in parkinson's disease by higher-order spectra and power spectrum features using eeg signals : A comparative study[END_REF][START_REF] Li | Emotion classification based on gamma-band eeg[END_REF]. Spectral moments of different orders and heuristic spectral shape descriptors have also been used [START_REF] Soleymani | A multimodal database for affect recognition and implicit tagging[END_REF][START_REF] Conneau | Assessment of new spectral features for eeg-based emotion recognition[END_REF]. In the multi-channel case, the spectral power asymmetry between specific pairs of electrodes can be computed in the frequency bands mentioned earlier [START_REF] Liu | Real-time movie-induced discrete emotion recognition from eeg signals[END_REF]. Other approaches such as Common Spatial Patterns (CSP) [START_REF] Koelstra | Single trial classification of eeg and peripheral physiological signals for recognition of emotions induced by music videos[END_REF][START_REF] Samek | Divergence-based framework for common spatial patterns algorithms[END_REF][START_REF] Dupres | Sélection par un expert humain des intervalles temps-fréquence dans le signal eeg pour les interfaces cerveau-ordinateur[END_REF] rather focus on the spatial aspect of the activity on the skull.

Representations used in previous works have in common the fact that they rely on expert knowledge and a feature engineering effort. The new trend in machine Along this line, Nonnegative Matrix Factorization (NMF) [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF], which is an an unsupervised feature extraction method, has been mostly used for EEG-based motor imagery classification tasks [START_REF] Lee | Nonnegative tensor factorization for continuous eeg classification[END_REF]. We use NMF to perform intra and inter-subject EEG-based emotion classification, extracting dictionaries of frequency atoms from EEG spectrograms. The activation information of these atoms are then used as features for emotion classification.

-Noticing the high inter-subject variability of intra-subject classification results and the unsatisfactory inter-subject classification results, we were attracted by Group NMF (GNMF) [START_REF] Lee | Group nonnegative matrix factorization for eeg classification[END_REF]. Given predefined sub-parts of the data, this method extracts dictionaries separately and constrains specific similarities. We use GNMF to extract NMF atoms subject-wise, atoms among which some were constrained to be similar across subjects. No visible improvement is observed compared to NMF.

-Our previous results as well as many results in the literature show different classification performance across levels of valence/arousal. This motivates an analysis of the valence/arousal level effects on the correlation between EEG responses of subjects watching the same stimuli. Thus, we analyze the effects of valence/arousal on EEG Inter Subject Correlation (ISC) [START_REF] Jacek P Dmochowski | Correlated components of ongoing eeg point to emotionally laden attention-a possible marker of engagement[END_REF][START_REF] Jacek P Dmochowski | Audience preferences are predicted by temporal reliability of neural processing[END_REF][START_REF] Ki | Attention strongly modulates reliability of neural responses to naturalistic narrative stimuli[END_REF]. We find significant links between the valence/arousal levels and ISC. A particular care was given to the statistical validity of the observed ISC variation along valence and arousal dimensions, using computationally intensive randomization tests.

-We adjust our Group NMF model accordingly. Rather than extracting dictionaries of atoms subject-wise as made earlier, we used Group Nonnegative Matrix Factorization in a multi-task fashion, where both valence and arousal labels are exploited to control valence-related and arousal-related feature learning. Some improvement was observed for emotion classification results. The results are further improved with the explicit use of ISC information in the feature learning stage.

Organization of the document

This thesis is organized as follows :

-Chapter 2 presents preexisting EEG emotional databases, as well as commonly 1.5. ORGANIZATION OF THE DOCUMENT extracted features for EEG-based emotion classification. Classification results obtained using these features on some databases are also exposed.

-In Chapter 3, the NMF and Group NMF approaches are detailed, and we expose our NMF and Group NMF-based emotion classification. In this chapter, GNMF atoms are extracted subject-wise, atoms among which some were constrained to be similar across subjects.

-In Chapter 4, the Inter Subject Correlation framework is exposed. Then, the effect of valence/arousal on Inter Subject Correlation (ISC) is analyzed.

-Finally, following the conclusions of Chapter 4, Chapter 5 presents the adjustment of Group NMF to a valence/arousal-based definition of sub-groups.

C H A P I T R E 2

BASELINE EEG EMOTION CLASSIFICATION

In this chapter, we present the procedure classically followed to perform an EEGbased emotion classification task, as well as available databases in the case of audiovisual elicitation, and classification results obtained on such databases. As presented in Figure 2.1, a usual emotion recognition task is carried out as follows :

-Emotion is elicited from a participant by means of specific stimuli. In other words, stimuli are used in order to activate emotional responses in the participant.

During emotion elicitation, physiological data concerning the participant -EEG in our case -is recorded. Along with the recording of physiological information, the participant assesses his/her emotional state, either during or after the stimulation.

-Then, one has to choose a feature representation, according to which EEG-based features are extracted from the participant's data. As stated in [START_REF] Zheng | Multichannel eeg-based emotion recognition via group sparse canonical correlation analysis[END_REF], "the target of emotional EEG feature extraction is to seek a set of optimal features that characterize the emotion information of the raw EEG signals". Naturally, the choice of feature representation is crucial in classification performance, but also in the physical explanation given to the features. In this thesis, the focus is made on this step.

-Using the features extracted in the previous step and the participant's annotations, an emotion classifier is then learned on a training set, and finally evaluated on a test set, according to given evaluation metrics.

In Section 2.1, we present different stimuli used in EEG-based emotion classification tasks, as well as the requirements needed by such tasks. Section 2.2 presents available 

Emotion elicitation and EEG acquisition

For a given subject, we call trial the combination of one elementary emotion elicitation (using one stimulus) and the self annotation (by the subject) of the emotion felt. For instance, as shown in Figure 2.2, the EMOEEG database protocol [START_REF] Conneau | Emoeeg : A new multimodal dataset for dynamic eeg-based emotion recognition with audiovisual elicitation[END_REF] requires that the participant annotates his/her emotion right after each stimulus. It is also the case for the two other databases used in this thesis : HCI MAHNOB [START_REF] Soleymani | A multimodal database for affect recognition and implicit tagging[END_REF] and DEAP [START_REF] Koelstra | Deap : A database for emotion analysis ; using physiological signals[END_REF].

FIGURE 2.2 -Protocol for one trial (EMOEEG)

In the audiovisual stimuli case, an alternative to post-stimulus assessment is to make the participant assess his/her emotional state dynamically, while the stimulus is watched, as it is the case for the Feeltrace [START_REF] Cowie | feeltrace' : An instrument for recording perceived emotion in real time[END_REF] and Gtrace [START_REF] Cowie | Gtrace : General trace program compatible with emotionml[END_REF] annotation methods.

Even if such methods enable dynamic annotation, that is to say annotation which takes emotion variation across time, they have two major drawbacks, as stated in [START_REF] Conneau | Reconnaissance automatique de l'émotion à partir de signaux eeg[END_REF] :

-as the dynamic annotation has to be made while watching the video, it induces a lack of concentration, that can only be tackled by watching each stimulus twice, -watching each stimulus more than once may induce a habituation effect that would influence the participant's annotation [START_REF] Lin | Eeg-based emotion recognition in music listening[END_REF][START_REF] Thammasan | Multimodal fusion of eeg and musical features in music-emotion recognition[END_REF]. Others have used images or image blocks as stimuli [START_REF] Chanel | Emotion assessment : Arousal evaluation using eeg's and peripheral physiological signals[END_REF][START_REF] Hwan | Emotion recognition system using short-term monitoring of physiological signals[END_REF][START_REF] Savran | Emotion detection in the loop from brain signals and facial images[END_REF], using pictures from databases such as the International Affective Picture System (IAPS, [START_REF] Peter | International affective picture system (iaps) : Affective ratings of pictures and instruction manual[END_REF]). Musical stimuli present the disadvantage that " subjects are prone to misunderstand positive/negative valence as preferred/not preferred " [START_REF] Yang | Machine recognition of music emotion : A review[END_REF]. For instance, a music can be appreciated by the listener even if it makes him/her sad. As for image stimuli, even if they are an efficient way of eliciting emotion, they do not offer dynamic emotional responses. Therefore, in this thesis, the focus is put on audio-visually stimulated emotions, in order to be closer to realworld stimulation.

During each trial, the EEG signal is acquired by means of an EEG headset, as shown in Figure 2.3. An EEG headset is usually composed of 20, 32, or 64 electrodes. The names and positions of each electrode are defined by the 10-20 international system [START_REF] Richard W Homan | Cerebral location of international 10-20 system electrode placement[END_REF]. Figure 2.4 [START_REF] George H Klem | The ten-twenty electrode system of the international federation[END_REF] shows the positions of 20 electrodes on the skull. 

Specific requirements

Each trial has to last long enough so that the information extracted from the EEG signals is sufficient. It is all the more important given that within the frequencies of interest, there are relatively low frequency bands such as alpha (8-12 Hz) and theta (4-8 Hz) frequency bands [START_REF] Li | Emotion classification based on gamma-band eeg[END_REF][START_REF] Rowland | Eeg alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes[END_REF]. The duration of a single trial should correspond to enough periods of such considered frequencies. On the other hand, the total duration of an experiment should not be too long so as to avoid participants' loss of concentration over time. Therefore, a usual order of magnitude for the duration of one trial is 15-20 seconds [START_REF] Soleymani | A multimodal database for affect recognition and implicit tagging[END_REF][START_REF] Lang | International affective picture system (iaps) : Affective ratings of pictures and instruction manual[END_REF].

Then, according to the desired classification task, additional requirements have to be fulfilled :

-if the task is inter-subject classification, enough subjects are needed so that the features generalize well across subjects. To address this challenge of assessing the generalization abilities of EEG-based classification systems across subjects, some existing databases such as HCI MAHNOB and DEAP [START_REF] Soleymani | A multimodal database for affect recognition and implicit tagging[END_REF][START_REF] Koelstra | Deap : A database for emotion analysis ; using physiological signals[END_REF] included a relatively high number of participants (respectively 27 and 32 each).

-if the task is intra-subject classification, enough trials per subject are needed to provide each subject-dependent classifier with enough training data. Other databases such as eNTERFACE'06 and EMOEEG [START_REF] Conneau | Emoeeg : A new multimodal dataset for dynamic eeg-based emotion recognition with audiovisual elicitation[END_REF][START_REF] Savran | Emotion detection in the loop from brain signals and facial images[END_REF] (with respectively 5 and 8 participants) chose to sacrifice the number of subjects for the benefit of this consideration (with respectively 30 and 50-100 trials per participant).

EEG-based affective datasets

Emotion recognition databases are numerous [START_REF] Zeng | A survey of affect recognition methods : Audio, visual, and spontaneous expressions[END_REF], but they mainly rely on modalities such as speech, facial expressions, or eye gaze. To the best of our knowledge, only a few EEG-based emotion recognition databases are publicly available. Tables 2.1 and2 EMOEEG's experiment is performed with 8 participants, 4 from both genders. The stimuli include both sequences of static images from the IAPS dataset, and short video excerpts focusing on negative fear-type emotions. We only use audio-visual trials from this database. The annotation is obtained by participant self assessment, after a calibration phase.

EMOEEG stimuli focus on negative fear-type emotions. This choice is motivated by the development of strategies amenable to the analysis of the impact of violent videos on humans, and possibly treatments for subjects suffering from phobia. Thus, in terms of valence and arousal, there is a bias towards negative emotions in the choice of video The originality of this database lies in three main aspects :

-an important number of repetitions were performed per subject for the purpose of a reliable intra-subject classification. Indeed, EEG responses are known to be strongly individual-specific -a calibration phase which allows each participant to become familiar with the emotion annotation axes.

-a novel simplified dynamic annotation strategy used on video stimuli allows to consider the variations over time of felt emotion, and enhance the quality and consistency of the self-assessments.

As for HCI MAHNOB, it contains the recordings of 27 participants. We used 24 of theses sessions for valence classification and 23 for arousal classification. In each session, the participant watches 20 emotional videos. Thus, HCI MAHNOB contains more sessions than EMOEEG but less videos per session.

DEAP contains the recordings of 32 participants, even more than HCI MAHNOB, with more stimuli per participant [START_REF] Lin | Eeg-based emotion recognition in music listening[END_REF]. However, the nature of stimuli -music videos -is quite different from HCI MAHNOB and EMOEEG.

Commonly used features for EEG-based emotion classification

Features that are used for EEG-based emotion classification can be divided into three categories : time domain features, frequency domain features, and time-frequency domain features. In some reviews like [START_REF] Kim | A review on the computational methods for emotional state estimation from the human eeg[END_REF] (Kim et al, 2013), such features are divided into only two categories, namely time domain and time-frequency domain features.

Time domain features versus time-frequency domain features

Classic time domain features such as the mean, power, or standard deviation, can be extracted from the EEG signals. More complex features, commonly used in time series analysis, such as first differences, second differences, kurtosis, or Hurst exponent, have also been used. Finally, time domain features were specifically for EEG analysis : for instance, the Hjorth features [START_REF] Hjorth | Eeg analysis based on time domain properties[END_REF] named activity, mobility and complexity. As for time-frequency domain features, commonly extracted features for EEG-based emotion classification are the Power Spectral Density (PSD) for each considered electrode in specific frequency bands (theta, slow alpha, alpha, beta, gamma) that are well known for their role in emotional and cognitive processes [START_REF] Yuvaraj | Emotion classification in parkinson's disease by higher-order spectra and power spectrum features using eeg signals : A comparative study[END_REF][START_REF] Li | Emotion classification based on gamma-band eeg[END_REF]. For instance, "EEG alpha bands reflect attentional processing and beta bands reflect emotional and cognitive processing in the brain", according to Rowland et al. [START_REF] Rowland | Eeg alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes[END_REF] and Klimesch et al. [START_REF] Klimesch | Induced alpha band power changes in the human eeg and attention[END_REF]. Spectral moments of different orders and heuristic spectral shape descriptors have also been used [START_REF] Soleymani | A multimodal database for affect recognition and implicit tagging[END_REF][START_REF] Conneau | Assessment of new spectral features for eeg-based emotion recognition[END_REF]. In the multi-channel case, the spectral power asymmetry between specific pairs of electrodes can be computed in the frequency bands mentioned earlier [START_REF] Liu | Real-time movie-induced discrete emotion recognition from eeg signals[END_REF]. Other approaches such as Common Spatial Patterns (CSP) [START_REF] Koelstra | Single trial classification of eeg and peripheral physiological signals for recognition of emotions induced by music videos[END_REF][START_REF] Samek | Divergence-based framework for common spatial patterns algorithms[END_REF][START_REF] Dupres | Sélection par un expert humain des intervalles temps-fréquence dans le signal eeg pour les interfaces cerveau-ordinateur[END_REF] rather focus on the spatial aspect of the activity on the skull. 

COMMONLY USED FEATURES FOR EEG-BASED EMOTION CLASSIFICATION

The comparison results obtained by Wang et al. [START_REF] Wang | Emotional state classification from eeg data using machine learning approach[END_REF] and Conneau et al. [START_REF] Conneau | Assessment of new spectral features for eeg-based emotion recognition[END_REF] (2014) suggest the superiority of power spectrum features (time-frequency domain) over time domain features for EEG-based emotion classification. In addition, in the time-frequency domain, even if wavelet features are often used in EEG analysis, it was shown in [START_REF] Wang | Emotional state classification from eeg data using machine learning approach[END_REF] that they are inferior to power spectrum features in the case of EEG-based audio-visually stimulated emotion classification. been used to "learn the intrinsic relationship between different EEG channels " [START_REF] Song | Eeg emotion recognition using dynamical graph convolutional neural networks[END_REF], therefore exploiting spatial information to perform more discriminative feature extraction.

Exploiting spatial information

However, single-channel based emotion classification opens the way to easier applicability in real-world scenarios with more lightweight devices than full headsets. Therefore, the contributions of this thesis were made in the context of single-channel based emotion classification, and focus more on the spectrogram obtained from one given electrode than on the relationship between electrodes.

Classifier training and evaluation metrics

Using the extracted features, a classifier is trained on a given subset of the trials (as well as the corresponding annotations) and then tested to classify the remaining trials.

-Let us first study the case of intra-subject classification. If leave-one-out classification is performed, a classifier is trained on all trials but one, and then tested to classify the remaining trial. This procedure is then repeated for each trial, to obtain test labels. These test labels are finally compared to the ground truth, computing a given metric to evaluate classification performance. If k-fold classification is performed (for a given integer k), a classifier is trained on a proportion k -1 k of all the subject's trials, and then tested to classify the remaining 1 k .

-In the case of inter-subject classification, we use a leave-one-subject-out scheme.

For each subject, a classifier is trained on all subjects trials except him/her, and then tested on the remaining subject.

After the classification is performed, let (C i, j ) (1 ≤ i, j ≤ 2) be the confusion matrix, in the case of binary classification. In other words, the scalar C i, j is the number of trials corresponding to a ground truth annotation i, that were classified as j. A commonly used evaluation metric is classification accuracy, which mathematically corresponds to

C 1,1 + C 2,2 1≤i, j≤2 C i, j
.

If such metric is appropriate for datasets where labels are balanced, it can give misleading results when there is label imbalance. The macro-averaged F1-score metric, which is defined as follows, is more suited to such a case, and penalizes the classifiers which would perform efficiently on the dominant label, but not on the other one :

F 1 = C 1,1 2C 1,1 + C 2,1 + C 1,2 + C 2,2 2C 2,2 + C 1,2 + C 2,1

INFLUENCE OF FEATURE CHOICE AND OTHER PARAMETERS ON CLASSIFICATION RESULTS

Influence of feature choice and other parameters on classification results

In this section, we present the intra-subject audio-visually elicited emotion binary classification results we obtained on HCI MAHNOB, DEAP and EMOEEG, studying the effects of different parameters on classification performance, and using classical EEG-based features. In the case of EMOEEG, intra-session classification is made. In other words, classification is made separately for each session (even if 3 subjects of this database participated to 2 sessions). Features are normalized by centering and scaling.

Tables 2.5 and 2.6 respectively detail the features and classifiers we used.

Unless otherwise specified, the results that are presented correspond to intra-subject (intra-session for EMOEEG) classification tasks, using a leave-one-out scheme. The scores presented are the mean across subjects (resp. sessions) of the subject-wise (resp.

session-wise) F1-scores. Linear Support Vector Machine (SVM) -Grid search in 2 [-5:0.5 :5] for C parameter Radial Basis Function (RBF) SVM -C empirically fixed to 1 -Grid search in 10 [-2:0.25 :1] for gamma parameter

Extending the observation window of the signal

Given the fact that emotion elicitation is not instantaneous, adding a few seconds to the EEG signal after the end of each stimulus could yield more accurate feature computation and better emotion classification results. why the effect of adding a few seconds to the signal is limited. In addition, it is interesting to observe that the best improvement is obtained for valence classification in the case of EMOEEG. Indeed, as the stimuli of this database are shorter than the ones in HCI MAHNOB, the 3 second-addition has more effect on EMOEEG results.

Impact of feature choice

We then studied the effect of feature choice on classification results. The results obtained using the features we tested are given in Among all the feature sets we used, HCI MAHNOB features, which are a combination of PSD in specific frequency bands and differential asymmetry of such PSD between pairs of electrodes, seem to be the most efficient ones.

INFLUENCE OF FEATURE CHOICE AND OTHER PARAMETERS ON CLASSIFICATION RESULTS

Choice of classifier

Using linear SVM or RBF SVM leads to similar results. A more intense RBF SVM tuning effort leads to results that are comparable to linear SVM. That can be explained by the fact there is not enough data for RBF SVM to generalize well.

Therefore, we exclusively train linear SVM classifiers in the remainder of this thesis. This is convenient as linear SVM is a well known reference in classification and classifier choice is not part of our contributions. We are rather interested in feature representation and learning.

Inter-subject classification

The results obtained for intra-subject classification tasks can be improved. Moreover, the fact that F1-scores are computed subject-wise (resp. session-wise) impairs their significance, as each subject (resp. session) corresponds to a limited number of stimuli (20, 30 or 50 depending on the database).

Therefore, even if inter-subject classification is more challenging, it offers two main advantages, in addition to the fact it opens the way to more generalizable systems :

-more data is available to train our classifiers, which are not limited to one subject (resp. one session) anymore -the significance of F1-scores is increased due to the fact classification is performed on a larger number of trials Table 2.9 presents the inter-subject classification results obtained in a leave-one-subjectout (resp. leave-one-session-out) fashion. Let us note that in the case of the HCI MAH-NOB database, the results are better when emotional classes are determined using emotional keywords rather than valence and arousal levels. However, we consider these valence and arousal levels for the sake of comparison to the other databases. 

Threshold choice for valence and arousal classes

In the DEAP database, valence and arousal annotation are made on a continuous scale from 1 (the lowest) to 9 (the highest), whereas in HCI MAHNOB and EMOEEG, the annotation is made on a discrete scale where the subject chooses an integer value between 1 and 9. We can observe that arousal imbalance is more important in the cases of EMOEEG and DEAP, which could explain why the arousal classification task is more difficult on those databases (see Table 2.9).

Conclusion

In this chapter, we have recalled the usual procedure followed in EEG-based emotion classification, with a focus on audiovisual emotion elicitation scenarios. We have listed available databases as well as baseline features used for such classification. Testing some of these features on HCI MAHNOB, DEAP, and EMOEEG datasets, we have observed the already established superiority of power spectrum-based features. However, the obtained classification results are strongly improvable.

Moreover, they show lower classification scores for arousal, which is consistent with previous results in the literature [START_REF] Soleymani | A multimodal database for affect recognition and implicit tagging[END_REF][START_REF] Koelstra | Deap : A database for emotion analysis ; using physiological signals[END_REF]. As stated in [START_REF] Watson | Mood and temperament[END_REF], "emotions generally are intense, high-activation states". More specifically, low arousal is more difficult to recognize. Therefore, an alternative feature extraction strategy is required : we choose to follow a feature learning approach.

The obtained intra-subject classification results vary a lot from one subject to another, whereas inter-subject classification results are unsatisfactory. To ease generalization across subjects, the chosen feature representation has to take into account the individuality of each subject from which the EEG signal is extracted.

Chapter 3 seeks a feature representation paradigm that can tackle these issues.

C H A P I T R E 3

GROUP NONNEGATIVE MATRIX FACTORIZATION FOR

EEG-BASED EMOTION RECOGNITION

The new trend in machine learning is to learn representations adapted to the subsequent classification stage. Along the line of Chapter 2, our approach seeking for more appropriate feature representations differs from most state-of-the-art ones in two ways :

-We focus on emotional states elicited by means of audiovisual stimuli, that is short video excerpts, which is a rather complex task.

-For easier realworld applicability, our case study is based on a single-channel setup. We do not consider spatial scalp information.

Classical power spectrum feature representations rely on neuropsychological prior knowledge concerning which frequency bands of interest to consider, exploiting the results of several studies that have shown the importance of the brain activity in predefined frequency bands, such as the β or γ bands, in emotional and cognitive processes [START_REF] Li | Emotion classification based on gamma-band eeg[END_REF][START_REF] Rowland | Eeg alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes[END_REF].

On the contrary, automatic feature extraction would avoid the need for such priors.

Feature representation includes various approaches such as sparse coding [START_REF] Bruno | Sparse coding with an overcomplete basis set : A strategy employed by v1 ?[END_REF] and vector quantization [START_REF] Schmid-Saugeon | Dictionary design for matching pursuit and application to motion-compensated video coding[END_REF]. In this work, we consider the particular dictionary learning technique that is Nonnegative Matrix Factorization (NMF), which has been used successfully in EEG-based motor imagery classification tasks [START_REF] Lee | Group nonnegative matrix factorization for eeg classification[END_REF][START_REF] Su | Classification of motor imagery eeg based on sparsification and non-negative matrix factorization[END_REF]. The method is presented in Section 3.1, whereas Section 3.2 presents the emotion classification results we obtained with this method, both in intra and inter-subject fashions.

In addition, as EEG responses are strongly subject-dependent [START_REF] Khomami Abadi | Multimodal engagement classification for affective cinema[END_REF][START_REF] Morioka | Learning a common dictionary for subject-transfer decoding with resting calibration[END_REF], the specific stage and, if possible, focus on subject-independent features. In this regard, the Group NMF principle is presented in Section 3.3, while the results we obtained using this NMF variant are presented and discussed in Section 3.4.

Nonnegative Matrix Factorization

The recurrent issue of subject dependency can hopefully be tackled by a robust automatic feature extraction framework, as it has been the case in motor imagery EEGbased classification tasks. To this end, a common dictionary that represents the data can be learned from the training set. Then, the data is projected on this dictionary to obtain features for classification. Dictionary learning seeks a "proper representation of data sets by means of reduced dimensionality subspaces" [START_REF] Tosic | Dictionary learning[END_REF].

In this context, Lee and Seung's Nonnegative Matrix Factorization [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF] is a well known dictionary learning technique decomposing the data into nonnegative dictionary elements.

General principle FIGURE 3.1 -Nonnegative Matrix Factorization

Let F be a number of features, N a number of samples, and K a natural number. The idea of NMF is to approximate a given nonnegative matrix

V ∈ R F×N + by a product of non-negative matrices V = W H with W ∈ R F×K + and H ∈ R K×N + . Assuming V represents
observations (the activity of F features across N time frames), W is a dictionary of K atoms (or patterns, or latent variables) whose activation in time is indicated by the rows of the activation matrix H, that is to say a matrix informing us, at each moment n, how strongly every atom k is activated. This NMF decomposition, represented in Figure 3.1, can be seen as some sort of soft clustering.

Let us note that W H is generally an approximation of V . Indeed, the following inequality holds for matrix ranks, where rank(M) is the maximal number of independent lines or columns in M :

rank(W H) ≤ min rank(W), rank(H) (3.1)
As W has K columns and H has K lines, rank(W) ≤ K and rank(H) ≤ K. Therefore, if, as it is mostly the case since dimensionality reduction is sought, K is chosen so that K < rank(V ), the following inequality holds :

rank(W H) ≤ min rank(W), rank(H) ≤ K < rank(V ) (3.2)
Thus, in such case, rank(W H) < rank(V ), which naturally implies that V = W H.

Divergence minimization

In order to choose a proper approximation W H for V , we must choose a "distance" D(V |W H) that the couple (W,H) minimizes. However, the term "distance" can be misleading, since the chosen functions D(.|.) are not necessarily symmetrical. Therefore, they are more generally called divergences or cost functions. D is a double sum of scalar divergences d(.|.) on all the matrices coefficients :

D(V |W H) = F f =1 N n=1 d([V ] f ,n [W H] f ,n ) (3.3)
We consider the family of β-divergences introduced in [START_REF] Basu | Robust and efficient estimation by minimising a density power divergence[END_REF] and [START_REF] Eguchi | Robustifing maximum likelihood estimation by psi-divergence[END_REF], and extended in [START_REF] Cichocki | Csiszar'Äôs divergences for non-negative matrix factorization : Family of new algorithms[END_REF].

For any β ∈ R, a scalar divergence d β of this family is defined as follows :

CHAPITRE 3. GROUP NONNEGATIVE MATRIX FACTORIZATION FOR EEG-BASED EMOTION RECOGNITION d β (x|y) =              1 β(β -1) x β + (β -1)y β -βx y β-1 if β ∉ {0, 1}
x log( x y

) -x + y if β = 1 x y -log( x y ) -1 if β = 0 (3.4)
Table 3.1 details the expressions of three widespread β-divergences. Following [START_REF] Févotte | Algorithms for nonnegative matrix factorization with the β-divergence[END_REF], and for the sake of simplification, we abusively call "euclidean distance" the divergence d 2 . 

D(V |W H) = F f =1 N n=1 d β ([V ] f ,n [W H] f ,n ) (3.5)
The optimal W and H minimize a divergence between V and W H, which is the sum of scalar divergences between the coefficients of V and the coefficients of W H.

To determine such matrices W and H, there exists quite efficient multiplicative update rules, introduced by Lee and Seung (1999) as "a good compromise between speed and ease of implementation" [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF]. W and H are first randomly initialized, and then updated following multiplicative rules which depend on the chosen divergence. The first rules introduced by Lee and Seung for the euclidean distance are the following :

H ←-H. W T V W T W H and W ←-W. V H T W HH T (3.6)
where M T denotes the transpose of matrix M, . represents a term by term multiplication, and A B denotes the matrix A.B .-1 (M .α is a term by term power). These rules were later extended by Févotte and Idier (2011) in the following fashion [START_REF] Févotte | Algorithms for nonnegative matrix factorization with the β-divergence[END_REF] :

H ←-H. W T [(W H) .(β-2) .V ] W T (W H) .(β-1) and W ←-W. [(W H) .(β-2) .V ]H T (W H) .(β-1) H T (3.7)
Eventhough they are quite efficient, these algorithms have a noticeable drawback : if the number of atoms K is too big, convergence issues occur more frequently (the optimization

NONNEGATIVE MATRIX FACTORIZATION

problem is non-convex). But anyway, we have no interest in choosing K too big, as we will see in Subsection 3.1.3. As for the initial choice of W and H, good practice consists in performing the multiplicative update algorithm with many random initializations, and then selecting the result for which the divergence is the lowest. NMF seeks to exhibit latent variables explaining an observed phenomenon as well as their respective activations over time. Therefore, depending on said phenomenon, one may wish to take other constraints into account in the divergence problem (3.3), corresponding to different requirements on H and K. For instance, sparsity [START_REF] Eggert | Sparse coding and nmf[END_REF] or smoothness [START_REF] Gao | Smooth nonnegative matrix factorization for defect detection using microwave nondestructive testing and evaluation[END_REF] conditions can be imposed on the matrix of pattern activations.

One may also want to impose similarity conditions between specific sub-groups of atoms of W, performing the so-called Group NMF [START_REF] Lee | Group nonnegative matrix factorization for eeg classification[END_REF]. More details on Group NMF are given in Section 3.3.

Specific use to EEG

Motivated by several studies showing the importance of the brain activity in predefined frequency bands, such as the β or γ bands, in emotional and cognitive processes [START_REF] Li | Emotion classification based on gamma-band eeg[END_REF][START_REF] Rowland | Eeg alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes[END_REF], NMF is applied to a time-frequency representation of the EEG data in the EEG-based classification problem. In this case, V is the power spectrogram related to the activity at one particular electrode, as shown in Figure 3.2. The PSD is averaged over each emotion elicitation trial (which corresponds to one video stimulus).

FIGURE 3.2 -Nonnegative Matrix Factorization of a Power Spectral Density Matrix

As for the choice of divergence, we have chosen the Itakura-Saito (IS) one, which has the desirable property of scale invariance [START_REF] Févotte | Nonnegative matrix factorization with the itakura-saito divergence : With application to music analysis[END_REF]. In other words, in the minimization of the divergence between V and W H, no particular advantage is given to high-value coefficients of V at the expense of the low-value ones. This is particularly convenient as the PSD matrix obtained from an EEG channel can present large value differences.

When it comes to the choice of the number of atoms K, it has to offer a good compromise, as :

-a low value for K yields a poor approximation of V -a high value for K both prevents NMF from performing dimensionality reduction and leads to over-fitting.

As for the number of W and H initializations for the multiplicative update algorithm, we found 10 to be a good compromise between efficiency and computational speed. 

.2. RESULTS OBTAINED WITH NMF AND CONCLUSIONS

W that is then used for the test set V test . Then, NMF with fixed dictionary W is performed on V test to extract the test feature matrix V test .

Results obtained with NMF and conclusions

In this section, we study the emotion classification performance of NMF on the HCI MAHNOB and EMOEEG databases. We did not use the DEAP database in this part, because of the different nature of stimuli, namely music videos. EMOEEG and HCI MAHNOB are two multi-modal datasets where physiological responses, among which EEG, to audiovisual stimuli were recorded.

We call session the recording of a given subject at a given time of the day. In the case of EMOEEG, most subjects took one session whereas a few took two sessions. As for HCI MAHNOB, each subject took exactly one session, which means intra-session (resp. intersession) classification is equivalent to intra-subject (resp. inter-subject) classification.

Therefore, we talk about intra/inter-session in the case of EMOEEG, and intra/intersubject in the case of HCI MAHNOB. In the rest of the document, we will mention intra/inter-session in both cases : it will be also understood as intra/inter-session in the HCI MAHNOB case. 

Intra-session classification

In this scheme, in the case of EMOEEG, as each session is composed of 50 trials and the PSD is averaged over each trial, the matrix V train has 50 -1 = 49 columns. In the case of HCI MAHNOB, it has 19 columns. The tested numbers of atoms K are 5,10,

Tables 3.5 and 3.4 present the F1-scores obtained for intra-session emotion classification with NMF, respectively on HCI MAHNOB and EMOEEG. The baseline used corresponds to the band power features named "HCI MAHNOB features" in Table 2.5 (Chapter 2). What the results first show is that NMF does not tackle the inter-subject (resp. inter-session) variability that characterized the baseline results. Even if NMF can turn out to be particularly efficient for some subjects, it performs poorly on others. Overall, the performance of NMF is comparable to that of the band power baseline, with slight differences between both databases and dimensions (valence/arousal). Even if there is still way to improve such performance, the fact that NMF, which extracts features coming only from one electrode, can have a performance similar to the extraction of power band features from all electrodes, is encouraging. However, as the best performing number of atoms K varies from one subject (resp. session) to another, we can anticipate that the inter-subject (resp. session) NMF-based classification task will be difficult.

Inter-session classification

In this scheme, emotion classification is made in a one-session-out fashion. Following preliminary experiments, K is chosen to be equal to 100. This number is higher than in the intra-session classification case, as PSD matrices are bigger, since each of them is composed of the data of all sessions but one. What is quite surprising is the fact NMF performs substantially better in the HCI MAHNOB inter-session valence classification task than in the intra-session classification one. Also, the arousal classification results are not deteriorated from intra to inter-session classification. This can be explained by the following observation : in parallel with the increased difficulty of inter-session classification tasks, more data is available in their case. The NMF extraction that was performed session by session (each session being composed of 20 trials) is now performed on all sessions but one (which equates to 20

× (24 -1) = 460 trials. NMF-based classification has clearly benefited more from this enlarged dataset than band power-based classification.

Quite naturally, this improvement is not as striking in the EMOEEG inter-session emotion classification task. Indeed, much fewer sessions [START_REF] Bajaj | BIBLIOGRAPHIE Human emotion classification from eeg signals using multiwavelet transform[END_REF] are used in this case.

To conclude, there is still way to improvement, especially for the EMOEEG database and the arousal dimension. Since NMF seems to benefit from the use of data across different sessions/subjects, we naturally decide to take into account the differences of sessions/subjects in the NMF feature learning stage.

Group NMF

To take such differences into consideration in the feature learning stage, we exploit the Group NMF (GNMF) model, which allows us to account for similarity between groups of atoms [START_REF] Lee | Group nonnegative matrix factorization for eeg classification[END_REF].

General method

Again, we wish to approximate a given nonnegative matrix

V ∈ R F×N + by a product of non-negative matrices V = W H with W ∈ R F×K + and H ∈ R K×N +
, with W a dictionary of K atoms whose activation in time is indicated by the rows of the activation matrix H.

A group of V is a subset of columns of V that were selected according to specific conditions. Given a definition of groups of V , GNMF extracts atoms separately for each group. However, it adds other constraints to the classic NMF constraints. More precisely, it adds to the objective function (to be minimized) some terms controlling similarity 3.3. GROUP NMF between atoms across groups. In the original formulation proposed by Lee and Choi [START_REF] Lee | Group nonnegative matrix factorization for eeg classification[END_REF], two constraints are added :

-a constraint of similarity between some atoms across groups. These atoms are called group-independent.

-a constraint of dissimilarity between other atoms across groups. These atoms are called group-dependent.

Let there be L groups and {V 1 , V 2 , ..., V L } the corresponding partition of V (each -W C i (C for common) is composed of atoms that have to be similar to the other W C j ( j = i) -W I i (I for group-independent) is composed of atoms that have to be dissimilar to the other W I j -W R i (R for residual) is composed of atoms upon which no specific constraints are added (in addition to classic NMF constraints)

V i is a sub-matrix of V composed
The objective function can then be expressed as follows :

F GNMF = L l=1 D 1 (V l |W l H l ) + λ 2 L l=1 j =l D 2 (W C i |W C j ) - µ 2 L l=1 j =l D 2 (W I i |W I j ) (3.8)
where D 1 and D 2 are two matrix divergences, and λ and µ are positive parameters.

We rather use the following model, proposed by Serizel et al. in [START_REF] Serizel | BIBLIOGRAPHIE Group nonnegative matrix factorisation with speaker and session variability compensation for speaker identification[END_REF], and derived from the first. It can tackle two types of dependencies [START_REF] Serizel | BIBLIOGRAPHIE Group nonnegative matrix factorisation with speaker and session variability compensation for speaker identification[END_REF], that is to say two kinds of groups at the same time. In this new formulation, two kinds of groups are considered.

For instance, applying this model to a speaker identification task, Serizel et al. defined the first kind of group as speakers, and the second kind as speaking sessions.

Let there be L groups of the first kind, and M groups of the second kind. {V l,m } l≤L,m≤M is the corresponding partition of V . Each V l,m is a sub-matrix of V composed of the columns corresponding to the couple (l, m). Likewise, {W l,m } l≤L,m≤M are the corresponding sub-dictionaries, and {H l,m } l≤L,m≤M the corresponding lines of the activation matrix H.

Each sub-dictionary W l,m (and each H l,m ) is decomposed into three parts :

-W C 1 l,m is composed of atoms that have to be similar to the other

W C 1 l,m 2 (m 2 = m) -W C 2 l
,m is composed of atoms that have to be similar to the other W C 2 l 2 ,m (l 2 = l)
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-W R l,m (R for residual) is composed of atoms upon which no specific constraints are added (as in the first formulation) With these notations, the objective function is now expressed as follows :

F GNMF = L l=1 M m=1 D 1 (V l,m |W l,m H l,m ) + λ 1 2 L l=1 M m 1 =1 m 2 =m 1 D 2 (W C 1 l,m 1 |W C 1 l,m 2 ) (3.9) + λ 2 2 M m=1 L l 1 =1 l 2 =l 1 D 2 (W C 2 l 1 ,m |W C 2 l 2 ,m )
It is noticeable that in (3.9), there is no specific need to introduce a dissimilarity term as in (3.9). Indeed, the similarity wanted across one kind of groups is balanced by the similarity wanted across the second kind of groups (each being controlled by the parameters λ 1 and λ 2 ). 

Specific use to EEG

We use GNMF to perform EEG-based emotion classification tasks in a supervised fashion. In other words, for valence classification, we consider two kinds of groups that are the valence label v ∈ {0, 1} (for low and high valence) and the session label s ∈ {1, ...24} for HCI MAHNOB (resp. {1, ...8} for EMOEEG). In the case of arousal classification, the valence label v is replaced by the arousal label a ∈ {0, 1}.

Let V v,s be the sub-matrix of V train corresponding to valence label v and session s (that is to say, the chunk of the signal corresponding to trials of session s that were given the valence annotation v by the participant). Let W v,s be the sub-dictionary corresponding to valence label v and session s. In such sub-dictionary : -W val v,s is composed of K val atoms that must be similar to other W val v,s 2 (s 2 = s) -W sess v,s is composed of K sess atoms that must be similar to other W sess v 2 ,s (v 2 = v) -W res v,s is composed of K res atoms upon which no additional constraints are added Then, in an inter-session valence classification scheme on HCI MAHNOB, learning a dictionary matrix W on the 23 first sessions (to use it for feature extraction on the 24 th ) comes down to minimizing the following objective function :

F GNMF = 1 v=0 23 s=1 D 1 (V v,s |W v,s H v,s ) + λ val 2 1 v=0 23 
s 1 =1 s 2 =s 1 D 2 (W val v,s 1 |W val v,s 2 ) (3.10) + λ sess 23 s=1 D 2 (W sess 0,s |W sess 1,s )
The term λ val controls the similarity between sub-dictionaries corresponding to the same valence label, whereas λ sess controls the similarity between sub-dictionaries corresponding to the same session. We proceed similarly for arousal classification, and for the EMOEEG database.

We keep using the Itakura Saito divergence for the original NMF divergence (D1).

Following the framework described in [START_REF] Serizel | BIBLIOGRAPHIE Group nonnegative matrix factorisation with speaker and session variability compensation for speaker identification[END_REF], similarities between valence and sessionrelated atoms are expressed in terms of Euclidean distance (D 2 ).

Results obtained with GNMF and conclusions

In this section, we consider inter-session emotion classification in a one-session-out fashion. Using different values for the numbers of atoms and the similarity parameters λ, the values of these parameters which yielded the best scores are presented in Table 3.8 shows the F1-scores obtained using GNMF with the parameters in Table 3.7. The results are globally similar to the ones yielded by NMF, with a degradation in the case of HCI MAHNOB. Obviously, this use of GNMF did not improve emotion classification results. Among the possible reasons why such strategy did not turn out to be efficient, two main ones drew our attention :

-There is a relatively high number of sub-dictionaries (due to the fact each one corresponds to a couple (session,label)). Therefore, each dictionary is learned on a very limited part of the data, which could hamper generalization. Such GNMF could be more suitable with much more experimental repetitions per session.

-Aside from this question of data subdivision, the use of sessions as groups is not necessarily the most judicious segmentation.

As a matter of fact, we have noticed that, for the arousal dimension (which remains the most challenging), classification was less efficient in the case of the low class, as made clear in Table 3.9.

Why is classification more challenging in the case of low arousal ? How does it translate if we compare the EEG signals of different subjects watching the same stimuli ?

We deal with these issues in Chapter 4.

C H A P I T R E 4

EEG-BASED INTER-SUBJECT CORRELATION SCHEMES IN A STIMULI-SHARED FRAMEWORK : INTERPLAY WITH VALENCE AND AROUSAL

In our attempt to improve EEG-based emotion recognition by taking the subjectdependent nature of emotional responses into consideration, we have noticed that the complexity of the task varies according to the emotional level, and therefore according to the stimulus. Therefore it is interesting to study the EEG reactions of different users to the same stimuli, according to the emotional nature of each stimulus.

More than just studying the effects of valence/arousal level on annotation agreement using metrics such as the Cohen's kappa score [START_REF] Cohen | A coefficient of agreement for nominal scales[END_REF][START_REF] Cohen | Weighted kappa : Nominal scale agreement provision for scaled disagreement or partial credit[END_REF], we want to study this effect in depth, at the EEG level. Hence the idea of addressing the inter-subject variation issue from an interaction perspective, adopting a stimulus-centered study of synchrony between EEG signals, in the same fashion as the robot-centered approach in robotics [START_REF] Boucenna | Learning of social signatures through imitation game between a robot and a human partner[END_REF]. In other words, we study the correlations between EEG signals of different subjects who watched the same videos, even if they did not watch them simultaneously.

In addition to being driven by the wish to improve EEG-based emotion classification, two other reasons motivate this approach :

-Shared experiences, such as the exposure to the same audiovisual content, play an important part in the interactions between individuals.

-For complex tasks such as stimulus-based emotion elicitation, single-trial EEG analysis is often a necessity. Therefore, analyzing the signals recorded from dif- ferent subjects and obtaining insights about their differences and commonalities can make the results more generalizable.

To simultaneously analyze the EEG signals of different subjects, we use the Inter Subject Correlation (ISC) framework, as described in previous studies [START_REF] Jacek P Dmochowski | Correlated components of ongoing eeg point to emotionally laden attention-a possible marker of engagement[END_REF][START_REF] Jacek P Dmochowski | Audience preferences are predicted by temporal reliability of neural processing[END_REF][START_REF] Ki | Attention strongly modulates reliability of neural responses to naturalistic narrative stimuli[END_REF]. Dependencies between ISC of EEG recorded during audiovisual stimuli and subject conditions such as age or sex have been established. For instance, decrease in ISC of EEG has been shown as ages of the subjects increase [START_REF] Petroni | Age and sex affect intersubject correlation of eeg throughout development[END_REF]. Others have established links between ISC of functional Magnetic Resonance Imaging (MRI) and emotion, showing that ISC increases for specific regions of the brain when the stimulus elicits high arousal or low valence [START_REF] Nummenmaa | Emotions promote social interaction by synchronizing brain activity across individuals[END_REF]. Replicating such results with EEG signals would both prove consistency and allow their usability with more lightweight devices.

In line with these previous works, and having acknowledged inter-subject and interstimuli variations [START_REF] Khomami Abadi | Multimodal engagement classification for affective cinema[END_REF], we propose various schemes to study the effects of valence and arousal variations on ISC of EEG recorded from different subjects watching the same videos : on all the dataset, stimulus-wise, subject-pairwise, or both stimulus-wise and subject-pairwise. Those schemes are detailed in Section 4.2.

In addition to the establishment of a link between ISC of EEG signals and valence/arousal levels which is, to the best of our knowledge, completely novel, our main contributions are :

-the proposal and comparison of various ISC computational schemes -the assessment of the statistical validity of the observed ISC variation along valence and arousal dimensions, using computationally intensive randomization tests.

Section 4.1 is a reminder of the ISC framework. Section 4.2 presents and discusses different ISC computational schemes, whereas Section 4.3 raises the issue of interpretation of ISC results. Sections 4.4 and 4.5 show the results obtained with different schemes respectively on the HCI MAHNOB [START_REF] Soleymani | A multimodal database for affect recognition and implicit tagging[END_REF] and DEAP [START_REF] Koelstra | Deap : A database for emotion analysis ; using physiological signals[END_REF] databases. Finally, section 4.6 emphasizes some limitations of our work and explains observed differences between the databases.

The ISC principle

To simplify the presentation, we introduce the principle of ISC by directly instantiating it on our use-case : N sub subjects watch N vid video stimuli. All subjects watch the same videos. The videos are not watched simultaneously. During each stimulus, EEG 

ISC score computation

Let X i,v denote the EEG data matrix recorded from subject i while he/she was watching video v. i ranges from 1 to N sub while v ranges from 1 to N vid . X i,v is a N cha × T v matrix, where T v is the number of EEG signal samples recorded for each channel, which depends on the length of the video v.

Given the matrices R i j of size N cha × N cha which each measure the cross-covariance of all electrodes in subject i with all electrodes in subject j, the pooled within-subject covariance R w and the pooled between-subject cross-covariance R b are defined as follows :

R i j = T t=1 (X i,v (:, t) -X i,v )(X j,v (:, t) -X j,v ) ; (4.1) R w = 1 N sub N sub i=1 R ii ; (4.2) R b = 1 N sub (N sub -1) N sub i=1 j =i R i j . (4.3)
where X denotes the transpose of X and X denotes the vector corresponding to the mean over time of X . In Section 4.1.2, a focus is made on a pairwise definition of R w and R b , that is to say pooled over each pair of subjects.

Given the matrices R b and R w , the eigenvectors e k of R -1 w R b are computed and ranked in decreasing order of associated eigenvalue. These eigenvectors are then used to compute the correlation strengths C k in the following fashion :

C k = e k R b e k e k R w e k . ( 4.4) 
C k accounts for the ratio of the projection strength of e k on R b to its projection strength on R w . Following previous studies that concluded that the choice of the three first components is a good compromise [START_REF] Jacek P Dmochowski | Audience preferences are predicted by temporal reliability of neural processing[END_REF][START_REF] Ki | Attention strongly modulates reliability of neural responses to naturalistic narrative stimuli[END_REF][START_REF] Petroni | Age and sex affect intersubject correlation of eeg throughout development[END_REF], we define the ISC score as

C 1 + C 2 + C 3 .

Averaging R i j to compute ISC eigenvectors

Actually, what is usually done in the EEG-based ISC domain is the averaging of matrices R i j across all stimuli, or across both all stimuli and all pairs of subjects (when ISC are considered pairwise). This only concerns the eigenvectors computation step [START_REF] Petroni | Age and sex affect intersubject correlation of eeg throughout development[END_REF].

For instance, when the averaging is done across all stimuli, the averaged matrices R ij are computed, for each pair of subjects (i, j), in the following manner : 

R ij = 1 N vid N vid v=1 R i j (4.

Shrinkage

As proposed in [START_REF] Blankertz | Single-trial analysis and classification of erp components -a tutorial[END_REF] for Linear Discriminant Analysis-based single-trial ERP classification, R w global may be shrunk to improve robustness to outliers. Let γ be a regularization parameter between 0 and 1 and λ the mean eigenvalue of R w global :

R w global ← (1 -γ)R w global + γ λI (4.6)
When estimating a big covariance matrix, large eigenvalues are estimated too large, and small eigenvalues are estimated too small [START_REF] Blankertz | Single-trial analysis and classification of erp components -a tutorial[END_REF]. Shrinkage modifies extreme eigenvalues towards the average eigenvalue. What is convenient is that shrinkage does not change 4.2. DIFFERENT ISC COMPUTATIONAL SCHEMES the eigenvectors of such covariance matrices. In addition to dampening the effect of outliers by this modification, shrinkage allows to compute the inverse of the shrunk R w global when R -1 w global cannot be computed.

Different ISC computational schemes

In this chapter, we exploit our shared stimuli framework, to define different ISC computational schemes following theses perspectives :

-whether to compare the EEG signals of the subjects pairwise or globally ;

-how to combine the data on which to compute the eigenvectors of R -1 w R b ? : that is whether to consider all the dataset, stimulus-wise, subject-pairwise, or both stimulus-wise and subject-pairwise data batches.

Comparing subject signals globally vs pairwise

Computing ISC eigenvectors using the signal recordings of all N sub subjects globally suits the case when we wish to compare each subject to the group. In this case, ISC scores are computed for each subject i using the following expressions :

(C k ) i = e k (R b ) i e k e k (R w ) i e k ; (4.7) where (R b ) i = 1 N -1 j =i (R i j + R ji ); (4.8) and (R w ) i = 1 N -1 j =i (R ii + R j j ). (4.9)
In our attempt to establish a link between emotion and ISC scores, we could compare, for each video, each subject to the rest, and look at the effect of elicited emotion on the ISC score of each subject. However, doing so would compel us to consider annotation agreement globally, whereas considering annotation agreement pairwise allows a finer distinction between agreement and non-agreement. In the pairwise setting, we compute the ISC score for each pair of subjects (i, j) in the following fashion :

(C k ) i j = e k (R b ) i, j e k e k (R w ) i, j e k ; (4.10) where (R b ) i j = R i j + R ji ; (4.11) and (R w ) i j = R ii + R j j . (4.12)
We chose to focus on this pairwise setting. In fact, in addition to allowing one to consider agreement in a pairwise fashion, this multiplies the ISC data on which to study valence and arousal effects.

Choosing the data on which to compute the eigenvectors

-Averaging the matrices R i j across all stimuli, and then computing the eigenvectors

e k from R -1
w global R b global , that is using the whole dataset (all subjects, all stimuli), generalizes such eigenvectors and makes them more robust to outliers. All the available information is used to compute the covariance matrices, thus allowing a better precision. In that fashion, we seek to maximize inter-subject correlation on all the dataset. We refer to this scheme as V all . However, as EEG responses are very subject-dependent and session-dependent, computing the eigenvectors e k on more specific subsets can also be considered.

-Rather than being computed from R -1 w global R b global , the eigenvectors e k can be computed stimulus-wise, that that is separately for each stimulus, on all pairs of subjects, therefore taking stimulus-dependency into account. The assumption is that we wish to maximize ISC for each stimulus separately. Practically, it consists in not averaging matrices R i j on all stimuli, but rather in processing each stimulus separately.

This scheme, presented in Figure 4.2, is referred to as V stim . -The eigenvectors e k can also be computed subject-pairwise, that is separately for each pair of subjects, on all stimuli, as shown in Figure 4.3. Thus, subjectdependency is taken into account. Mathematically, for subjects i and j, this means that the sums in equations ( 2) and ( 3) are respectively replaced by (R b ) i j and (R w ) i j (equations ( 10) and ( 11)). We refer to this scheme as V pair . w global R b global are computed in the case of V pair -Finally, the eigenvectors e k can be computed both stimulus-wise and subjectpairwise. This takes both specificities into account, which seems well suited for EEG analysis. However, in this way, covariance matrices are estimated on smaller portions of the dataset, which automatically induces a drop in precision in the estimation of those covariance matrices. We refer to this scheme as V stim/pair .

Studying the effects of emotion on ISC

There are N pairs = N sub (N sub -1) 2 pairs of subjects. Regardless of the slicing scheme (Section 4.2), N pairs associated ISC scores are obtained for each video, which makes a total of N pairs × N vid ISC scores. For each pair of subjects, one has to take a decision regarding their agreement on the valence or the arousal annotations, respectively. Indeed, to establish a link between the emotion experienced by two subjects and the ISC score between their EEG signals, we limit the study to the cases where the subjects agree on the annotation of the emotion.

Then, pairs of subjects for which there is agreement should be classified according to the level of valence or arousal that was annotated.

In the HCI MAHNOB database, valence and arousal annotations are discrete values in {1, 2, ..., 9}. We divide valence and arousal annotations in 3 classes : {1, 2, 3} are considered low, {4, 5, 6} are considered average, and {7, 8, 9} are considered high, following the usual division made in the literature, and more specifically in the paper introducing HCI MAHNOB.

In the DEAP database, valence and arousal annotations are continuous values in 

Assessing pairwise agreement

Assessing the agreement of each pair of subjects is a difficult task that may first seem arbitrary. Previous works often use the Cohen's kappa score as an agreement indicator.

However, as this score is suited to multi-annotator cases, its use is less interesting when only computed on a given pair of subjects, which is our case. In addition, we do not wish to assess the agreement of each pair of subjects on all videos, but rather on each video. Therefore, our focus is on the assessment of agreement both subject-pairwise and stimulus-wise. We introduce ad hoc rules for such an assessment, taking into account the non-linearity of agreement [START_REF] Martinez | Don't classify ratings of affect ; rank them ![END_REF] :

-For a given stimulus, we assume that two annotations from the same category (low, average, high, as previously defined) are in agreement with each other.

-We consider two annotations from different categories to be in agreement with each other if and only if their difference is lower or equal to 1.

Such rules are chosen both to correspond to the usual categories in the literature (low, average, high) and to allow for some agreement flexibility at the border between two classes. 

Assigning a subject pairwise annotation for a given stimulus when there is agreement

When two subjects agree on the annotation of a given stimulus, we want to assign a common label to this video, which is specific to this pair of subjects, in order to establish a link between this label and the ISC score. Previous works use majority decisions to assign a global annotation to each stimulus [START_REF] Aigrain | Multimodal stress detection from multiple assessments[END_REF]. However, this is not relevant when only considering two annotators, nor is it justified when the annotations are not binary.

Therefore, for a given stimulus and a given pair of subjects who agree on the annotation of this stimulus, we decide to assign the mean of their two annotations as the pair annotation of this stimulus.

Effects of valence and arousal on ISC

For each category of annotation (low, average, high), the mean ISC of all pairs of subjects who agree on the annotation and whose pairwise mean annotation is in this category is computed, to establish a link between the annotation category and the mean ISC score of this category. To do so, the significance of the difference between the mean ISC scores of different categories has to be assessed. Usually, parametric tests such as t-tests or ANOVA procedures are performed. Even if transformations-such as Fisher's transforms before a t-test-can be applied to make the data better fit the assumptions of the tests, these assumptions are still unwarranted.

Other approaches consist in the comparison of the empirically obtained ISC scores to simulated ISC scores on surrogates of the data. The inconvenient is that for statistical validity to hold, the computation of ISC scores from scratch has to be repeated an important number of times.

Rather, our approach is inspired from the randomization test proposed in [START_REF] Yeh | More accurate tests for the statistical significance of result differences[END_REF]. Given the ISC scores separately computed in the 3 valence (or arousal) categories, we shuffle these ISC scores 2 20 times, reassigning each score randomly to one of the 3 categories (each category's cardinal being kept constant). To assess the significance of the difference between the mean ISC scores obtained for two categories, we look at the number n of the 2 20 shuffles that gave a higher difference of means than the one experimentally obtained.

The significance level of the real ISC difference obtained between the two categories is at most n + 1 2 20 + 1 [START_REF]Computer-intensive methods for testing hypotheses[END_REF]. This non-parametric test allows us to assess the significance of our results without the need of complex unwarranted hypotheses on ISC score distributions.

With this significance test, we are able to assess whether the variations on ISC that we observe as a function of assessed emotion are significant or not.

This procedure is performed to compare ISC scores from different valence or arousal categories, thus trying to assess the dependencies between the valence (resp. arousal) level and the ISC score.

Let us note that significance values not only depend on differences of means, but also on the cardinal of each category, which explains how a slight difference can be more significant than a larger one.

We tested our ISC computational schemes on the HCI MAHNOB [START_REF] Soleymani | A multimodal database for affect recognition and implicit tagging[END_REF] and DEAP [START_REF] Koelstra | Deap : A database for emotion analysis ; using physiological signals[END_REF] datasets. The reason why EMOEEG is not part of this study is the fact that, contrary to HCI MAHNOB and DEAP, all the recorded subjects did not watch the same videos, which hampers the stimulus-centered approach.

Even if the nature of the stimuli in DEAP is quite different from those in HCI MAH-NOB and EMOEEG, using this dataset will help us back the possible conclusions we can get from the results on HCI MAHNOB, and/or discuss the differences. which echoes the findings of Nummenmaa et al. [START_REF] Nummenmaa | Emotions promote social interaction by synchronizing brain activity across individuals[END_REF], the latter restricting such variation to specific regions of the brain. However, only the difference between low valence ISC scores and average valence ISC scores is significant at the 5% level.

As for the arousal dimension, Figure 4.6 reveals an increase of ISC scores when arousal increases, which was also expected. In terms of significance, such raise is easier to observe than the decrease of ISC along valence.

Results with V stim/pair

Contrary to V all , this scheme takes into account both subject pair dependency and stimulus dependency. Let us see how the obtained results back the previous ones, despite this dependency change. The monotonicity of ISC as a function of valence and a function of arousal is strengthened as it is observed for both schemes. In addition, one can notice that computing ISC eigenvectors separately for each pair of subjects and each stimulus yields more significant results for valence, whereas it degrades significance for arousal. This could 

Linking the ISC level to the annotation agreement

It is worth noticing that among the 5520 HCI MAHNOB data points on which ISC can be computed (276 subject pairs × 20 video stimuli) :

-3685 correspond to a pairwise valence annotation agreement whereas the remaining 1835 correspond to a pairwise valence annotation disagreement (using the definitions presented in Section 4.3) ;

-2968 correspond to a pairwise arousal annotation agreement whereas the remaining 2552 correspond to a pairwise arousal annotation disagreement.

At first glance, one could conclude that agreement occurs more easily on valence than on arousal. However, it is more interesting to go in depth with a comparison of ISC levels according to valence (respectively arousal) agreement/disagreement. The results of such a comparison are given in Table 4.1 (ISC scores were computed using the scheme V all , HCI MAHNOB). This could mean that even if its occurs less frequently, agreement on arousal is more consistent than agreement on valence. Further, it could explain why the ISC monotonicity as a function of valence is more significant when ISC eigenvectors are computed separately for each pair of subject and each stimulus, rather than on the whole dataset. 

Results on DEAP

ISC score variation from one scheme to another

Comparing ISC score levels obtained from the different schemes, one can clearly notice that the more specific the slicing scheme (Section 4.2), the higher the ISC scores.

This is quite natural as the correlation is maximized on smaller, more specific subsets of the data.

Differences of ISC score variations along valence between HCI MAHNOB and DEAP

In the case of HCI MAHNOB, the ISC score clearly decreases along the valence dimension (Figures 4.5 But some more striking comparison between HCI MAHNOB and DEAP annotation results could explain this difference better. Table 4.2 shows that the mean absolute valence annotation difference is significantly higher for DEAP than for HCI MAHNOB.

Significance is computed using the method described in 4.3.3. One could wonder if the difference observed is simply due to the annotation nature, which is discrete in the case of HCI MAHNOB and continuous for DEAP. However, the same comparison for arousal yields a smaller difference between the two databases, even if the difference is still significant. Therefore, Table 4.2 shows a difference between the databases that could explain why the ISC score clearly decreases along the valence dimension in the case of HCI MAHNOB, whereas it is more mitigated in the case of DEAP. After that comparison made on the whole databases, it is interesting to compare the same quantities between HCI MAHNOB and DEAP with a restriction to the agreement cases, using the definitions of agreement exposed in 4.3.1. This is relevant as the ISC scores we presented were computed on agreeing pairs of subjects. Such a comparison is made in Table 4.3. Again, this shows that overall, the agreement level is significantly better in the case of HCI MAHNOB than DEAP, with a more significant difference for the valence dimension. This would support the hypothesis that the different valence agreement levels between the two databases explain the difference between ISC variations along valence. 

Effects of shrinkage

As exposed in 4.1.3, R w global may be shrunk to improve robustness to outliers, by the means of a regularization parameter γ between 0 and 1. This regularization parameter has a limited effect on significance but practically none on the variation itself.

Conclusions

We have presented and described various schemes to study the effects of valence and arousal on EEG Inter Subject Correlation between participants who watched the 4.7. CONCLUSIONS same audiovisual stimuli. We have introduced a definition of agreement so as to limit our study on agreeing subject pairs. Finally, we have presented the obtained results for two schemes on the HCI MAHNOB and DEAP affective datasets [START_REF] Soleymani | A multimodal database for affect recognition and implicit tagging[END_REF][START_REF] Koelstra | Deap : A database for emotion analysis ; using physiological signals[END_REF].

Our results show a consistent increase in ISC scores when arousal increases. Along the valence dimension, a consistent decrease in ISC was obtained in the case of HCI MAHNOB, whereas this conclusion is more mitigated for DEAP. The different nature of the stimuli used in the DEAP dataset (music videos) can explain such drawbacks, as well as the difference between discrete/continuous annotations and, more importantly, the finer agreement level in HCI MAHNOB.

Both the decrease in ISC scores when valence increases and the increase in ISC scores when arousal increases are consistent with previous results on functional MRI in the literature [START_REF] Nummenmaa | Emotions promote social interaction by synchronizing brain activity across individuals[END_REF].

A great deal of attention was devoted to the significance of such variations, using Instead of using GNMF with sessions (resp. subjects) as groups, we choose to focus on emotion labels.

Multi-task feature learning has been used in a subject-to-subject transfer fashion, where priors for feature dictionaries are shared across different subjects. Kang et al. [START_REF] Kang | Bayesian multi-task learning for common spatial patterns[END_REF] used multi-task feature learning in such a way, improving binary classification accuracy obtained from CSP filters on a motor imagery task. They obtained an average accuracy of 0.54 across all subjects, whereas the average accuracy reached almost 0.57 in the multi-task feature learning case.

Though the classification of valence and arousal levels can be performed independently one from another, it has been shown that multi-task learning, that is, in our case, learning to classify valence and arousal labels jointly, can improve emotion classification performance [START_REF] Kandemir | Multi-task and multi-view learning of user state[END_REF][START_REF] Abadi | A multi-task learning framework for time-continuous emotion estimation from crowd annotations[END_REF]. The interdependence between valence and arousal [START_REF] Kuppens | The relation between valence and arousal in subjective experience varies with personality and culture[END_REF] 

Multi-task GNMF-based feature learning

Following the notations of Section 3.3, let V v,a be the sub-matrix of V train corresponding to valence label v and arousal label a (that is to say, the chunk of the data corresponding to the valence annotation v and the arousal annotation a). Let W v,a be the sub-dictionary corresponding to valence label v and arousal label a. In such subdictionary :

-W val v,a is composed of K val atoms that must be similar to the other W val v,a 2 (v 2 = v) -W aro v,a is composed of K sess atoms that must be similar to other W sess v 2 ,s (v 2 = v) -W res v,a is composed of K res atoms upon which no additional constraints are added 

F GNMF = 1 v=0 1 a=0 D 1 (V v,a |W v,a H v,a ) + λ val 1 v=0 D 2 (W val v,0 |W val v,1 ) (5.1) + λ aro 1 a=0 D 2 (W aro 0,a |W aro 1,a )
The term λ valence controls the similarity between sub-dictionaries corresponding to the same valence labels, whereas λ arousal controls the similarity between sub-dictionaries corresponding to the same arousal labels. In Figure 5.1, valence-dependent atoms are constrained to show some similarity between W 0,0 and W 0,1 on the one hand, and between In what follows, we call val/aro-GNMF this new version of GNMF, whereas the GNMF used in Chapter 3 is called session-GNMF.

Results obtained with valence/arousal-based GNMF

In this section, we keep considering inter-session emotion classification in a onesession-out fashion. Using different values for the numbers of atoms and the similarity parameters λ, the values of these parameters which yielded the best scores are presented in Table 5.1. The left (resp. right) part of the table corresponds to the valence (resp.

arousal) classification task. K total is the sum of atoms on all extracted sub-dictionaries in the training phase. As there are 2 valence and 2 arousal labels, K total is equal to 4(K val + K sess + K res ). While the feature learning stage was multi-tasked with GNMF, single-task classifiers were used, that is classifiers for valence and arousal were learned separately. Indeed, we could have used the same parameters λ val and λ aro for both valence and arousal classification tasks, which would have implied learning valence and arousal classifiers A light use of ISC scores would, for instance, consist in weighting each observation in the classification step according to the mean of the corresponding ISC scores : that is, for a given trial of a given subject, the mean of the ISC scores with other subjects on the same stimulus. We have not observed any noticeable effect of this weighting on the classification performance, neither for valence nor for arousal.

However, ISC information can be integrated at an earlier stage. To this effect, we have considered a new GNMF scheme where the ISC scores are taken into consideration in the definition of groups. Namely, we consider two ISC-based labels that are :

-0 : the mean of the ISC scores where the given trial and subject are involved is lower than the mean of all ISC scores -1 : the mean of the ISC scores where the given trial and subject are involved is higher than the mean of all ISC scores

We call this new feature extraction scheme ISC-GNMF. For valence classification, these ISC-based labels replace arousal labels, and vice versa. This means that the parameters K aro (resp. K val ) and λ aro (resp. λ val ) are replaced by K ISC and λ ISC . The values of these parameters which yielded the best scores are presented in What is quite noticeable about Table 5.4 is the fact the best parameters in the valence classification case are the same as the ones with val/aro-GNMF (Table 5.1). As for arousal classification, the best performing combination involves using no arousal-dependent patterns (K aro = 0). That may be an indicator of the fact the arousal information is redundant with the ISC information, which would explain why the ISC information is sufficient.

Such a difference between the two dimensions translates into a better improvement of classification performance for arousal, as shown in Table 5.5, even if the use of ISC in the feature learning stage yields better classification results on both dimensions. 

Conclusion

The use of GNMF for multi-task feature extraction where atom groups are determined by both valence and arousal labels (val/aro-GNMF) rather than by sessions Yet, such improvements are still modest. First, one could be tempted to use an allinclusive version of GNMF, where groups would be defined by session, valence label, arousal label and ISC information altogether. However, the more groups there are, the smaller the data corresponding to each group becomes, thus harming the quality of feature learning. This also explains why we chose binary ISC labels. The more the labels, the smaller the groups.

Consequently, one has to make compromises as for the information to be used in the group slicing. We have also noticed that the ISC-GNMF-based arousal classification task was performed better using only ISC information in the constraint added to the original NMF. This supports the idea that more group information does not necessarily induce better classification performance.

One flaw of our scheme is the quite arbitrary thresholds defining low/high valence, low/high arousal and low/high ISC. A more sophisticated way of combining NMF with ISC, which will be the subject of future work, is to abandon the notion of hard clustering in which GNMF consists, and rather take the continuous ISC score information into account directly in the NMF objective function.

C H A P I T R E 6 CONCLUSION

Conclusion and discussion

EEG-based emotion recognition is a complex task when emotions are elicited by means of audiovisual content. Performing such a task is necessary if we want to be close to real-world stimulation. The complexity is increased in the single EEG channel case, which opens the way to easier lightweight setups, but for which less information is available.

Our methods have brought a performance improvement compared to the baselines, which indicates the use of judicious information at the GNMF feature extraction level is promising.

First, we have used the NMF feature extraction method to perform intra and inter- However, we noticed the high inter-subject variability of intra-subject classification results and the improvable inter-subject classification results. In an attempt to tackle this problem, we used Group NMF to extract NMF atoms session (resp. subject)-wise.

Given predefined sub-parts of the data, this method extracts dictionaries separately CHAPITRE 6. CONCLUSION and constrains specific similarities. We used GNMF to extract NMF atoms subjectwise, atoms among which some were constrained to be similar across subjects. Even if the results of such an attempt were still improvable, they showed a discrimination in performance according to the emotional level, especially between low and high arousal, as already established by previous results in the literature.

This motivated an analysis of the valence/arousal level effects on the correlation between EEG responses of subjects watching the same stimuli. Analyzing the effects of valence/arousal on EEG Inter Subject Correlation (ISC), we found significant links between the valence/arousal levels and ISC. A particular interest was given to the statistical validity of the observed ISC variation along valence and arousal dimensions, using computationally intensive randomization tests.

As a consequence of these findings, we modified the Group NMF model we used.

Rather than extracting dictionaries of atoms subject-wise as made earlier, we used Group Nonnegative Matrix Factorization in a multi-task fashion, where both valence and arousal labels are exploited to control valence-related and arousal-related feature learning. Some additional improvement was observed for emotion classification results.

We also initiated the use of ISC information at the GNMF feature extraction level, which further improved the classification results on the HCI MAHNOB database.

Outlook

The conclusions of our thesis put ISC at the heart of EEG-based emotion recognition.

Pursuing the idea of using ISC scores at the feature extraction level, future work seeks to take the continuous ISC score information into account directly in the NMF objective function, rather than setting arbitrary ISC score thresholds to define the GNMF groups.

Apart from the specific use of ISC information, the exploitation of the GNMF principle at its full potential is limited by the size of the emotional datasets. The more sessions and the more trials per sessions there will be, the more effective GNMF-based methods will turn, as they will include more information in the definition of groups.

In the meantime, the information used at the feature extraction level has to be chosen carefully. Contrary to our initial beliefs about inter-session classification, we have found the separation of dictionaries of atoms onto different levels of valence/arousal and ISC to be more useful than the separation onto sessions. The separation into valence/arousal/ISC classes we performed is binary. While this allows for bigger sub-dictionaries (that are extracted on bigger parts of the data), it limits the precision of the considered information.

OUTLOOK

Finally, an important issue at stake in EEG-based classification of audio-visually elicited emotion is the importance of the annotation process, than can have a decisive effect on the results. For instance, in addition to valence/arousal annotations, the participants to the HCI MAHNOB database described the emotions elicited by the videos using emotional words. As for the EMOEEG database, it contains dynamical auto-annotations of each video stimulus by each participant, therefore giving an insight of the variation in the felt emotion. Though they have not been handled in great detail in this thesis, where the classic valence/arousal framework was considered, the effects of the annotation strategy on the performance of EEG-based GNMF will be the subject of future work.
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 11 FIGURE 1.1 -The valence-arousal space
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 4 OBJECTIVE AND CONTRIBUTIONSNaturally, this high inter-subject variability of EEG responses results in two setbacks for emotion classification :

CHAPITRE 1 .

 1 INTRODUCTIONlearning is to learn representations adapted to the subsequent classification stage.

CHAPITRE 2 .

 2 BASELINE EEG EMOTION CLASSIFICATION EEG-based affective datasets, whereas Section 2.3 reports commonly used features in such tasks. Section 2.4 is a reminder of the usual procedure in classifier training and evaluation metrics. Finally, in Section 2.5, we study the influence of feature and other parameters on classification results.
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 21 FIGURE 2.1 -Usual steps of an emotion recognition task

2. 1 .

 1 EMOTION ELICITATION AND EEG ACQUISITIONwhich results in an increase of the experimentation duration an the participant's fatigue.
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 23 FIGURE 2.3 -Participant during a trial
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 24 FIGURE 2.4 -Electrodes names and positions following the 10-20 system
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 2 BASELINE EEG EMOTION CLASSIFICATION stimuli.

  Many studies have proven the importance of spatial information in EEG-based emotion classification tasks.[START_REF] Richard | Asymmetrical brain activity discriminates between positive and negative affective stimuli in human infants[END_REF] [START_REF] Richard | Asymmetrical brain activity discriminates between positive and negative affective stimuli in human infants[END_REF] established a link between frontal EEG asymmetry and valence. Then, Cacioppo (2004)[START_REF] John T Cacioppo | Feelings and emotions : Roles for electrophysiological markers[END_REF] put the emphasis on α band power for this very link.[START_REF] Sammler | Music and emotion : electrophysiological correlates of the processing of pleasant and unpleasant music[END_REF] [START_REF] Sammler | Music and emotion : electrophysiological correlates of the processing of pleasant and unpleasant music[END_REF] have shown that pleasant music is associated with an increase of frontal mid-line theta power.[START_REF] Jenke | Feature extraction and selection for emotion recognition from eeg[END_REF] [START_REF] Jenke | Feature extraction and selection for emotion recognition from eeg[END_REF] underlined the importance of parietal and centro-parietal lobes in EEG-based emotion classification feature engineering. For valence classification,[START_REF] Wang | Emotional state classification from eeg data using machine learning approach[END_REF] [START_REF] Wang | Emotional state classification from eeg data using machine learning approach[END_REF] extracted subject-independent features of interest on right occipital lobe and parietal lobe in α band, parietal lobe and temporal lobe in β band, left frontal lobe and right temporal lobe in γ band. Common Spatial Patterns (CSP)[START_REF] Koelstra | Single trial classification of eeg and peripheral physiological signals for recognition of emotions induced by music videos[END_REF][START_REF] Samek | Divergence-based framework for common spatial patterns algorithms[END_REF][START_REF] Dupres | Sélection par un expert humain des intervalles temps-fréquence dans le signal eeg pour les interfaces cerveau-ordinateur[END_REF] takes into account this spatial aspect of the activity on the skull.
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 25 FIGURE 2.5 -Spectrogram-based and spatial distribution-based (spatially based) feature extraction. Spatially based feature extraction is made multi-channel-wise, and can include spectral features.
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 26 FIGURE 2.6 -Class imbalance in DEAP, HCI MAHNOB and EMOEEG The left chart presents the proportions of low/high valence annotations (resp. blue/red). The right chart presents the proportions of low/high arousal annotations.
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 3 GROUP NONNEGATIVE MATRIX FACTORIZATION FOR EEG-BASED EMOTION RECOGNITIONfrequency bands highlighted by previous research are not equally adapted to every subject. Therefore, in the inter-subject classification framework, the feature extraction method used should take into account the difference of subjects in the feature learning

Figure 3 .

 3 Figure 3.3 details the NMF-based feature extraction process. In the intra-session classification scheme, V train corresponds to the PSD matrix of all trials but one, whereasV test corresponds to the PSD matrix of the remaining trial. In the inter-session classification scheme, V train corresponds to the PSD matrix of all sessions but one, whereas V test corresponds to the PSD matrix of the remaining session.
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 33 FIGURE 3.3 -Feature extraction with NMF
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FIGURE 3 . 4 -Figure 3 .

 343 FIGURE 3.4 -Learning a dictionary matrix with GNMF (two kinds of groups, two groups of each kind)
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 4 EEG-BASED ISC : INTERPLAY WITH VALENCE AND AROUSAL

4. 1 .

 1 THE ISC PRINCIPLE signals are recorded from the scalp of each subject with a N cha -channel EEG headset.

Figure 4 .

 4 Figure 4.1 illustrates the situation.
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 41 FIGURE 4.1 -Stimulus-centered study of EEG signals

5 )

 5 Then, following (4.2) and (4.3), R b global and R w global are computed from the averaged matrices R ij . Eigenvectors e k are then computed from R -1 w global R b global .
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 42 FIGURE 4.2 -Data on which the eigenvectors e k are computed in the case of V stim
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 43 FIGURE 4.3 -Data on which the eigenvectors of R -1 w global R b global are computed in the case of V pair

[ 1 ; 9 ]

 19 . We again divide valence and arousal annotations in 3 classes : values in [1; 3.5] are considered low, values in ]3.5; 6.5[ are considered average, and values in [6.5; 9] are considered high.

Figure 4 .

 4 Figure 4.4 sums up those rules in the form of a decision matrix for the HCI MAHNOB case. For instance, for a given video stimulus, if subject i annotates a valence of 2 and subject j a valence of 4, they are considered in disagreement with each other. On the contrary, if subject i gives an annotation of 7 and subject j an annotation of 9, their annotations are considered to agree with each other.
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 44 FIGURE 4.4 -Agreement decision matrix (axis values represent annotations from both subjects ; yellow stands for agreement)
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 46 FIGURE 4.6 -Mean ISC score per arousal category (V all , HCI MAHNOB)

Figure 4 .

 4 Figure 4.7 shows the same tendency as Figure 4.5 in terms of ISC decrease when valence increases. However, differences are better in term of significance.Figure 4.8 also

Figure 4 . 8

 48 also shows the same tendency as Figure4.5, but the significance level between low arousal ISC and average arousal ISC is decreased.
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 47 FIGURE 4.7 -Mean ISC score per valence category (V stim/pair )

  DEAP is another multi-modal dataset where various physiological signals, among which EEG signals, were recorded from subjects. The main difference with HCI MAHNOB is that the emotions were elicited by the means of music video stimuli. With our notations, N vid = 40 and N sub = 32. This gives a total of 19840 pairwise ISC scores, among which 11126 agreements on valence, and 9184 agreements on arousal.

4. 5 . RESULTS ON DEAP 4 . 5 . 1 Figure 4 . 9

 545149 Figure 4.9 shows that contrary to HCI MAHNOB, mean ISC scores increase when valence increases, even if the significance is only at the level of 5%. Reasons why such a difference is observed are discussed in 4.6.3.As for the arousal dimension, Figure4.6 reveals a variation similar to the one obtained for HCI MAHNOB, that is to say an increase of ISC scores when arousal increases, only with a less satisfying significance.
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 49 FIGURE 4.9 -Mean ISC score per valence category ( V all , DEAP)

  and 4.7). However, results are more mitigated in the case of DEAP (Figures 4.9 and 4.11). This can be explained by both the different nature of the stimuli used and the annotation procedure. Annotation is continuous in DEAP, whereas it is discrete in HCI MAHNOB.

  computationally intensive randomization tests. Of particular note is the fact these results are backed by the different schemes. Even if each scheme focuses on a different dependency (stimuli-wise, subject pairwise...), there is a clear trend when it comes to the variation of ISC score as a function of valence or arousal.The conclusions of our ISC study help us understand the reasons why the emotion classification results obtained in Chapter 3 were emotion-dependent. Even at the EEG level, we can observe significant variations of inter-subject correlation according to the level of valence/arousal. This gives us a new perspective when it comes to how GNMF should be performed, as we will see in Chapter 5.C H A P I T R E5 TOWARDS AN ISC-ORIENTED GROUP NONNEGATIVE MATRIX FACTORIZATION FOR EEG-BASED EMOTION RECOGNITIONThe conclusions of Chapter 4 are that EEG inter-subject correlation strongly depends on the levels of arousal and valence. Having acknowledged this link, we seek to adapt the GNMF model described in Chapter 3 for improved EEG-based emotion classification.
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 51 FIGURE 5.1 -Learning a dictionary matrix W with GNMF (valence/arousal groups)

W 1 ,

 1 0 and W 1,1 on the other hand (same valence, different arousals). Likewise, another constraint lies between arousal-dependent atoms. λ valence > λ arousal for the valence classification task, and vice versa.

5. 3 .

 3 TAKING ISC INTO ACCOUNT EXPLICITLYscores to valence and arousal levels. Therefore, one could wonder why the ISC scores are not used directly in the GNMF process. This concerns the HCI MAHNOB database only, on which ISC scores were computed.

CHAPITRE 5 .

 5 TOWARDS AN ISC-ORIENTED GROUP NONNEGATIVE MATRIX FACTORIZATION FOR EEG-BASED EMOTION RECOGNITION

(

  session-GNMF) improves classification performance. The tests run on the HCI MAH-NOB database further suggest that the introduction of ISC information in the feature extraction step (ISC-GNMF) is beneficial, especially for arousal classification.

  subject EEG-based emotion classification, extracting dictionaries of frequency atoms from EEG spectrograms. The activation information of these atoms are then used as features for emotion classification. Contrary to classic feature representations commonly used in EEG-based emotion recognition, NMF does not rely on expert prior knowledge, and rather seeks to learn a feature representation adapted to the classification stage. Using NMF, we have obtained noticeable classification score improvements, in comparison to the frequency band power baseline features.
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TABLE 2 .

 2 .2 list those databases. In this thesis, the datasets used are HCI MAHNOB, DEAP, and EMOEEG.

			1 -EEG-based affective datasets
	Name	Authors/year		Nature of stimuli
	eNTERFACE'06	Savran et al. [44] (2006)	12.5 s image blocks
	DEAP	Koelstra et al. [23] (2012)	One-minute music videos
	HCI MAHNOB Soleymani et al. [13] (2012) Movie and video excerpts
	EMOEEG	Conneau et al. [14] (2017)	Movie and video excerpts
	Name	Nb of stimuli per participant		Nb of sessions	EEG channels
	eNTERFACE'06		90		5	54
	DEAP		40		32	32
	HCI MAHNOB		20		27	32
	EMOEEG		50	11 sessions (8 subjects)	20

EMOEEG, HCI MAHNOB and DEAP are multi-modal datasets where physiological responses to both visual and audiovisual stimuli are recorded, along with videos of the subjects, with a view to developing affective computing systems, especially automatic emotion recognition systems. The experimental setups involve various physiological sensors, among which electroencephalographic, electrocardiographic, electromyographic and electro-oculographic sensors, in addition to skin conductance data.

TABLE 2.2 -EEG-based affective datasets (important figures)
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	.3 lists

TABLE 2 .

 2 [START_REF] Keltner | Facial expression of emotion[END_REF] -Frequency and time-frequency domain features used in EEG-based classification of image and video-elicited emotion (val stands for valence, arsl for arousal, std for standard deviation, skew for skewness)

	Authors and year	Elect. Features	#classes Score
	Davidson et al. [59]	8	-α PSD	2	Statistical diff.
	1992				
	Murugappan et al. [60]	63/24 -Entropy & energy of 4th	3	Clustering
	2007		level detail coeffs (by DWT)		
	Khosrowabadi et al. [61]	8	-Magnitude Squares	4	84.5 % (accuracy)
	2010		Coherence Estimate		Intra-subject
	Koelstra et al. [33]	32	-PSD band powers	2	val 58.8 %, arsl 55.7 %
	2010		-CSP		Intra-subject (accuracy)
	Murugappan et al. [62]	64	-Energy, power, std	5	83.3 % (accuracy)
	2010		-RMS, REE, LREE, ALREE		Intra-subject
	Brown et al. [55]	8	-Peaks of asym. α avg power	3	82 % (accuracy)
	2011		+ time domain feature		Intra-subject
	Nie et al. [63]	62	-δ, θ, α, β, γ PSD (FFT)	5	83.3 % (accuracy)
	2011				Intra-subject
	Park et al. [64]	32	-α, β, γ PSD (FFT)	5	Statistical diff.
	2011				Intra-subject
	Soleymani et al. [65]	32	-θ, slow α, α, β, γ PSD	2	val 0.58 (mean F1)
	2011 (DEAP)		-θ, α, β, γ differential asym.		arsl 0.56
			(Welch's method)		Intra-subject
	Soleymani et al. [13]	32	-θ, slow α, α, β, γ PSD	3	val 0.56 (mean F1)
	2012 (MAHNOB-HCI)		-θ, α, β, γ differential asym.		arsl 0.42
			(Welch's method)		Inter-subject
	Duan et al. [66]	62	-δ, θ, α, β, γ PSD (FFT)	2	84.25% (accuracy)
	2013		-diff. & rational asymmetries		Intra-subject
			-differential entropy (DE)		
			-DCAU (spatial DE ratios)		
	Rozgić et al. [67]	32	-θ, slow α, α, β, γ PSD (FFT)	2	val 76.9% (accuracy)
	2013		-differential asymmetries		arsl 69.1%
			(DASM)		Intra-subject (on DEAP)
	Conneau et al. [31]	54	-CSP on θ, α, β, γ	2	val 78% (accuracy)
	2013		(and all frequencies)		
			-Heuristic spectral shape		Intra-subject
			descriptors		
	Valenzi et al. [1]	8	-δ, α, β, γ PSD (FFT)	4	97.2% (accuracy)
	2014				Intra-subject
	Wang et al. [56]	8	-δ, θ, α, β, γ PSD (FFT)	2	87.53% (accuracy)
	2014		-differential asymmetries		Intra-subject
			-wavelet features		
			+ time domain features		
	Zheng and Lu [68]	4-12	-δ, θ, α, β, γ PSD (FFT)	3	86.7% (accuracy)
	2015		-diff. & rational asymmetries		Intra-subject
			-DE		
			-DCAU		
	Atkinson et al. [57]	14	-θ, slow α, α, β, γ PSD	3	val 66.33% (accuracy)
	2016		+ time domain features		arsl 60.7%
					Intra-subject (on DEAP)

TABLE 2 .

 2 

		5 -Features we used
	Designation	Description
	HCI MAHNOB features	-θ, slow α, α, β, γ Power Spectral Density (PSD)
		-θ, α, β, γ differential asymmetry between electrodes
	5 band powers	θ, slow α, α, β, γ PSD
	DASM	Differential PSD (5 bands) asymmetry between pairs of electrodes
	RASM	Rational PSD (5 bands) asymmetry between pairs of electrodes
	DE	Differential Entropy (5 bands)
	TDS (Time Domain Statistics)	-power, mean, std, (normalized) 1st and 2nd diff
		-activity, mobility, complexity

TABLE 2 .

 2 

6 -Classifiers we used

Classifier Details
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 2 7 -Mean F1-scores obtained by linear SVM on HCI MAHNOB features, without and with extending the observation window (+ 3 seconds, binary intra-session classification task) (valence/arousal)

	Database	Nb of sessions used F1 without adding 3s F1 with adding 3s
	EMOEEG	8	0.57 / 0.55	0.61 / 0.55
	HCI MAHNOB	24	0.58 / 0.57	0.59 / 0.58

Table 2 .

 2 [START_REF] Fiebig | A framework for the study of emotions in organizational contexts[END_REF] shows that adding some seconds to the signal slightly improves classification results, but that such improvement is far from being substantial. As the computation of PSD-based features is averaged over the duration of each stimulus, one can understand
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	.8.
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	9 -F1-scores in the inter-subject classification case (HCI MAHNOB features,
	linear SVM)			
	Database HCI MAHNOB DEAP EMOEEG
	Valence	0.56	0.55	0.56
	Arousal	0.55	0.51	0.51

These slightly better than average scores confirm that inter-subject audio-visually elicited emotion classification tasks are challenging. Arousal is still more difficult to classify than valence. Naturally, the classification results also depend on the chosen database.

TABLE 3

 3 

		.1 -Commonly used β-divergences
	β	Name	Expression of d(x|y)
	0	Itakura-Saito (IS)	x y -log( x y ) -1
	1 Kullback-Leibler (KL) x log( x y ) -x + y
	2	Euclidean distance	1 2 (x -y) 2
	Given a matrix V ∈ R F×N	

+ , a number of patterns K, and a β-divergence d β , the nonnegative matrix factorization problem consists in the following minimization problem : min W∈R F×K + ,H∈R K×N +
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	2 -HCI MAHNOB and EMOEEG characteristics
	Database	HCI	EMOEEG
	Nb of sessions (used for classification)	24	8
	Nb of video stimuli per session	20	50
	Duration of a video stimulus	≈ 25 s	15 s
	Nb of electrodes	32	20
	EMOEEG is composed of 11 sessions taken by 8 participants, for a total of 11 sessions.
	Among these sessions, 8 were kept for emotion classification. There were technical issues
	in the 3 others and/or annotation abnormalities. For instance, binary classification cannot
	be performed on a session where only one label was reported. In HCI MAHNOB, the
	recordings corresponding to 27 sessions (i.e. participants) are available. We used 24
	of theses sessions for valence classification and 23 for arousal classification. Table 3.2

summarizes the EMOEEG and HCI MAHNOB database characteristics.

During preliminary tests, we have tested the mid-line electrodes Cz, Pz, and Fz, and selected the central electrode Cz. We have also tested various values of the parameter K,
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		4 -F1-scores for intra-session emotion classification on EMOEEG with NMF
	Session	Baseline (val) Best NMF (val) K (val)	Baseline (aro) Best NMF (aro) K (aro)
	1	0.70	0.88	10	0.40	0.48	20
	2	0.59	0.58	20	0.53	0.60	10
	3	0.49	0.49	15	0.54	0.58	20
	4	0.60	0.47	5	0.52	0.73	10
	5	0.56	0.51	20	0.62	0.68	10
	6	0.73	0.53	20	0.57	0.57	10
	7	0.52	0.64	10	0.56	0.62	10
	8	0.59	0.56	10	0.64	0.60	10
	Mean F1	0.61	0.58	-	0.55	0.61	-
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		5 -F1-scores for intra-session emotion classification on HCI MAHNOB with
	NMF						
	Subject	Baseline (val) Best NMF (val) K (val)	Baseline (aro) Best NMF (aro) K (aro)
	1	0.75	0.75	15	0.47	0.57	15
	2	0.39	0.55	15	0.54	0.49	10
	3	0.75	0.40	20	0.64	0.55	15
	4	0.84	0.49	10	0.60	0.57	15
	5	0.49	0.58	15	0.47	0.40	15
	6	0.73	0.48	15	0.76	0.69	15
	7	0.80	0.52	15	0.41	0.49	15
	8	0.63	0.64	15	1	0.48	15
	9	0.50	0.60	15	0.64	0.60	15
	10	0.41	0.73	15	0.87	0.64	10
	11	0.73	0.90	20	0.57	0.50	15
	12	0.69	0.65	10	-	-	-
	13	0.58	0.73	10	0.58	0.52	15
	14	0.63	0.52	15	0.60	0.49	10
	15	0.23	0.58	15	0.67	0.63	10
	16	0.65	0.60	10	0.69	0.70	10
	17	0.49	0.67	20	0.58	0.64	15
	18	0.54	0.65	10	0.44	0.46	10
	19	0.74	0.55	10	0.40	0.35	20
	20	0.60	0.52	15	0.49	0.83	10
	21	0.54	0.49	10	0.40	0.55	5
	22	0.52	0.49	15	0.45	0.64	10
	23	0.74	0.69	10	0.60	0.52	10
	24	0.23	0.39	10	0.40	0.50	5
	Mean F1	0.59	0.59	-	0.58	0.56	-
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		6 -F1-scores for inter-session emotion classification with NMF
	Database	Baseline (valence) NMF (valence) Baseline (arousal) NMF (arousal)
	EMOEEG	0.56	0.57	0.51	0.53
	HCI MAHNOB	0.56	0.68	0.55	0.56

Table 3 .

 3 [START_REF] Bal | Emotion recognition in children with autism spectrum disorders : Relations to eye gaze and autonomic state[END_REF] shows that inter-session classification results are slightly improved by NMF in the case of arousal, whereas the improvement is more noticeable for valence classification, at least in the case of HCI MAHNOB.

  of the columns corresponding to group i). Likewise, W 1 ,W 2 , ...W L are the corresponding sub-dictionaries, and H 1 , H 2 , ..., H L the corresponding lines of the activation matrix H. Each sub-dictionary W i (and each H

i ) is decomposed into three parts :

Table 3 . 7
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	CHAPITRE 3. GROUP NONNEGATIVE MATRIX FACTORIZATION FOR EEG-BASED
	EMOTION RECOGNITION								
	classification task. K total is the sum of atoms on all extracted sub-dictionaries in the
	training phase.										
					TABLE 3.7 -GNMF parameters			
	Dataset	K val K sess K res K total	λ val	λ sess	K aro K sess K res K total λ aro	λ sess
	EMOEEG	1	1	1	42	0.01 0.01	1	1	1	42	0.01	0.1
	HCI	1	1	1	138	10 -4 10 -5	2	2	2	276	10 -4 10 -5

. The left (resp. right) part of the table corresponds to the valence (resp. arousal)
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	8 -F1-scores for inter-session emotion classification with GNMF
	Database	NMF (valence) GNMF (valence) NMF (arousal) GNMF (arousal)
	EMOEEG	0.57	0.57	0.53	0.51
	HCI MAHNOB	0.68	0.66	0.56	0.55

As there are 2 valence (resp. arousal) labels and 24 HCI MAHNOB sessions, K total is equal to 2 × (24 -1) × (K val + K sess + K res ) = 46(K val + K sess + K res ) for the HCI MAHNOB valence classification task. Because we use 8 EMOEEG sessions, K total is equal to 2 × 7 × (K val + K sess + K res ) = 14(K val + K sess + K res ) for the EMOEEG valence classification task. The total numbers of atoms in the arousal classification tasks can be computed similarly.
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	9 -F1-scores per class for arousal classification with GNMF
	Database	F1-score (low arousal) F1-score (high arousal)
	EMOEEG	0.45	0.57
	HCI MAHNOB	0.52	0.59

TABLE 4 .
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	1 -Comparison of mean ISC scores obtained in case of annotation agree-
	ment/disagreement			
	Dimension Agreement Disagreement Significance
	Valence	0.0104	0.0106	0.46
	Arousal	0.0112	0.0097	0.052

Table 4 .

 4 [START_REF] Valenzi | Individual classification of emotions using eeg[END_REF] shows that the mean ISC score is higher on the data subset where agreement on arousal occurs than on the one where there is disagreement on arousal annotation.

Such a difference is almost significant at the 5 % level. As for valence annotation, there is almost no ISC difference between agreement and disagreement cases.

TABLE 4 .

 4 DEAP difference significance < 10 -5 2.5 × 10 -4

	2 -Mean absolute value of pairwise valence annotation difference
	Dimension	Valence	Arousal
	HCI MAHNOB	1.49	2.02
	DEAP	1.69	2.10
	HCI/		

TABLE 4 .
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	3 -Mean absolute of pairwise valence annotation difference among cases of
	agreement		
	Dimension	Valence Arousal
	HCI MAHNOB	0.77	0.84
	DEAP	0.80	0.86
	HCI/DEAP difference significance 0.0057	0.05

TABLE 5 .

 5 1 -val/aro-GNMF parameters Dataset K val K aro K res K total λ val λ aro K aro K val K res K total λ aro

	λ val

Table 5

 5 .4. The left (resp. right) part of the table corresponds to the valence (resp. arousal) classification task.

TABLE 5 .

 5 4 -ISC-GNMF parametersDataset K val K ISC K res K total λ val λ ISC K aro K ISC K res K total λ aro λ ISC

	HCI	15	5	5	100	10 -4 10 -5	0	20	5	100	0	1

TABLE 5 .

 5 5 -F1-scores for inter-session emotion classification (HCI MAHNOB)

	Dimension NMF Session-GNMF val/aro-GNMF ISC-GNMF
	Valence	0.68	0.66	0.69	0.71
	Arousal	0.56	0.53	0.59	0.63

2.3. COMMONLY USED FEATURES FOR EEG-BASED EMOTION CLASSIFICATION

3.2. RESULTS OBTAINED WITH NMF AND CONCLUSIONS

Results on HCI MAHNOB

As stated earlier, HCI MAHNOB is a multi-modal dataset where various physiological signals were recorded from subjects who watched video stimuli. Among these physiological recordings, we are interested in the EEG signals.

Each subject assessed the emotion elicited by each stimulus in terms of valence and arousal. With our notations, N vid = 20 and N sub = 24 (we only took into account the subjects who watched all the videos). This gives a total of 5520 pairwise ISC scores, among which 3685 agreements on valence, and 2968 agreements on arousal. Following 4.3.1, we restrict our computations on pairs of subjects where agreement is obtained.

The focus is made on two specific schemes, that are V all and V stim/pair . The two remaining schemes are discussed more briefly. Significance results correspond to the upper bounds obtained with the method presented in 4.3.3. 

Results with V all

Results with V stim/pair

When ISC eigenvectors are computed subject-pairwise and stimulus-wise, a different pattern of variations is observed for both valence (Figure 4.11) and arousal (Figure 4.12). Indeed, there is a significant ISC decrease for extreme values of valence or arousal. The mean ISC obtained for average valence (resp. arousal) is higher.

However, we can notice something quite consistent with the results concerning HCI MAHNOB, that is to say a significant decrease in ISC between low and high valence, and a significant increase in ISC between low and high arousal. 

Further discussion

Agreement is arbitrarily defined

The assessment of subject-pairwise agreement introduced in Section 4.3 follows arbitrary rules, even though they were carefully chosen for consistency. Performing a calibration phase before presenting the stimuli to each participant could help homogenizing the meaning of annotation values among subjects, and therefore mitigate this arbitrary aspect. Overall, val/aro-GNMF performs better than the band power baseline, NMF, and session-GNMF. Therefore, using valence and arousal labels as groups instead of sessions seems more judicious. It is noticeable that the increase of performance from session-GNMF to val/aro-GNMF is more substantial in the case of arousal classification. That can be explained by our findings in Chapter 4, that are the increase of the ISC score along the arousal dimension is more significant than the decrease of this score along the valence dimension.

An interesting comparison point between the two databases is the fact that the band power baseline had comparable performance on EMOEEG and HCI, whereas val/aro-GNMF performed much better for HCI. The reason why EMOEEG did not benefit from val/aro-GNMF as HCI could be that the arousal annotations are less reliable in EMOEEG, as suggested by the weaker baseline arousal classification. Such annotations are used not only for GNMF-based arousal classification, but also for GNMF-based valence classification, which would explain why the valence classification score stagnates in the case of EMOEEG.

Taking ISC into account explicitly

As seen in the previous section, val/aro-GNMF feature extraction improves emotion classification. The idea of such a scheme came from the observation of sensitivity of ISC 
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