
HAL Id: tel-03682675
https://theses.hal.science/tel-03682675v1

Submitted on 31 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Liveness analysis techniques and run-time environment
for memory management of dataflow applications

Benjamin Dauphin

To cite this version:
Benjamin Dauphin. Liveness analysis techniques and run-time environment for memory management
of dataflow applications. Embedded Systems. Institut Polytechnique de Paris, 2021. English. �NNT :
2021IPPAT004�. �tel-03682675�

https://theses.hal.science/tel-03682675v1
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
1I

P
PA

T
00

4

Liveness Analysis Techniques and
Run-Time Environment for Memory

Management of Dataflow Applications

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Télécom Paris

École doctorale n◦626 Institut Polytechnique de Paris (ED IP Paris)
Spécialité de doctorat : Réseaux, Informations et Communications

Thèse présentée et soutenue à Sophia Antipolis, le 16 mars 2021, par

Benjamin Dauphin
Composition du Jury :

Laure Petrucci
Professeur des Universités, Université Paris 13 Présidente

Robert De Simone
Directeur de recherche, INRIA Sophia Antipolis Rapporteur

Jean-François Nezan
Professeur des Universités, INSA Rennes Rapporteur

Samuel Thibault
Maître de conférences, INRIA Bordeaux – Sud-Ouest Examinateur

Stéphane Mancini
Maître de conférences, Université Grenoble Alpes Examinateur

Andrea Enrici
Ingénieur de recherche, Nokia Bell Labs France Examinateur

Renaud Pacalet
Directeur d’étude, Télécom Paris Directeur de thèse

Ludovic Apvrille
Professeur, Télécom Paris Co-directeur de thèse

Remerciments
Je tiens à remercier toutes les personnes qui ont rendu ce travail possible.

En premier lieu mon directeur de thèse Renaud Pacalet, mon co-directeur Lu-
dovic Apvrille, ainsi qu’Andrea Enrici et Rabéa Ameur-Boulifa. Vos conseils, nos
échanges, votre intérêt et votre suivi de ce travail ont façonné ce qu’il est devenu
aujourd’hui. Merci pour votre accompagnement.

Je souhaite également remercier les membres du jury. Les relecteurs, Robert de
Simone et Jean-François Nezan pour le temps passé à la relecture de ce manuscrit
et nos échanges ayant permis son amélioration. De même, je remercie Laure
Petrucci, Samuel Thibault et Stéphane Mancini pour l’intérêt porté à mon travail et
pour son évaluation.

J’adresse également un remerciement à toute l’équipe du LabSoC, notamment à
Minh, Matteo, Emna, Maysam, Letitia, Le Van, Tullio. J’ai vraiment apprécié le temps
passé ensemble, nos conversations à la pause déjeuner, et tout ce qui fait la vie de
ce laboratoire de recherche.

Enfin, je remercie ma famille pour leur soutien et leurs encouragements toutes
ces années, et sans qui je n’aurais jamais pu aller aussi loin.

2

Résumé substantiel

Cette thèse a été effectuée à Télécom Paris et a été financé par Nokia Bell Labs
France. Les Bell Labs sont connus pour leurs recherches dans les domaines de
l’informatique et de la télécommunication.

Dans cette thèse sont étudiées différentes techniques visant à la gestion des
interblocages et de la saturation des capacités mémoires dans les systèmes embar-
qués.

Ce travail trouve sa motivation dans la complexification de l’architecture des sys-
tèmes informatiques au cours des dernières décennies, notamment avec la générali-
sation des architectures hétérogènes et Non-Uniform Memory Access (NUMA). Cette
évolution se constate dans tous types de systèmes informatiques, de l’embarqué sur
Multi-Processor System on a Chip (MPSoC) aux systèmes distribués pour le calcul
haute performance (High-Performance Computing). Nous nous intéressons en par-
ticulier au problème de la saturation des capacités mémoires dans les systèmes em-
barqués utilisés pour le traitement numérique du signal (Digital Signal Processing).
Nos contributions peuvent toutefois être utilisées pour d’autres types d’applications
et de plateformes. Cette thèse apporte trois contributions.

La première contribution de la thèse, présentée dans le chapitre 3, consiste en
une technique de prévention des interblocages se basant sur l’étude des cliques
dans un type de graphes, les Memory Exclusion Graphs (MEG). Ces graphes représen-
tent les buffers alloués en mémoire et leur possibilité d’allocation simultanée. La
recherche de cliques comportant un ensemble de buffer dont l’allocation entrainerait
une saturation de ressources mémoires permet de détecter des situations d’interblo-
cages et de les prévenir en ajoutant des contraintes de précédence entre différentes
tâches de la charge de travail. Ces contraintes de précédences sont ajoutées en-
tre le consommateur d’un buffer de la clique et le producteur d’un autre buffer de
cette même clique. L’ajout de la contrainte de précédence entraine une mise à jour
du MEG et la recherche d’une nouvelle clique amenant à la saturation mémoire.
Ce processus est répété jusqu’à qu’aucune clique correspondant à une saturation
mémoire soit présent dans le MEG, garantissant l’impossibilité de saturation. Dans
un objectif de minimisation de l’impact qu’entraine l’ajout d’une contrainte de précé-
dence sur la durée d’exécution de la charge de travail, les tâches visées par cette

3

contrainte sont sélectionnées en fonction de leur date d’exécution limite.
Dans le chapitre 4 nous présentons la deuxième contribution, qui est une autre

approche visant à résoudre les interblocages causés par la mauvaise gestion des
ressources mémoires. Il s’agit d’une optimisation de l’analyse de vivacité convention-
nellement utilisée pour l’étude de la saturation mémoire, permettant d’analyser des
systèmes plus complexes en un temps réduit. Nous définissons un type d’automate
appelé automate de contrôle, dont l’ensemble des états est un sous-ensemble de
celui de l’automate conventionnel qui représente toutes les possibilités d’ordonnance-
ment. Nous démontrons que l’analyse de ce sous-ensemble d’états est suffisante
pour garantir l’absence d’interblocages, sans perte de précision par rapport à l’analyse
conventionnelle. Cette réduction dans le nombre d’états à analyser permet de dé-
ployer l’analyse sur des systèmes plus complexes que ceux pour lesquelles l’approche
conventionnelle est réalisable en un temps donné.

Ces deux contributions sont évaluées en les comparant à un outil issu de l’état
de l’art dans le chapitre 5.

Le chapitre 6 détaille notre troisième contribution, correspondant à une mise en
œuvre pratique de la deuxième contribution par le développement d’une technique
d’évitement des interblocages utilisant les résultats de l’analyse de vivacité opti-
misée. Cette technique d’évitement a été intégrée à un environnement d’exécution
expérimental, et peut également être intégrée à d’autres environnements d’exécutions
issus de l’état de l’art. Nous présentons en détail l’architecture de notre environ-
nement d’exécution, conçu pour fortement paralléliser l’exécution des fonctions de
contrôle.

Pour conclure le chapitre 7 récapitule les différentes contributions, leurs limites
et leurs possibilités d’améliorations. Nous proposons également plusieurs pistes de
travaux futurs sur la base des contributions de la thèse.

4

Contents

Contents 5

List of Figures 8

List of Tables 10

I Background 11

1 Introduction 13

1.1 Modern Computing Platforms . 13

1.2 Deadlocks . 17

1.3 Problem Statement . 18

1.4 Thesis Contribution . 20

1.5 Synopsis and Outline . 21

2 Related Work 23

2.1 Introduction . 23

2.2 Models of Computation . 24

2.3 Formalization of Scheduling Problems 34

2.4 Liveness and Deadlocks . 38

2.5 Run-Time Environments for Dataflow Applications 45

2.6 Conclusion . 48

5

II Contributions 51

3 Approximate Deadlock Prevention using Memory Exclusion Graphs 53
3.1 Introduction . 53
3.2 Target Platform . 54
3.3 Applications and Workload . 55
3.4 Memory Shortage . 59
3.5 Conclusions and Limits . 68

4 Efficient Liveness Analysis 71
4.1 Introduction . 71
4.2 System models and design assumptions 72
4.3 Schedule Automaton . 75
4.4 Control Automaton . 81
4.5 Liveness Analysis of Automaton . 82
4.6 Evaluation of Schedule and Control Automaton Analysis 85
4.7 Mathematical Formalization . 87
4.8 Conclusion . 96

5 Experimental Evaluation 97
5.1 Introduction . 97
5.2 Implementation Details . 98
5.3 Experimental Setup . 99
5.4 Minimal Supported Memory . 100
5.5 Permissiveness . 101
5.6 Computational Time . 102
5.7 Discussion . 104

6 Run-Time Environment 107
6.1 Introduction . 107
6.2 Functionalities of a Run-Time Environment 108
6.3 Design Choices to Integrate the Deadlock Handling Policy 110
6.4 Architecture of our Run-Time Environment 112
6.5 Conclusion . 129

6

7 Conclusion 131
7.1 Contributions of the Thesis . 131
7.2 Limitations and Improvements . 132
7.3 Future Work and Perspective . 133

III Back matter 137

Acronyms 139

Bibliography 143

7

List of Figures

1.1 5G decoding chain (receiver side) . 14
1.2 Example memory architectures . 16

2.1 Example of an application Synchronous Data Flow (SDF) graph and its
corresponding Acyclic Homogeneous Synchronous Data Flow (AHSDF)
graph. 25

2.2 Example of an application Parametrized & Interfaced Synchronous Data
Flow (πSDF) graph. S is a configuration actor, B a hierarchical actor . . . 28

2.3 An example Petri net, before and after the firing of a transition. 29
2.4 Reachability graph of example Petri net from Figure 2.3. 30
2.5 Example Petri nets from different classes used to study sequential Re-

source Allocation System (RAS). 31

3.1 Example logical architecture of a target platform. 54
3.2 Example applications’ dependency graphs. 56
3.3 Example workload composed of one iteration of the 4G application and

two concurrent iterations of the 5G application 56
3.4 Two example application extensions to a common period. 57
3.5 Example AHSDF and its corresponding Memory Exclusion Graph (MEG). 61
3.6 Example applications, whose concurrent execution may cause a memory

shortage . 64
3.7 Updated applications, free of memory shortages 65

4.1 The steps of liveness analysis . 73
4.2 Target architecture . 74
4.3 Example AHSDF for a single-application, with mapping 75

8

4.4 Schedule automaton for example in Figure 4.3 76
4.5 Control automaton for Figure 4.3 . 81

5.1 Two example applications used in our experiments. Numbers on edges
represent buffer size . 99

6.1 Example application and mapping . 112
6.2 Software architecture . 113
6.3 Finite State Machine of job status. 118
6.4 Finite State Machine of buffer status. 120
6.5 Architecture of the server. Circled numbers correspond to the step in

which the event is sent in the example run. 121

9

List of Tables

1.1 Occurrence of deadlocks in our RAS . 19

2.1 Comparison of a selection of deadlock handling tools and methodologies 45
2.2 Run-time environments for task-based and dataflow-based applications . 48

4.1 Evaluation results for a test-bench of 3 workload types 87

5.1 Minimal supported memory size of the approximate approaches, in com-
parison to theoretical minimum of Contribution 2 101

5.2 Number of allowed schedules by approximate approaches, in comparison
to the theoretical maximum of Contribution 2 102

5.3 Computational time of the five approaches: three heuristics from memDAG,
and our implementation of the first and second contributions 103

10

Part I

Background

11

Chapter 1

Introduction

1.1 Modern Computing Platforms

Today’s heterogeneous multi-processor platforms embed tens of processing units
such as general purpose Central Processing Units (CPUs), Digital Signal Proces-
sors (DSPs), Graphics Processing Units (GPUs) and dedicated hardware acceler-
ators (e.g., Field Programmable Gate Arrays (FPGAs)). These platforms are used
for real-time dataflow applications with high processing-power requirements in mul-
tiple domains: from the Digital Signal Processing (DSP) in wireless communication
to image or video analysis in autonomous driving. These applications are subject to
very large memory bandwidth and short memory latency constraints that often guide
designers to adopt platforms with a Non-Uniform Memory Access (NUMA) architec-
ture in which the memory resource is distributed over multiple, size-limited, physical
memories. On one hand, these NUMA architectures offer designers the capability to
meet memory bandwidth and latency constraints. On the other hand, memories are
limited in size and computing nodes can usually access limited subsets of physical
memories. This complicates the search for valid execution orders (schedules) for
real-time dataflow applications as it introduces new sources for deadlocks.

This thesis is part of a collaboration between Télécom Paris and Nokia Bell Labs
France. As such, the work of this thesis is focused on embedded systems for Digital
Signal Processing. This thesis contributions could ideally be placed in the context of
O-RAN software [3].

13

1.1.1 Applications

 Descrambling

64QAM
Demodulation

Sub-carrier
demapping

N-point
DFT

LDPC
decoder

M-point
IDFT

Remove
Cyclic

Prefix (CP)

Code
Block

Concatenation

Check and
remove

CRC

RX transport

block
 41 code blocks

14 OFDM symbols

from
RF/ADC

Figure 1.1: 5G decoding chain (receiver side)

Dataflow applications are composed of a set of tasks representing different com-
putations. The tasks are represented as the vertexes of a dependency graphs, in
which edges represent precedence constraints and communication between tasks.
For example, Figure 1.1 displays a 5G decoding chain in which the De-scrambling
task will be executed after the 64 QAM Demodulation task, as the latter produces the
input data used by the former.

Applications with multiple iterations can be analyzed as independent applications.
It is also possible to analyze multiple iterations at the same time, which is interesting
when some dependency constraints exist in (or can be added to) an application
graph. For example if a task t in iteration n + 1 should not be finished before t in
iteration n, analyzing multiple iterations simultaneously reduces the complexity in
comparison to treating the two iterations as independent.

1.1.2 Evolution of the Architecture of Computing Systems

The steady increase in the complexity of applications and their performance require-
ment has led to significant evolution of the architecture of computing systems in the
past decades. As they became more complex, modern computing systems also
became harder to program.

From Homogeneity to Heterogeneity

The architecture of the first computing platforms, such as the ENIAC and the EDVAC
had a single computational unit, allowing exclusively the execution of programs in a

14

fully sequential manner. The use of multiple computing units on a single platform
quickly became an obvious way to increase computing performance, by allowing
multiple computations to occur in parallel. This led to the rise of homogeneous ar-
chitectures, architecture in which all computing units (or Processing Elements (PEs))
have the same capabilities, i.e., any task can run on any PE. Homogeneous archi-
tecture can potentially have PEs with different computing speed, such as having one
PE being twice as fast as another. But homogeneous architecture have their limits,
which have been challenged with the ever increasing demand for computing power.
For example, it is not possible to increase the speed of general purpose CPUs indefi-
nitely, physical constraints such as energy consumption and heat dissipation prevent
to increase the frequency beyond a threshold. As such, the designers of comput-
ing systems have resorted to use more and more heterogeneous architectures over
the years. For example heterogeneous embedded systems, called Multi-Processor
Systems on a Chip (MPSoCs), feature processors of various types on a same chip.
PEs of an MPSoC offer different capabilities, usually featuring some general pur-
pose CPUs, as well as specialized PE (GPUs, hardware accelerators, etc.). This
means that not all tasks can run on all PEs, but also that when a task is able to
run on different types of PEs, their performance can vary drastically and in a non-
linear fashion. The Marvell OCTEON Fusion CNF95xx Family [2] is an example of
heterogeneous platform designed for 4G and 5G base stations. For smartphones
and tablets platform, we can cite the Samsung Exynos and Qualcomm Snapdragon
ranges. The Xilinx Zynq UltraScale+ [72] family of System on a Chip (SoC) is an
example heterogeneous platform designed for the domain of FPGA-based Digital
Signal Processing.

Memory Architecture

The memory architecture of computing systems depends of the target platform, and
can fall into different categories.

In a platform with Uniform Memory Access (UMA) each memory unit can be ac-
cessed by all PEs, and the access speed to units are identical for each PE. Fig-
ure 1.2a shows the memory system of a UMA platform with multiple memory units.

Figure 1.2b displays an example NUMA platform with multiple memory units. In
NUMA architectures the access time between a PE and a memory unit depends

15

(a) Example Uniform Memory Ac-
cess platform (b) Example Non-Uniform Memory Access

platform

Figure 1.2: Example memory architectures

on the considered PE/unit pair. Some PEs can even have their memory accesses
restricted to only one or a subset of the memory units. A typical example of this is
a hardware accelerator PE tightly coupled with its working memory and that cannot
access any other memory in the system. Another actor, for instance a Direct Memory
Access (DMA) engine, is then used to move data in and out of the PE’s working
memory.

1.1.3 Software Development for Modern MPSoCs

With the increasing complexity of the architecture of modern MPSoCs, their manu-
facturers started to provide development tools called Software Design Kits (SDKs).
An SDK is a set of tools such as libraries, compilers, run-time environments, etc.
aimed at easing the development for the platform. Example commercial SDKs in-
cludes those provided by Xilinx [71], Intel [5], or the Data Plane Development Kit
(DPDK) [1] among many other. The quality of a platform’s SDK is a crucial part of
what will make the commercial success or failure of the platform, as it determines the
ease of development onto the platform and therefore its adoption. Still, most SDKs
for modern MPSoCs do not provide functionalities towards deadlock handling. As
such, it is left to the software developers to ensure that the system stays in a safe
state or can be recovered from an unsafe state. This lack of deadlock-handling tools
in the official SDKs makes harder the task of developing for those platforms. One

16

of the aims of this thesis is to address this lack of deadlock handling strategy built
into the SDKs, by providing design time and/or run-time tools providing deadlock
handling to MPSoCs.

1.2 Deadlocks

A deadlock is a situation in which a set of processes are each waiting from another
process of the set to take an action in order to be able to continue their execution,
such that no process is able to continue. These processes can represent algorith-
mic computations, but also the communication of data inside a platform for exam-
ple. Deadlocks occur when the different processes occupy resources (be it memory
buffers, communication nodes, etc.) in such a way that no process can get access
to all the resources it needs to complete its tasks.

Many techniques have been developed over the years to address the issue of
deadlocks. These techniques are usually categorized in three main types.

First, deadlock prevention techniques, which aim at ensuring at design-time that
deadlock will not occur once the system is running. These techniques are focused
on the respect of fixed constraints which can be analyzed statically. There advantage
lies in the absence of run-time mechanism. Their main drawback is their high static
cost to perform the analysis, or the over-conservativeness leading to reduced run-
time flexibility. Deadlock prevention is used in systems which have limited resources
such as embedded systems, due to their low run-time overhead, and in safety-critical
domains such as avionics, medical devices, etc. where the occurrence of deadlock
should be avoided at any cost.

Second, deadlock detection and recovery techniques are focused on letting the
system run freely, with some sort of monitoring to check periodically if a deadlock
occurred. When the monitor detects a deadlock, the system is rolled back to a safe
state, by restoring the system to a previous state, or by dropping some computation
results (which will have to be re-executed) for example. An important advantage of
deadlock detection and recovery is the flexibility given at run-time to perform oper-
ations. The recovery mechanism is only used once needed, thus not constraining
the execution. Deadlock detection and recovery has some run-time overhead due to
the monitoring it requires. Furthermore, the recovery mechanism can be expensive

17

in itself, or require to execute again some expensive computations whose results
have been lost in the process. As such, deadlock detection and recovery is used
in systems with sufficient resource to handle the run-time overhead, and for which
the occurrence of deadlock is rare enough for the cost of recovery to be acceptable.
This is the case for example in some High-Performance Computing (HPC) systems
for big data.

Third, deadlock avoidance techniques, which guide the execution of the system
to ensure at run-time that no decision leading to a deadlock is taken. As for deadlock
prevention, and contrary to deadlock detection and recovery, their goal is make sure
no deadlocks occur. The difference lies in the fact that deadlock avoidance uses run-
time control of the system execution. These techniques are commonly more flexible
than deadlock prevention, but do incur some run-time overhead. There are suitable
in situations where deadlock detection and recovery is too expensive, by the relative
frequency of deadlocks if the system is given full run-time flexibility, or downright
impossible by a lack of resources available to perform the recovery.

These three main categories of strategies to address the issue of deadlocks, as
well as a selection of existing methods for each category, will be presented in details
in next chapter.

1.3 Problem Statement

The work of this thesis is focused on solving the issue of deadlock arising in com-
puting systems and caused by memory shortages, by designing and implement-
ing methods to tackle such deadlocks. This thesis does not address the issue of
communication-induced deadlocks, nor aims at addressing deadlocks occurring in
different kinds of systems such as distributed systems, High-Performance Comput-
ing (HPC), etc.

We target embedded systems such as MPSoCs, that we represent as a Resource
Allocation System (RAS). In simple terms, a RAS aims at representing the use of a
set of resources by processes, with each resource having a fixed capacity and each
process requiring to be allocated a given amount of resources to be executed. RASs
are presented in more details in next chapter. In the work of this thesis, we consider
three kinds of resources: PEs, communication units, and memory units. Each mem-

18

ory port is considered as a separate communication resource, and memories are
referred only in terms of their capacity (memory space). The capacity of PEs and
communication units is 1, the capacity of memory units is their size.

Coffman et al. [19] determined four necessary and sufficient conditions for dead-
locks to occur.

• Mutual exclusion: tasks require the exclusive use of a resource, every resource
is either assigned to a single task or available.

• Hold-and-wait: a task is holding at least one resource while requesting addi-
tional resources.

• No preemption: a resource ownership cannot be suspended or canceled until
the end of the task holding the resource.

• Circular wait: there is a set of tasks {t1, t2, . . . , tn} such that t1 is waiting for a
resource held by t2, t2 is waiting a resource held by t3, and so on until tn waiting
for a resource held by t1.

A summary of the occurrence of these conditions, in our RAS, is presented in
Table 1.1.

Condition Processing
Commu-
nication

Memory
(infinite)

Memory
(limited)

Mutual exclusion true true false true
Hold-and-wait false false true true

No preemption true true true true
Circular wait false true false true

Deadlock risk no no no yes

Table 1.1: Occurrence of deadlocks in our RAS

In our RAS, mutual exclusion does not occur in the case of (purely theoretical) in-
finite memory because new buffers can always be allocated in new memory space.
The hold-and-wait situation can arise in memory units as some input buffers can
be already allocated while others are yet to be. We supposed the absence of pre-
emption for tasks on processing nodes, a very frequent situation in high-end data

19

processing systems with stringent time constraints (deadlines). There is also no pre-
emption on memory as we decided that allocated buffers can only be freed once their
consuming tasks have been executed (there is no mass storage in which to unload
excess buffers). There cannot be circular waits for processing nodes as each task is
executed on a single PE, and a task requests its processing node only once all the
other resources it needs (e.g., in/out buffers) have already been allocated.

Based on the characteristics of our resource allocation problem and the hypothe-
sis above, Table 1.1 allows us to conclude that deadlocks can only arise because of
the shared use of memory units of limited capacity. In other words, memory short-
ages are the source of deadlocks in our target systems.

1.4 Thesis Contribution

The objective of this thesis is to study memory induced deadlocks for dataflow appli-
cations running on embedded systems, and to develop and implement methods to
avoid running into deadlocks at run-time. The contribution of this thesis is threefold:

1. An approximate deadlock prevention method for systems running applications
with a common period (or which can easily be adapted to a common period).
This method is based on the analysis of a graph called the Memory Exclusion
Graph (MEG) representing the buffers allocated into a memory for the exe-
cution of tasks and the exchange of data from producing tasks to consuming
tasks. This graph also tells us which buffers could possibly be allocated simul-
taneously, giving valuable information about the potential of memory shortages.
Albeit of limited practical use, this method gave valuable insight to better un-
derstand the applications, platforms, and conditions leading to deadlocks.

2. A liveness analysis suitable for systems regardless of the timing constraints of
applications, and its derived exact deadlock avoidance mechanism. This anal-
ysis and subsequent deadlock avoidance mechanism have been developed
thanks to the insight given by the first contribution. They are also not held by
the main drawbacks that limited the practical usability of the first approach.

3. The development of a control mechanism to prevent deadlock at run-time using
the aforementioned exact deadlock avoidance mechanism. This control mech-

20

anism has been deployed in a prototype run-time environment which manages
the execution of dataflow applications.

It should be noted that although developed in the context of embedded systems
for Digital Signal Processing, the contributions could be applied for other types of
applications (such as video processing or machine learning) and of target platforms
having issues of memory (or other similar resource) shortage.

1.5 Synopsis and Outline

Next chapter (Chapter 2) presents the state of the art in scheduling and deadlock
prevention techniques. The following chapters present the contribution. In Chapter 3
the approximate deadlock prevention method is described. Chapter 4 presents the
precise liveness analysis. Then Chapter 6 presents how the results from the precise
liveness analysis can be used to prevent deadlock at run-time. In Chapter 5 experi-
mental evaluations are conducted to compare the performance of the two deadlock
handling mechanisms developed in this thesis with a state-of-the-art deadlock pre-
vention tool. Finally Chapter 7 discusses the contributions and the future work.

21

Chapter 2

Related Work

2.1 Introduction

In this thesis we look at the deployment of dataflow applications in embedded sys-
tems. This ranges from the modeling of the applications when designing the system,
to their scheduling and execution onto the target platform, done by a run-time envi-
ronment. When running such applications it is important to make sure the schedul-
ing is safe, i.e., no memory overflows or shortages, deadlocks, etc. can occur. This
raises the need to use liveness analysis and/or deadlock handling mechanism to
ensure the safety, which can be critical for embedded systems used for avionics or
medical applications, for example.

The goal of this thesis is to develop tools and algorithms that enable the safe
deployment of dataflow applications onto heterogeneous and/or NUMA platforms.
The remainder of this chapter is structured as follows. Section 2.2 presents different
Models of Computation used to represent dataflow applications. Then Section 2.3
presents different ways to model scheduling problems and compute their schedules.
Section 2.4 presents multiple strategies that have been developed to analyze the
liveness of a system, and addresses the issue of deadlocks that arise when running
concurrent computations. Section 2.5 presents various existing run-time environ-
ment managing the execution of dataflow applications. Finally, Section 2.6 concludes
this chapter.

23

2.2 Models of Computation

Over the years the complexity of dataflow applications has risen dramatically. To
compensate for the continuous increase in the required computing power, platforms
have become more parallel. This is shown by the advent of large-scale distributed
systems, or of modern Multi-Processor Systems on a Chip (MPSoCs) having an in-
creasing number of cores and hardware accelerators. This increase in the potential
for parallelism and the complexity of platforms led to the development of higher level
—more abstract—languages and Models of Computation (MoCs) for concurrent pro-
gramming, to ease the otherwise complex programming. A Model of Computation
(MoC) describes the set of rules that governs the execution of programs, by speci-
fying the semantics of its component and how they may interact. The first dataflow
MoC was presented by Dennis in 1974 [20]. More modern examples of such high-
level MoCs include Petri nets, and dataflow oriented MoCs such as the PRUNE MoC
or the widely used SDF and its derivatives. Programming languages (such as C++,
Java, etc.) differ from MoCs and are used to implement MoCs. A single program-
ming language can be used to implement different MoCs, for example one could use
Java to describe a Turing machine or an execution environment for Petri nets.

2.2.1 Synchronous Data Flow

The Synchronous Data Flow (SDF) [48] is a MoC developed to describe signal pro-
cessing applications, in order to expose their potential for concurrency, thus enabling
an efficient use of parallel computing capabilities. SDF has fixed production and
consumption rates when firing actors, and is highly analyzable statically. Formally,
in an SDF graph G = (A, E), the set of nodes A (called actors) represents tasks
interconnected by a set of edges E that are First In, First Out (FIFO) buffers. In the
SDF MoC, an actor starts execution (firing) when its incoming FIFOs contain enough
tokens, it cannot be preempted and produces tokens onto its outgoing FIFOs. The
number of tokens consumed/produced by each firing is a fixed scalar that is anno-
tated to the graph’s edges. As actors have no state in SDF graphs, if enough tokens
are available, an actor can start several executions in parallel. For this reason, SDF
graphs naturally express the parallelism of signal-processing applications and can
be statically analyzed for several types of optimizations (e.g., memory allocation,

24

Figure 2.1: Example of an application SDF graph and its corresponding AHSDF
graph.

scheduling). An example SDF graph can be seen at the top of Figure 2.1. In this
graph, task Src reads and writes to a first FIFO, the self-loop, and writes to a second
FIFO. The self-loop allows for at most one concurrent execution of the Src task,
since it contains initially one token. Tokens that are present in the initial state of an
SDF graph are called delay tokens. The second FIFO is the input of task A. After
one execution of Src, the self-loop has again one token, and the FIFO between Src
and A also has one token. An execution of task A will consume one token from the
Src to A FIFO, and output three tokens to the A to B FIFO (i.e., the edge from A to
B).

A subclass of SDF: Acyclic Homogeneous SDF

SDF graphs can have two properties that are useful for their analysis, namely acyclic-
ity and homogeneity. An SDF graph is called acyclic if it contains no cycle, i.e. there
are no paths in the graph with the same starting and ending nodes. Acyclic graphs
are commonly used to isolate a single iteration of the represented application. Ho-
mogeneity refers to SDF graphs in which the production and consumption rates are
equal for each FIFO. Homogeneous SDF graphs fully expose the data parallelism
and memory allocation options.

25

Any SDF graph can be transformed into an Acyclic Homogeneous Synchronous
Data Flow (AHSDF), as described in [64]. In a AHSDF graph H = (T ,B), tasks
in T are associated to identical production and consumption rates on FIFO buffers
in B. To do so, multiple instances of a same task are created when the production
and consumption rates do not match in the original graph. Considering the original
SDF graph G = (A, E). For any FIFO f ∈ E , with pf the production rate on f , cf
the consumption rate on f , and lcm(a, b) being the Least Common Multiple (LCM)
of a and b. If pf and cf are not equal, lcm(pf , cf)/pf instances of the producer are
created and, conversely, lcm(pf , cf)/cf instances of the consumer. For example,
with a FIFO annotated with pf = 200, cf = 300 in the original SDF graph, there will
be lcm(200, 300)/200 = 3 instances of the producer and lcm(200, 300)/300 = 2 of
the consumer in the AHSDF graph. The graph can be made acyclic by removing
all FIFOs with delay tokens. The result of this transformation on the example SDF
graph can be seen at bottom of Figure 2.1. This transformation is used to expose
data parallelism and memory allocation options (Homogeneous SDF), as well as to
isolate a single iteration of the algorithm captured by the original SDF graph (Acyclic
Homogeneous Synchronous Data Flow).

2.2.2 Cycle-Static Data Flow

The Cycle-Static Data Flow (CSDF) MoC is an extension of SDF first introduced
by Bilsen et al. [12]. CSDF graphs are identical to SDF graphs in all aspects but
the production/consumption rates on FIFOs. Indeed, in a CSDF graph the constant
rate can be replaced by a finite sequence of values. For example, if a FIFO has a
production sequence of (2, 1), it means that the producing actor will add 2 tokens on
its first firing, and 1 token on its second firing. Once the sequence end has been
reached the sequence is repeated, so the third (and every odd-numbered) firing will
again produce 2 tokens.

It has been demonstrated that CSDF is not more expressive than SDF, since
any CSDF graph can be transformed into an equivalent SDF graph [60]. The main
advantage of CSDF over SDF is that it allows to express complex applications with
a smaller graph, and to statically analyze them as is the case with SDF. The coun-
terpart is the higher computational cost of those analyzes.

26

2.2.3 PRUNE MoC

The PRUNE MoC has been designed to describe the behavior of high-performance
signal processing applications. In PRUNE applications are represented by a graph
with nodes representing actors (computations), and edges FIFOs allowing the com-
munication of input/output and control data. There exists three types of actors,
namely static, dynamic, and configuration actors. There also exists three types of
FIFOs, static FIFOs for which the production/consumption rate is constant, dynamic
FIFOs that allow this rate to change, and control FIFOs, that manage the rate change
of dynamic FIFOs Static actors are similar to SDF actors and always produce and
consume the same amount of tokens on their input/output static FIFOs. Configura-
tion actors have one or multiple output control ports connected to the input control
port of dynamic actors. Dynamic actors have exactly one control port (linked to a
control FIFO in input), are connected to at least one dynamic FIFO, and can be
connected to static FIFOs as well. At each firing, they dynamically adjust the con-
sumption or production rate of all their dynamic FIFOs, based on the value of the
token in their input control FIFO. Similarly to homogeneous SDF graph, FIFOs have
a symmetric rate, i.e., the production and consumption rates are equal. But the
PRUNE MoC is more expressive than homogeneous SDF graphs, since it allows the
dynamic reconfiguration of the FIFO rates. Both ends of a dynamic FIFO should be
controlled by the same configuration actor, to ensure this symmetric rate. Since the
stated goal of the PRUNE MoC is to allow the static decision on the liveness and
memory-boundedness of the modeled applications, a set of design rules must be re-
spected to ensure that these properties are decidable in a finite time, by constraining
the control of dynamic actors.

Albeit more expressive than SDF, the contributions of this thesis are not using the
PRUNE MoC, as the added expressiveness entails an higher complexity to design
applications and analyze them.

2.2.4 πSDF

πSDF is an extension of SDF that allows hierarchical actors and dynamic reconfigu-
ration [23]. A hierarchical actor is an actor whose behavior is itself expressed using
a MoC, here via a πSDF graph. πSDF hierarchical actors have been designed to

27

Figure 2.2: Example of an application πSDF graph. S is a configuration actor, B a
hierarchical actor

ensure that their internal behavior does not influence the analyzability at the higher
level. This is done using interfaces, which behave as circular buffers when more
tokens are consumed than produced, and discard excessive tokens have been pro-
duced than are consumed. This interfaces behavior has been first defined in the
Interface Based-Synchronous Data Flow MoC [62]. This behavior means that in Fig-
ure 2.2, the external behavior of actor B is not dependent of the internal behavior
of actors X and Y , since they are interfaced (interfaces are represented as paral-
lelograms in Figure 2.2). Here the interface connecting the lower level actor Y to
the higher level B will act a circular buffer, since 1 token is produced when 3 are
consumed. Hierarchical actors are convenient when designing applications, as they
allow to compose and reuse application graphs. Similarly to PRUNE, πSDF has
configuration actors that manage the dynamic reconfiguration. The configuration ac-
tors are fired once before every iteration of the full πSDF graph, and set parameters
which will affect the production/consumption rates of some actors. For example in
Figure 2.2, S is a configuration actor that set parameter N , which in turn determines
the production rate of actor A.

Similarly to the PRUNE MoC, πSDF extends on SDF to allow dynamic reconfig-
urations. Again, the added expressiveness is not useful to express the behavior of
our target applications.

28

(a) Example Petri net, with initial marking
M0 = {1, 0, 1, 1, 0}.

(b) Example Petri net from Figure 2.3a
after the firing of T1.

Figure 2.3: An example Petri net, before and after the firing of a transition.

2.2.5 Petri Net

A Petri net is graph composed of two types of vertexes, called places and transitions,
and directed arcs. A directed arc must connect a place to a transition or a transition
to a place, but cannot connect two nodes of the same type. Figure 2.3a shows
an example Petri net, in which circles P1 to P5 are the places, bars T1 to T4 the
transitions, and arrows are the directed arcs. More formally, a Petri net is a directed
bipartite graph N = (P, T, F,M0), in which the set of nodes P ∪ T represents places
and transitions, with P ∩ T = ∅. Transitions T represent events that can occur, and
places P represent conditions such as resource usage. The directed arcs F describe
the preconditions and postconditions for each transition, i.e., which conditions must
be satisfied before and after the transition for it to be enabled. Places are annotated
with a positive integer representing the number of tokens present, which is called
the marking of the Petri net. M0 corresponds to the initial marking of the Petri net’s
places, i.e. the initial state of the Petri net. In Figure 2.3a places P1, P3, and P4
have initially 1 token each. With this initial marking, transition T1 is the only enabled.
After firing T1 we get the marking in Figure 2.3b.

The reachability graph of the example given in Figure 2.3 can be seen in Fig-
ure 2.4. Each vertex of the reachability graph corresponds to a possible state of
the Petri net and is annotated with the corresponding marking. For example, in Fig-
ure 2.4 the uppermost state is annotated with 1, 0, 1, 1, 0, meaning that places P1,
P3, and P4 each have one token while places P2 and P5 are empty, which cor-
responds to the marking displayed in Figure 2.3a. The marking of the Petri net in
Figure 2.3b corresponds to the leftmost state (0, 1, 2, 1, 0) in the reachability graph

29

Figure 2.4: Reachability graph of example Petri net from Figure 2.3.

displayed in Figure 2.4. Each transition that is enabled for a given marking in the
Petri net is represented by an edge coming from the state representing that marking
in the reachability graph. For example, since T1 is the only transition enabled with
the marking of Figure 2.3a, state 0, 1, 1, 0, 1 in Figure 2.4 has only one outgoing edge,
which corresponds to the firing of T1.

Petri nets are commonly used because of their expressiveness and analyzability,
making them suitable to model concurrent systems and check if they respect some
properties guaranteeing a safe execution, such as liveness and boundedness.

Pure nets — A Petri net is said to be pure if it has no self-loop, i.e., there exists
no place that is simultaneously an input and an output of a transition. Pure Petri nets
are easier to analyze as they can be represented with an incidence matrix. A Petri
net that is not pure cannot be represented by a single matrix. Instead two matrices
are necessary, one to represent inbound arcs (going from a transition to a place),
and another to represent outbound arcs (going from a place to a transition). The
Petri net displayed in Figure 2.3a is pure.

Boundedness — A place in a Petri net is k-bounded if in all states reachable
from the initial marking it never has more than k tokens. From the reachability graph
in Figure 2.4, we can see that in the example Petri net P1 is 3-bounded, P2 is 2-
bounded, and the remaining places are 1-bounded. As such the example Petri net
given in Figure 2.3 is 3-bounded.

Liveness — Four levels of liveness have been defined for the transitions of a
Petri net, each level being more restrictive than the last. A transition has liveness
level:

• L1-live: if it can fire in at least one possible firing sequence;
• L2-live: if ∀k ∈ N it can fire k times in at least one possible firing sequence. The

30

(a) S3PR (b) GS3PR (c) S4PR

Figure 2.5: Example Petri nets from different classes used to study sequential RAS.

specific sequence can differ for each value of k;
• L3-live: if it can fire infinitely in at least one possible firing sequence, i.e., there

is at least one infinite firing sequence such that the transition can always be
fired an infinite number of times;

• L4-live: if it can fire in every possible state, it is always enabled.

A Petri net is called Lk-live if all its transitions are at least Lk-live. From the reach-
ability graph in Figure 2.4, we can see that all transitions are L3-live by making the
infinite repetition of the sequence T1, T3, T4, T1, T2. As such, the example Petri net
displayed in Figure 2.3 is itself L3-live.

Petri nets are used as modeling tool for many systems such as to analyze busi-
ness processes [10], parallel processing in computing systems, or the behavior of
flexible manufacturing systems. Specialized, constrained, types of Petri nets have
been developed to represent and analyze specific problems. Each type of con-
strained Petri net is called a Petri net class.

Classes of Petri Nets

Over the years many classes of Petri nets have been developed. Each class defines
a set of constraints over the places and transitions of a Petri net. These constraints

31

are used to guarantee that some mathematical properties always hold, which make
analyzing Petri nets more efficient. A thorough survey of Petri net classes has been
made by Liu and Barkaoui [53].

This thesis aims at addressing the issue of deadlocks for some sort of sequential
RAS, i.e., a RAS in which resources are reusable. Figure 2.5 shows three classes
of Petri nets based on the same principles: there is a set of resources represented
as places, and a set of processes represented as a circuit made of places and tran-
sitions. Processes can be used to describe the execution of periodic dataflow appli-
cations, or the behavior of a flexible manufacturing system for example. For all the
Petri nets displayed in Figure 2.5, places PR1 and PR2 are the resources. The loop
made of P01, T01, P02, T02, P03, T03 represent a first process, and the loop made of
P11, T11, P12, T12, P13, T13, P14, T14 represent a second process. The difference
between the different classes lies in the edges they allow between the processes
and the resource, i.e. in what resource usage they are able to represent.

Lets first present the Generalized Systems of Simple Sequential Processes with
Resources (GS3PR) class [52], displayed in Figure 2.5b). A GS3PR Petri net is a
pure net made of processes and resources such that each transition have at most
one inbound edge connected to a resource, representing the allocation of some of
the resource capacity to the process. Conversely, each transition can have at most
one outbound edge connected to a resource, representing the deallocation of the
resource capacity. Furthermore in a GS3PR, if a process place has an incoming
transition allocating some resource, then any outgoing transition must free the same
quantity of the same resource. This can be seen in Figure 2.5b) with the two arcs
PR1 → T01 and T02 → PR1 both having a weight of 2. In other words a process
cannot hold onto multiple resources simultaneously, and must free any allocated
resource at its next execution step.

Systems of Simple Sequential Processes with Resources (S3PR) [28] (Figure 2.5a)
is identical to GS3PR, excepted that there are no weight on edges. As such the
S3PR class is said to be ordinary, and is more constrained but easier to analyze
than GS3PR.

In Figure 2.5c is displayed a net of the S4PR (S4PR) class [68]. S4PR is more
permissive than GS3PR, as it lifts the constrains on resource usage. This allows
to represent process which can hold onto resources during their execution. In fact,

32

contrary to S3PR and GS3PR, it is possible to express the behavior of a set of AHSDF
graphs using an S4PR net.

There exists a variety of other Petri net classes for sequential RAS beyond those
presented here. For example the classes S*PR (S*PR) [29] or Processes Compet-
ing for Conservative Resources (PC2R) [54] are more permissive than S4PR. Since
S4PR is permissive enough to express workloads of applications modeled as AHSDF
graphs, we elected not to present them here.

A common approach to enforce liveness in Petri nets is the use of pure net su-
pervisors. Pure net supervisors are sets of places, transitions, and arcs added to a
Petri net that is not live in order to produce a new net that is live and pure. Zhong
et al. [75] have pointed out that there does not always exist a maximally permissive
liveness-enforcing pure net supervisor for a Petri net. This displays the importance
of researching non pure net solutions to enforce liveness in a Petri net.

2.2.6 Discussion

The high-level representation of dataflow MoCs enables application and system de-
velopers to describe parallelism in streaming applications, such as media process-
ing, in a simple and intuitive way. The different varieties of MoCs existing in the liter-
ature each have their own characteristics. These include the execution semantics of
the MoC, its expressiveness, analyzability, and restrictions, making them suitable for
different kinds of applications and platforms.

In the work of this thesis, SDF is used as the MoC to model the applications to be
executed on the target platform. It has been chosen for its high static analyzability
associated with a suitable expressiveness for targeted applications, making it possi-
ble to minimize the amount of dynamic analysis required, and thus being suitable for
embedded systems, where computing resources are limited and best used to com-
pute the actual applications. MoCs that support the reconfiguration of applications,
such as πSDF and the PRUNE MoC, have not been considered as the added expres-
siveness is not necessary to express our target applications. Millo et al. [57] present
an interesting work, using the MARTE/CCSL formalism to express the allocation and
real-time constraints falling upon SDF applications deployed on embedded systems.
The idea of using different formalisms in conjunction to represent applications and

33

their constraints at different levels of abstraction has also been studied by Arras et
al. [7].

2.3 Formalization of Scheduling Problems

Scheduling is a common problem across many sectors. It refers to the need to allo-
cate a limited amount of resources (e.g., materials and machines in a manufacturing
plant, PEs in a computing system) in an efficient manner in order to complete a target
work while optimizing some objectives (e.g., time, cost, energy consumption).

2.3.1 Types of Scheduling Problems

To describe different kinds of scheduling problems, ranging from construction work,
management of a manufacturing plant, to scheduling of applications and tasks in
computing systems, a variety of scheduling problems and formalisms have been de-
scribed. We will present hereafter two of the most common and significant schedul-
ing problems addressed in the literature.

Resource Constrained Project Scheduling Problem

A common problem definition found in the literature is the Resource Constrained
Project Scheduling Problem (RCPSP). Problems are defined by a set of activities (or
tasks) which have various resource requirements and can be dependent on other
activities completion. This problem description is aimed at logistical projects (such
as transporting good or infrastructure building), but share common aspects with the
scheduling of dataflow applications. Both share a common goal, which is the opti-
mization of the execution of activities or tasks that have specified resource usage.
There are different characteristics defining an RCPSP.

Resources — The resources studied in RCPSPs can be of different kind. Re-
newable resources are resources available in a maximal quantity at any time in the
project, such as vehicles in a transportation problem. This is similar to memory re-
sources in our case. Non-renewable resources are available in a limited quantity
over the full course of the project: once consumed they are destroyed and cannot
be reused at a later point in the project. Doubly constrained resources are non-

34

renewable resources that also have a maximal simultaneous use like renewable re-
sources.

Objective function — RCPSPs can have different objective functions such as
minimizing the cost of the project, its duration, etc.

Activities — Activities can have different characteristics depending on the spe-
cific problem. They can be preemptible or non-preemptible (such as in our work).
They can by limited to a single mode, or have multiple modes with different duration,
resource needs, etc. This can be similar to the execution of tasks in a heteroge-
neous system, where a task could have different execution time or memory usage
depending on its execution node.

Scheduling certainty — Many papers studying RCPSPs assume that creating
a basic scheduling table in advance for the whole project is feasible. In practice,
variations in the time taken to complete activities, availability of resources, or other
external factors can impact the schedule when the project is ongoing. Different kinds
of scheduling have been proposed to address the uncertainty that can occur:

• Reactive scheduling. Each time an unexpected event occurs, a new schedule
is created for the remaining part of the project.

• Stochastic scheduling. The duration of activities is assumed to follow some
probabilistic rule, known in advance.

• Fuzzy scheduling are used when it is not possible to evaluate beforehand the
probability distributions of the project’s perturbations.

• Robust (or proactive) scheduling. Its goal is to create a schedule that is the
most robust to events, i.e. to minimize the effect random events can have on
the schedule’s objectives.

• Sensitivity analysis aims at studying how variations in an RCPSP parameters
impact, or not, the optimal solution and its cost.

An overview of many RCPSPs has been done by Habibi et al. [34]. In our case,
reactive scheduling is not suitable as the cost of computing a complete schedule is
high and events occur frequently. More generally, all these approaches aim to ad-
dress uncertainty when trying to compute a full schedule that is either easily changed

35

when an unexpected event occurs, or replaceable. For our problem, computing a full
schedule is not suitable since events such as an application start, end, or reconfigu-
ration can occur frequently and significantly change the scope of the schedule.

Resource Allocation Systems

Another formalization commonly used is the Resource Allocation System (RAS).
Generally speaking, a RAS is formalized by a set R of m different resource types:
R = {R1, . . . , Rm}, and a set J composed of n process types J = {J1, . . . , Jn}.
Every resource is characterized by its capacity Ci, a finite positive integer. A pro-
cess type Jj is characterized by a sequence of request vectors of dimension m:
〈Jjk, k = 1, . . . , l(j)〉 with l(j) the number of steps for process type Jj, and compo-
nents Jjk[i], i = 1 . . . ,m indicating the amount of units of resource Ri required for the
completion of step Jjk.

Multiple classes of RASs exist, each having different constraints on the valid re-
source requests. The most significant classes are the following ones, from the most
restrictive to the most permissive:

• Single-unit RAS: Request vectors can have a single non-zero component of
value one;

• Single-type RAS: Request vectors can have a single non-zero component that
is a positive integer lesser or equal to the corresponding resource capacity;

• Conjunctive RAS: All components of request vectors can take any integer
value from 0 to the corresponding resource capacity;

• Disjunctive/Conjunctive RAS: For every stage, the vector of dimension m is
replaced by a set of vectors such that the step can be completed if any request
in that set can be satisfied. Each of those vectors follows the constraints of the
request vectors in conjunctive RAS.

The problem of scheduling applications on a multi-core platform can be repre-
sented by a conjunctive RAS, or by a disjunctive/conjunctive RAS if there exists mul-
tiple implementations of a task having different memory requirements. An example
of the latter would be a heterogeneous system in which a task can be executed by

36

a generic CPU or by a hardware accelerator, and these alternative implementations
have different memory footprints.

2.3.2 Computation of Schedules for Multicore Systems

The scheduling of applications running on multi-core platforms is commonly divided
in four successive steps, in order:

1. Extraction: The first step when scheduling for a multi-core system is to extract
the potential parallelism contained within the set of applications to run. This
parallelism can come from tasks having no dependency relation, but also from
having multiple applications—or iterations of a same application— running con-
currently. The extraction step for SDF graphs can be done via its transformation
into an AHSDF graph (cf. Subsection 2.2.1).

2. Mapping: The mapping corresponds to assignment of tasks to PEs, and of
buffers to memories. Task mapping is constrained by the computing capabili-
ties of each PE in heterogeneous architectures, and is commonly done using
heuristics with objectives such as minimizing the latency, following real-time
constraints [16], maximizing the energy efficiency [41,46], etc. Buffer mapping
in NUMA architectures is usually done to ensure the locality of data, i.e., as-
signing a buffer to a memory that can be quickly accessed from the PEs on
which the tasks using that buffer have been mapped, such as in the work of
Drebes et al. [26] for example.

3. Ordering: Once tasks have been mapped onto PEs an execution order is com-
puting for each PE. The execution order must respect the dependencies be-
tween task, and can also be constrained via deadlines on tasks. It is common
to compute the ordering simultaneously with the mapping, since the efficiency
of a given mapping is affected by the task ordering.

4. Timing: Finally, timing corresponds to the assignment of a specific starting
time for the execution of tasks. It depends on various factors such as data
availability and system load. Except for the most critical systems, with hard
deadlines that must be met in any circumstances, timing is usually done online
by the run-time manager or the operating system.

37

Depending on whether these steps are done statically or online, four main scheduling
strategies for multi-core systems can be described [47]:

• Fully static: All steps are computed offline, at design or compile time, leading
to a single schedule or a handful of schedules out of which one is selected at
run time depending on the configuration. It has the advantage of minimizing
the run time overhead, but at the cost of a reduced flexibility and a potentially
high computational complexity.

• Self timed: Only the timing step is computed dynamically. This gives more
run time flexibility while keeping the overhead low. This approach is useful for
systems where the execution time of tasks is variable.

• Static assignment: The extraction and mapping steps are done statically,
while the ordering and timing are computed at run time depending on the dy-
namic conditions in the system.

• Fully dynamic: All steps are computed dynamically. This gives the highest
flexibility to the system, but also the highest overhead at run-time, making it
suitable only for systems where this overhead can be tolerated (typically with
not strictly limited computing resources). An example fully dynamic scheduling
for homogeneous multi-core systems can be seen in [11].

2.4 Liveness and Deadlocks

2.4.1 Liveness Analysis

A liveness analysis goal is to analyze a system to determine in which situations (or
system states) does a given property hold (the system is live) or not. The analyzed
property can represent for example resource usage (the system is live when there
are no resource overflow), or are all buffer reads performed after a corresponding
buffer write (the system is live when no incorrect read operation has occurred). The
liveness analysis evaluates the given property on the reachable states of the system
to determine which states are live or not.

38

Liveness analysis have many applications such as proving functional correctness,
selecting a viable and efficient schedule for a system, or designing run-time monitor-
ing mechanisms to ensure the safe execution of the analyzed system. For example,
the results of some liveness analysis can be used to handle deadlocks, usually within
deadlock prevention and deadlock avoidance strategies, which are presented in the
next subsection.

An example of liveness analysis is the one developed in the PRUNE frame-
work [15]. This analysis is based on the PRUNE MoC, presented in Subsection 2.2.3,
which is designed to allow the static analysis of liveness and memory boundedness.
As stated in Subsection 2.2.3, this static analysis is made possible via a set of design
rules, that have been devised to ensure the consistent behavior of dynamic actors.
The PRUNE liveness analysis takes as input a representation of the system com-
posed of an application graph, a platform graph, and a mapping of tasks to PEs.
The application graph is similar to one of the input of the first and second contribu-
tions of this thesis (presented in Chapter 3 and Chapter 4 respectively), excepted
that PRUNE uses the more flexible PRUNE MoC, whereas contributions 1 and 2 use
AHSDF graphs. Our contributions also require a mapping of tasks to PEs, but do not
require a graph describing the platform. Instead the only necessary information is
the size of memories (for contributions 1 and 2), and an estimation of tasks’ execu-
tion time and communication delays (only for contribution 1). It should be noted that
contribution 1 is not a liveness analysis but a deadlock handling strategy, which are
described in next subsection.

2.4.2 Deadlock Handling Strategies

The occurrence of deadlocks in multi-core systems is a common problem that is
widely studied in the literature. Many mechanisms have been designed over the
years to tackle the issue of deadlocks, with different strategies and types of dead-
locks to remedy, depending on factors such as the requirements of applications,
the system design, etc. In this thesis we focus on deadlocks caused by memory
shortage, since they are the only kind possible in our target system (as explained in
Chapter 1).

In this thesis deadlock handling strategies are classified in three different main

39

types, namely (i) prevention, (ii) detection and recovery, and (iii) avoidance. This
classification is the most commonly used in the literature about deadlocks [19, 49,
65, 66]. These strategies have their own advantages and drawbacks, making them
suitable for different kinds of scenarios.

Deadlock Prevention

A common approach to handle deadlock is to statically analyze the system and its
possible configurations to make sure that under no circumstances a deadlock would
occur. This is called deadlock prevention. The main drawback of this kind of strategy
is its high computational cost and/or its restrictiveness.

Example deadlock prevention methods include:

• memDAG [56] is a tool developed by the research team behind StarPU [8]. It an-
alyzes a graph derived from a task dependency Directed Acyclic Graph (DAG)
to compute its maximal memory footprint. The maximal footprint is given by the
topological cut with the highest footprint in the derived graph. If the maximal
footprint of the Directed Acyclic Graph (DAG) is greater than the available mem-
ory on the system the DAG will run, memDAG computes artificial dependencies
to prevent memory shortage from occurring. The memDAG tool proposes four
different heuristics for the computation of artificial dependencies to respect the
memory constraint. To avoid creating loops or meaningless dependencies, a
dependency will always be added between two vertexes for which no paths pre-
viously existed. The RespectOrder heuristic has the advantage of never failing,
but requires a valid schedule for the specified memory size to be computed
beforehand. All the artificial dependencies it adds to the graph will respect the
order of the provided schedule. The other three heuristics (MinLevel, MaxSize,
MaxMinSize) have the drawback of sometimes failing to provide a valid solution
even when one do exists. The purpose of MinLevel is to select artificial depen-
dencies that minimize the critical path in the graph, in order to add the smallest
overhead to the make-span of the application. MaxSize tries to minimize the
weight of the next topological cut for each artificial dependency it adds. It adds
a dependency by selecting the pair of vertexes which together contribute the
most to the weight of the topological cut. MaxMinSize also tries to minimize the

40

weight of the next topological cut. It selects the pair of vertexes for which the
minimum contribution among the two vertexes is the largest across all possible
pairs. In other word, both vertexes contribute a lot to the weight of the topo-
logical cut. To better understand MaxSize and MaxMinSize let’s take a simple
example with four vertexes a, b, c, d respectively contributing 20, 5, 10, 10 to the
weight of the topological cut. We also assume that only two dependencies can
be added: b → a or c → d, as the other dependencies would create a loop
or add no constraint as a path already exists between the vertexes. MaxSize
will choose b → a since max(20 + 5, 10 + 10) = 25 (the sum of the contri-
butions of a and b is the maximal, 25). MaxMinSize will choose d → c since
max(min(20, 5),min(10, 10)) = 10 (the minimal contribution from c → d is 10,
which is larger than the minimal contribution from b→ a at 5).

• SynDEx [27] is a Computer-Aided Design (CAD) software for the development
of real-time applications in embedded systems. SynDEx relies on two input
graphs: the acyclic dependency graph of tasks, and the architecture graph
representing the targeted platform. Then, by statically analyzing those graphs,
it provides a static mapping and a static schedule guaranteed to be deadlock-
free (i.e., deadlock prevention).

• PREESM [61] is a prototyping framework for dataflow applications. Its goal is
to allow for the fast prototyping and deployment of applications to multi-core
DSP systems, with stated goal to enable designers to perform Design Space
Exploration (DSE). PREESM generates self-timed, deadlock-free code to run
on the targeted system. The absence of deadlocks is ensured through the
static analysis of the πSDF application model and the graph representing the
target system to guarantee that the execution is memory-bounded and is not
susceptible to a memory shortage.

• Stuijk et al., the authors of [67], developed a method for maximizing the through-
put of multimedia applications running on MPSoCs, while minimizing buffers’
sizes. In order to guarantee a maximal throughput the authors needed to pro-
duce deadlock-free schedules. They propose an exact approach which can be
used for DSE, providing a Pareto front of memory requirement against max-

41

imal throughput. They also designed an approximate method with low over-
estimation of the buffers’ sizes required to ensure deadlock freeness.

The first contribution of this thesis (presented in Chapter 3) is also a deadlock
prevention method, computing artificial dependencies for dataflow applications run-
ning onto embedded systems. It differs from the methods presented above by its
use of AHSDF graphs to describe applications. The most similar approach to our
first contribution in its principle is memDAG [56] as it also computes artificial depen-
dencies, but targets different types of systems. The approach of Stuijk et al. [67] and
PREESM [61] have a similar target as contribution 1, as they also target dataflow ap-
plications running on embedded platforms, but uses different approaches to prevent
deadlocks.

Deadlock Detection and Recovery

A totally different approach to handle deadlocks is the strategy of detection and re-
covery. The idea behind the approach is to monitor at run time the system in order to
detect when a deadlock has occurred. If a deadlock is detected, the system is rolled
back to previous non-deadlocking state, thus requiring the frequent save of check-
points. It is efficient for systems where keeping checkpoints and dynamically mon-
itoring the occurrence of deadlocks is (i) possible, and (ii) within a reasonable cost
(in terms of time and memory overhead). This makes it suitable for systems where
the occurrence of deadlocks is rare, since the restoration of the system to a previ-
ous checkpoint is an expensive operation, and with sufficient resources to spare in
the monitoring process. This strategy is fully dynamic and useful for systems where
static analysis for deadlock freeness would be too expensive in computation time,
such as systems running highly reconfigurable applications.

The deadlock detection-based scheduling (DDS) [69] is an algorithm designed to
detect deadlocks caused by the saturation of storage in HPC systems. The set of
jobs to execute is represented through a weighted directed acyclic graph. Weights
represent the estimated size of the input/output files to be written on the storage
system. Once a deadlock has been detected, one or multiple jobs are selected to be
rolled back and, as such, will have to restart their computation from scratch at a later
point. This removal of jobs and their files frees storage capacity, thus enabling the

42

system to resume computations. Jobs are selected based on the quantity of storage
space they currently use and are expected to require to complete their execution, as
well as the expected computation time needed to restore their progress if removed.

Deadlock detection and recovery techniques are not suitable for the types of
systems studied in this thesis. Indeed, the targeted embedded platforms have not
enough resources both due to the limited computing power of such platforms, mak-
ing the detection of deadlocks too computationally expensive, nor memory resources
(with small Random-Access Memories (RAMs) and no mass storage such as hard
disk drive) to save a system state for recovery.

Deadlock Avoidance

Deadlock avoidance is a hybrid approach to deadlock handling. This strategy is
based on establishing beforehand some properties that, if respected, guarantee the
absence of deadlocks. The idea is to then guide at run time the execution of the
system to make sure that no decision (be it mapping, ordering, or timing) taken would
cause the properties to stop being respected. This strategy has the advantage of a
reduced run time overhead in comparison to detection and recovery, while being also
usually less computationally expensive than deadlock prevention.

The Banker’s algorithm [25] is one of the earliest and most fundamental work in
the area of deadlock avoidance. This algorithm has been developed by Edsger Dijk-
stra in the sixties. It is designed to avoid deadlock in computer systems running con-
current processes. It requires the following information: the maximal amount each
process may require of each resource, the current amount of allocated resources to
each process, and the remaining available quantities of each resource. Since this
algorithm is based on worst case scenarios for the allocation of resources, it usually
does not provide maximally permissive solutions.

Reveliotis et al. [63] developed a deadlock avoidance technique for RAS. Their
method allows for the computation of deadlock avoidance policies in polynomial time.
These policies are shown to be exact (i.e., only forbid deadlocking schedules) in
large subset case of single-unit RAS. Their approach can also be used for the more
generic single-type RAS and conjunctive RAS, albeit without maximal permissive-
ness of the provided deadlock avoidance policy.

43

Thanks to the exact liveness analysis, presented in Chapter 4 of this thesis, an
exact (i.e., maximally permissive) deadlock avoidance policy has been designed,
and is deployed in the run-time environment presented in Chapter 6. This maximal
permissiveness of this method gives more run-time flexibility for scheduling applica-
tions in comparison to the deadlock avoidance method presented in the preceding
paragraphs.

2.4.3 A Comparison of Existing Methodologies for Handling
Deadlocks

There exists a variety of methodologies to address the issue of deadlocks in com-
puting systems. They vary with regard to their target system and problem specifi-
cation. We further define the solution provided by a methodology to be maximally
permissive if only schedules that effectively lead to deadlock are forbidden, while all
theoretically valid schedules are allowed. In the opposite case, if some valid sched-
ule cannot be selected due to the constraints imposed by the methodology, we say
that the provided solution is approximate. Table 2.1 summarizes the characteristics
of the different methodologies presented earlier in this section.

Table 2.1 presents a comparison of different deadlock handling tools and algo-
rithms, including which strategy they use, their targeted system, and whether they
are maximally permissive (i.e., allow all schedules) or not. Depending on the charac-
teristics of the targeted systems, many deadlock handling strategies have been de-
veloped. For example, the use of Petri nets led to the development of many deadlock
handling techniques for flexible manufacturing systems, be it prevention [9, 43, 51],
detection and recovery [18,30,74], or avoidance [17,31,73]. An extensive survey of
Petri net based techniques has been made by Hou and Barkaoui [42].

Deadlock detection and recovery strategies have the advantage of requiring the
less amount of computation, but are only viable if the occurrence of deadlocks can
be monitored at run-time and a recovery mechanism can be put in place. This is
only suitable in systems for which deadlocks are a rare occurrence and the recovery
a possible and not too expensive possibilities. As such, deadlock detection and
recovery are very infrequently deployed in embedded systems, as resources are
scarce and performance critical.

44

Table 2.1: Comparison of a selection of deadlock handling tools and methodologies

Methodology Strategy
Problem

specification
Target
system

Maximally
permissive

memDAG [56] prevention
dependency

graph
HPC no

SynDEx [27] prevention
acyclic depen-
dency graph

real-time/embedded no

PREESM [61] prevention πSDF embedded no

Stuijk et al. [67] prevention CSDF/SDF embedded yes & no1

DDS [69]
detection and

recovery
acyclic depen-
dency graph

HPC yes

Banker’s algorithm [25] avoidance see above generic computing no

Reveliotis et al. [63] avoidance Conjunctive RAS
flexible manufac-
turing systems

no

Contribution 1 prevention AHSDF embedded no

Contribution 3 avoidance AHSDF embedded yes

1 A maximally permissive solution is provided, as well as an approximate heuristic

Deadlock prevention solutions offer the advantage of not requiring dynamic com-
putations, which is very valuable in embedded systems with limited computing power.
Their drawbacks are their high static computational cost, which might render them
not suitable for large workloads, or their otherwise limited permissiveness.

Deadlock avoidance strategies are usually more permissive than deadlock pre-
vention, at the expense of some run-time overhead. They may be deployed in em-
bedded systems, provided that their dynamic overhead is limited. Deadlock avoid-
ance strategies are usually preferred over deadlock prevention in embedded systems
when they allow for more flexibility for the scheduling.

2.5 Run-Time Environments for Dataflow

Applications

Run-time environments are used to manage the execution of dataflow applications
at run time. They are used in a wide variety of computing systems, ranging from

45

embedded systems, general purpose computing, real-time computing and HPC.
A run-time environment should provide memory allocation and management func-
tionalities, which may include memory defragmentation, cache management, and/or
paging in some systems. It also manages the dynamic part of the scheduling which,
depending on the scheduling strategy, can include (1) the timing of tasks, (2) their
ordering, (3) the mapping of tasks onto PEs and buffers to memories, and (4) the
extraction of potential parallelism. Run-time environments with more functionalities
tend to incur a higher run time overheard, and are mostly used in high-end systems
such as the ones used for HPC. On the other hand, embedded systems with their
limited capabilities commonly use run-time environment providing a more reduced
set of functionalities, to minimize the run time overhead.

Another advantage of run-time environments is that they can be used to hide
away the complexity of the underlying hardware. Over the years commercially avail-
able platforms became more complex in order to improve performance, once the
pace of increase in raw performance of generic CPUs (for example by rising their
frequency) slowed down, faced with constraints such as manufacturability, reliabil-
ity, or energy consumption. For example specialized PEs such as DSPs for signal
processing and GPUs for graphic computing have been designed. This led to het-
erogeneous computing architecture, in which tasks can only be performed on some
PEs or have varying performance depending on their mapping, as well as the rise
of Non-Uniform Memory Access (NUMA) architectures, since those specialized PEs
often used dedicated memories for their computations.

Example run-time environments for applications based on task/dataflow models
include:

• StarPU [8] is a run-time environment targeting heterogeneous platforms for
High-Performance Computing (HPC). StarPU maps and schedules tasks at run
time.

• The XKaapi [33] run-time environment targets HPC platforms with heteroge-
neous architecture composed of multiple CPUs and GPUs. It superseded the
KAAPI run-time environment developed by the same research team [32]. The
computations to be executed are represented via tasks, which are mapped and
scheduled at run time. Furthermore, XKaapi includes a work-stealing mecha-

46

nism, that allows an idle PE to steal a task initially slated for execution onto
another PE. This mechanism leads to an improvement in performance by mini-
mizing the idleness of PEs, and has been shown to be as efficient as the default
configuration of the StarPU scheduler [50].

• PRUNE [15] is a hybrid run-time environment for dataflow applications run-
ning on heterogeneous platforms. It uses an extension of SDF where connec-
tions between actors can change at run-time, allowing for the representation
of reconfigurable applications while still being statically analyzable for memory
boundedness and deadlock freeness. The PRUNE run-time environment does
not provide a deadlock handling system per se. Instead, it relies on the static
liveness analysis (presented in Subsection 2.4.1 of this chapter) to ensure that
the running system (composed of an application graph, a platform graph, and
a mapping) is memory-bounded and deadlock-free, thus removing the need to
use any run-time deadlock handling strategy.

• The HTGS Model-Based Engine (HMBE) [70] targets homogeneous multi-CPUs
platforms. It is a high-level (model-based) abstraction on top of the Hybrid Task
Graph Scheduler (HTGS) Application Programming Interface (API) [13, 14]. It
should be noted that this underlying API supports heterogeneous, multi-CPUs
multi-GPUs platforms. HMBE provides a run-time environment with a dynamic
mapping and scheduling of tasks. Tasks are assigned dynamically to worker
thread, which run concurrently on the PEs of the targeted platform.

• SPIDER [39, 40, 58] is a run-time environment for real-time dataflow applica-
tions running onto heterogeneous platforms. Applications are described using
the πSDF formalism, allowing reconfiguration at run-time. SPIDER performs
mapping and scheduling decisions at run-time, in a centralized fashion.

We presented here only model-based run-time environment for dataflow applica-
tions. There also exists many APIs which provide run-time environments when im-
plementing dataflow application at the language-level, such as the aforementioned
HTGS [13,14], as well as Charm++ [44], Qilin [55], and Harmony [24] among others.

Table 2.2 displays a comparison of different existing run-time environments. Out
of the presented environments, HMBE [70] and Contribution 3 of this thesis (pre-

47

Table 2.2: Run-time environments for task-based and dataflow-based applications

Feature StarPU XKaapi PRUNE HMBE SPIDER Contribution 3

Heterogeneity Yes Yes Yes No Yes Yes
Dynamic mapping Yes Yes Yes No Yes No
Dynamic scheduling Yes Yes Yes Yes Yes Yes
Deadlock handling Yes No No1 No No Yes
NUMA support Yes Yes undef. Yes Yes Yes
Reconfigurable applications Yes Yes Yes No Yes No
Targeted system HPC HPC general real-time real-time embedded

1 PRUNE run-time is used to execute applications which are guaranteed to be deadlock-free, via the
PRUNE static liveness analysis.

sented in Chapter 6) have a scheduling of the static assignment kind, whereas
the scheduling done by the other environments are fully dynamic. The third con-
tribution of this thesis differs from existing run-time environments by the following:
SPIDER [39] offers no deadlock handling mechanism, HMBE [70] does not support
heterogeneous architectures, and the other available run-time environments are not
suitable for embedded systems, as they target platforms with larger computing re-
sources such as HPC systems.

2.6 Conclusion

There exists many Models of Computation which can be used to represent dataflow
applications. These MoCs have different properties with regard to their expressive-
ness (what they can or cannot represent) and their analyzability (what properties
do they allow to analyze, and with which complexity). In the context of this thesis,
we settled on using the SDF and AHSDF formalisms, as they are the less complex
MoCs allowing to represent our target systems: dataflow applications running onto
embedded systems.

Contributions 1 and 2 of this thesis aim at providing deadlock handling mecha-
nism for dataflow applications running onto heterogeneous architecture, while con-
tribution 3 provides a run-time environment satisfying all our criteria. The aim of
this thesis is to enable the deployment of dataflow applications onto heterogeneous,
NUMA platforms, and ensure their safe (non-deadlocking) execution. As such, there

48

are currently no run-time environments satisfying these criteria as described at the
end of Section 2.5 of this chapter. This raises the need to either extend an existing
run-time environment targeting embedded systems, or to design our own run-time
environment. Chapter 6 discusses in more details whether and how the deadlock
avoidance strategy derived from contribution 2 could be deployed onto existing run-
time environments, and describes a new run-time environment satisfying all our cri-
teria.

49

Part II

Contributions

51

Chapter 3

Approximate Deadlock
Prevention using Memory
Exclusion Graphs

3.1 Introduction

The occurrence of memory overflow in embedded systems leads to data corrup-
tion and prevents the correct execution of applications. Because of this, in most
embedded systems, a hardware-software combination prevents memory corruption
by guaranteeing that data buffers are never consumed before they are produced
and never overwritten before they have been consumed by all consumers. In turn,
these mechanisms can lead to memory shortage situations where the execution can
progress only after buffers have been allocated in memories that cannot accommo-
date them. Many solutions exist in generic PCs to counteract memory shortages and
avoid the deadlocks they cause at run time. This is the case for example of deadlock
detection and recovery, which reverts the system to a previously saved safe state,
or of the offloading, which temporarily moves data buffers into some high capacity
storage. Deploying these solutions in embedded systems is often not possible, due
to their tight requirements on the cost, physical size, and performance. A solution
fitting those requirements is the use of a static memory usage analysis, to guarantee

53

Figure 3.1: Example logical architecture of a target platform.

at design time that no memory shortage will occur once the system is online, thus
removing the need to deploy costly run-time fixes.

In this chapter we present the first contribution of this thesis, a method to pre-
vent deadlocks resulting from memory shortages. It is based on the analysis, at
design time, of the potential for memory shortage when running a set of applica-
tions, (hereafter referred as a workload) onto a target platform. The analysis uses a
graph that represents the allocations of buffers and whether said buffers can or can-
not be allocated simultaneously. It allows to detect potential memory shortages and
to prevent them by adding precedence constraints between tasks in the workflow.

The remainder of this chapter is structured as follows: Section 3.2 presents the
characteristics and hypotheses made on the target platforms, and Section 3.3 the
modeling of the workload and the constraints on the applications its represent. The
memory usage analysis and its derived deadlock prevention method are presented
in Section 3.4. Finally, Section 3.5 concludes this chapter. The evaluation of this
contribution is deferred to Chapter 5.

3.2 Target Platform

The memory usage analysis presented in the chapter applies to platforms such as
the one presented in Figure 3.1. The platform has three types of architecture ele-
ments: computing resources, the platform memories, and the interconnect linking
them together. They are displayed respectively in red, blue, and green in Figure 3.1.
It should be noted that Figure 3.1 shows a simple example, but the communication

54

links between computing resources and memories can follow more complex struc-
ture, such as in NUMA architectures (cf. Figure 1.2b).

Computing resources are a set of n Processing Elements (PEs) responsible for
the execution of tasks. A PE can be any sort of computing unit such as a CPU,
a GPU, a hardware accelerator, etc. Therefore PEs are allowed to provide widely
different capabilities, meaning that the target platform is not limited to homogeneous
architectures, heterogeneous architectures are also supported. The following hy-
pothesis is made with regard to the computation behavior of PEs:

• H1: Each PE can execute only one task at a time, without preemption, until the
task’s completion.

For example under assumption H1 each core of a multicore CPU should be consid-
ered as its own PE.

The target platform has a set of m memories in which buffers are stored. Each
memory of the target platform has a specified size, expressed in data units. In the
following all memory sizes are expressed in the same data unit. Platforms with a
single memory are usually Uniform Memory Access platforms, but might as well
be Non-Uniform Memory Access platforms, for example if the interconnect is not
symmetrical for different PEs. Platforms with multiple memories are often NUMA,
but can also be UMA.

Studying interconnects is outside the scope of this thesis. As such it is supposed
that the interconnect is reliable, by which is meant the following:

• H2: There is no risk of deadlock or livelock on the interconnect;
• H3: There is no loss of data during transfer (for example between a memory

and the cache of a PE).

3.3 Applications and Workload

The applications selected for execution on the target platform are modeled by depen-
dency graphs, such as the ones displayed in Figure 3.2. Vertexes represent tasks,
i.e., computations to be executed, and edges represent Input/Output buffers used
for the communication between tasks. Edges are annotated with a positive integer
that is the size of the buffer in memory (not represented in Figure 3.2). The mem-
ory needs of a task are considered in terms of Input/Output buffers (i.e., where data

55

t4G1

t4G2 t4G4

t4G3
t4G5 t4G6

(a) Example dependency graph of a
4G application.

t5G2 t5G3 t5G4t5G1

(b) Example dependency graph of a
5G application.

Figure 3.2: Example applications’ dependency graphs.

are stored, before and after processing). For systems where it is relevant to also
consider the internal memory of tasks (e.g., to store intermediate results), requests
for this additional memory can be simply added to those for the Input/Output (I/O)
buffers in the model.

tsrc

t5G1

t4G1

t4G2 t4G4

t4G3
t4G5 t4G6 tsnk

t5G2 t5G3 t5G4

t5G1 t5G2 t5G3 t5G4

Figure 3.3: Example workload composed of one iteration of the 4G application and
two concurrent iterations of the 5G application

A platform executes a workload that is modeled with an annotated dependency
graph (a Directed Acyclic Graph (DAG)), as illustrated by Figure 3.3. The workload
graph is the union of each application’s dependency (AHSDF) graph, where arti-
ficial source and sink tasks connect the source and sink vertexes, respectively, of
each application. The source and sink incident edges have null weights. Note that a
dependency graph does not specify any execution semantics for its vertexes. There-
fore, to capture multiple concurrent executions of periodic applications, a separate
copy of the application dependency graph should be added in the workload graph
for each period that can run concurrently. This can be seen in Figure 3.3, which

56

(a) Application A
has a period of
400, application B
of 800.

(b) Application A has a period of 400, application B of 900.

Figure 3.4: Two example application extensions to a common period.

represents a workload composed of two concurrent iterations of the 5G application
(Figure 3.2b) and one iteration of the 4G application (Figure 3.2a).

In the context of the contribution presented in this chapter, applications in a work-
load graph should have a defined deadline, and share the same period. The re-
quirement to share multiple periods is necessary as the analysis is based on timing
informations deduced from a global deadline. In other words, the timing informa-
tion of a running application are also dependent on the other running applications.
When multiple applications do not share the same period, it is possible to extend
applications, i.e., to represent multiple successive (non concurrent) iterations of the
applications in order to get to a common period. The minimal possible value for this
common period is the LCM of the application periods. For example in Figure 3.4a,
application A is extended to two iterations to reach a common period of 800. In Fig-
ure 3.4b, A is extended to 9 iterations and B to 5, to reach a common period of
lcm(400, 900) = 3600. Hence the application periods have an important effect on the
extension process, and therefore on the size of the workload graph. The best-case
scenario for this extension to a common period is when the base applications have
harmonic periods. Two applications are said to have harmonic periods when the pe-
riod of application with the largest period is a multiple of the period of the application
with the shortest period. More generally, a set of applications is said to be harmonic
if the least common multiplier of the application periods is equal to the maximal appli-
cation period of that set. For example the applications in Figure 3.4a are harmonic,
since the period of application B is double the period of application A. Applications in
Figure 3.4b are not harmonic, which leads to a larger common period and therefore
a larger number of successive iterations to represent in the workload graph.

57

The workload graphH = (T ,B) is similar to the applications’ dependency graphs.
It has a global deadline, which represents the time at which the sink task should have
been completed. Vertexes T are the tasks that execute on the PEs of the platform.
Each vertex t is annotated with the following:

• The mapping, i.e., which PE of the target platform should execute the task
represented by t. Tasks are statically mapped to a PE in the target platform
and cannot migrate at run time. This is necessary to compute the due-date
which is described bellow;

• A Worst-Case Execution Time (WCET) denoted wcett of the task represented
by t on that PE. The WCET is the maximal amount of time the task is guaran-
teed to require for its complete execution.

• The due-date ddt of the task represented by t. The due-date metric is an upper-
bound on the completion time of a task which, if missed, will cause a deadline
miss for said task or at least one of its descendants. The due-date is obtained
by subtracting from the global deadline a lower-bound estimation on the execu-
tion time of the critical path from t to the sink. We compute the due-date using
Algorithm 1, first described by Adyanthaya et al. [6]. The due-date is equal to
or tighter than the conventional deadline, as it takes into account the mapping
information and how multiple tasks assigned to the same PE will not be able to
run in parallel. If the due-date is negative, it means that all possible schedules
will cause a deadline miss.

Edges B denote precedence constraints and the Input/Output task buffers that are
allocated in memory. As is the case for application graphs, each edge is annotated
with a positive integer that is the buffer size (not represented on Figure 3.3).

The computation of due-dates is performed by on the workload graph in a reverse
topological order, i.e., each task get its due-date computed after the due-dates of all
its successors have already been computed. Each task’s due-date is computing
following Algorithm 1. It is obtained by computing a local due-date for the task for
each PE, and then taking the minimal value across all PEs (hence the tightest due-
date). The due-date of the workload sink is defined to be equal to the global deadline.

All the hypotheses made on the workload are recapitulated bellow.

• H4: All applications have a deadline, and share the same period (or have been
extended to share the same period).

58

1 input
2 H = (T ,B); // workload graph
3 n; // number of PEs in targeted platform
4 t; // task for which to compute the due-date
5 output
6 ddt; // due-date of task t
7 define
8 H.succorderedk (t); // list of immediate successor tasks of t in H mapped to

PE k and ordered by descending due-date

9 ddt ←∞;
10 for k ← 1 to n do
11 local_ddt ←∞;
12 for t′ ∈ succorderedk (t) do
13 local_ddt ← min(ddt′ , local_ddt)− wcett′;
14 end
15 ddt ← min(ddt, local_ddt)
16 end

Algorithm 1: Compute the due-date of a task.

• H5: Tasks are statically mapped to a PE in the target platform and cannot
migrate at run time.

• H6: All tasks have a defined due-date and WCET.

3.4 Memory Shortage

A memory is at risk of shortage when the memory occupation is at or near the ca-
pacity of the memory. In conventional Personal Computers (PCs) or HPC systems,
some data buffers can be offloaded from the (local) memory onto a large capacity
storage system. This has an impact on performance as these type of storage, be it
a large capacity RAM or a hard-drive, usually have orders of magnitude higher ac-
cess times, but it has no impact on the ability to properly finish the execution of the
application. This offloading approach is usually not practical in the kind of platforms
targeted in this thesis, where there is no such large capacity storage available for
offloading and/or no time for these data transfers. As such, the occurrence of mem-
ory shortage is a serious problem that prevents the correct execution of applications

59

and leads to deadlocks if not mitigated. This led to the design of a memory usage
analysis, which is the first contribution of this thesis.

3.4.1 Memory Exclusion Graph

The optimization of memory management is a great concern in embedded systems.
For example Hadj Salem, Kieffer, and Mancini studied the issue of memory manage-
ment in embedded vision systems [35–38]. In 2015, Desnos et al. introduced the
Memory Exclusion Graph (MEG) [21], a type of graph computed from an AHSDF
graph and used to analyze its memory allocations and requirements. In [22] MEGs
have been used to minimize the memory footprint of dataflow applications by study-
ing memory reuse opportunities when executing actors, such as storing the output
data of an actor at the same location as some of its input data that will not be used
again by the application.

A MEG is an undirected weighted graph where vertexes represent indivisible
memory objects that correspond to communication buffers in a SDF graph, the work-
ing memory of SDF actors, and feedback FIFOs that store initial tokens in a SDF
graph. Edges in a MEG represent exclusion relations, i.e., the impossibility to share
physical memory as the buffers can be allocated simultaneously. More formally, a
MEG is an undirected weighted graph M = (V,E,w) where:

• V is the set of vertexes. Each vertex represents a buffer of the AHSDF graph.
• E is the set of edges representing the memory exclusions, i.e. the impossibility

to share memory. We denote (v0, v1) ∈ E the edge between vertexes v0 and v1

of V .
• w : V → N is a function giving w(v), the weight of a vertex v. The weight of a

vertex corresponds to the size of the associated buffer.

Two buffers are in a relation of memory exclusion, whereby they cannot be allo-
cated at overlapping locations in memory, if there exists a schedule of the AHSDF
graph such that both buffers would be allocated simultaneously. Some exclusions
can arise from the properties of the buffers, such as input and output buffers of a
task being allocated simultaneously when that task is executing. Others come from
the parallelism of an application, as is the case with buffers used by tasks that can
be executed concurrently.

60

(a) Example AHSDF graph. (b) Corresponding MEG, dashed
edges are exclusion edges caused
by parallelism.

Figure 3.5: Example AHSDF and its corresponding MEG.

The construction of a MEG is based on the following hypotheses over the memory
management of the target platform:

• H7: Output and working buffers of tasks are allocated instantaneously, imme-
diately before the task starts execution.

• H8: A buffer is deallocated when it becomes dead, i.e., as soon as the last live
consumer task has completed.

• H9: A buffer is never deallocated if it is alive, i.e., if there exists at least one live
task that requires it and did not yet complete.

The left-hand side of Figure 3.5 shows an example AHSDF graph, and the right-
hand side its corresponding MEG.

Edges represented by continuous lines in Figure 3.5b correspond to buffers used
by the same task and that therefore must be present in memory simultaneously.
They represent mandatory exclusions that will occur in all schedules, such as the
exclusion between buffers T0 − T2 and T2 − T5 since both buffers are necessary for
the execution of T2.

Edges represented by dashed lines in Figure 3.5b correspond to buffers used by
tasks that can execute concurrently and therefore may be required simultaneously.
They represent exclusions that may or may not occur depending on the scheduling

61

of the AHSDF graph. This is the case of the exclusion between buffers T0 − T2 and
T1 − T4, caused by the potential parallelism between T2 and either of T1 and T4, that
will not occur if T2 is not run concurrently to both T1 and T4.

Finally, in Figure 3.5b there are no exclusion edges between T0 − T1 and T4 − T5

on one hand, and T0 − T3 and T4 − T5 on the other hand. This is the case because
all tasks requiring T0 − T1 or T0 − T3 (i.e., T0, T1, and T3) must have been completed
before any task requiring T4 − T5 (i.e., T4 and T5) can start their execution.

From this overview of MEGs, it can be deduced that some of its exclusions, those
of the second type, can be removed. Consequently the maximal memory footprint
can be reduced by limiting the parallelism between some concurrent tasks.

So far, we presented MEGs as computed from an unscheduled workload graph.
In this case the MEG is called a pre-scheduling MEG, and will represent the memory
exclusions from all possible schedules. Instead, if a MEG is computed from a fully
scheduled workload graph it is called a post-scheduling MEG, and will represent only
the memory exclusions that do occur when executing the workload with the specified
schedule. The set of edges in a post-scheduling MEG will always be a subset of the
set of edges in the pre-scheduling MEG of the same workload. More precisely, all
edges of the first type will be part of any post-scheduling MEG, but edges of the
second type may be removed. It should be noted that it is not always possible to
find a schedule such that all edges of the second type would be removed. Even
when possible, a schedule leading to the removal of all edges of the second type
necessarily corresponds to a sequential execution of the applications composing the
workload graph, and is therefore of little practical interest. For example, in Figure 3.5
it is not possible to remove simultaneously the edges (T0 − T1, T3 − T4) and (T0 −
T3, T1 − T4). Indeed, removing the former requires to have terminated the execution
of T1 before starting the one of T3, whereas removing the latter requires the opposite,
meaning that no schedule can lead to a post-scheduling MEG in which both edges
are removed.

3.4.2 MEG Analysis

Memory Exclusion Graphs can be used to analyze the memory allocation and re-
quirements, and as such, to analyze whether memory shortages might occur. The

62

shortage-prevention technique presented here uses this fact to look if memory short-
ages are a potential problem and, if so, annotate the workflow graph with artificial
dependencies until it safe, shortage-free, execution can be guaranteed. This means
that there exists no possible scheduling of the annotated workload graph leading to
shortage, therefore removing the need for any dynamic recovery or deadlock pre-
vention mechanism.

The memory usage analysis is based on the analysis of cliques in the MEG com-
puted from the workload graph, as a clique represent of set of buffer that might be
stored in the same memory of the system at the same time. As such, if all buffers
constituting a clique cannot fit inside the memory a shortage could occur, meaning
that the allocation of at least one of these buffers could stall indefinitely, leading to a
deadlock in the system.

Since a MEG is used to represent memory exclusion relations in a single memory,
the analysis of multi-memory systems is done by applying the analysis to the MEG of
each memory, until no MEGs are left with clique not fitting inside their corresponding
memory.

Input

Different types of information serve as input: (i) one or more application graphs
annotated with real-time constraints (tasks’ deadlines) and (ii) mapping information
that assigns tasks to PEs, specifies the size of the memories, associates estimates
of the tasks’ WCET.

Application model — Each application SDF graph is first transformed, as de-
scribed in Subsection 2.2.1, into a directed Acyclic Homogeneous Synchronous Data
Flow (AHSDF) graph H = (T ,B). Tasks in T are associated to identical (homoge-
neous) production and consumption rates on FIFOs buffers in B. The result of this
transformation on the example SDF graph can be seen at bottom of Figure 2.1.
This transformation is necessary to expose data parallelism and memory allocation
options (Homogeneous SDF) as well as to isolate one iteration of the algorithm cap-
tured by the original SDF graph (Acyclic Homogeneous SDF).

Platform model and mapping information — A generic logical architecture of the
target platforms can be seen in Figure 3.1. These platforms are composed of a set
of n Processing Elements (PEs) and m memories.

63

(a) Example workload

(b) Corresponding MEG

Figure 3.6: Example applications, whose concurrent execution may cause a memory
shortage

3.4.3 Memory Shortage Prevention

As described in [21], AHSDF graphs can be updated with scheduling constraints.
These constraints have the effect of removing exclusion relations (edges) in the cor-
responding MEG. The analysis is composed of two phases. First, for each memory
a MEG is created from the AHSDF graph of all applications, and pruned of all ex-
clusions that are not possible under the timing constraints and task WCETs. The
second phase iteratively removes potential memory shortages seen in the MEGs by
adding a precedence constraint using a heuristic, preventing the simultaneous allo-
cation of the set of involved buffers. Of course, the new precedence constraint must
be selected in such a way that the AHSDF graph remains acyclic, since violating this
characteristic would prevent the full execution of the workload. If no such precedence
constraint is found by the analyzing algorithm, the memory shortage prevention fails.
This can happen if the memory size is smaller than the required minimum to perform
the workload execution, or if previously added constraints do not allow the heuristic
to add a valid new precedence constraint.

As explained above, a memory shortage may occur if a circular wait happens
due to a memory being unable to host a buffer. This situation can be detected by
inspecting cliques in a MEG M = (V,E,w). A clique of an undirected graph is
defined as a subset of the vertexes such that every two distinct vertexes in the clique
are adjacent. A clique C of M is thus such that:

C ⊆ V, ∀ v0 ∈ C, v1 ∈ C, v0 6= v1, (v0, v1) ∈ E

64

(a) Example workload, updated with a scheduling con-
straint (dashed line)

(b) Updated MEG

Figure 3.7: Updated applications, free of memory shortages

The weight of C is the sum of the weights of its vertexes:

w(C) =
∑
v∈C

w(v)

It defines the maximum amount of memory that must be allocated to store the
buffers in C. This is regardless of the scheduling policy for the tasks that pro-
duce/consume the buffers represented by vertexes of a MEG. Therefore, if the weight
of a clique exceeds the memory capacity, a memory shortage may occur at run time.
Such cliques will be referred as oversized cliques hereafter. We define a minimal
oversized clique as an oversized clique such that removing any buffer from it would
lead to a clique that is not oversized.

In case of pre-scheduling MEGs, the presence of an oversized clique is a nec-
essary (but not sufficient) condition for a memory shortage to occur. For post-
scheduling MEGs, the presence of an oversized clique becomes a necessary and
sufficient condition. For example, let’s consider the scenario where two applications
can run simultaneously, as shown in Figure 3.6a that represents the correspond-
ing cluster of partitioned AHSDF graphs. These applications run on a platform with
one PE and a memory of capacity 1000. Executing these applications will lead to
a memory shortage if producer tasks A and X are scheduled to run before both
consumer tasks B and Y . This is the case because neither output buffer BC nor
Y Z can be allocated. This is visible in the corresponding MEG (Figure 3.6b) as the
clique {AB,BC,XY } (and its symmetric equivalent {AB,XY, Y Z}) is of size 1100,
thus larger than the available memory capacity.

65

1 input
2 M ; // Memory Exclusion Graph to analyze
3 mem_size; // size of the memory
4 output
5 OC; // minimal oversized clique of M (or empty set if none found)
6 define
7 size(clique); // sum of the sizes of all buffers in clique

8 OC ← ∅; // initialization
9 max_cliques← find_maximal_cliques(M);

10 for clique ∈ max_cliques do
11 if size(clique) > mem_size then

// reduce to minimal oversized
12 forall buffer ∈ clique do
13 if size(clique \ {buffer}) > mem_size then
14 clique← clique \ {buffer};
15 end
16 end
17 OC ← clique;
18 break;
19 end
20 end

Algorithm 2: Find a minimal oversized clique in a MEG

The mechanism to prevent memory overflows is based on finding minimal over-
sized cliques in an unscheduled MEG. A possible way to find such cliques is to use
the algorithm described in Algorithm 2. To find a minimal oversized clique the first
step is to look for a maximal clique of the MEG that is oversized, and then remove ver-
texes from it until a minimal oversized clique is obtained. A maximal clique is a clique
to which no vertexes can be added without resulting in a graph that is not a clique.
If there is an oversized clique in the MEG, a scheduling constraint is added to the
workload graph, from the consumer task of a buffer in the clique to the producer task
of another buffer of the clique (while ensuring that it would not create a loop in the
workload graph). The MEG is then updated to remove exclusions links not applicable
with the scheduling constraint in place. The algorithm looks specifically for minimal
oversized cliques because removing a minimal oversized clique also removes any
larger clique containing all buffers of that minimal oversized clique, thus reducing the

66

number of scheduling constraints added, and the number of times the algorithm must
be executed. The additional scheduling constraint corresponds to the dashed link in
Figure 3.7a, and the updated MEG is shown in Figure 3.7b. Adding scheduling con-
straints prevents from having all the producer tasks of buffers which are part of the
clique from being executed while none of the corresponding consumers have. This
avoids having to fit all the buffers of the oversized clique in memory at the same time,
thus preventing the shortage. In this example, the prevention of memory shortage
is visible in the updated MEG in Figure 3.7b, as the oversized clique {AB,BC,XY }
is no longer present. The remaining maximal cliques {AB,BC} and {BC,XY, Y Z}
are not oversized, meaning that there are no oversized cliques left in the MEG.

Since finding the cliques in a MEG is computationally expensive (the clique deci-
sion problem is NP-complete [45]), the proposed analysis to prevent memory over-
flow should be executed statically. The minimal oversized clique returned by Algo-
rithm 2 is dependent on the order of selection of the maximal cliques (line 10), and
on the order in the buffers from said clique will be explored (line 12). This variability
in the returned minimal oversized clique in turn impacts the artificial constraint which
is added, thus having a potential effect on the quality of allowed schedules, but this
aspect has not been studied in this thesis. It should also be noted that Algorithm 2
is only one way to find minimal oversized cliques. Another possible way would be to
construct a minimal oversized clique by selecting buffers one by one, each additional
buffer being in exclusion relations with all previously selected buffer. Buffers could
be selected by their size (from the largest to the smallest) or by the due-date of their
producer for example. This process would be repeated until either a minimal over-
sized clique is found, or, if not, a selected buffer would be removed to continue the
exploration, as removing a buffer can allow adding buffers that were not selectable
previously. Again, studying alternative algorithms to find minimal oversized clique
has not been studied during this thesis.

The MEG analysis described here should be made on the worst-case scenario
for the system, where all applications in the workload run simultaneously, to produce
correct results. This is a limitation since the clique finding is NP-complete. There are
potential solutions to reduce the size of the problem. A first option is to define a set
of worst-case scenarios, where each scenario only has a proper subset of all appli-
cations running concurrently. With this approach, it should be forbidden at run-time

67

to run simultaneously a set of applications that is not covered by one of the studied
scenarios, i.e., the set of running applications must be included or equal to the appli-
cation set of at least one scenario. This makes sense and should definitely be used in
situations where there are known incompatibilities between two or more applications
that completely forbid to run them simultaneously. Examples of this can be found
when two different modes (e.g. size of a modulation, rate of a channel decoding. . .)
of the same application are represented as two independent applications. Depend-
ing on the currently active mode, only one or the other application variant will run but
not several. Of course this approach is limited by the total number of combinations
to analyze, that increases rapidly if too many applications have too many variants. A
second approach is to divide the system into two or more subsystems and analyzing
them separately, each having its own dedicated part in the memories of the target
platform. The drawback of this option is the underuse of memory resources, since
one subsystem cannot use memory space that other second subsystem might not
be using at a given instant. On the other hand, this approach has the advantage
of partially lifting the same period requirement, since each subsystem can have an
independent period. This means that applications from different subsystems are no
longer required to be extended to a common periods, but applications that are part
of the same subsystem are still subject to this extension process if they do not share
the same period. This second approach requires to carefully select the application
sets and memory sizes of the different subsystems to minimize memory underuse.

3.5 Conclusions and Limits

In this chapter the first contribution of this thesis was presented, a new approach to
prevent memory shortages and the deadlocks they cause when scheduling periodic
dataflow applications on parallel and heterogeneous platforms. The additional cost
of these computations means that they should be executed during the design phase
of the system. The memory usage analysis is based on the computation of cliques
in Memory Exclusion Graphs, and produces artificial dependencies that constrain
the scheduler to only select safe, non-deadlocking schedules, with minimal dynamic
computational overhead.

The technique to prevent memory shortages presented in this chapter is limited

68

for its practical use by multiple factors. One factor is the constraint on application
periods being identical or extended greatly reduces the application sets for which
this technique can be used, since the extension process can lead to a large increase
in the size of the system to analyze. A second lies with the quality of the proposed
solution, which is greatly dependent on (1) the order in which oversized cliques are
selected, (2) the order in which buffers are removed from oversized cliques to build
minimal ones, and (3) on which artificial dependency is finally added to the AHSDF
graph to remove the considered minimal oversized clique. Finally, the execution time
of the memory shortage analysis is quite high for an approximate method, as is
shown in the experimental evaluation of Chapter 5. With these limitations another
method that is less restrictive on the sets of application it can support, and a behavior
not dependent on its specific implementation has been developed. This second
method is presented in next chapter (Chapter 4), and has been implemented in a
run-time environment described in Chapter 6.

69

Chapter 4

Efficient Liveness Analysis

4.1 Introduction

In this chapter the second contribution of this thesis is presented. It is a liveness
analysis targeting platforms regardless of their memory architecture (UMA, NUMA).
This method is based on the analysis of an automaton, called the control automaton,
whose state-space is a subset of the state space of the conventional automaton
representing all possible schedules. This chapter demonstrates that analyzing this
subset of the full state-space is sufficient to guarantee the absence of deadlocks,
without any loss in the precision of the analysis in comparison to analyzing the full
state-space. The reduction of the state-space to analyze makes it possible to run an
exact deadlock prevention analysis in a reasonable amount of time for larger systems
than would be possible using the conventional approach.

In comparison to the method presented in the previous chapter this method can
be used to produce exact deadlock handling strategies, that is to say it can be used
to forbid only schedules leading to a deadlock while allowing all safe schedules. Fur-
thermore, this method does not need a fully static mapping for tasks as long as the
mapping of buffers is fixed and known in advance. This method is also indepen-
dent of timing information, making it suitable for sets of applications for which the
extension to a common period is too expensive, or where tasks can be mapped onto
different PEs leading to different execution times (heterogeneous architecture). The
purpose of this method is to be as flexible as possible, leaving large possibilities with

71

regard to the implementation of the scheduler. As such the scheduler could be static
or dynamic, is not constrained in its objectives (e.g., maximizing the throughput, min-
imizing the memory footprint), and is prevented from selecting only the schedules
actually leading to a deadlock.

The overall flow of the analysis is illustrated in Figure 4.1. The analysis is divided
in three steps:

(i) An automaton representing the scheduling state-space of a dependency graph
is computed.

(ii) This automaton is pruned of states overflowing at least one memory.
(iii) The final automaton, representing all possible (but potentially deadlocking)

schedules, is analyzed to extract all safe non-deadlocking schedules.
The difference between the conventional approach and the contribution of this thesis
lies in the replacement of the conventional schedule automaton by a significantly
smaller automaton –the control automaton– without any loss in the precision of the
analysis. Note that it is possible to merge the first two steps and directly compute an
automaton pruned of overflowing states and their inaccessible successors.

The remainder of this chapter is structured as follows: First, Section 4.2 presents
design assumptions and the characteristics of the target platforms. Then Section 4.3
presents the conventional schedule automaton used in liveness analysis, and Sec-
tion 4.4 the modeling of the workload and the constraints on the applications it repre-
sent. The liveness analysis itself, and how it can be used to design an exact deadlock
prevention strategy, is presented in Section 4.5. An evaluation of the gain in perfor-
mance when analyzing a control automaton instead of the conventional schedule
automaton is conducted in Section 4.6. The mathematical proof justifying the use of
control automaton without any loss in generality is presented in Section 4.7. Sec-
tion 4.8 concludes the chapter.

4.2 System models and design assumptions

A generic instance of the targeted logical architectures is shown in Figure 4.2. This
architecture is composed of a set of Processing Elements (PE, e.g., CPUs, GPUs,
hardware accelerators), local and global memory units connected by a set of buses
and interconnects. Direct Memory Access (DMA) engines can be used to transfer

72

Design tool (e.g., compiler,
CAD tool, model-based tool)

Graph to scheduling
automaton

transformation

Pruning of the
scheduling
automaton

Task execution environment
(e.g., hardware scheduler, OS)

(i)

(ii)

dependency graph
D = <T,B>

Search of
deadlock-free states (iii)

Design tool (e.g., compiler,
CAD tool, model-based tool)

Graph to control
automaton

transformation

Pruning of the
control automaton

Task execution environment
(e.g., hardware scheduler, OS)

(i)

(ii)

dependency graph
D = <T,B>

(iii)

Conventional Analysis Flow Proposed Analysis Flow

Search of
deadlock-free states

Figure 4.1: The steps of liveness analysis

data between memories. Memories are considered at a logical (abstract) level, re-
gardless their actual implementation (e.g., SRAM, DRAM). Memories are limited in
size (fixed size) and shared by tasks at run-time; we do not consider cache memo-
ries as, by design, a cache cannot overflow. Caches are thus considered as invisible
sub-parts of their host PEs. It should be noted that our contribution is not based on
any assumptions on the memories of an architecture, e.g., ports, access restrictions,
access times of memories.

The workload (i.e., set of applications) running on the target platform is repre-
sented by an acyclic dependency graph, H = (T ,B) (with T set of tasks, B set
of precedence constraints and input/output buffers), as is the case for the first con-
tribution. An example workload can be seen in Figure 3.3 from Chapter 3. Our
contribution is not based on any hypothesis on the timing characteristics of tasks or
communications, like worst-case execution or communication times, deadlines, etc.

73

...
Mem.

D
M
A

High speed interconnect
(data processing)

Low speed interconnect
(I/O and control)

Control
unitDMA

Multi-core unit

PE2 PE3

PE4 PE5

Single-core unit

Global
memory

Shared
memory

D
M
A

PE1

Figure 4.2: Target architecture

This is an important difference in requirements from the first contribution. This timing
independence gives more flexibility to the system at run-time, since it allows applica-
tions to have independent periods and tasks to have multiple implementations with
different timing characteristics depending on the PE executing the task at run-time. If
such timing characteristics are available, however, they can be used to further reduce
the computational cost of solutions based on our results. One could, for instance, ap-
ply one form or another of critical path analysis to compute earliest and latest tasks’
start and end times, deduce that some tasks can or cannot be simultaneously active,
and further prune the state space of unreachable states.

This contribution is valid for scheduling and memory-management decisions that
are taken both on-line and off-line, locally for a specific PE or globally for an entire
platform. In comparison to the method presented in the previous chapter, some as-
sumptions are lifted or changed.
All application hypotheses (H4, H5, and H6) are lifted: timing information of tasks are
not needed, and application periods are no longer required to be identical. This re-
moves the need to extend applications to a common period, thus avoiding to expend
the workload graph to analyze.
The mapping hypothesis (H5) is replaced by:

• H10: Buffer mapping is defined statically. Task mapping can be defined dynam-
ically and task migration across PEs is allowed, as long as it is compatible with
the static buffer mapping.

Preemption is allowed (H1 is lifted), and the following scheduling assumption is
added:

• H11: Task starts or terminations are atomic events that cannot occur simultane-

74

ously. This is a very common hypothesis in formal automaton analysis where
events have no duration and can thus not overlap.

All memory management assumptions (H7, H8, and H9) are still effective.
The next section presents the making of conventional pruned scheduling automa-

ton from dependency graphs, that is, steps (i) and (ii) of the conventional analysis
flow in Figure 4.1, and a property of those automaton that makes possible their re-
duction to smaller automaton for the purpose of memory usage analysis.

4.3 Schedule Automaton

Figure 4.3: Example AHSDF for a single-application, with mapping

For the sake of simplicity, lets consider an example with a single-application, and
a target platform composed of a single memory unit of size 15 data units and 3 PEs.
In the following all memory sizes are expressed in data units. In Figure 4.3, identifiers
denote the mapping of buffers and tasks, and dotted arrows the data dependencies.
Note that only the mapping of buffers is required with this analysis. The mapping of
tasks does not have to be determined statically and only needs to be compatible with
the buffer mapping.

The possible schedules for the application set are represented by a directed
acyclic schedule automatonG = (Q,E), whereQ is the set of possible states for the
system, and E the set of possible transition between those states, Figure 4.4. This
automaton corresponds to the automaton, that is well-known in the literature [63],
and that captures all operations in a RAS. The schedule automaton is conceptually
similar to the reachability graph of Petri nets (cf. Figure 2.4), presented in Chapter 2.

75

Figure 4.4: Schedule automaton for example in Figure 4.3

Both the schedule automaton and the reachability graph are used to represent the
possible states of an underlying system, and in which ways this system can transition
from one state to another. Our schedule automaton is a straightforward instance of
the generic automaton in [63], where one single resource type (memory) is consid-
ered. Furthermore, states that correspond to schedules where at least one memory
is overflowed are pruned.

States in Q represent a possible configuration—a step in a schedule—for the
system under study. We denote a state x with a tuple (TCx, TRx, TFx). TCx, TRx

and TFx are, respectively, the lists of identifiers for the tasks that have already

76

Completed, are currently Running and will execute in the Future. For sake of leg-
ibility tasks in RAS states will be referred to by their indexes only (e.g., the set com-
prised of T1 and T2 will be represented as 12), and empty sets are denoted by −.
Because of hypothesis H11 in Section 4.2, each transition in G represents a state
transition where exactly one task either starts or terminates. A label on a transition
indicates which task t is started or terminated and the variation of the memory us-
age in the system. This is expressed by labels in the form a ± b = c where a is
the memory occupancy in the edge start state, ±b is the memory footprint variation
due to the allocation or deallocation of buffers when starting or stopping task t, and
c is the memory available in the edge destination state. For example, in Figure 4.4
the transition from state (0,−, 12345) to (0, 1, 2345) has the label start(1) 3+4=7. It
represents the starting of task T1, from an initial memory footprint of 3, allocating 4
(since the size of the output buffer of T1 is 4), and leading to a final memory footprint
of 7.

A scheduling automaton is made by representing the possible states of a RAS. In
Figure 4.4 we can see a scheduling automaton for the RAS described in Figure 4.3.
The initial state xstart has all tasks in TF : (−,−, 012345). Initially, only T0 can be
executed, leading to states (−, 0, 12345) and then (0,−, 12345). From here, three
tasks have their input requirements satisfied: T1, T2, and T3. This gives the three
outgoing transitions and their respective destination states. This process can be
pursued until all possible states and transitions have been created. An example state
that is impossible, therefore pruned (and not present in Figure 4.4) is (0, 123, 45).
This state would require 1 + 1 + 1 + 4 + 4 + 8 = 19 > 15, thus overflowing the
capacity of the memory. For multi-application systems, a schedule automaton is
the Cartesian product of the individual application schedule automaton, pruned of
vertexes (and their incident transitions) that overflow at least one memory. In target
platforms with more than one memory, that is, the general case, the variations of
memory occupancy are labeled with memory identifiers:

start(1) Mem3(3+4=7) Mem1(0+5=5)...

The pseudo-code to create a schedule automaton pruned of overflowing states
from an AHSDF graph is given in Algorithms 3, 4 and 5 where cntEvt is a map which
keys are task start or end events and which values are the count of other events

77

that must happen before the key can be selected: if cntEvt[start(t)] = 5 there are
5 events that must happen before task t can start. Highlighted lines show the differ-
ences with Algorithm 6 that will be presented later. For AHSDF representing multiple
concurrent applications (or instances of a same application), the schedule automa-
ton of the system can be created by exploring the full AHSDF graph or, alternatively,
by making the Cartesian product of the respective application schedule automaton,
pruned of the states overflowing at least one memory unit. The latter approach tends
to be more efficient to compute the schedule automaton of the whole system, as it
reduces the state space via the pruning of each application schedule automaton and
limits redundant computations, especially for application sets where some applica-
tions having multiple concurrent iterations.

1 input
2 H = (T ,B); // AHSDF of applications
3 M ; // vector of memory units’ sizes
4 output
5 G = (Q,E); // pruned schedule automaton of H
6 define
7 H.predecessors(t); // set of immediate predecessor tasks of t in H
8 H.successors(t); // set of immediate successor tasks of t in H
9 H.occupancy(x)[i]; // occupancy of memory i in state x

10 cntEvt← emptyMap; // initialize map
11 xstart ← (∅, ∅, T); // initial state: all tasks to be in executed in future
12 Q← {xstart}; // initial state set: start only
13 E ← ∅; // initial edge set: empty
14 foreach t ∈ T do // Initialize cntEvt
15 cntEvt[start(t)]← |H.predecessors(t)|;
16 cntEvt[end(t)]← 1;
17 end
18 explore(xstart, cntEvt); // recursively explore-build automaton graph

Algorithm 3: Compute schedule automaton from an AHSDF graph

Before stating our theorem, we introduce the following definitions. In automaton
G, we define a state x as terminal if it has no successor, e.g., (012,−, 345), orange
states in Figure 4.4 and Figure 4.5. A state is blocking if there is no path from
x to the final state xend (the state representing the completion of all tasks), e.g.,

78

1 Function explore(x, cntEvt)is
2 input
3 x = (tc, tr, tf); // current state
4 cntEvt; // current map
5 foreach (a, n) ∈ cntEvt do
6 if n = 0 then // event can happen
7 y ← getNextState(x, a); // x successor by a
8 if ∀i ∈ {1, . . . ,m}, H.occupancy(y)[i] ≤M [i] then // no overflow
9 newEdge← (x, a, y);

10 E ← E ∪ {newEdge};
11 if y /∈ Q then // y not yet explored
12 Q = Q ∪ {y};
13 newCntEvt← cntEvt.copy();
14 newCntEvt.remove(a);
15 t← task(a);
16 if type(a) = end then
17 foreach t′ ∈ H.successors(t) do
18 newCntEvt[start(t′)]← newCntEvt[start(t′)]− 1;
19 end
20 else if type(a) = start then
21 newCntEvt[end(t)]← newCntEvt[end(t)]− 1;
22 explore(y, newCntEvt);
23 end
24 end
25 end
26 end
27 end

Algorithm 4: explore function for the schedule automaton

79

1 Function getNextState(x, a)is
2 input
3 x = (tc, tr, tf); // source state
4 a; // action from source state
5 output
6 y; // x successor state by action a
7 t← task(a);
8 if type(a) = start then
9 y ← (tc, tr ∪ {t}, tf \ {t});

10 else if type(a) = end then
11 y ← (tc ∪ {t}, tr \ {t}, tf);
12 return y

13 end

Algorithm 5: getNextState function

(0, 2, 1345), yellow states in Figure 4.4 and Figure 4.5. A starting transition is one
that corresponds to a task starting execution and the allocation of its output buffers.
Conversely, a stopping transition is one where a task terminates and some of its
input buffers may be deallocated if they are not needed anymore. A state is starting-
only if all its outgoing transitions are starting transitions (or it is a terminal without
outgoing transitions); it is non-starting-only if at least one of its outgoing transitions
is a stopping transition.

A relevant property of a non-starting-only state x = (TCx, TRx, TFx) is that it has
a unique successor starting-only state y = (TCx ∪ TRx,−, TFx) that is reachable
by at least one path composed exclusively of stopping transitions. We name this
state y the control state of x. It only differs from x in that all tasks running in x

are completed in y. The y state is reachable from x because as x ∈ Q it does not
overflow any memory and a stopping transition never increases the occupancy of
memories; it can only decrease it if some input buffers of the stopped task are not
needed anymore. A more formal proof of this lemma will be given in Section 4.7.
Example: in Figure 4.4, state (023,−, 145) is the control state of states (0, 23, 145),
(02, 3, 145), and (03, 2, 145).

Theorem 1. Let G = (Q,E) be a schedule automaton, let x be a non-starting-only
state and let y its control state. x is blocking if and only if y is blocking.

80

Proof. Consider there exists a path π from a non-starting-only state x to the final
state in G, π = x, . . . , xend, there is also an equivalent path π′ from the corresponding
control state y to the final state in G, π′ = y, . . . , xend. Along path π′ the same
tasks as in π are started or stopped, in the same order, except for the tasks that are
currently running in x and already completed in y. For these tasks there is a stopping
transition in π but no transition in π′. At each state in π′ the memory consumption of
any memory is less than or equal to that in the equivalent state in π. Hence, if there
exists a path from x to xend there exists also a path from y to xend. Conversely, if y is
a blocking state, x must be blocking too. And as y is a reachable successor of x, if y
is non-blocking, x is non-blocking too. �

The formal statement of the theorem and its proof are deferred to Section 4.7.
This is a powerful theorem: it implies that studying only a limited set of states
is sufficient to detect deadlocks. In the next section this theorem is used to de-
velop a new type of automaton that is equivalent for memory usage analysis, but
smaller with regard to the number of states and transitions and thus faster to ana-
lyze. This corresponds to steps (i) and (ii) of the proposed analysis flow in Figure 4.1.

4.4 Control Automaton

Figure 4.5: Control automaton for Figure 4.3

81

Figure 4.5 shows an automaton that we call control automaton, which is guar-
anteed by Theorem 1 to preserve the properties of its corresponding schedule au-
tomaton, Figure 4.4. All nodes in a control automaton are starting-only states: states
for which all outgoing transitions, if there are any, are task starting transitions. Note
that some possible states, corresponding to interleavings of different tasks (e.g.,
(0, 13, 245) for Figure 4.4) are not present in the control automaton as they are non-
starting-only states and Theorem 1 guarantees that studying starting-only states
only is sufficient.

A control automaton can theoretically be obtained from the schedule automaton,
but it is more efficient to slightly change Algorithms 3, 4 and 5 to directly produce the
control automaton without constructing the schedule automaton. The pseudo-code
to create a control automaton is shown in Algorithms 6, 7 and 8, with highlighted lines
illustrating the difference. These differences remove all the non-starting-only states
and all transitions corresponding to the end of a task. More precisely, when the
execution of a task t starts, the following state is obtained by moving said task from
the set of future task to the set of completed tasks, instead of the set of running tasks,
as starting-only states always have an empty set of running tasks (since any task in
that set would lead to an outgoing task end transition in the automaton). This can be
seen for example with state (03,−, 1245) being followed by the states (03, 1, 245) and
(03, 2, 145) in Figure 4.4, but by the states (013,−, 245) and (023,−, 145) instead in
Figure 4.5.

In the next section, step (iii) of the analysis flow of Figure 4.1 is presented for the
control automaton. It can easily be adapted to the conventional schedule automaton
since the search of deadlock-free states in the conventional and proposed analysis
flows follow the same principle. We also propose a possible representation of the
results, to be used in an execution environment.

4.5 Liveness Analysis of Automaton

In this section we informally describe the liveness analysis, based on a concrete
example. Our contribution rests on Theorem 1 presented in Section 4.3 of this chap-
ter, and fully formalized in Section 4.7. This theorem allows us to precisely detect
deadlocks without the need to explore the complete state space of all schedules for

82

1 input
2 H = (T ,B); // AHSDF of applications
3 M ; // vector of memory units’ sizes
4 output
5 G = (Q,E); // pruned schedule automaton of H
6 define
7 H.predecessors(t); // set of immediate predecessor tasks of t in H
8 H.successors(t); // set of immediate successor tasks of t in H
9 H.occupancy(x)[i]; // occupancy of memory i in state x

10 cntEvt← emptyMap; // initialize map
11 xstart ← (∅, ∅, T); // initial state: all tasks to be in executed in future
12 Q← {xstart}; // initial state set: start only
13 E ← ∅; // initial edge set: empty
14 foreach t ∈ T do // Initialize cntEvt
15 cntEvt[start(t)]← |H.predecessors(t)|;
16 end
17 explore(xstart, cntEvt); // recursively explore-build automaton graph

Algorithm 6: Compute control automaton from an AHSDF graph

a workload graph.

A possible representation of the results obtained from the liveness analysis are
the anti-deadlock rules. They are obtained from an automaton by searching for
transitions from a non-blocking state to a blocking state. In order to decide which
states are blocking or non-blocking, a reverse traversal of the automaton is performed
starting from the final state xend up to the initial state xstart. All states reachable from
xend are non-blocking, and the remaining ones are blocking. These rules can be
used to ensure the deadlock-freedom of a system, e.g., by compilers, CAD tools. In
Figure 4.5, we can produce three rules, forbidding the execution of task T2 if the set
of future tasks TF is 12345, 2345, or 1245. More generally, anti-deadlock rules can
be formalized as r = (Br, Tr) where Br represents a set of buffers simultaneously
allocated in memory (on the same or on different units), and Tr the set of tasks
whose execution would eventually lead to a deadlock and therefore must not be
executed when all buffers in Br are allocated. Any scheduler that follows the set of
rules produced by the liveness analysis is guaranteed to avoid the deadlocks caused
by memory shortage.

83

1 Function explore(x, cntEvt)is
2 input
3 x = (tc, tr, tf); // current state
4 cntEvt; // current map
5 foreach (a, n) ∈ cntEvt do
6 if n = 0 then // event can happen
7 y ← getNextStartingOnlyState(x, a); // x successor by a
8 if ∀i ∈ {1, . . . ,m}, H.occupancy(y)[i] ≤M [i] then // no overflow
9 newEdge← (x, a, y);

10 E ← E ∪ {newEdge};
11 if y /∈ Q then // y not yet explored
12 Q = Q ∪ {y};
13 newCntEvt← cntEvt.copy();
14 newCntEvt.remove(a);
15 t← task(a);
16 foreach t′ ∈ H.successors(t) do
17 newCntEvt[start(t′)]← newCntEvt[start(t′)]− 1;
18 end
19 explore(y, newCntEvt);
20 end
21 end
22 end
23 end
24 end

Algorithm 7: explore function for the control automaton

1 Function getNextStartingOnlyState(x, a)is
2 input
3 x = (tc, ∅, tf); // source state
4 a; // action from source state
5 output
6 y; // x successor starting-only state by action a
7 t← task(a);
8 y ← (tc ∪ {t}, ∅, tf \ {t});
9 return y

10 end

Algorithm 8: getNextStartingOnlyState function

84

4.5.1 Reduction of computational costs

Thanks to Theorem 1, we obtain a considerable gain in terms of the number of states
to inspect in a control automaton, as opposed to the states to explore in a schedule
automaton. This gain depends on the number of tasks and on the parallelism in a
workload graph. It can be expressed in closed form only for linear workload graphs,
with no parallelism. In this case, the schedule automaton of a workload with n tasks
is composed of 2n + 1 states. Only n + 1, out of 2n + 1 are the states that form the
corresponding control automaton. This yields a reduction factor of about 2. In gen-
eral, for a system composed of k instances of similar linear workloads, the reduction
factor amounts to approximately 2k.

The presence of parallelism in a workload graph increases the gain (reduction
factor). This significantly favors the scalability of analysis based on Theorem 1. This
reduction cannot be computed in closed form, however, it can be appreciated by con-
sidering a few examples. In the workload of Figure 4.3, where the maximum degree
of parallelism is 3 (3 tasks, namely tasks 1, 2 and 3, at most can execute in parallel
at any time), the number of states to analyze is reduced from 27, in Figure 4.4, to 11,
in Figure 4.5. For systems of applications, this reduction is even more important. In a
system composed of 10 instances of the parallel workload in Figure 4.3, our theorem
yields a reduction of the number of states by a factor of (27/11)10 ≈ 8000. Instead,
for a system with 10 linear workloads, our theorem yields a smaller reduction, equal
to 210 = 1024.

4.6 Evaluation of Schedule and Control Automaton

Analysis

In this section, we discuss first the evaluation of the effectiveness of searching for
deadlocks in the control automaton as opposed to searches in a schedule automa-
ton. Our evaluation is summarized in Table 4.1 for 3 types of workloads, where, for
each type, we report the average and worst-case results of 100 experiences. Then
we compare our exact approach with an existing heuristic to illustrate that exact ap-
proaches are much more permissive than heuristics with regard to the number of
possible schedules.

85

The aim of our evaluation is to provide statistically significant results that show the
limits of traditional full state-space analysis and prove that our contribution pushes
these limits further away, enabling the study of more complex systems. We created
a test-bench by generating random application graphs using SDF3 [4]. In our test-
bench, each actor has a variable number of successors, between 2 and 5. The
maximum degree of parallelism is 4 tasks. The average size of buffers is 2,048 du. In
order to compare our work with the standard maximally permissive liveness analysis
we had to guarantee that the latter would not overflow the RAM of the PC where we
ran the experiments. For instance, for a workload with 6 applications, the maximum
number of tasks per application we study here is 6, as for any larger number of tasks
the complete schedule automaton would overflow the PC RAM, even if our approach
allows to handle much larger problems. The evaluation was conducted on a personal
computer with 1 CPU core @ 3.50GHz, 32 GiB of RAM. The analysis running times
are not polluted by swapping of memory pages by the Operating System (OS): we
explicitly forbade swapping in our configuration.

Workloads are scheduled on the same target architecture, with 3 PEs and 3 mem-
ories, each with a capacity of 4 Gibibyte (1 GiB is 230 = 1, 073, 741, 824 bytes) (GiB).
This large capacity was selected because it is paradoxically a worst case scenario
for our deadlock analysis: any memory can host all the buffers of the workloads, thus
the execution of a workload never incurs into deadlocks and the complete exploration
of the graphs is necessary. Tasks in a workload were randomly mapped to PEs and
their input/output buffers were also randomly assigned to memories. We allowed
buffers of a given task to be mapped to physically different memories.

In Table 4.1, we can see that, thanks to our theorem, we reduce by at least two
orders of magnitude the number of states in the automaton to analyze, and therefore
of the computation time of the liveness analysis. The complexity of our approach
is still exponential. However, this reduction enables maximally permissive deadlock
analysis on more complex systems for which the cost of analysis was prohibitive.
With a 32 GiB RAM PC, we reach the limit of the control automaton that we can
study for cases with approximately 150M states. This corresponds to 8 applications
for the first workload type (top-most), 7 applications for the second and 6 applications
for the last (bottom-most). It is possible, for instance, to analyze a configuration with
6 applications of 10 tasks each, with a control automaton of size 149M, while the

86

analysis of the complete automaton is out of reach with a size of 268× 109 states.

Number of states Analysis time
6 apps. of 6 tasks Average Maximal Average Maximal

Schedule automaton 63M 139M 12 min 28 min
Control automaton 458k 1.2M 5.1 s 14 s

5 apps. of 8 tasks Average Maximal Average Maximal

Schedule automaton 59M 148M 10 min 26 min
Control automaton 450k 834k 4.3 s 8.2 s

4 apps. of 10 tasks Average Maximal Average Maximal

Schedule automaton 36M 149M 5 min 24 min
Control automaton 273k 646k 2.3 s 5.6 s

Table 4.1: Evaluation results for a test-bench of 3 workload types

A comparison of the exact deadlock handling strategy derived from the liveness
analysis presented in Section 4.5 of this chapter with the deadlock prevention pre-
sented in Chapter 3, and with a state-of-the-art tool is deferred to Chapter 5.

4.7 Mathematical Formalization

4.7.1 Definitions

We define here all the mathematical objects that are used in the formal proof of
theorem 1. All given examples are from Figure 4.3 or its derived schedule automaton
shown in Figure 4.4. We first prove theorem 1 for a system with only one memory
unit. The generalization to multi-units systems is trivial.

• v ∈ N is the size of memory in a target platform.
Example: v = 15.

• T the set of tasks of all applications in a workload graph.
Example: T = {T0, T1, T2, T3, T4, T5}.

• B the set of input and output buffers in a workload graph.
Example: B = {T0 − T1, T0 − T2, T0 − T3, T1 − T4, T3 − T4, T2 − T5, T4 − T5}.

87

• ∀t ∈ T, It ⊂ B is the set of input buffers of task t.
Example: For t = T4, It = {T1 − T4, T3 − T4}.

• ∀t ∈ T,Ot ⊂ B is the set of output buffers of task t.
Example: For t = T4, Ot = {T4 − T5}.

• ∀b ∈ B, vb ∈ N is the size of buffer b.
Example: For b = T4 − T5, vb = 4.

• ∀b ∈ B, pb ∈ T is the producer task of buffer b.
Example: For b = T4 − T5, pb = T4.

• ∀b ∈ B,Cb ⊂ T is the set of consumer tasks of buffer b.
Example: For b = T4 − T5, Cb = {T5}.

• Q is the set of states and also the vertexes of G.

• G has one unique final state send, where all tasks are completed and all buffers
are deallocated.

• Each state x ∈ Q is uniquely identified by the (TCx, TRx, TFx) tuple where TCx,
TRx, TFx are respectively the sets of already completed, currently running and
future tasks.

• E ⊂ Q2 is the set of transitions and also the edges of G.

• ∀(x, y) ∈ E, y is a child of x and x is a parent of y.
Example: (0, 13, 245) is a child of (0, 1, 2345), and (0, 1, 2345) is a parent of
(0, 13, 245).

• S = {〈x1, . . . , xn〉 | ∀1 ≤ j < n, (xj, xj+1) ∈ E} is the set of traces in G.

• ∀〈x, . . . , y〉 ∈ S, y is a descendant of x and x is an ancestor of y. We denote
this x→ y.
Example: (013, 4, 25) is a descendant of (0, 1, 2345), and (0, 1, 2345) is a ances-
tor of (013, 4, 25).

• ∀x ∈ Q, vx is the memory occupancy in state x.
Example: For x = (0, 13, 245), vx = 11.

88

• ∀x ∈ Q, TIx ⊂ T is the set of tasks which input buffers are available in state x:
TIx = {t ∈ T | ∀b ∈ It, pb ∈ TCx}.
Example: For x = (013,−, 235), T Ix = {T2, T4}.

• ∀x ∈ Q, TOx ⊂ T is the set of tasks whose output buffers can be allocated
without memory overflow in state x: TOx = {t ∈ T, vx + (∑

b∈Ot
vb) ≤ v}.

Example: For x = (013,−, 235), TOx = {T4, T5}.

• ∀x ∈ Q, Tx ⊂ T is the set of runnable tasks when in state x:
Tx = TFx ∩ TIx ∩ TOx

Example: For x = (013,−, 235), TFx = {T4}.

• E− ⊂ E is the set of task-stopping transitions.

• E+ ⊂ E is the set of task-starting transitions.

• S− ⊂ S is the set of traces with only stopping transitions.

• ∀e ∈ E, te ∈ T is the task that terminates (if e ∈ E−) or starts (if e ∈ E+).

• Q| = {x ∈ Q\{send} | @(x, y) ∈ E} is the set of terminal states, that is, states
which are not the final state and without any successor state.
Example: Q| = {(012,−, 345), (023,−, 145)}.

• Qa = {x ∈ Q | @σ ∈ S, σ = 〈x, . . . , send〉} is the set of blocking states, that is,
states from which there is no trace to the final state. As G is a directed acyclic
graph, blocking states are also states from which all execution traces encounter
a terminal state.
Example: All yellow or orange states in Figure 4.4.

Note that terminal and blocking states are responsible for deadlocks. The pur-
pose of our analysis is to reduce the computational cost of their identification.

• Q+ = {x ∈ Q | ∀y ∈ Q, (x, y) ∈ E ⇒ (x, y) ∈ E+} is the set of starting-only
states, that is, states which all outgoing transitions, if there are any, are task
starting transitions. The starting-only states are all states s = (TCs, ∅, TFs)
where no tasks are currently running (and cannot thus stop). Note that, by
definition, terminal and final states are also considered as task starting-only

89

states because they have no outgoing transitions: Q| ⊂ Q+, send ∈ Q+.
Example: All states with a black dot in Figure 4.4.

• Q∼ = Q\Q+, complement of Q+ in Q, is the set of non-starting-only states, that
is, states with at least one stopping outgoing transition. The non-starting-only
states are all states s = (TCs, TRs 6= ∅, TFs) where tasks are currently running
(and can thus stop).
Example: All states with a white dot in Figure 4.4.

• ∀(x, y) ∈ Q2, y is a subordinate of x if the only difference between x and y is
that some tasks running in x are completed in y. We denote this x↘ y and we
denote τx,y the set of tasks running in x that are completed in y:
x↘ y ⇔ ∃τx,y ⊂ T, τx,y 6= ∅, TRx = TRy ∪ τx,y ∧ TCy = TCx ∪ τx,y ∧ TFy = TFx

Example: y = (01, 3, 245) is a subordinate of x = (0, 13, 245) with τx,y = {T1}.

4.7.2 Properties

• A stopping transition does not allocate any memory buffer. It can only free
some memory buffers if they are not needed anymore. So, if there is a stopping
transition (x, y), the memory occupancy in y is less or equal than in x:

∀e = (x, y) ∈ E−, vy ≤ vx (MD1)

• There is no memory overflow:

∀x ∈ Q, 0 ≤ vx ≤ v (NMO)

• Stopping running tasks is always possible because it never increases the mem-
ory consumption. So, if tasks are running in x there is always a stopping tran-
sition to a child state y:

∀x ∈ Q, TRx 6= ∅ ⇒ ∃e = (x, y) ∈ E−, te ∈ TRx (STP)

90

• MD1 generalization: if a trace of stopping transitions exists from x to y then
the memory occupancy in y is less or equal than in x:

∀(x, y) ∈ Q2,∃σ = 〈x, . . . , y〉 ∈ S− MD1⇒ vy ≤ vx (MD2)

• Equivalently, if y is a subordinate of x then the memory occupancy in y of is
less or equal than in x:

∀(x, y) ∈ Q2, x↘ y
def⇒ ∃σ = 〈x, . . . , y〉 ∈ S− MD2⇒ vy ≤ vx (MD3)

The proof of our theorem relies on the following lemmas, concerning the relation
between the states of a schedule graph and the corresponding states in a control
graph.

Lemma 1. For any non-starting-only state x ∈ Q, there exists a unique starting-only
state y ∈ Q which is also a subordinate of x:

∀x ∈ Q∼,∃!y ∈ Q+|x↘ y

Proof. If x is a non-starting-only state, it has at least one running task t and by STP
there is a child state xt of x in which task t stopped and the transition between x and
xt is a stopping transition:

x ∈ Q∼ ⇒ ∃t ∈ TRx,∃(x, xt) ∈ E−, TCxt = TCx ∪ {t}, TRxt = TRx\{t}, TFxt = TFx

Recursively, from xt, if it is not itself a starting-only state, there is a child state in
which one more task stopped, and so on, until we reach the first starting-only state,
y, where all running tasks of TRx stopped. All transitions from x to y are stopping
transitions, so y is a subordinate of x. y is unique because it is uniquely defined by
(TCy, TRy, TFy) = (TCx ∪ TRx, ∅, TFx). �

We name this unique y the control state of x and we denote it y = δ(x).

91

Lemma 2. If y is a subordinate of x the set of runnable tasks in x is a subset of the
set of runnable tasks in y:

∀(x, y) ∈ Q2, x↘ y ⇒ Tx ⊂ Ty

Proof.

∀t ∈ Tx
def⇒ t ∈ TFx

def↘= TFy (4.1)

∀t ∈ Tx
def⇒ t ∈ TIx

def⇒ ∀b ∈ It, pb ∈ TCx
def↘
⊂ TCy

def⇒ t ∈ TIy (4.2)

∀t ∈ Tx
def⇒ t ∈ TOx

def⇒ vx +
 ∑
b∈Ot

vb

 ≤ v

MD3⇒ vy +
 ∑
b∈Ot

vb

 ≤ v
def⇒ t ∈ TOy (4.3)

4.1 ∧ 4.2 ∧ 4.3 def⇒ ∀t ∈ Tx, t ∈ Ty ⇔ Tx ⊂ Ty

�

Lemma 3. Let x ∈ Q be a state, let y be a subordinate of x, let x′ be a child of x with
transition e = (x, x′) ∈ E− terminating a task te running in x but not in y. Then y is a
subordinate of x′ with x′ = y or τx′,y = τx,y\{te}:

∀(x, x′, y) ∈ Q3,x↘ y ∧ e = (x, x′) ∈ E− ∧ te ∈ τx,y
⇒ (x′ = y) ∨ (x′ ↘ y ∧ τx′,y = τx,y\{te})

Proof. Let τx′,y = τx,y\{te}. We have:

TRx′
def= TRx\{te}

def↘= (TRy ∪ τx,y) \{te}
te /∈TRy= TRy ∪ (τx,y\{te})

def= TRy ∪ τx′,y (4.4)

TCy
def= TCx ∪ τx,y

te∈τx,y= (TCx ∪ {te}) ∪ (τx,y\{te})
def= TCx′ ∪ τx′,y (4.5)

TFy
def= TFx

def= TFx′ (4.6)

92

τx′,y = ∅ 4.4,4.5,4.6⇒ TRx′ = TRy ∧ TCx′ = TCy ∧ TFx′ = TFy
def⇒ x′ = y

τx′,y 6= ∅
4.4,4.5,4.6⇒ x′ ↘ y ∧ τx′,y = τx,y\{te}

�

Lemma 4. Let x ∈ Q be a state, let y be a subordinate of x and let x′ be a child of
x. Then, if e = (x, x′) ∈ E− terminates te /∈ τx,y, there is a transition (y, y′) ∈ E− that
also terminates te and such that y′ is a subordinate of x′ with τx′,y′ = τx,y.

Proof.

e ∈ E− def⇒ te ∈ TRx

te /∈ τx,y
def⇒ te ∈ TRy

def⇒ ∃e′ = (y, y′) ∈ E−, te′ = te

Let τx′,y′ = τx,y. Then, we have:

TRx′
def= TRx\{te}

def↘= (TRy ∪ τx,y) \{te}

= (TRy\{te}) ∪ τx,y
def= TRy′ ∪ τx′,y′ (4.7)

TCy′
def= TCy ∪ {te}

def= TCx ∪ τx,y ∪ {te}

= (TCx ∪ {te}) ∪ τx,y
def= TCx′ ∪ τx′,y′ (4.8)

TFy′
def= TFy

def= TFx
def= TFx′ (4.9)

4.7 ∧ 4.8 ∧ 4.9 def⇒ x′ ↘ y′

�

Lemma 5. Let x ∈ Q be a state, let y be a subordinate of x and let x′ be a child of
x. Then, if e = (x, x′) ∈ E+ starts te, there is transition (y, y′) ∈ E+ that also starts te
and such that y′ is a subordinate of x′ with τx′,y′ = τx,y.

Proof.

e ∈ E+ def⇒ te ∈ Tx
lemma 2⇒ te ∈ Ty

def⇒ ∃e′ = (y, y′) ∈ E+, te′ = te

Let τx′,y′ = τx,y. Then, we have:

93

TRx′
def= TRx ∪ {te}

def↘= (TRy ∪ τx,y) ∪ {te}

= (TRy ∪ {te}) ∪ τx,y
def= TRy′ ∪ τx′,y′ (4.10)

TCy′
def= TCy

def= TCx ∪ τx,y = TCx′ ∪ τx′,y′ (4.11)

TFy′
def= TFy\te

def= TFx\te
def= TFx′ (4.12)

4.10 ∧ 4.11 ∧ 4.12 def⇒ x′ ↘ y′

�

Below is the formal definition and proof of theorem 1 that we informally stated in
Section 4.3.

Theorem 1. Let G = (Q,E) be a schedule automaton, let x be a non-starting-only
state and let y its control state. x is blocking if and only if y is blocking.

Proof. Using our definitions the theorem can be re-formulated as: a non-starting-
only state x is blocking if and only if its control state y = δ(x) is also blocking:

∀x ∈ Q∼, x ∈ Qa ⇔ δ(x) ∈ Qa

x ∈ Qa ⇒ δ(x) ∈ Qa is trivial: as x → δ(x), if δ(x) was non-blocking, there would
be a trace from x to send through δ(x) and x would also be non-blocking.
Let us assume that y = δ(x) is blocking but not x. There must thus be a trace
σx = 〈x = x1, x2, . . . , xn = send〉 from x to send. Based on this we will prove that a
trace σy = 〈y = y1, y2, . . . , send〉 from y to send also exists, which contradicts y = δ(x) ∈
Qa. We construct σy by induction. We first build a sequence (not a trace) of states
σ = 〈y, y2, . . . , yn = send〉 where two consecutive states are either the same state or
a parent-child pair. σ is built such that:

• y = δ(x)⇒ x↘ y ∧ τx,y = TRx

• ∀2 ≤ i ≤ n, xi ↘ yi ∧ τxi,yi
⊂ τx,y = TRx

94

For each transition e = (xi, xi+1):

• If te ∈ τxi,yi
(e is a stopping transition, the stopped task is running in x), we add

yi+1 = yi to σ.

• Else, we extend σ with a yi+1 such that transition (yi, yi+1) starts or terminates
the same task te and allocates or deallocates (if they are still allocated) the
same buffers as e.

Induction hypothesis: Hi : xi ↘ yi ∧ τxi,yi
⊂ TRx. H1 obviously holds by definition

of control states. Let us assume now that Hi holds for some 1 < i < n and let us
construct yi+1 according the already presented construction scheme:

Case #1: e = (xi, xi+1) ∈ E− ∧ te ∈ τxi,yi
.

We add yi+1 = yi to σ and define τxi+1,yi+1 = τxi,yi
\te. Let us prove Hi+1: yi is a

subordinate of xi by Hi. xi+1 is a child of xi such that e = (xi, xi+1) terminates
te ∈ τxi,yi

. So lemma 3 applies:

• If yi+1 6= xi+1 then, yi+1 = yi is a subordinate of xi+1 and τxi+1,yi+1 ⊂ τxi,yi
⊂ TRx.

So Hi+1 holds.

• If yi+1 = xi+1 the sequence σ joins σx, we extend σ with the tail of σx and we
stop the induction:

σ = 〈y, y2, . . . , yi+1 = xi+1, xi+2, . . . , xn = send〉

Case #2: e = (xi, xi+1) ∈ E− ∧ te /∈ τxi,yi
.

lemma 4 applies and there is a transition (yi, yi+1) ∈ E− that also terminates te and
such that yi+1 is a subordinate of xi+1. τxi+1,yi+1 = τxi,yi

⊂ TRx. So Hi+1 holds.
Case #3: e = (xi, xi+1) ∈ E+.

lemma 5 applies and there is a transition (yi, yi+1) ∈ E+ that also starts te and such
that yi+1 is a subordinate of xi+1. τxi+1,yi+1 = τxi,yi

⊂ TRx. So Hi+1 holds.
Conclusion: Assume @1,≤ i ≤ n, yi = xi. We proved that H1 holds and that if Hi

holds Hi+1 holds too for any 1 ≤ i < n. So, by induction, Hi holds for all 1 ≤ i ≤ n.
Hn ⇒ xn ↘ yn ⇒ send → yn which is impossible because send has no descendant.
So, ∃2 ≤ i ≤ n, yi = xi and:

95

σ = 〈y, y2, . . . , yi = xi, xi+1, . . . , xn = send〉
By removing all duplicate states from σ we build a trace σy from y to send. This
contradicts y ∈ Qa and proves that δ(x) ∈ Qa ⇒ x ∈ Qa. �

This proof with one memory is trivially extended to multiple memories by replacing
the single occupancy constraint by a conjunction of occupancy constraints.

4.8 Conclusion

The liveness analysis method presented in this chapter is flexible in many aspects.
First, it is independent of the periodicity of applications, allowing workloads with dif-
ferent periods. Second, it does not require timing nor mapping information for tasks,
leaving flexibility at run-time for the mapping and execution of tasks onto PEs. Third,
it can be used to design exact deadlock handling strategies which do not prevent any
safe schedule from being selected, be it at design time or at run time by the sched-
uler. All these aspects make this approach usable with a wide variety of possible
implementations and objectives for the scheduling phase.

This contribution presents a significant improvement in the efficiency for exact
analysis, by greatly reducing the state-space of the automaton to be analyzed in
comparison with the conventional exact analysis. This enables the use of an exact
analysis for more complex workloads than would be possible with the conventional
approach.

The next chapter presents the third contribution of this thesis: how the deadlock
prevention rules produced by the analysis presented in this chapter can be used at
run-time in an execution environment, and the implementation of such an environ-
ment.

96

Chapter 5

Experimental Evaluation

5.1 Introduction

In this chapter we compare the first contribution (presented in Chapter 3) and the
second contribution (presented in Chapter 4) to an existing state-of-the-art tool,
namely memDAG [56]. Other tools presented in Chapter 2, such as SynDEx [27] and
PREESM [61], were not included in this study. The main reason behind this choice is
the lack of time and the simplicity of use of memDAG. Developing a testbed to compare
memDAG and our contributions was not too difficult but doing the same with the other
works would have required much more efforts. This is left for future works.

Note that our contributions support multi-memory systems, whereas memDAG cur-
rently is only working on single memory target systems. As such, our evaluation will
be conducted in single-memory scenarios only.

We first compare the minimal memory size of the target platform that is supported
by our heuristic, and by the MinLevel, MaxSize, MaxMinSize heuristics from memDAG.
We did not use the RespectOrder heuristic of memDAG as it requires a valid schedule
in input, and provides a solution greatly dependent on the quality of that schedule. In
other words, we want to study the robustness of the heuristics to small memory sizes.
We compare those minimal supported memory sizes with the theoretical minimum,
which is computed using the exact liveness analysis. Then the permissiveness of
our contributions and three different heuristics from memDAG is studied. Finally, the
run-time of the heuristics of memDAG and of our implementations of Contributions 1

97

and 2 of this thesis is evaluated.

5.2 Implementation Details

5.2.1 First contribution: Deadlock prevention using MEGs

The first contribution of this thesis, the deadlock prevention mechanism presented in
Chapter 3, has been implemented using the Python 3 language and python-igraph,
a Python binding of the igraph library (implemented in C) to represent the application
graphs and MEGs. It implements the two algorithms described in Chapter 3: Algo-
rithm 1 and Algorithm 2. With regard to Algorithm 2, the order in which cliques are
explored and buffers selected inside those cliques has not been configured and is
down to the implementation of the igraph library. As explained in Chapter 3, studying
alternative algorithms to find minimal oversized clique has not been studied during
this thesis. The candidate dependency selected to remove a clique goes from the
consuming task with the smallest due-date (i.e., having the tightest constraint) to the
producer of the buffer whose consuming task has the largest due-date (i.e., the less
constrained). This choice is a heuristic whose purpose is to minimize the impact of
the added dependency on the makespan of the workload.

Inputs — Our implementation takes as input a file to represent the workload. This
file lists the different application graphs that are part of the workload, and optionally
their number of concurrent iterations. The program is also given the number and size
of memories.

Outputs — During the analysis our implementation outputs to the standard out-
put each oversized clique it finds. If a clique could not be removed, because the
heuristic failed or the memory size of the target platform is too low to run the work-
load, the execution is aborted. At the end of the execution all artificial dependencies
are saved in a file.

5.2.2 Second contribution: Liveness analysis

The optimized liveness analysis presented in Chapter 4, the second contribution of
this thesis, has also been implemented using the Python 3 language and python-
igraph to represent the application graphs and the control automaton. It has been

98

Figure 5.1: Two example applications used in our experiments. Numbers on edges
represent buffer size

implemented in a program able to generate both the control automaton or the sched-
ule automaton from a workload. The analysis of the conventional schedule automa-
ton has been implemented to allow the evaluation of the gains in performance made
when using the control automaton (cf. Section 4.6 of Chapter 4). Furthermore, ana-
lyzing the schedule automaton allows to compute the total number of possible sched-
ules, which is useful to evaluate the permissiveness of approximate approaches.

Inputs — This program takes identical input as the implementation of the previ-
ous contribution to represent the workload. It also requires the number and size of
memories to be specified in parameters. Additionally, another parameter is used to
specify whether to use the control automaton or the conventional schedule automa-
ton.

Outputs — Information on the run is outputted by the program in a file: the
number of states in the analyzed automaton and how many states are live, the com-
putation time, as well as the number of valid paths in the automaton. The number of
valid paths obtained when analyzing a schedule automaton corresponds to the num-
ber of valid schedules of the input workload. Finally, our implementation also saves
in another file the anti-deadlock rules presented in Section 4.5 of the Chapter 4.

5.3 Experimental Setup

To perform our evaluation of the different approaches, we use a testbench of 100
different workloads. Each workload is composed of 4 random application graphs,
with each application having 6 tasks. We chose this workload size as it is the maxi-
mal size allowing for fast liveness analysis of the conventional schedule automaton,
which is useful to evaluate the permissiveness of approximate approaches. The ap-

99

plication graphs were generated using SDF3 [4] in a similar fashion to Section 4.6.
The average buffer size is 2,048 du, and applications have a random topology for
the dependencies between tasks. Figure 5.1 shows the topologies and buffer sizes
of two example applications. The evaluation was conducted on a personal computer
with 1 CPU core @ 3.50GHz, 32 GiB of RAM. The analysis running times are not
polluted by swapping of memory pages by the OS: we explicitly forbade swapping in
our configuration.

5.4 Minimal Supported Memory

We express by minimal supported memory the smallest memory size of the target
platform for which a heuristic was able to produce a valid deadlock-free workload.
This minimal supported memory is compared to the theoretical minimum, which can
been computed while executing the liveness analysis presented in Chapter 4. Here-
after we call the difference between the minimal supported memory and the theoret-
ical minimum given by our Contribution 2 the overhead. As explained in the previous
section, experiments are run on 100 different workloads, each composed of 4 ran-
dom application graphs made of 6 tasks each. Contribution 1 of this thesis performs
better than MinLevel in 97 out of 100 experiments, as it is able to produce a valid
deadlock-free workload graph at low memory sizes for which the MinLevel heuristic
of memDAG fails. This can be seen in Table 5.1, with MinLevel having an average
overhead of 13,790 while our heuristic average overhead is much smaller at 2,793.
Contribution 1 performs better than MaxSize on 97 experiments, and identically on 1
experiment (for which both reach the theoretical minimum). On the other hand, Con-
tribution 1 performs better than MaxMinSize in only 14 experiments. MaxMinSize is
better than our first contribution in 69 experiments. In the remaining 17 experiments,
both approaches show equal performance by reaching the theoretical minimum. Our
heuristic reaches the theoretical minimum memory in 25 out of 100 experiments,
while MinLevel never reaches it, MaxSize reaches it in only one experiment, and
MaxMinSize reaches it 57 times. Overall our first contribution has a better ability to
support low capacity memories than MinLevel and MaxSize, but is less efficient than
MaxMinSize. Since our second contribution is an exact approach, it always supports
the theoretical minimum memory size contrary to approximate approaches.

100

Minimal supported memory
4 apps. of 6 tasks Minimum Maximal Average Median

MinLevel 15,480 40,631 26,156 25,271
MaxSize 13,519 40,959 26,157 26,226

MaxMinSize 9,389 19,239 13,052 12,846
Contribution 1 (Chapter 3) 9,877 29,354 15,159 14,403
Contribution 2 (Chapter 4)1 8,508 18,154 12,365 12,629

Overhead of minimal supported memory
(i.e., Minimal supported memory − Contribution 2)
4 apps. of 6 tasks Minimum Maximal Average Median

MinLevel 3,612 24,984 13,790 13,495
MaxSize 0 28,334 13,792 14,664

MaxMinSize 0 5,004 687 0
Contribution 1 (Chapter 3) 0 15,119 2,793 1,964
Contribution 2 (Chapter 4) 0 0 0 0

1 The minimal supported memory of Contribution 2, an exact approach,
is the theoretical minimum reachable.

Table 5.1: Minimal supported memory size of the approximate ap-
proaches, in comparison to theoretical minimum of Contribution 2

5.5 Permissiveness

To compare the permissiveness of our heuristic with MinLevel, MaxSize, and MaxMinSize,
we ran 100 experiments using the same setup as the previous section. We then
compare the number of remaining schedules of their respective deadlock-free out-
put workloads. As the different heuristics are not always able to provide a solution
guaranteeing to respect a given memory size, even if schedules respecting that size
exist, we set the memory size at the minimum where all heuristics provide a solution.
The theoretical total number of valid schedules has been computed by running the
liveness analysis of Contribution 2 (Chapter 4).

As shown in Table 5.2, the median number of allowed schedules of Contribution
1 (1.00× 1015) is the smallest of the four heuristics, showing that it is less permissive
than those provided by memDAG. This is reinforced by the fact that while our approach
was the most permissive heuristic of the four in 27 experiments, it was also the less
permissive in 52 experiments. On the other hand, MaxMinSize is the most permissive

101

Number of allowed schedules
4 apps. of 6 tasks Minimum Maximal Average Median

MinLevel 2.34E+11 6.97E+28 1.13E+27 2.54E+19
MaxSize 3.59E+11 1.28E+28 4.06E+26 2.09E+20

MaxMinSize 6.34E+15 4.43E+29 6.21E+27 1.86E+23
Contribution 1 (Chapter 3) 4.32E+03 1.10E+30 2.16E+28 1.00E+15
Contribution 2 (Chapter 4)1 6.40E+22 3.99E+33 8.69E+31 2.53E+28

Fraction of allowed schedules
(i.e., # Allowed schedules ⁄ # Contribution 2)

4 apps. of 6 tasks Minimum Maximal Average Median

MinLevel 9.11E-19 1.11E-03 1.83E-05 2.56E-09
MaxSize 3.27E-15 9.47E-03 1.76E-04 5.63E-09

MaxMinSize 5.70E-12 9.33E-03 3.70E-04 8.66E-06
Contribution 1 (Chapter 3) 1.94E-26 7.87E-03 2.91E-04 3.14E-12
Contribution 2 (Chapter 4) 1 1 1 1

1 The number of schedules allowed by Contribution 2, an exact approach, is
the total number of valid schedules.

Table 5.2: Number of allowed schedules by approximate approaches, in com-
parison to the theoretical maximum of Contribution 2

of the four heuristics in 59 experiments, and the less permissive in only 1 experiment.
As such, MaxMinSize can be regarded as the heuristic providing the most flexibility
for the schedule of the deadlock-free workload it produces among the four heuristics
studied here. Since our second contribution is an exact approach, it always allows
all valid schedules and is more permissive than all approximate approaches.

5.6 Computational Time

In this section we discuss the computational time taken by the different approaches.
This is the time taken by the tools to perform their respective computation, with the
same input memory size as in previous section. It should be noted that low memory
levels are worse case situations for memDAG and our first contribution (presented in
Chapter 3) as they require to add more edges to produce the final result. On the
other side, a low memory level is a best case situation for the liveness analysis of

102

Contribution 2, since the total number of states in the automaton is lower, hence
making its analysis faster.

Computational time (in s)
4 apps. of 6 tasks Minimum Maximal Average Median

MinLevel 0.017 0.040 0.028 0.027
MaxSize 0.015 0.026 0.019 0.018

MaxMinSize 0.016 0.039 0.020 0.019
Contribution 1 (Chapter 3) 0.054 0.715 0.276 0.264
Contribution 2 (Chapter 4) 0.143 0.416 0.242 0.224

Table 5.3: Computational time of the five approaches: three heuristics from memDAG,
and our implementation of the first and second contributions

From Table 5.3 we can observe that the exact liveness analysis takes a higher
amount of time to produce its results than either memDAG, and a similar one to our
first contribution. This is the case even in these experiments with low target memory
size, a scenario which is favorable to the liveness analysis and unfavorable to the
other approaches.

Both our contributions were first implemented fully in the Python 3 language,
using a python library for graph representation. This first implementation was slow
and took a few minutes to hours to study the workloads of our testbench. This is why
we switched from this python library to the C-implemented igraph library, which led to
a significant increase in performance with computation times falling under a second.
Whether switching the remainder of the code to C or another compiled language
would lead to significant improvement in performance remains an open question.

Our implementations do not make use of multi-threading. Given the nature of
the algorithms designed in the first contribution, especially the loop of MEG cre-
ation/update followed by the oversized clique finding, we think that this contribu-
tion is not well suited for multi-threading. On the other hand, the liveness analysis
could benefit from multi-threading. Indeed, each state of an automaton must be an-
alyzed after its descendants but can be analyzed in parallel to states that are not
in an ancestor/descendant relation. If we take the example of Figure 4.5, states
(02,−, 1345) and (0134,−, 25) could be analyzed in parallel, whereas (01,−, 2345)
and (0134,−, 25) could not, as the latter is a descendant of the former. This leaves

103

rooms for potential improvement of the performance of the liveness analysis, espe-
cially of larger automaton that have more parallelism opportunities.

For the liveness analysis, memory usage is a factor limiting the size of analyzable
workloads. Indeed, larger workloads than the ones studied in Section 4.6 led to the
saturation of the 32 GiB of RAM when studying the conventional schedule automa-
ton. For our control automaton, the largest workload supported before reaching the
saturation of the 32 GiB RAM were the following: 8 applications of 6 tasks, 7 appli-
cations of 8 tasks, and 6 applications of 10 tasks. Reducing the memory footprint of
our implementation is an important work in order to make it usable for more complex
workloads.

5.7 Discussion

Overall, we can see that the method presented in Chapter 3 can support lower
memory sizes than the MinLevel and MaxSize heuristics, but is less efficient than
MaxMinSize in that regard. On the other hand, the heuristics from memDAG allow for
more flexibility in the selection of a schedule than Contribution 1 of this thesis. Since
our first contribution computational time is significantly worse that those of memDAG,
The conclusion is that for single memory systems, memDAG is likely to be a better
option, as it is likely to produce a more permissive result. Using the approach from
Chapter 3 is a suitable choice for inputs for which all the heuristics of memDAG fail to
produce a deadlock-free workload graph, or for multi-memory systems which memDAG
does not support at the time of writing.

Our second contribution provides an optimal solution as it is an exact approach.
As such it has a greater permissiveness than our first contribution or the heuristics
of memDAG, and is always able to provide a valid solution for the theoretical minimum
memory size.

Evaluating the impact of the different heuristics on the best possible make-span
is an interesting future work, given that both our first contribution and the MinLevel
heuristic of memDAG aim at minimizing their impact on the make-span. Furthermore,
other approaches could be integrated into this evaluation as well.

In the introductory chapter (Chapter 1), we stated our goal to develop methods
to avoid the issue of deadlocks caused by memory shortages. We have proposed

104

two different approaches to address the issue. Since the liveness analysis offers
more flexibility, both by being maximally permissive and by supporting applications
with independent periods, we selected this approach to be used in a run-time envi-
ronment executing dataflow applications and targeting embedded systems. In use
cases where the liveness analysis of the control automaton is too computationally
expensive to be run dynamically, it should instead be run at the design-time of the
system, and the anti-deadlock rules provided by our implementation be used by a
run-time environment managing the execution of the workload. Such a mixed static
/ dynamic scheduling is presented in the next chapter (Chapter 6).

105

Chapter 6

Run-Time Environment

6.1 Introduction

Chapters 3 and 4 each presented a method to prevent memory shortages (and
therefore the deadlocks caused by the shortages) in embedded systems. Of the
two methods, the second method has the advantage of doing exact prevention, i.e.,
all possible non-deadlocking schedules are allowed. The results from this memory
usage analysis can be used in combination with a run-time environment in order to
fully exploit its flexibility. This chapter is a discussion about the design of a run-time
environment that can use the results of the liveness analysis presented in Chapter 4.
Section 6.2 presents the functionalities that a run-time environment should provide
for the integration of the results of the proposed liveness analysis, and the poten-
tial for parallelism when providing those functionalities. Section 6.3 studies whether
existing environments can be used or modified to exploit the results of the liveness
analysis. When it makes sense it also briefly presents the needed modifications.
Then Section 6.4 presents in details an example implementation designed to maxi-
mize the parallelism of the control, including its architecture, configuration files, and
internal data structures. Finally, Section 6.5 concludes the chapter.

107

6.2 Functionalities of a Run-Time Environment

In this section we will study the various roles of a run-time environment with a par-
ticular emphasis on the parallelization opportunities. The reason for this emphasis
is twofold. Indeed, with the increase of complexity (and dynamic variability) of the
intensive data processing applications, like machine learning or 4G-5G baseband
digital signal processing, the control software becomes more and more demanding.
On the other hand, recent high-end data processing architectures (e.g. Xilinx Zynq
UltraScale+ [72], NXP S32V2 vision processors [59], etc.) embed several general
purpose CPU cores that can be used to improve the degree of parallelism of the
control software, and consequently its reactivity. While monolithic, purely sequential,
control software architectures are still suitable for entry-level applications, high-end
data processing systems will probably require a higher degree of parallelism to meet
their tight performance constraints.

In order to perform the execution of the requested applications, a run-time en-
vironment has to provide a variety of functionalities, that can be split in four main
categories:

1. exchanges with the external environment,

2. buffers and memory management,

3. management of execution nodes and tasks,

4. deadlock handling policy (e.g., use liveness analysis results to prevent them).

For the exchanges with the external environment the run-time environment has
to receive the user’s commands, such as starting or stopping an application, and to
manage the transfers of source and sink data back and forth. These two concerns
can be separated into several parallel execution threads, or be managed in a single
execution thread. Since data transfers with the external environment are usually
dependent on the user’s command, it could be that separating the two concerns in
distinct execution threads provides little added value over a unique manager, with
regard to the gain in parallelism versus the overhead in synchronization cost and
system complexity.

108

The buffers and memory management consists of the allocation and deallocation
of the buffers used by the running applications. It can very naturally be parallelized
with one execution thread per memory unit in the target platform.

The execution management consists in three main aspects. The first one is the
overall management of tasks: their status, execution priority, etc. The task manage-
ment is independent for each PE and as such can easily be parallelized with one
execution thread per PE, but can also be managed in a single execution thread for
the whole system, or some intermediate level of parallelism. The second aspect is
the effective scheduling of tasks, i.e., selecting which task to execute next, based
on buffer availability, task priority, and overall scheduling policy. This aspect is con-
strained by the deadlock handling policy. Finally the third aspect is the actual com-
putation of the task, be it in software or in hardware for hardware accelerator PEs.
This aspect can, and should, be parallelized since it is the precise purpose behind
the development of MPSoCs and other parallel architectures. The most reasonable
choice to fully exploit the potential for parallelism provided by the target platform is
thus to have one execution thread per PE, separated from the task management and
scheduling aspects.

The deadlock handling policy is a critical part of the run-time environment to
ensure the safe execution of the applications. By virtue of the liveness analysis pre-
sented in Chapter 4, it is constrained in its potential for parallelism. This is explained
by the system-wide view of the analysis, which requires a coherent view of the status
of tasks and buffers across the whole system. Furthermore, since the liveness analy-
sis considers atomic transitions, i.e., no two tasks can change status simultaneously,
it necessitates the establishment of a synchronization mechanism for the scheduling
of tasks, in order to avoid multiple scheduling decisions being taken simultaneously
and leading to an incoherent, and potentially deadlock-inducing, system state. As
such, deadlock handling cannot be parallelized, and the scheduling of tasks must
either be performed in a global execution thread or, if divided across multiple exe-
cution threads –a common example would be one execution thread per PE–, a syn-
chronization mechanism such as a lock must be used. This is the principal limitation
in parallelism across the whole run-time environment and as such must be imple-
mented in the most effective manner if one wants to avoid having an unreasonable
overhead from the run-time environment.

109

6.3 Design Choices to Integrate the Deadlock

Handling Policy

Since the liveness analysis presented in Chapter 4 does not allow for multiple concur-
rent scheduling decisions, any run-time environment that takes as input the results
of the analysis must have a compatible architecture. In Chapter 2, multiple deadlock
handling tools that provide a run-time environment were presented. due to their lack
of run-time flexibility.

StarPU [8] is a task based dataflow run-time oriented toward HPC. The StarPU
run-time architecture is composed of a central scheduler and a set of workers, with
each worker managing the execution of jobs onto a PE (or set of homogeneous
PEs). Since the scheduling and memory management are centralized, our deadlock
handling strategy could be integrated into the central scheduler, with little change to
the overall architecture of the run-time (i.e., a centralized control architecture).

The PRUNE run-time [15] is used to run applications that have been guaranteed
at compile time to be deadlock-free. It does not implement a scheduler, instead
running task inside threads provided by the GNU/Linux pthread library and leaving
the scheduling to the underlying operating system. As such, the PRUNE run-time
offers very little control of the execution of jobs. Integrating our deadlock handling
strategy into the PRUNE run-time would defeat its purpose of been lightweight, since
it relies on static decidability of the deadlock-freeness and memory-boundedness
properties provided by the PRUNE MoC.

The SPIDER [39] run-time divides the control in two types of thread. The overall
management of applications is done in a centralized fashion by the Global Run-
Time, which makes all the mapping and scheduling decisions. Then, there is one
Local Run-Time per PE, which manages the execution of jobs. Our deadlock han-
dling strategy could be integrated into the Global Run-Time, leading to a centralized
control architecture.

XKaapi [33], similarly to StarPU [8], is also a run-time environment oriented to-
ward HPC. XKaapi runs with one thread per PE, each thread being responsible for
the execution of tasks onto their associated PE. There is no central control for the
execution of tasks, instead each task has the possibility to create new tasks. For ex-
ample a task might create the tasks that consume its output buffers. Each thread has

110

a FIFO containing the tasks it will have to execute. When this task FIFO gets empty,
a thread can perform work-stealing, i.e., take a task ready for execution from the
task FIFO of another thread. To integrate our deadlock handling mechanism into the
XKaapi run-time a new control thread dedicated to deadlock prevention should be
introduced, with synchronization mechanisms to prevent execution threads from se-
lecting tasks before the deadlock prevention thread propagated its messages. Sym-
metrically the execution threads shall inform the deadlock prevention thread about
their scheduling decisions or, more precisely, their data buffer allocations.

HMBE [70] is a run-time designed for HPC systems. It uses a single control
thread, which dynamically maps and schedules jobs. Jobs are executed in software
threads called worker threads. Worker threads are configured to execute one actor,
and will run one execution of said actor when requested from the control thread.
There are up to n worker threads per job, with n the number of PE. When threads
are not active they are in a dormant state and do not use computing resources. It is
possible to configure HMBE so that more worker threads can be activated simulta-
neously than there are PEs, in which case context switching will occasionally occur
to ensure progress on the execution of all active threads. Integrating our deadlock
handling policy into HMBE is feasible, in the same way as for XKaapi [33].

The conclusion from the study of existing run-time environment is that it is pos-
sible to implement the approach from Chapter 4 into some existing HPC-oriented
run-times but it is probably of limited interest: they only support homogeneous ar-
chitectures with very large memories while the work of this thesis is focused on de-
ploying applications onto heterogeneous architectures with distributed memory and
size-limited memory units. The integration is also possible with less HPC-oriented
run-time environments such as StarPU [8] and SPIDER [39], where it makes much
more sense. However, these run-time environments have a centralized control ar-
chitecture, while, as explained in Section6.2, we want to experiment with a control
architecture design to maximize its parallelism, i.e., which provides its functionalities
using a decentralized control architecture. With such a goal, the easiest path is to
design a new run-time environment. Such an implementation and its architecture are
presented in details in next section.

111

(a) Example application depen-
dency graph, a Sobel filter.

(b) Mapping of the Sobel application onto a tar-
get platform with 3 PEs and 2 memories.

Figure 6.1: Example application and mapping

6.4 Architecture of our Run-Time Environment

In the previous section the functionalities that a run-time environment should provide
have been presented, as well as the potential for parallelism for an implementation of
those functionalities. This section describe the architecture of prototype implemen-
tation we designed, where the choice was made to maximize parallelism.

When needed we will use the example application (a Sobel filter) which depen-
dency graph is represented on Figure 6.1a, mapped onto the target platform with 3
PEs and 2 memories represented on Figure 6.1b.

6.4.1 Global Overview

Before entering into the details let us first present the global overview. Figure 6.2
illustrates our software architecture.

The run-time environment we propose is a multi-threaded, POSIX-compliant, C
program, referred to as the server in the following. There are 2 threads per PE, one
thread per memory unit, plus two common threads, which role and interactions are
detailed in the following subsections:

• Each PE has a control thread (PeCth) and an execution thread (PeXth).

• Each memory unit has a control thread (MuCth).

• The general thread (Gth) is responsible for the interface with the environment.

112

Shared
memory

Configuration
files (JSON)

UNIX
sockets

User-specific
software
library

Provided run-time

User-defined
Environment

(client)

Multi-threaded
run-time (server) JSON

JSON

JSON

JSON

Figure 6.2: Software architecture

• The deadlock prevention thread (Dth) is responsible for the deadlock preven-
tion.

With the example of Figure 6.1 the server would execute 10 threads in parallel: 7
for the control and 3 for the tasks execution.

The code of the server does not need any modification to run on different plat-
forms or to execute different workloads. It is compiled once for all for a given target
CPU architecture. When launched on the control CPU of the target platform, the
server is passed configuration files in JavaScript Object Notation (JSON) format and
a software library containing all the user-specific code. The server configures itself
at initialization time based on the content of the configuration files: they define the
target platform (number of execution nodes, number of memory nodes), the applica-
tions (tasks and buffers, maximum number of concurrent iterations per application),
the mapping of tasks to execution nodes and of buffers to memory nodes, and the
deadlock prevention rules. The number of threads spawned by the server, for in-

113

stance, depends on the number of execution and memory nodes specified in the
configuration files. The software library containing the user-specific code is loaded
dynamically by the server during its initialization. It must contain all objects refer-
enced by their names in the configuration files: functions for the tasks and the data
structures for their control parameters or returned statuses, of course, plus, option-
ally, custom schedulers and/or memory managers. The user-specific code must be
coded according the provided API.

The running applications are considered as periodic and the JSON configura-
tion files defining them indeed define one iteration only, as a straightforward textual
representation of the application’s AHSDF graph. Several iterations of the same ap-
plication can run concurrently. In the following we distinguish a task, that is, a node
of the AHSDF graph, and the task instances, that is, the different executions of the
task in consecutive iterations. We name the latter “jobs”. Consecutive iterations of
an application are considered as independent, except that a rule of “reasonable be-
havior” is implemented by the server: a job of iteration N cannot start before the job
of the same task of iteration N − 1.

In order to conduct our liveness analysis a maximum number of concurrent itera-
tions must be specified for each application, such that the control graph product can
be constructed and analyzed. The “reasonable behavior” constraint, the task-to PE
static mapping, if it is known, plus all known timing characteristics, can be used to
reduce the size of the control graph, speedup its building and analysis, and reduce
the number of resulting deadlock prevention rules. The per-application maximum
number of concurrent iterations are also added to the JSON configuration files be-
cause this information is needed by the server to dimension its internal control data
structures.

Buffers and jobs are uniquely identified by a combination of their application iden-
tifier (appID), their iteration number and their local buffer (bufferID) or task (taskID)
identifier inside their application AHSDF graph. When a deadlock prevention rule
refers to a data buffer or a job it uses a relative iteration number, relative to the oldest
currently running iteration. This way, the same deadlock prevention rules are recy-
cled each time iterations terminate or start. This is a bit like if the analyzed control
graph product was anchored to the beginning of times and limited to the defined
numbers of iterations.

114

One last software component is responsible for the high-level control and is re-
ferred to as the environment or the client in the following. It is provided by the user
and must be coded according the server’s API. The client is another independent pro-
gram responsible for deciding when to launch a new iteration of the applications of
the workload, for providing the input data buffers of the source tasks of each iteration
and for receiving the output data buffers of the sink tasks. In a wireless communica-
tions context, for instance, where the server would execute the baseband DSP (the
physical layer), the client could be the Medium Access Control (MAC) layer or an
interface layer between the physical and MAC layers. The client can be developed
in any programming language provided it communicates with the server using the
specified protocol, both for data and control information.

In the current implementation the data exchanges between the server and the
client use a shared memory area which layout is entirely under control of the client.
The shared memory area contains data buffers and parameters consumed or pro-
duced by the source or sink tasks of the workload. The server knows absolutely
nothing about their content, format or organization. As the shared memory area is
actually accessed only by the client and by the tasks, and as the code of the client
and the tasks is provided by the user, the only thing that the server does is receive
from the client addresses falling in the shared memory area, and pass them to the
source and sink tasks it launches such that they know where to find their input or
output buffers and their control parameters inside the area.

The control commands, referred to as signals in the following, are exchanged
through a pair of UNIX sockets. Their format is specified in the API.

Other communication mechanisms could very easily be implemented. The sig-
nals, for instance, are serialized before sending and thus do not depend on the com-
munication medium.

6.4.2 Server Configuration

The server takes several types of configuration files in JSON format as its input.
They describe the target platform, the applications being run, their mapping on the
platform, and the deadlock prevention rules. The JSON format has been selected
because it is human readable and commonly used for configuration files. Of course,

115

other formats could easily be used, even less human readable ones. And these
files do not have to be written manually. The files describing the applications, the
platform and the mapping can be automatically generated from DSE frameworks or
Integrated Development Environment (IDE) tools. They are straightforward, we do
not detail them further.

The deadlock prevention rules are extracted from the exact liveness analysis pre-
sented in Chapter 4. Each rule has two components: a firing condition, which is the
set of buffers that must be allocated for the rule to apply, and the list of the jobs that
must be blocked if the condition holds. A buffer is identified by its application iden-
tifier, (appID), the iteration number relative to the oldest currently running iteration
of the application, and its local identifier inside its application graph (bufferID). The
jobs to block are identified in the same way with their taskID instead of the bufferID.

An example file with two deadlock prevention rules is given below. It applies to
a workload with three applications: the Sobel filter of Figure 6.1 (appID 0), plus a
SUSAN filter (appID 1) and a JPEG encoder (appID 2). As such, the rule 0 in this
example file would lead to block the job responsible for the gradientY task (taskID
2) of the second oldest running iteration. This rule would apply if buffers getPixel-
gradientY (bufferID 1) and gradientX-abs (bufferID 2) from the second oldest
iteration of the Sobel filter, alongside two buffers from the SUSAN filter and one from
the JPEG encoder are simultaneously allocated in their respective memory units.

{
"Rules":[{

"rule_id": 0,
"buffers": [

{"appID": 0, "bufferID": 1, "iter_num": 1},
{"appID": 0, "bufferID": 2, "iter_num": 1},
{"appID": 1, "bufferID": 2, "iter_num": 0},
{"appID": 1, "bufferID": 2, "iter_num": 1},
{"appID": 2, "bufferID": 0, "iter_num": 0}

],
"tasks_blocked": [{"appID": 0, "taskID": 2, "iter_num": 1}]

},{

116

"rule_id": 1,
"buffers": [

{"appID": 0, "bufferID": 3, "iter_num": 0},
{"appID": 0, "bufferID": 3, "iter_num": 1},
{"appID": 1, "bufferID": 5, "iter_num": 0},
{"appID": 1, "bufferID": 5, "iter_num": 1},
{"appID": 2, "bufferID": 3, "iter_num": 1}

],
"tasks_blocked": [{"appID": 2, "taskID": 1, "iter_num": 0}]

}]
}

6.4.3 Data Structures

In order to provide the functionalities, the server has to store relevant information
into data structures suitable for the selected architecture and applications. The main
data structures used in this implementation represent jobs and data buffers. For
performance reasons, all these data structures are allocated by the server at ini-
tialization time, another reason why the maximum number of concurrent iterations
of each application must be known. When an iteration terminates the correspond-
ing data structures are recycled for the next new iteration of the same application.
This mechanism is implemented as a kind of circular buffer, which is very efficient
because it is not the data structures that move when iterations start or end but the
pointer to the oldest iteration and the iterations counter that are updated.

Jobs

A job is one particular instance of a computing task. It consumes a set of input
buffers and produces a set of output buffers. For sake of implementation simplicity,
in the current version, a job runs on a statically allocated PE and cannot migrate
at run-time, even though the liveness analysis presented in Chapter 4 does allows
dynamic mapping and migration of jobs.

A job is represented by a data structure that carries control information like its
complete identifier (appID, iteration number, taskID), the list of its input buffers, the

117

list of its output buffers, pointers to its PeCth and PeXth, its current state. . . At initial-
ization time a job is created in the IDLE state, which means that its input buffers are
no yet available and the job cannot be scheduled. Over its lifetime, a job can be in
the following states:

• IDLE: the job has been created but it is not yet runnable because its input data
buffers are not all available.

• IDLE_BLOCKED: same as IDLE but a deadlock prevention rule blocks the job; it
shall not be scheduled until it is unblocked.

• RUNNABLE: the job has been created and all its input data buffers are available,
it can be scheduled.

• RUNNABLE_BLOCKED: same as RUNNABLE deadlock prevention rule blocks the job;
it shall not be scheduled until it is unblocked.

• SCHEDULED: the job has been scheduled for execution.
• DONE: the job execution has been completed.

Figure 6.3 shows the Finite State Machine for job states, displaying the conditions
for changing the state of a job.

(and not all input buffers
available)

(and not all input buffers
available)

(and all input buffers
available)

(and all input buffers
available)

BUFFER_AVAILABLE BUFFER_AVAILABLE

JOB_BLOCKED

JOB_UNBLOCKED

JOB_BLOCKED

JOB_UNBLOCKED

JOB_TERMINATED

JOB_EXECUTE

BUFFER_AVAILABLE BUFFER_AVAILABLE

IDLE IDLE_BLOCKED

RUNNABLE_BLOCKED

DONESCHEDULED

RUNNABLE

Figure 6.3: Finite State Machine of job status.

A job is put in the IDLE_BLOCKED (respectively RUNNABLE_BLOCKED) state when

118

it is in the IDLE (respectively RUNNABLE) state and its PeCth receives a JOB_BLOCKED
notification from the Dth that this job cannot be scheduled, as a result of the deadlock
prevention algorithm. It is marked as unblocked when its PeCth receives a JOB_
UNBLOCKED notification that this job can be scheduled again. When a job is in IDLE
or IDLE_BLOCKED state its PeCth monitors the BUFFER_AVAILABLE notifications about
its input buffers until all have been received. The job is then put in RUNNABLE or
RUNNABLE_BLOCKED state.

Transfers

A transfer is just a type of job. It is one particular instance of a data transfer task. It
consumes one single input buffer and produces one single output buffer. A transfer
runs on a statically allocated suitable PE, such as a DMA engine.

Transfers can happen in any kind of memory architecture. For example, they
are useful in NUMA architectures to move the input data of a task in a different
memory from the one they were produced in, since PEs might not be able to access
all memories. This is commonly used to move a buffer from the output memory of
one hardware accelerator to the input memory of another hardware accelerator.

Buffers

A buffer is allocated in the memory it has been statically mapped to. A buffer has one
single producer job and one or several consumer jobs. Buffers are managed by the
MuCth of their memory unit. This MuCth tracks the termination of the producer and
consumer jobs of its buffers.

Like jobs, a buffer is represented by a data structure that carries its complete
identifier (appID, iteration number, bufferID), its producer job, the list of its con-
sumer jobs, a pointer to its MuCth, its size, its address in its memory unit, its current
state. . . At initialization time a buffer is in the VOID state, which means that it has
not been allocated yet. Over its lifetime, the buffer structure can be in the following
states:

• VOID: the buffer is not yet usable, as it is not yet allocated in memory.
• ALLOCATED: the buffer has been allocated into memory and is ready to be filled

by its producer job.

119

• AVAILABLE: the buffer has been filled by its producer job, it is ready to be read
by its consumer jobs.

• FREED: all consumer jobs terminated, the buffer is no longer needed, it has been
freed.

Figure 6.4 shows the Finite State Machine of buffer states, displaying the conditions
for changing the state of a buffer. When in the AVAILABLE state the status of the buffer
is re-evaluated each time its MuCth receives a JOB_TERMINATED notification about one
of a consumer job.

ALLOCATEDVOID

FREED AVAILABLE

BUFFER_ALLOCATE

JOB_TERMINATED
JOB_TERMINATED

JOB_TERMINATED
(producer job)

(and all consumers done)
(and not all consumers done)

Figure 6.4: Finite State Machine of buffer status.

6.4.4 Threads

Figure 6.5 shows the architecture of the existing implementation. It is composed of a
set of threads each focused on a specific part of the system. Threads communicate
through events, which are described in Subsection 6.4.5.

The general thread (Gth) is the overall controller of the system. It receives in-
structions from the client about application iterations starts and stops, about the
organization of the shared memory used for data exchanges with the client, and the
availability of source jobs’ input data in the shared memory. In return it signals to the
client the termination of application iterations and the availability of sink jobs’ output
data in the shared memory. Once an application is running the Gth manages its
execution: when the client requests the start of a new iteration, it recycles the data
structures (jobs, buffers. . .) of a terminated iteration for the new one and it injects

120

Figure 6.5: Architecture of the server. Circled numbers correspond to the step in
which the event is sent in the example run.

these new jobs and buffers into the pool of existing objects managed by the other
threads.

The deadlock prevention thread (Dth) aims to determine which deadlock preven-
tion rules to apply at a given instant. It receives information on buffers allocations
and deallocations from all memory unit control threads (MuCths). Based on this in-
formation it checks which rules start or stop applying. When the conditions of a rule
are met, and a job j that was not blocked must be blocked, it sends a blocking event
JOB_BLOCK(j) to the PeCth of job j (where j is the job’s unique identifier). Conversely,
once the conditions of a rule are no longer met, and a job j that was blocked can
again be scheduled, it sends an unblocking event JOB_UNBLOCK(j) to the PeCth of job
j. The Dth also receive notifications from the Gth about the creation of new iterations
because a newly introduced job, even if it is in IDLE state, can be blocked at initial-
ization time if the current state of the memory units forbids the allocation of its output

121

buffers.

Memories each have a control thread (MuCth) that manages the underlying mem-
ory, allocating and deallocating buffers as needed. The MuCth receives from the PE
control threads (PeCths) allocation request events BUFFER_ALLOCATE(b) requesting
it to allocate a given buffer b. It also receives JOB_TERMINATED(j) events indicating
that the execution of a job j is completed. This allows to indicate which buffers
have been filled with data and to send that information, via buffer availability events
BUFFER_AVAILABLE(b), to the PeCths of the jobs having that buffer b as input. This
also allows, once all consumer jobs of a buffer are completed, the immediate deal-
location of the buffer that is no longer needed. As already mentioned, the MuCths
notify the Dth about buffers allocations and deallocations.

When processing BUFFER_ALLOCATE requests the MuCths must allocate a region
in their memory unit. By construction of the deadlock prevention it is guaranteed
to be always possible on a pure memory occupancy point of view. Finer grain as-
pects like memory fragmentation are not covered in this prototype implementation.
A default memory management algorithm is provided, that selects the first suitable
memory region to accommodate the requested data buffer, and assumes that mem-
ory fragmentation will never be an obstacle. This is sufficient, for instance, when the
data buffers in the considered memory unit all have the same size. In more complex
situations a solution to this problem could be to oversize the actual memory unit or
to expose a size less than the actual one to our liveness analysis. What the mar-
gins should be and how to verify that they suffice is also not covered in this thesis
and left for future works. However, in order to address this fragmentation issue, soft-
ware hooks allow users to define their own memory management policies and use
them instead of the default one. They must be designed according the provided API
and are provided to the server in the form of a dynamically loaded library, like the
user-defined scheduling policies and all tasks implementations.

PEs each have a control thread (PeCth) and an execution thread (PeXth). It is
important to remember that these threads run on general purpose CPUs that can
be different from the PE itself. If the PE is a hardware accelerator, for instance, its
control and execution threads run on one or two CPUs. The execution thread only
implements the low-level communication and control of the PE; the data processing
is performed by the hardware accelerator. If the PE is itself a CPU, it executes

122

its execution thread but its control thread can run on the same or a different CPU,
depending on the mapping.
The role of the PeCth is to manage the jobs to be executed, as requested from the
Gth. It selects which job the PE should execute next among jobs that are ready (all
input buffers are available), while following the directives from the Dth, i.e., blocked
job are not selected until an unblocking event JOB_UNBLOCK is received. Once a job
has been selected, the PeCth sends the buffer allocation request events BUFFER_
ALLOCATE necessary to perform that job, thus requesting the MuCths to allocate the
output (and optional working) buffers. Buffer allocation requests are guaranteed to be
granted by the MuCths thanks to the deadlock prevention rules. The PeCth then waits
for the acknowledge back from the MuCths indicating that the requested output buffers
are ready before ordering the corresponding PE execution thread to perform the
job via the execute event JOB_EXECUTE. A default scheduling algorithm is provided,
but users can define their own scheduling policy (or set of policies). Just like for
memory management policies users provide their custom schedulers as part of the
dynamically loaded library.
The PeXth role is to control the underling hardware (e.g., hardware accelerator) to
perform the requested job, or to perform the necessary computations itself when
it is implemented in software (e.g., tasks running on generic CPUs). It waits for
execution events JOB_EXECUTE from its PeCth in order to launch job executions. Once
a job execution has finished, it sends a job termination event JOB_TERMINATED back
to its corresponding PeCth. The PeCth then forwards this event to the MuCths of the
input and output buffers of the terminated job. A task’s implementation, be it a pure
software one or only the software driver controlling a hardware accelerator, is again
provided by the user as part of the dynamically loaded library.

Let’s illustrate how the threads interact with the example application and target
platform of Figure 6.1. The following steps occur for the communication between
threads. Events occurring within a step are annotated by the circled number of that
step in Figure 6.5.

1. The client sends to the server a request to run one new iteration of the Sobel
application. This request is received and processed by the Gth.

2. The Gth initializes the corresponding data structures (jobs and buffers) and
makes them available to the other threads. It also informs the Dth because

123

an incoming job can be blocked at initialization time if the current state of the
memory units forbids the allocation of its output buffers.

3. The Dth updates its internal state and informs the PeCths of blocked/unblocked
jobs, if there are any.

4. The client populates the input buffer of getPixel in the shared memory area
used to communicate with the server. It signals the availability of this input
buffer to the Gth.

5. The Gth informs the PeCth1 that the input buffer of getPixel is available. As
can be seen with this example the Gth also somehow acts as the equivalent of
a MuCth for the shared memory area.

6. The PeCth1 selects job getPixel to execute. It sends two buffer allocation
request events (one for the output buffer to gradientX, the other to gradientY)
to their respective MuCth.

7. The MuCth1 receives the allocation request event for buffer getPixel-gradientX.
It allocates the buffer, informs the Dth, and acknowledges to the PeCth1. The
same happens with the MuCth2 for the getPixel-gradientY buffer.

8. Again, the Dth updates its internal state and informs the PeCths of blocked/unblocked
jobs, if there are any. Note that this cannot impact the getPixel job that has al-
ready been selected for execution. The PeCth1 does not need to process these
events immediately if it receives some. Simultaneously, the PeCth1 sends the
execution request to the PeXth1.

9. The PeXth1 receives the execution events and starts the execution of job getPixel.
Once completed it sends the termination event back to the PeCth1, which for-
wards it to the MuCths in charge of the input and output buffers of getPixel. As
the input buffer of getPixel is in the shared memory area it is handled differ-
ently from the others but in other circumstances some input buffers could be
freed because of the job completion and the responsible MuCths would deallo-
cate them and inform the Dth.

10. The MuCth1 marks buffer getPixel-gradientX as available and send this infor-
mation to the PeCth1, in charge of the consumer job gradientX. The same hap-
pens in parallel for buffer getPixel-gradientY with the MuCth2 and the PeCth2.

This procedure then continues in a similar fashion to steps 6 to 10 in order to perform
the execution of the remaining jobs.

124

The execution of jobs by their respective PeXth can occur concurrently but the
respective PeCths of jobs gradientX and gradientY must not take their scheduling
decisions simultaneously, else memory shortages and deadlocks could occur. This
exclusion is implemented via synchronization primitives, as will be explained in Sec-
tion 6.4.6.

6.4.5 Events

An event is a data structure used for inter-threads signaling. There are different event
types, depending on the type of sender and receiver threads and depending on the
kind of carried information. In practice, events carry either a job or a buffer identifier,
plus optional parameters.

Job-related events

This type of event is used in one of the following situations:
• When a PeCth schedules a job j, it sends the event JOB_EXECUTE(j) to its PeXth.
• Symmetrically when the execution of a job j terminates, the PeXth sends the

event JOB_TERMINATED(j) to its PeCth.
• When the state of the Dth changes and, as a consequence of the deadlock

handling policy, a job j cannot be scheduled any more (it is blocked), the Dth
sends the event JOB_BLOCK(j) to the PeCth responsible for j.

• Symmetrically, when the state of the Dth changes and, as a consequence of
the deadlock handling policy, a job j can again be scheduled (it is unblocked),
the Dth sends the event JOB_UNBLOCK(j) to the PeCth responsible for j.

• When a job is terminated, the PeCth forwards the event JOB_TERMINATED(j) to
the MuCths of memories holding one or several input or output buffers of the
terminated job j. This has two purposes. It is used by a receiving MuCth to
check if all consumers of an input buffer have terminated, and deallocate the
buffer if it is the case, as it is no longer needed. It is also used by a receiving
MuCth to update the status of one or several output buffers, since the buffers
have been populated with data and are now available to consumers.

• When a job j that has at least one output buffer connecting to the client finishes,
the PeCth sends the JOB_TERMINATED(j) event to the Gth. The Gth will then

125

signal to the client that the data is available in the shared memory.

Buffer-related events

This type of event is used in one of the following situations:

• When a PeCth schedules a job, for each output buffer b, it sends a BUFFER_
ALLOCATE(b) event to the MuCth responsible for b. These events are acknowl-
edged by the receiving MuCths to guarantee that the selected job starts its
execution only after all its output buffers have been allocated.

• When a buffer becomes available, the PeCths managing the consumer jobs of
that buffer should be notified. This is done via the event BUFFER_AVAILABLE(b),
which is sent by the MuCth responsible for b. It is used by the receiving PeCths
to update the status of input buffers of a job, and if all are available to update
that job status.

• From the Gth to a PeCth that runs a consumer job of a source buffer b (between
the client and the server) to signal that this buffer is available, with the event
BUFFER_AVAILABLE(b).

• When a MuCth allocates or deallocates a buffer b it sends a BUFFER_ALLOCATED(b)
or BUFFER_DEALLOCATED(b) event to the Dth such that the status of the deadlock
prevention rules can be updated and some jobs can be blocked or unblocked if
needed.

Iteration-related events

This type of event is used by the Gth to communicate with the Dth:

• When a new iteration is launched upon request by the client the ITERATION_
CREATED(a) event is sent by the Gth to the Dth (a is the corresponding appli-
cation identifier). The Dth updates its internal data structures and marks the
corresponding jobs and data buffers as existing. If needed JOB_BLOCKED events
are emitted for the new jobs.

• When a running iteration terminates and the Gth received all JOB_TERMINATED
events for all sink jobs, it sends the ITERATION_TERMINATED(a) event to the Dth.
The Dth shifts its internal data structures by one iteration for application a and

126

recomputes the related rules’ and jobs’ state. If needed JOB_(UN) BLOCKED
events are emitted.

6.4.6 Synchronization

To guarantee that the deadlock prevention is properly implemented and that memory
shortage is avoided, inter-thread synchronization is needed. In the current proto-
type implementation mutexes, semaphores and condition variables from the pthread
POSIX library are used. Of course, other choices are possible, reason why we
present here the principles but not the detailed implementation.

The heart of the run-time execution is a loop that repeats until the end of all
applications. The synchronization is based on a unique scheduling lock (SchedLock).
In practice other primitives are used to protect the shared data structures like event
FIFOs, for instance, against concurrent access and to suspend threads until they
have something new to do. The loop can be described as follows:

• None of the PeCths holds the SchedLock. When a PeCth does not hold the
SchedLock, it waits for incoming events and resumes when it receives one. If it
has runnable jobs it also waits for the SchedLock and also resumes if it acquires
it. When receiving events, like BUFFER_AVAILABLE notifications, it updates its
jobs’ statuses and, if it has runnable jobs, it executes its scheduling algorithm
to keep its list of runnable jobs up to date and ordered. If, due to the deadlock
prevention, it has no runnable job any more, it stops waiting for the SchedLock.

• When a PeCth finally acquires the SchedLock (let us name it the winner PeCth)
it finishes consuming the pending incoming events of JOB_BLOCK and JOB_
UNBLOCK types. The synchronization guarantees that no new such events can
arrive until it releases the SchedLock. The other PeCths continue their opera-
tions.

• If the winner PeCth, after processing the last JOB_BLOCK events, does not have
any runnable job left, it releases the SchedLock such that another PeCth with
runnable jobs can acquire it; the loop restarts from the beginning. Else it selects
the one with highest priority and requests the allocation of all its output buffers
from their respective MuCths.

127

• By construction of the deadlock prevention, it is guaranteed that all these output
buffers can be allocated. Each requested MuCth allocates the buffers, notifies
the Dth, and acknowledges the winner PeCth. The MuCths operate in parallel
(except, of course, for the access to shared resources like event queues).

• The winner PeCth waits until all acknowledgments are received. It then sends a
request to its companion PeXth to execute the job, and transfers the SchedLock
to the Dth. Simultaneously the Dth receives the buffer allocations notifica-
tions from the MuCths, updates its internal state and sends JOB_BLOCK events
if needed. Finally, it releases the SchedLock and the loop restarts from the
beginning.

The real loop is slightly more complicated because of iterations start: when the
Gth receives from the client a request to launch a new iteration it starts competing for
the SchedLock, with maximum priority. As soon as it holds the SchedLock it notifies
the Dth about the new iteration and transfers the SchedLock to the Dth.

In summary, the Dth must execute between two scheduling decisions (taken by
the same or by two different PeCths). With the presented mechanism the Dth ex-
ecutes after each scheduling decision to update the system status, and no PeCth
can take a scheduling decision before the update of blocked job from the previous
scheduling decision is performed by the Dth.

6.4.7 Performance

To ensure suitable performance it is critical that the selection of the job to schedule
and the update to the blocking status of jobs is done as fast as possible since they
are in the critical section of the loop.

The high level of parallelism favors fast scheduling decisions because the PeCths,
when they do not hold the SchedLock, can execute their scheduling policies each
time they receive an event from other threads, to update their job lists and keep
them properly ordered. This way, as soon as they acquire the SchedLock they can
instantaneously pick the highest priority job.

The implementation is independent of the scheduling policies: a default schedul-
ing policy is provided that selects the first candidate job in a list, but users can provide

128

their own, more sophisticated, scheduling policy. A scheduling policy is defined by
a function that takes an unordered list of jobs and returns it ordered in decreasing
order of priority. This API has been retained because of its simplicity but other, po-
tentially more efficient, APIs are also possible. One could for instance use a stateful
API where the scheduling policy maintains an ordered list of jobs and reacts to job
status changes.

In order to speedup the update of the blocking status of jobs, the Dth uses a hi-
erarchical data structure of linked objects. Each time the status of a buffer changes,
thanks to the buffer-to-rule links, it identifies the potentially impacted rules, recom-
putes their status using bit-masks and detects rules’ state changes. Using rule-to-job
links it then finds the jobs which blocking state changes. Of course, the response
time of the Dth depends on the size of the problem, that is, the number of rules,
buffers, jobs and the number of links between them.

In the current implementation blocking and unblocking events are handled differ-
ently: JOB_BLOCK events must be sent to all destination PeCths before the latter can
take their next scheduling decision. This is why the Dth holds the SchedLock and
releases it only after it sent all JOB_BLOCK events. Unblocking events are less critical:
if they are sometimes delayed the consequence is not deadlocks but only potentially
sub-optimal scheduling decisions. Another design choice could thus be to propagate
unblocking events is the same critical way as blocking events. The resulting system
would probably be a bit less reactive but it would never take sub-optimal scheduling
decisions because unblocking events were delayed.

6.5 Conclusion

This chapter studied how to use the result obtained from the liveness analysis pre-
sented in Chapter 4 in a run-time environment. Existing run-time environment have
been examined in order to determine whether it would be possible or not to integrate
the use of the liveness analysis results. The conclusion from this survey is that there
were run-time presenting the suitable characteristics for such an integration. Some
are less relevant than others because they target HPC systems. Others, more rele-
vant, are centralized with non parallel control. In order to experiment with a run-time
with multi-threaded control we developed a new solution, our third contribution,

129

and integrated our dynamic deadlock prevention strategy. This implementation is
thoroughly described in the previous section of this chapter. Its key characteristic is
a minimized critical section in which a PeCth acquires a scheduling lock, thus prevent-
ing other threads to take scheduling decisions, selects a job to schedule, requests
the allocation of its output buffers, waits for the acknowledgments from the corre-
sponding MuCths, launches the job on its companion PeXth, and finally releases the
lock to the Dth. The Dth is informed of newly allocated buffers and signals blocked
jobs, if there are any, before releasing the lock and any other PeCth can acquire it.
This critical section is optimized thanks to a separation of the scheduling in a priority-
based job ordering step, performed in parallel by all PeCths out of the critical section,
and an instantaneous job selection, performed by one single PeCth at a time, inside
the critical section. The Dth is optimized thanks to bit-masks operations and a ded-
icated data structure that links data buffers to rules and rules to target jobs. This
prototype implementation has been tested on various example workloads.

130

Chapter 7

Conclusion

7.1 Contributions of the Thesis

The contributions of this thesis are focused on addressing the issue of deadlocks
caused by memory shortages in embedded systems. Two approaches have been
presented: a deadlock prevention mechanism based on the study of Memory Exclu-
sion Graph (MEG), and a liveness analysis based on the analysis of a subset of the
full state-space which have been shown to be of equivalent precision with regard to
memory shortages. The latter contribution is shown to be of practical use by tak-
ing its results to develop a deadlock avoidance mechanism that is integrated into a
run-time environment. This run-time environment is itself a prototype designed to by
highly parallelized.

7.1.1 Deadlock Prevention Using the Memory Exclusion Graph

In Chapter 3 a deadlock prevention mechanism is presented. It is based on the
addition of artificial dependencies into the workflow graph (representing all running
applications) in order to make it impossible to select a schedule leading to a mem-
ory shortage. This approach is based on the analysis of a graph, the MEG, which
represents buffers to be allocated in memory, and their potential for simultaneous
allocation. By virtue of the properties of MEGs, this approach can only be used with
applications sharing a common period (or extended to a common period) running on

131

single-memory platforms. These constraints limit the practical use of this approach.
It is also further limited for its high computational cost, especially for an approximate
(i.e., not fully permissive for scheduling) method. As such, the use of the second
contribution of this thesis is preferred.

7.1.2 Liveness Analysis of Dataflow Applications on
Multi-Memory Platforms

Chapter 4 introduces a liveness analysis for dataflow applications. This liveness
analysis is derived from the conventional the study of the schedule automaton, which
represents all possible states the system can reach and the transitions between
those states. Instead of studying this full schedule automaton, a smaller graph is
studied, the control automaton. The control automaton represents a subset of all
possible states, as it excludes states followed by at least one deallocation, i.e., states
in which at least one task is being executed. Theorem 1 proves that analyzing this
smaller automaton is equivalent to analyzing the larger schedule schedule with re-
gard to the issue of memory shortages. The practical use of this method has been
assessed by using its results to design a deadlock avoidance mechanism which has
been integrated into a prototype run-time environment.

7.1.3 Run-Time Environment with Deadlock Avoidance

In Chapter 6, the integration into a run-time environment of the deadlock avoidance
mechanism derived from the second contribution is discussed. The software archi-
tecture of a run-time environment designed to by highly parallelizable and integrating
the deadlock avoidance mechanism is presented.

7.2 Limitations and Improvements

As stated before the first contribution, presented in Chapter 3, is of limited practical
use as it significantly constraints both the supported applications and the architec-
ture of the target platforms. A possible way to circumvent those limitations is to divide
the system to analyze in multiple sub-systems, which lifts the shared period con-

132

straint across different subsystems and, as the analysis is of exponential complexity,
reduces the overall execution time to produce a solution. This approach however
incurs an under use of the available memory, as each subsystem gets its own ded-
icated part of the memory, without leaving the possibility to let one subsystem use
some of the memory allocated to second subsystem if it is not currently using its full
memory space.

The second contribution (presented in Chapter 4) is more practical as it does
not constraint the memory architecture of the target platform, nor requires timing
information and shared periodicity of applications. Results of the liveness analysis
have been shown to be implementable into existing run-time environments, but have
not being tested with real-world systems such as 4G/5G base antenna.

The run-time environment (third contribution of the thesis) presented in Chapter 6
is a prototype and, as such, its performance has not yet been evaluated in compari-
son to other existing run-time environments nor with realistic applications.

7.3 Future Work and Perspective

There are multiple research prospects to further reduce the size of the automaton
analyzed by liveness analysis of Chapter 4. A first option is to see how temporal
information such as tasks’ WCET, and earliest start and latest end times could be
taken into account to reduce the state-space.

Both the deadlock prevention technique presented in Chapter 3 and the liveness
analysis of Chapter 4 uses workload graphs. In the workload graph different con-
figurations of a given application are represented as different applications. In this
thesis we have not studied how to take into account that these different configura-
tions of an application would not run in parallel, and by how much it would reduce
the complexity of the analysis of systems with reconfigurable applications. Another
impact of the workload graph lies with the representation of concurrent iterations of
an application as different applications. If precedence constraints can be applied to
tasks of different iterations, for example a task t of an iteration n should never start
before the same task t of the previous iteration n− 1 has started, adding them to the
workload graph would reduce the complexity of its analysis.

133

A second common improvement for contributions 1 and 2 is the study of mem-
ory fragmentation. Both method have been designed by focusing on the memory
size and making sure the total amount of free space is always sufficient. But when
executing applications it is possible to reach a situation where this amount of free
space is large enough, but split into multiple small-sized blocks such that no block is
large enough for a buffer allocation. This is an issue as many hardware accelerators
require their I/O buffers to occupy a contiguous space. There are at least two pos-
sible ways around this problem. The first is to provide some memory virtualization,
similar to memory management units, in order to abstract away the physical memory
space. The second, easier to implement, would be downsize the memory given to
the analysis in comparison to the actual memory. This would require to study how
large this downsizing should be so that the larger amount of memory guarantees that
no allocation could be impossible at run-time due to fragmentation.

A third common improvement to our first and second contributions would be to
continue on improving our implementations, by making use of multi-threading (for
contribution 2), and by implementing them in C or another compiled language (for
both contributions). The objective is to study the performance gain which could be
made. Furthermore, reducing the memory footprint of our implementation is an im-
portant future work to allow the study of larger workloads.

The evaluation conducted in Chapter 5 can be extended by studying the impact
the various approximate approaches have on the optimal make-span, and by study-
ing larger workloads if improvements on our implementation of contribution 1 and 2
allow it. Also, other approaches such as SynDEx [27], PREESM [61], etc. could be
added to the comparison.

The performance of the highly parallelized run-time environment presented in
Chapter 6 should be evaluated in comparison to other run-time environments with
different architectures. Furthermore, the case study should be extended to real-life
applications sets, such as dataflow applications representing 4G and 5G processing
in baseband receiving units.

There are also multiple implementation choices of the run-time environment whose
impact on performance should be studied.
The first point blocking and unblocking events are not treated symmetrically by our
implementation. Blocking events are taken into account before any scheduling de-

134

cision, as not doing so could lead the system into a deadlock of the decision is
incompatible with a rule newly applied. On the other hand, unblocking event are
not as important, as taking a decision assuming a job is still blocked can reduce
performance, but not create a deadlock. This is why our implementation does not
require to take them into account before taking them into account. Whether process-
ing unblocking events before scheduling would lead to a significant improvement in
performance remains to be studied.
The second point lies with the representation of deadlock prevention rules. Since
their number increases exponentially on par with the exponential rise in complexity
with the size of the system analyzed, their representation can be an important matter
for large systems. Indeed these rules must be stored in memory (thus reducing the
memory left for the execution of applications), and the deadlock prevention thread
must be able to efficiently determine which rules apply or not at a given instant. Both
the memory space taken up by rules, and the efficiency of the deadlock prevention
thread are highly dependent on the representation of rules. As such different data
structures should be studied, in order to determine their efficiency and select the
most suitable for the target systems.

135

Part III

Back matter

137

Acronyms

πSDF Parametrized & Interfaced Synchronous Data Flow. 8, 27, 28, 33, 41, 45, 47

AHSDF Acyclic Homogeneous Synchronous Data Flow. 8, 25, 26, 33, 37, 39, 42,
45, 48, 56, 60–65, 69, 75, 77, 78, 114

API Application Programming Interface. 47, 114, 115, 122, 129

CAD Computer-Aided Design. 41, 83

CPU Central Processing Unit. 13, 15, 37, 46, 47, 55, 72, 86, 100, 108, 113, 122,
123

CSDF Cycle-Static Data Flow. 26, 45

DAG Directed Acyclic Graph. 40, 56

DMA Direct Memory Access. 16, 72, 119

DRAM Dynamic Random-Access Memory. 73

DSE Design Space Exploration. 41, 116

DSP Digital Signal Processing. 13, 15, 21, 41, 115

DSP Digital Signal Processor. 13, 46

FIFO First In, First Out. 24–27, 60, 63, 111, 127

FPGA Field Programmable Gate Array. 13, 15

139

GiB Gibibyte (1 GiB is 230 = 1, 073, 741, 824 bytes). 86, 100, 104

GPU Graphics Processing Unit. 13, 15, 46, 47, 55, 72

GS3PR Generalized Systems of Simple Sequential Processes with Resources. 31–
33

HPC High-Performance Computing. 18, 42, 45, 46, 48, 59, 110, 111, 129

I/O Input/Output. 55, 56, 58, 134

IDE Integrated Development Environment. 116

JSON JavaScript Object Notation. 113–115

LCM Least Common Multiple. 26, 57

MAC Medium Access Control. 115

MEG Memory Exclusion Graph. 8, 20, 60–68, 98, 103, 131

MoC Model of Computation. 23, 24, 26–28, 33, 39, 48, 110

MPSoC Multi-Processor System on a Chip. 15–18, 24, 41, 109

NUMA Non-Uniform Memory Access. 13, 15, 16, 23, 37, 46, 48, 55, 71, 119

OS Operating System. 86, 100

PC Personal Computer. 59, 86

PC2R Processes Competing for Conservative Resources. 33

PE Processing Element. 15, 16, 18–20, 34, 37, 39, 46, 47, 55, 58, 59, 63, 65,
71–75, 86, 96, 109–112, 114, 117, 119, 122, 123

RAM Random-Access Memory. 43, 86, 100, 104

RAS Resource Allocation System. 8, 10, 18, 19, 31–33, 36, 43, 45, 75, 77

140

RCPSP Resource Constrained Project Scheduling Problem. 34, 35

S*PR S*PR. 33

S3PR Systems of Simple Sequential Processes with Resources. 31–33

S4PR S4PR. 31–33

SDF Synchronous Data Flow. 8, 24–28, 33, 37, 45, 47, 48, 60, 63

SDK Software Design Kit. 16, 17

SoC System on a Chip. 15

SRAM Static Random-Access Memory. 73

UMA Uniform Memory Access. 15, 16, 55, 71

WCET Worst-Case Execution Time. 58, 59, 63, 64, 133

141

Bibliography

[1] Data Plane Development Kit. https://www.dpdk.org/.

[2] Marvell OCTEON Fusion CNF95xx family - product brief. https://www.
marvell.com/content/dam/marvell/en/public-collateral/embedded-
processors/marvell-infrastructure-processors-octeon-fusion-cnf95xx-
product-brief-2020-02.pdf.

[3] Open Radio Access Network Alliance. https://www.o-ran.org/software.

[4] SDF3: SDF For Free. http://www.es.ele.tue.nl/sdf3.

[5] Intel SDK for OpenCL Applications. https://software.intel.com/en-us/
intel-opencl, 2017.

[6] S. Adyanthaya, M. Geilen, T. Basten, R. Schiffelers, B. Theelen, and J. Voeten.
Fast multiprocessor scheduling with fixed task binding of large scale industrial
cyber physical systems. In EUROMICRO DSD, pages 979–988, 2013.

[7] Paul-Antoine Arras, Didier Fuin, Emmanuel Jeannot, and Samuel Thibault.
DKPN: A Composite Dataflow/Kahn Process Networks Execution Model. In
24th Euromicro International Conference on Parallel, Distributed and Network-
based processing, Heraklion Crete, Greece, 2016.

[8] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-
nier. StarPU: a unified platform for task scheduling on heterogeneous multi-
core architectures. Concurrency and Computation: Practice and Experience,
23(2):187–198, 2011.

143

https://www.dpdk.org/
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-infrastructure-processors-octeon-fusion-cnf95xx-product-brief-2020-02.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-infrastructure-processors-octeon-fusion-cnf95xx-product-brief-2020-02.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-infrastructure-processors-octeon-fusion-cnf95xx-product-brief-2020-02.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-infrastructure-processors-octeon-fusion-cnf95xx-product-brief-2020-02.pdf
https://www.o-ran.org/software
http://www.es.ele.tue.nl/sdf3
https://software.intel.com/en-us/intel-opencl
https://software.intel.com/en-us/intel-opencl

[9] K. Barkaoui and I. Ben Abdallah. A deadlock prevention method for a class of
FMS. In 1995 IEEE International Conference on Systems, Man and Cybernet-
ics. Intelligent Systems for the 21st Century, volume 5, pages 4119–4124 vol.5,
1995.

[10] Kamel Barkaoui and Laure Petrucci. Structural analysis of workflow nets with
shared resources. In Workflow Management: Net-based Concepts, Models,
Techniques and Tools (WFM’98), pages 82–95, 1998.

[11] Gabriel Bathie, Loris Marchal, Yves Robert, and Samuel Thibault. Revisiting
dynamic DAG scheduling under memory constraints for shared-memory plat-
forms. In IPDPS - 2020 - IEEE International Parallel and Distributed Process-
ing Symposium Workshops, pages 1–10, New Orleans / Virtual, United States,
2020.

[12] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cycle-static dataflow.
IEEE Transactions on Signal Processing, 44(2):397–408, 1996.

[13] T. Blattner, W. Keyrouz, M. Halem, M. Brady, and S. S. Bhattacharyya. A hybrid
task graph scheduler for high performance image processing workflows. In 2015
IEEE Global Conference on Signal and Information Processing (GlobalSIP),
pages 634–637, 2015.

[14] Timothy Blattner, Walid Keyrouz, Shuvra S. Bhattacharyya, Milton Halem, and
Mary Brady. A hybrid task graph scheduler for high performance image pro-
cessing workflows. Journal of Signal Processing Systems, 89(3):457–467, Dec
2017.

[15] J. Boutellier, J. Wu, H. Huttunen, and S. S. Bhattacharyya. PRUNE: Dynamic
and decidable dataflow for signal processing on heterogeneous platforms. IEEE
Trans. on Sig. Proc., 66(3):654–665, 2018.

[16] Thomas Carle, Manel Djemal, Dumitru Potop-Butucaru, and Robert De Simone.
Static mapping of real-time applications onto massively parallel processor ar-
rays. In 14th International Conference on Application of Concurrency to System
Design, Proceedings ACSD 2014, Hammamet, Tunisia, 2014.

144

[17] Xiaoliang Chen, Zhiwu Li, Naiqi Wu, Abdulrahman M. Al-Ahmari, Abdulaziz Mo-
hammed El-Tamimi, and Emad S. Abouel Nasr. Confusion avoidance for dis-
crete event systems by P/E constraints and supervisory control. IMA Journal of
Mathematical Control and Information, 33(2):309–332, 10 2014.

[18] Yufeng Chen, Zhiwu Li, Abdulrahman Al-Ahmari, NaiQi Wu, and Ting Qu. Dead-
lock recovery for flexible manufacturing systems modeled with petri nets. Infor-
mation Sciences, 381:290 – 303, 2017.

[19] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks. ACM Comput.
Surv., 3(2):67–78, 1971.

[20] Jack B. Dennis. First version of a data flow procedure language. In B. Robinet,
editor, Programming Symposium, pages 362–376, Berlin, Heidelberg, 1974.
Springer Berlin Heidelberg.

[21] K. Desnos, M. Pelcat, J.F. Nezan, and S. Aridhi. Memory analysis and optimized
allocation of dataflow applications on shared-memory MPSoCs. Jour. of Sig.
Proc. Sys., pages 1–19, 2014.

[22] K. Desnos, M. Pelcat, J.F. Nezan, and S. Aridhi. On memory reuse between
inputs and outputs of dataflow actors. ACM Transactions on Embedded Com-
puting Systems, pages 30:1–30:25, 2016.

[23] K. Desnos, M. Pelcat, J.F. Nezan, S. Bhattacharyya, and S. Aridh. PiMM: Pa-
rameterized and interfaced dataflow meta-model for MPSoCs runtime reconfig-
uration. In SAMOS, pages 41–48, 2013.

[24] Gregory F. Diamos and Sudhakar Yalamanchili. Harmony: An execution model
and runtime for heterogeneous many core systems. In Proceedings of the 17th
International Symposium on High Performance Distributed Computing, HPDC
’08, page 197–200. Association for Computing Machinery, 2008.

[25] Edsger W. Dijkstra. Cooperating Sequential Processes, pages 65–138.
Springer New York, 2002.

145

[26] Andi Drebes, Antoniu Pop, Karine Heydemann, Nathalie Drach, and Albert Co-
hen. NUMA-aware scheduling and memory allocation for data-flow task-parallel
applications. New York, NY, USA, 2016. Association for Computing Machinery.

[27] Y. Sorel et al. SynDEx. http://www.syndex.org. last visited on September
2018.

[28] J. Ezpeleta, J. M. Colom, and J. Martinez. A petri net based deadlock prevention
policy for flexible manufacturing systems. IEEE Transactions on Robotics and
Automation, 11(2):173–184, 1995.

[29] J. Ezpeleta, F. Tricas, F. Garcia-Valles, and J. M. Colom. A banker’s solution for
deadlock avoidance in FMS with flexible routing and multiresource states. IEEE
Trans. Robot. Autom., pages 621–625, 2002.

[30] A. Fanni, Alessandro Giua, and N. Sanna. Control and error recovery of petri
net models with event observers. 01 1997.

[31] Fu-Shiung Hsieh and Shi-Chung Chang. Dispatching-driven deadlock avoid-
ance controller synthesis for flexible manufacturing systems. IEEE Transactions
on Robotics and Automation, 10(2):196–209, 1994.

[32] Thierry Gautier, Xavier Besseron, and Laurent Pigeon. KAAPI: A thread
scheduling runtime system for data flow computations on cluster of multi-
processors. In Proceedings of the 2007 International Workshop on Parallel
Symbolic Computation, PASCO ’07, page 15–23, New York, NY, USA, 2007.
Association for Computing Machinery.

[33] Thierry Gautier, Joao Vicente Ferreira Lima, Nicolas Maillard, and Bruno Raffin.
XKaapi: A runtime system for data-flow task programming on heterogeneous
architectures. In IPDPS, 2013.

[34] Farhad Habibi, Farnaz Barzinpour, and Seyed Sadjadi. Resource-constrained
project scheduling problem: review of past and recent developments. Journal
of Project Management, 3:55–88, 01 2018.

146

http://www.syndex.org

[35] K. Hadj Salem, Y. Kieffer, and S. Mancini. Efficient algorithms for memory man-
agement in embedded vision systems. In 2016 11th IEEE Symposium on In-
dustrial Embedded Systems (SIES), pages 1–6, 2016.

[36] K. Hadj Salem, Y. Kieffer, and S. Mancini. Formulation and practical solution
for the optimization of memory accesses in embedded vision systems. In 2016
Federated Conference on Computer Science and Information Systems (FedC-
SIS), pages 609–617, 2016.

[37] K. Hadj Salem, Y. Kieffer, and S. Mancini. Memory management in embedded
vision systems: Optimization problems and solution methods. In 2016 Confer-
ence on Design and Architectures for Signal and Image Processing (DASIP),
pages 200–207, 2016.

[38] Khadija Hadj Salem, Yann Kieffer, and Stéphane Mancini. Meeting the Chal-
lenges of Optimized Memory Management in Embedded Vision Systems Us-
ing Operations Research, pages 177–205. Springer International Publishing,
Cham, 2018.

[39] J. Heulot, M. Pelcat, K. Desnos, J. Nezan, and S. Aridhi. SPIDER: A syn-
chronous parameterized and interfaced dataflow-based RTOS for multicore
DSPs. In EDERC, pages 167–171, 2014.

[40] Julien Heulot. Runtime multicore scheduling techniques for dispatching param-
eterized signal and vision dataflow applications on heterogeneous MPSoCs.
PhD thesis, INSA de Rennes, 2015.

[41] Simon Holmbacka, Erwan Nogues, Maxime Pelcat, Sébastien Lafond, Daniel
Menard, and Johan Lilius. Energy-awareness and performance management
with parallel dataflow applications. Journal of Signal Processing Systems,
87(1):33–48, Apr 2017.

[42] Yifan Hou and Kamel Barkaoui. Deadlock analysis and control based on
petri nets: A siphon approach review. Advances in Mechanical Engineering,
9(5):1687814017693542, 2017.

147

[43] M. V. Iordache, J. Moody, and P. J. Antsaklis. Synthesis of deadlock prevention
supervisors using petri nets. IEEE Transactions on Robotics and Automation,
18(1):59–68, 2002.

[44] Laxmikant V. Kale and Sanjeev Krishnan. CHARM++: A portable concurrent
object oriented system based on C++. In Proceedings of the Eighth Annual
Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications, OOPSLA ’93, page 91–108. Association for Computing Machinery,
1993.

[45] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103.
Springer US, 1972.

[46] E. Kofman and R. de Simone. A formal approach to the mapping of tasks
on an heterogenous multicore, energy-aware architecture. In 2016 ACM/IEEE
International Conference on Formal Methods and Models for System Design
(MEMOCODE), pages 153–162, 2016.

[47] E. A. Lee and S. Ha. Scheduling strategies for multiprocessor real-time DSP. In
1989 IEEE Global Telecommunications Conference and Exhibition ’Communi-
cations Technology for the 1990s and Beyond’, pages 1279–1283 vol.2, 1989.

[48] Edward Ashford Lee and David G. Messerschmitt. Static scheduling of syn-
chronous data flow programs for digital signal processing. IEEE Trans. Comput.,
36(1):24–35, 1987.

[49] John Lee. Hardware/Software Deadlock Avoidance for Multiprocessor Multire-
source System-on-a-Chip. PhD thesis, 12 2004.

[50] J. V. F. Lima, T. Gautier, N. Maillard, and V. Danjean. Exploiting concurrent GPU
operations for efficient work stealing on multi-GPUs. In 2012 IEEE 24th Interna-
tional Symposium on Computer Architecture and High Performance Computing,
pages 75–82, 2012.

[51] G. Liu, C. Jiang, and M. Zhou. Two simple deadlock prevention policies for S3PR
based on key-resource/operation-place pairs. IEEE Transactions on Automation
Science and Engineering, 7(4):945–957, 2010.

148

[52] Gaiyun Liu and Kamel Barkaoui. Necessary and sufficient liveness condition
of GS 3 PR petri nets. International Journal of Systems Science, 46(7):1147–
1160, 2015.

[53] GaiYun Liu and Kamel Barkaoui. A survey of siphons in petri nets. Information
Sciences, 363:198 – 220, 2016.

[54] Juan-Pablo López-Grao and José-Manuel Colom. Structural Methods for the
Control of Discrete Event Dynamic Systems – The Case of the Resource Allo-
cation Problem, pages 257–278. Springer London, 2013.

[55] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: Exploiting parallelism
on heterogeneous multiprocessors with adaptive mapping. In Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, MI-
CRO 42, page 45–55. Association for Computing Machinery, 2009.

[56] Loris Marchal, Hanna Nagy, Bertrand Simon, and Frédéric Vivien. Parallel
scheduling of DAGs under memory constraints. In PDPS, pages 204–213,
2018.

[57] Jean-Vivien Millo., Amine Oueslati., Emilien Kaufman., Julien DeAntoni., Fred-
eric Mallet., and Robert de Simone. Explicit control of dataflow graphs with
MARTE/CCSL. In Proceedings of the 5th International Conference on Model-
Driven Engineering and Software Development - Volume 1: MODELSWARD,,
pages 542–549. INSTICC, SciTePress, 2017.

[58] Hugo Miomandre, Julien Hascoët, Karol Desnos, Kevin Martin, Benoît Dupont
De Dinechin, and Jean-François Nezan. Demonstrating the SPIDER runtime for
reconfigurable dataflow graphs execution onto a DMA-based manycore proces-
sor. IEEE International Workshop on Signal Processing Systems, 2017. Poster.

[59] NXP. S32v2 processors for vision, machine learning, and sensor fusion. https:
//www.nxp.com/docs/en/data-sheet/S32V234.pdf, 2020.

[60] T. M. Parks, J. L. Pino, and E. A. Lee. A comparison of synchronous and cycle-
static dataflow. In Conference Record of The Twenty-Ninth Asilomar Conference
on Signals, Systems and Computers, volume 1, pages 204–210 vol.1, 1995.

149

https://www.nxp.com/docs/en/data-sheet/S32V234.pdf
https://www.nxp.com/docs/en/data-sheet/S32V234.pdf

[61] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J. F. Nezan, and S. Aridhi. PREESM: A
dataflow-based rapid prototyping framework for simplifying multicore DSP pro-
gramming. In EDERC, pages 36–40, 2014.

[62] Jonathan Piat, Shuvra S. Bhattacharyya, and Mickaël Raulet. Interface-based
hierarchy for synchronous data-flow graphs. In Signal Processing Systems,
2009. SiPS 2009. IEEE Workshop on, pages 145–150, Tampere, Finland, 2009.

[63] S. A. Reveliotis, M. A. Lawley, and P. M. Ferreira. Polynomial-complexity dead-
lock avoidance policies for sequential resource allocation systems. IEEE Trans.
on Aut. Cont., 42(10):1344–1357, 1997.

[64] K. Rosvall and I. Sander. A constraint-based design space exploration frame-
work for real-time applications on MPSoCs. In DATE, pages 1–6, 2014.

[65] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating System
Concepts. Wiley Publishing, 9th edition, 2012.

[66] William Stallings. Operating Systems: Internals and Design Principles. Prentice
Hall Press, USA, 6th edition, 2008.

[67] S. Stuijk, M. Geilen, and T. Basten. Throughput-buffering trade-off exploration
for cyclo-static and synchronous dataflow graphs. IEEE Transactions on Com-
puters, 57(10):1331–1345, 2008.

[68] Fernando Tricas, F. García-Vallés, José Colom, and Joaquin Ezpeleta. An Iter-
ative Method for Deadlock Prevention in FMS, pages 139–148. 08 2000.

[69] Yang Wang and Paul Lu. Dds: A deadlock detection-based scheduling algorithm
for workflow computations in HPC systems with storage constraints. Parallel
Computing, 39(8):291 – 305, 2013.

[70] J. Wu, T. Blattner, W. Keyrouz, and S. S. Bhattacharyya. Model-based dynamic
scheduling for multicore implementation of image processing systems. In 2017
IEEE International Workshop on Signal Processing Systems (SiPS), pages 1–6,
2017.

150

[71] Xilinx. SDx development environment. https://www.xilinx.com/products/
design-tools/\all-programmable-abstractions.html, 2017.

[72] Xilinx. Zynq UltraScale+ MPSoC. https://www.xilinx.com/products/
silicon-devices/soc/zynq-ultrascale-mpsoc.html, 2020.

[73] K. Xing, M. Zhou, H. Liu, and F. Tian. Optimal petri-net-based polynomial-
complexity deadlock-avoidance policies for automated manufacturing systems.
IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and
Humans, 39(1):188–199, 2009.

[74] Wei-Chang Yeh. Real-time deadlock detection and recovery for automated man-
ufacturing systems. International Journal of Advanced Manufacturing Technol-
ogy, 20:780–786, 01 2002.

[75] C. Zhong, Z. Li, Y. Chen, and A. Al-Ahmari. On nonexistence of a maximally per-
missive liveness-enforcing pure net supervisor. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 43(1):29–37, 2013.

151

https://www.xilinx.com/products/design-tools/\all-programmable-abstractions.html
https://www.xilinx.com/products/design-tools/\all-programmable-abstractions.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

Titre : Analyses de vivacité et environnement logiciel intelligent pour la gestion mémoire d’applications flux de
données

Mots clés : co-conception materielle/logicielle, simulation, exploration d’achitecture, ingénierie des modèles,
partitionnement materiel/logiciel

Résumé : Cette thèse a été effectuée à Télécom Pa-
ris et a été financé par Nokia Bell Labs France. Dans
cette thèse sont étudiées différentes techniques vi-
sant à la gestion des interblocages et de la satura-
tion des capacités mémoires dans les systèmes em-
barqués. Ce travail trouve sa motivation dans la com-
plexification de l’architecture des systèmes informa-
tiques au cours des dernières décennies, notamment
avec la généralisation des architectures hétérogènes
et Non-Uniform Memory Access (NUMA). Cette
évolution se constate dans tous types de systèmes in-
formatiques, de l’embarqué sur Multi-Processor Sys-
tem on a Chip (MPSoC) aux systèmes distribués
pour le calcul haute performance (High-Performance
Computing). Nous nous intéressons en particulier au
problème de la saturation des capacités mémoires
dans les systèmes embarqués utilisés pour le trai-
tement numérique du signal (Digital Signal Proces-
sing). Nos contributions peuvent toutefois être uti-

lisées pour d’autres types d’applications et de plate-
formes. Cette thèse apporte trois contributions : (1)
Nous présentons une technique de prévention des in-
terblocages se basant sur l’étude des cliques dans un
type de graphes, les Memory Exclusion Graphs. Ces
graphes représentent les buffers alloués en mémoire
et leur possibilité d’allocation simultanée. (2) Nous
présentons une optimisation de l’analyse de vivacité
conventionnellement utilisée pour l’étude de la satu-
ration mémoire, permettant d’analyser des systèmes
plus complexes en un temps réduit. (3) Nous avons
développé une technique d’évitement des interblo-
cages utilisant les résultats de l’analyse de vivacité.
Cette technique d’évitement a été intégrée à un envi-
ronnement d’exécution expérimental. Nous évaluons
la première et la deuxième contribution en les com-
parant à un outil issu de l’état de l’art. Pour conclure,
nous proposons plusieurs pistes de travaux futurs sur
la base des contributions de la thèse.

Title : A run-time environment for efficient management of dynamic application workloads of 5G network
services

Keywords : Model Driven Engineering, Hardware/Software Partitioning, Hardware/Software Co-design, Si-
mulation, Design Space Exploration

Abstract : This thesis has been realized at Télécom
Paris and it has been financed by Nokia Bell Labs
France. It studies different techniques to handle the
issue of deadlocks and memory shortages in com-
puting systems. Its work is motivated by the rise
over the past decades of heterogeneous and Non-
Uniform Memory Access (NUMA) architectures in all
varieties computing systems, from embedded sys-
tems running on Multi-Processor System on a Chip
(MPSoC) to distributed High Performance Computing
(HPC) systems. We focus more specifically on the
issue of memory shortages in embedded systems
used for Digital Signal Processing, but our contribu-
tions could be applied to different applications and
platforms. The contributions of this thesis are three-

fold: (1) we present a deadlock prevention technique
based on the analysis of cliques in Memory Exclusion
Graphs, which are graphs representing buffers alloca-
ted in memory and whether they might get simulta-
neously allocated; (2) we present an optimization on
the conventional liveness analysis for memory shor-
tages, allowing to execute the liveness analysis in rea-
sonable time for larger systems than previously sup-
ported; (3) we developed a deadlock avoidance stra-
tegy using results from the liveness analysis, and in-
tegrated it into an experimental run-time environment.
We evaluate our first and second contributions in com-
parison to an existing state-of-the-art tool. Finally we
propose multiple leads to improve on the contributions
of the thesis.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Contents
	List of Figures
	List of Tables
	Background
	Introduction
	Modern Computing Platforms
	Deadlocks
	Problem Statement
	Thesis Contribution
	Synopsis and Outline

	Related Work
	Introduction
	Models of Computation
	Formalization of Scheduling Problems
	Liveness and Deadlocks
	Run-Time Environments for Dataflow Applications
	Conclusion

	Contributions
	Approximate Deadlock Prevention using Memory Exclusion Graphs
	Introduction
	Target Platform
	Applications and Workload
	Memory Shortage
	Conclusions and Limits

	Efficient Liveness Analysis
	Introduction
	System models and design assumptions
	Schedule Automaton
	Control Automaton
	Liveness Analysis of Automaton
	Evaluation of Schedule and Control Automaton Analysis
	Mathematical Formalization
	Conclusion

	Experimental Evaluation
	Introduction
	Implementation Details
	Experimental Setup
	Minimal Supported Memory
	Permissiveness
	Computational Time
	Discussion

	Run-Time Environment
	Introduction
	Functionalities of a Run-Time Environment
	Design Choices to Integrate the Deadlock Handling Policy
	Architecture of our Run-Time Environment
	Conclusion

	Conclusion
	Contributions of the Thesis
	Limitations and Improvements
	Future Work and Perspective

	Back matter
	Acronyms
	Bibliography

