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Abstract
In brain tumor resection surgery, a preoperative magnetic resonance (MR) image is used

for surgical planning and guidance. Brain tissue displacement during surgery, known as
brain shift, severely limits image guidance with the preoperative MR (pMR), which no longer
reflects the location of tissue and anatomical structures accurately. This can be mitigated
by registering the pMR with intraoperative data, ie. updating the pMR so that it matches
images acquired during surgery. Ultrasound (US) imaging has several benefits compared to
other intraoperative imaging modalities such as MR. In particular, it has fast acquisition
times and do not require moving the patients, which makes the surgery longer. Thus, there
is growing interest in using US imaging in brain surgery, despite the low image quality.

While traditional registration methods have been proposed, deep learning (DL) are being
actively researched as they have proven successful and achieve state-of-the-art results in
many domains such as medical image segmentation, and more recently, image registration.
DL models are complex models with parameters learned with data, with many applications.
However, there are few studies proposing DL models for segmentation of intraoperative US
(iUS) images of the brain, or for registration of the pMR image with iUS images.

We start with the segmentation of iUS images of the brain. This is can be used for
several purposes, such as guiding a registration model, which is the main objective of this
thesis. We first focus on the segmentation of the resection cavity, which is essential to model
the tissue displacement due to tissue removal. Next, we address tumor tissue segmentation,
which is more challenging but can be used not only for registration but also to determine if
tissue resection is complete. The results show that DL models can successfully segment the
resection cavity and tumor tissue in US images. Then, we train a multi-class segmentation
model, that segments several structures at the same time. The results suggest that multi-class
models can be more accurate than single-class models, and leverage inter-class relationships.

We then investigate DL models for registration of pMR with iUS images. Image regis-
tration is inherently difficult, and especially with different modalities such as MR and US.
In addition, there is a high variability across cases, as different structures are visible in the
limited US field of view, depending on tumor location. It is also difficult to estimate ground
truth displacements for training DL models. While we were not able to train a registration
model with the available data, we discuss our findings and possible areas of improvement.

DL models can successfully segment iUS images. We currently lack data to train regis-
tration models but expect that larger datasets will enable the training of such models.

Keywords: Brain-shift, image-guided neurosurgery, image segmentation, image registra-
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tion, deep learning.
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Résumé
Dans le cadre des chirurgies d’ablation de tumeurs cérébrales, un examen préopératoire

par imagerie par résonance magnétique (IRM) est réalisé pour la planification chirurgicale
et le guidage lors de la chirurgie. Le déplacement des tissus cérébraux pendant la chirurgie,
appelé communément brain shift, limite considérablement le guidage par image utilisant
l’IRM préopératoire (pMR), celui-ci ne représentant plus la position courante des tissus.
Ces limitations peuvent être compensées en recalant le pMR avec des images peropératoires.
L’échographie présente plusieurs avantages à d’autres modalités comme l’IRM, notamment
sa rapidité d’acquisition, et la non-nécessité de déplacer les patients. L’échographie a donc
un réel intérêt en neurochirurgie, malgré la moindre qualité de ces images.

Bien que des méthodes traditionnelles de recalage aient été proposées, l’apprentissage
profond (AP) fait l’objet de nombreux travaux de recherche car il obtient les meilleurs
résultats dans plusieurs domaines comme le traitement d’images médicales, notamment la
segmentation et plus récemment, le recalage d’image. Les modèles d’AP sont des modèles
complexes dont les paramètres sont appris à partir de données. Cependant, il y a peu d’études
sur leur applicabilité à la segmentation d’images échographiques, ou au recalage avec un
pMR.

L’étude porte tout d’abord sur la segmentation des images échographiques peropératoires
(iUS) du cerveau. Ces segmentations peuvent notamment servir au recalage d’image, l’objec-
tif principal de cette thèse. Nos travaux portent premièrement sur la segmentation des cavités
de la résection, permettant de modéliser précisément le décalage des tissus lié à l’ablation
de tissus. Nous proposons ensuite un modèle pour la segmentation des tumeurs, problème
plus difficile mais utile non seulement pour le recalage d’image mais aussi pour déterminer si
la résection est complète. Les résultats obtenus montrent que l’AP peut être utilisé pour la
segmentation d’iUS. Nous avons ensuite entraîné un modèle multi-classes, segmentant direc-
tement plusieurs structures. Les résultats suggèrent que ces modèles multi-classes peuvent
produire de meilleures segmentations, tenant compte des dépendances entre les classes.

Puis nous étudions les modèles de recalage des pMRs avec des iUSs. Ce problème est
considérablement plus compliqué que la segmentation d’image, en particulier entre différentes
modalités comme l’IRM et l’échographie. Il y a de plus une grande variabilité entre patients,
les structures visibles dans le champ de vue limité des iUSs dépendant de la position de
la tumeur. Il est aussi difficile de déterminer les vrais déplacements de tissus avec lesquels
entraîner des modèles. Bien que n’étant pas parvenus à entraîner un modèle avec les données
disponibles, nous analysons les résultats et identifions de potentielles pistes d’améliorations.

Les modèles d’AP peuvent segmenter les iUS. Les données sont actuellement insuffisantes
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pour des modèles de recalage, que plus de données permettraient d’entraîner.

Mots-clés : Brain-shift, neurochirurgie guidée par image, segmentation d’image, recalage
d’image, apprentissage profond.
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Résumé détaillé

Introduction

Lors des chirurgies d’ablation de tumeurs cérébrales, un système de navigation permet le
guidage en utilisant l’IRM préopératoire. Cela permet notamment d’afficher la position d’ou-
tils repérés à l’aide de marqueurs sur l’IRM. Cependant, l’IRM préopératoire ne représente
pas la position courante des tissus cérébraux, à cause du déplacement de ces tissus pendant
la chirurgie. Une solution pour compenser ce problème est de recaler l’IRM préopératoire
avec des images peropératoires. Cela consiste à mettre à jour l’IRM préopératoire pour que
celui-ci corresponde à des images acquises lors de la chirurgie.

L’échographie est une modalité d’imagerie qui possède plusieurs avantages sur d’autres
modalités comme l’IRM. En particulier, l’acquisition d’images échographiques est rapide et
ne nécessite pas de déplacer les patients, ce qui rallongerait l’opération chirurgicale. C’est
pourquoi l’échographie est parfois utilisée en neurochirurgie et fait l’objet d’études, malgré
la moindre qualité de ces images.

Les modèles d’apprentissage profond sont des modèles complexes entraînés avec des don-
nées, qui peuvent être utilisés notamment pour le traitement d’image. Bien que ces modèles
soient l’objet de nombreux travaux de recherche, et en particulier pour le traitement d’images
médicales, il n’existe peu d’études sur l’applicabilité de ces méthodes aux images échogra-
phiques, pour leur segmentation ou recalage avec un pMR.

Les travaux présentés dans cette thèse portent donc sur la segmentation d’images écho-
graphiques du cerveau, et leur recalage avec l’IRM préopératoire, avec des modèles d’ap-
prentissage profond. Nous présentons d’abord des modèles de segmentations, pour la cavité
de la résection et pour les tumeurs, puis des modèles multi-classes, et enfin des modèles de
recalage.

Organisation du manuscrit

Le chapitre 1 présente le contexte clinique, les motivations et les objectifs de ces travaux
de thèse. Le chapitre commence par une présentation de l’anatomie du cerveau et des tumeurs
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cérébrales. Il explique notamment comment celles-ci sont diagnostiquées et traitées. Puis, la
chirurgie d’ablation des tumeurs cérébrales est détaillée en particulier, et les systèmes de
guidage par image sont présentés. Enfin, les causes et conséquences des déplacements des
tissus sont expliqués, ce qui permet d’exposer la problématique et les objectifs de cette thèse.

Le chapitre 2 propose une revue de la littérature et pose les bases techniques des mé-
thodes utilisées dans cette thèse. Le chapitre commence par une revue des méthodes de
compensation du brain shift, et plus particulièrement les méthodes utilisant l’échographie
peropératoire. Les différentes méthodes de segmentation d’IRM et images échographiques
du cerveau sont ensuite synthétisées, par type de méthode. Cette revue générale est suivie
par une revue plus détaillée des méthodes d’apprentissage profond, en commençant par les
bases techniques puis en présentant les méthodes de segmentation et recalage. La fin du
chapitre est consacrée à la présentation des deux bases de données publiques d’images écho-
graphiques du cerveau. Nous avons utilisé ces deux bases de données pour les travaux de
cette thèse, pour l’entraînement et évaluation des modèles de segmentation et recalage.

Le chapitre 3 présente les méthodes et résultats des modèles de segmentation de la
cavité de la résection dans les images échographiques du cerveau. La méthodologie y est
détaillée, avec en particulier l’architecture des réseaux de neurones artificiels, ainsi que les
processus de pré-traitement, échantillonage et post-traitement. Nous comparons différentes
variations de la méthode, avec plusieurs méthodes d’échantillonage et des architectures 2D et
3D. Cette étude est basée sur deux bases de données acquises sur des sites différents, ce qui
permet d’évaluer la généralisabilité des modèles à des données acquises sur d’autres sites. Le
chapitre est basé sur le papier que nous avons publié dans le Journal of Medical Imaging [1],
suite à des résultats préliminaires présentés à la conférence SPIE 2019 medical imaging [2].

Le chapitre 4 évalue et étend le modèle du chapitre 3 à la segmentation de tissus can-
céreux. Cette tâche étant plus difficile, nous proposons d’ajouter l’IRM préopératoire, et
éventuellement sa segmentation aux entrées du modèle, pour déterminer si le modèle peut
bénéficier de cette information des images préopératoires pour l’estimation de la segmenta-
tion peropératoire. Des résultats préliminaires pour cette étude, qui ne testait pas l’ajout
des informations préopératoires, avaient été présentés à la conférence SPIE 2020 medical
imaging [4].

Le chapitre 5 propose des modèles de segmentation multi-classes, c’est-à-dire des mo-
dèles capable de segmenter plusieurs structures directement. Cette étude est motivée par de
précédentes études suggérant que les modèles de segmentation multi-classes peuvent tenir
compte des relations spatiales entre les classes et donc obtenir de meilleurs résultats. Par
conséquent, nous avons implémenté des modèles multi-classes et les avons comparés aux mo-
dèles mono-classe. Dans ce chapitre, nous présentons également une méthode de pondération
des classes des échantillons, qui permet d’entraîner les modèles malgré l’important déséqui-
libre des classes, avec en particulier des classes complètement absentes de certains volumes.
De plus, nous évaluons l’effet d’un terme de distance de Hausdorff dans la fonction d’ob-
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jectif, dont l’implémentation a récemment été proposée. Des résultats préliminaires ont été
présentés à la conférence SPIE 2021 medical imaging [5]. Ce chapitre présente une analyse
plus détaillée des résultats, avec en particulier des résultats quantitatifs pour la segmenta-
tion des sulci. Cette analyse n’avait pas pu être faite pour la conférence, la vérité terrain des
échantillons de test n’ayant pas encore été manuellement segmentée.

Le chapitre 6 présente un modèle de recalage de l’IRM préopératoire avec les images
échographiques peropératoires. Ce problème est extrêmement compliqué à cause du nombre
limité de volumes disponibles, de l’importante variabilité inter-patient, et du contexte multi-
modal. Bien que nous ne soyons pas parvenus à entraîner un modèle de recalage satisfaisant,
nous présentons une analyse des méthodes et de leurs limites et nous proposons des pistes
d’améliorations.

Le chapitre 7 conclut ces études avec un résumé des méthodes présentées et de leurs
résultats. Puis, nous présentons les travaux en cours et futurs, qui constituent la suite des
travaux présentés ici. Cette conclusion est reprise en français ci-après.

Conclusion

Nous avons présenté des modèles d’apprentissage profond pour la segmentation d’images
échographiques du cerveau et le recalage de l’IRM préopératoire avec les images échogra-
phiques peropératoires. Nous avons d’abord proposé des modèles mono-classe pour la seg-
mentation de la cavité de la résection et pour les tissus cancéreux. Puis nous avons adapté ces
modèles à la segmentation multi-classe, avec plusieurs classes dont les sulci et la faux du cer-
veau (falx cerebri). Enfin, nous avons étudié les modèles de recalage de l’IRM préopératoire
avec les images échographiques peropératoires.

Les résultats montrent que les modèles mono-classe peuvent segmenter la cavité de la
résection et les tumeurs dans les images échographiques. Les modèles 3D sont plus précis
que les modèles 2D, mais ont des temps d’exécution plus long dus à la nécessité d’évaluer
plus d’échantillons pour reconstruire un volume complet. Les résultats des modèles multi-
classes suggèrent que ces modèles peuvent obtenir de meilleurs résultats que les modèles
mono-classe. Les modèles multi-classes que nous avons entraînés sont capables de segmenter
la cavité de la résection, la tumeur et les sulci. En revanche, nous n’avions pas assez de
volumes où la faux du cerveau ou les ventricules étaient visibles pour permettre d’obtenir
des modèles de segmentation fiables pour ces deux classes.

Nous avons entraîné des modèles de recalage de l’IRM préopératoire avec les images écho-
graphiques peropératoires, mais nous ne sommes pas parvenus à obtenir de modèle satisfai-
sant. Nous pensons que cela est principalement dû au faible nombre de données sur lesquelles
entraîner les modèles, ainsi qu’au manque d’une véritable vérité terrain, que nous avons es-
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timée à l’aide d’un nombre très limité de points correspondants. De plus, c’est un problème
de recalage multimodal, avec une grande variabilité des données d’entrée. La construction
de bases de données plus importantes sera essentielle au développement de méthodes d’ap-
prentissage profond de recalage d’IRM peropératoire avec des images échographiques.

Pour les travaux sur la segmentation et le recalage présentés dans cette thèse, nous avons
manuellement segmenté les volumes. Les segmentations de la cavité de la résection ont été
vérifiées par un neurochirurgien, et nous sommes en train de valider les segmentations des
autres classes. Nous publierons ces segmentations une fois validées, afin que d’autres études
puissent en bénéficier.

Une limitation importante des modèles présentés ici est le faible nombre de cas des bases
de données. Nous avons principalement utilisé les images des 23 patients de la base de don-
nées RESECT, qui est la plus récente base de données publique d’images échographiques du
cerveau. Nous avons aussi évalué les modèles de segmentation de la cavité de la résection
avec la base de données BITE, une base de données antérieure de 14 patients. Ces nombres
de patients sont considérablement inférieurs aux nombres usuels dans les études d’appren-
tissage profond pour le traitement d’images médicales, qui sont généralement de l’ordre de
la centaine voire milliers de patients. Le faible nombre de volumes utilisés ici limite non
seulement l’apprentissage mais aussi l’évaluation des modèles. Un nombre plus important de
volumes permettrait un meilleur entraînement des modèles et une meilleure évaluation de le
généralisabilité aux nouveaux volumes.

Perspectives

Validation des segmentations manuelles Les segmentations manuelles créées pour les
besoins de cette thèse constituent des données utiles qui peuvent profiter à d’autres études.
Nous sommes donc en train de valider ces segmentations dans le but de les publier.

Segmentation multi-classes Bien que la faux du cerveau soit utile pour le recalage
d’image, il serait intéressant de comparer les modèles présentés dans cette thèse qui consi-
dèrent les sulci et la faux du cerveau comme deux classes distinctes, avec des modèles pour
lesquels ces deux classes sont fusionnées.

Il serait également pertinent d’entraîner des modèles multi-classes 3D, les cartes gra-
phiques récentes disposant de plus de mémoire vidéo et permettant donc d’utiliser des vo-
lumes plus grands. En effet, les modèles 3D seraient potentiellement capables de segmenter
la faux du cerveau, ce qui est bien plus difficile sur une seule coupe 2D.
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Modèle de recalage Plusieurs pistes peuvent être envisagées pour le modèle de recalage.
Il est difficile d’établir une vérité terrain pour la déformation, et l’estimation avec les thin
plate splines peut être améliorée. Par exemple, il serait possible d’utiliser les segmentations
pour obtenir une déformation qui fasse correspondre non seulement les correspondances de
points de RESECT mais aussi les segmentations. Une autre piste est de changer le mode
de représentation de la transformation en sortie du modèle de recalage. Une transformation
affine ou une grille dense de déformation moins détaillée que celle utilisée pourrait être utilisée
soit en sortie du modèle, soit dans une première étape de recalage.

Base de données plus grandes Des bases de données plus grandes permettraient aux
modèles de gagner en robustesse et d’être mieux évalués. Cela requiert l’acquisition de don-
nées, puisque les données publiques sont déjà utilisée dans les travaux de cette thèse. C’est
donc une perspective à plus long terme, car acquérir de telles données est un long processus.
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Organization of the dissertation

Chapter 1 introduces the clinical background, and presents the motivations and goals of
this thesis. First, an overview of brain anatomy and brain tumors is given, including the
diagnosis and treatment of brain tumors. Next, we focus on brain tumor resection surgery,
and present the surgical procedure and image-based navigation. Finally, we discuss the
causes and consequences of brain shift, which is the displacement of brain tissue during
surgery. We state the objectives of this thesis and summarize the contributions.

Chapter 2 reviews related works and presents technical background for the methods used
in this thesis. We start with reviewing brain shift compensation methods, with a focus
on methods using intraoperative ultrasound. Then we give an overview of segmentation
methods for brain magnetic resonance (MR) and ultrasound images. After this general
review, we focus on deep learning methods, starting with general background and followed
by its applications to image segmentation and registration. Finally, we introduce the two
publicly available datasets of brain ultrasound images. These two datasets are used in this
thesis for training and testing the segmentation and registration models.

Chapter 3 presents the methods we proposed and results we obtained for the segmentation
of the resection cavity in brain ultrasound images. The methodology is detailed, including
the model architecture as well as the pre-processing, sampling, and post-processing steps.
We compare several variations of the sampling methods and several model architectures with
2D and 3D models. This study is based on two datasets acquired on different sites, which
allows the evaluation of the model generalizability to data acquired in different sites. This
chapter is based on the paper we published in the Journal of Medical Imaging [1], for which
preliminary results were presented at the SPIE 2019 medical imaging conference [2].

Chapter 4 evaluates and extends the segmentation model to tumor tissue segmentation.
As this task is more challenging, we propose to add preoperative images and optionally
segmentations in the input, to assess whether this preoperative information can be leveraged
by this model to find the intraoperative segmentations. Preliminary results that did not
include this addition of the preoperative data were presented at the SPIE 2020 medical
imaging conference [4].
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Chapter 5 presents multi-class segmentation models, ie. models capable of segmenting
several structures at once. This is motivated by other studies that suggested that multi-class
segmentation networks can leverage spatial relationships between classes and obtain more
accurate results. Thus, we implement multi-class models and compare the results with those
of single-class models. In this chapter, we also present a weighting strategy that allows
training the models with high class imbalance, and in particular with classes completely
missing in some volumes. In addition, we evaluate the impact of a Hausdorff distance term
in the loss function, whose implementation was recently proposed. Preliminary results were
presented at the SPIE 2021 medical imaging conference [5]. In this chapter we present a
more detailed analysis of the results. In particular, we show quantitative results for the sulci
class, for which ground truth was not available for the preliminary report.

Chapter 6 proposes a registration model for preoperative MR and intraoperative US. This
task is extremely challenging due to the limited data available, high inter-patient variability,
and multimodal setting. While we were not able to train a successful registration model, we
discuss the methods we have tried and the limitations of the proposed method and propose
possible ways to mitigate these issues.

Chapter 7 concludes this study with a summary of the methods and results that were
presented in this thesis. Last, we discuss works that are currently in progress and future
works.
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Chapter 1

Clinical context and motivations

The work presented in this thesis aims to improve the guidance system in the context of
brain tumor resection surgery. This chapter provides the clinical context for this work.

We start by giving an overview of brain anatomy (section 1.1), which presents the anatom-
ical structures that we refer to in the manuscript. Next, we describe brain tumors (sec-
tion 1.2) and brain tumor resection surgery (section 1.3), which is the clinical context of this
work.

The main challenge of tumor resection surgery is to locate the tumor tissue, and deter-
mine the extent of resection. Image navigation systems are used for guidance (section 1.4).
Section 1.5 presents the imaging techniques that can be used, and in particular the ones that
can be used during surgery.

Last, we describe brain shift, which is the displacement of tissue during surgery. Because
of this displacement, the preoperative MRI (acquired before surgery) does not accurately
match the tissue and anatomical structures in the operating room. This can be mitigated
by updating the preoperative MRI using intraoperative imaging. This process of finding the
transform between two images so that one can be mapped into the other is called registration.
This thesis explores structure-based registration using machine learning models, for brain
shift compensation. This choice is detailed in section 1.7.

1.1 Brain anatomy

The nervous system is a biological system of an animal that allows communication be-
tween different parts of its body and coordinates its actions. The nervous system is divided
into two parts: the central nervous system, consisting of the brain and spinal cord, and
the peripheral nervous system, which consists in nerves and ganglia outside the central ner-
vous system. The peripheral nervous system connects the brain to end organs, allowing the
transmission of signals from the brain to organs, and from senses to the brain.
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Figure 1.1 – Schematic of a neuron.

Signals are transmitted within the nervous system through cells called neurons. Neurons
are composed of a cell body, an axon through which signals are transmitted, and dendrites
through which signals are received (see figure 1.1). Neurons are connected to other neurons
or cells at the end of their axons.

The cerebrum is the uppermost and largest part of the brain. It consists of two cerebral
hemispheres (left and right) and other subcortical structures. The two cerebral hemispheres
are connected by the corpus callosum, a large set of nerves that allow communication between
the two hemispheres. Above the corpus callosum lies the falx cerebri, a vertical membrane
located between the two cerebral hemispheres. The falx cerebri is named as such because of
its crescent-like shape, which looks like the blade of a falx (sickle). At the back of the brain
(anterior part), the two cerebral hemispheres lie on a vertical membrane called tentorium
cerebelli. This membrane separates the cerebrum (upper part) from the cerebellum (lower
part). Figure 1.2 shows a three dimensional representation of the aforementioned structures,
as well as a slice from the corresponding MRI scan. The three dimensional view is useful to
understand where the different structures are located relative to each other.

The two cerebral hemispheres are made of neurons which form brain tissue. The outer
layer is called gray matter (GM) and mainly consists of neuron cell bodies, whereas the inner
part, called white matter (WM), is mainly composed of axons. Brain tissue is folded, ie. its
surface has many folds. The ridges are called gyrus (plural gyri), whereas the grooves are
called sulcus (plural sulci) (see figure 1.3).

The brain is surrounded by cerebrospinal fluid (CSF). CSF protects the brain both me-
chanically against hits and immunologically against infections. CSF is produced by the
brain’s ventricular system, which is also responsible for CSF flow within the brain. The
ventricular system is mainly composed of four cavities called ventricles: two lateral ventri-
cles, and the third and fourth ventricles. The lateral ventricles are connected to the third
one by the interventricular foramina (singular foramen). The third and fourth ventricles
are connected by the cerebral aqueduct. Figure 1.4 shows a three dimensional render of the
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Figure 1.2 – Localization of the human brain’s main structures (top: 3d reconstruction,
bottom: coronal slice of a T1-weighted MRI scan).
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Figure 1.3 – Sulci and gyri.
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Figure 1.4 – Brain ventricular system: lateral ventricles (blue), third ventricle (green),
fourth ventricle (red), interventricular foramina (cyan) and cerebral aqueduct (yellow).

brain ventricular system.

1.2 Brain tumors

A tumor is an abnormal growth of tissue due to dysfunctional cells. Tumors can be
benign or malignant. Benign tumors do not evolve into cancer, whereas malignant tumor
(most commonly called cancer) destroy surrounding tissue and generally cause death.

Brain tumors can be classified by the type of affected cells. For example, a tumor that
starts in the glial cells of the brain is called a glioma. Gliomas represent about 80% of all
malignant brain tumors [7]. Other tumor types include meningiomas, pituitary adenomas,
and nerve sheath tumors. Brain tumors are also given a grade which correspond to their
growth speed [8], from I to IV, where IV is the highest speed. Grade I and II tumors are
called low-grade tumors, while grade III and IV tumors are high-grade tumors.

There are many possible symptoms of brain tumor, depending on several factors such as
the location and size of the tumor. The increased intracranial pressure due to tissue growth
may cause headaches. Depending on the tumor location, additional troubles such as loss of
vision or hearing, difficulty with movement or balance, behavioral issues, and troubles with
language or memory.

4
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Axial view Sagittal view Coronal view

Figure 1.5 – A FLAIR MRI, in which tumor tissue is in the brighter area indicated by the
blue cross.

Brain tumors are usually diagnosed following symptoms that may be caused by brain
tumors, if there is no sign that may indicate other causes. Suspicions of a brain tumor are
then further investigated using medical imaging, with which tumor tissue can be detected
and located. The standard imaging method used for this purpose is magnetic resonance
imaging (MRI) [9, 10]. Figure 1.5 shows an MRI scan in which a tumor can be seen.

There are several possible treatments depending on the tumor type, grade, and location.
The most common type of treatment are surgery, radiotherapy, and chemotherapy [10]. Sur-
gical resection of tumor tissue is the preferred method when it is applicable. This procedure
is a surgery during which a surgeon partially or completely removes tumor tissue, after a
small opening in the skull is made (craniotomy). Radiotherapy is another treatment proce-
dure which aims to destroy tumor cells (and only tumor cells) using radiations. This process
is generally repeated several times, and may be used after surgery to eliminate residual tu-
mor tissue. Chemotherapy is a procedure which uses drugs to kill tumor cells. It may be
used in addition to other methods, or when surgery and/or radiotherapy is not possible.

The next section gives more details about resection surgery, as it is the clinical context
of this thesis.

1.3 Brain tumor resection surgery

Brain tumor resection surgery aims to remove the maximum of tumor tissue that is safely
removable. Tumor tissue may only be partially removed if it is located in critical areas that
will cause severe troubles if removed (eloquent areas). Removal of tumor tissue has been
shown to improve patient outcomes [11,12].

Before surgery, an MRI is acquired to establish the operative plan. In particular, it is
used to determine where to make the craniotomy. For tumors that are not located directly
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on surface, a path must be chosen to access the tumor. Then, tumor tissue is removed
with surgical tools. This is a challenging task, because tumor tissue may not be clearly
distinguishable from healthy tissue, and there is usually no clear boundary. Care must also
be taken not to damage critical structures such as blood vessels.

After surgery, another MRI is acquired to assess the extent of resection, and determine
if there is residual tumor tissue and if further treatment is needed.

The main challenge of this process is to locate tumor tissue, and particularly to determine
its boundaries, ie. where to stop resecting tissue. Image navigation provides visual guidance
to surgeons to help with this difficult task. These systems are described in the next section.

1.4 Image navigation and intraoperative imaging

To help surgeons with localizing the tumor, a navigation setup is often used. In such
setup, the preoperative MRI is displayed on a screen, to guide the surgeons. It is rigidly
registered to the patient position in the operating room, thus the image displayed matches
the patient.

To register the preoperative MRI, a patient-to-image mapping is computed using corre-
sponding points in the MRI and on the patient. There are different methods to establish
such correspondences, depending on the navigation system. A common method is to use
fiducials, which are markers that are placed on the patient. These markers are visible both
physically on the patient and in the MRI (see figure 1.6). The locations of the markers are
then measured by pointing them sequentially. The transform between the two sets of points
is then computed, allowing to rigidly register the MRI to the patient. There are alterna-
tive methods to fiducial registration, that do not require markers, such as surface-based and
image-based methods. Surface-based methods use scanners to acquire 3D surfaces of the face
and forehead, and find a mapping that aligns the surfaces. Image-based methods use intra-
operative images to estimate the mapping, by aligning the preoperative and intraoperative
images.

Once the MRI has been registered, the position of tracked tools and pointer can be shown
on the MRI display. The position of the tools in the operating room is known thanks to
the tracking system, and that position can be translated in MRI space using the previously
computed transform. There are several types of tracking systems. Figure 1.7 shows a picture
of a surgical setup with navigation, using a tracking system with rigid bodies (small optical
markers) that are tracked with a stereo camera.

However, navigation is impaired by tissue displacement during surgery (called brain shift).
This phenomenon is further described in section 1.6. Because of that displacement, the
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RESULTS

Interpretation of ultrasound imaging modality

Most neurosurgeons are more familiar with MRI and CT
than with ultrasound images. In the present study, we found
that it was important to be familiar with ultrasound imaging
of the lesion early in the operation. After exposure of the dura,
but before the resection was started, an initial 3-D ultrasound
image was acquired. Corresponding slices from MRI and

ultrasound 3-D volumes (similarly scaled and oriented) were
then displayed simultaneously (Fig. 5). Preoperative MRI
scans were useful, both for presenting an overview of the
anatomy in areas where ultrasound images were not acquired
and for learning to interpret information in the corresponding
ultrasound images. In many cases, however, our experience
was that ultrasound image quality was comparable to or even
better than the corresponding MRI scans when tumor and
landmark visualization were considered.

FIGURE 3. Typical procedures per-
formed when using 3-D ultrasound in
neuronavigation. The day before sur-
gery, a high-resolution 3-D MRI map
of the patient is acquired (A). The
3-D volume is then registered to the
patient, and the preoperative images
are used for planning the procedure
(B). A 3-D ultrasound volume of the
brain is acquired (C) and recon-
structed for use in navigation. No
registration of 3-D ultrasound image
volumes is required. The tumor
resection may be performed directly
by navigating the CUSA down to the
lesion (D). Image information from
both MRI and ultrasound is presented
on the screen. When the surgeon
requires another 3-D update because
tissue changes have occurred, the
3-D acquisition procedure is
repeated and resection continues on
an updated 3-D map (C and D).

FIGURE 4. A pyramid-shaped 3-D ultrasound
volume is acquired by tilting the 2-D probe
over the anatomic area of interest (A). The
3-D data set is reconstructed and used directly
for navigation. The ultrasound probe may be
removed from the working area, and the posi-
tion and orientation of the surgical tool deter-
mines which images from the 3-D volume are
displayed on the monitor. The slices from both
MRI and ultrasound volumes may be displayed
simultaneously. Display techniques may be
conventional orthogonal slices (B) oriented to
the patient (axial, sagittal, coronal), from the
surgeon’s view, or only defined by the position
and orientation of the surgical tool. In any-
plane slicing (C), only one slice defined by the
position and orientation of the surgical tool is
displayed from each 3-D volume. Because a
3-D ultrasound volume is acquired, an ultra-
sound slice not limited to the ultrasound scan
plane may be used for navigation (D).

Three-dimensional Ultrasound in Neuronavigation 807
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fiducials

Figure 1.6 – Fiducial markers on a patient (left) and on an MRI (right).

previously established patient-to-image mapping is invalidated. Thus, the displayed image
does not match the position of tissue in the operating room. As such, it is often complemented
with intraoperative imaging: images acquired during surgery. The next section shows which
imaging techniques can be used, and which ones are best suited for intraoperative imaging.

1.5 Imaging modalities

This section details medical imaging systems that can be used in brain tumor resection
surgery. The last subsection focuses on the ones that can be used intraoperatively.

1.5.1 Magnetic resonance (MR)

MR is an imaging technique based on the magnetization of hydrogen atoms (which consist
in a single proton). A strong uniform magnetic field is used to align the protons parallel to
the direction of the magnetic field. The protons are said to be magnetized, which means
that their spins are aligned with the same direction. A radiofrequency (RF) pulse is then
applied to change the alignment, and bring the protons into phase with the RF pulse, thus
with each other (phase coherence). After a certain amount of time, protons return in their
equilibrium state (parallel to the external magnetic field). This return to equilibrium state
is called relaxation, and can be decomposed into two processes: longitudinal relaxation
and transverse relaxation. Longitudinal relaxation (or spin-lattice relaxation) refers to the
recovery of the longitudinal component of magnetization, that is the component parallel
to the external magnetic field. Transverse relaxation (or spin-spin relaxation) refers to the
recovery of the component perpendicular to the external magnetic field, and corresponds to
the loss of phase coherence. The two processes do not take the same amount of time, and
are associated different time constants: T1 for longitudinal relaxation and T2 for transverse
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Figure 1.7 – Surgical setup with neuronavigation.

relaxation. For soft tissue, T1 is around 1s while T2 is on the order of 10ms.

With relaxation, protons emit RF energy, which is measured with receiver coils. The
amplitude and duration of the emitted signal depends on several parameters, including T1
and T2. The measured signal is then converted to image intensities with Fourier transform.

The measure is made after a time TE (echo time) after the RF pulse is applied. The
process is repeated several times, with a time TR (repetition time) between RF pulses. TE
and TR are parameters of the MRI acquisition, and a particular set of values is called an MRI
sequence. There are many MRI sequences, the most commonly used being T1-weighted, T2-
weighted, and Fluid-attenuated inversion recovery (FLAIR). These sequences show different
tissue characteristics, thus are complementary.

T1-weighted (T1w) MRI measures longitudinal relaxation, by using short TR and TE.
In T1w MR images, content with more water appears darker. In particular, regions filled
with CSF (such as ventricles and sulci) appears very dark. Gray matter appears gray, while
white matter appears light gray. Tumor tissue is usually darker than healthy tissue (see
figure 1.8a).

T2-weighted (T2w) MRI measures transverse relaxation, by using long TR and TE. In
contrast to T1w, CSF appears very bright, while gray matter appears light gray and white
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(a) T1w (b) FLAIR

Figure 1.8 – T1w and FLAIR MRI sequences (tumor tissue is pointed by the blue cross).

matter, gray.

FLAIR aims to suppress fluid signal by using even longer TR and TE. It looks similar to
T2w, except that fluids such as CSF are very dark instead of very bright. Figure 1.8b shows
an example of a FLAIR MR image.

MR angiography (MRA) is a specialized type of MR imaging which aims at imaging
blood vessels. Different techniques and MRI sequences can be used for that purpose. A
common method is to use a contrast agent that shortens the T1 of blood, in combination
with a short TR. This will result in a very bright signal for blood, and thus blood vessels are
visible in the resulting images.

1.5.2 Ultrasound (US)

US imaging is based on US waves, which are sound waves with frequencies higher than
human hearing range (greater than 20kHz). An US probe is used to send US RF pulses
into tissue, which are then echoed by the tissue with intensity and angle depending on tissue
type. The echo is measured by the US probe, which converts the RF signal into current. The
measured signal is then post-processed by the US hardware, including filtering and envelope
detection.

The resulting signal can be used to create different images, the most common being the
B-mode (for brightness) image, which represents the acoustic impedance of tissue. Doppler
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(Fig. 10). A reformatted image plane defined by the

direction and rotation of the operation instrument (any-

plane) gives in our experience convenient working in-

formation (Fig. 7b). A plane perpendicular to this plane

(dual anyplane) gives additional value especially when

working close to tumour limits where one plane could be

tangential.

Our experience is that the modality with continuous

real time connection between navigation system and

operation instrument is very useful when operating on

tumours both in brain parenchyma and on the skull base.

The monitor has to be located so that the surgeon only

has to glance to the side of the ocular to see the monitor.

We think that the interface with the operation instrument

is more dynamic than the conventional microscope inter-

face. When using calibrated CUSA, guided resection can

be done immediately after the US acquisition.

In deep-seated parenchyma tumours, for example

gliomas or metastases with high intracranial pressure,

the resection can be started through a very small opening

only guided by the navigation system. This will reduce

the injury on normal tissue. The on line information

about the distance from the tip of the CUSA to the

tumour borders, or to important vessels, may speed up

the resection and make the surgeon feel more confident

in different phases of the operation (Fig. 3).

In skull base tumours like meningiomas or very large

acoustic neurinomas this modality can be used to do a

safe and rapid subcapsular resection. It is much easier to

peel the capsule off the normal brain or brain stem when

most of the tumour is removed and there is a lot of space

in the operation field.

When important vessels are found inside the tumour, it

is useful to have on line information of US angiography.

The display of the US angiography will show the distance

between the CUSA tip and the vessels (Figs. 4 and 9).

During the operation of brain tissue tumours there may

be a considerable shift of the tumour borders, especially

during the last part of the operation. Therefore it is im-

portant to acquire new 3D US volumes to have reliable

images. Even for large and difficult skull base tumours it

may be useful to have an updated map of the progression

of the operation. It is not unusual to overestimate the

amount of tumour tissue removed during different phases

of the operation. An update can be useful, especially for

the less experienced skull base surgeons.

Fig. 10. On-line resection with tracked CUSA. After the acquisition of 3D ultrasound, a tracking frame is attached to the CUSA, and it is calibrated

to the navigation system. Thus resection with the CUSA can be done with image guidance
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(a) swiping motion
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in LGG surgery. However, the transition zone between tumor
and normal brain tissue is much more diffuse than radiologically
displayed, and the extent of disease and, consequently, the true
tumor volumes are therefore greater than seen with any current
medical imaging modality.6,7

The 2 most common imaging tools used to guide LGG
surgery, MRI and US, are based on completely different physical
principles, and tumor visualization and delineation does not
always correspond. A study in 35 heterogeneous lesions including
only 1 patient with a diffuse LGG reported that mean tumor
volumes measured in US images were often smaller than corre-
sponding volume estimates from MRI.8 A recent study in 11
LGGs reported that estimated residual tumor based on linear
array intraoperative US (15 Mhz) was smaller than detected with
intraoperative MRI (iMRI; 7.5% vs 14.5%).9 Except for these
reports, the delineation of LGGs in intraoperative US and its
correspondence to MRI findings has, to our knowledge, not been
studied quantitatively.
In the present study, we retrospectively included 23 previously

untreated patients with histologically confirmed, diffuse, low-
grade supratentorial gliomas (WHO grade II) who underwent
resections guided by neuronavigation based on preoperative
MRIs and intraoperative 3-D US. In order to assess potential
discrepancies between the 2 imaging modalities, we analyzed
the corresponding volumes of LGGs as seen in preoperative
3-D FLAIR MRIs and initial intraoperative 3-D US image
recordings. Potential factors believed to possibly affect correspon-
dence between the image modalities were explored.

METHODS

Included Patients
We included 23 patients who underwent primary surgery for previ-

ously untreated LGG from November 2011 to May 2014. Eligible
patients fulfilled the following inclusion criteria: histopathologically
confirmedWHOgrade II astrocytoma, oligodendroglioma or oligoastro-
cytoma (diagnosed according to the 2007WHO classification of tumors
of the central nervous system10) with supratentorial tumor location,
>18 yr of age and obtained informed consent, and available preoper-
ative 3-D MRI and intraoperative 3-D US image data. A 3-D FLAIR
volume and a US volume covering the entire tumor recorded prior to
any resection had to be available. The study was approved by the Regional
Ethics Committee as part of a larger project.

All operations were done under general anesthesia and guided with
use of the SonoWand Invite 3-D US-based neuronavigation system
(Sonowand AS, Trondheim, Norway).11 Preoperative 3-D FLAIR data
were registered to the patient using fiducial markers after immobilization
of the patient’s head on the operating table. All patients were positioned
to facilitate a horizontal craniotomy to optimize US image quality. All
US recordings were done with an optically tracked Flat Linear Array
Probe, FLA 12L, with a frequency range of 5 to 15 Mhz. This is a
standard linear probe suitable for imaging large range of tumors. A
freehand intraoperative 3-D US acquisition was performed before any
resection (Figure 1). The navigated probe was moved slowly to cover
the entire region of interest. For deeper lesions, a tilting of the probe
was sometimes sufficient, but for most lesions a combined translating-

FIGURE 1. Freehand intraoperative 3-D US acquisition performed before
tumor resection, using an optically tracked Flat Linear Array Probe, FLA 12L,
with a frequency range of 5 to 15 Mhz. The navigated probe was moved slowly
to cover the entire region of interest.

tilting movement of the probe was necessary. Three-dimensional US
image volumes with 0.2 mm isotropic voxelsize were reconstructed from
the US recordings. Thereafter, both preoperative MRI and intraoperative
US volumes were available for neuronavigation during surgery, either
as coregistered side-by-side visualizations or as “layover visualizations”
with navigated US images superimposed on the preoperativeMR images.
Thus, surgeons’ delineation of tumor borders was guided both by struc-
tural MRI and US data together with anatomic landmarks, and micro-
scopic tissue appearance (color, texture, stiffness). In addition, functional
MRI and/or intraoperative stimulation were used to guide intraoperative
decision making in eloquent lesions.

Manual Segmentation
In order to compare tumor volumes, manual segmentations of the

tumors in 3-D FLAIR and 3-D US were performed using 3-D Slicer
version 4.4.0 (www.slicer.org).12 Three-dimensional Slicer is a free, open-
sourcemedical imaging platform. The border between tumor and normal
brain tissue was manually drawn in stacks of 2-D US and MR images
(Figure 2). Quantitative measures were extracted from the resultant
region of interest. In order to assess intraobserver variability for segmen-
tation in the MRI and US volumes, retrospective volume segmentation
was performed twice in all 23 patients. Segmentation of MRI data was
done blinded to the US data, while corresponding coregistered preoper-
ative MRI data were available during segmentation of the US volumes
to mimic the clinical intraoperative setting in which neuronavigation is
used together with intraoperative US to aid US image interpretation. The
volume segmentations in US data were performed by a medical research
student and verified by 2 neurosurgeons with extensive experience with
intraoperative US. The volume segmentations of MRI data were done
by a radiologist, blinded for US volumes or other data. Postoperative

2 | VOLUME 0 | NUMBER 0 | 2017 www.neurosurgery-online.com

photo from Munkvold et al. [15]

(b) tracked ultrasound probe

Figure 1.9 – 3D US image reconstruction by acquering 2D slices in a swiping movement
(left) with a tracked probe (right).

mode is another US mode that uses the Doppler effect to display the movement of tissues
and fluids such as blood.

There are several type of US probes. Two-dimensional (2D) probes measure signal in
a 2D region (slice), generating a 2D image, while three-dimensional (3D) probes measure
signal in a 3D region. 2D probes can be used to acquire several slices with different angle, in
a swiping motion, to acquire data in a 3D region that can be used to reconstruct a 3D image
with interpolation (see figure 1.9a). This requires to track the probe (figure 1.9b), so that
the position and orientation of each slice is known. Alternatively, 3D probes can acquire 3D
volumes directly without reconstruction and interpolation.

In US images, healthy tissue appears dark gray, while tumor tissue usually appears a
little brighter or darker depending on tumor type and grade. Interfaces between tissues and
fluids such as CSF appear very bright, while fluids appear very dark. As such, ventricles are
represented by dark cavities with a bright border, and sulci with bright lines, as they are thin
for the most part. Figure 1.10 shows two examples of brain US images, with corresponding
MRI for better visualization of the imaged structures. Note that the MRI has been registered
with the US volume, so that the structures match.

1.5.3 Optical systems

Stereo vision cameras can be used to acquire images of the surface of the brain. With
this data, the cortical surface can be reconstructed in three dimensions, for use in brain shift
compensation methods [16]. Figure 1.11 shows an example of image of the cortical surface
acquired with a stereo vision camera.
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Figure 1.10 – Intraoperative ultrasound images of the brain (top row), overlaid over the
registered MRI (middle row), registered MRI only (bottom row).
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IMAGE UPDATING DURING RESECTION

TABLE 1. Summary of Patient Information

Patient Gender Age Lesion Location Craniotomy size (cm× cm) Registration accuracy (mm)

1 F 39 Arteriovenous Malformation Right frontal 4.9 × 4.8 1.72
2 M 41 Oligodendroglioma Right temporal 5.3 × 5.0 2.11
3 F 61 Meningioma Right parietal 7.3 × 5.3 2.14
4 F 53 Epilepsy Left temporal 7.6 × 5.6 0.98
5 F 24 Mixed oligoastrocytoma Right parietal 6.2 × 4.4 1.18
6 F 49 Metastatic melanoma Right temporal 3.1 × 2.6 2.38
7 M 78 Metastatic neuroendocrine carcinoma Right occipital 7.8 × 5.8 4.82
8 F 65 Meningioma Right temporal 5.0 × 3.9 1.84
9 M 60 Glioblastoma Left temporal 4.6 × 3.6 1.49
10 F 51 Meningioma Left frontal 7.8 × 5.4 1.94
11 F 59 Anaplastic mixed oligoastrocytoma Right frontal 4.7 × 3.8 2.01
12 F 46 Meningioma Right parietal 5.3 × 4.8 1.40
13 M 75 Glioblastoma Left temporal 7.4 × 4.6 1.40
14 M 40 Meningioma Left frontal 7.8 × 5.7 1.98

uMRs to be generated by incorporating optical flow (OF) motion
tracking of successive intraoperative stereovision (iSV) acquisi-
tions during resection in 14 surgeries. We also assess the accuracy
of uMRs with independent measurements of feature locations
in the surgical field with a tracked stylus, allowing target regis-
tration error (TRE) estimates of multiple uMRs to be generated
for the first time. We report the overall computational efficiency
of the processes involved. Results show that registration accuracy
is significantly improved over pMRwith computational efficiency
that can be maintained within clinically acceptable ranges.

METHODS

Surgical Cases and Procedure
Image data from 14 patients undergoing open cranial procedures

were evaluated, retrospectively. The study was approved by the Insti-
tutional Review Board and patient consent was obtained. Surgical
procedures included craniotomies for tumor, epilepsy, or arteriovenous
malformation. Criteria for data inclusion were (1) T1-weighted contrast-
enhanced MRI acquired prior to surgery (scan size = 256 × 256,
96–160 slices, voxel size = 0.9375 mm × 0.9375 mm × 1.5
mm); and (2) common features, such as blood vessels and sulci,
visible on both MR scans and the exposed cortical surface. Subject
gender, age, type of lesion, and size of craniotomy are reported in
Table 1. At the time of surgery, patient registration was performed
with pMR on a commercial navigation system (StealthStation R© S7 R©,
Medtronic, Louisville, Colorado) to provide standard-of-care intraoper-
ative navigation and tracking. The reported accuracy of patient regis-
trationwas 1.96mmon average and is listed in Table 1 for each individual
case. A surgical microscope (OPMI Pentero R© Carl Zeiss Surgical GmbH,
Oberkochen, Germany) was connected to the StealthStation R© for intra-
operative tracking, and an iSV system (Figure 1) was attached to and
draped together with the microscope. The iSV system consisted of 2

charge-coupled device (CCD) cameras (Flea2 FL2G-50S5C, Point Grey
Research, Inc, Richmond, British Columbia, Canada; image resolution:
1024 × 768 pixels), and was precalibrated16-18 and coregistered with
pMR using tracking data acquired from the StealthStation R© through the
Medtronic StealthLink R© (Medtronic, Louisville, Colorado) communica-
tions framework.

MR Image-Updating Procedure
A flowchart of the model-based image-updating process is shown

in Figure 2. First, uMR was produced to compensate for brain defor-
mation due to dural opening.14 Specifically, the brain was segmented

FIGURE 1. The iSV system (red box). Two CCD cameras (yellow arrow) were
connected to an adapter that was attached to one of the optical ports on the
microscope head.
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FIGURE 3. Comparison of pMR and uMRs with iSV surfaces from case 1. pMR = preoperative MR images; uMR = updated MR images; iSV
= intraoperative stereovision. A, Representative 2-D view of pMR overlaid with iSV1 and iSV2 (yellow and red lines, respectively). B, Three-
dimensional view of pMR overlaid with iSV1, white arrow points to feature misaligned. C, Two-dimensional view of uMR1 at the same coronal
slice location, overlaid with iSV1 and iSV2 (yellow and red lines, respectively). D, Three-dimensional view of uMR1 overlaid with iSV1, white
arrow points to feature accurately aligned. E, Two-dimensional view of uMR2 at the same coronal slice location, overlaid with iSV2 (red line). F,
Three-dimensional view of uMR2 overlaid with iSV2, white arrow points to feature accurately aligned.

these locations in MR image space (through patient registration) were
stored. The same features were localized on pMR and uMR1, respec-
tively. The same process was repeated at the time of iSV2 acquisition and
features were localized on pMR, uMR1, and uMR2. TRE was computed
as the distance between the intraoperatively tracked locations of these
features (transformed into MR space) and their corresponding positions
in the pMR or uMR image volumes.

RESULTS

Model-UpdatedMR Accuracy Evaluation
Figures 3 to 6 illustrate the qualitative evaluation of accuracy

in 4 representative cases. Misalignments between pMR and both
iSV1 and iSV2 indicate that pMR was not accurate at either
time point. Specifically, iSV surfaces were either above or under-
neath the brain surface in 2-D views (image A), indicating brain
bulging or sagging, and cortical features (eg, white arrows in
image B) from iSV1 were not aligned with pMR in 3-D views,
denoting lateral shift. After the first model update, uMR1 and
iSV1 (images C and D) were well aligned in terms of both

geometry (shown in 2-D) and texture (shown in 3-D), indicating
favorable accuracy. After partial resection, uMR1 was no longer
accurate when compared with iSV2 (image C), while uMR2
(images E and F) aligned well with iSV2 in terms of both geometry
(shown in 2-D) and texture (shown in 3-D) after a second model
update. Patient 11 had a third iSV acquisition after more tissue
was removed, and uMR2 served as the input for repeating the
image-updating process and producing uMR3. Figures 6G and
6H show that uMR3 aligned well with iSV3.
Quantitative accuracy assessments are reported in Tables 2

(misfit) and 3 (TRE). The initial misfit between pMR and
iSV1 is reported in column 2, along with its direction along
the surface normal (“+” and “–” signs for outward and inward
shift, respectively). The results show that the initial misfit was
8.61 ± 3.83 mm across the 14 cases, ranging from 2.72 to
16.91 mm (column 2). After model compensation, the remaining
misfit of uMR1 was 1.95 ± 0.45 mm (column 3), and the
corresponding POC of the first image update was 74% ± 11%
(POC1, column 4). The misfit between uMR1 and iSV2 is
reported in column 5, along with its direction along the surface
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Images from Fan et al. [16].

Figure 1.11 – Stereo vision camera (left) and image of the cortical surface acquired with a
stereo vision camera (right).

Laser range scanners are another imaging technique for acquisition of surface data. As
for stereo vision cameras, it has been used for brain shift compensation [17].

1.5.4 Computed tomography (CT)

CT is rarely used for brain tumor surgery, due to lower contrast for soft tissue than MR,
and the use of ionizing radiation (in contrast to MR). It is even less used intraoperatively
due to the added contraints in the operating room.

1.5.5 Intraoperative imaging

MR is the standard preoperative imaging method used for brain tumor surgery [9, 10],
due to good contrast of soft tissue in the resulting images. While it is commonly used
preoperatively, it is also sometimes used intraoperatively. This is less common, due to the
need of specialized equipment and changes in surgical procedures. Intraoperative MR (iMR)
equipment is costly, and requires a dedicated operating room. In addition, iMR acquisition
has been reported to increase surgery time by about one hour per scan [18].

Intraoperative ultrasound (iUS) is sometimes used as an alternative to iMR, due to its
lower cost and easier integration in the operating room [13, 14]. There are however several
differences that make understanding ultrasound (US) images challenging. Due to the physics
of US, the intensities depend not only on tissue type but also on probe orientation and depth,
and there may be artifacts and noise. In addition, the field of view is limited to the maximum
depth of the probe, and to the angular movement during acquisition. Thus, it contains only
the part of the brain around the tumor that is of interest, unlike MRI which covers the whole
brain.
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Figure 1.12 – Brain shift illustrated with a pMR (left) and iUS (right).

Optical systems such as stereo vision cameras and laser range scanners can also be used
for intraoperative imaging. The main limitation of these systems is that they can only
acquire surface data. They are nonetheless useful in applications such as image registration.

1.6 Brain shift

Brain shift denotes the displacement of brain tissue during surgery, which invalidates
the patient-to-image mapping used for neuronavigation. Is has several causes, which can be
physical, surgical, and biological [18]. Displacement is usually larger on the surface, on which
displacements up to 20mm were reported. Several studies reported mean displacements of
around 6 to 7mm. Figure 1.12 illustrates brain shift highlighting differences between the
pMR and an iUS volume. The sulcus is the middle of the image is shifted, and the footprint
in the top of the iUS is slightly below the tissue boundary in the pMR.

Physical factors include the effect of gravity, patient positioning, and movement of the
head relative to the clamp used to prevent movement. Gravity is one of physical factors
that contribute the most to brain shift. Gravity exerts a downward force, causing tissue sag.
Patient positioning, which is usually different during surgery from the position used during
preoperative MRI acquisition, also affect the position of brain anatomical structures. During
surgery, the head of the patient is positioned such that the target location for craniotomy
is accessible to surgeons, and such that CSF loss is minimized. During MRI acquisition,
however, patients are commonly in supine position, with the head facing up.

Surgical factors are related to the use of surgical equipment and effects of surgery. Sur-
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gical equipment such as skin retractors, surgical drapes, and tools for craniotomy can cause
displacement of the head relative to the reference frame. The loss of CSF after the cran-
iotomy and the dura mater has been opened is also a displacement factor. Finally, large
displacements can be caused by tissue resection. In particular, the remaining tissue above
resected tissue will move due to gravity as it is not supported anymore.

Biological factors include the use of drugs to lower intracranial pressure, and tumor type.
For example, it has been observed that gliomas often cause more shift than meningiomas.

1.7 Aims

Brain shift impairs image navigation in brain tumor resection surgery, as the navigated
image is the preoperative MRI. Intraoperative imaging is needed for accurate navigation;
however, intraoperative MRI is impractical and other modalities have a more limited field
of view and lesser quality than MRI (section 1.5.5). As such, several methods have been
proposed to register the preoperative MRI with intraoperative data. This process consists in
estimating the brain shift displacements with intraoperative imaging, and updating the pre-
operative MRI accordingly. The updated MRI can then be used for navigation. Section 2.1
reviews such methods in details.

In this thesis, we chose to use US intraoperative images for registration, because it is
convenient to use in the operating room and has subsurface data. More specifically, we aimed
to investigate which anatomical structures can be extracted in brain US images to register
the preoperative MRI by matching these structures. There are very few such structure-based
registration methods for brain US images, which motivated our study. We aimed to propose
automated methods to 1) delineate the structures (image segmentation) and 2) register the
preoperative MRI with the intraoperative US image and the extracted structures.

Many image segmentation and registration methods have been proposed. In this thesis,
we focused on machine learning models, which have seen increased use for image processing,
and have proven successful in many medical image processing tasks. They have been less
studied for complex tasks such as US images processing, and image registration, although
it is an active research domain. US images processing is challenging due to the limited field
of view and lower image quality. Image registration aims to determine the transformation
between two images. While there are many transforms that would correspond, only the
actual transformation between the two objects that were imaged is the solution that should
be found by image registration algorithms, making the problem ill-posed.

Since our main goal is structure-based registration, we first studied segmentation meth-
ods for US images of the brain using machine learning. In addition to registration, the
segmentation of brain structures is valuable for several other purposes. The delineation of

14



tumor tissue is useful not only to guide surgeons when navigating the images, but also to
help localizing remaining tumor tissue that should be removed for the resection to be com-
plete. The resection cavity is also useful for brain shift compensation. Tissue resection is
one of the causes of brain shift, which further extents tissue displacement during surgery
(see section 1.6). As such, the extent of resection could be used in brain shift compensation
methods to account for the shift induced by tissue resection. Finally, other structures such
as sulci, falx cerebri and ventricles can help surgeons with navigating US images, as well as
provide landmarks for image registration algorithms.

We also studied registration of the preoperative MRI with intraoperative US images using
deep learning. This process aims to update the preoperative MRI so that it matches the
intraoperative US image, and thus is corrected for brain shift. The updated MRI can be
then used for navigation, which is more convenient than the US images due to higher quality
and better contrast.

1.8 Contributions

We proposed single-class segmentation models for the resection cavity and tumor tissue,
and studied the impact of various method parameters, such as the sampling strategy, using
2D or 3D models, and the inclusion of preoperative data. The, we studied multi-class seg-
mentation of several structures, including the sulci and falx cerebri. We proposed a weighting
strategy which allowed training of the models despite the high class imbalance, with classes
entirely missing in some of the volumes. In addition, we implemented a recently proposed
Hausdorff distance loss function term, and compare models trained with and without this
term. Finally, we investigated registration models for registering the pMR with iUS volumes.

In addition, we have manually labelled the resection cavity, sulci, falx cerebri and ventri-
cles in all volumes of the RESECT database, and the resection cavity in the post-resection
iUS volumes of the BITE dataset. The resection cavity segmentations were then reviewed
by a neurosurgeon, and corrected accordingly. We are in the process of validating the other
segmentation masks, and plan to publish these segmentations, so that further studies may
benefit from them.

15



16



Chapter 2

Literature review

In this chapter, we first review existing brain shift compensation methods. Next, we give
an overview of brain MR and US segmentation. We then focus on deep learning methods,
starting with technical background, followed by its application to image segmentation and
registration. We conclude by presenting the two publicly available datasets of brain US
images.

2.1 Brain shift compensation

The preoperative MRI (pMR) does not reflect the tissue displacement occurring in the
operating room. In the other hand, intraoperative imaging modalities have limitations for use
in brain tumor resection surgery (see section 1.5.5). No imaging system provide both ease of
use in the operating room and sufficient image quality. In particular, iMR can have sufficient
image quality but makes the surgical procedure longer and requires dedicated expensive
equipment. As such, the pMR remains the reference image despite brain shift. Thus, several
studies aimed to update the pMR to compensate for brain shift, using intraoperative data
and/or modeling of the brain [18–20].

This process consists in finding the transform that maps one image into the other, and
then applying this transform to generate the updated image. There are several methods
for finding the transform, which can be grouped into two categories: image-based methods,
which use image registration algorithms with the pMR and intraoperative images, and model-
based methods, which model brain shift with biomechanical models.

2.1.1 Image-based methods

These methods use the pixel intensities of the images to estimate the transform between
the two images. This class of methods have been widely studied, and a detailed and compre-
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hensive review is out of the scope of this literature review. Instead, this section focuses on
methods that were applied to brain shift compensation, and suggest a more general review
of medical image registration by Sotiras et al [21]. Image-based methods can be classified
into methods that optimize a similarity metric [22–29] and methods that use point or feature
correspondences [30–39].

2.1.1.1 Similarity metric optimization

Similarity metrics are functions that measure the similarity between two images. They
can be used for image registration by optimizing the transformation parameters such that the
similarity is maximized. In the multimodal case, such as pMR-iUS registration, intensities
cannot be directly used because of the different modalities. One possible approach is to gen-
erate pseudo images to transform the problem into a monomodal registration problem [40].
Alternatively, information-based metrics such as mutual information or cross-correlation can
be used for multimodal registration.

Rivaz et al. [22] propose to use the correlation ratio (CR) for multimodal pMR-iUS
registration, and normalized cross-correlation (NCC) for monomodal US registration. The
correlation ratio was also used in other multimodal registration studies [28, 29]. They eval-
uate three registration strategies, starting with registering the pMR with the pre-resection
iUS, then with the post-resection iUS directly, and finally using the composition of the pMR
to pre-resection iUS and pre- to post-resection iUS registration. Rivaz et al. [22] report a
reduced mean target registration error (mTRE) from 4.1mm to 2.4mm for MR-US registra-
tion and from 3.7mm to 1.5mm for US-US registration, averaged on 13 patients. Xiao et
al. [28] reduce the mTRE from 7.2mm to 1.7mm on average for 4 patients.

Normalized gradient field (NGF) is another similarity metric that can be used for MR-US
registration [41,42].

Recent brain shift compensation studies [23–26] used the linear correlation of linear com-
bination (LC2) metric [43]. In [23], NCC is additionally used for iUS-iUS registration for
iterative updates during surgery.

Heinrich [27] proposed to optimize a similarity metric based on image self-similarities
using the dense displacement sampling (deeds) optimization algorithm.

Results for these methods are reported on table 2.1. While they are generally not eval-
uated on the same datasets, making comparison difficult, LC2 and deeds appear to be the
state-of-the-art methods based on similarity metric optimization for multimodal MR-US
registration.
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modalities method patients mTRE before
registration

mTRE after
registration

Rivaz et al. [22] MR-US similarity metric (CR) 13 4.1mm 2.4mm
Xiao et al. [28] MR-US similarity metric (CR) 4 7.2mm 1.7mm
Mok et al. [41] MR-US similarity metric (NGF) 10 6.4mm 5.7mm
Hager et al. [42] MR-US similarity metric (NGF) 10 6.4mm 7.0mm
Riva et al. [23] MR-US similarity metric (LC2) 8 5.9mm 2.7mm

Iversen et al. [24] MR-US similarity metric (LC2) 13 7.7mm 4.5mm
Wein [25] MR-US similarity metric (LC2) 27 5.4mm 1.8mm

Heinrich [27] MR-US similarity metric (deeds) 22 5.4mm 1.7mm
Rivaz et al. [22] US-US similarity metric (NCC) 13 3.7mm 1.5mm

Masoumi et al. [29] US-US similarity metric (CR) 22 5.4mm 2.8mm
Riva et al. [23] US-US similarity metric (NCC) 8 6.2mm 4.2mm

Reinertsen et al. [31] MR-US feature-matching (blood vessels) 7 7.4mm 2.8mm
Nitsch et al. [39] MR-US feature-matching (falx, tentorium) 11 16.9mm 2.2mm
Hansen et al. [44] MR-US deep learning (PDD-net) 10 6.4mm 3.1mm
Canalini et al. [38] US-US feature-matching (sulci, falx ) 17 3.5mm 1.4mm
Machado et al. [36] US-US feature-matching (SIFT) 9 3.3mm 1.5mm

Miga et al. [17] MR-LRS biomechanical model 16 10.1mm 2.7mm
Morin et al. [45] MR-US biomechanical model 4 5.3mm 1.7mm

Table 2.1 – Quantitative evaluation of registration methods for brain shift compensation.

2.1.1.2 Feature-based methods

These methods use point or feature correspondences to compute the best transformation
parameters. They first establish a set of homologous points or corresponding features in the
two images, and then use these correspondences to determine the transform parameters.

Several methods using blood vessels for correspondences have been proposed [31, 32].
Reinertsen et al. [31] proposed a method in which blood vessels centerlines are extracted from
angiographic pMR and Doppler-mode iUS, which are then registered using the iterative closet
point (ICP) algorithm. Ilunga-Mbuyamba et al. [32] extracted blood vessels from contrast-
enhanced US images using Hessian filters, and used the vasculature to register the pMR to
pre- and post-resection US.

Other methods aims to match hyperechogenic structures such as the sulci and falx cere-
bri [30, 33, 34, 38, 39]. Farnia et al. [33] first proposed a method matching hyperechogenic
structures and optimizing the residual complexity similarity metric [46] in the wavelet do-
main. In a later study [34], they report improved results with a co-sparsity function.

Drobny et al. [35] proposed a block matching algorithm using NCC, to establish point
correspondences. The transformation parameters are then determined using a least trimmed
squares regression. The image is then resampled using the transform, which can be used for
another iteration to refine the transform.
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Machado et al. [36] used Sift feature descriptors to find points of interest in iUS volumes,
which were then paired based on descriptor values and finally used to compute the transform
using thin-plate splines (TPS). This method was then compared to a model-based method
(see next subsection) in a recent study [47]. Machado et al. [37] then proposed a novel
method using a correlation-based similarity metric with multi-orientation and multi-scale
features.

Deep learning models have also been proposed for pMR-iUS registration [44,48–50]. Deep
learning for image registration is reviewed in more depth in section 2.3.3.

2.1.2 Model-based methods

Model-based methods model brain shift with a biomechanical model of the brain [16,
17, 51–64]. The physical behavior of tissues is modelled with physically-based equations.
These equations are then discretized and numerically solved using the finite element method
(FEM).

The equations describing the behaviour of brain tissue are based on a physical model of
tissue. Many proposed models use linearly elastic equations [52,55–57,60–62,64], while more
complex ones model tissue as an elastic body with interstitial fluid [17, 51, 53, 54, 58, 59, 63].
More advanced models include viscoelastic models, in which viscosity is taken into account.

Anatomical structures such as the dura mater, falx cerebri, and tentorium cerebelli can
be modeled to improve the model accuracy. The falx cerebri can be modeled as a membrane
with a higher stiffness and/or with boundary conditions [17, 51, 59, 63, 65]. Several studies
suggested that modeling the falx cerebri can reduce errors in that area [52,59]. The tentorium
cerebelli has also been modeled in some methods [17, 59, 62, 63]. In Chen et al. [59], nodes
located at boundaries are assigned slip boundary conditions, such that they cannot move in
the normal direction (through the tentorium). In DeLorenzo et al. [62], nodes corresponding
to the tentorium cerebelli are fixed.

Intraoperative imaging may be used to constraint the model such that the estimated
deformation matches the acquired intraoperative data. This can be achieved by adding
boundary conditions to the FEM model corresponding to the observed displacement between
the pMR and intraoperative measurements. Several methods [52,53,57,61] proposed to use
iMR to estimate the displacements of anatomical structures. Manual segmentation of the
iMR images is not feasible in the operating room [61], however iMR segmentations can be
estimated from pMR segmentations after registering the iMR with the pMR [52,53]. Other
studies used intraoperative acquisitions of the cortical surface with laser range scanners [17,
59,63] or stereo vision cameras [16,54,62] to estimate the displacement of the cortical surface.
Bucki et al. [60] and Morin et al. [45] extracted the blood vessels from preoperative MRA and
Doppler-mode iUS, between which the displacements are computed. Mohammadi et al. [64]
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used a combination of stereo vision and Doppler-mode iUS to estimate the displacements.

During surgery, surgeons often need to spread out tissue to access subsurface tumor
tissue. This can be achieved with retractors, which are surgical tools used to move and retain
tissue. Tissue retraction introduces a discontinuous deformation of tissue, which is complex
to model. Miga et al. [51] used specific boundary conditions to model tissue retraction, while
Ferrant et al. [52] removed corresponding mesh nodes in the model. In Sun et al. [54], the
tissue displacement due to retraction is estimated with intraoperative stereo vision, which
is used to set boundary conditions. Vigneron et al. [61] proposed to use the extended FEM
which can handle discontinuities, to model retraction as a discontinuous deformation.

Tissue resection induces further tissue displacement during surgery. Few biomechanical
models incorporate such displacements [16,51,52,60], and have limitations that are discussed
in the following section.

2.1.3 Modeling resected tissue

Most existing studies have focused on registration before tissue resection. Once tissue
resection has started, brain tissue is further deformed due to tissue removal. Additionally,
while the resection cavity is visible on intraoperative images, it is not present on the pMR.
Thus, it is essential to account for the resection cavity to accurately register the pMR.

Existing methods that estimate the resection cavities have limitations. Some methods
use manual or semi-automatic segmentation methods that require user input [51,52], which is
impractical in the operating room. Other methods use simple estimations [60] or estimations
with surface data only [16], which can be problematic as the shape of the resection cavity
can be complex. More recently, Kochan et al. [66] proposed to adapt the NCC metric in
their pMR-iMR registration method for better handling the resection cavity, which is not
present in the pMR. This method was only tested for monomodal registration, and iMR has
limitations (see section 1.5.5).

In contrast, iUS provides subsurface information and iUS volumes can be acquired such
that the whole resection cavity is covered. Furthermore, iUS is convenient to use in the
operating room. Therefore, using iUS to accurately delineate the resection cavity looks
promising for improving the registration methods. Previous studies have shown that deep
learning can successfully segment structures in iUS images automatically [1, 4, 38, 39, 67],
including the resection cavity [1, 67] (see chapter 3). Only one study [67] applied this to
registration, more specifically iUS-iUS registration. To the best of our knowledge, no pMR-
iUS registration method using iUS segmentations of the resection cavity has been proposed.
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2.2 Brain segmentation

In this section, methods for brain segmentation are reviewed. Image segmentation con-
sists in classifying each voxel into several groups, which are called classes. Segmentation
images are the images that are the result of the segmentation process, in which each pixel is
given a value corresponding to a class. In brain images, classes of interest typically include
tissue type (WM, GM, tumor tissue), CSF, and anatomical structures. The segmentations of
brain images are not only useful for analysis and surgical planning, but also for many brain
shift compensation methods, which can use the segmentations of brain tissue and anatomical
structures in their process.

Segmentation of brain structures has been mostly studied for MR images. As iUS quality
has improved in the last decade, it has seen increased usage for various applications in the
operating room, including brain tumor resection surgery. This prompted research on brain
iUS segmentation, although there are fewer studies of brain US segmentation than other
US applications (such as US imaging of the heart, breast, and prostate) and this research
domain is still active.

2.2.1 In MR images

Segmentation of brain MR images has been widely studied [68–70]. The MICCAI BRATS
challenge on brain MR segmentation has been organized yearly since 2012 [71]. Many studies
have focused on classifying brain voxels into the three main components: WM, GM, and
CSF. Segmentation of tumor tissue is also highly relevant for surgical planning and brain
shift compensation methods, thus, many methods have been proposed to that end [70].

This section gives an overview of brain MRI segmentation techniques, starting with com-
mon preprocessing methods, and then summarizing the different types of methods.

2.2.1.1 MRI preprocessing

MR images are often preprocessed prior to segmentation, to increase robustness and
accuracy of the segmentation methods.

MR non-uniformity correction is a preprocessing step which compensates for signal
variation due to the MR acquisition process, such as inhomogeneity of the magnetic field,
and sensitivity of the receivers. Because of this signal variation, the intensity of tissue or CSF
may vary spatially even though there is no change in the physical properties of the material.
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This complicates the segmentation process, as many segmentation methods assume that
intensity is relatively homogeneous in each class, and that there is limited intensity overlap
between classes. Thus, MR images are commonly preprocessed to correct this non-uniformity,
for which various methods have been proposed [72].

Brain mask extraction consists in separating brain voxels from non-brain voxels. This
allows non-brain voxels to be discarded, such that only brain voxels are segmented. The
benefit of such masking is to prevent non-brain structures, whose intensities may overlap
with those of brain tissue, from being classified as brain voxels.

Other common preprocessing steps may include registration to standard coordinate sys-
tems and/or to a brain atlas, denoising, and intensity normalization.

2.2.1.2 Thresholding methods

Thresholding methods consists in finding thresholds that separates intensities into groups
that correspond to segmentation classes. The thresholds may be global (one value for the
entire image or volume) or local (corresponding to a neighborhood of voxels).

These methods are rarely used for brain MRI segmentation, as determining an satisfying
threshold is difficult due to inhomogeneity, noise, and complex intensity distributions.

2.2.1.3 Clustering methods

Clustering algorithms classify data into several groups based on patterns.

K-means is a clustering algorithm in which each cluster is given an initial center point,
which is then updated iteratively until convergence. The center points are updated such that
a similarity metric is maximized, or a dissimilarity metric is minimized. The sum of squared
distances is a commonly used dissimilarity metric.

K-means can be used for WM, GM, and CSF segmentation in brain MRI [73]. Abdel-
Maksoud et al. [74] notes that while K-means can locate tumor tissue, the resulting segmen-
tations may be incomplete. They propose a hybrid method combining K-means and fuzzy
C-means (see next paragraph) to overcome this limitation.
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Fuzzy C-means (FCM) [75] is a clustering similar to K-means, which differs from K-
means in allowing data points to belong to several clusters. In constrast, points are assigned
to a single cluster in K-means.

Several works have used FCM for brain MRI segmentation. In particular, Ahmed et al.
adapted the similarity metric to estimate and account for MRI non-uniformity [76]. FCM is
also used to compute initial segmentations in other methods [77,78].

Expectation maximization (EM) is an algorithm which finds the maximum likelihood
parameters of a statistical model given the observed data points. The maximum likelihood
parameters are the parameters maximizing a likelihood function, and thus can be thought
to be the most probable parameters. EM works iteratively by alternating the expectation
and maximization steps. The expectation step updates latent variables given the model
parameters. The maximization step updates the model parameters given the latent variables.

It can be used for clustering, using a gaussian mixture model in which each class corre-
spond to a gaussian function in the model. In this case, latent variables are the class the
observation belong to. In the case of image segmentation, the observations are the voxel
intensities.

2.2.1.4 Atlas-based methods

Atlas-based methods consist in registering the MR image to a reference MR image called
atlas, turning the problem into an image registration one. Once the mapping between the
current image and the atlas is known, a segmentation of the atlas can be mapped to the
current image. The segmentation of the atlas is only done once, so it can be done manually
(while time consuming, manual segmentation are the most accurate).

Several image registration methods have been proposed. They usually consist in maximiz-
ing an image similarity metric, with regularity constraints. An overview of image registration
methods can be found in this review [21]. Popular software packages include FreeSurfer [79]
and Caret [80], which have been compared [81].

The main benefit of atlas-based methods are that they do not dependent on which classes
need to be segmented. These classes only need to be segmented once in the atlas, possibly
manually if no other method exists and/or for high accuracy. However, atlas-based methods
may suffer from high inter-patient variability, and the reference image need to be chosen as
a representative sample.
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2.2.1.5 Surface methods

Surface methods find surface boundaries that delimit the classes in the volumes. These
boundaries are normally located where intensity values are changing.

Active surfaces Active surfaces are surfaces defined explicitly with a set of controlling
points, which are iteratively updated such that they move towards the boundaries in the
images. Active surfaces are the 3D equivalent to active contours in 2D.

An initial surface needs to be initialized, either manually or with another method. This
initial surface is then iteratively updated given image intensity and surface shape constraints.
The image intensity constraints ensure that the curve moves to boundaries in the images,
where intensity values are changing. The surface shape constraints force a certain regularity
and smoothness for the surface.

Level-set are similar to active surfaces, except that the surfaces are defined with a func-
tion. The surface correspond to the points for which the function takes a given constant
value, called level. The surface is moved by changing the level.

Level-set methods have been proposed for WM and GM segmentation [77,82] as well as
tumor tissue segmentation [78].

2.2.1.6 Machine learning methods

Machine learning refers to a class of methods that use data to determine the parameters
of a model. A model is a function with a number of parameters, which use given input values
and model parameters to compute output values. Machine learning consists in determining
the best set of model parameters from sample data, such that the model outputs expected
values for a particular task. In the case of image segmentation, the inputs are the image
(or volume in 3D) as a 2D or 3D array of intensities, and the output is the corresponding
segmentation image, which gives the class each pixel belongs to.

Deep learning is a subset of machine learning in which models contain a very large number
of parameters. These models are usually composed of several interconnected layers, which
form a network called artificial neural network. Deep learning for image segmentation is
reviewed in details in section 2.3.2.

Determining the model parameters is called the training phase. This is done with a
set of sample data, called training set; thus, parameters are said to be learned from the
training data. Once the model parameters have be determined, the accuracy of the model
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is evaluated with a distinct set of data called test set (not seen during the training phase).
During the test phase, the model outputs for the test set is compared to the actual expected
values (called ground truth) using distance or similarity metrics. These metrics indicate the
accuracy of the model, and its capacity to generalize to unseen data.

k-nearest neighbors (k-NN) is a learning algorithm for classification. The training
phase only stores the training values and labels. The output of the model is the most
frequent label among the k most similar inputs in the training samples, according to a given
similarity metric, and where k is a constant. For image segmentation, the input values are
usually the intensities, although it can also be specific features, obtained by a transformation
of image intensities. k-NN has been used in MRI segmentation, for example to classify CSF,
WM and GM [83] and to segment lesions [84].

Support vector machines (SVM) are classification models in which hyperplanes sepa-
rate the classes in the input space. Given an input space of dimension n, the training of an
SVM model consists in finding the optimal hyperplanes (space of dimension n− 1) separat-
ing the classes. As such, the input space needs to be linearly separable. Thus, the input is
generally processed to extract features, such that the feature space is linearly separable.

In brain MRI segmentation, various features can be used, such as intensity and texture-
based statistics [85], wavelet transform coefficients [86], or a combination of both [87].

Random forests are classification models that are composed of multiple decision trees.
Several studies proposed to use random forests for tumor segmentation in brain MRI [88,89].

Neural networks are deep learning models that are composed of several layers. Deep
learning segmentation networks are reviewed in detail in section 2.3.2. These models achieve
state-of-the-art results for image segmentation, and are actively researched.

2.2.2 In ultrasound images

Segmentation of ultrasound images is much more difficult than MRI segmentation, due
to several limitations of ultrasound. As explained in section 1.5.5, ultrasound images contain
noise and artifacts, are dependant on probe orientation and depth, and their field of vue is
limited. As such, many methods that can segment MR images cannot be used as is.

Speckle is one of the main reasons that make US segmentation challenging for traditional
segmentation methods. Speckle refers to the granular noise in US images that is due to
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backscattered echoes of the US signal. Speckle reduction methods have been proposed to
improve the reliability of traditional segmentation methods for US images [90,91]. Common
techniques for speckle reduction include adaptive filters [92], anisotropic diffusion filters [93,
94], wavelet transforms [95, 96], and nonlocal means filters [97, 98]. More recently, several
studies proposed deep learning methods for speckle reduction [99–101].

Noble et al. reviewed US segmentation methods [102]. Since then, research has been
mostly focused on machine learning [103]. Machine learning is particularly interesting for
US segmentation, which is generally difficult to apply traditional segmentation methods to.
Research on brain US segmentation is however rather limited, compared to other US imaging
applications. This is partly due to US imaging being not that common in neurosurgery,
although it has seen increased usage and research interest in the last decade. Segmentation
methods have been proposed for the midbrain region [104], resection cavities [1,67, chapter 3],
tumor tissue [4, 105,106, chapter 4], falx cerebri and sulci [5, 38,39, chapter 5]. Some of the
aforementioned studies [1, 4, 5] were conducted as part of this thesis and are detailed in the
next chapters.

2.3 Deep learning for image segmentation and registra-
tion

This section starts with technical background on artificial neural networks. Deep learning
methods for image segmentation and registration are then reviewed.

2.3.1 Artificial neural networks

2.3.1.1 General structure

Artificial neural networks are a class of machine learning models which are composed
of several interconnected units called layers. The layers are functions taking inputs and
computing outputs. The layers are connected such that a layer can take the output of
another layer as input, and its output may be used as input of another layer. This forms
a network, ie. a graph of functions, which itself has inputs and outputs. The inputs and
outputs of the network are inputs and outputs of layers that are not connected to other
layers. Note that a neural network may be defined hierarchically, because a neural network
can be used as a layer in a bigger neural network.

A layer computes an output given its inputs and its parameters. Parameters are variables
used in the computation of a layer’s outputs, that are learned from data during the training

27



input
I

linear
L = W · I + b

activation
O = φ(L)

output
O

Figure 2.1 – A perceptron: O = φ (W · I + b) where I is the input, O is the output, W is
the weight matrix, b is the bias vector, and φ is the activation function.
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Figure 2.2 – An example of a multi layer perceptron: a neural network composed of several
perceptrons.

process.

The most basic unit of a neural network is the linear operation O = W · I + b, where
I is the input vector of size n, O is the output vector of size p, and W and b are the
parameters (a p × n weight matrix and a bias vector of size p). In order to build more
complex operations, non linear functions are used in between linear operations. These non
linear functions are called activations. The combination of a linear operation followed by
an activation is called a perceptron (see figure 2.1). The most simple neural networks are
composed only of perceptrons, organized in layers. Figure 2.2 shows a schematic of such
neural network.

2.3.1.2 Learning parameters

The parameters of a neural network are the parameters of all the layers of the network.
Their values are learned during the training process, which finds optimal parameter values
given training data and a loss function. The loss function sets the objective of the model,
and is a measure of how wrong an output is, given some input data. Thus, the training
process aims to find the model parameters that minimize the loss function.

This is done with an iterative process called gradient descent. The gradient of the loss
function f with respect to the parameters is the vector of the partial derivatives of f . Thus,
by moving the parameters towards the opposite direction, the value of the loss function
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Figure 2.3 – Illustration of the gradient descent of a model with one parameter w.

decreases. Gradient descent consists in iteratively updating the parameters in the opposite
direction of the gradient, until a local minimum is reached.

Figure 2.3 illustrates gradient descent, with a simplified example in which there is only
one parameter w. In this case, the gradient is simply the derivative of the loss function.
The parameter w is initialized with a value w0, and is subsequently updated to w1, . . . , w3

by increasing (respectively decreasing) w if the derivative is negative (respectively positive).
It should be noted that the initial value w0 is important and will determine which local
minimum the algorithm will converge to. In the illustrated example, the algorithm converges
to a local minimum which is not the absolute minimum.

At each iteration of the gradient descent, the gradient determines the direction towards
which the parameters will be moved. The learning rate is a scalar weight applied to the
gradient, which determines by how much the parameters are updated in that direction. A
large learning rate induces a large displacement, and thus allows fast convergence of the
training process. However, local minima may be skipped if the learning rate is too large,
and may prevent convergence to a minimum. In contrast, small learning rates lead to more
robust convergence, at a slower rate.

The training process is done with a training set containing several samples. The loss
function should be minimized for all training samples, thus the total loss function is the
sum of the loss terms for all samples. To reduce the memory complexity of computing
the gradient of the total loss function, neural networks are usually trained by considering
samples in smaller groups, called mini-batches. The training samples are divided in mini-
batches which are randomly shuffled. The parameters are then updated for each mini-batch,
using the gradient of the loss function for that mini-batch. An epoch refers to an iteration
over all mini-batches, which is repeated until convergence. This process approximates the
gradient descent process, and is called stochastic gradient descent (SGD). Various extensions
of SGD have been proposed; in particular, the learning rate is adapted for each parameter
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is algorithms such as AdaGrad, RMSProp, and Adam [107].

Due to the structure of neural networks, the function of which the gradient is computed
is very complex, and includes many compositions of functions. Each block introduces a new
composition of the block’s function with it’s input. The gradients are computed efficiently by
using the derivation chain rule from the last output to the first blocks connected to inputs,
storing intermediate values to avoid computing the same values several times. Because the
gradients are computed in reverse order compared to when the function is evaluated, this
process is call backpropagation.

2.3.1.3 Basic building blocks

This section introduces some of the most common layers used in neural networks.

Fully connected layers are layers which connects every outputs of the preceding layers
to every inputs of the following layer, using linear operations and an activation function.
Thus, it is a perceptron connecting all previous outputs.

The parameters of the layers are the weight matrix and the bias vector.

Convolutional layers are layers whose output is the convolution of the input with a
kernel. The 2D convolution of an input image s with an n× p kernel k is the image d such
as:

∀i, j; di,j =
n∑

x=1

p∑
y=1

kx,ysi+x−dn
2
e−1,j+y−d p

2
e−1 (2.1)

Each pixel in the output image is computed by looking at a neighborhood around the
corresponding pixel in the source image, the size of the neighborhood being that of the
kernel. The values of the neighborhood in the source image are multiplied element-wise with
the kernel values. The output pixel is the sum of all these resulting values. Figure 2.4 is a
graphical representation of this operation.

A 3D convolution is the same operation defined on 3D volumes, with a 3D kernel.

In a convolutional layer, the kernel values are parameters. Thus, these are learned during
the training process. Since the input and output may be composed of several images (or
volumes in 3D), the parameters are actually several kernels: a convolutional layer taking ni

images and outputting no images has ni × no kernels corresponding to each pair of input
and output images. The number of input or output images is also referred to as number of
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Figure 2.4 – A 2D convolution operation with a 3× 3 kernel.

input or output features. A convolutional layer may also have a bias vector as for a fully
connected layer.

Input images are usually padded such that the output images have the same size as the
input images. This consists in defining a value for pixels out of the input images, used for
the neighborhood of pixels close to the border. They may be set to zero (referred to as zero
padding), or to the value of the closest pixel.

Pooling layers are similar to convolutional layers, except that the operation is not a
convolution, but a given operation on the pixel neighborhood. For example, max pooling
layers compute the maximum value in the neighborhood of the pixel. Max, min, and average
pooling are the most common pooling layers. These layers do not have any parameters. The
most common application of pooling layers is to decrease the spatial size while increasing
the number of features.

Upsampling layers upsample an image using nearest neighbors or linear upsampling.
These layers do not have any parameters. They may be used as the reverse of a pooling
layer.

2.3.1.4 Activation functions

The most commonly used activation functions are threshold functions, which introduce
non linearity. The following paragraphs present common threshold activation functions.

31



Rectified linear unit (ReLU) is the positive part function, ie. ReLU(x) = max(x, 0).
Several variations of this function have been introduced, for example to make it smooth.

This activation function is a general activation that is can be used after any layer.

Sigmoid (or logistic function) is a smooth approximation of the step function. It is
defined as sigmoid(x) = 1

1+exp(−x) . Its output in in the range [0, 1], and positive inputs are
mapped to [0.5, 1] whereas negative inputs are mapped to [0, 0.5].

Sigmoid is often used as the last activation layer to constraint the output of the model
to the range [0, 1].

Softmax is a multidimensional generalization of sigmoid. For n inputs x1, . . . , xn, it is
defined as softmax(x1, . . . , xn) =

(
exp(xi)∑n

j=1 exp(xj)
, i ∈ {1, . . . , n}

)
. The output is a vector of n

number in range [0, 1], whose sum is 1.

2.3.2 Image segmentation

This section gives an overview of the main neural network architectures and loss functions
for image segmentation. For a more comprehensive review of medical image segmentation
with deep learning, the reader is referred to this review [108].

2.3.2.1 Neural network architectures

Convolutional neural networks (CNN) are neural networks made of successive con-
volutional layers. Max pooling layers may be inserted between convolutional layers, so that
features at learned at several scales. Depending of the end goal, the last layers may be fully
connected layers to provide dense outputs, such as segmentation maps. Figure 2.5 shows a
schematic of a typical CNN architecture. While CNNs were first designed for image classi-
fication, they have also had some success in image segmentation tasks, and were among the
first neural network architectures used for image segmentation.

Fully convolutional networks (FCN) are CNNs in which the last layers are convolu-
tional instead of fully connected. They were introduced by Long, Shelhamer, et al. [109] as
the first pixel to pixel segmentation network trained end-to-end (ie. optimizing the entire
model in one pass).
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Figure 2.5 – Example of a CNN architecture.
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Figure 2.6 – Encoder-decoder network architecture.

Encoder-decoder networks are an evolution of FCNs to support larger input sizes. The
first part of the network is the encoder, consisting of convolutional and max pooling layers
as in FCNs, whose goal is to extract features from the input image. The second part is
the decoder, which mirrors the encoder and outputs the segmentations from the extracted
features. The decoder is structured like the encoder, except that max pooling operations
become upsampling operations. Figure 2.6 shows a schematic of an encoder-decoder network.

U-Net is an encoder-decoder network in which skip connections are added. Skip connec-
tions connect the last layer of each scale in the encoder to the first layer of corresponding
scale in the decoder. U-Net was proposed by Ronneberger et al. [110], and has been widely
adopted and adapted to many medical image segmentation problems, due to its capacity to
learn from small datasets. It is the basis of the models proposed in this thesis, which are
illustrated in the next chapter, in figure 3.5.
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2.3.2.2 Loss functions

This sections presents the most common loss functions for image segmentation. Ma et
al. [111] conducted an extensive review of segmentation loss functions, and suggest the use
of combinations of several loss functions.

In the following equations, yt denotes the ground truth (as binary, with 0 for background
and 1 for foreground), and yp is the segmentation output of the model (in range [0, 1]).

Binary cross-entropy is a dissimilarity metric based on relative entropy (or Kullback-
Leibler divergence). Its definition is provided in equation 2.2.

l(yt, yp) = −
∑
i

yt[i] log yp[i] + (1− yt[i]) log(1− yp[i]) (2.2)

Weighted binary cross-entropy is a weighted version of standard binary cross-entropy.
Each class is assigned a weight: wb for background and wf for foreground (equation 2.3).
This can improve the convergence of the models in case of imbalanced datasets.

l(yt, yp) = −
∑
i

wfyt[i] log yp[i] + wb(1− yt[i]) log(1− yp[i]) (2.3)

Dice loss is based on the Dice coefficient (also called F1-score) [112]. It was first proposed
as a loss function in V-Net [113] to mitigate class imbalance. It is a smooth version of the
Dice score that is suitable for backpropagation, as defined in equation 2.4.

l(yt, yp) = 1− 2
∑

i yt[i]yp[i] + ε∑
i yt[i] +

∑
i yp[i] + ε

(2.4)

Hausdorff distance can be estimated in a loss function through various methods that were
recently presented [114]. One method for approximating the Hausdorff distance consists in
evaluating convolutions with several kernel sizes to estimate the largest distance.
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2.3.3 Image registration

After having been extensively used in image classification and segmentation, deep learning
techniques have been recently explored for image registration. Most proposed models are
using well-known architectures such as CNNs [115–121] or encoder-decoder networks [122–
127]. Less common alternatives include generative adversarial networks (GAN) [128–130].
Most of these methods are trained to output a dense displacement field (DDF) corresponding
to the transformation between the two images. This DDF can then be used to transform
the original image (moving) and obtain the registered image matching the fixed image.

The loss function used to train the model consists of several terms. In monomodal reg-
istration, an intensity term such as the L2-norm [125, 127] or NCC [119, 120, 125, 126] can
be used. In multimodal registration, it is more challenging to use intensity-based metrics as
the modalities are different. If ground truth DDFs are available, the DDFs can be compared
directly with a metric such as the L1-norm [117,123], L2-norm [115,122,127], or NCC [120].
Otherwise, the loss function may rely only on the similarity term (for monomodal registra-
tion), or use generated transformations. To keep the output DDF smooth, a regularization
term such as the norm of the gradient of the DDF [119,124,125] can be added.

A novel approach using ground truth segmentations has recently been proposed by Hu et
al. [124]. In their work, another term in the loss function using ground truth segmentation
labels. In the training phase, ground truth segmentations corresponding to the moving image
are registered along with the images. The registered segmentations are then compared to
the segmentations of the fixed image by computing the Dice score. The segmentations are
not part of the network input, thus they are not needed during the testing phase, which is
a significant advantage of this method.

While the outputs of most models are DDFs, Heinrich designed a model with less trans-
form parameters and builtin regularization constraints, pdd-net [131]. He reports better
results than existing DDFs models.

Few deep learning models have been proposed for pMR-iUS registration for brain-shift
compensation [44, 48–50]. Two MICCAI challenges were organized on this task using the
RESECT database, in 2018 [132,133] and 2020 [134]. Zhong et al. [48] used imitation-based
learning to train a model that outputs piece-wise linear transformations. Sun et al. [49]
proposed a model composed of two CNN encoders for extracting features from the pMR
and iUS, respectively, and of a U-Net-like network generating a DDF from the extracted
features. The loss function is a similarity metric between the transformed moving image
and fixed image, that depends on both image intensity and gradient. Gunnarsson et al.
proposed an method based on the multi-scale registration network PWC-Net [135], using
a loss function with NCC intensity similarity, Dice label similarity, and an L2 regularizer.
Pdd-net [131] was also evaluated on pMR-iUS registration [44], achieving the best results of
the Learn2reg 2020 challenge [134].
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(a) 8a (b) 8u

Figure 2.7 – Pre- and post-resection iUS volumes from BITE [136] dataset.

2.4 Datasets with brain intraoperative ultrasound im-
ages

There are only two publicly available datasets of brain iUS images: BITE and RESECT.
Thus, we use these two datasets in this work.

2.4.1 BITE

BITE [136] is a publicly available dataset of pre- and post-resection MR and US images.
It contains images of fourteen patients, for which there are a pre- and post-resection MRI, as
well as several iUS images. For each patient, there are two to five pre-resection iUS, labeled
a to e, and for all but one patient, there are two to six post-resection iUS, labeled u to z. In
the following, we refer to each individual iUS volume by the patient number followed by the
acquisition letter, e.g. 13u. Figure 2.7 shows iUS slices from the BITE dataset.

The MR volumes are T1w MRIs that were acquired with a 1.5T scanner.

The iUS volumes were acquired using a tracked 2D US probe, which was a P7-4 MHz
phased array transducer. The individual 2D slices are available, as well as reconstructed 3D
volumes. The mean 3D volume size is 316 voxels, ranging from 159 to 516. All volumes are
isotropic with a voxel size of 0.3mm.

Since the field of view of US images is limited, several acquisitions with different angles
were made so that as much anatomy as possible was covered. Pre-resection US images were

36



(a) 19b (b) 19d (c) 19a

(d) 3b (e) 3d (f) 3a

Figure 2.8 – iUS volumes before, during, and after resection from RESECT [137] dataset.

acquired with the probe on the dura matter when possible, otherwise directly on the cerebral
cortex or on a dural repair patch. Post-resection US images were acquired either with the
probe inserted into the resection cavity, which was filled with saline, or with the probe outside
the resection cavity which was filled with saline and then closed with Dura-Guard.

For each patient, a set of ten homologous points in a pair of pre- and post-resection
volumes were manually selected by a radiologist. There are also sets of nineteen to fourty
homologous point in pre-resection pMR and iUS volumes. In addition, segmentation of
tumor tissue in the pMR is provided in the database.

2.4.2 RESECT

RESECT [137] is a publicly available dataset more recent than BITE, with pMR and
iUS volumes of twenty-three patients. For each patient, three iUS volumes were acquired,
respectively before, during and after resection. In the following, we refer to each individual
iUS volume by the patient number followed by b, d, or a for before, during and after resection,
respectively. Figure 2.8 shows corresponding slices in before, during, and after resection iUS
volumes.
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T1w and FLAIR pMR are available for each patient. They were acquired with a 3T
scanner for all but three patients, for which a 1.5T scanner was used. 3T scanners provide
better contrast and lower noise than 1.5T scanners.

The iUS volumes were acquired with two types of tracked 2D linear US probes (12FLA-L
and 12FLA), with a frequency range of 6-12 MHz. The mean volume size is 347 voxels,
ranging from 221 to 492. All volumes are isotropic with a mean voxel size of 0.21mm (0.14-
0.36mm). The volumes were acquired such that the whole tumor and/or resection cavity is
covered.

A set of sixteen to twenty landmarks between the pMR and iUS before resection (iUSb)
and between the pMR and iUS after resection (iUSd) were manually selected for most pa-
tients. In addition, a set of fourteen to twenty-two homologous landmarks between iUSb
and iUS during resection (iUSd), and between iUSd and iUSa, are available for seventeen
patients. No segmentations are provided with the database.
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Chapter 3

Segmentation of the brain tumor resec-
tion cavity in iUS images

3.1 Introduction

As discussed in section 1.6, tumor tissue resection causes tissue displacement during brain
tumor resection surgery, and thus is one of the causes of brain shift. This impairs navigation
of the pMR, which no longer reflects tissues location accurately. To compensate for brain
shift, several studies proposed methods to update the pMR with intraoperative data (see
section 2.1). However, only a few methods compensate for resection-induced brain shift (see
section 2.1.3).

The location of resected tissue is needed for accurate modeling of tissue displacement due
to tissue resection. Both image-based and model-based methods would benefit from such
information. Image-based methods could use the resection cavity segmentation to mask out
voxels in that region, since they have no correspondence in the pMR. Model-based methods
could integrate the resection cavity in their biomechanical model so that tissue displacement
due to resection is modelled. In addition, the segmentation of the resection cavity may be
used to assess the extent of resection and the presence of residual tumor tissue.

As such, we propose a method to automatically segment the resection cavity in iUS
images, using deep learning. The deep learning models are evaluated on two datasets:
BITE [136] and RESECT [137] (see sections 2.4.1 and 2.4.2). We compare different sampling
methods, 2D and 3D models, and training strategies with the two datasets. Quantitative
and qualitative results are then discussed in a detailed analysis. The methods and results
presented in this chapter were presented at the SPIE 2019 medical imaging conference [2]
and published in the Journal of Medical Imaging [1].
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BITE 3u BITE 6u BITE 8u RESECT 5d RESECT 8a RESECT 18d

Figure 3.1 – Ground truth segmentations of resection cavities (BITE and RESECT).

3.2 Methods

3.2.1 Data and preprocessing

This study uses the iUS volumes from the BITE [136] and RESECT [137] databases (see
sections 2.4.1 and 2.4.2). Since this study focuses on resection cavity, only post-resection
volumes were considered (ie. post-resection volumes for BITE, and during and after resection
volumes for RESECT).

It is worth noting that BITE and RESECT differ not only in the US equipment used but
also in the operative strategy. RESECT is more recent than BITE, thus it uses more recent
US probes that generate better images. RESECT iUS volumes were acquired such that they
cover the whole tumor and/or resection cavity, whereas BITE has several acquisitions which
may not individually cover the whole resection cavity. These are substantial differences to
consider, especially with deep learning techniques.

No ground truth segmentations of the resection cavity was available for neither datasets
at the time this study was conducted. Thus, two raters manually delineated the resection
cavity in both datasets (see figure 3.1).

The RESECT cases were first segmented by myself (François-Xavier Carton). Ten cases
were then segmented again, both by myself for intra-rater variability (about 1 month later),
and by Matthieu Chabanas, for inter-rater variability. Dice score between the initial segmen-
tations of the two raters are shown in figure 3.2. While both the mean intra- and inter-rater
Dice score is 0.89, the variance is slightly higher for inter-rater variability. There was a high
agreement for all cases, the differences being in the areas either lacking a clear contour or
being difficult to interpret. These areas were then corrected using the guidance of a neu-
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Figure 3.2 – Intra- and inter-rater variablity for initial RESECT resection cavity segmen-
tations.
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Figure 3.3 – Representation of the three implemented segmentation models.

rosurgeon who reviewed the segmentation of all RESECT cases. The segmentations were
edited if needed following the directions of the neurosurgeon. These final segmentations are
the one used in this study.

The BITE volumes were segmented by the two raters, each segmenting half of the cases.
The segmentations were then reviewed by the two raters together, and edited accordingly.

All volumes were pre-processed by normalizing the intensities. The normalization consists
in subtracting the mean and dividing by the standard deviation for each volume.

During training, data was augmented with random transformations, to prevent overfit-
ting. All training volumes were transformed at the beginning of every epoch with the affine,
grid, and scale transformations. Each of the three types of transformations was applied with
a probability of 0.5. Affine transformations consisted in a translation of up to 16 voxels in
a random direction and a rotation around a random axis with an angle between -10 and
10 degrees. Grid transformations were perturbations of the volume sampling grid, computed
on a 32×32×32 grid for which a normal displacement was added to the regular coordinates.
Scale transformations used a single scale factor for all dimensions, ranging from 0.75 to 1.25.

3.2.2 Model architecture and training parameters

We compare three versions of a U-Net-like [110] network architecture (figure 3.3): 2D
models with a single input slice (named 2D-1) and with seven adjacent input slices (named
2D-7), and a 3D model (named 3D).
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The input of the 2D models are ci × 256 × 256 patches, where the number of slices ci
is one or seven. The slices are extracted from the original volumes by sampling all slices in
one direction (sampling direction). Since the original volumes are larger than the input size,
the slices also need to be adapted to fit the input size. To this end, three sampling methods
are implemented and compared (figure 3.4): downsampling (DS) with linear interpolation,
extracting patches with a sliding window (SW) with a stride of 64 voxels, and cropping
to a region of interest (ROI) that is estimated using the result from the DS method. A
segmentation volume is reconstructed from concatenating the output slices on the sampling
direction. The slices are upsampled for the DS method, averaged over the patches for the
SW method, or zero-padded for the ROI method.

The input of the 3D model are 128×128×128 patches, which are extracted with a sliding
window. During training, patches are extracted from a 256 × 256 × 256 region of interest
centered around the resection cavity, to avoid sampling too many patches containing no
resection cavity voxels. The patches are extracted with a stride of 32 voxels. During testing,
the sliding window covers the whole volume, with a stride of 64 voxels.

All models (2D and 3D) have the same network architecture, except that the 3D model
has 3D convolutions and max-pooling operations rather than 2D. The architecture is based
on the original U-Net [110], except that convolutions are padded, the layer sizes are different
(as noted before), and the last layer activation is sigmoid instead of soft-max. The output
layer values are between 0 and 1, and are then converted to binary masks with a threshold
of 0.5. Only the largest connected component is kept in the final segmentation mask, as to
remove possible small components around the resection cavity. Figure 3.5 shows an overview
of the network architecture.

The Dice loss function (equation 2.4) is used for optimization of the model parameters, to
mitigate class imbalance [113]. Other loss functions for segmentation, such as binary cross-
entropy (equation 2.2) and weighted binary cross-entropy (equation 2.3), had convergence
issues and did not yield better results, and thus were not considered for this study. Models
trained with the binary cross-entropy loss tended to converge to a solution that would always
return empty segmentations (null solution). This is due to class imbalance, as there are about
95% of background voxels. Weighted binary cross-entropy mitigates this issue by introducing
class weights wb for the background voxels and wf = 1 − wb for foreground voxels. While
this avoided convergence to a null solution, the lower weight wb increased false positives.
Such increase was observed with wb = 0.25 and wb = 0.05. Since the Dice loss function have
neither of the aforementioned issues, it is the loss function that was retained in this work.

All models were trained using the Adam optimizer [107], with parameters β1 = 0.9 and
β2 = 0.999, and with a learning rate of 10−5. The 2D-1 and 2D-7 models were trained for
100 epochs, while the 3D model was trained for 20 epochs. The best epoch was then selected
as the one that had the minimal loss function over the validation set.
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Figure 3.4 – 2D sampling methods.
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Figure 3.5 – U-Net architecture.

3.2.3 Training strategies and validation studies

We perform cross-validation to evaluate the robustness of the trained models. For RE-
SECT, four folds are used with 23 training volumes, 4 validation volumes, and 10 test
volumes. For BITE, two folds are used with 8 training volumes, 1 validation volume, and 4
test volumes.

We first train independent models on a single dataset. These models are evaluated on the
test set, as well as on the other dataset, to assess whether generalization from one dataset to
another is possible. For example, we evaluate the models trained with the RESECT training
set on all BITE cases in addition to the RESECT testing set.

The models are then fine-tuned using the training set of the other dataset. The training
is resumed starting with the weights at the selected best epoch of the initial training, using
the other dataset for the fine-tuning. As such the models trained with RESECT were fine-
tuned with BITE. All parameters are always updated, ie. no layers are frozen during the
fine-tuning training.

Finally, a single model is trained with both dataset, with volumes from both datasets
split into training, validation, and test sets. Figure 3.6 shows flowcharts with the different
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Figure 3.6 – Training and fine-tuning strategies with the two datasets.

training and fine-tuning strategies that were evaluated in this study.

The three sampling methods (DS, SW, and ROI) are compared based on the results of
the 2D-1 and 2D-7 trained on RESECT. These results are the segmentation outputs for
the RESECT test cases on the four folds chosen for cross-validation. Then the three model
architectures (2D-1, 2D-7, and 3D) trained on RESECT are compared. Finally, we compare
the five training strategies for the two datasets: training from scratch (BITE and RESECT),
fine-tuning (BITE and RESECT), and using both datasets.

3.3 Results and discussion

3.3.1 Sampling methods

In this section, the three 2D sampling methods are compared. 2D SW and ROI have
the best results, with a mean Dice score of 0.73 and 0.74, respectively. Figure 3.7 shows the
Dice scores and several other metrics for the three 2D sampling methods, as well as the 3D
SW model.

The downsampling method have substantially worse results than the SW and ROI meth-
ods. There are both under-segmentation (figure 3.8a) and over-segmentation (figure 3.8b)
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Figure 3.7 – Evaluation metrics for the three 2D sampling methods and for the 3D SW
method, for the models trained with RESECT.

errors. There are 11 volumes out of 37 for which the output segmentation with the DS
method have no overlap with the ground truth segmentation (figure 3.8c). In contrast, there
are only 4 such volumes with the SW and ROI method. These correspond to resection cav-
ities with the smallest volumes in the dataset. All but two of them have resection cavities
smaller than the median resection cavity volume (figure 3.9). Thus, these errors are likely
due to the downsampling, which further reduced the size of the resection cavities.

Overall, the SW and ROI methods have similar results. The ROI method have better
segmentations than the SW method in a few cases, as it did not suffer from patch errors
(figures 3.8d and 3.8e). These patch errors correspond to adjacent patches for which the
resection cavity is missing in one of the patches. This could have been mitigated by using
more patches (ie. increasing the overlap between patches by decreasing the sliding window
stride), at the expense of longer computing times. On the other hand, the SW method had
fewer segmentations with no overlap with the ground truth (figure 3.8f). The SW may be
more reliable than the ROI because it does not depend on the output of the DS model, and
because the sliding window covers the volumes entirely while the ROI is restricted to the
selected region. The SW method have longer runtimes than the ROI method, because the
model is evaluated on several patches, in contrast to the ROI method which evaluates only
two models (DS and ROI). On a NVIDIA® GeForce GTX TITAN X, the SW method takes
about 1 minute, whereas the ROI method takes about 15 seconds. Thus, one approach or
the other may be preferred depending on accuracy and time constraints.
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Figure 3.8 – Differences between the three 2D sampling methods. Green: ground truth
segmentation. Blue: output segmentation.
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Figure 3.9 – Volumes of the resection cavity in all and failed volumes (volumes for which
the model output segmentation have no overlap with the ground truth segmentation).
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Figure 3.10 – Evaluation metrics for the three network architectures 2D-1, 2D-7, and 3D,
for the models trained with RESECT.

3.3.2 Network architecture

Overall, the 3D model had better results than the 2D models, with a mean Dice score of
0.72 for 3D and 0.67 for 2D. 2D-7 had slightly better results than 2D-1, mainly with the DS
method. Figure 3.10 shows the Dice scores and other metrics for the three architectures.

While the results of the 3D model are better than the results of 2D models, the runtime
was substantially longer due to the large number of patches that are processed for one
volume. Since the 3D patch size is smaller (128 instead of 256) due to memory constraints,
more patches are needed to cover one volume. The average runtime of the 3D model to
evaluate one case was about 5 minutes (1.5 second per patch), on a NVIDIA® GeForce
GTX TITAN X. This may be reduced by decreasing the amount of patches, thus reducing
the overlap between patches, which may decrease accuracy. Thus, 2D models may be favored
in clinical application thanks to their shorter runtime.

2D-7 have slightly better results than 2D-1, however this is most visible with the DS
method. The differences between 2D-1 and 2D-7 are minimal for the SW and ROI methods.
With the DS method, the segmentations are better with 2D-7 in the areas for which the
resection cavity was not labelled, which is often at boundaries and where blood produced
artifacts in the US signal.
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3.3.3 Datasets and training strategies

This section discusses the results of the different training and fine-tuning strategies,
presented in section 3.2.3 and represented in figure 3.6. Results for models trained with one
dataset from scratch and for fine-tuned models are shown on figure 3.11, and results for the
model trained on both datasets are shown on figure 3.12.

3.3.3.1 Models trained on a single dataset

With the best method (3D), the models trained on the RESECT (respectively BITE)
training set has a mean Dice score of 0.72 (respectively 0.75) over the corresponding test set.
The median Dice score is 0.88 for RESECT and 0.81 for BITE. While the were four cases
with no overlap with the ground truth, the remaining ones were successfully segmented, with
resulting segmentations very close to the ground truth.

RESECT cases in particular are discussed in this paragraph. The results of one fold
obtained with the 3D model are shown in figure 3.13. The model is robust to noise, as
shown in case 8d in figure 3.13. It can also be noted that the resection cavity is correctly
selected in volumes in which several cavities are present, such as the ventricle in case 26a.

Except with the 2D DS method, the segmentations with no overlap with the ground truth
correspond to only four volumes (5d, 14d, 15a, 18d) regardless of the model. The resection
cavity in volumes 14d and 15a was among the smallest in RESECT, and thus difficult to
locate. In particular, the 2D DS method is the most sensitive to small volumes. In volume
5d, the dura matter is visible and appears as a high intensity signal (figure 3.1), which
may confuse the model. In volume 18d, the bottom of the resection cavity have a different
signal, possibly due to remaining blood, which may explain why it was not considered as
the resection cavity. A larger training dataset would improve the training, allowing better
generalization and preventing such errors.

BITE results are similar to the RESECT ones. There are no failed case with the SW and
ROI methods, and only one with the DS method.

3.3.3.2 Generalization to the other dataset and impact of fine-tuning

The models trained on RESECT only and BITE only are also evaluated on all cases of
the other dataset (not seen for training), to determine whether these models can generalize
to other datasets. This is of interest since the two datasets differ substantially in acquisition
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Figure 3.11 – Dice scores for models trained from scratch and fine-tuned models.
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Figure 3.13 – Segmentations obtained with the 3D model for RESECT test set. Green:
ground truth segmentation. Blue: model segmentation.
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Figure 3.14 – BITE segmentations obtained with the 2D-7 model trained only with RE-
SECT volumes. Green: ground truth segmentation. Blue: model segmentation.

equipment and protocol, as discussed in section 3.2.1. Results for the RESECT model
evaluated on BITE are shown on figure 3.11b, while results for the BITE model evaluated
on RESECT are shown on figure 3.11d.

While the models do not generalize well, with more cases with no overlap with the ground
truth, there are several volumes that are correctly segmented. The BITE segmentations
obtained with the 2D-7 model only trained on RESECT are shown in figure 3.14, in which
all thirteen volumes are present. Most false negative errors are located on the footprint,
which is often not visible on BITE volumes because the probe was inserted directly inside
the resection cavity. This is for example the case for volumes 5v and 6u shown in figure 3.14.
This is in contrast to RESECT volumes, which all cover the whole resection cavity. The
ground truth segmentations includes all the voxels in the field of view in that area, whereas
the model segmentations do not include voxels far from the visible boundaries of the resection
cavities. False positives errors are mainly located outside the field of view, and thus could
be easily removed with post-processing. Volumes for which there is no or little overlap
with the ground truth (5v, 7x, and 14v) are all volumes covering only part of the resection
cavity unlike RESECT. With the differences in acquisition methods between RESECT and
BITE, it is not surprising that a model trained with one dataset does not generalize well to
another dataset. The results are nonetheless promising, given that several volumes of the
other dataset are correctly segmented although no volumes from that dataset were used in
the training process. With such substantial differences between the two datasets, dataset-
specific training remains the best solution.

With the fine-tuned models, good results are obtained on the dataset used for fine-tuning,
but the results on the original dataset are worse than before the fine-tuning (see figure 3.11e
compared to figure 3.11f, and figure 3.11g compared to figure 3.11h). This shows that the
model somewhat "forgot" the first dataset it was trained with. This is likely due to the
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differences between the two datasets being too important, so that the training focused on
the current dataset in a way that is incompatible with the previous one. The fine-tuned
models still have slightly better results than the models trained from scratch, on the other
dataset. This shows that not all was forgotten about the first dataset. It appears that
training a model to have good results on both datasets is difficult. This again shows that
dataset-specific training is best suited to datasets that are substantially different.

Generalization from one dataset to the other has not proven successful with or without
fine-tuning. The best results are obtained with models trained and evaluated on the same
dataset. The last option for training a model that generalizes to both datasets is to train the
model directly with cases from both datasets. This is investigated in the following paragraph.

3.3.3.3 Model trained and evaluated on both datasets

This paragraph discusses the model trained on both datasets (bottom model in figure 3.6),
whose results are shown in figure 3.12. While the results are better than the ones for
models trained on one dataset and evaluated on the other (with or without fine-tuning),
the model does not outperform models trained on a single dataset and evaluated on that
same dataset. The obtained model is however the model that generalizes the best to both
datasets combined. The model have better results on RESECT than on BITE, despite having
an equal number of volumes from each dataset in the training set.

These results confirm that training a specific model for each dataset yields the best
results. This is most likely because the datasets are too different.

3.3.4 Comparison with intra- and inter-rater variability

The Dice scores of the models with the ground truth can be compared to the Dice scores
between the manual segmentations of two raters. Figure 3.15 shows boxplots as such Dice
scores, comparing the model with intra- and inter-rater variability. While there is a larger
variance for the Dice scores of the model than for the ones of the raters, we observe that
many cases have Dice scores close to rater variability. In particular, the median Dice scores
are very close.

3.3.5 Comparison with other methods

At the time that these results were first published, no comparable study was conducted.
Since then, Canalini et al. proposed a similar method for use with registration of the iUS
before resection with the iUS during or after resection [67]. They train and evaluate their
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Figure 3.15 – Dice score of best model (3D)
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Figure 3.16 – Dice score of best model
(3D) with ground truth (40 test cases), com-
pared to Canalini et al. [67] (5 test cases).

model on RESECT, and report a mean Dice score of 0.84 over the 27 cases. However, this
cannot be interpreted reliably, since it is computed on all cases, including training cases.
They use a test set with five volumes, over which the mean Dice score is 0.75, which is very
similar to what we report in this study.

Figure 3.16 shows these Dice scores, compared with the ones with obtained with our 3D
model. There is a much smaller variance for the Dice scores of Canalini et al.; however,
their test set only have 5 cases while we report our results for 40 cases (4 folds). They have
an outlier case (volume 18d), which is the same case as one of the outliers we reported.
This highlights how difficult segmenting this case is, and the need for robust segmentation
methods.

3.4 Conclusions

In this chapter, we proposed an automatic method to segment the resection cavity in iUS
of the brain. This was the first work published on this topic. We explored different varia-
tions of the methods (2D and 3D models, with different sampling methods) and evaluated
generalization of the models between two datasets with different acquisition protocols. We
analyzed the results extensively and discussed the benefits and drawbacks of the method
variations that we proposed.

We found that better results were obtained with 3D models, but with a higher runtime.
We also showed that for the two datasets used in this study, training specific models inde-
pendently yields better results. This is due to the substantial differences between the two
datasets, and in particular because the resection cavity is only partially visible in many BITE
volumes.

Overall, the automatic segmentations obtained with the models are close to the manual
ground truth segmentations. The obtained Dice scores for many cases are comparable to
intra- and inter-rater variability. At the time we conducted this study, there was no other
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study on segmentation of the resection cavity in brain US images, to the best of our knowl-
edge. Recently, a similar study of Canalini et al. [67] showed that comparable results were
obtained on RESECT volumes.

While for most cases the model segmentation was close to the ground truth, there are a
few outlier cases. We expect that larger datasets would improve the generalizability of the
models, as the two datasets are very small for deep learning techniques. Promising results
were shown nonetheless, which motivates further research with larger datasets. In particular,
the segmentations obtained with the models are accurate enough to be used in pMR-iUS
registration, so that tissue displacement due to tissue resection can be modelled.
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Chapter 4

Segmentation of brain tumors in iUS im-
ages

4.1 Introduction

US imaging can be used during brain tumor resection surgery to visualize tumor tissue
and the surrounding anatomical structures. This can help surgeons to decide whether tissue
resection is complete. However, US images have several limitations (see section 1.5.5) includ-
ing noise, artifacts, and limited field of view. The contrast between tumor and healthy tissue
is usually poor, and thus delineating the tumor accurately is challenging. In addition, it is
difficult to use the pMR to better understand the iUS because of brain shift (see section 1.6).

One approach to mitigate these problems is to register the pMR with intraoperative
data (see section 2.1). While a challenging task, it has been widely studied and several
methods have been proposed. Another approach is to analyze iUS images directly, as an
alternative or complement to registration. One benefit of such approach is that tracking
the US probe would not be required, which would simplify considerably the surgical setup.
In this chapter, we propose a method to segment tumor tissue directly in iUS images. We
focused on pre-resection iUS images.

While brain tumor segmentation in MR images has been widely studied (see section 2.2.1
and reference [70]), few methods have been proposed for iUS images [105, 106]. These two
methods [105, 106] are for high grade tumors only. To the best of our knowledge, no seg-
mentation method for low grade brain tumors in iUS has been proposed. Low grade tumors
usually have a lower contrast than high grade tumors, making them even more difficult to
delineate. Other iUS segmentation methods focused on more salient structures like the falx
cerebri and sulci [38, 39], or resection cavities [1, 67] (chapter 3).

In this chapter, we present a deep learning model for segmentation of brain tumors in
iUS images acquired just after dura opening and before tissue resection. Preliminary results
for this study were presented at the SPIE 2020 medical imaging conference [4].
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RESECT 1b RESECT 2b RESECT 12b

Figure 4.1 – RESECT iUS images and tumor ground truth segmentations from [15].

4.2 Methods

4.2.1 Data and preprocessing

In this study, we have only used data from RESECT [137], a database a 23 patients
with low grade gliomas. Section 2.4.2 presents this dataset with more details. Ground truth
segmentations of tumor tissues were manually delineated in 17 volumes in both the pMR
and pre-resection iUS for a previous study from SINTEF [15]. These segmentations are used
in this work for training and evaluation of the models. Figure 4.1 shows three examples of
ground truth segmentations.

The volumes are preprocessed by normalizing them the same way as in chapter 3. During
training, data was augmented by using the affine, grid, and scale transformations described
in chapter 3.

4.2.2 Model architecture and training parameters

Five models based on the U-Net models presented in chapter 3 are trained to segment
tumor tissue, as illustrated figure 4.2.

The first two models are 2D models 2D-1 and 2D-9, whose input consists of one and nine
adjacent slices, respectively. These two models are the same ones as the resection cavity
models in chapter 3, except than 2D-9 have nine slices of context, whereas 2D-7 had seven.
The size of input slices for these models is 256× 256, and a 2D sliding window with a stride
of 64 voxels was used, covering the entire original volumes.

The other three models are 3D models similar to the 3D model presented in chapter 3,
with 128× 128× 128 input patches and a 3D sliding window with a stride of 32 voxels. The
three 3D models are referred to as 3D-1, 3D-2, and 3D-3.

The input of 3D-1 is the iUS volume only. It is thus similar to the 3D model of chapter 3,
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Figure 4.2 – Representation of the five segmentation models.

with a single 3D input channel.

The input of 3D-2 consists of both the iUS and pMR, in two separate 3D input channels.
The signal is very different in the two volumes, not only due to different imaging modalities,
but also because of brain shift (see section 1.6 and figure 4.3) which causes tissue displacement
between the pMR and iUS. This is especially important for tumor delineation, because
the tumor location will be different in the two volumes. In addition, it has been shown
than the extent of tumor tissue differs between the pMR and iUS [15]. We hypothesised
nonetheless that the pMR is valuable input for the segmentation model, since the volumes
are still somewhat consistent and considerably helpful to humans for interpretation of the
iUS volumes.

3D-3 is like 3D-2, with the addition of a third input channel with the pMR tumor segmen-
tation. We assume that segmentation of the pMR is available, as several automatic methods
have been proposed, including for delineation of the tumor. In this study, we used the MRI
tumor segmentations from [15]. Although the pMR segmentation also do not account for the
brain deformation compared to the iUS, the model might still benefit from that additional
information to improve the segmentation of the iUS volume.

The pMR and iUS in RESECT are co-registered, thus can be provided in the same space
to the segmentation model (yet brain shift is not corrected, as figure 4.3 shows). In the case
that the US probe is not tracked, this method could still be used by estimating the initial
transformation [138].

The Dice loss function (equation 2.4) is optimized with the Adam optimizer to train the
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Figure 4.3 – Brain shift in a co-registered pMR (left) and pre-resection iUS (right). Blue
contour: pMR tumor segmentation; green contour: iUS tumor segmentation.

models, as in chapter 3.

4.2.3 Validation studies

We use cross-validation with three folds of 10 training volumes, 2 validation volumes
and 5 test volumes. We first compare 2D-1, 2D-9, and 3D-1, with the results on the three
folds (15 volumes). We then evaluate the effect of adding the pMR to the model inputs by
comparing 3D-1, 3D-2, and 3D-3 on fold 1 (5 volumes).

4.3 Results and discussion

4.3.1 Comparison of 2D and 3D models

Both qualitatively and quantitatively (with Dice scores), 3D-1 have better results than
the 2D models, and 2D-9 have better results than 2D-1. This demonstrates the importance of
surrounding context for tumor tissue segmentation. Wilcoxon signed rank tests between 2D-
1 and 3D-1 (p-value of 0.011) and between 2D-9 and 3D-1 (p-value of 0.004) show statistical
significance between 2D and 3D models. Dice scores for 2D-1, 2D-9, and 3D-1 on the three
folds are presented in the first three rows of table 4.1. Boxplots of these Dice scores are
plotted in figure 4.4a.

While 3D-1 have the best results, the runtime was longer (5 minutes on a NVIDIA®
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Method Cases Mean Dice Median Dice Precision Sensitivity Specificity

2D-1 15a 0.47 (0.28) 0.54 0.68 (0.31) 0.44 (0.28) 0.99 (0.01)
2D-9 15a 0.61 (0.21) 0.65 0.62 (0.25) 0.70 (0.22) 0.98 (0.02)
3D-1 15a 0.65 (0.28) 0.74 0.65 (0.30) 0.68 (0.29) 0.99 (0.01)

3D-1 5b 0.65 (0.37) 0.76 0.73 (0.41) 0.59 (0.35) 0.99 (0.01)
3D-2 5b 0.67 (0.17) 0.69 0.67 (0.17) 0.68 (0.21) 0.99 (0.01)
3D-3 5b 0.56 (0.27) 0.60 0.55 (0.21) 0.64 (0.34) 0.99 (0.01)

R. [105]c 13 0.73d 0.71 (0.13) 0.76 (0.15) 0.94 (0.05)
I. [106]c 14 0.77 (0.09)

a. all three folds
b. first fold only
c. for high grade tumors, in contrast to this study
d. computed from precision and sensitivity values

Table 4.1 – Evaluation metrics for tumor segmentation methods (models presented in this
study and two previous works).
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Figure 4.4 – Dice scores for tumor segmentation methods.
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Fold Case Dice score GT volume Intra-rater difference Prediction difference

1 1 0.00 6.1 mL 3.5 mL (57%) non overlapping
1 2 0.76 6.2 mL 1.7 mL (27%) 1.4 mL ( 22%)
1 12 0.81 12.9 mL 2.7 mL (20%) 3.7 mL ( 28%)
1 16 0.74 6.5 mL 1.6 mL (24%) 1.8 mL ( 27%)
1 19 0.93 23.2 mL -1.6 mL (-6%) -1.5 mL ( -6%)

2 6 0.66 12.5 mL 3.2 mL (25%) -4.0 mL (-31%)
2 8 0.70 33.9 mL 0.9 mL (2%) 3.7 mL ( 10%)
2 15 0.77 13.3 mL 1.5 mL (11%) -3.6 mL (-27%)
2 16 0.66 6.5 mL 1.6 mL (24%) -3.4 mL (-51%)
2 18 0.72 23.4 mL 6.5 mL (27%) 1.3 mL ( 5%)

3 3 0.00 1.1 mL 0.0 mL (0%) non overlapping
3 5 0.55 21.2 mL 1.9 mL (9%) -9.4 mL (-44%)
3 7 0.77 21.6 mL 5.9 mL (27%) -4.9 mL (-22%)
3 21 0.83 97.1 mL 12.2 mL (12%) -26.1 mL (-26%)
3 23 0.88 19.6 mL 1.1 mL (5%) -0.6 mL ( -3%)

Table 4.2 – Evaluation metrics for the 3D-1 model.

GeForce GTX TITAN X) than the 2D models (about 15 seconds), because of the higher
number of patches evaluated to process one volume. The runtime could be reduced by
decreasing the number of patches (by increasing the stride of the sliding window). This
would however reduce the overlap between patches, and thus may decrease accuracy.

4.3.2 Results with the 3D-1 model

Among the five models trained in this study, 3D-1 is the model with the best results.
The model segmentations are very similar to the ground truth, except two outlier cases
(1b and 3b). Excluding these two cases, the mean Dice is 0.75, with Dice scores ranging
from 0.55 to 0.93. Table 4.2 presents quantitative results for 3D-1 and figure 4.5 shows the
model segmentations for all 15 test cases. In particular, volumes 15b and 18b are examples
of volumes in which the tumor is difficult to segment, yet successfully segmented with the
model. In 15d, there is a darker area in the tumor whose intensity is similar to healthy
tissue, which is correctly labeled as tumor tissue. In 18d, a sulcus splits the tumor in two
components. The model segmentation for this volume matches the ground truth closely in
most areas, save for a small under-segmented region on the left.

The two outlier cases are the cases for which the tumor have the smallest volumes. The
tumor volumes are 1.1mL (case 3b) and 6.1mL (case 1b), while the mean tumor volume in
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Figure 4.5 – Tumor segmentation with model 3D-1. Green: ground truth. Blue: model
segmentation.
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the dataset is 28.6mL. The distribution of tumor volumes is plotted in figure 4.6. The tumor
is difficult to locate in these two volumes, because of the small tumor size. This is the main
challenge associated with these volumes. In addition, there is less contrast between tumor
tissue and the surrounding healthy tissue in these volumes. This is because the intensity of
the surrounding tissue is brighter, which may be because the tumor is located next to the
tentorium.

While these cases are inherently difficult to segment because the small tumors are difficult
to locate, we hypothesize that the pMR might help localizing the tumor (which is investigated
in this study with models 3D-2 and 3D-3, whose results are presented in the next section);
and that a multi-class segmentation model may improve the accuracy by differentiating
the different anatomical structures and using spatial relationships between them (which is
investigated in chapter 5). In addition, we expect that training with a larger dataset will
improve generalization of the model and robustness to signal variation such as brighter
healthy tissue next to the tentorium.

4.3.3 Additional input channel with preoperative MRI

Adding the corresponding pMR volume to the input as a second channel slightly improved
the reliability of the network. For case 1, although the error was still large (the Dice score
was 0.46), the location of the segmentation for 3D-2 had overlap with the ground truth
whereas the result for 3D-1 did not. However, the results were not improved on the other
four cases where the tumors were successfully segmented with 3D-1. In some cases, the
pMR in the input appeared to distract the network from the tumor location in the iUS (see
for example case 12 in figure 4.8, where the estimated segmentation closely matches the
intersection between the iUS and pMR tumor location).

Adding the segmentation of the pMR as a third input channel tended to skew the es-
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Case 3D-1 3D-2 3D-3

1b

12b

16b

Figure 4.8 – Results with 3D-1 (iUS only), 3D-2 (iUS and pMR), and 3D-3 (iUS, pMR, and
pMR segmentation). Green: iUS ground truth. Yellow: pMR ground truth. Blue: model
segmentation.

timated segmentations towards the pMR tumor segmentation. This resulted in lower Dice
scores between the estimated segmentations and the ground truth iUS segmentations.

As such, it appears that using the pMR image and/or segmentation without registration
does not lead to improved results.

4.3.4 Comparison with intra-rater variability

The previous study for which the ground truth segmentation were made [15] reported
the intra-rater tumor volume difference. We computed the same volume difference metric
between the ground truth segmentations and the segmentations obtained with 3D-1. We
excluded the two outliers because there is no overlap between the ground truth and model
segmentations, and comparison of the volume difference is meaningless.

The intra-rater and difference between the ground truth for the remaining 13 test cases
are shown in table 4.2 and figure 4.7. The absolute percentage difference ranges from 6% to
27% for the intra-rater variability, and from 5% to 59% for the difference between ground
truth and model segmentations. The volume difference between the model and ground truth
is similar to the intra-rater variability for many cases, especially from fold 1. Also, it is worth
noting that the highest intra-rater difference is 57% for volume 1b, which is one of the two
outliers.
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These results are very encouraging, given the difficulty of tumor segmentation in iUS.
Except for the two outlier cases, the output segmentations are comparable to the manual
segmentations.

4.3.5 Comparison with other methods

Few studies addressed tumor segmentation in iUS images. Ritschel et al. [105] and
Ilunga-Mbuyamba et al. [106] proposed methods for high grade tumor segmentation in iUS.
We report their results on table 4.1 (last rows) and figure 4.4b. Ritschel et al. evaluated
their method on 13 cases, with a mean Dice score of 0.73. Ilunga-Mbuyamba et al. obtained
a mean Dice score of 0.77 over 14 cases, with their best method (rigid registration).

These two methods are evaluated on high grade tumors, whereas our models are evaluated
on low grade tumors, which are more difficult to segment, because they are substantially less
contrasted in iUS images. Nevertheless, the Dice scores obtained with 3D-1 are comparable
to the two existing methods, despite this higher complexity of low grade tumor segmentation.

4.4 Conclusions

In this chapter, we proposed and evaluated 2D and 3D segmentation model for low grade
brain tumors in iUS volumes. Promising results were obtained, despite the complexity of
tumor tissue delineation in ultrasound images. These tumor segmentations are valuable
information for surgeons, as well as for other processing methods such as registration.

We show that the 3D models have better results, at the cost of longer computation
times. We also evaluated two basic strategies to include pMR information in the model
inputs. Although this helps localizing small tumors, and thus improves reliability of the
models, the models tend to output segmentations close to the tumor in the pMR, which is
not corrected for brain shift.

The obtained model segmentations were very similar to the ground truth segmentations,
except for the two outlier cases. Quantitatively, the volume differences for the model and
ground truth is close to intra-rater variability, and the obtained median Dice score is 0.72.
The results are comparable to previous methods proposed for high grade tumor segmentation.
While a very good accuracy is obtained for most cases, the two outlier cases highlight the
need of increasing the robustness of the models.

While promising, the results presented in this chapter are preliminary. This is in partic-
ular because the dataset size is very small, and especially for training deep learning models.
Larger datasets would enable better training of the models, as well as a better validation of
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the models and more thorough analysis of the results. Nonetheless, these preliminary results
indicate that deep learning may be relevant for iUS processing, including challenging tasks
such as tumor tissue segmentation, and motivates further research with larger datasets.

In this chapter, the models were trained and evaluated on pre-resection iUS only. Gen-
eralization to post-resection iUS (or iUS during resection) has not been investigated, with
or without training with such cases. This would be interesting to evaluate, although the
ground truth determination would be even more challenging than in pre-resection iUS.
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Chapter 5

Multi-class segmentation of iUS images

5.1 Introduction

Segmentation of brain iUS images is valuable in a number of applications (section 2.2.2).
In particular, the segmentation of structures in brain iUS can be used for registration of the
pMR with iUS, which is one of the goals of this thesis. Registering the pMR with iUS allows
updating the pMR to compensate for the brain shift (section 1.6) and enables navigation of
the MR images during surgery to guide surgeons.

Registration methods for brain shift compensation are reviewed in section 2.1. Re-
cent methods using iUS include image-based [23, 24, 36], model-based [16] and structure-
based [39, 139] methods. Image-based techniques estimate the mapping between the two
images with image intensity, for example by minimizing dissimilarity metrics or by extract-
ing and coupling feature descriptors. Model-based methods estimate the tissue displacement
with a biomechanical model of the brain. Structure-based algorithms match the delineation
of structures in both images to estimate the mapping between the two images.

Existing structure-based registration methods [39, 139] use segmentations of sulci, falx
cerebri and tentorium cerebelli. Nitsch et al. [39] proposed to segment these structures in the
iUS with a random forest classifier, and then register the pMR with the iUS by minimizing the
local cross correlation on the structures only, by masking the volumes with the segmentation
masks. Canalini et al. [139] trained a U-Net [110] neural network to segment the sulci and
falx cerebri in iUS volumes, and then registered iUS volumes at different stages of tissue
resection by minimizing the sum of squared differences of the segmentation masks.

Previous iUS segmentation methods have focused on segmenting one structure, thus are
single-class segmentation methods. Methods have been proposed for segmenting structures
such as resection cavities [1, 67, chapter 3], tumor tissue [4, 105, 106, chapter 4], falx cerebri
and sulci [5, 38, 39].

We hypothesize that multi-class segmentation models may have greater accuracy than
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single class models. This is because the locations of the different structures are correlated. In
particular, other studies suggested that multi-class segmentation models can lead to better
results in other applications [140, 141]. In the case of brain iUS, the resection cavity is
located next to tumor tissue in images during resection. Locating the resection cavity is
often easier than classifying tumor tissue, thus may help locating tumor tissue, especially
for small tumors. This motivated the training of a multi-class segmentation model, which
segments the sulci, falx cerebri, tumor, resection cavity, and ventricles.

In this chapter, we compare single- and multi-class segmentation models for the afore-
mentioned classes. Training the multi-class models is challenging because some classes may
be missing on some samples. This further increase class imbalance, as there are far less vox-
els of the present classes than background voxels. Thus, we implemented several strategies
to mitigate these limitations. In deep learning models, this is typically done by adapting
data sampling (over- or under-sampling) and/or adapting the loss function. In this case, we
use a combination of patches selection and class weighting in the loss function. Preliminary
results for this work have been presented at the SPIE 2021 medical imaging conference [5].

5.2 Methods

5.2.1 Data and preprocessing

5.2.1.1 Dataset and ground truth segmentations

The models are trained and evaluated with the RESECT [137] database (see section 2.4.2),
considering all iUS volumes (before, during and after resection). The ground truth segmen-
tations of the resection cavity and tumor tissue are the ones used for the single-class models
in chapters 3 and 4. The resection ground truth segmentations were made for that study in
particular, with the segmentation process described in chapter 3. The tumor ground truth
segmentations were made for a previous study on tumor volume [15]. The sulci, falx cerebri,
and ventricles were segmented specifically for this study.

The sulci, falx cerebri, and ventricles were segmented using ITK-SNAP 1 [142]. The
structures were segmented using the contour tool, every couple of slices (usually around one
in five slices), then interpolated using the interpolation feature of ITK-SNAP. The sulci were
segmented in the three slice directions, to increase smoothness and ease the segmentations of
sulci that were difficult to segment in some directions. All segmentations were then reviewed
by the two authors of the segmentations together, looking at slices in all three directions.
The segmentation masks were finally edited as needed, following the discussions during the

1. http://www.itksnap.org
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class before resection during resection after resection total voxels per volume

resection 0 20 22 42 0.77%
tumor 23 11 (generated) 0 38 4.01%
sulci 23 22 22 67 1.47%

falx cerebri 8 8 8 24 0.33%
ventricles 8 9 9 26 0.68%

Table 5.1 – Number of ground truth volumes and mean voxel distribution per class.

review process. We are in the process of validating these segmentations with neurosurgeons,
with the goal of publishing a complete set of segmentations for the RESECT database.

No ground truth segmentations of volumes acquired during resection were available. Since
delineating tumor tissue manually is challenging, and especially during resection due to ar-
tifacts and displacements induced by the resection cavity, we generated these segmentation
from the corresponding segmentation of the volume acquired before resection, using an au-
tomated process. This was accomplished by mapping the pre-resection segmentation into
the volume space of the during-resection iUS volume, using the landmarks provided in the
RESECT dataset, using thin plate splines [143]. Then, voxels in the resection cavity ground
truth segmentation and out-of-field voxels were masked out from the tumor segmentation.
The resulting segmentation were not perfectly accurate but provided a reasonable estimation
that can be used for training a model. This allowed the models to learn from cases in which
both the resection cavity and tumor tissue are visible and for which ground truth is available.

The classes are highly imbalanced, not only in the number of class voxels compared to
background voxels, but also in the number of volumes in which the classes are present (see
table 5.1). Generally, the structures that are visible in the iUS volumes depend on the
tumor, since the limited US field of view covers a region around the tumor. Sulci are visible
in all volumes, because the entire surface of the brain is folded. In contrast, the falx cerebri
and ventricles are only visible in the few cases with a tumor next to these structures. The
resection cavity is only present in volumes acquired during and after resection, and the tumor
is mostly visible before and during resection, as there is generally little tumor tissue left after
resection. As such, there is a high variability in the structures that are visible in the iUS
volumes, which is one of the main challenge of this segmentation task.

5.2.1.2 Preprocessing and data augmentation

We use data augmentation to increase model robustness and prevent overfitting. Unlike
the single-class models trained in chapters 3 and 4, the data augmentation was performed
prior to training and not during. We generated three additional volumes for all volumes in
the training set, using the random affine, grid, and scale transformations described in 3.2.1.
The four training sets were used cyclically during training, each epoch corresponding to
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one set. This is in contrast to the previous augmentation scheme which generated a new
set at the beginning of each epoch. While this second option is preferable to a fixed data
augmentation, we found that the multi-class case and with a larger training set increased
memory requirements and slowed the training process substantially. The training set had
more volumes than in the previous studies, because all three iUS volumes (before, during, and
after resection) of each case was used. In addition, the transformations has to be applied
to five segmentation maps instead of one, thus increasing computing time and memory
requirements.

The volumes are normalized as in the previous chapters, by subtracting the mean intensity
and dividing by the standard deviation.

5.2.1.3 Patch sampling

2D patches of size 256 × 256 are extracted using a sliding window with a stride of 64
pixels. Among these patches, the ones that contain only background voxels are discarded.
This ensures that at least one class is present in all patches.

5.2.2 Model architecture and loss function

Five models are compared in this study. All models are 2D U-Nets as presented in
chapter 3. In the previous chapters on single-class models, we showed that 3D models could
obtain better results than 2D models. However, smaller patches were used due to GPU
memory constraints. In the multi-class case, more memory is needed for the additional
classes, which would have further reduced the input patch size. Thus, we only evaluate 2D
models for this multi-class study.

Karimi et al. recently presented a method to estimate the Hausdorff distance that is
suitable for backpropagation [114]. We evaluate the effect of such terms by training models
with and without this term. The motivation for this choice is that the distance term captures
the error for the surfaces, while the Dice score is a volume-based metric. Since sulci generally
have the shape of thin surfaces, it can be hypothesized that surface-based metrics can be
more relevant than volume-based metrics.

The first model is a single-class model which comprises three models trained indepen-
dently for the resection cavity, tumor, and sulci, respectively. The single class models were
trained with the Dice loss (equation 2.4). These three submodels are then grouped in one
model capable of segmenting these three classes, taking the output of each individual sub-
model.
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model name type wbg wHD

single single-class
multi000 multi-class 0 0
multi001 multi-class 0.01 0

multi000hd multi-class 0 1
multi001hd multi-class 0.01 1

Table 5.2 – The five models presented in this study.

The four other models are multi-class models with different coefficients in the loss func-
tion. The loss function is given in equation 5.1, in which yt is the ground truth binary
mask, yp is the output segmentation, wc is a class weight, wHD is a constant weight for the
Hausdorff term, and HDCV is the convolution-based Hausdorff distance presented by Karimi
et al. [114]. It consists in a Dice loss term and a Hausdorff distance term, which are both
weighted by a class weight wc.

loss(yt, yp) =
∑

c∈classes

wc

[(
1−

∑
i 2ytiypi + ε∑

i yti + ypi + ε

)
+ wHDHDCV (yt, yp)

]
(5.1)

The class weight depends on the patch considered, and is computed as follows. If the
patch contained at least one voxel of class c, then wc = wfg = 1. Otherwise, if the patch
did not contain any voxel of class c, but if class c was present in other patches of the volume
from which the patch was extracted, then wc = wbg, where wbg is a constant. We chose two
possible values for wbg: 0 and 0.01, the latter being the order of magnitude of the foreground
voxel ratio (see table 5.1). Otherwise, ie. if class c is not present in the entire volume, then
wc = 0.

To evaluate the impact of the Hausdorff distance term, we trained models with and
without this term, ie. wHD ∈ {0, 1}.

Table 5.2 summarizes the five models presented in this chapter. The first model is the
single-class model trained separately for each class, referred to as single; Next, there are
multi-class models trained without the Hausdorff term, referred to as multi000 (wbg = 0)
and multi001 (wbg = 0.01). Last, there are multi-class models trained with the Hausdorff
term, referred to as multi000hd and multi001hd.

5.2.3 Post-processing

A segmentation volume is reconstructed from all the corresponding patches, using an
average (the patches overlap). This volume is then thresholded at 0.5 to obtain a binary
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segmentation. All connected components are labeled in the binary segmentation. This is
done for all classes, each class having its own segmentation volume.

For the resection cavity and tumor, the largest connected component is selected and the
others are discarded. For the sulci, the components with a mean voxel Euclidian distance to
the resection cavity that is less than 10 are discarded. This eliminates potential misclassifi-
cation of hyper-echoic regions (which could be artifacts or hemostasis) on the border of the
resection cavity.

Finally, the class of a voxel was chosen as follows. If the voxel was foreground in the
sulci binary mask, the voxel was labelled as sulci. Otherwise, if the voxel was foreground in
both the resection cavity and the tumor masks, it was labelled as background. Otherwise, if
the voxel was foreground in either the resection cavity and the tumor masks, it was labelled
as such in the final segmentation. Otherwise, the voxel was labelled as background. In
particular, a voxel that was labelled both resection and tumor is classified as background,
as undersegmenting is preferred over labeling a voxel with high uncertainty.

5.3 Results and discussion

In the following, we evaluate the models on the resection cavity, tumor, and sulci classes.
No model was able to reliably segment the remaining two classes, falx cerebri and ventricles,
although the multi-class models were able to detect the falx in a few cases. This is most
likely because there are very few cases in which these two classes are present. In addition,
the signal of the falx cerebri in iUS volumes is similar to the one of sulci, because this signal
correspond to CSF in both cases. This makes it difficult to identify the falx cerebri, and
especially in 2D slices (as opposed to complete 3D volumes).

We separate volumes for which ground truth is available from volumes for which it is
not. Volumes with no ground truth are volumes before resection for the resection cavity, and
volumes during and after resection for the tumor. Except for volumes during resection, which
can contain tumor, foreground voxels can be labeled as false positives. Thus, specificity is
relevant for these volumes. All models have specificity values greater than 0.999, indicating
that very few voxels were labeled as foreground in these cases. In the following, we only
consider the volumes with ground truth.

5.3.1 Comparison of single-class and multi-class models

Overall, the multi-class models have slightly better results than the single-class model.
In particular, there is less undersegmentation for resection cavities and less false positives for
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multi000hd 0.61 0.999 0.96 0.71
multi001 0.55 0.999 0.98 0.65
multi001hd 0.62 0.999 0.95 0.71

Figure 5.1 – Result metrics for the resection cavity segmentation (5 cases, 9 volumes).

tumors. Both quantatively and qualitatively, the best results are obtained with multi000hd.

For the resection cavity, all the multi-class models have better results than the single-class
models (figure 5.1). The improvement is a higher sensitivity, while precision is similar. This
means there is less undersegmentation with multi-class models (see figure 5.2a for example).

In contrast, the single-class model has a higher sensitivity but lower precision for the
tumor segmentations than the multi-class models (figure 5.3). This means that there is
more undersegmentation but less false positives in multi-class models, which is desirable
in many applications. Quantitatively, the single-class model has higher Dice scores for the
tumor segmentations, however the multi-class segmentations are qualitatively better because
they have less false positives (see figure 5.2b for example).

The models produce similar sulci segmentations, with the exception of multi001hd which
misses many sulci (figure 5.4). The best performing model is multi000hd, which misses less
sulci and has less false positives.

5.3.2 Effect of the weight parameter

With the Hausdorff distance enabled in the loss function, the best wbg value is 0. With
wbg = 0.01, the model has substantially worse results for the tumor and sulci. However,
without the Hausdorff distance, setting wbg = 0.01 slightly improves the results over wbg = 0.

This improvement is minimal compared to the decreased accuracy with the Hausdorff
distance enabled. In addition, the combination of wbg = 0 and wHD = 1 yields the best
results. Thus, wbg = 0 seems to be the best option.
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(a)

(b)

single multi000 multi000hd multi001 multi001hd

Figure 5.2 – Examples of multi-class segmentations (blue: resection cavity; green: tumor;
red: sulci).
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Figure 5.3 – Result metrics for the tumor segmentation (5 cases, 5 volumes).
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Figure 5.4 – Result metrics for sulci segmentation (5 cases, 15 volumes).

5.3.3 Hausdorff distance loss function

With wbg = 0, the model trained with the Hausdorff term have better than the model
trained without it. The tumor and sulci segmentations are improved with the Hausdorff
term enabled, while results for the resection cavity are similar.

The best results are obtained with multi000hd, which suggests that the training process
may benefit from the Hausdorff term.

5.3.4 Comparison with other methods

The results for tumor segmentation can be compared to previous methods [105,106], even
though these methods were applied to high grade tumors in contrast to this study. Overall,
Dice scores obtained with the models presented in this study are similar to the ones reported
in the aforementioned studies, with the exception of multi001hd which has lower scores than
any other method. Figure 5.5a shows boxplots of the Dice scores for the different models.

Canalini et al. [38] proposed a segmentation method for hyperechogenic structures such
as sulci and the falx cerebri. This is not strictly comparable to the sulci segmentation models
presented in this chapter, because we distinguish the sulci and falx cerebri. We trained the
models to segment only sulci and the falx cerebri specifically, as separate classes, which is
more specific than hyperechogenic structures. Nonetheless, we provide a comparison of the
Dice scores in figure 5.5b. Note that Canalini et al. [38] report both normal Dice scores
and Dice scores after removing non-overlapping components. For a fair comparison with the
other models, we plot the normal Dice scores, as this metric was also used for the other
models. The results obtained with the best model multi000hd are similar to the results
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Figure 5.5 – Comparison with other brain ultrasound segmentation methods.

reported by Canalini et al.

Nitsch et al. [39] proposed a segmentation method for the falx cerebri and tentorium
cerebelli. Their method is able to reliably segment such structures, with a mean Dice score
of 0.74. While the models presented here were not able to reliably segment the falx cerebri,
it is worth noting two major differences in the datasets. First, the cases used by Nitsch et
al. all contains the falx cerebri, in contrast to this study that uses all RESECT cases, most
of which do not contain the falx cerebri. Second, the dataset used in Nitsch et al. is more
recent than RESECT, and thus, the iUS image quality is better.

5.4 Conclusions

In this chapter, we compared single- and multi-class segmentation models for iUS brain
images. The results suggest that multi-class models may benefit from learning all classes
together, and obtain more accurate segmentations than single-class models trained inde-
pendently. While the Dice scores allow a quantitative analysis of the results, they do not
reflect completely the differences between the proposed models, and especially for the sulci.
In particular, we found substantial differences by looking at the resulting segmentations, as
illustrated by the examples in figure 5.2.

The multi000hd model obtains the best results, quantitatively and especially qualita-
tively. This suggests that the Hausdorff term may be beneficial to the training process, and
that it is better to ignore patches with only background, even if the class is present elsewhere
in the corresponding volume.

The training data is challenging because of a high class imbalance, with some classes miss-
ing in certain volumes. Discarding patches with only background, as well as class weighting
in the loss function allowed successful training of the models, despite the limitations of the
training data.
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The models were successfully trained to segment the resection cavity, tumor, and sulci.
However, they could not segment the falx cerebri and ventricles, because there were not
enough volumes with these classes. The motivation for having separate classes for the sulci
and falx cerebri is that the falx cerebri can provide a valuable landmark for registration.
Nonetheless, it could be interesting to merge these two classes, since their ultrasound signals
both correspond to CSF.

The models presented in this chapter are 2D models, due to GPU memory constraints.
As GPU cards with more memory become available, it would be interesting to train 3D
models. We expect that 3D models would have better results, as experimented with the
single-class models in the previous chapter. In particular, it is easier to classify the falx
cerebri with the full 3D volume than with a single or a few slices.
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Chapter 6

Registration of preoperative MRI with in-
traoperative ultrasound images for brain
shift compensation using deep learning

6.1 Introduction

In this chapter, we explore the use of deep learning models for registration of the pMR
with iUS images, for brain shift compensation. More specifically, we aim to use the segmen-
tations of structures in the pMR and iUS to guide to registration model. We assume that
these segmentations are available, since we proposed segmentation models in the previous
chapters.

An overview of deep learning registration methods is given in section 2.3.3. Very few deep
learning methods have been proposed for image registration, and most of them are applied
to monomodal registration. Registration of brain pMR and iUS is challenging, not only
because this is a multimodal registration problem, but also because the field of view of the
iUS is very limited compared to the pMR and varies substantially across cases, depending
on the tumor location. In addition, there is no complete and accurate ground truth for the
tissue displacement, which would simplify the training of a deep learning model.

Hu et al [124] proposed the use of labels as a weak supervision. In their method, the labels
are used in the loss function, with a Dice score between the registered labels of the moving
space and the labels of the fixed space. The benefit of such approach is that labels are not
required for registering unseen images. In our case, we can assume that the segmentations are
available, since we developed segmentation models for various structures. Thus, we propose
to add the labels to the model inputs, to provide more information to the model. In addition,
we adapt the LocalNet architecture proposed bu Hu et al. [124] to multimodal registration
by having two encoder paths for each modality.
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6.2 Methods

6.2.1 Notations

For a physical point p, let p(US) be the corresponding point in the iUS volume, and p(MR)

the corresponding point in the pMR volume. When not specified, p can be either in iUS or
pMR space. For a volume V and a point pV = (x, y, z), V [p] = V [pV ] = V [x, y, z] is the
voxel in V at point p.

There are several coordinate systems that can be used to express a point p, so specify
the coordinate system where it is relevant by using pW for world coordinate, pV for volume
coordinates, and pn for normalized volume coordinates.

The world coordinate system is a reference coordinate system common to the pMR and
iUS volumes, which correspond to an affine transformation of volume coordinates. This affine
transform is computed during the calibration process. It is stored in the metadata of the
RESECT volume files as a 4 × 4 affine matrix in homogeneous coordinates AUS→W , which
map volume coordinates to world coordinates (equation 6.1). Note that equation 6.1 stands
not only for p(US) but also for p(MR) since the pMR volumes are resampled in iUS volume
space. This resampling is done by mapping a point in iUS volume space to the corresponding
point in the original pMR space with the transform A−1MR→W · AUS→W .

pW = AUS→W · pV (6.1)

The volume coordinates are the integer indices of voxels, ranging from 0 to N − 1 where
N is the size of the volume. Note that we only consider one volume coordinate system, which
is the one of the iUS volume. Because the pMR volumes are resampled in iUS volume space,
they have the same volume coordinate systems as the corresponding iUS volumes.

Normalized volume coordinates are volume coordinates that were scaled to the range
]−1, 1[. The benefit of this coordinate system is that it does not depend on the volume
size, and thus can be used at various scales. Conversion between volume coordinates and
normalized volume coordinates is done using a scale matrix S (equation 6.2). In our im-
plementation, we also flip the x and z coordinates to match the semantics of Pytorch’s 1

grid_sample, which indexes the grid as z, y, x. Thus, S is actually defined as the prod-
uct of a matrix that flips the coordinates and a scale matrix (equation 6.3). This is an
implementation detail, however, which does not introduce any conceptual change.

1. https://pytorch.org/
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pn = S · pV (6.2)

S =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 ·


2
Nx

0 0 −1 + 1
Nx

0 2
Ny

0 −1 + 1
Ny

0 0 2
Nz
−1 + 1

Nz

0 0 0 1

 (6.3)

We define the identity grid I which gives an identity mapping. In particular, the identity
grid in normalized coordinates is defined as:

In[p] = pn (6.4)

6.2.2 Ground truth

6.2.2.1 Labels

We used the same ground truth segmentations as in the previous chapters. In this chapter,
we focus on registration as this problem is challenging in itself. Thus, we train the models
using the ground truth segmentation as opposed to the outputs of the segmentation models.

The MRI segmentations were created using freesurfer 2. The recon-all scripts outputs a
segmentation map, which we post-processed to create segmentations for the same classes as
the US segmentations. The ventricles segmentation were used as is. The sulci segmentation
was created by selecting all background voxels that were included in the brain mask. This
brain mask was obtained with the binary closing of the brain tissue classes, with a sphere
of radius 7 as the structural element. Then, the falx cerebri was located using the corpus
callosum class, and extracted from the sulci mask.

6.2.2.2 Landmarks

Obtaining accurate ground truth mappings is often challenging in image registration
problems. In this work, we rely on the landmarks provided in the RESECT database to
compute an estimate of the pMR-iUS mapping. These landmarks are a set of homologous
points in the pMR and iUS, which we refer to as lmMR and lmUS, respectively (see figure 6.1.
The pMR-iUS mapping is estimated using thin plate splines [143] with the landmarks. This

2. https://surfer.nmr.mgh.harvard.edu/
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Figure 6.1 – Corresponding 2D slices of a pMR and iUS in RESECT, with landmarks
represented as colored spheres.

approach has several limitations, thus, the estimated mappings are not completely accurate.
The main limitation is that the number of landmarks is small (around 15 per volume) and
the displacements at other points is interpolated. This guarantees that the displacement field
is smooth, but may be inaccurate if some displacement is not captured by the landmarks.
An example of this is shown in figure 6.2, in which the falx cerebri in the bottom of the left
image and the sulci in the right image are shifted. In addition, the boundary of the ventricle
is visible in the top right part of the image on the right, and is also shifted compared to the
ventricle shown in the MRI. In the former case (left image), this is because the landmarks are
located around the tumor, and there are no landmarks on the falx cerebri. More generally,
the landmarks are located on points for which a correspondence could be found (such as
sulci bifurcation points and ventricle corners), thus, they do not cover the whole volumes.
Another limitation is that it is extremely challenging to precisely select corresponding points,
especially in US images, so there may be a small error in these correspondences.

The thin plate splines mappings were computed prior to training, in world coordinates.
This allowed using the mappings with augmented data, as the transformed coordinates could
be mapped to world coordinates.

6.2.3 Registration model

In this chapter, we build on the LocalNet model proposed by Hu et al. [124]. In addition
to the standard LocalNet, we also propose a modified LocalNet with two encoder paths and
with segmentation labels and field of view mask added to the inputs.

LocalNet is a convolutional network designed to output a dense displacement field, from a
pair of images. The input includes the images, labels, and a mask corresponding to the field
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Figure 6.2 – Example of error in the ground truth displacement field: the falx cerebri (left
image) and sulci (right image) in the overlaid iUS do not match the registered MR.

of view of the iUS volume. We defined that the fixed image is the iUS and the moving image
is the pMR. This means that the output mapping f transforms p(US) to p(MR), which allows
resampling the pMR in iUS space (hence the pMR is the moving image). This registered
(updated) pMR volume is denoted M̃R and is obtained by sampling the original pMR volume
(MR):

∀p(US)
V ; M̃R[p

(US)
V ] = MR[p

(MR)
V ] = MR[f(p

(US)
V )] (6.5)

The output of the network is a dense displacement field volume DDF, which gives the
normalized displacement of all voxels in the volume:

DDF[p
(US)
V ] = p(MR)

n − p(US)
n (6.6)

This displacement field gives a discretized version of the iUS to pMR mapping:

p(MR)
n = (DDF + In)[p

(US)
n ] (6.7)

Since this is a multi-modal registration problem, we propose a modified LocalNet archi-
tecture so that there are two encoder paths. This allows separate processing of the MR and
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conv 3x3x3, BN, ReLU
conv 7x7x7, BN, ReLU
max pooling 2x2x2

transp. conv 3x3x3
add
upsample, add

Figure 6.3 – Modified LocalNet architecture with two encoder paths (MR, US).

US volumes. This is motivated by previous studies on other clinical applications that sug-
gested that encoder-decoder models could benefit from two encoder paths in the multimodal
case [144]. Figure 6.3 illustrates this architecture.

6.2.4 Loss function

The loss function consists of several terms, which are given in equation 6.8. In this
equation, wTRE, wL1, wE, and wlabels are the fixed weights assigned to the loss terms. We
experimented with several weight values, including disabling terms with a weight of 0.

loss = wTRE ·mTRE(lmMR, ˜lmUS)

+ wL1 · l1(DDFt, DDFp)

+ wE · energy(DDFp)

+ wlabels ·
∑

c∈classes

diceloss(L̃cMR · fov, LcUS · fov)

(6.8)
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The first term is the landmarks registration error. It is the mean absolute error between
the landmark points in the MR space lmMR and the landmark points in the US space after
registration ˜lmUS. This is computed by adding the displacement specified in the output
displacement field DDFp (equation 6.9). The points (and thus distances) are specified in
normalized volume coordinates.

The second term is an L1 comparison of the output displacement field DDFp with the
TPS-generated ground truth displacement field DDFt.

The third term is a regularization term for the output displacement field. It is the bending
energy function as was used in Hu et al. [124] (equation 6.10).

The last term is the label term, which compares the US labels LcUS with the registered
MR labels L̃cMR, for each class c. The MR labels are registered by resampling the original
MR labels with the grid In + DDFp. Since the field of view of the US volume does not
cover the entire volume, the label maps are masked with the field of view mask fov. This
removes MR labels outside the US field of view. The labels are compared with the dice loss,
as defined in equation 2.4.

˜lmUS = lmUS +DDFp[lmUS] (6.9)

energy(V ) =

(
∂V

∂x2

)2
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)2
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)2

+ 2

(
∂V

∂xy

)2

+ 2

(
∂V

∂yz

)2

+ 2

(
∂V

∂xz

)2

(6.10)

In this study, we did not include a term based on the image intensities, because finding
such term for multimodal registration is difficult. In particular, metrics that are traditionally
used for multimodal registration are not directly implementable in a loss function, as they
are not differentiable.

6.2.5 Data preprocessing

The data was preprocessed the same way as the previous chapters, including data aug-
mentation.
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6.3 Discussion

Training the models presented in this chapter has proven difficult, and has not led to
satisfying results. Depending on the parameters, the training process would either diverge
or converge to a non working solution. In this section, we discuss several findings learned
from experimenting with these models, and possible improvements.

6.3.1 Dataset size and complexity

The dataset size is small, in particular for training deep learning models, and especially
registration models. Other studies that successfully trained deep learning registration models
have larger datasets.

Another challenge is the high variability of the data. Different structures may be visible
depending of the tumor location.

In addition, multimodal registration is challenging, and especially with ultrasound im-
ages. The pMR and iUS do not image the same physical properties, and the iUS has a
limited field of view covering only part of the pMR.

6.3.2 Loss function

The weights of the different loss terms is critical to the convergence of the training process,
and affects greatly the outcome. It is therefore essential to chose the weights with care.

The mean landmarks registration error term leads to training instability. Thus, we re-
moved this term entirely in the following experiments. In addition, the usefulness of this
term is not clear in the presence of the l1 comparison with the ground truth. An alternative
could be to weight the l1 term per voxel, using the distance to landmarks. This would put
more weight on voxels close to the landmarks points, for which the ground truth is more
reliable since these points were used for estimating ground truth. Conversely, it would assign
less importance to voxels further to the landmarks, where the ground truth displacements
are interpolated and less accurate.

We found that assigning larger weights to the l1 term did not reduce the l1 error further.
This is true regardless of the training stage, and in particular in the end of the training
process. We hypothesize that it may be because the ground truth DDF was generated from
the landmarks, and thus only accurate at these points.
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The regularization term is essential to the convergence of the training process. Its weight
should be large enough such that the energy of the DDF volume decreases during training.

6.3.3 Quality of the ground truth DDF

As discussed in the previous sections, the ground truth DDF is an estimation based on
the landmarks. Improving the accuracy of the ground truth may allow a better training of
the models, since it is the main measure of how accurate the output DDF is. While the label
terms give another measure of the DDF accuracy, it is limited to the location of the labels.
Thus, the l1 term is the only term that fully evaluates the DDF for every voxel.

The ground truth DDF could be improved iteratively by adding landmarks in areas where
the errors are the largest. This could be done by visually inspecting the registered volumes
and estimating the registration error. However, this process would be time consuming and
error-prone. An alternative would be to use the segmentation labels as an additional con-
straint for the DDF estimation.

6.3.4 Output of the registration network

The choice of a DDF for the registration network is motivated by the fact that brain shift
may include non rigid displacements, especially after resection started. However, computing
such displacements is extremely challenging, not only for registration models but also for
determining a ground truth.

For this reason, many previous pMR-iUS registration methods for brain shift limited the
output to affine transforms. Other studies first estimate a global affine transform, and then
a DDF refining the affine transform. Both approaches are worth exploring in the context of
deep learning models. Another option would be coarser DDF outputs, which would simplify
registration and ground truth estimation while retaining the precision of DDFs. Pdd-net is
an example of such output [44,131].

6.3.5 Network architecture

In this work, we followed and build on the LocalNet architecture that was designed
for label-driven registration. Other alternatives could be explored, such as combining the
segmentation and registration problems in one model, since they are inter-dependent. End-
to-end training of several tasks simultaneously has been shown to increase model accuracy,
however training such models generally need large training sets.
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6.4 Conclusions

In this chapter, we proposed a deep learning model using segmentation labels to drive
registration of the pMR with iUS. While training of such models proved unsuccessful, we
present the findings learned when training the models, discuss the limitations of the proposed
method, and suggest areas in which improvements can be made.

One of the major challenges the limited amount of data available, and the high variability
of the input, which highly depends on the tumor location. The number of cases used in this
study is substantially lower than in other deep learning registration studies. Thus, we expect
that a larger dataset will help the training of deep learning registration models for pMR-iUS
brain shift compensation.

Another challenge is the lack of accurate ground truth, which is difficult to estimate.
This could be mitigated by using a simpler representation such as affine transforms, either
as the final output or a first registration step.
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Chapter 7

Conclusions

7.1 Summary

The work presented in this thesis evaluates deep learning methods for brain iUS segmen-
tation and pMR-iUS registration. We first proposed single-class segmentation models for the
resection cavity and tumor tissue. Next, we adapt these models for multi-class segmentation
of several structures, including the sulci and falx cerebri. Finally, we propose a registration
model for registering the pMR with iUS volumes.

We show that single-class models based on U-Net can successfully segment the resection
cavity and tumor in iUS images. 3D models are more accurate than 2D models, but have a
higher runtime. The sliding window approach was the most robust, and downsampling should
be avoided for US images, as it lead to substantially worse results. For tumor segmentation,
adding the pMR as an additional input could help localizing the tumor in the iUS volume,
but this would require registration.

Our results suggest that multi-class models can be more accurate than independent single-
class models. We successfully trained a multi-class segmentation model for the resection
cavity, tumor and sulci. The dataset did not contain enough volumes in which the falx cerebri
and ventricles were in the field of view of the iUS volume to obtain reliable segmentation
models for these structures. Adding a Hausdorff distance term in the loss function seems to
improve the results, in particular for the sulci which are surface-like structures. For these
structures, the Dice score has limitations, since it is a volume-based metric.

We were not able to successfully train a pMR-iUS registration deep learning model.
We believe this is due to the limited dataset and incomplete ground truth, in addition to
the higher complexity of image registration. Building larger brain iUS datasets will be
instrumental in the development of deep learning pMR-iUS registration models.

For the segmentation and registration studies presented in this thesis, we have created
a set of ground truth segmentations. The resection cavity segmentations were checked by
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a neurosurgeon, and we are in the process of validating the other segmentation masks. We
plan to publish these segmentations once they are validated, so that further studies may
benefit from them.

7.2 Discussion

In general, our segmentation results show that deep learning models can produce very
accurate results for brain iUS images. The results obtained are comparable to other methods
(see sections 3.3.5, 4.3.5 and 5.3.4) and close to intra-rater variability (see sections 3.3.4 and
4.3.4).

However, they also highlight that one of the main limitation of such models is robustness.
This is shown by the outlier cases, for which the segmentation have little to no overlap with
the ground truth. This is also evidenced by the generalizability study we performed in
chapter 3. The model trained on one dataset could not generalize well to the other.

The robustness of the models depends on the dataset size. This is a limitation of the
models presented in this thesis. We mainly used the 23 cases of the RESECT database,
which is the most recent public dataset of brain iUS volumes available. We also evaluated
the resection cavity models on the BITE dataset, an older database with 14 cases. This is
substantially lower than the number of cases used in other deep learning studies in medical
image processing, which commonly use hundreds or even thousands of cases. The limited
number of cases impairs not only training but also evaluation. A larger dataset would enable
a better training of the models, as well as a better evaluation of their generalization to unseen
cases.

With the limited data available, we were able to train segmentation models. Registration
models likely need more data as well as more research, and thus are still a work in progress.

7.3 Future works

7.3.1 Validation of the manual segmentations

The manual segmentations created as part of the work in this thesis are valuable data,
which other studies may benefit from. As such, we are in the process of creating a validated
set of publicly available segmentations for the RESECT database.
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7.3.2 Multi-class segmentation

While the falx cerebri can represent valuable information for registration processes, it
would be interesting to compare the models presented here (with the sulci and falx cerebri
separate), with models trained with these two classes merged.

It would also be valuable to train 3D multi-class models, as newer GPU card with more
memory allow larger 3D inputs. In particular, 3D models may be able to segment the falx
cerebri, which is otherwise difficult with only a single 2D slice.

7.3.3 Registration model

There are several areas of possible improvement for the registration model. In particular,
it is difficult to define a ground truth, and the proposed estimation using TPS with the
provided landmarks can be refined. For example, the ground truth segmentations could be
used in addition to the landmarks to estimate a deformation that matches both. In addition,
changes to the model such as using an affine transform or a coarser DDF, either as a first
registration step or as a global output, are worth exploring. Finally, it would be interesting
to study deep learning models for monomodal US-US registration. This would be useful
for US images acquired at different times during surgery, and can be less challenging than
multimodal MR-US registration.

7.3.4 Larger datasets

The proposed models would benefit from larger datasets, for training and validation. This
would require collecting more data, since the only public brain iUS datasets are RESECT
and BITE, which are used in this thesis. While collecting clinical data takes time and is
complicated, an simpler alternative is to synthesise such data. There are many approaches
for data augmentation, including deep learning with generative adversarial networks, which
is still an active research domain. These methods could help in our context, to build a larger
dataset from the limited number of cases we have. Of course, the longer term goal is to
acquire actual clinical data.
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Image segmentation and registration using machine learning for brain
shift compensation in image-guided neurosurgery

Abstract
In brain tumor resection surgery, a preoperative magnetic resonance (MR) image is used for surgical planning

and guidance. Brain tissue displacement during surgery, known as brain shift, severely limits image guidance with the
preoperative MR (pMR), which no longer reflects the location of tissue and anatomical structures accurately. This
can be mitigated by registering the pMR with intraoperative data, ie. updating the pMR so that it matches images
acquired during surgery. Ultrasound (US) imaging has several benefits compared to other intraoperative imaging
modalities such as MR. In particular, it has fast acquisition times and do not require moving the patients, which
makes the surgery longer. Thus, there is growing interest in using US imaging in brain surgery, despite the low image
quality.

While traditional registration methods have been proposed, deep learning (DL) are being actively researched as
they have proven successful and achieve state-of-the-art results in many domains such as medical image segmentation,
and more recently, image registration. DL models are complex models with parameters learned with data, with many
applications. However, there are few studies proposing DL models for segmentation of intraoperative US (iUS) images
of the brain, or for registration of the pMR image with iUS images.

We start with the segmentation of iUS images of the brain. This is can be used for several purposes, such as
guiding a registration model, which is the main objective of this thesis. We first focus on the segmentation of the
resection cavity, which is essential to model the tissue displacement due to tissue removal. Next, we address tumor
tissue segmentation, which is more challenging but can be used not only for registration but also to determine if tissue
resection is complete. The results show that DL models can successfully segment the resection cavity and tumor tissue
in US images. Then, we train a multi-class segmentation model, that segments several structures at the same time.
The results suggest that multi-class models can be more accurate than single-class models, and leverage inter-class
relationships.

We then investigate DL models for registration of pMR with iUS images. Image registration is inherently difficult,
and especially with different modalities such as MR and US. In addition, there is a high variability across cases, as
different structures are visible in the limited US field of view, depending on tumor location. It is also difficult to
estimate ground truth displacements for training DL models. While we were not able to train a registration model
with the available data, we discuss our findings and possible areas of improvement.

DL models can successfully segment iUS images. We currently lack data to train registration models but expect
that larger datasets will enable the training of such models.
Keywords : Brain-shift, image-guided neurosurgery, image segmentation, image registration, deep learning.

Résumé
Dans le cadre des chirurgies d’ablation de tumeurs cérébrales, un examen préopératoire par imagerie par résonance

magnétique (IRM) est réalisé pour la planification chirurgicale et le guidage lors de la chirurgie. Le déplacement des
tissus cérébraux pendant la chirurgie, appelé communément brain shift, limite considérablement le guidage par image
utilisant l’IRM préopératoire (pMR), celui-ci ne représentant plus la position courante des tissus. Ces limitations
peuvent être compensées en recalant le pMR avec des images peropératoires. L’échographie présente plusieurs avan-
tages à d’autres modalités comme l’IRM, notamment sa rapidité d’acquisition, et la non-nécessité de déplacer les
patients. L’échographie a donc un réel intérêt en neurochirurgie, malgré la moindre qualité de ces images.

Bien que des méthodes traditionnelles de recalage aient été proposées, l’apprentissage profond (AP) fait l’objet
de nombreux travaux de recherche car il obtient les meilleurs résultats dans plusieurs domaines comme le traitement
d’images médicales, notamment la segmentation et plus récemment, le recalage d’image. Les modèles d’AP sont des
modèles complexes dont les paramètres sont appris à partir de données. Cependant, il y a peu d’études sur leur
applicabilité à la segmentation d’images échographiques, ou au recalage avec un pMR.

L’étude porte tout d’abord sur la segmentation des images échographiques peropératoires (iUS) du cerveau. Ces
segmentations peuvent notamment servir au recalage d’image, l’objectif principal de cette thèse. Nos travaux portent
premièrement sur la segmentation des cavités de la résection, permettant de modéliser précisément le décalage des
tissus lié à l’ablation de tissus. Nous proposons ensuite un modèle pour la segmentation des tumeurs, problème plus
difficile mais utile non seulement pour le recalage d’image mais aussi pour déterminer si la résection est complète.
Les résultats obtenus montrent que l’AP peut être utilisé pour la segmentation d’iUS. Nous avons ensuite entraîné
un modèle multi-classes, segmentant directement plusieurs structures. Les résultats suggèrent que ces modèles multi-
classes peuvent produire de meilleures segmentations, tenant compte des dépendances entre les classes.

Puis nous étudions les modèles de recalage des pMRs avec des iUSs. Ce problème est considérablement plus
compliqué que la segmentation d’image, en particulier entre différentes modalités comme l’IRM et l’échographie. Il y
a de plus une grande variabilité entre patients, les structures visibles dans le champ de vue limité des iUSs dépendant
de la position de la tumeur. Il est aussi difficile de déterminer les vrais déplacements de tissus avec lesquels entraîner
des modèles. Bien que n’étant pas parvenus à entraîner un modèle avec les données disponibles, nous analysons les
résultats et identifions de potentielles pistes d’améliorations.

Les modèles d’AP peuvent segmenter les iUS. Les données sont actuellement insuffisantes pour des modèles de
recalage, que plus de données permettraient d’entraîner.
Mots-clés : Brain-shift, neurochirurgie guidée par image, segmentation d’image, recalage d’image, apprentissage
profond.
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