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Résura

Cette thése s'inscrit dans le contexte de I'exploitation des données issues de la mission Sentinel-2. Cette mission,
initiée par I'Agence spatiale européenne et lancée en 2015, produit massivement des séries temporelles d'images
satellite (SITS). Parmi les axes d'analyse de ces images, cette thése se concentre plus particulierement sur la clas-
si cation, c'est-a-dire la production de cartes d'occupation ou d'utilisation des sols en utilisant I'aspect spectro-
temporel des SITS issues de Sentinel-2.

Les deux principales dicultés auxquelles ces travaux de thése se confrontent sont les suivantes. Tout d'abord,
la quantité sans précédent de données nécessite a la fois la mise en ceuvre de classi eurs capables de passer a
I'échelle et l'utilisation de techniques d'optimisation de code (telles que le traitement paralléle). Deuxiemement,
le bruit d'acquisition (nuages, ombres) combiné a I'aspect temporel des données résulte en un échantillonnage
irrégulier des séries temporelles. Les approches conventionnelles ré-échantillonnent les séries temporelles sur une
grille unique, puis elles utilisent des méthodes d'apprentissage vectorielles pour classer a grande échelle (échelle
nationale). Cette démarche en deux étapes a pour inconvénient principal d'alourdir le nombre de traitements ap-
pligués aux SITS, rendant les traitements plus complexes. Dans une moindre mesure, I'étape de ré-échantillonnage
peut légerement altérer les caractéristiques temporelles de la donnée.

Les contributions présentées dans cette thése sont les suivantes. Nous introduisons une nouvelle approche
statistique ayant la capacité de classer des séries temporelles avec un échantillonnage irrégulier basée sur un
mélange de processus gaussiens multivariés. Une approche en deux étapes a été proposée, en dé nissant dans un
premier temps un modele sur des séries temporelles uni-dimensionnelles et indépendantes au sens de l'indépendance
spectrale, puis en considérant dans un second temps conjointement les informations spectrales et temporelles des
SITS. Ces modeéles permettent, de surcroit, une reconstruction de données a des instants non observés ou bruités.
L'estimation des deux modéles repose sur un code python parallélisé a n d'étre exploitable sur les données de
trés grande taille. Les deux modéles sont évalués numériquement sur les SITS issues de Sentinel-2 en terme de
classi cation et de reconstruction et sont comparés aux approches conventionnelles. L'analyse des résultats illustre
la pertinence des deux modeles et le béné ce de disposer de modeéles paramétriques interprétables.

Mots clés: Processus gaussiens, Analyse de séries temporelles, Optimisation, Données massives, Observation
de la Terre.






Abstract

This thesis takes place in the context of the processing of the data from Sentinel-2 mission. This mission, initiated
by the European Space Agency and launched in 2015, produces an unprecedented amount of Satellite Image Time-
Series (SITS). Among the key analyses of these images, this thesis focuses on the classi catien kaisét,use

or land cover maps that can be produced using spectro-temporal aspect of the Sentinel-2 SITS.

Two main di culties are identi ed in this thesis for the process of Sentinel-2 SITS. First, the unprecedented
amount of data requires both scalable classi ers and code optimization techniques (such as parallel processing).
Second, the acquisition noise (clouds, shadows) combined with the temporal aspect results in irregular and un-
evenly sampled time-series. Conventional approaches re-sample time-series to a set of time stamps, then they use
machine learning techniques to classify vectors at a large-scale (national scale). The main disadvantage of this
two-step processing approach is that it increases the number of operations applied to the SITS, implying a more
di cult transition to massive amount of data. To a lower extent, the re-sampling step may slightly alter the tempo-
ral characteristics of the data.

This thesis contributions are the following. We introduce a novel model-based approach with the ability to
classify irregularly sampled time-series based on a mixture of multivariate Gaussian processes. A two-step ap-
proach has been used, by de ning on one hand a model of uni-variate time-series, independent from the spectral
wavelength point of view, then by considering on the second hand both spectral and temporal information from
SITS. These models allow jointly a reconstruction of unobserved or noisy data. Estimation of both models has
been implemented using a parallelized python code to be scalable to large-scale data-sets. The two models are
evaluated numerically on Sentinel-2 SITS in terms of classi cation and reconstruction accuracy and are compared
with conventional approaches. Analyses of the results illustrate the relevance of the two models and the bene t of
using interpretable parametric models.

Index terms: Gaussian Processes, Time Series analysis, Optimization, Big Data, Earth Observation.
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General I ntroduction

The context of this PhD thesis is part of a multi-disciplinary research project between remote sensing and applied
statistics. This PhD has been done in the Statify team, a joint team between LIK (Jean-Kuntzmann laboratory)
and Inria Grenoble and in collaboration with the CESBIO lab, a joint unit with the French national space center
(CNES), the French National Centre for Scienti c Research (CNRS), the French National Research Institute for
Sustainable Development (IRD), Toulouse University (UT2) and the National Research Institute for Agriculture,
Food and Environment (INRAe), Toulouse. It has been done under a grant from the CNES and the Grenoble
institute of technology (Grenoble INP) in the context of an IRS project (ANR-15-IDEX-02). CNES has also
provided data and computational resources.

Finally, in parallel to this thesis, a so-calllbel has been also obtained with focuses on teaching. It consists
of a re ection on the teaching practices and applications on concrete cases in the classroom (experimentation of
formats or modes of evaluation for example).

Earth observation using satellite image time-series

With the increasing number of successful launches of orbital satellites, earth observations are more and more used
for environmental and climatic monitoring such as land use or land cover. The context of this work focuses on
Sentinel-2 constellation, initiated by the European Space Agency with the Copernicus mission. Launched in 2015,
it produces an unprecedented amount of time-series thanks to its revisit cycle. These data are used for military
and civilian applications. The very high ground resolution allows ecosystems mapping, forests and agricultural
plots monitoring. Furthermore, the Sentinel-2 mission covers the complete European area which makes the data
usable at a country scale for a country like France. At such spatial and temporal scale, the data contains numerous
clouds, shadows, snows (without taking into account perpetual snow) or any other interference with the ground
information.

In order to produce a clean map, the time-series at large scale is conventionally done in two steps:

1. Temporal re-sampling: the data are sampled onto a regular temporal grid, discarding clouds and shadows
dates.

2. Classi cation: assigning labels to pixels from the satellite image time-series.

The pre-processing step to reconstruct irregularly sampled time-series may be costly and adds computational run-
time and memory usage which is critical on large data-sets as Sentinel-2 images.

Contributions

This work aims at combining statistical modelling with applications to remote sensing using Sentinel-2 images. It
proposes a one-step approach by de ning a new classi er for irregularly and unevenly sampled multi-dimensional
time-series. The contributions are based on Gaussian processes.

The contributions of this thesis can be summarized in two points corresponding to the de nition of two models:

1. The Mixture of Multi-variate Independent Gaussian Proces@dVIGP or MIGP) model. This model
assumes independence between the spectral bands of the satellite images and classify irregularly sampled
time-series. This work has been published [41]. In practice, it is known that the independence assumption is
not realistic, this leads us to the second contribution.

2. TheMixture of Multi-variate Gaussian Process@d2GP) model. This model assumes a linear dependency
with respect to latent processes which improves the classi cation results of MIMGP. It de nes a generative
model for multi-output classi cation. This work has been submitted [42].

Both models are optimized numerically to scale to Sentinel-2 data-sets. In particular, the implementation of the
rst model uses the “just-in-time” python compiler and pre-compiled code.

1



2 General Introduction

Communications

This work has been presented in:

National conference

Alexandre Constantin, Mathieu Fauvel, Stéphane Girard, Serge lo@kssi cation de Signaux Multidi-
mensionnels Irréguliérement EchantillonnéRETSI 2019 - 27e Colloque francophone de traitement du
signal et des image#ug 2019, Lille, France.

National workshops

Alexandre Constantin, Mathieu Fauvel, Stéphane Girard, Serge lovénnick Tanguy. Classi cation de
Signaux Multidimensionnels Irrégulierement Echantillonnés. 2Qib@irnée Jeunes Chercheurs MACLEAN
du GDR MADICSDec 2019, Paris, France.

Alexandre Constantin, Mathieu Fauvel, Stéphane Girard, Serge loBepervised classi cation of multi-
dimensional and irregularly sampled signaésatlearn 2019 - Workshop on Challenging problems in Statis-
tical Learning Apr 2019, Grenoble, France.

Outline of this thesis
The remainder of this thesis is organized as follow:

In Chapter 1, an in-depth review of SITS classi cation is done. It describes the Sentinel-2 data-sets to pro-
duce land use or land cover maps. It also reviews state-of-the-art classi ers in the remote sensing literature.

In Chapter 2, we review state-of-the-art in statistical modelling, for supervised model-based classi cation
which is the framework of our work. These models are described fardint type of inputs, in particular
distributions on real-input vectors for time-series classi cation and extensions to real-input matrices. Then
it introduces Gaussian processes for regression and classi cation, rstly by modelling one dimensional pro-
cesses (as continuous time-series) and secondly by modelling multi-output processes.

Chapter 3 summarizes the contributions of this thesis. It introduces the contributions on the representation
of one-dimensional irregularly sampled time-series. Starting from the general form of the proposed models
and the assumptions done for each contribution. An emphasis is done on how statistics are used to perform
classi cation and reconstruction of irregularly sampled multi-dimensional time-series.

Chapter 4 and Chapter 5 present the two contributions. They consist of, respectively, a rst #oticle (
appea) in IEEE Transactions on Geoscience and Remote Sensing and a second iartielee(y to a
statistical journal. They compare our models to state-of-the-art methods with both scores on classi cation
and reconstruction using Sentinel-2 satellite images.

A general conclusion and a discussion are provided in the nal chapter.

At last, Appendix A discusses numerical issues encountered with the estimation of the models parameters.
Particularly on di cult cases where the time-series is not observed within a large temporal window. Appendix B
includes the supplementary materials of [41]. Finally Appendix C highlights some technical optimizations of the
code.



Chapter 1

Satellite image time-series analysis and
classification

Outline

Frenchintroduction. . . . . . . . . . . . e 3
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1.2.2 Classicationwithmissingdata . . . . . . ... ... . ... ... ... ... ... 13

1.3 Challenges of satellite image time-seriesclassication . . ... .. ... ... ......... 15

French introduction

Ce chapitre présente les séries temporelles d'images satellitaires (SITS), issues de la mission Sentinel-2. Ces
données sont bruitées (bruits atmosphériques et bruit d'acquisition) et hétérogénes (diverses résolutions spa-
tiales selon la longueur d'onde du capteur multi-spectral embarqué). Ce chapitre présente donc les données qui
vont étre utilisées (aprés correction de la ré ectance atmosphérique brute en ré ectance de surface, création du
masque de détection de nuages et d'ombres).

Par la suite une revue de I'état de 'art est faite sur les méthodes de classi cation de ces séries temporelles.
En particulier les machines a vecteur de support (SVM) et les foréts aléatoires (RF) par lesquelles des cartes
d'occupation ou d'utilisation des sols a grande échelle sont produites. Cela met en évidence la problématique
de classi cation liée au caractere massif des données et I'étape supplémentaire de ré-échantillonnage obli-
gatoire pour obtenir des vecteurs de dimension xe pour traiter les SITS par ces méthodes de classi cation.
Les méthodes d'apprentissage profond (réseaux de neurones) sont aussi introduites et montrent qu'il est trés
compliqué de passer a I'échelle avec ces méthodes dites plus complexes.

Ce chapitre se termine en ouvrant la discussion sur les méthodes statistiques, réputées plus Iégeres en
nombre de parameétres, pour tenter de résoudre le probleme d'échantillonnage et de production de cartes des
sols a grande échelle.

Passive remote sensing satellite images are images taken dptiaal sensorknown asMulti- or Hyper-
Spectral Instrument (M8HSI) sensor, onboarded on the satellite's payload. Thegrdrom digital photographies
taken by a camera, as aerial ortho-photos, from both mechanical and data point of views. More speci cally, an
optical sensor measures the re ected light atedtent wavelengths from the sun by a surface, see Figure 1.1, and
divides it by the solar illumination. This quantity is known @&sectance the re ectance is a function of the
wavelength and is a property of the surface from which the light has been re ected, it takes its values between 0
and 1 (see [83]). Avavelengthoften denoted by, is the characteristic length of a wave (from visible spectrum
to infra-red in the order of magnitude of a micrometer for optical satellites, see Figure 1.2). The wavelength is
inversely proportional to the wave's frequenfyy o = c=fy wherec is the speed of light in vacuum.

Physically, the image sensor (MBISI) of a satellite is dierent from a camera on an electronic point of
view [52, Section 3.1.2] as the materials are adapted to space constraints. Indeed, a satellite has a higher orbit than
a plane (or helicopter) so an embedded telescope can be found to complete the MSI and additional protections to
space constraints (electro-magnetic waves or extreme variations of temperature for example) are also embedded.
An other aspect is the reception of images which is more complex for a satellite. A satellite is not able to come
back to earth to copy the data. All satellites are completed with a complete array of stations on earth (see [52, Fig.
6] for Sentinel-2 mission) to download images from the satellite.

3



4 Chapter 1 -Satellite image time-series analysis and classi cation

Figure 1.1: (Image from [98]). Surface re ectance measured thanks to an embedded multi-spectral instrument.
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Figure 1.2: Electromagnetic spectrum (wavelengths in m). Optical satellites measure re ectance in the visible
spectrum and in the infrared. The concerned wavelengths values range from 400 to 2400nm.

Satellite images are quantized in three dimensigpatial as any image has a nite number of pixetgectral
as MSIHSI have a nite number of spectral bands; @ethpora) satellite images are taken at drent times. The
spatial characteristic is denoted by thmeund resolution It is the shape of the pixel at ground level, for the
considered satellites, the pixel is usually a square and ground resolution corresponds to its side-length. Then,
the main di erence betweemulti- and hyper spectral instruments is the number sgectral bandsacquired.

Indeed MSI captures between three and a dozen spectral bands whereas HSI captures a hundred of them (higher
spectral resolution). The choice of the ground resolution willediwith respect to the targeted application, for
example high resolution satellites (as Pléiades family with 50cm ground resolution) are used for civil or military
applications [143] and coarser resolution satellites (as Sentinel-3 with 300m ground resolution) with applications

to oceanography [51]. Finally, the temporal quantization is characterized bguisé cycle It is the time between

two satellite images acquisitions of the same spatial areas. A complete set of images acquired in a given time
window is called &atellite Image Time-Seriéar SITS).

Among the Sentinel missiohsSentinel-2 satellites carry a MSI and are used for environmental monitoring,
Land Use or Land Cover (LULC) applications among others. Sentinel-2 SITS are a set of images with the same
views (same incidence angle, same altitude, ...). We refer to [13, Table 1] for an overview of the Sentinel family
including optical and non-optical (Synthetic Aperture Radar) images. Sentinel-2 satellites have a 10 to 60m ground

1European Copernicus prograhitps://iwww :copernicus :eu/en



1.1. Sentinel-2 multi-spectral satellite image time-series 5

Figure 1.3: Sentinel-2X tiles, represented by red squares, over South-east Europe (image downloaded from [82]).
The doubled-lines represent a 10km overlap between two consecutive tiles.

resolution sensor including 13 spectral bands and have a revisit cycle of 5 days per satellite.
Sentinel-2 multispectral satellite image time-series are detailed in Section 1.1, then a review of Satellite image
time-series classi cation is presented in Section 1.2. Section 1.3 concludes this chapter.

1.1 Sentinel-2 multi-spectral satellite image time-series

This Section presents the SITS produced by Sentinel-2 constellation. Itillustrates the time-series aspect and some
basic processing done to these data for Land Use or Land Cover (LULC) applications. Section 1.1.1 presents

the Sentinel-2 mission in depth. Section 1.1.2 presents the production of the reference data and the problem of
mislabeled data in large scale.

1.1.1 Sentinel-2 data

Sentinel-2 [52], also called Sentinel-2X (or simply S2), is a constellation. Two optical satellites, Sentinel-2A
and Sentinel-2B, are currently in orbit (polar orbit, altitude of 786 kilo-meters) and take high resolution images
from earth. As an optical satellite, it mainly captures visible light bands and near infra-red spectral bands (from
400 to 2400nm approximatively). The data providers (European Space Agency, ESA and Centre National d'Etudes
Spatiales, CNES for the French territory) provide Sentinel-2 datédsy A tile is a 100km side-length square [82].

One tile is revisited every ve days thanks to low orbital path of Sentinel-2. The tiles over south-east of Europe are
presented in Figure 1.3.

Sentinel-2 ground resolution and spectral wavelengths

To provide su cientinformation for classi cation purpose, Sentinel-2 has a wide spectral covering from the visible
range to short wave infrared wavelengths with a total of thirteen spectral bands. The choice of a 400 to 2400nm
spectral range is the ability to focus on agricultural particularities foexint crops [188]. All spectral bands, their
central wavelength and the ground resolution are reported in Table 1.1.
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Band name Ground resolution (m)  Wavelength (nm)
B2 (Blue) 10 490
B3 (Green) 10 560
B4 (Red) 10 665
B5 20 705
B6 20 740
B7 20 783
B8 (near infra-red) 10 842
B8A 20 865
B11 20 1610
B12 20 2190
B1 60 443
B9 60 945
B10 60 1380

Table 1.1: Sentinel-2 bands speci cations from [52]. Reported wavelengths are central wavelengths only; band-
widths and Signal to noise ratios are detailed in [52]. Figure 1.4 highlights the wavelengths positions on the
spectrum (400 to 2400 nm).

Among the thirteen spectral bands, four wavelengths, including blue, green and red visible light and one infra-
red band, have a ground resolution of 10m. These bands areient to detect vegetations or non-vegetation
areas [178] as they allow the computation of vegetation indexes as NDMNdhmalized Di erence Vegetation
Index This index is de ned as the normalized drence between the infrarekR] and the redR) spectral band:

NDVI = (IR RHIR+ R). Figure 1.4 shows the re ectance w.r.t. to the wavelength for grass and dried grass
repeated three times, one for each ground resolution and the spectral Iters for all bands are highlighted within
the coloured areas. In the third graph of Figure 1.4 (10m ground resolution), it is easy to see thaetbpadi
between the re ectance in the grey zomR)and the red zoneRj is larger for grass than dried grass. [11] provides

an application to vegetation's monitoring.

Six wavelengths in the near infrared and short-wave infrared have a ground resolution of 20m. Together with
the 10m ground resolution spectral bands, they cover the complete range of S2 optical abilities. The infrared
spectral bands around 800nm may be used to focus on vegetation and higher values of wavelengths focus on other
behaviours.

Finally three wavelengths have a ground resolution of 60m. In general they are used to calibrate atmospheric
correction.

Sentinel-2 revisit cycle

As the vegetation is changing with the seasons (for example leafs are falling from deciduous trees in Autumn), the
previous spectra (Grass or Dried Grass) depend on the acquisition day in a year: the spectral signature may also
change with time [19]. The following focuses on the temporal aspect thanks to the high revisit cycle of S2.

Despite the intrisinc noise of electronic components which is not of interest here, the noise considered in the
following concerns environmental ects which makes the acquisition unusable. As an optical satellite, the noise
sources we have is the presence of clouds and shadows. Presented in [187] and in [188], an average revisit cycle
with less than 8 days allows a 70% of noise-free data, also celézd data. Thus, about 30% of the data are
corrupted by clouds or shadows. The Figure 1.5 represents an extract of one SITS (true color composition) from
France for a complete year of satellite images acquisition. We can clearly see variations of colors (which means a
variation of the re ectance with respect to the time) with seasonatts, clouds or shadows at some locations. An
other tile from the city center of Toulouse, France, is represented in Figure 5.1. In the folldwmdtmin; tmax
denotes the time window for a SIT&;i, is close to January the 1st ahghk around December the 31st for a
one-year SITS.

Sentinel-2 level 2A SITS and noise detection

Now that the Sentinel-2 SITS are described, what follows describes the nal progutdyel 2A SITS re ectance,
and the construction of the mask of data (noise detection).
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Figure 1.4: Sentinel-2 spectral band Iters (coloured areas) centered around the wavelength provided in Table 1.1
and with associated bandwidths [52]. Visible light starts from 380nm and ends around 780nm: blue, green and red
bands are highlighted in the 10m ground resolution bands. The spectral re ectance signature of healthy grass is

reported on each grid (full line) and the signature of dried grass (dashed line).
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Figure 1.5: Satellite Image Time-Series true colors. The data come from year 2018 over the center of French ter-
ritory. Images were downloaded from Theia Land Data Cetigpg://www :theia-land :fr/en/products/ ).

Figure 1.6: (Image from [80]). Sentinel-2 product levels: level 1C (with atmospheric interference and clouds) and
level 2A (re ectance and clouds removal). Level 3A shows reconstructed satellite image.

The SITS are proposed by the data provider aedént level of processing ranging from the raw data to clean an
reconstructed surface re ectance. These levels are caiftetlict levels Product levels available for Sentinel-2 are
the ones derived from the NASA (National Aeronautics and Space Administration) in 1996, some of the product
levels are presented in Figure 1.6. The multi-spectral instrument from the satellite captures a raw re ectance (level
0) which is completed with metadata (level 1A: acquisition time, geo-references, ...) and then ortho-recti ed (level
1C). At levels 0 and 1, re ectances are still interfered by the atmosphere and have to be corrected to be used as
surface re ectances (see Figure 1.1).

Image products are downloadeat level 2A where the data are composed by surface re ectance and a mask [79].
Attimet 2 T, we denote byr (t) 2 E the surface re ectance at multiple spectral bands lskftj 2 R* the associ-
ated maskM(t) > 0 means that clouds or shadows are detected. Figure 1.7 shows a true color satellite image (left
image) and the same image where noisy data are masked (right image) thanks to the associated mask. All prod-
uct's levels for Sentinel-2 are presented and discussed in [80]. These pre-processing steps are based on the MACCS
(Multi-sensor Atmospheric Correction and Cloud ScreeningAJA (MACCS-ATCOR Joint Algorithm) a pro-
cessing chain [81] from CNES (French space agency), CESBIO (National center for space and biosphere studies)
and the German Aerospace Center (DLR, [8]).

Finally, some data are in the edge of a tile or, for some reason, the data are not exploitable. In that case there
is no data. The data provider indicates it using “re ectance” val@®000. No data “values” are automatically
removed from the time-series.

2All products are available in the Theia Land Data Centétip://www :theia-land :fr/en/presentation/products
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(a) True color satellite image (b) Masked image

Figure 1.7: True color noisy image (left side) with clouds, shadows and saturations. The left image presents
the data detected as noisy by [79]. Most of the noise has been captured, however some clouds on the top have
not been detected. Images were downloaded from Theia Land Data Catyer/{www :theia-land :fr/en/

products/ ).

1.1.2 Land use or land cover maps

The construction of LULC maps, especially at large scale (country scale or larger), is often computationally ex-
pensive and the reference data are partially mislabelled. Mainly two reasons are identi ed, rstly the labels change
over the years (constructions of urban areas, clear-cuttiggand yields to a heavy and expensive update at large
scale. Secondly the change of ground resolution between two satellites missions imply a re-labelling of reference
data. For example Formosat SITS are well-known for LULC maps and have now corrected the reference data
throughout their use but has a érent ground resolution to be used directly with Sentinel-2 SITS. The following
focuses on the construction of the sets of Sentinel-2 reference data.

SITS reference data

The classes in this manuscript are extracted from [93, Section 4.2] and grouped by polygons. Each polygon refers
to a unique class designated by CORINE Land Cover (CLC) dataset [20], French National Geographic Institute
(IGN) maps [125] and other more specialized providers (grasslands and glaciers). The classi cation problem aims
to separate around twenty classes. In a tile-based approach, the number of classes to predict may change from one
tile to another, for example Glaciers polygons only appear in high altitudes. An example of resulting polygons is
reported in Figure 1.8 (Other classes are presented in Figure 4.7).

As the authors mentioned in [93], they took into account multiple reference datasets to obtain large-scale maps
but the proportion of mislabeled data is still signi cant. To overcome this issue, the authors used a Random Forests
classi er (discussed later) known as robust for mislabeled data.

The diversity of land use or land cover maps

The production of Land-Use or Land-Cover (LULC) maps in the literature is wide. Depending on the context, the
data source, the geographical area and the land cover may vary.

From [36, 73, 192], global land cover maps of high resolution (Landsat 30m ground resolution images) are
discussed and reached classi cation scores from 64% to 70% for a total of 9 to 10 classes including agricultural
areas or arti cial areas among others. Only recently, [96] presented a LULC map at 10m using Sentinel-2 images
with 85% classi cation score for 11 classes. The LULC has also been studied for smaller maps as continents
or countries. [69] presented the case of South America with 5 classes with an overall accuracy of 89%; [89] for
United State of America from 2001 to 2016 with 16 classes and 80% to 83% of estimated accuracy. France
Metropolitan area has also been mapped [93] with 17 classes and about 90% accuracy score using Sentinel-2 10m
ground resolution. China was mapped in [107] with 19 classes and about 75% accuracy score.
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Figure 1.8: (Image from the supplementary materials of [41]). Polygons classes over a true colors tile in the center
of the metropolitan France. Red squares are zoomed areas presented in [41].

The de nition of the LULC problem will not be discussed further. Next Section only focuses on the classi ca-
tion techniques and comparison for a given LULC problem. This part highlights that a direct comparison between
di erent studies is dicult.

1.2 Review of satellite image time-series classi cation

In the following E denotes the space where the SITS objgdige, i.e. y 2 E, andC s the total number of classes

in the classi cation problem. In the following we consider non-noisy datagn be represented by a vector of xed
length, and we consider supervised classi cation problems, each we@a@ssociated with a class membership.

A common example of a vector input spaceciss RPY wherepqis the dimension of the vectog represents the
number of temporal features within SITS apdhe number of spectral bands. Other caselg afe considered in

the next Chapter when reviewing state of the art in statistical modelling. The supervised framework implies that
the models' parameters are learned from a training set including the class membership. The problem of supervised
classi cation is recalled in Section 2.1.

1.2.1 Production of land use or land cover maps

As presented previously, SITS are complex for multiple reasons: they have spatio-spectro temporal information,
they are noisy (optical satellite images) and they are produced in very large scale. The processing and classi cation
tasks are challenging as the use of some classi ers is not possible at large scale or some additional assumptions
must be done such as spatial or temporal independetceA recent review can be found in [170] for dir-

ent LULC purpose and scales. Theohventiondl classi ers for LULC applications are presented, they were
intensively used in the past decade and were issued from the Machine Learning community. Then more complex
classi ers are presented, they are gaining in interest and are part of the deep neural network family.

Conventional classi ers

Among the conventional classi ers, this chapter will not review model-based classi ers as Gaussian Mixture mod-
els [102]. These models are described in-depth in the Chapter 2. Two major classi ers are reviewed: Random
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Forests (RF) and Support Vector Machines (SVM).

Random forests (RF, [26]) are probably the most known classi er in the remote sensing literature. RF is a
tree-based methods, it is a collection of numerous decision trees. A decision tree is a binary tree which can take
as input a nite-dimensional vectoy, 2 E. At each node, a decision rule gives a direction to the decision (left or

data is classi ed thanks to its nal node, for example the red path in Figure 1.9 leads t@cta€s 1. We refer
to [84, Chapter 9] for additional properties. Each decision tree within the RF classi er returns a class, the class
membership returned by RF is the majority voted class from decision trees.

Considering a time-series observed)éime-stamps withp spectral bands and a spatial independence (as done
in the most cases [103]), then the input spEde often a vector of sizpqandE = RPYwhere all thep time-series
are stacked. In [93], the authors presented promising results on Landsat 8 spectra-temporal SITS before the launch
of Sentinel-2. They trained multiple RF classi ers, one per tile over the France territory and one per climatic area.
They used linear interpolation to re-sample time-series. Spatio-temporal information can also be exploited, in [66]
they have shown good results on Sentinel-2 at regions level. Finally [181] used RF to produce crops maps over
Europe on Sentinel-1 time-series.

In addition to the good classi cation results, [93] highlighted that RF is robust when some target classes within
the training set are wrong. RF is known to scale well w.r.t. the number of samples.

Support Vector Machines (SVM, [43]) were investigated for LULC applications before RF [160]. In binary
classi cation C = 2), it aims to nd an optimal hyperplane to separate the two classes, see Figure 1.10. The
hyperplane is optimal if it maximizes the margin between the two classes and minimizes the classi cation error
in the training set. From there, two versions of SVM are found in the literature, linear SVM with an optimum
hyperplane within the data space and non-linear SVM which transforms the data space into a feature space where
the data are more likely linearly separable.

In linear SVM, the hyperplane is linear w.r.t. the inm2 E, it corresponds to:

H ;yie+b=0; (1.2)

wheref! ; bgare parameters of the model. Non-linear SVM can be de ned by replacing the dot product in (1.1) by

a kernel functionKernel trick, we refer to Section 2.2.1 for more details on kernels or to [72] for kernel methods

in remote sensing. However, despite higher abilities to separate classes (polynomial or RBF hyperplanes among
others, see Section 2.2.1), it is harder to scale to large data-sets. Indeed, only linear SVM are considered as “light”.
Finally the problem is extended to multi-clag3% 2) using the so-calledne-vs-allor one-vs-onetrategies. The

latter one is often preferred [90].

Multiple comparisons between SVM and RF have been done on LULC applications. [91] compared SVM
with decision trees and two other classi ers (model-based and Neural network based approaches) on a 6 classe
problem. [173] provided a more recent comparison between SVM, RF and k-Nearest Neighbors classi ers on
Sentinel-2 images. However, despite good results, the choice of non-linear SVM with more complex kernels
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Figure 1.10: (Image from [160]). Two classes (red and green) are separated thanks to the optimal hyperplane (blue
line), i.e. the hyperplane which maximizes the margin between the two groups. In this example tlyeadata
real-input vectors.

scales quadraticly or cubicly with respect to the number of samples within the training set an large data-set remains
a problem.

Applications in LULC are also wide, in addition to the above comparisons: [124] used SVM on spectral fea-
tures for crop classi cation and [32] used time-series for data change detection. The use of both SVM and RF
techniques is still very important. As presented in [160], RF is becoming more and more important than SVM in
the remote sensing literature over the last four years. Both methods are still of interest as the number of parameters
is reasonable to reach high accuracy on the produced map and the interpretability of some of the model parameters
can be done. The following focuses on more complex techniques with a larger number of trainable parameters.

Arti cial neural network classi ers

Arti cial deep neural networks are widespread in LULC applications on smaller area as they have millions of

parameters to learn. The number of parameters induces naturally a huge amount of computation time and resources.
A Neural Network (NN) is a structure based on the multi-layer perceptron (MLP) from Rosenblatt [151]. A

perceptron is a parametric function with parametergg ! 2 E andb 2 R that has been transformed through the

Heaviside step functioh: R 7! f0; 1gas in (1.2). A perceptron is also known asaati cial neuron as the output

is activated (Output dfi equal to 1) or inactivated otherwise:

z=h(n ;yig +b): 1.2

The MLP has also been studied in remote sensing as in [91] which compar8¥Rmvith the MLP structure.
However, the advent of new kind of layers within neural networks (derived from MLP) and the big data era brought
the intensive study of Deep Neural Network (DNN) with a large number of intermediate layers, alschiddled
layers, over the past ten years. Every layer, includiidfenlayers, are composed by weights with dient
shapes and each layer is terminated by a non-linear function (more general than heaviside step function, like relu,
elu,etd. The dimensions of input, output and hidden layers and the parameters (or weights) assigned to each layer
with the associated activation function, together, is called a netamhitecture A DNN architecture with a large
number of hidden layers easily reaches millions of parameters. Inference of DNN is complex [84, Section 11.5]
and done by back propagation of the gradient, issues related to a large number of parameters arise but also over-
tting problems which have to be taken into account within the training of such network (dropout techniques, data
augmentationeto).

In the context of remote sensing, mainly two architecture's families of DNN are studied in the literature: the
rst family is composed byconvolutional layersand is known as Convolutional NN (CNN), they are specialized in
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Figure 1.11: (Image from [150]). U-net architecture for pixel-wise classi cation.

image analysis (or spatial features). The second family is composedimrentlayers and is known as Recurrent
NN (RNN). They are specialized in time-series (temporal features).

A Convolution layer is a convolution product between a so-caltaa/olutional Iterand a tensor input. From
there two structures are derived from the CNN, the rst architecture takes as input an image (real-input matrix,
or higher order tensor) and h&soutputs (real-valued vector) whegeis the number of classes in the classi ca-
tion problem. The number of parameters is correlated with the size of the convolutional Iter and the complexity
decreases signi cantly compared to a fully-connected network (for all hidden layers, each output is a linear combi-
nation of all inputs). The convolutions are mostly used for application to images. In remote sensing they are used
to exploit spatial information of satellite images. For example [168] uses CNN to produce maps from Sentinel-2
images by upsampling the nal layer to the size of the image. An other architecture derived from CNN is the auto-
encoder architecture. The auto-encoder shares some dimensions of the output with the input of the network. The
most known architecture is the U-net [150], it has the spatial dimensions shared between inputs and outputs. U-net
is used for pixel-wise classi cation as illustrated in Figure 1.11 (outputs are tensors of order 3, the last dimension
can be increased for derent classi cation tasks. An application to aerial images is presented in [99].

The second family, Recurrent Neural Network (RNN), uses the temporal features of SITS. This family contains
LSTM (Long-Short Term Memory, [87]) networks which are interesting for multiple views of the same scene at
di erenttimes to predict, in this context, pixel-wise class membership. It has been used in [144, 152] on Sentinel-2
images and shows promising results.

Some recent works also focus on combining recurrent networks with convolutions for images [65, 138] on
Sentinel-2 images. For two in-depth reviews, we refer to [193] for deep NN models applied to high spatial reso-
lution satellite images and to [5] for application to hyper-spectral images. At this time, [96] presents a large scale
map with 10m ground resolution but without temporal information from SITS. When dealing with large data set at
a country scale with large time domain (one year of images) at high resolution, the conventional machine learning
techniques are preferred when DNN architecture reached millions and millions of parameters to train.

Conventional and neural network classi ers, take as input a vector of xed length, a situation that can be hardly
reached with SITS. The next Section discusses on problems induced by missing data.

1.2.2 Classi cation with missing data

When dealing with missing data, the previous classi ers are not able to perform without re-sampling to a nite
and xed grid of time stamps. This grid must be the same within the training and the validation sets of data. For
Sentinel-2 spatio- spectro- temporal images, the reconstruction of missing data to a xed temporal gridenay di
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Figure 1.12: Sentinel-2 pixel time series for the near infra-red band (B8) for threeedit tiles over the French
territory. The clear dates are marked as blue whereas red marks indicate a detection of noise from the mask.
Dashed lines represent the gap- lled data.

for di erent studies. We refer to [158] for a review of these techniques and how to combine them to reconstruct
missing data. Before going further, let us recall that S2 SITS are processed at level 2A (Section 1.1.1) and are
brought with a mask with noise detection. As the 60m ground resolution are used to process the data from 1A to
2A, the 60m spectral bands will not be used in this manuscript.

Spatial re-sampling

Let us recall that the spatial location of each pixel has not been taken into account in this manuscript, the time-
series will be classi ed thanks to their spectral and temporal signature (using non-noisy time stamps). We refer
to [158, 195] for missing data reconstruction using spatial information.

The process will only concern 20m ground resolution spectral bands (Table 1.1). A simple up-sampling from
20m to 10m ground resolution will be done. It uses the “bicubic” algorithm from orfeo toolbox [171], in particular
superimposgthis toolbox is an open-source project for remote-sensing applications.

Temporal re-sampling

Sentinel-2 SITS have derent temporal samplings for each time series. The reasons for this two-fold: rstly the
Sentinel-2 tiles have derent time stamps from one tile to another (provided by the data provider) thanks to the
orbital path of the satellites, an example is provided in Figure 1.12 for thresetit tiles by the blue and red dots.

The red dots correspond to masked data (noisy acquisitions). Secondly the noise sources as clouds or shadows
appear locallyj.e. the clear data (or noise-free data) from one time-series to another appeaemnditimes

in a year. To overcome these issues, [93] de ned a unique temporal grid over a complete territory (metropolitan
France in their study). The authors removed noisy acquisition thanks to the mask values (red dots in Figure 1.12)
and linearly re-sampled time-series to the new xed grid. This technique, simply mentiorgapaling, is
implemented in orfeo toolbox [171]. It consists in taking the linear interpolation between two clear dates, an
illustration is provided in Figure 1.12 where dashed lines represent the gap- lled time-series.
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Other techniques are available but are not used to process Sentinel-2 SITS. In Chapter 5 we review statistical
methods for missing data reconstruction.

1.3 Challenges of satellite image time-series classi cation

This chapter presented the Satellite image time-series and the Sentinel-2 constellation which operates to produce
high resolution images. We nished the presentation of Sentinel-2 SITS with the emphasis on mislabelled data
sets, particularly in large scale areas. These data will be used throughout this manuscript in order to assess the
performances of the proposed classi ers thanks to the spectro-temporal aspect of the data (a spatial independence
assumption will be done). We also presented the state-of-the-art classi ers with nite-sized input vectors, with
promising classi cation scores and working on national scale to produce Land Use or Land Cover (LULC) maps.
Application to Sentinel-2 SITS requires an additional pre-processing step to re-sample time-series to a xed set of
time stamps. We illustrated this processing step on one time-series using the linear gap- lling technique which is
usually done to process national LULC map [93].

The main challenges are the classi cation of these SITS using classi ers that scales to large data-sets and to
remove the processing step of re-sampling the time-series to a known set of time-stamps.

Recent statistical approaches are of interest thanks to their interpretability (unlike more complex classi ers as
Neural Networks) and the wide variety of applications. An example is the use of the Gaussian processes [31] for
the analysis of the three dimensions of SITS. Supervised model-based classi cation is, more generally, already
used in time-series classi cation. The following Chapter reviews statistical modelling for classi cation of multi-
dimensional time-series.
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French introduction

Ce chapitre présente la classi cation de séries temporelles par modélisation statistique. La modélisation statis-
tique peut étre séparée en deux grande catégories : l'apprentissage non supervisé et l'apprentissage supervise.
Ce chapitre se concentre plus particulierement sur ce dernier.

La premiére partie présente la classi cation supervisée. Pour cela la régle de décision (assignation d'un
élément a une classe) est présentée polérdits types d'objets a classer : des vecteurs, des matrices ou bien
des objets plus complexes (données textuediep, Di érents modéles génératifs sont alors présentés, en par-
ticulier les modeles supposant une distribution gaussienne. Plus particulierement la loi gaussienne multivariée
est étudiée puis étendue au cas matriciel.

La seconde partie présente la statistique fonctionnelle en détaillant les processus gaussiens (Gaussian Pro-
cesses, GP). Deux cas sont abordés : I'utilisation des processus gaussiens dans le cadre de probléemes de
régression et de classi cation. La régression repose sur le principe que les échantillons sont des observations
d'une fonction unique puis, par la loi des probabilités conditionnelles pour des vecteurs gaussiens, permet la
prédiction de valeurs a des instants non observés. La classi cation repose sur I'hypothese que la probabilité
d'appartenance a une classe est composée d'une fonction a valeurs ;ddret fDune fonction latente mod-
élisée par un GP. Le cas de la classi cation binaire est présenté puis étendu au cas multi-classes. En n, cette
partie se termine par un bref état de I'art sur les GP multi-dimensiorireeldes fonctions aléatoires a valeurs
dansRP avecp > 1. Ces méthodes de classi cation ont, pour I'essentiel, une complexité cubique par rapport
au nombre d'échantillons. Ces notions sont nécessaires pour la compréhension des contributions.

Ces méthodes ne permettent pas, a notre connaissance, de classer les séries temporelles a échantillonnage ir-
régulier, notamment les SITS Sentinel-2. Ces méthodes reposent sur des objets de dimensions nie et xe, elles
impliquent un ré-échantillonnage temporel des SITS, ce qui n'est pas compatible avec notre problématique.

Let E be an arbitrary space containing all objects to classify (vectors of dimepsiime-seriesetc) and let

model-based classi cation problem is to assume that the conditional distributigz of ¢, y 2 E, belongs to

some parametric family. For any samplg/ijz = ¢ means thay; belongs to the classwith associated density

p(yijz = c¢). This approach diers from the previous approaches where the data mechanism is not modelled
by a statistical distribution [27] as presented in Chapter 1. The statistical approaches are interesting for their
interpretability and, often, reduced numerical complexity thanks to a reduced number of model parameters.

17
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In this chapter, we focus on statistical modelling by describing supervised model-based classi cation at rstin
Section 2.1 with a focus on Gaussian distributions. Afterwards an overview of Gaussian processes for regression
and classi cation is given in Section 2.2. Finally a brief conclusion is provided in Section 2.3.

2.1 Supervised model-based classi cation

Model-based classi cation is based on the de nition adecision rule which returns a classconsidered as the
best candidate from an observatip E. We say that s the class membership vf

In a supervised framework, all classes are known and represented in the set of data. The probabilistic model is
inferred on the complete sil;;z)d.,. On the opposite, an unsupervised framework supposes that the classes are
unknown and are inferred from the data inpiytg). , .

Firstly the decision rule is presented Section 2.1.1, then the discrimination problem with a Gaussian assump-
tion is presented in Section 2.1.2 and nally extensions to matrix-variate Gaussian distributions are presented in
Section 2.1.3.

2.1.1 Decision theory and supervised framework
Maximum a posteriorirule

In the Bayesian decision theory, the optimal decision rule is calledngsdmum a posterioffMAP) rule. The
Bayes rule gives us theeposterioriprobability by:

cp(yjz = c)
p(y)

wherep(yjz = c) is thelikelihood density and . = P(z = c) thea priori probability on class. p(y) is the marginal
distribution ofy which can be written as a nite mixture:

P(z= cy) = I cplyjz=c);

x
p(y) = ch(yjiZ = o):

c=1

The MAP rule assigns to a non-labeled object the atemsch as:
(v) = €= argmaxP(z = cjy) = argmax cp(yjz = C): (2.1)

From (2.1), two approaches are found in the literature: the discriminative approach modalpdbteriori
probability and the generative approach which modelsatipeiori probability and thdikelihood The latter ap-
proach is the one considered in the following.

In a supervised framework_ is usually estimated by its empirical counterpart and the generative approach is
to model thdikelihood Hyjz = c). A model is a distribution which can be parametrized using a nite number of
parameters denoted by If we suppose that the problem is decoupled w.r.t. each class, we @amadels where
each model in class 2 f1; :::;Cgis parametrized by its own parametegs We write the parametrizdikelihood
density in clas€ by p(yjz=c¢; ). Ig,n the following we introduce the subs8t of S such thaiS. = f(yi; z)gjz=c.

We writen; = jS¢j, thenn, nand ne = n.

Remark. Let us highlight that the opt|m|zation problem (2.1) is equivalent to:
¢ = argminklog( cp(yjz=¢C; ));

wherek is a non-zero negative constakt 2 for Gaussian distributions as log is strictly increasindRn
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Maximum likelihood estimation

Maximum likelihoocestimator (or MLE) is an estimator which maximizes likelihoodfunction w.r.t. parameters
. Optimal parameters are denoted gy ¢ and de ned by:
“MLE = arg max.( ;y): (2.2)
L(;y) = szl p(yjz = c¢; () is the complete likelihood function of the model with parameters f 1;:::;
on datay 2 E. As all samples fron® are independent and identically distributed, the complete likelihood is the
product of densityp(yijz = ¢; ¢), also callednarginals Additionally, when the problem is decoupled w.r.t. the
class, then (2.2) is computed for each clags for ea\(‘?h sample in subsst:

cMLE = argmax  p(y = yijz = ¢; o) (2.3)
¢ jz=c

For the sake of clarity, the realization = y; givenz = c will be directly writteny;jz = c. Generally, .
is a parameter of the model and is encompassed,ifior example in unsupervised classi cation they have to
be estimated through the EM algorithm (Expectation Maximization) [22, Eq. (2.10), p.25]. In our supervised
framework, . are estimated by their empirical counterpag="n.=n and are removed from parametegs

MLE has interesting properties like convergence (wheénl ) to a normal distribution centered on the true
value of [84, Chapter 8, p.266].

Probabilistic models and distributions

As mentioned previously, the dagdive in an arbitrary spacg. In the following we discuss dierent examples of
spacekE and associated distributions found in the literature.

Let g be the number of features vf If E = RY then the samples are real-valued vectors, for example regularly
sampled time-series. In this case, the multivarigtegriate) Gaussian distribution is often adopted, leading to
the well-known linear and quadratic discriminant analysis classi ers (see Section 2.1.2). The probability density
function (pdf) of the multivariate normal distribution is given in (2.4).

Recent works focus on non-Gaussian distributions. One example is the skew-normal distribution which has
been introduced in the past century [6]. Considering the one-dimensionaEcask)( the pdf of the skew-normal
distribution, denoted bps n, is de ned with a parameter which controls the skewness € 0 yields the standard
Gaussian distribution):

Ps-n(Y) = 2p(y) ( Y);
pherep(:) denotes the standard normal pdf an() is the standard Gaussian cumulative density functidfy)(=
I p(t)dt). This distribution is used to deal with asymmetric data [35, 175], the multivariate skew-normal distri-
bution is described in [7].
An other example is thedistribution with heavier tails. The distribution depends on a shape parametén

yields the standard Gaussian distribution), the multivatiatistribution pdf is given by:
|
( +a=2 Lo o1y oy
— =y )Y v ) . Y2RY
(=2)( ) =

where is the gamma function andj is the determinant of . This distribution is used to deal with outliers [4,
132]. The distributions are illustrated in Figure 2.1. It presents a right skewed pdf() and at-distribution

with heavy tails ( = 1) with comparison to the standard Gaussian pdf. More details about these two parameters
are provided in [22, Chapter 9]. Whenare categorical data, for example nominal data as species analysis [55]
(presence or absence of species in an environment), the Epaodiscrete. In that context, some studies focus

on multinomial distributions [34] or Dirichlet distributions [21]. H is ordered, then dedicated distributions are
proposed as in [15] with ordinal data. Other data-sets, or sgaca® presented in [22, Chapter 6].

Lastly, whenE is nite and high dimensional or in nite dimensional.é. whenE = RYandq! 1 ), specic
parametric and non-parametric models are preferably used. Section 2.1.2 presents the High Dimensional Discrim-
inant Analysis (HDDA) and Section 2.2.1 discusses the kernel functions that can be used in non-linear classi ers
for in nite dimensional data.

p(y) =

2.1.2 General discriminative problem

As introduced before, whele = RY we can use linear and quadratic classi ers. The following presents the Linear
and Quadratic Discriminant Analysis (known as LDA and QDA) with Gaussian assumption on the likelihood
density.
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Figure 2.1: Probability density functiong)(for 1-dimensional Gaussian distribution (solid line), skew-normal
distribution (dashed line) with = 2 and the t-distribution (dotted line) with= 1.

Linear and Quadratic Discriminant Analysis (LDA /QDA)

Letyjz=c N 4( o ¢) be amultivariate Gaussian model with meanand covariance matrix.. The model
parameters are. = f .; g Then the associatepvariate Gaussian likelihood density (or pdf) for ikig sample,
or realization from the Gaussiayjz = cis given by:

!

PYiZ=C 0=@) ™ d Ren 2o S Jo o 2.9

From (2.3) in supervised framework (recall tiaapriori probabilities are estimated by their empirical counterpart)
with Gaussian density (2.4), the minimization of the negative log-likelihood is:

Y
E=argmin  “(yi; o):
¢ ijz=c
with:
i )= log(p(yi; o))/ D?(vii o)+logj o+ qlog(2 ):
q
D(; )= (¢ ) Ny )stands for the Mahalanobis distance with covariance The optimization

problem minimizes both the quadratic terid (y; )) and the complexityj(¢j). Then the MAP rule (y;) =
arg max P(z = cjy;) returns the class with the highest probability, this method is known &ulaératic Discrim-
inant Analysigor QDA).

matrix is shared for all classes. This particular case is known asittear Discriminant AnalysigLDA) as
explained below.

Decision boundaries

A decision boundary describes a delimitation between groups where the probabilities to belong to all classes are
equal. Let us consider the caBe= 2 with E = RY, then the decision boundary delineates two groups sfygtbe
the quantity de ned by:

!
_ g PE=2Y) - = 1) :
sy) = log PZ=1y) log(p(yjz=2)) log(p(yjiz=1), 8yZ2E: (2.5)
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Figure 2.2: LDA and QDA decision boundaries between two clagsesl(in red ancc = 2 in blue).

If the probabilities are equal, thesfy) = 0;8y 2 E = RY. In particular, the spacly 2 R%s(y) = Ogde nes the
decision boundary.
If the distribution is Gaussiarg(y) = 0 is equivalent to:

D?,(y: ) +logj 2j D?(y; ) +logj 1j=0;
ja _ o
S P AP I (Y I 1)+'°gj_ij’o’ (2.6)

LY RNy Yy 25 Gy Gy St Tt 1+|Og}—i}:0:

The boundary equation in (2.6) is quadratic wy,texplaining why it refers to th@uadraticdiscriminant analysis.
Taking 1= 2= in(2.6)yields:

20, 7 y+ 3 ', 1 ti=0

which is linear w.r.t.y, referring to thdinear discriminant analysis. Figure 2.2 illustrates the linear and quadratic

Estimation of parameters

Recall that estimation of parameters is donentgximum likelihoodn each clasg independently. Inference in
classc is done on the se$. with cardinaln., the number of samples in class e is solution of (2.3) and
“c=nnwheren=.n.. In QDA, the optimal parameters are well known [84, Chapter 4] and are given by:

X

Ac = Yi=e;
i%=c

Ac = (i Ac)> (i Ac):nc:
ijz=c

Penalized and regularized discriminant analysis

In the Gaussian discriminative analysis, some additional hypothesis are usually made to give the model more
robustness to real world data-sets especially in high dimension. Most of them consist of modifying the estimator
of the covariance matrix.
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The penalized approach is done by addwagriori information on the covariance matrixas:
=T P

P is the penalizer which contairgspriori behavior and is the strength of the penalization. It also increases the
stability of convergence (in case of singularity of mat?D(

The regularized discriminant analysis (RDA) is more complex, it combines both LDA and QDA behavior. We
refer to [63] for a complete description of the technique.

High dimensional data analysis

The problem of high-dimensional data arises when the cardinal of tmeisstnall compared to the dimension of
the samples). Although regularized discriminant analysis increases the stability, other methods are found in the
literature as dimension reduction and parsimonious methods.

We just mention here the so-called High Dimensional Discriminant Analysis (HDDA) [24] which is part of the
parsimonious models. It assumes that the covariance matsbapproximated by:

"=Q Q%

whereQ is the matrix of eigenvectors from and more specically, is the diagonal matrix which contains
eigenvalues with some simpli cation. An example is a diagonal matrix which contains only two eigenvajues (
and 1): =diag(o;:::; o5 1;:::; 1) with the same size as. We refer to [22, Chapter 8] for a wide overview
of the dimensionality problem and applications.

The dimensionality issue in this manuscript does not refer to high dimensional data but to large data-sets (
n large enough to encounter numerical issues as the processing of Terabytes of data in satellite images).

2.1.3 Matrix-variate Gaussian distribution

Previously, we illustrated distributions and examples on vectrs R?). In the context of satellite image time-
series, both spectral, temporal and spatial information are provided from the satellites and it is interesting to
combine them in order to increase the precision of the analysis.

In the following we decide to illustrate the case where two dimensions are used jointlybeghe number of
spectral bands angithe number of observations (time-stamps), then the observétiemp g real matrix, we
write Y 2 E with E = M 4(R). M p4(R) denotes the set of real matrices sized g. One may stack all vectors
(see De nition 2.1) in order to retrieve the vector case (vithe RPY) but the dimensions could become too large
and numerical issues may appeatr.

The matrix-variate normal distribution has been used iredként contexts, for example in electro-encephalography [74,
165] where the study combines time samples and sensors (or spatial and spectral parts [198]), remote sensing [71],
where the authors combine time samples and spectral information, or dimension reduction [76] with time samples
and spatial locations. [121] shows that it may be extended to higher order tensor distributions.

De nitions and properties

For the sake of self-containedness, tkeoperator and thE&ronecker producére de ned (De nitions 2.1 and 2.2).
Then the matrix-variate Gaussian distribution is formerly introduced in De nition 2.3.

De nition 2.1 (vecoperator) LetC am nmatrix. vecC) is a vector of sizennsuch that:

De nition 2.2 (Kronecker product) Let C any n; matrix andD an other matrix of sizen, n,. The left
Kronecker product, oKronecker product, C D is a matrix of sizemym, n;n, such that:

11D oo cinD
C D=F: = (2.7)
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Remark.Let us highlight that, from (2.7), the matr& D does not allow us to retriev@ andD uniquely. Indeed,
let > 0,thenC D= ()C (1=)D. With higher-order tensor distribution as in [121], the identi ability issue is
increasing.

Besides, we refer to [155] for several properties of these two operators.

% NGO

(Yr N ,(0; )

Figure 2.3: Separability between lines and columns for a centered random Maffixek-th line of Y does not
depend on covariance matrixand thd-th line does not depend on

From [48], a popular approach to reduce the dimension of the problem is to consider uncorrelated lines and
columns ofY 2 M ,4(R). This is the hypothesis afeparability between lines and columns, illustrated in Fig-
ure 2.3. With a Gaussian assumption [48, 166], it implies the de nition of two covariance matrioésizeq q
which de nes the covariance between two column¥and of sizep p between two lines. This illustration
does not show any mean, however it is easy to shift the matrix using a mean Matrix

De nition 2.3 (Matrix-variate Gaussian distribution, [48]).et Y be a random matrix of sizeg q. Y follows a
matrix-variate Gaussian distribution, denoted\by ,q(M; ; ) with meanM and covariance matrices (sized
p p) between lines and (sizedq ) between columns if and only ¥ = vec(Y), the vector of sizeq, follows
a porvariate Gaussian distribution with mears vec(M) and covariance matrix . We write:

Y MN 4M; ; )ifandonlyify N o ; ):

Following this de nition, sincey has its associated multivariate Gaussian probability density function (pdf), it
is possible to de ne a pdf on matrix-variate Gaussian random varible

Proposition 2.1. LetY MN ,4(M; ; ), the probability density function of is:
pY)=(2) PP j P j Petr 1=2(y M) Y M)y
whereetr()) denotes the exponential of the trace.

Proof. By De nition 2.3,y = vec(Y) N pq( = vecM); ), then the pdf of is:
!

. . 1 N
Py)=@) "7 [PPexp Sty Y gy )
On one handj j P2 = j j P?j j 92 thanks to the Kronecker product property with determinant [155,

Chapter 8]. On the other hand, thanks to the properties betwamperator, th&ronecker productind theTrace
(Tr) in [155, Theorem 8.12]:

1 5 1 >

S Yt gfy )= gvecty M)f glvecty M);

I

=Tr %(Y M) Y M) ¥

Let us add that the separability is not restricted to the Gaussian distribution. [176] proposed a classi cation
method with matrices following &distribution.
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Maximum likelihood estimation

Yjiz=c MN po(Mc; ¢ o) (2.8)

with parameters; = fM¢; ; cgandc2fl;:::;Cg

For classc we have the seb. = fYj;z = cg"gl of n¢ i.i.d. samples, distributed according to a matrix-variate
Gaussian distribution with mea¥ . and covariance matrices; and . (2.8). From Proposition 2.1 and the
linearity of the trace, the likelihood is:

X

@) ") ™ d “cq*etri% (Yi Mo AYi My clé 2.9)

ijz=c
The optimal parameters.y e = fM¢; ¢;  cgof (2.9) are (see [164]):

. 1 X
M¢= — Yi;

Me ijz=c

and each covariance matrix is estimated given the other covariance matrix as:

R 1 X . R

=iyl
CpijZizc

. 1 X N .

T (0 W Ny
qujZFC

However, this solution is, rstly, not unique because of identi ability issues in the Kronecker product. Sec-
ondly, convergence is obtained by iteratively estimating both matrices.

Flip- op estimation
The two covariance matrices are estimated iteratively using the so-dpHeq algorithm (see Algorithm 1, steps

i.e. hasanormequalto 1. One may also considewhich is normalized. The normalizing constant is usually
a norm of a matrix, it appears in steps 3.b and 3.c of Algorithm 1.

Algorithm 1: Flip- op algorithm

1 forc=1toCdo

2 (1) Initializek  1;
3 | (2)ComputeMc £ - Vi;
4 | repeat 5

~ (K 1\> -
5 (Ba)Update ' L (Y MyE & Dgieyp N);
6 (3.b) Compute  r " ;
7 (3.c) Update” ¥ A(ck); :

~ (K A AR ~
8 (3.d)Update™ L7 oo(vi M Uiy My
o | until until (2.9) as converged;

The normalizing constam{:) may be, for example, the Frobenius norm= k k- = pTr( ¢ o)) An other
solution is to remove the normalization £ 1) and add a special initialization ofto ensure that ()qq = 1 as a
constraint. The latter one has been presented and demonstrated in [166], they have also proved that the associated
algorithm converges to a unigue extrema.

In our context, the use of this distribution will be extended using Gaussian processes in Chapter 5 with normal-
izing constant as in ip- op.
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2.2 Gaussian processes

This section focuses on Gaussian processes for both regression and classi cation tasks. Gaussian process extends
the multivariate Gaussian distribution to a continuous set of inputs (also knofemetion-space vieWl190]).
Recall thatS = f(y;;z)j(yi;z) 2 E f 1;:::;Cgfj, denotes a set af i.i.d. samples.

In Section 2.2.1, kernel funct|ons are introduced as they can be used within Gaussian processes, then the
Gaussian processes are de ned and presented frofiuticdon-space viewn Section 2.2.2, Gaussian processes
for classi cation are described in Section 2.2.3. Finally Section 2.2.4 introduces multi-outputs Gaussian processes.

2.2.1 Kernel functions

Before introducing Gaussian processes, this Section presents a key element which measures the similarity between
two samples in spadg, denoted byy; andyj, (i; j) 2 f1;:::;ng. Kernels functions, or operators, are symmetric
positive-de nite functions.

De nition 2.4 (positive semi-de nite functions)Let E be an arbitrary nite orin nite space. L :E E! R
be a binilear functionK is said to bepositive semi-de nit€psd) if and only if, for ally 2 E:

Kly:y) O
Positive-de niteness holds if and onlyK(y;y) =0, y=0.

In a so-called feature spack(y nite or in nite) denoted byH , kernel functions are equivalent to an inner
product.

De nition 2.5 (Kernel). Let H be a Hilbert space with the associated inner prodydty, let : E!H be
a linear or non-lineamapping function Lety; andy; two samples irE, the kernel functiorkK : E E! Ris
de ned by:

K@yisy) =h (), (vin:

LetK the matrix of sizen nde ned by K)i.; = K(yi;y;); (i; j) 2 f1;:::;nd, the matrixK is called theGram
matrix.

Theorem 2.1. K is a positive (semi-)de nite function if and only if the Gram matrix is symmetric positive (semi-
)de nite.

Theorem 2.1 is a weaker result from the Mercer's theorem [126].

The family of positive (semi-)de nite kernels is wide. Firstly, kernels can be separated into two categories,
stationary andnon-stationary kernels. In both cases, we de fie iig an inner product on spade andjjijje the
associated norm.

De nition 2.6 (Stationary kernels)Lety; andy; two samples fronk. A stationary kernels a kernel functiork
which only depends on a distandge in spaceE between the two samples:

Kyiy) =K delyi ) :

Among the family of stationary kernels, some examples are presented in the following. Firskiatém
kernel is, with a positive parameterde ned by:

1 BP o .égz—. é
K(ylry])_z()& ky.\ Yike K ky.\ Yike Yiiyj 2 E; (2.10)

where is the Gamma function an a modi ed Bessel function.” is a length scale which measures, for a
covariance operator, how strong two samples are correlated.
Taking !'1 in(2.10) gives us the well-known Squared-Exponential kerndRaatial Basis FunctiofRBF):

K(y.,yj)—expéaky' kéé yiyj 2 E: (2.11)

Many other examples of stationary kernels can be found in [190, Chapter 4] or [118, Section 5.2] gedbdis
kernelsrational quadratickernels, etc.
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Figure 2.4: Di erent kernelK(y; yo), evaluated foy 2 [0; 2] andyp = 1: (full line) the RBF kernel with a length-
scale’ = 0:25, (dashed line) thBatérnkernel with = 1.5 and same length-scale as RBF, and (dotted line) the
dot product(DP) kernel at order 1 and a constangt= 0:5, this kernel's outputs are divided by 2 to tin window.

The non-stationary family is wider, we just mention heredbeproductkernel de ned at orded and up to an

additive constant 2 by:
Kyiy) = iyiie+ 3% vy 2E:

If d> 1, we also described them as polynomial kernels are de ned [190, Chapter 4]. Other non-stationary kernels
can be found in the literature suchrasural networkkernels [189] ospectralkernels [147]. We also mention here
that colored noise (opposed to white noise) can be represented by a non-stationary kernel. Figure 2.4 illustrates
some kernels for a one-dimensional spdee=(R).

Kernels can also be used in non-parametric techniques for classi cation [84, Chapter 6]. If the data are linearly
not separable (for example using LDA or QDA classi ers), thapping functionintroduced in De nition 2.5, can
be used to transform the data into a new space, c&lairespace, where the data are separable. The mapping
function can be unknown, this technique is also knowhkeasel trickand based on the Mercer's theorem [126]..
Support Vector Machines [190, Section 6.4] from the preview in Chapter 1 are using this principle.

Kernels methods are popular among non-parametric techniques in machine learning [88] and can be used on
vectors E = RY) but also with more complex data (for example whith1 ). Thus, kernels can be de ned on
many di erent type of data such as strings [113], graphs [101] or vector-valued functions [3, 6&}ebi types
of benchmarks where kernels are applied are presented in [23].

2.2.2 Gaussian processes for regression

Gaussian processes are part of stochastic processesfutittion-space vieWyl90], its main advantage is to
generalize the distribution on vectors to a continuous process.

De nition 2.7 (Gaussian processA (uni-dimensional)Gaussian proces&P) is a stochastic procegsuch that
any nite-dimensional marginal follows a multivariate Gaussian distribution.

We write:
Y GP (m;K);

wherem(t) = E(Y) is the mean function ank(t;t% = E[(Y; m(t))(Xe m(tY)] is the covariance operatoy. is
real-valued ant, t° 2 T are indexes (times for time-serie3).= [tmin; tmax] denotes the compact setRfvhere the
samples are observed. Let us highlight that the mean funotiand the covariance operatiérfully describe the
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Figure 2.5: Two samples from the same centered &R (T = [0; 1]; m(t) = 0) with a RBF kernel, (2.11) with
length-scalé = 0:25. The dots represent the marginals from each sample.

of sizeq s distributed according to a Gaussian distribution as:
ty) (t;t1) K(t;t) 0 K(tg;tg)

L K(xt) Kt
a . ! . T

tq) K(t(;;tl) ST K(t(;;tq)

Figure 2.5 illustrates two sampl&s andY, from a GP with zero mean and radial basis function (RBF) covari-
ance operatory; is a marginal ofY; andy, a marginal ofY, on the same set of indices. The covariance function
can be de ned by any kernel functions as the symmetric positive semi-de nite properties ensure the de nition of
covariance, see [190].

Bayesian regression problem

Let us now consider a vectgr2 RY that is a marginal of sizg from a Gaussian proce¥s
Y GP (m;K):

The vector of inputs is denoted by2 T 9. The regression problem is to nd a mean functiorand a covariance
operatorK, from which the input-output daffé; ygare sampled, to predict new outputs from an unobserved input
t,2T.

The Bayesian framework considers the GP distribution on the fun®t@saprior and a new samplg, is an
output from the input, by the proces¥ [190, Chapter 2]. As a consequenceyamndy- are marginals from the
same Gaussian process, we have:

! " ! .
y : k .
Y2 N o mtz) "k K(y2:y2) (2.12)
with = [m(ty); 225 m(t)]™, ( )i = K(tirtj) andk = [K(tr;t1);::1;K(t2;tg)]. If we consider a vector off,
outputsy- from inputst,, from (2.12) it is straightforward that:
! "o I#

y . .
y? N q+Q ” 1 K !
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Figure 2.6: On the left: samples from a centered GP (black lines, as Figure 2.5), zero-mean is highlighted by
a dashed line. On the right: med&ty-jt,;y;t) (thick black line) with 95% con dence interval conditionally

(grey zone) to observed noisy samples (red dots) from a toy function (red line). Black lines are sampled from the
conditional distribution (2.13).

By the properties of Gaussian distributiogsit- ; y;t is ag, -variate Gaussian vector with mean and covariance
matrix: .
E(y»jto;y;t) = + K
(Y.J. ..y. )_ ? 1(y>. ) (2.13)
cov(y»jto;y;t)= » K K~:

Figure 2.6 illustrates the meaki(f/»jt-;y;t)) and 95% con dence interval (1:96pV(y?jt?;y; t)) onT =
[0;1], computed thanks to (2.13) witlm(t) = 0 andK a RBF kernel function. We refer to [190, Chapter 2,
Algorithm 2.1] for a practical implementation.

Gaussian processes are well-known in regression studies [3, 134, 149]. They are used for example to smooth
observations [177] or in the context of earth-observation to analyse data [31]. Extensions in the regression context
are proposed as Manifold GP [30], or GP with constraints [100, 139].

Finally, non-Gaussian processes are also studied in the literature. One of the most promising distribution is
to useStudent-t processg¢$56]. A studentt distribution allows heavier tails as presented in Figure 2.1, they are
robust w.r.t. outliers in théatent function In [37] the authors presented multivariate Studeptocesses and
compared them to Gaussian distributions (see Section 2.2.4).

This manuscript does not go any further in the eld of regression as the context of our work is oriented towards
classi cation. However, it is important to introduce GPs in a function-space view and their conditional distribution
on a regression framework as they are used in Chapter 4 for temporal reconstruction of satellite images with
Gaussian processes.

2.2.3 Gaussian processes for classi cation

Gaussian processes are exible and can be adapted &vatit situations. In this section, our aim is to transform
real-valued inputs int€ discrete outputs (or classes). To this end, Gaussian processes are used in a discriminative

Gaussian processes as latent functions

As introduced, the use of Gaussian processes for classi cation is based on a set of centered GP priors on a func-
tional f, called thdatent function from an input space to the space of real numbérsg! R).

The main idea of GP for classi cation is to de ne a conditional Bernoulli distribution thanks to a transformation
of the latent functionf through alogit function : R! [0;1]. Letc be a given class, the conditional Bernoulli
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distribution for clas< is denoted byP(Z = cjy) (with the previous notations) and is de ned by:

P(Z=dy)= (f°W)) (2.14)

with f¢ GP (0; K.), i.e. f¢is completely described by the covariance operitor

covariance operator in class

Inference and approximations for thea-posterioriprobabilities

z
p(f2jY;zy2) = p(f2)Y;y2;f)p(fjY; 2)df; (2.15)

wherep(fjY;2) = p(zif; Y)p(fjY)=p(zY) is the posterior over the latent variables for known data.

Z
PZ=dy2)!  (5)p(f5iY;zy2)df; (2.16)

with the likelihood de ned in (2.15). The notatiddrefers to the use df= f, i.e. the latent function which
maximizes (2.15).

In this situation, the integral (2.16) is intractable for some choice of sigmoid functions. Additionally the
likelihood (2.16) is non-Gaussian [190, Chapter 3]. To overcome this problem, a solution is to approximate the
posterior with a Gaussian distribution, two solutions are found in the literaturé:aghlace approximatiofil 89],
we refer to [190, Algorithms 3.3 and 3.4] for practical implementation, andei#tpectation propagatiofEP)
method [127, 133], see [190, Algorithms 3.5 and 3.6]. The following describes the two approximations.

On one hand, theaplace approximatiompproaches the posterior dengifffjY; z) overf by a Gaussian ap-
proximation, denoted bg(fjY;z) = N (fjf; A 1)[190, Section 3.4] wherkis the latent functiof which maximizes
the likelihood (2.15) and\ = rr _; log p(fjY; z) is the Hessian of the negative log posterior evaluatdd @he
new likelihood is Gaussian and denoteddff»jY;z;y-). In [190, Section 3.5], they showed that the predictive
Gaussian likelihood mean and covariance are:

(2.17)
cov(f-jY;ziyz) = + QK YK t+W) 'K 1Qy;

matrix in classc andW is a diagonal matrix [190, Equation (3.38)]. Finallyis a diagonal matrix of siz€ C
where ()ee = Ke(y2;¥2) kg (¥2)KoKe(y-).

On the other hand, thExpectation propagatioalgorithm (EP) has been presented by [127]. A mairedi
ence with the Laplace approximation is that the EP algorithm is used in the binary classi catiorCcasg)(
corresponding to (2.14) wherecan be changed easily. It means that only one posterior probability is hecessary,
for example we consider the rst clag¥Z = 1jy,) (asP(Z = 2)y,) =1 P(Z = 1jy»)), i.e. one latent function is

p(fjy) Y

p(fiY;2) = Pa@Y)

pyiifi);
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where the likelihoodp(y;jfi) remains non-Gaussian. However, with the use of the probit likelihood (cumulative
density function of a standard Gaussian distribution), the integral of the posterior can be computed. EP framework
approximates the likelihood thanks tdacal likelihood [190, Section 3.6]. We also refer to [190, Section 3.6,
Algorithms 3.5 and 3.6] for a complete and practical implementation.

To understand the limitation of Gaussian processes for classi cation when dealing with large data-sets (as land
use of land cover applications), it is important to highlight that these algorithms sc@{¢Gn+ 1)n%), i.e. cubic
w.r.t. the number of samples. Additionally, within the Laplace approximation algorithm, a Monte-Carlo loop has
to be done to obtain the posterior probabilities (2.14).

Large data-sets approximations and scaling

The following presents how, in the literature, the problem of large data-sets with GP for classi cation has been
tackled.

Recall that, for regression and classi cation, the computation complexi®{ng) as the Gram matriX has
to be inverted and depends on the number of sampiedhe set of dat&. In order to reduce complexity, a rst
case to consider is to work on a well chosen subs& dfiso called sub-sampling, it takes a smaller nunef
datawheren n. The algorithm scales i@(n?) and [85] presented some theoretical results on the error made by
this strategy. A second case is to sparsify the madrbo make the inversion easier. One example isNfgstrom
techniqueit replaces the matrik by K de ned in [191] by:

K = KnmK K mn; (2.18)

whereK ;4 are blocks of sizp g from K constructed by the evaluation of the covariance opetatbetween

the rst p samples and the rsj samples. In practicen  n and the inversion cost df in (2.18) isO(n?n).

We refer to [70, 191] and [190, Section 8.3] for discussions on the limits of this method and a criteria tonselect
An other approach is to approximate the marginal likelihood. A typical one is the use of the variational inducing
point framework [86] where the likelihood is lower bounded by a quantity with lower complexity. It results in a
complexity inO(m®).

A complete review, considering these approximations and many more can be found in [111]. They also re-
viewed extensions as deep GP [47] or more complex structures as multi-task GP [3] which is reviewed in the next
Section. Finally, let us highlight that similar problems are found in the use of GP for regression as in Section 2.2.2.
A review of scalable approximations can be found in [145].

The GP classi ers will not be used as a latent function to modeatpesterioriprobability. The use of GPs in
our work will be based on a generative approach. We will show that the inference algorithm scales linearly w.r.t.
n.

2.2.4 Multi-output Gaussian processes

The models of multi-output GP were originally introduced in the geostatistics literature [45, 75]. For any given
P 2 N? (let us highlight that the number of componen® and the number of outputp) are not necessarily

is a linear combination of the latent functior&t;t% 2 T 2:

x
Yo(t) = ap U (b); (2.19)
‘=1

where the latent functiorfsr (t)g":1 are centered GP with covariance operator given by
cov(u (t); uo(t9) = k(t;t% if ° = "C zero otherwise. This model is known as theear Model of Coregional-
ization[75] (or LMC). The LMC covariance operators are known to have a sum of separated kerneks B
covariance operator in time does not model the covariance between (outputs) and the linear combination of outputs
does not depend on the time.

Let P P be the total number of functiorfaslk(t)gf;l sharing the same covariance [3, Equation (18)], the
general covariance operator matrix, sized p, associated with (2.19) is:

»x
Ktth= Ck(tt9 (2.20)

=1
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whereC-, ap p kernel matrix, is known as theoregionalization matrixC- = A-AZ where @ )px = a'é isa

matrix of sizep P-. This model is used mostly in regression context with data of xed length, [38] uses LMC

on time-series to monitor patient state using clinical covariates as features. [104] uses spatial information on one
hand and soil properties on the other hand to model soil's variograms.

considerC- equal toB up to a multiplicative constart: C- = Bc:. Then

*
Ktt)=B ck(t;t9 = Bkt t9): (2.21)

=1

This model is known aktrinsic Coregionalization Moddl3] (ICM) where the covariance operator matrix (2.20)
is given in (2.21). ICM has been derived under multiple names in the machine learning literature where, most of
the time, the introduction of the model is dirent.

An example, from [18], is thenulti-task Gaussian processes model. It assumes that the family of latent
functionszbggzl in one direction has a GP prior to induce correlation between “tasks”. bEbf) (2 f1;::: ; pd,
(t;t9 2 T2, the model is de ned by the correlation:

hYp(t); Yeo(t)i = (BY )pok(t; t9; Yot) N (fp(t); )

whereYy(t) is theb-th output at input 2 T, BY is the covariance between outputs &rid the covariance operator
on inputs. Other works derived from ICM are presented in [16, 131].

These models are mostly applied in the context of regression with inputs of same length, we refer to [37,
110] for recent reviews with various applications as species distribution models [94] or remote sensing [141].
Some strategies with large data-sets are also proposed as in [108] but most of them remain quadratic or cubic
w.r.t. nthe number of samples. An other example is $&eni-parametric Latent Factor Modgl72] for multiple
response variables using GP as a prior, it assumes the same structure as (2.21) but the complexity of the conditional
dependency between responses imposes to use sparse approximations of the posterior. Nowadays, the multi-
outputs GP are used also for classi cation [50] where the principle is similar to GP for classi cation (Section 2.2.3)
or [162] with a variational approach.

Recently, extensions of LMC are proposed asdatvvolutional Gaussian processéshe convolutional Gaus-
sian processes have been de ned in [2]. Starting from (2.19) and adding a convolution between covariance kernels
on outputsfab(t)gfz1 (smoothing kernels in [2]) an& latent functiongu: d’zl. Let (t;s) 2 T2, one of the most
general form of the model is:

¥ Z
fo(t) = : ap:(t su(s)ds (2.22)
=1

which is varying with inputs.

Other extensions from convolutional Gaussian processes are presented in [25] where outputs share similar latent
functions. In [33] they added a graph regularization and proposed an Expectation Maximization (EM) algorithm
for inference. These extensions are often applied in the context of regression.

2.3 Statistical modelling for Sentinel-2 satellite image time-series

This chapter has presented a state-of-the-art in supervised model-based classi cation with an in-depth study of
Gaussian distributions. These techniques are presented to understand both discriminative analysis and matrix-
variate Gaussian distributions as they are keys to understand the contributions of this thesis. To the best of our
knowledge, no technique is well suited for application to SITS with missing time stamps at large scale with the
challenges arise from Sentinel-2 mission.

This chapter has also presented Gaussian processes for regression and classi cation. Learning Gaussian pro-
cesses for classi cation has been shown to be cubic with respect to the number of samples in the provided training
set. The multi-output extensions of Gaussian processes have been reviewed, this thesis will contribute speci cally
to this eld by formerly de ning a mixture of multivariate GP which scales to large datasets with missing values.
Recent extensions with convolutional GP are presented for a discussion on these models.

The following introduces the contributions. We propose two generative models based on Gaussian processes
with application to classi cation of irregularly and unevenly sampled time-series.
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French introduction

Ce chapitre a pour obijectif d'introduire les deux contributions de cette thése. Ces deux contributions peuvent
étre spéci ées par un modeéle de processus gaussiens. Ces deux modeles, nommés MIMGP et M2GP, font
I'nypothése, pour le premier, d'indépendance entre les bandes spectrales des SITS de Sentinel-2, et pour le
second, d'une combinaison linéaire de processus gaussiens latents ayant le méme opérateur de covariance
temporel.

Ces deux modeles de classi cation sont introduits pour modéliser d'un point de vue fonctionnel les séries
temporelles. Considérer des séries temporelles observées a des instanastdirevient alors a considérer une
discrétisation temporelle de la fonction modélisée. Ensuite la reconstruction de données manquantes (nuages
ou ombre) est détaillée.

Ce chapitre se conclut sur la présentation des annexes consacrées a la description du code, pour lequel le
choix du langage python a été fait et optimisé avec le langage cython (langage compilé).

Let Y? (the notation will be argued later) be a random matrix of gizeq, it contains the SITS re ectance at
p spectral bands angitemporal acquisitions after noise removal. ebe a discrete random variable taking its

¢= argmaxP(Z = GgY?)
= arg max p(Y?jZ =o); c2fl;:::;Cg

Our aim is to build a generative modek. to assume a distribution on the conditional random vari¥SIg = ¢

whereY? 2 E is the re ectance, and is distributed conditionally to its class membe&hipc. This chapter
describes how Gaussian processes can model irregularly and unevenly sampled time-series and links our contribu-
tions to state of the art.

Section 3.1 explains how Gaussian processes overcome the issue of irregular samples and presents their use in
the classi cation step. Section 3.2 shows how the models can be used to perform the continuous reconstruction
of missing time-stamps using the complete mixture. Finally Section 3.3 introduces the implementation of two
models.

33
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3.1 Classi cation of irregularly sampled time-series

Section 3.1.1 presents the general model and explains why such model is able to handle irregularly and un-
evenly sampled time-series. Section 3.1.2 presents a one-dimensional irregularly sampled time-series classi er and
presents the classi er for multiple spectral bands with independence assumption. Finally Section 3.1.3 presents
the model with linear dependency between wavelengths.

3.1.1 Continuous representation of SITS

The following de nes the general model behind the two contributions.

Preliminary de nitions

In the following, E denotes the data space for re-sampled time-series BataR"). In the following we assume
to observe the time-series continuously on a given time win@ow [tmin; tmax]. The multi-dimensional functions
with p square integrable processes is denoted {tfyand de ned as:

Y:T! RP
(3.1)

A discretized observation from a continuous procéss calledmarginaland is denoted by?. As presented
previously, it is a random matrix of size q.
In practice, the observations are Sentinel-2 SITS. The re ectance are included in §weitketthe associated

0 = g and, moreover, the time stamps are equal, then the data Epade! ,4(R) is the space of matrices with
same size. The classi ers are explored in Section 2.1.

In our context, clouds and shadows noises occur at random spatial locations and time stamps. The resulting
e ectis di erent sample sizese. g, qj, and di erent time stamps. An example of two simulated time-series is
given in Figure 3.1: in this cagg = 18 andqg, = 14. By taking into account level 2A products (surface re ectance
Y'? on p spectral bands, the associated miskkand removing noisy data (mask values above '0") yields the set
S = fY'?;zd., of nirregularly sampled SITS where eaicth sample has its own sizg@ ¢ as the number of

General model

The general model assumes that, conditionally toc:
Y(t) = AcW(t) + me(t); 8t 2 T; (3.2)

where p;b%) = f1;:::;pd, W, GP (0; Ky,) are independent latent processes. Baqr b° the independence
property is denoted bW, y Wie. me : T ! RP is a vector mean function and is presented in Section 5.3 and
Ky is theb-th covariance operator for class Model (3.2) results in théunction-space vieyl90, Section 2.2]
framework as it de nes a distribution over functions.

Equivalently, conditionally t& = c, theb-th spectral band is a linear combination of ghiatent processes:

xp
Yo(t) = mye(t) + (A)p; Wh(D): (3.3)
=1

whereW, GP (0; Ki).

3.1.2 One-dimensional process and the Mixture of Independent multivariate Gaussian
processes

The rst contribution assumes that thespectral bands are idependeirg, we considem one-dimensional pro-
cesses. For one spectral bands, the model (3.2) becomes:

Y(1), Ya(t) = acWa(t) + me(t); 8t 2 T
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Figure 3.1: Simulated satellite image time series at bands pambe dots below the temporal axis correspond to
the temporal sampling.

whereW , W; GP (0;K.). Then it is straightforward that:
Y GP (m;aZKo):

Then the problem is to consider, for a xed spectral band,tthesample which is assumed to follow a multi-
variate normal distribution (see De nition 2.7).

Mixture of Independent multivariate Gaussian processes

This section introduces our rst contribution in Chapter 4, with associated supplementary materials in Appendix B.

Ac = |, it comes the following decision rule:
¢ = argmax pY?jz = ¢
Yp

=argmaxc  p(YyjZ = o)
b=1

whereY, GP (myc; Kpe). It consists ofp independent processes, models inference is detailed in Section 4.2.3.
The classi cation accuracy results, computed on a separate validation set, are presented in Section 4.6 and are
compared with the state of the art methods introduced in Chapter 1. State-of-the-art methods take as input linearly
re-sampled time-series as presented in Figure 1.12.

Inference of model parameters (mean co@&nts and kernel parameters) on theSdbr is provided in Sec-
tion 4.2.3. ltis inferred using maximum likelihood estimatdMLE). This estimation is possible as every sample
is a marginal from a continuous process and the complete process is inferred from MLE, despite irregular time
stamps for each sampie

To the best of our knowledge, this contribution introduces the rst model, namely Mixture of Independent
Multivariate Gaussian Processes (MIMGP), which is able to classify irregularly sampled data. We complete the
presentation of MIMGP with an application to Sentinel-2 SITS using non-noisy gatal0 spectral bands and
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time stamps distributed as in Figure 4.6. Additionally, this model is able to reconstruct time-series at any time
tY 2 T and is described in Section 3.2.

When the class memberships are unknoums(ipervisedramework), the de nition of an unsupervised clas-
si er is straightforward and inference with EM (Expectation-Maximization) algorithm is simple thanks to the
Gaussian assumption.

3.1.3 Mixture of multivariate Gaussian processes

Highlighted in the rst contribution, one of the weaknesses of the MIMGP model is the independence assumption.

To this end we propose a new model which deals linearly withptbetputs of the vector functiow (see (3.1)):

the mixture of multivariate Gaussian processes (M2GP, Chapter 5). Let us describe the construction of M2GP.
Our aim in Chapter 5 is to obtain the mean and the variance of the Gaussian distriitign= c (see

Section 5.8) for thé-th matrix sample of siz@ g or, similarly,y;» = vec(Y'"?). The mean is straightforward to

compute, and the covariance is given by:

COV Yot)): Yo(t)o) = COV acuWh(t}); anncWWh(t)
whereagy, is theb-th line of A, then, ad\, y Wi for b, bC then:

coV Yo(t)); Yielte) = ace Vo  if b=b

=0 otherwise.
Applied to all time stamps = [t};::: ;tgi] and all p spectral wavelengths, it comes:
ediag [ 150105 PO AY Adiag [ 1550 D5 A2
coVyinjz = c) = BAcdiag [ 55011 P AT Acdiag [ 55 55T AS

The covariance matrix is of sizgy  pg which makes the inference numerically diult. One solution, from (3.2),

The hypothesis of the same time-covariance operator yields a Kronecker product structure which allows a
signi cant decrease of numerical complexity. All marginals are now distributed according to a matrix-variate
Gaussian distribution (see De nition 2.3).

Parameters estimation is presented in Section 5.6.2. Figure 5.6 shows signi cant performance improvements
when adding some dependence compared with MIMGP. Finally comparisons on Sentinel-2 SITS are reported in
Table 5.2 with LULC maps in Figure 5.12.

3.2 Reconstruction of noisy time stamps

An additional and promising application is the reconstruction of noisy re ectance values. An example is the use
of Sentinel-2 SITS for phenological research, a review of applications can be found in [128]. As presented in
Chapter 1, reconstruction of missing values is also an active area of study in remote sensing [158].

3.2.1 Imputation with independence assumption

The imputation of missing values is possible thanks to the Gaussian marginal at a new tinté tjpufrom the
continuous process modeled by a GP. The joint distribution (2.12) allows the imputation of missing values when the
class membership is known using conditional expectation and conditional covariance [17, p.63] de ned in (2.13).
The reconstruction of thp spectral bands is done independently using the conditional expectation (4.11).

An advantage of this reconstruction is the con dence interval computed thanks to (4.12).
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3.2.2 Imputation with M2GP

Imputation of missing values using the M2GP modelals. Indeed, Proposition 5.3 presents the expectation
and variance of the conditional distribution. The expectation does not depend on the linear dependency between
spectral bands but gfi re ectances are imputed at once. The covariance retrieves the Kronecker structure induced
by the model. These observations are directly linked to the uncorrelated lines and columns in the matrix-variate
Gaussian distribution (De nition 2.3).

The reconstruction quality is the same using M2GP or MIMGP. Figure 5.6 compares the two models on toy
data-sets by computing the normalized mean square error (5.21).

3.2.3 Imputation using the complete mixture

When the class membership is unknown, the two models allow to compute the reconstruction of missing values
using the mixture of GPs. (4.13) (or (5.17) for M2GP) allows the reconstruction using the posterior probabilities
to belong to all classes.

Section4.7 presents reconstructions and a comparison with state of the art non parametric smoothing tech-
nigues. As in [184], we compared the reconstruction using the mean of the conditional distribution (4.13) with the
Whittaker smoother [54].

3.3 Implementation - python code

The code has been written using python and the optimization has been done using cython (see Appendix C). The
choice of a second language which is compiled has been done to avoid liedugdps. Indeed, these loops can
not be rewritten on a vectorial form where python performs well (the processing of each sample within the training
or validation set induces a heavy loop). This work has been done for MIMGP but it can be adapted similarly for
M2GP. However, both models are using parallel implementations on the classes.

During the tests of the code, some numerical issues arose for the estimation of the meaiemize(Sec-
tion 4.2.2) and, consequently, have interfered with the convergence of the gradient descent algorithm. The latter
one uses fortranf* min_|_bfgs_bfunction [197] on kernel's parameters. These numerical issues are discussed in
Appendix A with illustrations on a toy data-set.
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Appendices are reported in Section 4.9 and supplementary materials in Appendix B.
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French abstract

Les récentes missions satellitaires ont donné lieu a une énorme quantité de données d'observation de la terre,
dont la plupart sont disponibles gratuitement. Dans ce contexte, les séries temporelles d'images satellitaires
ont été utilisées pour étudier l'utilisation et I'occupation des sols. Cependant, les séries temporelles optiques,
comme celles de Sentinel-2 ou de Landsat, sont fournies avec un échantillonnage temporel irrégulier pour dif-
férents emplacements spatiaux, et les images peuvent contenir des nuages et des ombres. Ainsi, des techniques
de prétraitement sont généralement nécessaires pour classer correctement ces données. L'approche proposée
est capable de traiter I'échantillonnage temporel irrégulier et les données manquantes directement dans le pro-
cessus de classi cation. Elle est basée sur les processus gaussiens et perewtiefeconjointement la

classi cation de pixel ainsi que la reconstruction des séries temporelles du pixel. La complexité de la méthode
est linéaire en fonction du nombre de pixels, ce qui la rend utilisable dans des scénarios a grande échelle. Les
résultats expérimentaux de classi cation et de reconstruction montrent que la méthode ne rivalise pas encore
avec les classi eurs de I'état de I'art mais produit des reconstructions qui sont robustes par rapport & la présence
de nuages ou d'ombres non détectés et ne nécessite aucun prétraitement temporel.

Abstract

Recent satellite missions have led to a huge amount of earth observation data, most of them being freely
available. In such a context, satellite image time series have been used to study land use and land cover
information. However, optical time series, like Sentinel-2 or Landsat ones, are provided with an irregular time
sampling for di erent spatial locations, and images may contain clouds and shadows. Thus, pre-processing
techniques are usually required to properly classify such data. The proposed approach is able to deal with
irregular temporal sampling and missing data directly in the classi cation process. It is based on Gaussian
processes and allows to perform jointly the classi cation of the pixel labels as well as the reconstruction of
the pixel time series. The method complexity scales linearly with the number of pixels, making it amenable
in large scale scenarios. Experimental classi cation and reconstruction results show that the method does
not compete yet with state of the art classi ers but yields reconstructions that are robust with respect to the
presence of undetected clouds or shadows and does not require any temporal preprocessing.

Keywords: Satellite Image Time Series (SITS), Sentinel-2, classi cation, reconstruction, irregular sampling,
Gaussian processes, Earth Observation (EO), remote sensing.

4.1 Introduction

In the last decade, the successful launching of two satellites Sentinel-2 A anérB @ unique opportunity to

record, analyze and predict the evolution of the Earth's land surface. Sentinel-2 mission provides a high resolution
multispectral (13 spectral bands at 10m, 20m or 60m per pixel) acquisition with a 5 day revisit cycle [52]. It is
planed for long-term operational observations (more than 15 years) and optical Sentinel-2 satellite image time-
series (SITS) are available to users under a free and open data policy. Such a mission provides several terabytes of
worldwide data per day [163].

Thanks to their spectral content and frequent update, SITS have found applications in various scienti ¢ eld:
water management [10, 140], agricultural systems mapping [58, 129, 180], urban area analysis [78, 92] or eco-
logical monitoring [57, 106]. However, such abundance of images raises new challenges in terms of large scale
multi-resolution SITS processing [39]. Issues relate@imp Earth Datawere obviously explored in the remote
sensing community in order to calibrate and distribute the images seamlessly [8, 97, 148, 161, 167].

Image and signal processing issues were also investigated speci cally to SITS properties. Spatialatis
in terms of resolution were tackled using super resolution strategies to resample all the spectral bands at the same
nest spatial resolution (10m) [135, 179, 186]. Fusion with other sensors, such as Landsat [157] or Sentinel-1 [59],
was also considered to complement Sentinel-2 satellite images.

Classi cation of land cover or land use using machine learning techniques has emerged as a major application
of SITS. Deep learning was intensively studied either using only one or few temporal acquisitions with convolu-
tional neural networks (CNN) [159, 168], or using the full temporal stack of acquisitions using recurrent neural
networks (RNN) [144, 152]. Combination of RNN applied on SITS with CNN applied on SPOT-6 image was also
investigated for land cover mapping over Reunion Island [12]. Temporal convolution was investigated in [138].
Yet, due to the huge amount of data to be processed when large geographical area or large temporal domain (e.g.
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1 year of acquisition) are considered, lighter machine learning techniques, such as Random Forest (RF), were pro-
posed as well, with very good results in terms of classi cation accuracy [66, 93]. Similarly, Deesletnhave

shown that, when the number of spectro-temporal measurements per pixel is high, conventional hand-crafted fea-
tures and RF perform as well as CNN in terms of classi cation accuracy but with a drastically reduced processing
time [49].

One major issue arising when dealing with large SIT&, using several tracks or til&sis related to the
irregular temporal sampling. Indeed, each Sentinel-2 track is acquired eredi dates, and using images from
di erent tracks results in pixels with dérent acquisition times. For instance, Figure 4.1 shows the acquisition
dates for three Sentinel-2 tiles located over three parts of France. Even though some dates are similar, the total
number of acquisitions is derent from one tile to another. Furthermore, clouds and shadows, occurring at random,
are another cause of irregular temporal sampling: Dates with stieldoat are usually considered as missing
values and are not taken into account to build the feature vector of the corresponding pixels. Hence, even pixels
belonging to the same tile can be represented by feature vectorsesédi sizes [93].

Classical machine learning algorithms take as input a time-series of nite and constant size. Random Forest,
Support Vector Machine or RNN use a vector representation of input feailgesa time-series, or pixel, is
a collection of features stacked intopadimensional vector and each pixel has the same number of features.
Similarly, CNN use a constant size patch representation of the image. Therefore, a pre-processing step, sometimes
called missing information reconstructioms usually applied on the SITS to recover pixels of same size [158].
Among the various existing techniques, temporal lters, such as the Savitzky-Golay Iter [117] or the best index
slope extraction (BISE) [183], and parametric or non parametric curve tting [11, 54, 95, 114] are popular due to
their simplicity and e ciency. At large scale (entire metropolitan France territory), linear temporal interpolation
has shown to perform very well compared to spline interpolation [93]. Linear interpolation may also be combined
with non parametric smoothers [184].

Methods taking account both spatial and temporal information have provided interesting results, see for in-
stance non-local lters [28] or deep learning based approaches [46, 194, 195]. However, due to their high com-
putational cost, they are hardly applicable in natidswitinental scale settings [49]. Furthermore, they are also
known as “black-box” and hardly interpretable.

Recently, Gaussian Processes (GP) have gained attention in the remote sensing community [31, 56]. GP mixed
Bayesian and kernel methods to build statistical learning machines, for classi cation or regression problems. They
have proved to be accurate and interpretable through their hyperparameters (mean and covariance functions) [68,
130, 141, 182]. In this work, a Gaussian Process model is introduced, relying on a linear projection of the mean
function on a well-chosen basis, conditionally to the classes of interest. It is able to deal with irregularly sampled
pixels in the learning and classi cation steps as well as reconstructing missing data.

The contribution of this work is three-fold:

1. The de nition of a GP model that handles irregular temporal sampling (Section 4.2), without resampling all
the data on a common temporal grid.

2. Jointly to the classi cation, the proposed model allows for the reconstruction of pixels on any temporal grid,
together with con dence intervals (Section 4.3). Furthermore, the mean and covariance functions associated
with each class are available for analysis.

3. The reconstruction used the GP model with optimal parameters (from the likelihood point of view) and takes
into account the class membership. Rather than relying only on the reconstruction error, as with conventional
missing data reconstruction techniques, the proposed method used the classi cation model likelihood to
control the reconstruction and its subsequent smoothing level.

The remainder of this paper is organized as follows. The proposed GP model and its estimation are described
in Section 4.2. The associated classi cation and reconstruction methods are derived in Section 4.3. Section 4.4
details the SITS datasets while the experimental set-up is presented in Section 4.5. Experimental classi cation and
reconstruction results are provided in Sections 4.6 and 4.7 respectively. Finally, Section 4.8 concludes this paper
and opens discussion on future work.

4.2 Irregularly sampled Gaussian processes model

In the followingS = (yi;z) i, denotes a set of independent and identically distributed (i.i.d.) random multi-
variate and irregularly sampled pixels from a SITS, with their associated class labels, see Table 4.1 for an overview

1Sentinel-2 products are available as a collection of elementary tiles of sizel@00km, seehttps://sentinel :esacint/web/
sentinel/missions/sentinel-2/data-products
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Figure 4.1: Acquisition dates for tile T31TDN (red), T31TCJ (black) and T31TGK (blue) in 2018. The location
of the tiles is given in Fig. 4.5. Large temporal gaps between two dates correspond to very cloudy acquisitions:
Images tagged as composed of more than 90% of cloudy pixels are not processed by the French data provider.

Table 4.1: Symbols and Notations

Symbol Meaning
Distributed according to (a probability distribution).

GP Gaussian Proces$: GP (m; K), the functionf is distributed as a GP with mean function
mand covariance operatér. The function is indexed in time ky

Na( ;) d-variate Gaussian (Normal) distribution with mean vect@nd covariance matrix .

fd; Density associated witN4( ; ).

yjx Random variablg conditionally onx,

p(yjx) Probability distribution ofyjx.

S A set of SITS or pixels.

n The total number of SITS available $

p Number of wavelenghts of a SITS.

b Band number, ifil;:::;pg

T Temporal window where SITS are observed.

Y p dimensional process. ! RP.

Yiio ith pixel from wavelengttt.

T Number of temporal acquisitions associated with pixel

C Number of classes.

c Class value, ii1;:::;Cg

zZ Discrete random variable associated with pixahd representing its class membership.

Prior probability of class.

, Model parameters.
J Number of basis functionise. dimension of .
iKj Determinant of the matrik.

o
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Figure 4.2: Simulated univariate Gaussian processes with squared exponential covariance function (length scale
parameter set to 50). The continuous black line is the mean function and the dashed lines are the corresponding 10
realizations.

of the main notations. A pixelis modeled by a random vectgrcontainingp random square integrable processes
T ! RP,whereT = [tmin; tmad iS the time interval where the SITS are observed:

Y:T ! ﬁp

tmin = 0 andtyax = 365 (in day-of-year unit).
A (univariate) Gaussian process (GH} a stochastic process such that any nite-dimensional marginal follows
a multivariate Gaussian distribution [190]. It is speci ed by its mean funaticand covariance functio:

m(ty) E[f(t)];
K(ts;t2) E[(f(t) m(t))(f(tz) m(t2))];

withty 2 T, t, 2 T two given times where the SITS are observed, and we fiot&P (m; K). The covariance
function K usually encodes priori knowledge about the phenomena to be modeled. Figure 4.2 shows several
realizations of a GP with a squared exponential covariance function (see Section 4.2.2).

In the following, a multivariate Gaussian process model is proposed to cope with the multivariate nature of
SITS and their irregular temporal sampling.

4.2.1 Mixture of Independent Multivariate Gaussian Processes Model

De nition 4.1 (Mixture of Independent Multivariate Gaussian Process&he proposed model, namely Mixture
of Independent Multivariate Gaussian Process (MIMGP), relies on two main assumptions:

Al Each proces¥}, conditionally toZ = c, follows a Gaussian Proces4;jZ = ¢ GP (My; Kie);

A2 Conditionally toZ = c, all component¥,, of Y are independent,

of a pixel from a given class is a realization of a univariate GP with class and band speci ¢ mean and covariance
functions. The second property is introduced for computational reasons, and is discussed in Section 4.6.2.
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By de nition, conditionally toZ = c, this vector follows d;-variate Gaussian distribution

YinlZi=¢ N 1 ipe ib;c ; (4.1)

covariance matrix (,.):;o = Kpc(t!; thy).
Finally, in view of the independence assumption on phe&avelengthsy; follows a product ofp Gaussian

densities
Yo

yijzi =cC NTi i;b;c; ib;c : (4-2)
b=1

4.2.2 Mean and covariance functions

The unknown parameters of the model are the mean functiggsand the covariance operatdfs,, for each

should be de ned (and estimated) for any titrie the intervalT . To this end, projection techniques and parametric
models are adopted respectively for the mean and the covariance functions. Parametric modeling of the latter ones
are usual with GP, see for instance [190, Chapter 4]. However, in our speci ¢ problem, using a projection method
for the mean function allows to cope nicely with the irregular temporal sampling.

Mean function

Letf' 1q]:1 be a subset of basis functionslof(T ). Then,m, can be written as

xJ
I’T’b;c(t) = b;c;jI j(t) +" b;c(t); t2T,
=1

with . the projection coe cient ofm,c on' j and wheré€'y, is an approximation error term.

Any functional basis can be useglg, Fourier, exponential, splines, ..., see for instance [84, Chapter 5]. In
case of the Fourier basisy,j represents the amplitude of the corresponding frequency in the Fourier expansion.
In the following, the basis is assumed to be xed whilehe number of basis functions, is an hyperparameter.

“Introducing e = [ beasii; bea]” 2 R? andB' theT; J design matrix associated with pixglde ned by
(B')j =" j(t!) with * 2 f1;:::;T;g the mean vector in (4.1) can be written as
ibc = B' bic- (4.3)

Covariance function

The covariance function is modeled using functions issued from the GP literature [190, Chapter 4]. A typical one
would be a squared exponential covariance function with an additional colored noise [105] covariance function:

8 9
2 (t 9°8
Koot 9= Gy X5+ 200 o @4

’ bc

Introducing ne = f 5 ;hZ.; £.9 the covariance matrix in (4.1) is denoted in the following by

ib;c = i( b;C): (4-5)
Parameters . and . are estimated by maximizing the marginal log-likelihood, as explained in the next
section.
4.2.3 Estimation
By plugging (4.3) and (4.5) in (4.2), it follows that
Yo

yijZi=c N, B' bics i( bic) - (4.6)
b=1
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Algorithm 2: Estimation of model parameters.
Input : S, 9, ©°
Output: ~,”
1 for c=1to Cdo
for b=1to pdo
repeat
Update p using (4.8);
Do a gradient step w.r.t.nc using (4.9);
until “pe( ber be) has converged

o 0 A W N

Such expression is a consequence of the use of non-zero mean GPs [190, Section 2.7]. The associated negative
marginal log-likelihood is given by

%C
()= “bic( ber bie);
b;c=1
with X h _ . N o
“oc( bier be) = log '(be) +(¥Vip B' be)” '(be) (Vip B' be) +;
ijzi=c

where is a constant independent of the parameters. Since independence is assumed between each spectral com-
ponent, the optimization ends up with C independent optimization problems:
("bei ") = g Min "be( be;  be): (4.7)

Marginal likelihood optimization is common practice in GP regression, while for binary classi cation, Laplace
approximation is usually employed (and more computationally demanding) [190, Chapter 2 and 3]. Therefore, to
the best of our knowledge, the use of marginal likelihood for multiclass classi cation is novel is this context.

Each sub-problem (4.7) is solved by gradient descent as usually done in likelihood optimization [190, Chap-
ter 5]. The algorithm is based on an alternate optimization with respecatal (see Algorithm 2). At iteration
(k), the update rule for is given by

(k+1) _ éx EPRCNE ii 1§X o PN i
be B ( b;c) B B ( b;c) Yio- (4-8)
ijZi=c ijzi=c
If the design matrix has no redundancies, it can be shown that the matrix in the left hand side of (4.8) is indeed non
singular provided that the number of basis functidissmaller or equal to the total number of unique observations
in the training set. A proof is given in Section | of the supplementary materials.
For , there is no close-form expression and a gradient step is required. The gradient is computed using the

following partial derivative w.r.t. each coordinatg of :

X ir K
_@‘b;c = tri ( g%) ' i i LAY E (4.9)
@n ™ e @n
with ;= i( g%) 1(yi B' {f;”). Such an optimization procedure applied on simulated data from Figureet, 2 (

C = 1 andp = 1) leads to the estimation of the mean function displayed on Figure 4.3.
As a nal remark, thep C optimization problems can be solved in parallel since parameters are not shared
between classes and spectral components.

4.2.4 Numerical Complexity

Usual GPs have complexity that scale€¥m?®), making them unsuitable for very large scale problems. In contrast,
the proposed method has a reduced complexity, that sca@(sl(m,;",l + J%)) whereTy is the maximal length of
observed time-seried(; Tj; 8i 2 1;:::;n). The rstterm comes from the inversion of ( ) and the second

term comes from the update rule (4.8). In our applicatiyn.andJ are much smaller tham, typically by several
orders of magnitude. Furthermore, MIMGP allows for the classi cation of any irregularly new time-series as well
as the reconstruction of the observed time-series using reconstruction techniques, as described in the following.
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Figure 4.3: The continuous line is the mean function associated with the GP displayed in Figure 4.2 and the dashed
line is the estimated one using Algorithm 2 ahd 20 Gaussian functions (see Section 4.5.1 for details on bases).

4.3 Classi cation and Reconstruction of Missing Values

Once the parameters are estimated, it is possible to classify a new pixel without any temporal resampling, as for
training. In addition, MIMGP is also able to reconstruct missing values on any temporal scheme.

observed in the training set.

4.3.1 Classi cation of a new time-series

Thea posterioriprobability P(Z; = cjy;) to belong to a classgiveny; is computed using the product of Gaussian
densities given in (4.6) and Bayes' rule:

P(Z; = cy;) ! cPyjiZj = c)

Ye .
T 1:TJ Yibs B e (o) (4.10)
b=1
wherefy(; ; ) isthed-variate Gaussian density with meamnd covariance matrix and . is theprior proba-

In practice, . is estimated by its en]pirical counterpagt= n.=n wheren is the number of pixels assigned to
classcin the setS. Parametersy and p,. are estimated thanks to Algorithm 2. The new time-seyjes then
assigned to the class of maximum posterior probability (MAP rule):

z; = maxP(Z; = gjy;):
Cc

4.3.2 Time-series reconstruction

Time-series reconstruction is achieved using conditional expectations of Gaussian distributions. Two cases are
considered: Either the class membership of the considered pixel is known, or the class membership is estimated
using the posterior probability.

Reconstruction when class membership is known

Let us writng(t ) the unobserved value at wavelengthnd timet . The following reconstruction rule, based on
the conditional expectation, is considered:

?tj);c(t )= E[Yé(t Ny Zj = cl:
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Using properties of Gaussian distributions [17, p.63] and replacing the unknown quantities by their estimated
counterparts yield (see Appendix 4.9 for a proof):

Tet)=b oo+ k(tithr o0 o) 'Wip B 7no) (4.11)
and
VL) =Kt ) Kt ity T60)” 1 o) Kt ity i bo): 4.12)
wherek(t ;tyrj o) = [K(t ity be)ii s K(E stni 6c)]™, b = ['1(t );::2;" 5(t )] contains the evaluation of the

basis functions at time andB! is theT; J design matrix associated wiih.

Equations (4.11) and (4.12) provide respectively the reconstructed value and the variance of the reconstruction.
They are given here for a single tiebut similar formulas can be derived for multiple tintgs: : : ;t; . Interest-
ingly, Equation (4.11) shows that the reconstruction is giveb By, the estimated mean of the GP, corrected by
a value proportional to the error made at the acquisition time of gixél similar remark holds for the variance:
It can be interpreted as the estimated variance of the GP corrected by the variance of the process observed at the
acquisition times of pixeJ.

Reconstruction when class membership is unknown

The reconstruction d?’tj)(t ) is done as the average of the previous reconstrucﬁém ) in each class (see (4.11))
weighted by the posterior probabilities estimated with (4.10):

A~ x ~
Vit)= Pz =dy)Yit): (4.13)

c=1

A similar formula holds for the variance with an additional between-classes variance term:

VIVAt)I = PZ = cyVIYL(t)]
c=1
x ~ h.. . i
+ PZi=dyy) Vit ) V)P
c=1

Where\?g;c(t ) and \?g(t ) are the reconstructions aitrespectively when the class is known (4.11) and when the
class is unknown (4.13). See Appendix 4.9 for a proof.

4.4 Sentinel-2 Satellite Image Time-Series Datasets

Three Sentinel-2 tiles of level 2A over the French metropolitan territory were downloaded from the Theia Land
Data Centet. All available acquisitions between January 2018 and December 2018 for the two orbits of satellites
Sentinel-2A and 2B were used. Figure 4.5 shows the location of the three tiles. They corresponereatdi
climatic regions [93], with varying meteorological and topographical conditions.

Surface re ectance time-series were produced using the MAJA (Multi-sensor atmospheric correction and
cloud screening-ATCOR Joint Algorithm) processing chain developed by the CNES-CESBIO and DLR [8]. It
involves orthorecti cation, atmospheric correction, clouds and shadows detection. Spectral bandgpatelOm
and 20nfpixel were used, for a total of 10 spectral bands. Bands at/[@Rel were spatially up-sampled to
10m/pixel using the Orfeo ToolBoX[171]. Figure 4.6 displays the distribution of the number of clear dates (dates
not tagged clouds, shadows or no-data in the raw time-series): It appears that the number of clear acquisitions per
pixel signi cantly varies depending on the tile.

http:/Mmww :theia-land :fr/en/presentation/products
3Using “Superimpose” application, saéps://www :orfeo-toolbox :org/CookBook/Applications/app_Superimpose :html .
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Figure 4.4: Time-series reconstruction. The black continuous line is one (continuous) realization of the GP from
Figure 4.2. The black dots are the observed noisy acquisitions at several (discrete) times. The dashed line is

the recapstructed time-series. The gray region displays a pointwise con dence region for the reconstruction:

Yie) TVIYiL

Figure 4.5: Location of the Sentinel-2 tiles. The label inside the square is the tile name.
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Figure 4.6: Proportion of pixels as functions of the number of clear dates.

Furthermore, the data from each tile were re-sampled and gap- lled (missing information due to clouds or
shadows were reconstructed using linear interpolation) onto the same set of dates (every 5 days, starting from
2018-01-01 and ending 2018-12-27) as in [93]. Figure 4.11 shows the raw data and the re-sampled data for one
random pixel from each tile in the same class. Hence, for each pixel location, three temporal informations are
available after the pre-processing:

1. The raw multispectral time-series with irregular acquisition dates;

2. The mask time-series, indicating for each acquisition date the préabgence of cloudshadows. In our
model, the presence of cloudsadows implies that the corresponding raw spectral values are considered as
missing values;

3. The re-sampled multispectral time-series with regular acquisition dates.

The reference data arise from the work of Inglatal. [93]. They were extracted from freely available data
source. Seventeen land cover classes were de ned, ranging from arti cial areas to vegetation and water bodies.
Table 4.2 shows the exhaustive list of classes.

The reference data are provided as a set of spatial polygons overlapping the 3 tiles. Figure 4.7 shows an
extract of these polygons. The training and validation set were constructed by stratifying pixels according to the
polygons membership information: Pixels from one polygon fully belong to either the training or the validation
set. Depending on the number of available referenced pixels per class, 10,000 (or less) pixels were extracted for
the training and validation set, except for winter and summer crops, for which 30,000 and 40,000 pixels were
extracted, respectively. Ten independent trailidation sets were generated for statistical validation. Table 4.2
shows the average number of pixels per class and pér tile

4Since a strati cation w.r.t polygons is done, and polygons size can vary in terms of area, the number of pixels may vary slightly from one
experiment to another. The model was trained on a total average of 178,000 pixels and was evaluated on 178,000 pixels.
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Table 4.2: Land cover classes and number of extracted SITS in each tile

Class T31TCJ T31TDN T31TGK
Arti cial areas
Continuous urban fabric 10,000 8,292 959
Discontinuous urban fabric 10,000 10,000 10,000
Industrial or commercial units 10,000 10,000 10,000
Road surfaces 10,000 9,906 3,664
Agricultural areas
Winter crops 30,000 30,000 15,975
Summer crops 40,000 40,000 24,912
Forest and semi-natural areas
Meadow 10,000 10,000 10,000
Orchards 10,000 2,775 10,000
Vines 10,000 8,719 153
Broad-leaved forest 10,000 10,000 10,000
Coniferous forest 9,957 10,000 10,000
Natural grasslands 9,939 3,022 10,000
Woody moorlands 9,972 10,000 10,000
Open spaces with little or no vegetation
Bare rock 0 0 10,000
Beaches, dunes and sand plains 0 5,355 10,000
Glaciers and perpetual snow 0 0 10,000
Water bodies 10,000 10,000 10,000
Total 189,868 178,069 165,663

Figure 4.7: Reference data extraction where each color represents an extract of land cover classes from Table 4.2.
The color code is described in Figure 4.9. The axes correspond to the geographical coordinates. The white
continuous squares correspond to zoomed areas of the classi cation thematic maps provided in Section 4.6. The
background image is an extract from Sentinel-2 optical images.
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4.5 Experimental set-up

The model parameters arg,. and . for each clasg and each wavelength. They are estimated using the
training set of pixels. MIMGP has also some hyperparameters that are set before the learning step: The design
matrix B with the associated number of basis functidrend the family of parametric kernels for the covariance
operator. These settings are common to each class and each wavelength.

45.1 Functional bases

Four functional bases have been investigated: Two of them are local bases (hon-zero only on suh§efy ti¢0
GaussiarandBSplinesases, while the remaining ones are global bases, the well-kRowrer andPolynomial

bases. An user-de ned hyperparameter, denoted big used to select the number of basis functions, as explained

in the next paragraph. The choice of a basis setting corresponds to an assumption on the temporal behavior of the
time-series: For instance Faurier basis can represent a periodic signal in the time domain.

Fourier: The number of basis functionsds= 2J + 1 and

X h t t
mt)= o+ jCos(2 j=)+ 3 sSin@2 (j+JI)=):
=1 T T

. P
Polynomial m(t) = o+  jt/,withJ=J + 1.

E92 ik 1= 1 Thet i 2 f]--- -
o

. p
Gaussianm(t) = j exp
j=1
as quantiles of the distribution of the clean dates. The hyperparadjaseset such thaﬂ]? = §tj+1  tjjto
ensure a sucient overlap between two consecutive local exponential functions.

Cubic splinesm(t) = = ;S;(t), with J = J + 1. Sjis the j™ bicubic spline on [OT]. The knotst; are

chosen as in the Gaussian case.

The invertibility condition associated with (4.8) implies thlhshould be smaller than 92, 100 and 103 for tiles
T31TCJ, T31TDN and T31TGK, respectively.

45.2 Covariance function

Any convex combination of positive semi-de nite kernels is a valid covariance function [190, Chapter 4]. In
this work, the squared exponential covariance function added with a colored noise covariance function, as given
in (4.4), is used.

The parametersyc = f 2; b2 5.9 8fbicg 2[1;p] [1;C] are learned as described in Algorithm 2. The
estimated covariance parameters provide some insights about the observed processes. In particular, the length-
scalehy, is related to the temporal behavior of the re ectance. For a given bamdl conditionally to class, the
longerhy, grows, the more correlated two distant dates are.

4.6 Supervised classi cation

The classi cation accuracy is assessed byRhescore, computed as the harmonic mean of the precision and recall
for each class. We report the “meBn score”, which is the mean ¢f; scores computed on all the classes of the
dataset.

First, the in uence of the basis functions on the classi cation score is investigated. Then, comparison with
other classi ers is reported and discussed. Convergence and model parameter analyses are provided in Section I
of the supplementary materials.
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Figure 4.8: Averaged “medry scores” of the MIMGP model with the 4 bases as a function of the basis dimension.
The results are reported for the tile T31TCJ.

4.6.1 Inuence of the basis functions

The in uence of the basis functions and its dimension are investigated. Figure 4.8 represents the averaged “mean
F, scores” obtained on the 10 independent thailidation data sets for the tile T31TCJ. From the gure, it appears

that the dimension of the basis should be larger than 9 for this tile to allow for a reasonable classi cation score,
independently of the basis itself. Furthermore, MIMGP is robust w.r.t. basis selection since similar accuracy are
obtained for all bases.

However, numerical instability has been observed for very large number of basis functions, in particular for
the exponential basis. For instance, when the number of functions is greater than 50, consecutive local exponential
bases overlap too much and the invertibility conditions are violated (see Section | of the supplementary materials).
In practice, the Fourier basis is the most stable and was used to compare our method to other classi ers.

4.6.2 Comparison with other classi ers

The performances of MIMGP are compared to three other methods: Quadratic Discriminant Analysis (QDA)
which involves a similar Gaussian assumption on regularly sampled data, a linear Support Vector Machine (SVM)
tted with a Stochastic Gradient Descent (SGD) [196], and Random Forests (RF) [26] which have shown state of
the art results in large scale pixel-wise classi cation of SITS [49]. QDA, SVM and RF methods take the re-sampled
multispectral time-series as input. The 10 spectral bands are stacked together to let these three methods account
for dependence between spectral bands.

RF is used with 100 trees and a maximum depth of tree set to 25. MIMGP model is implemented with the
Fourier basis and a RBF kernel with an additive colored noise which represents a total of 32 parameters for

Table 4.3: Averaged “meaR; score” (mean(%) standard deviation) computed on 3 tiles. MIMGP model is
parametrized by a Fourier basis with 19 parameters for T31TCJ, and 41 for T31TDN and T31TGK tiles.

QDA SVM RF MIMGP

T31TC) 362 25 701 21 722 16 576 20
T31TDN 305 28 748 19 776 15 651 1.0
T31TGK 389 21 621 16 639 16 455 27
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Figure 4.9: Thematic maps for 3 sites from tile T31TCJ. These sites are located as illustrated on Figure 4.7.

Table 4.3 summarizes the results for the four methodlge can see that some signi cant improvements are
achieved compared to the standard QDA classi er, even though MIMGP imposes independence between wave-
lengths. The QDA classi er sters from numerical instability due to the high number of spectro-temporal features.
However, MIMGP is not as accurate as the RF and the SVM classi ers applied on the reconstructed time-series.

Figure 4.9 shows three extracts of the classi cation map for tile T32T@3ually, signi cant di erences can
be observed both in terms of homogeneity and in terms of pixel-wise prediction. For instance, for the airport area,
SVM predicts wrongly a lot ohatural grasslandsvhile MIMGP and RF predict correctijmeadowfor vegetation
between runways. Overall, MIMGP and SVM seem to predict more homogeneous maps than RF. This can be
clearly seen in the second row, where the city center classi cation maps obtained with RF contain salt and pepper
noise.

Results provided in this section show that MIMGP is not at the level of state-of-the art methods such as RF
or SVM. One critical point is the spectral independence assumption that is not true in practice and used here for
computational purposes. Removing this constraint would help to improve the classi cation accuracy.

Yet, the computation of MIMGP does not require any temporal resampling processes and directly handles
the raw time-series in the training and prediction steps. In comparison with standard GPs for classi cation, its
complexity is linear w.r.t to the number of samples and cubic w.r.t to the number of temporal acquisitions, thus
allowing large scale processing. Furthermore, it can also be used to reconstruct pixel time-series, as discussed in
the next section.

SPer clas$; scores are provided in the supplementary materials.
8Full classi cation map and extracts for the three tiles are provided in the supplementary materials.
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4.7 Time-series reconstruction

Following Section 4.3.2, MIMGP is able to reconstruct missing values conditionally to a known, or predicted,
class. Class mean functions and covariance operators are also obtained after the training step (for clarity, mean
functions and covariance operators are provided in Section Il of the supplementary materials). In the following,
the quality of the reconstruction is compared with a state-of-the-art method: the Whittaker smoother [54, 184].

To assess the quality of the reconstruction, the validation set was used to ensure that reconstructed pixels were
not seen during the training phase. We randomly remove one clear date from each pixel and reconstruct it with
the trained MIMGP model and with the Whittaker smoother for which the regularization parameter is set using
the V-curve technique for each individual pixel [62, 184]. The quality of the reconstruction is estimated using the
normalized Mean Absolute Error (nMAE) computed as:

P. ... ~ .
Y)Yt
P -

MYRt) Yo

NMAE =

with Y, = Pi“:Vl Yg(t ), ny is the number of validation pixels. Table 4.4 summarizes the results obtained on the
three tiles and for the 10 independent data sets. The scatter plots associated with nMAE results are provided in the
supplementary materials.

From the table, MIGMP outperforms the Whittaker smoother in terms of nMAE for each band for tiles
T31TDN and T31TGK. For tile T31TCJ, Whittaker is better for 5 bands. It is important to note that MIMGP
provides better nMAE and does not need any additional tting, apart the training step, in contrast to the Whittaker
smoother that requires to be tted for each pixel, as well its regularization parameter.

Figure 4.10 shows a part of the tile T31TGK reconstructed for the band 4 (red) on August 6, 2018. For
this simulation, all the clear dates are used to reconstruct the time series for both methods. Interestingly, for the
Whittaker smoother, the clouds mask is visible indicating a non continuous reconstruction of the dynamic. This
artifact is not visible for the proposed method.

Table 4.4: Averaged normalized MAE (mean (%¥tandard deviation) for each wavelength for theadent tiles
with the a Fourier basis of dimensidn= 19.

S2 Band Method T31TCJ T31TDN  T31TGK

Band 2 Whittaker 472 05 123 15 401 12
MIMGP 469 24 465 1.3 363 14

Band 3 Whittaker 4% 05 114 1.2 423 1.3
MIMGP 439 37 440 16 396 14

Band 4 Whittaker 377 04 942 1.0 435 1.3
MIMGP 427 44 452 22 413 15

Band 5 Whittaker 400 05 999 1.0 447 13
MIMGP 458 04 409 20 413 22

Band 6 Whittaker 326 04 832 1.0 511 1.3
MIMGP 386 18 464 09 469 26

Band 7 Whittaker 3@ 03 735 09 511 12
MIMGP 247 27 451 09 418 11

Band 8 Whittaker 326 04 718 09 529 1.2
MIMGP 331 19 446 23 429 11

Band 8A Whittaker 294 03 693 09 519 12
MIMGP 332 34 438 15 426 12

Band 11 Whittaker 361 05 531 07 469 06
MIMGP 370 20 383 1.7 430 13

Band 12  Whittaker 341 04 460 06 513 07
MIMGP 395 26 387 33 466 26
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Original Mask

Whittaker MIMGP

Figure 4.10: Image reconstruction from a site in tile T31TGK. This site is located as illustrated on Figure 5 of
the supplementary materials. The top left panel is the original spectral band 4 (red) on August 6, 2018. The top
right panel corresponds to the mask: white color for a clear pixel and black color for pixel with datidation

as detected by the pre-processing chain. Bottom left and right are the reconstruction with the Whittaker smoother

and the MIMGP, respectively.
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Figure 4.11 illustrates the red wavelength (R) for two pixels of the same class (summer crops). They were
selected to enlighten the robustness of the proposed method to an inaccurate cloud mask le. The rst pixel has
an undetected cloud for the third temporal acquisition (blue point in the upper Figure 4.11). A clear drop of the
re ectance can be seen in the gap- lled infra-red (dashed red line). The reconstructed re ectance for MIMGP
(black line) and for Whittaker smoother (black dotted line) do not exhibit such a drop in the re ectance. Similar
comments can be done for the second pixel of the lower Figure 4.11 which has a undetected saturation (pixel value
equal to zero). Other wavelengths are reported in the supplementary materials.

0:3 T T T T T T T T T T T T T T

Re ectance

0:3 T T T T T T T T T T T T T T

Q
N

Re ectance

O:OT | o | | | | | | | | | | ‘f

|
60 80 100 120 140 160 180 200 220 240 260 280 300 32
Days of the year

Figure 4.11: Time-series reconstruction where top and bottom gures represent the red re ectance foetentdi

pixels. Dot points are the original values from the irregularly sampled time-series. Blue points are non-detected
clouds and saturation by the satellite data preprocessing chain, for the top and bottom gure, respectively. The
black continuous line is the conditional reconstruction of the signal and the gray region corresponds to the 95%
con dence interval. Each day of the year was reconstructed with MIMGP. The red dashed line represents the linear
interpolation taking into account all the dates tagged “clear”, the black dotted line represents the smoothed signal
using Whittaker smoother.

4.8 Conclusion

This work introduces a novel approach to jointly classify and reconstruct irregularly sampled multidimensional
time-series. The proposed model, namely MIMGP, only involves a small number of parameters and is scalable
to large datasets. The performances of the method were illustrated on a full-year of Sentinel-2 satellite image
time-series dataset from 2018 involving a high number of temporal acquisitions. A by-product of MIMGP is also
to infer a con dence interval on the reconstruction.

The reconstruction has shown a good behavior on noisy pixels, while the model does not compete with state
of the art classi ers such as Random Forest or SVM. One limitation comes from the independence hypothesis
between spectral wavelengths, which is not true in practice. Therefore, our future work will be dedicated to the
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de nition of multivariate Gaussian Processes able to take into account the correlation between wavelengths.

Another work in progress concerns the estimation of the mean function. MIMGP is able to handle the irregular
sampling caused by multiple tiles, but the mean function is assumed to be spatially stationary. Rather than using a
linear combination of xed basis functions, a more complex approximating function depending on the geographical
location could be used.

Finally, this work can be extended in a number of directions that could be of interest in the remote sensing
eld. A rst extension would be the use of the MIMGP model to perform classi cation in the unsupervised case
thanks to an EM-like algorithm. A second direction of future research would be the joint use of both Sentinel-2 and
Sentinel-1 time-series thanks to the MIMGP model which allows for arbitrary temporal sampling in each spectral
band.

4.9 Appendix - Time-series reconstruction

Let us rst consider the case where the class of the missing value is known ¢o be such a situation, the
reconstruction can be achieved using the conditional expectation:

Vio(t) = EIY)(0)iy;:Z; = cl:
The independence assumption A2 then yields
EIY()iyiiZ; = ¢ = EIY)(iyjni Z; = ¢
Besides, conditionally oF; = c, one has

| I . .
. Tj+l BJ o i .
Yib

bic (t ;tjl;le bic) @)

classical properties of conditional Gaussian distributions (see for instance [17, p.63]), it follows that
ECYO)YiniZi =) =b  beitk(titiri be) (oo 'Wip B! o;

VYR )iyiniZi = ©) = K(t 3t be)  K( bt 3t]r) 1 o) K tip it be):

Finally, replacing the unknown quantities by their estimated counterparts yields the desired results.
Second, when the class is unknown, the reconstruction rule is given by

Vit ) = EIYS()iyl:
Since
i - X: . i .
EIVa®)iyi] = P(Zj = cyELYa(t)iy;; Zj = cl;
c=1
it straightforwardly follows that
_ x "
)= PEZ=ciy) Yot );
c=1
where the reconstructed valﬁ’é;c(t ) is provided in (4.11) while the posterior probabilities are given by (4.10).
The variance is obtained by a similar calculation:

VIYIE) = BV 2yl EY )il
x ) N
= P(Z; = ciy)ELY(t Yiy;iZy =] Vi)~
c=1

Besides, remarking that
E[Ya(t )iy;Z; = c]
E[Yo(t )iy Z;

Vet):
V(Y (t)iyji Zy = ©) + E[YL (1)iy}; Zj = %

cl
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it follows that

. x N x N .
V)= PZi=cy)V(Y iy Zi= o+ PEZ =y ) Yat)*
c=1 c=1
and the result is proved. Let us highlight that these derivations were conducted when a singledicensid-
ered. Similar calculations can be achieved when reconstructed simultaneously several values. In such a case, this
estimation procedure provides the covariance matrix of the reconstructed values at each time.
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French abstract

Cetarticle étudie la classi cation des séries temporelles d'images satellitaires (SITS) échantillonnées de maniére
irréguliére. Un modéle de mélange de processus gaussiens multivariés est proposé pour prendre en compte
I'échantillonnage irrégulier et la nature multivariée des séries temporelles. La corrélation spectrale et tem-
porelle sont prises en compte en utilisant une structure de Kronecker pour I'opérateur de covariance du pro-
cessus gaussien. Le modéle de mélange multivarié du processus gaussien permet a la fois la classi cation
des séries temporelles et I'imputation des valeurs manquantes. Les résultats expérimentaux sur des données
simulées et réelles (SITS) illustrent I'importance de prendre en compte la corrélation spectrale pour assurer un
bon comportement en termes de précision de classi cation et d'erreurs de reconstruction.

Abstract

The classi cation of irregularly sampled Satellite image time-series (SITS) is investigated in this paper. A
multivariate Gaussian process mixture model is proposed to address the irregular sampling and the multivariate
nature of the time-series. The spectral and temporal correlation is handled using a Kronecker structure on the
covariance operator of the Gaussian process. The multivariate Gaussian process mixture model allows both
for the classi cation of time-series and the imputation of missing values. Experimental results on simulated
and real SITS data illustrate the importance of taking into account the spectral correlation to ensure a good
behavior in terms of classi cation accuracy and reconstruction errors.

Keywords: Multivariate Gaussian processes, Classi cation, Multivariate imputation of missing data, Irregular
sampling, Satellite Image Time Series (SITS), remote sensing.

5.1 Introduction

Satellite images availability has exponentially grown in the last decade. Thanks to free data access policy, optical
satellite image time-series (SITS) suchLasdsator Sentinel-2 0 er an unique opportunity to monitor the state

and evolution of our living planet. Therefore, SITS have found many applications in ecological monitoring [106,
57], meteorology [112, 14] or agricultural system mapping [180, 129, 58], among others.

SITS are characterized by their spatial and spectral resolutions, and their revisit cycle. The spatial resolution
corresponds to the size of a pixel on the ground, a square of 10 meters while the spectral resolution is related
to the number of wavelengths collected by the sensor, ranging typically in the visible and near infra-red part of
the spectrum [122]. The revisit cycle stands for the time between two acquisitions over the same location: SITS
have constant and sho#.§.few days) revisit time. Hence, for a given temporal period, a pixel is the collection of
spectral measurements made atalent times over the same location.

These properties lead to an unprecedented amount of numerical data, for which statistical methods are used to
extract meaningful information such as land cover, crops yields ... For a pixel-wise based analysis, the predictor
variables are multivariate time-series and the output variables represent the information to be extracted. While
spatial independence is usually assumed [103], temporal and spectral correlations are commonly taken into account
in statistical models [115].

However, external random meteorological factors interfere with the availability of the acquired data at the pixel
scale. Indeed, as displayed in Fig. 5.1, shadows and clouds result in missing data in the time-series. Furthermore,
orbital trajectory generates an irregular temporal sampling: Even though the acquisition scheme is regular, acqui-
sition days are dierent for pixels located at derent places [93]. As such, each pixel of the SITS has its own size
in the temporal domain: Fig. 5.2 illustrates the irregular temporal sampling on the data under consideration in this
paper.

Speci ¢ models are thus required to properly analyze such time-series, as described in Section 5.2. Conven-
tional approaches usually start by resampling the data onto a common temporal grid. In this work, we aim at
analyzing irregularly sampled multidimensional SITS without any temporal resampling. In particular, the super-
vised pixel classi cation task is considereice. the assignment of each pixel of the time-series to a prede ned
class.

To this end, a mixture of multivariate Gaussian Processes is proposed. A linear dependence model is assumed
between the spectral variables leading to a separable covariance function in time and spectral domains. The result-
ing model provides statistical information on the underlying process for each class (mean and covariance functions)
and scales linearly w.r.t. the number of samples.
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Figure 5.1: True color Sentinel-2 satellite image time-series. Data were acquired in 2018rantitime steps
over the area of Toulouse, France (images were downloadedTfneia Land Data Centetttp://www :theia-

land :fr/en/presentation/products

Pixel value Pixel value

Pixel value

Figure 5.2: lllustration of the irregular temporal sampling for the SITS used in this work. Three time-series at
di erent locations for one spectral band are reported: A black dot indicates that the pixel is clear (no shadow or
cloud) at the considered time, and a light-gray dot indicates that the pixel has been tagged as clouds or shadows by
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The remainder of this paper is organized as follows. Section 5.2 reviews the state-of-the-art on classi cation
with missing data and Gaussian processes. The statistical model is introduced in Section 5.3 while inference
aspects are discussed in Section 5.4 including the estimation of the model parameters, the supervised classi cation,
and the imputation of missing values. These statistical procedures are validated on simulated data in Section 5.5.
Section 5.6 is dedicated to the application of our methodology to the classi cation of SITS from a Sentinel-2
data-set. Section 5.7 concludes with a discussion on possible extensions of this work.

5.2 Related Work

This section brie y reviews state-of-the-art methods for model-based classi cation, classi cation dealing with
missing values and classi cation with Gaussian processes.

5.2.1 Supervised model-based classi cation

Supervised model-based classi cation (also referred to as model-based discriminant analysis) starts from a training

whereE is an arbitrary space. Letting. = P(Z = c), the marginal distribution of can be written as a nite

mixture
x

p(y) = cPey; o)
c=1
whose parameters can be estimated by the maximum likelihood principle. A non-labeled observation can then be
classi ed thanks to the Maximum a posteriori (MAP) criteria:

¢ = argmaxp(Z = cjy) = argmax cpc(y; o);

c2f1;:::Cg
thanks to Bayes' rule. Whek = RY, the multivariate Gaussian distribution is often adoptedddy; .) and
gives rise to the well-known Quadratic discriminant analysis (QDA) method. We refer to [84, Section 4.3] for
a discussion on the advantages and drawbacks of QDA and for possible extensions. Recent studies extend the
model-based classi cation framework to non-Gaussian distributions such as the skew-normal distributions [175,
35] to deal with asymmetric data, tdistributions [4, 132] to deal with outliers. We refer to [22, Chapter 9] for
an in-depth review. The cage= R% also encompasses the situation of discretized time-series on a common grid.
Speci ¢ models can be then de ned, as in [142] for temporal signatures.

If E is discrete, including for example the case of categorical data, extensions focus on the multinomial [34]
or the Dirichlet [21] distributions. In the case of ordinal data, other extensions are proposed using a dedicated
model of the process generating data [15]. Finally, wkeis more complexg.g. in nite dimensional, non-
parametric techniques are used. Kernel methods are probably the most popular non-parametric techniques in this
situation [88]. Recall that a kernel is a positive de nite function that corresponds to a dot product in a feature space.

It allows for the construction of non-linear and non-parametric classi erg avithout computing explicitly the
feature space. Kernels can be de ned, for instance, on strings [113], graphs [101], vector-valued functions [3, 61],
or combinations of several data types [23].

5.2.2 Classi cation with missing data

When dealing with remote sensing date, spatial-spectro temporal data such as SITS, handling missing val-
ues [158] is a recurrent problem. Classi cation dealing with missing data occurs when some inputs in the training
set are incomplete,e. the number of available coordinatesyirtan be di erent from one sample to another, see
[153, 64, 9] for reviews.

Three main approaches can be found in the literature. A rst solution is to impute missing values before the
classi cation itself. The pre-processing gives rise to a training set with observations re-sampled on a common
grid that can be considered as vectors in a nite space RY, opening the door to classical model-based classi-
cation methods. We refer to [109] for a review on imputation techniques. For SITS, [93] used such two-stage
approaches on Sentinel-2 SITS where a linear interpolation was applied before performing the classi cation with a
Random Forests classi er. Yet, by applying imputation techniques without any connection to the actual processing,
propagated errors from the interpolation may degrade the results.
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Alternative solutions are based on functional data analysis [146]. Each observation is interpreted as a sample
from a random function. As such, it can be approximated by an expansion on some basis functions. The statis-
tical analysis is then performed on the random vectors of oients, see [154] for an application to clustering.
Nonparametric smoothing techniques may also adopted, see [60, Chapter 8] for an overview.

Finally, purely non-parametric methods can also be implemented by de ning an appropriate dissimilarity mea-
sure between samples of varying size. In the context of time-series, Dynamic time warping (DTW) [40] is one of
the most popular algorithms. It computes an optimal match between two vectors wéttewli lengths. This map
de nes a dissimilarity that can be used for comparison in order to cluster samples into multiple groups.

5.2.3 Classi cation with Gaussian processes

A recent approach for supervised classi cation is based on the use of Gaussian processes (GPs) in a Bayesian

framework. More speci cally, Gaussian processes are used as prior distributions on the regression function linking

the labelZ to the explanatory variablé. In the binary classi cation case, the conditional Bernoulli distributio# of

is de ned through a logit transformation: logi(Z = 1jX = x)) := f(x) wheref(x) is a centered Gaussian process.

The considered prior Gaussian process is, most of the time, one-dimensional. Extensions to the multi-dimensional

case include the so-called multi-tasks or multi-outputs GP models, see [18, 3]. Finally, some recent works focus

on non Gaussian processes such as Student-t processes which have gain attention over the past years [156, 37].
The discrete nature & makes the exact inference of model parameters infeasible. To overcome this di

culty, several techniques have been proposed, including the Laplace approximation, or through the expectation-

propagation algorithm [133]. Such approaches rely on the inversiomof a covariance matrix and thus scale

in O(n®) which makes the inference computationally demanding for large data sets. Scalable GPs were proposed

to overcome this vexing ect, using for instance variational inference as in [86]. We refer to [111] for a review

on this topic. In the next Section, we de ne a mixture of multivariate Gaussian processes which can be used for

classi cation or imputation tasks without resort to approximate inference techniques.

5.3 Mixture of Multivariate Gaussian processes

The mixture of multivariate Gaussian processes model is introduced in Paragraph 5.3.1 and some associated prop-
erties are derived in Paragraph 5.3.2.

5.3.1 Model

Let T be a compact subset B throughout this document, we denote®#,(0; K) a continuous univariate cen-
tered Gaussian process @nwith covariance functiork : T? ! R. Recall that, by de nitonW GP ;(0; K)

sian distributiorN4(0; ) such that ;;; = K(t;; t;), see for instance [190].
Forallp > 0, let us similarly denote b\GP ,(0;K)ap dimensional, independent, centered Gaussian process
de ned as g
3W, GP ,(0;K); 8b2f1;:::;
W= (Wi Wp)™ IGP (0:K) ifand onlyif 5 10 ; Pg
"Wy W, 8b, bO2f1;:::;pd;
wherey stands for independence. The above de ned multivariate Gaussian processes are the building blocks to
de ne more general multivariate Gaussian processes denot®t@#y ,(m; K; A) wherem : T | RP is the mean
function,K : T2! Ris the covariance operator aAda non-singulap p matrix:

Y MGP ,(m;K;A)ifandonlyifY = AW + mwith W IGP ,(0;K): (5.1)

Let us remark that model (5.1) is not identi able without additional constraints. Indd&P ,(m;K;A) and

MGP ,(m; K;A=" ) yield the same process for att 0. This issue is discussed in further details in Section 5.4,
see also the next paragraph for some basic properties of multivariate Gaussian processes de ned in (5.1).

multivariate Gaussian processes (M2GP) is de ned by:
Conditionally toZ = ¢; Y MGP y(mg; Kc; Ac); (5.2)

wherem;: T ! RP,K::T?! RandA;is anon-singulap p matrix, for allc 2 f1;:::;Cg In the context of
SITS classi cation,Y represents the (unobserved) multidimensional procesp aedotes the number of spectral
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bands. The particular case = |, yields a mixture of independent Gaussian processes (MIGP) whose applications

to classi cation have been investigated in [41]. Let us also note that multivariate Gaussian processes have already
been used in the machine learning community, without formal de nition though, see for instance the so-called
multi-task Gaussian process [18] or the multivariate Gaussian process regression [37].

5.3.2 First properties

Let C andD be two matrices of sizem nandp qrespectively. Recall that the Kronecker prodGct D is the
mp ngmatrix such that
1D it cuD
co=fi

mD . CcmD
and vecC) 2 R™is the vector obtained by stacking theolumns ofC:

Keeping these de nitions in mind, the matrix-variate normal distributitd ., [48, 166] is de ned for allp q
random matrixy? as:

Y? MN ,4(M; ; )ifandonlyifvecly’) N pq(vecM); ); (5.3)

whereM isap qgmatrix, and are symmetric positive de nite matrices of sige qandp p respectively.
We refer to [48] for an early de nition of the matrix-variate normal distribution (as well as some of its derivatives),
to [77] for a general account on matrix-variate distributions and to [1] for an application to missing data imputation.

The associated density function is de ned forpll g matrixy by
|

h i
pY) = (2) PRdet( ) Pdet( ) Fexp st Ny M)y MY (5.4)

where tr() denotes the trace operator. The next Proposition establishes that the nite sized marginals of the multi-
variate Gaussian process (5.1) can be interpreted as random matrices from a matrix-variate normal distribution.

Equivalently,
veqY?) N pg( i AA7);

with = vedM).

In the SITS frameworkY”’ represents the observgddimensional SITS which is a discretized versionYof
at g timestamps. An illustration is provided in Fig. 5.3 whére= [0;1] andp = g = 10. Only the rst two
coordinates are represented for lack of space reasong, lietenote the Euclidean scalar productRfhandk k
be the associated norm. For all non zero vectors)(2 RP  RP, we also introduce cos{v) = hu; vix(kuk kvk).

As a direct consequence of the covariance structure in (5.5), the correldigtween the elements of the random
matrix Y? can be derived:

Corollary 5.0.1. Suppose the assumptions of Proposition 5.1 hold.

q
(Yg;j;Yg;jo): j:jo LI (5.6)
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It appears thah tunes the dependence between the line¥ofi.e. the spectral bands in the SITS context)
while drives the dependence between the columastfie acquisition times of the SITS).

A likelihood ratio test is introduced in [116] to check whether the separability of the covariance (5.5) is adapted
to the data in hand. However, this test has not been extended to irregularly sampled time-series. Let us also mention
that, in [120], the same Kronecker product model is used to regularize the estimation of the covariance matrix in
high dimension.

5.4 Inference

This section addresses several inference aspects associated with the M2GP model. fgAsagr::: (Y™ Z.)g

a set ofn random pairs identically (&jstributed from the M2GP model. Cleagyan be estimated by its empirical
counterpart ¢ = nc=n wheren, = = L, IfZ; = cgis the number of samples in clasgand|f gis the indicator
function). Besides, from (5.2)Y' MGP p(Me; Kc; Ac) conditionally tozZ; = ¢, for alli 2 f1;:::;ng The
unknown quantities to be estimated ang : T ! RP, K. : T2 ! Rand the matrixA.. The use of parametric
models for mean and covariance functions is discussed in Subsection 5.4.1 and the Maximum likelihood estimation
(MLE) of all resulting parameters is presented in Subsection 5.4.2. The associated classi cation method based on
the Maximum a posteriori (MAP) rule and the imputation of missing values are described in Subsection 5.4.3 and
Subsection 5.4.4 respectively.

5.4.1 Parametric mean and covariance functions

(mc(t))p of mc(t) is expanded as
X
(Me()o = e i (0); (5.7)
=1

with t 2 T, and wherea.y, is the projection coecient of (n¢()), on"' j(). Denoting by . thep J matrix
de ned by:

cll cl;2 clJ

— 2,1 : c2,J
¢ =

cpil - . cpd

The covariance operatdf. is assumed to belong to a family of symmetric positive-de nite kernels, [190,
Chapter 4]. A typical kernel is the squared exponential kernel (also known as Gaussian or RBF kernel) with an
additive white noise covariance function:

|
(t 9

Ke(t;t9 o) = Eexp o1

+ 2ft=1% (5.8)

where (;t% 2 T 2. The parameters are collected gwith, in this case, . = f ¢;he; <0

5.4.2 Maximum likelihood estimation

urally allows to deal with irregularly sampled SITS since the siz¥'df may depend on From Proposition 5.1,
one has

Conditionally toZ = ¢; Y7 MN pq( B S( o);AAL); (5.9)
where the covariance matrix®'( ) is de ned for all (j; j9 2 f1;:: 2, by S( o)jjo = Ke(t];tio ¢) andB' =
(b(t‘1 pil ;b(t‘qi)) isaJ @ design matrix. Parametefs; ;Acgare estimated by minimizing the negative log-

likelihood given hereafter.
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Lemma 5.1. The negative log-likelihood associated with (5.9) can be expanded as

1%
L = é o o c;AcA:);

c=1

X .
o o AAZ) = QlogdetAcAZ)+p  logdet “I( )
ijZi:C
* tf% (Y7 B (g (Y CB‘)>fAcA391§ (5.10)

ijzi=c
. P
with Qc = jjz=c G-

It appears that the likelihood only involves the product of matrisgs? and not the matridA. itself. This is
a direct consequence of (5.5): The matrix-variate normal distribution of the sampled prScesly depends on
the above product. The parameters of interest are thus. and AcA7 and the MLE is obtained by solving
independent optimization problems:

s Ac;ACAé) = argmin ¢( c; c;AcAz); (5.11)
¢ ¢AAZ

(i) Solutions of (5.11) satisfy the following two properties. Givgrone has:

e = YR?E (g 1B B'f “()g'(B)# ; (5.12)
ijzi=c ijzi=c
1 X o ) .
AAZ=— (Y7 ~BY S JgiY? "B (5.13)
Qe iz=c

(i) The partial derivative of (5.10), w.r.t. the kth coordinate gfis given by:
i @ i !

@ & GAAD) X N e pra pogl e
— ===t pf (. S e o FAAIGY G ¢ ) ——( ) ; 5.14
o TR TCaet e A T ) g (619
where (¢ )= (Y B)f “(o)g"

In practice, the computation of the MLE is achieved thanks to an iterative procedure based on (5.12)—(5.14),
described in Algorithm 3 and discussed in Paragraph 5.4.5.

5.4.3 Supervised classi cation

MAP rule which consists in maximizing w.r.t.the posterior probability
PZ=c¥?)/ op(Y?iz=0);

wherep(Y?jZ = c) is matrix-variate normal density de ned as

pV%iz=0) = () "Pdet (o) " detAA>
|
h i - i !
ep S AMGNT B (T B (5.15)
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see (5.22) in the proof of Lemma 5.1. Here, the covariance méf(ix:) is de ned for all (j; j9 2 f1;:::;0d by
C( o)ijo = Ke(j: Tjo ) andB = (b(f1);:::;b({y)) isad g design matrix. In practice, all parameters are replaced
using their MLE counterparts ards selected by minimizing the negative log posterior probability, that is:

g¢=argmin plogdet "°("¢) +qlogdet AcA>  2log(n.=)
Cc
N 04 o gen s
+ir AAz (Y7 "B (o (YT "B

In the SITS framework, the above formula provides a natural way to classify a new multivariate time-series even
though it is not observed at the same timestamps as the examples from the training set.

5.4.4 Imputation of missing values

The next result provides the distribution of the MGP process atttiroenditionally to its label and to observations

Then,
conditionally to Z= candY? =y?; Y(©¥) N , (";y°); o) ;
with , )
(try?) = hclo(ty)+ v’ BF (g lkc(ty)l:
() = Kt o) kc(ty)> (0 1kc(ty) AcA:;

As a consequence, whef(t¥) is not observed (but its label is known to bg this missing value can be
imputed by the conditional expectation given in Proposition 5.3, where the unknown parameters are replaced by
their associated MLE:

Vo) = "cb(®) + (Y7 "eB)f °(c)g tke(t'): (5.16)

This allows for the reconstruction of SITS values at unobserved times. If the labél of unknown, the dis-
tribution of the MGP process at tinté conditionally to observations at timég : : : ;ty can still be derived from
Proposition 5.3:
x
conditionally toY? = y?; Y(t) PZ=gY’ =y" )N, (t;y’); <) ;
c=1
leading to

xc
©y")=  PZ=qY’ =y’) (),
c=1
)@ ? ? 2 ? ? ?
)= PEZ=dY'=y’) )+ (y) (y)  (@y) (@y):

c=1

Thus, when botty (t¥) and its label are not observed(t¥) can be imputed by

xc
Y®) = PEZ=cY?)Y), (5.17)

c=1

e
PZ=cY")="cB(Y’iZ=c) “WB(Y’iZ=K);
k=1
with p(Y?jZ = K) the estimated matrix-variate density de ned similarly to (5.15) by

BY?iZ=k) = () PPdet () "det AAz T |

exp ot Aazg' (Y’ ) (0 Y ey
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5.4.5 Numerical implementation

The computation of the MLE is implemented as detailed in Algorithm 3 using the results of Proposition 5.2. To
deal with the iden ability issue mentioned in Paragraph 5.2.d47 is normalised by . such thakA:AZks = 1
(wherek k denotes the Frobenius norm) and each covariance métt{x.) is modi ed accordingly so that the
likelihood remains unaected (step (d) of Algorithm 3). The gradient step (e) is performed using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm, see [197]. More speci cally, the L-BFGS-B version is used which
allows for box and positivity constraints. As described in [197], the gradient step is obtained by line search and
the algorithm stops when: the objective functidm.(the likelihood) does not change signi cantly, the (in nite)

norm of the projected gradient is seiently small or when the maximum number of iterations is reached. Since
the objective function is not convex, the optimization process is sensitive to the initialization. In practice, multiple
random restarts are used and the best solution is retained. Let us highlight that, in practice, steps (a)-(e) are
computed for all classes in parallel since the model parameters are decoupled w.r.t. the classes.

Algorithm 3: Computation of MLE of model parameters.

Output: MLE “C;ACAE;AC ,c=1;:::;C.
1 forc=1to Cdo

repeat
(a) Update . using (5.12);
(b) UpdateAA? using (5.13);
(c) Compute . k AcAZKg;
(d) UpdateA.A>  AAZ=cand () ¢ %( o, i=1:m
(e) Update . with a gradient step using (5.14);

until “¢( ¢;AAZ; ¢) has converged

o N o o b~ W N

The numerical complexity of one iteration for all classes of Algorithm ®fa(q + p® + J°)) wheren is the
sample size and, = maxq; i = 1;:::;ng The computation of the MLE thus scales linearly w.nt. In
constrast, the cost associated with standard class cation methods based on Gaussian pra@{¢Ssel)is) [190,
Algorithm 3.3]. Here, the computation of the MLE only relies on the inversiop ofp andg; g matrices whose
sizes do not depend on the sample size.

Let us note that Algorithm 3 can be interpreted as an extension of the so-called Flip- op method introduced
independently by [123, 53]. This latter method in an iterative way to compute the MLE associated with the matrix-
variate normal distribution. As such, it is limited to the situation whegre= g, = = @, which only occurs
when all Gaussian processes are observed on a common grid. ldenti ability issues are discussed in [166] and the
method is extended to higher order tensor distributions in [121]. Applications of matrix-variate normal distribution
are found in di erent contexts such as electro-encephalography [165] or remote sensing [71].

Finally, all the above estimations procedures have been implemented in Python using the Scikit-Lean API, see

family of symmetric positive-de nite kernels was selected amongdbmnelsclass in the Scikit-Learn library.

5.5 Validation on simulated data

The performance of the inference procedure associated with the M2GP model is illustrated on simuldta@theata.
simulated model is described in Paragraph 5.5.1. First, the in uence of the dependence between coordinates as well
as the in uence of the number of observation times are investigated in Paragraph 5.5.2. Second; the consequences
on the classi cation and imputation accuracy are discussed in Paragraph 5.5.3.

5.5.1 Experimental design

A binary classi cation problem is considered. Two classes are simulated from a 10-dimensional M2GP model on
T = [0;1] with 1;000 samples per class leadingte 2;000 andp = 10. Mean functions are generated follow-
ing (5.7) with a Fourier basis of size= 11. Coe cients .y are simulated independently fromN\g (0; 0:02)

1The code and a notebook are available Hitps:/gitlab iinria :fr/aconstan/mixture-of-multivariate-gaussian-
processes-for-classification-of-irregularly-sampled-satellite-image-time-series
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distribution,c 2 f1;2g b 2 f1;:::;10gandj 2 f1;:::;11g The covariance operator is identical for both classes:
Ki(;) = Kyo(; ). Itis de ned foIIowmg (5.8) as the sum of a RBF kernel and a white noise covariance function.
The associated parameters afe= f 1;h;; 19= f1.5; 150 0:0590= ,. We also sef\; = A, with

ALAT = (5.18)
1
so that tunes the pairwise correlation between the 10 coordinates of the Gaussian processes. In the following,

we shall consider 2 f0;1=4;1=2g In practice, M2GP processes are simulated on random grids of varying size
g2 f10;20;:::;100y see Fig. 5.3 for an illustration in the cage 10 and = 0.

o;ok "V#j” Jl“ ‘, "%f"i““""“"""'FH TR ri’iiﬂm ‘ , MM “'““lyium v'
T

20 1AL LM

2.0
0510201 015 02 025 03 035 04 045 05 055 06 065 07 075 08 085 09 095 1

Figure 5.3: Two simulated M2GP processes (transparent lines) in dimgnsidi® observed af = 10 timestamps
(dots), from two classexc(= 1. blue,c = 2: red). The mean functions are depicted as continuous opaque
lines. Top panel: rst coordinates, bottom panel: second coordinates (only the rst two coordmnated p, are
represented).

5.5.2 Estimation results

All estimation procedures are evaluated on 100 replications of the above described simulation model. First, for all
¢ 2 f1,2g the quality of the reconstructed melh, = "B is measured by the normalized Mean Squared Error
(nMSE) de ned as:

. M
NMSEM ¢; M) = M _°k% (5.19)
Mk
whereM_. is the empirical mean of the processes in classhe lower this score is, the better the estimation. An
example of reconstructed mean is presented on Fig. 5.4, for one replication. Second, the quality of the estimation
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of the covariance structuke.A; (see 5.18) b)ACAg is assessed by the cosine score de ned as:

hA AT AAZIE
KACAZ ke KAAZ ke

CAAZAAL) =1 (5.20)

Let us note thaﬂ:(/&cAg;AcAz) 2 [0; 2] with C(ACAE;ACAE) = OwhenAcAg andAcA? are proportional. Finally,

turning to the estimation of the kernel part (5.8) of the dependence structure, we focus on the estimation accuracy of
the length-scale by computing the absolutesience between the true length-sdale h, = 150 and its estimated
counterpart. The results are averaged over the 100 independent replications and are reported on Fig. 5.5 for the rst
class. Similar results are obtained for the second one. It appears that, unsurprisingly, the quality of the estimates
increases with the numbgrof discretization times. At the opposite, the dependence paramdters not seem to

in uence much the accuracy of the estimation. One can nevertheless note that, as expected, the variability of the
estimators increases with as the information carried by correlated coordinates decreases. Besides, the estimated
length-scales do not depend ojthis may be explained by the separability property exhibited in Corollary 5.0.1.

5.5.3 Classi cation and imputation results

Here, we focus on the comparison between results associated with M2GP and MIGP models. To assess the
classi cation and imputation performances000 samples are generated following the model described in Para-
graph 5.5.1 and then split into two disjoint balanced sets. The rst one is used as a training setifcf 2A200)

to estimate model parameters. The second one is used as a test set where the accuracy of the classi cation and
imputation steps associated with the two above methods are compared. The classi cation performance is assessed
thanks to the Overall Accuracy (OA), that is the ratio of the number correctly classi ed test observations and the
total number of test observations, while the nMSE is used for the imputation task. Similarly to (5.19), we let

. ky? Y?
NMSE(Y?;Y?) = —_k%; (5.21)
Ky? Y?RR

whereY? is the imputed discretized process when the class is unknown thanks to (5.17), given the observed
discretized process oq points. Y? is the empirical mean of discretized processes in the test set. The above
Frobenius norms are computed on a xed regular grid ofle ned asft = =100, *~ = 1;:::;1003 The results
are reported in Fig. 5.6.

It appears that the classi cation scores associated with M2GP increase with the dependernderdoeand
the numben of discretization times. On the opposite, MIGP scores are decreasing,wiitie to the independence
assumption. When there is no dependence between coordinatdy (both methods provide similar classi cation
scores. Unsurprisingly, M2GP outperforms MIGP as soon as a dependence occurs.

In terms of reconstruction, both methods feature similar performances, increasing. withe dependence
strength only impacts the variance of the reconstructed processes: The lexgie larger the variability.

5.6 Time-series classi cation: Application to satellite data

This section is devoted to multivariate SITS classi cation using the M2GP model. The data were acquired by the
Sentinel-2 satellite, and are presented in Paragraph 5.6.1, with a focus on the irregular temporal sampling. The
estimated M2GP parameters are interpreted and discussed in Paragraph 5.6.2. Finally Paragraph 5.6.3 concludes
this section with classi cation results and comparisons to state-of-the-art methods.

5.6.1 Sentinel-2 satellite image time-series

Since 2016, the Sentinel-2 mission [52] produces massive multispectral imagasd 1.6TBytes a day, with a

spatial resolution of 10 fpixel and 13 spectral bands (only 10 bands are used for the analysis). The frequency of
revisit is 5 days and clouds as well as shadows are present in the data, at random locations. Most of the clouds
and shadows positions are automatically extracted by the data provider. Yet, thin clouds may remain in the data.
The selected images cover the area of Toulouse, France (Fig. 5.7) and all available acquisitions for the year 2018
were used. The image is of spatial size 10,000,000 pixels (10,000 kf). Each extracted time-seriedas a
dimension ofp = 10 channels (or bands) and its own number of timestagpgd he distribution of theys is
represented in Fig. 5.8 for this area in 2018.
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c 2 f1;2gand = 0 on one replication. The dashed line is the true mean, the red line is the estimated GP mean
from a discretization on a grid of sizg= 10.
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Figure 5.5: Estimation of M2GP parameters on simulated data as a function of the ngmbdiscretization
times on clasg = 1. From left to right: normalized mean squared error (5.19), cosine score (5.20) and absolute
di erence of length-scales. From top to bottonx 0, = 1= and = 1=2.

The supervised classi cation task consists in assigning a pre-de ned label to every pixel of the image. Fourteen
classes were extracted from national data-bases and 10 pairs of training and validation data-sets are generated
independently for the experiments by randomly selecting samples for the training and testing sets. Training and
testing sets were carefully constructed to avoid spatial dependence between pixels.

Table 5.1 shows the number of extracted samples for each training and validation set. The number of samples
per class is unbalanced but represents the actual proportion of land cover classes in the region.

5.6.2 Parameters estimation

M2GP is tted to the satellite image time-series using the estimators described in Section 5.4. A Fourier basis is
adopted for estimating the means usihg 19 functions while the time dependence structure is modeled by a RBF
kernel combined with an additive white noise. The choice of the basis and the selection of the dindesusion

2https://sentinel :esaint/web/sentinel/missions/sentinel-2/data- products
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Figure 5.6: Classi cation overall accuracy (OA, left panel) and reconstruction normalized mean-squared error
(nMSE, right panel in log scale) boxplots computed on simulated data. Comparison between M2GP (blue) and
MIGP (red) results as functions of the numlggof discretization times. From top to bottom:= 0, = 1= and

=1=2.



74 Chapter 5 -Mixture of multivariate gaussian processes for classi cation of irregularly sampled SITS

Figure 5.7: The study area is located in the south of France (right bottom image). The left bottom image cor-
responds to the entire area (100 kb®0 km) and the upper image is a zoom over the red rectangle (15 km
km).
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Figure 5.8: Normalized histogram of tlges within the SITS data-set.
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Table 5.1: Land cover classes and number of extracted samybes class for each training and validation set.

Class Ne
Summer crops 40,000
Winter crops 30,000
Broad-leaved forest 10,000
Continuous urban fabric 10,000
Discontinuous urban fabric 10,000
Industrial or commercial units 10,000
Meadow 10,000
Orchards 10,000
Road surfaces 10,000
Vines 10,000
Water bodies 10,000
Woody moorlands 9,972
Coniferous forest 9,957
Natural grasslands 9,939
Total 189,868

discussed in the MIGP framework by [41, Fig. 8, and Fig. 1 in the supp. mat.].

Estimated mean functions are reported in Fig. 5.9 for four selected channels: blue, green, red and near infrared
(nIR) and four selected classes: continuous urban fabric, summer crops, broad-leaved forest and water bodies. In
the context of remote sensing data, nIR is often correlated with the presence or absence of vegetation: Large values
of nIR associated with small values of red, indicate that the vegetation is abundant. This behavior is observed in
agricultural classes such as summer crops or broad-leaved forest during spring and summer.

The estimated covariance matrices between all 10 chaﬂraA§ are reported in Fig. 5.10 for the same classes.
Similar covariance matrices have already been observed on mono-temporal Sentinel-2 data, we refer to [185, Fig. 8]
for similar results on crops classes.

Finally, the time covariance structure is illustrated on Fig. 5.11. The estimated RBF kernel on the same four
classes is drawn when centered at day 180. The temporal correlation associated with natural elements, such as
summer crops or broad-leaved forest, is short since their re ectance evolves along the.gebe¢ause of the
vegetation cycle, or anthropic events). In contrast, man-made materials, such as continuous urban fabrics, exhibit
longer temporal correlation because their re ectance does not evolve along the time.

5.6.3 Classi cation results

In this section, the classi cation performances of M2GP are compared to state-of-the-art methods. Four com-
petitors are considered: Random forests (RF) [26], Quadratic discriminant analysis (QDA) which is based on a
nite-dimensional Gaussian model, linear Support vector machine (SVM) classi er tted with a Stochastic Gradi-
ent Descent [196], and, nally, Mixture of independent Gaussian processes (MIGP) [41]).

The time-series have been resampled on a common temporal grid of size 73 (every 5 days of year 2018) using a
linear interpolation for RF, QDA and SVM methods since they require a x vectorial representation of the sample.
All the spectral bands have been stacked together to obtain a vector of dimension 73 tatgsectral bands
730 features. RF is trained with 100 trees of depth 25, and QDA is used with a regularized version of the estimated
covariance matrix [63], = (1 ) + |, with =102

The F1-score is computed to assess numerically the classi cation accuracyTisele ned as the harmonic
mean of the precision and recall scores [174]. Classi cation maps are also presented in order to qualitatively
evaluate the spatial coherency of the results (despite a spatial pixel-wise independence assumption made by all
considered methods).

MeansF; scores and their standard deviations computed on 10 independent sets are reported in Table 5.2 for
each class as well as the “averdggescore” computed on all classes. Nnon-parametric methods (RF and SVM)
provide the best classi cation results in terms of F1-score. The uni-modal assumption induced by Gaussian models

3This is true when the period of observation is not too long, few years, otherwise the material property might be altered and its re ectance
could vary.
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Figure 5.9: Estimated means for four channels and four classes (continuous urban fabric, summer crops, broad-
leaved forest and water bodies). The horizontal axis represents the days of the year and the vertical axis represents
the re ectance value.

may thus be ill-adapted to this data-set. M2GP and QDA provide lower and similar accuracy, even though M2GP
is based on stronger assumptions on the covariance structure than QDA.

The obtained classi cation maps are reported in Fig. 5.12 for &int sites. Large derences are observed
in these scenes. For the rst column, corresponding to the airport zone, most of the inner vegetations are wrongly
classi ed to natural grasslands with QDA, while RF, SVM and M2GP classify correctly them as meadow. Runway
are mostly confused with industrilabmmercial units using RF while runways are almost recovered by M2GP.
Overall, strong dierences between thematic maps are observed, but visual assessment from a mono-date color
image is di cult. Yet, without taking into account the spatial dependence, M2GP recovers most of the spatial
structure of the image, and tlalt and peppeclassi cation noise is limited, as for RF and SVM.

5.7 Discussion

A multivariate Gaussian process model has been introduced for the classi cation of irregularly sampling satellite
image time-series. The multivariate model involves a speci ¢ structure of the covariance operator that exploits the
data features and also reduces the number of parameters to estimate. Furthermore, the proposed formulation scales
linearly w.r.t. the number of samples. Experimental results on simulated and real data sets show the importance of
modeling the dependence between coordinates of the process, in particular for classi cation accuracy.

Current development concerns the use of two satellite sources. Sentinel-2 satellites are complemented with
Sentinel-1 ones (which are not ected by clouds) which acquire radar data (with aedent physical content):
An extension of the proposed model will consist in combining these two time-series with irregular temporal and
spectral sampling. Another possible extension would be to consider a non spatially stationary mean function, as
in [44].

Finally, these models can be extended to non-Gaussian procegs&tudent-t as in [156, 37] and applied to
the unsupervised classi cation problem.
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Figure 5.10: Estimated covariance matriée#\; on four land-cover classes.
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Figure 5.11: Normalized RBF kernels (5.8) centered at day k80180)= exp( 0:5(t 180)f=hZ) computed on
four classes.
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Figure 5.12: Three extracts of the classi cation maps obtained by QDA, RF, SVM, MIGP and M2PG methods.
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Table 5.2: Mear; score (mean(%) standard deviation) on the 10 independent data-sets.

QDA RF SVM \ MIGP M2GP
Summer crops 96.5 0.27 96.8 045 956 0.81 | 90.0 0.83 959 0.44
Winter crops 91.6 0.48 94.0 0.77 939 0.66 | 80.2 0.83 92.2 0.64

Broad-leaved forest 77.43.91 86.2 235 853 263|757 503 815 3.10
Cont. urban fabric 39.8 6.18 58.0 155 559 249 | 214 349 309 551
Discont. urban fabric 58.51.39 57.3 3.44 40.2 12.61| 425 3.17 54.5 0.80
Ind. or commercial units 31.32.14 60.3 1.35 48.3 405 | 274 0.92 384 2.34

Meadow 58.3 4.14 64.8 294 63.0 3.17 | 43.3 3.80 55.0 4.19
Orchards 729 405 81.0 264 764 3.11 | 519 546 77.6 3.58
Road surfaces 731192 87.1 187 78.7 2.79 | 542 579 75.0 2.06
Vines 711 435 789 6.86 785 6.57|609 7.61 717 5.18
Water bodies 98.70.35 994 0.08 99.3 0.10 | 849 5.38 96.8 0.84
Woody moorlands 239770 566 350 56.1 385|141 552 10.6 12.00
Coniferous forest 76.6 7.24 869 276 87.0 256 | 61.2 541 824 6.61
Natural grasslands 29.8 12.88 30.7 16.90 19.4 14.68| 154 7.86 20.6 8.46
AverageF; score 705 0.75 78.2 117 752 1.11 \ 574 1.04 70.1 0.43

5.8 Appendix - Proofs

Y? = (Y(t);::1;Y(tg) where €;:::5tg) 2 T9. From (5.1), we havey = AW + m with W IGP  ,(0; K).
Let W? = (W(t1);:::;W(ty)) be the associated g random matrix. Our rst goal is to prove thaw?
MN q(0; ;1) or, equivalently, from (5.3), to prove that v&f) N 4(0; Ip). To this end, let us consider

the random variable
X X

— W2 -
S= b:le;j’
b=1 j=1

and let us prove th&i is a Gaussian random variable pour al§ 2 RP9. Clear, one also has

xp _ xa , X
S= Sp; with Sy ;= b?JWb;j = b;jWb(tJ‘);
b=1 =1 =1

Xa X
varSp) = bij bijo jijo:
j=1j%=1

As a consequencs, is a centered Gaussian random variable with variance

xP XX Xa X
varS) = var(Sp) = b b0 o (Ip)bpe:
b=1 b=1bo=1 j=1 jo=1
As a conclusion, vet{?) N p4(0; Ip) and thusW?  MN pq4(0; ;1p). Finally, Y? = AW? + M

MN 5q(M; ;AA~), see [48, Example 1].

Proof of Lemma 5.1 Combining (5.4) and (5.9) yields that the density¥df conditionally toZ; = c is given

Picy) = (2) PIZdet( “( o)) PP detAcAT) 97 |

op 2t Ay B Dy B (6522)
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The likelihood is thus de ned as

Yoy o
Pic(Y");
c=1ijzi=c
and the negative log-likelihood can be written as
x X ) 1€ log(2 ) € X
L= log pi;c(Yl'?) = 5 "ol o aAAg)+ w i
c=1ijzi=c c=1 c=1ijz=c
with, forallc=1;:::;C,
. X i X
o( ¢ aAA) = p  logdet( “'( o)+  gilogdetAcAl)
XijZi:c h ijzi=c i
AR YT B () YT B

ijZi=c

The conclusion follows.

Proof of Proposition 5.2 (i) Let us rst consider the dierential of ¢( ¢; ¢;AcAZ) W.r.t. ¢

X h o i i . .|
de( o) = tr fACAzgl d(Y'?? B (g 1(Y|;? CB|)>
liZ5¢
= tr fACAZgHd )B'f “( Jgi(Y"” B
i%:c
tr AAZG (Y B “()g*(B)(d o
lizse
= 2w fAAIgYT  B) (Jg'(B) M o ;
ijZi=c

by remarking that both terms are equal in view of the properties of the trace operator. Moreover, from Kronecker
product properties [155, Theorem 8.12], one has

X o . .
de( )= 2 vec(d ¢)” B'f “( ¢)g tf ACA:g ! VeC(YI;? B")
ijzi=c

X
= 2(dvec( c))>vecé40AZgl (Y7 BY (o) 1(Bi)>§

ijZi=c

Interpreting the above result as a scalar product and using the "broad" de nition of matrix derivative de ned
in [119], if follows:

s P > X
Ol et - ZVECE%AZgl (Y7 B i c)gl(B‘fé

@. iiz=c

Setting this partial derivative to zero yields

X o _

(Y7 B (g '(B) =0,

ijZi=c

or equivalently,
c= YI,?f C,I( C)g l(BI)> BI.I: C,I( C)g l(BI)> :
ijzi=c ijzi=c

which is the desired result. Second, let us consider therdntial of ¢( ¢; ¢;AcAZ) W.r.t. ACAZ:

d c(AAY) = Q.dlogdet@ AY) + dir N( )fAAZG? ;
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whereN( ¢) = jiz=c(Y"? B “( Jg(Y"?  B')>. From [155, Example 9.6], the associated partial
derivative vanishes for

X
Moo 2% vz gy @ g’ B

AR =5 T %

ijZi=c
and the result is proved.

(i) Introduce “( ¢; o) = (Y B)f ®( .)g!and consider thkth coordinate of the gradient of( ¢; c;AcA2)
W.rt.

@ ¢ AAI) px @

© 09 det( o1 o)+ -2tr N( fAAZG

@x ) iz=c @« O
X ci !
= f cl c !
pijZIZCtr ( )g @«
X ! |
tr (Y7 B i c)gl@ (C)f T YT BYTAAIG!
ijzi=c
X ci !
- f ci c 1 ‘o
pijZizctr ( )g @«
X ci !
tr c;i( c c)>fAcAc>:gl C;i( ¢ C)@ >
ee @«
X h ) ) i i @c;i !

= tr pf ©( C)gl (o c)>fAcA§91 “(C e o) (o

@x

The result is proved.

Proof of Proposition 5.3 LetY? = (Y(ty);:::; 1, Y(ty)) be ap grandom matrix where, conditionally = c, Y
MGP .( cb; Kc;Ac). Recall that Proposmon5 lyields v&€) N po(vec( B); °( o) AcAZ), where °( o)is
de nedforall (j; j9 2 fL;:: a0 by ©( o)j;jo = Keltjitjol ¢) andB = (b(ty);:::;b(ty)) isad qgdesign matrix. Let
tY 2 T be anunobserved timeg. ¥, ty, forallk 2 f1;:::;qg andk(tY) = (Kc(ty tij o) Ke(t;tg ¢))”. Then,
classical properties on conditional Gaussian random vectors (see for instance [17, p 63]) entail that, conditionally
to Z = cand vecy?) = vecfy?), Y (t) follows the p-variate Gaussian distributiddp( (t¥;y?); <(t¥)) with, on
the one hand
o5y = b) + [ke(P)  AAZIF °( ) AcAglvecy’  cB)
= Cb(ty)+H<c(ty)> AAZTE (o)1 (AAD) 1g|yec(y’-’ B)
= )+ The®)” (o) 'g FAAZ)(AAL) 'gvecy’  cB)
i

= b))+ fkc(ty)> C( c) lg Ip Vec@’? B)

= ob(t) +vec 1oy’ " B)fke(®) (o) 'd

= b))+ (y? ¢B) (¢ lkc(ty);

and on the other hand,
n
() = Ke(t; 1Y) o) ACAz ch(ty)> ACAE] ¢ cA>( ) [kc(ty) ACAE]
=Kt o) AAT (k™) () h) Ip [ke(®) AcAZ]
=K ) AT K () el)  (IpAAD)
|
= Ke(;t] o) Ke(t) °( o) ke(®)  AAZ:

The result is proved.
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Conclusion and perspectives

Summary

This thesis de nes two statistical models for remote sensing dataigetsnulti-spectral satellite images time-

series (SITS) from Sentinel-2 constellation, to classify irregularly sampled time-series. To this end we de ned a
Gaussian process (GP) over functions. Any irregularly sampled time-series is a marginal from the process and is
distributed according to a multi-variate Gaussian distribution.

We presented two models to overcome the classi cation problem or irregularly sampled SITS. The rst model
introduced in Chapter 4 assumes independence between spectral bands. It learns as many one-dimensional GP as
the number of spectral bands. This model shows interesting behaviour, particularly in time-series reconstructions
where the reconstructed re ectance value is as good as with non-parametric techniques, or sometimes better. The
reconstruction also provides an uncertainty measure which is not always provided by other technigues. It has
been applied to Sentinel-2 SITS and the provided information may be useful for the study of some phenomena
(agricultural mowing periodetc). The classi cation scores are small when compared to state-of-the-art methods.
The choice of various kernels and the combination of them have not shown signi cant improvements, the presented
scores are the best we could obtain. Among others, we identi ed the independence assumption as too strong for
the representation of SITS. The second model has been introduced in Chapter 5 to tackle the issue of independence
between spectral bands. The model takes into account a linear dependency between the bands. The reconstruction
quality has not been changed when compared to the previous model. However, the classi cation scores have been
signi cantly improved. This model is slightly bellow state-of-the-art performances but the land use or land cover
maps from irregularly sampled SITS is more reliable than the rst approach.

To conclude, the issue of irregularly sampled time-series has been tackled. We were able to demonstrate the
possibility to classify time-series without temporal re-sampling on large real-world remote sensing data-sets. The
second model provides sicient classi cation accuracy to rely on the produced maps. There are still some issues,
in my opinion, some of them are linked to the Gaussian assumptions. Indeed, mislabelled data combined with
variations within the same class linked to external factors (for example altitudes which modify the re ectance)
yields an increasing noise learned by GP. This has been observed on areas with mountains where altitude changes
the seasonality.

Future works

We identi ed three axes to extend the model and improve the performances of classi cation of irregularly sampled
time-series. The rst axis discusses non-Gaussian models, particularly Stuygketesses. The second one dis-
cusses the three dimensional aspect of SITS by incorporating spatial variability. Finally the last axis concludes on
more general covariance models with application to multi-sensor data fusion.

Non-Gaussian modelling

The Gaussian assumption done on the processes is, for SITS at least, limiting. The noise within SITS and the
mislabelled data induce undesired outliers and it is known that the Gaussian distribution is very sensitive to outliers.

One usual solution within the past ten years is to assume a Studistittbution. The Studentdistribution, or
t-distribution, is more robust to outliers thanks to a heavier tail (see Figure 2.1). In [156] they proposed a de nition
of the Student-process and showed interesting properties to model noisy functions. It may provide interesting
reconstruction of SITS.

Additionally, the multi-variate Studeritprocesses has also been studied in [37] and is interesting to take into
account spectral dependency of SITS.

Incorporating spatial variability

An other interesting work is to take into account the spatial information from SITS. Spatio-temporal [45] studies
of SITS are of interest in Remote Sensing and already applied to Sentinel-2 data-set [66].
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A perspective is to learn the spatial information within the mean of the Gaussian process as a function of time
and space. It can by extended to a three-dimensional space by taking into account the altitude of the pixel location.
It should scale to large data-sets as the pixels are seen independently and because the spatial information only
changes the mean.

An other perspective is to use this information within the covariance operator (following the idea of three-order
tensor distribution) but results in very complex estimation (M2GP is de ned up to a multiplicative constant, a
three-order tensor is de ned up to two multiplicative constants). The use of large spatial areas (up to a complete
Sentinel-2 tile) would result to a numerically non-invertible covariance matrix but restrictions to small areas may
increase the classi cation accuracy.

More general covariance models

As introduced in Section 2.2.4, the LMC model (2.19) has been introduced in the context of Gaussian distributions
over multi-outputs processes. LMC and its derived models issued from the geostatistics literature [75] and are
used in a regression context, for example on time-series [38] (in this work, it is interesting to highlight that authors
considered irregular time stamps but removed this speci city by considering one patient). LMC is a covariance
model which assumes independent Gaussian distributions over latent processes resulting to a Gaussian posterior
distribution [2, 172] over a linear combination over these latent processes. The number of latent processes may
be di erent from the number of outputs. However, if all the latent processes share the same covariance operator,
it yields the ICM model (2.20) which structure, based on the Kronecker product, generalizes M2GP. Inference on
LMC, or ICM, is then also done using tiMaximum Likelihood Estimatd®2, Section 6.2] and is cubic w.r.t. the
number of samples whereas M2GP scales linearly. LMC and ICM could be adapted to our context to scale to large
data-sets.

An other idea is to consider a correlation between spectral bands which evolves with time input. The dis-
tribution is known as convolutional Gaussian processes [3, 33]. It may be seen as a two-dimensional Gaussian
process with dierent applications. As an example, the M2GP model assumes that, despite an irregular sampling,
the spectral bands are observed at the same time stamps. However, within the remote sensing literature, one key
application is to use jointly multi-sensors to classify SITS, as an example one may consider the Sentinel-1 (SAR
images) and Sentinel-2 (optical images) data fusion [136]. Indeed, Sentinel-1 provides complementary informa-
tion as the information is not modi ed by the presence of clouds or shadows. The joint use implies an irregular
sampling between spectral bands at the same time stamps. In [25] they studied the Dependent GP where the idea
is to build latent features to retrieve the same assumptions as M2GP model or LMC.

In spite of that, estimation of convolutional GP is challenging. In [2, Section 3] the spectral covariance has
been simpli ed to a Dirac delta function, resulting to the LMC. In [33] the authors considered a Gaussian kernel
between spectral features and between temporal features and simpli ed the resulting kernel. In both cases, the
numerical complexity is as complex as in LMC, adaptation to our context may require additional assumptions
particularly for large data-sets.



AppendiA

About the estimation of the mean

This appendix describes the estimation of the mean. Section A.1 presents the study of the two matrix derivatives
to assess the optimum found in Chapter 5. Section A.2 highlights computational issues encountered with random
signals (irregularly and unevenly sampled).

A.1 On the broad and the narrow de nitions of matrix derivative

This section discusses the two matrix derivatives de ned in [119] for the computation of optimal mean in Chapter 5.
Letf : M ,4(R)! Rbeafunctionwhich returns a scalar frorp agmatrixX 2 M ,,4(R), then the broad de nition
is de ned as:

_ df(X).
dy f(X) = o (A1)
and the narrow de nition as:
_ dfX) |
dx f(X) = dveck) (A.2)

The rst equation de nes the derivative as a matrix of sgeq and the second de nition returnspardimensional
vector.

It has been shown in [119] that the so-calleirow de nition of the matrix derivative generalizes better the
derivative on vectors. However, what follows proves that the two de nitions give us the same result for computing
the partial derivative with respect to the mean coeent ¢ 2 M ,,3(R) in Proposition 5.2.

Proof. Firstly, recall that the dierential w.r.t. . is given by the Proposition 5.2, on one hand, as:

X
de( )= 2 tr fAcAigl(Yi;? cBi)f C;i( )9 l(Bi)>(d c)> ; (A.3)
ijZzi=c

And, on the second hand, using Kronecker product properties [155, Theorem 8.12] gives:
X o :
d'e( )= 2(dvec())” vecBAALQ ! (Y'" B (g (B (A4)
ijZi=c
Then:

1. Using thebroadde nition (A.1), and the matrix inner produch4; Bi 7! Tr(B> A)), from (A.3),d . "¢( ¢) =
0 is equivalent to:

X _ _
2 BT “(Jgl(Y” "B)fAAIgT=0
ke X |
B'f “( g (Y") = B'f “( 9)g*("cB):
ijzi=c ijizi=c
Finally,
X FtX .
o= B'f '( g 'B' B'f '( g *(Y'): (A.5)

ijzi=c ijZzi=c
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2. Using thenarrow de nition (A.2), the derivative w.r.t. vec(c) from (A.4) is:

@) _ 2X B'f '(o)gt fAAZg! (yvi vec( (B))
@ec( o o c cc i c
X . . . P>
= vecBh2fAAZgt (Y BY) '( )g'B
ijZi:c
Then we have
@c( o) -0
X @ec( o)
. 2AAAZGT (YT B) ((9g'B" =0
ijZi=c X

o . X .
, B'f '( c)g l(YI;?)> = B'f '( c)g l( BY;
ijzi=c ijizi=c

and yields to the same result as (A.5).

As a conclusion, considering one de nition or the other returns the same optima makienum likelihood
estimation

A.2 On the conditioning of the design matrix

In what follow, we discuss the problem of time-series reconstruction. Whereas the reconstruction of regularly
sampled time-series is well-known (for example using the Fourier decomposition, it is known that the frequency of
the associated basis must not be too high w.r.t. the Shannon criteria), the theoretical study of irregularly sampled
time-series involves fewer theoretical criteria to use properly the two models.

We de ned in Appendix B (Section Ia,a necessary condition based on the injectivity of the design Biatrix
to compute the optimal mean. The matrix8f g8 is invertible if B is injective. This section goes further by
de ning a su cient criteria to obtain a numerically stable inversion in Section A.2.1. This criteria involves the
matrix B> B. Indeed if matrixB is injective, numerical issues occur when a temporal window is not observed by
any sample, this is ilustrated in Section A.2.2.

A.2.1 Theoretical study

LetS. = fyig‘gl a set ofn i.i.d. irregularly sampled time-series from a Gaussian process within the same class
c 2 f1;:::;Cg For any given, following Appendix B,E(yijz = ¢) = B' . = N;jB; whereB. is the design matrix
of sizeT® J, with T€ the total number of unique time stamps witl8g, andN; of sizeT; T¢ a matrix which
selects the observed time stampg;in p

From (4.8) (or @'5))'AC is obtained by inverting the matrix jj, - B~ i 'Bi = B; M (B¢, with the previous
notations andMc = jj;=c Ny N a non-singular matrix as presented in Appendix B, equation (2) (the number
corresponds to the one of the included supplementary materials le). What follows aim to study the conditioning
of this matrix to be numerically stable.

Proposition A.1. LetB be am n injective matrix andM a m m non-singular matrix. Then

condB>MB) condM)cond@B” B):

Proof of Proposition A.1.The proof is in two steps, rstly the upper bound of the largest eigenvalue is presented,
then the lower bound for the smallest eigenvalue. Recall that the largest and the smallest eigenvalues correpond to
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the upper and lower bounds of the Rayleigh quotient, we have:

gms _ X B>MBX
max < X X
= supx> B7MBX X" B”Bx. because is injective
X X>X  x>B>Bx’
_ supx> B>MBx x” B> Bx
x X B?Bx x°x
(Bx)” MBx x”B”Bx
= sup
x (BX)>’Bx  x>x
y> My x> B Bx

su su
yp yy Xp XX
M B”B.
max max-*
Finally,
B> MB M B”B.
max max max*

With the lower bound of the Rayleigh quotient, it is straightforward that:

B>MB M B”B.
min min min *

and yields to the expected upper bound.

In (4.8), a su cient condition to compute. numerically is to consider both a kernel and the design matrix
such thaB? B, that are simple to invert.

A.2.2 lllustration on a toy data-set

This toy example aims to present the estimation of the mean for an ill-conditioned design matrix. To this end we
de ne three means, one for each clapsq 1 spectral band) for the Gaussian processes witkrént behaviors:
one constant line, one generated using Fourier functions and one generated using polynomial functions. The
three means are illustrated in Figure A.1. Besides, we de ne a RBF kernel (with a length scale of 63 days and a
multiplicative constant of 1) with an additive white noise (set to 0.5). The noise may is not representative of the
Sentinel-2 SITS, neither the range of the mean values, but our aim is to observe the estimation of the mean.
Afterwards, a total o, = 350 GP samples are generated from the distribution for each class, and are marginal-
ized such as a temporal window remains unobserved. The size of each marginal is randomly selected according to
a discrete uniform distribution and ranges between 3 and 13. The simulation is replicated 100 times by generating
new samplels
Finally, ve simulations settings are computed with an increasing size of the unobserved temporal window,
starting from day 100 and ending at 18N day with N such as:N; = 10 days,N, = 20 days,N3 = 50 days,
N4 = 100 days andNs = 170 days.

100 x x T T T T o
—c=1---¢c=2 ;

50 4

/ / \ / \ / v / \
()() \ 1 \ / .
. / N / \ Y \ \ I T \ /

me(t)

5:0 T e |

10:0 | | | | | | |
0 50 100 150 200 250 300 350

Figure A.1: Means of the 3 classes.
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Model settings and estimation

The MIMGP model is learned using a Fourier base with 19 basis functions, a Matérn kernel (smoother than
RBF [67] with parameter = 2:5) and an additive white noise. The estimated means for one run are reported in
Figures A.2, A.3 and A.4 (one gure per class).

The rst class and the second class are well estimated for a sikesaf ciently small. Indeed, these two
classes are generated according to the model. The third class is more complex, the reconstruction is poor as the
basis functions are not chosen correctly. However, the three classes present a huge mis-estimation of mean for
large unobserved windows which can sometimes shift the estimated mean where the data are observed (see class 3

on Figure A.4).
The same experience holds for a xed unobserved temporal window and an increasing number of basis func-

tions.

Condition number within class 1

The condition numbers for the quantities in Proposition A.1 are computed within the rst dasslj on 100
replications. The mean condition number values are reported in Table A.1.

Table A.1: Averaged log-condition numbers for the computation of the mean within class 1.
N condB;M:B.) condB;B;) condMc)

10 4.20 1.32 5.96
20 4.14 2.25 5.93
50 5.96 6.27 5.78
100 14.18 14.33 5.81
170 27.71 27.55 6.10

The inequality in Proposition A.1 is veri ed. No lower bound has been found but the upper bound becomes
broad with the condition number of mat¢ B., whereB. is the design matrix within class

Despite no improvements on the classi cation accuracy, a regularized approach can improve the conditioning
of the matrix to be inverted (see [169, Section 3.1]). Nevertheless, a regularization on the mean has to take into
account the complete temporal window of inter&s) (vith an increasing number of unobserved time-stamps as
the number of basis functions increases to avoid mis-estimation.
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Figure A.2: Estimated mean function for the 1st class when the average number of time stamps and the number of
basis functiong are identical but the size of the unobserved window is increading (N3 > N, > N;), delimited
by the dotted vertical lines.
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