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RESUME

En fonction du point de vue, une émotion peut étre comprise comme la représen-
tation consciente de ce qu'un individu ressent (perspective psychologique), ou réponse
complexe et moins consciente du corps a un stimulus émotionnel donné (perspective
neuro-psychologique). Dans cette these, nous suivons la position décrite dans [1], a savoir
"une position médiane tentant de définir comment les changements physiologiques ont
lieu quand nos ressentis changent ".

Au sein des recherches sur les émotions humaines, 'informatique affective vise a
permettre a des " systemes intelligents de reconnaitre, ressentir, déduire et interpréter "
de telles émotions [2]. Une part importante des recherches en informatique affective se
focalise sur la prédiction, a partir de données physiologiques, d’émotions produites chez
un sujet par le biais de stimuli spécifiques. Usuellement, les sujets annotent ’émotion
ressentie selon le plan valence/arousal [3].

C’est dans ce cadre que s’inscrit la mise en place de systémes de reconnaissance auto-
matique d’émotions, en parallele avec la constitution de bases de données émotionnelles.

La reconnaissance automatique d’émotions s’effectue généralement de la maniere

suivante :

— Des émotions sont produites chez le participant par le biais de stimuli spécifiques.
Dans le cadre de cette thése, nous nous intéressons aux stimuli audiovisuels
(vidéos). En parallele de I'enregistrement de signaux physiologiques, le partici-
pant annote I’émotion ressentie. 'annotation peut se faire pendant ou apres la
stimulation.

— Ensuite, une représentation de caractéristiques (features) est choisie. Selon cette
représentation, des features sont extraites de 'EEG du participant. Bien entendu,
le choix de la représentation est crucial aussi bien pour la performance de la
classification que pour I'explication physique des features.

— En utilisant les features extraites a ’étape précélente et les annotations du par-
ticipant, un classifieur d’émotions est alors appris sur un set d’entrainemen et
évalué sur un set de test, selon une métrique d’évaluation donnée.

Les travaux sur la reconnaissance automatique d’émotion sont basés principale-
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ment sur des modalités comme la parole, ’expression faciale ou le regard [4-6]. Ces
modalités sont principalement limitées par leur altérabilité, qu’elle soit volontaire ou
non [7], limitation dont ne souffrent pas des signaux physiologiques comme les électro-
encéphalogrammes (EEG). Ces derniers permettent de capturer des informations non
observable de maniére externe. C’est pourquoi 'EEG, dont il a été démontré qu’elle
contient des indices précieux pour la classification d’émotion [8], attire 'attention des
chercheurs en informatique affective. Et c’est pourquoi nous nous focalisons, dans cette
thése, sur la reconnaissance d’émotion a base ’EEG.

Traditionnellement, la reconnaissance d’émotion via EEG se fait par extraction de
caractéristiques dans des bandes de fréquence prédéfinies, connues en neuro-sciences
pour leur lien avec I’émotion : bandes alpha, béta, gamma... Cette approche tradition-
nelle ne tient pas compte de la forte variabilité inter-sujet des réponses EEG a un méme
stimulus, en plus de nécessiter des connaissances a priori quant aux bandes de fréquence
a considérer.

Une problématique centrale de la reconnaissance d’émotion a base d’EEG est la
variabilité des réponses individuelles aux stimuli, que ce soit au niveau émotionnel ou
physiologique. En effet, d'un sujet a I'autre :

— le méme stimulus peut produire des émotions différentes [9]

— une méme émotion annotée peut correspondre a différentes réponses physiolo-

giques d’un sujet a autre [10].

La tendance en machine learning consiste en 'apprentissage de représentations
adaptées a la tache de classification. Un cadre robuste d’extraction automatique de
features devrait permettre de résoudre le probleme de la dépendance de 'EEG aux sujets.
Dans cette optique, un dictionnaire commun représentant les données peut étre appris a
partir du set d’entrainement. Ensuite, les données sont projetées sur ce dictionnaire pour
obtenir des features de classification. Par 'apprentissage de dictionnaire, on recherche la
" reprsentation appropriée de sets de données par le biais de sous-espaces a dimensions
réduites. " [11].

Dans ce contexte, nous utilisons la Nonnegative Matrix Factorization (NMF) [12] qui
permet, a partir de la matrice de densité spectrale de puissance, d’extraire un diction-
naire d’atomes fréquentiels et une matrice d’activation de ces atomes. L'activation des
atomes est ensuite utilisée pour entrainer des classifieurs de valence/arousal.

Bien que l'utilisation de la NMF meéne globalement & une amélioration des résultats
(en comparaison avec une baseline de features traditionnelles) sur les bases de données
HCI MAHNOB [13] et EMOEEG [14], cette amélioration n’est pas encore satisfaisante.
En intra-sujet, les résultats de classification varient encore beaucoup d’'un sujet a 'autre.
En inter-sujet, les améliorations observées dépendent la baseline et de la dimension
(valence/arousal).
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D’ou I'idée, en inter-sujet, de rendre 'apprentissage de représentation sensible aux
variations entre sujets. Une variante de la NMF, la Group NMF [15, 16], permet une
telle considération. Il s’agit de faire en sorte que certains atomes du dictionnaire appris
présentent une certaine similarité s’ils sont extraits a partir des données du méme sujet.
Mais en comparaison avec la NMF simple, une telle configuration de GNMF n’améliore
par les résultats de classification. Par ailleurs, on se rend compte que les résultats
dépendent beaucoup du niveau d’émotion annotée. Ainsi, la classification est moins
performante lorsque ’arousal est faible.

Le constat de cette dépendance vis-a-vis de la nature de ’émotion a motivé notre
étude de l’effet de cette derniére sur la corrélation des signaux EEG entre sujets qui
ont regardé le méme stimulus. Pour quantifier cette corrélation, nous avons utilisé
I'Inter-Subject Correlation (ISC) [17-19], en proposant différents schémas de calcul. En
étudiant les variations du score d’ISC en fonction du niveau de valence et d’arousal
annotés, nous avons constaté une augmentation significative du score d’ISC lorsque
Parousal augmente, et une diminution de ce score lorsque la valence augmente. Cela
permet de fournir une explication quant a la dépendance observée des performances de
classification vis-a-vis de I'émotion.

Forts de cette nouvelle information, nous avons alors décidé de redéfinir notre ma-
niere d’utiliser la GNMF. Au lieu de définir les groupes par sujet ou session, nous les
définissons désormais par le niveau de valence et d’arousal annotés. L'apprentissage
de features se fait alors de maniére multi-tache, I'information relative aussi bien a la
valence et 'arousal servant a 'apprentissage de features pour classifier les deux dimen-
sions. Cependant, dans les fonctions objectif & minimiser, les parametres relatifs aux
similarités de la GNMF varient pour la classification de chacune desdites dimensions.
Cette nouvelle GNMF (GNMF-val/aro) offre de bien meilleurs résultats que la précédente.
L'apprentissage de features par niveau d’émotion semble donc plus porter ses fruits que
celui par sujet.

Cette utilisation de I'ISC est indirecte : en effet, la variation de 'ISC en fonction de
la valence et de I'arousal nous a donné lI'idée de définir nos groupes en fonction de ces
derniéres. Deés lors, pourquoi ne pas définir directement les groupes de la GNMF par
le score d’'ISC, au lieu de passer par I'intermédiaire valence/arousal? C’est ce que nous
avons fait sur la base de données HCI (les sujets de EMOEEG n’ayant pas tous vu les
mémes vidéos).

Dans un premier temps, nous avons pris en compte 'ISC de maniere légere, dans
I’étape d’apprentissage du classifieur, en pondérant les observations par le score d’ISC.
Cette premieére initiative n’a pas donné des résultats sensiblement différents de GNMF-
val/aro.

Ensuite, nous avons décidé de prendre 'ISC en compte plus en amont, lors de I’ap-
prentissage de features. Au lieu de discriminer les features en fonction des niveaux de
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valence/arousal, nous les discriminons uniquement en fonction du niveau d’ISC discrétisé
(bas/haut). Ce nouveau schéma de GNMF (GNMF-ISC), ou les groupes sont définis en
fonction du niveau d’ISC, donne des scores encore plus hauts que GNMF-val/aro.

Ces résultats placent donc I'ISC au coeur de la problématique de la reconnaissance
de ’émotion via EEG. Des travaux futurs porteront non plus sur I'utilisation de 'ISC
discrétisé pour définir des groupes de GNMF, mais sur I'incorporation directe du score
d’ISC continu dans la fonction objectif de la NMF.

Au-dela de l'effet de I'ISC a proprement parler, la reconnaissance d’émotion via EEG
reste fortement tributaire de la taille des bases de données utilisées, que ce soit en
nombre de sujets ou en nombre de stimuli présentés a chaque sujet. C’est ce nombre-la
qui, décuplé, pourrait permettre une plus grande efficacité de la GNMF, en s’assurant
que les données soient assez nombreuses pour que I'extraction de features se fasse avec
précision.

Une autre question peu approfondie au cours de cette theése concerne les différences
entre techniques d’annotation de I’émotion. Bien que nous nous soyons focalisés sur
les dimensions classiques valence/arousal, I'utilisation de descripteurs plus qualitatifs
(emotional words) pourrait modifier la maniére de concevoir la GNMF.
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CHAPITRE

INTRODUCTION

Emotion can be defined as a "distinct, integrated, psycho-physiological response
system", an "organized highly structured reaction to an event that is relevant to the needs,
goals, or survival of the organism" [20]. In particular, an emotion must be distinguished

from a mood, which is also a transient episode of affect. The main differences are that :

— the duration of the episode is typically shorter in the case of the emotion
— emotions are response systems activated by specific stimuli. The use of such

stimuli to this end is referred to as emotion elicitation.

Depending on the standpoint, an emotion can be understood either as the conscious
representation of what an individual feels (psychological perspective), or the complex
and less conscious body response to a given emotional stimulus (neuro-psychological
perspective). In this thesis, we follow the position described in [1], that is "a middle posi-
tion by trying to define how physiological changes occur when our feelings change", the
assumption being that "when participants recognize their emotions well, the association

between physiological data and perception of different feelings will be reliable."

Among the research on human emotions, affective computing is a large field that aims
at enabling "intelligent systems to recognize, feel, infer and interpret" these emotions
[2]. Therefore, a significant part of the investigations in affective computing research
seeks to predict the emotions elicited from a subject using specific stimuli based on the
subject’s physiological responses to such stimuli. In line with this effort, automatic emo-

tion recognition systems are set up, motivating the constitution of numerous emotional
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CHAPITRE 1. INTRODUCTION

databases.

Contributions to automatic emotion recognition mainly rely on modalities such as
speech, facial expressions, or eye gaze [4—6]. The main limitation of these modalities is
their alterability, whether voluntary or not [7]. On the other hand, physiological moda-
lities such as Electroencephalography (EEG) do not suffer from such a drawback. As
stated in [21], "EEG signals are directly recorded from human’s brain cortex and hence
they could be more reliable in reflecting the inner emotional states of the brain", with a
remarkable advantage in comparison to other physiological modalities : the information
EEG can capture is not necessarily observable externally. Thus, EEG has attracted the
attention of researchers in the field of affective computing and it has been shown to hold
precious cues for emotion classification [8]. This has motivated the focus on EEG-based

emotion classification in this thesis.

To perform EEG-based emotion classification, one has to cope with the variability of
individual responses to stimuli, whether it be at the emotion level or at the physiological

signal level. Indeed, from one subject to another :

— the same stimulus can elicit different emotions [9];
— the same elicited emotion translates into different physiological responses across
participants [10].

Many factors of decision can have an impact to address this stability issue. Which
stimuli to use? Should emotion classification be done individually or in an inter-subject
fashion ? Which features to extract from the physiological data? How should such features
be normalized ? And, more deeply, how to take into account the variabilities exposed

above in the chosen feature representation ? These have been our focuses in this thesis.

1.1 Stimuli choice

Even if they induce harder emotion classification tasks than image stimuli, audiovi-
sual stimuli offer the advantage of eliciting dynamic emotions, which is more consistent
with realworld applications. Therefore, this thesis focuses on the use of audiovisual
stimuli.

The duration of such stimuli is chosen such that it is both not too long to hamper the

subject’s concentration, and not too short in order to capture the dynamics of emotion. As
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1.2. EMOTION ANNOTATION

the order of magnitude of emotional reactions length was found to be around 10 seconds
[22], a usual order of magnitude for the duration of audiovisual stimuli is 20-30 seconds.

Across the available emotional databases, different types of audiovisual stimuli are
used, according to the considered task. Such stimuli are often short movie excerpts [13]
or music videos [23], which induces different elicitation. Some databases can also focus

on specific types of emotions, such as negative ones [14].

1.2 Emotion annotation

Given a choice of stimuli, emotion has to be accurately translated by the participant.
This raises the issue of emotion annotation, that is to say the assessment by the partici-

pant of the emotion he/she felt as a result of each stimulus.

To be more accurate, emotion annotation can take the form of a verbal description
using specific keywords. However, a scalar representation offers the advantage of both
systematizing and simplifying the annotation. To this end, emotions are often represented
in a two-dimensional valence-arousal space [3], which respectively describe the pleasure
or displeasure felt by a person and her degree of excitement. In Figure 1.1, some specific

emotions are placed onto this space.
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FIGURE 1.1 — The valence-arousal space



CHAPITRE 1. INTRODUCTION

In this thesis, emotion annotation corresponds to a double scalar annotation, that
is to say valence and arousal information. Valence and arousal annotation can either
be continuous or discretized. Even though a discrete representation on the valence and
arousal axes "may not reflect the subtlety and complexity of the affective states" [24],
such a discretization is a straightforward way of obtaining meaningful labels with a view
to elicited emotion classification. Most discretization models decompose each axis into

two or three labels, respectively low/high and low/average/high.

The emotional state (valence-arousal) self-assessment by the participants can be
made in an online fashion while watching the stimulus, or after the end of its exposure.
While the first option can help capture the variations of valence and arousal more
accurately in the audio-visually stimulated case, it might hamper the participants’
concentration towards the stimuli.

As for the annotation itself, it can either globally describe the stimulus, or be decom-
posed so as to describe sub-parts of the stimulus, in order to capture the dynamics of

emotion.

1.3 Factors of variability for the EEG response

As stated earlier, numerous factors affect the EEG response stability, making EEG-

based emotion classification a challenging task.

The same stimulus can elicit different emotions among individuals. For instance,
as made clear in [25], age differences can induce valence/arousal rating differences for
the same stimulus. Gender differences have also been found to have an effect in the
rating of negative emotions [26]. Differences of annotation can be caused either by theses
differences in the emotion felt or by inter-subject variability of emotion representation,
that is to say the way subjects interpret emotional keywords or valence/arousal axes.
This results in high inter-subject variability of the EEG responses to the same stimuli
[27].

Along with other works, the distinction made in [26] between negative and positive
emotions when it comes to gender differences makes it clear that inter-subject variability
depends on the emotion type. This is also emphasized by many classification results
such as the ones obtained in [13], which shows differences of classification performance

according to the emotion type.
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Naturally, this high inter-subject variability of EEG responses results in two setbacks
for emotion classification :

— intra-subject emotion classification performance varies a lot from one subject to

another [28]

— inter-subject emotion classification tasks are complex because the generalization
of features across subjects is difficult. Therefore, compared to intra-subject tasks,
inter-subject classification performance is deteriorated.

In order to perform valid intra-subject analysis, we need EEG emotional datasets
with enough experimental repetitions for each subject, so that enough subject specific
information is available. This raises the issue of the subject’s fatigue : if we want both
enough repetitions per subject and to avoid any fatigue, multiple sessions for the same
subject should be considered. Another related issue is thus raised, that is inter-session
variability of the EEG signal. From an inter-subject classification point of view, enough
subjects should participate to the experiments so that the problem of inter-subject
variability, which remains a challenging issue, could be tackled. More focus on EEG

emotional datasets is made in Chapter 2.

1.4 Objective and contributions

This thesis aims at introducing original EEG-based emotion classification
methods that take into account factors of variability in EEG responses to au-
diovisual emotional stimuli. To this end, our contributions to the problem are the
following :

— Features that are classically extracted from EEG data to perform emotion classifi-
cation are the spectral power for each considered electrode in specific frequency
bands (theta, slow alpha, alpha, beta, gamma) that are well known for their
role in emotional and cognitive processes [29, 30]. Spectral moments of different
orders and heuristic spectral shape descriptors have also been used [13, 31]. In
the multi-channel case, the spectral power asymmetry between specific pairs of
electrodes can be computed in the frequency bands mentioned earlier [32]. Other
approaches such as Common Spatial Patterns (CSP) [33—-35] rather focus on the
spatial aspect of the activity on the skull.

Representations used in previous works have in common the fact that they rely

on expert knowledge and a feature engineering effort. The new trend in machine
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learning is to learn representations adapted to the subsequent classification stage.
Along this line, Nonnegative Matrix Factorization (NMF) [12], which is an an
unsupervised feature extraction method, has been mostly used for EEG-based
motor imagery classification tasks [36]. We use NMF to perform intra and
inter-subject EEG-based emotion classification, extracting dictionaries
of frequency atoms from EEG spectrograms. The activation information of
these atoms are then used as features for emotion classification.

— Noticing the high inter-subject variability of intra-subject classification results and
the unsatisfactory inter-subject classification results, we were attracted by Group
NMF (GNMF) [15]. Given predefined sub-parts of the data, this method extracts
dictionaries separately and constrains specific similarities. We use GNMF to ex-
tract NMF atoms subject-wise, atoms among which some were constrai-
ned to be similar across subjects. No visible improvement is observed compa-
red to NMF.

— Our previous results as well as many results in the literature show different clas-
sification performance across levels of valence/arousal. This motivates an analysis
of the valence/arousal level effects on the correlation between EEG responses
of subjects watching the same stimuli. Thus, we analyze the effects of va-
lence/arousal on EEG Inter Subject Correlation (ISC) [17-19]. We find si-
gnificant links between the valence/arousal levels and ISC. A particular
care was given to the statistical validity of the observed ISC variation
along valence and arousal dimensions, using computationally intensive
randomization tests.

— We adjust our Group NMF model accordingly. Rather than extracting dictionaries
of atoms subject-wise as made earlier, we used Group Nonnegative Matrix
Factorization in a multi-task fashion, where both valence and arousal
labels are exploited to control valence-related and arousal-related fea-
ture learning. Some improvement was observed for emotion classifica-
tion results. The results are further improved with the explicit use of

ISC information in the feature learning stage.

1.5 Organization of the document

This thesis is organized as follows :

— Chapter 2 presents preexisting EEG emotional databases, as well as commonly
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extracted features for EEG-based emotion classification. Classification results
obtained using these features on some databases are also exposed.

In Chapter 3, the NMF and Group NMF approaches are detailed, and we expose
our NMF and Group NMF-based emotion classification. In this chapter, GNMF
atoms are extracted subject-wise, atoms among which some were constrained to
be similar across subjects.

In Chapter 4, the Inter Subject Correlation framework is exposed. Then, the effect
of valence/arousal on Inter Subject Correlation (ISC) is analyzed.

Finally, following the conclusions of Chapter 4, Chapter 5 presents the adjustment

of Group NMF to a valence/arousal-based definition of sub-groups.






CHAPITRE

BASELINE EEG EMOTION CLASSIFICATION

In this chapter, we present the procedure classically followed to perform an EEG-

based emotion classification task, as well as available databases in the case of audiovisual

elicitation, and classification results obtained on such databases. As presented in Figure

2.1, a usual emotion recognition task is carried out as follows :

— Emotion is elicited from a participant by means of specific stimuli. In other words,

stimuli are used in order to activate emotional responses in the participant.
During emotion elicitation, physiological data concerning the participant - EEG in
our case - is recorded. Along with the recording of physiological information, the
participant assesses his/her emotional state, either during or after the stimulation.
Then, one has to choose a feature representation, according to which EEG-based
features are extracted from the participant’s data. As stated in [21], "the target
of emotional EEG feature extraction is to seek a set of optimal features that
characterize the emotion information of the raw EEG signals". Naturally, the
choice of feature representation is crucial in classification performance, but also
in the physical explanation given to the features. In this thesis, the focus is made
on this step.

Using the features extracted in the previous step and the participant’s annotations,
an emotion classifier is then learned on a training set, and finally evaluated on a

test set, according to given evaluation metrics.

In Section 2.1, we present different stimuli used in EEG-based emotion classification

tasks, as well as the requirements needed by such tasks. Section 2.2 presents available
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EEG-based affective datasets, whereas Section 2.3 reports commonly used features in
such tasks. Section 2.4 is a reminder of the usual procedure in classifier training and
evaluation metrics. Finally, in Section 2.5, we study the influence of feature and other

parameters on classification results.

Data recording

Representation Classification
(database) . o
- Learning a classifier
. C - Feature extraction on a training set
- Emotion elicitation " - S :
. - Architecture choice - Evaluation on a test
- Data recording set

- Mental state assessment . .
- Evaluation metrics

FIGURE 2.1 — Usual steps of an emotion recognition task

2.1 Emotion elicitation and EEG acquisition

For a given subject, we call trial the combination of one elementary emotion elicitation
(using one stimulus) and the self annotation (by the subject) of the emotion felt. For
instance, as shown in Figure 2.2, the EMOEEG database protocol [14] requires that the
participant annotates his/her emotion right after each stimulus. It is also the case for
the two other databases used in this thesis : HCI MAHNOB [13] and DEAP [23].

Black cross on white
screen

Stimulus (image block or video) White screen

Self-annotation

3s 12,5 s (image block) or 15 s (video) 10 s
FIGURE 2.2 — Protocol for one trial (EMOEEG)

In the audiovisual stimuli case, an alternative to post-stimulus assessment is to
make the participant assess his/her emotional state dynamically, while the stimulus
is watched, as it is the case for the Feeltrace [37] and Gtrace [38] annotation methods.
Even if such methods enable dynamic annotation, that is to say annotation which takes
emotion variation across time, they have two major drawbacks, as stated in [39] :

— as the dynamic annotation has to be made while watching the video, it induces a

lack of concentration, that can only be tackled by watching each stimulus twice,
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2.1. EMOTION ELICITATION AND EEG ACQUISITION

which results in an increase of the experimentation duration an the participant’s

fatigue.
— watching each stimulus more than once may induce a habituation effect that

would influence the participant’s annotation

F1GURE 2.3 — Participant during a trial

Emotional stimuli can have different natures, depending on the focus. One can get in-
terested in emotion recognition during music listening [40, 41]. Others have used images
or image blocks as stimuli [42—44], using pictures from databases such as the Interna-
tional Affective Picture System (IAPS, [45]). Musical stimuli present the disadvantage
that " subjects are prone to misunderstand positive/negative valence as preferred/not
preferred " [46]. For instance, a music can be appreciated by the listener even if it makes
him/her sad. As for image stimuli, even if they are an efficient way of eliciting emotion,
they do not offer dynamic emotional responses. Therefore, in this thesis, the focus is put

on audio-visually stimulated emotions, in order to be closer to realworld stimulation.

During each trial, the EEG signal is acquired by means of an EEG headset, as shown
in Figure 2.3. An EEG headset is usually composed of 20, 32, or 64 electrodes. The names
and positions of each electrode are defined by the 10-20 international system [47]. Figure
2.4 [48] shows the positions of 20 electrodes on the skull.
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FIGURE 2.4 — Electrodes names and positions following the 10-20 system

2.1.1 Specific requirements

Each trial has to last long enough so that the information extracted from the EEG
signals is sufficient. It is all the more important given that within the frequencies of
interest, there are relatively low frequency bands such as alpha (8-12 Hz) and theta
(4-8 Hz) frequency bands [30, 49]. The duration of a single trial should correspond to
enough periods of such considered frequencies. On the other hand, the total duration of
an experiment should not be too long so as to avoid participants’ loss of concentration
over time. Therefore, a usual order of magnitude for the duration of one trial is 15-20
seconds [13, 501].

Then, according to the desired classification task, additional requirements have to be
fulfilled :

— if the task is inter-subject classification, enough subjects are needed so that the
features generalize well across subjects. To address this challenge of assessing
the generalization abilities of EEG-based classification systems across subjects,
some existing databases such as HCI MAHNOB and DEAP [13, 23] included a
relatively high number of participants (respectively 27 and 32 each).

— if the task is intra-subject classification, enough trials per subject are needed
to provide each subject-dependent classifier with enough training data. Other
databases such as eNTERFACE’06 and EMOEEG [14, 44] (with respectively 5
and 8 participants) chose to sacrifice the number of subjects for the benefit of this

consideration (with respectively 30 and 50-100 trials per participant).
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2.2 EEG-based affective datasets

Emotion recognition databases are numerous [51], but they mainly rely on modalities
such as speech, facial expressions, or eye gaze. To the best of our knowledge, only a few
EEG-based emotion recognition databases are publicly available. Tables 2.1 and 2.2
list those databases. In this thesis, the datasets used are HCI MAHNOB, DEAP, and
EMOEEG.

TABLE 2.1 — EEG-based affective datasets

’ Name ‘ Authors/year ‘ Nature of stimuli
eNTERFACE’06 Savran et al. [44] (2006) 12.5 s image blocks
DEAP Koelstra et al. [23] (2012) | One-minute music videos
HCI MAHNOB | Soleymani et al. [13] (2012) | Movie and video excerpts
EMOEEG Conneau et al. [14] (2017) | Movie and video excerpts

EMOEEG, HCI MAHNOB and DEAP are multi-modal datasets where physiological
responses to both visual and audiovisual stimuli are recorded, along with videos of the
subjects, with a view to developing affective computing systems, especially automatic
emotion recognition systems. The experimental setups involve various physiological
sensors, among which electroencephalographic, electrocardiographic, electromyographic

and electro-oculographic sensors, in addition to skin conductance data.

TABLE 2.2 — EEG-based affective datasets (important figures)

’ Name ‘ Nb of stimuli per participant ‘ Nb of sessions ‘ EEG channels
eNTERFACE’06 90 5 54
DEAP 40 32 32
HCI MAHNOB 20 27 32
EMOEEG 50 11 sessions (8 subjects) 20

EMOEEG’s experiment is performed with 8 participants, 4 from both genders. The
stimuli include both sequences of static images from the IAPS dataset, and short video
excerpts focusing on negative fear-type emotions. We only use audio-visual trials from this
database. The annotation is obtained by participant self assessment, after a calibration
phase.

EMOEEG stimuli focus on negative fear-type emotions. This choice is motivated by
the development of strategies amenable to the analysis of the impact of violent videos
on humans, and possibly treatments for subjects suffering from phobia. Thus, in terms

of valence and arousal, there is a bias towards negative emotions in the choice of video
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stimuli.
The originality of this database lies in three main aspects :

— an important number of repetitions were performed per subject for the purpose
of a reliable intra-subject classification. Indeed, EEG responses are known to be
strongly individual-specific

— a calibration phase which allows each participant to become familiar with the
emotion annotation axes.

— a novel simplified dynamic annotation strategy used on video stimuli allows to
consider the variations over time of felt emotion, and enhance the quality and
consistency of the self-assessments.

As for HCI MAHNOB, it contains the recordings of 27 participants. We used 24

of theses sessions for valence classification and 23 for arousal classification. In each
session, the participant watches 20 emotional videos. Thus, HCI MAHNOB contains

more sessions than EMOEEG but less videos per session.

DEAP contains the recordings of 32 participants, even more than HCI MAHNOB,
with more stimuli per participant (40). However, the nature of stimuli - music videos - is
quite different from HCI MAHNOB and EMOEEG.

2.3 Commonly used features for EEG-based emotion

classification

Features that are used for EEG-based emotion classification can be divided into
three categories : time domain features, frequency domain features, and time-frequency
domain features. In some reviews like [52] (Kim et al, 2013), such features are divided

into only two categories, namely time domain and time-frequency domain features.

2.3.1 Time domain features versus time-frequency domain

features

Classic time domain features such as the mean, power, or standard deviation, can be
extracted from the EEG signals. More complex features, commonly used in time series
analysis, such as first differences, second differences, kurtosis, or Hurst exponent, have
also been used. Finally, time domain features were specifically for EEG analysis : for

instance, the Hjorth features [53] named activity, mobility and complexity. Table 2.3 lists
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previous works where EEG time domain features were used in image and video-elicited
emotion classification tasks. The performances obtained using such features are also

indicated.

TABLE 2.3 — Time domain features used in EEG-based classification of image and video-
elicited emotion (val stands for valence, arsl for arousal, std for standard deviation, skew
for skewness)

’ Authors/year \ Electrodes \ Features \ Classes \ Score
Takahashi et al. [54] 3 - Mean, power, std 5 0.41 (mean F1-score)
2004 - 1st and 2nd differences (diff.) Intra-subject
- Normalized 1st and 2nd diff.
Brown et al. [55] 8 - Max, kurtosis 3 82 % (accuracy)
2011 - + freq-domain features Intra-subject
Conneau et al. [31] 54 - Min, max, skew, 2 val 70% (accuracy)
2013 kurtosis, mean, std, Intra-subject
median, mean/max of 1st and Intra-subject
2nd diff. absolute values Intra-subject
Valenzi et al. [1] 8 -6,a,B,y PSD (FFT) 4 97.2% (accuracy)
2014 Intra-subject
Wang et al. [56] 8 - approximate entropy 2 87.53% (accuracy)
2014 - Hurst exponent Intra-subject
+ freq-domain features
Atkinson et al. [57] 14 - Median, std, kurtosis 3 val 66.33% (accuracy)
2016 - Hjorth features arsl 60.7%
(activity, mobility, complexity) Intra-subject (on DEAP)
+ freq-domain features

As for time-frequency domain features, commonly extracted features for EEG-based
emotion classification are the Power Spectral Density (PSD) for each considered electrode
in specific frequency bands (theta, slow alpha, alpha, beta, gamma) that are well known
for their role in emotional and cognitive processes [29, 30]. For instance, "EEG alpha
bands reflect attentional processing and beta bands reflect emotional and cognitive pro-
cessing in the brain", according to Rowland et al. [49] and Klimesch et al. [58]. Spectral
moments of different orders and heuristic spectral shape descriptors have also been
used [13, 31]. In the multi-channel case, the spectral power asymmetry between specific
pairs of electrodes can be computed in the frequency bands mentioned earlier [32]. Other
approaches such as Common Spatial Patterns (CSP) [33-35] rather focus on the spatial
aspect of the activity on the skull.
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TABLE 2.4 — Frequency and time-frequency domain features used in EEG-based classifi-
cation of image and video-elicited emotion (val stands for valence, arsl for arousal, std
for standard deviation, skew for skewness)

’ Authors and year \ Elect. \ Features \ #classes \ Score
Davidson et al. [59] 8 -a PSD 2 Statistical diff.
1992
Murugappan et al. [60] | 63/24 | - Entropy & energy of 4th 3 Clustering
2007 level detail coeffs (by DWT)
Khosrowabadi et al. [61] 8 - Magnitude Squares 4 84.5 % (accuracy)
2010 Coherence Estimate Intra-subject
Koelstra et al. [33] 32 - PSD band powers 2 val 58.8 %, arsl 55.7 %
2010 - CSP Intra-subject (accuracy)
Murugappan et al. [62] 64 - Energy, power, std 5 83.3 % (accuracy)
2010 - RMS, REE, LREE, ALREE Intra-subject
Brown et al. [55] 8 - Peaks of asym. a avg power 3 82 % (accuracy)
2011 + time domain feature Intra-subject
Nie et al. [63] 62 -6,0,a,B,y PSD (FFT) 5 83.3 % (accuracy)
2011 Intra-subject
Park et al. [64] 32 - a,B,y PSD (FFT) 5 Statistical diff.
2011 Intra-subject
Soleymani et al. [65] 32 - 0, slow a, a, B,y PSD 2 val 0.58 (mean F1)
2011 (DEAP) -0, a, B, y differential asym. arsl 0.56
(Welch’s method) Intra-subject
Soleymani et al. [13] 32 - 0, slow a, a, B8,y PSD 3 val 0.56 (mean F1)
2012 (MAHNOB-HCI) -0, a, B, y differential asym. arsl 0.42
(Welch’s method) Inter-subject
Duan et al. [66] 62 -6,0,a,B,y PSD (FFT) 2 84.25% (accuracy)
2013 - diff. & rational asymmetries Intra-subject
- differential entropy (DE)
- DCAU (spatial DE ratios)
Rozgié et al. [67] 32 - 0, slow a, a, B,y PSD (FFT) 2 val 76.9% (accuracy)
2013 - differential asymmetries arsl 69.1%
(DASM) Intra-subject (on DEAP)
Conneau et al. [31] 54 -CSPonb, a, B,y 2 val 78% (accuracy)
2013 (and all frequencies)
- Heuristic spectral shape Intra-subject
descriptors
Valenzi et al. [1] 8 -6,a,B,y PSD (FFT) 4 97.2% (accuracy)
2014 Intra-subject
Wang et al. [56] 8 -6,0,a,B,y PSD (FFT) 2 87.53% (accuracy)
2014 - differential asymmetries Intra-subject
- wavelet features
+ time domain features
Zheng and Lu [68] 4-12 | -6,0,a,B,y PSD (FFT) 3 86.7% (accuracy)
2015 - diff. & rational asymmetries Intra-subject
-DE
- DCAU
Atkinson et al. [57] 14 -0, slow a, a, B,y PSD 3 val 66.33% (accuracy)
2016 + time domain features arsl 60.7%
Intra-subject (on DEAP)
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The comparison results obtained by Wang et al. [56] and Conneau et al. [31] (2014)
suggest the superiority of power spectrum features (time-frequency domain) over time
domain features for EEG-based emotion classification. In addition, in the time-frequency
domain, even if wavelet features are often used in EEG analysis, it was shown in [56]
that they are inferior to power spectrum features in the case of EEG-based audio-visually

stimulated emotion classification.

2.3.2 Exploiting spatial information

Many studies have proven the importance of spatial information in EEG-based emo-
tion classification tasks. Davidson et al. (1982) [69] established a link between frontal
EEG asymmetry and valence. Then, Cacioppo (2004) [70] put the emphasis on a band
power for this very link. Sammler et al. (2007) [71] have shown that pleasant music
is associated with an increase of frontal mid-line theta power. Jenke et al. (2014) [72]
underlined the importance of parietal and centro-parietal lobes in EEG-based emotion
classification feature engineering. For valence classification, Wang et al. (2014) [56]
extracted subject-independent features of interest on right occipital lobe and parietal
lobe in @ band, parietal lobe and temporal lobe in § band, left frontal lobe and right
temporal lobe in y band. Common Spatial Patterns (CSP) [33-35] takes into account this
spatial aspect of the activity on the skull.
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FIGURE 2.5 — Spectrogram-based and spatial distribution-based (spatially based) feature
extraction. Spatially based feature extraction is made multi-channel-wise, and can
include spectral features.

More recently, novel dynamical graph convolutional neural networks methods have
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been used to "learn the intrinsic relationship between different EEG channels " [73], the-
refore exploiting spatial information to perform more discriminative feature extraction.

However, single-channel based emotion classification opens the way to easier applica-
bility in real-world scenarios with more lightweight devices than full headsets. Therefore,
the contributions of this thesis were made in the context of single-channel based emotion
classification, and focus more on the spectrogram obtained from one given electrode than

on the relationship between electrodes.

2.4 Classifier training and evaluation metrics

Using the extracted features, a classifier is trained on a given subset of the trials (as
well as the corresponding annotations) and then tested to classify the remaining trials.
— Let us first study the case of intra-subject classification. If leave-one-out classifi-
cation is performed, a classifier is trained on all trials but one, and then tested

to classify the remaining trial. This procedure is then repeated for each trial,

to obtain test labels. These test labels are finally compared to the ground truth,
computing a given metric to evaluate classification performance. If k-fold classifi-

cation is performed (for a given integer k), a classifier is trained on a proportion
k-1

of all the subject’s trials, and then tested to classify the remaining 7
— In the case of inter-subject classification, we use a leave-one-subject-out scheme.
For each subject, a classifier is trained on all subjects trials except him/her, and
then tested on the remaining subject.
After the classification is performed, let (C; ;) (1<1i,j<2) be the confusion matrix, in
the case of binary classification. In other words, the scalar C; ; is the number of trials
corresponding to a ground truth annotation i, that were classified as j. A commonly

used evaluation metric is classification accuracy, which mathematically corresponds to
C11+C2p2

Yisijs2 Cij
If such metric is appropriate for datasets where labels are balanced, it can give

misleading results when there is label imbalance. The macro-averaged F1-score metric,
which is defined as follows, is more suited to such a case, and penalizes the classifiers

which would perform efficiently on the dominant label, but not on the other one :

B Ci1 N Ca2
201,1 + 02,1 + 01,2 202’2 + 01,2 + Cz’l

Fq
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CLASSIFICATION RESULTS

2.5 Influence of feature choice and other parameters

on classification results

In this section, we present the intra-subject audio-visually elicited emotion binary
classification results we obtained on HCI MAHNOB, DEAP and EMOEEG, studying
the effects of different parameters on classification performance, and using classical
EEG-based features. In the case of EMOEEG, intra-session classification is made. In
other words, classification is made separately for each session (even if 3 subjects of this
database participated to 2 sessions). Features are normalized by centering and scaling.
Tables 2.5 and 2.6 respectively detail the features and classifiers we used.

Unless otherwise specified, the results that are presented correspond to intra-subject
(intra-session for EMOEEG) classification tasks, using a leave-one-out scheme. The
scores presented are the mean across subjects (resp. sessions) of the subject-wise (resp.

session-wise) F'1-scores.

TABLE 2.5 — Features we used

Designation \ Description
HCI MAHNOB features - 0, slow a, a, B,y Power Spectral Density (PSD)
-0, a, B, y differential asymmetry between electrodes
5 band powers 0, slow a, a, B,y PSD
DASM Differential PSD (5 bands) asymmetry between pairs of electrodes
RASM Rational PSD (5 bands) asymmetry between pairs of electrodes
DE Differential Entropy (5 bands)
TDS (Time Domain Statistics) - power, mean, std, (normalized) 1st and 2nd diff
- activity, mobility, complexity

TABLE 2.6 — Classifiers we used

Classifier \ Details
Linear Support Vector Machine (SVM) - Grid search in 21770537 for C parameter
Radial Basis Function (RBF) SVM - C empirically fixed to 1
- Grid search in 100-2:0-25:1 for sgamma parameter

2.5.1 Extending the observation window of the signal

Given the fact that emotion elicitation is not instantaneous, adding a few seconds
to the EEG signal after the end of each stimulus could yield more accurate feature

computation and better emotion classification results.
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TABLE 2.7 — Mean F1-scores obtained by linear SVM on HCI MAHNOB features, wi-
thout and with extending the observation window (+ 3 seconds, binary intra-session
classification task) (valence/arousal)

’ Database \ Nb of sessions used \ F1 without adding 3s \ F1 with adding 3s ‘
EMOEEG 8 0.57/0.55 0.61/0.55
HCI MAHNOB 24 0.58/0.57 0.59/0.58

Table 2.7 shows that adding some seconds to the signal slightly improves classification
results, but that such improvement is far from being substantial. As the computation of
PSD-based features is averaged over the duration of each stimulus, one can understand
why the effect of adding a few seconds to the signal is limited. In addition, it is interesting
to observe that the best improvement is obtained for valence classification in the case
of EMOEEG. Indeed, as the stimuli of this database are shorter than the ones in HCI
MAHNOB, the 3 second-addition has more effect on EMOEEG results.

2.5.2 Impact of feature choice

We then studied the effect of feature choice on classification results. The results

obtained using the features we tested are given in Table 2.8.

TABLE 2.8 — Mean F1-scores obtained by linear SVM with different features (val/arsl)

] Features/Database \ EMOEEG \ HCI MAHNOB \ DEAP
HCI MAHNOB features | 0.61/ 0.55 0.59/0.58 0.64/0.55
5 band powers 0.51/0.53 0.58/0.54 0.62/0.56
DASM 0.59/0.54 0.57/0.56 0.63/0.54
RASM 0.56/0.53 0.56/0.58 0.63/0.53
DE 0.51/0.53 0.55/0.57 0.62/0.54
TDS 0.51/0.55 0.57/0.57 0.62/0.55

These results confirm the superiority of time-frequency domain features on time
domain statistics. Globally, the arousal classification task seems more challenging than
the valence classification one, in line with previous results exposed in Table 2.4.

Among all the feature sets we used, HCI MAHNOB features, which are a combination
of PSD in specific frequency bands and differential asymmetry of such PSD between

pairs of electrodes, seem to be the most efficient ones.
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2.5.3 Choice of classifier

Using linear SVM or RBF SVM leads to similar results. A more intense RBF SVM
tuning effort leads to results that are comparable to linear SVM. That can be explained
by the fact there is not enough data for RBF SVM to generalize well.

Therefore, we exclusively train linear SVM classifiers in the remainder of this thesis.
This is convenient as linear SVM is a well known reference in classification and classifier
choice is not part of our contributions. We are rather interested in feature representation

and learning.

2.5.4 Inter-subject classification

The results obtained for intra-subject classification tasks can be improved. Moreover,
the fact that F1-scores are computed subject-wise (resp. session-wise) impairs their
significance, as each subject (resp. session) corresponds to a limited number of stimuli
(20, 30 or 50 depending on the database).

Therefore, even if inter-subject classification is more challenging, it offers two main
advantages, in addition to the fact it opens the way to more generalizable systems :

— more data is available to train our classifiers, which are not limited to one subject

(resp. one session) anymore
— the significance of F1-scores is increased due to the fact classification is performed

on a larger number of trials
Table 2.9 presents the inter-subject classification results obtained in a leave-one-subject-
out (resp. leave-one-session-out) fashion. Let us note that in the case of the HCI MAH-
NOB database, the results are better when emotional classes are determined using
emotional keywords rather than valence and arousal levels. However, we consider these

valence and arousal levels for the sake of comparison to the other databases.

TABLE 2.9 — F1-scores in the inter-subject classification case (HCI MAHNOB features,
linear SVM)

| Database | HCI MAHNOB | DEAP | EMOEEG |

Valence 0.56 0.55 0.56
Arousal 0.55 0.51 0.51

These slightly better than average scores confirm that inter-subject audio-visually

elicited emotion classification tasks are challenging. Arousal is still more difficult to
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classify than valence. Naturally, the classification results also depend on the chosen

database.

2.5.5 Threshold choice for valence and arousal classes

In the DEAP database, valence and arousal annotation are made on a continuous
scale from 1 (the lowest) to 9 (the highest), whereas in HCI MAHNOB and EMOEEG,
the annotation is made on a discrete scale where the subject chooses an integer value

between 1 and 9.
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FIGURE 2.6 — Class imbalance in DEAP, HCI MAHNOB and EMOEEG
The left chart presents the proportions of low/high valence annotations (resp. blue/red). The right
chart presents the proportions of low/high arousal annotations.

For each database, we have considered two valence and arousal classes, namely
low and high valence (resp. arousal). In the case of EMOEEG, where both valence and
arousal are biased towards negative values, we have defined {1,2,3} as the first class and
{4,5,6,7,8,9} as the second. As for HCI MAHNOB and DEAP, the low class is composed
of values respectively in {1,2,3,4} and {1,2,3,4,5}. Even if this choice was made so as to

reduce class imbalance, such imbalance is still present, as shown in Figure 2.5.5.

We can observe that arousal imbalance is more important in the cases of EMOEEG
and DEAP, which could explain why the arousal classification task is more difficult on
those databases (see Table 2.9).
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2.6 Conclusion

In this chapter, we have recalled the usual procedure followed in EEG-based emotion
classification, with a focus on audiovisual emotion elicitation scenarios. We have listed
available databases as well as baseline features used for such classification. Testing some
of these features on HCI MAHNOB, DEAP, and EMOEEG datasets, we have observed
the already established superiority of power spectrum-based features. However, the
obtained classification results are strongly improvable.

Moreover, they show lower classification scores for arousal, which is consistent
with previous results in the literature [13, 23]. As stated in [20], "emotions generally
are intense, high-activation states". More specifically, low arousal is more difficult to
recognize. Therefore, an alternative feature extraction strategy is required : we choose to
follow a feature learning approach.

The obtained intra-subject classification results vary a lot from one subject to another,
whereas inter-subject classification results are unsatisfactory. To ease generalization
across subjects, the chosen feature representation has to take into account the individua-
lity of each subject from which the EEG signal is extracted.

Chapter 3 seeks a feature representation paradigm that can tackle these issues.
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CHAPITRE

GROUP NONNEGATIVE MATRIX FACTORIZATION FOR
EEG-BASED EMOTION RECOGNITION

The new trend in machine learning is to learn representations adapted to the sub-
sequent classification stage. Along the line of Chapter 2, our approach seeking for more

appropriate feature representations differs from most state-of-the-art ones in two ways :

— We focus on emotional states elicited by means of audiovisual stimuli, that is
short video excerpts, which is a rather complex task.
— For easier realworld applicability, our case study is based on a single-channel

setup. We do not consider spatial scalp information.

Classical power spectrum feature representations rely on neuropsychological prior know-
ledge concerning which frequency bands of interest to consider, exploiting the results
of several studies that have shown the importance of the brain activity in predefined
frequency bands, such as the  or y bands, in emotional and cognitive processes [30, 49].

On the contrary, automatic feature extraction would avoid the need for such priors.

Feature representation includes various approaches such as sparse coding [74] and
vector quantization [75]. In this work, we consider the particular dictionary learning tech-
nique that is Nonnegative Matrix Factorization (NMF), which has been used successfully
in EEG-based motor imagery classification tasks [15, 76]. The method is presented in
Section 3.1, whereas Section 3.2 presents the emotion classification results we obtained

with this method, both in intra and inter-subject fashions.

In addition, as EEG responses are strongly subject-dependent [9, 10], the specific
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frequency bands highlighted by previous research are not equally adapted to every
subject. Therefore, in the inter-subject classification framework, the feature extraction
method used should take into account the difference of subjects in the feature learning
stage and, if possible, focus on subject-independent features. In this regard, the Group
NMF principle is presented in Section 3.3, while the results we obtained using this NMF

variant are presented and discussed in Section 3.4.

3.1 Nonnegative Matrix Factorization

The recurrent issue of subject dependency can hopefully be tackled by a robust
automatic feature extraction framework, as it has been the case in motor imagery EEG-
based classification tasks. To this end, a common dictionary that represents the data can
be learned from the training set. Then, the data is projected on this dictionary to obtain
features for classification. Dictionary learning seeks a "proper representation of data
sets by means of reduced dimensionality subspaces" [11].

In this context, Lee and Seung’s Nonnegative Matrix Factorization [12] is a well
known dictionary learning technique decomposing the data into nonnegative dictionary

elements.

3.1.1 General principle

Activation
N matrix

ol
N samples patterns

> ———

V!

F features V - F W

Dictionary

Data matrix .
matrix

FIGURE 3.1 — Nonnegative Matrix Factorization
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Let F be a number of features, N a number of samples, and K a natural number. The
idea of NMF is to approximate a given nonnegative matrix V € RY*¥ by a product of
non-negative matrices V' = WH with W € Rf K and H € [Rilf *N Assuming V represents
observations (the activity of F' features across N time frames), W is a dictionary of K
atoms (or patterns, or latent variables) whose activation in time is indicated by the rows
of the activation matrix H, that is to say a matrix informing us, at each moment n, how
strongly every atom £ is activated. This NMF decomposition, represented in Figure 3.1,
can be seen as some sort of soft clustering.

Let us note that WH is generally an approximation of V. Indeed, the following
inequality holds for matrix ranks, where rank(M) is the maximal number of independent

lines or columns in M :
(3.1) rank(WH) < min (rank(W), rank(H ))

As W has K columns and H has K lines, rank(W) < K and rank(H) < K. Therefore, if|
as it is mostly the case since dimensionality reduction is sought, K is chosen so that

K <rank(V), the following inequality holds :
(3.2) rank(WH) < min (rank(W),rank(H)) < K < rank(V)

Thus, in such case, rank(WH) < rank(V'), which naturally implies that V # WH.

3.1.2 Divergence minimization

In order to choose a proper approximation WH for V, we must choose a "distance”
D(V|WH) that the couple (W,H) minimizes. However, the term "distance" can be mis-
leading, since the chosen functions D(.|.) are not necessarily symmetrical. Therefore,
they are more generally called divergences or cost functions. D is a double sum of scalar

divergences d(.|.) on all the matrices coefficients :

F N
(3.3) DVIWH)= Y Y d(Vs, | [WHI; )
f=1n=1

We consider the family of S-divergences introduced in [77] and [78], and extended in [79].

For any f§ € R, a scalar divergence dg of this family is defined as follows :
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1
xP+(B-1yP - BxyP™1) if Bef0,1)
5 xl)( f—1yP - pxyP1) p
(3.4) dp(x|y) = xlog(;)—x+y if p=1
Z logS)-1 if p=0
y y
Table 3.1 details the expressions of three widespread f-divergences. Following [80], and

for the sake of simplification, we abusively call "euclidean distance" the divergence ds.

TABLE 3.1 — Commonly used f-divergences

’ B ‘ Name ‘ Expression of d(x|y) ‘
0 Itakura-Saito (IS) % - log(f) -1
1 | Kullback-Leibler (KL) xlog(%) -x+y
2 Euclidean distance %(x - y)2

Given a matrix V € RE*V  a number of patterns K, and a f-divergence d 6> the nonne-

gative matrix factorization problem consists in the following minimization problem :

F N
(3.5) min D(VIWH) = ds(V] [(WH]1. )
WeRE*K HeRK*N fglr;l sVifn | fin

The optimal W and H minimize a divergence between V and WH, which is the sum of
scalar divergences between the coefficients of V and the coefficients of WH.

To determine such matrices W and H, there exists quite efficient multiplicative update
rules, introduced by Lee and Seung (1999) as "a good compromise between speed and
ease of implementation" [81]. W and H are first randomly initialized, and then updated
following multiplicative rules which depend on the chosen divergence. The first rules

introduced by Lee and Seung for the euclidean distance are the following :

(3.6) H—H

where MT denotes the transpose of matrix M, . represents a term by term multiplication,

A
and = denotes the matrix A.B~! (M% is a term by term power). These rules were later
extended by Févotte and Idier (2011) in the following fashion [80] :

WTIWH)F-2 v [(WH) P2 viHT
(3.7 H—H. WTWEY B and W —W. WH) PDET

Eventhough they are quite efficient, these algorithms have a noticeable drawback : if the

number of atoms K is too big, convergence issues occur more frequently (the optimization
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problem is non-convex). But anyway, we have no interest in choosing K too big, as we
will see in Subsection 3.1.3. As for the initial choice of W and H, good practice consists in
performing the multiplicative update algorithm with many random initializations, and

then selecting the result for which the divergence is the lowest.

NMF seeks to exhibit latent variables explaining an observed phenomenon as well
as their respective activations over time. Therefore, depending on said phenomenon,
one may wish to take other constraints into account in the divergence problem (3.3),
corresponding to different requirements on H and K. For instance, sparsity [82] or
smoothness [83] conditions can be imposed on the matrix of pattern activations.

One may also want to impose similarity conditions between specific sub-groups of
atoms of W, performing the so-called Group NMF [15]. More details on Group NMF are

given in Section 3.3.

3.1.3 Specific use to EEG

Motivated by several studies showing the importance of the brain activity in prede-
fined frequency bands, such as the 8 or y bands, in emotional and cognitive processes
[30, 49], NMF is applied to a time-frequency representation of the EEG data in the
EEG-based classification problem. In this case, V is the power spectrogram related to
the activity at one particular electrode, as shown in Figure 3.2. The PSD is averaged

over each emotion elicitation trial (which corresponds to one video stimulus).

N times
H
Activation
K atoms matrix
EEG signal . N times R K atoms
F frequencieg |4 F w |4
Power Spectral | ~ | | Dictionary Approximation of
Density matrix %4
V nonnegative W and H nonnegative

FIGURE 3.2 — Nonnegative Matrix Factorization of a Power Spectral Density Matrix
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As for the choice of divergence, we have chosen the Itakura-Saito (IS) one, which
has the desirable property of scale invariance [84]. In other words, in the minimization
of the divergence between V and WH, no particular advantage is given to high-value
coefficients of V at the expense of the low-value ones. This is particularly convenient as
the PSD matrix obtained from an EEG channel can present large value differences.

When it comes to the choice of the number of atoms K, it has to offer a good compro-
mise, as :

— a low value for K yields a poor approximation of V

— a high value for K both prevents NMF from performing dimensionality reduction

and leads to over-fitting.

As for the number of W and H initializations for the multiplicative update algorithm,

we found 10 to be a good compromise between efficiency and computational speed.

Figure 3.3 details the NMF-based feature extraction process. In the intra-session
classification scheme, V;,4;, corresponds to the PSD matrix of all trials but one, whereas
Viest corresponds to the PSD matrix of the remaining trial. In the inter-session classifica-
tion scheme, V.4, corresponds to the PSD matrix of all sessions but one, whereas Vi,

corresponds to the PSD matrix of the remaining session.

v Virai 74
Concatenation of PSD | = train test
matrices
Vtrain w
NMF
Ht j . .
ran fixed
Training feature matrix Viest | Heest
Test feature matrix

FIGURE 3.3 — Feature extraction with NMF

NMF is first used on a training set Vi.,i, of the data, to extract both a training

activation matrix Hy.,i, that is used as training feature matrix and a dictionary matrix
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W that is then used for the test set Vi.s;. Then, NMF with fixed dictionary W is performed

on Ve to extract the test feature matrix Vi.g;.

3.2 Results obtained with NMF and conclusions

In this section, we study the emotion classification performance of NMF on the HCI
MAHNOB and EMOEEG databases. We did not use the DEAP database in this part,
because of the different nature of stimuli, namely music videos. EMOEEG and HCI
MAHNOB are two multi-modal datasets where physiological responses, among which
EEG, to audiovisual stimuli were recorded.

We call session the recording of a given subject at a given time of the day. In the case
of EMOEEG, most subjects took one session whereas a few took two sessions. As for HCI
MAHNOB, each subject took exactly one session, which means intra-session (resp. inter-
session) classification is equivalent to intra-subject (resp. inter-subject) classification.
Therefore, we talk about intra/inter-session in the case of EMOEEG, and intra/inter-
subject in the case of HCI MAHNOB. In the rest of the document, we will mention
intra/inter-session in both cases : it will be also understood as intra/inter-session in the
HCI MAHNOB case.

TABLE 3.2 - HCI MAHNOB and EMOEEG characteristics

Database HCI | EMOEEG
Nb of sessions (used for classification) 24 8
Nb of video stimuli per session 20 50
Duration of a video stimulus ~25s 15s
Nb of electrodes 32 20

EMOEEG is composed of 11 sessions taken by 8 participants, for a total of 11 sessions.
Among these sessions, 8 were kept for emotion classification. There were technical issues
in the 3 others and/or annotation abnormalities. For instance, binary classification cannot
be performed on a session where only one label was reported. In HCI MAHNOB, the
recordings corresponding to 27 sessions (i.e. participants) are available. We used 24
of theses sessions for valence classification and 23 for arousal classification. Table 3.2
summarizes the EMOEEG and HCI MAHNOB database characteristics.

During preliminary tests, we have tested the mid-line electrodes Cz, Pz, and Fz, and

selected the central electrode Cz. We have also tested various values of the parameter K,
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as shown in Table 3.3. As for the frequencies of interest, we used a 4-45 Hz band-pass

filter on the signals, following [23].

TABLE 3.3 — Spectrogram and NMF parameters

Signal frequency 128 Hz
Considered frequencies (band-pass filter) 4 to 45 Hz
Tested electrodes [Cz Pz Fz]
NMF divergence Itakura Saito
Number of NMF initializations 10

3.2.1 Intra-session classification

In this scheme, in the case of EMOEEG, as each session is composed of 50 trials and
the PSD is averaged over each trial, the matrix V;,.4i, has 50 —1 = 49 columns. In the
case of HCI MAHNOB, it has 19 columns. The tested numbers of atoms K are 5,10,15,
and 20.

Tables 3.5 and 3.4 present the F1-scores obtained for intra-session emotion classi-
fication with NMF, respectively on HCI MAHNOB and EMOEEG. The baseline used
corresponds to the band power features named "HCI MAHNOB features" in Table 2.5
(Chapter 2). What the results first show is that NMF does not tackle the inter-subject
(resp. inter-session) variability that characterized the baseline results. Even if NMF can

turn out to be particularly efficient for some subjects, it performs poorly on others.

TABLE 3.4 — F1-scores for intra-session emotion classification on EMOEEG with NMF

Session Baseline (val) | Best NMF (val) | K (val) || Baseline (aro) | Best NMF (aro) | K (aro)

1 0.70 0.88 10 0.40 0.48 20

2 0.59 0.58 20 0.53 0.60 10

3 0.49 0.49 15 0.54 0.58 20

4 0.60 0.47 5 0.52 0.73 10

5 0.56 0.51 20 0.62 0.68 10

6 0.73 0.53 20 0.57 0.57 10

7 0.52 0.64 10 0.56 0.62 10

8 0.59 0.56 10 0.64 0.60 10
Mean F1 0.61 0.58 - 0.55 0.61 -

Overall, the performance of NMF is comparable to that of the band power baseline,
with slight differences between both databases and dimensions (valence/arousal). Even
if there is still way to improve such performance, the fact that NMF, which extracts
features coming only from one electrode, can have a performance similar to the extraction

of power band features from all electrodes, is encouraging.
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TABLE 3.5 — F1-scores for intra-session emotion classification on HCI MAHNOB with

NMF
Subject Baseline (val) | Best NMF (val) | K (val) || Baseline (aro) | Best NMF (aro) | K (aro)

1 0.75 0.75 15 0.47 0.57 15
2 0.39 0.55 15 0.54 0.49 10
3 0.75 0.40 20 0.64 0.55 15
4 0.84 0.49 10 0.60 0.57 15
5 0.49 0.58 15 0.47 0.40 15
6 0.73 0.48 15 0.76 0.69 15
7 0.80 0.52 15 0.41 0.49 15
8 0.63 0.64 15 1 0.48 15
9 0.50 0.60 15 0.64 0.60 15
10 0.41 0.73 15 0.87 0.64 10
11 0.73 0.90 20 0.57 0.50 15
12 0.69 0.65 10 - - -

13 0.58 0.73 10 0.58 0.52 15
14 0.63 0.52 15 0.60 0.49 10
15 0.23 0.58 15 0.67 0.63 10
16 0.65 0.60 10 0.69 0.70 10
17 0.49 0.67 20 0.58 0.64 15
18 0.54 0.65 10 0.44 0.46 10
19 0.74 0.55 10 0.40 0.35 20
20 0.60 0.52 15 0.49 0.83 10
21 0.54 0.49 10 0.40 0.55 5

22 0.52 0.49 15 0.45 0.64 10
23 0.74 0.69 10 0.60 0.52 10
24 0.23 0.39 10 0.40 0.50 5

Mean F1 0.59 0.59 - 0.58 0.56 -

However, as the best performing number of atoms K varies from one subject (resp.

session) to another, we can anticipate that the inter-subject (resp. session) NMF-based

classification task will be difficult.

3.2.2 Inter-session classification

In this scheme, emotion classification is made in a one-session-out fashion. Following

preliminary experiments, K is chosen to be equal to 100. This number is higher than in

the intra-session classification case, as PSD matrices are bigger, since each of them is

composed of the data of all sessions but one.

TABLE 3.6 — F'1-scores for inter-session emotion classification with NMF

Database Baseline (valence) | NMF (valence) || Baseline (arousal) | NMF (arousal)
EMOEEG 0.56 0.57 0.51 0.53
HCI MAHNOB 0.56 0.68 0.55 0.56
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Table 3.6 shows that inter-session classification results are slightly improved by
NMF in the case of arousal, whereas the improvement is more noticeable for valence
classification, at least in the case of HCI MAHNOB.

What is quite surprising is the fact NMF performs substantially better in the HCI
MAHNOB inter-session valence classification task than in the intra-session classification
one. Also, the arousal classification results are not deteriorated from intra to inter-session
classification. This can be explained by the following observation : in parallel with the
increased difficulty of inter-session classification tasks, more data is available in their
case. The NMF extraction that was performed session by session (each session being
composed of 20 trials) is now performed on all sessions but one (which equates to 20
x (24 - 1) = 460 trials. NMF-based classification has clearly benefited more from this
enlarged dataset than band power-based classification.

Quite naturally, this improvement is not as striking in the EMOEEG inter-session

emotion classification task. Indeed, much fewer sessions (8) are used in this case.

To conclude, there is still way to improvement, especially for the EMOEEG database
and the arousal dimension. Since NMF seems to benefit from the use of data across
different sessions/subjects, we naturally decide to take into account the differences of

sessions/subjects in the NMF feature learning stage.

3.3 Group NMF

To take such differences into consideration in the feature learning stage, we exploit
the Group NMF (GNMF) model, which allows us to account for similarity between groups
of atoms [15].

3.3.1 General method

Again, we wish to approximate a given nonnegative matrix V € le *N by a product of
non-negative matrices V' = WH with W € RF*K and H € RE*N | with W a dictionary of K
atoms whose activation in time is indicated by the rows of the activation matrix H.

A group of V is a subset of columns of V that were selected according to specific
conditions. Given a definition of groups of V, GNMF extracts atoms separately for each
group. However, it adds other constraints to the classic NMF constraints. More precisely,

it adds to the objective function (to be minimized) some terms controlling similarity
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between atoms across groups. In the original formulation proposed by Lee and Choi [15],
two constraints are added :
— a constraint of similarity between some atoms across groups. These atoms are
called group-independent.
— a constraint of dissimilarity between other atoms across groups. These atoms are
called group-dependent.
Let there be L groups and {V1,Vs,...,V1} the corresponding partition of V (each
Vi is a sub-matrix of V composed of the columns corresponding to group i). Likewise,
W1, Ws,...Wr, are the corresponding sub-dictionaries, and H1,Hos,...,Hy, the corresponding
lines of the activation matrix H. Each sub-dictionary W; (and each H;) is decomposed
into three parts :
— WiC (C for common) is composed of atoms that have to be similar to the other WJ.C
G#0)
— WiI (I for group-independent) is composed of atoms that have to be dissimilar to
the other Wf
— WL.R (R for residual) is composed of atoms upon which no specific constraints are
added (in addition to classic NMF constraints)

The objective function can then be expressed as follows :

L A L L
38)  Favwur = Y. DiVIWH)+ZY ¥ DWW -E S Y Dyow/ W)
=1 2l=1j;aél 2l:1j;£l

where D; and D2 are two matrix divergences, and A and u are positive parameters.

We rather use the following model, proposed by Serizel et al. in [16], and derived
from the first. It can tackle two types of dependencies [16], that is to say two kinds of
groups at the same time. In this new formulation, two kinds of groups are considered.
For instance, applying this model to a speaker identification task, Serizel et al. defined
the first kind of group as speakers, and the second kind as speaking sessions.

Let there be L groups of the first kind, and M groups of the second kind. {V; ;,};<1, m<m
is the corresponding partition of V. Each V; ,, is a sub-matrix of V composed of the co-
lumns corresponding to the couple (I,m). Likewise, {W} ,,};<1..m<m are the corresponding
sub-dictionaries, and {H; ,,};<1. m<m the corresponding lines of the activation matrix H.
Each sub-dictionary W; ,, (and each H; ;,) is decomposed into three parts :

— Wl(i)ll is composed of atoms that have to be similar to the other Wfr;z (mg #m)

— Wl?r?z is composed of atoms that have to be similar to the other ngm (U2 #1)
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— WZRm (R for residual) is composed of atoms upon which no specific constraints are
added (as in the first formulation)

With these notations, the objective function is now expressed as follows :

3.9 Fonur = ZZDl(VlmIWzmHzmH Z Z Y. Do(WL (W)

=1m=1 =1lmi=1mo#mq

AQ M L Cy Cz
+ oo 2 2 2, Da(W R W2 )
2 m=111=119#l1
It is noticeable that in (3.9), there is no specific need to introduce a dissimilarity
term as in (3.9). Indeed, the similarity wanted across one kind of groups is balanced
by the similarity wanted across the second kind of groups (each being controlled by the

parameters A1 and As).

V1,1 V1,2 V2,1 VZ,Z

I =1 [ =1 1 =2 1 =2

m=1 m=2 m=1 m=2
K, K, Kg K K, Kg K K, Kr K, K, Kr

Wl 1 § Wl,ZR WZ lR WZ 2 ¥
P Wy, Wy, Wy 1 Wy 13 W, 261 | Wy,
A

i t A 1 t t

FIGURE 3.4 — Learning a dictionary matrix with GNMF (two kinds of groups, two groups
of each kind)

Figure 3.4 shows how sub-dictionaries of W are extracted from each sub-matrix of
the matrix V. Parameters 11 and As constrain the colored parts of the same color to be
similar. Residual parts {W nJ1<2,m=<2 relax the similarity constraints and prevent them

from hampering the 0r1g1nal NMF approximation.
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3.3.2 Specific use to EEG

We use GNMF to perform EEG-based emotion classification tasks in a supervised
fashion. In other words, for valence classification, we consider two kinds of groups that
are the valence label v € {0, 1} (for low and high valence) and the session label s € {1,...24}
for HCI MAHNOB (resp. {1,...8} for EMOEEG). In the case of arousal classification, the
valence label v is replaced by the arousal label a € {0, 1}.

Let V, s be the sub-matrix of V;,,;, corresponding to valence label v and session s
(that is to say, the chunk of the signal corresponding to trials of session s that were given
the valence annotation v by the participant). Let W, ; be the sub-dictionary corresponding
to valence label v and session s. In such sub-dictionary :

anl is composed of Ky, atoms that must be similar to other W, ";‘12 (sg #58)
— WJ5® is composed of Kess atoms that must be similar to other W ¢ (ve # v)
Wl"es is composed of K. atoms upon which no additional constraints are added

Then, in an inter-session valence classification scheme on HCI MAHNOB, learning a

dictionary matrix W on the 23 first sessions (to use it for feature extraction on the 24h)

comes down to minimizing the following objective function :

1 23 1
(3.10) FGNMF = Z ZDI(Vv,s|Wv,sHv,s) Val Z Z Z D (ngll W:ilz)

v=0s=1 v=0s1=1s9#s1
23
+ Asess Z DZ(WgeSS|WseSS)

s=1 o8
The term A, controls the similarity between sub-dictionaries corresponding to the same
valence label, whereas Agess controls the similarity between sub-dictionaries correspon-
ding to the same session. We proceed similarly for arousal classification, and for the
EMOEEG database.

We keep using the Itakura Saito divergence for the original NMF divergence (D1).

Following the framework described in [16], similarities between valence and session-

related atoms are expressed in terms of Euclidean distance (Ds).

3.4 Results obtained with GNMF and conclusions

In this section, we consider inter-session emotion classification in a one-session-out
fashion. Using different values for the numbers of atoms and the similarity parameters
A, the values of these parameters which yielded the best scores are presented in Table

3.7. The left (resp. right) part of the table corresponds to the valence (resp. arousal)
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classification task. Kita 1s the sum of atoms on all extracted sub-dictionaries in the

training phase.

TABLE 3.7 — GNMF parameters

Dataset Kool Ksess Kres Kiotal Aval Asess Karo Ksess Kres Kiotal Aaro Asess
EMOEEG 1 1 1 42 0.01 0.01 1 1 1 42 0.01 0.1
HCI 1 1 1 138 107% 107° 2 2 2 276  107% 107
TABLE 3.8 — F'1-scores for inter-session emotion classification with GNMF
Database NMF (valence) | GNMF (valence) || NMF (arousal) | GNMF (arousal)
EMOEEG 0.57 0.57 0.53 0.51
HCI MAHNOB 0.68 0.66 0.56 0.55

As there are 2 valence (resp. arousal) labels and 24 HCI MAHNOB sessions, Kiota 1S
equal to 2 x (24 — 1) x (Kya1 + Kgess + Kres) = 46(Kya1 + Kgess + Kres) for the HCI MAHNOB
valence classification task. Because we use 8 EMOEEG sessions, Ky, is equal to
2 x T x (Kyal + Kgess + Kres) = 14(K a1 + Kgess + Kres) for the EMOEEG valence classification
task. The total numbers of atoms in the arousal classification tasks can be computed

similarly.

TABLE 3.9 — Fl-scores per class for arousal classification with GNMF

Database F1-score (low arousal) | F1-score (high arousal)
EMOEEG 0.45 0.57
HCI MAHNOB 0.52 0.59

Table 3.8 shows the F1-scores obtained using GNMF with the parameters in Table
3.7. The results are globally similar to the ones yielded by NMF, with a degradation
in the case of HCI MAHNOB. Obviously, this use of GNMF did not improve emotion
classification results. Among the possible reasons why such strategy did not turn out to
be efficient, two main ones drew our attention :

— There is a relatively high number of sub-dictionaries (due to the fact each one
corresponds to a couple (session,label)). Therefore, each dictionary is learned on a
very limited part of the data, which could hamper generalization. Such GNMF
could be more suitable with much more experimental repetitions per session.

— Aside from this question of data subdivision, the use of sessions as groups is not

necessarily the most judicious segmentation.
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As a matter of fact, we have noticed that, for the arousal dimension (which remains the
most challenging), classification was less efficient in the case of the low class, as made
clear in Table 3.9.

Why is classification more challenging in the case of low arousal? How does it
translate if we compare the EEG signals of different subjects watching the same stimuli ?

We deal with these issues in Chapter 4.
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CHAPITRE

EEG-BASED INTER-SUBJECT CORRELATION SCHEMES
IN A STIMULI-SHARED FRAMEWORK : INTERPLAY WITH
VALENCE AND AROUSAL

In our attempt to improve EEG-based emotion recognition by taking the subject-
dependent nature of emotional responses into consideration, we have noticed that the
complexity of the task varies according to the emotional level, and therefore according to
the stimulus. Therefore it is interesting to study the EEG reactions of different users to

the same stimuli, according to the emotional nature of each stimulus.

More than just studying the effects of valence/arousal level on annotation agreement
using metrics such as the Cohen’s kappa score [85, 86], we want to study this effect
in depth, at the EEG level. Hence the idea of addressing the inter-subject variation
issue from an interaction perspective, adopting a stimulus-centered study of synchrony
between EEG signals, in the same fashion as the robot-centered approach in robotics
[87]. In other words, we study the correlations between EEG signals of different subjects
who watched the same videos, even if they did not watch them simultaneously.

In addition to being driven by the wish to improve EEG-based emotion classification,
two other reasons motivate this approach :

— Shared experiences, such as the exposure to the same audiovisual content, play

an important part in the interactions between individuals.

— For complex tasks such as stimulus-based emotion elicitation, single-trial EEG

analysis is often a necessity. Therefore, analyzing the signals recorded from dif-
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ferent subjects and obtaining insights about their differences and commonalities
can make the results more generalizable.

To simultaneously analyze the EEG signals of different subjects, we use the Inter
Subject Correlation (ISC) framework, as described in previous studies [17-19]. Depen-
dencies between ISC of EEG recorded during audiovisual stimuli and subject conditions
such as age or sex have been established. For instance, decrease in ISC of EEG has been
shown as ages of the subjects increase [88]. Others have established links between ISC of
functional Magnetic Resonance Imaging (MRI) and emotion, showing that ISC increases
for specific regions of the brain when the stimulus elicits high arousal or low valence
[89]. Replicating such results with EEG signals would both prove consistency and allow
their usability with more lightweight devices.

In line with these previous works, and having acknowledged inter-subject and inter-
stimuli variations [9], we propose various schemes to study the effects of valence and
arousal variations on ISC of EEG recorded from different subjects watching the same
videos : on all the dataset, stimulus-wise, subject-pairwise, or both stimulus-wise and
subject-pairwise. Those schemes are detailed in Section 4.2.

In addition to the establishment of a link between ISC of EEG signals and va-
lence/arousal levels which is, to the best of our knowledge, completely novel, our main
contributions are :

— the proposal and comparison of various ISC computational schemes

— the assessment of the statistical validity of the observed ISC variation along

valence and arousal dimensions, using computationally intensive randomization
tests.

Section 4.1 is a reminder of the ISC framework. Section 4.2 presents and discusses
different ISC computational schemes, whereas Section 4.3 raises the issue of interpreta-
tion of ISC results. Sections 4.4 and 4.5 show the results obtained with different schemes
respectively on the HCI MAHNOB [13] and DEAP [23] databases. Finally, section 4.6
emphasizes some limitations of our work and explains observed differences between the

databases.

4.1 The ISC principle

To simplify the presentation, we introduce the principle of ISC by directly instantia-
ting it on our use-case : Ny}, subjects watch Nyiq video stimuli. All subjects watch the

same videos. The videos are not watched simultaneously. During each stimulus, EEG
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signals are recorded from the scalp of each subject with a N.;,-channel EEG headset.

Figure 4.1 illustrates the situation.

Nyiq videos

Q0 C

{ N _pq channels

< »
< >

Ngub subjects

FIGURE 4.1 — Stimulus-centered study of EEG signals

For each video, each subject annotates the emotion felt using the valence and arousal

dimensions. The annotation scale can be either discrete or continuous.

4.1.1 ISC score computation

Let X;, denote the EEG data matrix recorded from subject i while he/she was
watching video v. i ranges from 1 to Ng,, while v ranges from 1 to Nyjq. X;, is a
Necha x T, matrix, where T, is the number of EEG signal samples recorded for each
channel, which depends on the length of the video v.

Given the matrices R;; of size Ncha X Ncha Which each measure the cross-covariance
of all electrodes in subject i with all electrodes in subject j, the pooled within-subject

covariance R, and the pooled between-subject cross-covariance R are defined as follows :

(4.1) R;; = i(Xi,u(:,t)—Xi,u)(Xj,v(:,t)—Xj,v)';
t_ll Nsub
(4.2) R, = Nsubi:Z1Rii;
1 Nsup
(4.3) Ry = Nsub(Nsub—l)i:leZ#R”'
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where X' denotes the transpose of X and X denotes the vector corresponding to the
mean over time of X. In Section 4.1.2, a focus is made on a pairwise definition of R,, and
Ry, that is to say pooled over each pair of subjects.

Given the matrices R, and R, the eigenvectors e; of R,;le are computed and
ranked in decreasing order of associated eigenvalue. These eigenvectors are then used to

compute the correlation strengths C;, in the following fashion :

e’ Ryep,

(4.4) Cp=-—+"".
e kR wek

C}, accounts for the ratio of the projection strength of e;, on Ry to its projection strength

on R,,. Following previous studies that concluded that the choice of the three first

components is a good compromise [18, 19, 88], we define the ISC score as C1+ Cgy+ Csg.

4.1.2 Averaging R;; to compute ISC eigenvectors

Actually, what is usually done in the EEG-based ISC domain is the averaging of
matrices R;; across all stimuli, or across both all stimuli and all pairs of subjects (when
ISC are considered pairwise). This only concerns the eigenvectors computation step [88].
For instance, when the averaging is done across all stimuli, the averaged matrices R;;

are computed, for each pair of subjects (i, j), in the following manner :

1 Nvia
(4.5) Rij =+ - > Rij
vid p=1

Then, following (4.2) and (4.3), Ry

matrices Rj;. Eigenvectors ej, are then computed from R l;;lobalR b

gobar A0 Ry are computed from the averaged

global *

4.1.3 Shrinkage

As proposed in [90] for Linear Discriminant Analysis-based single-trial ERP classifi-
cation, Ry, may be shrunk to improve robustness to outliers. Let y be a regularization

parameter between 0 and 1 and 1 the mean eigenvalue of R,, clobal °

(46) R - (1 - ,y)nglobal + Yil

Wglobal

When estimating a big covariance matrix, large eigenvalues are estimated too large, and
small eigenvalues are estimated too small [90]. Shrinkage modifies extreme eigenvalues

towards the average eigenvalue. What is convenient is that shrinkage does not change
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the eigenvectors of such covariance matrices. In addition to dampening the effect of
outliers by this modification, shrinkage allows to compute the inverse of the shrunk

R when R;!  cannot be computed.

Wglobal Welobal

4.2 Different ISC computational schemes

In this chapter, we exploit our shared stimuli framework, to define different ISC
computational schemes following theses perspectives :
— whether to compare the EEG signals of the subjects pairwise or globally;
— how to combine the data on which to compute the eigenvectors of R ;,IR p ? : that
is whether to consider all the dataset, stimulus-wise, subject-pairwise, or both

stimulus-wise and subject-pairwise data batches.

4.2.1 Comparing subject signals globally vs pairwise

Computing ISC eigenvectors using the signal recordings of all N}, subjects globally
suits the case when we wish to compare each subject to the group. In this case, ISC

scores are computed for each subject i using the following expressions :

el (Ryp)ier,
4.7) Cri = ———ji
g e, (Ry)ies
1
(4.8) where (Rp); mZ(Rij +Rj);
J#i
1
(4.9) and (Ry); = mz(RiiJijj)-
J#i

In our attempt to establish a link between emotion and ISC scores, we could compare,
for each video, each subject to the rest, and look at the effect of elicited emotion on the
ISC score of each subject. However, doing so would compel us to consider annotation
agreement globally, whereas considering annotation agreement pairwise allows a finer
distinction between agreement and non-agreement. In the pairwise setting, we compute

the ISC score for each pair of subjects (i, j) in the following fashion :

e} (Rp); jer
(4.10) Crij = 22—,
ko el (Ry)i jer
4.11) where (Rb)ij = Rij+Rji;
(4.12) and (Rw)ij = Rii+RJ‘j.
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We chose to focus on this pairwise setting. In fact, in addition to allowing one to
consider agreement in a pairwise fashion, this multiplies the ISC data on which to study

valence and arousal effects.

4.2.2 Choosing the data on which to compute the eigenvectors

— Averaging the matrices R;; across all stimuli, and then computing the eigenvectors

-1
ey, from nglobale

generalizes such eigenvectors and makes them more robust to outliers. All the

global? that is using the whole dataset (all subjects, all stimuli),
available information is used to compute the covariance matrices, thus allowing a
better precision. In that fashion, we seek to maximize inter-subject correlation on
all the dataset. We refer to this scheme as V,j;. However, as EEG responses are
very subject-dependent and session-dependent, computing the eigenvectors e, on
more specific subsets can also be considered.

— Rather than being computed from R;! R, the eigenvectors ej, can be compu-

Wglobal
ted stimulus-wise, that that is separately for each stimulus, on all pairs of subjects,

global ?

therefore taking stimulus-dependency into account. The assumption is that we
wish to maximize ISC for each stimulus separately. Practically, it consists in not
averaging matrices R;; on all stimuli, but rather in processing each stimulus
separately.

This scheme, presented in Figure 4.2, is referred to as Vgiim.

One video

All pairs of subjects

FIGURE 4.2 — Data on which the eigenvectors e are computed in the case of Vgm
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— The eigenvectors e; can also be computed subject-pairwise, that is separately
for each pair of subjects, on all stimuli, as shown in Figure 4.3. Thus, subject-
dependency is taken into account. Mathematically, for subjects i and j, this means
that the sums in equations (2) and (3) are respectively replaced by (E;);; and
(Ry)ij (equations (10) and (11)). We refer to this scheme as Vp,r.

All videos

One pair of subjects

FIGURE 4.3 — Data on which the eigenvectors of R R,

Welobal are computed in the case
of Vpair

global

— Finally, the eigenvectors e, can be computed both stimulus-wise and subject-
pairwise. This takes both specificities into account, which seems well suited for
EEG analysis. However, in this way, covariance matrices are estimated on smaller
portions of the dataset, which automatically induces a drop in precision in the

estimation of those covariance matrices. We refer to this scheme as Vtim/pair-

4.3 Studying the effects of emotion on ISC

Nouwp(Ngup — 1
There are Npairs = sub(Nsub — 1) pairs of subjects. Regardless of the slicing scheme

(Section 4.2), Npairs associated ISC scores are obtained for each video, which makes a
total of Npairs X Nyig ISC scores. For each pair of subjects, one has to take a decision
regarding their agreement on the valence or the arousal annotations, respectively. Indeed,
to establish a link between the emotion experienced by two subjects and the ISC score
between their EEG signals, we limit the study to the cases where the subjects agree on
the annotation of the emotion.

Then, pairs of subjects for which there is agreement should be classified according to

the level of valence or arousal that was annotated.
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In the HCI MAHNOB database, valence and arousal annotations are discrete values
in {1,2,...,9}. We divide valence and arousal annotations in 3 classes : {1,2,3} are conside-
red low, {4,5,6} are considered average, and {7,8,9} are considered high, following the
usual division made in the literature, and more specifically in the paper introducing HCI
MAHNOB.

In the DEAP database, valence and arousal annotations are continuous values in
[1;9]. We again divide valence and arousal annotations in 3 classes : values in [1;3.5]
are considered low, values in 13.5;6.5[ are considered average, and values in [6.5;9] are

considered high.

4.3.1 Assessing pairwise agreement

Assessing the agreement of each pair of subjects is a difficult task that may first seem
arbitrary. Previous works often use the Cohen’s kappa score as an agreement indicator.
However, as this score is suited to multi-annotator cases, its use is less interesting when
only computed on a given pair of subjects, which is our case. In addition, we do not
wish to assess the agreement of each pair of subjects on all videos, but rather on each
video. Therefore, our focus is on the assessment of agreement both subject-pairwise and
stimulus-wise. We introduce ad hoc rules for such an assessment, taking into account

the non-linearity of agreement [91] :

— For a given stimulus, we assume that two annotations from the same category
(low, average, high, as previously defined) are in agreement with each other.
— We consider two annotations from different categories to be in agreement with

each other if and only if their difference is lower or equal to 1.

Such rules are chosen both to correspond to the usual categories in the literature
(low, average, high) and to allow for some agreement flexibility at the border between

two classes.

Figure 4.4 sums up those rules in the form of a decision matrix for the HCI MAHNOB
case. For instance, for a given video stimulus, if subject i annotates a valence of 2 and
subject j a valence of 4, they are considered in disagreement with each other. On the
contrary, if subject i gives an annotation of 7 and subject j an annotation of 9, their

annotations are considered to agree with each other.
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4.3.2 Assigning a subject pairwise annotation for a given

stimulus when there is agreement

When two subjects agree on the annotation of a given stimulus, we want to assign a
common label to this video, which is specific to this pair of subjects, in order to establish
a link between this label and the ISC score. Previous works use majority decisions to
assign a global annotation to each stimulus [92]. However, this is not relevant when only
considering two annotators, nor is it justified when the annotations are not binary.

Therefore, for a given stimulus and a given pair of subjects who agree on the annota-
tion of this stimulus, we decide to assign the mean of their two annotations as the pair

annotation of this stimulus.

4.3.3 Effects of valence and arousal on ISC

For each category of annotation (low, average, high), the mean ISC of all pairs of
subjects who agree on the annotation and whose pairwise mean annotation is in this
category is computed, to establish a link between the annotation category and the mean

ISC score of this category. To do so, the significance of the difference between the mean

w
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|

=]
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N

L
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-

FIGURE 4.4 — Agreement decision matrix (axis values represent annotations from both
subjects ; yellow stands for agreement)
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ISC scores of different categories has to be assessed. Usually, parametric tests such as
t-tests or ANOVA procedures are performed. Even if transformations—such as Fisher’s
transforms before a t-test—can be applied to make the data better fit the assumptions of

the tests, these assumptions are still unwarranted.

Other approaches consist in the comparison of the empirically obtained ISC scores to
simulated ISC scores on surrogates of the data. The inconvenient is that for statistical
validity to hold, the computation of ISC scores from scratch has to be repeated an

important number of times.

Rather, our approach is inspired from the randomization test proposed in [93]. Given
the ISC scores separately computed in the 3 valence (or arousal) categories, we shuffle

these ISC scores 220

times, reassigning each score randomly to one of the 3 categories
(each category’s cardinal being kept constant). To assess the significance of the difference
between the mean ISC scores obtained for two categories, we look at the number n of the
220 shuffles that gave a higher difference of means than the one experimentally obtained.

The significance level of the real ISC difference obtained between the two categories is
at most 220—-:_1[94]. This non-parametric test allows us to assess the significance of our
results without the need of complex unwarranted hypotheses on ISC score distributions.
With this significance test, we are able to assess whether the variations on ISC that we

observe as a function of assessed emotion are significant or not.

This procedure is performed to compare ISC scores from different valence or arousal
categories, thus trying to assess the dependencies between the valence (resp. arousal)
level and the ISC score.

Let us note that significance values not only depend on differences of means, but
also on the cardinal of each category, which explains how a slight difference can be more

significant than a larger one.

We tested our ISC computational schemes on the HCI MAHNOB [13] and DEAP [23]
datasets. The reason why EMOEEG is not part of this study is the fact that, contrary
to HCI MAHNOB and DEAP, all the recorded subjects did not watch the same videos,

which hampers the stimulus-centered approach.

Even if the nature of the stimuli in DEAP is quite different from those in HCI MAH-
NOB and EMOEEG, using this dataset will help us back the possible conclusions we can
get from the results on HCI MAHNOB, and/or discuss the differences.
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4.4 Results on HCI MAHNOB

As stated earlier, HCI MAHNOB is a multi-modal dataset where various physio-
logical signals were recorded from subjects who watched video stimuli. Among these
physiological recordings, we are interested in the EEG signals.

Each subject assessed the emotion elicited by each stimulus in terms of valence and
arousal. With our notations, Nyiq = 20 and Ny, = 24 (we only took into account the
subjects who watched all the videos). This gives a total of 5520 pairwise ISC scores,
among which 3685 agreements on valence, and 2968 agreements on arousal. Following
4.3.1, we restrict our computations on pairs of subjects where agreement is obtained.

The focus is made on two specific schemes, that are V3 and Vim/pair- The two
remaining schemes are discussed more briefly. Significance results correspond to the

upper bounds obtained with the method presented in 4.3.3.

4.4.1 Results with V;

Mean ISC value per valence category

—
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Mean ISC value
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Low Average High
Pairwise valence

FIGURE 4.5 — Mean ISC score per valence category (low, average, high) for Vi *,#% *%% .
significance at the respective levels of 5%, 1%, and 0.1% (HCI MAHNOB database)

Figures 4.5 and 4.6 show the means of pairwise ISC scores for each category of
annotation (low, average, and high), respectively for valence and arousal, along with
information on the significance of the difference between each category. The considered

significance levels are 5%, 1% and 0.1%.
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Mean ISC value per arousal category
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FIGURE 4.6 — Mean ISC score per arousal category (V,;, HCI MAHNOB)

As shown in Figure 4.5, ISC scores obtained in this fashion decrease when valence
increases. In other words, low valence elicitation induces better Inter Subject Correlation,
which echoes the findings of Nummenmaa et al. [89], the latter restricting such variation
to specific regions of the brain. However, only the difference between low valence ISC
scores and average valence ISC scores is significant at the 5% level.

As for the arousal dimension, Figure 4.6 reveals an increase of ISC scores when
arousal increases, which was also expected. In terms of significance, such raise is easier

to observe than the decrease of ISC along valence.

4.4.2 Results with Vim/pair

Contrary to V,jj, this scheme takes into account both subject pair dependency and
stimulus dependency. Let us see how the obtained results back the previous ones, despite
this dependency change.

Figure 4.7 shows the same tendency as Figure 4.5 in terms of ISC decrease when
valence increases. However, differences are better in term of significance. Figure 4.8 also
shows the same tendency as Figure 4.5, but the significance level between low arousal
ISC and average arousal ISC is decreased.

The monotonicity of ISC as a function of valence and a function of arousal is streng-
thened as it is observed for both schemes. In addition, one can notice that computing
ISC eigenvectors separately for each pair of subjects and each stimulus yields more

significant results for valence, whereas it degrades significance for arousal. This could
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Mean ISC value per valence category
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FIGURE 4.7 — Mean ISC score per valence category (Vtim/pair)

Mean ISC value per arousal category
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FIGURE 4.8 — Mean ISC score per arousal category (Vstim/pair, HCI MAHNOB)

be interpreted by a lesser subject and stimulus dependency of arousal. The following

subsection suggests a difference between valence and arousal annotations that could

explain the phenomenon.

4.4.3 Linking the ISC level to the annotation agreement

It is worth noticing that among the 5520 HCI MAHNOB data points on which ISC

can be computed (276 subject pairs x 20 video stimuli) :
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- 3685 correspond to a pairwise valence annotation agreement whereas the remaining
1835 correspond to a pairwise valence annotation disagreement (using the definitions
presented in Section 4.3);

- 2968 correspond to a pairwise arousal annotation agreement whereas the remaining

2552 correspond to a pairwise arousal annotation disagreement.

At first glance, one could conclude that agreement occurs more easily on valence than
on arousal. However, it is more interesting to go in depth with a comparison of ISC levels
according to valence (respectively arousal) agreement/disagreement. The results of such
a comparison are given in Table 4.1 (ISC scores were computed using the scheme Vi,
HCI MAHNOB).

TABLE 4.1 — Comparison of mean ISC scores obtained in case of annotation agree-
ment/disagreement

Dimension | Agreement | Disagreement | Significance
Valence 0.0104 0.0106 0.46
Arousal 0.0112 0.0097 0.052

Table 4.1 shows that the mean ISC score is higher on the data subset where agreement
on arousal occurs than on the one where there is disagreement on arousal annotation.
Such a difference is almost significant at the 5 % level. As for valence annotation, there

is almost no ISC difference between agreement and disagreement cases.

This could mean that even if its occurs less frequently, agreement on arousal is more
consistent than agreement on valence. Further, it could explain why the ISC monoto-
nicity as a function of valence is more significant when ISC eigenvectors are computed

separately for each pair of subject and each stimulus, rather than on the whole dataset.

4.5 Results on DEAP

DEAP is another multi-modal dataset where various physiological signals, among
which EEG signals, were recorded from subjects. The main difference with HCI MAHNOB
is that the emotions were elicited by the means of music video stimuli. With our notations,
Nyig =40 and Ny}, = 32. This gives a total of 19840 pairwise ISC scores, among which

11126 agreements on valence, and 9184 agreements on arousal.
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4.5.1 Results with V,;
Figure 4.9 shows that contrary to HCI MAHNOB, mean ISC scores increase when

valence increases, even if the significance is only at the level of 5%. Reasons why such a

difference is observed are discussed in 4.6.3.
As for the arousal dimension, Figure 4.6 reveals a variation similar to the one

obtained for HCI MAHNOB, that is to say an increase of ISC scores when arousal

increases, only with a less satisfying significance.
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4.5.2 Results with Vim/pair

When ISC eigenvectors are computed subject-pairwise and stimulus-wise, a different
pattern of variations is observed for both valence (Figure 4.11) and arousal (Figure 4.12).
Indeed, there is a significant ISC decrease for extreme values of valence or arousal. The
mean ISC obtained for average valence (resp. arousal) is higher.

However, we can notice something quite consistent with the results concerning HCI
MAHNORB, that is to say a significant decrease in ISC between low and high valence,

and a significant increase in ISC between low and high arousal.
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FIGURE 4.11 — Mean ISC score per valence category ( Vtim/pair, DEAP)

4.6 Further discussion

4.6.1 Agreement is arbitrarily defined

The assessment of subject-pairwise agreement introduced in Section 4.3 follows
arbitrary rules, even though they were carefully chosen for consistency. Performing a
calibration phase before presenting the stimuli to each participant could help homoge-
nizing the meaning of annotation values among subjects, and therefore mitigate this

arbitrary aspect.
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FIGURE 4.12 — Mean ISC score per arousal category ( Vitim/pair, DEAP)

4,6.2 1ISC score variation from one scheme to another

Comparing ISC score levels obtained from the different schemes, one can clearly
notice that the more specific the slicing scheme (Section 4.2), the higher the ISC scores.
This is quite natural as the correlation is maximized on smaller, more specific subsets of
the data.

4.6.3 Differences of ISC score variations along valence between
HCI MAHNOB and DEAP

In the case of HCI MAHNOB, the ISC score clearly decreases along the valence
dimension (Figures 4.5 and 4.7). However, results are more mitigated in the case of
DEAP (Figures 4.9 and 4.11). This can be explained by both the different nature of the
stimuli used and the annotation procedure. Annotation is continuous in DEAP, whereas
it is discrete in HCI MAHNOB.

But some more striking comparison between HCI MAHNOB and DEAP annotation
results could explain this difference better. Table 4.2 shows that the mean absolute
valence annotation difference is significantly higher for DEAP than for HCI MAHNOB.
Significance is computed using the method described in 4.3.3. One could wonder if the
difference observed is simply due to the annotation nature, which is discrete in the case
of HCI MAHNOB and continuous for DEAP. However, the same comparison for arousal

yields a smaller difference between the two databases, even if the difference is still
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significant. Therefore, Table 4.2 shows a difference between the databases that could

explain why the ISC score clearly decreases along the valence dimension in the case of
HCI MAHNOB, whereas it is more mitigated in the case of DEAP.

TABLE 4.2 — Mean absolute value of pairwise valence annotation difference

Dimension Valence | Arousal
HCI MAHNOB 1.49 2.02
DEAP 1.69 2.10
HCI/DEAP difference significance | <10™° | 2.5x107%

After that comparison made on the whole databases, it is interesting to compare the
same quantities between HCI MAHNOB and DEAP with a restriction to the agreement
cases, using the definitions of agreement exposed in 4.3.1. This is relevant as the ISC
scores we presented were computed on agreeing pairs of subjects. Such a comparison is
made in Table 4.3. Again, this shows that overall, the agreement level is significantly
better in the case of HCI MAHNOB than DEAP, with a more significant difference for the
valence dimension. This would support the hypothesis that the different valence agree-
ment levels between the two databases explain the difference between ISC variations

along valence.

TABLE 4.3 — Mean absolute of pairwise valence annotation difference among cases of
agreement

Dimension Valence | Arousal
HCI MAHNOB 0.77 0.84
DEAP 0.80 0.86
HCI/DEAP difference significance | 0.0057 0.05

4.6.4 Effects of shrinkage

As exposed in 4.1.3, R

means of a regularization parameter y between 0 and 1. This regularization parameter

Welobal TAY be shrunk to improve robustness to outliers, by the

has a limited effect on significance but practically none on the variation itself.

4.7 Conclusions

We have presented and described various schemes to study the effects of valence

and arousal on EEG Inter Subject Correlation between participants who watched the
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same audiovisual stimuli. We have introduced a definition of agreement so as to limit
our study on agreeing subject pairs. Finally, we have presented the obtained results for
two schemes on the HCI MAHNOB and DEAP affective datasets [13, 23].

Our results show a consistent increase in ISC scores when arousal increases. Along
the valence dimension, a consistent decrease in ISC was obtained in the case of HCI
MAHNOB, whereas this conclusion is more mitigated for DEAP. The different nature
of the stimuli used in the DEAP dataset (music videos) can explain such drawbacks, as
well as the difference between discrete/continuous annotations and, more importantly,
the finer agreement level in HCI MAHNOB.

Both the decrease in ISC scores when valence increases and the increase in ISC
scores when arousal increases are consistent with previous results on functional MRI in
the literature [89].

A great deal of attention was devoted to the significance of such variations, using
computationally intensive randomization tests. Of particular note is the fact these re-
sults are backed by the different schemes. Even if each scheme focuses on a different
dependency (stimuli-wise, subject pairwise...), there is a clear trend when it comes to the

variation of ISC score as a function of valence or arousal.

The conclusions of our ISC study help us understand the reasons why the emotion
classification results obtained in Chapter 3 were emotion-dependent. Even at the EEG
level, we can observe significant variations of inter-subject correlation according to the
level of valence/arousal. This gives us a new perspective when it comes to how GNMF

should be performed, as we will see in Chapter 5.
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CHAPITRE

TOWARDS AN ISC-ORIENTED GROUP NONNEGATIVE
MATRIX FACTORIZATION FOR EEG-BASED EMOTION
RECOGNITION

The conclusions of Chapter 4 are that EEG inter-subject correlation strongly depends
on the levels of arousal and valence. Having acknowledged this link, we seek to adapt
the GNMF model described in Chapter 3 for improved EEG-based emotion classification.
Instead of using GNMF with sessions (resp. subjects) as groups, we choose to focus on

emotion labels.

Multi-task feature learning has been used in a subject-to-subject transfer fashion,
where priors for feature dictionaries are shared across different subjects. Kang et al. [95]
used multi-task feature learning in such a way, improving binary classification accuracy
obtained from CSP filters on a motor imagery task. They obtained an average accuracy
of 0.54 across all subjects, whereas the average accuracy reached almost 0.57 in the

multi-task feature learning case.

Though the classification of valence and arousal levels can be performed indepen-
dently one from another, it has been shown that multi-task learning, that is, in our case,
learning to classify valence and arousal labels jointly, can improve emotion classification
performance [96, 97]. The interdependence between valence and arousal [98] can explain
such an improvement. We explicitly take it into account in the feature extraction stage,
rather than waiting for the classifier training stage. The novelty of our work mainly lies

in the exploitation of valence labels to control arousal-related feature learning (and vice
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versa) using Group Nonnegative Matrix Factorization (GNMF), motivated by previous

works on valence/arousal interdependencies [99].

5.1 Multi-task GNMF-based feature learning

Following the notations of Section 3.3, let V, , be the sub-matrix of V;4;, corres-
ponding to valence label v and arousal label a (that is to say, the chunk of the data
corresponding to the valence annotation v and the arousal annotation a). Let W, , be
the sub-dictionary corresponding to valence label v and arousal label a. In such sub-
dictionary :

— Wy al js composed of K, atoms that must be similar to the other Wy ‘;12 (v #v)

— W7 is composed of Kess atoms that must be similar to other W32 (ve # v)

— W, is composed of Kyes atoms upon which no additional constraints are added

Matrix V
VO,O VO,l Vl,O V1,1
Valence =0 Valence =0 Valence = 1 Valence = 1
Arousal =0 Arousal = 1 Arousal =0 Arousal = 1
Wool  Woa Wi Wi

O|U Ol o [ o N

Obtained dictionary W

O . Valence-related atoms (resp. labels 0 and 1)
D . Arousal-related atoms (resp. labels 0 and 1) WO,O WO,l Wl,(} W1,1

FIGURE 5.1 — Learning a dictionary matrix W with GNMF (valence/arousal groups)

Then, learning a dictionary matrix W on all sessions but one (to use it for feature

extraction on the last) comes down to minimizing the following objective function, where
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D; and Dy are respectively the Itakura Saito and euclidean divergences :

(5.1) i iODl(VU,qu,aHv,a)mval iOD2<W;%1|anl)
v=0a= o=
1o . DROEZIED

The term Ayalence controls the similarity between sub-dictionaries corresponding to
the same valence labels, whereas A,,ousal controls the similarity between sub-dictionaries
corresponding to the same arousal labels. In Figure 5.1, valence-dependent atoms are
constrained to show some similarity between Wy o and Wy 1 on the one hand, and between
W10 and W11 on the other hand (same valence, different arousals). Likewise, another
constraint lies between arousal-dependent atoms. Ayalence > Aarousal for the valence clas-
sification task, and vice versa.

In what follows, we call val/aro-GINMF this new version of GNMF, whereas the GNMF
used in Chapter 3 is called session-GNMF.

5.2 Results obtained with valence/arousal-based
GNMF

In this section, we keep considering inter-session emotion classification in a one-
session-out fashion. Using different values for the numbers of atoms and the similarity
parameters A, the values of these parameters which yielded the best scores are presented
in Table 5.1. The left (resp. right) part of the table corresponds to the valence (resp.
arousal) classification task. Kiqtq1 is the sum of atoms on all extracted sub-dictionaries
in the training phase. As there are 2 valence and 2 arousal labels, K, is equal to
4(Kya) + Kgess + Kres)-

TABLE 5.1 — val/aro-GNMF parameters

Dataset K val K aro K res K total Aval Aaro K aro K val K res K total Aaro Aval
EMOEEG || 15 5 5 100 05 0.05 12 6 6 96 05 0.05
HCI 15 5 5 100 107% 107° 1 1 3 20 0.01 1073

While the feature learning stage was multi-tasked with GNMF, single-task classifiers
were used, that is classifiers for valence and arousal were learned separately. Indeed,
we could have used the same parameters Ay, and A4, for both valence and arousal

classification tasks, which would have implied learning valence and arousal classifiers
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simultaneously. However, quite naturally, efficient valence classification requires Ay to
be significantly higher than A,,,, and vice versa, as shown in Table 5.1.

Tables 5.2 and 5.3 present the F1 scores obtained with the emotion classification
based on val/aro-GNMF feature extraction, respectively on HCI MAHNOB and EMOEEG,

along with the comparison to the previously obtained scores.

TABLE 5.2 — F'1-scores for inter-session emotion classification with GNMF (on EMOEEG)

Dimension || Band power baseline | NMF | Session-GNMF | val/aro-GNMF
Valence 0.56 0.57 0.57 0.59
Arousal 0.51 0.53 0.51 0.55

TABLE 5.3 — Fl-scores for inter-session emotion classification with GNMF (on HCI

MAHNOB)
Dimension || Band power baseline | NMF | Session-GNMF | val/aro-GNMF
Valence 0.56 0.68 0.66 0.69
Arousal 0.55 0.56 0.53 0.59

Overall, val/aro-GNMF performs better than the band power baseline, NMF, and
session-GNMF. Therefore, using valence and arousal labels as groups instead of sessions
seems more judicious. It is noticeable that the increase of performance from session-
GNMTF to val/aro-GINMF is more substantial in the case of arousal classification. That
can be explained by our findings in Chapter 4, that are the increase of the ISC score
along the arousal dimension is more significant than the decrease of this score along the
valence dimension.

An interesting comparison point between the two databases is the fact that the
band power baseline had comparable performance on EMOEEG and HCI, whereas
val/aro-GNMF performed much better for HCI. The reason why EMOEEG did not benefit
from val/aro-GNMF as HCI could be that the arousal annotations are less reliable in
EMOEEG, as suggested by the weaker baseline arousal classification. Such annotations
are used not only for GNMF-based arousal classification, but also for GNMF-based
valence classification, which would explain why the valence classification score stagnates
in the case of EMOEEG.

5.3 Taking ISC into account explicitly

As seen in the previous section, val/aro-GNMF feature extraction improves emotion

classification. The idea of such a scheme came from the observation of sensitivity of ISC
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scores to valence and arousal levels. Therefore, one could wonder why the ISC scores are
not used directly in the GNMF process. This concerns the HCI MAHNOB database only,

on which ISC scores were computed.

A light use of ISC scores would, for instance, consist in weighting each observation
in the classification step according to the mean of the corresponding ISC scores : that
is, for a given trial of a given subject, the mean of the ISC scores with other subjects on
the same stimulus. We have not observed any noticeable effect of this weighting on the

classification performance, neither for valence nor for arousal.

However, ISC information can be integrated at an earlier stage. To this effect, we
have considered a new GNMF scheme where the ISC scores are taken into consideration

in the definition of groups. Namely, we consider two ISC-based labels that are :

— 0 : the mean of the ISC scores where the given trial and subject are involved is
lower than the mean of all ISC scores
— 1 : the mean of the ISC scores where the given trial and subject are involved is

higher than the mean of all ISC scores

We call this new feature extraction scheme ISC-GNMEF. For valence classification, these
ISC-based labels replace arousal labels, and vice versa. This means that the parameters
K.y, (resp. Kya1) and A,y (resp. Ayal) are replaced by Kigc and Aigc. The values of these
parameters which yielded the best scores are presented in Table 5.4. The left (resp. right)

part of the table corresponds to the valence (resp. arousal) classification task.

TABLE 5.4 — ISC-GNMF parameters

Dataset || Kyai Kisc Kres Kiotal Aval  Msc || Karo Kisc Kres Kiotal Aaro  Alsc
HCI 15 5 5 100 107% 107° 0 20 5 100 0 1

What is quite noticeable about Table 5.4 is the fact the best parameters in the valence
classification case are the same as the ones with val/aro-GNMF (Table 5.1). As for arousal
classification, the best performing combination involves using no arousal-dependent
patterns (K., = 0). That may be an indicator of the fact the arousal information is
redundant with the ISC information, which would explain why the ISC information is

sufficient.

Such a difference between the two dimensions translates into a better improvement
of classification performance for arousal, as shown in Table 5.5, even if the use of ISC in

the feature learning stage yields better classification results on both dimensions.
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TABLE 5.5 — F1-scores for inter-session emotion classification (HCI MAHNOB)

Dimension || NMF | Session-GNMF | val/aro-GNMF | ISC-GNMF
Valence 0.68 0.66 0.69 0.71
Arousal 0.56 0.53 0.59 0.63

5.4 Conclusion

The use of GNMF for multi-task feature extraction where atom groups are deter-
mined by both valence and arousal labels (val/aro-GNMF) rather than by sessions
(session-GNMF) improves classification performance. The tests run on the HCI MAH-
NOB database further suggest that the introduction of ISC information in the feature
extraction step (ISC-GNMF) is beneficial, especially for arousal classification.

Yet, such improvements are still modest. First, one could be tempted to use an all-
inclusive version of GNMF, where groups would be defined by session, valence label,
arousal label and ISC information altogether. However, the more groups there are, the
smaller the data corresponding to each group becomes, thus harming the quality of
feature learning. This also explains why we chose binary ISC labels. The more the labels,
the smaller the groups.

Consequently, one has to make compromises as for the information to be used in the
group slicing. We have also noticed that the ISC-GNMF-based arousal classification task
was performed better using only ISC information in the constraint added to the original
NMF. This supports the idea that more group information does not necessarily induce
better classification performance.

One flaw of our scheme is the quite arbitrary thresholds defining low/high valence,
low/high arousal and low/high ISC. A more sophisticated way of combining NMF with
ISC, which will be the subject of future work, is to abandon the notion of hard clustering
in which GNMF consists, and rather take the continuous ISC score information into

account directly in the NMF objective function.
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6.1 Conclusion and discussion

EEG-based emotion recognition is a complex task when emotions are elicited by
means of audiovisual content. Performing such a task is necessary if we want to be close to
real-world stimulation. The complexity is increased in the single EEG channel case, which
opens the way to easier lightweight setups, but for which less information is available.
Our methods have brought a performance improvement compared to the baselines,
which indicates the use of judicious information at the GNMF feature extraction level is
promising.

First, we have used the NMF feature extraction method to perform intra and inter-
subject EEG-based emotion classification, extracting dictionaries of frequency atoms from
EEG spectrograms. The activation information of these atoms are then used as features
for emotion classification. Contrary to classic feature representations commonly used
in EEG-based emotion recognition, NMF does not rely on expert prior knowledge, and
rather seeks to learn a feature representation adapted to the classification stage. Using
NMEF, we have obtained noticeable classification score improvements, in comparison to
the frequency band power baseline features.

However, we noticed the high inter-subject variability of intra-subject classification
results and the improvable inter-subject classification results. In an attempt to tackle
this problem, we used Group NMF to extract NMF atoms session (resp. subject)-wise.

Given predefined sub-parts of the data, this method extracts dictionaries separately
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and constrains specific similarities. We used GNMF to extract NMF atoms subject-
wise, atoms among which some were constrained to be similar across subjects. Even if
the results of such an attempt were still improvable, they showed a discrimination in
performance according to the emotional level, especially between low and high arousal,
as already established by previous results in the literature.

This motivated an analysis of the valence/arousal level effects on the correlation
between EEG responses of subjects watching the same stimuli. Analyzing the effects
of valence/arousal on EEG Inter Subject Correlation (ISC), we found significant links
between the valence/arousal levels and ISC. A particular interest was given to the
statistical validity of the observed ISC variation along valence and arousal dimensions,
using computationally intensive randomization tests.

As a consequence of these findings, we modified the Group NMF model we used.
Rather than extracting dictionaries of atoms subject-wise as made earlier, we used
Group Nonnegative Matrix Factorization in a multi-task fashion, where both valence
and arousal labels are exploited to control valence-related and arousal-related feature
learning. Some additional improvement was observed for emotion classification results.
We also initiated the use of ISC information at the GNMF feature extraction level, which
further improved the classification results on the HCI MAHNOB database.

6.2 Outlook

The conclusions of our thesis put ISC at the heart of EEG-based emotion recognition.
Pursuing the idea of using ISC scores at the feature extraction level, future work seeks
to take the continuous ISC score information into account directly in the NMF objective
function, rather than setting arbitrary ISC score thresholds to define the GNMF groups.

Apart from the specific use of ISC information, the exploitation of the GNMF principle
at its full potential is limited by the size of the emotional datasets. The more sessions
and the more trials per sessions there will be, the more effective GNMF-based methods
will turn, as they will include more information in the definition of groups.

In the meantime, the information used at the feature extraction level has to be chosen
carefully. Contrary to our initial beliefs about inter-session classification, we have found
the separation of dictionaries of atoms onto different levels of valence/arousal and ISC to
be more useful than the separation onto sessions. The separation into valence/arousal/ISC
classes we performed is binary. While this allows for bigger sub-dictionaries (that are

extracted on bigger parts of the data), it limits the precision of the considered information.
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Finally, an important issue at stake in EEG-based classification of audio-visually
elicited emotion is the importance of the annotation process, than can have a decisive
effect on the results. For instance, in addition to valence/arousal annotations, the partici-
pants to the HCI MAHNOB database described the emotions elicited by the videos using
emotional words. As for the EMOEEG database, it contains dynamical auto-annotations
of each video stimulus by each participant, therefore giving an insight of the variation
in the felt emotion. Though they have not been handled in great detail in this thesis,
where the classic valence/arousal framework was considered, the effects of the annotation
strategy on the performance of EEG-based GNMF will be the subject of future work.
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